Volltextdatei(en) vorhanden
Titel: E_n-cohomology as functor cohomology and additional structures
Sonstige Titel: E_n-Kohomologie als Funktorkohomologie und Zusatzstrukturen
Sprache: Englisch
Autor*in: Ziegenhagen, Stephanie
Schlagwörter: E_n-Homologie; Funktorhomologie; Iterierte Barkonstruktion; Operaden; Hochschildhomologie; E_n-homology; Functor homology; Iterated bar construction; Operads; Hochschild homology
Erscheinungsdatum: 2014
Tag der mündlichen Prüfung: 2014-07-02
Zusammenfassung: 
This thesis studies E_n-homology and E_n-cohomology. These are invariants associated to algebraic analogues of n-fold loop spaces: Iterated loop spaces can be described via topological operads, from which one can construct corresponding operads in differential graded modules. Algebras over such an algebraic operad are called E_n-algebras. More concretely, an E_n-algebra is a differential graded module equipped with a product which is associative up to a coherent system of higher homotopies for associativity, but commutative only up to homotopies of a certain level, depending on n. In particular, every commutative algebra over a commutative unital ring is an E_n-algebra.

Using the operadic description, one can construct suitable homological invariants for E_n-algebras, called E_n-homology and -cohomology.
For n=1 and n=\infty this gives rise to familiar invariants: E_1-homology and -cohomology coincide with Hochschild homology and cohomology, while for n=\infty one retrieves Gamma-homology and -cohomology. Note that in characteristic zero Gamma-homology and -cohomology equal Andrè-Quillen-homology and -cohomology.

Although Hochschild homology and Andrè-Quillen-homology are classical invariants and have been extensively studied, very little is known in the intermediate cases.
In this thesis we extend results known for special cases of E_n-homology and -cohomology to a broader context.
We use these extensions to examine E_n-cohomology for additional structures.

Benoit Fresse proved that E_n-homology with trivial coefficients can be computed via a generalized iterated bar construction.
By unpublished work of Fresse, if one assumes that the E_n-algebra in question is strictly commutative, this is also possible for cohomology and for coefficients in a symmetric bimodule.
We give the details of a proof of this result based on a sketch of a proof by Benoit Fresse.

Hochschild homology and cohomology can be interpreted as functor homology and cohomology. Muriel Livernet and Birgit Richter proved that this is always possible for E_n-homology of commutative algebras with trivial coefficients. We extend the category defined by Livernet and Richter in their work to a category which also incorporates the action of a commutative algebra A on a symmetric A-bimodule M. We then show that E_n-homology as well as E_n-cohomology of A with coefficients in M can be calculated as functor homology and cohomology.

Hence E_n-cohomology of such objects is representable in a derived sense. In this case the Yoneda pairing yields a natural action of the E_n-cohomology of the representing object on E_n-cohomology.
We prove that E_n-cohomology of the representing object is trivial, therefore no operations arise this way.

Livernet and Richter showed in that E_n-homology of commutative algebras with trivial coefficients coincides with higher order Hochschild cohomology. We extend this result to cohomology and to coefficients in a symmetric bimodule.

It is well known that for a suitable choice of a chain complex calculating E_n-cohomology of an algebra with coefficients in the algebra itself, this chain complex is an E_{n+1}-algebra. For n=1 this is the classical Deligne conjecture. For n>1, the constructions of the E_{n+1}-action given so far have not been very explicit. We show that in characteristic two the chain complex defined via the n-fold bar construction admits at least a part of an E _{n+1}-structure, namely a homotopy for the cup product, and give an explicit formula for this homotopy.
URL: https://ediss.sub.uni-hamburg.de/handle/ediss/5575
URN: urn:nbn:de:gbv:18-69504
Dokumenttyp: Dissertation
Betreuer*in: Richter, Birgit (Prof. Dr.)
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen

Dateien zu dieser Ressource:
Datei Beschreibung Prüfsumme GrößeFormat  
Dissertation.pdfe9b32dd40efb3bf77a1dd18dfc8ce7ef718.35 kBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Diese Publikation steht in elektronischer Form im Internet bereit und kann gelesen werden. Über den freien Zugang hinaus wurden durch die Urheberin / den Urheber keine weiteren Rechte eingeräumt. Nutzungshandlungen (wie zum Beispiel der Download, das Bearbeiten, das Weiterverbreiten) sind daher nur im Rahmen der gesetzlichen Erlaubnisse des Urheberrechtsgesetzes (UrhG) erlaubt. Dies gilt für die Publikation sowie für ihre einzelnen Bestandteile, soweit nichts Anderes ausgewiesen ist.

Info

Seitenansichten

397
Letzte Woche
Letzten Monat
geprüft am 27.03.2024

Download(s)

120
Letzte Woche
Letzten Monat
geprüft am 27.03.2024
Werkzeuge

Google ScholarTM

Prüfe