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I. Zusammenfassung

Nichtlinear optische Materialien, molekulare Elektronik und Spintronik sind
Felder in denen austauschgekoppelte Moleküle und deren magnetische Wech-
selwirkungen eine entscheidende Rolle zukommt. Sie können als Informations-
speicher, für den Datentransfer oder als logische Bauteile verwendet werden.
Aufgrund ihres potentiellen Vermögens zwischen sich unteschiedlich verhaltenden
Zuständen zu wechseln, indem sie durch externe Stimuli wie Lichteinstrahlung,
chemische Reaktionen, angelegte magnetische und elektrische Felder, Druck oder
mechanischer Stress behandelt werden, herrscht ein großes Interesse an ihnen.
Eine Aufgabe für einen theoretischen Chemiker ist es das Verhalten und die
magnetischen Eigenschaften austauschgekoppelter Moleküle zu verstehen und
letztenendes auch voraussagen über potentielle Materialien, aus den Spintronik
Bauteile erstellt werden könnten, machen zu können.

Aufgrund der schieren Größe der meisten molekularen Strukturen die im Ex-
periment behandelt werden ist Kohn–Sham Dichtefunktionaltheorie die einzige
praktisch anwendbare Elektronenstrukturmethode mit welcher sich Strukturop-
timierungen und die Auswertung der zu den Molekülen gehörenden Eigenschaf-
ten mithilfe von Computersystemen angehen lässt. Obwohl die Methode an
sich formal korrekt ist und als solche prinzipiell in der Lage ist austauschgekop-
pelte Systeme zu beschreiben, unterliegt die Dichtefunktionaltheorie in der pra-
kitschen Anwendung doch einigen Beschränkungen. Dies liegt darin begründet,
dass das exakte Austauschkorrelationsfunktional nicht bekannt ist und daher
Annäherungen in der Anwendung gemacht werden müssen. Ein variierbarer pa-
rameter in angenäherten Austauschkorrelationsfunktionalen ist die Beimischung
von exaktem Austausch, die einen starken Einfluss auf die Ergebnisse computer-
gestützter Studien haben kann. Dies gilt insbesondere für austauschgekoppelte
Systeme.

Die besonders herausfordernden Systeme bilden die Grundlage und Motivation
dieser Arbeit ein besseres Verständnis für die magnetischen Wechselwirkungen
zu erhalten. Als Maß dafür wurde der Diradikalcharakter herangezogen. Dieser
ist eine rein theoretisch definierte Größe welche es erlaubt geschlossenschalige
und offenschalige Singulettsysteme voneinander zu unterscheiden, eine Aufgabe,
die für Experimentatoren und Theoretiker eine Herausforderung ist. Diradikal-
charakter ist nicht nur für magnetische, sondern auch für nichtlinear optische
Eigenschaften sehr relevant. Theoretiker erhalten bei Anwendung verschiede-
ner theoretischer Methoden oft Ergebnisse unterschiedlicher Natur bezüglich des
Diradikalcharakter, zum Beispiel wenn verschiedene austauschkorrelationsfunkti-
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vi I.Zusammenfassung

onale benutzt werden. Experimentatoren hingegen müssen oft viele verschiedene
Ansätze verfolgen um Hinweise über die offenschalige oder geschlossenschalige
Natur der untersuchten Systeme zu erhalten.
In dieser Arbeit werden die Ergebnisse einer Studie zum Einfluss des exakten
Austauschs auf den Diradikalcharakter gezeigt. Die dafür verwendeten Mo-
dellsysteme wurde so ausgewählt, dass zusätzlich zu Kohn–Sham dichtefunkti-
onaltheoretischen Untersuchungen auch verlässlichere theoretische Methoden wie
die so genannte full complete active space self-consistent field Methode, welche
als Referenz verwendet wurde, anwendbar sind. Zwei Methoden zur Evaluierung
des elektronischen Diradikalcharakters werden in dieser Arbeit verwendet: eine
verbreitete Methode und eine, welche lokale Spins und Partitionierungsschemata
für die Extraktion der lokalen Informationen aus der Elektronenstruktur verwen-
det. Eine detaillierte Beschreibung der Implementierung der zweier Schemata
in ein Computerprogramm zur Nachbearbeitung von Elektronenstrukturen wird
gezeigt. Desweiteren werden neue analytische Ausdrücke für Integrale, welche
im iterativen Hirshfeld Partitionierungsalgorithmus vorkommen, hergeleitet, im-
plementiert und für eine Vergleichende Studie zur Evaluierung einer numerischen
und einer analytischen Methode benutzt. Es wurde herausgefunden, dass keine
bestimmte Beimischung von exaktem Austausch eine verlässliche Wiedergabe
des Diradikalcharakters bei allen Bindungslängen entlang der Dissoziation einer
Bindung erreicht. Dies legt nahe, dass Austauschkorreltationsfunktionale weiter
entwickelt werden sollten, und Maße für Diradikalcharakter, welche qualitativ
auf verlässlichere Elektronenstrukturmethoden anwendbar sind weiter untersucht
werden sollten. Dank der analytischen Implementierung der Hirshfeld-I Met-
hode, kann nun eines dieser Maße für den Diradikalcharakter effizienter eingesetzt
werden.
Ein neues Maß für den Diradikalcharakter wird in dieser Arbeit vorgestellt.
Dieses basiert nicht auf der Verarbeitung von Elektronenstrukturdaten, sondern
verwendet Bindungslängenmuster um den so genannten strukturellen Diradikal-
charakter abzuschätzen. Das Potential zur Anwendung des strukturellen Diradi-
kalcharakters wird anhand von Beispielen gezeigt, bei denen er auf experimentell
charakterisierte Systeme angewendet wird, deren Natur des Grundzustandes,
also ob es sich um offenschalige oder geschlossenschalige Systeme handelt, auf-
geklärt werden konnte. Die Systeme enthalten sowohl rein organische, als auch
organometallische Vertreter. Zuletzt wird der Dirdikalcharakter eines zweikerni-
gen photoschaltbaren Cobaltkomplexes unbekannten Grundzustandes berechnet
und die aus der vorangegangenen Studie gewonnen Informationen verwendet
um die offenschalige Natur des Grundzustandes zu schlussfolgern. Diese Er-
gebnisse legen nahe, dass weitere Arbeiten an verwandten molekularen Syste-
men bezüglich schaltbarer nichtlinear optischer und magnetischer Eigenschaften
vielversprechend ist.



II. Abstract

In the field of nonlinear optical materials, molecular electronics, and spintronics,
exchange-coupled molecules and the magnetic interaction within and between
them plays a crucial role. They could be used for information storage and
transfer or for logic units. One reason for the strong interest in molecules
in this context is their potential to switch between differently behaving states
by external stimuli such as radiation with light, chemical reactions, applied
electric or magnetic fields, pressure, or mechanical stress. A task for theoretical
chemists is to understand the behavior and magnetic properties of exchange-
coupled molecules and ultimately be able to make predictions about possible
candidates that can be used for constructing spintronic devices.

Due to the large size of most molecular structures that are considered in the
experiment, Kohn–Sham density functional theory (DFT) is the only practi-
cally available electronic structure method with which optimizations of molecu-
lar structures and evaluations of their properties are computationally feasible.
Although a formally correct method and as such in principle capable of des-
cribing exchange-coupled molecular systems, density functional theory in its
form applied in practice, using an approximate exchange–correlation functional,
sometimes struggles with challenging systems. Depending on different tunable
parameters such as the amount of exact exchange admixture in the exchange–
correlation functional, the results of computational studies may vary strongly.
This is particularly true for exchange-coupled molecules.

These challenging molecular systems are the source of this work’s motivation to
gain better insight into the magnetic interactions expressed through the diradi-
cal character, a purely theoretically defined and not observable quantity, that
allows distinguishing closed-shell singlets from open-shell systems, a task that
is still challenging for theoreticians and experimentalists. Open-shell character
is essential for not only magnetic but also nonlinear optical properties. Theore-
ticians often get ambiguous results from different theoretical methods or when
employing different exchange–correlation functionals in Kohn–Sham DFT, while
experimentalists often have to use multiple different approaches and methods
to get clues on whether the investigated molecules are open-shell or closed-shell
singlets.

In this thesis, the results from a study aiming at finding the optimal amount
of exact exchange admixture in different exchange–correlation functionals for
describing the diradical character of model systems with Kohn–Sham DFT are
presented. The model systems are chosen to be less computationally demanding
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viii II.Abstract

so that additionally to the Kohn–Sham DFT calculations, reliable calculations
with full complete active space self-consistent field (SCF) as a benchmark could
also be performed. Two electronic diradical character evaluation methods are
used in this work, a conventional one and one which is based on local spins and
requires partitioning schemes to extract local information from the electronic
structure. Details about the implementation of the schemes in a postproces-
sing computational framework are presented and new analytic expressions for
integrals appearing in the Hirshfeld-I partitioning algorithm are derived, imple-
mented, and used for a comparative study on the performance of the analytic
and the numeric methods. It is found that no exact-exchange-admixture can
reliably describe electronic diradical character from DFT over the full range of a
bond dissociation curve. This suggests that further work is needed towards de-
fining exchange–correlation (xc) functionals and measures of diradical character
for DFT which are qualitatively compatible with more exact electronic structure
methods. Thanks to the analytical implementation of Hirshfeld-I partitioning,
one very promising measure for such improvements can now be evaluated more
efficiently than before.
Furthermore, a completely new measure for diradical character is introduced
in this work. It is not based on the electronic structure of the system under
study but instead uses bond-length patterns to estimate a new quantity called
structural diradical character. Its potential as an additional measure for iden-
tifying reliable xc functionals is demonstrated by applying it to experimentally
characterized molecular systems for which the electronic diradical character,
or rather the ground-state nature (open-shell or closed-shell singlet) is known.
The set of systems covers both purely organic systems as well as organome-
tallic ones. In an attempt to make a prediction, the diradical character of a
photoswitchable dinuclear cobalt-containing complex of unknown ground-state
nature is calculated, and the insight gained from the previous study is used to
conclude its open-shell nature. This suggests that further work on related com-
pounds towards switchable nonlinear optical activity and magnetic properties
is worthwhile.
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1. Introduction

The correct description of properties of nanoscopic systems, such as molecules,
is crucial for understanding and designing macroscopic materials that exhibit
unique, desired properties. [1–7] This work was motivated by the idea of desig-
ning molecular materials whose properties can be switched based on physical
stimuli. [8–13] Especially the cobaltocenyldithienylethene complex shown in Fi-
gure 1.1 posed a puzzling question of whether its closed form in its ground state
is an open-shell or a closed-shell state (CS). This question can be addressed by
evaluating the diradical character, an important property also in material design
and analysis [14–41] (it is connected to the second hyperpolarizability, which in
turn plays an important role in nonlinear-optical (NLO) materials), as it is a
measure that tells the user if the investigated system is an open-shell state (OS)
or not. A good theoretical method would not only need to give accurate results
but would also need to be applicable to a wide range of systems, small and
large, molecular and solid state, organic and inorganic. Ideally, such a method
will be ab initio1 or based on the first principles of quantum mechanics2.
Usually, in quantum chemistry, the Born–Oppenheimer approximation [42] is
employed. It greatly reduces the complexity of the problem of solving the
Schrödinger equation by separating the full Hamiltonian into an electronic and a
nuclear Hamiltonian. The nuclei are then treated as parameters in the electronic
Schrödinger equation. Still, even with the Born–Oppenheimer approximation
applied, most molecular systems are too complex to be treated without further
approximations. A relatively low-cost method in terms of computational power
that is still capable of describing electron correlation is DFT, or to be more
precise, Kohn–Sham DFT (KS-DFT). [43, 44]

DFT, although formally an exact method, is in practice only applied using
an approximation to the xc functional, due to its exact form being unknown.
Nevertheless, DFT is widely used in quantum chemistry, where a multitude of
different approximations to the xc functional is available.
Usually, one is interested in specific properties or quantities that can be ex-
tracted from a system’s electronic structure. A typical example is the energy,
which is an observable. Some quantities of interest are not observables and as
such not accessible for extraction by experimental work. Examples are local
charges [45], local spins [46–48] or the diradical character [29]. Although not ex-

1This means that the method is based only on natural constants as experimental para-
meters.

2This means that fits to experimental data other than natural constants are permitted,
however system-specific fit parameters must not be used.

1



2 1. Introduction

perimentally accessible, these quantities often pose ways for interpreting and
explaining behaviors of the corresponding systems and help develop what one
may call the chemist’s intuition. The goal of this work is to evaluate perfor-
mances of existing xc functionals at predicting diradical characters of chemically
very different molecular systems, to develop new ways in which this analysis is
done, and to improve existing ones.

Two conceptually different types of diradical character are discussed, electronic
and structural diradical character. The electronic diradical character described
in Chapter 3 is a quantity derived from electronic structures. It is defined purely
theoretically and is not an experimentally directly accessible quantity, although
Kamada et al. [22] proposed a way of extracting diradical character information
from experiment. Because of that, the definition of electronic diradical character
is somewhat arbitrary and therefore, different definitions can be formulated and
found, none of which is overall better or worse by construction. The usefulness
of each definition can only be judged in a certain context or application.

In Section 3.2, the implementations of two measures for electronic diradical
character are discussed. One is derived from occupation numbers of natural
orbitals [6, 49,50], while local spins are the basis for the second definition. [51] The
definition is modified in this work to achieve a better compliance with other
popular measures of diradical character, retaining the local spins as the basic
quantity used for the determination of the diradical character.

The reasons for the choice of these two electronic diradical character measures
were: (1) The measure based on natural orbital occupation numbers is simple
and fast to compute and often found in the literature, making it well comparable.
Also, readers are more likely familiar with it than with other measures. (2) The
second measure was chosen because it is more generally applicable than other
known measures. It can be employed with both single-determinant methods
as well as with multireference wave functions. This makes comparative studies
possible in which DFT can be evaluated against more reliable methods such as
full configuration interaction (CI).

Implementation of the first measure was not mandatory, but it was convenient
as otherwise probably at least the same implementation effort would have had
to be made for writing routines that read the natural occupation numbers from
output files of the quantum chemistry program packages.3 This is different for
the second measure, since that one is not included in most quantum chemistry
codes. In order to be able to use it, implementing it was a necessity.

The concept of local spins itself is also a topic worth discussing. Again, being
a purely theoretical construct, several definitions of local spins exist. As the
name suggests, local spins are derived from the total electron spin or spin-
squared expectation value of the system. By proper spatial partitioning4, the

3That is if they have been written to the output files, which is not always the case
in standard output files. Otherwise, repeating the calculations or at least parts of them
might have additionally been necessary to generate the desired data.

4Possible Hilbert-space partitioning methods are for example the ones from:



3

expectation value can be divided into local spins. The partitioning is often done
by employing the concept of atoms-in-molecules (AIM)5, where the molecule is
divided into individual atoms that can then be used to evaluate local (atomic)
properties. Different partitioning schemes for the subdivision of molecules into
the respective atoms implemented and used in this work are the Mulliken and
iterative Hirshfeld (Hirshfeld-I) partitioning schemes (see Section 3.3).
Methods that define their fragments by dividing real space, like Hirshfeld-I,
are commonly implemented using numerical grids to represent wave functions,
electron densities, and other quantities. Grid-based approaches are easy to use
but may suffer from inaccuracies if the chosen grid is of low quality, i.e. has too
few points to reproduce characteristics of the represented quantity. Inaccuracies
of the grids can be overcome by using denser grids, which come at the cost
of increased computational resources, i.e., memory or CPU time. If analytic
expressions and solutions for the equations and integrals of interest are available,
grids are not needed anymore. Section 3.4 introduces new analytic expressions,
their derivation, and implementation for the calculation of spherical averages
of electron densities, a quantity used in the Hirshfeld-I algorithm.
An application of the local spin-based electronic diradical character is then
discussed in Section 3.5, where it is used to determine the optimal amount of
exact exchange within xc functionals giving the best accordance with reference
data generated using wave function-based multireference full (all electrons and
all orbitals are in the active space) complete active space SCF (CASSCF)
calculations.
Because the diradical character is sensitive to changes in the molecular structure,
these need to be accurately described in order to be able to make meaningful
statements or predictions about properties. Usually, the quality of a com-
putationally optimized molecular structure is evaluated as the mean absolute
error (MAE) of the positions of the nuclei. This, however, is not sufficient for
describing potential diradicals, as bond-length patterns also play a significant
role. Thus, in Chapter 4, a newly defined measure, structural diradical charac-
ter, is introduced. Unlike electronic diradical character, which is obtained from
the electronic structure of the system, the structural diradical character is ba-
sed on the geometric structure, i.e., bond-length patterns. The new measure is,
however, more generally applicable than the known measure bond-length alter-
nation (BLA) and overcomes some of its weaknesses. The bond-length patterns
of diradical and closed-shell structures differ as indicated by the different Lewis
structures representing them in Figure 1.1. After defining structural diradical
character in Section 4.2, it is applied to realistic6 systems in Sections 4.4 and 4.5

Mulliken [52–55], Löwdin [56–58], Moffitt [59], Weinhold [60, 61], Ruedenberg [62–64], and
Knizia [65]. Representatives of real-space partitioning methods are the ones by: Politzer [66],
Hirshfeld [67], and Bader [68, 69].

5Note that AIM is the general term for methods used to decompose molecules into
atoms and should not be confused with Bader’s Quantum Theory of Atoms in Molecules
(QTAIM) [68, 70,71], which is sometimes also abbreviated AIM

6Realistic in this context means, that the systems under study were synthesized and



4 1. Introduction
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Figure 1.1: Lewis structures of a biscobaltocenyldithienylethene complex in its
closed-shell (left) and open-shell (diradical) form (right). Note that these are
not mesomeric forms. Instead, each of them represents a local minimum on the
system’s potential energy surface.

with the aim of investigating its validity by comparing calculated results with
reference data from experiment, and proceeding with making a true prediction
of the ground-state nature of the system shown in Figure 1.1.
Before presenting the mentioned development and implementations, Chapter 2
will introduce theoretical background on topics relevant for this work, star-
ting with electronic structure theories, either wave-function or electron-density
based,and an introduction to the employed basis sets and their mathematical
structure. The chapter continues with the background concerning electronic
diradical character and the quantities needed for its calculation. A detailed
discussion of electronic diradical characters and quantities needed for their cal-
culation closes the theoretical background and leads to the core of this work,
diradical character as a guideline towards evaluating electronic structure theo-
ries.

experimentally characterized to some extent by other groups.



2. Theoretical background

The theoretical framework that was used in this work is introduced. Section 2.1
will describe briefly some electronic structure theories, followed by a section de-
aling with an important mathematical building block, the atom-centered single-
particle Gaussian-type basis functions that are used to approximate the wave
functions. Diradical character, reduced density matrices, and Mulliken and
iterative Hirshfeld partitioning schemes are explained in the following three
sections. Some of the sections are quite extensive and preparing this part of
the manuscript helped greatly towards understanding the underlying quantities
and methods. This enabled the aquisition of this works results, especially the
implementation of the local spin-based diradical character and the derivation
of analytic expressions for spherically averaging electron densities.

2.1 Electronic structure theories

Wave-function-based (CI type) and electron-density-based (DFT)1 theories are
briefly introduced in this section.

2.1.1 Wave-function-based theories

In wave-function-based theories, usually the time-independent nonrelativistic
Schrödinger equation,

ĤΨ = EΨ, (2.1)

where Ĥ is the Hamiltonian, the energy operator, E, consequently, is the energy
and Ψ is the wave function of the system, is solved. [73] In the Born–Oppenheimer
approximation, the Hamiltonian,

Ĥ = Te + VNe + Vee, (2.2)

is the sum of the kinetic energy operator of the electrons Te and the electron–
electron Vee and nuclei–electron VNe potentials. The kinetic energy of the nuclei
is zero and the nuclei–nuclei potential is neglected because it is constant. By
solving the Schrödinger equation, the wave function of the system and the
corresponding eigenenergies are obtained.
A popular approximation to the wave function that is widely used is the Slater
determinant used in Hartree–Fock theory. The Slater determinant is an anti-
symmetrized product of one-electron orbitals. In Hartree–Fock theory, although

1This is partly taken from the authors master’s thesis [72]

5



6 2. Theoretical background

a large portion of the many-electron physics are included, lacks the so called
electron correlation.
Including unoccupied orbitals and using excitations, methods like CI are capable
of capturing the electron correlation missing in Hartree–Fock theory. The gain
in accuracy is accompanied by a large increase in the problems complexity as the
number of excited states that can be included in a CI wave function, and thus
the number of included Slater determinants, grows very fast. In practice, full CI
is only tractable for small systems and small basis sets and thus truncated CI
methods, where only defined exitations, i.e. only single and double exitations,
are allowed and thus limiting the number of Slater determinants needed to treat.
Another method is CASSCF [74], where a part of the wave function spanned
by a number of electrons and orbitals is treated in a full CI like manner while
for the others, no excitations are permitted.

2.1.2 Electron-density-based theory

The DFT method, unlike wave-function-based methods, uses the electron density
ρ to calculate the system’s properties, for example the energy. The advantage
is that wave-function-based methods like the Hartree-Fock method depend on
4N variables (3N spatial coordinates and N spin coordinates), where N is
the number of electrons of the given system, whereas the DFT method only
depends on 3 variables. Hohenberg and Kohn proved in their theorems [74] that
(i) there is a one-to-one mapping between the ground-state electron density and
the external potential, this means that given the ground-state electron density,
it is possible to determine the external potential (and vice versa) and thus,
the wave function, and that (ii) the ground-state electron density can be found
variationally. This means that the energy of any given test electron density
is greater or equal to the energy of the ground-state electron density. So all
the information needed is contained in the ground-state electron density. The
electronic energy E[ρ] within the Born–Oppenheimer approximation,

E[ρ] = T [ρ] + VNe[ρ] + Vee[ρ], (2.3)

can be expressed in terms of the kinetic energy of the electrons T [ρ], the
attraction between electrons and nuclei VNe[ρ] and the electron-electron repulsion
Vee[ρ]. The attraction between electrons and nuclei is known for a given electron
density, while the other two functionals remain unknown and are grouped into
the Hohenberg-Kohn functional,

F [ρ] = T [ρ] + Vee[ρ]. (2.4)

Kohn and Sham [75] used a reference system of non-interacting fermions that,
because of an external potential, generate the same ground-state density as
the ground state of the interacting system. The kinetic energy of the non-
interacting system Ts[ρ] can be calculated exactly, because the wave function
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of a non-interacting fermionic system is a single Slater determinant, and the
electron-electron repulsion can be split into two parts,

Vee[ρ] = J [ρ] + V nonclass
ee [ρ], (2.5)

the Coulomb (J [ρ]) and the nonclassical (V nonclass
ee [ρ]) part, of which the Coulomb

part can be calculated in atomic units (a.u.) by the corresponding classical term,

J [ρ] =
1

2

∫ ∫
ρ(r1)ρ(r2)

r12

dr1dr2, (2.6)

which uses the distance between two electrons r12 = |r1 − r2|, calculated from
the spatial coordinates of the electrons ri.
The energy from Equation (2.3) can then be rewritten as

E[ρ] = Ts[ρ] + VNe[ρ] + J [ρ] + V nonclass
ee [ρ] + T [ρ]− Ts[ρ] (2.7)

= Ts[ρ] + VNe[ρ] + J [ρ] + Exc[ρ], (2.8)

where the xc functional Exc was introduced,

Exc = V nonclass
ee [ρ] + T [ρ]− Ts[ρ]. (2.9)

The xc functional contains the difference between the kinetic energy of the
non-interacting system and the exact kinetic energy ∆T [ρ] = T [ρ] − Ts[ρ] and
the non-classical electron-electron interactions V nonclass

ee [ρ], which are assumed
to be small. The non-interacting reference system can be exactly described by
a single Slater determinant consisting of orthonormal Kohn–Sham spin-orbitals.
The electron density is thus determined by the Kohn–Sham orbitals. Now the
only thing missing for the evaluation of the energy is the xc functional, for which
several approximations can be made. [76] By using the variational principle to
minimize the energy using different test-sets of Kohn–Sham orbitals (determining
the electron density) the ground-state electron density can be found. [77]

2.1.3 Density functionals

In practice, many approximations [78] to the xc functional can be used, i.e.
the local density approximation (LDA) [79, 80], which depends only on the va-
lue of the electronic density at a point in space not taking any derivatives into
consideration. An improvement to the LDA are the generalized gradient approx-
imations (GGA) [81–83], which, additionally to the value of the density, take into
account the first derivative of the density at a given point in space. The iGGA
allow for a better description of systems where the electron density is nonuni-
form as it is in molecular systems. Naturally, the next advance would be to also
include the second derivative, which is done in the meta-GGA functionals [84, 85].
In the above mentioned approximations the xc functional have difficulties with
the exchange part of the energy. In hybrid functionals [86, 87] an effort is made
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towards a better description of the exchange part by including an admixture of
Hartree–Fock exchange (also called exact exchange).

2.1.4 Analysis of electronic structures

In wave-function based theories, properties of the system are usually calculated
by applying operators to the wave function of the system. In KS-DFT, the
employed Slater determinant is the one corresponding to the Kohn–Sham system
of non-interacting particles. Any properties derived by applying operators to
the KS-DFT Slater determinant are strictly speaking not the properties of the
interacting system one is usually interested in but instead the properties of the
non-interacting system. This fact is often ignored and the obtained properties
from the KS-DFT Slater determinant often fit quite well to expectations or
experimental references.

2.2 Central mathematical building blocks: Atom-centered
single-particle Gaussian-type basis functions

The atom centered basis functions φ (r) are a contracted set of primitive gaussian
type orbitals R (r),

φ (r) =
∑
i

ciRi (r) =
∑
i

ciS
l,m
i e−αi|r−RA|2 , (2.10)

which consist of a shape determining part Sl,m, making it an s, p, d, f or g
orbital. The rest is the coefficient c and exponent α of the gaussian function
and the electron and core coordinates, r and RA, respectively. The Sl,m can
be determined from Table 2.1 [88] (note, that the x, y and z coordinates will
be equally shiftet by the respective core coordinates).
The simplest integrations that are performed are the calculation of the overlap
matrix S,

Sij = 〈φi|φj〉 =

∫ +∞

−∞
φ∗i (r)φj (r)dr. (2.11)

Prior to being able to calculate the overlap matrix, the basis functions and
the primitive gaussian functions, which are usually not normalized, need to be
normalized, meaning that,

〈ηRi|ηRi〉 =

∫ +∞

−∞
η∗R∗i (r) ηRi (r) dr = 1, (2.12)

and,

〈nφi|nφi〉 =

∫ +∞

−∞
n∗φ∗i (r)nφi (r) dr = 1, (2.13)
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Table 2.1: The Sl,m for different shapes of the orbitals.

m \l 0 1 2 3 4

4 1
8

√
35
(
x4 − 6x2y2 + y4

)
3 1

2

√
5
2

(
x2 − 3y2

)
x 1

2

√
35
2

(
x2 − 3y2

)
xz

2 1
2

√
3
(
x2 − y2

)
1
2

√
15
(
x2 − y2

)
z 1

4

√
5
(
7z2 − r2

) (
x2 − y2

)
1 x

√
3xz 1

2

√
3
2

(
5z2 − r2

)
x 1

2

√
5
2

(
7z2 − 3r2

)
xz

0 1 z 1
2

(
3z2 − r2

)
1
2

(
5z2 − 3r2

)
z 1

8

(
35z4 − 30z2r2 + 3r4

)
-1 y

√
3yz 1

2

√
3
2

(
5z2 − r2

)
y 1

2

√
5
2

(
7z2 − 3r2

)
yz

-2
√

3xy
√

15xyz 1
2

√
5
(
7z2 − r2

)
xy

-3 1
2

√
5
2

(
3x2 − y2

)
y 1

2

√
35
2

(
3x2 − y2

)
yz

-4 1
2

√
35
(
x2 − y2

)
xy

need to be fulfilled. To determine the normalization factors η for a primi-
tive gaussian function Ri (r) or n for a basis functinon φi (r) Equations 2.12
and 2.13 need to be solved for η and n, respectively. For an s-type orbital the
normalization factors are given by,

ηs =

(
2α

π

) 3
4

(2.14)

and

ns =

√√√√ 1∑
ij ηsi

∗ηsjci∗cj

(
π

αi+αj

) 3
2

. (2.15)

Equation 2.14 can be derived in the following way, starting with Equation 2.12
and using,

|r−RA| =

√
(x−Rx

A)2 + (y −Ry
A)2 + (z −Rz

A)2, (2.16)

which then yields,

1

|ηs|2
=

∫ +∞

−∞
e
−α
[
(x−RxA)

2
+(y−RyA)

2
+(z−RzA)

2
]

× e
−α
[
(x−RxA)

2
+(y−RyA)

2
+(z−RzA)

2
]
dxdydz

=

∫ +∞

−∞
e−2α(x−RxA)

2

dx

∫ +∞

−∞
e−2α(y−RyA)

2

dy

∫ +∞

−∞
e−2α(z−RzA)

2

dz,

(2.17)
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where we can use integration by substitution to substitute (x−Rx
A)
√

2α by τx

and dx by
√

1
2α

dτx. The integration limits are not changed in this case. We

now get,

1

|ηs|2
=

√
1

2α

∫ +∞

−∞
e−τx

2

dτx

√
1

2α

∫ +∞

−∞
e−τy

2

dτy

√
1

2α

∫ +∞

−∞
e−τz

2

dτz, (2.18)

and using the definition (Equation 2.19) and the properties (Equation 2.20) of
the error function erf (x),

erf (x) =
2√
π

∫ x

0

e−τ
2

dτ ⇔ erf (x)
√
π

2
=

∫ x

0

e−τ
2

dτ , (2.19)

erf (x) = − erf (−x)

lim
x→+∞

erf (x) = 1

lim
x→−∞

erf (x) = − 1,

(2.20)

we can rewrite Eqution 2.18.

1

|ηs|2
=

√
1

2α

(∫ 0

−∞
e−τx

2

dτx +

∫ +∞

0

e−τx
2

dτx

)
×
√

1

2α

(∫ 0

−∞
e−τy

2

dτy +

∫ +∞

0

e−τy
2

dτy

)
×
√

1

2α

(∫ 0

−∞
e−τz

2

dτz +

∫ +∞

0

e−τz
2

dτz

)

=

√
1

2α

−∫ −∞
0

e−τx
2

dτx +
lim

x→+∞
erf (x)

√
π

2


×
√

1

2α

−∫ −∞
0

e−τy
2

dτy +
lim

x→+∞
erf (x)

√
π

2


×
√

1

2α

−∫ −∞
0

e−τz
2

dτz +
lim

x→+∞
erf (x)

√
π

2

 (2.21)

=

√
1

2α

− lim
x→−∞

erf (x)
√
π

2
+

√
π

2


×
√

1

2α

− lim
x→−∞

erf (x)
√
π

2
+

√
π

2
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×
√

1

2α

− lim
x→−∞

erf (x)
√
π

2
+

√
π

2


=

(
1

2α

) 3
2
(√

π

2
+

√
π

2

)(√
π

2
+

√
π

2

)(√
π

2
+

√
π

2

)
=
( π

2α

) 3
2 ⇔ ηs =

(
2α

π

) 3
4

In the same manner Equation (2.15) can be derived. Now that we have the
normalization factors of the s functions we can calculate overlap integrals be-
tween two s orbitals located on atom A (φAs (r)) and atom B (φBs (r)). Note
that from now on the notation φs (r) implicitly includes all the normalization
factors (ns and all ηsi)

〈φAs |φBs 〉 = nAs
∗
nBs

∫ +∞

−∞

∑
i

ηsi
∗ci
∗Ri

∗ (r)
∑
j

ηsjcjRj (r) dxdydz

= nAs
∗
nBs
∑
ij

ηsi
∗ηsjci

∗cj

∫ +∞

−∞
e
−αi

[
(x−RxA)

2
+(y−RyA)

2
+(z−RzA)

2
]

× e
−αj

[
(x−RxB)

2
+(y−RyB)

2
+(z−RzB)

2
]
dxdydz

= nAs
∗
nBs
∑
ij

ηsi
∗ηsjci

∗cj

∫ +∞

−∞
e−αi(x−R

x
A)

2
−αj(x−RxB)

2

dx

×
∫ +∞

−∞
e−αi(y−R

y
A)

2
−αj(y−RyB)

2

dy

∫ +∞

−∞
e−αi(z−R

z
A)

2
−αj(z−RzB)

2

dz

(2.22)

In order to simplify Equation 2.22, where we have a product between two
Gaussian functions centered at different points, we take a look at one of the
exponents and convert it to,

− αi (x−Rx
A)2 − αj (x−Rx

B)2

= − αix2 + 2αiR
x
Ax− αiRx

A
2 − αjx2 + 2αjR

x
Bx− αjRx

B
2

= − (αi + αj)︸ ︷︷ ︸
= pij

x2 + 2 (αiR
x
A + αjR

x
B)x− αiRx

A
2 − αjRx

B
2

= − pij
(
x2 − 2

αiR
x
A + αjR

x
B

αi + αj
x

)
− αiRx

A
2 − αjRx

B
2

= − pij

x2 − 2
αiR

x
A + αjR

x
B

αi + αj︸ ︷︷ ︸
= µxij

x+

(
αiR

x
A + αjR

x
B

αi + αj

)2


︸ ︷︷ ︸

= (x−µxij)
2

(2.23)
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+
(αiR

x
A + αjR

x
B)2

αi + αj
− αiRx

A
2αi + αj
αi + αj

− αjRx
B

2αi + αj
αi + αj

= − pij
(
x− µxij

)2
+
αi

2Rx
A

2 + 2αiαjR
x
AR

x
B + αj

2Rx
B

2

αi + αj

− αi
2Rx

A
2

αi + αj
− αiαjR

x
A

2

αi + αj
− αiαjR

x
B

2

αi + αj
− αj

2Rx
B

2

αi + αj

= − pij
(
x− µxij

)2 − αiαjR
x
A

2 − 2αiαjR
x
AR

x
B + αiαjR

x
B

2

αi + αj

= − pij
(
x− µxij

)2 − αiαj
αi + αj

(Rx
A −Rx

B)2 ,

which, when inserted back into the integral over x from Equation 2.22,

∫ +∞

−∞
e−αi(x−R

x
A)

2
−αj(x−RxB)

2

dx =

∫ +∞

−∞
e
−pij(x−µxij)

2
−

αiαj
αi+αj

(RxA−RxB)
2

dx

= e
−

αiαj
αi+αj

(RxA−RxB)
2︸ ︷︷ ︸

= K̃x
ij

∫ +∞

−∞
e−pij(x−µ

x
ij)

2

dx = K̃x
ij

∫ +∞

−∞
e−pij(x−µ

x
ij)

2

dx

with:

K̃x
ij = e

−
αiαj
αi+αj

(RxA−RxB)
2

; pij = αi + αj ; µxij =
αiR

x
A + αjR

x
B

αi + αj
,

(2.24)

yields one Gaussian function centered at one point. Inserting Equation 2.24
(and using the analogously to Equation 2.23 derived K̃y

ij, K̃
z
ij, µ

y
ij and µzij)

into 2.22,

〈φAs |φBs 〉 = nAs
∗
nBs
∑
ij

ηsi
∗ηsjci

∗cj K̃
x
ijK̃

y
ijK̃

z
ij︸ ︷︷ ︸

= K̃ij

∫ +∞

−∞
e−pij(x−µ

x
ij)

2

dx

×
∫ +∞

−∞
e−pij(y−µ

y
ij)

2

dy

∫ +∞

−∞
e−pij(z−µ

z
ij)

2

dz,

(2.25)

and using integration by substitution (in the same manner as already done at
Equations 2.17 and 2.18), substituting

√
pij
(
x− µxij

)
by τx and dx by 1√

pij
dτx

and the y and z parts in an analogous way we get an easy to evaluate expression
for the overlap integral between two s-orbitals,
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〈φAs |φBs 〉 = nAs
∗
nBs
∑
ij

ηsi
∗ηsjci

∗cjK̃ij

(
1

pij

) 3
2
∫ +∞

−∞
e−τx

2

dτx︸ ︷︷ ︸
=
√
π

×
∫ +∞

−∞
e−τy

2

dτy︸ ︷︷ ︸
=
√
π

∫ +∞

−∞
e−τz

2

dτz︸ ︷︷ ︸
=
√
π

= nAs
∗
nBs
∑
ij

ηsi
∗ηsjci

∗cjK̃ij

(
π

pij

) 3
2

.

(2.26)

We shall now move on to p-orbitals, which are given by,

φApx (r) =
∑
i

ci (x−Rx
A) e−αi|r−RA|2

φApy (r) =
∑
i

ci (y −Ry
A) e−αi|r−RA|2

φApz (r) =
∑
i

ci (z −Rz
A) e−αi|r−RA|2 .

(2.27)

The orbitals need to be normalized again. The normalization of two primitive
p-functions is shown here.

1 =

∫ +∞

−∞
ηpx
∗ (x−Rx

A) e
−α
(
(x−RxA)

2
+(y−RyA)

2
+(z−RzA)

2
)

× ηpx (x−Rx
A) e

−α
(
(x−RxA)

2
+(y−RyA)

2
+(z−RzA)

2
)
dxdydz

⇔ 1

|ηpx|2
=

∫ +∞

−∞
(x−Rx

A)2 e−2α(x−RxA)
2

dx

×
∫ +∞

−∞
e−2α(y−RyA)

2

dy︸ ︷︷ ︸
=
√

π
2α

∫ +∞

−∞
e−2α(z−RzA)

2

dz︸ ︷︷ ︸
=
√

π
2α

=

∫ +∞

−∞

(
τx√
2α

)2

e−τx
2 1√

2α
dτx

π

2α

=

√
π2

(2α)5

[
1

4

√
πerf (τx)−

1

2
e−τx

2

τx

]+∞

−∞︸ ︷︷ ︸
= 1

2

√
π

=

√
π3

128α5
⇔ ηpx =

4

√
128α5

π3

(2.28)

It can be seen that ηpx = ηpy = ηpz = 4

√
128α5

π3 = ηp. Deriving the

normalization factor npx = npy = npz = np for the basis function φp can



14 2. Theoretical background

be done analogously and leads to,

np =

√√√√ 1∑
ij ηpi

∗ηpjci
∗cj
√

π3

4pij5

(2.29)

The next step is to calculate the overlap between an s- and a p-orbital, shown
in-depth for the overlap between an s- and a px- orbital (from here any φp will
again include the normalization factors np and all ηpi),

〈φAs |φBpx〉 = nAs
∗
nBp
∑
ij

ηsi
∗ηpjci

∗cj

∫ +∞

−∞
e−αi(z−R

z
A)

2
−αj(z−RzB)dz

×
∫ +∞

−∞
e−αi(y−R

y
A)

2
−αj(y−RyB)dy

×
∫ +∞

−∞
(x−Rx

B) e−αi(x−R
x
A)

2
−αj(x−RxB)dx

= nAs
∗
nBp
∑
ij

ηsi
∗ηpjci

∗cjK̃
x
ij

∫ +∞

−∞
(x−Rx

B) e−pij(x−µ
x
ij)

2

dx

× K̃y
ij

∫ +∞

−∞
e−pij(y−µ

y
ij)

2

dy︸ ︷︷ ︸
=
√

π
pij

K̃z
ij

∫ +∞

−∞
e−pij(z−µ

z
ij)

2

dz︸ ︷︷ ︸
=
√

π
pij

= nAs
∗
nBp
∑
ij

ηsi
∗ηpjci

∗cjK̃ij

√
π2

pij3

×
∫ +∞

−∞

(
τx√
pij

+ µxij −Rx
B

)
e−τx

2

dτx (2.30)

= nAs
∗
nBp
∑
ij

ηsi
∗ηpjci

∗cjK̃ij

√
π2

pij3

 1
√
pij

∫ +∞

−∞
τxe
−τx2dτx

+ µxij

∫ +∞

−∞
e−τx

2

dτx︸ ︷︷ ︸
=
√
π

− Rx
B

∫ +∞

−∞
e−τx

2

dτx︸ ︷︷ ︸
=
√
π



= nAs
∗
nBp
∑
ij

ηsi
∗ηpjci

∗cjK̃ij

√
π2

pij3

µxij√π − Rx
B

√
π
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+
1
√
pij

[
−1

2
e−τx

2

]+∞

−∞︸ ︷︷ ︸
= 0


= nAs

∗
nBp
∑
ij

ηsi
∗ηpjci

∗cjK̃ij

(
π

pij

) 3
2 (
µxij −Rx

B

)
.

In an analogous way one can find the overlap elements between s- and py- and
s- and a pz-orbitals,

〈φAs |φBpy〉 = nAs
∗
nBp
∑
ij

ηsi
∗ηpjci

∗cjK̃ij

(
π

pij

) 3
2 (
µyij −R

y
B

)
〈φAs |φBpz〉 = nAs

∗
nBp
∑
ij

ηsi
∗ηpjci

∗cjK̃ij

(
π

pij

) 3
2 (
µzij −Rz

B

)
.

(2.31)

The next step is then to calculate the overlap between to p-orbitals, shown here
for two px-orbitals,

〈φApx|φ
B
px〉 = nAp

∗
nBp
∑
ij

ηpi
∗ηpjci

∗cj

∫ +∞

−∞
e−αi(z−R

z
A)

2
−αj(z−RzB)

2

dz︸ ︷︷ ︸
= K̃z

ij

√
π
pij

×
∫ +∞

−∞
e−αi(y−R

y
A)

2
−αj(y−RyB)

2

dy︸ ︷︷ ︸
= K̃y

ij

√
π
pij

×
∫ +∞

−∞
(x−Rx

A) (x−Rx
B) e−αi(x−R

x
A)

2
−αj(x−RxB)

2

dx

= nAp
∗
nBp
∑
ij

ηpi
∗ηpjci

∗cjK̃ij

√
π2

pij3

∫ +∞

−∞

(
τx√
pij

+ µxij −Rx
A

)
×
(

τx√
pij

+ µxij −Rx
B

)
e−τx

2

dτx

= nAp
∗
nBp
∑
ij

ηpi
∗ηpjci

∗cjK̃ij

√
π2

pij3

 1

pij

∫ +∞

−∞
τx

2e−τx
2

dτx︸ ︷︷ ︸
= 1

2

√
π

+
2µxij√
pij

∫ +∞

−∞
τxe
−τx2dτx︸ ︷︷ ︸

= 0

− Rx
B√
pij

∫ +∞

−∞
τxe
−τx2dτx︸ ︷︷ ︸

= 0

(2.32)
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+ µxij
2

∫ +∞

−∞
e−τx

2

dτx︸ ︷︷ ︸
=
√
π

− µxijR
x
B

∫ +∞

−∞
e−τx

2

dτx︸ ︷︷ ︸
=
√
π

− Rx
A√
pij

∫ +∞

−∞
τxe
−τx2dτx︸ ︷︷ ︸

= 0

− µxijR
x
A

∫ +∞

−∞
e−τx

2

dτx︸ ︷︷ ︸
=
√
π

+ Rx
AR

x
B

∫ +∞

−∞
e−τx

2

dτx︸ ︷︷ ︸
=
√
π


= nAp

∗
nBp
∑
ij

ηpi
∗ηpjci

∗cjK̃ij

(
π

pij

) 3
2

×
(

1

2pij
+ µxij

2 − µxijR
x
B − µxijR

x
A + Rx

AR
x
B

)
In the same manner, the overlap between other pairs of p-orbitals can be derived,

〈φApx|φ
B
py〉 = nAp

∗
nBp
∑
ij

ηpi
∗ηpjci

∗cjK̃ij

(
π

pij

) 3
2 (
µxij −Rx

A

) (
µyij −R

y
B

)
〈φApx |φ

B
pz〉 = nAp

∗
nBp
∑
ij

ηpi
∗ηpjci

∗cjK̃ij

(
π

pij

) 3
2 (
µxij −Rx

A

) (
µzij −Rz

B

)
〈φApy |φ

B
py〉 = nAp

∗
nBp
∑
ij

ηpi
∗ηpjci

∗cjK̃ij

(
π

pij

) 3
2

×
(

1

2pij
+ µyij

2 − µyijR
y
B − µyijR

y
A + Ry

AR
y
B

)
〈φApy |φ

B
pz〉 = nAp

∗
nBp
∑
ij

ηpi
∗ηpjci

∗cjK̃ij

(
π

pij

) 3
2 (
µyij −R

y
A

) (
µzij −Rz

B

)
〈φApz |φ

B
pz〉 = nAp

∗
nBp
∑
ij

ηpi
∗ηpjci

∗cjK̃ij

(
π

pij

) 3
2

×
(

1

2pij
+ µzij

2 − µzijR
z
B − µzijR

z
A + Rz

AR
z
B

)

(2.33)

One may notice that any overlap integral can be written in the form (φx and φy

denote any type of basis function including the respective normalization factors
nx and ηxi),
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〈φAx |φBy 〉 = nAx
∗
nBy
∑
ij

ηxi
∗ηxjci

∗cjK̃ij

(
1

pij

) 3
2

×
∫ +∞

−∞
(. . . ) e−τx

2

e−τy
2

e−τz
2

dτxdτydτz,

(2.34)

where,

(. . . ) = a+
+∞∑
ρ = 1

bρτx
ρ + cρτy

ρ + dρτz
ρ

+
+∞∑
σ = 1

eρστx
ρτy

σ + fρστx
ρτz

σ + gρστy
ρτz

σ,

(2.35)

is a polynomial consisting of combinations of different powers of τx, τy and
τz with prefactors (for example a). In the case of the px-px overlap one gets
(compare to Equation (2.32)):

(. . . ) =

(µxij −Rx
A

) (
µxij −Rx

B

)︸ ︷︷ ︸
= a

+
2µxij −Rx

A −Rx
B√

pij︸ ︷︷ ︸
= b1

τx +
1

pij︸︷︷︸
= b2

τx
2

 (2.36)

So for any given basis function overlap one will get a sum over integrals over
gaussian functions multiplied with different powers of the variables that are
integrated. To compute the analytical solution of the overlap integral all one
needs to know are the integrals shown here until up to the eighth power:

∫ +∞

−∞
e−x

2

dx =

[
1

2

√
πerf (x)

]+∞

−∞
=
√
π (2.37)∫ +∞

−∞
xe−x

2

dx =

[
−1

2
e−x

2

]+∞

−∞
= 0 (2.38)∫ +∞

−∞
x2e−x

2

dx =

[
1

4

√
πerf (x)− 1

2
e−x

2

x

]+∞

−∞
=

1

2

√
π (2.39)∫ +∞

−∞
x3e−x

2

dx =

[
−1

2
e−x

2 (
x2 + 1

)]+∞

−∞
= 0 (2.40)∫ +∞

−∞
x4e−x

2

dx =

[
3

8

√
πerf (x) + e−x

2

(
−x

3

2
− 3x

4

)]+∞

−∞
=

3

4

√
π (2.41)∫ +∞

−∞
x5e−x

2

dx =

[
−1

2
e−x

2 (
x4 + 2x2 + 2

)]+∞

−∞
= 0 (2.42)
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∫ +∞

−∞
x6e−x

2

dx =

[
15

16

√
πerf (x)

+ e−x
2

(
−x

5

2
− 5x3

4
− 15x

8

)]+∞

−∞
=

15

8

√
π (2.43)∫ +∞

−∞
x7e−x

2

dx =

[
−1

2
e−x

2 (
x6 + 3x4 + 6x2 + 6

)]+∞

−∞
= 0 (2.44)∫ +∞

−∞
x8e−x

2

dx =

[
105

32

√
πerf (x)

+ e−x
2

(
−x

7

2
− 7x5

4
− 35x3

8
− 105x

16

)]+∞

−∞
=

105

16

√
π (2.45)

The normalization factors of the other primitive- and basis functions and their
overlap integrals can be calculated using the scheme from above. For the d
functions the primitive normalization factors are:

ηdx2−y2
= ηdxz = ηdz2

= ηdyz = ηdxy =
4

√
2048α7

9π3
= ηd (2.46)

and the basis function normalization factors nd are:

ndx2−y2
= ndxz = ndz2

= ndyz = ndxy

=

√√√√ 1∑
ij ηdi

∗ηdjci
∗cj3

√
π3

4pij7

= nd
(2.47)

For the sake of clarity, the overlap integral pairs including the d-, f- and g-
functions are omitted, because the terms are rather long. Nevertheless they are
implemented and working.

2.3 Diradical character

After the introduction of the atom-centered single-particle Gaussian-type basis
functions the necessary theoretical background about diradical character will
be given in this section. Note that when speaking of diradical character, the
singlet diradical character is meant. The diradical character y is a measure for
the instability of the chemical bond [6, 21,89,90] or the deviation of the electronic
structure from being in a singlet CS. Of course, the deviation from a singlet CS
is only to be understood for systems, where being in a singlet state is possible,
i.e. not for doublet systems. Usually, the diradical character will be between 0
and 1, where y = 0 means that the described system is a closed shell, i.e. all
electrons are perfectly paired. Consequently, y = 1 then represents a completely
open-shell system with two unpaired electrons, hence the name diradical.
A simple example illustrating the concept of diradical character is the hydrogen
molecule H2. In its ground state, H2 contains two perfectly paired electrons
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and hence is in a CS. The corresponding diradical character is 0. Upon
stretching of the H−H bond, the electronic structure of the system begins to
change, accompanied by an increase of diradical character until eventually the
two electrons are completely unpaired and the diradical character is 1.
Since there is no unique way of obtaining the diradical character from electronic
structures2, several definitions can be found in the literature [17, 18,51,91]. Each
of the definitions has its own characteristics, advantages, and disadvantages [51]

and for this work, two definitions were picked. The first, and very popular one
calculates the electronic diradical character from the overlap Ti between corre-
sponding orbital pairs, which is calculated from the natural orbital occupation
numbers (see below) ni

[6, 49,50],

ynat
el =

(1− Ti)2

1 + T 2
i

(2.48a)

Ti =
nHOMO−i − nLUMO+i

2
. (2.48b)

Computation of ynat
el is relatively quick and simple for unrestricted Hartree–

Fock (HF) (UHF) and unrestricted DFT (UDFT) determinants, however, it is
not directly applicable to multireference-type wave functions. For a closed-shell
system, the calculated electronic diradical character will be 0 (nHOMO−i = 2
and nLUMO+i = 0) and for a pure diradical it will be 1 (nHOMO−i = 1 and
nLUMO+i = 1).
The second measure for electronic diradical character [51] is directly and in the
same way applicable to single-determinant and multi-reference wave functions.
It uses local spins (see below) 〈Ŝ2

A〉 to calculate the electronic diradical character

∆(k) =

√√√√∑A

(
〈Ŝ2

A〉 − 〈Ŝ2
A〉

id
)2

n
, (2.49)

as a deviation from atomic ideal reference values 〈Ŝ2
A〉

id
. n is the number

of atoms/fragments that make up the system. Additionally to being more
generally applicable in terms of wave functions, Equation (2.49) is not only
restricted to diradical systems, but can also be used to calculate any polyradical
character. Which radical character is calculated is indicated by the k value and
the corresponding atomic ideal reference values.
As an example, when calculating the electronic diradical character for a hydrogen

molecule, k = 2 (diradical) and 〈Ŝ2
H1〉

id
= 〈Ŝ2

H2〉
id

= 0.75, i.e. each hydrogen
atom has one unpaired electron (S = 0.5) and hence a local spin of 0.75 =
0.5 (0.5 + 1). The closer the calculated local spins are to the ideal reference

2The diradical character obtained from electronic structure is called electronic diradical
character throughout this work to differentiate it from the structural diradical character
introduced in Chapter 4.
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values, the smaller the electronic diradical character will be3. Unlike other
indices for electronic diradical character which range from 0 for a closed shell
to 1 for a pure diradical, ∆(2) ranges from 0 for a pure diradical and has,
in principle, no general upper limit for the deviation from it. This is why
the electronic diradical character used in this work is a modified version of
Equation (2.49) that ranges from 0 for a closed shell to 1 for a pure diradical,

yloc
el = 1−

√∑
A

(
〈Ŝ2

A〉 − 〈Ŝ2
A〉

id
)2

√∑
A

(
〈Ŝ2

A〉
id
)2

. (2.50)

The modified version is still applicable to single-determinant and multireference-
type wave functions and can also be used to evaluate any kind of polyradical
character4. It has inherited the strengths of the index in Equation (2.49) and
overcomes the weakness that it is not using the same range of values as most
other indices do.
In the following sections, the above mentioned quantities (natural orbitals, lo-
cal spins, reduced density matrices) and methods (Mulliken and Hirshfeld-I
partitioning schemes) used in this work are explained in more detail.

2.3.1 Natural orbitals

In order to obtain the occupation numbers of the natural orbitals that are
needed to evaluate the diradical character according to Equation (2.48), one
should first know how the natural orbitals are defined and how they and their
corresponding occupation numbers can be computed. Natural orbitals [92–94], or
more precisely, natural spin orbitals as defined by Löwdin [95] are the set of spin
orbitals that diagonalize the first-order reduced density matrix (see Section 2.4
for details on reduced density matrices). The natural spin orbitals are formed
from the Löwdin basis, an orthonormal atomic orbital (AO) basis for which
the overlap matrix is a unit matrix. A simple way for obtaining the first-order
reduced density matrix in the orthogonal Löwdin basis is to multiply the first-
order reduced density matrix in the canonical basis by the square root of the
overlap matrix S

1
2 (again in the canonical basis), which satisfies the relation,

S
1
2 S

1
2 = S. (2.51)

The natural orbital occupation numbers nocc are then the eigenvalues of the
obtained first-order reduced density matrix in the Löwdin basis which are obtai-
ned from the eigenvalue equation [96]

S
1
2 DS

1
2

(
S

1
2 C
)

=
(
S

1
2 C
)

nocc (2.52)

3The diradical character ∆(2) is 0 for a pure diradical and larger, the more the electronic
structure and local spins deviate from the reference values.

4The index can not be applied to a k = 0 case, but this is not needed, because when
the k = 0-radical character is large, the others will be small.
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2.3.2 Local spins

The spin-squared expectation value 〈Ŝ2〉 can be decomposed into monoatomic
(local spin) and diatomic contributions,

〈Ŝ2〉 =
∑
A

〈Ŝ2〉A +
∑
A

B 6=A

〈Ŝ2〉AB . (2.53)

There are infinite possibilities to decompose the spin-squared expectation value
into atomic and diatomic contributions. Thus, the decomposition should fulfill
certain requirements, which are: The local spin for closed shell systems should
be zero, the expression used for multideterminantal wavefunctions should have
terms, that vanish for single determinantal wavefunctions, the local spins of the
atoms at the dissociation limit should be equal to the local spins of the free
atoms and the local spin of a single electron should be equal to 3

4
.

These requirements are fulfilled when the local spin 〈Ŝ2〉A and the diatomic

spin contributions 〈Ŝ2〉AB are defined as [97],

〈Ŝ2〉A =
3

4

∫
wA (r1) ·

(
2 · ρ (r1) −

∫
ρ (r1, r2) ρ (r2, r1) dr2dr1

)
+

1

2

∫ ∫
wA (r1)wA (r2)

×
[
Γ (r1, r2) − 1

2
ρs (r1, r2) ρs (r2, r1)

]
dr1dr2

− 1

2

∫ ∫
wA (r1)wA (r2)

[
Γ (r1, r2, r2, r1)

− 1

2
ρs (r1, r1) ρs (r2, r2)

]
dr1dr2,

(2.54)

and

〈Ŝ2〉AB =
1

2

∫ ∫
wA (r1)wB (r2)

×
[
Γ (r1, r2) − 1

2
ρs (r1, r2) ρs (r2, r1)

]
dr1dr2

− 1

2

∫ ∫
wA (r1)wB (r2)

[
Γ (r1, r2, r2, r1)

− 1

2
ρs (r1, r1) ρs (r2, r2)

]
dr1dr2,

(2.55)

in real-space notation, with the weight function wA (r1) (ri = (xi, yi, zi) is the
coordinate vector of the ith electron), the spinless first-order reduced density
matrix ρ (r1, r1), the cumulant of the spinless second-order reduced density
matrix Γ (r1, r2, r1, r2) and the spin density ρs (r1, r1). The weight functions
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(also called partitioning functions) can be any set of functions which fulfill the
requirements,

0 ≤ wA (r1) ≤ 1 (2.56)∑
A

wA (r1) = 1, (2.57)

which is, every function has to be non-negative and the sum over all functi-
ons at any point in real space has to equal 1. There are different schemes
for partitioning real space so as to obtain weight functions that assign a cer-
tain part of the real space to a certain atom, for example Baders atoms in
molecules [98], for which every point in space belongs to only one atom, or
Hirshfeld-partitioning [67], where each point in real space may contribute to dif-
ferent atoms.
The decomposition of the spin-squared expectation value can be rewritten in
the Hilbert-space notation using the relations,

ρ (r1, r
′
1) =

∑
ij

Dijψ
∗
j (r1)ψi (r

′
1) (2.58)

ρs (r1, r
′
1) =

∑
ij

P s
ijψ
∗
j (r1)ψi (r

′
1) (2.59)

Γ (r1, r2, r
′
1, r
′
2) =

∑
ijkl

Γijklψ
∗
k (r1)ψ∗l (r2)ψi (r

′
1)ψj (r′2) , (2.60)

where ψi (r1) are the molecular orbitals, D is the Hilbert-space spinless first-
order reduced density matrix, Ps is the Hilbert-space spin density matrix and
Γ is the Hilbert-space cumulant of the spinless second-order reduced density
matrix. The matrices are defined in second quantization as:

Dij = 〈Ψ|a†αj aαi |Ψ〉︸ ︷︷ ︸
= Dαij

+ 〈Ψ|a†βj a
β
i |Ψ〉︸ ︷︷ ︸

= Dβij

= Dα
ij +Dβ

ij (2.61)

P s
ij = 〈Ψ|a†αj aαi |Ψ〉 − 〈Ψ|a

†β
j a

β
i |Ψ〉 = Dα

ij −D
β
ij (2.62)

Γijkl = −DikDjl +
1

2
DjkDil +

1

2
P s
jkP

s
il +Gijkl (2.63)

Gijkl =
1

2

(
〈Ψ|a†αk a

†α
l a

α
j a

α
i |Ψ〉+ 〈Ψ|a†βk a

†β
l a

β
j a

β
i |Ψ〉 (2.64)

+ 〈Ψ|a†αk a
†β
l a

β
j a

α
i |Ψ〉+ 〈Ψ|a†βk a

†α
l a

α
j a

β
i |Ψ〉

)
, (2.65)

where Ψ is the wavefunction, a†σi is a creation operator for the ith electron of
spin σ, aσi is an annihilation operator for the ith electron of spin σ and G is
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spinless second-order reduced density matrix.
Inserting Equations 2.58–2.60 into Equation 2.54 and 2.55 and also using the
definitions of the overlap matrix SMO and the atomic overlap matrix SA,MO,

SMO
ij =

∫
ψ∗i (r1)ψj (r1) dr1 = 〈ψi|ψj〉 = δij (2.66)

SA,MO
ij =

∫
wA (r1)ψ∗i (r1)ψj (r1) dr1 = 〈ψi|wA|ψj〉 , (2.67)

each in the molecular orbital basis, gives expressions for the local spins and the
diatomic contributions in Hilbert-space notation,

〈Ŝ2〉A =
3

4

(
2Tr

(
DSA,MO

)
− Tr

(
DSA,MODSMO

))
−1

4
Tr
(
PsSA,MOPsSA,MO

)
+

1

2

∑
ijkl

ΓijklS
A,MO
ki SA,MO

lj

−1

2

∑
ijkl

ΓijklS
A,MO
kj SA,MO

li +
1

4
Tr
(
PsSA,MO

)2
,

(2.68)

〈Ŝ2〉AB = −1

4
Tr
(
PsSA,MOPsSB,MO

)
+

1

2

∑
ijkl

ΓijklS
A,MO
ki SB,MO

lj

−1

2

∑
ijkl

ΓijklS
A,MO
kj SB,MO

li +
1

4
Tr
(
PsSA,MO

)
Tr
(
PsSB,MO

)
.

(2.69)

The quantities needed to calculate the local spin and the diatomic contributions
are described in the following sections.

2.3.2.1 Derivation of local spins in first quantization

Equations (2.54) and (2.55) can be derived starting from the spin-squared ex-
pectation value,

〈Ŝ2〉 = 〈Ψ|Ŝ2|Ψ〉 , (2.70)

where Ŝ2 is the spin-squared operator,

Ŝ2 =
N∑
i

[
ŝ2
x (si) + ŝ2

y (si) + ŝ2
z (si)

]︸ ︷︷ ︸
= ŝ2si

+
N∑
i,j 6=i

[ŝx (si) ŝx (sj) + ŝy (si) ŝy (sj) + ŝz (si) ŝz (sj)]︸ ︷︷ ︸
= ŝsisj

,

(2.71)
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where N is the number of electrons and the action of the one-electron spin
operators on α and β spin functions |α〉 and |β〉 is:

ŝx |α〉 =
1

2
|β〉 ; ŝy |α〉 =

i

2
|β〉 ; ŝz |α〉 =

1

2
|α〉 (2.72)

ŝx |β〉 =
1

2
|α〉 ; ŝy |β〉 = − i

2
|α〉 ; ŝz |β〉 = −1

2
|β〉 . (2.73)

Inserting Equations (2.72) and (2.73) into (2.70),

〈Ŝ2〉 = 〈Ψ|
N∑
i

ŝ2
si
|Ψ〉+ 〈Ψ|

N∑
i,j 6=i

ŝsisj |Ψ〉 (2.74)

one gets a one-electron part and a two-electron part. The one-electron part can
be evaluated by using only the first-order reduced density matrix γ1 (x1,x

′
1) and

the operator and then integrate over the remaining spatial and spin coordinates,

〈Ψ|
N∑
i

ŝ2
si
|Ψ〉 =

∫
s2
s1
γ1 (x1,x

′
1)

∣∣∣∣
x′1 = x1

dx1, (2.75)

where x′1 will be equal to x1 after the operator has operated, but before inte-
grating. ∫

ŝ2
1γ1 (x1,x

′
1)

∣∣∣∣
x′1=x1

dx1

=

α,β∑
σ,σ′

∫
ŝ2

1γ
σσ′

1 (r1, σ (s1) , r′1, σ
′ (s′1))

∣∣∣∣r′1=r1
σ′=σ
s′1=s1

dr1ds1

=
3

4

α,β∑
σ

∫
ρσσ1 (r1, r1) dr1

=
3

4

∫
ραα1 (r1, r1) + ρββ1 (r1, r1) dr1

=
3

4

∫
ρ1 (r1, r1) dr1 = 〈Ψ|

N∑
i

ŝ2
si
|Ψ〉 ,

(2.76)

where γσσ
′

1 (r1, σ (s1) , r′1, σ
′ (s′1)) is the part of the first-order reduced density

matrix, that only depends on the σ and σ′ spin components. Also, the definition
of the spinless first-order reduced density matrix (2.93) was used. For the
evaluation of the two-electron part, it will be split into the different operators,
starting with the ŝx operator and using the second-order reduced density matrix
γ2 (x1,x2,x

′
1,x

′
2),
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〈Ψ|
N∑
i
j 6=i

ŝx (si) ŝx (sj) |Ψ〉

=

∫
ŝx (s1) ŝx (s2)× γ2 (x1,x2,x

′
1,x

′
2)

∣∣∣∣x′1=x1

x′2=x2

dx1dx2

=

α,β∑
σ′1,σ

′
2

σ1,σ2

∫
ŝx (s1) ŝx (s2)

× γσ1σ2σ
′
1σ
′
2

2 (r1, σ1 (s1) , r2, σ2 (s2) , r′1, σ
′
1 (s′1) , r′2, σ

′
2 (s′2))

∣∣∣∣r′1=r1
r′2=r2
σ′1=σ1
σ′2=σ2
s′1=s1
s′2=s2

dr1ds1dr2ds2.

(2.77)

When applying the operators from Equations (2.72) and (2.73) only those terms
remain where σ′1 6= σ1 and σ′2 6= σ2,

〈Ψ|
N∑
i
j 6=i

ŝx (si) ŝx (sj) |Ψ〉 =
1

4

∫
ραββα2 (r1, r2, r1, r2) dr1dr2

+
1

4

∫
ρβααβ2 (r1, r2, r1, r2) dr1dr2

+
1

4

∫
ρααββ2 (r1, r2, r1, r2) dr1dr2

+
1

4

∫
ρββαα2 (r1, r2, r1, r2) dr1dr2.

(2.78)

Analogously for the ŝy operator one gets:

〈Ψ|
N∑
i
j 6=i

ŝy (si) ŝy (sj) |Ψ〉 =
1

4

∫
ραββα2 (r1, r2, r1, r2) dr1dr2

+
1

4

∫
ρβααβ2 (r1, r2, r1, r2) dr1dr2

−1

4

∫
ρααββ2 (r1, r2, r1, r2) dr1dr2

−1

4

∫
ρββαα2 (r1, r2, r1, r2) dr1dr2.

(2.79)

Applying the ŝz operators only the terms where σ′1 = σ1 and σ′2 = σ2 remain,
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〈Ψ|
N∑
i
j 6=i

ŝz (si) ŝz (sj) |Ψ〉 =
1

4

∫
ραααα2 (r1, r2, r1, r2) dr1dr2

+
1

4

∫
ρββββ2 (r1, r2, r1, r2) dr1dr2

−1

4

∫
ραβαβ2 (r1, r2, r1, r2) dr1dr2

−1

4

∫
ρβαβα2 (r1, r2, r1, r2) dr1dr2.

(2.80)

Adding Equations (2.76), (2.78), (2.79) and (2.80) and additionally adding and
subtracting 1

2

∫
ραααα2 (r1, r2, r1, r2) dr1dr2 and 1

2

∫
ρββββ2 (r1, r2, r1, r2) dr1dr2 one

gets:

〈Ŝ2〉 =
3

4

∫
ρ (r1) dr1 −

1

4

∫
ραααα2 (r1, r2, r1, r2) dr1dr2

−1

4

∫
ρββββ2 (r1, r2, r1, r2) dr1dr2

−1

4

∫
ραβαβ2 (r1, r2, r1, r2) dr1dr2

−1

4

∫
ρβαβα2 (r1, r2, r1, r2) dr1dr2

+
1

2

∫
ραααα2 (r1, r2, r1, r2) dr1dr2

+
1

2

∫
ρββββ2 (r1, r2, r1, r2) dr1dr2

+
1

2

∫
ραβαβ2 (r1, r2, r1, r2) dr1dr2

+
1

2

∫
ρβαβα2 (r1, r2, r1, r2) dr1dr2,

(2.81)

where using antisymmetry,

ρσ1σ2σ1σ22 (r1, r2, r1, r2) = − ρσ1σ2σ2σ12 (r1, r2, r2, r1) , (2.82)

and the definition of the spinless second-order reduced density matrix (2.97),
the spin-squared expectation value can be expressed in terms of the spinless
first- and second-order reduced density matrices,

〈Ŝ2〉 =
3

4

∫
ρ1 (r1, r1) dr1 −

1

4

∫
ρ2 (r1, r2, r1, r2) dr1dr2

−1

2

∫
ρ2 (r1, r2, r2, r1) dr1dr2.

(2.83)

The spinless second-order reduced density matrix can be expressed in terms
of the spinless first-order reduced density matrix, the spin density matrix and
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the cumulant of the spinless second-order reduced density matrix (compare to
Equation 2.104),

ρ2 (r1, r2, r
′
1, r
′
2) = ρ1 (r1, r

′
1) ρ1 (r2, r

′
2)− 1

2
ρ1 (r1, r

′
2) ρ1 (r2, r

′
1)

−1

2
ρs (r1, r

′
2) ρs (r2, r

′
1) + Γ (r1, r2, r

′
1, r
′
2) ,

(2.84)

which, inserted into Equation (2.83) gives:

〈Ŝ2〉 =
3

4

∫
ρ1 (r1, r1) dr1 −

1

4

∫
ρ1 (r1, r1) ρ1 (r2, r2) dr1dr2

+
1

8

∫
ρ1 (r1, r2) ρ1 (r2, r1) dr1dr2

+
1

8

∫
ρs (r1, r2) ρs (r2, r1) dr1dr2 −

1

4

∫
Γ (r1, r2, r1, r2) dr1dr2

−1

2

∫
ρ1 (r1, r2) ρ1 (r2, r1) dr1dr2

+
1

4

∫
ρ1 (r1, r1) ρ1 (r2, r2) dr1dr2

+
1

4

∫
ρs (r1, r1) ρs (r2, r2) dr1dr2 −

1

2

∫
Γ (r1, r2, r2, r1) dr1dr2

=
3

4

∫
ρ1 (r1, r1) dr1 −

3

8

∫
ρ1 (r1, r2) ρ1 (r2, r1) dr1dr2

+
1

8

∫
ρs (r1, r2) ρs (r2, r1) dr1dr2

+
1

4

∫
ρs (r1, r1) dr1

∫
ρs (r2, r2) dr2

−1

4

∫
Γ (r1, r2, r1, r2) dr1dr2 −

1

2

∫
Γ (r1, r2, r2, r1) dr1dr2.

(2.85)

Next, inserting the effectively unpaired electron density [99] u (r1),

u (r1) = 2ρ1 (r1, r1)−
∫
ρ1 (r1, r2) ρ1 (r2, r1) dr2, (2.86)

and reordering the terms yields:

〈Ŝ2〉 =
3

8

∫
u (r1) dr1

−1

4

∫ [
Γ (r1, r2, r1, r2)− 1

2
ρs (r1, r2) ρs (r2, r1)

]
dr1dr2

−1

2

∫ [
Γ (r1, r2, r2, r1)− 1

2
ρs (r1, r1) ρs (r2, r2)

]
dr1dr2.

(2.87)
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Equation (2.87) fulfills the first three requirements, but the local spin of a single
electron is not 3

4
. This requirement can be fulfilled by using the relation,∫ [
Γ (r1, r2, r1, r2)− 1

2
ρs (r1, r2) ρs (r2, r1)

]
dr2

=

∫ [
− ρ1 (r1, r1) ρ1 (r2, r2) +

1

2
ρ1 (r1, r2) ρ1 (r2, r1)

+
1

2
ρs (r2, r1) ρs (r2, r1) + ρ2 (r1, r2, r1, r2)

−1

2
ρs (r1, r2) ρs (r2, r1)

]
dr2

= −ρ1 (r1, r1)

∫
ρ1 (r2, r2) dr2︸ ︷︷ ︸

= N

+

∫
1

2
ρ1 (r1, r2) ρ1 (r2, r1) dr2

+

∫
ρ2 (r1, r2, r1, r2) dr2︸ ︷︷ ︸

= (N−1)ρ1(r1,r1)

= −ρ1 (r1, r1) +

∫
1

2
ρ1 (r1, r2) ρ1 (r2, r1) dr2 = − 1

2
u (r1) ,

(2.88)

to transform Equation (2.87) to,

〈Ŝ2〉 = a

∫
u (r1) dr1

− (1− 2a)

∫ [
Γ (r1, r2, r1, r2)− 1

2
ρs (r1, r2) ρs (r2, r1)

]
dr1dr2

−1

2

∫ [
Γ (r1, r2, r2, r1)− 1

2
ρs (r1, r1) ρs (r2, r2)

]
dr1dr2,

(2.89)

where the parameter a can, in general, be freely modulated. In order to fulfill
the fourth requirement, a has to be fixed to 3

4
, because Equation (2.89) reduces

to,

〈Ŝ2〉 = a

∫
ρ1 (r1, r1) dr1︸ ︷︷ ︸

= N=1

= a (2.90)

for a single determinant, single-electron wavefunction and the spin-squared ex-
pectation value of a single electron is 3

4
.

Inserting weight functions wA (r1) into the one- and two-electron terms in Equa-
tion (2.89) and decomposing it into mono- and diatomic contributions, one gets
to Equations (2.54) and (2.55).
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2.4 Density matrices

This section covers the first-order reduced density matrix γ1 (x1,x
′
1), where

xi = (xi, yi, zi, si) is the vector containing the real-space coordinates and the
spin coordinate of the ith electron, the spinless first-order reduced density ma-
trix ρ1 (r1, r

′
1), the density matrix ρs (r1, r

′
1), the second-order reduced den-

sity matrix γ2 (x1,x2,x
′
1,x

′
2), the spinless second-order reduced density matrix

ρ2 (r1, r2, r
′
1, r
′
2) and the cumulant of the spinless second-order reduced density

matrix Γ (r1, r2, r
′
1, r
′
2).

2.4.1 The first-order reduced density matrices

The first-order reduced density matrix γ1 (x1,x
′
1) is defined as,

γ1 (x1,x
′
1) = N

∫
Ψ∗ (x1,x2, . . . ,xN) Ψ (x′1,x2, . . . ,xN) dx2 . . . dxN , (2.91)

where N is the number of electrons and Ψ (x1,x2, . . . ,xN) is the wavefunction.
If the wavefunction is a single Slater Determinant Φ0, than, after performing a
Laplace Expansion in the first row, one gets,

γ1 (x1,x
′
1) =

N∑
ij

ψ∗j (x1)ψi (x
′
1) (−1)i+j

×
∫

Φj∗
0 (x2 . . .xN) Φi

0 (x2 . . .xN) dx2 . . . dxN︸ ︷︷ ︸
= δij

=
N∑
i

ψ∗i (x1)ψi (x
′
1) ,

(2.92)

where Φi
0 (x2 . . .xN) is a Slater Determinant, where the first row and the ith

column are deleted.
The spinless first-order reduced density matrix ρ1 (r1, r

′
1) can be obtained by

integration over the spin coordinate,
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ρ1 (r1, r
′
1) = N

∫
Ψ∗ (x1,x2, . . . ,xN) Ψ (x′1,x2, . . . ,xN) ds1dx2 . . . dxN

= Nα

∫
Ψ∗ (r1, α (s1) ,x2, . . . ,xN)

×Ψ (r′1α (s1) ,x2, . . . ,xN) ds1dx2 . . . dxN︸ ︷︷ ︸
= ραα1 (r1,r′1)

+Nβ

∫
Ψ∗ (r1, β (s1) ,x2, . . . ,xN)

×Ψ (r′1, β (s1) ,x2, . . . ,xN) ds1dx2 . . . dxN︸ ︷︷ ︸
= ρββ1 (r1,r′1)

= ραα1 (r1, r
′
1) + ρββ1 (r1, r

′
1) .

(2.93)

The spin-density matrix is the difference between the alpha and beta reduced
density matrices ραα1 (r1, r

′
1) and ρββ1 (r1, r

′
1),

ρs (r1, r
′
1) = ραα1 (r1, r

′
1)− ρββ1 (r1, r

′
1) . (2.94)

The second-quantization representation of the spinless first-order reduced density
matrix (Equation 2.61) can be calculated from the configuration interaction (CI)
coefficients CI , by expanding the wavefunction in the the occupation-number
(ON) vectors ΦI , which is shown for the α part,

Dα
ij = 〈Ψ|a†αj aαi |Ψ〉 =

∑
IJ

C∗JCI 〈ΦJ |a†αj aαi |ΦI〉

=
∑
IJ

C∗JCI l
ilj 〈Φjα

J |Φ
iα
I 〉 =

∑
I

C∗ICIδijδ1kiα

+
∑
I,J 6=I

C∗JCI l
iljδΦjαJ ΦiαI

δ1kiα
δ1kjα

,

(2.95)

where li is the phase factor, which is 1 if the number of occupied spin orbitals
before the ith spin orbital is even, and −1 otherwise. Φiα

I is the Ith ON vector
on which the annihilation operator aαi has operated.

2.4.2 The second-order reduced density matrices

The second-order reduced density matrix γ2(x1,x2,x
′
1,x

′
2) and the spinless

second-order reduced density matrix ρ2 (r1, r2, r
′
1, r
′
2) are defined in an ana-

logous way (note, that the second-order reduced density matrix is normalized

to N (N − 1) and not N(N−1)
2

),

γ2(x1,x2,x
′
1,x

′
2) = N (N − 1)

∫
Ψ(x1,x2, . . . ,xN)Ψ∗(x′1,x

′
2, . . . ,xN)dx3 . . . dxN,

(2.96)
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and,

ρ2 (r1, r2, r
′
1, r
′
2) =

∫
γ2 (x1,x2,x

′
1,x

′
2) ds1ds2

=

∫
γ2 (r1, α (s1) , r2, α (s2) , r′1, α (s1) , r′2, α (s2)) ds1ds2

+

∫
γ2 (r1, α (s1) , r2, β (s2) , r′1, α (s1) , r′2, β (s2)) ds1ds2

+

∫
γ2 (r1, β (s1) , r2, α (s2) , r′1, β (s1) , r′2, α (s2)) ds1ds2

+

∫
γ2 (r1, β (s1) , r2, β (s2) , r′1, β (s1) , r′2, β (s2)) ds1ds2

= ραααα2 (r1, r2, r
′
1, r
′
2) + ραβαβ2 (r1, r2, r

′
1, r
′
2)

+ ρβαβα2 (r1, r2, r
′
1, r
′
2) + ρββββ2 (r1, r2, r

′
1, r
′
2) .

(2.97)

The calculation of the second-quantization representation of the spinless second-
order reduced density matrix from the CI coefficients can be done using:

Gαααα
ijkl old = 〈Ψ|a†αk a

†α
l a

α
j a

α
i |Ψ〉 =

∑
IJ

C∗JCI 〈ΦJ |a†αk a
†α
l a

α
j a

α
i |ΦI〉

=
∑
IJ

C∗JCI l
iljlkll 〈Φkαlα

J |Φiαjα
I 〉

=
∑
I

C∗ICI (δik + δil) (δjk + δjl) δ1kiα
δ1kjα

(1− δij) (1− δkl)

+
∑
I,J 6=I

C∗JCI l
iljlkllδΦkαlαJ ΦiαjαI

δ1kiα
δ1kjα

δ1kkα
δ1klα

× (1− δij) (1− δkl) ,

(2.98)

Gαααα
ijkl new = 〈Ψ|a†αk a

†α
l a

α
j a

α
i |Ψ〉 =

∑
IJ

C∗JCI 〈ΦJ |a†αk a
†α
l a

α
j a

α
i |ΦI〉

=
∑
IJ

C∗JCI l
iljlkll 〈Φkαlα

J |Φiαjα
I 〉

=
∑
I

C∗ICI (δik − δil) (δjk + δjl) δ1kiα
δ1kjα

(1− δij) (1− δkl)

+
∑
I,J 6=I

C∗JCI l
iljlkllδΦkαlαJ ΦiαjαI

δ1kiα
δ1kjα

δ1kkα
δ1klα

× (1− δij) (1− δkl) ,

(2.99)
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Gαααα
ijkl save = 〈Ψ|a†αk a

†α
l a

α
j a

α
i |Ψ〉 =

∑
IJ

C∗JCI 〈ΦJ |a†αk a
†α
l a

α
j a

α
i |ΦI〉

=
∑
IJ

C∗JCI l
iljlkll 〈Φkαlα

J |Φiαjα
I 〉

=
∑
I

C∗ICI l
iljlkll (δik + δil) (δjk + δjl) δ1kiα

δ1kjα
(1− δij) (1− δkl)

+
∑
I,J 6=I

C∗JCI l
iljlkllδΦkαlαJ ΦiαjαI

δ1kiα
δ1kjα

δ1kkα
δ1klα

× (1− δij) (1− δkl) ,
(2.100)

Gαβαβ
ijkl = 〈Ψ|a†αk a

†β
l a

β
j a

α
i |Ψ〉 =

∑
IJ

C∗JCI 〈ΦJ |a†αk a
†β
l a

β
j a

α
i |ΦI〉

=
∑
IJ

C∗JCI l
iljlkll 〈Φkαlβ

J |Φiαjβ
I 〉 =

∑
I

C∗ICIδikδjlδ1kiα
δ1kjβ

+
∑
I,J 6=I

C∗JCI l
iljlkllδ

Φ
kαlβ
J Φ

iαjβ
I

δ1kiα
δ1kjβ

δ1kkα
δ1klβ

,

(2.101)

Gβαβα
ijkl = 〈Ψ|a†βk a

†α
l a

α
j a

β
i |Ψ〉 =

∑
IJ

C∗JCI 〈ΦJ |a†βk a
†α
l a

α
j a

β
i |ΦI〉

=
∑
IJ

C∗JCI l
iljlkll 〈Φkβ lα

J |Φiβjα
I 〉 =

∑
I

C∗ICIδikδjlδ1kiβ
δ1kjα

+
∑
I,J 6=I

C∗JCI l
iljlkllδ

Φ
kβlα

J Φ
iβjα

I

δ1kiβ
δ1kjα

δ1kkβ
δ1klα

,

(2.102)

Gββββ
ijkl = 〈Ψ|a†βk a

†β
l a

β
j a

β
i |Ψ〉 =

∑
IJ

C∗JCI 〈ΦJ |a†βk a
†β
l a

β
j a

β
i |ΦI〉

=
∑
IJ

C∗JCI l
iljlkll 〈Φkβ lβ

J |Φiβjβ
I 〉

=
∑
I

C∗ICI (δik + δil) (δjk + δjl) δ1kiβ
δ1kjβ

(1− δij) (1− δkl)

+
∑
I,J 6=I

C∗JCI l
iljlkllδ

Φ
kβlβ
J Φ

iβjβ
I

δ1kiβ
δ1kjβ

δ1kkβ
δ1klβ

× (1− δij) (1− δkl) ,

(2.103)

2.4.3 The spinless cumulant of the second-order reduced density ma-
trix

The spinless cumulant of the second-order reduced density matrix in first quan-
tization is defined as: [97]
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Γ (r1, r2, r
′
1, r
′
2) =− ρ1 (r1, r

′
1) ρ1 (r2, r

′
2) +

1

2
ρ1 (r1, r

′
2) ρ1 (r2, r

′
1)

+
1

2
ρs (r1, r

′
2) ρs (r2, r

′
1) + ρ2 (r1, r2, r

′
1, r
′
2) ,

(2.104)

in terms of the spinless first- and second-order reduced density matrices ρ1 (r1, r
′
1)

and ρ2 (r1, r2, r
′
1, r
′
2) and the spin-density ρs (r1, r

′
1). Inserting the relations be-

tween the first- and second-quantization representations of the matrices one
gets:

Γ (r1, r2, r
′
1, r
′
2) =

∑
ijkl

−Dikφ
∗
k (r1)φi (r

′
1)Djlφ

∗
l (r2)φj (r′2)

+
1

2
Djkφ

∗
k (r1)φj (r′2)Dilφ

∗
l (r2)φi (r

′
1)

+
1

2
P s
jkφ
∗
k (r1)φj (r′2)P s

ilφ
∗
l (r2)φi (r

′
1)

+Gijklφ
∗
k (r1)φ∗l (r2)φi (r

′
1)φj (r′2)

=
∑
ijkl

(
−DikDjl +

1

2
DjkDil +

1

2
P s
jkP

s
il +Gijkl

)
·

φ∗k (r1)φ∗l (r2)φi (r
′
1)φj (r′2)

=
∑
ijkl

Γijklφ
∗
k (r1)φ∗l (r2)φi (r

′
1)φj (r′2)

⇒ Γijkl = −DikDjl +
1

2
DjkDil +

1

2
P s
jkP

s
il +Gijkl

(2.105)

2.4.4 Real-space and Hilbert-space representations of reduced density
matrices

For approximate wavefunctions constructed from Slater Determinants, the rela-
tion between first- and second quantization can be derived by starting from the
coordinate representation. Then the wavefunction is expanded into the Slater
determinants using Ψ =

∑
I CIΨI ,

γ1(x1,x
′
1) = N

∫
Ψ∗ (x1,x2, . . . ,xN) Ψ(x′1,x2, . . . ,xN)dx2 . . . dxN

= N
∑
IJ

∫
C∗IΨ∗I (x1,x2, . . . ,xN)

×CJΨJ (x′1,x2, . . . ,xN) dx2 . . . dxN ,

(2.106)

with the Slater determinants being normalized determinants,
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ΨI =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) . . . ψN(x1)

ψ1(x2) ψ2(x2) . . . ψN(x2)

...
...

. . .
...

ψ1(xN) ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1√
N !

∣∣∣∣. . .∣∣∣∣
I

, (2.107)

where

∣∣∣∣. . .∣∣∣∣
I

is used as a more compact representation of the Slater determinant

with N particles. Inserting Equation (2.107) into (2.106),

N
∑
IJ

∫
C∗IΨ∗I (x1,x2, . . . ,xN)CJΨJ (x′1,x2, . . . ,xN) dx2 . . . dxN

= N
∑
IJ

∫
C∗ICJ

1√
N !

∣∣∣∣. . .∣∣∣∣∗
I

1√
N !

∣∣∣∣. . .∣∣∣∣
J

dx2 . . . dxN

=
N

N !

∑
IJ

∫
C∗ICJ

∣∣∣∣. . .∣∣∣∣∗
I

∣∣∣∣. . .∣∣∣∣
J

dx2 . . . dxN

=
∑
IJ

∫
C∗ICJ

1√
(N − 1)!

∣∣∣∣. . .∣∣∣∣∗
I

1√
(N − 1)!

∣∣∣∣. . .∣∣∣∣
J

dx2 . . . dxN ,

(2.108)

an equation is obtained where after a Laplace expansion,

∣∣∣∣. . .∣∣∣∣
I

=
∑
i

P iψi (x1)

∣∣∣∣. . .∣∣∣∣i
I

, (2.109)

where

∣∣∣∣. . .∣∣∣∣i
I

denotes a determinant of an (N − 1)× (N − 1) matrix where the

first row and the ith column are deleted from the N ×N matrix determinant∣∣∣∣. . .∣∣∣∣
I

and P i = (−1)i+1 is the phase factor,
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∑
IJ

∫
C∗ICJ

1√
(N − 1)!

∣∣∣∣. . .∣∣∣∣∗
I

1√
(N − 1)!

∣∣∣∣. . .∣∣∣∣
J

dx2 . . . dxN

=
∑
IJ

∫
C∗ICJ

1√
(N − 1)!

∑
j

P jψ∗j (x1)

∣∣∣∣. . .∣∣∣∣j∗
I

× 1√
(N − 1)!

∑
i

P iψi (x
′
1)

∣∣∣∣. . .∣∣∣∣i
J

dx2 . . . dxN

=
∑
IJij

∫
C∗ICJP

jψ∗j (x1) Ψj∗
I (x2, . . . ,xN)

×P iψi (x
′
1) Ψi

J(x2, . . . ,xN)dx2 . . . dxN

=
∑
IJij

C∗ICJP
jψ∗j (x1)P iψi (x

′
1)

∫
Ψj∗
I (x2, . . . ,xN)

×Ψi
J (x2, . . . ,xN) dx2 . . . dxN

=
∑
IJij

C∗ICJP
jψ∗j (x1)P iψi (x

′
1) 〈Ψj

I |Ψ
i
J〉 ,

(2.110)

one obtains an expression with (N−1) particle Slater determinants. The super-
script i in Ψi

I denotes that it is the Slater determinant ΨI without electron i.
Now, an inverse application of annihilation operators on the Slater determinants
is performed, ∑

IJij

C∗ICJP
jψ∗j (x1)P iψi (x

′
1) 〈Ψj

I |Ψ
i
J〉

=
∑
IJij

C∗ICJψ
∗
j (x1)ψi (x

′
1) 〈ΨI |a†jai|ΨJ〉 ,

(2.111)

which is why the phase factors vanished. Finally, the Slater determinants are
inversely expanded into the respective wavefunctions,∑

IJij

C∗ICJψ
∗
j (x1)ψi (x

′
1) 〈ΨI |a†jai|ΨJ〉

=
∑
ij

ψ∗j (x1) 〈Ψ|a†jai|Ψ〉ψi (x′1)

=
∑
ij

ψ∗j (x1) γ1ijψi (x
′
1) ,

(2.112)

where the first-order reduced density matrix γ1ij = 〈Ψ|a†jai|Ψ〉 was inserted in
the last step.
So the first-order reduced density matrix in first quantization can be expressed
in terms of the first-order reduced density matrix in second quantization by:
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γ1(x1,x
′
1) =

∑
ij

ψ∗j (x1) γ1ijψi (x
′
1) . (2.113)

Analogously, one can show that, the second-order reduced density matrix in
first quantization can be expressed in terms of the second-order reduced density
matrix in second quantization by:

γ2 (x1,x2,x
′
1,x

′
2) =

∑
ijkl

ψ∗k (x1)ψ∗l (x2) γ2ijklψi (x
′
1)ψj (x′2) . (2.114)

2.5 From total to local: The atomic overlap matrix

The atomic overlap matrix SA,MO is the entity in which the partitioning of the
molecular properties into local contributions is performed. It can be calculated
from the molecular orbitals (MOs) ψi (r1) and the partitioning function wA (r1)
(Equation (2.67)). The sum over all the atomic overlap matrices is the overlap
matrix SMO, since, ∑

A

wA (r1) = 1. (2.115)

From the output of a quantum chemical calculation the overlap matrix in the
basis of atom centered basis functions S,

Sµν = 〈φµ|φν〉 , (2.116)

with φµ (r1) being the atom-centered basis functions, can be extracted. The
overlap matrix in the basis of the molecular orbitals SMO,

SMO
ij = 〈ψi|ψj〉 , (2.117)

can be calculated from S using the following relation,

ψi (r1) =
∑
µ

cµiφµ (r1), (2.118)

where cµi are the MO coefficients. Inserting Equation (2.118) into Equa-
tion (2.117) the molecular overlap matrix can be expressed in terms of the
basis-functions overlap matrix,

SMO
ij = 〈ψi|ψj〉 = 〈

∑
µ

cµiφµ|
∑
ν

cνiφν〉

=
∑
µν

c∗µicνj 〈φµ|φν〉 =
∑
µν

c∗µicνjSµν ,
(2.119)

where a coefficient matrix c can be introduced to further generalize to,
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SMO
ij =

∑
µν

c∗µicνjSµν =
∑
µ

c∗µi
∑
ν

Sµνcνj

=
∑
µ

c∗µi(Sc)µj = (c†Sc)ij,
(2.120)

and, if c is real and thus c† = cT ,

SMO
ij = (cTSc)ij

SMO = cTSc.
(2.121)

2.5.1 Mulliken partitioning scheme: Dividing the Hilbert space

Using local projectors, for example Mulliken ”pseudoprojectors”, an atomic
overlap matrix can be calculated from the overlap matrix in the basis function
space so that the same results as with using the weight function are obtained.
This is shown here for the Mulliken ”pseudoprojectors” p̂MA . [52–55,100] Note that
these are non-Hermitian. Mulliken ”pseudoprojectors” are defined as

p̂MA =
∑
µ∈A,ν

|φν〉
(
S−1
)
νµ
〈φµ|, (2.122)

which is a sum running over all basis functions φµ centered on atom A and
uses the elements of the inverse of the overlap matrix. Also the sum over all
Mulliken ”pseudoprojectors” has to be equal to the identity operator 1̂∑

A

p̂MA = 1̂. (2.123)

This can be verified for the definition given by Equation (2.122):∑
A

∑
µ∈A,ν

|φν〉
(
S−1
)
νµ
〈φµ| =

∑
ν

|φν〉
∑
A

∑
µ∈A

(
S−1

)
νµ
〈φµ|

=
∑
µ,ν

|φν〉
(
S−1
)
νµ
〈φµ| = 1̂.

(2.124)

The weight function wA(r1) also fulfills the condition that the sum over all
weight functions equals 1. Multiplying wA(r1) from the left and right with
Equation (2.124) one can find conditions for extracting the atomic overlap matrix
SA,M from the overlap matrix S, so that Mulliken partitioning is achieved,

1̂wA(r1)1̂ =
∑
µ,ν,o,π

|φν〉
(
S−1
)
νµ
〈φµ|wA(r1)|φo〉

(
S−1
)
o,π
〈φπ|. (2.125)

Now we obtain the atomic overlap matrix SA,M in Equation (2.125), which leads
to
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∑
µ,ν,o,π

|φν〉
(
S−1
)
νµ
SA,Mµo

(
S−1
)
o,π
〈φπ|

=
∑
µ,ν,π

|φν〉
(
S−1
)
νµ

(
SA,MS−1

)
µπ
〈φπ|,

(2.126)

for which the conditions can be chosen to be

SA,Mµo =

{
Sµo ∀ µ ∈ A
0 ∀ µ /∈ A,

(2.127)

so that the elements of the atomic overlap matrix SA,Mµo equal the corresponding
elements of the overlap matrix Sµo, if the basis function µ is centered on atom
A and equal 0 otherwise.
Inserting Equation (2.127) into Equation (2.126) one gets

∑
µ∈A,ν,o,π

|φν〉
(
S−1
)
νµ
Sµo
(
S−1
)
o,π
〈φπ| +

∑
µ/∈A,ν,o,π

|φν〉
(
S−1
)
νµ

0
(
S−1
)
o,π
〈φπ|

=
∑

µ∈A,ν,π

|φν〉
(
S−1
)
νµ

(
SS−1

)
µπ
〈φπ| + 0

=
∑

µ∈A,ν,π

|φν〉
(
S−1
)
νµ

(1)µπ 〈φπ| =
∑

µ∈A,ν,π

|φν〉
(
S−1
)
νµ
δµπ 〈φπ|

=
∑
µ∈A,ν

|φν〉
(
S−1
)
νµ
〈φµ| = p̂MA ,

(2.128)
which is the Mulliken ”pseudoprojector” (see Equation (2.122)). So the Mulliken
atomic overlap matrix SA,M can be build from the overlap matrix S by only
keeping the elements Sµν for which µ is a basis function centered on atom A
and setting the other elements to 0 like in Equation (2.127). The obtained
Mulliken atomic overlap matrix in the basis of atom centered basis functions
SA,M can be converted to the Mulliken atomic overlap matrix in the basis of
molecular orbitals SA,M,MO by transforming with the coefficient matrix c,

SA,M,MO
ij = 〈ψi|wMA |ψj〉 =

∑
µν

〈cµiφµ|wMA |cνjφν〉

=
∑
µν

c∗µiS
A,M
µν cνj =

(
c†SA,Mc

)
ij

⇒ SA,M,MO = cTSA,Mc.

(2.129)

2.5.2 Hirshfeld partitioning scheme: Dividing the real space

The Hirshfeld method is used to obtain a partitioning function (also known as
sharing function or weighting function) wA (r). This partitioning function can
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be used to fragment the molecule into atoms and the molecular properties into
their atomic contributions. In principle, the molecule could be fragmented into
arbitrary fragments, but chemists tend to fragment molecules into atoms. To
obtain the partitioning function, ground-state atomic electron densities ρat

A (r)
of neutral atoms and a so-called promolecular electron density ρpro (r) are used.
The promolecular electron density,

ρpro (r) =
∑
A

ρat
A (r) , (2.130)

is the sum over the atomic electron densities, each of which is of course positioned
in space at the position of the atom in the molecule. The partitioning function,

wA (r) =
ρat
A (r)

ρpro (r)
=

ρat
A (r)∑
A ρ

at
A (r)

, (2.131)

of the atom A at each point in space is then the contribution of the electron
density of that atom to the promolecular electron density.
A simple example showing the use of the partitioning function is be given here.
To obtain the electron density of a bonded atom A in the molecule ρb.a. (r),

ρb.a.
A (r) = wA (r) ρmol (r) , (2.132)

the partitioning function of atom A is multiplied with the molecular electron
density ρmol (r). The total number of electrons on that atom can then be
obtained by integrating the bonded-atom electron density.

2.5.3 Hirshfeld-I partitioning scheme: An iterative improvement of
the Hirshfeld partitioning scheme

The Hirshfeld-I method is an extension to the Hirshfeld method. It overcomes
some shortcomings of the Hirshfeld method, but still retains the simple idea of
the original Hirshfeld method. Maybe the most important shortcoming of the
Hirshfeld method is the arbitrary choice of the promolecular electron density
being constructed from neutral ground-state atomic electron densities. Since
it is an arbitrary choice for the promolecular electron density, one can argue
that using other atomic densities, for example of charged atoms, may result in
different, maybe better results. The use of atomic electron densities of charged
atoms would also be arbitrary and thus a different method is needed. The
Hirshfeld-I method requires that the number of electrons on the promolecule-
constructing atom ρ0

A (r) is equal to the number of electrons in the corresponding
bonded atom, ∫

ρ0
A (r) d (r)−

∫
ρb.a.
A (r) d (r) = 0, (2.133)

which means, that the number of electrons on each atom does not change upon
formation of the bonds while forming the molecule from the atoms. Note,



40 2. Theoretical background

however, that this requirement does not mean that the promolecular electron
density is equal to the molecular electron density. Since it is difficult to guess
the correct charge of the atoms so that the resulting bonded atoms would have
the same charges, a choice-assisting algorithm is also reported.
The algorithm works as follows:

1. start with arbitrarily charged
atoms (neutral for the original
Hirshfeld method) and calcu-
late the atomic electron densities
ρat
A (r)

2. calculate the partition functions
wA (r)

3. calculate the bonded-atom elec-
tron densities ρb.a.

A (r)

4. calculate the electronic popula-
tions QA of the bonded atoms

5. check for convergence

• QA changed
⇒ use ρb.a.

A and go to 2.

• QA did not change
⇒ the solution is found

calculate ρat
A (r)

calculate wA (r)

calculate ρb.a.
A (r)

calculate QA and qA

converged?

done

use calculated
ρb.a.
A (r) for ρat

A (r)

yes

no

Figure 2.1: Schematic depiction of the
Hirshfeld-I algorithm.

In order to be able to perform the steps of this iterative algorithm one has to be
able to obtain electron densities of atoms with fractional electronic populations.
The densities can be obtained by linear combination of electronic densities
of atoms with whole numbers of electronic populations. The electron density
ρNAA (r),

ρNAA (r) = (uint (NA)−NA) ρ
lint(NA)
A (r) + (NA − lint (NA)) ρ

uint(NA)
A (r) (2.134)

of an atom A which has an electronic population of NA can be calculated from the
electron densities of an atom with an electronic population of the integer part of
NA (lint (NA) or NA rounded down) and an atom with an electronic population
of uint (NA) (uint (NA) = lint (NA) + 1). Using the Hirshfeld-I method, the
resulting partition functions and properties (for example atomic charges) do
not depend on the choice of the charge of the promolecule forming atoms.



3. Approaching efficient implementations for

electronic diradical character analyses

Implementations of electronic diradical character analyses and optimizations
through the derivation of explicit analytic expressions for integrals, as well as
an application of a diradical character analysis are presented in this chapter.

3.1 Introduction

Electronic diradical character yel, which is not an observable, but a purely theo-
retical construct, is a quantity used in different fields of chemistry. It influences
NLO properties through a dependence of the of the second hyperpolarizability
γ on yel

[14, 16]. Singlet fission, an effect used in photovoltaic systems, is also
related to yel. Molecules exhibiting weak diradical character have been shown
to be good candidates for singlet fission [15]. A method for making the diradical
character accessible from experimental data was also proposed [91]. Excitation
energies obtained from one- and two-photon absorption spectra and from phos-
phorescence and electron spin resonance measurements were used to calculate
the corresponding diradical character. In order to make use of the electro-
nic diradical character measures, they were implemented into Artaios where
also some optimizations regarding analytic versus numeric implementations of
methods are worked out.

3.2 Implementations of the diradical character analyses in
Artaios

Implementations of two measures of electronic diradical character are described
in this section. First, the implementation of the electronic diradical character
derived from natural orbital occupation numbers is explained. The implementa-
tion of the electronic diradical character analysis based on local spins follows.

3.2.1 Electronic diradical character (yel) from natural orbital occupa-
tion numbers

The occupation numbers of the natural orbitals are needed for the evaluation of
the electronic diradical character according to Equation (2.48). The respective
implementation is drawn schematically in Figure 3.1.

41
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read nα, nβ and
c from output

calculate c−1

calculate S:
S = (c−1)

T
c−1

calculate S
1
2 :

S
1
2 = QΛ

1
2 Q−1

calculate Dα:
Dα
ij =

∑nα
k=1 cikcjk

calculate Dβ:
Dβ
ij =

∑nβ
k=1 cikcjk

calculate D:
D = Dα + Dβ

compute nocc as
eigenvalues of S

1
2 DS

1
2

Figure 3.1: Flowchart illustrating imple-
mentation algorithm for obtaining the
natural orbital occupation numbers in
Artaios.

First, Artaios [101] reads the neces-
sary information for calculating the
natural orbital occupation numbers
from output files generated by the re-
spective quantum chemistry program
package.
This is the number of alpha and beta
electrons, nα and nβ, respectively,
and the molecular orbital (MO) coef-
ficients C.
Then, after inverting C using LA-
PACK [102] routines DGETRF and
DGETRI,the AO overlap matrix
S is calculated according to Equa-
tion (2.121) (using DGEMM).
The square root of the overlap matrix
S

1
2 is calculated according to Equa-

tion (3.1),

A
1
2 = QΛ

1
2 QT, (3.1)

from Q, which is a matrix where each column is one eigenvector of A, and
Λ

1
2 , which is a diagonal matrix with the square roots of the eigenvalues of

A as diagonal elements. The eigenvectors and eigenvalues are computed using
LAPACKs routines ILAENV and DSYEV. The spinless first-order reduced
density matrix D,

D = Dα + Dβ, (3.2)

is calculated from the alpha and beta reduced density matrices Dα and Dβ,

Dα =
nα∑
k=1

cikcjk (3.3)

Dβ =

nβ∑
k=1

cikcjk, (3.4)

where nα and nβ are the number of alpha and beta electrons. In the next
step, the natural orbital occupation numbers are obtained as the eigenvalues of
the matrix product S

1
2 DS

1
2 (again using ILAENV and DSYEV). Finally, the

electronic diradical character (Equation (2.48)) is calculated.

3.2.2 yel from local spins

The implementation of the electronic diradical character analysis based on local
spins was more laborious than that of the one based on natural orbital occupation
numbers. This was mainly due to the additional necessity of implementing the
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local spin analysis and the desired partitioning schemes. A detailed discussion
for the Mulliken and Hirshfeld-I schemes is given in Section 3.3.

read Nat, Nα, Nβ, Cα,
Cβ, and basis set in-

formation from output

AIM

calculate Cα−1

calculate S:
S =

(
Cα−1

)T
Cα−1

calculate SA:

SAµν =

{
Sµν ∀ µ ∈ A
0 ∀ µ /∈ A

read xc functional name and
basis set name from output

store basis functi-
ons on a 3D grid

calculate wA (r):

wA (r) =
ρatA (r)

ρpro(r)

calculate SA: SAµν =∫
φµ (r)wA (r)φν (r) dV

calculate Dα:
Dα
ij =

∑Nα
k=1C

α
ikC

α
jk

calculate Dβ:
Dβ
ij =

∑Nβ
k=1C

β
ikC

β
jk

calculate D:
D = Dα + Dβ

calculate Ps:
Ps = Dα − Dβ

compute 〈Ŝ2〉A:

〈Ŝ2〉A = 3
4

(
2Tr

(
PsSA

)
− Tr

(
DSAD

))
−

1
4
Tr
(
PsSAPsSA

)
+ 1

4
Tr
(
PsSA

)2

Mulliken Hirshfeld-I

Figure 3.2: Schematic overview of the algorithm used
to compute the local spins for the electronic diradical
character analysis as implemented Artaios.

A flowchart of the local
spin-based electronic di-
radical character analysis
is shown in Figure 3.2.

The first step, as usual
for a postprocessing pro-
gram, was to read requi-
red system-specific infor-
mation (here, this inclu-
des the number of atoms
Nat, the number of alpha
and beta electrons Nα

and Nβ, basis set infor-
mation, alpha and beta
MO coefficients Cα and
Cβ) from the respective
output file.

Depending on the cho-
sen AIM method, either
of two paths is followed:
(Mulliken) The MO coef-
ficient matrix is inverted
and from that, the over-
lap matrix is computed.
Then the atomic overlap
is calculated by replacing

rows in the overlap matrix by zeros, according to Equation (2.127). (Hirshfeld-I)
The names of the employed xc functional and basis set are read from the output
file. A 3D grid file of each basis function and of each atoms weight function
is computed and stored in memory. By integrating the products between two
basis functions and the weight function, the elements of the respective atomic
overlap matrix are calculated. In any case, the spinless first-order reduced den-
sity matrix (spin density matrix) is obtained by adding (subtracting) the alpha
and beta reduced density matrices. From the computed quantities, the local
spins are calculated according to Equation (2.68) and the diradical character
according to Equation (2.50) from the local spins.



44 3. Electronic diradical character

3.3 Implementation of the Hirshfeld-I partitioning scheme
for local spins in Artaios

In this section, the details and weaknesses of the currently implemented numeric
algorithm for calculating Hirsheld-I weight functions and the corresponding
atomic overlap matrices, starting with the calculation of the weight functions,
because they are needed for generating atomic overlap matrices. As the first step,
the system’s electron density, represented as a 3D grid file1 is read into Artaios.
In the next step, the promolecule is created by summing up individual spherically
averaged electron densities (again represented as cube files) of neutral atoms
positioned at the same point as the nucleus in the molecule. The spherically
averaged electron densities of the atoms usually need to be generated “on the
fly”, because a library with such data for each possible combination of atom
in several different charged states, basis sets and xc functionals would require
to much memory for storage. Artaios will check for each atom, whether a
library file already exists (this is usually only the case if it has been previously
generated by Artaios). If none is found, a KS-DFT calculation employing the
same basis set and xc functional as was used for the molecular calculation for
the atom is started with NWChem [103]. The NWChem job will create a cube
file with the non-spherically averaged electron density of the atom which will be
read and averaged (using a numerical algorithm as described in Section 3.4) by
Artaios. Once all spherically averaged atomic electron densities are available
as grid-based data, the promolecule is created and subsequently the weight
functions are obtained according to Equation (2.131).
Up to here, the original Hirshfeld algorithm has been described. The iterative
Hirshfeld algorithm continues after a finished Hirshfeld calculation by computing
the local charges of the obtained bonded atoms by subtracting the integrals of
the bonded atom electron densities from their respective nuclear charges. In the
nex step, a new promolecule is constructed, but not from neutral atomic electron
densities, but this time from atomic densities that have the same charge as the
bonded atom from the previous step. The densities of atoms with fractional
charges are generated as linear combinations of integer charged atomic densities
(see Equation 2.134). Summing up these new proatoms, one obtains a new
promolecule and from that new weight functions. After the second iteration,
again, local charges are computed and then the algorithm can be continued
iteratively until the bonded atoms charges in iteration i differ no longer2 from
the proatoms charges in iteration i− 1.

1The grid files employed are the so-called cube files. A cube file consists of a header with
information about the spatial extent of the grid, as well as the orientation and number of
grid points per dimension that define the grid. There are also information given about the
atoms (spatial coordinates and nuclear charges). The header is followed by the volumetric
data. The grid itself is rectangular (not necessarily cubic, as the name suggests) and the
grid points are distributed equidistant alog each dimension

2To be more precise, the algorithm is converged when the difference between the bonded
atoms and proatoms charges differ by less than a specified threshold value.
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With the converged weight functions at hand, the next task is to obtain atomic
overlap matrices. First, for each basis function, a grid-based representation is
calculated. Then, one atomic overlap matrix element requires computing the
integral of the product of two basis functions with the weight function of that
atom.

As one can see, the numerical method for calculating the atomic overlap matrices
consists of many steps including operations on grid-based data. Each of these
steps is expensive in terms of CPU time and memory since all the grids need
to be stored in memory and in order to obtain accurate results, large grids
are required [104]. Of course, other and potentially more elaborate grids [105–107],
i.e. adaptive grids, could be used and the whole algorithm could probably
be improved. Still, the drawbacks of the numerical method, especially the
difficulty of employing optimized grids, posed the motivation of this work to
derive analytic expressions for the algorithm.

3.4 Derivation and implementation of analytic spherical
averages for the Hirshfeld-I partitioning scheme

In this section, analytic expressions of the integrals for spherically averaging
electron densities and their derivation are shown.i First though, the numeric,
grid-based approach is explained briefly. After the introduction of the two
approaches, they are compared in terms of speed, applicability, stability and
memory usage.

3.4.1 The numeric, grid-based approach

This section covers the description of the algorithm for calculating the spherical
average of a density. The input density for this method can be either numeric
(for example in a cube file) or analytic (for example MO coefficients). If the
density is given in an analytic form, a numeric density on a 3D grid (like
in a cube file) will be calculated from it. Either way, the density that will
be spherically averaged is now represented by a finite number of grid points,
each with an assigned coordinate and density. The algorithm (see illustration
in Figure 3.3) calculates the distances ri of the points pi from the origin c.
Distances ri that differ by less than a threshold value t = 1.0 · 10−12 a0 are
considered equal. The density values of all points with an equal distance are
summed up and then evenly distributed (averaged) among the same points.
Finally, a new grid file with averaged densities is written.

3.4.2 The analytic approach

In order to get analytic expressions for spherically averaged densities, we have
to find a function that fulfills the following requirements: 1) Both, the non-
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spherically averaged (ρ (r)) and the spherically averaged function (ρ (r)), must
integrated over the whole space, give the same result,

∫
ρ (r) dV =

∫
ρ (r) dV = N, (3.5)

which is the number of electrons N since we are dealing with electron densities.
2) ρ (r) and ρ (r) integrated over the whole angular part in spherical coordinates
must be equal,

∫ π

θ=0

∫ 2π

φ=0

ρ (r, θ, φ) r2 sin (θ) dφ dθ dr =

∫ π

θ=0

∫ 2π

φ=0

ρ (r, θ, φ)r2 sin (θ) dφ dθ dr.

(3.6)

3) ρ (r) must be, in spherical coordinates (see (3.7a)), constant in θ and φ and,
in cartesian coordinates (see (3.7b)), only variable in

√
x2 + y2 + z2,

ρ (r, θ, φ) = ρ (r), in spherical coordinates (3.7a)

ρ (x, y, z) = ρ
(√

x2 + y2 + z2
)
. in cartesian coordinates (3.7b)

The analytical approach for generating spherically averaged densities needs ana-
lytical representations of the electron densities. Using contracted Gaussian basis
functions φ (r),

φ (r) =
∑
i

cRi Ri (r) =
∑
i

cRi ηiS
l,me−αi|r−RA|2 , (3.8)

with basis function coefficients cR, normalization factors of the primitive basis
function η, exponents of the primitive basis function α, coordinates RA of atoms
A and the shape determining parts (real solid harmonics) Sl,m, where l and m
are the azimuthal and magnetic quantum number, respectively, we can express
the electron density as,
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ρ(r) =

α,β∑
σ

nσocc∑
i=1

|ψσi (r) |2

=

α,β∑
σ

nσocc∑
i=1

N∑
µ=1

cσµi
∗φµ

∗ (r)

=ψσi (r)︷ ︸︸ ︷
N∑
ν=1

cσνiφν (r)

=

α,β∑
σ

nσocc∑
i=1

N∑
µ,ν

cσµi
∗
p(µ)∑
a=1

nµ
∗cR
a

∗
ηa
∗Sl,mµ

∗
e−αa

∗|r−RA|2cσνi

=φν(r)︷ ︸︸ ︷
q(ν)∑
b=1

nνc
R
b ηbS

l′,m′

ν e−αb|r−RB|2

=

α,β∑
σ

nσocc∑
i=1

N∑
µ,ν

p(µ),q(ν)∑
a,b

cσµi
∗cσνinµ

∗nνc
R
a

∗
cR
b ηa

∗ηbS
l,m
µ

∗
Sl
′,m′

ν e−αa
∗|r−RA|2e−αb|r−RB|2 ,

(3.9)

calculated from MO coefficients cMO and normalization factors of the contracted
basis functions n. The electron density ρ(r) depends on the spatial coordinates
r, usually given as cartesian coordinates r = (x, y, z). In order to be able to
spherically average the electron density ρ (x, y, z), we first perform a coordi-
nate transformation from cartesian to spherical coordinates (see Figure 3.4 for
details).

We now average (see (3.10)) ρ(r, θ, φ) over θ and φ to get ρs (r), which solely
depends on the distance r from the center. The average of a function f(x) over
the domain a-b is defined as,

f(x) =
1

b− a

∫ b

a

f(x) dx, (3.10)

which applied to the electron density,

∫ ∞
r=0

1

π

∫ π

θ=0

1

2π

∫ 2π

φ=0

ρ(r, θ, φ)r2 sin(θ) dφ dθ dr =

∫ ∞
r=0

ρs(r) dr = N, (3.11)

gives the upscaled spherically averaged electron density ρs(r). Note that the
volume element in cartesian coordinates dV = dx dy dz is different from the
volume element in spherical coordinates dV = r2 sin(θ) dφ dθ dr. Note that
the upscaled spherically averaged electron density integrates to the number of
electrons,∫ ∞

r=0

ρs(r) dr = N 6=
∫ ∞
r=0

∫ π

θ=0

∫ 2π

φ=0

ρs(r)r
2 sin(θ) dφ dθ dr, (3.12)
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only without taking into account the volume element for spherical coordinates
and thus does not fulfill the first requirement for the real spherically averaged
electron density (see (3.5)). The correct spherically averaged electron density
ρ(r), however, ∫ ∞

r=0

∫ π

θ=0

∫ 2π

φ=0

ρ(r)r2 sin(θ) dφ dθ dr = N, (3.13)

integrated over the whole space (including the volume element) must equal the
number of electrons. ρ(r) can be computed from ρs(r),

ρ(r) =
ρs(r)

1
π

∫ π
θ=0

1
2π

∫ 2π

φ=0
r2 sin (θ) dφ dθ

=
ρs(r)

2r2

π

=
ρs(r)π

2r2
, (3.14)

by dividing ρs(r) by the spherical average of the volume element. Equati-
ons (3.11), (3.12), (3.13) and (3.14) can be summarized to yield,

ρs(r) =
1

4π

∫ π

θ=0

∫ 2π

φ=0

ρ(r, θ, φ) sin(θ) dφ dθ, (3.15)

which coincides with the expression for the spherical average given in Refe-
rence [108].Now, ρ(r) can be transformed back to cartesian coordinates using
the relation given in Figure 3.4 to get ρs(x, y, z). Since the resulting general
equations of the spherical averages can be computed in advance, the problem of
obtaining an analytic expression for the spherically averaged electron density can
be reduced to only substituting the angular and radial parts of Equation (3.9)
(note that, for simplicity, we assumed that RA = RB),

α,β∑
σ

nσocc∑
i=1

N∑
µ,ν

p(µ),q(ν)∑
a,b

cσµi
∗cσνinµ

∗nνc
R
a

∗
cR
b ηa

∗ηb︸ ︷︷ ︸
=ξσi,µ,ν,a,b

Sl,mµ
∗
Sl
′,m′

ν e−αa
∗|r−RA|2e−αb|r−RB|2︸ ︷︷ ︸

=δl,l′δm,m′
|r−RA|2l

2l+1
e−(αa∗αb)|r−RA|2

=

α,β∑
σ

nσocc∑
i=1

N∑
µ,ν

p(µ),q(ν)∑
a,b

ξσi,µ,ν,a,b δl,l′ δm,m′
|r−RA|2l

2l + 1
e−(αa∗αb)|r−RA|2

(3.16)

instead of computing the respective integrals for each pair of orbitals. Note,
that validity of Equation (3.16) has been derived for the azimuthal quantum
numbers 0− 4 (s-,p-,d-,f- and g-orbitals), but we think it is also valid for larger
l.

3.4.3 The two methods in comparison

Here, the applicability and performance tests of the numeric and analytic imple-
mentation are discussed, emphasizing the advantages of the analytic approach.
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3.4.3.1 Applicability and limits

Here, we briefly discuss the applicability and limits of both algorithms. The
numeric algorithm can be applied to any electronic density data that is repre-
sented on a grid. It does not matter if the underlying method for calculating
the electron density used Gaussian-type or Slater-type or any other type of
orbitals, or what method was used for calculating the electron density. The
analytic method, however, is only applicable for basis sets applying Gaussian-
type orbitals. Luckily, Gaussian-type orbitals are most popular in quantum
chemistry and thus almost always used. An exception is the program package
ADF (Amsterdam Density Functional) which uses Slater-type orbitals. Someti-
mes it may, although a method is applicable, not be the best idea to use the
method in that case. The numeric algorithm, for example, is applicable to cube
files with a small number of grid points, but a generated spherically averaged
density will suffer from low resolution (see Figure 3.5 lower left), as the amount
of information in the input grid was small, too. The analytic algorithm does
not suffer from this problem (see Figure 3.5 lower right). It uses an analytic
equation as a representation of the electronic density and is thus just limited
by the accuracy of the basis set parameters (coefficients and exponents) and
the molecular orbital coefficients. Whenever the electronic density is calcula-
ted from these parameters, a grid-based density will also additionally have this
limitation.
Usually, when doing Hirshfeld-I analyses, spherically averaged electron densities
of all atoms that are part of the studied systems have to be calculated for
multiple charge states each. To overcome this, a library can be created that
already contains the spherically averaged densities of atoms in different charge
states. The parameters of the calculations for the atoms in the library have
to be the same as for the system under study, of course, so if the basis set
or functional is switched, a new library has to build for that specific set of
parameters. As the number of needed spherically averaged densities grows,
memory may become a concern. Table 3.1 lists the memory usage of each
stored representation of the electron density.
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Table 3.1: Memory usage of the stored spherically averaged electron densities.
The numerically generated densities were stored as cube files, whereas the analy-
tically generated ones were stored as strings of the analytic equation describing
the analytic electron density.

numeric algorithm analytic algorithm

cube size
memory

usage
basis set

memory
usage

40 824 KB STO-2G 8 KB

80 6.5 MB STO-6G 48 KB

120 22 MB 3-21G 16 KB

160 52 MB 6-311+G* 52 KB

200 101 MB def2-SVP 20 KB

240 174 MB
def2-

QZVPPD
116 KB

280 276 MB cc-pVDZ 84 KB

320 412 MB
aug-cc-
pCVQZ

252 KB
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Figure 3.3: Illustration of the algorithm for spherically averaging data points
on a grid. Top left: 3 × 3 grid (the center point is at r5) with color-coded
data. Each grid cell has a color, which is also given as a hexadecimal RGB
value at the bottom of the cell and a tag (r1− r9). Top right: Grid cells with
equal distances to the center point are grouped, resulting in three groups of
grid cells. Bottom left: Data in the grid cells is averaged so that each cell
within one group will have the same color. Bottom right: The final cells are
written to a new, spherically averaged, grid file.
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Figure 3.4: Relation between cartesian coordinates x, y and z and spherical
coordinates r (radial distance), θ (polar angle) and φ (azimuthal angle).
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Figure 3.5: Calculated (B3LYP/Def2-TZVP) electron density of a neutral chro-
mium atom in its singlet state (a)) and the corresponding spherically averaged
electron densities generated by the numeric algorithm from a 30× 30× 30 cube
file (b)) and by the analytic algorithm (c)). Although the electron density has
relatively smooth edges, the numerically generated spherically averaged density
shows lots of sharp edges. On the other hand, the analytically generated sp-
herically averaged density is very smooth. All three plots were generated from
30× 30× 30 cube files to make the effect visually more detectable, plotting the
isosurface with a contour value of 0.01.
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3.4.3.2 Performance tests

We also analyzed performances of the two methods described above by comparing
the computational durations while varying two parameters, the size of the crea-
ted cube file and the size of the basis set (number of primitive basis functions).
Eight basis sets were chosen, two minimal basis sets (STO-2G [109,110] and STO-
6G [109–111]), two Pople basis sets (3-21G [112–117] and 6-311+G* [118,119]), two
Karlsruhe basis sets (Def2-SVP [120,121] and Def2-QZVPPD [120,122]) and two cor-
relation consistent basis sets (cc-pVDZ [123–130] and aug-cc-pCVQZ [123,126,131]).
The numeric method, implemented in a Fortran program, should scale roughly
cubic with the number of points per direction of the cube file, but not with the
basis set size. On the other hand, we expect the analytic method, implemented
in a python program, to be independent of the cube file size, but scale with the
number of primitive basis functions. We first computed the electronic structure
of a neutral carbon atom in its triplet state and generated a cube file containing
the respective electron density (see Figure 3.8 top) for each combination of the
basis set and cube size given in Table 3.2.

Table 3.2: List of basis sets (number of primitive and contracted basis functions
in parentheses and square brackets) and number of grid points per side of the
cube file used for the computations of the carbon atoms electronic structure
and density.

basis set cube size

STO-2G (10) [5] 40

STO-6G (30) [5] 80

3-21G (15) [9] 120

6-311+G* (35) [22] 160

def2-SVP (24) [14] 200

def2-QZVPPD (83) [63] 240

cc-pVDZ (34) [14] 280

aug-cc-pCVQZ (131) [109] 320

The results of the performance tests are shown in Figures 3.6 and 3.7.
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Figure 3.6: Duration in seconds of the computation of the spherical average,
using the numerical method, of the electron density of carbon atom calculated
with different basis sets and cube file sizes. The electron densities were generated
using B3LYP as the exchange-correlation functional.

As we can see, the numerical method does indeed scale with the size of the
cube file, being independent of the basis set size. It takes between 0.05 seconds
for a cube file with 40 (64000 total grid points) grid points per direction up
to 1637.32 seconds for a cube file with 320 grid points per direction (32768000
total grid points).
The analytical method scales, as expected, with the size of the basis set used,
and is independent of the size of the cube file. The small differences between the
durations for different cube file sizes with the same basis set can be attributed
to CPU usage changes during calculations (the changes were much larger while
the CPU was heavily loaded, which is why the calculations were repeated with
a lower CPU loading to minimize the oscillations). The generated spherically
averaged densities (see Figure 3.8 bottom left and bottom right) are equal up
to numerical errors.
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Figure 3.7: Elapsed time in seconds for analytically computing the spherical
average of the electron density of carbon atom calculated with different basis
sets and cube file sizes. The electron densities were generated using B3LYP as
the exchange-correlation functional.

Figure 3.8: Isosurface plots of the electron density of a carbon atom
(B3LYP/Def2-QZVPPD) in its triplet state (a)) and the spherically avera-
ged densities calculated from it by a numeric algorithm (b)) and an analytic
algorithm (b)). The isosurface contour value was set to 0.01 in all three plots.
Each grid used for plotting consisted of 1603 = 4096000 grid points evenly
distributed on a cubic grid.
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3.5 Application: Influence of exact exchange on the dira-
dical character

The influence of exact exchange on the diradical character3 is assessed in this
section by applying the local-spin-based diradical character analysis (employing
the Mulliken partitioning scheme) on two model systems, H−H and H−He−H.
The diradical character along bond dissociation in these systems was evaluated
with KS-DFT and full CASSCF and the results were compared to each other
to find the optimal amount of exact exchange admixture for reproducing with
KS-DFT the full CASSCF results.

3.5.1 The hydrogen molecule at different bond lengths

The results of the local-spin-based diradical character analysis for the disso-
ciation of a hydrogen molecule are shown in Figure 3.9. By just looking at
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Figure 3.9: Local-spin-based electronic diradical character (employing the Mul-
liken partitioning scheme) as a function of the bond length in the hydrogen
molecule. The left part shows results obtained employing B3LYP, while PBE0
was used on the right side. Curves for KS-DFT calculations were the admixture
of exact exchange (denoted as “HFx”) in the xc functional was varied and, as a
reference, a full CASSCF curve is shown. The used basis set was Def2-TZVP.

the graphs, no clear optimal amount of exact exchange admixture could be
identified as all KS-DFT curves underestimate the diradical character at small
bond lengths and overestimate it at large bond lengths.
The MAE and root-mean-square error (RMSE) of the KS-DFT curves compared
to the reference curve can, however, be computed and yield a quality indicator
for how well the compared curves agree (see Figure 3.10). The lower the obtained
value, the better the agreement between the two curves.4 Taking the MAE and
RMSE into account, it is obvious that in the case of B3LYP, 30% is the best

3This was also the topic in the authors master’s thesis [72]. The results shown here are,
however, obtained with the updated version of Artaios, were some bugs were fixed. Also,
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Figure 3.10: MAE and RMSE values plotted against the exact exchange (denoted
as “HFx”) admixture. The curves between which the respective measure was
calculated are the B3LYP (PBE0) curve with the corresponding amount of exact
exchange and the full CASSCF curve on the left (right) side of the figure.

match according to MAE and 50% according to RMSE. For PBE0 the optimal
amounts are 20% (MAE) and 50% (RMSE).

3.5.2 The H-He-H molecule at different bond lengths

The results obtained for the dissociation of a H−He−H molecule are shown
in Figure 3.11. Again, no clear optimal amount of exact exchange admixture
could be identified.
The MAE and RMSE of the KS-DFT curves compared to the reference curve
were again computed (see Figure 3.12). For B3LYP, the optimal amount of
exact exchange admixture is 30% (MAE) and 60% (RMSE), while for PBE0
the amounts are 30% (MAE) and 60% (RMSE).
Which of the two employed measures is more reliable can not be clearly answered
and is discussed in the literature, where arguments supporting MAE can be
found [132,133], but also references supporting RMSE can also be found. [134]

3.6 Conclusion

We showed two different algorithms (a numeric and an analytic one) for obtaining
spherical averages of electronic densities and compared their performances (see
Table 3.3). The new analytic method is faster, although being implemented in a
simple python script (no packages like numpy or scipy were used), whereas the
numeric method is implemented in a Fortran program, thus having roughly a
100-fold speed advantage [135] over the python script. The numeric method uses

this time, an optimal amount of exact exchange admixture could be identified.
4Note that the absolute values of MAE and RMSE should not be compared to each

other. Rather, MAE values are compared with MAE values and an RMSE is compared to
an RMSE
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Figure 3.11: Local-spin-based electronic diradical character (employing the Mul-
liken partitioning scheme) as a function of the bond length in the H−He−H
molecule. The left part shows results obtained employing B3LYP, while PBE0
was used on the right side. Curves for KS-DFT calculations were the admixture
of exact exchange (denoted as “HFx”) in the xc functional was varied and, as a
reference, a full CASSCF curve is shown. The used basis set was Def2-TZVP.

a grid-based representation of the electronic density and therefore only depends
on the number of grid-points. For a cubic grid with 40 points per side (totaling
in 64000 grid points) obtaining the spherical average with the numeric algorithm
took around 0.05 seconds and went up to 1637 seconds for a grid containing
32768000 points (320 points per side). The much faster analytic algorithm took
only between 0.00 seconds for the smallest tested basis set STO-2G containing
10 primitive basis functions and went up to 0.14 seconds for the largest tested
basis set aug-cc-pCVQZ containing 131 primitive basis functions. The current
analytic implementation can be used for Gaussian-type orbitals with azimuthal
quantum numbers from 0− 4 (s-,p-,d-,f- and g-orbitals), but could be extended
to any azimuthal quantum number in principle. The numerical algorithm can
be used on any grid-based data. Note, however, that the numeric algorithm is
prone to errors when the number of grid points is to small or the grid-point
density is to low. This problem can not occur when using the analytic approach
since it uses the analytic equation of the spherically averaged density and its
resolution is thus not limited by the resolution of any grid-based data. Based
on this data, we suggest using the analytic algorithm whenever it is applicable.
Also, we showed a study where the local-spin-based electronic diradical character
analysis was applied to two model systems (H−H and H−He−H). Although
there is no clear amount of exact exchange admixture that performs overall
better than the others (some admixtures are better at smaller bond lengths,
while others perform better at larger bond lengths), using MAE (or RMSE) as a
measure one may find amounts that on average perform better than others. The
results of the study are that the optimal amount of exact exchange admixture
for the best reproduction of full CASSCF reference calculations with KS-DFT
is 30% for both B3LYP and PBE0. This also concludes that the MAE-based
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Figure 3.12: MAE and RMSE values plotted against the exact exchange (denoted
as “HFx”) admixture. The curves between which the respective measure was
calculated are the B3LYP (PBE0) curve with the corresponding amount of exact
exchange and the full CASSCF curve on the left (right) side of the figure.

comparison is more reliable than the RMSE-based one. We note, however, that
it is more a matter of personal preference, rather than any well-founded reason,
that leads to this conclusion. Of course one may argue, that the value 30% is
closer to the value that is mixed into the xc functionals.
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Table 3.3: Comparison of the numeric and analytic method for obtaining sp-
herically averaged electron densities.

Algorithm numeric analytic

Speed slow fast

Applicability
any grid based

data

only
Gaussian-type

orbitals

Stability
becomes unstable
at small numbers

of grid points
always stable

Memory usage
needs a large

amount of
memory

small amount of
memory needed
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4. Introducing a new measure: Structural dira-

dical character

This chapter introduces newly developed measure, the structural diradical cha-
racter, which enables one to obtain information about the diradical character
of the system without requiring to perform expensive electronic structure cal-
culations.1

4.1 Introduction

Open-shell singlet diradical molecules have aroused interest among both theo-
reticians and experimentalists due to their special physical and chemical pro-
perties. [29–32,137–142] Among those are their NLO properties, especially the
second hyperpolarizability, which can be tuned and amplified by a change in
open-shell diradical character y [24, 25, 27, 28, 35, 143, 144]. Nonlinear optically
active molecular materials are important for applications such as data storage
and telecommunication [38].
It would be particularly useful if the NLO properties of molecules or molecular
materials could be switched by external stimuli. There has been considerable
experimental [11, 19, 20, 145, 146] and theoretical [12, 20, 26, 34, 147] work on
switchable organic and organometallic NLO-active molecules, showing that a
variety of stimuli such as pH, temperature, redox reactions, and light can be
used for this purpose.
The singlet state of diradicals can have a bond length pattern more reminiscent
of an open-shell structure (Figure 4.1, top right), of a closed-shell structure
(Figure 4.1, top left), or somewhere in between. A perfect open-shell molecular
structure will typically be very close to that of a triplet. Depending on which
side the molecular structure leans to, electronic properties will be considerably
different, in particular the (electronic) diradical character. Indeed, it has been
shown that diradical character and NLO properties can be very sensitive to
molecular structure [21,148–150]. Open-shell electronic structures have also been
found to depend on interatomic distances in the context of strongly correlated
adsorbates and materials [151–153]. For predicting diradical properties from first
principles, it is therefore important to predict sufficiently accurate molecular
structures, both in terms of absolute bond lengths and in terms of bond-length
patterns.

1This work is taken from our publication [136]. The author has written the manuscript
and Dr. Torben Steenbock and Prof. Dr. C. Herrmann proofread and helped improving it.
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not properly described, one may easily get incorrect optimized molecular structures and

properties. Since the diradical character is related to the relative weights of open-shell and

closed-shell singlet configurations in the electronic wave function,15–18 this issue is particu-

larly crucial if structural parameters such as bond lengths differ between the closed-shell and

the open-shell form (compare Figure 1). Indeed, it has been shown that diradical character

and NLO properties can be very sensitive to molecular structure.19–21

Figure 1: Lewis structures of p-quinodimethane in its closed-shell (left) and open-shell di-
radical form (right). Note that strictly speaking, these are not mesomeric forms, since bond
lengths will differ between the diradicaloid and the closed-shell structures.

Given the favorable switching properties of dithienylethene (DTE) and the potential of

metallocenes for redox-switchable NLO properties, a DTE bridge linking two cobaltocene

units (with potentially one unpaired electron each) could be an interesting organometallic

candidate for a multiresponse NLO-active compound (see Figure 2). Closing the photoswitch

(left-hand side of Figure 2) switches on electronic communication via the ⇡ system of the

bridge, which enables drawing two resonance structures, a closed-shell and an open-shell

one (Figure 3). Due to its poor switching behavior, the closed-switch form could not be

isolated, and its structure and properties are not known experimentally.22 To decide whether

further efforts towards obtaining these data and towards optimizing the switching behavior

are worthwile, we aim at a true first-principles prediction of the diradical character of the

closed switch. In contrast to the analogous nitronyl nitroxide compound23 (see Supporting

Information (SI)), KS-DFT optimizations of the molecular structure for the closed switch

in its singlet state give no consistent answer to whether it is predominantly a closed-shell or

an open-shell structure. Consequently, no predictions of its diradical character and its NLO

properties appear possible, unless a particular approximate exchange–correlation functional

can be identified as sufficiently reliable for this purpose.

3

which	ideal	structure	does	the	
bond	length	pattern	fit	more	
closely?

ideal	closed-shell	
singlet	structure

ideal	singlet	
diradical structure

optimized	or	
experimental	
molecular	structure

Figure 4.1: Our measure of structural diradical character is based on comparing
bond-length patterns of molecular structures with idealized bond-length patterns
for closed- (top left) and open-shell diradical (top right) forms, shown here for
p-quinodimethane.

For many diradicals of interest, KS-DFT is the only first-principles electro-
nic structure method capable in practice of molecular structure predictions
with reasonable accuracy (see also Appendix B). Yet, owing to the unknown
exchange–correlation functional, DFT can give inconclusive results regarding
such structures.

We are interested in a particular example of such inconclusive predictions, a
dithienylethene-linked biscobaltocene whose diradical properties could be swit-
ched, in principle, by light (see Figure 4.2). In combination with the redox-active
nature of the cobaltocene units, this might lead to multiresponse behavior. Clo-
sing the photoswitch (left-hand side of Figure 4.2) switches on electronic com-
munication via the π system of the bridge, which enables drawing two different
structures, a closed-shell one (Figure 4.3, left) and an open-shell one (Figure 4.3,
right). The relative importance of these two not only affects NLO properties,
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hν  (visible)

hν  (UV)
CoR = 

SSR R S SR R

Figure 4.2: Lewis structures of a dithienylethene molecule in its closed (left)
and open form (right).

but a stabilization of the closed switch resulting from a large admixture of
the closed-shell form can also suppress photochromic ring opening [154, 155].
Due to its poor switching behavior, the closed-switch form could not be iso-
lated experimentally, and its structure and properties are therefore not known
yet [156]. To decide whether further efforts towards obtaining these data and
towards optimizing the switching behavior are worthwhile, we aim at a true
first-principles prediction of the diradical character of the closed switch. In
contrast to the analogous nitronyl nitroxide compound [157] (see Supplemen-
tal Material), KS-DFT optimizations of the molecular structure for the closed
switch in its singlet state give no consistent answer to whether it is predomi-
nantly a closed-shell or an open-shell structure (see Section 4.4). Consequently,
no predictions of its diradical character and its NLO properties appear pos-
sible, unless a particular approximate exchange–correlation functional can be
identified as sufficiently reliable for this purpose.

SS

CH3

CH3

CoI CoI

[Co2]

CoII

SS

CH3

CH3

CoII

Figure 4.3: Lewis structures of [Co2]. The closed-shell quinoidal form is shown
on the left-hand side, the diradicaloid form on the right-hand side. Note that
strictly speaking, these are not mesomeric forms, since bond lengths will differ
between the diradicaloid and the closed-shell structures. The bonds whose formal
bond orders and thus lengths differ between the two structures are indicated
by the grey area. Bonds included in evaluating established BLA measures are
shown in red if they were added and in blue if they were subtracted in Eq.
(A.1) [158,159].
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One would expect that bond-length alternation (BLA) [158,159] was a good me-
asure for comparing molecular structures optimized with different approximate
exchange–correlation functionals and experimental structures. It turns out that
BLA values spread so unsystematically that this is not possible (along with
other disadvantages, as discussed in Appendix A). Therefore, we will define a
new measure for this purpose, which we call structural diradical character (see
Section 4.2.1). It is based on measuring the deviation of bond lengths for a
structure of interest from ideal bond lengths of (a) an open-shell singlet and (b)
a closed-shell singlet (see Figure 4.1), obtained with the same methodology as
the structure of interest (DFT with a particular exchange–correlation functio-
nal, or experiment). We will show below that this indeed allows for identifying
functionals that can be considered reliable for bond-length patterns of singlet
diradicals. For this purpose we will analyze a series of experimentally studied
diradicals (see Figures 4.4 and 4.5).

[Fe2]'

Fe

PPh2

Ph2P
C C C C Fe

Ph2P PPh2

[Fe2]

Fe

PPh2

Ph2P
C C C C Fe

Ph2P PPh2

1.37

1.221.40

1.40
1.42

Fe

PPh2
Ph2P
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Ph2P PPh2

1.86

1.42

1.40 1.24

1.45

Fe

PPh2

Ph2P
Fe

Ph2P PPh2

1.82

Figure 4.4: Lewis structures of [Fe2] and [Fe2]’. The bond lengths (in Å)
for [Fe2] and [Fe2]’ are taken from X-ray crystal structures from Ref. [160]
and [161], respectively. Note that the shown structures are, strictly speaking,
not resonance structures, since they have different bond lengths. Bonds included
in evaluating established BLA measures are shown in red if they were added and
in blue if they were subtracted in Eq. (A.1) [158,159]. Note that the reference
bond lengths within the benzene rings were those of aromatic benzene and not
the alternating single and double bonds shown in the Lewis structures. Also,
the Fe−C bonds are not included in the evaluation of the structural diradical
character, because no reference bond length for Fe−C single and Fe−−C double
bonds were defined.
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Figure 4.5: Lewis structures and selected X-ray crystallographic bond lengths
(from Ref. [33]) of bbb, bnb and bab. The closed-shell quinoidal form is
shown on the left-hand side, the diradicaloid form on the right-hand side. Note
that strictly speaking, these are not mesomeric forms, since bond lengths will
differ between the diradicaloid and the closed-shell structures. Bonds included
in evaluating established BLA measures are shown in red if they were added
and in blue if they were subtracted in Eq. (A.1) [158,159].

4.2 Definition of structural diradical character

Diradical character is a measure used to indicate how close a system resembles
one with two unpaired electrons (usually in a singlet state). A more general
term that can be used in various contexts is open-shell character (OSC). It
may refer to diradical character (two unpaired electrons) as well as to any
other polyradical character (any number of unpaired electrons). Here, we use
the terms diradical character and open-shell character synonymously.

4.2.1 Defining structural diradical character: How close is the bond
length pattern of a molecular structure to that an ideal diradi-
cal?

We introduce a new measure for estimating the qualitative similarity of a mole-
cular structure to an ideal diradical or closed-shell bond pattern (see Figure 4.1).
The new measure overcomes the drawbacks of the BLA scheme while still re-
taining its simplicity. For this purpose, reference bond lengths for the ideal
open-shell and closed-shell structures have to be defined (see Section 4.2.2 be-
low for details). The actual bond lengths b for the structure of interest are
then compared to these reference bond lengths bref , and the normalized mean
absolute error (MAEX

norm; X = CS,OS),
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MAEX
norm =

∑n
i=1

|bi−bXi,ref |
|bOS
i,ref−b

CS
i,ref |

n
, (4.1)

and the normalized root mean squared deviation (RMSDX
norm; X = CS,OS),

RMSDX
norm =

√√√√∑n
i=1

(
bi−bXi,ref
|bOS
i,ref−b

CS
i,ref |

)2

n
, (4.2)

are calculated for all n bonds where the reference bond length in the CS and
OS differ (these bonds are encapsulated in gray ovals in the corresponding
Figures). The normalization is used to account for different magnitudes in
reference bond-length differences (20 pm for a C−C −−→ C−−C transition, 14 pm
for a C−−C −−→ C−−−C transition, 14 pm for a C−C −−→ C−−−−C transition and
6 pm for a C−−C −−→ C−−−−C transition).
The structural diradical character ys is then defined as

ys = 1− MAEOS
norm

MAEOS
norm + MAECS

norm

=
MAECS

norm

MAEOS
norm + MAECS

norm

. (4.3)

The structural diradical character can be calculated from the RMSDX
norm in an

analogous way.
As a complement to OSC, closed-shell character (CSC) y

s can be defined ac-
cordingly as,

y

s = 1− ys =
MAECS

norm

MAEOS
norm + MAECS

norm

, (4.4)

to satisfy the requirement,

1 = ys + y

s =
MAEOS

norm + MAECS
norm

MAEOS
norm + MAECS

norm

. (4.5)

4.2.2 Choosing reference bond lengths for diradical and closed-shell
structures

It is not quite obvious how ideal diradical and closed-shell singlet bond lengths
should be defined. One option would be to carry out a computational structure
optimization in which the electronic structure is constrained to be a closed-shell
singlet (as in spin-restricted KS-DFT) and to use the resulting bond lengths
as references for the closed-shell structure, and, accordingly, a spin-unrestricted
triplet optimization for a “perfect” open-shell structure. This has the obvious
disadvantage that it cannot be applied to experimental structures.
Another option is to interpret the Lewis structures literally and to use C−C
bond lengths of ethane, ethene, ethine, and benzene, . . . as references. These
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ideal bond lengths are obtained with the same method as the molecular struc-
ture of interest, i.e., either by structure optimization with a method like DFT
(see Supplemental Material for values), or from tabulated experimental data for
these validation compounds (taken from Ref [162]) [163]. The drawback of this
definition is that a “real-world” open-shell singlet may by be quite far from
a perfect bond pattern as shown on the left-hand side of Figure 4.1, because
π conjugation [164], chemical substitution, intramolecular and intermolecular
dispersion interactions and repulsions, and other effects may lead to deviations
from ideal bond lengths. For the same reasons, what we would clearly con-
sider a closed-shell singlet structure may deviate from its ideal bond pattern
as shown on the right-hand side of Figure 4.1. We do not consider this a
major problem, because these reasons are present in computationally optimized
and experimental structures alike. We do acknowledge that (1) in practice,
intermolecular interactions are usually neglected in DFT (but this is the case
for nearly all computational work) and (2) in cases where a certain exchange–
correlation functional has a weakness concerning, e.g., intramolecular dispersion
interactions indirectly affecting bond-length patterns, we may not be able to
disentangle intrinsic problems of this functional with bond-length patterns from
its weaknesses with dispersion. However, with these exceptions, we consider
comparing the structural diradical character between experiment and compu-
tation as a valuable means of gaining insight into the reliability of electronic
structure methods for molecular structure optimizations of diradicals.
Either way, the choice of reference bond lengths for the analysis of the structural
diradical character is somewhat arbitrary. We evaluated the evolution of the
C−C single-bond length along the linear alkanes ethane through octane. The
results are shown in Figure 4.6 and Table 4.1 and suggest that the reference
bond lengths do not depend on the choice of the system.
The reference bond lengths from experiment (taken from Ref [162]) and from
the geometry optimizations with the used xc functionals are listed in Table 4.2.
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Table 4.1: Average bond lengths b
(b = 1

n

∑n
i=1 bi) and standard devi-

ations σ (σ =
√

1
n−1

∑n
i=1(bi − b)2)

calculated from the n C−C single-
bond lengths (n = 1 for Ethane, n =
2 for Propane, etc.) bi from struc-
ture optimizations using a Def2-
TZVP basis set and D3 dispersion
correction with either the BP86 or
B3LYP exchange correlation functi-
onal.

BP86 B3LYP

b σ b σ

Ethane 153.09 — 152.81 —

Propane 153.13 0.00 152.82 0.00

Butane 153.12 0.11 152.82 0.08

Pentane 153.13 0.05 152.82 0.03

Hexane 153.13 0.06 152.82 0.05

Heptane 153.13 0.05 152.82 0.04

Octane 153.13 0.05 152.82 0.03
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Table 4.2: Reference bond lengths used for the calculation of the structural
diradical character.

bC−Cethane
bC−Cethene

bC−Cethine
bC−Cbenzene

exp. 154 134 120 140

BP86-Def-TZVP 153.135 133.389 120.837 139.8883

BP86-Def2-TZVP-D3 153.098 133.32 120.737 139.8

TPSS-Def2-TZVP 153.199 133.058 120.295 139.589

TPSSh-Def2-TZVP 152.766 132.68 119.909 139.204

B3LYP-Def-TZVP 152.896 132.613 119.831 139.242

B3LYP-Def2-TZVP-D3 152.821 132.539 119.723 139.154
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4.3 Correlation between electronic and structural diradi-
cal character

The studied molecules can be drawn in different forms (see Figures 4.3, 4.4
and 4.5), one of which denotes a CS and the other an OS form bearing two
unpaired electrons. These two forms differ in the distribution of C−C bonds
(single-, double-, triple- and aromatic bonds) between respective carbon atoms.
In the CS, the bond lengths are typically more equally distributed than in the
OS. These bond length distributions or bond-length patterns can be used to
evaluate the structural diradical character.

We will show in the following that the structural diradical character correlates
more with electronic diradical character [21, 36, 37, 40, 165–167] than the MAE
of absolute bond lengths does. To illustrate this (see Figure 4.7), we have
compared the correlation of structural diradical character and MAE of a set of
different structures of p-quinodimethane.

First, we describe the construction of the studied set of structures. We take two
structures as end points for a linear interpolation: First, a structure resembling
the closed-shell Lewis structure was built and its bond lengths were chosen to
be the ideal bond lengths that are used as a reference in the calculation of
the structural diradical character (see Table 4.2). This structure then has a
structural diradical character of 0. We will call this structure ideal closed shell
or cs-id. The second structure was constructed in a similar fashion, but this
time, the ideal bond lengths resembling the open-shell Lewis structure were
chosen, resulting in a structural diradical character of 1. Analogously, this
structure is referred to as ideal open shell or os-id. The 11 studied structures
were then built as linear interpolations between cs-id (with weights between 0.0
and 0.2, the latter being referenced as cs-20 = 0.2·cs-id + 0.8·os-id) and os-id
(with weights between 1.0 and 0.8). The weights were chosen to be in a region
where the electronic diradical character is sensitive to structural changes. We
computed the electronic diradical character yel, structural diradical character
ys, and the MAE of the bond lengths that were used for calculating ys (the
C−C bond lengths) with respect to a fititious “validation” structure which is
a linear combination of os-id (weight is 0.9) and cs-id (weight is 0.1), denoted
as ref. The latter structure corresponds to what would usually be a molecular
structure from the experiment, and was chosen such that it is in the middle of
the range of structural mixtures under study.

The better correlation between electronic and structural diradical character than
between electronic diradical character and the MAE is evident. The Pearson
correlation coefficient between ys and yel (Figure 4.7, left) is 1.00, while it
is 0.07 between MAE and yel (Figure 4.7, right). For the realistic systems
under study, we will show that structural diradical character shows a similarly
better correlation with electronic diradical character than MAE (see Figures 4.8
and 4.9).

Accordingly, correct bond-length patterns are more important for getting elec-
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Figure 4.7: Comparison of the correlation between electronic (yel) and structural
(ys) diradical character (MAE, Equation (4.3)) on the left (right). The Pearson
correlation coefficient R is shown in the corresponding legends. The systems
are p-quinodimethanes with different bond lengths. cs-20 (ref, os-id) is a linear
combination of 20 % (10 %, 0 %) cs-id and 80 % (90 %, 100 %) os-id, the
structures denoted as LSTi are linear combinations of 20 − 2i % cs-id and
80 + 2i % os-id. To make a qualitative comparison easier, the scales of the
ordinates were chosen so as to have the smallest (and largest) data points of the
respective curves on equal heights. Single point calculations used B3LYP/def2-
TZVP-D3.

tronic diradical character right than only good agreement with absolute bond
lengths. In particular, good agreement with absolute bond lengths may lead to
considerable deviations in electronic diradical character if it was obtained at the
expense of realistic bond-length patterns. We therefore suggest a measure for
the agreement with bond-length patterns as an important additional criterion
when evaluating the performance of electronic structure methods for molecular
structure optimizations of diradicals, in addition to measures for absolute bond
length deviations.

4.4 Attempt at a true first-principles prediction of diradi-
cal character

Dithienylethene (DTE) derivatives can, in principle, be switched from a closed
form (Figure 4.2 left), which has an extended conjugation, to an open form
(Figure 4.2 right) by radiation with visible light. Ring closure can be initiated
by irradiation with UV light (due to a less extended conjugation in the open
form). For the closed form with the attached cobaltocenes ([Co2]), a diradical
Lewis structure with two unpaired electrons and a closed-shell structure with
no unpaired electrons can be drawn (see Figure 4.3). It is not known yet
experimentally whether the molecule is predominantly OS or CS in its ground
state.
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In an attempt to make a true first-principles prediction on this question, we have
calculated optimized structures (open and closed shell) and analyzed the spin-
state energetics and structural diradical characters of this compound, employing
the pure BP86 functional and the hybrid B3LYP with 20 % admixture of
Hartree–Fock exchange. We start molecular structure optimizations for (1) a
closed-shell singlet (cs), employing spin-restricted KS-DFT (RKS), (2) a broken-
symmetry [168] (bs) approximation of the open-shell singlet employing spin-
unrestricted KS-DFT (UKS), for which the local spin density in the initial
guess corresponded to one spin-up unpaired electron on one spin center and one
spin-down electron on the other center [169], and (3) a triplet (t) described by
UKS to evaluate singlet–triplet splittings. For a bs solution with approximately
one unpaired electron per spin center, a total spin expectation value of 〈Ŝ2〉
close to one is expected [170]. The bs approach may converge to a closed-shell
solution, which is indicated by 〈Ŝ2〉 approaching zero. Therefore, 〈Ŝ2〉 values
are reported for all cs and bs optimizations. All molecular structures under
study have singlet ground states.

Table 4.3: Relative energies with respect to the closed-shell energy (∆E)
[kJ/mol], structural diradical character ys (Equation 4.3) (MAE and, in pa-
rentheses, RMSD), bond-length alternation (Equation A.1) BLA [pm], Ŝ2 ex-
pectation values (〈Ŝ2〉) for the optimized structures of [Co2] (see Figure 4.3)
employing BP86/def2-TZVP and B3LYP/def2-TZVP, for closed-shell (cs), open-
shell singlet modeled by a broken-symmetry (bs) determinant, and triplet (t).
The structural diradical characters of the energetically most stable structures
are highlighted in green (with energies differing by less than 5 kJ/mol considered
as degenerate). The overall assignment as closed-shell (CS) or open-shell (OS)
is indicated in the right-most column.

cs bs t

∆E ys BLA 〈Ŝ2〉 ∆E ys BLA 〈Ŝ2〉 ∆E ys BLA

BP86

[Co2] 0.00 0.58 (0.71) 2.6 0.00 1.37 0.58 (0.71) 2.6 0.01 28.45 0.67 (0.81) -1.43 CS

B3LYP

[Co2] 0.00 0.56 (0.67) 4.4 0.00 -52.6 0.73 (0.87) -3.4 1.10 2.04 0.74 (0.88) -3.7 OS

For all optimized structures, we evaluate structural diradical character and
BLA. If these data agreed reasonably well for the ground-state structures of
both BP86 and B3LYP, a DFT prediction of the open-shell character of [Co2]
could be considered as reliable. However, BP86 gives a closed-shell structure,
while B3LYP results in an open-shell singlet as the energetically most stable
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solution (Table 4.3).

The structural diradical character is small for the closed-shell solutions and
large for the open-shell solution, which could only be converged with B3LYP,
not with BP86, even if performing a single-point calculation on the open-shell
optimized B3LYP structure with the open-shell B3LYP orbitals as initial guess.
Interestingly, the BP86 closed-shell singlet shows a larger structural diradical
character than the B3LYP one, indicating that even though both are equally
closed-shell in terms of electronic structure (〈Ŝ2〉 = 0), the BP86 molecular
structure leans more towards the open-shell side. For comparison, structural
diradical character was also evaluated for the triplet. Here, one would expect
bond-length patterns close to the open-shell resonance structures, and accor-
dingly, ys is always largest for the triplet. For the B3LYP open-shell singlet,
ys is nearly identical to the value for the triplet, which could be taken as an
additional indication that the open-shell-singlet B3LYP solution converges to a
nearly pure diradical.

Here, MAE- and RMSD-derived structural diradical characters deviate by up to
0.14, with the latter being larger, while in our validation systems (see below),
it does not matter much whether structural diradical character ys is evaluated
with MAE or RMSD as a measure for structural deviations, and the latter is
typically slightly smaller. This different behavior might be related to the fact
that single / double bond alternation plays a more pronounced role here in
both structures in contrast to the validation compounds. This does not affect
the suitability of ys for comparisons between calculated and experimental data.
It makes employing ys as an absolute measure for diradical character difficult,
but as will be discussed below, 0.6 as evaluated based on MAE appears to
be a reasonable measure for the transition from what is typically considered
more closed-shell to more open-shell singlet, at least for the set of molecules
considered here.

A negative BLA would be expected for an open-shell structure, because the
single bonds of the bridge are subtracted (blue in Figure 4.3) and the double
bonds (shorter) are added (red in Figure 4.3) and the aromatic bonds (same
bond lengths in the reference) will not bias the BLA towards positive or negative
values. On the other hand, a positive BLA indicates a closed-shell structure,
because then the single bonds are added (red in Figure 4.3), while the double
bonds (shorter) are subtracted (blue in Figure 4.3). The BLA (Equation A.1)
obtained from the BP86 solutions is small, but positive, rather corresponding
to a closed shell, while the BLA obtained from B3LYP is positive for the
closed-shell solution and negative for the open-shell solution.

In accordance with the larger open-shell character suggested by B3LYP, the
singlet–triplet gap is by more than an order of magnitude smaller than the gap
predicted by BP86.

Altogether, these data suggest that according to BP86, [Co2] is mostly a closed-
shell molecule, while B3LYP suggests it is mostly open-shell. Therefore, in the
following we will compare these two xc functionals employed along with two
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meta-GGA based ones (TPSS and TPSSh) with experimental data on structures
where varying the bridge modifies the diradical character.

4.5 Comparison of density functional theory with experi-
mental molecular structures

4.5.1 Selection of diradicals and exchange–correlation functionals

For organic diradicals, the B3LYP exchange–correlation functional (with 20 %
exact exchange admixture) generally works well [171], but even here, BLA [158,
159] as present in the closed-shell form on the left-hand side of Figure 4.1 can
be underestimated [172] or overestimated [149, 173], depending on the mole-
cule studied. While numerous studies on the dependence of NLO properties
on exchange–correlation functional have been carried out [148, 174–188], it is
not clear if there is a reasonably reliable functional for describing bond-length
patterns for organometallic complexes with potential diradical character.
We therefore apply the structural diradical measure defined in Section 4.2 to two
sets of selected organometallic [160,161] and organic [33] validation compounds
for which structural data are available from the experiment for given spin centers
with two and three different bridges, respectively, and where these variations
of the bridge are known to change the diradical character considerably (see
Figures 4.4 and 4.5). Even though the organometallic systems are quite large
molecules, we consider, in contrast to previous work [160,161], the full atomistic
details of all ligands.
We compare four different exchange–correlation functionals, three of which
(BP86, TPSS, TPSSh) have proven valuable for structures and energetics of
transition metal complexes [189–191], while B3LYP is very popular for open-
shell organic molecules. BP86 and TPSS are pure functionals, and TPSSh and
B3LYP are hybrid functionals with 10 and 20 percent of exact-exchange ad-
mixture, respectively. The pure parts of BP86 and B3LYP are of generalized
gradient corrected (GGA) type, and for TPSS and TPSSh, of meta GGA type.
Since exact exchange admixture tends to localize spin density [192–194], hybrid
functionals should favor diradical structures (right-hand side of Figure 4.1) more
strongly than pure ones.

4.5.2 Inorganic validation systems: Dinuclear carbon complexes with
carbon-rich bridges

In the two dicationic complexes shown in Figure 4.4, two iron(III) centers with
one unpaired electron each are linked by carbon-rich bridges, in one case with
a benzene linker ([Fe2])) and in one case with a benzene linker featuring two
annelated rings ([Fe2]’). This annelation should decrease the aromaticity of the
central carbon structure, and thus favor the cumulenic structure shown on the
left-hand side.
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Indeed, in the experiment [161], analysis of characteristic bond lengths (Fe−C,
−C−−−C, −−−C−C) of [Fe2] revealed longer Fe−C and −−−C−C and shorter −C−−−C
bonds as compared to the X-ray structure of [Fe2]’, indicating a larger structu-
ral diradical character. Despite slight differences, this holds for both molecules
present in the unit cell (indicated by “xray1” “and xray2” in the lower part
of Table 4.4) [195]. Superconducting quantum interference device (SQUID)
magnetometry (as powder) revealed a singlet ground state for [Fe2] with a
thermally accessible triplet state about 4.56 kJ/mol higher in energy, sugges-
ting that the ground state has significant open-shell character. The variable
temperature (VT)-UV–Vis spectra did not give any evidence of structural chan-
ges between 10 K and 300 K, and VT-IR spectra pointed to a barely detectable
increase of cumulenic character with decreasing temperature, suggesting that the
structural changes between the singlet and triplet states are minor. Altogether,
this was interpreted as [Fe2] having significant open-shell singlet character in
its ground state, despite the relatively strong antiferromagnetic spin coupling.

For [Fe2]’, no signal was found in the electron spin resonance (ESR) spectrum
at 77 K, so the triplet state is not thermally accessible up to that temperature,
corresponding to a singlet–triplet splitting of at least 1200 cm−1 (roughly 14.3
kJ/mol). This is also supported by VT-NMR data. IR spectra support the
more cumulenic structure that was also indicated by X-Ray crystallography.
This points to [Fe2]’ having substantial closed-shell character in the ground
state.

Figure 4.8 shows that hybrid functionals, in particular B3LYP and TPSSh,
can describe the structural diradical character of [Fe2] very well (compare the
solid and dotted green lines). For [Fe2]’, B3LYP overestimates this character
somewhat, while TPSSh is very close to the experimental value. Interestingly,
the reduction in ys from [Fe2] to [Fe2]’ is partially described already by the
closed-shell-optimized structures. For the open-shell (bs) optimized structures,
ys increases as spins become more localized on the spin centers (as indicated
by increasing 〈Ŝ2〉 in Table 4.4). This is in line with this localization indicating
a stronger importance of the open-shell resonance structure (right-hand side of
Figure 4.4).

The B3LYP open-shell-singlet structure for [Fe2] has a ys very close to the
value for the triplet, which suggests that B3LYP would consider [Fe2] almost
purely open shell. For TPSSh, the values are also reasonably close, indicating
dominant open-shell character.

Owing to the size of the systems under study (we describe all ligands in full
atomistic detail), crystal structure optimizations under periodic boundary con-
ditions (in particular with hybrid functionals) are prohibitively expensive. It
has been pointed out that crystal packing can increase quinoidal character [173],
so our first-principles structural diradical characters for isolated molecules may
overestimate the values obtained from X-ray crystallography somewhat. At le-
ast for [Fe2], measured exchange spin coupling constants were very similar in
the solid state and in solution [161], which suggests that structural differences



78 4. Introducing a new measure: Structural diradical character

between the two are not major. Still, it may be that the deviation of B3LYP
data from the experiment is partially due to the neglect of packing effects.

Overall, based on the structural diradical character ys, TPSSh would be conside-
red adequate for describing the two iron-based complexes under study here (with
B3LYP being also acceptable). TPSSh also matches the experimental singlet–
triplet energy splitting for [Fe2] quite nicely (2.9 kJ/mol vs. 4.56 kJ/mol), and
is not too far from the experimental lower bound on this splitting for [Fe2]’
(8.1 kJ/mol vs. 14.3 kJ/mol), whereas B3LYP underestimates both.

The robustness of the experimental bond lengths and the analyses based on
them was estimated by using the estimated standard deviations (esds) of the
experimentally measured bond lengths and adding or subtracting them from the
measured bond lengths so as to best fit the open-shell (closed-shell) reference
bond lengths. The difference of the BLAs (and ys) calculated with and without
considering the esds is then considered the estimated error on the tabulated
BLAs (and ys).

In Section 4.3, we showed that the structural diradical character ys correlates
with the electronic diradical character yel and that only taking into account
averaged absolute bond length deviations MAE does not suffice for a reliable
comparison of computed and experimental data. An analysis of the correlation
between ys and yel and between MAE and yel has been conducted for the
experimental validation systems as well (see Figure 4.8). Again, we see that
structural diradical character correlates more strongly with electronic diradical
character than MAE. The correlation (expressed through the Pearson correlation
coefficient R) is 0.93 between ys and yel and −0.89 between MAE and yel. Here,
strong anticorrelation between MAE and yel is observed, because the system
under study is open shell. There, one would expect the MAE between the
experimental structure and the optimized one to be larger for the closed-shell
structure (where yel is small) and smaller for open-shell structures (where yel is
large). The weak correlation between MAE and electronic diradical character
at [Fe2]’ is attributed to the higher level of complexity in the bonding patterns.
While in the organic systems, only alternations between single-, double- and
aromatic bonds happen, while in the inorganic systems, alternations between
single-, double-, aromatic- and triple bonds take place. The structural diradical
character can clearly deal with these complex bonding patterns.

With bond-length alternation, it is more difficult to obtain a clear picture (see
Table 4.4). Bond-length alternation should be more pronounced for the more
quinoidal form of [Fe2]’ compared with [Fe2], and this is indeed the case for the
structures obtained from experiment. Also, the BLA of an open-shell solution
(if one is converged) is, as expected, smaller than for a closed-shell solution.
For the DFT-optimized structures, BLA data vary significantly depending on
the xc functional employed. The increase in BLA from [Fe2] to [Fe2]’ is only
reproduced for the two pure functionals (for which attempts at broken-symmetry
optimizations converge to 〈Ŝ2〉 smaller than one), and in terms of absolute
numbers, there is no functional which agrees well with the BLA for both [Fe2]
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and [Fe2]’. For [Fe2], B3LYP comes closest (but fails for [Fe2]’), and for [Fe2]’,
TPSS matches best (but strongly overestimates BLA for [Fe2]). Also, while ys
changes only slightly when varying bond lengths within the experimental error
bar, these variations affect BLA values considerably. All this suggests that in
contrast to ys, it is at least difficult to identify a reliable xc functional for
structural diradical character based on BLA.
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Figure 4.8: Comparison of the correlation between electronic diradical character
yel and structural diradical character ys (MAE) on the left (right). MAE values
are calculated from geometry optimized- and experimental structures. The
Pearson correlation coefficient R is shown in the corresponding legends. The
data for [Fe2] ([Fe2]’) are shown in the top (bottom) half. Values for yel, ys
and MAE are plotted against a string representing the calculated determinant
(either cs for closed shell, t for triplet or os for broken symmetry) and the
used xc functional. Additionally, the calculated structural diradical character
values for the x-ray structures yexps are plotted as a constant dotted line. The
energetically most stable structures are highlighted by a circular grid on top
of the data point. Again, energies differing by less than 5 kJ are considered
degenerate, leading to multiple highlighted structures per functional in some
cases.
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Table 4.4: Relative energies with respect to the closed-shell energy (∆E)
[kJ/mol], structural diradical character ys (MAE and, in parentheses, RMSD),
bond-length alternation BLA [pm], Ŝ2 expectation values (〈Ŝ2〉) for the op-
timized structures of [Fe2] and [Fe2]’ for closed-shell (cs), open-shell singlet
modeled by a broken-symmetry (bs) determinant, and triplet (t), and available
data for the X-ray structures (with the two molecules present in the unit cell
(indicated by “xray1” “and xray2”). The structural diradical characters of the
energetically most stable structures are highlighted in green (with energies dif-
fering by less than 5 kJ/mol considered as degenerate). The overall assignment
based on experimental data [160,161] as closed-shell (CS) or open-shell (OS) is
also indicated in the bottom left cells.

cs bs t

∆E ys BLA 〈Ŝ2〉 ∆E ys BLA 〈Ŝ2〉 ∆E ys BLA

BP86

[Fe2] 0.00 0.56 (0.56) 6.0 0.00 -4.45 0.63 (0.62) 4.2 0.62 5.76 0.71 (0.68) 2.25

[Fe2]’ 0.00 0.46 (0.46) 5.7 0.00 0.00 0.46 (0.46) 5.7 0.00 26.7 0.60 (0.59) 1.55

TPSS

[Fe2] 0.00 0.57 (0.56) 5.85 0.00 -9.87 0.66 (0.65) 3.4 0.81 -1.54 0.72 (0.70) 1.8

[Fe2]’ 0.00 0.45 (0.45) 5.5 0.00 -0.338 0.47 (0.47) 4.9 0.25 22.3 0.63 (0.62) 1.0

TPSSh

[Fe2] 0.00 0.55 (0.55) 6.3 0.00 -50.1 0.73 (0.71) 3 1.5 1.06 -47.2 0.77 (0.73) 0.85

[Fe2]’ 0.00 0.45 (0.45) 6.0 0.00 -19.0 0.61 (0.60) 3 1.8 1.04 -10.9 0.71 (0.68) -0.22

B3LYP

[Fe2] 0.00 0.54 (0.53) 6.9 0.00 -101 0.78 (0.74) 3 0.7 1.11 -100 0.79 (0.75) 0.4

[Fe2]’ 0.00 0.44 (0.44) 6.6 0.00 -62.9 0.68 (0.67) -0.1 1.14 -60.2 0.74 (0.71) -0.85

X-ray [160,161]

ys BLA

[Fe2]xray1 0.76± 0.03 (0.71± 0.03) OS 0.20± 0.80

[Fe2]xray2 0.78± 0.03 (0.72± 0.02) OS 0.20± 0.80

[Fe2]’ 0.59± 0.03 (0.58± 0.03) CS (with some OS?) 3.90± 0.40
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4.5.3 Organic validation systems: bisbenzothiaquinodimethanes with
varying bridge lengths

Bisbenzothiaquinodimethanes (see Figure 4.5) have recently been presented as
stable analogues of larger acenes, enabling the experimental study of diradical
character as a function of molecular length [33]. While all three molecules under
study showed considerable quinoidal character, diradical character increased
with increasing molecular length as expected, owing to the increasing number
of aromatic rings formed in the open-shell resonance structure [196]. This was
concluded, among others, from the X-Ray crystallographic structures and from
the increased spectral broadening in VT 1H-NMR, indicating more strongly
thermally populated triplet states for longer molecules.

We optimized the molecular structures in the closed-shell, open-shell singlet
(bs), and triplet states with the four xc functionals under consideration. Here,
we employed Grimme’s empirical dispersion correction (D3) [197], since it has
been proven important for extended organic systems. We had not employed
this correction for the inorganic complexes above, because its suitability for
inorganic systems is not as clearly established as for organic ones [191].

For all functionals and structures, we obtain either a closed-shell solution as
the ground state, or an open-shell singlet (bs) that is close in energy to the
closed-shell one. The energy differences between the two are at most around
3.5 kJ/mol, which appears too close to the DFT error margin to make a well-
founded decision on which of the two represents the ground state better. The
Ŝ2 expectation values of the bs solutions are often close to zero and never
larger than about 0.6, indicating partial closed-shell character (see Table 4.5).
The larger 〈Ŝ2〉, the more the structural diradical characters ys and bond-
length alternation deviate from the “true” closed-shell solution. In all cases,
the triplets are considerably higher in energy, consistent with the dominantly
closed-shell ground states, and the singlet–triplet splitting of 27 kJ/mol obtained
from B3LYP-D3 is consistent with the 22 kJ/mol obtained from temperature-
dependent magnetic susceptibility measurements of the bab powder and with
the 23 kJ/mol obtained previously from UCAM-B3LYP/6-31G(d,p) [33]. This is
also in line with the singlet ys always being considerably lower than the triplet
values, suggesting that no singlet has bond-length patterns corresponding to
pure open-shell structures.

The structural diradical characters ys for the B3LYP-D3 closed-shell solutions
match the experiment almost perfectly. For the longest molecule bab, the bs
optimization converges to structures with a 〈Ŝ2〉 value of roughly 0.6, which
is slightly lower in energy and features a larger ys than the cs solution (0.71
vs. 0.63). Given the quite small energy differences, this bs solution may be an
artifact of DFT. It could also be that the good match of the cs data results
from an error compensation between the electronic structure description and
the neglect of crystal packing effects (compare the discussion in the preceding
section). Without the experimental data, there would be little solid criteria for
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deciding which of the two describes the experiment better. As exact exchange
admixtures increase in the functionals, the structural diradical characters of
the closed-shell solutions increase slightly, leading to an overestimation of the
experimental values (that could still be consistent with the experiment if packing
effects should play a role).
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Figure 4.9: Comparison of the correlation between electronic diradical character
yel and structural diradical character ys (MAE) on the left (right). MAE values
are calculated from geometry optimized- and experimental structures. The
Pearson correlation coefficient R is shown in the corresponding legends. The
data for bbb are shown in the top third, for bnb are shown in the center third
and for bab are shown in the bottom third. Values for yel, ys and MAE are
plotted against a string representing the calculated determinant (either cs for
closed shell, t for triplet or os for broken symmetry) and the used xc functional.
Additionally, the calculated structural diradical character values for the x-ray
structures yexps are plotted as a constant dotted line. The energetically most
stable structures are highlighted by a circular grid on top of the data point.
Again, energies differing by less than 5 kJ are considered degenerate, leading
to multiple highlighted structures per functional in some cases.

MAE values between optimized and experimental geometries showed a very
good correlation with yel values ranging from 1.00 for bbb to 0.98 for bab.
The correlation between ys and yel is slightly smaller ranging from 0.99 for bbb
to 0.88 for bab. This means that for organic systems, both ys and MAE are
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well suited.
Bond length alternation decreases as the molecules get longer, which is consistent
with the increasing diradical character. Also if BLA is taken as a criterion,
closed-shell B3LYP-D3 matches the experiment well, slightly overestimating
BLA, while TPSSh errs in the other direction showing the best agreement
of the functionals considered. For these organic systems, BLA is much more
consistent over different functionals, and the conclusions drawn from BLA and
ys are similar: the two hybrid functionals are suited best to describe bond-length
patterns in these organic diradical candidates. This good agreement between
the two measures may be because (1) BLA is more suitable for organic systems
than for inorganic ones, and because (2) the same sets of bonds are employed in
evaluating these measures here, in contrast to the diiron and dicobalt complexes
discussed above. Furthermore, while experimental error bars on bond lengths
still affect BLA values more than ys, this is much less severe than it was the
case for the two diiron complexes discussed above, so for organic systems, both
BLA and ys appear as reasonable choices for evaluating agreement between
calculated and experimental bond-length patterns.
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Table 4.5: Relative energies with respect to the closed-shell energy (∆E)
[kJ/mol], structural diradical character ys (MAE and, in parentheses, RMSD),
bond-length alternation BLA [pm], Ŝ2 expectation values (〈Ŝ2〉) for the opti-
mized structures of bbb, bnb and bab for closed-shell (cs), open-shell singlet
modeled by a broken-symmetry (bs) determinant, and triplet (t), and available
data for the X-ray structures. The structural diradical characters of the ener-
getically most stable structures are highlighted in green (with energies differing
by less than 5 kJ/mol considered as degenerate). The overall assignment based
on experimental data [160, 161] as closed-shell (CS) or open-shell (OS) is also
indicated in the bottom left cells.

cs bs t

∆E ys BLA 〈Ŝ2〉 ∆E ys BLA 〈Ŝ2〉 ∆E ys BLA

BP86-D3

bbb 0.00 0.57 (0.56) 5.8 0.00 -0.137 0.57 (0.56) 5.8 0.000 80.9 0.79 (0.76) 0.05

bnb 0.00 0.65 (0.64) 4.9 0.00 0.101 0.65 (0.64) 4.9 0.000 55.5 0.78 (0.76) 1.05

bab 0.00 0.69 (0.67) 4.5 0.00 0.180 0.69 (0.67) 4.4 0.001 39.5 0.77 (0.75) 1.44

TPSS-D3

bbb 0.00 0.56 (0.56) 5.9 0.00 -0.035 0.54 (0.53) 6.5 0.000 78.4 0.80 (0.77) -0.35

bnb 0.00 0.65 (0.64) 5.1 0.00 0.156 0.66 (0.64) 5.0 0.001 52.1 0.78 (0.76) 0.88

bab 0.00 0.69 (0.67) 4.5 0.00 0.138 0.70 (0.67) 4.4 0.031 35.6 0.76 (0.75) 1.2

TPSSh-D3

bbb 0.00 0.54 (0.54) 6.5 0.00 -0.111 0.54 (0.54) 6.5 0.000 73.6 0.81 (0.78) -0.75

bnb 0.00 0.62 (0.61) 5.1 0.00 0.172 0.63 (0.62) 3 5.4 0.074 43.9 0.79 (0.76) 0.67

bab 0.00 0.66 (0.64) 3 5.1 0.00 -2.21 0.72 (0.69) 3.8 0.516 25.4 0.77 (0.75) 1.06

B3LYP-D3

bbb 0.00 0.51 (0.51) 3 7.4 0.00 -0.152 0.51 (0.51) 3 7.3 0.000 75.2 0.81 (0.77) -0.63

bnb 0.00 0.59 (0.58) 3 6.5 0.00 0.115 0.60 (0.59) 3 6.2 0.109 43.3 0.78 (0.76) 0.83

bab 0.00 0.63 (0.62) 3 6.0 0.00 -3.46 0.71 (0.68) 4.2 0.594 23.5 0.77 (0.75) 1.3

X-ray [33]

ys BLA

bbb 0.50± 0.02 (0.50± 0.02) CS 6.85± 0.26

bnb 0.59± 0.01 (0.58± 0.01) CS (with some OS) 5.93± 0.40

bab 0.63± 0.02 (0.62± 0.02) CS (with some OS) 5.55± 0.34
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4.6 Conclusion

For predicting nonlinear optical properties of molecules, it is essential to pro-
vide correct molecular structures based on first-principles electronic structure
methods. For this purpose, small absolute errors are not sufficient, but also a re-
liable description of relative structural parameters such as bond length patterns
is necessary. We have therefore suggested a new measure, structural diradi-
cal character ys, which is based on comparisons between molecular structures
and idealized closed-shell and diradical structures. We can show that with this
new measure, consistent comparisons between experiment and first-principles
molecular structures for diradicals are possible.

Based on these comparisons, we can identify two hybrid functionals, TPSSh
and B3LYP, with 10 and 20 percent of exact exchange admixture, as suitable
for describing structural diradical character in both organic and organometallic
systems. B3LYP (with Grimme’s empirical dispersion corrections) works best
for the organic molecules, and TPSSh (without dispersion correction) for the
organometallic complexes under study. Importantly, these functionals were also
the ones which gave a realistic description of singlet–triplet energy differences.
The GGA and meta-GGA functionals BP86 and TPSS turned out not suitable
for neither purpose.

The excellent agreement for B3LYP-D3 was only found when the organic mole-
cules (a series of bisbenzothiaquinodimethanes with different molecular lengths)
were described as closed-shell electronic structures (restricted KS-DFT), even
though in some cases broken-symmetry solutions with partial open-shell singlet
character were slightly lower in energy, but within typical DFT error bars (up
to 3.5 kJ/mol). This illustrates that present-day KS-DFT may be unable to
make predictions in cases like these, where closed-shell and open-shell singlets
are close in energy. On the upside, there exists one frequently used functional,
B3LYP, which is able to provide perfect agreement for these structures when
only the closed-shell singlets are considered. Possibly, these data could indi-
cate that when singlet–triplet gaps are large, and when closed- and open-shell
singlets are nearly degenerate, one should consider the closed-shell singlets as
more reliable for present-day standard xc functionals. However, such statements
clearly require more research, possibly also considering schemes which combine
a more explicit description of static correlation with KS-DFT [198–202].

Comparing structural diradical character ys obtained from experiment with
assignments as (predominantly) open-shell or closed-shell from the literature
suggests that ys smaller than roughly 0.6 (with MAE as a measure for structural
deviations) points to a more closed-shell structure, while larger ys correspond
to more open-shell structures. Closeness to triplet ys values may also serve
as an absolute criterion for pure open-shell character (usually only applicable
to computed structures, however). For closed-shell electronic structures, ys
slightly decreases with increasing exact exchange admixture, while for open-
shell singlet, it increases, so that differences between the two structures become



4.6. Conclusion 87

more pronounced.
Our work was motivated by our attempt at a true first-principles prediction of
the open-shell character for a photoswitchable [Co2] complex, which may be a
structure worth pursuing and optimizing further for achieving photoswitchable
NLO properties. Our findings imply that B3LYP, which suggests an open-shell
singlet ground state, is more reliable than BP86, which favors the closed-shell
singlet. Therefore, further research into this and related compounds, and their
switchability, appears a worthwhile avenue of research.
It is challenging to define diradical measures which are also applicable to ex-
perimental data (with a notable exception suggested by Kamada et al. [91]).
Therefore, beyond such comparisons between theory and experiment, structu-
ral diradical character may also be interesting as a complement to electronic
diradical character. This will require generalizing the definition of reference
structural parameters, e.g. for structures where diradical character correlates
with the presence or absence of a tin–tin bond rather than bond length alter-
nation.
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5. Conclusion and perspective

The accurate description of molecular systems and their properties is an im-
portant topic in theoretical chemistry. Since energies and other properties are
highly dependent on the geometric structure of the system, being able to handle
that structure is crucial. A good example that is particularly challenging is a
biscobaltocenyldithienylethene complex synthesized in the group of Prof. Dr.
Jürgen Heck, whose potential for photoswitchable nonlinear activity was un-
clear, since its properties, in particular the electronic diradical character, are
very sensitive to structural changes.

When evaluating the quality of computationally optimized molecular structures,
often the MAE of parameters such as bond lengths for the calculated structure
and the reference, i.e. X-ray structure, is the only measure taken into account.
One aim of this work was to provide a new measure that also assesses the
reliability of bond-length patterns and thus provides additional information
about the quality of the structure.

The second goal of this thesis was to investigate which amount of exact exchange
admixture in different xc functionals gives the best description of electronic
diradical character. Also, the implementations of different measures of electronic
diradical character in the postprocessing computational framework developed
in the group as well as their optimization by deriving analytical expressions
replacing tedious numerical calculations were part of this work.

5.1 Summary

Since there is no unique definition of electronic diradical character, two different
definitions were employed, one of which used natural orbital occupation numbers
to calculate the diradical character. The other one was chosen because it has
one major advantage over the other indices: It is directly applicable to many
types of wave functions including KS-DFT wave functions, which are effectively
single determinants, as well as multireference-type wave functions consisting
of multiple determinants. This allowed for comparative studies where DFT
with its current uncertainties due to the practical implementations could be
“benchmarked” against full CI or full CASSCF results. The chosen version
of the electronic diradical character measure is a modified version of the one
given by Ramos-Cordoba et al. [51], which uses local spins, as defined by Mayer
et al. [46–48,97,203–206], for the computation of the electronic diradical character.
Both have been implemented in the locally developed code Artaios, thereby
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extending its range of use. For the implementation of this measure for elec-
tronic diradical character, different partitioning schemes can be employed when
defining local spins. Again, two of the possible decomposition (or partitioning)
schemes were chosen and implemented for this work, namely the Mulliken [52–55]

and the Hirshfeld-I [67, 207] schemes. Because Hirshfeld-I in its current state nee-
ded extensive calculations on data points represented on grids, Hirshfeld-I as
implemented in Artaios is much slower than the Mulliken partitioning, which
does not need any 3D-grid-based data. Analytic expressions for integrations
performed during the calculation of spherically averaged electron densities of
atoms, which are part of the Hirshfeld-I algorithm, were therefore derived in
the scope of this thesis. The analytic spherical averages were implemented in a
standalone program, and a better performance of the analytic implementation
compared to the numeric (grid-based) implementation was shown. These new
implementations allowed an extension of our previous work, confirming that a
larger amount of exact exchange leads to a larger diradical character. For each
tested xc functional, an optimal amount of exact exchange admixture could
be found that best reproduced the CASSCF results. However, there was no
admixture that was clearly better than the others, because for a given bond
length, a certain admixture performed best, but at a different bond length,
another admixture was optimal.

In the second part, the focus was on the geometric structure, i.e. bond-length
patterns. Thus, structural diradical character has been introduced as a new
measure. The importance of the new measure was shown as it correlates well
with electronic diradical character for a set of model systems, whereas the
correlation between electronic diradical character and mean absolute error of
a model reference structure was poor. Structural diradical characters were
calculated for the biscobaltocenyldithienylethene complex mentioned above. For
this complex, it is unclear whether the ground state is an open-shell state or
a closed-shell state. Depending on which xc functional was used (the pure
functional BP86 or the hybrid functional B3LYP), it was either suggested to be
mostly a closed-shell state (BP86) or an open-shell state (B3LYP). This lead
to a study where structural diradical characters obtained with four different xc
functionals (BP86, TPSS, TPSSh, and B3LYP) on different sets of real molecular
systems were compared to experimental results. One set was a binuclear iron
complex where the iron centers were separated by two different bridges. The
other set consisted of three organic bisbenzothiaquinodimethanes, where again
the radical centers were separated by different bridges. It was shown that
B3LYP (combined with Grimme’s dispersion correction) works well for organic
systems, whereas TPSSh is the better choice when it comes to organometallic
systems with potential diradical character. Based on these studies, it could
be suggested that the biscobaltocenyldithienylethene complex has a dominant
open-shell character in its ground-state, implying that its further study towards
photoswitchable nonlinear optical activity is worthwhile.
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5.2 Outlook

Continuing on the basis of the work provided in this thesis, possible projects
that are worth pursuing include:

• A study employing the well-working xc functionals with the aim of pre-
dicting new and promising materials exhibiting well designed NLO pro-
perties.

• The diradical character analysis tool based on the local spins can be applied
to larger, and possibly experimentally accessible diradicaloid systems. The
comparison with full CASSCF or full CI (FCI) is then probably not
feasible anymore so that a different, reliable, method, such as density
matrix renormalization group (DMRG), is needed. This will prove useful
as additional benchmark data for DFT, especially when instead of model
systems, real systems can be studied.

• Explicit analytic expressions for integrals like the ones shown in Section 3.4
for spherical averages of Gaussian-type orbitals (GTOs) can also be derived
for Slater-type orbitals (STOs) and possibly for plane-wave basis functions.
This would greatly improve the performance and applicability of real-
space partitioning methods like Hirshfeld-I. Since the integrations for the
spherical averaging are not the only ones that need to be evaluated during
the Hirshfeld-I algorithm, analytic expressions for the other integrals can
be derived and implemented to further improve the partitioning method
concerning speed, memory usage and simplicity of implementation. All
this aims at increasing “computational robustness” meaning that “ideally
all integrals could be performed analytically” [208].

• A further improvement of the definition of structural diradical character
may be pursued. In its current state, the range of the values seems rather
narrow (between 0.5 and 0.8) when applied to experimental or optimized
structures. Ideally, for a closed-shell system, one would obtain ys = 0 and
for a pure diradical, ys = 1. The reference bond lengths could possibly be
changed so that the desired range is achieved, although a sound argument
for a change would be preferred to just fitting reference bond lengths
to reproduce known values of diradical character. Another option is to
change the functional behavior of ys. Currently, ys behaves linearly as a
function of the bond length. However, ys would be expected to show a
sigmoidal behavior in the case of a dissociation of a hydrogen molecule
(similar to the electronic diradical character in Section 3.5). It would be
worth studying if a sigmoidal behavior would improve the values obtained
when evaluating structural diradical characters.

• Structural diradical character can be used as a quick guide to get hints
about which type of theory might, or might not be suitable for a good
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description of the system under study. If structural data from experi-
ment, i.e. X-ray structures are available, a quick calculation of ys can
be conducted. Should ys be somewhere around or above 0.6, one might
want to be careful about the choice of approximate electronic structure
method. This is because, at values of ys larger than 0.6, the systems seem
to have large multireferential character. KS-DFT, although formally exact
and as such capable of correctly describing this kind of systems, in its
current approximate form often has trouble with handling such systems
that exhibit a large amount of static correlation. [209–214]

• It would be worth defining a measure for electronic diradical character
that smoothly goes from 0 to 1 upon dissociation also in the case of
KS-DFT to make it more similar to the obtained and expected behavior
in the case of multireference calculations. This index might potentially
be based on entanglement measures. [215–217]
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nal resources. Dr. Hinnerk Stüben and Dr. Thomas Orgis for maintaining the
HPC-Cluster and providing us with insight into technical details regarding the
clusters.
I acknoledge financial, academic and technical support of the University of
Hamburg. Especially Beate Susemihl, Katrin Brügmann, Dr. Franca Fuchs,
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A. Critical discussion of bond length alterna-

tion (BLA) as a measure for comparing di-

radical structures

BLA [158,159] is evaluated as the average difference between bond lengths for
N pairs of adjacent bonds (bi,0 and bi,1),

BLA =
1

N

N∑
i=1

bi,0 − bi,1, (A.1)

which, e.g., can be alternating single and double or alternating single and triple
bonds. [158, 159] The bonds that were considered for the BLA are shown in
the corresponding figures in red if they were added and in blue if they were
subtracted.
Using BLA as a measure for diradical character has some drawbacks. (i) The
BLA can only be used for one sort of alternating bonds, while for the iron
complexes ([Fe2] and [Fe2]’) there are both alternating single and double bonds,
as well as alternating single and triple bonds. One has to choose which set
of bonds will be used for calculating the BLA and which will be dismissed.
Also, for some inorganic structures such as the tin cluster studied in Ref. [218],
diradical character correlates with the presence or absence of a tin–tin bond
rather than bond length alternation. (ii) Pairs of bonds have to be used,
meaning that an even number of bonds must be considered. For example, for
the biscobaltocenyldithienylethene ([Co2]) this is not the case, and one has to
choose arbitrarily one bond which will not be taken into account. (iii) The sign
of the calculated BLA is choice-dependent and could be switched by adding
the bond lengths that were subtracted and vice versa. This indicates that it is
difficult to define a unique and transferable measure for diradical character based
on bond-length alternation. (iv) The calculated numbers for different systems
cannot be directly compared, because the magnitude of the numbers is system-
dependent. (v) BLA measures bond-length patterns in absolute terms, which
implies that when comparing calculated with experimental data, deviations
resulting from a general over- or underestimation of bond lengths by a given
functional are mixed with those resulting from an inadequate representation of
relative bond lengths differences.
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B. On the applicability of broken-symmetry

density functional theory for structural op-

timizations of diradicals

A closed-shell determinant will always have a 〈Ŝ2〉 value of zero, while an open-
shell determinant representing a diradicaloid will have a 〈Ŝ2〉 value larger than
zero. This is referred to as spin contamination. For discussions on the validity
of broken-symmetry energies, see, e.g., Refs. [219–227]. On the one hand, it is
argued that the Kohn–Sham reference system of noninteracting fermions should
have the same 〈Ŝ2〉 value as the real, interacting system, and following this
argument, schemes have been suggested for estimating the molecular structure
of the spin-projected open-shell singlet based on broken–symmetry calculati-
ons [39]. On the other hand, it is not generally established how to evaluate
the 〈Ŝ2〉 value of the interacting system in Kohn–Sham DFT, and there is
no unique established way for handling possible double counting of electron
correlation when employing spin projection on top of broken-symmetry Kohn–
Sham determinants [198–201]. In practice, the Broken-Symmetry approach has
been very successful in modeling molecular structures and energetics of anti-
ferromagnetically coupled systems [194, 219]. We therefore take a pragmatic
approach here, directly evaluating the broken-symmetry energies as those of the
open-shell singlet. For future work, it would be interesting to consider schemes
which combine a more explicit description of static correlation with Kohn–Sham
DFT [198–202]. At present, these are too computationally expensive for routine
structural optimizations of molecules of the size under study here.
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C. Theoretical methods

C.1 Electronic diradical character

All electronic structure calculations were performed using the NWChem 6.6
program package imposing no symmetry (C1 symmetry) on the systems. De-
fault values were used for the calculations on the H−H and H−He−H sys-
tems. For the calculations of the atoms in the performance test part, a value
of 10−7 a.u. was set as the convergence criterion for the energy during self-
consistent field calculations. The employed xc functional (either B3LYP [228–
230] or PBE0 [231–233]) and basis set (either STO-2G [109,110], STO-6G [109–111],
3-21G [112–117], 6-311+G* [118,119], Def2-SVP [120,121], Def2-QZVPPD [120,122], cc-
pVDZ [123–130], or aug-cc-pCVQZ [123,126,131]) was used or not is indicated in the
respective figures and tables.

For the closed-shell calculations restricted KS-DFT was employed. In order to
obtain the broken-symmetry determinants, an unrestricted KS-DFT calculation
of the triplet state was performed and followed by a subsequent broken-symmetry
calculation. The CASSCF calculations were carried out with all electrons and
all orbitals in the active space.

C.2 Structural diradical character

All electronic structure calculations were performed using the Turbomole 6.5 [234]

program package imposing no symmetry (C1 symmetry) on the systems. A va-
lue of 10−7 a.u. was set as the convergence criterion for the energy during
self-consistent field calculations. For the molecular structure optimizations the
threshold was set to 10−6 a.u. for the energy change, to 10−3 a.u. for the maxi-
mum displacement element, to 10−4 a.u. for the maximum gradient element, to
5 · 10−4 a.u. for the root mean square of the displacement, and to 5 · 10−4 a.u.
for the root mean square of the gradient. The employed xc functional (either
BP86 [235, 236], TPSS [237], TPSSh [238, 239] or B3LYP [228–230]) and basis
set (either def-TZVP [240,241] or def2-TZVP [242,243]) and whether the third
generation empirical dispersion correction of Grimme (D3) [244] was used or
not is indicated in the respective tables.

For the closed-shell calculations restricted KS-DFT was employed. In order
to obtain the broken-symmetry determinants, an unrestricted KS-DFT calcula-
tion of the triplet state was performed and followed by a subsequent broken-
symmetry calculation using Turbomole’s “flip” option on the triplet determinant
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for obtaining the initial guess for the broken-symmetry calculation. The calcu-
lated ground state was then determined by comparison of the energies of the
determinants and their corresponding 〈Ŝ2〉 values.



D. List of abbreviations

AIM atoms-in-molecules

AO atomic orbital

a.u. atomic units

BLA bond-length alternation

CASSCF complete active space SCF

CI configuration interaction

CS closed-shell state

CSC closed-shell character

DFT density functional theory

DMRG density matrix renormalization group

DTE Dithienylethene

esd estimated standard deviation

ESR electron spin resonance

FCI full CI

GGA generalized gradient approximations

GTO Gaussian-type orbital

HF Hartree–Fock

KS-DFT Kohn–Sham DFT

LDA local density approximation

MAE mean absolute error

MO molecular orbital

NLO nonlinear-optical
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OS open-shell state

OSC open-shell character

QTAIM Bader’s Quantum Theory of Atoms in Molecules

RMSE root-mean-square error

SCF self-consistent field

STO Slater-type orbital

UDFT unrestricted DFT

UHF unrestricted HF

VT variable temperature

xc exchange–correlation
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Prevents Electron Pairing and Imposes Polyradical Character, Chem. Eur.
J., 21 (2016) 814–828.

[197] Grimme, S., Density functional theory with london dispersion corrections,
Wiley Interdiscip. Rev. Comput. Mol. Sci., 1(2) (2011) 211–228.

[198] Li Manni, G., Carlson, R. K., Luo, S., Ma, D., Olsen, J., Truhlar, D. G.,
Gagliardi, L., Multiconfiguration Pair-Density Functional Theory, J.
Chem. Theory Comput., 10 (2014) 3669–3680.



124 BIBLIOGRAPHY

[199] Hubert, M., Hedegard, E. D., Jensen, H. J. A., Investigation of Multi-
configurational Short-Range Density Functional Theory for Electronic Ex-
citations in Organic Molecules, J. Chem. Theory Comput., 12(5) (2016)
2203–2213.

[200] Knecht, E. D. H. S., Kielberg, J. S., Jensen, H. J. A., Reiher, M., Density
matrix renormalization group with efficient dynamical electron correlation
through range separation, J. Chem. Phys., 142 (2015) 224108.

[201] Garza, A. J., Jiménez-Hoyos, C. A., Scuseria, G. E., Electronic correlation
without double counting via a combination of spin projected Hartree-Fock
and density functional theories, J. Chem. Phys,, 140 (2014) 244102.

[202] Stoneburner, S. J., Truhlar, D. G., Gagliardi, L., MC-PDFT can calculate
singlettriplet splittings of organic diradicals, J. Chem. Phys., 148 (2018)
064108.

[203] Mayer, I., Local spins: An alternative treatment for single determinant
wave functions, Chemical physics letters, 440(4) (2007) 357–359.

[204] Mayer, I., Local spins: An improved treatment for correlated wave functi-
ons, Chemical Physics Letters, 478(4) (2009) 323–326.

[205] Mayer, I., Matito, E., Calculation of local spins for correlated wave functi-
ons, Physical Chemistry Chemical Physics, 12(37) (2010) 11308–11314.

[206] Mayer, I., Local spins: Improving the treatment for single determinant
wave functions, Chemical Physics Letters, 539 (2012) 172–174.

[207] Bultinck, P., Van Alsenoy, C., Ayers, P. W., Carbó-Dorca, R., Critical
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