
Coding Book 
 
 
Composite Ontology Classes 
 
A. Design Issue: expressed in ARPs through description for relevant architecture 

configurations. The described configurations concern either part of a planned design or an 
existing software system. Design issues could be described at different levels of 
abstraction. Most ARP questions provide a long description for the design issue in a 
couple of sentences, while during answers short references for known design issues are 
commonly used. 

B. Requirements: Three types of requirements were found: 1) Quality attribute requirements 
are mentioned explicitly using the standard quality attribute terms. 2) Technology features 
requirements show the need of user to have certain technology features as part of the 
proposed solution. 3) Business requirements are expressed using their business domain 
terms. 

C. Constraints: We found three types of constraints: 1) Team skills constraints express the 
level of knowledge of the user to a certain technology solution. 2) Development time 
constraint is indicated by expressing explicitly the priority of development time to the user. 
3) Solution constraint is also expressed explicitly by indicating which technology solutions 
must be considered in the solutions. 

D. User Request: exist in ARP question or title in a form of questions. User request 
complements design issue, requirements and constraints by showing the type of 
architecture activity (evaluation or synthesis) considered by the user in this post. The 
request might embody short references for design issues and requirements. 

E. Technology Solutions Features: We found two main types of technology features: 1) 
Development features are expressed through certain programming activities (e.g. 
debugging) or programming features and tools (e.g. inheritance, code generation), 2) 
Behavioral features are expressed through technology specific component and class 
names. In addition, behavioral features could be further classified among different quality 
attributes (e.g. Interoperability features). Moreover, some of the behavioral features are 
explained through their implemented architectural patterns or their relationship with other 
technologies. 

F. Technology Solutions ASTAs: users mention technology solutions’ benefits and 
drawbacks, as part of their argument for recommending or excluding technology solutions. 
A key aspect which distinguishes ASTAs is the extensive usage of adjectives and adverbs 
in combination with technology features and quality attributes. The adjectives or adverbs 
are used to express the advantages or disadvantages of certain technology solutions or 
features. 

G. Technology Solutions Use-Cases: These are either success or failure stories for the 
usage of technology solutions at certain contexts. The stories could be coming from 
personal experiences of users, or well-known examples for existing systems. The context 
associated with stories could include domain description, architecture configurations, 
infrastructure, and constraints. 

H. Design Decisions: ADDs came in different forms: 1) Recommended ADDs represent the 
majority of ADDs. They are recommendation from users based on their experience or 
opinion for certain architectural solutions. 2) Taken ADDs are ADDs, which have been 
decided by the user who asked the question. Usually after discussions with other users. 3) 
Planned and existing system ADDs come usually as part of the design issue description. 
They represent ADDs which have been previously taken or implemented. 

I. Decision Rules: Conditional recommendation for architectural solutions. They consists of 
a rule condition and recommendation. The condition might involve other ontology classes 
such as requirements, constraints, architectural configuration, and existing system 
description. On the other hand, recommendations involve recommended ADDs for certain 
technology solution or architecture configuration. 



J. Architecture configuration: represents part of an architectural model. The ontology 
class is represented through a sentence, which consists of one or more component 
names or application types associated with a connector verb or name. (e.g. “Pushing data 
from the server to the client”, “Rubby app sends a request to Java app”) 

K. Component behavior: A sentence which describes the behavior of a component. It give 
an overview about the type of implemented logic and complexity. In addition, sometimes 
component interface and internal operations are mentioned during the description. (e.g. 
“service can be viewed as the business layer of the application”, “process will run 
asynchronously”). 

L. Existing system description: describe the architecture of an existing system, which a 
user is dealing with. The description depends on other ontology classes such as 
architecture configuration and existing system ADD. In addition, technologies and 
application types are commonly mentioned within the description. (e.g. “I am working on a 
RESTfull application”, “An existing process changes the status field of a booking record in 
a table, in response to user input.”, “I am using Apache MINA in my open source project”) 

 
 
The table below list examples for the aforementioned defined ontology classes. 
 

AK Ontology 
Class 

Example 

Design Issue 4741713 → “I want to send a batch of 20k JMS messages to a same queue. 
I'm splitting the task up using 10 threads, so each will be processing 2k 
messages. I don't need transactions.” 

Requirement 4473567 → “Our criteria: 1. Short roundtrip time. 2. Low roundtriptime 
standard deviation. (We understand that garbage collection pauses and 
network usage spikes can affect this value). 3. High availability. 4. 
Scalability (we may want to have multiple instances of Ruby and Java app 
exchanging pointtopoint messages in the future). 5. Ease of debugging and 
profiling. 6. Good documentation and community support.” 

Constrain Team skills constrains: 13016406 → “I have never used Netty” 
Solution constrain: 12783677 → “This needs to adhere to WCF REST 
standards” 

User Request 1582952 → “How do I choose between WCF, REST, POX and RIA services 
for a new Silverlight application” 

Technology 
Feature 

1429318 → “EMS is centralized (hub and spoke) on a specific server(s) and 
can traverse subnets no problem” 
10375137 → “ActiveMQ is a widely used message broker that offers FIFO 
queues” 

Technology 
ASTA 

Benefit: 100993 → “It is much easier to debug Webservices over the wire as 
the data is SOAP/HTTP , which can be easily captured via sniffing tools for 
debugging” 
Drawback: 19758215 → “performance difference will be negligible and in 
many cases worse for NIO (Netty with thread sharing)” 

Technology 
Use-case 

12783677 → “An application I'm working on has a similar architecture, and 
I'm planning to use SignalR to push updates to clients, using long polling 
techniques (...) I have implemented this now, and it works very well” 

Design 361491 → “I would highly recommend using WCF; and use the WCF 



Decision Service Library project over the Silverlight-enabled web service” 

Decision Rule 17806977 → “If performance is your main criteria, you should definitely look 
at ZeroMQ.” 

 
Simple ontology classes: 

1. Technology name: represented with the name of a technology (e.g. “WCF”, “Netty”, 
“Biztalk”). 

2. Technology type name: they represent a family of technologies (e.g. “Message 
queues”, “SOAP Library”, “message protocol”) 

3. Pattern name: represented with the name of a pattern (e.g. “Messaging”, “Rest”, 
“FIFO” “Queuing”). 

4. Quality attribute name: represented with the name of quality attributes based on ISO 
standard (Ref) (e.g. “Performance”, “Reliability”, “Interoperability”, “Scalability”) 

5. Application types: They are usually represented with words “application” or “app” 
associated with an adjective to define the type of the application. (e.g. “distributed 
application“, “web app”, “Java application”, “Mobile app”). 

6. Component name: As part of describing a software architecture. Processing units or 
storage components are mentioned using different terms. (e.g. “server”, “database”, 
“service”, “back end”, “system”, “client”, “process”) 

7. Component element: They are elements which constitute a component. (e.g. 
“operation”, “method”, “job”, “event”, “interface”, “field”) 

8. Connector verb/name: used to express communication to or from a certain 
component. They could be expressed using verbs as well as terms. (e.g. “send”, 
“receive”, “read”, “write”, “communication”, “connection”) 

9. Connector data: they are the data need to be transferred through the connector to or 
from a component. (e.g. “data”, “request”, “response”, “message”, “object”) 

10. Infrastructure term: they are terms used to describe an infrastructure or networking. 
(e.g. “firewall”, “internet”, “NAT”, “port”, “load balanced”, “data center”) 

11. Cost: identified with words like “budget” or “cost”. 
12. Programming activity: Describing common programming activities. (e.g. “debug”, 

“deploy”, “write code”) 
13. Programming element: Describing common programming concepts. (e.g. “class”, 

“method”, “attribute”, “inheritance”, “query”) 
14. Feature terms: Behavioral features are expressed through several technology 

component terms, as well as class names. (e.g. “Authenticator”, “SoapServer”, 
“serialize”, “endpoint”, “binding”, “socket”, “stream”). On the other hand, development 
features are expressed through programming elements, development tools, and 
programming activities. 

 
Decision bound between ontology classes 
 

1. Difference between technology solution features and requirements: Technology 
features describe the capabilities of the technologies. Usually verbs like “support” or 
“provide” are used to express that a certain technology offer a certain capability. On 
the other hand, requirements describe the needs of the user. Usually verbs like 
“require” or “need” or “would like” are used to express the wishes of users for certain 
quality attributes or technology features. 

2. Difference between technology solutions use-cases and design decisions: 
Technology solution use cases describe a story in the past from the experience of the 
user. The story describes several context details. On the other hand, design 
decisions are presented as recommendations for using a certain technology solution 
using simple present tense (e.g. “use”, “go with”) as a response to the requirements 
and user request mentioned in the question section of the post. 



3. Difference between design decisions and decision rules: Decision rules are a more 
complex structure than design decisions. Decision rules always have a conditional 
statement, while design decisions are coming in imperative or normal statements. 
Moreover, decision rules contain design decisions. However, design decisions could 
also come independently without decision rules. 

4. Difference between technology solution features and benefits: even though 
technology solution features and benefits have similar structure. Technology benefits 
are differentiated through the extensive use of adjectives and adverbs (e.g. “very”, 
“fast”, “easy”, “better”), as well as the usage of keywords like “advantage” or “benefit”. 

 
	


