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Kurzfassung

Das Phasendiagramm des Kondo-Gitter Modells ist auf einer eindimensionalen frustrierten
Zickzack-Leiter mit Hopping-Amplituden t; entlang der Sprossen und to entlang der Beine
untersucht. Als Methoden sind die Dichtematrix Renormierungsgruppe (DMRG) und varia-
tional uniform matriz product state (VUMPS) verwendet. Die Konkurrenz zwischen indirektem
magnetischen Austausch, dem Kondo-Effekt und der geometrischen Frustration fithrt zu einem
vielfdltigen Phasendiagramm: Bei halber Fiillung und starkem J bildet der Grundzustand
einen Kondo-Isolator mit kommensurablen oder inkommensurablen kurzreichweitigen Spinkor-
relationen. Der kommensurabel-inkommensurabel Phaseniibergang ist perturbativ erklarbar
und findet fiir J = oo bei to = 0,5t; statt. Fir ein schwécheres J fiihrt die geometrische
Frustration zu einem spontanen Bruch der Translationssymmetry des Grundzustands an einer
kritischen Grenzlinie J3™(¢5). Der resultierende dimerisierte Grundzustand zeichnet sich durch
alternierende ferro- und antiferromagnetischen Korrelationen entlang der Sprossen aus. Er
ist nicht stérungstheeoretisch erklarbar, aber das Modell mit klassichen Spins kann hierfiir
herangezogen werden — die gleiche Spindimerisierung tritt auch hier auf. Durch den Sym-
metriebruch nimmt die geometrische Frustration ab und eroffnet die Moglichkeit fiir eine
quasi-langreichweitig geordnete Spinspirale mit Wellenvektor () = 7. Diese Phase ist durch
eine zweite kritische Linie Je 8 (to) separiert. Die quasi-langreichweitig geordnete Spinspirale
bei schwachem J mit liickenlosen Spinanregungen iiber dem zweifach entarteten Grundzustand
ist ungewohnlich und nicht auf eine effektive reine Spintheorie zuriickzufithren. Das Modell ist
ein Isolator bei halber Fiillung. Im lochdotierten Bereich und fiir negatives to ist der Grundzus-
tand ferromagnetisch fiir ausreichend starkes J. Im Gegensatz zur gewohnlichen Kondo-Kette
(t2 = 0), in der die Phasenlinie J'™(n) monoton ist, stellt die Phasenlinie der frustrierten
Leiter eine Kuppelform dar. Dieses ist einer van Hove Singularitéit in der freien Zustandsdichte
zugeordnet. Im elektrondotierten Bereich zerstort das iibernéchste Nachbar-Hopping ¢ den
Ferromagnetismus bei J = oo. Trotzdem ist der Grundzustand bei mittleren Werten von J
und Elektronen-Konzentrationen um n =~ 1,5 ferromagnetisch. Im schwachen J-Bereich bei
n= % = 1,5 entwickelt der Grundzustand ungewohnliche Cluster mit Wellenvektor @ = 7,
was einer Wellenldnge von A\ = 8 Gitterpldatzen entspricht.

Schlagworter: DMRG, VUMPS, Kondo-Gitter Modell, geometrische Frustration, eindimen-
sionale Vielteilchensysteme



Abstract

The phase diagram of the Kondo lattice model on a one-dimensional frustrated zigzag ladder
with hoppings ¢; along the rungs and 2 along the legs is investigated by employing the density-
matrix renormalization group (DMRG) and the variational uniform matrix product state
(VUMPS) approach. The competition between indirect magnetic exchange, the Kondo effect
and the geometrical frustration generates a rich phase diagram: at half-filling and strong J, the
ground state is a Kondo insulator with either commensurate or incommensurate short-range
spin correlations dependent on the degree of frustration. The commensurate-incommensurate
phase transition is understood perturbatively and happens at ¢5°:"™™ = 0.5¢; in the infinite-J
limit. For weaker J, the geometrical frustration leads to a spontaneous break of the translational
symmetry in the ground state at a critical line J3™(¢5). The resultant dimerized ground state
is characterized by alternating ferro- and antiferromagnetic spin correlations along the rungs of
the ladder. It is not accessible perturbatively but is explained by the model with classical spins
in which the same spin-dimerization is observed. The break of the translational symmetry
alleviates the geometrical frustration and paves the way for quasi-long-range spiral magnetic
order with wave-vector Q = 7. This phase is separated by a second critical line Je 8 (t).
The quasi-long-range ordered spin spiral at weak J with gapless spin excitations on top of
the twofold degenerate dimerized ground state is unconventional and cannot be explained
by an effective spin-only theory. The model is found to be an insulator at half-filling. In
the hole-doped regime and for negative to, the ground state is ferromagnetic for sufficiently
strong J. In contrast to the ordinary Kondo chain (t = 0) where the transition line J'™(n) is
monotone, the transition line for the frustrated Kondo ladder has a dome structure which is
attributed to a van Hove singularity in the noninteracting density of states. In the electron-
doped regime, the next-nearest neighbour hopping to destroys the ferromagnetism at J = oo.
However, at intermediate values of J, the ground state is still ferromagnetic for specific electron
concentrations about n &~ 1.5. In the weak-J limit and n = % = 1.5, the ground state exhibits

unconventional clusters with a wave-vector @ = 7, i.e. a wavelength of A = 8 lattice sites.

Key words: DMRG, VUMPS, Kondo lattice model, geometrical frustration, one-dimensional
many-body systems
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CHAPTER 1

Introduction

The whole is greater than the sum
of its parts.

(Aristoteles)

It is a fascinating phenomenon that featureless building blocks can develop complex and
manifold properties, which exceed their own features by far. This phenomenon appears nearly
everywhere in science and is also found in everyday life. A living system is built of simple
molecules and constitutes a primary example for the emergence of complexity. Fashion is
another example for the emergence of collective phenomena. Here, the basic building blocks
are the humans in a specific community and the mutual interaction results from the ambition
to imitate each other. It was, e.g, fashionable for men in the 19th century to wear hats but
this trend stopped spontaneously in the mid of the 20th century.

It is of particular interest in physics to develop microscopic theories for the building blocks
which are able to capture this emergence of complexity. Crucial ingredients for a microscopic
theory are the interactions amongst the basic building blocks which are the heart of the many-
body problem. In solid-state physics, one is not faced with the problem of determining the
fundamental interactions and particles, but is tasked with a solution of known equations which
describe the many-body problem. A solid is composed of nuclei and electrons which interact
via the Coulomb interaction. Although this problem sounds simple, it is highly complex. It
constitutes another prime example for the emergence of complexity from many nearly featureless
objects, which mutually interact with each other. In fact, this theory is able to capture
various collective properties of solids like magnetism [1], (high-temperature) superconductivity
[2, 3], or Mott-insulators [4-6]. This complexity is not found in the formulation of the theory,
but it is found in its solution. Therefore, physicists have been trying to develop methods
and approximations for the solution of the general solid-state problem for the last 100 years.
Still, some collective phenomena are not understood, with the most famous example being
the high-temperature superconductivity [3]. Major approximations were the development of
fundamental model systems, which capture the strongly interacting many-body problem but
simplify the chemical composition of the solids. Examples are the single band Hubbard model
[7], the periodic Anderson model [8] and the Kondo lattice model [9]. These simplified model
systems, however, also build complex many-body problems for which general solutions are not
available. In particular, this is the case for systems with frustration, i.e. for systems for which
no easy arrangement exists so that all interactions are satisfied simultaneously. Frustration
can be caused by the geometry of the system, which is referred to as geometrical frustration.
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In general, frustration can be the trigger for unconventional phases of matter like spin-liquids
[10, 11] and was also suggested by ANDERSON [12] as a key ingredient for high-temperature
superconductivity. The unconventional phases appear because in a frustrated system many
ground state candidates with different properties lie very close in energy. In the resultant
complex energy landscape unconventional states can also be the lowest in energy under specific
circumstances. Hence, it has been (and still is) of importance to develop numerical methods
for exact solutions of those model systems.

A milestone was the development of the density-matrix renormalization group (DMRG) by
S. R. WHITE [13]. This method allows an exact treatment of one-dimensional lattice models.
From a modern perspective, the DMRG method falls into the class of tensor network methods
[14]. Another class of methods are diagrammatical expansions of the Green’s function or the
self energy. For the latter, the primary example is the dynamical mean-field theory (DMFT)
[15, 16]. It was proven to be exact in infinite dimensions [17] but it fails for low-dimensional
quantum systems in which frustration has its strongest impact. Other substantial progress was
brought by quantum Monte Carlo (QMC) methods [18-20]. In principal, QMC can be used in
any dimension but for systems with frustration, it is plagued by the numerical sign problem
[21]. For that reason, the detailed impact of frustration on the phases of solids is not entirely
understood from the theoretical side.

The aim of this thesis is to systematically analyse the role of frustration in a quasi-one-
dimensional strongly correlated quantum lattice model by employing the DMRG method. As
the model system serves the Kondo lattice, to which a more detailed introduction is devoted in
the following section. A brief introduction for tensor network methods is given afterwards.

1.1 The Kondo model for lattices with geometrical frustration

The Kondo lattice model (KLM) contains conduction electrons which are described by a
single band e(k). The conduction electron system is coupled locally via the orbital spin
operator 8; =y C;FTO'TT/CZ'T/ to localized moments with spin quantum number S = 1/2. The
Hamiltonian can be written in a mixed momentum-space real-space notation:

H=>Y ek)ef cko+ > Sisi. (1.1)
ko i

An important feature of this model is that the different localized moments are not coupled
directly to each other but only via the conduction electron system. Therefore, the KLM is a
paradigm model for indirect magnetic interactions. In specific cases, it is possible to derive
an explicit spin-spin interaction for these indirect magnetic interactions. In the general case,
however, it is not possible to build a Hamiltonian theory for the local moments only. A famous
example for an effective spin-only theory is the weak-J regime in which the RKKY theory
[9, 22, 23] applies. In this case, the low-energy Hamiltonian represents a Heisenberg model
[24] with long-range interactions J;; determined by the static susceptibility x;;j(w = 0) of
the noninteracting conduction electron system. For bipartite (not frustrated) lattices, the
susceptibility oscillates between the two sublattices, so that the resultant effective model favors
antiferromagnetic alignment between the localized moments. This antiferromagnetic alignment
competes with the onsite singlet formation between conduction electrons and localized moments
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[25]. Adding geometrical frustration to this competition as a third competitor gives rise to
interesting and unconventional phases. The reason is that the possible trade-offs for the system
are much richer as compared to spin-only systems. Since the effective magnetic interactions
are not written down in the Hamiltonian, but emerge through the conduction electrons, the
geometrical frustration can lead to an unconventional feedback of the conduction electrons
which changes the effective interactions. The material CePdAl is a candidate for a frustrated
Kondo lattice system. In fact, the material shows an unconventional partially ordered ground
state which does not belong to any standard heavy-fermion class [26, 27].

Fig. 1.1 shows three different possible trade-offs with which a triangular KLM could respond
to the geometrical frustration.

1. Fig. 1.1(a): 120° alignment of the local moments. In this case, the conduction electron
system does not change the indirect magnetic interactions. This ground state is found in
the spin-1/2 Heisenberg model on the two-dimensional triangular lattice [28].

2. Fig. 1.1(b): Partial ordering of the local moments. This case represents a compromise
between antiferromagnetic ordering of the local moments and singlet formation between
the two different species. Two of the three localized moments form a nonlocal RKKY
singlet while the third moment is in a singlet state with its conduction electron partner.
Since the moments are partially screened by the conduction electron system, this phase
is called partial Kondo screening (PKS) [29]. This ground state breaks the translational
symmetry of the Hamiltonian in Eq. (1.1).

3. Fig. 1.1(c): Qualitative change of the indirect magnetic interactions. In this case, the
conduction electron system changes the effective interactions. One out of the three bonds
of the triangle receives a ferromagnetic interaction while the remaining two bonds can be
antiferromagnetic without any frustration. This ground state also breaks the translational
symmetry of the Hamiltonian in Eq. (1.1).

A primary goal of this work is to unveil which trade-off is the lowest in energy for the frustrated
one-dimensional zigzag ladder.

J &

(a) 120° phase (b) PKS phase (c) Dimerized phase

Figure 1.1: Sketches of different possible ground states of a triangular Kondo lattice. The black
layer represents the conduction electron system and the red arrows display the local moments. Blue
(red) clouds denote antiferromagnetic (ferromagnetic) correlations.
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1.2 Tensor network methods for quantum many-body problems

The quantum many-body problem can be boiled down to the diagonalization of the Hamiltonian
of the system. This provides the eigenstates and eigenenergies from which one can calculate
all desired quantities. The Hilbert space dimension, however, grows exponentially with the
system size, so that the diagonalization is also an exponentially hard problem. However, all
eigenstates also provide an exponential amount of information and one is usually interested
in either the ground state or low lying excited states. Nevertheless, the determination of the
ground state remains an exponentially hard problem. To make progress regardless of that, one
needs a subset of the full Hilbert space in which the ground state is located and one needs to
be able to parameterize this subset directly. With this at hand one can determine the ground
state by solving an optimization problem in the restricted subset. Hence, the following major
questions are crucial for the efficient determination of the ground state:

1. Which criteria define an appropriate subset of the full Hilbert space in which the ground
state is located and which is substantially smaller than the full Hilbert space?

2. How can one parameterize this subset directly?
3. Can one optimize the parameters of the ansatz efficiently?

The first question can be answered by deeply analysing the entanglement structure of ground
states from short-range Hamiltonians [30-32]. From this it follows that the correct criterion
is given by the entanglement properties of the states. E.g., for one-dimensional gapped
Hamiltonians, it was proven that the ground state obeys an area law [30], i.e. the entanglement
entropy of a sub-chain with respect to the remaining system scales with the area of the
sub-chain, which itself is constant. For critical gapless systems, the entanglement entropy
scales logarithmically with the size of the sub-chain [33-36]. Similar results were obtained for
higher-dimensional systems [32]. One should emphasize that the subset of states in the Hilbert
space which obey an area law is substantially smaller than the full Hilbert space. In fact, it
constitutes a null set in the Hilbert space.

The second question is the point where tensor networks come into play. A tensor network
is constructed to parameterize states with a definite entanglement structure [37, 38]. As a
primary example serve matrix product states (MPS, see Fig. 1.2(a) for a sketch of an MPS)
[14, 39, 40] as they reproduce the same area law as ground states from gapped and short-range
one-dimensional Hamiltonians. With the parameterization of quantum states as MPS, one is
able to target the relevant subset of the Hilbert space directly. For critical one-dimensional
systems, the entanglement scaling of MPS does not fit the scaling of a corresponding ground
state. The multi-scale renormalization ansatz (MERA) [41, 42] is an extended one-dimensional
tensor network which provides the correct entanglement scaling for one-dimensional critical
systems. Higher dimensional generalizations are also available where the most famous one is
the projected entangled pair state (PEPS) [43-45] (see Fig. 1.2(b)).

The third question is equally important because only if one is able to optimize the suited ansatz
efficiently, can one benefit from the tensor network. In the case of MPS, there are quite efficient
algorithms for the optimization of the variational parameters in the MPS. First and foremost
the density-matrix renormalization group (DMRG) is an efficient algorithm for optimizing
MPS [14]. The DMRG algorithm has already been used before it was connected with MPS
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(a) Matrix product state (MPS) (b) Projected entangled pair state (PEPS)

Figure 1.2: Sketches of different tensor network states.

[13, 46]. More recently, a variational method was suggested which optimizes MPS directly in
the thermodynamic limit. The method is called the variational uniform matrix product state
algorithm (VUMPS) [47]. Both optimization algorithms are extensively used for this work.
In the case of other tensor networks, the efficient optimization is a much more involved task
so that their success is limited as compared to MPS. However in the last years, substantial
progress has been achieved for the optimization of PEPS [48-53].

1.3 Structure of this work

The structure of the present work is as follows: Chap. 2 introduces matrix product states
(MPS) which constitute the variational space for the numerical methods used in this thesis.
It covers both finite and infinite MPS and also introduces the concept of matrix product
operators. Two optimization algorithms are discussed in Chap. 3. First, the single-site
density-matrix renormalization group and second the variational uniform matrix product state
approach. In Chap. 4, I discuss in detail how to gain efficiency with the incorporation of global
symmetries. Therein is a detailed introduction to representation theory. Chap. 5 contains
a detailed introduction to the Kondo lattice model and its symmetries. Additionally, two
perturbative approximations are presented. Afterwards, I give an in-depth analysis of the
half-filled frustrated one-dimensional Kondo zigzag ladder in Chap. 6 and Chap. 7 collects
results for the same model away from half-filling. Finally, I present a summary and an outlook
for future perspectives in Chap. 8.






CHAPTER 2

Matrix product states

Matrix product states (MPSs) are a versatile variational ansatz for one-dimensional quantum
lattice models. They were firstly proposed by FANNES et al. [39] and later connected to the
density-matrix renormalization group [14, 40]. In this chapter, I give a detailed introduction
to MPS starting with the formal definition in Sec. 2.1. Afterwards, I will discuss a possible
interpretation of MPS as a renormalization scheme in Sec. 2.2. An important structure of
MPS is the gauge freedom which will be addressed in Sec. 2.3. I will also cover uniform MPS
in the thermodynamic limit in Sec. 2.4 and present the basic entanglement structure of MPS
in Sec. 2.5. The related structure of matrix product operators (MPOs) is discussed in Sec. 2.6
and finally I will present different arithmetic operations involving both MPSs and MPOs in
Sec. 2.7.

2.1 Definition

Consider a Hilbert space H which is obtained by an L-times tensor product of local Hilbert
().

loc*

spaces H

1 =) K (2.1)

=1

This situation generally occurs if one deals with a lattice system where each site of the lattice
is equipped with a local quantum system with dimension d;. The resulting many-body Hilbert
space H has then dimension d = HiL:1 d; and is spanned by the canonical tensor-product basis

|o1,...,00) which is obtained from the local basis elements |o;) of 9{1(3: A generic state in H
is then determined by d coefficients, one for each basis element:
) =S T7 oy -+ op) (2.2)
o

A MPS is a state in a many-body Hilbert space of the following form:

W [{AY]) =tr) AT(1)-- A7 (L)|or---o1) (2.3)

o

Here A(i) € A; := CXi-1%4iXXi g g single (y;_1 X d; X xi)-tensor or alternatively a collection
of d; = dim (J—Cfgl) matrices of size y;—1 X x; labeled by A% with x7 = xo. The tensors A(%)
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are called the site tensors of the MPS and x; describes the bond or auziliary dimension of the
MPS. The precise definition for the A-tensor as a multi-linear form reads:

A(l): Cu1@ChgCY* —»C (2.4)
lii—1) ® |o1) @ (it] — A7

i—19°

where the components AZ’il ;, are given by the action on the canonical basis of CXi~1 RC%H @ Cxi*,
It is obvious from this equation that I do not use the convention for upper indices being
contravariant and lower indices beeing covariant. Instead, I use the convention to write the
physical indices as upper indices and the auxiliary indices as lower indices. I will also identify
the components with the tensor itself, whenever this is convenient. Throughout this thesis, I
use the convention that the rank-3 site tensors are written as non-bold symbols A while the site
matrices A7 (or any other matrix) are written with bold symbols. To indicate the dependence
of the state [¥) on the set of A-tensors {A(i)};,_; 1, I use curly brackets around the A-tensors.
In the case of translation-invariant A-tensors, the curly brackets are omitted and the state is
referred to as an uniform MPS (uMPS). An uMPS depends on a single A-tensor only, which is
placed at every site of the lattice. It is convenient to use a graphical notation for the A-tensors:

J (2.5)

Here, the rank-3 tensor is visualized as a box with three legs, one for each index. This graphical
notation can be used for general tensors including scalars, vectors, or higher-rank tensors. For
example, a general state in the canonical basis of the multi-site Hilbert space can be written as
in Eq. (2.2), which leads to the identification

T = tr A°Y(1) - - A7E(L) (2.6)

In a graphical notation this becomes:

a{al—. e

] A - ,

which visualizes the whole state |& [{ A}]), or more precisely the components for the canonical
basis. What can be also seen in Eq. (2.7) is how to visualize tensor contractions in the graphical
notation: if two tensors get contracted over several indices, one connects all legs of such index
pairs. The trace operation is visualized by connecting two legs of the same tensor.

Eq. (2.6) or (2.7) also shows that any MPS is equivalent to a state in the canonical basis by
evaluating the matrix products and the trace in Eq. (2.3) first. An arbitrary state in the form
of Eq. (2.2) can also be written as an MPS, but the concrete form of the A-tensors is not
unique. A possible decomposition can be achieved by the following procedure:

1. Reshape the tensor 77~ into a d x dY~! matrix by combining the indices o5 -- o,
into a multi-index Y.
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2. Perform a singular value decomposition (SVD, see Appendix Chap. A) on the reshaped

tensor:
Xl . .. .
TUlZ — Z Uallszlle (28)
=1

3. Set Ag}i = U and T2L = S§UV¥ by decomposing the multi-index X back into
09...0],.

4. Reshape the tensor T into a d - x1 x d“~2 matrix by combining the indices i and o9 into
a multi-index I and the indices o3 --- oy, into a multi index .

5. Perform a SVD on the reshaped tensor:

X2
T =3 Uligiyi¥ (2.9)
j=1

6. Set Afi = U by decomposing the multi-index I back into i and oo and Tios oL —

S33V/3% by decomposing the multi-index X back into o3...0p,.
7. ITterate this procedure by going back to step 4.

This procedure gives an exact representation of an arbitrary state in an MPS formulation. In
the general case, the auxiliary bond dimensions x; then grow exponentially with the system
size L. The procedure can also be used to obtain an approximation for the state as an MPS by
taking in steps 3 and 6 only the ymax largest singular values. This fixes the bond dimension to
a cutoff value ymax but introduces a truncation error which is the sum of all discarded singular
values.

The states in Eq. (2.3) define a subspace M of the full Hilbert space H:
M= {[F[{A}]) [ A7) € A} (2.10)

The set M depends on the bond dimensions y; and does not form a linear subspace of H, since
the sum of two MPSs has in general different bond dimensions y;. The MPS is a natural map
from the space of parameters A = @, A; into M. The map is not injective because of two
reasons: firstly, there is a natural gauge freedom in the parametrization, and secondly singular
A-tensors are not excluded in the definition of A;. Singular A-tensors are tensors which can
be compressed to a smaller bond dimension y < x without changing the state. To make this
more explicit: with the definition above, one actually has My, C My, for two sets of bond
dimensions {x} and {x} with x; > x; all i = 1,...,L. The singular parametrization leads to
conceptual as well as numerical problems. Hence, it would be desirable to restrict the A-tensors
to a subset A C A which only contains elements which are non-singular.
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For an MPS with open boundary conditions, this can be obtained with help of the density
matrices L(7) and R(:) which are recursively defined:

L(i+1)= ZATUZ'(@')L(@')A‘”(@'), L(1) =1 (2.11)

R(i—1) ZA‘” (1)AT%i(3),  R(L)=1 (2.12)

and can be computed with a computational cost scaling as O(x®). The set A can then be
defined as an open subset of A for which all density matrices have full rank. Since L(i) and
R(i) are per definition positive matrices, this is equivalent to asking for strictly positive definite
density-matrices. By restricting to the set A, one gets a better variational set:

M={[v{A}]) | A c A} (2.13)

Although the map defined by the MPS is still not injective, the remaining ambiguity is the
gauge freedom which will be discussed in Sec. 2.3.

In the case of periodic boundary conditions, one can assume that the state is described by a
uMPS with bond dimension y. The respective restriction of the parameter space is described
in Sec. 2.4 for uMPS in the thermodynamic limit.

2.2 Interpretation of matrix product states

An MPS as defined in the last section is a special parametrization of a general state |¥) in
the Hilbert space H. As will be discussed later, this parametrization is an efficient variational
ansatz for several optimization problems. A more physical interpretation of the introduced
A-tensors is also possible. Here, the A-tensors define a renormalization group (RG) scheme,
to iteratively renormalize the low-energy basis of the system. To see this, one can write the
matrix multiplications in the MPS explicitly and then change the order of summation (open
boundaries assumed):

Z Z Al 11 Z1,l2( ) ’ 'A?LL:;,iL—l( B 1)A;TLL 1 1( ) |0‘> (2'14)

O 41,001

Collecting only the relevant terms for the summation over o;, one obtains:

li1) ZA )lo1) (2.15)

The site tensor on site 1 transforms the local basis at site 1 into an effective state space J;.
Performing this iteratively until the site | one obtains an effective state space J; consisting of
the states:

iy = > A7 (1) li1o0) (2.16)

Olyt—1
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Here, it becomes obvious that the site tensor A(l) is a map which combines the effective state
space J;_1 with the local Hilbert space Hj,.; at site [ into an effective state space 9t

A: I ® U'C]oc,l — 0 (2.17)
1) X |ou) = > AT L)
i

If dim (J;) < dim (Jl,l ® ﬂ{(l)> this map is a truncation. In a RG picture the A-tensors should

loc
be chosen in such a way that the low-energy sector of the Hilbert space is kept.

2.3 Gauge freedom and canonical forms

The MPS in Eq. (2.3) is not unique in the sense that different A-tensors lead to the same
physical state. In other words the map ¥:

v: A—M
Ar— [W[{A}])

is not injective. The transformations G on elements A € A, which leave the state unchanged,
introduce a gauge freedom. This gauge freedom allows to require certain constraints on the
A-tensors.

Consider an arbitrary invertible y; X x; matrix C(i) and the matrix product A% (7)A%+1(i + 1)
as a part of Eq. (2.3) between the matrices at site i and i + 1. One can insert C(i)~'C|i)
between the two matrices and then multiply C(i)~! to the left and C(i) to the right to obtain
different matrices A”* (i) and A" (i + 1) while leaving the product and hence the whole state
invariant. Therefore the gauge transformations for MPSs are:

A% (i) = A% ()CG)™Y AT (i + 1) — Ci) AT+ (i + 1), (2.18)

for C(i) being an element of the general linear group GL(x;). These gauge transformations can
be inserted at every bond in the MPS. Consequently, the gauge group G is the direct product
G = 1], GL(xs). The group G has a right action on the parameter space A:

ARG — A
({AYic1 0{CiYic1n) = {AS sy, A = ZC(Z —1)A°C(3),

which can also be restricted to the space A. This group action allows to define a principal fiber
bundle ¥ : A — M only if the group action is free. To ensure this, one needs to quotient out
the stabilizer subgroup of G which is given by all scalar multiples of the identity matrix at
every site. One advantage from this mathematical structure is that the set M is then known to
be a smooth complex manifold.

1 Notice that this map is of course canonically isomorphic to Eq. (2.4) but the physical intuition behind the
definition here is important.
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For uMPSs, all site tensors A(7) are equal, so that one can write the gauge transformation
as A° — CA°C~! for any invertible (y x x) matrix C. Hence, the gauge group is in this
case G = GL(x) and again obtaining a free group action, one requires the quotient with the
stabilizer subgroup which results in this case in the projective linear group PGL(x). This again
leads to the structure of a principal fiber bundle with the trivialization given by the map V.
The manifold character of M will be used to derive variational principles for uMPSs in the
thermodynamic limit.

Beside the structural information from the gauge group, the gauge freedom can be used to
transform the MPS into canonical forms where the A-tensors fulfill certain constraints. These
constraints can substantially improve numerical algorithms. For the right canonical form, one
requires that every site fulfills:

1= A% (A7) (2.19)
AR

_ (2.20)
AR

If a single A-tensor fulfills this condition, it is called right-normalized and will be written as
Ag. In the graphical notation, I will use orange-colored boxes for right-normalized tensors. For
the left canonical form, one requires that every site fulfills:

1= (A7) A% (2.21)

g4

Ar

= (2.22)

A}

If a single A-tensor fulfills this condition, it is called left-normalized and will be written as Ay,.
In the graphical representation, yellow boxes are used.

A combination of these two canonical forms is called the mized gauge representation. This
is characterized by one center site (the pivot site p) and all A-tensors to the left being left-
normalized, and all A-tensors to the right being right-normalized. The pivot site tensor is
referred to as Ap and can also be brought into a left- or right-normalized form which leads to
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the center-matrix representation of the MPS:

v {A}]) ZA‘“ AT (DPAT (p+1) - AFF (L) o), (2.23)

where P is the center-matrix (or the super block wavefunction in original DMRG) and is a
result of the normalization procedure of Ap. For details, see Sec. 2.7.1. An uMPS in the
mized gauge representation is characterized by the tensors (A, Ar, Ap, P). The translational
invariance of the state then shows up in the fact that the pivot site can be shifted to arbitrary
positions in the chain because one has the conditions:

= PA%, = A%P (2.24)

2.4 Uniform matrix product states in the thermodynamic limit

The MPSs from Sec. 2.1 are defined on a finite lattice with L sites. The A-tensors in the MPS
can be chosen site-dependent or uniform, i.e site-independent. The site-dependent A-tensors
are suited to describe inhomogeneous systems or systems with open boundary conditions. On
the other hand, uniform MPSs (uMPSs) constitute a natural choice for translational invariant
systems. In solid state physics, these systems appear naturally, as a lattice is per definition
a periodic object. When considering finite systems, the translational invariance can only be
reflected when periodic boundary conditions are applied. Although finite uMPS are a good
ansatz for the simulation of lattice systems with periodic boundary conditions, the optimization
procedures are not efficient. There exist no algorithms which scale as O(x?), which is the
typical scaling for open-boundary MPS methods. The reason is that the recursive definition of
boundary matrices (or density matrices) is not possible, since there is no boundary anymore.
For example the computation of expectation values of local operators can be performed with a
computational cost of O(x2. x3..). For uMPSs one has Ymin = Xmax = X and hence a cost
of O(x®). The additional cost is connected with the fact that the correlations in a periodic
system can travel along two different paths corresponding to the two directions on a ring. To
overcome this problem and to develop efficient algorithms for uMPS, one can examine the
uMPS directly in the thermodynamic limit L — oo, since then there is only a single path for
the development of correlations. Therewith, it is possible to reestablish the O(x?) scaling. The
algorithms however, need to be adapted accordingly to avoid possible divergencies. In this
subsection, I will introduce uMPS in the thermodynamic limit and will present some results for
the manifold of uMPS which are important to derive the variational algorithms later. uMPS
and its geometrical structure are analysed in detail in Ref. [54, 55].

Consider first a lattice with L = 2N 4 1 sites labeled from —N to +N. A uMPS in the
thermodynamic limit N — oo is then formally defined as

Ztr [V 11 A"“] o) =) tr[V---A7TAAT - ]|o). (2.25)

neL

Here V is a x x x boundary matrix. An important result is that when choosing the A-tensors
from a suitable restricted open subset A € A, all observables are independent of the boundary
matrix V. As already discussed in Sec. 2.1, one needs to exclude singular A-tensors for which
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some matrices do not have full rank. For uMPS however, there is a second requirement which
ensures that the uMPS can be properly normalized and is independent of the boundaries. A
central object of uMPS is the transfer matrix T fT =>. A7 © A°, which defines two maps on
the auxiliary space CX*X of the uMPS:

Th: zr— Y AlzA” (2.26)

Th: zr— Y A%zAl (2.27)

If one interprets matrices in CX*X as vectors, these maps can be more conveniently written as
TfT |z) and (z| T ff. It is obvious from the definition that these maps are positive. With the
help of TA“T, one can formulate the restrictions for the parameter space to obtain well defined
uMPS. An element A € A is in A if:

1. The transfer matrix T' A“T has a non-degenerate largest eigenvalue w™®* so that the spectral
radius is o(7) = |w™**|. This way, all other eigenvalues lie strictly in the circle with
radius o(7T') on the complex plain.

2. The left (I| and right |r) eigenvectors corresponding to w™®* interpreted as x X x-matrices
are strictly positive definite. That also implies that they have full rank.

If both conditions are fulfilled, one can renormalize the A-tensor so that w™®* = 1. The left
and right eigenvectors then correspond to fixed points of the transfer matrix and the uMPS has
norm 1. One can then show that expectation values are independent of the boundary matrix
V' [54-56]. Another implication is that uMPSs build from A-tensors of A are exponentially
clustering. This implies that two-point correlation functions decay exponentially with the
distance. This can be seen by a simple calculation, which also helps to make the transfer matrix
as a central object more familiar. With the help of the definition of the transfer matrix T one
can write for the expectation value of the correlation function of a local operator O;:

(0:05) = (U To, TV T, |r) (2.28)

where the dominant eigenvectors (I| and |r) of the transfer matrix 7" are already included for
the left and right infinite parts of the expectation value and Ty, is a generalized transfer matrix
with the operator included:

To, =) 077 A° @ A" (2.29)

oo’

To proceed, one can perform an eigen-decomposition of the transfer matrix 7

T =) {1+ Aalda) (Nl (2.30)

Inserting this decomposition in Eq. (2.28), one directly obtains the disconnected part (O;)(O;)
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of the correlation function and a connected part:

(0:05) = (U To, Ir) (U To, Ir) + Y AU To, [Aa) (Xal To, I1) (2.31)

By the restriction to the set A, all eigenvalues A\, have |A\,| < 1, and hence the connected part
of the correlation function decays exponentially. The correlation length £ and also the pitch
angle @ of the correlations are determined by the second largest eigenvalue Ay as £ = ﬁ
and @ = arg(A2).

After restricting to the open subset A C A, one can define a principal fiber bundle for uMPS in
the thermodynamic limit with total space A, base space M and trivialization ¥. The fibers are
given by the gauge group PGL(x) introduced in Sec. 2.3. This of course implies that M (and
also A) are smooth complex manifolds. As the set M serves as the variational set for various
algorithms, its tangent space is of importance for deriving the variational conditions. An
intuitive way to obtain a tangent element at the point |[¥[A]) is the derivative with respect to
the parameters A. This derivative would naturally appear for any optimization problem on the
set M, so it is a useful task to analyse the structure of the tangent vectors in some detail. By
the product rule for derivatives, one obtains a tangent vector |®[B,A]) as a linear combination
of the derivatives with respect to all parameters parametrized by a tensor B € CX*@xX;

|P[B,A]) = Bfai DA =D tr[--- AT BT AT -] o) (2.32)

nezZ o

Here I lists all entries of the A-tensor, hence it is a collective index I = (4,7,0). The notation
suggests that the elements % [W[A]) build a basis of the tangent space TM g4 at the point
|@[A]). This, however, is not the case because of the gauge freedom in the MPS representation.
In fact, % |@[A]) forms an overcomplete basis. One can see this immediately, when looking
at the (complex) dimensions of A, M and PGL(x). A is an open subset of A, so as a manifold
the dimension is dimA = y? - d. Hence, its tangent space T'A 4 is a x? - d-dimensional vector
space which can be identified with A. PGL(y) is a Lie group and given by the quotient of
GL(x) with its center subgroup of matrices proportional to the identity. The dimension of
GL(x) is dimGL(x) = x? and its center has dimension 1 so that one gets dimPGL(x) = x? — 1.
Since locally, one can write A = PGL(x) x M, due to the fiber bundle structure, one gets
dimM = x2(d—1)+1. The tangent space T'A 4 of the total space of the bundle then decomposes
pointwise in a direct sum of a vertical VA4 and a horizontal HA 4 subspace:

TAs=VAL D HAYH (2.33)

The derivative of the bundle projection ¥ at a given point A is a map between T'A4 and
TMga)- Its nullspace then directly determines the vertical subspace VAy4. Instead the
horizontal subspace HA 4 is not uniquely determined but needs an additional structure of the
bundle. The structure is called a principal connection and is quite technically defined as a
Lie algebra valued 1-form w acting on T.A 4 so that the kernel of w is the horizontal subspace
HA 4. Of course, this 1-form has to satisfy different conditions. In a more practical way, one
understands this as a gauge fixing condition for the elements B € TA 4 ~ A. One can directly
check that the gauge transformations for tangent elements B at the point A are of the following
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form:
B° 5B =B+ A°X — XA° (2.34)

with X a x x y-matrix. These are gauge transformations in the sense that |®[B,A]) = |®[B’,A])!.
This gauge freedom can be used to require, e.g., the left gauge fixing condition for the elements
B:

0=> A"B° =) Bl"A7. (2.35)

o o

There is a very useful way to parametrize the B-tensors so that they are automatically in the
left gauge. To obtain the parametrization one might recognize that Eq. (2.35) is fulfilled for
any operator acting on the nullspace of Ar. Ap can be interpreted as a (xd) x x matrix which
can be extended to a (xd) x (xd) unitary matrix. The additional x(d — 1) columns correspond
to the nullspace and are referred to as Ny,. For Ny, one then has:

Ar

= 0 (2.36)

N}

Eq. (2.36) is equivalent to Eq. (2.35), so one can set B” = N7 X as a parametrization for B. X
is a x(d—1) x x matrix which directly parametrizes tangent elements in the horizontal subspace
or equivalently tangent vectors in TM g 4]y Before, the dimension of of TMy|4)) was evaluated
to dimTMy(4)y = x*(d — 1) + 1, which would be a mismatch to the x(d — 1) x y-dimensional
parametrization. However, X parametrizes the part of TMy 4]y which is orthogonal to [W[A]).
For later applications of the tangent space, this is particularly useful because it can be used as
the space of the new search direction, in first order. On the other hand, the space along the
MPS direction is physically irrelevant, since the physical content of a state does not change if
the state is multiplied by a scalar.

At the end of this section, I want to discuss a basic optimization problem, which will be useful
for all later algorithms. Consider an arbitrary state |©) € H and a uMPS |&[A]). One can then
introduce the tangent space projector P|y(4)) which performs an orthogonal projection of the
state |©) € H onto the tangent space TMy4}). Orthogonality is here defined by the standard
inner product of the Hilbert space. This task can be converted into an optimization problem,
by searching the tangent element |®[B(X),A]) such that the overlap with |©) is maximized or
by minimizing the distance to the tangent elements |®[B(X),A]):

min [[|) — |2[B(X),A])| (2.37)

Eq. (2.37) can be multiplied out which leads to the overlap between two tangent vectors.

1 This essentially means that A”X — X A” parametrizes the vertical subspace VA4, since one has |®[B,A]) =0
for B€ VA
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Here, it becomes visible that it is crucial to parametrize the tangent elements by the matrix X
because otherwise the overlap is singular [55]. With the parametrization, however, one simply
has:

<@[BT(XT),AT] ‘QS[B(X),A]> = 278(0) tr X1 X (2.38)

so that the minimization problem (2.37) becomes quadratic. Note that there is still a diverging
term in the overlap in Eq. (2.38) but this will drop out during all computations. The solution
to Eq. (2.37) is:

210(0)X = af(f (o[B(XT1),Al]| ©) (2.39)

Here, the diverging factor 6(0) drops out if |©@) is translation-invariant. Now the last step is to
construct the resulting state |¢[B(X),A]) from the solution for X (2.39) via B = N7 X and
Eq. (2.32). Afterwards, one can directly deduce the corresponding tangent space projector

Ploja) = Z Z [ ) -ATLU"”NTL"”NCL*A?"I ] [ ) .A?HA;ZHATR%HAEnH . ] ‘0’> (]
n go

(2.40)

This formula can be put in a slightly different form which is more useful for the upcoming
algorithms. The projector N TL”N f can be rewritten as 10,, — ATLUA‘Z/ so that the tangent
space projector consists of two different parts.

iP\LD[A]) = Z Z{ [ . ,AE"n—l ﬂdong;”Az;_l .. ] [ . .A‘;%;z-&-lA?%;lA}rgnA}L%Un+1 o }
e (2.41)
_ [ . .AEU,LAATLanAZ%AZZfl . } [ . -A?HA?AE”AET"H - } } ‘0_,> <0_‘
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This lengthy formula can be written more convenient by using the graphical notation:

/ /
Gn—f—l Un+2

Py =2 - (2.42)

Op—s Op1 On

]
e
)

]

On—9 On—1 On

2.5 Area law

In the previous sections, MPSs were described as a variational ansatz for obtaining groundstates
of one-dimensional Hamiltonians by minimizing the energy of the MPS. Variational anséitze
are found at the heart of most numerical methods. When optimizing a variational ansatz,
one obtains the optimal state in the variational space but it is a priori completely unknown
if this state is a good approximation to the true groundstate of the system. For the MPS
ansatz however, there exists the famous area law which states that the true ground state of
one-dimensional gapped systems lies in the space of the MPSs. This is a remarkable result,
since it guarantees that if one is able to find the optimal MPS representation for a state, this
will be indeed the groundstate of the system. To give an overview over this theorem, I will first
introduce the concept of entanglement in quantum mechanics.

Entanglement in quantum mechanics is a property of states in a system G consisting of two
subsystems A and B. Consisting of means that the Hilbert space of G is obtained by the tensor
product of the Hilbert spaces of A and B:

Hoa=Hs®HpB (2.43)

For any state |¥) € Hq one can then decide if it is an entangled state or not. The relevant
quantity is the partial trace over the projector |¥) (¥| with respect to the degrees of freedom of
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one part of the system, which is called the reduced density matrix ga:
oA = trp [¥) (¥ (2.44)

The partial trace is over all states in Hp so that g4 is an operator acting in Ha. 04 fulfills all
requirements to be a density operator: it is Hermitian, positive semidefinite and has tr4 o4 = 1.
Then the state |¥) is not entangled if and only if o4 = 9124. In other words, the state is not
entangled if p4 describes a pure state, whether |7) is entangled if p4 describes a mixed state.
Note that this definition is independent of the basis in the two subsystems A and B. There
exist different measures for the strength of entanglement [57, 58]. The most common measure
is the von Neumann entropy Syn or the more general Renyi entropy Sg [59] of the reduced
density-matrix ga:

SyN = —traoalng4] (2.45)
o (64 (0%
S — —log [tra of] (2.46)

For a — 1, Sg is identical with Syn. The state |¥) is not entangled if Syn = 0 while it is
entangled otherwise. And the larger the entropy, the larger the entanglement in the state.

This quite general framework for entanglement is relevant in the context of area laws if the
bipartition of a system is spatial. Hence, one assumes that the system G is d-dimensional and
one cuts out a subsystem C' and measures the entanglement between C' and G \ C. See Fig.
2.1 for an example of bipartitions for one- and two-dimensional lattice system. The subsystem
C has a d-dimensional volume V¢ and a (d — 1)-dimensional surface 8¢ = 0V and it is of
particular interest how the entanglement depends on V¢ and 8¢ A state |¥) of the system G is
said to fulfill an area law if the entanglement scales with the surface 8¢ while it is said to fulfill
a volume law if it scales with the volume V¢. For a state [Z[{A}]) in a MPS representation
with bond dimensions {Xi}izl,..., 1, on a one-dimensional lattice with L sites, one can easily
compute the entanglement for a bipartition as depicted in the left of Fig. 2.1. Note that it
is convenient to divide the one-dimensional chain into two chains by cutting at a given site p
rather cutting the chain at two sites, because in this case, there would be disconnected parts.
However, this has no impact on the entanglement scaling. The volume of the subsystem C' is
then directly related to the length L of the chain. So it will be important how the entanglement
scales with the chain length. Suppose the state |Z[{A}]) is in the mized-gauge representation
with the pivot site p coinciding with the site of the cut. Then the summation over Ay defines
an orthonormal basis |L;) for the left part of the system and the summation over Ar defines
an orthonormal basis |R;) for the right part of the system:

Ly = D A7) AT (p)]o1 ... 0p) (2.47)
01...0p i

Ry=1{ > AP"(+1)---AF(L)|ops1...oL) (2.48)
Op41.--0L

J

Here one takes only the i-th (j-th) component from the matrix products and open boundaries
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\.

Figure 2.1: Bipartitions of a one- and a two-dimensional lattice. Left: A chain of length L = 6
divided into two parts L and R of size Lg = % The boundary of the subsystem (either L or R)
is zero-dimensional and hence does not scale with Lg. Right: A two-dimensional L x L lattice
with L = 6, for which a subsystem C of size Lg x Lg (Ls = 2) is cut out. The boundary of the
subsystem scales linearly with Lg.

are assumed so that A7'(1) and AJ*(L) are row- and column-vectors respectively. The state is
then entirely determined by the center matrix P at the pivot site p and can be written as:

) = > Py|Li) |R)) (2.49)

1,j=1

This formula makes explicit that the mized gauge representation is well-suited to compute the
entanglement for a bipartition at the pivot site and is called the Schmidt decomposition of the
state |¥). The projector |¥) (¥| and the partial trace over either the left or right space can be
readily obtained from this Schmidt decomposition:

o, = PPt (2.50)
or = PP, (2.51)

and the singular values Y’ of P allow to compute the entanglement entropy efficiently:

Xp
Sn=-> X7log X} (2.52)

i=1
The resulting entanglement entropy (2.52) is independent of the chain length L and is bounded
by the bond dimension x, as S{§* = In x,. Recognizing that the surface 8 for the subsystem of
the one-dimensional system is zero-dimensional and consequently a constant independent of L,
it becomes clear that MPSs fulfill an area law. In contrast, the situation is different if the MPS
parametrizes a state on a two-dimensional lattice, for example the system in the right part
of Fig. 2.1. For this parametrization, one has to choose a one-dimensional snake through the
two-dimensional lattice. The surface of the subsystem C' scales linearly with the total number
of sites L (the volume scales as L?). On the other hand, the entanglement of the MPS does
not change compared to the previous case, hence it is again a constant bounded by the bond
dimension. In this sense, MPS for two-dimensional systems does not fulfill an area law. The
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generalizations of MPS, called projected entangled pair states (PEPS) [43-45], however, fulfill
the area law in two dimensions.

The entanglement structure of MPSs is obtained quite simply as demonstrated in the para-
graph above. A rather non-trivial task is the same entanglement analysis for groundstates of
Hamiltonians. The central result is that in one dimension they also obey the area law if they
contain only local interactions and if the ground state is clearly separated in their spectrum,
i.e. they have a finite spectral gap. This result proves that MPSs are well-suited for simulating
one-dimensional quantum systems and are the basis of the success of all MPS-related methods.
The prove is quite lengthy, so I will refer the interested reader to Ref. [30, 37] and references
therein.

2.6 Matrix Product Operators

For the optimization of the variational parameters in an MPS, an efficient computation of
expectation values with a Hamilton operator (¥| H |¥) is mandatory. The general structure
of MPSs can be transferred to arbitrary operators acting in the Hilbert space H. The d-
dimensional local Hilbert space can be interpreted as a d x d space of local operators. With
this identification, one can write e.g. the Hamilton operator in the following form:

H=try Wi(1)--- WL (L) o) (o', (2.53)

where Wi (i) are x;—1 X x; matrices and x describes the bond dimension of the matrix product
operator (MPO). Many of the properties of MPSs can therefore be transferred to MPOs and
used for algorithms on MPOs [60]. One can also represent the basic building block W7 in a
graphical notation. Since it is a rank-4 object, it is represented by a box with four legs:

O_/
oo’ { J
g

The MPO-form of the operators is particularly useful for Hamiltonians with short-range
interactions. These operators can be represented exactly in this formalism with small bond
dimension . However, some long-range interactions can be represented quite efficiently with
moderate bond dimensions [61-63] as well.

As an example, one can examine the MPO representation of a simple operator containing only
a nearest-neighbor hopping-like term in the form H = Z@-’j) X;Y; + h.c.. In the case that
[X;,Y;] = 0 at least for ¢ and j being nearest neighbors, this operator can be represented with
bond dimension y = 4:

W; = (2.55)

= o O O

0
0
0
X

oS X e
N ooo
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Here, every entry in the W-tensor is an operator acting on the local physical state.

2.7 Arithmetics for matrix product states

For any algorithm which operates with MPSs and MPOs several operations have to be performed
as efficiently as possible. Here, I present the most common of them. Some algorithms are direct
in the sense that resulting objects are directly calculated from the original objects and others
are variational in the sense that a random MPS is optimized to be the result of the given
computation.

2.7.1 Direct algorithms
MPS addition

The sum of two finite MPSs can be obtained easily. However, an important conceptional point
is that the sum of two MPSs has a different bond dimension than the original ones. Therefore
the sum operation will leave the manifold of MPS with bond dimension x (see discussion of
the manifold properties for MPS Sec. 2.4). To actually compute the sum of two MPS |&[{A}])
and |®[{B}]), one has to calculate the direct sum of the A-tensors and the B-tensors. The
resulting MPS |Z[{C}]) then has tensors:

Cco(l) = A°(1) & B°(]) (2.56)

and hence the resulting MPS has a bond dimension given as the sum of the original bond
dimensions. This can be often reduced again by a compression algorithm ([14]). For example
in the trivial case of (U[{A}]) = |P[{B}]) a simple scaling factor of 2 is enough, resulting in an
MPS with the same bond dimension.

MPS sweeping

MPSs can be brought into canonical forms by taking use of the gauge symmetry as described
in Sec. 2.3. The mixed-canonical form in particular simplifies several algorithms. Consider a
normalized MPS |W[{A}]) with arbitrary A-tensors. The mized gauge representation for a given
site p — which acts as the pivot site in several algorithms later — is characterized by A-tensors
left from p being left-normalized while A-tensors right from p being right-normalized. Bringing
an MPS into this mired gauge representation is a standard task in any MPS implementation.
First, consider a finite MPS [&[{A}]). Here the procedure is as follows:

1. Bring all A-tensors into the left-normalized form up to the site p in an iterative procedure
starting from site [ = 1 until [ = p — 1. Reshape the A-tensor at site [ by combining the
incoming auxiliary index ¢ and the physical index into a composite index (i) to obtain a
rectangular matrix A with matrix elements:

Afioyj = A (D) (2.57)

Then perform a QR decomposition (Chap. A) of A to obtain an orthogonal matrix @ and
an upper triangular matrix R. Reshape the matrix @ back into the form of the A-tensors
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to obtain a left-normalized site tensor at site {:

A7) = Qioy; (2.58)
Finally, multiply the matrix R into A(l + 1).

In a similar way, one can right-normalize the tensors to the right of p, by starting at the right

end [ = L of the chain. The difference is that the tensors have to be reshaped by combining

the physical o and the right auxiliary index j into a combined index, namely by setting:
Aoy = AZ(1) (2.59)

Afterwards, one has to perform a LQ decomposition of A. Here one can use standard algorithms
for the QR decomposition by using AT.

The mized gauge representation naturally leads to the pivot site p (often also called center
site), which often needs to be shifted by one site. In MPS language this procedure is called a
sweepstep. When the pivot site of an MPS is at site p and should be shifted to p+ 1, one simply
makes the procedure for left-normalization only for the site [ = p. If instead the pivot site
should be shifted to p — 1, one performs a single right-normalization step at the site [ = p.

Note that instead of the QR decomposition, one can also perform a SVD decomposition (Chap.
A) of the reshaped A-tensor and multiply the singular values together with left (right) isometry
into the next (previous) site. This has the advantage that one is able to truncate the MPS
simultaneously by taking only the Ytrunc largest singular values.

In the case of uMPSs, the above algorithms are not applicable and one has to tackle the
problem in a different manner. The starting point here is a uMPS |?[A]) in the uniform gauge
with a single A-tensor placed at every site of the infinite lattice. Now, one needs to find a
gauge transformation L so that A := LA°L™" is left-normalized. The corresponding gauge
transformation can be found by decomposing the left dominant eigenvector |I) of the transfer
matrix TfT as |I) = LTL. This can be directly checked by plugging the obtained Az in the
condition for left-normalization Eq. (2.21). From a numerical point of view, however, this
is not stable, since one has to compute the matrix square-root-like decomposition (Cholesky
decomposition). In exact arithmetic this is no problem, since the fixed point for a proper uMPS
is strictly positive definite. However, there might be very small eigenvalues which make the
numerical decomposition unstable. Additionally, one has to compute the matrix-inverse from
L which is also numerically unstable. A better choice is an iterative procedure based on the
equation:

oL = LA°, (2.60)

where one starts with a random L and performs iterative QR decompositions of LA? (after
appropriate reshaping) into A7L until L is converged. With a similar algorithm, one can
also find the gauge transformation R so that A% := R™'A°R is right-normalized. Now, one
can perform these gauge transformations at the left (right) of an arbitrary pivot site p and
therewith left- (right)-normalize all tensors to the left (right) of p. To the left (right) of the
pivot site, the gauge transformation L (R) remains, and needs to be multiplied in the A-tensor
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at site p to give the pivot-site tensor Ap:
% =LA°R (2.61)

The pivot-matrix P is then also easily obtained by P = LR. In summary one obtains the three
A-tensors and the pivot-matrix (Ap,Ar,Ap,P) which describe the uMPS in the mized gauge.

MPS overlap

Given two finite MPS |W[{A}]) and |®[{B}|) with open boundary conditions, the overlap
between both can be calculated by contracting the whole network depicted in Fig. 2.2. The
most efficient way is to contract the network from left to right (or right to left). Therefore, one
introduces a matrix L which is recursively defined as the left boundary of the network at site I:

L(l+1) =) _ B()L(1)A" (1) (2.62)

with the initial condition L(1) = 1. In an analogous manner one may define a right boundary
matrix R. The scalar product (®[{B}] }W[{A}D is then given by (®[{B}] ’W[{A}D =
tr L(l + 1)R(I) which is independent of the site index .

When dealing with uMPS |¥[A]) and |®[B]), the above procedure is not useful because of the
diverging number of lattice sites. The relevant quantity for the overlap here is the rank-4
transfer matrix 7"

T = Z BT @ A7 (2.63)

The scalar product is then the infinite power of this transfer matrix:
(®[B"]|[4]) = lim TV, (2.64)
N—00

so that the dominant eigenvalue of the transfer matrix determines the overlap. For properly
normalized states, the dominant eigenvalue A of T' either has norm |[A| =1 or || < 1. In the
first case the overlap is 1 and in the second case it is zero. This is actually an example of
Anderson’s orthogonality catastrophe [64], which states that in one dimension, two states are
either orthogonal or equal in the thermodynamic limit.

AAff?A
B—B—B—1B—B—8

Figure 2.2: The overlap network of two MPS |#[{A}]) and |P[{ B}]).
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MPS-MPO expectation value

Another common task is to evaluate the expectation value of some operator O in a state
described by a finite MPS [&[{A}]). A slightly more general operation is to calculate the
overlap matrix element with two different MPSs [Z[{A}]) and |®[{B}]). Again this can be
done by contracting the corresponding network from left to right (or from right to left). In
this case, it is a similar network as depicted in Fig. 2.2 but with the MPO W-tensors included.
And in a completely analogous manner, one defines boundary tensors for the left boundary at
site [ as:

Ly(+1) = 3 B ()L, A OW (1) (2.65)

aib
/
01,0,,a]

Here a; and b; are the left and right auxiliary spaces of the MPO W -tensors, respectively, and
Eq. (2.65) has to be evaluated for each value of the index b; = a;41. This formula is easier to
understand in the graphical notation:

A* [

L wWhk— = | [/ I— (2.66)

At — —

The right boundary can be calculated by a similar formula and one obtains for the overlap
matrix element:

(BB} |O|W[{A}]) = tr Y Ly, (1 + 1)Ry, (1) (2.67)
by

In the case of uMPSs, this is again a non-trivial task, since one has to be very careful with
potentially diverging terms. Because of that, I want to focus only on expectation values of
operators. For example the Hamilton operator H (the extensive operator for the total energy)
will clearly have a diverging expectation value. Normally, one is only interested in the density
of these expectation values (h) = - (H) which is well defined in the thermodynamic limit. Let
us first look at the particularly easy case where the operator O is a sum of local operators O;.
The density expectation value o is then the expectation of a local operator at an arbitrary site

i. It is then most easily obtained in the mized gauge representation of the state |¥[A]):
o=try O7" A AY (2.68)
oo’

This idea can be continued to cases where the operator consists of a sum of operators which
only have support on a finite number of lattice sites. For example for a two-site Hamiltonian of
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the form H = )", h; ;11, one obtains for the energy density:
_ T t
h=tr Y WA MADTAZ AT AY (2.69)
01020304
For general operators, one needs to solve the fixed point equation of the transfer matrix T ,ff (W).
However, as mentioned above, this will lead to a diverging expectation value, so that one
has to substract a constant shift term at each step in the iterative solution of the fixed point

equation to obtain a finite result. This procedure is described in Sec. 3.2.1 for the Hamiltonian
represented as an MPO.

2.7.2 Variational algorithms

Variational algorithms are very typical for MPSs, stemming from the fact that MPSs constitute
a very flexible variational ansatz for quite general optimization problems.

Optimization of the overlap

The first example is to find a state |@([{B}])) which minimizes the distance to a given state

[w{A}):

min [[7[{A}]) - [P{BIDI (2.70)

The site tensors in |®[{B}]) should be obtained variationally by this condition. The global
optimal truncation of an MPS |@[{A}]) is an application of this algorithm when one chooses
|2[{B}]) to have a smaller bond dimension than [Z[{A}]).

In principle Eq. (2.70) fixes the B-tensors, but it is not easy to solve this minimization problem
exactly, because of the non-quadratic dependence of the cost-function on the parameters. A
standard procedure for MPS algorithms solves this issue. Transform the global optimization
problem into a local one for only a single B-tensor at site p. Then solve this local optimization
problem again and again at each site in the lattice while sweeping from site to site. To
derive the equations for a local update is a rather simple task, since the cost-function depends
quadratically on the single tensor B(p) in this case. Hence a simple derivative leads to the
equation:

By (p) = LA™ (p)R, (2.71)

which is only valid if |@[{B}]) is in the mized gauge with the pivot site at site p (indicated
by the subscript P in the above equation). L and R are the left and right boundaries of the
overlap network between |V[{A}]) and |?[{B}]) as in Eq. (2.62). This equation has now to be
solved multiple times for all lattice sites until convergence is reached. The convergence quality
is easily obtained by the distance between both states as in Eq. (2.70). During the sweeping
procedure (shifting of the pivot site), one has to make sure that the according boundary tensors
are known. A more detailed description of the algorithm is available in Sec. 3.1.

This sweeping algorithm can not be performed when dealing with uMPSs in the thermodynamic
limit. In this case, one has the same cost-function but both states depend only on a single
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tensor:
min |[[Z[A]) — |[B])|I? (2.72)

This equation looks rather similar to Eq. (2.37) and in fact it can be solved with the tangent
space projector from Eq. (2.41). Here it is strictly necessary that the tangent space is
parametrized properly to avoid any diverging terms. The optimal condition from Eq. (2.72)
can be written with the tangent space projector:

Plwayy |2[B]) =0 (2.73)

From the precalculations for the projector (2.41) the solution follows readily and is given by
the condition:

p=BLP, (2.74)

where A’ and P’ are the results of the two different parts of the tangent space projector. Eq.
(2.74) can be used to develop iterative methods for optimizing the overlap. See, e.g. Ref. [56].






CHAPTER 3

Variational matrix product states

In this section I want to present the algorithms for MPSs, which can be used to obtain a
groundstate approximation for a given Hamilton operator H. In fact these algorithms are
related to the ones presented in Sec. 2.7 but are treated in an extra section because of their
outstanding importance. As a fundamental criterion for the optimization on uses the Ritz
principle known from quantum mechanics.

The algorithms for finite MPSs are called density-matrix renormalization group (DMRG)
methods because they are deeply related to the traditional DMRG algorithm without MPS
[13, 46]. The DMRG methods are well established as a standard tool for the solution of
strongly correlated one-dimensional quantum many-body systems. An extensive review is
written by ULRICH SCHOLLWOCK [14] for example. As already discussed for the optimization
of the overlap for finite MPS, the key idea is to convert the global optimization problem into a
local optimization problem for a small number of A-tensors instead of optimizing all A-tensors
simultaneously. The method which is equivalent to the traditional DMRG algorithm is the
two-site algorithm — called 2sDMRG — where at each step, two A-tensors are optimized. For
hard problems, 2sDMRG is numerically too expensive, i.e. the algorithm can not be applied
if the auxiliary bond dimension y of the MPS is too high (x ~ 10.000). Instead the single
site DMRG (1sDMRG) is numerically quite efficient so that tensors with bond dimension
X ~ 10.000—100.000 (only with the use of symmetries) can be simulated. In this algorithm, only
one A-tensor is optimized per step. This, however, has the disadvantage that the optimization
procedure is likely to get stuck in a local minimum. To overcome this issue, several ideas were
presented to add non-local information to the local optimization of a single A-tensor [65-67].
For the computations in this thesis, I only use the 1sSDMRG algorithm which is presented in
some detail in the Sec. 3.1.

The DMRG algorithms as described above work for a fixed system size L. Often, one is
interested in the thermodynamic limit L — oo, which can then be obtained by a finite-size
scaling analysis in 1/L. Another possibility is to develop algorithms which work directly in
the thermodynamic limit. These methods must work with translation-invariant states, namely
uMPSs. However, the idea of optimizing a single tensor only while leaving the others untouched
would immediately break the translational invariance. Still, already the traditional DMRG
algorithm was used for infinite systems from the beginning, see [13]. Here, the idea is to
grow the lattice at each iteration step by adding two sites in the center of the chain and
then absorbing the two sites into the environment. With this procedure one always deals
with an environment-site-site-environment configuration. For this configuration the two-site
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DMRG algorithm can be applied with the same steps as for finite systems. At some point, the
environments do not change anymore when additional sites are absorbed and a fixed point is
reached. The reached state is believed to be the groundstate in the thermodynamic limit. The
optimization procedure does not always work this way in the thermodynamic limit, but reaches
the limit only when convergence is reached. The iDMRG algorithm can also be performed with
MPSs using various optimizations [68].

Another method for infinite systems is the infinite time-evolving block decimation (iTEBD) in
imaginary time [69, 70]. Here, the uMPS is time-evolved by a Trotter decomposition of the
time-evolution operator in imaginary time to reach the groundstate. This algorithm works
directly in the thermodynamic limit, but besides the bad convergence properties for imaginary-
time propagation, it is also limited to Hamilton operators which can be Trotter-decomposed.
Recent developments try to overcome these issues. For example in [71] the convergence speed
is accelerated by recycling parts of the environment. In [72], an extension to long-range
interactions is developed. But still, the additional Trotter error and the comparably slow
convergence speed for the imaginary time evolution make this method suboptimal.

A third method was recently introduced by ZAUNER-STAUBER et al. [47]. In this approach, the
minimization problem (the Ritz principle) is solved directly with global updates of the uMPS
at each iteration. It is called variational uMPS (VUMPS) approach and is described in Sec.
3.2.

3.1 1sDMRG

The Ritz principle states that the ground state of a Hamiltonian minimizes the energy functional,
which in terms of MPSs is given by:

B({aT) (ay) = LUADLLE] VLAY G
’ (P{AT} | w[{A}])

This minimization problem, however, turns out to be very complex since the energy expectation
value depends a highly non-linear manner on all the A-tensors and hence on the parameters.
The same problem was already addressed in the optimization of the overlap (see Sec. 2.7) and
the same trick can be applied: Fix all A-tensors except the one at site p. Then the energy
expectation value depends quadratically on A(p) and a solution leads to a locally optimized
tensor at site p. This, however, is by far not a global minimum and when using this procedure
it is necessary to sweep through the lattice and optimize again and again each tensor at one site
while keeping all others fixed. When convergence is reached, one has a good chance to be at
the global minimum, however, this is not guaranteed and one could also get stuck somewhere
in a local one. To derive the precise equations for the optimization step of a single tensor, one
can rewrite Eq. (3.1) for the case of varying a single tensor only:

(W [AT(p)] | H | ¥ [A(p)])
(WAt (p)] | [A(p)])

The numerator and denominator of the minimization can be calculated efficiently with appro-
priate boundary tensors for the corresponding networks. For the numerator, one needs the

E(Al(p),A(p)) =

(3.2)
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boundaries as in Eq. (2.65) to write:

(W[AT(p)] | H | W[AP)]) = tr > > W (p)a,p,La, (P)A7 (p) Ry, (p)AT? () (3.3)

/
ap,bp op,0y,

For the denominator, one needs the boundaries as in Eq. (2.62):

(W[AY(p)|Z[A(p)]) = tr Y L(p)A” (p)R(p) A" (p) (3.4)

This term simplifies even more in the mized gauge representation with pivot site p, since one
then has L(p) = R(p) = 1. For the minimization of the expression in Eq. (3.2) one has to take
the derivative with respect to Af(p) which corresponds to omitting Af(p) in the above equations.

Setting 8%@ (E(AT(p),A(p))) = 0, one obtains the equations for the local optimization of
A(p):
> W (p)ab, La, (P) AT (p) Ry, (p) = EA7 (p) (3.5)
ap,bp UI’J

which is in this form only valid if the MPS is in the mized gauge representation with pivot site
p. The visualization of Eq. (3.5) again facilitates the readability:

o - | wl— R (3.6)

) L

Eq. (3.6) states that A(p) is an eigenstate of an effective Hamilton operator Heg with minimal
energy. Hence it is an ordinary eigenvalue equation for the effective Hamilton operator Heg and
can be solved by Krylov-based methods since only the extremal eigenvalue is of importance. For
these methods, the complexity is solely determined by the application of the effective Hamilton
operator on a state. Eq. (3.5) shows that this can be done with a complexity O(d - x* - xw) as
long as the MPO matrices W7 are sparse.

This single update of a local tensor A(p) must then be embedded in an algorithm which
traverses through the lattice and optimizes one tensor after the next. Such an algorithm is
presented in Alg. 1. The basic operations of this algorithm are:

1. LOCALUPDATE(p,L,R,H) : Local optimization of the tensor A(p) as the groundstate of
the effective Hamiltonian by a Krylov-based eigensolver. The effective Hamiltonian is
build up from the environments L and R and the W-tensor at site p from the Hamiltonian
H. The effective matrix-vector multiplication is computed by Eq. (3.5)

2. SWEEPSTEP(p,direction): Shifting of the pivot site p to either p+ 1 or p — 1 depending
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Algorithm 1 1sDMRG algorithm
1: procedure GROUNDSTATE(Hamiltonian H ,energyPrecision eg,statePrecision eg,fluctua-
tions ap)

2: |W[{A}]),L,R < INITIALIZE()

3: direction <— RIGHT

4: halfsweepRange < {1,... L}

5: FE,q < 1000

6: while AE > eg and AS > €5 do

6 for p € halfsweepRange do

8: Ecyrr,A(p) < LOCALUPDATE(p,L,R,H) > Eq. 3.5
9: |W[{A}]) < ENRICH(p,direction,ar) > Sec. 3.1.1
10: |W[{A}]) < SWEEPSTEP(p,direction) > Sec. 2.7.1
11: L,R + UPDATEENVIRONMENT(p,direction) > Eq. 2.65
12: direction < flip

13: if direction = LEFT then

14: halfsweepRange < {L — 1,...1}

15: else if direction = RIGHT then

16: halfsweepRange < {2,...L}

17: AFE |Ecurr — Eold|

18: AS < STATEERROR(|V[{A}]) .H) > Sec. 3.1.2
19: Eoiqg < Ecurr

20: return E.,,., [U[{A}])

on the direction (Sec. 2.7.1)

3. UPDATEENVIRONMENT(p,direction): Update of the left or right boundary tensor depend-
ing on the direction (2.65). The other boundary can be reused since one part of the
network does not change through SWEEPSTEP(p,direction)

A suitable initial configuration is an MPS with random A-tensors in the mized-gauge repre-
sentation, so that the pivot site is at one of the edges of the one-dimensional lattice (either
p=1or p=L). Additionally, the boundary tensors L(l) and R(l) should be precalculated for
each site so that for each boundary the pivot site matches the given [. A corresponding routine
INITIALIZE() should be available.

The algorithm Alg. 1 is complete in the sense that it can be used to solve simple systems.
Two subtleties are however necessary for a faster convergence and an accurate error estimation.
Since each optimization step involves only a single A-tensor, the algorithm is likely to get stuck
in a local minimum. This problem can be circumvented with an ENRICH()-function (line 9 in
Alg. 1) and will be discussed in the next subsection while the error estimation (essentially the
STATEERROR()-function in line 18 in Alg. 1) is discussed afterwards.

3.1.1 Fluctuations and subspace expansion

The 1sDMRG algorithm is numerically quite efficient, since the Krylov based eigensolver can
operate in an effective Hilbert space of moderate size. This stems from the fact that only
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the parameters of a single A-tensor enter the optimization procedure. On the other hand,
the variational space for a single optimization is rather small, so that the algorithm might
be stuck in a local minimum. Additionally, the algorithm works at fixed bond dimensions
{xt}i=1,...1 and is not able to enlarge them dynamically. Both problems are of particular
importance if symmetries are encoded in the algorithm, since the correct bond dimensions
in the different symmetry blocks are not known in advance. In the past, several expansion
schemes were developed which address both problems by mixing non-local information into the
optimization problem. The non-local information is often called fluctuations and controlled
in magnitude by an additional parameter ap. At the beginning, density-matrix fluctuations
were suggested already for the traditional DMRG method [65]. In the MPS form, the whole
algorithm can be built up without constructing the reduced density-matrix at any time so that
density-matrix fluctuations are not ideal because the reduced density-matrix would need to be
computed. This can be an expensive calculation for challenging problems requiring a very high
bond dimension x. Therefore a better way is to expand the A-tensors in the MPS directly and
introduce subspace expansion schemes [66]. A quite efficient expansion scheme was recently
suggested in Ref. [67].

Let us start by defining what a subspace expansion looks like. Consider a tensor P with
dimensions x;_1 X d x X, then the expanded form of the x;_1 x d x x; A(%)-tensor is:

A% (i) = A" (i) = A7(i) @co P7 (3.7)

The sign @¢o1 is meant to indicate that the direct sum is only for the column spaces, since
the row spaces of the matrices are equal. The expanded tensor fl(z) therefore has dimensions
Xi—1 X d x (xi + X)- To not destroy the matrix multiplications in the state [Z[{A}]), one needs
to resize the row-space of A(i + 1) accordingly. To achieve this, one adds a properly resized
zero-matrix:

A%(i+1) 5 A7(i+1) = A7(i + 1) Brow 07 (3.8)

This expansion would destroy any normalization of the A-tensor, but this can be restored
by the sweeping procedure. The central question then is how to choose the P-tensor. A
randomly chosen tensor would expand the A-tensors but would also kick the algorithm away
from the optimum. Ideally, the P-tensor expands the A-tensor and simultaneously pushes the
state into the direction of the minimum. In Ref. [66], it was proven that the current residual
(H — E) |¥[{A}]) fulfills these requirements. However, this is a numerically quite expensive
quantity, since it involves the global substraction of two MPS. The proposition in Ref. [67] is:

o _ oo’ a;—1 o’ )
PXifl(aiXi) = aF Z Z Wai—l“iLXi_1x§_1AX§,1xl (3.9)

’ !
ai—1,X5-1 9

This expansion works suprisingly well in a lot of applications, but it can not be proven rigorously
that it provides suitable fluctuations. Certain is that fluctuations will not destroy an exactly
converged state, since in this case all fluctuations will immediately disappear. The description
above describes the expansion during the optimization from left to right (direction = RIGHT
in Alg. 1). The procedure for the other direction follows readily. The control parameter ap
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can be chosen relatively large (o ~ 10 — 100) as long as the exact groundstate can be reached
with the available resources. Otherwise, the magnitude for the fluctuations needs to be scaled
down to zero during the algorithm to reach a converged state for a given bond dimension y. A
scheme for the adjustment of a is given in Ref. [67].

3.1.2 Error estimations

For any algorithm which converges to the final result after multiple iteration steps, a reliable
error estimation is necessary to evaluate the current accuracy of the result and to define
adequate stopping criteria. An obvious criterion for Alg. 1 is the absolute difference between
the variational energies at subsequent iteration steps. As discussed in the previous section
(Sec. 3.1.1), the whole algorithm is not guaranteed to reach the global minimum. Furthermore,
this stopping criterion is not able to distinguish between a local or a global minimum. For
such an estimation, one needs a criterion for the whole state and not only for the energy. The
simplest error estimation for the state is the overlap between the MPSs from adjacent iteration
steps. This, however, would also vanish at a local minimum. A more involved measure also
checks the quality of the state to be an eigenstate of the Hamiltonian by computing the energy
variance AE = (H?) — (H)?. This measure provides a reliable stopping criterion since it will
not be small if the algorithm is stuck somewhere in the variational landscape. However, it
needs the computation of (H?) which is quite expensive; in particular when the auxiliary bond
dimension yy of the MPO is large, e.g. for two-dimensional systems or long-range interactions.
An approximation for the variance was recently suggested by C. HUBIG et al. [73] which is
computationally feasible also in these cases. Although this method is not as reliable as the full
variance, it is substantially better than the overlap and can be used for extrapolations [73]. It
is also the preferred error estimation used for the computations in this thesis so I will present
the essential ideas of the approximation.

The energy variance AE can be obtained as the squared norm of the residual |®) = (H — E) |¥):

AE =(V|H?|W) — (0 |H|¥)> =(V|(H - E)(H - E)|¥) = (| D) (3.10)

The idea is now to project this expression on the subspace of two-site variations of |¥) if
|@) = |W[{A}]) is the groundstate candidate from a 1SDMRG computation.

ABss = (| (H — E)(Po + Py + P2)(H — E) | ) (3.11)

The subspace of zero-site variations described by the projector Py consists of multiples of
|@[{A}]), the subspace of single-site variations described by the projector P; lies in the tangent
space of the MPS manifold at the point |[?[{A}]) and the subspace of two-site variations
described by the projector P, lies formally in the double tangent space of the MPS manifold
at the point |[Z[{A}]). The projection of the full variance onto Py vanishes per definition of
E. The projection onto P vanishes at the variational optimum and can be added to the error
measure to signal an insufficient number of iterations as well. The projection onto Ps then is a
measure for the more global deviation from an eigenstate. The tangent elements forming P; can
be constructed similarly to the derivation of tangent elements for uMPS in the thermodynamic
limit. Again, the nullspace N of the A-tensor is a significant quantity. A state in Py can then
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be written as:

BX(AY) = STAT () AT (- DNGDXGAR (1) AFE (D) o) (3.12)

o

Here the tangent space is already properly parametrized by a (d — 1)x; X x; matrix X;. The
projector Py can then be built from these states:

L
P = Z |Pi[ X, {A}]) (2:[ X, {A}]| (3.13)

Similarly, the double tangent-space states span the projector Po:

L-1

Po =Y SV {A}]) (S oA, (3.14)
i=1

where each state is parametrized by a (d — 1)x; x (d — 1)y;-matrix Y; and defined as:

1SV {A}) ZA‘” AT = 1)NT ()Y NG (1) AT 2 (i+2) - - - A% (L) o) (3.15)

With these expressions, one can work out Eq. (3.11) and obtains explicit formulas for evaluating
the approximated variance. These are presented in Ref. [73]. For a Hamiltonian which contains
only nearest-neighbor terms, the approximation becomes exact. However, in this case, the full
variance is usually also available. In the case of longer-ranged interactions, the approximation
is not identical to the exact variance but still provides a non-local error measure which does
not vanish at a local minimum.

3.2 VUMPS

Again, the starting point is the Ritz functional, in this case for uMPSs parametrized by a single
A-tensor:

(w[AT] | H|w[A])

BALA) = =g raTTea)

(3.16)

However, the same idea as for the finite-system DMRG — dividing the global problem into
a bunch of local problems — does not apply because there would be an infinite number of
local problems and also the translational invariance would be destroyed immediately. Here,
one rather has to tackle Eq. (3.16) directly. The derivative with respect to A' leads to the
optimization condition:

<8‘jﬂw[m] ’ (H — E) ' W[A]> =0 (3.17)

In Sec. 2.4, the states < 3af [AT] ’ were identified with the tangent space of the MPS manifold
TM (w[at]| SO that there is a natural geometric interpretation of Eq. (3.17): The residual

(H — E) |¥[A]) — which may do not vanish in the variational space exactly — should be
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orthogonal to the tangent space at the point |[¥[A]). Hence, one can use the tangent space
projector Pjy(4)y (2.41 or 2.42) to rewrite Eq. (3.17):

Pty (H — E) [P[A]) = 0 (3.18)

Note that the projector P\g(4)) was constructed to project on the part of the tangent space
orthogonal to |?[A]). This is useful here because Eq. (3.18) is trivial for the MPS direction
itself. The non-trivial part of Eq. (3.18) is hence the projection of the state |¢) = H |¥). The
action of the projector P|y4}) gives a tangent vector described by a tensor B which results in:

B? = A — A7P' (3.19)

Here A, and P’ are the actions of the two parts of Pw(a)) onto Ap and P, the pivot tensor
and the center matrix of |[Z[A]) in the mized gauge representation, respectively:

RN

(3.20)

mECETEOS B B
= —W w W }W} }W} (3'21)
00— — -, -

With appropriately defined effective Hamiltonians, one can write the following equations:

p=H{ Ap (3.22)
P' = HIP (3.23)

The form of the effective Hamiltonians follows directly from the expressions in Eq. (3.20) and
(3.21). Note that they involve infinite contractions. The details are discussed in Sec. 3.2.1.
The variational optimum is reached if B = 0 due to Eq. (3.18). This leads to the following
condition:

17 = A7P' (3.24)
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By a gauge transformation for tangent vectors (X = P’, Eq. (2.34)), an equivalent condition
reads as:

P =PA} (3.25)

As an additional condition, one has the consistency equation (2.24) for the mized gauge
representation of the uMPS:

¢ = PA% = A7P (3.26)

If both are fulfilled, P and P’ have to be proportional so that Eq. (3.23) turns into an eigenvalue
equation. This then transfers directly to Ap so that Eq. (3.22) is the second eigenvalue equation
which enters the optimization procedure:

»=Hi{,Ap=Ea, Ap (3.27)
P' = H{'P = EpP (3.28)

Both E4, and Ep are proportional to the energy E, so that Eq. (3.27) and Eq. (3.28) are
eigenvalue equations for the groundstate of the corresponding effective Hamiltonian and can be
solved by Krylov-based methods. Due to the proportionality, £, and Ep contain a divergent
contribution, because the energy FE is an extensive quantity. But by substracting the current
energy expectation value, these divergent parts can be avoided. Note that the tensor B is
finite even without subtracting the energy expectation value because it involves the difference
between E4, and Ep, which is finite in the thermodynamic limit. To summarize, Eq. (3.24),
(3.25) and (3.26) are simultaneous conditions for an optimal uMPS — optimal in the sense that
the uMPS minimizes the Ritz functional on the manifold of uMPS.

Algorithm 2 VUMPS algorithm

1: procedure GROUNDSTATE(Hamiltonian H ,energyPrecision eg, variationalPrecision €y )

2 |W[AL,AR,Ap,P]) < INITIALIZE()

3 FE, 4 <+ 1000

4 while AE > eg and € > ¢y do

5: Hya,,Hp < CALCHEFF(AL,AR) > see Sec. 3.2.1
6 Ey4,,Ap < KRYLOVSOLVER(H 4,,)

7 Ep, P’ + KRYLOVSOLVER(Hp)

8 7,A’z < POLARDECOMPOSE(A},,P’) > see Sec. 3.2.2
9: ¢ < CALCERROR() > evaluate norm of tensor B (3.19)
10: Ap Agp,Ap,P < A s /R7 ;;,P/

11: Eyrr + EXTRACTENERGY() > see Sec. 3.2.1
12: AFE + ‘Ecurr — Eold’

13: Eold < Ecurr

14: return E.y, |Y[AL,AR,Ap,P])

To reach this optimum, an iterative algorithm — the VUMPS algorithm — is suggested in Ref.
[47] which is presented in Alg. 2. The functions CALCHEFF() and POLARDECOMPOSE() are
elaborated on some more detail in Sec. 3.2.1 and Sec. 3.2.2.
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The measure of convergence (line 9 in Alg. 2) determines the variational quality of the state.
If it is zero, the state is definitely the best variational state at bond dimension y. However,
this measure gives no global information as compared to the energy variance, for example. It
is possible to compute the same approximation for the variance as in Sec. 3.1.2 (the two-site
variance) also for the uMPS in the thermodynamic limit to get a global error measure. Note
however, that the VUMPS algorithm works with global updates for the state, so that it is less
likely to get stuck in a local minimum. But even if this were the case, the variational error
measure would not be small. Nevertheless, the two-site variance also signals insufficient bond
dimensions in the uMPS which can not be recognized with the other error measures.

The VUMPS algorithm is a single-site algorithm and therefore works at a fixed bond dimension
x. It is likely that the global state updates prevent the algorithm from remaining in a meta
stable state without any fluctuations which are required for the finite size algorithm (Alg. 1).
However, if the Schmidt spectrum contains degeneracies, it is important to keep all states in
a multiplet. Otherwise, the convergence speed is highly suppressed. In Ref. [47], it was said
that the convergence speed is only negatively influenced. In my personal experience, however,
I found that in some cases, convergence is never reached at least for complicated problems.
Fluctuations can then help to get closed multiplets in the Schmidt spectrum of the state. The
fluctuations become absolutely necessary if symmetries are exploited, because otherwise it is
impossible to find the relevant symmetry blocks for the uMPS. An efficient expansion scheme
for the uMPS was already developed in [47] (see Appendix B therein). It works similarly to
the scheme in 3.1.1, but the expansion tensor P is different.

3.2.1 Effective Hamiltonians

The effective Hamiltonians in Eq. (3.20) and (3.21) are determined by the tangent space
projector Piy(a, Ax 4p,p)) from Eq. (2.42). Their concrete evaluation, however, is not trivial
since it involves infinite contractions. As the basic building block for these contractions, one has
the MPO transfer matrix TV%,’R, i.e. with the Hamiltonian (represented by an MPO) included:

(T s =S WAl © AT (3.29)

o,0’

To perform the relevant contractions, one has to find the left (L) and right (R) fixed point of
TEE, However, it will turn out that 7% has no fixed points and L and R are only quasi-fixed
points. A general analysis of fixed points of triangular MPOs is done in Ref. [63]. Let us
concentrate on the right fixed point, an analogous procedure will also work for the other one.
The fixed point equation can be written as:

Ry =) (TiH)aRy = (T} )aaRa + Y _(Ti)ae Ry = (Tif )aaRa + Aa (3.30)
b b<a
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or in the graphical language as:

W R| = — R (3.31)

414’;% |

Note here that firstly, the transfer matrix (Tﬁ)ab is a rank-4 object and hence a super-operator
acting on the space of x X y-matrices. Secondly, the decomposition into the term b = a and
b # a can be restricted to the case b < a since the W% -matrices are of lower triangular form.
And thirdly, I have defined a partial contraction A for the terms with b < a. The idea then is
that A, contains only values from the transfer matrix for b < a so that an iterative solution of
Eq. (3.30) is possible, starting with a = 1. For a = 1, the equation is trivial, since Wff’l = 0po’
and therefore (T ) a0 = >, A}g ® A%, so that the solution is Ry = 1. For a > 1, the solution
is simple if (T%})aa =0 (W22 = 0), because then one can just set R, = A,. Note that for
short-ranged Hamiltonians, one always has W77 "=0for 1 < a < xw, while the edge elements
(a = 1 or a = xw) are the identity operators in the physical space. For quasi-long-range
interactions, other diagonal elements may also be proportional to the identity, but with a
prefactor with magnitude strictly smaller than one. Ignoring this case, one can set all entries
of the fixed point by the simple identification with A, beside of the last element a = xy. In
this case Eq. (3.30) reads:

RXW = TRRXW + AXW (3.32)

Here, the MPO transfer matrix TVI‘%, is already substituted by the MPS transfer matrix T,
because the operator acts as the identity. Eq. (3.32) can be rewritten:

(1= TRy, = Ay (3.33)
with 1 being an identity super-operator. To solve this equation for R, , one needs the inverse
of (1 — T#). However, this inverse is not defined because the transfer matrix 7% has an
eigenvalue A = 1. The inverse of (1 — T®) can only be taken for the subspace orthogonal
to the dominant eigenvector (the eigenvector to A = 1), while the operator projected on the
eigenspace of the dominant eigenvector needs to be discarded, since it has no inverse. Note
that per definition of 7%, the right eigenvector belonging to A = 1 is the y x x identity matrix.
The projector onto the eigenspace of A = 1 is readily computed as P = 1,x, ® I, where [ is
the left fixed point of 7% (1 is the right fixed point). With this in hand, one can compute the
projection (1 — TR) onto the complementary subspace Q =1 — P:

(1-QTRQ) =1 -TE4+P=1-TF + 1, ®1, (3.34)
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which can be inverted to give an equation for the quasi fixed point:
-1
R, = (]l T+ Lixy ® l) Ay — Lyxy tr(lAyy, ) (3.35)

Here, also the right hand side of Eq. (3.33) is projected with Q. The inverse (]l — TR+ 1y ® l) !
is often called the pseudo-inverse of (1 — T%). It does not need to be computed directly
but Eq. (3.35) can be solved as a system of linear equations of the form Ax = y, where
y = Ay, — Lyxytr(ldy,, ) and A is the regularized operator from Eq. (3.34). For this task,
standard routines can be used, e.g. the GEMRES algorithm.

As mentioned above, this solution discards the part in the eigenspace of the eigenvalue A = 1
and it is of particular importance to figure out what exactly is discarded. The discarded part of
THis PTE =P = Iyxy @1 so that the fixed point equation (3.30) only holds up to an additive
constant for a = yw:

Z(T}év)waRb =TrRy,, + AXW =Ry, + Lyxy tr(lAXW) # Ry, (3.36)
b

This constant would only shift the diagonal elements of R, . Hence when using the quasi-fixed
point R, one discards the term trlA,, . This term turns out to be identical to the energy
density e [63], so that discarding it corresponds only to a shift in the energy which does not
change the eigenstates of the Hamiltonian. On the contrary, the discard of the energy density
for each application of the MPO transfer matrix ensures that the eigenvalue equations (3.27)
and (3.28) have finite eigenvalues. Hence it allows a numerical computation of these equations.

After the computation of the quasi-fixed points L and R, the effective Hamiltonians H 4, and
Hp take a simple form. Note that the effective Hamiltonians do not need to be calculated
explicitly, but only the action on a corresponding state. For H,, this action corresponds
exactly to Eq. (3.5), which can also be translated into the graphical notation:

Al = L %74 R (3.37)
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The action of Hp is similar and reads as:

i e
. - | R (3.38)

) L

or in the formula notation:

XwW
HpP =P =) L,PR, (3.39)

With these considerations at hand, it is possible to obtain the action of the effective Hamiltonians
when the environments L and R are precalculated with a function CALCHEFF() (line 5 in Alg.
2). Notice that also the energy expectation value can be extracted (line 11 in Alg. 2) from
the above computations, namely as e = tr A, or from the part for the left fixed point as
e =trAir.

3.2.2 Obtaining Ay, Agr from Ap and P

To complete the necessary steps for the VUMPS algorithm (Alg. 2), one needs to update the
whole state after the eigensolver update of the current Ap and P. Again it is mandatory to
perform a global update, since local updates would destroy the translational symmetry. To
perform this, one can use the consistency equations for the uMPS (3.26) to obtain the optimal
Ap and Ap for given Ap and P:

(3.40)

min
L

> A% - PA7

ZA” aP H (3.41)

This minimization problem can be solved exactly without using an iterative procedure. The
solution requires an SVD (Chap. A) of the properly reshaped tensors X and Y defined as
7 =A%P" and Y? = PTA%:

Hlln

Xio Z Ui S Vi) (3.42)
Y Y
Yiio) = Z Uy o vie) (3.43)
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The isometries (UX) and V(X)) of the decomposition from X constitute the tensor Az, while
the isometries of Y constitute the tensor Ag:

o _ (X) 110X

Tin = 2 Ulion Vi (3.44)
k

o _ (V)40

R(ij) — Z Uik Vk(j,a) (3.45)
k

In Ref. [47], it is mentioned that this computation of Ay and Ap is numerically unstable,
because of small singular values in the SVD, at least close to the variational optimum. Hence,
they also suggested a different method which sets A; and Ag only approximately, but with a
numerically stable algorithm (see Sec. II C in Ref. [47]).



CHAPTER 4

Symmetric matrix product states

So far, matrix product states have turned out to be a flexible variational ansatz for the ground
state of one-dimensional Hamiltonians both in finite and infinite systems. In this chapter, I
will present how to improve the efficiency of the presented algorithms (Chap. 3 or Sec. 2.7)
significantly. The incorporation of Abelian and non-Abelian symmetries leads to a substantial
gain in both accuracy and computational speed. While Abelian symmetries was included to
the algorithms from the beginning on [13], the use of non-Abelian symmetries was introduced
about 10 years later by pioneering work from [74] for the traditional DMRG. The construction
of symmetric MPS followed closely and now there exists several different construction schemes
[75-78].

This chapter is organized as follows: in Sec. 4.1, I will introduce several concepts of group
theory on a fundamental level. A special focus is on the Lie group SU(2) for which I derive
the representation theory and Clebsch-Gordan expansion in some detail. In Sec. 4.2, T will
discuss the general role of symmetries for physical systems and discuss afterwards in Sec. 4.3,
4.4 and 4.5 the construction of symmetric MPSs, symmetric MPOs and symmetric algorithms,
respectively.

4.1 Group theory

Group theory is one of the major topics in mathematics with impacts for several other fields.
The relevant part for this thesis is the representation theory of groups. I will start, by giving
the basic definitions (Subsec. 4.1.1) on a fundamental level. Afterwards, I will present the
representation theory for general compact Lie groups in Subsec. 4.1.2 and give a particular
example for the compact Lie group SU(2) (4.1.3). Furthermore, I will develop the Clebsch-
Gordan expansion for this group and also introduce the recoupling coefficients for SU(2) in
Subsec. 4.1.4. Finally, I will introduce tensor operators and their couplings in Subsec. 4.1.5.

4.1.1 Basic definitions

In this section, I will review the properties and definitions of groups which are necessary for
the following chapters. It is not a complete introduction to group theory and the content is
contained in various text books. See for example Ref. [79] or Ref. [80].

Definition 4.1. A group (G,o0) is a set G of elements g together with a group operation
o: G x G — G with the following properties:
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1. For all g,h € G the product g o h is also in G (closure)
2. For all g,h,f € G it holds (go h) o f = go (ho f) (associativity)

3. There exists an element e € G so that for all g € G it holds eo g = g o e = g (identity
element)

1 1 -1

4. For all g € G there exists an element g~ so that go g™ = g~ o g = e (inverse element)

A group (G,0) is called Abelian if the group operation is also commutative.

This definition describes a very general structure and groups appear in multiple mathematical
subtopics as well as in different parts of physics. A large subclass of groups are groups (G,o)
where the set G is a smooth set. The corresponding mathematical structure is a Lie group:

Definition 4.2. A real Lie group is a group (G,0) where the set G is additionally a finite-
dimensional real smooth manifold and the group operation a smooth map from G x G — G. A
Lie group is called simple if it contains no normal subgroups and it is called connected (compact)
if the manifold G is connected (compact).

A real matrix Lie group is a closed subgroup of GL(n,C), the general linear group of matrices
acting on C".

From this definition it follows that the group elements g depend smoothly on continuous
parameters ;. To see this, on can choose a chart ¢ for G which is a smooth bijection from G
into the Euclidean space RP. Its inverse ¢! can be used to write:

g=9(1,....9p), (4.1)

with D being the dimension of the manifold, which is per definition also the dimension of
the Lie group. The concrete dependence of g on ¥; depends of course on the chosen chart
around the element g of the manifold. The most important aspect of Lie groups is that many
of their properties follow from infinitesimal group operations around the identity element. The
mathematical description of this aspect is the concept of Lie algebras:

Definition 4.3. For a Lie group G the Lie algebra g is the tangent space at the identity
element e of G:

g=TG, (4.2)

The Lie bracket is connected to the commutator of the corresponding vector fields but its
precise definition is quite technical for general Lie groups. The Lie algebra is simple if the Lie
group G is simple. The Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

The Lie algebra forms a vector space (as any algebra) and therefore it is possible to choose
basis elements. Consider some Lie algebra g with dimension d. A basis is then a collection of d
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linearly independent elements {X;}i—1 . 4. The Lie algebra is then entirely determined by the
commutation relations of these basis elements:

d

(X0, X;] =) finX (4.3)
k=1

Here, the commutator of two basis elements is expanded again in the basis and the expansion
coefficients f;;i are called the structure constants of the Lie algebra. The inserted imaginary
unit ¢ corresponds to the physicist’s notation. Note that by definition, the structure constants
are basis-dependent. Furthermore it is also possible to introduce a non-degenerate bilinear
form (-,-) on g! which defines an inner product on g. With this inner product one can define
the Casimir element (2 of a semisimple Lie algebra g as:

d

0=> (X;X;) (4.4)

=1

for any basis {X;};=1. 4. The Casimir element is basis-independent due to the properties of
the inner product, and lies in the center of g. Hence it commutes with all elements X € g.
It is important that g is semisimple because otherwise the inner product is degenerate (and
therefore not really an inner product).

The exponential map of the manifold becomes a map from the Lie algebra g (the tangent
space) into the Lie group G (the manifold) and therefore allows to transfer properties of the
Lie algebra to the group:

exp: g—G
X — exp(X)

In particular, the exponential map allows to introduce the Riemannian normal coordinates
for G which parametrize elements g € G close to the identity element e. This chart can be
constructed as follows: Choose a basis {X;}i=1 . 4 in g and define the map & as:

¢ UcCR!—G@G

d
(z4, ... 2% — exp <z Z'IZXZ> , (4.5)

=1

where the imaginary unit ¢ is inserted for consistency with the physicist’s notation. The
basis elements X; € g are called generators because of their role in the parametrization in Eq.
(4.5). It is remarkable that the Lie algebra determines many of the group properties, and it
is an important result of the mathematics of the 20th century. This is summarized in three
theorems, which constitute the Lie group—Lie algebra correspondence. For this thesis, only the
homomorphism theorem is important. It states that any Lie algebra homomorphism between
two Lie algebras g and h induces a unique Lie group homomorphism between the corresponding

1 This form may be defined via the Killing form on G.
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Lie groups GG and H if G is simply connected. A useful corollary for physics is that Lie algebra
representations induce unique group representations. The importance of this theorem will
become clear in the next chapter.

Definition 4.4. A linear representation of a group G is a linear map D : G — GL(V') where
V is a vector space and GL(V') are the invertible linear maps in V' or equivalently the general
linear group from matrices in V', with the following property:

o For all g,h € G it holds D(go h) = D(g) o D(h)

A linear representation is therefore a group homomorphism from G into the general linear
group GL(V') acting on V.

The vector space V' is the carrier space of the representation and its dimension is the dimension
of the representation. Note, there is no requirement for bijectivity, so that there is always
the so-called trivial representation where every group element is mapped to the unit element
of the vector space. If two representations D and D’ are connected via a simple vector
space isomorphism, the two representations are equivalent. An important classification of
representations is the concept of irreducibility:

Definition 4.5. A linear representation D : G — GL(V) of a group G is called reducible if
there exists a subset U of V' and U # {0},V so that D(¢)U C U for all g € G. Otherwise D is
called drreducible.

A representation D is called fully reducible if it can be written as the direct sum of irreducible
representations (irreps). In this case the representation is called semisimple. Assuming D is
finite, the expansion into irreps is:

D =Hn, D7, (4.6)
1

where n; is the multiplicity from the irrep DY) and the direct sum contains finitely many terms,
since D was assumed to be finite. The decomposition can be achieved by a basis transformation
in the carrier space of V. For finite and unitary representations, this can always be done, since
the basis transformation corresponds to a (block)-diagonalization. Thus all finite and unitary
representations are fully reducible.

In an analogue manner, one can also define Lie algebra representations:

Definition 4.6. A linear representation of a Lie algebra g is a map m: g — gl(V') where V is
a vector space and gl(V) is the Lie algebra of endomorphisms in V' with the following property:

o Forall X\Y € g it holds n([X,Y]) = [n(X),n(Y)] = 7n(X)7n(Y) — n(Y)nm(X)

A linear representation is therefore a Lie algebra homomorphism from g into gl(V'). Two linear
representations are equivalent if they are connected via a vector space isomorphism.

The notion of irreducibility can be defined as in Def. 4.5. For Lie algebras, there exists a
special representation of outstanding importance which I will mention here explicitly.
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Definition 4.7. For a Lie algebra g the adjoint representation ad is a representation from g
in itself (viewed as a vector space) defined by:

ad: g— End(g)
X +— ady

The action of adx on another element Y € g is:

adx (V) = [X,Y]
For irreps, one can formulate the fundamental lemma by Schur (essentially the same for groups
and Lie algebras):

Lemma 4.1 (Schur’s lemma). Consider two irreps D1 and Do of a group G or a Lie algebra
g with carrier spaces V1 and Va respectively. Let ¢ be a vector space isomorphism from Vi into
Vy and the following diagram commute for all g € G:

Vi —2 Vs,

lm(g) lDz(g)

V1 L> Vz

Then either ¢ = 0 or Dy and D5 are equivalent. The vector space isomorphisms ¢ fulfilling
this requirement are called an intertwiner.

Schur’s lemma has several corollaries. The most important one for physics says that:

Corollary 4.1.1. If D is an irrep of a group G or a Lie algebra g with carrier space V' and ¢
a linear intertwiner map on 'V, i.e.:

©D(g9) = D(9)¢ < [p,D(9)] =0, Vged (4.7)

then o = A1 is a scalar multiple of the identity matriz with X € C.

A further corollary says that irreps of Abelian groups are one-dimensional and another corollary
of Schur’s lemma is the orthogonality relation for irreps of finite groups:

G
> DD (g)mn D) (g)p = 5IJ5mk6nlu (4.8)

d
geG I

A generalization of this relation for compact (Lie) groups is also possible:

1

/ DD(g)min D (9)radg = 6150101~ (4.9)
G dr

In both equations, DY) (9)mn is a matrix element of the corresponding representation and the
Kronecker d7; is understood up to similarity transformations. Irreps of a group are determined
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up to similarity transformations and it would be desirable to have basis independent quantities.
This is achievable by defining the character of a representation:

Definition 4.8. The character x of a representation D with carrier space V' (K-vector space)
is the following function:

x: G—K
g — tr(D(g))

For a Lie algebra representation 7, the character is defined as:

x: g—K
X — tr (e”(X)>

From the definition, it follows directly that the characters are equal for equivalent representations,
since the trace operation is cyclically invariant. Notice, if a representation is semisimple (fully
reducible) the converse is also true: if the characters are the same, the representations are
equivalent. When inserting the characters x!)(g) and x(/)(g) of the irreps DU)(g) and D) (g)
into Eq. 4.8, one naturally obtains the orthogonality relations for the characters of irreps:

> xP(g)x"(g) = 614, (4.10)
geG

or for compact (Lie) groups:

/G KD (9)x D (g)dg = 617 (4.11)

For two group representations D1 and Dy one can define the tensor product representation by
taking the tensor product of D;(g) and Ds(g) (the tensor product of linear maps on V; and
Va):

[D1 ® Do) (9) = D1(g9) ® Da2(g),  VgeG (4.12)

The resulting representation D ® Dy has the carrier space Vi ® V5. For Lie algebra representa-
tions, there is a subtle difference in the definition of the tensor product representation. If m;
and 7o are Lie algebra representations with carrier spaces Vi and Vs, then the tensor product
representation m ® 7o is defined as:

[7‘(‘1@7‘(‘2] (X):7T1(X)®]lv2+]lvl®ﬂ'2(X) VX eg (4.13)

This definition can be understood when considering the corresponding Lie group representations
and the property of the exponential map, that a product of exponentials is the exponential
of the sum of the arguments. Even if the tensor product is built from irreps Dy (1) and Do
(72), the tensor product representation D ® Dy (71 ® m2) is in general reducible, but may be
decomposed into a direct sum of irreps as in Eq. 4.6. The decomposition of the tensor product
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representation (if it exists) is called Clebsch-Gordan expansion (completely analogous for Lie
algebras):

Definition 4.9. The Clebsch-Gordan ezpansion (CGe) for a tensor product of two irreps D)
and DJ) is the transformation from the canonical tensor product basis of V1 ® V5 into the
basis where the tensor product representation takes the following form:

DY) g D) — @T”D(I)’ (4.14)
1

where DU is an irrep and n; is the multiplicity of the irrep D). If the tensor product
representation is not fully reducible, the CGe is not defined.

To get an explicit form of the CGe one has to choose a basis in each space. Let {|J.j)},_; 4,
be a basis of V7 and {IKk)} =1, 4, be a basis of V& To label the basis in the tensor product
space in which the representation takes the form of Eq. 4.14, one can choose |I,.J,K,i,as). Here
I runs over all irreps which appear after the full reduction, ¢ runs over the dimension of the
representation I and aj over the multiple copies of the representation /. The indices J and K
are fixed and included for convenience. Such a basis is called properly sorted basis with respect
to the symmetry group G. With these conventions, the defining equation for the CGe becomes:

LK ar) = S 0 105, K k) (4.15)
j.k
Here I’ jfj}fijl(a’ ) is a Clebsch-Gordan coefficient (CGc). Its interpretation is that it couples

basis states from the irreps DY) and D) to basis states from the irrep DY) . The multiplicity
index o is necessary to distinguish between the different copies of D). Since the CGc define a
unitary transformation, they obey orthonormality conditions. These are the known conditions
for a unitary matrix, if one combines the indices j and k to a combined column index C = (j,k)
and I, ¢ and ag to a combined row index R = ([,i,cr1) to obtain a dj - dy X dj - djy dimensional
unitary matrix with elements Uog. Notice that the CGce are by far not unique. In the case
without multiplicity, the only freedom is a phase factor a € U(1) but if the multiplicity is
greater than one, the CGc are only determined up to unitary transformations U € U(n!) in
the multiplicity spaces.

At the end of this section, I want to introduce tensor operators. Tensor operators have a
significant role in physics, e.g. by the derivation of selection rules in atomic physics. In the
definition of Schur’s lemma (4.1), the intertwiner map ¢ is actually an example of a tensor
operator of rank 0. Hence, a map which commutes with the group action is a scalar map or a
scalar operator. A basis independent general definition for a tensor operator can be given as
follows (see e.g. chapter 6 in Ref. [80]).

Definition 4.10. Consider a Hilbert space H with a representation D of a group G and a

finite-dimensional representation Dy with carrier space Vg of G. Then the map O

O: HxVy—-XH
W) @2 — O(|F) ® )
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is called tensor operator if it is invariant under the action of G represented as D = D @ Dy
and D:

O (D[|¥) ® z]) = O ((D |¥)) ® (Doz)) = DO(|¥) ® z) (4.16)

If Dy is an irrep, O is called irreducible tensor operator. A tensor operator is also sometimes
called representation operator in literature.

By choosing a basis in Vj, one can introduce the components of the tensor operator by:

Oi : H—-H
W) = O(|¥) ® ei)

Eq. (4.16) can than be written as:

D'O;D = (Do) 0; (4.17)
j

If Dy is chosen as the trivial (one-dimensional) representation, Eq. (4.17) is equivalent to a
vanishing commutator of O and D(g) for all g € GG so that the map ¢ from the definition of
Schur’s lemma indeed satisfies the above definition. Note that (Dy),” are the matrix elements
of Dy in the chosen basis. If D and Dg are irreducible, one gets similar constraints as for the
map ¢ in Schur’s lemma but the situation is slightly more complicated since even if D and Dg
are irreducible, in general their tensor product D ® Dy is not. For this reason tensor operators
are only useful if one is able to decompose the tensor product representation. If one assumes
that it is possible to decompose the tensor product into irreps by the CGe, one can formulate
the Wigner-Eckart theorem which is basically a corollary of Schur’s lemma:

Theorem 4.2 (Wigner-Eckart Theorem). Let H be a Hilbert space, D) DE) gnd DL pe
irreps of a group G. Furthermore, let O be an irreducible tensor operator from D) x D)

onto DY) and DY) x D) = @, nyDY) be the known CGe (Def. 4.9) of the tensor product

representation with CGc F‘.]’K%I(af)

ki . Then one makes the following conclusions for O:

1. O =0 if the irrep D) is not contained in the CGe (D) # DU for all I in the CGe)

2. If the irrep D) is contained in the decomposition, O is precisely given by a scalar
multiple of the CGc F;}fi?j(aj) with DU = D),
The first proposition follows directly from Schur’s lemma because in this case the irreps of the
domain and of the codomain are not equivalent. The second proposition is also a consequence
of Schur’s lemma. In this case the lemma predicts that the map is a scalar multiple of the
identity. Notice, that this is only valid after the unitary transformation via the CGc so that
the map O needs to be proportional to the CGec.

4.1.2 Representation theory for compact and connected Lie groups

The representation theory for a group G is the classification of all inequivalent irreps of the
group G. The classification is the basis for the CGe and the CGc. At the beginning, I mention



4.1 Group theory 51

some general facts about the representation theory of arbitrary Lie groups, where some are
also valid for arbitrary finite groups.

A fundamental theorem of the representation theory for groups is the Peter-Weyl theorem,
which holds for compact groups'. The theorem has several parts and requires a complex
notation. However, the important proposition for the following can be summarized as:

Theorem 4.3 (Peter-Weyl Theorem). The irreps of G are finite-dimensional and discrete in
the sense that they are countable and can therefore be labeled by an integer value (or if more
convenient, by a set of integer values).

A second basis is the Lie algebra — Lie group correspondence mentioned in Sec. 4.1.1. It states
that there is a one-to-one correspondence between Lie algebra and Lie group representations.
Thus, one can shift the task of finding irreps from the Lie group to the Lie algebra. This
simplifies the problem in the sense that one is now searching for representations of a linear
space (the Lie algebra) in contrast to the non-linear manifold of a Lie group.

Consider from now on a Lie algebra g over the field of complex numbers C, which corresponds
uniquely to a connected Lie group GG. Notice, that it is important that g is a complex Lie
algebra. For real Lie algebras, one can analyse their complexification instead, since both have
the same irreps. The irreps of g can then be found by the theory of the highest weight. This
a straightforward procedure to classify all irreps of the Lie algebra. If desired, these can be
transferred to the Lie Group G afterwards via the exponential map. I will sketch this procedure
following chapter 9 of Ref. [79] and present the important quantities step by step and give an
example for the Lie algebra s[(2,C) in the next Section (Sec. 4.1.3).

1. The first step is to construct a Lie subalgebra § (a Cartan subalgebra) which is spanned by
basis elements {H;};—1 5 which form a maximally commuting subsystem. This means,
there does not exist a subset b of linearly independent elements in g so that all elements
in h commute and that dimh > h. For a Cartan subalgebra one additionally requires that
the adjoint representation ady is diagonalizable for each H € . Since b is a subalgebra
it is also a linear sub subspace of g so that one can decompose g as g = h @ h*. Tt is
then convenient to name basis elements in h by {H;};=1 ., and basis elements in the
complement by {X;}izpi1,.d-

2. The second step is to assume that there exists some finite-dimensional irrep 7 of g with
carrier space V. The commutation relations as in Eq. (4.3) stay the same for the images
of the basis elements {r(H;) € h}i—1, 5 and {m(X;) € bt }izpi1,. 4. For this irrep 7
one can then introduce weights and weight vectors. A = (Ai,...,\) € C" is called a
weight, if there exists a nonzero v € V' such that «(H;)v = \jv, i.e. v is a simultaneous
eigenvector of all w(H;) with eigenvalue \;. The nonzero vector v is called a weight vector
and the set of all nonzero vectors satisfying this condition is called the weight space for
the weight A. The dimension of the weight spaces is also called the inner multiplicity of
a weight A. One then readily recognizes that every representation has at least one weight,
because 7(H;) will have at least one simultaneous eigenvector because V is a C-vector
space. Here, it becomes clear that it is important to have an algebraically closed field.

1 This includes every finite group.
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3. The third step is to introduce the roots. In short, roots are nonzero weights of the adjoint
representation of g (Def. 4.7). That means that A = (aq,...,ap,) € C" is a root if
there exists a nonzero vector X € g such that ady, X = [H;,X] = ;X for at least one
a; # 0. And in analogy to the weight vectors, root vectors are elements X € g obeying
this relation. All roots A can be collected into a set R of C*-vectors. The vectors in the
collection span the vector space C" and one can choose an inner product in C*. A subset
A of R which forms a basis of C" is called a collection of simple roots. The roots allow
the definition of integral and dominant weights. A weight A is called integral if for all

A€ R:
(4,A)
=2 4.1
" A (19
is an integer. A weight A is called dominant with respect to simple roots A if for all
Ae A
(A,A) >0 (4.19)

It is called strictly dominant if the strict inequality holds.

One of the crucial steps is now that roots are raising and lowering operators for the
weights: if A is a root, X the corresponding root vector and A a weight of © with weight
vector v the following equation follows readily from the above definitions:

m(H) (mn(X)v) = (A+ A)n(X)v (4.20)

That is to say m(X)v is either another weight vector with weight \; = X\; + «; for all
i=1,...,h or m(X)v is the zero vector. Another implication is that one can explore the
weight space of m with the roots.

4. The fourth step is to examine the weights of m by the action of the roots. In particular,
one introduces a partial order for weights. The definition of the partial order involves the
roots A and is as follows: if A1 and As are two weights of 7 then A; is greater than A if:

(A — A2)i = a; - a, a; > 0, 1=1,...,h (4.21)
A weight A is called a highest weight if A > M for all other weights M.

With these considerations and definitions one can formulate the basic theorem for representations
of Lie algebras:

Theorem 4.4 (Theorem of the highest weight). For a d-dimensional representation m with
carrier space V' of a complex Lie algebra g the following holds:

(i) V is the direct sum of the weight spaces of .
(ii) m has a unique highest weight.

(iii) Two irreps with the same highest weight are equivalent.
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(iv) The highest weight A of 7 is always dominant and integral.

(v) For every dominant and integral weight there is a finite-dimensional irrep 7 of g.

The proof of this theorem can be found in many text books, e.g. in Ref. [79]. Instead of
analysing it here, I will present a concrete example in the upcoming section.

4.1.3 Representation theory for SU(2)

In this section, I will apply the theory of the highest weight to a concrete example. In this case,
it is not hard to prove all parts of the theorem of the highest weight. As the example case, I
choose the Lie group SU(2) since its irreps are important for this thesis. Since SU(2) is simply
connected, its irreps are in one-to-one correspondence with the irreps of its Lie algebra su(2)

The group SU(2) is defined as the set of complex 2 x 2 matrices U with the property det(U) = 1.
Its underlying manifold has dimension three and the group is non-Abelian. It is a connected,
compact and semisimple real Lie group and as argued above, one can search for the irreps of
its real Lie algebra su(2). The Lie algebra su(2) can be computed as:

su(2) = {M € Mat(2,C) [tr M =0 A M' = —M} (4.22)

Note that this is a real Lie algebra since for X € su(2), iX is not in the algebra. The Lie
bracket is the commutator for matrices and Eq. 4.22 forms the defining representation of su(2).
The common basis {X;};_; , 5 is given by the Pauli matrices:

0 1 0 —i 1 0
2X1:ax:<1 0), 2X2:Uy:<i 0>, 2X3:az:<0 1>, (4.23)

whose structure constants (see Eq. (4.3)) are the entries of the totally antisymmetric tensor
eijk- Note that the factor of 2 in Eq. (4.23) corresponds to the physics convention. The
corresponding Casimir element (Def. 4.4) 2 = X12 + X22 + X§ = 0.75 - 0g is proportional
to the identity which is a direct consequence from Schur’s lemma since the Casimir element
commutes with all elements in su(2). Since su(2) is a real Lie algebra, one has to switch to
its complexification to apply the theorem of the highest weight. The complexification of su(2)
is isomorphic to s[(2,C), the vector space of all traceless matrices. In sl(2,C), the convenient
basis is (again the physics convention):

0 1 0 0 10
X1:O'+:<0 0>, X2:0'2<1 O), 2X3:O'Z:<O _1>, (424)

which is not available in su(2) The basis elements obey the following fundamental Lie brackets:

[St,87] =257 (4.25)
[57,8%] = £5* (4.26)
For the case of s[(2,C) the Cartan subalgebra b is one-dimensional and spanned by H; = X3.

Now assume that there exists some finite dimensional irrep 7 of s[(2,C) with carrier space V.
In this representation the images 7(X1), 7(X2) and 7(X3) = 7(H) fulfil the same commutation
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relations as in Eq. (4.25) and (4.26). A € C is called a weight, if there exists a nonzero v € V
such that 7(Hp)v = Av. From the commutation relation in Eq. (4.26), one can conclude that
X1 and X5 are root vectors for the roots a; = +1 and as = —1 respectively. Notice, that
[H,H] = 0- H does not define a root, since the eigenvalue is zero. The collection R of the
roots is therefore R = {a; = +1,a0 = —1} and they span the (complex) vector space C of all
complex numbers. A subset A C R which forms a basis of C is then A = {a; = +1} while
the other choice A = {ag = —1} would work properly, too. Eq. (4.18) simplifies for the root
system of s[(2,C). A weight \ is integral if n = +2X is an integer. Hence weights are integral
if they are integers or half integers. A dominant weight as defined in Eq. (4.19) fulfils A > 0
for the above choice of A. Notice that the other choice would lead to the condition A < 0.
The theorem of the highest weight tells now that for every dominant integral weight — positive
integer or half-integer — there exists a unique irrep for s[(2,C). The proof is not hard in this
special case:

Eq. (4.20) reads in this case
m(H) (7(X1)v) = (A+1)7(X1)v (4.27)

Since the carrier space V is finite, 7(H) can only have finitely many eigenvectors. From this it
follows immediately that there exists a A™#* together with the corresponding eigenvector v™#*
with 7(X7)v™** = 0. v™** is then a maximum weight state, as will become clear later. Setting
vo = v™** one can define a chain of vectors by v, = (7(X2))* v,. Because of Eq. 4.27 (but for
m(X2)), it follows that w(H )vy = (A — k) vg. By induction one sees additionally that:

o= (2 (v - 1) Yo )

The finiteness of the vector space implies again the existence of a largest value m for k, so that
U # 0 but vy, 41 = 0. Plugging this into Eq. 4.28, one obtains:

0= (X1 Vit = (2(m 1) (Ama" - %)) U (4.29)
And since trivially m + 1 # 0, it follows A™#* — = 0. To fulfill this equation, A™** must be
a half integer if m is odd or an integer if m is even. One also has A™#* > (0 since m > 0 by
definition so that A™** is indeed dominant and integral. This proves (iv) from the theorem of
the highest weight for this case.

All the nonzero vectors vy, are eigenvectors of 7w(H) with different eigenvalues, so that they are
linearly independent. The v therefore build a basis of the m + 1-dimensional vector space
so that the carrier space V is a direct sum of the weight spaces (part (i)). The partial order
defined in Eq. (4.21) reduces to the convenient order for real numbers in this case, so that A™a*
is indeed the highest weight. It is unique because 7(H) has no degenerate eigenvalue (part
(71)). Furthermore, since all weights are different, the weight spaces are all one-dimensional for
the case of s[(2,C). Hence, there is no inner multiplicity in this case.

The remaining parts ((#i7) and (v)) follow since the above construction can be performed for
any A™** being dominant and integral (part (v)) and the procedure leads to a unique matrix
form (up to isomorphisms) of 7(H) and also 7(X;2) (part (ii7)).
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From this, one concludes that for every integer m, there exists an irrep of dimension m + 1 with
highest weight 4. The convenient label of this representation in physics is [ = 5 which is then
either a half integer or an integer value and has dimension 2] 4 1. The representation with label
[ is called the spin-I representation of s[(2,C). All 2] + 1 different states for a given [ form the
spin [ multiplet. These irreps are in one-to-one correspondence with the irreps of SU(2) since
SU (2) is simply connected and s((2,C) is the complexification of su(2), the Lie algebra of SU(2).
For completeness, I list the matrix elements of the generators and also for the Casimir element
S? in the spin- irrep of 5[(2,C). These are the common matrix elements for angular-momentum
operators and they follow directly from Eq. (4.28) after a proper normalization of the states
vg. The convenient label for the multiplet is |l,m) where [ is the label from the irrep and m
the weight (eigenvalue of w(H) = S%).

S%|l,m) = m|l,m) (4.30)
SELm) =Il+1)—m(m£1)|lm+1) (4.31)
S%|l,m) = 1(1 + 1) |I,m) (4.32)

The Casimir element is independent of the weight m as required by Schur’s lemma (4.1).

Having classified the irreps of s[(2,C), one can also compute the character (Def. 4.8) for later
use. As the character is the same for equivalent representations', it is sufficient to calculate the
character on the Cartan subalgebra h C s[(2,C). An element X € h represented by the irrep 7
can be parameterized by a single parameter ¢ when choosing the basis element H = X3 € b:

rD(x@W) =0 «OH) =9 _ (4.33)
=l
so that also the character x(;) can be evaluated as x(;)(X(9)) = tr (70 (XN (Def. 4.8):

sin ((20 +1)9)
sin (g)

This compact result is a special case of the Weyl character formula. In the case of s[(2,C), it
can also be derived directly using the known results for the geometric progression.

X (X(9)) = (4.34)

4.1.4 Clebsch-Gordan expansion and recoupling coefficients for SU(2)

After the classification of the irreps for a group GG one can construct the CGe as defined in Def.
4.9. The orthogonality relations between irreps (Eq. (4.8)) or the equivalent relation between
the characters (Eq. (4.10)) can in principle be used to obtain the CGe and the CGc. Since
SU(2) is a simply connected Lie group, it is however more convenient to obtain the CGe for its
Lie algebra su(2). Furthermore, since the irreps of su(2) are in one-to-one correspondence with
the irreps of sl(2,C), I will derive the CGe for this Lie algebra in this section.

1 The character is a class function.
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Consider two irreps 7U1) and 7U2) (with highest weight j; and j» respectively) of s(2,C) as
derived in Sec. 4.1.3. Both can be combined to another (reducible) representation of sl(2,C)
via the tensor product (Eq. (4.13)):

701 g 702) = ;01) g 1, +1;,® 772) (4.35)
The goal is then to find a decomposition of 701 @ 7U2) as in Def. 4.9 to write:

70 @ 702) = @nﬂr (4.36)

where 7(/) is the irrep with highest weight J. The first step is to find out which irreps appear
in this decomposition and how often. For SU(2), an irrep appears at most once and every irrep
J fulfils [j1 — jof < J < g1+ ja
Ji+j2
701) ® 702) — @ 7-‘-((])7 (4.37)

J=|j1—72|

This can be proved by calculating the character (Def. 4.8) of both sites. For the character on
the left side one computes:

sin (21 +1)§) sin (22 +1)3)

X(12j2) (X (0)) = X(0) (X (D)) - X(jo) (X (9)) = —3 —3 (4.38)
sin () sin ()
For the right hand side one obtains:
Ji+j2
X@,nX@) = > xunX®) (4.39)
J=j1—7J2
Jitie .
- > = ok 2h (4.40)
J=j1—j2 S (f)
Ji+j2
= sin;(g) Z 3 (cos (JU) — cos (JUI + 9)) (4.41)
J=j1—7j2
sin ] 9) sin ] 9
B T

where Eq. (4.34) was used and the sum in Eq. (4.40) is transformed into a telescope sum (Eq.
(4.41)) by using the trigonometric identity sin(A)sin(B) = 1 cos(4 — B) — 1 cos(A + B) with
the choice A =i + g and B = g. Since both sides have the same character, they must be
isomorphic and Eq. (4.37) is the correct expansion into irreps. The CGe for SU(2) is therefore
free of any multiplicity which facilitates several algorithms and irreps in the tensor product fulfil
the triangle rule triad(j1,j2,J): |j1 — j2| < J < j1 + jo. For the computation of the concrete
CGc one can use:

1. Recursion relations generated by the roots (for SU(2) the operators ST and S7).
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2. Diagonalization of the Casimir operators for every irrep satisfying the triangle rule. For
numerical purposes, the unitary matrix for the diagonalization has to be uniquely chosen.
For SU(2), this is a simple phase convention whereas in the case of inner- and outer-
multiplicity it is nontrivial to obtain a unique choice.

3. Evaluation of explicit formulas.

For SU(2), one explicit formula reads as:

pivia=d s (2J + 1)(J + j1 — 32)!(J — j1 + j32)!(j1 + jo — J)! »
my,mo—M M,mi+mg (]1 +j2+<]+1)!
V(T 4+ M)U(J = M)(G1 +ma)!(G1 — m1)!(j2 + m2)!(j2 — ma)!x

(—D)*
g k'(]l +jo—J - ]{:)'(]1 - mq — kj)'(]g + mo — k)'(J —Jo+m1 + k)'(J —Jj1—mao + kj)'

(4.43)

The summation is done for all k for which the factorials are taken from non-negative numbers
and the exact evaluation of Eq. (4.43) leads to a square root of a rational number; notably the
CGc can be chosen as real numbers. The complete symmetry relations for the CGce are rather
complicated and were fully discovered by REGGE [81] as a group of order 72. However, some
symmetries are evident, e.g. the flip operation of all z-quantum numbers:

Do s = (FL I (4.44)
Note that for more complicated Lie groups, the evaluation of the CGc is much more involved,
especially for numerical algorithms. An explicit formula is not available in most cases and
the diagonalization of the Casimir operators is not optimal either. This is due to inner- and
outer-multiplicity in general semisimple Lie algebras which prohibit a unique calculation of the
CGec. A stable algorithm for the evaluation of the CGe for general semisimple Lie algebras was,
however, suggested by WEICHSELBAUM [76] (see Appendix B therein) which essentially uses
the recursion relations obtained through the roots.

The CGe decomposes the tensor product of two irreps but in later algorithms also three or four
irreps will appear which need to be combined. In the case of three irreps 701, 7(2) and 7U8) one
might first combine 7U1) and 7(2) into D Jia 7(/12) and afterwards every representation 7(/12) is
combined with 7(3), However, one could also combine 7U2) and 7U3) first into @ Jos 7(/23) and
7(1) afterwards with the result. The two procedures give bases for (W(jl) ® 7r(j2)) ® 73 and
) @ (7r<j2) ® 7r(j3)), respectively and both spaces are isomorphic because of the properties of
the tensor product. The isomorphism is given by a contraction of four CGc and is called a
recoupling coefficient:

(J'M'j1J23(j2.43) | TM J12(j1,52)d3) = 650 Oniarr

Fjg,jg*)]gg Fj17J23—>J/ Fjl,jgﬁthg Ji2j3—J (445)
z : m2,m3—>m23" miy,moz—M’'" mi,m2—mi2" miamz—M
m
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A related object of higher symmetry is the 6j-symbol defined as:

jl j2 J12 i14jo+js+J 1 . . N
. = (1) Hietis TM 1 Jo (j2,53) | TM Jr2(j1,
{jg J J23} (=1) eI T ) T 1) (IM j1J3(52:53) | TM J12(j1.72)3)

(4.46)

The 6j-symbol will appear in many calculations later and many of its properties are discussed
in Ref. [82, 83]. Its evaluation can be performed by an explicit formula which was discovered
by RACAH [84, 85]. For my application, I used the implementation in the GNU SCIENTIFIC
LiBRARY (GSL). The 6j-symbol is zero unless triad(ji,J2,J12), triad(j1,J,J23), triad(j2,j3,J23)
and triad(js,J,JJ12) are fulfilled. The 6j-symbol is symmetric under the transposition of the
columns and under a swap of two elements from the first row with to elements from the second
row (from pairwise equal columns). There are also additional symmetry operations which go
beyond simple permutations which lead to a symmetry group of order 144 (see e.g. Ref. [86]).

With similar considerations, one can also analyse the coupling of four irreps U1, 7(72) 7(is)
and 7(4). The recoupling coefficient is conveniently written as:

(M J'(J13(j1,43) J2a(G2.da)) | M I (J12(d1.d2) T34 (d3.a))) = 850 nrnr j; ji jzl)j , (4.47)
Jig Jaa J
and directly related to the 9j-symbol:
g2 J12 1 g2 Ji2
o B o T D@t D@ - D@ 1 1) o T 48

The 9j-symbol is zero unless the triangle rule is fulfilled for every column and for every row.
It is symmetric under even permutations of its rows or columns as well as a reflection on the
diagonals. For odd permutations of its rows or columns, the symbol picks up a phase (—1)Zj
from the sum of all involved quantum numbers. The computation of the 9j-symbol can be
performed by a contraction of three 6j-symbols:

Ji J2 Ji2

: . ' i3 Jiz| [Jj2 Ja Joa| [Ji2 Jza S
Jap = (~1)%(2 +1{]1 J3 }{ 3L (449
35’3 j; 34 - (=17 (2z+1) Jog J oz Jj3 x J x g1 J2 (4.49)

For my implementation, I use again the GNU SCIENTIFIC LIBRARY (GSL). Since the 6-
symbol can be represented by the CGc, one can also determine the 9j-symbol directly from the

CGec:

Ji g2 Ji 1
J3 Ja Jsap =
Tis Jos  J V(212 + 1)(2J34 + 1)(2J13 4 1) (224 + 1) mzj\;k

o . (4.50)
FJ17]2—>J12 F]3,J4—>J34 FJ12,J34—>J

my,ma—M1i2" m3,ma—Mzq™ Mi2,M34—M

J1,J3—>J13 J2,Ja—>J24 J13,J2a—J

m1,m3—M13" ma,ma—Moyg™ My3,Mag— M
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The sum over the six CGc is therefore identical with the recoupling coefficient from Eq. (4.47).

4.1.5 Tensor operators and the Wigner-Eckart theorem for SU(2)

Tensor operators are of particular importance for the exploitation of symmetries in numerical
algorithms. From a physical perspective, tensor operators are intensively studied in Ref. [82,
83].

The general definition Def. 4.10 is quite abstract, so I will start by giving some examples for
tensor operators. The common tensor operators in quantum mechanics are also called vector
operators and the corresponding group is SO(3), i.e. the proper rotations in three-dimensional
Fuclidian space. The representation Dy in Def. 4.10 is typically the defining representation
of SO(3), which is irreducible. The irreps of SO(3) are the integer spin representations of
SU(2) derived in Sec. 4.1.3 and the defining representation has the label I = 1 so that it is
2l + 1 = 3-dimensional. A vector operator therefore has three components — one for each basis
state of R® — which are operators on a Hilbert space 3. The rotation group SO(3) is also
represented on H and the condition in Eq. (4.17) is then that the induced representation on
the operators has the same action as the irrep with [ = 1 acting on the set of three operators.
A common example is the position operator r = (z,y,z). There are also examples for tensor
operators with higher rank, e.g. the electrical quadrupole tensor. Notice that these are usually
reducible tensor operators. For the quadrupole tensor for example, Dy from Def. 4.10 is the
tensor product of the { = 1 irrep from SO(3) with itself which is reducible. In this case, it
is possible to decompose the operator into irreducible tensor operators. In this thesis, tensor
operators with respect to the group SU(2) are relevant but since any irrep of SO(3) is also an
irrep of SU(2)! one can define an analogue tensor operator for SU(2).

Since SU(2) is a Lie group, one can expand the group elements D(g) with the Riemannian
normal coordinates (Eq. 4.5) around the identity element D(e):

3
D(g) = exp iijw(Xj) (4.51)

For an irreducible tensor operator O with respect to SU(2) with Dy being the spin k represen-
tation of SU(2) the components can be labeled by the standard basis elements of the irrep k,
namely m = —k, ..., + k. The condition for the components Ogﬂ from Eq. (4.17) can then be
transferred to the elements of the Lie algebra with Eq. (4.51):

[w(xl),oygl} = VE(k+ 1) — m(m + )0, (4.52)
[W(XQ),OQ;]} = Vk(k+ 1) — m(m — 1)oM | (4.53)
[W(Xg),oi,’ﬂ = mOW! (4.54)

1 The converse is not true, since SU(2) also has half-integer irreps.
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The generators X; of SU(2) are defined as in Eq. (4.24) and 7 is the corresponding Lie algebra
representation to D. These equations can be compared with Eq. (4.30) and Eq. (4.31), so that
the behaviour of irreducible tensor operators is quite similar to that of the basis states from a
irrep.

The Wigner-Eckart theorem (Def. 4.2) reads in the case of SU(2):
(jvma | O | jama ) = (31 || OW | j2) Tt (4.55)

where the scalar constant is now conveniently written as the reduced matriz element indicated
by the double lines and I also used the convenient labels for the SU(2) irreps. The CGc have
no multiplicity label, since there is no multiplicity for SU(2) (see Sec. 4.1.4). If the bra and
ket spaces are a direct sum of irreps, i.e. properly sorted bases, Eq. (4.55) reads:

<aj1j1m1 ’ 07[7’2] ‘ aj2j2m2> = <aj1j1 H O[k] H O‘j2j2> Fgﬂ?z’{ﬁn?ilmp (4'56)

This equation is obtained by applying the Wigner-Eckart theorem block wise. Eq. (4.56) is
the reason, why irreducible tensor operators are numerically useful. The internal degrees of
the representation factor out and are solely determined by the symmetry group G. In the case
of SU(2) it is particularly useful, since several contractions over the CGc can be carried out
analytically. Algebraic operations on irreducible tensor operators can therewith be performed
on the level of the reduced matrix elements. The easiest operations — the sum of two operators
and a scalar multiplication — can be performed readily for the reduced matrix elements while
the CGc stay the same. Note that a sum can only be taken between operators having the
same rank. The product operation is more complex though. Consider two irreducible tensor

k1]

operators O,[ni and S,[sg]. Their product can be performed to give another irreducible tensor

operator (O[kl] x S [kﬂ)[K] with several possibilities for the rank K
mi mg—)M

(O[lﬂ] > Skg]) Z [‘klv]@ﬁK [kl]S[k2] (4.57)

mi,m2

The reason for this formula is that the product of two irreducible tensor operators will generally
give a reducible tensor operator. This can be decomposed into several irreducible tensor
operators. For SU(2) it was derived in Sec. 4.1.4 that one has an irreducible tensor operator
for K = |ky — kal|,...,k1 + k2. A quite useful result is that one can obtain the reduced matrix

elements from (O[kﬂ x S U“?])[K] directly from the reduced matrix elements of O and Slk2]

1 The multiplication of two operators defined in this way does not form an algebra because of the several
possibilities for the total quantum number. A different definition leads to the Racah- Wigner algebra as
discussed in [87]
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while the product of the CGce can be efficiently shifted into a 6j-symbol (Eq. (4.46)):

<aj1j1

(0 x sle2) K]

pi2) =100 S R {1 BT
J

5 o[04 os1) o7] )

v (4.58)

This is essentially an ordinary product of the reduced operators (second line in Eq. (4.58))
with an additional factor (the 6j-symbol). It is somewhat tedious to derive this equation
but it follows straight forwardly from the definition in Eq. (4.57) and the Wigner-Eckart

theorem in Eq. (4.56). If the product (O[kl] x S [kﬂ)[K] is essentially a tensor product because
Okl — O[lkﬂ ® 15 and Skl = 1; ® Sg”] the coupling law in Eq. (4.58) can be rewritten as:

<OéJJ(Oéjlj1aj2j2) (O[kl] ® S[b])[K} aJ/J/(ajijiO‘jéjé)> =

s (4.59)
= | (o 00 gt s 5% gt

i g2 J

Here the symbol in square brackets is a recoupling coefficient for four irreps (Eq. (4.47)) which
is closely related to the 9j-symbol in Eq. (4.48). The states |a;J) are obtained by coupling
the states |oy, j1) and |a,j2). In an implementation, it is crucial to find a consistent algorithm
for this coupling.

The coupling law in Eq. (4.57) can be used to introduce an inner product for irreducible tensor
operators of rank k. This inner product maps the two rank-k tensors onto a scalar operator:

[0]
(Ol gty — (O[k] « SM)O = 3" 0 okl (4.60)
m1,ma
The bilinear form for this inner product is given by the CGec I :fnk;;g S0 = (5m17_m2(_17 Z)Z%Tl .

One may then define a Hermitian conjugate (adjoint) tensor with respect to this inner product
by:
.|.

m —m

The reduced matrix elements of the Hermitian conjugate tensors can again be calculated from
the reduced matrix elements of the primary operator:

<aj1j1 H Oflkl H O‘jzj2> = (_1>k+j2_j1\/ ;ﬁ::—_i <aj2j2 H ol H aj1j1>* (4'62>

The reduced matrix elements have the property that < H OTf'lK] H > = (—1)% < H O] H > which
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needs to be taken into account, if algorithms work only with the reduced matrix elements.

At the end of this section, I want to give a concrete example for an SU(2) irreducible tensor
operator, namely the generators 7(X;) themselves. The generators have the known relation
to the angular momentum operators: m(X;) = ST, 7(X2) = S~ and 7(X3) = S*. It is easy
to compute that the definitions in Eq. (4.52), (4.53) and (4.54) are fulfilled by the irreducible

tensor operator SEL] with SF] = —%SJF, S([)l] = S% and S[_Hl = %S‘. The reduced matrix

elements for S follow from Eq. (4.30) and (4.31) and are given by:

The reduced matrix elements of the Hermitian adjoint of S are given by <H St H> =

(=D ([ sM])-

4.2 Symmetries in physics

In physical systems, symmetry operations play an essential role in many different aspects.

1. Fundamental symmetries are symmetry operations which are expected to leave any
physical system invariant by causality. For example, a linear translation in real space
of a system should not affect any physics, because otherwise experiments can not be
reproduced in other places. Hence any fundamental theory needs to be invariant under
linear translations in real space. The whole group of fundamental symmetries is believed
to be the Poincare group.

2. Internal symmetries of a physical theory are decisive for their properties. In particular,
they determine which interactions are possible.

3. In general, symmetries can help to find a solution for physical systems since they often
enforce constants of motion due to Noether’s theorem [88]. These can be used to find
a much simpler solution than solving the general equations of motions. Also from a
numerical perspective, symmetries can help to achieve the solution more efficiently,
because sometimes the problem divides into smaller problems because of a symmetry.

Symmetry operations are a natural way to group operations as they can be concatenated and
have inverse elements. The identity operation is also present in a canonical way by simply
doing nothing. As a basis of every symmetry in a physical system, one therefore has a group G.
A physical system is invariant under a symmetry described by the group G if the fundamental
equations do not change by the action of any element g € G.

In quantum mechanics, the central quantity is the wave function which is a vector in a Hilbert
space H. To describe symmetry transformations of wavefunctions, a representation D of the
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group G in this Hilbert space J{ is necessary':

D: G- GL(X) (4.64)
g9~ D(g)

Where GL(H) is the set of invertible operators acting on the Hilbert space H. I assume here
that D is a unitary representation, which is a small constraint due to Wigner’s theorem [89]
from which it is known that physical representations are either unitary or anti-unitary. The
anti-unitary case is only present if time-reversal symmetry transformations are involved. It is
easy to see that a representation D in the Hilbert space can be canonically transferred to a
group action I" on the space End(JH) of linear operators acting on H:

I GxGLH) = GL(K) (4.65)
(9,0) — D(9)'OD(g)

Furthermore this group action might be identified with a representation of G on End(3). The
fundamental equation is the Schrodinger (SG) equation:

)
—ili W) = H |¥) (4.66)

which is entirely determined by the Hamilton operator H of the system. The SG equation
might then be invariant under the action of the group represented as in Eq. (4.64) on the states
or Eq. (4.65) on the Hamilton operator. Notice that a transformation of a physical system is
described by the transformation of the operators only (or equivalently the states only) and not
both. Transforming both states and operators leaves the system invariant trivially. After Eq.
(4.65), the Hamilton operator is invariant if it commutes with the group representation D(g)
for any g € G:

D(g)HD(g9) = H <= [H,D(g9)] =0, Vg€ G (4.67)

This condition is exactly the same condition as in Schur’s lemma (4.1) for ¢ (but D was
assumed to be irreducible in Schur’s lemma). From another point of view, the Hamilton
operator is a linear function acting on a vector and a dual vector (it is actually a (1,1)-
tensor). Then the invariance demonstrates in the fact that the image of H acting on a
transformed vector and dual vector is the same as if H acts on the original vectors. Here, it is
important that tranformations on the dual vector space are performed with the adjoint (D7) of
the representation in the vector space (D).

The invariance of the Hamilton operator has consequences which can facilitate numerical
computations. Especially the block diagonal form allows a more efficient diagonalization of
the Hamilton operator. To derive these consequences, one has to study the representation D.
In general, the representation D in the Hilbert space is reducible but it may be possible to

1 To be more precise, a projective representation of the symmetry is sufficient since wavefunctions are only
determined up to a constant.
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decompose the representation into a direct sum of irreps.
D =nDW @nyD? ... @nDP (4.68)

The corresponding unitary transformation which decomposes the representation into this block-
diagonal form also leads to a properly sorted basis with respect to the symmetry G. In this
basis, one can attach to every state:

e A label I from the irrep it belongs to. This label is called the quantum number of the
state.

o A label i to which the internal state from the irrep belongs to. This label is often called
the z-quantum number.

o A label a; to distinguish different states in the same irrep. This label is often called
degeneracy index.

The basis states are then labeled as |I,i,a) and the decomposed representation is diagonal
within this basis. One can then evaluate Eq. (4.67) for each two blocks; one from D' and one
from D. Each block of D comprises an irrep of G labeled by (I,ar) and (J,a.), respectively,
so that one can apply Schur’s lemma (4.1) which says: if the two irreps are not equivalent
(I # J), H must vanish. If the two irreps are equivalent (I = J), H must be a scalar multiple
of the identity. This scalar might depend on the irrep I and on the degeneracy indices ay, a
of both irreps. Hence, one obtains the following matrix representation of H in the properly
sorted basis:

Hy 3 = 15,6159 (4.69)

Eq. (4.69) shows that the Hamilton operator
1. has a block-diagonal form in the different irreps D) — the term 87,

2. is independent of the internal structure of the representation — the term d;; and C’gq 3, 18
independent of ¢ and j,

3. has for any irrep a degenerate eigenspace of dimension d’, the degree of the irrep. Since
the degree of irreps is 1 for Abelian symmetries, it directly follows that symmetry-induced
degeneracy is only possible for non-Abelian symmetries.

The main difficulty here is to find the irreps in the representation D and to construct the
unitary transformation to obtain the form of Eq. (4.68) and the properly sorted basis with
respect to a given symmetry G. In the next section, I will discuss how to achieve a properly
sorted basis in a MPS representation.

4.3 Construction of symmetric MPSs

Global symmetries of a physical system lead to a block-diagonal Hamiltonian for each irrep as
discussed in Sec. 4.2. From a numerical perspective, this is quite useful because the problem
can be divided into a bunch of smaller problems. For example the diagonalization of the
Hamilton matrix can be performed in each block instead of diagonalizing the full Hamiltonian.
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A requirement for this simplification is that the basis is a properly sorted basis with respect to
the symmetry. Or in other words the states in which the Hamilton matrix is evaluated have to
transform as irreps of the symmetry group G.

Consider a Hilbert space as in Eq. (2.1) and a MPS representation of a state as in Eq. (2.3).
Additionally, consider a symmetry described by a group G, which is represented locally in the
Hibert spaces of each site. A representation in the total Hilbert space is then readily obtained
by taking the tensor product of all local representations. Now the task is to obtain an MPS
that transforms as some irrep of this global representation. Or in other words, one tries to find
an MPS which lies in the subspace of a given irrep after the decomposition of the representation
into the form of Eq. (4.6). For the group G = SU(2), such a procedure was first presented by
McCuLLOCH [75] and for general compact Lie groups G by WEICHSELBAUM [76].

The crucial step in obtaining such a MPS is to consider the basic building block of the MPS
which is the site-tensor A. As explained in Sec. 2.2, one can interpret this tensor as a map
from two vectors onto another vector (hence A is a (2,1)-tensor).

A Jp_l X J'Cloc,p — jp

Lisar) @ |Zoas) = Y AR | Tdae) (4.70)

Li,aizd, 5,005
J,j,()é‘]

It is clear from this equation that the left auxiliary and the physical index are contravariant
while the right auxiliary index is covariant. However, I do not use the standard convention
for indices. With contravariant indices as lower and covariant as upper indices, but rather use
the position to distinguish between physical (upper) and auxiliary indices (lower). This map
is invariant under the action of the symmetry G, when it is the same map after transforming
the input and output vectors. This is essentially the same condition as in Sec. 4.2 for the
Hamiltonian but generalized to a higher-rank tensor. And in analogy to the block-diagonal
form of the Hamiltonian, conditions for the A-tensor also arise. Assume for the beginning that
each individual Hilbert space has exactly one irreducible representation of the group G, so that
one can label the basis in each space as |1,i), |X,0) and |J,j). The conditions for the A-tensor
can then be obtained by the following steps:

1. Combine the incoming auxiliary Hilbert space and the physical Hilbert space into a
composite space by taking their tensor product. This also implies the tensor product of
both irreps.

2. Decompose the tensor-product representation into irreps € nxDE) by the CGe (4.9).
Also find the CGce which perform the unitary transformation.

3. Now the A-tensor is reshaped to a matrix and has to be block-diagonal in the irreps
and independent of the internal structure of the irreps due to Schur’s lemma (4.1). This
strictly enforces that the A-tensor is zero unless the irrep J is contained in the tensor-
product from I and X. If this is the case, the A-tensor has to exactly map the matching
irreps.

From this consideration, it follows that the A-tensor has to behave exactly as the CGe and
is therefore given by the CGce I Z{f_)_;‘](w ). One might also recognize that the A-tensor for a
single irrep on each leg is actually an irreducible tensor operator (Def. 4.10) which would lead
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to the same result after applying the Wigner-Eckart theorem (Theo. 4.2). Because of potential
outer-multiplicity, the A-tensor is not completely fixed by this condition, but is already largely
compressed compared to the non-symmetric case. Three examples for U(1), SU(2) and SU(3)
may make this more concrete:

U(1)

U(1) is an Abelian symmetry and hence all irreps are one-dimensional. Therefore the
considerations above become rather trivial. Consider three irreps for each space as
follows: |I =+5,i=1), |¥=-3,0=1) and |J =+2,j =1). The A-tensor only has
a single entry, since each Hilbert space is one-dimensional. The element might be
non-zero since the irrep |J = +2,j7 = 1) is exactly the tensor-product representation
|I =+5,1) ® |¥' = —3,0 =1). The value for the single element in the A-tensor is in
principle arbitrary but any normalization condition would fix the A-tensor completely.

SuU(2)

SU(2) is a non-Abelian group but without outer-multiplicity. Consider the follow-
ing irreps in the three spaces: |I =0.5,i =0.5), | =0.5,i = —0.5), |X =0.5,0 = 0.5),
|X =0.5,0 = —0.5) and |J = 0,j = 0). These are two doublets and one singlet. First of
all, |J = 0,7 = 0) lies in the tensor product of the two others so that the A-tensor can be
non-zero. But the 2 -2 -1 =4 components are not allowed to be arbitrary. They have to
couple the four states from the incoming Hilbert spaces into a singlet state by the CGc
Fi?f’_[))f_’() which in this case is the common 2 x 2 matrix which couples to doublets onto
a singlet. The resulting freedom again is a single factor which would be fixed by a nor-
malization condition. From this example it becomes clear that non-Abelian symmetries
create a lot more constraints in comparison to Abelian symmetries.

SU(3)

SU(3) is a non-Abelian group with outer-multiplicity. Consider the same irrep in each
space which is given by the octet-representation of SU(3) and is labeled as I = (1,1).
It has 8 internal states and the octet lies within the tensor product of two octets so
that the A-tensor is allowed to be non-zero. The A-tensor has 8 - 8 - 8 = 512 elements.
Now an additional complexity arises because the octet appears two times in the tensor
product decomposition which means that there exist two different possibilities to couple
the 64 states in the tensor product onto the octet representation, which is marked by
the outer-multiplicity index ay in the CGe. The A-tensor can then perform an arbitrary
combination of the two different octets arising in the decomposition. This originates
already from the freedom in the CGe if outer-multiplicity is present. Overall, this is a
remarkable compression from the original 512 components of the A-tensor.

Now consider the general case, where in each Hilbert space there is a collection of irreps and
a properly sorted basis with respect to the symmetry G labeled as |I,i,ar), |¥,0,ax5) and
|J.j,ac7). Then the A-tensors split in the same manner as the Hamiltonian into a part, which is
determined by the symmetry and a part which maps the degeneracy indices. It can be written
as:

E,U,C{o— _ I7E—>J(a=]) NE,QE
Liwiidgoy = Lio— Loy (4.71)
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When writing the A-tensors in this form, they are automatically invariant under the symmetry
G. A is called the reduced A-tensor and its elements are referred to as reduced matriz elements.
Note again the outer-multiplicity index in the CGc in the general case, which complicates the
situation, because it arises in both parts. Since the degeneracy part of the A-tensor can reorder
the multiple copies of an irrep, a unique convention for the CGc is absolutely mandatory, since
otherwise the ordering of the copies becomes confused. In this thesis however, I focus on the
groups U(1) and SU(2) which are free of any multiplicity.

Now if the A-tensors are constructed in a symmetric form, it is easy to show that the resulting
MPS as an element of the full lattice Hilbert space H transforms exactly as an irrep of the
representation in H. To see this, it is again useful to interpret the MPS as an RG process as
in Sec. 2.2. In this picture, the last A-tensor A(L) maps states from J;_; and Hy onto an
element of the full Hilbert space H since then every sum in the definition of the MPS (2.3) is
passed. Per construction, the spaces J;,—1 and Hy, have properly sorted bases and also A(L)
maps them to a properly sorted basis in J;, C H. One can then even controls under which irrep
the full MPS transforms by demanding J;, = {|7,¢)}. This is the irrep labeled by T (which has
quantum number 7") and with internal state label (z-quantum number) ¢. For completeness, it
is also necessary to choose the incoming auxiliary space of the first A-tensor to be Jy = {|0,0)}.
Where 0 is the label for the trivial representation (singlet), which is unique for any group G.

This splitting of the A-tensor can be performed for any group G as long as the CGe and the
CGc can be determined. For all compact Lie groups in particular, this is a straightforward task,
however, caution has to be paid in the case of outer-multiplicity. For the compact Lie group
SU(2), the CGce can be evaluated efficiently and furthermore even contractions and recoupling
coefficients can be obtained by efficient formulas which make the algorithm especially useful for
SU(2) as it will be discussed in Sec. 4.5. In this case, the algorithms can be formulated with
the reduced A-tensors only while the CGc are solely in mind. The reduced A-tensors has less
elements which is one of the crucial numerical advantages of incorporating symmetries. The
bond dimension Yyeq of the reduced A-tensors describes not the full bond dimension x as soon
as the symmetry is non-Abelian. For a properly sorted basis |I,i,ar), the individual symmetry
blocks for the quantum number I has dimension n;. The reduced bond dimension Yyeq is then
computed as:

Xred = D 11 (4.72)
I

and the full bond dimension y might be larger for non-Abelian symmetries:

x=)Y dn; (4.73)
1
Here, d! is the dimension of the irrep I.

4.4 Construction of symmetric MPOs

When the A-tensors are constructed symmetrically, one obviously also needs to build the MPO
in the same basis to calculate expectation values from operators. This can be achieved in two
steps:
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1. Construct the local operators as irreducible tensor operators so that they already operate
on the properly sorted basis and calculate their decomposition from the Wigner-Eckart
theorem (Eq. (4.56)) into the reduced matrix elements and CGec.

2. Couple these irreducible tensor operators in an analogous manner to the MPS to an
operator in the full Hilbert space via the auxiliary spaces from the MPO.

First, I want to introduce in some detail the standard local operators of quantum lattice models
and how to build them in a symmetric form. Then, I will describe the symmetric structure of
the whole MPO.

4.4.1 Local operators for quantum lattice models

The most common lattice models consist of spin-, fermionic and bosonic degrees of freedom.
Since bosonic models are not part of this thesis, I will omit further considerations regarding
bosons. Fermions are restricted to a set of orbitals: in the easiest case to a single s-orbital.
Since there is no intrinsic spin in one dimension, the fermions become an explicit spin one-half
degree of freedom.

A quantum-mechanical spin of magnitude s is per definition the irrep with highest weight s
of the group SU(2) which was derived in Sec. 4.1.3. The observables which describe the spin
degree of freedom are the Casimir operator (Def. 4.4) S? and the generators of su(2), namely
S* SY and S%. They are all Hermitian operators in the vector space of the irrep which is
at the same time the 2s + 1-dimensional Hilbert space of a lattice site containing one spin.
The generators can be combined into an irreducible tensor operator as already discussed in
Sec. 4.1.5. Note that they need to be transformed to the generators of sl(2,C) beforehand.
The result for the reduced matrix elements of this operator can be obtained directly from Eq.
(4.63). This gives the single reduced matrix element of a spin operator S (U for a lattice site
which consists of the spin s irrep of SU(2):

<3HS[1] HS> =+/s(s+1) (4.74)

A spin one-half fermion in an s-orbital builds a 4-dimensional Hilbert space spanned by the
states [0, |1), |1) and |11). The creation ¢ and annihilation ¢, operators for the fermion
with spin projection o =1, | are 4 X 4-matrices on this Hilbert space. E.g. the annihilation
operators for both spin projections with respect to the order in which I listed the basis states
above take the following form:

0100 001 0
0000 000 —1

“=1o 0 0 1 “=1o 00 o (4.75)
0000 000 0

The fermionic operators obey the standard fermionic anticommutation relations {CL,CT} = 0gr.
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One might recognize that the operators

1

52 = 5 fey+clep) (4.76)
1

Sy = Z(C%g - ciq) (4.77)
1

S, = §(C$c¢ - cicw (4.78)

fulfill the same commutation relations as the generators of SU(2) in Eq. (4.23) and therefore
constitute a representation of the Lie algebra of su(2) which might be extended to a group
representation via the exponential map. This group representation is referred to as the
spin-SU(2) symmetry for fermions. Notice that this representation is reducible. However,
one is not faced with the problem of finding a unitary transformation which diagonalizes the
Casimir and one of the generators, because the standard basis is already a properly sorted
basis. It is easy to compute that the states |1) and |]) transform as the doublet (spin one-half)
irrep of su(2) with weights (eigenvalue of s.) +3 and —3 respectively. The states |0) and [1])
both transform under the trivial irrep so that one needs to introduce a degeneracy index to
distinguish them. With the convenient basis label |s,s,,as) the basis elements can be written
as

0) :=|s =0,s, = 0,ap = 1) (4.79)
1) = s = 1/2,5. = 1/2) W) = s = 1/25. = —1/2) (4.50)
1)) :==1]s =0,s, = 0,09 = 2) (4.81)

The reduced matrix elements of the generators of the spin-SU(2) symmetry can be obtained
readily by the same argument as for the quantum spins by Eq. (4.63). The creation and
annihilation operators themselves, however, might also form an irreducible tensor operator for

SU(2), so that they can also be compressed through the Wigner-Eckart theorem. Indeed, the

(1/2] _ (1/2] _
/2 — —1/2 =

in Eq. (4.52), (4.53) and (4.54) for k = 1. Half-integer irreducible tensor operators are usually
referred to as spinors. It is therefore possible to calculate the reduced matrix elements for the
annihilation spinor to factor out the symmetry part of these operators. Through the application
of the Wigner-Eckart theorem from Eq. (4.56), one readily obtains the following reduced matrix
representation in the basis from Eq. (4.79), (4.80) and (4.81):

0 V2 0

operators ¢ —c, and ¢ ¢y fulfill the requirements for a irreducible tensor operator

M2 =10 o0 1 (4.82)
0 0 0
The Hermitian adjoint corresponds to the spinor ¢/[1/2 if one defines 611-[/12/ 2 c$ and CT_[%;] = cj.
Its matrix elements may then be computed by Eq. (4.62):
0 0 O
A2 =(1 0 o (4.83)
0 —v2 0
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Note that both spinors fulfill the requirements for irreducible tensor operators (Eq. (4.52),
(4.53) and (4.54)) but this choice is not unique. Each spinor can be multiplied by —1 and still
obeys the requirements. However, one has to be careful that the actual choice respects the

condition ¢flt/2 = (c[l/ 2])T. It is useful to recognize that the anticommutation relations for the
reduced matrix elements of the spinors are unfamiliar. This is a consequence of the symmetry
relations of the CGc and needs to be taken care of in numerical implementations. E.g. one
[1/2]7051/2]} —0:

finds for the commutator of two annihilation spinors [ci

[0]
(o ) T = 3T (4:84)
mi,m2
= (D) ST e, (185)
m1,m2
(0]
_ (cg.l/?} X CZU/?])O (4.86)

Where the first minus sign results from the anticommutation of ¢; , and ¢;j, and the phase
factor from the symmetries of the CGe I".

One might further recognize that the operators

1

ty = Q(CTQ + ¢ ;) (4.87)
1

ty = %(CTCJ, — clcb (4.88)
1 foo ol

obey the same commutation relations as the generators of SU(2) in Eq. (4.23)!. Since
additionally [t;,s;] = 0, these operators form a second independent representation of su(2).
This additional SU(2) symmetry is referred to as the charge-SU(2) [91, 92]. In fact s; and
t; together form a representation of the 6-dimensional Lie algebra so(4). The Lie algebra
50(4) is not semisimple as it decomposes into the direct product of Lie subalgebras. Namely
50(4) ~ su(2) x su(2) so that its representation theory is basically the same as for su(2). An
irrep can therefore be labeled by two spin labels. The fermionic basis is then given by:

0y i= |5 = (0,1/2),5. = (0,1/2))  [14) 1= |s = (0,1/2),5. = (0, — 1/2)) (4.90)
[1) = s = (1/2.0)5. = (1/2,0)) 1) = |s = (1/2,0),5. = (~1/2,0)) (4.91)

The two spinors ¢!1/2] and ¢[*/2) can be combined into a four-component spinor ¥/21/2 which
forms an irreducible tensor operator with respect to so(4) with the irrep (1/2,1/2). Its reduced

1 The operators ¢, and t, might be multiplied by a sign (—1) and still obey the required commutation relations.
In a lattice model one has to define a site-dependent sign (—1)* for ¢, and t, so that the Hamiltonian is
invariant under the represented SU(2) symmetry. Actually, this is only possible if the lattice is bipartite and
the sign needs to switch between the sublattices. The operators ¢; correspond in this case to the action of an
asymmetric particle-hole transformation acting on the s; [90].
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matrix elements can be computed with respect to the basis in Eq. (4.90) and (4.91):

/212 _ (O o2
(G = (\@ 0 ) (4.92)

where o is a possible extra sign in the definition of t, and t, in Eq. (4.87) and (4.88)
respectively.

I have introduced the basic ingredients for lattice models, namely the system of a quantum
spin and a fermion in a s-orbital. The obtained representations in these local quantum systems
can always be extended to representations on the full Hilbert space via the tensor product
operation. It is important to clarify that the symmetries can only be used in the numerical
solution if the Hamiltonian is an intertwiner, i.e. if it commutes with the representation of all
group elements or equivalently with the representation of the generators. As will become clear
later, in the central model system for this thesis only the spin-SU(2) can be exploited while
the Hamiltonian breaks the charge-SU (2).

4.4.2 Symmetric MPO

The construction of the local operators in the form of reduced matrix elements times the CGe
according to the Wigner-Eckart theorem is only the first step in constructing the full MPO.
According to the definition in Eq. (2.53), the full MPO is obtained by the matrix products of
the site matrices W' (i). In the case that the local basis |o) is transformed into a properly
sorted basis | X,0,a,) each site matrix W7 can be decomposed into irreducible matrix elements
times the CGc:

WE101<121;22020¢22 —_ W[k]zlazl PITo35N Fci?}rkz;::fll (4.93)
This procedure was discussed in Sec. 4.4.1 for the common local operators of quantum lattice
models. The auxiliary matrix structure of WHK>1921:%2¢5 can now be interpreted as the
following map:

W Jp_1®\7k—>ﬂp

|Aa.ca) @ [km) = > (W%
B,b,ap

ias. o
TR B b ag), (4.94)

A,(l,OéA;B,b,OéB

where Vj is the carrier space of the irrep with label k. Eq. (4.94) is an equation for an
irreducible tensor operator for each value of the quantum numbers Yo and X' asr according
to the Definition in Def. 4.10. The form is also in analogue to Eq. (4.70) and it follows that

(k] Zrag,:Zrox, . . .
<Wm ) again decomposes in a reduced part and a CGce. In total, one obtains two
A,CL,QA;B,b,CYB

CGc for the MPO site tensors W (i):

210’10{21;220'20122 [k}zlazl;xgag‘Q 227]94)21 A7k_>B
WAaaA;BbaB - E : WAozA;BaB FU2,mHU1 Fa,m—>b (4'95)
k,m

The sum goes over all values of k for which the product of the two CGec is none-zero. Note that
the quantum number k plays the role of an outgoing quantum number for the first CGc while
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it is an incoming quantum number in the second CGe. This is consistent, since Eq. (4.95) is
essentially a contraction of the two CGc. In fact, this contraction builds a yoga fusion tree as

described in Ref. [78].

4.5 Construction of symmetric algorithms

The decomposition of both the A-tensors and the W-tensors into a reduced part and the CGe
can be exploited to decompose contractions of several of those basic building blocks. The
one part is the contraction of the reduced matrix elements and the other part contains the
contraction of the CGc. A key step is that the CGe part can be cast analytically into the
evaluation of recoupling coefficients similar to the case of the product of irreducible matrix
elements (Eq. (4.58)) as was first introduced by McCULLOCH [75] in his description of the
non-Abelian DMRG algorithm. In Sec. 2.7, I will describe several basic operations on MPSs
for which all of them can be performed on the level of the reduced matrix elements while
the CGc part enters only via some effective coefficients. These coefficients can be calculated
efficiently so that the overhead is very small. As examples, I want to present the sweepstep (Eq.
(2.57) and (2.59)), the update of the environments (Eq. (2.65)) and the action of the effective
Hamiltonian for the local optimization of a single A-tensor (Eq. (3.5)). Other operations — like
the product of two MPS or MPO site-tensors — can also be evaluated by similar expressions.
They are presented in the appendix in Chap. B.

4.5.1 MPS sweeping

The basic operation for the sweepstep consists of bringing the A-tensor at site p into the left-
or right-canonical form and shifting the rest of the transformation to the next or previous
site tensor as discussed in Sec. 2.7.1. For the right sweepstep, one therefore needs to reshape
the A-tensor by combining the incoming auxiliary index ¢ with the physical index o as in Eq.
(2.57). Notice that the combination of both indices essentially corresponds to a bijective unitary
mapping I1 of the states from the sets J and H,. into the tensor product K :=J ® Hjoe. In
this case, I should map the states into the properly sorted basis so that it has to behave like
the CGc because that is the case they were defined for'. The states that transform under the
same irrep have to be mapped after some canonical bijection for tensor product states. One
can obtain the reshaped tensor A with the help of the inverse of IT:

A: XKeJ*—C
K ko) ® (Ljagl = S ()00, AFoes (4.96)

Tia; Kkag “ o Jjay
Liar; Yooy

After the decomposition of both tensors IT~! and A, the CGc part reads as follows:

k—i,0 1,0—]

ZFK—H,EFLE—U Sy (4.97)

1 IT actually has the same structure as the A-tensor itself.
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Here, the first CGec is actually the inverse of the standard CGce but the CGe form a unitary
matrix and for SU(2) they are all real so that the inverse is identical with the standard CGc. Eq.
(4.97) is therefore a standard orthonormality condition for the CGe. Note that an analogous
equation to Eq. (4.97) also ensures that IT is unitary if it is decomposed into the standard
CGe. The Kronecker deltas imply that A behaves as a scalar operator with respect to the
symmetry as required by Schur’s lemma. In the convenient notation for a reshaping process
which omits the concrete form of IT~! one therefore obtains for the reduced matrix elements of
the reshaped tensor:

Agg ) = apes, (4.98)
This equation should be understood that for a fixed value of the outgoing quantum number J
one has to couple the irreps with quantum number I and X to J and afterwards reshape the
degeneracy indices o and ay into a composite index (ayay). The resulting tensor is then a
rectangular matrix for which one can apply either the QR or the SVD decomposition (Chap.
A) as discussed in Sec. 2.7.1. The back transformation is performed with IT which has the
same symmetry structure as A so that Eq. (4.98) can be read backwards.

These considerations can be transferred to the other direction, namely the left sweepstep. In
this case, the bijection II maps the states from the sets J* and Hj,. onto the tensor product
X* .= J*®Hjoe. The CGe part of I consists then of I’ K27 for which one needs an additional

k,o—j
factor of 4/ 22{;111 to ensure that IT is unitary. The CGc part of the analogue of Eq. (4.96) is
then slightly different:
2K+ 1~ sk s prs—g _ (2K 1S pxossg prs—
2J +1 Jﬁk" ZU%J 2J +1 ka%j i,0—j

(4.99)

mz+1 2041 oo /2J+1(S 5
2J+1\/(21—{—1)(2K+1) IKOik ol +1 IK Yk,

where again the inverse CGec is substituted with its standard CGc and the second equality
follows readily when using a symmetry relation of the CGce. Because of the Kronecker deltas,
the reshaped tensor transforms again as a scalar but the additional factor in Eq. (4.99) needs
to be taken into account when reshaping for a left sweepstep:

. 2J +1
Alor _ lap; Yas,
A I(J;2),(ajas) AJOtJ ol +1 (4.100)

For the back transformation one has to use the bijection I which has the normalization factor
1/ %111 so that Eq. (4.100) can be read backwards, but with the inverse factor.

4.5.2 Environment updates and effective Hamiltonian

Important contractions for any DMRG-related method are the updates of the environments
as described in Eq. (2.65) for the left environment L. The environment tensors L and R are
rank 3 tensors and structurally similar to the A-tensors. More precisely, in my convention, the
right environment R is structurally identical to the A-tensor while the left environment L is
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identical to the adjoint of an A-tensor. The decomposition of all the tensors can be exploited
to obtain two parts for Eq. (2.65). As usual one part for the reduced matrix elements and one
for the CGc. The CGe part reads as:

J'=I'AT Z J' =I5 pJ—ITA L Ye—T 135 k—X nAk—A
Fj/_”'lval - Fj'%jﬁl Jj—ia * i oa— F02,m—>01 Fa,m%a’ (4.101)
01,02,1,a,j,m

For clearness, I used the split coefficients here but as discussed previously they are identical
to the standard CGe. Hence, one substitutes them and multiplies Eq. (4.101) by I i{'a“,:’nl}f /
and sums over i’ and and a’. The left hand side is then dyv/0,/;» due to the orthogénality
conditions for the CGc and the right hand side turns out to be a recoupling coefficient for four

angular momenta as defined in Eq. (4.47) by using Eq. (4.50):

I X I
6N/J/ 6n/j/ = A k: A/ 5N/J/ 6,”/]‘/ (4. 102)
J X J

The [...]-symbol can be shifted into the reduced part of the equation so that one obtains the
correct CGe for the updated L automatically. The reduced matrix elements can be contracted
ordinarily but with the coupling coefficient included:

I >, I
LI’,aI/;A’,aA/;J’aJ/(l"_1) :Z A kA
J X J (4.103)
131, Yo, k] X1as, ;220
BJ,OélJ;JZ/;(;J/ (Z)LI:O‘I?AvaA;JaJ (Z)AI,ZI;?/QQI/ (Z)WACYA;IA'EOtlA/ e (l)

The action of the effective Hamiltonian as in Eq. (3.5) shares exactly the same CGc structure so
that one can immediately deduce that the same coupling coefficient applies. When performing
the update of the right environment, however, there is a subtle difference as compared to Eq.
(4.101). The difference has a similar reason as for the two different sweepsteps (Sec. 4.5.1). A
careful evaluation of the CGc leads to the following coupling coefficient!:

I Xy T
27 +1 2
RropAanda;(1—1) = Z 2J +1 k A,, (4.104)
J X J )
S 131,00 k] Z1as, ;220
AI,ZI;IE’Qaﬂ(Z)RI’,aI/;A’,aA/;J’aJ/(l) J,alkf;ﬁéz]/( ) AOtA;IA’EalA/ o (Z)

Beside the additional coupling coeflicients, the algorithm can be performed identically by
manipulating the reduced matrix elements only.

1 It might be more convenient to evaluate the formula for an identity MPO tensor and an identity environment.
Then one can directly deduce the difference between the left and the right environment updates.
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The Kondo lattice model

The Kondo lattice model (KLM) is the central many-body model system for this thesis. The
model has its name from the famous Kondo impurity model introduced by KoNDO [93] to
explain the resistance minimum of metals like Au or Cu slightly doped with Fe or Ni. The Fe or
Ni atoms build magnetic impurities in these systems which can be well described by the Kondo
impurity model. In the lattice version of the model, the impurities are equally distributed at
every lattice site with the same point group symmetry.

In this chapter, I will introduce the Hamiltonian and give an overview over experimental and
theoretical studies in Sec. 5.1. Afterwards, I will present perturbative approximations for the
KLM in Sec. 5.2 and finally discuss the Doniach phase diagram in Sec. 5.3.

5.1 Introduction

The class of materials with incomplete 4f or 5f shells shows a large variety of anomalous
properties. In particular, heavy quasi-particles develop in these materials wherefore they are
also called heavy-fermion systems. The basic ingredient for this effect is the presence of two
distinct electronic orbitals per lattice site so that a simple one-band model, e.g. the Hubbard
model, is not appropriate for their description.

A model candidate for the description of some properties of the heavy-fermion systems is the
KLM. I will introduce therefore the Hamiltonian and its symmetries in some detail in the
upcoming subsection and give afterwards an experimental and theoretical overview.

5.1.1 Hamiltonian and symmetries

The Hamiltonian for the KLM can be written in standard notation as:

H=-— Z tijC}LUCjU + JZSl - 8; (5.1)
1,5,0 (
The lattice indices i and j count the sites of a d-dimensional lattice £, i.e. i = (iy,...,iq) =

1101 + - - - + i4a4 where a; are primitive lattice vectors. cZTU (¢io) is the creation (annihilation)
operator for an electron with spin projection o = 1, | at lattice site ¢ and s; = ZT’T, CL_O’TT/CiT/
is the orbital spin of the electrons at site ¢. Here o is the vector of Pauli matrices which is
the defining representation of SU(2) (see Eq. (4.22)). S; is a quantum-spin with quantum
number S and adds an additional degree of freedom. The quantum-spins are called localized
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moments throughout this thesis. The KLM therefore has a local Hilbert space Hjo. at each site
which consists of the tensor product of the Hilbert space of a single electronic orbital and a

quantum-spin S. The local dimension d is therefore d =4 - (25 + 1) 522§ The first term in
Eq. (5.1) describes the kinetic part of the electronic system, i.e. ¢;; are hopping amplitudes for
the tunneling of an electron from lattice site ¢ to lattice site j. For a translationally invariant
system, t;; can be diagonalized by a Fourier transformation which leads to a single band ¢(k)
with band width W. The second term describe the interaction between the orbital spin and the
localized moments at the same lattice site ?. The interaction energy J is taken to be positive
(J > 0) in this thesis. For this choice, the coupling of the two spins is antiferromagnetic. The
less studied ferromagnetic KLM has a negative exchange interaction J < 0.

The two distinct parts, namely the electronic operator c;rg and the localized moments S;, can be

assigned to the s-like orbital and the f orbital in the heavy-fermion systems respectively. Since
the s-like orbitals in these materials are weakly correlated, they form a noninteracting electron
band. On the contrary, the f orbitals are strongly correlated and under specific circumstances
their valence is frozen out and there remains only an effective spin-degree of freedom. For this
to happen, the f-shell needs to be half-filled and the energetic width of the f-levels needs to
be small as compared to their distance to the band energies from the s-orbitals. This defines
actually a specific limit of the more general periodic Anderson model (PAM) [8]:

Z tzy ZUCJJ +V Z (C:li‘o'fio' + f;rgcia) + Ef Z fz‘-rgfia + % Z f;rgfiafl‘-r_gfi—a (52)

1,5,0

The limit corresponds to V' <« U and at half-filling one can map the low energy part of the
PAM by a Schrieffer Wolff transformation [94] onto the KLM with (antiferromagnetic) Kondo
coupling J = %. Beside the role of the low-energy model of the PAM for which the KLM is in
the weak coupling regime, the KLM with arbitrary exchange coupling J defines an independent
quantum lattice model.

The Hamiltonian of the KLM in Eq. (5.1) has several symmetries. First, H commutes with
representations of the generators of the spin-SU(2) symmetry. The representations arise from
the multiple tensor products of the elementary representations in the Hilbert space of an
electronic orbital and of a quantum-spin as described in Sec. 4.4.1. This implies that the total
spin Stot = ) _; 8; + 8; is a conserved quantity. That the Hamiltonian commutes with these
generators can be verified by direct computation. Another route is to show that the two terms
in the Hamiltonian are actually products of irreducible tensor operators with target quantum
number k = 0. As introduced in Eq. (4.74) the operator S of the localized moments is a spin-1
operator S which is also true for the electronic spin sl (see Eq. (4.76), (4.77) and (4.78)).
The second term is then the product of both irreducible tensor operators as introduced in
Eq. (4.57) with K = 0. The creation and annihilation operators build spinors with k = 1/2
(Eq. (4.82) and (4.83)) and the hopping term in Eq. (5.1) is the product of both spinors again
to a singlet operator (K = 0). This allows to rewrite the Hamiltonian in a manifestly SU(2)
invariant form:

= VB Yty (e ) +wz(sﬂ” )" (5.3)

7.770—



5.1 Introduction 77

Here I adapt the notation according to the notation in Sec. 4.1.5. The square roots balance
the CGe in the definition of the product of irreducible tensor operators (Eq. (4.57)).

Beside the spin-SU (2) symmetry, the KLM Hamiltonian also has a U(1)-particle symmetry,
i.e. the total electron number N =5, cjacw is conserved. In the special case of a bipartite
hopping matrix, this symmetry can be extended to a SU(2)-charge symmetry. Since this will
not be the case for the model studied in this thesis, the corresponding charge-SU (2) symmetric
formulation of the Hamiltonian will be omitted. Finally the KLM can have discrete spatial
symmetries which are determined by the point group of the lattice.

5.1.2 Experimental overview

The heavy-fermion materials are characterized by incomplete 4f or 5f shells. Prototypical
examples are compounds which contain cerium (Ce) or uranium (U). The 4f or 5f electrons
can form local moments, i.e. their charge degree of freedom is projected out by a large coulomb
repulsion U. The resulting local moments interact then with conduction electrons which
originate from less localized orbitals. A good overview over the basic physical properties and
the different materials is written by COLEMAN [95].

Standard heavy-fermion systems, i.e. materials which does not exhibit an ordered state, can be
assigned into two different classes [95].

Fermi liquid

This is the phase which is responsible for the name heavy-fermion. In this phase, the
materials can be described by Landau-Fermi liquid theory [96], i.e. by a Fermi gas with
renormalized parameters. However as compared to ordinary metals, the renormalization
of the parameters is surprisingly large. In some systems, the renormalized mass is two or
three magnitudes larger than the free electron mass. This is attributed to the formation
of singlets between the conduction electrons and the local moments resulting from the
incomplete f-shell. This singlet formation decreases the mobility of the conduction
electrons and leads to a large effective mass. A prototypical example for this category is
CeCug [97]. A quasi one-dimensional heavy-fermion system is realized in CeCoaGag [98,
99]

Kondo insulator
In these materials, the chemical potential lies in the hybridization gap of the two different
electronic orbitals which leads to a completely filled heavy electron band. In literature,
they are often called renomalized band insulators, but this name is somewhat confusing.
In fact, these materials are correlated insulators and lots of their properties cannot
be described within band theory. The first material in this class, namely SmBg, was
discovered early by MENTH et al. [100]. Another prominent example is Ce3BisPt3 [101].

Additionally, there have been detected a large variety of ordered phases in heavy-fermion
systems. This includes antiferromagnetism [102] and unconventional superconductivity [103].
In particular, one was able to tune materials between two different phases by either doping
[104, 105], applying pressure [106] or external magnetic fields [107]. Consequently, one can
shift materials to a quantum critical point at which non Fermi liquid behaviour [108] or
unconventional superconductivity emerges [109, 110]. E.g. the Fermi liquid CeCug can be
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doped with gold to obtain CeCug_;Au, and can therewith be tuned to a long-range ordered
antiferromagnetic ground state. A quantum phase transition is observed at z. = 0.1 [104]. In the
vicinity of this quantum critical point, this compound shows non Fermi liquid behaviour [108].
Another example is the Kondo insulator SmBg. Under a critical pressure of p. = 6 GPa, the
system undergoes a quantum phase transition again to an antiferromagnetic ground state [106].
Interestingly, the system becomes metallic at the same point [106]. The quasi one-dimensional
compound is expected to be close to a quantum critical point under normal conditions [98].

Recently, materials were detected which exhibit partial order, i.e. a fraction of the localized
moments order antiferromagnetically while the other fraction is in a Kondo singlet. In CePdAl
e.g., two-thirds of the localized moments are in an ordered state, while the remaining one-third
remains unordered even at the lowest accessible temperatures [26, 27]. These materials cannot
be classified by the usual categories as they are at the border between different classes. In fact
in the above material CePdAl, the driving force for this unconventional state is geometrical
frustration.

5.1.3 Theoretical overview

As the KLM is believed to describe some of the above mentioned properties of heavy-fermion
systems, the model was studied intensively over the last decades. One of the key properties
of heavy-fermion systems is the quantum phase transition between a nonmagnetic and an
antiferromagnetic phase. It was pointed out early by DONIACH [25] that this quantum phase
transition is also included in the KLM. The corresponding famous Doniach phase diagram will
be explained in more detail in Sec. 5.3.

The Hamiltonian of the KLM (Eq. (5.1)) defines a strongly interacting quantum many body
problem. Hence its exact solution is restricted to special cases. Because of that, a lot of
approximations were suggested to obtain the fundamental physics of the KLM. A mean-field
like approximation is the large-N expansion [111-113] where the spin one-half is substituted by
an object with N degrees of freedom and the coupling to the conduction electrons is written in
an SU (V) symmetric form. This requires also N flavours for the conduction electrons. In this
form, the limit N — oo can be treated exactly.

In the special case of one-dimensional systems, a variety of tools are available to treat the
KLM exactly. First and foremost the density-matrix renormalization group (DMRG, see Sec.
3.1) is a powerful tool to study one-dimensional lattice models. The key results for the one-
dimensional Kondo lattice model are collected in the review of TSUNETSUGU et al. [114] which
contain in addition to DMRG results also exact-diagonalization calculations and perturbative
approximations:

o At half-filling, the KLM is a Kondo insulator for any J > 0 with gapped excitations.
o At finite doping, the KLM is ferromagnetic for sufficiently large J.

e In the paramagnetic region at finite doping, the KLM is a metal with large Fermi surface
at least for strong J.
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More recently, several aspects were discovered that were missing in Ref. [114]. The one-
dimensional KLM has an additional ferromagnetic phase at finite doping for intermediate values
of J. This phase was first discovered in Ref. [115, 116] and characterized as a spin-selective
Kondo insulator by PETERS et al. [117]. A recent DMRG study confirms that the paramagnetic
metal has a large Fermi surface [118] but the situation is still controversial [119]. Another
special phase is found at quarter-filling, where the KLM has a dimerized and insulating ground
state [120]. An extensive bosonization study can be found in Ref. [121-123]. In these works,
the ferromagnetic phase transition is accurately determined and a nonperturbative indirect
effective spin-spin interaction is derived.

In higher dimensions, exact results are rare. A milestone was the discovering of a quantum
phase transition of the two-dimensional KLM at half-filling by a quantum Monte-Carlo study by
ASSAAD [124]. Tt was found that at J. =~ 1.45¢, the ground state changes from a nonmagnetic
Kondo insulator to an antiferromagnetically ordered insulator.

The study of the KLM with geometrical frustration is even harder. Variational Monte-Carlo
results suggest a partially ordered state, named partial Kondo screening (PKS) [29]. The PKS
ground state was also obtained on the static mean-field level [125, 126]. On the dynamical mean-
field level, the PKS ground state was only observed off half-filling in the periodic Anderson model
[127]. Recently, exact quantum Monte-Carlo simulations were performed for a geometrically
frustrated KLM that also confirm a PKS ground state in a specific parameter regime [128].
However, it should be pointed out that the geometrical frustration is introduced by a direct
spin-spin interaction instead of a non-bipartite lattice for the conduction electrons. In the
latter case, the quantum Monte-Carlo calculations would suffer from the sign problem.

5.2 Perturbation theory

The KLM has two different energy scales. First, the hopping amplitudes ¢;; or equivalently the
bandwidth W of the free band structure (k) and second the interaction energy J. If one of the
two energy scales dominates the other, one might develop perturbative approximations. Strong-
coupling perturbation theory applies in the regime J > ¢t,W while weak-coupling perturbation
theory applies if J < t,W. Here, I will discuss both perturbations for the case of half-filling
(n=1).

5.2.1 Strong-coupling perturbation theory

Strong-couling perturbation theory is an expansion about the atomic limit ¢;; = 0. In the
atomic limit, the eigenstates are determined by the eigenstates of a single atom of the Kondo
lattice. Each atom has eight internal states, which can be brought into a proper sorted basis
with respect to the spin-SU(2) and the charge-U(1) symmetry:
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Table 5.1: Atomic basis of the Kondo lattice. The canonical basis is made from the tensor product
of the standard basis for a spin-1/2 and a Hubbard site. The localized moments are denoted with a
thick arrow. See Fig. 5.1 for a pictorial representation of these states. The dashed lines seperate
different SU(2)-multiplets.

Number  Proper sorted basis Expansion into canonical basis Energy JSs
1 1S = 0,mo = 0,N =1) H(tel)-te1) —0.75J

2 |S =1/2,m1)2 = +1/2,N =0) [f} ®0) 0

3 |S=1/2m1y2 = -1/2,N =0) [} ®0) 0

4 1S =1/2,myj2 =4+1/2,N =2) [ ®1]) 0

5 |S=1/2m1p=-1/2N =2) [I® 1)) 0

6 |IS=1mi =+1,N=1) @ 1) 0.25J

7 1S =1,my =0,N =1) Zlteh+et) 0.25.

8 |S=1m =-1,N=1) N ®l) 0.25J

These states are already eigenstates of the local interaction Hi,y = JSs with eigenenergies
as depicted in the last column of Tab. 5.1 and a pictorial representation is displayed in Fig.
5.1. An eigenstate of the lattice model consists of a L-times tensor product of these local
eigenstates. The ground state |G) for positive J has one electron per site (half-filling) and spin
S =0, i.e. it is the L-fold tensor product of state number 1 in Tab. 5.1. The ground state
energy is Fg/L = —0.75J and |G) is nondegenerate. This is actually remarkable since it is a
unique feature of the antiferromagnetic KLM with spin-1/2 moments because the ferromagnetic
ground state would be 3%-fold degenerate and for S > 1/2, the moments cannot be completely
screened by the conduction electron system. It is also a unique property of quantum mechanics,
that the singlet state (number 1 in Tab. 5.1) is non degenerate. This state has no classical
analogue which is actually the reason why the classical KLM has a highly degenerate ground
state in the atomic limit.

To obtain the corrections to the ground state |G) and the ground state energy E¢g in powers of

1 2 3 4 5 6 7 8

-0.75/ 0 0 0.25/

Figure 5.1: Pictorial representation of the eight eigenstates for one atom of the Kondo lattice.
Blue arrows display localized moments and red arrows display conduction electron moments. The
state numbers are the same as in Tab. 5.1 and the braces group the states belonging to the same
SU(2)-multiplet. The numbers below the pictograms are the eigenenergies of the local interaction
Hi,t = JSs. The grey shaded states 1 and 6 are entangled states instead of simple product states.
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%, one can work out standard nondegenerate perturbation theory around the atomic limit for
the Hamiltonian:

H = Hy—tV, (5.4)

where Hj is the interaction and V' the hopping part (see Eq. (5.1)). The hopping amplitude
t is assumed to be small as compared to the energy scale J of Hy. Note that I assume that
the hopping energies ¢;; decompose as ti jr = tfis jr Where t sets the energy scale and fis ;- is
dimensionless and maximally of the order f;, j- ~ 1. The first order energy correction E(l)
then given by:

EY =t(G|V|G) (5.5)

It is easy to calculate, that the correction vanishes as long as fis ir = 0. The second order term
is:

ED —p [(k|VI|G)P
—tZ BB (5.6)

where k is an index labeling the excited states of the atomic limit. It is worthwhile to evaluate
the action of V' on the ground state |G) separately:

V |G Z fw]‘r i0,jT |Z O';j,7'> (57)

z;éjaT

Here, Y;; jr = £1 is a sign coming from the fermionic commutation relations which is not
important for the following results. The excited states |i,0; j,7) are states in which at site 7 the
electronic orbital is empty and the localized moment has spin-projection o (state number 2 and
3 in Tab. 5.1) and at site j the electronic orbital is doubly occupied and the localized moment
has spin-projection 7 (state number 4 and 5 in Tab. 5.1). In Eq. (5.7) I have again assumed
that there are no onsite energies (fiyir = 0). With the result in Eq. (5.7), one can restrict the
summation over k in Eq. (5.6) to excited states in the form |i,0;j,7). The denominator in Eq.
(5.7) is Eq — Ejs jr = —1.5J because Ej, jr = —(L — 2)0.75J. In summary, one obtains for the
second order energy correction:

2
2t Z 2
- _a |fw7JT| (58)

i#joT

This can be evaluated e.g. for the hopping of a zigzag ladder with hopping amplitude ¢ f; along
the rungs and tf2 along the legs:
@) 2t2 9
Eg /L =- (|f1’ + /%) (5.9)
More interesting than this energy shift is the state correction, or more specific: expectation
values of observables in the state correction. Of particular interest are the spin correlations
(8iS;) of the local moments. Since the KLM is spin-SU(2) symmetric, one can calculate the
longitudinal correlations (S57S7) instead of the full spin correlations. To zeroth order, one has
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(S75%) = 0.25;5. To first order, there is no contribution so that the first non-trivial correction

G(2)> which involves
the second order state correction and the expectation value in the first order state correction

‘G(1)>:
G)+ (6| 557

The first order state correction is given by:

(k G)
’G(1)> _tz E,JV|EG k) = % Y faco)mr En(—o)me In05m,T) (5.11)

n#EmoT

is at second order. To second order, one has the overlap <G(0) ‘ SZ-ZS;

(s755)@ = (G| 5757

¢+ (¢ ) S5

G(°>> (5.10)

Plugging this into Eq. (5.10) gives the first contribution to the spin correlations in second
order in % For i # j, one obtains:

(5755)® = Z iy oo (512)

The contribution from the overlap matrix element <G(0) ‘ 5757

G(2)> vanishes. For the onsite
term, one gets:

(S755)? =0, (5.13)

since both contributions cancel each other. This is a direct consequence of the normalization
condition 2 <G(0) ’G(2)> + <G(1) ’G(1)> = 0 for the state corrections. Eq. (5.12) shows that
the spin correlations in second order are only between sites which are directly connected by a
hopping term. Furthermore, the nonlocal correlations are always negative (antiferromagnetic)
as long as the hopping does not produce a spin flip (fi ;; = 0). One can evaluate the formulas
e.g. for the zigzag ladder with hopping amplitude ¢ f; along the rungs and tfs along the legs:

t2

zQz\ (2
<SiSj>():rﬂ

(= fP6iji1 — f30i442) (5.14)
The spin-structure factor S(Q) = %ZU e QRi=15) (8,8} up to second order follows after a
Fourier transformation and by using (S;S;) = 3(S75%) in the SU(2) symmetric case:

3 3t?

SQ=31-41p

(21 cos(Q) + 2f3 cos(2Q)) (5.15)

The dominant spin correlations have the wave-vector @* for which S(Q*) = max. An easy
calculation shows that:

. T for f1 > 2f2
@ = {arccos (—ﬁ> for f1 <2f (5.16)

452
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5.2.2 Weak-coupling perturbation theory

The other limit of the KLM is substantially more complicated. In the case J = 0, the
ground state |G) is the Fermi sea but in that case, the ground state is highly degenerate since
the localized moments are completely decoupled from the conduction electrons. The exact

5=1/2
degeneracy is (25 + 1)F 2/ 2L,

In the original works [9, 22, 23], the authors derived an approximate Hamiltonian for the
case of only two localized moments coupled locally to the conduction electrons. This effective
Hamiltonian was later called the RKKY Hamiltonian named by the authors of the original
publications. The extension to a lattice of localized moments is straight-forward. The derivation
by KASuYA [9], RUDERMAN et al. [22], and YOSIDA [23] is not very thorough and an alternative
approach to obtain the same results was given in Ref. [129, 130].

Here, I derive the effective Hamiltonian by using linear response theory as described by ZIENER
et al. [131].

Let |G) be the ground state of a noninteracting electron system, i.e. the Fermi sea. The
interaction of the conduction electrons with a magnetic field {B;(t)},_;  leads to a Zeeman
term:

Hing = — Zsi - Bi(t) (5.17)

The linear response of the magnetization A (s;) (w) at site j on the magnetic fields can be
evaluated by Kubo’s formula:

As]) (@) = D (@) B (). (5.18)

where I have switched to frequency space and x%ﬁ (w) is the magnetic susceptibility of the
conduction electron system:

P (w) = /O " dte (s2()55(0)) (5.19)

This magnetization at site j leads to an energy change of the field energy caused by the field
B; at site j according to Eq. (5.17). The sum of all energy changes becomes for static fields
(w=0):

L ofp B
AB=—3 Z Z‘;ngij (w=0)B; (5.20)
1] «

The factor 1/2 balances the double counting in the sum. One can now identify JS; as the
magnetic fields B; and assume an isotropic susceptibility so that one arrives at the RKKY
Hamiltonian:

J2
Hriiy = =~ D Xijlw=0)8;-8;=>J;Si- S, (5.21)
ij

ij
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which is an effective spin-model with coupling J;; = —J; Xij(w = 0).

In contrast to the strong coupling case, the weak coupling limit is described by an effective
Hamiltonian. This Hamiltonian defines a complex spin model with long-range interactions and
its solution is a nontrivial problem. However for bipartite lattices, one can show that the static
susceptibility oscillates between the two sub lattices and is antiferromagnetic between the A-
and B-lattice. From this one can conclude that the spin model is not frustrated and therefore
has a magnetically ordered ground state'. On the contrary, for nonbipartite lattices, one has to
solve the effective model explicitly.

5.3 Doniach picture

The perturbative considerations in the last section motivate a central competition in the KLM.
This competition was firstly suggested by DONIACH [25].

The strong-coupling perturbation theory predicts a spin-liquid ground state with gapped
excitations and exponentially decaying two-point correlations. In this state, the localized
moments are screened mutually by their conduction electron partner. In this sense, the
situation is reminiscent to the Kondo effect which is present for a single localized moment only.
A single localized moment is screened by a conduction electron cloud (the Kondo cloud). This
explains that the resistivity of the conduction electrons increases for low temperature which
was the first signal of the Kondo effect [93, 133]. The characteristic energy scale of the Kondo
effect is:

___1
EKondo ~ We 2/0r) (522)

TK < TRKKY Trery > Tk

Figure 5.2: Doniach phase diagram for the Kondo lattice. Taken from COLEMAN [132] (Fig. 5).

1 For one-dimensional systems the ground state is quasi-long-range ordered only.
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Here, W is the band width of the noninteracting electron dispersion (k) and p(cp) is the
noninteracting density of states at the Fermi energy.

On the other hand the weak-coupling perturbation predicts a magnetically ordered ground
state, at least for bipartite lattices. The characteristic energy scale is in this case given by:

EKondo ~ JQP(EF) (523)

Both predictions contradict each other. This defines the competition which is at the heart
of Kondo lattice systems: The screening of the localized moments through the conduction
electrons competes with an ordering mechanism caused by the conduction electrons. By
comparing the energy scales in Eq. (5.22) and Eq. (5.23), one gets the famous Doniach phase
diagram which is sketched in Fig. 5.2. For weak J, the screening is exponentially small and
the RKKY coupling dominates, which leads to an antiferromagnetic ground state. For strong
J, the screening dominates and the system is a spin-liquid. In between those two regimes, one
expects a quantum-phase transition at a critical coupling J..






CHAPTER 6

The half-filled frustrated Kondo ladder

In this chapter, I will present extensive DMRG calculations for the one-dimensional frustrated
Kondo ladder on a zigzag ladder. In Sec. 6.1, I will introduce the specific model and parameters
and discuss preliminary works. In Sec. 6.2, I will present the numerical results as well as the
interpretations and conclusions. As a simplified picture, I will finally discuss the phase diagram
of the classical frustrated Kondo ladder in Sec. 6.3.

6.1 Introduction

The frustrated Kondo ladder is obtained when choosing the hopping elements t;; in Eq. (5.1)
to the topology of a zigzag ladder as sketched in Fig. 6.1 B. This system is equivalent to an
ordinary one-dimensional Kondo chain with nearest-neighbor (nn) hopping ¢; and next-nearest-
neighbor hopping (nnn) ¢2 (see Fig. 6.1 A). The Hamiltonian from Eq. (5.1) takes the following
form with these definitions:

H=-t Z (cgacwla + h.c.) — 19 Z (CIUCiJng + h.c.) + JZSi - 8; (6.1)

1,0 1,0

(B) to i

AR AN
/1 S /1

Z.

Figure 6.1: (A) Sketch of the one-dimensional Kondo-lattice model with nearest-neighbor hopping
—t; and next-nearest-neighbor hopping —t,, parameterized as t; = tcosp and ty = tsin¢ with
t>0and 0 <y < 7/2. Local antiferromagnetic exchange J > 0, see Eq. (6.1). (B) Equivalent
representation of the model as a zigzag ladder. The rungs of the ladder correspond to ¢; and the
legs are linked by t5. For ¢ =0, i.e., {; =t and t; = 0, the model reduces to the Kondo lattice on
the one-dimensional chain. At ¢ = /4, one has t; = to, and for ¢ = 7/2, i.e., t; =0 and t2 = ¢,
the model is given by two decoupled one-dimensional chains.
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The parameters are chosen so that t; > 0, 5 > 0 and J > 0 in this convention. It is suitable
to parametrize the two hoppings as t; = tcos and ty = tsiny to obtain t1/te = tanp. ¢
runs then between 0 and 7 and the edge case ¢ = 0 corresponds to tz = 0 (the ordinary
Kondo chain) while ¢ = 5 corresponds to ¢; = 0 (two decoupled ordinary Kondo chains). The
case t1 = lo is reached for ¢ = 7. The Hamiltonian in Eq. (6.1) has a SU(2)-spin symmetry
generated by the total spin St = ), S; + 8; as discussed in Sec. 5.1.1. The SU(2)-charge
symmetry is not obeyed by this Hamiltonian since the hopping is not bipartite. But the
Hamiltonian is invariant under a U(1)-charge symmetry generated by the total number of
electrons N = ). n;,. Beside these continous symmetries, the Hamiltonian in Eq. (6.1) has a
discrete translational symmetry (a) = {id, £ a, &+ 2a, ...} generated by a primitive translation
by one lattice site in the chain geometry (Fig. 6.1A). This Abelian symmetry is a subgroup of
the dihedral group Dy, consisting of the L rotations and L reflections of a regular polygon with
L edges. Since the Hamiltonian is also invariant under reflections, it respects the full dihedral
group. For later purposes, only the translational symmetry is important.

The non-interacting part of H can be diagonalized with a Fourier transformation due to the
translational symmetry. One obtains a single band e(k):

e(k) = —2t1 cos(k) — 2t3 cos(2k) (6.2)

This band structure has a Lifshitz point at which the number of Fermi-points (FP) change from
two FP to four FP. The Lifshitz transition can be seen in Fig. 6.2 for the case of a half-filled
band. For values ¢ < ¢g (t2 < 0.5t1) there are two FP and a single nesting vector @ = .
For values ¢ > ¢g (t3 > 0.5t1) there are four FP but interestingly two p-independent nesting
vectors with @ = 7. The other nesting vectors are p-dependent in this case.

The ordinary Kondo chain (t2 = ¢ = 0) has undergone extensive studies in the last decades.
The key results are summarized in the review of TSUNETSUGU et al. [114]. It is remarkable that
the Doniach competition (see Sec. 5.3) is never decided towards a magnetically ordered ground

n
2
4 FP
9%— 0.51 0.5
P o o e e - O o S
-{ 2 FP §
[ [
-0
0 : m :
-no=qm-p <h oo b f gm o
k

Figure 6.2: Location of the Fermi points in k-space as a function of ¢. The Lifshitz transition
between a state with two (2 FP) and with four Fermi points (4 FP) takes place at ¢ = ¢y =
arctan(%) ~ 0.148m, i.e., at t; = 2t5 (dashed red line). Horizontal arrows: nesting vectors. Vertical
arrows mark the decoupled-chains limit ¢ = 7/2.
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state, or — more precise for a one-dimensional quantum system — towards a quasi ordered
ground state. The Kondo chain has a spin gap AEg > 0 for any J > 0 and furthermore it was
shown that the weak J limit is dominated by a Kondo-like energy scale:

AEg ~ ¢ 7, (6.3)

for which the coupling J is renormalized by v as compared to the impurity case. DMRG results
suggest the value v = 1.41 [134]. Hence, this model has no quantum phase transition and is a
featurless Kondo insulator. From this result, one can draw constraints for the phase diagram
of the frustrated ladder as depicted in Fig. 6.3. The strong coupling regime is adiabatically
connected to the atomic limit as it is the case for any Kondo lattice. This is indicated by the
paths C in Fig. 6.3. Furthermore, the ordinary chain limits ¢t = 0 (single chain) and ¢; = 0
(two decoupled chains) can be reached from the atomic limit for each value J > 0 (paths €’).
Since the ground state of the chain limit has a finite spectral gap, one can also connect the
regions with small t5 or small #; to the two limits to = 0 and ¢; = 0 respectively (paths C”).
Nevertheless, one needs to keep in mind that the spectral gap gets exponentially small for
J — 0, so that also the perturbatively accessible regions shrink exponentially when reaching
the weak coupling regime. The blue line in Fig. 6.3 indicates the path with ¢{; = t2 which
leaves the perturbatively accessible regime at some J. The further development of the ground
state along this line is a major topic of this thesis.

Beside the usual Doniach competition along this line towards smaller J, the geometrical
frustration enters the competition as a third entrant. For decreasing J, antiferromagnetic

A
t2/Jd weak-J
2 (RKKY)
regime
2 '
£lc
<
(o]
3 [—c
°
S ---
o --.'~
o ~
(5]
-O -
g strong *,
= coupling
regime c"
C - T C' ot
local 1>
singlets Kondo lattice on a chain

Figure 6.3: Sketch of the phase diagram for the frustrated Kondo ladder with several paths which
adiabatically connect different regions to the atomic limit (¢; = to = 0). The paths € connect regions
with 1,t2 < J by non-degenerate strong coupling perturbation theory. The paths €’ indicate that
the ordinary chain is adiabatically connected to the atomic limit for all J > 0 and the paths €”
adiabatically connect the regions with to < t1 (t1 < t3) to the ordinary chain t; = 0 (decoupled
chain ¢t; = 0) again with non-degenerate perturbation theory in the spectral gap. Notice however,
that the gap for the ordinary chain vanishes exponentially as J — 0. The blue line indicate the
path at ¢; = t2 which leaves the perturbative regime at some J and may undergo a quantum phase
transition. The RKKY regime might become relevant for weak .J.
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correlations increase which are frustrated on the triangles from the zigzag ladder. It turns out,
that the frustration has a large impact on the ground state and leads to at least two quantum
phase transitions along the blue line in Fig. 6.3 as presented in the next section.

6.2 Ground state phase diagram

In this section, I present the numerical results and describe the ground state phase diagram for
the frustrated Kondo ladder at half-filling. I will present a condensed overview by discussing
briefly the obtained phases. Afterwards, I will analyse the different regimes in detail and
provide the necessary data for obtaining the phase boundaries. Fig. 6.4 shows the J — ¢
phase diagram in the thermodynamic limit as obtained by extensive DMRG and VUMPS
calculations.

For strong J, the frustrated Kondo ladder develops two different types of short-range order.
Firstly, an antiferromagnetic spin alignment for short distances (AF-SRO) which has dominant
spin correlations at () = 7 and secondly, an incommensurate spiral short-range order (IC-SRO)
with dominant spin correlations at wave-vectors § < ) < w. Both phases are separated by
the green line in Fig. 6.4 and the green arrow indicates the phase boundary for J — oco. The
phase boundary is defined by a kink in the function Q(p) where @ is the wave-vector of the
dominating spin correlations. For weaker exchange couplings J ~ 0.9¢, the correlations are no
longer dominated by a single wave-vector so that the transition becomes less well defined. A

detailed description can be found in Sec. 6.2.1.

At intermediate values for J, there is an extended region in which the translational symmetry
is spontaneously broken by the ground state. The spin-correlations along the rungs of the
ladder show an alternating pattern of ferro- and antiferromagnetic alignment. It is called the
spin-dimerized phase (DIM) and the transition is marked by the blue line in Fig. 6.4. As will
be argued in detail in Sec. 6.2.2, the spin-dimerization alleviates the magnetic frustration and
is actually a precursor of a gapless ground state with quasi-long-range spiral magnetic order at
wave-vector () = 5. This phase is denoted as SP-QLRO and the phase boundary is marked by
the red line in Fig. 6.4.

For weak J, the phase boundary for the transition into the spin-dimerized phase is found to end
at the Lifshitz-transition of the non-interacting Fermi sea, namely at ¢.(J — 0) = arctan (%) ~
0.1487. This accidentally coincides with transition point at J — oo between AF-SRO and
IC-SRO as indicated by the lower dotted line in Fig. 6.4.

6.2.1 Strong-J regime

In the limit J — oo, the unique ground state consists of completely local Kondo singlets
between the localized moments and the electronic spin at site i. All excitations are gapped by J
and consequently the two-point correlations decay exponentially with increasing distance. The
short-range correlations develop in perturbation theory at order % and for bipartite lattices
the spin-structure factor

S(@) =7 3 @RS, 8) (6.4)
ij
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Figure 6.4: Ground state phase diagram in the J — ¢ plane for the half-filled quantum-spin
Kondo model on the zigzag ladder, as obtained by DMRG calculations for systems of up to L = 52
sites (and extrapolated to L = o0) as well as by VUMPS calculations working directly in the
thermodynamical limit (with bond dimensions extrapolated to m = oo where necessary). AF-SRO:
antiferromagnetic short-range order with wave vector Q = 7. IC-SRO: incommensurate spiral short-
range order with 7/2 < @ < 7. DIM: spin-dimerized phase. SP-QLRO: spiral quasi-long-range
order with @ = /2. Points with error bars locate the various transitions. Black dashed lines:
to = t; (upper) and ty = t1/2 (lower). Blue and red dashed lines: see text.

is peaked at the antiferromagnetic wave-vector @ = (m,...,m) as already discussed in Sec. 5.3.
For the ordinary Kondo chain, this corresponds to = m and one may study the evolution
Q(p) of this peak as a function of ¢, the level of frustration. In Fig. 6.5 the evolution of
the peak is presented for several values of J. For ¢ varying from 0 — 7, the peak position
evolves continuously from 7 — 7. However, at a critical value ¢, the function Q(y) has a
kink exactly at the point where the peak position shifts away from the antiferromagnetic value
@ = 7 towards incommensurate values @@ < m. In the strong-.J regime captured in Fig. 6.5 the
transition is weakly J-dependent and matches the result from strong coupling perturbation
theory (see black line in Fig. 6.5, which is the prediction of Eq. (5.16)). This transition can be
traced down to J ~ 0.9¢ as indicated by the green line in the phase diagram 6.4. It is observed
that the critical value ¢, increases for decreasing .J. For values J < 0.9t the transition fades
away and the spin-structure factor is not dominated by a single peak only. For that to become
clear, I plotted the spin-structure factor in Fig. 6.6 for J =t and J = 0.85¢ and various values
of ¢. For J =t the spin-structure factor has a broad maximum located at () = 7 for ¢ = 0.61
and this maximum is shifted away from @ = 7 for ¢ = 0.62 (see the arrows in Fig. 6.6(a)).
Hence the transition point can be located to 0.61 < ¢, < 0.62 for J = t. Increasing ¢ further
shifts the maximum towards @ = 5. The speed of the shift is rather high for values ¢ slightly
above ¢, while the convergence to Q) = 5 for ¢ = 5 becomes slower and slower. This behaviour
can also be seen in Fig. 6.5 for the strong-coupling limit.
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9
Figure 6.5: Position @) of the peak maximum in the reciprocal unit cell of the spin-structure
factor S(Q), see Eq. (6.4), as a function of ¢. The kink defines ¢(J), i.e., the transition from
short-range AF to IC magnetic order. The symbols denote results of VUMPS calculations in the
thermodynamic limit for various interaction strengths J. For strong J, the peak position matches
with the prediction of strong-coupling perturbation theory (PT) , i.e., with Eq. (5.16), see the solid
line.
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Figure 6.6: The spin-structure factor S(Q) for a) J =t and b) J = 0.85¢ and several values of ¢
as indicated.

For J = 0.85¢, the situation is different. Still for ¢ = 0.62 for example, the spin-structure factor
has a broad maximum at () = 7 but simultaneously the spin-structure factor has a shoulder in
the vicinity of Q = 5. This shoulder develops into a peak for increasing ¢, while the maximum
at Q = 7w remains. Even at ¢ = 0.9, a small local maximum at ) = 7 is present but the
dominating order is already at incommensurate wave-vectors @ slightly above 5. Finally, for a
large value of ¢ = 1.1 the small local maximum disappears and one obtains a qualitative similar
spin-structure factor as for J = ¢ in the large-¢ limit (compare to ¢ = 0.8 in Fig. 6.6(a)).

In summary, the strong-J regime consists of two different kinds of short-range order which are
well seperated by a kink in the function Q(p), where @ is the peak position in the spin-structure
factor. The first short-range order is antiferromagnetic with () = 7 and the second consists of
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incommensurate correlations with § < @ < m. The two different types of short-range order do
not have different symmetries and both do not break any symmetries of the Hamiltonian H
from Eq. (6.1). When leaving the strong-coupling regime, the transition fades away, because
the short-range order is already influenced by a precursor of the quasi-ordered magentic spiral
phase with wave-vector @) = 5 (see Sec. 6.2.3). One might compare this situation to the phase
diagram of water: the liquid and steam phase have the same symmetries and under normal
conditions there is a phase transition separating both phases, but the transition line ends in a
critical point!. Beyond the critical point, there is no transition (discontinuity in a equation of

state) anymore and one cannot distinguish between two different phases anymore.

6.2.2 Translational symmetry breaking

The Hamiltonian for the Kondo zigzag ladder (Eq. (6.1)) is invariant under the translation
group (a) as discussed in Sec. 6.1. This discrete symmetry might be spontaneously broken by
the ground state even in a one-dimensional system since the Mermin-Wagner theorem only
applies to continuous symmetries. A simple form of a symmetry-broken ground state is a
dimerized state in which the expectation value (A4;A;) of a correlation from a local observable
A; is not translationally invariant anymore:

Op = (A;_1A;) — (A; A1) = const. x (—1)°, (6.5)

while the local expectation value (A;) is still translationally invariant ({(A;) = (A4)). Eq. (6.5)
defines the order parameter for dimerization, since the difference of the two correlations would
be identically zero for a translational invariant state. In the following, I will analyse spin-
dimerization for which the order parameter becomes:

Op = (Si—18:) — (SiSiy1) (6.6)

In the upcoming subsection, I will analyse the evolution of the nearest-neighbor spin-correlations
which determines the order parameter Op as a function of both J and to. Afterwards, I will
discuss in detail how one can obtain the precise transition point into the spin-dimerized phase.

Nearest-neighbor spin-correlations

For the beginning, I concentrate on the case to = ¢1 (blue line in Fig. 6.3) and elaborate on
the evolution of the spin-correlations (S;S;) as a function of J/t; for nearest-neighbors of the
frustrated ladder geometry (Fig. 6.1B). In Fig. 6.7, these correlations can be viewed in a
color code for various values of J. The color code maps the values for the spin-correlations
—0.75 < (5;8;) < 0.25 onto colors with blue for (S;S;) < 0 (AF) and red for (§;S;) > 0 (FM).
For strong interactions (J = 3.0¢; in 6.7) the correlations are weak and antiferromagnetic.
The dominant correlations are the Kondo correlations (S;s;) (not shown) which are close to
their maximum value (S;s;) = —0.75. Both can be understood in strong-coupling perturbation
theory (see Sec. 5.3) and the local nature of the state is also reflected by the complete absence
of boundary effects even though the lattice is cut at sites ¢ = 1 and ¢ = L. The throughout

1 See for example https://en.wikipedia.org/wiki/Properties_of_water (last accessed 18 February 2019)
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Figure 6.7: Ground state spin-correlations (S;S;) (see color code) for nearest neighbors i, j on
the zigzag ladder for an isotropic ladder (¢t; = tQ) ladder with L = 52 sites at half-filling and for
various coupling strengths J/t;.

antiferromagnetic correlations already show the geometrical frustration on the zigzag geometry
which is, however, not important in the case of large J.

The complete homogeneity of the correlations disappears if J decreases. Already for J = 1.3tq,
two different inhomogeneities emerge:

1. Boundary effects become visible. The correlations at the two edge-bonds ([1,2] and
[L — 1,L]) are significantly stronger than in the bulk which is easily traced back to the
weaker frustration of these bonds. The boundary effects get stronger and extend further
in the bulk for decreasing J. Nevertheless, Fig. 6.7 shows that the boundary effects are
well controlled and the center region of the chain is free of any boundary effects.

2. The correlations on the legs of the ladder start to differ from the correlations along the
rungs. Already for J = 1.3t it is visible that the leg-correlations are stronger as compared
to the rung-correlations. This is a bulk effect, caused by the special ladder geometry and
can be understood when analysing carefully the competing interactions for a bond on a
leg and a bond on a rung respectively. For the bond [i — 1,i] on a rung, two competing
correlations exist due to the paths: 1) i —1—i—2—diand2)i—1—i+1—i. For
the bond [i — 2,i] on a leg, only one such path exists: i — 2 — i — 1 — 4. Therefore, the
correlations along the legs are less frustrated and develop stronger values in magnitude
for (8;5;) than the correlations along the rungs. For a two-dimensional triangular lattice,
the legs and the rungs would be equivalent.

In general, the non-local correlations grow if J decreases, which make the frustration more and
more important.

For even weaker J, there is a third inhomogeneity in the correlations which can be seen at first
for J = 0.88¢;. The correlations along the rungs have an alternating behaviour reflecting a
break of the translational symmetry in form of spin-dimerization. The translational symmetry
group (a) is reduced to the group (2a), generated by translations 2a. It is clearly visible that
this is a bulk effect and with further decreasing J, the dimerization becomes stronger. For
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J = 0.8, the correlations already show an oscillating behaviour because they switch periodically
from ferro- to antiferromagnetic. The spin-dimerized state has to be interpreted as a direct
consequence to the geometrical frustration because the resultant dimerized structure alleviates
the frustration. This is best seen in Fig. 6.7 for J = 0.7¢; (top panel) for which the remaining
antiferromagnetic bonds form a bipartite nonfrustrated sub-lattice. In a finite system, even
discrete symmetries cannot be spontaneously broken but for the finite-size DMRG calculations
producing the data in Fig. 6.7, the open boundary conditions act as a weak perturbation
which break the translational symmetry of the system. Because of this small perturbation the
two different dimerized states ([ferro-anti-ferro-anti-...] and [anti-ferro-anti-ferro-...]) are not
exactly degenerate for a system with open boundary conditions while they are degenerate for an
infinite system (or a system with periodic boundary conditions). For L even a state as depicted
in Fig. 6.7 for J = 0.7¢; has a slightly lower energy as a state like the one for J = 0.83t;. This
is because in a configuration as for J = 0.7¢; there is one additional antiferromagnetic bond as
compared to a configuration as for J = 0.83¢;. Because of the small energy difference %, the
DMRG calculations converge sometimes to the wrong state dependent on the randomly chosen
initial state.

Before analysing the transition to the dimerized ground state in more detail, I will view
the evolution of the correlations along another path in the J — ¢ phase diagram. The
above considerations are done as a function of J and now I will turn to the evolution of the
correlations from the ordinary Kondo chain (t; = ¢ = 0) towards the frustrated ladder as a
function of ¢3. Fig. 6.8 shows the same quantities as Fig. 6.7 but now for a fixed value of
J = 0.7t; and various values of t5. In the limit to — 0, the lattice is bipartite and it is known
([114]) that nearest-neighbors of the ordinary chain (rung correlations) are antiferromagnetically
correlated while next-nearest-neighbors (leg correlations) are ferromagnetically correlated.
These correlations are free of any frustration and in Fig. 6.8 it is visible that the ground state
correlations are stable against a finite but small t9 (see to = 0.1¢; in Fig. 6.8). This is the
expected behaviour, since the ground state of the ordinary chain has a finite spectral gap so
that non-degenerate perturbation theory is applicable as long as the gap stays finite. The
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Figure 6.8: Nearest-neighbor spin correlations (S;S;) (color code) as obtained from DMRG for a
ladder with L = 52 sites at J = 0.7¢; and for various values of the next-nearest neighbor hopping
to as indicated.
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effect of increasing t5 is that the ferromagnetic correlations along the legs decrease because of
the geometrical frustration introduced by the hopping ¢, along the legs. Still, at to = 0.5¢;!
the qualitative picture did not change but the leg correlations decreased to (S;S;12) ~ 0.1
from the initial value (S;S;+2) ~ 0.2 for t3 = 0.1¢;. The further increase of ¢3 leads to a sign
change in the correlations along the legs as is visible for ¢t = 0.7¢; in Fig. 6.8. Now the
magnetic frustration is obvious since the localized spins S; try to align antiferromagnetically
on the triangles from the zigzag ladder. The response to the frustration is already slightly
visible for t5 = 0.76¢1: spin-dimerization along the rungs of the ladder because the correlations
differ on the \-bonds as compared to the -bonds. The dimerization is already strongly
apparent for to = 0.8¢1. There, also the oscillation from ferro- to antiferromagnetic correlations
is visible. The closeness to the transition point leads to comparably large boundary effects
for to = 0.8%1, but nevertheless the bulk region is well observable. Finally for ¢35 = 0.9%1, one
obtains qualitative similar ground state correlations as compared to J = 0.7t1,to = t; in Fig.
6.7. However, the evolution of the correlations from the weakly frustrated limit (strong J in Fig.
6.7 and weak to in Fig. 6.8) towards the strongly frustrated regime is qualitatively different.

All results so far are shown for lattices with L = 52 sites. Fig. 6.9 shows data for fixed t5 = t1
and fixed J = 0.7t; and various system sizes from L = 20 up to L = 60. Finite size effects
are nearly absent. In addition, the values of the correlations in the center region of the chain
coincide with results from VUMPS correlations for a two-site unit cell.

Phase boundary

The results from the last subsection imply that the frustrated Kondo zigzag ladder has an
extended region in the J — ¢ phase diagram in which the ground state spontaneously breaks
the translational symmetry of the Hamiltonian. To locate the phase boundary precisely, the
order parameter Op from Eq. (6.6) can be calculated. Fig. 6.11 shows the order parameter
Op as a function of J/t; (Fig. 6.11(a)) and as a function of t2/t; (Fig. 6.11(b)). In finite-size
calculations the transition is smeared out and no exact transition point can be located for finite
L. But still, the data for several system sizes L can determine the transition point accurately.

=52 /NINZNININZNINININININININININININININININININININ
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Figure 6.9: Nearest-neighbor spin correlations as in Fig. 6.7 but for different L at fixed J = 0.7¢;
and fixed t9 = t;.

1 The Lifshitz-transition point from the free band structure.



6.2 Ground state phase diagram 97

In Fig. 6.11(a) the order parameter has its lowest value for the largest system (L = 52) for
all J > 0.9¢; while it has its highest value for the largest system (L = 52) for J < 0.88¢.
Hence, one might expect that the order parameter scale to Op = 0 for J > 0.9¢; and to
Op > 0 for J < 0.88t; for L. — oo. This determines the critical value (J/tl)((:dim) to the
region 0.88 < (J /tl)((:dim) < 0.9. Additional VUMPS calculations (see the curve L = oo in
Fig. 6.11(a)) support this proposition and provide an even more accurate determination of
the transition point. Therefore, one has to scale the order parameter obtained by a VUMPS
calculation at finite bond dimension y to the infinite bond dimension limit. An example can
be seen in Fig. 6.10. For J = 0.9¢1, the order parameter Op apparently scales to zero.
On the contrary, for J = 0.89¢; one needs bond dimensions x ~ 50,000 to observe that
the order parameter will vanish in the infinite x limit. For J = 0.88t;, I have performed
the computations for bond dimensions up to x ~ 100,000 and still the extrapolation to
x = oo is not trivial. But taking into account the finite-size calculations, one concludes that
the order parameter stays finite. To conclude, both scalings (finite-size and finite-entanglement)
in combination, deliver reliable and accurate results and the critical interaction is obtained at
(J/ tl)gdim) ~ 0.885 4+ 0.005. In the parametrization used in the phase diagram in Fig. 6.4 this

corresponds to (J/t)gdim) ~ 0.63 £ 0.01.

Fig. 6.11(b) provides the same analysis but as a function of to/t;. In this case, the finite-
size calculations predict that the order parameter is Op = 0 for ¢35 < 0.76¢1 and Op > 0
for to > 0.8t;. The calculations for to = 0.78t; suggest a vanishing order parameter, but
they would be also consistent with a small but finite value of Op. The VUMPS results,
however, clearly show a vanishing order parameter for to = 0.78¢; so that one can conclude:
(tg/tl),(;dim) ~ 0.785 4 0.005. In the parametrization used in the phase diagram in Fig. 6.4 this
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Figure 6.10: The order parameter Op for dimerization as a function of 1/x for several J and
fixed to = t; as obtained by VUMPS calculations in the thermodynamic limit. The bond dimension
x refers to the total bond dimension (see Eq. (4.73)).
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corresponds to cpgdim) ~ 0.67 = 0.217 for J ~ 0.55¢t. The trend of the order parameter Op

does not reveal the order of the phase transition unambiguously. In Fig 6.11(a), the data is
consistent with a second order or weakly first order phase transition. On the contrary, the data
in Fig. 6.11(b) suggests a first order or a weakly first order phase transition. It would not be
excluded, that the order of the phase transition changes along the boundary but this would
imply another critical point. For a refined determination of the order of the transition, one
might study the fidelity (¥y(t2) | Po(t;)) but its evaluation is technically difficult because of the
two degenerate dimerized ground states. One would also need to increase the resolution in the
parameter space which would require large computational resources.

I have performed extensive calculations for various values of the parameters J and t2 () to
obtain the phase boundary in the J — ¢ plane for the transition into the dimerized ground state
(see blue line Fig. 6.4). Starting from ¢ = 7, the phase boundary decreases with decreasing J.
For J — 0, my calculations support that the critical line ends at ¢.(J — 0) = arctan (%) A
0.1487. This corresponds to to = 0.5¢; and is exactly the point of the Lifshitz transition of
the free band structure (see Fig. 6.2). Calculations in the weak-J regime are generally more
involved but the determination of the transition at J = 0.1t is still possible. However, the
state within the symmetry broken phase (to > 0.5¢1) cannot be determined as accurately as for
larger values of J. It is therefore not excluded, that the ground state has an even more complex
structure as compared to the spin-dimerization (see Subsec. 6.2.2 for further discussion of this
regime).

Starting again at ¢ = 7 but now following the other direction (increasing .J), the phase
boundary increases only until it reaches a maximum at J ~ 0.68¢t. Afterwards the transition
line bends back and (.J/ t)gdim) starts to decrease. This is the expected behaviour in fact, since
it is impossible that the transition line ends in a critical point J # 0 for ¢ = 5. As indicated
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Figure 6.11: Order parameter for spin dimerization Ogim, Eq. (6.6), as a function of a) J/t; and
b) to/t; for different system sizes L, as obtained by DMRG. The L = co values are obtained by the
VUMPS algorithm after scaling to the infinite bond-dimension limit. In a), ¢ is fixed to t2 = t;

while b) is for fixed J = 0.7¢;. The red arrows mark the transition: a) (J/tl)gdim) ~ 0.885 £ 0.005.

b) (tg/tl)((;dim) ~ 0.785 £ 0.005. This corresponds to a) (J/t)gdim) ~ 0.63 +0.01 and b) @Edim) 2
0.67 ~ 0.217 at J = 0.55¢, see the phase diagram in Fig. 6.4.
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by the paths €” in Fig. 6.3, non-degenerate perturbation theory applies for the decoupled chain
limit (¢ = §) since the ground state is unique and has a finite spectral gap in this case. The
dotted blue line in Fig. 6.4 suggests a possible further trend of the transition line towards the
J = 0 axis where the line is expected to end. It is tempting that the critical line ends in the

point ¢ = 5 and J = 0 since there is no further exceptional point in the noninteracting band

structure beside the Lifshitz transition at ¢ = arctan (%)

Transition at weak J

Finally, I will present some data for the weak-J regime (J ~ 0.1¢) in which the computations

become particularly difficult. VUMPS as well as DMRG calculations suggest a ground state for

J ~ 0.1t which is close to a valence-bond solid (VBS), i.e. (S;_18;) = —0.75 and (S;S;11) = 0.
Note, however, that an exact VBS can never be the ground state since in that case the localized

spins S; decouple completely from the conduction electron system. This is due to the monogamy
theorem of entanglement [135] which predicts, that if a subsystem is maximally entangled with
another one, it cannot be entangled with a third system. A spin-1/2 which is one part of a
singlet with another spin-1/2 is, however, maximally entangled. The entanglement entropy
is Sy = In2 which is the highest value for a system with two degrees of freedom (spin-1
and spin-|). This consideration demonstrates that the ground state cannot be an exact VBS,

however, it might be very close to a VBS.

Fig. 6.12 shows VUMPS calculations for ¢ = 7 (t2 = t1) and several values of .J for the order
parameter Op as a function of 1/x. For small bond dimensions Y, the ground state is close
to a VBS (see upper-right inset) with the order parameter Op =~ 0.75. But when increasing
the bond dimension, the ground state changes over suddenly into the standard spin-dimerized
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Figure 6.12: The order parameter for dimerization as a function of 1/x for several J and fixed
¢ = 7 as obtained by VUMPS calculations in the thermodynamic limit. The bond dimension x
refers to the total bond dimension (see Eq. (4.73)). The insets show the short-range spin correlations

in the corresponding ground states.

1 See upper-right inset of Fig. 6.12 for a color plot of the nearest-neighbor spin-correlations.
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ground state (see lower-left inset in Fig. 6.12). For weaker J, the change happens at higher
bond dimensions. This suggests that the calculations at even lower J (J = 0.1¢) are not well
converged and that the spin-dimerized phase extends to J — 0 without qualitative changes.

6.2.3 Quasi-long-range order

The general Doniach picture predicts that the indirect magentic interactions between the
localized moments mediated by the conduction electron system increase in the weak-J regime.
The development of magnetic order, however, is not realized for the ordinary Kondo chain in
one dimension and the ground state is a featurless spin-liquid for any J > 0. In the case of the
frustrated ladder, the usual increase of indirect magnetic interactions leads to a spontaneous
break of the translational symmetry (see last Sec. 6.2.2). This a direct consequence of the
geometrical frustration, whose increase goes along with the increase of indirect magnetic
interactions. It is an interesting question if the alleviation of the frustration paves the way for
a magnetically ordered ground state. In one dimension, the ground state cannot be long-range
ordered because of the Mermin-Wagner theorem. But still, a quasi-long-range ordered critical
ground state is possible. Such a state stands out by gapless spin-excitations and algebraically
decaying spin-correlations. The algebraic decay of the spin-correlations implicates that the
spin-structure factor S(q) (Eq. 6.4) diverges at a specific wave-vector ¢ = ) and likewise the
correlations length for the localized moments diverges.

I will demonstrate in the next two subsections that the spin-dimerized phase is indeed a
precursor for a quasi-long-range magnetically ordered phase with spiral spin-correlations at
wave-vector () = 5. First, I will present results for the spin-structure factor S(q) and second, I
will analyse the spin gap AFg.

. . o
Divergence of the spin-structure factor at Q = §

During this subsection, I will focus on the case to = ¢1 and analyse the spin-structure factor as
a function of J/t;. The distance dependence of the spin-correlations (S;Sit+4,) gives insights
to the amount of indirect magnetic interactions. Fig. 6.13 displays (S;Si+,) in the upper
panel for a system with L = 60 sites together with ¢ = 10 to ensure that boundary effects are
negligible. The analogue (s;s;;+4,) for the conduction electron spins is plotted in the lower
panel. In the strong J-regime, the correlations are known to decay exponentially and for
J = 3.0t; this is also well visible in Fig. 6.13. This behaviour persists down to J = 0.9¢; but
for J = 0.7t1, the correlations suddenly extend over the entire system. The conduction electron
spins undergo a similar behaviour but the absolute magnitude of (s;8;1 ;) is much smaller as
compared to the localized moments. This can be traced back to the weak local moment (s?)
of the conduction electrons which is e.g. (s?) ~ 0.4 for J = 0.7¢t;. This value is only slightly
larger than the value (s?) = % for the noninteracting Fermi gas.

Furthermore, the correlations develop a characteristic period Ai = 4, which is already slightly
visible for J = 0.9¢;. This characteristic wave-length can be observed more clearly in momentum
space when considering the Fourier transformation of the spin-correlations, i.e. the spin-
structure factor from Eq. (6.4). Fig. 6.14 shows the spin-structure factor S(g) as a function of
J/t1 in a color plot and provides an overview over the development of S(q) from the strong-.J
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Figure 6.13: Top: Distance dependence of the spin correlation function (S;S;;,) for i = 10,
obtained by finite-size DMRG for L = 60 sites, t; = t2 and for various coupling strengths J/¢;.
Bottom: the same but for the conduction-electron spin correlations (8;8;4 ;).
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regime (J ~ 3.0t1) towards the intermediate-J regime (J ~ 0.5¢1). For J > 0.84t;, the spin-
structure factor is featureless and has a broad maximum located at ) > 7. On the contrary, for
J < 0.84t; one observes a sharp peak of S(¢) at @ = § which might be a feature of a quasi-long
range magnetic ground state if the peak height diverges in the thermodynamic limit L — oo.
The peak formation is also displayed in Fig. 6.15 for four different values of J/t1. For J = 3.0t1,
the location of the broad maximum is found at () =~ 1.82 which fits exactly the position predicted

2
by strong-coupling perturbation theory (Eq. (5.16)): @ = arccos ( 4t2) 1.82 = 104° as
indicated by the green arrow in Fig. 6.15.

The L-dependence of the peak height for J < 0.84¢; is of particular importance for the question
whether the ground state exhibits quasi-long-range order or not. I have therefore displayed
S (Q = g) as a function of L in Fig. 6.16 with a logarithmic L-axis. While for J > 0.84ty,
S (g) converges to a finite value for L. — oo, the data for J = 0.7t; propose a logarithmic
divergence of S (g) when reaching the thermodynamic limit. This is consistent with spin-

correlations in real space in the form:

e~ iRAI |7 (Az)

A, , (6.7)

(8iSiyn;) ~
i.e. with an algebraic decay for increasing distance. Indeed, an easy calculation shows that if
the real-space correlations have the form as in Eq. (6.7), the Fourier transformation becomes:

S(Q) ~In'to L (6.8)

The data in Fig. 6.16 is not sufficient to determine the possible logarithmic corrections ¢ to
the power law behaviour from Eq. (6.7) but it is nevertheless a clear sign for quasi-long-range
spiral magnetic order in the ground state at wave-vector () = %

To corroborate this proposition and to find the critical interaction J(gmag), a refined finite-size
scaling analysis is helpful. Since the specific finite-size dependence of S (g) is not known for
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Figure 6.15: Spin-structure factor S(q) for different J/¢; as indicated and for L = 60 sites.
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Figure 6.16: Spin-structure factor S(Q) at @ = 7/2 for different .J/¢; as functions of L on a
logarithmic scale.

couplings J > Jc(mag), the data collapse method [136-138] is appropriate. Here, the general
idea is to absorb the finite-size dependence in a scaling function f (z) for the dimensionless
parameter x = % where ¢ is the correlation length (see App. C for a detailed description). The

correlation length is readily obtained from the DMRG data for couplings J > c(mag) from a fit

of the distance dependence of the spin-correlations:

4
3

(SiSiyn,) =const x e €, (6.9)

14
and is expected to diverge at (gmag) as £ x (J - C(mag)> . For a fized system size, the

correlation length ¢ is displayed in Fig. 6.17(a) as a function of J/¢;. The data is well described
by a power law fit for a critical interaction (J/ tl)gmag) ~ 0.84. The only deviations from the
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Figure 6.17: The correlation length §7,—40 and the spin-structure factor S(Q)r=40 at Q@ = 7 as a
-X
function of J/t;. Both are fitted with a power law (J - Jc(mag)) with X = {v}.
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power law behaviour is visible for J =~ Jc(dim) = 0.89¢1, which is traced back to the influence of
the phase transition into the spin-dimerized phase.

)

Eq. (C.7) describes the data collapse for the static magnetic susceptibility xr, (w =0,Q =
for a system of size L. The static magnetic susceptibility is defined as:

wol3

Xo(w=0,Q) = lim — Ze_ZQ’j / dr(S (0)) (6.10)

B—0 L

For a continuous phase transition, the susceptibility x1 .o is expected to diverge with a power
-
law behaviour x o (J - Jémag)> (see Eq. (C.2)). However, the static susceptibility is a

numerically expensive quantity as compared to the spin-structure factor from Eq. (6.4).
The spin-structure factor is the equal-time susceptibility and one may expect that these
two quantities share a similar divergent behaviour. Hence, I will evaluate Eq. (C.7) for the
spin-structure factor instead of the static susceptibility. For a fized size L = 40 the divergent

(mag)

behaviour of S (5) is well visible in Fig. 6.17(b) where the critical interaction J¢ is again
found to be (J/t1)£mag) ~ 0.84. Similar to Fig. 6.17(a), the only deviations are found in the

vicinity of the dimerization phase transition at Jc(dim).

The data in Fig. 6.17 is calculated for t; = t9 at fized system size L = 40. It provides therefore
only a hint to the divergent behaviour of both quantities while truly divergent behaviour can
only occur in the thermodynamic limit L — co. The data collapse condition (Eq. C.7) for
S (g), however, is a reliable check for divergent behaviour for L — oco. I find, that the curves

collapse for system sizes L = 20,24,28,32,40 when choosing (J/tl)gmag) = 0.84, v = 0.4 and
g)

v = 0.2 as is showed in Fig. 6.18. While the critical interaction Jc(maL can be determined
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Figure 6.18: Finite-size scaling for S (3) (see text). The data for different L as indicated and for

J/t; = 0.85,0.86,...,0.95 collapse to a single line at (J/tl)((:mag) ~ 0.845, v ~ 0.4 and v ~ 0.2.
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rather precisely, up to a few percent, the critical exponents v and v have a much larger error.
This is caused by the nearby phase transition into the spin-dimerized ground state.

In summary, the analysis of the spin-structure factor and the correlation length unveils a second
quantum phase-transition in the Kondo zigzag ladder at a critical interaction (J/ tl)((:mag) ~
0.84 and t9 = t1. The transition is in the direct vicinity of the dimerization transition at
(J /tl)((:dim) ~ 0.89 but the data clearly propose Jimag) (dim) - phisis consistent with the
intuitive picture, that the dimerization paves the way for a magnetically ordered ground state

since it alleviates the geometrical frustration.

Spin gap AFEg

An independent possibility for the determination of the magnetic phase boundary is the spin

7(mag)

gap AFEg because it vanishes at the transition point J; . The spin gap is defined as the

following energy difference:
AEg=FE(S=1)—E(S=0), (6.11)

where F(S) describes the ground state energy in the sector of the Hilbert space which transforms
under the spin-S representation of SU(2). With the help of the SU(2)-symmetric implementa-
tion, one is able to target states with fixed S directly, so that the spin gap can be computed to
high precision. A gapless ground state can only occur in the thermodynamic limit since for
finite L the complete spectrum of the Hamiltonian is discrete. Hence, the spin gap for finite
systems AFg(L) needs to be scaled to the limit L — oo. If one assumes quasi-particle gapless
low-energy excitations with a dispersion w(k) = ck, the functional dependence AEg(L) follows
from the discretization of k-space:

ABs(L) % (6.12)
at least in the gapless case. Notice that this would be different, if the dispersion of the low-energy
excitations would be quadratic. In the right panel of Fig. 6.19(a) (Fig. 6.19(b)), one can see
numerical DMRG data for the spin gap AFEg(L) for several values of J/t; (t2/t1) as a function
of L=!. The data is extrapolated to L — oo with the ansatz AEg(L) — AEg(c0) o , where
AFg(00) is the spin gap in the thermodynamic limit. The extrapolated values are displayed
in the left panel of Fig. 6.19(a) (Fig. 6.19(b)) as a function of J/t; (t2/t1). The error bars
display the uncertainty from the linear extrapolation in L~!. The data is consistent with a

linear closure of the spin gap both as a function of J and as a function of ¢5:
AEg o J — J™)  and AEg x ty — tgcnag) (6.13)

The data in Fig. 6.19(a) is calculated for fixed t2 = ¢; and the spin gap vanishes at

(J/tl)ﬁmag) ~ 0.84 + 0.03 (see horizontal red bar in the left panel of Fig. 6.19(a)). This
value is in excellent agreement with the critical value determined in the last subsection
by examining the divergence of the spin-structure factor. Fig. 6.19(b) yields a critical value

(tg/tl)gmag) ~ 1.26 £ 0.03 for the transition as a function of ¢y for fixed J = t;.

An overview of the evolution of the spin gap in the whole parameter space is also interesting.
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Figure 6.19: Right panels: L-dependence of the spin gap. Lines: linear fits AEs(L) — AEg(00)
1/L. Left panels: AEg(c0), obtained by extrapolation to the 1/L — 0 limit, as a function of a)
J/t; and b) to/t;. Bars: extrapolation errors
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Figure 6.20: The evolution of the spin gap AEg [see Eq. (6.11)] and the charge gap AFE¢ [see Eq.
(6.14)] as functions of next-nearest-neighbor hopping to/t; at J = 0.7¢; from the ordinary chain
limit (t2 = 0) to the frustrated zigzag ladder (t2 ~ ¢1). All values are obtained by extrapolation to
the thermodynamic limit. Bars: errors of the fit. Blue dotted line: linear fit AEg o< (t2 — tye? ).
The spin gap closes at ty'c? ~ 0.83t; +0.03t;. This corresponds to ©*9(J) ~ 0.69 ~ 0.227 at
J = 0.54t, see the phase diagram in Fig. 6.4.

Strong-coupling perturbation theory proves that the spin gap is of order J for J > t1,t5. The
gap then decreases monotonically with decreasing J and this trend is already visible in the left
panel of Fig. 6.19(a). On the contrary, the situation is different for the evolution of the gap
as a function of t3. The evolution of the gap from the ordinary chain limit ({2 = 0) towards
the frustrated Kondo zigzag ladder (to ~ t1) is displayed by the blue curve in Fig. 6.20. In
the limit of the ordinary Kondo chain (t; = 0), the spin gap is already very small but clearly
finite (AFEg/t1 =~ 0.01). When increasing to, the spin gap undergoes the expected behaviour: it
increases because the next-nearest neighbor hopping introduces geometrical frustration. At a
maximally frustrated point ¢3, the spin gap has a maximum and starts to decrease for even
larger to. Surprisingly, the decrease is clearly different from the increase and in Fig. 6.20, the
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gap vanishes at tgj?g ~ 0.83t; £+ 0.03t; (J = 0.7t1).
Fig. 6.20 displays additionally the evolution of the charge gap AE¢ (red line) defined as:

A — E(L +2,0) + E(; —20) —2E(L) (6.14)

It is well visible that the charge gap is considerably larger than the spin gap and stays finite in
the whole to regime. The effect of to is a decrease of AE¢- which can be traced back to the
enhanced freedom of the conduction electrons due to the next-nearest neighbor hopping. I have
also checked that the gap is finite in the whole J regime for t5 = ¢; so that the zigzag Kondo
ladder at half-filling is an insulator in the whole J — t; — to parameter space if J > 0.

The criterion of a vanishing spin gap has turned out to be more suitable for the determination
of the phase boundary for the transition into the SP-QLRO phase. I have performed analogue
computations for various parameters as indicated by the red points in the global phase diagram
(Fig. 6.4). In all cases, the magnetic transition is close to the dimerization transition but
the magnetic phase is clearly surrounded by the dimerized phase. The latter is expected
to extend down to the J — 0 limit as discussed in Subsec. 6.2.2. Whether the magnetic
phase also extends to the weak coupling limit, is an interesting question. However, DMRG
computations become quite exhausting in the weak coupling regime since the entanglement
grows dramatically due the increase of non-local effective interactions. Therefore, I could not
make a conclusive statement in the weak-J regime but I will present several scenarios in the
upcoming subsection.

Transition at weak J

The weak-J regime is dominated by strong nonlocal effective interactions between the localized
moments. One route to tackle the problem in this regime is to apply weak coupling perturbation
theory but I will start here by presenting calculations for the spin gap at J = 0.1¢; for
the full Kondo lattice. Fig. 6.21 displays results for the spin gap in the weak coupling
regime (J = 0.1t1). Calculations for the ordinary chain limit (¢ = 0) are well controlled
even in the weak-J regime. The red curve AEg(L) in the left panel of Fig. 6.21 is a perfect
linear function of 1/L and extrapolations to L — oo lead to a very small but finite spin gap
AFEs/t; ~ 1.97 x 107°. For small to, the spin gap is almost unchanged. It slightly increases
to AEg/t; =~ 2.00 x 1075 which cannot be seen on the scale of the figure. The increase
constitutes the same behaviour as in Fig. 6.19(b) and continues for to = 0.2¢;. However,
already at o = 0.3t1, the spin gap has decreased slightly to AEg/t; ~ 1.97 x 107 so that
the maximally frustrated point t3 satisfies 0.2¢; < t5 < 0.3t;. The computations for to = 0.3¢;
are still well controlled and the extrapolation error is of the order of the symbol size. For
even stronger to = 0.4¢1, the spin gap drops significantly (AEg/t; ~ 1.27 x 107°) and the
extrapolation becomes less clear. One might actually guess that the curve for ¢t = 0.4¢1 in the
right panel of Fig. 6.21 obeys a quadratic scaling AEg o< L™2 but it is also possible that the
calculations for L = 40 (L~! = 0.025) are not fully converged and the true gap for L = 40
is slightly smaller. For t9 = 0.5¢1 ~ tgfén, it was not possible to reach converged results even
with the SU(2)-symmetric DMRG implementation. Hence, there is no conclusive answer, if

the spin gap closes at some 5 .. But one can clearly say that first, the spin gap remains finite
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Figure 6.21: Right: The spin gap AEs(L) as a function of L~!. Dashed lines are extrapolations
to L™1 — 0 with a linear ansatz: AEg(L) — AEg(00) oc L™1. Left: The spin gap AEs in the weak
coupling regime J = 0.1¢; for several values of t5/t; as obtained by extrapolations to L — co.

when including a small ¢5 and second the spin gap is asymmetric with respect to the maximal
frustrated point ¢ (the location of the maximum of AEg(t2)).

Since direct computations are beyond the numerical capabilities, one may tackle the problem
perturbatively in the Kondo interaction J. Because of the high degeneracy of the ground state
for J = 0, the perturbation theory is much more involved as compared to the strong-J limit. One
can derive an effective low-energy Hamiltonian for the localized moments by standard RKKY
theory (see Sec. 5.2.2). Before calculating the parameters J;; of the effective Hamiltonian, one
may discuss the conclusions from the existence of a spin-only effective model at weak J. For
pure spin-models, one can express the Lieb-Schultz-Matthis (LSM) theorem [139, 140] which
states:

Theorem 6.1 (Lieb-Schultz-Matthis Theorem). If the ground state of a half-integer spin model
is nondegenerate, the excitation spectrum is gapless in the thermodynamic limit.

The contrary proposition for degenerate ground states is not true in general. Note also, that
the theorem does not make any propositions for integer spin models. The ground state of the
ordinary Kondo chain (t2 = 0) is known to be nondegenerate for all J > 0. Furthermore, the
ordinary Kondo chain has a finite spin gap. Both together is in contradiction to the LSM
theorem so that one can conclude that the RKKY theory does not apply to the case to = 0. As
demonstrated above, the finite spin gap and the unique ground state is stable against a weak
to so that this regime cannot be described by RKKY theory either. However for to > tgfén, the
ground state is twofold degenerate so that the LSM theorem is not applicable and the system
might be described by an effective low-energy theory for the localized moments.
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The spin-only Hamiltonian (Eq. (5.21)) has interactions .J;; determined by the static suscepti-
bility x;;(w = 0) of the noninteracting conduction electrons:

B
Xij(w =0) = lim dr (s;(7)s;(0)) (6.15)
=00 Jr=0
Because of the absence of interactions, this can be easily evaluated by using Wick’s theorem.
For a non-degenerate Fermi sea, one obtains:

Ui UL U;, U

Xijlw=0)= > w, (6.16)
k>kp,q<kp

where U, describes the unitary diagonalization of the hopping matrix ¢;;. Eq. (6.16) can
be evaluated numerically. Fig. 6.22(a) displays the distance dependence of the suceptibility
Xij for a chain with L = 80 and open boundary conditions. For ¢ = 0 (the ordinary chain),
one observes the expected regular pattern: x;; oscillates with a period (—1)%. This oscillation
expresses itself in a sharp peak of the Fourier transformation x(Q) at the antiferromagnetic
wave-vector Q = 7 (see Fig. 6.22(b)). Furthermore, x;; decays rather slowly which is a typical
behaviour for one-dimensional systems. In fact, the susceptibilty behaves as:

_]_)Ai

AT (6.17)

Xiyi+A; X
for d-dimensional bipartite lattices [141, 142]. The 1/A; behaviour will lead to a divergence of
X(Q = m) in the thermodynamic limit L — oo.

On the contrary for to = t; (the frustrated ladder), the pattern is rather disordered and several
periodicities are present. This results in several peaks of the Fourier transformation x(Q). The
dominating peak is found at @) = 5. Again, the decay seems to obey a power law behaviour.

To prove this, I have plotted the L-dependence of the maximum of x(Q) in Fig. 6.23. In this
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(a) Distance dependence: x;i+a; (i = 20). (b) Fourier transformation of x;;.

Figure 6.22: The static susceptibility x of the conduction electrons for a chain with L = 80 sites
and open boundary conditions. Data is calculated for the ordinary chain (¢t = 0) and the frustrated
ladder (tg = tl).
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case, the calculations are done for periodic systems, for which one can perform the Fourier
transformation analytically:

_ 1 NQtkt — Mk,
X(@Q) = QL%: E(k>+_ RN (6.18)

Fig. 6.23 shows that the peak height of x(Q) indeed diverges logarithmically with the system
size for both to = 0 and t2 = t;. However, the finite-size effects of x(Q = %) are remarkable
for to = t1 and indicate the complexity of the effective Hamiltonian. Note that the divergence
could also be derived from Eq. (6.18), when expanding the denominator in k around k = kp.
This leads to a logarithmic divergence for all nesting vectors (). The ordinary chain has only a
single nesting vector Q = m, while the frustrated ladder (t3 = t1) has several nesting vectors,

amongst others Q) = 7 (see Fig. 6.2).

A solution of the effective low energy Hamiltonian (Eq. (5.21)) is difficult for several reasons.
First, the Hamiltonian has power law interactions so that it is not suited for the DMRG method.
Second, the effective couplings J;; have strong finite size effects, so that the model needs to be
solved for large systems to eliminate the finite size effects. Nevertheless, I have studied the
effective model briefly with DMRG and exact diagonalization. I have observed the following:

o For open boundary conditions, the short-range spin correlations are dimerized in the
center of chains up to L = 32. However, strong finite-size effects are present. In particular,
it is found that for some system sizes the ground state is not in the S = 0 sector of the
Hilbert space but has a small spin S = 2.

e For periodic boundary conditions, the spin-correlations are translational invariant. This is
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Figure 6.23: The maximum value of xg as a function of L on a logarithmic scale. For t5 = t1,
the maximum is at Quax = § and for 13 = 0 at Quax = 7.
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the expected behaviour in fact, since the translational symmetry cannot be spontaneously
broken for finite periodic systems. Exact diagonalization calculations show, that the
ground state is non-degenerate for systems up to L = 20. The first excited state is in the
triplet sector, so that a closure of the spin gap could also induce a symmetry broken state.
It was not possible to scale the gap to the L = oo limit because the finite size effects are
too strong. Beside the spin gap, also the excitation gap in the S = 0 sector might scale
to 0 and produce a symmetry broken state.

In summary, I cannot exclude that the RKKY theory applies in the weak-J limit for ¢5 > tglén
If the RKKY Hamiltonian would describe the physics correctly, it is tempting that the magnetic
phase extends to the limit J — 0. In the other case, one would expect that the magnetic phase
forms an island in the J — ¢ phase diagram.

6.3 Comparison with the classical frustrated Kondo ladder

At the end of this chapter, I will compare the obtained results for the J — ¢ phase diagram
to the classical spin variant of the Kondo lattice. The Kondo lattice with classical spins is a
quantum-classical hybrid model which contains both quantum mechanical degrees (conduction
electrons) and classical degrees of freedom (localized moments). The Hamiltonian for this
system looks the same as compared to the quantum-mechanical case:

H = —tl Z (C;raci_;,_lg + h.C.) - tQ Z (C;[JCH_QJ + h.C.) + JZSZ -8 (619)

But in this case, the localized moments S; are classical vectors with |S;| = 1/2 while the
electronic quantities are unchanged. The ground state for this model can be obtained by
minimizing the following energy functional of the spin configuration {S} = (S1,...,51):

J
E({S}) = Z (tii’(scra’ + 5(7' : Si)oa"(sii/> (Cj-gcz'/a/){s}, (6.20)

ii'oo’!

where T is the vector of Pauli matrices and the expression within the brackets defines an
effective hopping matrix tf) | The expectation value (c;-rgcilaf>{3} is the one-particle reduced
density matrix p;i,o/. For a fixed spin configuration, it can be obtained by diagonalization of

' 2 ¥ \

Figure 6.24: Parameterization of possible classical spin configurations. 26: angle between
neighboring spins along the legs of the zigzag ladder. 8 + Af and § — Af: alternating angles between
neighboring spins along the rungs. Af # 0 indicates a dimerized state. Incommensurate spiral
states with pitch angle 0 are described with Af = 0. For the given example spin configuration,
0 =m/2, A9 > 0. It is sufficient to consider the parameter ranges 0 < 0 < 7 and 0 < Af < /2.
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the effective hopping matrix:
p = 0(—t M) = Uvo(—e)UT, (6.21)

where U is a unitary matrix which diagonalizes the (Hermitian) effective hopping matrix and
© denotes the Heaviside step function. The variational set is already considerably large for
systems with L ~ 100 so that one might choose a particular parametrization for the spin
configuration which covers the physically significant sector. Ferromagnetic, antiferromagnetic,
spiral and dimerized configurations can be parametrized by two parameters (¢,Ad) as sketched
in Fig. 6.24. The parameter space consists in this case of 0 < ¢ < 7 and 0 < AY < /2 since
¥ — 7 — ¢ and AY — m — AY is a symmetry. Furthermore for periodic boundary conditions,
the allowed pitch angles ¢ fulfill 9 = n2x/L with integer n. The minimization process can the

be performed by numerical diagonalization of the effective hopping matrix ¢(¢ff).

In the case of AY = 0, one can apply a Fourier transformation to simplify this procedure. In
this case, the classical spin at site ¢ can be described by:

cos(qR;)
S, =S| sin(qR;) |, (6.22)
0

where ¢ describes the wave vector of this spin wave configuration which corresponds to the
angle 9 between neighboring spins. Inserting this into Eq. (6.19) and performing a Fourier
transformation c;rg = ﬁ >k eZkRic;LU, one can transform the Hamiltonian into a 2 x 2 matrix
for each value of k:

1= (o) (W o) () (0:29)

with A = % and k @ g denotes the summation of wave vectors with backfolding into the first
Brillouin zone if necessary. The 2 x 2-matrix can be diagonalized for each k leading to two
bands:

By (kg) = BT ECD) \/ (ke q>)2 e (6.21)

Note that there is not always a gap between both bands so that the filling of the bands is
nontrivial for particular values of q. However, the remaining part of the minimization can be
performed numerically for systems up to L = 100,000 sites without difficulty.

A similar procedure can be applied to the case of a dimerized spin configuration t1/J171 ---. in
this case, one has a two-site unit cell and the spin configuration is realized by choosing:

S1a = (-1)!Se., (6.25)

where I denotes the unit cell and a = 0,1 labels the site within each unit cell. Plugging this
expression into Eq. (6.19) and working out the Fourier transformation for the unit cells, one
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obtains a 4 x 4 Hamilton matrix for each value of K

_ T T T T
H = Z Z (CKO,O' CKLO' CK@WO,O’ CK@WLO’)
o K

EQ(K 81(K) A 0 CKO,U (626)
€1 (K)* EQ(K) 0 A CK1,0 7

A 0 —EQ(K) El(K D 71') CKGBTrO,a

0 A g(Kor)* —e(K) CK®rl,o

with dispersions ez(K) = 2tz cos(K) and e1(K) = t;(1 + e ). This matrix cannot be
diagonalized analytically but straight-forwardly with a computer. Note that in the case of Eq.
(6.26) there is no variational parameter anymore but Eq. (6.26) describes the energy of the
dimerized collinear spin configuration.

With this at hand, one can explore the phase diagram of the classical Kondo zigzag ladder in
the J — ¢ plane. Fig. 6.25 displays the calculations performed by Lena-Marie Woelk. The data
can be compared with the phase diagram of the quantum model (Fig. 6.4):

1. The magnetic patterns found for the classical model are the same as for the quantum
case; namely the antiferromagnetic (AF), the incommensurate (IC) and the spiral (SP)
pattern. A crucial difference is however, that all of these magnetic patterns are long-range
ordered. This is due to the absence of the Kondo effect and the quantum fluctuations.

2. The classical model shows also a large region in which the translational symmetry of
the Hamiltonian is spontaneously broken. This is remarkable and serves as a simple
explanation of the spin-dimerization. The dimerization is definitely a direct consequence
of the geometrical frustration and shows up already in the case of classical spins.

3. The critical line Jc(dim)(go) is about one order of magnitude above the line for the quantum

case. E.g.: Jédim)(go = 7/4) ~ 6.4t in the classical case and Jc(dim)(go =7/4) =~ 0.62t in
the quantum case. This can be traced back to the mean-field character of the classical
spin theory since these approximations tends to overestimate the ordering as compared

to the full quantum case where quantum fluctuations always act against the order.

4. The classical phase diagram has a triple-point at (¢ = 0.1887,J = 4.1¢) which is absent
in the quantum case. As presented in Sec. 6.2.1 for the quantum case, the critical line
separating AF-SRO and IC-SRO ends in a critical point before reaching the transition line
for the dimerization. It was argued that this is caused by a precursor of the SP-QLRO
phase, namely a peak in the spin-structure factor at () = 5. The spiral magnetic order in
the quantum model competes with the Kondo screening which is absent in the classical
approximation. Hence, there is no development of magnetic order in the classical model?
so that the critical line reaches the ‘triple point*.

5. The critical line gpgdim)(J ) does not bend back but terminates at a critical point (¢ =

0.57,J = Jait). This is another major difference as compared to the quantum case, where

1 Since the unit cell contains two sites, there are only L/2 k-points in the first Brillouin zone.
2 The whole J — ¢ plane is magnetically ordered in the classical case.
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Figure 6.25: J — ¢ magnetic phase diagram of the classical-spin variant of the Kondo lattice with
an antiferromagnetic phase (AF, § = w, Af = 0), an incommensurate spiral phase (IC, 7/2 < 0 < m,
Af = 0), and a dimerized phase (DIM, 6 = 7/2, A@ = 7/2). The dashed line indicates t; = to
(¢ = m/4). Calculations have been performed for L = 200. This is sufficient for convergence, except
for the regime ¢ > 7/4 where much larger systems with up to L = 100,000 sites are necessary (see

text for discussion). The dotted line interpolates between the data points.

this scenario is excluded. In the classical case, it is not because the limits ¢ = 7/2 (two
decoupled chains) and ¢ = 0 (single chain) have highly degenerate ground states as
opposed to the quantum case where the corresponding ground states are non-degenerate.

Finally, I want to emphasize that the spin-dimerized phase is also non-perturbative in the
classical case. Strong J perturbation theory as well as perturbation theory in ¢; (valid for
arbitrary to and J) and to (valid for arbitrary ¢; and J) does not reproduce a spin-dimerized
phase. Even the weak-J RKKY theory does not capture the spin-dimerization [143].
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The doped frustrated Kondo ladder

In most common quantum lattice models, half-filling represents a very special case with very
distinct properties as compared to the doped regime. This is due to the enhanced charge degrees
of freedom which are present in the doped regime. Half-filling corresponds to n := % =1 and
the hole doped regime is obtained for n < 1 while the electron doped regime corresponds to
n > 1. For a bipartite lattice, a particle-hole transformation maps the physics for n > 1 onto
the case n < 1 and the phase diagram is symmetric with respect to half-filling. This is not
true for the frustrated Kondo ladder since the next-nearest neighbor hopping to breaks the
particle-hole symmetry. However, a particle-hole transformation maps the phase diagram for
+to and n > 1 to —t3 and n < 1. Hence, it would be sufficient to study the frustrated Kondo
ladder only in the hole doped regime but for both signs of t5. Since the DMRG method can
handle hole and electron doping with equal computational cost, I will analyse the model for a

fixed sign of to! and all fillings 0 < n < 2.

As already discussed in Sec. 5.1.2 and 5.1.3, one expects a metallic ground state in the doped
regime. The metallic phases can often be described by Fermi liquid theory for dimensions d > 2
but with highly renormalized parameters. In particular, the large effective mass motivated
the label heavy fermion systems. In the heavy fermion materials, one has also found non
Fermi-liquid behaviour including unconventional superconductivity [103] for example. In the
one-dimensional case, Fermi liquid theory fails in general and the ground state might be
described by Tomonaga-Luttinger liquid (TLL) theory [144] instead.

In this chapter, I will start with collecting the results for the doped regime of the ordinary
Kondo chain (t3 = 0) in Sec. 7.1. Afterwards, I will present an overview over the ground state
phase as obtained by my DMRG calculations in Sec. 7.2. This includes a detailed discussion of
the infinite-J limit, the ferromagnetic regions and the short-range spin correlations.

7.1 Summary for the ordinary Kondo chain

The ordinary Kondo chain was extensively studied over the last decades. Major results were
collected in the review of TSUNETSUGU et al. [114]. The doped regime n < 1 contains a
ferromagnetic phase above a critical line J¥™(n) and a paramagnetic phase below this line.
However, it was missed at the beginning that an additional ferromagnetic phase occurs in
the intermediate J region for fillings % <mn <1 (see Fig. 7.1). This phase was detected in

1 1 choose t2 > 0 for the Hamiltonian as in Eq. (6.1)
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n

Figure 7.1: J — n phase diagram of the ordinary Kondo chain taken from Ref. [117] (Fig. 1
therein, black dots are obtained from the authors of Ref. [117], red dots are obtained from the
authors in Ref. [116]).

Ref. [115]. The extreme case of only one conduction electron is known to be ferromagnetic
for a long time [145] and this ferromagnetic phase is also stable in the low density limit [146]
and generated by a double-exchange mechanism [147]. As a mechanism for the ferromagnetic
state at high densities, PETERS et al. [117] propose the notion of the spin-selective Kondo
insulator. Here the idea is that in the polarized ferromagnetic state (myot = Stot = %(L —N))
the minority conduction electrons are Kondo screened by the minority spin projection of the
localized moments while the majority conduction electrons generates the metallic state. This
leads to an emergent commensurability condition:

1 z

if the minority spin projection is |. In Ref. [117] it was argued that this emergent commensu-
rability is found also in the second ferromagnetic phase of the Kondo chain and is even present
at low densities.

The nature of the paramagnetic region has been more unclear though. The physics in this case
can be described by TLL theory but a central question is if the local moments contribute to
Luttinger’s sum rule or not. This question is often formulated as: is the Fermi surface large
(local moments do contribute) or small (local moments do not contribute)? Numerical studies
proposed a large Fermi surface for intermediate and strong J below the ferromagnetic phase
[116, 148-150]. In the review [114], the authors show that the Fermi surface is large in the
infinite-J limit when the ferromagnetic phase is destroyed by a small t5 with the correct sign. A
recent DMRG study confirms that the Fermi surface is large in between the two ferromagnetic
phases [118]. If the large Fermi surface extends to the weak J regime is not entirely understood.
Some authors propose a RKKY liquid below the second ferromagnetic phase with a small
Fermi surface [116, 150]. That would mean that the second ferromagnetic region would be the



7.2 Ground state phase diagram 117

separation between the large Fermi surface above and the small Fermi surface below for fillings
% <n < 1. A small Fermi surface was also suggested for fillings below quarter filling but the
situation is not clear in the weak J regime [116]. The transition at quarter filling from a large
Fermi surface to a small Fermi surface is conceivable since exactly at quarter filling the ground
state is found to be insulating [120, 151], i.e. there is no Fermi surface. The study at quarter
filling unveils also a spin-dimerized ground state driven by the RKKY interactions [120]. Very
recently, another DMRG study unveils a charge-density wave ground state of the Kondo chain
at three-eighth filling (n = 2) below the second ferromagnetic phase [152].

The above summary demonstrates that also the ordinary Kondo chain has a very rich phase
diagram in the doped regime. In my present study, I will focus therefore on particular aspects
only. Firstly, I will discuss the infinite-J limit which can be mapped to the U = co Hubbard
model. Afterwards, I will analyse the development of the ferromagnetic phases as a function
of o and analyse the short-range correlations at quarter and three-quarter filling respectively.
Let me finally note, that the question of the size of the Fermi surface is much more difficult
as compared to the ordinary chain since the topology of the Fermi surface may change for a
sufficiently large t9. In this case, one would have more than two Fermi points and the simple
relation kp = in®F (kp = 1(nF + 1)) for the small (large) Fermi surface is not valid anymore.
Here, n®F denotes the filling of the conduction electrons.

7.2 Ground state phase diagram

In this section I will present a condensed summary of the ground state phase diagram for the
frustrated Kondo zigzag ladder as a function of doping n, Kondo coupling J and next-nearest
neighbor hopping to. A detailed discussion of the infinite-J limit follows subsequently in Sec.
7.2.1. Afterwards, I will analyse the ferromagnetic regimes in more detail in Sec. 7.2.2 and
finally discuss two specific cases from the paramagnetic region in Sec. 7.2.3.

The ground state phase diagram for the frustrated zigzag ladder off half-filling has as a third
axis the concentration n of conduction electrons. The electron concentration n is defined as:

n =

7.2
-, (72)
where L is the number of lattice sites and N the number of electrons. Fig. 7.2 displays the
schematic J — n phase diagram for the case to = t1. As expected, the phase diagram has a
strong asymmetry with respect to half-filling, i.e. hole-doping (n < 1) is different from electron-
doping (n > 1).

At half-filling, the phase diagram was intensively discussed in Chap. 6: at strong J the ground
state is a Kondo insulator with gapped excitations (green area). A first critical point then
marks the transition into a spin-dimerized phase (yellow area) and a second critical point
separates a quasi-long-range ordered spiral phase.

At hole-doping, the ground state is ferromagnetic (red area) in a large region for sufficiently
large J. The shape of the critical line J¥™(n) is qualitatively different as compared to the case
to = 0 (see Fig. 7.1). This is attributed to an additional van Hove singularity in the density of
states. In the paramagnetic region at quarter filling, there is a second dimerized phase at weak
coupling.
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U= Hubbard-Model
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Figure 7.2: Schematic J —n phase diagram of the Kondo zigzag ladder for fixed t5 = ;. Indicated
phases are: 1) FM: ferromagnetism, 2) PM: paramagnetism, 3) KI: Kondo insulator, 4) DIM: spin-
dimerized and 5) SP AFM: spiral antiferromagnetic order. Small pictograms display short-range
correlations of the corresponding ground states.

For electron doping, most parts of the phase diagram are paramagnetic. In the limit J — oo,
this is understood since the next-nearest neighbor hopping ¢2 leads to a paramagnetic state just
as in the U = oo Hubbard model [153]. However at intermediate coupling strength and strong
electron-doping there is a small ferromagnetic island. At three-quarter filling and weak J, the
ground state develops ferromagnetic clusters of size Lo = 4 which constitutes another form
of translational symmetry breaking. This is indicated in Fig. 7.2 by a sketch of the emerging
clusters at n = 1.5.

7.2.1 Infinite-J limit

In the limit J = oo, the Kondo lattice simplifies considerably but still, the remaining degrees
of freedom build a non-trivial lattice model for fillings off half-filling. Lets recap the atomic
eigenstates of the KLM as introduced in Tab. 5.1. In the case of N < L (hole doped regime),
N sites are in the Kondo singlet state (state number 1 in Tab. 5.1) while L — N sites are in
the states number 2 or 3. On these sites, the unpaired local moment has a spin-projection o.
In total, there are three remaining states while the other five states are projected out through
the constraint J = oo (see Fig. 7.3 for a pictorial representation). Note that at half-filling
the model would become trivial since only a single state would remain. In the other case
(N > L, electron doped regime), the situation is similar but in this case the N — L excessive
electrons build local states 4 and 5. Still the corresponding local moments deliver a spin degree
of freedom via their spin-projection o.

After the determination of the relevant local basis states, the next task is to find the Hamilton
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Figure 7.3: From originally eight local states for each atom of the KLM, only three states remain
in the J = oo limit while the other five are projected out. This figure displays the three remaining
states for the hole doped regime (N < L). For electron doping (N > L), states 1, 4 and 5 would
remain.

operator restricted to these basis states. LACROIX [154] found an exact mapping to the U = oo
Hubbard model via identifying the Kondo singlet as the empty state of the Hubbard model
and the states 2 and 3 as the singly occupied states of the Hubbard model with spin-projection
o. This means that the unpaired localized moments have the role of mobile electrons with the
constraint of no double occupancy. Note that the filling 7 of the unpaired localized moments is
given by 7 = 1 — n, when n is filling of the conduction electrons. For a pictorial representation
of this mapping see Fig. 7.4.

When performing the transformation, one ends up with a Hamiltonian which is the same as for
the U = oo Hubbard Hamiltonian but with a reversed sign of the hopping amplitude and the
half bandwidth:

1 o -
Hy =+ St I fios (7.3)

ijo

where fjg (fic) is the creation (annihilation) operator for the unpaired local moments with
spin-projection o at site i. These operators satisfy additionally the constraint of no doubly
occupied sites.

The phase diagram for the Kondo zigzag ladder at J = oo can therefore be deduced from

\

T ’i ‘I
f & 1
e) |T) [{)

Figure 7.4: Pictorial representation of the mapping between the J = co Kondo model and the
U = oo Hubbard model as introduced by LACROIX [154].
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the phase diagram for the Hubbard model on the zigzag ladder at U = co. A detailed study
was done by DAUL et al. [153]. Their result is displayed in Fig. 7.5 for fillings n < 1 and
negative to'. They found ferromagnetism for any to < 0 for small densities and high densities.
For intermediate densities there is a nonmagnetic region for sufficiently large to. This phase
diagram can be directly shifted to the Kondo zigzag ladder at J = oo but one has to keep in
mind the subtleties of the mapping: the sign of £ needs to be reversed and the filling needs to
be adapted as 7 = 1 — n so that low densities correspond to fillings close to half-filling and vice
versa. Since o is measured in units of £; in Fig. 7.5, one does not have to rescale ¢ by % That
means, that the Kondo zigzag ladder is ferromagnetic for to > 0 and n < 1. For n > 1, there
is no ferromagnetism for the same sign of 2. The phase diagram in Fig. 7.2 is for the case
to = t1 for which there is ferromagnetism for all densities n < 1 referred to the calculations of
DAUL et al. [153].

The precise nature of the nonmagnetic state for n > 1 is unclear for to ~ t; even in the U = oo
Hubbard model?. For ty < t; however, it is known that the U = oo Hubbard model is a
Tomonaga-Luttinger liquid (TLL) [155]. This TLL phase again translates to the J = oo Kondo
model in the weak-to regime. It was pointed out by TSUNETSUGU et al. [114] that this TLL
phase for the Kondo lattice has a large Fermi surface. This is consistent because the localized
moments directly contribute to the physics as they effectively hop through the lattice. Whether
this phase extends to arbitrary 9 is an open question.

1.0
T . . . L] .
0.8 e L - . L] . .
T . . . * -
0.6 re ] L] . L] * #*
n » L ] Ll L] ¥ * a
04 e« » - . ! o o
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0.2 e . . = # o o
L ] [ ] L . » L L ]
"0 1 2 3

-t,

Figure 7.5: Ground state phase diagram of the U = oo Hubbard model as obtained by DAUL
et al. [153]. The figure is taken from this publication (Fig. 17 in [153]). The filled dots denote a
ferromagnetic ground state, the empty squares a paramagnetic ground state and the stars denote a
partially polarized ground state.

1 DaAUL et al. [153] use the same convention as me in that the hopping part of the Hamiltonian is defined as

H=- Zij tingIono-. Therefore, a negative t2 corresponds to a positive hopping amplitude in front of the

term cfe.
2 At least to the best of my knowledge.
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Let me finally emphasize that although the extreme case J = oo is equivalent to the U =

Hubbard model, the perturbation in % is not equivalent to the perturbation in %

7.2.2 Ferromagnetism

The extreme limit J — oo already shows that ferromagnetism is only present for hole doping
while it is destroyed for electron doping by an arbitrary weak but finite to. Indeed in Ref. [156]
it was pointed out, that in the limit J — oo a weak to leads to an effective spin-spin interaction
for the local moments with coupling constant:

t 2
Je(flf) S <~ sin? i, — sin 27Tﬁ> , (7.4)

2 \mn

were 7i = 1 — n denotes the density of f particles. The term within the brackets is positive for
hole-doping (1 > 7 > 0) and negative for electron-doping 0 > i > —1. Hence for positive ta,
the effective interaction is ferromagnetic for hole-doping and antiferromagnetic for electron-
doping. This is consistent with the results discussed in the last section. Ref. [156] is one of
the rare publications which presents calculations for the one-dimensional Kondo chain with
next-nearest neighbor hopping to. However, they studied only the limit of weak t5 (to = —0.1¢1)
and calculated the phase diagram with exact diagonalization for systems with L = 4 up to
L = 9 sites. They found that the ferromagnetic phase vanishes at strong J as predicted by Eq.
(7.4). At intermediate values for J, there is still a ferromagnetic region which was attributed
to the second order term in the perturbation theory [157]:

™

3 (2
Jéfzf) = —ﬁ <~ sin? 77 — sin 27Tﬁ> , (7.5)

which is always ferromagnetic.

Here, I will present systematic computations for 0 < ¢5 < 1 and unveil the impact of a large
ty on the ferromagnetism in the frustrated Kondo ladder. Fig. 7.6 shows calculations for a
system with L = 20 sites obtained by finite-size 1sDMRG. Each subfigure displays the energy
difference between the polarized ground state with S = %(L — N) and the singlet ground
state with S = 0 on a logarithmic color scale. The respective ground state energies can be
directly targeted with the SU(2)-symmetric DMRG implementation which is a very efficient
procedure for determining the ferromagnetic phases. The calculations were performed for

J/t1 =1.0,2.0,...,100 and n = 5, 2&,..., B.

For t2 = 0, the results are consistent with previous calculations and the phase diagram shows
the expected particle-hole symmetry. In Fig. 7.6(a), the point (n = 0.8,J = 2t;) belongs to the
second ferromagnetic phase of the ordinary Kondo chain. A higher J-resolution would uncover
more points in this phase.

For t3 = 0.2t (Fig. 7.6(b)), the situation on the hole-doped site is only slightly changed. The
second ferromagnetic phase is still present but shifted slightly to larger values of J. The same
happened for the other ferromagnetic region. On the contrary, the electron-doping regime
changed significantly. The ferromagnetism disappears for strong J as expected by perturbation
theory. It is also observed that the suppression of the ferromagnetic phase is particularly
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Figure 7.6: The energy difference Ag between the ground state with S =0 and S = %(L —N) in
the J — n plane for various values of to. Calculations are done for a system with L = 20 sites. Red
colors denote a ferromagnetic ground state, blue colors denote a ground state with S = 0. Black
lines are interpolations for the line Ag = 0 and marks the phase boundary between the para- and
ferromagnetic phase.
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strong in the vicinity of the full band (n = 2) while close to half-filling, it survives even for
J = 10t1. This behaviour is consistent with the results in Ref. [156] for the case ty = 0.1t 1.
Extremely small energy differences were found for slight electron doping (n = 1.1 and n = 1.2)
and J = 1.0t;. For example Ag ~ 2 x 1076 for n = 1.1 and J = 1.0t;. In this regime, it is
therefore very difficult to distinguish the para- and the ferromagnetic phase and the dependence
on the system size should be taken into account.

For to > 0.25¢1, the non-interacting band structure changes qualitatively and there are densities
with 4 Fermi points (FP) instead of 2 FP. This happens for densities n <~ 2 close to the
full band for to >~ 0.25¢;. Fig. 7.6(c) shows calculations for to = 0.4¢; and an even stronger
suppression of the ferromagnetic phase in the electron-doped regime is observed. For n > 1.6,
the ferromagnetism completely disappears in the considered J-region. The hole-doped regime
is still qualitative similar to the case to5 = 0 so that one may argue that the Fermi surface is
unchanged in this regime. At least for the Fermi surface of the non-interacting system, this is
indeed the case.

For to = 0.6t; (Fig. 7.6(d)) there are two qualitative changes for hole-doping: firstly, the critical
line JX™M(n) for the first ferromagnetic region has a clear maximum for n < 1 and secondly the
ferromagnetic island disappears at least in the considered J-region. The first effect might be
attributed to the density of states (DOS) p(er) at the Fermi level. Arguing with the Stoner
criterion, a high DOS at the Fermi level is beneficial for ferromagnetism in itinerant electron
systems. Albeit the mechanism for ferromagnetism in the Kondo lattice model is different, the
DOS seems to play a significant role either. For example for t5 = 0, the non-interacting DOS
has a van Hove singularity at the Fermi level for n = 0 and n = 2 and for low and high electron
concentrations the FM phase is indeed mostly expanded. The next-nearest neighbor hopping
to introduces an additional van Hove singularity if to > 0.25¢;. The DOS p(er) at the Fermi
level is displayed in Fig. 7.7 for several values of to as a function of n: the van Hove singularity
at the Fermi level shifts quickly to intermediate densities. For o = 0.6%1, it appears already at
n ~ 0.9 which might be the reason for that the FM region is more extended close to half-filling
and that the critical line has a maximum at n ~ 0.5. The disappearance of the ferromagnetic
island might also be explained by a qualitative change of the Fermi surface for densities n ~ 0.8
when to changes from to = 0.4t to to = 0.6¢t;. With this argument, one can suppose that
the two ferromagnetic regions observed in the ordinary Kondo chain are caused by different
mechanisms since the ferromagnetic island disappears while the other ferromagnetic phase does
not. In the electron-doped regime, one also observes a qualitative change at to = 0.6¢1: a new
ferromagnetic island develops at densities n = 1.5. The other ferromagnetic region shrinks
further.

For to = 0.8t; (Fig. 7.6(e)) this evolution continues. A clear maximum around n =~ 0.5 of
J;F M (n) develops in the hole-doped regime while the main ferromagnetic phase for electron
doping is only present close to half-filling for intermediate Kondo couplings J. On the contrary,
the new ferromagnetic phase for fillings n =~ 1.5 extends slightly.

Finally for to = ¢; (Fig. 7.6(f)), the main ferromagnetic phase has disappeared completely in

1 In fact in Ref. [156], the authors took t2 = —0.1¢; and calculated the phase diagram in the hole-doped
regime. However this is equivalent to t2 = 0.1¢; and electron doping.
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Figure 7.7: The non-interacting DOS at the Fermi energy ey for various values of ¢, as indicated.

electron-doped regime while the new island is now clearly visible. The small ferromagnetic
points close to half-filling (n = 0.9 and n = 1.1) at J = ¢; may indicate additional ferromagnetic
phases, but a careful finite-size scaling is necessary for a conclusive answer. A clear dome
structure is visible in the hole-doped regime for the phase boundary between the ferro- and
paramagnetic phase. Fig. 7.6(f) might be compared to the schematic phase diagram in Fig. 7.2.
The determination of the character of the ferromagnetic phases would require more detailed
calculations and constitutes an open task.

7.2.3 Paramagnetic phase at commensurate fillings

The short-range spin correlations are featureless in the ferromagnetic regions of the phase
diagram. However, in the paramagnetic regions, the situation is much more complicated and
different short-range patterns emerge. To give an impression of the complexity, I will present
calculations for quarter (n = %) and three-quarter (n = %) filling in the upcoming subsections.
Computations at other (also incommensurate) fillings would be highly interesting but are
postponed for future work.

Quarter filling

The ground state at quarter filling is ferromagnetic for strong J. This can also be seen in
the short-range spin-correlations in the top row of Fig. 7.8 (J = 5.4¢;). In the paramagnetic
region right below the ferromagnetic phase, the short-range spin correlations do not break the
translational symmetry and are antiferromagnetic along the rungs and ferromagnetic along the
legs of the ladder. This pattern leads to a peak of the spin-structure factor at the wave-number
@ = 7. For decreasing J, the peak at () = 7 shrinks and the short-range spin-correlations get
slightly different on the \\- and  bonds, i.e. the ground state gets slightly dimerized (see
J = 3.2t; in Fig. 7.8). This evolution goes in hand with a growth of the spin-structure factor
at @ = 5. The two peaks of the spin-structure factor at QQ = 7 and Q = § are approximately
equal at J = 2.2¢t;. The short-range spin-correlations show in this case a pattern which is
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Figure 7.8: Ground state spin-correlation function (S;S;) (see color code) for nearest neighbors
1,7 on the zigzag ladder for t; = t; and n = % for various values of J.

reminiscent to a valence bond solid, i.e. (§;8;11) = —0.75 and (S;_18;) = 0. However, in Fig.
7.8 (J = 2.2t1) the values for the spin-correlations are (S;S;+1) ~ —0.42 and (S;_1S5;) ~ —0.008
and the rest of the correlations appear in correlations of higher distance. For even weaker J,
the trend goes further, i.e. the peak at @Q = 7 shrinks and the peak at Q = 7 grows. The

s

continuous development of the peak from @ = 7 to = 7 is also displayed in Fig. 7.9.

At J = 1.1t¢1, the short-range spin correlations of the ground state are very similar to the
correlations at half-filling. The spin-dimerization is strongly developed and the correlations
alternate on the rungs between ferro- and antiferromagnetic. This can also be compared to the
case tg = 0 where the short-range spin-correlations are also very similar to the case observed
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Figure 7.9: J-dependence of the spin-structure factor S(¢q) = L~! Efj e (Ri=Ri) (8.8} (color
code on the right) for L = 40 sites, to = t; and quarter filling (N = 20).
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Figure 7.10: The first ten RKKY couplings for a system with open boundaries, L = 100 and
quarter filling (N = 50). Data is shown for the ordinary Kondo chain (t2 = 0) and the frustrated

zigzag ladder (t2 = t1). Note, the RKKY couplings are scaled to be consistent with Fig. 4 in Ref.
[120].

here [120]. In Ref. [120], the authors argue that the spin-dimerization can be traced back to the
effective RKKY interactions because the nearest (J;) and next-nearest (J2) RKKY coupling
correspond to a J; — Jo Heisenberg model with dimerized spin-correlations. The first ten
RKKY couplings are displayed in Fig. 7.10. In fact for to = 0, one has J; < 0 and Js > 0, i.e.
a ferromagnetic next-nearest neighbor interaction on top of an antiferromagnetic Heisenberg
chain. This leads to a spin-dimerized ground state if —4.Jy < Ji < 0 [158]. For ¢t = ¢; however,
one has J; > 0 and Jo > 0, i.e. a purely ferromagnetic Heisenberg model when considering
only the first two couplings. In this case, the spin-correlations are obviously not dimerized
so that this simple explanation does not work. On the contrary, the behaviour of the RKKY
couplings is qualitatively similar for distances j > 3. In particular one has Jrxky(j) = 0 for
7 =3,5,7,.... Hence it is tempting to argue that this feature is responsible for the dimerization.
But since J ~ tq1, it is questionable if the RKKY theory applies in general.

Three-quarter filling

At three-quarter filling, the ground state is non-magnetic in the limit J — oco. Fig. 7.11
provides a summary over the short-range spin-correlations for various values of J for the
isotropic ladder to = t1. At strong coupling J = 8.0t; the correlations on the rungs dominate
the correlations along the legs. Both are antiferromagnetic and differ by one order of magnitude.
The rung correlations around the center of the chain are found to be (S;S;+1) ~ 0.1 while
the leg correlations are considerably weaker ((S;S;4+2) ~ 0.01). For decreasing J, the leg
correlations become ferromagnetic and at J = 2.4¢; the state is nearly homogeneous with
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Figure 7.11: Ground state spin-correlation function (S;S;) (see color code) for nearest neighbors
1,7 on the zigzag ladder for t; = t; and n = % for various values of J.

antiferromagnetic correlations on the rungs and ferromagnetic correlations on the legs. The
spin-structure factor evolves featureless in this case and has peaks at Q@ = 7 and Q = 7.
When J is decreased, the peaks become sharper but there is no qualitative change visible. At
J =~ 2.3t1, the ground state becomes ferromagnetic which is also clearly visible in Fig. 7.11
for J = 2.2t;. However, this phase is only present for intermediate J and the weak-coupling
regime is again not ferromagnetic. The transition takes place at J ~ 1.6¢; but is hard to
determine because the ground state tends to develop large ferromagnetic domains. Well below
the ferromagnetic phase at J = 0.4t1, the ground state chooses another interesting trade-off as
the response to the geometrical frustration. In the bottom row of Fig. 7.11, it is visible that the
system forms clusters of size Lo = 4 which are coupled antiferromagnetically with each other.
Within each cluster, the correlations are ferromagnetic which indicates a polarized cluster-spin
S = 2. Potentially, the state can therefore be described by an effective spin-2 model. The
spin-structure factor peaks at Q = 7 which corresponds to a wavelength of A\ = 8 lattice sites
for this structure. It is interesting to realize that this state is similar to the spin-dimerized state
observed at half-filling. In fact the spin-dimerized state can also be interpreted as ferromagnetic
clusters coupled antiferromagnetically with each other. In this case however, the cluster size is
Lec =2.






CHAPTER 8

Summary and perspectives

8.1 Summary of the work

The present work provides the first detailed study of the one-dimensional Kondo lattice model
with a next-nearest neighbour hopping t2. The geometry is equivalent to a zigzag ladder with
hoppings t; along the rungs and t9 along the legs.

Half-filling

At half-filling and homogeneous couplings t; = ta, the KLM on a zigzag chain has at least
two quantum critical points: at JI™ ~ 0.89ty the spin correlations (S;S;) of the localized
moments spontaneously break the translational symmetry leading to a twofold degenerate
ground state. In this way, the system copes with the geometrical frustration. In the symmetry-
broken state the remaining antiferromagnetic correlations form a bipartite sublattice and
therewith alleviate the frustration. This is interpreted as a precursor for a second quantum
phase transition to a quasi-long-range ordered quantum spin spiral with wave-vector Q) = 5
at Je °® ~ 0.84t5. This phase transition constitutes the general Doniach competition between
a Kondo-screened nonmagnetic ground state and a magnetically ordered ground state. This
is in contrast to the KLM on the ordinary chain for which no quantum phase transition was
observed in previous studies [114] and the ground state is in a spin liquid state with gapped
charge and spin excitations. It is remarkable that the geometrical frustration introduced by to
triggers a magnetic phase transition which is not present in the nonfrustrated model (t3 = 0).
The observed state eludes a perturbative explanation as it is well above the RKKY regime.
The phase boundaries of both the dimerization and the magnetic transition are systematically
traced out in the whole J — ¢ plane. It is found that the two transitions follow each other
closely while the dimerization transition is always located at higher J and smaller ¢. This
confirms that the dimerization is the precursor for the magnetic quantum critical point. It was
shown that the dimerization transition begins at (J = 0, = arctan %) which coincides with
the Lifshitz point of the noninteracting band structure ¢(k). From there on, the transition
line 3™ (.J) increases monotonically only up to a specific value of J and afterwards bends

C

back. It is tempting to suppose that the transition line finally ends in the point (J = 0,0 = 7).
It was argued by perturbative arguments that the transition line can not end at ¢ = 5 and
J # 0 so that the only alternatives to the point (J = 0,0 = 7) have a different value of (.
But since there is no special point other than the Lifshitz point, the expected trend of the
transition line ends in the upper left corner of the phase diagram. The trend of the magnetic

phase transition could not be determined in the limit J — 0 because of a heavy growth of the
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ground state entanglement in this case. Nevertheless, it was shown that the magnetic phase is
surrounded by the dimerization and that the phase boundary of the magnetic transition bends
back at the same value of J, too. Two scenarios for the weak-J regime were analysed: firstly,
the magnetic phase can constitute island so that at sufficiently weak J the magnetic phase
entirely disappears. Secondly, the transition can extend to the Lifshitz point, i.e. J =0 and
p = arctan % Both scenarios are compatible with the Lieb-Schultz-Matthis theorem since the
ground state is twofold degenerate because of the spin dimerization.

Doped

The KLM on a zigzag chain off half-filling shows the expected asymmetry with respect to
half-filling because the underlying lattice is not bipartite. For hole doping, the phase diagram
has a large region with a spin-polarized ground state with § = %(L — N). This phase is
present for sufficiently strong J and the separation line J'™(n) has a dome structure with the
maximum located at n ~ 0.5. This is in contrast to the ordinary Kondo chain (t2 = 0) where
the transition line J¥™(n) increases monotonically. This fact is supposed to be attributed to an
additional van Hove singularity in the density of states at the Fermi level which is present only
for a sufficiently large to. The ferromagnetic island of the ordinary Kondo chain disappears for
strong enough to. The paramagnetic phase at quarter-filling (n = 0.5) shows an interesting
behaviour of the spin-structure factor. At strong J, there is a well-defined peak at Q = =«
while at weak J the peak is located at @ = 5. In between, there is a smooth crossover and at
the point where both peaks are of equal height, the ground state has short-range correlations
similar to a valence bond solid.

For electron doping, the main ferromagnetic phase is destroyed by to. This was already
explained perturbatively in the strong-.J limit some time ago. Surprisingly, a new ferromagnetic
phase develops for electron doping at n ~ 1.5 and strong to &~ t;. This phase is potentially
qualitatively different as compared to the other magnetic phases of the one-dimensional Kondo
lattice as it is driven by to. The paramagnetic phase at three-quarter filling above the new
ferromagnetic phase is mainly J-independent and characterized by broad peaks of the spin-
structure factor at Q = m and @ = 5. The paramagnetic phase at three-quarter filling below
the new ferromagnetic phase is characterized by a sharp peak of the spin-structure factor at
Q = 7. The corresponding short-range correlations show that the ground state is built of
clusters of size Lo = 4.

8.2 Perspectives

The complete phase diagram of the Kondo zigzag ladder exceeds the scope of this thesis. Several
questions could not be paid attention to, so that there are interesting perspectives for future
work.

Bosonization

At half-filling, the most challenging regime is the weak-J limit. Here, the matrix product state
approaches suffer from a very high entanglement in the ground state. As an alternative method,
one may study the system using the bosonization approach. With the bosonization mapping
one can apply renormalization group techniques to study the weak-coupling limit. This was
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quite successful for the one-dimensional Hubbard model with next-nearest neighbour hopping
ta [159-161]. But the bosonization approach is tedious at half-filling because of additional
umklapp processes. For that reason, a simpler task is to study the doped Kondo lattice model
by bosonization. Here, previous works could shine light on the ferromagnetic phases of the
one-dimensional Kondo chain [121, 122].

Dynamic quantities

In the present work, I focused solely on static correlation functions. A more detailed char-
acterization of the different phases can be achieved by the analysis of dynamical correlation
functions. A central quantity is the dynamical spin-structure factor S(q,w):

S(q,w) = iz eiq(Ri—Rj) /OOO dt(iiwt<si(t)sj(0)> (81)
— 2% Z oi4(Ri—R;) Z (018;|n)(n]S;]0)d(w—(E, — Ep)) (8.2)
1] n

The dynamical properties provide information not only for the ground state but also for
elementary excitations on top of the ground state. The dynamical spin-structure factor, in
particular, is the key quantity for spin-excitations. Fig. 8.1 shows a DMRG calculation! of

3
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Figure 8.1: Dynamical spin-structure factor S(q,w) for to = t1, J = 3.0t;, L = 40 sites and
haltfilling (n = 1).
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S(q,w) for a system with L = 40 sites and half-filling in the strong coupling regime (J = 3.0t1).
It can be seen that there is a sharp massive magnon band. The band minimum lies at () ~ 104°
which is consistent with the peak location of the static spin-structure factor. The spin gap
AFEg =~ 1.5t1 can be directly deduced from Fig. 8.1. It is now very interesting to study the
development of S(g,w) for decreasing J. The present work has showed that the spin gap closes
at Je'*® &~ 0.84t; but the nature of the gapless excitations is completely unclear. They could
consists of a sharp magnon band but also of a spinon continuum.

Another interesting quantity is the spin-resolved one-particle spectral function A, (g,w):
1 a(Ri—R;) [ iwt [ T
Aplgw) = + 3 SRR /O dte (e} (t)eso(0)) (8.3)
]

This quantity can characterize the spin-selective Kondo insulator introduced in Ref. [117] which
was suggested to be the general mechanism for ferromagnetism in the KLM.

Superconductivity

The heavy-fermion compounds have rich phase diagrams containing also unconventional super-
conductivity [109]. Unconventional superconductivity in general is believed to be connected
with magnetic ordering as it appears often in the vicinity of a magnetically ordered phase
[163]. Since the present work uncovers a (quasi-)magnetically ordered phase at half-filling, one
can search for superconductivity for hole- or electron doping. Such studies need to analyse
quantities which were not addressed in this thesis. A key correlation function is the static
pairing function A(q):

1 o(Ri—R.
Aq) = T Z eia(f J)<c;r¢c;f¢cj¢0ﬂ) (8.4)
ij
This pairing function would signal singlet superconductivity with onsite pairing. However, also
the study of triplet superconductivity is interesting since there are examples of heavy-fermion
systems with a triplet superconducting ground state [164].

1 Calculation is done with the Chebyshev expansion techniques [162].
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A Matrix decompositions (QR and SVD)

Singular value decomposition

The singular value decomposition (SVD) is a specific decomposition of an n x m matrix M
over the complex numbers C:

M=UXVT, (A1)

where U is an n x n unitary matrix and V is a m x m unitary matrix, i.e. UTU = UUt = 1
and VIV = VV! = 1. ¥ is a rectangular n x m matrix with positive entries X1 > Xop >

2 Xin(n,m)min(n.m) > 0 on the diagonal and zeros otherwise. The diagonal entries of X' are
called the singular values of M and they are uniquely determined by the matrix M. The same
is not true in general for the unitary matrices U and V. The squares of the singular values are
the eigenvalues of MTM and MM as can be verified simple. For example for MTM:

MM =vEUUZVi =vE?vi (A.2)

Eq. (A.2) shows also that V are the orthonormal eigenvectors of MTM. Similarly, U builds
the orthonormal eigenvectors of MM?'. Since MTM is positive definite and Hermitian, it
has strictly positive eigenvalues so that also the singular values needs to be positive. For a
rectangular matrix M with n > m, one can obtain a thin SVD. One therefore restricts the
rectangular matrix X' to a m x m diagonal matrix and discards the other zero-elements. That
requires that U is only build from the first m columns and hence is an n x m isometry instead
of an n X n unitary matrix.

The SVD of a matrix M appears in the optimization problem of approximating a matrix M of
rank & by a matrix M of rank r < k. The optimal choice for M is obtained by taking only the
r largest singular values in the SVD of M:

M=UZ2.V], (A.3)

where U is an n X r isometry and V an r X m isometry. This procedure can also be applied as
a compression algorithm. Here, one can think for example on an image which is represented
as an N x N matrix where N? is the number of pixels. Each entry could be the grey-scale
value ranging from 0 to 255. This picture requires N2 l;)ﬁ';gl of memory. After a singular value
decomposition, one compress the picture by throwing away all singular values smaller than a
given threshold € and retaining only x singular values. The remaining memory scales then as

N x x instead of N2. For Yy < N, this compression can be very efficient.

The ability for the compression of information makes the SVD very useful for the DMRG
algorithm or more generally for any tensor-network approach. Here, the compression is used
for the wave-function of a physical system.
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QR decomposition

The QR decomposition of a complex n x m matrix M with n > m is the following factorization:

M =QR, (A.4)

where @ is a unitary n X n matrix and R has an upper triangular structure of size n x m, i.e.
R is non zero only for elements at or above the main diagonal. In particular, the n — m bottom
rows are entirely zero. For this reason, it is useful to partition @ and R:

M=1[Q: Q] [ﬂ =R (A.5)

In this formulation, @ is an n X m matrix which fulfil QJ{Ql =1 but QlQJ{ #1,ie. Q1 is an
isometry. R is an m x m upper triangular matrix and Q2 is an isometry of size (n —m) x m.
In fact this decomposition is in general not unique but at least the matrices R and @7 can be
made unique by the convention that the diagonal of R is positive. With this convention, the QR
decomposition is unique for square matrices. For rectangular matrices, the matrix Q2 cannot
be determined uniquely. Within a thin QR decomposition, the matrix @2 get not calculated
at all. In a full QR decomposition, the matrix Q2 delivers an orthonormal basis of the null
space of M. The QR decomposition can be related to the SVD by identifying R = XVT. The
key advantage of a QR decomposition in the DMRG context is that it delivers a left or right
orthonormalization of the A-tensors with less computational cost. However, one does not have
access to the singular values and hence no ability for a truncation of the basis. Because of that,
the QR decomposition is only useful if truncation is not required.

The definition above required n > m. In the case of m > n, one can define an analogue LQ
decomposition. In numerical libraries, it is convenient to implement only the QR decomposition.
For a L.QQ decomposition of the matrix M one can then simply apply a QR decomposition to
MT and afterwards take the adjoint of both R and Q.



B Further SU(2) symmetric algorithms

B.1 2-site A-tensor

For a two-site DMRG optimization step, one needs to combine two adjacent site-tensors A(l)
and A(l 4+ 1) into a composite object B. When working with reduced matrix-elements, one
needs an extra coefficient for this product. As intensively discussed in Sec. 4.5, the contraction
of the two A-tensors decomposes into a reduced part and a CGce part. In the case of the product
of two A-tensors, the CGc part reads:

I,X—J 121 =1 11\ Yo—J 131 50— 5
Fi,0—>j - Z Fi,ol—n" Fi’,az—>j FO’1O’2*}0‘ (B.l)

0—170—27il

One can multiply Eq. (B.1) by ]}I&i?,‘]l and sum over ¢ and o so that the left side becomes
d7:0;5. The product of four CGce on the right side can be identified with the recoupling
coefficient from Eq. (4.45). The recoupling coefficient is closely related to a Wigner 65-symbol

(Eq. (4.46)). In summary one obtains:

X (X1;392),(ax, as,) I 23 I PG Yo,
pEE T enen) 2{22 oy (—)fF I+ 12X + 1) AL, ASE

I'ay

(B.2)

B.2 Product of a W-tensor with an A-tensor

For the evaluation of the action of an MPO O[{W}] onto an MPS |¥[{A}]), one needs to
evaluate the contraction of a W-tensor with an A-tensor over the physical index o which leads
to the site-tensor B of the new MPS |®[{B}]). Writing out the CGc part of this contraction,
one immediately arrives at the following equation:

J 1= _ Z lZ2=1 pSa k=2 pAk—=A pIA pI' A= ! (B.3)

j,01—5 i,00—i! T o2,m—01 " am—a’ T ia—j ~i'a’—j
o2,i,a,i’,a’;m

By the usual orthogonality relation for the CGe, one can shift the CGc from the left side to the
right side of Eq. (B.3). The resulting product of six CGc fits exactly definition of the recoupling
coefficient for four angular momenta as introduced in Eq. (4.45). The final expression for the
contraction of the reduced matrix elements becomes then:

5 I X, I e

1,00% 2,05

BJ(I;A):EQIQA),J/(I/;A/)(O(IIQAI) - Z A kA AIaI,I’;I/
Yoax,,k J X J

W[k]Elagl;EzaEQ (B4)

AaA;A’OéA/

In Eq. (B.4), one needs to combine the degeneracy indices oy and a4 properly. The same is
true for the indices o and ayr.






C Finite-size scaling analysis

Phases of matter and transitions between different phases are fundamental properties of physical
systems. From the theoretical point of view, phase transitions are discontinuities in the
equations of state for the corresponding system. These discontinuities can only emerge in
the thermodynamic limit. In finite systems, they are regularized. Hence, a finite-size scaling
analysis needs to be applied if only finite-size calculations are available.

Thermal phase-transitions are transitions at a critical temperature T" = T,. On the contrary,
quantum phase transitions (QPT) occur at T' = 0 at specific values g = g, for a model parameter
g. The critical parameter g. defines a quantum critical point (QCP). The behaviour of the
system in the vicinity of the QCP is believed to be universal [165, 166]. However, it is known
that different universality classes exists. The classes differ by critical exponents which describe
the behaviour of central quantities like the order parameter, the correlation length, etc.. The
correlation length ¢ | e.g., diverges at the QCP with the critical exponent v:

§ox(g—ge)" (C.1)

The critical exponent which describes the divergence of the susceptibility y is ~:

X (g—ge)” (C.2)

As described above, these critical behaviour is only expected in the thermodynamic limit and
is regularized in finite systems. A quite general finite-size scaling procedure is the data collapse
method [136-138]. The central equations can be derived for example for the susceptibility x.
The combination of Eq. (C.1) and Eq. (C.2) gives:

X o Ev (C.3)

In a system of size L, the correlation length & is bounded by the system size L. That means if
L < &, one can replace £ by L in the finite system and obtains:

XL o L (C4)

On the contrary if L > &, the finite-size effects are expected to be negligible and xr = x for x
as in Eq. (C.3). The basic assumption of the data collapse method is now that the finite-size
effects of x can be absorbed in a function f(x) where z = % is a dimensionless parameter [167,
168]:

s (2’) (©5)

The function f is called scaling function. The function is unknown except in the limits z < 1
and = > 1. In these cases, f behaves as discussed above. It is convenient, to redefine the
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scaling function as:
fla) =2 f (") (C.6)

The reason is that with definition one obtains for xr,
bt 1,
i =Lif (L7¢Y)), (C.7)

i.e. the argument is £” which is proportional to g — g. (Eq. (C.1)). When plotting xi L7
against Lv (g — gc) for various system sizes L one expects L-independent curves if the correct
values for v, v and g.n are known. The data collapse method can be used to determine the
critical exponents and the QCP by searching for the best collapse.
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