
Acquiring Architecture Knowledge for
Technology Design Decisions

Dissertation with the aim of achieving the doctoral degree of

Doktor der Naturwissenschaften (Dr. rer. nat.)

Department of Informatics

Faculty of Mathematics, Informatics, and Natural Sciences

University of Hamburg

Mohamed Aboubakr Mohamed Soliman

Hamburg, 2019

Date of Oral Defense: 2nd of April 2019

The following evaluators recommend the admission of the dissertation:

Prof. Matthias Riebisch, University of Hamburg, Germany

Prof. Reinhold Plösch, Johannes Kepler University of Linz, Austria

Prof. Michel Chaudron, University of Gothenburg, Sweden

i

Abstract
Software became an essential and important part of our life. A useful software with a high quality
has bigger influence on our daily activity. Architectural design decisions have a big influence
on the quality of a software system, and are difficult to change once implemented. Software
architecture is developed as a result of selecting several software architectural solutions. However,
the complexity, diversity and evolution nature of architectural solutions force software engineers
to make critical design decisions based only on their own experience. This could lead to wrong
or sub-optimal design decisions. In order to support software engineers to take the right design
decisions, assistance is required for exploring the architectural knowledge, which encompasses
various architectural solutions, their relationships and distinctions.

Technology design decisions (e.g. selecting a framework or a database management system) are
one of the most frequently occurring types of architectural decisions, which impact several quality
attributes of a software architecture. In the past decades, the number of available technology op-
tions has increased significantly and changed constantly, which make technology decisions harder
to take. Current architecture knowledge management approaches try to support architects by offer-
ing a rich base of architectural solutions, decision factors, and rules. However, current architecture
knowledge management approaches depend on manually capturing knowledge about decisions
and architectural solutions. Obtaining and evaluating the quality of relevant and reusable knowl-
edge (and ensuring that this knowledge is up-to-date) requires significant manual maintenance
effort, which is not feasible with the fast pace of advance in technological development.

The overall problem addressed in this dissertation is to facilitate acquiring relevant architectural
knowledge to take technology design decisions. We addressed this problem by achieving three
main goals: First, we understand technology design decisions in practice. This ensures the prac-
ticability of our knowledge capturing solutions. Second, we explore developer communities for
architecture knowledge. Developer communities contain an enormous amount of discussions be-
tween software engineers, which could be a reliable and an effective source of architecture knowl-
edge. Third, we propose solutions to effectively search for relevant architectural information in
developer communities.

To understand technology design decisions in practice, we interviewed practitioners and asked
them about their decision making process. Based on the interviews with practitioners, we found
that software engineers consider certain technology aspects (e.g. performance of a certain features,
documentation and community support) as their main factor to take technology design decisions.
These aspects differentiate technologies from each other. While technology vendors describe tech-
nology solutions as a set of features, software engineers discuss the differences between technolo-
gies in developer communities. As a result from our interviews, we extended existing architecture
knowledge models with additional concepts for technology design decisions. The model charac-
terize technology design decisions, and their reasoning.

Current approaches for architecture knowledge management depend on knowledge repositories,
which requires much effort to gather, populate and maintain knowledge. Therefore, we explored
the most popular online software development community (Stack Overflow) as a possible source of
technology-related architectural knowledge. We analyzed posts in Stack Overflow to explore the

ii

type of discussed architectural questions and solutions. We found different types of architecture-
relevant posts, which identify and evaluate technology features and components design. To en-
sure that we explore relevant architecture-relevant posts, we evaluated our classification of posts
through feedback from practitioners to create the first corpus of architecture-relevant posts in de-
veloper communities, and the first ontology for architecture knowledge in developer communities.
The ontology specifies the structure and textual representation of architecture knowledge concepts
in developer communities. Moreover, the ontology is empirically grounded through qualitative
analyses of different Stack Overflow posts, as well as inter-coder reliability tests.

To facilitate searching for architectural information in developer communities. We developed and
compared in a series of experiments a set of classification approaches to identify and classify
architecture-relevant posts on Stack Overflow. The classification approaches rely on our pro-
posed ontology of architectural concepts and therefore allow capturing semantic information in
Stack Overflow posts rather than only relying on keyword matching and lexical information. Fur-
thermore, we present a novel approach to search for architecture-relevant information in Stack
Overflow posts. We implemented this approach in a web-based search engine and compared its
effectiveness to a pure keyword-based search in a series of tasks given to practitioners. Our results
show that the effectiveness of searching has been improved significantly compared to a conven-
tional keyword-based search.

iii

Kurzfassung
In der heutigen Zeit spielt Software eine wichtige Rolle unser Leben. Eine nützliche Software
mit guter Qualität hat einen großen Einfluss auf unsere tägliche Arbeit. Dabei haben Architek-
turentscheidungen einen großen Einfluss auf die Qualität eines Softwaresystems und sind nach
der Implementierung schwer zu ändern. Die Softwarearchitektur ist das Ergebnis der Auswahl
verschiedener Softwarearchitekturlösungen entwickelt. Die Komplexität, Vielfalt und Evolution
von Architekturlösungen zwingt Softwareingenieure jedoch dazu, kritische Entwurfsentscheidun-
gen nur aufgrund ihrer eigenen Erfahrung zu treffen. Dies führt häufig zu falschen oder sub-
optimalen Entwurfsentscheidungen. Damit Softwareingenieure unterstützt werden, die richtigen
Entwurfsentscheidungen zu treffen, ist es erforderlich, das Architekturwissen, das verschiedene
Architekturlösungen, ihre Beziehungen und Unterscheidungen umfasst, zu erfassen.

Entscheidungen zur Technologieauswahl (z. B. Auswahl eines Frameworks oder eines Daten-
bankverwaltungssystems) sind eine der am häufigsten auftretenden Arten von Architekturentschei-
dungen, die sich auf mehrere Qualitätsattribute einer Softwarearchitektur auswirken. In den ver-
gangenen Jahrzehnten hat die Anzahl der verfügbaren Technologieoptionen erheblich zugenom-
men und sich ständig verändert, was technologische Entscheidungen schwieriger macht. Ak-
tuelle Ansätze des Architekturwissensmanagements versuchen, Architekten zu unterstützen, in-
dem sie eine reichhaltige Basis an Architekturlösungen, Entscheidungsfaktoren und Regeln an-
bieten. Diese Ansätze des Architekturwissensmanagements hängen jedoch von der manuellen
Erfassung von Wissen über Entscheidungen und Architekturlösungen ab. Die Qualität von rele-
vantem und wiederverwendbarem Wissen zu erhalten und zu bewerten erfordert einen erheblichen
manuellen Wartungsaufwand, der mit dem schnellen Fortschritt der Änderung von Technologien
nur schwer umsetzbar ist.

Das in dieser Dissertation behandelte Gesamtproblem besteht darin, die Erfassung von relevantem
Architekturwissen zu erleichtern, um Entscheidungen zum Technologieentwurf treffen zu kön-
nen. Wir haben dieses Problem gelöst, indem wir drei Hauptziele erreicht haben: Erstens verste-
hen wir die Technologieentscheidungen in der Praxis. Dies sichert die Durchführbarkeit unserer
Lösungen zur Wissensgewinnung. Zweitens erkunden wir Online-Developer-Communities nach
Architekturwissen. Online-Developer-Communities enthalten eine enorme Anzahl von Diskussio-
nen zwischen Softwareentwicklern, die eine zuverlässige und effektive Quelle für Architekturwis-
sen darstellen könnten. Drittens schlagen wir Lösungen vor, damit der Softwareingenieur effektiv
nach relevanten Architekturinformationen in Entwicklergemeinschaften suchen kann.

Um Technologieentscheidungen in der Praxis zu verstehen, haben wir erfahrene Softwareinge-
nieure zu ihrem Entscheidungsprozess befragt. Basierend auf den Interviews lässt sich fest-
stellen, dass Softwareingenieure bestimmte Technologieaspekte (z. B. die Leistung bestimmter
Features, Dokumentation und Community-Unterstützung) als ihren Hauptfaktor betrachten, damit
sie Entscheidungen zum Softwareentwurf treffen können. Diese Aspekte unterscheiden Technolo-
gien voneinander. Während Technologieanbieter Technologielösungen als eine Reihe von Funk-
tionen beschreiben, diskutieren Softwareingenieure die Unterschiede zwischen Technologien in
Entwicklergemeinschaften. Als Ergebnis unserer Interviews haben wir bestehende Architektur-
wissensmodelle mit zusätzlichen Konzepten für Technologieentscheidungen erweitert. Das Mod-
ell kennzeichnet Technologieentscheidungen und ihre Argumentation.

iv

Aktuelle Ansätze für das Management von Architekturwissen hängen von Wissensbasen ab, die
viel Aufwand erfordern, um Wissen zu sammeln, zu füllen und zu pflegen. Daher haben wir die
bekannteste Online-Community (Stack Overflow) als mögliche Quelle für technologiebezogenes
Architekturwissen untersucht. Wir analysierten Beiträge in Stack Overflow, um die Art der disku-
tierten architekturrelevanten Fragen und Lösungen zu untersuchen. Wir haben verschiedene Arten
von architekturrelevanten Beiträgen gefunden, die das Design von Technologien und Komponen-
ten identifizieren und bewerten. Damit wir sicher stellen können, dass wir relevante architek-
turrelevante Beiträge untersucht haben, haben wir unsere Klassifizierung von Beiträgen durch
Feedback von Softwareingenineuren mit praktischer Erfahrung evaluiert, um den ersten Korpus
von architekturrelevanten Beiträgen und die erste Ontologie für Architekturwissen in Entwick-
lergemeinschaften zu erstellen. Die Ontologie legt die Struktur und textuelle Darstellung von
Architekturwissenskonzepten in Entwicklergemeinschaften fest. Darüber hinaus wird die On-
tologie empirisch durch qualitative Analysen verschiedener Stack Overflow Beiträge sowie durch
Intercoder-Zuverlässigkeitstests begründet.

Zur Erleichterung der Suche nach Architekturinformationen in Online-Community haben wir in
einer Reihe von Experimenten Klassifizierungsansätze entwickelt und verglichen, um architek-
turrelevante Beiträge auf Stack Overflow zu identifizieren und zu klassifizieren. Die Klassi-
fizierungsansätze stützen sich auf unsere vorgeschlagene Ontologie von Architekturkonzepten und
ermöglichen daher die Erfassung von semantischen Informationen in Stack Overflow, damit sich
der Softwareingenieur nur auf das Keyword-Matching und lexikalischen Informationen verlassen
muss. Darüber hinaus stellen wir einen neuartigen Ansatz zur Suche nach architekturrelevanten In-
formationen in Stack Overflow vor. Wir haben diesen Ansatz in einer webbasierten Suchmaschine
implementiert und deren Effektivität mit einer reinen Keyword-basierten Suche in einer Reihe
von Softwareentwurfsaufgaben verglichen, die an Softwareingenieure gegeben wurden. Unsere
Ergebnisse zeigen, dass die Effektivität der Suche im Vergleich zu einer herkömmlichen Keyword-
basierten Suche einen deutlichen Fortschritt zeigt.

v

Acknowledgement

Striving to achieve my PhD degree was a long and challenging journey, which would
not have been possible without the support from many people. In this page, I would
like to thank all, who supported me during my PhD.

First, I would like to thank my supervisor Prof. Matthias Riebisch for giving me the
chance to conduct research as part of his research group and under his supervision.
I would like to express my deepest gratitude for his guidance, advices and encour-
agement. His support ensured an excellent working environment and the required
motivation to conduct research. Second, I am eternally grateful to the reviewers of
the dissertation. Their efforts to read and evaluate the dissertation is quite appreci-
ated. Their comments and feedback will guide me in my future research.

Starting with my PhD would have not been possible without the support from my
family. I appreciate my parents (Abou-bakr and Heba), who cared about my education
since I was a child. Moreover, I would like to thank my wife Marion and my children
Noah and Elias for their love and tolerance. My words cannot describe how grateful
I am for their love and sympathy.

I would like to thank the German Academic Exchange Service (DAAD) for their
commitment to financially support my PhD. Their support gave me the chance to
dedicate my efforts to the research. Moreover, I truly appreciate the participation
of more than 30 practitioners during the different phases of the PhD research. They
volunteered and gave from their time and effort without any financial rewards. A
special thank you to Matthias Galster, Amr Salama, and Olaf Zimmemrann for their
research collaboration.

Last but not least, I would like to thank my colleagues in the university of Hamburg;
Sebastian, Sandra, Tillman, Yibo, Stephanie, Steffi, and Paula. I appreciate their
support, and their collaboration in mutual research projects. It was my honor to work
with you in a single research group.

vi

Contents

Contents vii

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 2
1.3 Research Study Design . 4

1.3.1 Goals of the Study . 4
1.3.2 Significance of the Study . 5
1.3.3 Research Questions and Contributions 6

1.3.3.1 1st Goal: Understand technology design decisions 6
1.3.3.2 2nd Goal: Explore developer communities for architecture knowl-

edge . 9
1.3.3.3 3rd Goal: Propose approaches to search for architectural infor-

mation in developer communities 11
1.4 Thesis Outline . 13
1.5 Related Publications . 15

I Fundamentals of Architecture Knowledge 17

2 Background and Related Work 18
2.1 Background on Knowledge Management . 18

2.1.1 Characteristics of Knowledge . 19
2.1.2 Knowledge Management Process . 20
2.1.3 Knowledge Management in Communities 21

2.1.3.1 Overview on Stack Overflow 22
2.2 Software Architecture Design Methods . 23
2.3 Pattern Languages . 24
2.4 Architecture Knowledge Management . 25

2.4.1 Architecture Knowledge Models . 25
2.4.2 Architecture Knowledge Sharing . 27
2.4.3 Architecture Knowledge Capturing . 29

2.5 Developer Communities in Software Engineering Research 30
2.5.1 Analyzing Developer Communities . 30
2.5.2 Using Developer Communities in Software Development 31

2.6 Summary . 33

3 Technology Design Decisions 34
3.1 Research Question and Contributions . 34
3.2 Research Process . 35

3.2.1 Content Analysis . 35
3.2.2 Interviews . 37

3.3 Technology Features . 38
3.4 Architecturally Significant Technology Aspects 41
3.5 Architecture Knowledge for Technology Design Decision 44

3.5.1 Elements of Architectural Knowledge 44
3.5.2 Solutions’ Interactions within an Architectural Knowledge 47

3.6 Evaluation of Concepts . 48

vii

CONTENTS

3.6.1 Interview Responses Analysis Results and Observations 48
3.7 Discussion . 50

3.7.1 Interpretation of Results . 50
3.7.2 Implications of Results on further Research 51

II Analysis of Architecture Knowledge in Developer Communities 52

4 Architecture-relevant Posts in Developer Communities 53
4.1 Research Questions and Contributions . 53
4.2 Research Process . 54

4.2.1 Phase 1: Prepare Stack Overflow Posts for Analysis 55
4.2.1.1 Phase 1a: Query for Candidate Posts (Sampling) 55
4.2.1.2 Phase 1b: Initial Manual Classification of ARPs and Program-

ming Posts . 56
4.2.2 Phase 2: Classification of ARPs . 56
4.2.3 Phase 3: Obtain Feedback from Practitioners 56

4.2.3.1 Phase 3a: Practitioners Selection 56
4.2.3.2 Phase 3b: Evaluation Posts Sampling 58
4.2.3.3 Phase 3c: Evaluation Execution 58

4.3 Types and Variations of Architecture-relevant Posts 58
4.3.1 Types of Architecture-Relevant Posts 58

4.3.1.1 Compact Types of Architecure-relevant Posts 61
4.3.2 Examples for Architecure-relevant Posts 61
4.3.3 Variations from Types of Architecture-relevant Posts 65

4.3.3.1 Variants of Solution Identification ARPs: 65
4.3.3.2 Variants of Solution Evaluation ARPs: 67

4.4 Practitioner Evaluation . 71
4.4.1 Agreement and Confidence among Participants 73
4.4.2 Agreement across ARP Types . 74

4.5 Discussion . 74
4.5.1 Interpretation of Results . 74
4.5.2 Implications of Results on further Research 76

5 Architecture Knowledge Ontology in Developer Communities 78
5.1 Research Question and Contributions . 78
5.2 Research Process to Define Ontology . 79

5.2.1 Data Gathering . 79
5.2.2 Data Analysis . 79

5.3 Architecture Knowledge Ontology in Developer Communities 82
5.3.1 Simple AK and Lexical Triggers Ontology Classes 82
5.3.2 Composite Ontology Classes . 82

5.3.2.1 (CONF) Architecture Configuration 82
5.3.2.2 (CB) Component Behavior 84
5.3.2.3 (EX) Existing System . 84
5.3.2.4 (DI) Design Issue . 85
5.3.2.5 (REQ) Requirements and Constraints 86
5.3.2.6 (UR) User Request . 88
5.3.2.7 (FEAT) Technology Feature 89
5.3.2.8 (ASTA) Technology Benefits and Drawbacks 89
5.3.2.9 (ADD) Recommended design decision 91

viii

CONTENTS

5.3.2.10 (DR) Decision Rule . 91
5.3.2.11 (CASE) Technology Use-Cases 92

5.3.3 Relationships between Ontology Classes 92
5.3.3.1 Ontology Classes in Post Structure 95
5.3.3.2 Significant Relationships between Ontology Classes 95

5.3.4 Distribution of Ontology Classes in Types of ARPs 97
5.4 Discussion . 98

5.4.1 Interpretation of Results . 98
5.4.2 Implications of Results on further Research 100

III Solutions for Architecture Knowledge Acquisition 101

6 Scenarios and Perspectives for Using Developer Communities during Architecture
Design 102
6.1 Research Questions and Contributions . 102
6.2 Research Process . 103

6.2.1 Interview Study . 103
6.2.2 Analysis of Scenarios . 104

6.3 Perspective of Practitioners on AK Sharing and Reuse from Developer Communities105
6.3.1 Benefits of Using Developer Communities as a Source of AK 105
6.3.2 Problems Faced when Searching for AK in Developer Communities . . . 106
6.3.3 Solutions to Improve the Search for AK 107

6.4 Scenarios for Searching AK in Developer Communities 109
6.4.1 Conceptual Elements of Scenarios to Search for AK 109
6.4.2 Examples and Types of Scenarios for Searching AK in Developer Com-

munities . 110
6.5 Discussion . 112

6.5.1 Interpretation of Results . 112
6.5.2 Implications of Results on further Research 112

7 Classification Approaches for Architecture-relevant Posts 114
7.1 Research Questions and Contributions . 114
7.2 Corpus to Evaluate Classification Approaches 115

7.2.1 Development Sample . 115
7.2.2 Testing Sample . 116

7.3 Exploring Tags for Identifying Architecture-relevant Posts 116
7.4 Classifying Stack Overflow Posts for Architectural Relevance 117

7.4.1 Overview . 117
7.4.2 Bag-of-Words Classification . 118
7.4.3 Ontology-Based Classification . 118

7.4.3.1 Single-ontology-class Classification 119
7.4.3.2 Multi-ontology-class Classification 120

7.4.4 Ensemble Learning . 120
7.5 Evaluation of Classification Approaches . 121

7.5.1 Accuracy of Classification Approaches 121
7.5.1.1 Study Design . 121
7.5.1.2 Results . 121
7.5.1.3 Analysis of Classification Accuracy 124

7.5.2 Generalisability of Classification Approaches 125
7.5.2.1 Study Design . 125

ix

CONTENTS

7.5.2.2 Results . 127
7.6 Significant Terms and Ontology Classes . 127

7.6.1 Significant Terms to Identify ARPs . 127
7.6.2 Significant Ontology Classes to Identify ARPs 128

7.6.2.1 Simple Ontology Classes and Lexical Triggers 130
7.6.2.2 Sequences of Ontology Classes and Composite Ontology Classes 130

7.7 Discussion . 131
7.7.1 Interpretation of Results . 131
7.7.2 Implications of Results on further Research 132

8 Enhanced Search Approach for Architectural Information in Developer Communi-
ties 133
8.1 Research Question and Contributions . 133
8.2 Overview of Enhanced Search Approach . 134

8.2.1 Steps of Enhanced Search Approach . 134
8.2.2 Relating Types of Architecture-relevant Posts and Design Activities . . . 136
8.2.3 Implementation of Search Approach . 137

8.3 Evaluation of Search Approach . 137
8.3.1 Experiment Design . 138

8.3.1.1 Corpus for Experiment . 138
8.3.1.2 Architecture Design Tasks . 138
8.3.1.3 Experiment Execution . 139
8.3.1.4 Measures of Effectiveness . 140
8.3.1.5 Exit Survey . 140

8.3.2 Evaluation Results . 141
8.3.2.1 Effectiveness of the Search Approach 141
8.3.2.2 Results of the Exit Survey . 143

8.4 Discussion . 143
8.4.1 Interpretation of Results . 143
8.4.2 Implications of Results on further Research 144

IV Conclusion 145

9 Summary, Discussion and Future Work 146
9.1 Summary of the Study . 146
9.2 Threats to Validity Assessment . 148

9.2.1 Threats to Validity for the Interview Studies 148
9.2.2 Threats to Validity for the Content Analysis Studies 149
9.2.3 Threats to Validity for the Experiments 151

9.3 Discussion of the Contributions . 152
9.4 Future Work . 154

V Appendices 156

A Stack Overflow Posts Analysis 157
A.1 Technology Specification Resources . 157
A.2 Stack Overflow Posts Repository . 158

A.2.1 Queries of Posts . 158
A.2.2 List of Architecture-relevant Stack Overflow Posts 158

x

CONTENTS

A.2.3 Additional examples of Architecture-relevant Stack Overflow Posts . . . 179
A.3 Architecture Knowledge Ontology in Stack Overflow 189

A.3.1 Coding guide . 189
A.3.2 Atlas.ti Snapshots . 194
A.3.3 Instances of Ontology classes . 195

B Interviews Materials 204
B.1 Interview Questions to Understand Technology Design Decisions 204
B.2 Interview Questions to Understand the Use of Developer Communities 205

C Experiments Materials and Detailed Results 211
C.1 List of Stack Overflow Tags . 211
C.2 List of Distinctive Keywords and Ontology Classes 215
C.3 Experiment to Search for Architectural Information in Stack Overflow 225

C.3.1 Architecture Searching Tasks . 225
C.3.2 Queries to Search for Architecture Information 234
C.3.3 Relevant Posts for Searching Tasks . 245

List of Figures 265

List of Tables 269

Bibliography 272

xi

1
Introduction

1.1 Context . 1
1.2 Problem Statement . 2
1.3 Research Study Design . 4
1.4 Thesis Outline . 13
1.5 Related Publications . 15

1.1 Context

During the past few decades, software has became a key player in all industries (e.g. banking,
transportation, manufacturing). The success of a software system could lead to success of the
company. This motivates companies to invest in software. For instance, the global IT spendings
was more than 3.4 trillion by the end of 20161. The significant increase in the production of soft-
ware [Boe06] lead to the development of bigger and more complex software systems. With the
growing size and complexity of software, requirements for good quality attributes (e.g. perfor-
mance, maintainability) [ISO01] became more challenging to achieve. Fulfilling quality attribute
requirements could only be achieved and maintained by taking right design decisions.

Software architecture is concerned with taking the principal design decisions, which potentially
impose risk and uncertainty on software process and product success. These risks originate from
the various unknowns that surround the decision maker during the design process. Architectural
design decisions (ADDs) [JB05, TMD09] must be identified early in the project lifecycle due to
their long-term impact on the system quality, and their tenacious behavior, which makes them
quite expensive to change [BCK03]. ADDs affect both structural properties of a system and its
quality attributes. Examples of ADDs are decisions about components and connectors of a system
(e.g., the decomposition of a system into layers and modules), about their configuration through
architectural patterns or reference architecture, as well as decisions about selecting implementation
technologies (e.g., Java framework). Once an architectural solution is implemented it is quite
difficult to change [BCK12]. This differentiates software architecting from implementation e.g.,
fixing a bug in a method tends to be less complex than changing a technology or pattern.

When taking ADDs, architectural knowledge (AK) plays a crucial role for taking good ADDs. AK
of software engineers accumulates in their mind when going through different design experiences,
or when learning about previous design experiences from other software engineers or researchers.

1https://www.gartner.com/newsroom/id/3482917

1

https://www.gartner.com/newsroom/id/3482917

CHAPTER 1. INTRODUCTION

The accumulated AK involves all the required knowledge about previously taken ADDs, and the
resulted architectural components of a software system [KLV06].

One important concept of AK is architectural solutions [ZKL+09]. The selection of suitable ar-
chitectural solutions is in the core of synthesizing a software architecture [HKN+07]. In the past
two decades, several classes of architectural solutions were captured in the current state of the
art. Architectural solutions could be classified into Conceptual Solutions and Technology Solu-
tions [MHvHA11, ZKL+09]:

• Conceptual Solutions are abstract solution for design problems, which could be imple-
mented differently in different contexts. Selecting a conceptual solution influences the sys-
tem architecture configuration (i.e. the components design of the system), independent of
the implementation. The knowledge about conceptual solutions is captured in books and
catalouges. For example, patterns (e.g. architectural patterns [BMR+96] and design pat-
terns [GHJV94]), design tactics [BCK12], and reference architectures (e.g. [AZE+07]).

• Technology Solutions are concrete solutions, which assist the architect to develop and im-
plement the system. This include frameworks, programming languages, standards and li-
braries. The knowledge about technology solutions resides in technology specifications,
vendor web sites, and developer communities (e.g. Forums, Blogs). Technology design
decisions are concerned with selecting or configuring technology solutions (e.g. selecting
technology features). We call the architecture knowledge required to take technology design
decisions "technology-related architectural knowledge".

Each class of architectural solutions is concerned with solving different types of design problems.
Nevertheless, selecting a combination of architectural solutions is required to develop the system
software architecture. Such a diversity nature of solutions represents a challenge within the design
process, because each solution has its unique impact on the quality attributes and on the subsequent
design decisions. As a consequence, it is arduous to select accurately the appropriate solutions for
the different architecture design problems.

Van Heesch et al. [vHA11] reported that most architects in practice rely on their personal expe-
rience and do not search for other architectural solutions when solving a design problem. This
is due to the effort required to search for suitable solutions in between the enormous amount of
interacting solutions, that must be selected in a limited project budget and schedule. This common
practical problem requires effective knowledge management approaches to facilitate accessing,
structuring and searching for relevant architectural solutions to a design problem.

1.2 Problem Statement

The problem addressed in this dissertation is the following:

How to facilitate the acquisition of architectural knowledge to support taking technology
design decisions?

We focused on solving this problem because of its practical importance and complexity:

• Importance of technology design decisions for software architecture: Technologies impact
the implementation of architectural conceptual solutions [BMR+96, BCK03, GKN15], and

2

CHAPTER 1. INTRODUCTION

quality attributes (e.g., performance, security). For example, a technology may supports
or prevent a client-server architecture or a technology may not support architectural tactics
such as authorization, authentication or heartbeat. A recent survey [MW13] on the types of
architectural design decisions and their documentation shows that around 25% of a system
decisions are executive decisions, and most of them are technology decisions. Moreover,
technology decisions as well as structural decisions have been observed as the mostly doc-
umented design decisions among other categories of decisions. The survey participants
indicated that technology decisions are taken early in the design process, and they are quite
hard to be changed during the system implementation. These empirical results indicate and
affirm the importance of technology design decisions.

• Complexity of acquiring technology-related architectural knowledge: Within the past decades,
the selection of the right technology product have turned out to be gradually complicated,
due to the significant increase in the production of software products by technology ven-
dors, as well as the open source community [Boe06]. Moreover, today’s markets are com-
petitive and moving fast with a high rate of innovation [Bos16]. Thus, software engineers
have to deal with new technologies, which increase the required efforts to achieve profi-
ciency [IM02]. With an ever increasing number of software technologies [BTH14] and a
half-life of software engineering knowledge of five years [Kru15], keeping up to date with
technologies is challenging.

Despite the well known significance of technology solutions, the current methods for software
architecture design (e.g., [BCK03, Bos00]), as well as pattern languages (e.g. [AZ05]) do not
support the architect in making a choice among different technology solutions. Alternatively,
they focus on selecting a combination of conceptual solutions as first class concepts for solving
the different design issues, presupposing a direct mapping from the conceptual solutions to the
technology solutions [CVEK13].

To facilitate acquiring AK about technology solutions for software engineers, researchers and
practitioners proposed approaches for codifying (i.e., documenting) and managing AK. This al-
lows architects to capture, share and reuse AK within and across different projects [vHAH12].
One way to capture and share AK is through repositories (e.g. [ZKL+09, GKN15]), which pro-
vide catalogs of architectural solutions. AK repositories are based on models, which describe the
relationships between different AK concepts. Design issues, architectural solutions, and design
decisions are main building blocks of architecture knowledge models.

AK repositories guide architects during the decision making process, and assist software engineers
in exploring the design space by browsing and learning new architectural solutions. However,
current approaches for AK repositories have the following limitations:

• The conceptual elements of existing AK models do not support choosing suitable technol-
ogy solutions among several alternatives to a certain architecture design problem. Cur-
rent AK models model the relationships between technology and conceptual solutions (see
Chapter 2 for details), without considering the differences between solutions regarding their
capabilities and influences on quality attributes.

• AK repositories rely on manually capturing and curating architecture-relevant informa-
tion [GXY+17]. Due to the effort required to manually collect, and codify AK, architecture
knowledge repositories tend to be incomplete.

• AK repositories require significant maintenance to remain useful and up-to-date [vK12],

3

CHAPTER 1. INTRODUCTION

since technologies evolve constantly [BTH14]. Otherwise, manually captured knowledge in
repositories becomes out of date quickly.

Because of these limitations, most organizations do not use systematic AK management ap-
proaches [CJT+16]. Rather, software architects exchange experiences through face to face discus-
sions or using channels such as vendor and online developer communities websites [GXY+17].

1.3 Research Study Design

Our strategy for solving the dissertation’s problem involve two main targets.

1. Gaining more knowledge about the problem and possible solutions. This could be reached
by asking knowledge research questions (e.g. What are the facts?).

2. Changing the environment by proposing methods to address a practical problem. This could
be reached by asking practical research questions (e.g. How to improve something?).

We designed our research study to include both knowledge and practical research questions as
recommended by existing research frameworks (e.g. design science [Wie09]). Our research ques-
tions are grouped and organized based on their goal, which could target either acquiring scientific
knowledge or proposing methods to change the environment. The goals of the study are presented
in Section 1.3.1 and their associated research questions are presented in Section 1.3.3.

1.3.1 Goals of the Study

The dissertation has three main goals to address the problem statement. The first two goals target
gaining new scientific knowledge about technology-related architecture knowledge, while the third
goal targets proposing new methods to practically support improving the acquisition architecture
knowledge. The three goals of the study are presented below.

1. Understand technology design decisions: Because existing approaches for architecture knowl-
edge management do not explicitly and sufficiently model and support technology design
decisions, we identify main architecture knowledge concepts for a technology decision.
These concepts are important to be determined and understood before proposing methods
for knowledge acquisition.

2. Explore developer communities for architecture knowledge: Due to the effort required to
manually capture and maintain AK (the 2nd and 3rd limitations of existing AK management
approaches in Section 1.2), we explored developer communities as a viable alternative to
traditional centrally managed knowledge repositories [vK12].

Why we decided on developer communities? Online developer community web sites (e.g.,
blogs [PM13], technology forums and Q&A pages such as Stack Overflow) allow software
developers to ask and answer questions about software development problems [ASR17].
One of the main success factors of such communities is that they provide a “social mo-
tivation” to not only ask questions (i.e., to benefit from the community), but also to help
others by answering questions (i.e., to contribute to the community). By contributing to

4

CHAPTER 1. INTRODUCTION

a community, users can build up their reputation by being rated based on the amount and
the quality of their contribution. Furthermore, these communities provide useful knowledge
management features, such as the assessment of user’s expertise (e.g., number of “stars”
awarded to a contributor), the quality of answers (through community-based voting mech-
anisms), and the continuous evolution (and update) of knowledge when new questions and
answers are added. The benefits provided by developer communities of “social motiva-
tion”, “community-driven” quality assurance and continuous evolution of knowledge could
complement existing AK repositories and AK management approaches.

Experiences from experts in developer communities support software engineers with impor-
tant technology-related AK which is not provided by technology vendors or architectural
documents [dGLT+14b] (e.g., differences between technologies, their benefits and draw-
backs). In addition, recent studies (e.g. [PM13]) on social media in software development
show that developers discuss high-level concepts, such as features and domain concepts
(which are architecture-relevant), as well as topics related to source code. These findings
indicate that AK may exist within software development communities. This technology-
related AK could be extracted, captured, and prepared for reuse.

3. Propose approaches to search for architectural information in developer communities: De-
veloper communities have traditionally been used by developers to solve coding-related
problems [TBS11a], for example “How to get the cookies from a php curl into a variable”1.
These questions are often not relevant to architects, because they focus on lower level im-
plementation details. Nevertheless, architects may also benefit from developer communities
to solve architectural problems. An example of an architecture-relevant post is “What are
the benefits and trade-offs of using MSMQ over a SQL Table”2. However, the knowledge in
developer communities is in the form of unstructured text, which cannot be directly queried
for architecture-relevant information. To overcome this problem, we propose approaches to
classify and search for relevant architectural information in developer communities.

1.3.2 Significance of the Study

The significance of the study is paramount towards developing practical and useful approaches
for AK reuse. Capilla et al. [CJT+16] showed that the reuse features in existing AK management
approaches are not well supported and are hard to achieve, because of the complexity of gathering
and capturing design decisions. In this study, we argue that using developer communities could
provide a practical approach for sharing and reusing AK about technology solutions, because
developer communities is the main practical place where software engineers currently share their
knowledge.

The success of developer communities to overcome the limitation of traditional knowledge man-
agement approaches regarding AK capturing make it promising for knowledge sharing. With the
growing trend of using natural language processing (NLP), and information retrieval approaches,
they provide possible solutions to overcome the limitation of acquiring knowledge from the un-
structured text in developer communities. In this study, we provide the first approach for a spe-
cialized search engine to search for architecture information in developer communities. The result
of this study maybe used to develop further tools for acquiring and reusing AK from unstructured
text. For example, software architects would benefit from a specialized web search engine for
software architecture. Moreover, the ability to gather a bigger amount of architectural information

1http://stackoverflow.com/questions/895786
2http://stackoverflow.com/questions/380052

5

http://stackoverflow.com/questions/895786
http://stackoverflow.com/questions/380052

CHAPTER 1. INTRODUCTION

will support developing further approaches for AK reuse.

1.3.3 Research Questions and Contributions

Fig. 1.1 summarizes research questions for each goal of the study. In addition, it shows our
contributions and their relationships to the research questions. To understand the overall research
methodology and the relationships between the research questions, Fig. 1.2 shows a flowchart for
the overall research processes.

The research questions and contributions for each of the study goals will be discussed in the
following sub-sections. We describe the motivation behind each research question, and a brief
description on the used research methodology. The details of the research methodologies are
presented in the following chapters. Finally, we list our contributions for each research question
and goal.

1.3.3.1 1st Goal: Understand technology design decisions

To achieve this goal, we understood first the current state of the practice for taking technology
design decisions. After this, we integrated our newly identified concepts for technology design
decisions with existing AK models to achieve a comprehensive understanding for technology de-
cisions in context of other AK concepts. In details, we addressed the following two research
questions:

• RQ1: How do software engineers conceive software technologies as architectural solutions
during the decision making process?

Before developing methods to support design decision making, understanding the current
state of the practice for architectural design decision is essential. By answering this question,
we identify the main concepts for choosing technology solutions during architecture design
based on empirical evidence.

• RQ2: How can we model and relate technology decisions with existing architectural knowl-
edge concepts?

While several models of AK have been proposed in the current state of the art, it is useful
for managing architectural knowledge to integrate and relate existing AK concepts with the
newly determined concepts to take technology design decisions.

Research method: We answered RQ1 and RQ2 by conducting an exploratory study (see Chap-
ter 3). We started with a qualitative content analysis for different types of resources, followed
by refinement and validation interviews with 7 software engineers. We analyzed the different
perspectives, which technology vendors and architects have in offering and choosing technology
solutions respectively.

The contribution of answering RQ1 and RQ2 is modeling technology solutions as a set of cat-
egorized features, which are offered by technology vendors, as well as their associated archi-
tecturally significant technology aspects, which are considered by architects to take technology

Contributions

6

CHAPTER 1. INTRODUCTION

1
st
 Goal: Understand technology design decisions

RQ1: How do software engineers conceive software

technologies as architectural solutions during the decision

making process?

RQ2: How can we model and relate technology decisions

with existing architectural knowledge concepts?

Extended architecture

knowledge model

2
nd

 Goal: Explore developer communities for architecture knowledge

RQ3: What are the types of architecture-relevant posts

(ARPs) in developer communities and how could we

classify ARPs?

RQ4: Which types of ARPs in developer communities do

practitioners consider architecture-relevant?

RQ5: How can we represent and structure architecture

knowledge from architecture-relevant posts in developer

communities?

Architects’ concepts for

technology design decisions

Types of ARPs in

Developer Communities

Corpus of evaluated ARPs

in Stack Overflow

Ontology of Architecture

Knowledge in Developer

Communities

3
rd

 Goal: Propose approaches to search for architectural information in developer communities

RQ6: What is the perspective of practitioners on AK

sharing and reuse from online developer communities?

RQ7: How could architects acquire AK in developer

communities?

Scenarios to search for

architecture information

in communities

Benefits, problems, and solutions

of developer communities to (re)-

use architecture information

RQ8: How can we automatically identify architecture-

relevant posts in developer communities and separate

them from pure programming-related posts?

Evaluated classification

approaches to identify and

classify ARPs

RQ10: How can we improve the search for

architecturally relevant information in online developer

communities?

Enhanced search

approach for architectural

information

RQ9: What are terms and ontology concepts in

developer communities that distinguish ARPs from

programming posts?

Significant terms and

ontology classes to identify

ARPs

Study

Goal

Research

Question Result contribution of a RQ
Contribution

Legend

Figure 1.1: Summary of research questions and contributions

7

CHAPTER 1. INTRODUCTION

Start

Qualitative

Content Analysis

Literature

Technology

Vendor and

Community

Websites

Interviews

Practitioners

Architects’ concepts for

technology design

decisions (Answers RQ1)

Architecture

Knowledge

Concepts

Integrate and

Model Concepts

Extended architecture

knowledge model

(Answers RQ2)

Qualitative

Content Analysis

Stack

Overflow

Types of ARPs in

Developer Communities

(Answers RQ3)

Practitioners

Ontology of AK in

Developer

Communities

(Answers RQ5)

Corpus of evaluated

ARPs in Stack

Overflow

(Answers RQ4)

Interviews

Practitioners

Scenarios to

search for

architecture

information in

communities

(Answers

RQ7)

Experiments

Machine Learning

Algorithms and

Tools (WEKA)

Evaluated

classification

approaches to

identify and classify

ARPs

(Answers RQ8)

Experiments

Practitioners

Information

Retrieval Tools

(Apache Lucene)

Classify

Stack

Overflow

Search

Repository

Benefits, problems,

and solutions of

developer

communities to (re)-

use architecture

information

(Answers RQ6)

Enhanced search

approach for

architectural information

(Answers RQ10)

End

Research

Process/Step

Research Result/

Contribution

Start/End

Data in

Repository

Practitioners

Reusable Tools/

Methods

LegendLegend

Documents

1
st G

o
a
l: U

n
d

ersta
n

d

T
ech

n
o
lo

g
y
 D

esig
n

 D
ecisio

n
s

2
n

d G
o
a
l: E

x
p

lo
re D

ev
elo

p
er C

o
m

m
u

n
ities

fo
r A

rch
itectu

re K
n

o
w

led
g
e

3
rd G

o
a
l: P

ro
p

o
se A

p
p

ro
a
ch

es to
 S

ea
rch

 fo
r

A
rch

itectu
ra

l In
fo

rm
a
tio

n
 in

 D
ev

elo
p

er C
o
m

m
u

n
ities

Significant terms

and ontology

classes to identify

ARPs

(Answers RQ9)

Figure 1.2: High-level overview on the research process

8

CHAPTER 1. INTRODUCTION

design decision. Finally, we integrated the newly determined AK concepts with existing AK
concepts from literature to create an architecture knowledge model, which extends existing AK
models.

1.3.3.2 2nd Goal: Explore developer communities for architecture knowledge

In addition to the benefits provided by developer communities (see Section 1.2), our results from
answering RQ1 and RQ2 showed that software engineers use developer communities as a source of
AK, and specially for technology-related AK. To explore developer communities for architecture
knowledge, we conducted a qualitative content analysis study on a sample of posts in a developer
community.

To conduct the qualitative content analysis study, we followed two forms of interpretation provided
by Mayring [May14]:

• Summary: It targets creating a comprehensive overview of the architecture-relevant posts in
developer communities.

• Explication: It provides additional material about architecture-relevant posts to increase our
understanding on existing architecture knowledge in developer communities.

In details, we answered the following three research questions:

• RQ3: What are the types of architecture-relevant posts (ARPs) in developer communities
and how could we classify ARPs?

Classifying ARPs will allow us to identify different types of AK based on the concerns
of stakeholders and architecture decision makers. Exploring types of ARPs facilitate sum-
marizing the AK in ARPs. Also, classifying ARPs into different types will allow us to
explore common AK concepts (e.g. design issues, quality attributes) which exist in ARPs.
This will enable more targeted approaches for capturing and management of AK (e.g., au-
tomated extraction tools of AK from Developer Community Websites). In Chapter 7 and
8, we proposed approaches to facilitate capturing architectural information from developer
communities. The proposed approaches depend on the types of ARPs determined from this
research question.

• RQ4: Which types of ARPs in developer communities do practitioners consider architecture-
relevant?

By knowing which types of ARPs practitioners believe are architecture-relevant, we can
evaluate our theoretical classifications, and ensures practical relevance of AK extracted from
developer communities. Moreover, the evaluation of data by practitioners supports develop-
ing a corpus of evaluated ARPs, which have been used to develop automatic classification
and search approaches for ARPs (see Chapter 7 and 8).

• RQ5: How can we represent and structure architecture knowledge from architecture-relevant
posts in developer communities?

Answering this question support understanding what AK concepts actually exist in devel-
oper communities, and how are they represented in text. The explication of ARPs help to

9

CHAPTER 1. INTRODUCTION

specify the structure of knowledge in an ARP. This is needed to specify AK concepts in de-
veloper communities and to search and capture AK. For instance, we could better classify
ARPs. In addition, this question helps us to further validate whether developer communities
are useful not only to answer programming-related questions, but also provides support for
architects and “higher level” concerns.

Research method: In order to answer RQ3, RQ4, and RQ5, we selected a sample of Stack Over-
flow posts, and performed qualitative content analysis to classify ARPs (see Chapters 4). After
this, we annotated sentences from a sample of ARPs to identify the representation of AK con-
cepts (see Chapter 5), which has been previously determined from answering RQ1 and RQ2. In
addition, we evaluated our assumptions through a feedback evaluation with practitioners.

Why we decided on Stack Overflow as our Sample for a Developer Community? To achieve
our 2nd goal, we need an example of an online software development community that provides a
good source of well-structured and architecturally related information. Current online developer
communities cover a wide range of topics. For example, http://quora.com is a generic com-
munity for all possible topics, http://softwareengineering.stackexchange.com
covers topics related to development processes and practices, and http://stackoverflow.
com covers any topic related to software development and programming. We selected Stack Over-
flow1 to gather architecturally relevant information, since it is currently the biggest2 and most pop-
ular online developer community (see [XBL+17]). Also, Gorton et al. recommend Stack Overflow
for solving architectural issues [GXY+17]. Moreover, Stack Overflow offer several useful knowl-
edge management features.

1. Stack Overflow follows a Question and Answer (Q&A) structure, which could facilitate
categorizing and capturing knowledge.

2. Stack Overflow supports the inclusion of context details in posts (better than Quora), and
evaluation of questions and answers through a voting system (better than blogs or forums).

3. The knowledge in Stack Overflow expands and evolves continuously and quickly [BTH14].

4. Stack Overflow provides interfaces for downloading the posts for processing and analysis,
which make it easier for us to select a good sample of well evaluated posts (i.e., important
problems).

The advantages provided by Stack Overflow motivated us to explore whether (and how) Stack
Overflow can be used to extract reusable AK about technology solutions. Our objective was to
identify and analyze Stack Overflow posts, which provide useful technology related AK.

By answering RQ3, RQ4, and RQ5, we present the following contributions:

• Define architecture-relevant posts and classify concrete sub-types for ARPs.

• Evaluate the agreement of practitioners with our classification of ARPs.

Contributions

1http://stackoverflow.com/
2As of March 14, 2018, stackoverflow.com has 15,508,519 posts (12,812 posts with the “architecture” tag). Other

communities have fewer posts. For example, as of Mach 14, 2018, softwareengineering.stackexchange.com has 48,662
posts (2,102 posts with the “architecture” tag.)

10

http://quora.com
http://softwareengineering.stackexchange.com
http://stackoverflow.com
http://stackoverflow.com
http://stackoverflow.com/

CHAPTER 1. INTRODUCTION

• We present the first corpus of evaluated ARPs from a developer community.

• Present an empirically-grounded ontology for AK for one particular community: Stack
Overflow. This ontology specifies how each AK concept in ARPs is composed. This
bridges the gap between existing theoritical AK concepts and their textual representa-
tion in Stack Overflow. The ontology supports annotating and identifying AK concepts
within ARPs. Furthermore, the ontology supports ontology-based approaches for search-
ing for AK: Ontology-based approaches specify (e.g., in OWL), capture [WD10] and
search [FCL+11] for semantic concepts in text.

1.3.3.3 3rd Goal: Propose approaches to search for architectural information in developer
communities

To achieve this goal, we first asked practitioners about the challenges they face to search for
architectural information in developer communities. According to the input from practitioners,
we focused on improving the effectiveness of searching. We proposed approaches to identify
and classify ARPs, as well as an approach to search for architectural information in developer
communities. In details, we investigated the following research questions:

• RQ6: What is the perspective of practitioners on AK sharing and reuse from online devel-
oper communities?

By answering this question, we obtain benefits, problems and solutions from practitioners
from their experiences in sharing and reusing AK in developer communities. Practitioners’
perspective is important to determine before developing approaches for tools to support
acquiring AK from communities. Practitioners’ perspectives supported our motivation to
determine suitable approaches for AK capturing from developer communities.

• RQ7: How could architects acquire AK in developer communities?

Answering this question provides us with concrete use cases of how architects utilize devel-
oper communities during architecting. These use cases also offer requirements for community-
based tools for knowledge (re-)use during different design activities.

• RQ8: How can we automatically identify and classify architecture-relevant posts in devel-
oper communities and separate them from pure programming-related posts?

One limitation of developer communities is the unstructured representation of knowledge,
and lack of explicit classification of posts between architecture-relevant posts and other
types of posts. To overcome these limitations, automatic classification of posts is essential
for developing further information retrieval and extraction approaches.

Some online developer communities allow categorizing questions. For example, Stack
Overflow allows to assign related topics to questions in the form of tags. However, most
Stack Overflow users assign technology-related tags (e.g. framework names) [TBS11b], and
users usually do not indicate what software development life cycle a post relates to (e.g., ar-
chitecture, coding, testing). Therefore, we cannot directly identify and extract reusable AK
based on the "built-in" classification (using tags) of posts. In Chapter 7, we additionally
prove that most architecture-relevant posts in Stack Overflow do not have an "architecture"
tag.

11

CHAPTER 1. INTRODUCTION

• RQ9: What are terms and ontology concepts in developer communities that distinguish
ARPs from programming posts?

Identifying these terms and ontology classes will allow to make a step towards understand-
ing unique characteristics of ARPs to further analyze and capture technology related AK
from developer community posts (e.g., automatically separating ARPs from programming
posts).

• RQ10: How can we improve the search for architecturally relevant information in online
developer communities?

Searching for information in unstructured data (such as text in developer communities) is
commonly done using keyword-based searches. This research question is motivated by
the shortcomings of traditional keyword-based search approaches which cannot deal with
the ambiguity of terms for architectural concepts. Gorton et al. [GXY+17] argue that it
is challenging for practitioners to create effective search queries for relevant architecture
information and internet search engines return many irrelevant results.

We argue that this is not sufficient to efficiently search for architecture-relevant information.
The abstract nature of software architecture concepts makes it difficult for keyword-based
searches to find architecture-relevant information: The same architecture concept could be
presented with many keywords (i.e., “synonymy”) and the same keyword might refer to sev-
eral concepts (i.e., “polysemy”). For example, if a user executed the query “WCF perfor-
mance”, a keyword-based search will not find Stack Overflow posts which contain the word
“throughput”, even though throughput is a measure for performance and could be relevant.
In addition, some words could occur in different posts with different meanings. For example,
the word “server” could be related to an architecture component in an architecture-relevant
post, while it could refer to a deployment environment in programming-related posts.

Therefore, software engineers would beenfit from domain-specific search approaches, which
are needed to improve the effectivness of searching over commonly used keyword-based
search [XBL+17].

Research method: To answer RQ6 and RQ7, we analyzed literature and conducted interviews
with ten practitioners from different companies (see Chapter 6). To answer RQ8, and RQ9, we
developed and evaluated using experiments a set of machine learning classification approaches
(see Chapter 7). The execution of experiments used our corpus of ARP, which is created from
answering RQ3 and RQ4. In addition, some classification approaches use an ontology-based
classification approach, which depends on our proposed AK ontology from answering RQ5. To
conduct the experiments, we used a reusable machine learning tool (Weka) [HFH+09]. To answer
RQ10, we built a search engine (see Chapter 8) using the classification approaches developed
when answering RQ8 and RQ9. Moreover, the approach considers ontology concepts in ARPs,
which were identified when answering RQ5. We evaluated the effectiveness of the proposed search
approach using a controlled experiment with 16 practitioners. The experiment compared our pro-
posed search approach with a normal keyword search. To conduct the experiment, we used a
reusable and flexible search engine; Apache Lucene1. During the experiment, practitioners solved
real architecture tasks, which were created based on our interviews when answering RQ6 and
RQ7.

1http://lucene.apache.org/

12

http://lucene.apache.org/

CHAPTER 1. INTRODUCTION

Part IV: Conclusion Part I: Foundations

2. Background and

Related Work

3. Technology

Design Decisions

Part II: Analysis

4. Architecture-

relevant Posts

5. Architecture

Knowledge Ontology

Part III: Solutions

6. Using Developer

Communities

7. Identify and Classify

Architecture Posts

8. Searching for

Architectural Information

9. Summary,

Discussion and

Future Work

Figure 1.3: Thesis outline

In summary, we made the following contributions:

• Identify empirically and practically-grounded benefits and problems of, as well as solu-
tions for, utilizing developer communities to share and acquire AK.

• Define concrete use cases for using AK from developer communities during architecture
design activities.

• Develop and evaluate a set of classification approaches to automatically separate architecture-
relevant posts from pure programming-related posts and to further classify architecture
relevant posts into sub-categories to support architecture design activities (e.g., evaluation
of solution alternatives).

• Identify terms and ontology classes that allow to differentiate ARPs from programming
posts.

• Develop and implement a novel approach to search for architecture-relevant posts in de-
veloper communities.

Contributions

1.4 Thesis Outline

The thesis is organized into three main parts, which are divided into several chapters as depicted
in Fig. 1.3. Each part is concerned with achieving one goal of the study as previously explained in
Section 1.3.1. Part I presents the conceptual foundations for architecture knowledge management.
Firstly, It presents a background on knowledge management and an overview on the current state
of the art for architecture-knowledge management. Secondly, it presents concepts and models
to understand technology design decisions. Part II explains and presents our analysis for devel-
oper communities to classify and structure architecture knowledge. Part III proposes solutions to
facilitate acquiring architecture knowledge for technology design decisions.

Our contributions are presented in Chapters 3 to 8. Fig. 1.4 shows the contributions in each chapter
and their relationships and dependency between each other.

• Chapter 3 presents architecture knowledge concepts and models for taking technology de-

13

CHAPTER 1. INTRODUCTION

Extended Architecture

Knowledge model

Architects’ concepts for

technology design decisions

Types of ARPs in

Developer Communities

Corpus of evaluated ARPs

in Stack Overflow

Ontology of Architecture

Knowledge in Developer

Communities

Scenarios to search for architecture

information in communities

Benefits, problems, and solutions of

developer communities to (re)-use

architecture information

Evaluated classification

approaches to identify and

classify ARPs

Enhanced search approach

for architectural information

Significant terms and

ontology classes to identify

ARPs

Relationships and dependencies

between contributions

Contribution

Legend

Are included in

Used to develop and

define concepts of

Categorize

posts in

Provide sample of

posts to develop

Used to evaluate
Used to

develop

Used to develop

Motivates

solution

and used to

evaluate

Motivates

solution

Used to develop and evaluate

Chapter 3

Chapter 4

Chapter 5

Chapter 7
Chapter 6

Chapter 8

Chapter

Figure 1.4: Thesis contributions in each chapter and their relationships

14

CHAPTER 1. INTRODUCTION

sign decisions.

• Chapter 4 defines architecture-relevant posts and their types in developer communities.
Moreover, it presents different types and variations of architecture-relevant posts. The posts
are evaluated from practitioners to create the first corpus of architecture-relevant posts from
a developer community.

• Chapter 5 provides a comprehensive explanation for an architecture knowledge ontology
in Stack Overflow. The explanation is supported with examples. The development of the
ontology depends on posts from the repository of evaluated architecture-relevant posts pre-
sented in Chapter 4. Moreover, our content analysis used architecture knowledge concepts
for technology design decisions as presented in Chapter 3.

• Chapter 6 focus on the usage of developer communities by software engineers in the current
state of the practice to find architectural information. It presents the problems and scenarios
for using developer communities to find architectural information.

• Chapter 7 provides explanations for the design and experiments of classification approaches
to identify and classify architecture-relevant posts in developer communities. The design of
some classification approaches depends on our proposed architecture knowledge ontology
in Chapter 5. Moreover, the evaluation of the accuracy of classification uses our proposed
repository of architecture-relevant posts in Stack Overflow as presented in Chapter 4.

• Chapter 8 explains the design and experiments for the enhanced search approach to search
for architectural information in developer communities. The design of the enhanced search
approach uses the ontology and classification approaches from Chapters 5 and 7 to identify
and classify suitable architecture-relevant posts for certain architecture design activities.
Moreover, the evaluation of the proposed search approach uses the real scenarios provided
by practitioners in Chapter 6 to create information seeking tasks, which have been used
during the experiments with practitioners.

• Chapter 9 provides a summary on the overall study. Moreover, it presents the threats to
validity for the results. The chapter discusses the contributions of the thesis and provides an
overview on possible future work.

1.5 Related Publications

This thesis is based on the following peer-reviewed publications:

• Mohamed Soliman and Matthias Riebisch: Modeling the Interactions between Decisions
within Software Architecture Knowledge In: P. Avgeriou and U. Zdun (Eds.): Proc. ECSA
2014, LNCS 8627, Springer, 2014.

• Mohamed Soliman, Matthias Riebisch and Uwe Zdun: Enriching Architecture Knowledge
with Technology Design Decisions. In: Proc. 12th Working IEEE / IFIP Conference on
Software Architecture WICSA 2015, May 4-7, 2015, Montreal, Canada. IEEE CS 2015. pp
135-144.

• Mohamed Soliman, Matthias Galster, Amr R. Salama and Matthias Riebisch: Architectural
Knowledge for Technology Decisions in Developer Communities: An Exploratory Study
with StackOverflow. In: Proc. 13th Working IEEE / IFIP International Conference on
Software Architecture WICSA2016, April 5-8, 2016, Venice, Italy. IEEE CS 2016

15

CHAPTER 1. INTRODUCTION

• Mohamed Soliman, Matthias Galster, Matthias Riebisch: Developing an Ontology for Ar-
chitecture Knowledge from Developer Communities. In Proc. ICSA2017, April 3 - 7, 2017,
Gothenborg, Sweden, pp 89-92, 2017

• Mohamed Soliman, Amr R. Salama, Matthias Galster, Olaf Zimmermann, Matthias Riebisch:
Improving the search for architecture knowledge in developer communities. In Proc. ICSA
2018, Seattle, Accepted for publication.

Further publications related to the thesis from the author of the thesis:

• Sebastian Gerdes, Mohamed Soliman, and Matthias Riebisch: Decision Buddy: Tool Sup-
port for Constraint-Based Design Decisions during System Evolution. In: Proc. 1st Interna-
tional Workshop on Future of Software Architecture Design Assistants (FoSADA ’15) May
6th, 2015, Montreal, Canada. ACM, 2015, pp. 13-18.

• Sandra Schroder, Matthias Riebisch, Mohamed Soliman: Architecture Enforcement Con-
cerns and Activities - An Expert Study. In Proc. 10th European Conference on Software
Architecture - ECSA 2016, 28 November - 2 December, 2016, Copenhagen, Denmark.
Springer, LNCS 9839, pp. 247-262, 2016.

• Sandra Schroder, Mohamed Soliman, Matthias Riebisch: Architecture Enforcement Con-
cerns and Activities - An Expert Study. Journal of Systems and Software, Volume 145,
November 2018, Pages 79-97, Elsevier.

16

Part I

Fundamentals of Architecture
Knowledge

17

2
Background and Related Work

2.1 Background on Knowledge Management 18
2.2 Software Architecture Design Methods . 23
2.3 Pattern Languages . 24
2.4 Architecture Knowledge Management . 25
2.5 Developer Communities in Software Engineering Research 30
2.6 Summary . 33

In this chapter, we provide first in Section 2.1 a brief background on existing concepts and meth-
ods for knowledge management. We then discuss in Sections 2.2 to 2.5 the most important related
work to our contributions in this thesis. We explored related work in the following areas of re-
search:

• In Section 2.2, we explain briefly existing architecture design methods and processes.

• In Section 2.3, we explore patterns and pattern languages and its relationship to architecture
knowledge.

• In Section 2.4, we analyze and discuss in details existing approaches for architecture knowl-
edge management. We present existing architecture knowledge modeling, sharing, and cap-
turing approaches.

• In Section 2.5, we give a short overview on using developer communities in software engi-
neering.

2.1 Background on Knowledge Management

This thesis uses and depends on several existing concepts in the field of knowledge management
[Dal11]. Thus, we provide in this chapter an overview on the most relevant concepts and methods
for knowledge management.

One important motivation for the field of knowledge management is the significant advance of
companies, which were able to efficiently and effectively use and create new knowledge [DPP97].
In big companies, knowledge is considered as a valuable asset, which is embedded in companies’
products and services (especially technology products and services). To support companies in
managing their knowledge, researchers in the field of knowledge management propose approaches

18

CHAPTER 2. BACKGROUND AND RELATED WORK

to capture, share and use knowledge. We will give an overview about them in the following sub-
sections.

2.1.1 Characteristics of Knowledge

Knowledge as a concept is one of the most studied topics, which has been researched in several
fields such as, epistemology, knowledge management, and computer science. Each field describes
different characteristics of knowledge.

At the epistemological level, researchers classified knowledge into five kinds [Aud10]:

1. Perceptual: knowledge based on actual perception (i.e. seeing, hearing, feeling). For exam-
ple, our feeling for a cold glass of water.

2. Memorial: knowledge stored in memory about a certain event. For example, our memory
about our first experience to ride a bike.

3. Introspective: knowledge emerges from an imagination. For example, our imagination of a
blue sea.

4. Priori: knowledge based on previous knowledge to a certain observational experience. For
example, if we know that John is taller than Andy, and Andy is taller than Bruce, then John
is taller than Bruce.

5. Inductive: knowledge which is created based on a generalization from a previous knowl-
edge. For example, our knowledge that a cactus plant can grow without much water.

In the field of knowledge management, knowledge is distinguished from other concepts like assets,
data and information using several characteristics.

First, knowledge distinguish itself from other assets in an organization through four characteristics
[Dal11]:

1. Using knowledge does not consume it.

2. By transferring knowledge, we do not lose it.

3. Knowledge is abundant, but the ability to use it is scarce.

4. Controlling and managing knowledge is challenging, because it is tacit in the brain of em-
ployees in an organization.

Second, we could distinguish knowledge from data and information through two characteristics
[Dal11]:

1. Knowledge is based on individual values, perceptions, and experience. This makes knowl-
edge more subjective compared to information and data.

2. Knowledge could be classified into two types: Tacit and explicit knowledge:

19

CHAPTER 2. BACKGROUND AND RELATED WORK

• Tacit knowledge exists within the heads of knowers, and is difficult to put into a tan-
gible form like words, text, or drawings. Moreover, Tacit knowledge represents the
know-how for producing a certain product.

• Explicit knowledge is tangible and could be found in contents like text or photos or
videos. Explicit knowledge represents the final-product.

Most knowledge is either tacit or rooted in tacit knowledge [Pol66]. Tacit knowledge represents
the hidden part of an iceberg for the entire body of knowledge, while explicit knowledge represents
only the tip of the iceberg. The movement of knowledge between tacit and explicit knowledge cre-
ates and produces new knowledge. Knowledge is converted between tacit and explicit knowledge
in four modes:

1. Socialization: This happens when individuals communicate directly with each other (e.g.
face to face). In this case, tacit knowledge from one individual is transformed to another
tacit knowledge in the mind of another individual.

2. Externalization: When writing or recording our knowledge in a tangible form (e.g. text).
Tacit knowledge is transformed into explicit knowledge

3. Combination: When processing existing explicit knowledge (e.g. in a database) and trans-
form it to another explicit form (e.g. generating a report from a database).

4. Internalization: When individuals read or watch existing explicit knowledge, they learn
and grasp new knowledge in their mind. Thus, explicit knowledge is transformed into tacit
knowledge.

2.1.2 Knowledge Management Process

"Knowledge management is the deliberate and systematic coordination of an organization’s peo-
ple, technology, processes, and organizational structure in order to add value through reuse and
innovation. This coordination is achieved through creating, sharing, and applying knowledge as
well as through feeding the valuable lessons learned and best practices into corporate memory in
order to foster continued organizational learning" [Dal11].

Applying knowledge management involves three levels of application: Individual, community,
and organization. Knowledge management at the community and organization levels support in-
dividuals with a bigger and extended body of knowledge. The combination between a body of
knowledge (i.e. from community and organization) and the innovative skills and competencies of
individuals support companies to compete effectively.

Knowledge management has the following features [Dal11]:

• Able to generate new knowledge by motivating individuals.

• Access external knowledge sources.

• Use knowledge to support making decisions.

• Integrate knowledge in products, services and processes.

• Expose knowledge in documents, databases and software.

20

CHAPTER 2. BACKGROUND AND RELATED WORK

Researchers in the field of knowledge management proposed several models (e.g. [BW99] and
[McE02]) for modeling knowledge management processes. Existing models share common phases
for knowledge management [Dal11]:

1. Knowledge capturing and codification: In this phase, knowledge is transformed from its
tacit to explicit form. Interviews and story telling are two well know knowledge capturing
methods.

2. Knowledge sharing: Hardware and software technologies (e.g. Networks, databases) sup-
port transferring knowledge between individuals. Well known database-management sys-
tems as well as wikis are commonly used to facilitate knowledge sharing.

3. Knowledge application: Knowledge is used for decision making and problem solving.

2.1.3 Knowledge Management in Communities

Studies on knowledge management in companies show that employees prefer to communicate with
other individuals to learn about new knowledge when taking a decision. Thus, learning shows to
be a predominantly social process [CP01], where individuals interact with a group of individuals
(i.e. a community), who share similar interests. During this process of social interaction, new
knowledge emerges in the connection among individuals. Social constructivism views knowledge
as a subjective, social artifact. They argue that social interaction produces a type of knowledge,
which is a shared understanding among individuals [Dal11].

Currently with new advances in technologies, individuals could virtually communicate with each
others and share their knowledge using many types of technologies (e.g. forums, e-mail groups,
discussion groups). These groups are referred to as communities of practice. A community of
practice can be defined as "a group of people, along with their shared resources and dynamic
relationships, who assemble to make use of shared knowledge, in order to enhance learning and
create a shared value for the group" [AF00].

Once a community of practice grows and expands in its knowledge base, it becomes adopted by
individuals and organizations. Virtual communities showed their economic and social significance,
because they encourage individuals to continuously interact with each other [HA97]. Communities
of practices offer the following benefits for individuals:

• Support individuals to gain reputation.

• Connect individuals together, who could be distantly located.

• Support knowledge sharing and creating new knowledge. This reduces time for innovation
and reduces mistakes during work.

• Support creating standardized solutions for problems.

Communities of practice share common characteristics [Wen98]:

• Joint enterprise: This is the shared goal, which binds members of a community together.
Members of a community are mostly motivated to improve their profession. Employees
today are more often loyal to their profession than to a particular company.

21

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: The structure of a Stack Overflow post. The dotted rectangles represent regions in a
Stack Overflow post. Bubbles specify elements of a post, and their associated region.

• Mutual engagement: This is the activities and behavior of members to become part of the
community. Most communities are self-regulated. Thus members need to be responsible on
following a certain code of ethics.

• Shared repertoire: This is a shared virtual work-space, where discussions and artifacts are
stored. Several technologies are used for this (e.g. Wikis, web technologies, database man-
agement systems).

There are many types of communities of practice, according to its topic. For example, a com-
munity about a certain profession or industry (e.g. engineering or automotive), or a community
about certain types of technologies. Developer communities are one type of community, which
are concerned with software development topics. We will give an overview in the next section on
Stack Overflow, which is one example of a developer community.

2.1.3.1 Overview on Stack Overflow

Stack Overflow is a software developer community, which allows software engineers to submit
questions and provide answers to questions. The main element, which build the Stack Overflow
community is posts. A post consists of a question and optionally one or more answers for this
question. Each post starts with posing a question from a registered user. The question describes a
problem and context details. When creating a question, the user who asked the question can add a
list of tags to specify the topic of the post. Other users could read the post and propose answers to
the question. The user who asked the question can mark a single answer that answers the question
best (according to this user’s perception) as the accepted answer.

Stack Overflow supports several additional features to support socialization between users. For
example, when posing an answer, users could comment on an answer, which support users to
directly discuss with each others. Moreover, the post question as well as each answer have an
associated score, depending on the voting inputs from other users. Useful and well-structured

22

CHAPTER 2. BACKGROUND AND RELATED WORK

questions receive higher scores than questions that are not relevant or not well written. Each
registered user has a reputation score. Posing or answering a question with a high score will
increase the reputation of a user. Thus, users are motivated to submit good questions and answers,
in order to build better reputations. Fig. 2.1 provides a snap shot for a Stack Overflow post, and
shows its main elements.

As of June 2018, Stack Overflow has nearly 16 million posts, 240 thousands users, and 1539 tags.
Thus, Stack Overflow with this amount of knowledge is the biggest developer community, which
is daily considered by software engineers and organizations.

2.2 Software Architecture Design Methods

In the past few decades, several prominent software architecture design methods (e.g. RUP 4+1
views [Kru95], [HKN+07]) have been suggested and utilized in practice. The proposed methods
target modeling the software architecture in several views, such that each view comprises distinc-
tive diagrams for modeling the proposed solution, in order to satisfy the stakeholders’ architectural
concerns. In addition, the methods provide several guidelines for the correlation between the dif-
ferent viewpoints. Most of the methods dedicate a viewpoint for the implementation or system
realization. For example, one of the RUP 4+1 views is the the development view, which model
the proposed solution technology components and connectors, providing guidelines for taking the
technology decisions, such as ease of development, software management and reuse.

Also researchers propose processes for architecture design (e.g. Attribute Driven Design [KC16]),
which describe generic design steps for the activities to develop a software architecture. For
instance, the Attribute Driven Design [KC16] propose an iterative process, which consists of 7
steps:

1. Review Inputs: Software engineers review their inputs before starting with the design. They
ensure to have a clear purpose (e.g. produce a design for an early estimate). They also review
the functional requirements, quality attributes and architectural constraints. In addition,
software engineers also check existing systems, which will be involved in the architecture.

2. Establish goals for the design iteration: An architecture is usually developed in iterations.
Each iteration focus on certain goals (e.g. focusing on a certain design issue like establish
interoperable communication between two systems). A software engineer needs to specify
the goal of an iteration.

3. Choose one or more elements of the system to refine: A software architecture is complex
and consist of several interrelated components. To produce an architecture, a top-down or
bottom-up approach could be used to decompose and combine components of an architec-
ture. In this step, the architect will select a component for further refinement.

4. Choose design concepts: This step is the most challenging and the core of taking design
decisions. It consists of two sub-steps:

(a) Identify design concepts: Identify suitable types of architectural solutions (e.g., pat-
terns, tactics, families of technologies), and search for candidate solutions (e.g., layers
in case of patterns, or RabbitMQ for case of broker technologies).

23

CHAPTER 2. BACKGROUND AND RELATED WORK

(b) Select design concepts: Compare and select most appropriate solutions. This is done
through analyzing benefits and drawback of alternative design concepts, by performing
additional analyses and building prototypes (if needed).

5. Instantiate architecture elements: Selected design concepts are customized to the design
issue. For example, when selecting a layered pattern, the number of layers, components
in layers, and their communication need to be decided. Another example is decision on
suitable authorization features in a technology if security is a key issue.

6. Sketch views and record design decisions: After taking design decisions, software engineers
can document his decisions and architectural models in different views (e.g. using RUP 4+1
views [Kru95]).

7. Perform analysis of current design and review: To evaluate the design decisions, software
engineers discuss their architecture with the stack-holders (e.g. using ATAM). This ensures
that they addressed all requirements and constraints.

The proposed architectural design methods and processes extensively discuss and describe main
activities of design and their sequences. However, they provide minimum support for managing
architectural knowledge [FCK07]. Consequently, this makes architects depend on their personal
experience, instead of reusing and learning from others experiences.

Analysis and critique

2.3 Pattern Languages

A pattern language is concerned with defining a group of patterns, which solve related problems
in the same domain. Moreover, some pattern languages provide relationships between patterns, to
support the architect taking design decisions through moving from one pattern to another. Each
sequence of patterns produce different design result. For example, Buschmann et al. [BHS07a]
define a pattern language for middelware patterns. One path of decisions inside Buschmann’s pat-
tern language is the decision on the communication between layers. Buschmann et al. propose that
after selecting the layers pattern, you might select the broker pattern to make layers communicate
with each other.

Patterns have several types of relationships with each other [BHS07b]:

• Alternative: Context and forces impact the selection of alternative patterns. Part of this
context could be previously taken design decisions like selecting a programming language.
For example, deciding between request/reply and one way communication patterns.

• Cooperation: One pattern could complement another pattern to make it more complete. This
usually happens after deciding on the first pattern, which trigger another design issue. This
triggered design issue could be solved by the second pattern. For example, after deciding
on the layers pattern, pipes and filters pattern could be used to specify the dynamic flow
between layers.

• Combination: When having two alternative patterns, sometimes it is hard to decide on one
of them. In some situations, the designer could combine both patterns together to produce a
new pattern, which is a mix of both patterns.

24

CHAPTER 2. BACKGROUND AND RELATED WORK

In the past few decades, many pattern languages have been proposed (e.g. [BHS07a]). Each
pattern language addresses a different domain of problems. Typically, pattern languages do
not incorporate technology solutions as first class elements within their network of decisions.
Nevertheless, each pattern provides optionally a list of technology examples, which implement
this pattern. A proposed pattern language [MHvHA11] integrate technology solutions with pat-
tern languages. The proposed language model interrelationships between different technology
solutions, as well as an implementation relationship between technologies and patterns. How-
ever, the suggested solution’s network does not provide enough guidance for decision making
and reasoning on technologies, because of the limited and insufficient modeling elements (e.g.
technology features) and relationships (e.g. relationships to design issue) to support technology
decisions.

Analysis and critique

2.4 Architecture Knowledge Management

In this section, we present some of the most important related work in architecture knowledge man-
agement, and clarify their differences to our contributions. Existing literature reviews on architec-
ture knowledge [WG14] and architectural design decisions [TGAS14] provide comprehensive list
for publications on models, approaches, and tools for architecture knowledge management. In the
following sub-sections, we present and discuss existing related work based on their contributions
into architecture knowledge models, architecture knowledge sharing, and architecture knowledge
capturing.

2.4.1 Architecture Knowledge Models

Jansen et al. [JB05] proposed the first high level conceptual model for the main elements of ar-
chitecture knowledge. Their model presents a paradigm shift to focus on architectural design
decisions as first class entities. They defined architectural design decisions as "A description of
the set of architectural additions, subtractions and modifications to the software architecture, the
rationale, and the design rules, design constraints and additional requirements that (partially) re-
alize one or more requirements on a given architecture". Their proposed AK model shows the
relationships and transformations between architecture models (i.e. components and connectors)
and design decisions. The model viewed design decisions from a "problem - solution" point of
view; the problem is derived by a motivation and cause such as the architectural significant re-
quirements and stakeholders concerns or other architectural decisions, and a list of architectural
solutions are proposed to solve this problem. Each solution has its own characteristics of design
rules, pros and cons.

After the work of Jansen et al. [JB05], researchers proposed several architecture knowledge mod-
els. Each model propose additional conceptual elements. For example, De Boer et al. [dBFL+07]
proposed a conceptual model for main concepts of architecture knowledge. The main contribution
of the model is modeling forces, views, and stakeholders, and their relationships to design deci-
sions. Capilla et al. [CZZK11] proposed an enhanced architecture knowledge model, which links
knowledge concepts with artifacts such as requirements documents, and source code artifacts.
The model also considers the evolution nature of these artifacts and their influence on different
architecture knowledge concepts.

25

CHAPTER 2. BACKGROUND AND RELATED WORK

Kruchten et al. [KLV06] classified architectural design decisions into 4 kinds: A) Existence deci-
sions, B) Bans or non-existence decisions, C) Property decisions, and D) Executive decisions. The
authors also defined several attributes and relationships between the kinds of decisions. For ex-
ample, two decisions could be alternatives to each other or conflict with each other. Moreover, the
authors distinguished between several types of design decisions according to the awareness and
documentation of decisions. For example, a decision could be implicitly taken (i.e. the architect
is unaware of the decision) and undocumented, or explicit and documented.

The work from Tang et al. focuses on understanding and modeling the reasoning process of tak-
ing an architectural design decision. In other words, they try to model and depict the different
methods, that the architect can use to think about an architecture design problem. First, Tang
et al. [TBGH05] explored in a survey the different types of rationale for a design decision (e.g.
design constraints or assumptions). They also explore the different methods and challenges for
documenting design rationale. Second, Tang et al. [TTHV08,THV09] proposed a model for archi-
tecture design reasoning called AREL. The model relates design decisions with design concerns
and outcomes. Moreover, the authors proved based on an experiment that using the proposed
reasoning model improves the quality of software design. Moreover, Tang et al. [TVV09] classi-
fied and modeled the different types of constraints, which influence architecture design reasoning.
The authors grouped constraints into requirement, quality requirement, contextual, and solution
constraints. Furthermore, the authors proposed an integrated constraint-based design reasoning
process. Recently, Tang et al. [TBSvdW18] propose an approach to improve the reasoning behind
taking a design decision. The approach is based on reminder cards, which support architects to re-
member their decisions, and their rationale. On the same line of research, Falessi et al. [FCKK11]
experimented and compared several decision making techniques. The authors provide an approach
to choose between the different decision making techniques.

Zimmermann et al. [ZKL+09,Zim11] proposed a model for reusable architecture knowledge. The
model separated two concepts, the solution (alternative) and their concerns (i.e. Design issue) and
the outcome for an architecture design decision taken inside the project. Moreover, the model
groups design issues into groups and levels. The levels of design issues and solutions are con-
ceptual, technology, and products. The authors additionally formalized the relationships between
design issues and solutions, and categorized them into three categories: A) Elementary such as
"the alternative relationship between two solutions". B) Logical such as "taking a decision forces
taking another decision". C) Temporal such as "deciding on a certain architectural solution trigger
another design issue". Finally, the authors presented dependency patterns between design deci-
sions. For example, one pattern is "Vendor push", this pattern happens when a vendor makes a
constraint on a certain product or technology.

Several researchers proposed models and templates to document architecture design decisions.
Tyree at al. [TA05] proposed one of the earliest templates to document a design decision. The
template has several properties like status, constraints, and argument. Van Heesch et al. [vHAH12]
proposed a framework for documenting architecture design decisions. The framework consists of
four views, which model design decisions from different perspectives. The views for a design de-
cision are decision detail view, decision relationship view, decision chronology view, and decision
stakeholders view. The decision detail view contains main properties of a design decision such as
the design problem, alternatives, and taken design decision. The decision relationship view relates
the design decisions with each other. For example a decision could be caused by other decisions,
or a decision depends on another decision. The decision chronology view models the flow of de-
cisions and their status change with time. For example, a decision could be first proposed, then
decided, and then probably canceled. Finally, the decision stakeholders view models the involve-
ment of stakeholders in each design decision. For example, a stakeholder could confirm or validate

26

CHAPTER 2. BACKGROUND AND RELATED WORK

a decision. The architecture decision view has been further used in an industrial setting to support
decision space exploration [vHJPB+17].

Researchers proposed specialized architecture knowledge models. Jansen et al. [JdVAvV08] pro-
posed empirically a specialized AK model to support sharing quantitative analysis results. The
model could be used additionally to validate design models. Lewis et al. [LLA16] proposed a
decision model, which guides the selection of architectural tactics according to the functional and
non-functional requirements for cyber-foraging systems.

Gorton et al. [GKN15] modeled the architecture knowledge for big data technologies. The authors
classified technology features according to their impact on quality attributes. For example, fea-
tures for achieving consistency are "ACID transaction" and "Replicas", other features to support
scalability are "Scalable distribution architecture" and "load balancing". Moreover, the proposed
model relates big data technology features with architectural tactics. For example, the "Read re-
pair" replication technology feature is related to the ant-entropy repair and hinted handoffs tactics.

• Researchers proposed several models for architecture knowledge, which consider high-
level concepts of architecture knowledge and their relationships. However, most archi-
tecture knowledge models (with the exception of [ZKL+09] and Gorton et al. [GKN15])
do not explicitly model technology solutions as a separate first class entity, and therefore,
they do not support neither the reasoning on technology design decisions nor the reuse of
technology-related architecture knowledge.

• The architecture knowledge model proposed by Zimmermann et al. [ZKL+09] models
technology solutions explicitly. Moreover, the authors modeled the relationships between
technologies and other solutions (e.g. patterns). However, the proposed AK model lacks
the ability to distinguish between different technologies’ capabilities (i.e. features) from
each other, such that it is hard for a software architect to choose suitable technology so-
lution for the project situation. We believe that the approach proposed by Zimmermann
et al. is promising regarding architecture knowledge reuse. Therefore, we extended this
model in Chapter 3 to support technology design decisions.

• The architecture knowledge model proposed by Gorton et al. [GKN15] is also promising
regarding its support for modeling technology solutions. The model include explicit mod-
eling for technology features and their relationships to architectural tactics. However, the
model do not provide any guide regarding the differences between technologies (i.e. the
benefits and drawbacks of each technology). This information is important to decide on a
certain technology solution.

Analysis and critique

2.4.2 Architecture Knowledge Sharing

Before developing an architecture knowledge management system, requirements for architecture
knowledge management need to be identified. Clerc et al. [CLvV07] determined empirically dif-
ferent use cases for using architecture knowledge management systems. Examples of use-cases
are "check implementation against design decision" and "Reuse design decisions". The use cases
are modeled and grouped according to stakeholders and functionality. Moreover, several levels of
architecture are considered such as software, system, enterprise and processes architectures.

27

CHAPTER 2. BACKGROUND AND RELATED WORK

Since the paradigm shift of describing the software architecture as a set of architectural design
decisions [JB05], several architecture knowledge sharing tools have been developed to support
sharing architecture design decisions. Each tool is based on a different architecture knowledge
model and uses different terminologies. In addition, each tool provides different capabilities to
assist the architect in dealing with the ADDs. Existing surveys [SLK09, TAJ+10] have been con-
ducted to evaluate and compare the different AK tools. However, each survey uses a different set
of evaluation criteria. In order to understand the differences in the capabilities between the differ-
ent tools, we analyzed and consolidated the different surveys. Moreover, we appended additional
recent tools, which have not been considered by the surveys. In the following paragraphs, we
analyze and report the differences between the different tools in regarding to their approaches for
knowledge sharing.

Several tools used classical web-based technologies and databases to support architecture knowl-
edge sharing. PAKME [BWG05] is a web-based tool, which provides services for architecture
knowledge acquisition, maintenance, retrieval and presentation. In addition, the knowledge is
classified between project specific and generic. The tool supports a library of generic patterns,
which is supported with an advanced searching capability. ADDSS [CNPDn06] is an architecture
knowledge sharing tool, which provides the ability to document design decisions for each project
iteration, as well as the dependencies between them, through constrains relationships. In addition,
the tool provides a repository for patterns, to support the architect selecting an architectural so-
lution. Farenhorst et al. [FILvV08] proposed a portal for sharing architecture knowledge using a
just in time approach for knowledge capturing. The portal provides flexible features using plugins,
which can customize the environment differently for each organization.

The Wiki technology has been explored to support organizing and populating architecture knowl-
edge. ADkwik [SZP07] is a web based tool, using wiki technologies. The tool provides the ability
to capture design decisions through selecting the suitable solution alternative from a list of stored
architectural solutions. In addition, it relates the different design decisions using different types
of relationships. The tool is based on the model of Zimmermann et al. [ZKL+09], which guides
the architect in exploring the design space. De Boer et al. [dBvV11] experimented with using
semantic wikis as a platform for architecture knowledge sharing in an industrial environment. The
wiki has been used to model and store design decisions on the enterprise level for e-Government
software systems. Gorton et al. [GKN15] proposed an architecture knowledge repository for big
data technologies. The authors used semantic wikis for storing and modeling knowledge. The wiki
is based on a model, which relates technology solutions with technology features and architectural
tactics. The wiki provides several useful features such as advanced queries. The query is able to
consider different semantic entities in the wiki.

Researchers proposed architecture knowledge sharing tools as plugins to software development
and modeling tools. Archium [JDAH07] is an eclipse based plugin tool, which provides the
ability for the architect to describe the software architecture through a textual description. The
Archium compiler visualizes the software architecture components and their associated ADDs.
Moreover, it supports consistency check and traceability between the implemented Java code and
the architecture design, which supports architects during system implementation and changes.
ADvISE [LTZ12] is an eclipse plug-in tool, which support reasoning about design decisions using
the QOC (Question, option, criteria) concept. Additionally, it supports documenting the taken de-
sign decisions. An extension to the tool [LZ13] supports the uncertainty of taking design decision
through fuzzy logic. Moreover, the tool supports relating design decisions to design diagrams to
ensure the consistency between design decisions and design diagrams. An industrial implementa-
tion for design decisions documentation framework [MTK+14, MTA+16] is proposed as a plugin
to the Enterprise Architect modeling platform. The plugin supports documenting the chronologi-

28

CHAPTER 2. BACKGROUND AND RELATED WORK

cal order of ADDs. Moreover, the tool supports the traceability between ADDs and the different
artifacts within the development process.

A community website for software architecture has been proposed. Software Architecture Ware-
house [NP13] is a collaborative decision making web site, which provides different architectural
solutions for design issues and gives the ability for different users to collaborate and discuss about
solutions. In this way, each proposed solution is evaluated, which supports the decision maker to
select the right solution.

• A recent survey [TGAS14] on the architectural decisions field shows that most of the
architecture knowledge sharing approaches focus on documenting and capturing project
specific design decision rationale (e.g. [KLV06], [vHAH12] and [FCK08]) for the sake of
minimizing the software architecture erosion phenomena. Moreover, a recent study on the
software architecture knowledge [WG14] shows that, the current architecture knowledge
approaches have less support regarding architecture knowledge sharing and reuse.

• All proposed approaches depend on populating and gathering architecture knowledge
manually, which requires a significant effort to capture and gather properties and re-
lationships between decisions. Due to the amount of effort, approaches for architec-
ture knowledge management are not used in industry [CJT+16] (with limited excep-
tion [MTK+14, MTA+16]).

Analysis and critique

2.4.3 Architecture Knowledge Capturing

Several approaches have been proposed to capture architecture knowledge. Some approaches still
relay on manually capturing the knowledge. However, their methods try to facilitate capturing the
knowledge. Other approaches automate capturing architecture knowledge.

Due to the effort required to document architecture knowledge manually, approaches have been
proposed to facilitate the capturing process. Falessi et al. [FBC+13] proposed an approach for
documenting decisions based on categories in decisions which are most relevant to a design activ-
ity (e.g. assumptions, alternatives). Miesbauer et al. [MW12] tried to solve the same problem by
considering context information of development and design artifacts (e.g., time of creation, rela-
tionship with other artifacts) as a source of knowledge during documentation. Tofan et al. [TGA11]
proposed an approach for capturing tacit architecture knowledge through interviewing architects
using a method known as the Repertory Grid Technique. De Graaf et al. [DGLT+14a] provide
a method and guidelines to develop an ontology for architectural knowledge from architecture
documentation.

Due to the high effort for architecture knowledge capturing manually, approaches have been pro-
posed to automate architecture knowledge capturing. Van der Ven et al. and Bosch [vdVB13]
proposed an approach to automatically analyze and capture information about design decisions
from version management data of large open-source repositories. Lopez et al. [LCAC12] and
Anvari et al. and Zimmermann [AZ14] proposed methods based on natural language processing
and using keywords to capture architectural design decisions from existing text documents. Bhat
et al. [BSB+17, BSK+18] proposed a machine learning approach to automatically identify and
classify design decisions in issue management systems. Moreover, they used their classification
to recommend suitable experts to address certain design issues. Gorton et al. [GXY+17] proposed

29

CHAPTER 2. BACKGROUND AND RELATED WORK

an approach based on machine learning to automatically recommend web pages, which contain
relevant architectural knowledge related to certain technology features. The approach focused on
technology specification documents.

Approaches have been proposed to capture tacit and explicit architecture knowledge to support
system evolution and design reasoning. While most approaches still rely on manually capturing
architecture knowledge, few approaches automate the knowledge capturing process. Automated
architecture knowledge capturing approaches considered four sources of architecture knowl-
edge: 1) Issue management, 2) Architecture documents, 3) Source code repositories, and 4)
Technology documentation. Nevertheless, existing approaches for architecture knowledge cap-
turing do not analyze or capture architecture knowledge in online developer communities. As
previously explained in Chapter 1 and in Section 2.1.3, developer communities is currently the
place where software engineers discuss and share their experience about technologies. More-
over, developer communities provide several useful knowledge management features (e.g. ques-
tions and answers evaluation), which are not provided in other sources of knowledge. Therefore,
we believe that developer communities are important and useful source of architecture knowl-
edge, which worth to be analyzed and reused. In Chapters 4 and 5, we analyze developer com-
munities for architecture knowledge, and in Chapters 6, 7, and 8, we propose approaches to
support capturing architecture knowledge in developer communities.

Analysis and critique

2.5 Developer Communities in Software Engineering Research

Developer communities like Stack Overflow have been researched to support software engineers
in conducting different software development tasks. Current approaches did not consider devel-
oper communities for architecture tasks. However, they used developer communities to support
programming activities. We provide a brief overview on the most well-known and recent related
work in this area of research.

2.5.1 Analyzing Developer Communities

Stack Overflow has been a subject to analyze programming posts and behavior of developers.

1. Analyzing programming posts: Stack Overflow posts have been analyzed qualitatively and
quantitatively.

• Qualitative analysis of posts: Treude et al. [TBS11b] and Nasehi et al. [NSMB12a]
analysed the type of programming posts qualitatively, and classified programming
posts into several types (e.g., debugging, how-to questions) In addition, Nasehi et
al. [NSMB12a] identified the important common characteristics of a successful pro-
gramming post (such as using concise code, question context, and step-by-step solu-
tions). Rosen et al. [RS15] investigated the different issues and question types, which
face mobile developers.

• Quantitative analysis of posts: Baltes et al. [BDTD18] analyzed the evolution of Stack
Overflow posts using string similarity analysis. They found that developers just make

30

CHAPTER 2. BACKGROUND AND RELATED WORK

simple changes to posts shortly after their creation. Moreover, source code in posts
and text are usually changed together. Wang et al. [WCH18] analyzed the relationship
between the time required to get an accepted answer for a question, and the different
elements of a post (e.g. users, question, answer). The authors found that answerer
reputation has the strongest impact on achieving an accepted answer. They also found
that Stack Overflow supports users with higher reputation and who frequently answer
questions more than other users. Zhang et al. [ZUR+18] analyzed the quality of an-
swers, and if they propose a high quality solution. The authors found that 31% of
the answers could lead to API misuse. For example, some answers in Stack Over-
flow miss the sequence of calls for an API. Misuse of API can lead to problems like
program crash or resource leaks.

2. Analysing developer behaviour: Bazelli et al. [BHS13] studied the personality traits of Stack
Overflow users using a linguistic inquiry and word count methods. Vasilescu et al. [VFS13]
studied the interaction patterns of users between Stack Overflow and Github, to understand
the behavior of programmers across the questions asking and answering, and programming
activities.

Also researchers analyzed and compared different types of developer communities. Squire [Squ15]
conducted an empirical study on comparing the use of Stack Overflow, forums, and mailing lists
to support programmers during their development activities. The results show that Stack Overflow
has a better support for developers. However, the authors found some groups who moved back
from Stack Overflow and preferred mailing lists. Pagano et al. [PM13] conducted an empirical
study on software development blogs, where they analyzed the topics in blogs, and their usage
from developers. They found that developers use blogs frequently, and specially after software
releases. Moreover, they found that developers discuss high-level concepts such as features and
domain concepts, while source code related topics are discussed in 15% of their posts.

Current empirical studies on developer communities analyze general characteristics of posts,
as well as important concepts, properties and categories of programming posts. However, cur-
rent studies on developer communities do not analyze architecture-relevant posts or architecture
knowledge concepts in developer communities. Our studies in Chapters 4 and 5 complement
existing analysis studies on developer communities by exploring developer community posts
from a new perspective concerning software architecture and focusing on technology-related
architecture knowledge.

Analysis and critique

2.5.2 Using Developer Communities in Software Development

Software engineering researchers proposed approaches to facilitate using developer communities
like Stack Overflow during programming activities.

Developer communities contain an enormous amount of information. Therefore, Finding rele-
vant information in developer communities is challenging. Methods to improve finding relevant
programming information has been proposed. Gottipati et al. [GLJ11] propose an approach to
improve the effectiveness of search engines on technical forums, when searching for a solution
to a programming problem. The proposed approach depends on a classification approach, which
determines relationships between different elements of a software forum. Experiment results show

31

CHAPTER 2. BACKGROUND AND RELATED WORK

an improvement of up to 70% compared to traditional search approaches. Zou et al. [ZYL+15]
proposed also an approach to improve search engines on Stack Overflow, when searching for a
solution to a programming problem. Their approach depends on re-ranking posts according to the
question interrogatives. de Souza et al. [dSCM14] also proposed a search approach, which rec-
ommend suitable community posts to a query. The search approach classifies How-to questions
(i.e. one of the main types of programming questions [NSMB12a]), and give higher priority to
posts with bigger scores. Beyer et al. [BMPP18] proposed a classification approach using machine
learning, which categorizes Stack Overflow posts according to the purpose of the question. The
authors considered seven categories for programming questions (e.g. Errors, Review). The main
goal of the authors is to provide a better categorization for Stack Overflow posts to complement
tags, which are mostly technology names.

One of the main attributes of knowledge management is integrating knowledge in products and
processes. Thus, approaches have been proposed to integrate programming knowledge in de-
velopment communities with development environments. Ponzanelli et al. [PBL13a, PBL13b,
PBDP+14] created an eclipse plugin called Seahawk to assist developers using developer commu-
nities during programming. Seahawk formulates and executes queries automatically based on the
context of programming (e.g. current changed source code). Moreover, the tool supports dragging
sample code from communities to eclipse in an interactive way. Rahman et al. [RYR14] proposed
also an eclipse plugin with a similar approach, where authors combine the results from several
popular search engines (e.g. google and Bing) to present the most relevant community posts to
the context of programming. The experiments show their approach performs better than using a
single search engine.

One well known and commonly used source of knowledge for programmers is API documentation.
To improve and complement API documentations, methods to augment API documentation with
insights from developer communities are proposed. Treude et al. [TR16] proposed an approach
to match the similarity between API documentation and Stack Overflow posts. The approach
considers several natural language features like part of speeches. The proposed approach achieves
better accuracy compared to summarization techniques and pattern matching techniques. Guerrouj
et al. [GBR15] use a summarization technique to provide documentations for classes and methods
from sentences in Stack Overflow. To support tasks like code synthesis and code summarization,
Yin et al. [YDC+18] proposed automated model creation to learn the relationship between source
code and natural language. The approach uses a probabilistic model to capture the correlation
between natural language and source code.

Software engineering researchers proposed several approaches to capture, share, and support
the re-use of programming knowledge in developer communities. The proposed approaches
were specially concerned about finding relevant source code in developer communities, which
could be reused for certain programming problems. The approaches were additionally integrated
with source code editors (e.g. eclipse) to support a recommendation system for programming
activities.

Current proposed approaches to re-use the knowledge in developer communities for software en-
gineering activities focus on the implementation phase (i.e. programming) of software, without
considering architecture and design phases of software. Our study in Chapter 4 shows that soft-
ware architects can also benefit from developer communities to support taking technology design
decisions. Therefore, we propose in Chapters 6, 7, and 8 approaches to facilitate capturing and
finding relevant architecture knowledge in developer communities.

Analysis and critique

32

CHAPTER 2. BACKGROUND AND RELATED WORK

2.6 Summary

Acquiring architecture knowledge for technology design decisions is an interdisciplinary prob-
lem, which involves several fields of research. Knowledge management is concerned with general
concepts and processes to capture, share, and apply knowledge among individuals, community,
and organizations. On the other hand, several areas of software engineering research are related,
where each area is concerned with one aspect to support the acquisition of architecture knowl-
edge. Software architecture design processes and methods describe steps and activities to perform
architecture design. However, they do not propose or describe any approaches for the acquisition
of knowledge. On the other hand, pattern languages provide catalogs of patterns and their rela-
tionships to support reasoning about decisions on patterns. Nevertheless, pattern languages do not
provide guidance for technology design decisions.

The need to manage architecture knowledge motivated researchers to propose approaches for
architecture knowledge management. The proposed architecture knowledge management ap-
proaches involve different types of architectural solutions, design decisions (i.e. conceptual and
technology solutions), and their relationships. In architecture knowledge management, several
models, knowledge sharing and capturing approaches have been proposed. By analyzing the cur-
rent state of the art, we found that current approaches for architecture knowledge modeling, shar-
ing, and capturing provide minimum support for reasoning on technology design decisions. This is
due to the complexity of technology solutions (e.g. they contain different types of features and im-
plement different conceptual solutions). Moreover, the knowledge about technologies is evolving
and is distributed among many different sources of knowledge, such as technology specifications,
and developer communities. On the other hand, approaches for mining software repositories and
developer communities focus on analyzing general characteristics of communities or focus on
supporting programming activities.

The analysis of the current state of the art shows that an interdisciplinary solution to acquire archi-
tecture knowledge for technology design decisions is needed. Therefore, our proposed solutions
in the following chapters consider different areas of research. We first extended in Chapter 3 archi-
tecture knowledge models (see Section 2.4.1) with additional concepts to support the reasoning on
technology design decisions. Our proposed extension for AK models also consider relationships
between technologies and conceptual solutions (e.g. architectural patterns and pattern languages
(see Section 2.3)). We then explored and analyzed developer communities in Chapters 4 and 5 to
discover technology-related architecture knowledge. Our analysis complements existing empirical
studies (see Section 2.5) on developer communities with a new perspective regarding architecture
knowledge. Finally, we proposed in Chapters 6, 7, and 8 approaches to facilitate capturing ar-
chitecture knowledge from developer communities. Our proposed approaches support software
architects with relevant knowledge during certain architecture design activities (see Section 2.2).

33

3
Technology Design Decisions

3.1 Research Question and Contributions . 34
3.2 Research Process . 35
3.3 Technology Features . 38
3.4 Architecturally Significant Technology Aspects 41
3.5 Architecture Knowledge for Technology Design Decision 44
3.6 Evaluation of Concepts . 48
3.7 Discussion . 50

3.1 Research Question and Contributions

This chapter provides answers for RQ1 and RQ2:
RQ1: How do software engineers conceive software technologies as architectural solutions during
the decision making process?

RQ2: How can we model and relate technology decisions with existing architectural knowledge
concepts?

By answering RQ1 and RQ2, we support achieving the first goal of the dissertation "Understand
technology design decisions" (see Chapter 1). To achieve our first goal and answer RQ1 and RQ2,
we conducted an exploratory research study, which consists of a qualitative content analysis, fol-
lowed by refinement and validation interviews. The study analyzed the different perspectives,
which technology vendors, literature and architects have in offering and choosing technology so-
lutions respectively. Moreover, the study integrated our proposed AK concepts for technology
design decisions with existing AK concepts in literature. The main contributions in this chapter
are the following:

• Modeling technology solutions as a set of features, which are offered by the technology
vendors, as well as their associated architecturally significant technology aspects (ASTAs),
which are considered by architects in taking technology design decision. We determined
different categories for technology features and ASTAs.

• An integrated architecture knowledge model, which includes both technology design deci-
sion concepts, as well as existing AK concepts from the literature.

34

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

Our contributions supported our analysis when answering RQ5 (see Chapter 5) with important AK
concepts for taking technology design decisions.

This chapter is structured as follows. In Section 3.2, we describe and explain in details the re-
search process for answering RQ1 and RQ2. Sections 3.3, and 3.4 present our defined concepts of
modeling technology solutions as a set of features and aspects. The two sections are followed by
Section 3.5, where architecture knowledge concepts for technology decisions are integrated and
modeled. In Section 3.6, validation results for the interviews data analysis is presented. Finally,
section 3.7 discuss our results.

3.2 Research Process

In order to answer RQ1 and RQ2, we followed the research process shown in Fig. 3.1. The
research process is divided into two main phases:

1. Data Gathering and Hypothesis Definition: In this phase, the main goal was to collect
information about technologies. This would make us understand, what are the primary
factors, which make an architect choose or reject a certain technology solution, and what are
the scenarios the architect faces during a technology decision. In order to achieve this goal,
We followed a qualitative content analysis research method among different technology
resources. As a result of this phase, initial hypothesis for the technology decision concepts
and models were formulated.

2. Hypothesis Refinement and Validation: In this phase, we refined and validated the proposed
concepts and models. It was important to align our understanding with what practitioners
do in their work. Since the Interviews research method is the best method in discovering
human experience [Sei06], we conducted a set of interviews with experts, who are used
to take technology decisions frequently. This process helped to improve and validate the
proposed model.

In the following sections, we explain both the content analysis and the interview research processes
respectively.

3.2.1 Content Analysis

Technology selection guidelines and reasoning are explained in different sources:

1. Technology Vendors Architecture Guidelines: Each technology vendor provides guidelines
(e.g. [CS10], [PT09]) for designing software systems using their designed products. How-
ever, they do not conduct comparisons between products from different vendors, to show
their strengths and drawbacks. A list for the analyzed technology specifications and guide-
lines are available in Appendix A.

2. Technology Discussion Forums: This is a rich source for exploring, how technologists
choose a technology solution. The discussions show the factors, which drive an architect
to choose a certain technology. In addition, comparisons between technologies are usually
part of the discussions. For example, on the stackoverflow forum, you might find a topic

35

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

Content Analysis

Technology Providers‘

Architecture Guidelines

Software Development &

Architecture Discussion Forums

Software Architecture

Design Methods

Initial Elements,

Definitions & Models

Focused Experience

Overview

Details of

Experience

Reflection on

Meaning

Questions under

Consideration

Scope

Definition

Interview Process

Concepts & Models Refinement and Validation

Presenting refined

concepts for validation

Pattern Languages

Figure 3.1: Research Process Diagram.

with title ”Spring MVC vs JSF”. Nevertheless, technology forums lack information about
the design reasoning and processes, and their relationship to the architect concerns in taking
a technology decision.

3. Software Architecture Design Methods: Even though most of the architecture design meth-
ods do not provide detailed guidance on taking a technology decision, some architecture
design methods (e.g. [BCK12, KC16]) provide guidelines on the different situations, that
the architect can face during the selection of technology solutions.

4. Pattern Languages: Pattern languages present a catalog of architectural patterns, their de-
scriptions and their relationships with each other (e.g. [BMR+96]). Moreover, each archi-
tectural pattern is presented with examples of implementations in technologies. The benefit
of analyzing pattern languages is to determine the relationships and interactions between
different architectural solutions.

We followed a qualitative content analysis [FvKSJ04] text analysis process through several se-
lected resources from each of the above mentioned categories. Our goal was to have a high-level
overview about technology decisions from different sources of knowledge. We selected our data
analysis sources based on their popularity, and richness in technology decision knowledge. We
followed several guidelines in text analysis, such as coding to refine and categorize the text. The
combination of different resources analysis supported us to propose our hypothesis from different
perspectives.

36

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

Table 3.1: Interview Participants Experience Overview

ID Exp.
(Years)

Technology
Background Role Industries

1 10
C/C++,

Microsoft Products
Technology
Consultant

NLP, Performance
Critical Systems,

E-Commerce

2 13
Microsoft

Technologies
Architect

Flight,
Communications,

Social Media,
Reservation,

Retail and Education.

3 11 Java / J2EE
Technology
Consultant

Billing,
Medical-care,
E-commerce

4 9 Java / J2EE
Enterprise
Architect

Telecom,
Costing & Billing,

Oil & Mining,
Military

5 10
Java / Integration

Technologies
Technology
Consultant

Communications,
Transportation

6 7 Java / J2EE
Technology
Consultant

E-Government,
Automotive

7 12
Database Systems,
Microsoft Products

Enterprise
Architect

E-Government,
Financial

3.2.2 Interviews

As we were seeking experience in technology architectural decisions, several factors have been
considered in choosing the interview participants: 1) Their experience in using and choosing tech-
nologies. 2) Their architecture knowledge and design skills. 3) The size of the companies and
systems, they are working in or have worked in before. 4) Their interest and motivation to partic-
ipate in the study. Before choosing the interviewed experts, we identified more than 20 candidate
experts through our personal connections. Candidates were evaluated based on the mentioned cri-
teria, to settle on the 7 participating experts. It is interesting to mention that, even though some
of the candidate experts work in the role of a software architect in their companies, they do not
take technology decisions. In these companies, the architecture decisions are divided between two
different roles, the software architects, who design the system conceptually, and the technology
consultants who choose the technologies. Therefore, we included in our study experts, who only
take technology decisions.

The interviewed experts work, or worked before in software houses or IT service companies, with
more than 100,000 employees. All the experts have either a Bachelor or Master degree in computer
science or engineering. Due to the fact that the participants live and work in different cities, the
interviews have been conducted remotely through telecommunication software.

We followed a three-phase interview process as proposed by Seidman [Sei06]:

1. Focused Experience Overview: In this phase, we asked the interviewees to answer several
questions to show their experience in software architecture, as well as their technology

37

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

experience, projects and domain of work. We made this step one or two days before the
first meeting, which supported us preparing the suitable questions which align with the
participant’s context and experience. Table 3.1 shows a brief summary for the experience
overview of the participants.

2. Details of Experience: In this phase, we intend to learn from the participant’s experience,
in order to refine and validate our concepts. The initial hypothesis, that has been concluded
from the content analysis phase helped us to direct the questions and discussions. In order
to do this, we mapped each concept in the hypothesis with one or more interview questions,
which has been customized based on the result from the first phase. During the interview,
we were giving the space for the interviewees to explain and express their opinion, and
tell us about their experiences, which was the main feedback in this meeting to verify and
improve our concepts. The result from this meeting is a set of real practical examples from
each participant’s experience, which either align, or improve or contradict with our initial
hypothesis. In the following sections, we are going to state some of the Interview Questions
(IQ) that we asked to the experts, as well as their responses1 and examples. The questions
of the interviews are available in Appendix B.

3. Reflection on the Meaning: After the first meeting, we were able to refine and verify our
initial concepts, through the examples and discussions presented by the participants. How-
ever, it was important to validate our interpretation between the experience examples and
the proposed concepts. Therefore, in the second meeting, we focused on discussing the pro-
posed hypothesis concepts, and relating it to the mentioned experiences. First, we explained
our research goal, and the initial concepts and models, and for each concept, supported
by an example from the participant’s experience, we asked the interviewee, if this concept
align with their understanding and practice. Based on their feedback, we either validated
or changed or rejected a certain concept. Sec. 3.6 presents our evaluation results for the
proposed concepts, based on the interviewees feedback.

All interviews were recorded and transcripted, to allow further analysis for the discussion. The
length for each interview was between 60 and 120 minutes. The difference in duration between
the first and the second interview for each participant is between 2 and 7 days.

3.3 Technology Features

One of the main challenges during software architecture design is choosing the right technology
solutions (e.g. COTS or frameworks), in order to implement the designed architecture. Even
though different technology solutions act as alternative solutions for the same problem, they are
different in their capabilities and qualities.

Technology vendors offer their proposed solutions as a set of Technology Features. These fea-
tures are the abstract capabilities, which they claim, that these technologies provide. The vendors
usually describe the merits of each feature, and how they could be used to implement a software
system. Features could be classified with respect to the capabilities provided into different types.
In the following paragraph, we list and define the types of capabilities offered by the features. This
list has been derived from our analysis and the interviewees’ practical experiences:

1Some of the participants’ answers have been translated from their native language (Arabic and German) to English.

38

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

1. Development and Configuration Capability: It provides the ability to develop or config-
ure an implementation for a solution through a development environment, which comprises
programming languages and possibly development and testing tools. An example from our
analysis is the Microsoft Windows Communication Foundation (WCF) technology feature
to develop services for a Service Oriented Architecture (SOA). The services development is
done through the C# or VB programming languages, supported by the Microsoft develop-
ment and testing tools, while, the services’ protocols are dynamically defined through a set
of XML configurations.

2. Behavior Capability: It provides either existing and compiled software components, which
implement solutions with a certain quality, or a forecasted behavior for a possible devel-
opment at certain conditions. For example, several web-based technologies (e.g. JSF,
ASP.Net) provide an implemented web process, which embodies HTTP requests handling,
and HTML generation functionalities. On the other hand, programming languages’ com-
pilers provide different behavioral capabilities, when compiling the source code to object
code. For example, the ability of the Java virtual machine compilers to handle multithread-
ing source code among different platforms. Behavior capabilities could be further classified
into three capabilities:

• Usability Capability: It provides either an existing user interface functionality, or fa-
cilities for developing a user interface. The main target from these capabilities is to
facilitate the usability of the developed system. For example, Microsoft Sharepoint
provides out of the box user interface features for content and document management.
On the other hand, the recent version from HTML 5.0 supports the web designer to
use more elegant forms, as well as additional interactive user interface features (e.g.
drag and drop) to support an easier front-end development.

• Interoperability Capability: It provides the ability for the technology solution to inte-
grate and communicate with other technologies. The features could be either through
an implemented interface, or through supporting a well-known standard or protocol
(e.g. SOAP). For example, Java technologies could access Microsoft SQL Server
through the JDBC SQL Server Data Access component. On the other hand, Microsoft
WCF offers implementations for 9 protocols (e.g. HTTP, TCP/IP, P2P, . . .).

• Storage Capability: It provides the ability for the technology to store data, considering
the data size, format and processing. For example, Oracle database offers different
product editions, the standard edition supports storage with maximum 11 GB, with a
single CPU processing, while the enterprise edition has no storage or processing limit.

3. Operational Capability: It provides the ability for the technology to monitor and manage
the processing of the system during execution. For example, HP Openview products offer
features for application status, HW resources, and database system’s monitoring.

4. Commercial Capability: It is concerned with the price, licenses, and vendor or community
support for this technology solution.

Each technology solution encapsulates a tree of inter-related features. Each feature provides a
capability from the previously defined capabilities’ types1. Fig. 3.2 shows an example for a partial
technology features’ tree, which has been created through our content analysis activity, integrated
with the industrial examples mentioned by the interviewed experts. For example, Java Server
Faces (JSF) is an open-source technology solution ’Commercial Feature’, to support developing

1We will refer to features, which provide a certain capability type with the capability name, e.g. Development
Feature, Behavior Feature

39

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

Web

Process

Handle

Events

Web Page

Dev

Component

Based MVC

Generate

HTML

Parse &

Build Page

Model

Develop Page

Java Dev.

Env.

Facelets

Dev.

Env.

JSF

Facelets

Eclipse

Java

JSTL

Multithreading

Pure Object

Oriented

Object

Oriented Style
Concurrency

Tactic String &

Logic

Processing

Implemented by

SQL Server

J2SE

JDBC

SQL Server

Data Access

Technology

Solution
Conceptual

Solution

Development

Environment

Development

Feature

Behavior

Feature
Usability

Feature
Interoperability

Feature
Commercial Feature

Based-on

Sub-features

Based-on

Dev. Feature

Environment

Contains

Contains

Contains Contains

Contains

Embodies Dev. Feature

Environment

Contains

Contains

Integrates

UI

Components

Open Source

f

Figure 3.2: An example for a technology features’ tree.

40

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

a web based application. It contains a web process ’Behavior Feature’, which is based on the
component-based MVC pattern. Several sub-features are associated with the parent web process
feature. This includes developing the user interface, handling events ’Development Features’,
and generating HTML ’Behavior Feature’. Even though, JSF offers development user interface
feature, it depends on another technology solution ”Facelets” to implement this feature, which
consequently offer a development feature, through a development environment. In addition, the
Facelets development feature provides a set of user interface components ’Usability Feature’. On
the other hand, JSF event handling development feature is provided through a Java development
environment, which incorporates development tools, and the Java programming language with its
pure object oriented style. The Java development environment contains several libraries, which
embody many additional features. For example, the JDBC library offers an ’Interoperability Fea-
ture’ to access Microsoft SQL Server database technology.

Table 3.2: Capabilities’ Types and Architectural Concerns Relationships

Capability Type Influenced Architectural Concerns
Development and

Configuration Capability
Development Time, Training Time, Maintainability

, Testability, Configurability, Evolvability
Behavior

Capability
Performance, Reliability, Security,
Accuracy, Portability, Reusability

Operational
Capability

Manageability, Supportability, Availability

Interoperability
Capability

Interoperability, Inter-process communication

Usability Capability Usability

Commercial Capability
Cost of Ownership, Openness,

Development Time, Training Time
Storage Capability Data Accessability, Scalability

Each of the technology capabilities influence one or more of the architectural concerns, and subse-
quently each of the offered technology features influences different concerns based on its adopted
capability type. Table 3.2 shows the relationship between each of the identified technology capa-
bilities’ types and the different architectural concerns [LAH10,Int11]. Understanding the influence
of the technology solutions’ features on the different concerns supports the architect to evaluate
and compare the different technology features, and consequently justify the technology design
decision. In Sec. 3.4, we explain how the influence of features on the stakeholders’ concerns
differentiate the technologies from each other.

3.4 Architecturally Significant Technology Aspects

As explained in the previous section, technology solutions embody many different features, which
are designed and implemented within the technology. Consequently, it was interesting for us to
ask the participants, ”IQ: To what level does the architect need to know about technology features
in order to take the right ADDs?” Bass et al. [BCK12] listed several important considerations in
choosing a technology solution, such as the capabilities of the development tools, the familiarity of
the development community with this technology, the possible vendor and community support, the
drawbacks of the technology, and the compatibility of this technology with the existing technology
stack.

41

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

One of the interview participants mentioned that ”The architect doesn’t need to know the tech-
nology in depth. However, he needs to know the differences between the different technologies,
their benefits and drawbacks, regarding performance, vendor support, . . . ”, another answered
”He needs to know how technologies work from a high level, considering its learning curve, de-
velopment effort, usability, . . . ”.

Based on our analysis and the interviews’ discussions, we define in this section the different types
of Architecturally Significant Technology Aspects (ASTAs). They are the principal and distinctive
technology solution’s characteristics, which distinguish the technology solution from other alter-
native solutions, and consequently support or influence the architectural design decision. In other
words, these aspects qualify such a technology solution to be selected by the architect to satisfy
one or more ASRs.

ASTAs could be considered as either Benefits or Drawbacks. Benefits are the advantages, which
the technology solution have over other competitive solutions. On the other hand, drawbacks are
either technology features, which are missing in this technology solution, even though they exist
in other alternative solutions, or they are well-known existing features’ problems, which need
to be considered by the architect during the decision making. Both benefits and drawbacks act
as different sides of the same coin, such that the same technology solution benefit could be a
drawback in another solution. Moreover, both types act as important factors for an architectural
design decision.

Each ASTA is associated with a technology feature, and consequently have the same capability
type as their related features1. One of the interview participants mentioned ”Even though Java
provides an important feature for code portability among different platforms, this is a significant
drawback for our development, which seeks native components development. This makes us al-
ways favor C as our development technology. Nevertheless, it lacks such a platform independent
feature”. Furthermore, we believe that both benefits and drawbacks are relative notions, which
could be solely determined through a comparison with other competetive technologies. Such a
comparison is not usually provided by the technologies’ vendors. However, they are part of the
software community discussions and experiences.

Due to the fact that features are commonly described ideally by the technology vendors, without
mentioning their drawbacks, several discussions on the technology forums try to share their ex-
periences with either problems, which they faced in using these features, or missing capabilities,
which were expected to be provided. Associated with these discussions are side-by-side com-
parisons between features from different technologies, which show the benefits and drawbacks
of each feature in comparison to the other technology features. We call these types of aspects
Feature-Based ASTAs.

One of the interview participants mentioned the following: ”In order to choose a web-based
framework, we depended on a comparison between Spring MVC and other frameworks. We pref-
ered to use the Spring MVC framework over other frameworks, because it’s supported with better
documentation, which make it easier to develop and learn.” In this situation, the interviewee took
the design decison based on a development feature-based benefit, which is the ”better development
documentation”.

On the other hand, as we mentioned in Sec. 3.3, each feature influences different types of archi-
tectural concerns. This influence could be measured differently depending on the type of feature’s

1We will refer to ASTAs, which assess a certain capability type with the capability name, e.g. Development ASTA,
Behavior ASTA, . . .

42

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

Component

Based MVC

Web Process

ASP. Net

ASP. Net

MVC
 Request

Based MVC

Web Process

ASP. Net

Web Page

Dev

HTML

Web Page

Dev

Dev.

Productivity

Complex UI

Improved

by

Performance

with large

pages

Behavior Concern-

based Drawback

Improved

by

Oracle DB

Controller

Develop
Events

Handle

.Net Dev.

Env.

C# .Net

Framework
Visual Studio ODP.Net

Oracle DB

Data Access .Net Stored

Procedure

Transaction

 Technology Solution

Conceptual Solution

Development

Environment

 Development Feature Behavior Feature

Interoperability

Feature

Development

Drawback
Behavior Drawback

Based-on Based-on

Sub-features Sub-features

Interoperability Feature-

based Drawback

Dev. Feature

Environment

Dev. Feature

Environment

Contains Contains

Contains

Integrates

Dev. Concern-based Drawback

Interoperability

Drawback

f

Figure 3.3: A subset from a technology features’ tree with both feature and concern based draw-
backs (ASTA).

43

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

capability and the assessed concern. For example, benchmarking can be a suitable method for
comparing the performance of the behavioral features for multiple technology solutions. In ad-
dition, development features could be measured through development productivity experiments
(e.g. [Phi99]). As a result of these measurements, we could recognize, which technology solution
features are better than the others regarding the measured concerns. In other words, the concern-
based benefits and drawbacks or Concern-Based ASTAs.

An interview participant described an experience about a certain database management system
”After 1 year, the amount of data in the database reached more than 20 billion records. After
several testing, we discovered that the performance of data processing operations is degrading
exponentially with the increase in the amount of data, this technology drawback derived us to take
an architectural decision to replace such a database management system”.

Fig. 3.3 shows two web interface technology solutions, ASP.Net and ASP.Net MVC. Both tech-
nologies are based on the MVC architectural pattern. However, they are based on different pattern
variations. This difference triggers a distinction in their development and behavior features. An
interviewee mentioned ”According to our experience, ASP.Net provides a feature for faster and
easier development environment than the ASP.Net MVC, due to the availability of many reusable
UI components. However, ASP.Net is slower than ASP .Net MVC in handling thousands of users,
due to the fact, that Component-based MVC need to store the view state of each UI control.” By
analysing this statement, we could identify the following ASTAs: A) ASP.Net faster and easier de-
velopment than ASP.Net MVC is a ’Development Concern-Based Benefit’, B) The availability of
many reusable UI components in ASP.Net is a ’Development Feature-Based Benefit’, C) ASP.Net
is slower than ASP.Net MVC in handling thousands of users is a ’Behavior Concern-Based Draw-
back’, and D) Component-based MVC need to store the view state is a ’Behavior Feature-Based
Drawback’.

From this experience example, we can conclude that both types of ASTAs are strongly related,
such that an identified feature-based drawback would impact the feature negatively, which might
lead to a concern-based drawback. Similarly, a feature-based benefit would impact the technology
feature positively, which possibly lead to a concern-based benefit.

3.5 Architecture Knowledge for Technology Design Decision

In this section, we consolidate and model the technology features and ASTAs’ concepts, which
are presented in the previous sections. In addition, we integrate the proposed technology concepts
with the reusable design decision concepts proposed by Zimmermann et al. [ZKL+09]. Finally, we
appended additional decision making elements to formulate our proposed architecture knowledge
(AK) model. The main elements of the proposed architectural knowledge model are presented
in the first sub-section 3.5.1. In sub-section 3.5.2, we further discuss and classify architectural
solutions according to their ability to interact between each other in a decision making process.
The proposed model and classifications support architects to make technology design decision.

3.5.1 Elements of Architectural Knowledge

Fig. 3.4 shows the meta-model for the proposed architecture knowledge. At the core of the model
are the design issues, which are the architecture design problems facing the architect. Each design
issue is associated with a set of alternative architectural solutions [ZKL+09]. An architectural

44

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

-F
u

n
ct

io
n

al
it

y
D

es
cr

ip
ti

o
n

D
e

si
gn

 Is
su

e

*
*

h
as

 a
lt

er
n

at
iv

es

A
rc

h
it

e
ct

u
re

 C
o

n
ce

rn

* *co
n

si
d

er

C
o

n
te

xt
u

al
 F

ac
to

rs

* *

as
so

ci
at

e
co

n
te

xt
u

al
 f

ac
to

rs

*
*

h
as

 s
u

b
-i

ss
u

es

Is
su

e
 C

o
n

ce
rn

 C
o

m
b

in
at

io
n

*

*co
n

ta
in

s

*

*

C
o

n
ce

p
tu

al
 S

o
lu

ti
o

n

SA
 S

o
lu

ti
o

n

Te
ch

n
o

lo
gy

 S
o

lu
ti

o
n

-D
es

cr
ip

ti
o

n
-C

o
n

d
it

io
n

-C
ap

ab
ili

ty
 T

yp
e

A
ST

A

-D
es

cr
ip

ti
o

n
-C

ap
ab

ili
ty

 T
yp

e

Te
ch

n
o

lo
gy

 F
e

at
u

re

D
ra

w
b

ac
k

*

*

h
as

 a
rc

h
it

ec
tu

re
 s

ig
n

if
ic

an
t

te
ch

n
o

lo
gy

 a
sp

ec
ts

10
..

*

tr
ig

ge
r

-A
sp

ec
t

-C
o

n
te

xt
-M

et
ri

cs
-A

ss
u

m
p

ti
o

n
s

-Q
u

an
ti

ta
ti

ve
R

es
u

lt
-Q

u
al

it
at

iv
eR

es
u

lt

Te
ch

n
o

lo
gy

 F
e

at
u

re
 C

o
n

ce
rn

 M
e

as
u

re
m

e
n

t

*
* U

se
 E

va
lu

at
io

n
 R

es
u

lt
s

*
*

C
o

m
p

ar
e

/
Ev

al
u

at
e

Fe
at

u
re

s

*
*

Id
en

ti
fi

es
 b

en
ef

it
s

&
 d

ra
w

b
ac

ks

*
*

C
o

n
si

d
er

 F
ac

to
rs

 d
u

ri
n

g
Ev

al
u

at
io

n

R
e

u
sa

b
le

 T
e

ch
n

o
lo

gy
 D

e
si

gn
 D

e
ci

si
o

n

*
*

Se
le

ct
 s

o
lu

ti
o

n
*

1
so

lv
es

*

*

B
as

ed
 o

n
 t

ec
h

n
o

lo
gy

 e
va

lu
at

io
n

s

1
*

h
as

 f
ea

tu
re

s

B
e

n
e

fi
t

Fe
at

u
re

-B
as

e
d

 D
ra

w
b

ac
k

-C
o

n
ce

rn

C
o

n
ce

rn
-B

as
e

d
 D

ra
w

b
ac

k
Fe

at
u

re
-b

as
e

d
 B

e
n

e
fi

t
-C

o
n

ce
rn

C
o

n
ce

rn
-B

as
e

d
 B

e
n

e
fi

t
1

..
*

*
le

ad
s

to
1

..
*

*
le

ad
s

to

*
*

b
as

ed
 o

n

-S
o

u
rc

e
-S

co
p

e
-D

at
e

-T
ru

st

Te
ch

n
o

lo
gy

 F
e

at
u

re
s

C
o

m
p

ar
is

o
n

Fe
at

u
re

 E
va

lu
at

io
n

*

*
is

 a
d

d
re

ss
ed

 /
 s

o
lv

ed
 b

y
an

o
th

er
 t

ec
h

n
o

lo
gy

 f
ea

tu
re

*
*

as
so

ci
at

ed
 p

o
ss

ib
le

 ju
st

if
ic

at
io

n
s

w
it

h
 r

eu
sa

b
le

 A
D

D

D
e

ci
si

o
n

 J
u

st
if

ic
at

io
n

*

*

is
 p

ar
t

o
f

A
D

D
 ju

st
if

ic
at

io
n

*

*

f

E
va

lu
at

io
n
 C

o
n
c
e
p
ts

T

e
c
h
n
o

lo
g
y
 C

o
n
ce

p
ts

D

e
ci

si
o

n
 M

ak
in

g
 C

o
n
c
e
p
ts

Figure 3.4: Software Architecture Knowledge (AK) Metamodel.

45

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

solution could be either a conceptual solution (e.g. architectural pattern or tactic), or a technology
solution, or a feature within a technology solution. As explained in the previous sections, each
technology feature may have certain ASTAs, which are identified through comparisons between
different technology features. ASTAs could be either benefits or drawbacks, feature-based or
concern-based. Moreover, the identified ASTAs are part of the technology decision justification.

A feature’s drawbacks are usually sources of additional design issues, which the architect need to
overcome before selecting the technology solution. Overcoming solutions are different, however,
one of their options is using other technologies, which contain features that address this problem.
For example, one of the interview participants mentioned ”JSF framework has drawbacks, which
impact the usability quality attribute. Two options were proposed, either to use an additional
framework (e.g. Primefaces) to mend this problem, or hire a web designer to fix the problem
manually”.

During our interviews, we asked all the participants the following question: IQ: What are the
steps you take to choose between a list of possible technology solutions? It was not surprising that
each participant described a different reasoning process than the others. However, all participants
shared a common set of elements, which they consider in selecting the technology solution, even
though, they are used in a different order. Therefore, the proposed AK model contains and relates
the different elements, which are necessary to assist the architect in taking a technology design
decision, such that it can align with the different design reasoning methods.

Even though, each of the interview participants described different steps in choosing a technology
solution, we can still group their description into two main reasoning types [TvV12, Tan11]:

1. Deductive, problem-driven: In this process, the architect starts by analyzing the design issue,
and its associated architectural concerns. For example, in choosing between different mid-
dleware technologies, interoperability, performance, security and development time should
be considered. For each of these concerns, several factors are associated; the technology
at the client and server, the size and structure of the transfered data, the network between
the two sides, and the development team skills respectively. Based on these factors, the ar-
chitect can start evaluating the different technology features (e.g. [GLB03]). Alternatively,
the architect could assess the feature’s quality through evaluating the conceptual solution
(e.g. evaluation for architectural patterns [BR10]), which this feature implements. By the
end of the process, the architect needs to make trade-offs among the different concerns (e.g.
using [ANGB+05]).

2. Inductive, solution-driven: In this process, the architect starts by checking other experi-
ences, which have similar situations. In other words, design decisions which have been
taken in different projects but with similar circumstances, and based on matching both con-
ditions, the architect chooses the suitable technology solution. We believe that technology
decisions that are justified based-on the architectural concerns and factors are reusable, such
that similar architectural concerns and factors could be repeated among different projects.
On the other hand, technology decisions that are justified based on business or social aspects
cannot be reused within the context of software design decision (maybe arguably reused in
a business context).

Even though our main research goal is not to drive a design process, it is important to under-
stand the different reasoning methods, which the architect uses, in order to identify the important
architecture knowledge elements and their relationships.

46

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

3.5.2 Solutions’ Interactions within an Architectural Knowledge

During an architectural design process, software architects select a sequence of different archi-
tectural solutions. Each architectural solution has a different impact on the quality attribute of a
software system, as well as a different impact on the resulting structure of the system components.
Based on our content analysis, we classified architectural solutions into two main types:

1. Triggering Architectural Solutions: They are the type of solutions that have the ability
to trigger new architectural design issues, such that in order to complete the architectural
design of these solutions, new architectural design issues must be addressed. In this group
belong architectural patterns, and technology solutions.

2. Elementary Architectural Solutions: These are architectural solutions that do not trigger
new architectural design issues. They are either as architectural unit operations (e.g. Com-
ponent Decomposition) or solutions recommendations for a subsequent detailed design (e.g.
Design Patterns [GHJV94]).

Architectural tactics [BCK03] and technology features (see Section 3.3) have a different nature as
other solutions, such that it is hard to classify them all in a single group.

Tactics could be divided among the two groups, into elementary and triggering tactics. Elementary
tactics are tactics that do not trigger new architectural design issues. For example, to improve the
performance of a well-known process (e.g. Products sorting), selecting or changing the algorithm
usually would not produce new architectural design issues, however, it can produce algorithmic
or implementation issues. On the other hand, triggering tactics require more architectural design
issues to be addressed in order to realize the design of the tactic. For example, improving the
performance through caching, this would require to answer other design questions such as: which
and where to cach the data? and how to synchronize the cached data?

Technology features could also be divided among the two groups, into elementary and triggering
technology features. The classification depends on the influence of a technology feature on other
features. Triggering technology features are main features of a technology solution, which consists
of other features. In many cases, it is obligatory to use a triggering technology feature, if an
architect decided on this technology solution. On the other hand, elementary technology features
are smaller features, which are optional to select. They have a smaller influence on other features.
In Fig. the "web process" technology feature of the JSF technology is one of the main features
in JSF, which could be classified as a triggering technology features, because many other features
depend on it. On the other hand, the selection of the JDBC SQL Server Data Access technology
feature is an elementary technology feature, which do not influence other features in JSF.

Architectural design issues vary in their importance, types, scope and position within the reasoning
process. Zimmerman et. al Zimmermann et al. [ZKL+09, Zim11] classified design issues based
on their abstraction level. In order to support the architect in understanding when design issues
occur within the reasoning process. We propose a classification for design issues, based on their
occurrence within the design reasoning process and their relationship to the architectural solutions.

1. Root Design Issues: They are design issues which are stimulated independently from pre-
viously selected architectural solutions. Enterprise or principal high level design issues (e.g.
deciding the high level architectural style of the system or the main implementation tech-
nology) are popular examples that belong to this group.

47

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

2. Solutions-Triggered Design Issues: They are design issues that must be triggered based on
a stimulation from a previously selected architectural solution. We further classified these
issues based on their relationship to the architectural solutions into the following groups:

(a) Solution-Specific Design Issues: They can only be triggered as a result of selecting a
specific solution. They can’t be triggered by any other solutions.

(b) Joined Design Issues: A common design issue which can be triggered by different
solutions.

(c) Integration Design Issues: This is a type of design issue which is conditionally trig-
gered as a result of selecting two or more architectural solutions. It represents the
integration design problem between the different architectural solutions.

Fig. 3.5 shows an example of a subset of issues and solutions that are triggered as a result of select-
ing the Layer architectural style and the MVC architectural pattern. Both solutions were triggered
as a result of two root design issues, independently from any previous solution selected. However,
they are influenced by several decision factors (e.g. requirements, team structure, . . .). In order
to realize the design of both triggering solutions, several design issues have to be addressed. For
example, to define the Layer structure, an abstraction paradigm (e.g. distance from hardware or
complexity) must be defined, this decision can depend on several factors (e.g. system domain).
Similarly, in order to design the relationship between the Model and Views/Controllers within the
MVC pattern, a ’change propagation mechanism’ (e.g. using a Publish-Subscribe pattern) must be
selected. Both of these issues are examples of solution specific design issues. On the other hand,
designing the domain components of the system is required to be addressed for both solutions,
however, for two different purposes. Firstly, to define how objects are communicated between lay-
ers, and secondly to provide a separation of concerns between the Model and View components.
Finally, the introduction of both the Layer and MVC solutions together triggers an issue, whose
purpose is the integration of both solutions components.

3.6 Evaluation of Concepts

In this section, we qualitatively evaluate the agreement among interview participants on the tech-
nology design decision concepts in Sections 3.3 and 3.4.

3.6.1 Interview Responses Analysis Results and Observations

Table 3.3 shows the data analysis results for the interviewees’ responses. In order to accurately
evaluate the feedback of the participants for each of the explained concepts in the previous sec-
tions. We designed several levels of responses:

1. Concept Contribution: The participant mentioned based on his experience a new concept or
an improvement to a concept which was not originally part of the content analysis derived
hypothesis.

2. Concept Supported: The participant supported the hypothesis concept with additional ex-
amples from his experience.

3. Concept Accepted: The participant accepted the proposed concept. However, she does not
have an example from her experience to support it.

48

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

Table 3.3: Interview Data Analysis Results: ++: Concept Contribution, 4: Concept Supported,
Y: Concept Accepted, N: Concept in Doubt, –: No Answer Provided

Concept vs. Participant 1 2 3 4 5 6 7 %
Technologies as Features
& ASTAs (Sec. 3.3 & 3.4)

4 4 4 4 4 4 4 100

Development & Configuration
Feature or ASTA (Sec. 3.3 & 3.4)

Y N 4 ++ 4 4 Y 86

Behavior Feature or
ASTA (Sec. 3.3 & 3.4)

4 Y 4 4 4 4 4 100

Usability Feature or
ASTA (Sec. 3.3 & 3.4)

Y Y Y 4 Y 4 4 100

Interoperability Feature or
ASTA (Sec. 3.3 & 3.4)

– ++ Y Y ++ – 4 71

Storage Feature or
ASTA (Sec. 3.3 & 3.4)

4 Y Y Y Y – 4 86

Operational Feature or
ASTA (Sec. 3.3 & 3.4)

– – – – ++ Y 4 43

Commercial Feature or
ASTA (Sec. 3.3 & 3.4)

Y Y ++ Y Y – 4 86

Decision Making Factors
(Sec. 3.5)

Y 4 4 Y 4 – Y 86

Decision Making Concerns
(Sec. 3.5)

4 Y 4 4 4 – 4 86

Decision Making Evaluation
Report (Sec. 3.5)

Y – 4 – – 4 4 57

Decision Making Deductive
Problem Driven (Sec. 3.5)

Y 4 4 4 Y Y 4 100

Decision Making Inductive
Solution Driven (Sec. 3.5)

Y – – – 4 4 4 57

Drawbacks ASTA (Sec. 3.4 & 3.5) 4 Y ++ Y ++ 4 4 100

49

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

Root Design Issue
Root Design Issue

Layer

Style

Selected Solution

MVC

Pattern

Selected Solution

 Define Abstraction

Paradigm and Layers

Solution Specific Design Issue

Trigger

 Decide MVC Change

Propagation Method

 Application

Decomposition
 User Interface

Decomposition

Solution Specific Design Issue

Trigger

Which layer would the MVC

Model Component belongs

Design Domain

Components

Trigger

Depends on

Depends on

Joined Design Issues
Trigger

Integration Design Issue

Conditional Trigger Conditional Trigger

Triggering

Solution

Triggering

Solution

Publish-Sub

Pattern

Selected Solution
Elementary

Solution

Figure 3.5: An example showing the interaction of objects based on the proposed architectural
knowledge domain model

4. Concept in Doubt: The participant indicated that the concept is unclear to her, or it does not
align with her experience.

The concepts which were characterized as unclear by the majority of the participants have been
removed.

All the concepts have been experienced by the participants during their decision making experi-
ence. We can observe that the drawback ASTAs concept (Sec. 3.4 & 3.5) and the interoperability
features and ASTAs (Sec. 3.3 & 3.5) were the mostly contributed concepts due to their impor-
tance to the participants. However, some of the contributed concepts have not been evaluated by
all participants, due to the fact, that the interviews have been conducted incrementally.

3.7 Discussion

3.7.1 Interpretation of Results

Two main important and useful outcomes of this study:

• Knowledge concepts: The study specified the most important AK concepts (i.e. technology
features and ASTAs) for technology design decisions based on empirical evidence from
interviews and literature. Moreover, the study showed that ASTA concepts are paramount
for architects to choose among existing technology solutions and features.

50

CHAPTER 3. TECHNOLOGY DESIGN DECISIONS

• Knowledge sources: The study explored different sources of AK, which contain technology
related architectural information. Our content analysis for technology specification docu-
ments and our interviews with practitioners gave the first overview on possible AK concepts,
which exist in each AK source. The study showed that technology specification documents
are rich with a detailed description about technology features. However, they do not com-
pare or relate different technology solutions with each other. On the other hand, developer
communities have the advantage to describe the benefits and drawbacks of different tech-
nology solutions (i.e. ASTAs).

3.7.2 Implications of Results on further Research

Conducting this study to answer RQ1 and RQ2 was quite useful to determine further goals and
research questions in this thesis. Our new understanding for the distribution and complexity
of technology-related architectural knowledge helped us to realize that effective approaches for
knowledge extraction are needed to capture technology-related architectural knowledge. This is
especially needed because of the fast production and appearance of new technologies, which soft-
ware architects need to learn and cope with. Moreover, the distribution of knowledge among
technology specification documents and many of the existing developer community web sites
makes it challenging to find relevant architectural information. In chapters 4 and 5, we explore
developer communities for architectural knowledge. During our analysis of developer community
web pages, we used the concepts in our proposed architecture knowledge model in Section 3.5.1
to capture their concrete textual representation in community web pages. Finally, we propose in
Chapters 6, 7 and 8 approaches to facilitate finding relevant architectural information in developer
communities.

51

Part II

Analysis of Architecture Knowledge in
Developer Communities

52

4
Architecture-relevant Posts in
Developer Communities

4.1 Research Questions and Contributions . 53
4.2 Research Process . 54
4.3 Types and Variations of Architecture-relevant Posts 58
4.4 Practitioner Evaluation . 71
4.5 Discussion . 74

4.1 Research Questions and Contributions

This chapter provides answers for RQ3 and RQ4:
RQ3: What are the types of architecture-relevant posts (ARPs) in developer communities?

RQ4: Which types of ARPs in developer communities do practitioners consider architecture-
relevant?

By answering RQ3 and RQ4, we support achieving the second goal of the dissertation "Explore
developer communities for architecture knowledge" (see Chapter 1). To answer RQ3 and RQ4,
we decided on selecting Stack Overflow (the biggest developer community website) as our sample
developer community. We selected a sample of Stack Overflow posts, and performed qualitative
content analysis to classify and characterize Architecture Relevant Posts (ARPs). In addition, we
evaluated our classifications through a feedback evaluation with practitioners to answer RQ4. In
summary, we present the following contributions:

• We define architecture-relevant posts and classify concrete sub-types for ARPs.

• We evaluate the agreement of practitioners with our classification of ARPs.

• We provide the first corpus of evaluated architecture relevant posts from a developer com-
munity.

Our contributions support achieving further research steps. The corpus of architecture-relevant
posts has been used to provide the sample for a qualitative content analysis to develop an ontology
for the architecture knowledge concepts in developer communities. This answers RQ5 (see Chap-
ter 5). In addition, the corpus has been used in Chapter 7 to train machine learning classification

53

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

1a. Query for Candidate Posts (Sampling)

1b. Classification of ARPs and Programming Posts

ARPs Classification

3a. Practitioners Selection

3b. Evaluation Posts Sampling

3c. Evaluation Execution

Phase 2:
Classification
of ARPs

Phase 3: Obtain
 Practitioners
 Feedback

Phase 1: Prepare
 Stack OVerflow Posts
for Analysis

Research step

Flow of steps

Diagram Legend

Figure 4.1: Research Process Diagram.

algorithms for posts classification. Finally, the identified types of ARPs support providing suitable
architecture knowledge for design activities. Using this aspect, we proposed our enhanced search
approach in Chapter 8.

The chapter is organized as follows: In section 4.2, we describe our research process. In section
4.3, we define and present the different types and variations of architecture-relevant posts (ARPs).
This answers RQ3. In section 4.4, we present our evaluation results for the different types of
ARPs. This answers RQ4. Finally, section 5.4 discuss our findings.

4.2 Research Process

We followed the research process depicted in Fig. 4.1, which consists of three phases.

54

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

4.2.1 Phase 1: Prepare Stack Overflow Posts for Analysis

4.2.1.1 Phase 1a: Query for Candidate Posts (Sampling)

Stack Overflow posts could be classified into different topics (e.g. [BTH14]) Some of these top-
ics are architecture related (e.g., posts about web development and database platforms). On the
other hand, posts about coding styles and string manipulations are examples for topics which are
programming related. As our main objective is to explore architecture relevant Stack Overflow
posts with technology-related AK, we selected the "Middleware" topic as our sample topic for
two reasons:

1. Middleware is an important topic in the software architecture field, for example, many ar-
chitecture patterns (e.g. [BHS07a, VKZ04]) address interoperability issues.

2. The amount of middleware posts in Stack Overflow is manageable for our exploratory study
(2,561 posts that meet our selection criteria, see next paragraph) are manageable for our
study. In contrast, we counted more than 12,000 post about web development which meet
our selection criteria mentioned in the next paragraph (except criterion 1 which is about
middleware).

In order to gather candidate architecture-relevant middleware posts, we applied the following se-
lection criteria:

1. Posts had to be concerned with at least one of 52 different middleware technologies (e.g.
RabbitMQ, WCF). We queried post title, questions and tags for middleware technologies.
The 52 selected technologies are the most popular ones in the middleware domain. We
identified these technologies through a review of existing technologies on Wikipedia1. A
complete list of technology names is available in Appendix A.

2. We excluded posts with no answer.

3. We considered posts with a question score higher than or equal 7 (similar heuristics have
been applied in other related work [NSMB12a]). This was to ensure the quality of the
selected posts.

4. We excluded posts which include blocks of source code in the question because most of
those posts discuss programming problems [NSMB12a]. The gathering process has been
done using a set of SQL queries through the stack exchange explorer 2 and resulted in 2,561
posts. The SQL query is available in Appendix A. A complete list of all Stack Overflow
posts is available online3 and in the companion CD.

1https://en.wikipedia.org/wiki/Category:Message-oriented_middleware
https://en.wikipedia.org/wiki/Category:Enterprise_application_integration

2https://data.stackexchange.com/stackoverflow/query/new
3https://swk-www.informatik.uni-hamburg.de/~soliman/Dissertation.zip

55

https://en.wikipedia.org/wiki/Category:Message-oriented_middleware
https://en.wikipedia.org/wiki/Category:Enterprise_application_integration
https://data.stackexchange.com/stackoverflow/query/new
https://swk-www.informatik.uni-hamburg.de/~soliman/Dissertation.zip

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

4.2.1.2 Phase 1b: Initial Manual Classification of ARPs and Programming Posts

Two experienced researchers1 classified the same sample posts manually to differentiate architecture-
relevant posts from programming posts. Furthermore, we excluded posts which were included
after the query-based search in Phase 1a but turned out to be not about middleware. We con-
ducted reliability tests to ensure that the classifications of the two researchers were consistent.
For that reason, we conducted three iterations and checked for inter-coder reliability (% of agree-
ments) and calculated the kappa coefficient [Coh60] to determine whether agreement between
researchers was beyond chance. In each iteration, 100 posts were randomly selected and classified
by two researchers, different types of posts and examples were gathered, and disagreements were
discussed. By the end of these iterations, we defined architecture-relevant posts, together with a
set of classified post examples, according to the prototype theory of definition [May14]. Based
on this definition, we classified the rest of our sample as ARPs and programming posts. This step
resulted in 858 ARPs, and 1,653 programming posts, while 50 posts have been excluded for being
out of middleware scope. We list the classified Stack Overflow ARPs in Appendix A.

4.2.2 Phase 2: Classification of ARPs

In order to answer RQ3 and to classify the ARPs into types based on the concerns that they address,
we followed a summarizing qualitative content analysis method [May14], where a short summary
about each post is written and assigned to a category. We applied this method to the gathered
858 candidate ARPs from phase 1b. During this process 30 categories of posts emerged. By the
end, we refined these categories and combined them into higher level categories. The identified
categories are presented in Section 4.3 as our ARP types.

4.2.3 Phase 3: Obtain Feedback from Practitioners

In order to evaluate our classification of ARPs and ARP types identified in phase 2, and to under-
stand the perspective of practitioners regarding the different ARP types, we involved practitioners
to classify a set of posts as ARPs or programming posts.

4.2.3.1 Phase 3a: Practitioners Selection

To identify participants, we considered the overall software development experience, as well as
the software architecture experience. In addition, we considered the variation of technology ex-
periences and backgrounds. All of the participants are familiar with Stack Overflow and use it as
part of their work. All participants work or worked in multinational companies with more than
100,000 employees. We identified participants through contacting them directly. 11 experienced
practitioners participated in the evaluation of posts. In Table 4.1, we present background informa-
tion about the participants.

1The first reseracher is the author of the dissertation. The second researcher is Matthias Galster from the university
of Canterbury

56

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Table 4.1: Background of participants

ID IT Exp.
(Years)

Software
Arch. Exp.

(Years)

Technology
Background Industries Role

1 11 4
C/C++,

Microsoft
Technologies

NLP,
E-Commerce

Technology
Consultant

2 10 4 Java / J2EE
Telecom,

Billing, Defense
Enterprise
Architect

3 11 5
C++, WebLogic,

Spring, J2EE
Telecom

Technology
Consultant

4 14 7
Microsoft

Technologies

eGov,
Financial,
Healthcare

Solution
Architect

5 17 8
Microsoft

Technologies,
BizTalk, Azure

Healthcare,
Manufacturing

Program
Manager

6 10 4 Java / J2EE
Healthcare,

Retail, Billing
Technology
Consultant

7 11 5
J2EE, Weblogic,
Unix, RabbitMQ

Telecom
System

Engineer

8 12 4
Microsoft

Technologies,
NodeJS

Transportation
Technology
Consultant

9 30 12
VME Mainframe,

Siebel, J2EE,
Unix, WebSphere

Defense,
Insurance,

eGov,
Manufacturing

Solution
Architect

10 13 4

Microsoft
Technologies,
Biztalk, JBoss,

Node JS,
C++, Python

Telecom
Solution
Architect

11 6 1
Microsoft

Technologies
Retail Developer

57

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

4.2.3.2 Phase 3b: Evaluation Posts Sampling

In order to make the sample of posts given to practitioners representative to our overall sample of
2561 posts, we conducted stratified random sampling [RR08] among the ARP types (which are
presented in Section 4.3), as well as the programming posts. This way of sampling guaranteed that
all types of posts were included in the evaluation sample proportional to their frequency within the
analysis sample.

4.2.3.3 Phase 3c: Evaluation Execution

In addition to the data shown in Table 4.1, we asked our participants about their definition of soft-
ware architecture, in order to ensure their understanding of software architecture. Each participant
received an "evaluation sample" of posts. The total number of posts used in the evaluation was
1,173 posts (The numbers of posts given to each participants are listed in Table 4.26 in Section
4.4). It took each participant between 3 and 4 hours to classify the posts between ARPs and pro-
gramming posts. The analysis of the feedback of the participants helped us to answer RQ4, which
is presented in Section 4.4.

4.3 Types and Variations of Architecture-relevant Posts

In this section, we present the types of architecture-relevant posts (ARPs), which we discovered
in our sample of Stack Overflow posts. This answers RQ3.

4.3.1 Types of Architecture-Relevant Posts

Based on our analysis (see Section 4.2), we identified three main types of Stack Overflow posts
according to the concerns mentioned in the questions of a post. We named them Programming
Posts, Architecture-Relevant Posts (ARPs), and Cross Architecture/Programming Posts (CAPPs).

Programming Posts are posts with questions related to performing a programming activity. The
answers to questions in programming posts often include source code fragments, step-by-step
guidelines on how to code a feature, or lower level technology details. This type of post constitutes
the majority of Stack Overflow posts. Nasehi et al. [NSMB12a] classified programming posts into
four types:

• Debug/Corrective: Concerned with problems and errors in source code.

• Need to Know: Asking about programming features such as classes and methods.

• How to Do it: Asking about how to implement a certain functionality or scenario.

• Seeking different solution: The user has a working code and searching for alternative source
code solutions.

Since these types of posts are not our focus, we do not discuss their details. The reader may refer
to existing empirical studies on programming posts (e.g. [NSMB12a, TBS11a]).

58

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Architecture-Relevant Posts (ARPs) are posts with questions related to performing an architec-
ture design activity. In addition, the questions in an ARP sometimes consider quality attributes
and contextual factors.The answers to these questions involve experience and knowledge about
technology solutions, their differences and capabilities. This type of posts is the focus of this
paper. Therefore, in order to better understand ARPs, we classified ARPs based on two dimen-
sions: (1) the purpose of the question, and (2) the solution type of the question. Along the purpose
dimension, ARPs could be classified into the following sub-types:

1. Solution Identification: concerned with searching for suitable technology solutions, which
have certain characteristics (such as technology features, quality attribute evaluation); ad-
dress a design problem or context.

2. Solution Evaluation: concerned with assessing one or more proposed technology solutions.
The evaluation of solutions could be done individually or through a comparison between
different alternative solutions. In addition, several concepts are considered during evalua-
tion, such as technology features, benefits and drawbacks, suitable use cases, and quality
attributes.

3. Multi-purpose: this type of ARP comprise both types of posts; solution evaluation and
identification. Several questions are asked within a single post.

Note that there might be other purposes for asking questions in ARPs. We only identified the
purposes based on our sample.

On the solution type dimension, ARPs could be classified as follows:

1. Technology Bundle: consider the whole technology as a single architecture solution, without
focusing on specific features within the technology. Technology bundle solutions are usually
referred to using technology names (e.g. WCF).

2. Technology Feature: focus on specific features of a technology (such as deployment, authen-
tication). For example, Gorton et al. [GKN15] provide a taxonomy for features in database
management systems.

3. Architecture Configuration: concerned with the components and connectors design configu-
ration [MT00]. The types of components and connectors could either belong to a technology
feature (see above) or bundle (see above) or a conceptual solution (such as an architectural
pattern or tactic). Note that conceptual solutions are not a category of ARP’s above since
we focus on technology solutions. Also, we did not find many pure conceptual posts.

4. Combined Solution: concerned with different solutions types. The post may consider two
or more of the aforementioned solution types.

Similar to the purpose classification dimension, there could be additional solution types. We listed
types identified in our sample.

By combining the purpose and solution type dimensions, we can specify types of ARPs. For exam-
ple, an ARP which is about evaluating a solution (purpose dimension) and discusses a technology
bundle (solution type dimension) is a post, which is concerned with evaluating a technology bun-
dle solution (e.g. a framework), we call it "Technology evaluation" ARP. On the other hand, an
ARP about solution identification (purpose dimension) and discusses an architecture configuration

59

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Figure 4.2: Distribution of ARP types according to purpose and solution types.

(solution dimension) is concerned with searching for suitable component designs to a design prob-
lem at hand, we call it "Architecture configuration identification" ARP. Thus, the combination of
both dimensions, three types in the purpose dimension and four types in the solution dimension,
leads to 12 types of ARPs in total. In Section 4.3.2, we present examples for the types of ARPs.

We further analyzed these types of ARPs into question variations, which are presented in Section
4.3.3 with a set of quoted examples. We used this classification for creating a sample to answer
RQ4 (which types of ARPs in Stack Overflow do practitioners consider architecture relevant) in
section 4.4.

Cross Architecture/Programming Posts (CAPPs) are posts with questions which could be either
asked to perform a programming or an architecture activity. The answers to these questions pro-
vide information about technology solutions relevant for architecting but also for programming.
Examples are posts which are about searching or selecting programming tools (e.g. unit testing
frameworks, IDEs). These posts could be of interest to both the architect and the programmer:
The architect is concerned with the impact of programming tools on the productivity and quality
of the software or how tools integrate with frameworks and programming technologies (languages,
libraries, etc.), while the programmer is interested in the programming features of tools. This type
of posts are not analyzed further within the next section. Nevertheless, they are of interest to be
addressed in a future work.

Summary on the types of posts Based on our analysis described in Section 4.2, we categorized
1,653 (65.8%) posts to be programming posts, 769 (30.6%) posts as ARPs, and 89 (3.5%) posts

60

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

as CAPPs. Fig. 4.2 shows the distribution of the different types of ARPs within our sample.
The results show that the majority of the ARPs (91.4%) has one single purpose; either solution
identification or evaluation. In addition, most of the ARPs (449 posts, 58.4%) use technology
bundles as their solution type. When comparing the distribution of posts between the evaluation
and identification posts, we can observe that the combined solutions post types within the solution
identification posts are more than double of the combined solutions post types within the evalua-
tion posts. On the other hand, technology bundle post types within the evaluation posts are nearly
30% more than the technology bundle post types within the solutions identification post.

4.3.1.1 Compact Types of Architecure-relevant Posts

In the previous section, we classified ARPs into 12 types according to their purpose and discussed
architectural solutions. While this classification provides a detailed overview on the types of
ARPs, a compact classification could provide a more comprehensive and summarized overview
on the types of ARPs. Moreover, detailed analysis and machine learning algorithms require a
bigger number of posts in order to produce useful and high quality results. In our main types of
ARPs (the 12 types of ARPs), some types of ARPs have a limited number of posts. For example,
we found only 4 instances of posts for the Multi-purpose technology features ARPs. A lower
number of posts would negatively influence the quality of classification results.

Thus, in this sub-section, we aggregated several types of ARPs together to create a summarized
overview on the types of ARPs. To do this, we performed the following two steps:

1. Merge features and configuration ARPs: We merged types of ARPs, which involve features
and architecture configuration (i.e. features identification, features evaluation, architecture
configuration identification, and architecture configuration evaluation) into a single type of
ARP. We called this type "features and configurations". During our analysis, we found a
relationship between features and architecture configurations ARPs. For example, in some
feature identification posts, users explain a components design to use the technology features
to solve a design issue.

2. Re-assign multi-purpose and combined ARPs: According to our initial analysis in Fig. 4.2,
we observe that multi-purpose and combined solution ARPs represent minority (<20%) of
ARPs. We re-assigned all multi-purpose and combined solution ARPs to one of the follow-
ing three types of ARPs: "technology identification", "technology evaluation" and "features
and configuration". We determined the closest type by analyzing each post individually.
We considered the majority of knowledge and discussions in the question and answers as
the main factor to decide on the closest type of ARP.

In summary, the compact types of ARPs merge the 12 types of ARPs into three main types: "tech-
nology identification", "technology evaluation", and "features and configuration". The merging
and re-assignment of the 858 ARPs resulted into 282 "technology identification" ARPs, 291 "tech-
nology evaluation" ARPs, and 285 "features and configuration" ARPs.

4.3.2 Examples for Architecure-relevant Posts

To clarify the different types of ARPs. We present in this section examples for six types of ARPs.
To make the section readable and comprehensive, we do not present examples for the combined

61

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Table 4.2: Example for technology identification ARP, stackoverflow.com/questions/
4473567

Question: “We have cloud-hosted (RackSpace cloud) Ruby and Java apps that will interact
as follows: 1. Ruby app sends a request to Java app. Request consists of map structure (...).
2. Java app analyzes data and sends reply to Ruby App. We are interested in evaluating
both messaging formats (...) as well as message transmission channels/techniques (...). Our
criteria: 1. Short round-trip time. 2. Low round-trip-time standard deviation. (...). 3. High
availability. 4. Scalability”
Answer: “We have decided to go with BSON over RabbitMQ. We like BSON’s support
for heterogeneous collections and the lack of the need to specify the format of messages
up-front. We don’t mind that it has poor space usage characteristics and likely poorer
serialization performance than other message formats since the messaging portion of our
application is not anticipated to be the bottleneck.”

Table 4.3: Example for technology feature identification ARP, stackoverflow.com/
questions/1935040

Question: “I am looking into using WCF for a project which would require the ability for
people to upload large files (64MB-1GB) to my server. How would I handle this with WCF,
possibly with the ability to resume uploads. (...) I wanted to test out JSON via WCF. How
would this affect the file upload? Can it be done from JSON, or would they need to switch
to REST for the upload portion?”
Best answer: “If you want to upload large files, you’ll definitely need to look into WCF
Streaming Mode. (...) With Streaming, you can define either one-way streaming (for up-
loads only, for downloads only) or bidirectional streaming.”
Answer-2: “MTOM is optimized to handle large binary data.”
Answer-3: “You can use webHttpBinding with TransferMode streamed and a single Stream
parameter or Stream response (as appropriate) for large file up/downloads”

Table 4.4: Example for architecture configuration identification ARP, stackoverflow.com/
questions/2897513

Question: “I have been experimenting recently with Silverlight, RIA Services, and Entity
Framework using .NET 4.0. I’m trying to figure out if that stack makes sense for use in any
of my upcoming projects (...) but I’m struggling to decide how an application on top of this
stack should be architected. (...) So, my questions: What is the best location for business
logic (rules, validations, behaviors, authorization) in an application using this stack? Are
there any guidelines published at an architectural level for using this stack? My questions
pertain to large, complex, and long-lived applications.”
Answer: “Our team is in the process of implementing a Silverlight app on top of the RIA
stack. We’ve decided to build a domain model on top of the RIA entities. Additionally,
we elected to follow the MVVM pattern to model UI interactions. So far, I’ve noticed
the following benefits: 1. Domain classes are a nice place to put business logic including
complex validations. 2. Domain classes use the RIA entities and context as interface to data
store. 3. Domain classes are modeled after business concerns”

62

stackoverflow.com/questions/4473567
stackoverflow.com/questions/4473567
stackoverflow.com/questions/1935040
stackoverflow.com/questions/1935040
stackoverflow.com/questions/2897513
stackoverflow.com/questions/2897513

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

and multi-purpose ARPs. These types of ARPs (combined and multi-purpose) combine similar
questions and answers from the other types of ARPs. Additional examples for all types of ARPs
are available in Appendix A.

1. Technology identification ARP: The post in Table 4.2 stated a design problem by describing
a subset of the architecture design of an existing system. The design consists of two appli-
cations communicating with each other in a cloud environment. Additional details on the
architecture design (e.g., technologies, data structure) are given. The user then described the
need to evaluate possible messaging technologies to decide on the communication between
both applications, considering prioritized quality attribute requirements. Other users pro-
posed answers to solve the design issue. At the end of the discussion, the user who posted
the question posted an answer to describe the taken ADD “go with BSON over RabbitMQ”,
including the reason for taking this decision.

2. Technology feature identification ARP: The post in Table 4.3 ask about the ability to use the
WCF technology, when uploading a big amount of data (up to 1 GB) to the server. The
different answers proposed different technology features. For example, the best answer pro-
pose using the WCF Streaming Mode technology feature. Moreover, the answer explained
the feature in details.

3. Architecture configuration identification ARP: The post in Table 4.4 asked about the best
components design when using technologies “RIA Services, and Entity Framework”. More
specifically, it asked about the responsibility assignment ADD of the business logic. Another
user proposed an answer describing a component design based on the MVVM (Model-view-
view-model) architecture pattern.

4. Technology evaluation ARP: The post in Table 4.5 describes an architecture, which consists
of three components. 1) Client applications, which submit requests. 2) Messaging broker
queue, which handle messaging and notification. 3) Server applications, which listen and
handle requests. The post also describes the sequence of communication. The question
in post is concerned with determining the best technology for the messaging broker under
the constrain that development of other components is done using C# language. Two tech-
nologies (ActiveMQ and MSMQ) are compared. The best answer recommended ActiveMQ
and listed its benefits. Moreover, the second answer recommended MSMQ and listed its
benefits. Finally, the third answer proposed using a third technology ZeroMQ.

5. Technology feature evaluation ARP: The post in Table 4.6 discusses choosing between dif-
ferent features for data representation. There are several options for data representation in
.Net platforms (e.g. DTOs and STE). The question would like to know the suitable option
(i.e. technology feature) for a certain situation, which include a client server structure with
technologies (WPF, WCF and MS SQL). The answers mentioned benefits and drawbacks of
using both DTOs and STEs. The first and best answer do not recommend STEs, while the
second answer recommend STEs.

6. Architecture configuration evaluation ARP: The post in Table 4.7 evaluates a proposed lay-
ered architecture. In details, it discusses adding two service layers to offer data and func-
tionality as services in two different layers. Both answers did not recommend the proposed
architecture, because of its complexity for the described scenario.

63

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Table 4.5: Example for technology evaluation ARP, stackoverflow.com/questions/
32851

Question: “I’m working on a messaging notification system (...) The libraries will be
written in C#. (...) My architecture will look something like app -> message broker queue
-> server app that listens, dispatches all messages to where they need to go, and handles the
life cycle of those long-lived messages -> message broker queue or topic -> listening apps.
(...) Which message broker should I use?”
Best answer: “Some more benefits of ActiveMQ include -great support for cross language
client access and multi protocol support. -excellent support for enterprise integration pat-
terns (...) The main downside you mention is that the ActiveMQ broker is written in Java;
but you can run it on IKVM”
Answer-2: “Pros for MSMQ. -It is built into Windows -It supports transactions, it also
supports queues with no transactions. -It is really easy to setup. (...)”
Answer-3: “Take a look at zeromq. It’s one of the fastest message queues around.”

Table 4.6: Example for technology feature evaluation ARP, stackoverflow.com/
questions/5407673

Question: “we should use DTOs or Self-Tracking Entities in our application? (...) We
have a standard n-tier application with a WPF/MVVM client, WCF server, and MS SQL
Database. Users can define their own interface (...) The Database layer spams multiple
servers/databases (...) Our resources are limited (time, manpower, etc)”
Best answer: “If I understand your architecture, I think it is not good for STEs because:
Models are used on both the client-side and server-side for validation (...) The main advan-
tage (...) of STEs is their tracking ability but the tracking ability works only if STE is used
on both sides”
Answer-2: “All STEs are POCOs, .Net dynamically add one layer to it for change tracking.
Use T4 templates to generate the STEs. Pros for STE - You don’t have to manually track the
changes (...) Cons for STE - STEs are heavier than POCO, because of dynamic tracking”

Table 4.7: Example for architecture configuration evaluation ARP, stackoverflow.com/
questions/2498796

Question: “We develop mostly low traffic but highly specialized web applications. Nor-
mally we use L2S, EF or nHibernate as access layer and then throws Asp.Net MVC to it
and in which for normal crud operations we query the ISession/DataContext directly but for
more advanced functions/side effects we put it in a some kind of service layer. Now, i was
think about publishing the data through OData (WCF Data Service) and query that from
the controllers (...) and publish the service operations through a WCF service (...). What
advantages/disadvantages does this architecture poses?”
Best answer: “If you have direct line-of-sight to your database and it’s your own applica-
tion’s database, then there is no reason to put WCF Data Services in the middle (...) Now,
if you need to expose data over your http endpoint for other applications to consume (...)
then definitely an OData endpoint may help and WCF Data Services is the simplest way to
create one.”
Answer-2: “Don’t Do it. (...) this is a over-engineered approach. (...) Separation of
concern is an illusion here - you replace a highly optimized domain model with a simplified
data layer.”

64

stackoverflow.com/questions/32851
stackoverflow.com/questions/32851
stackoverflow.com/questions/5407673
stackoverflow.com/questions/5407673
stackoverflow.com/questions/2498796
stackoverflow.com/questions/2498796

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Table 4.8: Example for the Explicit Technology Solutions Searching ARP Variation,
stackoverflow.com/questions/7837189

Question: ”Does anybody know of a ESB written in Node.JS (...) I only need the following
features for now: Content based routing, AAA, Logging, Monitoring”
Answer: “Take a look at SwarmESB, I haven’t tried it yet, but it looks pretty interesting.”

Table 4.9: Example for the Implicit Technology Solutions Searching ARP Variation, where the
solution is a technology bundle, stackoverflow.com/questions/3400139

Question: ”Is there a good way to handle multi-node and multi-core concurrency in Java
where the main goal is to leverage the most CPU cycles as possible out of the cluster?”
Answer: “Depends on what you are doing and your budget you might want to look into (...)
Norbert, GridGain, Terracotta.”

4.3.3 Variations from Types of Architecture-relevant Posts

To further clarify the type of posts presented in the previous section, and to support the study
replication, it is important to relate the post types with the different examples of each type. For
this purpose, we present in this section the most common variations for the types of architecture-
relevant posts (ARPs). The presented variations cover more than 85% of the ARP questions in
our sample. We organized the variations of ARPs according to the purpose of questions (solution
evaluation and solution identification). Under each variation, we specify relationships to solution
types. Moreover, we include examples from posts from our sample for each variation. We provide
additional examples in Appendix A.

4.3.3.1 Variants of Solution Identification ARPs:

1. Explicit Technology Solutions Searching: asks about solutions with a known type (e.g.
framework). The solution type is mentioned explicitly in the question, with a set of selection
criteria. This variant come only with technology bundles. Table 4.8 shows an example for a
post, which ask for an Enterprise Service Bus (ESB) library with certain specification (e.g.
it uses technology NodeJS), and supports technology features like routing and logging.

2. Implicit Technology Solutions Searching: searches for certain technology capabilities, which
could be either technology features or bundles. The type of solutions are not mentioned ex-
plicitly within the post question. However, the solutions and their types are mentioned
within the answers. Table 4.9 shows an example for a post, where a user search for a tech-
nology solution to perform multi-threading on multiple cores using Java. In the question,
he did not specify the type of the solution (i.e. technology bundle or technology feature).
However, the answer provides technology bundle solutions (e.g. Terracotta) as recommen-
dations for solutions. Another example for this variation is provided in Table 4.10, where

Table 4.10: Example for the Implicit Technology Solutions Searching ARP Variation, where the
solution is a technology feature, stackoverflow.com/questions/393580

Question: “Is there a way to setup authentication (ala ”Basic Authentication”) without
actually setting up an SSL Certificate? I’d also like to do this in REST or regular SOAP
WCF Services”
Answer: “Use TransportCredentialOnly security mode”

65

stackoverflow.com/questions/7837189
stackoverflow.com/questions/3400139
stackoverflow.com/questions/393580

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Table 4.11: Example for the Alternative Technology Solutions Searching ARP Variation,
stackoverflow.com/questions/10156388

Question: “At the moment I have a solution that uses ZeroMQ to exchange protocol buffer
payloads. The protocol buffer method of serialization is bound to stay as it is, but I can
replace ZMQ with a more convenient option. (...) My requirements (...) -Support for Java,
C++ and C# primarily, and Python, Ruby etc. -High performance. -Non Viral license, no
GPL, AGPL etc. (...) What options can you think of other than ZMQ for this setup?”
Best answer: “Have you considered something like Storm or Spread?”
Answer-2: “You should probably have a look at Netty. It’s a high performance Java NIO
server framework”

Table 4.12: Example for the Solutions Recommendation for Requirements and Implementation
of Conceptual Design ARP Variation, where the recommended solution is a technology bundle,
stackoverflow.com/questions/2675793

Question: “Which network protocol to use for lightweight notification of remote apps? I
have this situation (...) Client-initiated SOAP 1.1 communication between one server and
let’s say, tens of thousands of clients. Clients are external, coming in through our firewall,
authenticated by certificate, https, etc.. They can be anywhere, and usually have their own
firewalls, NAT routers, etc (...) They could be in a corporate/campus network, DSL/Cable,
even Dialup”
Best Answer: “The two big parties on multi-tier development in Delphi are compo-
nents4developers with their kbmMW product (...) and RemObjects with their product Re-
mObjects SDK (...) In your complex environment, multi-cast UDP might not cut it, but
from a overhead perspective it is unbeatable”

a user ask for a technology solution to have authentication without SSL and using WCF
technology. The user did not specify explicitly the type of the solution (Technology bundle
or feature). However, the answer recommend a certain technology feature (e.g. Transport-
CredentialOnly).

3. Alternative Technology Solutions Searching: searches for alternative or equivalent technol-
ogy solutions to a known solution. Table 4.11 shows an example for a post, where a user
searches for an alternative technology to ZeroMQ. He would like to replace ZeroMQ with
another technology. However, he has requirements regarding the selection of a technology
(e.g. support for programming language and good performance). The answers proposed
several alternatives. Some of them justify their recommendations with facts about the fea-
tures provided by technologies.

4. Solutions Recommendation for Requirements and Conceptual Design: asks for recommended
solutions to a requirement scenario or implementation solutions for previously taken con-
ceptual design. The requirements or conceptual design are mentioned in the question sec-
tion, and the solutions might involve technologies, architectural configurations, as well as
combined solutions. We present two examples for this variation in Tables 4.12 and 4.13. In
Table 4.12 the user describes the requirements and explain the design of the system, which
involves several clients and a server. The user asks about the most suitable protocols for
communication. The answers discussed several solutions (e.g. kbmW and multi-cast UDP).
Table 4.13 shows an example for this variation, where the user asks about possible solutions
for an asynchronous data processing scenario. The answer propose architecture configura-
tions as a solution, which consists of components (e.g. Windows service, database), and
their sequence of communication.

66

stackoverflow.com/questions/10156388
stackoverflow.com/questions/2675793

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Table 4.13: Example for the Solutions Recommendation for Requirements and Implementation of
Conceptual Design ARP Variation, where the recommended solution is an architecture configura-
tion, stackoverflow.com/questions/3198781

Question: “a stock analysis program with close to 50 years of stock data (...) filters that are
applied on any given day to see if anything falls out for a trade. We want to run this filter for
each day of data we have for each stock. (...) We are figuring about 40 hours or so to run the
report on our entire data set (...) Does anyone have (...) experiences with a web architecture
that will support ultra-long asynchronous processes?”
Best Answer: “I would recommend a standalone Windows Service, Console App or similar
with very careful lifetime controls and logging, which would run constantly and check
(poll) for ’jobs to process’ in a database, then update the database with results and progress
information.”

Table 4.14: Example for the Technology Independent Architectural Configuration Searching ARP
Variation, stackoverflow.com/questions/1139203

Question: “For message-oriented middleware that does not consistently support priority
messages (such as AMQP) what is the best way to implement priority consumption when
queues have only FIFO semantics?”
Best Answer: “Given only FIFO support for a given single queue, you will of course have
to introduce either multiple queues, an intermediary, or have a more complex consumer.
Multiple queues could be handled in a couple of ways”

5. Technology Independent Architectural Configuration Searching: asks for recommendations
about conceptual design best practices, which are independent of technology constraints.
Table 4.14 is an example for this variation, where users discuss suitable architecture config-
uration for queues. The answer propose several options (e.g. multiple queues, intermedi-
ary). The problem and the proposed solutions are independent of the technology and could
be generally applied on various technologies.

6. Technology Specific Architectural Configuration Searching: asks for recommendations about
architectural configuration in a scope of technology solutions. Table 4.4 is an example for
this variation.

4.3.3.2 Variants of Solution Evaluation ARPs:

1. Comparing solutions: compares two different solutions. It involves asking about benefits
and drawbacks, as well as reasons, contexts and factors for selecting a solution over another.
The compared solutions could be technology bundles as previously presented in Table 4.5.
The solutions could also be technology features (i.e. comparing technology features with
each other) as presented in Table 4.6. Finally, users compare architectural configurations to
evaluate them regarding quality attributes. Table 4.15 presents an example, which compares
two architectural patterns (publish-subscribe and push-pull) in context of a technology Ze-
roMQ. The answer clarified the differences between both patterns, and suitable situations
for each pattern.

2. Context Independent Solution Assessment: assess an architectural solution independent of
any context. The assessment is done through listing benefits and drawbacks, or through
evaluating the solution qualitatively and/or quantitatively regarding quality attributes. We

67

stackoverflow.com/questions/3198781
stackoverflow.com/questions/1139203

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Table 4.15: Example for comparing solutions variation for architectural configurations,
stackoverflow.com/questions/17814436

Question: “difference between pub-sub and push-pull pattern in zeroMq (...) What is the
difference between this two pattern if we ignore sink in push-pull pattern ? Is there a
difference in how a message gets transfer, if yes what is the difference?”
Best Answer: “The difference is that a PUB socket sends the same message to all sub-
scribers, whereas PUSH does a round-robin amongst all its connected PULL sockets. In
your example, if you send just a single message from the root, then all the subscribers will
receive it (barring slow subscribers, etc.) but only 1 worker. The pub/sub pattern is used for
wide message distribution according to topics. The push/pull pattern is really a pipelining
mechanism. Your push/pull example seems to be attempting to do load-balancing, which is
fine, but req/rep might be better suited to that due to other issues.”

Table 4.16: Example for context independent solution assessment variation for technology bundle,
stackoverflow.com/questions/512807

Question: “We are facing a choice to use IBM MQ over SFTP for file transfer. I’ve heard
advantages of such approach, but I’ve never see anyone actually using it for a large files. So
main question: how well IMB MQ can handle transfer of large files (up to 100 MB)? Is it
stable? It’s from mainframe to UNIX server, if it does matter.”
Best Answer: “I’ve used MQ with files up to 8GB in size, without incident. You have to
allocate enough space for MQ to manage them, but it works.”
Answer-2: “MQ itself offers message-based communication between programs. You can’t
use it directly to transfer files (...) What you should be doing if you want to involve MQ
in your file transfers is use one of the file-transfer products that sit upon MQ. (...) I’ve
personally used WMQFTE to transfer a file of 1000GB from an AIX machine to a Windows
one, so I don’t think your "large" 100MB files will be a problem”

Table 4.17: Example for context independent solution assessment variation for technology feature,
stackoverflow.com/questions/1189420

Question: “I have been building a client / server app with Silverlight, web services, and
polling. Apparently I missed the whole Duplex Communication thing when I was first
researching this subject. (...) When researching the scalability, it appears as if there’s con-
flicting opinions on the subject. (...) In short, does anyone have facts / benchmarks?”
Best Answer: “There is an inbuilt 10 connection limit on non-server operating systems
(XP/Vista/Windows 7) (...) On the server OS side (2003/2008), there is no connection
limit. However, on IIS6 (2003) each long running connection will take a thread from the
threadpool, so you will run into a connection limit pretty quickly. On IIS7 (2008), async
threads get suspended in a way that does not use up a thread, so 1000s of connections should
be possible.”

68

stackoverflow.com/questions/17814436
stackoverflow.com/questions/512807
stackoverflow.com/questions/1189420

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Table 4.18: Example for solution scenarios and context variation for technology bundle,
stackoverflow.com/questions/4499510

Question: “What are zeromq use cases? could you write some examples of zeromq?”
Best Answer: “Please see the ZeroMQ blog – they regularly post usage stories about dif-
ferent deployments, language bindings, etc.”
Answer-2: “Let’s say you want to have a bulletin board of some kind. You want to allow
only some people to see it (...) This can be done using the publisher/subscriber model of
ZeroMQ. Now, let’s say you need to send some asynchronous messages. That is, when a
message is sent from system A and needs to get to system B, it is guaranteed to be delivered
later (...) You can imagine a use case being SMS messages (...) any JMS compliant solution
like ZeroMQ will allow you to reliably broadcast or send a message”

Table 4.19: Example for solution scenarios and context variation for architecture configuration,
stackoverflow.com/questions/969964

Question: “When to use SOA (...) "The only time we’ll use services is when we need async
actions otherwise we’ll use go direct to the data store" (...) it seems fairly logical as services
work well in a publish subscribe model, but I was wondering in what other scenarios you
should be looking to use SOA?”
Best Answer: “We expose services to our customers because they shouldn’t be able to
connect to the datasource directly. We expose services to ourselves because it’s easier to
spread them over different technologies using WCF. We expose services because we have
different user interfaces for the same datasource.”
Answer-2: “Another case to use services is when you want to integrate a heterogeneous
technology stack. In other words, if your DB is postgres, but you have code in Java, Perl”

presented previously an example for assessing an architecture configuration in Table 4.7.
Independent assessment could be done for technology bundles and technology features as
well. Tables 4.16 and 4.17 present examples for each respectively. In Table 4.16, users
discuss about the ability of the technology bundle "IBM MQ" to transfer large files over
SFTP. Users share their personal experiences regarding the ability of the technology (e.g.
I’ve used MQ with files up to 8GB in size, without incident). In Table 4.17, a user ask
a question about the scalability of the webservices and polling features in the technology
"Silverlight". The user asked specifically about benchmarks. The best answer provided
several benchmarks regarding the connection limits.

3. Solution Scenarios and Context: asks about suitable use-cases, and real experiences, where

Table 4.20: Example for the "context dependent solution assessment" variation among a technol-
ogy bundle, stackoverflow.com/questions/9502548

Question: “I’m going to be working on a project that involves a number of elements:
ASP.NET MVC website, C# console application, iPhone App (...) I now need to add an
API to the site to allow third parties to select, insert and update records. (...) Should I be
going along the line of using the Web API? or because my other applications need a web
service, should I stick with a WCF Service?”
Best Answer: “If you intend to do RESTful development then you will definitely want to
use the ASP.Net Web Api (...)”
Answer-2: “You can certainly do fairly well with a WCF RESTful service. Or you could
use ASP.NET MVC.”

69

stackoverflow.com/questions/4499510
stackoverflow.com/questions/969964
stackoverflow.com/questions/9502548

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Table 4.21: Example for the "context dependent solution assessment" variation among a technol-
ogy feature, stackoverflow.com/questions/3543835

Question: “Our analytic server is written in c++. It basically queries underlying storage
engine and returns a fairly big structured data via thrift. A typical requests will take about
0.05 to 0.6 seconds to finish depends on the request size (...) there are a few options in
terms of which Thrift server we can use in the c++ code, specifically TNonblockingServer,
TThreadedServer, and TThreadPoolServer (...).How shall I decide which one fits my needs
the best?”
Best Answer: “Requests that take 50-600 milliseconds to complete are pretty long. The
time it takes to create or destroy a thread is much less than that, so don’t let that factor into
your decision at this time. I would choose the one that is easiest to support and that is the
least error-prone.”

Table 4.22: Example for the "context dependent solution assessment" variation among a technol-
ogy bundle, stackoverflow.com/questions/10160463

Question: “Is decoupling web and database tiers via MSMQ necessary or overkill? I’m
putting together a simple asp.net web control, that (...) inserts a record into a MSQL
database (...) the page containing this control will recieve many thousands of hits in a
small space of time and I’m worried about the performance (...) A solution (...) is to make
the web control place a message into an MSMQ queue and have a Windows Service on the
server periodically read the queue and do a batch insert. Does that sound like a sensible
architecture”
Best Answer: “Processing requests offline in this way is a common pattern for when you
are dealing with a high volume of requests. (...) The main factor is: do your callers need
to see the response to their requests synchronously? (...) if it is acceptable that callers
can be sent a response saying that their request will be processed offline (...) then using a
queue will definitely benefit your overall architecture. The first thing that will be benefited
is front-end availability issues.”

70

stackoverflow.com/questions/3543835
stackoverflow.com/questions/10160463

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

the architectural solution is suitable to be used. This variation comes with either tech-
nology bundles or architecture configurations. Table 4.18 shows an example for a post,
where the user asks for use-cases for the ZeroMQ technology bundle. One answer refer-
enced other blogs, which have list of use-cases. Another answer give examples for possible
use-cases to use ZeroMQ (e.g. developing a bulletin board using the publish/subscribe fea-
ture in ZeroMQ). Users ask about possible use-cases for certain architecture configurations.
For example, users discussed about possible use-cases and useful scenarios for a Service-
oriented-architecture (SOA) in Table 4.19. The best answer provided three use-cases for
using SOA to support re-usability of components, interoperability between heterogeneous
technologies, and to offer services to customers, while protecting the security of data.

4. Context dependent solution assessment: assesses the suitability of a proposed solution to
a certain context. The context could involve requirements or existing system design. This
variation could come among the three types of solutions (i.e. Technology bundles, tech-
nology features and architecture configurations). An example for a post in this variation
about a technology bundle is presented in Table 4.20. The question in this post describes
an architecture of a system, which involves several components (e.g. clients, server, mobile
applications), and asks about evaluating certain technologies (e.g. ASP.Net Web Api) for
implementing a service to external customers. Answers provide several recommendations.
Table 4.21 presents another example for this variation. However, users discuss several op-
tions for technology features (e.g. TThreadedServer, TThreadPoolServer) in the Thrift tech-
nology. Answers determine the differences between the features and also recommend one
of them for this specified context. Finally, users assess the suitability of architectural con-
figuration to certain contexts. Table 4.22 provides an example for this, where users evaluate
certain components design using queues and asynchronous communication.

5. Technology Solutions Interoperability Assessment: assesses the interoperability of different
technology solutions. This variation comes to assess the interoperability between technol-
ogy bundles. Table 4.23 shows an example for a post, where a user asked about the com-
plexity of using both technologies Zookeeper and RabbitMQ togethor. The best answer
specifies possible requirements (e.g. performance requirements with throughput more than
1000 operations per second), which both technologies should be combined with each other.

6. Solution Definition and Analysis: defines the main features of a certain solution, as well
as to clarify its behavior. This variation comes with technology bundles and architecture
configurations. Table 4.24 shows an example for a technology bundle definition post. The
user in this post asks about the BizTalk technology bundle and if it applies the enterprise
service bus architecture pattern. Answers clarify the features of Biztalk technology and how
it relates to the enterprise service bus. Table 4.25 shows an example for an architecture
configuration definition and analysis post. In this post, users discuss about the enterprise
service bus (ESB) architectural pattern. The answers clarify the role of ESB and its goal in
achieving quality attributes.

4.4 Practitioner Evaluation

In the previous sections, we presented and explained using examples the different types of ARPs.
In this section, we determine the types of ARPs in developer communities, which practitioners
consider as architecture relevant (This answers RQ4). We first discuss how practitioners classified

71

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Table 4.23: Example for the technology solutions interoperability assessment variation,
stackoverflow.com/questions/2669573

Question: “I’m evaluating some components for a multi-data center distributed system.
We’re going to be using message queues (via either RabbitMQ or Qpid) so agents can make
asynchronous requests to other agents without worrying about addressing, routing, load
balancing or retransmission.(...) ZooKeeper seemed like it might be a good fit. But I’m
wondering if trying to use both ZK and message queuing is overkill. (...) Has anyone out
there used a combination like this?”
Best Answer: “The primary consideration should be the performance characteristics of
your system. ZooKeeper, like you said, is more than capable of implementing a task dis-
tribution system using a distributed queue, but zk currently, is more optimized for reads
than it is for writes (this only comes into play in the 1000’s of ops per second range). If
your throughput needs are less than this, then using just zk to implement your system would
reduce number of runtime components and make it simpler.”

Table 4.24: Example for the solution definition and analysis variation for technology bundle,
stackoverflow.com/questions/3355082

Question: “I am looking into architectural patterns, Enterprise Services Bus (ESB) pre-
cisely. Upon reading this article Enterprise Integration, and with little to no experience I am
wondering if BizTalk has is a ESB or is it just a EAI (Hub/Spokes or Bus)?”
Best Answer: “BizTalk is punted by Microsoft as having ESB capabilities (...) However,
the term ’ESB’ covers a very broad field (...) there are weak points in BizTalk’s claim to be
comprehensive as an ESB”
Answer-2: “BizTalk is a messaging and workflow orchestration platform, on which you
can build ESB behaviours and capabilities. To make this easier, and standardise ESB im-
plementation on BizTalk, Microsoft released the BizTalk ESB Toolkit - a set of guidelines,
patterns and code.”

Table 4.25: Example for the solution definition and analysis variation for architecture configura-
tion, stackoverflow.com/questions/3055713

Question: “Can someone explain an Enterprise Service Bus to me in non-buzzspeak?”
Best Answer: “Although ESB is based on messaging, it is not "just" messaging and not
just a buzzword. (...) The ESB attempts to address these issues with -Run-time resolution
of destinations/services/resources. -Location transparency. -Any-to-any connectivity and
maximum connection density. -Architected for redundancy, horizontal scalability, failover”

72

stackoverflow.com/questions/2669573
stackoverflow.com/questions/3355082
stackoverflow.com/questions/3055713

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

posts on Stack Overflow (based on the types of posts presented in section 4.3) and how practition-
ers agree with our own classification of posts into ARPs and programming posts (section 4.4.1).
Finally, we show how practitioners agree with our types of ARPs (section 4.4.2).

Participants not only classified posts into ARP or programming posts, but also indicated their
confidence. For each post, participants responded as follows:

1. Yes - Architecture Post: It is clear that the post is ARP.

2. Maybe - Architecture Post: The post is probably architecture-relevant.

3. Do not know: It is unclear, if this is a programming or architecture post.

4. Maybe - Programming Post: The post is probably about programming.

5. Yes - Programming Post: It is clear that the post is programming post.

We then calculated two main measures to evaluate our classification presented in the previous
section:

1. Agreement between our own classification of posts into ARP and programming posts and the
classification of posts into ARP and programming post by practitioners (i.e., the percentage
of posts for which researchers and practitioners agreed versus the total number of posts
classified). We calculated in section 4.4.1 - Table 4.26 the agreement for each participant for
ARPs and programming posts, and for all participants for each post type (Table 4.26 - row
"All"). In addition, we calculated the agreement across all posts (ARPs and programming
posts) for each participant (Table 4.26 - column "Total"). Furthermore, we calculated the
agreement for the different types of ARPs in section 4.4.2, Figs 4.3 and 4.4.

2. Confidence level of agreement, which has been calculated based on two levels of confidence
("Maybe" and "Yes") for each post. We assigned "Maybe" a value of 0 and "Yes" a value
of 1. We then summed up the number of posts with "Yes" for agreed posts (programming
post, ARP, Total) for each participant. By comparing this sum to the total number of posts,
we obtained the confidence in percent (e.g., if out of 20 ARPs 15 were classified with a
confidence of "Yes" and 5 with "Maybe" then the overall confidence for the agreement
of that participant on classifying ARPs was 75%). Similar to agreement, we calculated
confidence for each participant and each type of post, but also for each post type across all
participants (Table 4.26 - row "All") and for each participant across all types (Table 4.26 -
column "Total") and for the different types of ARPs (section 4.4.2).

4.4.1 Agreement and Confidence among Participants

Table 4.26 shows the classification results of the different participants. Column "Posts Given/An-
swered" shows the number of posts given to the participants ("Given") and the number of classified
posts ("Answered"), i.e., the "Given" posts excluding the posts, which the participants marked as
"Do not know". The pure programming, architecture-relevant posts, and Total Agreement and
Confidence columns show the percentage of agreement and confidence across two groups dimen-
sions; participant and post type.

73

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Table 4.26: Agreement and confidence for each participant

Par.
ID

Posts
Given /

Answered

Pure Programming
Agreement &

Confidence

Architecture-relevant
Agreement &

Confidence

Total
Agreement &

Confidence
1 108/99 95.4% 95.5% 83.6% 92.7% 88.9% 93.9%
2 109/102 91.5% 85% 76.4% 87.3% 83.3% 86.3%
3 109/106 93.5% 85.1% 71.2% 87.3% 81% 86.3%
4 105/97 97.8% 91.3% 70.6% 59% 83.5% 74.2%
5 109/109 90.4% 86.5% 76.9% 75% 83.7% 80.8%
6 109/109 92.3% 86% 71.1% 69% 81.73% 77.9%
7 110/89 93.2% 50% 84.4% 24% 88.8% 37%
8 110/110 100% 96% 73.2% 89.3% 85.71% 92.4%
9 101/91 95.6% 82.2% 95.6% 78.3% 95.6% 80.2%

10 101/101 95.6% 78.3% 57.1% 51% 75.79% 64.2%
11 102/94 69.6% 84.8% 89.6% 85.4% 79.8% 85.1%
All 1173/1107 92.3% 83.6% 76.9% 71% 84.3% 77.1%

4.4.2 Agreement across ARP Types

In order to explain the measures presented in Table 4.26 and to answer RQ4, we calculated the
total agreement and confidence levels across the different ARP types, i.e., question purpose (solu-
tion evaluation, solution identification, and multi-purpose) and solution type (technology bundle,
technology feature, architecture configuration, and combined), without differentiating participants.
Fig. 4.3 and Fig 4.4 illustrate the agreements and confidence levels.

We can observe that ARPs, which were classified by the authors to be solution evaluation or
multi-purpose posts have high agreement and confidence, while the ARPs, which were classified
by the authors to be solution identification posts have a moderate agreement and confidence. On
the other hand, ARPs, which were classified by the authors to involve technology bundles have
high agreement and confidence, while the ARPs, which were classified by the authors to involve
technology features have a lower agreement and confidence. Moreover, architecture configuration
posts have the highest agreement among solution types. However, they have moderate confidence
level.

4.5 Discussion

4.5.1 Interpretation of Results

The results of our study indicate that it is possible to identify technology-related AK in Stack
Overflow. In detail, we found that most of the ARPs belong to one of the two types according to
the purpose of the question: solutions identification and evaluation. Both are common software
architecture design activities [HKN+07]. A possible interpretation could be that Stack Overflow
users perform architecture design activities (architecture identification and evaluation) and when
they face problems they ask questions for each design activity separately. This finding is a positive
indicator for the suitability of capturing and reusing of AK for technology decisions from within
Stack Overflow posts.

74

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

Figure 4.3: Agreement and confidence for ARP types according to the purpose of the question.

Figure 4.4: Agreement and confidence for ARP types according to the solution type.

75

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

The agreement of practitioners of classifying Stack Overflow posts as programming posts is higher
than the agreement to classify posts as architecture post. This shows that the classification of
posts performed by practitioners is more conservative than our own classification regarding their
definition of software architecture. A reason could be the exploratory nature of our study and the
keenness of the researchers to find all possible candidate ARPs. By analyzing the agreement across
ARPs, we find that ARPs related to solution evaluation have a higher agreement and confidence
level than solution identification posts. One explanation could be that due to the richness and
importance of AK within the evaluation posts (e.g. benefits and drawbacks of solutions, decision
rules). This type of knowledge embodies important factors for taking an ADD. On the other hand,
the classification of some other types of posts differed among practitioners. For example, 56.2% of
practitioners agree with our own classification of technology feature posts for being ARPs. These
results show that there could be other important aspects within these types of posts which have
influenced the classification decision of practitioners. The analysis and discovery of these aspects
is subject to future work (see Chapter 9).

4.5.2 Implications of Results on further Research

Mining communities such as Stack Overflow for AK would provide several benefits over current
AK management tools: Knowledge captured in Stack Overflow exists anyway (i.e., there is no
need for an additional activity to document knowledge). The quality of the knowledge on Stack
Overflow is ensured through evaluation of posts from users. Also, Stack Overflow provides a
very large pool of knowledge and information that is constantly updated (unlike the typical expert
systems that require manual population and maintenance).

Our result provide the first corpus of evaluated and classified architecture-relevant posts in one
example of developer communities (i.e. Stack Overflow). This corpus supports further steps of
research. In Chapter 5, we used this corpus to create an ontology of AK concepts in architecture-
relevant posts. The corpus could be additionally used as a base for analyzing other developer
communities. Our study has also an implication on the features, which architecture knowledge
capturing and management tools should provide. A usage scenario could be a tool to browse
and search for architectural knowledge within Stack Overflow with the ability to search for posts
based on their design activity (identification or evaluation) and solution types (technology bundles,
features or architectural configurations).

The types of ARPs provide two benefits, which support achieving our 3rd goal of the dissertation
"Propose approaches to search for architectural information in developer communities":

Firstly: We used the compact types of ARPs to develop and test classification approaches, which
automatically identify types of ARPs (see Chapter 7).

Secondly: We tried to determine types of ARPs, which support architecture design activities. For
example, Kazman and Cervantes describe three generic incremental and iterative activities for
finding solutions to architecture design problems [KC16]:

1. Identify design concepts: Types of architectural solutions (e.g. patterns, tactics, technologies
) and candidate solutions (e.g. layers) in case of patterns, RabbitMQ for case of broker tech-
nologies) are identified. Technology identification posts might support this design activity,
because they contain several recommendations for architectural solutions.

2. Select design concepts: Based on the benefits and drawbacks of alternative design concepts,

76

CHAPTER 4. ARCHITECTURE-RELEVANT POSTS IN DEVELOPER COMMUNITIES

the most appropriate solutions are selected. Technology evaluation posts could support this
activity, because they discuss the benefits and drawbacks of different architectural solutions.

3. Instantiate architecture elements: Selected design concepts are customized for the given
design issue (e.g. for a layered pattern, we need to decide on the number of layers). Features
and configuration posts could support this activity, because they discuss technology features
and components.

In Chapter 8, we used the three compact types of ARPs to support searching for architectural
information during each design activity.

77

5
Architecture Knowledge Ontology in
Developer Communities

5.1 Research Question and Contributions . 78
5.2 Research Process to Define Ontology . 79
5.3 Architecture Knowledge Ontology in Developer Communities 82
5.4 Discussion . 98

5.1 Research Question and Contributions

This chapter provides answer for RQ5:
RQ5: How can we represent and structure architecture knowledge from architecture-relevant posts
in developer communities?

By answering RQ5, we support achieving the second goal of the dissertation "Explore developer
communities for architecture knowledge" (see Chapter 1). To answer RQ5, we selected a sample
of architecture-relevant posts (ARPs) from our Corpus of Stack Overflow ARPs (see Chapter 4).
We considered the different types of ARPs (see Chapter 4) during our sampling. We performed
then qualitative content analysis for textual segments in the sample of ARPs. In summary, we
make the following contribution:

We present the first empirically-grounded ontology for AK in developer communities, using Stack
Overflow (the most popular community) as an example. This ontology specifies how each AK
concept in ARPs is composed. This bridges the gap between existing theoretical AK concepts
(see Chapters 2 and 3) and their textual representation in developer communities. The ontology
supports annotating and identifying AK concepts within ARPs. The developed AK ontology sup-
ports automating AK capturing. For instance, we used in Chapter 7 ontology-based classification
approaches to identify and classify ARPs.

In this Chapter, we first explain our research process in Section 5.2 to define the ontology. In
Section 5.3, we present and explain the ontology in details and using several examples. Finally,
we discuss our analysis results in Section 5.4.

78

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

5.2 Research Process to Define Ontology

5.2.1 Data Gathering

When exploring Stack Overflow for architecture-relevant posts (see Chapter 4), we created a cor-
pus of 858 ARPs, which were evaluated by practitioners for being architecture relevant. To answer
RQ5, we randomly selected 105 ARPs from the available 858 ARPs. To better represent the pop-
ulation of ARPs, we selected ARPs using stratified random sampling [RR08], where ARPs have
questions with different purposes and different types of solutions according to the 12 types of
ARPs (see Chapter 4). This helps to cover a wide variation of ARPs, and consequently help us
cover all AK concepts in ARPs.

5.2.2 Data Analysis

We applied qualitative content analysis [May14]. For the annotation process we used Atlas.ti, a
qualitative data analysis software1. It helps human annotators annotate text segments within their
context, and to assign them to categories. Also, the tool provides analysis and data modeling
capabilities. Appendix A provides snapshots for using Atlas.ti during our annotation. We (the
researchers2) annotated selected segments of text from our sample of ARPs. Each annotation is a
tuple (s, c):

• s is a segment of annotated text. This could be a word or a clause or a sentence in a Stack
Overflow ARP question or answer.

• c is an ontology class. An ontology class is an “explicit specification of a conceptualization”
[Gru93].

The followed qualitative content analysis process consists of two phases as defined by Mayring
[May14]: explication and structuring:

Explication: Explication aims at interpreting and comprehending text segments in ARPs to ob-
tain a concrete definition for each ontology class. We started the annotation process with a list of
ontology classes from known AK concepts (e.g. Quality attributes, ADD). The AK concepts were
identified based on a review of existing AK models (e.g. [dBFL+07], [TGAS14]) (see Chapter
2). Moreover, we considered AK concepts about technology design decisions from our proposed
AK model in Chapter 3. However, it was unknown how AK concepts are represented in ARPs.
The first researcher (the author of the dissertation) annotated and analysed iteratively 40 randomly
selected ARPs. Sentences in posts were assigned to one or more AK concepts. We excluded
sentences which are not architecture relevant (e.g., sentences within an ARP about implementa-
tion details, source code). We then performed a semantic componential analysis (e.g., [Jac76])
for each annotated statement. During this process, selected clauses and words within the anno-
tated sentences were further annotated and assigned to ontology classes. To correctly analyze the
meaning of text in annotated sentences, external resources such as technology specifications and
dictionaries have been used to understand some technology-specific terms.

1http://atlasti.com/
2The first researcher is the author of the dissertation. The second researcher is Matthias Galster from the university

of Canterbury

79

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

If performance is your main criteria,

you should definitely look at ZeroMQ

Technology

Solution
ZeroMQ

Quality

Attribute
performance

Decision Rule

criteria Concern

Noun

Performance

Requirement

Recommended

ADD

performance is your

main criteria

Look at
Use

Verb

you should definitely

look at ZeroMQ

Composite AK

Concept
Simple AK

Concept

Lexical

Trigger

Figure 5.1: An example for an annotated statement in ARP

During annotation, the representation and structure of each ontology class started to emerge. Some
of the AK concepts are represented in text as single words (e.g. quality attributes), we called these
ontology classes Simple AK Concepts. On the other hand, we found AK concepts, which are rep-
resented in text as statements or clauses rather than as single words. We called them Composite
AK Concepts. This type of classes is composed of other ontology classes in order to construct the
semantics of statements or clauses. In addition to existing AK concepts, we discovered an addi-
tional type of classes, which are normal English words and not specifically related to a certain AK
concept. Nevertheless, they deliver important meanings for composite AK concepts. The words
in this class are further assigned to existing linguistic semantic categories as defined in Word-
Net [MBF+90], VerbNet [Sch05, Dix91]. We called these ontology classes "Lexical Triggers".

Fig. 5.1 shows an example of an annotated statement “If performance is your main criteria, you
should definitely look at ZeroMQ” from an ARP1 and annotated clauses and words in a hierarchi-
cal representation. Since the whole statement is an if-statement, it was annotated as a Decision
Rule (Composite AK Concept), while the condition clause “performance is your main criteria”
has been annotated as a Requirement (Composite AK Concept), and the result clause ”you should
definitely look at ZeroMQ” as a Recommended ADD (Composite AK Concept). Within these two
clauses, words with relevant semantics have been annotated. For example, “performance” is an-
notated as part of the if-condition clause for being a Quality Attribute (Simple AK Concept), and
“Look at” is annotated as a Use Verb (Lexical trigger).

Based on this interpretation, the first researcher (the author of this dissertation) created an initial
description of each ontology class, including definitions and examples for each ontology class and
relationships between ontology classes. This description was the first version of our coding guide.
Annotating statements within ARPs requires a subjective judgment of which a certain textual seg-
ment s refer to a certain ontology class c. Therefore, based on the first version of our coding
guide, we conducted two inter-coder reliability tests. To conduct each test, we randomly selected

1stackoverflow.com/questions/17806977

80

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

a number of statements for each AK concept from the annotated posts by the first author. During
each test, the second researcher1 independently annotated the same statements and then both re-
searchers met to reconcile disagreements and to discuss them to understand the main sources of
disagreements. After each test, we revised the coding guide and updated our previously annotated
statements. We also added a section “Differences between Concepts” to the coding guide to de-
scribe the differences between similar ontology classes. As a result of this phase, we obtained a
mature coding guide with good agreement on the definition of each ontology class. This coding
guide was used in the structuring phase (see next paragraph). Appendix A provides our coding
guide.

Structuring: The structuring phase extracted the structure of the ontology across different types
of ARPs based on the developed coding guide from above. We followed four steps:

1) Complete annotation: Based on the coding guide, we annotated the remaining 65 ARPs. In
total, we created more than 3,800 annotations.

2) Count annotations for ontology classes: Using Atlas.ti, we counted the occurrences of anno-
tations, which belong to each ontology class. We determined the occurrences of each ontology
class and among each type of ARP. The frequencies of ontology classes for each type of ARPs are
presented in Section 5.3.4.

3) Calculate co-occurrences: Using Atlas.ti, we captured annotated statements that appear in
more than one ontology class, i.e., co-occurrences of annotations between ontology classes. This
resulted in a hierarchy of ontology classes based on the co-occurrences of the annotations.

4) Determine significant ontology classes: We had two challenges: A) By the end of the annota-
tion, we had more than 100 composite ontology classes. To refine our ontology and see the big
picture, we merged several composite ontology classes, based on their frequencies and seman-
tics into hierarchy of concepts to have 12 main composite ontology classes. B) We had more
than 200 simple ontology classes and lexical triggers, which co-occur with the composite classes.
To reach a concrete definition for each composite ontology class (identify children/composing
ontology classes which are statistically significant). We calculated Pearson χ̃2 [Pea00] between
composite classes and their co-occurring children/composing ontology classes. The test com-
pares the observed frequencies of ontology classes in all annotations to the expected frequencies
of each ontology class and its co-occurrences with other ontology classes. For example, for the
two ontology classes “(REQ) Requirement” and “(QA) Quality Attribute”, observed and expected
frequencies for the following four situations are compared: i) Statements or clauses annotated
as REQ intersect with annotations for QA. ii) Statements or clauses annotated as REQ intersect
with annotations other than QA. iii) Statements or clauses annotated with class other than REQ
intersect with annotations for class QA. iv) Statements or clauses annotated with class other than
REQ intersect with annotations other than QA. We excluded co-occurrences with χ̃2 < 10 to en-
sure that all co-occurrences were statistically significant at ρ < 0.05. The significance test helps
to understand the importance of each ontology classes. Section 5.3.3 presents the results of our
significance test.

5) Final reliability test: We conducted the final inter-coder reliability test to assess the agreement
on the definition of ontology classes. We focused on composite ontology classes, because they are
represented in sentences and consist of other ontology classes, which make them challenging for
an agreement. The test was done between the two researchers, and using the final version of the
coding guide, and annotating another statements; 15% from the total annotated statements. We

1The second researcher is Matthias Galster from the university of Canterbury

81

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

Table 5.1: Simple AK Concept ontology classes

ID Ontology Class Name Examples of Words
TEC Technology Solution WCF, EJB, Netty, RabbitMQ
PAT Architecture Pattern REST, messaging, layer, SOA
QA Quality Attribute scalability, availability, throughput

COM Architecture Component server, backend, service, application
CON Architecture Connector read, send, write, communicate

COME Component Element interface, operation, record, job, call
COND Connector Data message, payload, information, data
PROB Software Problem SPOF, error, out of memory

FT Feature Term serialization, binding, deployment
ACTV Programming Activity debug, deploy, write code

calculated Cohen’s Kappa reliability coefficient [Coh60] at 0.844, which indicates reliability and
agreement beyond chance.

5.3 Architecture Knowledge Ontology in Developer Communities

By combining the hierarchical relationships between the referenced ontology classes across all an-
notations, we formed a Natural Language Ontology (NLO) [Ome01]. Our final ontology consists
of 45 ontology classes (11 composite AK, 10 simple AK, 24 lexical triggers). We present the on-
tology in bottom-up (i.e. starting with simple ontology classes, which are presented with words,
and end with composite ontology classes, which are presented using multiple sentences). We
present first the simple AK and lexical triggers ontology classes in Section 5.3.1. We then discuss
composite ontology classes using examples in Section 5.3.2. Finally, we discuss the relationships
between ontology classes in Section 5.3.3.

5.3.1 Simple AK and Lexical Triggers Ontology Classes

Table 5.1 and 5.2 show lists of ‘simple AK concept” and “lexical triggers” ontology classes. Each
class is supported with examples of words from our analysis sample. In the following sub-sections,
we explain each composite AK ontology class. We support our explanation with examples of
annotated clauses or statements from our analysis sample. After explaining each ontology class,
we discuss the relationships between ontology classes.

5.3.2 Composite Ontology Classes

5.3.2.1 (CONF) Architecture Configuration

The architecture configuration (CONF) ontology class represents part of an architectural model,
which consists of one or more component names associated with an architecture connector verb or
name. This ontology class supports building higher level composite ontology classes, which will
be discussed in the following sections. For example, ontology class CONF supports describing
an existing architecture or an existing software system when users explain a "Design Issue" (see

82

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

Table 5.2: Lexical Trigger ontology classes

ID Ontology Class Name Examples of Words
ADV Advise Verbs recommend, suggest, propose
AMT Amount Term many, more, thousands, lots
ASES Assessment Verbs evaluate, assess, appraise
BHV Behavioral Verbs run, perform, listen, process
CHR Characteristic Nouns advantage, weakness, pros, cons

CONC Concern Nouns requirement, criteria, demand
CONS Constraint Nouns constraint, limitation, restriction
DFF Difference Noun difference, distinction
DIF Difficulty Adjectives lightweight, complex, overkill
DIS Discover Verbs search, look, seek
FIT Fit Verbs fit, integrate, complement

FORC Force Verbs force, have to
LER Learn Verbs learn, acquire, teach

PROB Problem Nouns problem, obstacle, trouble
QUE Question Word which, what, when, how
REL Rely Verbs depend, implement, count on
SOL Solution Adjectives solution, alternative, option, choice

SPED Speed Adjectives fast, slow, heavy, quick
STAY Stay Verbs stay, stick, adhere, bind
SUPP Support Verbs offer, provide, supply, support
USE Use Verbs select, choose, use, prefer, go with
VAL Value Adjectives good, outperform, important
VS Versus Preposition versus, vs., against, contrast

WISH Wish Verbs need, require, want, demand, ask

“ Pushing data from the server to the client ”

“ Rubby app sends a request to Java app ”

“ endpoint for routing requests to services exposed in from of beans ”

Architecture

Component

(COM)

Architecture

Connector

(CON)

Connector

Data

(COND)

Component

Element

(COME)

Figure 5.2: Examples of annotated sentences of architecture configuration (CONF) ontology class.
Each sentence is further annotated with its composing ontology classes. The three sentences be-
long to three posts: stackoverflow.com/questions/12783677, stackoverflow.
com/questions/4473567, and stackoverflow.com/questions/19758215

83

stackoverflow.com/questions/12783677
stackoverflow.com/questions/4473567
stackoverflow.com/questions/4473567
stackoverflow.com/questions/19758215

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

“ service can be viewed as the business layer of the application ”

“ process will run asynchronously ” “Java app analyzes data”

Architecture

Component

(COM)

Architecture

Pattern

(PAT)

Behavioral

Verb

(BHV)

Figure 5.3: Examples of annotated sentences of component behavior (CB) ontology class. Each
sentence is further annotated with its composing ontology classes. The three sentences belong
to three posts: stackoverflow.com/questions/1582952, stackoverflow.com/
questions/380052, and stackoverflow.com/questions/4473567

Section 5.3.2.4). Ontology class CONF is also used when recommending certain design decisions
for a design issue to describe the recommended components design (see Section 5.3.2.9). Sen-
tences from the architecture configuration (CONF) ontology class are composed of words, which
belong to four simple AK ontology classes: COM, CON, COME, and COND. COM and CON are
mandatory to create a CONF, while COME and COND are optional.

Fig 5.2 shows examples for annotated sentences, which belong to the architecture configura-
tion (CONF) ontology class. The sentences are further annotated with their composing ontology
classes COM, CON, COME, and COND.

5.3.2.2 (CB) Component Behavior

The component behavior (CB) ontology class describes the behavior of an architecture component.
It gives an overview about the type of implemented logic and complexity. Sometimes internal op-
erations are mentioned during the description. Similar to the CONF ontology class, this ontology
class supports building higher level composite ontology classes, which will be discussed in the
following sections. For example, ontology class CB supports describing the behavior of an archi-
tecture when users explain a "Design Issue" (see Section 5.3.2.4). Sentences from the component
behavior (CB) ontology class are composed of words, which belong to the simple AK ontology
classes: COM, BHV, and PAT. Ontology class COM is mandatory to compose CB. One of the two
ontology classes BHV or PAT must appear to express the behavior of the component.

Fig 5.3 shows examples for annotated sentences, which belong to the component behavior (CB)
ontology class. The sentences are further annotated with their composing ontology classes COM,
BHV, and PAT.

5.3.2.3 (EX) Existing System

The existing system (EX) ontology class describes part of an architecture of an existing software
system. It additionally describes the possible problems in the system. This ontology class supports
describing the architecture of a software system when users explain a "Design Issue" (see Section
5.3.2.4). To express an existing system (EX), an architectural configuration (CONF) composite
ontology class (see Section 5.3.2.1) is required, which consists of components (COM) and con-

84

stackoverflow.com/questions/1582952
stackoverflow.com/questions/380052
stackoverflow.com/questions/380052
stackoverflow.com/questions/4473567

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

“I have hit a performance road block where it is not being able to

handle large payloads uploaded to the server from mobile devices.

I am getting Out of Memory errors.”

Architecture

Configuration

(CONF)

Software

Problem

(PROB)

Figure 5.4: Example for an annotated sentences of existing system (EX) ontology class. The
sentence is further annotated with its composing ontology classes. The sentence belong to the
post: stackoverflow.com/questions/13016406

“I want to send a batch of 20k JMS messages to a same queue. I’m

splitting the task up using 10 threads”

Architecture

Configuration

(CONF)

Wish Verb

(WISH)

Figure 5.5: Example for an annotated sentences of design issue (DI) ontology class. The sen-
tence is further annotated with its composing ontology classes. The sentence belong to the post:
stackoverflow.com/questions/4741713

nectors (CON) simple AK ontology classes. Moreover, EX uses the lexical trigger ontology class
PROB to express a problem in an existing system (e.g. a performance or a scalability problem).

Fig. 5.4 shows an example for annotated sentence, which belong to the existing system (EX)
ontology class. The sentence is further annotated with its composing ontology classes CONF and
PROB.

5.3.2.4 (DI) Design Issue

Design issue (DI) describes design problems, which users submit in the question section in an
ARP. Design problems are described through the architecture configurations of a planned design,
or the architecture configuration design of an existing software system. This ontology class is one
of the high-level ontology classes in the question section of an ARP. Sentences from the design
issue (DI) ontology class are composed of sentences, which belong to the CONF, CB and EX
composite ontology classes as explained in Sections 5.3.2.1, 5.3.2.2, and 5.3.2.3. Moreover, DI
commonly uses two lexical trigger: USE, and WISH. At least one of the two lexical triggers USE
or WISH must appear in a DI to express the notion of a need.

Fig 5.5 shows an example for annotated sentence, which belong to the design issue (DI) ontology
class. The sentence is further annotated with its composing ontology classes CONF and WISH.

85

stackoverflow.com/questions/13016406
stackoverflow.com/questions/4741713

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

“we would like something that can be configured both as a

lightweight, in process broker (…) and as an external broker”

Architecture

Pattern (PAT)

Wish Verb

(WISH)

Figure 5.6: Example for an annotated sentences of the technology feature requirement, a sub-type
from the requirements and constraints (REQ) ontology class. The sentence is further annotated
with its composing ontology classes. The sentence belongs to the post: stackoverflow.
com/questions/14342430

“an application which needs to be able to handle pretty heavy traffic.

I would like to be able to scale”

Quality

Attribute (QA)

Wish Verb

(WISH)

Figure 5.7: Example for an annotated sentences of the quality attribute requirement, a sub-type
from the requirements and constraints (REQ) ontology class. The sentence is further annotated
with its composing ontology classes. The sentence belongs to the post: stackoverflow.
com/questions/2567254

5.3.2.5 (REQ) Requirements and Constraints

The REQ ontology class is one of the high-level ontology classes, which appear in both question
and answers sections of an ARP. This ontology class has several sub-types:

1. Requirements: They are basic requirements of a system. We found two types of require-
ments:

(a) Technology feature requirement: They are specific functionality, which technology
solutions should fulfill. Sentences from this type are composed of the FT and PAT
simple AK ontology classes. Moreover, they uses two lexical trigger: CONC, and
WISH. At least one of the two lexical triggers CONC or WISH must appear. Fig 5.6

“I know web service and have some knowledge on remoting”

Knowledge

Expression (KN)

Technology

Solution (TEC)

Figure 5.8: Example for an annotated sentences of the team skills constraint, a sub-type from
the requirements and constraints (REQ) ontology class. The sentence is further annotated with
its composing ontology classes. The sentence belongs to the post: stackoverflow.com/
questions/1426249

86

stackoverflow.com/questions/14342430
stackoverflow.com/questions/14342430
stackoverflow.com/questions/2567254
stackoverflow.com/questions/2567254
stackoverflow.com/questions/1426249
stackoverflow.com/questions/1426249

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

“have a limitation on time on deliverable.”

Constraint

Noun (CN)

Schedule Term

(SCH)

Figure 5.9: Example for an annotated sentences of the development time constraint, a sub-type
from the requirements and constraints (REQ) ontology class. The sentence is further annotated
with its composing ontology classes. The sentence belongs to the post: stackoverflow.
com/questions/807962

“This needs to adhere to WCF REST standards”

Avoid Verb

(AVD)

Technology

Solution (TEC)

Wish Verb

(WISH)

Figure 5.10: Example for an annotated sentences of the solution constraint, a sub-type from
the requirements and constraints (REQ) ontology class. The sentence is further annotated with
its composing ontology classes. The sentence belongs to the post: stackoverflow.com/
questions/12783677

shows an example for annotated sentence, which belong to this sub-type. The sentence
is further annotated with its composing ontology classes WISH and PAT.

(b) Quality attribute requirement: They are requirements regarding the quality attributes
(e.g. performance, security) of the system. Sentences from this type uses two lexical
trigger: CONC, and WISH. Quality attributes is expressed directly using the simple
AK ontology class QA. Fig 5.7 shows an example for annotated sentence, which be-
long to the quality attribute requirement. The sentence is further annotated with its
composing ontology classes WISH and QA.

2. Constraints: They are restrictions, which limit the selection of a solution. We found three
types of constraints:

• Technical skills constraint: This is a limitation regarding the technical skills of the
team, who will implement the solution. Sentences from this type use the lexical trigger
KN to express the knowledge about certain technology solutions TEC. Fig. 5.8 shows
an example for annotated sentence, which belong to this sub-type. The sentence is
further annotated with its composing ontology classes KN and TEC.

• Development time constraint: This is a limitation regarding the schedule and available
time and budget for implementing a solution. Sentences from this type use the lexical
triggers CN and SCH to express the limitation regarding time and effort. Fig. 5.9
shows an example for annotated sentence, which belong to this sub-type. The sentence
is further annotated with its composing ontology classes CN and SCH.

• Solution constraint: This is a limitation regarding the characteristics of the architec-
tural solution. Sentences from this type use the lexical triggers AVD and TECH to
express the limitation regarding a certain technology. Fig. 5.10 shows an example for
annotated sentence, which belong to this sub-type. The sentence is further annotated
with its composing ontology classes AVD and TECH.

87

stackoverflow.com/questions/807962
stackoverflow.com/questions/807962
stackoverflow.com/questions/12783677
stackoverflow.com/questions/12783677

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

“What is the difference between web service and remoting ?”

 “What is the standard SOAP library to use in groovy? ”

Difference

Noun (DFF)

Technology

Solution (TEC)

Question

Word (QUE)

Use Verbs

(USE)

Figure 5.11: Example for an annotated sentences of the user request (UR) ontology class.
The sentence is further annotated with its composing ontology classes. The sentences belong
to the posts: stackoverflow.com/questions/1426249 and stackoverflow.com/
questions/10621648

“Tibco (BusinessWorks) (…) provides a simple, straightforward

middleware application designer”

Support Verb

(SUPP)

Technology

Solution (TEC)

Feature Term

(FT)

Figure 5.12: Example for an annotated sentences of the development feature, a sub-type from the
technology feature (FEAT) ontology class. The sentence is further annotated with its composing
ontology classes. The sentence belongs to the post: stackoverflow.com/questions/
1429318

The representation of a REQ ontology class is different, when it appear in the question and the an-
swers sections of an ARP. Requirements in the question section are gathered, expressed in details
and listed in points. On the other hand, requirements in the answers section are separated for each
other, and individually addressed.

5.3.2.6 (UR) User Request

(UR) User Request exists in ARP question in a form of questions or needs. It complements
design issue, requirements and constraints by showing the purpose of the question (evaluation or
identification). User requests could be further classified according to the variations of Evaluation
ARPs (see Chapter 4). This ontology class is one of the high-level ontology classes in the question
section of an ARP. Sentences from the user request (UR) ontology class are composed of several
lexical triggers QUE, VS, USE and DFF lexical triggers. Moreover, UR commonly uses the simple
AK ontology class TEC. The usage of lexical triggers in this ontology class UR specify the type of
the post (evaluation or identification). For example, VS and DFF are commonly used to evaluate
a technology solution. While the USE lexical trigger come usually in solution identification posts.

Fig 5.11 shows examples for annotated sentences, which belong to the user request (UR) ontology
class. The sentences are further annotated with its composing ontology classes TEC, DFF, USE
and QUE.

88

stackoverflow.com/questions/1426249
stackoverflow.com/questions/10621648
stackoverflow.com/questions/10621648
stackoverflow.com/questions/1429318
stackoverflow.com/questions/1429318

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

“ActiveMQ is a widely used message broker that offers FIFO queues”

“BSON, ProtoBuffers, and BERT offer serialization of arbitrary data.”

“Thrift supports only 2 transports raw tcp, and http”

Support Verb

(SUPP)

Technology

Solution (TEC)

Architecture

Pattern (PAT)

Feature Term

(FT)

Figure 5.13: Example for an annotated sentences of the behavioral features, a sub-
type from the technology feature (FEAT) ontology class. The sentences are fur-
ther annotated with its composing ontology classes. The sentences belongs to posts:
stackoverflow.com/questions/10375137, stackoverflow.com/questions/
4473567, and stackoverflow.com/questions/7583132

5.3.2.7 (FEAT) Technology Feature

The FEAT ontology class is one of the high-level ontology classes, which mostly appear in answers
sections of an ARP. This ontology class has several sub-types, which align with the types of
technology features (see Chapter 3). All sub-types of FEAT ontology class use the lexical triggers
SUPP and REL associated with one or more technology solutions TEC to express relationships
between technology solutions and technology features. Other simple AK ontology classes (PAT,
FT) appear based on the type of technology feature (Development or Behavioral).

1. Development feature: They present technology features, which support the development
of a software (e.g. documentation, development tools) as explained in Chapter 3. They are
expressed through certain programming activities (e.g. debugging) or programming features
and tools (e.g. code generation). Fig. 5.12 shows an example for annotated sentence, which
belong to this sub-type. The sentence is further annotated with its composing ontology
classes TEC, SUPP and FT.

2. Behavioral features: They are features about the run-time behavior of the technology. They
are expressed through technology specific component and class names, as well as their im-
plemented architectural patterns or their relationship with other technologies. Fig. 5.13
shows an example for annotated sentence, which belong to this sub-type. The sentence is
further annotated with its composing ontology classes TEC, SUPP, PAT and FT.

5.3.2.8 (ASTA) Technology Benefits and Drawbacks

The ASTA ontology class is one of the high-level ontology classes, which mostly appear in an-
swers sections of an ARP. As explained in Chapter 3, ASTA concepts are main factors, which
support architects decide between different technology solutions (i.e. taking technology design
decisions). Sentences which belong to the ASTA ontology class are distinguished through the
extensive usage of adjectives and adverbs in combination with technology features and quality at-
tributes. The adjectives or adverbs are used to express the advantages or disadvantages of certain
technology solutions or features. ASTA ontology class could be further classified according to
their influence on certain technology features (i.e. development features versus behavioral fea-
tures):

89

stackoverflow.com/questions/10375137
stackoverflow.com/questions/4473567
stackoverflow.com/questions/4473567
stackoverflow.com/questions/7583132

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

“It is much easier to debug Webservices over the wire”

“You'll learn it very quickly”

“From the Silverlight side, WCF requires that you write some plumbing code”

Programming

Activity (ACTV)

Technology

Solution (TEC)

Difficulty

Adjectives (DIF)

Speed Adjectives

(SPED)

Learn Verbs

(LER)

Force Verbs

(FORC)

Figure 5.14: Example for an annotated sentences of the development ASTA, a sub-
type from the technology benefits and drawbacks (ASTA) ontology class. The sen-
tence is further annotated with its composing ontology classes. The sentences be-
longs to posts: stackoverflow.com/questions/100993, stackoverflow.com/
questions/807692, and stackoverflow.com/questions/1582952

“Protocolbuffers would be a lot faster and more efficient than JSON”

“Netty is very fast (…) It is more scalable than the standard Java IO”

“Remoting is an Microsoft technology (…) It does not work well with firewalls”

Quality Attribute

(QA)

Technology

Solution (TEC)

Amount Term

(AMT)

Speed Adjectives

(SPED)

Fit Verbs

(FIT)

Figure 5.15: Example for an annotated sentences of the behavioral ASTA, a sub-type
from the technology benefits and drawbacks (ASTA) ontology class. The sentences are
further annotated with its composing ontology classes. The sentences belongs to posts:
stackoverflow.com/questions/4473567, stackoverflow.com/questions/
5145129, and stackoverflow.com/questions/1426249

90

stackoverflow.com/questions/100993
stackoverflow.com/questions/807692
stackoverflow.com/questions/807692
stackoverflow.com/questions/1582952
stackoverflow.com/questions/4473567
stackoverflow.com/questions/5145129
stackoverflow.com/questions/5145129
stackoverflow.com/questions/1426249

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

“You should probably have a look at Netty”

“I'd go with the simplest solution. Have a master process retrieving tasks, distributing to

worker computers, collecting results and submitting them to a database.”

Architecture

Configuration

(CONF)

Technology

Solution (TEC)

Difficulty

Adjective (DIF)

Advise Verbs

(ADV)

Figure 5.16: Examples for annotated sentences of the ADD. The sentences are further annotated
with their composing ontology classes. The sentences belongs to posts: stackoverflow.
com/questions/10156388 and stackoverflow.com/questions/9535421

• Development ASTA: It is used to express benefit or drawback regarding certain development
features (e.g. how good is the documentation or community of a technology). Users use the
ACTV ontology class to express the complexity of conducting certain development activity.
Moreover, users use the LER lexical trigger to show the complexity of learning a certain
technology solution. To differentiate between benefits and drawbacks, five lexical triggers
are used: FORC, DIF, SUPP, CHR, and AMT. Fig. 5.14 shows examples of development
benefits and drawbacks. The sentences are further annotated with their composing ontology
classes.

• Behavioral ASTA: It is used to express benefit or drawback regarding certain behavioral
features. Behavioral ASTA could be further categorized according to the quality attributes
(e.g. availability, performance). One common way to express behavioral ASTAs is the usage
of the simple AK ontology class QA and VAL lexical trigger. Alternatively, certain verbs
could be used instead of using QA. For example, SPED lexical trigger is used to reference
performance ASTA, and FIT lexical trigger is used to reference interoperability ASTA. Fig.
5.15 shows examples of development benefits and drawbacks. The sentences are further
annotated with their composing ontology classes.

5.3.2.9 (ADD) Recommended design decision

The ADD ontology class is one of the high-level ontology classes, which mostly appear in answers
sections of an ARP. ADDs are recommendations from users based on their experience or opinion
for certain architectural solutions.

Recommendations for architectural solutions could be for technology solutions, or architectural
configurations or technology features. An ADD contains either TEC, or CONF, or FT to refer to
an architectural solutions. Lexical triggers ADV, VAL and USE are commonly used to provide
the meaning for recommendation. Fig. 5.16 shows examples for ADD on different architectural
solutions. The sentences are further annotated with its composing ontology classes.

5.3.2.10 (DR) Decision Rule

The DR ontology class is one of the high-level ontology classes, which mostly appear in answers
sections of an ARP. DR are conditional recommendation for architectural solutions. The rule con-
dition involves other ontology classes such as requirements and constraints (REQ), architectural

91

stackoverflow.com/questions/10156388
stackoverflow.com/questions/10156388
stackoverflow.com/questions/9535421

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

“if you plan to provide interoperability with other programming

languages than you should use Web services”

“ADO.NET Data Services (indeed, just a REST implementation)

seems appropriate when your application is basically data-centric

and the service is simply a front-end for the database”

“If you want to send complex object nets from one application to

another, it's probably faster with RMI”

Architecture

Configuration

(CONF)

Requirements

and Constraints

(REQ)

Component

Behavior (CB)

Recommended

Design Decisions

(ADD)

Benefit and

Drawback

(ASTA)

Figure 5.17: Example for an annotated sentences of DR. The sentences are fur-
ther annotated with its composing ontology classes. The sentences belongs to posts:
stackoverflow.com/questions/1426249, stackoverflow.com/questions/
1582952, and stackoverflow.com/questions/100993

configuration (CONF), and component behavior (CB). Recommendations involve recommended
(ADD)s for certain technology solution or architecture configuration. Fig. 5.17 shows examples
for (DR)s with different conditions and architectural solutions. The sentences are further annotated
with their composing ontology classes.

5.3.2.11 (CASE) Technology Use-Cases

The CASE ontology class is one of the high-level ontology classes, which mostly appear in an-
swers sections of an ARP. Technology Use-Cases (CASE) are either success or failure stories
for the usage of technology solutions at certain contexts. The stories could be coming from per-
sonal experiences of users, or well-known examples for existing systems. The context associated
with stories could include domain description, architecture configurations, infrastructure, and con-
straints. CASE is considered the most involved ontology class, which might include several other
composite ontology classes like CONF, REQ, ASTA, and ADD. Fig. 5.18 shows examples for
CASE on different architectural solutions. The sentences are further annotated with its composing
ontology classes.

5.3.3 Relationships between Ontology Classes

In the previous sections, we presented each ontology class individually. In this section, we focus
on the relationships between ontology classes.

92

stackoverflow.com/questions/1426249
stackoverflow.com/questions/1582952
stackoverflow.com/questions/1582952
stackoverflow.com/questions/100993

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

“We had a 300 million technology budget, but keep in mind we

also had 2 large datacenters and several production centers, as well

as 3 offices for development.

Now, a company in our situation might find it a good deal to use

something like TIBCO out of the box”

“Cases for using Data Service on the server side:

1) Easier to version data services.(…)

2) Want the ability to access data at a lower level. You are

allowing a back door access into your database. In a high level you

are exposing a Business Service, and a Back Door Data Accesses

Service.”

“Twitter used Netty in its Search System”

Requirement

and Constraints

(REQ)

Recommended

Design Decisions

(ADD)

Benefit and

Drawback

(ASTA)

Architecture

Configuration

(CONF)

Figure 5.18: Examples for annotated sentences of CASE. The sentences are further
annotated with their composing ontology classes. The sentences belongs to posts:
stackoverflow.com/questions/1429318, stackoverflow.com/questions/
2508361, and stackoverflow.com/questions/5145129

93

stackoverflow.com/questions/1429318
stackoverflow.com/questions/2508361
stackoverflow.com/questions/2508361
stackoverflow.com/questions/5145129

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

Figure 5.19: The percentages of occurrences for composite ontology classes within the question
and answers sections of a Stack Overflow post

94

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

5.3.3.1 Ontology Classes in Post Structure

As explained in Chapter 2, a Stack Overflow post consists of a question section, and an answers
section. To better understand the ontology classes, we identified to which section, would each
composite ontology class mostly appear. We counted the number of annotations in our sample
of ARPs, which appear in each section (i.e. either question or answers) of a Stack Overflow
post. Fig. 5.19 shows a stack bar chart, which presents percentages about, where each composite
ontology class usually appears. From Fig. 5.19, we can observe that UR, and EX appear mostly
in the question section of a Stack Overflow post. On the other hand, FEAT, ASTA, ADD, DR,
and CASE appear mostly in the answers sections of a Stack Overflow post. The ontology classes
CONF, and CB appear in both sections, because they are building blocks for many other ontology
classes (EX, DI, ADD, and CASE). Finally, ontology classes DI and REQ appear in both sections.
Annotations for DI and REQ in the question section are bigger in their size, because users try to
explain in details requirements or design issues. On the other hand, REQ and DI in the answers
section reference certain problems or requirements as part of other ontology classes (e.g. REQ
could appear as part of DR).

To explain how different ontology classes could construct a post, Fig. 5.20 shows an example
for an annotated ARP. The annotations use the IDs of the composite ontology classes in Section
5.3.2. The question in the ARP stated a design issue (ontology class DI). The design consists of
two applications communicating in a cloud environment (ontology class CONF). The user then
described the need to evaluate possible messaging technologies to decide on the communication
between both applications (ontology class UR), considering prioritized quality attribute require-
ments (ontology class REQ). One user (Answer 2) shared a success story (ontology class CASE)
for a well-known system, which solves a similar problem. At the end of the discussion, the user
who posted the question posted an answer (Answer 1) to describe the taken decision (ontology
class ADD) “go with BSON over RabbitMQ”, including the rationale for taking this decision,
which include technology features (ontology class FEAT), their benefits and drawbacks (ontology
class ASTA), and the logic behind choosing the technology among other alternatives (ontology
class DR).

5.3.3.2 Significant Relationships between Ontology Classes

When discussing composite ontology classes in Section 5.3.2, we clarified some relationships be-
tween a composite ontology class, and its composing ontology classes. However, some ontology
classes appear more often with others. As explained in Section 5.2, we determined the signifi-
cant composing ontology classes, which appear with each composite ontology class using a χ̃2

significance test. Table 5.3 presents our results. In column “Composing Classes”, we provide
the significance χ̃2 value for each composing class from which the composite ontology class is
constructed. The results of the significance test shows that some simple AK and lexical triggers
ontology classes do not appear to be significant with any of the composite ontology classes, be-
cause of their lower number of occurrences.

By determining the significant relationships between ontology classes, we could propose more ef-
fective information extraction techniques (e.g. [WD10]) for architectural information in developer
communities.

95

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

	

Question	

	
Answer	1	

	
Answer	2	

	
	

DI	

REQ	

UR	

UR	
ADD	

DR	

CASE	

CONF	

FEAT	

ASTA	

ASTA	

Figure 5.20: An example for an annotated ARP https://stackoverflow.com/
questions/4473567

96

https://stackoverflow.com/questions/4473567
https://stackoverflow.com/questions/4473567

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

Table 5.3: Statistically significant composing ontology classes for composite ontology classes

(ID) Composite Ontology Class Composing Classes
(χ̃2)

(CONF) Architecture Configuration CON(441.4), COM(326),
COND(193.9), COME(41.7)

(CB) Component Behavior COM(85.7), COME(64.6)
(EX) Existing System PROB(158), COM(123.7), CONF(42),

CON(35.8)
(DI) Design Issue CONF(110), EX(95.3), CB(43),

WISH(37.4), USE(14.7)
(REQ) Requirement and Constraint WISH(213.7), QA(108.7),

CONC(74.16), DIF(12.17)
(UR) User Request QUE(324.16), TEC(238.8), USE(116),

VS(42), DFF(37)
(FEAT) Technology Features TEC(90), PAT(74.8), FT(44.1),

REL(35.7), SUPP(13.6)
(ASTA) Technology Benefits and
Drawbacks

VAL(130), DIF(102.7), QA(57.4),
SPED(49.7), TEC(18.9)

(CASE) Technology Use-Cases CONF(106), CONC(48.7), USE(45.8),
ASTA(29.7), REQ(15.5), ADD(13.3)

(ADD) Recommended ADDs ADV(355), TEC(72), USE(41),
CONF(18.49)

(DR) Decision Rules ADD(369.4), REQ(226.7), CB(85),
ASTA(60.7), CONF(54.9), FT(12.65)

5.3.4 Distribution of Ontology Classes in Types of ARPs

In the previous sub-sections, we introduced the different explored AK ontology classes, and their
relationships. In this section, we explore the occurrences and distributions of AK ontology classes
in the types of ARPs, which we classified in Chapter 4 according to the purpose of the post and
the used architectural solutions. The benefit of knowing the occurrences of ontology classes in the
types of ARPs is two folds:

1. We will have a better definition and understanding for the types of ARPs. This will comple-
ment our qualitative analysis and definition (based on the purpose and type of solution) for
each ARP as presented in Chapter 4.

2. Determining concrete relationships between the types of ARPs and the ontology classes
support improving the search for architectural information. For instance, if an architect
searches for architectural information to evaluate architectural solutions, the ASTA ontology
class would be useful to him. It would be easier then to search in the types of ARPs, which
contain the most instances of ASTAs. In Chapter 8, we propose and evaluate an improved
searching approach. The approach considers the occurrences and distributions of ontology
classes in the different types of ARPs.

We counted the number of annotations for each composite AK ontology class, and among the
three compact types of ARPs (Technology Identification, Technology evaluation, and features
and configurations). We decided to use the compact types of ARPs to ensure the availability of

97

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

Table 5.4: Number of annotations for each ontology class among the different types of ARPs

Technology
Evaluation ARPs

Technology
Identification ARPs

Features and
Configurations ARPs

Frequency
Relative

Frequency
Frequency

Relative
Frequency

Frequency
Relative

Frequency
(FEAT) Technology

Feature 92 2.49 47 2.04 23 0.96

(CASE) Technology
Use-Cases 25 0.67 8 0.35 14 0.58

(CB) Component
Behavior 18 0.49 10 0.43 19 0.79

(CONF) Architecture
Configuration 33 0.89 23 1 24 1

(ASTA) Technology
Benefits and Drawbacks 227 6.13 89 3.87 32 1.33

(REQ) Requirements
and Constraints 31 0.83 26 1.13 9 0.37

(DR) Decision Rule 58 1.56 12 0.52 8 0.33
(DI) Design Issue 40 1.08 25 1.08 29 1.21

(EX) Existing System 9 0.24 6 0.26 0 0
(ADD) Recommended

Design Decision 61 1.65 54 2.34 46 1.92

(UR) User Request 83 2.24 35 1.52 27 1.12

sufficient annotations for each type of ARP. Table 5.4 shows the number of annotations for each
ontology class and across each type of ARP. We also calculated the number of occurrences relative
to the total number of posts for each type of ARP. Fig. 5.21 shows a matrix bubble chart, which
compares the relative occurrences for each composite AK ontology class among each of the three
compact types of ARPs. The relative number of annotations supports comparing the ontology
classes in each type of ARP. Moreover, the calculated relative occurrences of ontology classes
support estimating quotas for the types of ARPs, when searching for architectural information. We
used these values in Chapter 8 in an approach to improve the search for architectural information
in developer communities.

5.4 Discussion

5.4.1 Interpretation of Results

The proposed ontology of natural language concepts related to AK on Stack Overflow makes
the concept of architecture knowledge concrete. The concepts in our ontology and the ontology
classes contain elements that are also mentioned in other literature related to AK (see Chapter 2).
For example, De Boer et al. [dBFL+07] have mentioned decisions or design alternatives as AK
concepts, but our study presents the first empirically-grounded ontology from a concrete developer
community (i.e. Stack Overflow). Previous AK models try to cover the most AK concepts of the
architecture domain. Elements in these models include decisions or rationale which are high
level. The proposed ontology makes the concepts in AK models functional through a concrete

98

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

Figure 5.21: The relative occurrences of ontology classes in each type of ARP

99

CHAPTER 5. ARCHITECTURE KNOWLEDGE ONTOLOGY

specification for each concept. This supports building tools to automatically identify architecture-
relevant information from a body of text in developer communities.

5.4.2 Implications of Results on further Research

The ontology supports ontology-based approaches for AK capturing. First, ontology-based ap-
proaches could specify AK concepts using a formal language (e.g., using OWL). Moreover, ontology-
based approaches support methods for information extraction (e.g. [WD10]), which could au-
tomatically identify textual segments that belong to a certain AK concept. This is quite use-
ful to automate the population of architectural knowledge in knowledge repositories. More-
over, information extraction is a main building block in ontology-based information retrieval
(e.g. [FCL+11]). This could support developing ontology-based search engines, instead of only
relying on keywords-based search. For instance, searching for keywords does not consider rela-
tionships between search terms. Without considering the relationships between semantic concepts
in text, higher level concepts such as AK concepts cannot be easily identified. In Chapter 7, we
used an ontology-based classification approach to identify and classify ARPs in developer com-
munities. Based on the classification of posts, we complemented a keywords-based search with
the semantics of posts, which improved the effectiveness of search as presented in Chapter 8.

100

Part III

Solutions for Architecture Knowledge
Acquisition

101

6
Scenarios and Perspectives for Using
Developer Communities during
Architecture Design

6.1 Research Questions and Contributions . 102
6.2 Research Process . 103
6.3 Perspective of Practitioners on AK Sharing and Reuse from Developer

Communities . 105
6.4 Scenarios for Searching AK in Developer Communities 109
6.5 Discussion . 112

6.1 Research Questions and Contributions

This chapter provides answers for RQ6 and RQ7:
RQ6: What is the perspective of practitioners on AK sharing and reuse from online developer
communities?

RQ7: How could architects acquire AK in developer communities?

By answering RQ6 and RQ7, we support achieving the third goal of the dissertation "Propose
approaches to search for architectural information in developer communities" (see Chapter 1). To
answer RQ6 and RQ7, we analyzed the literature and conducted interviews with ten practition-
ers from different companies. More details on the research process is explained in Sec. 6.2. In
summary, we make the following contributions:

• We identify empirically and practically-grounded benefits and problems of, as well as solu-
tions for, utilizing developer communities to share and acquire AK (see Sec. 6.3).

• We identify main conceptual elements (tasks and activities) of scenarios to search for AK
during architecture design. We then identify concrete tasks and activities of scenarios to use
AK from developer communities (see Sec. 6.4).

Our contributions in this chapter provide an empirically-grounded basis for AK tools to increase
the usefulness of tools for practitioners. Moreover, our interviews with practitioners provided us

102

CHAPTER 6. USING DEVELOPER COMMUNITIES DURING ARCHITECTURE DESIGN

with real scenarios to search for architectural information in developer communities. Furthermore,
the identified conceptual elements for a searching scenario support designing searching tasks for
architectural information. Both the scenarios and model have been used to propose an approach
to search for architectural information in developer communities (see Chapter 8).

In section 6.2, we describe our research process. In section 6.3, we present benefits, problems and
solutions for using developer communities to find architectural knowledge. This answers RQ6. In
section 6.4, we present our proposed conceptual model for a architectural information searching
task, as well as our findings of use-cases and scenarios. This answers RQ7. Finally, section 6.5
discusses our findings.

6.2 Research Process

To answer our research questions, we conducted semistructured interviews with ten practitioners
(see Sec. 6.2.1). We obtained two types of information:

• Perspectives of practitioners for using developer communities as a source of AK. We cate-
gorized practitioners’ perspectives into benefits, problems and solutions (see Sec. 6.3). This
allowed us to answer RQ6.

• Examples of scenarios for using developer communities as a source of AK and for sharing
and reusing during architecture design. To identify the components of a scenario (tasks
and activities), we analyzed these examples of scenarios using concepts from the field of
software architecture and information studies (see Sec. 6.4.1). These tasks and activities
were then checked by interviewees for applicability and completeness (more details are in
Sec. 6.2.2). This answers RQ7 (see Sec. 6.4.2).

6.2.1 Interview Study

We chose interviewees based on a) their practical experience as architects, b) the size of the compa-
nies they were working at (we considered practitioners from small, medium and large companies),
and c) the diversity of experiences (we selected practitioners from organizations in different do-
mains). All interviewees had a Bachelor’s or Master’s degree. Interviewees are listed in Table 6.1.
Interviewees were located in different cities and countries, so interviews were done via phone,
VoIP and face-to-face.

Interviews were semi-structured. We prepared an interview guide, which is available in Appendix
B. Additional questions came up during the interviews based on the interviewee responses. Ques-
tions aimed at understanding a) the process of searching and using developer communities as part
of the architecting process and architecture design activities, and b) concerns/problems of archi-
tects during searching for AK on developer communities and possible solutions. We recorded and
transcribed the interviews. The average length of the interviews was 60 minutes. After transcrib-
ing interviews, inductive open coding content analysis [May14] allowed us to structure interview
data along several categories: benefits, problems, solutions, and example scenarios to use AK from
communities.

103

CHAPTER 6. USING DEVELOPER COMMUNITIES DURING ARCHITECTURE DESIGN

Table 6.1: Interview participants

ID IT exp.
(years)

Arch. exp.
(years) Domain # Company

employees Role

I1 11 5 Manufacturing >100,000
Solution
architect

I2 11 4 Telecom <1,000
Enterprise
architect

I3 15 6 Games >100,000
Solution
architect

I4 12 4 Transportation >100,000
Technology
consultant

I5 11 5 Telecom <500
Technology
consultant

I6 14 3 Telecom <1,000
Solution
architect

I7 11 5 Finance <1,000
Solution
architect

I8 16 8 Telecom >100,000
Solution
architect

I9 12 3 Language processing >100,000
Technology
consultant

I10 7 2 Mobile apps <500
Solution
architect

6.2.2 Analysis of Scenarios

The examples of scenarios mentioned by practitioners involve two types of concepts: concepts
related to architecture design and concepts related to information retrieval. Both types of concepts
have been intensively studied in two different research fields: architecture design processes and
information studies. Thus, in order to properly analyze the scenarios mentioned by architects, we
first analyzed relevant literature in both fields.

In the field of information studies, several conceptual models [BH05] have been proposed to model
the notion of a Task during information access. These models are used for analyzing and designing
information retrieval systems (e.g. search engines). On the other hand, software architecture
design processes (e.g. Hofmeister et al. [HKN+07], ADD-3.0 [KC16]) describe common steps or
activities, which are performed by architects to design the architecture of a software system. Based
on our literature analysis, we identified and related relevant concepts of both fields. The identified
concepts structure scenarios to search for AK into three concepts: information-intensive design
activities, information seeking tasks (ISTs), and information searching activities (ISAs) (see Sec.
6.4.1).

To answer RQ7, we identify information-intensive design activities, ISTs, and ISAs from the ex-
ample scenarios obtained from the interviews. The combination of them creates an enormous
number of possibilities for scenarios. To get a list of information-intensive design activities and
ISTs, we analyzed architecture design processes. To make the analysis practically feasible, we
focused on one software architecture design process and considered design activities defined in
the Attribute-Driven Design (ADD-3.0) process [KC16] (see Chapter 2 for additional explana-
tion). We chose ADD-3.0, because it aggregates the main design activities from the architecture

104

CHAPTER 6. USING DEVELOPER COMMUNITIES DURING ARCHITECTURE DESIGN

literature. Moreover, ADD-3.0 considers technology decisions and their influence during the de-
sign steps. This makes ADD-3.0 quite suitable to solve our research problem, which focus on
technology design decisions, and their associated architectural knowledge. We analyzed ADD-3.0
steps to identify information-intensive design activities and to determine ISTs. This was done by
reviewing the documentation of ADD-3.0 and analyzing the information needs of each step. To
get a list of ISAs, we performed qualitative content analysis of the real scenarios mentioned by the
interviewees. These concrete scenarios combine information intensive design activities, ISTs, and
ISAs.

In order to evaluate the captured design activities, ISTs, and ISAs, we combined them into concrete
scenarios, and in a follow-up asked interviewees through a questionnaire about the applicability
and completeness of these scenarios. The questionnaire is available in Appendix B. Based on their
answers, we refined our list of ISTs and ISAs. Sec. 6.4.2 presents information-intensive design
activities, ISTs, and ISAs.

6.3 Perspective of Practitioners on AK Sharing and Reuse from De-
veloper Communities

In this section, we present prespectives of practitioners to search for architectural information in
developer communities. This answers RQ6. During the interviews, we found that practitioners rely
mainly on their own personal experience when solving a familiar design problem. This confirm
findings of other previous empirical studies on design decisions [HA11]. For unfamiliar problems
(e.g. involving unfamiliar technologies or domains), our interviews found that architect consult
other sources of AK. The other sources of AK mentioned by practitioners in our interviews were:
corporate knowledge repositories, help from an expert (e.g. by getting help from another person in
the organization or an external consultant), and open developer communities (e.g. Stack Overflow,
Google groups). This means that architects indeed access developer communities for solving
architectural problems. When investigating the perspective of practitioners on AK sharing and
reuse from developer communities, we categorized findings based on the following categories:

• Benefits of using developer communities as a source of AK (Sec. 6.3.1).

• Problems architects face when searching for AK in communities (Sec. 6.3.2).

• Solutions (proposed by interviewees) to improve the search for AK (Sec. 6.3.3).

In the following subsections, we discuss these categories in more detail. Table 6.2 summarizes
the distribution of the identified benefits, problems and solutions across interviewees. When ex-
plaining each of these categories, we will compare developer communities with other sources of
AK.

6.3.1 Benefits of Using Developer Communities as a Source of AK

We identified the following benefits of developer communities as a source of AK:

• (B-1) Diversity of solutions and opinions: The amount of discussions and opinions provide
architects with an initial list of architectural solutions, which are candidates for experimenta-
tion and prototyping. This diversity of opinions is an advantage of developers communities

105

CHAPTER 6. USING DEVELOPER COMMUNITIES DURING ARCHITECTURE DESIGN

over seeking knowledge from a single expert, who might not have a broader knowledge but
only specific knowledge about a problem or technology.

• (B-2) Solution evaluation: Asking a question in a developer community about a particular
architectural solution, and asking to assess the solution for a certain problem is a com-
mon practice mentioned by participants. In addition, developer communities provide com-
parisons between technology solutions regarding their quality attributes (e.g. performance
benchmarks).

• (B-3) Communication between architects and technologists: Developer communities act as
a “social network” for architects and experts from technology vendors. For example, inter-
viewee I1 mentioned that “Sometimes, there is not enough information available, and you
cannot find what you want, but you can contact well-known experts in developer community
directly, specially experts who work in the company, which develop technology products”.
This communication is important especially when working with new technologies that have
not yet been sufficiently documented or explored by other users.

• (B-4) Solutions for a single and focused design problem: Each discussion in the developer
community focuses on a single problem and its varied solutions (see also B-1). This is an
advantage over trying to identify reusable knowledge in complete architectural documenta-
tions of previous systems, which provide a complete solution for several design issues.

• (B-5) No financial costs: AK in developer communities is free of charge. This is different
than asking help from an expert (e.g. technology consultants), who might charge their clients
for sharing their knowledge based. For example, interviewee I8 mentioned that “We need
to get all possible knowledge from the communities before asking an expert to minimize the
costs of consultancy”.

6.3.2 Problems Faced when Searching for AK in Developer Communities

We identified the following problems that architects face when searching for AK in developer
communities:

• (P-1) Complexity to describe design problems: It is complex to describe a design problem
for which a solution is sought. As interviewee I6 mentioned, “ It is hard to find the same
design situation in developers community. The problem is in the way to describe the prob-
lem and to reach it in the discussions, this connection is not there. (...) In programming
problems, you can search with the exception code and description, while design problems
have no code or clear description”.

• (P-2) Complex semantics of discussions: After posting a question and retrieving a list of the
most relevant posts from communities, practitioners need to read carefully the discussions
to understand the problems and their context. A careful understanding of text is essential,
because even similar design problems often involve lots of contextual differences. One
reason behind the textual complexity is the incomplete information provided by the users
who cannot share the full design context (e.g. business goals). Users try to overcome this
problem (lack of full context) through writing all possibilities using conditional statements,
which makes the text lengthy and obscure.

• (P-3) Required domain knowledge: When the architect is not an expert in the problem do-
main, it becomes harder to specify useful and meaningful keywords for a search in devel-
oper communities. This problem is driven by the fact that developer community websites

106

CHAPTER 6. USING DEVELOPER COMMUNITIES DURING ARCHITECTURE DESIGN

are scattered among different technological communities and not categorized according to
the domain or types of architecture design problems. Moreover, understanding the discus-
sions in developer communities requires familiarity with terms and concepts in this domain.
This makes searching based on keywords searching even harder.

• (P-4) Lack of trust in community: Some of the information in developer communities could
be wrong and misleading. Thus, architects need to be cautious in considering the proposed
solutions and their evaluations. When depending on untrusted sources of AK, it is also
harder to agree on a decision within a group [RM14]. As interviewee I6 stated, “Even if the
best solution is written in forums, the forum needs to be trusted and convince people that
this is the best practice in order to reduce conflict”.

• (P-5) Varying contexts for similar problems: Even though communities provide large amounts
of knowledge, it is hard to find an exact match for a given problem. This is because com-
plex design problems involve different possibilities of components design, technologies, and
requirements. This is different to programming problems, which are very specific. Intervie-
wee I2 stated that “In programming, you can find a snippet code, but in architecture, you
need to understand every word (...) because all what you read could be different from your
design situation”. Communities enhance the knowledge of architects to solve problems, but
do not provide a packaged final solution.

• (P-6) Limited capabilities of search engines for keyword-based searches: There are fewer
architecture-relevant discussions in developer communities compared to discussions around
programming problems. This makes it challenging for keyword-based searches to find rele-
vant AK in developer communities.

6.3.3 Solutions to Improve the Search for AK

Interviewees proposed the following solutions to improve AK sharing and reuse:

• (S-1)“Architecture-aware” semantics: Instead of depending on keywords to create a search
query for AK on developer communities (problem P-1), architects would benefit from de-
scribing queries using architecture concepts. For example, a query could support describing
a component design of a system using different levels of abstraction. Interviewee I5 sug-
gested that “I would like to specify the system applications and their technologies, and write
in a text to define my question, and I would like to get all similar issues, and proposed
solutions, with similar situations but different technologies”.

• (S-2) Semantic evaluation for the validity of opinions: Information validity is a problem
(problem P-4). As interviewee I1 stated, “It would be good to differentiate between opinions,
and already experimented and tried solutions”. Thus, additional possibilities for evaluating
the textual content of communities is needed. Interviewee I3 proposed that “A community
of experts should review the discussion to assess their relevance and validity”.

• (S-3) Knowledge categorization: Discussions in communities are usually categorized based
on the used technologies [TBS11a]. If we categorized discussions differently from an ar-
chitecture perspective (e.g. based on quality attributes, types of design problems), it could
facilitate searching for architectural problems and solutions to overcome the drawbacks of
keywords search engines (problem P-6). For example, interviewee I9 stated that “We need a
better sorting and categorization of discussions according to the design problems, the same
design could be linked to different technologies and industries”.

107

CHAPTER 6. USING DEVELOPER COMMUNITIES DURING ARCHITECTURE DESIGN

Table 6.2: Benefits, problems and solutions mapped to interviewees

Interviewee
I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Benefits
B-1 x x x x x x x x
B-2 x x x x x
B-3 x x
B-4 x x
B-5 x x

Problems
P-1 x x x x x
P-2 x x x x x
P-3 x x x x
P-4 x x x x
P-5 x x x x x x x
P-6 x x x x x

Solutions
S-1 x x x x
S-2 x x x x
S-3 x x x x
S-4 x x
S-5 x x
S-6 x x x x x x

• (S-4) Associate other AK resources to discussions: To support better understanding in dis-
cussions, AK might be linked to other sources to better understand the context of discussions
and solutions. For example, interviewee I4 proposed to “Provide references for resources
(e.g. papers or books) to understand the domain and the used notation”. This would help
architects, who are unfamiliar with a certain domain (problem P-3). This aspect is important
in relating the AK in developer communities with existing AK repositories.

• (S-5) Offer recommendations during design: AK should be available during design activi-
ties, in real-time and without much effort to describe design problems (P-1) and to search
for solutions (P-6). Interviewee I2 suggested to “... provide design recommendations during
work depending on the architectural situation, for example to know other alternatives for
a technology, or better components and technology integration”. Thus, information about
context need to be captured (automatically or semi-automatically).

• (S-6) Unified social network for AK: Current software architecture social networks spread
across technology providers in different domains (e.g. as communities of practice). This
complicates searching for AK using search engines (problem P-6). Interviewees proposed
creating a social network for software architects across different technology products and
domains. Such social network should a) aggregate distributed architecture-relevant dis-
cussions from different communities, and b) help communicate architecture problems and
solutions (e.g. sharing models).

108

CHAPTER 6. USING DEVELOPER COMMUNITIES DURING ARCHITECTURE DESIGN

trigger

trigger

ISA2

Context of Scenario

Requirements

Constraints

Design

Issues

ISA1

ISAn

Information

Intensive

Design

Activity

IST

AK

Sources

Figure 6.1: The main elements of a scenario to search for architecture knowledge.

6.4 Scenarios for Searching AK in Developer Communities

This section presents two contributions. First, we present in Section 6.4.1 the different conceptual
elements of a scenario to search for architectural information. Second, we present in Section 6.4.2
different scenarios and use-cases to search for architectural information in developer communities.
The contributions in this section provide an answer to RQ7.

6.4.1 Conceptual Elements of Scenarios to Search for AK

Architecture design activities are conducted within a design context, which involves requirements,
constraints and design issues. Some design activities require significant amounts of information
from sources of AK. We call these design activities information-intensive design activities. For
example, architecture synthesis [HKN+07] is an information-intensive design activity, because it
requires searching for architectural solutions. On the other hand, documenting the architecture
might not involve significant information seeking tasks, but other tasks (modeling, technical writ-
ing, etc.). Therefore, documenting the architecture is not an information-intensive design activity.
During each information-intensive design activity, architects go through scenarios to search for
AK.

Fig. 6.1 shows an illustrative diagram for the main elements of a scenario to search for AK.
Each scenario starts from an information intensive design activity, which involves one or more
information seeking task (IST). An IST is a task to search and gather specific information from one
or more sources of AK. The gathered information supports the architect to perform and complete
the rest of the tasks in the design activity. In order to complete ISTs, architects need to decide on
the possible sources of AK. Architects could rely solely on their own knowledge [HA11], or seek
help from external sources of AK (e.g. communities). To request assistance from external sources
of AK, architect performs several information searching activities (ISAs). For example, “Compare
ActiveMQ and RabbitMQ regarding their performance” is an IST, which needs to be completed
to perform the “solution synthesis” design activity. To complete this IST, architects could perform
the following ISAs: ask colleagues in the company about their experience with both technologies,
or search in online communities using search engines. Executing ISAs depends on the design
context (i.e. requirements, constraints, design issue), and the goal of the IST, which initiated the

109

CHAPTER 6. USING DEVELOPER COMMUNITIES DURING ARCHITECTURE DESIGN

(IST-1) Identify
Design Concept

(IST-2) Evaluate
Design Concept

(IST-4) Request
architecture peer

review

(IST-5) Search similar
experiences for

architecture review

3. Select
Element

4. Choose
Design Concept

5. Instantiate
Elements

6. Document
Architecture

2. Select
Drivers

7. Architecture
Analysis

1. Review
Inputs

Information Seeking Tasks (IST)ADD 3.0 design steps

(IST-3) Identify
Design Concept

Instantiation

Figure 6.2: Relating information intensive architecture design activities (in gray) with ISTs

searching scenario. For example, when searching in online communities using keyword-based
search engines, architects could use keywords which are derived from the design context (e.g.
name of technology, domain name, type of design problem) and the IST (e.g. keywords like
“difference” or “comparison” for ISTs, which compare and evaluate technologies).

Searching for AK can be considered an iterative learning process. If an ISA does not provide
sufficient knowledge to complete an IST, the architect would continue performing new ISAs until
sufficient knowledge has been gained to confidently complete an IST (within time and resource
constraints). This iterative learning characteristic distinguishes searching for AK from searching
for programming problems, where specific and final programming solutions (e.g. code snippets)
could be found (see P-5 in Sec. 6.3.2).

The conceptual elements in Fig. 6.1 provide the template for architectural design information
retrieval tasks. Based on this model, we created tasks, which have been used to experiment our
proposed searching approach in Chapter 8.

6.4.2 Examples and Types of Scenarios for Searching AK in Developer Communi-
ties

In this section, we present ISTs and ISAs identified in our study. We also present examples of
analyzed scenarios (obtained from the interviews) which combine concrete ISTs and ISAs.

To identify ISTs and ISAs, we followed several steps:

1. We first analyzed which ADD-3.0 steps are information-intensive design activities. As men-
tioned earlier in Sec. 6.2.2, we focused on ADD-3.0 as an exemplar architecture design
process [KC16]. This step resulted in three information-intensive design activities (left side
of Fig. 6.2).

2. Then, for each information-intensive design activity in ADD-3.0, we determined ISTs that
need to be performed in order to complete that information-intensive design activity. This

110

CHAPTER 6. USING DEVELOPER COMMUNITIES DURING ARCHITECTURE DESIGN

Table 6.3: Information searching activities (ISAs) for AK in developer communities

ID Information Searching Activity (ISA)
ISA-1 Search community through keywords search engines
ISA-2 Ask an expert in the community for specific information
ISA-3 Identify and browse architecture experts in communities

ISA-4
Browse and filter individual statements that contain AK
in community pages

ISA-5 Evaluate the validity of opinions in community pages
ISA-6 Identify architecture-relevant community pages
ISA-7 Write and submit a question to community

step resulted in five ISTs. Fig. 6.2 links the three information-intensive design activities in
ADD-3.0 (highlighted in grey) to their ISTs.

3. To get a list of ISAs, we annotated potential ISAs in scenarios and analyzed all scenarios
mentioned by the interviewees. This resulted in a list of ISAs as presented in Table 6.3.

Below we explain the links between ADD-3.0 design activities, ISTs and ISAs using examples of
scenarios obtained in the interviews:

• Architects start the architecture design process with three analysis steps (as defined in ADD-
3.0): 1. Review inputs (e.g. requirements, constraints), 2. Select drivers (e.g. quality
attributes) and 3. Select element from existing designs (if any).

• Next, architects conduct two synthesis steps which are both information-intensive architec-
ture design activities:

4. Choose design concept involves two ISTs: “Identify design concept” (IST-1) and “Select
design concept” (IST-2). In both ISTs, architects need to search for sources of AK (e.g. ex-
perts, books, developer communities), and collect information about architectural solutions
(e.g. alternative technologies), including their evaluation regarding quality attributes. For
instance, interviewee I8 mentioned the following scenario:

“We were searching for an n-memory grid, with replication and high availability (IST-1).
We search in Internet using search engines, there were much options (ISA-1) However, the
customer forced us to use a certain technology from a vendor, we were not familiar with this
technology, so we had to evaluate if it fits to the requirements (IST-2) We searched again
about this technology (ISA-1) we found lots of relevant information, we analyzed them
(ISA-4) but they were not the same scenario as our requirements, through the communities,
we identified an expert, who is one of the developers of the product (ISA-3) we consulted
him, and he guide us to the right way of using the technology in our scenario (ISA-2).”

5. Instantiate Elements involves one IST: “Identify design concept instantiation” (IST-3).
Here, the architect tries to determine the most suitable components configuration for the
previously selected architectural solution (e.g. number of layers after selecting the layers
pattern). For instance, interviewee I6 mentioned the following scenario:

”We had a ticket system and a CRM, which communicate with each other through an inte-
gration layer, both systems use different formats of data, so our design issue was to deter-
mine, which components should convert the data (IST-3) We searched for best practices in
Telecom forums (ISA-1) We select forums, which are trusted and respected by all partners”
(ISA-5)

111

CHAPTER 6. USING DEVELOPER COMMUNITIES DURING ARCHITECTURE DESIGN

• After determining the solution, architects document the proposed architecture (ADD-3.0
step 6).

• In step 7. Architecture analysis, several architecture analysis methods could be used. Some
of them involve ISTs. For example, to conduct an architecture peer review (IST-4), one
needs to identify experts who can review the architecture (ISA-4). Another method for
architecture analysis is searching for similar experiences (IST-5). The architect might con-
sider several sources of AK (e.g. existing architecture documents) or seek help from an
expert, who solved the same problem before (ISA-2, 4).

The analysis of searching scenarios support the creation of searching tasks, which have been used
to evaluate our approach to search for architectural information in developer communities (see
Chapter 8).

6.5 Discussion

6.5.1 Interpretation of Results

The findings presented in this chapter provide insights about the current state of practice of using
AK from developer communities. Developer communities are traditionally used to solve program-
ming problems (and were therefore researched in the past from a developer’s rather than from an
architect’s point of view). Our study is the first that empirically analyzes and describes the use of
developer communities for solving architecture-related design problems.

The problems mentioned by practitioners when using developer communities for architectural de-
sign show and verify the complexity of searching for relevant architectural information, when
solving a design issue. Our results align and verify with other experiences in the current state of
the art. For example, Gorton et al. experienced complexity to find relevant architectural infor-
mation when using commercial search engines. Our conceptual model to search for architectural
information as well as our identified use-cases show the iterative nature of searching for archi-
tectural information. Software engineers seek information from one source of knowledge, which
could motivates another search in another source of knowledge. Moreover, the use-cases show
some of the different stations, where software engineers go through to search for architectural in-
formation. Therefore, approaches for architecture knowledge management need to consider this
iterative nature of searching, as well as the different use-cases to find architectural information.

6.5.2 Implications of Results on further Research

The identified benefits, problems, and solutions mentioned by practitioners (Sec. 6.3) have the
following implications on further research steps:

1. Tools to search for AK in communities: Most of the problems and solutions mentioned by
the interviewees propose creating tools to facilitate using AK in communities. Relationships
between problems and solutions could suggest certain approaches. For example, problems
P-1 and P-6 and solution S-1 suggest building specialized semantic search engines (e.g.
[FCL+11]) to search for AK in communities.

112

CHAPTER 6. USING DEVELOPER COMMUNITIES DURING ARCHITECTURE DESIGN

2. Developing a new unified social network for software architecture: Solution S-6 is the most
common solution among the interview participants. A specialized social network for soft-
ware architecture would not only facilitate AK sharing, but it will increase the awareness
about the importance of software architecture among other software communities. The inter-
viewees mentioned some of the obstacles and solutions for building such a social network.
Further research efforts need to identify additional obstacles and solutions.

With regards to tool development, answers to RQ7 provide empirically-grounded requirements
and scenarios. For instance, our discovered ISTs and ISAs support defining requirements and use
cases for tools. We present below two possible examples for requirements in an AK management
system based on ISTs and ISAs:

1. Based on IST-3 and ISA-2, a requirement could be “The system should provide the possibil-
ity for architects to ask experts for suggestions on components design of the system”.

2. Based on IST-1, ISA-4, and ISA-6, a requirement could be “The system should provide the
ability to search for suitable and reliable design concepts through browsing the personal
profile of experts in relevant domains”.

Furthermore, ISTs and ISAs could be used to build frameworks to evaluate information retrieval
tools for AK searching. The evaluation of information retrieval tools is usually done through
simulated tasks [Bor00], which need to simulate real scenarios. The list of identified ISTs and
ISAs provides a reference list for possible types of tasks, which need to be considered to evaluate
tools.

The results in this chapter motivated and supported our work in this thesis to develop an effective
approach to search for architectural information in developer communities. In Chapter 8, we used
our proposed conceptual model in Section 6.4.1 to develop a template for an architectural search-
ing task. This template has been used during the evaluation of our proposed search approach. We
additionally used the scenarios provided by practitioners in this chapter to create searching tasks
to evaluate our proposed enhanced search approach.

113

7
Classification Approaches for
Architecture-relevant Posts

7.1 Research Questions and Contributions . 114
7.2 Corpus to Evaluate Classification Approaches 115
7.3 Exploring Tags for Identifying Architecture-relevant Posts 116
7.4 Classifying Stack Overflow Posts for Architectural Relevance 117
7.5 Evaluation of Classification Approaches . 121
7.6 Significant Terms and Ontology Classes . 127
7.7 Discussion . 131

7.1 Research Questions and Contributions

This chapter provides answers for RQ8 and RQ9:
RQ8: How can we automatically identify architecture-relevant posts in Stack Overflow and sepa-
rate them from pure programming-related posts?

RQ9: What are terms and ontology concepts in Stack Overflow posts, that distinguish ARPs from
programming posts?

By answering RQ8 and RQ9, we support achieving the third goal of the dissertation "Propose
approaches to search for architectural information in developer communities" (see Chapter 1). To
answer RQ8 and RQ9, we develop and compare a set of classification approaches to automatically
identify and classify architecture-relevant posts in online developer communities. In detail, our
contributions are the following:

• We develop several classification approaches (Section 7.4) to automatically separate architecture-
relevant posts from pure programming-related posts in Stack Overflow. The classification
approaches also classify architecture-relevant posts into sub-categories to support specific
architecture design steps. The classification approaches are combinations of different ways
of preprocessing posts (i.e. transforming the text of posts into feature vectors for machine
learning algorithms) and existing machine learning-based classification algorithms. Some
of the approaches not only consider the textual content of posts, but also use our proposed
AK ontology (see Chapter 5), which captures concepts relevant to software architecture.

114

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

• To evaluate and compare the classification approaches and to decide which combination of
preprocessing approach and classification algorithm works best (Section 7.5), we conducted
experiments using our proposed corpus of classified Stack Overflow posts (see Chapter 4).

• We identify in Section 7.6 the most significant terms and ontology classes to identify and
classify ARPs in developer communities. The terms and ontology classes are sorted accord-
ing to their impact on classification.

The classification approach is a first step towards automatically identifying AK in online commu-
nities based on semantic information captured in an ontology of AK concepts rather than depend-
ing solely on lexical features (i.e. words in text). Also, it is the first approach that utilizes online
developer communities to support architecting tasks and extends recent efforts to capture AK from
textual contents of web pages [GXY+17] and issue trackers [BSB+17]. Moreover, our proposed
classification approaches support developing an enhanced search approach for architectural infor-
mation in developer communities answering (see Chapter 8).

Before presenting our classification approaches, and their evaluations in Sections 7.4 and 7.5. We
explore first the possibility of using using tags assigned by community users to identify ARPs in
Section 7.3. We show that ARPs cannot easily be identified using the tagging system offered by
many online developers communities. Therefore, we propose text-based classification approaches
in Section 7.4 which we then evaluate in Section 7.5. In Section 7.6, we present the most signif-
icant terms and ontology classes to identify and classify ARPs. Finally, we discuss the results of
our work in Section 7.7.

7.2 Corpus to Evaluate Classification Approaches

The classification approaches presented in this chapter rely on supervised classification algorithms.
To develop, analyze and test the classification approaches and to train classification algorithms,
manually classified posts are required. In this section, we describe our corpus, which is used for
training and evaluating the classification approaches. The corpus consists of two samples:

1. Development Sample: This sample is used to evaluate the accuracy of the classification
approaches. In addition, it is used to answer RQ9, and support analyzing the characteristics
of the classification approaches.

2. Testing Sample: This sample is used only for testing the proposed classification approaches
regarding its generalizability of our approach.

Both samples are presented in the following sub-sections.

7.2.1 Development Sample

The development sample used our existing corpus of Stack Overflow posts (see Chapter 4). These
posts were classified by practitioners as architecture-relevant posts (including the type of ARP) or
programming posts. The development sample includes two datasets:

115

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

1. 2-class dataset: This dataset includes two classes of posts (858 ARPs, 1,653 programming
posts). We used this dataset to test how developed classification approaches separate ARPs
from programming posts.

2. 4-class dataset: This dataset includes four classes of posts (1,653 programming posts and
three compact types of ARPs [282 technology identification posts, 291 technology evalu-
ation posts and 285 features and configuration posts]). Appendix A provides list of ARPs
in the development sample. Moreover, we provide complete list of posts online1 and in the
companion CD.

7.2.2 Testing Sample

The data of the testing sample has been collected and evaluated using the same methodology as
our corpus (see Chapter 4), but instead of using middleware posts we collected posts related to
big-data. In addition, the data has been classified similar to the development sample (i.e. 2-class
and 4-class datasets):

1. 2-class dataset: This dataset includes two classes of posts (172 ARPs, 143 programming
posts).

2. 4-class dataset: This dataset includes four classes of posts (143 programming posts and
three types of ARPs [50 technology identification posts, 65 technology evaluation posts and
57 features and configuration posts])

In summary, we followed these steps to gather the testing sample:

1. Gather Stack Overflow posts, which discuss questions related to bigdata technologies. We
chose big-data as the "topic" of our corpus since it is an established and recent topic in
software architecture (e.g. [GKN15]). Posts were collected using SQL queries through the
StackExchange Explorer based on keywords of technology names. See Appendix A regard-
ing the names of big-data technologies considered in queries.

2. Classify Stack Overflow posts manually into the three types of ARPs and programming
posts using a summarizing qualitative content analysis method [May14].

3. Evaluate classification of posts through feedback from practitioners. 50% of the posts have
been given to practitioners to verify their architecture relevance. The evaluation resulted in
87% agreement.

7.3 Exploring Tags for Identifying Architecture-relevant Posts

Some online developer communities (including Stack Overflow) allow users to tag posts to specify
the topic of a post. Therefore, we explored if tags are sufficient to distinguish ARPs from program-
ming posts. We did this using the 2-class dataset in the development sample, which is discussed
in Section 7.2. For each tag used for posts in that dataset, we calculated the percentage of ARPs
and programming posts that use that tag (relative to the total number of ARPs and programming

1https://swk-www.informatik.uni-hamburg.de/~soliman/Dissertation.zip

116

https://swk-www.informatik.uni-hamburg.de/~soliman/Dissertation.zip

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

Table 7.1: Top tags with highest differences in occurrences between Stack Overflow programming
posts and ARPs

Tag % of ARPs % of programming
posts

Difference
in %

web-services 11.4% 4.92% 6.47%
soap 9.19% 3.12% 6.07%

message-queue 6.05% 0.9% 5.14%
rest 6.86% 2.01% 4.85%
java 15.81% 11.16% 4.66%

rabbitmq 8.37% 4.12% 4.25%
jms 6.05% 1.91% 4.14%

zeromq 4.3% 0.5% 3.8%
rpc 4.4% 0.8% 3.61%
soa 3.7% 0.3% 3.42%

architecture 3.49% 0.1% 3.39%

posts). We then compared these percentages between ARPs and programming posts to see if there
are tags that appear differently in both types of posts. Table 7.1 shows the top list of tags with the
biggest differences in their occurrences between ARPs and programming posts. Further details
and results of the analysis can be found in Appendix C and in the companion CD.

Furthermore, we tested if there is a significant difference in the occurrences of tags between both
types of posts using a t-test with equal variances [Mon06]. We found that there is no statistical
significant difference (t(2488) = 0.464, p = 0.642). Table 7.1 shows that the biggest difference
in the occurrence of tags is for the tag “web-services”. However, this difference is only 6.47%
(i.e., the “web-services” tag appears 6.47% more frequently in ARPs than in programming posts).
Moreover, seven tags out of the top eleven tags are technology names. The “architecture” tag only
appears 3.39% more frequently in ARPs than in programming posts and more than 96% of ARPs
have no “architecture” tag. Therefore, we conclude that tags are not sufficient to differentiate
between architecture and programming posts. Instead, we need to examine the content of posts
using text-based classification, which is presented in the next section.

7.4 Classifying Stack Overflow Posts for Architectural Relevance

7.4.1 Overview

The goal of our text-based classification is to classify posts into predefined categories (three types
of ARPs and programming posts, see Section 7.2). This is a text classification problem. There-
fore, topic modeling approaches (e.g. LDA) to discover undefined topics are not applicable. The
classification approaches that we developed have two main components:

1. Preprocessing: Preprocessing transforms words in posts into a feature vector. A feature
vector is a vector of numbers , which represents important classification features. Natural
language has a lexical and a semantic dimension [Gle05]. Therefore, we explored two
preprocessing approaches. Each approach produces different classification features:

(a) Lexical features of text in posts using the Bag-of-Words approach [MS99] (Section 7.4.2).

117

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

(b) Semantic features of text in posts using an ontology-based classification which cap-
tures architecture-relevant semantics [FGWY07] (Section 7.4.3).

2. Classification algorithm: Classification algorithms use feature vectors to develop a classi-
fication model to automatically categorize posts. The model is developed through training
previously classified posts, and then used to classify new posts. We propose the use of dif-
ferent classification algorithms (e.g. Naive Bayes, random forest) in Sections 7.4.2, 7.4.3
and compare them in Section 7.5.

We also experimented with an ensemble learning approach [Rok10] to combine the results of
different classification approaches into a single approach (Section 7.4.4).

7.4.2 Bag-of-Words Classification

Bag-of-Words uses individual words in posts to determine characteristics of the text [SM86]. The
frequency of each word as well as the frequency of sequences of words in posts are used as features
for training classification algorithms. An advantage of this approach is its simplicity and ability to
capture lexical differences in words [SM86].

Preprocessing: To transform textual posts into a feature vector, we first removed stop words from
posts1. This reduces noise and increases the chance for distinctive sequence of words to be trans-
formed into single features. Then, we used an n-gram sequence classification approach [XPK10]
to capture the sequence of common words. The frequency of each unique sequence of words is
treated as a feature.

Classification algorithms: We used the feature vectors with the Naive Bayes [JL95] and Bayesian
Network [FGG97] algorithms. These algorithms are known for their ability to classify documents
based on sequences of textual segments [JL95, FGG97]. We used Weka [HFH+09] to experiment
with variations of n-gram sequences: n= 1, 3 and 5 for Naive Bayes (VBnG), and n = 3 and 5 for
Bayesian Network (BNnG). We found that any n > 5 did not yield better results. The evaluation
results for the different algorithms are presented in Section 7.5.

7.4.3 Ontology-Based Classification

The classification approaches developed in this section use an ontology-based document classifica-
tion approach [FGWY07]. Our proposed AK ontology in developer communities (see Chapter 5)
has been used to implement the proposed classification approaches in this sub-section. To explore
both the impact of individual ontology classes and sequences of ontology classes on identifying
architecture-relevant posts, we separately explored single-ontology-class and multi-ontology-class
classification approaches.

1Stop words are the most commonly used words in a language, For example, prepositions (“in”, “at”, etc.), pro-
nouns (“he”, “it”, etc.), and articles (“the”, “a”). We used a standard list of stop-words http://astellar.com/
2011/12/stopwords-for-sphinx-search/

118

http://astellar.com/2011/12/stopwords-for-sphinx-search/
http://astellar.com/2011/12/stopwords-for-sphinx-search/

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

7.4.3.1 Single-ontology-class Classification

The single-ontology-class approach relies on features from separate simple ontology classes and
lexical triggers (see Chapter 5).

Preprocessing: We used two types of features, which were derived from simple ontology classes
and lexical triggers.

1. Total number of instances: Total number of words in a post which belong to a simple ontol-
ogy class or lexical trigger (we use the prefix “num” before the ID of the ontology class to
refer to these features).

2. Distinct number of instances: Distinct number of words in a post (without duplicates) which
belong to an ontology class (we use the prefix “dist” before the ID of the ontology class
to refer to these features). This type of feature is used to distinguish posts which have
multiple different words from the same ontology class. For example, posts that discuss
different technologies and quality attributes might be about evaluating technologies, since
they compare architectural alternatives rather than details about implementing one particular
software functionality using a specific technology.

An example of the use of the two types of features is the following: If “WCF” was mentioned three
times in a post, and “RabbitMQ” twice, the feature numTEC will be counted five times, while the
feature distTEC will be counted twice for ontology class Technology Solution (TEC).

We also consider some features which are commonly used (e.g. [ZYL+15]) to classify Stack
Overflow posts:

1. hasSourceCode: Boolean feature which checks whether an answer part of a post contains
source code. Source code is a characteristic of programming posts [NSMB12b] and there-
fore hints to posts which potentially are not architecture-relevant.

2. numParagraphs: Numerical feature that counts the number of paragraphs in a post [ZYL+15].
Architecture-relevant posts may be longer than programming posts because they include
more detailed discussions about the context of a problem, design alternatives and their im-
plications.

3. numWords: Similar to numParagraphs, but counting the number of words in a post [ZYL+15].

We used the frequency of terms for weighting our feature, after comparing its results with the term
frequency-inverse document frequency [WFH11].

Classification algorithms: We used Weka [HFH+09] to compare five algorithms: decision trees
(J48) [Qui93], random forest (RF) [Bre01], decision table (DT) [Koh95], support vector ma-
chines using the sequential minimal optimization (SVM) [Pla99], and logistic model trees (LMT)
[LHF05]. These algorithms were chosen because they have previously been used successfully for
document classification [Seb02] and software engineering problems [TR16].

119

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

 RabbitMQ gave slightly better performance than MSMQ

 RabbitMQ give slight good performance than MSMQ

Lemmatization

Abstraction

TEC SUPP VAL QA

TEC

Feature encoding

TEC SUPP

SUPP VAL

VAL QA

QA

TEC

TEC SUPP VAL

SUPP VAL QA

VAL QA TEC

TEC SUPP VAL QA

SUPP VAL QA TEC

2-gram 3-gram 4-gram

Figure 7.1: Example of multi-ontology-class preprocessing

7.4.3.2 Multi-ontology-class Classification

The single-ontology-class classification does not identify composite ontology classes. Therefore,
we also explore multi-ontology-class classification, which treats each possible sequence of single
ontology classes and lexical triggers as features.

Preprocessing: To transform text in posts into features (i.e., sequences of ontology classes), we
followed the steps below (Fig. 7.1 shows an example):

1. Lemmatization converts the inflected forms of a word into a single form so they can be
analyzed as a single item. This allows capturing more words for one ontology class. We
used the Stanford Core NLP1 lemmatizer.

2. Abstraction replaces all words which belong to one of the ontology classes with the name of
that ontology class. Words which do not belong to any of the ontology classes are removed.
This step results in a sequence of ontology class names for each post.

3. Sequential feature encoding captures all possible combinations of sequences of ontology
classes in a post through n-gram processing. For example, by applying 5-gram on the iden-
tified ontology classes for the sentence in Fig. 7.1, we get a total of 15 sequences between
1-gram and 5-gram. The frequency of each unique sequence of ontology classes is treated
as a feature.

Classification algorithms: We processed feature vectors with the Naive Bayes [JL95] and Bayesian
Network [FGG97] algorithms since these algorithms are suitable for classifying documents based
on sequences of textual segments [JL95, FGG97]. We used Weka [HFH+09] to experiment with
variations of n-gram sequences [XPK10]: n= 1, 3 and 5 for Naive Bayes (VBnG), and n = 3 and
5 for Bayesian Network (BNnG). These are the same classification algorithms as used with the
Bag-of-Words, but applied to sequences of ontology classes rather than to sequences of words.

7.4.4 Ensemble Learning

In the previous sections, we introduced different classification approaches, which use three pre-
processing techniques to define features and feature vectors (Bag-of-Words, single-ontology-class,

1http://stanfordnlp.github.io/CoreNLP/

120

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

and multi-ontology-class) and different classification algorithms. Combining the different ap-
proaches together would make use of the benefits of each to potentially improve the quality of clas-
sification. To achieve this, we performed ensemble learning using the voting algorithm [KHDM98].
The voting algorithm takes the probabilities of a post for being of a certain type as computed by
each classification approach and calculates an average probability. We chose the voting algorithm
for ensemble learning after a comparison with the boosting ensemble learning algorithm [Kun04].
The boosting ensemble learning algorithm did not improve the quality of the classification above
the quality of the individual classification approaches combined in the ensemble.

7.5 Evaluation of Classification Approaches

The comparison of the classification approaches from Section 7.4 aims at identifying approaches
which are most accurate for identifying and classifying architecture-relevant posts. We evaluated
classification approaches regarding two main aspects:

1. Accuracy of classification approaches: The accuracy to identify and classify ARPs from the
same domain. The evaluation uses the development sample from our evaluation corpus in
Section 7.2.1. The results of the evaluation is presented in sub-section 7.5.1.

2. Generalisability of classification approaches: Their accuracy to identify and classify ARPs
from a different domain. The evaluation uses the testing sample from our evaluation corpus
in Section 7.2.2. The results of the evaluation is presented in sub-section 7.5.2.

7.5.1 Accuracy of Classification Approaches

7.5.1.1 Study Design

To train and test the different classification approaches, we used both the 2-class and 4-class
datasets from the development sample as described in Section 7.2.1. The 2-class dataset was
used to classify posts into ARPs and programming posts. The 4-class dataset was used to classify
ARPs into sub-types. To compare the different classification approaches, we performed a ten-fold
cross-validation [Bis06]. All posts in the corpus were randomly assigned to ten groups. We then
trained the different classification algorithms on nine groups and tested them on the remaining
group. Each group served as testing group once, i.e., we performed ten experiments. We calcu-
lated true-positives (TP), true-negatives (TN), false-positives (FP), and false-negatives (FN). We
then computed for each of the ten experiments the precision P, recall R, and F-score F1 as the
harmonic mean of precision and recall. The larger F1, the “better” the results.

7.5.1.2 Results

Tables 7.2, 7.3 and 7.4 compare the different classification approaches using the different methods
of preprocessing: Bag-of-Words, single-ontology-class and multi-ontology class classification re-
spectively. The comparison is based on the average P, R and F1 across the ten experiments for
each classification approach. We highlight the best performing classification algorithms in bold.
The best performing classification approaches A1 to A3 are:

121

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

Table 7.2: Comparison of Classification Approaches using the Bag-of-Words

Classifiers used with Bag-of-Words
Data-set VB1G VB3G VB5G BN3G BN5G

2-Classes
P 0.777 0.778 0.781 0.769 0.770
R 0.774 0.780 0.783 0.771 0.772

F1 0.775 0.779 0.781 0.770 0.771

4-Classes
P 0.729 0.732 0.732 0.726 0.730
R 0.686 0.698 0.697 0.711 0.715

F1 0.703 0.712 0.711 0.718 0.722

Table 7.3: Comparison of Classification Approaches using the Single-Ontology-Class

Classification Approaches using Single-Ontology
Data-set J48 RF DT SVM-SMO LMT

2-Classes
P 0.736 0.811 0.760 0.813 0.817
R 0.739 0.812 0.765 0.816 0.819

F1 0.737 0.806 0.756 0.811 0.816

4-Classes
P 0.633 0.677 0.656 0.694 0.725
R 0.656 0.740 0.715 0.743 0.756

F1 0.644 0.677 0.656 0.694 0.725

Table 7.4: Comparison of Classification Approaches using the Multi-Ontology-Class

Multi-Ontology-Class Classification Approaches
Data-set VB1G VB3G VB5G BN3G BN5G

2-Classes
P 0.718 0.743 0.766 0.745 0.745
R 0.703 0.729 0.767 0.742 0.742

F1 0.708 0.733 0.766 0.743 0.743

4-Classes
P 0.660 0.695 0.701 0.686 0.689
R 0.635 0.626 0.652 0.645 0.65

F1 0.630 0.651 0.672 0.661 0.666

Table 7.5: Comparison of the Best Performing Classification Approaches and their Combination
using the Ensemble Learning

Pre-processing Bag-of-Words Single-Ontology
Class

Multi-Ontology
Class Ensemble

Classification
Algorithms

VB5G LMT VB5G Voting

2-Classes
P 0.781 0.817 0.766 0.847
R 0.783 0.819 0.767 0.840

F1 0.781 0.816 0.766 0.842
Classification
Algorithms

BN5G LMT VB5G Voting

4-Classes P 0.730 0.725 0.701 0.737
R 0.715 0.756 0.652 0.733

F1 0.722 0.725 0.672 0.734

122

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

Figure 7.2: Comparing F-scores across different classification approaches and types of posts in
the 2-class dataset

Figure 7.3: Comparing F-scores across different classification approaches and types of posts in
the 4-class dataset

• A1: Bag-of-words using algorithms VB5G for 2-class dataset and BN5G for 4-class dataset.

• A2: Single-ontology-class classification using LMT (for both data sets).

• A3: Multi-ontology-class classification using VB5G (for both data sets).

The best classification result is achieved by the ensemble learning using the voting algorithm when
it combines the results of the best performing classification algorithms A1, A2, and A3. Table 7.5
shows the results of the voting ensemble learning.

To further understand the results in Tables 7.2, 7.3, 7.4, and 7.5, and to understand which classi-
fication approaches work better for which type of posts (ARPs and programming posts), we cal-
culated F1 for each type of posts using classification approaches A1, A2 and A3. Fig. 7.2 and 7.3
show a comparison of the classification approaches for both the 2-class and 4-class datasets. From
Fig. 7.2, we make two observations:

1. All classification approaches are better at identifying programming posts than at identifying
ARPs.

2. The single-ontology class classification (using LMT) performs better for identifying ARPs
compared to the multi-ontology class classification (using VB5G) and Bag-of-Words (using
VB5G).

Based on Fig. 7.3, we observe the following:

123

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

Table 7.6: Confusion matrix for classification approaches

True
Programming

True
Technology

identification

True
Technology
evaluation

True
Features and
configuration

A1: Bag
of

Words
(VB5G)

Programming 1,354 47 53 92
Technology
identification

53 82 24 21

Technology
evaluation

77 35 163 72

Features and
configuration

141 14 47 100

A2: Single
ontology
class
(LMT)

Programming 1,546 102 84 154
Technology
identification

20 33 18 8

Technology
evaluation

24 27 146 53

Features and
configuration

35 16 39 70

A3: Multi
ontology
class
(VB5G)

Programming 1,224 59 41 90
Technology
identification

104 58 59 22

Technology
evaluation

86 46 144 51

Features and
configuration

211 15 43 122

1. The Bag-of-Words approach (using BN5G) achieves a higher F1 than the ontology-based
approaches when classifying “Technology identification” ARPs.

2. The single-ontology-class approach (using LMT) yields better results when identifying pro-
gramming posts than any of the other approaches. On the other hand, it performs poorly
when identifying “Technology identification” posts.

3. The multi-ontology-class classification (using VB5G) is better at identifying “Features and
configuration” ARPs than the other approaches.

4. All classification approaches could identify “Technology evaluation” ARPs better than “Tech-
nology identification” and “Features and configuration” ARPs.

If we compare Fig. 7.2 and Fig. 7.3, we notice that all classification approaches are better at
separating ARPs from programming posts (Fig. 7.2) than classifying the three types of ARPs
(Fig. 7.3).

7.5.1.3 Analysis of Classification Accuracy

To explain the reasons behind the results in Table 7.5, Fig. 7.2 and 7.3, we created a confusion
matrix for the best performing classification approaches A1 to A3. Table 7.6 shows a confusion
matrix with true positives for each type of posts (columns) and the results of the classification for
each of the best performing classification approaches A1 to A3 (rows). From the confusion matrix,

124

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

Table 7.7: Comparing F-scores across different classification approaches using the development
sample as training data and testing sample for testing the generalizability of the classification
approaches

Pre-processing Bag-of-Words Single-Ontology
Class

Multi-Ontology
Class

Classification
Algorithms

VB5G LMT VB5G

2-Classes
P 0.845 0.824 0.804
R 0.844 0.8 0.804

F1 0.844 0.797 0.804
Classification
Algorithms

BN5G LMT VB5G

4-Classes P 0.658 0.653 0.613
R 0.656 0.666 0.617

F1 0.646 0.617 0.604

we can determine the types of posts which the classification approaches could not separate from
each other. For example, 1,354 in the first row means that 1,354 posts were correctly classified
as programming posts. 53 in the next row means that 53 programming posts were incorrectly
classified as “Technology identification” posts. From Table 7.6, we can observe the following:

• The single-ontology-class approach (using LMT) classifies most “Technology identifica-
tion” ARPs as programming posts, while the multi-ontology-class approach (using VB5G)
classifies most “Technology identification” ARPs as either programming posts or “Technol-
ogy evaluation” ARPs.

• When classifying “Features and configuration” ARPs, all classification approaches falsely
classify “Features and configuration” ARPs as programming posts.

7.5.2 Generalisability of Classification Approaches

The proposed classification approaches in the previous sections were trained and tested based on
the development sample in Section 7.2.1. The development sample is a sample of posts from the
middleware domain. We therefore tested to what degree the proposed classification approaches
would generalize to posts from another technology domains.

7.5.2.1 Study Design

We trained the best performing classification approaches (A1 to A3 - see Section 7.5.1) on the
whole development sample (middleware technologies - see Section 7.2.1) and tested them on the
testing sample (big data technologies - see Section 7.2.2). Our goal here is to evaluate the ability
of the proposed classification approaches to classify posts from different technology domains.
Similar to Section 7.5.1, we calculated the precision P, recall R, and F-score F1 for each approach.

125

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

Figure 7.4: Comparing F-scores across different classification approaches and types of posts in
the 2-class dataset using the development sample as training data and testing sample for testing
the generalizability of the classification approaches

Figure 7.5: Comparing F-scores across different classification approaches and types of posts in
the 4-class dataset using the development sample as training data and testing sample for testing
the generalizability of the classification approaches

126

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

7.5.2.2 Results

Table 7.7 presents the classification results across the different classification approaches. The
results using the 2-class data-sets show that the single-ontology class classification approach pro-
duce similar classification performance to the results on the development sample of posts, while
the bag-of-words and the multi-ontology-class classification approaches show improvement in its
performance when testing it on the big data sample. This shows that the classification approaches
are stable to potentially perform well for different domains, when identifying architecture-relevant
posts and separating them from programming posts. On the other hand, the results in Table 7.7
shows lower accuracy, when using the 4-classes data-sets (i.e. when classifying ARPs into its
sub-types). Moreover, the bag-of-words approach shows better accuracy than the single and multi
ontology class approaches. This is different from Table 7.5, where the single-ontology-class per-
forms better.

Similar to Section 7.5.1, we calculated precision, recall and F-score for each type of post sepa-
rately. Fig 7.4 and 7.5 compare the F-score for each type of posts among the 2-class and 4-class
data-sets respectively.

From Fig. 7.4, we can observe that all classification approaches could accurately distinguish
between big-data programming posts and ARPs. The results show an improvement to identify
ARPs over classifying posts from the middelware domain as presented in Fig. 7.2. Moreover, the
results in Fig. 7.4 show no significant differences between the different classification approaches.
This is also different from the results in Fig. 7.2 when classifying middelware posts.

When comparing the results of classifying middelware posts in Fig. 7.3 with classifying Bigdata
posts in Fig. 7.5, we notice the following observations:

• The accuracy of classifying Bigdata posts has been slightly decreased for all types of posts
(except the "Technology Evaluation" ARPs).

• All classification approaches could significantly better identify "Technology Evaluation"
ARPs, when classifying bigdata posts.

• There are no significant differences between the different classification approaches.

7.6 Significant Terms and Ontology Classes

In order to answer RQ9 and identify terms and ontology classes, which distinguish ARPs from
pure programming posts, we performed a quantitative content analysis using a data mining algo-
rithm. We used in our analysis the classified posts from the development sample (858 ARPs, and
1,653 programming posts) in Section 7.2.1.

7.6.1 Significant Terms to Identify ARPs

To identify important terms, which support identifying ARPs, we followed two steps:

1. Preprocessing of Posts: We followed a preprocessing similar to Section 7.4.2. To remove
the noise from the posts for the data mining algorithms, we first removed stopwords, which

127

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

are common words in the English language (e.g., "the", "is"). We used a standard list of
stopwords1. We also removed numbers and punctuation symbols. Then, we transformed
each post section (title, question, and answers) into a "vector of features", which is a vector
of 0s and 1s, where each element of a vector shows if a certain word of the list of all
words in all posts exist in this post (value of 1) or not (value of 0). We considered the post
title, question and answer separately. Thus, each post is associated with three "vectors of
features" which represent the existence of words in each of the post sections. In addition,
each vector is marked as being either an ARP or programming post.

2. Terms Selection and Ranking: We used the "Information Gain Ratio" algorithm [Qui93]
provided by the data mining tool Weka 3 [HFH+09] to extract the words, which distinguish
ARPs and programming posts. The "Information Gain Ratio" ranges between 0 and 1 and
expresses the generative probability ranking of each word with respect to the class (ARP or
programming post). In other words, it measures the ability of a word to split the population
of posts correctly into the two main classes. Thus, a word with a higher "Information Gain
Ratio" has a better ability to classify the posts between ARPs and programming posts be-
cause this word is more unique and common for one particular type of post. The algorithm
is based on the C 4.5 decision tree learning algorithm, which is one of the most popular
algorithms in data mining [WKRQ+07]. As a result from this step, we got a list of all words
mentioned in the posts, and their "Information Gain Ratio".

We present in table 7.8 the top 30 terms and ratios derived from the "Information Gain Ratio"
algorithm. The distinctive terms in the post title, question, and answers are represented as sepa-
rate columns in table 7.8, and the gain ratio is associated with each term. The terms are sorted
descendingly according to their gain ratio. Appendix C provides an additional list of terms and
a complete list of terms is provided in the companion CD. From table 7.8, we notice that many
of the mentioned terms might refer to existing architectural concepts. For example, words such
as "scalability", "throughput" and "availability" are amongst the top 20 distinctive words, which
are used usually to refer to quality attributes, while words such as "pros/cons", "compared" and
"decision" might refer to a decision making situation, where the architect needs to decide between
two or more architectural solutions. In addition, we notice that technology names (e.g. "xmpp",
"tibco", "amqp") as well as architecture patterns (e.g. "broker", "soa", "messaging") are part of
the list of words to distinguish ARPs from programming posts. Note that the terms do not express
a strict relationship between the terms and architectural concepts. However, the mentioned obser-
vations could give an indicator for the existence of such relationships. For instance, many of these
terms show up in ARPs as terms, which represent certain ontology classes (see Chapter 5).

7.6.2 Significant Ontology Classes to Identify ARPs

We are specifically interested in ontology classes, because they represent the semantics of text
which could be common among different online developer communities. For example, if we want
to develop a new classification approach for a new community, a new ontology-based approach
could primarily utilize ontology classes with the highest impact on the classification of posts. Sim-
ilar to the classification approaches, we are interested in simple ontology classes and composite
ontology classes. We explore both in the following sub-sections.

1http://astellar.com/2011/12/stopwords-for-sphinx-search/

128

http://astellar.com/2011/12/stopwords-for-sphinx-search/

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

Table 7.8: Top 30 distinctive terms between the ARPs and PPPs in our sample

Title term
and gain ratio

Question term
and gain ratio

Answer term
and gain ratio

soa 0.171 scalability 0.176 throughput 0.177
alternatives 0.169 compared 0.175 scaling 0.168

versus 0.167 pros/cons 0.162 xmpp 0.162
comparison 0.151 subscribers 0.162 cloud 0.159
lightweight 0.151 pros 0.159 scalable 0.155
notification 0.151 cons 0.159 tibco 0.148
choosing 0.151 meet 0.154 broker 0.141

distributed 0.148 real-world 0.151 esb 0.14
apps 0.148 amqp 0.151 enterprise 0.14

real-time 0.144 xmpp 0.148 governance 0.14
backend 0.144 mule 0.148 messaging 0.137
oriented 0.144 decision 0.124 brokers 0.136

pros 0.144 soa 0.116 redis 0.136
cons 0.144 corba 0.116 soa 0.132
ready 0.144 messaging 0.11 lightweight 0.129

middleware 0.144 scalable 0.106 scalability 0.128
share 0.14 balancing 0.106 udp 0.128

experience 0.14 availability 0.106 mule 0.128
dto 0.14 dtos 0.106 activemq 0.127

communicate 0.14 alternatives 0.104 bus 0.126
broker 0.14 advantages 0.102 buffers 0.125
layer 0.14 benefits 0.101 scale 0.124

latency 0.14 middleware 0.101 tier 0.124
messaging 0.137 ec2 0.101 ems 0.124
rendezvous 0.135 broker 0.1 systems 0.122

disadvantages 0.135 ipc 0.094 faster 0.121
delivery 0.135 twisted 0.094 subscribers 0.12
xmpp 0.135 technologies 0.092 nservicebus 0.12
bean 0.135 entities 0.088 mature 0.118

payloads 0.135 considering 0.087 benefits 0.118

129

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

Table 7.9: Features (Based on Ontology Classes) with Highest IGR

2-class dataset 4-class dataset
Features IGR Features IGR
1 numCOM 0.118 distQA 0.135
2 distQA 0.117 numCOM 0.128
3 numDIF 0.108 numDIF 0.125
4 hasSourceCode 0.104 hasSourceCode 0.107
5 numQA 0.092 numSUPP 0.106
6 numSUPP 0.091 numQA 0.103
7 numSPED 0.090 numVAL 0.097
8 numVAL 0.084 numSPED 0.094
9 distTEC 0.070 distTEC 0.080
10 numPAT 0.066 numPAT 0.079
11 numCON 0.064 numCON 0.077
12 numREL 0.062 numREL 0.070

7.6.2.1 Simple Ontology Classes and Lexical Triggers

To understand the influence of ontology classes on the quality of the ontology-based classification,
we performed the same preprocessing as in Section 7.4.3.1. We then applied the “Information
Gain Ratio” (IGR) [Qui93]. We calculated the information gain for both the 2-class and 4-class
datasets in the development sample as described in Section 7.2.1. Table 7.9 shows the ranking of
the top individual ontology classes in Stack Overflow posts. Complete list for ranking of ontology
classes is available in Appendix C. Ontology classes QA and COM are the most influential simple
ontology classes for classifying posts. In addition, several lexical triggers (especially adjectives)
have high impact on the classification. When comparing features that count the distinct number
of occurrences to their counterparts that count the total number of occurrences (e.g. numTEC
versus distNumTEC, see Section 7.4.3.1) we notice that the distinctive frequency is more suitable
to classify posts for ontology classes QA and TEC.

7.6.2.2 Sequences of Ontology Classes and Composite Ontology Classes

We checked whether sequences of single-ontology classes used as features matched composite
ontology classes. This was to ensure that there is indeed a relationship between the ontology
classes and sequences of ontology classes found in posts and used as features. We performed
here the same preprocessing as in Section 7.4.3.2. We then applied the “Information Gain Ratio”
(IGR) [Qui93]. Table 7.10 shows a ranked list (based on “Information Gain Ratio”) for the top 10
sequences of ontology classes for both the 2-class and 4-class datasets in the development sample
as described in Section 7.2.1. Appendix C and the companion CD provide a complete list of
sequences of ontology classes. The majority of sequences matched composing classes for at least
one of the composite classes in Chapter 5. Composite ontology classes FEAT and ASTA are the
most frequently appearing classes among the sequences. Composite ontology classes DR and CAS
could not be directly matched with sequences found in posts because these ontology classes are
again composed of other composite ontology classes. Composite ontology classes CONF and CB
did not appear among the top sequences at all.

130

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

Table 7.10: Features (Based on Sequences of Ontology Classes) with Highest IGR and Their
Mapping to Composite Ontology Classes

2-class dataset 4-class dataset

#
Sequences
(features)

IGR
Matched

composite
classes

Sequences
(features)

IGR
Matched

composite
classes

1 TEC - PAT 0.085 FEAT USE - TEC 0.096 UR, ADD
2 TEC - VAL 0.059 ASTA TEC - QA 0.089 ASTA
3 TEC - QA 0.058 ASTA TEC - PAT 0.080 FEAT
4 TEC - SUPP 0.055 FEAT TEC - VAL 0.067 ASTA
5 SUPP - PAT 0.048 FEAT COM - PAT 0.055 –
6 USE - TEC 0.047 UR, ADD TEC - WISH 0.054 –
7 TEC - WISH 0.045 – TEC - DIF 0.049 ASTA
8 TEC - DIF 0.041 ASTA TEC - SUPP 0.047 FEAT
9 PAT - QA 0.035 – TEC - COM 0.043 ADD
10 DIF - QA 0.029 ASTA PAT - COND 0.042 –

7.7 Discussion

7.7.1 Interpretation of Results

Our results show the feasibility of identifying and classifying architecture-relevant posts in de-
veloper communities using Stack Overflow as our sample. Our results show high accuracy when
identifying ARPs and separating them from programming posts (highest F1: 0.842 in Table 7.5)
using a limited number of Stack Overflow posts. On the other hand, it is more challenging to
further classify ARPs into their subtypes (highest F1: 0.734 in Table 7.5). The complexity to clas-
sify text on web pages according to certain architecture concepts has been experienced by Gorton
et al. [GXY+17], who achieved a maximum precision of 0.59 when trying to detect technology
features in online technology product documentation.

Also, our results show that classification approaches based on an ontology classify certain types
of posts better than others. For example, the single-ontology-class approach (using LMT) could
identify “Technology evaluation” ARPs better than “Technology identification” and “Features and
configuration” ARPs (see Fig. 7.3). One reason for this is the ability of an ontology to capture
possible vocabulary for certain ontology classes. For example, it is challenging to gather a com-
prehensive and accurate vocabulary for all terms related to a technology feature (as represented
in ontology class FT), because there is a high ambiguity between terms that describe technology
features [GXY+17]. On the other hand, creating a comprehensive list of technology and pattern
names (as represented in ontology classes TEC and PAT) is more feasible.

Interestingly, well-known AK concepts (as represented in ontology classes QA, ADD) have the
highest influence on classifying architecture posts. Moreover, the usage of adjectives (e.g. repre-
sented in ontology classes DIF, SPED) are important building blocks for architecture discussions
in Stack Overflow, because they build argumentation when discussing design decisions (e.g. using
ontology class ASTA).

The list of distinctive ARP terms show to align with existing software architecture concerns and
solutions (e.g. quality attributes, architectural patterns). This possible relationship provides addi-
tional validation for our classification between ARPs and programming posts. In addition, these

131

CHAPTER 7. CLASSIFICATION FOR ARCHITECTURE-RELEVANT POSTS

terms could be a starting point for an additional analysis to ARPs, through analyzing the context
of these terms, and relating it to other ontology classes.

7.7.2 Implications of Results on further Research

The proposed classification approaches (and in particular the ensemble learning approach that
combines the results of approaches A1 to A3 from Section 7.5.1.2) could be used directly to facili-
tate populating AK repositories with required information and knowledge. Another usage possibil-
ity is to integrate classification approaches with search engines for online developer communities.
In this case, the classification approaches could filter and re-rank the results retrieved from search
engines based on the architecture relevance of posts. This would improve the effectiveness of
pure keyword-based search engines since the ontology used in our classification also considers
the semantics of the text in posts. For example, Gottipati et al. [GLJ11] and Zou et al. [ZYL+15]
proposed enhanced search engines to search for programming questions in software forums. The
engines are based on classifying programming posts into semantically relevant categories using
machine learning. However, these approaches did not investigate online developer communities
finding AK. In Chapter 8, we used our presented classification approach in this chapter to propose
an enhanced search approach. The classifiers identify relevant ARPs to certain design activities.
The enhanced search approach shows a significant improvement in the effectiveness of searching
compared to a conventional search approach.

132

8
Enhanced Search Approach for
Architectural Information in Developer
Communities

8.1 Research Question and Contributions . 133
8.2 Overview of Enhanced Search Approach 134
8.3 Evaluation of Search Approach . 137
8.4 Discussion . 143

8.1 Research Question and Contributions

This chapter provides answer for RQ10:
RQ10: How can we improve the search for architecturally relevant information in online developer
communities?

By answering RQ10, we support achieving the third goal of the dissertation "Propose approaches
to search for architectural information in developer communities" (see Chapter 1). To answer
RQ10, we developed an enhanced search approach to search for architecture-relevant information
in Stack Overflow. The search approach relies on the proposed classification approach in Chapter
7. Moreover, we evaluate the effectiveness of the new search with practitioners by comparing it to
a conventional keyword-based search. We compare the usefulness of the results of both searches
for solving architecture design problems as perceived by practitioners.

Our contributions are the following:

• We developed a new search approach to help find architecture-relevant information in online
developer communities. The main idea of our search approach is to filter and re-rank devel-
oper community posts based on their suitability to support architecture design activities.

• We implemented the proposed search approach in a web-based search engine as a proof-of-
concept.

• We performed an experiment with 16 practitioners to show the effectiveness of the proposed
search approach for supporting architecture design tasks. The experiment shows that the
enhanced search outperforms a conventional keyword-bases search.

133

CHAPTER 8. SEARCHING FOR ARCHITECTURAL INFORMATION

Step 1: Specify
query + design step

Step 1: Specify
query + design step

User writes
query

User selects
design step

Step 2:
Determine

initial
ranking of

posts

Step 3:
Filter
ARPs

Step 4:
Re-rank

ARPs

Step 5:
Present
list of

results

Classify Posts

Figure 8.1: Enhanced search process (gray elements are the extensions of a keyword-based search)

Our contributions in this chapter present the first specialized search engine for software architec-
ture. The work provides the next step and extends related work (e.g. Gorton et al. [GXY+17] -
see Chapter 2 for further related work) to automatically capture architecture-relevant information
from developer communities, textual content of web pages and product documentation. Our work
utilizes semantic information captured in our proposed ontology of AK concepts (see Chapter 5),
rather than depending solely on lexical features of online developer community posts. In summary,
our work shows the feasibility of building specialized search engines for architectural information
in online developer communities.

8.2 Overview of Enhanced Search Approach

8.2.1 Steps of Enhanced Search Approach

The most common way to search online developer community pages such as Stack Overflow are
web-based search approaches [XBL+17]. Therefore, our search approach also utilizes ideas from
keyword-based web search approaches. The basic idea of our approach is to enhance a keyword-
based search using two additional steps:

• Filtering and separating “architecture-relevant” posts from other types of posts.

• Re-ranking “architecture-relevant” posts based on their significance to support a certain
architecture design step.

These two steps complement a pure keyword-based search with semantic information about archi-
tecture relevance of posts. Fig. 8.1 shows the proposed search approach. In detail, our enhanced
search consists of five steps (note that Step 3 and Step 4 are our main contributions differentiate
our enhanced search from a conventional keyword-based search). We explain each step in the
following points:

• Step 1 – Specify search query + design step: Similar to a normal keyword-based search,
a user defines a query with keywords relevant to a design problem. However, different to a
conventional keyword-based search, a user also specifies the current design step. Here, we
utilize the three design steps proposed by Kazman and Cervantes [KC16] (see Chapter 2):
(1) Identify design concepts, (2) select design concepts, and (3) instantiate architecture ele-
ments. These design steps are used to filter and re-rank posts in Step 4 (see below).

• Step 2 – Determine initial ranking of posts: This step is the same as in conventional
keyword-based search approaches. It first parses and stores data to facilitate fast and accu-
rate information retrieval through mapping between posts and words (note that this indexing

134

CHAPTER 8. SEARCHING FOR ARCHITECTURAL INFORMATION

Table 8.1: Frequency of annotations, which belong to relevant ontology classes in different types
of posts

Design Step
Relevant
Ontology
Classes

Technology
identification

Technology
evaluation

Features and
configuration

Identify
design concept

ADD for TEC 59 52 30

Select design
concepts

ASTA 89 227 32
DR 12 58 8
QA 15 14 4

Instantiate
architecture

elements

ADD for
FEAT or CONF

2 3 12

process is not part of our approach; our implementation for this step uses existing libraries,
see Section 8.2.3). Then, this step assigns weights to these words based on their ability to
differentiate posts (e.g. using the TF/IDF weighting scheme [MRS08]). Finally, based on
the keywords in a search query, a similarity score between keywords and the words in posts
(considering the weight of each word) is calculated for each post to assess its relevance to
the query.

• Step 3 – Filter architecture-relevant posts: This step requires information about the type
of post, i.e., is a post an architecture-relevant post or not. We obtain this information by
classifying posts. Classifying posts as architecture-relevant can be done using various tech-
niques. We use a machine learning approach. Details about the classification are provided
in Chapter 7. All architecture-relevant posts with a similarity score higher than zero (as
computed in Step 2) are separated from programming posts and moved above programming
posts in the list of search results. Architecture-relevant posts are sorted in an ascending
order based on their similarity scores.

• Step 4 – Re-rank architecture-relevant posts: This step requires information about the
type of architecture-relevant post (see types of posts in Chapter 4). We used our proposed
classification approach in Chapter 7 to classify the types of ARPs. Filtered ARPs are re-
ranked according to their suitability to support the design activity defined in Step 1. To relate
types of architecture-relevant posts to design steps, we assigned a “quota” (i.e. estimated
percentages) for how types of architecture-relevant posts should appear in the search results
depending on the selected design activity. Post types with higher quota have a bigger chance
of appearing in the top results. For example, a query for design activity “identify design
concepts”, the top ten search results will contain 50% of “technology identification” posts,
30% “technology evaluation” posts and 20% of “features and configuration” posts. Posts
with the highest similarity scores (from Step 2) are selected as part of the quota for each ARP
type. Percentages for “select design concept” and “instantiating architecture elements” are
30%, 50%, 20%, and 10%, 15%, 75%, respectively. These quotas are estimated according to
an exploratory study (see Section 8.2.2), and depending on our analysis of ontology classes
in Chapter 5.

135

CHAPTER 8. SEARCHING FOR ARCHITECTURAL INFORMATION

8.2.2 Relating Types of Architecture-relevant Posts and Design Activities

To determine the most useful types of architecture-relevant posts to support the three generic
design steps proposed by Kazman and Cervantes [KC16] (see Chapter 2), we performed an ex-
ploratory study in three steps:

1. Link ontology classes to design steps: Some ontology classes (see Chapter 5) are more
useful than others for certain design steps. Based on the definitions of ontology classes and
design steps, we decided what ontology classes are more useful to which design step:

• For design step “Identifying design concepts”, design decisions on technology solu-
tions are useful to be reused. Therefore, ontology class ADD - "Recommended De-
sign Decision", which contain ontology class TEC - "Technology Solution" has been
selected for being relevant to this design step.

• For design step “Select design concepts”, ontology classes QA - "Quality attribute",
ASTA - "Benefits and drawbacks" and DR - "decision rules" are important to evaluate
and select solutions [SRZ15].

• For design step “Instantiate architecture elements”, design decisions on architectural
configurations (components and connectors) or technology features are useful to be
reused [KC16]. Therefore, ontology class ADD - "Recommended design decision",
which contain ontology classes FEAT - "Technology feature" or CONF - "architecture
configuration" have been selected for being relevant to this design step.

2. Calculate occurrences of relevant ontology classes in posts: In Chapter 5, we annotated
105 architecture-relevant posts, which were classified into the three compact types of ARPs
(see Chapter 4). The text in posts of this corpus is annotated with more than 3,800 annota-
tions. Each annotation represents an ontology class as defined in our proposed ontology of
(see Chapter 5). Moreover, we counted the number of occurrences of each ontology class
for each type of ARP (see Chapter 5). In this step, we are concerned with relevant ontology
classes for each design step. Table 8.1 shows the number of occurrences of annotations
for each relevant ontology class (categorized by their relevant design step). Calculating
the distribution of relevant ontology classes for each type of ARP and design step support
estimating useful ARPs for a design step. Chapter 5 provides detailed statistics about the
frequency of annotations for all ontology class in the types of posts.

3. Obtain quotas of post types: Based on the number of occurrences of ontology classes in
the types of posts and the relevance of ontology classes for design activities, we determined
quotas for types of posts and how types of posts appear in search results. For example,
annotations about ontology classes ASTA and DR (which are important for design step “Se-
lect design concepts”) appear in “Technology evaluation” types of posts 1.6 times more
frequently than in “Technology identification” posts, and 2.5 times more frequently than
in “Features and configuration” posts. Therefore, we defined the quotas 30% “Technology
identification” posts, 50% “Technology evaluation” posts and 20% “Features and configura-
tion” posts for design step “Select design concepts”. We estimated the quotas for the other
two design steps accordingly. The calculation of the quota support to estimate suitable types
of ARPs for each design step.

136

CHAPTER 8. SEARCHING FOR ARCHITECTURAL INFORMATION

Table 8.2: Experiences of Practitioners in Experiment

Software development Software architecture
Years # Participants # Years # Participants

>12 Years 6 >5 Years 3
6-12 Years 6 2-5 Years 9
3-5 Years 4 1 Year 4

8.2.3 Implementation of Search Approach

We implemented the enhanced search as a proof-of-concept web-based search engine using Apache
Lucene. We used Apache Lucene1, because it has successfully been applied in previous software
engineering research (e.g. Moreno et al. [MBH+15]). The filtering and re-ranking of posts were
built on top of the keyword-based search in Lucene. The current version of our implementation
includes its own database of posts. This database has been filled by importing posts from Stack
Overflow through querying Stack Overflow’s API. New posts can easily be added (we provide
SQL queries to query Stack Overflow in Appendix A). Similar to conventional search engines, a
list of re-ranked posts is presented to the user. The first line of a post and tags assigned to a post
are presented in the list. Users would also see the total number of search results and can select
the number of results shown on a page, move back and forth between results pages, etc. Clicking
on a post leads to the full post. The implementation does not add new usability features com-
pared to what potential users are familiar with from common web-based searches (e.g. Google).
Screen-shots are available in Appendix C.

8.3 Evaluation of Search Approach

The primary method to evaluate search approaches is expert judgment about the relevance of the
results obtained from a search [MRS08]. Therefore, to compare the effectiveness of the enhanced
search approach proposed in this paper (ENHANCED) to a conventional keyword-based search
(NORMAL), we conducted an experiment with 16 practitioners (Table 8.2). Here, effectiveness
is understood as the ability of a search approach to identify posts relevant for solving architecture
design tasks. Thus, we asked participants to perform architecture design tasks, and use two search
engines (NORMAL and ENHANCED) to search for information that supports these tasks. To
implement NORMAL searches, we used the default implementation of Apache Lucene (i.e., no
filtering/re-ranking of search results). We tested the following hypotheses:

• H0: There is no difference between the effectiveness of NORMAL and ENHANCED.

• H1: There is a statistically significant difference between the effectiveness of NORMAL
and ENHANCED.

1http://lucene.apache.org/

137

http://lucene.apache.org/

CHAPTER 8. SEARCHING FOR ARCHITECTURAL INFORMATION

8.3.1 Experiment Design

8.3.1.1 Corpus for Experiment

We used our corpus of 2,511 posts from our exploratory study in Chapter 4 that were classified
by practitioners. This corpus inlcudes 1,653 programming posts, 282 technology identification
posts, 291 technology evaluation posts and 285 features and configuration posts. Furthermore, we
classified another 7,702 posts using our classification approach in Chapter 7. We used the best per-
forming classification approach using the ensamble learning to classify posts. These 7,702 posts
were randomly selected from a larger pool of posts, which were obtained from Stack Overflow.
Like with the 2,511 posts in the original corpus, we chose posts with positive user ratings on Stack
Overflow to avoid including poor quality posts in our corpus, because poor quality posts consume
much time during a search [XBL+17]. This resulted in a total of 10,213 classified Stack Overflow
posts as our corpus for the experiment. This number of posts is similar to other studies in software
engineering that investigate search approaches for online communities (e.g. [GLJ11, ZYL+15]).

8.3.1.2 Architecture Design Tasks

Participants in the experiment solved six architecture design tasks, which required them to search
for architectural information. Criteria for defining the design tasks were: a) Tasks are independent
from the corpus of posts to ensure validity and to prevent bias, and b) tasks should simulate real
design problems that occur during different design activities. We based our tasks on the scenarios
mentioned by the practitioners during the interview when answering RQ6 and RQ7 (see Chapter
6). The scenarios mentioned by the practioners are previous experiences, which they had to search
for architecture information in the past (see Chapter 6 for details on scenarios). This resulted in
five tasks. We then categorized these five tasks according to the three design steps from Kazman
and Cervantes [KC16] (see Chapter 2). To include two tasks for each design step, we added a sixth
task from a case study conducted by Kazman et al. [KC16]. Below we list a brief description for
each task for each of the three design activities. A complete description for each task is available
in Appendix C.

Tasks for design activity “Identify design concepts”:

• T1: For a realtime stock monitoring dashboard, identify suitable middleware technologies
which scale to more than 100,000 users.

• T2: A claim management system needs to communicate with mobile apps. Identify JSON
parsers for Java with high performance, and taking into consideration organizational policies
around open source technologies.

Tasks for design activity “Select design concepts”:

• T3: A help desk system communicates with a knowledge base via asynchronous communi-
cation and publish/subscribe patterns. Compare interoperability and latency of RabbitMQ,
Apache Kafka, and ActiveMQ.

• T4: Compare three technology families for big data systems: Data collector, message bro-
kers, and ETL engines; technologies must support a throughput of 15,000 events/second and
ensure availability of 99.99%.

138

CHAPTER 8. SEARCHING FOR ARCHITECTURAL INFORMATION

Tasks for design activity “Instantiate architecture elements”:

• T5: CRM apps communicate with several other systems using Apache Camel and Rab-
bitMQ. Search for information on technology features and components designs to deter-
mine mechanisms for message channeling, translation and routing, as well as a deployment
topology (physical design).

• T6: An online shop implemented in Java exposes services to other apps. Search for best
practices regarding the right level of service decomposition to achieve high cohesion and
low coupling.

To reduce bias or differences between the description of tasks, we captured all tasks in a unified
template. The template is guided by templates for developing simulated search tasks for informa-
tion retrieval systems [Bor03]. Moreover, our proposed conceptual model (see Chapter 6) support
determining the main elements of a searching task. Each task includes a description of the func-
tional and quality requirements, constraints, and the actual search goal of a task, which aligns with
the design steps.

8.3.1.3 Experiment Execution

We designed the experiment using a Graeco-Latin Square (GLS) design [Sut92]. In this design,
the order in which the six design tasks are performed as well as the order in which the two search
approaches are used are rotated. Following the GLS design, there are six different sequences of
tasks (T1, T2, T3,... T6, then T6, T1, T2,... T5, until sequence T2, T3,... T1). These six sequences
are applied twice to rotate the order in which the two search approaches are used (i.e., in total there
are 12 sequences of tasks). For the first six sequences (sequences T1, T2,... T6 to T2, T3,... T1),
NORMAL was used for the first three tasks in a sequence and ENHANCED for the second three
tasks in a sequence. Starting from the seventh sequence to the 12th sequence (i.e., again T1, T2,...
T6 to T2, T3,... T1) ENHANCED was used for the first three tasks in a sequence and NORMAL
for the second three tasks in a sequence. We randomly assigned participants to sequences of tasks.
Since we had 16 participants, every sequence was completed by at least one practitioner, and four
sequences were completed by two practitioners.

Each participant read design tasks carefully and then submitted search queries (sequences of
words) and obtained a list of ranked posts. We asked participants to analyze only the top ten
posts for relevance (users of search engines rarely look beyond the tenth result [GJG04]) and rate
each post on a Likert scale from 0 to 3:

1. Irrelevant (0): Post has nothing to do with the task.

2. Low (1): Post contains information which is not immediately relevant to solving the task,
but helps refine search.

3. Medium (2): Post addresses a problem different but similar to task at hand, but still provides
relevant information.

4. High (3): Post addresses a similar or same problem as specified in the task and contains
useful information to solve design task.

139

CHAPTER 8. SEARCHING FOR ARCHITECTURAL INFORMATION

The ratings of participants for posts are needed to calculate metrics for search engine effectiveness,
which are explained in the next section.

Before executing the experiment with the 16 participants. The study was piloted with four indi-
viduals not involved in the actual experiment.

8.3.1.4 Measures of Effectiveness

We measure the effectiveness of each of the search engines using two metrics: Precision@k and
Normalized Discount Cumulative Gain(nDCG@k), where k is the maximum number of posts that
are considered for evaluation. We considered k from 1 to 10, because the top 10 search results are
commonly checked by users of search engines [GJG04].

• Precision@k [MRS08] is the ratio between the number of relevant posts (low, medium or
high), and the number of retrieved posts in search results m when executing a query, where
m≤ k. m can be less than k if a poorly phrased search query returns very few search results.

• nDCG@k: Precision does not consider the ranking of posts and their degree of relevance
(low, medium, high). nDCG@k [MRS08] uses weights for posts based on their relevance
and ranking in the list of search results (i.e. the higher the relevance [low, medium, high]
and rank, the more weight). nDCG@k for a query is calculated as

nDCG@k =
DCG@k
IDCG@k

with

DCG@k =
k

∑
i=1

2reli−1
log2(i+1)

where reli is the degree of relevance of a post found by a query (based on the Likert scale
above). IDCG@k is the DCG@k value for an ideal ranking of posts for a certain architecture
design task. In the above equation for nDCG@k, this ideal ranking is based on combining
the individual rankings of posts (based on their relevance to a task) from all participants.
For example, if user 1 rated posts x, y, z with relevance 3, 3, 1 for task T1 and user 2 rated
posts a, b, c with relevance 2, 2, 1 for task T1, then, the ideal ranking for task T1 is 3, 3, 2,
2, 1, 1, 0, 0, 0, 0 when evaluating the top ten search results [MRS08].

8.3.1.5 Exit Survey

After completing all design tasks, we asked participants to fill an exit survey (see Section 8.3.2).
We asked participants the following exit questions:

1. How would you evaluate the tasks compared to real architectural design problems?

2. What are the problems you faced when searching for architectural information?

3. Which features would you propose for a tool to improve the search?

The results of the exit survey is presented in Section 8.3.2.

140

CHAPTER 8. SEARCHING FOR ARCHITECTURAL INFORMATION

Figure 8.2: Number of relevant posts identified by participants for each design step.

Figure 8.3: nDCG@1-3 for NORMAL and ENHANCED. The lower and upper boxes are the
lower and upper quartiles of the distribution, respectively. The vertical thin line is from the mini-
mum to the maximum nDCG values.

8.3.2 Evaluation Results

8.3.2.1 Effectiveness of the Search Approach

Participants submitted a total of 422 different queries (i.e., on average 70 queries per task). The
number of queries did not differ significantly between participants, tasks or design activities. The
queries contain keywords, which refer to several architecture concepts. For example, the query
"Latency and reliability of RabbitMQ" contains keywords which refer to AK concepts like quality
attributes and technology solutions. A complete list for the executed queries are available in
Appendix C.

Fig. 8.2 shows the number of posts identified by participants relevant to tasks and grouped by
their design step. We can observe that queries related to the tasks which belong to the “Select
design concept” design step led to the highest number of posts and the highest relevance. On the
other hand, queries made for tasks related to the “Identify design concepts” design step yielded
the lowest number of posts.

We calculated Precision@k and nDCG@k for NORMAL and ENHANCED, with @k1→10. Fig.
8.3 shows a summary for all values of nDCG as box-and-whisker plots @k1→3. The figure shows
that ENHANCED has improved the overall nDCG values of searching. Fig. 8.4 and 8.5 show
the average Precision@k and nDCG@k for the three design activities and for ENHANCED and
NORMAL. The ENHANCED approach improved the precision of the search for all three design
activities. The “Select design concepts” design step achieves the highest nDCG improvement,
while step “Instantiate architecture elements” has the lowest improvement. Moreover, the values
of nDCG for the “Select design concepts” task shows to decrease gradually with the increase

141

CHAPTER 8. SEARCHING FOR ARCHITECTURAL INFORMATION

Figure 8.4: Average Precision@k for each design activity

Figure 8.5: Average nDCG@k for each design activity

of k. A possible reason for this could be the ability of the classification approach to identify
“Technology evaluation” types of posts better than “Features and configuration” types of posts
(see Chapter 7).

To evaluate H0 and ensure significance, we performed a two-sample T -test with unequal variances
[Mon06] on all values of Precision@k of ENHANCED and NORMAL and nDCG@k for EN-
HANCED and NORMAL. Fig. 8.6 shows the calculated T -values. The results of the T -test indi-
cate that ENHANCED outperforms NORMAL with statistical significance for both Precision@k
and nDCG@k and for all values of k. From Fig. 8.6, we can observe that the T -values of Precision
start with high values (highest T -value for Precision@k = 2) and decrease gradually with the in-
crease of k. On the other hand, the T -values of nDCG start with a lower value @k = 1 and then
increase @k = 2, and only change slightly until @k = 10.

142

CHAPTER 8. SEARCHING FOR ARCHITECTURAL INFORMATION

Figure 8.6: Significance T-value for nDCG@k and Precision@k. The Critical T-value is 1.963
(T-values > 1.963 are considered significant). The higher the T-value, the higher the probability
for being significant.

8.3.2.2 Results of the Exit Survey

From 16 participants, 12 answered the exit survey. All 12 participants found that design tasks
performed in the experiment were realistic and reflect real-life situations. Moreover, 15 from
the 16 participants said that they found useful architecture information in posts. The challenges
faced by participants were centered around constructing search queries. As one participant wrote,
“Most of the solutions are not in the same level of abstraction as the tasks”. Participants proposed
several improvements, such as additional filtering for posts according to certain ontology classes
(e.g. TEC, PAT). One participant suggested that “Similar problems that has the same abstract
meaning should be grouped together”. Two of the participants asked for considering the context
of problems described in posts to recommend relevant results.

8.4 Discussion

8.4.1 Interpretation of Results

The capability of normal search engines is limited for finding architecture-relevant information in
communities. Even with a small search corpus (compared to a search of all posts) and after remov-
ing low quality posts, the normal keyword-based search could only reach an average Precision@1
(i.e. the first post in the returned list of results is already the most relevant post) between up to
0.51 and 0.62. A real search on millions of posts would yield an even lower precision. This lack
of accurate search results from conventional searches might explain the effort required to curate
AK [GXY+17]. The lower capability of keywords search engines to find architectural information
is a problem, which has been mentioned by practitioners during our interviews in Chapter 6.

Our results show that filtering and re-ranking posts significantly improved the effectiveness of our
search to find architecture-relevant information for design problems. In addition, the results show
that searching for architectural information for different purposes (i.e. within different design
steps) benefit differently from developer communities and the enhanced search. For example, our
results in Fig 8.2, 8.4 and 8.5 show that tasks within the “Select design concept” design step find
more relevant posts than other design steps. On the other hand, it is challenging to find posts
for the “Identify design concepts” tasks. One reason behind this could be the abilities of the
classification approach (see Chapter 7). Another possible reason is the complexity to describe a
design problem using keywords, because the variations of terms for describing a design problem

143

CHAPTER 8. SEARCHING FOR ARCHITECTURAL INFORMATION

is big (e.g. domain and business terms).

8.4.2 Implications of Results on further Research

The proposed search approach provides the first prototype for a specialized search engine to search
for software architectural information in developer communities. This motivates proposing new
methods towards a comprehensive approach to search for architectural information. For example,
a comprehensive searching approach would consider additional sources of knowledge (e.g. Blogs
and technology documentations). Our experiment with practitioners to search for architectural
information provides initial data (e.g. queries, relevant ARPs), which could be used for further
analysis to queries for architectural information and architecture-relevant posts. This could support
developing mathematical model to search for architectural information in developer communities.
In Chapter 9, we further discuss possible future work based on our results.

144

Part IV

Conclusion

145

9
Summary, Discussion and Future Work

9.1 Summary of the Study . 146
9.2 Threats to Validity Assessment . 148
9.3 Discussion of the Contributions . 152
9.4 Future Work . 154

In the previous chapters, we explained and justified our research questions, methodologies, and
our presented results in details. In this chapter, we provide a summary on the overall research
study in the dissertation, which will be presented in Section 9.1. In Section 9.2, we discuss the
threats to validity of our results. We discuss then our contributions and their impact on the current
state of the art in Section 9.3. Finally, we propose in Section 9.4 several opportunities and needs
for future work based on our results.

9.1 Summary of the Study

We started our research with the motivation to support software engineers to take the right design
decisions. Taking an architectural design decision is the core of developing a software architec-
ture. Technology design decisions is one of the most important decisions, because they implement
several architectural concepts, and they are hard to change after implementation. However, the
knowledge about technologies is distributed among several sources of knowledge, such as blogs,
forums, and technology documentation. Due to the complexity of acquiring architecture knowl-
edge for technology decisions, we focused in the dissertation on facilitating the acquisition of
architecture knowledge for technology design decisions. To address our problem, we conducted
several research studies to achieve three main goals, which will be summarized in the following
three paragraphs.

First, we had to better understand technology design decisions in practice, because the current state
of the art in software architecture did not provide sufficient descriptions and models about technol-
ogy design decisions. Therefore, we analyzed literature, catalogs of patterns and technology doc-
umentation to explore the main building blocks of technologies. We designed our research method
to provide maximum support for data gathering and validation from practitioners. Therefore, We
interviewed architects from different companies to explore how architects take technology design
decision in practice. Our results clarify the main relevant architecture knowledge concepts of a
technology design decision and their relationships. Moreover, it integrates different architecture
knowledge concepts in literature with technology decisions.

146

CHAPTER 9. SUMMARY, DISCUSSION AND FUTURE WORK

A practically feasible architecture knowledge management solution requires an effective method
for knowledge capturing. Current approaches for architecture knowledge management depends on
manually documenting and populating architecture knowledge in knowledge repositories, which
cannot cope with the fast pace of technology changes. Therefore, we explored developer com-
munities as a practically suitable and effective source for technology-related architecture knowl-
edge. Developer communities provide several advantages over traditional architecture knowledge
repositories. For instance, developer communities are continuously up-to-date and extensible with
knowledge about new technologies. We selected the biggest and most popular developer com-
munity (i.e. Stack Overflow) as our sample to analyze posts in developer communities. Thus,
it could well represent knowledge in different developer communities. Our objective was to ex-
plore architectural knowledge in Stack Overflow, to structure and classify it in order to mine it as
a source for architectural knowledge. We wanted to check if Stack Overflow could be a viable
source for reusable architectural knowledge. We selected a sample of posts from Stack Overflow
and analyzed them through a systematic qualitative content analysis research process. We first
categorized posts in Stack Overflow into several types. We found that there are several categories
of architecture-relevant posts in Stack Overflow. We evaluated our classification by comparing it
with how practitioners would classify posts and found good agreement. We then selected a sample
from the different types of architecture-relevant posts, and annotated their sentences. We associ-
ated textual segments with architecture knowledge concepts after several iterations of inter-coder
reliability tests. Our results present the first ontology of architecture knowledge in a developer
community.

After exploring architecture knowledge in developer communities, we proposed approaches to
facilitate capturing architectural knowledge from developer communities. We first interviewed
practitioners to understand their searching scenarios and problems to find relevant architectural
information in developer communities. Practitioners verified that it is challenging for them to
find relevant architectural information in developer communities. Therefore, we proposed classi-
fication approaches to automatically identify and classify architecture-relevant posts in developer
communities. We systematically compared a set of different classification approaches that do not
only rely on keywords, but also consider conceptual and semantic information in posts. The classi-
fication approaches were experimented using several methods of pre-processing and classification
algorithms. We used our proposed ontology for architecture knowledge to design the features of
the classification approaches. This supports capturing the semantics of text when identifying and
classifying architecture-relevant posts. The experiments evaluate the accuracy of classification,
as well as the generalizability of classification approaches to identify and classify posts in differ-
ent domains. The results show the feasibility to identify and classify architecture-relevant posts.
Based on the classification approaches, we developed, implemented and evaluated an enhanced
search approach in developer communities. This search approach does not only rely on keywords,
but also considers conceptual and semantic information about architecturally relevant informa-
tion. The proposed search approach promotes certain types of architecture-relevant posts to their
relevant architecture design activity. We evaluated the search approach through an experiment
with practitioners, who solved architecture design tasks using both a normal and our proposed
enhanced search engines. Comparing our proposed search approach with a conventional search
approach showed that the enhanced search leads to more effective results when searching for in-
formation during identifying and selecting design concepts, as well as instantiating architecture
elements.

147

CHAPTER 9. SUMMARY, DISCUSSION AND FUTURE WORK

9.2 Threats to Validity Assessment

Research results are exposed to threats regarding their validity. Throughout our study, we followed
three research methodologies: Interviews, qualitative content analysis, and experiments. Each
methodology has different research steps and settings. Therefore, they are exposed to different
threats of validity. In the following sub-sections, we discuss the threats to the validity of our
results for each research methodology separately. We explain the construct, internal, and external
validity threats, as well as reliability of the study.

9.2.1 Threats to Validity for the Interview Studies

We used the interviews research method to determine how practitioners take technology design
decisions in practice (answers RQ1 - see Chapter 3). In addition, we used interviews to identify
the perspectives of practitioners when using developer communities to search for architectural
information (answers RQ6 - see Chapter 6).

Construct Validity:

In this type of validity, we are concerned with validating the accurate representation of the initial
content analysis hypothesis through the interviews’ questions, as well as the interviews’ answers
interpretation.

When answering RQ1 in Chapter 3, we mapped our initial hypothesis to the interview questions
using several steps: First, we defined a set of general questions, such that each question is re-
lated to a hypothesis concept using a concept mapping. After asking the interviewees about their
background and experiences, we were able to adapt these questions to align with the experts un-
derstanding, which supported a more suitable explication of the hypothesis constructs. The in-
terviewee had no idea about our initial hypothesis during the interview process. In addition, the
interview participants work in different companies, and they don’t know about each other. This
prevented any interactions between the different experts, as well as any possibility of hypothesis
guessing.

During the third phase of the interview process when answering RQ1, our main goal was to vali-
date our interpretation for the experiences and examples collected during the second phase of the
process. By presenting and explaining our concepts and relating it to the examples mentioned by
the participants, we were able to assure that we have the right generalizability across the hypothe-
sis constructs. In addition, conducting the concept validation among all the participants supported
us to minimize biasing during the results interpretation.

Internal Validity:

In this type of validity, it is important for us to insure that the interview setup supported us to drive
the concluded results. In conducting our interviews as explained Chapters 3 and 6, we followed a
set of guidelines (e.g. [HA05]) in questions preparation, as well as in managing the conversation
with the participant. With each participant, we started with a general question. For example, when
answered RQ1 in Chapter 3, we asked participants: ”IQ: What are the factors which influence
choosing a technology?” during the participant answer, we give the freedom for the expert to
explain his answer, and we asked the expert to focus on real experience examples. This supported
us to interpret the meaning. In some cases, we mentioned the same question twice, however, with

148

CHAPTER 9. SUMMARY, DISCUSSION AND FUTURE WORK

different ways to ensure that the participant provides the needed information, without interrupting
his speaking. When answering RQ1 in Chapter 3, we followed a 3 phase interview process, the 3
phase process helped us to have more than a chance to clarify our understanding to the examples
or concepts explained by the interviewees. Even though, it was originally assumed that all experts
should have the same level of experience, some interviewed experts contributed to the concepts
more than others. For example, when answering RQ1, five of the interviewed experts contributed
to the concepts more than the other two. However, this ratio shouldn’t impact our results. More-
over, all experts supported us in the model validation through the interview ”reflection of meaning”
phase.

External Validity:

In this type of validity, we would like to assess our interview study results regarding its generaliz-
ability. Regarding this aspect, we have several threats of validity. When answering RQ1 in Chapter
3 and RQ6 in Chapter 6, we did not select the interview participants randomly, as we depend on our
network of experts, which might not cover all types of architects in different industries. However,
we made no control on their mentioned experiences. As the different participants have experience
in different domains, we did not focus our discussion on domain specific problems. For example,
when answering RQ1, one of the participants has experience in embedded systems, the interview
focused on experiences and technologies used within information and distributed systems domain.
Moreover, we focused on the solution level of software architecture during our discussion, more
than the enterprise level. Another limitation is the number of conducted interviews, which cannot
guarantee statistical generalization. However, we aimed for analytical generalization. For exam-
ple, when answering RQ6, the last three interviews confirmed previously identified concepts, but
did not lead to new concepts. This gave us confidence that we reached data saturation and that we
identified the most important concepts. However, we believe that additional empirical studies are
needed to extend and validate the proposed concepts.

Reliability:

When answering both RQ1 and RQ6, the author of the dissertation conducted the interviews,
and coded the interview discussions. We used then two different methods to ensure reliability of
interpretation.

When answering RQ1, we followed an intra-rater reliability method, such that the 3rd phase of the
interview ensured that the same concepts have been validated and evaluated by the interviewed
participants, while the participants responses were recorded by a single interviewer. All the in-
terviews were conducted one-to-one with prepared questions, which give the chance for each
participant to give his opinion about others’ inputs. When answering RQ6, a second researcher1

reviewed and discussed the mapping of concepts and interviewee responses to ensure agreement.

Also, to support replication of the study, as well as further future work, we provide our interview
guides in Appendix B.

9.2.2 Threats to Validity for the Content Analysis Studies

We used qualitative content analysis to explore architecture knowledge in the different types of
ARPs (answers RQ3 and RQ4 - see Chapter 4), and to determine the textual representation of AK
concepts in developer communities (answers RQ5 - see Chapter 5).

1The second researcher is Matthias Galster from the university of Canterbury

149

CHAPTER 9. SUMMARY, DISCUSSION AND FUTURE WORK

Internal and Construct Validity:

During our posts collection, we executed several queries, which are based on keywords for mid-
dleware technology names. Even though we considered the most popular technologies within the
middleware domain, we cannot claim that our list of middleware technologies was exhaustive.
There could be other posts related to less popular technologies, which were not included in our
list of middleware technologies. However, less popular technologies are most likely not discussed
in many posts and therefore should not significantly impact our findings.

External Validity:

External validity is concerned with the generalizability of our analysis results to other posts, which
we did not analyze.

One limitation is our conditions for gathering our sample of posts (focusing on middleware posts
in a single developer community - Stack Overflow), which might not generalize on all posts in all
developer communities. However, our sample community Stack Overflow is the biggest and most
popular developer community. Thus, it is the best representative for developer community posts.
In addition, our focus on a domain (i.e. middleware) rather than certain technology stack (e.g.
Microsoft) make our analysis generalizable among different technology stacks.

Another limitation is the sample size, which might not be representative for all possible ARPs in
Stack Overflow. This limitation in the number of posts is caused by the nature of our work, because
before posts could be used in our research, we needed to get feedback from practitioners about the
architectural relevance of posts as presented in Chapter 4. This manual classification requires
experienced practitioners rather than novice or less experienced practitioners. Also, manually
classifying posts is very time-consuming: It took practitioners around four hours to classify 100
posts. We could not find other studies about ARPs in Stack Overflow to compare our results with.
However, the results show to align with existing software architecture practices (e.g. the solution
evaluation and identification post types could align with the process proposed by Hoffmeister et
al. [HKN+07]), which might be a good indicator for its generalizability. Moreover, we tried to
ensure that the annotated ARPs cover different ARPs through a stratified sampling. All in all,
we believe our results provide an initial hypothesis for other future studies on AK in developers
community.

During our evaluation phase with practitioners, we did not select our participants randomly, but
through our personal contacts. However, we considered several conditions in their selection, such
as their architecture and overall technology experience. In addition, evaluation sampling of posts
given to practitioners helped us to cover all the type of posts proportional to their size, which made
the evaluation more realistic and consequently generalizable.

Reliability:

Reliability is concerned with ensuring that the same measuring steps would produce the same
results when repeated. We consider reliability to be paramount for qualitative content analysis,
and as a prerequisite for the validity of the results. We considered reliability in each step of our
analysis.

We conducted several inter-coder reliability checks when answering both RQ3 in Chapter 4 and
RQ5 in Chapter 5. By the end of our categorization, we made a final reliability test, and calculated
Cohen’s Kappa reliability coefficients [Coh60] among 10% of our sample posts. The reliability
coefficient for the classification between architecture and programming is 0.9, while the classifi-

150

CHAPTER 9. SUMMARY, DISCUSSION AND FUTURE WORK

cation of the architecture relevant post types has a reliability coefficient of 0.75. The reliability
coefficient for agreement on annotations when developing the ontology is 0.84. This indicates re-
liability and agreement between classifications beyond chance. In addition to the reliability tests,
we described our process in detail, and associated with it the required data for replication. To
allow replication of the study, as well as further future work, we provide the following materials
in Appendix A and the companion CD: 1) Our Corpus of ARPs. 2) Coding guide for AK in Stack
Overflow. 3) The ontology implemented in OWL, as well as keywords, and examples of coded
statements.

9.2.3 Threats to Validity for the Experiments

We conducted a set of experiments to evaluate the proposed classification approaches to identify
and classify ARPs (answers RQ8 and RQ9 - see Chapter 7). Moreover, we conducted an ex-
periment with practitioners to evaluate the proposed enhanced search approach for architectural
information in developer communities (answers RQ10 - see Chapter 8).

Construct Validity:

Construct validity is concerned with the correct execution of the experiments.

Our proposed classification approaches in Chapter 7 rely on using machine learning algorithms,
which present a complexity in its application and execution. To ensure proper application of tools
to execute the classification algorithms, a researcher1 in machine learning executed the experi-
ments using a well known and reliable machine learning tool (i.e. Weka).

Internal Validity:

When using ontology-based classification approaches in Chapter 7, we assumed that a word can
belong only to one ontology class. However, the same word might belong to multiple ontology
classes. Therefore, we reviewed the ontology and found that only a limited number of words (e.g.
“layer”) could belong to multiple concepts (e.g. “layer” could belong to ontology classes PAT
and COM). Therefore this should not significantly impact our results. The manual classification
of posts in the corpus could be another threat to validity. However, the manual categorization
of posts in the corpus has been tested for agreement and showed high reliability and agreement
beyond chance.

It is challenging to conduct an experiment with human subjects to solve complex problems such
as architecture design tasks. In our experiment with practitioners to evaluate the enhanced search
in Chapter 8, the experience and background of participants might have influenced the assessment
of the architectural relevance of a post. Also, since participants completed the tasks in their own
time, we did not have full control on their behavior (e.g. taking a rest or being tired). We tried to
mitigate these issues through rotation of the task order. Another threat to validity are the design
tasks themselves, which might have influenced participants to use certain keywords. However,
we used real design scenarios from practitioners, and independent from the topics of the posts in
the corpus of Stack Overflow posts used for the experiment. Moreover, an additional researcher2

participated in the preparation of the tasks and independent from the author of the dissertation,
who analyzed the Stack Overflow posts. This was needed to prevent bias, when preparing the

1The researcher in machine learning is Amr Rekaby Salama from the university of Hamburg
2The researcher, who participated in the preparation of tasks is Olaf Zimmermann from the University of Applied

Sciences, Rapperswil (HSR FHO)

151

CHAPTER 9. SUMMARY, DISCUSSION AND FUTURE WORK

searching tasks.

External Validity:

The development and comparison of classification approaches in Chapter 7 is based on a limited
number of posts from a single developer community (Stack Overflow). This risk was partially
mitigated by using a 10-fold cross validation for evaluation and comparison. As mentioned previ-
ously, the limitation in the number of posts is caused by the nature of our work, because posts in the
corpus should be classified by experienced practitioners, which is a tedious and time consuming
process.

One limitation when evaluating the search approach in Chapter 8 is the number of participants and
tasks to conduct the experiment, and to evaluate the usefulness of the enhanced search approach.
However, using a search engine to solve architecture design tasks showed to be time consuming.
It took participants between four and eight hours to solve the six tasks. This time is needed by
practitioners to understand the task requirements, read Stack Overflow posts carefully and get
familiar to the domain. This is also why we hand only two tasks per design activity. Finally, the
"quota" assigned to each type of ARP to potentially help with a design step is another threat. If
these quotas were changed, then the search might identified other posts as architecture-relevant and
made different recommendations to users of our search engine. The lack of statistical studies on
searching for architecture information using search engines prevent using mathematical modeling
(e.g. [FVC06]) for the re-ranking of posts (rather than using quotas). Conducting a statistical
study for mathematical modeling requires the execution and monitoring for thousands of queries
using several tasks, which is challenging with the limited time available for architects to conduct
experiments. To mitigate this threat, we followed an empirical approach and developed the quota
based on an empirical study. Moreover, we fixed quotas for the experiment.

Reliability:

To ensure the repeatability of experiments, we described the experiments in Chapters 7 and 8. We
provide the following data in Appendix C, online1 and in the companion CD. 1) All classified posts
in the corpus, 2) The full ontology, 3) the complete list of tags and their analysis to differentiate
types of posts. 4) The searching tasks. 5) The repository of posts used in searching. 6) Source
code and libraries for classification and searching.

9.3 Discussion of the Contributions

In this section, we discuss our contributions throughout the whole research process in the disserta-
tion. Moreover, we compare our work with the current state of the art, and discuss the differences
and the impacts of our results.

Technology design decisions are important and involve several decision factors: Our interviews
with practitioners verified the importance of technology design decisions. This align with existing
findings in the current state of the art. However, our proposed AK conceptual model additionally
clarify architecture knowledge concepts of technology design decisions to show the complexity
behind it. We modeled technology design decisions, their features, architectural aspects, and
evaluations as extension for existing architecture knowledge models based on empirical evidence
from interviews and literature. The proposed approach considered the different design reasoning

1https://swk-www.informatik.uni-hamburg.de/~soliman/Dissertation.zip

152

https://swk-www.informatik.uni-hamburg.de/~soliman/Dissertation.zip

CHAPTER 9. SUMMARY, DISCUSSION AND FUTURE WORK

approaches that the architect use, as well as the different types of technologies and decisions. Se-
lecting a technology involves deciding on its technology features, which implement many of the
well known conceptual solutions (e.g. architectural patterns or tactics). At the same time, the
availability of certain technology features and the quality of their implementation influence the
decision on a certain technology solution. Thus, practitioners focus on the architecture-relevant
technology aspects (ASTAs) of technologies (e.g. performance advantage), which shows the ben-
efits and drawbacks of a certain technology compared to other alternative technology solutions.

Developer communities is one source of technology-related architecture knowledge: Our initial
content analysis in Chapter 3 shows that there are several sources of technology-related archi-
tecture knowledge such as technology documentations and developer communities. The current
state of the art on architecture knowledge capture AK in technology documentation. However,
our analysis to developer communities in Chapters 4 and 5 shows several advantages of developer
communities over technology documentations. For example, developer communities discuss the
benefits and drawbacks of technologies compared to each other. Moreover, developer communi-
ties are provided and evaluated by practitioners rather than technology vendors. This supports the
credibility and validity of knowledge.

Software engineers share their architecture knowledge in developer communities: While devel-
oper communities are well know in practice and research for solving programming problems. Our
study is the first to discover and verify that software engineers also discuss architectural design
issues in developer communities. Our systematic content analysis on Stack Overflow identifies
and classifies architecture-relevant posts into several sub-types and variations. The classification
together with sub-types provide a structure for capturing architectural knowledge. Moreover, our
ontology of architecture knowledge in developer communities specify the representation of archi-
tecture knowledge in developer communities.

Software engineers face several challenges to find architectural information using keywords search
engines: Our interviews and experiments with practitioners show that software engineers face sev-
eral obstacles to find architectural information in developer communities. These obstacles emerge
from the fact that the amount of architecture-relevant posts are less than other types of posts (e.g.
programming posts). Another reason is the limited abilities of generic keywords-based search
engines to find relevant architectural-information. Our experiments with practitioners confirmed
that searching and curating architecture knowledge from web pages using search engines is com-
plex and time consuming. Our results align with the software architecture state of the art, where
researchers experienced problems with search engines, which returned many irrelevant results.

The first corpus of architecture-relevant posts and architecture knowledge ontology from a devel-
oper community: Our exploratory study with Stack Overflow produced two useful and first of their
kind artifacts. First, we created the first repository of architecture-relevant posts from a developer
community. This repository could be used as the fundamental for further research steps to explore
other types of developer communities (e.g. Blogs or other forums). Our second artifact is an on-
tology of architectural knowledge in developer communities. While several researchers proposed
ontologies for architecture knowledge, our proposed ontology is the first developed ontology from
posts in a developer community. This makes our proposed ontology practically useful, because it
operationalize the fuzzy concepts of architecture knowledge into concrete ontology, which spec-
ifies a concrete relationship between architecture knowledge concepts and textual segments in
Stack Overflow. The benefit of both artifacts (corpus of architecture-relevant posts, and the ontol-
ogy), that they could be used to develop approaches for tools to capture architecture knowledge
from developer communities. For instance, the developed ontology supports implementing core
functionality (e.g., information extraction) needed to acquire architecture knowledge from devel-

153

CHAPTER 9. SUMMARY, DISCUSSION AND FUTURE WORK

oper communities.

The first approach to automatically identify and classify architecture-relevant posts in developer
communities: Our exploratory study with Stack Overflow showed that developer communities con-
tain a mix of architecture-relevant posts and other types of posts. Moreover, we found that users
of developer communities do not mark (i.e. tag) architecture-relevant posts for being architecture-
relevant. Therefore, an approach to automatically identify and classify architecture-relevant posts
is needed to facilitate finding relevant architectural information in developer communities. We
experimented with several classification approaches using several classification algorithms. More-
over, we used ontology-based text classification approaches to capture the semantics of text,
which improved the accuracy of classification. Our results show good accuracy when identifying
architecture-relevant posts and separate them from programming posts. However, it was challeng-
ing for the classification approaches to classify architecture-relevant posts into its sub-types. This
is due to the limited number of architecture-relevant posts used for training the algorithms. We
additionally determined terms and ontology classes that could differentiate architecture-relevant
posts from programming posts. Based on our findings we can support building new tools for
automatically capturing architecture knowledge based on mining online communities.

First approach of a specialized search engine for architectural information: Our interviews with
practitioners in Chapter 6, as well as recent results in the current state of the art verified the need to
develop specialized search approaches for software architecture. We propose the first approach to
improve the search for architectural information in developer communities. Our approach makes
use of our classification approaches and our architecture knowledge ontology to determine rele-
vant architecture-relevant posts for a certain design activity. Most importantly, the results from
experiments with practitioners showed improved effectiveness of searching based on the informa-
tion needs for different architecture design activities. The improvement is different depending on
the design activity.

9.4 Future Work

In this section, we discuss proposals for future work. We base our proposals on our results, chal-
lenges, limitations, and experience with practitioners.

Explore additional developer communities for architectural knowledge: In our study, we also
selected Stack Overflow as our sample for a developer community. Software engineers might
benefit from other types of developer communities. Other developer communities could have
different structures. For example, Blogs have a different structure as forums. Thus, other developer
communities could have different types of posts and additional architecture knowledge concepts.
Moreover, exploring other types and examples of developer communities would further extend
and verify our results. Furthermore, exploring additional developer communities would support
extending our corpus of architecture-relevant posts and provide additional annotations for ontology
classes, which is required to enhance methods for information extraction and information retrieval.

Improve the accuracy of classifying architecture-relevant posts in developer communities: Our
evaluation results show that it is challenging to automatically classify architecture-relevant posts.
Further techniques and methods are required to improve the accuracy of classification. Using
recent advances in text classification (e.g. deep learning) might improve the accuracy of classi-
fication. The improvement in the accuracy of classification would support improving searching
approaches for architectural information.

154

CHAPTER 9. SUMMARY, DISCUSSION AND FUTURE WORK

Extend and improve the search approach for architectural information: Our proposed search ap-
proach in Chapter 8 optimized searching for architecture-relevant posts in Stack Overflow. A
search approach with a wider scope could support software architects to find relevant architectural
information in several sources of architectural knowledge. For example, considering technology
documentation, vendor websites, and architects Blogs would provide a bigger scope of informa-
tion to software architects. The search approach could be extended to consider these additional
sources of architectural knowledge. Moreover, the effectiveness of the search approach could be
extended and improved using additional ontology-based approaches, and mathematical modeling
methods. Using ontology-based searching and mathematical modeling require bigger number of
posts and annotations.

Improve the usability of tools to search for architectural information: Our proposed search ap-
proach in Chapter 8 did not include any additional usability aspects compared to a conventional
search engine. Our experiment with practitioners in Chapter 8 as well as our interviews in Chapter
6 showed the need to improve the usability of searching to find architectural information. For
instance practitioners mentioned that architecture-relevant posts are long and complex to read,
which is time consuming to read. Thus, approaches to facilitate reading and capturing architecture
knowledge in posts would reduce the time and effort. Another aspect to improve the usability
of finding relevant information in posts is to further categorize posts according to architecture
knowledge concepts. For example, categorize posts based on their focus on certain quality at-
tributes. Finally, current search approaches require the ability to find suitable keywords. This
could be solved if we could provide the ability to search using architecture knowledge concepts
(i.e. semantic search) instead of keywords.

Assess the usefulness of a specialized search approach for architectural information: We evaluated
the effectiveness of the proposed search approach in Chapter 8. However, we did not assess the
impact of our approach on the produced quality of architectures of software engineers. The search
approach could be integrated in the tools (e.g. modeling tools) used by software architects. A long-
term monitoring for the changes in the quality of software architectures would support evaluating
the usefulness of using these specialized search approaches.

155

Part V

Appendices

156

A
Stack Overflow Posts Analysis

A.1 Technology Specification Resources . 157
A.2 Stack Overflow Posts Repository . 158
A.3 Architecture Knowledge Ontology in Stack Overflow 189

A.1 Technology Specification Resources

In Chapter 3, we analyzed several technology specification documents to support answering RQ1
and RQ2. We list here the technology documents, which have been analyzed:

• Sun Certified Enterprise Architect for Java EE Study Guide, Second Edition, Mark Cade
and Humphrey Sheil.

• The Java EE 7 Tutorial, Oracle.

• Microsoft Application Architecture Guide, 2nd Edition.

• Microsoft (2016): Windows Communication Foundation. https://docs.microsoft.
com/en-us/dotnet/framework/wcf/index

• The Netty Project (2016): Netty Homepage. http://netty.io/.

• The Netty Project 3.x User Guide. http://netty.io/3.5/guide/

Figure A.1: The query used to gather stack overflow posts

157

https://docs.microsoft.com/en-us/dotnet/framework/wcf/index
https://docs.microsoft.com/en-us/dotnet/framework/wcf/index
http://netty.io/
http://netty.io/3.5/guide/

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

• Microsoft (2016): Microsoft BizTalk Server 2013 and 2013 R2 Help. https://msdn.
microsoft.com/en-us/library/aa548004.aspx

• Hintjens, Pieter: 23/ZMTP - ZeroMQ Message Transport Protocol. http://rfc.zeromq.
org/spec:23

• Sustrik, Martin (2014): ZeroMQ: The Design of Messaging Middleware.

http://www.drdobbs.com/architecture-and-design/ zeromq-the-design-of-messaging-middlewar

/240165684?pgno=1

A.2 Stack Overflow Posts Repository

A.2.1 Queries of Posts

In order to gather Stack Overflow posts to conduct our analysis and experiments in Chapters 4 and
7, we executed queries on the stack exchange web site1. The queries retrieve posts, which contain
certain technology names in their titles or questions or answers or tags. In Fig. A.1, we provide
the query used to gather posts.

We used the query in Fig. A.1 with technology names in the middelware and big-data domains.
We list the names of technologies, which are considered to query posts.

For the middelware domain, we queried the following technology names:

Zero MQ, wso2, websphere, wcf, wamp, virtuoso, tibco, stomp, starling, soap, rpc, rmi, rab-
bitmq, ole, netty, mule, msmq, Json WS, jms, gearman, ESB, com, celery, BlazeDS, biztalk,
Apache thrift, amqp, Amazon SQS, Activex, .Net Remoting, ActiveMQ, talend, Camel, DDS, hor-
netq, Json rpc, masstransit, IBM websphere MQ, web orb, Servicemix, Jboss Fuse ESB, ironmq,
Apache Avro, kafka, Bpel, mqtt, rpyc, Jboss Messaging MQ, SAP Rfc, kombu, qpid, lightstreamer,
Active MQ

For the big-data domain, we queried the following technology names:

Mongo DB, Couch DB, Cassandra, NoSQL, Redis, Couchbase, Hadoop, Neo4j

A.2.2 List of Architecture-relevant Stack Overflow Posts

As explained in Chapter 4, we explored different types of architecture-relevant posts. In this sec-
tion, we present in the following pages a list of the analyzed and categorized architecture relevant
posts.

1http://data.stackexchange.com/stackoverflow/query/294068/
string-search-in-title-tags-body-with-a-minimum-score-of-7-and-without-code-in-bo

158

https://msdn.microsoft.com/en-us/library/aa548004.aspx
https://msdn.microsoft.com/en-us/library/aa548004.aspx
http://rfc.zeromq.org/spec:23
http://rfc.zeromq.org/spec:23
http://data.stackexchange.com/stackoverflow/query/294068/string-search-in-title-tags-body-with-a-minimum-score-of-7-and-without-code-in-bo
http://data.stackexchange.com/stackoverflow/query/294068/string-search-in-title-tags-body-with-a-minimum-score-of-7-and-without-code-in-bo

URL Purpose Solution
http://stackoverflow.com/questions/10006 Identification Combined
http://stackoverflow.com/questions/10030227 Identification Configuration
http://stackoverflow.com/questions/10057189 Identification Feature
http://stackoverflow.com/questions/10156388 Identification Technology
http://stackoverflow.com/questions/10234386 Identification Feature
http://stackoverflow.com/questions/1033111 Identification Feature
http://stackoverflow.com/questions/10355878 Identification Combined
http://stackoverflow.com/questions/10375137 Identification Technology
http://stackoverflow.com/questions/1039606 Identification Technology
http://stackoverflow.com/questions/10568250 Identification Technology
http://stackoverflow.com/questions/10608531 Identification Technology
http://stackoverflow.com/questions/10621648 Identification Technology
http://stackoverflow.com/questions/10745084 Identification Feature
http://stackoverflow.com/questions/108089 Identification Combined
http://stackoverflow.com/questions/1103495 Identification Technology
http://stackoverflow.com/questions/1112279 Identification Technology
http://stackoverflow.com/questions/1118479 Identification Configuration
http://stackoverflow.com/questions/1122292 Identification Technology
http://stackoverflow.com/questions/11290127 Identification Technology
http://stackoverflow.com/questions/11378046 Identification Combined
http://stackoverflow.com/questions/1139203 Identification Configuration
http://stackoverflow.com/questions/11429774 Identification Combined
http://stackoverflow.com/questions/11481599 Identification Configuration
http://stackoverflow.com/questions/115316 Identification Technology
http://stackoverflow.com/questions/1163574 Identification Technology
http://stackoverflow.com/questions/1164810 Identification Technology
http://stackoverflow.com/questions/11755146 Identification Combined
http://stackoverflow.com/questions/11755320 Identification Feature
http://stackoverflow.com/questions/1183754 Identification Technology
http://stackoverflow.com/questions/11928655 Identification Technology
http://stackoverflow.com/questions/11935727 Identification Technology
http://stackoverflow.com/questions/12147614 Identification Combined
http://stackoverflow.com/questions/12221715 Identification Technology
http://stackoverflow.com/questions/1222963 Identification Feature
http://stackoverflow.com/questions/1234427 Identification Configuration
http://stackoverflow.com/questions/123817 Identification Technology
http://stackoverflow.com/questions/12556309 Identification Combined
http://stackoverflow.com/questions/12585987 Identification Technology
http://stackoverflow.com/questions/1268252 Identification Feature
http://stackoverflow.com/questions/12733985 Identification Technology
http://stackoverflow.com/questions/12783677 Identification Technology
http://stackoverflow.com/questions/12904377 Identification Technology
http://stackoverflow.com/questions/13087092 Identification Technology
http://stackoverflow.com/questions/1314769 Identification Technology

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

159

http://stackoverflow.com/questions/13369521 Identification Technology
http://stackoverflow.com/questions/13721866 Identification Feature
http://stackoverflow.com/questions/14186925 Identification Combined
http://stackoverflow.com/questions/142184 Identification Technology
http://stackoverflow.com/questions/14342430 Identification Technology
http://stackoverflow.com/questions/14446384 Identification Configuration
http://stackoverflow.com/questions/14494444 Identification Technology
http://stackoverflow.com/questions/14501804 Identification Technology
http://stackoverflow.com/questions/14663703 Identification Technology
http://stackoverflow.com/questions/14713711 Identification Combined
http://stackoverflow.com/questions/1476337 Identification Feature
http://stackoverflow.com/questions/1479641 Identification Technology
http://stackoverflow.com/questions/1480462 Identification Technology
http://stackoverflow.com/questions/1484122 Identification Technology
http://stackoverflow.com/questions/1485061 Identification Feature
http://stackoverflow.com/questions/15054777 Identification Feature
http://stackoverflow.com/questions/15171522 Identification Technology
http://stackoverflow.com/questions/15265319 Identification Combined
http://stackoverflow.com/questions/1558207 Identification Combined
http://stackoverflow.com/questions/1559808 Identification Technology
http://stackoverflow.com/questions/1570939 Identification Configuration
http://stackoverflow.com/questions/15995179 Identification Combined
http://stackoverflow.com/questions/16047344 Identification Combined
http://stackoverflow.com/questions/1613586 Identification Feature
http://stackoverflow.com/questions/162376 Identification Feature
http://stackoverflow.com/questions/16482269 Identification Feature
http://stackoverflow.com/questions/1670332 Identification Configuration
http://stackoverflow.com/questions/1700917 Identification Combined
http://stackoverflow.com/questions/1728020 Identification Technology
http://stackoverflow.com/questions/1730100 Identification Technology
http://stackoverflow.com/questions/1746207 Identification Combined
http://stackoverflow.com/questions/1763099 Identification Configuration
http://stackoverflow.com/questions/17730905 Identification Feature
http://stackoverflow.com/questions/17986907 Identification Combined
http://stackoverflow.com/questions/1809296 Identification Technology
http://stackoverflow.com/questions/18531072 Identification Configuration
http://stackoverflow.com/questions/1854323 Identification Technology
http://stackoverflow.com/questions/187857 Identification Feature
http://stackoverflow.com/questions/1897050 Identification Feature
http://stackoverflow.com/questions/1935040 Identification Feature
http://stackoverflow.com/questions/19758215 Identification Technology
http://stackoverflow.com/questions/2006624 Identification Combined
http://stackoverflow.com/questions/2028568 Identification Technology
http://stackoverflow.com/questions/210446 Identification Combined
http://stackoverflow.com/questions/2110965 Identification Technology

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

160

http://stackoverflow.com/questions/2114671 Identification Combined
http://stackoverflow.com/questions/2155759 Identification Technology
http://stackoverflow.com/questions/2162234 Identification Technology
http://stackoverflow.com/questions/2172260 Identification Technology
http://stackoverflow.com/questions/218538 Identification Technology
http://stackoverflow.com/questions/2198168 Identification Technology
http://stackoverflow.com/questions/22175482 Identification Configuration
http://stackoverflow.com/questions/22340 Identification Combined
http://stackoverflow.com/questions/2244245 Identification Configuration
http://stackoverflow.com/questions/2244764 Identification Feature
http://stackoverflow.com/questions/2249715 Identification Configuration
http://stackoverflow.com/questions/2252085 Identification Combined
http://stackoverflow.com/questions/2259982 Identification Feature
http://stackoverflow.com/questions/226953 Identification Feature
http://stackoverflow.com/questions/22947234 Identification Feature
http://stackoverflow.com/questions/2300007 Identification Technology
http://stackoverflow.com/questions/231924 Identification Technology
http://stackoverflow.com/questions/23431351 Identification Technology
http://stackoverflow.com/questions/2363157 Identification Technology
http://stackoverflow.com/questions/236793 Identification Feature
http://stackoverflow.com/questions/2370573 Identification Technology
http://stackoverflow.com/questions/2410879 Identification Technology
http://stackoverflow.com/questions/2429844 Identification Technology
http://stackoverflow.com/questions/24798569 Identification Configuration
http://stackoverflow.com/questions/249985 Identification Combined
http://stackoverflow.com/questions/2500799 Identification Feature
http://stackoverflow.com/questions/25019324 Identification Combined
http://stackoverflow.com/questions/2503071 Identification Configuration
http://stackoverflow.com/questions/2507536 Identification Technology
http://stackoverflow.com/questions/2518136 Identification Technology
http://stackoverflow.com/questions/255198 Identification Technology
http://stackoverflow.com/questions/2554999 Identification Feature
http://stackoverflow.com/questions/256897 Identification Technology
http://stackoverflow.com/questions/25875700 Identification Combined
http://stackoverflow.com/questions/2592609 Identification Feature
http://stackoverflow.com/questions/2647380 Identification Combined
http://stackoverflow.com/questions/2675793 Identification Technology
http://stackoverflow.com/questions/2679024 Identification Combined
http://stackoverflow.com/questions/2681318 Identification Feature
http://stackoverflow.com/questions/2697557 Identification Combined
http://stackoverflow.com/questions/2733565 Identification Configuration
http://stackoverflow.com/questions/2737685 Identification Configuration
http://stackoverflow.com/questions/2781872 Identification Configuration
http://stackoverflow.com/questions/2782076 Identification Technology
http://stackoverflow.com/questions/2783795 Identification Technology

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

161

http://stackoverflow.com/questions/2804818 Identification Combined
http://stackoverflow.com/questions/280991 Identification Feature
http://stackoverflow.com/questions/28298642 Identification Configuration
http://stackoverflow.com/questions/286614 Identification Combined
http://stackoverflow.com/questions/2897513 Identification Configuration
http://stackoverflow.com/questions/2909782 Identification Technology
http://stackoverflow.com/questions/2936598 Identification Technology
http://stackoverflow.com/questions/2943935 Identification Feature
http://stackoverflow.com/questions/2947470 Identification Technology
http://stackoverflow.com/questions/29584618 Identification Combined
http://stackoverflow.com/questions/29782279 Identification Feature
http://stackoverflow.com/questions/3016446 Identification Combined
http://stackoverflow.com/questions/3017101 Identification Combined
http://stackoverflow.com/questions/30278054 Identification Combined
http://stackoverflow.com/questions/3063321 Identification Technology
http://stackoverflow.com/questions/3115191 Identification Technology
http://stackoverflow.com/questions/314258 Identification Feature
http://stackoverflow.com/questions/314268 Identification Combined
http://stackoverflow.com/questions/3159673 Identification Technology
http://stackoverflow.com/questions/3172094 Identification Technology
http://stackoverflow.com/questions/3186783 Identification Technology
http://stackoverflow.com/questions/3194508 Identification Feature
http://stackoverflow.com/questions/3198781 Identification Configuration
http://stackoverflow.com/questions/3213398 Identification Technology
http://stackoverflow.com/questions/3267081 Identification Technology
http://stackoverflow.com/questions/329779 Identification Technology
http://stackoverflow.com/questions/3400139 Identification Technology
http://stackoverflow.com/questions/340568 Identification Technology
http://stackoverflow.com/questions/3413424 Identification Feature
http://stackoverflow.com/questions/345414 Identification Combined
http://stackoverflow.com/questions/3465675 Identification Feature
http://stackoverflow.com/questions/3471013 Identification Technology
http://stackoverflow.com/questions/3486426 Identification Technology
http://stackoverflow.com/questions/3513112 Identification Combined
http://stackoverflow.com/questions/3594675 Identification Feature
http://stackoverflow.com/questions/3624568 Identification Technology
http://stackoverflow.com/questions/3640292 Identification Technology
http://stackoverflow.com/questions/3650457 Identification Technology
http://stackoverflow.com/questions/3650553 Identification Feature
http://stackoverflow.com/questions/3689161 Identification Technology
http://stackoverflow.com/questions/3708853 Identification Configuration
http://stackoverflow.com/questions/37579 Identification Technology
http://stackoverflow.com/questions/3758576 Identification Combined
http://stackoverflow.com/questions/3906356 Identification Feature
http://stackoverflow.com/questions/393580 Identification Feature

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

162

http://stackoverflow.com/questions/3936358 Identification Feature
http://stackoverflow.com/questions/393727 Identification Technology
http://stackoverflow.com/questions/393996 Identification Technology
http://stackoverflow.com/questions/39585 Identification Configuration
http://stackoverflow.com/questions/4033891 Identification Technology
http://stackoverflow.com/questions/4041321 Identification Technology
http://stackoverflow.com/questions/4106062 Identification Technology
http://stackoverflow.com/questions/41353 Identification Technology
http://stackoverflow.com/questions/4308343 Identification Feature
http://stackoverflow.com/questions/4322819 Identification Configuration
http://stackoverflow.com/questions/4335 Identification Feature
http://stackoverflow.com/questions/4378778 Identification Combined
http://stackoverflow.com/questions/44005 Identification Technology
http://stackoverflow.com/questions/4405992 Identification Technology
http://stackoverflow.com/questions/440688 Identification Technology
http://stackoverflow.com/questions/4425696 Identification Technology
http://stackoverflow.com/questions/4444208 Identification Feature
http://stackoverflow.com/questions/446417 Identification Technology
http://stackoverflow.com/questions/4473567 Identification Technology
http://stackoverflow.com/questions/450488 Identification Technology
http://stackoverflow.com/questions/45086 Identification Technology
http://stackoverflow.com/questions/4575381 Identification Technology
http://stackoverflow.com/questions/4615744 Identification Configuration
http://stackoverflow.com/questions/4620442 Identification Feature
http://stackoverflow.com/questions/4621715 Identification Feature
http://stackoverflow.com/questions/4683171 Identification Combined
http://stackoverflow.com/questions/4700292 Identification Feature
http://stackoverflow.com/questions/4736980 Identification Technology
http://stackoverflow.com/questions/4741713 Identification Configuration
http://stackoverflow.com/questions/476211 Identification Feature
http://stackoverflow.com/questions/4804374 Identification Configuration
http://stackoverflow.com/questions/4812778 Identification Combined
http://stackoverflow.com/questions/4857464 Identification Feature
http://stackoverflow.com/questions/491207 Identification Technology
http://stackoverflow.com/questions/5009801 Identification Feature
http://stackoverflow.com/questions/5021428 Identification Technology
http://stackoverflow.com/questions/5031606 Identification Technology
http://stackoverflow.com/questions/5035466 Identification Technology
http://stackoverflow.com/questions/5040644 Identification Configuration
http://stackoverflow.com/questions/5052102 Identification Technology
http://stackoverflow.com/questions/5052958 Identification Combined
http://stackoverflow.com/questions/506022 Identification Technology
http://stackoverflow.com/questions/5100643 Identification Technology
http://stackoverflow.com/questions/5167122 Identification Technology
http://stackoverflow.com/questions/517376 Identification Technology

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

163

http://stackoverflow.com/questions/5239204 Identification Combined
http://stackoverflow.com/questions/5349428 Identification Feature
http://stackoverflow.com/questions/5364673 Identification Technology
http://stackoverflow.com/questions/5391435 Identification Feature
http://stackoverflow.com/questions/5461974 Identification Technology
http://stackoverflow.com/questions/5467998 Identification Technology
http://stackoverflow.com/questions/5503954 Identification Combined
http://stackoverflow.com/questions/556488 Identification Combined
http://stackoverflow.com/questions/5599379 Identification Configuration
http://stackoverflow.com/questions/5604985 Identification Technology
http://stackoverflow.com/questions/5619403 Identification Feature
http://stackoverflow.com/questions/5687650 Identification Feature
http://stackoverflow.com/questions/57689 Identification Technology
http://stackoverflow.com/questions/5805969 Identification Combined
http://stackoverflow.com/questions/5883545 Identification Feature
http://stackoverflow.com/questions/5973249 Identification Feature
http://stackoverflow.com/questions/6033342 Identification Technology
http://stackoverflow.com/questions/604776 Identification Technology
http://stackoverflow.com/questions/6065062 Identification Combined
http://stackoverflow.com/questions/6118773 Identification Combined
http://stackoverflow.com/questions/6233364 Identification Technology
http://stackoverflow.com/questions/625146 Identification Technology
http://stackoverflow.com/questions/626766 Identification Technology
http://stackoverflow.com/questions/6302341 Identification Combined
http://stackoverflow.com/questions/647816 Identification Feature
http://stackoverflow.com/questions/6518401 Identification Technology
http://stackoverflow.com/questions/6542676 Identification Technology
http://stackoverflow.com/questions/6551718 Identification Technology
http://stackoverflow.com/questions/660445 Identification Feature
http://stackoverflow.com/questions/6694338 Identification Combined
http://stackoverflow.com/questions/6717874 Identification Feature
http://stackoverflow.com/questions/686452 Identification Combined
http://stackoverflow.com/questions/6889265 Identification Technology
http://stackoverflow.com/questions/691111 Identification Technology
http://stackoverflow.com/questions/6993746 Identification Technology
http://stackoverflow.com/questions/6995558 Identification Combined
http://stackoverflow.com/questions/721708 Identification Feature
http://stackoverflow.com/questions/7284126 Identification Technology
http://stackoverflow.com/questions/7332029 Identification Combined
http://stackoverflow.com/questions/7349551 Identification Technology
http://stackoverflow.com/questions/7364326 Identification Technology
http://stackoverflow.com/questions/7403585 Identification Configuration
http://stackoverflow.com/questions/7465120 Identification Technology
http://stackoverflow.com/questions/7479180 Identification Technology
http://stackoverflow.com/questions/7493306 Identification Combined

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

164

http://stackoverflow.com/questions/749522 Identification Technology
http://stackoverflow.com/questions/7583132 Identification Feature
http://stackoverflow.com/questions/7629694 Identification Combined
http://stackoverflow.com/questions/7650697 Identification Combined
http://stackoverflow.com/questions/7664701 Identification Configuration
http://stackoverflow.com/questions/7817303 Identification Technology
http://stackoverflow.com/questions/7827698 Identification Technology
http://stackoverflow.com/questions/7837189 Identification Technology
http://stackoverflow.com/questions/7874609 Identification Technology
http://stackoverflow.com/questions/7882660 Identification Configuration
http://stackoverflow.com/questions/810212 Identification Technology
http://stackoverflow.com/questions/8148702 Identification Configuration
http://stackoverflow.com/questions/8202282 Identification Combined
http://stackoverflow.com/questions/8257652 Identification Technology
http://stackoverflow.com/questions/8309780 Identification Feature
http://stackoverflow.com/questions/83604 Identification Configuration
http://stackoverflow.com/questions/84269 Identification Technology
http://stackoverflow.com/questions/843529 Identification Combined
http://stackoverflow.com/questions/8523650 Identification Technology
http://stackoverflow.com/questions/861022 Identification Technology
http://stackoverflow.com/questions/8653146 Identification Feature
http://stackoverflow.com/questions/8655252 Identification Feature
http://stackoverflow.com/questions/881754 Identification Technology
http://stackoverflow.com/questions/8867881 Identification Feature
http://stackoverflow.com/questions/890938 Identification Combined
http://stackoverflow.com/questions/9033409 Identification Feature
http://stackoverflow.com/questions/9074411 Identification Combined
http://stackoverflow.com/questions/9118367 Identification Feature
http://stackoverflow.com/questions/9151698 Identification Feature
http://stackoverflow.com/questions/9157432 Identification Technology
http://stackoverflow.com/questions/9167663 Identification Feature
http://stackoverflow.com/questions/922116 Identification Feature
http://stackoverflow.com/questions/943712 Identification Configuration
http://stackoverflow.com/questions/945123 Identification Combined
http://stackoverflow.com/questions/9453561 Identification Technology
http://stackoverflow.com/questions/9470013 Identification Configuration
http://stackoverflow.com/questions/9535421 Identification Technology
http://stackoverflow.com/questions/9542395 Identification Technology
http://stackoverflow.com/questions/9577012 Identification Technology
http://stackoverflow.com/questions/960836 Identification Technology
http://stackoverflow.com/questions/9783818 Identification Technology
http://stackoverflow.com/questions/9788572 Identification Technology
http://stackoverflow.com/questions/9846228 Identification Technology
http://stackoverflow.com/questions/9874234 Identification Feature
http://stackoverflow.com/questions/9988343 Identification Feature

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

165

http://stackoverflow.com/questions/10037900 Evaluation Technology
http://stackoverflow.com/questions/1004295 Evaluation Technology
http://stackoverflow.com/questions/10051261 Evaluation Technology
http://stackoverflow.com/questions/10055290 Evaluation Combined
http://stackoverflow.com/questions/10087396 Evaluation Configuration
http://stackoverflow.com/questions/100993 Evaluation Technology
http://stackoverflow.com/questions/10136931 Evaluation Technology
http://stackoverflow.com/questions/10160463 Evaluation Configuration
http://stackoverflow.com/questions/10172506 Evaluation Technology
http://stackoverflow.com/questions/10323393 Evaluation Feature
http://stackoverflow.com/questions/1037985 Evaluation Feature
http://stackoverflow.com/questions/10407760 Evaluation Combined
http://stackoverflow.com/questions/10593739 Evaluation Technology
http://stackoverflow.com/questions/10641999 Evaluation Configuration
http://stackoverflow.com/questions/10730519 Evaluation Technology
http://stackoverflow.com/questions/10849920 Evaluation Feature
http://stackoverflow.com/questions/1098473 Evaluation Technology
http://stackoverflow.com/questions/1102254 Evaluation Technology
http://stackoverflow.com/questions/11155095 Evaluation Technology
http://stackoverflow.com/questions/11157190 Evaluation Combined
http://stackoverflow.com/questions/11173252 Evaluation Configuration
http://stackoverflow.com/questions/11198389 Evaluation Configuration
http://stackoverflow.com/questions/11248510 Evaluation Feature
http://stackoverflow.com/questions/11398656 Evaluation Configuration
http://stackoverflow.com/questions/11445400 Evaluation Feature
http://stackoverflow.com/questions/11565906 Evaluation Combined
http://stackoverflow.com/questions/11710507 Evaluation Technology
http://stackoverflow.com/questions/1171767 Evaluation Technology
http://stackoverflow.com/questions/11798325 Evaluation Feature
http://stackoverflow.com/questions/11829551 Evaluation Combined
http://stackoverflow.com/questions/11840630 Evaluation Combined
http://stackoverflow.com/questions/1189420 Evaluation Feature
http://stackoverflow.com/questions/11987838 Evaluation Feature
http://stackoverflow.com/questions/12054412 Evaluation Technology
http://stackoverflow.com/questions/12069653 Evaluation Technology
http://stackoverflow.com/questions/120791 Evaluation Technology
http://stackoverflow.com/questions/12099446 Evaluation Technology
http://stackoverflow.com/questions/12130481 Evaluation Technology
http://stackoverflow.com/questions/1225851 Evaluation Feature
http://stackoverflow.com/questions/12296787 Evaluation Technology
http://stackoverflow.com/questions/123187 Evaluation Technology
http://stackoverflow.com/questions/12349690 Evaluation Feature
http://stackoverflow.com/questions/1237649 Evaluation Technology
http://stackoverflow.com/questions/12559570 Evaluation Technology
http://stackoverflow.com/questions/12595911 Evaluation Feature

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

166

http://stackoverflow.com/questions/12634965 Evaluation Technology
http://stackoverflow.com/questions/12680981 Evaluation Technology
http://stackoverflow.com/questions/127038 Evaluation Technology
http://stackoverflow.com/questions/12805377 Evaluation Technology
http://stackoverflow.com/questions/12955337 Evaluation Technology
http://stackoverflow.com/questions/12961471 Evaluation Technology
http://stackoverflow.com/questions/12982 Evaluation Configuration
http://stackoverflow.com/questions/12996234 Evaluation Technology
http://stackoverflow.com/questions/13005410 Evaluation Technology
http://stackoverflow.com/questions/13016406 Evaluation Technology
http://stackoverflow.com/questions/13309446 Evaluation Feature
http://stackoverflow.com/questions/13377992 Evaluation Technology
http://stackoverflow.com/questions/13440875 Evaluation Technology
http://stackoverflow.com/questions/13494033 Evaluation Technology
http://stackoverflow.com/questions/13544792 Evaluation Technology
http://stackoverflow.com/questions/1365357 Evaluation Combined
http://stackoverflow.com/questions/13671473 Evaluation Technology
http://stackoverflow.com/questions/13681213 Evaluation Technology
http://stackoverflow.com/questions/136856 Evaluation Technology
http://stackoverflow.com/questions/1369749 Evaluation Technology
http://stackoverflow.com/questions/13818933 Evaluation Configuration
http://stackoverflow.com/questions/14050116 Evaluation Combined
http://stackoverflow.com/questions/1410328 Evaluation Technology
http://stackoverflow.com/questions/1423065 Evaluation Technology
http://stackoverflow.com/questions/14241947 Evaluation Technology
http://stackoverflow.com/questions/1426249 Evaluation Technology
http://stackoverflow.com/questions/1429318 Evaluation Technology
http://stackoverflow.com/questions/14491000 Evaluation Technology
http://stackoverflow.com/questions/1468573 Evaluation Configuration
http://stackoverflow.com/questions/14773771 Evaluation Technology
http://stackoverflow.com/questions/1500744 Evaluation Technology
http://stackoverflow.com/questions/1502298 Evaluation Technology
http://stackoverflow.com/questions/15056878 Evaluation Technology
http://stackoverflow.com/questions/1511514 Evaluation Technology
http://stackoverflow.com/questions/15150133 Evaluation Technology
http://stackoverflow.com/questions/1518263 Evaluation Technology
http://stackoverflow.com/questions/15267435 Evaluation Technology
http://stackoverflow.com/questions/15402233 Evaluation Technology
http://stackoverflow.com/questions/15480632 Evaluation Technology
http://stackoverflow.com/questions/15490658 Evaluation Configuration
http://stackoverflow.com/questions/1560619 Evaluation Feature
http://stackoverflow.com/questions/1563482 Evaluation Technology
http://stackoverflow.com/questions/15701263 Evaluation Technology
http://stackoverflow.com/questions/1582952 Evaluation Technology
http://stackoverflow.com/questions/16040039 Evaluation Feature

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

167

http://stackoverflow.com/questions/1617505 Evaluation Configuration
http://stackoverflow.com/questions/16232572 Evaluation Technology
http://stackoverflow.com/questions/1647225 Evaluation Technology
http://stackoverflow.com/questions/16532449 Evaluation Technology
http://stackoverflow.com/questions/16539858 Evaluation Technology
http://stackoverflow.com/questions/16784172 Evaluation Technology
http://stackoverflow.com/questions/1679064 Evaluation Feature
http://stackoverflow.com/questions/16838416 Evaluation Technology
http://stackoverflow.com/questions/17030615 Evaluation Configuration
http://stackoverflow.com/questions/1708201 Evaluation Technology
http://stackoverflow.com/questions/1709047 Evaluation Feature
http://stackoverflow.com/questions/17098377 Evaluation Technology
http://stackoverflow.com/questions/17126625 Evaluation Technology
http://stackoverflow.com/questions/17270863 Evaluation Technology
http://stackoverflow.com/questions/17401679 Evaluation Feature
http://stackoverflow.com/questions/1756487 Evaluation Configuration
http://stackoverflow.com/questions/1763276 Evaluation Technology
http://stackoverflow.com/questions/17708489 Evaluation Technology
http://stackoverflow.com/questions/17806977 Evaluation Technology
http://stackoverflow.com/questions/17814436 Evaluation Configuration
http://stackoverflow.com/questions/1792958 Evaluation Configuration
http://stackoverflow.com/questions/18187751 Evaluation Technology
http://stackoverflow.com/questions/1823705 Evaluation Technology
http://stackoverflow.com/questions/1824397 Evaluation Feature
http://stackoverflow.com/questions/18353033 Evaluation Technology
http://stackoverflow.com/questions/1839576 Evaluation Feature
http://stackoverflow.com/questions/1840684 Evaluation Technology
http://stackoverflow.com/questions/1847270 Evaluation Technology
http://stackoverflow.com/questions/1849989 Evaluation Feature
http://stackoverflow.com/questions/18521196 Evaluation Technology
http://stackoverflow.com/questions/18566412 Evaluation Feature
http://stackoverflow.com/questions/18591999 Evaluation Technology
http://stackoverflow.com/questions/1859278 Evaluation Technology
http://stackoverflow.com/questions/19090732 Evaluation Technology
http://stackoverflow.com/questions/19252777 Evaluation Technology
http://stackoverflow.com/questions/1941471 Evaluation Technology
http://stackoverflow.com/questions/1941481 Evaluation Technology
http://stackoverflow.com/questions/1950764 Evaluation Technology
http://stackoverflow.com/questions/19560479 Evaluation Feature
http://stackoverflow.com/questions/2006142 Evaluation Configuration
http://stackoverflow.com/questions/20091826 Evaluation Configuration
http://stackoverflow.com/questions/20128124 Evaluation Technology
http://stackoverflow.com/questions/2013793 Evaluation Technology
http://stackoverflow.com/questions/20215438 Evaluation Technology
http://stackoverflow.com/questions/2023130 Evaluation Technology

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

168

http://stackoverflow.com/questions/2028524 Evaluation Technology
http://stackoverflow.com/questions/20310506 Evaluation Combined
http://stackoverflow.com/questions/20653240 Evaluation Configuration
http://stackoverflow.com/questions/2066318 Evaluation Technology
http://stackoverflow.com/questions/20740114 Evaluation Technology
http://stackoverflow.com/questions/20773875 Evaluation Combined
http://stackoverflow.com/questions/2096734 Evaluation Technology
http://stackoverflow.com/questions/2106715 Evaluation Feature
http://stackoverflow.com/questions/21098502 Evaluation Combined
http://stackoverflow.com/questions/2111844 Evaluation Feature
http://stackoverflow.com/questions/2122176 Evaluation Technology
http://stackoverflow.com/questions/2166590 Evaluation Technology
http://stackoverflow.com/questions/217111 Evaluation Technology
http://stackoverflow.com/questions/21808529 Evaluation Combined
http://stackoverflow.com/questions/22336838 Evaluation Technology
http://stackoverflow.com/questions/230427 Evaluation Technology
http://stackoverflow.com/questions/23240813 Evaluation Technology
http://stackoverflow.com/questions/23280761 Evaluation Technology
http://stackoverflow.com/questions/2338661 Evaluation Feature
http://stackoverflow.com/questions/2344022 Evaluation Feature
http://stackoverflow.com/questions/23564 Evaluation Configuration
http://stackoverflow.com/questions/2363397 Evaluation Technology
http://stackoverflow.com/questions/237794 Evaluation Feature
http://stackoverflow.com/questions/2392211 Evaluation Technology
http://stackoverflow.com/questions/2392650 Evaluation Feature
http://stackoverflow.com/questions/2394112 Evaluation Technology
http://stackoverflow.com/questions/240471 Evaluation Technology
http://stackoverflow.com/questions/2426974 Evaluation Technology
http://stackoverflow.com/questions/2460437 Evaluation Technology
http://stackoverflow.com/questions/2486721 Evaluation Technology
http://stackoverflow.com/questions/249200 Evaluation Technology
http://stackoverflow.com/questions/2498796 Evaluation Configuration
http://stackoverflow.com/questions/250058 Evaluation Technology
http://stackoverflow.com/questions/2508361 Evaluation Configuration
http://stackoverflow.com/questions/252115 Evaluation Technology
http://stackoverflow.com/questions/2523629 Evaluation Technology
http://stackoverflow.com/questions/2530880 Evaluation Technology
http://stackoverflow.com/questions/25323 Evaluation Configuration
http://stackoverflow.com/questions/25325801 Evaluation Feature
http://stackoverflow.com/questions/255794 Evaluation Configuration
http://stackoverflow.com/questions/2567254 Evaluation Combined
http://stackoverflow.com/questions/2576446 Evaluation Technology
http://stackoverflow.com/questions/2577744 Evaluation Technology
http://stackoverflow.com/questions/2592809 Evaluation Technology
http://stackoverflow.com/questions/2609834 Evaluation Combined

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

169

http://stackoverflow.com/questions/2630492 Evaluation Technology
http://stackoverflow.com/questions/2634784 Evaluation Technology
http://stackoverflow.com/questions/2656813 Evaluation Technology
http://stackoverflow.com/questions/2657586 Evaluation Technology
http://stackoverflow.com/questions/26623673 Evaluation Technology
http://stackoverflow.com/questions/2669573 Evaluation Technology
http://stackoverflow.com/questions/267306 Evaluation Feature
http://stackoverflow.com/questions/2705043 Evaluation Technology
http://stackoverflow.com/questions/271326 Evaluation Technology
http://stackoverflow.com/questions/271504 Evaluation Technology
http://stackoverflow.com/questions/2715274 Evaluation Feature
http://stackoverflow.com/questions/2725233 Evaluation Technology
http://stackoverflow.com/questions/2728315 Evaluation Technology
http://stackoverflow.com/questions/2751752 Evaluation Technology
http://stackoverflow.com/questions/27666943 Evaluation Technology
http://stackoverflow.com/questions/2811741 Evaluation Technology
http://stackoverflow.com/questions/2812676 Evaluation Feature
http://stackoverflow.com/questions/2868800 Evaluation Technology
http://stackoverflow.com/questions/28950 Evaluation Technology
http://stackoverflow.com/questions/2899271 Evaluation Feature
http://stackoverflow.com/questions/2955071 Evaluation Technology
http://stackoverflow.com/questions/296650 Evaluation Technology
http://stackoverflow.com/questions/3015178 Evaluation Technology
http://stackoverflow.com/questions/30156407 Evaluation Configuration
http://stackoverflow.com/questions/3016683 Evaluation Technology
http://stackoverflow.com/questions/3028899 Evaluation Technology
http://stackoverflow.com/questions/3055713 Evaluation Technology
http://stackoverflow.com/questions/309374 Evaluation Technology
http://stackoverflow.com/questions/3102551 Evaluation Technology
http://stackoverflow.com/questions/3138003 Evaluation Technology
http://stackoverflow.com/questions/3151966 Evaluation Technology
http://stackoverflow.com/questions/3155471 Evaluation Technology
http://stackoverflow.com/questions/3164821 Evaluation Technology
http://stackoverflow.com/questions/3202521 Evaluation Technology
http://stackoverflow.com/questions/3216128 Evaluation Technology
http://stackoverflow.com/questions/3247331 Evaluation Technology
http://stackoverflow.com/questions/3280576 Evaluation Technology
http://stackoverflow.com/questions/32851 Evaluation Technology
http://stackoverflow.com/questions/3291895 Evaluation Technology
http://stackoverflow.com/questions/3307516 Evaluation Technology
http://stackoverflow.com/questions/331419 Evaluation Configuration
http://stackoverflow.com/questions/3325847 Evaluation Technology
http://stackoverflow.com/questions/334639 Evaluation Technology
http://stackoverflow.com/questions/3350860 Evaluation Technology
http://stackoverflow.com/questions/3355082 Evaluation Technology

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

170

http://stackoverflow.com/questions/3394570 Evaluation Technology
http://stackoverflow.com/questions/3442278 Evaluation Technology
http://stackoverflow.com/questions/345749 Evaluation Combined
http://stackoverflow.com/questions/349717 Evaluation Technology
http://stackoverflow.com/questions/3547587 Evaluation Technology
http://stackoverflow.com/questions/35490 Evaluation Technology
http://stackoverflow.com/questions/3577138 Evaluation Technology
http://stackoverflow.com/questions/3578218 Evaluation Technology
http://stackoverflow.com/questions/361491 Evaluation Technology
http://stackoverflow.com/questions/3624275 Evaluation Technology
http://stackoverflow.com/questions/3706158 Evaluation Technology
http://stackoverflow.com/questions/3709987 Evaluation Combined
http://stackoverflow.com/questions/374464 Evaluation Technology
http://stackoverflow.com/questions/3751297 Evaluation Technology
http://stackoverflow.com/questions/3766433 Evaluation Technology
http://stackoverflow.com/questions/377656 Evaluation Configuration
http://stackoverflow.com/questions/378088 Evaluation Technology
http://stackoverflow.com/questions/3792519 Evaluation Technology
http://stackoverflow.com/questions/380052 Evaluation Technology
http://stackoverflow.com/questions/3814706 Evaluation Feature
http://stackoverflow.com/questions/3836900 Evaluation Configuration
http://stackoverflow.com/questions/3885788 Evaluation Technology
http://stackoverflow.com/questions/3916983 Evaluation Technology
http://stackoverflow.com/questions/4078056 Evaluation Technology
http://stackoverflow.com/questions/409338 Evaluation Combined
http://stackoverflow.com/questions/4119867 Evaluation Feature
http://stackoverflow.com/questions/4132759 Evaluation Technology
http://stackoverflow.com/questions/4163066 Evaluation Technology
http://stackoverflow.com/questions/4270883 Evaluation Configuration
http://stackoverflow.com/questions/4293385 Evaluation Technology
http://stackoverflow.com/questions/429606 Evaluation Technology
http://stackoverflow.com/questions/4311279 Evaluation Technology
http://stackoverflow.com/questions/4312343 Evaluation Feature
http://stackoverflow.com/questions/4344822 Evaluation Technology
http://stackoverflow.com/questions/4374958 Evaluation Feature
http://stackoverflow.com/questions/43823 Evaluation Technology
http://stackoverflow.com/questions/446379 Evaluation Technology
http://stackoverflow.com/questions/447518 Evaluation Combined
http://stackoverflow.com/questions/4481131 Evaluation Feature
http://stackoverflow.com/questions/4485650 Evaluation Feature
http://stackoverflow.com/questions/4499510 Evaluation Technology
http://stackoverflow.com/questions/4519963 Evaluation Feature
http://stackoverflow.com/questions/4559883 Evaluation Technology
http://stackoverflow.com/questions/4627240 Evaluation Technology
http://stackoverflow.com/questions/4697740 Evaluation Technology

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

171

http://stackoverflow.com/questions/473932 Evaluation Technology
http://stackoverflow.com/questions/475794 Evaluation Technology
http://stackoverflow.com/questions/4769973 Evaluation Technology
http://stackoverflow.com/questions/4824058 Evaluation Configuration
http://stackoverflow.com/questions/4870814 Evaluation Technology
http://stackoverflow.com/questions/4906369 Evaluation Combined
http://stackoverflow.com/questions/4971437 Evaluation Configuration
http://stackoverflow.com/questions/502780 Evaluation Technology
http://stackoverflow.com/questions/507391 Evaluation Technology
http://stackoverflow.com/questions/507862 Evaluation Technology
http://stackoverflow.com/questions/512807 Evaluation Technology
http://stackoverflow.com/questions/5132648 Evaluation Technology
http://stackoverflow.com/questions/5145129 Evaluation Technology
http://stackoverflow.com/questions/514598 Evaluation Technology
http://stackoverflow.com/questions/5165858 Evaluation Feature
http://stackoverflow.com/questions/5296936 Evaluation Feature
http://stackoverflow.com/questions/5322675 Evaluation Combined
http://stackoverflow.com/questions/5385407 Evaluation Technology
http://stackoverflow.com/questions/5407673 Evaluation Feature
http://stackoverflow.com/questions/5434585 Evaluation Technology
http://stackoverflow.com/questions/5444996 Evaluation Technology
http://stackoverflow.com/questions/5456177 Evaluation Technology
http://stackoverflow.com/questions/5476056 Evaluation Configuration
http://stackoverflow.com/questions/5576415 Evaluation Feature
http://stackoverflow.com/questions/5579853 Evaluation Technology
http://stackoverflow.com/questions/5592572 Evaluation Feature
http://stackoverflow.com/questions/561915 Evaluation Feature
http://stackoverflow.com/questions/5693346 Evaluation Combined
http://stackoverflow.com/questions/5798473 Evaluation Technology
http://stackoverflow.com/questions/580858 Evaluation Technology
http://stackoverflow.com/questions/5809802 Evaluation Technology
http://stackoverflow.com/questions/5834552 Evaluation Combined
http://stackoverflow.com/questions/584112 Evaluation Technology
http://stackoverflow.com/questions/5848069 Evaluation Technology
http://stackoverflow.com/questions/587899 Evaluation Configuration
http://stackoverflow.com/questions/594983 Evaluation Feature
http://stackoverflow.com/questions/5952169 Evaluation Technology
http://stackoverflow.com/questions/5964599 Evaluation Feature
http://stackoverflow.com/questions/59677 Evaluation Feature
http://stackoverflow.com/questions/597397 Evaluation Configuration
http://stackoverflow.com/questions/5975606 Evaluation Technology
http://stackoverflow.com/questions/6041183 Evaluation Technology
http://stackoverflow.com/questions/6061813 Evaluation Feature
http://stackoverflow.com/questions/6104418 Evaluation Technology
http://stackoverflow.com/questions/611183 Evaluation Technology

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

172

http://stackoverflow.com/questions/6166746 Evaluation Technology
http://stackoverflow.com/questions/6169658 Evaluation Combined
http://stackoverflow.com/questions/617859 Evaluation Technology
http://stackoverflow.com/questions/622190 Evaluation Technology
http://stackoverflow.com/questions/6357737 Evaluation Technology
http://stackoverflow.com/questions/6359717 Evaluation Technology
http://stackoverflow.com/questions/6418488 Evaluation Combined
http://stackoverflow.com/questions/6574291 Evaluation Technology
http://stackoverflow.com/questions/6604050 Evaluation Feature
http://stackoverflow.com/questions/6636213 Evaluation Technology
http://stackoverflow.com/questions/6664445 Evaluation Technology
http://stackoverflow.com/questions/6666 Evaluation Technology
http://stackoverflow.com/questions/676123 Evaluation Technology
http://stackoverflow.com/questions/684515 Evaluation Technology
http://stackoverflow.com/questions/6930236 Evaluation Technology
http://stackoverflow.com/questions/7044157 Evaluation Technology
http://stackoverflow.com/questions/7090456 Evaluation Technology
http://stackoverflow.com/questions/712882 Evaluation Feature
http://stackoverflow.com/questions/7129821 Evaluation Technology
http://stackoverflow.com/questions/7340334 Evaluation Feature
http://stackoverflow.com/questions/7382655 Evaluation Technology
http://stackoverflow.com/questions/7390453 Evaluation Technology
http://stackoverflow.com/questions/7390561 Evaluation Technology
http://stackoverflow.com/questions/7410040 Evaluation Technology
http://stackoverflow.com/questions/741413 Evaluation Configuration
http://stackoverflow.com/questions/7425808 Evaluation Technology
http://stackoverflow.com/questions/7521236 Evaluation Technology
http://stackoverflow.com/questions/773503 Evaluation Combined
http://stackoverflow.com/questions/7746830 Evaluation Technology
http://stackoverflow.com/questions/7803185 Evaluation Feature
http://stackoverflow.com/questions/785652 Evaluation Technology
http://stackoverflow.com/questions/7875133 Evaluation Technology
http://stackoverflow.com/questions/789813 Evaluation Technology
http://stackoverflow.com/questions/8062212 Evaluation Technology
http://stackoverflow.com/questions/807692 Evaluation Technology
http://stackoverflow.com/questions/8145060 Evaluation Feature
http://stackoverflow.com/questions/8191416 Evaluation Feature
http://stackoverflow.com/questions/8232194 Evaluation Technology
http://stackoverflow.com/questions/8261654 Evaluation Combined
http://stackoverflow.com/questions/8270868 Evaluation Feature
http://stackoverflow.com/questions/8323950 Evaluation Technology
http://stackoverflow.com/questions/8406914 Evaluation Technology
http://stackoverflow.com/questions/848806 Evaluation Technology
http://stackoverflow.com/questions/8510626 Evaluation Technology
http://stackoverflow.com/questions/855210 Evaluation Technology

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

173

http://stackoverflow.com/questions/8588309 Evaluation Combined
http://stackoverflow.com/questions/8677162 Evaluation Technology
http://stackoverflow.com/questions/876137 Evaluation Feature
http://stackoverflow.com/questions/8765385 Evaluation Technology
http://stackoverflow.com/questions/879725 Evaluation Technology
http://stackoverflow.com/questions/891090 Evaluation Technology
http://stackoverflow.com/questions/8993467 Evaluation Technology
http://stackoverflow.com/questions/9031116 Evaluation Configuration
http://stackoverflow.com/questions/9046887 Evaluation Technology
http://stackoverflow.com/questions/9060402 Evaluation Technology
http://stackoverflow.com/questions/9077687 Evaluation Technology
http://stackoverflow.com/questions/9140299 Evaluation Technology
http://stackoverflow.com/questions/9140716 Evaluation Technology
http://stackoverflow.com/questions/9322252 Evaluation Technology
http://stackoverflow.com/questions/936570 Evaluation Configuration
http://stackoverflow.com/questions/9502548 Evaluation Technology
http://stackoverflow.com/questions/9503851 Evaluation Technology
http://stackoverflow.com/questions/9558128 Evaluation Technology
http://stackoverflow.com/questions/9607544 Evaluation Technology
http://stackoverflow.com/questions/9615569 Evaluation Technology
http://stackoverflow.com/questions/9623482 Evaluation Technology
http://stackoverflow.com/questions/9696009 Evaluation Technology
http://stackoverflow.com/questions/969964 Evaluation Configuration
http://stackoverflow.com/questions/9732381 Evaluation Technology
http://stackoverflow.com/questions/9742380 Evaluation Feature
http://stackoverflow.com/questions/976924 Evaluation Technology
http://stackoverflow.com/questions/9800898 Evaluation Feature
http://stackoverflow.com/questions/990319 Evaluation Technology
http://stackoverflow.com/questions/99548 Evaluation Technology
http://stackoverflow.com/questions/10268613 Multi-purpose Technology
http://stackoverflow.com/questions/10334306 Multi-purpose Technology
http://stackoverflow.com/questions/10353575 Multi-purpose Technology
http://stackoverflow.com/questions/107076 Multi-purpose Feature
http://stackoverflow.com/questions/10777910 Multi-purpose Technology
http://stackoverflow.com/questions/1084911 Multi-purpose Combined
http://stackoverflow.com/questions/1143772 Multi-purpose Technology
http://stackoverflow.com/questions/1156563 Multi-purpose Technology
http://stackoverflow.com/questions/1262415 Multi-purpose Technology
http://stackoverflow.com/questions/1296460 Multi-purpose Configuration
http://stackoverflow.com/questions/13087058 Multi-purpose Combined
http://stackoverflow.com/questions/13592894 Multi-purpose Combined
http://stackoverflow.com/questions/13765969 Multi-purpose Technology
http://stackoverflow.com/questions/14429203 Multi-purpose Technology
http://stackoverflow.com/questions/1503900 Multi-purpose Combined
http://stackoverflow.com/questions/15290984 Multi-purpose Combined

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

174

http://stackoverflow.com/questions/17253618 Multi-purpose Technology
http://stackoverflow.com/questions/1919472 Multi-purpose Technology
http://stackoverflow.com/questions/2116799 Multi-purpose Combined
http://stackoverflow.com/questions/2124221 Multi-purpose Technology
http://stackoverflow.com/questions/2225761 Multi-purpose Configuration
http://stackoverflow.com/questions/22459356 Multi-purpose Technology
http://stackoverflow.com/questions/2279417 Multi-purpose Combined
http://stackoverflow.com/questions/2474163 Multi-purpose Combined
http://stackoverflow.com/questions/2536522 Multi-purpose Feature
http://stackoverflow.com/questions/2594815 Multi-purpose Technology
http://stackoverflow.com/questions/2613348 Multi-purpose Combined
http://stackoverflow.com/questions/268129 Multi-purpose Technology
http://stackoverflow.com/questions/2912051 Multi-purpose Technology
http://stackoverflow.com/questions/3026345 Multi-purpose Technology
http://stackoverflow.com/questions/3085811 Multi-purpose Feature
http://stackoverflow.com/questions/3452527 Multi-purpose Combined
http://stackoverflow.com/questions/3543835 Multi-purpose Feature
http://stackoverflow.com/questions/3766150 Multi-purpose Technology
http://stackoverflow.com/questions/3911147 Multi-purpose Technology
http://stackoverflow.com/questions/4003102 Multi-purpose Technology
http://stackoverflow.com/questions/401904 Multi-purpose Technology
http://stackoverflow.com/questions/4318196 Multi-purpose Technology
http://stackoverflow.com/questions/4362051 Multi-purpose Technology
http://stackoverflow.com/questions/4373833 Multi-purpose Technology
http://stackoverflow.com/questions/461319 Multi-purpose Technology
http://stackoverflow.com/questions/50114 Multi-purpose Technology
http://stackoverflow.com/questions/5044585 Multi-purpose Combined
http://stackoverflow.com/questions/5074129 Multi-purpose Combined
http://stackoverflow.com/questions/514306 Multi-purpose Configuration
http://stackoverflow.com/questions/5330172 Multi-purpose Configuration
http://stackoverflow.com/questions/5469230 Multi-purpose Technology
http://stackoverflow.com/questions/5757886 Multi-purpose Combined
http://stackoverflow.com/questions/5879902 Multi-purpose Combined
http://stackoverflow.com/questions/6008107 Multi-purpose Technology
http://stackoverflow.com/questions/61437 Multi-purpose Technology
http://stackoverflow.com/questions/6258547 Multi-purpose Technology
http://stackoverflow.com/questions/6577218 Multi-purpose Technology
http://stackoverflow.com/questions/6614343 Multi-purpose Combined
http://stackoverflow.com/questions/6923497 Multi-purpose Technology
http://stackoverflow.com/questions/6939110 Multi-purpose Combined
http://stackoverflow.com/questions/698998 Multi-purpose Configuration
http://stackoverflow.com/questions/722675 Multi-purpose Technology
http://stackoverflow.com/questions/7506118 Multi-purpose Technology
http://stackoverflow.com/questions/7739613 Multi-purpose Technology
http://stackoverflow.com/questions/7921324 Multi-purpose Combined

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

175

http://stackoverflow.com/questions/8269093 Multi-purpose Technology
http://stackoverflow.com/questions/8639625 Multi-purpose Combined
http://stackoverflow.com/questions/899674 Multi-purpose Configuration
http://stackoverflow.com/questions/9296466 Multi-purpose Technology
http://stackoverflow.com/questions/934716 Multi-purpose Configuration
http://stackoverflow.com/questions/1047161 CAPPS
http://stackoverflow.com/questions/10677493 CAPPS
http://stackoverflow.com/questions/1139285 CAPPS
http://stackoverflow.com/questions/11735389 CAPPS
http://stackoverflow.com/questions/12153451 CAPPS
http://stackoverflow.com/questions/12227059 CAPPS
http://stackoverflow.com/questions/12829005 CAPPS
http://stackoverflow.com/questions/1310414 CAPPS
http://stackoverflow.com/questions/1345239 CAPPS
http://stackoverflow.com/questions/14059142 CAPPS
http://stackoverflow.com/questions/15204051 CAPPS
http://stackoverflow.com/questions/152338 CAPPS
http://stackoverflow.com/questions/1778578 CAPPS
http://stackoverflow.com/questions/17928513 CAPPS
http://stackoverflow.com/questions/18311816 CAPPS
http://stackoverflow.com/questions/18353898 CAPPS
http://stackoverflow.com/questions/18392300 CAPPS
http://stackoverflow.com/questions/1880109 CAPPS
http://stackoverflow.com/questions/2045867 CAPPS
http://stackoverflow.com/questions/205546 CAPPS
http://stackoverflow.com/questions/20634993 CAPPS
http://stackoverflow.com/questions/2120690 CAPPS
http://stackoverflow.com/questions/2131207 CAPPS
http://stackoverflow.com/questions/2198560 CAPPS
http://stackoverflow.com/questions/221973 CAPPS
http://stackoverflow.com/questions/22989833 CAPPS
http://stackoverflow.com/questions/2314995 CAPPS
http://stackoverflow.com/questions/2336438 CAPPS
http://stackoverflow.com/questions/2365702 CAPPS
http://stackoverflow.com/questions/240373 CAPPS
http://stackoverflow.com/questions/24602768 CAPPS
http://stackoverflow.com/questions/2506142 CAPPS
http://stackoverflow.com/questions/2760839 CAPPS
http://stackoverflow.com/questions/2809485 CAPPS
http://stackoverflow.com/questions/2835268 CAPPS
http://stackoverflow.com/questions/2835595 CAPPS
http://stackoverflow.com/questions/2851898 CAPPS
http://stackoverflow.com/questions/2992258 CAPPS
http://stackoverflow.com/questions/299518 CAPPS
http://stackoverflow.com/questions/30098076 CAPPS

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

176

http://stackoverflow.com/questions/303911 CAPPS
http://stackoverflow.com/questions/3101026 CAPPS
http://stackoverflow.com/questions/311654 CAPPS
http://stackoverflow.com/questions/3305591 CAPPS
http://stackoverflow.com/questions/331600 CAPPS
http://stackoverflow.com/questions/3629402 CAPPS
http://stackoverflow.com/questions/37969 CAPPS
http://stackoverflow.com/questions/3921436 CAPPS
http://stackoverflow.com/questions/41446 CAPPS
http://stackoverflow.com/questions/4287941 CAPPS
http://stackoverflow.com/questions/434617 CAPPS
http://stackoverflow.com/questions/4486658 CAPPS
http://stackoverflow.com/questions/4679235 CAPPS
http://stackoverflow.com/questions/4801545 CAPPS
http://stackoverflow.com/questions/4840536 CAPPS
http://stackoverflow.com/questions/485084 CAPPS
http://stackoverflow.com/questions/5004958 CAPPS
http://stackoverflow.com/questions/511511 CAPPS
http://stackoverflow.com/questions/51256 CAPPS
http://stackoverflow.com/questions/5287636 CAPPS
http://stackoverflow.com/questions/5474372 CAPPS
http://stackoverflow.com/questions/554382 CAPPS
http://stackoverflow.com/questions/600256 CAPPS
http://stackoverflow.com/questions/6037623 CAPPS
http://stackoverflow.com/questions/6123400 CAPPS
http://stackoverflow.com/questions/6134111 CAPPS
http://stackoverflow.com/questions/6135590 CAPPS
http://stackoverflow.com/questions/6212138 CAPPS
http://stackoverflow.com/questions/6369171 CAPPS
http://stackoverflow.com/questions/6500567 CAPPS
http://stackoverflow.com/questions/651273 CAPPS
http://stackoverflow.com/questions/683745 CAPPS
http://stackoverflow.com/questions/7448677 CAPPS
http://stackoverflow.com/questions/7650788 CAPPS
http://stackoverflow.com/questions/8011220 CAPPS
http://stackoverflow.com/questions/8278887 CAPPS
http://stackoverflow.com/questions/8393845 CAPPS
http://stackoverflow.com/questions/8744953 CAPPS
http://stackoverflow.com/questions/880185 CAPPS
http://stackoverflow.com/questions/9025186 CAPPS
http://stackoverflow.com/questions/9124995 CAPPS
http://stackoverflow.com/questions/9213733 CAPPS
http://stackoverflow.com/questions/9286221 CAPPS
http://stackoverflow.com/questions/9292424 CAPPS
http://stackoverflow.com/questions/9378293 CAPPS

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

177

http://stackoverflow.com/questions/952470 CAPPS
http://stackoverflow.com/questions/9569851 CAPPS
http://stackoverflow.com/questions/9977179 CAPPS
http://stackoverflow.com/questions/9985971 CAPPS

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

178

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

A.2.3 Additional examples of Architecture-relevant Stack Overflow Posts

In the next pages, we present additional examples for different variants of architectural relevant
posts (ARPs) as defined and categorized in Chapter 4.

179

ARPs Questions’ Variations and Examples

We present additional examples for the different Architecture Relevant Post (ARP)
types and variations. Each example is linked with its source in Stackoverflow. So, if you
want to check the original post in Stackoverflow, click on the example text.

Table 1: Variants of Solution Evaluation Questions

Comparing solutions

Seeking comparison between technology bundles:
1) T: “Which embedded messaging system -> ActiveMQ or HornetQ”, Q: “I would

appreciate some general pointers and opinions regarding which of the two
messaging systems is: easier to manage, has less gotchas or magic stuff one
needs to know and avoid, has less overal dependencies, is simple to work with.”

2) Q: “Could someone compare and contrast on WCF Rest services vs. ADO.NET
Data Services? What is the difference and when to use which?”

3) Q: “I'm currently using ActiveMQ for my messaging needs; aside from a few db
failures, it has worked well. However, I'm at the very least considering trying out
RabbitMQ….In what ways does RabbitMQ differ from ActiveMQ? What does
RabbitMQ do better or worse than ActiveMQ?....”

4) T: “RIA Services versus WCF services: what is a difference”.
5) Q: “Our requirement is very simple. Send messages to users subscribed to a

topic. We need our messaging system to be able to support millions of topics and
maybe millions of subscribers to any given topic in near real time….what are the
advantages or disadvantages of using Redis as a MQ over RabbitMQ.”

6) T: “Whats the advantage of using celery with rabbitmq over Redis, MongoDB or
Django ORM”.

7) Q: “What is the advantage of using new WCF Web API over ASP.NET MVC 3 to
expose a lightweight JSON Web service layer?....”

8) Q: “Are there any advantages of using NServiceBus over simply using the .net
driver for RabbitMQ”

9) T: “Pros/Cons of using BizTalk instead of NServiceBus or MassTransit”.
10)T: “Spread vs MPI vs zeromq?”, Q: “why would I choose one over the other?”
11)Q: “....when to use a SOAP based service and when to use a RESTful

service…..”
12)Q: “Is anyone using Karaf instead of Servicemix? If so, how did you come to this

decision?...”
13)T: “Why should I use JMS and not RMI+Queue?”
14)T: “amqp vs amqplib - which Node.js amqp client library is better?”

Seeking comparison between technology features:
1) T: “IIS WCF service hosting vs Windows Service”, Q: “We developed a WCF

service and we're looking to deploy it…..We are wondering if is it better to host it

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

180

in IIS 7 or with a Windows Service.”
2) Q: “What is the difference between a dead letter Queue and a back out queue? In

WebSphere MQ terms and in terms of Application Servers.”
3) Q: “....I would like to know what is the difference and advantages of claim based

over role based authentication….”
4) T: “How would I know if I should use Self-Tracking Entities or DTOs/POCOs?”
5) T: “Which is better: PooledConnectionFactory or CachingConnectionFactory?”,

Q: “We use Spring (3.2.4) with ActiveMQ (5.8.0) in Tomcat (7.0.41) and it is not
clear what the best usage….”

6) T: “WCF - what is the fastest binding?”

Seeking comparison between Architectural Configurations:
1) T: “difference between pub-sub and push-pull pattern in zeroMq”
2) T: “JMS Messaging Performance: Lots of Topics/Queues vs. Extensive Filtering

(Message Selectors)”
3) T: “How to best validate JSON on the server-side”, Q: “I can see at least two ways:

….validate the JSON upfront as it is, before….try to validate it on-the-go while
performing business logic….”.

4) T: “Should I make more frequent, smaller calls; or less frequent larger calls?”

Context Independent Solution Assessment

Assessing technology bundles:
1) Q: “I would like to find out about BOTH advantages and disadvantages of

Windows Communication Foundation from people who have used it or just know
it theoretically.”

2) Q: “Is there any real difference to the performance when you use Netty and if you
don't use it in an application with tens of thousand of connections?”

3) T: “Is ZeroMQ ready for production use?”, Q: “....How are the error messages,
documentation….How is the performance?”

4) Q: “....how well IBM MQ can handle transfer of large files (up to 100 MB)? Is it
stable? It's from mainframe to UNIX server...”.

5) T: “How well will WCF scale to a large number of client users?”

Assessing technology features:
1) Q: “Reading the ActiveMQ documentation (we are using the 5.3 release), I find a

section about the possibility of using a JDBC persistence adapter with ActiveMQ.
What are the benefits? Does it provide any gain in performance or reliability?”

2) Q: “I have always had the availability of IIS so creating a self-hosted WCF service
seems like more work than I would want to do. Why would I want to do this?”

3) T: “Scalability of Duplex Polling with Silverlight / IIS”. Q: “does anyone have facts
/ benchmarks?”

4) T: “Is there generally a noticeable performance hit when calling PInvoke on
Win32 / COM methods?”

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

181

Assessing Architecture Configuration:
1) Q: “If I am generating POCO objects from EntityFramework, and using these to

go to/from the WCF server, is there any reason to create client-side Models for
the Views & ViewModels to use instead of just using the POCOs directly?....”

2) Q: “....i was think about publishing the data through OData (WCF Data Service)
and query that from the controllers …. and publish the service operations through
a WCF service ….. What advantages/disadvantages does this architecture
poses?”

3) T: “Is [HTML5 + jQuery] (no ASP.NET) + WCF a valid solution for an enterprise
level web application?”

Solution Scenarios and Context:

Technology Bundle Scenarios:
1) T: “What are zeromq use cases?”
2) T: “Are you using BizTalk? If so, how are you using it?” A: “I've worked as a

consultant for one the largest oil/energy companies in Europe and they basically
use BizTalk for all their messaging/integration stuff. Examples are: Invoices
(electronic invoices) sent from and to partners in different formats, sync jobs
between AD and third party software that maintains it's own username db and
integration between support system and external customers via e-mail. So they
have a pretty broad adoption of BizTalk and use a cluster of 5 servers.”

3) Q: “I'm looking into the ESB thing with .net like NServiceBus etc , can someone
highlight what kind of real world business problems can be solved….”

4) Q: “I would like to learn what are the scenarios/usecases/ where messaging like
RabbitMQ can help consumer web applications….”

5) T: “What is ActiveMQ used for?”

Architecture Configuration Scenarios:
T: “When to use SOA (Service Oriented Architecture)”

Context dependent solution assessment:

Assessing technology bundles:
1) Q: “I'm going to be working on a project that involves a number of elements:

ASP.NET MVC website, C# console application, iPhone App….I now need to add
an API to the site to allow third parties to select, insert and update
records….Should I be going along the line of using the Web API? or because my
other applications need a web service, should I stick with a WCF Service?”

2) Q: “I want to create WebChat with realtime sync to DB on server….But about
syncing data there is few ways to do it: 1. PHP + websockets by Ratchet ….2.
node.js + socket.io ….3. node.js + meteor.js (sockJS)....4. Tornado + TornadIO2
(socket.io) + RabbitMQ….Can anybody say which way is better?”

3) Q: “....I have a scenario where i need to create a application that runs 24x7 picks
up mail from a mailbox and create few reports…..I thought i could implement it as

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

182

a window service.Is WCF service recommended for this Scenario,any advantage
of using it….”

4) Q: “Although I've come across Kafka before, I just recently realized Kafka may
perhaps be used as (the basis of) an CQRS, eventstore….anything missing from
Kafka for it to be a good eventstore? Would it work? Using it production? ….”

5) Q: “We're looking at setting up a MSMQ system with ~8000 clients and one
queue per client. On average the system needs to handle ~2000 messages daily
from each client, where the message size will range from 1K to MSMQ Max size
(4MB). Is this at all possible with MSMQ?....”

6) Q: “I have a web app that will create an image from user input. The image
creation could take up to a couple seconds…. If I let the server thread, that is
handling the request/response also generate the image, that is going to tie up a
thread for a couple seconds, and possibly bog down my server, affect
performance, kill puppies, etc….Should I use a task queue, such as Celery, so
that the server can hand off the image creation, and go back to handling
requests/responses?”

Assessing technology features:
1) T: “WCF Bindings - so many! How do I choose one?”, Q: “We have an R Server

…. that basically takes a script and a csv file, processes some data and returns
results as text….I need to write a service on the R server so that .net clients ….
can connect to the R server, submit the script and CSV file, and get the results
back….Also, is it best to run the service in IIS, or as a separate "command line"
type listener service….”

2) Q: “Our analytic server is written in c++. It basically queries underlying storage
engine and returns a fairly big structured data via thrift. A typical requests will
take about 0.05 to 0.6 seconds to finish depends on the request size. I noticed
that there are a few options in terms of which Thrift server we can use in the c++
code, specifically TNonblockingServer, TThreadedServer, and
TThreadPoolServer….How shall I decide which one fits my needs the best?”

3) Q: “I'm thinking on migrating my current service layer based on GWT-RPC to
something else. It is about 10 service interfaces with 5 methods each, and
involving about 20 different domain entities, so you have an idea of the amount of
work that would require to change the whole thing, which obviously I would like to
minimize. I'm also using Gilead and a Guice based centralized Servlet to handle
all the RPC requests….The options that I'm thinking about are: RequestFactory
….A full JSON/REST approach using RestyGWT….I really would like to get
suggestions.”

Assessing Architecture Configuration:
1) Q: “I'm putting together a simple asp.net web control, that as the result of an ajax

form post inserts a record into a MSQL database. It's possible that the page
containing this control will recieve many thousands of hits in a small space of
time and I'm worried about the performance.... A solution that has occured to me

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

183

is to make the web control place a message into an MSMQ queue and have a
Windows Service on the server periodically read the queue and do a batch insert.
Does that sound like a sensible architecture given that the web and database
servers are running on the same machine....”

2) Q: “....Do you think that building a software application with the Service Oriented
Architecture approach by using OTP webservers (Mochiweb) as Services is a
good idea? Can the additional XML processing layer destroy all the advantages
of such approach?....”

3) T: “Should WCF service typically be singleton or not?”

Technology Solutions Interoperability Assessment:

1) T: “ZooKeeper and RabbitMQ/Qpid together - overkill or a good combination?”
2) Q: “We are trying to get WCF and Java talking to each other using SAML tokens

issued from an STS. Despite the fact that both sides are compliant with the
standards, WS-Security, WS-Trust, WS-Policy, etc., they don't seem to talk to
each other….Has anyone ever been able to make this work?”

3) Q: “My asp.net web pages are on IIS web server and it communicates with WCF
services….The performance of my wcf services doesnt seem to be that good and
I want to improve the same. Also, I need to balance on scalability as my site will
be having a very high traffic….Can i use protobuf API...Please suggest”

Solution Definition and Analysis:

Technology Bundles Definition and Analysis:
1) T: “What is WCF in .NET?”
2) T: “What is RPC framework and Apache Thrift?”
3) Q: “I am trying to understand what JMS and how it is connected to AMQP

terminology….”
4) T: “Is BizTalk an ESB?”
5) T: “JMS and ESB - how they are related?”

Architecture Configuration Definition and Analysis:
6) T: “Can someone explain an Enterprise Service Bus to me in non-buzzspeak?”
7) T: what is a data serialization system?”
8) T: “What is service-oriented architecture?”

Table 2: Variants of Solution Identification Questions

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

184

Explicit Technology Solutions Searching

1) Q:”I am currently using the binary formatter (Remoting) to serialize and deserialize
objects for sending around my LAN. I have recently upgraded from 2.0 to .NET
3.5….What’s the fastest serializer for sending objects across my LAN?...”

2) Q: “Does anybody know of a ESB written in Node.JS….I only need the following
features for now: Content based routing, AAA, Logging, Monitoring….”

3) Q: “I'm looking for a small and yet efficient enough lightweight JMS broker solution
with no or minimum of dependencies….”

4) T: “What's the best python soap stack for consuming Amazon Web Services
WSDL?”

5) Q: “I'm working on a multiplayer game on App Engine and it needs a message
queue….is there a memcache-based message queue service that can run on App
Engine?”

6) Q: “I am working on a project that involves mobile and web clients with Google's
AppEngine PAAS. I would like to use RESTFul webservices with my AppEngine
app….It would be helpful to hear experienced developers' views on the
frameworks available for this set of platforms and merits versus demerits of each.”

7) Q: “I would like to start using Cassandra with a node.js deployment, but I can't find
a Thrift or Cassandra client for Node.js and/or JavaScript, Is there one?….”

8) Q: “I'd like to use AMQP to join two services one written in C# and other written in
python. I'm expecting quite large volume of messages per second. Is there any
AMQP Broker that is production ready?....”

9) T: “Is there a FIFO message queuing service offering the high availability of
Amazon SQS?”

10)Q: “Are there any RPC framework implemented with: boost + protobuf?”

Implicit Technology Solutions Searching

Technology Features Examples
1) Q: “Is there a way to setup authentication (ala "Basic Authentication") without actually

setting up an SSL Certificate?....”, A: “Use TransportCredentialOnly security
mode….”.

2) Q: “We are using MSMQ right now with WCF activation feature, it enables us not to
pull queue to read messages. It like push message to application….we are looking at
porting from MSMQ to RabbitMQ...Is there anything in RabbitMQ with .net which can
do push notification to subscriber like MSMQ?”, A: “In AMQP (and RabbitMQ), there
are two ways to retrieve messages: basic.get and basic.consume….”

3) Q: “I have an xmlrpc server using Twisted. The server has a huge amount of data
stored in-memory. Is it possible to have a secondary, separate xmlrpc server running
which can access the object in-memory in the first server?....”

4) Q: “How do I secure a Java SocketChannel, ServerSocketChannel or, perhaps even,
a DatagramChannel with TLS? ….”, A: “You need to use the SSLEngine….”.

5) Q: “Is it possible to send message via RabbitMQ with some delay?....”, A: “With the
release of RabbitMQ v2.8, scheduled delivery is now available but as an indirect
feature….”.

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

185

6) Q: “I would like to use thrift with a Java server sending data to a browser using
websockets. Is this possible?”, A: “....There is json protocol in thrift which is supported
by javascript,....Thrift supports only 2 transports raw tcp, and http….”

7) T: “can netty reliably detect channel close/disconnect?”, A: “One way to solve the
provlem is using heartbeat messages. Netty supports heartbeat with
IdleStateHandler.”

8) Q: “I am considerung to use zeromq as messaging layer between my applications. At
least in some cases I want the communication to be secure and I am thinking about
SSL. Is there some standard way how to ssl-enable zeromq?....”, A: “the "accepted
solution" would be to implement SSL/TLS over the connection manually, and failing
that, use AES 128 or 256 with a secure key sharing mechanism”.

Technology Bundle Examples:
1) Q: “Is there a good way to handle multi-node and multi-core concurrency in Java

where the main goal is to leverage the most CPU cycles as possible out of the
cluster?”, A: “Depends on what you are doing and your budget you might want to look
into …. Norbert, GridGain, Terracotta ….”.

2) Q: “What is a good solution for communication via message broker that supports both
(C)Python and Java/JMS applications? My particular requirements are: open source
solution, Available on Linux-based systems, ...”, A: “ActiveMQ brokers fully support
using the Stomp protocol out of the box …. You can then use any of the python
libraries …. to connect to Stomp.”

3) Q: “I have a simple server written in C. It's main purpose is to communicate with some
business partners over a proprietary protocol.... I have a number of other processes,
however, written in other languages (e.g. Python) that must communicate with the
server (locally, on the same Linux server). What are the best options for
cross-language IPC in this scenario?”, A: “....Perhaps msgpack over a local socket….”

4) Q: “....I would also like to be able to send my objects back and forth client-server
using GWT Remote Procedure Calls (RPC), therefore my objects must be able to
"detach". However, GWT RPC serialization cannot handle detached JDO/JPA objects
and it doesn't appear as though it will in the near future. My question: what is the
simplest and most direct solution to this?....”, A: “I 've recently found Objectify, which
is designed to be a replacement for JDO….”.

Alternative Technology Solutions Searching:

1) T: “What are the alternatives to ZeroMQ for moving protocol buffer payloads
around?”

2) Q: “We are using ActiveMQ 5.2 as our implementation of choice and we picked it
a while ago. It performs well enough for our use right now. Since its been a while,
I was wondering what other Java Message Service implementations are in use
and why?...”

3) Q: “If you want to use a queuing product for durable messaging under Windows,
running .NET 2.0 and above, which alternatives to MSMQ exist today?...”

4) Q: “I want to host web services in an existing C/C++ application. What is the best
solution? I would like a solution similar to what JAX-WS does for Java. Specifically

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

186

revolving around SOAP requests...”
5) Q: “Is there any C++ network library similar to JBoss's Netty? I need an

architecture where I can add protocol handlers to a list and process network
packets as objects.”

6) T: “Is there an equivalent to ASP.NET Web API in the Rails world?”

Solutions Recommendation for Requirements and Conceptual Design

Seeking Architecture Configuration Examples:
1) T: “What's the best pattern to design an asynchronous RPC application using

Python, Pika and AMQP?”, Q: “....What I need in the end: 1) the consumer [A]
subscribes his tasks (around 5k each time) to the cluster. 2) the broker dispatches
N messages/requests for each consumer, where N is the number of concurrent
tasks it can handle. 3) when a single task is finished, the consumer replies to the
broker/producer with the result. 4) the producer receives the replies, update the
computation status and, in the end, prints some reports….”, A: “....If your callback
is IO-bound (doing lots of networking or disk IO) you can use either threads or a
greenlet-based solution….Another option would be to implement your consumer
as multiple processes using multiprocessing….”

2) Q: “I have an interesting problem to solve. One of my clients has me developing a
stock analysis program with close to 50 years of stock data for almost a thousand
symbols. I've developed a series of filters that are applied on any given day to see
if anything falls out for a trade. We want to run this filter for each day of data we
have for each stock. Basically your begin and end date type report. However it
takes 6 minutes to filter each week for each symbol. We are figuring about 40
hours or so to run the report on our entire data set….Does anyone have any
general ideas or experiences with a web architecture that will support ultra-long
asychronous processes?”, A: “As a general suggestion I would recommend a
standalone Windows Service….”.

3) T: “How to layout a queue/worker structure to support large tasks for multiple
environments?”, Q: “....we have the following setup: We currently use the default
Celery setup. (One queue+exchange called "celery".) Each Task on the queue
represents a deployment operation. Each task for an environment ends with a
synchronisation phase that potentially takes (very) long….”, A: “I would take a look
at zeromq it can do messaging and multi-threading in one super fast library….”.

Seeking Technology Bundle Examples:
1) T: “Which network protocol to use for lightweight notification of remote apps?”, Q:

“I have this situation.... Client-initiated SOAP 1.1 communication between one
server and let's say, tens of thousands of clients. Clients are external, coming in
through our firewall, authenticated by certificate, https, etc.. They can be
anywhere, and usually have their own firewalls, NAT routers, etc... They're truely
external, not just remote corporate offices. They could be in a corporate/campus
network, DSL/Cable, even Dialup….”, A: “The two big parties on multi-tier
development in Delphi are components4developers …. and RemObjects ….In

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

187

your complex environment, multi-cast UDP might not cut it, but from a overhead
perspective it is unbeatable….”

2) Q: “I would like to implement an (open source) web application, where the user
sends some kind of request via his browser to a Python web application. The
request data is used to define and submit some kind of heavy computing job.
Computing jobs are outsourced to a "worker backend" (also Python). During job
processing, the job goes through different stages over time (from "submitted" over
intermediate states to "finished", ideally). What I would like to accomplish is to
display the current job state to the user in real time. This means that the worker
backend has to communicate job states back to the web application. The web
application then has to push information to the user's browser….Which messaging
technology should I apply between web app and worker backend?....”, A: “....I
would create a table in that database that is specifically for these jobs….zmq is a
good solution for this IMO….”.

3) Q: “I'm working on an online PHP application that has a need for delayed PHP
event. Basically I need to be able to execute arbitrary PHP code x many seconds
(but it could be days) after the initial hit to a URL. I need fairly precise execution of
these PHP event, also I want it to be fairly scalable….” A: “....I came up with two
solutions to your problem. PHP/Redis solution …. App Engine's TaskQueue….”.

Technology Independent Architectural Configuration Searching:

1) Q: “For message-oriented middleware that does not consistently support priority
messages (such as AMQP) what is the best way to implement priority
consumption when queues have only FIFO semantics?....”, A: “Given only FIFO
support for a given single queue, you will of course have to introduce either
multiple queues, an intermediary, or have a more complex consumer. Multiple
queues could be handled in a couple of ways…..”.

2) T: “Which layer of the application should contain DTO implementation”.

Technology Specific Architectural Configuration Searching:

1) Q: “From gearman's main page, they mention running with multiple job servers so
if a job server dies, the clients can pick up a new job server….What is the best
practice to have high-availability for these servers to make sure jobs aren't
interrupted in a failure?....”.

2) Q: “I have been experimenting recently with Silverlight, RIA Services, and Entity
Framework using .NET 4.0. I'm trying to figure out if that stack makes sense for
use in any of my upcoming projects….my questions: What is the best location for
business logic (rules, validations, behaviors, authorization) in an application using
this stack?....”

3) Q: “I have a JMS client which is producing messages and sending over a JMS
queue to its unique consumer. What I want is more than one consumer getting
those messages.I would like to get advise on these options and cons / pros
that you might see....”.

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

188

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

A.3 Architecture Knowledge Ontology in Stack Overflow

A.3.1 Coding guide

In the next pages, we present the coding guide, which we used to annotate sentences in Stack
Overflow architecture-relevant posts (ARPs) as explained in Chapter 5.

189

Coding Book

Composite Ontology Classes

A. Design Issue: expressed in ARPs through description for relevant architecture

configurations. The described configurations concern either part of a planned design or an
existing software system. Design issues could be described at different levels of
abstraction. Most ARP questions provide a long description for the design issue in a
couple of sentences, while during answers short references for known design issues are
commonly used.

B. Requirements: Three types of requirements were found: 1) Quality attribute requirements
are mentioned explicitly using the standard quality attribute terms. 2) Technology features
requirements show the need of user to have certain technology features as part of the
proposed solution. 3) Business requirements are expressed using their business domain
terms.

C. Constraints: We found three types of constraints: 1) Team skills constraints express the
level of knowledge of the user to a certain technology solution. 2) Development time
constraint is indicated by expressing explicitly the priority of development time to the user.
3) Solution constraint is also expressed explicitly by indicating which technology solutions
must be considered in the solutions.

D. User Request: exist in ARP question or title in a form of questions. User request
complements design issue, requirements and constraints by showing the type of
architecture activity (evaluation or synthesis) considered by the user in this post. The
request might embody short references for design issues and requirements.

E. Technology Solutions Features: We found two main types of technology features: 1)
Development features are expressed through certain programming activities (e.g.
debugging) or programming features and tools (e.g. inheritance, code generation), 2)
Behavioral features are expressed through technology specific component and class
names. In addition, behavioral features could be further classified among different quality
attributes (e.g. Interoperability features). Moreover, some of the behavioral features are
explained through their implemented architectural patterns or their relationship with other
technologies.

F. Technology Solutions ASTAs: users mention technology solutions’ benefits and
drawbacks, as part of their argument for recommending or excluding technology solutions.
A key aspect which distinguishes ASTAs is the extensive usage of adjectives and adverbs
in combination with technology features and quality attributes. The adjectives or adverbs
are used to express the advantages or disadvantages of certain technology solutions or
features.

G. Technology Solutions Use-Cases: These are either success or failure stories for the
usage of technology solutions at certain contexts. The stories could be coming from
personal experiences of users, or well-known examples for existing systems. The context
associated with stories could include domain description, architecture configurations,
infrastructure, and constraints.

H. Design Decisions: ADDs came in different forms: 1) Recommended ADDs represent the
majority of ADDs. They are recommendation from users based on their experience or
opinion for certain architectural solutions. 2) Taken ADDs are ADDs, which have been
decided by the user who asked the question. Usually after discussions with other users. 3)
Planned and existing system ADDs come usually as part of the design issue description.
They represent ADDs which have been previously taken or implemented.

I. Decision Rules: Conditional recommendation for architectural solutions. They consists of
a rule condition and recommendation. The condition might involve other ontology classes
such as requirements, constraints, architectural configuration, and existing system
description. On the other hand, recommendations involve recommended ADDs for certain
technology solution or architecture configuration.

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

190

J. Architecture configuration: represents part of an architectural model. The ontology
class is represented through a sentence, which consists of one or more component
names or application types associated with a connector verb or name. (e.g. “Pushing data
from the server to the client”, “Rubby app sends a request to Java app”)

K. Component behavior: A sentence which describes the behavior of a component. It give
an overview about the type of implemented logic and complexity. In addition, sometimes
component interface and internal operations are mentioned during the description. (e.g.
“service can be viewed as the business layer of the application”, “process will run
asynchronously”).

L. Existing system description: describe the architecture of an existing system, which a
user is dealing with. The description depends on other ontology classes such as
architecture configuration and existing system ADD. In addition, technologies and
application types are commonly mentioned within the description. (e.g. “I am working on a
RESTfull application”, “An existing process changes the status field of a booking record in
a table, in response to user input.”, “I am using Apache MINA in my open source project”)

The table below list examples for the aforementioned defined ontology classes.

AK Ontology
Class

Example

Design Issue 4741713 → “I want to send a batch of 20k JMS messages to a same queue.
I'm splitting the task up using 10 threads, so each will be processing 2k
messages. I don't need transactions.”

Requirement 4473567 → “Our criteria: 1. Short roundtrip time. 2. Low roundtriptime
standard deviation. (We understand that garbage collection pauses and
network usage spikes can affect this value). 3. High availability. 4.
Scalability (we may want to have multiple instances of Ruby and Java app
exchanging pointtopoint messages in the future). 5. Ease of debugging and
profiling. 6. Good documentation and community support.”

Constrain Team skills constrains: 13016406 → “I have never used Netty”
Solution constrain: 12783677 → “This needs to adhere to WCF REST
standards”

User Request 1582952 → “How do I choose between WCF, REST, POX and RIA services
for a new Silverlight application”

Technology
Feature

1429318 → “EMS is centralized (hub and spoke) on a specific server(s) and
can traverse subnets no problem”
10375137 → “ActiveMQ is a widely used message broker that offers FIFO
queues”

Technology
ASTA

Benefit: 100993 → “It is much easier to debug Webservices over the wire as
the data is SOAP/HTTP , which can be easily captured via sniffing tools for
debugging”
Drawback: 19758215 → “performance difference will be negligible and in
many cases worse for NIO (Netty with thread sharing)”

Technology
Use-case

12783677 → “An application I'm working on has a similar architecture, and
I'm planning to use SignalR to push updates to clients, using long polling
techniques (...) I have implemented this now, and it works very well”

Design 361491 → “I would highly recommend using WCF; and use the WCF

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

191

Decision Service Library project over the Silverlight-enabled web service”

Decision Rule 17806977 → “If performance is your main criteria, you should definitely look
at ZeroMQ.”

Simple ontology classes:

1. Technology name: represented with the name of a technology (e.g. “WCF”, “Netty”,
“Biztalk”).

2. Technology type name: they represent a family of technologies (e.g. “Message
queues”, “SOAP Library”, “message protocol”)

3. Pattern name: represented with the name of a pattern (e.g. “Messaging”, “Rest”,
“FIFO” “Queuing”).

4. Quality attribute name: represented with the name of quality attributes based on ISO
standard (Ref) (e.g. “Performance”, “Reliability”, “Interoperability”, “Scalability”)

5. Application types: They are usually represented with words “application” or “app”
associated with an adjective to define the type of the application. (e.g. “distributed
application“, “web app”, “Java application”, “Mobile app”).

6. Component name: As part of describing a software architecture. Processing units or
storage components are mentioned using different terms. (e.g. “server”, “database”,
“service”, “back end”, “system”, “client”, “process”)

7. Component element: They are elements which constitute a component. (e.g.
“operation”, “method”, “job”, “event”, “interface”, “field”)

8. Connector verb/name: used to express communication to or from a certain
component. They could be expressed using verbs as well as terms. (e.g. “send”,
“receive”, “read”, “write”, “communication”, “connection”)

9. Connector data: they are the data need to be transferred through the connector to or
from a component. (e.g. “data”, “request”, “response”, “message”, “object”)

10. Infrastructure term: they are terms used to describe an infrastructure or networking.
(e.g. “firewall”, “internet”, “NAT”, “port”, “load balanced”, “data center”)

11. Cost: identified with words like “budget” or “cost”.
12. Programming activity: Describing common programming activities. (e.g. “debug”,

“deploy”, “write code”)
13. Programming element: Describing common programming concepts. (e.g. “class”,

“method”, “attribute”, “inheritance”, “query”)
14. Feature terms: Behavioral features are expressed through several technology

component terms, as well as class names. (e.g. “Authenticator”, “SoapServer”,
“serialize”, “endpoint”, “binding”, “socket”, “stream”). On the other hand, development
features are expressed through programming elements, development tools, and
programming activities.

Decision bound between ontology classes

1. Difference between technology solution features and requirements: Technology
features describe the capabilities of the technologies. Usually verbs like “support” or
“provide” are used to express that a certain technology offer a certain capability. On
the other hand, requirements describe the needs of the user. Usually verbs like
“require” or “need” or “would like” are used to express the wishes of users for certain
quality attributes or technology features.

2. Difference between technology solutions use-cases and design decisions:
Technology solution use cases describe a story in the past from the experience of the
user. The story describes several context details. On the other hand, design
decisions are presented as recommendations for using a certain technology solution
using simple present tense (e.g. “use”, “go with”) as a response to the requirements
and user request mentioned in the question section of the post.

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

192

3. Difference between design decisions and decision rules: Decision rules are a more
complex structure than design decisions. Decision rules always have a conditional
statement, while design decisions are coming in imperative or normal statements.
Moreover, decision rules contain design decisions. However, design decisions could
also come independently without decision rules.

4. Difference between technology solution features and benefits: even though
technology solution features and benefits have similar structure. Technology benefits
are differentiated through the extensive use of adjectives and adverbs (e.g. “very”,
“fast”, “easy”, “better”), as well as the usage of keywords like “advantage” or “benefit”.

	

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

193

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

A.3.2 Atlas.ti Snapshots

Figure A.2: Atlas.ti interface for documents coding

Figure A.3: Atlas.ti interface for managing codes

Figure A.4: Atlas.ti interface for managing documents

To analyze Stack Overflow posts for architecture knowledge concepts as have been explained
in Chapter 5, we used the Atlas.ti1 qualitative analysis tool. In this section, we present three
snapshots for the tool and from our analysis. Fig. A.2 shows a snapshot for the Atlas.ti interface,
where sentences are coded. At the left side is the list of documents, in the middle is the current
coded document, and at the right side are the corresponding codes for each coded segment in a
post. Fig. A.3 shows another interface from the Atlas.ti tool, where codes could be managed
and organized. In this interface, we could specify categories of codes (at the left side), describe

1https://atlasti.com/

194

https://atlasti.com/

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

and understand codes (at the right side). Fig. A.4 shows the documents management interface of
Atlas.ti. In this interface, posts could be categorized according to our categories in Chapter 4.

A.3.3 Instances of Ontology classes

In this subsection, we list additional examples for each of the ontology classes for our proposed
ontology in Chapter 5. For the simple AK and lexical triggers ontology classes, we provide a
comma separated list of words for each of the ontology classes. For the composite AK ontology
classes, we provide several examples of sentences. Each sentence ends with the ID of the post,
where the sentence belongs. To access the post, concatenate the ID of the post with the Stack
Overflow URL (https://stackoverflow.com/questions/).

195

https://stackoverflow.com/questions/

(TEC)	Technology	Solution	(Examples,	complete	list	in	CD)
Protocolbuffers,Remoting,protobufnet,protobuf,protocol,protobufs,remoting,Silverlight,WebService
s,BinaryFormatter,java,.NET,MTOM,Silverlight	enabled	WCF	Service,Silverlight-enabled	WCF	
services,WCF,web	service,ADO.Net	Data	Service,ADO.NET	Data	Service,ADO.Net	Data	
Services,ADO.NET	Data	Services,Silverlight,silverlight,Silverlight-enabled	web	service,Silverlight-	
enabled	web	service,Silverlight-enabled	WCF	service,silverlight-enabled	wcf	
service,SOAP,REST,Entity	Framework,Remoting,WSDL,SOAP,WS-I	
BasicProfile,.NET,SOAP,XML,CrystalReports,OLEDB,SQLServer,ODBC,SQL,ODBC,RIA,POX,WPF,AJAX,LI
NQ,JSON,OSGi,osgi,Jigsaw,CORBA,RMI,Axis,JAX,Webservice,Java,netty,ServerSocket,sockets,tcp,http
,ApacheMINA,MINA,ByteBuffers,ProtoRPC,Protorpc,protorpc,Backbone,backbone,RabbitMQ,MSMQ
,ZeroMQ,NServiceBus,MassTransit,RMI,HTTP

(PAT)	Architecture	Pattern
pattern,tactic,blocking,synchronous,sync,half-sync,half	sync,asynchronous,async,half-async,half	
async,non-blocking,blocking,broadcast,messaging,broker,layer,client/server,client-server,	client	
server,client,server,callback,looselycoupled,multicast,MVC,modalviewcontroller,MVP,MVVM,contro
ller,view,NIO,messaging,queuing,queue,fifo,publishsubscribe,subscribe/publish,subscribe-
publish,publish/subscribe,publish-subscribe,publish	and	subscribe,pub/sub,pub	sub,pub-
sub,broadcast,eventbased,eventbased,event/based,eventdriven,eventdriven,event/driven,REST,RES
Tful,routing,translator,translate,router,channel,endpoint,dispatcher,publisher,subscriber,rpc,remot
e	procedure,remote-procedure,remote/procedure,poll,polling,peer	to	peer,peer-to-
peer,peer2peer,p2p,supernode,service-oriented,service	oriented,service/oriented,SOA,Software	as	
a	service,SaaS,store-and-forward	queue,shared	repository,shared-repository,active	
repository,activerepository,repository,blackboard,proxy,resourcepool,cache,lookup,evictor,handler,
reactor,masterslave,master/slave,encapsulation,encapsulate,intermediary,cohesion,replication,inte
rceptor,reflection,interpreter,microkernel,pipesandfilters,pipe,filter,facade,monitor,monitoring,ping
,heartbeat,timestamp,sanity,voting,redundancy,shadow,orchestration,orchestrate,coherence,concu
rrency,authenticate,authentication,authorise,authorize,authorization,encrypt,encryption,ipc,loadbal
ancing,load	balance,loadbalance,multitenant,multitenant,multitenant,named-
pipes,namedpipes,named	pipes,data-ingest,dataingest,transactional,stream,stream-
storage,streamstorage,streamprocessing,streamprocessing,structured,unstructured,hot,warm,cold,
batch,batch-processing,temperature,interactive	analytics,interactive-analytics

(QA)	Quality	Attribute

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

196

accessibility,accessible,accountability,accountable,accuracy,accurate,adaptability,adaptable,adapte,
administrability,administrable,affordability,affordable,auditability,auditable,availability,available,co
mpatibility,compatible,composability,composable,configurability,configurable,correctness,credibilit
y,credible,customizability,customizable,debuggability,debuggable,debatable,degradability,degradab
le,determinability,determinable,demonstrability,demonstrable,dependability,dependable,depend,d
eployability,deployable,deploy,distributability,distributable,distribute,durability,durable,effectivene
ss,effective,efficiency,efficient,evolvability,evolve,evolvable,extensibility,extensible,fidelity,flexibility
,flexible,inspectability,inspectable,installability,installable,integrity,integrate,interchangeability,inter
changeable,interoperability,interoperable,latency,learnability,maintainability,maintainable,mainten
ance,manageability,manageable,mobility,modifiability,modifiable,modularity,operability,operable,o
rthogonality,portability,portable,precision,predictability,predictable,producibility,provability,recover
ability,recoverable,reliability,reliable,reliably,repeatability,repeatable,reproducibility,resilience,resp
onsiveness,reusability,reusable,reuse,robustness,robust,roundtrip,safety,safe,scalability,scale,scalab
le,scaling,seamlessness,sustainability,sustainable,serviceability,speed,supportability,securability,sec
ure,security,simplicity,simple,stability,stable,survivability,tailorability,tailorable,tailor,testability,test
able,throughput,traceability,traceable,transparency,transparent,ubiquity,understandability,underst
able,upgradability,upgradable,usability,usable

(COM)	Architecture	Component
legacy,component,components,application,applications,machine,machines,server,servers,client,clie
nts,users,user,backend,backends,service,services,system,systems,thread,threads,platform,platforms
,devices,device,source,sources,beans,bean,table,tables,record,records,queue,queues,front	
ends,front	end,mainframe,host,hosts,APIs,API,app,apps,boxes,box,Q,physical	locations,physical	
location,engine,engines,process,processes,program,programs,listener,Listeners,workers,worker,co
mputers,computer,model,models,entities,entity,datastore,datastore,store,context,ViewModels,dat
abase,producers,producer,consumers,consumer,session,sessions,logic,page

(CON)	Architecture	Connector
retrieve,retrieves,retrieving,commit,commits,committing,consuming,consume,consumes,communic
ation,communications,communicate,communicated,communicates,execute,executes,execution,con
nect,connected,connects,connects,connection,connectivity,write,writes,writing,upload,uploading,u
ploaded,workwith,send,sends,sending,sent,implementing,implement,implements,store,stores,stori
ng,forward,forwards,forwarding,check,checking,checks,changes,change,stream,streams,streaming,r
eceive,receives,received,receiving,deliver,delivers,delivering,call,calls,calling,called,talkwith,expose,
exposes,exposing,accessing,access,accessed,interacting,interact,interacts,interaction,fedfrom,read,r
eads,reading,dumps,dump,dumping,grab,grabs,pushing,push,link,links,linking,routing,route,share,s
hares,shared,sharing,gets,get,getting,pull,pulls,pulling,collect,collects,collecting,save,saving,saves,ac
cept,accepting,accespts,queries,transmit,transmits,transmitted,transmitting,exposing,exposes,expo
sed,trigger,triggers,triggering,triggered,notify,notifies,notified,notifing

(COME)	Component	Element
method,methods,stored	procedure,procedure,procedures,operation,operations,interface,
interfaces,field,fields,event,events,button,buttons,text	
box,endpoint,endpoints,job,jobs,function,functions,class,classes,file,files,module,modules

(COND)	Connector	Data
socket,data,payload,payloads,object,objects,messages,message,XML,dump,updates,requests,
request,map	,structure,structures,map,maps,reply,replies,item	
,items,list,lists,result,results,tasks,task,information,call,calls,kb	,mb,data,notification

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

197

(PROB)	Software	Problem
SPOF,	point	of	failure,	road	block,	error,	out	of	memory,	lock,	contention,	heavily	loaded,	take	long

(FT)	Feature	Term	(Examples,	complete	list	in	CD)
BinaryFormatter	(remoting),serialize/deserialize,serialize	arbitrary	types,protocol	buffers	wire	
format,injection,contract,contract-first,queries	dynamically,query	and	data	changes	back	to	the	
server,execute	the	method	on	the	remote	machine,cross	platform,talks	in	a	binary	format,Web	
service	interoperability,create	an	object,send	a	message,work	through	firewalls,platform	
independent,programming	independent,binary	serialization,generates	classes,Authenticator	
class,Authenticator,sockets,pipelines,	decoders,streams,asynchronous	request,CRUD,service	
discovery,can	call	session	beans	via	RMI,transfered	in	a	binary	format	(usually),the	data	is	
SOAP/HTTP,interface	specification	is	explicitly	stated,EJB	container,expose	them	as	web	
services,Service	Broker,an	independant	processing	executable,offload	the	work	to	another	
server,asynchronous	server	queries,use	and	combine	different	Events,decentralized:	there	is	an	rv	
client	on	every	host,middleware	application	designer,client	acknowledgment,centralized	(hub	and	
spoke)	on	a	specific	server,can	traverse	subnets,subjects	(or	JMS	topics),connectors,MVC	
controllers,WCF	Data	Services/ODATA,platform	invoke,BAPIs	and	function	modules

(ACTV)	Programming	Activity
acquire,activate,add,adjust,align,append,apply,archive,assign,attach,bind,book,boost,
bootstrapp,break,cache,calculate,catch,center,checkout,clean,clone,compile,complete,compose,co
mpress,compute,configure,convert,count,create,crop,customize,deactivate,debug,defer,define,dele
te,deploy,describe,determine,develop,disable,discontinue,display,divide,document,download,duplic
ate,edit,embed,enable,encapsulate,encode,enter,exclude,expand,extend,fetch,fill,find,fix,flush,forc
e,format,generate,group,handle,hardcode,hide,host,identify,ignore,import,include,indent,inherit,ini
tialize,insert,install,instantiate,integrate,introduce,isolate,learn,limit,list,locate,log,login,login,manag
e,manipulate,mark,match,mock,modify,move,multiply,obtain,omit,open,order,output,override,over
write,pass,paste,patch,perform,place,prefix,prepare,present,prevent,price,print,process,provide,pur
chase,raise,reach,rebuild,recompile,recreate,redefine,redirect,refactor,reference,regenerate,releas
e,remove,rename,render,repeat,replace,replicate,request,resolve,restart,return,sell,separate,seper
ate,set,setup,shorten,show,sign,simulate,skip,sort,specify,split,submit,summarize,surround,switch,t
est,throw,track,translate,trim,update,wrap

(ADV)	Advise	Verbs
	recommend,	favor,	suggest,	propose,	commend,	advise,	advice,	encourage,	motivate

(AMT)	Amount	Term
many,	multiple,	thousands,	hundreds,	tons,	all,	lots,	much,	hundreds,	dozens,	heaps,	piles

(ASES)	Assessment	Verbs
evaluate,	assess,	appraise

(BHV)	Behavioral	Verbs
run,	perform,	process,	listen

(CHR)	Charachtersitc	Nouns
pros,	cons,	advantage,	disadvantage,	benefit,	drawback,	strength,	weakness,	deficiency,	flaw,	
fragility,	shortcoming,	prononess,	value,	favor,	favour,	positive,	negative

(CONC)	Concern	Nouns
concern,	requirement,	demand,	request,	care,	worry,	essential,	necessity,	requisite,	

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

198

(CONS)	Constraint	Nouns
limitation,	constraint,	restriction,	restraint

(DFF)	Difference	Noun
difference,	dissimilarity,	distinctness,	distinction,	compare

(DIF)	Difficulty	Adjectives
difficult,	hard,	overkill,	nightmare,	unmanageable,		arduous,	backbreaking,	grueling,	gruelling,	
heavy,	laborious,	operose,	punishing,	toilsome,	tough,	overhead,	effort,	stress,	much	work

(DIS)	Discover	Verbs
search,	look,	seek,	research,	explore,	consider

(FIT)	Fit	Verbs
fit,	hook,	play,	complement,	integrate,	work,	incorporate,	run

(FORC)	Force	Verbs
have	to,	forced,	must

(LER)	Learn	Verbs
learn,	acquire,	larn,	study,	teach

(PROB)	Problem	Nouns
problem,	trouble,	issue,	snag,	obstacle,	hurdle

(QUE)	Question	Word
which,	what,	when,	how

(REL)	Rely	Verbs
depend,	rely,	implement,	count	on,	build

(SOL)	Solution	Adjectives
alternative,	option,	choice,	direction,	way,	trend,	solution,	tendency

(SPED)	Adjectives
fast,	quick,	rapid,	robust,	efficient

(STAY)	Stay	Verbs
stick,	adhere,	avoid,	stay,	bind,	bond,	impel,	avert,	evade

(SUPP)	Support	Verbs
support,	provide,	offer,	supply,	allow

(USE)	Use	Verbs
take,	prefer,	favor,	opt,	go,	use,	utilize,	utilise,	choose,	select,	pick

(VAL)	Value	Adjectives
good,	fine,	well,	nice,	superb,	cool,	brilliant,	magnificent,	top

(VS)	Versus	Preposition
versus,	vs,	against,	opposition,	opposed,	contrast,	contrary,	opposing,	counter,	differ

(WISH)	Wish	Verbs
need,	require,	want,	demand,	ask,	like,	wish,	hope,	plan,	desire

(CONF)	Architecture	configuration	(Examples,	complete	list	in	CD)
retrieve/commit	some	data	from/to	a	database	back	on	the	server	(361491)
execute	the	method	on	the	remote	machine	(1426249)
Silverlight	application	can	connect	back	to	it’	server	(1582952)
connect	multiple	users	to	your	back	end	(4627240)

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

199

pass	the	new	client	Socket	off	to	some	processing	code	in	a	new	thread	(8406914)
a	platform	that	would	be	able	to	stream	large	chunks	of	data	over	HTTP	(13016406)
send	complex	object	nets	from	one	application	to	another	(100993)
Receiving	a	message	from	a	distributed	queue	(20740114)
deliver	things	such	as	stock	quotes	to	our	front	end	(1429318)
accessing	some	internal	data	from	a	production	server	(2198168)
C#	.NET	Winform	clients	interacting	with	Java/JBoss	middle-tier	via	Tibco	EMS	messaging	(37579)
Clojure	(Java)	and	Ruby	apps	to	communicate	(4473567)
it	gets	one	item	of	a	list	and	does	some	math	and	uploads	the	result	to	a	database	(9535421)
Application	consist	of	two	component	Web	application	and	Windows	.NET	Application.	(2249715)

(CB)	Component	Behavior	(Examples,	complete	list	in	CD)
service	is	simply	a	front-end	for	the	database	(1582952)
terminate	once	the	processing	is	complete	and	the	response	is	sent.	(8406914)
process	to	write,	that	will	run	asynchronously	for	records	with	a	particular	status	(380052)
service	need	to	be	available	over	multiple	communication	protocols	(807692)
60	boxes	running	each	10	clients	all	do	task	X	(37579)
Java	Queue	that	will	be	automatically	distributed	across	the	whole	cluster	(9535421)
Domain	classes	are	a	nice	place	to	put	business	logic	including	complex	validations	(2897513)
Its	responsibility	is	to	scan	all	active	network,	find	all	IT	assets	(2249715)
The	API	call	is	executed	by	the	broker	(4741713)

(EX)	Existing	System	(Examples,	complete	list	in	CD)
I've	built	a	web	app,	and	a	Silverlight	control	(361491)
I	am	using	Apache	MINA	in	my	open	source	project	(13016406)
An	existing	process	changes	the	status	field	of	a	booking	record	in	a	table	(380052)
contention	with	two	process	reading	and	writing	to	the	same	region	of	the	bookings	table	(380052)
At	the	moment	I	have	a	solution	that	uses	ZeroMQ	to	exchange	protocol	buffer	payloads	(10156388)

(DI)	Design	Issue	(Examples,	complete	list	in	CD)
I've	built	a	web	app,	and	a	Silverlight	control.	I	will	be	adding	one	of	those	3	options	to	my	web	
application	and	consuming	it	from	my	Silverlight	component	(361491)
I'm	doing	something	like	simulation	where	I	need	to	generate	a	lot	of	things	on	the	smaller	machines	
seeded	by	a	value	from	a	database,	but	these	are	reduced	before	they	return	to	the	source	
machine/database.		(18521196)
I'm	thinking	about	using	web	sockets	with	Netty	for	an	application	where	clients	connect	to	a	server	
to	get	some	information	at	first.	Then,	they	are	registered	by	the	server	and	any	changes	on	the	
information	of	a	particular	client	will	trigger	a	notification	to	the	client	containing	the	updated	
information.	In	this	case,	the	communication	is	first	initiated	by	the	client	and	is	latter	initiated	by	
the	server	(12054412)
The	system	we	are	building	is	receiving	data	through	the	external	feed.	Our	job	is	to	distribute	this	
data	to	multiple	services,	run	the	calculations	and	forward	the	results	elsewhere	-	typical	
publisher-subscriber	situation.	(2124221)
I'm	building	native	mobile	applications	in	both	iOS	and	Android.	These	apps	require	"realtime"	
updates	from	and	to	the	server,	same	as	any	other	network-based	application	does	
(Facebook,	Twitter,	social	games	like	Words	with	Friends,	etc)	(6614343)

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

200

I	have	a	WCF	layer	and	my	Domain	Model	is	behind	this	WCF	layer.	I	am	using	Nhibernate	as	
an	ORM	tool	and	all	my	business	logic/	Data	Access	etc	will	be	behind	this	WCF	layer.	I	am	exposing	
DTO	to	my	clients.	(20091826)
I	may	need	two	distinct	patterns/practices/strategies:1.	Loading	a	large	number	of	records	over	the	
internet	(~5k).2.	Keeping	a	subset	of	these	objects	(~500)	update-to-date	over	the	internet.	
(1670332)

(REQ)	Requirements	and	Constraints	(Examples,	complete	list	in	CD)
web	client	app	has	a	need	to	connect	multiple	users	to	your	back	end	simultaneously	(4627240)
system	needs	to	be	able	to	handle	many	(thousands)	of	connections	at	the	same	time	(8406914)
need	to	be	decoupled	(100993)
high	availability	is	important	(37579)
Short	round-trip	time.2.	Low	round-trip-time	standard	deviation	(4473567)
Changing	or	reworking	the	UI	should	be	as	easy	as	possible	(13592894)
What	we	need	is	a	very	low	latency	messaging.	(2124221)
clients	are	not	under	your	control	or	might	move	to	another	platform	(100993)
have	a	limitation	on	time	on	deliverable.	(807692)
The	client-side	for	this	is	being	written	in	Silverlight.	(1670332)
The	protocol	buffer	method	of	serialization	is	bound	to	stay	as	it	is	(10156388)

(UR)	User	Request	(Examples,	complete	list	in	CD)
Do	they	differ	much	in	how	difficult	they	are	to	implement?	(2576446)
Are	Websockets	adapted	to	very	long-lived	connections?	(12054412)
why	wouldn't	couchdb	be	a	good	platform	to	deliver	such	updates?	(2912051)
Is	RabbitMq	fast	enough	for	a	soft	realtime	message	delivery?	Are	there	any	benchmarks?	(2124221)
Did	you	have	any	trouble	installing?	Is	it	stable?Were	there	any	performance	issues?	
How	is	the	documentation	/	support?	(4405992)
how	RX	differs	from	messaging	queues	like	RabbitMQ	or	ZeroMQ?	(20740114)
What,	if	any,	are	the	benefits	of	Netty	for	such	simple	requirements?	(8406914)
How	do	I	choose	between	WCF,	REST,	POX	and	RIA	services	for	a	new	Silverlight	application	
(1582952)
when	one	is	appropriate	to	use	over	another.	What	pros/cons	do	each	offer?	(361491)

(FEAT)	Technology	Feature	(Examples,	complete	list	in	CD)
ZeroMQ	/	RabbitMQ	solutions	often	have	to	use	and	combine	different	Events	quite	a	bit,	which	Rx	
is	very	good	at	(20740114)
JMS	an	external	system	just	like	the	database.	JMS	message	are	received	using	special	kind	of	EJB	
called	Message-driven	bean	(MDB).	(2110965)
Oledb	(Object	Linking	and	Embedding	DB)	is	a	standard	format	supported	by	a	large	number	of	dbs,	
so	you	can	connect	to	oracle,	db2	etc	(3766433)
Camel	does	allow	you	to	integrate	with	XMPP	so	that	you	can	consume	messages	from	or	produce	
to	such	a	mechanism	(10051261)
protobuf-net	(Marc's)	is	a	ground-up	re-implementation	following	the	same	binary	format	(indeed,	a	
critical	requirement	is	that	you	can	interchange	data	between	different	formats),	but	using	typical	
.NET	idioms:mutable	data	classes	(no	builders)the	serialization	member	specifics	are	expressed	in	
attributes	(comparable	toXmlSerializer	,	DataContractSerializer	,	etc)	(475794)

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

201

Web	services	are	cross	platform,	using	common	standards	and	work	through	firewalls.	They	also	
think	in	terms	of	messages,	not	objects	-	you	send	a	message	to	a	service,	and	you	get	a	reply	
(1426249)
BSON,	ProtoBuffers,	and	BERT	offer	serialization	of	arbitrary	data	structures	
(numbers,	strings,	sequential	arrays,	associative	arrays)	into	binary	values.(4473567)
these	technologies	have	the	APIs	to	access	the	native	Devices'	resources	like	Battery	check,	
SMS,	MMS,	GSM	broadcast	channels,	Contacts,	Lighting,	GPS	,	and	Memory	(6614343)
WCF	gives	you	a	level	of	abstraction	over	the	way	you	are/want	to	communicate.	So,	you	can	
choose	binding	that	is	Microsoft-specific,	but	you	can	also	use	SOAP	protocol,	or,	you	use	both,	so	
non-Microsoft	client	will	be	able	to	communicate	through	fe.	SOAP,	and	other	client	can	use	more	
robust	ways.	(1262415)
RabbitMQ	is	a	sophisticated	server	product	that	provides	complex	messaging	patterns,	topics	and	
routing	out-of-the-box.	(17806977)
NServiceBus	which	implements	a	complete	Service	Bus	architecture,	and	could	be	used	in	a	
ServerAndClient	(3026345)

(ASTA)	Technology	Benefits	and	Drawbacks	(Examples,	complete	list	in	CD)
My	code	tends	to	be	slightly	faster	than	his,	but	both	are	much,	much	faster	than	the	other	
serialization/deserialization	options	in	the	framework.	(475794)
you	should	get	query	and	update	very	cheaply	with	this	approach	(361491)
It	doesn't	work	well	with	firewalls	(1426249)
RMI	doesn't	deal	with	guaranteed	delivery	or	asynchronous	responses	(2576446)
building	REST	application	would	be	simpler	and	faster	(2751752)
where	XMPP	really	shines	is	in	its	extensibility	(10051261)
Netty	also	offers	a	very	nice	API	for	building	a	server.	(5145129)
An	ESB	tends	to	provide	more	than	one	communication	interface.	(2023130)

(ADD)	Recommended	Design	Decisions	(Examples,	complete	list	in	CD)
I	suggest	you	try	Mule	for	development	and	WebSphere	ESB	for	test	and	production.	(2023130)
Erlang	is	very	well	suited	for	your	use	case.	(6614343)
You	can	check	out	some	more	advanced	js	libraries	like	KendoUI	(9031116)
you'd	need	session	and	connection	per-thread	due	to	the	JMS	thread	model	(4741713)
I	would	consider	moving	away	from	the	relation	database	in	favor	of	for	example	Cassandra.
(2567254)
Have	you	considered	something	like	Storm	or	Spread?	(10156388)

(DR)	Decision	Rule	(Examples,	complete	list	in	CD)
If	Performance	-	whatever	you	construe	it	to	mean	-	really	is	your	#1	criterion,	then	you	should	
probably	abandon	SOAP	and	POX	and	move	to	protobufs	or	something	else	optimized	for	
performance.	(2751752)
If	you	want	flexibility	in	running	workflowed	tasks	use	Celery.	(18521196)
If	you	are	talking	about	an	HTTP	web	application,	go	with	the	tried	an	true.	Apache	for	straight	
HTML	pages,	Tomcat	if	you	need	Servlets.	(5145129)
If	you	want	your	connection	to	stay	alive	continuously	for	long	periods	then	I	would	suggest	adding	
some	logic	to	your	client	to	reconnect	when	the	onclose	event	happens	(12054412)
You	would	use	one	when	you	need	to	reliably	send	a	inter-process/cross-platform/cross-	application	
message	that	isn't	time	dependent.	(2868800)

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

202

If	your	intentions	are	to	simply	build	a	DAL	in	a	typical	N-Tier	fashion,	there	is	no	reason	that	a	
simple	class	library	wouldn't	suffice.	(401904)
If	you	are	doing	fast	things	with	small	data	sizes	then	go	with	something	homegrown	and	leverage	a	
TCP	connection.	(6614343)
If	the	sessions	are	transacted	then	you'd	need	session	and	connection	per-thread	due	to	the	JMS	
thread	model.	(4741713)
if	you	have	to	deal	with	multiple	development	languages,	using	an	interface	running	over	HTTP	is	a	
very	pragmatic	solution	(2567254)
If	high	availability	is	important	Amazon	SQS	is	worth	looking	at.	(37579)
if	you're	building	a	heterogeneous	distributed	application	involving	messaging	
code	running	on	Windows,	Unix	(AIX/Solaris),	Linux,	or	Mac	OS	X,	then	Tibco	EMS	is	the	ticket	
(37579)
if	you	have	a	PI	(XI)	system	you	could	build	an	interface	via	PI	and	expose	that	as	a	webservice	to	
the	.NET	world.	(2198168)

(CASE)	Technology	Use-case	(Examples,	complete	list	in	CD)
The	Sipdroid	developers	found	that	persistent	TCP	connections	do	greatly	improve	battery	life.	Their	
article	on	the	topic	doesn't	address	the	server	side	but	it	does	give	a	high-level	description	of	their	
approach	on	the	client.	(6614343)
The	Evolution	email	client	as	part	of	GNOME	uses	CORBA.	It	uses	ORBit	(2909782)
Long-lived	connections	is	what	WebSocket	was	designed	for.	Depending	on	how	your	clients	
connect,	those	connections	might	nevertheless	be	limited	in	lifetime,	i.e.	on	retail	DSL	connections,	
there	often	is	a	forced	reconnect	every	24h	at	least.	(12054412)
Imagine	that	you	want	to	notify	a	bank	system	of	ATM	money	withdrawal,	and	it	has	to	be	done	
exactly	once	per	request,	no	matter	what	servers	failed	temporarily	in	the	middle.	MQ	systems	
would	allow	you	to	coordinate	transactions	across	multiple	database,	MQ	and	other	systems.	
(2868800)
In	summary	Data	Services	are	designed	to	be	client	facing,	you	are	exposing	your	data	so	it	can	be	
accessed	over	the	web	from	some	other	body.	While	you	could	force	data	services	to	fit	into	a	
back-end	server	data	access	layer,	you	should	only	do	so	if	you	can	find	a	justifiable	reason	to	do	so	
(2508361)
A	classic	example	is	a	stock	price	ticker	service	-	this	might	be	delivered	via	message	queuing,	but	
then	transformed	by	Rx	to	group,	aggregate	and	filter	prices	(20740114)
We're	running	RabbitMQ	in	EC2	with	persistence	for	all	the	messages.	We	use	only	m1.large	
instances	(64bit	with	high	IO	performance).	We	started	with	EBS	storage,	then	switched	to	
instance-store,	to	see	if	there's	any	improvement.	And	instance-store	instances	are	faster	in	terms	
of	IO	throughput.	But,	the	drawback	is	that	all	persisted	messages	are	lost	along	with	the	
termination/failure	of	the	instance	(although	we	never	experienced	a	failure	ever,	so	far).	In	our	
scenario,	we	don't	need	such	a	big	throughput,	but	we	do	care	a	lot	if	our	messages	get	lost	
(6939110)
Our	team	is	in	the	process	of	implementing	a	Silverlight	app	on	top	of	the	RIA	stack.	We've	decided	
to	build	a	domain	model	on	top	of	the	RIA	entities.	Additionally,	we	elected	to	follow	the	MVVM	
pattern	to	model	UI	interactions.	(2897513)

APPENDIX A. STACK OVERFLOW POSTS ANALYSIS

203

B
Interviews Materials

B.1 Interview Questions to Understand Technology Design Decisions 204
B.2 Interview Questions to Understand the Use of Developer Communities . . 205

B.1 Interview Questions to Understand Technology Design Decisions

We asked the following questions during our interviews to understand how practitioners take tech-
nology design decisions (Answers RQ1, see Chapter 3).

Phase 1 - Participants background:

1. How long is your experience with software technologies?

2. Which technologies do you consider yourself expert in?

3. What type of projects you worked on? The domain of business, and how big are the systems?

4. Which roles you worked in during your work? Currently and previously?

5. Have you took a technology architecture decision before? How often you take these deci-
sions?

6. What does software architecture mean to you?

Phase 2 - Personal Experience:

1. From your experience, are technology decisions important design decisions for the archi-
tecture of a software system?

2. Do you consider selecting conceptual solutions such as patterns important? and how are
they related to technologies?

3. If you have two technologies, what makes an architect choose a technology over the others?

4. How would you decide on a solution, if you have two technologies, and both solve the same
problem?

5. Is it then important to know the consequences of the decision?

204

APPENDIX B. INTERVIEWS MATERIALS

6. Can an architect know all details of a technology?

7. What is important to know about a technology?

8. Sometimes technologies are based on patterns, is it considered in design decision?

9. Does the development environment influence the decision of selecting a technology?

10. Does usability features of a technology influence the decision to select a technology?

11. Is operational aspects, such as monitoring tools of a technology influence the decision of
selecting a technology?

12. Do run-time features such as performance influence a technology decision more than devel-
opment features?

13. If you have list of technologies, and you would like to choose from them? What are the
steps? If we assume, there is no constrains?

14. If you are forced to select a technology, What would you do?

B.2 Interview Questions to Understand the Use of Developer Com-
munities

We asked the following questions during our interviews to understand how practitioners use de-
veloper communities to find architectural knowledge (Answers RQ6, see Chapter 6).

Phase 1: Participants background:

1. How many years of experience do you have with software technologies and development?
And software architecture?

2. Which technologies you consider yourself expert in?

3. In which domain/industry (e.g. Finance, Telecom) do you work in?

4. How big is your organization?

5. Which roles you worked in during your work? Currently and previously?

6. What does software architecture mean to you?

7. Which software tools do you use during software design?

8. Did you consult developers community (e.g., internet blogs, forums, Stack Overflow etc.)
before during architecture design?

Phase 2 - Current use of architecture knowledge in developer’s communities:

1. Do you consult other information sources (other than your personal experience) when mak-
ing design decisions? What are they?

205

APPENDIX B. INTERVIEWS MATERIALS

2. What are the advantages of consulting developers community (e.g., internet blogs, forums,
Stack Overflow etc.) when making design decisions?

3. Which developer community websites do you consider during your searching? How do you
choose between them? Give an example.

4. What type of information are you usually searching for in developers community? At which
phase in the design do you use it? For which design decisions? Give an example.

5. How do you specify your searching criteria? Which information do you consider for search-
ing?

Phase 3 - Identify concerns related to searching for AK, ideal approach for AK reuse from
developers’ community:

1. Do you find it easy to find the information you need across distributed developers commu-
nity pages? Why?

2. Which information are easy/hard to find in developers community?

3. What are the problems, which face you during searching for AK in developersâĂŹ commu-
nity? What do you propose for a solution to overcome these problems?

4. How would you envision an approach that helps in search for and reuse architecture knowl-
edge in developers community?

Wrap-up Upon reflection, after answering the questions, Is there anything you can add and
that you feel is relevant in the context of this interview?

After conducting the interviews with practitioners in Chapter 6, we asked them to fill a survey,
which is included in the following 3 pages.

206

Goal of the survey:
The main goal of the survey is to determine the importance of the different scenarios for
accessing architecture knowledge in developer communities.

Terms Definition:
1) Community or developer communities are web pages which provide the possibility for

technology experts and architects to communicate with each other and exchange
knowledge. For example, Blogs, Forums, Stackoverflow, yammer. These communities
could be offered from private companies (e.g. Stackoverflow), or from technology
vendors (e.g. Microsoft), or personal web sites (e.g. Blogs).

2) Architecture components design: It’s a representation of the components of the system and
how they interact with each other. The modeling of system components could be done in
different views (static vs. dynamic), and using different notations (e.g. UML).

Searching in community webpages

1) How often do you search for suitable technologies (e.g. frameworks) or patterns in

community web pages, in order to satisfy requirements or solve a design problem?

 Often (for most design problems)
 Sometimes (for many design problems)
 Rarely (for few design problems)
 Never

2) How often do you search for information about evaluations or comparisons between

technologies (e.g. frameworks) in community web pages?

 Often (for most design problems)
 Sometimes (for many design problems)
 Rarely (for few design problems)
 Never

3) „After choosing a technology, you need to design the right components of the system,

taking into consideration the features of the selected technologies.“
How often do you search for information about technology features in community web
pages to help developing an architecture component design of a system?

 Often (for most design problems)
 Sometimes (for many design problems)
 Rarely (for few design problems)
 Never

4) „After developing the components design of the system“ How often do you search for

similar architectures in developers community, in order to evaluate your proposed design?

 Often (for most design problems)
 Sometimes (for many design problems)
 Rarely (for few design problems)
 Never

APPENDIX B. INTERVIEWS MATERIALS

207

5) „You write searching keywords to search for certain architecture information, and get a
list of relevant webpages“. How hard is to read and classify webpages in order to find
relevant architectural information?

 Complex and time consuming
 Easy / Doable
 Trivial (Not a problem)

6) „After writing the searching keywords to search for relevant architecture knowledge, and

getting a list of relevant webpages“. For a typical design problem, how do you read and
analyse community webpages for the required knowledge?

 Read each word and sentence to completely understand the content of the page.
 Search for certain words and sentences, which contain the needed architecture

knowledge.

7) „During searching for architecture knowledge, you read several webpages to find the
information you need“. How often do you check the validity of the information in
community webpages?

 Often (for most design problems)
 Sometimes (for many design problems)
 Rarely (for few design problems)
 Never

Searching during modeling and documentation

8) How often do you search for architecture information in between or during modeling and

documenting an architecture design?

 Often (for most design problems)
 Sometimes (for many design problems)
 Rarely (for few design problems)
 Never

9) In searching for architecture knowledge during modeling and documentation, do you

consider the terms used in architecture models and requirement documents as keywords to
search for architecture knowledge?

 Often (for most design problems)
 Sometimes (for many design problems)
 Rarely (for few design problems)
 Never

Submiting problems

10) How often do you submit a question about a design problem to one of the developers

communities?

 Often (for most design problems)
 Sometimes (for many design problems)

APPENDIX B. INTERVIEWS MATERIALS

208

 Rarely (for few design problems)
 Never

11) Which types of questions related to design problems do you submit to developers

communities?

 Search for a suitable technology (e.g. framework, database,...)
 Evaluate a technology regarding its features or quality (e.g. performance, security,

scalability).
 Ask for additional information about technology features
 Ask about suitable architecture components design
 Ask to evaluate a complete architecture components design

Browse architectural solutions features

12) How often do you browse technology vendor websites and developer communities (e.g.

stackoverflow) to understand its technology features?

 Often (for most design problems)
 Sometimes (for many design problems)
 Rarely (for few design problems)
 Never

13) During which architecture design activity do you browse technology features?

 During searching for a suitable technology (e.g. Framework)
 During evaluating technology regarding its features or quality (e.g. performance)
 During asking for suitable architecture components design
 During asking to evaluate a complete architecture components design

Browse and contact architecture and technology experts in communities

14) How often do you use communities to find and contact technology experts, who could

provide information to evaluate your design?

 Often (for most design problems)
 Sometimes (for many design problems)
 Rarely (for few design problems)
 Never

15) How often do you use communities to find and contact technology experts, who could

provide information about technology products and their architecture?

 Often (for most design problems)
 Sometimes (for many design problems)
 Rarely (for few design problems)
 Never

16) For which architecture design activity do you contact experts:

 During searching for a suitable technology (e.g. Framework)

APPENDIX B. INTERVIEWS MATERIALS

209

 During evaluating technology regarding its features or quality (e.g. performance)
 During asking for suitable architecture components design
 During asking to evaluate a complete architecture components design

APPENDIX B. INTERVIEWS MATERIALS

210

C
Experiments Materials and Detailed
Results

C.1 List of Stack Overflow Tags . 211
C.2 List of Distinctive Keywords and Ontology Classes 215
C.3 Experiment to Search for Architectural Information in Stack Overflow . . 225

C.1 List of Stack Overflow Tags

In Chapter 7, we conducted an analysis to explore if tags could be enough to identify architecture
posts. As part of the analysis, we list tags, which have the highest differences in their occurrences
between architecture and programming posts. We list here the top 100 tags, a complete list for
tags is available in the attached CD.

211

Tag ARP	Percentage Non-ARP	Percentage Difference
web-services 11.39534884 4.924623116 6.470725722

soap 9.186046512 3.115577889 6.070468622
message-queue 6.046511628 0.904522613 5.141989015

rest 6.860465116 2.010050251 4.850414865
java 15.81395349 11.15577889 4.658174594

rabbitmq 8.372093023 4.120603015 4.251490008
jms 6.046511628 1.909547739 4.136963889

zeromq 4.302325581 0.502512563 3.799813019
rpc 4.418604651 0.804020101 3.614584551
soa 3.720930233 0.301507538 3.419422695

architecture 3.488372093 0.100502513 3.38786958
messaging 3.720930233 0.40201005 3.318920182
python 6.395348837 3.417085427 2.97826341
esb 2.790697674 0.301507538 2.489190137

msmq 3.139534884 0.804020101 2.335514783
amqp 5.23255814 3.015075377 2.217482763

performance 2.558139535 0.502512563 2.055626972
asp.net-mvc 2.441860465 0.502512563 1.939347902

thrift 2.209302326 0.502512563 1.706789763
redis 1.511627907 0.100502513 1.411125394
netty 1.744186047 0.40201005 1.342175996

amazon-web-services 1.627906977 0.301507538 1.326399439
json 3.255813953 2.010050251 1.245763702
gwt 2.093023256 0.904522613 1.188500643

entity-framework 1.279069767 0.100502513 1.178567255
node.js 1.627906977 0.502512563 1.125394414

authentication 1.162790698 0.100502513 1.062288185
sockets 1.162790698 0.100502513 1.062288185

publish-subscribe 1.046511628 0 1.046511628
javascript 1.744186047 0.703517588 1.040668459
android 2.093023256 1.105527638 0.987495618
ipc 1.046511628 0.100502513 0.946009115

design-patterns 0.930232558 0 0.930232558
security 1.511627907 0.603015075 0.908612832
wsdl 2.209302326 1.306532663 0.902769662
api 1.162790698 0.301507538 0.86128316

queue 1.162790698 0.301507538 0.86128316
protocol-buffers 1.046511628 0.201005025 0.845506603

websocket 1.046511628 0.201005025 0.845506603
jax-ws 1.046511628 0.201005025 0.845506603

web-applications 0.813953488 0 0.813953488
asynchronous 1.395348837 0.603015075 0.792333762

wcf-data-services 1.279069767 0.502512563 0.776557205
scala 1.162790698 0.40201005 0.760780647

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

212

celery 3.372093023 2.613065327 0.759027697
ajax 1.046511628 0.301507538 0.74500409

wcf-ria-services 1.627906977 0.904522613 0.723384364
distributed 0.813953488 0.100502513 0.713450976
objective-c 0.697674419 0 0.697674419

xmpp 0.697674419 0 0.697674419
erlang 0.697674419 0 0.697674419
mqtt 0.697674419 0 0.697674419
nio 0.697674419 0 0.697674419

twisted 0.697674419 0 0.697674419
poco 0.697674419 0 0.697674419

networking 1.046511628 0.40201005 0.644501578
iphone 1.046511628 0.40201005 0.644501578

c 1.046511628 0.40201005 0.644501578
ios 0.813953488 0.201005025 0.612948463

wcf-web-api 0.813953488 0.201005025 0.612948463
client-server 0.697674419 0.100502513 0.597171906
servicebus 0.697674419 0.100502513 0.597171906

asp.net-web-api 0.697674419 0.100502513 0.597171906
tibco 0.581395349 0 0.581395349

protocols 0.581395349 0 0.581395349
ibm-mq 0.581395349 0 0.581395349

nservicebus 0.813953488 0.301507538 0.512445951
django 1.511627907 1.005025126 0.506602781
rmi 1.511627907 1.005025126 0.506602781
azure 0.697674419 0.201005025 0.496669393
mule 0.697674419 0.201005025 0.496669393
tcp 0.697674419 0.201005025 0.496669393
asmx 0.697674419 0.201005025 0.496669393

remoting 1.395348837 0.904522613 0.490826224
duplex 0.581395349 0.100502513 0.480892836

nettcpbinding 0.581395349 0.100502513 0.480892836
distributed-computing 0.465116279 0 0.465116279

json-rpc 0.465116279 0 0.465116279
frameworks 0.465116279 0 0.465116279

cross-platform 0.465116279 0 0.465116279
actor 0.465116279 0 0.465116279

domain-driven-design 0.465116279 0 0.465116279
comet 0.465116279 0 0.465116279
gwt-rpc 1.162790698 0.703517588 0.45927311

wcf-binding 1.046511628 0.603015075 0.443496553
linux 0.930232558 0.502512563 0.427719995

windows-services 0.697674419 0.301507538 0.396166881
servicemix 0.581395349 0.201005025 0.380390324
amazon-ec2 0.465116279 0.100502513 0.364613767

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

213

integration 0.465116279 0.100502513 0.364613767
scalability 0.465116279 0.100502513 0.364613767

wshttpbinding 0.465116279 0.100502513 0.364613767
design 0.465116279 0.100502513 0.364613767

push-notification 0.465116279 0.100502513 0.364613767
akka 0.465116279 0.100502513 0.364613767

java-ee 1.162790698 0.804020101 0.358770597
unix 0.348837209 0 0.348837209

mongodb 0.348837209 0 0.348837209
haskell 0.348837209 0 0.348837209

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

214

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

C.2 List of Distinctive Keywords and Ontology Classes

In Chapter 7, we conducted an analysis to explore the most distinctive keywords and ontology
classes to identify and classify architecture relevant posts. We list in the next 3 pages the top
100 keywords with the highest information gain ratio. A complete list for keywords is available
in the attached CD. After presenting the top keywords, we present the complete list of the most
distinctive ontology classes. Moreover, we present the top 200 distinctive sequences of ontology
classes. A complete list of sequences are available in the attached CD. The lists of ontology classes
and sequences use the same IDs of ontology classes as proposed in Chapter 5.

215

Terms	in	Title
(Information	Gain,	
frequency,	term)

Terms	in	Question
(Information	Gain,	
frequency,	term)

Terms	in	Answers
(Information	Gain,	
frequency,	term)

	0.17082					1780	soa 	0.17627					1266	scalability 	0.17651					1274	throughput
	0.16885					1039	alternatives 	0.17452					1064	compared 	0.16834					1235	scaling
	0.16679					1894	versus 	0.16462					1327	wed 	0.16233					1304	xmpp
	0.15143					1159	comparison 	0.16233					1234	pros/cons 	0.15901					1040	cloud
	0.15143					1467	lightweight 	0.16233					1289	subscribers 	0.15487					1233	scalable
	0.15143					1569	notification 	0.15901					1233	pros 	0.14798					1275	tibco
	0.15143					1125	choosing 	0.15901					1078	cons 	0.14076					1030	broker
	0.14806					1240	distributed 	0.15449					1183	meet 	0.14017					1098	esb
	0.14806					1064	apps 	0.15143					1248	real-world 	0.1401						1093	enterprise
	0.14426					1682	real-time 	0.1513						1019	amqp 	0.13988					1114	governance
	0.14426					1085	backend 	0.14806					1335	xmpp 	0.1373							596	messaging
	0.14426					1584	oriented 	0.14806					1196	mule 	0.13609					1031	brokers
	0.14426					1641	pros 	0.12403					1089	decision 	0.13603					1217	redis
	0.14426					1681	ready 	0.11647					1277	soa 	0.13202					1246	soa
	0.14426					1508	middleware 	0.11589					1084	corba 	0.12884					1142	lightweight
	0.14426					1175	cons 	0.11093					1186	messaging 	0.12864					1232	scalability
	0.13988					1767	share 	0.10624					1267	scalable 	0.12838					1284	udp
	0.13988					1294	experience 	0.10624					1030	balancing 	0.12767					1166	mule
	0.13988					1249	dto 	0.10624					1026	availability 	0.12731					1000	activemq
	0.13988					1154	communicate 	0.10624					1103	dtos 	0.12575					1034	bus
	0.13988					1100	broker 	0.10427					1018	alternatives 	0.12528					1032	buffers
	0.13988					1456	layer 	0.10211					1014	advantages 	0.12437					1234	scale
	0.13988					1455	latency 	0.10178					1032	benefits 	0.12403					1276	tier
	0.13731					1506	messaging 	0.10066					1188	middleware 	0.12403					1091	ems
	0.13463					1694	rendezvous 	0.10066					1106	ec2 	0.12186					1264	systems
	0.13463					1236	disadvantages 	0.10002					1040	broker 	0.12105					1106	faster
	0.13463					1219	delivery 	0.09441					1160	ipc 	0.11966					1261	subscribers
	0.13463					1938	xmpp 	0.09441					1314	twisted 	0.11966					1172	nservicebus
	0.13463					1089	bean 	0.09152					1298	technologies 	0.11848					1153	mature
	0.13463					1598	payloads 	0.08827					1117	entities 	0.11806					1026	benefits
	0.13463					1387	implemented 	0.08764					1081	considering 	0.11768					1266	technologies
	0.13463					1104	business 	0.08737					1168	latency 	0.11609					1062	coupled
	0.13463					1734	scalable 	0.08732					1260	round 	0.11496					1012	amqp
	0.13463					1098	bridge 	0.08557						363	error 	0.11129					1242	servicemix
	0.13463					1111	cases 	0.08484						143	architecture 	0.11109						984	//activemq
	0.13463					1769	sharing 	0.08387					1119	esb 	0.11096					1267	technology
	0.13463					1874	udp 	0.08387					1268	scale 	0.11019						694	protocol
	0.13463					1095	boost 	0.08312						883	trace 	0.1095						1202	producer
	0.13463					1736	scale 	0.08308					1069	complexity 	0.10907					1204	protocols
	0.13463					1106	c/c++ 	0.08308					1171	lightweight 	0.1067								27	</code></pre>
	0.13463					1773	similar 	0.08198						374	exception 	0.10585					1028	biztalk
	0.13429					1045	amqp 	0.08163						978	} 	0.10521					1069	delivery

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

216

	0.12787					1613	platforms 	0.08056					1101	distributed 	0.10509					1230	routing
	0.12787					1292	exchanges 	0.08049					1136	future 	0.10464					1273	thrift
	0.12787					1257	ecommerce 	0.07949						974	xp 	0.10386					1127	integration
	0.12787					1856	topics 	0.07917					1307	tier 	0.10351					1126	integrate
	0.12787					1862	transactional 	0.07917					1016	akka 	0.10294					1165	mq
	0.12787					1674	rapidly 	0.07908					1295	systems 	0.10178					1305	zeromq
	0.12787					1858	tornado 	0.0785						1284	stick 	0.10178					1060	corba
	0.12787					1848	throughput 	0.07836						849	svc 	0.10128					1281	transactions
	0.12787					1778	sns 	0.07777						590	namespace 	0.10002					1189	persistence
	0.12787					1853	toolkit 	0.0774						1200	notifications 	0.09957					1079	distributed
	0.12787					1861	traditional 	0.0774						1065	comparing 	0.09918					1004	advantages
	0.12787					1830	swing 	0.0764						1049	choose 	0.09748					1015	architecture
	0.12787					1386	implementations 	0.0764						1048	choice 	0.09714					1155	middleware
	0.12787					1214	dealing 	0.07639					1123	experiences 	0.09564					1101	expensive
	0.12787					1492	managing 	0.07639					1082	consumers 	0.09543					1225	requirements
	0.12787					1661	pyro 	0.0759							158	attempting 	0.09437					1191	personally
	0.12787					1114	celerybeat 	0.07526						299	debug 	0.09315					1303	xml-rpc
	0.12787					1205	daemon 	0.07512					1167	languages 	0.09313						709	rabbitmq
	0.12787					1401	inter 	0.07512					1192	mostly 	0.09268					1049	complexity
	0.12787					1645	protobuf 	0.07314						164	automation 	0.09217					1228	robust
	0.12787					1407	interprocess 	0.07314						352	empty 	0.09121					1063	curve
	0.12787					1811	streams 	0.07254						976	zeromq 	0.09089					1047	comparison
	0.12787					1411	ios/android 	0.07239						708	referenced 	0.09089					1257	standards
	0.12787					1268	embedded 	0.07239						658	prettyprint 	0.09078					1220	reliability
	0.12787					1505	messagepack 	0.07239						399	false 	0.09073					1301	ws-*
	0.12787					1117	centralized 	0.07233					1134	frameworks 	0.08993					1214	queuing
	0.12787					1785	solutions 	0.07199					1208	overhead 	0.08993					1041	cluster
	0.12787					1122	choice 	0.07161						225	class=lang-xml 	0.0892						1019	asynchronous
	0.12787					1199	cross-platform 	0.07161						241	compilation 	0.0892						1057	consumers
	0.12787					1120	chat 	0.07141						642	performance 	0.08913					1190	persistent
	0.12787					1390	in-memory 	0.07121					1108	ef 	0.08907					1072	develop
	0.12787					1789	speed 	0.07121					1074	concurrency 	0.08737					1020	azure
	0.12787					1835	syslog 	0.07121					1090	delivery 	0.08732					1007	akka
	0.12787					1612	platform 	0.07121					1310	traditional 	0.08656						662	performance
	0.12787					1487	lowest 	0.07098					1299	technology 	0.0865						1085	efficient
	0.12787					1666	qpid 	0.07079						710	reflection 	0.08537					1110	formats
	0.12787					1133	client/server 	0.07079						300	debugger 	0.08462					1105	fast
	0.12787					1433	jetty 	0.06993						932	visible 	0.08293					1177	oriented
	0.12787					1733	scalability 	0.06993						919	var 	0.08293					1199	powerful
	0.12787					1324	footprint 	0.06993						851	tab 	0.08213						236	cmd
	0.12787					1914	wf 	0.06993						935	void 	0.08212					1176	org/
	0.12787					1041	alternitives 	0.06959					1264	saml 	0.08199					1179	overhead
	0.12787					1472	linq 	0.06903						779	servicehost 	0.08196						705	queue
	0.12787					1744	selection 	0.06903						335	dll</code> 	0.08063					1280	transactional
	0.12787					1152	comet 	0.06903						513	javax 	0.08021					1260	subscriber

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

217

	0.12787					1751	serial 	0.06883					1247	real-time 	0.08021					1169	netty
	0.12787					1610	pitfalls 	0.06869							21	</code></pre> 	0.07919						200	business
	0.12787					1571	nusoap 	0.0683						1055	cluster 	0.07861					1117	heavy
	0.12787					1156	compare 	0.0682						1280	speed 	0.07832					1046	compared
	0.12787					1731	saml 	0.0682						1179	major 	0.07799					1183	parsing
	0.12787					1317	finagle 	0.06807						933	vista 	0.07794					1221	reliable
	0.12787					1704	request-response 	0.06712					1225	possibly 	0.07764					1037	capabilities
	0.12787					1333	frequent 	0.06706						926	version=1 	0.0772						1042	communicate
	0.12787					1339	general 	0.06706						944	webbrowser 	0.07717					1186	patterns
	0.12787					1334	front 	0.06706						331	dispatcher 	0.07651						681	processing
	0.12787					1935	xlsx 	0.06668						695	queues 	0.0764						1278	topics
	0.12787					1176	considerations 	0.06603					1097	differences 	0.07639					1132	iphone

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

218

Count 2-class	dataset 4-class	dataset
1 0.11825 numCOM 0.13557 distQA
2 0.1176 distQA 0.12867 numCOM
3 0.10871 numDIF 0.12533 numDIF
4 0.104 hasSourceCode 0.10559 hasSourceCode
5 0.09236 numQA 0.1051 numSUPP
6 0.09121 numSUPP 0.10327 numQA
7 0.09053 numSPED 0.0976 numVAL
8 0.08436 numVAL 0.09411 numSPED
9 0.07015 distTEC 0.0809 distTEC
10 0.0664 numPAT 0.07962 numPAT
11 0.06415 numCON 0.0777 numCON
12 0.06198 numREL 0.07409 numREL
13 0.05594 numAMT 0.07071 numREL
14 0.05394 numCHR 0.06334 numAMT
15 0.05101 numWISH 0.06221 numWISH
16 0.05072 numCOND 0.06219 numCOND
17 0.04152 numDFF 0.06168 numDFF
18 0.0411 numSOL 0.0466 numCONC
19 0.03926 numUSE 0.04632 numDIS
20 0.0392 numDIS 0.04531 numUSE
21 0.03888 numCONC 0.04151 numVS
22 0.03278 numFIT 0.04144 numSOL
23 0.02172 numVS 0.03856 numFIT
24 0.01678 numADV 0.01667 numADV
25 0.01031 numFORC 0.01649 numWORDS
26 0.01005 numSTAY 0.01608 numFORC
27 0.00863 numWORDS 0.01532 numSTAY
28 0.00786 numCOME 0.01276 numTEC
29 0.007 numTEC 0.0124 numLER
30 0.0062 numCONS 0.00723 numCOME
31 0.00592 numLER 0.00665 numASES
32 0.00462 numASES 0.00642 numCONS

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

219

Count 2-class	Dataset 4-class	Dataset
1 0.08531 46 PAT TEC 0.09666 448 USE TEC
2 0.07658 51 PAT TEC TEC 0.0947 449 USE TEC
3 0.07499 127 TEC PAT 0.08923 861 USE TEC
4 0.07361 755 DIF 0.08874 293 TEC QA
5 0.06833 834 SUPP 0.08692 862 USE TEC
6 0.06724 132 TEC PAT TEC 0.08543 287 TEC TEC
7 0.062 311 QA 0.08372 897 DIF
8 0.05944 149 TEC TEC PAT 0.08359 494 DIF
9 0.05887 281 TEC VAL 0.08332 896 DIF
10 0.05785 198 TEC QA 0.08244 285 TEC TEC
11 0.05508 285 TEC SUPP 0.08058 493 DIF
12 0.05383 147 TEC TEC 0.07992 230 PAT TEC
13 0.05125 817 VAL TEC 0.07844 525 SUPP
14 0.05002 815 VAL 0.0783 231 PAT TEC
15 0.04862 134 TEC PAT TEC TEC 0.0762 781 QA
16 0.04826 753 SPED 0.07522 762 TEC TEC
17 0.04802 835 SUPP PAT 0.07455 526 SUPP
18 0.04661 257 TEC USE TEC 0.07392 761 TEC TEC
19 0.04486 291 TEC WISH 0.0731 788 QA
20 0.04318 655 USE TEC 0.07122 330 QA
21 0.04317 20 PAT 0.07096 323 QA
22 0.04247 315 QA TEC 0.06924 281 TEC PAT
23 0.04144 22 PAT PAT 0.06909 763 TEC QA
24 0.04115 271 TEC DIF 0.06648 310 TEC VAL
25 0.04094 836 SUPP TEC 0.06648 290 TEC TEC TEC
26 0.04044 288 TEC AMT 0.06646 264 TEC TEC
27 0.04037 154 TEC TEC TEC 0.06514 265 TEC TEC
28 0.03962 254 TEC USE 0.06434 718 PAT TEC
29 0.03876 757 DIF TEC 0.06324 925 SUPP
30 0.0377 168 TEC TEC QA 0.06203 917 VAL
31 0.03725 890 WISH TEC 0.06076 234 PAT
32 0.03707 REL 0.06074 746 TEC TEC
33 0.03706 446 PROG PROG PROG 0.05917 719 PAT TEC
34 0.03628 241 TEC PROG SUPP 0.05809 918 VAL
35 0.03624 659 USE TEC TEC 0.05757 517 VAL
36 0.03619 151 TEC TEC PAT TEC 0.05707 920 VAL TEC
37 0.03568 277 TEC SOL 0.05667 520 VAL TEC
38 0.03532 314 QA PAT 0.056 926 SUPP
39 0.03504 572 PROG SUPP 0.05511 759 TEC PAT
40 0.0347 857 AMT TEC 0.05494 36 COM PAT
41 0.03441 157 TEC TEC TEC TEC 0.05485 491 SPED
42 0.03403 47 PAT TEC PAT 0.05461 316 TEC WISH
43 0.03303 189 TEC TEC VAL 0.05454 314 TEC AMT
44 0.03155 644 DFF 0.05448 211 PAT COM

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

220

45 0.0314 318 QA QA 0.05395 770 TEC VAL
46 0.03088 30 PAT PAT TEC 0.05378 210 PAT COM
47 0.03041 65 PAT QA 0.05324 303 TEC USE
48 0.02989 456 PROG PROG PROG PROG 0.05301 518 VAL
49 0.02971 53 PAT TEC TEC TEC 0.05296 747 TEC TEC
50 0.02969 181 TEC TEC USE 0.05281 707 PAT COM
51 0.02961 5 REL TEC 0.0528 294 TEC QA
52 0.02858 326 QA DIF 0.0524 706 PAT COM
53 0.02852 109 PAT VAL 0.05176 1114 USE TEC TEC
54 0.02852 763 DIF USE 0.05103 1208 USE TEC TEC
55 0.02837 886 WISH PAT 0.05068 311 TEC VAL
56 0.02833 660 USE TEC TEC TEC 0.05038 722 PAT
57 0.02822 1190 QA SPED 0.0496 705 PAT
58 0.02767 768 DIS TEC 0.04904 1091 TEC DIF
59 0.02725 143 TEC PAT USE 0.04725 445 DFF
60 0.02718 190 TEC TEC SUPP 0.0468 1069 TEC PAT TEC
61 0.02695 840 SUPP QA 0.04673 209 PAT
62 0.02687 942 CONC 0.04661 312 TEC SUPP
63 0.02658 293 TEC WISH TEC 0.04617 244 PAT TEC
64 0.02658 282 TEC VAL TEC 0.04594 921 VAL TEC
65 0.02654 818 VAL TEC TEC 0.04569 317 TEC WISH
66 0.0264 1275 SUPP PAT TEC 0.04553 245 PAT TEC
67 0.02625 124 TEC REL 0.04538 1089 TEC USE TEC
68 0.02621 316 QA TEC TEC 0.04478 464 USE TEC
69 0.02618 128 TEC PAT PAT 0.04446 446 DFF
70 0.02592 188 TEC TEC SOL 0.04443 1115 USE TEC TEC
71 0.02587 319 QA PROG 0.04436 521 VAL TEC
72 0.02583 95 PAT USE 0.04422 1092 TEC DIF
73 0.02582 656 USE TEC PAT 0.04417 315 TEC AMT
74 0.02574 61 PAT TEC USE 0.04408 1037 PAT TEC TEC
75 0.02563 900 WISH QA 0.04395 153 REL
76 0.0256 286 TEC SUPP TEC 0.04333 875 USE TEC
77 0.0253 852 AMT 0.04319 528 SUPP TEC
78 0.02521 1050 PAT TEC SUPP 0.04309 40 COM TEC
79 0.02518 1155 TEC SUPP PAT 0.04284 331 QA TEC
80 0.02512 837 SUPP TEC TEC 0.04282 465 USE TEC
81 0.02473 854 AMT PAT 0.0423 1164 COND PAT
82 0.02434 155 TEC TEC TEC PAT 0.04227 492 SPED
83 0.02425 858 AMT TEC TEC 0.04226 154 REL
84 0.02406 648 USE PAT 0.04195 776 TEC WISH
85 0.02384 259 TEC USE TEC TEC 0.04195 1070 TEC PAT TEC
86 0.0232 1217 DFF TEC 0.04169 1075 TEC TEC PAT
87 0.02272 98 PAT USE TEC 0.0416 771 TEC VAL
88 0.02264 123 TEC 0.04135 220 PAT COM TEC
89 0.02263 192 TEC TEC WISH 0.04126 1189 TEC QA

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

221

90 0.02239 148 TEC TEC REL 0.04102 357 PROG SUPP
91 0.02232 182 TEC TEC USE TEC 0.04093 304 TEC USE
92 0.02226 678 USE QA 0.04092 858 DFF
93 0.02213 348 PROG PAT TEC 0.04091 774 TEC AMT
94 0.02176 816 VAL VALAT 0.04085 529 SUPP TEC
95 0.02168 152 TEC TEC PAT TEC TEC 0.04049 606 COM PAT
96 0.0214 289 TEC AMT TEC 0.04005 1184 TEC PAT TEC
97 0.02103 158 TEC TEC TEC TEC TEC 0.03991 43 COM TEC
98 0.02101 63 PAT TEC T 0.03987 1090 TEC USE TEC
99 0.02089 191 TEC TEC AMT 0.03981 1193 TEC DIF
100 0.02029 55 PAT TEC QA 0.03946 876 USE TEC
101 0.02005 1178 QA PAT TEC 0.03911 332 QA TEC
102 0.01993 676 USE TEC WISH 0.03907 930 AMT
103 0.01967 113 PAT WISH 0.03845 221 PAT COM TEC
104 0.01964 766 DIS 0.03818 859 DFF
105 0.0194 1238 SPED TEC 0.03813 284 TEC PAT
106 0.01938 4 REL PAT 0.03807 1145 SUPP PAT
107 0.01936 759 DIF QA 0.03797 1010 COM USE TEC
108 0.01935 312 QA REL 0.03791 931 AMT
109 0.01918 325 QA USE 0.03783 189 CON PAT
110 0.0188 760 DIF PROG 0.03752 278 TEC CON
111 0.01859 756 DIF PAT 0.0367 766 TEC USE
112 0.01848 574 PROG SUPP TEC 0.03667 727 PAT TEC
113 0.01822 324 QA PROG FIT 0.03658 46 COM QA
114 0.01812 892 WISH TEC TEC 0.03646 1073 TEC TEC TEC
115 0.01805 202 TEC QA DIF 0.03623 691 CON PAT
116 0.01799 789 SOL PAT 0.0359 1060 TEC SUPP
117 0.01785 1231 USE TEC AMT 0.03589 358 PROG SUPP
118 0.01783 573 PROG SUPP PAT 0.03588 1016 COND PAT
119 0.01782 791 SOL TEC 0.03586 533 AMT
120 0.01778 1075 TEC PAT TEC TEC TEC 0.0357 1291 DFF TEC
121 0.01775 985 FIT TEC 0.03569 1194 TEC DIF
122 0.01759 1049 PAT TEC P 0.03554 532 AMT
123 0.01756 1262 SOL DIF 0.03545 809 PROG SUPP
124 0.01746 1097 TEC TEC TEC SUPP 0.03537 66 COM P
125 0.01734 650 USE PAT TEC 0.03497 789 QA TEC
126 0.01723 1310 CONC QA 0.0349 777 TEC WISH
127 0.01722 62 PAT TEC USE TEC 0.03477 193 CON TEC
128 0.01684 130 TEC PAT PAT TEC 0.03466 1038 PAT TEC TEC
129 0.01683 303 TEC FIT 0.03459 466 USE TEC TEC
130 0.01679 922 WISH USE TEC 0.03451 235 PAT COM
131 0.01674 332 QA AMT 0.03446 1059 TEC SUPP
132 0.01668 421 PROG PROG 0.03446 39 COM PAT
133 0.01666 49 PAT TEC PAT TEC 0.03443 1124 DIF TEC
134 0.01655 849 SUPP AMT 0.03436 37 COM PAT COM

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

222

135 0.01644 1156 TEC SUPP TEC TEC 0.03424 837 PROG PROG
136 0.01642 156 TEC TEC TEC PAT TEC 0.03408 1172 PAT TEC TEC
137 0.01599 272 TEC DIS 0.03404 1292 DFF TEC
138 0.01584 52 PAT TEC TEC PAT 0.03403 894 SPED
139 0.0158 1051 PAT TEC AMT 0.03403 1318 COND PAT COM
140 0.01574 1126 TEC PROG SUPP TEC 0.03402 1151 WISH TEC
141 0.01574 1088 TEC TEC TEC REL 0.03396 501 DIS TEC
142 0.01569 1113 TEC TEC SUPP TEC 0.03368 1017 COND PAT COM
143 0.01564 672 USE TEC USE 0.03355 268 TEC
144 0.01561 529 PROG USE PROG 0.03352 1074 TEC TEC TEC
145 0.01559 111 PAT AMT 0.03343 750 TEC
146 0.01557 1240 SPED DIF 0.03337 313 TEC SUPP
147 0.01554 255 TEC USE PAT 0.03331 728 PAT TEC
148 0.01553 115 PAT WISH TEC 0.03314 1150 WISH TEC
149 0.0155 1265 VAL VALAT TEC 0.03313 1050 TEC TEC TEC
150 0.01545 884 WISH 0.03308 305 TEC USE TEC
151 0.01544 657 USE TEC PAT TEC 0.03303 218 PAT COM PAT
152 0.01539 110 PAT SUPP 0.03302 1106 QA QA
153 0.01536 451 PROG PROG PROG TEC 0.03286 772 TEC SUPP
154 0.01535 987 FIT TEC TEC 0.03273 571 CONC
155 0.01522 820 VAL QA 0.03272 575 CONC
156 0.01518 105 PAT DIF 0.03263 1011 COM USE TEC
157 0.01508 765 DIF WISH 0.03251 133 COND PAT
158 0.01498 787 SOL 0.03235 282 TEC PAT COM
159 0.01498 532 PROG USE PROG PROG 0.03217 775 TEC AMT
160 0.01492 860 AMT QA 0.03207 1192 TEC USE TEC
161 0.01482 144 TEC PAT USE TEC 0.03202 240 PAT CON
162 0.01481 1048 PAT TEC SOL 0.03201 540 AMT TEC
163 0.01477 481 PROG PROG USE 0.0318 1076 TEC TEC QA
164 0.01467 164 TEC TEC TEC USE 0.0317 236 PAT COM
165 0.01462 1177 QA PAT PAT 0.03165 38 COM PAT COM
166 0.01453 1278 SUPP TEC PAT 0.03163 1345 DFF TEC
167 0.01453 1266 VAL TEC VALAT 0.03162 270 TEC COM
168 0.01452 1025 PAT PAT TEC TEC 0.03162 1319 COND PAT COM
169 0.01451 1180 QA TEC PAT 0.03151 307 TEC DIS
170 0.01429 178 TEC TEC PROG SUPP 0.0315 1331 TEC SUPP
171 0.01428 196 TEC TEC FIT 0.0315 1018 COND PAT COM
172 0.01428 6 REL TEC TEC 0.03143 59 COM USE
173 0.01428 292 TEC WISH PAT 0.0314 261 TEC PAT
174 0.01424 1153 TEC VAL TEC TEC 0.03116 1096 TEC VAL TEC
175 0.01413 1188 QA PROG FIT TEC 0.03088 1185 TEC PAT
176 0.01411 327 QA DIF TEC 0.03075 1330 TEC SUPP
177 0.01401 825 VAL USE 0.03074 810 PROG SUPP
178 0.01394 23 PAT PAT PAT 0.03065 559 WISH TEC
179 0.01374 1046 PAT TEC DIF 0.03061 292 TEC TEC USE

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

223

180 0.01373 1209 PROG SUPP QA 0.03053 1202 QA TEC
181 0.01372 1098 TEC TEC TEC SUPP TEC 0.03047 269 TEC COM
182 0.01369 1274 SUPP PAT PAT 0.0304 1203 QA QA
183 0.01362 33 PAT PAT QA 0.03037 67 COM VAL
184 0.01361 207 TEC PROG PAT TEC 0.03024 1344 DFF TEC
185 0.01359 485 PROG PROG USE PROG 0.03022 902 DIS TEC
186 0.01349 459 PROG PROG PROG PROG PROG 0.03014 242 PAT PAT
187 0.01328 1089 TEC TEC TEC TEC PAT 0.03013 308 TEC SOL
188 0.01325 794 SOL QA 0.02997 1093 TEC DIS
189 0.01323 125 TEC REL TEC 0.0299 950 WISH TEC
190 0.01322 1037 PAT TEC TEC TEC TEC 0.02977 1102 QA SPED
191 0.01319 1279 SUPP TEC PAT TEC 0.02972 289 TEC TEC CON
192 0.01318 1139 TEC USE QA 0.02965 416 PROG PROG PROG
193 0.01314 666 USE TEC QA 0.02946 328 QA DIF
194 0.01313 205 TEC PROG PAT 0.02935 712 PAT COM TEC
195 0.01313 758 DIF TEC TEC 0.02923 786 QA DIF
196 0.01313 331 QA VAL 0.02923 157 REL TEC
197 0.01308 551 PROG DIF 0.0291 1198 QA SPED
198 0.013 453 PROG PROG PROG TEC PROG 0.02905 1049 TEC PAT
199 0.01298 1131 TEC DFF 0.02899 409 PROG PROG
200 0.01298 1063 PAT VAL TEC 0.02896 47 COM QA

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

224

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

C.3 Experiment to Search for Architectural Information in Stack
Overflow

C.3.1 Architecture Searching Tasks

In order to conduct an experiment to evaluate our proposed enhanced search approach as presented
in Chapter 8, practitioners solved tasks, which are attached in the following pages.

225

Goal of the Experiment
Compare two search engines to find relevant software architectural information on Stack-Overflow.
Both search engines are classical keyword search engines. During the experiment, you will not
know, which search engines are we comparing.

Experimental Procedure
Software architecture design tasks has a big scope, which involve functional and non-functional
requirements, as well as constraints. You will be asked to search for architectural information on
Stack Overflow to solve six different design tasks. For each task, you will use only one of two search
engines. During your searching, you should record the searching queries (keywords), and the list
of relevant Stack Overflow posts and their relevance to each task.

The relevance of each post (in the list of posts identified by the two search engines) to help
complete the task is defined on four levels:

• Highly Relevant (H): The post addresses a similar problem to the task and contains useful
information. The post provides an answer to the searching goal, and fulfills at least one
requirement of the task.

• Medium Relevant (M): The post addresses another problem not similar to the task at hand,
but it provides some relevant information to the task, which could be an answer to the
searching goal. Nevertheless, the provided information does not consider specifically the
task’s requirements.

• Low Relevance (L): The post contains relevant information, which is only remotely relevant
to solving the given task, but might help for refining the search.

• No Relevance (N): The post has nothing to do with the task. It has no relevant information.

When completing the tasks, you can follow several steps:

1) Read task: Read the task carefully to understand the requirements and the goals of the
search.

2) Log in to system: Log in to Decision Buddy using the assigned user name and password.
Please make sure that you are still logged when moving from one task to the next. The login
link, user name and password are written down in each task.

3) Access search engine: Open the search engine given for a task. Each task has a link to the
assigned search engine. Please be careful to choose the right search engine. Make sure not
to use the search engine from the previous task. You will use only 1 search engine per task.

4) Conduct search: Start searching for the relevant posts and information that could help
perform a given task. During the search:

• Try to find as many posts as possible relevant to the task. Submit at least four queries for
each task. For each query, assess only the top 10 posts, which are returned from the
search engine.

• During assessment, read the post carefully to make sure that it is relevant to the
problem, and do not assess the relevance just based on the title of a post. The relevance
assesses the relevance between the post and the task (not the query).

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

226

• Do not use any other sources of information (e.g. Google or Vendor websites) other than
the assigned search engine to solve the tasks.

• Solve the tasks in their provided sequence.

• Try to execute different queries to cover all the aspects of the task (e.g. different
requirements, technologies, constraints).

• Close the browser or the tab after each task to prevent using the wrong search engine
for the following tasks.

5) Record result: Record your results in the attached Excel file. Record the following for each
task:

• Column “Query String (Keywords used)”: record at least five queries used for each task, even
queries which didn’t return any relevant posts. (See snap-shot)

• Column “Post ID’s” of relevant Stack Overflow posts and their relevance level (High, Medium,
Low) in column “Post Relevance”. Assess only the top 10 posts per query. You do not need
to record posts which have no relevance to the task. Record relevant post only one time for
each task.

• Brief explanation of why the post is relevant to the task in column “Relevance Explanation”.
You could copy parts of the post as an explanation, or write brief explanations yourself.

• Answer the question in the Excel sheet regarding the complexity of the task.

6) Fill Survey: Complete this questionnaire: https://goo.gl/forms/UIfekXRKHh9lmyA02

Make sure to record your information at the right excel tab. Each task has an ID in its title, as well
as in the excel sheet.

Post	ID	

Post	ID	

Query	

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

227

Task ID: Big-Data-Stream-Evaluation

Design Scenario

An internet company provides popular content and online services to millions of web users.
Besides providing information to external users, the company collects and analyzes massive
logs of data that are generated from its infrastructure (e.g. server logs). The size of the log files is
in Tera-bytes. To cope with the fast infrastructure growth, the company decided to develop a
software application to manage the logs. A high level conceptual model has been designed,
which consists of a data stream, which sends its data to a batch layer and a real time view. The
data stream component dispatches data from multiple data sources in real-time. The architects of
the system are discussing the possible technology choices for implementing the data stream
component. Three technology families are identified as alternative architectural solutions:

1) Data collector technologies (e.g. Apache Flume, Fluentd)
2) Distributed message broker technologies (e.g. Apache Kafka, Amazon SQS, Active MQ)
3) ETL/Data Integration engines (e.g. Streamsets, Talend)

Non-functional requirements

• Performance: The system shall collect up to 15,000 events/second from web servers.
• Extensibility: The system shall support adding new data sources by just updating a

configuration file.
• Availability: The system shall continue operating with no downtime if any single node or

component fails.
• Deployability: The system deployment procedure shall be fully automated and support a

number of environments (development, test, production).

Constraints

The system shall be composed of primary open source technologies (for cost reasons).

Search goal

The architect would like to compare the three technology families regarding their suitability to the
described scenario, non-functional requirements and constraints.

Find posts, which could support the architect fulfilling his request.

To login, use this link:

http://swkvm01.informatik.uni-hamburg.de/DecisionBuddy_MAGeorg/login

user name: user07

password: user07

Use this link to access the search engine:

http://swkvm01.informatik.uni-hamburg.de/DecisionBuddy_MAGeorg/addsearch/b

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

228

Task ID: Physical-Design

Design Scenario

An IT service company builds business-to-business solutions, where heterogeneous software
systems located in different locations are integrated with each other. The solution architect is
working on a project, where several Customer Relationship Management (CRM) applications
communicate with other software systems, which include legacy systems used in call centers,
and banking systems (e.g. ATM). The CRM applications use both Microsoft and Oracle
technologies. The solution architect is currently designing the integration layer, which would
facilitate the communication between CRM apps and other software systems. The architect
decided on Apache Camel and RabbitMQ as possible integration technologies. The selection of
both technologies raises two architectural concerns:

1) Selecting a mechanism for message channeling, translation and routing.
2) Establishing a deployment topology (physical architecture).

Non-functional requirements

• Availability: ATM machines need high availability with no down time.
• Performance: The integration layer should be prepared to receive 10,000 request/sec from

the CRMs.

Constraints

The company has an official agreement with Oracle for Unix servers.

Search goal

The architect would like to search for possible information on technology features, and
components design which would help him address the aforementioned concerns.

Find posts, which could support the architect fulfilling his request.

To login, use this link:

http://swkvm01.informatik.uni-hamburg.de/DecisionBuddy_MAGeorg/login

user name: user07

password: user07

Use this link to access the search engine:

http://swkvm01.informatik.uni-hamburg.de/DecisionBuddy_MAGeorg/addsearch/b

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

229

Task ID: Conceptual-Design

Design Scenario

An online shop wants to modularize its Java web applications and expose selected components
and services via APIs to external partners (e.g., marketing firms, suppliers, price comparison
websites) over the internet. The lead architect of the microservices project that is in charge of this
Web API design effort tries to answer the following questions:

1) What is the right service decomposition?
2) How can loose coupling and high cohesion be achieved?
3) Should communication be synchronous or asynchronous?

The architect has already read some books and articles, which (s)he found interesting but
insufficient (e.g., too abstract to be actionable on the project). The architect is looking for
patterns, components design and design principles for service decomposition.

Non-functional requirements

• Data consistency.
• Versioning.
• Quality of service (API security, service level agreements, performance).

Constraints

Any conceptual component that is found and any patterns should be mature, e.g., implemented in
at least two different settings. Best practices, should be either applied in Java or Microsoft
technologies.

Search goal

The architect would like to search for possible architectural principles, patterns, and components
design which would help him answer the aforementioned questions.

Find posts, which could support the architect fulfilling his request.

To login, use this link:

http://swkvm01.informatik.uni-hamburg.de/DecisionBuddy_MAGeorg/login

user name: user07

password: user07

Use this link to access the search engine:

http://swkvm01.informatik.uni-hamburg.de/DecisionBuddy_MAGeorg/addsearch/b

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

230

Task ID: Middleware-Search
A stock monitoring dashboard software needs to be developed. The dashboard will be available
on the internet, and could be accessed by users through mobile devices. An important aspect of
the dashboard is the real-time change of stock values. Stock information is gathered from various
sources and then transformed to be presented on the dashboard. The architect is searching for
information about suitable middleware technologies, which could gather and transform the stock
information.

Non-functional requirements

• Performance: The stock information needs to be updated in real time.
• Scalability: The system needs to scale to more than 100,000 users.
• Security: The stock information need to be securely transferred from their sources to the

dashboard.

Constraints

Technologies need to be based on standard implementations with defined and published
specifications.

Search goal

The architect would like to search for suitable middleware technologies which would fulfil the
aforementioned requirements and constraints.

Find posts, which could support the architect fulfilling their request.

To login, use this link:

http://swkvm01.informatik.uni-hamburg.de/DecisionBuddy_MAGeorg/login

user name: user07

password: user07

Use this link to access the search engine:

http://swkvm01.informatik.uni-hamburg.de/DecisionBuddy_MAGeorg/addsearch/c

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

231

Task ID: JSON-Search

Design Scenario

A claim management system in an insurance company is currently being modernized; a cross-
platform iOS and Android mobile app has been introduced recently. This app needs to
communicate with the claim management system backend (which is a JEE application hosted on
an application server with IBM WebSphere) via RESTful HTTP; JSON has been decided as
message exchange format. The integration architect, who is responsible for the claim
management system backend and its RESTful HTTP interface now looks for JSON parsing
libraries that come with the JEE application server (WebSphere), but also additional libraries,
which could be independent from the webserver used.

Non-functional requirements

As many claims are filed and processed via this interface, the performance of
unmarshalling (e.g., conversion from JSON to Java classes) is an important architecturally
significant requirement on the server side.

Constraints

Not all open source licenses can be used: Apache 2 and Eclipse have been approved for use,
GPL has been banned, all others require approval from higher-level management.

Search goal

The architect would like to search for possible JSON parsers for Java, which would satisfy the
requirements and constraints.

Find posts, which could support the architect fulfilling his request.

To login, use this link:

http://swkvm01.informatik.uni-hamburg.de/DecisionBuddy_MAGeorg/login

user name: user07

password: user07

Use this link to access the search engine:

http://swkvm01.informatik.uni-hamburg.de/DecisionBuddy_MAGeorg/addsearch/c

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

232

Task ID: Messaging-Evaluation

Design Scenario

A help desk system is to be produced; it dispatches incoming chat messages to human agents.
To save costs, a chat bot is currently being designed to replace some of these agents without
compromising user satisfaction. It has been decided to implement an update notification
mechanism in the scenario. The chat bot implementation has to be integrated with a Natural
Language Processing (NLP) system and an Architectural Knowledge Base (AKB). Asynchronous
messaging has been selected as implementation pattern for the integration channel. A publish-
subscribe channel should be realized; this channel should be supervised and managed by using
one or more systems management patterns. Three messaging technologies have been identified
as candidates: 1) RabbitMQ, 2) Apache Kafka, and 3) ActiveMQ

Non-functional requirements

Guaranteed delivery of messages, high throughput and low latency are three important quality
attributes. Using standard protocols and formats are required to ensure portability and
interoperability.

Constraints

To avoid vendor lock-in, the chosen technology should be implemented and supported by at least
three vendors. The learning curve of the technology should be in the hours-to-days range, not in
the weeks-to-months range or even higher. Preferably, Java should be supported, but Python,
PHP and Scala would also be acceptable.

Search goal

The architect would like to compare the three technologies regarding their suitability to the
described scenario, non-functional requirements and constraints.

Find posts, which could support the architect fulfilling his request.

To login, use this link:

http://swkvm01.informatik.uni-hamburg.de/DecisionBuddy_MAGeorg/login

user name: user07

password: user07

Use this link to access the search engine:

http://swkvm01.informatik.uni-hamburg.de/DecisionBuddy_MAGeorg/addsearch/d

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

233

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

C.3.2 Queries to Search for Architecture Information

Searching queries for architectural information is one of our results for our experiments in Chapter
8. The queries are written by practitioners during our experiments when using search engines to
find architectural information. In the following pages, we provide a list of queries for each of the
design activities and design tasks.

234

1)	Queries	for	Identify	Architectural	Solutions	Design	Phase

JSON-Search	Task

JEE	json	parser
websphere	json	parser
websphere	json	library
Java	json	library
Java	json	reader
JSON	java	parsers	
Apache	2	JSON	parsers
Eclipse	JSON	parsers
JSON	java	parsers	performance
JSON	parsers	for	Java
Java	REST	library
Java	REST	framework
spring	REST	framework
java	API		management	framework
java	json	fastest	unmarsheling
java	to	json
RESTful	json
non	gpl	json	convert	java
JSON	Parser	JEE	open	source
JSON	unmarshall	java	REST
JSON	java	class	REST	apache	eclipse
RESTful	JEE	application	server	JSON	parsing
Websphere	jee	json	parsing
json	parsing	java
Apache	2	json	parser
Eclipse	license	json	parser
java	jackson	licence
JSON	parsing	websphere
JSON		websphere
javascript		websphere
JSON	parser	
JSON	parser	jee
Jersey	unmarshall
JSON	pojo	performance
json	parsing	jee	websphere	crossplatform	
json	parsing	library	jee	websphere	ios	android	performance
restful	service	json	parser	java	performance
restful	service	json	parser	java	licence	eclipse	apache	2
json	parser	java	licence
json	parser	java	websphere
json	parser	java	websphere	restful

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

235

open	source	licenses
json	parser	open	source
json	parser	android
json	parser	java	comparison
json	java	marshalling
json	parser	performance
performance	unmarshal
JSON	JEE	conversion
JSON	parser
JSON	parser	Java
RESTful	HTTP	JSON	to	Java	object
high	performance
jave
apache	2	license
Apache	JSON	parsers	for	Java
Jason		Java	Parser
Jason	Parser
fast	unmarshalling	java
json	performance	
High	performance	json	libs	java
performance	unmarshaling	flexjson
Jersey	vs	flexjson

Middleware-Search	Task

Real	time	middleware	framework	
Message	queue	framework	benchmark
large	scale	realtime	dashboard
large	scale	data	transport	layer
Middleware	technologies	for	transferring	data
High	performance	Middleware	technologies	for	transferring	data
Middleware	technologies	Scalability
Middleware	technologies	security
middleware	service	design
middleware	real-time	solution
scalable	middleware	real-time	solution
secure	design	for	realtime	middleware	solution
data	crawling
transform	data	multi	source
middleware	scalability
middleware	comparison
performance	middleware
open	source	middleware	low	latency	
scalable	middleware	100000	users
middleware	security	financial

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

236

middleware	data	processing	realtime
Stock	market	real	time	retrieval
end	to	end	encrypting	api	calls
dashboard	high	performance
scalable	ui	design
middleware	stock	analysis	provider
middleware	real-time	
middleware	stock	exchange
middleware	stock	market
mqtt	performance
rabbitmq	mobile
amqp	mobile
rabbitmq	Scalability
real	time	update	middleware	scalable
real	time	update	middleware	security	secure
middleware	security	secure
middleware	security	secure	messaging
middleware	redis	realtime	update
middleware	zeromq	realtime	update	secure	scalable
real	time	application
security	sending	data
real	time	scalability
real	time	performance
Dashboard
middleware	monitoring
middleware	security
middleware	performance
middleware	dashboard
data	integration	transformation	
real	time
scalable	
secure
middleware
large	scale	real	time	middleware
enterprise	realtime	messaging	
enterprise	realtime	dashboard	system	
large	scale	realtime	dashboard	system	
real-time	middleware	dashboard
real-time	stock	dashboard
stock	middleware
ZeroMQ	performamce
scalable	stock	middleware
ZeroMQ	performance

2)	Queries	for	Select	Architectural	Solutions	Design	Phase

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

237

Messaging-Evaluation	Task

Latency	and	reliability	of	RabbitMQ
Latency	and	reliability	of	Apache	Kafka
Latency	and	reliability	of	ActiveMQ
RabitMQ	vs	ActiceMQ
RabitMQ	Java	Integration
Java	message	queue	technologies
RabbitMQ	throughput
Apache	Kafka	throughput
ActiveMQ	throughput
Ensure	guaranteed	delivery	of	messages	using	RabbitMQ
RabbitMQ	vs	Apache	Kafka	vs	ActiveMQ
publish	subscribe	reliable	messaging	system
reliable	messaging	system
reliable	high	performance	messaging	system
realtime	messaging	system
RabbitMQ	vs	ActiveMQ	throughput
Apache	Kafka	performance
java	python	jms
scala	activemq
RabbitMQ	vs	Kafka	vs	ActiveMQ
KAFKA	supported	libraries
using	RABBITMQ	with	java
ACTIVEMQ	supported	languages
ActiveMQ	vs	kafka	vs	RabbitMQ
Kafka	maintainability
Kafka	vs	amazon	kinesis
does	ActiveQ	support	python
RabbitMQ	latency
RabbitMQ	Apache	Kafka	ActiveMQ	comparison
kafka	publish	subscribe
Guaranteed	delivery	message
activemq	vendor	support
rabbitmq	vendor	support
rabbitmq	vendor
rabbitmq	kafka	activemq
rabbitmq	kafka	activemq	delivery	messages	high	throughput	low	latency
chat	application	publish	subscribe	asynchronous	
chat	application	publish	subscribe	asynchronous	java	portability	interoperability	
chat	application	publish	subscribe	asynchronous	java	activemq	kafka	rabbitmq		high	throughput
activemq	kafka	rabbitmq	vendor
messaging	brokers
messaging	brokers	java

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

238

messaging	brokers	python
low	latency	messaging	
RabbitMQ	versus	ActiveMQ
Kafka	versus	ActiveMQ
Kafka	versus	RabbitMQ
best	messaging	technology
RabbitMQ	vs	Apache	Kafka	vs		ActiveMQ	
Guaranteed	delivery
	high	throughput
low	latency
RabbitMQ	on	apatche
RabbitMQ	Apache	Kafka	ActiveMQ
	high	throughput	and	low	latency	messaging	
easy	to	learn	messaging	high	throughput	and	low	latency
RabbitMQ	vs.	Apache	Kafka	vs.	ActiveMQ
RabbitMQ	using	Java	PHP	Python
Apache	Kafka
ActiveMQ
ActiveMQ	JAVA
RabbitMQ	JAVA
messaging	RabbitMQ
Compare		RabbitMQ	,	Apache	Kafka	,	ActiveMQ
RabbitMQ	,	Apache	Kafka	,	ActiveMQ	vendors
RabbitMQ	vendors
RabbitMQ	activemq	kafka
kafka	support
message	support	many	vendors
kafka
learning	kafka

Big-Data-Stream-Evaluation	Task

Data	Collector	vs	Message	Queue	brokers	
collecting	high	amount	of	log	events
performance	benchmark	of	FluentID	
performance	benchmark	of	Apache	Flume
performance	benchmark	of	Streamsets
Data	collector	technologies	vs	Distributed	message	broker	technologies	
Apache	Flume	VS	Apache	Kafka	from	performance	point	of	view
Apache	Flume	VS	Apache	Flume	from	Availability	point	of	view	
Apache	Flume	VS	Apache	Flume	from	deployability	point	of	view	
data	streaming	tools
data	collector	streaming	tools
distributed	message	broker	streaming	tools
data	streaming	ETL	Data	Integration	engines

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

239

high	availability	data	streaming	solution	
kafka	vs	flume
kafka	vs	streamsets
Apache	data	streaming	solutions
ETL	analyze	big	logs
best	data	collector	framework
	Apache	Flume	vs	Fluentd
Talend	best	practices
Open	source	ETL	engine
Tera	logs	byte	analytics
analyze	application	log
flume	Fluentd	performance
flume	Fluentd
Apache	Kafka,	Amazon	SQS,	Active	MQ	
Streamsets	Talend
high	end	open	source	kafka	flume	sqs	talend
Amazon	SQS	vs	Fluentd
Amazon	SQS	pricing
Streamsets	vs	talend
Apache	Flume
Flume	performance
kakfa	performance
data	collector
kafka	talend
talend	message	broker
streamsets	message	broker
log	data	stream
message	broker	etl
big	data	massive	log	data	multiple	data	sources	data	streams
big	data	massive	log	data	multiple	data	sources	data	streams	apache	flume
big	data	log	data	analysis	multiple	data	sources	data	extensible	performance	availability	deployability
apache	flume	fluentd
data	integration	engine	for	big	data
distributed	message	broker	for	big	data
apache	flume	vs	apache	kafka	vs	streamsets
big	data	stream	logging	analysis	best	technology		server	logs
availability	Flume
scalability	messaging	broker
ETL
scalability	flume
stream	big	data	technologies
data	collector	versus	distributed	message	broker	versus	ETL	data	integration
flume	kafka	streamsets
flume	kafka	streamsets	big	data
streaming	big	data

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

240

open	source	engines
real-time	
extensible
	high-performance	
Data	collector	
	Distributed	message	broker	
ETL	Data	Integration	
open	source	data	collector	high	scale
open	source	data	collector	high	performance
open	source	data	collector	products
high	availability	salable	automation	deploy	open	source	data	collector	products
Apache	Flume	vs.	Apache	Kafka	vs.	Talend
Fluentd	vs.	Amazon	SQS	vs.	Streamsets
Fluentd	vs.	Amazon	SQS	vs.	Streamsets	deployment
Fluentd	performance
Kafka	performance
Deploying	Kafka
Amazon	SQS	performance
Big	data	stream
Distributed	message	broker
Data	Integration	engines
Streamsets	and	Talend
Apache	Flume	vs	Amazon	SQS	Streamsets

3)	Queries	for	Instantiate	Architectural	Elements	Design	Phase

Physical-Design	Task

RabbitMq	.NET	integration
Apache	Camel	.NEt	integration
Apache	Camel	vs	RabbitMQ	integration	performance
Apache	Camel	performance	benchemark
RabbitMQ	unix	scalability
	Apache	Camel	performance	for	unix	servers
RabbitMQ	performance	for	unix	servers
	Apache	Camel	and	oracle	for	unix	servers
	RabbitMQ	and	oracle	for	unix	servers
Apache	Camel	vs	RabbitMQ
RabbitMQ	physical	architecture	
Architecture	guidance	for	a	Rabbitmq	and	Apache	camel		
Architecture	guidance	for	a	Rabbitmq
Architecture	guidance	for	apache	camel
high	availability	messaging	engines		
rabbitmq
RabbitMQ	High	Availablility

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

241

Apache	Camel	Microsoft
Apache	Camel	Unix
Apache	Camel	Rest	SOAP
ActiveMQ	with	.NET
apache	camel	deployment	unix	sun
rabbitMQ	clustering	high	availability
high	performance	deployment	of	messaging	broker	camel	rabbitMq
message	channeling,	translation	and	routing	
Highly	available	integration	technologies
Apache	camel	performance
Biztalk	vs	camel
apache	camel	deployment
camel	messaging	channel
rabbitmq	message	channel
rabbitmq	performance
rabbitmq	oracle
rabbitmq	deployment
rabbit	mq	deployment
apache	camel	translations
apache	camel	rabbitmq
integration	layer	communication	heterogeneous	software	systems	apache	camel	rabbitmq	message	channeling	translation	routing
integrating	legacy	systems	apache	camel	message	channel
apache	camel	vs	rabbitmq	integration	legacy	availability
apache	camel	vs	rabbitmq	integration	legacy	availability	features	components
apache	camel	vs	rabbitmq	constraint	oracle	unix
Camel	availability
camel	performance
camel	rabbitMQ
Camel	Fault	tolerance
camel	activeMQ
deployment	topology	apache	camel	rabbitMQ
message	channel	rabbitMQ
message	channel	apache	camel
routing	apache	camel	rabbitMQ
apache	camel	versus	rabbitMQ
	performance
	availability
	linux	support
	Apache	Camel	and	RabbitMQ	availablity
	Apache	Camel	and	RabbitMQ	and	availability	and	performance
best	integration	technology	availability	and	performance
oracle	unix	best	integration	technology	availability	and	performance
CRM	Integration	technology
CRM	and	RabbitMQ
CRM	integration	requirement	

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

242

CRM	integration	and	deployment	topology
deployment	topology
message	channeling	rabbitmq
physical	architecture
RabbitMQ	Camel

Conceptual-Design	Task

services	decomposition	patterns
web	apis		design	pattern
web	apis	versioning	
extensible	web	service	pattern
architectural	principles	for	micro	services	
architectural	patterns	for	micro	services	
loose-coupling	and	high	cohesion	for	micro	services
	synchronous	vs	asynchronous	calls	for	micro	services
microservices	decomposition	best	practice
microservices	design	best	practice
micro-services	architecture
micro	services	framework
micro-services	framework
micro-services	framework	webapi
REST	API	best	practice	
API	security
micro-services	communication	patterns
microservices	security	practices
microservices	communication	layer
microservices	sync	async
Microservices	design	pattern
Micro	services	design
Design	Patterns	service	decomposition
loose	coupling	and	high	cohesion	
synchronous	vs	asynchronous	micro	service
API	design	performance	security
java	microservice	decomposition
microservice	architecture	patterns
database	service	concurency
api	authentication	java
spring	cor	service
service	decomposition
modularization	pattern
microservice	pattern
decompose	pattern
loose	coupling		high	cohesion
loose	coupling		micro	service

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

243

messaging		micro	service
	micro	service	architecture
component	design
architecture	rest	service
decomposition
service	cutting
pattern	service	decomposition
pattern	service	decomposition	web	api	microservice	design	loose	coupling
service	api	high	cohesion	modules
SOA	API	design	patterns
SOA	patterns	service	security
architecture	coupling
Asynchronous	vs	synchronous
Asynchronous	advantages
expose	components
SOA	java
pattern	decomposition	microservices
good	API	design
webservice	API	design
web	API	design	asynchronous	communication
data	consistency	web	api	microservice
	micro-services
	design	patterns	principles		
	patterns	and	components	design
	design	patterns	architecture
microservice	architecture
architecture	design	patterns
web	api	versioning
data	consistency	synchronous	asynchronous
microservices	ensure	data	consistency
microservices	versioning
microservices	security
microservices	component	communication
SOA	Design	Pattern
loose	coupling	in	service	decomposition
service	decomposition	performance	and	security
Ecommerce	microservice
microservice	design
synchronous	vs	asynchronous	service	communication	
decomposing	services	and	data	conssistency	

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

244

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

C.3.3 Relevant Posts for Searching Tasks

Relevant posts to architecture design tasks is one of our results for the experiments in Chapter
8. In the next following pages, we list the posts identified by each practitioner for being relevant
to the tasks. Each Stack Overflow post is identified by an ID. You may access the full post by
concatenating the URL stackoverflow.com/questions/ with the post ID. Moreover, the
relevance of each post to the design tasks is specified by each practitioner as defined in Chapter 8.

245

stackoverflow.com/questions/

Practitioner Task Post	ID Post	Relevance
1 Middleware-Search 1112279 3
1 Middleware-Search 2388539 2
1 Middleware-Search 1919472 3
1 JSON-Search 13993862 3
1 JSON-Search 2253750 1
1 JSON-Search 3471013 1
1 Messaging-Evaluation 2124221 3
1 Messaging-Evaluation 6939110 3
1 Messaging-Evaluation 1919472 2
1 Messaging-Evaluation 27666943 2
1 Messaging-Evaluation 12559570 3
1 Messaging-Evaluation 6664445 2
1 Messaging-Evaluation 7044157 3
1 Messaging-Evaluation 2705043 1
1 Messaging-Evaluation 2166590 3
1 Big-Data-Stream-Evaluation 2166590 2
1 Big-Data-Stream-Evaluation 1840684 3
1 Big-Data-Stream-Evaluation 7921324 3
1 Big-Data-Stream-Evaluation 2124221 3
1 Big-Data-Stream-Evaluation 7382655 1
1 Big-Data-Stream-Evaluation 17708489 3
1 Big-Data-Stream-Evaluation 296650 2
1 Big-Data-Stream-Evaluation 12559570 3
1 Big-Data-Stream-Evaluation 3202521 2
1 Physical-Design 2225761 3
1 Physical-Design 10407760 3
1 Physical-Design 10030227 3
1 Physical-Design 4971437 3
1 Conceptual-Design 9587393 2
1 Conceptual-Design 1670332 2
1 Conceptual-Design 445093 3
1 Conceptual-Design 11386370 3
1 Conceptual-Design 39585 3
1 Conceptual-Design 409338 3
1 Conceptual-Design 36999 3
1 Conceptual-Design 9672334 3
1 Conceptual-Design 10592078 3
1 Conceptual-Design 18936264 3
1 Conceptual-Design 8885514 3
1 Conceptual-Design 8703854 3
1 Conceptual-Design 447518 3
1 Conceptual-Design 3051326 3
2 Middleware-Search 2388539 3
2 Middleware-Search 8848058 3

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

246

2 Middleware-Search 6664445 3
2 Middleware-Search 21808529 3
2 Middleware-Search 296650 3
2 Middleware-Search 11840630 3
2 Middleware-Search 9296466 3
2 Middleware-Search 6939110 3
2 Middleware-Search 43823 3
2 Middleware-Search 567478 2
2 Middleware-Search 2748115 1
2 Middleware-Search 1920959 3
2 Middleware-Search 1558207 3
2 JSON-Search 3471013 1
2 JSON-Search 57689 2
2 JSON-Search 803515 2
2 JSON-Search 2782076 2
2 JSON-Search 7433720 1
2 JSON-Search 1237649 2
2 JSON-Search 4163066 2
2 JSON-Search 5145129 2
2 JSON-Search 6939110 1
2 Messaging-Evaluation 10030227 3
2 Messaging-Evaluation 9685235 2
2 Messaging-Evaluation 15150017 3
2 Messaging-Evaluation 9569851 3
2 Messaging-Evaluation 6939110 3
2 Messaging-Evaluation 10407760 3
2 Messaging-Evaluation 2124221 3
2 Messaging-Evaluation 18531072 3
2 Messaging-Evaluation 12687368 2
2 Messaging-Evaluation 21808529 1
2 Messaging-Evaluation 20520492 2
2 Messaging-Evaluation 16449126 1
2 Messaging-Evaluation 12130481 3
2 Messaging-Evaluation 27666943 2
2 Messaging-Evaluation 6664445 2
2 Messaging-Evaluation 2225761 3
2 Messaging-Evaluation 22977299 2
2 Messaging-Evaluation 731233 1
2 Messaging-Evaluation 14401632 3
2 Messaging-Evaluation 2279417 1
2 Messaging-Evaluation 21363302 2
2 Messaging-Evaluation 11926077 3
2 Messaging-Evaluation 3760100 3
2 Big-Data-Stream-Evaluation 3963362 2
2 Big-Data-Stream-Evaluation 773503 2

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

247

2 Big-Data-Stream-Evaluation 21808529 3
2 Big-Data-Stream-Evaluation 13483809 1
2 Big-Data-Stream-Evaluation 240471 2
2 Big-Data-Stream-Evaluation 12634965 3
2 Big-Data-Stream-Evaluation 12559570 3
2 Big-Data-Stream-Evaluation 10445621 1
2 Big-Data-Stream-Evaluation 27666943 3
2 Big-Data-Stream-Evaluation 6930236 2
2 Big-Data-Stream-Evaluation 3792519 2
2 Big-Data-Stream-Evaluation 10330998 1
2 Big-Data-Stream-Evaluation 11139400 3
2 Physical-Design 9723682 1
2 Physical-Design 3792519 1
2 Physical-Design 8845186 1
2 Physical-Design 6939110 2
2 Physical-Design 7921324 2
2 Physical-Design 10407760 2
2 Physical-Design 2124221 2
2 Physical-Design 10030227 2
2 Conceptual-Design 2897513 2
2 Conceptual-Design 2567254 1
2 Conceptual-Design 4481311 1
2 Conceptual-Design 2592609 2
2 Conceptual-Design 2681318 1
2 Conceptual-Design 2508361 1
2 Conceptual-Design 945123 1
2 Conceptual-Design 20773875 2
2 Conceptual-Design 17401679 3
2 Conceptual-Design 447518 1
2 Conceptual-Design 10641999 1
2 Conceptual-Design 2503071 3
2 Conceptual-Design 255499 2
2 Conceptual-Design 11755146 2
2 Conceptual-Design 514306 1
3 Middleware-Search 2388539 2
3 Middleware-Search 1112279 2
3 Middleware-Search 9735578 2
3 Middleware-Search 2936598 3
3 Middleware-Search 24176969 1
3 Middleware-Search 8845186 2
3 JSON-Search 5015479 3
3 JSON-Search 3471013 3
3 JSON-Search 57689 2
3 JSON-Search 19758215 3
3 JSON-Search 4003102 2

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

248

3 Messaging-Evaluation 27666943 2
3 Messaging-Evaluation 32851 2
3 Messaging-Evaluation 2669573 2
3 Messaging-Evaluation 2124221 3
3 Messaging-Evaluation 4559883 1
3 Messaging-Evaluation 14241947 2
3 Big-Data-Stream-Evaluation 20501430 1
3 Big-Data-Stream-Evaluation 27666943 3
3 Big-Data-Stream-Evaluation 21808529 2
3 Big-Data-Stream-Evaluation 12130481 2
3 Physical-Design 3792519 1
3 Physical-Design 7877461 1
3 Physical-Design 4406656 1
3 Physical-Design 2124221 3
3 Physical-Design 10745084 2
3 Conceptual-Design 10173933 1
3 Conceptual-Design 10592078 1
3 Conceptual-Design 24981806 1
4 Middleware-Search 1112279 1
4 Middleware-Search 2388539 2
4 Middleware-Search 13483809 2
4 Middleware-Search 10334306 3
4 Middleware-Search 10055290 3
4 Middleware-Search 17806977 2
4 JSON-Search 3471013 3
4 JSON-Search 2253750 1
4 JSON-Search 9314735 2
4 JSON-Search 13594945 1
4 JSON-Search 9292424 2
4 JSON-Search 15609306 1
4 JSON-Search 17049684 2
4 Messaging-Evaluation 731233 3
4 Messaging-Evaluation 21808529 3
4 Messaging-Evaluation 12130481 3
4 Messaging-Evaluation 21293937 3
4 Messaging-Evaluation 20520492 3
4 Messaging-Evaluation 24863598 3
4 Messaging-Evaluation 6551718 3
4 Messaging-Evaluation 6551718 3
4 Messaging-Evaluation 7044157 1
4 Big-Data-Stream-Evaluation 2388539 1
4 Big-Data-Stream-Evaluation 12559570 2
4 Big-Data-Stream-Evaluation 27666943 1
4 Big-Data-Stream-Evaluation 26623673 2
4 Physical-Design 6577218 3

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

249

4 Physical-Design 3413424 3
4 Physical-Design 10030227 2
4 Physical-Design 3758576 1
4 Physical-Design 10407760 2
4 Physical-Design 2225761 2
4 Physical-Design 1839576 1
4 Physical-Design 587899 1
4 Conceptual-Design 162376 2
4 Conceptual-Design 15054777 1
4 Conceptual-Design 11755146 1
4 Conceptual-Design 2567254 3
5 Middleware-Search 2363157 2
5 Middleware-Search 6233364 2
5 Middleware-Search 11158543 1
5 Middleware-Search 1919472 2
5 Middleware-Search 1112279 3
5 Middleware-Search 61437 3
5 Middleware-Search 5757886 3
5 Middleware-Search 1621532 1
5 Middleware-Search 9285953 2
5 Middleware-Search 8848058 2
5 Middleware-Search 12966460 1
5 Middleware-Search 4270883 2
5 Middleware-Search 13483809 3
5 Middleware-Search 7919763 1
5 Middleware-Search 21808529 3
5 Middleware-Search 2388539 2
5 Middleware-Search 25550819 1
5 Middleware-Search 10055290 2
5 Middleware-Search 9043802 1
5 JSON-Search 13993862 1
5 JSON-Search 21367158 2
5 JSON-Search 5820028 2
5 JSON-Search 5015479 1
5 JSON-Search 13953325 2
5 JSON-Search 11465653 2
5 JSON-Search 10323957 2
5 JSON-Search 12048804 2
5 JSON-Search 8805802 2
5 JSON-Search 15565862 2
5 JSON-Search 13594945 1
5 Messaging-Evaluation 27666943 3
5 Messaging-Evaluation 7044157 3
5 Messaging-Evaluation 12559570 3
5 Messaging-Evaluation 6664445 2

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

250

5 Messaging-Evaluation 12130481 2
5 Messaging-Evaluation 32851 2
5 Messaging-Evaluation 6636213 2
5 Messaging-Evaluation 17708489 2
5 Messaging-Evaluation 507391 2
5 Messaging-Evaluation 8261654 1
5 Messaging-Evaluation 3034054 2
5 Messaging-Evaluation 6939110 3
5 Messaging-Evaluation 15150133 1
5 Messaging-Evaluation 7382655 1
5 Messaging-Evaluation 3280576 1
5 Messaging-Evaluation 2124221 2
5 Messaging-Evaluation 5132648 1
5 Messaging-Evaluation 22989833 2
5 Messaging-Evaluation 21098502 2
5 Messaging-Evaluation 12805377 1
5 Messaging-Evaluation 2705043 1
5 Messaging-Evaluation 4559883 2
5 Messaging-Evaluation 9060402 1
5 Big-Data-Stream-Evaluation 12559570 3
5 Big-Data-Stream-Evaluation 1809296 1
5 Big-Data-Stream-Evaluation 13681213 2
5 Big-Data-Stream-Evaluation 26623673 2
5 Big-Data-Stream-Evaluation 27666943 3
5 Big-Data-Stream-Evaluation 12130481 2
5 Big-Data-Stream-Evaluation 10593739 1
5 Big-Data-Stream-Evaluation 17708489 2
5 Big-Data-Stream-Evaluation 507391 2
5 Big-Data-Stream-Evaluation 3151966 1
5 Big-Data-Stream-Evaluation 7448677 2
5 Big-Data-Stream-Evaluation 2429844 2
5 Big-Data-Stream-Evaluation 8182543 2
5 Big-Data-Stream-Evaluation 4604823 2
5 Big-Data-Stream-Evaluation 11685569 2
5 Big-Data-Stream-Evaluation 5194446 2
5 Big-Data-Stream-Evaluation 2124221 1
5 Physical-Design 6061813 1
5 Physical-Design 2225761 3
5 Physical-Design 3413424 3
5 Physical-Design 10030227 3
5 Physical-Design 4971437 2
5 Physical-Design 11248510 2
5 Physical-Design 10407760 2
5 Physical-Design 6169658 1
5 Physical-Design 21098502 2

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

251

5 Physical-Design 10745084 1
5 Physical-Design 18531072 1
5 Physical-Design 3465675 1
5 Physical-Design 8261654 1
5 Physical-Design 3758576 1
5 Physical-Design 12147614 3
5 Conceptual-Design 10641999 1
5 Conceptual-Design 4368482 1
5 Conceptual-Design 8580002 1
5 Conceptual-Design 2503071 3
5 Conceptual-Design 13879379 2
5 Conceptual-Design 309374 2
5 Conceptual-Design 753273 2
5 Conceptual-Design 20501430 1
5 Conceptual-Design 22638828 3
5 Conceptual-Design 8065019 2
5 Conceptual-Design 9623482 3
5 Conceptual-Design 6147288 1
5 Conceptual-Design 2554999 2
5 Conceptual-Design 5979252 2
5 Conceptual-Design 1890679 2
5 Conceptual-Design 580514 1
5 Conceptual-Design 5145129 2
5 Conceptual-Design 4163066 1
5 Conceptual-Design 24981806 2
5 Conceptual-Design 5824171 1
5 Conceptual-Design 10172506 2
5 Conceptual-Design 11386370 2
6 Middleware-Search 417453 3
6 Middleware-Search 2912051 2
6 Middleware-Search 3164821 3
6 Middleware-Search 12099446 2
6 Middleware-Search 2936598 2
6 Middleware-Search 3198781 3
6 Middleware-Search 11378046 3
6 Middleware-Search 11840630 2
6 Middleware-Search 296650 3
6 Middleware-Search 4163066 2
6 Middleware-Search 13592894 3
6 Middleware-Search 1670332 3
6 Middleware-Search 2936598 3
6 Middleware-Search 4801545 2
6 Middleware-Search 4648280 3
6 Middleware-Search 23280761 2
6 Middleware-Search 11829551 2

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

252

6 Middleware-Search 2630492 2
6 JSON-Search 5015479 2
6 JSON-Search 3471013 3
6 JSON-Search 6518401 2
6 JSON-Search 57689 3
6 JSON-Search 3213398 2
6 Messaging-Evaluation 27666943 3
6 Messaging-Evaluation 731233 3
6 Messaging-Evaluation 7044157 3
6 Messaging-Evaluation 12559570 3
6 Messaging-Evaluation 6664445 2
6 Messaging-Evaluation 21808529 2
6 Messaging-Evaluation 20520492 2
6 Messaging-Evaluation 26623673 2
6 Messaging-Evaluation 3280676 2
6 Messaging-Evaluation 6551718 3
6 Messaging-Evaluation 10030227 3
6 Messaging-Evaluation 27830955 2
6 Messaging-Evaluation 6362829 3
6 Messaging-Evaluation 2124221 3
6 Messaging-Evaluation 9569851 3
6 Messaging-Evaluation 20520492 2
6 Messaging-Evaluation 6481760 3
6 Messaging-Evaluation 6939110 3
6 Big-Data-Stream-Evaluation 12559570 3
6 Big-Data-Stream-Evaluation 27666943 2
6 Big-Data-Stream-Evaluation 21808529 3
6 Big-Data-Stream-Evaluation 18202986 3
6 Big-Data-Stream-Evaluation 2336438 2
6 Big-Data-Stream-Evaluation 8182543 2
6 Big-Data-Stream-Evaluation 7448677 2
6 Big-Data-Stream-Evaluation 2429844 3
6 Physical-Design 292860 3
6 Physical-Design 3034054 3
6 Physical-Design 376127 2
6 Physical-Design 12008 3
6 Physical-Design 15204051 3
6 Physical-Design 8845186 3
6 Physical-Design 3921436 3
6 Physical-Design 10330998 2
6 Physical-Design 3792519 2
6 Physical-Design 4098813 2
6 Physical-Design 9723682 2
6 Physical-Design 378088 2
6 Physical-Design 12471698 2

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

253

6 Physical-Design 3355082 2
6 Physical-Design 5660541 2
6 Physical-Design 10330998 2
6 Conceptual-Design 514306 2
6 Conceptual-Design 2392650 2
6 Conceptual-Design 10055290 3
6 Conceptual-Design 1365357 3
6 Conceptual-Design 722675 3
6 Conceptual-Design 3836900 3
6 Conceptual-Design 5044585 2
6 Conceptual-Design 2613348 2
6 Conceptual-Design 969964 2
6 Conceptual-Design 226953 2
6 Conceptual-Design 2116799 2
6 Conceptual-Design 8148702 3
6 Conceptual-Design 773503 2
6 Conceptual-Design 162376 2
6 Conceptual-Design 1296460 3
6 Conceptual-Design 2737685 2
6 Conceptual-Design 6302341 2
6 Conceptual-Design 30156407 2
6 Conceptual-Design 10055290 2
6 Conceptual-Design 268129 2
6 Conceptual-Design 8926506 2
6 Conceptual-Design 19560479 2
6 Conceptual-Design 4906369 2
6 Conceptual-Design 331419 2
6 Conceptual-Design 5349428 2
7 Middleware-Search 1112279 1
7 Middleware-Search 2912051 1
7 Middleware-Search 24176969 3
7 Middleware-Search 417453 1
7 Middleware-Search 5132648 2
7 Middleware-Search 7129821 1
7 Middleware-Search 10057189 2
7 Middleware-Search 12147614 3
7 Middleware-Search 22989833 2
7 JSON-Search 57689 2
7 JSON-Search 24684958 3
7 JSON-Search 30156407 2
7 Messaging-Evaluation 27666943 2
7 Messaging-Evaluation 7044157 2
7 Messaging-Evaluation 12559570 2
7 Messaging-Evaluation 8261654 3
7 Messaging-Evaluation 3015178 3

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

254

7 Messaging-Evaluation 12130481 1
7 Messaging-Evaluation 12805377 2
7 Big-Data-Stream-Evaluation 12559570 2
7 Big-Data-Stream-Evaluation 21808529 2
7 Physical-Design 14195898 1
7 Physical-Design 10953237 2
7 Physical-Design 5681118 2
7 Physical-Design 22989833 2
7 Physical-Design 5950322 1
7 Physical-Design 8548983 1
7 Conceptual-Design 447518 1
7 Conceptual-Design 2503071 3
8 Middleware-Search 2912051 3
8 Middleware-Search 2388539 1
8 Middleware-Search 12733985 3
8 Middleware-Search 16532449 2
8 Middleware-Search 7506118 3
8 Middleware-Search 5391435 3
8 JSON-Search 13295412 1
8 JSON-Search 17105322 2
8 JSON-Search 8805802 1
8 JSON-Search 9389842 1
8 JSON-Search 13594945 2
8 JSON-Search 57689 2
8 JSON-Search 3471013 2
8 Messaging-Evaluation 27666943 2
8 Messaging-Evaluation 731233 2
8 Messaging-Evaluation 20520492 2
8 Messaging-Evaluation 2124221 2
8 Messaging-Evaluation 1919472 2
8 Messaging-Evaluation 7044157 2
8 Big-Data-Stream-Evaluation 1671302 1
8 Big-Data-Stream-Evaluation 13483809 2
8 Big-Data-Stream-Evaluation 21808529 1
8 Big-Data-Stream-Evaluation 12559570 1
8 Big-Data-Stream-Evaluation 1809296 2
8 Physical-Design 10407760 1
8 Physical-Design 6061813 3
8 Physical-Design 10030227 2
8 Conceptual-Design 2503071 3
8 Conceptual-Design 39585 2
8 Conceptual-Design 447518 3
8 Conceptual-Design 1296460 3
9 Middleware-Search 24176969 1
9 Middleware-Search 4823191 1

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

255

9 Middleware-Search 7193014 3
9 Middleware-Search 2936598 2
9 Middleware-Search 3164821 2
9 Middleware-Search 12733985 3
9 Middleware-Search 11021554 2
9 Middleware-Search 6169658 3
9 Middleware-Search 12966460 3
9 Middleware-Search 2912051 3
9 Middleware-Search 3357457 3
9 JSON-Search 57665 1
9 JSON-Search 1763099 1
9 JSON-Search 1237649 1
9 JSON-Search 15056878 1
9 JSON-Search 684515 1
9 JSON-Search 2782076 2
9 JSON-Search 5687650 1
9 JSON-Search 7332029 2
9 JSON-Search 2992258 2
9 JSON-Search 57689 3
9 JSON-Search 282644 3
9 JSON-Search 4163066 1
9 Messaging-Evaluation 8261654 2
9 Messaging-Evaluation 507391 3
9 Messaging-Evaluation 17708489 3
9 Messaging-Evaluation 6636213 3
9 Messaging-Evaluation 32851 3
9 Messaging-Evaluation 12130481 3
9 Messaging-Evaluation 6664445 1
9 Messaging-Evaluation 12559570 2
9 Messaging-Evaluation 7044157 3
9 Messaging-Evaluation 27666943 3
9 Messaging-Evaluation 15150133 2
9 Messaging-Evaluation 2124221 3
9 Messaging-Evaluation 1919472 3
9 Messaging-Evaluation 12805377 3
9 Messaging-Evaluation 22989833 3
9 Messaging-Evaluation 6939110 3
9 Big-Data-Stream-Evaluation 6939110 3
9 Big-Data-Stream-Evaluation 12559570 3
9 Big-Data-Stream-Evaluation 7382655 3
9 Big-Data-Stream-Evaluation 17708489 3
9 Big-Data-Stream-Evaluation 12130481 3
9 Big-Data-Stream-Evaluation 24863598 3
9 Physical-Design 3792519 3
9 Physical-Design 19487835 3

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

256

9 Physical-Design 9413045 3
9 Physical-Design 14501119 3
9 Physical-Design 7044157 2
9 Physical-Design 2279417 3
9 Physical-Design 14401632 3
9 Physical-Design 2225761 3
9 Physical-Design 6065062 3
9 Conceptual-Design 3488395 3
9 Conceptual-Design 5971252 3
9 Conceptual-Design 13953733 1
9 Conceptual-Design 698998 2
9 Conceptual-Design 3836900 3
9 Conceptual-Design 969964 3
9 Conceptual-Design 2503071 3
9 Conceptual-Design 8639625 1
9 Conceptual-Design 8065019 3
9 Conceptual-Design 2096734 3
9 Conceptual-Design 447518 2
9 Conceptual-Design 10055290 3
9 Conceptual-Design 8148702 3
9 Conceptual-Design 1296460 3
10 Middleware-Search 9378293 2
10 Middleware-Search 1112279 2
10 JSON-Search 3471013 2
10 JSON-Search 15565862 2
10 Messaging-Evaluation 7044157 3
10 Messaging-Evaluation 731233 2
10 Messaging-Evaluation 27666943 2
10 Messaging-Evaluation 12130481 1
10 Messaging-Evaluation 20520492 1
10 Big-Data-Stream-Evaluation 12559570 2
10 Big-Data-Stream-Evaluation 30098076 1
10 Physical-Design 3758576 1
10 Physical-Design 4444208 1
10 Physical-Design 18531072 2
10 Physical-Design 10407760 2
10 Physical-Design 10745084 1
10 Physical-Design 10030227 1
10 Conceptual-Design 39585 1
10 Conceptual-Design 4322819 1
10 Conceptual-Design 10641999 1
10 Conceptual-Design 2567254 1
11 Middleware-Search 1074800 1
11 Middleware-Search 2388539 2
11 Middleware-Search 13483809 3

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

257

11 Middleware-Search 10055290 1
11 Middleware-Search 1112279 1
11 Middleware-Search 374464 1
11 Middleware-Search 21808529 3
11 Middleware-Search 12008 1
11 Middleware-Search 3034054 1
11 Middleware-Search 8845186 1
11 JSON-Search 2782076 1
11 JSON-Search 8964424 1
11 JSON-Search 296650 2
11 JSON-Search 3792519 1
11 JSON-Search 6939110 1
11 JSON-Search 11840630 1
11 JSON-Search 21808529 1
11 JSON-Search 330174 1
11 JSON-Search 10334306 1
11 JSON-Search 14580337 1
11 Messaging-Evaluation 27666943 2
11 Messaging-Evaluation 20520492 1
11 Messaging-Evaluation 731233 3
11 Messaging-Evaluation 21808529 1
11 Messaging-Evaluation 6664445 1
11 Messaging-Evaluation 2124221 1
11 Messaging-Evaluation 10030227 1
11 Messaging-Evaluation 16449126 1
11 Messaging-Evaluation 9569851 1
11 Messaging-Evaluation 1919472 1
11 Big-Data-Stream-Evaluation 773503 2
11 Big-Data-Stream-Evaluation 2486721 1
11 Big-Data-Stream-Evaluation 12634965 1
11 Big-Data-Stream-Evaluation 7921324 1
11 Big-Data-Stream-Evaluation 2388539 1
11 Big-Data-Stream-Evaluation 2124221 1
11 Big-Data-Stream-Evaluation 240471 1
11 Big-Data-Stream-Evaluation 11840630 1
11 Big-Data-Stream-Evaluation 334639 1
11 Big-Data-Stream-Evaluation 13005410 1
11 Physical-Design 2225761 1
11 Physical-Design 6061813 1
11 Physical-Design 6065062 2
11 Physical-Design 15204051 1
11 Physical-Design 3413424 1
11 Physical-Design 10407760 1
11 Physical-Design 10745084 1
11 Physical-Design 10087396 1

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

258

11 Physical-Design 6169658 1
11 Physical-Design 4971437 1
11 Conceptual-Design 10641999 1
11 Conceptual-Design 1670332 1
11 Conceptual-Design 5074129 1
11 Conceptual-Design 600256 1
11 Conceptual-Design 4322819 1
11 Conceptual-Design 2567254 1
11 Conceptual-Design 280991 1
11 Conceptual-Design 11565906 1
11 Conceptual-Design 17401679 1
12 Middleware-Search 1919472 3
12 Middleware-Search 1112279 2
12 Middleware-Search 32851 3
12 Middleware-Search 309374 2
12 JSON-Search 15056878 2
12 JSON-Search 4633611 3
12 Messaging-Evaluation 3280676 3
12 Messaging-Evaluation 27666943 3
12 Messaging-Evaluation 9569851 3
12 Messaging-Evaluation 1919472 3
12 Big-Data-Stream-Evaluation 11840630 3
12 Big-Data-Stream-Evaluation 61437 3
12 Big-Data-Stream-Evaluation 6664445 3
12 Big-Data-Stream-Evaluation 10334306 2
12 Physical-Design 6889265 3
12 Physical-Design 2225761 1
12 Physical-Design 3921436 3
12 Physical-Design 7921324 3
12 Physical-Design 296650 3
12 Physical-Design 15204051 2
12 Conceptual-Design 13592894 3
12 Conceptual-Design 1670332 2
12 Conceptual-Design 16838416 2
13 Middleware-Search 1112279 3
13 Middleware-Search 2912051 3
13 Middleware-Search 2388569 2
13 Middleware-Search 3164821 3
13 Middleware-Search 12099446 1
13 Middleware-Search 24176969 1
13 Middleware-Search 2936598 1
13 Middleware-Search 12733985 2
13 Middleware-Search 29584618 1
13 Middleware-Search 2943935 1
13 Middleware-Search 417453 3

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

259

13 Middleware-Search 2912051 3
13 Middleware-Search 3164821 3
13 Middleware-Search 12099446 1
13 Middleware-Search 24176969 1
13 Middleware-Search 2936598 1
13 Middleware-Search 8349020 1
13 Middleware-Search 393996 3
13 Middleware-Search 3198781 1
13 Middleware-Search 4308343 1
13 Messaging-Evaluation 27666943 2
13 Messaging-Evaluation 21808529 1
13 Messaging-Evaluation 731233 3
13 Messaging-Evaluation 70441517 3
13 Messaging-Evaluation 12559570 1
13 Messaging-Evaluation 10445621 1
13 Messaging-Evaluation 12130481 1
13 Messaging-Evaluation 20520492 3
13 Messaging-Evaluation 23903843 1
13 Messaging-Evaluation 6664445 1
13 Messaging-Evaluation 20655367 1
13 Messaging-Evaluation 3280676 3
13 Messaging-Evaluation 9151698 2
13 Messaging-Evaluation 4287941 1
13 Messaging-Evaluation 6551718 3
13 Messaging-Evaluation 1164810 1
13 Messaging-Evaluation 14686136 1
13 Messaging-Evaluation 6933833 1
13 Messaging-Evaluation 14870832 1
13 Messaging-Evaluation 4405992 3
13 Big-Data-Stream-Evaluation 12559570 3
13 Big-Data-Stream-Evaluation 21808529 2
13 Big-Data-Stream-Evaluation 27666943 3
13 Big-Data-Stream-Evaluation 10445621 1
13 Big-Data-Stream-Evaluation 23903843 1
13 Big-Data-Stream-Evaluation 24553750 1
13 Big-Data-Stream-Evaluation 16284399 1
13 Big-Data-Stream-Evaluation 3792519 1
13 Big-Data-Stream-Evaluation 12130481 2
13 Big-Data-Stream-Evaluation 24287900 1
13 Big-Data-Stream-Evaluation 10513317 2
13 Big-Data-Stream-Evaluation 2336438 2
13 Big-Data-Stream-Evaluation 13681213 1
13 Big-Data-Stream-Evaluation 10375137 2
13 Big-Data-Stream-Evaluation 1307407 1
13 Big-Data-Stream-Evaluation 26623673 2

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

260

13 Big-Data-Stream-Evaluation 18566412 2
13 Big-Data-Stream-Evaluation 2679024 2
13 Big-Data-Stream-Evaluation 8744953 1
13 Big-Data-Stream-Evaluation 21786951 1
13 Big-Data-Stream-Evaluation 10513317 2
13 Big-Data-Stream-Evaluation 2336438 2
13 Big-Data-Stream-Evaluation 13681213 1
13 Big-Data-Stream-Evaluation 10375137 3
13 Big-Data-Stream-Evaluation 1307407 1
13 Big-Data-Stream-Evaluation 26623673 2
13 Big-Data-Stream-Evaluation 18566412 2
13 Big-Data-Stream-Evaluation 2679024 2
13 Big-Data-Stream-Evaluation 8744953 1
13 Big-Data-Stream-Evaluation 21786951 1
13 Conceptual-Design 3836900 2
13 Conceptual-Design 722675 1
13 Conceptual-Design 969964 1
13 Conceptual-Design 5044585 1
13 Conceptual-Design 2613348 3
13 Conceptual-Design 2503071 2
13 Conceptual-Design 10323393 1
13 Conceptual-Design 5407673 2
13 Conceptual-Design 476211 1
13 Conceptual-Design 10745084 1
13 Conceptual-Design 10641999 1
13 Conceptual-Design 1670332 1
13 Conceptual-Design 722675 1
13 Conceptual-Design 3836900 2
13 Conceptual-Design 4373833 1
13 Conceptual-Design 969964 3
13 Conceptual-Design 10323393 1
13 Conceptual-Design 11987838 1
13 Conceptual-Design 226953 1
13 Conceptual-Design 922116 1
13 Conceptual-Design 5296936 3
13 Conceptual-Design 6302341 2
13 Conceptual-Design 7882660 1
13 Conceptual-Design 11378046 3
13 Conceptual-Design 969964 3
13 Conceptual-Design 2567254 3
13 Conceptual-Design 698998 3
13 Conceptual-Design 162376 3
13 Conceptual-Design 57665 1
13 Conceptual-Design 17401679 1
13 Conceptual-Design 2554999 1

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

261

13 Conceptual-Design 3513112 1
13 Conceptual-Design 514306 1
13 Conceptual-Design 11755146 1
13 Conceptual-Design 12349690 2
13 Conceptual-Design 16482269 1
13 Conceptual-Design 2508361 1
13 Conceptual-Design 3709987 1
13 Conceptual-Design 2567254 3
13 Conceptual-Design 3543835 1
14 Middleware-Search 1112279 1
14 Middleware-Search 13483809 3
14 Middleware-Search 14713711 2
14 Middleware-Search 9285953 3
14 Middleware-Search 15159972 3
14 Messaging-Evaluation 22989833 3
14 Messaging-Evaluation 7044157 3
14 Messaging-Evaluation 4971437 2
14 Messaging-Evaluation 12130481 2
14 Messaging-Evaluation 27666943 3
14 Messaging-Evaluation 2705043 3
14 Messaging-Evaluation 2124221 3
14 Big-Data-Stream-Evaluation 2486721 1
14 Big-Data-Stream-Evaluation 1809296 3
14 Big-Data-Stream-Evaluation 12130481 3
14 Big-Data-Stream-Evaluation 27666943 2
14 Big-Data-Stream-Evaluation 13681213 2
14 Big-Data-Stream-Evaluation 3198781 3
14 Conceptual-Design 822328 1
14 Conceptual-Design 36999 3
14 Conceptual-Design 6349375 3
14 Conceptual-Design 3767660 2
14 Conceptual-Design 5082454 2
14 Conceptual-Design 5181419 1
15 JSON-Search 7410040 1
15 JSON-Search 2782076 2
15 JSON-Search 4697740 1
15 JSON-Search 2429844 1
15 JSON-Search 2782076 2
15 JSON-Search 7410040 1
15 JSON-Search 1807617 1
15 JSON-Search 7425808 1
15 Messaging-Evaluation 2124221 2
15 Messaging-Evaluation 20740114 2
15 Messaging-Evaluation 6104418 2
15 Messaging-Evaluation 1823705 3

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

262

15 Messaging-Evaluation 27666943 3
15 Messaging-Evaluation 7044157 3
15 Messaging-Evaluation 12130481 3
15 Messaging-Evaluation 17708489 3
15 Messaging-Evaluation 27666943 3
15 Messaging-Evaluation 7044157 3
15 Messaging-Evaluation 12130481 3
15 Messaging-Evaluation 17708489 3
15 Messaging-Evaluation 22989833 3
15 Messaging-Evaluation 7044157 3
15 Messaging-Evaluation 6636213 2
15 Messaging-Evaluation 17806977 2
15 Big-Data-Stream-Evaluation 2486721 1
15 Big-Data-Stream-Evaluation 3916983 1
15 Big-Data-Stream-Evaluation 334639 1
15 Big-Data-Stream-Evaluation 3102551 1
15 Big-Data-Stream-Evaluation 12559570 3
15 Big-Data-Stream-Evaluation 3921436 2
15 Big-Data-Stream-Evaluation 3792519 2
15 Big-Data-Stream-Evaluation 6930236 2
15 Big-Data-Stream-Evaluation 773503 3
15 Big-Data-Stream-Evaluation 240471 2
15 Big-Data-Stream-Evaluation 12634965 3
15 Big-Data-Stream-Evaluation 4311279 3
15 Big-Data-Stream-Evaluation 3034054 2
15 Big-Data-Stream-Evaluation 8845186 2
15 Big-Data-Stream-Evaluation 9623482 2
15 Big-Data-Stream-Evaluation 3921436 2
15 Big-Data-Stream-Evaluation 3792519 2
15 Big-Data-Stream-Evaluation 10055290 1
15 Physical-Design 11545895 1
15 Physical-Design 7874562 1
15 Physical-Design 13965635 2
15 Physical-Design 1603938 1
15 Physical-Design 12008 2
15 Physical-Design 11545895 1
15 Physical-Design 7874562 1
15 Physical-Design 13965635 2
15 Physical-Design 1603938 1
15 Physical-Design 16994238 1
15 Physical-Design 10347751 2
15 Physical-Design 11545895 1
15 Physical-Design 7874562 1
15 Physical-Design 13965635 2
15 Physical-Design 1603938 1

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

263

15 Physical-Design 16994238 1
15 Physical-Design 11545895 1
15 Physical-Design 7874562 1
15 Physical-Design 13965635 2
15 Conceptual-Design 250207 1
15 Conceptual-Design 11013802 3
15 Conceptual-Design 6663888 1
15 Conceptual-Design 1665976 1
15 Conceptual-Design 7682662 1
15 Conceptual-Design 447518 3
15 Conceptual-Design 2023027 3
15 Conceptual-Design 3051326 3
15 Conceptual-Design 3488395 3
15 Conceptual-Design 377656 2
15 Conceptual-Design 2503071 3
15 Conceptual-Design 309374 2
15 Conceptual-Design 13879379 2
15 Conceptual-Design 773503 2
15 Conceptual-Design 11013802 3
15 Conceptual-Design 4163066 2
15 Conceptual-Design 561915 2
16 JSON-Search 57689 3
16 JSON-Search 26380184 1
16 Messaging-Evaluation 27666943 3
16 Messaging-Evaluation 731233 3
16 Messaging-Evaluation 12130481 2
16 Physical-Design 11248510 2
16 Physical-Design 2225761 3
16 Physical-Design 18531072 3
16 Conceptual-Design 10641999 3
16 Conceptual-Design 1670332 3
16 Conceptual-Design 5074129 1
16 Conceptual-Design 2554999 1
16 Conceptual-Design 2508361 3
16 Big-Data-Stream-Evaluation 12559570 2
16 Big-Data-Stream-Evaluation 10513317 2
16 Big-Data-Stream-Evaluation 2336438 1

APPENDIX C. EXPERIMENTS MATERIALS AND DETAILED RESULTS

264

List of Figures

1.1 Summary of research questions and contributions 7

1.2 High-level overview on the research process . 8

1.3 Thesis outline . 13

1.4 Thesis contributions in each chapter and their relationships 14

2.1 The structure of a Stack Overflow post. The dotted rectangles represent regions in
a Stack Overflow post. Bubbles specify elements of a post, and their associated
region. 22

3.1 Research Process Diagram. 36

3.2 An example for a technology features’ tree. 40

3.3 A subset from a technology features’ tree with both feature and concern based
drawbacks (ASTA). 43

3.4 Software Architecture Knowledge (AK) Metamodel. 45

3.5 An example showing the interaction of objects based on the proposed architectural
knowledge domain model . 50

4.1 Research Process Diagram. 54

4.2 Distribution of ARP types according to purpose and solution types. 60

4.3 Agreement and confidence for ARP types according to the purpose of the question. 75

4.4 Agreement and confidence for ARP types according to the solution type. 75

5.1 An example for an annotated statement in ARP 80

5.2 Examples of annotated sentences of architecture configuration (CONF) ontology
class. Each sentence is further annotated with its composing ontology classes. The
three sentences belong to three posts: stackoverflow.com/questions/
12783677, stackoverflow.com/questions/4473567, and stackoverflow.
com/questions/19758215 . 83

5.3 Examples of annotated sentences of component behavior (CB) ontology class.
Each sentence is further annotated with its composing ontology classes. The
three sentences belong to three posts: stackoverflow.com/questions/
1582952, stackoverflow.com/questions/380052, and stackoverflow.
com/questions/4473567 . 84

265

stackoverflow.com/questions/12783677
stackoverflow.com/questions/12783677
stackoverflow.com/questions/4473567
stackoverflow.com/questions/19758215
stackoverflow.com/questions/19758215
stackoverflow.com/questions/1582952
stackoverflow.com/questions/1582952
stackoverflow.com/questions/380052
stackoverflow.com/questions/4473567
stackoverflow.com/questions/4473567

LIST OF FIGURES

5.4 Example for an annotated sentences of existing system (EX) ontology class. The
sentence is further annotated with its composing ontology classes. The sentence
belong to the post: stackoverflow.com/questions/13016406 85

5.5 Example for an annotated sentences of design issue (DI) ontology class. The sen-
tence is further annotated with its composing ontology classes. The sentence be-
long to the post: stackoverflow.com/questions/4741713 85

5.6 Example for an annotated sentences of the technology feature requirement, a sub-
type from the requirements and constraints (REQ) ontology class. The sentence
is further annotated with its composing ontology classes. The sentence belongs to
the post: stackoverflow.com/questions/14342430 86

5.7 Example for an annotated sentences of the quality attribute requirement, a sub-
type from the requirements and constraints (REQ) ontology class. The sentence
is further annotated with its composing ontology classes. The sentence belongs to
the post: stackoverflow.com/questions/2567254 86

5.8 Example for an annotated sentences of the team skills constraint, a sub-type from
the requirements and constraints (REQ) ontology class. The sentence is further
annotated with its composing ontology classes. The sentence belongs to the post:
stackoverflow.com/questions/1426249 86

5.9 Example for an annotated sentences of the development time constraint, a sub-
type from the requirements and constraints (REQ) ontology class. The sentence
is further annotated with its composing ontology classes. The sentence belongs to
the post: stackoverflow.com/questions/807962 87

5.10 Example for an annotated sentences of the solution constraint, a sub-type from
the requirements and constraints (REQ) ontology class. The sentence is further
annotated with its composing ontology classes. The sentence belongs to the post:
stackoverflow.com/questions/12783677 87

5.11 Example for an annotated sentences of the user request (UR) ontology class.
The sentence is further annotated with its composing ontology classes. The sen-
tences belong to the posts: stackoverflow.com/questions/1426249
and stackoverflow.com/questions/10621648 88

5.12 Example for an annotated sentences of the development feature, a sub-type from
the technology feature (FEAT) ontology class. The sentence is further anno-
tated with its composing ontology classes. The sentence belongs to the post:
stackoverflow.com/questions/1429318 88

5.13 Example for an annotated sentences of the behavioral features, a sub-type from
the technology feature (FEAT) ontology class. The sentences are further an-
notated with its composing ontology classes. The sentences belongs to posts:
stackoverflow.com/questions/10375137, stackoverflow.com/
questions/4473567, and stackoverflow.com/questions/7583132 89

266

stackoverflow.com/questions/13016406
stackoverflow.com/questions/4741713
stackoverflow.com/questions/14342430
stackoverflow.com/questions/2567254
stackoverflow.com/questions/1426249
stackoverflow.com/questions/807962
stackoverflow.com/questions/12783677
stackoverflow.com/questions/1426249
stackoverflow.com/questions/10621648
stackoverflow.com/questions/1429318
stackoverflow.com/questions/10375137
stackoverflow.com/questions/4473567
stackoverflow.com/questions/4473567
stackoverflow.com/questions/7583132

LIST OF FIGURES

5.14 Example for an annotated sentences of the development ASTA, a sub-type from
the technology benefits and drawbacks (ASTA) ontology class. The sentence is
further annotated with its composing ontology classes. The sentences belongs to
posts: stackoverflow.com/questions/100993, stackoverflow.com/
questions/807692, and stackoverflow.com/questions/1582952 90

5.15 Example for an annotated sentences of the behavioral ASTA, a sub-type from the
technology benefits and drawbacks (ASTA) ontology class. The sentences are
further annotated with its composing ontology classes. The sentences belongs to
posts: stackoverflow.com/questions/4473567, stackoverflow.
com/questions/5145129, and stackoverflow.com/questions/1426249 90

5.16 Examples for annotated sentences of the ADD. The sentences are further anno-
tated with their composing ontology classes. The sentences belongs to posts:
stackoverflow.com/questions/10156388 and stackoverflow.com/
questions/9535421 . 91

5.17 Example for an annotated sentences of DR. The sentences are further annotated
with its composing ontology classes. The sentences belongs to posts: stackoverflow.
com/questions/1426249, stackoverflow.com/questions/1582952,
and stackoverflow.com/questions/100993 92

5.18 Examples for annotated sentences of CASE. The sentences are further annotated
with their composing ontology classes. The sentences belongs to posts: stackoverflow.
com/questions/1429318, stackoverflow.com/questions/2508361,
and stackoverflow.com/questions/5145129 93

5.19 The percentages of occurrences for composite ontology classes within the question
and answers sections of a Stack Overflow post 94

5.20 An example for an annotated ARP https://stackoverflow.com/questions/
4473567 . 96

5.21 The relative occurrences of ontology classes in each type of ARP 99

6.1 The main elements of a scenario to search for architecture knowledge. 109

6.2 Relating information intensive architecture design activities (in gray) with ISTs . 110

7.1 Example of multi-ontology-class preprocessing 120

7.2 Comparing F-scores across different classification approaches and types of posts
in the 2-class dataset . 123

7.3 Comparing F-scores across different classification approaches and types of posts
in the 4-class dataset . 123

7.4 Comparing F-scores across different classification approaches and types of posts
in the 2-class dataset using the development sample as training data and testing
sample for testing the generalizability of the classification approaches 126

267

stackoverflow.com/questions/100993
stackoverflow.com/questions/807692
stackoverflow.com/questions/807692
stackoverflow.com/questions/1582952
stackoverflow.com/questions/4473567
stackoverflow.com/questions/5145129
stackoverflow.com/questions/5145129
stackoverflow.com/questions/1426249
stackoverflow.com/questions/10156388
stackoverflow.com/questions/9535421
stackoverflow.com/questions/9535421
stackoverflow.com/questions/1426249
stackoverflow.com/questions/1426249
stackoverflow.com/questions/1582952
stackoverflow.com/questions/100993
stackoverflow.com/questions/1429318
stackoverflow.com/questions/1429318
stackoverflow.com/questions/2508361
stackoverflow.com/questions/5145129
https://stackoverflow.com/questions/4473567
https://stackoverflow.com/questions/4473567

LIST OF FIGURES

7.5 Comparing F-scores across different classification approaches and types of posts
in the 4-class dataset using the development sample as training data and testing
sample for testing the generalizability of the classification approaches 126

8.1 Enhanced search process (gray elements are the extensions of a keyword-based
search) . 134

8.2 Number of relevant posts identified by participants for each design step. 141

8.3 nDCG@1-3 for NORMAL and ENHANCED. The lower and upper boxes are the
lower and upper quartiles of the distribution, respectively. The vertical thin line is
from the minimum to the maximum nDCG values. 141

8.4 Average Precision@k for each design activity 142

8.5 Average nDCG@k for each design activity . 142

8.6 Significance T-value for nDCG@k and Precision@k. The Critical T-value is 1.963
(T-values > 1.963 are considered significant). The higher the T-value, the higher
the probability for being significant. 143

A.1 The query used to gather stack overflow posts 157

A.2 Atlas.ti interface for documents coding . 194

A.3 Atlas.ti interface for managing codes . 194

A.4 Atlas.ti interface for managing documents . 194

268

List of Tables

3.1 Interview Participants Experience Overview . 37

3.2 Capabilities’ Types and Architectural Concerns Relationships 41

3.3 Interview Data Analysis Results: ++: Concept Contribution, 4: Concept Sup-
ported, Y: Concept Accepted, N: Concept in Doubt, –: No Answer Provided . . . 49

4.1 Background of participants . 57

4.2 Example for technology identification ARP, stackoverflow.com/questions/
4473567 . 62

4.3 Example for technology feature identification ARP, stackoverflow.com/
questions/1935040 . 62

4.4 Example for architecture configuration identification ARP, stackoverflow.
com/questions/2897513 . 62

4.5 Example for technology evaluation ARP, stackoverflow.com/questions/
32851 . 64

4.6 Example for technology feature evaluation ARP, stackoverflow.com/questions/
5407673 . 64

4.7 Example for architecture configuration evaluation ARP, stackoverflow.com/
questions/2498796 . 64

4.8 Example for the Explicit Technology Solutions Searching ARP Variation, stackoverflow.
com/questions/7837189 . 65

4.9 Example for the Implicit Technology Solutions Searching ARP Variation, where
the solution is a technology bundle, stackoverflow.com/questions/3400139 65

4.10 Example for the Implicit Technology Solutions Searching ARP Variation, where
the solution is a technology feature, stackoverflow.com/questions/393580 65

4.11 Example for the Alternative Technology Solutions Searching ARP Variation, stackoverflow.
com/questions/10156388 . 66

4.12 Example for the Solutions Recommendation for Requirements and Implementa-
tion of Conceptual Design ARP Variation, where the recommended solution is a
technology bundle, stackoverflow.com/questions/2675793 66

4.13 Example for the Solutions Recommendation for Requirements and Implementa-
tion of Conceptual Design ARP Variation, where the recommended solution is an
architecture configuration, stackoverflow.com/questions/3198781 . 67

269

stackoverflow.com/questions/4473567
stackoverflow.com/questions/4473567
stackoverflow.com/questions/1935040
stackoverflow.com/questions/1935040
stackoverflow.com/questions/2897513
stackoverflow.com/questions/2897513
stackoverflow.com/questions/32851
stackoverflow.com/questions/32851
stackoverflow.com/questions/5407673
stackoverflow.com/questions/5407673
stackoverflow.com/questions/2498796
stackoverflow.com/questions/2498796
stackoverflow.com/questions/7837189
stackoverflow.com/questions/7837189
stackoverflow.com/questions/3400139
stackoverflow.com/questions/393580
stackoverflow.com/questions/10156388
stackoverflow.com/questions/10156388
stackoverflow.com/questions/2675793
stackoverflow.com/questions/3198781

LIST OF TABLES

4.14 Example for the Technology Independent Architectural Configuration Searching
ARP Variation, stackoverflow.com/questions/1139203 67

4.15 Example for comparing solutions variation for architectural configurations, stackoverflow.
com/questions/17814436 . 68

4.16 Example for context independent solution assessment variation for technology
bundle, stackoverflow.com/questions/512807 68

4.17 Example for context independent solution assessment variation for technology fea-
ture, stackoverflow.com/questions/1189420 68

4.18 Example for solution scenarios and context variation for technology bundle, stackoverflow.
com/questions/4499510 . 69

4.19 Example for solution scenarios and context variation for architecture configura-
tion, stackoverflow.com/questions/969964 69

4.20 Example for the "context dependent solution assessment" variation among a tech-
nology bundle, stackoverflow.com/questions/9502548 69

4.21 Example for the "context dependent solution assessment" variation among a tech-
nology feature, stackoverflow.com/questions/3543835 70

4.22 Example for the "context dependent solution assessment" variation among a tech-
nology bundle, stackoverflow.com/questions/10160463 70

4.23 Example for the technology solutions interoperability assessment variation, stackoverflow.
com/questions/2669573 . 72

4.24 Example for the solution definition and analysis variation for technology bundle,
stackoverflow.com/questions/3355082 72

4.25 Example for the solution definition and analysis variation for architecture config-
uration, stackoverflow.com/questions/3055713 72

4.26 Agreement and confidence for each participant 74

5.1 Simple AK Concept ontology classes . 82

5.2 Lexical Trigger ontology classes . 83

5.3 Statistically significant composing ontology classes for composite ontology classes 97

5.4 Number of annotations for each ontology class among the different types of ARPs 98

6.1 Interview participants . 104

6.2 Benefits, problems and solutions mapped to interviewees 108

6.3 Information searching activities (ISAs) for AK in developer communities 111

270

stackoverflow.com/questions/1139203
stackoverflow.com/questions/17814436
stackoverflow.com/questions/17814436
stackoverflow.com/questions/512807
stackoverflow.com/questions/1189420
stackoverflow.com/questions/4499510
stackoverflow.com/questions/4499510
stackoverflow.com/questions/969964
stackoverflow.com/questions/9502548
stackoverflow.com/questions/3543835
stackoverflow.com/questions/10160463
stackoverflow.com/questions/2669573
stackoverflow.com/questions/2669573
stackoverflow.com/questions/3355082
stackoverflow.com/questions/3055713

LIST OF TABLES

7.1 Top tags with highest differences in occurrences between Stack Overflow pro-
gramming posts and ARPs . 117

7.2 Comparison of Classification Approaches using the Bag-of-Words 122

7.3 Comparison of Classification Approaches using the Single-Ontology-Class . . . 122

7.4 Comparison of Classification Approaches using the Multi-Ontology-Class 122

7.5 Comparison of the Best Performing Classification Approaches and their Combi-
nation using the Ensemble Learning . 122

7.6 Confusion matrix for classification approaches 124

7.7 Comparing F-scores across different classification approaches using the develop-
ment sample as training data and testing sample for testing the generalizability of
the classification approaches . 125

7.8 Top 30 distinctive terms between the ARPs and PPPs in our sample 129

7.9 Features (Based on Ontology Classes) with Highest IGR 130

7.10 Features (Based on Sequences of Ontology Classes) with Highest IGR and Their
Mapping to Composite Ontology Classes . 131

8.1 Frequency of annotations, which belong to relevant ontology classes in different
types of posts . 135

8.2 Experiences of Practitioners in Experiment . 137

271

Bibliography

[AF00] Eric C. Adams and Christopher Freeman. Communities of practice: bridging tech-
nology and knowledge assessment. Journal of Knowledge Management, 4(1):38–
44, 2000.

[ANGB+05] T. Al-Naeem, I. Gorton, M.A. Babar, F. Rabhi, and B. Benatallah. A quality-driven
systematic approach for architecting distributed software applications. In Software
Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on,
pages 244–253, May 2005.

[ASR17] R. Abdalkareem, E. Shihab, and J. Rilling. What do developers use the crowd for?
a study using stack overflow. IEEE Software, 34(2):53–60, 2017.

[Aud10] R. Audi. Epistemology: A Contemporary Introduction to the Theory of Knowl-
edge. Epistemology: A Contemporary Introduction to the Theory of Knowledge.
Routledge, 2010.

[AZ05] Paris Avgeriou and Uwe Zdun. Architectural patterns revisited – a pattern language.
In Proceedings 10th European Conference on Pattern Languages of Programs (Eu-
roPlop 2005), Irsee, pages 1–39, 2005.

[AZ14] Mohsen Anvaari and Olaf Zimmermann. Semi-automated design guidance en-
hancer (sadge): A framework for architectural guidance development. In Paris
Avgeriou and Uwe Zdun, editors, Software Architecture, pages 41–49, Cham, 2014.
Springer International Publishing.

[AZE+07] A. Arsanjani, L. J. Zhang, M. Ellis, A. Allam, and K. Channabasavaiah. S3: A
service-oriented reference architecture. IT Professional, 9(3):10–17, May 2007.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2 edition, 2003.

[BCK12] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley Professional, 3rd edition, 2012.

[BDTD18] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. Sotor-
rent: Reconstructing and analyzing the evolution stack overflow posts. In ICSE’18:
The 40th International Conference on Software Engineering, May 27-June 3, 2018
2018.

[BH05] Katriina BystrÃűm and Preben Hansen. Conceptual framework for tasks in in-
formation studies. Journal of the American Society for Information Science and
Technology, 56(10):1050–1061, 2005.

[BHS07a] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented Soft-
ware Architecture, Volume 4: A Pattern Language for Distributed Computing. Wi-
ley, Chichester, UK, 2007.

[BHS07b] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented Soft-
ware Architecture, Volume 5: On Patterns and Pattern Languages. Wiley, Chich-
ester, UK, 2007.

272

BIBLIOGRAPHY

[BHS13] B. Bazelli, A. Hindle, and E. Stroulia. On the personality traits of stackoverflow
users. In Software Maintenance (ICSM), 2013 29th IEEE International Conference
on, pages 460–463, Sept 2013.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[BMPP18] Stefanie Beyer, Christian Macho, Massimiliano Di Penta, and Martin Pinzger. Au-
tomatically classifying posts into question categories on stack overflow. In IEEE
International Conference on Program Comprehension, ICPC, 2018.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture: A System of Patterns. John Wiley &
Sons, 1 edition, July 1996.

[Boe06] Barry Boehm. A view of 20th and 21st century software engineering. In Proceed-
ings of the 28th international conference on Software engineering, ICSE ’06, pages
12–29, New York, NY, USA, 2006. ACM.

[Bor00] Pia Borlund. Experimental components for the evaluation of interactive information
retrieval systems. Journal of Documentation, 56(1):71–90, 2000.

[Bor03] Pia Borlund. The iir evaluation model: a framework for evaluation of interactive
information retrieval systems. Information Research, 8(3), 2003.

[Bos00] Jan Bosch. Design and use of software architectures: Adopting and evolving a
product-line approach. ACM Press/Addison-Wesley, New York, NY, USA, 2000.

[Bos16] Jan Bosch. Speed, data, and ecosystems: the future of software engineering. IEEE
Software, 33(1):82–88, 2016.

[BR10] Stephan Bode and Matthias Riebisch. Impact evaluation for quality-oriented archi-
tectural decisions regarding evolvability. In Muhammad Babar and Ian Gorton, ed-
itors, Proceedings 4th European Conference on Software Architecture, ECSA 2010,
volume 6285 of LNCS, pages 182–197. Springer Berlin / Heidelberg, 2010.

[Bre01] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001.

[BSB+17] Manoj Bhat, Klym Shumaiev, Andreas Biesdorf, Uwe Hohenstein, and Florian
Matthes. Automatic extraction of design decisions from issue management systems:
A machine learning based approach. In Antónia Lopes and Rogério de Lemos, ed-
itors, Software Architecture, pages 138–154, Cham, 2017. Springer International
Publishing.

[BSK+18] Manoj Bhat, Klym Shumaiev, Kevin Koch, Uwe Hohenstein, Andreas Biesdorf,
and Florian Matthes. An expert recommendation system for design decision mak-
ing who should be involved in making a design decision? In IEEE International
Conference on Software Architecture, ICSA, 2018.

[BTH14] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. What are developers
talking about? an analysis of topics and trends in stack overflow. Empirical Softw.
Engg., 19(3):619–654, June 2014.

[BW99] W.R. Bukowitz and R.L. Williams. The knowledge management fieldbook. Finan-
cial Times Prentice Hall London, 1999.

273

BIBLIOGRAPHY

[BWG05] Muhammad Ali Babar, Xiaowen Wang, and Ian Gorton. PAKME: A tool for cap-
turing and using architecture design knowledge. In 2005 INMIC. IEEE, 2005.

[CJT+16] Rafael Capilla, Anton Jansen, Antony Tang, Paris Avgeriou, and Muhammad Ali
Babar. 10 years of software architecture knowledge management: Practice and
future. Journal of Systems and Software, 116(Supplement C):191 – 205, 2016.

[CLvV07] Viktor Clerc, Patricia Lago, and Hans van Vliet. The architect’s mindset. In Sven
Overhage, ClemensA. Szyperski, Ralf Reussner, and JudithA. Stafford, editors,
Software Architectures, Components, and Applications, volume 4880 of Lecture
Notes in Computer Science, pages 231–249. Springer Berlin Heidelberg, 2007.

[CNPDn06] Rafael Capilla, Francisco Nava, Sandra Pérez, and JC Dueñas. A web-based tool
for managing architectural design decisions. SIGSOFT Softw. Eng. Notes, 31(5),
2006.

[Coh60] J. Cohen. A Coefficient of Agreement for Nominal Scales. Educational and Psy-
chological Measurement, 20(1):37, 1960.

[CP01] Don Cohen and Laurence Prusak. In good company. Harvard Business School
Press, Boston, 2001.

[CS10] M. Cade and H. Sheil. Sun Certified Enterprise Architect for Java EE Study Guide.
Pearson Education, 2010.

[CVEK13] H. Cervantes, P. Velasco-Elizondo, and R. Kazman. A principled way to use frame-
works in architecture design. Software, IEEE, 30(2):46–53, March 2013.

[CZZK11] Rafael Capilla, Olaf Zimmermann, Uwe Zdun, and Jochen M. Küster. An enhanced
architectural knowledge metamodel linking architectural design decisions to other
artifacts in the software engineering lifecycle. In Software Architecture, pages 303–
318. Springer Berlin Heidelberg, 2011.

[Dal11] Kimiz Dalkir. Knowledge Management in Theory and Practice. The MIT Press,
2011.

[dBFL+07] Remco C. de Boer, Rik Farenhorst, Patricia Lago, Hans van Vliet, Viktor Clerc,
and Anton Jansen. Architectural Knowledge: Getting to the Core, pages 197–214.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[dBvV11] R. C. d. Boer and H. v. Vliet. Experiences with semantic wikis for architectural
knowledge management. In 2011 Ninth Working IEEE/IFIP Conference on Soft-
ware Architecture, pages 32–41, June 2011.

[DGLT+14a] K. A. De Graaf, P. Liang, A. Tang, W. R. Van Hage, and H. Van Vliet. An ex-
ploratory study on ontology engineering for software architecture documentation.
Computers in Industry, 65(7):1053–1064, 2014.

[dGLT+14b] K.A. de Graaf, P. Liang, A. Tang, W.R. van Hage, and H. van Vliet. An exploratory
study on ontology engineering for software architecture documentation. Computers
in Industry, 65(7):1053 – 1064, 2014.

[Dix91] R.M.W. Dixon. A new approach to English grammar, on semantic principles. Ox-
ford University Press, Incorporated, 1991.

274

BIBLIOGRAPHY

[DPP97] Thomas H. Davenport, Lawrence Prusak, and Laurence Prusak. Working Knowl-
edge: How Organizations Manage What They Know. Harvard Business School
Press, Boston, MA, USA, 1997.

[dSCM14] Lucas B. L. de Souza, Eduardo C. Campos, and Marcelo de A. Maia. Ranking
crowd knowledge to assist software development. In Proceedings of the 22Nd Inter-
national Conference on Program Comprehension, ICPC 2014, pages 72–82, New
York, NY, USA, 2014. ACM.

[FBC+13] Davide Falessi, Lionel C. Briand, Giovanni Cantone, Rafael Capilla, and Philippe
Kruchten. The value of design rationale information. ACM Trans. Softw. Eng.
Methodol., 22(3):21:1–21:32, July 2013.

[FCK07] D. Falessi, G. Cantone, and P. Kruchten. Do architecture design methods meet ar-
chitects’ needs? In Software Architecture, 2007. WICSA ’07. The Working IEEE/I-
FIP Conference on, pages 5–5, Jan 2007.

[FCK08] D. Falessi, G. Cantone, and P. Kruchten. Value-based design decision rationale
documentation: Principles and empirical feasibility study. In Software Architecture,
2008. WICSA 2008. Seventh Working IEEE/IFIP Conference on, pages 189–198,
Feb 2008.

[FCKK11] Davide Falessi, Giovanni Cantone, Rick Kazman, and Philippe Kruchten. Decision-
making techniques for software architecture design: A comparative survey. ACM
Comput. Surv., 43(4):33:1–33:28, October 2011.

[FCL+11] Miriam FernÃąndez, IvÃąn Cantador, Vanesa LÃşpez, David Vallet, Pablo Castells,
and Enrico Motta. Semantically enhanced information retrieval: An ontology-based
approach. Web Semantics: Science, Services and Agents on the World Wide Web,
9(4):434 – 452, 2011.

[FGG97] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers.
Machine Learning, 29(2):131–163, 1997.

[FGWY07] J. Fang, L. Guo, X. Wang, and N. Yang. Ontology-based automatic classification
and ranking for web documents. In Fuzzy Systems and Knowledge Discovery, 2007.
FSKD 2007. Fourth International Conference on, volume 3, pages 627–631, Aug
2007.

[FILvV08] R. Farenhorst, R. Izaks, P. Lago, and H. v. Vliet. A just-in-time architectural knowl-
edge sharing portal. In Seventh Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA 2008), pages 125–134, Feb 2008.

[FVC06] Miriam Fernández, David Vallet, and Pablo Castells. Probabilistic score normal-
ization for rank aggregation. In Advances in Information Retrieval, pages 553–556.
Springer, 2006.

[FvKSJ04] U. Flick, E. von Kardoff, I. Steinke, and B. Jenner. A Companion to Qualitative
Research. SAGE Publications, 2004.

[GBR15] L. Guerrouj, D. Bourque, and P. C. Rigby. Leveraging informal documentation
to summarize classes and methods in context. In 2015 IEEE/ACM 37th IEEE In-
ternational Conference on Software Engineering, volume 2, pages 639–642, May
2015.

275

BIBLIOGRAPHY

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Softwaresystemen. Addison-Wesley
Professional, 1994.

[GJG04] Laura A. Granka, Thorsten Joachims, and Geri Gay. Eye-tracking analysis of user
behavior in www search. In International Conference on Research and Develop-
ment in Information Retrieval, pages 478–479. ACM, 2004.

[GKN15] I. Gorton, J. Klein, and A. Nurgaliev. Architecture knowledge for evaluating scal-
able databases. In WICSA, IEEE/IFIP, pages 95–104, May 2015.

[GLB03] I. Gorton, A. Liu, and P. Brebner. Rigorous evaluation of cots middleware technol-
ogy. Computer, 36(3):50–55, Mar 2003.

[Gle05] B. Gleason. The development of language. Pearson Education, 2005.

[GLJ11] Swapna Gottipati, David Lo, and Jing Jiang. Finding relevant answers in software
forums. In IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 323–332. IEEE, 2011.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199 – 220, 1993.

[GXY+17] I. Gorton, R. Xu, Y. Yang, H. Liu, and G. Zheng. Experiments in curation: Towards
machine-assisted construction of software architecture knowledge bases. In IEEE/I-
FIP International Conference on Software Architecture (ICSA), pages 79–88. IEEE,
2017.

[HA97] John Hagel, III and Arthur G. Armstrong. Net Gain: Expanding Markets Through
Virtual Communities. Harvard Business School Press, Boston, MA, USA, 1997.

[HA05] S.E. Hove and B. Anda. Experiences from conducting semi-structured interviews
in empirical software engineering research. In Software Metrics, 2005. 11th IEEE
International Symposium, pages 10 pp.–23, Sept 2005.

[HA11] Uwe van Heesch and Paris Avgeriou. Mature architecting - a survey about the
reasoning process of professional architects. In WICSA IEEE/IFIP, pages 260–269,
2011.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The weka data mining software: An update. SIGKDD Explor.
Newsl., 11(1):10–18, November 2009.

[HKN+07] Christine Hofmeister, Philippe Kruchten, Robert L. Nord, Henk Obbink, Alexander
Ran, and Pierre America. A general model of software architecture design derived
from five industrial approaches. Journal of Systems and Software, 80(1):106–126,
Jan 2007.

[IM02] Rus I. and Lindvall M. Knowledge management in software engineering. IEEE
Software, 21(6):26–38, May.-June. 2002.

[Int11] International Standardization Organisation. Iso/iec/ieee 42010 - systems and soft-
ware engineering - architecture description, 2011.

[ISO01] ISO/IEC. ISO/IEC 9126. Software engineering – Product quality. ISO/IEC, 2001.

276

BIBLIOGRAPHY

[Jac76] R. Jackendoff. Toward an Explanatory Semantic Representation. MIT Press, 1976.

[JB05] Anton Jansen and Jan Bosch. Software architecture as a set of architectural design
decisions. In WICSA, pages 109–120, 2005.

[JDAH07] Anton Jansen, Jan Der Ven, Paris Avgeriou, and Dieter Hammer. Tool Support for
Architectural Decisions. In WICSA’07, pages 4–4. IEEE, January 2007.

[JdVAvV08] Anton Jansen, Tjaard de Vries, Paris Avgeriou, and Martijn van Veelen. Sharing
the architectural knowledge of quantitative analysis. In Steffen Becker, Frantisek
Plasil, and Ralf Reussner, editors, Quality of Software Architectures. Models and
Architectures, pages 220–234, Berlin, Heidelberg, 2008. Springer Berlin Heidel-
berg.

[JL95] George H. John and Pat Langley. Estimating continuous distributions in bayesian
classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artifi-
cial Intelligence, UAI’95, pages 338–345, San Francisco, CA, USA, 1995. Morgan
Kaufmann Publishers Inc.

[KC16] Rick Kazman and Humberto Cervantes. Designing Software Architectures: A Prac-
tical Approach. Addison-Wesley Professional, 2016.

[KHDM98] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas. On combin-
ing classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(3):226–239, 1998.

[KLV06] Philippe Kruchten, Patricia Lago, and Hans Vliet. Building up and reasoning about
architectural knowledge. In Christine Hofmeister, Ivica Crnkovic, and Ralf Reuss-
ner, editors, Quality of Software Architectures, volume 4214 of Lecture Notes in
Computer Science, pages 43–58. Springer Berlin Heidelberg, 2006.

[Koh95] Ron Kohavi. The power of decision tables. Springer Berlin Heidelberg, 1995.

[Kru95] Philippe Kruchten. The 4+1 view model of architecture. IEEE Softw., 12(6):42–50,
November 1995.

[Kru15] P. Kruchten. Lifelong learning for lifelong employment. IEEE Software, 32(4):85–
87, July 2015.

[Kun04] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.
Wiley-Interscience, 2004.

[LAH10] P. Lago, P. Avgeriou, and R. Hilliard. Guest editors’ introduction: Software archi-
tecture: Framing stakeholders’ concerns. Software, IEEE, 27(6):20–24, Nov 2010.

[LCAC12] Claudia LÃşpez, VÃ ctor Codocedo, HernÃąn Astudillo, and Luiz Marcio Cys-
neiros. Bridging the gap between software architecture rationale formalisms and
actual architecture documents: An ontology-driven approach. Science of Computer
Programming, 77(1):66 – 80, 2012. System and Software Solution Oriented Archi-
tectures.

[LHF05] Niels Landwehr, Mark Hall, and Eibe Frank. Logistic model trees. Mach. Learn.,
59(1-2):161–205, May 2005.

[LLA16] G. A. Lewis, P. Lago, and P. Avgeriou. A decision model for cyber-foraging
systems. In 2016 13th Working IEEE/IFIP Conference on Software Architecture
(WICSA), pages 51–60, April 2016.

277

BIBLIOGRAPHY

[LTZ12] Ioanna Lytra, Huy Tran, and Uwe Zdun. Constraint-based consistency checking
between design decisions and component models for supporting software architec-
ture evolution. In Tom Mens, Anthony Cleve, and Rudolf Ferenc, editors, 16th
European Conference on Software Maintenance and Reengineering, CSMR 2012,
Szeged, Hungary, March 27-30, 2012, pages 287–296. IEEE, 2012.

[LZ13] Ioanna Lytra and Uwe Zdun. Supporting architectural decision making for systems-
of-systems design under uncertainty. In Proceedings of the First International
Workshop on Software Engineering for Systems-of-Systems, Montpellier, France,
July 2, 2013, pages 43–46. ACM, 2013.

[May14] P. Mayring. Qualitative Content Analysis. Theoretical Foundation, Basic Proce-
dures and Software Solution. Beltz, 2014.

[MBF+90] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and
Katherine Miller. Wordnet: An on-line lexical database. International Journal
of Lexicography, 3:235–244, 1990.

[MBH+15] Laura Moreno, Gabriele Bavota, Sonia Haiduc, Massimiliano Di Penta, Rocco
Oliveto, Barbara Russo, and Andrian Marcus. Query-based configuration of text
retrieval solutions for software engineering tasks. In 10th Joint Meeting on Foun-
dations of Software Engineering (FSE), pages 567–578. ACM, 2015.

[McE02] Mark W. McElroy. The New Knowledge Management: Complexity,Learning,and
Sustainable Innovation. Butterworth-Heinemann, Newton, MA, USA, 2002.

[MHvHA11] Sara Mahdavi-Hezavehi, Uwe van Heesch, and Paris Avgeriou. A pattern language
for architecture patterns and software technologies introducing technology pattern
languages. In Proceedings of the 16th EuroPLoP. Conference Proceedings, 2011.

[Mon06] Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons,
2006.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, 2008.

[MS99] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural
Language Processing. The MIT Press, 1999.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and comparison frame-
work for software architecture description languages. IEEE Trans. Softw. Eng.,
26(1):70–93, January 2000.

[MTA+16] Christian Manteuffel, Dan Tofan, Paris Avgeriou, Heiko Koziolek, and Thomas
Goldschmidt. Decision architect âĂŞ a decision documentation tool for industry.
Journal of Systems and Software, 112:181 – 198, 2016.

[MTK+14] Christian Manteuffel, Dan Tofan, Heiko Koziolek, Thomas Goldschmidt, and Paris
Avgeriou. Industrial Implementation of a Documentation Framework for Architec-
tural Decisions. In WICSA’14, pages 225–234. IEEE, 2014.

[MW12] C. Miesbauer and R. Weinreich. Capturing and maintaining architectural knowledge
using context information. In WICSA/ECSA, IEEE/IFIP, pages 206–210, Aug 2012.

278

BIBLIOGRAPHY

[MW13] Cornelia Miesbauer and Rainer Weinreich. Classification of design decisions: An
expert survey in practice. In Proceedings of the 7th European Conference on Soft-
ware Architecture, ECSA’13, pages 130–145, Berlin, Heidelberg, 2013. Springer-
Verlag.

[NP13] Marcin Nowak and Cesare Pautasso. Team Situational Awareness and Architectural
Decision Making with the Software Architecture Warehouse. In ECSA’13. IEEE,
2013.

[NSMB12a] S.M. Nasehi, J. Sillito, F. Maurer, and C. Burns. What makes a good code example?:
A study of programming q and a in stackoverflow. In ICSM, pages 25–34, Sept
2012.

[NSMB12b] S.M. Nasehi, J. Sillito, F. Maurer, and C. Burns. What makes a good code exam-
ple?: A study of programming q and a in stackoverflow. In Software Maintenance
(ICSM), 2012 28th IEEE International Conference on, pages 25–34, Sept 2012.

[Ome01] Borys Omelayenko. Learning of ontologies for the web: the analysis of existent
approaches. In First International Workshop on Web Dynamics in Conjunction with
the Eighth International Conference on Database Theory London, UK, page 16,
2001.

[PBDP+14] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. Mining stackoverflow to turn the ide into a self-confident program-
ming prompter. In Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, pages 102–111, New York, NY, USA, 2014. ACM.

[PBL13a] L. Ponzanelli, A. Bacchelli, and M. Lanza. Leveraging crowd knowledge for soft-
ware comprehension and development. In 2013 17th European Conference on Soft-
ware Maintenance and Reengineering, pages 57–66, March 2013.

[PBL13b] L. Ponzanelli, A. Bacchelli, and M. Lanza. Seahawk: Stack overflow in the ide. In
2013 35th International Conference on Software Engineering (ICSE), pages 1295–
1298, May 2013.

[Pea00] K. Pearson. On a criterion that a given system of deviations from the probable in
the case of correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling. pages 157–175, 1900.

[Phi99] Geoffrey Phipps. Comparing observed bug and productivity rates for java and c++.
Software: Practice and Experience, 29(4):345–358, 1999.

[Pla99] John C. Platt. Advances in kernel methods. chapter Fast Training of Support Vec-
tor Machines Using Sequential Minimal Optimization, pages 185–208. MIT Press,
Cambridge, MA, USA, 1999.

[PM13] Dennis Pagano and Walid Maalej. How do open source communities blog? Empir-
ical Software Engineering, 18(6):1090–1124, 2013.

[Pol66] Michael Polanyi. The Tacit Dimension. Doubleday, New York, 1966.

[PT09] Microsoft Patterns and Practices Team. Microsoft Application Architecture Guide,
2nd Edition. Microsoft Press, 2009.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1993.

279

BIBLIOGRAPHY

[RM14] V. S. Rekhav and H. Muccini. A study on group decision-making in software archi-
tecture. In 2014 IEEE/IFIP Conference on Software Architecture, pages 185–194,
April 2014.

[Rok10] Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1):1–
39, 2010.

[RR08] R.L. Rosnow and R. Rosenthal. Beginning Behavioral Research: A Conceptual
Primer. Pearson/Prentice Hall, 2008.

[RS15] Christoffer Rosen and Emad Shihab. What are mobile developers asking about?
a large scale study using stack overflow. Empirical Software Engineering, pages
1–32, 2015.

[RYR14] M. M. Rahman, S. Yeasmin, and C. K. Roy. Towards a context-aware ide-based
meta search engine for recommendation about programming errors and excep-
tions. In 2014 Software Evolution Week - IEEE Conference on Software Mainte-
nance, Reengineering, and Reverse Engineering (CSMR-WCRE), pages 194–203,
Feb 2014.

[Sch05] Karin Kipper Schuler. Verbnet: A Broad-coverage, Comprehensive Verb Lexicon.
PhD thesis, Philadelphia, PA, USA, 2005. AAI3179808.

[Seb02] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Com-
put. Surv., 34(1):1–47, March 2002.

[Sei06] I. Seidman. Interviewing as Qualitative Research: A Guide for Researchers in
Education and the Social Sciences. Teachers College Press, 2006.

[SLK09] Mojtaba Shahin, Peng Liang, and Mohammad Reza Khayyambashi. Architectural
design decision: Existing models and tools. In WICSA/ECSA’09. IEEE, 2009.

[SM86] G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., 1986.

[Squ15] M. Squire. Should we move to stack overflow? measuring the utility of social media
for developer support. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 2, pages 219–228, May 2015.

[SRZ15] M. Soliman, M. Riebisch, and U. Zdun. Enriching architecture knowledge with
technology design decisions. In WICSA, pages 135–144, May 2015.

[Sut92] Jean Tague Sutcliffe. The pragmatics of information retrieval experimentation, re-
visited. Information Processing and Management, 28(4):467 – 490, 1992.

[SZP07] Nelly Schuster, Olaf Zimmermann, and Cesare Pautasso. Adkwik: Web 2.0 collab-
oration system for architectural decision engineering. In Nineteenth International
Conference on Software Engineering and Knowledge Engineering (SEKE 2007),
pages 255–260, Boston, USA, July 2007.

[TA05] J. Tyree and A. Akerman. Architecture Decisions: Demystifying Architecture.
IEEE Software, 22(2):19–27, 2005.

[TAJ+10] Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla, and Muhammad
Ali Babar. A comparative study of architecture knowledge management tools. Jour-
nal of Systems and Software, 83(3):352–370, 2010.

280

BIBLIOGRAPHY

[Tan11] Antony Tang. Software designers, are you biased? In Proceedings of the 6th In-
ternational Workshop on SHAring and Reusing Architectural Knowledge, SHARK
’11, pages 1–8, New York, NY, USA, 2011. ACM.

[TBGH05] A. Tang, M. A. Babar, I. Gorton, and Jun Han. A survey of the use and documen-
tation of architecture design rationale. In 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA’05), pages 89–98, 2005.

[TBS11a] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. How do programmers
ask and answer questions on the web? (nier track). In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, pages 804–807, New
York, NY, USA, 2011. ACM.

[TBS11b] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. How do programmers
ask and answer questions on the web? (nier track). In ICSE, pages 804–807. ACM,
2011.

[TBSvdW18] Antony Tang, Floris Bex, Courtney Schriek, and Jan Martijn E.M. van der Werf.
Improving software design reasoningâĂŞa reminder card approach. Journal of Sys-
tems and Software, 144:22 – 40, 2018.

[TGA11] Dan Tofan, Matthias Galster, and Paris Avgeriou. Capturing tacit architectural
knowledge using the repertory grid technique (nier track). In ICSE, pages 916–
919. ACM, 2011.

[TGAS14] Dan Tofan, Matthias Galster, Paris Avgeriou, and Wes Schuitema. Past and future
of software architectural decisions - a systematic mapping study. Information and
Software Technology, 56:850 – 872, 2014.

[THV09] A. Tang, J. Han, and R. Vasa. Software architecture design reasoning: A case for
improved methodology support. IEEE Software, 26(2):43–49, March 2009.

[TMD09] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture: Founda-
tions, Theory, and Practice. Wiley Publishing, 2009.

[TR16] Christoph Treude and Martin P. Robillard. Augmenting api documentation with
insights from stack overflow. In Proceedings of the 38th International Conference
on Software Engineering, ICSE ’16, pages 392–403, New York, NY, USA, 2016.
ACM.

[TTHV08] Antony Tang, Minh H. Tran, Jun Han, and Hans Vliet. Design reasoning improves
software design quality. In Proceedings of the 4th International Conference on
Quality of Software-Architectures: Models and Architectures, QoSA ’08, pages 28–
42, Berlin, Heidelberg, 2008. Springer-Verlag.

[TVV09] A. Tang and H. Van Vliet. Modeling constraints improves software architecture
design reasoning. In Software Architecture, 2009 European Conference on Software
Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference on, pages
253–256, 2009.

[TvV12] A. Tang and H. van Vliet. Design strategy and software design effectiveness. Soft-
ware, IEEE, 29(1):51–55, Jan 2012.

[vdVB13] JanSalvador van der Ven and Jan Bosch. Making the right decision: Supporting
architects with design decision data. In Software Architecture, volume 7957, pages
176–183. Springer, 2013.

281

BIBLIOGRAPHY

[VFS13] B. Vasilescu, V. Filkov, and A. Serebrenik. Stackoverflow and github: Associa-
tions between software development and crowdsourced knowledge. In (SocialCom),
2013, pages 188–195, Sept 2013.

[vHA11] U. van Heesch and P. Avgeriou. Mature architecting - a survey about the reasoning
process of professional architects. In Working IEEE/IFIP Conference on Software
Architecture (WICSA), pages 260–269. IEEE, 2011.

[vHAH12] Uwe van Heesch, Paris Avgeriou, and Rich Hilliard. A documentation framework
for architecture decisions. Journal of Systems and Software, 85(4):795–820, 2012.

[vHJPB+17] U. van Heesch, A. Jansen, H. Pei-Breivold, P. Avgeriou, and C. Manteuffel. Plat-
form design space exploration using architecture decision viewpointsâĂŞa longitu-
dinal study. Journal of Systems and Software, 124:56 – 81, 2017.

[vK12] Georg von Krogh. How does social software change knowledge management? to-
ward a strategic research agenda. The Journal of Strategic Information Systems,
21:154 – 164, 2012.

[VKZ04] M. Voelter, M. Kircher, and Uwe Zdun. Remoting Patterns - Foundations of En-
terprise, Internet, and Realtime Distributed Object Middleware. Wiley Series in
Software Design Patterns. J. Wiley & Sons, Hoboken, NJ, USA, October 2004.

[WCH18] Shaowei Wang, Tse-Hsun Chen, and Ahmed E. Hassan. Understanding the fac-
tors for fast answers in technical q&a websites. Empirical Software Engineering,
23(3):1552–1593, Jun 2018.

[WD10] Daya C. Wimalasuriya and Dejing Dou. Ontology-based information extraction:
An introduction and a survey of current approaches. J. Inf. Sci., 36(3):306–323,
June 2010.

[Wen98] Etienne Wenger. Communities of Practice - Learning, Meaning and Identity. Uni-
versity Press, Cambridge, 1998.

[WFH11] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 3rd edition, 2011.

[WG14] Rainer Weinreich and Iris Groher. A fresh look at codification approaches for
sakm: A systematic literature review. In Paris Avgeriou and Uwe Zdun, editors,
Software Architecture, volume 8627 of Lecture Notes in Computer Science, pages
1–16. Springer International Publishing, 2014.

[Wie09] Roel Wieringa. Design science as nested problem solving. In Proceedings of the
4th International Conference on Design Science Research in Information Systems
and Technology, DESRIST ’09, pages 8:1–8:12, New York, NY, USA, 2009. ACM.

[WKRQ+07] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi
Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou,
Michael Steinbach, David J. Hand, and Dan Steinberg. Top 10 algorithms in data
mining. Knowledge and Information Systems, 14(1):1–37, 2007.

[XBL+17] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and
Zhenchang Xing. What do developers search for on the web? Empirical Software
Engineering, 22(6):3149–3185, Dec 2017.

282

BIBLIOGRAPHY

[XPK10] Zhengzheng Xing, Jian Pei, and Eamonn Keogh. A brief survey on sequence clas-
sification. SIGKDD Explor. Newsl., 12(1):40–48, November 2010.

[YDC+18] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig.
Learning to mine aligned code and natural language pairs from stack overflow. In
International Conference on Mining Software Repositories. ACM, 2018.

[Zim11] O. Zimmermann. Architectural decisions as reusable design assets. IEEE Software,
28(1):64–69, Jan 2011.

[ZKL+09] Olaf Zimmermann, Jana Koehler, Frank Leymann, Ronny Polley, and Nelly Schus-
ter. Managing architectural decision models with dependency relations, integrity
constraints, and production rules. Journal of Systems and Software, 82(8):1249–
1267, 2009.

[ZUR+18] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. Are code examples on an online q&a forum reliable? a study of
api misuse on stack overflow. In ICSE’18: The 40th International Conference on
Software Engineering, May 27-June 3, 2018 2018.

[ZYL+15] Y. Zou, T. Ye, Y. Lu, J. Mylopoulos, and L. Zhang. Learning to rank for question-
oriented software text retrieval (t). In Automated Software Engineering (ASE), 2015
30th IEEE/ACM International Conference on, pages 1–11, Nov 2015.

283

Eidesstattliche Versicherung

Declaration of Oath

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrifft selbst verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

I hereby declare, on oath, that I have written the present dissertation on my own and have not used
other then acknowledged resources and aids.

Hamburg, den Unterschrift

	Contents
	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Research Study Design
	1.3.1 Goals of the Study
	1.3.2 Significance of the Study
	1.3.3 Research Questions and Contributions
	1.3.3.1 1st Goal: Understand technology design decisions
	1.3.3.2 2nd Goal: Explore developer communities for architecture knowledge
	1.3.3.3 3rd Goal: Propose approaches to search for architectural information in developer communities

	1.4 Thesis Outline
	1.5 Related Publications

	I Fundamentals of Architecture Knowledge
	2 Background and Related Work
	2.1 Background on Knowledge Management
	2.1.1 Characteristics of Knowledge
	2.1.2 Knowledge Management Process
	2.1.3 Knowledge Management in Communities
	2.1.3.1 Overview on Stack Overflow

	2.2 Software Architecture Design Methods
	2.3 Pattern Languages
	2.4 Architecture Knowledge Management
	2.4.1 Architecture Knowledge Models
	2.4.2 Architecture Knowledge Sharing
	2.4.3 Architecture Knowledge Capturing

	2.5 Developer Communities in Software Engineering Research
	2.5.1 Analyzing Developer Communities
	2.5.2 Using Developer Communities in Software Development

	2.6 Summary

	3 Technology Design Decisions
	3.1 Research Question and Contributions
	3.2 Research Process
	3.2.1 Content Analysis
	3.2.2 Interviews

	3.3 Technology Features
	3.4 Architecturally Significant Technology Aspects
	3.5 Architecture Knowledge for Technology Design Decision
	3.5.1 Elements of Architectural Knowledge
	3.5.2 Solutions' Interactions within an Architectural Knowledge

	3.6 Evaluation of Concepts
	3.6.1 Interview Responses Analysis Results and Observations

	3.7 Discussion
	3.7.1 Interpretation of Results
	3.7.2 Implications of Results on further Research

	II Analysis of Architecture Knowledge in Developer Communities
	4 Architecture-relevant Posts in Developer Communities
	4.1 Research Questions and Contributions
	4.2 Research Process
	4.2.1 Phase 1: Prepare Stack Overflow Posts for Analysis
	4.2.1.1 Phase 1a: Query for Candidate Posts (Sampling)
	4.2.1.2 Phase 1b: Initial Manual Classification of ARPs and Programming Posts

	4.2.2 Phase 2: Classification of ARPs
	4.2.3 Phase 3: Obtain Feedback from Practitioners
	4.2.3.1 Phase 3a: Practitioners Selection
	4.2.3.2 Phase 3b: Evaluation Posts Sampling
	4.2.3.3 Phase 3c: Evaluation Execution

	4.3 Types and Variations of Architecture-relevant Posts
	4.3.1 Types of Architecture-Relevant Posts
	4.3.1.1 Compact Types of Architecure-relevant Posts

	4.3.2 Examples for Architecure-relevant Posts
	4.3.3 Variations from Types of Architecture-relevant Posts
	4.3.3.1 Variants of Solution Identification ARPs:
	4.3.3.2 Variants of Solution Evaluation ARPs:

	4.4 Practitioner Evaluation
	4.4.1 Agreement and Confidence among Participants
	4.4.2 Agreement across ARP Types

	4.5 Discussion
	4.5.1 Interpretation of Results
	4.5.2 Implications of Results on further Research

	5 Architecture Knowledge Ontology in Developer Communities
	5.1 Research Question and Contributions
	5.2 Research Process to Define Ontology
	5.2.1 Data Gathering
	5.2.2 Data Analysis

	5.3 Architecture Knowledge Ontology in Developer Communities
	5.3.1 Simple AK and Lexical Triggers Ontology Classes
	5.3.2 Composite Ontology Classes
	5.3.2.1 (CONF) Architecture Configuration
	5.3.2.2 (CB) Component Behavior
	5.3.2.3 (EX) Existing System
	5.3.2.4 (DI) Design Issue
	5.3.2.5 (REQ) Requirements and Constraints
	5.3.2.6 (UR) User Request
	5.3.2.7 (FEAT) Technology Feature
	5.3.2.8 (ASTA) Technology Benefits and Drawbacks
	5.3.2.9 (ADD) Recommended design decision
	5.3.2.10 (DR) Decision Rule
	5.3.2.11 (CASE) Technology Use-Cases

	5.3.3 Relationships between Ontology Classes
	5.3.3.1 Ontology Classes in Post Structure
	5.3.3.2 Significant Relationships between Ontology Classes

	5.3.4 Distribution of Ontology Classes in Types of ARPs

	5.4 Discussion
	5.4.1 Interpretation of Results
	5.4.2 Implications of Results on further Research

	III Solutions for Architecture Knowledge Acquisition
	6 Scenarios and Perspectives for Using Developer Communities during Architecture Design
	6.1 Research Questions and Contributions
	6.2 Research Process
	6.2.1 Interview Study
	6.2.2 Analysis of Scenarios

	6.3 Perspective of Practitioners on AK Sharing and Reuse from Developer Communities
	6.3.1 Benefits of Using Developer Communities as a Source of AK
	6.3.2 Problems Faced when Searching for AK in Developer Communities
	6.3.3 Solutions to Improve the Search for AK

	6.4 Scenarios for Searching AK in Developer Communities
	6.4.1 Conceptual Elements of Scenarios to Search for AK
	6.4.2 Examples and Types of Scenarios for Searching AK in Developer Communities

	6.5 Discussion
	6.5.1 Interpretation of Results
	6.5.2 Implications of Results on further Research

	7 Classification Approaches for Architecture-relevant Posts
	7.1 Research Questions and Contributions
	7.2 Corpus to Evaluate Classification Approaches
	7.2.1 Development Sample
	7.2.2 Testing Sample

	7.3 Exploring Tags for Identifying Architecture-relevant Posts
	7.4 Classifying Stack Overflow Posts for Architectural Relevance
	7.4.1 Overview
	7.4.2 Bag-of-Words Classification
	7.4.3 Ontology-Based Classification
	7.4.3.1 Single-ontology-class Classification
	7.4.3.2 Multi-ontology-class Classification

	7.4.4 Ensemble Learning

	7.5 Evaluation of Classification Approaches
	7.5.1 Accuracy of Classification Approaches
	7.5.1.1 Study Design
	7.5.1.2 Results
	7.5.1.3 Analysis of Classification Accuracy

	7.5.2 Generalisability of Classification Approaches
	7.5.2.1 Study Design
	7.5.2.2 Results

	7.6 Significant Terms and Ontology Classes
	7.6.1 Significant Terms to Identify ARPs
	7.6.2 Significant Ontology Classes to Identify ARPs
	7.6.2.1 Simple Ontology Classes and Lexical Triggers
	7.6.2.2 Sequences of Ontology Classes and Composite Ontology Classes

	7.7 Discussion
	7.7.1 Interpretation of Results
	7.7.2 Implications of Results on further Research

	8 Enhanced Search Approach for Architectural Information in Developer Communities
	8.1 Research Question and Contributions
	8.2 Overview of Enhanced Search Approach
	8.2.1 Steps of Enhanced Search Approach
	8.2.2 Relating Types of Architecture-relevant Posts and Design Activities
	8.2.3 Implementation of Search Approach

	8.3 Evaluation of Search Approach
	8.3.1 Experiment Design
	8.3.1.1 Corpus for Experiment
	8.3.1.2 Architecture Design Tasks
	8.3.1.3 Experiment Execution
	8.3.1.4 Measures of Effectiveness
	8.3.1.5 Exit Survey

	8.3.2 Evaluation Results
	8.3.2.1 Effectiveness of the Search Approach
	8.3.2.2 Results of the Exit Survey

	8.4 Discussion
	8.4.1 Interpretation of Results
	8.4.2 Implications of Results on further Research

	IV Conclusion
	9 Summary, Discussion and Future Work
	9.1 Summary of the Study
	9.2 Threats to Validity Assessment
	9.2.1 Threats to Validity for the Interview Studies
	9.2.2 Threats to Validity for the Content Analysis Studies
	9.2.3 Threats to Validity for the Experiments

	9.3 Discussion of the Contributions
	9.4 Future Work

	V Appendices
	A Stack Overflow Posts Analysis
	A.1 Technology Specification Resources
	A.2 Stack Overflow Posts Repository
	A.2.1 Queries of Posts
	A.2.2 List of Architecture-relevant Stack Overflow Posts
	A.2.3 Additional examples of Architecture-relevant Stack Overflow Posts

	A.3 Architecture Knowledge Ontology in Stack Overflow
	A.3.1 Coding guide
	A.3.2 Atlas.ti Snapshots
	A.3.3 Instances of Ontology classes

	B Interviews Materials
	B.1 Interview Questions to Understand Technology Design Decisions
	B.2 Interview Questions to Understand the Use of Developer Communities

	C Experiments Materials and Detailed Results
	C.1 List of Stack Overflow Tags
	C.2 List of Distinctive Keywords and Ontology Classes
	C.3 Experiment to Search for Architectural Information in Stack Overflow
	C.3.1 Architecture Searching Tasks
	C.3.2 Queries to Search for Architecture Information
	C.3.3 Relevant Posts for Searching Tasks

	List of Figures
	List of Tables
	Bibliography

