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Abstract
The present dissertation examines funnel control which is a type of output feedback con-

trol for system with known vector relative degree. The goal of funnel control is to construct a
simple controller for tracking the errors, which are the gap between system outputs y(t) and
an arbitrary given smooth enough reference signals yref(t), within a prespecified performance
funnel, and therefore, all involved quantities are bounded. This study addresses a number of
questions concerned funnel control problem.

Firstly, it provides a normal form for linear differential-algebraic systems. A new def-
inition of vector relative degree is proposed and based on that a normal form for linear
differential-algebraic systems is introduced. The advantage of this normal form is not only
placed on its simplicity but also the ability to design a new funnel controller tracking the
error, e(t) = y(t)− yref(t), within a prespecified performance funnel.

Secondly, this research proposes a feasible funnel control law for system with higher
strict relative degree. We consider tracking control for non-linear multi-input, multi-output
systems which have arbitrary strict relative degree and input-to-state stable internal dynamics.
To this end, we introduce a new controller which involves the first r − 1 derivatives of the
tracking error, where r is the strict relative degree of the system. We derive an explicit bound
for the resulting input and discuss the influence of the controller parameters. We further
present some simulations where our funnel controller is applied to a mechanical system with
higher relative degree and a two-input, two-output robot manipulator. The controller is also
compared with other approaches.

Moreover, we contribute a feasible funnel controller for non-linear multi-input, multi-
output systems with input-to-state stable internal dynamics and known vector relative degree
r = (r1,r2, . . . ,rm). To address the funnel control problem, a new funnel controller involving
the first ri − 1 of the derivatives of each i-th element of the tracking error e(t), is proposed.
Furthermore, simulations are presented to demonstrate the work of this funnel controller in a
number of examples.

As an application, we consider an overhead crane model whose control variables are the
velocities of trolley and rope length respectively. The position of the load is considered as
the output of the system. The objective is to design a closed-loop tracking controller which
also takes into account the transient behaviour. Unfortunately, this system is shown that has
no well-defined vector relative degree. Therefore, this does not allow us to apply established
methods directly for adaptive control to achieve the objective. To overcome this problem, a
dynamic state feedback is proposed, which results in a system with strict relative degree four,
and then we can apply a funnel controller to this feedback system. Consequently, we made
a simulation to show that our approach can be used to move loads from one to another given
position in the situation where there are several obstacles which have to be circumnavigated.
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Nomenclature

N the set of natural numbers
N0 :=N∪{0}

Z the set of integers
R≥0 := [0,∞)

C+,C− the open set of complex numbers with positive, negative real part, resp.
Rn×m the set of real n×m matrices

GLn(R) :={ A ∈ Rn×n | A invertible }
R[s] the ring of polynomials with real coefficients

R[s]n×m the set of n×m matrices with entries in R[s]
R(s) the quotient field of R[s]

R(s)n×m the set of n×m matrices with entries in R(s)
σ(A) the spectrum of a matrix A ∈ Rn×n

∥x∥ the Euclidean norm of x ∈ Rn

∥A∥ :=sup{ ∥Ax∥ | x ∈ Rn,∥x∥= 1 }
L ∞

loc(I→Rn) the set of locally essentially bounded functions f : I→Rn, I ⊆ R an interval
L 1

loc(I→Rn) the set of locally Lebesgue integrable functions f : I→Rn, I ⊆ R an interval
L ∞(I→Rn) the set of essentially bounded functions f : I→Rn with norm

∥ f∥∞ := esssupt∈I∥ f (t)∥
ḟ ( f (i)) the (ith) weak derivative of f ∈ L 1

loc(I→Rn)
W k,∞(I→Rn) the set of k-times weakly differentiable functions f : I→Rn such that

f , . . . , f (k) ∈ L ∞(I→Rn)

W k,1
loc (I→Rn) :=

{
f ∈ L 1

loc(I→Rn)
∣∣∣ f (i) ∈ L 1

loc(I→Rn) for i = 1, . . . ,k
}

,k ∈ N0 ∪∞
C k(V →Rn) the set of k-times continuously differentiable functions

f : V →Rn, V ⊆ Rm; C (V →Rn) = C 0(V →Rn)
f |W restriction of the function f : V →Rn to W ⊆V
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Chapter 1

Introduction

This dissertation focuses on funnel control law for system with known vector relative degree.
Funnel control belongs to the non-identification control style which is of adaptive control.
The introduction shall start with a concise history of funnel control before drawing readers
attention to the research motivation and major research questions.

1.1 Adaptive control

Adaptive control is the method in which a controller is structured to adapt a closed-loop
system with parameters of varied or initially uncertain. Furthermore, the system class, de-
termined by given assumptions, is the only priori information that is needed to create the
controller. Consequently, in adaptive control the coefficients of the system are completely
unidentified while, only few structural details are available, for example: vector relative de-
gree, minimum phase, input-to-state stable internal dynamics. Therefore, it is the main task
of this control type to build a common controller that are capable to apply to all single system
belonging to a given class. The controller u, therefore, could be fully implemented by using
error e, which is the gap between the system output y and a reference signal yref, see Figure
1.1.

u y
System

Controller
e yref−

+

FIGURE 1.1: Closed-loop control systems.

1.1.1 Tracking without identification

Fundamental ideas in adaptive control were introduced in 1950s by trying to design an autopi-
lot in aircraft. In 1970s, the model reference adaptive control and the self-turning regulator
were successful both in theory and application. By using stability theory, these results work
on well with systems which are fully known its parameters. At that time, using information
form systems to design feedback controller or control with identification was the main stream
of adaptive control, see Aström [3], and Narenda [70], for example. On the other hand, until
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1980’s, control without identification or non-identifier-based adaptive control was started by
different researchers from 1983 to 1985, such for instance, Mareels [64], Martensson [65],
Morse [67], Nussbaum [72], and Willems and Byrnes [87]. Based on this approach, feed-
back control laws were designed without using parameter from the systems. It means that
the feedback controller does not depend on any estimation of the controlled system. Further-
more, these works created a new field to investigate within adaptive control, see the survey
Ilchmann [39].

To illustrate the main idea of non-identification control , let us consider the simple class
of systems

ẋ(t) = Ax(t)+Bu(t), x(0) = x0 ∈ Rn

y(t) =Cx(t),
(1.1.1)

in which x ∈ Rn is the state vector, u ∈ Rm is the input vector, y ∈ Rm is the output vector,
and the coefficients matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n.

• If m = 1, then the system (1.1.1) is called the single-input, single-output system .

• If m > 1, then the system (1.1.1) is called the multi-input, multi-output system .

Definition 1.1.1. The function G(s) := C(sI −A)−1B is called the transfer function of the
system (1.1.1).

We recall definition of poles and zeros of transfer function in [38, Def.2.1.1].

Definition 1.1.2 ([38, Def.2.1.1]). Let G(s) ∈ R(s)m×m be a rational matrix with Smith-
McMillan form

U−1(s)G(s)V−1(s) = diag
(

ε1(s)
ψ1(s)

, . . . ,
εr(s)
ψr(s)

,0, . . . ,0
)
∈ R(s)m×m,

where U(s),V (s) ∈ R[s]m×m are unimodular, rankR(s) G(s) = r, ψi(s) ̸≡ 0, εi(s),ψi(s) ∈
R[s] are monic, coprime and satisfy εi(s)|εi+1(s), ψi+1(s)|ψi(s) for all i = 1, . . . ,r−1. Set

ε(s) =
r

∏
i=1

εi(s) ψ(s) =
r

∏
i=1

ψi(s).

s0 is called a (transmission) zero of G(s), if ε(s0) = 0 and a pole of G(s), if ψ(s0) = 0.

The idea of non-identification is that we completely unknow each coefficient of A,B,C
and only some structural assumptions of the systems (1.1.1) should be imposed. The follow-
ing assumptions will typically be imposed

• Strict relative degree r and sign of high-frequency gain matrix
System (1.1.1) has strict relative degree r ∈ N, i.e, CAiB = 0, for i = 0 . . . ,r− 2 and
Γ := CAr−1B, which is called high-frequency gain matrix, is invertible. Furthermore,
Γ is either positive or negative definite (Γ is not required to be symmetric).

• Minimum phase

det
[

λ I −A B
C 0

]
̸= 0 for all λ ∈ C with Reλ ≥ 0.

We note that a state space system (1.1.1) is normally called minimum phase, if it is sta-
bilizable, detectable, and transfer function has no zeros in C+. More clearly, we recall a
proposition from [38, Prop.2.1.2] to change this condition to algebraic condition.
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Proposition 1.1.3 ([38, Prop.2.1.2]). The coefficients matrices A ∈ Rn×n, B ∈ Rn×m, C ∈
Rm×n from system (1.1.1) satisfies

det
[

λ I −A B
C 0

]
̸= 0 for all λ ∈ C+

if, and only if, the following three conditions are satisfied

(i) rank
[
λ I −A B

]
= n for all λ ∈ C+, i.e. (A,B) is stabilizable by state feedback,

(ii) rank
[

λ I −A
C

]
= n for all λ ∈ C+, i.e. (A, C) is detectable,

(iii) G(λ ) has no zeros in C+.

Remark 1.1.4.

• Suppose that the system (1.1.1) has strict relative degree r. Let us calculate its output
derivatives,

ẏ(t) =Cẋ(t) =C(Ax(t)+Bu(t)) =CAx(t)+ CB︸︷︷︸
=0

u(t) =CAx(t),

ÿ(t) =CAẋ(t) =CA(Ax(t)+Bu(t)) =CA2x(t)+CAB︸︷︷︸
=0

u(t) =CA2x(t),

...

y(r)(t) =CAr−1ẋ(t) =CAr−1(Ax(t)+Bu(t)) =CArx(t)+CAr−1B︸ ︷︷ ︸
∈GLm(R)

u(t).

Therefore, the strict relative degree, in the case of single-input, single-output systems,
is exactly the number of times that the output y(t) has to derivative in order to get
appearing explicit of the input u(t).
On the other hand, we also have

G(s) =C(sI −A)−1B =
∞

∑
k=0

1
sk+1CAkB =

∞

∑
k=r−1

1
sk+1CAkB =

1
sr CAr−1B+ . . .

since CAiB= 0, for i= 0, . . . ,r−2. Hence, the strict relative degree, in the single-input,
single-output systems, is the difference between the numerator and the denominator
degree of the transfer function.
Furthermore,

lim
s→∞

srG(s) = lim
s→∞

sr
∞

∑
k=r−1

1
sk+1CAkB =CAr−1B = Γ ∈ GLm(R).

• In the case of nonlinear systems, the condition of minimum phase is substituted by
the condition of asymptotic stable zero dynamics which will be discussed in following
chapters. However, we note that asymptotic stable zero dynamics leads to minimum
phase but not vice versa, for more detail see [55].

In control without identification, we need tracking output error, e(t) = y(t)− yref(t),
which is the difference between system output and a given reference signal. Using the esti-
mation of output error e(t), a feedback controller is constructed to work on arbitrary system
from a given system class, and every reference signal from a chosen class of function. Fur-
thermore, all other related signals of the closed loop system should be bounded and defined
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on [0,∞), and the tracking error e(t) need to be addressed at least one of the following targets
which were mentioned in survey [45].

(a) Asymptotic tracking: lim
t→∞

e(t) = 0.

(b) λ -tracking: limsup
t→∞

∥e(t)∥ ≤ λ , for any prescribed λ > 0.

(c) Prespecified transient behaviour: ∥e(t)∥ ≤ 1
φ(t)

for all t > 0, and for some suitable

prescribed function φ .

In the initial researches of this type of feedback controller, the aim of tracking error is sta-
bilization, i.e, the set of possible reference signal Yref = {0}. Byrnes and Willems in [21]
introduced an adaptive controller to stabilize any system in the class of single-input, single-
output linear systems with minimum phase, relative degree one, and having negative high
frequency gain Γ =CB < 0.

u(t) = k(t)y(t), k̇(t) = ∥y(t)∥2, k(0) = k0 (1.1.2)

The application of the controller (1.1.2) to the system (1.1.1) with m = 1, and r = 1 leads
to a closed loop system. This closed loop system with arbitrary initial data x0 ∈ Rn, k0 ∈ R

yields a unique solution (x,k) satisfying

lim
t→∞

x(t) = 0 and lim
t→∞

k(t) = k∞ ∈ R.

The remarkable advantage of the controller (1.1.2) is very simple and it combined the mono-
tone gain function k(·) with the high gain property which is imposed to the system class. This
type of controller was introduced in series of papers which were appeared around the middle
of 1980s, such as papers [67, 87, 21, 64]. Some generalized versions of this kind of controller
have been applied to several different classes of system, for instant, multivariable system [43],
unknown sign of high frequency gain [72], nonlinear systems [77], discontinuous feedback
strategies within the framework of differential inclusions [78, 79], infinite dimensional sys-
tems [62], transient behaviour [66], tracking including an internal model [35, 61]. After three
decades, there are also various surveys were written to review the results in this field such as
[38, 39, 45], and [63] for the case of infinite dimension. However, the canonical high gain
adaptive controller (1.1.2) and some its modifications could be faced to many disadvantages,
from both practical and theoretical perspectives. First of all, it is only available for system
with relative degree one. Moreover, the gain function k(t) is monotonically non-decreasing.
This may lead to the situation that the gain function grows dramatically when perturbations
are appeared, and after that although the perturbations may be not present anymore, the gain
function is still kept very large and continuous increasing and the transient behaviour is not
addressed. Furthermore, some small noises in measurement of the output can bring unex-
pected huge gain, and this kind of controller is also designed only for linear systems. Some
simple modification of the controller (1.1.2) was proposed to overcome the disadvantages but
it makes the control being complicated. To address some later disadvantage of high-gain con-
trol which is so call λ -tracking is proposed by made the control objective be slightly weaker.
We substitute the asymptotic tracking in high-gain control by requirement that the error e(t)
closed to the strip having prespecified width λ > 0, lim

t→∞
dist(∥e(t)∥, [0,λ ]) = 0. To begin

with linear system, the control strategy for λ -tracking is

u(t) = −k(t)e(t),

k̇(t) = max{∥e(t)∥−λ ,0}, k(0) = k0.
(1.1.3)
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In contrast to (1.1.2), the gain function in (1.1.3) is constant on any interval where the error
stays in the strip having width λ > 0. The new controller allows us to enlarge nonlinear
system classes which can be applied because 0 is not compulsory to be an equilibrium point
of the system. We can also apply to the larger set of reference signal Yref, for example
Yref = W 1,∞(R≥0 → R). In [1, 40], these results have been extended to the multi-input
multi-output nonlinear system of the following form,

ẏ = f (t,y,z)+ g(t,y,z)u(t),

ż = h(t,y,z),
(1.1.4)

where for n,m ∈ N with n > m and functions

f : R≥0 ×Rm ×Rn−m → Rm,

g : R≥0 ×Rm ×Rn−m → Rm×m,

h : R≥0 ×Rm ×Rn−m → Rn−m,

are deemed to be Carathéodory function1 with equilibrium point (ye,ze,0) ∈ Rm ×Rn−m ×
Rm, i.e, f (t,ye,ze) = 0 and h(t,ye,ze) = 0 for all t. The function g is supposed to be uniformly
bounded and bounded away from zero, and dynamics ż = h(t,ye,z) is uniformly asymptoti-
cally stable. However, the assumption, which was imposed on the functions f ,g has improved
from globally Lipschitz at (ye,ze) in [1] to uniformly polynomial boundedness2 in [40]. Fur-
thermore, the controller (1.1.3) has been modified with s ≥ 1 which is an upper bound of the
polynomial degree of f and g as follows

u(t) = −k(t)∥e(t)∥s−1e(t),

k̇(t) =

{
(∥e(t)∥−λ )s, ∥e(t)∥ ≥ λ ,
0, ∥e(t)∥< λ ,

k(0) = k0.
(1.1.5)

With the control law (1.1.5), the system (1.1.4) can be driven to get the aim of λ -tracking.
One of the advantages of system class (1.1.4) is it can be extended to infinite dimension case.
To demonstrate this, a multi-input multi output system are considered in [47] which are of
the form

ẏ(t) = f (p(t), (Ty)(t))+ g(p(t), (Ty)(t),u(t)),

y|[−h,0] = y0 ∈ C ([−h,0]→ Rm),
(1.1.6)

where h ≥ 0 is the "memory" of the system, p may be thought of as a (bounded) disturbance
term and T is nonlinear causal operator, g and f are assumed to be continuous. We remark
here that diverse phenomena are incorporated within the class including, for example, dif-
fusion processes, delays (both point and distributed) and hysteretic effects, see [47, Subsec.
2.4,2.5], [46, Appendix A] and references therein. K is denoted as the class of continuous,
strictly increasing function α : R≥0 → R≥0 satisfying α(0) = 0, and

K∞ := { α ∈ K | α is unbounded } .

Furthermore, denote

J := { α ∈ K | for each δ ≥ 0, there exists ∆ ≥ 0 : α(δτ) ≤ ∆α(τ) for all τ ≥ 0 } ,

1A function α : R≥0 ×Rp → R is called a Carathéodory function if α(·,x) is measurable on R≥0 for each
x ∈ Rp, and α(t, ·) is continuous on Rp for all t ∈ R≥0

2A function f : R≥0 ×Rm ×Rn → Rq is called uniformly polynomially bounded if for some polynomials

p(·) ∈ R[s], we have ∥ f (t,y,z)∥ ≤ p
(∥∥∥∥(y

z

)∥∥∥∥) for all (t,y,z) ∈ R≥0 ×Rm ×Rn
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and J∞ = J ∩K∞. Apart from some technical condition, the essential hypotheses are as
follows.

(a) f : Rp ×Rq → Rm is continuous, and for every compact set C ⊂ Rp, there exist α f ∈
J and constant c f ≥ 0 such that

∥ f (p,ω)∥ ≤ c f

(
1+α f (∥ω∥)

)
for all (p,ω) ∈C×Rq.

(b) g : Rp×Rq×Rm → Rm is continuous, and for every compact set C ⊂ Rp, there exists
a positive definite, symmetric G ∈ Rm×m such that

u⊤Gg(p,ω ,u) ≥ ∥u∥2 ∀(p,ω ,u) ∈C×Rq ×Rm,

this assumption replaces the "positive high frequency gain" assumption in the case of
linear systems.

(c) A weak bounded-input, bounded-output assumption on the operator T (which is a
counterpart of the minimum phase assumption in the case of linear systems). And
there exist αT ∈ J and constsnt cT ≥ 0 such tha, for all y ∈ C ([−h,∞)→ Rm),

∥(Ty)(t)∥ ≤ cT

(
1+ max

s∈[0,t]
αT (∥y(s)∥)

)
for almost all t ∈ R≥0.

The feedback and gain adaptation takes the form

u(t) = −k(t)φ(e(t)),
k̇(t) = ψλ (e(t)), k(0) = k0,

where the function φ and ψλ are determined as follows. Choose α ∈ J∞ with a property

liminf
s→∞

α(s)
s+α f (αT (s))

̸= 0.

For λ > 0, choose ψλ : R≥0 → Rge0 to be a continuous function with properties

liminf
s→∞

sψλ (s)
α(s)

̸= 0 and ψ−1
λ (0) := { s | ψλ (s) = 0 }= [0,λ ].

And

φ(e) =

{
α(∥e∥)∥e∥−1e, if e ̸= 0,

0, if e = 0.

Note that (1.1.5) is a particular case of this general structure. The concept of λ -tracking
is implicit in [66], albeit it is a somewhat different context to that considered here. The
concept as described above was introduced for linear systems (1.1.1) in [44], for infinite di-
mensional linear systems in [42], for the nonlinear class (1.1.4) in [1, 40], for the nonlinear
class (1.1.6) in [47], and for systems modelled by differential inclusions in [77]. However,
there are several questions that we need to find the answer such that: Could the disadvantages
of monotonically non-decreasing gain function be eliminated and presspecified transient be-
haviour, and how to expand the results to system with higher relative degree (larger than
one)? The answers could be partly addressed by the notion of funnel control which has been
first introduced in [48].
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1.1.2 Funnel control

The concept of funnel control has been developed at the first time by Ilchmann et al. [48]
for systems with relative degree one, see also the survey [45] and the references therein. It is
an adaptive controller since the gain is adapted to the actual needed value by a time-varying
(non-dynamic) adaptation scheme3. Note that no exact tracking is pursued, but a tracking
error with prescribed transient behavior. Controllers of high-gain type have various advan-
tages when it comes to "real world" applications because it only require the assumption of the
system structure, see [28]. In particular, the funnel controller is proved to be the appropriate
tool for tracking problems in various applications, such as temperature control of chemical
reactor models [54], control of industrial servo-systems [34, 52] and rigid, revolute joint
robotic manipulators [33], speed control of wind turbine systems [30, 32], current control for
synchronous machines [31], DC-link power flow control [82], voltage and current control of
electrical circuits [16], oxygenation control during artificial ventilation therapy [75] and con-
trol of peak inspiratory pressure [76]. At the beginning, we can get rid of the disadvantages
of the monotonically increasing gain function by following observation. Loosely speaking,
the high-gain property ensures that the output y(t) or the error e(t) is decaying if the gain is
sufficiently large. If k is a time varying function, we may "tune" its values k(t) to be large
only when required: k need not be a monotonically increasing function. Based on this idea
and try to solve the issue of transient behaviour, we introduce the concept of a performance
funnel. Let φ be a function of the following class

Φr :=

 φ ∈ C r(R≥0 → R)

∣∣∣∣∣∣∣∣
φ , φ̇ , . . . ,φ (r) are bounded,

φ(τ) > 0 for all τ > 0,

and liminf
τ→∞

φ(τ) > 0

 . (1.1.7)

With φ ∈ Φr, we associate the set

Fφ := { (t,e) ∈ R≥0 ×Rm | φ(t)∥e∥< 1 } , (1.1.8)

which we refer to as the performance funnel by Figure 1.2. This terminology arises from the

t

•

λ

(0,e(0)) φ(t)−1

FIGURE 1.2: Error evolution in a funnel Fφ with boundary φ(t)−1 for t > 0.

fact that, if a control structure can be devised which ensures that the tracking error evolves

3Note that often only controllers with dynamic gain adaptation are viewed as adaptive controllers of high-
gain type.



8 Chapter 1. Introduction

within Fφ , then we have guaranteed transient behaviour in the sense that

∥e(t)∥< 1
φ(t)

, ∀t > 0,

and, moreover, if φ is chosen so that φ(t) ≥ 1
λ

for all t sufficiently large, then λ -tracking is
achieved. The funnel boundary is given by the reciprocal of φ , see Figure 1.2. It is explicitly
allowed that φ(0) = 0, meaning that no restriction on the initial value is imposed since
φ(0)∥e(0)∥ < 1; the funnel boundary 1/φ has a pole at t = 0 in this case. An important
property of the class Φr is that the boundary of each performance funnel Fφ with φ ∈ Φr

is bounded away from zero, i.e., because of boundedness of φ there exists λ > 0 such that
1/φ(t) ≥ λ for all t > 0. The funnel boundary is not necessarily monotonically decreasing,
while in most situations it is convenient to choose a monotone funnel. However, there are
situations where widening the funnel over some later time interval might be beneficial, e.g.,
when the reference trajectory changes strongly or the system is perturbed by some calibration
so that a large tracking error would enforce a large input action. Therefore, a variety of
different funnel boundaries are possible, see e.g. [41, Sec. 3.2].
To ensure error evolution within the funnel, the controller (1.1.3) is replaced by

u(t) = −k(t)e(t),

k(t) =
1

1−φ(t)∥e(t)∥
.

(1.1.9)

The underlying idea of the "funnel controller" (1.1.9) comes in very natural way, if error e(t)
approaches the funnel boundary, then the gain k(t) increases. Therefore, the contact with
the boundary of the error e(t) is precluded this feature in conjunction with the high gain
property imposed on system class. Furthermore, all signals included the gain function, and
input function are remained bounded and ∥e(·)∥ is bounded away from the funnel boundary.
We also see that high gain values may only come into play when an output error grows
closely to the funnel boundary in order to maintain the error evolution stay in the funnel.
This remark lead us to choose the gain function in (1.1.9) and this simple structure has taken
some advantages. First, k(t) is not determined by a dynamical system (differential equation).
On besides of this, the controller is also time varying proportional output feedback of striking
simplicity. This structure was introduced for the class of nonlinear systems (1.1.6) in [48],
modifications to mollify controller behaviour near the funnel boundary are contained in [51].
However, there still remains a question about tracking error for system with relative degree
larger than one, see [38, 45, 68].

1.1.3 Funnel control for system with higher strict relative degree

In the case of systems with higher relative degree, high-gain adaptive control problem in
general and funnel control problem in particular, becomes much more difficult. For instance,
if we apply a conventional controller u(t) = −ky(t) to a very simple system with relative
degree two, take, for example, ÿ(t) = u(t); then we get the closed loop system

ÿ(t) = −ky(t).

This system is not asymptotically stable for arbitrary gain k. In order to find an efficiently
adaptive control law for system with higher strict relative degree, a filter or observer is fre-
quently used to obtain approximations of the output derivatives and try to combine with a
high gain controller. Mareels [64] is one of the first try to achieve stabilization for linear
systems of higher relative degree, however, it is unsuccessful due to a counterexample to the
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main result presented in [37]. Later on, some results which relate to single-input, single-
output systems are distributed by several researchers. Hoagg and Bernstein focused on the
problem of adaptive stabilization of linear systems with higher relative degree in [37, 36].
Bullinger and Allgöwer introduced in [17] a high gain observer which can be cooperated
with an adaptive controller to ensure tracking with prescribed asymptotic accuracy λ > 0
(λ -tracking). However, the unable to achieve the transient behavior of the tracking error is a
big disadvantage of this type of controller. A "back-stepping" procedure is used by Ye [90,
91] to attain adaptive λ -tracking with non-decreasing gain. In [90], a linear minimum phase
systems with nonlinear perturbation is considered, and the class of allowable nonlinearities
is smaller than system class defined by (1.1.6). In [91], Ye also used a piecewise constant
adaptive switching strategy to stabilize the systems of maximum relative degree in parametric
strict feedback form.

To cope with the obstacle of higher relative degree, Ilchmann et al. [49, 50] devel-
oped a funnel controller by using the "back-stepping" procedure in conjunction with a pre-
compensator. This controller achieves tracking with prescribed transient behaviour for a large
class of systems governed by nonlinear (functional) differential equations,

y(r)(t) =
r−1

∑
i=0

Riy(i)(t)+ g(p(t), (Ty)(t))+Γu(t),

y|[−h,0] = y0 ∈ C r−1([−h,0]→ Rm),

where g is a continuous function, p(t) is a bounded disturbance, and T is a causal opera-
tor with a bounded-input bounded-output property, the matrix Γ is assumed to be positive
(negative) definite. The works [49, 50] introduce a funnel controller based on a filter and
"back-stepping" construction for systems with higher relative degree. First consider a filter
with

ξ̇i(t) = −ξi(t)+ ξi+1(t), i = 1, . . . ,r−2,

ξ̇r−1(t) = −ξr−1(t)+ u(t).

Introduce the projections

πi : R(r−1)m → Rim, ξ = (ξ1, . . . ,ξr−1) 7→ (ξ1, . . . ,ξi)

for i = 1, . . . ,r−1 and functions

γ1(k,e) = k · e
γi(k,e,πi−1ξ ) := γi−1(k,e,πi−2ξ )+ ∥Dγi−1(k,e,πi−2ξ )∥2k4 · (1+ ∥πi−1ξ∥2)

· (ξi−1 + γi−1(k,e,πi−2ξ ))

The controller in [50] takes the form

u(t) = −γr(k(t),e(t),ξ (t)),

k(t) =
1

1−φ(t)2∥e(t)∥2 .

We stress that in [50] T may only depend on y and Γ is assumed to be constant. The above pre-
sented controller works provided that Γ ∈ Rm×m is positive definite. However, this approach
can be modified such that it also works for systems in which it is not known whether Γ is pos-
itive or negative definite. In this case, the function γ1 has to be modified by γ1(k,e) = ν(k) ·e,
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where ν : R≥0 → R is smooth and satisfies the "Nussbaum property" [50].

limsup
k→∞

1
k

k∫
0

ν(k)dk = ∞,

liminf
k→∞

1
k

k∫
0

ν(k)dk = −∞.

Unfortunately, the "back-stepping" procedure is quite impractical even in the known sign
case, especially since it involves high powers of a gain function which typically takes very
large values, cf. [29, Sec.4.4.3]. In the following we demonstrate input function for the cases
of relative degree two and three.

r = 2 : Here the controller takes the form

u = −ke− (∥e∥2 + k2) · k4(1+ ∥ξ∥2)(ξ + ke),

where we omit the argument t. This feedback law is dynamic and the gain occurs with
k(t)7. The presence of such a large power of the funnel gain k(t) is problematic in
practice; the controller produces inputs which might be impractical, cf. [29, Sec.4.4.3].

r = 3 : Here the controller reads, for m = 1,

u =− ke− k4(e2+ k2)(1+ ξ 2
1 )(ξ1 + ke)−

{[
e+(1+ ξ 2

1 )

·
[
2k5(ξ1 + ke)+ 4k3(e2+ k2)(ξ1 + ke)+ k4(e2+ k2)e

]]2
+
[
k+ k4(1+ ξ 2

1 )
[
2e(ξ1 + ke)+ k(e2+ k2)

]]2
+
[
k4(e2+ k2)

[
2ξ1(ξ1 + ke)+ (1+ ξ 2

1 )
]]2}k4(1+ ξ 2

1 + ξ 2
2 )

·
[
ξ2 + ke+ k4(e2+ k2)(1+ ξ 2

1 )(ξ1 + ke)
]
. (1.1.10)

An expansion of the above product gives that this controller contains the 25th power (!)
of the funnel gain k(t), and the problems depicted for r = 3 are present here a fortiori.

An alternative approach to system with higher relative degree is derivative feedback, i.e.,
the system output y(·) and its higher derivatives are used. In the model of standard position
control problem, the output y(·) and its derivatives are normally availbles, see [34, 33] and
reference therein. The first attempt by this approach is using type of a proportional-derivative
(PD) funnel controller given in [34], (see also the modification in [28]), for systems with
relative degree two. Avoiding the "back-stepping" procedure, the authors construct a simple
funnel control for single-input, single-output systems as follow

u(t) = −k0(t)2e(t)− k1(t)ė(t),

ki(t) =
φi(t)

1−φi(t)|e(i)(t)|
, i = 0,1.

(1.1.11)

The funnel functions φ0 for the error and φ1 for the derivative of the error have to satisfy
φ0 ∈ Φ2, φ1 ∈ Φ1, and they have to fulfill the compatibility condition

∀ t > 0 ∃δ > 0 : 1/φ1(t) ≥ δ − d
dt
(1/φ0(t)) ∀ t > 0. (1.1.12)
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Further versions of this type of controller for multi-input, multi-output system with strict
relative degree two both in linear and nonlinear case were developed by Hackl in [28, 29, 33].
This controller is simple and its practicability has been verified experimentally. However,
there is no straightforward extension to systems with relative degree larger than two. The
only available generalization of this approach to systems with higher relative degree is the
bang-bang funnel controller introduced by Liberzon and Trenn [60]. The authors consider
single-input, single-output systems described by a nonlinear differential equation

ẋ = F(x)+G(x)u, x(0) = x0 ∈ Rn,

y = H(x),

with known relative degree r and positive high frequency gain. The bang-bang funnel con-
troller was introduced as

u(t) =

{
U−, if q(t) = true
U+, if q(t) = false

(1.1.13)

where q : R≥0 → {true, false} is the output of the switching logic S which maps the error
signal to the switching signal q. The switching logic S : e 7→ q is defined basing on r blocks
B0,B1, . . . ,Br−1,

S (e) =Br−1(e(r−1),qr−1,ψr−1),

(qi,ψi) =Bi−1(e(i−1),qi−1,ψi−1), i = r−1, . . . ,2,

(qi,ψi) =B0(e).

(1.1.14)

Each block Bi ensures e(i) remaining inside the funnel

Fi :=
{
(t,e(i)) ∈ R≥0 ×R

∣∣∣ φ−
i (t) < e(i) < 1

}
,

and
B0 : e 7→ (q1,ψ1) with

q1(t) =S(e(t),φ+
0 (t)− ε+0 ,φ−

0 (t)+ ε−
0 ,q1(t−)),

q1(0−) = q0
1 ∈ {true, false},

ψ1(t) =

{
φ̇+

0 (t), if q1(t) = true,
φ̇−

0 (t), if q1(t) = false,

Bi : (e(i),qi,ψi) 7→ (qi+1,ψi+1), i = 1, . . . ,r−2 with

qi+1(t) =

{
S(e(i)(t),ψ+

i (t)− ε+i ,φ−
i (t)+ ε−

i ,qi+1(t−)), if qi(t) = true,
S(e(i)(t),φ+

i (t)− ε+i ,ψ−
i (t)+ ε−

i ,qi+1(t−)), if qi(t) = false,

ψ+
i (t) = min{ψi(t),−λ−

i }
ψ−

i (t) = max{ψi(t),λ+
i }

qi+1(0−) = q0
i+1 ∈ {true, false},

ψi+1(t) =


ψ̇i(t+), if qi(t) = true ∧qi+1(t) = true,
φ̇−

i (t), if qi(t) = true ∧qi+1(t) = false,
φ̇+

i (t), if qi(t) = false ∧qi+1(t) = true,
ψ̇i(t+), if qi(t) = false ∧qi+1(t) = false,
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Br−1 : (e(r−1),qr−1,ψr−1) 7→ q given as above with i = r−1, and q = qr,

q(0−) = q0 ∈ {true, false},

where S(e,e,e,qold) := [e ≥ e∨ (e > e∧ qold)] for e,e,e ∈ R, and qold ∈ {true, false}. It is
easy to see that the most limitation of this controller is only available to single-input, single-
output systems and the involved compatibility conditions on the funnel boundaries, the safety
distances and the settling times are quite complicated, see [60, Sec.IV].

In the conference paper [23], Chowdhury and Khalil defined a virtual (weighted) output
which can be applied to single-input, single-output systems with higher relative degree to ob-
tain the systems having relative degree one with respect to this virtual output. And, therefore,
the conventional funnel controller from [48] is fiesible for the obtained systems. This funnel
controller is also shown that (ignoring the additional use of a high-gain observer) for suffi-
ciently small weighting parameter in the virtual output, the original tracking error evolves in
a prescribed performance funnel. However, tuning of the weighting parameter has to be done
a posteriori and hence depends on the system parameters and the chosen reference trajectory.
As a consequence, this approach breaks the model-free propery of funnel control. Moreover,
the controller is not robust, since the small perturbations of the reference signal may cause
the tracking error to leave the performance funnel.

In [5], a "Prescribed Performance Controller" for systems with higher strict relative de-
gree has been introduced by Bechlioulis and Rovithakis (and in [85] the influence of distur-
bances is discussed), however trivial internal dynamics are assumed. Moreover, the perfor-
mance bounds are limited to class of smooth, strict decreasing functions. In addition, the
proposed controller is not "simple" since some strategies in selection of control elements are
required.

Therefore, a simple strategy in funnel control for system with higher relative degree is
still an open problem. In the present dissertation we consider output trajectory tracking for
nonlinear systems by funnel control. We assume knowledge of the vector relative degree
of the system and that the internal dynamics are, in a certain sense, input-to-state stable,
resembling the concept introduced by Sontag [83].

1.2 Contribution of dissertation

We briefly highlight the main contribution of this thesis.
In Chapter 2, we consider a general class of linear differential-algebraic systems

Eẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t)

where E,A ∈ Rl×n, B ∈ Rl×m, C ∈ Rp×n.
In Section 2.2, we study regular systems which means that l = n and det(sE −A) ∈ R[s] \
{0}. We introduce some important fundamental concepts of system theory such that transfer
function and its properties in Subsection 2.2.1, vector relative degree and its properties in
Subsection 2.2.2. Furthermore, normal form, which is a prime concept in adaptive control, is
introduced in Subsection 2.2.3. We also recall some important results from [9, 10, 69].
In Section 2.3, we present several results for general linear differential algebraic systems. At
the beginning of this section, in Subsection 2.3.1, we recall some elementary results from
[7]. In the proximal section of Section 2.3, we introduce a novel extension for the definition
of vector relative degree for general linear differential-algebraic systems. This new notion
does not only help us to open width the system class which have vector relative degree, but
also indicates a way to obtain a normal form of general linear differential-algebraic systems.
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Finally, in Subsection 2.3.3, we present a very new result in normal form of general linear
differential-algebraic systems. This normal form plays an important role to construct a new
efficiently funnel control law for differential-algebraic systems.

In Chapter 3, we present our new result in funnel control for non-linear system with
known strict relative degree which has been published in [13]. We introduced a novel funnel
controller for non-linear systems described by functional differential systems of the form

y(r)(t) = f
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
+Γ
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
u(t),

y|[−h,0] = y0 ∈ C r−1([−h,0]→ Rm),

where h > 0 is the "memory" of the system, r ∈ N is the strict relative degree.
In Section 3.1, we indicate some necessary assumptions which were imposed on the system
class as following.

(P1): The measurable "disturbance" satisfies d ∈ L ∞(R≥0 → Rp), p ∈ N.

(P2): f ∈ C (Rp ×Rq → Rm), q ∈ N.

(P3): the "high-frequency gain matrix function" Γ ∈ C (Rp ×Rq → Rm×m) takes values in
the set of positive (negative) definite matrices.

(P4): T : C ([−h,∞)→ Rrm)→ L ∞
loc(R≥0 → Rq) is an operator with the following proper-

ties

a) T maps bounded trajectories to bounded trajectories.

b) T is causal.

c) T is locally Lipschitz continuous.

Moreover, minimum-phase linear time-invariant systems are shown being apart of this class
of systems.
In Section 3.2, we introduce a new funnel control law for non-linear system with known strict
relative degree. A theoretically comparison between our proposal and some others approach,
which was in [34, 49, 50], is presented.
In the proximal section, we prove the feasibility of funnel strategy in application of consid-
ered system class; in particular we show that our proposed funnel controller achieves the
control objective described in Subsection 1.1.2. Additionally we derive an explicit bound on
the input generated by the controller and discuss the influence of the design parameters.
Finally, in Section 3.3, the performance of the funnel controller is illustrated by means of
several examples in mechanics control problems from "mass on car system" to "robotic ma-
nipulator", where also our approach is compared to the feedback strategies in [34, 49, 50,
60].
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In Chapter 4, we introduce and prove the feasibility of new funnel control for non-linear
differential algebraic equations with known generalized vector relative degree of the form,

y(r1)
1 (t)

y(r2)
2 (t)
...

y(rp)
p (t)

= f1

(
y1(t), · · · ,y(r1−1)

1 (t), · · · ,y(rp−1)
p (t),yp+1(t), · · · ,ym(t)

)

+ f2

(
d1(t), (Ty)(t)

)
+ΓI

(
d2(t), (Ty)(t)

)
uI(t),

0 = f3

(
y1(t), · · · ,y(r1−1)

1 (t), · · · ,y(rp−1)
p (t),yp+1(t), · · · ,ym(t)

)
+ f4

(
d3(t), (Ty)(t)

)
+ΓII

(
d4(t), (Ty)(t)

)
uI(t)

+ f5

(
d5(t), (Ty)(t)

)
uII(t),

y|[−h,0] = y0 = (y0
1,y0

2, . . . ,y0
m),

y0
i ∈ C ri−1([−h,0]→ R), i = 1, . . . , p,

y0
i ∈ C ([−h,0]→ R), i = p+ 1, . . . ,m,

where r = (r1, . . . ,rp,0, . . . ,0) ∈ N1×m is called the generalized vector relative degree of

the systems. Denote |r|=
p
∑

i=1
ri, uI(t) = (u1(t), . . . ,up(t))⊤, uII(t) = (up+1(t), . . . ,um(t))⊤.

The functions u = (uI ,uII)⊤ : R → Rp ×Rm−p and y : [−h,∞) → Rm, where h > 0 is the
"memory" of the system, are called input and output of the system, respectively.
In Section 4.1, we in turn present some assumptions which are imposed on system class
including class of operator introduced in [11].

(i) the gain ΓI ∈ C 1(Rq ×Rs → Rp×p) takes values in the set of positive (negative) defi-
nite matrices, ΓII ∈ C 1(Rq ×Rs → R(m−p)×p).

(ii) the disturbances d1,d2 ∈L ∞(R≥0 →Rq), and d3,d4,d5 ∈C 1(R≥0 →Rq) are bounded.

(iii) f1 ∈ C 1(R|r|+m−p → Rp), f2 ∈ C 1(Rq ×Rk → Rp), f3 ∈ C 1(R|r|+m−p → Rm−p),

f4 ∈ C 1(Rq ×Rk → Rm−p), and f ′3 ·
[

0
Im−p

]
is bounded.

(iv) f5 ∈ C 1(Rq ×Rk → R), and ∃α > 0,∀(d,v) ∈ Rq ×Rk : f5(d,v) ≥ α .

(v) Operator T : C ([−h,∞)→ Rm)→ C 1(R≥0 → Rk) satisfies

(a) T is a causal operator.

(b) T is locally Lipschitz continuous.

(c) T maps bounded trajectories to bounded trajectories.

(d) ∃z ∈ C (Rm ×Rk → Rk) ∃T̃ : [−h,∞)→ Rm)→ C (R≥0 → Rk) with properties
(a)− (c) ∀v ∈ C ([−h,∞)→ Rm) ∀t ≥ 0:

d
dt
(T v)(t) = z(v(t), (T̃ v)(t)).

In Subsection 4.1.1, 4.1.2, we consider some important subclasses of the system class such
as the systems with positive vector relative degree, and linear general differential-algebraic
systems.
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In the follow section, we introduce a new funnel controller with tracking for each element of
outputs for non-linear system with known generalized vector relative degree and the feasi-
bility of this funnel strategy. Additionally, we show that our new proposed funnel controller
achieves the control objective described in Subsection 1.1.2. Furthermore, in Subsection
4.2.2, we demonstrate the performance of the funnel controller in simulation of several ex-
amples.

In Chapter 5, we study an application of funnel control to overhead crane case which was
introduced in our proceeding paper [14]. The model of overhead crane was presented by Otto
and Seifried in [73] with motion equation described as follows τs 0 0

0 τl 0
cosφ 0 l

 s̈
l̈
φ̈

+

 ṡ
l̇

2φ̇ l̇

=

 0
0

−gsinφ

+

1 0
0 1
0 0

(us

ul

)
,

where τs, τl are time constants of trolley and winch actuator, respectively and g is the grav-
itational constant. The quantities s, l,φ are denoted to trolley position, length of the rope,
and the swing angle, respectively. The system inputs are served by the reference velocity of
the trolley us and the reference velocity of the rope ul . We note that the rope velocity l̇, and
trolley velocity ṡ are then rheonomic constraints on the system. And the position of the load
(s+ l sinφ , l cosφ) plays the role of system output.
The control objective is to design a closed-loop tracking controller which also takes into
account the transient behaviour. Unfortunately, this system is not well defined vector rela-
tive degree with respect to considered input, output vectors. Therefore, we use an dynamic
feedback introduced in [56, 80] to achieve a new system which have strict relative degree.
Computer simulations are shown in Section 5.2 to illustrate that our approach can be used
to move loads from one to another given position in the situation where there are several
obstacles which have to be circumnavigated.

To summary, some parts of present dissertation, which are published or submitted for
publication, will be indicated in the following table

Chapter or Section Contained in
Section 2.3 New
Chapter 3 Berger, Lê, Reis [13, 12]
Chapter 4 New
Chapter 5 Berger, Lê, Reis [14]
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Chapter 2

Linear differential-algebraic systems

In this chapter, we study linear differential-algebraic multi-input multi-output systems. By
investigating zero dynamics of the system, we suppose a new approach to generalize the
definition of vector relative degree. Moreover, we base on this definition to introduce a novel
normal form of general linear differential-algebraic system.

2.1 Preliminaries

We consider linear differential-algebraic systems,

Eẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t)
(2.1.1)

where E,A ∈ Rl×n, B ∈ Rl×m, C ∈ Rp×n. We denote Σl,n,m,p being the class of these systems
and write [E,A,B,C] ∈ Σl,n,m,p. We want to stress that this systems is not required to be regu-
lar1. The functions u : R → Rm, x : R → Rn, and y : R → Rp are called input, (generalized)
state variable, and output of the system, respectively. We now denote what is so called the
behaviour of system (2.1.1),

B[E,A,B,C] :=
{
(x,u,y) ∈ L 1

loc(R → Rn ×Rm ×Rp)

∣∣∣∣ Ex ∈ W 1,1
loc (R → Rl) and (x,u,y)

fulfills (2.1.1) for almost all t ∈ R

}
.

(x,u,y) ∈B[E,A,B,C] is called a (weak) solution of (2.1.1). Note that Ex ∈ W 1,1
loc (R → Rl) is

continuous but x(t) might not be continuous.
We recall some basic notions in systems theory such that system equivalent, and zero dynam-
ics.

Definition 2.1.1. Two systems [Ei,Ai,Bi,Ci] ∈ Σl,n,m,p, i = 1,2, are called system equivalent
if, and only if,

∃W ∈ GLl(R),T ∈ GLn(R) :
[

sE1 −A1 B1
C1 0

]
=

[
W 0
0 Ip

][
sE2 −A2 B2

C2 0

][
T 0
0 Im

]
,

and denoted by
[E1,A1,B1,C1]

W ,T∼ [E2,A2,B2,C2].

System equivalence is an equivalence relation on Σl,n,m,p, see [59, 7, 15] and references
therein. We discuss following an important concept which is so called zero dynamics, see
[56, Sec.4.3]. Loosely speaking, zero dynamics is resulting in a trivial output.

Definition 2.1.2 ([7, Def.3.1,Def.3.9]).
1A matrix pencil (sE −A) is said to be regular if l = n, and det(sE −A) ̸≡ 0.
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• The zero dynamics of the systems (2.1.1) is the set

Z D [E,A,B,C] :=
{
(x,u,y) ∈B[E,A,B,C]

∣∣∣ y a.e
= 0

}
.

• The zero dynamics Z D [E,A,B,C] is called autonomous if

∀ω ∈ Z D [E,A,B,C],∀I ⊆ R open interval: if ω|I
a.e
= 0, then ω a.e

= 0.

• The zero dynamics Z D [E,A,B,C] is called asymptotically stable if

∀(x,u,y) ∈ Z D [E,A,B,C] : lim
t→∞

esssup
[t,∞)

∥(x,u)∥= 0.

Furthermore, we introduce a notion of (E,A,B)-invariant subspace, given in [2, 7, 74],
playing as a tool to investigate zero dynamics properties. This concept is a generalization of
controller invariance subspace or (A,B)-invariant subspace which were introduced in [4, 89,
88, 86].

Definition 2.1.3. Suppose (E,A,B) ∈ Rl×n ×Rl×n ×Rn×m, and V is a linear subspace of
Rn. If AV ⊆ EV + imB, then V is called (E,A,B)-invariant subspace.

Given a system [E,A,B,C] ∈ Σl,n,m,p, the maximal (E,A,B)-invariant subspace included
in kerC is denoted by max(E,A,B;kerC).

Proposition 2.1.4 ([7, Prop.3.5]). Let [E,A,B,C] ∈ Σl,n,m,p. Then the following statements
are equivalent.

(i) Z D [E,A,B,C] is autonomous.

(ii) rankR(s)

[
sE −A −B
−C 0

]
= n+m.

(iii) (a) rankB = m,

(b) kerE ∩max(E,A,B;kerC) = {0},

(c) imB∩E max(E,A,B;kerC) = {0}.

Proposition 2.1.5 ([7, Thm.3.6]). Consider [E,A,B,C] ∈ Σl,n,m,p and suppose that the zero
dynamics Z D [E,A,B,C] is autonomous. Let V ∈ Rn×k be such that imV = max(E,A,B;kerC)
and rankV = k. Then there exist W ∈ Rn×(n−k) and S ∈ GLl(R) such that [V ,W ] ∈ GLn(R)
and

[E,A,B,C]
S,[V ,W ]∼ [Ẽ, Ã, B̃,C̃],

where

Ẽ =

Ik E2
0 E4
0 E6

 , Ã =

A1 A2
A3 A4
0 A6

 , B̃ =

 0
Im

0

 ,C̃ =
[
0 C2

]
(2.1.2)

such that

max
([

E4
E6

]
,
[

A4
A6

]
,
[

Im

0

]
;kerC2

)
= {0}, (2.1.3)

and A1 ∈ Rk×k, E2,A2 ∈ Rk×(n−k), A3 ∈ Rm×k, E4,A4 ∈ Rm×(n−k), E6,A6 ∈ R(l−k−m)×(n−k),
C2 ∈ Rp×(n−k).
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For uniqueness we have: If [E,A,B,C], [Ê, Â, B̂,Ĉ] ∈ Σl,n,m,p are in the form (2.1.2) such that
(2.1.3) holds, and

[E,A,B,C] S,T∼ [Ê, Â, B̂,Ĉ] for some S ∈ GLl(R),T ∈ GLn(R), (2.1.4)

then

S =

S1 0 S3
0 Im S6
0 0 S9

 , T =

[
S−1

1 T2
0 T4

]
,

where S1 ∈ GLk(R), S9 ∈ GLl−k−m(R), T4 ∈ GLn−k(R) and S3,S6,T2 are appropriate sizes.
In particular the dimensions of the matrices in (2.1.2) are unique and A1 is unique up to
similarity, i.e., σ(A1) is unique.

In the next section, we will highlight some important results of system theory considered
for the special DAE case: the matrix pencil sE −A is regular. This case was studied by
Berger, Reis and Ilchmann in [6, 10, 9], but a normal form base on vector relative degree for
the whole case is still an open problem.

2.2 Regular systems

First of all, we need to study an important case of system pencil, that is regular pencil. The
pencil matrix sE −A is called regular if l = n and det(sE −A) ∈ R[s] \ {0}. Regularity of
the systems pencil ensures that the differential-algebraic equation Eẋ = Ax is solvable and its
solution is unique for each consistent initial value, as shown in [59, Sec.2.1]. Therefore, we
consider the following system.

Eẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t),
(2.2.1)

where A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.

2.2.1 Transfer function

In this subsection, we declare transfer function which is a primary tool in control theory.
Some elementary concepts of system theory are defined via transfer function.

Definition 2.2.1. Let [E,A,B,C] ∈ Σn,n,m,p be a regular system. Then the transfer function of
[E,A,B,C] is defined by

G(s) =C(sE −A)−1B ∈ R(s)p×m.

Remark 2.2.2. Transfer function of the system (2.2.1) is a rational matrix function and in-
variant under system equivalence. For more detail, we introduce Weierstrass form of system
pencil which was mentioned in some books and papers such as [9, 10, 27], [59, Sec.2.1].

Proposition 2.2.3 (Weierstrass form). For any regular matrix pencil sE −A ∈ R[s]n×n, there
exists W ,T ∈ GLn(R) such that

sE −A =W
[

sIns −As 0
0 sN − In f

]
T (2.2.2)

for some As ∈ Rns×ns , and nilpotent N ∈ Rn f ×n f . The dimensions ns,n f ∈ N0 are unique,
and the matrices As, and N are unique up to similarity.
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The index of nilpotency of a nilpotent matrix N ∈ Rk×k is defined to be the smallest
ν ∈ N0 such that Nν = 0. It can be shown that the index of nilpotency ν of N in (2.2.2) is
uniquely defined by the regular pencil sE −A. Hence, we say that ν is the index of the pencil
sE −A. In particular, if the nilpotent block is not appear (i.e n f = 0), then the index of matrix
pencil is zero.

Corollary 2.2.4. Let [E,A,B,C] ∈ Σn,n,m,p. Then there exits W ,T ∈ GLn(R) such that

[E,A,B,C] W ,T∼
[[

Ins 0
0 N

]
,
[

As 0
0 In f

]
,
[

Bs

B f

]
,
[
Cs C f

]]
(2.2.3)

for some Bs ∈ Rns×m,B f ∈ Rn f ×m,Cs ∈ Rp×ns ,C f ∈ Rp×n f ,As ∈ Rns×ns , and nilpotent N ∈
Rn f ×n f .

The form (2.2.3) is interpreted, in terms of the system (2.2.1), as follows

(x,u,y) ∈B[E,A,B,C] if, and only if
(

xs(·)
x f (·)

)
:= T x(·)

solves the decoupled systems

ẋs(t) = Asxs(t)+Bsu(t), Nẋ f (t) = x f (t)+B f u(t),

ys(t) =Csxs(t), y f (t) =C f x f (t),

y(t) = ys(t)+ y f (t),

(2.2.4)

If (x,u,y) ∈B[E,A,B,C] and in addition u ∈ C ν−1(R → Rm), then by repeated multiplication
of Nẋ f (t) = x f (t)+B f u(t) by N from the left, differentiation, and using the identity Nν = 0,
it is easy to see that the solution satisfies

x f (·) = −
ν−1

∑
k=0

NkB f u(k)(·) (2.2.5)

We also derive frequency domain result for [E,A,B,C] ∈ Σn,n,m,p and its transfer function.

• A rational matrix function G(s) ∈ R(s)p×m is called proper if lim
λ→∞

G(λ ) = D for some

D ∈ Rp×m,

• A rational matrix function G(s) ∈ R(s)p×m is called strictly proper if lim
λ→∞

G(λ ) = 0.

Since the transfer function is invariant under system equivalence, we have

G(s) =C(sE −A)−1B =C f (sN − In f )
−1B f +Cs(sIns −As)

−1Bs

= −
ν−1

∑
i=0

C f NiB f si

︸ ︷︷ ︸
=:P(s)

+
∞

∑
i=1

CsAi−1
s Bss−i

︸ ︷︷ ︸
=:Gsp(s)

where P(s) is polynomial matrix, and Gsp(s) is strictly proper rational matrix.
We now introduce the definition of transmission zeros and poles of a transfer function

which were mentioned in [9, Sec.1.2] or [57, Sec.6.5].

Definition 2.2.5 ([9, Sec.1.2], [57, Sec.6.5]). Let G(s) ∈ R(s)m×m with Smith-McMillan
form

U−1(s)G(s)V−1(s) = diag
(

ε1(s)
ψ1(s)

, . . . ,
εr(s)
ψr(s)

,0, . . . ,0
)
∈ R(s)m×m,
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where U(s),V (s) ∈ R[s]m×m are unimodular, i.e, invertible over R[s]m×m, rankR(s) G(s) = r,
εi(s),ψi(s) ∈ R[s] are monic, coprime and satisfy εi(s)|εi+1(s), ψi+1(s)|ψi(s) for all i =
1, . . . ,r− 1. A complex number s0 is called a transmission zero of G(s) if εr(s0) = 0 and a
pole of G(s) if ψ1(s0) = 0.

Because the transfer function is invariant under system equivalence, the transmission
zeros and poles are also invariant.

2.2.2 Vector relative degree

In this subsection, vector relative degree, another fundamental concept in systems theory, is
introduced. Relative degree, roughly speaking, is a number of times the components of the
output have to be differentiated to get input explicitly. Futhermore, the vector relative degree
r = (r1,r2, . . . ,rp) ∈ Np for multi input, multi output non-linear differential equation is a
vector in which each component ri is precisely the number of times one has to differentiate
the i-th output yi(t) at t = t0 in order to have at least one component of the input vector
u(t0) explicitly appearing, see Isidori [56, Sec. 4.1, Sec. 5.1]. However, it is sophisticated to
use this way for defining vector relative degree to differential-algebraic systems. Therefore,
we need an alternative approach to define vector relative degree for differential-algebraic
systems. Since Remark 1.1.4, it is well-known that for single input, single output linear dif-
ferential system, the relative degree r is exactly equal to the difference between numerator
and denominator degree of the transfer function. By this approach, the value of the rela-
tive degree can be negative. For more detail, let us begin with regular case of multi input,
multi output linear differential-algebraic systems and introduce a definition of vector relative
degree presented by Berger [7].

Definition 2.2.6 ([7, Def. B.1]).

• Transfer function matrix G(s) ∈ R(s)p×m has vector relative degree (r1, · · · ,rp) ∈
Z1×p, if there exists a matrix Γ ∈ Rp×m with rankΓ = p such that

lim
s→∞

diag(sr1 , . . . ,srp)G(s) = Γ.

For convenience, we also say that system [E,A,B,C] ∈ Σn,n,m,p has vector relative de-
gree (r1, . . . ,rp) if its transfer function G(s) has vector relative degree (r1, . . . ,rp).

• The matrix Γ is called high-frequency gain matrix.

• A vector relative degree (r1, . . . ,rp) of system [E,A,B,C] is called an ordered vector
relative degree if r1 ≥ r2 ≥ ·· · ≥ rp.

• If r1 = · · · = rp = r, then we say that system [E,A,B,C] ∈ Σn,n,m,p or G(s) has strict
relative degree r.

Remarks 2.2.7.

(i) If [E,A,B,C] has a vector relative degree, then the vector relative degree is unique.
Indeed, suppose [E,A,B,C] has two vector relative degree (r1, . . . ,rp) and (ρ1, . . . ,ρp),
i.e,

lim
s→∞

diag(sr1 , . . . ,srp)G(s) = Γ ∈ Rp×m and rankΓ = p,

and
lim
s→∞

diag(sρ1 , . . . ,sρp)G(s) = Γ̃ ∈ Rp×m and rank Γ̃ = p.
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Denote F(s) := diag(sr1 , . . . ,srp)G(s), then F(s) is proper. Moreover,

lim
s→∞

diag(sρ1−r1 , . . . ,sρp−rp)F(s) = lim
s→∞

diag(sρ1−r1 , . . . ,sρp−rp)diag(sr1 , . . . ,srp)G(s)

= lim
s→∞

diag(sρ1 , . . . ,sρp)G(s) = Γ̃ ∈ Rp×m.

Since lim
s→∞

F(s) = Γ ∈ Rp×m and Γ is full row-rank, we have ρi − ri ≤ 0 for all i =
1, . . . , p. Switching the role between r and ρ , we also obtain ri − ρi ≤ 0 for all i =
1, . . . , p. Therefore, ri = ρi for all i = 1, . . . , p.

(ii) Vector relative degree of a system [E,A,B,C] does not necessarily exist. For example,
consider system

E =

[
1 1
0 0

]
; A =

[
1 1
1 2

]
;B = I2;C = I2.

We have

G(s) =C(sE −A)−1B =

 2
s−1

1

− 1
s−1

−1

 .

Then

Γ = lim
s→∞

diag(s0,s0)G(s) =
[

0 1
0 −1

]
.

Clearly that rankΓ = 1 < 2, then system does not have vector relative degree.

(iii) Consider a multi-input multi-output linear system of the form

ẋ = Ax+Bu,

y =Cx,

where A ∈ Rn×n, B = [B1,B2 . . . ,Bm] with Bi ∈ Rn×1, and C =


C1
C2
...

Cm

 with Ci ∈ R1×n,

i = 1, . . . ,m. Using definition of vector relative degree in [56, Sec.5.1] or [69, Def.2.1],
the system [I,A,B,C] has vector relative degree (r1,r2, . . . ,rm) ∈ N1×m, if and only if

(a) CiAkB j = 0 for all i = 1, . . . ,m, k = 0, . . . ,ri −2, j = 1, . . . ,m,

(b) and the matrix

Γ =


C1Ar1−1B1 C1Ar1−1B2 · · · C1Ar1−1Bm

C2Ar2−1B1 C2Ar2−1B2 · · · C2Ar2−1Bm
...

...
. . .

...
CmArm−1B1 CmArm−1B2 · · · CmArm−1Bm


is non-singular.

It is easy to see that

lim
s→∞

diag(sr1 ,sr2 , . . . ,srm)C(sI −A)−1B = lim
s→∞

diag(sr1 ,sr2 , . . . ,srm)C

(
∞

∑
k=0

Ak

sk+1

)
B.
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Therefore, two conditions (a), (b) are equivalent to condition

lim
s→∞

diag(sr1 ,sr2 , . . . ,srm)C

(
∞

∑
k=0

Ak

sk+1

)
B

=


C1Ar1−1B1 C1Ar1−1B2 · · · C1Ar1−1Bm

C2Ar2−1B1 C2Ar2−1B2 · · · C2Ar2−1Bm
...

...
. . .

...
CmArm−1B1 CmArm−1B2 · · · CmArm−1Bm

 ∈ GLm(R).

It means that Definition 2.2.6 is consistent with the definition of vector relative degree
given by [56, Sec.5.1], or [69, Def.2.1] for linear multi-input, multi-output differential
systems.

(iv) Similar to [56, Sec.5.2], we also conclude that vector relative degree of a system is
invariant under static output feedback or static state feedback.

(v) If G(s) has strict relative degree r ≤ 0, then

r = −max
{

i ∈ {0, . . . ,ν −1}
∣∣ rankC f NiB f = p

}
,

where C f ,N,B f are quoted as in (2.2.3). Indeed, since r is the strict relative degree of
G(s), then

lim
s→∞

srG(s) = Γ ∈ Rp×m, and rankΓ = p.

Using notation in (2.2.3), we have

Rp×m ∋ Γ = lim
s→∞

sr
(

C f (sN − In f )
−1B f +Cs(sIns −As)

−1Bs

)
= lim

s→∞
sr

(
−

ν−1

∑
i=0

C f NiB f si +
∞

∑
i=1

CsAi−1
s Bss−i

)
.

Because r ≤ 0, and
∞
∑

i=1
CsAi−1

s Bss−i is strictly proper, we have

Γ = lim
s→∞

sr

(
−

ν−1

∑
i=0

C f NiB f si

)
= lim

s→∞

(
−

ν−1

∑
i=0

C f NiB f si+r

)
.

Then
r = −max

{
i ∈ {0, . . . ,ν −1}

∣∣ rankC f NiB f = p
}

,

and Γ = −C f N−rB f .

(vi) Similar to [69, Lem.2.3], we can conclude that if G(s) has vector relative degree r =
(r1, . . . ,rp) ∈ Z1×p. Then there exists a permutation matrix P ∈ Rp×p such that the
system [E,A,B,PC] has ordered vector relative degree rP = (r̃1, . . . , r̃p), (i.e r̃1 ≥ ·· · ≥
r̃p).

Consider linear multi-input, multi-output differential-algebraic system (2.2.1) in special
case with number of input equal to number of output, i.e, p = m. Then we have the following
proposition.

Proposition 2.2.8. Let [E,A,B,C] ∈ Σn,n,m,m be such that transfer function G(s) has vector
relative degree r = (r1, . . . ,rm). Then
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(i) G(s) is invertible over R(s). In particular, rankB = rankC = m.

(ii) −r = (−r1, . . . ,−rm) is vector relative degree of G−⊤(s).

(iii)
[

sE −A −B
−C 0

]
∈ R(s)(n+m)×(n+m) is invertible.

(iv) Z D [E,A,B,C] are autonomous.

Proof.

(i) Suppose that G(s) ∈ R(s)m×m has vector relative degree (r1, . . . ,rm) ∈ Z1×m. Since

lim
s→∞

diag(sr1 , . . . ,srm)G(s) = Γ ∈ GLm(R),

then diag(sr1 , . . . ,srm)G(s) is invertible over R(s). Therefore, G(s) is also invertible
over R(s). In particular, G(s) =C(sE −A)−1B ∈ R(s)m×m is full-rank which implies
rankB = rankC = m.

(ii) We have

lim
s→∞

diag(s−r1 , . . . ,s−rm)G−⊤(s) = lim
s→∞

(
diag(sr1 , . . . ,srm)G(s)

)−⊤
= Γ−⊤ ∈GLm(R).

This shows that −r = (−r1, . . . ,−rm) is vector relative degree of G−⊤(s).

(iii) Since[
−(sE −A)−1BG−1(s)C(sE −A)−1 +(sE −A)−1 (sE −A)−1BG−1(s)

−G−1(s)C(sE −A)−1 −G−1(s)

]
[

sE −A −B
−C 0

]
= In+m,

it follows that,
[

sE −A −B
−C 0

]
∈ R(s)(n+m)×(n+m) is invertible.

(iv) This follows from (iii) and Proposition 2.1.4.

Remark 2.2.9. If [E,A,B,C] ∈ Σn,n,m,m and L(s) ∈ R(n+m)×(n+m) is the inverse of[
sE −A −B
−C 0

]
, then

[
In (sE −A)−1B
0 Im

]
= L(s)

[
sE −A −B
−C 0

][
In (sE −A)−1B
0 Im

]
= L(s)

[
sE −A 0
−C −C(sE −A)−1B

]
.

Hence, the inverse of the transfer function can be represented by

G−1(s) = −
[
0 Im

]
L(s)

[
0
Im

]



2.2. Regular systems 25

Therefore, in this case, it follows from Proposition 2.2.8(ii) that

lim
s→∞

diag(sr1 , . . . ,srm)G(s) = Γ ∈ GLm(R)

⇐⇒ lim
s→∞

G−1(s)diag(s−r1 , . . . ,s−rm) = Γ−1 ∈ GLm(R).

2.2.3 Normal form

The Byrnes-Isidori normal form (or shortly normal form) was first introduced in [22] for
nonlinear and linear single-input, single-output systems. In system theory, the normal form
plays an important role in designing local and global feedback stabilization of nonlinear
systems as in [18, 19, 20], adaptive observers as in [71], and adaptive controllers for linear
systems as in [44, 53]. Later on, a normal form was developed for linear multi-input, multi-
output systems as in [56, 69, 10, 9]. We recall in next subsection normal form of the systems
based on vector relative degree in some special cases.

Systems with positive vector relative degree

We consider a linear system of type (2.2.1) with positive vector relative degree
r = (r1,r2, . . . ,rm) ∈ N1×m. Let us begin with a linear multi-input, multi-output system
described by a differential equation

ẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t),
(2.2.6)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rm×n. It is clear that G(s) =C(sI−A)−1B ∈ R(s)m×m,
which is the transfer function of the system (2.2.6), is strictly proper. Therefore, if system
(2.2.6) has vector relative degree r = (r1,r2, . . . ,rm), then ri > 0 for all i = 1,2 . . . ,m. In
other words, system (2.2.6) also belong to class of system which have positive vector relative
degree. Following proposition will show the normal form for system (2.2.6)

Proposition 2.2.10 ([69, Thm 2.4]). Consider a linear system of the form (2.2.6) with vector

relative degree r = (r1,r2, . . . ,rm) ∈ N1×m, |r| =
m
∑

i=1
ri. If a trajectory (x,u,y) belongs to

system behaviour, then there exists T ∈ GLn(R) such that

T x =
(

y1, . . . ,y(r1−1)
1 , . . . ,ym, . . . ,y(rm−1)

m ,η⊤
)⊤

∈ W 1,1
loc (R → Rn)

fulfills


y(r1)

1 (t)
y(r2)

2 (t)
...

y(rm)
m (t)

=



m
∑

j=1

r j

∑
h=1

R1
jhy(h−1)

j (t)

m
∑

j=1

r j

∑
h=1

R2
jhy(h−1)

j (t)

...
m
∑

j=1

r j

∑
h=1

Rm
jhy(h−1)

j (t)


+ Sη(t)+Γu(t),

η̇(t) =
m

∑
i=1

Piyi(t)+Qη(t),

(2.2.7)

where Ri
jh ∈R with i, j ∈{1, . . . ,m}, h∈{1, . . . ,ri}, S∈Rm×(n−|r|), Pi ∈Rn−|r|, Q∈R(n−|r|)×(n−|r|).

And
Γ = lim

s→∞
diag(sr1 , . . . ,srm)G(s),
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as in Remarks 2.2.7(iii). Moreover, the zero dynamics of (2.2.6) are asymptotically stable if,
and only if, Q is Hurwitz.

The normal form for linear systems of the form (2.2.6) was considered in [69]. More-
over, a normal form for the case of nonlinear differential systems was also mentioned in
[56, Sec.5.1] and [80, Subsec.3.3.1]. We introduce a new normal form, which can be in-
ferred straightforward from combining results in Proposition 2.2.10 and [9, Thm.2.1], for
differential-algebraic systems with positive vector relative degree.

Eẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t),
(2.2.8)

where A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n.

Proposition 2.2.11. Suppose [E,A,B,C] ∈ Σn,n,m,m has vector relative degree

r = (r1,r2, . . . ,rm) ∈ N1×m, |r| =
m
∑

i=1
ri. If ν denotes the index of sE −A, then a trajectory

satisfies

(x,u,y1, . . . ,ym) ∈B[E,A,B,C]∩
(
W 1,1

loc (R → Rn)×W ν−1,1
loc (R → Rm)×

×W r1,1
loc (R → R)×·· ·×W rm,1

loc (R → R)
)

if and only if there exist T ∈ GLn(R) such that

T x =
(

y1, . . . ,y(r1−1)
1 , . . . ,ym, . . . ,y(rm−1)

m ,η⊤,x⊤c ,x⊤c̄
)⊤

∈ W 1,1
loc (R → Rn)

fulfills, for almost all t ∈ R,


y(r1)

1 (t)
y(r2)

2 (t)
...

y(rm)
m (t)

=



m
∑

j=1

r j

∑
h=1

R1
jhy(h−1)

j (t)

m
∑

j=1

r j

∑
h=1

R2
jhy(h−1)

j (t)

...
m
∑

j=1

r j

∑
h=1

Rm
jhy(h−1)

j (t)


+ Sη(t)+Γu(t),

η̇(t) =
m

∑
i=1

Piyi(t)+Qη(t),

xc(t) = −
ν−1

∑
i=0

Ni
cBcu(i)(t),

xc̄(t) = 0,

(2.2.9)

where nc,nc̄ ∈ N0, µ = n− nc − nc̄ −|r| and Ri
jh ∈ R with i, j ∈ {1, . . . ,m}, h ∈ {1, . . . ,ri},

S ∈ Rm×µ , Pi ∈ Rµ , Q ∈ Rµ×µ , Bc ∈ Rnc×m. Nc ∈ Rnc×nc is nilpotent with index ν , and
rank

[
Nc Bc

]
= nc. And

Γ = lim
s→∞

diag(sr1 , . . . ,srm)C(sE −A)−1B.

Moreover, the zero dynamics of system (2.2.8) are asymptotically stable if, and only if, Q is
Hurwitz.
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Proof. Since positive vector relative degree implies that transfer function G(s) = C(sE −
A)−1B is strictly proper, we can apply [9, Lemma 7.1] to obtain the existence of W1,T1 ∈
GLn(R) such that

[E,A,B,C] W1,T1∼

Ins 0 0
0 Nc Ncc̄

0 0 Nc̄

 ,

As 0 0
0 Inc 0
0 0 Inc̄

 ,

Bs

Bc

0

 ,
[
Cs 0 Cc̄

]
for some As ∈ Rns×ns , Bs ∈ Rns×m, Cs ∈ Rm×ns , Nc ∈ Rnc×nc , Ncc̄ ∈ Rnc×nc̄ , Nc̄ ∈ Rnc̄×nc̄ , Bc ∈
Rnc×m and Cc̄ ∈ Rm×nc̄ , where Nc,Nc̄ are nilpotent and rank[Nc,Bc] = nc. The dimensions
ns,nc,nc̄ ∈ N0 are unique, and the matrices As,Nc,Nc̄ are unique up to similarity.
Then with T1x = (x1,xc,xc̄) ∈ W 1,1

loc (R → Rn), we have

ẋ1(t) = Asx1(t)+Bsu(t),
d
dt
(Ncxc(t)+Ncc̄xc̄(t)) = xc(t)+Bcu(t),

d
dt
(Ncc̄xc̄(t)) = xc̄,

y(t) =Csx1(t)+Cc̄xc̄.

Since, Nc̄ is nilpotent, third equation from above implies xc̄(t) = 0. Therefore, we have
equations

ẋ1(t) = Asx1(t)+Bsu(t),
d
dt
(Ncxc(t)) = xc(t)+Bcu(t),

xc̄(t) = 0,

y(t) =Csx1(t).

Moreover, since the transfer function is invariant under system equivalence, we have

G(s) =C(sE −A)−1B =
[
Cs 0 Cc̄

]sIns −As 0 0
0 sNc − Inc sNcc̄

0 0 sNc̄ − Inc̄

−1Bs

Bc

0


=Cs(sIns −As)

−1Bs.

Apply Proposition 2.2.10, there exists T2 ∈ GLns(R) such that (2.2.7) holds. We now set

W =W1

[
T−1

2 0
0 I

]
; T =

[
T2 0
0 I

]
T1.

Therefore, T x =
(

y1, . . . ,y(r1−1)
1 , . . . ,ym, . . . ,y(rm−1)

m ,η⊤,x⊤c ,x⊤c̄
)⊤

∈ W 1,1
loc (R → Rn) fulfills

(2.2.9) .

The systems with positive strict relative degree which have been investigated in [9] is a
special case of system class (2.2.8).
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Systems with proper inverse transfer function

We consider a linear system (2.2.1) with proper inverse transfer function, i.e. its transfer
function G(s) has proper inverse .

Eẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t),
(2.2.10)

where A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n. This kind of system class was introduced in [10].

Remark 2.2.12. We note that the class of system which has vector relative degree (r1 . . . ,rm)
and ri ≤ 0 for all i = 1, . . . ,m is a subset of the class of system with proper inverse transfer
function. Infact, using Proposition 2.2.8, if G(s) has vector relative degree (r1, . . . ,rm), and
ri ≤ 0 for all i = 1, . . . ,m, then G−⊤(s) has non-negative vector relative degree. This implies
that G−⊤(s) is proper matrix function which lead to G(s) has proper inverse. Hence, we
conclude that the system which has vector relative degree (r1, . . . ,rm), and ri ≤ 0 for all
i = 1, . . . ,m belongs to the set of systems with proper inverse transfer function. However, the
converse is, in general, not true. To clarify this, we consider a counterexample with

E =

0 0 0
0 0 0
0 0 1

 ; A =

−1 −1 1
1 1 1
1 0 0

 ; B =

1 0
0 1
0 0

 ; C =

[
1 0 0
0 1 0

]
.

It is easy to calculate that

G(s) =C(sE −A)−1B =
1
2

[
−s −s

s+ 1 s−1

]
,

then the inverse of transfer function is

G−1(s) =

 1− 1
s

1

−1− 1
s

−1

 s→∞−→
[

1 1
−1 −1

]
∈ R2×2.

Hence, G(s) is invertible and its inverse is proper. However, G(s) does not have vector
relative degree because

lim
s→∞

diag(s−1,s−1)G(s) =
1
2

[
−1 −1
1 1

]
/∈ GL2(R).

Proposition 2.2.13 ([10, Rem.2.6]). Suppose [E,A,B,C] ∈ Σn,n,m,m has proper inverse trans-
fer function. If ν denotes the index of sE −A, then a trajectory satisfies

(x,u,y) ∈B[E,A,B,C]∩
(
W 1,1

loc (R → Rn)×W 1,1
loc (R → Rm)×W ν−1,1

loc (R → Rm)
)

if and only if there exist T ∈ GLn(R) such that T x =
(

y⊤,η⊤,x⊤c ,x⊤c̄
)⊤

∈ W 1,1
loc (R → Rn)

fulfills
0 = A11y(t)+A12η(t)+ u(t),

η̇(t) = A21y(t)+Qη(t),

xc(t) =
ν−1

∑
i=0

Ni
cEcy(i+1)(t),

xc̄(t) = 0,

(2.2.11)
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where nc,nc̄, µ ∈ N0, and A11 ∈ Rm×m, A12 ∈ Rm×µ , A21 ∈ Rµ×m, Q ∈ Rµ×µ , Ec ∈ Rnc×m,
Nc ∈ Rnc×nc is nilpotent with index ν , and rank

[
Nc Ec

]
= nc.

Moreover, the zero dynamics of (2.2.1) are asymptotically stable if, and only if, Q is Hurwitz.

Remark 2.2.14. From counterexample in Remark 2.2.12 and the result of Proposition 2.2.13,
it seems that knowing exactly the values of negative part in vector relative degree of a linear
differential-algebraic systems is not necessary to contribute a normal form. On the other
hand, the approach using transfer function to define vector relative degree is only applied
for regular systems. Therefore, we have to find another way to define vector relative degree
not only for regular systems but also for arbitrary linear differential-algebraic systems. The
Remark 2.2.9 bring to us a new approach which will be discussed in following section to
obtain a normal form of linear differential-algebraic systems.

2.3 Linear differential-algebraic systems

In the first part of this section, we recall some important results which were introduced in
[7]. After that, we introduce a generalized definition of vector relative degree that can en-
large considered system class. Based on this new definition, we introduce a novel normal
form of general linear differential-algebraic systems. This normal form is not only having
simple structure but it also help us to create an efficient funnel controller for class of systems.
First of all, we reconsider a general linear differential-algebraic systems as concerning at the
beginning of this chapter,

Eẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t)

where E,A ∈ Rl×n, B ∈ Rl×m, C ∈ Rp×n.

2.3.1 Inversion form

The goal of this subsection is construction a inversion form of linear differential-algebraic
systems. In order to solve this problem, we need to recall the definition of left- and right-
invertibility of a systems that was introduced in [7, Sec.4].

Definition 2.3.1 ([7, Sec.4]). [E,A,B,C] ∈ Σl,n,m,p is called

(i) left-invertible if

∀(x,u,y) ∈B[E,A,B,C] : [y a.e
= 0∧Ex(0) = 0] =⇒ u a.e

= 0. (2.3.1)

(ii) right-invertible if

∀y ∈ C ∞(R → Rp), ∃(x,u) ∈ L 1
loc(R → Rn ×Rm) : (x,u,y) ∈B[E,A,B,C].

(iii) invertible if [E,A,B,C] are both left-invertible and right-invertible.

Proposition 2.3.2 ([7, Lem.4.3]). Let [E,A,B,C] ∈ Σl,n,m,p with autonomous zero dynamics.
Then [E,A,B,C] is left-invertible.

We are now in the position to introduce an important result, which is so called inversion
form of system [E,A,B,C] ∈ Σl,n,m,p, see [7, Thm. 4.4].
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Theorem 2.3.3 ([7, Thm.4.4]). Let [E,A,B,C] ∈ Σl,n,m,p with autonomous zero dynamics and
rankC = p. Then, there exist W ∈ GLl(R), T ∈ GLn(R) such that

[E,A,B,C] W ,T∼ [Ê, Â, B̂,Ĉ]

where

Ê =


Iµ 0 0
0 E22 E23
0 E32 N
0 E42 E43

 , Â =


Q A12 0

A21 A22 0
0 0 In3

0 A42 0

 , B̂ =


0
Im

0
0

 ,Ĉ = [0, Ip,0], (2.3.2)

µ = dimmax(E,A,B;kerC) and N ∈ Rn3×n3 , n3 = n−µ − p, is nilpotent with Nν = 0, and
Nν−1 ̸= 0, ν ∈ N, E22,A22 ∈ Rm×p, and all other matrices are of appropriate sizes.
For the uniqueness, we have

(i) If [E,A,B,C], [Ẽ, Ã, B̃,C̃] ∈ Σl,n,m,p are both in form (2.3.2) and

[E,A,B,C] W ,T∼ [Ẽ, Ã, B̃,C̃] for some W ∈ GLl(R),T ∈ GLn(R)

then there exist W11 ∈ GLµ(R), W33 ∈ GLn3(R) such that

W =


W11 0 0 0

0 Im 0 0
0 0 W33 0
0 0 0 I(l+p)−(n+m)

 T =

W−1
11 0 0
0 Ip 0
0 0 W−1

33


(ii) The matrices N,Q are unique up to similarity, so in particular the spectrum of Q, and

the nilpotent index of N are unique .

Remarks 2.3.4.

(i) Let [E,A,B,C] ∈ Σl,n,m,p with autonomous zero dynamics, and rankC = p. Using
inversion form (2.3.2), for any

(x,u,y) ∈B[E,A,B,C]∩ (W 1,1
loc (R → Rn)×W 1,1

loc (R → Rm)×W ν+1,1
loc (R → Rp),

and T x = (η⊤,y⊤,x⊤3 )
⊤ ∈ W 1,1

loc (R → Rµ+p+n3), then (T x,u,y) solves

η̇(t) = Qη(t)+A12y(t),

0 = −
ν−1

∑
i=0

E23NiE32y(i+2)(t)−E22ẏ(t)+A22y(t)+A21η(t)+ u(t),

x3(t) =
ν−1

∑
i=0

NiE32y(i+1)(t),

0 = −E42ẏ(t)−
ν−1

∑
i=0

E43NiE32y(i+2)(t)+A42y(t).

(ii) According to [7, Cor. 4.6], let [E,A,B,C] ∈ Σl,n,m,p with autonomous zero dynamics,
and rankC = p, then the zero dynamics Z D [E,A,B,C] are asymptotically stable if and
only if σ(Q) ⊆ C−.
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(iii) Suppose [E,A,B,C] ∈ Σl,n,m,p with autonomous zero dynamics, then [E,A,B,C] is
invertible if and only if rankC = p, E42 = 0, A42 = 0 and E43N jE32 = 0 for j =
0, . . . ,ν −1 , see [7, Prop. 4.7].

(iv) Because of Proposition 2.1.4, the autonomous zero dynamics of [E,A,B,C] implies a

full column rank of
[

sE −A −B
−C 0

]
over R[s]. This infers the existence of a left inverse

of
[

sE −A −B
−C 0

]
over R(s).

Proposition 2.3.5 ([7, Lem.A.1]). Let [E,A,B,C] ∈ Σl,n,m,p has autonomous zero dynamics,
and be right invertible. Then, with the notation from Theorem 2.3.3, L(s) ∈ R(s)(n+m)×(l+p)

is a left inverse of
[

sE −A −B
−C 0

]
if and only if,

L(s) =
[

T 0
0 Im

]
(sIµ −Q)−1 0 0 X14(s) X15(s)

0 0 0 X24(s) Ip

0 0 (sN − In3)
−1 X34(s) X35(s)

X41(s) Im X43(s) X44(s) X45(s)

[W 0
0 Ip

]
,

where
[
X14(s)⊤,X24(s)⊤,X34(s)⊤,X44(s)⊤

]⊤ ∈ R(s)(n+m)×(l+p−n−m), and

X15(s) = (sI −Q)−1A12, X35(s) = −s(sN − I)−1E32,

X41(s) = A21(sI −Q)−1, X43(s) = −sE23(sN − I)−1,

X45(s) = −(sE22 −A22)+A21(sI −Q)−1A12 + s2E23(sN − In3)
−1E32,

and L(s) is partitioned according to the block structure of (2.3.2).

If L1(s),L2(s) ∈ R(s)(n+m)×(l+p) are two left inverse of matrix
[

sE −A −B
−C 0

]
, then

[
0 Im

]
L1(s)

[
0
Ip

]
=
[
0 Im

]
L2(s)

[
0
Ip

]
.

Remarks 2.3.6.

(i) Suppose [E,A,B,C] ∈ Σl,n,m,p has autonomous zero dynamics, and be right invertible.
Denote

R(s)m×p ∋ H(s) = −
[
0 Im

]
L(s)

[
0
Ip

]
, (2.3.3)

with L(s) ∈ R(s)(n+m)×(l+p) is a left inverse of
[

sE −A −B
−C 0

]
. By Proposition 2.3.5,

H(s) is independent of the choice of L(s). Moreover,

H(s) = sE22 −A22 −A21(sI −Q)−1A12 − s2E23(sN − In3)
−1E32. (2.3.4)

(ii) Suppose [E,A,B,C] ∈ Σl,n,m,p has autonomous zero dynamics, and be right invertible.
Recall the Remark 2.2.9, if l = n, p = m, then H(s) = G(s)−1. Therefore, in the case
of regular system [E,A,B,C] ∈ Σn,n,m,m, H(s) is exactly the inverse of transfer function
G(s) =C(sE −A)−1B. We also note that G(s) exists only if sE −A is a regular pencil.



32 Chapter 2. Linear differential-algebraic systems

2.3.2 Generalized vector relative degree

One of the limitation in defining vector relative degree via transfer function is only available
for the case of regular systems. In order to get rid of this limitation, we introduce, in this sub-
section, a novel definition of vector relative degree for linear differential-algebraic systems
and suppose it to name generalized vector relative degree. Let us begin with recalling the
notion of column degree of a rational matrix function given in [26, Sec.2.4]2.

Definition 2.3.7. The degree of a rational function, which is expressed by a quotient of

polynomials r(s) :=
p(s)
q(s)

with p(x),q(x) ∈ R[s], q(s) ̸≡ 0, is

degr(s) := deg p(s)−degq(s).

Definition 2.3.8.

• We define the degree of rational vector f (s) = ( f1(s), f2(s), . . . , fm(s))⊤ ∈ R(s)m by
deg f (s) = max

1≤i≤m
{deg fi(s)}.

• Given H(s) =
[
H1(s) · · · Hp(s)

]
with Hi(s) ∈ R(s)m, we denote the degree of i-th

column rational vector Hi(s) of H(s) by degHi(s).

Remark 2.3.9. Refer to the Remark 2.2.9 and Remarks 2.3.6, in the case of regular system
[E,A,B,C] ∈ Σn,n,m,m having vector relative degree r = (r1, . . . ,rm), it was shown that

lim
s→∞

diag(sr1 , . . . ,srm)G(s) = Γ ∈ GLm(R)

⇐⇒ lim
s→∞

H(s)diag(s−r1 , . . . ,s−rm) = Γ−1 ∈ GLm(R),

with G(s) =C(sE −A)−1B being the transfer function of [E,A,B,C], and H(s) as in (2.3.3).
This brings to us a new idea by using H(s) instead of transfer function G(s) in Definition
2.2.6 for vector relative degree. We note that being regular of system pencil sE −A is not
requirement in using H(s).

Now we consider [E,A,B,C] ∈ Σl,n,m,p is not regular. According to Remarks 2.3.6, there
are two assumptions imposed on system [E,A,B,C] to ensure the existence of H(s).

(a) [E,A,B,C] has autonomous zero dynamics.

(b) [E,A,B,C] is right invertible.

Definition 2.3.10. Let [E,A,B,C] ∈ Σl,n,m,p be right invertible and has autonomous zero dy-
namics. H(s) is determined as in (2.3.3). Set ri = max{degHi(s),0},
q := #{ri > 0, i = 1, . . . , p}, and

Γ̂ := lim
s→∞

H(s)diag(s−r1 , . . . ,s−rp) ∈ Rm×p. (2.3.5)

We say that r = (r1, . . . ,rp) ∈ N1×p is a generalized vector relative degree of [E,A,B,C], if
rank Γ̂q = q for Γ̂q ∈ Rm×q which is obtained from Γ̂ by deleting all the columns respective
to ri = 0.

Remarks 2.3.11.

(i) Refer to Proposition 2.3.5, H(s) is unique. Therefore, Γ̂ in (2.3.5) is unique which
implies generalized vector relative degree of [E,A,B,C] being well defined.

2In [26, Sec.2.4], the definition is given for polynomial matrix but the same for rational matrix.
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(ii) If [E,A,B,C] has a generalized vector relative degree, then the generalized vector rel-
ative degree is unique. This property is obtained by the uniqueness determining of
ri = max{degHi(s),0}.

(iii) Generalized vector relative degree of a system does not necessarily exist. For instance,
we consider an example with

E =


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 , A =


−1 0 0 0
0 1 −1 0
0 1 2 0
0 0 0 1

 , B =


0 0
1 0
0 1
0 0

 , C =

[
0 1 0 0
0 0 1 0

]
.

For this system, we have

H(s) =
[

s−1 s+ 1
s−1 s−2

]
.

Moreover,

Γ̂ = lim
s→∞

H(s)diag(s−1,s−1) =

[
1 1
1 1

]
, and Γ̂q =

[
1 1
1 1

]
.

Since rank Γ̂q = 1 < 2, which is the number of positive column degree of H(s). Hence,
generalized vector relative degree of this system does not exist.

(iv) If [E,A,B,C]∈ Σn,n,m,m, and sE−A is regular with proper inverse transfer function then
[E,A,B,C] has generalized vector relative degree (0, . . . ,0). Indeed, if [E,A,B,C] ∈
Σn,n,m,m with proper inverse transfer function then the inversion G−1(s) of its transfer
function G(s) =C(sE −A)−1B exists. Therefore, we have[

−(sE −A)−1BG−1(s)C(sE −A)−1 +(sE −A)−1 (sE −A)−1BG−1(s)
−G−1(s)C(sE −A)−1 −G−1(s)

]
[

sE −A −B
−C 0

]
= In+m.

Hence,
[

sE −A −B
−C 0

]
∈ R(s)(n+m)×(n+m) is invertible. Denote L(s) is the unique

inverse of
[

sE −A −B
−C 0

]
. We have

[
In (sE −A)−1B
0 Im

]
= L(s)

[
sE −A −B
−C 0

][
In (sE −A)−1B
0 Im

]
= L(s)

[
sE −A 0
−C −C(sE −A)−1B

]
.

This implies

H(s) = −
[
0 Im

]
L(s)

[
0
Im

]
= G−1(s).

We obtain,
Γ̂ = lim

s→∞
H(s)diag(s0, . . . ,s0) ∈ Rm×m,

since H(s) = G−1(s) is proper. Moreover, this system satisfies condition rank Γ̂q = q
because q = 0. Hence, [E,A,B,C] ∈ Σn,n,m,m with proper inverse transfer function has
generalized vector relative degree (0, . . . ,0).
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(v) In regular case, it is obvious that if [E,A,B,C] has a vector relative degree in con-
ventional way r = (r1, . . . ,rp), then it also has generalized vector relative degree.
For more detail, if r = (r1, . . . ,rp) is vector relative degree of [E,A,B,C], then r̃ =
(r̃1, . . . , r̃p), where r̃i = max{ri,0} for i = 1, . . . , p, is generalized vector relative degree
of [E,A,B,C]. However, the existence of having generalized vector relative degree of
a system does not imply the existence of having vector relative degree. To verify this,
we consider the following example with

E =


1 0 0 0 0
0 1 0 1 0
0 −1 0 0 0
0 0 0 0 1
0 1 0 0 0

 ; A =


−1 1 −2 0 0
3 5 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1



B =


0 0
1 0
0 1
0 0
0 0

 ; C =

[
0 1 0 0 0
0 0 1 0 0

]
.

Then

G(s) =C(sE −A)−1B =

 0 −1
s

s+ 1
6

s4 + s3 + s2 −4s−8
6s

 .

We have

Γ := lim
s→∞

diag(s,s−3)G(s) =

[
0 −1

0
1
6

]
, and rankΓ = 1 < 2.

This implies that the system does not have vector relative degree in the sense of Defi-
nition 2.2.6. On the other hand, we also have

H(s) =

s3 + s−5− 3
s+ 1

6
s+ 1

−s 0

 .

And we learn from that

Γ̂ := lim
s→∞

H(s)diag(s−3,1) =
[

1 0
0 0

]
, and Γ̂q =

[
1
0

]
.

Therefore, using the Definition 2.3.10, this system have generalized vector relative
degree r = (3,0) since rank Γ̂q = 1 which is equal to the number of positive column
degree of H(s).

(vi) In [7], Berger consider linear differential-algebraic system [E,A,B,C] ∈ Σl,n,m,m which
satisfy following properties

– [E,A,B,C] has autonomous zero dynamics,

– [E,A,B,C] is right-invertible,

– the matrix

Γ = − lim
s→∞

s−1 [0 Im
]

L(s)
[

0
Im

]
∈ Rm×m
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exists and satisfies Γ = Γ⊤ ≥ 0, where L(s) ∈ R(s)(n+m)×(l+m) is a left inverse

of
[

sE −A −B
−C 0

]
.

This type of system class can be viewed as a unified framework for two different cases:
proper inverse transfer function and positive strict relative degree one. However, it is
more general since sE −A is not required regular. This type system class also does
not serve as a subclass of linear differential-algebraic systems with generalized vector
raltive degree since Γ is reqired semi positive definite and symmetry. Let us clarify
this by reconsidering the example introduced in (iii) of this remark. This system was
shown that it has not generalized vector relative degree. However,

Γ = − lim
s→∞

s−1 [0 Im
]

L(s)
[

0
Im

]
=

[
1 1
1 1

]
which satisfies Γ = Γ⊤ ≥ 0.
On the other hand, another example with

E =


1 0 0 0
0 1 2 0
0 1 1 0
0 0 0 0

 , A =


−1 0 0 0
0 1 −1 0
0 1 2 0
0 0 0 1

 , B =


0 0
1 0
0 1
0 0

 , C =

[
0 1 0 0
0 0 1 0

]
,

this system has

H(s) =
[

s−1 2s+ 1
s−1 s−2

]
.

It is easy to see that

Γ̂ = lim
s→∞

H(s)diag(s−1,s−1) =

[
1 2
1 1

]
, andΓ̂q =

[
1 2
1 1

]
.

Hence, this system has generalized vector relative degree (1,1) since rank Γ̂q = 2
which is the number of positive column degree of H(s). However, the matrix

Γ = − lim
s→∞

s−1 [0 Im
]

L(s)
[

0
Im

]
=

[
1 2
1 1

]
is not symmetric. It means that this system does not belong to system class introduced
in [7]. We conclude that although there are some common elements, the set of systems
which have generalized relative degree (r1, . . . ,rm), ri ∈ {0,1} is really different from
the set of systems which is considered in [7].

Definition 2.3.12. If [E,A,B,C] has generalized vector relative degree r = (r1, . . . ,rp) ∈
N

1×p
0 satisfying r1 ≥ ·· · ≥ rp, then r = (r1, . . . ,rp) is called ordered generalized vector

relative degree.

Lemma 2.3.13. If [E,A,B,C] has generalized vector relative degree r = (r1, . . . ,rp) ∈ N
1×p
0 .

Then there exists a permutation matrix P ∈ Rp×p such that the system [E,A,B,PC] has or-
dered generalized vector relative degree rP = (r̃1, . . . , r̃p), (i.e r̃1 ≥ ·· · ≥ r̃p). Moreover, we

have r̃1 ≥ r̃2 ≥ ·· · ≥ r̃q > 0 = · · ·= 0, and ˜̂Γq =
˜̂Γ[Iq

0

]
.
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Proof. Let σ : {1, . . . , p}→ {1, . . . , p} be a permutation such that rσ(1) ≥ ·· · ≥ rσ(p). More-
over, set

P :=


eσ(1)
(p)
...

eσ(p)
(p)

 ∈ GLp(R),

with e j
(p) :=

(
0, . . . ,0︸ ︷︷ ︸

j−1

,1,0, . . . ,0︸ ︷︷ ︸
p− j

)
.

Then P⊤ = P−1 and HP(s) = H(s)P⊤ where HP(s) =−
[
0 Im

]
LP(s)

[
0
Ip

]
and LP(s) is left

inverse of matrix
[

sE −A −B
−PC 0

]
. This implies that

HP(s)diag(s−rσ(1) , . . . ,s−rσ(p)) = H(s)diag(s−r1 , . . . ,s−rp)P⊤.

And therefore, [E,A,B,PC] has generalized vector relative degree rP= (rσ(1), . . . ,rσ(p)) with
rσ(1) ≥ ·· · ≥ rσ(p).

Remark 2.3.14. If [E,A,B,C] has an ordered generalized vector relative degree
r = (r1, . . . ,rq,0 · · · ,0) ∈ N

1×p
0 , r1 ≥ ·· · ≥ rq > 0. Apply the inversion form in Theorem

2.3.3 to [E,A,B,C] , we get the following

Γ̂ = lim
s→∞

H(s)diag(s−r1 , . . . ,s−rq ,1, . . . ,1)

= lim
s→∞

[(sE22 −A22)−A21(sI −Q)−1A12 − s2E23(sN − In3)
−1E32]diag(s−r1 , . . . ,s−rq ,1, . . . ,1)

= lim
s→∞

[sE22 −A22 +
ν−1

∑
k=0

sk+2E23NkE32]diag(s−r1 , . . . ,s−rq ,1, . . . ,1).

Proposition 2.3.15. The generalized vector relative degree is invariant under static output
feedback.

Proof. Without lost of generality, we suppose that [E,A,B,C] has odered generalized vector
relative degree r = (r1, . . . ,rq,0 · · · ,0) ∈ N

1×p
0 , r1 ≥ ·· · ≥ rq > 0. Consider a static output

feedback u(t) = Ky(t) + v(t) with K ∈ Rm×p. Apply this feedback to system (2.1.1), we
have

Eẋ(t) = (A+BKC)x(t)+Bv(t),

y(t) =Cx(t).

We note that [
sE − (A+BKC) −B

−C 0

]
=

[
sE −A −B
−C 0

][
In 0

−KC Im

]
.

Hence, rankR(s)

[
sE − (A+BKC) −B

−C 0

]
= n + m since rankR(s)

[
sE −A −B
−C 0

]
= n + m.

In conjunction with Proposition 2.1.4, we conclude that [E,A + BKC,B,C] ∈ Σl,n,m,p has
autonomous zero dynamics, and is right invertible if [E,A,B,C] ∈ Σl,n,m,p has autonomous
zero dynamics, and is right invertible. Denote L(s),LK(s)∈R(s)(n+m)×(l+p) are left inverses
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of
[

sE −A −B
−C 0

]
and

[
sE −A−BKC −B

−C 0

]
, respectively. Then

LK(s) =
[

In 0
−KC Im

]
L(s).

Using the notation from Proposition 2.3.5, we have

HK(s) = −
[
0 Im

]
LK(s)

[
0
Ip

]
= −

[
0 Im

][ In 0
−KC Im

]
L(s)

[
0
Ip

]
= −

[
−KC Im

]
L(s)

[
0
Ip

]
= −

[
0 −K 0 Im

]
L(s)

[
0
Ip

]
= K −X45(s) = H(s)+K.

Therefore,

lim
s→∞

HK(s)diag(s−r1 , . . . ,s−rq ,1, . . . ,1) = lim
s→∞

(H(s)+K)diag(s−r1 , . . . ,s−rq ,1, . . . ,1).

Denote Γ̂K = lim
s→∞

HK(s)diag(s−r1 , . . . ,s−rq ,1, . . . ,1), then we can show that Γ̂K

[
Iq

0

]
= Γ̂q.

This implies rank Γ̂K

[
Iq

0

]
= rank Γ̂q = q. In conclusion, [E,A+BKC,B,C] has also gener-

alized vector relative degree r = (r1, . . . ,rq,0 . . . ,0). In the other words, generalized vector
relative degree is invariant under static output feedback.

2.3.3 Normal form

In this subsection, our goal is to contribute a novel normal form for general linear differential-
algebraic systems with generalized vector relative degree of the form (2.1.1). Without lost
of generality, we suppose that [E,A,B,C] has odered generalized vector relative degree r =
(r1, . . . ,rq,0 · · · ,0) ∈ N

1×p
0 , r1 ≥ ·· · ≥ rq > 0. Refer to Remark 2.3.14, we have

Γ̂ = lim
s→∞

H(s)diag(s−r1 , . . . ,s−rq ,1, . . . ,1)

= lim
s→∞

[sE22 −A22 +
ν−1

∑
k=0

sk+2E23NkE32]diag(s−r1 , . . . ,s−rq ,1, . . . ,1)

=

[
Γ̂11 Γ̂12

Γ̂21 Γ̂22

]
∈ Rm×p,

where Γ̂11 ∈ Rq×q, Γ̂12 ∈ Rq×(p−q), Γ̂21 ∈ R(m−q)×q, Γ̂22 ∈ R(m−q)×(p−q). According to the
definition of generalized vector relative degree, we note that

rank
[

Γ̂11

Γ̂21

]
= q, since rank Γ̂

[
Iq

0

]
= q.
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We suppose that r1 ≥ r2 ≥ ·· · ≥ rh > 1 = · · · = rq > 0. For j = 1, . . . , p, denote E( j)
32 , E( j)

22 ,

and A( j)
22 are the j-th column of E32, E22, and −A22, respecttively. Then[

Γ̂11 Γ̂12

Γ̂21 Γ̂22

]
= lim

s→∞
[sE22 −A22 +

ν−1

∑
k=0

sk+2E23NkE32]diag(s−r1 , . . . ,s−rq ,1, . . . ,1)

=
[
E23Nr1−2E(1)

32 · · · E23Nrh−2E(h)
32 E(h+1)

22 · · · E(q)
22 A(q+1)

22 · · · A(p)
22

]
.

Therefore,

Γ̂q =

[
Γ̂11

Γ̂21

]
=
[
E23Nr1−2E(1)

32 · · · E23Nrh−2E(h)
32 E(h+1)

22 · · · E(q)
22

]
∈ Rm×q. (2.3.6)

Since [E,A,B,C] has generalized vector relative degree, Γ̂q is full column rank. Hence, there
exist q rows of matrix Γ̂q being linearly independent. For that reason, we can change the
rows of the matrix rank Γ̂q such that Γ̂11 ∈ GLq(R). This action is obtained by changing the
rows of the matrices A21,A22,E22,E23. By renumbered the input channels, the structure of
the inversion form of system [E,A,B,C] is still preserved the same as in (2.3.2). Therefore,
without loss of generality, Γ̂11 ∈ Rq×q is supposed to be invertible. Consequently, we further
construct a matrix

Γ =

[
Γ11 0
Γ21 Im−q

]
∈ Rm×m, (2.3.7)

where Γ11 = Γ̂−1
11 ∈ GLq(R), Γ21 = −Γ̂21Γ̂−1

11 ∈ R(m−q)×q. Therefore,

ΓΓ̂q =

[
Iq

0

]
.

On the other hand, using the notation from Theorem 2.3.3, for any

(x,u,y) ∈B[E,A,B,C]∩ (W 1,1
loc (R → Rn)×W 1,1

loc (R → Rm)×W ν+1,1
loc (R → Rp),

and T x = (η⊤,y⊤,x⊤3 )
⊤ ∈ W 1,1

loc (R → Rµ+p+n3), (T x,u,y) solves

η̇(t) = Qη(t)+A12y(t)

0 = −
ν−1

∑
i=0

E23NiE32y(i+2)(t)−E22ẏ(t)+A22y(t)+A21η(t)+ u(t)

x3(t) =
ν−1

∑
i=0

NiE32y(i+1)(t)

0 = 0.

(2.3.8)

Multiply both side of the second equation in (2.3.8) with non-singular matrix Γ in (2.3.7), we
obtain

0 = −
ν−1

∑
i=0

ΓE23NiE32y(i+2)−ΓE22ẏ+ΓA22y+ΓA21η +Γu. (2.3.9)
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Apply (2.3.6)-(2.3.9), we obtain

0 =



−1 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0

. . .

0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0

. . .

0 0 · · · 0 0 · · · 0





y(r1)
1

y(r1)
2
...

y(r1)
q

y(r1)
q+1
...

y(r1)
p


+



R1
1,r1

0 · · · 0 0 · · · 0
R2

1,r1
0 · · · 0 0 · · · 0

. . .

Rq
1,r1

0 · · · 0 0 · · · 0
Rq+1

1,r1
0 · · · 0 0 · · · 0

. . .

Rm
1,r1

0 · · · 0 0 · · · 0





y(r1−1)
1

y(r1−1)
2
...

y(r1−1)
q

y(r1−1)
q+1
...

y(r1−1)
p


+ · · ·+

+



R1
1,r2+1 0 · · · 0 0 · · · 0

R2
1,r2+1 −1 · · · 0 0 · · · 0

. . .

Rq
1,r2+1 0 · · · 0 0 · · · 0

Rq+1
1,r2+1 0 · · · 0 0 · · · 0

. . .

Rm
1,r2+1 0 · · · 0 0 · · · 0





y(r2)
1

y(r2)
2
...

y(r2)
q

y(r2)
q+1
...

y(r2)
p


+



R1
1,r2

R1
2,r2

· · · 0 0 · · · 0
R2

1,r2
R2

2,r2
· · · 0 0 · · · 0
. . .

Rq
1,r2

Rq
2,r2

· · · 0 0 · · · 0
Rq+1

1,r2
Rq+1

2,r2
· · · 0 0 · · · 0

. . .

Rm
1,r2

Rm
2,r2

· · · 0 0 · · · 0





y(r2−1)
1

y(r2−1)
2
...

y(r2−1)
q

y(r2−1)
q+1
...

y(r2−1)
p


+ · · ·+

+



R1
1,2 · · · R1

q,2 0 · · · 0
. . .

Rq
1,2 · · · Rq

q,2 0 · · · 0
Rq+1

1,2 · · · Rq+1
q,2 0 · · · 0

. . .

Rm
1,2 · · · Rm

q,2 0 · · · 0





ẏ1
...

ẏq

ẏq+1
...

ẏp


+



R1
1,1 · · · R1

q,1 R1
q+1,1 · · · R1

p,1
. . .

Rq
1,1 · · · Rq

q,1 Rq
q+1,1 · · · Rq

p,1

Rq+1
1,1 · · · Rq+1

q,1 Rq+1
q+1,1 · · · Rq+1

p,1
. . .

Rm
1,1 · · · Rm

q,1 Rm
q+1,1 · · · Rm

p,1





y1
...

yq

yq+1
...

yp


+

[
Γ11 0
Γ21 Im−q

]
A21x1 +

[
Γ11 0
Γ21 Im−q

]
u.

As a consequence, the second equation of (2.3.8) can be written as follow

y(ri)
i (t) =

q

∑
j=1

r j

∑
h=1

Ri
jhy(h−1)

j (t)+
p

∑
j=q+1

Ri
j1y j(t)+ΓiA21η(t)+Γiu(t) i = 1, . . . ,q

0 =
q

∑
j=1

r j

∑
h=1

Ri
jhy(h−1)

j (t)+
p

∑
j=q+1

Ri
j1y j(t)+ΓiA21η(t)+Γiu(t) i = q+ 1, . . . ,m
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where Γi is i-th row of matrix Γ ∈ Rm×m from (2.3.7), Ri
jh ∈ R. Then the system (2.3.8) can

be transformed to

η̇(t) = Qη(t)+A12y(t)

y(ri)
i (t) =

q

∑
j=1

r j

∑
h=1

Ri
jhy(h−1)

j (t)+
p

∑
j=q+1

Ri
j1y j(t)+ΓiA21η(t)+Γiu(t), i = 1, . . . ,q,

0 =
q

∑
j=1

r j

∑
h=1

Ri
jhy(h−1)

j (t)+
p

∑
j=q+1

Ri
j1y j(t)+ΓiA21η(t)+Γiu(t), i = q+ 1, . . . ,m,

x3(t) =
ν−1

∑
i=0

NiE32y(i+1)(t).

We conclude this subsection by a theorem.

Theorem 2.3.16. Suppose [E,A,B,C] ∈ Σl,n,m,p has generalized vector relative degree r =
(r1, . . . ,rq,0, . . . ,0) ∈ N

1×p
0 , ri > 0 for all i = 1, . . . ,q. If ν denotes the nilpotent index of

matrix N in inversion form (2.3.2), then a trajectory satisfies

(x,u,y) ∈B[E,A,B,C]∩
(
W 1,1

loc (R → Rn)×W 1,1
loc (R → Rm)×W ν+1,1

loc (R → Rm)
)

if and only if there exist T ∈ GLn(R) such that T x = (η⊤,y1, . . . ,yq,yq+1, . . . ,yp,x⊤3 )
⊤ ∈

W 1,1
loc (R → Rµ)×W r̃1,1

loc (R → R)×·· ·×W
r̃q,1

loc (R → R)×W ν ,1
loc (R → R) · · ·×W ν ,1

loc (R →
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R)×W 1,1
loc (R → Rn3) fulfills

η̇(t) = Qη(t)+A12y(t),


y(r1)

1 (t)
y(r2)

2 (t)
...

y(rq)
q (t)

=



q
∑

j=1

r j

∑
h=1

R1
jhy(h−1)

j (t)+
p
∑

j=q+1
R1

j1y j(t)

q
∑

j=1

r j

∑
h=1

R2
jhy(h−1)

j (t)+
p
∑

j=q+1
R2

j1y j(t)

...
q
∑

j=1

r j

∑
h=1

Rq
jhy(h−1)

j (t)+
p
∑

j=q+1
Rq

j1y j(t)


+[Γ11 0]A21η(t)

+ [Γ11 0]


u1(t)
u2(t)
...

um(t)

 ,

0 =



q
∑

j=1

r j

∑
h=1

Rq+1
jh y(h−1)

j (t)+
p
∑

j=q+1
Rq+1

j1 y j(t)

q
∑

j=1

r j

∑
h=1

Rq+2
jh y(h−1)

j (t)+
p
∑

j=q+1
Rq+2

j1 y j(t)

...
q
∑

j=1

r j

∑
h=1

Rm
jhy(h−1)

j (t)+
p
∑

j=q+1
Rm

j1y j(t)


+[Γ21 Im−q]A21η(t)

+ [Γ21 Im−q]


u1(t)
u2(t)
...

um(t)

 ,

x3(t) =
ν−1

∑
i=0

NiE32y(i+1)(t),

(2.3.10)

where Γ11,Γ21 from (2.3.7), Q,A12,A21,N,E32 from (2.3.2), r̃i = max{ri,ν}, i = 1, . . . ,q.

Remarks 2.3.17.

(i) We also note that

Â12 =
[
Γ11 0

]
A22

[
0

Ip−q

]
=

R1
q+1,1 · · · R1

p,1
. . .

Rq
q+1,1 · · · Rq

p,1

 ∈ Rq×(p−q)

Â22 =
[
Γ21 Im−q

]
A22

[
0

Ip−q

]
=

Rq+1
q+1,1 · · · Rq+1

p,1
. . .

Rm
q+1,1 · · · Rm

p,1

 ∈ R(m−q)×(p−q)

(2.3.11)

(ii) We want to show the relation between the matrix Γ11 from (2.3.7) and high-gain matrix
in the case of regular system. Consider a regular system [E,A,B,C] ∈ Σn,n,m,m having
vector relative degree r = (r1, . . . ,rm). Without of loss generality, suppose that r1 ≥
·· · ≥ rm. The transfer function is G(s) = C(sE −A)−1B, and the high-gain matrix of
[E,A,B,C] is

GLm(R) ∋ Γ = lim
s→∞

diag(sr1 , . . . ,srm)G(s).
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Arcoording to Remark 2.2.9, we have H(s) = G−1(s), and

lim
s→∞

H(s)diag(s−r1 , . . . ,s−rm) = Γ−1.

On the other hand, from Remarks 2.3.11(v), [E,A,B,C] has generalized vector relative
degree (r1, . . . ,rq,0 . . . ,0) with r1 ≥ ·· · ≥ rq > 0, and

lim
s→∞

H(s)diag(s−r1 , . . . ,s−rq ,1, . . . ,1) = Γ̂ ∈ Rm×m,

Therefore,

Γ−1
[

Iq

0

]
= Γ̂

[
Iq

0

]
=

[
Γ̂11

Γ̂21

]
∈ Rm×q.

In conjunction with Γ11 = Γ̂−1
11 ∈ GLq(R) from (2.3.7), we conclude that

Γ11 =
[
Iq 0

]
Γ
[

Iq

0

]
.

We would like to stress that in high-gain adaptive control, it is usualy to assume that
high-gain matrix Γ being positive (negative) definite. Hence, in the case of linear
differential-algebraic systems, we can suppose Γ11 being positive (negative) definite
instead of using high-gain matrix Γ.

(iii) By using left inverse of matrix
[

sE −A −B
−C 0

]
, we avoid to use the transfer function

in defining the generalized vector relative degree. This approach is really efficient in
finding out a nice normal form (2.3.10) for general linear differential-algebraic sys-
tem. Based on this normal form, we conclude that only q first components of inputs
impacting on q first outputs via differential part of the systems.

(iv) Consider regular system [E,A,B,C] ∈ Σn,n,m,m with genneralized vector relative de-
gree. If E = In, then q = m, and the third equation in normal form (2.3.10) vanishes.
Moreover, we denote n3 = n−m−µ = |r|−m, and set

x3 = (ẏ1, . . . ,y(r1−1)
1 , . . . , ẏm, . . . ,y(rm−1)

m )⊤ ∈ Rn3 ,

N = diag(N1, . . . ,Nm) ∈ Rn3×n3 with Ni =


0 0 · · · 0 0
1 0 · · · 0 0

. . .
. . .

0 0 · · · 0 0
0 0 · · · 1 0

 ∈ R(ri−1)×(ri−1),

E32 = diag(E32(1), . . . ,E32(m)) ∈ Rn3×m with E32(i) =


1
0
...
0

 ∈ R(ri−1)×1.
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We note that N is a nilpotent matrix with index of nilpotency ν = max
1≤i≤m

(ri −1). Now,

we obtain

η̇(t) = Qη(t)+A12y(t),


y(r1)

1 (t)
y(r2)

2 (t)
...

y(rm)
m (t)

=



m
∑

j=1

r j

∑
h=1

R1
jhy(h−1)

j (t)

m
∑

j=1

r j

∑
h=1

R2
jhy(h−1)

j (t)

...
m
∑

j=1

r j

∑
h=1

Rm
jhy(h−1)

j (t)


+ΓA21η(t)+Γ


u1(t)
u2(t)
...

um(t)

 ,

x3(t) =
ν−1

∑
i=0

NiE32y(i+1)(t).

This form is consistent with the normal form of linear differential systems which was
introduced by Mueller in [69] and also recalled in Corollary 2.2.10. On the other
hand, if [E,A,B,C] ∈ Σn,n,m,m with proper inverse transfer function, then [E,A,B,C]
has generalized vector relative degree (0, . . . ,0), according to Remark 2.3.11. This
implies the second equation in in (2.3.10) will be disappeared, and q = 0.

η̇(t) = Qη(t)+A12y(t),

0 =



m
∑

j=1
R1

j1y j(t)

m
∑

j=1
R2

j1y j(t)

...
m
∑

j=1
Rm

j1y j(t)


+A21η(t)+


u1(t)
u2(t)
...

um(t)

 ,

x3(t) =
ν−1

∑
i=0

NiE32y(i+1)(t).

We rewrite this system in the short form

η̇(t) = Qη(t)+A12y(t),

0 = Â22y(t)+A21η(t)+ u(t),

x3(t) =
ν−1

∑
i=0

NiE32y(i+1)(t).

This form is precisely the normal form of system with proper inverse transfer function
presented in Proposition 2.2.13 which was cited from [10]. In conclusion, the nor-
mal form obtained in (2.3.10) is generalized, and consistent with results which was
proposed in [69, 10].
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Chapter 3

Funnel control for systems with
known strict relative degree

In this chapter, we study funnel control for nonlinear multi-input, multi-output systems hav-
ing strict relative degree r and input-to-state stable internal dynamics. We propose a new
simple funnel controller which require the involvement of the first r − 1 derivatives of the
output error. We further discus the feasible of this controller and the influence of the con-
troller parameters. We finally show the application of our controller to some mechanical
systems by simulation, and compare our result with some other approaches.

3.1 System class

We consider a class of non-linear systems described by functional differential equations of
the form

y(r)(t) = f
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
+Γ
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
u(t),

y|[−h,0] = y0 ∈ C r−1([−h,0]→ Rm),
(3.1.1)

where h > 0 is the "memory" of the system, r ∈ N is the strict relative degree, and

(P1): the measurable "disturbance" satisfies d ∈ L ∞(R≥0 → Rp), p ∈ N;

(P2): f ∈ C (Rp ×Rq → Rm), q ∈ N,

(P3): the "high-frequency gain matrix function" Γ ∈ C (Rp ×Rq → Rm×m) takes values in
the set of positive (negative) definite matrices1;

(P4): T : C ([−h,∞)→ Rrm)→ L ∞
loc(R≥0 → Rq) is an operator with the following proper-

ties:

a) T maps bounded trajectories to bounded trajectories , i.e, for all c1 > 0, there
exists c2 > 0 such that for all ζ ∈ C ([−h,∞)→ Rrm),

sup
t∈[−h,∞)

∥ζ (t)∥ ≤ c1 ⇒ sup
t∈[0,∞)

∥T (ζ )(t)∥ ≤ c2,

b) T is causal , i.e, for all t ≥ 0 and all ζ ,ξ ∈ C ([−h,∞)→ Rrm),

ζ |[−h,t) = ξ |[−h,t) ⇒ T (ζ )|[0,t)
a.a.
= T (ξ )|[0,t),

where "a.a." stands for "almost all".
1One may wonder why Γ is not assumed to be uniformly bounded away from zero. The reason is that in the

closed-loop system this is established anyway due to the boundedness of the involved signals.
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c) T is locally Lipschitz continuous in the following sense: for all t ≥ 0 there exist
τ ,δ ,c > 0 such that for all ζ ,∆ζ ∈ C ([−h,∞) → Rrm) with ∆ζ |[−h,t) = 0 and
∥∆ζ |[t,t+τ ]∥∞ < δ we have∥∥∥∥(T (ζ +∆ζ )−T (ζ )

)∣∣∣
[t,t+τ ]

∥∥∥∥
∞
≤ c∥∆ζ |[t,t+τ ]∥∞.

Some cases of systems with the form (3.1.1) have been studied in, for instance, [34, 50, 48,
46]. Based on these studies, the class of systems (3.1.1) contains linear and nonlinear systems
which have strict relative degree and input-to-state stable internal dynamics (zero dynamics
in the linear case). The operator T and its properties help us to open wide considered sys-
tems to infinite-dimensional linear systems, systems with hysteretic effects, nonlinear delay
elements, or any combination of them. We note that the operator T usually present to the so-
lution operator of the differential equation which depicts the internal dynamics of the system
and property (P4a) describes the input-to-state stability of the internal dynamics.

Remark 3.1.1. One important class of linear differential-algebraic systems that relates to
systems class (3.1.1) are regular systems with positive strict relative degree r and asymptot-
ically stable zero dynamics which was introduced in [9], and also mentioned in Subsection
2.2.3

Eẋ(t) = Ax(t)+Bu(t), x(0) = x0 ∈ Rn

y(t) =Cx(t),
(3.1.2)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and Γ = lim
s→∞

srC(sE −A)−1B ∈ Rm×m is positive
(negative) definite. Similar to (2.2.9), systems of this type can be transformed into normal
form, also see [9],

y(r)(t) =
r

∑
i=1

Riy(i−1)(t)+ Sη(t)+Γu(t), y(0) =Cx0,

η̇(t) = Py(t)+Qη(t), η(0) = η0 ∈ Rµ ,

xc(t) = −
ν−1

∑
i=0

Ni
cBcu(i)(t),

xc̄(t) = 0,

where nc,nc̄ ∈ N0, µ = n−nc−nc̄−rm, Ri ∈ Rm×m for i = 1,2, . . . ,r, S ∈ Rm×µ , P ∈ Rµ×m,
Bc ∈ Rnc×m, Nc ∈ Rnc×nc is nilpotent with index ν , and rank

[
Nc Bc

]
= nc. Q ∈ Rµ×µ is

a Hurwitz matrix, i.e., all eigenvalues of Q have negative real part. We begin with two first
equations in above normal form

y(r)(t) =
r

∑
i=1

Riy(i−1)(t)+ Sη(t)+Γu(t), y(0) =Cx0

η̇(t) = Py(t)+Qη(t), η(0) = η0 ∈ Rµ

This subsystem belongs to type (3.1.1) with Γ = lim
s→∞

srC(sE −A)−1B and

f
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
= T (y, ẏ, . . . ,y(r−1))(t)

=
r

∑
i=1

Riy(i−1)(t)+ SeQtη0 +

t∫
0

SeQ(t−τ)Py(τ)dτ .
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T is clearly causal, locally Lipschitz, and the Hurwitz property of Q implies that T has the
bounded-input-bounded-output property (P4a). Note that T is parameterized by η0 ∈ Rµ .
Although, system (3.1.2) is not apart of system class (3.1.1), we still shown in the following
sections that a feasible funnel controller of system class (3.1.1) also applied to system of the
form (3.1.2). And we also note that for the third equation

xc(t) = −
ν−1

∑
i=0

Ni
cBcu(i)(t),

the input function u(t) is required smooth enough, u ∈ W ν−1,1
loc (R → Rm). This implies the

required smoothness of input function when we apply funnel controller for linear differential-
algebraic system with positive strict relative degree (3.1.2).
In [13], we also indicate that minimum-phase linear time-invariant systems is a subclass of
systems (3.1.1). Finally, we want to emphasize that systems with equation

y(r)(t) = f
(
d1(t),T1(y, ẏ, . . . ,y(r−1))(t)

)
+Γ
(
d2(t),T2(y, ẏ, . . . ,y(r−1))(t)

)
u(t),

where di is as in (P1) and Ti is as in (P4) for i = 1,2 are included in the class (3.1.1). This
can be achieved by setting d := (d1,d2), T := (T1,T2) and a suitable adjustment of f and Γ.

3.2 Funnel controller with derivative feedback

For systems of type (3.1.1), we propose the following funnel controller:

e0(t) = e(t) = y(t)− yref(t),
e1(t) = ė0(t) + k0(t) · e0(t),
e2(t) = ė1(t) + k1(t) · e1(t),

...
er−1(t) = ėr−2(t) + kr−2(t) · er−2(t),

ki(t) =
1

1−φ2
i (t)∥ei(t)∥2 , i = 0, . . . ,r−1,

u(t) =

{
−kr−1(t) · er−1(t), if Γ is pointwise positive definite,

kr−1(t) · er−1(t), if Γ is pointwise negative definite,

(3.2.1)

where the reference signal and funnel functions have the following properties:

yref ∈ W r,∞(R≥0 → Rm),

φ0 ∈ Φr, φ1 ∈ Φr−1, . . . , φr−1 ∈ Φ1.
(3.2.2)

At the beginning, we need to solve a basic question about the existence of solutions of the
initial value problem which is obtained by apply funnel controller (3.2.1) to a system (3.1.1).
Some care must be exercised with the existence of a solution since ki introduces a pole on
the right hand side of the closed-loop differential equation. We like to stress that a solution
of closed-loop system (3.1.1), (3.2.1) on [−h,ω) is a function y ∈ C r−1([−h,ω) → Rm),
ω ∈ (0,∞], with y|[−h,0] = y0 such that y(r−1)|[0,ω) is absolutely continuous and satisfies the
differential equation in (3.1.1) with u defined in (3.2.1) for almost all t ∈ [0,ω). A solution y
is called maximal, if it has no right extension that is also a solution . Existence of solutions
of functional differential equations has been investigated in [48] for instance.
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Remark 3.2.1 (Funnel control for systems with r ∈ {1,2,3}). In the following we determine
the funnel controllers explicitly for the cases r = 1,2,3. We assume for convenience that the
high-frequency gain matrix function Γ is pointwise positive definite.

r = 1: The control law (3.2.1) reduces to the "classical" funnel controller

u(t) = −k(t)e(t),

k(t) =
1

1−φ2(t)∥e(t)∥2 .

Moreover, our assumptions on the reference signal and the funnel function φ reduce to
those made in [48].

r = 2: We obtain the controller

u(t) = −k1(t)(ė(t)+ k0(t)e(t)),

k0(t) =
1

1−φ2
0 (t)∥e(t)∥2 ,

k1(t) =
1

1−φ2
1 (t)∥ė(t)+ k0(t)e(t)∥2 .

r = 3: Here the controller (3.2.1) takes the form

u(t) = − k2(t) ·
[
ë(t)+ 2k0(t)2(φ2

0 (t)e
⊤(t)ė(t)+φ0(t)φ̇0(t)∥e(t)∥2)e(t)

+ k0(t)ė(t)+ k1(t)(ė(t)+ k0(t)e(t))
]
,

k0(t) =
1

1−φ2
0 (t)∥e(t)∥2 ,

k1(t) =
1

1−φ2
1 (t)∥ė(t)+ k0(t)e(t)∥2 ,

k2(t) =
1

1−φ2
2 (t)∥ë(t)+ 2k0(t)2(φ2

0 (t)e⊤(t)ė(t)+φ0(t)φ̇0(t)∥e(t)∥2)e(t)

+k0(t)ė(t)+ k1(t)(ė(t)+ k0(t)e(t))∥2 .

Remark 3.2.2 (The intuition behind the funnel controller (3.2.1)). We like to repeat the
underlying of "classical" funnel controller for systems with relative degree one and input-to-
state stable internal dynamics in [48]. It is based on an idea that if the error e(t) approaches
the funnel boundary, then the gain function k(t) takes a large value. This property incorporate
with high-gain property imposed to system class, keeps e(t) bounded away from the funnel
boundary.
From this basic idea, we describe the working of the controller (3.2.1) through an example
of single-input, single-output system which is depicted in Figure 3.1. We suppose that the
error e = e0 approaches the upper funnel boundary φ0(t)−1 at time t0 > 0. Then k0(t0), and
consequently k0(t0) · e(t0) are very large. Since e1 = ė+ k0 · e evolves in the performance
funnel Fφ1 , we may infer that ė(t0) = e1(t0)− k0(t0) · e(t0) takes a large negative value. It
means that e will be decreased extremely. That is, whenever the error e approaches the funnel
boundary φ0(t)−1, the controller ensures a repelling effect.
This argumentation can be repeated for the functions e1, . . . ,er−2. Finally, since er−1 includes
the first r− 1 derivatives of e, the system with artificial output er−1 has relative degree one,
and the classical high gain property applies to er−1.

We now show feasibility of the funnel controller (3.2.1).
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t

φ0(t)−1

t0

e(t0)φ0(t0) ≈ 1 =⇒ k0(t0)≫ 1

(t0,e1(t0))∈Fφ1=⇒ ė(t0) = e1(t0)−k0(t0)e(t0)≪ 0

e(t)

FIGURE 3.1: Error in the performance funnel Fφ0

Theorem 3.2.3. Consider a system (3.1.1) with strict relative degree r ∈ N and proper-
ties (P1)-(P4). For Φi as defined in (1.1.7), given φi ∈ Φr−i, i = 0, . . . ,r − 1. Let yref ∈
W r,∞(R≥0 → Rm) be a reference signal, and y|[−h,0] = y0 ∈ C r−1([−h,0]→ Rm) an initial
value such that e0, . . . ,er−1 as defined in (3.2.1) fulfill

φi(0)∥ei(0)∥< 1 for i = 0, . . . ,r−1. (3.2.3)

Then the application of the funnel controller (3.2.1) to (3.1.1) yields an initial value problem,
which has a solution, and every maximal solution y : [−h,ω) → Rm, ω ∈ (0,∞], has the
following properties2:

(i) The solution is global (i.e., ω = ∞).

(ii) The input u : R≥0 → Rm, the gain functions k0, . . . ,kr−1 : R≥0 → R and y, . . . ,y(r−1) :
R≥0 → Rm are bounded.

(iii) The functions e0, . . . ,er−1 : R≥0 → Rm evolve in their respective performance funnels
and are uniformly bounded away from the funnel boundaries in the following sense:

∀ i = 0, . . . ,r−1 ∃εi > 0 ∀ t > 0 : ∥ei(t)∥ ≤ φi(t)−1 − εi. (3.2.4)

In particular, the error e(t) = y(t)−yref(t) evolves in the funnel Fφ0 as in (1.1.8) and
stays uniformly away from its boundary.

Proof. We may, without loss of generality, assume that the high-frequency gain matrix func-
tion Γ of system (3.1.1) is pointwisely positive definite. We proceed in several steps.
Step 1: We show that a maximal solution y : [−h,ω) → Rm, ω ∈ (0,∞], of (3.1.1), (3.2.1)
exists. We aim at reformulating (3.1.1), (3.2.1) as an initial value problem

ẋ(t) = F
(
t,x(t),T (x)(t)

)
,

x|[−h,0] =
(

y0, ẏ0, . . . , ( d
dt )

r−1y0
)∣∣∣

[−h,0]
,

(3.2.5)

where x =
(
y, ẏ, . . . ,y(r−1)

)
and F is some suitable continuous function.

Step 1a: Define, for i = 0, . . . ,r−1, the sets

Di :=
{
(t,e0, . . . ,ei) ∈ R≥0 ×Rm ×·· ·×Rm

∣∣ (t,e j) ∈ Fφ j , j = 0, . . . , i
}

,

2Note that maximal solutions are not unique in general.
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where Fφ j is as in (1.1.8), and the functions Ki : Di → Rm recursively by

K0(t,e0) :=
e0

1−φ2
0 (t)∥e0∥2 ,

Ki(t,e0, . . . ,ei) :=
ei

1−φ2
i (t)∥ei∥2 +

∂Ki−1

∂ t
(t,e0, . . . ,ei−1)

+
i−1

∑
j=0

∂Ki−1

∂e j
(t,e0, . . . ,ei−1)

(
e j+1 −

e j

1−φ2
j (t)∥e j∥2

)
.

Choose some interval I ⊆ R≥0 with 0 ∈ I and let (e0, . . . ,er−1) : I → Rrm be such that, for all
t ∈ I,

(
t,e0(t), . . . ,er−1(t)

)
∈ Dr−1 and (e0, . . . ,er−1) satisfies the relations in (3.2.1). Then

e = e0 satisfies, on the interval I,

e(i) = ei −
i−1

∑
j=0

(
d
dt

)i− j−1

(k je j) for all i = 1, . . . ,r−1. (3.2.6)

Step 1b: We show by induction that for all i = 0, . . . ,r−1 we have

∀ t ∈ I :
i

∑
j=0

(
d
dt

)i− j(
k j(t)e j(t)

)
= Ki

(
t,e0(t), . . . ,ei(t)

)
. (3.2.7)

Equation (3.2.7) is obviously true for i = 0. Assume that i ∈ {1, . . . ,r−1} and the statement
holds for i−1. Then

i

∑
j=0

(
d
dt

)i− j(
k j(t)e j(t)

)
= ki(t)ei(t)+

d
dt

(
i−1

∑
j=0

(
d
dt

)i− j−1(
k j(t)e j(t)

))

= ki(t)ei(t)+
d
dt

Ki−1

(
t,e0(t), . . . ,ei−1(t)

)
= Ki

(
t,e0(t), . . . ,ei(t)

)
.

Step 1c: Define
K̃0 : R≥0 ×Rm → Rm, (t,y) 7→ y− yref(t)

and the set
D̃0 :=

{
(t,y) ∈ R≥0 ×Rm

∣∣ (t, K̃0(t,y)
)
∈ D0

}
.

Furthermore, recursively define for i = 1, . . . ,r−1 the maps

K̃i : D̃i−1 ×Rm → Rm,

(t,y0, . . . ,yi) 7→ yi − y(i)ref(t)+Ki−1
(
t, K̃0(t,y0), . . . , K̃i−1(t,y0, . . . ,yi−1)

)
and the sets

D̃i :=
{
(t,y0, . . . ,yi) ∈ D̃i−1 ×Rm

∣∣ (t, K̃0(t,y0), . . . , K̃i(t,y0, . . . ,yi)
)
∈ Di

}
.

It now follows from a simple induction, invoking (3.2.6) and (3.2.7) that, for all t ∈ I and all
i = 0, . . . ,r−1,

ei(t) = y(i)(t)− y(i)ref(t)+Ki−1
(
t,e0(t), . . . ,ei−1(t)

)
= K̃i

(
t,y(t), ẏ(t), . . . ,y(i)(t)

)
.
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Therefore, the feedback u in (3.2.1) reads

u(t) =
−K̃r−1

(
t,y(t), . . . ,y(r−1)(t)

)
1−φ2

r−1(t)∥K̃r−1
(
t,y(t), . . . ,y(r−1)(t)

)
∥2

, t ∈ I.

Step 1d: Define

F : D̃r−1 ×Rq → Rrm,

(t,y0,y1, . . . ,yr−1,η) 7→

(
y1, . . . ,yr−1, f

(
d(t),η

)
− Γ(d(t),η)K̃r−1(t,y0, . . . ,yr−1)

1−φ2
r−1(t)∥K̃r−1(t,y0, . . . ,yr−1)∥2

)
.

Then the initial value problem (3.1.1), (3.2.1) is equivalent to (3.2.5). In particular, (0,x(0))∈
D̃r−1 and F is measurable in t, continuous in (y0,y1, . . . ,yr−1,η) and locally essentially
bounded. Hence an application of [46, Theorem B.1]3 yields existence of solutions to (3.2.5)
and every solution can be extended to a maximal solution. Furthermore, for a maximal solu-
tion x =

(
y, ẏ, . . . ,y(r−1)

)
: [−h,ω)→ Rrm, ω ∈ (0,∞], of (3.2.5), the closure of the graph of

this solution is not a compact subset of D̃r−1. As a consequence, for (e0, . . . ,er−1) : [0,ω)→
Rrm defined by

ei(t) := K̃i
(
t,y(t), ẏ(t), . . . ,y(i)(t)

)
, t ∈ [0,ω),

it follows that the closure of the graph of (e0, . . . ,er−1) is not a compact subset of Dr−1.
Step 2: We show that k0, . . . ,kr−1 as in (3.2.1) are bounded on [0,ω). For all i ∈ {0, . . . ,r−
1}, set ψi(t) := φi(t)−1 for t ∈ (0,ω), let τi ∈ (0,ω) be arbitrary but fixed and set λi :=

inft∈(0,ω) ψi(t) > 0. Since φ̇i is bounded and liminf
t→∞

φi(t) > 0 we find that
d
dt

ψi|[τi,∞) is

bounded and hence there exists a Lipschitz bound Li > 0 of ψi|[τi,∞).
Step 2a: We show that ki is bounded for i ∈ {0, . . . ,r− 2}. Choose εi > 0 small enough so
that

εi ≤ min
{

λi

2
, inf
t∈(0,τi]

(ψi(t)−∥ei(t)∥)
}

and Li ≤
λ 2

i

4εi
− sup

t∈[τi,∞)

|ψi+1(t)|. (3.2.8)

Using a standard procedure in funnel control, see e.g. [41], we show that for all t ∈ (0,ω)
holds ψi(t)−∥ei(t)∥ ≥ εi. By definition of εi this holds on (0,τi]. Seeking a contradiction
suppose that there exists some ti1 ∈ [τi,ω) with ψi(ti1)−∥ei(ti1)∥< εi. Set

ti0 = max{ t ∈ [τi, ti1) | ψi(t)−∥ei(t)∥= εi } .

Then, for all t ∈ [ti0, ti1], we have that

ψi(t)−∥ei(t)∥ ≤ εi,

∥ei(t)∥ ≥ ψi(t)− εi ≥
λi

2
,

ki(t) =
1

1−φ2
i (t)∥ei(t)∥2 ≥ ψi(t)

2εi
≥ λi

2εi
.

3In [46] a domain D ⊆ R≥0 ×R is considered, but the generalization to the higher dimensional case is
straightforward.
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Therefore, we find that by (3.2.1)

1
2

d
dt
∥ei(t)∥2 = e⊤i (t) (ei+1(t)− ki(t)ei(t))

= −ki(t)∥ei(t)∥2 + e⊤i (t)ei+1(t)

≤

(
−λ 2

i

4εi
+ sup

t∈[τi,∞)

|ψi+1(t)|

)
∥ei(t)∥

(3.2.8)
≤ −Li∥ei(t)∥

for all t ∈ [ti0, ti1]. Then

∥ei(ti1)∥−∥ei(ti0)∥=
ti1∫

ti0

1
2
∥ei(t)∥−1 d

dt
∥ei(t)∥2 dt

≤−Li(ti1 − ti0)

≤−|ψi(ti1)−ψi(ti0)|
≤ ψi(ti1)−ψi(ti0),

and thus we obtain εi = ψi(ti0)−∥ei(ti0)∥ ≤ ψi(ti1)−∥ei(ti1)∥< εi, a contradiction.
Step 2b: We show that kr−1 is bounded. By (3.2.6) and Step 1 we have, invoking x =
(y, ẏ, . . . ,y(r−1)),

ėr−1(t) = f
(
d(t),T (x)(t)

)
− kr−1(t)Γ

(
d(t),T (x)(t)

)
er−1(t)

− y(r)ref (t)+
r−2

∑
i=0

(
d
dt

)r−i−1

[ki(t)ei(t)] .

In the following we will prove by induction that there exist constants Mi, j,Ni, j,Ki, j > 0 such
that, for all t ∈ [0,ω),∥∥∥∥∥

(
d
dt

) j

[ki(t)ei(t)]

∥∥∥∥∥≤ Mi, j,

∥∥∥∥∥
(

d
dt

) j

ei(t)

∥∥∥∥∥≤ Ni, j,

∣∣∣∣∣
(

d
dt

) j

ki(t)

∣∣∣∣∣≤ Ki, j, (3.2.9)

for i = 0, . . . ,r−2, j = 0, . . . ,r−1− i. First, we may infer from Step 2a that k0, . . . ,kr−2 are
bounded. Furthermore, e0, . . . ,er−1 are bounded since they evolve in the respective perfor-
mance funnels, cf. (3.2.1). Therefore, (3.2.9) is true whenever j = 0. We prove (3.2.9) for
i = r−2 and j = 1: We find that

ėr−2(t) = er−1(t)− kr−2(t)er−2(t),

k̇r−2(t) = 2k2
r−2(t)

(
φ2

r−2(t)e
⊤
r−2(t)ėr−2(t)+φr−2(t)φ̇r−2(t)∥er−2(t)∥2),

d
dt

[kr−2(t)er−2(t)] = k̇r−2(t)er−2(t)+ kr−2(t)ėr−2(t),

and all of these signals are bounded since kr−2,φr−2, φ̇r−2,er−2,er−1 are bounded. Now let
p ∈ {0, . . . ,r− 3} and q ∈ {0, . . . ,r− 1− p} and assume that (3.2.9) is true for all i = p+
1, . . . ,r−2 and all j = 0, . . . ,r−1− i as well as for i = p and all j = 0, . . . ,q−1. We show
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that it is true for i = p and j = q:(
d
dt

)q

ep(t) =
(

d
dt

)q−1

[ep+1(t)− kp(t)ep(t)]

=

(
d
dt

)q−1

ep+1(t)−
(

d
dt

)q−1

[kp(t)ep(t)] ,(
d
dt

)q

kp(t) =
(

d
dt

)q−1(
2k2

p(t)
(
φ2

p(t)e
⊤
p (t)ėp(t)+φp(t)φ̇p(t)∥ep(t)∥2)),(

d
dt

)q

[kp(t)ep(t)] =
(

d
dt

)q−1 (
k̇p(t)ep(t)+ kp(t)ėp(t)

)
.

Then, successive application of the product rule and using the induction hypothesis as well as
the fact that φp, φ̇p, . . . ,φ (r−p)

p are bounded, yields that the above terms are bounded. There-
fore, the proof of (3.2.9) is complete.
By (3.2.9) and (3.2.6) it follows that e(i) is bounded on [0,ω) and hence, invoking bounded-
ness of yref, . . . ,y

(r−1)
ref , also y(i) is bounded on [0,ω) for all i = 0, . . . ,r−1. By the bounded-

input, bounded-output property (P4a) of the operator T it follows that T (x) is bounded,
where x =

(
y, ẏ, . . . ,y(r−1)

)
. We denote MT := ∥T (x)|[0,ω)∥∞. Since f is continuous and d

is bounded, we may further infer that f (d(·),T (x)(·)) is bounded on [0,ω), i.e., there exists
MF > 0 such that

for almost all t ∈ [0,ω) : ∥ f
(
d(t),T (x)(t)

)
∥ ≤ MF .

Define the compact set

M :=

 (δ ,η ,e) ∈ Rp ×Rq ×Rm

∣∣∣∣∣∣
∥δ∥ ≤ ∥d|[0,ω)∥∞
∥η∥ ≤ MT

∥e∥= 1.

 ,

then, since Γ is pointwise positive definite and the map

M ∋ (δ ,η ,e) 7→ e⊤Γ(δ ,η)e ∈ R>0

is continuous, it follows that there exists γ > 0 such that

∀ (δ ,η ,e) ∈ M : e⊤Γ(δ ,η)e ≥ γ .

Therefore, we have

er−1(t)⊤Γ
(
d(t),T (x)(t)

)
er−1(t)

=

(
er−1(t)⊤

∥er−1(t)∥
Γ
(
d(t),T (x)(t)

) er−1(t)
∥er−1(t)∥

)
∥er−1(t)∥2

≥ γ∥er−1(t)∥2

for all t ∈ [0,ω). Now, choose εr−1 > 0 small enough so that

εr−1 ≤ min
{

λr−1

2
, inf
t∈(0,τr−1]

(ψr−1(t)−∥er−1(t)∥)
}
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and

Lr−1 ≤
λ 2

r−1

4εr−1
γ −MF − sup

t∈[0,ω)

∥y(r)ref (t)∥−
r−2

∑
i=0

Mi,r−1−i. (3.2.10)

We show that
∀ t ∈ (0,ω) : ψr−1(t)−∥er−1(t)∥ ≥ εr−1.

By definition of εr−1 this holds on (0,τr−1]. Seeking a contradiction suppose that

∃ tr−1,1 ∈ [τr−1,ω) : ψr−1(tr−1,1)−∥er−1(tr−1,1)∥< εr−1.

Define
tr−1,0 = max{ t ∈ [τr−1, tr−1,1) | ψr−1(t)−∥er−1(t)∥= εr−1 } ,

then, for all t ∈ [tr−1,0, tr−1,1], we have that

ψr−1(t)−∥er−1(t)∥ ≤ εr−1,

∥er−1(t)∥ ≥ ψr−1(t)− εr−1 ≥
λr−1

2
,

kr−1(t) =
1

1−φ2
r−1(t)∥er−1(t)∥2 ≥ ψr−1(t)

2εr−1
≥ λr−1

2εr−1
.

We obtain, for all t ∈ [tr−1,0, tr−1,1], that

1
2

d
dt
∥er−1(t)∥2 = e⊤r−1(t)ėr−1(t)

= e⊤r−1(t)
(

f
(
d(t),T (x)(t)

)
− kr−1(t)Γ

(
d(t),T (x)(t)

)
er−1(t)

− y(r)ref (t)+
r−2

∑
i=0

(
d
dt

)r−1−i

[ki(t)ei(t)]
)

≤

(
MF −

λ 2
r−1

4εr−1
γ + sup

t∈(0,ω)

∥y(r)ref (t)∥+
r−2

∑
i=0

Mi,r−1−i

)
∥er−1(t)∥

(3.2.10)
≤ −Lr−1∥er−1(t)∥,

and therefore,

∥er−1(tr−1,1)∥−∥er−1(tr−1,0)∥=
tr−1,1∫

tr−1,0

1
2
∥er−1(t)∥−1 d

dt
∥er−1(t)∥2 dt

≤−Lr−1(tr−1,1 − tr−1,0)

≤−|ψr−1(tr−1,1)−ψr−1(tr−1,0)|
≤ ψr−1(tr−1,1)−ψr−1(tr−1,0),

and thus we obtain

εr−1 = ψr−1(tr−1,0)−∥er−1(tr−1,0)∥ ≤ ψr−1(tr−1,1)−∥er−1(tr−1,1)∥< εr−1,

a contradiction.
Step 3: We show that ω = ∞. Assume that ω < ∞. Then, since ei,ki, i = 0, . . . ,r − 1 are
bounded by Step 2, it follows that the closure of the graph of (e0,e1, . . . ,er−1) is a compact
subset of Dr−1, a contradiction. Hence ω = ∞ which shows (i). Statements (ii) and (iii) are
then immediate consequences of Step 2.
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Remark 3.2.4. Note that it follows from Theorem 3.2.3 that the funnel controller (3.2.1)
solves the Prescribed Performance Control Problem as formulated for the system class in
[85]. Furthermore, the funnel controller (3.2.1) is of much lower complexity than the con-
troller proposed in [85].

In the following we derive explicit formulas for the εi appearing in (3.2.4) and bounds for
the input u and the derivatives e(i) of the tracking error. We use the notation and assumptions
from Theorem 3.2.3. For simplicity we assume that we have "finite" funnel boundaries, i.e.,
φi(0) > 0 for i = 0, . . . ,r−1.

For all i∈{0, . . . ,r−1}, set ψi(t) := φi(t)−1 for all t ≥ 0 and λi := inf
t≥0

ψi(t)> 0. Since φ̇i

is bounded and liminf
t→∞

φi(t)> 0 we find that ψ̇i is bounded and hence there exists a Lipschitz
bound Li > 0 of ψi. For i = 0, . . . ,r−2 set

εi := min
{

λ 2
i

4(Li + ∥ψi+1∥∞)
,
λi

2
,ψi(0)−∥ei(0)∥

}
.

Then εi satisfies (3.2.8) and hence ψi(t)−∥ei(t)∥ ≥ εi for all t > 0 and i = 0, . . . ,r − 2 as
shown in the proof of Theorem 3.2.3.

For i = r − 1 we first need to define the following constants in an iterative way. Set
Ni,0 := ∥ψi∥∞ for i = 0, . . . ,r−1 and

Ki,0 :=
Ni,0

εi
, Mi,0 := Ni,0 ·Ki,0

for i = 0, . . . ,r−2. Therefore, (3.2.9) holds for i = 0, . . . ,r−2 and j = 0 since

ki(t) =
1

(1−φi(t)∥ei(t)∥)(1+φi(t)∥ei(t)∥)
≤ 1

1−φi(t)∥ei(t)∥
=

ψi(t)
ψi(t)−∥ei(t)∥

≤ ψi(t)
εi

, t ≥ 0.

Define, for i = 0, . . . ,r−2 and j = 0, . . . ,r− i−1

Ni, j := Ni+1, j−1 +Mi, j−1,

Li,0 := N2
i,0,

Li, j := 2
j−1

∑
l=0

(
j−1

l

)
Ni,l ·Ni, j−l ,

Φi,0 := ∥φi∥2
∞,

Φi, j := 2
j−1

∑
l=0

(
j−1

l

)
∥φ (l)

i ∥∞ · ∥φ ( j−l)
i ∥∞,

Σi, j :=
1
2
(Φi,0 ·Li, j+1 +Φi,1 ·Li, j +Φi, j ·Li,1 +Li,0 ·Φi, j+1)

+
j−1

∑
l1=1

(
j

l1

)(
Φi,l1

j−l1

∑
l2=0

(
j− l1

l2

)
Ni,l2 ·Ni, j−l1−l2 +Li, j−l1

l1

∑
l2=0

(
l1
l2

)
∥φ (l2)

i ∥∞ · ∥φ (l1−l2)
i ∥∞

)
,

Ki, j := K2
i,0 ·Σi, j−1 +

j−1

∑
l1=1

(
j−1

l1

)
Σi, j−l1−1

(
l1−1

∑
l2=0

(
l1 −1

l2

)
Ki,l2+1 ·Ki,l1−l2−1

)
,

Mi, j :=
j

∑
l=0

(
j
l

)
Ki,l ·Ni, j−l .
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Then cumbersome but straightforward calculations show that the above defined constants
Ni, j, Ki, j, Mi, j satisfy (3.2.9). Set

K̂−1 := 0, K̂i :=
i

∑
j=0

M j,i− j for i = 0, . . . ,r−2.

Using the notation from the proof of Theorem 3.2.3 we see that any maximal solution y :
[−h,∞)→ Rm of (3.1.1), (3.2.1) satisfies

y(i)(t) = ei(t)+ y(i)ref(t)−Ki−1
(
t,e0(t), . . . ,ei−1(t)

)
, t ≥ 0.

Therefore, using (3.2.7), it follows that

∥e(i)(t)∥ ≤ ψi(t)+ K̂i−1, t ≥ 0,

and
∥y(i)∥∞ ≤ ∥ψi∥∞ + ∥y(i)ref∥∞ + K̂i−1

for i = 0, . . . ,r−1. Define the compact set

B :=
{

ζ ∈ C ([−h,∞)→ Rm)r
∣∣∣ ∥ζi∥∞ ≤ ∥ψi−1∥∞ + ∥y(i−1)

ref ∥∞ + K̂i−2, i = 1, . . . ,r
}

,

and
M1 := sup

ζ∈B

∥T (ζ )∥∞.

With this we may set

MF := sup{ ∥ f (δ ,z)∥ | ∥z∥ ≤ M1, ∧ ∥δ∥ ≤ ∥d∥∞ } .

Furthermore, let the set M be as in Step 2b of the proof of Theorem 3.2.3 and set

γ := min
(δ ,η ,e)∈M

e⊤Γ(δ ,η)e > 0.

Now we are in the position to define

εr−1 := min

 γ ·λ 2
r−1

4
(

Lr−1 +MF + ∥y(r)ref ∥∞ +∑r−2
i=0 Mi,r−i−1

) ,
λr−1

2
,ψr−1(0)−∥er−1(0)∥

 ,

and

ubd :=
∥ψr−1∥2

∞
εr−1

,

which is an upper bound for the input u in the closed-loop system as can be concluded

from the proof of Theorem 3.2.3. Then εr−1 satisfies (3.2.10) and εr−1 ≤ λr−1

2
and hence

ψr−1(t)−∥er−1(t)∥ ≥ εr−1 for all t > 0. We may now also extend the definitions of the

constants Ki,0, Mi,0 to i = r − 1; in particular, Kr−1,0 :=
Nr−1,0

εr−1
is a bound for kr−1. We

summarize our findings in the following result.

Proposition 3.2.5. Use the notation and assumptions from Theorem 3.2.3 and assume that
φi(0)> 0 for i= 0, . . . ,r−1. Then the following statements are true for any maximal solution
y : [−h,∞)→ Rm of (3.2.1),(3.1.1):

1. (3.2.4) holds with ε0, . . . ,εr−1 as defined above,
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2. ki(t) ≤ Ki,0 and ∥e(i)(t)∥ ≤ φi(t)−1 + K̂i−1 for all t ≥ 0 and all i = 0, . . . ,r−1,

3. ∥u∥∞ ≤ ubd.

Remark 3.2.6.

(i) Proposition 3.2.5 may be exploited for the design of suitable funnel functions φ0, . . . ,φr−1
in the presence of control constraints in the following way: If a bound û is given so
that the desired control u(·) (of the form as in (3.2.1)) must satisfy ∥u(t)∥ ≤ û for all
t ≥ 0, then, if possible, φ0, . . . ,φr−1 must be chosen such that ubd ≤ û. Of course, there
is a minimum feasibility requirement on the control depending on the system parame-
ters, i.e., a lower bound for ubd. For instance, if r = 1 and we choose φ0 = ψ−1

0 to be

constant and assume that ∥e(0)∥ ≤ ψ0

2
, then L0 = 0,

ε0 =
γψ2

0

4max
{ψ0

2
,MF + ∥ẏref∥∞

} ,

MF = MF(ψ0) = sup

{
∥ f (δ ,z)∥

∣∣∣∣∣ ∥δ∥ ≤ ∥d∥∞ ∧∥z∥ ≤ sup
∥ζ∥∞≤ψ0+∥yref∥∞

∥T (ζ )∥∞

}

and hence

ubd =
ψ2

0
ε0

=
4max

{ψ0

2
,MF(ψ0)+ ∥ẏref∥∞

}
γ

↘
ψ0→0

4
(
M∗

F + ∥ẏref∥∞
)

γ
,

where

M∗
F := sup

{
∥ f (δ ,z)∥

∣∣∣∣∣ ∥z∥ ≤ sup
∥ζ∥∞≤∥yref∥∞

∥T (ζ )∥∞ ∧∥δ∥ ≤ ∥d∥∞

}
.

Obviously,
ψ0

2
is monotonically increasing in ψ0 and MF(ψ0) is monotonically non-

increasing in ψ0, thus in the choice of ψ0 there is trade-off between these two quanti-
ties.

(ii) In recent result, Berger[8] has succesful improved the estimate for the bound of track-
ing errors derivatives in Proposition 3.2.5. Indeed, refer to [8, Sec.4], ψi : R≥0 → R>0
is continuously differentiable and ψ̇i is bounded for i = 0, . . . ,r − 1. Set εi(t) is the
solution of following initial value problems

ε̇i(t) = ψ̇i(t)−ψi+1(t)+
ψi(t)(ψi(t)− εi(t))

2εi(t)
,

εi(0) = ψi(0)−∥ei(0)∥,
(3.2.11)

for i = 0, . . . ,r−2. In [8, Sec.4], Berger shows that (3.2.11) has a unique global solu-
tion εi : R≥0 → R satisfying

εi,min ≤ εi(t) ≤ ψi(t)− εi,max for all t ≥ 0,
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with

λi := inf
t≥0

ψi(t) > 0, i = 0, . . . ,r−2,

κi := ∥ψi+1 − ψ̇i∥∞, i = 0, . . . ,r−2,

εi,min := min
{

λ 2
i

2κi + ∥ψi∥∞
,ψi(0)−∥ei(0)∥

}
> 0,

εi,max := min
{

λi+1λi

∥ψi∥∞
,
λi

2
,∥ei(0)∥

}
≤ 0.

Furthermore,
∥ei(t)∥ ≤ ψi(t)− εi(t),

ki(t) =
1

1−φ2
i (t)∥ei(t)∥2 ≤ ψi(t)

εi(t)
,

(3.2.12)

for i = 0, . . . ,r−2, t ≥ 0.
Therefore, the estimate of ∥e(i)(t)∥ for i = 0, . . . ,r − 2 in Proposition 3.2.5 can be
improved by time varying function εi(t); and still ensuring that εi(·) can be calculated
a priori. For instance, if r ≥ 4, we have a priori estimation of ë(t). Now we calculate
ë(t) from (3.2.1).

ë(t) = e2(t)− (k0(t)+ k1(t))e1(t)+ k0(t)2e(t)

− k0(t)2
[
2φ0(t)φ̇0(t)∥e(t)∥2 +φ0(t)2e(t)⊤(e1(t)− k0(t)e(t))

]
e(t).

In conjunction with (3.2.12), we have a priori estimation of ë(t)

∥ë(t)∥ ≤
(

ψ2(t)− ε2(t)
)

+

[
ψ0(t)
ε0(t)

+
ψ1(t)
ε1(t)

+ 2
(ψ0(t)

ε0(t)

)2
φ0(t)2

(
ψ0(t)− ε0(t)

)2
](

ψ1(t)− ε1(t)
)

+

[(ψ0(t)
ε0(t)

)2
+ 2
(ψ0(t)

ε0(t)

)3
φ0(t)2

(
ψ0(t)− ε0(t)

)2
](

ψ0(t)− ε0(t)
)

+ 2
(ψ0(t)

ε0(t)

)2
|φ̇0(t)|

(
ψ0(t)− ε0(t)

)2
. (3.2.13)

for all t ≥ 0.
We note that εi depends only on ψi, ψi+1 and ∥ei(0)∥. For the typical funnel functions,
it is supposed that lim

t→∞
ψi(t) = λi > 0. Hence, for very large times t, we may have

ψi(t) ≈ λi, ψi+1(t) ≈ λi+1, and ψ̇i(t) ≈ 0. Using (3.2.11), we can approximate εi(t)
by the solution of differential equation

ẋ(t) = −λi+1 +
λi(λi − x(t))

2x(t)
.

This implies that εi(t) ≈
λ 2

i

2λi+1 +λi
. As a result, we have

ψi(t)
εi(t)

≈ 2λi+1

λi
+ 1.
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Therefore, for very large times t, and λi+1 ≤ βλi with β > 0, we can choose pri-

ori a constant δ > 0 such that
ψi(t)
εi(t)

< δ for i = 0, . . . ,r − 2. As a consequence, if

functions θi are given such that ∥e(i)(t)∥ ≤ θi(t) must be satisfied for all t ≥ 0 and
all i = 0, . . . ,r− 1, then it always posible to choose ψ0, . . . ,ψr−1 sufficiently small to
achieve this.

Remark 3.2.7. We recall the linear differential-algebraic system with positive strict relative
degree r ∈ N mentioned in Remark 3.1.1.

Eẋ(t) = Ax(t)+Bu(t), x(0) = x0 ∈ Rn

y(t) =Cx(t),

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and Γ = lim
s→∞

srC(sE −A)−1B ∈ Rm×m is positive
(negative) definite. We will show that this kind of systems can be applied funnel controller
(3.2.1) with the condiction (3.2.2) is substituted by

yref ∈ W n,∞(R≥0 → Rm),

φ0 ∈ Φn, φ1 ∈ Φn−1, . . . , φr−1 ∈ Φn−r+1.
(3.2.14)

Proposition 3.2.8. Let [E,A,B,C] ∈ Σn,n,m,m be regular, has positive strict relative degree
r ∈ N, positive (negative) definite high frequency gain matrix Γ = lim

s→∞
srC(sE −A)−1B, and

asymptotically stable zero dynamics. For funnel functions φi, i = 0, . . . ,r−1, reference signal
yref as in (3.2.14), and any consistent initial value x0 ∈ Rn such that e0, . . . ,er−1 as defined in
(3.2.1) fulfill

φi(0)∥ei(0)∥< 1 for i = 0, . . . ,r−1.

Then the application of the funnel controller (3.2.1) to (3.1.2) yields an initial value prob-
lem, which has a solution, and every maximal solution x : [0,ω)→ Rn, ω ∈ (0,∞], has the
following properties:

(i) The solution is global (i.e., ω = ∞).

(ii) The input u : R≥0 → Rm, the gain functions k0, . . . ,kr−1 : R≥0 → R and x : R≥0 → Rn

are bounded.

(iii) The functions e0, . . . ,er−1 : R≥0 → Rm evolve in their respective performance funnels
and are uniformly bounded away from the funnel boundaries in the following sense:

∀ i = 0, . . . ,r−1 ∃εi > 0 ∀ t > 0 : ∥ei(t)∥ ≤ φi(t)−1 − εi.

In particular, the error e(t) = Cx(t)− yref(t) evolves in the funnel Fφ0 as in (1.1.8)
and stays uniformly away from its boundary.

Proof. Without loss of generality, we may consider [E,A,B,C] in the form

y(r)(t) =
r

∑
i=1

Riy(i−1)(t)+ Sη(t)+Γu(t), y(0) =Cx0,

η̇(t) = Py(t)+Qη(t), η(0) = η0 ∈ Rµ ,

xc(t) = −
ν−1

∑
i=0

Ni
cBcu(i)(t),

xc̄(t) = 0,
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where ν is the index of sE − A, nc,nc̄ ∈ N0, µ = n − nc − nc̄ − rm, Ri ∈ Rm×m for i =
1,2, . . . ,r, S ∈ Rm×µ , P ∈ Rµ×m, Bc ∈ Rnc×m, Nc ∈ Rnc×nc is nilpotent with index ν , and
rank

[
Nc Bc

]
= nc. Q ∈ Rµ×µ is a Hurwitz matrix.

Ignoring the last two algebraic equation of that form, the claim in (i), (iii), and the bound-
edness of u, k0, . . . ,kr−1 follow directly from Theorem 3.2.3. It remains to show that x is
a bounded function. Indeed, we have Nc ∈ Rnc×nc is nilpotent with index ν , then ν ≤ nc.
Hence, ν + r ≤ n. Since φi ∈ Φn−i, it is obtained that u(·) at least (ν −1) times continuously
differentiable and all of these derivatives are bounded functions. Moreover,

xc(t) = −
ν−1

∑
i=0

Ni
cBcu(i)(t),

xc̄(t) = 0.

Therefore, xc and xc̄ are bounded function. This implies the boundedness of x.

3.3 Applications

3.3.1 Mass on car system

We consider an example of a mass-spring system mounted on a car from [81] to show the
work of (3.2.1) in simulation. The mass m2[kg] moves on a ramp which is inclined by the
angle α [rad] and mounted on a car with mass m1[kg], for which it is possible to control the
force u = F [N] acting on it, see Figure 3.2. The equations of motion for the system are given
by [

m1 +m2 m2 cosα
m2 cosα m2

](
ẍ(t)
s̈(t)

)
+

(
0

ks(t)+ dṡ(t)

)
=

(
u(t)

0

)
, (3.3.1)

where x[m] is the horizontal car position and s[m] the relative position of the mass on the
ramp. The constants k[N/m], d[Ns/m] are the coefficients of the spring and damper, resp.
The output of the system is given by the horizontal position of the mass on the ramp,

y(t) = x(t)+ s(t)cosα .

F

y

a=const

x

s

FIGURE 3.2: Mass on car system.

The reference trajectory is yref(t) = cos t[m]. System (3.3.1) can be reformulated such that it
belongs to the class (3.1.1), see [81], with a relative degree r depending on the angle α [rad]
and the damping d[Ns/m]. We consider two cases.
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Case 1: If 0 < α < π
2 , see Figure 3.2, then system (3.3.1) has relative degree r = 2 and

the high-frequency gain matrix reads Γ = sin2 α
m1+m2 sin2 α > 0; for the simulation, we choose the

parameters m1 = 4[kg],m2 = 1[kg],k = 2[N/m],d = 1[Ns/m], the initial values x(0) = 0,
ẋ(0) = 0, s(0) = 0, ṡ(0) = 0 and α = π

4 . For the controller (3.2.1) we choose the funnel
functions

φ0(t) = (5e−2t + 0.1)−1, φ1(t) = (10e−2t + 0.5)−1,

and obviously the initial errors lie within the respective funnel boundaries, i.e., (3.2.3) is
satisfied, thus Theorem 3.2.3 yields that funnel control is feasible. We compare the controller
(3.2.1) with the proportional-derivative funnel controller (1.1.11) proposed in [34], which has
been explained in Subsection 1.1.3, and choose the same funnel functions φ0,φ1 for it. These
functions satisfy the compatibility condition (1.1.12) and hence the controller (1.1.11) may
be applied to (3.3.1) by [34].
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Fig.3.3a: Funnel and tracking errors
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Fig.3.3b: Input functions

FIGURE 3.3: Simulation of the controllers (3.2.1) and (1.1.11) for the mass
on car system (3.3.1) with α =

π
4

.

The simulation of the controllers (3.2.1) and (1.1.11) applied to (3.3.1) over the time
interval [0,10] has been performed in MATLAB (solver: ode45, rel. tol.: 10−14, abs. tol.:
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10−10) and is depicted in Figure 3.3. Figure 3.3a shows the tracking errors corresponding to
the two different controllers applied to the system, while Figure 3.3b shows the respective
input functions generated by them. It can be seen that our proposed funnel controller (3.2.1)
requires less input action than the controller (1.1.11), both in magnitude and over time. For
instance, in the time interval [3,5.5] there is no input action generated by (3.2.1), but several
(large) oscillations generated by (1.1.11). It seems that the controller (3.2.1) better exploits
the inherent system properties and thus requires less input action than the controller proposed
in [34].

Case 2: If α = 0 and d ̸= 0, see Figure 3.4, then system (3.3.1) has relative degree r = 3
and high-frequency gain matrix Γ = d

m1m2
> 0. For the simulation, we choose the parameters

m1 = 4[kg],m2 = 1[kg],k = 2[N/m],d = 1[Ns/m] and the initial values x(0) = 0, ẋ(0) = 0,
s(0) = 0, ṡ(0) = 0.

F

y
x

s

FIGURE 3.4: Mass on car system with α = 0.

For the illustration of the controller (3.2.1) we choose the funnel functions

φ0(t) = (5e−2t + 2)−1, φ1(t) = φ2(t) = (ae−t + b)−1

with the three sets of parameter values

C1 : a = 1.4, b = 0.05,

C2 : a = 5, b = 0.05,

C3 : a = 1.4, b = 0.5;

the initial errors lie within the respective funnel boundaries, i.e., conditions (3.2.3) are satis-
fied, thus Theorem 3.2.3 yields that funnel control is feasible.

The simulation of the controller (3.2.1) with the different parameter sets C1–C3 applied
to the relative degree 3 system (3.3.1) with α = 0 over the time interval [0,10] has been
performed in MATLAB (solver: ode45, rel. tol.: 10−14, abs. tol.: 10−10) and is depicted in
Figure 3.5. Figure 3.5a shows the tracking errors corresponding to the different controllers
applied to the system, while Figure 3.5b shows the respective input functions generated by
them. The difference in the performance of the controllers is discussed in the next subsection.

We did not provide the comparison of the controller (3.2.1) with the backstepping funnel
controller (1.1.10) proposed in [50] here. A simulation of (1.1.10) for the system (3.3.1)
with funnel function φ = φ0 is not feasible due to numerical issues, cf. the explanation in
Subsection 1.1.3.

Now, we discuss the influence of the design parameters of the funnel controller (3.2.1).
Of particular interest is the influence of the choice of the funnel functions φi in (3.2.1) on the
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Fig.3.5a: Funnel and tracking errors
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FIGURE 3.5: Simulation of the controllers (3.2.1) for the mass on car system
(3.3.1) with α = 0 and different sets of funnel functions φ1,φ2.

controller performance, that means the maximal absolute value of the input u and its oscil-
lation behavior. We assume that the choice of φ0 is done by the designer based on specific
objectives for the transient behavior of the tracking error such as desired tracking accuracy,
and the choice of φi is free apart from the initial conditions (3.2.3) for i = 1, . . . ,r − 1. In
principle, based on the explicit formula for ubd derived in Proposition 3.2.5, a minimization
of this bound over all possible funnel functions could be performed. This is a highly com-
plicated venture left for future research. However, as a rule of thumb, we may conclude that
the performance funnels Fφi corresponding to φi should be chosen as tight as possible, i.e.,
starting as close to ∥ei(0)∥ as possible and then decaying to a small value.

In order to illustrate this we consider Case 2 of the mass on car system (3.3.1) and discuss
the resulting controller performance for the choices of parameter values C1–C3. The case C1
represents an “optimal” choice of the parameters as far as the experiments show. It can be
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FIGURE 3.6: Planar rigid revolute joint robotic manipulator.

see in Figure 3.3b that increasing the value of a as in C2 results in a peaking behavior of
the input u for small t, while increasing the value of b as in C3 leads to possible peaks at
later time instants, but smaller maximal input values than in C2 in general. Furthermore, the
distance of the tracking error to the funnel boundary seems to depend on the parameter b; in
case C3 (for larger b), the error gets closer to the boundary than in cases C1 and C2. These
observations have been confirmed in several other experiments.

In order to improve the performance of the controller and reduce unnecessary large con-
trol actions one may use alternative gain functions in (3.2.1) as discussed e.g. in [51]. For
instance, using the future distance to the future funnel boundary instead of the vertical dis-
tance to the funnel boundary as in (3.2.1) may increase the ability of the controller (3.2.1)
to avoid large control values. For instance, using the future distance to the future funnel
boundary instead of the vertical distance to the funnel boundary as in (3.2.1) may increase
the ability of the controller (3.2.1) to avoid large control values.

3.3.2 Robotic manipulator

We show the application of the funnel controller (3.2.1) for a nonlinear multi-input, multi-
output system by considering an example of a robotic manipulator from [33], see also [58,
p. 77], as depicted Figure 3.6. The robotic manipulator is planar, rigid, with revolute joints
and has two degrees of freedom. The two joints are actuated by u1[Nm] and u2[Nm]. We
assume that the links are massless, have lengths l1[m] and l2[m], resp., and point masses
m1[kg] and m2[kg] are attached to their ends. The two outputs are the joint angles y1[rad]
and y2[rad] and the equations of motion are given by (see also [84, pp.259])

M(y(t))ÿ(t)+C(y(t), ẏ(t))ẏ(t)+ g(y(t)) = u(t) (3.3.2)

with initial value (y(0), ẏ(0)) = (0,0), inertia matrix

M : R2 → R2×2,

(y1,y2) 7→ M(y1,y2) :=
[

m1l2
1 +m2(l2

1 + l2
2 + 2l1l2 cos(y2)) m2(l2

2 + l1l2 cos(y2))
m2(l2

2 + l1l2 cos(y2)) m2l2
2

]
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centrifugal and Coriolis force matrix

C : R2 ×R2 → R2×2,

(y1,y2,v1,v2) 7→C(y1,y2,v1,v2) :=
[
−2m2l1l2 sin(y2)v1 −m2l1l2 sin(y2)v2
−m2l1l2 sin(y2)v1 0

]
,

and gravity vector

g : R2 → R2,

(y1,y2) 7→ g(y1,y2) := g
[

m1l1 cos(y1)+m2(l1 cos(y1)+ l2 cos(y1 + y2))
m2l2 cos(y1 + y2)

]
,

where g = 9.81[m/s2] is the acceleration of gravity. If we multiply system (3.3.2) with
M(y(t))−1, which is pointwise positive definite, from the left we see that the resulting system
belongs to the class (3.1.1) with r = m = 2.

For the simulation, we choose the parameters m1 = m2 = 1[kg], l1 = l2 = 1[m] and the
reference trajectories yref,1(t) = sin t[rad] and yref,2(t) = sin2t[rad]. For the controller (3.2.1)
we choose the funnel functions

φ0(t) = (e−2t + 0.1)−1, φ1(t) = (3e−2t + 0.1)−1.

The initial errors lie within the respective funnel boundaries, i.e., conditions (3.2.3) are sat-
isfied, thus Theorem 3.2.3 yields that funnel control is feasible. We compare the controller
(3.2.1) with the funnel controller proposed in [33], that is (already fixing the gain scaling
functions)

u(t) = −M(y(t))
(
K0(t)2e(t)+K0(t)K1(t)ė(t)

)
,

Ki(t) = diag

(
1

1−φi(t)|e
(i)
1 (t)|

,
1

1−φi(t)|e
(i)
2 (t)|

)
, i = 0,1

(3.3.3)

and we choose the same funnel functions φ0,φ1 for it. The controller (3.3.3) is a modification
of (1.1.11), first introduced in [28] for single-input, single-output systems and tailored to
multi-input,multi-output systems with mass matrix in [33]. We remark that there is a typo in
the controller formula [33, (8)], the sign of the input u must be the opposite.

The simulation of the controllers (3.2.1) and (3.3.3) applied to (3.3.2) over the time inter-
val [0,10] has been performed in MATLAB (solver: ode45, rel. tol: 10−14, abs. tol: 10−10)
and is depicted in Figure 3.7 (tracking error components) and Figure 3.8 (input components).
It can be seen that the funnel controller (3.2.1) outperforms the controller (3.3.3) as it gen-
erates a smaller maximal control action and does not “oscillate” as (3.3.3) does e.g. in the
interval [4,6]. Moreover, we stress that the controller (3.3.3) requires knowledge of the mass
matrix M(·) of the system (3.3.2) and is specifically constructed for systems with strict rel-
ative degree two. On the other hand, knowledge of M(·) is not necessary for the control
strategy (3.2.1).

3.3.3 Comparison with the bang-bang funnel controller

We finally compare the funnel controller (3.2.1) with the bang-bang funnel controller (1.1.13)
developed in [60] by using the same academic example also presented in [60]: a nonlinear
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Fig. 3.7a: Funnel and first tracking error components
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Fig. 3.7b: Funnel and second tracking error components

FIGURE 3.7: Funnel and tracking errors for the controllers (3.2.1) and
(3.3.3) applied to (3.3.2).

single input, single output system with relative degree 4

y(4)(t) = z(t)y(3)(t)2 + ez(t) u(t),

ż(t) = z(t)
(
a− z(t)

)(
z(t)+ b

)
− cy(t)

(3.3.4)

with initial values
z(0) = 0, y(i)(0) = y(i)ref(0), i = 0, . . . ,3,

where we choose the reference signal yref(t) = 5sin t. For the simulation we choose the
parameters

a = 0.09, b = 0.05, c = 0.008.

For the controller (3.2.1) we choose the constant funnel functions

φ0(t) = 1, φ1(t) = 10, φ2(t) = 10, φ3(t) = 10.

The funnel φ0 for the tracking error is the same as in [60], but apart from that we have chosen
φ1, . . . ,φ3 so that the corresponding performance funnels are tighter than in [60]; this is
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Fig. 3.8a: First input components
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Fig. 3.8b: Second input components

FIGURE 3.8: Input functions for the controllers (3.2.1) and (3.3.3) applied
to (3.3.2).

allowed in our framework, but in [60] several complicated compatibility assumptions require
the funnel boundaries to be large enough. We also stress that the controller design (3.2.1) is
quite different from the bang-bang funnel controller in [60].

The simulation of the controller (3.2.1) applied to (3.3.4) over the time interval [0,10] has
been performed in MATLAB (solver: ode15s, rel. tol: 10−14, abs. tol: 10−10), see Figure
3.9. It can be seen that the funnel controller (3.2.1) generates a maximal control action of
approximately 5, while for the bang-bang funnel controller in [60] the value is around 254.
Obviously, the controller (3.2.1) achieves a better performance than the controller proposed
in [60].
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Fig. 3.9a: Funnel and tracking error
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FIGURE 3.9: Simulation of the controller (3.2.1) for the system (3.3.4).



69

Chapter 4

Funnel control for systems with
known generalized vector relative
degree

In this chapter, we continue to develop the study of funnel control in Chapter 3 to non-linear
functional differential-algebraic systems with known generalized vector relative degree r =
(r1, . . . ,rm) and input-to-state stable internal dynamics. We present a simple funnel controller
which require the involvement of the first ri − 1 derivatives of the each element in output
errors. We further discus the feasible of this controller, and its modifications applying to some
related system classes. We finally show the application of our controller to some systems by
simulation.

4.1 System class

We consider a non-linear functional differential-algebraic systems of the form,
y(r1)

1 (t)
y(r2)

2 (t)
...

y(rp)
p (t)

= f1

(
y1(t), · · · ,y(r1−1)

1 (t), · · · ,y(rp−1)
p (t),yp+1(t), · · · ,ym(t)

)

+ f2

(
d1(t), (Ty)(t)

)
+ΓI

(
d2(t), (Ty)(t)

)
uI(t),

0 = f3

(
y1(t), · · · ,y(r1−1)

1 (t), · · · ,y(rp−1)
p (t),yp+1(t), · · · ,ym(t)

)
+ f4

(
d3(t), (Ty)(t)

)
+ΓII

(
d4(t), (Ty)(t)

)
uI(t)

+ f5

(
d5(t), (Ty)(t)

)
uII(t),

y|[−h,0] = y0 = (y0
1,y0

2, . . . ,y0
m),

y0
i ∈ C ri−1([−h,0]→ R), i = 1, . . . , p,

y0
i ∈ C ([−h,0]→ R), i = p+ 1, . . . ,m,

(4.1.1)

We now call r = (r1, . . . ,rp,0, . . . ,0) ∈ N1×m
0 , ri > 0, i = 1, . . . , p to be the generalized vector

relative degree of the systems. Denote |r| =
p
∑

i=1
ri, uI(t) = (u1(t), . . . ,up(t))⊤, uII(t) =

(up+1(t), . . . ,um(t))⊤.
First of all, we recall the operator class Tm,k, which was introduced by [11], for operator T .
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Definition 4.1.1. For t ≥ 0, ω ∈ C ([−h, t]→ Rm), τ > t and δ > 0, define the following set
of extensions of ω:

C (ω; t,τ ,δ ) :=
{

v ∈ C ([−h,τ ]→ Rm)

∣∣∣∣ v|[−h,t] = ω ∧∀s ∈ [t,τ ] :
∥v(s)−ω(t)∥ ≤ δ

}
.

An operator T : C ([−h,∞)→ Rm)→ C 1(R≥0 → Rk) is said to be of class Tm,k if and only
if

(i) T is a causal operator , i.e, for all t ≥ 0 and all ζ ,ξ ∈ C ([−h,∞)→ Rm),

ζ |[−h,t) = ξ |[−h,t) ⇒ T (ζ )|[0,t)
a.a
= T (ξ )|[0,t),

where "a.a" stands for "almost all".

(ii) T is locally Lipschitz continuous in the following sense: ∀t ≥ 0, ∀ω ∈ C ([−h, t] →
Rm), ∃τ > t, ∃δ > 0, ∃c0 > 0 ∀u,v ∈ C (ω; t,τ ,δ ) such that

max
s∈[t,τ ]

∥(Tu)(s)− (T v)(s)∥ ≤ c0 max
s∈[t,τ ]

∥u(s)− v(s)∥.

(iii) T maps bounded trajectories to bounded trajectories , i.e, ∀c1 > 0 ∃c2 > 0, ∀v ∈
C ([−h,∞)→ Rm)

sup
t∈[−h,∞)

∥v(t)∥ ≤ c1 ⇒ sup
t∈[0,∞)

∥(T v)(t)∥ ≤ c2.

(iv) ∃z ∈ C (Rm ×Rk → Rk) ∃T̃ : C ([−h,∞) → Rm) → C (R≥0 → Rk) with all above
properties, ∀v ∈ C ([−h,∞)→ Rm) ∀t ≥ 0:

d
dt
(T v)(t) = z(v(t), (T̃ v)(t)).

Definition 4.1.2 (System class Σm,p,k,s). The functional differential-algebraic equation (4.1.1)
is said to define a system of class Σm,p,k,s if, and only if,

(i) the gain ΓI ∈ C 1(Rs ×Rk → Rp×p) takes values in the set of positive (negative) defi-
nite matrices, ΓII ∈ C 1(Rs ×Rk → R(m−p)×p).

(ii) the disturbances d1,d2 ∈L ∞(R≥0 →Rs), and d3,d4,d5 ∈C 1(R≥0 →Rs) are bounded.

(iii) f1 ∈ C 1(R|r|+m−p → Rp), f2 ∈ C 1(Rs ×Rk → Rp), f3 ∈ C 1(R|r|+m−p → Rm−p),

f4 ∈ C 1(Rs ×Rk → Rm−p), and f ′3 ·
[

0
Im−p

]
is bounded.

(iv) f5 ∈ C 1(Rs ×Rk → R), and ∃α > 0,∀(d,v) ∈ Rs ×Rk : f5(d,v) ≥ α .

(v) T ∈ Tm,k.

In the next subsections, we will derive some class of systems that can be consistent with
system class (4.1.1) satisfying definition 4.1.2.

4.1.1 Systems with positive vector relative degree

One of the most important subclass of Σm,p,k,s is a class of non-linear systems described by
functional ordinary differential equations. We note that from Remark 2.3.11, generalized
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vector relative degree and vector relative degree are exactly the same in case of ordinary
differential systems. Moreover, if the vector relative degree of these systems exists, then its
components are positive. Therefore, we consider the class of systems which have positive
vector relative degree r = (r1,r2, . . . ,rm), ri ∈ N and ri > 0 for all i = 1, . . . ,m. Since the
system does not contain the part which is respective to generalized relative degree ri = 0, we
consider a slightly extended class described as follows

y(r1)
1 (t)

y(r2)
2 (t)
...

y(rm)
m (t)

= f
(
d(t),T (y1, . . . ,y(r1−1)

1 , . . . ,ym, . . . ,y(rm−1)
m )(t)

)

+Γ
(
d(t),T (y1, . . . ,y(r1−1)

1 , . . . ,ym, . . . ,y(rm−1)
m )(t)

)
u(t),

y0
i ∈ C ri−1([−h,0]→ R), i = 1, . . . ,m.

(4.1.2)

In this case, operator T only need to satisfy properties (i)− (iii) in definition (4.1.1), and
property (iv) can be eliminated because of disappearance of algebraic constraint in equa-
tion. Therefore, the set of available operator T can be slightly larger, which implies a larger
considered system class.

Remark 4.1.3. We recall the class of linear regular differential-algebraic systems with posi-
tive vector relative degree which were introduced in Subsection 2.2.3.

Eẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t),

where A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n. Suppose system has vector relative degree r =

(r1,r2, . . . ,rm) ∈ N1×m, ri > 0 for all i = 1,2, . . . ,m, |r| =
m
∑

i=1
ri, and ν denotes the index

of sE − A. We have already known in Subsection 2.2.3 that systems of this type can be
transformed into normal form,


y(r1)

1 (t)
y(r2)

2 (t)
...

y(rm)
m (t)

=



m
∑

j=1

r j

∑
h=1

R1
jhy(h−1)

j (t)

m
∑

j=1

r j

∑
h=1

R2
jhy(h−1)

j (t)

...
m
∑

j=1

r j

∑
h=1

Rm
jhy(h−1)

j (t)


+ Sη(t)+Γu(t),

η̇(t) =
m

∑
i=1

Piyi(t)+Qη(t),

xc(t) = −
ν−1

∑
i=0

Ni
cBcu(i)(t),

xc̄(t) = 0,

where nc,nc̄ ∈ N0, µ = n− nc − nc̄ −|r| and Ri
jh ∈ R with i, j ∈ {1, . . . ,m}, h ∈ {1, . . . ,ri},

S ∈ Rm×µ , Pi ∈ Rµ , Q ∈ Rµ×µ , Bc ∈ Rnc×m, Nc ∈ Rnc×nc is nilpotent with index ν , and
rank

[
Nc Bc

]
= nc. Γ = lim

s→∞
diag(sr1 , . . . ,srm)C(sE −A)−1B is the high-gain matrix. We

note that the zero dynamics of these systems are asymptotically stable if, and only if, Q is
Hurwitz. Ignore the third, and fourth equations, we focus on the first and second equations
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of this form


y(r1)

1 (t)
y(r2)

2 (t)
...

y(rm)
m (t)

=



m
∑

j=1

r j

∑
h=1

R1
jhy(h−1)

j (t)

m
∑

j=1

r j

∑
h=1

R2
jhy(h−1)

j (t)

...
m
∑

j=1

r j

∑
h=1

Rm
jhy(h−1)

j (t)


+ Sη(t)+Γu(t),

η̇(t) =
m

∑
i=1

Piyi(t)+Qη(t).

It is easy to see that this subsystem is a member of type (4.1.2) with

f
(
d(t),T (y1, . . . ,y(r1−1)

1 , . . . ,ym, . . . ,y(rm−1)
m )(t)

)
= T (y1, . . . ,y(r1−1)

1 , . . . ,ym, . . . ,y(rm−1)
m )(t)

:=



m
∑

j=1

r j

∑
h=1

R1
jhy(h−1)

j (t)

m
∑

j=1

r j

∑
h=1

R2
jhy(h−1)

j (t)

...
m
∑

j=1

r j

∑
h=1

Rm
jhy(h−1)

j (t)


+ SeQtη0 +

t∫
0

SeQ(t−τ)
m

∑
i=1

Piyi(τ)dτ .

T is clearly causal, locally Lipschitz, and the Hurwitz property of Q implies that T has the
bounded-input-bounded-output property. Note that in this case, the part of equation respect-
ing to zero elements in general vector relative degree are disappeared. Therefore, the property
(iv) in definition 4.1.1 is not necessary required for operator T . In conclusion, a funnel con-
troller applied to system class 4.1.2 also work for linear regular differential-algebraic systems
with positive vector relative degree, and asymptotically stable zero dynamics. However, we
would like to stress that for the third equation

xc(t) = −
ν−1

∑
i=0

Ni
cBcu(i)(t),

the input function u(t) is required smooth enough, u ∈ W ν−1,1
loc (R → Rm). This implies the

required smoothness of input function when we apply funnel controller for linear differential-
algebraic system with positive vector relative degree.

4.1.2 Linear differential-algebraic systems with generalized vector relative de-
gree

In this subsection, another important class of system related to system class (4.1.1) will be
considered. First of all, we recall some results for the general linear differential-algebraic
systems which was examined in Section 2.3. In this case, we consider the invariant system
with the same number of input and output as follow description,

Eẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t)
(4.1.3)
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where A,E ∈ Rl×n, B ∈ Rl×m, C ∈ Rm×n. Suppose that (4.1.3) is right invertible, have au-
tonomous, asymptotically stable zero dynamics, and have generalized vector relative degree
r = (r1, · · · ,rp,0, · · · ,0) ∈ N1×m. Refer to Theorem 2.3.16, the normal form of the system
(4.1.3) can be obtained as follows

η̇(t) = Qη(t)+A12y(t),


y(r1)

1 (t)
y(r2)

2 (t)
...

y(rp)
p (t)

=



p
∑

j=1

r j

∑
h=1

R1
jhy(h−1)

j (t)+
m
∑

j=p+1
R1

j1y j(t)

p
∑

j=1

r j

∑
h=1

R2
jhy(h−1)

j (t)+
m
∑

j=p+1
R2

j1y j(t)

...
p
∑

j=1

r j

∑
h=1

Rp
jhy(h−1)

j (t)+
m
∑

j=p+1
Rp

j1y j(t)


+[Γ11 0]A21η(t)

+ [Γ11 0]


u1(t)
u2(t)
...

um(t)

 ,

0 =



p
∑

j=1

r j

∑
h=1

Rp+1
jh y(h−1)

j (t)+
m
∑

j=p+1
Rp+1

j1 y j(t)

p
∑

j=1

r j

∑
h=1

Rp+2
jh y(h−1)

j (t)+
m
∑

j=p+1
Rp+2

j1 y j(t)

...
p
∑

j=1

r j

∑
h=1

Rm
jhy(h−1)

j (t)+
m
∑

j=p+1
Rm

j1y j(t)


+[Γ21 Im−p]η(t)

+ [Γ21 Im−p]


u1(t)
u2(t)
...

um(t)

 ,

x3(t) =
ν−1

∑
i=0

NiE32y(i+1)(t).

(4.1.4)

where, Q ∈ Rµ×µ is Hurwitz, µ = dimmax(E,A,B;kerC), n3 = n− µ −m, N ∈ Rn3×n3 is
nilpotent with index ν ∈ N, i.e. Nν = 0 and Nν−1 ̸= 0, Ri

jh ∈ R for i = 1, . . . , p, j = 1, . . . , p,
h = 1, . . . ,r j, and Ri

j1 ∈ R for i = p+ 1, . . . ,m, j = p+ 1, . . . ,m, and Γ11,Γ21 from (2.3.7),
E32,A21,A12 from (2.3.2) are matrices with suitable size.
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We first limit the consideration in subsystem made by three first equations in (4.1.4).

η̇(t) = Qη(t)+A12y(t),


y(r1)

1 (t)
y(r2)

2 (t)
...

y(rp)
p (t)

=



p
∑

j=1

r j

∑
h=1

R1
jhy(h−1)

j (t)+
m
∑

j=p+1
R1

j1y j(t)

p
∑

j=1

r j

∑
h=1

R2
jhy(h−1)

j (t)+
m
∑

j=p+1
R2

j1y j(t)

...
p
∑

j=1

r j

∑
h=1

Rp
jhy(h−1)

j (t)+
m
∑

j=p+1
Rp

j1y j(t)


+[Γ11 0]A21η(t)

+ [Γ11 0]


u1(t)
u2(t)
...

um(t)

 ,

0 =



p
∑

j=1

r j

∑
h=1

Rp+1
jh y(h−1)

j (t)+
m
∑

j=p+1
Rp+1

j1 y j(t)

p
∑

j=1

r j

∑
h=1

Rp+2
jh y(h−1)

j (t)+
m
∑

j=p+1
Rp+2

j1 y j(t)

...
p
∑

j=1

r j

∑
h=1

Rm
jhy(h−1)

j (t)+
m
∑

j=p+1
Rm

j1y j(t)


+[Γ21 Im−p]A21η(t)

+ [Γ21 Im−p]


u1(t)
u2(t)
...

um(t)

 ,

It easy to see that this subsystem should be a system of type (4.1.1) with

(Ty)(t) := η(t) = eQtη0 +

t∫
0

eQ(t−τ)A12y(τ)dτ .

T is clearly causal, locally Lipschitz, and the Hurwitz property of Q implies that T has the
bounded-input, bounded-output property, and

d
dt
(Ty)(t) = QeQtη0 +A12y(t)+Q

t∫
0

eQ(t−τ)A12y(τ)dτ .

Define,

(T̃ y)(t) := QeQtη0 +Q
t∫

0

eQ(t−τ)A12y(τ)dτ ,

then T̃ is also causal, locally Lipschitz, and maps bounded trajectories to bounded trajecto-
ries. We now set

z(y(t), (T̃ y)(t)) := A12y(t)+ (T̃ y)(t).
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Then,
d
dt
(Ty)(t) = z(y(t), (T̃ y)(t)) which implies the operator T satisfying all properties

(i)-(iv) in Definition 4.1.1. Furthermore, all other functions can be specify as follows

f1

(
y1(t), · · · ,y(r1−1)

1 (t), · · · ,y(rp−1)
p (t),yp+1(t), · · · ,ym(t)

)

=



p
∑

j=1

r j

∑
h=1

R1
jhy(h−1)

j (t)+
m
∑

j=p+1
R1

j1y j(t)

p
∑

j=1

r j

∑
h=1

R2
jhy(h−1)

j (t)+
m
∑

j=p+1
R2

j1y j(t)

...
p
∑

j=1

r j

∑
h=1

Rp
jhy(h−1)

j (t)+
m
∑

j=p+1
Rp

j1y j(t)


,

f2

(
d1(t), (Ty)(t)

)
= [Γ11 0]A21(Ty)(t),

ΓI

(
d2(t), (Ty)(t)

)
= Γ11,

f3

(
y1(t), · · · ,y(r1−1)

1 (t), · · · ,y(rp−1)
p (t),yp+1(t), · · · ,ym(t)

)

=



p
∑

j=1

r j

∑
h=1

Rp+1
jh y(h−1)

j (t)+
m
∑

j=p+1
Rp+1

j1 y j(t)

p
∑

j=1

r j

∑
h=1

Rp+2
jh y(h−1)

j (t)+
m
∑

j=p+1
Rp+2

j1 y j(t)

...
p
∑

j=1

r j

∑
h=1

Rm
jhy(h−1)

j (t)+
m
∑

j=p+1
Rm

j1y j(t)


,

f4

(
d1(t), (Ty)(t)

)
= [Γ21 Im−p]A21(Ty)(t),

ΓII

(
d4(t), (Ty)(t)

)
= Γ21,

f5

(
d5(t), (Ty)(t)

)
= 1.

And the function f3 satisfies condition (iii) in Definition (4.1.2) since

f ′3 ·
[

0
Im−p

]
=

Rp+1
p+1,1 · · · Rp+1

m,1
. . .

Rm
p+1,1 · · · Rm

p,1

 (2.3.11)
= Â22 ∈ R(m−p)×(m−p).

Although, the system (4.1.3) does not really belong to a subclass of system class type as
(4.1.1) since the forth equation in (4.1.4) was not included. However, we want to emphasize
that in equation

x3(t) =
ν−1

∑
i=0

NiE32y(i+1)(t),

the output function y(t) is required smooth enough for x3(t) being well defined. Therefore,
funnel controller for class systems (4.1.1) can also be applied to (4.1.3) with some minor
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regulation. That why in the next section, we will introduce a funnel controller not only for
system class (4.1.1) but also can be applied to class of systems (4.1.2) as well as class of
systems (4.1.3).

4.2 Funnel controller

More than one decade since the concept of funnel control has been introduced by Ilchmann,
Ryan, and Sangwin in [48], plenty of papers in funnel control of the both sides theoretical
and application were published by several authors such that [45, 34, 7], and the references
therein. During several years, giving a feasible funnel controller for systems which have vec-
tor relative degree is still an open problem. In [13], we have already proposed a new funnel
feedback control for systems with known strict relative degree. In that paper, feedback strat-
egy is proved working efficiency for a wide multi-input, multi-output systems with arbitrary
strict relative degree in simulation comparison with "back-stepping" funnel controller given
by [49, 50] or bang bang funnel controller supposed by [60]. In particular, for multi-input,
multi-output systems with strict relative degree two, funnel controller introduced by [13] is
better than PD controller given by [33] for simulation to robotic manipulators.

On the other hand, funnel control problem is considered not only to the system described
by ordinary differential equations, but also to the system described by differential-algebraic
equations. A series of papers were introduced to solve problem of funnel control for a certain
class of systems. Firstly, a funnel controller is successful created for regular systems with has
proper inverse transfer function published in [10]. In the same year, in book chapter [9], the
authors have also given funnel strategy for regular systems with positive strict relative degree
approached via "back-stepping" funnel control. Moreover, by using the approach via systems
with autonomous zero dynamics, Berger in [7] has proposed a funnel controller for general
linear differential algebraic system with the input does affect at most the first derivative of
the output. This result is also extended to non-linear functional differential-algebraic systems
in [11]. However, a feasible funnel feedback controller for general differential-algebraic
systems with known vector relative degree is still a challenge. This section address that
problem by introducing a funnel controller for systems class (4.1.1). Since system (4.1.1)
have generalized vector relative degree, we will build a funnel controller with tracking for
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each element of outputs.

For i = 1, . . . , p,
ei0(t) = ei(t) = yi(t)− yref,i(t),
ei1(t) = ėi0(t) + ki0(t)ei0(t),
ei2(t) = ėi1(t) + ki1(t)ei1(t),

...
ei,ri−1(t) = ėi,ri−2(t) + ki,ri−2(t)ei,ri−2(t),

kiq(t) =
1

1−φ2
iq(t)|eiq(t)|2

, q = 0, . . . ,ri −2.

For i = p+ 1, . . . ,m,
ei(t) = yi(t)− yref,i(t).

Set
eI(t) = (e1,r1−1(t), . . . ,ep,rp−1(t))⊤, eII(t) = (ep+1(t), . . . ,em(t))⊤,

kI(t) =
1

1−φ2
I (t)∥eI(t)∥2 , kII(t) =

k̂
1−φ2

II(t)∥eII(t)∥2 ,

then

u(t) =
(

uI(t)
uII(t)

)
=



(
−kI(t)eI(t)
−kII(t)eII(t)

)
if ΓI is pointwise positive definite,

(
kI(t)eI(t)

−kII(t)eII(t)

)
, if ΓI is pointwise negative definite,

(4.2.1)

where the reference signal and funnel functions have the following properties:

yref = (yref,1, . . . ,yref,m), yref,i ∈ W ri,∞(R≥0 → R),

φI ,φII ∈ Φ1,φi0 ∈ Φri ,φi1 ∈ Φri−1, . . . ,φi,ri−2 ∈ Φ2, i = 1, . . . , p,
(4.2.2)

and k̂ satisfies a following condition

k̂ > α−1 sup
Y∈R|r|+m−p

∥∥∥∥ f ′3(Y )
[

0
Im−p

]∥∥∥∥ . (4.2.3)

Remarks 4.2.1.

• Similar to the case of systems with strict relative degree in previous chapter, we need
to consider the existence of solution of the initial value problem resulting from the
application of the funnel controller (4.2.1) to a system (4.1.1). A solution of (4.1.1),
(4.2.1) on [−h,ω) is a function y(t) = (y1(t), . . . ,ym(t)), yi ∈ C ri−1([−h,ω) → R),
with i = 1, . . . , p, and yi ∈C ([−h,ω ]→ R), with i = p+1, . . . ,m for some ω ∈ (0,∞],
and y|[−h,0] = y0 such that yri−1

i |[0,ω) with i = 1, . . . , p, and yi|[0,ω) with i = p+1, . . . ,m
are absolutely continuous and satisfies the differential-algebraic equation in (4.1.1)
with u(t) defined in (4.2.1) for almost all t ∈ [0,∞). y(t) is called maximal, if it has no
right extension that is also a solution.

• In conjunction with (iii) in Definition 4.1.2, the condition (4.2.3) is essential for the
solvability of the closed loop system (4.1.1), (4.2.1). For more detail, the condition

(4.2.3) guarantees the invertibility of α k̂Im−p − f ′3(Y )
[

0
Im−p

]
. This property is crucial
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for the explicit solution of the algebraic constrain in the closed loop system (4.1.1),
(4.2.1) since it ensures the index-1 property of the system.

• In the case of system subclass (4.1.2), it can be seen that the system does not contain
the part which is respective to generalized relative degree ri = 0. This implies Γ = ΓI

and the funnel controller, therefore, (4.2.1) does not contain second part, −kII(t)eII(t).
Hence, the funnel controller for these systems can be simplified as follow

For i = 1, . . . ,m,
ei0(t) = ei(t) = yi(t)− yref,i(t),
ei1(t) = ėi0(t) + ki0(t)ei0(t),
ei2(t) = ėi1(t) + ki1(t)ei1(t),

...
ei,ri−1(t) = ėi,ri−2(t) + ki,ri−2(t)ei,ri−2(t),

kiq(t) =
1

1−φ2
iq(t)|eiq(t)|2

, q = 0, . . . ,ri −2.

Set
ē(t) = (e1,r1−1(t), . . . ,em,rm−1(t))⊤,

k̄(t) =
1

1−φ2(t)∥ē(t)∥2 ,

then

u(t) =

{
−k̄(t) · ē(t), if Γ is pointwise positive definite,

k̄(t) · ē(t), if Γ is pointwise negative definite.

(4.2.4)

• In the case of linear differential-algebraic system having proper inverse transfer func-
tion of type (2.2.10). Using normal form (2.2.11), we see that the system does not
contain the part which relate to generalized relative degree ri > 0. This implies p = 0,
and the funnel controller, therefore, (4.2.1) does not contain the first part ±kI(t)eI(t).
Hence, the funnel controller for these systems can be simplified as follow

e(t) = y(t)− yref(t),

k(t) =
k̂

1−φ2(t)∥e(t)∥2 ,

u(t) = −k(t)e(t).

This controller become the funnel controller introduced in [10] for this type of system
class. In [7], Berger has successful applied this funnel controller for the system class
which was mentioned in Remarks 2.3.11.

Remark 4.2.2. Let (4.1.1) be a system of Σm,p,k,s, the reference signal and funnel functions
be as in (4.2.2). By causality of operator T ∈ Tm,k there exists j : Rm → Rk such that

∀v ∈ C ([−h,∞)→ Rm) : (T v)(0) = j(v(0)).

Hence, an initial value

y0 = (y0
1,y0

2, . . . ,y0
m),

y0
i ∈ C ri−1([−h,0]→ R), i = 1, . . . , p,

y0
i ∈ C ([−h,0]→ R), i = p+ 1, . . . ,m,

(4.2.5)
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is called consistent for the closed loop system (4.1.1), (4.2.1), if

f3

(
y0

1(0), . . . ,
( d

dt

)r1−1
y0

1(0), . . . ,
( d

dt

)rp−1
y0

p(0)
)
+ f4

(
d3(0), j(y0(0))

)
+ΓII

(
d4(0), j(y0(0))

)
uI(0)+ f5

(
d5(0), j(y0(0))

)
uII(0) = 0,

where uI(0),uII(0) are defined by (4.2.1) with a note that ei(0) = y0
i (0)− yref,i(0).

4.2.1 Feasible funnel controller

We show the feasibility of the funnel controller (4.2.1) for the class Σm,p,k,s with generalized
vector relative degree as defined in Definition 4.1.2.

Theorem 4.2.3. Consider system (4.1.1) belonging to Σm,p,k,s. Let φI ,φII ,φiq, i = 1, . . . , p,
q = 0, . . . ,ri −2 from (4.2.2) defining performance funnel. Then for any reference signal yref
satisfying (4.2.2), any consistent initial value y|[−h,0] = y0 as in (4.2.5) such that eI ,eII ,eiq,
i = 1, . . . , p, q = 0, . . . ,ri −2 defined in (4.2.1) fulfill

φI(0)∥eI(0)∥< 1,

φII(0)∥eII(0)∥< 1,

φiq(0)|eiq(0)|< 1, i = 1, . . . , p, q = 0, . . . ,ri −2,

(4.2.6)

and k̂ > 0 be such that (4.2.3) is satisfied. Then the application of the funnel controller
(4.2.1) to system (4.1.1) yields a closed-loop initial value problem that has a solution and
every solution can be extended to a global solution. Furthermore, for every global solution
y(·),

i) The input u : R≥0 → Rm, the gain functions kI ,kII ,kiq : R≥0 → R, i = 1, . . . , p, q =
0, . . . ,ri −2 are bounded.

ii) The functions eI : R≥0 → Rp, eII : R≥0 → Rm−p and eiq : R≥0 → R, i = 1, . . . , p,
q = 0, . . . ,ri −2 evolve in their respective performance funnels, i.e.,

(t,eI) ∈ FφI ; (t,eII) ∈ FφII ; (t,eiq) ∈ Fφiq ;
for all i = 1, . . . , p, q = 0, . . . ,ri −2 and t ≥ 0.

Furthermore, the signals eI(·),eII(·),eiq(·) are uniformly bounded away from the fun-
nel boundaries in the following sense:

∃εI > 0 ∀ t > 0 : ∥eI(t)∥ ≤ φI(t)−1 − εI ,

∃εII > 0 ∀ t > 0 : ∥eII(t)∥ ≤ φII(t)−1 − εII ,

∀ i = 1, . . . , p, q = 0, . . . ,ri −2,∃εiq > 0 ∀ t > 0 : |eiq(t)| ≤ φiq(t)−1 − εiq.

(4.2.7)

In particular, each error component ei(t) = yi − yref,i(t) evolves in the funnel Fφi0 ,
with i = 1, . . . , p, or FφII , with i = p+ 1, . . . ,m, and stays uniformly away from its
boundary.

Proof. Without loss of generality, we may assume that the matrix function ΓI of system
(4.1.1) is point-wisely positive definite. We prove this theorem by several steps.
Step 1: We show that a maximal solution y : [−h,ω)→Rm, ω ∈ (0,∞], of closed-loop system
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(4.1.1), (4.2.1) exists,
y(r1)

1 (t)
...

y(rp)
p (t)

= f1(y1(t), . . . ,y
(r1−1)
1 (t), . . . ,y(rp−1)

p (t),yp+1(t), . . . ,ym(t))

+ f2(d1(t), (Ty)(t))−ΓI(d2(t), (Ty)(t))kI(t)eI(t),

0 = f3(y1(t), . . . ,y
(r1−1)
1 (t), . . . ,y(rp−1)

p (t),yp+1(t), . . . ,ym(t))

+ f4(d3(t), (Ty)(t))−ΓII(d4(t), (Ty)(t))kI(t)eI(t)

− f5(d5(t), (Ty)(t))kII(t)eII(t),

y|[−h,0] = y0 = (y0
1,y0

2, . . . ,y0
m),

y0
i ∈ C ri−1([−h,0]→ R), i = 1, . . . , p,

y0
i ∈ C ([−h,0]→ R), i = p+ 1, . . . ,m.

(4.2.8)

Step 1a: Define, for i = 1, . . . , p, and q = 0, . . . ,ri −2, the sets

Diq :=
{
(t,ei0, . . . ,eiq) ∈ R≥0 ×R×·· ·×R

∣∣ (t,ei j) ∈ Fφi j , j = 0, . . . ,q
}

,

where Fφi j is as in (4.2.2), and the functions Kiq : Diq → R recursively by

Ki0(t,ei0) :=
ei0

1−φ2
i0(t)|ei0|2

,

Kiq(t,ei0, . . . ,eiq) :=
eiq

1−φ2
iq(t)|eiq|2

+
∂Ki,q−1

∂ t
(t,ei0, . . . ,ei,q−1)

+
q−1

∑
j=0

∂Ki,q−1

∂ei j
(t,ei0, . . . ,ei,q−1)

(
ei, j+1 −

ei j

1−φ2
i j(t)|ei j|2

)
.

Now set

DI :=

{
(t,e10, . . . ,e1,r1−1, . . . ,ep,rp−1) ∈ R≥0 ×R|r|

∣∣∣∣∣
(
t,ei0, . . . ,ei,ri−2

)
∈ Di,ri−2,

(t,eI) ∈ FφI ,

}
,

DII :=
{
(t,ep+1, . . . ,em) ∈ R≥0 ×Rm−p

∣∣ (t,eII) ∈ FφI

}
,

D :=

{
(t,e10, . . . ,e1,r1−1, . . . ,ep,rp−1,ep+1, . . . ,em)

∣∣∣∣∣ (t,e10, . . . ,e1,r1−1, . . . ,ep,rp−1) ∈ DI ,

(t,ep+1, . . . ,em) ∈ DII ,

}
.

Choose some interval I ⊆ R≥0 with 0 ∈ I and let (e10, . . . ,e1,r1−1, . . . ,ep,rp−1) : I → R|r| be
such that, for all t ∈ I,

(
t,e10(t), . . . ,e1,r1−1(t), . . . ,ep,rp−1(t)

)
∈ DI , (t,ep+1(t), . . . ,em(t)) ∈

DII and (ei0, . . . ,ei,ri−1), i = 1, . . . , p satisfies the relations in (4.2.1). Then ei = ei0 satisfies,
on the interval I,

e(q)i = eiq −
q−1

∑
j=0

(
d
dt

)q−1− j

ki jei j, q = 1, . . . ,ri −1. (4.2.9)

Step 1b: We show by induction that for all i = 1, . . . , p, and q = 0, . . . ,ri −2 we have

∀ t ∈ I :
q

∑
j=0

(
d
dt

)q− j(
ki j(t)ei j(t)

)
= Kiq

(
t,ei0(t), . . . ,eiq(t)

)
. (4.2.10)
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Equation (4.2.10) is obviously true for q = 0. Assume that q ∈ {1, . . . ,ri −2} and the state-
ment holds for q−1. Then

q

∑
j=0

(
d
dt

)q− j(
ki j(t)ei j(t)

)
= kiq(t)eiq(t)+

d
dt

(
q−1

∑
j=0

(
d
dt

)q− j−1(
ki j(t)ei j(t)

))

= kiq(t)eiq(t)+
d
dt

Ki,q−1

(
t,ei0(t), . . . ,ei,q−1(t)

)
= Kiq

(
t,ei0(t), . . . ,eiq(t)

)
.

Therefore, invoking (4.2.9), we have

e(q)i = eiq −Ki,q−1

(
t,ei0(t), . . . ,ei,q−1(t)

)
, q = 1, . . . ,ri −1. (4.2.11)

In particular,
e(ri−1)

i = ei,ri−1 −Ki,ri−2

(
t,ei0(t), . . . ,ei,ri−2(t)

)
.

Then
e(ri)

i = ėi,ri−1 −
d
dt

Ki,ri−2

(
t,ei0(t), . . . ,ei,ri−2(t)

)
.

Step 1c: Define, for i = 1, . . . , p,

K̃i0 : R≥0 ×R → R, (t,yi0) 7→ yi0 − yref,i(t)

and the set
D̃i0 :=

{
(t,yi) ∈ R≥0 ×R

∣∣ (t, K̃i0(t,yi)
)
∈ Di0

}
.

Furthermore, recursively define for q = 1, . . . ,ri −1 the maps

K̃iq : D̃i,q−1 ×R → R,

(t,yi0, . . . ,yiq) 7→ yiq − y(q)ref,i(t)+Ki,q−1
(
t, K̃i0(t,yi0), . . . , K̃i,q−1(t,yi0, . . . ,yi,q−1)

)
.

We also define the sets, for q = 1, . . . ,ri −1,

D̃iq :=
{
(t,yi0, . . . ,yiq) ∈ D̃i,q−1 ×R

∣∣ (t, K̃i0(t,yi0), . . . , K̃iq(t,yi0, . . . ,yiq)
)
∈ Diq

}
,

and

D̃I :=

{
(t,y10, . . . ,y1,r1−1, . . . ,yp,rp−1)

∣∣∣∣∣ (t,yi0, . . . ,yi,ri−1) ∈ D̃i,ri−2 ×R,(
t, K̃10, . . . , K̃1,r1−1, . . . , K̃p,rp−1

)
∈ DI .

}

Recall (4.2.11), we have, for all t ∈ I, i = 1, . . . , p, and q = 0, . . . ,ri −1,

eiq(t) = K̃iq(t,yi(t), . . . ,y
(q)
i (t)).

Moreover,

eI(t) =
(

K̃1,r1−1(t,y1(t), . . . ,y
(r1−1)
1 (t)), . . . , K̃p,rp−1(t,yp(t), . . . ,y

(rp−1)
p (t))

)⊤
,

:= K̃I(t,y1(t), . . . ,y
(r1−1)
1 (t) . . . ,y(rp−1)

p (t)).
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Define,

D̃II :=
{
(t,yp+1, . . . ,ym) ∈ R≥0 ×Rm−p

∣∣ (t,yp+1 − yref,p+1, . . . ,ym − yref,m) ∈ DII
}

,

and denote,

XI =
(

y1, . . . ,y(r1−1)
1 . . . ,y(rp−1)

p

)⊤
,

XII = (yp+1, . . . ,ym)
⊤,

Xref,II = (yref,p+1, . . . ,yref,m)
⊤.

Then
eII(t) = XII(t)−Xref,II(t).

The feedback u in (4.2.1) reads

u(t) =


−K̃I(t,XI(t))

1−φI(t)2∥K̃I(t,XI(t))∥2

−k̂ · (XII(t)−Xref,II(t))
1−φII(t)2∥XII(t)−Xref,II(t)∥2

 , t ∈ I.

Step 1d: Now, we set

Hi =
(
1 0 . . . 0

)
∈ R1×ri , for i = 1, . . . , p,

H = diag(H1, . . . ,Hp) ∈ Rp×|r|,

S =

[
H 0
0 Im−p

]
∈ Rm×|r|+m−p,

(4.2.12)

then,

S
(

XI

XII

)
= y.

We define an operator T1 : C ([−h,∞)→ R|r|+m−p)→ C 1(R≥0 → Rk) such that

T1

(
XI

XII

)
(t) = T

(
S
(

XI

XII

))
(t).

T1 is causal, localy Lipschitz and maps bounded trajectories to bounded trajectories since the
properties of operator T . Set

D̃ :=
{
(t,XI ,XII)

∣∣ (t,XI) ∈ D̃I and (t,XII) ∈ D̃II
}

.
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We rewrite f1, f2, and ΓI from system (4.1.1) in vector form

f1 =

 f 1
1
...
f p
1

 with f i
1 : C 1(R|r|+m−p → R) i = 1, . . . , p,

f2 =

 f 1
2
...
f p
2

 with f i
2 : C 1(Rs ×Rk → R) i = 1, . . . , p,

ΓI =

Γ1
I
...

Γp
I

 with Γi
I : C 1(Rs ×Rk → R1×p) i = 1, . . . , p.

We now define functions

FI : D̃ ×Rk → R|r|, (t,y10, . . . ,y1,r1−1, . . . ,yp,rp−1,yp+1, . . . ,ym,η)

7→

(
y11, . . . , f 1

1 (y10, . . . ,y1,r1−1, . . . ,yp,rp−1,yp+1, . . . ,ym)+ f 1
2 (d1(t),η)

−
Γ1

I (d2(t),η)K̃I(t,y10, . . . ,y1,r1−1, . . . ,yp,rp−1)

1−φI(t)2∥K̃I(t,y10, . . . ,y1,r1−1, . . . ,yp,rp−1)∥2 , . . .

. . . , f p
1 (y10, . . . ,y1,r1−1, . . . ,yp,rp−1,yp+1, . . . ,ym)+ f p

2 (d1(t),η)

−
Γp

I (d2(t),η)K̃I(t,y10, . . . ,y1,r1−1, . . . ,yp,rp−1)

1−φI(t)2∥K̃I(t,y10, . . . ,y1,r1−1, . . . ,yp,rp−1)∥2

)
.

FII : D̃ ×Rk → Rm−p, (t,y10, . . . ,y1,r1−1, . . . ,yp,rp−1,yp+1, . . . ,ym,η)

7→

(
f3(y10, . . . ,y1,r1−1, . . . ,yp,rp−1,yp+1, . . . ,ym)+ f4(d3(t),η)

−
ΓII(d4(t),η)K̃I(t,y10, . . . ,y1,r1−1, . . . ,yp,rp−1)

1−φI(t)2∥K̃I(t,y10, . . . ,y1,r1−1, . . . ,yp,rp−1)∥2

− f5(d5(t),η)
k̂ · ((yp+1, . . . ,ym)− (yref,p+1(t), . . . ,yref,m(t)))

1−φII(t)2∥(yp+1, . . . ,ym)− (yref,p+1(t), . . . ,yref,m(t))∥2

)
.

Then the closed-loop system (4.2.8) can be rewritten as

ẊI(t) = FI

(
t,
(

XI(t)
XII(t)

)
,T1

(
XI

XII

)
(t)
)

,

0 = FII

(
t,
(

XI(t)
XII(t)

)
,T1

(
XI

XII

)
(t)
)

.
(4.2.13)

The equation (4.2.13) is an index-1 differential-algebraic equation. We need to differentiate
the algebraic constrain to obtain an ordinary differential equation in all system variable, the
solution of which satisfies the algebraic constraint.

Step 1e: We note that
d
dt
(Ty)(t) = z(y(t), (T̃ y)(t)), then define an operator T2 : C ([−h,∞)→
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R|r|+m−p)→ C (R≥0 → Rk) such that

T2

(
XI

XII

)
(t) = T̃

(
S
(

XI

XII

))
(t),

where S as in (4.2.12). T2 is causal, localy Lipschitz and maps bounded trajectories to
bounded trajectories since the properties of operator T̃ . Furthermore,

uI(t) =
−K̃I(t,XI(t))

1−φI(t)2∥K̃I(t,XI(t))∥2 ,

uII(t) =
−k̂ · (XII(t)−Xref,II(t))

1−φII(t)2∥XII(t)−Xref,II(t)∥2

Then

d
dt

uI(t) =
−1

(1−φI(t)2∥K̃I(t,XI(t))∥2)2

[(
∂ K̃I(t,XI(t))

∂ t
+

∂ K̃I(t,XI(t))
∂XI

ẊI(t)
)
×

× (1−φI(t)2∥K̃I(t,XI(t))∥2)+ 2K̃I(t,XI(t))

(
φI(t)φ̇I(t)∥K̃I(t,XI(t))∥2+

+φI(t)2K̃I(t,XI(t))⊤
(

∂ K̃I(t,XI(t))
∂ t

+
∂ K̃I(t,XI(t))

∂XI
ẊI(t)

))]
, (4.2.14)

d
dt

uII(t) =
−k̂

(1−φII(t)2∥XII(t)−Xref,II(t)∥2)2

[
(ẊII(t)− Ẋref,II(t))(1−φII(t)2×

×∥XII(t)−Xref,II(t)∥2)+ 2(XII(t)−Xref,II(t))
(

φII(t)φ̇II(t)∥XII(t)−Xref,II(t)∥2+

+φII(t)2(XII(t)−Xref,II(t))⊤(ẊII(t)− Ẋref,II(t))
)]

. (4.2.15)
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By differentiation of the second equation in (4.2.13), and using (4.2.14),(4.2.15), we obtain

0 =
∂ f3(XI(t),XII(t))

∂XI
ẊI(t)+

∂ f3(XI(t),XII(t))
∂XII

ẊII(t)

+ f ′4

(
d3(t),T1

(
XI

XII

)
(t)
) ḋ3(t)

z
(

S
(

XI(t)
XII(t)

)
,T2

(
XI

XII

)
(t)
)

−Γ′
II

(
d4(t),T1

(
XI

XII

)
(t)
) ḋ4(t)

z
(

S
(

XI(t)
XII(t)

)
,T2

(
XI

XII

)
(t)
) K̃I(t,XI(t))

1−φI(t)2∥K̃I(t,XI(t))∥2

−
ΓII

(
d4(t),T1

(
XI

XII

)
(t)
)

(1−φI(t)2∥K̃I(t,XI(t))∥2)2

[(
∂ K̃I(t,XI(t))

∂ t
+

∂ K̃I(t,XI(t))
∂XI

ẊI(t)
)
×

× (1−φI(t)2∥K̃I(t,XI(t))∥2)+ 2K̃I(t,XI(t))

(
φI(t)φ̇I(t)∥K̃I(t,XI(t))∥2+

+φI(t)2K̃I(t,XI(t))⊤
(

∂ K̃I(t,XI(t))
∂ t

+
∂ K̃I(t,XI(t))

∂XI
ẊI(t)

))]

− f ′5

(
d5(t),T1

(
XI

XII

)
(t)
) ḋ5(t)

z
(

S
(

XI(t)
XII(t)

)
,T2

(
XI

XII

)
(t)
)×

× k̂ · (XII(t)−Xref,II(t))
1−φII(t)2∥XII(t)−Xref,II(t)∥2 −

k̂ f5

(
d5(t),T1

(
XI

XII

)
(t)
)

(1−φII(t)2∥XII(t)−Xref,II(t)∥2)2×

×

[
(ẊII(t)− Ẋref,II(t))(1−φII(t)2∥XII(t)−Xref,II(t)∥2)+ 2(XII(t)−Xref,II(t))×

×
(

φII(t)φ̇II(t)∥XII(t)−Xref,II(t)∥2 +φII(t)2(XII(t)−Xref,II(t))⊤×

× (ẊII(t)− Ẋref,II(t))
)]

. (4.2.16)
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Then put ẊII(t) on the the left side, and using ẊI(t) = FI

(
t,
(

XI(t)
XII(t)

)
,T1

(
XI

XII

)
(t)
)

, we

have

−

[
∂ f3(XI(t),XII(t))

∂XII
−

k̂ f5

(
d5(t),T1

(
XI

XII

)
(t)
)

1−φII(t)2∥XII(t)−Xref,II(t)∥2×

×
(

Im−p +
2φII(t)2(XII(t)−Xref,II(t))(XII(t)−Xref,II(t))⊤

1−φII(t)2∥XII(t)−Xref,II(t)∥2

)]
ẊII(t)

=
∂ f3(XI(t),XII(t))

∂XI
FI

(
t,
(

XI(t)
XII(t)

)
,T1

(
XI

XII

)
(t)
)

+ f ′4

(
d3(t),T1

(
XI

XII

)
(t)
) ḋ3(t)

z
(

S
(

XI(t)
XII(t)

)
,T2

(
XI

XII

)
(t)
)

−Γ′
II

(
d4(t),T1

(
XI

XII

)
(t)
) ḋ4(t)

z
(

S
(

XI(t)
XII(t)

)
,T2

(
XI

XII

)
(t)
) K̃I(t,XI(t))

1−φI(t)2∥K̃I(t,XI(t))∥2

−
ΓII

(
d4(t),T1

(
XI

XII

)
(t)
)

(1−φI(t)2∥K̃I(t,XI(t))∥2)2

[(
∂ K̃I(t,XI(t))

∂ t
+

∂ K̃I(t,XI(t))
∂XI

FI

(
t,
(

XI(t)
XII(t)

)
,T1

(
XI

XII

)
(t)
))

(1−φI(t)2∥K̃I(t,XI(t))∥2)+2K̃I(t,XI(t))

(
φI(t)φ̇I(t)∥K̃I(t,XI(t))∥2 +φI(t)2K̃I(t,XI(t))⊤

(
∂ K̃I(t,XI(t))

∂ t
+

∂ K̃I(t,XI(t))
∂XI

FI

(
t,
(

XI(t)
XII(t)

)
,T1

(
XI

XII

)
(t)
)))]

− f ′5

(
d5(t),T1

(
XI

XII

)
(t)
) ḋ5(t)

z
(

S
(

XI(t)
XII(t)

)
,T2

(
XI

XII

)
(t)
) k̂ · (XII(t)−Xref,II(t))

1−φII(t)2∥XII(t)−Xref,II(t)∥2

−
k̂ f5

(
d5(t),T1

(
XI

XII

)
(t)
)

(1−φII(t)2∥XII(t)−Xref,II(t)∥2)2

[
− Ẋref,II(t)(1−φII(t)2∥XII(t)−Xref,II(t)∥2)+

+ 2(XII(t)−Xref,II(t))
(

φII(t)φ̇II(t)∥XII(t)−Xref,II(t)∥2+

+φII(t)2(XII(t)−Xref,II(t))⊤(−Ẋref,II(t))
)]

. (4.2.17)

In order to get ordinary differential equation, we need to prove the matrix

M (t,XI(t),XII(t)) :=
∂ f3(XI(t),XII(t))

∂XII
−

k̂ f5

(
d5(t),T1

(
XI

XII

)
(t)
)

1−φII(t)2∥XII(t)−Xref,II(t)∥2×

×
(

Im−p +
2φII(t)2(XII(t)−Xref,II(t))(XII(t)−Xref,II(t))⊤

1−φII(t)2∥XII(t)−Xref,II(t)∥2

)
(4.2.18)
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is invertible for all t ∈ I.
Since, matrix

G (t,XII(t)) :=
2φII(t)2(XII(t)−Xref,II(t))(XII(t)−Xref,II(t))⊤

1−φII(t)2∥XII(t)−Xref,II(t)∥2

is symmetric, and semi positive definite, then the matrix Im−p +G (t,XII(t)) is invertible for

all t ∈ I, and
∥∥∥∥(Im−p +G (t,XII(t))

)−1
∥∥∥∥≤ 1. Therefore, according to (4.2.3) and Definition

4.1.2(iv), we have∥∥∥∥∥(1−φII(t)2∥XII(t)−Xref,II(t)∥2)k̂−1
[

f5

(
d5(t),T1

(
XI

XII

)
(t)
)]−1

×

×(Im−p +G (t,XII(t)))−1 ∂ f3(XI(t),XII(t))
∂XII

∥∥∥∥≤ k̂−1α−1
∥∥∥∥∂ f3(XI(t),XII(t))

∂XII

∥∥∥∥< 1, ∀t ∈ I.

Hence,

(1−φII(t)2∥XII(t)−Xref,II(t)∥2)k̂−1
[

f5

(
d5(t),T1

(
XI

XII

)
(t)
)]−1

×

×
(

Im−p +G (t,XII(t))
)−1 ∂ f3(XI(t),XII(t))

∂XII
− Im−p

is invertible. Then the matrix

M (t,XI(t),XII(t)) =
∂ f3(XI(t),XII(t))

∂XII
−

k̂ f5

(
d5(t),T1

(
XI

XII

)
(t)
)

1−φII(t)2∥XII(t)−Xref,II(t)∥2×

×
(

Im−p +G (t,XII(t))
)

is invertible.
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We define a function

F̃II : D̃ ×Rk ×Rk → Rm−p, (t,XI ,XII ,η , µ)

7→ [M (t,XI ,XII)]
−1

{
∂ f3(XI ,XII)

∂XI
FI

(
t,
(

xI

XII

)
,η
)
+ f ′4 (d3(t),η)

 ḋ3(t)

z
(

S
(

XI

XII

)
, µ
)

−Γ′
II (d4(t),η)

 ḋ4(t)

z
(

S
(

XI

XII

)
, µ
) K̃I(t,XI)

1−φI(t)2∥K̃I(t,XI)∥2

− ΓII (d4(t),η)
(1−φI(t)2∥K̃I(t,XI)∥2)2

[(
∂ K̃I(t,XI)

∂ t
+

∂ K̃I(t,XI)

∂XI
FI

(
t,
(

xI

XII

)
,η
))

×

× (1−φI(t)2∥K̃I(t,XI)∥2)+ 2K̃I(t,XI)

(
φI(t)φ̇I(t)∥K̃I(t,XI)∥2+

+φI(t)2K̃I(t,XI)
⊤
(

∂ K̃I(t,XI)

∂ t
+

∂ K̃I(t,XI)

∂XI
FI

(
t,
(

xI

XII

)
,η
)))]

− f ′5 (d5(t),η)

 ḋ5(t)

z
(

S
(

XI

XII

)
, µ
) k̂ · (XII −Xref,II(t))

1−φII(t)2∥XII −Xref,II(t)∥2

− k̂ f5 (d5(t),η)
(1−φII(t)2∥XII −Xref,II(t)∥2)2

[
− Ẋref,II(t)(1−φII(t)2∥XII −Xref,II(t)∥2)

+2(XII−Xref,II(t))
(

φII(t)φ̇II(t)∥XII−Xref,II(t)∥2+φII(t)2(XII−Xref,II(t))⊤(−Ẋref,II(t))
)]}

.

According to (4.2.17), it is obtained

ẊII(t) = F̃II

(
t,
(

XI(t)
XII(t)

)
,T1

(
XI

XII

)
(t),T2

(
XI

XII

)
(t)
)

.

In conjunction with first equation in (4.2.13), we have an ordinary differential equation

ẊI(t) = FI

(
t,
(

XI(t)
XII(t)

)
,T1

(
XI

XII

)
(t)
)

,

ẊII(t) = F̃II

(
t,
(

XI(t)
XII(t)

)
,T1

(
XI

XII

)
(t),T2

(
XI

XII

)
(t)
)

,
(4.2.19)

with initial value

XI|[−h,0] =

(
y0

1, . . . ,
( d

dt

)r1−1
y0

1, . . . ,
( d

dt

)rp−1
y0

p

)
,

XII |[−h,0] = (y0
p+1, . . . ,y0

m).

Step 1f: Consider the initial value problem (4.2.19), we have (0,XI(0),XII(0)) ∈ D̃ , FI is
measurable in t, continuous in (XI ,XII ,η), and locally essentially bounded, and F̃II is mea-
surable in t, continuous in (XI ,XII ,η , µ), and locally essentially bounded. Therefore, apply
[46, Theorem B.1]1, we obtain the existence of solutions to (4.2.19), and every solution can

1In [46] a domain D ⊆ R≥0 ×R is considered, but the generalization to the higher dimensional case is
straightforward.
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be extended to a maximal solution. Furthermore, for a maximal solution (XI ,XII) : [−h,ω)→
R|r|+m−p, ω ∈ (0,∞], of (4.2.19), the closure of the graph of this solution is not a compact
subset of D̃ .

The solution (XI(t),XII(t)) of (4.2.19) in particular satisfies (4.2.16). Integration gives,
for all t ∈ [0,ω),

0 = FII

(
t,
(

XI(t)
XII(t)

)
,T1

(
XI

XII

)
(t)
)
−FII

(
0,
(

XI(0)
XII(0)

)
,T1

(
XI

XII

)
(0)
)

.

It follows from the choice of y0 which implies the value of (XI ,XII)|[−h,0] that (XI(t),XII(t))
satisfies the second equation in (4.2.13). And therefore, (XI(t),XII(t)) satisfies (4.2.13) for
all t ∈ [−h,ω). This leads to a maximal solution (XI ,XII) : [−h,ω)→ R|r|+m−p, ω ∈ (0,∞],
of (4.2.13), and the closure of the graph of this solution is not a compact subset of D̃ .

Consequently, (e10, . . . ,e1,r1−1, . . . ,ep,rp−1,ep+1, . . . ,em) : [0,ω)→ R|r|+m−p defined by

eiq(t) = K̃iq(t,yi(t), . . . ,y
(q)
i (t)), for i = 1, . . . , p and q = 0, . . . ,ri −1,

ei(t) = yi(t)− yref,i(t), for i = p+ 1, . . . ,m,

where t ∈ [0,ω). It follows that the closure of the graph of (e10, . . . ,e1,r1−1, . . . ,ep,rp−1,ep+1, . . . ,em)
is not a compact subset of D .
Step 2:We show that kI(·), kII(·), kiq(·), for i = 1, . . . , p, q = 0, . . . ,ri −2, as in (4.2.1) are
bounded on [0,ω).
Step 2a: We show that kiq(·) for i = 1, . . . , p, q = 0, . . . ,ri − 2 as in (4.2.1) are bounded on
[0,ω). This step is similar to Step 2a of the proof of Theorem 3.2.3.
Step 2b: In the following we will prove by induction that there exist constants M̃ j

iq, Ñ j
iq, K̃ j

iq > 0
such that, for all t ∈ [0,ω),∣∣∣∣∣

(
d
dt

) j

[kiq(t)eiq(t)]

∣∣∣∣∣≤ M̃ j
iq,

∣∣∣∣∣
(

d
dt

) j

eiq(t)

∣∣∣∣∣≤ Ñ j
iq,

∣∣∣∣∣
(

d
dt

) j

kiq(t)

∣∣∣∣∣≤ K̃ j
iq, (4.2.20)

for i = 1, . . . , p, q = 0, . . . ,ri −2, and j = 0, . . . ,ri −1−q.
First, we may infer from Step 3a that kiq(·), for i = 1, . . . , p, q = 0, . . . ,ri −2, are bounded.
Furthermore, eiq are bounded since they evolve in the respective performance funnels, cf.(4.2.1).
Therefore, for each i = 1, . . . , p, (4.2.20) is true whenever j = 0. We prove (4.2.20) for
q = ri −2 and j = 1. We find that

ėi,ri−2(t) = ei,ri−1(t)− ki,ri−2(t)ei,ri−2(t),

k̇i,ri−2(t) = 2k2
i,ri−2(t)

(
φ2

i,ri−2(t)ei,ri−2(t)ėi,ri−2(t)+φi,ri−2(t)φ̇i,ri−2(t)|ei,ri−2(t)|2
)
,

d
dt

[ki,ri−2(t)ei,ri−2(t)] = k̇i,ri−2(t)ei,ri−2(t)+ ki,ri−2(t)ėi,ri−2(t).

Therefore, ėi,ri−2(t), k̇i,ri−2(t), and
d
dt

[ki,ri−2(t)ei,ri−2(t)] are bounded since ki,ri−2, φi,ri−2,

φ̇i,ri−2, ei,ri−2, and ei,ri−1 are bounded. Now let s ∈ {0, . . . ,ri −3} and l ∈ {0, . . . ,ri − 1− s}
and assume that (4.2.20) is true for all q = s+1, . . . ,ri−2 and all j = 0, . . . ,ri−1−q as well



90 Chapter 4. Funnel control for systems with known generalized vector relative degree

as for q = s and all j = 0, . . . , l −1. We show that it is true for q = s and j = l:(
d
dt

)l

eis(t) =
(

d
dt

)l−1

[ei,s+1(t)− kis(t)eis(t)]

=

(
d
dt

)l−1

ei,s+1(t)−
(

d
dt

)l−1

[kis(t)eis(t)] ,(
d
dt

)l

kis(t) =
(

d
dt

)l−1(
2k2

is(t)
(
φ2

is(t)eis(t)ėis(t)+φis(t)φ̇is(t)|eis(t)|2
))

,(
d
dt

)l

[kis(t)eis(t)] =
(

d
dt

)l−1 (
k̇is(t)eis(t)+ kis(t)ėis(t)

)
.

Then, successive application of the product rule and using the induction hypothesis as wells
as the fact that φis, φ̇is, . . . ,φ

(ri−s)
is are bounded, yields that the above terms are bounded.

Therefore, the proof of (4.2.20) is complete.
By (4.2.20) and (4.2.9) it follows that e(q)i is bounded on [0,ω) for all i = 1, . . . , p, q =
0, . . . ,ri −1.
Step 2c: We show that kI(·) is bounded.
Recall from Step 1a, we have, for i = 1, . . . , p,

e(ri)
i (t) = ėi,ri−1(t)−

ri−2

∑
j=0

(
d
dt

)ri−1− j

ki j(t)ei j(t).

Then,

ėI(t) = f1(y1(t), . . . ,y
(r1−1)
1 (t), . . . ,y(rp−1)

p (t),yp+1(t), . . . ,ym(t))+ f2(d1(t), (Ty)(t))

+



r1−2
∑

j=0

(
d
dt

)r1−1− j

k1 j(t)e1 j(t)

r2−2
∑

j=0

(
d
dt

)r2−1− j

k2 j(t)e2 j(t)

...
rp−2
∑

j=0

(
d
dt

)rp−1− j

kp j(t)ep j(t)


−


y(r1)

ref,1(t)
...

y(rp)
ref,p(t)

−ΓI(d2(t), (Ty)(t))kI(t)eI(t).

Now we set

F̂I(t, (Ty)(t)) :=



r1−2
∑

j=0

(
d
dt

)r1−1− j

k1 j(t)e1 j(t)

r2−2
∑

j=0

(
d
dt

)r2−1− j

k2 j(t)e2 j(t)

...
rp−2
∑

j=0

(
d
dt

)rp−1− j

kp j(t)ep j(t)


−


y(r1)

ref,1(t)
...

y(rp)
ref,p(t)

+ f2(d1(t), (Ty)(t))

+ f1(y1(t), . . . ,y
(r1−1)
1 (t), . . . ,y(rp−1)

p (t),yp+1(t), . . . ,ym(t)). (4.2.21)

By the bounded-input, bounded-output property (iii) of operator T , it follows that T (y) is
bounded, and we denote MT := ∥T (y)|[0,ω)∥∞. By Step 2b, property (iii) of operator T ,
continuous property f1, and boundedness of d1, we conclude that F̂I(t, (Ty)(t)) is bounded
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on [0,ω), i.e, there exists MF̂I
> 0 such that

for almost all t ∈ [0,ω) : ∥F̂I(t, (Ty)(t))∥ ≤ MF̂I
.

Recall the definition of eI(·), eII(·), and combine with (4.2.21), we have

ėI(t) = F̂I(t, (Ty)(t))−ΓI(d2(t), (Ty)(t))kI(t)eI(t)

kI(t) =
1

1−φ2
I (t)∥eI(t)∥2 .

(4.2.22)

We now define a compact set

Ω =

 (δ ,η ,eI) ∈ Rp ×Rq ×Rm

∣∣∣∣∣∣
∥δ∥ ≤ ∥d2|[0,ω)∥∞
∥η∥ ≤ MT

∥eI∥= 1.

 ,

then, since ΓI is pointwise positive definite and the map

Ω ∋ (δ ,η ,eI) 7→ e⊤I Γ(δ ,η)eI ∈ R>0

is continuous, it follows that there exists γ > 0 such that

∀ (δ ,η ,eI) ∈ Ω : e⊤I Γ(δ ,η)eI ≥ γ .

Therefore, we have
eI(t)⊤ΓI(d2(t), (Ty)(t))eI(t) ≥ γ∥eI(t)∥2

for all t ∈ [0,ω). Choose εI > 0 small enough so that

εI ≤ min
{

λI

2
, inf
t∈(0,TI ]

(ψI(t)−∥eI(t)∥)
}

and LI ≤
λ 2

I

4εI
γ −MF̂I

, (4.2.23)

We show that
∀ t ∈ (0,ω) : ψI(t)−∥eI(t)∥ ≥ εI . (4.2.24)

By definition of εI this holds on (0,TI ]. Seeking a contradiction suppose that

∃ tI,1 ∈ [T ,ω) : ψI(tI,1)−∥eI(tI,1)∥< εI .

Set tI,0 = max{t ∈ [TI , tI,1) | ψI(t)−∥eI(t)∥= εI}. Then, for all t ∈ [tI,0, tI,1], we have that

ψI(t)−∥eI(t)∥ ≤ εI ,

∥eI(t)∥ ≥ ψI(t)− εI ≥
λI

2
,

kI(t) =
1

1−φ2
I (t)∥eI(t)∥2 ≥ λI

2εI
.
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Now we have, for all t ∈ [tI,0, tI,1],

1
2

d
dt
∥eI(t)∥2 = e⊤I (t)ėI(t) = e⊤I (t)

[
F̂I(t, (Ty)(t))−ΓI(d2(t), (Ty)(t))kI(t)eI(t)

]
≤
(

MF̂I
− λ 2

I

4εI
γ
)
∥eI(t)∥

(4.2.23)
≤ −LI∥eI(t)∥.

Then

∥eI(tI,1)∥−∥eI(tI,0)∥=
tI,1∫

tI,0

1
2
∥eI(t)∥−1 d

dt
∥eI(t)∥2 dt

≤−LI(tI,1 − tI,0)

≤−|ψ(tI,1)−ψ(tI,0)|
≤ ψ(tI,1)−ψ(tI,0),

and thus we obtain εI = ψI(tI,0)−∥eI(tI,0)∥ ≤ ψI(tI,1)−∥eI(tI,1)∥< εI , a contradiction.
Step 2d: We show that kII(·) is bounded. Seeking a contradiction, assume that kII(t)→ ∞ for
t → ω . Set

F̂II(t, (Ty)(t)) := f3(y1(t), . . . ,y
(r1−1)
1 (t), . . . ,y(rp−1)

p (t),yp+1(t), . . . ,ym(t))

+ f4(d3(t), (Ty)(t)). (4.2.25)

By Step 2b, property (iii) of operator T , continuous property f3, and boundedness of d3, we
conclude that F̂II(·, (Ty)(·)) is bounded on [0,ω), i.e, there exists MF̂II

> 0 such that

for almost all t ∈ [0,ω) : ∥F̂II(t, (Ty)(t))∥ ≤ MF̂II
.

Recall the definition of eI(·), eII(·), and combine with (4.2.25), we have

0 = F̂II(t, (Ty)(t))−ΓII(d4(t), (Ty)(t))kI(t)eI(t)

− f5(d5(t), (Ty)(t))kII(t)eII(t),

kII(t) =
k̂

1−φ2
II(t)∥eII(t)∥2 .

(4.2.26)

We show that eII(t)→ 0 for t → ω . Seeking a contradiction, assume that there exist κ > 0
and a sequence (tn) ⊂ R≥0 with tn ↗ ω such that ∥eII(tn)∥ ≥ κ for all n ∈ N. Then, from
(4.2.26) we obtain, for all t ≥ 0,

∥F̂II(t, (Ty)(t))∥= ∥ΓII(d4(t), (Ty)(t))kI(t)eI(t)+ f5(d5(t), (Ty)(t))kII(t)eII(t)∥.

Since, kI is bounded by Step 2c, y, d4 are bounded and ΓII is continuous, there exists γII > 0
such that sup

t≥0
∥ΓII(d4(t), (Ty)(t))kI(t)eI(t)∥≤ γII . Since kII(t)→∞ for t →ω , ∥eII(tn)∥≥ κ

and f5(d5(tn), (Ty)(tn)) ≥ α , we find that for n ∈ N large enough

∥F̂II(t, (Ty)(t))∥ ≥ ακkII(tn)− γII → ∞ for n → ∞.

This is contradiction to boundedness property of F̂II(·, (Ty)(·)). Hence, eII(t)→ 0 for t →ω .
Therefore, lim

t→∞
φII(t)∥eII(t)∥2 = 0 because φII(·) is bounded. This leads to lim

t→∞
kII(t) = k̂, a
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contradiction. In conclusion, kII(·) is bounded.
Step 3: We show that ω = ∞. Seeking a contradiction, suppose that ω < ∞. Then, since
eiq,ki,q for i = 1, . . . , p, q = 0, . . . ,ri − 2, eI ,eII ,kI ,kII are bounded by Step 2, it follows that
the closure of the graph of (e10, . . . ,e1,r−1−1, . . . ,ep,rp−1,ep+1, . . . ,em) is a compact subset of
D , a contradiction.

We show that funnel controller (4.2.4) which is a simplification version of funnel con-
troller (4.2.1) works on well in application to class of systems (4.1.2).

Corollary 4.2.4. Consider a system (4.1.2) with vector relative degree r = (r1,r2, . . . ,rm)⊤ ∈
Nm. For Φ,Φi as defined in (1.1.7), suppose reference signal yref, and φ ,φiq, i = 1, . . . ,m,
q = 0, . . . ,ri−2 as given in (4.2.2). Let y|[−h,0] = y0 = (y0

1, . . . ,y0
m), y0

i ∈C ri−1([−h,0]→ R)
an initial value such that ē,eiq, i = 1, . . . ,m, q = 0, . . . ,ri −2 as defined in (4.2.4) fulfill

φ(0)∥ē(0)∥< 1

φiq(0)∥eiq(0)∥< 1 for i = 1, . . . ,m, q = 0, . . . ,ri −2.
(4.2.27)

Then the application of the funnel controller (4.2.4) to (4.1.2) yields an initial value problem,
which has a solution, and every maximal solution y : [−h,ω) → Rm, ω ∈ (0,∞], has the
following properties:

(i) The solution is global (i.e., ω = ∞).

(ii) The input u : R≥0 → Rm, the gain functions k̄,kiq : R≥0 → R, i = 1, . . . ,m, q =

0, . . . ,ri −2 and yi, . . . ,y
(ri−1)
i : R≥0 → R, i = 1, . . . ,m are bounded.

(iii) The functions ē : R≥0 → Rm, eiq : R≥0 → R, i = 1, . . . ,m, q = 0, . . . ,ri − 2 evolve in
their respective performance funnels and are uniformly bounded away from the funnel
boundaries in the following sense:

∀ i = 1, . . . ,m, q = 0, . . . ,ri −2 ∃εiq > 0 ∀ t > 0 : ∥eiq(t)∥ ≤ φiq(t)−1 − εiq,

∃ ε̄ > 0 ∀ t > 0 : ∥ē(t)∥ ≤ φ(t)−1 − ε̄ ,
(4.2.28)

In particular, the error ei(t) = yi(t)− yref,i(t), i = 1, . . . ,m, evolves in the funnel Fφi0

as in (1.1.8) and stays uniformly away from its boundary.

Proof. This corollary is achieved by applying directly theorem 4.2.3 with noting that the part
which is respective to generalized relative degree ri = 0 vanish.

We now consider a linear differential-algebraic system with positive vector relative de-
gree of type (2.2.8).

Eẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t),

where A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n.
We will prove that funnel controller (4.2.4) combined with regulation condition (4.2.29) can
be also applied to this kind of system,

yref ∈ W n,∞(R≥0 → Rm),

φ ∈ Φn−|r|,φi0 ∈ Φn,φi1 ∈ Φn−1, . . . ,φi,ri−2 ∈ Φn−ri+2, i = 1, . . . ,m,
(4.2.29)

with |r|=
m
∑

i=1
ri.
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Proposition 4.2.5. Let [E,A,B,C] ∈ Σn,n,m,m be regular, has asymptotically stable zero dy-
namic, positive vector relative degree r = (r1, . . . ,rm), ri > 0, i = 1, . . . ,m, and positive (neg-
ative) definite high-gain matrix Γ = lim

s→∞
diag(sr1 , . . . ,srm)C(sE−A)−1B. For funnel functions

φ ,φiq, i = 1, . . . ,m, q = 0, . . . ,ri − 2, reference signal yref as in (4.2.29), and any consistent
initial value x0 ∈ Rn such that ē,eiq, i = 1, . . . , p, q = 0, . . . ,ri −2 as defined in (4.2.4) fulfill

φ(0)∥ē(0)∥< 1,

φiq(0)|eiq(0)|< 1, i = 1, . . . ,m, q = 0, . . . ,ri −2.

Then the application of the funnel controller (4.2.4) to system (2.2.8) yields a closed-loop
initial value problem that has a solution and every solution can be extended to a global
solution. Furthermore, for every global solution x(·),

i) The input u : R≥0 → Rm, the gain functions k̄,kiq : R≥0 → R, i = 1, . . . ,m, q =
0, . . . ,ri −2 are bounded.

ii) The functions ē : R≥0 → Rm, and eiq : R≥0 → R, i = 1, . . . ,m, q = 0, . . . ,ri −2 evolve
in their respective performance funnels, i.e.,

(t, ē) ∈ Fφ ; (t,eiq) ∈ Fφiq for all i = 1, . . . ,m, q = 0, . . . ,ri −2 and t ≥ 0.

Furthermore, the signals ē(·),eiq(·) are uniformly bounded away from the funnel bound-
aries in the following sense:

∀ i = 1, . . . ,m, q = 0, . . . ,ri −2 ∃εiq > 0 ∀ t > 0 : ∥eiq(t)∥ ≤ φiq(t)−1 − εiq,

∃ε > 0 ∀ t > 0 : ∥ē(t)∥ ≤ φ(t)−1 − ε .

In particular, each error component ei(t) = Cix(t)− yref,i(t), i = 1, . . . ,m, evolves in
the funnel Fφi0 and stays uniformly away from its boundary.

Proof. Without limitation of generality, we may consider [E,A,B,C] in the form


y(r1)

1 (t)
y(r2)

2 (t)
...

y(rm)
m (t)

=



m
∑

j=1

r j

∑
h=1

R1
jhy(h−1)

j (t)

m
∑

j=1

r j

∑
h=1

R2
jhy(h−1)

j (t)

...
m
∑

j=1

r j

∑
h=1

Rm
jhy(h−1)

j (t)


+ Sη(t)+Γu(t),

η̇(t) =
m

∑
i=1

Piyi(t)+Qη(t),

xc(t) = −
ν−1

∑
i=0

Ni
cBcu(i)(t),

xc̄(t) = 0,

where nc,nc̄ ∈ N0, µ = n− nc − nc̄ −|r| and Ri
jh ∈ R with i, j ∈ {1, . . . ,m}, h ∈ {1, . . . ,ri},

S ∈ Rm×µ , Pi ∈ Rµ , Bc ∈ Rnc×m, Q ∈ Rµ×µ is a Hurwitz matrix. Nc ∈ Rnc×nc is nilpotent
with index ν , and rank

[
Nc Bc

]
= nc.

Ignoring the last two algebraic equation of that form, the claim in (ii), and the boundedness
of u, k̂, kiq, i = 1, . . . ,m, q = 0, . . . ,ri −2 follow directly from Corollary 4.2.4. It remains to
show that x is a bounded function. Indeed, we have already known that v+ |r| ≤ n. Since φ ∈
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Φn−q, φiq ∈ Φn−q, q = 0, . . . ,ri−2 it is obtained that u(t) at least (ν −1) times continuously
differentiable and all of these derivatives are bounded functions. Therefore, xc and xc̄ are
bounded function. This implies the boundedness of x.

We continue to consider a linear differential-algebraic sytem with generalized relative
degree of type (4.1.3).

Eẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t)

where A,E ∈ Rl×n, B ∈ Rl×m, C ∈ Rm×n.

Proposition 4.2.6. Let [E,A,B,C] ∈ Σl,n,m,m be right invertible and has autonomous, asymp-
totically stable zero dynamics, and has a generalized vector relative degree (r1, · · · ,rp,0, · · · ,0)∈
N1×m

0 , ri > 0, for i = 1, . . . , p. Suppose that the matrix Γ11 which is defined as in (2.3.7) is
positive (negative) definite. Let φiq,φI ,φII as in (4.2.2) defining performance funnel, and
reference signal yref ∈ W n,∞(R≥0 → Rm). Then, the closed-loop system (4.1.3),(4.2.1) with
any consistent initial value x0 ∈ Rn has a solution and every solution can be extended to a
global solution. Moreover, for every global solution x(·),

i) the input function u : R≥0 → Rm, the gain functions kiq,kI ,kII : R≥0 → R, i = 1, . . . , p,
q = 0, . . . ,ri −2, the state function x : R≥0 → Rn are bounded.

ii) the functions eiq : R≥0 → R, i = 1, . . . , p, q = 0, . . . ,ri − 2 and eI : R≥0 → Rp, eII :
R≥0 → Rm−p evolve in their respective performance funnels, i.e.,

(t,eI)∈FφI ; (t,eII)∈FφII ; (t,eiq)∈Fφiq for all i= 1, . . . , p, q= 0, . . . ,ri−2 and t ≥ 0.

Furthermore, the signals eI(·),eII(·),eiq(·) are uniformly bounded away from the fun-
nel boundaries in the following sense:

∀ i = 1, . . . , p, q = 0, . . . ,ri −2 ∃εiq > 0 ∀ t > 0 : ∥eiq(t)∥ ≤ φiq(t)−1 − εiq,

∃εI > 0 ∀ t > 0 : ∥eI(t)∥ ≤ φI(t)−1 − εI ,

∃εII > 0 ∀ t > 0 : ∥eII(t)∥ ≤ φII(t)−1 − εII .

(4.2.30)

In particular, each error component ei(t) =Cix(t)−yref,i(t) evolves in the funnel Fφi0 ,
with i = 1, . . . , p, or FφII , with i = p+ 1, . . . ,m, and stays uniformly away from its
boundary.
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Proof. Without loss of generality, we may consider system (4.1.3) in the form

η̇(t) = Qη(t)+A12y(t),


y(r1)

1 (t)
y(r2)

2 (t)
...

y(rp)
p (t)

=



p
∑

j=1

r j

∑
h=1

R1
jhy(h−1)

j (t)+
m
∑

j=p+1
R1

j1y j(t)

p
∑

j=1

r j

∑
h=1

R2
jhy(h−1)

j (t)+
m
∑

j=p+1
R2

j1y j(t)

...
p
∑

j=1

r j

∑
h=1

Rp
jhy(h−1)

j (t)+
m
∑

j=p+1
Rp

j1y j(t)


+[Γ11 0]A21η(t)

+ [Γ11 0]


u1(t)
u2(t)
...

um(t)

 ,

0 =



p
∑

j=1

r j

∑
h=1

Rp+1
jh y(h−1)

j (t)+
m
∑

j=p+1
Rp+1

j1 y j(t)

p
∑

j=1

r j

∑
h=1

Rp+2
jh y(h−1)

j (t)+
m
∑

j=p+1
Rp+2

j1 y j(t)

...
p
∑

j=1

r j

∑
h=1

Rm
jhy(h−1)

j (t)+
m
∑

j=p+1
Rm

j1y j(t)


+[Γ21 Im−p]A21η(t)

+ [Γ21 Im−p]


u1(t)
u2(t)
...

um(t)

 ,

x3(t) =
ν−1

∑
i=0

NiE32y(i+1)(t).

where, Q ∈ Rµ×µ is Hurwitz, µ = dimmax(E,A,B;kerC), n3 = n− µ −m, N ∈ Rn3×n3 is
nilpotent with index ν ∈ N, i.e. Nν = 0 and Nν−1 ̸= 0, Ri

jh ∈ R for i = 1, . . . , p, j = 1, . . . , p,
h = 1, . . . ,r j, and Ri

j1 ∈R for i = p+1, . . . ,m, j = p+1, . . . ,m, and E32,A21,A12 are matrices
with suitable size. We recall the Subsection 4.1.2 which states that the subsystem made by
three first equations of (4.1.4) belongs to the class of system (4.1.1). We note that

(Ty)(t) := η(t) = eQtη0 +

t∫
0

eQ(t−τ)A12y(τ)dτ .

T is clearly causal, locally Lipschitz, and the Hurwitz property of Q implies that T has the
bounded-input-bounded-output property, and

d
dt
(Ty)(t) = QeQtη0 +Q

t∫
0

eQ(t−τ)A12y(τ)dτ = z(y(t), (T̃ y)(t)).
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Hence, operator T satisfies all properties (i)-(iv) in Definition 4.1.1. Furthermore, all other
functions can be specify as follows

f1

(
y1(t), · · · ,y(r1−1)

1 (t), · · · ,y(rp−1)
p (t),yp+1(t), · · · ,ym(t)

)

=



p
∑

j=1

r j

∑
h=1

R1
jhy(h−1)

j (t)+
m
∑

j=p+1
R1

j1y j(t)

p
∑

j=1

r j

∑
h=1

R2
jhy(h−1)

j (t)+
m
∑

j=p+1
R2

j1y j(t)

...
p
∑

j=1

r j

∑
h=1

Rp
jhy(h−1)

j (t)+
m
∑

j=p+1
Rp

j1y j(t)


,

f2

(
d1(t), (Ty)(t)

)
= [Γ11 0]A21(Ty)(t),

ΓI

(
d2(t), (Ty)(t)

)
= Γ11,

f3

(
y1(t), · · · ,y(r1−1)

1 (t), · · · ,y(rp−1)
p (t),yp+1(t), · · · ,ym(t)

)

=



p
∑

j=1

r j

∑
h=1

Rp+1
jh y(h−1)

j (t)+
m
∑

j=p+1
Rp+1

j1 y j(t)

p
∑

j=1

r j

∑
h=1

Rp+2
jh y(h−1)

j (t)+
m
∑

j=p+1
Rp+2

j1 y j(t)

...
p
∑

j=1

r j

∑
h=1

Rm
jhy(h−1)

j (t)+
m
∑

j=p+1
Rm

j1y j(t)


,

f4

(
d1(t), (Ty)(t)

)
= [Γ21 Im−p]A21(Ty)(t),

ΓII

(
d4(t), (Ty)(t)

)
= Γ21,

f5

(
d5(t), (Ty)(t)

)
= 1.

We, therefore, apply Theorem 4.2.3 to get most of statement results of Proposition 4.2.6.
What remains to prove is that the state functions are bounded. Or more precisely, we need

to show the boundedness of x3 in (4.1.4). Indeed, we abuse the definition of
(

XI(t)
XII(t)

)
, and

FI , F̃II from Step 1c,d,e in the proof of Theorem 4.2.3. We have
(

XI(t)
XII(t)

)
solves the initial
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value problem (4.2.19),

ẊI(t) = FI

(
t,
(

XI(t)
XII(t)

)
,T1

(
XI

XII

)
(t)
)

,

ẊII(t) = F̃II

(
t,
(

XI(t)
XII(t)

)
,T1

(
XI

XII

)
(t),T2

(
XI

XII

)
(t)
)

,

XI(0) =
(

y0
1, . . . ,

( d
dt

)r1−1
y0

1, . . . ,
( d

dt

)rp−1
y0

p

)
(0),

XII(0) = (y0
p+1, . . . ,y0

m)(0).

We note that by Step 2 in proof of Theorem 4.2.3,
(

XI

XII

)
is bounded. Therefore,

(
ẊI

ẊII

)
is

bounded since FI , F̃II are continuously differentiable. Then again, we obtain that
d
dt

(
T1

(
XI

XII

))
,

d
dt

(
T2

(
XI

XII

))
are bounded. And the boundedness of

(
ẌI

ẌII

)
is also gotten by differentiating

(4.2.19). Iteratively, we have that

∀ j = 0, . . . ,ν + 1 :

(
∃c0, . . . ,c j > 0∀t ≥ 0 :

∥∥∥∥(XI

XII

)
(t)
∥∥∥∥≤ c0, . . . ,

∥∥∥∥∥
(

X ( j)
I

X ( j)
II

)
(t)

∥∥∥∥∥≤ c j

)

⇒

(
∃C1,C2 > 0∀t ≥ 0 :

∥∥∥∥∥
(

T1

(
XI

XII

))( j)

(t)

∥∥∥∥∥≤C1,

∥∥∥∥∥
(

T1

(
XI

XII

))( j)

(t)

∥∥∥∥∥≤C2

)
,

and successive differentiation of (4.2.19) yields that
(

XI

XII

)
,
(

ẊI

ẊII

)
, . . . ,

(
X (ν+1)

I

X (ν+1)
II

)
are bounded.

As a consequense, y, ẏ, . . . ,y(ν+1) are bounded. Hence,

x3(t) =
ν−1

∑
i=0

NiE32y(i+1)(t)

is also bounded. In conclusion, x is bounded.

4.2.2 Applications

The following simulations aim to illustrate the theoretical results of the applying funnel con-
troller (4.2.1) to system which belong to class (4.1.1).

Firstly, we consider an academic example of nonlinear multi-input, multi-output system
described as follow

ÿ1(t) = −siny1(t)+ y1(t)ẏ1(t)+ y2(t)2 + y1(t)(Ty)(t)

+ (y1(t)2 + y2(t)4 + 1)u1(t),

0 = y1(t)3 + y1(t)ẏ1(t)2 + y2(t)+ y2(t)(Ty)(t)

+ (y1(t)+ (Ty)(t))y2(t)u1(t)+ u2(t).

(4.2.31)

where operator

(Ty)(t) = (T (y1,y2))(t) := e−2tη0 +

t∫
0

e−2(t−s)
(

2y1(s)− y2(s)
)

ds, t ≥ 0,
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for any fix η0 ∈ R. Operator T ∈ T2,1 because T satisfies all properties in definition 4.1.1.
Obviously, the equation (4.2.31) belongs to system class (4.1.1) with

f1 = −siny1(t)+ y1(t)ẏ1(t)+ y2(t)2,

f2 = y1(t)(Ty)(t),

f3 = y1(t)3 + y1(t)ẏ1(t)2 + y2(t),

f4 = y2(t)(Ty)(t),

f5 = 1,

ΓI = y1(t)2 + y2(t)4 + 1,

ΓII = (y1(t)+ (Ty)(t))y2(t),

since
[

∂ f3
∂y1

∂ f3
∂ ẏ1

∂ f3
∂y2

]0
0
1

 = 1 is bounded. Furthermore, system (4.2.31) has generalized

vector relative degree r = (2,0). For simulation, we choose reference signal yref = (cos2t, sin t)⊤,
and initial value y0 = (0,0)⊤, and η0 = 0. We can set k̂ = 2 in funnel controller (4.2.1) since[

∂ f3
∂y1

∂ f3
∂ ẏ1

∂ f3
∂y2

]0
0
1

= 1 and f5 = 1. Because there is not any constraint condition imposed

on funnel boundary, we may choose the same funnel function φ for all values.

φ : R≥0 → R≥0,

t 7→ 1
2

te−t + 2arctan t.

This simulation has been performed in MATLAB (solver: ode15s, relative tolerance: 10−14,
absolute tolerance: 10−5) over the time interval [0,10], see Figure 4.1.

Figure 4.1a shows the output errors stay in the funnel and Figure 4.1b shows the input
components that drive tracking errors.

We continue consider another example of linear general differential-algebraic systems.
We note that this kind of system does not belong to class (4.1.1), however it still can be
applied funnel controller (4.2.1) according to Proposition 4.2.6. We recall example in Remark
2.3.11 which do not have vector relative degree but have generalized vector relative degree.
For more detail, we have

Eẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)
(4.2.32)

where

E =


1 0 0 0 0
0 1 0 1 0
0 −1 0 0 0
0 0 0 0 1
0 1 0 0 0

 ; A =


−1 1 −2 0 0
3 5 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1



B =


0 0
1 0
0 1
0 0
0 0

 ; C =

[
0 1 0 0 0
0 0 1 0 0

]
.
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Fig. 4.1a: Funnel and tracking errors
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FIGURE 4.1: Simulation of the controller (4.2.1) for the system (4.2.31).

We have already shown in Remark 2.3.11 that the system (4.2.32) is 2-input, 2 output sys-
tems and has generalized vector relative degree r = (3,0). Interpretation this system to
normal form (4.1.4), the system has matrix Q = −1 which means that its zero dynamics is

asymptotically stable and the matrix A22 =

[
5 0
0 0

]
. Therefore, we can set k̂ = 6 in fun-

nel controller (4.2.1). We may choose, in simulation, reference signal yref = (sin t, cos2t)⊤,
and initial value x0 = (0,1,1,0,0)⊤. Since there is not any constraint condition imposed on
funnel boundary, we may choose the same funnel function φ for all values.

φ : R≥0 → R≥0,

t 7→ 1
2

te−t + 2arctan t.

This simulation has been performed in MATLAB (solver: ode15s, relative tolerance: 10−14,
absolute tolerance: 10−5) over the time interval [0,10], see Figure 4.2.

For more detail, Figure 4.2a shows the output errors stay in the funnel and Figure 4.2b
shows the input components that drive tracking errors.
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Fig. 4.2a: Funnel and tracking errors
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FIGURE 4.2: Simulation of the controller (4.2.1) for the system (4.2.32).
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Chapter 5

Application: Adaptive control of an
overhead crane

In this chapter, we study an application of funnel control to an overhead crane model which
has been introduced by Otto and Seifried in [73] and Fliess et al. in [24, 25]. The objective is
to design a closed-loop tracking controller that also takes into account the transient behaviour.
Unfortunately, its vector relative degree is not available with respect to considered input, out-
put vectors. That means the funnel controller projected in chapters 3, and 4 is not subjected
to direct application. The dynamic state feedback is then ultilized to acquire a new system
with strict relative degree four. This allows us to propose a new output feedback controller
based on funnel control that can perform the objective. Computer simulations are displayed,
demonstrating that our approach can be employed to move loads from one to another given
position in situations of having several circumnavigated obstacles.

5.1 Overhead crane model

The overhead crane model is an overhead gantry crane with a trolley moving along a hori-
zontal axis. A suspended load is attached to the trolley by four ropes, which are assumed
to be rigid and massless. Moreover, the winches on the trolley are synchronized which help
controlling the length of the ropes so that the attached load does not rotate around itself.
Therefore, this model can be represented by a point mass connected to the trolley by a single
rope as shown in Figure 5.1.

Normally, the control inputs are the external force applied to the trolley and the hoisting
torque. However, force and torque controlled actuators are difficult to realize and often pose
robustness issues due to drive train friction. Hence, the velocity-controlled is considered
which the system control inputs us (in ms−1), and ul (in ms−1) are set as reference velocities
of the trolley and rope length respectively. The equations of motion of the overhead crane
model are

τs s̈+ ṡ = us

τl l̈ + l̇ = ul

cos(φ) s̈+ l φ̈ + 2φ̇ l̇ = −gsin(φ),
(5.1.1)

where s (in m) is the trolley position, l (in m) is the rope length, and φ (in rad) is the swing
angle. We note that the rope velocity l̇ (in ms−1), and trolley velocity ṡ (in ms−1) are then
rheonomic constraints on the system. And τs (in s), τl (in s) are time constants of trolley
and winch actuator, resp., and g (in m/s2) is the gravitational constant. The constants do not
depend on the trolley or load mass. As output of the model we choose the position of the
load (

y1
y2

)
=

(
s+ l sinφ

l cosφ

)
.
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l
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us ul

τs τl
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FIGURE 5.1: Crane model.

Before study crane model for more detail, we recall basic notations by Isidori[56, Sec.1.2].
Consider the multivariable non-linear systems which are described in state space form by
equations of the following kind

ẋ = f (x)+
m

∑
i=1

gi(x)ui,

y1 = h1(x),
...

ym = hm(x),

(5.1.2)

where f (x), g1(x), . . . ,gm(x), and h1(x), . . . ,hm(x) are smooth functions, defined on an open
set X of Rn. We denote the derivative of hi along f at x by

L f hi(x) =
n

∑
j=1

∂hi

∂x j
f j(x).

If hi is being differentiated k times along f , the function Lk
f hi(x) satisfies the recursion

Lk
f hi(x) =

n

∑
j=1

∂ (Lk−1
f hi)

∂x j
f j(x)

with note that L0
f hi(x) = hi(x). Moreover, we also denote

Lg j L
k
f hi(x) =

n

∑
p=1

∂ (Lk
f hi)

∂xp
gp(x).

For sake of better overview, we reintroduce the definition of vector relative degree in [56,
Sec.5.1].

Definition 5.1.1 ([56, Sec.5.1]). A multivariable nonlinear system of the form (5.1.2) has a
(vector) relative degree (r1, . . . ,rm) at a point x0 if
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(i) Lg j(L
k
f hi(x)) = 0 for all 1 ≤ j ≤ m, 0 ≤ k < ri − 1, 1 ≤ i ≤ m, and for all x in a

neighborhood of x0,

(ii) the matrix

Γ(x) =


Lg1(L

r1−1
f h1(x)) · · · Lgm(L

r1−1
f h1(x))

...
. . .

...

Lg1(L
rm−1
f hm(x)) · · · Lgm(L

rm−1
f hm(x))


is nonsingular at x = x0.

Remark 5.1.2. In order to compare this definition with other definition on vector relative
degree which has been introduced in previous chapters, we calculate the vector relative degree
of a linear system

ẋ = Ax+Bu,

y =Cx,

where A ∈ Rn×n, B = [B1,B2 . . . ,Bm] with Bi ∈ Rn×1, and C =


C1
C2
...

Cm

 with Ci ∈ R1×n, i =

1, . . . ,m.
In this case, since f (x) = Ax, g j(x) = B j, hi(x) =Cix, we obtain

Lk
f hi(x) =CiAkx, for i = 1, . . . ,m,

and therefore

Lg j L
k
f hi(x) =CiAkB j, for i = 1, . . . ,m, j = 1, . . . ,m.

Thus, the vector relative degree (r1, . . . ,rm) is characterized by the conditions

(a) CiAkB j = 0 for all 1 ≤ j ≤ m, 0 ≤ k < ri −1, 1 ≤ i ≤ m,

(b) and the matrix

Γ =


C1Ar1−1B1 C1Ar1−1B2 · · · C1Ar1−1Bm

C2Ar2−1B1 C2Ar2−1B2 · · · C2Ar2−1Bm
...

...
. . .

...
CmArm−1B1 CmArm−1B2 · · · CmArm−1Bm


is non-singular.

In conjunction with Remark 2.2.7(iii), it is shown that Definition 2.2.6 and Definition 5.1.1
are consistent.

To analyze the properties of the crane system, we transform (5.1.1) into the form (5.1.2)
by denoting x1 := s, x2 := ṡ, x3 := l, x4 := l̇, x5 := φ , x6 := φ̇ , and u1 := us, u2 := ul .

ẋ = f (x)+ g1(x)u1 + g2(x)u2,(
y1
y2

)
=

(
x1 + x3 sinx5

x3 cosx5

)
,

(5.1.3)
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where

x :=



x1
x2
x3
x4
x5
x6

 , f (x) :=



x2

−x2

τs
x4

−x4

τl
x6

−2x4x6 + gsinx5

x3
+

x2 cosx5

x3τs


,g1(x) :=



0
1
τs
0
0
0

−cosx5

x3τs


,g2(x) :=



0
0
0
1
τl
0
0


.

Since y1 = x1 + x3 sinx5, and y2 = x3 cosx5, we have

L f y1 = x2 + x4 sinx5 + x3x6 cosx5,

L f y2 = x4 cosx5 − x3x6 sinx5.

Then we obtain
Lg1y1 = Lg2y1 = 0,
Lg1y2 = Lg2y2 = 0,

and

Lg1(L f y1) =
sin2 x5

τs
,

Lg2(L f y1) =
sinx5

τl
,

Lg1(L f y2) =
sinx5 cosx5

τs
,

Lg2(L f y2) =
cosx5

τl
.

We have matrix

Γ(x) =
[

Lg1(L f y1) Lg2(L f y1)
Lg1(L f y2) Lg2(L f y2)

]
=

 sin2 x5

τs

sinx5

τl
sinx5 cosx5

τs

cosx5

τl

 .

Obviously, the rank of Γ(x) is constant one, whence the crane model system has no strict
(vector) relative degree at any point of the state space. It means that we can not directly apply
funnel controller (3.2.1) in Chapter 3 to this system. Therefore, we need to modify - by means
of control laws - this system to get a new one having vector relative degree. We will rather
use a feedback structure which incorporates an additional set of state variables, namely a
dynamic state feedback, see Isidori[56, Sec.5.4], or Seifried[80, Subsec.3.3.5]. We introduce
a technique which is presented in [56, Sec.5.4], namely dynamic extension algorithm to build
a dynamic state feedback. To demonstrate this algorithm, we use the notation of the matrix
Γ(x) from the Definition 5.1.1,

Γ(x) =


Lg1(L

r1−1
f h1(x)) · · · Lgm(L

r1−1
f h1(x))

...
. . .

...

Lg1(L
rm−1
f hm(x)) · · · Lgm(L

rm−1
f hm(x))

 ,
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with the symbol ri denoted the number satisfying

Lg j(L
ri−1
f hi(x)) ̸= 0, and Lg j(L

k
f hi(x)) = 0

for 1 ≤ j ≤ m, 0 ≤ k < ri −1, 1 ≤ i ≤ m, and for all x on a neighborhood U of x0. Suppose
that Γ(x) has constant rank on U , and rankΓ(x)< m which means that system (5.1.2) has no
vector relative degree.
Dynamic extension algorithm. Denote Γi(x), i = 1, . . . ,m being the i− th row of matrix
Γ(x). Since Γ(x) is singular, and has constant rank on U , it is possible to find p ∈ {1, . . . ,m},
and p−1 smooth functions c1(x), . . . ,cp−1(x) defined on U , and i0, j0 such that ci0(x) is not
identically zero,

Γp(x) =
p−1

∑
i=1

ci(x)Γi(x),

and
Γi0 j0(x

0) = Lg j0
(L

ri0−1
f hi0(x

0)) ̸= 0.

Then, we define the dynamic feedback

u j = v j for j ̸= j0

u j0 =
1

Γi0 j0

(
p(x)+ q(x)ξ −

m

∑
j=1, j ̸= j0

Γi0 j(x)v j

)
,

ξ̇ = v j0 ,

where p(x) and q(x) are arbitrary functions satisfying p(x0) = 0 and q(x0) = 1.
Apply to system (5.1.2), we obtain an extended system

ẋ = f (x)+
m

∑
j=1, j ̸= j0

g j(x)v j +
g j0(x)
Γi0 j0

(
p(x)+ q(x)ξ −

m

∑
j=1, j ̸= j0

Γi0 j(x)v j

)
,

ξ̇ = v j0 ,

y1 = h1(x),
...

ym = hm(x).

We repeat the procedure for new system until achieving vector relative degree. The system
with dynamic state feedback is depicted in Figure 5.2.

u y
Systemv Dynamic state feedback

x

FIGURE 5.2: Extended system with dynamic state feedback.

The dynamic extension algorithm is applied to a system in which the high gain matrix
Γ(x) is singular, or in the other words, the rank of Γ(x) is less than m which equals to the
number of output or the number of input. Therefore, by using a dynamic state feedback,
we can get an extended system in which the rank of the high gain matrix is possibly larger.
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Hence, a system having vector relative degree may be achieved after a finite number of it-
erations. That is the reason why dynamic extension algorithm could be possible applied to
extend the multi-input, multi-output non-linear system (5.1.3) until the extended system has
a well-defined vector relative degree. By iteration approach, in each step of the algorithm,
system inputs or combination of those inputs are delayed by using integrators until the gain
matrix of obtained system has full rank. This technique usually add some new state variables
to the original system. Moreover, by [56, Remark.5.4.6], any two regularizing dynamic ex-
tension have necessarily the same dimension and only differ by change of coordinates and
regular static feedback. For the system (5.1.3), we use above procedure to get the following
dynamic state feedback

ẋ7 = x8,

ẋ8 = v2,

u1 = v1,

u2 = x4 + x3x2
6τl +

(x2 − v1)τl sinx5

τs
+

(x7 −gsin2 x5)τl

cosx5
.

(5.1.4)

Hence, we have a new system

˙̃x = f̃ (x)+ g̃1(x)v1 + g̃2(x)v2,(
y1
y2

)
=

(
x1 + x3 sinx5

x3 cosx5

)
,

(5.1.5)

where

x̃ :=



x1
x2
x3
x4
x5
x6
x7
x8


, f̃ (x̃) :=



x2

−x2

τs
x4

x3x2
6 +

x2 sinx5

τs
+

x7 −gsin2 x5

cosx5
x6

−2x4x6 + gsinx5

x3
+

x2 cosx5

x3τs
x8
0


, g̃1(x̃) :=



0
1
τs
0

−sinx5

τs
0

−cosx5

x3τs
0
0


, g̃2(x̃) :=



0
0
0
0
0
0
0
1


.

Since y1 = x1 + x3 sinx5, and y2 = x3 cosx5, we have

L f̃ y1 = x2 + x4 sinx5 + x3x6 cosx5,

L f̃ y2 = x4 cosx5 − x3x6 sinx5,

L2
f̃ y1 = (x7 −g) tanx5,

L2
f̃ y2 = x7,

L3
f̃ y1 = x8 tanx5 + x6(1+ tan2 x5)(x7 −g),

L3
f̃ y2 = x8.
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Then, we obtain

Lg̃1y1 = Lg̃2y1 = Lg̃1(L f̃ y1) = Lg̃2(L f̃ y1) = Lg̃1(L
2
f̃ y1) = Lg̃2(L

2
f̃ y1) = 0,

Lg̃1y2 = Lg̃2y2 = Lg̃1(L f̃ y2) = Lg̃2(L f̃ y2) = Lg̃1(L
2
f̃ y2) = Lg̃2(L

2
f̃ y2) = 0,

and

Lg̃1(L
3
f̃ y1) =

g− x7

x3τs cosx5
,

Lg̃2(L
3
f̃ y1) =

sinx5

cosx5
,

Lg̃1(L
3
f̃ y2) = 0,

Lg̃2(L
3
f̃ y2) = 1,

Obviously, the matrix

Γ(x̃) =

[
Lg̃1(L

3
f̃ y1) Lg̃2(L

3
f̃ y1)

Lg̃1(L
3
f̃ y2) Lg̃2(L

3
f̃ y2)

]
=

 g− x7

x3τs cosx5

sinx5

cosx5
0 1

 (5.1.6)

is nonsingular at any point of state space which satisfies x7 ̸= g. Therefore, based on Defi-
nition 5.1.1, the extended system (5.1.5) has strict relative degree r = 4 at any point of state
space which satisfies x7 ̸= g.

Remarks 5.1.3. If x3 = 0, or cosx5 = 0, then y2 = 0. This is unrealistic position where
the load is at the same horizontal level as the trolley. Therefore, in designing an adaptive
controller for system (5.1.5), the reference trajectory of the load and tracking area must be
chosen such that the load always moves under the trolley to avoid the case x3 = 0, cosx5 = 0,
see Figure 5.3.

x3

x5

reference trajectory

tracking area

FIGURE 5.3: Crane model and reference trajectory
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We set an output feedback controller based on funnel control for the extended systems
(5.1.5)

e0(t) = e(t) = y(t)− yref(t),
e1(t) = ė0(t) + k0(t) · e0(t),
e2(t) = ė1(t) + k1(t) · e1(t),
e3(t) = ė2(t) + k2(t) · e2(t),

ki(t) =
1

1−φ2
i (t)∥ei(t)∥2 , i = 0,1,2,

k3(t) =
k̂

1−φ2
3 (t)∥e3(t)∥2 ,

w(t) = −k3(t) · e3(t),
v(t) = Γ(x̃)−1 ·w(t)

(5.1.7)

with k̂ is a positive constant, and Γ(x̃) from (5.1.6).

Remark 5.1.4.

(i) Since the Remark 5.1.3, we need to choose reference signal and funnel function such
that y2 ̸= 0. We note that ∥e(t)∥ ≤ φ0(t)−1. Hence, we can choose the reference signal
and funnel functions such that

yref,2(t)−φ0(t)−1 > 0 for all t ≥ 0. (5.1.8)

The condition (5.1.8) ensures that y2 > 0.

(ii) A crucial point of funnel controller (5.1.7) is that Γ(x̃)−1 could not exist when x7 =
ÿ2 = g. On the other hand, refer to Remark 3.2.6 (ii), the bound of ë(t) can be cal-
culated a priori and can be adjusted by using the funnel functions φ0,φ1,φ2, and φ3.
Indeed, set ψi(t) := φi(t)−1, the estimation (3.2.13) shows that

∥ë(t)∥ ≤
(

ψ2(t)− ε2(t)
)

+

[
ψ0(t)
ε0(t)

+
ψ1(t)
ε1(t)

+ 2
(ψ0(t)

ε0(t)

)2
φ0(t)2

(
ψ0(t)− ε0(t)

)2
](

ψ1(t)− ε1(t)
)

+

[(ψ0(t)
ε0(t)

)2
+ 2
(ψ0(t)

ε0(t)

)3
φ0(t)2

(
ψ0(t)− ε0(t)

)2
](

ψ0(t)− ε0(t)
)

+ 2
(ψ0(t)

ε0(t)

)2
|φ̇0(t)|

(
ψ0(t)− ε0(t)

)2
.

with εi(t) is the solution of following initial value problems

ε̇i(t) = ψ̇i(t)−ψi+1(t)+
ψi(t)(ψi(t)− εi(t))

2εi(t)
,

εi(0) = ψi(0)−∥ei(0)∥,
(5.1.9)

for i= 0,1,2. We note that (5.1.9) is proved to have a unique global solution εi : R≥0 →
R satisfying

εi,min ≤ εi(t) ≤ ψi(t)− εi,max for all t ≥ 0,

∥ei(t)∥ ≤ ψi(t)− εi(t) for all t ≥ 0,
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with

λi := inf
t≥0

ψi(t) > 0, i = 0,1,2,

κi := ∥ψi+1 − ψ̇i∥∞, i = 0,1,2,

εi,min := min
{

λ 2
i

2κi + ∥ψi∥∞
,ψi(0)−∥ei(0)∥

}
> 0,

εi,max := min
{

λi+1λi

∥ψi∥∞
,
λi

2
,∥ei(0)∥

}
≤ 0,

by [8, Lem. 4.1, Lem. 4.3]. Consequently, we can choose the reference signal and
funnel functions such that

ÿref,2(t)+
(

ψ2(t)− ε2(t)
)

+

[
ψ0(t)
ε0(t)

+
ψ1(t)
ε1(t)

+ 2
(ψ0(t)

ε0(t)

)2
φ0(t)2

(
ψ0(t)− ε0(t)

)2
](

ψ1(t)− ε1(t)
)

+

[(ψ0(t)
ε0(t)

)2
+ 2
(ψ0(t)

ε0(t)

)3
φ0(t)2

(
ψ0(t)− ε0(t)

)2
](

ψ0(t)− ε0(t)
)

+ 2
(ψ0(t)

ε0(t)

)2
|φ̇0(t)|

(
ψ0(t)− ε0(t)

)2
≤ g0 < g, (5.1.10)

for all t ≥ 0, and g0 is a constant. The condition (5.1.10) ensures that ÿ2(t) < g.
Therefore, this can get rid of the singularity of Γ(x̃). Hence, system (5.1.5) has strict
relative degree r = 4.

Now, with the suitable chosen of yref, ψ0, ψ1(t), ψ2(t), ψ3(t), and initial value x̃0 satisfy-
ing conditions (5.1.8), and (5.1.10), the final feedback controller, consisting of the dynamic
state feedback (5.1.4) and the output feedback controller (5.1.7) is depicted in Figure 5.4.

u y
Systemv Dynamic state feedback

x

Funnel Controller
ew

Γ−1

yref−

+

FIGURE 5.4: Combination of funnel controller and dynamic extension.

Theorem 5.1.5. Consider the crane systems (5.1.3), and let yref ∈ W 4,∞(R≥0 → R2), φi ∈
Φ4−i for i = 0,1,2,3, and initial value x̃0 satisfy conditions (5.1.8), (5.1.10), and ei as defined
in (5.1.7) satisfy

φi(0)∥ei(0)∥< 1, for i = 0,1,2,3.

Then the combination of dynamic state feedback (5.1.4) and output feedback controller (5.1.7)
applied to the crane systems (5.1.3) yields a closed-loop system which has a maximal solution
x : [0,ω)→ R6 with the properties,
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(i) ω = ∞,

(ii) all involved signals x(·), u(·), ki(·) for i = 0,1,2,3 are bounded,

(iii) the errors evolve uniformly within the respective performance funnel in the sense

(a) for i = 0,1,2, and εi(t) as in (5.1.9), ∥ei(t)∥ ≤ φi(t)−1 − εi(t) for all t ≥ 0,

(b) ∃ε3 > 0, ∀t ≥ 0: ∥e3(t)∥ ≤ φ3(t)−1 − ε3.

Proof. First we consider clsoed-loop system which is obtained by application output feed-
back controller (5.1.7) to the extended system (5.1.5). Since y1 = x1 + x3 sinx5, and y2 =
x3 cosx5, we calculate the derivatives of the outputs of the extended system (5.1.5)

ẏ1 = x2 + x4 sinx5 + x3x6 cosx5,

ẏ2 = x4 cosx5 − x3x6 sinx5,

ÿ1 = (x7 −g) tanx5,

ÿ2 = x7,

y(3)1 = x8 tanx5 + x6(1+ tan2 x5)(x7 −g),

y(3)2 = x8,

y(4)1 = 2x6(x7 −g)(1+ tan2 x5) tanx5 + 2(1+ tan2 x5)x6x8

+(1+ tan2 x5)(x7 −g)
[
− 2x4x6 + gsinx5

x3
+

x2 cosx5

x3τs

]
− x7 −g

x3τs cosx5
v1 + v2 tanx5,

y(4)2 = v2,

Hence, the extended system (5.1.5) can be written in the form of input-output relation.

y(4)1 = 2
ÿ1

ÿ2 −g

(
y(3)1 − y(3)2

ÿ1

ÿ2 −g

)
+ 2
(

y(3)1 − y(3)2
ÿ1

ÿ2 −g

)
×

×

 y(3)2
ÿ2 −g

− ÿ2

y2
− ÿ1

ÿ2 −g
1(

1+
( ÿ1

ÿ2 −g

)2
)
(ÿ2 −g)

(
y(3)1 − y(3)2

ÿ1

ÿ2 −g

)
−g

ÿ1

y2
+

1
y2τs

(
ẏ1(ÿ2 −g)− ẏ2ÿ1

)
− 1

τs

(
y(3)1 − y(3)2

ÿ1

ÿ2 −g

)
− ÿ2 −g

y2τs
v1 +

ÿ1

ÿ2 −g
v2,

y(4)2 = v2,
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Set

p(y, ẏ, ÿ,y(3)) := 2
ÿ1

ÿ2 −g

(
y(3)1 − y(3)2

ÿ1

ÿ2 −g

)
+ 2
(

y(3)1 − y(3)2
ÿ1

ÿ2 −g

)
×

×

 y(3)2
ÿ2 −g

− ÿ2

y2
− ÿ1

ÿ2 −g
1(

1+
( ÿ1

ÿ2 −g

)2
)
(ÿ2 −g)

(
y(3)1 − y(3)2

ÿ1

ÿ2 −g

)
−g

ÿ1

y2
+

1
y2τs

(
ẏ1(ÿ2 −g)− ẏ2ÿ1

)
− 1

τs

(
y(3)1 − y(3)2

ÿ1

ÿ2 −g

)
.

We note that
ÿ1

ÿ2 −g
is well-defined since ÿ1 = (ÿ2 − g) tanx5, and tanx5 are determined.

Furthermore,
1(

1+
( ÿ1

ÿ2 −g

)2
)
(ÿ2 −g)

(
y(3)1 −y(3)2

ÿ1

ÿ2 −g

)
is also well-defined since y(3)1 −

y(3)2 tanx5 = x6(1+ tan2 x5)(ÿ2 − g), and x6, tanx5 are determined. As a consequence, the
function p(y, ẏ, ÿ,y(3)) is well-defined. Hence, we have an equivalence of system (5.1.5)(

y(4)1

y(4)2

)
=

(
p(y, ẏ, ÿ,y(3))

0

)
+

g− ÿ2

y2τs

ÿ1

ÿ2 −g
0 1


︸ ︷︷ ︸

Γ(x̃)

(
v1
v2

)
.

Now, set

w1 =
g− ÿ2

y2τs
v1 +

ÿ1

ÿ2 −g
v2,

w2 = v2,

then we have system (
y(4)1

y(4)2

)
=

(
p(y, ẏ, ÿ,y(3))

0

)
+

(
w1
w2

)
. (5.1.11)

The system (5.1.11) belongs to the system class (3.1.1) with strict relative degree r = 4, and
"high-frequency gain" being indentity matrix. Therefore, the funnel controller

e0(t) = e(t) = y(t)− yref(t),
e1(t) = ė0(t) + k0(t) · e0(t),
e2(t) = ė1(t) + k1(t) · e1(t),
e3(t) = ė2(t) + k2(t) · e2(t),

ki(t) =
1

1−φ2
i (t)∥ei(t)∥2 , i = 0,1,2,

k3(t) =
k̂

1−φ2
3 (t)∥e3(t)∥2 ,

w(t) = −k3(t) · e3(t),

(5.1.12)

with constant k̂ > 0, can be applied to system (5.1.11) by Theorem 3.2.3 in the case r = 4.
We note that in the proof of Theorem 3.2.3, k̂ = 1 is considered, but the case of a constant
k̂ > 0 is straightforward. Therefore, the closed-loop system (5.1.11), (5.1.12) has a maximal
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solution y : [0,ω)→ R2 with the properties,

(i) ω = ∞,

(ii) all involved signals y(·), ẏ(·), ÿ(·), y(3)(·), w(·), ki(·) for i = 0,1,2,3 are bounded.

Moreover, in conjunction with results from [8, Lem. 4.1, Lem. 4.3], the errors evolve uni-
formly within the respective performance funnel in the sense

(a) for i = 0,1,2, and εi(t) as in (5.1.9), ∥ei(t)∥ ≤ φi(t)−1 − εi(t) for all t ≥ 0,

(b) ∃ε3 > 0, ∀t ≥ 0: ∥e3(t)∥ ≤ φ3(t)−1 − ε3.

On the other hand, yref(t), ψ0(t), ψ1(t), ψ2(t), ψ3(t), and initial value x̃0 satisfying condition
(5.1.10) implies ÿ2(t) ≤ g0 < g by Remark 5.1.4(ii). This leads to the boundedness of

v1 =
y2τs

g− ÿ2
w1 +

ÿ1y2τs

(g− ÿ2)2 w2,

v2 = w2.

Moreover, we have

x1 = y1 − y2
ÿ1

ÿ2 −g
,

x2 = ẏ1 − ẏ2
ÿ1

ÿ2 −g
− y2

ÿ2 −g

(
y(3)1 − y(3)2

ÿ1

ÿ2 −g

)
,

x3 = y2

√
1+

(
ÿ1

ÿ2 −g

)2

,

x4 = ẏ2

√
1+

(
ÿ1

ÿ2 −g

)2

− y2
1

(ÿ2 −g)

√
1+

(
ÿ1

ÿ2 −g

)2

(
y(3)1 − y(3)2

ÿ1

ÿ2 −g

)
ÿ1

ÿ2 −g
,

x5 = arctan
ÿ1

ÿ2 −g
,

x6 =
1(

1+
( ÿ1

ÿ2 −g

)2
)
(ÿ2 −g)

(
y(3)1 − y(3)2

ÿ1

ÿ2 −g

)
,

x7 = ÿ2,

x8 = y(3)2 .

Then, because of the boundedness of y(·), ẏ(·), ÿ(·), y(3)(·), and ÿ2(t)≤ g0 < g, we have the
boundedness of xi(·), for i = 1, . . . ,8.
Finally, we also have

u1 = v1,

u2 = x4 + x3x2
6τl +

(x2 − v1)τl sinx5

τs
+

(x7 −gsin2 x5)τl

cosx5
.

Since v1(·), xi(·), for i = 1, . . . ,8 are bounded, then u1(·), and u2(·) are bounded. In conclu-
sion, we get all the statements (i)− (iii).
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5.2 Simulations

For the simulation, we have the constant parameters

τs = 0.03[s], τl = 0.02[s], g = 9.81[m/s2].

We choose funnel functions for e0(t) e1(t), e2(t), e3(t) being

φ0(t) = 10,

φ1(t) = 5,

φ2(t) = (4e−2t + 0.1)−1,

φ3(t) = (20e−2t + 0.5)−1,

respectively. Furthermore, we may choose the reference signals

yref,1(t) = 3(t − sin(t))[m],

yref,2(t) = 9+ 3cos(t)[m],

for t ∈ [0,2π ], and an initial values x̃0 = (0,0,12,0,0,0,−3,0). We note that this initial value
is realizable since x3(0) = l(0) = 12[m] is the length of the rope, and x1(0) = s(0) = 0[m],
x5(0) = φ(0) = 0[rad] at the beginning position of the load. Moreover, x7(0) = −3 since
ÿref,2(t) = −3cos t and ÿ2(t) = x7(t). With this initial values, the reference signals, and the
funnel functions, the conditions (5.1.8), (5.1.10) are satisfied and the system (5.1.5) have
strict relative 4. The simulation of the controller (5.1.7) with k̂ = 100 applied to (5.1.5) over
the time interval [0,2π ] has been performed in MATLAB (solver: ode45, rel. tol: 10−14,
abs. tol: 10−10). In conclusion, we have succeeded in using combination of output feedback
controller (5.1.7) and dynamics feedback (5.1.4) to drive overhead crane model (5.1.3), see
Figure 5.5.

For the chosen reference signals, y(3)ref,1(t) = 3cos t, then y(3)ref,1(0) = 3. On the other hand,

y(3)1 (t) = x8 tanx5+x6(1+ tan2 x5)(x7−g). Thus, y(3)1 (0) = 0 since x̃0 = (0,0,12,0,0,0,−3,0).
Therefore, there is a gap between y(3)ref,1(0) and y(3)1 (0). Thus, us takes certain values in its ini-
tial phase for reducing the gap and forcing the load to follow reference trajectory, see Figure
5.5c.
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FIGURE 5.5: Simulation of the controller (5.1.7) and (5.1.4) for the system
(5.1.3)
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λ -tracking, 4

adaptive control, 1
asymptotic tracking, 4

back-stepping, 9
bang-bang funnel control, 11, 65

differential-algebraic systems
linear, 17, 29
regular systems, 19
with generalized vector relative

degree, 40, 72
with positive strict relative degree, 46
with positive vector relative degree,

25, 70
with proper inverse transfer function,

28
nonlinear functional, 69

dynamic extension algorithm, 107
dynamic state feedback, 108

functional differential equations, 45
funnel boundary, 8
funnel control, 7
funnel controller, 47, 77
funnel function, 47

high-frequency gain matrix, 2, 21

index, 20
input, 2, 17
invariant subspace, 18
inversion form, 29
invertible, 29

left-, 29
right-, 29

mass on car system, 60
maximal solution, 47
minimum phase, 2

multi-input multi-output system, 2

non-identification control, 2
normal form, 25, 37

operator
bounded-input bounded-output, 45,

70
causal, 45, 70
locally Lipschitz continuous, 46, 70

output, 2, 17
overhead crane model, 103

performance funnel, 7
pole, 2, 21
prespecified transient behaviour, 4

relative degree
generalized vector, 32
ordered generalized vector, 35
ordered vector, 21
strict, 2, 21
vector, 21, 104

robotic manipulator, 64

single-input single-output system, 2
Smith-McMillan form, 2, 20
state, 2, 17
system equivalent, 17

transfer function, 2, 19
proper, 20
proper inverse, 28
strictly proper, 20

Weierstrass form, 19

zero, 2, 21
zero dynamics, 17

asymptotically stable, 18
autonomous, 18
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