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1. Introduction

Finite mixture models are often used for a mathematical description of heterogeneous popula-
tions which are composed by a finite number of subpopulations with respect to several random
phenomena, or features. Within the scope of statistics, finite mixture models are especially used
for discriminant analysis, clustering or image analysis. Their practical applications are in a
variety of areas such as economics, medicine or biology. Likewise, theoretical statistical studies
are combined with concrete applications of mixture models.

For example, let us assume that we have a population of animals consisting of two components,
either male or female. Additionally, we wish to construct a classification rule with respect to
these component types based on the feature of length which is e.g. normally distributed on each
component type. A random sample provides a two population mixture of normal distributions.
The a priori probabilities or mixing proportions for each class may be known or unknown.
Likewise, the underlying parameters of the distribution, here given by mean and variance, could
either be known or unknown. Clearly, this example can easily be extended to more complicated
applications. These may consider more than one feature and may be based on p different
populations. Furthermore, there could be several distributions depending on the features and
the number of components may be unknown.

A short survey of various statistical problems of our kind and the corresponding models can be
found in the first chapter of Lindsay (1995). His book also addresses elaborately the theoretical
aspects of mixtures. A comprehensive illustration of the main issues in finite mixture models is
given by McLachlan and Peel (2000), whereas Béhning (2000) is concerned, in particular, with
likelihood methods.

In our work, we investigate the problem of testing for the numbers of components in a mixture.
More precisely, we consider the likelihood ratio test (LRT) for testing @) populations against p
populations.

Let F={fy:v€Tl} T C IRF, be a family of probability densities with respect to some o-finite
measure v on a measurable space (X, X), X C IR™. The model of all p population mixtures of
F is given by

p
Gp = {gﬂ',('yl,...,'y?) = Zﬂlf'yl ITE 7Tpa'71a P e F}
=1

P
with 77, = {ﬂ' = (m1,...,mp) €[0,1]P: Y m = 1}.
=1
The specific attributes of the [th component population are described by the component param-
eter ~t. The quantities 7y, .. , Tp are typically referred to as mixing proportions or weights and
P
the functions fy1,..., fy» are called the component densities of the mixture ) 7 f,: which is

1=1
obviously also a density. Accordingly, finite mixture distribution functions are defined by their
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weighted component distribution functions. We define the true order of g € G, as the smallest
t .
integer ¢ such that g has a representation ) m;f,: and all the %, i =1,...,t are different and
i=1

all the associated 7; are not null, i.e w € 7T; N (0,1)’. (Additional assumptions will ensure that
different component parameters 4%, i = 1,...,t are equivalent to different component densities
fryisi=1,...,t later on.)

Notice that we use bold letters to represent a column vector, e.g. v = (v1,...,7k)’, where the
superscript / denotes the transposition of a vector or a matrix. Every single component of a
vector is supplied with a subscript index, while a sequence of vectors is supplied with superscript

indices, e.g. v',...,~P. In addition, we use the statistical terminology of Witting (1985) unless
an alternative reference is given.

As mentioned above, we study the problem of testing for the number of components in a mixture.
There are diverse statistical techniques such as Bayesian approaches, e.g. the Bayesian infor-
mation criterion (BIC), for estimating the number of components. The LRT provides a general
method to construct a test for the number of components in a mixture. We are interested in the
recent field of research in asymptotic theory of the LRT, its applicability to exponential families
and ways to calculate of the asymptotic distribution of the log-LRT statistic.

Assume we wish to test the null hypothesis that the true density is given by a mixture of @
components versus the alternative that the true density is given by a mixture of p components
for some @ < p; i.e.

Hy:g € Gg against Hy:g € G,\Gg -

Let the test be based on an independent identically distributed (i.i.d.) sample X7, Xa,..., X,
of size n, with true density of X;, 1 = 1,...,n, given by

P

0 0

g = Eﬂ'lf»-yo,l.
=1

Notice that true parameters, such as mixing weights and component parameters as well as the
corresponding true mixture are supplied with a superscript 0.

Given a realization ®1,...,z, of Xi,..., Xy, we define the likelihood function of = € 7T, and
~L,...,4P €T by

n

L(:l:l,...,:l:n) (777 (717 s ’,Yp)) = H g1r,(71,...,7p)(wi)'

=1

The LRT statistic has the form

n
sup [T g(x:)
gEgp =1

where the numerator is equivalent to

sup {L(zl,...,zn)(”ra (717 R 771’)) T E 7Tp7715 et 771) € F}



and the denominator is equivalent to
sup {L(zl,_“,wn)(ﬂ', (+1,... ,'yQ)) ‘€ To,vY,...,79 € I‘}.

If the test statistic A(z1,...,xy) is sufficiently large, the null hypothesis Hy will be rejected.
Following the literature we use the log-LRT statistic

log (A(zl,...,wn)) = sup ilog (g(mz)) — sup zn:log (g(mz)) (1.1)
i=1

9€Gp 9€9q ;4

In order to decide whether to reject Hy or not, we need the distribution of the log-LRT statistic
under the null hypothesis. Unfortunately, in general there is no explicit expression known and
the usual chi-squared asymptotic of Wilks (1938) does not hold for 3 log(A(z1,...,Tx))-

It is well known that the classical distribution theory of the LRT is not applicable on mixture
models and “even in the simple case of testing homogeneity against a mixture with two com-
ponents, a lot of problems remain to be solved and a complete answer has not yet been given”,
see Garel (2005). In the classical likelihood theory, it is assumed that the parameters describing
the null hypothesis are uniquely defined and belong to the interior of the parameter space. In
mixture models the parameters belonging to the null hypothesis are on the boundary of the
parameter space rather than within it and even if the mixtures are identifiable, the correspond-
ing parameters (under the null hypothesis) may be non-identifiable, see Gosh and Sen (1985).
Chernoff (1954) shows how to deal with the problem when the null hypothesis is in a certain
sense on the boundary. Thus the real problem of testing g = ¢° against g # ¢° results from the
fact that ¢° has several representations. More precisely, the maximum likelihood estimator may
not converge to a unique accumulation point (under the null hypothesis). In general, the lack of
identifiability leads to a degenerate Fisher information matrix and as a consequence the usual
concept to derive an asymptotic fails.

Gosh and Sen (1985) were the first to develop an expression of the asymptotic LRT statistic for
testing one population against two populations. They solve the problem of non-identifiability
of the usual parameterization with the aid of a separation condition applied to the parameters.
Additionally, they assume the parameter space to be compact. This assumption conforms to a
result of Hartigan (1985) who proves that for simple normal mixtures with unbounded mean,
the log-LRT statistic diverges to infinity in probability when n tends to infinity.

Recent research has removed this separation condition and there is now a great variety of ap-
proaches to this problem. Frequently, mixtures with respect to a concrete distribution are
investigated under a reparameterization of the mixture model. For instance, Chernoff and Lan-
der (1995) study the asymptotic distribution of the LRT for homogeneity against a mixture
of two binomial distributions. In their work several versions of binomial mixture problems are
studied under an appropriate parameterization. Lemdani and Pons (1997) investigate mix-
tures of binomial distributions in LR tests for linkage between genes and markers using ad hoc
reparameterizations. Leroux (1992) proposes a maximum penalized likelihood method by esti-
mating a mixture distribution and proves that this method produces a consistent estimator in
the sense of weak convergence. Furthermore, he illustrates his results by estimating a Poisson
mixture. Keribin (2000) proves the almost sure consistency of the maximum penalized likeli-
hood estimator for an appropriate penalization sequence using the reparameterization developed
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by Dacunha-Castelle and Gassiat (1999). She shows that the corresponding theory holds for
Poisson mixtures as well as for specific Gaussian mixtures with unknown mean as described
below. Garel (2001) considers the problem of testing homogeneity against a mixture of two
components in several cases of univariate Gaussian mixtures. Additionally, Liu and Shao (2004)
have recently published asymptotic results of the LRT in a two component univariate normal
mean mixture model.

An outline of further theoretical results based on special mixture models is given in McLachlan
and Peel (2000), section 6.5.1. Garel (2005) also presents a general survey on the theory and
methodology of mixture distributions.

Dacunha-Castelle and Gassiat (1997, 1999) propose a general theory for deriving the limiting
distribution of the LRT statistic for testing () populations against p populations. They focus on
a reparameterization of the mixture model such that one of the “new” parameters is identifiable
at the previously non-identifiable point. Another general approach to the asymptotic LRT
statistic for testing for the number of components has been developed in a recent work by Liu
and Shao (2003). In their applications to finite mixture models they use the parameterization
of Dacunha-Castelle and Gassiat (1999) as well as a special new parameterization.

The very latest work by Garel (2005) presents an asymptotic theory of the LRT, however neither
using a separation condition nor a reparameterization. His results require assumptions based on
the second order derivatives of the log-density and hold for testing homogeneity against a two
population mixture based on a one-dimensional parameter space.

Our work is based on the general asymptotic theory developed by Dacunha-Castelle and Gassiat
(1999) [DCGYY] for k-dimensional parameter spaces. As previously mentioned they use a local
reparameterization (called “locally conic”) of mixtures to deal with the identifiability problem.
Roughly speaking, under the assumption that the true density

Q

$ = Zﬂlof,yo,z with 7r(1),...,7r2 €(0,1), ¢ <Q,
=1

belongs to the null hypothesis, they reparameterize G, by two parameters 6 and 3 such that 6
describes a “normalized distance” to (w%,~%1,... 4%49) and the parameter vector 3 describes a
corresponding “direction.” In principle, the reparameterization is identifiable in the parameter
0 at 8 = 0 even if it is non-identifiable in 3.

As a main result they obtain that the log-LRT statistic for testing @) against p populations
converges in distribution to a difference of two functionals of Gaussian processes with index
sets directly related to the parameter sets corresponding to the model of ) and p populations,
respectively. More precisely, [DCG99] claim in Theorem 3.2. that the log-LRT statistic

T(p) = gs;gx;glog (g(wi))—glog(g"(wi)) (1.2)

(for testing g = ¢° € Gg against g € G,\{g"}) converges in distribution to

1
5 sup (5(1)2 ) ]I-deOa
deD

where ({d) 4ep 18 a centered Gaussian process on a class of functions D which is given by the set
of directional scores for 6 = 0 of G,,.



Since log (A(z1, .., ®n)) = T (p) — Tn(Q) according to (1.1) and (1.2), it follows that

L 1 2 1 2
log (A(ml, - ,.’l:n)) — —sup ({d) 1g,>0 — - sup (fd) - 1¢,>o0, (1.3)
2 4ep 2 4eD,

where Dy C D is the set of directional scores for § = 0 of Gg. (“£>” denotes convergence in
distribution.)

Finally, an orthogonal dissection yields

1 1
—sup (€0)° - Tgyz0 — = sup (&0)”  Le>0 = o sup (€u) - Le,>0,
2 4ep 2 4eDy 2 weu

where U is a subset of the orthogonal space of Dy (see [DCG99], Theorem 3.6).

For the special case of testing one population against a two population mixture (with one-
dimensional component parameter space I') [DCG99] give an equivalent representation of formula
(1.3), namely

c 1 2
log (A(:z:l, .- ,:cn)> - 5 761“8\1{150,1} (fh(y)) “eyis0 (1.4)

(see [DaCa99], Corollary 3.7).

Principally, our work is concerned with the following questions:

e Which mixture models fulfill the sufficient conditions from [DCG99] for the existence of
an asymptotic distribution?

When endeavouring this question, we found that the sufficient conditions for the existence of an
asymptotic distribution according to [DCG99] are not satisfied for all mixtures of exponential
families. For instance, the sufficient conditions from [DCG99] for testing @ populations against
p populations are not satisfied for univariate Gaussian mixtures if both parameters mean and
variance are unknown. However, in the case of testing ¢ = ¢° against ¢ = (1 — ) fryo +
Tfy, ™ € (0,1), v € T\{7°} and true density g° = f,o, i.e. for so-called simple mixtures or
contamination models, the asymptotic theory by Dacunha-Castelle and Gassiat (1997) [DCG97]
does hold for the aforementioned Gaussian families (see [DCG97], Remark 4.2). The reason
for this is a simplified reparameterization of the contamination model (see [DCG97], p. 296)
compared with the reparameterization of Go as given in [DCG99], although the simple mixture
model is a subset of Gs.

Chapter 3 investigates in detail the applicability of the theory from [DCG99] to exponential fam-
ilies. We derive sufficient conditions for the existence of a limiting distribution which depends
mainly on the statistic and the parameter function of the corresponding exponential families.
Considering a minimal parameterization of these families, our conditions are based on the ana-
lytical properties of the statistic and the v-affine independence of its components as well as on
the form of the Jacobian matrix of the parameter function and the affine independence of its
corresponding components. Additionally, we introduce Proposition 3.11 as an elementary tool
to check one of the required conditions from [DCG99]. The advantage of Proposition 3.11 is,
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that it allows us to bound rather complicated suprema required in [DCGY99] by utilizing certain
suprema, of scalar products of the parameter function and the statistic. As a consequence we
need not to analyze the geometric structure of the densities {f : 7 € I'} for the establishment
of the bound of the aforementioned suprema, which makes it more widely applicable. We apply
Proposition 3.11 to all examples of exponential families considered in our work, see section 3.2.
In our main Theorem 3.13 we collect all sufficient conditions on the statistic and the parameter
function, which ensure the existence of an asymptotic distribution according to [DCG99]. It
will become apparent that the structure of the underlying parameter space I' is of considerable
importance. To be more precise, the parameter space may depend on the true component pa-
rameters. It seems to exist a connection between this dependency and the canonical parameter
space Z,, since it occurs in all of our examples with Z, # IR*, see section 3.2.

Finally, we prove with the help of Theorem 3.13 the applicability of the method, presented
in [DCGY9], for various examples (see section 3.2). Keribin (2000) has already shown that it
works for mixtures of Poisson distributions, for multivariate Gaussian mixtures with unknown
mean and known covariance and with known mean and unknown covariance matrix, respectively,
where in both cases the covariance matrix is assumed to be a multiple of the identity matrix.
Thanks to Theorem 3.13 we are able to generalize her results on the Gaussian mixtures to
arbitrary covariance matrices in the first case and to covariance matrices of the form ¥ =
diag((o1)?, ..., (0r)?) in the second case.

e [s it possible to generalize the sufficient conditions for the existence of an asymptotic
distribution of the LRT statistic introduced in [DCG99]?

[DCGY9] assume two conditions, (P0) and (P1), to ensure the existence of the limiting distri-
bution of the LRT statistic. On p. 1187 they state “assumption (P0) is probably not optimal.
It should be possible to prove the result using only derivatives up to order 3.” In our work we
modify property (P1), only, since the densities of an exponential family have at least as many
derivatives as the parameter function of the exponential family, which is infinitely often differ-
entiable in all our examples. Our first modification is a generalization of (P1) for testing @ = ¢
populations against ¢ + 1 populations with parameter space I' C IR*. Our second modification
of (P1) applies to the test g € G; against g € G2 ar\G1, where Ga js is a two population mixture
model with restricted parameter space I' ¢ T' x I', T' ¢ IR?. In section 2.2 we show that the
asymptotic theory from [DCGY99] with respect to our modifications still holds. Finally, in the
case of testing homogeneity against a two population mixture, we generalize Corollary 3.7 from
[DCGYI9] from a one-dimensional parameter space to a k-dimensional space (see section 2.2.4).
In this specific case our first modification imply (P1). The resulting limiting process has an
index set T'\{7%!} corresponding to (1.4) instead of an index set of functions as given in (1.3),
which, obviously, simplifies the calculation of the quantiles of the limiting distribution.

e Which mixture models fulfill the modified sufficient conditions for the existence of an
asymptotic distribution?

In chapter 3 we investigate the applicability of the theory from [DCG99] with respect to our mod-
ifications for exponential families. Again we derive sufficient conditions for the existence of an
asymptotic distribution which depend on the statistic and the parameter function. Theorem 3.13
addresses various combinations of properties of the statistic and the parameter function, which
imply the sufficient conditions suggested in [DCG99] as well as our modifications. Best to our



knowledge, we are the first to give sufficient conditions for the existence of a limiting distribution
for testing homogeneity against a mixture of bivariate Gaussian distributions with known mean
and arbitrary unknown covariance matrix, a situation where condition (P1) from [DCG99] is
not satisfied (see Example 3.19). In Example 3.18 we show that our second modification holds
for testing homogeneity against a mixture of two populations of univariate normal distributions
with unknown mean and unknown variance, while condition (P1) from [DCG99] is not fulfilled.
Our results corroborate Garel’s conjecture that an asymptotic distribution of the LRT statistic
exists for this test, see Garel (2001). The verification of his conjecture with the help of the
methods of [DCGY9] can be carried out, only, if one restricts the parameter space to the two
population mixture model.

e How to calculate the asymptotic distribution of the log-LRT statistic?

In order to answer this question, we calculate in chapter 4 the asymptotic distribution of the
log-LRT statistic for testing homogeneity against a two population mixture of univariate normal
distributions. The corresponding limiting process can be simulated, since it is a centered Gaus-
sian process, with the aid of its finite-dimensional marginal distributions. In this context we
introduce a modified spectral factorization on the resulting covariance matrix, whose outcome
is a product of surprisingly low dimensional matrices. This low dimensionality gives rise to
the assumption that the limiting distribution is close to a low dimensional Gaussian one. As
a consequence we observe considerably shorter computation times compared with that of the
exact quantiles. A power study, based on both kinds of quantiles, demonstrates that they pro-
duce nearly the same power, even for a small sample size of n = 1000, although the asymptotic
quantiles are larger than the exact ones.



2. Asymptotic Theory of the Likelihood Ratio
Test (LRT) in Finite Mixtures

In the introduction we already mentioned that we are interested in testing for the number of
components in finite mixtures which lead to tests of hypothesis. More precisely, we investigate
the LRT statistic for testing

Hy:g € Gg against Hy: g € Go\Gg , Q <p,

for a given true density ¢° € Gg belonging to the null hypothesis. Thereby, we use the def-
initions of finite mixtures as given in the introduction. Our work is based on the modified and
revised article [DCGY99] for its part refers to the earlier article [DCGY97] in some passages. Any
modification we make to some assumptions of [DCG99] will be marked correspondingly. The
main purpose of this chapter is to verify that the concept from [DCG99] remains unchanged
under slight generalizations of some of the sufficient conditions for deriving an asymptotic dis-
tribution.

Let us start with a first modification of some assumptions from [DCGY99] with respect to the
parameter space and underlying true parameters. Its meaning will be given below.

(A1) I' C IR¥ is compact, v%1,..., 499 € T are distinct accumulation points of T,
q

w0 €7, N (0,1)7 and ¢° has a representation lZ:l 7D fryout.
Assumption (A1) implies that the true order of ¢° is equal to g. The requirements on the true

component parameters to be accumulation points of I' and on the true mixing weights to be
strictly positive are not required by [DCG99]. We will show in Example 2.23 that Lemma 5.1
in [DCGY9] may not hold without assuming that the true mixing weights are strictly positive.
This assumption is an essential modification since Lemma 5.1 plays a decisive role in deriving
a limiting distribution. Although this restriction on the true mixing weights will not change
the central ideas of the asymptotic theory of [DCGY9], it can very well lead to another testing
problem, namely to the test of ”() populations against p populations” for ¢ < @ < p. In
other words, if ¢° € Gq is an arbitrary true density with less than ¢ mixture components then
the method in [DCGY9] for deriving an asymptotic distribution does not work for testing “g
populations against p populations”. Thus all mixing weights have to be strictly positive. As
a consequence, we distinguish between the number ) of mixing components under the null
hypothesis and the true order ¢ < @ of the true mixture ¢°.

The compactness assumption on I' is essential, since Hartigan (1985) proves that the log-LRT
statistic may diverge to infinity if the component parameter space I' is unbounded.



As previously mentioned, the mixture model G, of all p population mixtures of v-densities of
F = {fy : v € T} is not identifiable for the parameters @ = (my,...,m,) and ~1,...,~vP.
[DCGYY9] develop their theory under the assumption that G, is p-weakly identifiable in the fol-
lowing sense:

p P p

p
(ID) > affyer = > Mfps v—ae & > Tlyes = Y wllpa.
=1 =1 =1 =1

In other words G, is p-weakly identifiable if the parameter is the discrete mixing probability
distribution on I'.

Notice that the p-weakly identifiability does not lead to unique representations of mixtures. For
example, g € G, with representation gr 41 . ,») also has the representation gr  (ye .  yom)

P

for any permutation o of the index set {1,...,p} and g = fy € G, is equal to ) m f, for any
=1

m™ € Tp.

The main meaning of (ID) is that no density f, € F can be v-a.e. represented as a positive

weighted sum of densities of F with component parameters distinct from «. More precisely, one

has for any | € {2,...,p}

!
me,y,- ¢ F v-ae.

i=1

for any w € 71, N (0,1)! and for any fya,..., fy € F withy1,..., 4 € T being distinct.

Remark 2.1 G, is p-weakly identifiable iff for any set of distinct points ~L o4t el 1 <p,
the corresponding densities fy1,..., fyr € F are v-a.e. linearly independent over the field of real
numbers.

Remark 2.1 is an implication of a theorem by Yakowitz and Spragins (1968) [YS68], p. 210, which
says that “a necessary and sufficient condition that the class of all finite mixtures of the family F
(of cumulative distribution functions) be identifiable is that F is a linearly independent set over
the field of real numbers.” Since the equation on the left hand side of (ID) holds v-a.e. we can
also use the theorem from [YS68] for our family F of densities. [YS68] also prove identifiability
for some specific distribution families which generate identifiable mixtures. For instance, they
show that finite arbitrary m-dimensional Gaussian mixtures are identifiable. Consequently, p
population Gaussian mixtures are p-weakly identifiable.

Under (ID) (and (A1)) the true density g° still has several representations. [DCG99], p. 1180,
reparameterize G, with the aid of two parameters. One of the “new” parameters, essentially a
positive real distance to (7%, %, ... 4%9), is chosen in such a way that ¢° is identifiable at
that point characterizing the true density even if the other "new” parameter is not identifiable at
that point. Thus the first parameter is the only one that is identifiable under the null hypothesis.

One fundamental assumption by [DCG99] for their theory is that there exists a ”locally conic
parameterization” of G, through two parameters 6 € [0, M| and 8 € B with

gp = {9(6,,3) : (9,,3) € T}7 T C [OaM] X Ba (21)
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where M > 0 and B ¢ RP(k+1),
According to [DCG99], p. 1181, we give the following

Definition 2.2 (locally conic model)
Let M > 0, B ¢ RP*+1) be a Borel measurable and bounded set and T C [0, M] x B be endowed
with the product topology of IR and B. Let T be the (compact) closure of T

Gp given in (2.1) is called a locally conic model if
(LC1) gpp=9" & 60=0 and

(LC2) For all B € B either 0g = sup {t: [0,t] x {B} C 7_'} > 0 or there exists some
¢ > 0 such that [0,¢] x {B}NT = 0.

(LC1) implies that g(y gy is identifiable for 6 at § = 0 while it is not identifiable for 8 at 6 = 0
sinc? 9(0,8) = g¢° for all B € B. Let (6n,Bn),c v be any sequence in 7 with nlggo 0, = 0 and
let B = B,0 for some n® € IN. If 05 > 0 then (LC2) says that the corresponding sequence of

mixtures (g(en B (0n,8) € ’7_')n ¢y is defined in a right neighbourhood of § = 0. Hence, (under

further suitable conditions) asymptotic expansions of g(g ) with respect to 6 are possible in
[0,68) # 0 while using the right derivatives at § = 0.

Notice that we require measurability in the sense of Borel and boundedness of B ¢ RP(k+1)
for G, being a locally conic model instead of compactness as [DCG99] do. The reason for this
will become clear by the definition of B given in Proposition 2.10. In view of section 2.2 it is
sufficient to ensure that B is Borel measurable and compact.

2.1. Locally Conic Parameterization of the p Populations Mixture
Model

In this section we introduce a reparameterization of G, according to [DCG99], p. 1183-1184.
We will define the new parameters in an explicit way while [DCG99] give an implicit definition
of them. Though the two representations are equivalent, we think that an explicit presentation
is easier to handle when calculating the asymptotic distribution. Although [DCG99], p. 1184,
claim that their parameterization is locally conic by construction, we will show this with the aid
of our modification (A1) and another modification (A2), namely that the parameter space I' is
convex in a specific way.

The reparameterization is directly connected to the index set of a Gaussian process, which forms
the fundamental expression of the asymptotic distribution of a corresponding LRT statistic. In
the introduction, p. 4, we mentioned that this index set is given by the directional score functions
for # = 0 under an alternative parameterization of G,. In subsection 2.2.1 we will define this
kind of functional class and specify its properties.

Firstly, we introduce the following notations for partial derivatives:
Oy, .., J denotes the hth partial derivative of f, with respect to 7;, ...7;, and

8%.1 iy f~|y=~o+ denotes the hth partial derivative of f, with respect to v;, ...,
at the point .



2.1. Locally Conic Parameterization of the p Populations Mixture Model 11

The first central point in [DCGY9] is to represent each density of G, as a perturbation of the
true density

LS

Z 7Tlo f7o,1
=1

according to (Al). The reparameterization results from perturbing the true mixing weights as
well as the true mixing component parameters and adding a perturbation as (p — ¢)-mixture.
This leads to

g(G,B ZA Hf")“ + Z (Trl +pl0)fayol+5lg

=1
for suitable § > 0 and 8 = (A1, .-+, Apgr ¥5s -+, YP~ 9, 8L, ..., 89, p1, ..., pg)" € RPEHD) with

X\>0 ~v*elCcRF fori=1,....p—g,

Sl eR: peR forl=1,....q (2.2)
and
pP—q q
o= -dm oz 0 (2.3)
i=1 =1

Clearly, one has to ensure that the mixing weights 7T?-|— plé are nonnegative and that 70’l+5l9~ el
for all I = 1,...,q. Formula (2.3) assures that the sum of mixing weights is equal to 1 in
the above representation of 96.,8)" By construction the parameter 6 can be interpreted as a
distance to the characteristic parameters (70,91, ... ~0:9) of the true density and 3 represents
a corresponding direction.

The second central point in [DCGY99] is the assumption that
6 =
D - {ﬂﬁ£@ﬁ:ﬂes} (2.4)

is a so-called “Donsker class” of functions (see Definition 2.12) and the corresponding closure D
is a subset of the unit sphere in the Hilbert space Lo (g°). This normalization is equivalent to the
directional Fisher information being uniformly equal to 1. For this reason [DCGY99] introduce a
normalizing factor by N(8) = ”(aég(é,ﬁ)|é:0)/90||Lz(gOV)' Simple computations result in

(2.5)

q k
Z Z lamf'ﬂ'y ot +Z>‘ Ty +Z lf'gr“
=1 =1

L2(g%)

since it holds 89f70,+510|0 0= Z 5.0 i foyly=you.

In order to avoid the cases N(8) = 0 and N(B) = oo (temporary) restrictions on the parameter
space of B and on the component densities as well as on their partial derivatives are introduced:
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e Restrictions on the component densities and their derivatives:
(P1 t) For any set of distinct points y1,...,4P~9 € T\{v%',...,4%9} C IR* the functions

f'yi f,yo,L 871 f'7 |7:70,l 8% f’Y ‘7:70,1
g—oa go ) go IR go

JA=1,...,9,1=1,....p—¢q

are linearly independent in Ly (gv).

¢ Restriction on the parameter space of 3:
Let (A1y---sAp—q,6%,...,8%, p1,...,pg)" be defined on the unit sphere of RPT i.e.

DO ()Pl = L (2.6)
i=1 =1 =1

We define the (temporary) parameter space for

:B = (Ala"'7>\p*q7717"'77p_q751a"'76q7p1a"'apq)l
by

B = {ﬂ e RP®HY . g fulfills (2.2), (2.3), (2.6) and

Yl PTee D\ . ,'70"’}}- (2.7)

If (A1) is satisfied and v1,..., 4P~ € T\{y%,..., %9} are distinct points then the p-weakly

identifiability assumption (ID) is a necessary and sufficient condition for ig"oi, L’g%—", l=1,...,q,

i=1,...,p — q being linearly independent in Ly(¢°v).

It follows directly from (P1 t) that N(B) is finite for all 8 € B since linear combinations of
functions in Ly(g°v) also belong to Ly(g’v). Furthermore, the linear independence in Lo(g%v)
given by (P1 t) implies N(8) = 0 & (A,---, A\p—q,0%,...,8%, p1,...,p5) = 0 since m > 0,
l=1,...,q, according to (A1). By construction of B (i.e. thanks to (2.6)) we obtain

Lemma 2.3 Let assumption (A1) and property (P1 t) be satisfied. Then one has
0<N(@B)<oo forall BeB.

In Proposition 2.10 we will give a final definition of B, B C B, ensuring that Gp in (2.1) is a
locally conic model.

In view of subsection 2.2.2 it is of particular importance how fast N(83,) converges to 0 for a
corresponding sequence (By)nemw- A “suitable” convergence speed of N () with limiting value
0 ensures that the remaining terms of an expansion of the likelihood function will converge
uniformly in probability to 0. For this purpose, the temporary property (P1 t) will later be
restricted appropriately.

Remark 2.4 Let (A1) and property (P1 t) be satisfied. Let (Bn)new be a sequence in B and
J() = {z €e{l,...,p—q}: fyin "i’ff,,o,z}, l=1,...,q,

J = {le{l,...,q}: J(l);é(i)}.
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Then we have

. . . ln _
nli)rgo N(Bn) =0 < nlgiolo5 0forallle{l,...,q}, (2.8)
1i_>m Ain=0forallie{l,...,p—g}\(JQ)U...UJ(qg)), (2.9
n—oo
li_)m pin=0forallle{l,...,q}\J and (2.10)
Tim. ( 2‘; e n) = lim pi, forall [ € J. (2.11)
ueJ

Proof of Remark 2.4:

(P1t) and (Al),ie. m; >0forl=1,...,q, lead directly to (2.8). Correspondingly, (P1 t) leads
0 (2.10) and (2.11). According to (2.2) we have A, >0 for allu € {1,...,p—¢}\(J(1)U...U
J(g)) which leads to (2.9) due to (P1 t). O

Under the conditions (A1) and (P1 t) we define a normalized reparameterization of G, by

0
Z)\ ,B f’Y +Z (ﬂ-l +plN(‘B))fﬁyo,L+5lﬁ (212)

on a suitable parameter space 7 C [0, M] x B such that (2.1), (LC1) and (LC2) hold.
(Simple computations show that (2.12) really leads to || (ng(g,ﬂ)|9:0)/g0||L2(goy) =1.)

To describe g € G, (which is not identifiable) by (2.12), we need an assignment to associate the
“old” parameters of g with those of ¢°, i.e. ¥%!,...,4%9 and n},...,n{. According to [DCG99]
we define for any permutation o of the index set {1,...,p} the parameters both 6, and

— 1,0 —q.,0 §l,o0 o !
ﬁo' - (Al,Ua"',Ap—q,Ua’y ’ 7"'a7p o ,6’ ___’611, 7p1,0'7""pq,0')

in such a way that g, g,) = g holds. This assignment is not effected by the order of the
succession of the “old” parameters .

Lemma 2.5 Let assumption (A1) and property (P1t) be satisfied. Let G, be the mizture model
of all p population miztures of v-densities F = {f : v € '}, fy continuous on I'. Let g €
Gp\{g°} have a representation g = G \(y1,...ye)- FOT any permutation o of the index set {1,...,p}
we define

1

P—q q q L
R(mg,y"M,...,47®) = (Z(?Ta(i))2 + Y (To(pgiy = )2+ D ly7 P — '70”||2) :

i=1 =1 =1
(2.13)
Then R(wg,y" M, ... 47®)) > 0 holds. Further, we define By by
Vi=1,...,p—q: ~ = ~°0), (2.14)
Vi=1,....p—q: N, = (R(ﬂ'a,'y"(l), ... ,'y”(p))>_17ra(l), (2.15)

Vi=1,...,q: & = (R(ﬂ'a,'y"’(l), e ,'y"(p))>_1 (7‘7(”_‘1‘”) - 'yo’l>, (2.16)

Vi=1,...,q: p = (R(wa,v"(l),---,7”(”)))71(%@—%0—W?) (2.17)
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and

0, = R(me,v"M,...,77®))N(B,). (2.18)

Then the following statements hold: By € B,
q p—q
1) 1) zf —~0,L f o (4)
D) (et o) Zubene S B
g = g
q

Z( To(p—q+1) 0) f;g,l

=1

. (2.19)
L2(g%)

< p+2qsupll*1||2 (2:20)

0,
N(Bs)
and 96, .80) = 9-

If one compares our explicit representation of (6,,84) for g # ¢° with the implicit one from
[DCGIY] (see here (2.22)-(2.24) as well as [DCGY99], p. 1184) then it is obvious that both
representations are equivalent. The reparameterization in [DCGY99] is implicit because in defining
the components of B, they use N(8,) already. The advantage of our explicit description is that
the components of B, do not depend on the normalizing factor N(B,). In other words, the
components of 8, depend only on the component parameters and on the mixing weights but
not on the corresponding component density itself.

Notice that we reparameterize G, only for g # ¢° while [DCG99] do not mention this restriction.
However, in the special case of g = ¢g° the components of B (especially (2.15)-(2.17)) are not
well-defined if (LC1) holds. In the next section we will additionally assume that f, possesses
partial derivative up to order 5.

Proof of Lemma 2.5:

R(ﬂaa'ya(l): s ’,Ya(p)) >0:

Assume that R(mwe, 7™M, ..., 47®)) = 0 then it follows Tos) = 0 for i = 1,...,p — ¢q and
To(p—qtl) = w?, ~o(P—atl) — 40 for | = 1,...,q. This is in contradiction to the assumption
9#9"

Bo € B:

(2.2) is a consequence of R(mwy, 77, ..., 7v7®) > 0 and the definitions (2.15)-(2.17). From
(2.15), (2.17) and s € T, it follows (2.3). Inserting (2.15), (2.16) and (2.17) in the left hand
side of (2.6) results in

P—q q q
2.13
R(ﬂ-tra 70(1)1 Tt U(p) (Z 71'0'(1 Z To(p—q+1) _W?)2+Z ||,.70'(p—q—+-l) _70’l||2) ( = : 1.

i=1 =1 =1
Thus (2.6) is satisfied.

Inserting the definitions of the components of B, (2.14)-(2.17) in the right hand side of the
definition (2.5) of N(B4), we obtain that equation (2.5) is equivalent to

q
N(By) = R(ﬂ'a,")’a(l)a--- a(P) —1 27”02< o(p—q+l) ’)’?l) %’f’Yg|‘g_’Y’ +
f»,«r() d 0\ frou
s + To(p—qgil) — T .(2.21)
Z a( P ;( o(p—q-+l) l) g0 La(g)
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Using the fact that R(mw,,y"W),... ,'y"(”))_1 = N(Bs)/0, we obtain that (2.21) is equivalent
to (2.19).

Formula (2.20) is a direct consequence of 6,/N(B4) = R(7e,vM), ..., 47(®)) and (2.13).
Inserting (05, By) in formula (2.12) results in g, g,) = g- O

The following example shows that the above parameterization is not locally conic yet.

Example 2.6 Let (A1), (ID) and (P1 t) be satisfied and let the true mizing density be g° =
il + 3 fy02 for (v%1,4%2) = (0,3). Let # = (0,%,7) and (v},7%7*) = (1,35,0) then
Ir (v 23) = Ofyr + %f»yz + 1fys = g°. Let the permutation o of the indez set {1,2,3} be
the identity.

Using the aspects of Lemma 2.5 we obtain

R(ﬂ'tra ’71705 72’0-’ ’73’0) (223) 1 and 00 (Zés) N(IBU)

with ,B:, = A1,05 717,659,629 p1 5, p25) = (0, 1, %,—%, %,—%)I due to (2.14)-(2.17). Clearly,
Bo € B (see (2.7)). Remark 2.4 leads to N(Bo) > 0. Hence, we have 0, > 0 although g, g,) =
g°. Thus condition (LC1) of a locally conic parameterization is not satisfied.

The problem in Example 2.6 is that we choose a disadvantageous permutation. More precisely,
we associate the component parameter 72 with v%! and 4® with 4%? which have big distances,
instead of associating 72 with %2 and «® with 4! which have a small distances. There are sev-
eral possibilities of choosing a promising permutation. A natural approach is given in [DCG99].
They obtain a permutation ¢ by associating step by step the nearest points 4%, [ =1,...,p, of
a given mixture g with the true parameters v%1,...,~%4.

Algorithm 2.7 Choosing a permutation o of {1,...,p}:

For any mizture g € G, we consider only those representations with truly involved component
densities, i.e. which have a strictly positive mizing weight and appear only once in the weighted
sum of component densities. Without loss of generality let {1,...,a}, a < p, be the corresponding

index set with respect to the strictly positive mizing weights of g. Moreover, let {i1,...,i.} be
a permutation of the index set {1,...,a} as well as {l1,...,l3} be a permutation of {1,...,q},
such that
i1 _ ~0,l1 — : i _ A0,
¥ =™ i ly® =A%,
i€{1,...,a}
i2 _ ~0,l2 — min i _ A0,
[v*2 =22 epmin =t

i€{l,....,a}\{i1}

s _ ~0p — : i _ A0, b= :
ly*e =~ e in oyt =2, b= min{a,q}
$€41, @\ {i1 s vip_1}

and
a a
Z |8 — 4% < Z 7% — A%\ for any permutation & of {1,...,a}
Jj=1 7j=1

hold. Consequently, one has [|[v** — 04| < [l —4%82|| <. < ||y — 4O
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We define the permutation o of the indez set {1,...,p} by
olp—q+1l;) = 4 forj=1,...,b

and complete the permutation o in some ordered way. We call o(g) a permutation with respect
to g.

Notice that o(g) is not necessarily unique, but it will be seen in the proof of Proposition 2.10
that it leads to the identifiability of 960 (0)Bo(s)) in 0,4 = 0 which is equivalent to (LC1).
In the same manner the parameter 6, can be interpreted as distance to the characteristic
parameter (w0, %1 ... %) with Osg) = 0 iff g = g°. But f5(g) is not a metric distance
since Algorithm 2.7 considers the distances of the component parameters only and not of the
component densities of g.

In view of the definition of the “new” parameter space 7 (see Proposition 2.10) we introduce
the following assumption which is not required in [DCG99]:

g+1

(AZ) Vvyel: Sq’y—{tq+17+ztl701 Ztl—landtl>0forl—1 q—l—l}CF.
=1 =1

Thus S, ~ is the convex hull of {,y%1,...,7v%9}. The special case of ;11 = 0 leads to

Remark 2.8 Let (A2) be satisfied. Then we obtain
q q
S = {tho’l:Ztl =1and t; >0 for |l = 1,...,q} crl,
=1 =1

i.e. the conver hull of {v%,...,v%9} is also a subset of T under (A2).

The conditions of the following lemma are a sufficient condition for (LC2) of Definition 2.2 to
hold.

Lemma 2.9 Let (Al), (A2) and (P1 t) be satisfied. Let G, be the mizture model of all p
population miztures of v-densities F = {fy : v € '}, fy continuous on I'. Furthermore, let
900y Bote)) = 9 € Go\{g°} be defined as in Lemma 2.5 with permutation o(g) of {1,...,p}
gwen by Algorithm 2.7. Then 9(0.80(9) € Gp for all 0 € [0,90(9)].

Proof of Lemma 2.9: According to formula (2.12) one has for (4, 8,) € [0,6,] x B

0
9(0.85(g)) Z AZ olg (g )f’y wo Z <7Tl o 0 N (,Ba(g) ) ) f70,l+6l,a(g) m'

=1

It is sufficient to verify the following statements for all § € [0, 0,(,)]:

; 9 0 9 0 o\ .
i) (>‘1 a(9) N(ﬁ,(g)) ""kp—q,v(g)MT@))’Wl"‘pl,a(g)N(Tm)"'"7Tq+pq,0(g)N(T(g))) €Ty
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d(y)
N(Bo(g))

For p s € [0,1] one has 7T? + pl,a(g)m%(g)) € [wl ,7rl + Plo(g) N

(2.17),(2.18) [0

i ﬂwp atp)] C (

)]
For  pj () €[—1,0) one has w?—l—pl,g( VN (ﬁ ) € |:7Tl + PLo(q) N(B (g)), l)
FIE (i) € [0,1).

It follows from condition (2.2) that \; ”(9)1‘7(7()) >0foralli=1,...,p— g. Moreover,

Z ’\z () NB_ ) N(.Ba'(g)) + Z (7rl + o (9 NBo(q)) N(Ba(g) ) Z 7rl =1

)’70l+6l"(9) elforl=1,...,q

(ﬂg (@)
There exists some ¢; € [0, 1] such that 0 = #,0,(,). From (A2) follows

t,0 0

0, 1,0(g) ol9)  _ (q _ 0, 0,1 Lo(g)__o(9)

Y+ 6 =1 -t)¥" + (¥ + 4 el. O
N(Bos(g)) ( o(g)) )

Proposition 2.10 Let (Al), (A2), (ID) and (P1t) be satisfied. Let G, be the mizture model of
all p population miztures of v-densities F = {f : v € L'}, f, continuous on T'. For g € G, let
the permutation o(g) be given by Algorithm 2.7. We define

B = {ﬁa(g) 1g € gp\{go}} and
T = {(‘9’:80'(9)) 10 < O5(g),9 € gp\{go}}-

Then there ezists some M > 0 such that T C [0, M] x B and {g(gﬂ 0,B8) € T} is a locally

conic model of Gp.

Notice that B may not be compact which leads us to the boundedness assumption of B in
Definition 2.2. In the definition of B and T, respectively, we consider only permutations o(g)
for g € G,\{¢"} instead of g € G, as [DCGYY] do, p. 1184. As mentioned below Lemma 2.5,
this restriction ensures that all 8 € B are well defined. Furthermore, it follows from the proof
of Lemma 2.5 that B C B.

In the proof Proposition 2.10 will be seen that for any B8 € B one has g > 0, i.e. the first
condition of (LC2) holds for any 8 € B and we do need the second condition of (LC2). The
reason for this is assumption (A2) which is not required in [DCGY9]. As afore mentioned, p. 4,
[DCGYI9] prove that the limiting distribution of the LRT statistic is essentially a function of the
supremum of a Gaussian process on a class of functions. Additionally, [DCG99] say that these
functions are indexed by the subset of B which is “the intersection of all directions approaching
0 in 77 (see [DCGYY9], p. 1184-1185). Thus they use directions fulfilling the first condition
of (LC2) for defining the asymptotic distribution only. Our minor modification (A2) of T has
considerable advantages when calculating the asymptotic distribution. Thanks to (A2) the I in
the parameter set B is explicit given while it may be implicitly given in [DCG99].

Proof of Proposition 2.10:

Let M = sup 0,). According to the representation (2.19) of 0

) we obtain with the aid
9€Gp\{9°}

a(g
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of the Minkowski inequality

0y, —~0,
M < ¢ max max ”'7 — ~04 77’f7|7_70' + (p — ¢) max F
o 3 0 r | g°
seosd ~e g La(gOv) YEE NG Ly (o)
+ ¢ max f’ygyl )
1=1,...,q g L2(g01/)

since f. is continuous on I'. From the compactness assumption (A1) for ' and from property

B foylmy fyos .
(P1t), i.e. ”f"‘g‘g”"" , ];—’g, “;3' € La(g%), it follows that M < oo.

By construction we have

B = {ﬂ e R 0 B fulfills (2.2), (2.3), (2.6) and ||6’||% < Jv* =%,

foralli=1,...,p—qand foralll =1,...,q,
AL AP e T\{7%L,..., 499} being distinct},

with B = (A1, oy Apegs YLy oo, P79, 81, ...,8%, p1, ..., py)". Each condition (2.2), (2.3), (2.6)
describes a plain and unit sphere, respectively, which are of course measurable sets. For any i =
1,...,p—qandany [ = 1,...,q each function ||y¢ —~%| is a composition of a projection of B on
~%, a difference to fixed 4%, a sum of squares and a square root, which are continuous functions.
Hence {8 : ||y*—~%||} is a measurable set. According to Lemma 2.3 we have N(8,) > 0. N(B¢)
is a composition of linear combinations of fixed functions and f+:, i = 1,...,p — g, respectively,
with coefficients being components of (A1, ..., \p—q,8%,...,89, p1,..., pq), which are projections
of B, and finally applying the Lo(g°v)-norm. Thereby, is 4* is also a projection of 8 and Jri i
continuous on I' due to assumption. Thus N(8) is a continuous function in 8. Furthermore, 6
can also be described as function of 8 being a composition of continuous functions in B, which we
used before to describe N(B). Thus we obtain that {3 : ||| % < [t =~} is a measurable
set fori =1,...,p—qand any [ = 1,...,q. As the intersection of all these measurable sets is
non-empty, we obtain that B is a measurable set.

(LC1) Obviously, we have g(o g) z12) g° for all B € B.

Suppose that there exists some 8 € B and 6 > 0 such that g g) = g°. Then there also
exists some g € G, such that 8 = B, (g) and 6 < 6, for a corresponding permutation o (g)
given by Algorithm 2.7. Let ¢ € (0, 1] such that 6 = t6,(,) holds. According to Lemma 2.5
we obtain the following components of B4 (g) :

N(Bo(g))
Vi=1,....,p—q: X = T()g)ﬂa(g)(l), (2.22)
a(g
N
Vi=1,...,q: 7@ = w (7"'(9)(1’_‘1'”) — 70’l) and (2.23)
a(9)
N(Bo(g))
Vi=1,...,9: pog) = ?()‘Q) (Wg(g)(p_qH) - 71'?). (2.24)
a(g

If 9005 (5)Bota)) — ¢° then it follows by Algorithm 2.7 that 47@®P—a+l) — 401l for 311
I =1,...,q. Since only truly involved component densities are used by the algorithm,
we have To(gyp—qt1) = 7rlo foralll =1,...,q and 7,y =0 foralll =1,....,p—¢q.
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Hence, it follows 67(9) = 0 and Plog) = 0foralll =1,...,q as well as X ;) = 0 for
all l = 1,...,p — q. Thus property (2.6) of B does not hold, which is in contradiction to

IB = ,Ba(g) € B.
Let 9(0(p)Botg)) € gp\{go}, According to formula (2.12) 9(0,80()) has a representation
P—q q q
0 0
Xiola) o [t + 7r0—|—p,, ————— ) fou st 6 = 7r0f ol
; i (g)N(ﬂa(g)) v l;( 1A (g)N(,Bo-(g))) YO +64 @) gl — L 1]y

(2.25)
As v49(9) ¢ T\{x%1, ... 499}, i =1,...,p — q, (see (2.7)) we obtain Aio(g) = 0 for all
i=1,...,p — q due to assumption (ID). Furthermore, (ID) leads to
0
N(:Ba(g))

1. Case: 6@ =0 foralll=1,...,q.
Then it follows from (2.25) that p; ;) = 0 for alll = 1,..., ¢, which contradicts the
assumption B, (g) € B since (2.6) is not satisfied.

2. Case: There exist some 7,5 € {1,...,q}, i # j, such that 6%9(9) £ 0 and

{'70’l + §bo(9) = L_,,,q} = {,70,l = 1,...,q}. (2.26)

. , . 0
0. — ~0i §i0(9) . 2.97
8 ¥ Bota)) (2.27)
As gy € G,\{g°} we have according to (2.16) and (2.18
( a'(g)aﬂo(g)) p
. , Oy (14t —1)
o(g)(p—g+i) _ A0, _ Jz,a(g)U(g)— (2 28)
i v .
N(,Ba(g))
Using 0 = t0,(,) and (2.27) lead to
; ; ; Oy (1 —1) ) .
a(9)(p—g+i) _ A0 _ gio(g) o) "7 0 — 05
! ! N(Bo(g))
3 . ; Oo(g)(1 — 1)
o ~o@)(P—at+i) _ 405 — §ho(e) 2D 7 2.29
N(Bate) (2:29)
Additionally, one has
) ) 0 .
o(g)(p—a+i) _ 04 B Yol ysie(g)
i v =
| | N (Botg)) | |
01 Oyn(1—1) .
Q1] Mny,a(g)”
N(:Ba(g))

(229) H,yo’(g) (p—q+i) _ '70’j ||

which contradicts the property of o(g) given by Algorithm 2.7, i.e. it is in contradic-
tion to ||y @) @—a+i) _ 40| < ||4o(@)(P—a+i) _ 0

Hence, there does not exist some pair 8 € B and 6 > 0 such that g g) = q°.

(LC2) follows directly from the definition of 7 and Lemma 2.9. O
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2.2. Asymptotic Results

The asymptotic theory from [DCG99] is based on the properties (P0) and (P1) given below
which are related to a family F = {f, : v € I'} of probability densities (with respect to some
o-finite measure v). Roughly speaking, property (P0) a) implies that the parameter 6 can be
consistently estimated and properties (P0) b) and c¢) say that the densities, which are involved in
the likelihood function, possess partial derivatives up to the fifth order in a right neighbourhood
of 8 = 0. [DCGYY] use properties (P0) and (P1) to maximize an appropriate Taylor expansion of
the log-likelihood function to find an asymptotic distribution of the LRT statistic. The limiting
distribution is essentially given by a function of the supremum of a Gaussian process indexed
by a functional class D.

We give two different modifications (M1) and (M2) of (P1) only, though [DCG99], p. 1187,
mention that “assumption (P0) is probably not optimal. It should be possible to prove the result
using only derivatives up to order 3.” But with regard to applying their theory to exponential
families we are confronted with the problem that (P1) is not satisfied in “simple” cases such as
mixtures of univariate Gaussian families when both parameter, mean and variance, are unknown.
In contrast, it will be seen that in many cases it is possible to overcome difficulties with respect
to property (P0) via restrictions on the parameter space.

Actually, the first modification consists of (P1 t) and (M1) while the second modification consists
of (P1 t) and (M2). Both lead to an extension on the applicability of the theory from [DCG99]
since we permit certain linearly dependencies between the partial derivatives of the first and
second order, while the first order partial derivatives are assumed to be linearly independent in
L2(¢°v) due to (P1 t). The first modification by (P1 t) and (M1) leads under (P0) to a limiting
distribution of the LRT statistic for testing g € G, against g € G441\Gy with Q = g > 1, where
g = 1 means testing one population against two populations. This modification is based on
a k-dimensional parameter space. It assumes linear independence in Lo(g%v) of all true com-
ponent densities, its corresponding first partial derivatives and a subset of second order partial
derivatives to which, definitely, the diagonal entries of the appropriate Hesse matrices belong. In
Example 3.19 we show that this modification holds for testing homogeneity against a two pop-
ulation bivariate Gaussian mixture with known mean and arbitrary unknown covariance matrix
on an appropriate parameter space. For this kind of test problem property (P1) from [DCG99]
is not satisfied. Notice that (P1) is a specific case of (P1 t) plus (M1) for testing one population
against two populations. The second modification by (P1 t) and (M2) holds for testing one
against two populations provided there exists a suitable 2-dimensional parameter space depend-
ing on the distances between the true component parameter vector and the component vectors.
In Example 3.18 we show that it holds for testing homogeneity against two populations of uni-
variate normal distributions with both unknown mean and variance (while (P1) from [DCG99]
is not satisfied). Our results corroborate Garel’s conjecture that an asymptotic distribution of
the LRT statistic exists for this test, see Garel (2001). The verification of his conjecture with
the help of the methods from [DCG99] can be carried out, only, if one restricts the parameter
space to the two population mixture model.

The expressions for (M1) and (M2), respectively, have their origin in maintaining the concept
of [DCGY9| and are of a technical nature.

In Lemma 2.16 we identify the (compact) closure of the functional classes D with the aid of
the corresponding modifications. In Proposition 2.18 we claim that D under (P1 t) as well as
(M1) and (M2), respectively, are so-called “Donsker classes”. Moreover, we show in the proof of
Lemma 2.20 that our modifications of (P1) leave the main idea of proof from [DCG99] unaffected
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and that they are sufficient conditions for the existence of the corresponding asymptotic distri-
bution. Property (P1 t) assures that we could reprove the fundamental ideas of the theory from
[DCGYI9]. For instance, the basic Lemma (see Lemma A.2 here, as well as [DCG99], Lemma, 5.3)
for deriving a limiting distribution of the LRT statistic with the method from [DCG99] would
not hold. Finally, we show in Example 2.23 that Lemma 5.1 in [DCG99] does not hold if some
true mixing weight is 0 which is possible according to the assumptions in [DCG99]. For this
reason we introduced assumption (Al).

In view of later use we repeat assumptions (A1), (A2) and (ID) in order to show all assumptions,
properties and modifications collectively.

(A1) T C IR* is compact, v%1,...,4%9 € I are distinct accumulation points of T,
q

w0 € T, N (0,1)9 and ¢° has a representation ) 7} fyout.

I=1

q q+1
(A2) Vy €T : Sy = {tq+17+2tl70’l Y ti=1landt; >0 forl= 1,...,q-|—1} cT.

P

P p
(ID) Y wffyer = > T fps v—ae & Y Tflyas = Y aflyu.
=1 =1 =1 =1

Let us specify the properties given in [DCG99], p. 1185, as well as our modifications.

3

(P0) a) There exists a function h in Li(g°) such that for all v € T, |log(fy)| < h v-a.e.

holds.
b) f, possesses partial derivatives up to order 5 on I' which are the right and left partial
derivatives, respectively, on the boundary of I'. For all j < 5 and all 41,...,%; €

{1,...,k} one has

a’ﬁl st B'Yij f’Y"y:FyO,l

0 L3(gOV) 71217"'7Q'
g
c) For all j <5 and all ¢y,...,%; € {1,...,k} there exists a function m; and some € > 0
such that for alll =1,...,¢q
Ory - On
Sup || = M.
YET (7o) g

and Eyp, (mg‘l’___’ij) < oo hold.

(Ue(v%Y) = {7 € T : |7 =%} < €} is not empty since %! is an accumulation point
of I' according to (Al).)

(P1) For any integer p; and po such that p; + p2 < p — g, for any set of distinct points
At e T\{7v%1,...,v%9} withl € {1,...,p:} and any permutation o of {1,..., ¢} the func-
tions

Jrir Fyou Oy I "7=’1°" Oy fy |’7='7°"'
97 g0 g° ’ g°
i'e{l,....;p}, ' €{o(1),...,0()}, I=1,...,q, i, =1,...,k withi < j

are linearly independent in Ly(g°v). (For p; = 0 we define {1,...,p1} = 0 and correspond-
ingly we define {o(1),...,0(p2)} = 0 for p, = 0.)

bl
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For testing g € G, against g € G,11\Gy with Q = ¢ > 1, we have (p1,p2) € {(0,0),(0,1),(1,0)}
according to (P1). For the case of po = 0 property (P1) is equivalent to (P1 t) and we modify
only the case (p1,p2) = (0,1) by (M1) and (M2), respectively.

(P1 t) For any set of distinct points 41,...,4P~9 € I\{~4%1,...,4%9} C IR* the functions

f’Y" f’yorl 8’71 f7|7:70,l a’)’k f’7|7:70,1 i
) ) 0 ,...,70,121,...,q,Z:].,...,p—q
g g g g

are linearly independent in Ly(g%v).

(M1) For any h € {1,...,q} let Uy, C {(z’,j) e{l,...,k}?:i< j} be chosen in such a way that

H . f,-yo,L 8’77; f’)‘ |7:7o,1 a’n'm f’)‘ ‘7:70,;; a’)’il Vit f’y ‘.y:.yo,h .
h = 0 0 ’ 0 ’ 0 :
g g g g

l=1,...,q,i=1,...,k, (V,5) eUh}

is a set of linearly independent functions in Ly (g°v) of maximal cardinality. Forh =1,...,q
let US = {(z’,j) €{l,....k}2 i< g, (i,5) ¢ Uh} then

ai f —~0,h
HE = {—W ;L”‘"’ :(i,j)eUfi}

is a set of linearly independent functions in Ly(g%) and for any (u,v) € Uf there exists
exactly one 7 € {1,...,k} such that

Oruyo f7|7:70,h = b 67mf7|7:70,h for some ¢} # 0 (2.30)
with (min{u, i}, max{u,i}), (min{v,:}, max{v,i}) € Uy.

Additionally, we define for any h € {1,...,q} and (u,v) € U} the index sets Hj(u,v) =
{i € {1,...,k} : (2.30) is fulﬁlled}, Hy, = U(u,v)eUg Hp(u,v) and Hf = {1,...,k}\Hp.
(Then for any (u,v) € Uf the cardinality of Hp(u,v) is equal to 1.)

Thereby, the condition (min{u,:}, max{u,i}), (min{v,4}, max{v,:}) € U}, is of technical nature
and is used in the proof of Lemma 2.22 which is a fundamental working tool for statements
about the convergence behaviour of the LRT statistic under our modification (P1 t) and (M1).
Obviously, (P1 t) plus (M1) are equal to (P1) if Uf = 0 for any h € {1,..., ¢} holds.

As mentioned above (P1 t) and (M1) hold for testing homogeneity against a two population
bivariate Gaussian mixture with known mean and arbitrary unknown covariance matrix on an
appropriate parameter space, see Example 3.19. For this kind of test problem property (P1)
from [DCGY9] is not satisfied since for the corresponding densities f(4, ,,,) We have, for instance,

1 . .
01003 f(01,02,0) | (01,02,0) = (09,00,0) = magagf(mm,e)|(01,az,g)’:(0‘1’,03,0)’ which contradicts (P1).
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For the specific case of testing g € G1 = {fy : v € T}, I' C IR?, against g € Gy 1/ \G1 with
Gonr = {ﬂ'f,yl + (1 =m)f,: (v',7%)' e T, 7 € [0, 1]} and specific I' ¢ T' x T, we give the
following modified property

(M2) Let T' C IR? such that the restricted two component parameter set

0,1 0,1
= {73 €T xT: ot =% < [l = 4%, I =) < g = %1}
and the functions (parameterized on T')

f70,1 B’Yl f’)‘ ‘7:70,1 8’72 f’)‘ |7:7o,1 a’71’Y2 f’)‘ ‘7:70,1 and 872’72 f’)‘ ‘7:70,1

9° g° g° g° 9°
are linearly independent in Ly(¢°v). Furthermore, there exists a constant ¢ # 0 such that
c a’rzf‘f‘g:,yo,l _ 67171f‘7(|)7:.70,1 hOldS.
9 9

As aforementioned (P1 t) and (M2) hold for testing homogeneity against two populations
of univariate normal distributions with both parameters unknown, mean and variance, see
Example 3.18. In this example 42 = (u2,0?)" describes the component parameter with the
largest distance to the true parameter vector (u®!,6%1)" = (0,1) and T' depends on the dis-
tances |u? — p®!| < |0 — o%!|. For instance, if ¢ is the standardized normal density and
0 <e=|(ut,o) —(0,1)| then Figure 2.1 shows the parameter space of (u?,0?)’.

o_2

:uz/
0
Figure 2.1.: {(4?,0%)' € T': e < [|[(4?,0%) = (0,1)']], |p® — pu®'| < |o? — %[}

Notice that 0,0, f(u,0) = %d,f(u,g) is in contradiction to (P1).

Similar to Proposition 2.10 we have

Lemma 2.11 LetT C R? and Gopr = {7Tf,),1+(].—7'(')f72 :(yL,~2) e, me|o, 1]}, [ cI'xT,
be a mizture model of 2 population miztures of v-densities F = {f : v € '}, fy continuous on
T', based on the restricted parameter space

0,1 0,1
D= {(r7%) €D x Tyt =% < Jlv? =20, IE =90 < hg - 81}
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Let (A1), (A2), (ID) and (P1 t) be satisfied. For
Boys = {ﬂ = (\7,8,p) € RS : B fulfills (2.2), (2.3), (2.6), v € D\{*!} with
(YO + xg5,7) € T

let 90, ) Boiey) = 9 € Go,m\{g°} be defined as in Lemma 2.5 with permutation o(g) of {1,2}
given by Algorithm 2.7. We define

B = {,Ba'(g) ‘g€ g2,M\{go}} and
T = {(eaﬁo—(g)) 10 < Oy(g),9 € gz,M\{go}}-

Then there ezists some M > 0 such that T C [0, M] x B and {9(9,3) : (6,8) € T} is a locally

conic model of Go 1.

Due to the parameterization in Lemma 2.5 (which uses Algorithm 2.7) 8 = (\,v,4,p) € lgg,M

is equivalent to ||(y%! + 6%) — 4% < ||y — A%Y|. Property (49! + 6%,7)' €T of By

leads to |y, — 'y?’l| < |yg — 7§’1|, where {8 : |11 — 7?’1\ < |vy2 — ’yg’l|} is a measurable set. The
proof of Lemma 2.11 follows the same lines as the proof of Proposition 2.10 and uses Lemma 2.9
which clearly holds for By 3y C B.

We base our following work on the assumptions (A1), (A2) and (ID) as well as on the aforemen-
tioned definitions and propositions.

2.2.1. Donsker Classes

[DCGYI9] claim that under a locally conic parameterization and the regularity properties (PO0)
and (P1) it is possible to make a Taylor expansion of the log-likelihood function near the identi-
fiable point 8 = 0. Afterwards they maximize the corresponding expansion, firstly with respect
to the distance parameter # and then with respect to the non-identifiable parameter 8. The
resulting first term of the expansion maximized in 6 is a sum of (square-integrable) score func-
tions and can be interpreted as empirical process. It is necessary that the remaining terms of the
expansion converge uniformly to 0 (in probability) to obtain an asymptotic result. Correspond-
ingly, it is also necessary that the aforementioned empirical process has a uniform convergence
behaviour. The latter leads to so-called “Donsker classes” (see Definition 2.12). Roughly speak-
ing, a Donsker class is a set of square-integrable functions for which a corresponding empirical
process satisfies a uniform version of the central limit theorem and converges in distribution to
a centered Gaussian process (see e.g. van der Vaart and Wellner (1996), p. 81).

We begin this subsection with an outline of Donsker classes. After that we identify the (compact)
closure of the corresponding set D of score functions resulting from our modifications (M1) and
(M2), respectively. Finally, we verify that these classes of functions are Donsker classes (see
Proposition 2.18).

According to Liu and Shao (2003), p. 819, we give the following

Definition 2.12 (P-Donsker class)
Let (2, A, P) be a probability space and let D C Lo(P) be a family of A-measurable, real-valued
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square-integrable functions for P. Moreover, let the D-indezed empirical process (G?)fe’p be given
by

EHX) = %i(f(xi)—zvf) with Pf:/fdP,
=1

where X1, Xa,... are i.i.d. with law P and X = (X1,Xa,...)". Let (ff)fED be a centered
Gaussian process on (2, A, P) with covariance function

Covp(&4,,€s,) = P(fi — Pfi)(fo — Pf2) = Pfifo — PHiPfo

fOT flafZ eD.

D is called a P-Donsker class, if there exists a version (@;)fefp of @) rep such that in proba-
bility,

Sup‘@?—fﬂ — 0
feD

as n tends to infinity, and the Gaussian process (5}‘) fep has continuous paths with respect to the
‘l
pseudometric p,(-,+) on D given by p,(f1, f2) = (P(f1 —f2)2—(Pf1— Pf2)2) * for fi, f2 € D.

(In contrast to a metric a pseudometric p,(-,-) may vanish for different elements of a null set,

i.e. pp(f1,f2) =0 for some f1 # f2.)

For further details see also Dudley (1999), p. 91-94.

Whether or not a given class D of square-integrable functions is a Donsker class depends on its
size. One way to measure the size of D is given by Dudley (1999), p. 234,

Definition 2.13 (bracketing numbers, metric entropy with bracketing)

Let (92, A) be a measurable space and let L°(9, A) denote the set of all real-valued A-measurable
functions on Q. For f,g € L%(Q, A) the set [f,g] = {h € LO(Q,A) : f < h < g} will be called
a bracket. Given a probability space (2, A,P), 1 < q < oo, D C Ly(P) (the family of A-
measurable, real-valued q-integrable functions for P) with usual seminorm | - ||z, and € > 0, the
bracketing number N[(?(E,D,P) denotes the smallest integer m such that for some f1,..., fm
and gi,...,gm in Lq(P) with ||g; — fillc, <€ fori=1,...,m,

m

D c Ulfi,gil-

=1

In this context log N[(? (e, D, P) will be called a metric entropy with bracketing.

In other words, the bracketing number is the minimum number of e-brackets needed to cover D.

In the definition of bracketing numbers, the upper and lower bounds f; and g; of the brackets
are not required to belong to D, but are assumed to have finite norms. According to Dudley
(1999) (Theorem 7.2.1, p. 239) one has



26 Asymptotic Theory of the Likelihood Ratio Test (LRT) in Finite Mixture

Theorem 2.14 (M. Ossiander)
Let (2, A, P) be a probability space and let D C Lo(P) be such that

1

1
/(logN[@])(e,D,P))2d8 < oo.
0

Then D is a P-Donsker class.
One operation that preserves the Donsker property is for instance

Theorem 2.15 (van der Vaart and Wellner (1996), Theorem 2.10.1)
If D is Donsker and K C D, then K is Donsker.

. . ) _
In our work, the general form of the set of score functions is D = {%&'LO :BeB } For

testing @ populations against p populations under a true density ¢g° of true order ¢ < Q the
corresponding functional class has the form of
) : B EB} (2.31)

according to the representation (2.12) of g(y g) € Gp. The elements of D are given by functions
dg: X — IR, X C IR™.

L R R T M I e S TR N 27
= {—— T gLy ly=y®t | NI N, I

[DCGY9] prove that D is a Donsker class under the assumptions (P0) and (P1) (see p. 1195-
1196). (Notice, however, that in their corresponding Proposition 3.1 they do not assume (P1)
and write D instead of D.) Their concept is firstly the identification of D and secondly, the
application of the Theorem of Ossiander. They find the closure of D by letting p — g — p1
components y*™ of 3,, converge to some of the true components 4% for n — oo (see p. 1195).
Without giving any reasons they assume that p; < p — ¢ — 1 components do not converge to
some true component. This means that at least one component parameter v*" of 3,, converges
to some true parameter for n — oo. If all true mixing weights are strictly positive (as assumed
by (A1l)) and (P1 t) is assumed to be satisfied, this may lead to N(By,) = 0, see Remark 2.4.
But if some of the true mixing weights is 0, it may happen that no component parameter %"
of By converges to some v% for n — co. One way of dealing with this problem is to exclude
such cases in Algorithm 2.7. (It will be seen in Example 2.23 that our assumption of strictly

positive true mixing weights is necessary to obtain an asymptotic distribution with the method
from [DCGY9].)

We follow the concept from [DCG99] and identify the closures of the corresponding sets of score
functions by

Lemma 2.16 Let (A1), (A2) and (ID) be satisfied. Let D denote the (compact) closure of D.

a) Let Q = q, p = ¢+ 1 and let (P0), (P1t) and (M1) be satisfied. Then D is given by
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functions of the form

k

q
Z l +Z lf'r“ ZZ a%f'r"r o

8 f| 0,h 1 a f | —~0,h
h _h 20 JYIY=Y } : h\2 Y7y Y Y=Y
+ E \/ﬁ ( E a; Oé]]—+§ (Oé,) N M —

0 0
(3,5)€Up, g 1€ Hy g

+ Z Z (Chahah+1( ?)2) 8%%.f7|7:70.h) (2.32)

. g°
(u7v)€Uh ZEHh(’LL,U)

for some h€{l,...,q} and ¢! # 0, p1,ps € {0,1} such that p1 +ps < 1, gy > 0 and
2+ ;=0 (and cardznalzty of Hp(u,v) equal to one).
Furthermore D is a subset of the unit sphere in the Hilbert space Lo(g°v).

b) Let Q = ¢ =1, p =2 and let (PO), (P1t) and (M2) be satisfied. Let Gi = {fy :v €T},
I' C R?, and Gop = {7rf71 + (1 =7)fy : (Y492 € I,me [0,1]}, L cTxT, and

B = {Bo(g) : 9 € G2,m\{fr01}} from Lemma 2.11. Then D is given by functions of the
form

Z,Ulfi+ ~f’r°1 +Z>\ a%f'ﬂ’r ot

‘f7|7:7°’1 1 2 7272f7‘7:7°’1
+ — alagm— + = (0np)? 222 Y=y (2.33)

g

with p1,p2 € {0,1} such that p1 +p2 <1, >0 and Y312, py + p1 = 0.
Furthermore, D is a subset of the unit sphere in the Hilbert space Lo(g%v).

Please note, that in (2.32) as well as in (2.33) the corresponding normalizing factor is included
in the coefficients of the functions. Before we give the proof of Lemma 2.16 we introduce

Lemma 2.17 Let the functions hi,...,h, be linearly independent in Lo(g°v) and let z € IR".
Then there exist some c,c’ > 0 such that

dzll = > cllz] = 0, (2.34)

L2(g%)

where || - || denotes the Euclidean norm. For z # 0 the expressions in (2.34) are strictly positive.

Lemma 2.17 is often used as a basic tool for evaluating a Ls(¢°v)-norm with the aid of an
Euclidean norm.

Proof of Lemma 2.17:

1
i = (z'Az) > > 0 since the
La(g%)

T
> %
i=1
scalar product in the Hilbert space Lo(g°v) is positive definite. Consequently, the (symmetric)
matrix A is also positive definite and all its corresponding eigenvalues reordered by 7, =

A= (<hi’hj>L2(90‘/))z',j:1,...,r and z € IR" lead to
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M-.- < Nr = Nmaz are strictly positive. The assertion follows from the theorem by Rayleigh-
Reiz (see Horn and Johnson (1985), p. 176) which says that m12’z < 2/ Az < 7,2’z holds for all
z€c R O

As usual we introduce the Landau order symbols for asymptotic behaviour of functions by
o(f) = {g :IN - R, : 3¢>03ng € IN Vn > ng one has g(n) < cf(n)},

o(f) = {g:ﬂV—)R+ HIL%O%:O}'

Proof of Lemma 2.16:

a) Firstly, we search the set of all possible accumulation points of D in the Hilbert space
Ly(g°). According to (2.31)(which was derived by (A1), (A2), (ID), (P1t)) the functions
in D have the form

dy = —— Eq:w Ekjala%f”” L f” +Z for B € B. (2.35)
P N(B) ! g° lg o

=1 i=1 =1

Then dg reads as dg”mﬂdg“mﬂij(goy) with N(B) = [[dg"™"||L,(g00)- dg"™ is continuous in
B = (A,v1,6%,...,8% p1,...,pg)" on B since fy is continuous in =y, because it possesses
partial derivatives up to order 5 on I' according to (P0)b), and linear combinations of
continuous functions (due to (P0)) are also continuous. As the Ly(g°v)-norm is also a
continuous function, we have d : B — D with 8 — dg is a continuous function. We
investigate the sequences (dg, )nev With nli)nolo Brn = B € B\B for nli)nolo N(Byn) > 0 and
lim N(B,) = 0, respectively. In the first case we obtain lim dg, = dﬁ~ which has a
n—oo n—o0

form according to (2.35). In the second case we use Remark 2.4 to describe the possible
accumulation points of D in Ly(g°v) with the aid of the corresponding accumulation points

ﬂ (A17~15515"'55 apla "’pq) E‘8\‘8

i) Suppose that y1™— 4 € T\{y%1,...,4%4} for n — oc.
It follows from Remark 2.4 that \; = O o1 =0 and ' =0foralll = 1,...q. However,
this contradicts property (2.6) of B.

ii) Suppose that there exists some h € {1,...,q} such that v}"— % for n — occ.
Without loss of generality let the permutation o of the index set {1,...,q + 1} be
the identity. Then there exists some ng € IN such that for any n > ny we have
4™ — 4OR|| > ||y — 4%, 1 =1,...,q, due to Algorithm 2.7. Due to the as-
sumption y1:m— 0" it follows ||y1™ —~4%"||— 0 for n — co. Additionally, it follows
obm 5 0forl=1,...,¢g and n — oo, see (2.16). As a consequence we have 8¢ = 0
for I =1,...,q. Moreover, it follows from (2.10) that g = 0 for ! € {1,...¢}\{h}
and from (2.11) as well as from (2.6) that \; = —p, = —=. This implies that

Sl

1

5h = <ﬁ’7

1 b
0”1,0,...,0,0,...,0,——,0,...,0) € B\B.
—— \/ER/—/

h—1 q—h

As we would like to describe the possible accumulation points on D, we are interested
in the form of lim ch for some h € {1,...,q} using the fact that d : B — D is

n—oQ
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continuous (as mentioned above) and li_>m B = B". Similar to [DCGY9], p. 1195,
n—oo

we make a Taylor expansion of the numerator d'”“m of dgn up to the second order at

the point B". Since the denominator of dgy, is given by [|dZa™| 1, (40,) we make the

same expansion with the argument of the Ly(¢°v)-norm. Afterward we verify that
the resulting expression of dgr has bounded coefficients with respect to the linearly
independent functions given by (P1 t) and (M1).

For h =1,...,q we obtain

fryon a fryou
giém = (Al,n + ph,n) ;0 + Z Pln ;0
=1

1£h
i 1,n 70 h,n %f—r|7 0 0sln %f-r|'7 2 A
£3 (unn ) watatr) Dublgmen 535 e b
1 tn 0b\ [ 1m0\ Oy fyly=yom
o= 3O (T =) (9 = ) P o). (2.36)
2\/5 =1 j=1 g

Let |Up| denote the cardinality of Uy, (given by (M1)). Then dgr has r, = ¢+ gk +
k + |Up| terms with respect to the linearly Ls(g’v)-independent functions given by
{go, e go b}. According to (2.36) the corresponding sequences of coefficients

zh’n ff1 ..,f

1 e rh o} b are given by

)\1n+th pl,nalzla"'7Q7l7éha
Mali™ =" T, mE =1, LE R i =1,k
1 Ln 0,h : c I 0,h\/ 1,n 0,hy /o . .
2ﬁ(7i —"? i € H, ﬁ(% =)™ =), (i, §) € Uy for i <
and

1,1, :
ﬁ<§(% o e = e (" —73’h)) » 1€ Hy = U )evy Hn(usv)

and ¢! # 0.
Applying the same Taylor expansion on the argument of the denominator ||d”“m ||L2(go v)
leads to sequences of coefficients th’n/H Z zh’"% +o(lzy(go0)s 3 € {1,y n}, for
™ [ | g™ || Ly (g0v)- For 2™ = (22", ... th") we obtain
h, h, h P wn fi -1
lim |z;"| n ‘ - 1 h,m ( ,,H_Z) 1 1 )
A 12 Z o = A (0 o) o]
Lem.2.17 |z§“"|
lim -
=00 ¢ ||2"™|(1 + o(1))
)
< lim J
" e[ (2M2(1 + 0(1)
1

c
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for some ¢ > 0. The form of (2.35) and (2.36), respectively, and the continuity of the
coefficients lead to accumulation points y;, p;, A;; and %a?aé—l of the sequences of
coefficients such that (2.32) holds.

Furthermore, we have that any d € D is square-integrable since all functions in (2.32)

are square-integrable due to (P1 t) and (M1) and their corresponding coefficients are

bounded. D is a subset of the unit sphere in the Hilbert space Ly(g%) since any

d € D has a form of d”"m||d""m||;(gou) which implies ||d]|,(g0,) = 1.

b) According to (2.31) (which was derived by (A1), (A2), (ID), (P1t)) and ¢ =1, p =2 the
functions in D have the form

2
1 8,f|:o,1 fl fo,l

dg = —— OF Y=Y 4 N T 4 2 | for B € B. 2.37

? N(ﬁ)(; 9° Vg TPy (2:31)

Let dg"™ be the numerator of dg. The di"™ is continuous in B = (A\1,71, 6%, p1)! on Bsince
f~ is continuous in 7, because it possesses partial derivatives up to order 5 on I' which are
the right and the left partial derivatives, respectively, on the boundary of I' according to
(PO)b), and linear combinations of continuous functions (due to (P0)) are also continuous.
As the Ly(¢°v)-norm is also a continuous function, we have d : B — D with 8 +— dg is
a continuous function. As in the proof of a) we investigate the sequences (dg,, )nemw With
lim B, =B € B\B for lim N(8,) >0 and lim N(B,) = 0, respectively. Since the first
n—oo n—oQ n—oQ

case leads to a form as in (2.37) we study the second case. Remark 2.4 leads to a unique
limit point in B\B, namely 3 = (%,70’1,0, —%)'. For all sequences (v1'™),cv tending

to ~%! we have |'y%’n - 'y?’l| < |7;’n - 'yg’1| according to the construction of B based on
I". Such kind of sequences are are also considered in the proof of a) and thus we follow its
method. As above we make a Taylor expansion of the numerator dg.™ as well as of the

argument of the denominator ||dg%™|L,(40,) of dg,, up to the second order at the point .
While using property (M2) we obtain

[0 Oy fy|y=~01
dgim — ()\1,” + Pl,n) ‘;—0 + )\Ln (,711:71 _ ,y(l),l) + (5}% %

c 1,n 0,1 2 872]{7‘7:70,1
4 (1,n_ 0,1>+51,n+ ( no ))
( 1,n\ Ve Y2 2 —2 /2 "1 7 g0

1 /1, 0,1\ (.1, 0,1\ Oy17z fy|y=ryor
+$<’Y1n_’)’1 )(’YQn_’)’Q )%

1 1,n 0,1)2 87272f'7|’7='7°’1
+ =y’ —== = 4+ 0o(1 2.38

for some ¢ # 0, where A1 ,, + p1,, = 0 according to (2.2). The remainder of the proof is in
the same manner as with a). O

Notice that we obtain the statements of Lemma 2.16 by Taylor expansions in a point B while
[DCGY9], p. 1195, expand in the true component parameters v%1, ... ~04.

Proposition 2.18 Let (Al), (A2) and (ID) be satisfied.

a) Suppose that Q = q, p = q+ 1, (P0), (P1t) and (M1) hold. Then D is a Donsker class.
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b) Suppose thatq = 1,p = 2, (P0), (P1t) and (M2) hold. Let G p and B from Lemma 2.16 b).
Then D is a Donsker class.
The verification of Proposition 2.18 follows the concept by Keribin (2000), p. 60.
Proof of Proposition 2.18:

a) Let B be the index set of D, B* = (87,...,8%) € Band K = (¢ + 1)(k + 1) = dim(B).
Firstly, we show that for any £ > 0 there exists some 7 > 0 such that

Let (Bn)nemw be a sequence with lim 8, = 8*.
n—o0

2
inf dg — sup d
BeB* A Be g* B

<e withB = & [ﬂ;" — 5.6, +3| B (239)
La(g%) 1

3

1. Suppose that lim N(8,) > 0 holds.
n—r0o0

As shown in the proof of Lemma 2.16 a) d : B — D with 8 + dg is a continuous
function. If B* € B\B we also have ILm dg,, = dgs« (see the proof of Lemma 2.16
n—,oo

a)). Additionally, all functions in D are g°v- square-integrable as well as dg, due to
(P1 t). Thus for any £ > 0 there exists some 7 > 0 such that (2.39) holds.

2. Suppose that lim N(B,) = 0 holds.
n—,oo

We write

num num 2

inf — B sup A

BeB* ”d,gumHLZ(goV) BeB* ||d%um||L2(gou)

2

inf dg— sup d
BeB* P ﬂeg* P

La(gv)
(2.40)

L1(g%)

According to the proof of Lemma 2.16 a) there exists some h € {1,...,q} such that
: _pg* _pgh _ (1 _0,h _ 1 I -7
nhﬂIgo'Bn =p*=p"= (ﬂ,'y ,0,...,0,0,...,0, ﬂ,O,...,O) € B\B. In the same
h—1 q—h
manner as with the proof of Lemma 2.16 a) we make a Taylor expansion of dg“m up
to the second order at the point ,B~h and obtain

aym = (gzﬁl(ﬂ)g)uwu))

, %} is a fixed set of Lo(g%v)-independent functions and 2} (3),

.+ 2 (B) are their corresponding coefficients, see p. 29. Due to Lemma 2.17 and
Hp, is fixed, the right hand side of (2.40) is less or equal to

where Hp, = {g—}),...
h

Th ) Th ) 2
(@) + o) (X =1®)f) 0 +o()
inf —— — sup ——
peps z2MB)II(1+0(1))  peBr cllzM(B)II(L +0(1))
La(g%)
for some ¢,/ > 0. For any ¢ = 1,...,r, the coefficients zzh(['}) are continuous in 3
h
according to their form (see p. 29) and lim G < 1. Thus for any ¢ > 0 there
& (sec p. 29) and iy 2w gy < Y

exists some 7 > 0 such that (2.39) holds.
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Without loss of generality let € > 7 > 0 such that (2.39) holds. Then we obtain a partition

of D of cardinality of O(ELK) This partition of D implies that the bracketing number
_ 1 1 1/e

N[(]2)(8,D,goy) = O(SLK) Since [ {log <£_K)}2 de < K%{ — [ log(e)de + (1 — %)} < 00

0 0

the assertion follows from Theorem 2.14.

b) The verification of D being a Donsker class is along the same line. Notice that we assume
B* C B in (2.39). As shown in the proof of Lemma 2.16 b) d : B — D with 8 + dg is
a continuous function. The corresponding coefficients of the Ly(¢°v) linearly independent
functions in (2.38) are also continuous on B. Thus we follow the proof in the same manner
as in a). |

At the end of this subsection we would like to make a short remark on the following statement
by Liu and Shao (2003) [LS03] , p. 825, “Note that the most widely used mixture models
are those from the exponential families... For these models the Donsker class condition can be
directly verified using Lemma 3.2... we assume that the P-Donsker class condition is satisfied
and focus on deriving the index set.” Thereby, Lemma 3.2 in [LS03] is helpful when their
generalized score function is Lipschitz with respect to a corresponding (component and mixing)
parameter and the parameter space is compact. Additionally, [LS03], p. 826, claim “The
locally conic parameterization approach of Dacunha-Castelle and Gassiat (1997, 1999) is very
useful in identifying the index set.” According to [DCG99] one has to verify that the closure of
D = {dg : B € B} (see (2.35)) is a Donsker class, where the space B = {ﬁa(g) 1g € gp\{go}}
may not be compact according to the remarks after our Proposition 2.10. Thus Lemma 3.2 from
[LS03] may not be applicable to the set of score functions given in [DCG99] directly. In chapter 3
we will establish that the sufficient conditions for the existence of an asymptotic distribution
according to [DCGY9] are not satisfied for all mixtures of exponential families.

2.2.2. Asymptotic Results for Testing g = g° Against g € G,\{g°}

We base this subsection (as usual) on the assumptions (Al), (A2), (ID) as well as on the
aforementioned definitions and propositions. Especially, we use the fact that G, and Ga s,
respectively, have a locally conic model. Furthermore, we assume that D = {dg : B € B} where
B is given by Proposition 2.10 and Lemma 2.11, respectively.

For any g € G, let the LRT statistic for testing Ho : g = g° against Hj : g € Gp\{g°} be
given by

Tu(p) = sup In(6,8) —1x(0) (2.41)
9(0,8)€%

n
where 1, (0, 8) = In(9(s,8) = X 108 (9(9,8)(®:)) denotes the log-likelihood function of  and 3
i=1
n
and 1,(0) = Y log (¢°(x;)) for some realization x1,..., &y of an i.i.d. sample X7,..., X,,.
i=1
[DCGYI9] derive the asymptotic distribution of T;, (p) in six steps. Firstly, they define a maximizer

éﬁ(n) of the log-likelihood function I, (8, 3) for fixed value of B € B. Secondly, they use property
(P0) and the assumption that the reparameterization is locally conic in order to conclude that
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the supremum with respect to 8 € B of ég(n) converges in probability to 0 as n tends to infinity
(see [DCGYY], Proposition 3.3). Thirdly, they expand the log-likelihood function

n

L8 - 0) = Y WealE) @) Ly & (i) - g°(wi)>2

P 9° (i) 2+~ 9° (i)
1, (90,8 (®:) — %)\
t52 o (M ) (2:42)

for 6 tending to 0, where |U;| < 1 (see [DCGY9], p. 1196). Their idea is to make a Taylor
expansion of g ) with respect to 6 at the point # = 0 and afterwards to maximize the resulting
log-likelihood function over # and then over 8. Unfortunately, the aforementioned Taylor expan-
sion does not lead to uniformly bounded coefficients with respect to the linearly independent
functions given by (P1) or given in our modifications by (P1 t) as well as by (M1) and (M2),
respectively. [DCG99] solve the problem by defining, fourthly, a (random) partition of the pa-
rameter space B = A, U B, in such a way that the above-mentioned coefficients (with respect
to the linearly independent functions) are uniformly bounded on A, while they are not on the
other set B,,. More precisely, [DCG99] define the partitions of B by

1
SuPieq1,..q 10°1 1
A, = €EB: < — and
{ﬁ N(B)? U

L
B, = €B:31e{l,...,q} with > —
{ﬂ t ah v N(B)* ~ ng

for some o < % and 7, = supgep éﬁ(n) given in step two (see [DCGY9], p. 1186). To obtain a
general overview of the behaviour of the likelihood function on region A, and B, respectively,
we refer to Kerbin (2000), p. 58-59.

On B, the normalizing factor N(B) and all parameters &', | = 1,...,q, tend uniformly to O,

l
such that there exists some [ such that ]\U?,B|)|2 is not uniformly bounded. The latter ratio is found

in the Taylor expansion of the likelihood function and leads to an expansion up to order 5 on
B, while it is sufficient to expand up to order 2 on A,. (For this reason partial derivatives up
to order 5 are demanded by property (P0).) This partition leads to

Tn(p) = sup{ sup ln(éﬁ(n)a:@) - ln(O)a sup ln(éﬁ(n)ng) - ln(o)} (2'43)
Fifthly, and that is the most difficult point, they check that the remaining terms with respect
to the Taylor expansion of the likelihood function are o(1) uniform in probability over 8 in A,
and B, respectively.

In this work, we use the terms “uniformly Op(-)”

7

and “uniformly op(-)” in the following sense

Definition 2.19 (Prakasa Rao (1987), Definition 1.15.2a)

Let {r, : n € IN} be a sequence of positive real numbers. Let {Y,(¢) : ¢ € ®,n € IN} be a
sequence of random vectors with Y,(¢) defined on a probability space (Q, An, Py) and taking
values in the extended IRE. Then Yy, (¢) = Op(ry) if for every § > 0, there exists a constant
C >0 and N(4,C) such that

Pn(sup|Yn(¢)|/7"n < C) > 1—§ foralln>N(C)
ped
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and Yy, = op(ry,) if for every § > 0 and € > 0, there exists a constant N(6,€) such that

Pn<sup\Yn(¢)/rn| < e) > 1—=6 for all n> N(d¢).
PP

Our modifications lead to the same results as given in the fifth step, namely

Lemma 2.20 Let (Al), (A2) and (ID) be satisfied. Suppose that at least one of the following
assumptions holds:

a) (P0) and (P1),
b) (P0), (P1t) and (M1) for Q =q¢,p=q+1,
c) (P0), (P1t) and (M2) for q =1, p=2 and Go m, B from Lemma 2.16 b).

Then the following statements hold:

N 1
1) sup l,(6(n),B) — 1,(0) converges in distribution to the variable - sup ({d)Q - 1¢,>0,
BEA, 2 4eD -

2) sup l,(0p(n),B) — 1,(0) is bounded from above by sup l,(0g(n),B) — 1,(0) + op(1).
BEB, BEA,

(Thereby (£4)acp is a centered Gaussian process with covariance given by the usual scalar product
in Lo(g%v), see Definition 2.12.)

(Under assumption a) statement 1) and 2) are equal to [DCGY9], Lemma 3.4 and Lemma 3.5,
respectively. )

The proof of Lemma 2.20 is given in the appendix since it follows mainly the same lines as the
proof of Lemma 3.4 and Lemma 3.5 in [DCGY9], respectively. It is marked correspondingly,
whenever the underlying modified assumptions are used. Lemma 2.22 given below is a funda-
mental working tool for statements about the convergence behaviour of the remaining terms of
the Taylor expansions on A, and B,, respectively. In Example 2.23 we show that Lemma 2.22
does not hold if some true mixing weight is equal to 0. For this reason we have assumed in
contrast to [DCGY9] by (A1) that all true mixing weights are strictly positive.

The sixth step is conform to [DCG99]

Theorem 2.21 Let (Al), (A2) and (ID) be satisfied. Suppose that at least one of the assump-
tions a), b) or ¢) from Lemma 2.20 holds. Then T, (p) converges in distribution to the variable

1 2
55D ()" - Lgyz0.
deD
(Under assumption a) the statement is equal to [DCGY99], Theorem 3.2.)

Proof of Theorem 2.21:
Due to (2.43) and Lemma 2.20 2) we have

To(p) = sup{[g, 105 (1).B) ~(0). sup 1u(B(n). ) ~1a(0) + op<1>}.

Using Lemma 2.20 1) leads to the assertion. O
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Lemma 2.22 Let (A1), (A2) and (ID) be satisfied. Suppose that at least one of the assumptions
a), b) or c) from Lemma 2.20 holds. Then there exists a constant a > 0 such that for any B € B

sup |8
I=1,...,q

NGB

(Under assumption a) the statement is equal to [DCG99], Lemma 5.1.)

a. (2.44)

Proof of Lemma 2.22:
b) Suppose that ||6”|?/N(B) is unbounded for some h € {1,...,q}. Then there exists a
sequence Bn = ()‘l,na'yl’na 61’n, T Jq,n’ Pimy--- 7pq,n), € B such that

L L8
w15 N(Bn)

According to (2.6) we have 6™ € [-1,1]¥, n € IN, which leads to hm N(Bn) = 0.

Corresponding to the proof of Lemma 2.16 a) we write N(By,) = || h ||L2 (g0v) With
dgi™ given by (2.36) and lim B = (%,7% 0,...,0,0,... o,—%,o,... 0)' € B\B.
Let Hp, = {g—é, ... f’"h} and let the corresponding coefficients zhn fori € {1,...,r,} also
be given as in the proof of Lemma 2.16 a). Then it follows from Lemma 2. 17
o [ s N O
im im —
nooo N(Br) — noeoc||2M(1+0(1))
for some ¢ > 0. Using only coefficients of functions in 7, depending on ~1:® — ~0:h
obtain
ah,n 2 1 5h,n 2
im HN(ﬂ’y) < lim - [[6™"| 1 (2.45)
n—00 n—oo C >
" (I (r2sm = 3Oh) 4 708m 2 4 pr ) * (1 + 0(1))
where

l\Dl'—‘

1 1 1 2
h h h, h, ) )
}j G4 Y @ g Y (Gl ) (2.46)
j)eU

iEH}CL (u,v)EU}CL
i€ Hp, (u,v)

and @™ = 41m — 40k converges to 0 for n — oo, ¢ # 0 for i € Hy(u,v).

We investigate the right hand side of (2.45) with the aid of the convergence speed of §™™
and \; , @™ :

1. Case: ||6"™| :o(||)\1,nah’"||) and 2. Case: ||\, a™" :0(||5h’”||)
It is obvious that

2
O e (N (YR B P
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Since the two sequences |1, a™™| and ||6™™| converge to 0, there exists some
ng € IN such that

4
A1, @™ + 8P |2 > (||A1na’m|| 2||5h,n||) for all n > ng.

Thus it follows directly that the right hand side of (2.45) is upper bounded by

.1 [xsls
lim - < oo.

2
" (I @ = (798 ) (1 + o(1))

. Caser A1, @™ = —7 6M™ (14 0(1))

Let ¢maz = max {1 max{|cl| : i € Hh}} First of all we prove that the right hand
side of (2.45) is upper bounded by

L1 8" |
3 (@) (14 o)
=1

n—oo C
(1= mpammowz +
Afterwards we verify that (2.47) is bounded.

(2.47)

8 ¢max

According to (M1) we have {1,...,k} = Hj U H}, with H, = U(u,v)eUg Hp(u,v).
Simple computations lead to

(2.46) 1 hn h, 1 h, 1 h, h,
P = D @M gY@ g Y (T al )
(4,9)€UR 1=1 (u,0)eUf.
i€Hp (u,v)
1
h _hyn_hmny2
+§ Z (ci Q' Oy )
(u,v)EU}CL
i€Hp (u,v)
1 & 1 1
hn hn hhn hn hn hn
8 Craz “ 2 Z 2Cma;v Z ( i )
z:l e (u,v)EUfL
i€Hp, (u,v)

(2.48)

where c? # 0 for i € Hy(u,v).

For any (u,v) € Uf (u < v) with the corresponding (unique) i € Hp(u,v) we write
(M5, My ;) = (min{u, i}, maz{u,i}) as well as (my;, M, ;) = (min{v, i}, maz{v,i}).
You may recall that both pair of indices belong to U, as assumed in (M1), i.e

M = {(mu,i,Mu,i), (M3, My ;) : with (u,v) € Uy and i € Hh(u,v)} C Up.

As M C U, we have

1 hon_h, 1 hon h
5 Z (ai naj n)2 > 5 Z (a’i naw,n)Q
(4,9)€UL (M0, M; 00)EM
1
— 5 X (e aran?). (a9
(mi,u’Mi,u)’

(mi,v’Mi,v)EM
u<v
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1 1
3 Z (a?’"a;-l’")2 + Z ( faf "al "af "ahm)

2 cmaz

(4,7)€Uy (u,v)EUF
iEHh(u,v)
h h
D E a;’ a, +o—a, a0, 0y + | —(=——a; ay .
(my oM ) \/_ 2 Cmaz \/5 2 Cax
,u L,

(mi,v ’Mi,v)EM
u<v

(2.50)

Obviously, the right hand side of (2.50) is positive and due to (2.48) we have p, >

k
Ly (a?’n)4 > 0. Thus the right hand side of (2.45) is upper bounded by (2.47).

8 Cmaz

According to the above assumption we have 6™ = —\; ,a™™/ (wg (1+ 0(1)))- Let
amay = max{|a]”"| : i =1,...,k}. Then (2.47) is upper bounded by

which is obviously finite for 7} > 0 (due to (A1)).

a) see [DCGYY], p. 1194-1195. Similar to the proof of b), especially formula (2.45), we obtain

lim

n—00 N (By)

g (HZMJ’ =9+t 1 (Tl —20l))

JEJ;

where J; denotes the set of indices 7 such that v%™ tends to v%*. Notice that [DCGY9], p
1195, do not mention the factor 7'('? of §%™. However, the very existence of the factor 7r?
demands that all the mixing weights be strictly positive. Otherwise (2.44) does not hold,
which is shown in Example 2.23.

c) The proof is almost in the same manner as the proof given in b). We suppose that
there exists a sequence Bn = (A1, Y1™, 61", p1,) € B such that ||6V7]?/N(By) is
unbounded and therefore implies that li_)m Bn = (%,70 1.0, —7) Corresponding to

n—oo

the proof of Lemma 2.16 b) we write N (Bn) = [|dg"™ || 1,(g0,) With dj2™ given by (2.38).
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Then Lemma 2.17 leads to

e
n—oo N(Bp)
1
@38) |62 1,n)2 Lo 2\ 2 3
< nlggom<(/\1,nal,n+51 ) +()‘1,na2n + 4y ﬁ(aln)) + Dn

(2.51)

forsomen > 0, ¢ # 0 and an = (a1,n,a2,)" = Y —v%L, pp = %(ag,n)2 ((al,n)2 + %(ag,n)Q).

2. Case: H (A1,na1,n, AM,na2pn + ﬁ(m n ) H = o(||5h ?||) can be verified correspond-

1. Case: ||6h,’n|| = 0(” (Al,nal,na )\Lnagn 2\/— aln )

ing to the first and second case in b), respectively.
!
3. Case: (Al,nal,n, Ao + ﬁ(al,n)Q) — b (14 o(1))
Then the right hand side of (2.51) is equal to
2
|:(>\1,nafl,n)2 + (Al,naQ,n + ﬁ(al,n)z) ] (]- + 0(1))_2

" \/ (=61"0(1))2 + (=85 0(1))2 + S(az,0)? ((01,0)% + }(a20)2)

nll)nolo n (1 +

Due to the parameterization in Lemma 2.5 (which uses Algorithm 2.7) we have

(%t + 5%) —~%1 < |4t = 4% = |lan| and according to the form of T’ we
have |a1,| = |71 — 7?’1| <l|y2— fyg’l| = |agn|- As a1y and ag, converge to 0 we have
(a1)? < agy for n — oo which implies that the right hand side of (2.51) is less or
equal to

i ( [tz + (unlazal + 5G5lozal) ] 1+ o<1>>_4> |
(1+o0(1)) L(agn)? ((al,n)2 + ﬁ(az,nV)

2 1
S ((Al,n+(xl,n+2—;§)2) (aa,n)4)2_

~ n=oon(1+0(1)) +(agn)*
It follows lim OV™P o since lim A, = L O
(,Bn n—o00 Ln V2©

The following example shows the necessity of assumption (Al), i.e. the necessity of strictly
positive true mixing weights, for Lemma 2.22. Although this restriction does not change the
central ideas of [DCGY99] it leads us to the test of “Q) populations against p populations” instead
of “q populations against p populations” which we illustrate by

Example 2.23 Let (Al),(A2), (ID), (PO) and (P1) be satisfied. Suppose that we wish to test
Q = 2 populations against p = 4 populations. Let the true density be given by ¢° = 0fy01+1f 0.
for y%1 = 0,4%2 =1 and 7° = (0,1)' though the true order of g is equal to 1. According to (2.5)
the normalizing factor has the form

5287f7|7:7°’2+ f7 +>\2f7 +p1f°1 fro2

N(B) = 0 +p2 g0

= |ldg"™ | Lo(go0)-
Ly(g%)
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Let ,Bn = ()\l,na >‘2,n771,n372’na 51,71’ 52,nap1,nap2,n)l € B be given by

3 1 2 1 1\2
Al,n =n 2= _pl,nﬂ A2,'{L — E (1 - = — —2 — —) = _p2’n’ 61)n —

and

1 1
S A0 LD 2 02 —.
n n

(Simple computations show that (2.6) is satisfied.) o
We obtain lgm Brn = (0, %,70’1,70’2,0,0,0, —\/ii)’ = B € B\B. A Taylor expansion up to the
n—oo

second order leads to

- 1 - -
N(Ba) = |+ @ad™ 5 5) B~ B) + 580 — Y 5™ |5 5)(Bn — B) +ol1) "
Lo(g%v
with
Jquwm  — Lf’YO’Q _ Lf’)’o’z — 0
N N W |
~ fro1 fr0,2 1 1
(Opd5"™5-5)(Bn — B) = ;o Al + pin) + ;—0 (A2,n Fhzat E>
1 3 2,'n.f 2,n‘ 2,n —~0,2
+(_(72,n —402) 4 (52,n> il il s
V2 gq°
2
]_ =~/ 9 ~ ]_ 2 0.2 2672’nf72,n|72,n:70,2
— — 8 dnu‘m ~ — — - s )
3B~ B3y "5 _g) B~ B) = 507" =) .
3 l,nf 1,n|~1,m—~0,1
+)\17n(71,n _ 70,1) Y Y g(l)’Y Y
+(Aom — %)(727” . ,70,2)372’" f“r?’;(l”r?‘”=7°’2 _
Hence,
N(Br)
= Al,n(’)’l’n . 70,1) 871*" fvl’;i'yl’":*ro*l + (52,n + )\2,n(72’n _ 70,2)) 872’" fvz’;(!v?’”:vo’?
41 (2" — o,z)zagz’nf”r?’"‘”r?’":vo’z
2\/§ gO La(g%)
1
2 2 1 p)
< c’{ (Mn("™ =2%1) "+ (27 + Ao (" =4%%)) + (4" - 70’2)4} (2.52)

for some ¢ > 0, where the last relation is a consequence of Lemma 2.17. Finally, it results from
the form of By

L VT T I il
neo N(Bn) n—oo N (Bp)
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and

‘m Sup;—1 2 |5l’n|2
n—00 N(,Bn)

ST D RICE S o

n=oo ¢ n? n
= o0.

2.2.3. Asymptotic Results for Testing Q Populations Against p Populations

In the last subsection we studied the convergence behaviour of the statistic

Tn(p) = sup ln(o,ﬂ)_ln(o)
9(0,8)€9p

for the testing problem of g = g% against g € G,\{¢"}. This statistic and its limiting distribution
form the basic expression for the general test

Hy:g € Gg against Hy:g € Gp\Gg

for a given true density ¢° € Gg of true order g belonging to the null hypothesis. Accord-
ing to definition (1.1) of the corresponding log-LRT statistic and the monotonicity properties of
the logarithm we obtain

log (An(mla . 7-'1’n)> = sup ln(ea :3) - ln(O) - sup ln(ea :3) + ln(O)
96,8)C9 90,8)C9Q

= Tulp) —Ta(Q)

for a suitable parameterization of Gg. Of course, we need a locally conic parameterization of Gg
as well as the Donsker class property of the corresponding set of score functions Dy to ensure
the existence of an asymptotic distribution of 7;,(Q). The sufficient conditions for a convergence
in distribution of 7,(Q) (under our modifications) are given by

Lemma 2.24 Let (Al), (A2) and (ID) be satisfied. Then the following statements hold:

1) Let each 900 gy Bota)) € Go\{g°} be defined as in Lemma 2.5 with permutation o(g) of
{1,...,Q} given by Algorithm 2.7. We define

By = {Botg:9€G\¢’}} and
To {(9,Ba(g)) 10 < 0,9),9 € gQ\{go}}-

Then there ezxists some My > 0 such that Ty C [0, My] x By and {g(gﬁ) :(0,B) € 76} is a
locally conic model of Gg.

2) Suppose that at least one of the following conditions holds:

a) (P0) and (P1),
b) (P0), (P1t) and (M1) forQ=q,p=q+1,
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c) (P0), (P1t) and (M2) forgq=1 and p = 2.

— )
Then the closure Dy of Dy = {% :B € BO} is a Donsker class.

Notice that under assumption c) of Lemma 2.24 By is defined in the usual way, i.e. without any
further restrictions as used for its corresponding B (see Lemma 2.16).

Proof of Lemma 2.24:

1) follows directly from Proposition 2.10. Clearly we have By C B and thus Dy C D.

2) is a consequence of Theorem 2.15 which claims that subsets of Donsker classes are also
Donsker classes. O

The representation of Dy is exactly of the same manner as given by (2.31), namely

1 < 0 . 10y, f '7|'7='7°" o Jri 2 Jror
=1 =1 9 i=1 9 =1

g
where the middle sum vanishes if @Q = ¢ and the last sum vanishes if ¢ = 1 according to (2.3)
(since p; = 0.)

Thus it follows from Lemma 2.24 (and previous statements on 77, (p) analogously applied to
T,.(Q)) that Theorem 2.21 also holds for 7},(Q). Consequently, we obtain

Theorem 2.25 Let (A1), (A2) and (ID) be satisfied. Suppose that at least one of the following
assumptions holds:

a) (P0) and (P1),
b) (P0), (P1t) and (M1) for Q=¢q,p=q+1,
c) (P0), (P1t) and (M2) for g =1, p =2 and Gom, B from Lemma 2.16 b).

Let By be given as in Lemma 2.24. Then the log-LRT statistic for testing QQ populations against
p populations

log (An(wl, o ,wn)) = log (Tn(p)) — log (Tn(Q))

converges in distribution to the following variable

1

1
9 Sup (5«1)2 “Legg>o0 - 2 (ffd)2 ey >0, (2.54)
deD

sup
deDy
where (fd)D and (5,1) D, 7€ centered Gaussian processes with covariance given by the usual scalar
product in Lay(g%v).

It is possible to describe the asymptotic distribution by one Gaussian process instead of using the
difference of two Gaussian processes (2.54). This can be done by using the fact that Dy is a subset
of D (see [DCGY9], Theorem 3.6). In the next subsection we give the corresponding limiting
expression for testing one population against two populations under our first modification by
(P1t) and (M1).
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2.2.4. Testing One Population Against Two Populations

In this subsection we derive a limiting process with an index set given by the component pa-
rameter space I'\{+°} instead of an index set given by a Donsker class of functions. In order to
apply the asymptotic theory in an actual testing problem this of course simplifies the calculation
of the quantiles of the limiting distribution.

We construct the corresponding Gaussian process according to Theorem 3.6 and Corollary 3.7
from [DCGY99]. Since [DCGY9] consider only a one-dimensional component parameter space I'
in Corollary 3.7, we generalize their result on component parameter spaces with dim(I') = k
using our first modification (P1 t) plus (M1). As mentioned above property (P1) is a special
case of this modification for testing one population against two populations. A generalization
of Corollary 3.7 from [DCG99] with the aid of our second modification (P1 t) and (M2) is
not possible because of the structure of the parameter space belonging to the two population
mixtures.

Let the true density be given by ¢° = f~0 € Gi. Since Q = ¢ = 1 and p = 2 we obtain from
(2.31) and (2.53) that

1 - af | =7° f —fo
= g | Do TETIEE AT s B= (M, ,8,-)) € By, .
’ {Mﬂ)(é fo N1 ) B=N8-N¢ } (2.55)
Dy, = 1 ié,w . B=6¢RB with B (2.6) {5_”5”2_1} (2.56)
v N(ﬂ) i=1 ! f»yo ) - 0 0 = . — . .

Thereby D can also be indexed by 8 = (v,8) € B = T'\{y°} x {6 : ||6]|> < 1} because of
Proposition 2.10 and (2.6).

Fori=1,...,k and v € T\{7°} C IR let

-1

871' f’Y |,7:,.70 8’71, f7 ‘7:70
“T T f
7 7 lLa(fyon)
-1
and Vy = f7 _ f70 f7 _ f70 ;
fro fro La(fyov)
Then ey,...,e; and vy are linearly independent in La(f,ov) according to (P1 t). Further let
{o1,..., 0k, hy} be the corresponding set of orthonormal functions in La(f,0v). Then Dy can be
described by the set {01,...,0;} of orthonormal functions in La(f, o)
k k
Dy = {Znoi : ZTiZ = }
i=1 i=1
k k k -1k
since 01,...,0; € Dy and Y 72 = 1 lead to ( Tioi) T;0; = > 1;0; € Dy. Correspond-
i=1 i=1 i=1 i=1

ingly, D is the set of functions of the form

k k
D = {ZTZ'O«L'-FT}LY:ZTZ?-}-TQ:L 7'20}. (2.57)
i=1 i=1
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The set {o1,...,0,} can be constructed by the orthogonalization procedure of Schmidt. This
procedure and an additional normalization lead to

k
f'y f10 _ < . f"y*f10>

i:Z:IOZ 0;, f~o Lz(ﬁ,ol/)
hy = ) . (2.58)
f'y f:ZO _ < 3 f*r_f10>

ZZ:I OZ O’H f'yo L2(f—70 U)

L2(f'70 v)

Corollary 2.26 Let (Al), (A2), (ID), (P0), (P1 t) and (M1) be satisfied for g =1 and p = 2.
Further let hoy be given by formula (2.58). Then the log-LRT statistic for testing one population
against two populations

log (An(:zrl, .. ,wn)) = log (Tn(2)) —log (Tn(l))

converges in distribution to the following variable

1 2
= sup (&) - 1g>o-
2 ~eD\ {70} ( '1) thf

Proof of Corollary 2.26.:
Let H = {h7 1y € I‘\{'yo}}. The representation (2.57) of D leads to

2 2
sup (60) - 1g20 = sup S (Sudotrny) " Leragirn, 20-
d(;YeDO w2472=1

Since (£4)aecp is a linear process (see e.g. Dudley (1999), p. 92) it follows that

Ekdo+rhy = K&do + TEh.-

Let /(a,b) denote the angle between a and b. For fixed {4, and £, we obtain

2

sup (ko + TEh,)" - Lygyy+7hey>0
0

52:—:2=1

2
= sup (n(w)'n 1€t €n,)'l cos{Z(m,T)',(fdo,th)')}) Aerigirny 200 (259)

K2472=1

If .., > 0 then the supremum of the right hand side of (2.59) is in (k,7)" = ||(é49,&h, )’ |7 (€do- €)'
and it follows

2
sup (Kdo + Thy) "~ Lutgytrhy>0 = (Edo)” + (€ny) Lgy >0- (2.60)
w24+72=1

If £p., < 0 then the supremum of the right hand side of (2.59) will be reached for 7 = 0 and
k = 1 or kK = —1 whichever {4, is positive or negative. Thus (2.60) also holds in this case.
Consequently, we have

2
sup (£4)” - Ig;50 = sup (€4,)° + sup (£h7)21§h—720'
deD docDo =y
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Since Dy is a symmetrical set it follows that

sup (£4)*Le, >0 = sup (€ap)”
do €Dy do€Dy

and Theorem 2.25 leads to an asymptotic distribution given by the following variable

1 1 1
2 sup(€a)”Le,>0 — 5 Sup (€a)’Leg>0 = 5 sup  (&r,)’1g, 0. (2.61)
deD do€Do ver\{°}

Thereby (2.61) is a consequence of «y — h~ being a continuous function which is also bijective
according to (P1 t). O



3. Application to Mixtures of Exponential
Families

In the variety of published literature about mixture models and their applications to testing and
estimating problems, examples of mixtures of specific distribution families are often given (see
introduction). Thus mixture models are of theoretical interest as well as interesting for appli-
cations. In this chapter we deal with the question to which mixture families the theory from
[DCGYI9] is applicable. As mentioned above, Keribin (2000) applies her results to Poisson distri-
butions as well as to multivariate Gaussian families with unknown mean and known covariance
matrix being a multiple of the identity matrix. Likewise, Ciuperca (1998) follows the theory
from [DCGY7] and shows that it is not applicable to simple mixtures of translation families of
exponential densities. Due to the observation that all aforementioned promising distribution
families belong to exponential families and that the application, given in Ciuperca (1998), does
not belong to them, we decided to study mixtures of exponential families.

Our main purpose for this chapter is to develop sufficient conditions to apply the theory from
[DCGY9] which depend on the statistic and the parameter function of corresponding densities
in exponential representation. These conditions are easy to handle if the component parameter
space is of dimension one or two, but their complexity increases with the dimensionality of the
parameter space. If the parameter function has a diagonal Jacobian matrix then a verification of
our derived sufficient conditions is quite simple. The latter special case leads to an elementary
proof that the theory from [DCGY99] is applicable to m-dimensional Gaussian mixtures with
unknown mean and known arbitrary covariance matrix (see Example 3.15).

3.1. Basic Definitions and Properties of Exponential Families

In this section we provide a basis of definitions and properties of exponential families which will
be subsequently used. This general survey is given according to Witting (1985). Further we also
refer to Barndorff-Nielsen (1978) even if we do not cite him explicitly.

Definition 3.1 (exponential family)(Witting (1985), Definition 1.150)

Let (X,X) be a measurable space with X C IR™. A family P = {P, : v € T}, T C IR", of
probability measures on (X,X) is said to be an exponential family provided there exists a o-
finite measure v on (X,X) such that P is dominated by v and there exists an integer k € IN,

real-valued functions A,(1,...,(x : I' — IR as well as real-valued X-measurable functions
r,T1,..., T : X = IR and for every Py € P its corresponding v-density has an ezponential
representation

I@ = Amep{(¢n), T@)}r@ v-as., (3.1)
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where ¢ = ((1,---,C), T = (Tt, ..., Tx)', (), T(x)) = Ek: Ci(v)Ti(x) and normalizing factor
i=1

-1
A(y) = (fexp {<C(7),T(m)>} r(x) V(dm)) . P is also called k-parametric exponential family
in ¢ and T.

As f, is a non-negative X-measurable function we assume without loss of generality that
r(x) >0 for all x € X and A(y) > 0 for all v € . According to Witting (1985), p. 143,
we define

u(B) = /Br(:zz)u(da:), BeX, (3.2)

as an equivalent o-finite measure to the probability measures Py, v € ', i.e. Py(N) = 0 for all
v €' p(N) = 0. Then every probability measure P, € P has also a corresponding y-density

py(@) = ) exp{(¢),T(2)} p—as, (3.3)

where C(¢(v)) = A(v) > 0 is an appropriate normalizing factor. Consequently, all statistical
properties of P result from the character of exp{({(v), T(x))}.

Notice that neither the parameter function ¢ nor the statistic T' is uniquely defined. Thus P
has several representations. In the next sections we often make use of

Definition 3.2 (canonical parameterization)

Let P be a k-parametric exponential family in ¢ and T such that the mapping ¢ : T' — {(T') =
Z C IR* is one-to-one. The family {PC(‘Y) : v € T'} is a parameterization of P and is equal to
{Pe(y) : €(v) € Z} since the function (7) is injective. According to Witting, p. 149, we also
write {P¢ : { € Z}. This parameterization of P is called canonical. Thus ¢,{(y) denote points
in Z and if we mean the function ¢ : T — {(T') it will be marked correspondingly. The set

Zy = {C eRF:0< /exp{((,T(w))}u(dm) < oo} (3.4)

is called canonical parameter space. Clearly, one has Z C Z, C IR*.
The family P = {P¢ : { € Z} in canonical parameterization has p-densities of the form

pe(@) = CQep{(¢.T@)} n-as. (3.5)
which is equivalent to

Pe(x) = exp{(¢.T(@)-K(Q)} n-as, (3.6)
where the normalizing factor is given by

c©) = ([ewii¢T@)nde) (37)
and K(©) = log( [ex{(¢.T@)}u(de)) = ~log(C(c)

is called log-Laplace transform or cumulate generating function. Under a canonical represen-
tation of P the measurable function T is called generating statistic.
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According to Barndorff-Nielsen (1978), p. 112, we have

Definition 3.3 (minimal parameterization, order)

Let (X,X) be a measurable space with X C IR™ and let P = {Py : v €'}, T C IR*, be a family
of probability measures on (X,X). Let kpyin(v) be the smallest integer such that the probability
measures in P with respect to v are representable as in (3.1) for A, (y, ..., Chmin(v) = I = IR as
well as for r,T1,..., Ty, .. ) : X = R. kyyn(y) i called the order of P and is denoted by ord(P).
Any representation (3.1) with ord(P) = kpin(y) s said to minimal .

Factually, k., (v) is an integer independent of v and dim(T). In Proposition 1.153 given in
Witting (1985) necessary and sufficient conditions for minimal representations of (3.1) are given.
They are based on the following

Definition 3.4 (affinely independent, v-affinely independent)
ForTCRFand XCIR™let:T > RandT;: X —> R, i=1,... k.

a) The functions (i,...,C, are called affinely independent if the functions 1,(1,...,¢; are
linearly independent, i.e. for a € R* and ay € IR the following statement holds:

(¢(v),a)=ay forallyeT = a=0, ay=0.

b) Ti,...,Ty are called v-affinely independent if for any v-null set the functions Ti,..., Ty
are affinely independent on the corresponding complementary set, i.e. for b € IRF and
by € IR the following statement holds:

(b,T(x))=by v—as. = b=0,by=0.

Proposition 3.5 (Witting (1985), Proposition 1.153)
An exponential family P in ¢ and T is minimal k-parametric iff its v-densities have a represen-
tation as in (3.1) and both of the following conditions are satisfied:

a) The functions (1, ..., x are affinely independent.

b) The functions Ty, ..., Ty are v-affinely independent.

As mentioned above v and u are equivalent measures and thus 71, . .., Ty are v-affinely indepen-
dent iff they are y-affinely independent.

Notice that even if P is minimal, its corresponding parameter function ¢ and statistic T' are
only uniquely defined with respect to non-degenerate affine transformations and non-degenerate
v-affine transformations, respectively (see Witting (1985), Corollary 1.154).

A basic tool for the next sections is given by
Proposition 3.6 (Witting (1985), Proposition 1.164)

Let P be a k-parametric exponential family in ¢ and T with u-densities in canonical represen-
tation (3.5) or (3.6) and canonical parameter space Zi.
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Then the generating statistic T possesses mized moments of arbitrary order with respect to peu,
¢ € Z,. For all ¢ € int(Z,) the functions ¢ — ECTll1 ...T,i’”, ¢ — K(¢) and ¢ — C(¢) are
continuous and infinitely often differentiable. In particular, for all ¢ € int(Z,) one has

BT = 9K(Q) = -dlog(C()), (3.8)
ConeT = 3K(¢) = -d21og(C()), (3.9)

ETh .. T = C(C)aéll...Bé’;c/exp{(C,T(w»}u(dm) V(i1 ..., 1) € INE, (3.10)

where 0¢K(C) and BgK(C) denote the gradient and the Hessian matriz of K(C), respectively.
Further 6?1 he, i € {1,...,k}, denotes the l;th partial derivative of he with respect to ;.

In our following work we assume that P = {Py : v €'}, ' C IR*, is a minimal k-parametric
exponential family in ¢ and T and that F = {f, : 7+ € T'} is the corresponding family of
v-densities in exponential representation (3.1) with respect to the probability measures of P.
Furthermore, we assume that ¢ : T' — Z = ¢(T)(C IR*) is a bijective function which assures the
existence of a canonical parameterization of P. According to the above definitions and properties
we make use of

m@) 2 ccmen{Cmn.T@)} Y pp@  p-as, @)
(31

f~(z)

where C(¢(7)) = A(y) and the measure u defined in (3.2). Correspondingly, we define the true
p-density (in canonical parameterization) by

r(@)py(x) = 7(T)Pe(y)(T) v —a.s., (3.12)

q

w’ = Zﬂ'?]}w,t p—a.s., @ = Z?‘(’?ﬁco,t I — a.s. (3.13)
=1 1=

—

for ¢O = ¢ (%), 1 =1,...,q. Clearly, we obtain

(S

PLx) = Zwlofw,z(m) = r(@)uw’(z) = r(@)d’(z) v-—as. (3.14)
=1

From now on we assume that the latter equations v-a.s. and p-a.s., respectively, hold.

3.2. Applications to Mixtures in Exponential Representation

In this section we present our main Theorem 3.13 on the applicability of the asymptotic theory
from [DCGY9] for testing “@Q) populations against p populations” to exponential families. More
precisely, in Theorem 3.13 we give sufficient conditions for the v-densities of F = {fy : v € I'}
to hold with respect to an exponential family in ¢ and T such that the properties (P0), (P1),
(P1t), (M1) and (M2) hold (see p. 21-23). For this we assume that (A1), (A2) as well as (ID)
are satisfied. We base our statements on the last section, especially on the equations (3.11)-
(3.14) and on the fact that T' possesses mixed moments of arbitrary order with respect to p¢pu,
¢ € Z,, due to Proposition 3.6. It will be seen that the structure of the component parameter
space ' is of essential importance.
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First of all, we derive a general expression for arbitrary partial derivatives 3%.1 .. Oy fry (see
Lemma 3.9) since all properties (P0), (P1), (P1 t), (M1) and (M2) require certain properties for
the partial derivatives of f with respect to 7 to hold. This expression results from the fact that
fy(®) = r(z)py(x) = 7(x)P¢(y)(x) and that r(x) does not depend on 5. Beforehand we make
use of the analytic properties of C(¢) given by Proposition 3.6 to obtain a general expression for
O, --- 0, P¢ (see Lemma 3.7).

The following (technical) lemma gives a general (complicated) expression of the partial deriva-
tives of p¢ with respect to ¢, but its basic statement will be summarized in Remark 3.8. Roughly
speaking, Lemma 3.7 says that any partial derivative (with respect to ¢) of p¢(x) is a product
of p¢(x) itself and some polynomial in T'(x).

Lemma 3.7 Let P be a k-parametric exponential family in ¢ and T with p-densities in canonical
representation (3.5) or (3.6) and canonical parameter space Z.. For n € IN let i1,...,i, €
{1,...,k} and A™ ={1,...,n}. Then we have

O, -0, pel@) = 3 {Bl, ,Bn(HEC<HTz])) II Tij(m)},

JEB;

disjoint eAn\( ij )

where a(p, ... B,) € IR are suitable factors and E¢< II Tij) =[[T(x)=1

7€0 J€D
(Notice that B;, i = 1,...,n, may take the form B; = 0 and that we sum all combinations of
disjoint subsets of A™. Furthermore, there may exist some r,s € A", r # s, such that i, = is.)

The proof of Lemma 3.7 via induction is given in the appendix.

As any factor a(p, ... B,) H E¢( [l T3;) of Lemma 3.7 is real-valued it follows
JjEB

Remark 3.8 Let the assumptions of Lemma 3.7 be satisfied. Forn € IN andiy,...,i, € {1,...,k}
O, --- O, Be(@) = PE . (T(@))pc(=),

where Pél---Ci (T'(x)) is a polynomial in the components of T(x), i.e. Ti(x),...,Tx(x). In

particular, one has

O icl@) 2V (Ti(2) - BTy )ie(@), (3.15)

O, g, (@) AN {(T(@) - BT, ) (T () - BT, ) — CoueT3 T, i (@)- (3.16)

Using the fact that fo(x) (.12 7(x)p¢ () (x), where r(x) is independent of -, we obtain the
partial derivatives of f, with respect to v by

Lemma 3.9 Let P={Py:~v €T}, T C IR*, be a k-parametric exponential family in ¢ and T
and let F = {f : v € '} is the corresponding family of v-densities in exponential representation
(3.1) with respect to the probability measures of P. Further let { : T' — Z be a bijective function
which ensures the existence of a canonical parameterization {P¢ : { € Z} of P with p-densities
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of the form (3.5) or (3.6). If ¢ : T' — Z possesses partial derivatives up to order n, n € IN, then
we have

O, -- -37,-” f~()

ZZ Z{(%l -acjmmﬁcm(-’ﬂ)) > ( Ap,.AB,) HaA"Cyz )}

m=1j1=1 Jm=1 AT, AT 0

disjoint
ATU...UAT, =AN

where iy, ... in € {1,...,k}, A" ={1,...,n}, O, 3G () = Oy, -+ Oy, G () for L € {1,... ,n}
and suitable factors biar, _ an) € R.

(Notice that we sum all combinations of disjoint non-empty subsets of A™. Furthermore, there
may exist some r,s € A", r # s, such that i, = is.)

The proof of Lemma 3.9 via induction is given in the appendix.

Lemma 3.9 says, if the parameter function { : ' — Z possesses derivatives up to order n
then 0, ...0y, fy(x) is equal to a product of fy(z) = r(x)p¢(y)(z) and some polynomial in
the components of the statistic T'(x) due to Lemma 3.7. Notice that the real-valued factors

m
biar,...An) i];ll 0ar(j; () do not depend on .

For any polynomial P(T'(x)) in the components of T'(x) and m € IN it holds

/‘ qu() ¢ (@) v(da) / ‘ " f70{7°l()
13)(19 / ‘ D ios ) ulde) < 0

since T' possesses mixed moments of arbitrary order with respect to pyo.ipy, 7 =1,...,¢q, due to
Proposition 3.6 and 77 > 0 according to assumption (A1). As a consequence we obtain

IA

9" (@) v(d)

Oy -+ Oy, Fyly=you

g0
if the assumptions of Lemma 3.9 are satisfied and ¢ : I' — Z possesses partial derivatives up to
order n. For m =3 and n = 1,...,5 formula (3.17) is equivalent to property (P0)b). If m =2
then (3.17) leads to f“;%’l, 67"f"0‘“’°’l, 67”3'@'"0" € Ly(¢°v) as assumed by (P1), (P1 t), (M1)

€ Lin(¢®v)  forallm,m e IN (3.17)

9 9
and (M2). In properties (P1) and (P1 t) it is additionally assumed that € Ly(g°v) for any
~v € T\{¥%1,...,4%9} and according to property (P0)c) we also need a sufﬁc1ent condition for

501 being in L3(gou) forany vy € U.(y%) = {v €T : |7 —9%| <¢€},1 =1,...,q and some
e >0.

Lemma 3.10 Let the assumptions of Lemma 3.9 as well as (A1) be satisfied. (As aforemen-
tioned ¢,¢(vy) denote points in Z and if we mean the function ¢ : T' — {(I") it will be marked
correspondingly.) For m € IN let

Zym = {C € Z.:m¢ — (m —1)¢(y%) € Z, for some | € {1,...,q}}.

Then the following statements hold :
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a) C(V) € Zm =

f~
geL( v),

fy

b) forq=1: ((Y) € Zm < P Lin(g°v).

Proof of Lemma 3.10:

a) Clearly, one obtains ¢Ot = ¢(v%) € Z, for any [ € {1,...,q}. Thus the parameter

¢ =<¢(v) € Z, leads to
0 < C(Q), ™), C(m¢ —(m—1)¢") < oo (3.18)
for some I € {1,...,q}. (Notice that m¢ — (m — 1)¢%! describes a point in the canonical

parameter space Z, which leads to 0 < C(m¢ — (m — 1)¢%!) < oo according to Definition
3.2.) Consequently,
f(@) |

0 < /gO(w>

(3.12) |Pe ()™
= ) W %eos (@)
. c)"
= / W?fg(é"% exp {m(¢, T(@)) — (m — 1)(¢°, T(=)) | u(de)
(59) (ce)™

(wpC(¢OH)m=1C(m¢ — (m — 1)¢%

¢°(x) v(dx) (3.19)

p(dz) (3.20)

; / B (m-1ycos (@) pdz)  (3.21)

which is finite according to (3.18) and to (A1) (i.e. 7 > 0).

b) Obviously, equality in formula (3.20) holds iff ¢ = 1. Suppose that ¢, ¢®! € Z, and
m¢ — (m —1)¢%! ¢ Z,. Then the expression in (3.21) is either equal to 0 which is in
contradiction to (3.19) or the expression in (3.21) is infinite which leads to 5—5’ ¢ L (g%).
Consequently, it follows assertion b) with the aid of a). O

For m € IN and any ~ such that ¢(y) € Z,, holds and under the assumptions of Lemma 3.9
and (A1), we obtain according to (3.17)

M € Li(¢°v)  foralln € IN. (3.22)

g
In our context, it may be a difficult task to verify property (P0)c); i.e. to ensure for m =
3, n = 1,...,5, that the supremum of (3.22) on U.(v%), I = 1,...,q, is a function which
belongs to L3(g°v). In Proposition 3.11 we give a sufficient condition for applying (P0)c) which
is based on the trivial facts that the exponential function is strictly monotonic increasing, g° has
fixed parameter components v%!,...,v%9 and that T possesses mixed moments of arbitrary
order with respect to @°y which is equivalent to ¢g°v. In the proof of Proposition 3.11 we
construct a corresponding supremum function m;, . j., n = 1,...,5, essentially by a product
of (¢°) ! and majorant densities fy:(x;) defined on appropriate regions G;, i = 1,...,m. The
advantage is that we investigate the supremum of a scalar product (¢(v),T(z)) on U(y%*)
instead of the supremum of a ratio of two densities via (3.22). The sufficient condition u® € Z3
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in Proposition 3.11 ensures that py:(x;) € L3(¢°v). If Z, = IR* then the latter condition
certainly holds. But if Z, # IR* as, for instance, for Gaussian families with unknown covariance
matrix, families of negative binomial distributions and Gamma distributions, one has to choose
a suitable component parameter space I' (see section 3.2). (Notice that we do not assume that
CT.(v) C Zs, 1= 1,...,q)

In section 3.2 we use Proposition 3.11 as an elementary (simple) tool for verifying condition
(P0)c) in all examples of exponential families we considered in our work. Thanks to its generality
we do not need to analyze the geometric structure of the densities of F = {f : v € '} to obtain
an appropriate supremum function mj, . ., n =1,...,5. It will be seen in Example 3.15 that
although we generalize the example of Gaussian mixtures given by Keribin (2000), p. 59-60, our
method is much easier to handle since Z, = IRF.

Proposition 3.11 Let the assumptions of Lemma 3.9 and assumption (A1) be satisfied. Suppose
that ¢ : T' — Z = ((T") possesses partial derivatives up to order 5. Furthermore, suppose that
there ezists some € > 0, a disjoint decomposition G1U. . .UG,, = X and some parameters u® € Zs,
i=1,...,m, (see Lemma 3.10) such that for anyl =1,...,q and any x € G;, i =1,...,m,

sup (C(v),T(m)) < <u’,T(az)> ¢"v — a.s.
YEU:(vo+)

Then for all n <5 and all ji,...,jn € {1,...,k} there ezists a function myj, . ;. such that for

anyl=1,...,q

n

f'y PC(’Y

CroCin | S Mtseenin (3.23)

sup
veUe (0t )

and Eg,(m}, ) < oo hold,

Proof of Proposition 3.11:
Obviously, for n € {1,...,5} one has

sup < ( sup | ) ( sup chj(‘.y.).gj ) . (3.24)
’7€Ue(’70£) 'yeﬁs(fyo,l) g ’YEﬁe('Yo’l) 1 n
Firstly, we evaluate sup PCC(7) ¢
= J1 Jn
YEU(y0)

For any & € X one has according to Lemma 3.7 and Remark 3.8

PCCJEW)CM (T(z)) = > {a(Bl,...,Bn)<lf[1EC(7)( 11 T'5>> II = (m)}’

By,...,Bn CA™ sEB; SEAM\ BN
disjoint B"=B1U...UBp
where A" = {1,...,n} and ap,, .. B,) € IR. Since ¢ — E’CTIZ1 .. .T,i’” is continuous due to Propo-

sition 3.6 and ¢ : T' — Z is also continuous, there exists some C% > 0 such that

a(By,....B,) (HEC (HT]S>>‘ < % < .

=1 sEBl

sup max
YEU(Y%1) " digjoint
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Thus we obtain

l
sip [PV @@y < ¢ Y | [ T  eex (329)
YEU(yOt) Byq,...,Bp CAM SsEAN\ BN
disjoint B"=BU...UBp

Secondly, for any & € X one has

sup f(x) (?’él) gozm)< sup )C(C(’)’)))( sup eXP{<C(’Y),T($)>}>

_ 0 _
~ET . (04) g (m) yET(v0 YEU(vy0)

q
because g = 3 7'('? f~0s has fixed component parameters. Since ¢ : I' =+ Z aswellasC : Z, — IR
I=1
are continuous according to assumption and Proposition 3.6, respectively, it follows

vt = sup  C({(7)) < oo
YEU(7O4)
Using formula (3.25) and the above assumptions we define for all n < 5 and all ji,...,75, €

{1,...,k}and forany z € G;, i =1,...,m

Mrrein(@) = CUQG@) e {(wiT@)} Y | [ Tul)|
By,..., BnpCAT SEAT\B™
disjoint B™"=B;U...UBp

where A" ={1,...,n}, C =  Tnax C% and U =  Tax U,
=1,...,q =1,...,q

By construction the relation (3.23) is satisfied and

3 (3.5) 3 - (7(@) Dy (‘17))3 _ 31/
Fresn) = (C0) EG/ (c<ui>)3(g°<m>)2<Bl,_g;m‘ AL 5@]) v

Since u® € Z3, i = 1,...,m, (due to the assumption) it follows that 0 < C(u?) < oo and there
exists some I; € {1,...,q} such that 3u® — 2¢%% € Z,. Consequently, we have for i = 1,...,m

(r(@)Pys(x))®  (35) (r(z))3 exp {<3ui,T(w)>}
C)P(e* @) (r@)u(@))?
r(z) ¢XP {<3'U'z — 2¢04, T(ar:)>}
(mp)? (C(¢OF))?2

l r(x)
(r)C(¢OH))2 C(3uf — 2¢%k

IA

)ﬁ?mi —2¢0k (z)

and we obtain Ejo, (m? ;) 18 less or equal to

jl:---: n

(CU)3i{(wgc(co’lwcl(sui—2<°”i)/ﬁ3“‘—2<°""‘“’)<B > 1o T's("")Di‘(d“’)}'

i=1 ) 1,-..,BnCA™  s€ An\B™
? disjoint B"=BU...UBp




54 Application to Mixtures of Exponential Families

Finally, it follows that Ego,,(m;?h___’jn) < oo forallm <5 and all j1,...,75, € {1,...,k} since the
generating statistic T' possesses mixed moments of arbitrary order with respect to Py _¢ou: p

because of Proposition 3.6. O

We give two further sufficient conditions for applying (P0)c) by the following lemma. Thereby,
the second condition can be interpreted as a special case of Proposition 3.11. The first condition
holds for any family F = {f, : v € T} with fy(z)/fyou: (x) being bounded on U(y%!) x X
and ¢(y) — ¢(v%) € Z, for any v € Uc(y%!), 1 = 1,...,q. Please note, that 0 € Z, does not
necessary hold (e.g. see Example 3.17). The latter condition ensures that (3.26) is well-defined:

I@) o Cew) T
Pl S o) P ) - e T |
c(¢)) )
CCOTC(C () = oy Fem-ctren) @) (3.26)

If for all € X the function r(z) = ¢ (> 0) then for all € X we have f¢-1(¢(y)_¢(you)) (T) =
cP¢(v)—¢(or) (). Please note, if r(z) is not a constant function then P¢(4)_¢(yo)() may be
unbounded on X.

Lemma 3.12 Let the assumptions of Lemma 3.9 and assumption (Al) be satisfied. Suppose
that ¢ : ' — Z = (') possesses partial derivatives up to order 5. Further suppose that there
exists some € > 0 such that one of the following two conditions is fulfilled for anyl=1,...,q:

1) a) 8% = {¢(0) ~ ¢ 1y €Ty} € Z. and
b) there ezists some constant M%! < oo such that sup p¢(z) < MO ¢Ov-a.s.
¢esot

2) Suppose that the assumptions of Proposition 3.11 hold and there exists some i € {1,...,m}
such that K = G; C X is compact with

!W(B > | 1 Tjs(a’)Dgl/(dm) < o

Loemms Bp CAT SEAT\B™
disjoint B"=BU...UBp
for allm <5 and all j1,...,5, € {1,...,k}, where A™ = {1,...,n}. Further suppose that
there exists some constant M € IR such that

sup  (€(7),T(x)) < M forzxeK.
YEU (o)

Then for all n <5 and all jy,...,jn € {1,...,k} there exists a function mj, ;. such that for
alll=1,...,q (3.23) as well as E'go,,(m;’l,___,jn) < o0 hold.

Proof of Lemma 3.12: According to the proof of Proposition 3.11 we evaluate the factors of
(3.24).

1) For any « € X one has

Iy(@) 29 1 ce()

sup < sup —
el (vor) 9°(@) el (yony T C(C(YON)) C(C() — C(v

0.0y Pe(m)—¢(von) (@)
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The ratio of the latter expression on the right hand side is bounded on U, (y%!) by some
U% < o0, since C : Z, — IR is continuous according to Proposition 3.6 and ¢ : ' — Z is
also continuous. Hence, we obtain due to 1)a) and b)

x 1
sup fg( ) < —OUO’lMO’l < o0 gol/—a.s.
7T (ou) 9" (%) T

Using expression (3.25) for  sup
YU (7o)
Jis---5Jn € {1,...,k} the function

p (T(:t:))‘, we define for all n < 5 and all

cM ¥ [ T.@)| , zex\N
My ..0j (T) = S o T

© , ¢EN

where A" = {1,...,n}, N = {w € X : sup pe(x) = oo}, C= max C% and M =
¢esol =1,...,q

max U MO
I=1,c0,q ™1

By construction relation (3.23) is satisfied and Ego,,(m%,___,jn) = @ou(mg?h___,jn) < o0
holds for all n < 5 and all j1,...,j, € {1,...,k} since the generating statistic T' possesses
mixed moments of arbitrary order with respect to @’y thanks to Proposition 3.6 and N
is a g%v-null set according to assumption 1)b).

2) is in the same manner as the proof of Proposition 3.11. O

Now we introduce our main theorem. An illustration of its conditions is given below. Afterwards,
we present the proof of Theorem 3.13.

Theorem 3.13 Let P = {Py:v €I}, T' C IRk, be a minimal k-parametric exponential family
in ¢ and T and let F = {f, : v € T'} is the corresponding family of v-densities in exponential
representation (3.1) with respect to the probability measures of P. Further let { : T' — Z be a
bijective function which ensures the existence of a canonical parameterization {P¢ : { € Z} of
P with p-densities of the form (3.5) or (3.6). Furthermore, we assume that (A1), (A2) as well
as (ID) are satisfied. Let us consider the following conditions:

1

= W N

5

For r: X — [0,00) one has |log(r)| € L1(g%).

¢: T — Z =(¢(T) possesses continuous partial derivatives up to order 5.

Forl=1,...,q the Jacobian matriz O{(7Y)|y=os is regular.

¢(y) € Zy for v € T\{~%1,...,4%9} (see Lemma 3.10).

Forl=1,...,q and for alln <5 and all j1,...,5n € {1,...,k} there ezxists a function

Mgy ,....jn 0nd some € > 0 such that

sup
YEU(voH)

< My

f4
90

<(y)
‘P@'l Cin

and Egou(mg? < o0 hold.

1)



56 Application to Mixtures of Exponential Families

6) The functions T,..., Ty, T;T;, 1 <i < j <k, are v-affinely independent.

7) Forl=1,...,qand all 1 <i<j<k

kE ok
C?,}l' Z Z {Tu,v [(a’n’ Co() |7:70,L> (6’7j Cu(y) ‘7:70,1>

u=1v<u

+ (871 Co ('7)\,,:,,0,1) (awCu('v)\.,:7o,l)] } =0 = ci=0  (327)

1 fi
WhereTu,v:{ 1 or u # v foru,v e {1,... k}.
2

, foru=w

8) Let U C {(u,v) e{l,...,k}?:u< v} and U¢ = {(u,v) e{1l,....k}? :u<w,(u,v) ¢ U}
such that
H = {Tl,...,Tk, T, T, ..., TpyTy, T,Ty, (’U,,’U) S U}

is a set of v-affinely independent functions of mazximal cardinality. Then for any (u,v) €
U€ there ezists a unique k € {1,...,k} and on # 0 such that T, T, = a,TT, with
(min{u, x}, max{u, k}), (min{v, }, max{v,k}) € U holds.

9) Let Q=q and p=q+ 1 and let U and U¢ from 8). For (u,v) € UC let
H(u,v) = {,% e{1,...,k} : T,T, = o, T, Ty for some o, # O},

H= U(u,u)er H(u,v), H* ={1,...,k}\H and I = {(1,1),...,(k,k)}. Then |H(u,v)| =1
for (u,v) € U® and for any (i,7) €e UUI and any h € {1,...,q} one has

C?,j { Z |: (a'y,- C’U(’Y)‘»y:ayﬁ,h) (8’)’j Cu('7)|7:7o,h)

(u,v)eU

+ (87]‘ Co(y) ‘7:70,11 ) (a’n Cu() |’Y:7O,h ) ]
+ Z |: (8%' Cul() ‘7:70,;; ) (67]‘ Cu() |7:70,h ) :|

uceH¢®

+ Z |: Qg (a’)’i €16) |7:7o,h) (a'yj Cu() ‘7:70,h)

(u,w)eUC
wK€H (u,v)

+oy (8%. Co (’7) |7:70,h ) (a'yq; Cu ('7) ‘7:70,;1 )

+ (87]-Cn('7)\7:,,0,h)(ayicn(v)l,,:vo,h)]} =0 = ;=0 (328

10) Let G1 = {f,y 1y € I‘} for T' C R? and Gor = {7r1f71 + mofe 1 (Y1, 73) € T, we 7T2},
where

0,1 0,1
= {7 €T x Tyt =% < 2 =%, b2 =!I < g =51}

Furthermore, 0y,C2(Y)|y=yo1r # 0, the functions T, T, T1T>, ToT are v-affinely indepen-
dent and there exists a constant o 7% 0 such that To = oT\Ty holds.
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Then the following statements hold:

1),2),5 = (P0) 2),3),4),8),9 = (M),
2),3),4) = (P1t) , 2),3),4),10) = (M2)
2),3),4),6),7) = (P1)

Before we prove Theorem 3.13 we give an illustration of its conditions 1)-10):

1) Property (P0)a) and condition 1) are equivalent since |log(fy)| = [log(f¢(y))| + [log(r)| and
|log(f+)| € L1(¢°v) for any v € I' (what will be seen in the proof of Theorem 3.13).

2) As mentioned above, all properties (P0), (P1), (P1 t), (M1) and (M2) require the existence
of partial derivatives of f, with respect to «. Since (P0) requires partial derivatives up to the
fifth order, condition 2) is introduced which is a sufficient condition to apply Lemma 3.9.

3) Property (P1 t) assumes among other things the linear independence of 8”{;’%, i=1,...,k,
l=1,...,q, in Ly(¢°v). We will prove that (P1 t) holds iff 8¢¢()|you, I = 1,...,q, is regular.
The argumentation is based on the fact that 77, . .., Ty are v-affinely independent due to Theorem

3.5 (since P is minimal k-parametric). This concept is also of interest to ensure (P1), (M1) and
(M2) since (P1 t) is a special case of these properties.

4) According to Lemma 3.10 condition 4) leads to 5} € Ly(g%v) as assumed by (P1) and (P1 t).

5) Evaluating 0y, ...0y, fy (foralln <5andalliy,...,i, € {1,...,k}) according to Lemma 3.9
leads to the sufficient condition 5) for applying property (P0)c). As previously mentioned
Proposition 3.11 gives a sufficient condition for condition 5) to hold.

f_—y f,yo,l a’yi f"r|70,l a‘rﬂj f‘r‘qo"

6) Roughly speaking, property (P1) assumes that B T p— pu are linearly

independent in Lo(g%v). We give sufficient conditions for (P1) to hold by condition 6) on T
and condition 7) on the parameter function ¢, respectively, since these functions describe the
properties of the corresponding exponential family as well as the properties of the corresponding
v-densities and their derivatives. Thereby, condition 6) as well as condition 7) result from
evaluating the linear combination of the above-mentioned functions.

7) Condition 7) is very technical. The higher the dimension k of the parameter space I', the more
difficult it will be to verify condition 7). Simple computations show that a sufficient condition
for ¢} =0,i=1,...,k, to hold in (3.27) is given by

k 2
(Za’ﬁgj(’Y)‘.’_,’,o,z) 7& 0. (329)
j=1

This means that the sum of elements in each column of the Jacobian matrix 0y{()|y=~o. is not
equal to 0. Notice that property 7) only uses the first order partial derivatives of ¢ : I' — ¢(T").

8) Corresponding to item 6) and 7), sufficient conditions for (M1) to hold are given by condition
8) and 9). In condition 8) the set U is fixed since we consider exponential families in fized
¢:T — R* and fized T : ¥ — IR*. This means that U does not depend on any h € {1,...,q¢}
while the sets Uy, given in (M1) do. But in condition 9) we make requirements on the derivatives
of ¢ :T'— ¢(T') at the points ¥%* h=1,...,q.
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9) The technical condition 9) is equivalent to condition 7) if dim(I') = & < 2. Simple com-
putations show that a sufficient condition for c?z =0,7=1,...,k, to hold in (3.28) is given
by

k 2
( Z a%‘ Cj (7) ‘7:70,;;) - Z ((2 - 20%) (8’)’1 gu (7) ‘7:70,;.)(8%’ g’u ('7) |7:70,h )) 7é 0. (330)

(w,v)eEUC
KEH (u,v)

If ap = 1for all K € H =y y)cpe H(u,v) then (3.30) is equivalent to (3.29).

u,v
Some useful sufficient (and necessary) conditions for condition 7) and condition 9) to hold are
given below in Lemma 3.14.

10) Finally, the technical condition 10) leads (together with 2), 3) and 4)) to (M2).

Notice that condition 1) may imply a restriction of X while condition 4) and 5) hold for appro-
priate parameter space I'.

Lemma 3.14 Let the assumptions of Lemma 3.9 as well as (A1) be satisfied. Let conditions 3),
7) as well as 9) of Theorem 3.13 be satisfied. Then the following statements hold:

1) a) If k=1 then conditions 3) and 7) are equivalent.
b) If k € {1,2} then condition 7) and condition 9) are equivalent since U¢ = ().

2) Suppose that for 1 =1,...,q the Jacobian matriz of ¢ : T — {(T") with respect to v at the
point vt is diagonal. Then

a) conditions 3) and 7) are equivalent,

b) conditions 3) and 9) are equivalent.
Proof of Lemma 3.14:

1) a) For k =1 we have dim([') = dim(Z) =1 and for [ € {1,...,q} it is obvious that

2
{c(l):ll (a’h Cl(’)’)‘,y:,yo,l) =0 = c(l):ll = 0} & det (a’h G (7)‘7:70,1) #0

& 0Oy §1('7)|7 is regular.

Additionally, we have H = {T1,T\T 1} and U = U®¢ = ) according to condition 8) of
Theorem 3.13.

b) For £k = 1 condition 7) and 9) are equivalent since U = U® = ) (see 1)a)) and
He¢ = {1}.
For k = 2 we use the abbreviation 0;(y, = 0y, Cu(Y)|y=vor, t,u = 1,2, 1 = 1,...,q.
Condition 7) is equivalent to

2
Vie{l,....q: (G +a6) =0 = i =0,
(016 +016) (061 + 026) =0 = =0,

2
Cg:lQ ((92C1 + BQCQ) =0 = Cg:é =0.
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2)

Assume that there exist some a1, as # 0 such that 71Ty = ayTh'Ty or Th'To = asThTh
hold. This contradicts the assumption that 77 and 75 are linearly independent in
Lg(goll). Thus we have H = {Tl,TQ,TlTl,TQTQ,TlTQ}, U = {(1,2)} and U€ = @
according to condition 8) of Theorem 3.13. As H¢ = {1,2} condition 9) is equivalent
to

Vhe{l,....q}: cll{[ (060) (2n2) ] + [(61C1)2+ (31C2)2]} —0 = &=y,
1 [(06)(0) + (36) (o)
(06)(050) + (3) (3]} =0 = o
8 [2o) ()] + [(3)"+ (8]} -0 = -

Obviously, condition 7) and 9) are equivalent for k£ = 2.

a) Forl € {1,...,q} and 1 <37 < j <k formula (3.27) is equivalent to

{C?,,yl' (a%‘Ci('Y)H:‘yo") (8’)’]' Cj('7)|7:70,l) = 0} = COJZ 0

which is equivalent to

k
det (9r¢(V)]y_yos ) = H 03, (Y) ly=ryou ) # 0. (3.31)

b) Let U be given as in condition 8) of Theorem 3.13 and let I = {(1,1),...,(k,k)}.
For h € {1,...,q} and (4,5) € U UT formula (3.28) is equivalent to

y aﬁ (87,- Ci(7)|7=’y°”‘) (8’)’]‘ Cj(’7)|7=7°"‘) =0 for (u,v) = (4,j) € U® and
Huv) ={k}, ax #0,
C?,j (a'ini('Y)H:’yO’h) (8’)’]‘ Cj(’7)|7=7°"‘) =0 for (u,v) = (1,j) €eUUI

which is obviously equivalent to (3.31). O

Although Lemma 3.14 does not shed much light on the meaning of the technical conditions
7) and 9), it allows us to show that the asymptotic theory from [DCGY99] is applicable to m-
dimensional Gaussian mixtures with unknown mean and arbitrary known covariance matrix, see
Example 3.15.

Proof of Theorem 3.13:

(PO)

a) For any v € T, T C IR¥, and any = € X one has

1og (12 ()| <" { max|rogteic} + {maxzm @)/} + tog(r (@)L
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Obviously, k1 = maxyer | log{C(C(’y))}‘ < oo since T' is compact due to (Al) and
¢ — C(¢) as well as v — ((v) are continuous according to Proposition 3.6 and
condition 2), respectively. Since ke = max max |(;(y)| is also finite, we define a

verl 1<i<k
function h: X — IR by

k
hz) = r +@Z|Ti(m)| + |log(r(z))| , = € X.

)
1L

. +/¢zl§; (ﬁ’g / 1T (@) | Feoyous (&) i ) / og(r())|¢ () v(d).

According to Proposition 3.6 the generating statistic T = (T1,...,T))" possesses
mixed moments of arbitrary order with respect to ﬁC(’YO’l) uw,l=1,...,q, and thus we

obtain h € Li(¢°v) due to condition 1).

From condition 2), Lemma 3.9 and ¢°(x) (314 r(x)w°(x) it follows for [ € {1,...,q}
and for all n <5 and all 41,...,i, € {1,...,k} that

a’Yi a’h f’)‘(w)|701 3 0

: - ’ x)v(de

/ e
< K aCJl 8ij (V)ﬁC(’Y) (.’B) |7o,l 3

r(z)a(z)

@0 () p(dx) (3.32)

m=1j1=1 Jm=1

holds, where A™ = {1,...,n} and

m
K = nia.x Z ‘b(Au LA HBA?Cji(’Y)|'y:7°J < o0 (333)
me{l,...,n} AT Am 40 i1
disjoint

ATU..UAR, =AR

using the compactness assumption on I' according to (A1) as well as the continuity
of the partial derivatives of ¢ : ' — Z due to assumption 2). Remark 3.8 and 7rl0 >0
(due to (Al)) imply that the left hand side of formula (3.32) is less or equal to

Peiyor) (@) |?

3 '701) T 3 ~0 d
;;,EJ‘ TN || )
k
= K3Z (wg >, Z LY |7r?|‘3/\P§j°g]m ))‘3ﬁc(7o,i)(m)u(dw)>.
i=1 m=1j1=1  jp=1

According to Remark 3.8 Pfj(7ozj) (T'(x)) is a polynomial in the components of T'(x)
1 Cjm

and since T = (T1,...,T)" possesses mixed moments with respect to p¢(yo.:)p of

arbitrary order thanks to Proposition 3.6 it follows directly (P0)b).
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¢) According to (A1) all true component parameters v%! [ = 1,...,q, are distinct
accumulation points of I'. Hence, there exists some € > 0 such that foralll =1,...,q
one has {y%!} # U.(y%!) C T'. Due to assumption 2) we define «; according to (3.33)
and we obtain Kk = max k; < oo. Thus it follows from Lemma 3.9 that

=1,...,q
8%'1 ---a%-nf’v(w)
sup 5
7Eﬁe(’y°') g (a:)
(@) O, (v) -+ O, (1) Pe(y) (®)
< Yy Y w [P g%;)
m= 1]1 1 Jm—l'YEUE('YOL)

s Yy an [B@l )

m=1j1=1 Jm_l’YEUE('YOL) g

for all n < 5 and and all 41,...,4, € {1,...,k}. Finally, assumption 5) leads to
property (P0)c).

(P1t) Let v* € T\{7y%1,...,4%9} for i € {1,...,p — q} be a set of distinct points. Assumption
2) and 4) (together with Proposition 3.6, Remark 3.8 and Lemma 3.10) imply that the

functions
. 0. o)
%, f;g’l , 71f’yg|g:70’l e, 7kf7Jg:70’l Jd=1,...,q,i€{1,...,p—q}
belong to Ly(¢°v). We will verify that
p—q q q k
Yoafy (@) + Y Wfpor@) + D) 0 Sy (@) o =0 v-as. (3.34)
=1 =1 I=1 i=1
S a1 =... :ap_q:b?zc?’l =0 foralll=1,...,qand alli=1,... k.

Due to Lemma 3.9 the sum of the first order derivatives on the left hand side of (3.34) is
equal to

9 k k
) 2. {c > (89 @Pen (@), 7) (8%»4} (7)\,,:,,0,1)}

=1 i=1 j=1
z) Zq: zk: { (T(@) — Beou T, )iiges () Ek: S CNICH| . } (3.35)
I=1j=1 i=1

Thus (3.34) is equivalent to

>~ P (T(@) exp (¢, T@))) + Y Paos gy, (T(@)) exp ((¢(7°), T(=)))
=1 =1

= 0 v-—as. (3.36)

for suitable Al = (All,...,Afc)' € Rk, Bpe Rforl =1,...,p— q and suitable A% =
A% Ay e R, By, € R for I = 1,...,q, and polynomials in the components of
( 1 k ; I » 4, poly 1Y

T(x) given by

Py (T Z AlTy(x) + B;.
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Notice that ¢(v1),...,{(AP~9), ¢(7%1), ..., ((7%9) are distinct points since v1,...,+P~9,
~%1 ..., %49 are assumed to be distinct and ¢ : I' — ¢(T) is bijective. Additionally,
Ti,...,T} are v-affinely independent (see Proposition 3.5) and thus we obtain similar to
Lemma A.3 that (3.36) and (3.34) are equivalent to

Vie{l,....,p—q}: Pup(T(x)) = 0 v-—as. and
Vie{l,....q}:  Puoup, (T(x)) = 0 v-as

Using again the v-affine independence of T4, ..., T} (see Definition 3.4) it follows

vie{l,....p—q}: Al=0, B, =0 and
Vie{l,...,q}: A% =0, By, =0.

Notice that the first two multiple sums on the left hand side of (3.34) do not depend on the
components of T'(x). Hence, we verify separately if the first two multiple sums of (3.34)
are null then a; = ... =a, 4 =b) = ... = b7 = 0 and if the right hand side of (3.35) is
null then ¢;* =0 foralll=1,...,gand all i = 1,..., k.

According to Remark 2.1 (due to (ID)) the functions fyo:, [ =1,...,q are v-a.e. linearly
independent over the field of real numbers. As fyo:(x) = r(x)peos () holds, formula
(3.35) is equal to 0 v-a.s. iff

k k
Vi=1,...,q: Z {Jy(a:)f,yo,z (m)ch’l (8%.{]-('7)‘7:70’,)} = 0 v—a.s. (3.37)
j=1 i=1

hold. Since the partial derivatives of {(7) : I' = ¢(T") do not depend on @ and the functions
Ti,...,Ty are v-affinely independent (see Proposition 3.5), formula (3.37) implies that

k
Vi=1,...,q: ch’l(67icj(7)|7:70,l) =0 forallj=1,...,k
i=1
which is equivalent to
k
Vi=1,,q: Y &' 0, C(0)]|y_yor = O (3.38)
i=1
Thereby, for any [ = 1,...,q, (3.38) is a linear combination of all column vectors of

the Jacobian matrix 0,¢(7)|y=~o: which is regular according to assumption 3). Thus we
obtain

q k
chg’lawfv(“’)\v:qo,z =0 v-as. & cg’l =0 foralll=1,...,gand i =1,...,k.
1=1 i=1

The further use of Remark 2.1 (due to (ID)) implies that fy:, fyou, © = 1,...,p — g,
I=1,...,q, are v-a.s. linearly independent over the field of real numbers.

Thus it follows a; = ... =ap =b) =c' =0foralll=1,...,gand all i = 1,..., k.
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(P1) Let p; < p—gandlet v* € T\{y%1,...,4%9} for I € {1,...,p1} be a set of distinct points.

Assumption 2) and 4) (together with Proposition 3.6, Remark 3.8 and Lemma 3.10) imply
that the functions

f’)‘*” f’yo" a'yj f'y ‘7:70,1 a’Yi’Yj f‘Y |7:10,1'
P g g° ’ g° ’
i e{l,....p}, ' €{o(1),...,0(p)}, I=1,...,q, 5, =1,...,k withi < j

belong to Ly(¢°v). We will show that

P1 q q9 k a k k
0,l
D_aufy (@) +3 b fes (@) 43D 6 0y @)y yon +D0D D6 Oy (@)
=1 =1 =1 i=1 =1 i=1 j=i
= 0 v —a.s. (3.39)
=3 alz...:apl:b?:cg’l:cg”;:o foralll=1,...,qand 1 << j<k.

Due to Lemma 3.9 the sum of first order partial derivatives on the left hand side of (3.39)

is given by (3.35) and the sum of the second order partial derivatives on the left hand side
of (3.39) is equal to

k k
iZZ{c [22(3@(7 P @)y _y00 ) (85N 500 ) (85 Gy

=1 i=1 j=1 u=1v=1
k
3 (e @y as) (22, o] e | Jri@) (a0
v=1

According to Remark 3.8 the partial derivatives of p¢(4) with respect to () are given
by the product of a corresponding polynomial in the components of T'(z) and p¢ () () =
r(x) fy(x) itself. Further it follows from Remark 3.8 that polynomials in T, ()T, (x) ap-
pear only when evaluating the corresponding terms of the second order partial derivatives
Bcu(7)gv(7)ﬁc(7)(w)‘7:70,1. Thus (3.39) is equivalent to

> Pas e (T@)exp (¢, T@))) + 3 Pass, sy, (T(@)) exp ((C(4*H), T(w)))
=1

=1
=0 v—a.s. (3.41)

for suitable A' = (AL, : 1<i<j<kyeR"2 6B =(Bl,., B cRCecR
’ LGSV
, B =
(B?’l, - ,B,(c”)’ € Rk, Cy; € R for | = 1,...,q, and polynomials in the components of
T(x) given by

for I = 1,...,p; and for suitable A% = (.Aa’]l. 11 <i<j<k)e R =

k

PAI Bl Cl Z Z Al,] ) Z lej—'l(x) + Cl.

=1 j=¢ =1

Notice that ¢(41),...,¢(¥Pt), ¢(v%1),...,¢(¥®9) are distinct points since v1,...,vPL,
~%1 .. %4 are assumed to be distinct and ¢ : ' — ¢(T') is bijective. Additionally,
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Ti,..., Ty, T;Tj, 1 < i < j < k, are v-affinely independent according to assumption 6) and
thus we obtain due Lemma A.3 that (3.41) is equivalent to

Vie{l,...,p1}: Pppco(T(®) = 0 v-—as. and
Vie{l,...,q}:  Ppoapoig, (T(®) = 0 v-as

Using again the v-affine independence of T1,..., Ty, T;T, 1 < i < j < k, (see Definition
3.4) it follows

Vie{l,...,pi}: Al=0,B'=0, ;=0 and
Vie{l,...,q}: A% =0, B% =0, Co, = 0.

Hence, we verify separately if the first three multiple sums on the left hand side of (3.39)
are equal to null then a; = ... = ap, = b? = cg’l =0foralll=1,...,q,2=1,...,k, and
if the last multiple sum on the left hand side of (3.39) is equal to null then c?”]l- =0 for all
l=1,...,¢,1<i<j<k.

As aforesaid polynomials in T, ()T, (x) appear on the left hand side of (3.39) only when
evaluating the corresponding terms in (3.40) of the second order partial derivatives

Ot (o (m)Pe(y) () ‘7:70’1 . Thus we show first of all, that for any [ € {1,..., ¢} the following
statement holds:

k k k k
50 Y { et X (@1 @) 0160 0l )2 Dy )| Fros ()} =00

i=1 j=i u=1rv=1

= cpf=0foralli,j€{l,...k} withi <. (3.42)
Since fqou(x) # 0 occurs in all terms we study (3.42) without the factor f,o:(x). For
u,v € {1,...,k} let
R 1 , foru#w
WL, foru=n.
Then the equation on left hand side of the implication (3.42) (without the factor fyo:(x))
is v-a.s. is equivalent to

> {05 5 Ekj{(m,vn(mn(w)) [(awcm) o) (6D )

i=1 j=i u=1v<u
+(8’Yj CU(7)|7:70,1) (aviCU('Y)|7:,yo,l):| }} =0v—a.s.

k

Assumption 6) and 7) lead to ¢} = 0 for all i,j € {1,...k} with i < j.

The remaining polynomials in the components of T'(x) of (3.39) are given by Tj(zx),
j = 1,...,k and appear in formula (3.35) when evaluating the corresponding terms of
the first order partial derivatives O, (4)D¢ () (:1:)‘7:70,,. The rest of the proof follows the
same lines as the proof of (P1 t) and uses condition 3).
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(M1) Assumption 2) and 4) (together with Proposition 3.6, Remark 3.8 and Lemma 3.10) imply
that the functions

f'yU,l a’h f7 |7:70,l 87271 f’Y ‘7:70,'1 6’71’ ’Yj’ f7 |7:70ah
g0’ q° ’ q° ’ q°
I=1,...,q,i=1,...,k, (i,5)eUfor he{1,...,q}

belong to Ly(¢°v). We will show that

q q k k
Z by foyor () + Z Z ¢iOy,; f~(z 7 O + Z cgl,i O [~ () |»7:»70,h +
=1

=1 =1 =1

Z C?,j a7i7jf7(w)|7:.7o,h = 0v—a.s. (3.43)

(i,)€U
& b=d=d;=c;=0 foralll=1,...,q, i=1,...,k and (i,j) € U.

We follow the idea of the proof of (P1) and consider first of all those expressions in which
polynomials in Ty (x)T,(x) appear. More precisely, corresponding to the remarks after
(3.42) we omit the factor fyor = 7(x)p¢(yon)(x) and verify that

Eok
ZZ{ (Tu,vTu(w)Tv(m)) Z zy [( %Cv( )‘.,:70,;1)(873'@(’7)|7:7o,h) +

u=1v<u (i.)eUuI
(8’7,’ Cv('7)|,7:7o,;.)(3w€u("/) ‘7—70”')]} =0 v —a.s.

= ;=0 forall (i,j) € UUI, where I ={(1,1),(2,2),...,(k,k)}. (3.44)

The equation on the left hand side of the implication (3.44) is equivalent to

> {di{ T (m@n@)] (0.6mln) (2560l 0)

(i,j)EUUI (uw)eU
+ (a’Yj Co () |7:70vh> (8%' Gu(7) |’Y:"/°’h ):|
+ 3 (o) | () ()
u€eH®
+ Y (Tn<m)Tn<w>)[ s (18N —yom ) (82 0] o)
(uv)eUe
rk€H (u,v)
+ e (0 )y ) (026 o)
b (2,60 on) (@) | )
= 0 v—a.s.,

where H¢ and H(u,v) are defined in 9). Assumption 8) and 9) lead to c? Jh = 0 for all
(4,7) e UUL.

The remaining polynomials in the components of T'(x) of (3.43) belong to the first order

partial derivatives O, (y)P¢(v) (w)|7:70’,‘. The rest of the proof follows the same lines as

the proof of (P1 t) and uses condition 3).
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(M2) Assumption 2) and 4) (together with Proposition 3.6, Remark 3.8 and Lemma 3.10) imply
that the functions

f,yo,1 871 f')’ ‘7:70,1 8’)’2 f’)‘ |7:70,1 8’)’1’72 f"r ‘7:70,1 and 8’72’)’2 f’)‘ ‘7:70,1
90 ’ g0 ’ gO ’ gO go

belong to Ly(¢°v). We will show that

2 2
bfoor (@) + ) il fy(@)| o + D Cip0yina Sy (@) 0 =0 v —as.
i=1 i=1
&S b=c=c = Cl2 =C22 = 0. (345)

We follow the idea of the proof of (P1) and consider, firstly, those expressions to which
the polynomials T}, (x)T,(x) belong. Thus we show

2 2 2
@ e [Z > (B@IT@) (316 ) (2a )| @)
= 0 v-—a.s.

= (€12 =Cp2 = 0.

In the following proof we use the abbreviation 0;¢, = 0y;(y(Y)|y=~o02 since the true com-
ponent parameter v%1 is uniquely defined for ¢ = 1.

According to assumption 10) one has Tp, = o171y for o # 0 and we assign oT17T; to the
first order partial derivatives in (3.46). Consequently, it is sufficient to show that

T (@)To(@){ e1 ((01:)(B01) + (9101)(Ba) ) +262(B51) (Do) } =0 v — a5, (3.46)
Ty (:B)TQ(.’B){01,2(81C2)(62C2) + C2’2(82C2)2} =0 v-—a.s. (3.47)

= C(C12=0C2= 0.

Thereby, we omit the factor fyo.:. Using that 7775 and T5T5 are v-affinely independent
according to 10) and that dx(o # 0 leads to

(3.47) 012
2 = —Cloo—

" 02(

and inserting the latter expression in (3.46) results in

e12((O10)(362) — (1G)(B1)) = erp det (83¢(N)ly—yor) = 0.

It follows directly that ¢; 2 = c22 = 0 since the Jacobian matrix 0y{(y)|y=~o.: is regular
according to assumption 3). (Notice that cp2 can take any value in IR if 92(s = 0.)

The remaining polynomials in 77 () and T(x) appear in formula (3.35) when evaluating
the corresponding terms of the first order partial derivatives. Thus the remaining proof is
in the same manner as the proof of (P1 t). O
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3.3. Application to Specific Exponential Families

In this section we prove with the help of our main Theorem 3.13 the applicability of the theory
from [DCGYY] to various examples of finite mixtures families. Our main interest is the applica-
bility to Gaussian families. Thanks to our modification (M1) a generalization of the theory from
[DCGYI9] is applicable to bivariate Gaussian families with unknown covariance matrix and known
mean, see Example 3.19. Best to our knowledge, we are the first to give sufficient conditions for
deriving a limiting distribution for testing homogeneity against a two population mixture of such
bivariate Gaussian families. Furthermore, due to our modification (M2), we apply the theory
from [DCGY9] to the test homogeneity against a two population mixture of univariate Gaussian
with unknown mean and unknown variance, see Example 3.18. Our results corroborate Garel’s
conjecture (see Garel (2001)) that an asymptotic distribution of the LRT statistic exists for this
test, but under a suitable restriction of the parameter space of the two population model, only.

It will be seen in a variety of examples that the structure of the component parameter space
I' C IR* is of considerable importance to ensure the applicability of Theorem 3.13. If the
corresponding canonical parameter space Z, = IR¥, we define T' such that (A1) and (A2) are
satisfied. In the case of Z, # IR* we have to make additional restrictions on I', and the component
parameter space may depend on the true parameters y%1,... 049,

It will be seen that it is not difficult to choose an appropriate one-dimensional parameter space
for testing homogeneity against a p population mixture such that (A1), (A2) as well as the
conditions 4) and 5) of Theorem 3.13 hold. For such tests the conditions 7) and 9) of Theorem
3.13 are always satisfied according to Lemma 3.14. Furthermore, if the parameter function
¢ : T — ¢(T) is bijective, five times differentiable with 8,((7y)|y=o1 # 0, |log(r)| € La(¢°v) and
(ID) holds, then the theory from [DCG99] is applicable. The latter conditions are quite easy to
verify in the examples given here. As previously mentioned, Garel (2005) makes assumptions
based on the second order derivatives of the log-density for testing homogeneity against a two
population mixture founded on a one-dimensional parameter space. In addition to these general
assumptions he does not use a reparameterization. In the case of Gaussian mixtures his results
are consistent with those given in [DCGY99] (see Garel (2001), p. 328). Thus the advantage of
the theory from [DCGY9] lies in the generality of mixtures and the arbitrary dimensionality of
the parameter space.

In the introduction we have already given an outline of examples of the log-LRT in finite mixtures
investigated in literature. In the following examples we will connect some of them with our
results.

3.3.1. Application to Gaussian Families

In this subsection we make use of Theorem 3.13 to verify the applicability of the asymptotic
theory from [DCGY99] to several mixture models of Gaussian families. Thus we check the cor-
responding conditions of Theorem 3.13 as well as (Al) and (A2). The p-weakly identifiability
condition (ID) always holds since the family of m-dimensional Gaussian distributions generates
identifiable finite mixtures according to Yakowitz and Spragins (1968), Proposition 2 (see here,
Remark 2.1).

It is well known that the Lebesgue A-density of a m-dimensional N (u, X)-distribution has the
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form

1 1 o
fus (@) = T exp{ — 5@ —w'E) (@ ,u)} A—as. (348

where (X, X) = (IR™, B™).

Keribin (2000), Theorem 4.1, says that the theory from [DCGY9] is applicable to multivariate
Gaussian mixtures with unknown mean and known covariance matrix ¥ = diag(c?,...,0?). In
the corresponding proof on the applicability of (P0)c) she derives, firstly, a function f majorizing
F=Afu:pel}, TC IR* compact. Secondly, she derives a minorant function QO for the

q

true density function g = 3 7 fy0.. Consequently, she obtains sup%% < gi Finally, she
=1 pel’ =

uses the fact, that the partial derivatives of f, are equal to a product of f, itself and some

polynomial in T'(x), to show validity of (P0)c). To obtain the minorant and the majorant
function, Keribin (2000) uses the fact that for known diag(o?,...,0?%) and any p € T the height
lines of the k-dimensional (k > 2) Gaussian density function f,(x) are spheres. Unfortunately,
f and i do not suffer for arbitrary covariance matrices. Even in the case of o1 # o9 and
¥ = diag((01)?,...,(0k)?), k > 2, one has to find a new way for the construction of a minorant
and a majorant function such that the above mentioned relation holds, since the height lines
of the corresponding density function f,(x) are equal to ellipsoids. Thanks to our Proposition
3.11 we have a quite simple method to verify (P0)c) for multivariate Gaussian mixtures with
unknown mean and arbitrary known covariance matrix by using the fact that the canonical
parameter space Z, = IR".

Furthermore, we use Proposition 3.11 as elementary simple tool for the verification of (P0)c)
on all examples of exponential families considered in our work. Due to its universality we only
need to investigate the supremum of the scalar product of (¢(v),T(x)) in a neighbourhood
Uy ={yeT: |y —7% <€} forl =1,...,q, instead of analyzing the specific geometric
structure of the densities of F.

Example 3.15 Let P = {N(u, 2% : u € T}, T C RF, be a minimal k-parametric family of
k-dimensional normal distributions with known covariance matrix 3° and unknown mean
p. According to (3.48) the corresponding Lebesgue A-densities in exponential representation (3.1)
are given by

ful®) = A(N)exp{<ﬂ,(20)flw>}r(m) A—a.s.

with €)= o Tla) = ()1, ) = (2t der(5) 5 exp {~ 3w (%)~} = Cls) and
r(z) = exp { -1/ (%) "'z} (ee eg Witting (1985), p. 147). Clearly, one has

Z, (3416 {u ceRF:0<C(p) ! < oo} = IR

Let T' C IR* be an arbitrary set such that (A1) and (A2) hold. Obviously, ¢ :T' = Z = ¢(T) is

bijective.

Condition 1) (of Theorem 3.13) holds since |log(r(z))| = 3|z'(£°)~'z| and T(z) possesses
moments of arbitrary order with respect to fo1 .

2) holds for the identity function ¢ : T — T.

3) holds since the Jacobian matriz 0,¢(p) is equal to the identity matriz Ij.
4) holds since Z, = IRF.
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5) results from the following construction such that the assumptions of Proposition 3.11 are
satisfied:
k k
For (X971 = (s?’j)ij—l , one has (p, (%) 'z) = 2:1:131 Z1 ujs?,j. From the compactness
sJ—Lyeeey 1= 1=

assumption on I’ according to (A1) it follows

k
supzmjsg,ﬂ =85 < oo foriel=A{1,...,k}.
pel s
Let the power set of I be given by S(I) = {Mx,..., My }. We choose the regions Gy, C X,
m=1,...,2F, depending on the components of & = (x1,...,x) whether they are positive
or not, i.e.

Gm = {(:cl,...,a:k)'ef{::ciZOforiEMm and J:Z-<Of0ri€I\Mm}.

)I_ ugn: S, , 1€ My,
u' =-S5 , 1€I\Mp,

peU. (port)i=1
Thus it follows together with Z, = IR* that the assumptions of Proposition 3.11 are satisfied.
6) holds since the functions Tj(z) = (3°) 1y, T;(z)Tj(x) = (8°) 2zzj, 1 <i < j <k, are
obviously A-affinely independent.
7) is according to Lemma 3.14 2)a) equivalent to condition 3).
Consequently, properties (P0) and (P1) hold.

k k k
which leads to  sup > x; Y, ,ujs?’j < Yz forx € Gy and any l=1,... 4.

Hence, the theory given in [DCG99] is applicable to multivariate Gaussian mixtures with known
covariance matrix, unknown mean and arbitrary I such that (A1) as well as (A2) hold due to
Z, = R*.

Our second example is a generalization of Proposition 4.2 of Keribin (2000). She claims (without
proof) that the asymptotic theory in [DCG99] is applicable to Gaussian families with an unknown
variance lower bounded by a strictly positive number. Unfortunately, Z, = (—o0,0)* # IRF and
we have to ensure that 5’01 € Lo(g°)) holds for any v € T as assumed in (P1). We will show that
the asymptotic theory from [DCG99] is applicable to Gaussian families with known mean and
unknown covariance matrix ¥ = diag((c1)?,..., (0k)?) and specific I". For testing one population
against p populations we choose the parameter space I' in a common way as, for instance, given
by [DCGI7], p. 297, and Garel (2001), p. 338 and p. 341. However, in the case of ¢ > 1 we
cannot choose the remaining true component parameters %, I = 2. ..., ¢, as arbitrary elements
of ' if we want to ensure (P0)c) with the aid of Proposition 3.11.

Remark 3.16 The fact that the parameter space I' can depend on the true component parame-
ters leads to difficulties in interpretation. The occurrence of this dependency seems to be inherent
to investigations of asymptotic distributions with canonical parameter space Z, # IRF. We find
such dependent formulations in [DCG99] as well as in Garel (2001) who derives the same de-
pendent parameter spaces I' using a completely different approach. Best to our knowledge there
are no suggestions in literature how to avoid these dependencies.
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Example 3.17 Let P = {N(u°,%) : v = (01,...,04)" € T}, T C RF, be a minimal k-
parametric family of m-dimensional normal distributions with known mean p° and unknown
diagonal covariance matrix ¥ = diag((01)?, ..., (0})?). According to (3.48) the corresponding
Lebesgue A\-densities in exponential representation (3.1) are given by

fr(@) = ((%)kf[w)5exp{—§i(“;7ﬁ)2} Aas.

i=1 i=1
with ¢() = (= 3o =500 ), T(@) = (@1 = 1% (ox — 1)?) s Aly) =
((27r)k 13(@)2)2 = C(¢(7v)) and r(xz) = 1 (see e.g. Witting (1985), p. 144). Clearly, one
has

—
w
N

z, & {CERk:O</exp(((,T(a:)))dw<oo} = (—o0,0)".

1
Forei,...,e5 >0 and ~%1 = (0(1)’ ,...,02

i=1

!
) € x (v/€i, 00) we define the parameter space by
1
2

D= v (262 - )] x x [vaR (260 - )]

Let the remaining distinct true component parameters be given by
F02 4% e ingT)n & (\/a \/g Ugal)_ (3.49)
i=1

¢:T — Z = ¢(T) is bijective since T' C (0,00)%. Obviously, (A1) as well as (A2) are satisfied
and it will be shown below that this construction leads to condition 5) of Theorem 3.13.
Condition 1) (of Theorem 3.13) clearly holds since |log(r(x))| = 0.

2) holds obviously for the function ¢ : T — () since o1,...,0% # 0.
3) holds since the Jacobian matriz 0,¢(7y) is equal to the diagonal matriz diag(al_3, .. "719_3 .

4) By construction of T' it is sufficient to show that there ezists some l € {1,...,q} such that
2¢(y) — ¢(v%) € (—o0,0)F for all v € T\{7'}. Without loss of generality we show that
2¢1 () — 1 (v®Y) < 0 for all v € T\{7*'} due to the form of (: T — Z.

0,1 0,1y2
—2(oy )2+(20(ﬂ;2 )’—=1) < 0 due to Lemma 3.10.
5) results from the following construction by applying Proposition 3.11:

2(o10y
!
Let oM = lsup O'Z(-)’l fori =1,...,k, ut = (— oM +e) 2., — (M + 6)72) and
=1,...,q

Thus it follows 4) from —2(021)2 + o 3,1)2 <
o1

G1 = IR*. Consequently, for any 1 =1,...,q we have

1 517z'—llg 2 - 1 02
sup —§Z< ) < Zuz(af;z—,uz) Jor x € G1.
i=1

veU(yor) “55 7

1

Additionally, for i = 1,...,k we obtain u' € Z, and 3u} — 2{(0?’1) = _3;?(;;::)(3{\1;5)2
fori=1,...,k and sufficient small € > 0 via the construction of T' and (3.49). Thus u' € Zs
due to Lemma 3.10.

6) holds since the functions T;(z) = (z; —p)?, Ti(z)Tj(z) = (z;—pd)?(z;—pd)?, 1 <i < j <k,
are obviously A-affinely independent.

7) is according to Lemma 3.14 2)a) equivalent to condition 3).

Consequently, properties (P0) and (P1) hold.

<0
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Our third example is an application of our modification (M2). We show that our generalization
of the theory given in [DCGY99] is applicable for testing homogeneity against a two popula-
tion mixture of univariate Gaussian population with unknown mean and unknown variance.
More precisely, we verify its applicability of testing g € G1 against g € Go p\Gi, where the
corresponding one population and two population mixture model is given by

G = {fyiv=(wo)er}, (3.50)
g2,M = {g‘n,('yl,'y?) = 7T1f’yl + 772f’72 : (71572) € f‘a m™E 7T2} (351)

with T' being specific restriction on T' x T, see p. 23 Figure 2.1. While the compact parameter
space ' is defined in the same way as in the both latter examples.

As mentioned above the sufficient conditions from [DCG99] for the existence of an limiting
distribution are not satisfied for this kind of test without a modification, since 9,0, f(u0) =
%Bgf(,w) contradicts (P1).

Although we consider a restricted two population model, we do not use a separation condition
on the parameters as Gosh and Sen (1985) do. Garel (2001), p. 342, gives a conjecture on the
asymptotic distribution of the LRT for testing homogeneity against two populations in univariate
Gaussian mixtures with unknown mean and unknown variance (without using a separations
condition). The verification of his conjecture with the help of the methods found in [DCG99]
can be carried out, only, if one restricts the parameter space to the two population mixture
model.

Example 3.18 For p° € R, 0°,1,u > 0, £ € (0, (6°)?) and sufficient small & > 0 let

r = [uo — ¥+ u] X [\/E, V2(c%)2 — 6], (3.52)

P o= {(ha?) er =Tyt =0 <2 =0, 12 = 4] < [o? = 0°}

and let the one population and two population mizture model be given by (3.50) and (3.51),
respectively. Let P = {N(u,0) : v = (p,0)" € T'} be a minimal 2-parametric family of uni-
variate normal distributions with unknown standard deviation ¢ and unknown mean p.
By construction (A1) and (A2) hold for ¢ =1 and v° = (u°,0°)". The corresponding Lebesgue
A-densities of P in exponential representation (3.1) are given by

2

1

2o

exp ( - M—) exp (ﬂm — i:1:2) A —a.s.
2 202 o2 202

with ¢(p,0) = (u/0?,~1/(202))', T(x) = (z,2%), Ap,0) = (270%)72 exp(—4?/(20?)) =
C(¢(u,0)) and r(x) = 1 (see e.g. Witting (1985), p. 144). ¢ : T' — ¢(T) is bijective since
o>0.

f(u,a) (:C)

As z? is growing faster than z for © — +oo we have
Zy 34 {C €eR?>:0< /exp{(C,T(m»}dm < oo} = IR X (—00,0).

Condition 1) (of Theorem 3.13) clearly holds since |log(r(x))| = 0.
2) holds obviously for the function ¢ : T' — ((T) since o # 0.
3) holds since for any (u,0)' €T C IR x (0,00) the Jacobian matriz has the form

—2 —9 -3
docno) = (g 257 ).
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4) Due to Lemma 3.10 it is sufficient to show that for any (u, o)’ € T\{7°} one has
2C(ﬂ50) - C(/j'oa 00) € Z,.
(3.52)

Thus it follows 4) from 2u/o? — p°/(6%)? € R and —525 + 2(010)2 < _2(00)22;((;20()020)2_5) < 0.

5) results from the following construction and applying Proposition 3.11:
For (1/3/2 —1)a° > § > 0 (as used below) and S = max{|u® — 1|, |u® + u|} it follows that

S 2
2z — o - - 2(00$+ g 0 v20

sup (((n,0),T(z)) = sup “F—5— < _§e o
YEUs(7°) YeU5(7°) g - z < 0.

€ 2(c% 4 0)2 7’

Consequently, we define for the regions G1 = [0,00) and G2 = (—0,0) the corresponding
parameters

S 1 ! S 1 !
v (6 T 2(0% + (5)2> < and u ( e’ 2(c%+ (5)2> € 2

. !
respectively. Simple computations lead to 3u® — 2(%, —W) € Z, fori=1,2 (since

(v/3/2 = 1)0® > §). Thus ut € Z3, i = 1,2, due to Lemma 3.10.

10) holds since 8,(a(p,0) = 073 £ 0, Ti(z), To(x), Ti(z)Te(z), To(z)Ta(x) given by x, 2%, x3
and z* are A-affinely independent and Ty(z) = 2? = Ty (x)T(x).

Consequently, properties (P0), (P1 t) and (M2) hold.

Our fourth example is an application of our modification (M1) according to Theorem 3.13.
Best to our knowledge we are the first to give sufficient conditions for deriving a limiting dis-
tribution for testing homogeneity against a mixture of bivariate Gaussian distributions with
arbitrary unknown covariance matrix and known mean. As mentioned above the sufficient
condition (P1) for the existence of a limiting distribution are not satisfied. For instance,

1 . .
801802f(01,02,g)|(J1,02,9)I:(U§J,Jg,0)/ = magagf(al,(m,g)|(UI,U2’9)/:(U(1),03’0)/ which contradicts (P].)

Example 3.19 Let P = {N(u°, %) : v = (01,09,0) €T}, T C (0,00)% x (—1,1), be a minimal
3-parametric family of bivariate normal distributions with unknown covariance matrix
and known mean p°. Without loss of generality we assume that u® = 0 since normal densities
are translation invariant to the conditions of Theorem 3.13. Let

1 0
5 ( (01)? 00192 ) e R VG B e N ( 1,1 812 )
00109 (02) _0.102(%_92) (02)2(1-0?) 52,1 82,2
According to (3.48) the corresponding Lebesgue \-densities in exponential representation as in
(3.1) are given by

1

fiovnn 1,5 e B | S REE G
pymy) = exp 4 — ) —9pn2 = —a.s.
(01,02,0) 11,02 2mo109y/1 — 02 P 2(1-9%) [\oy 901 02 02

! !
with {(01,02,0) = (—81,1, —52,2, —31,2) , T(x) = (%(-’EI)Za %($2)2,$1$2) ,r(x) =1 and A(y) =
-1
(2%0102\/1 - gz) =C(¢(01,092,0)). We have

Zy (34167 {C(O'l,o'ZaQ) € R*:0<C({(01,02,0) " < OO}

= {(G6G) € (=00,0) x (=00,0) x R: (16 — () > 0}
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In the following we give an algorithm how to define a parameter space
r = P‘T(l) Xrgg X Pg,

Lop = [VEu\ /20020 - (@) -], i=12, (359

2

g € (0,2(0?)2(1 - (90)2)), i = 1,2, such that conditions 4), 5) and 9) of Theorem 3.13 are

satisfied. The idea is to choose some 0V,09 > 0 and after it to define Iy successively such that
for any o° € [y the latter mentioned conditions are satisfied:

1. Define 9,09 > 0.

2. Define an interval [r1,r9] with r1 € (—1,0) and ro € (0,1) such that condition 9) of
Theorem 3.13 is satisfied for 0%,09 > 0 and any o° € [r1,72]. Lemma 3.21 1) ensures the
existence of such r1, ro and in its proof an algorithm is given how to find r1 and ro.

3. Define a subset [A,B] C [r1,72] with A € (—1,0) and B € (0,1) such that for 09,069 > 0
and o° € [A, B] we have () € Zo for all v € Lo x Tyo X [A, B]. Lemma 3.21 2) ensures
the ezistence of such A, B and in its proof an algorithm is given how to find A and B, (see
(3.58) and (3.59), respectively). As a consequence condition 4) of Theorem 3.13 is satisfied.

4. Define

T, = [A,B]n [—%(—H\/ﬁ)+g3,%(—1+\/ﬁ)—gg]), (3.54)

eg € (0, %(—1 +v/13)). Then Lemma 3.21 3) ensures the existence of some € > 0 such that
ul,u? e Z3 (ul,u? as given below). Thus Proposition 3.11 is applicable to our below stated
construction to show that condition 5) of Theorem 3.13 is satisfied.

If 0° = 0 then conditions 4), 5) and 9) of Theorem 3.13 are also satisfied for T = Lo xI'5o X [—r,7]
with

1

. . €1 €2 _ 2 _
r o= mln{(2(a?)2 e 2002 — & 64) , 1 65}, (3.55)
€4 € (0, 2(0(1)6)12_51 2(0(2?)2_52) and €5 € (0,1) (what will be seen below).

Clearly, (A1) as well as (A2) hold and {(v) : T — ((T) is bijective.

Condition 1) (of Theorem 3.13) holds since |log(r(z))| = 0.

2) holds for ¢ : T' — ¢(T') since 01,09 # 0, and o # £1.

3) holds since for any (o1,02,0) € T C (0,00)? x (=1,1) the Jacobian matriz has the form

2 0 _ 2@
(01)3(1-0?%) ) (171)299—@2)2
0(01,02,0)6(01,02,0) = 0 R T @Riar (3.56)
_ 1Y _ 0 1402
(01)202(1—p2) a1(02)2(1—0?) og102(1—02)2

-1
which is regular since det (6(01’02’Q)C(0'1, o9, g)) = 4((01)4(02)4(1 — 92)3) £ 0.
4) If o =0 andT = LgoXTgo X [=7,7], 7 as in (3.55), then condition 4) holds due to Lemma 3.20.

IfT' =Tg0 x Iy x I'y, T'y as in (3.54), then condition 4) holds according to the construction
of T, and Lemma 3.21 2).
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5) results from the following construction and applying Proposition 3.11:
Let 4% = (09,09,0%)" €T 59 XLso x Ty, T'y as in (3.54). (Notice that (09,09,0) € T o0 X Lo x

I'y.) We have

1 I 2 I T2 ) 2
sup CHaUaTiU = sup _7[ — —29———|— — :|
~ET(70) < (,0), T( )> ~ET.(+°) 2(1-¢?) (01) 01 09 (02)

Let G = {(a:l,acg)' €R?: zy19 > O}, Gy = {(.’L‘1,.’L‘2)I €ER?: z119 < O} and

ul — (_ 1 B 1 o +¢ )'
B (0 +e)?7 (09 +€)?" (1 — (e +¢)?) (0] —€)(0f — )/’
2 (_ 1 1 o —¢ )'
(07 +€)?" (03 +€)?" (1= (° —€)?) (o] +¢)(03 +¢)
for some € € (0,m), m = min{o},09,1 — |0°|,|0°|L 00} If 0° > O then we have for any

reG,i1=1,2
wp (o) T@) < (w T()

YEU(7°)
and if 0° < 0 then we have
(u?,T(z)) , z€Gy

sup  ({(u,0),T(x)) <
YEU(°) <u1,T(;1:)> ey

In both cases there exists some € € (0,m) such that u',u? € Z3 due to Lemma 3.21 3). Thus

Proposition 3.11 is applicable.
8) is fulfilled for U = {(1,3),(2,3)}, U° = {(1,2)},

#H = {Ti(2), Ts(), Ts(@), T1(2)T1(2), To(@)To(w), Ts(2)T3(x), Ti()Ts(@), T5(z)Ts (=) }
= {%JZ%, %'T%a Z1T2, %-’L‘llla %ZE%, .’E%SE%, %.’E?IIJZ, %.771.77%}
since T (z)To(z) = 1713 = 1T5(2) T ().

9) If o° = 0 then the Jacobian matriz 9(01,02,0)$ (015,02, 0)|yo—(50 50,0y (s€€ (3.56)) is equal to a
diagonal one. As a consequence condition 9) holds due to Lemma 3.14 2)b). If o° # 0,
0° € Ty, then condition 9) holds according to the construction of T, and Lemma 3.21 1).

Consequently, properties (P0), (P1) and (M1) are satisfied.

Lemma 3.20 Let P = {N(u°,%) : v = (01,09,0)" € T} and be given as in Ezample 3.19. Let
70 = (69,59,0) be the true parameter and T = Lo X Lo X [=r, 7] with Ty, 4= 1,2 as in (3.53)

and r as in (3.55). Then for any v = (01,09, 0)' € T\{°} one has ¢(y) € Zy.

Proof of Lemma 3.20:
Due to Lemma 3.10 it is sufficient to show that for any v = (01,02,0)" € T'\{7°} one has
2¢(y) — ¢(7°) € Z,. Thus we show that for any v = (01,09, 0)' € T\{7°}

209

Po@0-¢) 3
o1 (501 = @2 o?(1—22) 7102(1=07) _ (21,1 m)

2 2(69)2—(02)2(1-0%)
“anl @ (@) 21 22
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is positive definite according to the form of Z,.

We have 21 1,222 > 0 for any (01,02,0)" € P‘T? X I‘Ug X [—r,r] since

20 = (0:2(1= ) > 20D - (20 -e)(1-0) > 0

according to the definition of T 0, €; € (0,(0?)?), i = 1,2 and r € (0,1). Furthermore, for any
(01,02,0)" € Tyo x Ty x [—r,7] one has

Loy D002 — 2(00)2(02)? — 201)2(09)? + (01)2(02)(1 — 6)
det (227 - (=) = (002 (00)2(01)2(02)2(1 — 22)

(209)% = (01)?) (2(68)? = (02)?) = &(01)2(02)*
(@@ (@1)2(02)°(1 = @)

and

(269)? = (1)?) (2(09)? - (2)?)

dt(22*1—2°*1)>0 & > 0%
‘ ) (P °
For any v = (01,09, 0)' € T\{+°} we obtain
(200D = ) (2 ~ (@) o, o 0m L,
r
(01)?(02)? 2(09)2 — &1 2(09)% — &9 = @
by making use of the form of T. Consequently, 25~ — (29)~! is positive definite. |

Lemma 3.21 Let P = {N(u%, %) : v = (01,092,0)" € T} be given as in Ezample 3.19.

1) Let 09 > 0, i = 1,2. Then there exist T1,72 with r1 € (—1,0) and ro € (0,1) such that
condition 9) of Theorem 3.13 is satisfied for any o° € [r1,r2].

2) Let o) >0,i=1,2, and [r1,72] be given as in 1). Then there ezist A, B with A € (—1,0),
€ (0,1) and [A, B] C [r1,79] such that for any v = (01,02,0)" € T\{7¥°} one has
C( ) € Zo, where 4° € T =T 00 X Uyo x [A, B] and

= [Va 2P - (@) —=i ], i=1.2
for some &; with (69)*(1 — (0°)?) > &; >0, i =1,2.

3) Let 4% = (09,09,0) €T 00 X0 x Ty, Tpo,i=1,2, as in (3.53) and T, as in (3.54). Then
there ezists some € € (0, m) m = mln{01,02, 1— 0%, %100}, such that

ul — ( 1 1 QO +e )' cz
— - T ) 3
(0 +€)27 (08 +€)?" (1 —2)(of —€)(0f —¢)
1 1 o —¢ 1.
uc = , , € Zs.
@+ @+ T-) (ol - o) —2)
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Proof of Lemma 3.21:
1) For (i,5) e UUI ={(1,1),(2,2),(3,3),(1,3),(2,3)} formula (3.28) can be written as
g P g0y (@) =0 = cig=0 for (i,7) € UUT={(1,1),(2,2),(3,3),(1,3), (2,3)}

which certainly holds if pz;j?,ag)(go) # 0 for any (4,j) e UUI.

In the following we use the abbreviation 0;(; = 8i<j(’7)|~y:(a?,ag,g)' for i,5 = 1,...,3.
Since 1T3( )T3(z) = i(wlxg) = Ti(x)Ty(x) we have U = {(1,3),(2,3)}, U¢ = {(1,2)},
a3 = 1, H(1,2) = {3}, H = {3} and H® = {1,2}. For ¢ € (—1,1) we obtain (with
MATHEMATICA)

pz 0 ,0(0) (.20 (31C1 +01¢2 + 31C3)2 — 3(81€1)(01¢2)
(3.56) ( 2 _ Y )2
(@131 —0?) (09)%03(1 - ¢?)
(009 — 203)?

(09)6 (03)? (1 = ¢*)*’

(3241 + 020 + 32C3)2 — 3(8261)(82¢2)

2

2,2 (3-30)
p("l 02)( ) -

(3.56) (209 — 009)

(09)? (03)° (1 = ¢%)*’

(3.30)

P?O.i N (33C1 + 03C2 + 33C3>2 — 3(95¢1)(3¢2)

(3.56) (09)2(08)2(1 + 94) - 40(1)039(1 + 92) ((U?)Q + (03)2)
- (09)*(09)*(1 — *)*
402 ((09)" + (09)2(09) + (03)*)
(09)*(09)*(1 — *)* ’
péﬁl)ﬂg)(g) (3 29 Z ( BICU a?)C'u (a3§u)(81<.v)> + Z ((91Cu)(33Cu) +

(uw)eU u€{1,2}
i((alCl)(a?»@) + (33C1)(5142)> + (01¢3)(93C3)
(330 200 (09)* — @*(01)%0f — 200§ (( 0)? 4 2(o 0)2) +2g2((09)3+zag(ag)2)
a (09)° (09)3 (1 - 0?)® ’
haple) 2 ((826) (B50) + (Bs)(326)) + D (Bau) (B3 +

(uw)eU ue{1,2}
1(B:0)(30) +(3:0)(3:0) ) + (3:03) B363)
.30 2009708 = P00(08)? — 200 (2(01)? + (08)?) + 2% (2(01)208 + (09)?)
- PO (- ) |

_I_
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Let Z = {z1,...,2:} be the set of all solutions of pig UO(Q) =0, (4,7) € IUU. Then Z
o 102

is finite since each nominator of p”3 ,(0) is a polynomial in o. 0 ¢ Z, since for =0
1°¥2

the Jacobian matrix 0(g,,0,,0)¢(01, 02, 0)[y0—(59,69,0) (see (3.56)) is equal to a diagonal one

and condition 9) of Theorem 3.13 is satisfied due to Lemma 3.14 2)b). Thus for 69,59 > 0

there exist 71 € (—1,0), ro € (0,1) such that for any o° € [r1, o] (3.28) is satisfied. Hence,
for 69,09 > 0 for any @° € [r1, 73] condition 9) of Theorem 3.13 is satisfied.

Due to Lemma 3.10 is sufficient to show the existence of A, B with A € (-1,0), B € (0,1)
and [A, B] C [ry,79] such that 2¢(y) — {(7°) € Z, for any v = (01,09, 0)" € Lyo x Tgo X
[A, B]. Firstly, we show that for any v € Lo x Tpo X [r1,79]

2 . 20 1
951 — (20)~1 = ( @)~ oe(i=e) ) N ECHECS DY) 0102(1 (©)?)
S o102(1=¢%)  (02)’(1=¢") ~ST0 @) (08)2(1 @)?)
is positive definite according to the form of Z,. For i = 1,2 we have
2 1
2 - (x0)7) = — 0
=" - E), = eri=a e

& 2(09)*(1 - (")) > (0)*(1 — &%).
According to the definition of T';o we have (0:)? < 2(69)2(1 — (¢°)?) —¢; for i = 1,2 which
leads to (22_1—(20)_ )1 g (22 (=9~ )2 . 0 for all (01, 02, 0)" € T'po xT' 50 X [r1, 7).

’

Thus we show that there exist some A, B with A € (—1,0), B € (0,1) and [4, B] C [r1,79]
such that det (22*1 - (20)71) > 0 for any (01,09, 0)" € T'y0 xT'59 X [A4, B]. We have (with
MATHEMATICA)

det (22—1 - (20)—1>
40803001000+ 2(00)? (2(08)2(1 — (°)?) — (02)°) = (01)?(2(08)? = (02)*(1 - ¢?))
B (PP(3P (0% (02)° (1~ (7)1 - &) |

Since the denominator of the latter expression is strictly positive and the nominator is
equal to —(o — a(o1,09,0°))(0 — b(o1, 09, 0°)) with

a(o1,02,0°) = 201050°0102 — 5102v/2( ‘7;1))2 —2(01)2\/2(03)2 —(02)?
( ) (02
0y _ 200050°0105 +0102y/2(09)” — (01)°v/2(03)* — (02)°
b(017027@ ) = . 5 ’
(01)*(o2
it follows

V(o1,092,0)" with (01,09) € I0 x Tyo and
0 €T Clry,mN ((0(01,02, 0°),b(a1, 0, QO)) : det (22_1 - (EO)_I) > 0.

Furthermore, we have

V(o1,09) € Lyo x Tgo a(o1,09,0°) < 0 and b(oy,09,0°) > 0 (3.57)

& Y(oy,00) € Lo x Tyg 20%09|0°| — \/2(0(1) (01) \/2 (09)2 — (02)2 < 0.
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Consequently, (3.57) holds for all (01,09, 0°%)" € Lgo x Ty X [T +e3,7 —e3], 7 = ‘éi‘;?
1¥2
and €3 € (0,7). Let
A = max {a(al,ag, QO) : (01,0'2, QO)’ € PU(I) X PUS X ([‘rl,’l“g] N [—7: + 63,7: - 83]) }, (358)
B = max {b(al,UQ, QO) : (0’1,02, QO)I S PU? X Fag X ([7"1,7"2] N [—f +e3,7 — 83])} (3.59)
then A and B are well-defined since a(o1, 02, 0°) and b(01, 09, 0°) are continuous on Lo %
Lo X ([7"1,7‘2] N[—7T+e3, 7 — 63]>. Obviously, [A, B] C [r1,72] and A < 0 < B. Finally, we
obtain that 25! — (X°)~! is positive definite on I = Lyo x Tpo % [A, B].
3) Due to Lemma 3.10 it is sufficient to show that there exists some ¢ € (0,m), m =

min{c?,09,1 — |0°],|0°1 040}, such that u',u? € Z, and 3u® — 2¢(v°) € Z..

Obviously, one has u’i, ué < 0 for 1 = 1, 2. Furthermore, we have

(1—("+e)*)? _ (o] +e)*(0f +¢)°
(&° +¢)? (07 —€)%(03 — €)?

utus — (u3)? >0 <

for € € (0,m). If ¢° > 0 then the left hand side of the latter relation is strictly monotonic
decreasing in € € (0,m) else it is strictly monotonic increasing. Since the right hand
side of the latter relation is strictly monotonic increasing in ¢ € (0,m), both sides are
differentiable in € on (0,m) and

i A= @422 L (0] +e)* (o +e)?
=0 (& +e)? =0 (0] —¢)*(0f —¢)?

due to o* < B < ‘é‘i)‘;? < %, there exists a sufficient small £ € (0,m) such that u}ul —
1¥2

(1-(e%+¢)*)?

@+e)>  ~ oo.)

(u3)? > 0. (If @° = 0 we have lim._,g
Correspondingly, we have

(1— ("= _ (o] +e)*(0f +¢)?
(0” —¢)? (09 +)2(03 +€)°

wiui — (u3)? >0 <

for € € (0,m). If ¢° > 0 then the left hand side of the latter relation is strictly monotonic
increasing in € € (0,m) else it is strictly monotonic decreasing. Since the left hand side of
the latter relation is also differentiable in ¢ on (0, m) and we have

L= e

1
e—0 (QO — 8)2 >

duetogOSBS\éa‘é?<
2

o , there exists some sufficient small € € (0,m) such that
1
wu3 — (u3)? > 0.

N[

Hence, there exists some sufficient small ¢ € (0,m) such that u!,u? € Z,.

We show that 3u? — 2¢(7°) € Z,, i = 1,2, is satisfied.
From p° < % it follows

. 3 2
Juy —2(;(7°) = - + < 0, i,j=12
ro (09 +¢€)?  (09)2(1 - (e)?)
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for sufficient small € > 0. Furthermore, we have

2

(3ul =26+ ) (3u4 — 26(7%)) — (3u4 — 26(1%))

B 3 2 3 2
= o o) e e o)
_( 3(e° +¢) 20° 2
A— @+ )l —e)  o%od(l— (@)2)
%+  const

is differentiable in € on (0,m), m = min{o{,09,1 — [0°],[0®|1 040}, and

tim (3ul - 261(7)) (343 ~ 26(2°)) — (364 - 2654°))’
9(e°)* = 7(e")* +1

(09)%(02)2(1 — (9)2)2

(e — =15/88) (o0 — 1/13)(

Y
(09)2(09)?(1 — (2%)%)?

is strictly positive for any (09,09, ¢°)' € I'since T, C [%(1 —V/13) + €3, é(—l +4/13) — 63],

e3 € (0, 1(—1++/13). Thus there exists a sufficient small & > 0 such that 3u' —2¢(~°) € Z,.

Correspondingly, we have

ity v | Cllos ),

) B 3 2 3 2
w-x6") = (- oriat e @) U ot e
_( 3(0" —¢) B 20° 2

(=@ =) +a) 3+ oAed(1- ()
# const

is differentiable in € on (0,m), m = min{o?,09,1 — [0°|,[0°|1 040}, and

lim (3uf - 2G1(v%)) (343 - 22(v)) — (303 — 2G5 (’70)>2

e—0

— lim (3u% — 201 (70)) (3U% - 2C2(7°)) - (?ﬂé - 23 (70))2-

e—0

In the same manner as above there exists a sufficient small € > 0 such that
3u? —2¢(7°) € Z.. O
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3.3.2. Application to Discrete Models

In this subsection we apply our main Theorem 3.13 and thus the theory from [DCG99] to several
examples of one-parametric discrete exponential families.

Liu and Shao (2003) [L.S03], Theorem 3.2, prove that the Donsker class property is automatically
fulfilled for discrete models when testing g = ¢° against g € G,\{¢"} and give a representation
of a corresponding Gaussian process. Roughly speaking, they derive the functional index set
of a Gaussian process essentially by a set of limits of diverse sequences of a generalized score
function with respect to a corresponding (component and mixing) parameter (see [LS03], (3.6)).
However, [LS03] do not specify the corresponding parameter space. For testing () against p
populations in general finite mixture models [L.S03] say that the index set “can be derived using
functions equivalent to the generalized score function. One way to find the equivalent functions
is to use Taylor expansions of the likelihood ratios... The local conic parameterization approach
of Dacunha-Castelle and Gassiat (1997, 1999) is very useful in identifying” the index set ([LS03],
p. 826). Unfortunately, they mention neither that the p-weakly identifiability assumption (ID)
used in [DCGY9] does not hold for some discrete mixtures nor that the parameter space may
depend on the true component parameter. Especially in Example 3.23 we refer to Teicher
(1963) who shows that the p-identifiability for mixtures of binomial densities holds only for
certain parameters. In Example 3.24 it will be seen that for negative binomial densities the
parameter space depends on the true component parameters.

In all our examples we will refer to Teicher (1961) and Teicher (1963), respectively, using his
statements about identifiability. According to our notes after Remark 2.1, p. 9, identifiability
according to Teicher implies p-weakly identifiability (ID), since Yakowitz and Spragins (1968)
make an easy modification of Teicher’s definition of the identifiability to include multidimensional
cumulative distribution functions.

In our first example we consider Poisson distributions. Keribin (2000), Theorem 4.3, has also
shown the applicability of the theory given in [DCG99] for mixtures of Poisson distributions.
While she derives a majorant function f for 7 = {f, : v € T'} and a minorant function g° for
the true density function ¢g° to check the applicability of (P0)c) (see here, p. 68), we check
it with the aid of our elementary Proposition 3.11 using the fact Z, = IR. Consequently, we
only need to investigate the supremum of the scalar product of (¢(v),T(z)) in a neighbourhood
Uc(y") ={yeTl:|y—+% <e}forl=1,...,q, instead of analyzing the specific geometric
structure of the densities of F as Keribin does.

Notice that condition 6) of Theorem 3.13 is always satisfied for one-parametric exponential

families. Furthermore, property 3) and 7) are equivalent according to Lemma 3.14 1)a).

Example 3.22 (Poisson distributions)

Let P ={P(y) : v €T}, T C (0,00), be a one-parametric family of Poisson distributions. Let the
o0

o-finite measure u on (X,X) = (IR, B) be given by v(B) = > 1g(z), B € X. The v-densities
=0

with respect to P in exponential representation (3.1) are giver? by

fy(z) = exp(—v)l—?

where {(7) =1log(7), T(z) = z, A(y) = exp(—y) = C(¢((7)) and r(z) = . Clearly, one has

1
= exp(—7) exp { log(y)m}—' v —a.s.,
z!

Zy @4 {C €ER:0< Z exp('C:c) = exp(exp(()) < oo} = R.
=0 )

x
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Let T' C (0,00) be an arbitrary set such that (A1) and (A2) hold. Obviously, { : T' — ((T') is
bijective. It is well known that P is additively closed, i.e. closed with respect to convolution.
According to Teicher (1961), p. 245, miztures of additively closed families are identifiable and
hence, (ID) holds.

Condition 1) (of Theorem 3.13) follows from

Xq;(w? / |log(w!)\f7o,z(x)1/(da:)) _ g(”’ exp(— iﬁ;log; ) .

€T
since the power series with center in 0 and coefficient az = ) %(Z) has a radius of conver-
=1
. _1
gence r = limsup |az| = = oo.

T—00
2) holds obviously for the logarithm function ¢ : T' — ¢(T).

3) holds since for any v € T C (0,00) the Jacobian matriz is equal to 0, log(y) =~ ! #0.
4) holds since Z, = IR.
)

5) follows from Proposition 3.11 for G1 = [0,00) and u' = sup~y since for any 1 € {1,...,q}
yer

sup (log(v),z) < (log(u!),z) on G and Z, = R hold.
YEUL(701)
6) follows from dim(T) = 1.
7) is equivalent to 3) according to Lemma 3.14 1)a).
Consequently, properties (P0) and (P1) hold.

Hence, the theory from [DCG99] is applicable to mixtures of Poisson distributions with arbitrary
I" such that (A1) as well as (A2) hold (since Z, = IR).

Our second example is on mixtures of binomial distributions. Notice that the identifiability
condition holds only for certain values of parameter. We show that the theory in [DCGY99] is
applicable for testing ¢ against p populations of B(m,y)-mixtures with m > 2p—1 and arbitrary
" such that (A1) as well as (A2) hold since Z, = IR.

Example 3.23 (binomial distributions)

For m € IN let P = {B(m,vy) : v € T}, T' C (0,1), be a one-parametric family of binomial
m

distributions with respect to the o-finite measure v(B) = ) lp(x), B € X, (X,X) = (R, B).
=0

r=
The v-densities with respect to P in exponential representation (3.1) are given by

fr(z) = (T)vz(l —y)T = (Z) (1 — )™ exp { log (1 jv)x} v—a.s.,

where ((y) = log (ﬁ), T(z) =z, A(y) = (L—~)™ = C(¢(7)) and r(z) = (7). Clearly, one

has
7, & {CER 0<Z( )expga:)<oo} - R

Let T' C (0,1) be an arbitrary set such that (Al) and (A2) hold. Obviously, ( : T' — ((T)
is bijective. According to Teicher (1963), Proposition 4 (i), P is p-identifiable iff m > 2p — 1
(see also Titterington et. al. (1992), Example 3.1.6). (We are testing Q populations against p
populations.)

Condition 1) (of Theorem 3.13) follows since v has a finite support.




3.3.2. Application to Discrete Models 83

2) is obviously satisfied for ¢ : T'— ((T).
3) holds since for anyy € I' C (0, 1) the Jacobian matriz is equal to 0, log(%) = (y—y2) "1 #£0.
4) holds since Z, = IR.
5) follows from Proposition 3.11 for G1 =[0,m + 1) and u! = suplog (ﬁ) since for any
el
le{l,...,q} sup <log (%),x> < (u',z) on Gy and Z, = R hold.
veU(71) !
6) follows from dim(T) = 1.
7) is equivalent to 3) according to Lemma 3.14 1)a).
Consequently, properties (P0) and (P1) hold.

Our third example of discrete models (for applying the theory from [DCG99]) is on negative
binomial distributions. It shows that the component parameter space I' depends on the true
component parameters. This results from Z, = (—00,0) # IR since one has to ensure that
5—3 € Ly(¢°v) holds for any v € T' as assumed in (P1). Though the theory given in [DCG99]
is applicable to mixtures of negative binomial distributions, it is applicable to suitable " only.
As mentioned in the beginning of this subsection, Liu and Shao (2003) do not point out that
one has to specify the parameter space somehow when they say that the Donsker class property
is automatically fulfilled for discrete models when testing g = ¢° against g € G,\{g"}, (see Liu
and Shao (2003), Theorem 3.2). One possibility of constructing I' is to choose, firstly, the true
components y%!, I = 1,...,¢q, and then to conform I' to the requirements of (A1), (A2) as
well as of condition 4) and 5) of Theorem 3.13. We construct I' conform to the assumptions of
Proposition 3.11 to ensure the requirements of condition 5) of Theorem 3.13.

Example 3.24 (negative binomial distributions)
For m > 0 let P = {NB(m,v) : v € T}, T C (0,1), be a one-parametric exponential family of

o0
negative binomial distributions with respect to the o-finite measure v(B) = Y, 1p(z), B € X,
=0

(%,X) = (IR, B). The v-densities with respect to P in exponential representation (3.1) are given
by

m—1

fy(@) = y™exp { log(1 — v)w} (m o 1) v—a.s.,

where ((y) = log(l — ), T(z) = z, A(y) =™ =C({(7y)) and r(z) = (mﬂ”*l). Clearly, one has

m—1
7, 44437 {log(l ) €R:0<Cllogl — ) =y < oo} = ¢(0,1) = (—o0,0).

For § € (0,1) let y%1,..., 4% € (0,1 — 4] be distinct points and let 42, = min{y®', ... 09}
We define the parameter space by

1
r = [1 —(1—42,)2,1 —5].
Simple computations show that T' # 0 since § € (0,1) and 72, € (0,1 — 6]. Obviously, ¢ : T —

¢(T') is bijective on ' C (0,1) and (A1) as well as (A2) are satisfied.

Conditions 1), 2), 3) (of Theorem 3.13) are satisfied due to the form of ¢ : T' — ((T).
4) Due to Lemma 3.10 it is sufficient to show that there exists somel € {1,...,q} such that

2¢(7) = C(¥*") € (—00,0) = Z, for any v € T'\{y"'}.
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Thus it follows 4) from 2{(vy) — ((v%;,) = log (1(17—3)2) € (—00,0) = Z, v € T\ {72, }-

5) results from Proposition 3.11 for Gy = [0,00) and u! =log(1 —~2,,. + €) since for any
l=1,...,q one has

sup log(l—7)z < wu'z, z€Gy=][0,00)
VEU:(v0)

and since 72, € (0,1 — 4] is a fized parameter with (1 —~2,.)% < (1 —~2,,)? which implies
that there exists some § > 0 such that

(1= Yo + ) < (1= 0in)? & 3(Tog(1 = 1%in +8)) = 2(Tog(1 = 7fin) ) <0
& 3u' = 20(Ymin) € Za.

Thus u' € Z3 due to Lemma 3.10.
Consequently, properties (P0) and (P1) hold.

Please note, {NB(m,vy) : (m,v)" € (0,00) x (0,1)} is not an exponential family (see Brown
(1986), Exercise 1.12.1., p. 27). Thus one has to construct I' somehow to apply Theorem 3.2 by
Liu and Shao (2003) on this kind of mixtures.

3.3.3. Application to Gamma Families

In this subsection we make use of Theorem 3.13 to verify the applicability of the asymptotic
theory from [DCGY9] to gamma distributions. Thus we check the corresponding conditions of
Theorem 3.13 as well as (A1) and (A2). The identifiability condition (ID) always holds since all
finite mixtures of gamma densities are identifiable according to Teicher (1963), Proposition 2.
According to our notes below Remark 2.1, p. 9, identifiability according to Teicher implies
p-weakly identifiability (ID), since Yakowitz and Spragins (1968) make an easy modification
of Teicher’s definition of the identifiability to include multidimensional cumulative distribution
functions.

Firstly, we consider mixtures of general gamma distributions. Unfortunately, Z, = (0,00) x
(—00,0) # IR? and as we have to ensure (among other things) that 5’& € Ly(g°)\) holds for
any v € I' as assumed in (P1), we construct a specific component parameter space I' similar
to Example 3.17. If ¢ > 1 we cannot choose the remaining true component parameters v%,
[ =2,...,q as arbitrary elements of T (since Z, # IR?) since we want to ensure (P0)c) with the
aid of Proposition 3.11.

Secondly, we consider mixtures of one-parametric gamma distributions. As Z, = (—o00,0) # R
we construct a specific component parameter space I' once again. Thereby, we firstly choose
the true parameters and afterwards we construct the parameter space in such a way that the
sufficient conditions of Theorem 3.13 hold.

Example 3.25 (gamma distributions)

Let P = {G(7y) : v = (a,b) €T}, T C (0,00) x (0,00), be a minimal 2-parametric exponential
family of gamma distributions on (X,X) = (R4, By). Let the gamma function be given by
g(a) = [;°t* " exp(—t) dt, a > 0. Then the corresponding Lebesque A-densities have the form

fy@) = (9(a)b") e exp(~2z/b) X -as.,
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and ¢(a,b) = (a,=b7")', T(z) = (log(z),)" and A(a,b) = (9(a)b*)~" = C(a,~b7") and r(z) =
z7! (see e.g. Witting (1985), p. 148). Obvious is ¢ : T — ((T) bijective for any T' C (0, 00)2.
Clearly,

Z, =" {(a,—bil)' €R?:0<Cla,—b ')t =g(a)b® < oo} = (0,00) x (=00,0).

For %1 = (%1, 6%1) € (0,00)2, a®1/2 > €, > 0, £y > 0 and U > a®' we define the parameter
space by

I = [%ao’l + &4, U] X [Eb, 2601 — Eb] .
Let the remaining distinct true parameters
~%2 . 409 ¢ T'n [%ao’l + Sa,U] X [61,, %bo’l - 6(,] (3.60)

which leads to (A1) and (A2) and it will be shown below that this construction also leads to
condition 4) and 5) of Theorem 3.13.

Condition 1) (of Theorem 3.13) follows from |log(r(z))| = |log(z)|, z € R4, and since T1(z) =
log(x) possesses moments of arbitrary order with respect to peos A due to Proposition 3.6.

2) is obvious for ¢ : T — ((T).

3) holds since the Jacobian matriz O, )¢ (a,b) = diag(1, b2),b>0.

4) Due to Lemma 3.10 it is sufficient to show that there exists some l € {1,...,q} such that
2¢(7) = ¢(v) € (0,00) x (=00,0) for any v € T\{y%'}.
Thus it follows 4) from 2a — a®' > 2(a®1/2 +¢,) — a®! > 0 and
(2091 +0)/(b0%1) < (2601 + (20% — &)/ (bB%1) <0, v = (a,b)" € T\{y*1}.

5) results from the following construction such that Proposition 3.11 is applicable:

Let a™ = min %, a™ = max a% and b = max b%. For anyl=1,...,q we obtain
=1,...,q =1,...,q I=1,...,q
x
(@™ —¢)log(z) — e 0 € G =(0,1)
T
sup (a log(z) — 5) <
Ue(~0:t T
YEU (7o) (a,M+s)log(:v)—bM+€ , T € Gy =][1,00).

! !
Consequently, we define ul = (am —e,—(OM + 6)71> and u? = (aM +e&,—(bM + 6)*1) LIt
follows u',u? € Z, and 3u' — 2¢(v%1) € Z, for € < e4,€p according to

01 (3.60) 9
3ui —2¢(v,") = 3(a™ —e) —2a%t > 3<§a°’1 + &g — 5) —2a%t > 0,
_ bO,l bM (3'60) _ bO,l bO,l_
3“% - 2((7371) = 3((,%()1,0,14—6) < 2 —é—;\?ii)bo,l ete) < 0.

Furthermore, it follows 3u® —2¢(v%') € Z, from 3u? — 2((7?’1) = 3(a™ +¢) — 22! > 0 and
uf = u}. Thus u',u® € Z3 due to Lemma 3.10.

6) holds since the functions log(z), z, (log(x))?, log(z)z and x? are obviously \-affinely indep-
endent.

7) is according to Lemma 3.14 2)a) equivalent to condition 3).

Consequently, properties (P0) and (P1) hold.
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Example 3.26 (exponential distributions)

Let P = {Ezp(y) : v € T'}, ' C (0,00), be a one-parametric family of exponential distribu-
tions on (X,X) = (IRy,By). It is well known that the Lebesque A-densities in exponential
representation (3.1) are given by

fr(z) =yexp(—77) A —as.,
where ((y) = —v, T(z) = = and A(y) = v = C({()) and r(z) = 1. Obvious is ( : T’ — ((T)
bijective for any T' C (0,00). Clearly,

z, & {7 €eR:0 </ exp(yz) < 00} = (-00,0).
Ry

We construct a parameter space T' such that condition 4) and 5) of Theorem 3.13 is satisfied as
well as (A1) and (A2):

0,1 0 —p - 0 cfA01 0 Vo
Let %%, ..., 779 € (0,00) be distinct points and 7,,;, = min{y>",...,y"}. For € € (0, =3=)

and u > max{y®,... y%9} we define the parameter space by
0 .
Po= [Tmmge ).

Simple computations show that T' # () since ¢ € (0, 79’5’") and u > 2. . Clearly, (A1) and (A2)
hold.

Conditions 1) (of Theorem 3.13) follows from |log(r)| = 0.

2),3) are satisfied by the form of ¢ : T — ((T).

4) Due to Lemma 3.10 it is sufficient to show that there exists some l € {1,...,q} such that
2¢(y) = C(Y*) € (=00,0) = Z, for any v € T\{y*'}.
Thus it follows 4) from 2¢(7) — (Vo) = =27 +7%n < —2¢ € (—00,0) = Z,, v € T\{y™"}.

5) results from Proposition 3.11 for Gy = [0,00) and u' = —9. + ¢ since for anyl=1,...,q
we obtain  sup { —v,z) <u'z on Gy and 3u' —2((v%,;,) = 3(—70n +€) + 272, <O.

vEUs(v%)

Thus u' € Z3 due to Lemma 3.10.

6) follows from dim(T") = 1.

7) is equivalent to 3) according to Lemma 3.14 1)a).

Consequently, properties (P0) and (P1) hold.



4. Calculation of the Asymptotic Distribution of
the LRT Statistic for Testing Homogeneity
Against Two Populations in Normal Mixtures

We calculate the asymptotic distribution of the log-LRT statistic for a special univariate mixture
model of normal distributions. For this purpose, we simulate the corresponding Gaussian process
by its finite-dimensional marginal distributions. When we generate the appropriate covariance
matrix we observe a surprising effect on the size of its eigenvalues. Firstly, it strikes us that only
a few eigenvalues have large values and most of them are approximately 0, but we also observe
negative eigenvalues of approximately 0. Of course, these are numerical errors. This could lead
to the assumption that the asymptotic is similar to a low dimensional normal distribution. As
a consequence we introduce a modified spectral factorization on the resulting covariance ma-
trix which leads to considerably short computation times in comparison to the commonly used
factorization. Furthermore, it will be seen that there is a negligible difference between the quan-
tiles of both these versions. We also simulate the exact quantiles of the log-LRT statistic. An
investigation of the power shows that in a variety of cases the power of log-LRT based on the
asymptotic quantiles has nearly the same power as its exact version. We also observe that the
computing times for calculating the asymptotic quantiles are surprisingly short in comparison
to the times needed for obtaining the exact quantiles.

Let P = {N(u,1) : p € T}, ' C IR compact, be a family of univariate normal distributions

with known standard deviation ¢ = 1 and unknown mean p. The set of the corresponding
2
Lebesgue A-densities is F = {f, : p € '} with f,(z) = \é-ﬂexp(—@). Then the model of

one population and two population mixtures, respectively, is given by

Gi=F and Gy = {gﬂ,(ul,ug) = ﬂ-f;u + (1 - ﬂ-)fuz e [Oa l]a M1, M2 € P}-

According to Example 3.15 the asymptotic theory from [DCG99] is applicable to the test
Hy : g € Gy against Hy : g € G2\Ga.-

We assume that the true density is given by the standard normal density ¢° = f; and define
= [~a,a], a > 0. Let Xy,...,X,, be an i.i.d. standard normally distributed sample with
realization z1,...,z,. According to Corollary 2.26 and (1.1) the log-LRT statistic is given by

log (An(z1,...,2,)) = sup zn:log (g,r (1 12) (%) ) Zlog (fun (z4) ) (4.1)

w1.pg€l

ref0,1] =
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n
with fip, = (_a)]ljn<(—a) (1, Tp) +Znlz,er(T1, - - -y Tn) +alg, >a(T1, ..., 7p) and T, = % > T,
i=1
and converges in distribution to the variable
1 2
= sup (&) - Le, . 50 (4.2)
nel'\{0}

We obtain the expression of the function h : (T'\{0},X) — IR by inserting £ = 1 in (2.58) and
simple calculations of

-1

ol(x) aufu|u=0 aufu|u=0 -
fO fO La(fo\) ’
o) = (o l) -
foo [ rason
fu(x)—fo(z) 2
hu(z) = W — oi(z)a(p) _exp (pz— %) —1—-pz
ful@)—fo(z) _ 3
@) 01(‘”)“(“)) La(foN) (exp (12) —1-p2)’

Similar simple calculations (see appendix) lead to the covariance function
exp (pp) —1— pp _
Cov <§hw§hﬁ) = ( )1 T M, i € T\{0}, (4.3)
2 2\ 2 ~92 ~2\ 2
(eXP(u ) —1—u> (exp(u ) —1—u)

of the centered Gaussian process (fhu)u er\{0}"

Obviously, C’ov(fhu,fhu) = Var({hu) =1 for all g € I'\{0}. Since exp(z) — 1 — z, z € IR, has
its global minimum in z = 0, one has

Remark 4.1 For any p, i € T\{0} it holds Cov (fhﬂa§hﬂ) > 0.

Therefore, we know the limiting process, its index set and its marginal distributions. However,
the question is, how do we simulate a supremum of a Gaussian process indexed by functions h,,?
The following proposition gives an answer to this problem.

Proposition 4.2 Let T' C IRF be a compact and convez set with accumulation point in v® € T
(i.e. (A1) and (A2) are satisfied). Let fo be a probability density with respect to some o-finite
measure v on a measurable space (X,X), X C IR™, and let the function

h: (D\{7°}, X) = R with (y,z)+— hy(x)

be continuous. Furthermore, let us suppose that (£h7)7er‘\{’y°} is a centered Gaussian process
with continuous sample paths with respect to the pseudometric p(hyr, hy2) = ||hyr —hqy2 ||L2(f,70 v)-
o0

Then for any increasing sequence (Un)nemw of finite subsets of T\{7°} with |J Ty dense in
N=1
T\{7°} one has

1 s 1
5 Sup (ny)* L >0 == o sup (n,)*-1g >0 as N = oo. (4.4)
y€ely YEr\{v°}
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Proof of Proposition 4.2:

% sup (fh.,)Q . ]1§h., >0 is the supremum of a finite number of random variables and hence is a

Y€l'y
random variable for each N. From the assumption (Eh,,),yer\ (%} having continuous sample paths

it follows that ((fh,,)Q - ]lﬁh., >0) . also has a.s. continuous sample paths. Moreover, from
20) ¢

o \{~°}
U T being dense in T'\{y°} it follows (4.4). 0
N=1

Our proof follows the concept of Leadbetter, Lindgren and Rootzén (1983), p. 146, who prove
that sup (&) 2> sup(¢,) for T = [0, 1].

yel'n vyel’
To apply Proposition 4.2 to the Gaussian process (4.2) it is sufficient to ensure that h,(z)
is continuous on (I'\{0}, %) because all other assumptions are satisfied thanks to Corollary 2.26.
The continuity of h,(z) follows from

u—0 i

(eXp (w?) —1- /ﬂ) ’

which can be calculated by applying the rule of I'Hospital to lim,_,(h,(z))%. (We calculated
the latter expression with MATHEMATICA.)

T - 1 2
lig S 17 = ) - —(x2—1),

We simulate the Gaussian process (fh#) by its finite-dimensional marginal distributions.

neT\{0}
For this purpose, we discretize I'\{0} = [—a,a]\{0} in finite sets I'y = {p1,..., un} using the
fact that

En = (Enpps---r6n,,) ~ N(0,2y) (4.5)

and according to (4.3) the covariance matrix is given by
Sy = (Cov( | )) e RV*N. 4.6
N Ehuq‘ ghuj wirkj €L N (4.6)

It is well known that for any matrix Ly € IR™V*N such that 5 = LyLy' and for standard
normally distributed X ~ N(0, Iy) one has

LyXN ~ N(0,Zy).
Consequently, all we need is an appropriate factorization of 3 and discretization of 'y, re-

spectively:

e Spectral factorization of X:
The factorization ¥y = LyLy' is not uniquely defined. We decided to use a spectral

factorization
1 1\’
Sy = VnAx VL = (VN (AN)E) (VN (AN)E) (4.7)
where Ay = diag()\,...,An) is the diagonal matrix of the eigenvalues Ay, ..., Ay of Xy
in increasing order and Vy = (vl, e,V N) is an orthogonal matrix of the corresponding

eigenvectors. Clearly, there exist exactly IV distinct non-negative eigenvalues since Xy is

1
positive definite. Consequently, the diagonal matrix (An)? = diag(v/A1, ..., vAn) is well
defined. The NAG-routine FO2FAF supports this dissection.
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e Choice of I'n:
With no loss of generality we discretize I'\{0} = [—a,a]\{0} in finite equidistant sets
'y ={u1,--.,un}, N € IN even, by

—a+(@-1)% |, i=1,..7%

pi =
-2a - __ N
—a+Z—N ) Z—7,...,N.

The choice of a spectral factorization of ¥ is actually common. However, when we generate
the covariance matrix we observe a surprising effect on the size of the eigenvalues. Aforesaid,
it strikes us that only a few eigenvalues have large values and most of them are approximately
0, but we also observe negative eigenvalues of approximately 0. Obviously, these are numerical
errors. For instance, for N = 1000 and " = [-10.0, 10], [-5.0,5.0], [-2.5,2.5], [—1.0,1.0] nearly
half of the eigenvalues (EV) were negative whereas the number of eigenvalues larger than 10°
is bounded by 50, see Example 4.3.

The surprisingly small number of eigenvalues larger than 10~° can lead one to assume that the
underlying limiting distribution for our testing problem is a low dimensional normal one.

As a consequence we implement two versions of

e Modified spectral factorization of X:

1. Using only eigenvalues larger than 0 and setting all A\; < 0 to 0.

2. Using only eigenvalues larger than 10~ and setting all \; < 1072 to 0.
In each case we define
-1
Ly =Vn (AN) 2 ¢ RN*(N-1)

for Ay = diag(0,...,0,\;,...,A\y) and ¢ € {1,...,N} being the first index such that
A > 0.

In both versions we observe that LyL, = ¥ (see Example 4.3). In the following section
it will be seen that there is also a negligible difference between the corresponding quantiles
of both versions. Hence, simulating a Gaussian process with the aid of the low dimensional
marginal distributions of the second version leads to nearly the same results as the use of
the first version. These observations are consistent with the aforementioned assumption of an
asymptotic distribution of (4.2) being a low dimensional Gaussian one.

The most convincing advantage of simulating a Gaussian process while using the second modified
spectral factorization is that it costs fewer matrix operations and also fewer random numbers
with almost no loss of accuracy. Consequently, we observe considerably shorter computation
times in comparison to the first version.
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Example 4.3 For M € RN*VN [et the 1-norm of M be given by

N N
M| = )Myl

i=1 j=1

and the mazimum norm of M be given by

M = max M; ;|-
134]]eo ) e 1Mo
For N = 1000 we obtain
T = [-10.0,10.0] T = [-5.0,5.0]
528EV >0 |[50EV >10"°| 516EV >0 |28EV > 10?
|ILnNLN' — =N | 3.33-10715 2.37-10"1 3.77-10715 1.15-1011
ILNEN' — =N||oo 3.21-107° 6.51-1077 8.27-107° 3.07-1077
T = [—2.5,2.5] T = [-1.0,1.0]
507EV >0 | 18EV >10"9 | 508EV >0 | 17TEV > 10~°
|ILNL'n — N| 5.55-1071° 3.94-10712 5.72- 10714 4.35- 10712
ILNEN' — N |loo 6.99 108 1.95-1077 7.35-1077 8.79-1077

Unfortunately, generating the covariance matrix Cov(&p,,,&n;) (see (4.3)) for p or i being ap-
proximately 0 leads to unpleasant and confusing numerical inaccuracies. For instance, according
to computations with FORTRAN 77 (as well as with MATHEMATICA and R) it seems as if the
covariance function is oscillating in y € [—0.01,0.01]\{0} for fixed i = 10~5 (or vice versa, be-
cause of the symmetry of ¥ ), see Figure 4.1. Furthermore, for i = —0.002 we obtain covariance
values larger than 1 which contradicts Var(éy,) = 1, p € T'\{0}, see Figure 4.2.

1 0.0045
0.9 [ 0.004 |-
0.8 |- 0.0035 -
8-2 - 0.003
os L 0.0025 |
0.4 | 0.002 |
0.3 0.0015 |
0.2 0.001
0.1+ 0.0005 |
0 0
-0.0032 -0.001 0 0.001 -0.01
Figure 4.1.:  Cov(u,107?)

-0.0032

-0.001
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1.1 , , 1.00005 I
1
1.00004 -
09 i 0000
0.8 _ 1.00003
0.7 - 1.00002
0.6 _
s L 7 1.00001
0.4 | - 1
83 B - 0.99999
01 k- | 0.99998
0 . 0.99997 .
-0.0032 -0.001 0 0.001 -0.01 -0.0032 -0.001
7 p

Figure 4.2.:  Cov(u, —0.002)

However, an analysis of the covariance function shows that it is well defined and smooth since

A R Yy ~2
0 i

k=0 (exp (MQ) —1- u2)§ V2’

2. for arbitrary but fixed i € [-0.01,0.01]\{0} the function

Cov (&, €ny ) : [-0.01,0.01]\{0} — (0,1] (4.8)

has an unique (global) maximum in (f, &).

The first item results from the calculation of the square covariance function and the rule of
I’Hospital. (We calculated the limit with the help of MATHEMATICA.) The second item is
shown in the appendix. Notice that the range (0, 1] given in (4.8) is a consequence of Remark 4.1.

We solve the numerical problem of oscillations and inexact values by using a Taylor expansion
of (4.3) for u or i € [—0.01,0.01]\{0}. In all cases we have decided to use finite sums of n = 100
terms. This leads to a remainder of r(|u|) < % ~ 0 for p € [—0.01,0.01]\{0}. We arrange the
terms of the resulting Taylor series in such a manner that the whole expression can be calculated
in a numerically stable way. Roughly speaking, since the nominator as well as the denominator of
(4.3) is approximately 0, we reduce the ratio until we obtain a quotient of interlocking expressions
which are near to 1. Furthermore, we distinguish between the case of u, i € [—0.01,0.01]\{0}
and the case of exactly one of the two parameters belongs to [—0.01,0.01]\{0}. A more detailed
description of this solution is given in the appendix.

Additionally, an implementation in pseudo FORTRAN 77 code of simulating the variable

1 2
5 sup (&p,) -1
2 el ( u) §hy>0

is given in Program B.1 in the appendix.
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Further simulation results of the same testing problem are given in Ruck (2002) who calculates
the quantiles of the asymptotic distributions of

1 1
sup (€4)” Lg>0 — = sup (€0)” - Tg>0
2 4ep 2 4eD,

(see Theorem 2.25).

We also refer to Ruck (2001) who uses the above method to calculate the asymptotic distribution
of the log-LRT statistic in a contamination mixture model.

For testing homogeneity against a two population mixture with I' C IR*, we can also use the
method for simulating the corresponding asymptotic distribution thanks to Corollary 2.26 and
Proposition 4.2 which are also applicable to k-dimensional parameter spaces here proposed.

4.1. Quantiles of the Asymptotic Distribution

We simulate the quantiles of the asymptotic distributions of % surp (éh“)z . ]lgh“ >0 as described
uel'n

above using 107 replications of the empirical test statistic. In each simulation program we start
the random generator with the same seed (=0) to obtain repeatable computations. We tabulate
the a-quantiles only when eigenvalues (EV) larger than 0 and only eigenvalues larger than 10~°
were used, respectively. Moreover, we note the number of the corresponding eigenvalues. We
observe for N = 100 and N = 1000 that nearly half of the eigenvalues were negative (which are
numerical errors) and that the number of eigenvalues larger than 10~ increase with the length
of the interval I'. In our examples this number is bounded by 50 (see I' = [-10,10], N = 1000).
Consequently, the computing times of the quantiles of the second version are noticeably shorter
than the computing times of the first version. We also observe that there is a negligible difference
between the corresponding quantiles of both versions.

T = [-10.0,10.0] T = [-5.0,5.0]
N =10 1I0EV >0 |[10EV >10"? | 10EV >0 |[10EV > 10?
a =09 2.6524 2.6524 2.4752 2.4752
a = 0.95 3.2873 3.2873 3.1372 3.1372
a = 0975 3.9218 3.9218 3.7953 3.7953
a = 099 4.7664 4.7664 4.6675 4.6675
a = 0.995 5.4090 5.4090 5.3240 5.3240
N =100 81EV>0 |47EV>10"2 | 67TEV >0 |25 EV > 10"°
a = 09 3.3815 3.3836 2.6964 2.6951
a = 0.95 4.0914 4.0914 3.3972 3.3949
a = 0.975 4.7898 4.7918 4.0908 4.0897
a = 099 5.7055 5.7039 4.9994 4.9980
a = 0.995 6.4008 6.3959 5.6865 5.6857
N =1000 || 528 EV >0 | 50EV >10"°? | 516 EV >0 | 28 EV > 10—°
a = 09 3.3970 3.3952 2.6967 2.6975
a = 095 4.1089 4.1060 3.3979 3.3999
a = 0.975 4.8112 4.8059 4.0922 4.0942
a = 0.99 5.7315 5.7280 5.0040 5.0062
a = 0.995 6.4207 6.4196 5.6970 5.6968
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T =[—2.5,2.5] T =[—1.0,1.0]
N =10 10EV>0 [10EV >10~°?| 10EV>0 | 8EV > 10~?
a = 09 1.9716 1.9716 1.3452 1.3465
a = 0.95 2.6404 2.6404 1.9730 1.9743
a = 0.975 3.3109 3.3109 2.6177 2.6195
a = 0.99 4.2018 4.2018 3.4822 3.4887
a = 0.995 4.8727 4.8727 4.1444 4.1539
N=100 | 60EV>0 |[15EV>10"°2| 56EV>0 | 10EV > 10~°
a = 0.9 2.0078 2.0072 1.3484 1.3473
a = 0.95 2.6880 2.6862 1.9763 1.9759
a = 0.975 3.3660 3.3668 2.6232 2.6214
a = 0.99 4.2669 4.2694 3.4942 3.4873
a = 0.995 4.9490 4.9476 4.1608 4.1493
N = 1000 | 507EV >0 | 18 EV > 10~° [ 508 EV >0 | 17EV > 10~°
a = 09 2.0100 2.0091 1.3490 1.3474
a = 0.95 2.6896 2.6860 1.9777 1.9751
a = 0.975 3.3695 3.3670 2.6235 2.6223
a = 0.99 4.2707 4.2677 3.4913 3.4907
a = 0.995 4.9540 4.9492 4.1494 4.1569

An implementation in pseudo FORTRAN 77 code of calculating the quantiles of the asymptotic
distribution is given in Program B.2 in the appendix.

4.2. Quantiles of the Log-LRT Statistic

In this section we describe how to simulate the exact quantiles of the log-LRT statistic
log (An(z1,...,25)) (4.1). We decide to use an EM-algorithm to calculate

sup z": log (gmm,uz (xz)) (4.9)

BT =1

because it is known for this iterative algorithm to work for functions with nearly constant
regions. While the EM-algorithm conceptually works on the unbounded IR™ it can be modified
to respect the given boundaries of I' = [—a, a]. Our modification works as follows: A starting
point is chosen in the interior of I'. Whenever the unmodified EM-algorithm crosses the bounds
of ' = [—a,a] then a local search is performed using the NAG-routine E04JYF starting at the
last iteration point inside [—a,a]. This is a quasi-Newton algorithm for finding a minimum
of a function F(z1,...,x,), subject to fixed upper and lower bounds on independent variables
Z1,...,Ty, using function values only. For this we make use of the equivalence of minimization
and maximization

n

sup Zlog (gmm,m(xi)) = — min —zn:log (Qw,ul,m(ﬂﬂi))-

el i .
While the results of the EM-algorithm often depend on the chosen starting value M. Heidenreich
showed that for the case of normal mixture models there is nearly no dependency on the starting
point. So we decide to use m = 0.5, u; = 0.5Z,, and us = 1.5Z,, as starting values, with Z,, being
the average of z1,...,zy,, to obtain the maximum relatively fast. Iff the EM-algorithm crosses
the bounds of I' we apply the routine E04JYF with starting values given by the last values of
the EM in the interior of I'.
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Details on the inner workings of the EM-algorithm can be found in McLachlan and Krishnan
(1997).

We simulate the quantiles of log (An(xl, et ,J;n)) using 10.000 or 100.000 replications of the
empirical test statistic and a stopping criterion based on function values stopped at an accu-
racy of n-acc = 1078 for n = 10, 100, 1000 and n - acc = 1075 for n = 10.000, respectively,
or after 100.000 EM-iterations. For each simulation program we start the random generator
with the same seed (=0) to obtain repeatable computations. Furthermore, we generate the
N(0, I,)—distributed vector (z1,...,z,)" by the NAG-routine GO5FDF. An implementation in
pseudo FORTRAN 77 code is given in Program B.3 in the appendix.

A table of the a-quantiles for the intervals I' = [—10.0,10.0], [-5.0,5.0] and [—2.5,2.5] is given
below. In the first two cases the EM never or hardly ever crosses the bounds of I', which means
that forcing the bounds on the EM-algorithm has no effect on the results. For this reason
the quantiles on the intervals [—10.0,10.0] and [—5.0,5.0] are the same. There is only a little
difference between the quantiles of these intervals and the interval [—2.5,2.5], too. It seems as
if the EM-algorithm converges very slowly for n = 10.000 because for fixed n - acc = 1078 the
quantiles are increasing with increasing n = 10, 100,1000 whereas the quantiles for n = 10.000
calculated with accuracy n - acc = 107 are much smaller than the quantiles for n = 1000.

We also tabulate the corresponding quantiles of the asymptotic distribution given in the previous
section as well as the quantiles calculated with the help of Davies’ bound (see Davies (1977)).
With respect to the latter quantiles we refer to private communication with Bernard Garel. It
is clear to see that the a-quantiles calculated by simulating a Gaussian process are nearly the
same as those which are calculated with the help of Davies’ bound.

REPL= 100.000 REPL=10.000 Asymp | Davies
n=10 n=100 n=1.000 | n=10.000 || EV > 10—°

n - acc 108 108 108 105
[—10.0,10.0]
a =09 0.8785 1.2947 1.4959 1.2768 3.3952 3.4667
a = 095 1.4967 1.9762 2.2169 2.0860 4.1060 4.1567
a = 0975 2.1375 2.6521 2.9161 2.7800 4.8059 4.8474
a = 0.99 2.9777 3.5130 3.9037 3.7566 5.7280 5.7610
a = 0.995 3.6272 4.2338 4.5305 4.3794 6.4196 6.4525
[—5.0,5.0]
a =09 0.8785 1.2947 1.4959 1.2768 2.6975 2.7874
a = 095 1.4967 1.9762 2.2169 2.0860 3.3999 3.4728
a = 0.975 2.1375 2.6521 2.9161 2.7800 4.0942 4.1599
a = 0.99 29777 3.5130 3.9037 3.7566 5.0062 5.0698
a = 0.995 3.6272 4.2338 4.5305 4.3794 5.6968 5.7591
[—2.5,2.5]
a =09 0.8750 1.2827 1.4902 1.2767 2.0091 2.1338
a = 095 1.4806 1.9377 2.1684 2.0655 2.6860 2.8072
a = 0.975 2.1016 2.5836 2.8310 2.7661 3.3670 3.4853
a = 0.99 2.8892 3.4152 3.7410 3.7376 4.2677 4.3863
a = 0.995 3.4783 4.0511 4.3693 4.3651 4.9492 5.0703

Table 4.1.: Quantiles of the log-LRT statistic and their corresponding asymptotic quantiles
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4.3. Power

We simulate the power of level « of the log-LRT for a random sample of size n = 100 and 1000
based on the corresponding exact quantiles and the quantiles of the asymptotic distribution as
given in Table 4.1 using 10.000 replications. In this paper we restrict ourselves to a = 0.9 and
refer to Ruck (2002), where power plots are also given for a = 0.95,0.975,0.99. We observe that
the power is symmetrical as well in the mixing weights 7 and (1 —) as in the mixing components
fu, and f,,. Therefore, we only plot the power for the mixing weights = = 0.1, 0.25, 0.5 of
the fixed component f,, = fo of the standard normal density and mixing weight (1 — ) of the
mixing component of f,,, uo € I'. For each simulation program we start the random generator
with the same seed (=0) to get repeatable computations. Moreover, in any program calculations
for 7 = 0.1, 0.25 and 0.5 are made. As described in section 4.2 we use a combination of an
EM-algorithm and a maximization routine of the NAG.

We plot the power of the log-LR tests for the intervals I' = [-10.0,10.0], [—5.0,5.0] and
[~2.5,2.5] using an EM-algorithm with an accuracy of n - acc = 1078 and iff it crosses the
bounds of I', we apply the routine EQ04JYF. The following figures show the power of the tests
using the quantiles of the asymptotic distribution which is generated by a Gaussian process
(“Asymp”) using only eigenvalues larger than 10~°.

For I' = [-10.0,10.0] and ' = [-5.0,5.0] we also plot the power of the tests using the exact
quantiles (“LRT”) as well as the quantiles of the asymptotic distribution which are generated
by the help of Davies’ bound (“Davies”). As mentioned above there is no difference between
the exact quantiles using the unbounded EM-algorithm and using the modified EM-algorithm.
Hence, quantiles calculated using the unbounded EM-algorithm can be interpreted as the exact
quantiles.

For I' = [-2.5,2.5] we also plot the power of the tests using the exact quantiles of the mod-
ified EM-algorithm (“LRTE(04”) and the exact quantiles when the unbounded EM is used
(“LRTEM?”). The latter power plot is based on the exact quantiles of I' = [-5.0,5.0] as ex-
plained above and for “LRTE(04” we use the corresponding quantiles given in Table 4.1.

An implementation in pseudo FORTRAN 77 code of calculating the power is given in Program
B.4 in the appendix. The program is initialized by sample size of n = 1000, I' = [-2.5,2.5] and
the aforementioned corresponding quantiles.

The power plots reveal the surprising result that the power curves based on the asymptotic
quantiles of “Asymp” and “Davies” on I' = [—10.0,10.0], [—5.0, 5.0] are approximately identical
to the curves of the exact quantiles “LRT” minus a positive constant. Therefore, the power
of “Asymp” and “Davies” are a lower bound of the power of “LRT”. For the interval I' =
[-2.5,2.5] we make the same pleasant observations for “Asymp” and “LRTE04”, “LRTEM”.
The most encouraging fact is that for a sample size of n = 1000 this constant is approximately
0. Thus the difference between the exact and the asymptotic quantiles do not make much
of a difference to the power. We also observe that the computing times for calculating the
asymptotic quantiles are considerably shorter than the computing times of the corresponding
combined EM-algorithm even for a small sample size of n = 1000. Consequently, the use of our
modified spectral factorization using only eigenvalues larger than 10~ is an efficient method of
calculating the quantiles of the LRT statistic.
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4.3. Power

I' = [-10.0,10.0], & = 0.9 (the curves “Asymp” and “Davies” often overlap)

n = 1000

n = 100
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Figure 4.3.: 7 =0.1:
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Figure 4.5.: m =0.5:
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I' = [-5.0,5.0], a = 0.9 (the curves “Asymp” and “Davies” often overlap)

n = 100
1 T T T I z 1
0.9 3\\ LRT - 09
0.8 |\, Asymp -~/ 0.8 |
0.7F Davies /- ;- 5 0.7 -
5 06F N Soq g 06F
g 05 \ K 4 % 05
A 04 \ / - A~ 04
0.3 | \ K - 0.3 -
0.2 |- \ / - 0.2 -
0.1 . s - 0.1
0 | | I T | | 0
-3 -2 -1 0 1 2 3 -3
p I
Figure 4.6.: 7 =0.1: 0.IN(0,1) + (1 —0.1)N(y,1)
1 1 ,
09 - 09 - -
0.8 - 0.8 -
0.7 0.7 -
g 06 5 0.6 -
£ 05 £ 05 -
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03 0.3 -
0.2 - 0.2 - -
0.1 0.1 -
0 0 .
-3 -3 -2 3
U
Figure 4.7.: 7 =0.25: 0.25N(0,1) + (1 — 0.25)N(y, 1)
n = 100
1 1 ,
09 - 09 -
0.8 - 0.8 - -
0.7 - 0.7 -
q; 0.6 - 5 0.6 =
E 05 E 05 -
A~ 041 A~ 04 —
0.3 - 0.3 - -
0.2 - 0.2 - -
0.1 0.1 -
0 0 L
-3 -3 -2 3
p It

Figure 4.8.: 7 =0.5: 0.5N(0,1) + (1 —0.5)N(y,1)
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I' = [-2.5,2.5], a = 0.9 (the curves “LRTE04” and “LRTEM” often overlap)
n = 100 n = 1000
0.55 T T T T L = T T ,
0.5 LRTE(04 — 09 F LRTE(04 7/
0.45 17 0.8 LRTEM -4
0.4 — 0.7 Asymp -7~+-- |
w 0.35 7 5 0.6 J —
S 03f 4 £ 0iC _
S 0.25 - - 5 U
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Figure 4.9.: 7 =0.1: 0.IN(0,1) + (1 —0.1)N(y,1)
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[
0.25N(0,1) + (1 — 0.25)N(u, 1)
1 1
09 R 09 =
0.8 0.8 - -
0.7 0.7 -
5 0.6 5 0.6 | -
£ 05 £ 0.5 -
A 04 A~ 04 =
0.3 0.3 -
0.2 0.2 -
0.1 0.1 -
0 0 ! ! | ! !
-15 -1 -05 O 0.5 1 1.5 -5 -1 -05 O 0.5 1 1.5
7 7

Figure 4.11.: 1 =0.5:

0.5N(0,1) + (1 — 0.5)N (s, 1)



A. Formal Proofs

A.1. Proof of Lemma 2.20

1) On A,, we expand according to [DCGY99], p. 1196, 9(9,8) up to the order 2 at the point
# = 0. For 8 > 0 we have

6? 63
g0, = ¢°(®)+ 00900, ()9=0 + = 399(93 (®)|9=0 + ol 939(0,8) ()| 9=0-
for some 6* < 6. Thereby, it results from the representatlon (2.12) of g(g g that

q q k
(Z)\zf’y )+Zplf’y°" (@"‘Z Z(Sla%f’y T)|y= 'y‘”)
=1 =1

999(0,8)(T)|o=0 =

N(B

q k
%905)(®@lo=0 = 157 pi6ty (B, L) o)

I=141=1

q k

2 Z Z 5l 6l 7117l2f7( )|70’l’

=1 %1,22=1

q k
99(0,8)(®)lo=- = O Z > 1551552( %'1%'2f'r(w)|’y°,t+N9(;)6‘)

1 41,i2=1

o~
B Z Z (m + py (ﬁ))5§1552553(3%1%2%3 f"f(“’)|~r°"+N9<2>“’)

=1 %1,22,23=1

hold (see also formula (A.7) or [DCGY99], p. 1194). Let mg and m3 be given according to
(P0)c). Then we obtain the remainder term

112
0330 @ s = O ((lefﬁ?q} ey 9(m2<w)+m3<w))g°<w)>

since 0* < 0, &' € [-1,1)%, p; € [-1,1] and N(B) is bounded due to (2.20).
According to [DCGY99], p. 1196, we define

D.(B) - Z 399(9930((38i))|0 0 (A1)
=1
F (ﬂ) _ Zn:zq:zk: 5[87]f7 )|7OL A2
n = pi P (A.2)
i=1 [=1 j=1

n

_ : 0st st D17, 7 (@) |you
Gn(B) = ZZ Z 5]1‘532 go(wi) :
1,J2

i=110=1j 1
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Then the first expression of the log-likelihood function /,,(6, 8) — I,,(0) given in (2.42) has
the form

n

S 0@ @) o o0 {

Pt 9°(w4)

g (Ful8) + Gu(8))

el
o ((le{sf,l.l_?,q} N(,3)3)9(m2(m) + m3($))90(‘1’)> }

(Notice that in [DCG99], p. 1196, the multiplication of O(...) is a typo.)

According to Proposition 2.18 D = {699(057‘3)'9:0 : B € B} is a Donsker class. Due to

q k 8. .
Definition 2.12 ﬁDn(,B) converges uniformly in distribution. > ) Pléé- /R f;O“r"’ and

I=1j=1
g k 0 l l a7j17j2 f'y|."0,l . =Y . . 3
YooY m 85,05, —1=5—— can be represented as functions of D by using suitable coef
1=1j1,j2=1
ficients (see here, Lemma 2.16, and [DCG99] (10), p. 1186). Thus ﬁFn(ﬂ) and ﬁGn(ﬂ)

converge uniformly in distribution.

All further statements about the asymptotic behaviour of [,,(6, 8) — [,,(0) given in (2.42)
also follow the same lines as given in the proof of Lemma 3.4 in [DCGY99]. Roughly
speaking, they apply the definition of A, and 7, to show that

raFa®) = o(0D.(8)) and Gu(B) = o(6Dn(B))

hold, where the o(-) are uniform in probability over 8 in A,,.

Lemma 2.22 leads to the existence of some a > 0 such that for any [ =1,...,q

> (Vis)

(Jﬂffﬁz)% > )

ol

a

which is equivalent to

W=

a

Hence, there exists some a > 0 such that forany I =1,...,¢q
2 1
18] ok (N(B)2> s et a%( 18] )3_
N(B) — 18t / N(B)? N(B)?
As consequence we obtain, by using the definition of 4, and 0 < n,,
181> 1-%a 1
0 < 4 I=1,...
N(ﬂ)g — 77n as ’ ’ 7q’

which converges to 0 since a < %. (Notice, that [DCG99], p. 1197, do not mention the
constant factor a3 but it makes no difference to the asymptotic behaviour of o(...).)
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Then they maximize 0D, (8) with respect to & which leads to

2
L), 8) ~ 1) = 222 a1+ op(1)

uniform over B in A,. Using again Proposition 2.18, i.e. D is a Donsker class, and that
D = u,D, for D, = {w : B € An} holds, we obtain according to [DCG99], p.

gO
1197, that
Jup In(08(n),8) —1,(0) = 5 sup (\f Z ) s da(xy>0(1 +op(1)) (A.3)

converges in distribution to 1 supgep(€4)?1e,>0-

2) On B,,, the normalizing factor N () tends to 0 and according to Remark 2.4 all parameter
o, 1=1,...,q, also tend to 0. A direct consequence of Lemma 2.22 is

Lemma A.1 Suppose that at least one of the assumptions a), b) or ¢) from Lemma 2.20
holds. Then there exists a constant M > 0 such that for B € B,

N@B) < Mnp? and
18 < Mp®®  for any (i,1) € {1,...,k} x {1,...,¢}-
(Under assumption a) the statement is equal to Lemma 5.2 in [DCGY9].)

The proof of Lemma A 1 is a direct consequence of Lemma 2.22 and is based on the rela-
tion N(B) < aS/|<;Sz l|3 for ¢;; = 6t/ N(B)? (see the proof of Lemma 5.2 from [DCGY9)).

Consequently, the normalizing factor N(3) and all |6f| tend uniformly to 0 on B,,.
We expand according to [DCG99], p. 1198, gy g) up to the order 5 by

95
90,8 (@) = g°(x) + 6 8ag(9.5) ()] 9= 0+Z aageﬂ( )Ia:o+5339(9,3)($)|o=o* (A4)
i !

for some 6* < 0. Using the notations given in the preprint of Dacunha-Castelle and Gassiat
(1996) [DCGY6], p. 17, as well as the notations in [DCGY9], p. 1198, we define

. —~0,1 8 .y —~0,17
v(i, i, 1') = <‘9%f"|’7—" Ll frby= > , i, €{l,...,k}and I,I' € {1,...,q},
La(g%)

0 90
g k
ZZP by 8%f'7|7 Fyidryly=yt (A.5)
=1 1i=1

— izpéz@%ﬂylv o 609(95 lo= 0> _ <d1(ﬁ) 899(0,B)|9=0>
I=1 i=1 9° g La(g%) g° La(g%)
a k
= 33 pprdidloli 1) = B, o

LI'=144'=1
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and we define the polynomial P, (6, 3) of degree 4 in the variable 6 by

62 62 3 6
Pa(0.8) = 6Du(8) = 5+ a8 ~ 5V )~ sxigy Zpg (n, B)6

where D, () is given in (A.1) and F,,(f3) is given in (A.2).
From now on we also use [DCG96] since this preprint is sometimes more detailed than
[DCGY9] and introduces notations which are missed in [DCG99).

In the following we give an outline of the corresponding proof in [DCG99] who verify that
for 8 < 27, and for 8 € B,, one has

In(6,8) =ln(0) = Pu(6,8)(1+0p(1)) (A.6)
uniform over 8 in B,,. We show that the proof also holds under our modifications (P1 t)

as well as (M1) and (M2), respectively.

It results from the representation (2.12) of g gy that for 7 = 2,...,5 the rth derivative of
g with respect to 6 is given by

q k
l l
899(9 ,B)( ,,- Z Z Pléz . 6171 1 (871'1---71'7«,1 f701+6 Negy (m))
=1 %1,0e0ytp—1=1
: 0
1
Z > (7o) 0k (O Fpna ot gty (@) (AT
=1 41,eeyir=1
(see also [DCGY99], p. 1194).
Since |!| converges uniformly to 0 on B, for [ = 1,...,q it follows that
b0, = o u
N(B)" N(B)
and for r = 2,...,5 we obtain

SDS i8-8, (0 @) ) (1 o1,

059¢6,8)(®)|o=0 = (
1=1 41,0enyip_1=1

According to [DCGY96], p. 19-20, we define

5l 557- 1 (97” Yip lf'Y(mi)l"YOJ

En0.8) = ZZ .Z 2.~ ZN(B)’” 9 (z3)  (4-8)

=1 r= 2 =1 %1,slp—1=1
164]° PLACD))
Jn(0,8) = su , A9
(0:) le W NP ) o

where the function ms is given according to (P0)c). We obtain for the first expression of
,(0,8) —1,(0) given in (2.42) that

Z 9(0,8) (i) — ¢° (i)

— 9°(3)
(A.1),(A4) [-)J @5 5
= +Z (@ Z 9900.8) (i) lo=0 + =7 959(0,8) (@) o=0-

C= 7 0D,(B) + En(6,8)(1 + o(1)) + O(Jn (6, B)). (A.10)
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The latter equation is a consequence of (P0)c). Inserting (A.10) in (2.42) leads to

1n(6,8) = 1n(0) = 6Da(B) + Fn(0,8) ~ 5 (0Da(8) + Fa(0,8)) + R
= Pn(0>B)+Rna

where R,, is a sum of terms which are uniformly o(Q,(0,3)) in B for
Qn(0,8) = sup |pj(n,B)0?|. An accurate list of the terms belonging to R,, and their
1<j<4

asymptotic bounds according to Lemma 2.22 and Lemma A.1 is given in [DCGY96], p. 20
et sqq. (Both Lemmas hold under our modifications.)

We follow the argumentation from [DCG99] who prove, firstly, that

JSup P(0,8) < (;élf In(0s(n), B) —ln(O))(l +op(1)) (A.11)
BEBn "

holds. To obtain this result they show that

sup Po(0,8) < sup Zy(B) (A.12)
#es, Pt

holds for

2
Dn(ﬂ) _ F.(B)UB) 9
Zn(B) = L ( S(zﬁ) ) -1 Fr(B)U(B) b1 B
2n 1— [{9((%)) Dn(B)- S(B) 20 2n S(,B)

(A.13)

For any real A and any p > 0 such that A2 + 2 = 1 we define

=

d(/\,,u,,B) A\ dl(ﬁ) ny (809(9,5)‘9:0 B d1(,B)U(ﬂ)) (1 B U(,B)Z)

5(8) g° S(B) S(B)

which belongs to D using suitable coefficients (under our modifications, too). (Notice that
[DCGY9], p. 1200, neither mention the square root 1/.S(B3) of the first term nor the square
root of the last factor.) Let

2\ ~3
Vn()‘vua:@) = - ,ug((g)) (1 - U(IB) ) ’ (A'14)

Wa,B) = u(l—[g<ﬂ>2)? (A.15)
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This leads to

P _
A mB) = (d1(ﬂ)Vn(A,u,ﬂ)+09(27’30)|9_0Wn(u,ﬂ)),
n 2
(Lanwpxa) = Vuousp 233 (8) (X (B)(X;)
=1 =1 j=1
6 N g_
+2V( ” ,3 sz 099?)(()(?)”0-0
i=1 j=1 9 J
(1.B) ZZ 399(93 i)lo= 0609(90(()(-3.)”0_0
i=1 j=1 J

= AS)( (B)Va(X, 1, ) + Dr (ﬂ)Wn(u,ﬂ))2
14)(A { Fun(B) (D (3)_w> (1_U(ﬂ)2>—§}2'

S(B) 5(B) S(B)
For 7,(B) = Fn(B) and Rl D, ( _ EBUB)) (1 _ Upy =3 one has
" V/S(8) n( 5(8) 5(8)
1 1 & 2
3 S ﬁ;d(%ﬂaﬂ)(xi) “Lyvm) T, dB)(X:)>0
AZ+p2=1 =
1 2
= gn S (ATa(8) + HRa(8)) - 11/ ymoma (81420
A24p2=1
1 2
= 5 s (IO 11T 8 Ra@) | cos [2{ 0, (T(8). RatB)'}] ) (A10)
A2+;2 1

L1/ y/m) AT (B)+1Rn (8)) 200

where /(a,b) denotes the angle between a and b.

Suppose that there exists some 8 € B such that R, (8) = 0. Then one has D,(8) =
%. Due to (A1) and (P1 t) it follows \; =0,i=1,...,p—qgand p;=0,l=1,...,q
(see (A.1) and (A.2)). According to (2.6) there exists some [ € {1,...,q}and i € {1,...,k}
such that ¢! # 0 which is in contradiction to R,(8) = 0 thanks to (A1) and (P1 t). Thus

we have R, (8) # 0 for all B € B.

If R,(B) > 0 then the supremum on the right hand side of (A.16) is in
A1) = [(Ta(B), Ra(B))' |~ (Ta(B), Ra(B))" and it follows

1 2
— sup (A%(ﬂ)+u73n(ﬂ)) L/ ym) VT (B)+uRa(8))>0

2n >0
A24p2=1

= 5 (708) + 5 (Ra(8) Lizuioyso- (A.17)

If R,(B) < 0 then the supremum on the right hand side of (A.16) will be reached for y = 0
and A = 1 or A = —1 whichever 7,(8) is positive or negative. Thus (A.17) also holds in
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this case. As the right hand side of (A.17) is equal to the right hand side of (A.13) we
obtain

1 1 o 2
Zn(B) = 5 sup (755 d(A,u,B)(Xi)> L1 /vm) £y dOunsB)(X:) 20
w> N
A24u?=1 =1

As mentioned above d(), i, 3) belongs to D and it follows

P08 < 1 LS xn)
. (6, <" Ssup(—= D)) s axs
g 70 S g (2 A00) Hom s wxes
A3 ~
= ( sup 1, (0p(n), ) - zn(O))(l + op(1)).
BEAn

Thus statement (A.11) holds.

Then [DCGY9], p. 1200 et sqq., prove that if at least one term p;(n,B)6’ of P, (see p.
103) tends to +o0 it follows that P, (0, 3) tends to —oo, and that all terms have the same
order and R, = o(P,(0,3)) at the optimizing value (6, 3). They verify this with the aid
of the following technical

Lemma A.2 Suppose that at least one of the assumptions a), b) or ¢) from Lemma 2.20
holds. There exists T > 0 such that

q k q9 k
SN pprdiadeeno(, 1) > I (i) ?no(i i) (A8)
LI'=1i,i'=1 1=1 i=1
with ¢;; = 6}/ (N (B))*.
(Under assumption a) the statement is equal to Lemma 5.3 in [DCGY99].)
Proof of Lemma A.2: Lemma A.2 is a simple consequence of (P1 t) which belongs any

assumption a), b) and ¢). According to the definitions given on p. 102 the left hand side
of (A.18) is equal to

n$B) _ B, ZE/’ p %f,,|,, o
N(B)? N(B)? N(ﬂ) =1 i=1 9° La(g%)
and right hand side of (A.18) is equal to
N(B)* =1 i=1 Z La(g)
According to (P1 t) the functions L"{'}'Z’ﬂ 7= ,k1l=1,...,q, are linearly inde-

pendent in Lo (g%). Thus the left hand side of (A.18) is null iff all (p;6!) = 0 which implies
that the right hand side of (A.18) is also null. For sufficient small 7 > 0 (A.18) holds. O

Finally, we conclude according to [DCG99] that, in the neighbourhood of (6, 3) formula
(A.6) holds. Hence, the assertion follows from (A.11). O
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A.2. Proof of Lemma 3.7 via induction on n :

According to (3.5) we have p¢(x) = C(€) exp {(C,T(w»} For i€ {1,...,k} (3.8) leads to
€)= —(9K@Q)e = -(ET)cw). (A.19)

n=1: For iy € {1,...,k}, A" = {1}, a¢py = 1 and a({1}) = —1 we obtain

. (3.8),(A.19)
O ic(@) VVE (@) (T (@) - BT, (A.20)
- {(EC HTZJ ) H T )_< ( H T’J))H Z] )}
j€b je{1} je{1} j€b
-~ x@ X {5 (117)) T 50}
ByCAl JEB; JEAN B,
n — n+1: For iy,...,i,41 € {1,...,k} the induction assumption leads to

B, -0 Pe(®) =0,  Bel@) Y { (B, ,Bn)<HE<(H%)> 11 Tz'j(w)},

€B . "
disjoint I&5 ]EA"\( U Bt)
t=1

(A.21)

where A" = {1,...,n} and a(B,,...B,) € IR are suitable factors for disjoint By, ..., B, C A™.

Forl € {1,...,k} and l,...,ly € IN we have
O BTl ... T}
L (age(0))of ... ot / exp ((¢. T())) v(dz)
T C(Q)0 D .. B / exp ((¢. T())) v(da)

A.19),(3.10
(A4.19),(3.10) (E'CTZ>C(C)8?1 8?; /exp ((C,T(m)>) v(dz) + BT ... T,

CL) gerh T - (BT BT .. TH. (A.22)
As a consequence we obtain for any ij,...,i,41 € {1,...,k} and any B, C {1,...,n}
(A.22)
BCin+1EC( H Tij) - EC( H Tij) - (Ecﬂn+1>EC( H TZ]) (A.23)

JEBy j€B,U{n+1} JEByr

Notice that if B, = () then both sides of the latter equation are 0.
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Using the product rule and Bginﬂﬁg(w) (4.20) p¢(@) (T, (®) — EeT,,,) as well as (A.23) the

right hand side of (A.21) results in

pe()

By,...,Bpn CAT jeB;

(fTinH(m)—ECTZ}nH) 3 {Bl, Ba) (HEC<HT,])) I 7 }A24)
jean\( U B)

+ > {G(Blr--aBn)En: [EC< 11 TZJ(ﬁEC( 11 T%))] 1(_In T)'ij (‘B)} (A.25)
V(U B

B e =1 e jear

n S
S {a(Bl,,,,,Bn)Z[ T Be( I 72) (H 5e( I1 T))] 1z }] (A.26)
e =t < b jeA"\(tEJlBt)

For A" = {1,...,n+ 1} the factor [...] of f¢(x) can be written as

S fooen(lx(I7) 1 ne}-

..... JEB; ) ntl
d:Ls_J'_olmto JeAPHI\ ( L=J )
n+1
Z {G(Bl,---,Bn)EC< H TZ;)( H EC( TZ;)) H Tij(“’)}+
By,....BnCAT JE€Bn+1 r=1 JEB, . nl
Bnillsﬁ?:ﬂ} rnt JGA"‘H\( tgl Bt)
n r n+1
> {umsn X |m( I n)( 11 (11 %) | I zn@)}-
Bj,...,Bp CA™ =1+ JEBUBp 11 r=1 JEBy i n+tl
e e ()
n r n+1
> e X B Tn)ee(Tn)( I 5(11%))] 11 n@)
B " =17 J€Bnt €8 rtlimeny ISP 'eAn+1\(nleB)
Bp41={n+1} ! =

where the both first sums are equal to (A.24), the third sum is equal to (A.25) and the fourth
sum is equal to (A.26).

Furthermore, one has

n+1
{(H E¢< II T,])) . Bi,...,B, C A" disjoint, By = (2)}

JE€EB;

n+1
{(H E¢< I1 T,J)) . Bi,...,Bpi1 C A" disjoint, n+1¢ By u...uBnH} (A.27)
JEB;
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and
n+1 n+1
{( T n)( T &(IT%) 2( T =)( I =(I1=))
JEBn+1 #nH JEBr JEBIUBn 11 vl n+1} JEBr
n+1
( H TZJ)EC(HTZJ)< H EC(HTZJ)) - ""’n:
JEBn+1 JjEB; T;é{f‘l’=nl+1} JEB,
By,...,B, C A" disjoint, Bp4+1 = {TL + 1}}
n+1
{(H EC( II :nj)) . Bi,...,Bns1 C A" disjoint, n+1 € Bn+1}. (A.28)
Jj€Br

The union of (A.27) and (A.28) results in
n+1
{(H EC( I1 ﬂj)) . B,...,Bpy C A" disjoint}.
JEBy

Hence, there exist suitable coefficients a y € IR such that

Bl; ) n+1
691 “e acin+1]5<(:1:)

= > { (BtyoBat1) (nﬁlEc( I1 TZJ>> 11 Tij(ac)}. =

By,.-,Bpp1CATTL JEB; _ n+1
disjoint JEA"+1\( U Bt)
t=1

A.3. Proof of Lemma 3.9 via induction on n :
For any n € IN and i1,...,i, € {1,...,k} we have due to (3.12)
8%.1 o Oy, fo(®) = 8%.1 o Oy, T(T)Pe () (T)-

Since r(z) does not depend on « we consider 0y, ... 0y, De¢(y)(E)-

n =1: For iy € {1,...,k}, Al = {1} and bq1}) = 1 we obtain

!
Oy, em(@) = (BamPer) @), 0, )P @)) (8, LM, -+ By, (7))

21: Zk: {( i (1P (T )) > (b(A%z)ﬁaAigji(’Y))}'

m=1jm=1 AL ={1} i=1
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n — n+1: For iy,...,ip41 € {1,...,k} the induction assumption implies that

8%;1 .. 87in+1ﬁ4( )(w)

= Oy, > Z Z {(%1 O, (m)Pey) (@ )) > (b(A]‘,...,A?n)i:fn[laA?Cji('Y))}

m=1j1=1 Jm=1
disjoint
A?U...UA%:A”

k k k
- Z Z {(8@'1 @ -+ 9 () Z (8ij+1(7)15<(’7) (a:)) (avinHijH(’Y)))
. j Jm+1=1
1 i=1

disjoint
A"f‘U...UA"m:An

(A.29)
n k

+Y D Z {(3@1 -%m(v)ﬁcm(w)) > (b< AT, A %WH AanCj, (v )}

m=1j1=1 Jm=1
disjoint
APU..UAZ, =AR

(A.30)

Calculation of (A.29): For A"*! = {1,...,n + 1} and 5(A71'L+1’_",An4:|_11) = bar,..,.An) the sum
(A.29) is equal to

n k k
)IDINNDD {(841‘1('7)"'aij(’Y)aij+1(’7)134('7)(”’))

m=1j1=1 Jm+1=1
. m+1
Z (b(A?Jrl!'--aA:lnt_ll) ]1 8A?+1C]z (’7)) }'
1=

disjoint, AT EY ={n+1},

A’f+lu...UAfnt_11 —An+1

A shift of index m + 1 to m implies that the latter expression is equal to

n+1

ZZ Z {(3@1 'a@m(v)ﬁC('r)(“’)) > (E(Av;ﬂ,___,wl)ﬁaA?ngi(q))}.

m=2j1=1 jm=1 i=1

disjoint, AP ={n+1},
n+1 n+1
ATy uaRFloan+l

(A.31)

For suitable b*

(AnHLam) € IR (which is replaced as needed by 0) the sum (A.31) is equal to

n+1

Z Z Z { (8@1 . agm (7)P¢(v) (513)) Z (bz‘A?"'l,...,Aﬁ{H) 1:[1 3A?+1Cji (*y)) }

m=2j1=1 jm=1 Antl g
disjoint
AT G _paRtl=antl

-----

(A.32)
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Calculation of (A.30): We apply the product rule to (A.30). This results in

533 (i 2nen®)
m=1 j1=1 Jm=1
Z (b(A;z, ,Anm)z |:(8Anu{n+1}CJ, )HaAnC]l ])}

disjoint l-,—é'z
ARU.LUAT, =AM

~ J

<

Thereby, (%) has a representation

m
Z > (E(A?“,-..,A%“) || RS (7)> ’

An+1 =1
A7
=i magi,
APFl=any{nt1}

where I;(A?+1,...,A:Ln+1) = b(ap,...,an). Thus for suitable IA)(A?H,___,A%H) € IR (which is replaced as
needed by 0) (A.30) is equal to

)OI {(%( o e @) Y <5<Ag+1,...,A:;+1)H3A7+1Cj,(7))}-
j j =1

disjoint
ATTLG uAl = antl

(A.33)
Finally, we obtain 8y, ...0y . p¢(v) (z) by summarizing (A.32) and (A.33) which leads to

n+1

> Z Z {(391 -9, ()Pe() (‘”)) > (b(A;“rl,...,Aﬁl) 11 0 gn+1Gji (7))}
-1

m=1 j1=1 Jm=1
disjoint
ATy uaptl=antl

for suitable factors b(A;L+17___,Anm+1) € IR. O

A.4. Lemma A.3

Lemma A.3 Let k € N,V C {(4,j) : 1 <j<i<k}andU =V U{(i,i): i=1,...,k}. Let
the polynomial Pyi g , - RF — IR be given by

Py (T) = Z a”mza:]-l—be@ﬁLcl,

(4,9)eU

0,
¢l,...,C¢™ be distinct points in a dense set Z C IR*. Then we have

where Al = (al- 1 (4,74) € U) e RV b = (,...,6,) € R* and ¢; € R. For n € N let

ZPAI,,, a@exp ((¢e)) =0 & Ve{l.,n}: Pupg(@) =0
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Proof of Lemma A.3 via induction on n :
n = 1: Obviously, Pa1 g1 ., (@) exp ((¢1, ) =0 & Pai g, (z) = 0.

n—n+1:
n+1
ZPA, i o, () XD ((cl w)) =0 (A.34)
& ZPAl,bl () exp ((Cl ¢t m>) =— ( Z a:‘jlx T + anﬂxz + Cn+1>
1=1 (i,)€U i=1

Thereby, we assume with no loss of generality that ¢ — ¢(?*? # 0 for all [ = 1,...,n and all
r =1,...,k. (Otherwise multiply both sides of (A.34) with exp ({{,z)) for a suitable ¢ € Z
using the fact that Z is dense.) Consequently, we have

n
vre{l,....k}: 0 ZPAl,bl o (T) exp (<<l liand :c>) =0 (A.35)
=1
Simple calculations lead to
83 Pat o, (@) exp (¢! = ¢, )

= { (¢ = ) (82, Pa s (@) +3(¢E = )2 (00, Pat o (@) +

(CT n+l)3 (PAz,bl7Cl(m)>}exp ((Cl—cn‘*'l,a:)). (A.36)
Inserting
O, Pagg (@) = Y agmi+ Y abmi+2al,@ + b,
{j:(r,4)eV} {#:(i,r)eV}
8§TPAl,bl,cl(w) = 2a£‘,r

in the right hand side of (A.36) results in

02 Pa s @) exp (¢ = C™@)) = Pair puor g, (@) exp (¢ - ¢™HL,))

where Ab" = ((CT ”+1)3a£]- : (1,9) € U), bhT = (bll’r, ... ,bﬁc’r)' with

(¢ = G+ 8¢t — G at, =
o _ ) (G =GR 3(¢l 2l i€ {us (nu) € V)
! (¢t — 1)3bl +3(¢t—¢rt2el . ie{u: (u,r) €V}
(¢ ”+1)3 , 1e{l,...,k}\{u: (r,u),(u,r) €U}

and ¢ = (¢h — (P3¢ 4 3(¢E — ¢PT)2bL 4+ 6(¢L — ¢ )al . Hence, (A.35) is equivalent to

Vre{l,...,k}: Z PAl,r,bl,r’cl)T () exp (<Cl —¢ntl w)) =0 (A.37)
=1
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which is equivalent to
Vre{l,...,k}Vie{l,...,n}: Pyirpre (®€) =0
due to the induction assumption. It follows (A.37) is equivalent to

& Vre{l,...,k}vie{l,...,n}: A" =0,b" =0, ¢, =0
& Vre{l,...,k}Vie{l,....,n}: A'=0,b=0,¢=0
& Vre{l,...;k}Vie{l,...;n}: Pup,(x)=0

using Cﬁ—g”“ £0foralli=1,...,nandallr =1,...,kand (1 —¢™1,..., ¢"—¢" 1 are dis-
tinct points. Consequently, (A.34) is equivalent to Py p ., (®) =0foralll =1,...,n + 1. O

Proofs ommited in Chapter 4

Calculation of (4.3):

For u, fi € T'\{0} the covariance function has the form
Con(6n,-6s) = [ m@ha@hi@)de = [ na)ol@ds [ a(e)fofe) de
_ /R o (2)ha (@) folw) da (A.38)

since (fh,,)“ er\{0} is a centered Gaussian process. The definition of h, leads to

=

Cov(n, ) = (exp(u?) —p2=1) " (exp(p®) - i~ 1)

/JR (eXP {/m: - %2} -1- um) (exp {[wz - %2} —-1- ﬂa:)fo(m) dz.(A.39)

The integral of (A.39) is given by

explpf) [ fusnle)do = [ (4 pafp(o)do = [ (14 i) (o) do

R
+ /IR (1 + px + iz + uﬂx2> fol(z)dz
= exp(pi) — (L+pi) — (L+ ap) + (1 + pi). (A.40)

We obtain (4.3) by inserting (A.40) into (A.39). O
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Cov(&n,.,&n;) ¢ ([—0.01,0.01]\{0}) — (0,1] has a unique maximum in (fz, ft)
for any fixed g € [—0.01,0.01]\{0} :

Let ¢ € [-1,1]\{0}, then [-0.01,0.01]\{0} is a subset of the range of c. For p € [—1,1]\{0}
we define
exp (uc) —1—puc

(exp () —1- /ﬁ);<exp () —1- 02)

We show that f has a unique maximum in ¢ : The derivative of f with respect to y is given by
(c exp (uc) — c) (exp (/ﬁ) —-1- ,u2) — (exp (uc) —-1- uc) (u exp (/ﬁ) — ,u)
gs 1
(exp( 2)—1—p ) (exp(cQ) —1—02>2

Obviously, one has 9y, f ()| y=c = 0 for ¢ € [-1,1]\{0}. It is clear that the denominator (A.41) is
larger than 0 for all x € [—1,1]\{0}. Hence, it is sufficient to show that the numerator of (A.41)
is greater than 0 for all —1 < y < ¢ and is less than 0 for all 1 > y > ¢ with p # 0.

For p € [-1,1]\{0, ¢} let

flp) = CO’U(fhwﬁhc) =

D=

. (AA41)

8uf(ﬂ) =

u2e( exp (4?) - exp (uc))

o (A.42)

t(u) = —exp (4 + pc) +exp (4*) +exp (uc) — 1+
Then the numerator of (A.41) is given by (u — c¢)t(u). Therefore, it is enough to show that

Vi€ [-1L,1\{0,¢} :  (u) < 0. (A.43)

With the help of

() o) = 3 (’"‘,f? g2 (‘353
“_

A5 )

and the Taylor expansion of the remaining terms of ¢(x) we obtain

tu) = _1+Z%(— (1 + 1) + (12)" + (ue)* + wep (Zu’“ - “>>
- i % ( - (i (l:) ()" (uc)i) + (1) + (ue)* + uc(lzz_éu%ici))
= i % ( S (ID u2’”ci>l+ i % (kz:l /z%”lc”l)l.
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Extracting ¢, i € IN, from g(u) leads to
o0 [e.e] 1
2k—1 1 2k—2
E- () e LG

£l 0

and extracting ¢, i € IN, from [(u) results in

g(p) =

o0

+C3Z

k=4

k!

[ ()

+ ...

I e l 2%+1 |, .2 2h—1+41 | - l 2h—2+1 |
(k) ¢y e Zkﬂ‘

k=2 =

ooi 2k—(j—1)+
k

I
\glae

. Q.
/"\/“\:r-

It follows that

) = ic](ﬁ 2 [—;1) %@D
)

— 1 (*) = 0. Furthermore, for k = j +1 one has 1 — (! }'_)1*1)% -0

)

+1

- icﬂ(,ﬁ:“ )ll‘(l;:i

since for 7 = 1 one has ﬁ
which leads to

7k

o 3 et - (3]

]
]

)
) (A.44)

J

J=2 k=j+2 R
<0
with 1 — (I;j)% < 0 since for j € {2,3,...}

j+1

& (+2-j+1)(G +2-7+2)...(+2-2)(G+2-1)

& k—d+1)(k—7+2)...(k—2)(k—-1)

o k-1

j—1

>
>
>
>

2
g!

7,

Js

VkE>j5+1

Vk > j+1.

If e > 0 then ¢/p?*=3 > 0,4,k € IN, since the sum of the exponents is even. This leads to

t(p) < 0.

For u,c € [—1,1]\{0} with pc < 0 we split (A.44) into the sums with even and odd exponents of ¢ :
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t(u)
- 2] % .1 -1\ 1
_ Z 27 Z 2k—2j [1 o ( )_] }
¢ 5 YRR . .
j=1 { k=2j42 (k—1)! 2j—-1)2
LN 2 2h=(25+D) 1 ( | ) |
; k:(gjz.;lm (k—1)! (2j+1) =1/ 2 +1
o0 [e’s}
j ; 1 Ek—1\1
= 2j 2k—2j
- c K 1- < . )—
; { k—z2j:+2 (k= 1)t [ 2j—=1/2
o
i 1 k—1 1
te 2%—2j—1 1_ ( . ) |
k—%':w'u (k—1)! 2j J25+1
o0 [e’s}
= Z 2 Z p2k=2i 1 1 - < k'— 1 ) i
7j=1 k=2j+2 (k - 1) 2] -1 2]
= 1 B\ 1
te 2%—2j+1 21 |1 _ ( ) '
k—§2j:+2'u ! 2j)25+1

beptlio (P
ax 25)2j + 1

o o0
. , 1 k—1\1
— 27 2k—2j ( [1 o ( )_ ~ 11 ) }
E c E 7 — . .
= { Ml A (k —1)! 27 —1)2j ! ’
Since ¢, y?k=2% > 0 for j € IN and k = 2j + 2,25 + 3,..., we show z < 0 with the help of

1 k—1\1] 1] B\ 1 ]

Thereby, the first relation follows from —1 < ¢y < 0 and

k > k = _1— k ;- < 0
2j 1 2j) 25 +1

because of j > 1 and k > 25+ 2. For i € {2,3,...}, j € IN and k = 2j + i one has

2--04 < 25((2742)---(294+1—2))(2j +1)
since for any [ = 1,...,7 — 1 the Ith left factor “I” of the left hand side is less than the [th factor
on the right hand side. This implies
0 > (27 +i—1)i! —((2+2)--- (25 +14)) 25
FET (k= 1)(k—25)! — (25 +2)--- k) 2
Vo

which is equivalent to

k! 2j B kY 2j
(27 + DYk —25)! (k_l)_(Qj)2j+1

0 > (k—-1)-
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and

“ (k—ll)!ll‘(:j_—IJ%I < %ll‘(;)ﬁ

Obviously, we obtain (A.45)
Additionally, we have

(A.41) c

3\/§(exp (02) —-1- CQ)

?

111_1)% auf(ﬂ)

M

which results from the calculation of hm( .f(1))? and (using 12 times) the rule of 1‘Hospital

(or e.g. the use of MATHEMATICA) O

Taylor expansion of (4.3) for p or fi € [—0.01,0.01]\{0}:
We use the Taylor expansion of the exponential functions of (4.3) depending on the values of y
and ji, respectively. Let

(exp (pip) =1 - u/l>2
(exp () = 1= p2) (exp () —1- 2)

According to our observations numerical problems only occur on the range [—0.01,0.01]\{0}.
As a consequence we expand f(u, /i) iff at least one of the two parameters p and i belongs to
[—0.01,0.01]\{0}. Correspondingly, we make a Taylor expansion of g(u) iff p € [—0.01,0.01]\{0}.
This leads to the following three cases:

[,

)
9(1)9(i) (4.46)

1. p € [-0.01,0.01]\{0} and & ¢ [-0.01,0.01] :  We expand (A.46) into

4

3
T ) (o)1)
B

(B (1 () )

2 2 2 2

T (1 S () ) (e ) 1)

ol
“(ﬂ2+“—+..+7“ “)
n

©
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2. 1 € [-0.01,0.01]\{0} and p ¢ [-0.01,0.01] :  Analogous to item 1.

3. f,p €[—0.01,0.01]\{0} :  Analogous to item 1. we expand (A.46) into

I, o

9(w)g (@)’
with f : [~0.01,0.01] x [~0.01,0.01] — IR, given by
AN . iy, pi :
Flu i) = (1+ ; (1+ ; (1+...(1+n_1(1+ ! )))))
and g : [—0.01,0.01] — IR, given by

2 2 2 2

g(u) = (1+%(1+%(1+...(1+n"_1(1+%)>...))).

In all cases we decide to use finite sums of n = 100 terms, since the remainder in Taylor’s

. |u["+! n=100 —362
formula is given by r(|u|) < CE] 1.1-10 °°%, for all p € [—0.01,0.01]\{0}. The terms

in the brackets have been arranged in such order that the whole expression can be calculated in
a numerically stable way. i




B. Simulation Programs

In this section we use a pseudo FORTRAN 77 code while writing comments in italic script and
FORTRAN commands as well as NAG-routines in capital letters.

Program B.1 In “SupGauss” the variable % sup (Shu)2 . 15hu>0 is calculated.
T >

pel'Nn
PROGRAM SupGauss
Initialisation
' = [-a,q]
- 2 . N
—a+(i-1)% , i=1...,5
M = N
.9 .
—a+i%y , t=5,...,N

Generating the covariance matriz
DO5¢i=1,N
DOT7j=14N
IF i, i ¢ [—0.01,0.01] THEN
Cov (fhuﬂfhuj) as in (4.3) and (A.46), respectively
ELSE
Cov (Ehui , {h#j) by Taylor expansion as on p. 117
ENDIF
Cov (é-h'ﬂj ’ éhui) = Cov (éhui ’ ghuj)
7 CONTINUE
5  CONTINUE

Spectral factorization
CALL F02FAF(...)
results in eigenvalues A1 < ... < Ay
and eigenvectors v1,..., VN
t = minarg{\; >107%: i=1,...,N}
Generating Ly = (v1,...,vN) diag(0,...,0,v/ A, .., VAN)
DO9¢i=1,N
DO11j=1N —t
Ln(i,5) = Vi / At
11 CONTINUE
9 CONTINUE
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Generating i.i.d. X1,...,Xny_¢y ~ N(0,1)
DO13i=1,N —¢
X; = GO5DDF(0,1)
13 CONTINUE

Generating EN = (§n,,s -+ 1 huy ) ~ N(0,2n), see (4.6) and (4.7)
DO15i=1,N
€n,, =0
DO 17j=1,N — ¢
€n,; = En,, + L (i, 5)X;
17 CONTINUE
15 CONTINUE

Calculating % sup (é“h#)2 B PR
pel'y #=

sup = max{0, &, fori=1,...,N}
sup = ssup

STOP
END SupGauss

Program B.2 In “AsympQuantiles” we calculate the quantiles of the asymptotic distribution
as described in section 4.

PROGRAM AsympQuantiles
Initialisation of the random generator
seed =0
GO5CBF (seed)

Initialisation
repl = 107
DO 5 r =1, repl
CAll SupGauss, see Program B.1
Y, = sup
5 CONTINUE

Calculating the asymptotic quantiles

CALL M01CAF(Y,1,repl,” Ascending”, ifail)
results in Y1 < ... < Yiepl
quantil(a) = Yepl af

STOP
END AsympQuantiles

For any = € IR we define [z] = min{n € IN : n > z}.
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Program B.3 In “LRT-Quantiles” we use an EM-algorithm to calculate the quantiles
“quantilEM” on the unbounded space IR, i.e. (4.9) is maximized. Additionally, we apply the
NAG-routine E04JYF iff the EM-algorithm crosses the bounds of [—a,a]. This leads to the
quantiles “quantilE04” (see (4.1)).

PROGRAM LRT-Quantiles
Initialisation of the random generator
seed = 0
GO5CBF (seed)

Initialisation of a boolean variable to copy the results of the EM-algorithm if the bounds

of [—a,a] are not exceeded
test = TRUE

repl = 10.000 (or 100.000)

DO 5 r =1,repl
Generating (z1,...,2,) ~ N(0,Iy)
CALL GO5FDF(0,1,n,z)

Initialising starting values of the EM-algorithm

"M(1) = 05
1 n
Tz = — T;
n-
=1
pPM(1) = z-05
pFM(1) = zZ405

EM-TIterations, mazimal 100.000 s(teps)
DO 7 s = 1,100.000
CALL EM(n®M(s), uPM(s), ubM(s),...)
results in sup®M (s + 1), 7PM(s + 1), pPM(s+1), p&M(s+1)

IF pfM(s+1), ufM™(s+1) ¢ [~a,a) THEN
CALL E04JYF(...), a quasi-Newton algorithm for finding a minimum of a
function to fized upper and lower bounds, using function values only
results in supE04(r)

supE04(r) = —supE04(r)— Z:anl log (fa, (i) (see (4.1))

test = FALSE
ENDIF

Stopping criterion for the EM-algorithm
IF sup®M (s + 1) — sup®M (s — stoppdiff) < n - acc THEN
with stoppdiff = 10, n - acc = 1078
GOTO 9
ENDIF
7 CONTINUE
9 CONTINUE
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supEM(r) = sup®M(s)
IF (Test = TRUE) THEN
supE04(r) = supEM(r)
ENDIF
) CONTINUE

Calculating the LRT-quantiles

CALL M01CAF(supEO04, 1,repl,” Ascending”, ifail)
results in supE04(1)< ... < supE04(repl)
quantilE04(«) = supE04] repl o]

CALL M01CAF(supEM, 1,repl,” Ascending”, ifail)
results in supEM(1)< ... < supEM(repl)
quantilEM(a) = supEM] repl «]

STOP
END LRT-Quantiles

Program B.4 In the following program the power is calculated as described in section 4.3.
We consider the example of I' = [—2.5,2.5], sample size n = 1000 and the corresponding 0.9-

quantiles as given in Table 4.1, p. 95.

PROGRAM Power
Initialisation of the random generator
seed = 0
GO5CBF (seed)

Initialisation of the 0.9-quantiles given by Table 4.1, p. 95
gAsymp = 2.0091
gqLRTE04 = 1.4902
qLRTEM = 1.4959 (see I' = [-5,5])

Initialisation of the mizing weights of the testing sample
DO5p=1,3
IF p =1 THEN
m=0.1
ELSE IF p = 2 THEN
m=0.25
ELSE
m = 0.5
ENDIF

Initialisation of the component parameters of the testing sample
p1 =0

po = —2

DO7Tm=1,7
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o = po + 0.5

Initialisation of the number of rejection of Hy
powAsymp(m, ) = 0
powLRTE04(m, pu2) = 0
powLRTEM(, p2) 0

repl = 10.000
DO 9r =1, repl
Initialisation of the testing sample
DO1li=1,7n
Generating Z ~ U|0, 1]
Z = GO5CAF(2)
IF Z <7 THEN
z; = GO5DDF (u1,1) (i.e. z; ~ N(u1,1))
ELSE
z; = GO5DDF (u9,1) (i.e. x; ~ N(u2,1))
ENDIF
11 CONTINUE

Initialising starting values of the EM-algorithm (as in Program B.3)
EM-TIterations, mazimal 100.000 s(teps) (as in Program B.3)
Calculating supE04(r) (as in Program B.3)

IF supE04(r) > qAsymp THEN
powAsymp(7, o) = powAsymp(m, y2) + 1

ENDIF

IF supE04(r) > qLRTE04 THEN
powLRTE04(m, po) = powLRTEO04 (7, po) + 1

ENDIF

IF supE04(r) > qLRTEM THEN
powLRTEM(m, o) = powLRTEM(m, po) + 1

ENDIF

9 CONTINUE

powAsymp(m, u2) = powAsymp(m, us)/repl
powLRTE04(w, u2) = powLRTEO04(m, u2)/repl
powLRTEM(m, p2) = powLRTEM(7, us2)/repl

7 CONTINUE
) CONTINUE

STOP
END Power
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Symbols
A(y) normalizing factor, p. 45
Ay, By, (random) partitions of B, p. 33
CoveT = BEK(C) p. 48
E;T = 0K (C) p. 48
E.Th ... T p. 48
Iy [th component v-density
[y (@) = r(z)py () p- 48
»
Iry(ytyyp) = lE T fypt p mixture
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g = 970 (701 ,... ~y0a) true ¢ mixture density
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1n(0,8) = ln(g(e,ﬂ)) p- 32
Lig,,...en) (ﬂ', (v1,... ,'yp)) likelihood function, p. 2
Ly(g°v) set of square-integrable functions with respect to ¢°v
log N[(? (e, D, P) metric entropy, p. 25
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N[(?(s,D, P) bracketing number, p. 25
O(f),o(f) Landau order symbols, p. 28
Op(-),0p(") p. 33
ord(P) order of P, p. 47
pr(@) = C(C)) exp {(¢(7). T(@))}  pr-density, p. 46
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Pf=[fdP p. 24
Pél---(ﬁin (T'(x)) polynomial in T'(x), p. 49
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T =(T,...,T) : X — IRF (generating) statistic, p. 45
Tn(p) LRT statistic for testing g = ¢° against g € G,\{g°}
Un,Up p- 22
T.(v%) = {y: [y — 7| < }
e\Y ] Y= S
w® = ZZ T Pojon p. 48
=1
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@’ = ZZ T Peou p. 48
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i = (Tig,-- s Tigm)' ith observation
Xi=(Xit,--s Xim)' ith sample
Z=¢(() Cc R
Zim p- 50
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bounded set of “directional” parameters, p. 10, p. 12

p- 40
normalizing factor, p. 46

normalizing factor, p. 46

set of directional scores of gy g), p- 11, 26

p- 41
family of probability densities

model of all p population mixtures of F, p. 1

p- 22
family of probability measures
p- 40

empirical process on D, p. 24

measurable space
bracket, p. 25

hth partial derivative of f with respect to 7;, ..

gradient of f,

hth partial derivative of f with respect to ~;

Hesse matrix of fy

”directional” parameter, p. 11, 13

[th component parameter

[th true component parameter
LRT statistic, p. 2

vector of mixing weights
vector of true mixing weights

family of all p-dimensional mixing weights

p- 46
pseudometric, p. 24

- Yip

"distance” parameter (with respect to g°), p. 13, 14
maximizer of I,(6,3) for fixed value of 8 € B, p. 33

centered Gaussian process, p. 24
parameter function, p. 45



Index

affinely independent, 47

bracket, 25
bracketing number, 25

canonical
parameterization, 46
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density, 1
distribution function, 2
parameter, 1
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contamination model, 5
cumulate generating function, 46

discrete models, 81

distribution
binomial, 82
exponential, 86
gamma, 84
Gaussian, 67
negative binomial, 83
Poisson, 81

Donsker class, 11, 24

EM-algorithm, 94
empirical process, 25
exponential
family, 45
representation, 45

Fisher information, 11

Gaussian
families, 67
process, 25

generating
function, 47
statistic, 46

identifiable
p-weakly, 9

Landau symbols, 28
likelihood

function, 2

log-LRT statistic, 3

ratio test statistic, 2
locally conic, 10
log-Laplace transform, 46

metric entropy, 25
minimal, 47
k-parametric, 47
mixing proportion, 1
mixing weight, 1
mixture, 1
model, 1
true order, 2
simple, 5

normalizing factor, 11
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parameter
component, 1
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power, 96
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Abstract

The subject of this thesis is the asymptotic distribution of the Likelihood Ratio Test (LRT)
statistic of hypotheses about the number of components in finite mixture models. The “classical”
results of a x2?-asymptotic do not hold for these tests since the parameters of a mixing distribution
are not identifiable among other things. Our starting point are the sufficient conditions for the
existence of a limiting distribution of the LRT statistic for testing g against p components given
by Dacunha-Castelle and Gassiat (1999). An analysis shows that these requirements do not
hold, for instance, for “simple” mixtures of univariate normal distributions with heterogeneity
of variances. After our modifications of the sufficient conditions given by Dacunha-Castelle and
Gassiat (1999) a wider range of applications of their theory is offered.

Additionally, we derive sufficient conditions for the existence of a limiting distribution of the
LRT statistic for mixtures of general minimal exponential families. Afterwards we provide a
set of various (new) examples for Gaussian-distributions, Gamma-distributions and discrete
distributions possessing these properties. Our first modification offers testing for ¢ against
g+ 1 components of bivariate normal distributions with unknown (arbitrary) covariance matrix
and our second modification offers testing homogeneity against a two population mixture of
univariate normal distributions with heterogeneity of variances, if the component parameter
space is suitably restricted.

Finally, a method for simulating the quantiles the asymptotic distribution is introduced. Under
the null hypothesis the LRT statistic converges in distribution to a supremum of a functional
of a suitable Gaussian process, which we approximate with the aid of its final-dimensional
marginal distributions. Considering as example a simple test of homogeneity of univariate
normal distributions with unknown mean we give numerical results of this general method. In
this context we introduce a modified spectral factorization on the resulting covariance matrix,
whose outcome is a product of surprisingly low dimensional matrices and leads to considerably
short computation times. A comparison of the power of the simulated asymptotic and exact
quantiles shows that even for a small sample size the power is nearly the same.



Zusammenfassung

In dieser Arbeit wird die asymptotische Verteilung der Likelihood Ratio Test (LRT) Statistik von
Hypothesen iiber die Anzahl der Komponenten in endlichen Mischungsmodellen untersucht. Die
“klassischen” Resultate einer y2-Asymptotik gelten fiir diese Tests nicht, weil u.A. die Parameter
einer Mischungsverteilung nicht identifizierbar sind. Unser Ausgangspunkt sind die hinreichen-
den Bedingungen fiir die Existenz einer Grenzverteilung der LRT Statistik fiir den Test von
q gegen p Komponenten von Dacunha-Castelle und Gassiat (1999). Eine Analyse zeigt, daf§
diese Voraussetzungen, die sich auf allgemeine Mischungsmodelle beziehen, beispielsweise nicht
fiir “einfache” Mischungen von univariaten Normalverteilungen mit Varianzheterogenitat erfillt
sind. Durch unsere Modifikationen der hinreichenden Bedingungen von Dacunha-Castelle und
Gassiat (1999) wird ihrer Theorie ein breiteres Anwendungsspektrum verliehen.

Zusatzlich leiten wir hinreichende Bedingungen fiir die Existenz einer Grenzverteilung der LRT
Statistik fiir Mischungen allgemeiner minimaler Exponentialfamilien her. Anschlieflend geben
wir eine Reihe (neuer) Beispiele fiir GauB-Verteilungen, Gamma-Verteilungen und diskrete
Verteilungen an, die diese FKigenschaften aufweisen. Unsere erste Modifikation ermdéglicht einen
Test von ¢ gegen g+ 1 Komponenten bivariater Normalverteilungen mit unbekannter (beliebiger)
Kovarianzmatrix und unsere zweite Modifikation ermoglicht einen Homogenitatstest gegen zwei
Populationen univariater Normalverteilungen mit Varianzheterogenitiat, wenn der Komponen-
tenparameterraum geeignet eingeschrankt wird.

Schliellich wird eine Methode fiir die Simulation der Quantile der asymptotischen Verteilung
vorgestellt. Unter der Nullhypothese konvergiert die LRT Statistik in Verteilung gegen ein Supre-
mum eines Funktionals eines geeigneten Gauflprozesses, den wir mit Hilfe seiner endlichdimen-
sionalen Randverteilungen approximieren. Am Beispiel eines einfachen Homogentitatstests von
univariaten Normalverteilungen mit unbekanntem Erwartungswert geben wir numerische Ergeb-
nisse fiir dieses allgemeine Verfahren an. In diesem Zusammenhang fithren wir eine modifizierte
Spektralzerlegung der entsprechenden Kovarianzmatrix ein, die ein Produkt aus iiberraschend
niedrigdimensionalen Matrizen ist und zu bemerkenswert kurzen Rechenzeiten fiithrt. Ein Ver-
gleich der Power der simulierten asymptotischen und exakten Quantile zeigt, dal schon fiir einen
relativ kleinen Stichprobenumfang die Power fast identisch ist.



