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Abstract

Abstract

Natural language provides an intuitive and effective interaction interface between

human beings and intelligent agents. Currently, multiple approaches have been pro-

posed to address natural language visual grounding. However, most of the existing

approaches alleviate the ambiguity of natural language queries and achieve target

objects grounding by drawing support from auxiliary information, such as dialogues

between human users, and gestures. While the auxiliary information-based systems

usually make the natural language grounding cumbersome and time-consuming.

This thesis aims to study and exploit multimodal learning approaches for nat-

ural language visual grounding. Inspired by the pattern of human beings under-

standing and grounding target objects according to given natural language queries,

we propose different architectures to address natural language visual grounding.

First, we propose a semantic-aware network for referring expression comprehen-

sion which aims to locate the most relevant objects in images given natural referring

expressions. The proposed referring expression comprehension network excavates

the visual semantics in images via a visual semantic-aware network, exploits the

rich linguistic contexts in referring expressions by a language attention network,

and locates target objects by integrating the outputs of the visual semantic-aware

network and the language attention network. Moreover, we conduct extensive ex-

periments on three public datasets to validate the performance of the presented

network.

Second, we present a Generative Adversarial Networks-based network to gen-

erate diverse and natural referring expressions. Referring expression generation

mimics the role of a speaker to generate referring expressions for each detected

region within images. For this task, we aim to improve the diversity and natural-

ness of expressions without sacrificing semantic validity. To this end, we propose a

generator to generate expressions and exploit a discriminator to classify whether

the generated descriptions are real or fake. We evaluate the performance of the

proposed generation network via multiple evaluation metrics.
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Abstract

Third, inspired by the psychology term “affordance” and its applications in

Human-Robot interaction, we draw support from object affordance to ground

intention-related natural language queries. Formally, we first present an attention-

based multi-visual features fusion network to recognize object affordances. The

proposed network fuses deep visual features extracted from a pretrained CNN

model with deep texture features encoded by a deep texture encoding network

via an attention-based mechanism. We train and validate the performance of the

object affordance detection network on a self-built dataset.

Moreover, we propose three natural language visual grounding architectures,

which are based on referring expression comprehension, referring expression gen-

eration, and object affordance detection, respectively. We combine the referring

expression comprehension and referring expression generation models with scene

graph parsing to achieve complicated and unconstrained natural language queries

grounding. Additionally, we integrate the object affordance detection network with

an intention semantic extraction module and a target grounding module to ground

intention-related natural language queries.

Finally, we implement extensive experiments to validate the effectiveness of the

presented natural language visual grounding architectures. We also integrate with

an online speech recognizer to complete target object grounding and manipulation

experiments on a PR2 robot given spoken natural language commands.
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Zusammenfassung

Zusammenfassung

Natürliche Sprache bietet eine intuitive und effektive Interaktionsschnittstelle zwis-

chen Mensch und Roboter. Eines der Kernprobleme dabei ist das Symbol Ground-

ing in visueller Wahrnehmung, also die Zuordnung und Lokalisierung von Objekten

in Bildern. Zwar gibt es bereits mehrere Ansätze, die das Symbol Grounding mit

natürlicher Sprache für die Mensch-Roboter-Interaktion behandeln, aber die meis-

ten dieser Arbeiten verwenden Dialogsysteme, um die Mehrdeutigkeit natürlicher

Sprache zu verringern und die Zuordnung der Zielobjekte zu erreichen, was die

Interaktionen umständlich und zeitaufwändig macht.

Das Ziel dieser Dissertation ist es, multimodale Lernverfahren für das visuelle

Symbol Grounding natürlicher Sprache zu studieren und zu nutzen. Ausgehend von

der Art und Weise, wie Menschen Objekte durch die Anfragen anderer verstehen

und lokalisieren, werden in dieser Arbeit zunächst drei verschiedene Architekturen

entwickelt und analysiert.

Erstens führen wir ein neuartiges “Semantic-aware deep neural network” für

das Verständnis von Referenzausdrücken ein. Die Aufgabe ist, anhand eines Aus-

drucks in natürlicher Sprache das jeweils relevanteste Objekt in einem Bild zu

lokalisieren. Die vorgeschlagene Architektur legt den visuellen Bildinhalt über ein

visuell-semantisches tiefes Netzwerk frei und verarbeitet den reichen sprachlichen

Kontext der Referenzausdrücke mit einem Sprach-Aufmerksamkeitsnetzwerk. Wir

führen Experimente an drei bekannten öffentlichen Datensätzen durch, um das

vorgeschlagene Netzwerk zu validieren.

Zweitens stellen wir ein Generative Adversarial Networks (GANs) für die Erzeu-

gung von Referenzausdrücken vor. Das Netzwerk imitiert die Rolle eines Sprech-

ers, um Referenzausdrücke für erkannte Regionen in einem Bild zu generieren.

Das vorgeschlagene System hat dabei zum Ziel, die Vielfalt und Natürlichkeit der

erzeugten Referenzausdrücke gegenüber bekannten Methoden zu verbessern. Wir

bewerten die Leistung des eingeführten Netzwerks mit mehreren Auswertungs-

metriken.
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Zusammenfassung

Drittens führen wir ein “Multi-visual feature fusion network” für die Erken-

nung von Objekt-Anwendungscharakteren (Affordances) ein. Das vorgeschlagene

Netzwerk kombiniert mehrere tiefe neuronale Netzwerke, um die Affordances von

Objekten in RGB-Bildern zu erlernen. Die Architektur nutzt ein Aufmerksamkeit-

snetzwerk, um visuelle Merkmale, die von einem vor-trainierten CNN-Modell ex-

trahiert wurden, mit Textur-Merkmalen zu verschmelzen, die durch ein separates

tiefes Netzwerk kodiert wurden. Wir testen die Leistung des Netzwerks mit einem

selbst erstellten Datensatz.

Darüber hinaus schlagen wir Architekturen für interaktive Verarbeitung

natürlicher Sprache vor, die jeweils auf dem Verständnis der Referenzausdrücke, der

Erzeugung dieser Ausdrücke, und der Erkennung von Objekt-Affordances basieren.

Dazu kombinieren wir diese Verfahren mit Szenengraph-Parsing, um ein ausgereiftes

und uneingeschränktes interaktives visuelles Symbol Grounding natürlicher Sprache

zu erreichen. Zusätzlich integrieren wir das Framework zur Affordance-Erkennung

mit einem semantischen Extraktionsmodul, um absichtsbezogene Abfragen in

natürlicher Sprache zu verarbeiten.

Schließlich führen wir umfangreiche Experimente durch, um die Wirksamkeit

der vorgestellten visuellen Symbol Grounding Architekturen für natürliche Sprache

zu validieren. Außerdem präsentieren wir Manipulationsexperimente mit Befehlen

in natürlicher Sprache für einen PR2-Roboter und verschiedenen Zielobjekten.
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Chapter 1

Introduction

1.1 Motivation

Human beings live in a multimodal environment where natural language and vision

are the dominant ways for communication and perception in our daily life. Humans

often use natural language to indicate a specific person or object. For instance, “the

man next to the car”, or “the remote controller on the table”. The listener can

identify referred targets according to given natural language queries. Naturally,

we would like to develop intelligent agents with the ability to communicate and

perceive their working scenarios as humans do, and locate referred target objects

within working scenarios. Natural language processing, computer vision, and the

interplay between them are involved in the task to ground natural language queries

in visual scenarios.

Natural Language and vision are two dominant channels to represent and ex-

change information in our daily life. In recent years, how to bridge the two domains

has been attracting considerable research attention in the area of computer vision

[67, 79, 147, 16], natural language processing [65, 112], and multimedia [19, 47].

One motivation of this thesis is that, grounding natural language in visual

scenes provides a natural communication channel between humans, physical en-

vironments, and intelligent systems. We often refer to objects in the environment

when we have a pragmatic interaction with others, and we have the ability to

1



Chapter 1. Introduction

comprehend and ground natural language queries in a wide range of practical ap-

plications. We also would like to endow intelligent agents the ability to comprehend

and ground natural language instructions. For instance, in natural language-based

human-robot interaction (HRI), robotic systems need to understand natural lan-

guage instructions to locate the referred objects in their working scenarios. The

ability to understand natural language commands prompts the robotic platforms

to conduct natural language commands such as “pick up the red cup on the table”,

“pass me the remote controller near the TV”, etc.

Another crucial motivation is the potential applications of natural language

visual grounding. Natural language visual grounding can be widely used but not

limited in human-computer interaction, robotics, and visual chatbot. One of the

most representative example is the applications in robotics. Robots becoming om-

nipresent in varied human environments, such as factories, hospitals, and homes,

the demand for natural and effective HRI has become urgent. Taking advantage of

recent advances in machine perception, natural language visual grounding, and ob-

ject manipulations, robots can draw support from these prerequisites to play more

critical roles in human environments and perform diverse and dynamic tasks.

Natural language visual grounding requires a comprehensive understanding of

natural language queries and visual scenarios, and the pivotal issue is to locate

the referred objects in working scenarios according to the given queries. In order

to ground target objects in different scenarios, intelligent agents have to deal with

multiple challenging tasks, such as object detection, natural language understand-

ing, and multimodal data fusion. However, nearly all of the proposed approaches do

not consider the inherent ambiguity of natural language, or alleviate the ambigu-

ity via dialogue systems. While the dialogue systems usually make the interaction

cumbersome and time-consuming.

Natural language is the most straightforward and spontaneous medium in

our daily communications with each other. As a special case of natural language

queries, referring expressions depict objects within an image or a living environ-

ment from multiple perspectives, such as color, size, location, and the spatial re-

2



1.1. Motivation

lations between their neighbor objects. Moreover, referring expressions are suffi-

ciently easy for humans to locate the target objects during communication with

others.

Within the realm of referring expressions, there are two related tasks, i.e.,

referring expression comprehension and referring expression generation. Referring

expression comprehension plays the role of a listener to locate target objects within

images given referring expressions, while referring expression generation mimics the

role of a speaker to generate referring expressions for each detected object within

images. Motivated by the role of referring expressions, in this thesis, we propose two

architectures, which are based on referring expression comprehension and referring

expression generation, to ground natural language queries. Moreover, we integrate

scene graph parsing with referring expression compression and referring expression

generation to ground complicated natural language queries.

Referring expression-based approaches can ground explicit natural language

queries, such as “the left red apple on the table”. While the target objects embed-

ded in intention-related natural language commands cannot be located via referring

expression-based frameworks, e.g. “I am thirsty, I want to drink some water.” In

order to ground the intention-related natural language queries, we draw support

from a psychological term “affordance” that represents the association between the

properties of an object and the capabilities of the object could possibly be used

[94]. Inspired by the role of “affordance” and its applications in HRI, we intro-

duce an object affordance detection-based framework to ground intention-related

natural language queries.

In this thesis, we aim to achieve natural language grounding in a manner which

is akin to end-to-end pattern and does not draw support from auxiliary information

from human users. To this end, we propose three different architectures that are

based on referring expression comprehension, referring expression generation, and

object affordance detection, respectively.

3



Chapter 1. Introduction

1.2 Research Questions

Natural language visual grounding aims to understand the natural language queries

and locate target object in images. Natural language grounding is a fundamental

building block for many high-level tasks, such as image retrieval [15], video question

answering [40], and natural language-based HRI [115], [44].

In real applications, natural language queries could be very complex and am-

biguous, and working scenarios are complicated scenes and even challenging to an-

alyze. In order to alleviate the ambiguity of natural language, some work employs

dialogue systems [115, 44, 1] to locate target objects in their working scenarios,

while the dialogue systems entail time cost and cumbersome interaction.

In this thesis, we exploit approaches to achieve natural language visual ground-

ing without auxiliary information, such as dialogues between human users and

intelligent agents, gestures, etc. Therefore, three critical issues are:

• how to disambiguate the natural language and exploit the rich linguistic

context of natural language queries,

• how to excavate semantics embedded in visual images,

• how to build the mapping between natural language queries and visual re-

gions to locate target objects given natural language queries,

• how to achieve natural language visual grounding without auxiliary informa-

tion

• how to ground complicated and intention-related natural language queries

These questions will be addressed in this thesis one by one with the objective to

achieve natural language grounding via joint learning visual features and language

representations.
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1.3 Novelty and Contribution

This study proposes approaches, experimental setups, and results for natural lan-

guage grounding. The major contributions to the natural language grounding can

be summarized in the following:

• Referring expression comprehension via semantic-aware network.

Nearly all of the existing approaches only perform fine-grid spatial attention

on extracted visual features to identify the most relevant objects, or resort

to holistic associations between the referring expressions and the visual fea-

tures. In this work, we propose a semantic-aware network for referring expres-

sion comprehension. The proposed semantic-aware network is composed of

a visual semantic-aware network, a language attention network and a target

localization module. The visual semantic-aware network excavates the visual

semantics of extracted deep feature by fully utilizing the characteristics of

the deep features, and the language attention network exploits the rich lin-

guistic context of referring expressions and learns to assign different weights

for each word in expressions. Moreover, the proposed referring expression

comprehension network acquires competitive results on three public datasets

in referring expressions.

• Referring expression generation via adversarial training. The exist-

ing methods employ Encoder-and-Decoder paradigms to generate expressions

for image regions. These models process visual features by Convolutional

Neural Networks (CNNs) and generate sequence words via Long Short-Term

Memory (LSTM), and training with the objective to maximize the condi-

tional likelihood of the training samples via Maximum Likelihood Estimation

(MLE). However, the expressions generated by the CNN-LSTM paradigms

are easy for humans to distinguish from natural descriptions because of their

diversity and naturalness. In contrast, we adopt Generative Adversarial Net-

works (GANs) to generate more diverse and natural referring expressions.

The generated expressions better imitate the way humans depict image re-
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gions without sacrificing the semantic validity.

• Object affordance recognition via attention-based multi-visual fea-

tures fusion. We propose an attention-based multi-visual features fusion

architecture to learn object affordances from RGB images. The presented

architecture employs an attention network to fuse deep visual features ex-

tracted from a pretrained CNN model with deep texture features encoded

by a deep texture encoding network. The attention network learns attention

weights automatically through sparse representations of the multi-visual fea-

tures. Moreover, the attention-based fusion network takes into account the

interaction of the multi-visual features and preserves the complementary na-

ture of the different features. Furthermore, we introduce a dataset to train

and validate the proposed object affordance detection network. Experimen-

tal results show that the attention-based multi-visual features fusion network

outperforms other fusion scheme and affordance detection networks.

• Interactive natural language visual grounding. In order to achieve nat-

ural language visual grounding without auxiliary information, we propose

three natural language grounding architectures that are based on referring

expression comprehension, referring expression generation, and object affor-

dance detection, respectively. We combine the trained referring expression

comprehension and referring expression generation models with scene graph

parsing to ground complicated and unrestricted interactive natural language

queries, and we also integrate the object affordance detection network with

an intention semantic extraction module to ground intention-related natural

language instructions.

1.4 Thesis Structure

This thesis is organized into five main sections, they are described as follows:

1. Introduction. This section describes the motivations of this study, the re-
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search questions and the research methodologies. Moreover, it also introduces the

novelties of this work.

2. Referring expression comprehension via semantic-aware network. This chap-

ter proposes a semantic-aware network for referring expression comprehension and

elaborates on the details of the presented network. Moreover, this section lists the

extensive experiments implemented to validate the performance of the introduced

referring expression comprehension network and the acquired results.

3. Referring expression generation via adversarial training. This section presents

an adversarial training-based network to generate diverse and natural referring

expressions. The presented approach aims to generate natural referring expressions

which are adequately easy for humans to locate the referred objects within images

without sacrificing the semantic validity of expressions.

4. Object affordance recognition via attention-based multi-visual features fu-

sion. This chapter introduces an object affordance detection network via attention-

based multi-visual features fusion, and proposes a self-built dataset to learn human-

centered object affordances.

5. Interactive natural language visual grounding. This section presents the de-

tails of three different natural language visual grounding architectures based on the

three above introduced models, i.e., referring expression comprehension, referring

expression generation, and object affordance detection. This chapter also intro-

duces spoken instruction visual grounding by integrating with an online speech

recognizer, and robotic applications conducted on a PR2 platform via the spoken

instruction grounding framework.

6. Conclusion. This chapter summarizes the key ideas, insights, and approaches

described throughout the thesis. After analyzing the acquired results, this section

also describes the limitations of the presented architectures and provides future

research directions.
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Chapter 2

Referring Expression

Comprehension via

Semantic-Aware Network

2.1 Introduction

Referring expressions describe objects from diverse aspects, such as color, size, lo-

cation, and spatial relations between their neighboring objects. Within the realm

of referring expressions, there are two related tasks, i.e., referring expression com-

prehension and referring expression generation. The referring expression compre-

hension imitates the role of a listener to locate target objects within images given

referring expressions. The inverse task is the referring expression generation which

mimics the role of a speaker to generate discriminative referring expressions for

objects or regions within images.

Referring expression comprehension aims to locate the most relevant objects

or regions within images according to given referring expressions, and it requires

a comprehensive understanding of natural referring expressions and images to lo-

cate target objects. Compared to image captioning and visual question answering,

referring expression comprehension is widely used in image retrieval [15], video
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question answering [40], and natural language-based HRI [115], [44].

Existing work adopts multiple approaches to tackle with referring expression

comprehension. Baseline work [148] directly compares the visual and location dif-

ference to locate the most relevant object, [84] and [51] regard target object ground-

ing as image retrieve where selects the most relevant region according to the rank-

ing scores of generated expressions for detected region proposals. [107] completes

grounding by reconstructing referring expressions based on local deep features,

[149] proposes a Speaker-Listener model to generate and comprehend expressions,

and takes advantage of RL (Reinforcement Learning) to discriminate the expres-

sions, [16] leverages on external knowledge acquired by a fixed category detectors to

assess language consistency and visual consistency, [28] introduces an accumulated

attention network which accumulates the attention in image, object and referring

expression to realize visual grounding.

In terms of representations of image regions and natural language referring ex-

pressions, existing approaches for referring expression comprehension can be gen-

eralized into two categories: 1) representations un-enriched models, which directly

extract deep features from a pretrained CNN to be the visual representations for

detected image regions [148, 84, 51, 149, 50, 28, 156, 159]. 2) representations en-

riched models, which enhance the visual representations by adding external visual

information for regions. For instance, [78] leverages external knowledge acquired

by an attributes learning model to enrich the information of regions. [151] trains on

the Visual Genome dataset [64] to generate diversified and discriminative propos-

als. [147] extracts deep features from two different convolutional layers to predict

region attribute cues and the predicted attributes are adopted to be auxiliary in-

formation for the extracted region deep features.

Although the existing models achieve promising results, they neglect two criti-

cal issues: 1) the essence of deep features extracted from a pretrained CNN, i.e., the

features are spatial, channel-wise, and multi-layer [152], [18]. The existing meth-

ods focus on the spatial characteristics and perform fine-grid spatial attention to

locate the most relevant object, while the importance of channel-wise traits is over-
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looked. For example, in the process of predicting objects, the channel-wise features

are generated by the convolutional filters relevant to represent visual semantics of

objects. Therefore, the inherent semantics information of channel-wise features

can be adopted to enhance the visual cues of regions. 2) the different contributions

of each word in expressions to identify the target object. Nearly all existing ap-

proaches resort to a holistic association between the sentence and region feature.

For instance, in the expression “a blue bus between two other buses”, the word

“blue” should be the one with the highest weight to locate the target “bus”.

To address the issues as mentioned above, we fully utilize spatial and channel-

wise characteristics of region deep features, and take into account the textual

semantics of referring expressions for referring expression comprehension. Specifi-

cally, we propose a semantics-aware network that is composed of a visual semantic-

aware network and a language attention network as illustrated in Figure 2.1. The

crucial components of the visual semantic-aware network are the channel-wise at-

tention and the region-based spatial attention. According to the characteristic of

channel-wise features, the channel-wise attention can serve as a semantic attribute

detector and is employed as an enrichment of visual representation for regions. For

example, to predict a horse, the channel-wise attention pays more attention to

channel-wise feature maps generated by the convolutional filters corresponding to

represent visual semantics, such as furry texture and horse-like shape. While the

region-based spatial attention mechanism attempts to focus on textual-semantic-

related regions.

Moreover, the representation for words should be context-dependent, and the

words in each expression contribute differently to locate the target object. To this

end, we first extract word embeddings from a contextualized model, i.e., BERT[30],

and then feed the extracted embeddings into a language attention network to

acquire the different weights of each word in expressions. Additionally, the language

attention network learns to parse expressions into three phrases that represent the

target candidate, spatial location and relation between target and neighboring

objects, respectively.
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Figure 2.1: The illustration of the proposed semantic-aware network for referring

expression comprehension. Given a referring expression, we first employ a language

attention network to acquire different weights of each word in the expression and

learn to parse the expression into three linguistic components. We perform channel-

wise attention and region-based spatial attention, which are major constituents of

the visual semantic-aware network, to generate keyword guided semantic-aware

visual representation. We further combine the outputs of the two networks to

locate target object.

In this work, we reformulate the proposed network for referring expression

comprehension into three sub-modules: 1) a language attention network calculates

different weights for each word in referring expressions and learns to parse ex-

pressions into three phrases; 2) a visual semantic-aware network incorporates the

channel-wise attention and the region-based spatial attention to generate semantic-

aware visual representation for regions under the guidance of attended words; 3) a

target localization module coalesces the language attention network and the visual

semantic-aware network to locate target objects.
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We evaluate the proposed network on three popularized datasets: RefCOCO

[148], RefCOCO+ [148], and RefCOCOg [84]. The introduced network acquires

competitive results compared with the current state-of-the-art approaches. In sum-

mary, we propose a semantic-aware network, in which we exploit the rich linguistic

context by a language attention network, and we excavate the inherent visual se-

mantics in deep features via a visual semantic-aware network. We also conduct

extensive experiments on the three public datasets to validate the performance of

the introduced network.

2.2 Related Work

2.2.1 Referring Expression Comprehension

Different from visual relation detection [150], [63] and phrase grounding [17], [16],

the pivotal point of referring expression comprehension is to locate the target ob-

jects according to given referring expressions, and usually several objects with

the same category exist within images. Multiple methods have been proposed to

tackle with referring expression comprehension. Baseline work [148] encodes the

visual difference between objects of the same category within images, and through

the comparison of visual difference to locate the target object. [84] combines CNNs

with recurrent neural networks (RNNs) for joint understanding referring expres-

sions. Through integrating spatial configurations and global scene-level contextual

information into the network, [51] regards referring expression generation as object

retrieval from the candidate objects. [149] proposes a Speaker-Listener-Reinforcer

model to comprehend and generate referring expressions, and the reward-based

reinforcer is used to guide the sampling of more discriminative expressions and

further improve the grounding accuracy. [78] explores the role of visual attributes

by incorporating them into referring expression comprehension. [69] adopts a vi-

sual context LSTM module and a sentence LSTM module to model bundled object

context for referring expression. [156] presents a variational Bayesian framework
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for referring expression comprehension, and the proposed model exploits the recip-

rocal relation between the referent object and context to reduce the context search

space.

Attention mechanisms are first integrated with deep learning-based architec-

tures in neural machine translation [6] and [139], and become an indispensable

component in deep models to acquire superior results [3], [40]. Due to the excellent

performance of attention mechanisms, it has also been utilized in referring expres-

sion comprehension [107, 50, 28, 159, 133]. [107] employs attention mechanism in

referring expression comprehension by mapping phrase to image region and then

through reconstructing a given phrase to realize referred object grounding. [50]

parses the referring expressions into a triplet (subject, relationship, object) by an

external language parser, and compute the weight of each part of parsed expres-

sions with the soft attention mechanism. [28] introduces an accumulated attention

network that accumulates the attention information in image, objects and referring

expression to realize visual grounding. [159] argues that the image representation

should be region-wise, and adopts a parallel attention network to ground target

objects in variable length natural language descriptions, from short phrases query

to long multi-round dialogs. [133] presents a graph attention that explicitly rep-

resents inter-object relations, and properties with flexibility and power impossible

with competing approaches.

Weakly-supervised or unsupervised methods are also introduced for referring

expression comprehension. [16] leverages to prompt weakly supervised visual ground-

ing through drawing support from external knowledge which is acquired by pars-

ing the referring expressions via a natural language processing (NLP) parser and

retrieving the noun words, and then selecting the most probable class for each pro-

posal. [143] develops a completely unsupervised framework for visual grounding

by using hypothesis testing as a mechanism to link words to detected image con-

cepts. [55] uses concept learning as a proxy task to obtain self-supervision, and the

proxy task is utilized to decode the common concept present within each concept

batch. [37] decomposes the referring expressions by an NLP parser and performs
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compositional grounding progressively.

2.2.2 Visual and Textual Representations Augmented Mod-

els

The aforementioned models directly utilize the deep features extracted from a

pretrained CNN as the visual representations for detected regions. Several studies

draw support from external knowledge or different deep features to enrich the

visual representations. [78] first learns attributes from objects and their paired

descriptions, and then embeds the learned attributes with visual features into

a common space. The target object is located via its Euclidean distance to the

queried referring expression. Similar to [3], [151] adopts Faster R-CNN [105] to

acquire diversified and discriminative proposals by training the detector on the

Visual Genome dataset [64], so that the detected regions are augmented with

external attributes. [147] proposes three modular attention networks to address

language, subject, and relationship, respectively. The novelty of work [147] is that

it employs deep features extracted from two convolutional layers to predict the

attributes of regions, and the learned attributes are used for additional information

to enhance the regions visual representations.

The authors of work [156] adopt GloVe [98] to represent words, and employs the

hidden state of a two-layer BiLSTM (Bidirectional Long Short-Term Memory) [48]

to calculate the referent-cue weights. GloVe is a context-free word representation

model and generates word vectors in a vocabulary. Context-free word represen-

tation overlooks that the same word in different contexts expresses the different

semantics. [30] proposes a contextual word representation model, BERT, which

takes into account both left and right contexts to generate word representations.

Unlike the above mentioned approaches, we address the visual semantics of re-

gions by taking advantage of the inherent semantic attributes of deep features, i.e.,

channel-wise and spatial characteristics of extracted deep features. Additionally,

we explore the textual semantics by adopting BERT to generate word representa-
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tions and employ a language attention network to learn to decompose expressions

into multiple phrases to ground target objects.

2.3 Proposed Method

Given a referring expression r with M words r = {wi}Mi=1 and an image I with N

regions of interest (RoIs) I = {oj}Nj=1, we model the relation between wi and oj to

locate the target object. In this thesis, we decompose the proposed network for re-

ferring expression comprehension into three sub-modules: 1) a language attention

network learns to assign different weights to each word in referring expressions,

and learns to parse expressions into phrases that denote target candidate, rela-

tion between objects, and spatial location information; 2) a visual semantic-aware

network generates semantic-aware visual representation, which is acquired by con-

ducting the channel-wise attention and region-based spatial attention; 3) a target

localization module achieves targets grounding by combining the outputs of the

language attention network and the visual semantic-aware network with the rela-

tion and location representations. Figure 2.2 shows the details of the introduced

semantics-aware network.

2.3.1 Language Attention Network

We propose a language attention network to compute the different weights of each

word in referring expressions and learn to parse the expressions into phrases that

embed target candidate rtar, relation rrel, and location rloc, respectively.

For an expression r, we employ BERT [30] to tokenize and encode r into con-

textualized word embeddings Er = [e1, e2, ... , eM ], where ei ∈ R1×1024. We then

feed Er into an one-layer BiLSTM:

Lout = BiLSTM(Er) (2.1)

where Lout represents the final hidden representation for each word in referring

expressions.
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Figure 2.2: Architectural diagram of the proposed semantic-aware network for re-

ferring expression comprehension. We present a language attention network to

compute the different weights of each word in expressions, and learn to parse the

expressions into three phrases that embed the information of target candidate,

relation, and spatial location, respectively. We conduct both channel-wise atten-

tion and region-based spatial attention to generate semantic-aware region visual

representation. We further combine the outputs of the language attention network

with the semantic-aware region visual representation, relation representation, and

location representation to locate target objects. In the figure, f
′
v denotes the pro-

jected deep features, VC represents the channel-wise weighted deep feature, VS

is the spatial weighted feature, fSv is the generated semantic-aware visual repre-

sentation by concatenating f
′
v and VS, the details are described in section 2.3.2.

The relation representation urel, the location representation uloc, and the details of

the target candidate module, the relation module, and the spatial location mod-

ule are introduced in section 2.3.3. Ψ denotes a channel-wise multiplication for

f
′
v and the generated channel-wise attention weight σ, Φ represents element-wise

multiplication for VC and the acquired spatial attention weight γ (Best viewed in

color).

17



Chapter 2. Referring Expression Comprehension via Semantic-Aware Network

In order to acquire the different weight of each word, we compute attention

distribution over the expressions by:

αl = softmax(F(Lout)) (2.2)

L =

g∑
i

αl,iLout,i (2.3)

where αl denotes calculated attention weights,
M∑
m=1

αl = 1. In the implementation,

F is modeled by two convolution layers, and the second convolution layer shares

the parameters of the first layer. The glimpse number is set to g = 2, therefore,

the generated expression representation L ∈ Rd×2048, d is length of expressions in

different dataset.

Hu et al. [50] decompose the referring expression into (subject, relationship,

object) triplets, but not all expressions are well-posed like this construction. For

example, an expression like “a bird with a red neck” reveals the target “bird” with

specific attribute “red”, while “the cow directly to the right of the largest cow”

designates the spatial relation between target “cow” and object “largest cow”.

Expressions like the two exemplars, some words should be parsed to phrase to

represent specific information, e.g., “with a red neck”, “the right of”, and “the

largest cow”, etc. To this end, we employ a single perceptron and a softmax layer

to learn to parse the expressions into three module weights:

L = ϕ(WtL+ bt) (2.4)

[wtar, wrel, wloc] = softmax(L) (2.5)

where ϕ is a non-linear activation function, in the implementation, we adopt the

hyperbolic tangent. Wt is a weight matrix and bt represents a bias vector learned

during training. wtar, wrel, wloc represent weights guided by the target candidate

phrase, relation phrase and spatial location phrase, respectively.
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2.3.2 Visual Semantic-Aware Network

We take full advantage of the characteristics of deep features extracted from a

pretrained CNN model, and we conduct channel-wise and region-based spatial

attention to generate semantic-aware features for each detected region. This process

can be deemed as visual representation enrichment for the detected regions.

RoI Features

Given an image, we adopt Faster R-CNN [105] to generate RoIs, and we extract

deep feature fv ∈ R7×7×2048 for each oj from the last convolutional layer of the

4th-stage of ResNet101 [46], where 7×7 denotes the size of the extracted deep

feature, 2048 is the output dimension of the convolutional layer, i.e. the number

of channels. We then project the deep feature fv into a 512-dimension subspace

by a convolution operator with 1×1 kernel, i.e., the projected deep feature f
′
v ∈

R7×7×512.

Channel-wise Attention

Essentially, deep features extracted from pretrained CNN models are channel-wise,

spatial, and multi-layer. Each channel of a deep feature correlates with a convolu-

tional filter which performs as a pattern detector [18]. For example, the filters in

lower layers detect visual clues such as color and edge, while the filters in higher

layers capture abstract contents such as object component or semantic attributes.

Accordingly, performing channel-wise attention on higher-layer features can be

deemed as a process of semantic attributes selection.

We first reshape the projected RoI deep feature f
′
v to V=[v1, v2, ... , vdv ],

where vi ∈ R7×7 is the i-th channel of the deep feature f
′
v, dv=512. We then

perform average pooling on each channel to generate the channel-wise vector V =

[v1, v2, ..., vdv ], where vi represents the i-th channel feature.

After the feature pooling, we first utilize L2-normalization to process channel-

wise vector V and expression representation r to generate more robust representa-
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tions, we then perform channel-wise attention by a channel-wise attention network

which is composed of an MLP (multi-layer perceptron) and a softmax layer. For the

detected image region, the inputs of the channel-wise attention include the average-

pooled feature V and the weighted expression representation L. The channel-wise

attention weight is acquired by:

Ac = ϕ((Wv,cV + bv,c)⊗ (Wt,cL+ bt,c))

σ = softmax(Ac)
(2.6)

where Wv,c and Wt,c are learnable weight matrices, bv,c and bt,c are bias vectors,

Wv,c and bv,c are the parameters of the MLP for visual representation, while Wt,c

and bt,c for textual representation. ⊗ denotes outer product, σ ∈ R1×512 is the

learned channel-wise attention weight which encodes the semantic attributes of

regions. In the following, Wv,. and bv,. represent the weight matrix and bias vector

for visual, Wt,. and bt,. are for textual.

Region-based Spatial Attention

The channel-wise attention attempts to address the semantic attributes of regions,

while the region-based spatial attention is employed to attach more importance to

the referring expression related regions. To acquire region-based spatial attention

weights, we first combine the learned channel-wise attention weight σ with the

projected deep feature f
′
v to generate channel-wise weighted deep feature VC .

VC = Ψ(f
′

v, σ) (2.7)

where Ψ is a channel-wise multiplication for deep feature channel and correspond-

ing channel weights, VC ∈ R49×512.

We put the weighted channel-wise deep feature VC and the weighted expres-

sions into an attention network similar to the channel-wise attention to calculate

the spatial attention γ:

As = ϕ((Wv,sV
C + bv,s)⊗ (Wt,sL+ bt,s))

γ = softmax(As)
(2.8)
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The acquired γ ∈ R49×1 denotes the weights of each region related to the ex-

pressions, we further fuse the γ with channel-wise weighted feature VC to obtain

spatial weighted deep feature VS:

VS = Φ(VC , γ) (2.9)

where Φ denotes element-wise multiplication for regions of each deep feature chan-

nel and the corresponding region attention weights. VS ∈ R7×7×512 comprises the

semantics guided by the channel-wise attention as well as the weight of each region.

Therefore, we define VS as semantic-aware deep feature. Finally, we concatenate

VS with projected feature f
′
v to obtain semantic-aware visual representation for

each region, i.e., fSv = [f
′
v ; VS], fSv ∈ R7×7×1024, [· ; ·] denotes the concatenate

operation.

2.3.3 Target Localization Module

In order to locate target objects for given expressions, we need to sort out the

relevant candidates, the spatial location, and the appearance difference between

the candidate and other objects. For instance, to ground the expression “the cow

directly to the right of the largest cow”, we need to understand the spatial location

“the right of”, and the appearance difference “largest” between the cows to iden-

tify the target “cow”. To this end, we calculate the matching score of the target

candidates, the relation, and the spatial location via a target candidate module, a

relation module, and a spatial location module, respectively.

Target Candidate Module

We compute the target candidate phrase matching score by the target candidate

module. Given a region semantic-aware representation fSv and a target candidate

phrase guided expression embedding rtar, we process them by L2-normalization

and linear transform to compute the attention weights on each region:

t = ϕ((Wvf
S
v + bv)⊗ (Wtrtar + bt))

β = softmax(t)
(2.10)
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where β denotes the learned region-based attention weight.

We fuse β and fSv to obtain the target candidate phrase attended region visual

representation utar, and we further compute the target candidate matching score

star by:

utar = β ⊗ fSv

utar = Wv,tarutar + bv,tar

rtar = Wt,tarrtar + bt,tar

star = D(utar, rtar)

(2.11)

where D(· , ·) represents the consine distance measurement.

Relation Module

We adopt a relation module to obtain the matching score of a pair of candidates

and relation guided phrase embedding rrel. We use the average-pooled channel

vector V as the appearance representation for each candidate. To tackle with the

appearance difference between candidates, e.g., “the largest cow”, we calculate the

visual appearance difference representation δvi=
1
n

∑
j 6=i

vi−vj
||vi−vj || as [148], where n is

the number of candidate chosen for comparison (in our implementation n = 5). We

concatenate V and δvi as the candidates visual relation representation urel, i.e.,

urel = [V ; δvi]. We calculate the relation matching score by:

urel = Wv,relurel + bv,rel

rrel = Wt,relrrel + bt,rel

srel = D(urel, rrel)

(2.12)

Spatial Location Module

We calculate the location matching score through the location module. To deal

with the spatial relation of candidates in images, following [148], we adopt a 5-

dimensional spatial vector ul = [xtl
W

, ytl
H

, xbr
W

, ybr
H

, w·h
W ·H ] to encode the top left position,

bottom right position, and the relative size of the candidates in images. In order
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to address the relative position expression like “the right of”, “in the middle”,

we adopt the relative location vector ∆uij = [
[∆xtl]ij
wi

,
[∆ytl]ij
hi

,
[∆xbr]ij
wi

,
[∆ybr]ij
hi

,
wj ·hj
wi·hi ]

which is obtained by comparing with five surrounding objects and concatenate

with ul to generate candidate location representation uloc = [ul ; ∆uij].

Similar to the target candidate module, we process uloc and location phrase rloc,

and then combine the transformed uloc and rloc to generate the location matching

score sloc:

uloc = Wv,loculoc + bv,loc

rloc = Wt,locrloc + bt,loc

sloc = D(uloc, rloc)

(2.13)

2.3.4 Learning Objective

Given an image I and expression r pair, we calculate the target candidate score,

relation score and spatial location score, through the three above mentioned mod-

ules. We locate the target object by the final grounding score:

G(oi|r) = wtarstar + wrelsrel + wlocsloc (2.14)

In the implementation, we adopt a combined max-margin loss as the objective

function:

Lθ =
∑
i

[max(0, ξ −G(oi|ri) +G(oi|rj)) +max(0, ξ −G(oi|ri) +G(ok|ri))]

(2.15)

where θ denotes the parameters of the proposed model to be optimized, ξ is the

margin between positive and negative samples. During training, we set ξ = 0.1.

For each positive target and expression pair (oi, ri), we randomly select negative

pairs (oi, rl) and (ot, ri), where rl is the expression for other objects, ot is the other

object in the same image.
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2.4 Experiments

2.4.1 Datasets

The introduced network is trained and validated on three popular referring ex-

pression datasets: RefCOCO [148], RefCOCO+ [148], and RefCOCOg [84]. The

images of the three datasets were collected from MSCOCO dataset [75]. The re-

ferring expressions in RefCOCO and RefCOCO+ were collected in an interactive

manner [60], while RefCOCOg expressions were collected in a non-interactive way.

RefCOCO comprises 142,210 expressions for 50,000 referents in 19,994 images.

The dataset is divided into training, validation, testA and testB which contains

120,624, 10,834, 5,657 and 5,095 referent-expression pairs, respectively.

RefCOCO+ has 141,564 expressions for 49,856 referents in 19,992 images.

The split is same as RefCOCO and each subset contains 120,191, 10,758, 5,726,

and 4,889 referent-expression pairs, respectively. Comparison with RefCOCO, Re-

fCOCO+ discards absolute location words and attaches more importance to ap-

pearance differentiators.

RefCOCOg contains 95,010 expressions for 49,822 refs in 25,799 images. Ref-

COCOg was collected in a non-interactive pattern, therefore the referring expres-

sions in RefCOCOg are longer than RefCOCO and RefCOCO+. RefCOCOg has

two types of data splitting, [84] splits the dataset into train and validation sets,

and no test set is published. Therefore, most existing work evaluates their per-

formance on the validation set. We denote this data split as RefCOCOg “val∗”.

Another data partition [89] splits the dataset as training, validation and test sets.

We run experiments on this split and we denote as RefCOCOg “val” and “test”.

The referring expressions in RefCOCO and RefCOCO+ were collected in an

interactive manner [60], the average length of expressions in RefCOCO is 3.61,

and the average number of words in RefCOCO+ expressions is 3.53. While Re-

fCOCOg expressions were collected in a non-interactive way, therefore produces

longer expressions than the RefCOCO and RefCOCO+, and the average length of

RefCOCOg expressions is 8.43. From the perspective of expression length distri-
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bution, 97.16% expressions in RefCOCO contain less than 9 words, the proportion

in RefCOCO+ is 97.06%, while 56.0% expressions in RefCOCOg are less than 9

words.

2.4.2 Experimental Setup

In practice, the length of the sentences is set to 10 for the expressions in RefCOCO

and RefCOCO+, and pad with “pad” symbol to the expressions whose length is

smaller than 10. The length of the sentences is set to 20, and the same manner is

adopted to process the expressions in RefCOCOg.

The “bert-large-uncased” model1 is employed to generate contextualized word

embedding Er. According to [30], the word embedding from the sum of the last four

layers acquire better results than the embedding extracted from the last layer. We

select the embedding of the sum of the last four layers of BERT as Er. Therefore,

the obtained expression representation q ∈ R10×1024 for RefCOCO and RefCOCO+,

and q ∈ R20×1024 for RefCOCOg.

For a given image and referring expression pair, the final ground score defined

in Equation 2.14 is utilized to compute the matching score for each object in

the image, and pick the one with the highest matching score as the correct one.

IoU (Intersection over Unit) between the predicted region and the ground truth

bounding box is computed, and the value larger than 0.5 is selected as the correct

visual grounding.

The model is trained with Adam optimizer with coefficients β1 = 0.9 and β2

= 0.999. The initial learning rate is set to 0.0004 and decay every 5,000 iterations

with weight decay 0.0001, and the total number of iterations is up to 30,000.

2.4.3 Ablation Analysis

In Table 2.1, the different modules of the proposed network are combined to vali-

date their performance and effectiveness. According to [151] and [147], the models

1https://github.com/huggingface/pytorch-pretrained-BERT
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RefCOCO RefCOCO+ RefCOCOg

val(%) testA(%) testB(%) val(%) testA(%) testB(%) val(%) test(%)

1 sub(ProjFeat)+loc 79.28 79.57 80.37 64.77 65.29 62.41 69.63 69.28

2 sub(ProjFeat)+loc+rel 79.99 80.24 80.82 64.89 66.00 63.57 70.14 69.96

3 sub(SemanAware)+loc 80.59 80.61 81.73 64.20 65.89 63.47 72.94 72.72

4 sub(SemanAware)+loc+rel 81.24 81.42 82.20 65.11 66.03 63.76 72.98 72.76

5 sub(ProjFeat)+loc+rel+LangAtten 81.83 82.10 82.20 66.42 67.46 63.84 73.33 72.81

6 sub(SemanAware)+loc+rel+LangAtten 83.51 83.74 83.18 68.16 69.66 64.66 76.00 74.81

7 sub(SemanAware)+loc+rel+LangAtten(I) 83.25 82.55 82.55 67.77 69.70 64.00 74.53 73.61

Table 2.1: Ablation studies of the proposed network using different module com-

binations.

trained by the deep features extracted from VGG16 [119] generates lower accuracy

than the features from ResNet101, so the model is trained using the ResNet101

deep features rather than the VGG features.

First, the performance of the proposed model is validated from the visual per-

spective. The projected feature f
′
v and location representation uloc are concatenated

as the visual representation for each region, and the output of the BiLSTM is used

to the representation for expressions. This combination is deemed as the baseline,

and the results are listed in Line 1. And then the relation representation is added

to evaluate the benefits of the relation module, and the results are listed in Line 2.

Second, the effect of the visual semantic-aware module (section 2.3.2) is tested

by selecting the semantic-aware visual representation fSv as the region visual repre-

sentation. The fSv is combined with the spatial location and relation representation,

respectively. Compared with Line 1 and Line 2, the results in Line 3 and Line 4

demonstrate the performance of the visual semantic-aware network. The results

acquired by employing the semantic-aware visual representation fSv are improved

by nearly 2% than the projected deep feature f
′
v.

Third, two manners are taken advantage to evaluate the performance of the

language attention network. We first combine f
′
v with the language attention, it

is clear that the results outperform the results listed in Line 2. An interesting

finding is that the results listed in Line 4 are close to Line 5, it also demonstrates
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Figure 2.3: Example results acquired by the proposed semantic-aware network on

RefCOCO, RefCOCO+, and RefCOCOg. Referring expressions are underlay the

images. The red boxes show the correct groundings and the green bounding boxes

denote the ground truth bounding boxes.

the benefits of the visual semantic-aware module. We then coalesce the language

attention with fSv and the other three representations, this combination acquires

the best accuracies on the three test datasets.

Fourth, the influence of the different word embeddings is compared by employ-

ing the word feature extracted from the different layers of BERT. The embeddings

extracted from the last layer of BERT as the contextual representation and feed

into the language attention, this word embedding is denoted as LangAtten(I). Line

7 lists the obtained results. Compared with the results in Line 6, it is demonstrated

the accuracy benefits from the advantage of the embeddings from the sum of the
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RefCOCO RefCOCO+ RefCOCOg

val(%) testA(%) testB(%) val(%) testA(%) testB(%) val*(%) val(%) test(%)

1 visdif[148] - 67.57 71.19 - 52.44 47.51 59.25 - -

2 MMI[84] - 63.15 64.21 - 48.73 42.13 55.16 - -

3 attr+MMI+visdif[78] - 78.85 78.07 - 61.47 57.22 69.83 - -

4 Speaker+Listener+Reinforcer[149] 79.56 78.95 80.22 62.26 64.60 59.62 72.63 71.65 71.92

5 Speaker+Listener+Reinforcer[149] 78.36 77.97 79.86 61.33 63.10 58.19 72.02 71.32 71.72

6 VC[156] - 78.98 82.36 - 62.56 62.90 73.98 - -

7 DDPN+VGG16[151] 76.9 67.5 73.4 67.0 50.2 60.1 - - -

8 DDPN+ResNet101[151] 80.1 72.4 76.8 70.5 54.1 64.8 - - -

9 CMN[50] - - - - - - 69.30 - -

10 AccuAtten[28] 81.27 81.17 80.01 65.56 68.76 60.63 73.18 - -

11 PLAN[159] 81.67 80.81 81.32 64.18 66.31 61.46 69.47 - -

12 MAttNet+VGG16[147] 80.94 79.99 82.30 63.07 65.04 61.77 73.08 73.04 72.7

13 LGRANs [133] 82.0 81.2 84.0 66.6 67.6 65.5 - 75.4 74.7

14 VisSemanAware+LanAtten 83.51 83.74 83.18 68.16 69.96 64.66 - 76.00 74.81

Table 2.2: Comparison with the state-of-the-art approaches.

last four layers of BERT.

Finally, some example results of referring expression comprehension on the

three datasets are shown in Figure 2.3. Incorporate the visual semantic-aware net-

work with the language attention network, the introduced model is able to locate

the target objects for complex referring expressions, as shown in the experimental

results on RefCOCOg.

2.4.4 Comparison with State-of-the-art

Table 2.2 lists the results acquired by the proposed model and the state-of-the-art

models. The table is split into two parts over the rows: the first part lists the

approaches without introducing the attention mechanism. The second illustrates

the results acquired by attention integrated models.

First, the proposed model outperforms the other approaches and acquire com-

petitive results with the current state-of-the-art approaches. [147] extracts the fea-

tures from the last convolutional outputs of the third stage and the fourth stage,
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and utilizes the two different deep features to predict attributes of regions. The

predicted attribute is concatenated with the features from the fourth stage as the

visual representation for regions. The results of [147] benefit from the features ex-

tracted from two different layers. While in our implementation, we extract features

from one layer and utilize the innate semantic attributes.

Second, through the experiments on the three datasets, the introduced model

acquires better results on RefCOCO compared with the results on RefCOCO+ and

RefCOCOg. The expressions in RefCOCO frequently utilize the location or other

details to describe target objects, the expressions in RefCOCO+ abandon the loca-

tion descriptions while adopts more appearance differences. While the expressions

in RefCOCOg involves the surrounding objects of the targets and frequently use

the relation of objects to depict the target objects.

Finally, some failure cases on the three datasets are shown in Figure 2.4. For

complex expression, similar to “small table next to the chair”, the proposed model

generates closest weights for “table” and “chair”. Moreover, to locate the object

with vague visual features, such as the target for “black sleeves” in the first left

image and “guy leg out” in the third image of the second row, our model frequently

generates wrong predictions. For the long expression and image with the complex

background, such as the two images in RefCOCOg, our model fails to generate

correct predictions.

2.5 Discussion

In this section, we proposed a semantics-aware network for referring expression

comprehension. Unlike the existing approaches, we excavated the visual semantic

by taking full advantage of the characteristic of the extracted region deep features

from a pretrained CNN model, and conducted channel-wise and region-based spa-

tial attention to enrich region visual representation. Moreover, we exploited the

rich linguistic structure of referring expression via contextualized word embeddings

and a language attention network. Finally, we trained and validated the proposed
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Figure 2.4: Examples of incorrect predictions. The red boxes show our wrong visual

groundings, and the green boxes denote the ground truth bounding boxes.

network on three public datasets, RefCOCO, RefCOCO+, and RefCOCOg.

In the future, we will adopt different approaches to exploit the rich context of

referring expressions, such as develop a method to parse the expressions in a more

natural way. Additionally, we will address the interpretability and robustness of

the presented model.
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Chapter 3

Referring Expression Generation

via Adversarial Training

3.1 Introduction

Referring expressions not only depict the attributes of objects, such as color, size,

and location, but also describe spatial relationships between objects within im-

ages. Compared to generic image captions, referring expressions are context-aware

and contain more accurate and rich descriptions for objects. Tasks that utilize tex-

tual descriptions or questions to help human beings understand or depict images

and scenes are in agreement with the human desire to understand visual contents

at a high semantic level. Examples of these tasks include dense captioning [56],

visual question answering [5], referring expression comprehension [148], referring

expression generation [148].

Referring expression comprehension imitates the role of a listener to ground tar-

get objects in given images, while referring expression generation mimics the role of

a speaker to generate referring expressions for each detected region within images.

Existing approaches mainly adopt Encoder-and-Decoder paradigms to generate

expressions as provided by the ground-truth [148, 84, 149, 78]. The Encoder-and-

Decoder models which adopt CNN to process visual features and employ LSTM

to generate sequence words, and the training objective is to maximize the resem-
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blance to the ground truth samples. Moreover, popular evaluation metrics, such as

BLEU [95], ROUGE[73], and METEOR [29], mostly tend to match the n-grams

with the ground-truth.

The existing approaches adopt generic generation paradigm and evaluation

metrics to produce plausible expressions. However, the conventional methods bring

about two crucial issues for referring expression generation. First, the generated

expressions tend to be easy for humans to locate target objects in given images

without taking into account the semantic validity of expressions. Moreover, the ex-

pressions generated by the generic approaches are easy for humans to discriminate

from natural expressions. Second, the diversity of expressions is overlooked. Differ-

ent people would probably depict image regions using different wording pattern,

rather than follow the mode of training samples. While the diversity in expressions

is an indispensable attribute of human language.

In this thesis, we aim to improve the diversity and naturalness of generated re-

ferring expressions, i.e., generating expressions that are adequately easy for humans

to ground target objects within images without sacrificing the semantic validity.

Inspired by the successful applications of Generative Adversarial Networks (GANs)

in generating diverse and real-valued data, we introduce a GAN-based architecture

to generate diverse and natural referring expressions.

GANs were originally introduced in [42] and have been widely used in image

synthesis [104, 154, 52, 134, 11]. The crucial constituents of GANs are a generator

and a discriminator, where the generator tries to generate realistic samples to coax

the discriminator, while the discriminator tries to discriminate real samples from

generated ones. In image synthesis, GANs learn a loss to classify if the generated

images are real or fake, and simultaneously training a generative model to minimize

the loss. Moreover, according to the results reported in [134, 11], the synthesized

images are high-resolution and nearly indistinguishable from real photos without

any hand-crafted losses or pretrained networks.

GANs are also adopted to generate captions [24, 113]. Compared to image

synthesis, in which the transformation from the input vector to the synthesized
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image is a continuous mapping process. In contrast, the process of generating

referring expressions is a sequential sampling procedure, which poses a challenge

when trying to update gradients during the generator training. [54, 82] propose

Gumbel sampler to overcome the inability to apply re-parameterization trick to

discrete data generation and allow for end-to-end training the generator. Motivated

by these work, we adopt Gumbel-softmax for a GAN-based architecture to generate

referring expressions for each detected image region.

In this thesis, the objective is to generate expressions in a pattern that better

imitates the way humans depicting image regions while reserving the semantic va-

lidity of expressions. Thus, we formulate the expression generator as a generative

adversarial network, and we propose a discriminator which encourages the genera-

tor to generate expressions to be diverse and natural. We train the generator with

an adversarial loss with the discriminator. We train and evaluate the proposed

network on RefCOCO, RefCOCO+, and RefCOCOg. The introduced generative

network acquires competitive results compared with the current state-of-the-art

approaches.

3.2 Related Work

3.2.1 Image Captioning

Different from referring expression generation, image captioning aims to generate

natural language sentences to describe the general content of given entire images.

Existing work adopts different approaches to address the multimodal task. These

methods first detect object concepts by Conditional Random Field [25], or CNNs

[36, 72], and then generate captions using sentence template [67], or retrieving

sentences from existing data [36, 29].

Vinyals et al. [131] initially introduces an Encoder-and-Decoder model for cap-

tion generation, and the Encoder-and-Decoder-based approaches become popular

[139, 145, 79, 142, 141]. These models first extract visual features through pre-
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trained CNNs and generate captions sequentially via LSTM, and these models

learn the parameters by maximizing the conditional log-likelihood of the training

samples. A vital issue of the maximum likelihood principle-based models is that

the generated captions often tend to replicate the generic sentence from a training

set for given similar images [31].

Plenty of proposed approaches aim to generate captions with diversity and nat-

uralness. [68] combines Maximum Mutual Information (MMI) with beam search

to produce more diverse and interesting captions. [130] introduces diverse beam

search which decodes diverse lists by decomposing the beam budget into groups and

implementing diversity between groups of beams. [76] adopts a Natural Language

Understanding component in training to optimize the specificity of the caption gen-

eration component, and employs multiple objective functions to generate diverse

and meaningful captions. [153] argues that the existing models fail to capture vi-

sual contexts such as object relationships, and thereon introduces a context-aware

visual policy network to generate context-aware descriptions for image regions.

Dai et al. [24] improves the naturalness and diversity of generated captions

by employing conditional GAN to train the caption generator. This model jointly

trains an evaluator in an adversarial way to discriminate irrelevant or artificial

captions from natural ones. [113] formulates the caption generator as a generative

adversarial network, and designs a discriminator to generate captions which are

diverse and indistinguishable from human captions. While training an adversarial

generator, caption generation is a sequential sampling process, and the operation

is non-differential which poses a challenge to apply gradient back-propagation.

[113] depends on the reinforcement rule to handle back-propagation, i.e., utilizes

Monte Carlo rollouts [146] to compute the approximated future reward. While

[113] employs Gumbel Sampler [54, 82] to achieve end-to-end training.

Although the approaches mentioned above acquire promising results, they gen-

erate captions for entire images and the captions cannot be grounded on a set of

image regions. [80] introduces a novel captioning pattern which first generates a

word-level sentence template with slot locations, and then the slots are filled by
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object detectors with visual concepts detected in images. In this way, this model

generates grounded image captioning. [23] depicts the same image by selecting con-

centrated regions in a different order and focuses on generating diverse captions

via the control signal given as a sequence or as a set of image regions.

Another similar task is dense captioning, which aims to describe salient image

regions within images in natural language. [56] initially introduces dense caption-

ing, and this work proposes a Fully Convolutional Localization Network to locate

objects and adopts a Recurrent Neural Network-based language model to gen-

erate label sequences. [140] exploits a dense captioning model in a methodical

manner in which joint inference locates each visual concept accurately, and con-

text fusion combines pooled features from image regions to produce better region

descriptions. [70] learns a complementary object context for each caption region

and transfers knowledge from objects to caption regions. In this way, this model

generates context-aware descriptions for each image region. [144] investigates a

context and attribute grounded dense captioning model that produces captions

with context information, which includes the local, neighboring, and global data.

3.2.2 Referring Expression Generation

Compared to the captions generated by generic captioning models or dense cap-

tioning models, referring expressions not only depict image regions using properties

such as color, size, and location, but also involve the interaction information be-

tween their neighboring objects. The goal of referring expression generation is to

generate unambiguous natural language descriptions for detected objects or regions

within given images. Thus, referring expression generation is more easily evaluated

and can be used in interactive scenarios.

Referring expression generation has been studied for several years [62, 87].

[148] takes advantage of visual differences of objects and employs a CNN-LSTM

paradigm to produce expressions. Similar to [148], [84] adopts the same pattern to

generate expressions and uses beam search to approximately find the most probable

descriptions. This work adds MMI to encourage the generator to produce better
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descriptions for the target object than the other objects within the image. [149]

utilizes the appearance similarity, size and location similarity to represent image

regions and also produces expressions via a CNN-LSTM model. [78] explores the

role of object attributes in expression generation and extends the generic CNN-

LSTM model to hearten the generation bears more accurate attributes correlated

with the input attributes. [81] first trains a comprehension module on human-

generated expressions, and the trained model is selected to be a critic for referring

expression generator. This work also follows the CNN-LSTM paradigm to generate

expressions. [124] improves the method introduced by [149] and presents a new

referring expression generation dataset. However, this model also follows the CNN-

LSTM paradigm to generate referring expressions.

Unlike the existing approaches, we aim to generate diverse and natural referring

expressions that are sufficiently easy for humans to locate the target objects and

without sacrificing the semantic validity of generated expressions.

3.3 Evaluation Metrics

Accompanied by the development of the captioning generation approaches, multi-

ple evaluation metrics have been introduced to evaluate the quality of generated

natural language sentences. Classical metrics such as BLEU [95] focuses on preci-

sion and ROUGE [73] emphases on the recall of n-grams. These metrics show weak

associations with human judgment [34, 67]. In order to measure the overall quality

of generated descriptions, METEOR [29] evaluates both the precision and recall

of n-grams, and [128] proposes CIDEr which computes the similarity of generated

sentences against a set of ground truth written by humans. CIDEr shows high

consistent with consensus as evaluated by humans.

In order to evaluate referring expressions generated by the proposed network,

we adopt four types of evaluation metrics: BLEU@N [95], METEOR [29], ROUGE-

L [73], and CIDEr [128].

BLEU (Bilingual Evaluation Understudy) [95], which is a score to compare the
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N-gram overlapping of a candidate translation of the text to one or more reference

translations. BLEU is widely used to evaluate text generation for a suite of natural

language processing tasks. BLEU tries to compute the match average of variable

length phrases between candidate translations and reference translations, and the

acquired match averages are applied to assess the translation score. The BLEU

metric requires to compute the brevity penalty BP by:

BP =

1, if c > r

exp(1− r/c), otherwise

where c is the length of candidate translation, r represents the effective reference

corpus length.

The basic BLEU is calculated as follows:

BLEU = BP · exp(
N∑
n=1

wnlogpn) (3.1)

where wn is positive weights summing to one, and pn denotes the N-gram precision

computed using N-grams with a maximum length of N. In our experiments, we

use N = 1, 2, 3, 4 and the associated metrics are denoted as BLEU@1, BLEU@2,

BLEU@3, and BLEU@4.

METEOR (Metric for Evaluation of Translation with Explicit Ordering) [29],

which is utilized to calculate the harmonic mean of uni-gram matches’ precision

and recall between generated sentences and ground truths. METEOR calculates

higher order N-grams, considers word-to-word matching, and applies arithmetic

averaging for a final score. The METEOR metric is acquired by:

Fmean = (
PR

αP + (1− α)R
)

Pen = γ(
ch

m
)β

score = (1− Pen) · Fmean

(3.2)

where P and R denote the precision and recall of uni-gram matches, ch denotes

the number of chunks and m is the number of matches. α controls the relative

weight of precision and recall, γ determines the maximum penalty, β determines the
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functional relation between the fragmentation ch/m and the penalty. In practice,

the three parameters are set to α = 0.9, β = 3.0, γ = 0.5 for maximizing correlation

with human judgments.

ROUGE L (Recall-Oriented Understudy for Gisting Evaluation) [73], which

measures the longest common subsequences between a pair of sentences. ROUGE L

calculates the ratio between the size of two summaries’ longest common subse-

quences and the size of the reference summary. ROUGE L is computed by:

Rlcs =
LCS(X, Y )

m

Plcs =
LCS(X, Y )

n

Flcs =
(1 + β2)RlcsPlcs
Rlcs + β2Plcs

(3.3)

where LCS(X, Y ) denotes the length of a longest common sequence of two given

summaries X and Y , m and n represent the length of X and Y respectively. β =

Plcs/Rlcs, Flcs is the calculated ROUGE L score.

CIDEr (Consensus-based Image Description Evaluation) [128], which is pro-

posed to evaluate the quality of image descriptions. CIDEr measures the consensus

between candidate image captions and the reference sentences. CIDEr extends ex-

isting metrics with tf − idf weighting over N-grams. The Term Frequency Inverse

Document Frequency (TF-IDF) weighting gk(ci) is calculated by:

TF (k) =
hk(ci)∑
hl(ci)

IDF (k) = log(
N∑N

1 min(1,
∑M

1 hk(ci))
)

gk(ci) = TF (k) ∗ IDF (k)

(3.4)

where hk(ci) represents n-gram occurs in candidate sentence ci.

The CIDEr score CIDErn for n-grams of length n is calculated using the average

cosine similarity between the candidate sentence ci and the reference sentences

Si = si1,...,simby:

CIDErn =
1

M

M∑
j=1

gn(ci) · gn(sij)

‖gn(ci)‖ ‖gn(sij‖
(3.5)
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where gn(ci) is a vector formed by gk(ci), ‖gn(ci)‖ denotes the magnitude of the

vector gn(ci).

3.4 Proposed Method
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Generator Discriminator

Object Detection

a man sitting on a 
wooden bench

FE
Target Neighbor

Coalition

+
Concat

Figure 3.1: Diagram of the adversarial training-based network for referring ex-

pression generation. We generate context-aware visual representation for detected

regions within an image. We propose a generator to generate expressions and a

discriminator to classify whether the generated expressions are real sentences from

the corpus or are generated by the generator. FE represents feature extraction.

Given an image I with N region of interests (RoIs) I = {oi}Ni=1, we generate

referring expressions for each region oi. In this work, we reformulate referring ex-

pression generation as a generative network which is composed of an expression

generator to generate expressions and a discriminator to minimize the objective

loss. Figure 3.1 illustrates the details of the generative architecture for referring

expression generation.

3.4.1 Context-Aware RoI Representation

Similar to the proposed semantic-aware network for referring expression compre-

hension, we adopt Faster R-CNN [105] to detect RoIs, and extract deep features

from the last convolutional layer of the 4th-stage of ResNet101 [46] , i.e. region
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deep feature fv ∈ R7×7×2048. We also perform average pooling on each channel to

generate vector V ∈ R1×2048 as the visual representation for each detected region.

In order to address the properties of regions, such as size and location, we adopt

5-dimensional spatial vector ul = [xtl
W

, ytl
H

, xbr
W

, ybr
H

, w·h
W ·H ] to encode the location and

size of the region, where x and y are the top left and bottom right values, w and

h represent the width and height of the region, and W and H are the width and

height of the image.

For the interaction information between target and their neighbor objects, we

employ a geometric feature for the subject and object pair. Given bounding boxes

for subject bs = [xs, ys, ws, ws] and object bo = [xo, yo, wo, wo], where (x, y) are

the center values of the box, and (w, h) are the width and height of the box, we

adopt the geometric feature defined in [100] as:

ug = [
xo − xs√
wshs

,
yo − ys√
wshs

,

√
woho
wshs

,
ws
hs
,
wo
ho
,
bs ∩ bo
bs ∪ bo

] (3.6)

where ug ∈ R1×6. We process the spatial vector ul and the geometric feature ug

by two fully connected layers to generate length uniformed representations, i.e.

generated u
′

l ∈ R1×64 and u
′
g ∈ R1×64. We then concatenate the V , u

′

l and u
′
g as

the context-aware representation for each detected object in an image, i.e. V
′

=

[V ; u
′

l; u
′
g], [· ; ·] represents the concatenate operation.

3.4.2 Gumbel-Softmax for Discreteness Problem

The authors of work [54, 82] introduce the Gumbel-Softmax trick that combines

a continuous relaxation of the one-hot encoded vector for the discrete samples

with the re-parameterization of the sampling process to achieve back-propagation.

The Gumbel-Softmax trick attempts to tackle with the inability to apply the re-

parameterization trick to generated discrete samples by GANs.

Given a random variable g, if g = -log(-log(u)) with u ∼ Uniform[0, 1], g

obeys standard Gumbel distribution. The importance of the Gumbel distribution

is that any discrete distribution can be parameterized in terms of Gumbel random

variables. Lext X be a discrete random variable with distribution P (X = k) ∝
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αk (αk is a random variable), and gk is a sequence obeying standard Gumbel

distribution. We can calculate X by:

X = arg max
k

(log(αk) + gk) (3.7)

Although the argmax operation relates the Gumbel samples, the αk and the

realization of the discrete distribution are not continuous. As suggested in [54] and

[82], one way of circumventing this is to relax the discrete set by considering random

variables taking values in a large set. Note that any discrete random variable can

always be expressed as a one-hot vector (i.e., a vector filled zeros except for an

index where the coordinate is one). By mapping the realization of the variable

to the index of the non-zero entry of the vector, we can compute the probability

simplex by the convex hull of the set of the one-hot vector as follows:

∆K−1 =

{
x ∈ RK

+ ,
K∑
k=1

xk = 1

}
(3.8)

where ∆K−1 denotes (K-1)-dimensional simplex.

Through computing the probability simplex, we can construct the relaxation

of discrete samples. Thus, a natural way to relax a discrete random variable is to

take values in the probability simplex. Both [54] and [82] present to consider the

softmax map indexed by a temperature parameter by:

fτ (x)k =
exp(xk/τ)∑K
k=1 exp(xk/τ)

(3.9)

where τ represents the softmax temperature, and τ ∈ (0, ∞).

Instead of the discrete valued random variable X, we can calculate the sequence

of simplex-valued random variable Xτ by:

Xτ = fτ (log(α) + g) =

(
exp((log(αk) + gk)/τ)∑K
k=1 exp((log(αi) + gi)/τ)

)
(3.10)

The generated Xτ obeys the concrete distribution, denote as Xτ ∼ Concrete(α,

τ). The density of the Gumbel-Softmax distribution is given by:

pα,τ (x) = (n− 1)!τn−1

K∏
k=1

(
αkx

−τ−1
k∑K

k=1 αix
−τ
i

), x ∈ ∆K−1 (3.11)
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With the softmax temperature τ approaching to 0, samples from the Gumbel-

Softmax distribution become one-hot and the Gumbel-Softmax distribution be-

comes identical to the categorical distribution. Therefore, by replacing categorical

samples with Gumbel-Softmax samples, we can use back-propagation to calculate

the gradients.

3.4.3 Expression Generator

Coalition 
Region
Feature

Target 
Context-Aware
Representation

LSTM LSTM

FC

p(w1|x) p(w2|x)

Softmax

FC

Softmax

<SOS>

LSTM

p(wn|x)

FC

Softmax

...
Gumbel
Softmax

Gumbel
Softmax

Gumbel
Softmax

...

...a man <EOS>

Figure 3.2: Architectural diagram of the generator. The generator employs LSTM-

based language model to produce referring expressions, and the LSTM cells take

the region context-aware representation and the coalition region feature as input

to predict next word. The Gumbel Softmax updates gradients during adversarial

training.

According to [140], the global context of an image improves the quality of

generated captions. Motivated by this, we adopt the coalition region bc = (bo ∪ bs)

to be a supplementary region to leverage the global text. Figure 3.2 shows details

of the expression generator G. We employ a LSTM [48] based language model to

produce sequential words. The generator takes V
′

and bc as inputs, where bc is

input to the LSTM at only the zeroth time step, and V
′

is input to the LSTM at
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all time-steps. On top of the generator, we utilize softmax layer to compute the

probability distribution over the vocabulary p(wt|wt−1, x) at each step as follows:

hGt = LSTMG(wt−1, V
′
, hGt−1, ct−1)

ht = FC(hGt )

p(wt|wt−1, x) = softmax(ht)

(3.12)

where LSTMG is the LSTM for generator, hGt is the hidden state of the generator

LSTM, ct represents the cell state at time t, wt denotes the generated word at time

step t, t ∈ 1, ..., n, n is the length of the generated sentence.

Unlike image synthesis, expression generation is a discrete procedure, i.e., it is

a non-differentiable operation. In order to tackle with this issue, available solutions

include: (1) recursively feed back the previously sampled word until to generate

the end-of-sentence (EOS) token, and select the sentence with the highest prob-

ability as in work [33]; (2) use greedy search method like beam search. However,

taking these discrete samples as input to the discriminator does not allow for

back-propagation and achieve end-to-end training.

The Gumbel-Softmax approximation does not require auxiliary steps to ap-

proximate the gradients and can be deemed as a plug into the models as a differ-

ential node. In this thesis, we adopt the straight-through variation of the Gumbel-

Softmax approximation [54] to be the output of the generator for sampling word

sequence during the adversarial training.

3.4.4 Discriminator

Taking the region context-aware representation V
′

and a set of generated expres-

sions Ep = e1, ..., ep by the generator as input, the discriminator aims at classifying

whether the Ep is a real sentence from the corpus or is generated by the generator.

Besides, the discriminator should encourage the generator to generate more diverse

expressions during adversarial training. To this end, we design the discriminator

making decisions on the criteria in two perspectives. First, the discriminator should
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guarantee the generated expressions Ep describe the image regions correctly. Sec-

ond, the discriminator should endeavor to generate expressions with high diversity.

In order to generate more diverse referring expressions, we employ two different

critics in the discriminator, i.e. validity critic and diversity critic. The validity critic

calculates the distance between the object region and generated expression ei, i ∈

(1, p). We encode the generated expressions Ep into length-uniformed vector ve ∈

RM by an one layer LSTM, where M denotes the word number in each expression.

We also process the object visual representation to a vector vo ∈ RM by a fully

connected layer. The distance between ve and vo is formulated as follows:

ve = LSTM(ei)

vo = FC(V
′
)

doe = ‖vo − ve‖2

(3.13)

where ‖·‖2 denotes the Euclidean distance calculator.

The diversity critic computes the difference between the expressions. We use

the same approach to process the ei and ej, i, j ∈ (1, p). We calculate the cosine

distance between the expressions vectors by:

ve,i = LSTM(ei)

ve,j = LSTM(ej)

dee = D(ve,i, ve,j)

(3.14)

where D represent the cosine distance calculator.

The distance vectors doe and dee capture the correctness of the expressions for

each object and the diversity of expressions, respectively. We concatenate the two

vectors and feed into a softmax layer to generate the output probability.

3.4.5 Adversarial Training

We train the generator G and discriminator D alternatively. The discriminator D

aims at classifying Er
p ∈ R(x) as real and Eg

p ∈ R(x) as fake. Additionally, we

also add some random variables Ef
p to the training samples for augmenting the

diversity of generated expressions. We define the loss function of D as follows:
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L(D) = −log(D(Er
p , x))− log(1−D(Eg

p , x)− log(1−D(Ef
p , x))) (3.15)

The objective of the generator G is to coax the discriminator classifying Eg
p as

real. We adopt an l2 loss to match the expected value of distance vectors dee and

deo between the real samples and the generated data. We difine the loss function

of generator by:

L(G) = −log(D(Eg
p , x)) + ‖E[dee]− E[deo]‖2

2 + ‖E[dee]− E[deo]‖2
2 (3.16)

where E denotes the expectation.

3.5 Experiments

We implement experiments on RefCOCO, RefCOCO+, and RefCOCOg to eval-

uate the introduced referring expression generation network, and we select seven

evaluation metrics to assess the generated expressions.

3.5.1 Datasets

We train and validate the proposed generation network on RefCOCO, RefCOCO+,

and RefCOCOg. For fair comparison, we use the same train/validation/test splits

as [148] and [89].

3.5.2 Experimental Setup

We pretrain the generator via standard maximum likelihood training to generate

consistent sentences. We also pretrain the discriminator to classify correct object-

expression pairs. We found that, through the pretrain of the generator and the

discriminator, the generative network can generate more coherent and human-

friendly expressions.
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RefCOCO RefCOCO+ RefCOCOg

testA testB testA testB val

BLEU@1 73.67 75.58 63.48 49.83 42.75

BLEU@2 57.54 57.78 46.34 30.97 26.71

BLEU@3 41.32 41.36 30.33 18.24 16.50

BLEU@4 23.35 26.27 18.27 9.70 10.36

METEOR 30.67 33.82 23.62 21.93 16.48

ROUGE L 65.30 69.57 56.42 50.20 39.01

CIDEr 84.16 133.2 66.82 79.71 77.02

Table 3.1: Performance of the proposed network on the three datasets under dif-

ferent evaluation metrics. All values are reported as percentage (%).

According to [82], the Gumbel temperature τ should be in the range of (0.1,

0.8). If τ is beyond the range, the training process is unstable. In practice, we set

τ = 0.5.

We train the generator using the RMSProp optimizer, and we set the initial

learning rate to 1e-6, the decay rate to 0.999 and the smooth eps to 1e-8. We train

the discriminator for 10 iterations for each generator update.

3.5.3 Results on the Three Datasets

We evaluate the generative network using multiple evaluation metrics. In image

captioning, BLEU@N, METEOR, ROUGE, and CIDEr are standard metrics and

have been widely used to assess the generated captions. We also adopt these metrics

to evaluate our model. Table 3.1 lists the acquired results by the proposed network

under different evaluation metrics. Because the length of the generated expressions,

the introduced generative network obtains lower performance under the BLEU@N

metrics.
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Figure 3.3: Generated expression examples on the test sets of RefCOCO, Ref-

COCO+, and RefCOCOg. The generated expressions are listed in rectangles. Each

sentence shows the generated expression for each detected object within an image.

Same color between an expression and bounding box of an object indicates corre-

spondence.

Figure 3.3 shows some obtained example results of the referring expressions

generation network on the test splits of the three datasets. As shown in the results,

the generated expression of each target object is associated with the target and

has a weak connection with the other objects within the image.
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RefCOCO RefCOCO+ RefCOCOg

testA testB testA testB val

METEOR CIDEr METEOR CIDEr METEOR CIDEr METEOR CIDEr METEOR CIDEr

1 visdif+tie[148] 18.9 - 24.9 - 15.0 - 14.3 - 15.1 -

2 attr+visdif[78] 22.2 - 25.8 - 15.5 - 15.5 - 16.0 -

3 SLR+MMI+rerank[149] 29.6 77.5 34.0 132.0 21.3 52.0 21.5 73.5 15.9 66.2

4 SLR+rerank[124] 31.3 83.7 34.1 132.9 24.2 66.4 22.8 78.7 17.0 77.7

5 our 30.67 84.16 33.82 133.2 23.62 66.82 21.93 79.71 16.48 77.02

Table 3.2: Comparison with the state-of-the-art approaches. All values are listed

as percentage (%).

3.5.4 Comparison with State-of-the-art

Table 3.2 presents the performance of different models on the three referring ex-

pression datasets. The exiting methods do not employ BLEU@N and ROUGE L

to evaluate their performance, so we just list the METEOR and CIDEr results in

the Table 3.2.

Additionally, it is worth noting that the existing work generates referring ex-

pressions by adopting the popular CNN-LSTM paradigm and utilizes different re-

gion visual representation. Specifically, [148] and [149] extract visual features from

VGG-fc7 [119] and append global context representation, location feature, loca-

tion difference representation, and visual appearance difference representation as

the object visual representation. [124] uses the feature from the last convolutional

layer of the fourth stage of the ResNet 152 [46], and affixes the global context

substitution representation and the other four representations same as [148] to

represent the detected object. [78] utilizes the concatenation of the region feature

extracted from VGG-fc7 and the location representation, and distill pretrained

attribute to generate referring expressions.

In our experiments, we extract the deep feature from the last convolutional

layer of the fourth stage of ResNet 101 for the detected object and append the

coalition region representation. Overall, the results across seven evaluation metrics

indicate that the proposed generation network acquires better performance than

the existing methods.
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3.6 Discussion

In this chapter, we proposed a generative network for referring expression genera-

tion. Unlike the existing methods which adopt the popular CNN-LSTM paradigm

to produce referring expressions, we aimed to generate diverse and natural expres-

sions via adversarial training. We introduced a discriminator with two different

critics to classify whether the generated expressions are real or fake, this approach

also prompted the generator to generate expressions with more diversity and nat-

uralness. Moreover, we conducted experiments to evaluate the performance of our

referring expression generation network.

In this thesis, we attempted to generate diverse and natural referring expres-

sions via adversarial training. Although the introduced network obtains promising

results on three datasets, we will improve the network to generate more human-

friendly referring expressions. Subject to the scale of the referring expressions

datasets, we will exploit a generative approach for dense captioning which aims

at generating descriptions for each detected visual elements within images, and

the published dataset is sufficient to train a model to deal with the diverse and

complicated human environments.
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Chapter 4

Object Affordance Recognition

via Attention-based Multi-Visual

Features Fusion

4.1 Introduction

When new objects come into our sight, we can deduce their function according to

multiple visual properties, such as shape, size, color, texture, and material. The

capacity to infer functional aspects of objects or object affordance is crucial for

us to describe and categorize objects more easily. Affordance is widely used in

multiple tasks, [125] fuses visual features and affordance to improve robustness for

sensorimotor object recognition, [12] demonstrates affordance could improve the

quality of natural HRI, [86] utilizes affordance to prompt a robot to understand

human spoken instructions.

Psychologist James J.Gibson initially introduced affordance in 1976 [41]. He

suggested that affordance encodes the “action possibilities” in the environment for

a given agent. While cognitive psychologist Don Norman discussed affordance from

the design perspective [94] as:

“The term affordance refers to the relationship between a physical object and a
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person (or for that matter, any interacting agent, whether animal or human, or

even machines and robots). An affordance is a relationship between the properties

of an object and the capabilities of the agent that determine just how the object

could possibly be used.”

Don Norman argued that affordance refers to the fundamental properties of

an object which determines how the object could possibly be used. According to

Norman’s view, drinks afford drinking, eating utensils afford eating, and readings

such as text documents are for reading.

Following Norman’s standpoint, in this thesis, we generalize ten affordances

(calling, drinking(I), drinking(II), eating(I), eating(II), playing, reading, writing,

cleaning, and cooking) for objects that are commonly used in indoor environments.

Although drinkware and drinks can be used for drinking, the drinkware affords dif-

ferent function with drinks, i.e., the affordance of drinkware is different from drinks.

The same situation also exists between foods and eating utensils. Therefore, differ-

ent labels are utilized to discriminate the different affordance between drinkware

and drinks, i.e., drinking(I) denotes the affordance of drinkware, drinking(II) is for

drinks, eating(I) is for eating utensils, and eating(II) is for foods, respectively.

Most of the existing work adopts mono features, such as geometric features

[61], visual attributes [158] or deep features extracted from a pretrained CNN

[93] to recognize the object affordances. Even though these presented frameworks

achieved substantial results for recognizing object affordances, the mono feature

is not sufficient to recognize the affordance in some situations, for example, the

features from a partially occluded object may downsize the recognition accuracy. It

is clear that different features may indicate different task-relevant information and

can be complementary to complete a given task. Moreover, the existing approaches

do not pay attention to the multi-visual features that can improve affordances

recognition.

Inspired by the complementary nature of the multiple features, we adopt multi-

visual features, deep visual features extracted from a pretrained CNN and deep

texture features encoded by a deep texture encoding network, to learn the human-
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centered object affordances. The primary issue of fusing multi-visual features is

that the fusion scheme should reserve the complementary nature of the features.

Fusing different features through naive concatenation may fail to learn the rele-

vance of multiple features, bring about redundancies and may lead to overfitting

during the training period. Consequently, to preserve the complementary nature

of the multi-visual features in the process of affordance learning, the interaction

information between the multi-visual features is employed and an attention-based

architecture is proposed to fuse the multi-visual features. Additionally, no dataset is

published for recognizing human-centered object affordances. Therefore, a dataset

in which a large portion of images originate from MSCOCO and ImageNet is col-

lected to learn the aforementioned human-centered affordances.

To summarize, we propose an attention-based multi-visual features fusion archi-

tecture to fuse the deep visual features and deep texture features for learning object

affordances. To the best of our knowledge, this work is the first attempt to combine

the multi-visual features to recognize human-centered affordance. Accordingly, the

contributions of this work involve: (1) a first attempt to fuse the deep visual fea-

tures and deep texture features for learning human-centered object affordances; (2)

an attention-based multi-visual features fusion architecture; (3) a dataset collected

for learning object affordances. We conduct extensive experiments on the self-built

dataset to train and validate the introduce object affordance recognition network,

and the experimental results show that the proposed attention-based multi-visual

fusion network outperforms features naive concatenation, feature extracted from

VGG, RetinaNet, and YOLO V3.

4.2 Related Work

4.2.1 Object Affordance

Existing work utilizes multiple approaches to infer object affordances. [123] pre-

dicts object affordances through human demonstration, [61] deduces affordance
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through extracted geometric features from point cloud segments, [158] reasons af-

fordance through querying visual attributes, physical attributes, and categorical

characteristics of objects in a pre-built knowledge base. [88] perceives affordance

from local shape and geometry primitives of objects. These methods adopted visual

characteristics or geometric features to infer object affordances, so the scalability

and flexibility of these approaches are limited.

Several recently published methods adopt deep learning-based approaches to

detect object affordance. [27] proposes a denoising auto-encoder to actively learn

the affordances of objects and tools through observing the consequences of ac-

tions performed on objects and tools. [108] uses multi-scale CNN to extract mid-

level visual features and combines them to segment affordances from RGB images.

Unlike [108], [110] regards affordance perception as semantic image segmentation

and adopted a deep CNN based architecture to segment affordances from weakly

labeled images. [92] extracts deep features from a CNN and adopts an encoder-

decoder architecture to detect affordances for object parts. [86] utilizes the deep

features extracted from different convolutional layers to recognize object affor-

dances. [93] combines an object detector, a CNN with dense conditional random

fields to detect object affordance from RGB images. Similar to [93], [32] also utilizes

deep features and employs a universal object detection framework and deconvolu-

tion to recognize object affordance.

The aforementioned work utilized the geometric features or the deep features

extracted from a pretrained CNN to infer object affordance, and did not take

into consideration that the features from another source can be applied to improve

affordance recognition accuracy. Unlike the work mentioned above, we utilize multi-

visual features to learn the object affordances.

4.2.2 Multiple Features Fusion

The fundamental purpose of multi-visual feature fusion is to enhance model per-

formance by exploiting the complementary information of different features. Ac-

cording to fusion approaches, the fusion frameworks are divided into three types,
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i.e., early fusion, late fusion, and intermediate fusion [129]. In early fusion, the

original features are obtained from different sensors and integrated into a single

representation vector, so the early fusion is often deemed to be data fusion or

multisensor fusion. A crucial issue of early fusion is that the dimension of fused

vectors may be huge and may contain redundancies [101]. To reduce the dimension

and redundancies, [85] and [132] apply a hash-based framework to learn compact

multimodal representations for the data from different modalities.

Late fusion, is also known as decision level fusion, refers to the integration of

features extracted from different modalities by deep learning-based models. More-

over, according to [118] and [137], the late fusion acquires better results than the

early fusion. The intermediate fusion constructs a shared representation layer to

merge the learned features using deep neural networks (DNN). Unlike the early

fusion and late fusion, the primary advantage of intermediate fusion is its flexibil-

ity and excellent performance due to the integration with DNN architectures, as

demonstrated in [53] and [90].

Although the schemes mentioned above acquired promising results regarding

various practical problems, the interaction information of the multiple features

is ignored. [106] proposes Factorization Machines (FM) which can model interac-

tions between different features via factorized parameters, and has the capability

to assess the interactions from sparse data. Moreover, [6] initially introduces an

attention mechanism to acquire different weights for different parts of input fea-

tures, and can automatically search the most relevant parts to acquire better results

from source features. Due to its performance, the attention mechanisms have been

widely employed in multiple research fields, such as image captioning [139], visual

question answering (VQA) [10], video description [49], etc.

Inspired by [106] and [49], we propose an attention-based architecture to fuse

the deep visual features and deep texture features through a soft attention mech-

anism. The introduced fusion architecture takes the sparse representations of the

multi-visual features as input and achieves attention-based dynamic fusion of the

multi-visual features.
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4.3 Proposed Method

Figure 4.1: Architectural diagram of the object affordance detection via attention-

based multi-visual features fusion. The RetinaNet is adopted to detect RoIs from

raw images, and then for each detected RoI, the deep visual features and deep

texture features are extracted by a pretrained CNN and a texture encoding net-

work, respectively. In order to reserve the complementary nature of the different

features and avoid causing redundancies during the multi-visual features fusion, an

attention-based fusion mechanism is applied to fuse the multiple visual features.

Through the attention-based fusion, the fused features are fed into an MLP to

learn object affordances.

Following Norman’s viewpoint, we generalize ten affordances for ordinary house-

hold objects, and we propose an attention-based multi-visual features fusion ar-

chitecture, which can be trained end-to-end, to learn the human-centered affor-

dances. Figure 4.1 illustrates the details of the proposed multi-visual features

fusion architecture. The presented architecture is composed of a RoIs detection

network (RetinaNet), a deep features extraction module, an attention network, an

attention-based dynamic fusion module, and an MLP. Two different deep networks

are employed to extract the multi-visual features, the attention network learns dy-

namic attention weights through the sparse representations of the extracted multi-

visual features, while the dynamic fusion module fuses the multi-visual features by
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integrating them with the generated attention weights, and the MLP is applied to

learn the object affordances. We introduce the details of each component of the

proposed architecture in this section.

4.3.1 Deep Features Extraction

Deep Visual Feature Extraction

RetinaNet [74] acquires better detection accuracy on MSCOCO [75] than the state-

of-the-art two-stage detectors. Considering the performance of RetinaNet, we adopt

Retinanet to generate RoIs from raw images. And several pretrained CNN models,

such as AlexNet [66], VGGNet [117] and ResNet [46], can be applied to extract deep

visual features from RGB images. In this work, we adopt VGGNet to extract deep

feature for detected RoIs. The deep visual feature fv is extracted by a pretrained

CNN for each RoI IR:

fv = CNN(IR) (4.1)

where fv ∈ Rm×n×dv , m×n denotes the size of the extracted deep features, dv is the

output dimension of the CNN layer. In order to improve learning dynamics and

reducing training time, L2 normalization is utilized to process the extracted deep

visual features.

Deep Texture Feature Extraction

Multiple presented texture recognition networks can be used to encode texture

features, e.g., [20] generates texture features through Fisher Vector pooling of a

pretrained CNN filter bank, [155] proposes a texture encoding network for ma-

terial and texture recognition, the texture encoding network encodes the deep

texture features through a texture encoding layer which is integrated on top of

convolutional layers and is capable of transferring CNNs from object recognition

to texture and material recognition. Furthermore, the texture encoding network

achieves state-of-the-art on the material dataset MINC2500 [9]. Due to the good

performance of the texture encoding network introduced in [155], we select it to
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encode the texture feature for each detected RoI and convert the texture feature

to vector vt:

vt = TexNet(IR) (4.2)

where vt ∈ R1×dt , dt is the output size of the texture encoding network.

The extracted texture vector vt is also processed by L2 normalization. For

modeling convenience, a single perceptron which is comprised of a linear layer and

a tanh layer is employed to transform vT into a new vector:

v̂t = tanh(W vt + b) (4.3)

where v̂t ∈ R1×dl , W is a weight matrix, b denotes a bias vector for the linear layer,

and dl is the dimension of the linear layer. From [10] and the experimental results,

hyperbolic tangent produces slightly better results.

For fusing convenience, we adopt tile operation to expand the texture vector v̂t

to generate the deep texture representation ft which has the same dimension with

the deep visual feature fv, i.e., the generated ft ∈ Rm×n×dv .

4.3.2 Attention-based Multi-visual Features Dynamic Fu-

sion

Factorization Machines were proposed for recommendation system [106], and aimed

at solving the problem of feature interactions under large-scale sparse data. Given

feature vector list, FM predicts the target through modeling all interactions be-

tween each pair of features:

ŷ(x) = w0 +
t∑
i=1

wixi +
t∑
i=1

t∑
j=i+1

ŵijxixj (4.4)

where w0 ∈ R is the global bias, xi and xj denote the i-th and j-th feature in the

given feature list, wi ∈ Rt is the weight of xi, ŵij models the interaction between

xi and xj and is calculated by:

ŵij = vTi vj (4.5)
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where vi, vj ∈ Rs are the sparse representations, i.e., embedding vectors for the

nonzero elements of xi and xj, s denotes the dimension of the embedding vectors.

Although the interaction information of the features can be modeled by ŵij, the

different weights of the multi-visual features in the process of features fusion cannot

be achieved by FM. To this end, we draw support from soft attention mechanism

to achieve weighted dynamic fusion.

In light of the FM, the ŵij comprises the interaction information of different

features, and is represented by the sparse nonzero elements of the different fea-

tures. Formally, we extract the nonzero element set from fv and vt, and adopt

an embedding layer to acquire the sparse representations ev for fv and et for vt,

respectively. We calculate the interacting matrix kvt which embeds the interaction

information between fv and vt by:

kvt = eTv et (4.6)

where kvt∈ Rp×p, ev and et ∈ R1×p, p denotes the output size of the embedding

layer.

In order to avoid causing information redundancies during features fusion, we

integrate an attention mechanism with kvt to complete features fusion. By learning

attention weights, the attention mechanism endows the model with the ability to

emphasize the different weights of the multi-visual features during learning affor-

dance. And the attention weights can be parametrized by an attention network

which is composed of an MLP and a softmax layer. The input of the attention

network is the interacting matrix kvt, the generated weight encodes the interac-

tion information between the different features. The attention weights τatt can be

acquired by:

τatt =
exp(Avt)∑
exp(Avt)

(4.7)

and

Avt = αT tanh(Wattkvt + batt) (4.8)

where τatt ∈ R1×p, W att , batt, and α are weight matrices, bias vector and model

parameters for the attention network, respectively.
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Figure 4.2: Attention-based multi-visual features fusion network. The feature em-

bedding layers process the sparse representations of the deep visual features and

deep texture features, and the outputs of feature embedding layers are applied to

generate the interaction information of the multi-visual features. Subsequently, the

interaction information is fed into the attention network to acquire the attention

weights, which are adopted to complete attention-based dynamic fusion.

By means of the learned τatt, fv and ft are fused to produce feature ffuse that is

used to learn object affordances. The fused feature ffuse is generated by:

ffuse = (1− τatt)fv ⊕ (τatt)ft (4.9)

where ffuse ∈ Rm×n×d , ⊕ denotes concatenation. Figure 4.2 shows the details of

the attention-based multi-visual features fusion.

4.4 Experiments

4.4.1 Dataset

In MSCOCO and ImageNet [109], there are only a few indoor scenes and few ob-

jects associated with the introduced ten affordances. Therefore, we create a dataset

to train and evaluate the proposed object affordance recognition architecture. The

proposed dataset1 is composed of images collected by a Kinect V2 sensor, indoor

scenes collected from MSCOCO and ImageNet datasets.

1https://tams.informatik.uni-hamburg.de/research/datasets/index.php
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Figure 4.3: Example images of the proposed dataset.Top row: images from

MSCOCO. Middle row: images from ImageNet. Bottom row: images taken

by Kinect V2.

The dataset contains in total of 12349 RGB images and 14695 bounding box

annotations for object affordance detection (in which 3378 annotations are from

MSCOCO and ImageNet). 56.1% regions (8250) from the dataset are randomly

selected for training, 22.1% regions (3253) are for validation and the remaining

21.8% regions (3192) are for testing. Figure 4.3 shows some example images of the

proposed dataset.

As mentioned above, ten affordances are labeled which are related to ordinary

household objects. Figure 4.4 illustrates the affordance distribution in the presented

dataset. There are few writing and cleaning objects included in the images in the

MSCOCO and ImageNet datasets, so a large portion of these two categories images

are taken by a Kinect V2 sensor.

4.4.2 Experimental Setup

We utilize the available source2 which is an implementation of RetinaNet [74], and

employ ResNet 50 to be the backbone to detect RoIs from RGB images. Then,

we extract the deep visual features from the last pooling layer of VGG19 [117]

2https://github.com/fizyr/keras-retinanet
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Figure 4.4: The affordance distribution in the presented dataset. Y-axis denotes

the region number of each affordance.

trained on Imagenet [109]. To produce a length-uniformed feature map for RoIs

with different size, we rescale the detected RoIs to 224×224 pixels. Accordingly,

the dimension of the extracted deep visual feature for each RoI is 7×7×512, i.e.,

fv ∈ R7×7×512 .

The deep texture encoding network [155] trained on the material database

MINC2500 is adopted to generate deep texture representations. The texture fea-

tures are extracted from the texture encoding layer for RoIs. The output size of

the texture encoding layer is 32×128, so the dimension of vt is 1×4096. The out-

put size of the single perceptron is set to dl=512, therefore, the dimension of the

transformed texture vector v̂t is 1×512. Through the tile operation, the dimension

of the generated deep texture representation ft ∈ R7×7×512 .

For modeling convenience, the size of the embedding layer is set to p = 512, the

generated sparse representation for the deep visual feature and the deep texture

feature, ev and et, are vectors with the dimension of 1×512, and the dimension of

produced interacted matrix kvt ∈ R512×512 . The produced kvt is fed into the atten-

tion network, so the size of the generated attention weights τatt ∈ R1×512 . Through

the attention weights based dynamic fusion, the dimension of fused feature ffuse is
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7×7×1024, i.e., ffuse ∈ R7×7×1024 .

The fused features are fed into the MLP to learn affordances. The parameters

of the MLP include: Cross Entropy loss function, Rectified Linear Unit (ReLU)

activation function, and Adam optimizer. The structure of the MLP is 50176-4096-

1024-10. In practice, the standard error back-propagation algorithm is adopted to

train the model. The learning rate is set to 0.0001 and batch size to 32. in order

to prevent overfitting, dropout is employed to randomly drop 50% neurons during

training.

4.4.3 Results

The architecture is trained in PyTorch. After 100 epochs training, the proposed

network acquires 61.38% average accuracy on the test set. Fig.4.5 shows the confu-

sion matrix of the acquired results by the proposed network, and Figure 4.6 shows

some acquired example results of object affordance detection on the test set.

From Figure 4.5, the affordances writing, cleaning, and cooking have relative

low accuracies compared to the other affordances. The shapes and textures of the

selected objects in the three categories are significantly different from each other.

Therefore, we deduce the primary cause that leads to the low accuracy of the

three affordances is the great shape and texture differences, so that the similarities

between the deep features in one category are difficult to generalize and learn.

4.4.4 Ablation Study and Comparison Experiments

Except validating the attention-based multi-visual features fusion network on the

presented dataset, we also compare the results acquired by different deep features,

different features fusion approach, and different networks to demonstrate the per-

formance of the proposed affordance detection network.

VGG19 Deep Features: In order to verify the effectiveness of the multi-

visual features fusion for object affordances learning, the results generated by the

attention-based fusion network and a model trained by the deep visual features
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Figure 4.5: Generated confusion matrix of object affordance detection on the test

set.

extracted from VGG 19 is compared. In this case, the deep features with the

shape of 7×7×512 are fed into an MLP with the structure of 25088-4096-1024-10

to learn the affordances. After 100 epochs training, the model acquires 55.54% on

the test set.

Naive Concatenation: For validating the performance of attention-based fu-

sion scheme, the deep visual features and the deep texture features are naive con-

catenated to generate the fused representations of the multi-visual features. The

concatenated features are with the shape of 7×7×1024, which are fed into the

MLP with the same structure in the multi-visual fusion architecture to recognize

affordances. After 100 epochs, the generated model acquires 58.21% on the test

set.

RetinaNet: We also directly train the RetinaNet [74] (available source2) on

the proposed dataset. For a fair comparison, the backbone also utilizes ResNet 50.

After 100 epochs training, the RetinaNet obtains 58.92% average accuracy on the
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Figure 4.6: Example results of object affordance detection on the test set.

test set.

YOLO V3: We also adopt the original pretrained weights to train YOLO V3

[103] (available code3) on the dataset. After 100 epochs training, the YOLO V3

model obtain 49.63% average accuracy on the test set. Table 4.1 lists the results

acquired by the different deep features, different feature fusion mechanism, and

the different networks.

3https://github.com/qqwweee/keras-yolo3

65

https://github.com/qqwweee/keras-yolo3


Chapter 4. Object Affordance Recognition via Attention-based Multi-Visual
Features Fusion

Attention
Multi-Visual

Features Fusion

VGG
Deep Features

Naive
Concatenation RetinaNet YOLO V3

calling 0.9036 0.9096 0.8723 0.7747 0.5783

drinkingI 0.8991 0.7785 0.8195 0.7806 0.4771

eatingII 0.7943 0.7658 0.7569 0.6829 0.5696

playing 0.5676 0.4791 0.5305 0.8305 0.7871

reading 0.5148 0.4938 0.5297 0.6424 0.652

writing 0.2995 0.2028 0.286 0.2628 0.2028

cleaning 0.1875 0.1625 0.175 0.375 0.3327

drinkingII 0.7838 0.7627 0.7248 0.6128 0.5824

eatingI 0.8162 0.7103 0.7049 0.6738 0.4837

cooking 0.3719 0.2893 0.4214 0.2562 0.2968

Average 0.6138 0.5554 0.5821 0.5892 0.4963

Table 4.1: Object affordance detection results acquired by the proposed network,

VGG deep features, multiple feature fusion via naive concatenation, RetineNet,

and YOLO V3.

From the experimental results, the accuracies of affordance classes writing,

cleaning and cooking acquired by the four different approaches are relatively lower

than the other affordances. Nonetheless, our architecture acquires the best recog-

nition accuracies on five affordance categories and the best average accuracy on

the test set. The results demonstrate the multi-visual features and attention-based

fusion improve the model performance for learning object affordances.

4.5 Discussion

We presented an attention-based multi-visual features fusion architecture to learn

human-centered object affordances. Different from the existing affordance detection

frameworks, our fusion architecture fused deep visual features and deep texture

features to recognize object affordances from RGB images. The attention-based

fusion architecture, which took into account the interaction of the multi-visual
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features, preserved the complementary nature of the multi-visual features extracted

from different networks and avoided producing information redundancies during

features fusion. We trained and validated the proposed attention-based multi-visual

features fusion network on our self-built dataset, and the experimental results

demonstrated the effectiveness of multi-visual features and attention-based fusion

for learning affordances.

Currently, the introduced architecture learns ten affordances through fusing the

deep visual features and the deep texture features. In the future, we will employ

meta-learning to learn more affordances from a smaller amount of annotated im-

ages, and employ a network-based framework to learn the different contributions

of the different features for object affordances learning.
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Chapter 5

Interactive Natural Language

Visual Grounding

5.1 Introduction

Human beings often refer to objects in the physical world when they have inter-

actions with others, and they can interpret the other’s motivation even though

many details are omitted in utterances. Naturally, we anticipate intelligent agents

have the ability to interact with human users using the most intuitive and effective

pattern, understand natural language instructions, and carry out assigned tasks.

Natural language and vision are the two crucial ways to exchange information in

our daily life, and are also the essential channels to achieve communication between

humans and intelligent agents. Bridging the two domains has been attracting sub-

stantial research attention [67, 112, 47, 79, 147]. Natural language visual grounding

is a challenging task which aims at locating target objects within visual images or

scenarios according to given natural language queries. Moreover, natural language

visual grounding can establish a natural communication channel to facilitate the

interaction between humans, physical environments, and intelligent agents.

A representative application of natural language visual grounding is natural

language-based HRI. Natural language-based HRI has been attracting considerable

research attention, and a number of approaches have been proposed [97, 59, 86, 115,
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44, 1, 96]. Since the properties of natural language visual grounding, in addition

to the applications in robotics, it has been widely used in VQA [71, 157], visual

image search [43], visual chatbot [26].

Natural language visual grounding requires a comprehensive understanding of

natural language queries and visual scenarios, and the pivotal issue is to locate

the referred objects in working scenarios according to given instructions. In real

applications, natural language queries are complicated and ambiguous, and visual

scenarios are also sophisticated. Although the existing models achieve promising

results, some of them either do not take into consideration the inherent ambiguity

of natural language [97, 59, 86, 96], or alleviate the ambiguity via dialogues between

human users and robots [115, 44, 1]. However, dialogue systems entail time cost

and cumbersome interactions.

A crucial aim of this thesis is to achieve natural language visual grounding

without auxiliary information, such as dialogues, gestures. Motivated by the roles of

referring expression comprehension and referring expression generation, we propose

two architectures in which draw support from referring expression comprehension

and referring expression generation to ground natural language queries.

Considering the richness and diversity of natural language and the relatively

simple expressions in the three referring expression datasets (RefCOCO, Ref-

COCO+, and RefCOCOg), we integrate the trained referring expression com-

prehension and referring expression generation models with scene graph parsing

to ground complicated natural language queries. Formally, we first employ scene

graph parsing to parse the sophisticated natural language instructions into scene

graph legends, and combine the parsed scene graph legends with the referring

expression comprehension and referring expression generation models to achieve

unconstrained and sophisticated natural language commands grounding.

Referring expression-based approaches can ground explicit natural language

queries, but referred objects embedded in intention-related natural language in-

structions can not be located via the referring expression-based approaches. In-

spired by the affordance and its application in HRI [116], [86], we introduce an
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intention-related natural language queries grounding architecture based on object

affordance detection.

In order to ground the intention-related natural language queries, we introduce

an intention semantic extraction module and integrate it with the object affor-

dance detection to achieve intention-related natural language queries grounding.

Specifically, we first extract verb words which embed intention semantics from

intention-related natural language queries, and then by calculating the semantic

relatedness between the extracted semantic verbs and detected object affordances

to locate the referred target objects within working scenarios.

5.2 Related Work

5.2.1 Natural Language Understanding for HRI

With applications of robots becoming omnipresent in varied human environments,

such as factories, hospitals, and homes, natural language understanding for HRI

attracts great research interest. Researchers have proposed different approaches

and representation formalisms to parse and understand deep semantics of natural

language. [111] presents a flexible system for robust natural language interpretation

to facilitate natural HRI in a domestic service robotics domain. The introduced

system first syntactically pre-processes the given utterance into an internal repre-

sentation, and then adopt decision-theoretic planning to acquire the most likely

interpretation of the utterance. [8] introduces a discriminative approach, which

integrates a standard linguistic pipeline with discriminative learning and distri-

butional semantics, to understand the spoken natural language. Moreover, this

work combines grounded information with a learning algorithm to improve the

performances of natural language understanding.

The authors of work [7] introduce two kinds of existing natural language un-

derstanding approaches for HRI, i.e., grammar-based approaches and data-driven

approaches. [120] introduces Combinatory Categorial Grammar (CCG), and de-
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scribes the polynomial-time parsing algorithm. CCG has well-defined connections

between syntax and semantics, and the λ-term is adopted to represent the seman-

tics. [122] and [121] present Fluid Construction Grammar (FCG), in which the

key component is an FCG-interpreter. The FCG-interpreter carries out basic op-

erations, such as syntactic parse, production, linguistic aid research, and so on.

[38] introduces Embodied Construction Grammar (ECG), which utilizes a precise

formalism and technical notation to present the grammar and meaning of natu-

ral language queries. [35] employs ECG to parse the deep semantics in natural

language and integrates with Robot Operating System (ROS) to prompt multiple

robots to understand natural language. However, these systems focus on a con-

strained domain and are difficult to broaden and extend [135], and the process to

build a grammar-based system is a tough business.

Data driven-based methods mainly employ Statistical Learning (SL) to ad-

dress natural language understanding. [39] proposes a deep question answering

(DeepQA) architecture and an artificial intelligence system Watson, which can an-

swer questions in natural spoken language. The performance of Watson on the

Jeopardy quiz show indicates its promising accuracy, high question processing

speed, and strong confidence. [14] exploits a general SL-based framework to inter-

pret navigation instructions given only sample observations of humans following

such instructions.

The authors of work [136] adopt the Dempster-Shafer (DS) theory for infer-

ring the intentions from human utterances in a specific context and generating

utterances from intentions in contexts. In the presented system, the semantic in-

terpretation is passed to a new component for a pragmatic inference that uses

contextual and general knowledge to unearth the intention underlying the literal

semantics. [77] develops an object functional role perspective method to enable the

robot has the ability to understand the comprehensive behavior of human beings.

The role-based method is adopted to model the human user’s cognitive process

during task performing by analyzing object selection. This work enables a robot

to know how and why the human is doing, rather than only to help the robot rec-
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ognize what the human is doing. Nonetheless, the data driven-based approaches

have the data sparseness problem, and the significant barrier is the demand of a

large amount of labeled training data. These attributes constrain the applications

of the data driven-based approaches in real-world [135].

5.2.2 Natural Language Visual Grounding for HRI

Natural language provides an intuitive and natural interaction channel between

human beings and robots. And multiple approaches are proposed to address natural

language grounding for HRI. [97] proposes a probabilistic model named adaptive

distributed correspondence graph to understand abstract spatial concepts, and

introduces an approximate inference procedure to realize concrete constituents

grounding. [96] utilizes a distributed correspondence graph to infer the environment

representation in a task-specific approach. [59] introduces a statistical semantic

mapping method that enables the robot to connect multiple words embedded in

spoken utterance with a place in a semantic mapping processing. However, these

existing methods do not take into consideration the inherent vagueness of natural

language queries. [86] first presents an object affordances detection model, and then

integrates the object affordances detection with a semantics extraction module for

grounding intention-related spoken language instructions. This model subjects to

limited classes of affordance, so it can not ground unconstrained natural language

commands.

Shridhar et al. [115] adopt a pretrained captioning model DenseCap [56] to

generate expressions for each detected region within uncluttered working scenar-

ios, and by conducting K-means clustering to identify the relativeness of input

instructions and the generated expressions. The expressions generated by [56] do

not include the interaction information between objects, such as the spatial rela-

tionship with each other, so [115] employs gestures and dialogs with human users

to handle ambiguity in spoken instructions. [44] draws support from a referring ex-

pression comprehension model [149] to identify target objects, and tackles with the

ambiguity of spoken instructions via the referred object solely defined conversations
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between human users and robots. [1] employs hourglass network [91] to generate

position heatmaps for input images, and combines the generated heatmaps with

a question generation module to find referred objects. [126] translates the spoken

instructions into discrete robot actions, and through clarification dialog to improve

objects grounding. Nevertheless, dialogue systems make the interaction between

human users and robots cumbersome and time-consuming.

Thomason et al. [127] take into account visual, haptic, auditory, and propri-

oceptive data to predict target objects, and the natural language grounding su-

pervised by an interactive game. However, this model needs to gather language

labels for objects to learn lexical semantics. [83] presents a multimodal classifier

generative adversarial network to identify target areas according to given linguistic

commands, task context, and scene context.

Unlike the approaches mentioned above, we propose three architectures to ad-

dress natural language visual grounding. Specifically, we integrate the referring

expression comprehension and referring expression generation network with scene

graph parsing to ground complicated natural language queries. We also combine the

object affordance detection network with an intention semantic extraction module

to ground intention-related natural language commands.

5.2.3 Natural Language Parsing

Extracting rich linguistic context from natural language sentences has a wide range

of practical applications, including VQA [4], phrase grounding [138], and referring

expression comprehension [21]. These methods employ dependency parsing to gen-

erate syntactic representations for questions, phrases, and referring expressions.

Dependency parsing assigns a parent word to each word in a sentence, and each

such connection is assigned with a label. In recent years, dependency parsing with

neural networks acquires impressive performance [13, 114].

Scene graph was introduced in [57], in which the scene graph is used to de-

scribe the contents of a scene. A scene graph consists of nodes that represent an

object with attributes and edges that expresses the connection and association be-

74



5.3. Scene Graph Parsing

tween nodes. [112] adopts this paradigm and introduces the scene graph in natural

language parsing. Compared with dependency parsing, scene graph parsing gener-

ates less linguistic compositions. Moreover, multiple vision tasks prove the value

of scene graph generation, such as image retrieval [57], caption quality evaluation

[2], etc. Inspired by the role of the scene graph, we adopt scene graph parsing to

extract rich contexts from natural language queries to facilitate complicated and

unconstrained natural language queries grounding.

5.3 Scene Graph Parsing

Given a natural language sentence, scene graph parsing aims to parse the natural

language sentence into nodes and edges, where nodes comprise objects with their

attributes, and edges express the relationships between objects. For instance, for

the sentence “red apple next to the bottle”, the output of scene graph parsing

contains node (“red apple”) and node (“bottle”), and edge (“next to”).

Formally, a scene graph is defined as a tuple G(S) = (N (S), E(S)), where

N (S) = {N1(S), N2(S), ..., Nn(S)} is a set of nodes that encode objects with

attributes, and E(S) = {E1(S), E2(S), ..., Em(S)} is a set of edges that express

the relationships between objects. Specifically, a node Ni(S) ⊆ ni × Ai represents

attribute Ai of an object ni (e.g., red apple). An edge Ei(S) ⊆ (no × R × ns)

denotes the relationship R between a subject no and an object ns (e.g., next to).

In general, a scene graph parser can be constructed on a corpus consisting of

paired node-edge labels. However, no such dataset is released for natural language

grounding. In order to ensure the precision of results acquired by the scene graph

parser, we adopt a simple yet reliable rule, i.e., word-by-word match, to achieve

scene graph alignment. Specifically, for a generated scene graph, we check the

syntactic categories of each word in a node and an edge by part of speech. A correct

parsed node should consist of a noun word or an adjective, and an edge contains

adjective or adverb. In practice, we adopt the language scene graph [112] and the

natural language toolkit [99] to complete scene graph generation and alignment.
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5.4 Interactive Natural Language Grounding via

Referring Expression Comprehension and Scene

Graph Parsing

We present an natural language grounding architecture which combines the refer-

ring expression comprehension network with scene graph parsing to ground com-

plicated natural language queries. Specifically, we parse the given queries into scene

graph legends via a scene graph parser, and locate target objects within images by

the trained referring expression comprehension network. Moreover, we validate the

effectiveness of the introduced natural language grounding architecture on multiple

household object scenarios with diverse natural language queries.

5.4.1 Architecture Overview

Natural language provides the most intuitive and natural interaction interface be-

tween humans and intelligent systems. For grounding unrestricted and complicated

natural language queries in an end-to-end manner, we propose a novel architecture

via referring expression comprehension and scene graph parsing as shown in Figure

5.1. We decompose the natural language grounding into two subtasks: 1) parse the

natural instructions into scene graph legends by scene graph parsing. The scene

graph legend is a data structure composed of nodes that denote objects with at-

tributes, and edges that indicate the relationships between nodes; 2) ground the

parsed natural language instructions by the referring expression comprehension

network.

In this thesis, we aim to locate the target referents in working scenarios given

natural language commands without auxiliary information. The inputs consist of

a working scenario given as an RGB image and a natural instruction given as

text, and the outputs are the bounding boxes of target objects. We generate scene

graph legends for the input natural language instructions by scene graph parsing,

and we ground the parsed scene graph legends via the trained referring expression
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Figure 5.1: The architectural diagram of natural language grounding via referring

expression comprehension and scene graph parsing. We first parse the natural lan-

guage instructions into scene graph legends by the scene graph parsing. We then

ground the generated scene graph legends via the referring expression comprehen-

sion network. The mark rectangle in bottom encompasses the scene graph parsing

result for the input natural language query. The scene graph consists of: rounded

rectangles with black dashed lines denote the parsed scene graph legends, color

shaded rectangles represent referents, no color shaded rectangle is an object, ovals

indicate objects attributes, rounded rectangles act for edges with relationships be-

tween other objects. The same color of the bounding boxes in the output image

and the referents in parsed scene graph legends denote a grounding.

comprehension model.

5.4.2 Experiments

We validate the effectiveness of the presented natural language grounding archi-

tecture in two different manners. First, we select 133 indoor scenarios from the test
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Figure 5.2: Example results of natural language grounding via referring expression

comprehension and scene graph parsing on MSCOCO images. The input natural

language commands are listed in the rectangles in the third row, the scene graph

parsing results are shown in the rounded rectangles in the second row.
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datasets of RefCOCO, RefCOCO+, and RefCOCOg, and collect 187 expressions

that contain 2 referents for the selected images. The average length of the expres-

sions for MSCOCO images is 10.75. Second, we collect 30 images via a Kinect V2

camera, and these images consist of the household objects that can be manipu-

lated by robots. We collect 220 expressions, which contain 128 expressions with

2 referents and 92 expressions with 3 targets, for the self-collected images. The

average number of words in these expressions is 14.31.

In order to collect diverse expressions for the collected images, we recruit 10

participants and show them different scenarios. For the MSCOCO images, we ask

the participants to give expressions to depict two specific targets for each scenario,

such as “the bottom row second donut from the left and the bottom rightmost

mug”. Figure 5.2 lists some grounding results of the MSCOCO images. We adopt

the referring expression comprehension network trained on the three datasets to

ground the expressions. The accuracies of the collected expressions grounding for

MSCOCO images acquired by the three models are RefCOCO 86.63%, RefCOCO+

79.41%, and RefCOCOg 80.48%.

For the self-collected scenarios, we ask the participants to give expressions with

two or three referents for each image. For instance, “move the red apple outside

the box into the box and take the second water bottle from the right”. Figure 5.3

shows the example results for the self-collected scenarios. The grounding accuracies

attained by the three models are RefCOCO 91.63%, RefCOCO+ 87.45%, and

RefCOCOg 88.44%. From these experimental grounding results, it is clear that

the trained referring expression comprehension model has superior robustness.

Through analyzing the failure grounded expressions, we found that the expres-

sions with more “and” cannot be parsed correctly. For instance, the expression

“take the apple between the bottle and the glass and the red cup” will be parsed

into four nodes “apple”, “bottle”, “glass”, and “red apple”, while the relationship

between “apple”, “bottle”, and “glass” is lost, which leads to the failure grounding.
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bring me the red cup in the box 
and the second bottle 

from the left

pick up the red cup and place it 
into my left hand

move the red apple into the box
and take the right red cup

bring me the red cup in the box
and the rightmost bottle

grab the left green apple and the 
rightmost bottle

pick up the bottle next to the left 
glass and the cola bottle

Figure 5.3: Example results of natural language grounding via referring expression

comprehension and scene graph parsing on self-collected scenarios. The input nat-

ural language instructions are listed in the rectangles, and the parsed scene graph

legends are covered with the corresponding color of target objects in the output

images.

5.5 Interactive Natural Language Grounding via

Referring Expression Generation and Scene

Graph Parsing

We also integrate the referring expression generation model with scene graph pars-

ing to ground complicated natural language instructions. Unlike the referring ex-

pression comprehension-based grounding architecture, the generation-based frame-

work locates targets within images by identifying semantic relatedness between in-

put queries and generated expressions of image regions. Thus, the generation-based
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Figure 5.4: The architecture of natural language grounding via referring expression

generation and scene graph parsing. The referring expression generation network

generates referring expressions for image regions, as elaborated in chapter 3. The

grounding module takes the generated expressions and the parsed scene graph

legends as inputs to locate target objects.

framework needs a grounding module to acquire the semantic similarity between

generated expressions and parsed natural language queries. We validate the effec-

tiveness of the referring expression generation-based natural language grounding

architecture on the indoor working scenarios and natural language queries used

in the experiments for validating the referring expression comprehension-based

grounding architecture.

5.5.1 Architecture Overview

The architectural diagram of natural language grounding via referring expression

generation and scene graph parsing is shown in Figure 5.4. The referring expression

generation network generates expressions for each detected region within images,

the grounding module takes the generated expressions and the scene graph leg-
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ends parsed from complicated natural language queries to achieve target objects

grounding.

Under this framework, we reformulate the natural language grounding as three

subtasks: (1) generate referring expression for each detected region within images,

(2) parse the complex input queries into scene graph legends, (3) calculate the

semantic similarity between the generated expressions and parsed scene graph

legends to locate target objects.

5.5.2 Target Grounding

An essential step to realize natural language grounding via referring expression

generation and scene graph parsing is to acquire the semantic relatedness of the

generated expressions and the parsed natural language commands. Inspired by the

Latent Semantic Analysis (LSA) which is used to measure the similarity of words

and text documents meaning, we propose a sentence semantic metric measuring-

based approach to build the mapping between the generated expressions and the

natural language queries.

We first transform each word in a sentence into a 300-D vector by GloVe [98],

and then adopt InferSent [22], which is a sentence embedding approach and pro-

vides semantic representation for sentences, to generate a representation for the

entire sentence. We further calculate the semantic relatedness between the vector-

ized representations of generated expressions and input queries to select the most

related targets.

Given an input queries and generated expressions for the regions within working

scenario, x and y represent the representations generated by InferSent for the

queries and expressions, i.e., x ∈ R1×4096, y ∈ R1×4096. Then, the semantic similarity

of them is calculated by:

Sim(x, y) =
x · y

‖x‖2 · ‖y‖2

(5.1)

where ‖ · ‖2 denotes L2 normalization operation.
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Through the semantic similarity calculation, the object with the maximum

semantic similarity of input query and the generated referring expression is selected

as the target.

5.5.3 Experiments

We evaluate the performance of the referring expression generation-based natu-

ral language grounding architecture on the self-collected working scenarios and

expressions in referring expressions comprehension-based grounding experiments.

The grounding accuracies acquired by the three models are RefCOCO 80.23%,

RefCOCO+ 77.80%, and RefCOCOg 78.24%.

We also implement grounding experiments on self-collected working scenar-

ios, Figure 5.5 shows some grounding example results. The grounding accuracies

obtained by the models trained on the three datasets are RefCOCO 86.32%, Ref-

COCO+ 81.22%, and RefCOCOg 83.78%, respectively.

5.6 Intention-related Natural Language Ground-

ing via Object Affordance Detection and In-

tention Semantic Extraction

In our daily communication, we use explicit queries to convey our objective, such as

referring expressions. We also express our intention in relatively vague expressions,

for example, “I want to drink some water”. The explicit natural language queries

can be grounded through the referring expression comprehension and referring ex-

pression generation models. Unlike the target-specified natural language commands

grounding, no dataset is published for grounding intention-related natural language

instructions. While grounding intention-related natural language queries is also a

crucial component of natural language visual grounding. Inspired by the affordance

and its applications in natural HRI, we introduce an object affordance detection-

based architecture to address the intention-related natural language grounding.
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Figure 5.5: Example results of natural language grounding via referring expression

generation and scene graph parsing. The rectangles with black outlines in the

second row encompass the generated expressions for the detected objects in the

self-collected working scenarios. The same color between the bounding boxes and

the generated expressions represent correspondence. The input natural language

instructions are listed in the rectangles with blue outline in the fourth row, the

parsed scene graph legends are noted with the same color with the target objects

as shown in the images in the third row. The same color of the bounding boxes in

the images and the scene graph legends denotes a grounding.

5.6.1 Architecture Overview

Given an intention-related natural language command, such as “I am hungry, I

want to eat something”, and an image composed of multiple household objects,

the objective of intention-related natural language grounding is to locate the most

related object within the image. In this thesis, we decompose the intention-related
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Figure 5.6: The architecture of intention-related natural language grounding via

object affordance detection and intention semantic extraction. The introduced ob-

ject affordance detection network detects objects affordances from visual images,

as described in chapter 4. The intention semantic extraction module calculates

the different weights of each word in given natural language queries, and extracts

the intention semantic word. The grounding module locates the target object by

combining the detected object affordances with the extracted intention semantic

words.

natural language grounding into three subtasks: 1) an intention semantic extraction

module extracts the intention semantic from the natural language instructions; 2)

an object affordance detection network detects object affordances from RGB im-

ages; 3) a grounding module integrates outputs of the intention semantic extraction

module and the object affordance detection network to locate the referred object.

Figure 5.6 illustrates the details of the proposed intention-related natural language

grounding architecture.

5.6.2 Intention Semantic Extraction

Each word plays a different role to represent the semantics of a natural language

sentence, so we argue that each word should have different weights in a sentence for

expressing the semantic. In order to acquire the different weights, we present a self-

attentive network to calculate the weight of each word in natural language queries.
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We acquire the weight in three steps. Given a natural language sentence S, we first

tokenize S into words by NLTK [99] toolkit, i.e., S = w1, w2, ..., wn, n denotes the

word number of S. And the lexical category of each tokenized word wi, i ∈ (1, n) is

generated by a POS-tagger (part of speech tagger) of NLTK. Second, we transfer

wi into a 300-D vector vi by GloVe [98] as word representation, vi ∈ R1×300. And

then, these word representation vectors are concatenated as the representation of

the sentence, i.e., V = (v1, v2, ..., vn), V ∈ Rn×300. Finally, the generated sentence

representation V is fed into a self-attentive network to calculate the weight of each

word. The self-attentive network adopts an attention mechanism over the hidden

vector of a BiLSTM to generate a weight score αi for wi. The self-attentive network

is defined as:

ht = BiLSTM(V )

ui = tanh(Wwht + bw)

αi =
exp(ui)∑
t exp(ui)

(5.2)

where ht represents the hidden vector of the BiLSTM, ui is the transformation

vector generated by an MLP with weight Ww and bias bw.

In practice, we adopt the weight trained on the supervised data of the Stanford

Natural Language Inference dataset [22] to be the initiate weight of the BiLSTM

in the self-attentive network. For instance, the weight visualization of the sentence

“I am thirsty, I want to drink some water” generated by the self-attentive network

is shown in Figure 5.7.

The sentence is then re-ordered according to the acquired αi, and the verb with

the largest weight is selected to present the semantic of intention-related instruc-

tions, and the selected verb is feed into the grounding module to complete target

object grounding. For instance, the word “drink” is selected as the representation

of the intention-related spoken instruction “I am thirsty, I want to drink some

water”.
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Figure 5.7: Visualisation of words weight of the sentence “I am thirsty, I want to

drink some water”. <s> and </s> represent the beginning of sentence token and

the end of sentence token.

5.6.3 Target Grounding

In order to ground intention-related natural language instructions, we adopt the

same mechanism which is introduced in the referring expression generation-based

grounding architecture. Specifically, we first transfer the extracted semantic words

and the detected affordances into 300-D vectors by GloVe, and then calculate

the semantic similarity between the acquired intention semantic vectors and af-

fordance vectors to complete targets grounding. Through the semantic similarity

calculation, the extracted intention semantics are mapped into the corresponding

human-centered object affordances.

5.6.4 Experiments

We select 100 images from the test set of the self-built dataset, and collect 150

natural language queries. Figure 5.8 lists some example results.
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Figure 5.8: Example results of intention-related natural language query grounding

via object affordance detection and intention semantic extraction. The first row

lists example results of grounded target objects. The bar charts in the second row

show the different weights of each word in given natural language instructions.

The rectangles in the third row encompass the intention-related natural language

queries, and the extracted intention semantics are covered with the related color

with the detected affordances.

5.7 Spoken Instructions Visual Grounding and

Robotic Applications

We train an online speech recognizer under Kaldi [102] with WSJ corpus, and

integrate the trained recognizer with the three above introduced natural language

visual grounding architectures to achieve spoken instruction grounding. We also

conduct multiple spoken instruction grounding and target object manipulation

experiments on a PR2 robot.
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5.7.1 Online Speech Recognizer

In natural language-based HRI, the spoken utterance needs to be translated into

text through speech recognition. In the open source toolkit Kaldi , the state-of-

the-art techniques, such as Linear Discriminant Analysis (LDA), Maximum Like-

lihood Linear Transform (MLLT), Speaker Adaptive Training (SAT), Maximum

Mutual Information (MMI), Minimum Phoneme Error (MPE), Deep Neural Net-

works (DNN), are applied in the AM training to acquire better recognition accu-

racy. Due to the properties of Kaldi, we train an online speech recognizer using

the Kaldi to translate spoken language commands into text.

The WSJ corpus (LDC93S6B (WSJ0) and LDC94S13B (WSJ1)) provided by

the Linguistic Data Consortium (LDC) is selected to be the corpus. The critical

components of an online speech recognizer contain an acoustic model (AM), a

language model (LM) and a lexicon. To acquire a better recognition accuracy, the

Hidden Markov Model (HMM) + DNN AM and Tri-gram-based LM have been

adopted in this thesis. The framework of the online speech recognizer is shown in

Figure 5.9.

Real-time RecognizerAudio WAV Text

Feature 
Extraction

AM 
Modelling

AM Lexicon LM

LM 
Modelling

Corpus

Figure 5.9: Framework of the online speech recognizer.

To evaluate the performance of the introduced online speech recognizer, we

employ Word Error Rate (WER) to calculate the speech recognition accuracy.

WER can be calculated as follows:

WER =
D + I + S

N
(5.3)
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where D denotes the number of deletions, I represents the number of insertions, S

dedicates the number of substitutions, and N is the total number of words in the

spoken sentences which have been translated into text.

In this thesis, we adopt the HMM + DNN based AM and Tri-gram based

LM. According to [58], the WER of WSJ corpus is 6-7%. Because of the excellent

WER of the adopted corpus, the trained online speech recognizer acquires a high

recognition accuracy. With the high spoken command recognition accuracy, the

performance of the intention semantics extraction module can be guaranteed.

5.7.2 Spoken Instruction Grounding and Target Object Seg-

mentation

We also perform several target object groundings for spoken instructions by in-

tegrating the aforementioned architectures with the online speech recognizer. In

the experiments, we use an ASUS wireless microphone to collect spoken instruc-

tions. These experiments aim to ground spoken instructions in working scenarios

of robots and prompt natural HRI.

In order to achieve target object manipulations during robotic applications, we

need to acquire the 3D localization of target objects. To this end, we draw support

from instance segmentation. Formally, we first adopt Mask RCNN [45], which

completes object detection and instance segmentation in one network, to segment

the grounded target objects. We then integrate the segmented target objects with

the depth data acquired from a Kinect V2 camera to realize 3D object localization.

Figure 5.10 lists some grounding and segmentation results.

5.7.3 Robotic Applications

We conduct a number of target objects grasping experiments on a PR2 platform.

The experimental setup for spoken instructions grounding and target objects ma-

nipulations is shown in Figure 5.11.

We complete objects manipulation planning in MoveIt and implement tar-
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Figure 5.10: Example results of spoken instructions grounding and target object

segmentation. The first image in each row shows the grounding result of a given

spoken instruction, the second image is the segmentation acquired by Mask RCNN,

and the third image is the segmentation in 3D (covered with green cubic) which is

combined the point cloud data with the Mask RCNN segmentation. The spoken

instructions are listed in the rectangles under the grounding results.
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Figure 5.11: Experimental setup for spoken instructions grounding.

gets manipulation by a two-finger gripper of a PR2 platform. Figure 5.12 shows

some target object manipulations by PR2, and the implementations mentioned

above can be found on the following link:https://www.youtube.com/watch?v=

LbujSM6G5yY.

Figure 5.12: Target object grasping experiments conducted on a PR2 robot.

In this thesis, the pivotal point is to realize natural language visual grounding.

Thus, in the grasping experiments, we attach more importance to locate the target

objects rather than pay more attention to the grasping strategy or trajectory. A

two-finger gripper implements grasping tasks. Because of the limitation of the

gripper, the diversity of objects can be selected in the grasping experiments is

heavily restricted.
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5.8 Discussion

In this chapter, we proposed three natural language visual grounding architectures.

In order to achieve unrestricted and compound natural language grounding, we

integrated the trained referring expression comprehension and referring expression

generation models with scene graph parsing. Compared with the existing methods

for natural language visual grounding, the referring expression comprehension and

referring expression generation-based approaches grounded and disambiguated the

natural language instructions in a manner which is akin to an end-to-end pattern,

and the introduced methods did not draw support from dialog systems and other

auxiliary information.

Moreover, we presented a framework that combines the object affordance de-

tection network with an intention-semantic extraction module and a grounding

module to achieve intention-related natural language queries grounding. As far as

we know, the introduced object affordance detection-based framework is the first

attempt to ground intention-related natural language queries via human-centered

affordances. We validated the three proposed natural language visual grounding ar-

chitectures by implementing extensive experiments on household working scenarios

with multiple natural language instructions.

Afterwards, we will improve the performance of the introduced architectures,

such as exploring sophisticated approaches to address natural language ground-

ing. Moreover, the introduced scene graph parsing module performs poorly when

parsing some complex natural language queries, we will exploit a learning-based

method to generate scene graphs. Additionally, we will exploit more effective meth-

ods to ground more complicated natural language queries and achieve more natural

HRI.
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Chapter 6

Conclusion

Natural language serves as the most straightforward medium in our daily com-

munication, understanding natural language queries and grounding target objects

are an essential skills for intelligent agents to communicate with humans. Natural

language visual grounding can create a natural communication channel between

humans, physical environments, and intelligent systems. Moreover, natural lan-

guage visual grounding is widely used in multiple tasks. The primary objective of

the thesis is to achieve natural language visual grounding without dialogue systems

and other auxiliary information. As a foundation to address the research question,

we focus on vision and natural language-based multimodal learning.

6.1 Thesis Summary

In order to ground natural language queries, we propose three different architec-

tures that build upon three networks. First, we proposed a semantic-aware net-

work for referring expression comprehension which imitates the role of a listener

to ground the most related objects within images given referring expressions. On

this basis, we combined the referring expression comprehension network with scene

graph parsing to achieve sophisticated and unconstrained natural language queries

grounding. We conducted experiments on three public referring expression datasets

to evaluate the performance of the proposed referring expression comprehension
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network, and we also implemented experiments on household working scenarios

with diverse natural language queries to validate the effectiveness of the presented

natural language grounding architecture.

Second, we presented an adversarial network for referring expression generation

that mimics a speaker to generate referring expressions for each detected object

within images. We validated the diversity and naturalness of expressions generated

by the proposed referring expression generation network using multiple evaluation

metrics. We also integrated the referring expression generation network with scene

graph parsing and a grounding module to ground complex natural language queries.

We evaluated the effectiveness of the referring expression generation-based natural

language grounding framework using the working scenarios and the natural lan-

guage queries collected for validating the referring expression comprehension-based

grounding architecture.

Additionally, we introduced an object affordance detection network via attention-

based multi-features fusion and a dataset for learning human-centered affordances.

We combined the object affordance detection network with an intention semantic

extraction module and a grounding module to achieve intention-related natural

language instruction grounding. We validated the performance of the object af-

fordance detection network on the self-built dataset, and we also evaluated the

performance of the affordance detection-based intention-related natural language

grounding framework on diverse working scenarios with multiple natural language

queries.

6.2 Discussion

The research approaches introduced in this thesis relate to the interdisciplinary

aspects of computer vision and natural language processing and aim to develop

multimodal learning architectures for natural language visual grounding. In the

following sections, we discuss the primary modeling aspects of the proposed archi-

tectures and the acquired results, and the limitations need to be addressed.
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6.2.1 Referring Expression Comprehension

Referring expression comprehension requires a comprehensive understanding of

natural referring expressions and visual images to locate referred objects in images.

Unlike the other natural language and vision-based multimodal tasks, referring

expression comprehension has been widely used in multiple applications.

Plenty of models have been proposed for referring expression comprehension

[148, 84, 151, 16, 28, 147], etc. However, the existing approaches neglect two critical

issues. First, the essence of deep features extracted from pretrained CNN models.

According to [152], deep features are spatial, channel-wise, and multi-layer. The

existing methods focus on the spatial characteristics and perform fine-grid spatial

attention to access the most relevant object, while the importance of channel-wise

characteristics is overlooked. For example, in the process of predicting objects, the

channel-wise features are generated by the convolutional filters relevant to repre-

sent the visual semantics of objects. Therefore, the inherent semantic information

of channel-wise features can be adopted to enhance the visual representations of

detected regions. Second, the different contributions of each word to an expres-

sion. The existing approaches resort to holistic associations between the referring

expressions and the region features, rather than take into account the different

weights of words in expressions to locate target objects.

In contrast to the existing methods, we proposed a semantics-aware network

for referring expression comprehension, where we excavated the visual semantic

by taking full advantage of the characteristic of deep features and exploited the

rich linguistic context of referring expressions. In chapter 2, we reformulated the

referring expression comprehension into three sub-modules: 1) a language atten-

tion network learns to assign different weights for each word in expressions and

learns to parse expressions into three phrases that embed the information of target

candidate, relation and spatial location, respectively; 2) a visual semantics-aware

network incorporates channel-wise and region-based spatial attention to generate

semantic-aware visual representation for regions under the guidance of attended
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words; 3) a target localization module coalesces the language attention network

and the visual semantic-aware network to identify the target object.

Although the proposed network acquires relative lower accuracy than the state-

of-the-art [147], which trained additional attributes for each detected regions and

the attributes are employed as an enrichment for the region visual representation.

While the proposed network utilized the inherent semantic of region deep features,

and addressed the different contribution of each word in referring expressions to

locate target objects.

6.2.2 Referring Expression Generation

Unlike the generic captions to describe given entire images, referring expressions

depict each detected objects within images from diverse perspectives, such as color,

size, location, and the interaction information between their neighbor objects.

Thus, the referring expressions are closer to the pattern which humans take to

describe objects.

The existing methods adopt generic CNN-LSTM paradigms to generate re-

ferring expressions [148, 149, 78]. Because of the generation paradigm and the

evaluation metrics, the generated expressions are easy for humans to discriminate

from human created ground truth. In addition, the existing approaches focus on

locate the targets while sacrificing the semantic context. Inspired by these exist-

ing limitations, we introduce an adversarial training-based network to generate

diverse referring expressions that are easy enough for humans to locate the target

in images and reserve the semantic validity.

Motivated by the superior performance of GANs in image synthesis, and the

synthesized images even cannot be distinguished by humans, we introduced GANs

to generated referring expressions. In chapter 3, the primary goal is to improve

the diversity and naturalness of generated referring expressions. We presented a

generator to produce expressions and a discriminator to classify the generated ex-

pressions are real or fake. In order to generate expressions with more diversity and

naturalness, we employed two critics in the discriminator to prompt the generator
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producing diverse and natural expressions.

Unlike the Encoder-and-Decoder paradigm utilized in existing work, the in-

troduced referring expression generation network produced more diversity and

naturalness expressions. We also used multiple evaluation metrics to assess the

generated referring expressions.

6.2.3 Object Affordance Detection

Affordance is a psychological term that refers to the fundamental properties of an

object, while the properties determine how the object could possibly be used [94].

Moreover, affordance is widely used to achieve different objectives, such as improves

the robustness of object recognition[125], augments the quality of HRI [12], and

prompts the robot to understand natural language instructions [86]. Inspire by the

affordance and its applications in HRI, we proposed an object affordance detection

network and a dataset to learn household objects affordance.

Existing methods adopt different features to recognize affordances, such as ge-

ometric features, visual attributes, and deep feature extracted from pretrained

CNN. Unlike the existing methods which take mono-feature as input to recognize

object affordance, we took advantage of the multi-visual features, i.e., deep visual

features extracted from a pretrained CNN model and deep texture features en-

coded by a deep texture encoding network, to recognize human-centered object

affordances. Moreover, we proposed an attention network to fuse the multi-visual

features to avoid bringing redundancy while preserving the complementary nature

of the multiple features.

Besides, we proposed a dataset to train and validate the presented object affor-

dance recognition network. We collected indoor scenarios from the MSCOCO and

ImageNet datasets, and we also collected some household working scenarios via a

Kinect V2 camera.
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6.2.4 Interactive Natural Language Visual Grounding

Natural language plays a predominant role and provides the most straightforward

medium in our daily communication. With the application of robots in human

environments becoming omnipresent, the demand for natural language based HRI

turns into urgent. Motivated by the applications of natural language visual ground-

ing, we proposed three architectures to achieve natural language grounding without

auxiliary information.

First, we combined the referring expression comprehension network with scene

graph parsing to ground sophisticated natural language instructions. The scene

graph parsing aims to parse complicated natural language commands into scene

graph legends, which are composed of object with attributes and relations between

objects. By this combination, the referring expression comprehension-based archi-

tecture can ground unconstrained and sophisticated natural language instructions.

Second, we integrated the referring expression generation with scene graph

parsing and a grounding module to achieve natural language visual grounding.

The grounding module takes referring expressions generated by the introduced

referring expression generation network and the parsed scene graph legends to

ground the target objects.

Third, we utilized the object affordance detection-based architecture to ground

intention-related natural language queries. Specifically, we combined the detected

object affordances with the extracted intention semantic words to ground intention-

related natural language queries, such as “I am thirsty, I want to drink some water”.

Moreover, we collected multiple indoor working scenarios and diverse natural

language queries to validate the performance of the proposed natural language vi-

sual grounding architectures. We performed extensive grounding experiments and

the experimental results demonstrated the effectiveness of the introduced ground-

ing architectures. Additionally, we conducted spoken language visual grounding

and target objects manipulation experiments on a PR2 robot.
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6.3 Conclusion

To sum up, this thesis contributes to the field of natural language visual ground-

ing by exploiting multimodal learning approaches, and aims to locate the referred

target objects in working scenarios given natural language queries without aux-

iliary information. To this end, we proposed three architectures for natural lan-

guage visual grounding, and these architectures are based on referring expression

comprehension, referring expression generation, and object affordance detection,

respectively. We explored the different roles of the three crucial components to

realize natural language visual grounding.

Reported experimental results show the performance of the introduced net-

works for referring expression comprehension and referring expression generation,

and object affordance detection. In addition, we implemented multiple experiments

to validate the effectiveness of the three natural language visual grounding archi-

tectures.

In conclusion, our experiments demonstrated that referring expression com-

prehension and referring expression generation, and object affordance detection-

based grounding architectures can be employed to achieve natural language visual

grounding without auxiliary information.

6.4 Future Work

Compared to the existing work for referring expression comprehension, the pro-

posed network acquires relative lower accuracy than the state-of-the-art on the

three datasets. In future work, we will exploit the rich linguistic components of

referring expressions and integrate with visual representation to acquire better ac-

curacy, as well as improve the interpretability of the network. For the referring

expression comprehension-based natural language grounding architecture, we will

focus to improve the performance of the scene graph parsing to generate more

accurate results for sophisticated natural language instructions.
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Chapter 6. Conclusion

The proposed referring expression generation network is the first attempt to

generate diverse and natural expressions via adversarial training, and acquires

promising results on three datasets. Afterwards, we will exploit a generative ap-

proach for dense captioning which aims to generate descriptions for each detected

region within images, and the published datasets for dense captioning are more

plentiful than the referring expression datasets. Moreover, the dense captioning

model trained on big datasets is sufficient for grounding natural language queries.

The introduced object affordance detection network can detect ten human-

centered affordances through fusing the deep visual features and the deep texture

features. In the future, we will employ meta-learning to learn more affordances

from a smaller amount of annotated images. Furthermore, we will integrate the

referring expression generation approach with object affordance detection to gen-

erate affordance-aware referring expressions. In this way, the specific and intention-

related natural language queries can be grounded by one architecture.
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Appendix A

List of Abbreviations

HRI Human-Robot Interaction

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

MLE Maximum Likelihood Estimation

IoU Intersection over Unit

GANs Generative Adversarial Networks

RL Reinforcement Learning

RNNs Recurrent Neural Networks

BiLSTM Bidirectional Long Short-Term Memory

RoIs Regions of Interest

MLP Multi-Layer Perceptron

MMI Maximum Mutual Information

EOS End-of-Sentence Token

DNN Deep Neural Networks

FM Factorization Machines

VQA Visual Question Answering

ReLU Rectified Linear Unit

CCG Combinatory Categorial Grammar

FCG Fluid Construction Grammar

ECG Embodied Construction Grammar
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List of Abbreviations

ROS Robot Operating System

SL Statistical Learning

DeepQA Deep Question Answering

DS Dempster-Shafer theory

LSA Latent Semantic Analysis

LDA Linear Discriminant Analysis

MLLT Maximum Likelihood Linear Transform

SAT Speaker Adaptive Training

MPE Minimum Phoneme Error

LDC Linguistic Data Consortium

AM Acoustic Model

LM Language Model

HMM Hidden Markov Model

WER Word Error Rate
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Appendix B

Collected Working Scenarios and

Natural Language Queries

In order to validate the referring expression comprehension and referring expression

generation-based natural language visual grounding architectures, we collect 133

indoor scenarios from the test datasets of RefCOCO, RefCOCO+, and RefCOCOg,

and 187 expressions for the MSCOCO images, as shown in Fig B.1. We also collect

30 images which are composed of the commonly used household objects by a Kinect

V2 camera, and 228 expressions for the 30 working scenarios, as shown in Fig B.2.
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Collected Working Scenarios and Natural Language Queries

Figure B.1: Working scenarios seleceted from MSCOCO and collected natural lan-

guage instructions for validating the referring expression comprehension and refer-

ring expression generation-based natural language grounding architectures.

1. pick up the green apple and the red apple
2. grab the water bottle and the cola bottle
3. take the red apple and the right bottle
4. bring me the water bottle and the green apple
5. pick up the left bottle and the right bottle
6. move the right bottle to left of the water bottle and pick up the red apple
7. pick the water bottle and place it to right of the cola bottle and take the green apple
8. move the green apple to right of the right bottle and take the water bottle
9. move the right apple to left of the water bottle and grab the green apple
10. pick up the left bottle and place it to right of the cola bottle and bring me the red apple

1. bring me the rightmost red cup and the leftmost red cup
2. pick up the right glass and the right apple
3. take the right glass and the left apple
4. grab the leftmost red cup and the left apple
5. take the rightmost cup and the right apple
6. move the right glass to left of the leftmost red cup and pick up the right apple
7. pick up the left apple and place it to right of the rightmost red cup and take the left red cup
8. move the right cup to left of the left red cup and then grab the right glass

1. bring me the red box and the right bottle
2. pick up the left bottle and the left glass
3. take the right glass and the right bottle
4. grab the water bottle and the right glass
5. pick up the left glass and the right bottle
6. move the right glass to left of the left bottle and pick up the right bottle
7. move the left glass to right of the right glass and grab the left bottle
8. pick up the red box and place it to right of the right box and take the right bottle
9. move the right bottle to left the left bottle and then grab the red box
10. pick up the left glass and place it to right of right glass and then take the left bottle

Figure B.2: Collected working scenarios via a Kinect V2 camera and natural lan-

guage queries.
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Appendix C

Publications Originating from

this Thesis

C.1 Journal Articles

• Jinpeng Mi, Song Tang, Zhen Deng, Michael Goerner, Jianwei Zhang. Object

Affordance based Multimodal Fusion for Natural Human-Robot Interaction.

Cognitive Systems Research, 54:128–137, 2019.

• Jinpeng Mi, Jianwei Zhang. Interactive Natural Language Grounding via

Referring Expression Comprehension and Scene Graph Parsing. Frontiers in

Neurorobotics (submitted).

• Jinpeng Mi, Hongzhuo Liang, Nikolaos Katzakis, Changshui Zhang, Jian-

wei Zhang. Intention-Related Natural Language Grounding via Object Af-

fordance Detection and Intention Semantic Extraction. Frontiers in Neuro-

robotics (submitted).

C.2 Conferences

• Jinpeng Mi, Yu Sun, Yu Wang, Haiyang Jin, Liang Li, Jianwei Zhang. Ges-

ture Recognition based Teleoperation Framework of Robotic Fish. IEEE In-
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Publications Originating from this Thesis

ternational Conference on Robotics and Biomimetics (ROBIO), 2016, 137–

142.

• Jinpeng Mi, Yannick Jonetzko, Fuchun Sun, Jianwei Zhang. Speech-based

Object Grounding and Grasping for natural Human-Robot Interaction. In-

ternational Conference on Cognitive Systems and Information Processing

(ICCSIP), 2018.

• Zhen Deng, Jinpeng Mi, Zhixian Chen, Lasse Einig, Jianwei Zhang. Learning

human compliant behavior from demonstration for force-based robot manip-

ulation. IEEE International Conference on Robotics and Biomimetics (RO-

BIO), 2016, 319–324.

• Song Tang, Lijuan Chen, Jinpeng Mi, Mao Ye, Qingdu Li, Jianwei Zhang.

Adaptive pedestrian detection by modulating features in dynamical environ-

ment. IEEE International Conference on Robotics and Biomimetics (RO-

BIO), 2017, 62-67.

• Song Tang, Yunfeng Ji, Jianzhi Lyu, Jipeng Mi, Qingdu Li, Jianwei Zhang.

Visual Domain Adaptation Exploiting Confidence-Samples. IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS) 2019.
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