
Numerical Radiation Transport
Algorithms for Emergent
Computer Architectures

Dissertation

zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und

Naturwissenschaften

Fachbereich Physik

der Universität Hamburg

vorgelegt von

Viktoria Wichert

Hamburg
2018



Gutachter/innen der Dissertation: Prof. Dr. Peter Hauschildt

Prof. Dr. Michael Hinze
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Numerical Radiation Transport Algorithms for

Emergent Computer Architectures

Abstract

The objective of this thesis is to research effective techniques for solving the
3D radiative transfer problem and to equip the radiative transfer algorithm of the
PHOENIX/3D atmosphere modeling code with an alternative parallel solver.
Due to its inherently parallel design and mirroring of the radiative transfer prob-
lems’ mathematical properties, e.g., narrow-bandedness, a modified parallel Gauss
algorithm was selected. It was implemented as a stand-alone OpenCL code, as
well as a MPI code, which is already a functioning part of PHOENIX/3D.
Both implementations produce correct results. However, at the moment, the MPI-
implementation of the modified Gauss method needs significantly longer to finish
execution than the original parallel Jacobi solver of PHOENIX/3D. On the other
hand, it requires less iterations to converge, which is a favorable property, espe-
cially for large problems.
In summary, the modified parallel Gauss method does indeed work as a solver for
the 3D radiative transfer problem, although further optimization is necessary for
it to become a reasonable alternative to the original in-use solver of PHOENIX/3D.
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Numerische Strahlungstransport-Algorithmen für

moderne Computerarchitekturen

Zusammenfassung

Das Ziel dieser Arbeit ist es, effektive Methoden zur Lösung des 3D Strahlungs-
transportproblems zu finden, und den PHOENIX/3D Code zur Atmosphärenmod-
ellierung mit einem alternativen, parallelen Löser dafür auszustatten.
Es wurde ein modifizierter, paralleler Gauss-Algorithmus ausgewählt, da er grundsätzlich
parallel entworfen wurde und mathematische Eigenschaften des Strahlungstrans-
portproblems, wie z.B. seine Band-Struktur, widerspiegelt. Der Algorithmus wurde
sowohl als eigenständiger OpenCL-Code, als auch als MPI-Code implementiert,
welcher bereits in PHOENIX/3D integriert ist.
Beide Implementationen liefern korrekte Ergebnisse. Allerdings benötigt der mod-
ifizierte Gauss-Löser signifikant länger als der bereits in PHOENIX/3D vorhan-
dene parallele Jacobi-Löser. Andererseits braucht er weniger Iteration, um ein
konvergiertes Ergebnis zu erhalten, was gerade für große Probleme eine vorteil-
hafte Eigenschaft ist.
Zusammengefasst ist die modifizierte Gauss-Methode tatsächlich ein funktionieren-
der Löser für das 3D Strahlungstransportproblem, obwohl noch weitere Opti-
mierungen notwendig sind, damit er eine echte Alternative zum bereits vorhan-
denen PHOENIX/3D Strahlungstransport-Löser ist.
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Chapter 1

Introduction

The scope of numerical mathematics lies in developing methods to calculate suffi-
ciently good approximate solutions when analytical solutions are hard to evaluate,
unknown or even non-existent. Throughout the history of mathematics, numerical
methods were developed in close alignment with the needs of its areas of applica-
tion (see, e.g., [5]). Advancements in numerical methods often occurred with the
corresponding advancements in, e.g., physics, astronomy and engineering. Nev-
ertheless, numerical mathematics was not regarded as a separate mathematical
discipline until the 20th century. During this time, numerical methods faced re-
vived popularity due to the development of modern computers and their rapidly
increasing computing capacities.
Apart from developing algorithms, modern numerical analysis also addresses error
estimates, uniqueness and existence theorems, as well as convergence properties.
Still, the field is driven by the demands of modern applications: more complex
problems in science and industry lead to the invention of more sophisticated nu-
merical methods. Currently, the possibilities of parallel computing give rise to
parallel numerical algorithms, thus computing results faster. In this context, the
speed-up is not necessarily a goal in itself, but allows to find solutions to even
larger, more complex models in a broad variety of applications.

One recurring challenge in modern applications is the radiative transfer prob-
lem. It plays a role in combustion physics, medicine, climatology and astrophysics.
Efficient numerical methods for the radiative transfer equation, therefore, approach
a broad variety of possible applications. Furthermore, applying exactly tailored
parallel numerical algorithms to the radiative transfer problem will speed-up the
numerical computations. Carefully considering the portability of code will also
make those algorithms accessible on a broad range of computer architectures.
Three-dimensional atmosphere modeling is one of the applications where realistic
models depend heavily on modern computing resources, as well as parallel nu-
merical radiative transfer algorithms. It is an inverse problem, in the sense that
fitting observational data to model atmospheres allows conclusions on stellar and
planetary parameters, e.g., their chemical composition.

The objective of this thesis is to research effective techniques for solving the
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CHAPTER 1. INTRODUCTION

radiative transfer problem and to equip the radiative transfer algorithm of the
PHOENIX/3D code with an alternative parallel solver. PHOENIX/3D is a tool
for modeling stellar and planetary atmospheres (see, e.g., [18]). This includes,
among others, finding a numerical solution to the radiative transfer equation via
the Operator Splitting method, while simultaneously computing the corresponding
level populations of the atoms and molecules in regard.
Due to the complex physics and the large size of the models, parallel computing
is necessary to obtain insightful results. Another crucial criterion is portability,
so that the code can be executed on different, current and emergent, computer
architectures. Implementing an alternative parallel solver into the PHOENIX/3D
radiative transfer algorithm should not only result in a speed-up of current set-ups,
but also enable even more sophisticated model atmospheres.

Analyzing the computing time of a “typical” parallel PHOENIX/3D run shows
that the radiative transfer calculations take up a significant amount of overall run-
time, in some circumstances up to 80%. The high computational cost stems from
the complexity of the radiative transfer problem, as well as the large amount of
dimensions involved, i.e., spacial, angular and wavelength-dimensions. Therefore,
it makes sense to approach further parallelization efforts in atmosphere modeling
via effectively parallelizing the radiative transfer algorithm.
There are several current efforts to enhance the parallelization of the PHOE-
NIX/3D radiative transfer algorithm. In [4], [35], [28] and [39], some of them
are presented. These approaches already resulted in a decrease of runtime and will
allow larger, more detailed models as the efforts on this topic proceed. However,
none of them focus on solving the emerging linear system of equations. As a con-
sequence, solving the radiative transfer problem effectively gains further relevance
as the overall runtime decreases.

In the PHOENIX/3D code, the radiative transfer calculations alternate with
the estimation of occupation numbers at every wavelength until the model con-
verges. During each radiative transfer iteration, a similar system of equations
is solved for the angle-averaged intensities. The large linear system is generated
by the Operator Splitting approach. Between iterations, only the right-hand-side
(RHS) of the equations changes; the matrix is constant throughout the calculation.
Solving these recurring systems of equations effectively in parallel is the main fo-
cus of this work. Therefore, a modified parallel Gauss algorithm was implemented.
The algorithm employs a similar approach as the well-known classic Gauss elim-
ination algorithm: a reduced system with favorable properties is computed from
the original problem. After solving the reduced system, the solution to the origi-
nal system of equations can be reconstructed via back-substitution. The reduced
system is much smaller than the large original system, e.g., has a matrix size of a
few thousands instead of millions. Also, the matrix factorization only needs to be
computed once. For all subsequent problems with the same matrix, the factoriza-
tion can be re-used. This is especially beneficial for the radiative transfer problem,
since it requires to repeatedly solve similar systems of equations.
Furthermore, the modified Gauss algorithm, that will be presented in this work,
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has other properties that match the radiative transfer algorithm: it is designed
for sparse, narrow-banded problems. During the Operator Splitting step in the
PHOENIX/3D radiative transfer code, an approximate operator is introduced and
for physical and computational reasons chosen to be narrow-banded.

Altogether, the modified Gauss approach is promising to effectively further
parallelize the radiative transfer calculations of the PHOENIX/3D atmosphere
modeling code: it is designed as a parallel algorithm from scratch, in contrast to
the common parallelization of originally serial solvers, and it takes into account
that similar systems of equations have to be solved repeatedly. In addition, the
algorithm caters precisely to the mathematical properties of the problem, i.e., the
narrow-bandedness and diagonal dominance. The new solver promises a speed-up
in calculations, especially for complicated physical set-ups that need a large num-
ber of iterations, e.g., situations with heavy scattering.

Two versions of the modified Gauss solver have been implemented for this the-
sis: one stand-alone OpenCL version and one MPI version that is already part of
the PHOENIX/3D radiative transfer algorithm.
Both implementations reproduce results correctly and can be used on a broad
range of computer architectures and devices. However, their currently high mem-
ory requirements severely limit the problem sizes that they can be applied to.
Additionally, the execution time of the modified Gauss solver’s MPI implemen-
tation is high compared to the other solvers currently used in PHOENIX/3D. So
there is definitely the need to optimize the implementations with regard to mem-
ory management and execution time before they are fit to be used as alternatives
to the current solvers in PHOENIX/3D.
On the other hand, the MPI-implementation shows promising convergence behav-
ior, in that it needs fewer iterations to find a solution with the required accuracy.

The remainder of this thesis is structured as follows: Chapter 2, “Parallel
Numerical Mathematics”, introduces approaches for successfully parallelizing ap-
plications, and gives an overview of numerical algorithms for solving linear systems
of equations. In Chapter 3, “3D Radiative Transfer in Stellar Atmospheres”, ra-
diative transfer is treated both from the physical as well as the mathematical
viewpoint, including a description of the numerical radiative transfer algorithms
used in PHOENIX/3D. Afterwards, Chapter 4, “Numerical Methods” proposes a
different approach to solve the radiative transfer problem numerically. Therefore,
the modified parallel Gaussian Elimination algorithm is introduced as alternative
solver. After a short detour to an additional group of linear solvers, the Krylov-
Subspace Methods, the chapter ends with a summary of how the modified parallel
Gauss algorithm was implemented. In Chapter 5, “Tests”, those implementations
are tested with regard to several requirements, before Chapter 6, “Discussion and
Outlook”, concludes the thesis with a summary and discussion of results in the
context of effective parallel algorithms in radiative transfer applications, as well as
future opportunities in this field.
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Chapter 2

Parallel Numerical
Mathematics

This chapter introduces the basic concepts of parallel numerical mathematics. It
focuses on how developing algorithms for parallel execution differs from designing
serial programs.
The first section addresses parallel computing with topics such as hardware archi-
tecture, measuring performance and parallel programming concepts. Thereafter,
an introduction to parallel solvers for linear systems of equations is featured, il-
lustrated by the class of operator splitting methods as they are currently used in
PHOENIX/3D.

2.1 Introduction to Parallel Computing

The goal of parallel computing is to use existing computational resources more
efficiently. Through adapting code to support parallel execution and employing
several processing elements, existing problems can be solved significantly faster.
It is well worth a thought to use the decreased execution-time to compute even
more physically accurate model scenarios in now realistic timeframes.
To illustrate, Fig. 2.1 shows the execution-times for computing the radiative trans-
fer problem for one wavelength point in different configurations (also see [41]).
As expected, the parallel execution is faster than the serial computation. Still,
there are significant differences in the run-times of the parallel codes, one paral-
lelized using MPI, the other using OpenCL. A comparison of execution-times on
a CPU shows that the code parallelized with OpenCL runs faster than the MPI-
parallelized code-version, which is still significantly faster than the serial code.
This behavior is consistent on each of the three tested CPU models. Additionally,
the OpenCL code was run on a AMD Radeon GPU, which achieved the lowest
run-time in this test but is not compatible with MPI code, and an Intel MIC
Acceleration card, which also had a low run-time with the OpenCL code and the-
oretically is capable of executing MPI code.
The way of parallelization that is appropriate for a problem, therefore, depends,
among other things, on the kind of devices on which the parallel program is in-
tended to be run on, as well as the degree of parallelism that is intended, namely
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Figure 2.1: Timing comparison of a single wavelength RT computation on different
devices (see [41])

if it is run on a massively parallel cluster with thousands of processing elements
or, e.g., a GPU in an office computer with several hundreds of processing elements.
However, not every task can be parallelized. Sometimes, data- or control-dependencies
might be present, which results in a situation where one step cannot be executed
until the data is updated or a previous task has been accomplished.

Init task A task B task C End

Init task A2

task A1

task A3

task B

task C1

task C2

task C3

task C4

End

Figure 2.2: Schematic depiction of parallelizing an algorithm.

An illustration of parallelizing an algorithm is depicted in Fig. 2.2. In this ex-
ample A, B, and C represent tasks which together make up the algorithm. The
upper figure shows the serial execution of that algorithm, whereas the lower gives
an example for the algorithm’s parallelization. B is exemplary for a task that can-
not be parallelized. Therefore, only tasks A and C are executed in parallel with
different degrees of parallelism. Between tasks, some kind of synchronization takes
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2.1. INTRODUCTION TO PARALLEL COMPUTING

place. Depending on the parallelization concept and the intended hardware, this
might happen through explicit communication between the processing elements or
through shared variables.

Developing effective parallel code hence requires an understanding of not only
the algorithms, but also of machine architectures and concepts of parallel program-
ming. A short overview of those is given next.

Common Concepts & Architectures The first microprocessors were build in
the 1970s. Since then, their memory and clock-speed increased, while their size
decreased. For an overview of the stages of microprocessor development consult,
e.g., [8]. Nowadays however, manufacturers strain to design and build yet faster
processors, due to physical and power consumption constraints. A tactic to still
achieve higher performance is to use several cooperating processors in parallel.
Some common approaches are presented here.
Clusters, for instance, are defined as a collection of interconnected stand-alone
computers, called nodes, that work together as a single integrated computing re-
source.
Another approach is to design so-called Multi-core processors, CPUs containing
several independent processing units called cores. A modern multi-core processor
typically is composed of two to sixteen cores. The term many-core processor is
commonly used to describe multi-core processors with a higher number of cores,
especially the many-integrated-core products by Intel with typically 64 to 72 cores.
Equally prevalent are architectures containing additional processing units besides
the CPU. Work-intensive tasks thereby can be assigned by the CPU to those ad-
ditional processing units, which might either be very specialized to certain kinds
of tasks, e.g., GPUs, or might be comparably generalized as CPUs.
Simultaneous Multi-threading or Hyper-threading, on the other hand, is a function
of some processors which enables the system to address several virtual cores per ac-
tually existing processor-core (see, e.g., [8]). This is partly realized by multiplying
parts of the hardware and partly through software-implementation. As a result,
the processor can exploit times that one core is suspended due to memory access
by using the processor’s shared resources on working on another core’s instruc-
tions. This internal procedure is cheaper and simpler to construct than an actual
multi-core processor and, therefore, available on a broad variety of processors.
More detailed data on the devices used for testing the implementations presented
in this work is given in Chapter 5.

Despite the broad diversity of hardware architectures, any parallel implemen-
tation of an algorithm ought to be as portable as possible, independently of the
exact system’s setup. Therefore, parallel programming often addresses abstract
types of hardware instead of specific devices.
One method to coarsely classify computer architectures is by its memory archi-
tecture: different processors either use shared or distributed memory. In the dis-
tributed memory case, each processor has private local memory. When sharing

7



CHAPTER 2. PARALLEL NUMERICAL MATHEMATICS

data with cooperating processors, explicit communication is necessary. The pro-
grammer of parallel software is responsible for the data to be available for the
active processing elements at the right time. This might make parallel program-
ming challenging. Furthermore, the explicit communication is a bottleneck for
distributed memory machines, since transporting data between processors takes
time, especially in cases where several communication operations happen simulta-
neously.
In contrast, in the shared memory model processing elements share a global mem-
ory space. Communication and synchronization then happen through shared vari-
ables that can be read and written by all processing elements.
In both cases, however, memory access timing is a crucial factor for the execution
time of a (parallel) program. Terms to describe the features of a system in this
regard are latency and bandwidth. Latency describes the time needed until one
memory access operation is complete. Bandwidth, on the other hand, specifies the
number of data elements that can be read per time unit, typically given in MB/s
or GB/s.
To decrease the average overall memory access times, caches were introduced:
these small, fast memory elements sits between a processing element and the
chip’s main memory to hold variables and instructions that are repeatedly ac-
cessed. Cache coherency algorithms ensure that all cached versions of a variable
agree with its global value. In addition to the decrease in average memory ac-
cess times, specific combinations of problem sizes and the number of processing
elements can lead to a favorable cache use and therefore to a significant decrease
in execution time. Unfortunately, this effect can also occur the other way and
increase execution times for unfavorable combinations. These effects are hard to
predict and lead to unexpected behavior when examining the correlation between
execution time and number of processing elements or problem size.
Independently of the memory model, race conditions can occur in a parallel code.
This unwanted behavior leads to a dependence of the parallel algorithm’s result
on the order of memory accesses from the processing elements. Race conditions
might arise due to errors in the communication between processing elements or
when several processing elements access a variable at the same time.

Another method to group hardware architectures is the Flynn classification.
It divides hardware into four categories: SISD, MISD, SIMD and MIMD. SISD
stands for single instruction, single data and describes a sequential program. The
other classes characterize parallel programs. MISD, multiple instructions, single
data refers to a theoretical concept, while SIMD, single instruction, multiple data,
and MIMD, multiple instructions, multiple data describe common concepts for
parallel software. SIMD stands for a concept of parallelism where one instruction
is simultaneously applied to several pieces of data, also referred to as data paral-
lelism. An example for hardware operating according to this method are GPUs.
MIMD, on the other hand, describes a case where each processing element has an
independent set of instructions, which it executes on its own piece of data. This
operating principle is used by multi- and many-core processors. Multi-threading
also belongs to this category, which sometimes is referred to as task parallelism.

8



2.1. INTRODUCTION TO PARALLEL COMPUTING

Measuring Performance There are several ways to evaluate the quality of a
numerical algorithm’s implementation. The most common ones are presented here,
with regard to assessing a parallel program in comparison to its serial counterpart.
It is difficult to separate the performance of code from the performance of the sys-
tem on which the code is executed. Factors that influence a program’s execution
time are various, such as machine architecture, compilers, operating system and,
of course, the method and even personal style of (parallel) programming. Mea-
sures for performance are foremost response time, throughput and computational
cost. The response time T is defined as the time between the start of a program
and its end. Compared to the CPU-time TCPU it also includes idle-times. In
the case of a program executed in parallel, the parallel run-time Tp describes the
parallel execution time, from the start of the program until all processes on all
processing elements are completed. This includes local computing operations on
individual processing elements, communication or global data access (depending
on the memory architecture), idle times in case of unbalanced workload, and time
for synchronization. According to [30] the influences on execution time listed here
are coarsely ordered after their share of overall runtime.
The throughput is a measure for machine performance, usually given in MFlops,
million floating-point operations per second. To ensure comparability, the through-
put is usually given for a set of benchmark programs.
Computational costs C, on the other hand, are defined as the time that all partic-
ipating processors together need to finish a program’s execution. C is determined
as the parallel run-time Tp multiplied with the number of involved processors p,
C = Tpp, and describes the amount of work done by all processors combined. A
parallel program is cost-optimal if the combined execution time of all processing
elements equals the execution time needed by the fastest serial program solving
the same problem, C = Ts.

With these definitions in mind, the performance of a parallel program can now
be judged in comparison to a serial program solving the same problem.
The speed-up Sp(n) is given by the ratio of the execution time of the fastest serial
program and the parallel run-time, applied to a given problem of size n:

Sp(n) =
Ts
Tp

(2.1)

Finding the fastest serial program to solve a given problem can be difficult, so the
speed-up is often calculated through a comparison of one serial and one parallel
implementation of the same algorithm.
In theory, Sp(n) ≤ p should hold, although in applications super-linear speed-
ups are possible in cases of favorable cache use. On the other hand, Sp(n) < p
often happens due to overhead in the parallelization of an algorithm, such as
communication and synchronization operations. A parallel program is cost-optimal
if Sp(n) = p.
Another measure for the quality of a parallelization is efficiency Ep(n), defined as

9



CHAPTER 2. PARALLEL NUMERICAL MATHEMATICS

Ep(n) =
Sp(n)

p
. (2.2)

Therefore, theoretically Ep(n) ≤ 1 applies, except for cases of super-linear speed-
up.
The scalability of a program is a quantity often used to describe its performance in
case of an increasing number of processing elements. Ideally, a parallel program’s
execution time decreases with an increasing number of processing elements p. A
scalable method therefore has a constant efficiency when increasing n and p simul-
taneously (see, e.g. [30]).

There are also approaches to assess the parallel potential of a problem. Due
to data or task dependencies, most parallel programs contain serial sections. A
simple form of Amdahl’s law estimates the effects of serial program parts on the
possible speed-up of a parallelization

Sp(n) ≤ 1

f
, (2.3)

where f is the ratio of a program that needs to be executed serially (see [30] for
details). This does not give any information about the speed-up with increasing
problem size n, though.

Parallel Programming When solving a problem in parallel, usually one or
several sequential algorithms already exist. The goal of parallelization then is to
decrease the program’s runtime through parallelization in comparison to the best
serial algorithm. Alternatively, one aspires to compute more sophisticated models
in terms of resolution or more realistic physical effects in a fixed amount of time.
A challenge for an effective parallelization is the need to rethink serial structures
in the code. Only ”translating” the best serial algorithm into parallel code will
most likely not result in a significant increase of computational speed, whereas
designing numerical algorithms with advantageous parallel structures might.
The details of implementing a parallel algorithm and the preferred programming
language depend on the intended application, e.g., on the architecture of the desig-
nated machine, the memory model of said machine, and the intended level of par-
allelization. There are various ways of programming parallel code. PHOENIX/3D
can be run in parallel with MPI, OpenCL and OpenMP. The latter can be ap-
plied to shared memory models, while OpenCL and MPI allow for execution on
machines with distributed memory. Usually, PHOENIX/3D uses a hybrid paral-
lelization consisting of MPI or OpenCL combined with OpenMP.

OpenCL OpenCL stands for Open Computing Language. It is a software stan-
dard that was released in 2008 and is maintained by the Khronos Group (see,
e.g., [16]). Various vendors provide OpenCL implementations for their hardware.
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2.1. INTRODUCTION TO PARALLEL COMPUTING

The standard targets heterogeneous parallel platforms, namely platforms contain-
ing different computational elements, e.g. CPUs, GPUs, and accelerators, oper-
ating jointly through a distributed memory model. The goal of OpenCL is high
portability for different heterogeneous platforms, which, in this case, has the con-
sequence that programmers are in detailed control of many low-level settings.
An abstract view of the OpenCL programming model is that a host sets up the
program and then off-loads tasks as kernels onto computational devices for parallel
execution. The host is also responsible for I/O, user interaction, loading memory
objects onto devices and reading modified memory objects back from possibly sev-
eral OpenCL devices. [16] defines a memory object as “a set of objects in memory
that are visible to OpenCL devices and contain values that can be operated on by
instances of a kernel”.
The host code is written in the C programming language, while kernels are writ-
ten in the OpenCL programming language, an extended subset of the ISO C99
standard. Usually, kernels are compiled at run-time by the OpenCL compiler to
accommodate different devices. Alternatively, pre-compiled kernel-binaries can be
loaded at program start. This approach results in a decreased execution time com-
pared to compiling kernels at run-time but restricts portability severely, as binaries
are not compatible across vendors and OpenCL implementations (see e.g. [16]).
Also, when compiling all kernels at once through the clCreateKernelsInProgram

command, the order in which kernel-handles are saved in a list can vary depending
on the OpenCL implementation. This might result in errors when using the code
across different vendor’s platforms.
There are several restrictions to the OpenCL kernel programming language, such
as the lack of recursion, the lack of pointers to functions, and only a limited set of
standard C libraries is available to the kernels. During run-time, the host submits
a kernel for execution on a specific device and a defined number of instances of
that kernel, called work-items, is created and executed in parallel on the device.
The work-items can be distinguished by a global ID which is assigned to each
work-item upon creation.
Administration of the devices and events concerning them is done by the host via
an OpenCL context. A context contains OpenCL devices, kernels, memory objects
and program objects holding the kernel source code. All interactions between the
host and the devices happen through command queues. These interactions in-
clude, among others, loading or reading memory objects and executing kernels.
A command queue is tied to one specific device, while a context can hold several
devices.
Memory objects can be defined as global, constant, local or private. Global means
that all work-items can access the memory objects, while constant describes read-
only access for all work-items. Local memory objects, in contrast, grant access
for all work-items in a work-group, whereas private memory is only visible to one
work-item. A work-group is a set of work-items. The behavior of local memory
when no work-groups are explicitly defined is implementation-dependent: some
implementations use one work-group per work-item as default, some define one
work-group for all existing work-items as default.
In OpenCL, data parallelism is achieved by assigning different sets of data to
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the work-items, while task parallelism is possible via out-of-order execution of
different, independent kernels. Synchronization of data is only possible between
work-items of one work-group, but not across work-groups. It happens via the
barrier command and forces all work-items to wait for each other’s execution
up to the barrier. Afterwards, the execution continues with synchronized global
and/or local memory.

MPI MPI, a Message-passing library interface specification(see [15]), provides
interfaces for communication commands. Bindings are available for Fortran and
C. In Fortran, MPI routines are called as subroutines, while in C they are called
as functions. The MPI standard is defined and extended by the Message-Passing
Interface Forum, which includes, among others, hardware vendors and computer
scientists. It defines the MPI syntax and the effect a command must have, but the
internal realization is hardware- and vendor-dependent.
MPI targets distributed memory environments but shared-memory implementa-
tions are possible. Its goal is to provide efficient communication in heterogeneous
environments and portability between different architectures in a user-friendly and
thread-safe way.
An MPI program contains processes that can communicate with each other. Com-
municators serve as a way to organize them: the set of processes in a communi-
cator can exchange messages with each other. The default MPI communicator
MPI_COMM_WORLD contains all processes in a program. Each process in a communi-
cator is assigned a rank. Since a process can be part of several communicators, it
might have different ranks for each communicator. Upon program start the num-
ber of processes in a MPI program is defined, e.g., as a variable in the program
call, although it might change due to existing processes spawning new processes
during program execution.
There are several different modes of communication in MPI: it can be either block-
ing or non-blocking, synchronous or asynchronous. A blocking communication
command prevents the sending and receiving processes from returning before the
communication is completed, while a non-blocking operation immediately returns.
Synchronous communication describes a situation with exactly one sender and one
receiver. On the other hand, MPI allows asynchronous communication, where a
message send by one process can be broadcasted among several receivers or one
process can gather data from several senders. These collective operations also in-
clude global reduction operations to, e.g. find global minima, maxima, or sum
data up over all processes in a communicator.
In MPI, data parallelism can be obtained by distributing the data over several
processes with a common communicator. Task parallelism is possible through dis-
joint communicators.

After introducing the theoretical and computational aspects of parallel numer-
ical mathematics, the following section will present a frequent application, namely
linear solvers.
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2.2 Parallel Solvers

This chapter will present parallel numerical methods for the solution of linear sys-
tems of equations, focusing on the solvers that are currently used by PHOENIX/3D,
such as the Jacobi and the Gauss-Seidel method. Mathematically speaking, both
algorithms belong to the class of iterative operator splitting methods.
After introducing linear solvers in general and the class of operator splitting meth-
ods more precisely, the chapter ends on a illustration of the solvers’ parallel po-
tentials.

Linear solvers can be divided coarsely into direct and iterative methods. A
direct method is an algorithm that yields the exact solution of a problem, except
for rounding errors, after a finite number of computations. Iterative methods, on
the other hand, successively compute approximate solutions by repeatedly applying
the same calculation specification, the so-called iteration scheme. The iterations
are aborted when the approximate solution sufficiently agrees with the (unknown)
exact solution. For a system of equations

Mx = b (2.4)

with M ∈ Rn×n and b ∈ Rn an iterative scheme has the form

x(j+1) = φ(x(j), b) (2.5)

where x(0) is a starting value. A special case are linear iteration schemes, where φ
can be written as

φ(x, b) = Xx+ Y b, (2.6)

with X,Y ∈ Rn×n.
For the evaluation of an iteration scheme’s quality, the concepts of consistency and
convergence are highly relevant:

Definition 2.2.1. (See [26]) An iteration scheme φ is consistent to a matrix M ,
if for all b ∈ Rn M−1b is a fixed-point of φ to b, i.e.,

M−1b = φ(M−1b, b). (2.7)

An iteration scheme φ is convergent, if for all b ∈ Rn and all x(0) ∈ Rn a boundary
value

x̂ = lim
j→∞

x(j) = lim
j→∞

φ(x(j−1), b) (2.8)

exists independently of the choice of x(0).

As a result, the limit of a convergent and consistent iteration series fulfills the
linear equation for every starting vector. However, a reasonable choice of starting
vector might lead to faster convergence of the iteration method.
In real-life applications, convergence of the series of iterations is usually examined
by a stopping criterion, which checks the change in result compared to the previous
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iteration step. If the change is small enough, the iteration scheme is assumed to
be converged. A common stopping criterion is the relative error

||x(j+1) − x(j)|| ≤ ε||x(j+1)||, (2.9)

though other definitions are possible.

With the above definitions in mind, the remainder of this chapter focuses on a
subset of iterative methods, namely the operator splitting methods that are cur-
rently implemented in PHOENIX/3D. Two examples, the Jacobi and the Gauss-
Seidel-method, are presented in more detail, along with an overview on how these
methods can be parallelized effectively.

Operator Splitting Methods The fundamental idea of operator splitting meth-
ods to solve the system of equations Eq. 2.4, Mx = b, is to write the operator M
as

M = M∗ + (M −M∗), M∗ ∈ Rn×n. (2.10)

Inserting this into the system of equations leads to

x = (M∗)−1(M∗ −M)x+ (M∗)−1b. (2.11)

M∗ has to be invertible to allow this conversion.
The above system then yields the iteration scheme

x(j+1) = Xx(j) + Y b (2.12)

with
X := (M∗)−1(M −M∗) (2.13)

and
Y := (M∗)−1. (2.14)

M∗ can be chosen arbitrarily, as long as the resulting iteration method is consis-
tent with the original problem and converges towards its solution. Regarding the
consistency of operator splitting methods, there is the following theorem:

Theorem 2.2.2. (See [26]) Be M∗ ∈ Rn×n a regular matrix. The linear iteration
scheme

x(j+1) = (M∗)−1(M∗ −M)x(j) + (M∗)−1b (2.15)

then is consistent with the matrix M .

Therefore, every operator splitting method is consistent with its original prob-
lem, as long as M∗ is regular. As for the convergence properties of operator
splitting methods, we introduce the spectral radius:

Definition 2.2.3. (See [38].) The spectral radius of a matrix M ∈ Rn×n is defined
by

ρ(M) = max {|λ| : λ ∈ λ(M)} , (2.16)

where λ(M) is the set of eigenvalues of M .
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The correlation between spectral radius and convergence of an iteration scheme
is given by

Theorem 2.2.4. (See [26]) A linear iteration method φ is convergent if, and only
if, the spectral radius of the iteration matrix X fulfills

ρ(X) < 1. (2.17)

Furthermore, the spectral radius is an indicator for the rate of convergence:
the smaller the radius is, the faster the method will converge. Accordingly, every
choice of a regular M∗ that fulfills the ρ(X) < 1 condition, leads to a convergent
and consistent iteration scheme. The reason for splitting M in the first place is to
choose M∗ so that the resulting iteration method has good convergence properties
and/or is less computationally expensive.

To illustrate operator splitting methods, the Jacobi method and the Gauss-
Seidel method are presented, both currently implemented in PHOENIX/3D.
When discussing the Jacobi method, one needs to define the diagonal matrix D,
which contains the diagonal entries of M and is zero otherwise. The approximate
operator M∗ is chosen as

M∗J = D, (2.18)

which defines the Jacobi iteration through

XJ = D−1(D −M) (2.19)

YJ = D−1, (2.20)

where the index “J” refers to “Jacobi”.
This definition leads to the iteration scheme

x(j+1) = D−1(D −M)x(j) +D−1b, (2.21)

which can also be written as

x
(j+1)
i =

1

mii

bi − n∑
k=1,k 6=i

mikx
(j)
k

 i = 1, . . . , n (2.22)

in a matrix-entry notation. This notation also leads to an easily confirmable
convergence criterion for the Jacobi method:

Definition 2.2.5. A matrix M is diagonally dominant row-wise, when its ele-
ments mij satisfy the following condition:

|mii| ≥
n∑

j=1,j 6=i
|mij |. (2.23)

M is diagonally dominant column-wise, if MT is diagonally dominant.
If the matrix satisfies the strict inequality, it is called strictly diagonally dominant.
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If M is strictly diagonally dominant row- or column-wise, the Jacobi method
converges towards the exact solution M−1b for all starting vectors x(0) and all
right-hand sides b (see [26]).

Another example for an operator splitting method is the Gauss-Seidel iteration.
Here, M is written as

M = L+D +R, (2.24)

where D again holds M ’s diagonal entries, while L and R are strict lower resp.
upper triangular matrices, holding the corresponding entries of M . Inserting this
notation into the system of equations can be written as a system with

XGS = −(D + L)−1RYGS = (D + L)−1, (2.25)

where
M∗GS = D + L (2.26)

and the “GS” index implying that the matrices belong to the Gauss-Seidel method.
The iteration scheme in operator splitting notation then reads

x(j+1) = −(D + L)−1Rx(j) + (D + L)−1b. (2.27)

In a notation with matrix components the Gauss-Seidel method can also be written
as

x
(j+1)
i =

1

mii

(
bi −

i−1∑
k=1

mikx
(j+1)
k −

n∑
k=i+1

mikx
(j)
k

)
i = 1, . . . , n. (2.28)

Again, this iteration scheme converges towards the exact solution of Mx = b if M
is strictly diagonally dominant (also see [26]).

Parallel Implementation Ensuing the introduction to operator splitting meth-
ods and two of their more prominent representatives, this paragraph investigates
how the Jacobi and the Gauss-Seidel iteration scheme can be implemented in par-
allel.

For every new iteration step x(j+1) of the Jacobi method, only values from
the previous iteration step x(j) are necessary. Furthermore, there are no data de-

pendencies in (2.22): the computation of one component of x
(j+1)
i is completely

independent of all other entries x
(j+1)
l 6=i . Therefore, the entries of the current iter-

ation can be computed in parallel. Nevertheless, x(j) needs to be saved until the
computation of x(j+1) is complete.
With i = 1, . . . n components, each iteration can be performed in parallel by at
most p = n processing elements. After completing one iteration step though, the
resulting entries have to be communicated to all other processing elements, since

the computation of each x
(j+2)
i requires the full vector x(j+1).

Optionally, the Jacobi method can be interpreted as two matrix-vector multipli-
cations, a matrix-matrix multiplication and a vector-vector addition as shown in
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(2.21). Since D is a diagonal matrix, computing D−1 is trivial. Parallelizing the
matrix multiplications corresponds to computing the inner products in parallel
with a maximum grade of parallelism of also p = n.

In contrast, for the Gauss-Seidel iteration scheme, each iteration step requires

the current iteration’s entries up to the current component x
(j+1)
i and from then

on the components of the former iteration step. This way, x(j) can successively
be overwritten by x(j+1). However, this also results in a data dependency inside

the iteration step: computing x
(j+1)
i uses results from that same iteration step,

which leads to a situation in which entries of the current (j + 1) iteration can
only be computed in succession. Parallelization is still possible inside the matrix-
vector multiplications, yet overall not to the same degree as for the Jacobi method.

For more details on the parallel implementation of the Jacobi method, the
Gauss-Seidel method, or iterative solvers in general, see, e.g., [30].
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Chapter 3

3D Radiative Transfer in
Stellar Atmospheres

Radiative transfer is the process of energy being transported through a medium
in form of electromagnetic radiation. It is a critical effect when considering such
diverse areas as combustion physics, medicine and climatology (see, e.g., [17], [36]).
Furthermore, it is a highly relevant process in atmosphere physics.
Most of what can be observed of a star is defined by the processes in the outer
layers of that star, the stellar atmosphere. One dominating mode of energy trans-
port in atmospheres is radiative transfer.

As mentioned in the Introduction, modeling stellar atmospheres leads to a bet-
ter understanding of stars and the possibility to interpret observational data. Since
a star is a three-dimensional object, a one-dimensional approximation of the ra-
diative transfer neglects anisotropic stellar activity, such as spots, convection cells
and effects caused by fast rotation. Although solving the three-dimensional prob-
lem demands more resources than solving a one-dimensional atmosphere model,
the results show that the effort is well worth it (see [21]). When modeling stellar
atmospheres, we therefore need fast and reliable algorithms to solve the three-
dimensional radiative transfer problem.

This chapter is organized as follows: the first section focuses on the physical
side of radiative transfer, including a short summary on (stellar) atmospheres and
the radiative transfer equation. Based on that, the mathematical side of radiative
transfer is outlined in the second section by explaining analytic properties of the
equation as well as introducing numerical approaches to solve the radiative transfer
problem. In the last section, the current implementation of a radiative transfer
solver in PHOENIX/3D is explained.

3.1 Physics

Atmospheres “A stellar atmosphere comprises those layers of a star from which
photons escape freely into space, and can be measured by an outside observer.”
This definition of a stellar atmosphere is given by [22].
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Since stars do not have a defined boundary, the area of the star where its outer
layers merge into the surrounding medium is defined as the stellar atmosphere.
It is optically thin enough so that radiation still carrying information from those
layers leaves the star. Optically thin means that τν ≤ 1, where the optical thickness
τν is defined by

dτν = χνdz, (3.1)

where χν is the opacity and z the path length.
A special case of optical thickness is the optical depth τ̄ν defined by

τ̄ν(z) =

∫ zmax

z
χν(z′)dz′, (3.2)

where z is the geometrical depth and τ̄(zmax) = 0 at the outer boundary zmax
(see [22]). This definition makes τ̄ a quantity to describe how far into a material,
i.e. an atmosphere, one can see and at the same time a scale for atmosphere depth,
increasing in the inward direction. Since 1/χν is approximately one photon mean
free path at frequency ν, the optical depth can be interpreted as ”the number of
photon mean free paths at frequency ν along a vertical line of sight from zmax down
to z” (from [22]). This emphasizes the fact that in the context of atmospheres,
optical depth is a more appropriate variable to measure depth than geometrical
depth. The more mean free paths a photon is away from the surface, the higher
is the probability that it will not escape from the atmosphere, but be destroyed
during an absorption process.

Nearly all information that can be gathered about a star is determined by
traits of the stellar atmosphere, e.g., element abundances, pressure and tempera-
ture. The inner structure of a star can only be examined indirectly. Due to this,
stellar spectra are mostly defined by processes in the stellar atmosphere and its
structure.
The temperature gradient is the reason why energy is transported from deeper,
hotter layers of a star to the outer, generally cooler layers. Different modes of
energy transport in the stellar atmosphere are radiative transfer, convection and
thermal conduction.

When comparing the definition of stellar atmospheres to planetary atmospheres,
several similarities turn up. A planet’s atmosphere is defined as an outer layer of
gas, which is held by the planet’s gravitational influence. This also applies to stel-
lar atmospheres. Furthermore, the definition of a stellar atmosphere also complies
with that of planetary atmospheres.
The above introduced traits of stellar atmospheres therefore extend to (extrasolar)
planetary atmospheres. Again, most information about (exo-)planets are gained
by atmosphere spectroscopy of the planets transiting their host star. Also, just
like in stellar atmospheres, radiative transfer plays a crucial role in planetary at-
mospheres (see, e.g., [34]).
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Radiative Transfer The quantities necessary to describe the radiative transfer
through a medium are intensity, opacity, emissivity and optical depth/thickness
(see above).
The Monochromatic Intensity Iν is defined as the proportionality factor in

dEν = IνdtdAdΩdν, (3.3)

which describes the energy that is radiated off a source per infinitesimal time in-
terval dt, per surface area dA and per solid angle dΩ in the frequency band dν.
Another important quantity is the mean intensity Jν , which describes monochro-
matic intensity averaged over all solid angles:

Jν =
1

4π

∫
IνdΩ. (3.4)

While energy in form of photons is transported through the stellar atmosphere,
the photons interact with the surrounding material, either by emission, absorption
or scattering. This behavior is taken into account by introducing emissivity and
opacity coefficients, η and χ. The monochromatic emissivity coefficient ην affects
the intensity via dIν = ηνdz per path length z. The monochromatic opacity coeffi-
cient χνn̂ = κν+σνn̂ takes into account the effects of absorption via the absorption
coefficient κν as well as scattering via σνn̂, which can depend on both, frequency
ν and direction n̂. It affects the intensity through the relation dIν = −χνn̂Iνdz.
Note that Iν is a proportionality factor. The complications when solving the ra-
diative transfer equation originate here.
Iν can be interpreted as the energy carried by photons along a ray. Considering
the change in Iν along the ray gives the radiative transfer equation:

dIν
dz

= ην − χνn̂Iν . (3.5)

In the more general 3D case, the equation has the following form:

n̂ · ∇I(ν, x, n̂) = η(ν, x)− χ(ν, x, n̂)I(ν, x, n̂). (3.6)

When introducing the source function Sν = ην
χνn̂

and applying the definition of the
optical thickness τ (3.1), the radiative transfer equation can also be written as

dIν
dτ

= Sν − Iν . (3.7)

In case of a local thermodynamic equilibrium (LTE), velocities can locally be
described by Maxwell-Boltzmann distribution, while atomic/molecular excitations
are approximated by the Saha-Boltzmann distribution (see, e.g., [31]). In case of
LTE conditions without scattering, the source function equals the Planck function
Bν(T ):

Sν = Bν(T ) =
2hν3

c2

1

exp(hν/(kT ))− 1
. (3.8)
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For a more complex scenario, the source function depends on the mean intensity
Sν = Sν(Jν) = Sν(

∫
Iν). This behavior complicates finding a solution to the ra-

diative transfer equation.

Radiative transfer is of course not the only physical phenomenon that deter-
mines the structure of a stellar atmosphere. A simplified 1D atmosphere model
can be described by the following three equations (see [40]): the radiative transfer
equation, the hydrodynamic equilibrium and the conservation of energy, i.e.,

dIν
dτ

= Sν − Iν , (3.9)

dP (z)

dz
= −gρ(z), (3.10)

F (z) = σT 4
eff = const., (3.11)

depending on the geometrical depth z. F (z) is the flux density and σ the Stefan-
Boltzmann constant.
For the parameters Teff , g and the element abundances, this system of differential
equations determines the pressure distribution P (z), the temperature distribution
T (z), the density ρ(z) and the intensity Iν for all ν. From this information,
the spectrum of the model stellar atmosphere with the above parameters can be
calculated and, after fitting parameters, compared to observed spectra to gain
insights into stellar structures.

3.2 Mathematics

This section will focus on the radiative transfer equation’s mathematical traits and
on how it can be solved.
The radiative transfer equation (3.7) is an integro-differential equation, because
the source function Sν implicitly depends on the solid-angle integral over Iν (ex-
cept for the special case of pure LTE conditions without scattering). In the general
case though, radiative transfer is described by a partial integro-differential equa-
tion. By only considering transfer along multiple characteristic rays, it simplifies
to the ordinary integro-differential equation (3.7) along characteristics.
Since the equation’s complexity depends heavily on the assumptions made about
the environment in the atmosphere (e.g. (N)LTE, scattering), the radiative trans-
fer equation must be solved numerically.

Method of Characteristics In the last section, the radiative transfer equation
was derived heuristically along a ray. When deriving this form mathematically,
the method of characteristics is applied. It reduces a partial differential equation
(PDE), i.e. the general radiative transfer equation, to a system of ordinary dif-
ferential equations (ODEs), i.e. (3.7), which then has to be solved along several
characteristic rays. Here, these rays correspond to the photon propagation direc-
tions and are coupled ordinary differential equations themselves.
The general static 3D radiative transfer equation is a partial integro-differential
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equation of the form

n̂ · ∇I(ν, x, n̂) = η(ν, x)− χ(ν, x)I(ν, x, n̂). (3.12)

As an example, the method of characteristics is applied to the 1D spherical radia-
tive transfer equation:

ar
∂Iν
∂r

+ aµ
∂Iν
∂µ

= f(I, r, µ), (3.13)

where Iν in spherical coordinates depends on r and µ = cos θ, where θ is the angle
between the direction normal to the surface and the photon propagation direction.
The right hand side f stands for f = ην − χνn̂Iν , while the coefficients ar and aµ
describe the connections between the variables (see [19]). Depending on the exact
context, additional terms can be necessary to describe the problem in regard.
The function’s graph G(Iν(r, µ)) along a path (r(z), µ(z)) can be parametrized by
a parameter z. Its slope can then be written as

dIν
dz

(r(z), µ(z)) =
∂Iν
∂r

dr

dz
+
∂Iν
∂µ

dµ

dz
(3.14)

by applying the chain rule. Comparing the result to the original equation reveals
that the ordinary differential equation

dIν
dz

= f (3.15)

holds along the characteristics

dr

dz
= ar and

dµ

dz
= aµ. (3.16)

Note that the characteristic equations are ODEs themselves.
This way, the mathematical approach also leads to the radiative transfer equation
(3.7), which typically is solved numerically along its characteristics.

Numerical Approaches The numerical approach taken by PHOENIX/3D be-
longs to the class of Discrete Ordinate Methods. Methods of this type not only
discretize in space, but also in the photon propagation direction.
Any discretization of the radiative transfer equation leads to a system of linear
equations with considerable sizes, depending on the problem size and the intended
accuracy. Most discretization techniques will give rise to a sparse linear system.
There are several approaches to solve this system and the most common ones will
be presented in a short overview:
As any system of equations, the linear system could be solved directly, e.g., by ma-
trix inversion or LR-decomposition (see, e.g., Ch.4). Unfortunately, direct meth-
ods often produce dense interims systems, even when solving sparse systems. For
large sparse systems this results in an unacceptable increase in memory require-
ment. Also, this behavior might lead to higher computing times. For the desired
problem size and resolution, these methods are not generally advisable (see [26]).
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An exception of this behavior are narrow-banded systems (see [38]).
As an alternative, the resulting system of equations could also be solved by an itera-
tive method. In this approach, the solution to the system of equations is computed
only approximately, but since the system itself originated from the discretization
of a continuous problem, the additional error might be negligible. Splitting meth-
ods (see Chapter 2) belong to this class of linear solvers.
Another approach in iterative methods are multi-grid methods. With these meth-
ods, the approximate solution is alternately iterated on a sequence of coarser and
finer grids to speed-up convergence. These methods need a considerable amount
of memory for managing values on the different grids and additional computing
capacity for transferring the variables between grids.
Also belonging to the class of iterative methods are Krylov subspace solvers. One
of their features is that the search for an approximate solution is narrowed down
to a subspace of the Cn, which is gradually extended when no sufficiently close
approximation is found. More information on this type of iterative methods can
be found in Chapter 4.
Monte-Carlo methods are also common in calculating solutions to huge systems of
equations. They are iterative methods and use a probabilistic approach. Monte-
Carlo methods are highly flexible regarding changes in the original problem, but
they induce random noise due to their statistical nature and tend to converge
slowly at high optical depths (see [29], [14]).

The numerical method used in PHOENIX/3D belongs to the class of iterative,
deterministic methods. In general they are known to converge slowly, but there
are several convergence acceleration techniques, e.g., an operator splitting ap-
proach often titled as approximate Lambda iteration (ALI), which is implemented
in PHOENIX/3D. It will be explained in detail in the remainder of this section.

Operator Splitting Methods in the Context of Radiative Transfer The
first step of this operator splitting approach is computing a formal solution. “For-
mal” because it neglects the implicit dependency of the source function Sν on the
mean intensity Jν . This way, the radiative transfer equation (3.7), dIν

dτ = Sν − Iν ,
falls into the class of constant coefficient linear ordinary equations (because I is
only multiplied by a negative identity matrix, which does not depend on τ) and a
solution can be found via Duhamel’s principle (see [24]):

Iν(τ) = Iν(0) exp(τ0 − τ) +

∫ τ

τ0

Sν exp(τ0 − τ ′)dτ ′. (3.17)

The formal solution then is integrated over all solid angles Ω to calculate the
mean intensity Jν via (3.4). The equation can now be written as

Jν = Λν [Sν ] (3.18)

by introducing the Lambda-operator Λν . In this form, the radiative transfer equa-
tion will be solved numerically.
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Discretization A common concept of discrete ordinate methods is to discretize
the equation of interest in space, frequency, and photon propagation direction.
The spatial domain is discretized as a 3D grid consisting of voxels, volumetric pix-
els, ~xi and the frequency dependence of Jν is resolved by discretizing it to a set of
discrete frequency bins νj . Also, a discrete set of directions µk is chosen to track
the photon propagation direction. The rays along which the photons propagate
correspond to the characteristic rays from applying the method of characteristics
to the radiative transfer problem earlier. Just as for the optical depth, the direc-
tion of the ray is from the outer boundary towards the center of the star.
Computing those characteristic rays numerically is done by a so called full char-
acteristics (FC) approach. Other common algorithms include long characteristics
(LC) and short characteristics (SC).
While the long characteristics method integrates the formal solution along a whole
ray from the outer boundary to the currently considered point in the grid, the
short characteristics method extrapolates the upstream intensity at the grid point
next to the current point in upstream direction and only integrates over these two
values. This leads to the LC method being very accurate but computationally
more expensive than the SC method.
The full characteristics method is not applied to every voxel in the spacial grid,

Figure 3.1: Comparison of long and short characteristics; from [29]

but instead follows the characteristic rays through the grid from one outer bound-
ary to the other outer boundary. Intersections of characteristic and voxel grid are
then the discrete photon propagation. The characteristics are computed so that
each voxel is hit at least once by a characteristic. This makes the FC method
computationally less expensive than the LC method but still sufficiently adequate.
This method is used in PHOENIX/3D to calculate an approximate formal solution.

Through discretizing the problem in the above explained way, the equation in
regard, Jν = Λν [Sν ] transforms to its discrete form

Jν = ΛνSν (3.19)

with discrete quantities Jν and Sν , whereas the operator operation becomes a ma-
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trix multiplication with a dense matrix Λν . Solving the system directly can be
very computationally expensive compared to the run-times of other parts of the
atmosphere model. Therefore an iterative approach is chosen.

The Approximate Lambda Iteration After obtaining an approximation for
the formal solution, the solution to the system of equations in regard, Jν = ΛνSν , is
solved iteratively. For convenience, the index ν will be neglected for the remainder
of this chapter.
The simplest approach would be the iteration

J (new) = ΛS(old), (3.20)

S(new) = S(new)(J (new)), (3.21)

but this scheme converges too slowly. To prevent this, the approximate Lambda
iteration is applied. Its approach is to split the operator via

Λ = Λ∗ + (Λ− Λ∗), (3.22)

where Λ∗ is an approximation to the original Lambda operator. Inserting (3.22)
into (3.20) leads to

J (new) = Λ∗S(new) + (Λ− Λ∗)S(old), (3.23)

S(new) = S(new)(J (new)). (3.24)

with ΛS(old) = JFS, the formal solution obtained through the old source function
Sold. Interchanging between solving for J (new) and updating S(new) guarantees that
the numerical solution to the radiative transfer equation is solved consistently with
the rate equations, which influence S. As an additional remark: if S(new) in the
above scheme was be replaced by S(old), it would again lead to the simple iteration
scheme (3.20).
In case of a two-level atom in a LTE environment with scattering, the source
function S would have the following form:

S = (1− ε)J + εB (3.25)

with the thermal coupling parameter ε = σ
κ+σ and the Planck function B(T ).

Inserting this into (3.23), gives the following, well-known iteration scheme

[En − Λ∗(1− ε)] J (new) = JFS − Λ∗(1− ε)J (old) (3.26)

S(new) = (1− ε)J (new) + εB (3.27)

with JFS = ΛS(old) an approximation to the formal solution (3.17) and En the
identity matrix of size n.
If instead of the above case, multi-level atoms and molecules were regarded, the
coefficients for scattering, absorption and emission would change, which in return
would change the source function. Anyway, the overall scheme stays the same. For
example see [23].
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The operator splitting method described above ideally has better convergence
properties than the original Lambda iteration. Still, its performance depends
greatly on the set-up of the approximate Lambda operator Λ∗. A simple Λ∗ de-
creases computational effort, but at the same time might slow the convergence
behavior of the radiative transfer algorithm. The choice on how to set up Λ∗

should try to find a balance between these two aims.
There are several approaches to find a suitable approximate Lambda operator. A
logical idea is to use a diagonal Λ∗ and fill the entries with approximations to the
actual Λ operator. The same has been done with tridiagonal (see [27]) and narrow-
banded approximate Lambda operators (see [20]). Other common approaches are
described in [22].
It can be seen by equation (3.22) that the Approximate Lambda Iteration method
belongs to the group of operator splitting methods, which have been described
in Chapter 2. Since Λ∗ can be chosen freely, one can always design an approxi-
mate operator that possesses certain desired traits regarding the ALI’s convergence
behavior. In [20], e.g., it is shown that an operator splitting scheme using a narrow-
banded approximate Lambda operator has a smaller convergence radius than the
simple iterative approach in Eq. (3.20).
After setting up a the Λ∗ operator, (3.26) still has to be solved in every iteration
step. There are many possible methods to do this, among them the already in-
troduced iterative operator-splitting methods from chapter 2. Anyway, it is worth
noting that in every iteration step, the matrix stays the same. Also, depending
on the choice of Λ∗ the matrix might show special traits worth exploiting when
deciding on a solver for the linear system.

3.3 Implementation in PHOENIX/3D

PHOENIX/3D is a tool for modeling stellar and planetary atmospheres. This
includes finding a numerical solution to the radiative transfer equation via an
operator splitting method (see previous section) while simultaneously comput-
ing the corresponding level populations of the considered atoms and molecules.
PHOENIX/3D is able to not only model the case of LTE (local thermodynamic
equilibrium), but also the more complex case of non-LTE, where a solution of
the rate equations is necessary to determine level populations. Time-dependent
problems can also be solved with PHOENIX/3D, as well as problems including
arbitrary velocity fields (e.g. novae). Besides a serial version, the 3D code can
also be run in parallel, with MPI, OpenMP and OpenCL versions available. The
overall structure of a PHOENIX/3D run is shown in figure 3.2.

In the initial phase, PHOENIX/3D replaces default values for all variables by
the desired user input. In the next phase, the equations of state (EOS) are solved,
which in the 1D version includes calculating the hydrostatic equilibrium and con-
vection terms, as well as the chemical equilibrium. In 3D, this step is not necessary,
because the information is already contained in a pre-calculated hydrodynamics
grid, that is passed to the program as input parameter.
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Init

EOS

Occupation numbers

Opacity/ Emissivity

Radiative Transfer

New occupation numbers

Spectrum

Figure 3.2: Flow chart of a typical PHOENIX/3D run.

Afterwards, a first estimate of occupation numbers for the spectral lines selected in
the initial phase is computed and from them the opacity and emissivity coefficients.
They are crucial for the next phase, which is the radiative transfer calculation it-
self. From the computed intensities and the iteratively corrected source function,
a new set of corrected occupation numbers is calculated. After rerunning this loop
until convergence, a spectrum can be computed from the obtained results for every
discrete wavelength bin.

The current implementation for solving the radiative transfer equations itera-
tively in PHOENIX/3D allows the spatial discretization to be in Cartesian, spher-
ical or cylindrical coordinates. The photon propagation directions are discretized
by using a full characteristics method.
The radiative transfer calculations are done in the order shown in figure 3.3.

In PHOENIX/3D, the approximate Lambda operator Λ∗ is set up to hold parts
of the original Lambda operator Λ. The main diagonals of both operators contain
the ”self-inflicted” intensity shares of all spatial grid points. The influence of these
points on their 26 neighboring voxels is also calculated. Those values enter the
side diagonals of Λ∗ accordingly, while all other entries are set to zero. That way,
Λ∗ forms a sparse band-matrix, although the band might be much wider than 26
side-diagonals depending on the ordering of unknowns (see Ch.4 for further infor-
mation). Λ∗ is only computed once for each frequency point at the beginning of
the radiative transfer iteration.
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Calculate Λ∗

Solve system of equations for J

Calculate S(new)

Calculate J (new)

Figure 3.3: Flow chart of Radiative Transfer code structure.

The initial value for S is calculated from the opacity and emissivity estimates
(see flow chart 3.2) and the formal solution is obtained via a numerical integration
method over Ω. During the iteration steps, the arising systems of equations can be
solved either by serial methods, such as a Jacobi solver or a Gauss-Seidel solver,
as well as a parallel implementation of the Jacobi solver.

The iteration stops when the relative change, calculated by J(old)

J(old)+J(new) , reaches a
pre-set accuracy threshold, or when the number of iteration steps exceeds an also
pre-set limit. The solution J can then be used to calculate the spectrum of the
stellar atmosphere of interest.
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Chapter 4

Numerical Methods

In the last chapter, the numerical method used in PHOENIX/3D to solve the ra-
diative transfer problem has been explained. It was mentioned that the operator
splitting method results in a linear system of equations, that has to be solved in
every iteration step. Furthermore, the matrix of all these systems of equations
does not change between iteration steps.
This chapter focuses on how to solve these systems of equations effectively in par-
allel and the different numerical methods that can be used.

As mentioned in the previous chapters, several classes of solvers are feasible in
the radiative transfer context to solve the linear system occurring in each iteration
step of the operator splitting method described in Ch.3. They can be divided
coarsely into direct and iterative methods. Chapter 2 provided details on itera-
tive operator splitting methods, such as Jacobi and Gauss-Seidel methods. Here
however, a parallel direct algorithm, which is a parallel, modified version of the
Gaussian elimination, will be presented first, before another class of direct meth-
ods, the Krylov subspace methods, will be introduced.

The problem we are left with has the form shown in Eq. (3.26). For the sake
of simplicity, in this chapter the systems of equations are denoted as

Mxj = bj (4.1)

where M ∈ Rn×n is a sparse narrow-banded matrix. In this context, narrow-
banded means that the total bandwidth 2k + 1 fulfills 2k + 1� n, where k is the
half-bandwidth. Furthermore, M is assumed to be strictly diagonally dominant
column-wise. A sequence of right-hand-sides is given by bj ∈ Rn and the corre-
sponding sequence of solutions is denoted as xj ∈ Rn. Upper indices indicate an
outer iteration through the operator splitting method, while lower indices describe
spatial distributions onto different processing-elements.

Remark on the Assumption of a Diagonally Dominant Matrix: Treat-
ing strictly diagonally dominant matrices is a prerequisite for parts of the later
presented parallel Gaussian elimination algorithm as well as a property that guar-
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antees convergence of both, the Jacobi- and the Gauss-Seidel iterative solvers,
which are currently used in PHOENIX/3D (see [20]).
Whether the problem solved in PHOENIX is diagonally dominant depends on the
choice of Λ∗. Due to the nature of the operator splitting algorithm, Λ∗ can be cho-
sen freely and even without physical meaning (see Ch. 2). Therefore, the problem
can be assumed to be diagonally dominant, because it is always possible to choose
Λ∗ accordingly.
While no general statement can be made on the convergence of non-diagonally
dominant matrices, that does not exclude convergence outright but merely im-
plies a conditional behavior. Apart from mathematical theory, even a convergent
method might require a huge amount of iteration steps to provide an acceptable
solution and will, in any practical approach, be terminated by a stopping criterion,
e.g., a small enough change of solution between iterations or a maximum number
of iterations, before it is fully converged.

Ordering of Unknowns Since the linear systems Mx(j) = b(j) originate from
the discretization of a partial differential equation in three spacial dimensions, the
question arises, how the entries of the 3D grid are related to the entries in M and,
consecutively, in x(j) and b(j).
Each unknown in the linear system corresponds to one point in the discretized 3D
grid. Naively, their order in the linear system is insignificant, since every order
will yield the same, but permuted result. However, the ordering of coefficients can
have an influence on the properties of the matrix and, therefore, on the conver-
gence behavior of the applied numerical method. Also, the parallel efficiency of an
algorithm might depend on the order of unknowns in the linear system.
In the radiative transfer context, this problem becomes even more considerable:
a significant property of the matrix M = En − Λ∗(1 − ε) (see 3.26) is its narrow-
bandedness. This is defined as the full bandwidth 2k + 1 to be significantly less
than the number of unknowns n, 2k + 1 � n. The expression ”significantly less”
is, however, a vague term. Especially for methods specialized on narrow-banded
problems, the smaller the bandwidth is the more effective the algorithm works in
regard to execution time and memory requirements. Therefore, the ordering of
unknowns directly influences the behavior of the numerical method applied to it.
To improve the method’s performance, one might re-order the unknowns in a way
to minimize the matrix’ bandwidth. An example for such an ordering algorithm
is the Cuthill-McKee method (see [6]).
In PHOENIX/3D, the bandwidth for a medium grid with nx = ny = nz = 32 and
n = (2nx+ 1)(2ny + 1)(2nz + 1) = 274, 625 total grid points is 4,291. For a more
realistic grid of 135,005,697 grid points, corresponding to nx = ny = nz = 256,
the bandwidth is already greater than 250,000 (see [20]). Those bandwidths are
large but still significantly smaller than the matrix dimension n. Even while these
matrices qualify as narrow-banded, a different ordering of unknowns and subse-
quently a smaller bandwidth might encourage shorter execution times.
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4.1 A Modified Parallel Gaussian Elimination Algo-
rithm

This section will begin with a short reminder on the serial Gaussian algorithm
and its theoretical principles, before presenting a parallel version of the Gaussian
elimination, including a version that can be used for problems that do not fulfill
the diagonal dominance prerequisite.

4.1.1 The Classic Gaussian Elimination

The classic Gaussian elimination consists of three steps: factorizing the system’s
matrix, finding the solution to a reduced system, and back-substitute it to find the
solution to the original system of equations.
In the factorization step, a LU-decomposition of the form M = LU is carried out,
where L is a unit lower triangular matrix and U is an upper triangular matrix.
Next, the reduced system Lz = b is solved in a forward elimination step with a
interim variable z. The back-substitution step then consists of solving Ux = z to
compute the solution x to the original system Mx = b.
The LU-factorization is also often referred to as LR-decomposition with M = LR.

Another interpretation of the Gaussian elimination is to transform the system
of equations into a equivalent triangular form to solve it more easily. This process
can be described as a series of matrix multiplications with Gauss transforms Gj
which each take care of one column of the original matrix. Each Gauss transform
has the form

Gj = En − τjeTj , (4.2)

where eTj is the j-th unit vector and τj is the Gauss vector defined by

τTj =

0, . . . , 0︸ ︷︷ ︸
j

, τj+1, . . . , τn

 . (4.3)

The factors τj+1, . . . , τn are called multipliers. The Gauss transforms Gj are unit
lower triangular matrices.
During the classic Gauss elimination, the Gauss transforms Gj are applied to the
original matrix M until it is transformed to an upper triangular matrix. Therefore,
R from the LR-decomposition can be defined as

Gn−1 . . . G2G1M = R. (4.4)

Then
L = G−1

1 . . . G−1
n−1 (4.5)

is unit lower triangular and by construction fulfills M = LR. Because of the Gauss
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transforms’ structure (4.2), their inverses can be obtained easily:

G−1
j = En + τje

T
j . (4.6)

With an understanding of how a LR-decomposition can be found, one can now
investigate for which matrices M such a LR-decomposition exists and whether it
is unique:

Theorem 4.1.1. M ∈ Rn×n has a LR-factorization if det(M(1 : j, 1 : j)) 6= 0 for
j = 1, . . . , n − 1. If the LR-factorization exists and M is non-singular, then the
LR-factorization is unique and det(M) = u11 · u22 . . . · unn.

Proof. The interested reader might find the proof in [38], Theorem 3.2.1.

There is, however, a significant flaw in the Gaussian elimination algorithm:
small pivots, i.e., elements on the main diagonal of the matrix, in comparison to
the non-main-diagonal elements can lead to large numerical errors in the LU de-
composition. These errors are augmented during the forward elimination and the
back-substitution steps of the algorithm.
Introducing errors to the solution through the LR-decomposition can be avoided
by using a pivoting algorithm. Instead of decomposing M as M = LR, a decom-
position of the form PMQ = LR is performed, where the permutation matrices P
and Q ensure a better pivot to non-main-diagonal element ratio by interchanging
rows or columns of M , respectively. The case where Q = En is called partial piv-
oting, while otherwise it is called total pivoting.
For diagonally dominant matrices (see Def. 2.2.5) on the other hand, the need for
pivoting is omitted.

Theorem 4.1.2. If M is strictly diagonally dominant column-wise then M has an
LR factorization and the entries of L fulfill |lij | ≤ 1. In other words, P = Q = En.

Proof. See [38], Theorem 3.4.3

As for the stability of the algorithm, the Gaussian elimination is backwards
stable under certain conditions. This means that the backwards error E is suffi-
ciently small for all approximate solutions x̂, where E is defined as the smallest
number so that

(M + E)x̂ = b. (4.7)

The bound on E is given by

Theorem 4.1.3. (See, e.g., [11], [42].) Let M be an n × n non-singular matrix
and x̂ be the computed solution of Mx = b by Gaussian elimination with partial
pivoting. Then x̂ satisfies the equation

(M + E)x̂ = b (4.8)

with ||E|| ≤ f(n)γβ10−t, where t is the precision used in the computation, f(n) =

O(n3), β = max |mij |, γ = max |m(l)
ij /β| ≤ 2n−1, and m

(l)
ij is the ij-th element of

M on the l-th step of the elimination.
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For banded matrices, the bound on E even improves:

Theorem 4.1.4. (See, e.g., [11], [7].) Let M be an n × n non-singular matrix
with semi-bandwidth k (with k > 1, i.e, a non-diagonal matrix), and let x̂ be the
computed solution of Mx = b by Gaussian elimination with partial pivoting. Then
x̂ satisfies the equation

(M + E)x̂ = b (4.9)

with ||E|| ≤ f(n)γβ10−t, where t is the precision used in the computation, f(n) =

O(kn2), β = max |mij | and γ = max |m(l)
ij /β| ≤ 22k−3 − (k − 2)2k−3.

In summary, the Gaussian elimination algorithm is appropriate for square,
dense, and unstructured matrices. Since the structure of M is known to be sparse
and narrow-banded, a classic Gauss elimination is not the method of choice. Fur-
thermore, the Gaussian elimination is usually not used in practical context, be-
cause of the amount of time needed for the LR-decomposition of large matrices,
especially when using pivoting, and because of potential rounding errors without
pivoting. This, however, is not an issue here since M is diagonally dominant. To
be useful for a problem of the given size though, some modifications to the classic
Gaussian elimination algorithm still have to be made.

4.1.2 The Modified Parallel Gaussian Elimination

The modified parallel Gaussian elimination algorithm that will be presented in
this section is an example for a method that establishes parallelism by distribut-
ing data to different processing elements while minimizing communication, so that
as many operations as possible can be executed independently.

Especially in the case of an optically thick environment or in cases with heavy
scattering, the previously presented Operator Splitting method converges slower
and, therefore, more iterations need to be carried out. In these cases, it can be
beneficial to factorize the matrix M first, which results in solving a reduced sys-
tem in every subsequent iteration step. The additional effort of the factorization
step then is outweighed by the savings in the subsequent iterations and, for the
above problem (4.1), should ideally result in a speed-up. Of course, the method
is also suited to solve single systems of equations, as the authors of the original
study intended, but re-using the matrix factorization for several similar systems
of equations should be especially effective.

The version of Gaussian elimination that is presented here, is especially suited
for narrow-banded matrices. This kind of problem is not only the result of PHOE-
NIX’s operator splitting method, but also often stems from the discretization of
ODEs or PDEs from various physical problems. Again, the diagonally dominant
property is needed to ensure a stable LR-decomposition. Later in this chapter, a
version of the algorithm suited for more general narrow-banded matrices will also
be presented.
Particularly narrow-banded problems are in need of suitable algorithms, since ap-
plying dense matrix algorithms on sparse systems of equations usually leads to
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dense interim problems. This behavior introduces additional and unnecessary ef-
fort when solving the sparse problem. In cases where the system is not only sparse
but also has a known structure of non-zero entries, such as narrow-banded systems,
this disadvantage of dense algorithms is especially bothersome.
Because the special structure of the problem at hand is known in advance, it would
still possibly be a waste of resources to use algorithms for general sparse systems.
By accommodating the used methods to the special narrow-banded structure of
the problem, the computational effort should decrease noticeably.

How the Algorithm Works The system of equations Mxj = bj is assumed
to have the following structure: the narrow-banded matrix M can be written as a
block matrix

M =



A1 BU
1

BL
1 C1 DU

2

DL
2 A2 BU

2

BL
2 C2 . . .

. . .
. . .

. . .

. . . DU
p−1

DL
p−1 Ap−1 BU

p−1

BL
p−1 Cp−1 DU

p

DL
p Ap


, (4.10)

while x and b are denoted as

x =



x′1
ζ1

x′2
...

ζp−1

x′p


, b =



b′1
β1

b′2
...

βp−1

b′p


. (4.11)

A,BU , BL, C,DU andDL denote different types of sub-matrices, whereA ∈ Rm×m,
C ∈ Rk×k. Along the main diagonal, the sub-matrices A and C are arranged al-
ternately, while the band above and below is covered by the sub-matrix types BU

and DU , resp. BL and DL. m is defined via the relation

pm+ (p− 1)k = n. (4.12)

The vectors x and b are arranged as a composite of sub-vectors x′, ζ resp. b′, β
with x′i, b

′
i ∈ Rm and ζi, βi ∈ Rk.

The purpose of denoting the system this way is to enable parallelism by distribut-
ing sets of sub-matrices onto p processing elements. The goal is to solve the system
of equations by reducing it to a set of problems that can be worked on each set of
sub-matrices mostly independently. Afterwards the solution to the original system
is assembled from the different processing element’s results.
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The strategy of the modified parallel Gaussian is to first re-order the narrow-
banded system to optimally exploit parallelism. This happens by rearranging x
and b to

x =



x′1
x′2
...
x′p

ζ1

ζ2
...

ζp−1


, b =



b′1
b′2
...
b′p

β1

β2
...

βp−1


, (4.13)

and then re-sorting the equations to fit the new notation. M then reads:

M =



A1 BU
1

A2 DL
2 BU

2
. . .

. . .
. . .

Ap−1
. . . BU

p−1

Ap DL
p

BL
1 DU

2 C1

BL
2

. . . C2

. . .
. . .

. . .

BL
p−1 DU

p Cp−1


(4.14)

This system can schematically be written as[
A BU

BL C

] [
x′

ζ

]
=

[
b′

β

]
. (4.15)

The sub-matrices A, BU , BL and C are all narrow-banded again.

A notable amount of the computational effort of a classic Gaussian elimination
goes into the LU decomposition of the system of equation’s matrix. For a large ma-
trix, such as M in this application, this would be a reason not to use the Gaussian
elimination. In the modified parallel version however, only the A sub-matrix has
to be LU decomposed, which is equivalent to decomposing the individual blocks
Ai and can therefore be done in parallel on p processing elements.
Once A is LR-decomposed as A = LR, the structure of M enables one to write
the LU decomposition of M as

M =

[
A BU

BL C

]
=

[
L 0

BLR−1 Ek

]
︸ ︷︷ ︸

LM

[
R L−1BU

0 S

]
︸ ︷︷ ︸

RM

(4.16)
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where
S = C −BLA−1BU . (4.17)

S is also called the Schur complement of the block A in the matrix M .
The next step is also very similar to a classic Gauss algorithm, but not quite the
same: inserting the LR-decomposition into the original system of equations leads
to

LMRMx = b (4.18)

⇔ RMx = L−1
M b =: c (4.19)

In matrix notation, this modified forward elimination step has the following form:[
R L−1BU

0 S

] [
x′

ζ

]
=

[
L 0

BLR−1 I

]−1 [
b′

β

]
=:

[
c′

γ

]
(4.20)

with
c′i = L−1

i b′i (4.21)

and
γi = βi −BL

i R
−1
i c′i −DU

i+1R
−1
i+1c

′
i+1. (4.22)

Any potential confusion that might arise at this point is probably due to the differ-
ent notations: in (4.20) the sub-matrix notation is used, while in equations (4.21)
and (4.22), the calculations on the particular processing element are given.

Now, the reduced system
Sζ = γ (4.23)

is solved. With a dimension of (p − 1)k × (p − 1)k it is smaller than the original
system. It has a banded block structure with k×k blocks. The structure is shown
in fig. 4.1. Ti, Ui and Vi are again sub-matrices and can be computed nearly

Figure 4.1: Structure of reduced system’s matrix S and its decomposition onto
processing elements (from [41]).

independently. The overlapping structures seen in Fig. 4.1 mean that some minor
inter-processor communication is necessary during the computation of the reduced
system.
As shown in Eq. (4.17), S is computed on processing element-level the following
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way:

Ti = Ci − (BL
i R
−1
i )(L−1

i BU
i )− (DU

i+1R
−1
i+1)(L−1

i+1D
L
i+1), (4.24)

Ui = −(DU
i R
−1
i )(L−1

i BU
i ), (4.25)

Vi = −(BL
i R
−1
i )(L−1

i DL
i ). (4.26)

S itself is again diagonally dominant (see, e.g., [25]).
The reduced system can be solved by any suitable solver. Depending on the
system’s size, this might be an iterative or direct solver with a good parallel im-
plementation. We will return to this topic in further detail shortly.

When ζ is known, the remainder of the solution x′ is calculated via the back-
substitution formula that can be deduced from Eq. (4.20). Depending on the pro-
cessing element i it yields

x′1 = R−1
1 (c1 − L−1

1 BU
1 ζ1), (4.27)

x′i = R−1
i (ci − L−1

i DL
i ζi−1 − L−1

i BU
i ζi) ∀1 < i < p, (4.28)

x′p = R−1
p (cp − L−1

p DL
p ζp−1). (4.29)

The complete solution x then is composed from the two solution vectors x′ and ζ.
As a parallel version of the classic Gaussian elimination, the modified algorithm is
also backwards stable (see Def. 4.1.4 in this work, [3]).

In our application, where a similar system of equations Mxj = bj has to be
solved in each iteration step, factorizing the matrix and computing the reduced
matrix S only has to be done in the first iteration step. The subsequent iteration
steps only include calculating the adapted RHS vector cj , solving the reduced sys-
tem Sζj = γj and doing the back-substitution.
Since S and the sub-matrices have to be saved for subsequent iterations, the mem-
ory requirement doubles in comparison to the classical, serial Gauss elimination,
though memory demand can be reduced by overwriting sub-matrices that are no
longer used, e.g. A can hold L and R, and later L−1 and R−1, since the inverse
of a (unit) upper resp. lower triangular matrix is (unit) upper/lower triangular
(see [38]).

Solving the Reduced System Before presenting several ways to solve the
reduced system, it lends itself to briefly discuss the existence of a solution to the
reduced system. To transform the original problem to its current form, Eq. (4.20),
only equivalent transformations and a partial LR-factorization are used. Therefore,
a unique solution to the reduced system exists if the original system has a unique
solution.
In comparison to the original n×n system, the reduced (p− 1)k× (p− 1)k system
is not a large system anymore. Still, it is large enough to consider solving it
in parallel. Depending on its actual size, different kinds of solvers might be of
advantage.
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An elegant way to solve the reduced system is the cyclic reduction approach.
Comparing Eq. (4.10) to Eq. (4.23) yields the insight that M and S have a
very similar structure: they are narrow-banded and diagonally dominant. In the
cyclic reduction approach, the modified Gauss elimination is applied to the reduced
system repeatedly, until the resulting reduced system can be solved comfortably on
a single processing element. Afterwards, there are several nested back-substitution
steps to compute x. This approach seems to be elegant, but unrewarding, since
the degree of parallelism halves with every recursion.
Alternatively, for reduced systems that still are of considerable size, applying an
iterative solver again is a promising approach. Chapter 2 gives examples of them.
The solvers mentioned there are already implemented in the PHOENIX/3D code.
For smaller reduced systems, a direct parallel solver can be effective. Examples
for this type of solver are the Krylov-subspace methods, that will be introduced
later in this chapter.
Chapter 5 will feature several tests to determine the usefulness of iterative and
direct solvers to solve the reduced system depending on the size of S.

Adaption to General Narrow-Banded Systems of Equations Obtaining
a stable LU decomposition is a crucial part of the modified parallel Gaussian elim-
ination. In general cases, where a stable LU decomposition does not necessarily
exist, pivoting is applied. This way, the existence of the LU decomposition can be
assured and possible truncation errors are minimized. This section gives a short
overview on a version of the algorithm with partial pivoting that can be applied
to general narrow-banded systems. For further details, see [10].

Although the form of M is still assumed to be narrow-banded, the notation
differentiates from the diagonally dominant case. The matrix is now made up of
the following blocks:

M =



A1 D1

B1 C1

D2 A2

. . .
. . .

Dp Ap
Bp Cp


, (4.30)

where the Ai are not square anymore, but Ai ∈ Rm×n′
with n′ = m − k to hold

the entries above the main-diagonal. C is still a k × k matrix. x and b are still
denoted as:

x =



x′1
ζ1

x′2
...

ζp−1

x′p


, b =



b′1
β1

b′2
...

βp−1

b′p


. (4.31)

As explained in the beginning of this chapter, a LU decomposition with partial
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pivoting is a factorization of the form PM = LU , where P is a row permutation
matrix. This decomposition cannot happen immediately, since the form of the
problem does not allow for the pivoted factorization to take place on several pro-
cessing elements independently. Therefore, the system is re-ordered to not hold
any blocks in the same column. This leaves the system in the following form:

A1 D1

B1 C1

A2 D2

B2 C2

. . .
. . .

. . .
. . .

Ap Dp

Bp Cp





x1
...
xp
ζ1
...
ζp


=



b′1
β1

b′2
...

βp−1

b′p
βp


(4.32)

Now, a LR-decomposition with partial pivoting can be performed indepen-
dently on the left-hand sub-matrix block-wise:

Pi

(
Ai
Bi

)
= Li

(
Ri

0k×n

)
∀ 1 ≤ i ≤ p. (4.33)

Then, PM = LMRM is re-written as L−1
M PM = RM . Inserting the conversion

into the system of equations leads to

L−1
M PMx = RMx = L−1

M b, (4.34)

whereby RM is found to have the following structure

RM = P

 R X

0 S

 , (4.35)

with X containing products of the sub-matrices L−1P with C and D. To complete
the forward elimination step, the reduced system

Sζ = γ (4.36)

is solved and the full result is then gained by back-substitution. As in the algo-
rithm for diagonally dominant systems, S has the same structure as M .

To summarize, an adaption of the modified parallel Gaussian elimination to
systems that are not necessarily diagonally dominant is available. Although this
broadens the area of application, it also increases the computational effort. Also,
when applied to diagonally dominant matrices, the adapted algorithm does not
yield the same reduced system as the first algorithm does. Consequently, when a
system is known to be diagonally dominant, this property should be exploited by
using the first version of the algorithm.
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4.2 Krylov-Subspace Methods

Another class of direct solvers is the class of Krylov-subspace methods. They are
solvers for large sparse systems of equations and can also be applied to eigenvalue
problems. Among them are solvers like the conjugate gradient (CG) method, as
well as the related BiCG and BiCGSTAB methods, generalized minimal residual
(GMRES) methods and quasi minimal residual (QMR)-type methods.
This section begins with a short review on the basic concepts of the class of Krylov-
subspace methods, before presenting in more detail the GMRES solver. The next
section then discusses the use of the GMRES method as internal solver for the
modified Gauss method.

4.2.1 The Basic Concepts of Krylov Solvers

Krylov-subspace methods are projection methods using Krylov subspaces to refine
the approximate solution of a problem of the form Mx = b.
For the remainder of this chapter, lower indices will denote the related Krylov
subspace.

Definition 4.2.1. A projection method for the solution of Mx = b is a method
that computes approximate solutions xt ∈ x0 +Kt with regard to

(b−Mxt) ⊥ Lt, (4.37)

for any x0 ∈ Rn and Kt and Lt are t-dimensional sub-spaces of Rn. The orthogo-
nality condition is defined via the euclidean scalar product through

x ⊥ y ⇔ (x, y)2 = 0. (4.38)

(see [26], Definition 4.58)

A Krylov-subspace method can now be defined as follows:

Definition 4.2.2. A Krylov-subspace method is a projection method designed to
solve Mx = b, where the Krylov subspace Kt is defined as

Kt = Kt(M, r0) = span{r0,Mr0,M
2r0, . . . ,M

t−1r0}, (4.39)

where r0 = b−Mx0.
(see [26], Definition 4.60)

Therefore, the approximate solution in stage t of the Krylov solver has the
form

xt = x0 + qt−1(M)r0 ∈ Kt(M, r0), (4.40)

where qt−1 is a polynomial of degree t−1. Accordingly, the residuals can be written
as

rt = pt(M)r0 ∈ r0 +MKt(A, r0) ∈ Kt+1(M, r0) (4.41)
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with pt a polynomial of degree t. Implementations of Krylov solvers often calculate
the update to the residual indirectly and only once update the solution x in the
end or when the residual is smaller than the intended accuracy.
Since Krylov-subspace methods are direct solvers, they should yield the exact
solution to the system of equations (4.1) apart from rounding errors. The following
theorem elaborates on this:

Theorem 4.2.3. Be M ∈ Rn×n a regular matrix. Then, a Krylov-subspace method
will yield the exact solution to the system of equations Mx = b after at most n
refinement steps.

Proof. See [26], Theorem 4.62

With enough time and computational effort, Krylov-subspace methods obtain
an exact solution. In some applications although, computing all the refinements
in ever growing subspaces will exceed appropriate computational costs. Therefore,
the actually direct Krylov methods sometimes are used as iterative methods, where
the computation is aborted after a number of refinement steps and an approximate
solution is accepted.

4.2.2 The GMRES Algorithm

One member of the class of Krylov solvers is the GMRES method, where GMRES
stands for Generalized Minimal Residual. This name stems from the fact, that,
while still a Krylov method, the GMRES approach can also be interpreted as
minimizing the residual via the function

F : Rn → R
x → ||b−Mx||22. (4.42)

This is a valid approach, as the following theorem shows:

Theorem 4.2.4. Be A ∈ Rn×n a regular matrix and b ∈ Rn. Then

x̂ = arg min
x∈Rn

F (x) (4.43)

if, and only if,
x̂ = M−1b (4.44)

Proof. See [26], Theorem 4.86

Therefore, the GMRES algorithm is suitable for solving general systems of
equations Mx = b, where M is a regular matrix.
Alternatively, the GMRES algorithm can be seen as Krylov-subspace method
where the subspaces Lt are defined as

Lt = AKt. (4.45)

43



CHAPTER 4. NUMERICAL METHODS

Like all methods of the Krylov-subspace class, the GMRES method can be used
as a direct method, the classic GMRES, as well as an iterative method, called the
restarted GMRES. As a direct method, GMRES gives the exact solution after
j ≤ n iterations. It is possible though, that a broad number of iterations is neces-
sary, so memory requirements are high to a point of not being applicable. As an
iterative method, however, the iterative or “restarted” GMRES algorithm is used
repeatedly, so the solution is gradually refined and memory can be cleared after
each set of iterations. This method results in an approximate solution.
Implementing the GMRES algorithm includes, among others, the computation of
bases of the Krylov subspaces Lt resp. Kt, as well as matrix-vector multiplications.
These calculations can be parallelized effectively, especially for sparse matrices M ,
and therefore provide a parallel solver for linear systems of equations.

4.2.3 Use in PHOENIX/3D

Currently, a Krylov-type method is employed in PHOENIX/3D as part of the
modified Gauss MPI implementation , namely a solver for the occurring sparse re-
duced system. At this point in the modified Gauss algorithm, the user can choose
a solver for the reduced system suitable to their specific problem: a direct LR
solver is implemented , as well as an iterative Jacobi solver and the aforemen-
tioned restarted GMRES method. All three are suitable to solve sparse systems of
equations, but depending on the exact parameters and problem size, the efficiency
of the inner solvers can differ. Chapter 5 includes tests on their specific behaviors.
In this context, the Gaussian elimination could mathematically be interpreted as
a pre-conditioner for the Krylov-subspace method.
Alternatively, the GMRES algorithm could be employed to solve the system of
equations in the Operator Splitting step of PHOENIX/3D without employing the
modified Gauss method first. This is possible since the approximate Lambda ap-
proach results in a sparse system of equations, Eq. (3.23), that has to be solved
in every iteration step. Still, Krylov-subspace methods might only be suitable up
to a specific problem size and are therefore only implemented in the context of
the Modified Gauss algorithm, since the reduced system is typically significantly
smaller than the original sparse linear system.
As a general remark, Krylov-subspace methods might not suitable as an alterna-
tive to the operator splitting step itself, since they are most effective on sparse
systems of equations, while Eq. (3.19) might be a dense system.

4.3 Implementation of the Modified Gauss Algorithm

The implementation of the modified parallel Gaussian elimination takes into ac-
count that there is a similar system of equations Mxj = bj that has to be solved
in each iteration step. Therefore, factorizing the matrix M and computing the
reduced system S only happens once during the first iteration step, while in all
subsequent iterations only the RHS is updated, the reduced system is solved and
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the back-substitution is completed.
Since the memory requirements of the parallel algorithm exceed those of the serial
version through the need to also save sub-matrices, memory is handled carefully,
e.g. by using memory-saving formats for sparse matrices and by overwriting sub-
matrices that are no longer needed. Care has to be taken, though, because some
of the sub-matrices are needed in every iteration step to modify the current RHS bj .

Currently, there are two implementations of the modified parallel Gauss solver:
one C/OpenCL stand-alone version and a Fortran/MPI version that is already in-
tegrated in PHOENIX/3D.
The reason behind having two different implementations of the same solver is
connected to the machine architecture one intends to use it on: the OpenCL ver-
sion runs well on GPUs, CPUs, accelerator cards and combinations thereof, while
the MPI version is very suitable for many-core and many-node architectures (see
Chapter 2).

General Remarks on Implementation The modified Gauss algorithm can
be coarsely divided into four main tasks: the factorization step to compute a
reduced system matrix S only has to take place in the first iteration and is then
re-used in every succeeding iteration. After the factorization is complete, a typical
iteration step only includes the computation of the adjusted RHS, solving the now
complete reduced system consisting of S and the new RHS. The last task is a
back-substitution step, where the complete result is computed from the result of
the reduced system.
However, before the actual algorithm-related tasks can be started, the data has
to be brought into another format. PHOENIX/3D saves variables in the so-called
pve grid. In this context, the approximate Lambda operator Lstar is only one
entry in the pve_grid. Its structure has the following form

pve_grid%Lambda(ix, iy, iz)%Lstar(ixn, iyn, izn),

where ix, iy, iz stand for the grid point and ixn, iyn, izn describe a neigh-
bor in the grid. Those neighbors are denoted with ixn, iyn, izn ∈ {−1, 0, 1} and
sum up to 27 neighbors for each grid point. In matrix form, this corresponds
to pve_grid%Lambda(ix,iy,in)%Lstar(0, 0, 0) holding the diagonal entries,
while for other values of ixn, iyn, izn stand for entries in the same matrix
line. To use the modified Gauss algorithm on the systems of equations from
PHOENIX/3D, a conversion into matrix format has to take place. Since the
scheme uses sub-matrices, it is convenient to save the Lstar entries to the appro-
priate sub-matrices immediately.
It is possible, that the initial combination of values for the variables p, k and m,
does not agree with Eq. (4.12). In that case, the size of the sub-matrices is
augmented until the smallest consensus between variables is reached. Redundant
entries are filled with zeros. This way, the original solution is preserved while the
additional computational effort is small.
With the data now in the correct form, the factorization step can start. PHOE-
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NIX/3D is equipped with the new_Lstar variable, that indicates whether the fac-
torization step is necessary, since there is a newly setup Lstar , or if it already
was factorized in a previous iteration step.
In case, the factorization step is necessary, it begins with a LR-decomposition of
the sub-matrices of type Ai (see Eq. 4.17). Since the original matrix is assumed
to be diagonally dominant, no pivoting is necessary during the LU decomposition.
The algorithm implemented in both codes stems from [38].
To evenly distribute work between processing elements, the requirement mp+(p−
1)k = n holds. Therefore, in some cases, the choice of p is inconsistent with the
problem size n. In these cases, the problem size n is adapted, i.e. slightly in-
creased, until m and k can be calculated while still holding the above requirement.
The expansion of the problem size is done in a way, that adds lines containing a
En′−nx = 1 to the actual problem, where n′ is the adapted problem size. To do
this, the sub-matrices A and C are initialized as identity matrix En′ and the b,
resp. c vectors containing ones. During the algorithm, the part of the original
problem’s size is overwritten, while any additional lines do not influence the orig-
inal solution. Although this slightly increases the problem size, it keeps the work
balance among processing elements even. Alternatively, [10] proposes an approach
with variably-sized sub-matrices and vectors.
How the remainder of tasks is implemented in detail differs depending on the pro-
gramming language used. Both approaches are described in the following sections.

Details on the OpenCL Implementation The OpenCL implementation of
the modified Gauss algorithm is a stand-alone code, but could be incorporated
into PHOENIX/3D with some adjustments. PHOENIX/3D provides an OpenCL
version, whose infrastructure could be used regarding OpenCL contexts and com-
mand queues. To complete the integration into PHOENIX/3D, an additional
coordinate transfer kernel would be necessary to transform the Lstar format into
one accessible to the stand-alone code and vice versa to reconstruct the result after
computing an iteration step.
The general structure of the OpenCL implementation follows the separation of
tasks as explained above: four main kernels hold the parts of the algorithm that
can be executed in parallel. One kernel holds the factorization step, in which the
reduced system’s matrix S is calculated. From then on, another kernel adjusts the
RHS and therefore completes the reduced system. Thereafter, a parallel Jacobi
solver calculates the reduced system’s result and the fourth main kernel does the
back-substitution step. Currently, the implementation only supports solving one
system of equations during execution. In future versions, an iteration counter will
make sure that the factorization only happens in the first iteration, while the other
kernels are invoked in every iteration. There are also some kernels holding debug-
ging routines. The host code sets up the necessary memory objects, loads them to
the kernels and enqueues the kernels in the correct order to the command queue.
Once the memory objects have been pushed to the device, they stay there and
can be manipulated by other kernels in the same command queue, before being
read back by the host via queuing a read-command. Since the memory objects are
defined on global memory space, communication between different work-items in
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a work-group happens through writing into or reading from each other’s memory.
Afterwards, the memory objects are synchronized through a barrier function to
ensure matching variables on all work-items. Auxiliary functions are hold by a C
code file, which can be used by the work-items evoked.
One particularity of the OpenCL implementation of the modified Gauss algorithm
is the reduced system’s matrix S being saved in the compressed row storage (CRS)
format. Instead of saving a sparse matrix, in the CRS format three vectors hold all
information necessary: the non-zero matrix entries are saved in one vector, while
two other vectors hold the respective column index and row pointer to reconstruct
the entries position in the original matrix. This way of saving S is advisable for
the OpenCL implementation, since in OpenCL there is currently no matrix for-
mat, and pointers to pointers are not feasible as kernel arguments. All matrix
capacities, among them S and the sub-matrices, therefore have to be transformed
to vectors before being passed to the kernels. The CRS format might offer an ad-
ditional saving in terms of memory usage. The sub-matrices are saved as normal
vectors, since they are not necessarily sparse.
Because of the necessity to save matrices as vectors, several coordinate transforms
take place: from the original matrix to vectors and then to sub-matrices in vector
form, before being used to form the reduced system. Furthermore, the transforma-
tions to vectors make it necessary to write special routines for matrix-matrix and
matrix-vector multiplication. They are callable by work-items with a specific part
of the matrix in regard and therefore enable parallel multiplications. The parallel
Jacobi solver, which is implemented as internal solver, also is designed to heed the
CRS format of S.
Timing information is provided via the C wall clock function for the total execu-
tion time. OpenCL timing functions can provide additional information on the
execution times of separate kernels through the OpenCL event profiling.

Details on the Fortran/MPI Implementation The Fortran/MPI version of
the modified parallel Gauss algorithm is fully integrated into PHOENIX/3D. It is
part of the solver routines in OS_iteration.for and can be selected through the
solver = 7 option. PHOENIX/3D then calls this solver routine in every iteration
step. Therefore, it is important to distinguish between the iteration steps where
the factorization has yet to take place and iteration steps where the reduced sys-
tem’s matrix S is already determined. This is done via the new_Lstar variable.
Once the reduced system matrix is calculated, it is available during all following
iteration steps through the save attribute, as well as some of the sub-matrices
necessary to compute the adjusted RHS in every iteration step.
As mentioned above, it is necessary to reorder the entries of Lstar in order
to distribute them to their correct sub-matrix. To tackle this problem, a co-
ordinates transform function was implemented to transform the entries of the
pve_grid%Lambda%Lstar to entries in the respective sub-matrix. This functional-
ity includes the calculation of the correct sub-matrix and its local coordinate in it
from a Lstar entry. The same function is used to estimate the half-bandwidth k
of the imagined full system’s matrix. This is necessary since the entries for the 27
neighboring values typically lead to a bandwidth broader than 27 as described in
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Ch. 3.3.
The following code excerpt shows the point where the Lstar entries are identified
regarding their appropriate sub-matrix type and their corresponding processing
element by the typ_matrix function, and then are distributed there. Boundary
conditions are satisfied through adaptive do-loops and an accordingly adapted
bandwidth parameter k.

Listing 4.1: Extract from Fortran/MPI code showing distribution from PHOENIX
Lstar variable to sub-matrices

do izh=-nz,nz

do iyh=-ny ,ny

do ixh=-nx,nx

do izL=-nnlz ,nnlz

iz = izh+izL

if(.not. z_pbc .and. abs(iz) .gt. nz) cycle

if(z_pbc) then

if(iz .gt. nz) iz = -nz

if(iz .lt. -nz) iz = nz

endif

do iyL=-nnly ,nnly

iy = iyh+iyL

if(.not. y_pbc .and. abs(iy) .gt. ny) cycle

if(y_pbc) then

if(iy .gt. ny) iy = -ny

if(iy .lt. -ny) iy = ny

endif

do ixL=-nnlx ,nnlx

ix = ixh+ixL

if(.not. x_pbc .and. abs(ix) .gt. nx) cycle

if(x_pbc) then

if(ix .gt. nx) ix = -nx

if(ix .lt. -nx) ix = nx

endif

c

c--

c-- loop body for pve_grid%Lambda(ix,iy,iz)%Lstar(-ixL ,-iyL ,-izL)

c-- Lstar holds (1-eps)Lstar; submatrices will hold En -(1-eps)

Lstar!!

c--

call coords_transf_phx(nx, ny, nz, ix, iy, iz, ixh ,

iyh ,

& izh , i, j)

call typ_matrix(m, k, i, j, typ , block , local_i ,

local_j)

if(local_i.LT.1.OR.local_j.LT.1) CYCLE

if(typ ==0) then

if(local_i.GT.m.OR.local_j.GT.m) CYCLE

R(local_i , local_j , block) =

& - pve_grid%Lambda(ix ,iy ,iz)%Lstar(-ixL ,-iyL ,-izL)

if(ixL .eq. 0 .and. iyL .eq. 0 .and. izL .eq. 0)
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then

R(local_i , local_j , block)= R(local_i , local_j ,

block)+1

end if

else if (typ ==1) then

if(local_i.GT.m.OR.local_j.GT.k) CYCLE

LB(local_i , local_j , block) =

& - pve_grid%Lambda(ix ,iy ,iz)%Lstar(-ixL ,-iyL ,-izL)

if(ixL .eq. 0 .and. iyL .eq. 0 .and. izL .eq. 0)

then

LB(local_i ,local_j ,block)= LB(local_i ,local_j ,

block)+1

end if

else if (typ ==2) then

if(local_i.GT.m.OR.local_j.GT.k) CYCLE

LD(local_i , local_j , block)=

& - pve_grid%Lambda(ix ,iy ,iz)%Lstar(-ixL ,-iyL ,-izL)

if(ixL .eq. 0 .and. iyL .eq. 0 .and. izL .eq. 0)

then

LD(local_i ,local_j ,block)= LD(local_i ,local_j ,

block)+1

end if

else if (typ ==3) then

if(local_i.GT.k.OR.local_j.GT.k) CYCLE

Cmat(local_i , local_j , block)=

& - pve_grid%Lambda(ix ,iy ,iz)%Lstar(-ixL ,-iyL ,-izL)

if(ixL .eq. 0 .and. iyL .eq. 0 .and. izL .eq. 0) then

Cmat(local_i ,local_j ,block)=Cmat(local_i ,local_j ,

block)+1

end if

else if (typ ==4) then

if(local_i.GT.k.OR.local_j.GT.m) CYCLE

DR(local_i , local_j , block)=

& - pve_grid%Lambda(ix ,iy ,iz)%Lstar(-ixL ,-iyL ,-izL)

if(ixL .eq. 0 .and. iyL .eq. 0 .and. izL .eq. 0)

then

DR(local_i , local_j , block)= DR(local_i ,local_j ,

block)+1

end if

else if (typ ==5) then

if(local_i.GT.k.OR.local_j.GT.m) CYCLE

BR(local_i , local_j , block)=

& - pve_grid%Lambda(ix ,iy ,iz)%Lstar(-ixL ,-iyL ,-izL)

if(ixL .eq. 0 .and. iyL .eq. 0 .and. izL .eq. 0)

then

BR(local_i ,local_j ,block)= BR(local_i , local_j ,

block)+1

end if

else

write (*,*) ’Error OS_step_fact: invalid matrix type

’
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end if

enddo

enddo

enddo

enddo

enddo

enddo

Later in the code, the same coordinates transform function coords_transf_phx

is used to write the result back to pve_grid%J.
As can be seen in the code segment, the sub-matrices are saved as a vector of
two-dimensional arrays, ordered through their corresponding processing element
and their local coordinates in the sub-matrix, e.g.,

R(local_coord 1, local_coord 2, processor no.).

Accordingly, the RHS is saved as a vector of vectors.
Some of the tasks of the modified Gaussian algorithm can be solved by applying
LAPACK (Linear Algebra Package) or vendor-optimized LAPACK routines, e.g.,
Intel MKL routines (see [2], [6], and [1]). They are used to inverse the L and
R sub-matrices after the LU decomposition and as well for the matrix multipli-
cations. The LU decomposition itself is not a pre-implemented one, because the
before-mentioned packages do not provide a LU decomposition function without
pivoting. It is, however, possible to solve the reduced system via a direct LAPACK
solver, which internally does a LR-decomposition with partial pivoting. For mem-
ory purposes, L is initialized as identity matrix, while R holds the entries of A
before the decomposition.
The code is parallelized using MPI. PHOENIX/3D offers initialization and fin-
ishing routines with several communicators; the communicator used during the
iteration is the MyMPI_3DRT_COMM_FS, already in use from the computation of the
formal solution. At the point of beginning the Operator Splitting iteration, MPI
is already set up and ready to be used. The data contained in the sub-matrices is
then distributed to the different ranks. At three points of the algorithm communi-
cation is necessary in the form of each rank sending and receiving one sub-matrix
each. Those three points are during the set-up of S, during the calculation of
the adjusted RHS, and once during the back-substitution step. At two additional
points, there is the need for collective communication: since the reduced system is
currently solved on one process, information from all processes needs to be gath-
ered before solving the reduced system; afterwards, the root process distributes
pieces of the solution to the other processes for the back-substitution step. In the
end, the complete solution is again gathers on the root processor to be written
back into the PHOENIX/3D format.
The timing information for the routine is provided by PHOENIX/3D routines.

Solving the Reduced System The modified Gauss algorithm contains no
guidelines on how to solve the reduced system, once it is calculated. Still, de-
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pending on the problem, some approaches might be more promising than others.
Here, the internal solvers that were implemented into the two different codes are
presented, as well as the reasoning behind the selection.

In the serial code version in PHOENIX/3D, one can choose between three in-
ternal solvers for the reduced system: a LR decomposition method with pivoting,
a Jacobi solver and an implementation of the GMRES method.
The solvers stand as examples for three popular groups of solvers for linear systems
of equations: the LR decomposition method is a direct method and implemented
using LAPACK functions, while the Jacobi solver is an iterative solver and be-
longs to the class of operator splitting methods. The original GMRES algorithm
is a Krylov method and also a direct method. However, the algorithm here is im-
plemented as a restarted GMRES and therefore belongs to the group of iterative
solvers.
A switch in OS_iteration.for lets the user decide which internal solver to use in
the modified Gauss algorithm. The decision for an internal solver depends mostly
on the size of the reduced system: smaller problems can be expected to be solved
faster by a direct solver, while an iterative solver might be advantageous for larger
reduced systems. In Chapter 5, tests will be conducted to determine whether those
expectations turn out correct and which system sizes exactly count as “smaller”
and “larger”.

The MPI-parallelized version of the modified Gauss algorithm is also already
implemented in PHOENIX/3D. It uses the same internal solvers as the serial ver-
sion, since the MPI code still solves the reduced system on only one processor.
This makes sense, as long as the reduced system is small enough. Once the MPI
modified Gauss code is applied to larger sets of problems, it might be worth a
thought to implement a parallel internal solver as well. On the other hand, solving
the reduced system in parallel results in a need for further communication between
processes and therefore might only be effective when solving very large problems.

The stand-alone OpenCL version of the modified Gauss solver uses a parallel
Jacobi solver to solve the reduced system. In this implementation, the relevant
data is already known to the device used for parallel execution, e.g., a GPU. As a
consequence, no additional computational effort is necessary for extra communi-
cation and a parallel solver makes sense for problems of every size.

Results from Previous Numerical Experiments The authors of [10], where
the parallel Gaussian elimination is described, also conducted some numerical ex-
periments in 1999 on an Intel Paragon. They compared a stand-alone version of
the algorithm to one implemented with the ScaLapack package (see [6]). However,
their implementations did not allow for solving a series of systems of the form
Mxj = bj . Furthermore, the code was not scalable but relied on hard-coded data
structures and was not part of a larger application. Among their findings was
the observation that the execution time scales with the number of messages sent
between processing elements. The algorithms’ behavior also depend strongly on
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the problem sizes, e.g. the algorithm using pre-implemented ScaLapack methods
behaved better on large systems (n = 100, 000, half-bandwidth k ≈ 100) than
on medium-sized systems (n = 100, 000, k ≈ 20). Furthermore, they found that
the execution times of the partial-pivoting algorithm were not as large as expected
compared to the non-pivoting algorithm, but mentioned that their implementation
of the pivoting algorithm required twice the memory than the non-pivoting ver-
sion. In their tests, both implementations of the pivoting and non-pivoting solver
showed stable behavior.

The next chapter is dedicated to numerical experiments that have been con-
ducted with the two new OpenCL/ MPI versions of the modified Gaussian elimi-
nation. These version are capable of calculating subsequent results from a series of
systems of equations Mxj = bj . Furthermore, they are written in two parallel pro-
gramming languages resp. language augmentations that are suitable for modern
machine architectures and are scalable to different problem sizes.
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Chapter 5

Tests and Results

An alternative approach at solving the radiative transfer problem was proposed
and implemented in two different parallel programming languages. This chapter
features test cases that were designed to quantify the behavior of these implemen-
tations.
We begin with a short introduction of the machines used to conduct the tests and
then proceed with five groups of tests: “Preliminary Tests”, that describe behavior
independent of the implementation, “Fortran & MPI Version” dedicated to each
of the two implementations, “PHOENIX/3D Tests” to compare the properties
of the Fortran/MPI-implementation of the modified Gauss solver to the original
PHOENIX/3D radiative transfer solver, and tests regarding the stand-alone “C &
OpenCL Version”.

Machines and Devices Before presenting the tests and their results, this sec-
tion gives an overview of the hardware the tests are conducted on. Since general
concepts of computer architectures were already presented in Ch. 2, we will focus
on the machines’ specific set-up, including details such as operating system and
processors.
On the Linux machine Minion, a AMD Radeon R9 290 GPU with the “Hawaii”
graphics processor and 4GB memory allows GPGPU-tests with OpenCL code. See
fig. 5.2 for more details. The GPU is listed as PCI 1002:67b0, while the gray block
describes the CPU configuration, an Intel Core 2 Extreme X9650 CPU.
Igor, also a Linux machine, contains a Nvidia Quadro P6000 GPU with 24 GB
memory. It also serves for OpenCL-code testing.
The machine Calvin holds an Intel Xeon Phi 7210 CPU “Knights Landing”. It
has 64 cores and belongs to the second generation of Intel Xeon Phi processors.
In contrast to older models, it is available as a main processor, not only as a co-
processor. Calvin also runs on Linux. Figure 5.1 shows the machine’s hardware
topology. The 64 cores of the Knight’s Landing and its memory structure can be
recognized easily.
Hummel is a Linux-cluster. It consists of 316 standard-nodes with two CPUs of
type Intel Xeon E5-2630v3 each, and 54 additional GPU-nodes with Nvidia K80
GPUs, as well as further special nodes.
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Both, Calvin and Hummel are used for testing the Fortran/MPI implementation
of the modified Gauss solver.

The machines above are chosen to represent a variety of architectures and de-
vices during the tests.

5.1 Tests 0: Preliminary Tests

The Linear System’s Sparsity Pattern During application of the operator
splitting method, the following system is solved in every iteration step (see Eq.
3.26):

[En − Λ∗(1− ε)] J (new) = JFS − Λ∗(1− ε)J (old). (5.1)

Since solving the system takes up computing time and resources, it is vital to
understand its properties. One of them is the matrix’ [En − Λ∗(1− ε)] narrow-
bandedness, see, e.g., [20].

Figure 5.3 illustrates this property: the sparsity pattern shows the location of
entries in the matrix. The data stems from a nx = ny = nz = 4 grid with 729 grid
points in total. This pattern is no exception from the rule, as one can see in Fig.
5.4, where the sparsity patterns for several other grid configurations are shown.

Apart from the narrow-bandedness, all sparsity patterns show recurring ele-
ments, such as the arrangement in three separate diagonal bands and in these
bands the clustering of points. These effects are caused by the projection of a
three-dimensional spatial grid onto a two-dimensional matrix. Especially the pro-
jection of neighboring values in 3D onto the matrix causes a pattern. Furthermore,
the structure is influenced by the boundary conditions imposed on the system.

Another interesting fact is shown in Fig. 5.4a: in the case of a nx=ny=nz=1
grid, which is the smallest possible grid size (greater zero) in PHOENIX/3D, the
band-pattern also holds. However, the bandwidth is not any more small compared
to the matrix size and 2k + 1 << n does not hold. Therefore, in cases with small
grids, applying the modified Gauss method is not an effective choice, because the
problem does not fulfill the narrow-bandedness condition. In those cases, a full
matrix solver might be more effective.

Figure 5.5a additionally demonstrates that boundary conditions influence the
sparsity pattern of the matrix. The plot shows a case with periodic boundary con-
ditions in x- and y-direction side by side with a case of open boundary conditions.
Both patterns stem from a nx=ny=nz=4 Cartesian grid.
As one can see in plot 5.5a, the periodic boundary conditions lie along an addi-
tional outer diagonal. Those entries augment the bandwidth in comparison to the
case of open boundary conditions. The bandwidth variable k therefore needs to
be adapted, so that the sub-matrices are equipped to hold the full band. This is
implemented in the routine calculating k and happens if periodic boundary con-
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Figure 5.2: Topology map of minion

ditions are requested by the user.

5.2 Tests I: Fortran & MPI Version

In this section, the Fortran implementation of the modified Gauss algorithm is
tested. The code is parallelized with MPI and integrated into the PHOENIX/3D
radiative transfer code.

Compliance of Results The first group of tests in this section is dedicated to
show compliance of the modified Gauss solver’s results with the original PHOENIX/3D
solvers.
There are non-trivial analytic solutions to the 1D radiative transfer problem. For
a discussion of those, see, e.g., [22]. A comparison to an analytic solution has, how-
ever, not been performed here, since PHOENIX/3D already shows good agreement
with 1D radiative transfer problems (see [18]), which, in turn, comply with ana-
lytic solutions.

First, the results of the modified PHOENIX/3D version are compared to re-
sults obtained with the original PHOENIX/3D code. The data stems from tests on
calvin on a nx = ny = 4, nz = 16, (4, 4, 16), and a nx = ny = nz = 4, (4, 4, 4), grid.
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Figure 5.3: Sparsity pattern of the radiative transfer matrix

The stopping criterion was set to stop = 10−6. Whether the criterion is fulfilled
is computed through the change of results between iteration steps: increasingly
small changes in the solution indicate that a converged result is reached.
While the PHOENIX/3D code is run in parallel, at first the serial radiative trans-
fer solvers are compared. Since the modified Gauss solver is not designed to be
run serially, the code is modified to execute all computations, that would normally
happen in parallel, successively on one processing element only. Later tests will
then feature a comparison of results for a parallel Jacobi solver and the parallel
modified Gauss method.
Measuring the differences in solution between solvers is done through the two-norm
(euclidean norm) of the relative error between the solutions, ∆J

J , and the entry-
wise maximum error. The relevant solvers here are the serial Jacobi, Diagonal and
Gauss-Seidel solvers, that were incorporated into the original PHOENIX/3D code,
and the modified Gauss solver, whose implementation into PHOENIX/3D is part
of this work. Since the modified Gauss solver relies on an internal solver for the
solution of the reduced system, three versions of the modified Gauss solver were
implemented. All solvers are tested against the widely-used Jacobi solver from the
original PHOENIX/3D version. The parallel tests compare a MPI implementation
of the Jacobi solver with the parallel modified Gauss solver.

Tables 5.1 and 5.2 hold the results of the serial compliance tests. It shows that
the difference between the results obtained with the modified Gauss solver, regard-
less of the internal solver, and the solvers originally incorporated into PHOENIX/3D
lie in comparable orders of magnitude as the differences between the PHOENIX/3D
original solvers, the Jacobi, the diagonal and the Gauss-Seidel method. In a nu-
merical sense, the solutions sufficiently agree and the 3D radiative transfer result
is indeed independent of the use of solver.
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Figure 5.4: Sparsity patterns for several grid sizes
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Figure 5.5: Comparison of sparsity patterns with different boundary conditions

rel. error max. error

Jacobi 0.0 0.0

Gauss-Seidel 9.14191e-14 2.37521e-07

Diagonal 6.43609e-14 2.01811e-07

Mod. Gauss (LAPACK) 6.27493e-14 9.25289e-07

Mod. Gauss (Jacobi) 5.61511e-14 9.25289e-07

Mod. Gauss (GMRES) 6.72664e-14 9.25264e-07

Table 5.1: Compliance of serial results compared to PHOENIX/3D Jacobi solver
on a nx = ny = nz = 4 grid

Compliance MPI Version Naturally, the compliance tests are also conducted
in parallel with the MPI version of the modified Gauss solver and a parallel im-
plementation of the Jacobi solver, that is the only other parallel solver currently
implemented in PHOENIX/3D. Results are given in Table 5.3.

The table shows that the result of the modified Gauss solver agree exactly,
regardless of whether it is run serially or in parallel. The difference between the
parallel modified Gauss solver and the parallel Jacobi solver is in the magnitude
of 10−15 and the max. error lies in the 10−8 magnitude.
Consistently, on a nx = ny = 4, nz = 16 grid, the relative error between the MPI
versions of modified Gauss and the Jacobi solver is 5.54116e-14 and the max. error
is 6.14228e-07.
Thus, the results of the parallel modified Gauss solver implemented with MPI also
comply with the former radiative transfer code’s results. The modified parallel
Gauss solver therefore runs correctly.

Internal Solvers When implementing the modified Gauss solver, one has to
decide how to solve the emerging reduced system. Three different internal solvers
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rel. error max. error

Jacobi 0.0 0.0

Gauss-Seidel 1.7286e-12 1.72307e-05

Diagonal 9.08072e-13 8.77202e-07

Mod. Gauss (LAPACK) 1.10335e-12 1.08188e-06

Mod. Gauss (Jacobi) 1.12525e-12 1.08188e-06

Mod. Gauss (GMRES) 1.09278e-12 1.08188e-06

Table 5.2: Compliance of serial results compared to PHOENIX/3D Jacobi solver
on a nx = ny = 4, nz = 16 grid

rel. error max. error

Mod. Gauss (MPI) 0.0 0.0

Jacobi (MPI) 9.50167e-15 7.26925e-08

Mod. Gauss (serial) 0.0 0.0

Table 5.3: Compliance of parallel results on p = 3 processes compared to parallel
mod. Gauss solver on a nx = ny = nz = 4 grid

were implemented: a direct solver from the LAPACK package, a Jacobi solver and
a restarted GMRES method. While the LAPACK-algorithm uses a direct method,
the Jacobi and restarted GMRES solvers are iterative methods. All three were im-
plemented as serial algorithms. This test examines the internal solvers’ behavior
depending on the grid size of the overall problem.

The internal solvers’ run-times are recorded during 3D radiative transfer runs
for multiple grid sizes from nx = ny = nz = 1 to nx = ny = nz = 12. Grid
sizes above that are not tested due to the Gauss method’s memory requirements.
The 3D radiative transfer MPI runs are conducted on Calvin with p = 16, al-
though the Operator Splitting steps are executed serially simulating a p = 2 run
on one processor. Other relevant variables are ε = 10−1 and the stopping criterion
stop = 10−6.
During a 3D radiative transfer calculation, the internal solvers are called several
times, once in every OS-iteration. The times then are averaged over all iterations,
since the number of Os-iterations is constant for the three internal solvers. Fig-
ure 5.6 presents the results in the upper plot. The lower plot shows the increase
in the size of the reduced system. Note, that the nx = ny = nz = 4 and the
nx = ny = 4, nz = 16 grids both result in the same reduced system size. This
is due to the fact that the size of the reduced system is (p − 1)k × (p − 1)k (see
Ch. 4). In some cases this may lead to reduced systems of the same size, while
the original problem sizes differ. Figure 5.7 shows how the sizes of the reduced
system’s matrices develop in comparison to the original problem sizes.

Figure 5.6 clearly shows that for the tested grid sizes, the LAPACK solver
always performed the fastest runs. As expected, run-times increase gradually with
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Figure 5.6: Run time of internal solvers on grids of different sizes

the reduced system’s size.
The internal Jacobi solver, plotted in green, is comparably fast for smaller grid
sizes up to (4,4,16). Afterwards it shows a steeper increase between (4,4,16) and
(10,10,10), but then decreases slowly again.
Similarly, the restarted GMRES solver experiences rising run-times up to the
(10,10,10) grid, after which the run-time sharply decreases for the (12,12,12) grid.
Anyway, its run-times are the slowest throughout the whole test. Additionally,
while the run-times of the LAPACK and Jacobi solvers stay similar for problems
of the same size, the GMRES solver nearly doubles its run-time between the (4,4,4)
and the (4,4,16) grid, although the size of the reduced system is constant here.

A general rule-of-thumb for solvers for linear systems is that direct solvers are
expected to perform better for smaller problems, while iterative solvers are better
suited for larger set-ups.
The test does not allow for a clear recommendation on which internal solver
should be used depending on problem size. In all tested cases, the direct LA-
PACK solver yielded the fastest results and is advised to use for grid sizes up to
at least (12,12,12). Although the behavior of the iterative solvers suggests that
for even larger grid sizes, their timing may further decrease and even eventually
catch up or even surpass the direct solver, this could not be confirmed due to high
memory requirements.

Scaling Tests To better understand the behavior of the modified Gauss solver,
a strong scaling test is performed. That means the execution times of a 3D radia-
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Figure 5.7: Compare original problem size to reduced system size

tive transfer computation is measured for a constant grid size but varying numbers
processing elements.

This test is conducted on the Hummel cluster. The radiative transfer problem
is solved on a nx = ny = nz = 16 grid, with ε = 10−6 and the stopping criterion
stop = 10−6. The tasks-per-node ratio is one, so the number of compute nodes
increases with the number of processing elements p. Apart from the serial case
with p = 1, the number of processors covers the even numbers from two to sixteen.
Results are presented in Fig. 5.8.

The serial run gives a reference run-time Ts of 4,222.16 seconds. On p = 2
processing elements, the run-time increases up to T2 =13,012.15 seconds, which is
the maximum time measured in this test. For increasing numbers of processors,
the run-time drops and reaches the test’s minimal run-time of 117.32 seconds for
p = 8. Further increasing the number of processing elements leads to slightly in-
creased run-times also.
For the fastest radiative transfer computation on p = 8 nodes, the computational
costs C = pTp amount to 938.56s, which is significantly less time than the serial
run-time Ts.
The best achieved-speed up S8(n) = Ts/T8 is 35.99 and the efficiency E8(n) =
S8(n)/p therefore is 4.5. This corresponds to a super-linear speed-up, since S8(n) ≥
8, and thus the efficiency surpasses the usual limit of E ≤ 1.

The results of the strong scaling test show that the modified Gauss solver runs
significantly more efficient in parallel than in serial, with the exception of p = 2.
Since it was designed as a parallel algorithm, this does not surprise.
It also indicates, that more processing elements do not always guarantee a faster
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Figure 5.8: Strong Scaling Behavior of the Modified Gauss Solver

execution, and that there is an ideal number of processes depending on the prob-
lem size. In this case, the radiative transfer problem is solved fastest with p = 8
and grows slower when using more or less processing elements.

The strong scaling test does, however, not give any indications about the per-
formance of the modified Gauss algorithm compared to other solvers. This will be
explored in the following tests.

5.3 Tests II: PHOENIX/3D

While the last section already focused on the implementation of the modified Gauss
solver, this section takes a closer look at its properties compared to the original
PHOENIX/3D radiative transfer solvers.
Apart from the new parallel solver, only one other solver was parallelized, namely
an MPI-implementation of the Jacobi solver. All other solvers work serially.

Convergence Behavior The following test addresses the convergence proper-
ties of the modified Gauss method compared to the other solvers currently imple-
mented in PHOENIX/3D.
Since for computing a convergence rate an analytic solution of the problem in
question is mandatory, this test rather counts the numbers of iterations necessary
to reach convergence. Here, this is defined by triggering the user-defined stopping
criterion of stop = 10−6.

Table 5.4 shows the number of iterations needed to reach convergence for two
different grid sizes. The solvers featured are all serial, including the modified Gauss
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(4,4,4) grid (4,4,16) grid

Jacobi 9 13

Gauss-Seidel 9 10

Diagonal 9 17

Mod. Gauss (LAPACK) 5 6

Mod. Gauss (Jacobi) 5 6

Mod. Gauss (GMRES) 5 6

Table 5.4: Number of Iterations to Reach Convergence

solver, which is run in its pretend-serial mode. The tests are conducted on calvin
with ε = 10−1.
On both grids, the modified Gauss solver needs significantly less iterations to fulfill
the stopping criterion. Also, the number of necessary iterations is independent of
the internal solver.

Comparing the parallel PHOENIX/3D solvers, the behavior is consistent with
the serial cases: Figures 5.9 and 5.10 show a test that is performed on hummel
with a grid of nx = ny = nz = 16 and ε = 10−6 on p = 8 processing elements.
The parallel Jacobi solver needs 17 iterations to reach convergence, while the mod-
ified Gauss solver only needs 9. Convergence, again, is defined as a change between
iterations of stop = 10−6 or less.

Overall, the convergence properties of the modified Gauss solver are promising.
In all test cases, it required less iterations to reach the stopping criterion.
With increasing problem size, the number of iterations also increases for both
solvers. The slope is comparable, too.

OS-Iterations The behavior that has not yet been studied in detail, is the exe-
cution time of the 3D radiative transfer algorithm depending on the used solver. In
this test, we time the OS-iterations of a 3D radiative transfer run on Hummel with
a nx = ny = nz = 16 grid on p = 8 processing elements. The other parameters
are ε = 10−6 and stop = 10−6. The modified Gauss method is compared to the
parallel Jacobi solver. For the modified Gauss solver, the comparison is conducted
with different internal solvers, the LAPACK method as direct method, as well as
the Jacobi solver as an iterative scheme.

Figure 5.9 shows the times needed to finish the OS-iterations for the parallel
Jacobi solver and the modified Gauss method with internal Jacobi solver.
Overall, the parallel Jacobi solver is much faster. In total, the parallel Jacobi
solver needs 0.62s for all OS-steps, while it takes the modified Gauss solver 93.39s.
Their behavior also differs: while the iteration times with the Jacobi solver de-
crease the nearer it comes to the converged solution, the modified Gauss solver
needs more time during the first OS-iterations, with the following iterations being
nearly constant in time. Out of the overall run-time, 53.6 seconds, meaning 57%
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Figure 5.9: Compare time per OS iteration of parallel Jacobi solver and modified
Gauss method with internal Jacobi solver

are used for the first iteration. Additionally, the modified Gauss solver uses less
iterations to reach the requested accuracy.

Comparing the parallel Jacobi solver to the modified Gauss solver with in-
ternal LAPACK solver (see Fig. 5.10), the effect described above even magnifies,
since the internal LAPACK routine also uses a factorization approach, which is the
same strategy as the modified Gauss solver. Therefore, in the first iteration, the
modified Gauss factorization and the internal solver factorization happen, which
increases the time needed for the first iteration to 111, 36 seconds, 99%. Following
OS-iterations are faster, though, compared to the internal Jacobi solver. Regard-
less, the overall time of 112.95s is still slower than the Gauss method with internal
Jacobi solver and therefore slower than the parallel Jacobi solver.

In summary, the modified Gauss solver is significantly slower than the parallel
Jacobi solver. However, Figures 5.9 and 5.10 also show that the modified Gauss
solver needs less iterations to reach the desired accuracy. This indicates, that
with further optimization, the timing could be improved and may end up to be
comparable to the original PHOENIX/3D solver.

5.4 Tests III: OpenCL Version

The results in this section originate from testing the OpenCL stand-alone imple-
mentation of the modified parallel Gauss solver. For all following OpenCL tests,
only one system of equations is solved per run.
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Figure 5.10: Compare time per iteration of parallel Jacobi solver and modified
Gauss method with internal LAPACK solver

Compliance of OpenCL Results In this test, the compliance of the modified
Gauss algorithm’s OpenCL implementation with the exact solution of a linear
system of equations is deduced.
Two problems are tested: both have a problem size of n = 1, 000 and are conducted
on the AMD Radeon R9 290. In the first test, a matrix of total bandwidth three
is used, while in the second test, the matrix’ bandwidth is five. This corresponds
to a half-bandwidth of k = 1 or k = 2, respectively. The side diagonals’ entries
are set to 1.0, whereas the main diagonal’s entries are set to 2k + 1.0 to account
for a diagonally dominant problem. The RHS-vector consists of 1.0 entries. The
internal Jacobi solver’s stopping criterion is set to stop = 10−15 and the test was
executed on several numbers of processing elements p.
Tables 5.11a and 5.11b present the relative error between the exact RHS b and the
numerical approximation Ax̂ for the matrix with bandwidth three, respectively,
five, on different numbers of processors p.
In both cases, the OpenCL implementation of the modified parallel Gauss solver
provides results with a good compliance to the exact solution.

Performance Since OpenCL is designed to be vendor-independent and to be run
on heterogeneous machine architectures, the performance of the modified Gauss
method’s OpenCL implementation is tested on different devices: a CPU and two
GPUs. The test system is set up according to the before mentioned test-case with
a matrix size of n = 1000, a total bandwidth of three, and was solved on p = 25
processing elements.
The AMD Radeon R9 290 is the GPU build into minion, while the Intel Core 2

Extreme X9650 is its CPU. The Nvidia Quadro P6000 is the most recent device
of this test and build into igor. Figure 5.12 shows the performance of the parallel
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p relative error

5 1.180433e-16

10 1.652355e-16

25 1.669666e-16

100 1.003571e-14

(a) Total bandwidth of three

p relative error

5 1.431290e-16

10 2.018517e-16

25 2.011466e-16

100 8.636190e-11

(b) Total bandwidth of five

Figure 5.11: Relative errors for a OpenCL test case with different bandwidths on
p processing elements
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Figure 5.12: Performance of the OpenCL code on different devices

Gauss method’s OpenCL implementation on these devices.
As expected, the code executes fastest on the recent Nvidia GPU. Surprisingly, the
Intel CPU performs better than the AMD GPU, although the GPU theoretically
has a higher throughput. An explanation for this discrepancy could be a bottle-
neck in memory access. Executing the OpenCL code directly on the CPU, which is
also the host device, might save memory operations, compared to the GPU, which
needs to load data over a PCIe bus and possibly even swap data to the disk when
the device’s memory of 4GB is exhausted. Those circumstances may have led to
the difference in performance observed here. The Nvidia Quadro P6000, on the
other hand, does not show this behavior, possibly because of its high throughput
and 24 GB of device memory that prevents the need to swap memory.

In summary, this test confirms that the OpenCL implementation of the modi-
fied Gauss solver is indeed portable among different types of devices and vendors.
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5.5 Summary

Before we proceed to the discussion, a short summary of test results is given below
to emphasize the most important results.

The radiative transfer problem’s matrix shows an interesting sparsity pattern:
with increased problem size, the matrix becomes more narrow-banded relative to
the matrix dimension n. The modified Gauss method, therefore, has potential to
be more effectively applied to larger problem sizes.
It also turns out that boundary conditions influence the sparsity pattern. In par-
ticular, periodic boundary conditions broaden the band and have to be taken into
account in the implementation.

One important result is that both implementations, C/OpenCL and Fortran/MPI,
produce results agreeing to the exact solution or the original radiative transfer
code, respectively. This holds for the serial, as well as the parallel execution mode
and serves as a proof of concept.

The result of the radiative transfer computations is also shown to be indepen-
dent of the internal solvers, that are incorporated into the Fortran/MPI version.
Comparing execution times with different solvers leads to preferring the LAPACK
solver, although trends indicate that the iterative solvers, Jacobi and GMRES,
might be at advantage for large problems. This could not be tested, though, since
memory requirements were too high for larger grid sizes.

A scaling test studies the connection between number of processes and execu-
tion time for a fixed grid size. The shortest execution times are reached for p = 8,
which lies in the middle of the tested range of processor numbers. Compared to
the serial code version, this configuration results in a good speed-up.

The modified Gauss method is also compared to the original PHOENIX/3D
code in terms of convergence and execution time. Regarding convergence, the
Gauss solver needs less OS-iterations to reach a pre-set stopping criterion. Since
the number of iterations increases with growing grid-sizes, this behavior should be
even more prevalent in larger problems.
With regard to the execution times for OS-iterations, the modified Gauss method is
presently significantly slower than its counterpart, the parallel Jacobi solver. This
test also calls attention to the iteration behavior of the modified Gauss solver:
during the first iteration, the original matrix is factorized, which is reflected by a
longer execution time. Successive iterations take shorter time and the time stays
constant after the factorization.

There are also properties that were tested indirectly, such as portability and
memory management. The portability of the modified Gauss method is granted
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for devices that support MPI or OpenCL, respectively, as the tests on different
machines show. However, memory requirements limit the problem size that is
supported on the devices.
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Chapter 6

Discussion and Outlook

After having presented the modified Gauss algorithm and two implementations
thereof in the previous chapters, this section discusses the test results of the pre-
vious chapter with regard to whether the algorithm meets the expectations: is the
method capable of effectively solving the 3D radiative transfer problem in general
and, more specifically, is it a reasonable expansion of the PHOENIX/3D atmo-
sphere modeling code as an alternative parallel solver?

6.1 Discussion

The most fundamental property of the modified Gauss solver’s implementations
is that they reproduce results accurately and reliably. Therefore, the implemen-
tations work correctly and the modified Gauss solver is generally suitable to solve
the radiative transfer problem.

When applying the modified Gauss method to the radiative transfer problem,
it becomes crucial to determine the problem sizes the method is capable of solv-
ing efficiently. With increasing spatial grid sizes, the associated matrix becomes
more narrow-banded relative to the overall matrix size, which leads to relatively
smaller sub-matrices in the modified Gauss algorithm and, therefore, relatively
less requirements on memory.
At the same time, increasing grid sizes correlate with more Operator-Splitting-
iterations until the algorithm converges. Since the modified Gauss solver gen-
erally needs less iterations to reach the stopping criterion than a comparable
PHOENIX/3D solver (see Table 5.4), this is favorable especially for larger prob-
lems. Additionally, the more iterations are computed, the fewer time does the
factorization in the beginning take compared to the total time of all iterations.
The average over all iterations then is smaller than for a problem with fewer iter-
ations.
For these reasons, the modified Gauss solver is, in theory, more effective the larger
the problem size is.

To be of use in complex scientific applications involving the radiative transfer
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problem, an efficient solver’s memory requirements should not exceed the mem-
ory that current hardware is able to provide. Unfortunately, tests show that the
memory requirements of the modified Gauss solver’s implementations surpass that
for some grid sizes and, therefore, limit the problem size that can be realistically
covered.
In the beginning of the modified parallel Gauss algorithm, the off-diagonal sub-
matrices are chosen large enough to contain a number of zero-entries. This is
necessary since multiplying sparse sub-matrices later in the algorithm can lead to
fill-in, which needs to be accounted for memory-wise from the beginning. Fur-
thermore, the memory management of the MPI-implementation has not yet been
optimized.
All in all, the implementations of the modified Gauss solver are not yet memory-
aware enough to be used in practical applications.

Another critical property to determine whether an algorithm is suitable to solve
the radiative transfer problem in a scientific application is the implementation’s
execution-time.
The tests conducted on the MPI-implementation of the modified Gauss method
show that its execution time is considerably longer than the parallel Jacobi solver’s
(see, e.g., Fig. 5.9, 5.10). On the other hand, the modified Gauss solver needs sig-
nificantly less iterations until convergence. With some optimization effort, one
can, therefore, anticipate the overall run-time to decrease.
Furthermore, the parallel Jacobi solver in PHOENIX/3D has been highly op-
timized to the radiative transfer problem and PHOENIX’ data structure. The
execution-times of the two solvers are, at this point, not entirely comparable.
The current implementations of the modified parallel Gauss solver are not yet fast
enough to be used in practical applications. However, tests imply that optimiza-
tion efforts can decrease the execution time.

Comparing the test results to the work by Arbenz, Cleary and Dongarra
(see [10]), it becomes apparent that their test results are more promising than
the ones presented here. In Chapter 4, their test setup is described. It was already
mentioned, that their setup only includes a stand-alone solver for one linear sys-
tem of fixed size. Being part of a more complex, scientific application places some
limitations on the degree of optimization that is possible for an implementation.
Thus, one cannot expect the same efficiency as described in the above work, but
following their results, one can still expect optimization efforts to be successful in
decreasing run-time and memory requirements.

Since the modified parallel Gauss method involves solving a reduced system,
one has to select a method to do this.
In this work, three different serial algorithms were implemented into the MPI-
version of the Gauss solver and the work by Arbenz, Cleary and Dongarra (see [10])
additionally proposes a cyclic reduction. This approach consists of applying the
modified Gauss method to the reduced system recursively, since the reduced sys-
tem still fulfills the requirements of narrow-bandedness and is still diagonally dom-
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inant. Although this is theoretically possible and an elegant solution, it also leads
to computing increasingly smaller systems on less and less processing elements,
while more and more of them are idle. This might be inefficient for an application
intended to be run highly parallel.
On the other hand, serial solvers are also not a very efficient choice, but are already
sufficient to show a trend in behavior. Fig. 5.6 shows the behavior of the internal
solvers depending of the problem’s size. Differences in behavior are probably due
to the algorithms being direct, as the LAPACK solver, or iterative, such as the
Jacobi and the restarted GMRES methods.
In summary, selecting an internal solver should consider the problem size because
the choice of internal solver influences the overall execution-time of the modified
parallel Gauss method.

During tests of the modified Gauss solver’s implementations, several different
machines were used. Since the radiative transfer solver is intended to run on cur-
rent and emergent hardware configurations, two different implementations were
developed: one in OpenCL that is mostly intended to be run in GPGPU contexts,
and a MPI-version for the emerging many-core processors and accelerators, which
tend to distributed-memory setups. Both implementations are vendor-independent
and therefore portable. Depending on the exact radiative transfer application, one
or the other hardware might be favorable. Nevertheless, the portability of imple-
mentations is highly recommended for it to be of any practical value.

Even if the hardware setup is fixed, the degree of parallelism that is recom-
mended can vary. Figure 5.8 presents the results of the MPI-implementation’s
strong scaling test on a Linux-cluster. It becomes clear that there is a range of
ideal number of processing elements depending on the problem size. The results
indicate that too few processors, as well as too many increase the execution-time
compared to the ideal number of processors. Too few processing elements do not
have enough computing power to deliver the solution as fast as possible, while too
many seem to introduce a communication overhead that is large compared to the
work that is actually done on each processing element.
To receive optimal execution-times with a parallel algorithm, the number of pro-
cessing elements therefore has to be chosen carefully, and tailored to the problem
size and hardware configuration.
The scaling test’s results for the parallel Gauss algorithm’s speed-up and efficiency
clearly exceed the expectations. They were calculated for the best performance at
p = 8. At this number of processing elements, the algorithm shows super-linear
speed-up and thus an efficiency surpassing the usual limit of E≤ 1. This can be at
least partly explained by the definition of speed-up as the ratio of the fastest serial
algorithm’s execution time to the parallel execution time. Since the fastest serial
algorithm for the problem cannot be determined, the comparison was performed
between the serial and parallel version of the modified Gauss algorithm. As this
method is explicitly designed for parallel execution, the performance of the serial
version might distort the resulting speed-up somewhat.
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The modified parallel Gauss method has two theoretical restrictions: it is ap-
plicable to narrow-banded, diagonally dominant linear systems of equations only.
Therefore, it is interesting to consider its behavior when those requirements are
not met.
In case of the narrow-bandedness, a matrix that does not have this property could
still be theoretically treated with the modified Gauss solver. However, this would
increase the bandwidth up to being the matrix size and therefore critically raise
both, the memory requirements and execution-time. The solution would still be
correct, though.
Applying the modified Gauss solver to a linear system, where the matrix is not
diagonally dominant, has similar consequences. The diagonal dominance guar-
antees that the LR-decomposition can be computed correctly without pivoting.
Using this algorithm on a matrix that is too far from the required property will
introduce errors into the LR-decomposition and slow down the radiative transfer
solver’s convergence or possibly prevent convergence at all. In those cases, it is
advised to use the modified Gauss solver with pivoting, as it is described in Ch. 4.

6.2 Conclusions

The modified parallel Gauss method has the potential to solve the radiative trans-
fer problem efficiently on large grids. Furthermore, it could possibly enhance the
3D radiative transfer algorithm of the PHOENIX/3D atmosphere modeling code,
which currently only has one other parallel solver for OS iterations.
The current implementations, both in Fortran/MPI and C/OpenCL, do not yet
provide the memory-management or execution-times to be applicable to practical
radiative transfer computations. Nevertheless, the tests indicate that optimization
efforts can be expected to reduce run-times and memory requirements: theory and
former works suggest that an implementation with appropriate memory require-
ments is possible. Additionally, the convergence behavior implies that optimization
might very well reduce run-times to a competitive level. This is further supported
through tests regarding the internal solvers, in that their choice influences the run-
time, although to a limited extent.
Considering the modified Gauss algorithms theoretical restrictions to narrow-
banded and diagonally dominant systems, the recommendation stands, although
dropping the narrow-bandedness criterion only negatively influences performance,
but not the result itself. Not adhering to the diagonal dominance requirement, on
the other hand, will hurt the method’s convergence behavior.
Further tests enforce the notion that portability between hardware-setups is to be
considered for an implementation to be of practical use. The machine configura-
tion also influences the degree of parallelism that can be applied effectively.

6.3 Outlook

Analyzing the test’s results delivers two main topics designated for further research
and optimization: the parallel modified Gauss method’s memory management and

74



6.3. OUTLOOK

its execution-times.
Regarding the memory requirements, it is suggested to further incorporate specific
sparse matrix storage formats, such as the Compressed Sparse Row format, that
has already been implemented in the OpenCL code for testing purposes. Addition-
ally, the bandwidth of the radiative transfer problem after the Operator Splitting
method is determined by the conversion from the 3D spatial grid to the matrix.
There are many possibilities to do that, as well as algorithms to determine an order
that will minimize the bandwidth, e.g., a version of the Cuthill-McKee algorithm
(see [12]) for non-symmetric linear systems. This is an opportunity to greatly re-
duce the memory usage of the parallel modified Gauss method.

Likewise, there are several strategies to further speed up the modified Gauss im-
plementations: together with sparse matrix storage formats for memory reduction,
sparse matrix linear algebra routines optimize matrix operations and reduce the
computational effort together with the run-time. Although sparse linear systems
occur in a variety of scientific applications, there are still few software packages
that implement a sufficient range of sparse matrix routines. As a consequence, it
might be necessary to implement those routines from scratch.
Since the internal solvers are still implemented serially, except for the OpenCL
version’s, there is potential in using parallel versions of the respective algorithms.
For all mentioned internal solvers, parallel approaches exist and could be imple-
mented. Furthermore, there is the opportunity to decrease the modified Gauss
method’s execution-time through the application of machine-optimized software
packages, although this might influence the implementation’s portability across
platforms. Alternatively, a hybrid approach at parallelization through combining
code for shared and distributed memory models, see e.g. [35], preserves portability
while still enhancing the implementation’s performance.

The OpenCL version of the modified Gauss method is still a stand-alone pro-
gram, but could be integrated into PHOENIX/3D with little effort: a method
to distribute the PHOENIX/3D Lstar entries to sub-matrices and back is nec-
essary to incorporate the modified parallel Gauss OpenCL implementation into
PHOENIX/3D. Furthermore, the current implementation does not yet support
solving several similar systems of equations in one execution and needed to be
adapted accordingly to reach its full potential. The above recommendations for
enhancing runtimes and memory management also apply here.

In summary, although the implementations of the parallel modified Gauss
solver are not yet suitable for large applications, this work indicates that further
optimization with regard to memory requirements and execution-times will make
it possible to solve the radiative transfer problem with it across a broad range of
architectures and problem sizes.
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[8] A. Böttcher. Rechneraufbau und Rechnerarchitektur. 2006.

[9] A. Cleary and J. Dongarra. Implementation in ScaLAPACK of Divide-and-
Conquer Algorithms for Banded and Tridiagonal Linear Systems. Technical
Report, 1997.

[10] P. Arbenz, A. Cleary and J. Dongarra. A Comparison of Paralell Solvers for
Diagonally Dominant and General Narrow-banded Linear Systems. EuroPar
’99 Parallel Processing, 1999.

[11] J.M. Conroy. Parallel Algorithms for the Solution of Narrow-Banded Systems.
Applied Numerical Mathematics, 1989.

[12] E. Cuthill and J. McKee. Reducing the Bandwidth of Sparse Symmetric
Matrices. ACM ’69 Proceedings of the 1969 24th National Conference, 1969.

77



BIBLIOGRAPHY

[13] D.F. Griffiths, J.W. Dold and D.J. Silvester. Essential Partial Differential
Equations. 2015.

[14] C.P. Dullemond and R. Turolla. An Efficient Algorithm for TwoDimen-
sional Radiative Transfer in Axisymmetric Circumstellar Envelopes and Disks.
A&A, 2013.

[15] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard, Version 3.1. High-Performance Computing Center Stuttgart, HLRS,
2015.

[16] A. Munshi, B.R. Gaster, T.G. Mattson, J. Fung and D. Ginsburg. OpenCL
Programming Guide. 2012.
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