
Gutachter: Prof. Dr. W. Kaminsky
Prof. Dr. H.-U. Moritz

Datum der letzten mündlichen Prüfung: 18.12.2001
Danksagung

Ich möchte mich an dieser Stelle bei all denjenigen bedanken, die auf die eine oder andere Weise zum Gelingen dieser Arbeit beigetragen haben. Bei meinem Lehrer und Doktorvater, Herrn Prof. Dr. W. Kaminsky, bedanke ich mich für die Überlassung des interessanten Themas, die gewährte Freiheit bei der inhaltlichen Gestaltung, sowie für sein stets förderndes Interesse am Fortschritt dieser Dissertation. Ich danke allen Mitarbeitern des Arbeitskreises „Pyrolyse“, den Ehemaligen und den Aktiven, besonders aber meinem Kollegen Christian Hanser für die fachlichen Hilfestellungen und die anregenden, inner- und außerdienstlichen Diskussionen. Für Hilfe in technischen Details standen mir stets Peter Harry (Glas) und Holger Stockhusen (Elektronik) zur Seite.

Es erscheint so einfach, den natürlichen Lauf der Dinge zu beeinflussen, aber die Realität ist wie Wasser: flüssig und beweglich und nur mit sehr viel Kraftaufwand ein klein wenig zusammenzupressen. Wenn ein Mensch aus großer Höhe auf diese Oberfläche fällt, ist sie so hart wie der Fels, aus dem Moses das Wasser schlug. [1]

(Gespräch zweier Engel über den Versuch der Manipulation natürlicher Abläufe)
Inhaltsverzeichnis

1 Zusammenfassung ...1
 1.1 Technischer Teil ...1
 1.2 Chemischer Teil ..1

2 Summary ..6
 2.1 Technical Part ...6
 2.2 Chemical Part ..6

3 Allgemeiner Teil ..11
 3.1 Einleitung ..11
 3.2 Gesetzliche Vorgaben und Verordnungen ...12
 3.3 Die Altholzproblematik ...12
 3.4 Herkömmliche Verwertungswege für Biomassen und Altholz13
 3.4.1 Deponierung ...13
 3.4.2 Verbrennung ...13
 3.4.3 Recycling ...14
 3.4.4 Entsorgungskosten ..15
 3.5 Neue Verwertungswege für Biomassen und Altholz ..15
 3.5.1 Verbrennung in Zementöfen ...15
 3.5.2 Vergasung ..15
 3.5.3 Neue Verfahren thermischer Abfallbehandlung ..16
 3.6 Holzchemie ...16
 3.7 Pyrolyse, allgemein ..18
 3.8 Kinetik der Pyrolyse ...19
 3.9 Mechanismen der Pyrolyse von Kunststoffen ...20
 3.10 Pyrolyse von lignocellulosehaltiger Biomasse ..20
 3.11 Flash-Pyrolyse von Biomasse ...21
 3.12 Elementare Prozesse der Biomasse-Pyrolyse ...21
 3.12.1 Transport der Produkte im Reaktor ...21
 3.12.2 Kinetik der Pyrolyse von lignocellulosehaltiger Biomasse22
 3.12.3 Mechanismen der Pyrolyse von lignocellulosehaltiger Biomasse25
 3.13 Produkte der Pyrolyse von lignocellulosehaltiger Biomasse29
 3.14 Charakterisierung von Pyrolyse-Ölen ...29
 3.15 Aufbereitung von Pyrolyse-Öl ..32
 3.15.1 Physikalische Methoden ..32
 3.15.2 Chemische Methoden ..33
 3.16 Verwendung von Pyrolyse-Öl ..34
 3.16.1 Thermische (energetische) Nutzung ...34
 3.16.1.1 Einsatz in Heizkesseln ...34
 3.16.1.2 Einsatz in Dieselmotoren ..35
 3.16.1.3 Einsatz in Gasturbinen ...35
 3.16.2 Chemische (stoffliche) Nutzung ...35
 3.16.2.1 Einsatz nach Fraktionierung ..35
 3.16.2.2 Einsatz ohne Fraktionierung ...36
 3.17 Verwendung von Pyrolysekoks (Holzkohle) ...37
 3.18 Verwendung von Pyrolysegas ..38
 3.19 Historische Entwicklung der Pyrolyse von Holz ..38
 3.20 Aktuelle Anwendung der Pyrolyse von Biomasse in Deutschland40
12 Pyrolyse von Altholz ..114
12.1 Einleitung..114
12.2 Ergebnisse und Diskussion ...114
12.3 Fraktionierte Kondensation von Altholz-Pyrolyse-Öl ..123
12.4 Abgas-Emissionsmessungen nach 17. BImSchV ...123
12.4.1 Aufgabenstellung ...124
12.4.2 Zusammenfassung der Messergebnisse ...124
12.5 Schlussfolgerungen ...126

13 Pyrolyse von Faserwerkstoffen (HPL) ..126
13.1 Einleitung..126
13.2 Ergebnisse und Diskussion ...128
13.3 Schlussfolgerungen ...136

14 Pyrolyse von Faserschlamm ...137
14.1 Einleitung..137
14.2 Ergebnisse und Diskussion ...138
14.3 Schlussfolgerungen ...147

15 Fraktionierung von Pyrolyse-Öl ..148
15.1 Einleitung..148
15.2 Ergebnisse und Diskussion der Kapillar-Destillation von Pyrolyseöl148
15.3 Schlussfolgerungen zur Kapillar-Destillation von Pyrolyse-Öl150
15.4 Ergebnisse und Diskussion der Festphasen-Extraktion (SPE) von Pyrolyse-Öl152
15.5 Schlussfolgerungen zur Festphasen-Extraktion (SPE) von Pyrolyse-Öl155

16 Katalytische Pyrolyse zur Gewinnung von Lävoglukosan155
16.1 Einleitung zur katalytischen Pyrolyse...155
16.2 Ergebnisse und Diskussion der katalytischen Pyrolyse ..158
16.3 Schlussfolgerungen zur katalytischen Pyrolyse ..165

17 Methoden ..167
17.1 Versuchsdurchführung mit der LWS-Holz...167
17.2 Versuchsdurchführung mit der LWS-LP ...167
17.3 Aufarbeitung der Pyrolyse-Produkte ..169
17.4 Analytik der Produktfraktionen aus den Pyrolyse-Experimenten170
17.4.1 Charakterisierung der Pyrolyse-Öl Fraktion ...170
17.4.2 Quantitative und qualitative Ölanalytik mit GC ..171
17.4.3 Quantifizierung des Pyrolyseöls ...172
17.4.3.1 Kalibriermischungen ..172
17.4.4 Analytik der Pyrolyse-Gas-Fraktion ...174
17.4.4.1 On-line Analytik der niedermolekularen Pyrolyse-Gase174
17.4.4.2 Kalibrierung des Micro-GC-Chrompack-CP2002175
17.4.4.3 Off-line Analytik der höhermolekularen Pyrolyse-Gase176
17.4.4.4 Kalibrierung des Chrompack-GC-438A ..177
17.5 Analytik der Pyrolyse-Koks bzw. -Kohle Fraktion ..178
17.6 Allgemeine Analytik ...178
17.6.1 Wasserbestimmung nach Karl Fischer ...178
17.6.2 Bestimmung der Eintragsgutfeuchte nach DIN 52183179
17.6.3 Bestimmung der Glührückstände nach DIN 51719 ..179
1 Zusammenfassung

1.1 Technischer Teil

1.2 Chemischer Teil

Die Abbildung 1 zeigt eine Übersicht über die Massenbilanzen der durchgeführten Pyrolyseversuche. Die Pyrolyse von Buchholzabfall der Chemviron Carbon führt zu relativ niedrigen Ausbeuten an flüssigem Produkt (38,79m%). Der Anteil an wertlosen anorganischen Feststoffen, die zum größten Teil mit der Kohle abgeschieden werden, führt zu einem Wertverlust der Kohle hinsichtlich der Verwendung als Brennstoff oder Ausgangsbasis für die Aktivkohleherstellung. Zusätzlich wird die Abscheidung von Pyrolyse-Öl durch staubförmige Feststoffe im Gasstrom erschwert. Die Energiedichte des Pyrolyse-Öls ist hier nur halb so hoch, wie die Energiedichte des ursprünglichen Eintragsgutes. Diese Argumente sprechen gegen eine Verwendung von Holzabfällen mit einem Gehalt von mehr als 5m% anorganischer Feststoffe.
Die bei dem Versuch der Pyrolyse von Flachsfasern im Rohrreaktor erhaltenen Kohlenstofffasern liegen mit ihrem Kohlenstoffgehalt um 0,79 m% über dem sonst üblichen Wert von 73-75 m%. Das hier eingesetzte diskontinuierliche Verfahren ist geeignet, um Kohlefasern aus heimischem Flachs zur Herstellung von C-Sinterwerkstoffen zu erzeugen. Zusätzlich werden zwei weitere Nebenprodukte erhalten: Pyrolyse-Gas, welches sich als niederkaloriges Brenngas einsetzen lässt und Pyrolyse-Öl, welches vielseitig genutzt werden kann.

Die Pyrolysen von Bambus und Altholz führen zu relativ hohen Ausbeuten an flüssigem Produkt (Bambus 56,41 m%, Altholz 48,06 m%) mit einem hohen Anteil an kommerziell wertvollen Einzelkomponenten wie z.B. Lävoglukosan. Der berechnete untere Heizwerte der Öle ließe sich entscheidend verbessern, wenn man den Wassergehalt durch eine Vortrocknung des Eintragsgutes erniedrigte. Bambus sowie Altholz sind aufgrund der erzielten Produktausbeuten und der Zusammensetzung der Pyrolyse-Öle geeignete Eintragsgüter für...
die Flash-Pyrolyse. Für ein Zulassungsverfahren einer kommerziell mit Altholz als Eintragsgut arbeitenden Pyrolyseanlage ist die Erfüllung der 17. BImSchV für ihre Emissionen unerlässlich. Emissionsmessungen nach den Regelungen der 17. BImSchV zeigen, dass die dort beschriebenen Grenzwerte unterschritten wurden.

Die Pyrolyse von Faserplatten (HPL) führt zu moderaten Ausbeuten an flüssigem Produkt (40-42m%). Eine fraktionierte Kondensation der Öle ist nicht sinnvoll, da sich einzelne Phenolderivate nicht signifikant in verschiedenen Kühlnern abscheiden lassen. Auch eine Mischung phenolischer Komponenten konnte in keinem der drei verwendeten Kühler in ausreichenden Mengen (> 50m%) erhalten werden. Durch die Verwendung des Strahlwäschers zur Kondensation kann ein Öl mit 23,3m% Phenolderivaten erzeugt werden. Phenol selbst ist zu 10,4m% im organischen Anteil des Öls enthalten. Die genannten Argumente sprechen für eine Verwendung von Faserplatten in der Pyrolyse. Verbessern ließe sich die Abscheidung der sehr dichten pyrolysierten Koks-Partikel aus dem Reaktor durch die Verwendung einer zirkulierenden Wirbelschicht. Die Partikel können dann durch einen nachgeschalteten Wirbelschicht-Vergasungs-Reaktor energetisch verwertet werden und die benötigte Prozesswärme liefern.

Die Identifizierung und Quantifizierung der thermischen Abbauprodukte von Papierschlamm konnte im Vergleich zu früheren Studien deutlich verbessert werden. Die Versuchsparameter und die makroskopische Massenbilanzen blieben hierbei vergleichbar.

In den Pyrolyse-Ölen finden sich mehr als 400 Einzelsubstanzen, von besonderem Interesse ist der Naturstoff Lävoglukosan (1,6-β-D-Anhydroglucopyranose), dieser ist von relativ hohem kommerziellem Wert (> $25/g). Lävoglukosan und das entsprechende Keton Lävoglukosenon finden in organischen und pharmazeutischen Synthesen vielfältig Anwendung. Lävoglukosan ist ein Hauptabbauprodukt bei der Pyrolyse von Cellulose.

Durch die Verwendung von Blähschiefer als Wirbelmaterial und Katalysator ließ sich die Ausbeute an Lävoglukosan um 50% steigern. Der Katalysator zeigt im Versuchsverlauf eine steigende Aktivität bis zu einem maximalen Lävoglukosananteil am organischen Anteil des Pyrolyse-Öls von 4,88m%. Die Flash-Pyrolyse mit Blähschiefer als Wirbelmaterial ist somit ein geeignetes Verfahren um relativ hohe Ausbeuten an Lävoglukosan zu erhalten. Durch die Wahl eines Biomasse-Eintragsguts, das einen höheren Anteil an Cellulose als Buchenholz aufweist, kann die absolute Ausbeute an Lävoglukosan, dem Hauptprodukt der Pyrolyse von Cellulose, noch gesteigert werden.
2 Summary

This thesis focuses on two subjects of pyrolysis: a technical subject, the optimisation of a PDU scale fluidised bed pyrolysis plant (LWS-Holz) for biomass and a chemical subject: the thermochemical conversion of wood and other biomass waste using the so called “Hamburger-Wirbelschichtverfahren”.

2.1 Technical Part

Earlier studies showed possibilities for technical optimisation of the pyrolysis plant LWS-Holz, that works according to the “Hamburger Wirbelschichtverfahren”. The cyclone system, the co-axle heating conductor of the tubes, the head of the reactor, the electrostatic precipitators and the condensation train for pyrolysis oil were modified. The choice of stepwise fractionated condensation with heat exchangers is not optimal for receiving a homogeneous pyrolysis oil. Residence time of pyrolysis products on a high temperature level is too long, therefore condensation is too slow and undesired secondary reactions are promoted. Another disadvantage is the need of recombination of different oil fractions to a single oil fraction; here the oil may separate into two or more phases. Therefore, a spray tower was designed and built. Quick and direct cooling of pyrolysis-gas by a fine sprayed pre-cooled quench liquid is highly effective and leads to a single phase pyrolysis oil. Additionally, a laboratory scale pyrolysis apparatus that allows easy handling, has been built for reference pyrolysis experiments and for unusual feedstock. The laboratory scale plant works according to the Waterloo-Fast-Pyrolysis-Process (WFPP) and is suitable for sample amounts less than 1 kg. The plant throughput capacity is 200 g/h.

2.2 Chemical Part

Companies running pyrolysis plants in North America, Canada and Europe are using mainly well defined, non-contaminated biomass fractions such as wood particles or grid. This thesis investigates, in co-operation with several companies, the behaviour of various industrial biomass wastes during pyrolysis using the “Hamburger-Wirbelschichtverfahren”. The pyrolysis products were completely analysed and were discussed with reference to the main question of the experiment. Table 1 gives an outline of the tested feedstocks.
Table 1: Outline of the used feedstocks

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bamboo</td>
<td>Bundesforschungsanstalt für Landwirtschaft (FAL), Braunschweig</td>
</tr>
<tr>
<td>Waste-wood</td>
<td>Bergischer-Abfall-Verband (BAV), Engelskirchen</td>
</tr>
<tr>
<td>Beech-waste-wood</td>
<td>Chemviron Carbon, Bodenfelde</td>
</tr>
<tr>
<td>Fibre sludge (paper)</td>
<td>Papierfabrik Enso Stora, Hagen</td>
</tr>
<tr>
<td>High pressure laminates</td>
<td>Trespa International B.V., Weert, Netherlands</td>
</tr>
<tr>
<td>(type: Athlon)</td>
<td></td>
</tr>
<tr>
<td>High pressure laminates</td>
<td>Trespa International B.V., Weert, Netherlands</td>
</tr>
<tr>
<td>(type: Meteon)</td>
<td></td>
</tr>
<tr>
<td>Beech-Wood/Catalysator</td>
<td>Rettenmeier/Ulopor</td>
</tr>
<tr>
<td>Flax-fibres</td>
<td>EBF Ingenieurgesellschaft für Umwelt und Bautechnik, Riesa</td>
</tr>
</tbody>
</table>

For evaluation of single pyrolysis experimental results, pyrolysis of beech wood (TP44) was used as reference experiment. Pyrolysis of beech wood with different moisture contents could answer the question in discussion: Has feedstock moisture an influence on the quality and on the percentage distribution of components in the organic part of fast pyrolysis oil? The results show that high feedstock moisture is leading to lower charcoal and higher gas yields. Maximum yield of liquid pyrolysis products can be achieved with feedstock moisture around about 5wt.%. High feedstock moisture is leading to high water content in the oil and leads to phase separation of the pyrolysis oil depending on the respective water limits (dependent on the type of feedstock). Feedstock moisture has no significant influence on formation of reaction water and on the product spectra of the organic part of pyrolysis oil.

Figure 1 shows an outline of mass balances of all performed pyrolysis experiments. Pyrolysis of Chemviron Carbon beech wood waste is leading to relatively low yields of liquid products (38.79wt.%). The amount of inorganic solids of low value, that are mainly separated with charcoal, is leading to a loss of value of the charcoal with reference to its use as fuel and for activated charcoal production. Additionally, dusty solids in the gas flow are complicating the separation of pyrolysis oil. Energy density of beech waste pyrolysis oil is only half of the origin of feedstock. These arguments are speaking against the use of wood waste in pyrolysis with higher content of inorganic solids than 5wt.%.
The total carbon content of carbon fibres obtained by pyrolysis of flax fibres is 0.79 wt.% above the typical number of 73-75 wt.%. A discontinuous process of pyrolysis of local flax fibres in a tubular reactor is suitable for the production of carbon fibres to produce carbon-sinter-materials afterwards. Additional two by-products of high value can be obtained: pyrolysis-gas, useful as low caloric fuel and pyrolysis oil for multi purposes.

Pyrolysis of bamboo and waste wood is leading to relatively high yields of liquid products (56.41 wt.% bamboo-oil, 48.06 wt.% waste-wood-oil) with high amounts of commercial high value compounds like e.g. levoglucosan. The calculated lower heating value of the oil could be improved by reducing the water content of the oil through drying the feedstock before pyrolysis. Because of the obtained product yields and the favourable distribution of pyrolysis oil compounds, bamboo and waste-wood can be regarded as suitable feedstocks for fast pyrolysis.
For an official permit to run a commercial pyrolysis plant with waste wood, it is essential to fulfil the 17th BImSchV concerning plant emissions. Measurements of the emissions according to the regulations of the 17th BImSchV are showing, that emission limits can be met.

Pyrolysis of high pressure laminates (HPL) leads to average yields of liquid products of 40 to 42wt.% pyrolysis oil. Fractionated condensation of the oil is useless as single derivates of phenol can not be separated significantly by different heat exchangers. Even a mixture of phenolic compounds can not be obtained with the three heat exchangers. Due to the use of a spray tower for condensation, an oil with 23.3wt.% phenol derivates could be obtained. 10.4wt.% of phenol can be found in the organic part of the oil. These arguments are leading to the conclusion, that HPL is a suitable feedstock for pyrolysis. The separation of the pyrolysed coke particles from the reactor bed could be improved by using the circulating fluidised bed technology. The particles could than be used for process energy production with a fluidised bed combustion installed after the pyrolysis system.

The feedstock fibre sludge could be easily fed into the reactor with the feeding system of the PDU scale LWS-Holz. Solids coming from the reactor can not be removed sufficiently from the gas flow and are contaminating the oil. Pyrolysis of fibre sludge leads to very low yield of a liquid product (5wt.%). Fibre sludge with high content of inorganic solids is unsuitable for pyrolysis with the “Hamburger- Wirbelschichtverfahren”.

The identification and quantification of thermal degradation products of fibre sludge from paper mills could be improved significantly in comparison with earlier studies. The experimental parameters and the macroscopic mass balances remained comparable.

Possibilities for the use of pyrolysis oil as a whole is limited. It can be used for energy production and for production of adhesives, fertilisers or other purposes. For an extensive chemical use of pyrolysis oil, separation into fractions of chemical groups and isolation of single compounds is necessary.

In this thesis preliminary tests to separate and isolate single compounds from biomass pyrolysis oil are performed using capillary distillation and solid phase extraction (SPE) methods. Capillary distillation of pyrolysis is not successful for the separation of pyrolysis oil
into chemical groups or single components. Only acetic acid with its low commercial value could be enriched in the distillate. An extractive separation of pyrolysis oil into cellulose- and lignin degradation products is possible.

Pyrolysis oil consists of more than 400 single components, of which levoglucosan is of great interests due to its high commercial value (> $25/g). Levoglucosan and the derivate levoglucosenon can be used in several organic and pharmacy syntheses.

SPE of pyrolysis oil is not leading to well defined and detailed separation of pyrolysis oil into chemical groups or single compounds, but levoglucosan (1,6-β-D-Anhydroglucopyranose), the main thermal degradation product of cellulose, can be enriched in the polar eluate. A preparative scale extraction will be desirable.

The yield of levoglucosan can be increased to additionally 50% by using inflated slate as fluidising material and catalyst in pyrolysis. The catalyst shows an increasing activity during the experiment until a maximum yield of levoglucosan of 4.88wt.% is obtained (based on organic oil). Fast pyrolysis with inflated slate as fluidising material is a suitable process to obtain relatively high yields of levoglucosan. The selection of biomass waste with a higher content of cellulose than beech wood as feedstock for pyrolysis can increase the absolute yield of levoglucosan.

3 Allgemeiner Teil

3.1 Einleitung

Aufgrund neuer gesetzlicher Vorgaben ist die Deponierung von Holz- und Biomasse-Abfällen künftig nicht mehr ohne Weiteres möglich. Entsorgungsbetriebe sind gezwungen, den für ihre Abfall- und Reststoffe am besten geeigneten Verwertungsprozess zu finden. Im Rahmen der vorliegenden Arbeit soll ein möglicher neuer Weg zur Behandlung der angesprochenen Abfallstoffe aufgezeigt werden.

Seit einigen Jahren werden von der Europäischen Union (EU) Forschungsvorhaben zur energetischen Nutzung nachwachsender Rohstoffe gefördert. Dabei erwies sich die Flash-Pyrolyse in den letzten Jahren als ein interessantes Verfahren, um aus Biomasse einen
flüssigen und Kohlendioxid-neutralen Energieträger und/oder einen Chemierohstoff zu
 gewinnen. Seit der Ölkrise der 70er Jahre des vorigen Jahrhunderts wird die Pyrolyse von
 Biomasse in Nordamerika und Europa wieder intensiv erforscht. Bislang haben
 Pyrolyseprozesse auf Basis von Biomasse jedoch noch keine größere technische Bedeutung
 erlangt. Im Zuge der Diskussionen über regenerative, \(\text{CO}_2 \)-neutrale Energiequellen,
 Chemierohstoffe aus Biomasse und Lösungen der Altholzentsorgung kommt der Pyrolyse von

3.2 Gesetzliche Vorgaben und Verordnungen

Die nachfolgend aufgeführten Gesetze und Verordnungen haben einen entscheidenden
 Einfluss auf die Entsorgung und Verwertung von Biomassen und Altholz. An dieser Stelle
 sollen sie jedoch nur aufgelistet und nicht genauer erläutert werden.

- Kreislaufwirtschafts- und Abfallgesetz (KrW/AbfG) [6]
- Dritte Allgemeine Verwaltungsvorschrift zum Abfallgesetz (TA-Siedlungsabfall) [7]
- Biomasseverordnung (BiomasseVO) [8]
- Altholzverordnung (AltholzVO), (Entwurf) [8]
- Bundesimmissionsschutzgesetz und Verordnungen zur Durchführung (BimSchG und
 BImSchV) [9] [10]
- Chemikalienverbotsverordnung (ChemVerbotsV) [11]

3.3 Die Altholzproblematik

Unter dem Begriff Holzabfall werden Abfälle verstanden, die bei der Holzverarbeitung und
 Holzbearbeitung anfallen oder bereits einer Nutzung als Produkt unterworfen waren.
 Holzabfälle, die bei der Holzbe- und -verarbeitung anfallen, werden als Restholz und
 Holzabfälle, die nach Produktgebrauch anfallen, als Gebraucht- oder Altholz bezeichnet. [12]
 Während die Verwertung und Entsorgung des Altholzes große Probleme bereitet, werden die
 jährlich anfallenden ca. 9 Mio. t Restholz größtenteils einem geschlossenen Kreislauf
 zugeführt. [13] [14]

Die Menge des in Deutschland jährlich anfallenden Altholzes ist nicht genau bekannt; es wird
 jedoch von einer Größenordnung von ca. 100 kg/Einwohner und Jahr ausgegangen. Die
 Tendenz ist steigend. Von diesen rund 8 Mio. t/a werden nur etwa 50m\% den vorhandenen
 Verwertungs- und Sammelstellen zugeführt. Eine eindeutige Definition des Begriffs
„Altholz“ fehlt bislang. Es wird darunter allgemein gebrauchtes Holz jeglicher Art, ohne einen konkreten Altersbezug, verstanden. [2] [15] [16][17]

Eine Übersicht der wichtigsten Altholzsortimente, der ursprünglich eingebrachten Mengen an Holzschutzmitteln sowie eine detaillierte Beschreibung der Altholzproblematik ist bei WEHLTE und bei VOß zu finden. [18] [19] [20] [21] [22] [23]

3.4 Herkömmliche Verwertungswege für Biomassen und Altholz

3.4.1 Deponierung

3.4.2 Verbrennung

Eine nicht genau quantifizierbare Mengen oben genannter Stoffe wird derzeit verbrannt. Als besonders problematisch gelten bei der Verbrennung von Altholz flüchtige anorganische Holzschutzmittelbestandteile wie Arsen und Quecksilber. Über die Emissionen von Arsen bei der Verbrennung von Holz gibt es zahlreiche Untersuchungen. [25] [26] [27] [28] [29]

Umfassende Untersuchungen über die Emissionen von Quecksilber liegen noch nicht vor. Ein großes Gefahrenpotential geht jedoch von Quecksilber aufgrund des niedrigen Dampfdrucks
aus. Ein zusätzliches Problem stellen polychlorierte Dibenzo-p-dioxine (PCDD) und Dibenzofurane (PCDF) dar. Diese Stoffklasse ist außerordentlich giftig und gilt aufgrund ihrer großen Stabilität und des langsamen biologischen und photochemischen Abbaus als eines der Hauptprobleme im Bereich der Altlasten. Unter ihnen befindet sich das 2,3,7,8-Tetrachlordibenzo-p-dioxin (TCDD), besser bekannt als „Seveso-Dioxin“, das als die giftigste Substanz gilt, die bisher im Zusammenhang mit chemischen Produktionsprozessen vorgekommen ist. [30]

Bei Altholz stellen die mit chlororganischen Holzschutzmitteln behandelten Hölzer ein großes Problem dar. In Untersuchungen konnten gezeigt werden, dass sich der Dioxinausstoß bei der Verbrennung von Holz, das chlororganische Bestandteile wie z.B. PCP oder Lindan enthielt, deutlich anstieg. Andere Untersuchungen zeigten, dass bei einer optimalen Verbrennungführung die vom Gesetzgeber geforderten Grenzwerte einzuhalten sind. [32][33][34]

3.4.3 Recycling

3.4.4 Entsorgungskosten

3.5 Neue Verwertungswege für Biomassen und Altholz

Die oben aufgezeigte Problematik verdeutlicht eindringlich die Notwendigkeit, neue, umweltfreundliche und vor allen Dingen kostengünstige Entsorgungs- und Verwertungsverfahren zu entwickeln.

3.5.1 Verbrennung in Zementöfen

- die vollständige Verbrennung der organischen Schadstoffe bei Temperaturen bis ca. 2000°C
- die Möglichkeit der Entsorgung großer Kapazitäten in einem kontinuierlichen Betrieb.
- keine Entstehung von Rückständen die deponiert werden müssen, da alles (inkl. der Metalle) vollständig in das Produkt (Klinker) eingebunden wird.

3.5.2 Vergasung

Die Vergasung von Holz und Biomasse stellt neben der Verbrennung den größten Konkurrenten der modernen Pyrolyseverfahren dar. Holzvergasungsanlagen, die ausschließlich der Entsorgung von Altholz dienen, konnten bis heute in Deutschland jedoch nicht realisiert werden. Da die Vergasung bei der Verwertung von Abfällen eine sinnvolle
Alternative zur Verbrennung darstellt, gibt es zur Zeit Verfahren, bei denen Holz zumindest mitvergast wird. [39]

Das Sekundärrohstoff-Verwertungszentrum Schwarze Pumpe (SVZ) ist ein Unternehmen, welches sich mit der Verwertung von festen und flüssigen Abfällen im Sinne der Verpackungsverordnung und des Kreislaufwirtschaftsgesetzes beschäftigt. Bisher wurden mehr als 1 Mio. t feste Abfälle verwertet. Darunter befinden sich Altkunststoffe, Klärschlämme, kontaminiertes Holz, Schredderleichtgut sowie aufbereiteter Hausmüll. Hinzu kommen fast 500 000 t flüssige Abfälle, wie belastete Öle und Öl-Wassergemische. [40]

Eine weitere Vergasungsanlage (gebaut von der Firma Lurgi) existiert in einem Werk der Readymix-Zement GmbH, dem Zementwerk Rüdersdorf GmbH in Rüdersdorf bei Berlin. [41] [42] [43]

Die Hauptprobleme der Holzvergasung liegen derzeit noch in der Wirtschaftlichkeit und in der gleichbleibenden Qualität des Gases, die besonders für den Einsatz der Produktgase in Motoren und Turbinen nötig ist.

3.5.3 Neue Verfahren thermischer Abfallbehandlung

3.6 Holzchemie

Um die Prozesse, die zu den Produkten der thermischen Konversion von Biomasse (Öl, Kohle und Gas) führen, verstehen zu können, sind grundlegende Kenntnisse der Holzchemie unumgänglich. Zum Thema Holzchemie ist nahezu unerschöpflich Literatur in Form von Monographien, Lehrbüchern, Vorlesungsskripten und eine Vielzahl von Veröffentlichungen zu den verschiedensten Teilgebieten der Holzchemie vorhanden. [44] [45] [46]
Die Nutzung von Holz richtet sich neben der Wirtschaftlichkeit des Nutzungsverfahrens auch nach den Weltmarktpreisen, da der Rohstoff Holz keiner Marktregelung in der Europäischen Union unterliegt. Eine Förderung für die technische und chemische Verwendung von Holz gibt es nicht. [47] [48]

Abbildung 2: Aufbauschema der Lignocellulose der Zellwand [49]

Aufgebaut ist Lignin aus Phenylpropaneinheiten, die zu etwa 60% über β-O-4-Bindungen miteinander räumlich vernetzt sind. Weiterhin sind α-O-4-, c-c und β-β-Bindungen im Lignin vorhanden.

Abbildung 3: Strukturvorschlag für das Lignin im Buchenholz [51]

3.7 Pyrolyse, allgemein

3.8 Kinetik der Pyrolyse

Bei hohen Temperaturen sind alle organischen Verbindungen instabil und würden in die Elemente Kohlenstoff, Wasserstoff und in Kohlendioxid zerfallen, wenn nicht die Verweilzeit in der heißen Reaktionszone begrenzt würde (kinetische Kontrolle). Man unterscheidet daher Pyrolyseverfahren anhand der Reaktionstemperatur. Es gibt Tieftemperaturpyrolyse (bis 500°C), auch Verschwelung genannt, Mitteltemperaturpyrolyse (500-800°C) sowie die Hochtemperaturpyrolyse über (800°C). Mit steigender Pyrolysetemperatur sind die in Tabelle 2 dargestellten Prozesse bei der Kunststoffpyrolyse zu beobachten. Üblicherweise liegen die bei der Pyrolyse zu überwindenden Bindungsenergien im Bereich von 330-380 kJ/mol für C-C-Einfachbindungen und bei Werten um 40-60 kJ/mol (und höher) für C-H-Bindungen. [53]

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Prozesse</th>
</tr>
</thead>
<tbody>
<tr>
<td>250°C</td>
<td>Desoxidation, Desulfurierung, Abspaltung von Konstitutionswasser und Kohlendioxid aus Verbindungen, Depolymerisation, Beginn der Abspaltung von Schwefelwasserstoff</td>
</tr>
<tr>
<td>340°C</td>
<td>Spaltung von Aliphaten, Beginn der Entwicklung von Methan und anderen aliphatischen Kohlenwasserstoffen</td>
</tr>
<tr>
<td>380°C</td>
<td>Anreicherung des Schwelguts mit Kohlenstoff</td>
</tr>
<tr>
<td>400°C</td>
<td>Spaltung von Kohlenstoff-Sauerstoff und Kohlenstoff-Stickstoffbindung</td>
</tr>
<tr>
<td>400-600°C</td>
<td>Umwandlung von Bitumenstoffen zu Teeren und Schweröl</td>
</tr>
<tr>
<td>600°C</td>
<td>Cracken von bitumenartigen Verbindungen zu thermodynamisch stabileren Verbindungen (Gase, kurzkettige Aliphaten)</td>
</tr>
</tbody>
</table>
| > 600°C | - Dimerisierung von Oleinen (Ethen)
- Wasserstoffabspaltung zu Butadien
- Dien-Reaktion mit Ethen zu Cyclohexen
- thermische Aromatisierung von cyclischen Verbindungen (Dehydrierung) |
3.9 Mechanismen der Pyrolyse von Kunststoffen

Die für die Pyrolyse entscheidenden Parameter sind in erster Linie die Pyrolysetemperatur, die Verweilzeit im Reaktor und der Partialdruck. Betrachtet man die Zersetzungsmechanismen, so wird bei der Pyrolyse organischer Feststoffe in Primärreaktionen, bei denen das Eintragsgut in kürzere Bruchstücke aufgespalten wird, und Sekundärreaktionen, bei denen die so gebildeten flüchtigen Bestandteile weiterreagieren, unterschieden. Diese allgemeinen Aussagen treffen auch für die pyrolytische Zersetzung von Biomasse zu. [52] [54] [55] [56] [57] [58]

Kinetik und Mechanismus der Kunststoffpyrolyse konnten bislang nur bei einfachen Alkanen näher bestimmt werden. Der von RICE und KOSSIAKOFF [59] [60] vorgeschlagene Mechanismus beschreibt die Pyrolyse von Aliphaten als radikalischen Kettenmechanismus (free-radical-mechanism). Von MURATA und SAITO wurde das Modell des Reaktionsmechanismus weiter entwickelt und auch Bindungsbrüche zwischen Wasserstoff- und Kohlenstoffatomen einbezogen. [61] [62] Eine gute Übersicht über die Mechanismen der Pyrolyse findet sich bei SCHLESSELMANN und SAKAI. [63] [64]

Für die Bildung von aromatischen Strukturen spielen auch Oberflächeneffekte eine signifikante Rolle. So wird durch Stahloberflächen die Aromatenbildung beschleunigt. Aromatische Verbindungen sind gegenüber der Pyrolyse sehr viel inerter als Aliphaten. Sie neigen dazu, unter Wasserstoffabspaltung zu polyzyklischen Aromaten zu kondensieren, aus denen bei weiterer Umsetzung schließlich Koks und Graphit entstehen [65].

3.10 Pyrolyse von lignocellulosehaltiger Biomasse

3.11 Flash-Pyrolyse von Biomasse

Die Flash-Pyrolyse ist ein relativ modernes Verfahren, dessen Grundlagen seit etwa 15 Jahren untersucht werden. In jüngster Zeit sind einige umfassende Übersichten veröffentlicht worden. [66] [67] [68] [87] Die Flash-Pyrolyse stellt eine Sonderform der konventionellen, langsamen Pyrolyse dar. Die Flash-Pyrolyse wird mit dem Ziel der Maximierung der flüssigen Fraktion betrieben. Hierbei kommt es darauf an, die Biomassepartikel sehr schnell aufzuheizen (> 1000°C/s); dabei sollte die Pyrolysetemperatur über 450°C liegen. Die Aufenthaltsdauer der Pyrolyseprodukte in der heißen Reaktionszone sollte möglichst gering sein (< 1 s) und die Pyrolyse-Öle sollten schnell und wirksam abgeschieden werden. [69] [70] [71] [72]

3.12 Elementare Prozesse der Biomasse-Pyrolyse

Für die Erzeugung von Pyrolyse-Öl aus Biomasse sind einige elementare physikalisch-chemische Prozesse von Bedeutung. Da Biomasse, insbesondere Holz, eine schlechte Wärmeleitfähigkeit besitzt (ca. $\lambda = 0,16 \text{ W/mK}$), ist für eine hohe Ölausbeute eine hohe Aufheizrate (ca. 1000°C/s) und kleine Korngrößen des Eintragsgutes (< 3 mm) erforderlich. Für die Reaktorauslegung sind besonders die Wärmezufuhr und der Wärmetransport durch die Grenzschicht des Biomasse Partikels, der Transport der Reaktionsprodukte im Partikel und durch die Grenzschicht, sowie der Wärmetransport und erste Reaktionen innerhalb eines Biomasse-Partikels von Bedeutung und beeinflussen das Produktspektrum der Pyrolyse entscheidend. [73] [74]

3.12.1 Transport der Produkte im Reaktor

Gasanteil mehr als verdoppelte. Im Gegenzug sank die Ausbeute an Pyrolyse-Öl um mehr als 30\% und die der Kohle um 40\%. Auch die Zusammensetzung des erzeugten Pyrolyse-Öls wies deutliche Unterschiede zu den herkömmlichen Pyrolyse-Ölen auf. [75]

3.12.2 Kinetik der Pyrolyse von lignocellulosehaltiger Biomasse

Die Zersetzungsreaktionen der Holzkomponenten verlaufen aufgrund der unterschiedlichen Bindungsenergien ihrer chemischen Verknüpfungen zwischen und innerhalb der monomeren Grundbausteinen sehr unterschiedlich ab, wie thermogravimetrische Studien in Kombination mit Massenspektrometrie (TG/MS) zum Abbau von Buchenholz zeigen. Ein entsprechendes TG/MS ist in Abbildung 4 gezeigt. [76]

Das thermische Verhalten von Biomasse wird von dem Verhalten seiner Hauptbestandteile Cellulose, Lignin und Hemicellulosen bestimmt. Die Cellulose zersetzt sich sehr schnell zu gasförmigen Produkten, die größtenteils kondensierbar sind. Das Lignin zersetzt sich demgegenüber nur relativ langsam und bildet einen höheren Kohleanteil. Die Hemicellulosen sind thermisch labil und nehmen eine Mittelstellung zwischen der Cellulose und dem Lignin ein. Untersuchungen zur Kinetik der thermischen Konversion von Lignin stammen zu einem großen Teil aus Russland. Dort ist die Verwertung von Hydrolyséllignin, einem Nebenprodukt der Biomasseverzuckerung, durch Pyrolyse intensiv untersucht worden. [77] [78] [79] [80] [81]

Abbildung 4: Pyrolytischer Abbau von Buchenholz (TG/MS, Heizrate 20°C/min) [82]

Tabelle 3: Übersicht zur Kinetik der Ligninpyrolyse [83]

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Reaktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 175 °C</td>
<td>Entzug von Adsorptionswasser führt durch Schrumpfung und Verdichtung zu strukturellen Veränderungen.</td>
</tr>
<tr>
<td>175 - 250 °C</td>
<td>Spaltung von β-Aryl-Alkyl-Ethern führt zur Abtrennung randständiger Struktureinheiten; die intramolekulare Dehydratation schreitet fort.</td>
</tr>
<tr>
<td>250 - 300 °C</td>
<td>Seitenketten mit α-Hydroxyl- und Carbonyl-Gruppen werden zwischen α- und β-C-Atomen gesprengt.</td>
</tr>
<tr>
<td>300 - 330 °C</td>
<td>Seitenketten ohne reaktive Gruppen werden sowohl zwischen α- und β-C-Atomen als auch direkt am aromatischen Ring abgespalten.</td>
</tr>
<tr>
<td>325 - 330 °C</td>
<td>Die Spaltung von C-C-Bindungen beginnt; Kondensation und Polymerisation der Spaltprodukte setzt ein.</td>
</tr>
<tr>
<td>330 - 400 °C</td>
<td>Die Hauptphase des pyrolytischen Abbaus ist erreicht, Demethoxylierung setzt ein und Phenylpropan-Einheiten werden weiter abgebaut; durch Radikalverknüpfungen bilden sich die Hauptbestandteile des Pyrolysats.</td>
</tr>
<tr>
<td>ab 400 °C</td>
<td>Die Abbaurate geht auf einen konstanten Wert zurück; stabile Strukturen bilden sich aus.</td>
</tr>
<tr>
<td>ab 600 °C</td>
<td>Der Rückstand verkohlt und flüchtige Produkte werden weiter thermisch zersetzt.</td>
</tr>
</tbody>
</table>

Bei der pyrolytischen Zersetzung von lignocellulosehaltiger Biomasse werden die Ausbeuten der Hauptprodukte Öl, Kohle und Gas primär von der Pyrolysetemperatur beeinflusst. Abbildung 5 zeigt ein vereinfachtes kinetisches Schema, welches die wesentlichen Reaktionswege aufzeigt.
Abbildung 5: Kinetisches Schema (vereinfacht) der pyrolytischen Zersetzung von lignocellulosehaltiger Biomasse [84]

Demnach bestehen prinzipiell drei parallele Reaktionsalternativen mit verschiedenen Geschwindigkeitskonstanten k_1, k_2 und k_3. Die Aktivierungsenergien steigen in der Reihenfolge E_1 bis E_3 (also $E_1 < E_2 < E_3$):

- Reaktion 1 (k_1) dominiert bei niedrigen Temperaturen, die der konventionellen Pyrolyse entspricht; hierbei entstehen vor allem Holzkohle, Kohlenstoffdioxid (CO_2) und Wasser.

- Bei höheren Temperaturen überwiegt Reaktion 2 (k_2), die hauptsächlich zur Bildung flüssiger Produkte führt. Dies ist der Bereich der Flash-Pyrolyse; sie ist die bevorzugte Reaktion für die Erzeugung von flüssigen Energieträgern und Chemierohstoffen. Durch weitergehende, sekundäre Crackreaktionen der dabei entstehenden flüssigen Produkte (k_4) können danach Kohlenstoffmonoxid (CO), Wasserstoff (H_2) und Methan (CH_4) entstehen.

- Bei noch höheren Temperaturen findet Reaktion 3 (k_3) statt; hier wird die Biomasse vorwiegend zu Gasen konvertiert.

Temperaturgradient. Das Produktspektrum der pyrolytischen Zersetzung spiegelt quasi das Integral der verschiedenen Reaktion (k_1 bis k_4) wieder.

3.12.3 Mechanismen der Pyrolyse von lignocellulosehaltiger Biomasse

Beschreibungen der Mechanismen, die bei der Pyrolyse von Biomasse (speziell bei Holz) eine Rolle spielen, finden sich bei zahlreichen Autoren. Eine detaillierte Übersicht der verschiedenen Pyrolysetechniken, Mechanismen und moderne Verfahren findet sich bei MEIER. [87]

Der erste Reaktionsweg ist die Transglycosylierung. Sie ist in Abbildung 7 dargestellt und führt durch intramolekulare Substitution der glycosidischen Bindung durch eine der freien Hydroxylgruppen zur Abspaltung von Wasser und somit zur Bildung von monomeren und

Abbildung 7: Dissoziationsmechanismen von Cellulose [94]

Der zweite Reaktionsweg ist die Cyclo- und Aldol-Reversion. Sie verursacht eine Ringspaltung und führt zur Bildung von niedermolekularen Bruchstücken wie u.a. Acetaldehyd, Acetol, Hydroxyacetaldehyd, Ethandiol, Furfural, Furanon. Eine übersichtliche Darstellung der eben beschriebenen Mechanismen findet sich bei BOON und ist in Abbildung 8 gezeigt. Es werden dort für Cellulose drei Dissoziationsmechanismen unterschieden. Die intramolekulare Transglycosylierung (A) führt überwiegend zur Bildung von Lävoglukosan (I), Weg (B) ergibt durch Ringspaltung zwischen C-1 und O-5 Hydroxyacetaldehyd (II) und zwei Hydroxyvinylverbindungen. Mechanismus (C) ist bislang nur bei derivatisierter Cellulose beobachtet worden und führt zu konjugierten Verbindungen vom Furantyp.
Abbildung 8: Dissoziationsmechanismen der Cellulose (Transglycosylierung (A), 2+2+2 Cycloreversion (B), E1-Eliminierung (C)) [95]

Die Bildung radikalischer Zwischenstufen bei der thermischen Konversion von Biomasse wird, im Gegensatz zur mechanistischen Beschreibung der Pyrolyse von Kunststoffen, nicht mehr propagiert. [96] [97] [98]

3.13 Produkte der Pyrolyse von lignocellulosehaltiger Biomasse

3.14 Charakterisierung von Pyrolyse-Ölen

Tabelle 4: Physikalisch-chemische Eigenschaften von Flash-Pyrolyse-Ölen und Erdölprodukten

<table>
<thead>
<tr>
<th></th>
<th>Pyrolyseöl</th>
<th>leichtes Heizöl</th>
<th>schweres Heizöl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wassergehalt [m%]</td>
<td>15 - 30</td>
<td>0,025</td>
<td>max. 7</td>
</tr>
<tr>
<td>pH</td>
<td>2,0 - 3,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichte [g/cm³]</td>
<td>1,1 - 1,3</td>
<td>0,89</td>
<td>0,9 - 1,02</td>
</tr>
<tr>
<td>Viskosität [cSt, 50°C]</td>
<td>13 - 80</td>
<td>6</td>
<td>140 - 380</td>
</tr>
<tr>
<td>Heizwert (Hₜ) [MJ/kg]</td>
<td>16 - 19</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Aschegehalt [m%]</td>
<td>0,01 - 0,20</td>
<td>0,01</td>
<td>0,1</td>
</tr>
<tr>
<td>Fammpunkt [°C]</td>
<td>45 - 100</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Kohlenstoff-Rückstand</td>
<td>14 - 23</td>
<td>0,2</td>
<td>-</td>
</tr>
<tr>
<td>(nach Conradson, CCR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohlenstoffanteil [m%]</td>
<td>32 - 49</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Wasserstoffanteil [m%]</td>
<td>6 - 8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Sauerstoffanteil [m%]</td>
<td>44 - 60</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Schwefelanteil [m%]</td>
<td>0,0 - 0,6</td>
<td>0,18</td>
<td>1</td>
</tr>
<tr>
<td>Feststoffanteil [m%]</td>
<td>0,01 - 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Natrium-, Kaliumanteil [ppm]</td>
<td>5 - 500</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kalziumanteil [ppm]</td>
<td>4-50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Magnesiumanteil [ppm]</td>
<td>3-12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gießpunkt [°C]</td>
<td>-9--36</td>
<td>-15</td>
<td>min. 15</td>
</tr>
</tbody>
</table>

3.15 Aufbereitung von Pyrolyse-Öl

Je nach dem angestrebten Verwendungszweck der Pyrolyse-Öle sind mehr oder weniger aufwendige Veredelungsschritte notwendig. Hierbei kann zwischen physikalischen und chemischen Aufbereitungsmethoden unterschieden werden. [104]

3.15.1 Physikalische Methoden

3.15.2 Chemische Methoden

Zu den chemischen Methoden zählt die Erhöhung des H/C-Verhältnisses durch Absättigung von Doppelbindungen mit Wasserstoff (Hydrierung) sowie durch Hydro-Deoxygenierung. Daneben ist auch ein Einsatz von Katalysatoren möglich. Bei der Hydrierung soll allein durch die Absättigung reaktiver Doppelbindungen die Stabilität der Pyrolyse-Öle erhöht werden; dies könnte beispielsweise eine Verbesserung der Lagerstabilität bewirken. Hydrierverfahren, die unter relativ milden Reaktionsbedingungen angewandt werden, (40-80°C, 1-5 bar Wasserstoffdruck in Gegenwart von Hydrierkatalysatoren) werden derzeit erprobt. [87]

Bei der hydrierenden Spaltung (Hydrocracking beziehungsweise Hydro-Deoxygenierung) werden bei Anwesenheit von Wasserstoff langkettige Pyrolyse-Öl Komponenten aufgespalten und die entstehenden freien Bindungen mit Wasserstoff abgesättigt; auch wird dadurch der Sauerstoffanteil im Öl reduziert. Diese hydrierende Spaltung wurde bereits im Pilotmaßstab erfolgreich mit dem Combi-Cracking Prozess der \textit{VEBA-Öl} (VCC-Prozess) realisiert. Aufgrund des hohen Wasserstoffverbrauchs sind die Kosten jedoch sehr hoch. Auch lag der Sauerstoffgehalt des Produktes unter 0,5m%. Durch den hohen Sauerstoffanteil der Einsatzöle wurde viel Reaktionswasser gebildet. [106]

Pyrolyse-Öle lassen sich kaum destillieren, weil sie thermisch labil sind und zu Kondensationsreaktionen neigen. Ebenso sollten die Lagerungstemperaturen 30°C nicht überschreiten, um die Stabilität der Öle nicht unnötig negativ zu beeinflussen. [102]
3.16 Verwendung von Pyrolyse-Öl

![Diagramm der Verwendungsalternativen für Pyrolyse-Öl aus Biomasse](image)

Abbildung 11: Verwendungsalternativen für Pyrolyse-Öl aus Biomasse

3.16.1 Thermische (energetische) Nutzung

3.16.1.1 Einsatz in Heizkesseln

Die Qualität der Pyrolyse-Öle ist in etwa mit der von schwerem Heizöl vergleichbar; aufgrund des relativ hohen Wasseranteils zünden sie jedoch später als ein Mineralöl mit vergleichbaren verbrennungstechnischen Eigenschaften. Sie können aber grundsätzlich annähernd wie schwere Heizöle verbrannt werden, wenn geeignete Düsen systeme und Verbrennungsparameter gewählt werden. [108] [109] [110]

Als wichtigstes Einsatzkriterium wird die Viskosität des Öls angesehen, da sie die Atomisierung und damit auch die Tröpfchengröße beeinflusst. Vorteilhaft für die Verbrennung von Pyrolyse-Öl ist eine mit fossilen Energieträgern auf 600-800°C vorgeheizte Verbrennungskammer. Als problematisch hat sich dabei die Azidität und thermische Labilität
von Pyrolyse-Ölen herausgestellt. Die Azidität beeinträchtigt auch die Langzeitstabilität. Es wurden bei der Verbrennung erhöhte Stickstoffoxid- (NO$_x$) und Kohlenstoffmonoxid- (CO) Gehalte festgestellt. [111] [112] [113] [114]

3.16.1.2 Einsatz in Dieselmotoren

3.16.1.3 Einsatz in Gasturbinen

3.16.2 Chemische (stoffliche) Nutzung

Neben dem Einsatz als Energieträger kann Pyrolyse-Öl auch als Chemierohstoff bzw. als Ausgangsmaterial für eine ganze Reihe stofflicher Nutzungsalternativen eingesetzt werden. [119] [120] Nachfolgend werden exemplarisch wesentliche Optionen knapp dargestellt.

3.16.2.1 Einsatz nach Fraktionierung

Durch den Zusatz von Wasser kann Pyrolyse-Öl in eine wässrige und eine organische Phase getrennt werden. Die wasserlösliche Phase kann zur Herstellung von Flüssigrauch ("liquid
smoke") verwendet werden; er dient der Konservierung sowie Geschmacks- und Farbgebung bei der Behandlung von Fleisch- und Wurstwaren. Das aufwendige und gesundheitlich nicht unbedenkliche Räuchern wird so ersetzt. Eine weitere Verwertungsmöglichkeiten beruht auf der Isolierung von Lävogluksan, der monomeren Einheit der Cellulose und dem Hauptprodukt der Cellulosepyrolyse. Lävogluksan kann z.B. als chirales Synthon verwendet werden, um stereoselektive Synthesen durchzuführen. [121] Andere Applikationen beruhen auf der Verwendung als Tenside, biologisch abbaubarer Polymere und Harze. Aus den Pyrolyse-Ölen können auch neutrale und phenolische Komponenten fraktioniert werden, die sich als Phenolharze zur Formulierung von Leimen in der Holzwerkstoffindustrie einsetzen lassen. [122] [123] [124] [125]

3.16.2.2 Einsatz ohne Fraktionierung

Unverändertes Pyrolyse-Öl kann Phenol und Formaldehyd als Bindemittel für Spanplatten ersetzen; der Substituierungsgrad von Phenol beträgt 30-40m% und von Formaldehyd 24-30m%. [126]

Eine weitere Möglichkeit der Nutzung des Gesamtoïls ist die chemische Umsetzung mit stickstoffhaltigen Verbindungen wie Ammoniak oder Harnstoff zu einem Depotdüngemittel mit verzögerter Stickstofffreisetzung. Die vielen funktionellen Gruppen im Pyrolyse-Öl reagieren dabei mit dem Stickstoff zu einem höhermolekularen Feststoff mit organisch gebundenem Stickstoff, der im Boden langsam zu Nitrat mineralisiert werden kann. [127] [128]

Auch die Umsetzung von Pyrolyse-Öl mit Kalk ist untersucht worden. Kalk und Wasser werden dabei zunächst zu Kalziumhydroxid umgesetzt, das dann mit Zuckern, Säuren und Phenolen des Öles reagiert. Durch Zugabe von Luft werden weitere Carbonylgruppen zu reaktiven Carboxylverbindungen oxidiert. [129] [130] Das Endprodukt BioLime™ ist im Abgasstrom von Kohleverbrennungsanlagen zur Emissionsreduktion erfolgreich getestet worden. NO wurde um ca. 56%, NO₂ um bis zu 75% und SO₂ um etwa 95% reduziert.

Neue Untersuchungen belegen erste Erfolge der Verwendung von Pyrolyse-Öl als Holzschutzmittel. [131]
3.17 Verwendung von Pyrolysekoks (Holzkohle)

Das bei der Flash-Pyrolyse von Biomasse anfallende Nebenprodukt ist Holzkohle oder auch Pyrolysekoks genannt. Diese kann aus dem Prozess ausgeschleust werden und anderweitig Verwendung finden, z.B. als Grillkohle oder nach entsprechender Aktivierung als Aktivkohle für Filtersysteme als Adsorptionsmittel. Die Herstellung von Aktivkohle durch Vakuum-Pyrolyse von Nadelholzrinde ist in der Literatur beschrieben. [132] [133] [134] Die entstehende Holzkohle kann auch wie in Abbildung 12 dargestellt für die Prozesseigene Wärmeerzeugung bereitgestellt werden. In einigen Flash-Pyrolyse Pilotanlagen wird dies bereits so praktiziert. [135] [136]
3.18 Verwendung von Pyrolysegas

Tabelle 5: Typische Zusammensetzung eines Buchenholz-Pyrolyse-Gases [137]

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Σ-Cₙ [%]</th>
<th>Gas</th>
<th>Formel</th>
<th>% [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserstoff</td>
<td></td>
<td>Wasserstoff</td>
<td>H₂</td>
<td>0,34</td>
</tr>
<tr>
<td>C₁-Gase</td>
<td>95,28</td>
<td>Methan</td>
<td>CH₄</td>
<td>6,47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kohlenmonoxid</td>
<td>CO</td>
<td>41,39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kohlendioxid</td>
<td>CO₂</td>
<td>47,41</td>
</tr>
<tr>
<td>C₂-Gase</td>
<td>2,54</td>
<td>Ethen</td>
<td>C₂H₄</td>
<td>1,26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethan</td>
<td>C₂H₆</td>
<td>1,26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethin</td>
<td>C₂H₂</td>
<td>0,02</td>
</tr>
<tr>
<td>C₃-Gase</td>
<td>1,33</td>
<td>Propan</td>
<td>C₃H₈</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propen</td>
<td>C₃H₆</td>
<td>0,92</td>
</tr>
<tr>
<td>C₄-Gase</td>
<td>0,51</td>
<td>n-Butan</td>
<td>C₄H₁₀</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iso-Butan</td>
<td>C₄H₁₀</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cis-Buten</td>
<td>C₄H₈</td>
<td>0,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>trans-Buten</td>
<td>C₄H₈</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iso-Buten</td>
<td>C₄H₈</td>
<td>0,19</td>
</tr>
</tbody>
</table>

3.19 Historische Entwicklung der Pyrolyse von Holz

Die älteste Art der Pyrolyse von Holz, die Holzdestillation oder auch Holzverkohlung genannt, ist die Zersetzung von Holz durch trockenes Erhitzen unter Luftabschluss. In früheren Zeiten wurde dies in einfachen, abgedeckten Meilern durchgeführt, das Endprodukt war überwiegend Holzkohle. Heute wird das Verfahren großtechnisch in Retorten und Rohrören betrieben. Dabei anfallende Produkte sind: Holzkohle, Holzteer (dunkle, ölige Substanz, Verwendung unter anderem als Holzschutzmittel), Essigsäure, Wasser, Holzgeist (ein Gemisch aus Methanol, Aceton, Essigsäuremethylester und anderen Abbauprodukten), Holzgase (eine Mischung aus Kohlendioxid, Kohlenmonoxid, Methan, Wasserstoff und Ethylen), und Holzöl (eine terpentinähnliche Destillationsprodukt, welches als Lacklösungsmittel Verwendung findet. Die Holzdestillation war bis zum ersten Weltkrieg die Hauptquelle für Methanol und Essigsäure, sowie für die daraus hergestellten Verbindungen
Formaldehyd und Aceton. Zur Holzkohlegewinnung werden langsame Pyrolyseprozesse mit langen Aufheizraten und langen Verweilzeiten eingesetzt. Unter diesen Bedingungen werden Holzkohleausbeuten von 35m% und Ölausbeuten (einschließlich Wasser) um 40m% erhalten. [138]

Als Alternativen kamen Hochdruckverfahren, wie sie sich bei der Kohleverflüssigung bewährt haben, oder drucklose Prozesse, wie die Pyrolyse, in Frage. Es zeigte sich bald, dass die Hochdruckverfahren aufgrund des technischen Aufwandes und des hohen Wasserstoffverbrauchs wenig Aussicht auf Wirtschaftlichkeit hatten. Anders sieht es bei der Pyrolyse aus, die technisch relativ einfach durchzuführen ist. Durch grundlegende wissenschaftliche Untersuchungen konnten sowohl die Ausbeute als auch die Qualität der flüssigen Produkte erhöht werden.

Abbildung 13: Produktverteilung als Funktion von der Wärmezufuhr, Temperatur und Gasaufenthaltszeit im Reaktor [140]

3.20 Aktuelle Anwendung der Pyrolyse von Biomasse in Deutschland

3.21 Wirkungsgrad, Wirtschaftlichkeit und Ausblick

bezahlt werden muss, in der Flash-Pyrolyse zum Einsatz käme, so verbesserte sich die Wirtschaftlichkeit noch deutlicher. Aufgrund bisheriger Erfahrungen mit größeren Pilotanlagen im Bereich von 200-650 kg Holz/h kann der Energiebedarf des Prozesses durch die teilweise Verbrennung der Nebenprodukte Gas und Kohle auch unter praxisnahen Bedingungen gedeckt werden. [147] [148]

Durch die Flash-Pyrolyse wird es möglich, feste regenerative Biomasse in eine Flüssigkeit umzuwandeln, die speicherbar ist und die sowohl energetisch als auch chemisch genutzt werden kann. Durch diese Dualität ist sie der einfachen Verbrennung oder Vergasung überlegen. Deshalb haben holzerzeugende, holzverarbeitende sowie Altholz aufbereitende Betriebe ein steigendes Interesse an dieser Technologie.

3.22 Die Technologie der Flash-Pyrolyse

Um die Randbedingungen zur Flash-Pyrolyse technisch zu realisieren, bedarf es spezieller Reaktoren, die eine schnelle und gute Wärmeübertragung ermöglichen. Hierfür kommen Wirbelschichtreaktoren in Frage. [66] [150] [151] [152] [153] [154] Abbildung 14 zeigt zwei der wichtigsten einsetzbaren Verfahren für die Flash-Pyrolyse. Zusätzlich sind aber auch andere Techniken einsetzbar, z.B. die in Abbildung 15 dargestellten Reaktoren mit ablativer Wirkung oder Reaktoren mit Vakuum. Nachfolgend soll jedoch nur die für die vorliegende Arbeit angewendete Technik der stationären Wirbelschicht detaillierter betrachtet werden.

Abbildung 14: Wirbelschichttechniken: stationäre Wirbelschicht (A) und zirkulierende Wirbelschicht (B)

Die höchste mit diesen Techniken erreichbaren Ölausbeuten (einschließlich Reaktionswasser) liegen etwa bei 75m% bezogen auf trockene Biomasse. Der optimale Temperaturbereich liegt unabhängig von der eingesetzten Technologie bei 475-500°C. [155]
3.23 Wirbelschichten

Eine feinkörnige Feststoffschüttung kann, wenn sie von einem aufwärtsgerichteten Strom eines Gases oder einer Flüssigkeit durchströmt wird, beim Überschreiten eines bestimmten Volumenstromes v_{mf} (minimaler Volumenstrom zur Fluidisation) eine Wirbelschicht ausbilden. [156] [157] [158] [159] [160] In der Wirbelschicht werden die Partikel durch den Strom des Fluids suspendiert, und die Partikel verhalten sich wie eine Flüssigkeit mit mehr oder weniger definierter Oberfläche. Der Druckverlust über die Feststoffschüttung steigt im Bereich des Festbettes zunächst proportional zur Strömungsgeschwindigkeit bzw. dem Volumenstrom an. Beim Erreichen des Wirbelpunktes ist der Druckverlust im Bereich der Wirbelschicht näherungsweise unabhängig von der Strömungsgeschwindigkeit und entspricht der Gewichtskraft der Partikel abzüglich ihres Auftriebes, geteilt durch die Fläche der Wirbelschicht (Gleichung 1).
\[\Delta p = \frac{A \cdot H \cdot (1 - \varepsilon) \cdot (\rho_w - \rho_G) \cdot g}{A} \]

Gleichung 1: Berechnung des Druckverlustes über die Wirbelschicht

Abbildung 16: Druckverlust über das Gasgeschwindigkeitsverhältnis \(u/u_L \) für eine Sandwirbelschicht [162]

3.23.1 Zustände von Wirbelschichten

![Abbildung 17: Wirbelschichtzustände](image)

Wirbelschichten zeichnet sich aus durch:
- homogene Durchmischung im Reaktor
- gute und schnelle Wärmeübertragung zwischen Feststoff-Gas und Feststoff-Wärmeaustauschfläche, nahezu isothermale Bedingungen
- der Reaktor beinhaltet keine beweglichen Teile und ist leicht abzudichten.
Allgemeiner Teil

- kurze An- und Abfahrzeiten
- hohe Raum-Zeit-Ausbeuten des Reaktors

Folgende Nachteile sind jedoch zu berücksichtigen:
- Feststoffe, die beim Aufheizen auf Reaktortemperatur eine Erweichung erfahren, können verklumpen und die Wirbelschicht verkleben.
- Feststoffausscheidung ist bei hohen Gasgeschwindigkeiten möglich.
- Korrosion durch Abrieb ist möglich.
- Die Maßstabsvergrößerung (Upscaling) ist schwierig.

Für weitere Informationen über die Wirbelschichttechnik sei hier auf die einschlägige Literatur verwiesen. [158] [163] [164] [165]

3.24 Das Hamburger Wirbelschichtverfahren

Das Einsatzmaterial wird in die Wirbelschicht eingebracht, in der die thermische Zersetzung stattfindet. Die Pyrolyseprodukte verlassen den Reaktor, wobei zunächst Feststoffe in einem Zyklon abgeschieden werden. Die flüssigen Pyrolyseprodukte werden aus dem Gasstrom ausgewaschen oder auskondensiert. Das Gas wird erneut zur Fluidisierung verwendet (Kreisgasbetrieb); das Überschussgas wird über eine Fackel abgeführt. Anstelle des im Kreis geführten Pyrolysegases kann auch inertes Gas zur Fluidisation verwendet werden.

Im Laufe der Zeit wurden verschiedene Anlagen im Labor- und Technikumsmaßstab gebaut und betrieben. Eine Pilotanlage mit 1,5 t/h Durchsatz wurde Ende der 80er Jahre des

4 Aufgabenstellung

Thematisch ist die vorliegende Arbeit in zwei Teilgebiete gegliedert:

1. Technischer Teil:
 Optimierung der LWS-Holz,
 Bau zweier Laborpyrolyseanlagen,
2. Chemischer Teil:
 Thermochemische Konversion von Holz- und Biomasseabfällen mit dem Hamburger-Verfahren der Pyrolyse in der stationären Wirbelschicht.

4.1 Technische Aufgabenstellung

Die von SIMON am Institut für Holzchemie und chemische Technologie des Holzes der Bundesforschungsanstalt für Forst- und Holzwirtschaft errichtete Pyrolyseanlage LWS-Holz wurde in einer „Einfahrphase“ von 15 Pyrolyseversuchen (TP 1-15) ausgiebigen Tests unterzogen. [65] Nachdem die Anlage zufriedenstellend lief, wurde zunächst durch acht Versuche (TP 16-24) ein enger, optimaler Temperaturbereich für eine maximale Pyrolyseölausbeute festgelegt. [145] [174]

mit Hilfe direkter Kühlung durch ein fein versprühtes gekühltes Quench-Medium ist effektiver und soll zu einem einphasigen homogenen Pyrolyse-Öl führen.

Weiterhin soll eine einfach zu bedienende Laborapparatur für spätere Referenzversuche und Pyrolysen von ungewöhnlichen Materialien aufgebaut werden. Die Laboranlage soll nach dem WFP-Prozess arbeiten und für Probemengen unter 1 kg geeignet sein. Die Anlage soll einen Durchsatz von 200 g/h erreichen.

4.2 Chemische Aufgabenstellung

Pyrolyse-Anlagenbetreiber in Nordamerika, Kanada und in Europa setzen hauptsächlich definierte, unbelastete Biomasse-Fraktionen in Form von Holz-Partikel oder Holz-Mehl ein. Mit dieser Arbeit soll untersucht werden, wie sich verschiedenartige industrielle Biomasse-Abfälle in der Pyrolyse verhalten. Es steht also folgende Fragestellung im Vordergrund: Ist das Hamburger Wirbelschichtverfahren geeignet, tatsächlich anfallende industrielle Biomasse-Abfälle in ausreichender Qualität und Menge zu einem Pyrolyse-Öl umzusetzen?

Um diese Fragestellung zu beantworten sollen in Zusammenarbeit mit einigen Firmen deren Abfallstoffe pyrolysiert und die entstehenden Produkte umfassend analysiert werden. Eine Übersicht über die verschiedenen Eintragsgüter gibt Tabelle 6. In diesem Zusammenhang soll auch geklärt werden, welchen Einfluss die Eintragsgut-Feuchte auf die Bildung des entstehenden Reaktionswassers und auf die Produktausbeute insgesamt hat.

Zusätzlich soll noch Bambus als weitere Ergänzung zu bereits veröffentlichten Pyrolysen von unbelasteten Laub- und Nadelhölzern pyrolysiert werden.

Für ein Zulassungsverfahren einer kommerziell arbeitenden Pyrolyseanlage ist die Erfüllung der 17. BImSchV für ihre Emissionen unerlässlich. Es sollen daher Emissions-Messungen nach den Regelungen der 17. BImSchV durchgeführt und diskutiert werden.

Tabelle 6: Übersicht über die eingesetzten Eintragsgüter

<table>
<thead>
<tr>
<th>Eintragsgut</th>
<th>Lieferant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bambus</td>
<td>Bundesforschungsanstalt für Landwirtschaft (FAL), Braunschweig</td>
</tr>
<tr>
<td>Altholz</td>
<td>Bergischer-Abfall-Verband (BAV), Engelskirchen</td>
</tr>
<tr>
<td>Buchenholzabfall</td>
<td>Chemviron Carbon, Bodenfelde</td>
</tr>
<tr>
<td>Papierfaserschlamm</td>
<td>Papierfabrik Enso Stora, Hagen</td>
</tr>
<tr>
<td>Hochdichte Faserplatten</td>
<td>Trespa International B.V., Weert, Niederlande</td>
</tr>
<tr>
<td>(Typ: Athlon)</td>
<td>Trespa International B.V., Weert, Niederlande</td>
</tr>
<tr>
<td>Hochdichte Faserplatten</td>
<td>Trespa International B.V., Weert, Niederlande</td>
</tr>
<tr>
<td>(Typ: Meteon)</td>
<td>Rettenmeier/Ulopor</td>
</tr>
<tr>
<td>Buchenholz/Katalysator</td>
<td>EBF Ingenieurgesellschaft für Umwelt und Bautechnik, Riesa</td>
</tr>
</tbody>
</table>
5 Technischer Teil

5.1 Die Laborwirbelschichtanlage LWS-Holz

Wirbelbettreaktoren nach dem "Hamburger Verfahren" haben sich im Bereich der Pyrolyse bewährt. Daher wurde in Zusammenarbeit mit der Universität Hamburg und mit finanzieller Förderung der Bundesstiftung Umwelt eine Flash-Pyrolysanlage für Biomasse an der Bundesforschungsanstalt für Forst- und Holzwirtschaft (BFH) gebaut. [175] [176]

Eine detaillierte Beschreibung aller Anlagenbauteile und eine genaue Darstellung der Auslegung findet sich bei SIMON und GERDES. [65] [177] Fließbilder der LWS-Holz finden sich in der Betriebsanleitung der Anlage im Methoden-Teil der vorliegenden Arbeit.

5.2 Kurzbeschreibung der LWS-Holz

Abbildung 18: Foto der LWS-Holz

Die Anlage in Abbildung 18 und Abbildung 19 arbeitet kontinuierlich und ist für eine mittlere Förderkapazität von 5 kg/h Holz ausgelegt. Die Dosierung des Eintragsgutes erfolgt über eine

5.3 Modifizierung der LWS-Holz

Die Erfahrungen der Versuche TP16 bis TP 38 zeigen konstruktive und bauliche Schwächen sowie Möglichkeiten zur Verbesserung der Pyrolyseanlage auf. Die nötigen Modifizierungen an einigen Anlagenteilen sollen in den nachfolgenden Abschnitten genauer erläutert werden.

5.3.1 Modifizierung der Zyklone

Es wurden die in Abbildung 20 dargestellten manuell, mit einem Handrad betriebene, mechanischen Schaber konzipiert, die in die Kohlebehälter integriert werden können, so dass zuwachsende Fallrohre der Zyklone während des Betriebes wieder geöffnet werden können.
Die Schaber wurden während eines Langzeitversuches über mehrere Stunden erfolgreich eingesetzt.

5.3.2 Modifizierung des Koaxialheizsystems der Rohrleitungen

5.3.3 Modifizierung des Reaktorkopfes

5.3.4 Modifizierung der Elektrofilter

Abbildung 21: Feldstärke E in Abhängigkeit vom Abstand l des Sprühdrahtes in einem Röhrenelektrofilter (spezifische Stromstärke 0,5 mA/m Sprühdraht)

Die Wanderungsgeschwindigkeit u_w der Teilchen hängt bei vorgegebener Feldstärke von ihrer Ladung und ihrem Durchmesser ab.

$$u_w = \frac{qE}{3\pi \eta d}$$

Gleichung 2: Berechnung der Wanderungsgeschwindigkeit

Teilchen kleiner als $d = 2 \mu m$ werden vom „elektrischen Wind“ der fliegenden Gas-Ionen mitgerissen und haben eine bis zu 10mal größere Wanderungsgeschwindigkeiten als größere Teilchen. Der elektrische Wind mischt gleichzeitig das Rohgas und unterstützt die Abscheidung.

Abbildung 22: Prinzip des Röhrenelektrofilters: (1) Gas-Eintritt, (2) Niederschlagselektrode,
(3) Sprühelektrode, (4) Isolator, (5) Reingas-Austritt, (6) Austritt des Abscheidegutes

Vorgabe für den Aufbau war, dass der E-Filter, ebenso wie die übrige Produktabscheidung,
modular aus QVF-Glasteilen aufgebaut sein sollte. Bedingt durch den zur Verfügung
stehenden Platz war die Länge für die Niederschlagselektrode auf etwa 1 m beschränkt und
der Durchmesser der Rohre auf DN 100 festgelegt. Die Niederschlagselektroden wurden über
die gesamte Rohrlänge gezogen und haben eine Länge von 1 m, bei einem Durchmesser von
etwa 95 mm. Sie bestehen aus gebogenem Edelstahlblech mit 1 mm Stärke. Der Sprühdraht
ist ein Draht mit 0,1 mm Durchmesser. Je ein Hochspannungsnetzteil,
Glassman High Voltage Inc. Typ PS/EH30N03, stellt die benötigte negative Hochspannung
von 0 bis -30 V bei 0 bis 3 A zur Verfügung. Die Abscheideleistung eines E-Filters soll nach
den Berechnungen für die unten aufgeführten Bedingungen bei > 99,9% liegen [167]. Der
zweite E-Filter, baugleich dem ersten, soll direkt dem ersten E-Filter in Reihe nachgeschaltet
werden.

Die Volumenströme durch die Elektrofilter sind bestimmt durch die Gase, die den
Reaktorraum verlassen. Diese wiederum sind verknüpft mit der geforderten Verweilzeit der
Pyrolyse-Gase im Reaktor. Für die Gasverweilzeit im Reaktor waren Werte im Bereich von
einer halben bis zwei Sekunden gewünscht. Bei dem verwendeten Reaktorrohr und einem freien Reaktorvolumen von \(V = 5 \times 10^{-3} \, \text{m}^3 \) errechnen sich aus den Verweilzeiten \(\tau = 2,0; 1,0 \) und 0,5 s benötigte Volumenströme von \(\dot{V} = 9; 18 \) und 36 m\(^3\)/h unter Berücksichtigung der Reaktorbedingungen. Auf Normbedingungen umgerechnet, ergeben sich entsprechend Volumenströme von \(\dot{V} = 3,4; 6,8 \) und 13,6 Nm\(^3\)/h. Die Betriebsgeschwindigkeiten betragen damit nach \(u = 0,189; 0,378 \) und 0,757 m/s.

<table>
<thead>
<tr>
<th>Tabelle 7: Auslegungsdaten für die Elektrofilter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumenstrom Pyrolyse-Gas ((\tau = 1,0)) 6,8 m(^3)/h</td>
</tr>
<tr>
<td>mittlere elektrische Feldstärke 300 kV/m</td>
</tr>
<tr>
<td>Dielektrizitätskonstante für Paraffin 2</td>
</tr>
<tr>
<td>Tröpfchendurchmesser 1 \times 10^{-5} , \text{m}</td>
</tr>
<tr>
<td>Durchmesser Sprühdraht 1 \times 10^{-4} , \text{m}</td>
</tr>
</tbody>
</table>

Die Zentrierung des E-Filterdrahtes wurde in der ursprünglichen Ausführung der Elektrofilter durch Magnet-Halterungen realisiert. Dabei wurde ein zylindrischer, mit einer Bohrung versehener Magnet am Drahtende befestigt und ein weiterer auf einem Teflonstab mit einer Tragekonstruktion über der Mitte des E-Filterbodens positioniert. Durch diese Konstruktion konnte die Abscheideleistung des Filters zwar verbessert werden, durch Eigenschwingungen der Anlage bei Betrieb konnten Spannungsüberschläge jedoch nicht vermieden werden. Um das eben genannte Problem zu beheben, wurde der E-Filterdraht an beiden Seiten eines 1200 mm langen Edelstahlstabes mit einem Querschnitt von 10 mm befestigt. Der Draht wurde als Schlaufe um das untere Ende des Stabes geführt und mit einer Spannvorrichtung straff gehalten. Der gesamte Elektrofilter könnte nun, zumindest theoretisch, auch in leicht gekippter Haltung betrieben werden. Der Edelstahlstab stört trotz elektrischer Verbindung das elektrische Feld um den Draht nicht, da für die elektrische Feldstärke \(E \) die Krümmung und damit der Radius \(r_0 \) der Sprühlektrode entscheidend ist. Das neue Aufhängsystem ist in Abbildung 23 gezeigt.
5.3.5 Modifizierung der Pyrolyse-Öl Kondensation

5.3.5.1 Bau eines Strahlwäschers

Um den eben genannten Problemen der fraktionierten Kondensation zu entgegen, wurde ein Stahlwäscher konstruiert und gebaut, der in ähnlicher Form in vielen Industrieanlagen Anwendung findet. Die direkte und rasche Abkühlung der Pyrolyse-Gase mit Hilfe direkter
Kühlung durch ein fein versprühtes gekühltes Quench-Medium ist effektiv und führt zu einem einphasigen homogenen Pyrolyse-Öl.

Tabelle 8: Auslegungsdaten für den Strahlwäscher

| | | |
|---------------------|----------------|
| Eingangstemperatur | 450 [°C] |
| min. Ausgangstemperatur | 20 [°C] |
| Temperaturdifferenz | 430 [°C] |
| Druck Eingang | 50 [mbar] |
| Volumenstrom | 30 [m³/h] |

Komponentenströme

<table>
<thead>
<tr>
<th>Komponentenströme</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlendioxid</td>
<td></td>
</tr>
<tr>
<td>Volumenstrom (bei 20°C)</td>
<td>7,55 [m³/h]</td>
</tr>
<tr>
<td>Molenstrom</td>
<td>340 [mol/h]</td>
</tr>
<tr>
<td>Massenstrom</td>
<td>15,0 [kg/h]</td>
</tr>
<tr>
<td>ΔH (500-20°C)</td>
<td>492 [kJ/kg]</td>
</tr>
<tr>
<td>Enthalpiestrom</td>
<td>7380 [kJ/h]</td>
</tr>
</tbody>
</table>

Wasserdampf

<table>
<thead>
<tr>
<th>Wasserdampf</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Massenstrom</td>
<td>1,0 [kg/h]</td>
</tr>
<tr>
<td>ΔH (500-20°C)</td>
<td>3383 [kJ/kg]</td>
</tr>
<tr>
<td>Enthalpiestrom</td>
<td>3383 [kJ/h]</td>
</tr>
</tbody>
</table>

Pyrolyseöl (wie Octan/Benzol)

<table>
<thead>
<tr>
<th>Pyrolyseöl (wie Octan/Benzol)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Massenstrom</td>
<td>4,0 [kg/h]</td>
</tr>
<tr>
<td>ΔH (500-20°C)</td>
<td>1496 [kJ/kg]</td>
</tr>
<tr>
<td>Enthalpiestrom</td>
<td>5984 [kJ/h]</td>
</tr>
</tbody>
</table>

Gesamtwärmestrom

| Gesamtwärmestrom | 14236 [kJ/h] |
| Leistung | 4,0 [kW] |

Wärmetauscher (Doppelmantel-Quencherrohr)

<table>
<thead>
<tr>
<th>Wärmetauscher (Doppelmantel-Quencherrohr)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingangstemperatur</td>
<td>15 [°C]</td>
</tr>
<tr>
<td>Ausgangstemperatur</td>
<td>50 [°C]</td>
</tr>
<tr>
<td>Temperaturdifferenz</td>
<td>5 [°C]</td>
</tr>
<tr>
<td>cp</td>
<td>4,2 [kJ/kgK]</td>
</tr>
</tbody>
</table>

Kühlflüssigkeitstrom

| benötigter Kühlflüssigkeitstrom | 678 [kg/h] |

Tabelle 9: Technische Daten des Quenchflüssigkeits-Schlangenkühlers

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>QWT 100 [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstoff</td>
<td>14.571 [-]</td>
</tr>
<tr>
<td>Leistung</td>
<td>40 [kW]</td>
</tr>
<tr>
<td>Wärmeaustauschfläche</td>
<td>1727 [cm²]</td>
</tr>
<tr>
<td>Länge</td>
<td>385 [mm]</td>
</tr>
<tr>
<td>Breite</td>
<td>125 [mm]</td>
</tr>
<tr>
<td>Anschlussweite</td>
<td>1 1/2 [Zoll]</td>
</tr>
<tr>
<td>Anschlussabstand</td>
<td>205 [mm]</td>
</tr>
<tr>
<td>Kühlanschlussweite</td>
<td>3 / 4 [Zoll]</td>
</tr>
</tbody>
</table>
Tabelle 10: Technische Daten des Düensystems

<table>
<thead>
<tr>
<th>Düsenflansch</th>
<th>DN 100</th>
<th>[-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zulauf</td>
<td>1/4</td>
<td>[Zoll]</td>
</tr>
<tr>
<td>Hersteller</td>
<td>DELAVAN</td>
<td>[-]</td>
</tr>
<tr>
<td>Lieferant</td>
<td>Nürnberger & Co. GmbH</td>
<td>[-]</td>
</tr>
<tr>
<td>Typ</td>
<td>Hohlkegeldüsen</td>
<td>[-]</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>AEM 6 316 SS</td>
<td>[-]</td>
</tr>
<tr>
<td>Düsenanschlüsseite</td>
<td>1/4</td>
<td>[Zoll]</td>
</tr>
<tr>
<td>Durchflußmenge (3 bar)</td>
<td>2,4</td>
<td>[l/Min]</td>
</tr>
<tr>
<td>Spritzwinkel</td>
<td>70</td>
<td>[°]</td>
</tr>
<tr>
<td>Gesamtlänge der Zuleitungen</td>
<td>ca. 4</td>
<td>[m]</td>
</tr>
<tr>
<td>Volumen der Leitungen</td>
<td>ca. 200</td>
<td>[ml]</td>
</tr>
<tr>
<td>Dimension der Leitungen</td>
<td>10x1</td>
<td>[mm]</td>
</tr>
</tbody>
</table>

Tabelle 11: Technische Daten des Strahlwäschers

<table>
<thead>
<tr>
<th>Länge Wäscherrohr</th>
<th>1650</th>
<th>[mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser Wäscherrohr</td>
<td>108</td>
<td>[mm]</td>
</tr>
<tr>
<td>Wandstärke Wäscherrohr</td>
<td>2</td>
<td>[mm]</td>
</tr>
<tr>
<td>Volumen Wäscherrohr</td>
<td>0,029</td>
<td>[m³]</td>
</tr>
<tr>
<td>Länge Wärmetauschrohr</td>
<td>1270</td>
<td>[mm]</td>
</tr>
<tr>
<td>Durchmesser Wärmetauschrohr</td>
<td>139</td>
<td>[mm]</td>
</tr>
<tr>
<td>Wandstärke Wärmetauschrohr</td>
<td>3</td>
<td>[mm]</td>
</tr>
<tr>
<td>Wärmeaustauschfläche</td>
<td>0,431</td>
<td>[m²]</td>
</tr>
<tr>
<td>Flanschgrößen</td>
<td>DN 100</td>
<td>[-]</td>
</tr>
<tr>
<td>Wärmeaustauscheranschlüsse</td>
<td>1/2</td>
<td>[Zoll]</td>
</tr>
</tbody>
</table>

Die Wärmeaustauschflächen des Doppelrohrrärmetauschers direkt am Wäscher und die Fläche des Schlangenrohr-Wärmetauschers ergeben in der Summe lediglich 0,6037 m². Die Wärmeaustauschfläche scheint zunächst unterdimensioniert. PISKORZ et al. verwenden für ihre WFPP-Anlage mit einem Biomasse-Durchsatz von 20 kg/h eine Wärmetauscherfläche von 2,6 m². [179] Lineare Zusammenhänge vorausgesetzt entspricht dies einer nötigen Wärmeaustauschfläche von 0,65 m² für eine Anlage mit einem Durchsatz von 5 kg/h. Die Auslegung der Wärmetauscherflächen scheint also richtig zu sein; die durchgeführten Versuche bestätigten dies. Die Kühlleistung der Wärmetauscher reicht aus, um die Pyrolysegase von ca. 500°C auf Raumtemperatur beziehungsweise auf 30-35°C herunterzukühlen.
Tabelle 12: Technische Daten des Pyrolyse-Öl Sammlers

<table>
<thead>
<tr>
<th>Kennzeichen</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge Sammlerrohr</td>
<td>550 [mm]</td>
</tr>
<tr>
<td>Durchmesser Sammlerrohr</td>
<td>159 [mm]</td>
</tr>
<tr>
<td>Wandstärke Wärmetauscherrohr</td>
<td>3 [mm]</td>
</tr>
<tr>
<td>Flanschgrößen DN 100</td>
<td>[-]</td>
</tr>
<tr>
<td>Flanschanschlussrohre</td>
<td>139 [mm]</td>
</tr>
<tr>
<td>Ablasshahnanschluß</td>
<td>1/2 [Zoll]</td>
</tr>
<tr>
<td>Quenchreservoiranschluss</td>
<td>3/8 [Zoll]</td>
</tr>
<tr>
<td>Thermoelementanschluss</td>
<td>3/8 [Zoll]</td>
</tr>
<tr>
<td>Tauchrohrbypass</td>
<td>1/2 [Zoll]</td>
</tr>
<tr>
<td>Verbindungsflansch DN 125</td>
<td>[-]</td>
</tr>
<tr>
<td>Gesamtvolumen</td>
<td>0,011 [m³]</td>
</tr>
<tr>
<td>Füllvolumen Sammler ca. 0,006</td>
<td>[m³]</td>
</tr>
</tbody>
</table>

Abbildung 25: Seepex-Exzenterschneckenpumpe, ohne Motor und Regelungsgetriebe
Tabelle 13: Technische Daten der seepex-Exzentschneckenpumpe

<table>
<thead>
<tr>
<th>Allgemeine Angaben</th>
<th>Hersteller</th>
<th>seepex [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baureihe</td>
<td>BN [-]</td>
<td></td>
</tr>
<tr>
<td>Baugröße</td>
<td>5 [-]</td>
<td></td>
</tr>
<tr>
<td>Druckstufe</td>
<td>12 [-]</td>
<td></td>
</tr>
<tr>
<td>Fließrichtung</td>
<td>linksdrehend [-]</td>
<td></td>
</tr>
<tr>
<td>Spannung</td>
<td>220-240 [V]</td>
<td></td>
</tr>
<tr>
<td>Frequenz</td>
<td>50-60 [Hz]</td>
<td></td>
</tr>
</tbody>
</table>

Fördergut	Feststoffverträglichkeit	5 [%]
	max. Feststoffgröße	1 [mm]
	Zusammensetzung	Kohlenwasserstoff [-]

Leistungsdaten	Förderstrom	100-598 [l/h]
	Pumpendrehzahl	100-400 [UpM]
	Druck im Druckanschluss	10,0-12,0 [bar]
	Saughöhe	2-4 [m]
	Leistungsbedarf	0,62 [kw]

| Werkstoffe | Rotor | 1.2436 [-] |
| | Stator | NBR Perbunan [-] |

| Sicherheitseinrichtungen | Trockenaufsichtseinrichtung | TSE 230AC [-] |

Tabelle 14: Eigenschaften der Quenchflüssigkeit

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Hersteller</th>
<th>Typ</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siedebeginn</td>
<td>Exxon</td>
<td>Isopar V</td>
<td>270,0-280,0 °C</td>
</tr>
<tr>
<td>50%-Siedepunkt</td>
<td>Exxon</td>
<td>Isopar V</td>
<td>280,0 °C</td>
</tr>
<tr>
<td>Siedende</td>
<td>Exxon</td>
<td>Isopar V</td>
<td>305,0-320,0 °C</td>
</tr>
<tr>
<td>Flammpunkt</td>
<td>Exxon</td>
<td>Isopar V</td>
<td>115 °C</td>
</tr>
<tr>
<td>Viskosität (25°C)</td>
<td>Exxon</td>
<td>Isopar V</td>
<td>15,54 cSt</td>
</tr>
<tr>
<td>Viskosität (40°C)</td>
<td>Exxon</td>
<td>Isopar V</td>
<td>7,00 cSt</td>
</tr>
<tr>
<td>Dichte (15°C)</td>
<td>Exxon</td>
<td>Isopar V</td>
<td>0,823 kg/dm³</td>
</tr>
<tr>
<td>Dielektrizitätskonstante (25°C)</td>
<td>Exxon</td>
<td>Isopar V</td>
<td>2,092 [-]</td>
</tr>
<tr>
<td>Aromatengehalt</td>
<td>Exxon</td>
<td>Isopar V</td>
<td>0,2 m%</td>
</tr>
<tr>
<td>Benzolgehalt</td>
<td>Exxon</td>
<td>Isopar V</td>
<td>< 1 mg/kg</td>
</tr>
<tr>
<td>Schwefelgehalt</td>
<td>Exxon</td>
<td>Isopar V</td>
<td>5,0 mg/kg</td>
</tr>
</tbody>
</table>

5.3.5.2 Einbau eines Intensivkühlers

Bei einer Gasaustrittstemperatur von bis zu 35°C nach den Elektrofiltern ist es möglich, dass nicht alle leichtflüchtigen Verbindungen und sämtliches Wasser aus dem Gasstrom abgeschieden werden. Daher war es nötig einen Intensivkühler den E-Filtern nachzuschalten. Der Intensivkühler ist als Schlangenkühler ausgeführt. Der Kühler wird durch einen mit Ethanol befüllten Kryostaten bei einer Temperatur von ca. 0 bis -4°C betrieben. Der Intensivkühler ist aus QVF-Laborteilen des Typs DE 2 aufgebaut und hat eine Wärmeaustauschfläche von 0,3 m² und einen maximale Kühlmediumdurchsatz von 1000 kg/h bei einem maximalen Kondensatdurchsatz von 12 kg/h.
5.4 Kurzbeschreibung der modifizierten LWS-Holz

Abbildung 26: Foto der modifizierten LWS-Holz

Hilfe eines Verdichters als Kreisgas in den Reaktor über die Vorheizer (14), (15) zurückgefordert wird.

5.5 Die Laborwirbelschichtanlage LWS-LP

5.5.1 Verwendung eines Rohrreaktors in der LWS-LP

Für schlecht förderbare Eintragsgüter wie z.B. Flachsfasern, die weder über das Standardeintragssystem wie oben beschrieben gefördert, noch mit Hilfe eines Wirbelschichtreaktors pyrolysiert werden können, wurde ein Rohrreaktor aufgebaut.

Abbildung 30: Schema des Rohreaktor
Tabelle 15: Technische Daten des Rohrreaktors

<table>
<thead>
<tr>
<th>Heizung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>Lina</td>
</tr>
<tr>
<td>Modell</td>
<td>High-Therm</td>
</tr>
<tr>
<td>Typ</td>
<td>FRHT40/250</td>
</tr>
<tr>
<td>max. Temperatur</td>
<td>1100 [°C]</td>
</tr>
<tr>
<td>Leistung</td>
<td>0,7 [kW]</td>
</tr>
<tr>
<td>Anschluß</td>
<td>230 [V]</td>
</tr>
<tr>
<td>max. beheizte Länge</td>
<td>345 [mm]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaktionsrohr</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstoff</td>
<td>Quarzglas</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>40 [mm]</td>
</tr>
<tr>
<td>Gesamtlänge</td>
<td>400 [mm]</td>
</tr>
</tbody>
</table>

5.6 Bau einer Pyrolyse-Öl Filtrationsanlage

\[
V = A \times h \times n
\]

Gleichung 3: Dosierpumpenformel (A = Kolbenfläche, h = Hublänge, n = Hubfrequenz)
Tabelle 16: Technische Daten der Dosierpumpe

<table>
<thead>
<tr>
<th>Pumpenkopf</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fördermedium</td>
<td>Teerbrei [-]</td>
</tr>
<tr>
<td>Kolbendurchmesser</td>
<td>12 [mm]</td>
</tr>
<tr>
<td>Zylindervolumen</td>
<td>3,39 [cm³]</td>
</tr>
<tr>
<td>max. Hublänge</td>
<td>30 [mm]</td>
</tr>
<tr>
<td>max. Hubfrequenz</td>
<td>6000 [Hübe/h]</td>
</tr>
<tr>
<td>max. Förderstrom</td>
<td>20,3 [l/h]</td>
</tr>
<tr>
<td>max. Betriebsdruck</td>
<td>200 [bar]</td>
</tr>
<tr>
<td>max. Betriebstemperatur</td>
<td>150 [°C]</td>
</tr>
<tr>
<td>Bauart Ventile</td>
<td>Kugel [-]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anschlüsse</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Saug- und Druckstutzen</td>
<td>DN 8 [-]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Werkstoffe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumpengehäuse</td>
<td>1.4571 [-]</td>
</tr>
<tr>
<td>Leitungen</td>
<td>1.4571 [-]</td>
</tr>
<tr>
<td>Kolben</td>
<td>Aluoxid [-]</td>
</tr>
<tr>
<td>Ventilgehäuse</td>
<td>1.4581 [-]</td>
</tr>
<tr>
<td>Stopfbuchsenpackung</td>
<td>N1 [-]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistung</td>
<td>0,37 [kW]</td>
</tr>
<tr>
<td>Spannung</td>
<td>220 [V]</td>
</tr>
<tr>
<td>Frequenz</td>
<td>50 [Hz]</td>
</tr>
</tbody>
</table>

6 Übersicht über alle durchgeführten Pyrolyse-Versuche

Die nachfolgenden Kapitel beschreiben die im Rahmen der vorliegenden Arbeit durchgeführten Untersuchungen sowie alle Pyrolyseversuche inklusive der Ergebnisse sowie der anschließenden Diskussionen und Schlussfolgerungen. Die Tabelle 17 gibt Auskunft über die Bezeichnung und die eingesetzten Eintragsgüter der Pyrolyseversuche. Die Versuche TP TP1 bis TP24 sind vor Beginn der Dissertation, die Versuche TP24 bis TP28 sowie TP30 bis TP38 im Rahmen eines anderen Promotionsvorhabens und die Versuche TP47 und TP47 im Rahmen eines EU-Forschungsvorhabens durchgeführt worden. Die oben genannten Versuche sind daher nicht Bestandteil der vorliegenden Dissertation.

Tabelle 17: Übersicht über alle durchgeführten Pyrolyse-Versuche

<table>
<thead>
<tr>
<th>Versuchbezeichnung/Nummer</th>
<th>Eintragsgut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuche mit der LWS-Holz</td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td>29 Bambus</td>
</tr>
<tr>
<td>TP</td>
<td>39 Buchenholz</td>
</tr>
<tr>
<td>TP</td>
<td>40 Buchenholz</td>
</tr>
<tr>
<td>TP</td>
<td>41 Buchenabfall</td>
</tr>
<tr>
<td>TP</td>
<td>42 Buchenabfall</td>
</tr>
<tr>
<td>TP</td>
<td>43 Faserschlamm</td>
</tr>
<tr>
<td>TP</td>
<td>44 Buchenholz getrocknet (5d)</td>
</tr>
<tr>
<td>TP</td>
<td>45 Buchenholz getrocknet (1d)</td>
</tr>
<tr>
<td>TP</td>
<td>48 Faserplatten (Athlon)</td>
</tr>
<tr>
<td>TP</td>
<td>49 BAV-Altholz</td>
</tr>
<tr>
<td>TP</td>
<td>50 Faserplatten (Athlon)</td>
</tr>
<tr>
<td>TP</td>
<td>51 BAV-Altholz</td>
</tr>
<tr>
<td>TP</td>
<td>52 Faserplatten (mit Meteon)</td>
</tr>
<tr>
<td>TP</td>
<td>53 Buchenholz (Wirbelmaterial: Blähschiefer)</td>
</tr>
<tr>
<td>Versuche mit der LWS-LP</td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>F1 Flachsfasern</td>
</tr>
</tbody>
</table>

7 Pyrolyse von Buchenholz (Referenz)

7.1 Einleitung

Für die Bewertung der Ergebnisse von Pyrolyse-Versuchen mit den verschiedenen Biomasse-Eintragsgütern ist es erforderlich, Bezugsgrößen festzulegen. Da Buchenholz als typischer Vertreter der Laubhölzer besonders geeignet ist für die Umsetzung in Flash-Pyrolyseanlagen und die Produkte der Buchenholz-Pyrolyse besonders gut qualitativ und quantitativ bestimmbare sind, wurde Buchenholz als „Standard-Eintragsgut“ festgelegt. Im Laufe der
nachfolgenden Betrachtungen zu den Pyrolysen verschiedenartigster Eintragsgüter und der Bewertung ihrer Produkte und deren Qualität soll der in diesem Kapitel vorgestellte Buchenholz-Pyrolyse-Versuch TP44 als „Referenzversuch“ herangezogen werden. Als „Qualitätsmerkmale“ sollen hier die relative Menge des betrachteten Pyrolyse-Produkts, seine Eigenschaften und seine Einzelbestandteile betrachtet werden.

Der Referenzversuch soll hier losgelöst von einer eindeutigen Fragestellung vorgestellt werden, eine detaillierte Diskussion erfolgt nicht. Die Tabellen und Abbildungen werden nahezu unkommentiert gezeigt. Im Laufe der vorliegenden Arbeit wird jedoch immer wieder auf den im Folgenden beschriebenen Versuch Bezug genommen werden.

Alle Massenbilanzen sind auf trockenes Eintragsgut berechnet (atro = absolut trocken), d.h. korrigiert um die Eintragsgutfeuchte. Die Bilanzen der einzelnen Pyrolyse-Öl Komponenten sind auf den rein organischen Anteil bezogen, d.h. ohne den Wasseranteil und anorganische Bestandteile.

7.2 Ergebnisse

<table>
<thead>
<tr>
<th>Tabelle 18: Spezifikationen des Rettenmeier-Buchenholzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohstoff: Laubholz</td>
</tr>
<tr>
<td>Typ: Buche (Fagus sylvatica L.)</td>
</tr>
<tr>
<td>Bezeichnung: LIGNOCEL HBK 1500-3000</td>
</tr>
<tr>
<td>Farbe: hellbraun</td>
</tr>
<tr>
<td>Struktur: kubisch</td>
</tr>
<tr>
<td>Korngröße: 2,0-2,5 [mm]</td>
</tr>
<tr>
<td>Glührückstand (850°C/4h): 1 [%]</td>
</tr>
<tr>
<td>Schüttgewicht: 270-330 [g/l]</td>
</tr>
<tr>
<td>Wassergehalt: 9,1 [%]</td>
</tr>
</tbody>
</table>
Tabelle 19: Eigenschaften des Eintragsguts Buchenholz

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Eintragsgut Buchenholz</th>
<th>Zusatzbezeichnung</th>
<th>Referenz TP44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korngröße [mm]</td>
<td>1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glührückstand atro [%]</td>
<td>0,58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eintragsgutfeuchte [%]</td>
<td>5,44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elementaranalyse

<table>
<thead>
<tr>
<th>Element</th>
<th>[%]</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>[%]</td>
<td>36,62</td>
</tr>
<tr>
<td>H</td>
<td>[%]</td>
<td>8,54</td>
</tr>
<tr>
<td>N</td>
<td>[%]</td>
<td>0,27</td>
</tr>
<tr>
<td>O*</td>
<td>[%]</td>
<td>54,57</td>
</tr>
<tr>
<td>Heizwert [MJ/kg]</td>
<td>15,66</td>
<td></td>
</tr>
</tbody>
</table>

* Differenz zu 100%

Abbildung 32: Zusammensetzung von Rettenmeier-Buchenholz

Tabelle 21: Massenbilanz von TP44 (Pyrolyse von Rettenmeier-Buchenholz, atro)

<table>
<thead>
<tr>
<th>Auswaagen Flüssigkeiten</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolyse-Öl [g]</td>
<td>6918,40</td>
</tr>
<tr>
<td>Pyrolyse-Öl atro [g]</td>
<td>6374,40</td>
</tr>
<tr>
<td>Wasser im Öl [g]</td>
<td>1803,99</td>
</tr>
<tr>
<td>Wassergehalt Öl [m%)</td>
<td>30,84</td>
</tr>
<tr>
<td>Reaktionswasser [m%)</td>
<td>29,49</td>
</tr>
<tr>
<td>Glührückstand Öl [m%]</td>
<td>0,04</td>
</tr>
<tr>
<td>Organischer Anteil am Öl [g]</td>
<td>4331,60</td>
</tr>
<tr>
<td>Organischer Anteil am Öl [m%]</td>
<td>62,61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auswaagen Feststoffe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktorrückstand [g]</td>
<td>2259,80</td>
</tr>
<tr>
<td>Überlauftonne [g]</td>
<td>4989,40</td>
</tr>
<tr>
<td>Zyklon 1 Rückstand [g]</td>
<td>70,50</td>
</tr>
<tr>
<td>Zyklon 2 Rückstand [g]</td>
<td>46,40</td>
</tr>
<tr>
<td>Rest aus Reinigung [g]</td>
<td>148,41</td>
</tr>
<tr>
<td>Summe Feststoffe ohne Sand [g]</td>
<td>1514,51</td>
</tr>
<tr>
<td>Auswaage Gas* [g]</td>
<td>1567</td>
</tr>
<tr>
<td>Mittlere Gasdichte [kg/m³]</td>
<td>0,85</td>
</tr>
<tr>
<td>Pyrolyse-Gas (Überschuss) [m³]</td>
<td>1,84</td>
</tr>
<tr>
<td>Pyrolyse-Gas (Überschuss) [l]</td>
<td>1840</td>
</tr>
</tbody>
</table>

* Differenz zu 100% Bilanzschluss

Abbildung 33: Massenbilanz von TP44 (Pyrolyse von Rettenmeier-Buchenholz, atro)

Das bei der Pyrolyse von Buchenholz entstehende Gas hat die in Tabelle 22 dargestellte Zusammensetzung und kann als niederkaloriges Brenngas thermisch verwertet werden.

Die Zusammensetzung des organischen Anteils des Buchenholz-Pyrolyse-Öls ist in Tabelle 24 und Tabelle 25 detailliert aufgelistet. Die thermische Abbaureaktion von Cellulose zu Hydroxyacetaldehyd (2,82m%) ist die Konkurrenzreaktion zur Bildung des kommerziell wertvollen Lävoglukosan (3,25m%).

Tabelle 22: Zusammensetzung der Gasfraktion der Buchenholz-Pyrolyse

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Komponente</th>
<th>Formel</th>
<th>[m%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-Gase</td>
<td>Kohlenmonoxid CO</td>
<td>33,01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kohlendioxid CO₂</td>
<td>53,58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methan CH₄</td>
<td>7,58</td>
<td></td>
</tr>
<tr>
<td>C2-Gase</td>
<td>Ethan C₂H₆</td>
<td>1,86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethen C₂H₄</td>
<td>0,79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethin C₂H₂</td>
<td>0,83</td>
<td></td>
</tr>
<tr>
<td>C3-Gase</td>
<td>Propan C₃H₈</td>
<td>0,78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propen C₃H₆</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>C4-Gase</td>
<td>n-Butan C₄H₁₀</td>
<td>0,12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iso-Butan C₄H₁₀</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-Buten C₄H₈</td>
<td>0,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-Buten C₄H₈</td>
<td>0,14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iso-Buten C₄H₈</td>
<td>0,10</td>
<td></td>
</tr>
<tr>
<td>Andere</td>
<td>Wasserstoff H₂</td>
<td>0,48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sauerstoff* O₂</td>
<td>0,19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stickstoff* N₂</td>
<td>0,36</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>[%]</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

*Rest aus Inertisierung
Tabelle 23: Zusammensetzung der Ölfraktion der Buchenholz-Pyrolyse (Übersicht, org. Anteil)

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>[m%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säuren</td>
<td>8,15</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>0,27</td>
</tr>
<tr>
<td>Aromaten</td>
<td>4,09</td>
</tr>
<tr>
<td>Furane</td>
<td>2,42</td>
</tr>
<tr>
<td>Guajacole</td>
<td>1,98</td>
</tr>
<tr>
<td>Ketone</td>
<td>9,34</td>
</tr>
<tr>
<td>Phenole</td>
<td>0,37</td>
</tr>
<tr>
<td>Pyrone</td>
<td>0,21</td>
</tr>
<tr>
<td>Zucker</td>
<td>3,51</td>
</tr>
<tr>
<td>Syringole</td>
<td>5,83</td>
</tr>
</tbody>
</table>

Summe aller quantifizierten org. Verbindungen 36,16

PISKORZ et al. haben bereits Mitte der 80er Jahre des vergangenen Jahrhunderts Einzelkomponentenanalysen von Pyrolyse-Ölen verschiedener Eintragsmaterialien publiziert. Pappelholz Pyrolyse-Öl zeigte Massenanteile von 4,3m% Essigsäure, 8,9m% Hydroxyacetaldehyd, 2,9m% Hydroxydpropanon u.a. [184] [185] Eine übersichtliche Zusammenfassung findet sich bei KAMINSKY. [186]
Tabelle 24: Zusammensetzung der Ölfraktion der Buchenholz-Pyrolyse (detailliert, organischer Anteil) Teil 1

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Prozentanteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkohole</td>
<td>0,27</td>
</tr>
<tr>
<td>1,2-Ethandiol</td>
<td>0,27</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>4,09</td>
</tr>
<tr>
<td>Hydroxyacetaldehyd*</td>
<td>2,82</td>
</tr>
<tr>
<td>3-Hydroxypropanal*</td>
<td>1,27</td>
</tr>
<tr>
<td>Furane</td>
<td>2,42</td>
</tr>
<tr>
<td>2-Furaldehyd*</td>
<td>1,27</td>
</tr>
<tr>
<td>Dihydromethylfuranon*</td>
<td>0,17</td>
</tr>
<tr>
<td>γ-Butyrolacton*</td>
<td>0,22</td>
</tr>
<tr>
<td>(5H)-Furan-2-on*</td>
<td>0,47</td>
</tr>
<tr>
<td>5-Hydroxymethyl-2-furaldehyd*</td>
<td>0,16</td>
</tr>
<tr>
<td>5-Methyl-(5H)-furan-2-on*</td>
<td>0,13</td>
</tr>
<tr>
<td>Guajacole</td>
<td>1,98</td>
</tr>
<tr>
<td>Guajacol*</td>
<td>0,21</td>
</tr>
<tr>
<td>4-Methylguajacol*</td>
<td>0,23</td>
</tr>
<tr>
<td>4-Ethylguaiacol*</td>
<td>0,09</td>
</tr>
<tr>
<td>4-Vinylguajacol**</td>
<td>0,27</td>
</tr>
<tr>
<td>Eugenol*</td>
<td>0,07</td>
</tr>
<tr>
<td>4-Propylguaiacol*</td>
<td>0,01</td>
</tr>
<tr>
<td>Isoeugenol (cis)*</td>
<td>0,06</td>
</tr>
<tr>
<td>Isoeugenol (trans)*</td>
<td>0,28</td>
</tr>
<tr>
<td>Vanillin*</td>
<td>0,28</td>
</tr>
<tr>
<td>Homovanillin**</td>
<td>0,13</td>
</tr>
<tr>
<td>Acetoguajacon*</td>
<td>0,09</td>
</tr>
<tr>
<td>Guajacyleaceton*</td>
<td>0,07</td>
</tr>
<tr>
<td>Coniferylaldehyd*</td>
<td>0,17</td>
</tr>
<tr>
<td>Ketone</td>
<td>9,34</td>
</tr>
<tr>
<td>Hydroxypropanon*</td>
<td>6,18</td>
</tr>
<tr>
<td>1-Hydroxy-2-butanon*</td>
<td>1,91</td>
</tr>
<tr>
<td>2-Cyclopentene-1-on</td>
<td>0,52</td>
</tr>
<tr>
<td>2-Methyl-2-cyclopentene-1-on</td>
<td>0,09</td>
</tr>
<tr>
<td>Dimethyl-2-cyclopentene-1-on</td>
<td>0,10</td>
</tr>
<tr>
<td>2-Hydroxy-1-methyl-1-Cyclopentene-3-on</td>
<td>0,54</td>
</tr>
<tr>
<td>Phenole</td>
<td>0,37</td>
</tr>
<tr>
<td>Phenol*</td>
<td>0,13</td>
</tr>
<tr>
<td>o-Cresol*</td>
<td>0,11</td>
</tr>
<tr>
<td>m-Cresol*</td>
<td>0,04</td>
</tr>
<tr>
<td>p-Cresol*</td>
<td>0,08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Massen-%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrane</td>
<td>0,21</td>
</tr>
<tr>
<td>3-Hydroxy-5,6-dihydro-(4H)-pyran-4-on*</td>
<td>0,21</td>
</tr>
<tr>
<td>Zucker</td>
<td>3,51</td>
</tr>
<tr>
<td>1,4:3,6-Dianhydro-α-D-glucopyranose*</td>
<td>0,26</td>
</tr>
<tr>
<td>Lävoglukosan*</td>
<td>3,25</td>
</tr>
<tr>
<td>Syringole</td>
<td>5,83</td>
</tr>
<tr>
<td>Syringol*</td>
<td>0,71</td>
</tr>
<tr>
<td>4-Methylsyringol*</td>
<td>0,55</td>
</tr>
<tr>
<td>4-Ethylsyringol*</td>
<td>0,19</td>
</tr>
<tr>
<td>4-Vinylsyringol*</td>
<td>0,72</td>
</tr>
<tr>
<td>4-Allyl- and 4-Propylsyringol*</td>
<td>0,47</td>
</tr>
<tr>
<td>4-Propanylsyringol (cis)*</td>
<td>0,26</td>
</tr>
<tr>
<td>4-Propanylsyringol (trans)*</td>
<td>1,12</td>
</tr>
<tr>
<td>Syringaldehyd*</td>
<td>0,46</td>
</tr>
<tr>
<td>Homosyringaldehyd*</td>
<td>0,07</td>
</tr>
<tr>
<td>Acetosyringon*</td>
<td>0,23</td>
</tr>
<tr>
<td>Syringylaceton*</td>
<td>0,13</td>
</tr>
<tr>
<td>Isomer von Sinapylalkohol*</td>
<td>0,37</td>
</tr>
<tr>
<td>Sinapylalkohol (cis)*</td>
<td>0,44</td>
</tr>
<tr>
<td>Propiosyringon</td>
<td>0,06</td>
</tr>
<tr>
<td>Dihydrosinapylalkohol</td>
<td>0,06</td>
</tr>
</tbody>
</table>

Summe aller quantifizierten org. Verbindungen: 36,16

*quantifiziert mit GC/FID, Responzfaktur urch Referenzsubstanz ermittelt
Tabelle 26: Elementaranalysen und Heizwert von Buchenholz und Buchenholz-Pyrolyse-Öl

<table>
<thead>
<tr>
<th>Rettenmeier-Buchenholz</th>
<th>Buchenholz-Pyrolyse-Öl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>Formelzeichen</td>
</tr>
<tr>
<td>Kohlenstoff</td>
<td>C</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>H</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>N</td>
</tr>
<tr>
<td>Sauerstoff*</td>
<td>O</td>
</tr>
<tr>
<td>Heizwert</td>
<td>[MJ/kg]</td>
</tr>
</tbody>
</table>

*Berechnet als Differenz

Tabelle 27: Weitere Eigenschaften der Pyrolyse-Produkte

<table>
<thead>
<tr>
<th>Pyrolyse-Holzkohle</th>
<th>Carbonyl-</th>
<th>Glüh-</th>
<th>Viskosität bei 20°C</th>
<th>Viskosität bei 50°C</th>
<th>ph-Wert</th>
<th>Dichte</th>
<th>Neutralisationszahl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[mol/kg]</td>
<td>[m%]</td>
<td>[cSt]</td>
<td>[cSt]</td>
<td>[-]</td>
<td>[-]</td>
<td>[mg KOH/g]</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>28,50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pyrolyse-Öl</td>
<td>3,74</td>
<td>0,04</td>
<td>18,77</td>
<td>4,81</td>
<td>2,95</td>
<td>1,151</td>
<td>74,00</td>
</tr>
</tbody>
</table>
Tabelle 28: ICP-Messungen des TP44-Öls

<table>
<thead>
<tr>
<th>Element</th>
<th>Formelzeichen</th>
<th>TP49-Öl [mg/l]</th>
<th>TP44-Öl [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silber</td>
<td>Ag</td>
<td>0,0560</td>
<td>0,0860</td>
</tr>
<tr>
<td>Silber</td>
<td>Ag</td>
<td>0,1790</td>
<td>0,2330</td>
</tr>
<tr>
<td>Aluminium</td>
<td>Al</td>
<td>57,7000</td>
<td>1,7000</td>
</tr>
<tr>
<td>Bor</td>
<td>B</td>
<td>0,1510</td>
<td>0,0700</td>
</tr>
<tr>
<td>Barium</td>
<td>Ba</td>
<td>2,5000</td>
<td>0,3400</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca</td>
<td>123,5000</td>
<td>119,2000</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Cd</td>
<td>0,0256</td>
<td>0,0310</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Co</td>
<td>0,1910</td>
<td>0,5500</td>
</tr>
<tr>
<td>Chrom</td>
<td>Cr</td>
<td>0,4000</td>
<td>0,2827</td>
</tr>
<tr>
<td>Kupfer</td>
<td>Cu</td>
<td>0,4000</td>
<td>0,0530</td>
</tr>
<tr>
<td>Eisen</td>
<td>Fe</td>
<td>6,3000</td>
<td>0,1000</td>
</tr>
<tr>
<td>Gallium</td>
<td>Ga</td>
<td>0,6500</td>
<td>1,1697</td>
</tr>
<tr>
<td>Indium</td>
<td>In</td>
<td>0,8600</td>
<td>0,1300</td>
</tr>
<tr>
<td>Kalium</td>
<td>K</td>
<td>2,8000</td>
<td>15,9000</td>
</tr>
<tr>
<td>Lithium</td>
<td>Li</td>
<td>0,0969</td>
<td>0,0646</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
<td>7,7000</td>
<td>9,4000</td>
</tr>
<tr>
<td>Mangan</td>
<td>Mn</td>
<td>1,8000</td>
<td>1,2000</td>
</tr>
<tr>
<td>Natrium</td>
<td>Na</td>
<td>1,6000</td>
<td>0,4200</td>
</tr>
<tr>
<td>Nickel</td>
<td>Ni</td>
<td>0,8290</td>
<td>1,2374</td>
</tr>
<tr>
<td>Phosphor</td>
<td>P</td>
<td>7,6000</td>
<td>2,0000</td>
</tr>
<tr>
<td>Blei</td>
<td>Pb</td>
<td>2,0000</td>
<td>0,9455</td>
</tr>
<tr>
<td>Schwefel</td>
<td>S</td>
<td>4,1000</td>
<td>7,5000</td>
</tr>
<tr>
<td>Strontium</td>
<td>Sr</td>
<td>0,3400</td>
<td>0,1000</td>
</tr>
<tr>
<td>Zink</td>
<td>Zn</td>
<td>29,4000</td>
<td>0,0400</td>
</tr>
</tbody>
</table>

7.3 Schlussfolgerungen

Vor der Entscheidung, ob die Flash-Pyrolyse eine geeignete Technik für die Verwertung des betrachteten Eintragsgutes ist, steht die Auswertung der Massenbilanz. In jedem Fall ist das erhaltene Pyrolyse-Öl das Produkt mit dem höchsten kommerziellen Wert, wobei es keine Rolle spielt, ob es als Brennstoff für die Produktion von Energie oder als Chemierohstoff genutzt werden soll.

Das Nebenprodukt Holzkohle kann, wenn geringe anorganische Anteile enthalten sind, wie im Allgemeinen Teil dieser Arbeit angesprochen, zur Aktivkohle veredelt werden. Das Pyrolyse-Gas ist das Produkt mit einem geringen Wert, es kann als niederkaloriges Brenngas verwendet werden.
Schlussfolgernd lassen sich für Buchenholz als Eintragsgut und Referenz für andere Biomasse-Pyrolyse-Versuche folgende Aussagen formulieren:

- Das Eintragsgut Rettenmeier-Buchenholz ließ sich leicht mit der Fördereinrichtung der LWS-Holz in den Reaktor eintragen und umsetzen.
- Die Pyrolyse von Buchholz führt zu hohen Ausbeuten an flüssigem Produkt (67,4m%), mit einem hohen Anteil an kommerziell wertvollen Einzelkomponenten wie z.B. Lävoglukosan.
- Die Energiedichte des Buchenholz-Pyrolyse-Öls ist doppelt so hoch wie die Energiedichte des ursprünglichen Eintragsgutes.

8 Pyrolyse von Buchenholz verschiedener Holzfeuchte

8.1 Einleitung

Die hier vorgestellten Ergebnisse des Effekts von Eintragsgutfeuchte auf die Pyrolyse-Produktausbeuten wurden bei der Standardtemperatur von 475°C für eine maximale Ölausbeute erhalten. Pyrolysiert wurden Eintragsgüter mit einem Feuchtegehalt von nahezu 0 bis zu 10,6m%. Die Versuche TP 39, 40, 44 und 45 wurden wie im Methoden-Teil beschrieben an der LWS-Holz durchgeführt und ausgewertet.

Um erkennen zu können, ob der Feuchtegehalt des Eintragsgutes einen Einfluss auf die Bildung von Reaktionswasser hat, muss der Reaktionswasseranteil des Pyrolyseöls berechnet werden. Laubholz enthält ca. 42% Cellulose und 35% Hemicellulose, d.h. 77m% des Laubholzes können pro Cellulosespaltung ein Molekül H2O abspalten. Bei einem Molekulargewicht einer Monomereinheit Glucose (C6H12O6·H2O) von 162,16 g/mol lässt sich ein theoretischer, minimaler Reaktionswasseranteil von 13,15 m% bezogen auf trockenes Eintragsgut errechnen. Dies stimmt jedoch nur sehr grob unter der Vereinfachung, dass lediglich die in Abbildung 34 dargestellte Abbaureaktion abläuft.
8.2 Ergebnisse und Diskussion

Abbildung 35 zeigt weiterhin einen optimalen Bereich der Eintragsgutfeuchte für eine maximale Pyrolyse-Öl Ausbeute. Zunächst bewirkt eine Erhöhung des Feuchtegehalts von 0,3 auf 5,4m% eine Steigerung der Pyrolyse-Öl Ausbeute um lediglich 1,3m%. Im Rahmen der
Messgenauigkeit der Wassergehaltsbestimmung des Pyrolyse-Öls ist dies jedoch nicht signifikant. Eine Steigerung der Holzfeuchte über 5,4 auf 10,6m% hat jedoch eine Verringerung der Ölausbeute um 7,7m% zur Folge. Dieses Ergebnis findet sich auch bei MANATIS et al., zumindest tendenziell wieder. DI BLASI et al. variierten bei der Pyrolyse von Buchenholz (Wärmefluss von $Q = 49 \text{ kW/m}^2$) die Holzfeuchte von 0-50m%. Die Temperatur betrug dabei 377°C. Sie fanden bei einer Steigerung der Holzfeuchte von 0 auf 10m% eine Verringerung der Pyrolyse-Ölausbeute von ca. 5m%. [190] [191] In Anbetracht der unterschiedlichen Reaktionsbedingungen, Pyrolyse eines Einzellpartikels mit 40 mm Querschnittsfläche, bestätigen die Ergebnisse von DI BLASI et al. die hier vorgeschlagenen Ergebnisse zumindest tendenziell.

Abbildung 36: Gesamtwassergehalte der Pyrolyse-Öle über die Holzfeuchten
Der Reaktionswasseranteil der Pyrolyse von Buchenholz der Holzfeuchte 0,3m% ist mit 28,2m% um 15m% höher als der theoretisch berechnete von 13,15m%. Bei der Vielzahl von Reaktionen unterschiedlicher Mechanismen ist dies unter den oben angenommenen Vereinfachungen jedoch nicht ungewöhnlich. Die tatsächlichen Reaktionswasseranteile wurden durch Differenzbildung des bestimmten Gesamtwasseranteils und der eingetragenen Holzfeuchte ermittelt.

Abbildung 37 zeigt die Reaktionswassergehalte der Pyrolyseöle über die Holzfeuchten. Der lineare Verlauf der Reaktionswasserausbeute zeigt, dass die Feuchte des Eintragsgutes keinen Einfluss auf die Bildung von Reaktionswasser hat.

![Abbildung 37: Reaktionswassergehalte der Pyrolyse-Öle über die Holzfeuchten](image)

Der Wassergehalt hat, wie oben angesprochen, einen Einfluss auf die Stabilität von Pyrolyse-Öl. Ein Wassergehalt von bis zu 30m% kann toleriert werden. Über dieses Limit hinaus variiert die Toleranzgrenze je nach Eintragsgut. Es konnten einphasige Pyrolyse-Öle aus Buchenholz mit einem Wassergehalt von 45m% erzeugt werden. ELLIOT hat jedoch Phasentrennung schon bei Wassergehalten von 35m% bei Eichenholz und 25-30m% bei Kiefernholz beobachtet. Das Ausmaß der Mischbarkeit von Pyrolyse-Öl mit Wasser ist eine Funktion der Hydrophilie der organischen Komponenten im Pyrolyse-Öl. [192]

In Tabelle 29 sind die organischen Hauptkomponenten der erhaltenen Pyrolyse-Öle vergleichend dargestellt. Auf eine Darstellung aller identifizierten und quantifizierten Verbindungen soll aus Gründen der Übersichtlichkeit verzichtet werden. Die folgenden Aussagen treffen jedoch auch auf Verbindungen mit einem Massenanteil unter 1m% zu.
Ein signifikanter Einfluss der Eintragsgutfeuchte auf das Produktspektrum an organischen Verbindungen im Öl ist nicht erkennbar. Zur besseren Vergleichbarkeit der Versuche untereinander sind die prozentualen organischen Ölanteile auf die Gesamtsumme des identifizierten und quantifizierten Ölanteils (46,2m%) des Versuches TP39 normiert in Tabelle 29 dargestellt. Lediglich die Werte für Essigsäure und Hydroxypropanon zeigen einen leichten Anstieg von etwa 2-2,5m% mit steigender Holzfeuchte. Die Unterschiede in den prozentualen Anteilen der organischen Hauptkomponenten (> 1m%) der betrachteten Pyrolyse-Öle sind generell sehr gering. Die Werte zeigen keinen ansteigenden oder abfallenden Trend in Bezug auf die Eintragsgutfeuchte oder den Gesamtwassergehalt der Öle. Wasser verhält sich bei relativ moderaten Pyrolysetemperaturen von 475°C inert und nimmt nicht an Reaktionen während der Pyrolyseprozesse teil. Auch mit einem Verdünnungseffekt, der einen Einfluss auf Sekundärreaktionen hätte, ist bei den relativ geringen Gesamtmengen an eingetragenem Wasser nicht zu rechnen.
Tabelle 29: Organische Hauptkomponenten der erhaltenen Pyrolyse-Öle im Vergleich

<table>
<thead>
<tr>
<th>Versuchsbezeichnung</th>
<th>TP 45</th>
<th>TP 44</th>
<th>TP 39</th>
<th>TP 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptprodukte (>1m%)</td>
<td>[m%]</td>
<td>[m%]</td>
<td>[m%]</td>
<td>[m%]</td>
</tr>
<tr>
<td>Holzfeuchte</td>
<td>0,3</td>
<td>5,4</td>
<td>9,6</td>
<td>10,6</td>
</tr>
<tr>
<td>Wassergehalte im Öl</td>
<td>28,6</td>
<td>37,4</td>
<td>44,4</td>
<td>45,0</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>10,8</td>
<td>10,5</td>
<td>12,8</td>
<td>12,1</td>
</tr>
<tr>
<td>Hydroxypropanon, (Acetol, Hydroxyaceton)</td>
<td>7,9</td>
<td>7,9</td>
<td>10,5</td>
<td>10,9</td>
</tr>
<tr>
<td>Lävoglukosan (α-Anhydro-b-D-glucopyranose)</td>
<td>4,2</td>
<td>4,2</td>
<td>5,3</td>
<td>4,3</td>
</tr>
<tr>
<td>Hydroxyacetaldehyd</td>
<td>3,2</td>
<td>3,6</td>
<td>5,2</td>
<td>3,6</td>
</tr>
<tr>
<td>3-Hydroxypropanal</td>
<td>2,2</td>
<td>1,6</td>
<td>2,0</td>
<td>2,6</td>
</tr>
<tr>
<td>Summe aller quantifizierten org. Verbindungen (>1m%)</td>
<td>46,4</td>
<td>46,4</td>
<td>46,4</td>
<td>46,4</td>
</tr>
</tbody>
</table>

8.3 Schlussfolgerungen

Die Eintragsgutfeuchte hat folgenden Einfluss auf die Produktausbeuten und die Qualität von Pyrolyse-Öl:

- Hohe Eintragsgutfeuchte führt zu geringerer Holzkohle- und höherer Gasausbeute.
- Die höchste Ausbeute an flüssigen Pyrolyse-Produkten erhält man nicht bei trockenem Eintragsgut, sondern bei einer Eintragsgutfeuchte um 5m%.
- Eine hohe Eintragsgutfeuchte führt zu hohen Wassergehalten und kann bei Überschreiten des jeweiligen Limits zur Phasentrennung des Pyrolyse-Öls führen.
- Die Eintragsgutfeuchte hat keinen Einfluss auf die Bildung von Reaktionswasser.
- Die Eintragsgutfeuchte hat keinen Einfluss auf das Produktspektrum der organischen Verbindungen im Pyrolyse-Öl, weder in qualitativer noch in quantitativer Hinsicht.

Zusammenfassend lässt sich sagen, dass für eine vorgeschaltete Trocknung von Eintragsmaterial eine Eintragsgutfeuchte von 5-8m% ein Optimum darstellt. Eine Trocknung unter einen Wert von 5m% ist in Hinblick auf eine hohe Ölausbeute und in ökonomischer Hinsicht nicht sinnvoll.
9 Pyrolyse von Buchenholzabfall

9.1 Einleitung

9.2 Ergebnisse und Diskussion

Das Eintragsgut wurde unbehandelt eingesetzt, so wie es im Werk des Lieferanten anfiel. Die Spezifikationen des Buchenholzabfalls sind in Tabelle 30 und in Abbildung 38 dargestellt. Zu berücksichtigen ist hierbei, dass in der Elementaranalyse (CHN) Sauerstoff als Differenz zu 100m% berechnet, ist und dieser Wert auch in die Berechnung des Heizwertes eingeht. Da im Eintragsgut jedoch 4,15m% anorganische Feststoffe enthalten sind, wird die Elementaranalyse der tatsächlichen Zusammensetzung nicht ganz gerecht. Der Sauerstoffgehalt wird etwas niedriger sein und der Heizwert damit etwas höher als dargestellt.
Tabelle 30: Eigenschaften des Eintragsguts Buchenholzabfall

<table>
<thead>
<tr>
<th>Eintragsgut</th>
<th>[-] Buchenholzabfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuchsnummer</td>
<td>[-] TP42</td>
</tr>
<tr>
<td>Korngröße [mm]</td>
<td>1-3</td>
</tr>
<tr>
<td>Glührückstand atro [m%]</td>
<td>4,15</td>
</tr>
<tr>
<td>Eintragsgutfeuichte [m%]</td>
<td>7,47</td>
</tr>
</tbody>
</table>

Elementaranalyse

C [m%]	46,79
H [m%]	5,86
N [m%]	0,52
O* [m%]	46,83
Heizwert [MJ/kg]	15,83

* Differenz zu 100%

Abbildung 38: Zusammensetzung von Buchenholz-Abfall der Chemviron Carbon
Tabelle 31: Versuchsparameter von TP42

<table>
<thead>
<tr>
<th>Versuchsbezeichnung</th>
<th>[-]</th>
<th>TP 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktor-Temperatur</td>
<td>[°C]</td>
<td>484</td>
</tr>
<tr>
<td>Reaktor-Temperatur</td>
<td>[K]</td>
<td>757</td>
</tr>
<tr>
<td>Eintragsgut</td>
<td>[-]</td>
<td>Buchenholz-Abfall</td>
</tr>
<tr>
<td>Wirbelgut</td>
<td>[-]</td>
<td>Quarzsand</td>
</tr>
<tr>
<td>Korngröße Wirbelgutes</td>
<td>[mm]</td>
<td>0,3-0,5</td>
</tr>
<tr>
<td>Dichte des Wirbelguts</td>
<td>[kg/m³]</td>
<td>2530</td>
</tr>
<tr>
<td>Volumen der Wirbelschicht</td>
<td>[m³]</td>
<td>0,0032</td>
</tr>
<tr>
<td>Schüttdichte des Wirbelgutes</td>
<td>[kg/m³]</td>
<td>1873</td>
</tr>
<tr>
<td>Reaktorvolumen</td>
<td>[m³]</td>
<td>0,014</td>
</tr>
<tr>
<td>freies Reaktorvolumen</td>
<td>[m³]</td>
<td>0,0108</td>
</tr>
<tr>
<td>Versuchsdauer</td>
<td>[min]</td>
<td>117</td>
</tr>
<tr>
<td>Durchsatz</td>
<td>[g/h]</td>
<td>3077</td>
</tr>
<tr>
<td>Wirbelgasstrom (kalt)</td>
<td>[m³/h]</td>
<td>7,24</td>
</tr>
<tr>
<td>Wirbelgasstrom (heiß)</td>
<td>[m³/h]</td>
<td>17,84</td>
</tr>
<tr>
<td>Verweilzeit im Reaktor</td>
<td>[s]</td>
<td>2,18</td>
</tr>
</tbody>
</table>

Einwaagen

Eintragsgut	[g]	6000
Eintragsgut atro	[g]	5552
org. Eintrag	[g]	4904
org. Eintrag	[m%]	88,34
Wirbelgut	[g]	6000
Summe Einwaagen	[g]	12000

Tabelle 32: Massenbilanz von TP42 (Pyrolyse von Buchenholz-Abfall, atro)

<table>
<thead>
<tr>
<th>Auswaagen Flüssigkeiten</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolyse-Öl</td>
<td>2601,50 [g]</td>
</tr>
<tr>
<td>Pyrolyse-Öl atro</td>
<td>2153,30 [g]</td>
</tr>
<tr>
<td>Wasser im Öl</td>
<td>843,62 [g]</td>
</tr>
<tr>
<td>Wassergehalt Öl</td>
<td>54,21 [m%]</td>
</tr>
<tr>
<td>Reaktionswasser</td>
<td>41,67 [m%]</td>
</tr>
<tr>
<td>Glührückstand Öl</td>
<td>0,61 [m%]</td>
</tr>
<tr>
<td>Organischer Anteil am Öl</td>
<td>1053,36 [g]</td>
</tr>
<tr>
<td>Organischer Anteil am Öl</td>
<td>40,49 [m%]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auswaagen Feststoffe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktivrückstand</td>
<td>4581,70 [g]</td>
</tr>
<tr>
<td>Überlauftonne</td>
<td>2237,50 [g]</td>
</tr>
<tr>
<td>Zyklon 1 Rückstand</td>
<td>106,70 [g]</td>
</tr>
<tr>
<td>Zyklon 2 Rückstand</td>
<td>0,00 [g]</td>
</tr>
<tr>
<td>Rest aus Reinigung</td>
<td>657,30 [g]</td>
</tr>
<tr>
<td>Summe Feststoffe ohne Sand</td>
<td>1583,20 [g]</td>
</tr>
</tbody>
</table>

Auswaage Gas*	1815,30 [g]
Mittlere Gasdichte	1,80 [kg/m³]
Pyrolyse-Gas (Überschuss)	1,01 [m³]
Pyrolyse-Gas (Überschuss)	1006,00 [l]

* Differenz zu 100% Bilanzschluss

Abbildung 39: Massenbilanz von TP42 (Pyrolyse von Buchenholz-Abfall, atro)
Das bei der Pyrolyse von Buchenholzabfall entstehende Gas hat die in Tabelle 33 dargestellte Zusammensetzung und kann als niederkaloriges Brenngas thermisch verwertet werden.

Tabelle 33: Zusammensetzung der Gasfraktion der Buchenholz-Abfall-Pyrolyse

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Komponente</th>
<th>Formel</th>
<th>[m%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-Gase</td>
<td>Kohlenmonoxid</td>
<td>CO</td>
<td>27,55</td>
</tr>
<tr>
<td></td>
<td>Kohlendioxid</td>
<td>CO₂</td>
<td>55,98</td>
</tr>
<tr>
<td></td>
<td>Methan</td>
<td>CH₄</td>
<td>6,32</td>
</tr>
<tr>
<td>C2-Gase</td>
<td>Ethan</td>
<td>C₂H₆</td>
<td>1,69</td>
</tr>
<tr>
<td></td>
<td>Ethen</td>
<td>C₂H₄</td>
<td>3,05</td>
</tr>
<tr>
<td></td>
<td>Ethin</td>
<td>C₂H₂</td>
<td>< 0,01</td>
</tr>
<tr>
<td>C3-Gase</td>
<td>Propan</td>
<td>C₃H₈</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>Propen</td>
<td>C₃H₆</td>
<td>1,66</td>
</tr>
<tr>
<td>C4-Gase</td>
<td>n-Butan</td>
<td>C₄H₁₀</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>iso-Butan</td>
<td>C₄H₁₀</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>cis-Buten</td>
<td>C₄H₈</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td>trans-Buten</td>
<td>C₄H₈</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>iso-Buten</td>
<td>C₄H₈</td>
<td>0,06</td>
</tr>
<tr>
<td>Andere</td>
<td>Wasserstoff*</td>
<td>H₂</td>
<td>0,52</td>
</tr>
<tr>
<td></td>
<td>Sauerstoff*</td>
<td>O₂</td>
<td>0,31</td>
</tr>
<tr>
<td></td>
<td>Stickstoff*</td>
<td>N₂</td>
<td>2,25</td>
</tr>
<tr>
<td>Summe</td>
<td>[%]</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

*Rest aus Inertisierung

Tabelle 34: Ölfraktion der Buchenholzabfall-Pyrolyse (Übersicht, org. Anteil)

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>[m%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säuren</td>
<td>11,92</td>
</tr>
<tr>
<td>Alkohole</td>
<td>0,39</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>9,70</td>
</tr>
<tr>
<td>Furane</td>
<td>3,25</td>
</tr>
<tr>
<td>Guajacole</td>
<td>1,81</td>
</tr>
<tr>
<td>Ketone</td>
<td>13,10</td>
</tr>
<tr>
<td>Phenole</td>
<td>0,43</td>
</tr>
<tr>
<td>Pyrane</td>
<td>0,29</td>
</tr>
<tr>
<td>Zucker</td>
<td>6,97</td>
</tr>
<tr>
<td>Syringole</td>
<td>2,41</td>
</tr>
<tr>
<td>Summe aller quantifizierten org. Verbindungen</td>
<td>50,27</td>
</tr>
</tbody>
</table>
Eine Zusammenfassung der chemischen Gruppen der Einzelkomponenten des Buchenholzabfall-Pyrolyse-Öls ist in Tabelle 34 gezeigt. Die Zusammensetzung des organischen Anteils des Pyrolyse-Öls ist in Tabelle 36 und Tabelle 37 detailliert aufgelistet und zeigt einen im Vergleich zum Referenzversuch höheren Anteil an Essigsäure. Der Anteil an Hydroxyacetaldehyd ist etwa zweimal so hoch. Der Anteil des kommerziell wertvollen, Lävoglukosan ist mit 6,64m% ebenfalls zweimal so hoch wie im Buchenholz-Pyrolyse-Öl (3,25m%) des Referenzversuches. Gründe hierfür könnten in einem katalytischen Effekt der mit dem Eintragsgut eingetragenen anorganischen Feststoffe liegen. In der Literatur werden solche Effekte seit längerem diskutiert. Da jedoch nicht die Möglichkeit einer genauen Analyse der anorganischen Inhaltsstoffe des Eintragsgutes bestand, soll hier auf eine vertiefende Diskussion katalytischer Effekt verzichtet werden. Es sei an dieser Stelle auf die einschlägig bekannte Literatur verwiesen. [92] [93] [98] [193]

Tabelle 35: Elementaranalysen und Heizwert von Buchenholzabfall und Buchenholzabfall-Pyrolyse-Öl

<table>
<thead>
<tr>
<th>Element</th>
<th>Buchenholzabfall</th>
<th>Buchenholzabfall-Pyrolyse-Öl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlenstoff C</td>
<td>46,79</td>
<td>23,40</td>
</tr>
<tr>
<td>Wasserstoff H</td>
<td>5,86</td>
<td>9,08</td>
</tr>
<tr>
<td>Stickstoff N</td>
<td>0,52</td>
<td>0,51</td>
</tr>
<tr>
<td>Sauerstoff O</td>
<td>46,83</td>
<td>67,01</td>
</tr>
<tr>
<td>Heizwert [MJ/kg]</td>
<td>15,83</td>
<td>8,93</td>
</tr>
</tbody>
</table>

*Berechnet als Differenz
Tabelle 36: Zusammensetzung der Ölfraktion der Buchenholzabfall-Pyrolyse (detailliert, organischer Anteil) Teil 1

<table>
<thead>
<tr>
<th>Komponente</th>
<th>[m%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säuren</td>
<td>11,92</td>
</tr>
<tr>
<td>Essigsäure*</td>
<td>11,92</td>
</tr>
<tr>
<td>Alkohole</td>
<td>0,39</td>
</tr>
<tr>
<td>1,2 Ethanediol*</td>
<td>0,39</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>9,70</td>
</tr>
<tr>
<td>Hydroxyacetaldehyd*</td>
<td>6,58</td>
</tr>
<tr>
<td>Crotonaldehyd (cis od. trans)*</td>
<td>0,15</td>
</tr>
<tr>
<td>3-Hydroxypropanal*</td>
<td>2,97</td>
</tr>
<tr>
<td>Furane</td>
<td>3,25</td>
</tr>
<tr>
<td>2-Furaldehyd*</td>
<td>1,20</td>
</tr>
<tr>
<td>α-Angelicalacton*</td>
<td>0,20</td>
</tr>
<tr>
<td>Dihydromethylfuranon**</td>
<td>0,66</td>
</tr>
<tr>
<td>γ-Butyro lacton*</td>
<td>0,27</td>
</tr>
<tr>
<td>(5H)-Furan-2-on*</td>
<td>0,58</td>
</tr>
<tr>
<td>5-Methyl-(5H)-furan-2-on*</td>
<td>0,15</td>
</tr>
<tr>
<td>5-Hydroxymethyl-2-furaldehyd*</td>
<td>0,20</td>
</tr>
<tr>
<td>Guajacole</td>
<td>1,81</td>
</tr>
<tr>
<td>Guajacol*</td>
<td>0,26</td>
</tr>
<tr>
<td>4-Methy lguajacol*</td>
<td>0,17</td>
</tr>
<tr>
<td>4-Ethylguajacol*</td>
<td>0,12</td>
</tr>
<tr>
<td>4-Vinylguajacol*</td>
<td>0,21</td>
</tr>
<tr>
<td>Eugenol*</td>
<td>0,03</td>
</tr>
<tr>
<td>4-Propylguajacol*</td>
<td>0,05</td>
</tr>
<tr>
<td>Isoeugenol (cis)*</td>
<td>0,04</td>
</tr>
<tr>
<td>Isoeugenol (trans)*</td>
<td>0,15</td>
</tr>
<tr>
<td>Vanillin*</td>
<td>0,10</td>
</tr>
<tr>
<td>Homovanillin*</td>
<td>0,15</td>
</tr>
<tr>
<td>Acetoguajacon*</td>
<td>0,07</td>
</tr>
<tr>
<td>Guaiacylaceton*</td>
<td>0,07</td>
</tr>
<tr>
<td>Isomer of Coniferylalkohol*</td>
<td>0,12</td>
</tr>
<tr>
<td>Coniferylalkohol (cis)*</td>
<td>0,06</td>
</tr>
<tr>
<td>Coniferylalkohol (trans)*</td>
<td>0,06</td>
</tr>
<tr>
<td>Conifer allylaldehyde*</td>
<td>0,14</td>
</tr>
<tr>
<td>Ketone</td>
<td>13,10</td>
</tr>
<tr>
<td>Hydroxypropanon*</td>
<td>11,02</td>
</tr>
<tr>
<td>1-Hydroxy-2-butanon*</td>
<td>0,60</td>
</tr>
<tr>
<td>2-Hydroxy-2-cyclopentene-1-on*</td>
<td>0,70</td>
</tr>
<tr>
<td>3-Methyl-2-cyclopentene-1-on*</td>
<td>0,13</td>
</tr>
<tr>
<td>2-Hydroxy-3-methyl-2-cyclopentene-1-on*</td>
<td>0,52</td>
</tr>
<tr>
<td>Dimethyl-2-cyclopentene-1-on*</td>
<td>0,12</td>
</tr>
</tbody>
</table>
Tabelle 37: Zusammensetzung der Ölfraktion der Buchenholzabfall-Pyrolyse (detailliert, organischer Anteil) Teil 2

<table>
<thead>
<tr>
<th>Komponente</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenole</td>
<td>0,43</td>
</tr>
<tr>
<td>Phenol*</td>
<td>0,16</td>
</tr>
<tr>
<td>o-Cresol*</td>
<td>0,09</td>
</tr>
<tr>
<td>m-Cresol*</td>
<td>0,07</td>
</tr>
<tr>
<td>p-Cresol*</td>
<td>0,04</td>
</tr>
<tr>
<td>2,4- and 2,5-Dimethylphenol*</td>
<td>0,05</td>
</tr>
<tr>
<td>3- and 4-Ethylphenol*</td>
<td>0,02</td>
</tr>
<tr>
<td>Pyrane</td>
<td>0,29</td>
</tr>
<tr>
<td>3-Hydroxy-5,6-dihydro-(4H)-pyran-4-on*</td>
<td>0,29</td>
</tr>
<tr>
<td>Zucker</td>
<td>6,97</td>
</tr>
<tr>
<td>1,4:3,6-Dianhydro-mannopyranose*</td>
<td>0,32</td>
</tr>
<tr>
<td>Lävoglukosan*</td>
<td>6,64</td>
</tr>
<tr>
<td>Syringole</td>
<td>2,41</td>
</tr>
<tr>
<td>Syringol*</td>
<td>0,45</td>
</tr>
<tr>
<td>4-Methylsyringol*</td>
<td>0,22</td>
</tr>
<tr>
<td>4-Ethylsyringol*</td>
<td>0,05</td>
</tr>
<tr>
<td>4-Vinylsyringol*</td>
<td>0,26</td>
</tr>
<tr>
<td>4- Allyl- and 4-Propylsyringol*</td>
<td>0,12</td>
</tr>
<tr>
<td>4-Propenylsyringol (cis)*</td>
<td>0,06</td>
</tr>
<tr>
<td>4-Propenylsyringol (trans)*</td>
<td>0,27</td>
</tr>
<tr>
<td>Syringaldehyd*</td>
<td>0,28</td>
</tr>
<tr>
<td>Homosyringaldehyd*</td>
<td>0,03</td>
</tr>
<tr>
<td>Acetosyringon*</td>
<td>0,16</td>
</tr>
<tr>
<td>Syringyl aceton*</td>
<td>0,08</td>
</tr>
<tr>
<td>Isomer of Sinapylalkohol*</td>
<td>0,22</td>
</tr>
<tr>
<td>Sinapaldehyd*</td>
<td>0,20</td>
</tr>
<tr>
<td>Summe aller quantifizierten org. Verbindungen</td>
<td>50,27</td>
</tr>
</tbody>
</table>

*quantifiziert mit GC/FID, Responzfaktor durch Referenzsubstanz ermittelt

9.3 Schlussfolgerungen

Vor der Entscheidung ob die Flash-Pyrolyse eine geeignete Technik für die Verwertung des betrachteten Eintragsgutes ist, steht die Auswertung der Massenbilanz. In jedem Fall ist das erhaltene Pyrolyse-Öl das Produkt mit dem höchsten kommerziellen Wert, wobei es keine Rolle spielt, ob es als Brennstoff für die Produktion von Energie oder als Chemierohstoff genutzt werden soll.
Das Nebenprodukt Holzkohle kann, wenn geringe anorganische Anteile vorhanden sind, wie im Allgemeinen Teil dieser Arbeit angesprochen, zur Aktivkohle veredelt werden. Hier zeigte sich jedoch, das die abgeschiedene Holzkohlefraktion zu 33,41m% aus anorganischen Feststoffen besteht. Dies macht eine weitere Verwendung schwierig. Pyrolyse-Gas ist das Produkt von geringem Wert, es kann als niederkaloriges Brenngas verwendet werden.

Schlussfolgernd lassen sich für Buchenholzabfall, der Chemviron Carbon, als Eintragsgut folgende Aussagen formulieren:

- Das Eintragsgut Buchenholzabfall ließ sich leicht mit der Fördereinrichtung der LWS-Holz in den Reaktor eintragen.
- Die Pyrolyse von Buchenholz führt im Vergleich zum Referenzversuch zu relativ niedrigen Ausbeuten an flüssigen Produkten (38,79m%). Der Anteil an wertlosen anorganischen Feststoffen, die zum größten Teil mit der Kohle abgeschieden werden führt zu einem Wertverlust der Kohle hinsichtlich der Verwendung als Brennstoff oder Ausgangsbasis der Aktivkohleherstellung. Zusätzlich wird die Abscheidung von Pyrolyse-Öl durch staubförmige Feststoffe im Gasstrom erschwert.
- Die Energiedichte des Buchenholzabfall-Pyrolyse-Öls, inklusive des hohen Wassergehalts, ist nur halb so hoch wie die Energiedichte des ursprünglichen Eintragsgutes.
- Die eben genannten Argumente sprechen gegen eine Verwendung von Holzabfällen mit einem Gehalt von mehr als 5m% anorganischen Feststoffen. Buchenholzabfall der Chemviron Carbon ist als Eintragsgut für das Hamburger Wirbelschichtverfahren ungeeignet.

10 Pyrolyse von Flachsfasern

10.1 Einleitung

Innerhalb eines Forschungsprojektes des Institutes für Keramische Technologien und Sinterwerkstoffe (IKTS) der Frauenhofer-Gesellschaft (FhG) in Dresden wurde ein Verfahren entwickelt, durch das aus biogenem Material, insbesondere Fasermaterial, ein Kohlenstoff-Körper (C-Körper) gefertigt werden kann. Dieser poröse C-Körper dient als Ausgangsmaterial für die Herstellung von Kohlenstoff-Verbundwerkstoffe und Silicium-Siliciumcarbid-Funktionskeramiken (Si-SiC). Folgende Verfahrensschritte sind zu ihrer Herstellung nötig: Teilcarbonisierung (Pyrolyse) der Fasern, Zerkleinerung, Heißpressen, Carbonisieren,

<table>
<thead>
<tr>
<th>Tabelle 38 Versuchsparameter zur Pyrolyse von Flachsfasern mit der LWS-LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolysetemperatur</td>
</tr>
<tr>
<td>Heizratenrate</td>
</tr>
<tr>
<td>Aufheizphase</td>
</tr>
<tr>
<td>Halte-Phase</td>
</tr>
<tr>
<td>Inertgas</td>
</tr>
<tr>
<td>Inert-Gas-Fluss</td>
</tr>
<tr>
<td>Kondensationstemperatur</td>
</tr>
<tr>
<td>Eintragsmenge</td>
</tr>
<tr>
<td>Eintragsgutfeuchte</td>
</tr>
</tbody>
</table>

10.2 Ergebnisse, Diskussion und Schlussfolgerungen

Durch die Pyrolyse von 20 g Flachsfasern wurden 3,95 g Flachkohlefasern gewonnen. Pyrolyse-Öl wurde in einer Menge von 10,77 g gewonnen. Der verbleibende Anteil von 5,29 g kann der Gasfraktion zugerechnet werden. Die relative Massenbilanz des Versuchs zur Flachsfasern-Pyrolyse ist in Abbildung 40 gezeigt.
Es wurden 19,75 m% Flachskohlefasern, 53,80 m% Pyrolyse-Öl und 26,45 m% Pyrolyse-Gase erhalten. Die wirtschaftlich wichtigste Fraktion der Flachs-Pyrolyse ist die Kohlefaserfraktion. Die Elementaranalyse der Kohlefasern ist in Tabelle 39 gezeigt.

Tabelle 39: Elementaranalyse der Kohlefasern

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>H</th>
<th>N</th>
<th>O*</th>
</tr>
</thead>
<tbody>
<tr>
<td>[m%]</td>
<td>75,79</td>
<td>3,29</td>
<td>0,69</td>
<td>20,23</td>
</tr>
</tbody>
</table>

* Differenz zu 100 m%

Die Pyrolyse-Öl-Fraktion wurde umfassend chromatographisch (GC/FID) untersucht, eine Zusammenfassung der wichtigsten chemischen Gruppen ist in Tabelle 40 zusammengestellt. Der Wassergehalt des Öls wurde mit Karl-Fischer-Titration bestimmt, er lag bei 46,43 m%. Bei einer Eintragsgutfeuchte von 7,00 m% lässt sich das gebildete Reaktionswasser zu 38,43 m%, bezogen auf atro Pyrolyse-Öl errechnen.
Tabelle 40: GC/FID-Report von Flachsfaser-Pyrolyse-Öl, Zusammenfassung

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>m%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organische Säuren</td>
<td>3,69</td>
</tr>
<tr>
<td>Alkohole</td>
<td>0,37</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>10,54</td>
</tr>
<tr>
<td>Aromaten</td>
<td>n.q.</td>
</tr>
<tr>
<td>Furane</td>
<td>2,25</td>
</tr>
<tr>
<td>Guajacole</td>
<td>0,22</td>
</tr>
<tr>
<td>Ketone</td>
<td>10,57</td>
</tr>
<tr>
<td>Phenole</td>
<td>0,11</td>
</tr>
<tr>
<td>Pyrane</td>
<td>0,13</td>
</tr>
<tr>
<td>Zucker</td>
<td>5,01</td>
</tr>
<tr>
<td>Syringole</td>
<td>0,08</td>
</tr>
<tr>
<td>Andere</td>
<td>n.q.</td>
</tr>
<tr>
<td>Total</td>
<td>32,97</td>
</tr>
</tbody>
</table>

n.q. = mit MS detektiert, nicht quantifiziert

Die Gaszusammensetzung des Flachs-Pyrolyse-Gases ist in Tabelle 41 gezeigt.

Tabelle 41: Gaszusammensetzung des Flachs-Pyrolyse-Gases

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>Vol.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserstoff</td>
<td>1,32</td>
</tr>
<tr>
<td>Kohlenmonoxid</td>
<td>49,40</td>
</tr>
<tr>
<td>Kohlendioxid</td>
<td>46,43</td>
</tr>
<tr>
<td>Kohlenwasserstoffe</td>
<td>2,84</td>
</tr>
<tr>
<td>davon Methan</td>
<td>1,69</td>
</tr>
<tr>
<td>davon C2-C4</td>
<td>1,15</td>
</tr>
</tbody>
</table>

Die verkohlten Fasern besitzen einen elementaren Kohlenstoffgehalt von 75,79m%. Üblicherweise werden für die oben beschriebene Herstellung von C-Sinterwerkstoffen gleichmäßig carbonisierte Faserpyrolysate mit einem Kohlenstoffgehalt von 73-75m% eingesetzt. Die bei diesem Versuch erhaltenen Fasern liegen mit ihrem Kohlenstoffgehalt nur um 0,79m% über dem sonst üblichen Wert. Es kann daher davon ausgegangen werden, dass

Zu klären bleibt jedoch, ob und inwieweit sich die zum Teil stark schwankende Zusammensetzung (Cellulose, Hemicellulose, Lignin und anorganische Bestandteile) der Einjahrespflanze Flachs auf die Ausbeute und Produktpalette der thermischen Konversion durch Pyrolyse auswirkt.

Tabelle 42: Zusammensetzung des organischen Anteils des Flachs-Pyrolyse-Öls (Teil 1)

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>m%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säuren</td>
<td>6,89</td>
</tr>
<tr>
<td>Essigsäure*</td>
<td>6,89</td>
</tr>
<tr>
<td>Alkohole</td>
<td>0,69</td>
</tr>
<tr>
<td>1,2-Ethandiol</td>
<td>0,69</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>19,68</td>
</tr>
<tr>
<td>Hydroxyacetaldehyd*</td>
<td>15,68</td>
</tr>
<tr>
<td>3-Hydroxypropanal*</td>
<td>2,69</td>
</tr>
<tr>
<td>2-Hydroxy-3-oxobutanal*</td>
<td>1,19</td>
</tr>
<tr>
<td>2-Hydroxybutandial*</td>
<td>0,11</td>
</tr>
<tr>
<td>Furane</td>
<td>4,20</td>
</tr>
<tr>
<td>3-Furaldehyd*</td>
<td>0,19</td>
</tr>
<tr>
<td>2-Furaldehyd*</td>
<td>1,10</td>
</tr>
<tr>
<td>Tetrahydro-4-methyl-3-furanon oder 2-Ethyl-butanal*</td>
<td>0,04</td>
</tr>
<tr>
<td>Dihydro-methyl-furanon**</td>
<td>0,43</td>
</tr>
<tr>
<td>γ-Butyrolacton*</td>
<td>0,58</td>
</tr>
<tr>
<td>(5H)-Furan-2-on*</td>
<td>0,93</td>
</tr>
<tr>
<td>5-Methyl-(5H)-furan-2-on*</td>
<td>0,09</td>
</tr>
<tr>
<td>3-Methyl-(5H)-furan-2-on*</td>
<td>0,19</td>
</tr>
<tr>
<td>5-Hydroxymethyl-2-furaldehyd*</td>
<td>0,67</td>
</tr>
<tr>
<td>Guajacol</td>
<td>0,41</td>
</tr>
<tr>
<td>Guajacol*</td>
<td>0,13</td>
</tr>
<tr>
<td>4-Methylguajacol*</td>
<td>0,04</td>
</tr>
<tr>
<td>4-Ethylguajacol*</td>
<td>0,09</td>
</tr>
<tr>
<td>4-Vinylguajacol*</td>
<td>0,07</td>
</tr>
<tr>
<td>Homovanillin*</td>
<td>0,09</td>
</tr>
</tbody>
</table>
11 Pyrolyse von Bambus

11.1 Einleitung

Bambus (Bambusaceae L.) gehört zur Gruppe der verholzenden Gräser, er ist naturgemäß etwa zwischen dem südlichen 40° und dem nördlichen 50° Breitengrad beheimatet und wird außerhalb Europas in vielen Ländern der Erde angebaut und vielfältig genutzt. Es existieren mehr als 1300 Arten von Bambus, welche in tropischen, subtropischen und milden Klimazonen auf insgesamt mehr als 25 Mio. ha Fläche wachsen. Der Heizwert der Pflanze wird mit etwa 5 kcal/kg angegeben. [194] Bambus ist daher als regenerative Energiequelle interessant, zumal der Aschegehalt im Vergleich mit anderen schnellwachsenden Pflanzen lediglich 1m% ausmacht und damit relativ niedrig ist. Neben den eben genannten

Tabelle 43: Zusammensetzung des organischen Anteils des Flachs-Pyrolyse-Öls (Teil 2))

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>m%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketone</td>
<td>19,73</td>
</tr>
<tr>
<td>Hydroxypropanon*</td>
<td>15,92</td>
</tr>
<tr>
<td>1-Hydroxy-2-butanon*</td>
<td>0,52</td>
</tr>
<tr>
<td>1-Acetyloxypropan-2-on*</td>
<td>1,33</td>
</tr>
<tr>
<td>2-Hydroxy-2-cyclopenten-1-on*</td>
<td>1,01</td>
</tr>
<tr>
<td>3-Methyl-2-cyclopenten-1-on*</td>
<td>0,04</td>
</tr>
<tr>
<td>2-Hydroxy-3-methyl-2-cyclopenten-3-on*</td>
<td>0,67</td>
</tr>
<tr>
<td>3-Ethyl-2-hydroxy-2-cyclopenten-1-on*</td>
<td>0,26</td>
</tr>
<tr>
<td>Phenole</td>
<td>0,21</td>
</tr>
<tr>
<td>Phenol*</td>
<td>0,09</td>
</tr>
<tr>
<td>o-Cresol*</td>
<td>0,06</td>
</tr>
<tr>
<td>m-Cresol*</td>
<td>0,04</td>
</tr>
<tr>
<td>p-Cresol*</td>
<td>0,04</td>
</tr>
<tr>
<td>Pyrane</td>
<td>0,24</td>
</tr>
<tr>
<td>Isomer von 3-Hydroxy-5,6-dihydro-(4H)-pyran-4-on*</td>
<td>0,13</td>
</tr>
<tr>
<td>3-Hydroxy-5,6-dihydro-(4H)-pyran-4-on*</td>
<td>0,11</td>
</tr>
<tr>
<td>Zucker</td>
<td>9,35</td>
</tr>
<tr>
<td>unbek. Anhydruzucker</td>
<td>1,74</td>
</tr>
<tr>
<td>1,4:3,6-Dianhydro-α-D-glucopyranose*</td>
<td>0,80</td>
</tr>
<tr>
<td>Lävoglukosan*</td>
<td>6,72</td>
</tr>
<tr>
<td>unbek. Anhydruzucker**</td>
<td>0,07</td>
</tr>
<tr>
<td>Lävoglukosenon</td>
<td>0,35</td>
</tr>
<tr>
<td>Syringole</td>
<td>0,15</td>
</tr>
<tr>
<td>Syringol*</td>
<td>0,15</td>
</tr>
<tr>
<td>Summe aller quantifizierten org. Verbindungen</td>
<td>61,51</td>
</tr>
</tbody>
</table>

*quantifiziert mit GC/FID, Responzfaktor uRch Referenzsubstanz ermittelt
Eigenschaften zeichnet sich Bambus durch seine schnelle Wachstumsrate aus (7 t/ha/a). Durch das günstige Lignin:Cellulose Verhältnis von etwa 1:4 ist Bambus auch als Rohstoff für die Zellstoff- und Papierherstellung geeignet. [195]

In der einschlägigen Literatur sind nur in sehr beschränktem Maße Informationen über die Pyrolyse von schnellwachsenden Ein- und Mehrjahrespflanzen vorhanden. Daher wurde exemplarisch Bambus als ein typischer Vertreter dieser Biomasse-Kategorie für die durchgeführten Untersuchungen ausgewählt. Im Rahmen der vorliegenden Arbeit soll untersucht werden, ob sich Bambus wie beispielsweise Laubholz problemlos in der Wirbelschichtpyrolyse einsetzen lässt und welche Produkte in welchen Mengenanteilen entstehen.

11.2 Ergebnisse und Diskussion

Als Eintragsgut wurde Bambus des Genotyps Sasa Keguma ausgewählt. Eine 5-jährige Pflanze dieses Typs hat typischerweise eine Höhe von 2150 mm. Vor der eigentlichen Pyrolyse wurde das Bambus-Material in Blätter und Pflanzenstengel getrennt. Vom so aufgetrennten Eintragsmaterial wurden überwiegend die Stengel (90m%) mit einem Restgehalt an Blättern (10m%) ausgewählt, auf die geforderte Partikelgröße gemahlen und anschließend pyrolysiert. Eigenschaften des Eintragsgutes sind in Tabelle 44 aufgelistet.

Tabelle 45: Versuchsparameter zur Pyrolyse von Bambus

<table>
<thead>
<tr>
<th>Versuchsbezeichnung</th>
<th>TP 29 [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur</td>
<td>488 [°C]</td>
</tr>
<tr>
<td>Temperatur</td>
<td>761 [K]</td>
</tr>
<tr>
<td>Versuchsduauer</td>
<td>90 [min]</td>
</tr>
<tr>
<td>Volumenstrom Wirbelgas (kalt, gemessen)</td>
<td>5,23 [m³/h]</td>
</tr>
<tr>
<td>Volumenstrom Wirbelgas (heiß, errechnet)</td>
<td>12,93 [m³/h]</td>
</tr>
<tr>
<td>Verweilzeit der Pyrolyseprodukte im Reaktor</td>
<td>1,4 [s]</td>
</tr>
<tr>
<td>Durchsatz</td>
<td>1,9 [kg/h]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einwaagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bambus</td>
</tr>
<tr>
<td>Bambus atro</td>
</tr>
<tr>
<td>Wirbelmaterial (Quarzsand, 0,5-0,6 mm)</td>
</tr>
<tr>
<td>Gesamteinwaage</td>
</tr>
</tbody>
</table>

Nach Durchführung des Versuches wurden die in Tabelle 46 aufgelisteten Massen erhalten. Eine Bilanz ist graphisch in Abbildung 41 dargestellt, sie zeigt deutlich, dass sich Pyrolyse-Ol
mit einer Ausbeute von 56,41m% bezogen auf trockenes Eintragsgut erzeugen lässt. Im Vergleich mit Buchenholz, welches sich bis zu etwa 67m% verflüssigen lässt, ist dies niedriger. In Anbetracht der Unterschiede beider Pflanzentypen (Mehrfahrtspflanze/Gras und Laubholz) ist dieses Ergebnis jedoch als außerordentlich gut zu bewerten. Pflanzen wie z.B. Gras in Form von Heu pyrolysiert ergeben bei ähnlicher Reaktionsführung lediglich 35,70m% Pyrolyse-Öl.

Tabelle 46: Massenbilanz der Pyrolyse von Bambus

Auswaagen Öl		
Kühler 1	139 [g]	
Kühler 2	539 [g]	
Kühler 3	391 [g]	
Elektrofilter	446 [g]	
Rest aus Reinigung	239 [g]	
Summe Öl	1754 [g]	
Summe Öl (atro)	1537 [g]	56,41 [%]

Auswaagen Feststoffe		
Reaktorrückstand	5024 [g]	
Überlaufflume	937 [g]	
Zyklonrückstand	642 [g]	
Summe Feststoffe	6602 [g]	
Summe Pyrolyse-Koks	602 [g]	22,10 [%]
Gesamtauswaage	8356 [g]	

Auswaage Gas als Differenz berechnet	586 [g]	21,50 [%]
Gesamteinwaage	8942 [g]	
Gesamteinwaage atro	8725 [g]	
Bilanz	100 [%]	
Überschusgasvolumen	10,07 [m³]	
Abbildung 41: Massenbilanz der Pyrolyse von Bambus

Tabelle 47: Zusammensetzung der Gasfraktion der Bambuspyrolyse

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Komponente</th>
<th>Formel</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-Gase</td>
<td>Kohlenmonoxid</td>
<td>CO</td>
<td>31,71</td>
</tr>
<tr>
<td></td>
<td>Kohlendioxid</td>
<td>CO₂</td>
<td>50,76</td>
</tr>
<tr>
<td></td>
<td>Methan</td>
<td>CH₄</td>
<td>4,83</td>
</tr>
<tr>
<td>C2-Gase</td>
<td>Ethan</td>
<td>C₂H₆</td>
<td>1,68</td>
</tr>
<tr>
<td></td>
<td>Ethen</td>
<td>C₂H₄</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td>Ethin</td>
<td>C₂H₂</td>
<td>0,01</td>
</tr>
<tr>
<td>C3-Gase</td>
<td>Propan</td>
<td>C₃H₈</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>Propen</td>
<td>C₃H₆</td>
<td>0,90</td>
</tr>
<tr>
<td>C4-Gase</td>
<td>n-Butan</td>
<td>C₄H₁₀</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>iso-Butan</td>
<td>C₄H₁₀</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>cis-Buten</td>
<td>C₄H₈</td>
<td>0,21</td>
</tr>
<tr>
<td></td>
<td>trans-Buten</td>
<td>C₄H₈</td>
<td>0,17</td>
</tr>
<tr>
<td></td>
<td>iso-Buten</td>
<td>C₄H₈</td>
<td>0,20</td>
</tr>
<tr>
<td>Andere</td>
<td>Wasserstoff</td>
<td>H₂</td>
<td>0,31</td>
</tr>
<tr>
<td></td>
<td>Sauerstoff*</td>
<td>O₂</td>
<td>0,35</td>
</tr>
<tr>
<td></td>
<td>Stickstoff*</td>
<td>N₂</td>
<td>7,17</td>
</tr>
<tr>
<td>Summe</td>
<td>[%]</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

*Rest aus Inertisierung
Die Produktfraktion Pyrolyse-Gas ist in Tabelle 47 dargestellt, sie zeigt die typische Produktverteilung von Pyrolyse-Gas aus Biomasse mit Gasen der Kohlenstoffanzahl 1-4 und geringen Anteilen an Wasserstoff. Aufgrund des hohen Anteils an Kohlenmonoxid (31,71m%), und Methan (4,83m%) lässt sich das Gas als niederkaloriges Brenngas z.B. in einer dem Prozess vorgeschalteten Trocknungsanlage für die Trocknung des Eintragsgutes einsetzen.

Tabelle 48: Zusammensetzung der Ölfraction der Bambuspyrolyse (Übersicht, org. Anteil)

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säuren</td>
<td>31,28</td>
</tr>
<tr>
<td>Alkohole</td>
<td>1,81</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>7,78</td>
</tr>
<tr>
<td>Aromaten</td>
<td>5,48</td>
</tr>
<tr>
<td>Furane</td>
<td>6,72</td>
</tr>
<tr>
<td>Guajacolate</td>
<td>4,70</td>
</tr>
<tr>
<td>Syringole</td>
<td>3,67</td>
</tr>
<tr>
<td>Ketone</td>
<td>13,96</td>
</tr>
<tr>
<td>Phenole</td>
<td>1,63</td>
</tr>
<tr>
<td>Pyrane</td>
<td>0,39</td>
</tr>
<tr>
<td>Zucker</td>
<td>4,51</td>
</tr>
<tr>
<td>Summe quantifizierter organischer Verbindungen</td>
<td>81,91</td>
</tr>
</tbody>
</table>
Tabelle 49: Zusammensetzung der Ölfraktion der Bambuspyrolyse (detailliert, organischer Anteil) Teil 1

<table>
<thead>
<tr>
<th>Komponente</th>
<th>[% m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säuren</td>
<td>31,28</td>
</tr>
<tr>
<td>Essigsäure*</td>
<td>31,28</td>
</tr>
<tr>
<td>Alkohole</td>
<td>1,81</td>
</tr>
<tr>
<td>Benzylalkohol</td>
<td>0,04</td>
</tr>
<tr>
<td>2-Furfurylalkohol</td>
<td>0,42</td>
</tr>
<tr>
<td>1,2 Ethanediol</td>
<td>1,35</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>7,78</td>
</tr>
<tr>
<td>Hydroxyacetaldehyd*</td>
<td>7,45</td>
</tr>
<tr>
<td>4-Hydroxybenzaldehyd</td>
<td>0,33</td>
</tr>
<tr>
<td>Aromaten</td>
<td>5,48</td>
</tr>
<tr>
<td>Acetophenon</td>
<td>0,06</td>
</tr>
<tr>
<td>4-Methylanisol</td>
<td>0,16</td>
</tr>
<tr>
<td>3-Methoxycatechol</td>
<td>5,00</td>
</tr>
<tr>
<td>3-Methylecatechol</td>
<td>0,10</td>
</tr>
<tr>
<td>Resorcin, 1,3-Benzoldiol</td>
<td>0,15</td>
</tr>
<tr>
<td>Furane</td>
<td>6,72</td>
</tr>
<tr>
<td>2-Furaldehyd*</td>
<td>3,22</td>
</tr>
<tr>
<td>γ-Butyrolacton*</td>
<td>0,56</td>
</tr>
<tr>
<td>(5H)-Furan-2-on*</td>
<td>1,25</td>
</tr>
<tr>
<td>2,5-Dimethoxy-tetrahydrofuran (cis) Öl</td>
<td>0,13</td>
</tr>
<tr>
<td>α-Angelicalactone, 2,3-Dihydro-5-methylfuran-2-or</td>
<td>0,66</td>
</tr>
<tr>
<td>Dihydro-methyl-furanon (isomer of BR 27)</td>
<td>0,63</td>
</tr>
<tr>
<td>Dihydro-methyl-furanon (isomer of BR 27 or BR 3)</td>
<td>0,27</td>
</tr>
<tr>
<td>Guajacole</td>
<td>4,70</td>
</tr>
<tr>
<td>Guajacol*</td>
<td>0,91</td>
</tr>
<tr>
<td>4-Methylguajacol*</td>
<td>0,66</td>
</tr>
<tr>
<td>4-Ethylguajacol*</td>
<td>0,09</td>
</tr>
<tr>
<td>4-Propylguajakol</td>
<td>0,09</td>
</tr>
<tr>
<td>4-Vinyl-guajakol</td>
<td>0,22</td>
</tr>
<tr>
<td>Eugenol*</td>
<td>0,08</td>
</tr>
<tr>
<td>Isoeugenol (trans)*</td>
<td>1,38</td>
</tr>
<tr>
<td>Isoeugenol (cis)*</td>
<td>0,34</td>
</tr>
<tr>
<td>Vanillin*</td>
<td>0,43</td>
</tr>
<tr>
<td>Acetoguajacon*</td>
<td>0,16</td>
</tr>
<tr>
<td>Guajacylecton</td>
<td>0,16</td>
</tr>
<tr>
<td>Coniferylaldehyd</td>
<td>0,17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Komponente</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syringole</td>
<td>3,67</td>
</tr>
<tr>
<td>Syringol</td>
<td>0,85</td>
</tr>
<tr>
<td>4-Methylnsyringol</td>
<td>0,40</td>
</tr>
<tr>
<td>4-Ethylsyringol</td>
<td>0,13</td>
</tr>
<tr>
<td>4-Vinylsyringol</td>
<td>0,46</td>
</tr>
<tr>
<td>4-allyl- and 4-Propylsyringol</td>
<td>0,24</td>
</tr>
<tr>
<td>4-Propenylysyringol (cis)</td>
<td>0,20</td>
</tr>
<tr>
<td>4-Propenylysyringol (trans)</td>
<td>0,40</td>
</tr>
<tr>
<td>Syringaldehyd</td>
<td>0,31</td>
</tr>
<tr>
<td>Homosyringaldehyd</td>
<td>0,00</td>
</tr>
<tr>
<td>Acetosyringon</td>
<td>0,46</td>
</tr>
<tr>
<td>Syringylaceton</td>
<td>0,11</td>
</tr>
<tr>
<td>Propiosyringon</td>
<td>0,02</td>
</tr>
<tr>
<td>Isomer von Sinapylalkohol</td>
<td>0,03</td>
</tr>
<tr>
<td>Sinapaldehyd</td>
<td>0,06</td>
</tr>
<tr>
<td>Ketone</td>
<td>13,96</td>
</tr>
<tr>
<td>Hydroxypropanon*</td>
<td>12,87</td>
</tr>
<tr>
<td>3-Methyl-2-Cyclopenten-1-on Öl</td>
<td>0,18</td>
</tr>
<tr>
<td>2-Hydroxy-1-methyl-1-Cyclopenten-3-on</td>
<td>0,91</td>
</tr>
<tr>
<td>Phenole</td>
<td>1,63</td>
</tr>
<tr>
<td>Phenol*</td>
<td>0,85</td>
</tr>
<tr>
<td>o-Cresol*</td>
<td>0,14</td>
</tr>
<tr>
<td>m-Cresol*</td>
<td>0,28</td>
</tr>
<tr>
<td>2,4- und 2,5-Dimethyl-phenol*</td>
<td>0,19</td>
</tr>
<tr>
<td>3- und 4-Ethyl phenol*</td>
<td>0,13</td>
</tr>
<tr>
<td>2,6-Dimethyl phenol</td>
<td>0,03</td>
</tr>
<tr>
<td>Pyrane</td>
<td>0,39</td>
</tr>
<tr>
<td>4-Hydroxy-5,6-dihydro-(2H)-Pyran-2-one</td>
<td>0,39</td>
</tr>
<tr>
<td>Zucker</td>
<td>4,51</td>
</tr>
<tr>
<td>Lävoglukosan*</td>
<td>4,51</td>
</tr>
<tr>
<td>Summe</td>
<td>81,91</td>
</tr>
</tbody>
</table>

*quantifiziert mit GC/FID, Responzfaktor durch Referenzsubstanz ermittelt
Tabelle 51: Elementaranalysen von Bambus (90% Stengel, 10% Blätter) und Bambus-Pyrolyse-Öl

<table>
<thead>
<tr>
<th>Element</th>
<th>Formelzeichen</th>
<th>Bambus</th>
<th>Bambus-Pyrolyse-Öl</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sasa keguma)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohlenstoff</td>
<td>C</td>
<td>47,35</td>
<td>37,53</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>H</td>
<td>6,02</td>
<td>8,55</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>N</td>
<td>0,46</td>
<td>0,82</td>
</tr>
<tr>
<td>Sauerstoff*</td>
<td>O</td>
<td>46,17</td>
<td>53,10</td>
</tr>
</tbody>
</table>

*Berechnet als Differenz

Der Heizwert des Bambus-Pyrolyse-Öls ist mit ca. 16 MJ/kg identisch mit dem ursprünglichen Heizwert von Bambus (16 MJ/kg). Im Vergleich mit dem Energiedichtegewinn von knapp 100% bei der Konversion von Buchenholz zu Buchenholz-Pyrolyse-Öl ist bei Bambus-Pyrolyse-Öl kein Gewinn an Energiedichte zu verzeichnen.

Der Wassergehalt des Pyrolyse-Öls aus Bambus beträgt 42,92m% (bei einer eingetragenen Eintragsgutfeuchte von 7,37m%) und ist damit als hoch zu bewerten. Der erhöhte Wassergehalt erklärt den im Vergleich mit Buchenholz-Pyrolyse-Öl niedrigen Heizwert. Der Anteil des Wassers das bei der Pyrolyse durch den thermischen Abbau der Cellulose und weiteren Sekundärreaktionen entstanden ist beträgt 30,56m%. Er ist damit im Vergleich mit dem Reaktionswasseranteil in einem typischen Buchenholz-Pyrolyse-Öl (27-29m%) nur unwesentlich höher, trotz der Tatsache, dass der erhöhte Anteil an Cellulose in Bambus durch den Abbau einen größeren Reaktionswasseranteil erzeugen müsste.

11.3 Schlussfolgerungen

Schlussfolgernd lassen sich folgende Aussagen formulieren:

- Das Eintragsgut ließ sich leicht mit der Fördereinrichtung der LWS-Holz in den Reaktor eintragen und umsetzen.
- Die Pyrolyse von Bambus führt zu relativ hohen Ausbeuten an flüssigem Produkt (56,41m%), mit einem hohen Anteil an kommerziell wertvollen Einzelkomponenten wie z.B. Lävoglukosan.
- Der berechnete untere Heizwert ließe sich entscheidend verbessern, wenn es gelänge, den Wassergehalt des Öls zu erniedrigen. Hierfür ist eine Vortrocknung des Eintragsgutes geeignet.

Abschließend lässt sich bemerken, das Bambus aufgrund seines Verhaltens während der Pyrolyse, der erzielten Produktausbeuten und der Zusammensetzung des Bambus-Pyrolyse-Öls ein geeignetes Eintragsgut für Flash-Pyrolyse darstellt.

12 Pyrolyse von Altholz

12.1 Einleitung

Mit Hilfe des im Allgemeinen Teil vorgestellten Hamburger Wirbelschichtverfahrens wurden bereits diverse Untersuchungen vorgenommen, um diese Technologie für die Pyrolyse von künstlichen, „selbst hergestellten“ Altholzkontingenten mit homogener und definierter Belastung nutzbar zu machen. [18] [19] [20] [21] [176]

Basierend auf diese früheren Studien soll nun eine reale Altholz-Fraktion eines deutschen Altholzverwerters pyrolysiert werden. Die Untersuchung soll zeigen, dass das Hamburger Wirbelschichtverfahren geeignet ist, Altholz zu verwerten.

12.2 Ergebnisse und Diskussion

Das untersuchte Altholzkontingent wurde freundlicherweise vom Bergischen-Abfall-Verband (BAV) zur Verfügung gestellt. Die Untersuchungen wurden an der LWS-Holz durchgeführt. Vor der eigentlichen Pyrolyse wurde das Eintragsgut gemahlen und die geeignete Korngröße ausgesiebt. Als Referenzversuch dient die Pyrolyse von nicht kontaminiertem Buchenholz.

Tabelle 52: Eigenschaften des Eintragsgutes BAV-Altholz

<table>
<thead>
<tr>
<th>Eintragsgut</th>
<th>[-]</th>
<th>Altholz</th>
<th>Buchenholz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lieferant</td>
<td>[-]</td>
<td>BAV</td>
<td>Rettenmeier</td>
</tr>
<tr>
<td>Zusatzbezeichnung</td>
<td>[-]</td>
<td>Fraktion H2/H3</td>
<td>Referenz TP44</td>
</tr>
<tr>
<td>Korngröße</td>
<td>[mm]</td>
<td>1-3</td>
<td>1-3</td>
</tr>
<tr>
<td>Glührückstand atro</td>
<td>m%</td>
<td>3,57</td>
<td>0,58</td>
</tr>
<tr>
<td>Eintragsgutfeuchte</td>
<td>m%</td>
<td>11,80</td>
<td>5,44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elementaranalyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>C [m%]</td>
</tr>
<tr>
<td>H [m%]</td>
</tr>
<tr>
<td>N [m%]</td>
</tr>
<tr>
<td>O* [m%]</td>
</tr>
<tr>
<td>Heizwert [MJ/kg]</td>
</tr>
</tbody>
</table>

* Differenz zu 100%

Abbildung 42: Zusammensetzung von BAV-Altholz

Die Produktausbeuten der Pyrolyse von BAV-Altholz sind in Tabelle 54 aufgelistet und Abbildung 43 graphisch gezeigt. Die Ausbeute an Altholz-Pyrolyse-Öl ist zwar um 19,4m% niedriger als die Ausbeute an Pyrolyse-Öl des Referenzversuches, sie ist aber mit 48m% noch akzeptabel.

Der Wassergehalt des Pyrolyse-Öls von rechnerisch 33,12m% erscheint zunächst durchschnittlich (25-45m%), ungewöhnlich ist der geringe Anteil des Reaktionswassers von nur 9,69m% am Pyrolyse-Öl. Erklärbar ist dies durch folgendes Argument: Der Anteil an Cellulose im Eintragsgut ist geringer als bei Buchenholz, da sich das Altholz zu einem großen Teil aus Holzwerkstoffen zusammensetzt und daher ein größerer Anteil an künstlichen Polymeren (Leime, Beschichtungen, Anstriche, Lacke und Fremdstoffe) zu erwarten ist. Die Depolymerisation der Cellulose liefert den größten Teil des Reaktionswasser.
Tabelle 54: Massenbilanz von TP49 (Pyrolyse von BAV-Altholz, atro)

<table>
<thead>
<tr>
<th>Auswaagen Flüssigkeiten</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolyse-Öl</td>
<td>8996,58 [g]</td>
</tr>
<tr>
<td>Pyrolyse-Öl atro</td>
<td>7037,54 [g]</td>
</tr>
<tr>
<td>Wasser im Öl</td>
<td>1988,19 [g]</td>
</tr>
<tr>
<td>Wassergehalt Öl</td>
<td>33,12 [m%]</td>
</tr>
<tr>
<td>Reaktionswasser</td>
<td>9,69 [m%]</td>
</tr>
<tr>
<td>Glührückstand Öl</td>
<td>0,10 [m%]</td>
</tr>
<tr>
<td>Organischer Anteil am Öl</td>
<td>6156,68 [g]</td>
</tr>
<tr>
<td>Organischer Anteil am Öl [m%]</td>
<td>68,43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auswaagen Feststoffe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktorrückstand</td>
<td>5055,60 [g]</td>
</tr>
<tr>
<td>Überlauftonne</td>
<td>2566,90 [g]</td>
</tr>
<tr>
<td>Zyklon 1 Rückstand</td>
<td>517,10 [g]</td>
</tr>
<tr>
<td>Zyklon 2 Rückstand</td>
<td>20,60 [g]</td>
</tr>
<tr>
<td>Rest aus Reinigung</td>
<td>1391,92 [g]</td>
</tr>
<tr>
<td>Summe Feststoffe ohne Sand</td>
<td>4052,12 [g]</td>
</tr>
<tr>
<td>Auswaage Gas*</td>
<td>3553 [g]</td>
</tr>
<tr>
<td>Mittlere Gasdichte</td>
<td>0,99 [kg/m³]</td>
</tr>
<tr>
<td>Pyrolyse-Gas (Überschuss)</td>
<td>3,61 [m³]</td>
</tr>
<tr>
<td>Pyrolyse-Gas (Überschuss)</td>
<td>3606 [l]</td>
</tr>
</tbody>
</table>

* Differenz zu 100% Bilanzschluss

Abbildung 43: Massenbilanz von TP49 (Pyrolyse von BAV-Altholz, atro)
Das bei der Pyrolyse von Altholz entstehende Gas hat die in Tabelle 55 dargestellte Zusammensetzung und kann als niederkaloriges Brenngas thermisch verwertet werden.

Tabelle 55: Zusammensetzung der Gasfraktion der Altholzpyrolyse TP49

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Komponente</th>
<th>Formel</th>
<th>[m%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-Gase</td>
<td>Kohlenmonoxid</td>
<td>CO</td>
<td>51,18</td>
</tr>
<tr>
<td></td>
<td>Kohlendioxid</td>
<td>CO₂</td>
<td>31,87</td>
</tr>
<tr>
<td></td>
<td>Methan</td>
<td>CH₄</td>
<td>10,92</td>
</tr>
<tr>
<td>C2-Gase</td>
<td>Ethan</td>
<td>C₂H₆</td>
<td>2,06</td>
</tr>
<tr>
<td></td>
<td>Ethen</td>
<td>C₂H₄</td>
<td>0,82</td>
</tr>
<tr>
<td></td>
<td>Ethin</td>
<td>C₂H₂</td>
<td>1,00</td>
</tr>
<tr>
<td>C3-Gase</td>
<td>Propan</td>
<td>C₃H₈</td>
<td>0,61</td>
</tr>
<tr>
<td></td>
<td>Propen</td>
<td>C₃H₆</td>
<td>0,01</td>
</tr>
<tr>
<td>C4-Gase</td>
<td>n-Butan</td>
<td>C₄H₁₀</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>iso-Butan</td>
<td>C₄H₁₀</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>cis-Buten</td>
<td>C₄H₈</td>
<td>0,13</td>
</tr>
<tr>
<td></td>
<td>trans-Buten</td>
<td>C₄H₈</td>
<td>0,12</td>
</tr>
<tr>
<td></td>
<td>iso-Buten</td>
<td>C₄H₈</td>
<td>0,10</td>
</tr>
<tr>
<td>Andere</td>
<td>Wasserstoff</td>
<td>H₂</td>
<td>0,55</td>
</tr>
<tr>
<td></td>
<td>Sauerstoff*</td>
<td>O₂</td>
<td>0,21</td>
</tr>
<tr>
<td></td>
<td>Stickstoff*</td>
<td>N₂</td>
<td>0,35</td>
</tr>
</tbody>
</table>

Summe [%] 100

*Tast aus Inertisierung

Eine Zusammenfassung der chemischen Gruppen der Einzelkomponenten des Altholz-Pyrolyse-Öls ist in Tabelle 56 gezeigt. Die Zusammensetzung des organischen Anteils des
Altholz-Pyrolyse-Öls, in Tabelle 57 und Tabelle 58 detailliert aufgelistet, zeigt einen im Vergleich zu Buchenholz etwas höheren Anteil an Essigsäure (10,08 m%) und einen um den Faktor 5,3 höheren Anteil an Hydroxyacetaldehyd. Obwohl die Bildung von Hydroxyacetaldehyd die Konkurrenzreaktion zur Bildung des kommerziell wertvollen Lävoglukosan ist, liegt auch der Lävoglukosanwert (12,53 m%) um den Faktor 3,9 höher als im Buchenholz-Pyrolyse-Öl. Alkohol- und Syringolderivate konnten im Altholz-Pyrolyse-Öl nicht gefunden werden. Phenole sind nur mit 0,61 m% im Altholz-Pyrolyse-Öl enthalten, dies ist jedoch etwa doppelt so viel wie in Buchenholz-Pyrolyse-Öl (0,37 m%). Verursacht wird der höhere Anteil von Phenolderivaten im Altholz-Pyrolyse-Öl durch Phenol-Formaldehydharz verleimte Holzwerkstoffe im Altholzkontingent.
<table>
<thead>
<tr>
<th>Komponente</th>
<th>[m%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säuren</td>
<td>11,34</td>
</tr>
<tr>
<td>Essigsäure*</td>
<td>10,08</td>
</tr>
<tr>
<td>Propansäure</td>
<td>1,26</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>18,10</td>
</tr>
<tr>
<td>Hydroxyacetaldehyd*</td>
<td>14,91</td>
</tr>
<tr>
<td>3-Hydroxypropanal*</td>
<td>3,19</td>
</tr>
<tr>
<td>Aromaten</td>
<td>0,14</td>
</tr>
<tr>
<td>Hydrochinon*</td>
<td>0,07</td>
</tr>
<tr>
<td>Methylbenzoldiol*</td>
<td>0,07</td>
</tr>
<tr>
<td>Furane</td>
<td>4,41</td>
</tr>
<tr>
<td>2,5-Dimethoxy-tetrahydrofuran (cis)*</td>
<td>0,44</td>
</tr>
<tr>
<td>2,5-Dimethoxy-tetrahydrofuran (trans)*</td>
<td>1,90</td>
</tr>
<tr>
<td>Dihydro-methyl-furanon*</td>
<td>0,27</td>
</tr>
<tr>
<td>γ-Butyrolacton*</td>
<td>0,31</td>
</tr>
<tr>
<td>(5H)-Furan-2-on*</td>
<td>0,68</td>
</tr>
<tr>
<td>5-Methyl-(5H)-furan-2-one*</td>
<td>0,14</td>
</tr>
<tr>
<td>3-Methyl-(5H)-Furan-2-one*</td>
<td>0,23</td>
</tr>
<tr>
<td>5-Hydroxymethyl-2-furaldehyd*</td>
<td>0,43</td>
</tr>
<tr>
<td>Guajacole</td>
<td>2,14</td>
</tr>
<tr>
<td>Guajacol*</td>
<td>0,31</td>
</tr>
<tr>
<td>4-Methylguajacol*</td>
<td>0,34</td>
</tr>
<tr>
<td>4-Vinylguajacol*</td>
<td>0,07</td>
</tr>
<tr>
<td>Isoeugenol (cis)*</td>
<td>0,03</td>
</tr>
<tr>
<td>Isoeugenol (trans)*</td>
<td>0,11</td>
</tr>
<tr>
<td>Vanillin*</td>
<td>0,32</td>
</tr>
<tr>
<td>Homovanillin*</td>
<td>0,12</td>
</tr>
<tr>
<td>Acetoguajacone*</td>
<td>0,10</td>
</tr>
<tr>
<td>Guajacylaceton*</td>
<td>0,06</td>
</tr>
<tr>
<td>Isomer von Coniferylalkohol*</td>
<td>0,22</td>
</tr>
<tr>
<td>Dihydroconiferylalkohol*</td>
<td>0,22</td>
</tr>
<tr>
<td>Coniferylaldehyd*</td>
<td>0,26</td>
</tr>
<tr>
<td>Ketone</td>
<td>18,85</td>
</tr>
<tr>
<td>Hydroxypropanon*</td>
<td>16,11</td>
</tr>
<tr>
<td>3-Hydroxy-2-butanon*</td>
<td>0,34</td>
</tr>
<tr>
<td>1-Hydroxy-2-butanon*</td>
<td>0,73</td>
</tr>
<tr>
<td>1-Acetyloxypropan-2-on*</td>
<td>0,60</td>
</tr>
<tr>
<td>2-Hydroxy-2-cyclopenten-1-on*</td>
<td>0,50</td>
</tr>
<tr>
<td>3-Methyl-2-cyclopenten-1-on*</td>
<td>0,06</td>
</tr>
<tr>
<td>2-Hydroxy-3-methyl-2-cyclopenten-3-on*</td>
<td>0,51</td>
</tr>
</tbody>
</table>
Tabelle 58: Zusammensetzung der Ölfraktion der Altholzpyrolyse (detailliert, organischer Anteil) Teil 2

<table>
<thead>
<tr>
<th>Komponente</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenole</td>
<td>0,61</td>
</tr>
<tr>
<td>Phenol*</td>
<td>0,25</td>
</tr>
<tr>
<td>o-Cresol*</td>
<td>0,12</td>
</tr>
<tr>
<td>m-Cresol*</td>
<td>0,07</td>
</tr>
<tr>
<td>p-Cresol*</td>
<td>0,06</td>
</tr>
<tr>
<td>2,4- und 2,5-Dimethylphenol*</td>
<td>0,10</td>
</tr>
<tr>
<td>3- und 4-Ethylphenol*</td>
<td>0,01</td>
</tr>
<tr>
<td>Pyrane</td>
<td>0,14</td>
</tr>
<tr>
<td>3-Hydroxy-5,6-dihydro-(4H)-pyran-4-on*</td>
<td>0,14</td>
</tr>
<tr>
<td>Zucker</td>
<td>14,11</td>
</tr>
<tr>
<td>Anhydrozucker*</td>
<td>0,17</td>
</tr>
<tr>
<td>1,4:3,6-Dianhydro-α-D-glucopyranose*</td>
<td>0,30</td>
</tr>
<tr>
<td>1,5-Anhydro-Arabinofturanose*</td>
<td>0,26</td>
</tr>
<tr>
<td>1,5-Anhydro-β-D-xylofturanose*</td>
<td>0,42</td>
</tr>
<tr>
<td>Lävoglukosan*</td>
<td>12,53</td>
</tr>
<tr>
<td>weiterer Anhydrozucker*</td>
<td>0,43</td>
</tr>
<tr>
<td>Summe der quantifizierten organischen Verbindungen</td>
<td>69,70</td>
</tr>
</tbody>
</table>

*quantifiziert mit GC/FID, Responzfaktor durch Referenzsubstanz ermittelt

Tabelle 59: Elementaranalysen von Altholz und Altholz-Pyrolyse-Öl

<table>
<thead>
<tr>
<th>BAV-Altholz</th>
<th>Altholz-Pyrolyse-Öl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlenstoff</td>
<td>C</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>H</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>N</td>
</tr>
<tr>
<td>Sauerstoff*</td>
<td>O</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[%]</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>48,96</td>
<td>49,39</td>
</tr>
<tr>
<td>6,16</td>
<td>8,53</td>
</tr>
<tr>
<td>0,09</td>
<td>0,33</td>
</tr>
<tr>
<td>44,79</td>
<td>41,75</td>
</tr>
</tbody>
</table>

*Berechnet als Differenz

Der Heizwert des Altholz-Pyrolyse-Öls ist mit 21,48 MJ/kg nur um 4,11 MJ/kg größer als der ursprüngliche Heizwert des BAV-Altholzes (17,37 MJ/kg). Im Vergleich mit dem
Energiedichtegewinn von knapp 100% bei der Konversion von Buchenholz zu Buchenholz-
Pyrolyse-Öl ist der Gewinn bei Altholz (24%) deutlich geringer.

Die mit in den Reaktor eingetragenen anorganischen Feststoffe (Metallteilchen, Aluminiumbeschichtungen usw.) mit einem Massenanteil von 3,75m% am Eintragsgut scheinen die Abscheidungsaggregate (Zyklole/Wäscher/Kühler) nicht negativ zu beeinflussen. Sie finden sich zum Teil in der abgeschiedenen Kohle wieder, der größte Teil verbleibt jedoch im Wirbelbett. Es ist also damit zu rechnen, dass das Wirbelbett nach einer noch unbestimmten Nutzungsdauer ausgetauscht werden muss.

Tabelle 60: ICP-Messungen des TP49- und TP44-Öls

<table>
<thead>
<tr>
<th>Element</th>
<th>Formelzeichen</th>
<th>TP49-Öl [mg/l]</th>
<th>TP44-Öl [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silber</td>
<td>Ag</td>
<td>0,0560</td>
<td>0,0860</td>
</tr>
<tr>
<td>Silber</td>
<td>Ag</td>
<td>0,1790</td>
<td>0,2330</td>
</tr>
<tr>
<td>Aluminium</td>
<td>Al</td>
<td>57,7000</td>
<td>1,7000</td>
</tr>
<tr>
<td>Bor</td>
<td>B</td>
<td>0,1510</td>
<td>0,0700</td>
</tr>
<tr>
<td>Barium</td>
<td>Ba</td>
<td>2,5000</td>
<td>0,3400</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca</td>
<td>123,5000</td>
<td>119,2000</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Cd</td>
<td>0,0256</td>
<td>0,0310</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Co</td>
<td>0,1910</td>
<td>0,5500</td>
</tr>
<tr>
<td>Chrom</td>
<td>Cr</td>
<td>0,4000</td>
<td>0,2827</td>
</tr>
<tr>
<td>Kupfer</td>
<td>Cu</td>
<td>0,4000</td>
<td>0,0530</td>
</tr>
<tr>
<td>Eisen</td>
<td>Fe</td>
<td>6,3000</td>
<td>0,1000</td>
</tr>
<tr>
<td>Gallium</td>
<td>Ga</td>
<td>0,6500</td>
<td>1,1697</td>
</tr>
<tr>
<td>Indium</td>
<td>In</td>
<td>0,8600</td>
<td>0,1300</td>
</tr>
<tr>
<td>Kalium</td>
<td>K</td>
<td>2,8000</td>
<td>15,9000</td>
</tr>
<tr>
<td>Lithium</td>
<td>Li</td>
<td>0,0969</td>
<td>0,0646</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
<td>7,7000</td>
<td>9,4000</td>
</tr>
<tr>
<td>Mangan</td>
<td>Mn</td>
<td>1,8000</td>
<td>1,2000</td>
</tr>
<tr>
<td>Natrium</td>
<td>Na</td>
<td>1,6000</td>
<td>0,4200</td>
</tr>
<tr>
<td>Nickel</td>
<td>Ni</td>
<td>0,8290</td>
<td>1,2374</td>
</tr>
<tr>
<td>Phosphor</td>
<td>P</td>
<td>7,6000</td>
<td>2,0000</td>
</tr>
<tr>
<td>Blei</td>
<td>Pb</td>
<td>2,0000</td>
<td>0,9455</td>
</tr>
<tr>
<td>Schwefel</td>
<td>S</td>
<td>4,1000</td>
<td>7,5000</td>
</tr>
<tr>
<td>Strontium</td>
<td>Sr</td>
<td>0,3400</td>
<td>0,1000</td>
</tr>
<tr>
<td>Zink</td>
<td>Zn</td>
<td>29,4000</td>
<td>0,0400</td>
</tr>
</tbody>
</table>

Alle Pyrolyseprodukte wurden mit den im Methoden-Teil beschriebenen physikalisch-
chemischen Methoden analysiert. Zusätzlich wurden von Herrn Schwarz an der BFH Inductiv-Coupled-Plasma Messungen (ICP) zur Bestimmung des Schwermetallgehaltes des
Pyrolyse-Öls durchgeführt. In Tabelle 60 sind die Ergebnisse der ICP-Messungen des Altholz-Pyrolyse-Öls (TP49) und die des Buchenholz-Pyrolyse-Öls (TP44) vergleichend zusammengestellt. Die meisten Metalle im Altholz-Pyrolyse-Öls sind lediglich um den Faktor 0,3-7 höher als das entsprechende Metall im Referenz-Öl. Lediglich die Metalle Aluminium (Faktor 34), Eisen (Faktor 63) und Zink (Faktor 735) zeigen erhöhte Werte im Vergleich mit Buchenholz-Pyrolyse-Öl. Die eben genannten Metalle sind im Vergleich zu Cr, Pb, Ba, Cd oder auch Kupfer ökotoxikologisch deutlich unbedenklicher. Man kann also feststellen, dass Pyrolyse-Öl aus Altholz kein größeres Gefahrenpotential besitzt als Pyrolyse-Öl aus naturbelassenem Laubholz.

12.3 Fraktionierte Kondensation von Altholz-Pyrolyse-Öl

Als Folgeversuch zu der Pyrolyse von Altholz mit Kondensation des Pyrolyse-Öls durch den Strahlwäscher (TP49) sollte die fraktionierte Kondensation der flüchtigen Pyrolyse-Produkte mit verschiedenen Wärmetauschern (TP50) erfolgen. Es soll untersucht werden, ob sich wertvolle Pyrolyse-Produkte wie Lävoglukosan, das zu 14,32m% im org. Anteil des Öls enthalten ist oder Phenole (zur Phenol-Formaldehyd-Harz Herstellung) in einer oder mehreren Fraktionen aufkonzentrieren lassen.

Die erhaltenen Fraktionen: Kühler 1-Fraktion, Kühler 2-Fraktion, Kühler 3-Fraktion und die Elektrofilter-Fraktion waren jedoch nicht stabil. Sie trennen sich nach Erhalt in eine hochviskose- und eine wässrige Phase auf. Die anschließende GC/MS- und GC/FID-Analyse zeigt keine signifikanten Anreicherungen bestimmter Komponenten in den Einzelfraktionen. Das in mehrere Fraktionen zerfallene Öl lässt sich nicht mehr ohne Lösungsvermittler vereinigen und ist daher nicht mehr verwendbar und kommerziell wertlos.

Auf eine Darstellung der einzelnen Analysenergebnisse der verschiedenen Fraktionen soll hier aus Platzgründen verzichtet werden.

12.4 Abgas-Emissionsmessungen nach 17. BImSchV

Für eine Zulassung einer Pyrolyseanlage für die Verwertung von Altholz ist die 17.BImSchV verbindlich. Beim Betrieb einer Pyrolyseanlage für Altholz ist mit Emissionen von Abgas aus der Verbrennung von Pyrolyse-Gas zu rechnen, daher wurden im Rahmen des vorgestellten Versuches TP49 Abgas-Emissionsmessungen unter Beteiligung eines dafür zertifizierten
Umwelt-Labors durchgeführt, der ERGO Forschungsgesellschaft mbH, anerkannte Messstelle nach §§ 26, 28 BImSchG, 2. BImSchV, §§ 26, 28 der 13. BImSchV, § 10 der 17. BImSchV, Nr. 3.2 TA Luft.

12.4.1 Aufgabenstellung

Untersuchung der Konzentration von Kohlenmonoxid, Gesamtstaub, Gesamtkohlenstoff, Chlorwasserstoff, Fluorwasserstoff, Schwefeloxiden, Stickstoffoxiden, Metallen und Dioxinen / Furanen im Abgas einer Pyrolyse-Versuchsanlage (während der Pyrolyse von Altholz, Versuch TP49).

12.4.2 Zusammenfassung der Messergebnisse

Die ERGO Forschungsgesellschaft mbH wurde beauftragt, Emissionsmessungen im Abgas einer Pyrolyse-Versuchsanlage durchzuführen.

Tabelle 61: Messwerte und Begrenzung gemäß 17. BImSchV

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Messwerte (mg/m³)</th>
<th>Begrenzung gemäß 17. BImSchV</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlenmonoxid</td>
<td>> 1000</td>
<td>100</td>
<td>[mg/m³]</td>
</tr>
<tr>
<td>Gesamtstaub</td>
<td>1,9</td>
<td>30</td>
<td>[mg/m³]</td>
</tr>
<tr>
<td>organisiche Verbindungen</td>
<td>> 10000</td>
<td>20</td>
<td>[mg/m³]</td>
</tr>
<tr>
<td>Chlorwasserstoff</td>
<td>5,8</td>
<td>60</td>
<td>[mg/m³]</td>
</tr>
<tr>
<td>Fluorwasserstoff</td>
<td>< 0,5</td>
<td>4</td>
<td>[mg/m³]</td>
</tr>
<tr>
<td>Schwefeloxide</td>
<td>0,02</td>
<td>0,20</td>
<td>[g/m³]</td>
</tr>
<tr>
<td>Stickstoffoxide</td>
<td>0,257</td>
<td>0,40</td>
<td>[g/m³]</td>
</tr>
<tr>
<td>Summe Cd und Tl</td>
<td>0,0009</td>
<td>0,05</td>
<td>[mg/m³]</td>
</tr>
<tr>
<td>Hg</td>
<td>0,0004</td>
<td>0,05</td>
<td>[mg/m³]</td>
</tr>
<tr>
<td>Summe Sh, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn</td>
<td>0,276</td>
<td>0,50</td>
<td>[mg/m³]</td>
</tr>
<tr>
<td>Dioxine / Furane</td>
<td>0,013</td>
<td>0,10</td>
<td>[ng/m³ TE]</td>
</tr>
</tbody>
</table>

Die o.g. Grenzwerte beziehen sich auf einen Zeitraum von einer 1/2 Stunde bzw. bei den Metallen und Dioxinen / Furanen auf die jeweilige Probenahmezeit (entsprechend 17. BImSchV).

Die gemessenen Konzentrationen für die Parameter Gesamtstaub, Chlorwasserstoff, Fluorwasserstoff, Schwefeloxide, Stickstoffoxide, Metalle und Dioxine / Furanen unterschreiten die Grenzwerte der 17. BImSchV.

Die relativ hohe Wert für den Summenwert der Metalle (ca. 50% des Grenzwertes gemäß 17. BImSchV) ergibt sich durch die Komponenten Kupfer (109 ng/m³), Mangan (115 ng/m³) und Nickel. (27 pg/m³). Es ist wahrscheinlich, dass die erhöhten Werte von Kupfer und Nickel durch die gasführenden Teile der Pyrolyseanlage bzw. des Abgasrohres hervorgerufen werden.

Die deutliche Überschreitung der Komponenten Kohlenmonoxid und Gesamtkohlenstoff ist primär nicht auf den zu verbrennenden Stoff (Pyrolysegas) zurückzuführen, sondern auf die nicht optimale Verbrennung im Bunsenbrenner (simulierte Nachverbrennung). Bedingt durch die unzureichende Luftzufuhr (O₂ im Abgas deutlich unter 2 Vol.%) und schlechte Vermischung der Gase mit Luft ergab sich eine unvollständige Verbrennung mit den gemessenen hohen Emissionen (die Verbrennung von Erdgas ohne Pyrolysegas ergab für
12.5 Schlussfolgerungen

Schlussfolgernd lassen sich folgende Aussagen formulieren:
- Das Eintragsgut ließ sich leicht mit der Fördereinrichtung der LWS-Holz in den Reaktor eintragen und umsetzen.
- Die Pyrolyse von Altholz führt zu relativ hohen Ausbeuten an flüssigem Produkt (48,06m%) mit einem hohen Anteil an kommerziell wertvollen Einzelkomponenten wie z.B. Lävoglukosan.
- Der berechnete untere Heizwert ließe sich entscheidend verbessern, wenn es gelänge, den Wassergehalt des Öls zu erniedrigen. Hierfür ist eine Vortrocknung des Eintragsgutes geeignet.

13 Pyrolyse von Faserwerkstoffen (HPL)

13.1 Einleitung

Die niederländische Firma Trespa-International B.V. hat zwei verschiedene Produkte für die Pyrolyse-Versuche zur Verfügung gestellt. Ein Standard-Produkt mit dem Handelsnamen Trespa Athlon für die Innen- und für die Außenanwendung und ein speziell flammengeschütztes Material mit dem Namen Trespa Meteon.

Trespa Athlon ist ein flächiges Plattenmaterial, das auf Basis thermohärtender Harze homogen mit Zellulosefasern verstärkt ist. Es wird unter hohen Druck und bei hohen Temperaturen hergestellt und mit einer integrierten, dekorativen Oberfläche auf der Basis von Melamin imprägniertem Papier versehen.

Trespa Meteon ist ein flächiges Plattenmaterial auf Basis thermohärtender Harze, das homogen mit Holzfasern verstärkt ist. Es wird unter hohen Druck und hohen Temperaturen hergestellt und mit einer integrierten, dekorativen Oberfläche auf der Basis pigmentierter Harze versehen, die mit Hilfe des "Electron Beam Curing"-Verfahrens gehärtet werden.

Trespa Meteon wird aus 70m% Weichholzfasern aus europäischen Wäldern, aus reaktionsträgen Bindemitteln (größtenteils aus Reststoffen) und mit Farbstoffen ohne Schwermetalle hergestellt. Wichtige Produkteigenschaften sind in Tabelle 62 zusammengestellt. [197]

<table>
<thead>
<tr>
<th>Eigenschaften</th>
<th>Werte</th>
<th>Einheit</th>
<th>Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physikalische Eigenschaften</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rohdichte</td>
<td>1400</td>
<td>[kg/m³]</td>
<td>ASTM-D 792-91</td>
</tr>
<tr>
<td>Thermische Eigenschaften</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wärmeleitzahl</td>
<td>0,30</td>
<td>[W/mK]</td>
<td>DIN 52612</td>
</tr>
<tr>
<td>max. Gebrauchstemp.</td>
<td>130</td>
<td>[°C]</td>
<td></td>
</tr>
</tbody>
</table>

Ob die Möglichkeit besteht, Phenole aus Pyrolyse-Ölen als Ersatz von synthetischen Phenolen für die Herstellung von Phenol-Formaldehydharz-Klebstoffen zu verwenden, wird von vielen
Arbeitsgruppen untersucht. [198] [199] Details der vorhandenen Literatur sollen hier nicht diskutiert werden.

Die Gruppe um ROY in Kanada untersucht seit längerem, ob die durch Pyrolyse von Nadelholzrinden gewonnenen Phenol-haltigen Pyrolyse-Öle als Substituent für synthetisch hergestellte Phenol-Formaldehydharz-Klebstoffe geeignet sind. ROY arbeitet mit dem im Allgemeinen Teil dieser Arbeit vorgestellten Vortex-Reaktor. [200]

ROY et al. konnten Ausbeuten von 12-21m% (bez. auf feuchtes Eintragsgut) phenolische Anteile erzielen. Dieses an Phenolen reiche Öl wurde ohne weitere Vorbehandlung in verschiedenen Klebstoffrezepturen eingesetzt. Mit diesen Klebstoffen wurden OSB-Platten hergestellt. Es konnten 40m% der üblichen Phenolmenge und 24-30m% der Formaldehyde durch Pyrolyse-Öl ersetzt werden. [201]

13.2 Ergebnisse und Diskussion

Die für die Pyrolyse wichtigen Spezifikationen der Eintragsgüter sind in Tabelle 63 und in Abbildung 44 dargestellt. Zu berücksichtigen ist hierbei, dass in der Elementaranalyse (CHN) Sauerstoff als Differenz zu 100m% berechnet ist und dieser Wert auch in die Berechnung des Heizwertes eingeht. Da im Eintragsgut jedoch 3,5m% (Trespa Athlon) und 5,83m% (Trespa Meteon) anorganische Feststoffe enthalten sind, wird die Elementaranalyse der tatsächlichen Zusammensetzung nicht ganz gerecht. Der Sauerstoffgehalt wird etwas niedriger sein und der Heizwert damit etwas höher als dargestellt.
Tabelle 63: Eigenschaften der Eintragsgüter

<table>
<thead>
<tr>
<th>Eintragsgut</th>
<th>Versuchsnummer</th>
<th>Trespa Athlon</th>
<th>Trespa Meteon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trespa Athlon</td>
<td>TP48/TP50</td>
<td>1-3</td>
<td>1-3</td>
</tr>
<tr>
<td>Trespa Meteon</td>
<td>TP52</td>
<td>1-3</td>
<td>1-3</td>
</tr>
<tr>
<td>Korngröße [mm]</td>
<td>2,35</td>
<td>5,83</td>
<td></td>
</tr>
<tr>
<td>Glührückstand atro [m%]</td>
<td>5,67</td>
<td>5,73</td>
<td></td>
</tr>
<tr>
<td>Elementaranalyse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C [m%]</td>
<td>50,70</td>
<td>48,80</td>
<td></td>
</tr>
<tr>
<td>H [m%]</td>
<td>6,14</td>
<td>6,11</td>
<td></td>
</tr>
<tr>
<td>N [m%]</td>
<td>2,49</td>
<td>1,18</td>
<td></td>
</tr>
<tr>
<td>O* [m%]</td>
<td>40,67</td>
<td>43,91</td>
<td></td>
</tr>
<tr>
<td>Heizwert [MJ/kg]</td>
<td>18,67</td>
<td>17,40</td>
<td></td>
</tr>
</tbody>
</table>

* Differenz zu 100%

Abbildung 44: Zusammensetzung des Eintragsgutes Trespa-Athlon

Abbildung 45: Zusammensetzung des Eintragsgutes Trespa-Meteon

Für die Diskussion der Ergebnisse der HPL-Pyrolyse steht der Phenolanteil des Öls im Vordergrund. Auf eine detaillierte Darstellung und Diskussion der organischen Komponenten, die nicht den Phenolverbindungen zugeschrieben werden, wird hier verzichtet. Zunächst wird der Versuch TP48 durchgeführt, um festzustellen, ob das Verfahren geeignet

Tabelle 64: Versuchsparameter von TP48, TP 50 und TP52

<table>
<thead>
<tr>
<th>Versuchsbezeichnung</th>
<th>[-]</th>
<th>TP 48</th>
<th>TP 50</th>
<th>TP 52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktor-Temperatur</td>
<td>[°C]</td>
<td>468</td>
<td>454</td>
<td>465</td>
</tr>
<tr>
<td>Reaktor-Temperatur</td>
<td>[K]</td>
<td>741</td>
<td>727</td>
<td>727</td>
</tr>
<tr>
<td>Eintragsgut</td>
<td>[-]</td>
<td>Trespa Athlon</td>
<td>Trespa Athlon</td>
<td>Trespa Meteon</td>
</tr>
<tr>
<td>Wirbelgut</td>
<td>[-]</td>
<td>Quarzsand</td>
<td>Quarzsand</td>
<td>Quarzsand</td>
</tr>
<tr>
<td>Korngröße Wirbelgut</td>
<td>[mm]</td>
<td>0,5-0,6</td>
<td>0,5-0,6</td>
<td>0,5-0,6</td>
</tr>
<tr>
<td>Dichte des Wirbelgutes</td>
<td>[kg/m³]</td>
<td>2530</td>
<td>2530</td>
<td>2530</td>
</tr>
<tr>
<td>Volumen der Wirbelschicht</td>
<td>[m³]</td>
<td>0,0032</td>
<td>0,0032</td>
<td>0,0032</td>
</tr>
<tr>
<td>Schüttichte des Wirbelgutes</td>
<td>[kg/m³]</td>
<td>1623</td>
<td>1623</td>
<td>1623</td>
</tr>
<tr>
<td>Reaktorvolumen</td>
<td>[m³]</td>
<td>0,014</td>
<td>0,014</td>
<td>0,014</td>
</tr>
<tr>
<td>freies Reaktorvolumen</td>
<td>[m³]</td>
<td>0,0108</td>
<td>0,0108</td>
<td>0,0108</td>
</tr>
<tr>
<td>Versuchsdauer</td>
<td>[min]</td>
<td>117</td>
<td>157</td>
<td>133</td>
</tr>
<tr>
<td>Durchsatz</td>
<td>[g/h]</td>
<td>4176</td>
<td>3822</td>
<td>4147</td>
</tr>
<tr>
<td>Wirbelgastrom (kalt)</td>
<td>[m³/h]</td>
<td>5,98</td>
<td>8,45</td>
<td>7,43</td>
</tr>
<tr>
<td>Wirbelgastrom (heiß)</td>
<td>[m³/h]</td>
<td>14,56</td>
<td>20,88</td>
<td>18,37</td>
</tr>
<tr>
<td>Verweilzeit im Reaktor</td>
<td>[s]</td>
<td>2,67</td>
<td>1,86</td>
<td>2,12</td>
</tr>
<tr>
<td>Einwaagen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eintragsgut</td>
<td>[g]</td>
<td>8124</td>
<td>10000</td>
<td>9192</td>
</tr>
<tr>
<td>Eintragsgut atro</td>
<td>[g]</td>
<td>7663</td>
<td>9433</td>
<td>8666</td>
</tr>
<tr>
<td>org. Eintrag</td>
<td>[g]</td>
<td>7049</td>
<td>8676</td>
<td>7664</td>
</tr>
<tr>
<td>org. Eintrag</td>
<td>[m%]</td>
<td>91,98</td>
<td>91,98</td>
<td>88,44</td>
</tr>
<tr>
<td>Wirbelgut</td>
<td>[g]</td>
<td>5200</td>
<td>5500</td>
<td>5500</td>
</tr>
<tr>
<td>Summe Einwaagen</td>
<td>[g]</td>
<td>13324</td>
<td>15500</td>
<td>14692</td>
</tr>
</tbody>
</table>

Tabelle 65: Massenbilanzen der HPL-Pyrolysen (atro)

<table>
<thead>
<tr>
<th>Auswaagen Flüssigkeiten</th>
<th>TP48</th>
<th>TP50</th>
<th>TP52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolyse-Öl*</td>
<td>[g]</td>
<td>3544,20</td>
<td>4711,60</td>
</tr>
<tr>
<td>Pyrolyse-Öl atro</td>
<td>[g]</td>
<td>3083,58</td>
<td>4144,60</td>
</tr>
<tr>
<td>Wasser im Öl</td>
<td>[g]</td>
<td>960,82</td>
<td>2262,92</td>
</tr>
<tr>
<td>Wassergehalt Öl</td>
<td>[m%]</td>
<td>39,39</td>
<td>49,49</td>
</tr>
<tr>
<td>Reaktionswasser</td>
<td>[m%]</td>
<td>23,34</td>
<td>35,99</td>
</tr>
<tr>
<td>Glührückstand Öl</td>
<td>[m%]</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Organischer Anteil am Öl</td>
<td>[g]</td>
<td>2512,84</td>
<td>2443,97</td>
</tr>
<tr>
<td>Organischer Anteil am Öl</td>
<td>[m%]</td>
<td>63,56</td>
<td>51,87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auswaagen Feststoffe</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktorrückstand</td>
<td>[g]</td>
<td>4745,90</td>
<td>3316,80</td>
</tr>
<tr>
<td>Überlauffonie</td>
<td>[g]</td>
<td>2819,80</td>
<td>5508,70</td>
</tr>
<tr>
<td>Zyklon 1 Rückstand</td>
<td>[g]</td>
<td>172,90</td>
<td>58,30</td>
</tr>
<tr>
<td>Zyklon 2 Rückstand</td>
<td>[g]</td>
<td>27,60</td>
<td>0,00</td>
</tr>
<tr>
<td>Rest aus Reinigung</td>
<td>[g]</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Summe Feststoffe ohne Sand</td>
<td>[g]</td>
<td>2566,20</td>
<td>3383,80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auswaage Gas**</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[g]</td>
<td>2013,40</td>
<td>1904,60</td>
<td>929,50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mittlere Gasdichte</th>
<th>[kg/m³]</th>
<th>3,64</th>
<th>1,38</th>
<th>0,89</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolyse-Gas (Überschuss)</td>
<td>[m³]</td>
<td>1,15</td>
<td>1,38</td>
<td>16,47</td>
</tr>
<tr>
<td>Pyrolyse-Gas (Überschuss)</td>
<td>[l]</td>
<td>1148,30</td>
<td>1376,00</td>
<td>16467,00</td>
</tr>
</tbody>
</table>

* Summe aller Fraktionen
** Differenz zu 100% Bilanzschluss

Abbildung 46: Massenbilanzen der HPL-Pyrolysen (atro)

Tabelle 66: Zusammensetzung der Gasfraktionen der HPL-Pyrolysen

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Komponente</th>
<th>Formel</th>
<th>[m%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-Gase</td>
<td>Kohlenmonoxid</td>
<td>CO</td>
<td>32,11</td>
</tr>
<tr>
<td></td>
<td>Kohlendioxid</td>
<td>CO₂</td>
<td>53,63</td>
</tr>
<tr>
<td></td>
<td>Methan</td>
<td>CH₄</td>
<td>8,00</td>
</tr>
<tr>
<td>C2-Gase</td>
<td>Ethan</td>
<td>C₂H₆</td>
<td>1,64</td>
</tr>
<tr>
<td></td>
<td>Ethen</td>
<td>C₂H₄</td>
<td>0,60</td>
</tr>
<tr>
<td></td>
<td>Ethin</td>
<td>C₂H₂</td>
<td>0,55</td>
</tr>
<tr>
<td>C3-Gase</td>
<td>Propan</td>
<td>C₃H₈</td>
<td>0,50</td>
</tr>
<tr>
<td></td>
<td>Propen</td>
<td>C₃H₆</td>
<td><0,01</td>
</tr>
<tr>
<td>C4-Gase</td>
<td>n-Butan</td>
<td>C₄H₁₀</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>iso-Butan</td>
<td>C₄H₁₀</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>cis-Buten</td>
<td>C₄H₈</td>
<td>0,36</td>
</tr>
<tr>
<td></td>
<td>trans-Buten</td>
<td>C₄H₈</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>iso-Buten</td>
<td>C₄H₈</td>
<td>0,05</td>
</tr>
<tr>
<td>Andere</td>
<td>Wasserstoff</td>
<td>H₂</td>
<td>1,33</td>
</tr>
<tr>
<td></td>
<td>Sauerstoff*</td>
<td>O₂</td>
<td>0,28</td>
</tr>
<tr>
<td></td>
<td>Stickstoff*</td>
<td>N₂</td>
<td>0,80</td>
</tr>
<tr>
<td>Summe</td>
<td>[%]</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Rückständig

Das bei der Pyrolyse entstehende Öl ist in Tabelle 67 Zusammengefasst. Im Rahmen der in der Einleitung angesprochenen Fragestellung zur HPL-Versuchsreihe soll hier auf eine Diskussion der einzelnen Inhaltsstoffe verzichtet werden. Von besonderem Interesse ist jedoch die phenolische Fraktion der Pyrolyse-Öle.
Tabelle 67: Zusammensetzung der Pyrolyse-Ölfraktionen TP48 (org. Anteil)

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säuren</td>
<td>1,57</td>
</tr>
<tr>
<td>Alkohole</td>
<td>0,25</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>0,27</td>
</tr>
<tr>
<td>Furane</td>
<td>2,32</td>
</tr>
<tr>
<td>Guajacole</td>
<td>1,62</td>
</tr>
<tr>
<td>Ketone</td>
<td>3,84</td>
</tr>
<tr>
<td>Phenole</td>
<td>23,30</td>
</tr>
<tr>
<td>Pyrane</td>
<td>0,02</td>
</tr>
<tr>
<td>Zucker</td>
<td>0,57</td>
</tr>
<tr>
<td>Syringole</td>
<td>1,63</td>
</tr>
<tr>
<td>Summe aller quantifizierten org. Verbindungen</td>
<td>35,39</td>
</tr>
</tbody>
</table>

Im Vergleich zum Buchenholz-Referenzversuch ist der Gesamtanteil an Phenolen wie erwartet höher. Im organischen Anteil von Buchenholz-Pyrolyse-Öl finden sich nur 0,37m% Phenole, während das Öl aus Versuch TP48 einen 63-fach höheren Wert (23,30m%) zeigt. Bezogen auf trockenes Eintragsgut entspricht dies einem organischen Massenanteil von 9,4m%. Die eingesetzten Faserplatten bestehen zu rund 30m% aus Phenolformaldehydharzklebern. Es lässt sich also feststellen, dass sich etwa ein Drittel der bei der Herstellung der Werkstoffe eingesetzten Phenole durch die Pyrolyse zurückgewinnen lassen. Die restlichen zwei drittel werden zu kleineren kondensierbaren Molekülen und zu nichtkondensierbaren Permanent-Gasen thermisch abgebaut. Der Grundstoff zur Klebstoffherstellung Phenol ist im Pyrolyse-Öl des HPL-Werkstoffs zu 10m% enthalten und macht demnach die Hälfte aller quantifizierten Phenolderivate aus. Phenolische Einheiten, die nicht durch den Abbau von Harzen entstanden sein können, wie z.B. Syringol- und Guajakolderivate wurden nicht in die Bilanzierung der Phenole mit einbezogen, sie machen in der Summe 3,25m% des organischen Anteils des Pyrolyse-Öls aus.

Der Vergleich der Spalten zeigt deutlich, dass sich phenolische Bestandteile nicht signifikant, d.h. deutlich über 50% in den Kühlen 1-3 (verschiedene Kondensationstemperaturen) abscheiden ließen. Zwar sind im Elektrofilter 40% der Phenole abgeschieden worden, aber es sind dort Anteile aller Phenolderivate anzutreffen. Eine genaue Trennung beispielsweise nach Siedebereichen war nicht möglich.

Dieses Ergebnis bezüglich der fraktionierten Kondensation bestätigt auch der weiterführende Versuch TP52 mit dem Eintragsgut Trespa Meteon., auch hier war eine Anreicherung phenolischer Bestandteile nicht möglich.

Tabelle 68: Zusammensetzung des phenolischen Anteils der Pyrolyse-Ölfraktionen von TP48 und TP50 (org. Anteil)

<table>
<thead>
<tr>
<th>Versuchsbezeichnung</th>
<th>TP48</th>
<th>TP50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraktion</td>
<td>-</td>
<td>K1</td>
</tr>
<tr>
<td>Phase</td>
<td>1°</td>
<td>1°</td>
</tr>
<tr>
<td>Komponente</td>
<td>m%</td>
<td>m%</td>
</tr>
<tr>
<td>Phenol*</td>
<td>10,40</td>
<td>0,452</td>
</tr>
<tr>
<td>o-Cresol*</td>
<td>7,84</td>
<td>0,423</td>
</tr>
<tr>
<td>2,6-Dimethylphenol*</td>
<td>0,092</td>
<td>0,258</td>
</tr>
<tr>
<td>m-Cresol*</td>
<td>4,20</td>
<td>-</td>
</tr>
<tr>
<td>p-Cresol*</td>
<td>0,04</td>
<td>0,211</td>
</tr>
<tr>
<td>2-Ethylphenol*</td>
<td>0,024</td>
<td>0,062</td>
</tr>
<tr>
<td>2,4- und 2,5-Dimethylphenol*</td>
<td>0,83</td>
<td>0,014</td>
</tr>
<tr>
<td>2,4,6-Trimethylphenol*</td>
<td>0,039</td>
<td>0,010</td>
</tr>
<tr>
<td>2,3,6-Trimethylphenol</td>
<td>0,046</td>
<td>0,011</td>
</tr>
<tr>
<td>3-Ethylphenol*</td>
<td>0,038</td>
<td>0,085</td>
</tr>
<tr>
<td>Ethylmethylphenol*</td>
<td>0,003</td>
<td>-</td>
</tr>
<tr>
<td>3-Ethylphenol*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Ethylphenol*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethylethylphenol*</td>
<td>0,033</td>
<td>0,080</td>
</tr>
<tr>
<td>4-Proplyphenol*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,4-Dimethylphenol*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methylproplyphenol</td>
<td>0,007</td>
<td>0,011</td>
</tr>
<tr>
<td>Propenylphenol</td>
<td>0,006</td>
<td>-</td>
</tr>
<tr>
<td>Methylpropenylphenol</td>
<td>0,014</td>
<td>-</td>
</tr>
<tr>
<td>Summe der Phenole pro Phase</td>
<td>23,30</td>
<td>1,402</td>
</tr>
<tr>
<td>Relativer Anteil [%]</td>
<td>100</td>
<td>7,136</td>
</tr>
<tr>
<td>Summe der Phenole aller Phasen</td>
<td>23,30</td>
<td>19,650</td>
</tr>
</tbody>
</table>

wässrige Phase
° hochviskose Phase
* quantifiziert mit GC-FID, Responzfaktor durch Referenzsubstanz ermittelt
Tabelle 69: Zusammensetzung des phenolischen Anteils der Pyrolyse-Ölfractionen von TP52 (org. Anteil)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Phase</th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>E-Fi.</th>
<th>K1</th>
<th>K2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[m%]</td>
<td>[m%]</td>
<td>[m%]</td>
<td>[m%]</td>
<td>[m%]</td>
<td>[m%]</td>
</tr>
<tr>
<td>Phenol*</td>
<td></td>
<td>0,311</td>
<td>0,253</td>
<td>0,118</td>
<td>1,228</td>
<td>0,954</td>
<td>0,160</td>
</tr>
<tr>
<td>o-Cresol*</td>
<td></td>
<td>0,234</td>
<td>0,217</td>
<td>0,048</td>
<td>0,932</td>
<td>0,398</td>
<td>0,060</td>
</tr>
<tr>
<td>2,6-Dimethylphenol*</td>
<td></td>
<td>0,047</td>
<td></td>
<td>-0,006</td>
<td>0,215</td>
<td>0,039</td>
<td>0,005</td>
</tr>
<tr>
<td>m-Cresol*</td>
<td></td>
<td>0,195</td>
<td>0,164</td>
<td>0,038</td>
<td>0,708</td>
<td>0,319</td>
<td>0,047</td>
</tr>
<tr>
<td>p-Cresol*</td>
<td></td>
<td>0,036</td>
<td>0,031</td>
<td>-</td>
<td>0,137</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-Ethylphenol*</td>
<td></td>
<td>0,005</td>
<td>0,005</td>
<td>-</td>
<td>0,022</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2,4- und 2,5-Dimethylphenol*</td>
<td></td>
<td>0,170</td>
<td>0,152</td>
<td>0,017</td>
<td>0,628</td>
<td>0,120</td>
<td>0,017</td>
</tr>
<tr>
<td>2,4,6-Trimethylphenol*</td>
<td></td>
<td>0,024</td>
<td>0,023</td>
<td>-</td>
<td>0,094</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2,3-Dimethylphenol*</td>
<td></td>
<td>0,006</td>
<td>0,006</td>
<td>-</td>
<td>0,025</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3-Ethylphenol*</td>
<td></td>
<td>0,007</td>
<td>0,006</td>
<td>-</td>
<td>0,024</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Ethylphenol*</td>
<td></td>
<td>0,002</td>
<td>0,002</td>
<td>-</td>
<td>0,006</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2,3,6-Trimethylphenol</td>
<td></td>
<td>0,003</td>
<td>0,004</td>
<td>-</td>
<td>0,018</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,4-Dimethylphenol*</td>
<td></td>
<td>0,005</td>
<td>0,004</td>
<td>-</td>
<td>0,020</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethylmethylphenol*</td>
<td></td>
<td>0,006</td>
<td>0,005</td>
<td>-</td>
<td>0,028</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2,3,5-Trimethylphenol</td>
<td></td>
<td>-</td>
<td>0,002</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Hydroxybenzaldehyd*</td>
<td></td>
<td>0,005</td>
<td>0,003</td>
<td>-</td>
<td>0,023</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Summe der Phenole pro Phase</td>
<td>1,056</td>
<td>0,877</td>
<td>0,228</td>
<td>4,110</td>
<td>1,830</td>
<td>0,289</td>
<td></td>
</tr>
<tr>
<td>Relative Anteil [%]</td>
<td>13</td>
<td>10</td>
<td>3</td>
<td>49</td>
<td>22</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Summe des Phenole aller Phasen</td>
<td>8,39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

wässrige Phase
° hochviskose Phase
* quantifiziert mit GC/FID, Resonanzfaktor durch Referenzsubstanz ermittelt

13.3 Schlussfolgerungen

Das Nebenprodukt Holzkohle kann (bei geringen anorganischen Anteilen), wie im Allgemeinen Teil dieser Arbeit angesprochen, zur Aktivkohle veredelt werden. Hier zeigte sich jedoch, dass die abgeschiedene Holzkohlefraktion zu 33,41 m% aus anorganischen Feststoffen besteht. Dies macht eine weitere Verwendung problematisch. Das Pyrolyse-Gas ist das Produkt mit geringem Wert, es kann als niederkaloriges Brenngas verwendet werden.

Schlussfolgernd lassen sich für Trespa-HPL-Werkstoffe als Eintragsgut für die Pyrolyse folgende Aussagen formulieren:
- Das Eintragsgut HPL läuft sich leicht mit der Förderung der LWS-Holz in den Reaktor eintragen.
Die Pyrolyse von HPL führt im Vergleich zum Referenzversuch zu moderaten Ausbeuten an flüssigem Produkt (40-42m%).

Eine fraktionierte Kondensation der Öle ist nicht sinnvoll, da sich einzelne Phenolderivate nicht signifikant in verschiedenen Kühlern abscheiden lassen. Auch eine Mischung aller phenolischen Komponenten konnte nicht in ausreichenden Mengen (> 50m%) in einem der drei verwendeten Kühler erhalten werden.

Durch die Verwendung des Strahlwäschers zur Kondensation konnte ein Öl mit 23,3m% Phenolderivaten erzeugt werden. Phenol selbst ist zu 10,4m% im organischen Anteil des Öls enthalten.

Verbessern ließe sich die Abscheidung der pyrolysierten Koks-Partikel aus dem Rektor durch die Verwendung einer zirkulierenden Wirbelschicht. Die Partikel könnten dann durch einen nachgeschalteten Wirbelschicht-Vergasungs-Reaktor energetisch verwertet werden und die benötigte Prozesswärme liefern.

14 Pyrolyse von Faserschlamm

14.1 Einleitung

Es soll untersucht werden, ob das Hamburger Wirbschichtverfahren geeignet ist, um aus dem anfallenden Abfallstoff Faserschlamm ein Pyrolyse-Öl in hinreichender Menge und Qualität zu erzeugen. Ein typischer Faserschlamm wurde hierfür von der Papierfabrik Enso-Stora in Hagen zur Verfügung gestellt.

Die Bilanz des Pyrolyseversuchs (TP43) und die Ergebnisse der jeweiligen Analysen sollen mit einer früheren Studie von YING zur Pyrolyse von kommunalen und papierindustriellem Klärschlamm verglichen werden. [204]

14.2 Ergebnisse und Diskussion

Die für die Pyrolyse wichtigen Spezifikationen des Eintragsgutes sind in Tabelle 70 dargestellt. Zu berücksichtigen ist hierbei, dass in der Elementaranalyse (CHN) Sauerstoff meist als Differenz zu 100m% berechnet wird und dieser Wert auch in die Berechnung des Heizwertes eingeht. Da im Eintragsgut jedoch 48,00% anorganische Feststoffe, welche als Glührückstand ermittelt wurden, enthalten sind, wird die Elementaranalyse der tatsächlichen Zusammensetzung nicht gerecht. Der Sauerstoffgehalt wird deutlich niedriger sein. Sauerstoff ist daher als Differenz zu 52,00m% berechnet und dieser Wert geht in die Berechnung des Heizwertes ein.
Die Versuchsparameter von TP43 sind in Tabelle 71 zusammengestellt. Das Eintragsgut wurde von der Firma Enso-Stora unbehandelt mit seinem ursprünglichen Feuchtegehalt zur Verfügung gestellt. Vor der Pyrolyse wurden die nötigen Kontingente getrocknet und eine Fraktion mit einer Korngröße von 1-3 mm herausgesiebt.

Tabelle 71: Versuchsparameter von TP43

<table>
<thead>
<tr>
<th>Versuchsbezeichnung</th>
<th>[-]</th>
<th>TP 43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktor-Temperatur [°C]</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td>Reaktor-Temperatur [K]</td>
<td>759</td>
<td></td>
</tr>
<tr>
<td>Eintragsgut</td>
<td>[-]</td>
<td>Faserschlamm</td>
</tr>
<tr>
<td>Wirbelgut</td>
<td>[-]</td>
<td>Quarzsand</td>
</tr>
<tr>
<td>Korngröße Wirbelgut [mm]</td>
<td>0,3-0,5</td>
<td></td>
</tr>
<tr>
<td>Dichte des Wirbelgutes [kg/m³]</td>
<td>2530</td>
<td></td>
</tr>
<tr>
<td>Volumen der Wirbelschicht [m³]</td>
<td>0,0032</td>
<td></td>
</tr>
<tr>
<td>Schüttdichte des Wirbelgutes [kg/m³]</td>
<td>1873</td>
<td></td>
</tr>
<tr>
<td>Reaktorvolumen [m³]</td>
<td>0,014</td>
<td></td>
</tr>
<tr>
<td>freies Reaktorvolumen [m³]</td>
<td>0,0108</td>
<td></td>
</tr>
<tr>
<td>Versuchsduauer [min]</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Durchsatz [g/h]</td>
<td>4580</td>
<td></td>
</tr>
<tr>
<td>Wirbelgasstrom (kalt) [m³/h]</td>
<td>4,97</td>
<td></td>
</tr>
<tr>
<td>Wirbelgasstrom (heiß) [m³/h]</td>
<td>12,28</td>
<td></td>
</tr>
<tr>
<td>Verweilzeit im Reaktor [s]</td>
<td>3,16</td>
<td></td>
</tr>
</tbody>
</table>

Einwaagen

<table>
<thead>
<tr>
<th>Eintragsgut</th>
<th>[g]</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eintragsgut atro</td>
<td>[g]</td>
<td>9906</td>
</tr>
<tr>
<td>org. Eintrag</td>
<td>[g]</td>
<td>5058</td>
</tr>
<tr>
<td>org. Eintrag [m%]</td>
<td>51,06</td>
<td></td>
</tr>
<tr>
<td>Wirbelgut</td>
<td>[g]</td>
<td>6000</td>
</tr>
<tr>
<td>Summe Einwaagen</td>
<td>[g]</td>
<td>16000</td>
</tr>
</tbody>
</table>
Tabelle 72: Massenbilanzen der Faserschlamm-Pyrolyse (atro)

<table>
<thead>
<tr>
<th>Auswaagen Flüssigkeiten</th>
<th>TP43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolyse-Öl*</td>
<td>[g]</td>
</tr>
<tr>
<td>Pyrolyse-Öl atro</td>
<td>[g]</td>
</tr>
<tr>
<td>Wasser im Öl</td>
<td>[g]</td>
</tr>
<tr>
<td>Wassergehalt Öl</td>
<td>[m%]</td>
</tr>
<tr>
<td>Reaktionswasser</td>
<td>[m%]</td>
</tr>
<tr>
<td>Glührückstand Öl</td>
<td>[m%]</td>
</tr>
<tr>
<td>Organischer Anteil am Öl</td>
<td>[g]</td>
</tr>
<tr>
<td>Organischer Anteil am Öl</td>
<td>[m%]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auswaagen Feststoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktorrückstand</td>
</tr>
<tr>
<td>Überlauftonne</td>
</tr>
<tr>
<td>Zyklon 1 Rückstand</td>
</tr>
<tr>
<td>Zyklon 2 Rückstand</td>
</tr>
<tr>
<td>Rest aus Reinigung</td>
</tr>
<tr>
<td>Summe Feststoffe ohne Sand</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auswaage Gas**</th>
</tr>
</thead>
<tbody>
<tr>
<td>[g] 3017,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mittlere Gasdichte</th>
</tr>
</thead>
<tbody>
<tr>
<td>[kg/m³] 3,64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pyrolyse-Gas (Überschuss)</th>
<th>[m³] 4,35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolyse-Gas (Überschuss)</td>
<td>[l] 693,00</td>
</tr>
</tbody>
</table>

* Summe aller Fraktionen

** Differenz zu 100% Bilanzschluss
Die Ausbeute an Pyrolyse-Öl ist deutlich geringer als beim Referenzversuch mit Buchenholz. Der deutlich höhere Anteil an anorganischen Feststoffen, der gemeinsam mit dem Pyrolyse-Koks abgeschieden wird bzw. im Reaktorrückstand verbleibt, erklärt sich durch den höheren Anteil an anorganischen Feststoffen im Eintragsgut. YING fand bei ihren Versuchen zur Pyrolyse von Papier-Faserschlamm bei 500°C (mittlere Reaktortemperatur) Massenanteile von 4,3m% Pyrolyse-Öl, 29m% Pyrolyse-Koks, 4,9m% Pyrolyse-Gas und 44,2m% sogenannten Reaktorrückstand, der sich aus Pyrolyse-Koks und dem anorganischen Feststoffanteil zusammensetzt. Ob der von YING dokumentierte Pyrolyse-Koks größere Anteile an anorganischen Feststoffen enthielt, ließ sich nicht mehr feststellen. Das von YING eingesetzte Fasermaterial stammte ebenfalls aus einer Papierfabrik und hatte eine ähnliche Zusammensetzung (5,7m% Feuchtigkeit, 42,4m% anorganische Feststoffe) wie das hier eingesetzte Material (0,96m% Feuchtigkeit, 48,0m% anorganische Feststoffe).

Das bei der Pyrolyse von Faserschlamm (TP43) entstehende Pyrolyse-Gas hat die in Tabelle 73 dargestellte Zusammensetzung und kann als niederkaloriges Brenngas thermisch verwertet.
werden. Das von YING charakterisierte Pyrolyse-Gas enthielt doppelt soviel Methan und Kohlenmonoxid sowie 22\% weniger Kohlendioxid.

Tabelle 73: Zusammensetzung der Gasfraktionen der Faserschlamm-Pyrolyse

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Komponente</th>
<th>Formel</th>
<th>[m%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-Gase</td>
<td>Kohlenmonoxid</td>
<td>CO</td>
<td>23,79</td>
</tr>
<tr>
<td></td>
<td>Kohlendioxid</td>
<td>CO₂</td>
<td>57,95</td>
</tr>
<tr>
<td></td>
<td>Methan</td>
<td>CH₄</td>
<td>4,58</td>
</tr>
<tr>
<td>C2-Gase</td>
<td>Ethan</td>
<td>C₂H₆</td>
<td>2,44</td>
</tr>
<tr>
<td></td>
<td>Ethen</td>
<td>C₂H₄</td>
<td>2,37</td>
</tr>
<tr>
<td></td>
<td>Ethin</td>
<td>C₂H₂</td>
<td>4,02</td>
</tr>
<tr>
<td>C3-Gase</td>
<td>Propan</td>
<td>C₃H₈</td>
<td>1,09</td>
</tr>
<tr>
<td></td>
<td>Propen</td>
<td>C₃H₆</td>
<td><0,01</td>
</tr>
<tr>
<td>C4-Gase</td>
<td>n-Butan</td>
<td>C₄H₁₀</td>
<td>0,26</td>
</tr>
<tr>
<td></td>
<td>iso-Butan</td>
<td>C₄H₁₀</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>cis-Buten</td>
<td>C₄H₈</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td>trans-Buten</td>
<td>C₄H₈</td>
<td>0,26</td>
</tr>
<tr>
<td></td>
<td>iso-Buten</td>
<td>C₄H₈</td>
<td>0,20</td>
</tr>
<tr>
<td>Andere</td>
<td>Wasserstoff*</td>
<td>H₂</td>
<td>0,91</td>
</tr>
<tr>
<td></td>
<td>Sauerstoff*</td>
<td>O₂</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td>Stickstoff*</td>
<td>N₂</td>
<td>1,43</td>
</tr>
</tbody>
</table>

*Rest aus Inertisierung

Das bei der Pyrolyse entstehende Öl hat die in Tabelle 74 dargestellte Zusammensetzung.
Tabelle 74: Zusammensetzung der Pyrolyse-Ölfraktionen TP43 (org. Anteil)

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>[% m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säuren</td>
<td>3,15</td>
</tr>
<tr>
<td>Alkohole</td>
<td>0,05</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>0,30</td>
</tr>
<tr>
<td>Furane</td>
<td>2,27</td>
</tr>
<tr>
<td>Guajacole</td>
<td>5,40</td>
</tr>
<tr>
<td>Ketone</td>
<td>2,18</td>
</tr>
<tr>
<td>Phenole</td>
<td>3,58</td>
</tr>
<tr>
<td>Pyrane</td>
<td>0,20</td>
</tr>
<tr>
<td>Zucker</td>
<td>1,01</td>
</tr>
<tr>
<td>Syringole</td>
<td>3,01</td>
</tr>
<tr>
<td>Summe aller quantifizierten org. Verbindungen</td>
<td>21,15</td>
</tr>
</tbody>
</table>

Soweit sich die Massenbilanz des Versuches TP43 und des Papierschlamm-Pyrolyse-Versuches von YING (bei 500°C) auch ähneln mögen, so unterschiedlich sind die Pyrolyse-Öle jedoch in ihrer detaillierten Zusammensetzung. Ein direkter Vergleich der Einzelkomponenten ist kaum möglich. Bezogen auf Pyrolyse-Öl inklusive eines Reaktionswasseranteils von 18,9m% fand YING 9,18m% BTX-Aromaten, 13m% Styrol und diverse polykondensierte Aromaten. Ungewöhnlich ist dies in Hinblick auf das Eintragsgut Papierschlamm.

Im Vergleich zum Buchenholz Referenzversuch konnte insgesamt bei dem hier diskutierten Versuch TP43 nur ein relativ geringer Anteil (21,5m%) des Pyrolyse-Öls quantifiziert werden.
| Substanz | Gehalt
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Essigsäure*</td>
<td>3,15</td>
</tr>
<tr>
<td>Alkohole</td>
<td>0,05</td>
</tr>
<tr>
<td>1,2-Ethandiol</td>
<td>0,05</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>0,30</td>
</tr>
<tr>
<td>Hydroxyacetaldehyde*</td>
<td>0,05</td>
</tr>
<tr>
<td>Crotonaldehyd*</td>
<td>0,02</td>
</tr>
<tr>
<td>3-Hydroxypropanal**</td>
<td>0,23</td>
</tr>
<tr>
<td>Furane</td>
<td>2,27</td>
</tr>
<tr>
<td>2-Furaldehyd*</td>
<td>1,61</td>
</tr>
<tr>
<td>Dihydromethylfuranon*</td>
<td>0,08</td>
</tr>
<tr>
<td>γ-Butyrolacton*</td>
<td>0,07</td>
</tr>
<tr>
<td>(5H)-Furan-2-on*</td>
<td>0,32</td>
</tr>
<tr>
<td>5-Hydroxymethyl-2-furaldehyd*</td>
<td>0,08</td>
</tr>
<tr>
<td>5-Methyl-(5H)-furan-2-on*</td>
<td>0,12</td>
</tr>
<tr>
<td>Guajacole</td>
<td>5,40</td>
</tr>
<tr>
<td>Guajacol*</td>
<td>0,47</td>
</tr>
<tr>
<td>4-Methylguajacol*</td>
<td>0,52</td>
</tr>
<tr>
<td>4-Ethylguajacol*</td>
<td>0,27</td>
</tr>
<tr>
<td>4-Vinylguajacol**</td>
<td>0,77</td>
</tr>
<tr>
<td>Eugenol*</td>
<td>0,29</td>
</tr>
<tr>
<td>4-Propylguajacol*</td>
<td>0,09</td>
</tr>
<tr>
<td>Isoeugenol (cis)*</td>
<td>0,23</td>
</tr>
<tr>
<td>Isoeugenol (trans)*</td>
<td>0,84</td>
</tr>
<tr>
<td>Vanillin*</td>
<td>0,60</td>
</tr>
<tr>
<td>Homovanillin**</td>
<td>0,23</td>
</tr>
<tr>
<td>Acetoguajacon*</td>
<td>0,23</td>
</tr>
<tr>
<td>Guajacylaceton*</td>
<td>0,22</td>
</tr>
<tr>
<td>Isomer von Coniferylalkohol</td>
<td>0,49</td>
</tr>
<tr>
<td>Coniferylalkohol (trans)*</td>
<td>0,11</td>
</tr>
<tr>
<td>Coniferylaldehyd*</td>
<td>0,05</td>
</tr>
<tr>
<td>Ketone</td>
<td>2,18</td>
</tr>
<tr>
<td>Hydroxypropanon*</td>
<td>0,13</td>
</tr>
<tr>
<td>1-Hydroxy-2-butanon*</td>
<td>0,11</td>
</tr>
<tr>
<td>2-Hydroxy-2-cyclopenten-1-on*</td>
<td>0,03</td>
</tr>
<tr>
<td>3-Methyl-2-cyclopenten-1-on*</td>
<td>0,81</td>
</tr>
<tr>
<td>Dimethyl-2-cyclopentene-1-on</td>
<td>0,16</td>
</tr>
<tr>
<td>2-Hydroxy-3-methyl-2-cyclopenten-3-on*</td>
<td>0,93</td>
</tr>
</tbody>
</table>

Tabelle 76: Detaillierte Zusammensetzung des Pyrolyse-Öls aus TP43 (org. Anteil) Teil 2

<table>
<thead>
<tr>
<th>Komponente</th>
<th>m%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenole</td>
<td>3,58</td>
</tr>
<tr>
<td>Phenol*</td>
<td>1,05</td>
</tr>
<tr>
<td>o-Cresol*</td>
<td>0,60</td>
</tr>
<tr>
<td>m-Cresol*</td>
<td>0,48</td>
</tr>
<tr>
<td>p-Cresol*</td>
<td>0,52</td>
</tr>
<tr>
<td>2,4- und 2,5-Dimethylphenol*</td>
<td>0,74</td>
</tr>
<tr>
<td>3- und 4-Ethylphenol*</td>
<td>0,19</td>
</tr>
<tr>
<td>Pyrane</td>
<td>0,20</td>
</tr>
<tr>
<td>3-Hydroxy-5,6-dihydro-(4H)-pyran-4-on*</td>
<td>0,20</td>
</tr>
<tr>
<td>Zucker</td>
<td>1,01</td>
</tr>
<tr>
<td>1,4:3,6-Dianhydro-a-D-glucopyranose*</td>
<td>0,32</td>
</tr>
<tr>
<td>Lävoglukosan*</td>
<td>0,69</td>
</tr>
<tr>
<td>Syringole</td>
<td>3,01</td>
</tr>
<tr>
<td>Syringol*</td>
<td>0,27</td>
</tr>
<tr>
<td>4-Methylysyringol*</td>
<td>0,21</td>
</tr>
<tr>
<td>4-Ethylsyringol*</td>
<td>0,16</td>
</tr>
<tr>
<td>4-Vinylsyringol*</td>
<td>0,38</td>
</tr>
<tr>
<td>4-Allyl- and 4-Propylsyringol*</td>
<td>0,35</td>
</tr>
<tr>
<td>4-Propenylsyringol (cis)*</td>
<td>0,21</td>
</tr>
<tr>
<td>4-Propenylsyringol (trans)*</td>
<td>0,39</td>
</tr>
<tr>
<td>Syringaldehyd*</td>
<td>0,20</td>
</tr>
<tr>
<td>Homosyringaldehyd*</td>
<td>0,02</td>
</tr>
<tr>
<td>Acetosyringon*</td>
<td>0,07</td>
</tr>
<tr>
<td>Syringylacetox*</td>
<td>0,06</td>
</tr>
<tr>
<td>Isomer von Sinapylalkohol*</td>
<td>0,24</td>
</tr>
<tr>
<td>Sinapylalkohol (cis)*</td>
<td>0,07</td>
</tr>
<tr>
<td>Sinapylalkohol (trans)*</td>
<td>0,07</td>
</tr>
<tr>
<td>Propiosyringon</td>
<td>0,04</td>
</tr>
<tr>
<td>Dihydrosinapylalkohol</td>
<td>0,04</td>
</tr>
<tr>
<td>Sinapaldehyd*</td>
<td>0,23</td>
</tr>
<tr>
<td>Summe aller quantifizierten org. Verbindungen</td>
<td>21,15</td>
</tr>
</tbody>
</table>

quantifiziert mit GC/FID, Resonanzfaktor durch Referenzsubstanz ermittelt
Tabelle 77: Heizwert von Faserschlamm-Pyrolyse-Öl

<table>
<thead>
<tr>
<th>Elementaranalyse</th>
<th>Faserschlamm-Pyrolyse-Öl</th>
</tr>
</thead>
<tbody>
<tr>
<td>C [m%]</td>
<td>60,38</td>
</tr>
<tr>
<td>H [m%]</td>
<td>8,02</td>
</tr>
<tr>
<td>N [m%]</td>
<td>4,14</td>
</tr>
<tr>
<td>O* [m%]</td>
<td>27,46</td>
</tr>
<tr>
<td>Heizwert [MJ/kg]</td>
<td>27,04</td>
</tr>
</tbody>
</table>

* Differenz zu 100%

Der Heizwert des Faserschlamm-Pyrolyse-Öls ist mit ca. 27 MJ/kg dreimal so hoch wie der ursprüngliche Heizwert vom Faserschlamm (8,34 MJ/kg). Im Vergleich mit dem Energiedichtegewinn von knapp 100% bei der Konversion von Buchenholz zu Buchenholz-Pyrolyse-Öl ist bei Faserschlamm-Pyrolyse-Öl ein Gewinn an Energiedichte von 200% zu verzeichnen.

Der Wassergehalt des Pyrolyse-Öls aus Faserschlamm beträgt 23,86m% (bei einer eingetragenen Eintragsgutfeuchte von 0,96m%) und ist damit als eher niedrig zu bewerten.

14.3 Schlussfolgerungen

Das Nebenprodukt Holzkohle kann, wenn es geringe anorganischen Anteilen enthält, wie im Allgemeinen Teil dieser Arbeit angesprochen zur Aktivkohle veredelt werden. Hier zeigte sich jedoch, das die abgeschiedene Koksfraktion zu 75,04m% aus anorganischen Feststoffen besteht. Dies macht eine weitere Verwendung problematisch zumal die anorganischen Feststoffe aus Papierzuschlag-Chemikalien wie dem Füller Ca(CO₃), Kaolin und anderen vergleichsweise billigen Hilfsstoffen bestehen. Sie haben keinen großen Wert und ein Wiedergewinnen dieser Stoffe ist aus ökonomischer Sicht nicht sinnvoll. Das Pyrolyse-Gas ist ein Produkt mit geringem Wert, es kann als niederkaloriges Brenngas verwendet werden.

Schlussfolgernd lassen sich für Faserschlamm als Eintragsgut für die Pyrolyse folgende Aussagen formulieren:

- Das Eintragsgut Faserschlamm ließ sich leicht mit der Fördereinrichtung der LWS-Holz in den Reaktor eintragen. Die aus dem Reaktor ausgetragenen Feststoffe ließen sich nicht hinreichend aus dem Gasstrom entfernen und kontaminierten das Öl stark.
- Die Pyrolyse von Faserschlamm führt im Vergleich zum Referenzversuch „Buchenholz-Pyrolyse“ zu sehr niedrigen Ausbeuten an flüssigem Produkt (5m%).
- Die Identifizierung und Quantifizierung der thermischen Abbauprodukte von Papierschlamm konnte im Vergleich zu früheren Studien deutlich verbessert werden. Die Versuchsparameter und die makroskopische Massenbilanz blieben hierbei vergleichbar.

15 Fraktionierung von Pyrolyse-Öl

15.1 Einleitung

15.2 Ergebnisse und Diskussion der Kapillar-Destillation von Pyrolyseöl

aus der Kunststoffpyrolyse bestätigen dies deutlich. Die Massenbilanz der Destillation ist in Tabelle 78 dargestellt.

Tabelle 78: Bilanz der Destillation von Pyrolyse-Öl Fraktionen

<table>
<thead>
<tr>
<th>Öl-Fraktionen</th>
<th>Destillat</th>
<th>Sumpf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kühler 1</td>
<td>33,93</td>
<td>66,07</td>
</tr>
<tr>
<td>Kühler 2</td>
<td>62,91</td>
<td>37,09</td>
</tr>
<tr>
<td>Kühler 3</td>
<td>88,01</td>
<td>11,99</td>
</tr>
<tr>
<td>Elektrofilter</td>
<td>49,23</td>
<td>50,77</td>
</tr>
</tbody>
</table>

In Tabelle 79 sind die Einzelkomponenten des Pyrolyse-Öls (bez. auf feuchtes Öl) vergleichend nebeneinandergestellt. Man erkennt einfach, dass die einzelnen Fraktionen, K1, K2, K3 und E-Fi sich annähernd gleich bei der Destillation verhalten. Die im Folgenden getroffenen Aussagen treffen auf jede der destillierten Fraktionen zu.

wenige Einzelkomponenten, wie z-B. Lävoglukosan, konnten zwar im Sumpf angereichert werden. Aufgrund von partieller Zersetzung und ungenügender Quantität ist dieser nicht mehr zu verwenden.

15.3 Schlussfolgerungen zur Kapillar-Destillation von Pyrolyse-Öl

Aufgrund der oben getroffenen Aussagen lässt sich schlussfolgern:

- Essigsäure ließ sich im Destillat anreichern, ist jedoch eine Komponente mit kommerziell niedrigem Wert.
15 Fraktionierung von Pyrolyse-Öl

151

Tabelle 79: Einzelkomponenten der Fraktionen im Vergleich

Komponente
Hydroxyacetaldehyd
Crotonaldehyd
Essigsäure
Hydroxypropanon
1,2 Ethandiol
1-Hydroxy-2-butan-1-on
2-Furfural
α-Angelicalactone
Dihydromethylfuranon
3-Methyl-2-Cyclopentene-1-on
γ-Butyrolactone
(5H)-Furan-2-on
3-Methyl-(5H)-Furan-2-on
4-Hydroxy-5,6-dihydro-(2H)-Pyran-2-on
2-Hydroxy-1-methyl-1-Cycolpentene-3-on
Phenol
Guajacol
o-Cresol
p-Cresol
m-Cresol
4-Methylguajacol
2,4- and 2,5-Dimethylphenol
3- and 4-Ethylphenol
4-Ethylguajacol
4-Vinylguajacol
Eugenol
4-Propylguajacol
5-Hydroxymethyl-2-furaldehyd
Syringol
Isoeugenol (cis)
Isoeugenol (trans)
4-Methylsyringol
Vanillin
Homovanillin
4-Ethylsyringol
Acetoguajakon
4-Vinylsyringol
Guajacylaceton
4-Allyl- and 4-Propylsyringol
Isomer von Coniferylalkohol
4-Propenylsyringol (cis)
Lävoglukosan
4-Propenylsyringol (trans)
Syringaldehyd
Homosyringaldehyd
Acetosyringon
Coniferylalkohol (trans)
Coniferylaldehyd
Syringylaceton
Propiosyringon
Isomer von Sinapylalkohol
Sinapylalkohol (cis)
Sinapaldehyd
Summe der quantifizierten Verbindungen

K1
K2
K3
E-Fi
K1
K2
K3
E-Fi
K1
K2
K3
E-Fi
[m%] [m%]
2,79 2,94 2,35 0,75 0,42 0,91 0,73 0,34
0,33
0,08 0,22 0,08 0,05 0,10 0,80
0,02
2,72 5,43 4,20 3,18 7,75 7,35 4,54 7,91 4,82
4,91
5,84
2,95
3,80 4,65 3,60 2,85 3,10 3,68 2,67 4,27 3,61
4,22
5,13
1,94
0,24 0,18 0,12 0,40 0,26 0,15 1,43 0,99 0,20
0,15
0,23
0,32 0,36 0,23 0,30 0,24 0,27 0,18 0,37 0,36
0,40
0,33
0,25
0,79 0,73 0,52 1,25 1,05 0,88 0,48 1,75 0,51
0,42
0,16
0,79
0,20 0,17 0,04 0,19 0,03 0,02
0,17 0,04
0,02
0,06
0,06
0,10 0,77 0,02 0,14 0,03 0,04 0,01 0,09 0,13
0,12
0,04
0,14
0,14 0,10 0,04 0,16 0,02 0,04 0,02 0,04 0,25
0,31
0,31
0,18
0,33 0,23 0,09 0,30 0,04 0,05 0,02 0,09 0,33
0,32
0,33
0,22
0,06 0,05
0,09
0,01 0,01 0,04 0,04
0,03
0,05
0,03
0,05 0,03
0,06
0,02
0,02
0,05
0,50 0,35 0,10 0,60 0,08 0,08 0,03 0,09 0,83
0,87
0,57
0,69
0,20 0,15 0,04 0,24 0,06 0,07 0,02 0,08 0,30
0,32
0,12
0,27
0,21 0,14 0,03 0,26 0,10 0,08 0,03 0,13 0,27
0,23
0,07
0,27
0,11 0,08 0,02 0,14 0,05 0,05 0,01 0,05 0,15
0,13
0,02
0,16
0,05 0,03 0,01 0,06 0,02 0,02 0,01 0,05 0,08
0,08
0,07
0,14 0,09
0,18 0,01 0,01
0,02 0,18
0,18
0,02
0,19
0,16 0,08 0,02 0,19 0,05 0,04 0,01 0,06 0,21
0,18
0,03
0,20
0,02
0,02
0,01
0,13
0,01
0,04 0,04
0,12
0,07
0,02
0,01
0,09
0,07 0,04
0,10 0,01 0,01
0,01 0,12
0,10
0,02
0,12
0,01 0,01
0,02
0,02
0,02
0,02
0,09 0,05
0,12
0,10
0,08
0,09
0,08
0,60 0,31 0,07 0,70
0,01
0,01 0,94
0,80
0,47
0,84
0,07 0,04
0,10
0,07
0,05
0,01
0,11
0,22 0,12 0,01 0,34
0,13
0,08
0,04
0,19
0,26 0,11 0,02 0,29
0,43
0,34
0,06
0,39
0,14
0,14
0,12
0,08
0,15
0,05
0,12 0,06
0,14
0,17
0,13
0,06
0,17
0,06 0,03
0,07
0,12
0,11
0,08
0,11
0,08 0,04
0,24
0,04
0,04
0,07
0,04 0,01
0,05
0,05
0,03
0,15 0,07 0,01 0,21
0,25
0,19
0,06
0,25
0,05 0,03
0,10
0,05
0,05
0,04
0,07
0,13 0,05
0,19
0,17
0,17
0,02
0,23
2,53 2,49 0,71 4,33
3,88
3,53
3,99
5,02
0,36 0,14
0,56
0,34
0,20
0,04
0,51
0,09 0,07
0,32
0,27
0,21
0,17
0,40
0,01
0,04
0,05 0,04
0,15
0,17
0,15
0,12
0,22
0,07
0,02
0,02
0,06
0,04 0,03
0,08
0,08
0,07
0,07
0,10
0,02 0,01
0,04
0,01
0,01
0,01
0,02
0,11
0,03 0,04 0,03 1,35 0,03 0,03 0,03 0,03 0,09
0,08
0,06
0,19
18,04 20,41 12,37 21,53 13,44 13,88 10,34 17,38 20,19 19,51 19,04 18,07


15.4 Ergebnisse und Diskussion der Festphasen-Extraktion (SPE) von Pyrolyse-Öl

Tabelle 80: Übersicht über die identifizierten Einzelverbindungen in den Extraktfraktionen (Teil 1)

<table>
<thead>
<tr>
<th>Elutionsmittel</th>
<th>Hexan Peak-fläche</th>
<th>1-Chlorbutan Peak-fläche</th>
<th>Dichlormethan Peak-fläche</th>
<th>Ethylacetat Peak-fläche</th>
<th>Methanol Peak-fläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komponente im Extrakt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbauprodukte der Cellulose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxypropanon</td>
<td>41499</td>
<td>548952</td>
<td>513587</td>
<td>116451</td>
<td>-</td>
</tr>
<tr>
<td>Propanonsäure</td>
<td>18134</td>
<td>58873</td>
<td>18933</td>
<td>9348</td>
<td>-</td>
</tr>
<tr>
<td>1,2- Ethanediol</td>
<td>23030</td>
<td>8516</td>
<td>-</td>
<td>-</td>
<td>42265</td>
</tr>
<tr>
<td>1-Hydroxy-2-butanol</td>
<td>18244</td>
<td>157623</td>
<td>60422</td>
<td>11438</td>
<td>-</td>
</tr>
<tr>
<td>3-Hydroxypropanal</td>
<td>8187</td>
<td>84748</td>
<td>91786</td>
<td>35271</td>
<td>-</td>
</tr>
<tr>
<td>Glyoxal-Derivat</td>
<td>15578</td>
<td>135007</td>
<td>162434</td>
<td>74584</td>
<td>-</td>
</tr>
<tr>
<td>2-Cyclopenten-1-on</td>
<td>-</td>
<td></td>
<td>121108</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-Furaldehyd</td>
<td>168746</td>
<td>244863</td>
<td>56561</td>
<td>23129</td>
<td>-</td>
</tr>
<tr>
<td>1-Acetoxypropan-2-on</td>
<td>15448</td>
<td>61160</td>
<td>10758</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-Methyl-2-Cyclopenten-1-on</td>
<td>31129</td>
<td>55279</td>
<td>5045</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tetrahydro-4-methyl-3-furanon</td>
<td>-</td>
<td>71605</td>
<td>35582</td>
<td>9714</td>
<td>-</td>
</tr>
<tr>
<td>2-Acetylfuran</td>
<td>14332</td>
<td>7400</td>
<td>1194</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-Hydroxy-2-Cyclopenten-1-on</td>
<td>20994</td>
<td>238684</td>
<td>115155</td>
<td>34701</td>
<td>-</td>
</tr>
<tr>
<td>Diäthoxy-methyl-furanon</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13882</td>
<td>-</td>
</tr>
<tr>
<td>5-Methyl-2-furaldehyd</td>
<td>21487</td>
<td>16328</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3-Methyl-2-Cyclopentene-1-on</td>
<td>-</td>
<td>81532</td>
<td>13878</td>
<td>1726</td>
<td>-</td>
</tr>
<tr>
<td>γ-Butyro lacton</td>
<td>-</td>
<td>77471</td>
<td>18998</td>
<td>3508</td>
<td>-</td>
</tr>
<tr>
<td>(5H)-Furan-2-on</td>
<td>-</td>
<td>182154</td>
<td>54764</td>
<td>6724</td>
<td>-</td>
</tr>
<tr>
<td>5-Methyl-(5H)-Furan-2-on</td>
<td>-</td>
<td>49087</td>
<td>7286</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3-Hydroxy-5,6-dihydro-(4H)-Pyran-4-on</td>
<td>-</td>
<td>51111</td>
<td>25612</td>
<td>14711</td>
<td>8255</td>
</tr>
<tr>
<td>2-Hydroxy-3-methyl-2-Cyclopentene-1-on</td>
<td>33054</td>
<td>306343</td>
<td>69917</td>
<td>17740</td>
<td>-</td>
</tr>
<tr>
<td>3-Methyl-(5H)-Furan-2-on</td>
<td>-</td>
<td>45401</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kohlenhydrat eines Anhydrozuckers</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28506</td>
<td>53625</td>
</tr>
<tr>
<td>Kohlenhydrat eines Anhydrozuckers</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13211</td>
</tr>
<tr>
<td>Kohlenhydrat eines Anhydrozuckers</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13296</td>
<td>-</td>
</tr>
<tr>
<td>1,4:3,6-Dianhydro-α-δ-glucopyranose</td>
<td>-</td>
<td>-</td>
<td>20758</td>
<td>14450</td>
<td>-</td>
</tr>
<tr>
<td>1,5-Anhydroarabinofuranose</td>
<td>-</td>
<td>-</td>
<td>10413</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5-Hydroxymethyl-2-furaldehyd</td>
<td>-</td>
<td>-</td>
<td>24151</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lävoglukosan</td>
<td>-</td>
<td>-</td>
<td>276727</td>
<td>512655</td>
<td>-</td>
</tr>
<tr>
<td>Ligninabbauprodukte/Phenolderivate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td>105649</td>
<td>16085</td>
<td>4011</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>o-Cresol</td>
<td>23875</td>
<td>41786</td>
<td>6192</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>m-Cresol</td>
<td>31512</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p-Cresol</td>
<td>56109</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>g-Lactone-Derivat</td>
<td>-</td>
<td>-</td>
<td>34140</td>
<td>31914</td>
<td>-</td>
</tr>
<tr>
<td>2,4- und 2,5-Dimethylphenol</td>
<td>20302</td>
<td>20293</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3- und 4-Ethylphenol</td>
<td>-</td>
<td></td>
<td>10447</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ligninabbauprodukte/Catecholderivate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catechol, 1,2-Benzenediol</td>
<td>38501</td>
<td>25446</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Methylcatechol</td>
<td>19435</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Summe der Peakflächen</td>
<td>974552</td>
<td>3940560</td>
<td>1591692</td>
<td>778318</td>
<td>630011</td>
</tr>
</tbody>
</table>
Tabelle 81: Übersicht über die identifizierten Einzelverbindungen in den Extraktfraktionen
(Teil 2)

<table>
<thead>
<tr>
<th>Elutionsmittel</th>
<th>Hexan</th>
<th>1-Chlorbutan</th>
<th>Dichlormethan</th>
<th>Ethylacetat</th>
<th>Methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komponente im Extrakt</td>
<td>Peak-fläche</td>
<td>Peak-fläche</td>
<td>Peak-fläche</td>
<td>Peak-fläche</td>
<td>Peak-fläche</td>
</tr>
<tr>
<td>Ligninabbauprodukte/Guajacolderivate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guajacol</td>
<td>90726</td>
<td>29377</td>
<td>6115</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Methylguajacol</td>
<td>58624</td>
<td>12842</td>
<td>7679</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Ethylguajacol</td>
<td>17851</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Vinylguajacol</td>
<td>37164</td>
<td>46500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eugenol</td>
<td>21482</td>
<td>5145</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoeugenol (cis)</td>
<td>16536</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoeugenol (trans)</td>
<td>58683</td>
<td>15857</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vanillin</td>
<td>4524</td>
<td>33260</td>
<td>10930</td>
<td>36487</td>
<td>-</td>
</tr>
<tr>
<td>Homovanillin</td>
<td>-</td>
<td>14156</td>
<td>8165</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acetoguajakone</td>
<td>-</td>
<td>23618</td>
<td>5862</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Guajacylaceton</td>
<td>-</td>
<td>15887</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coniferylaldehyd</td>
<td>-</td>
<td>19217</td>
<td>6012</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ligninabbauprodukte/Syringolderivate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syringol</td>
<td>38221</td>
<td>218327</td>
<td>31867</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Methyalsyringol</td>
<td>33282</td>
<td>124696</td>
<td>12547</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Ethyalsyringol</td>
<td>15234</td>
<td>26091</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Vinylsyringol</td>
<td>22491</td>
<td>83857</td>
<td>10739</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Allyl- und 4-Propylsyringol</td>
<td>31862</td>
<td>39545</td>
<td>4900</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Propenylsyringol (cis)</td>
<td>16226</td>
<td>28809</td>
<td>2543</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Propenylsyringol (trans)</td>
<td>37607</td>
<td>114428</td>
<td>12309</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Syringaldehyd</td>
<td>-</td>
<td>60951</td>
<td>24142</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Homosyringaldehyd</td>
<td>-</td>
<td>17173</td>
<td>13851</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acetosyringon</td>
<td>-</td>
<td>34039</td>
<td>14319</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Syringylaceteton</td>
<td>-</td>
<td>23882</td>
<td>9700</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiosyringon</td>
<td>-</td>
<td>10947</td>
<td>2591</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isomer von Sinapylalkohol</td>
<td>-</td>
<td>14979</td>
<td>8324</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sinapaldehyd</td>
<td>-</td>
<td>29361</td>
<td>18977</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Summe der Peakflächen</td>
<td>974552</td>
<td>3940560</td>
<td>1591692</td>
<td>778318</td>
<td>630011</td>
</tr>
</tbody>
</table>

15.5 Schlussfolgerungen zur Festphasen-Extraktion (SPE) von Pyrolyse-Öl

Aufgrund der oben getroffenen Aussagen lässt sich schlussfolgern:
- Lävoglukosan ließ sich im Extrakt der polaren Elutionsmittel anreichern und ist eine Komponente mit kommerziell hohem Wert.

16 Katalytische Pyrolyse zur Gewinnung von Lävoglukosan

16.1 Einleitung zur katalytischen Pyrolyse

Die Produktpaletten, die von Unternehmen weltweit angeboten werden, vermitteln einen Überblick über die Anwendung von Lävoglukosan in der Synthese. [205] [206]
Katalytische Pyrolyse zur Gewinnung von Lävoglukosan

Linear Dextrans

Chiral Ligands

Levoglucosenone

Biotin (Vitamin H)

Synthetic Intermediates

Polyurethanes, Epoxides, Surfactants

Chiral Segments of Macrolide Antibiotics

Unique Polymers

Abbildung 49: Produktpalette der Resource Transformations International Ltd. (RTI), Kanada

Abbildung 50: Produktpalette der Janssen Chemica, Belgien

Der kommerzielle Wert von Lävoglukosan wird mit > $25/g angegeben und rechtfertigt daher die relativ aufwendige Isolierung aus Pyrolyse-Öl oder sogar die direkte chemische Synthese. [207] Die Chemie und die Anwendungen von Lävoglukosan und Lävoglukosenon sind
umfassend in der Monographie von WITCZAK beschrieben und sollen an dieser Stelle nicht weiter diskutiert werden. [208] DOBELE et al. konnten durch die Pyrolyse von verschiedener vorbehandelter Cellulose (mit H₃PO₄) in Summe bis zu 85.4m% Lävoglukosan und Lävoglukosenon (bez. auf trockenes Eintragsgut) erhalten. [209] [210]

Ein großtechnisches Verfahren zur Herstellung von 1,6-β-D-Anhydroglucopyranose (Lävoglukosan) in hoher Reinheit (99,0%) beschreibt die Südzucker AG. Durch Pyrolyse von Stärke oder stärkehaltigem Material und einer chromatographischen Aufarbeitung des Destillates über Ionentauscher kann Lävoglukosan mit hoher Ausbeute (75%) im Tonnen-Maßstab gewonnen werden. [211]

Die Arbeiten von DOBELE et al. und die der Südzucker AG zeigen zwar gute Resultate in Bezug auf die Ausbeute an Lävoglukosan, jedoch verwenden beide relativ teure Eintragsgüter, nämlich reine Cellulose und Stärke. Die verwendeten Pyrolyse-Verfahren sind jedoch nicht optimal hinsichtlich der erzielten Pyrolyse-Ölausbeuten und einer großtechnischen Realisierung der Technologie.

Die von WULZINGER erhaltenen Ergebnisse ließen jedoch noch einige Fragen, die für eine Anwendung in größerem Maßstab von entscheidender Bedeutung sind, offen. Die von ihm
dokumentierten Versuche wurden an einer relativ kleinen Laborwirbelschichtanlage mit einem Durchsatz von 200 g/h gewonnen und sind demnach nicht ohne Weiteres auf eine größere Anlage übertragbar. Eine Aktivität seines Katalysators wurde während der Versuche nicht bestimmt, dies ist für die Standzeit des Katalysators und damit für die Wirtschaftlichkeit einer Pyrolyseanlage jedoch von entscheidender Bedeutung.

16.2 Ergebnisse und Diskussion der katalytischen Pyrolyse

Es kann angenommen werden, dass Blähschiefer eine ähnliche Struktur-Wirkungsbeziehung aufweist wie z.B. die bekannten Katalysatoren auf Zeolithbasis. Zeolithkatalysatoren zeigten in Untersuchungen von WULZINGER jedoch keinen Effekt auf die Lävoglukosanausbeute.

Tabelle 82: Spezifikation von ulopor-Blähschiefer

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korngrösse [mm]</td>
<td>0,5-1,0</td>
</tr>
<tr>
<td>Sulfatgehalt als SO₃ [m%]</td>
<td>0,08</td>
</tr>
<tr>
<td>Schüttichte [kg/dm³]</td>
<td>0,74</td>
</tr>
<tr>
<td>Kornrohdichte [g/cm³]</td>
<td>1,50</td>
</tr>
</tbody>
</table>

Zusammensetzung

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Masse-%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>58-64</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17-23</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6-8</td>
</tr>
<tr>
<td>K₂O</td>
<td>2-4</td>
</tr>
<tr>
<td>MgO</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Schwermetallgehalte

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Masse-%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsen</td>
<td>3</td>
</tr>
<tr>
<td>Blei</td>
<td>< 10</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0,2</td>
</tr>
<tr>
<td>Chrom</td>
<td>< 10</td>
</tr>
<tr>
<td>Kupfer</td>
<td>15</td>
</tr>
<tr>
<td>Nickel</td>
<td>19</td>
</tr>
<tr>
<td>Quecksilber</td>
<td>< 0,2</td>
</tr>
<tr>
<td>Thallium</td>
<td>< 0,5</td>
</tr>
<tr>
<td>Zink</td>
<td>13</td>
</tr>
</tbody>
</table>

Tabelle 83: Versuchsparameter von TP53 (Buchenholz/Blähschiefer)

<table>
<thead>
<tr>
<th>Versuchsbezeichnung</th>
<th>[-]</th>
<th>TP53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktor-Temperatur</td>
<td>[°C]</td>
<td>469</td>
</tr>
<tr>
<td>Reaktor-Temperatur</td>
<td>[K]</td>
<td>742</td>
</tr>
<tr>
<td>Eintragsgut</td>
<td>[-]</td>
<td>Buchenholz</td>
</tr>
<tr>
<td>Wirbelgut</td>
<td>[-]</td>
<td>Blähschiefer</td>
</tr>
<tr>
<td>Korngröße Wirbelgut</td>
<td>[mm]</td>
<td>0,5-1,0</td>
</tr>
<tr>
<td>Dichte des Wirbelgutes</td>
<td>[kg/m³]</td>
<td>1400</td>
</tr>
<tr>
<td>Volumen der Wirbschicht</td>
<td>[m³]</td>
<td>0,0054</td>
</tr>
<tr>
<td>Schüttdichte des Wirbelgutes</td>
<td>[kg/m³]</td>
<td>570</td>
</tr>
<tr>
<td>Reaktorvolumen</td>
<td>[m³]</td>
<td>0,014</td>
</tr>
<tr>
<td>freies Reaktorvolumen</td>
<td>[m³]</td>
<td>0,0086</td>
</tr>
<tr>
<td>Versuchsduar</td>
<td>[min]</td>
<td>210</td>
</tr>
<tr>
<td>Durchsatz</td>
<td>[g/h]</td>
<td>1930</td>
</tr>
<tr>
<td>Wirbelgasstrom (kalt)</td>
<td>[m³/h]</td>
<td>4,66</td>
</tr>
<tr>
<td>Wirbelgasstrom (heiß)</td>
<td>[m³/h]</td>
<td>11,52</td>
</tr>
<tr>
<td>Verweilzeit im Reaktor</td>
<td>[s]</td>
<td>2,68</td>
</tr>
</tbody>
</table>

Einwaagen

Eintragsgut	[g]	6756
Eintragsgut atro	[g]	6707
org. Eintrag	[g]	6619
org. Eintrag	[m%]	98,69
Wirbelgut	[g]	3100
Summe Einwaagen	[g]	9856
Tabelle 84: Massenbilanz von TP53 (katalytische Pyrolyse von Buchenholz, atro)

<table>
<thead>
<tr>
<th>Auswaagen Flüssigkeiten</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolyse-Öl</td>
<td>[g]</td>
<td>4066,21</td>
</tr>
<tr>
<td>Pyrolyse-Öl atro</td>
<td>[g]</td>
<td>4016,98</td>
</tr>
<tr>
<td>Wasser im Öl</td>
<td>[g]</td>
<td>1288,95</td>
</tr>
<tr>
<td>Wassergehalt Öl</td>
<td>[m%]</td>
<td>38,78</td>
</tr>
<tr>
<td>Reaktionswasser</td>
<td>[m%]</td>
<td>37,44</td>
</tr>
<tr>
<td>Glührückstand Öl</td>
<td>[m%]</td>
<td>0,10</td>
</tr>
<tr>
<td>Organischer Anteil am Öl</td>
<td>[g]</td>
<td>2490,29</td>
</tr>
<tr>
<td>Organischer Anteil am Öl</td>
<td>[m%]</td>
<td>61,24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auswaagen Feststoffe</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktorrückstand</td>
<td>[g]</td>
<td>2207,50</td>
</tr>
<tr>
<td>Überlauftonne</td>
<td>[g]</td>
<td>1446,20</td>
</tr>
<tr>
<td>Zyklon 1 Rückstand</td>
<td>[g]</td>
<td>163,30</td>
</tr>
<tr>
<td>Zyklon 2 Rückstand</td>
<td>[g]</td>
<td>18,60</td>
</tr>
<tr>
<td>Rest aus Reinigung</td>
<td>[g]</td>
<td>0,00</td>
</tr>
<tr>
<td>Summe Feststoffe ohne Sand</td>
<td>[g]</td>
<td>735,60</td>
</tr>
<tr>
<td>Auswaage Gas*</td>
<td>[g]</td>
<td>1954</td>
</tr>
</tbody>
</table>

Mittlere Gasdichte	[kg/m³]	2,97
Pyrolyse-Gas (Überschuss)	[m³]	16,31
Pyrolyse-Gas (Überschuss)	[l]	16307

* Differenz zu 100% Bilanzchluss

Abbildung 52: Massenbilanz von TP53 (katalytische Pyrolyse von Buchenholz, atro) und TP44

Im Vergleich mit dem Referenzversuch TP44 mit dem Wirbelmaterial Quarzsand zeigt der Versuch TP53 mit Blähschiefer als Wirbelmaterial eine um den Faktor 0,9 verringerte
Ausbeute an Pyrolyse-Öl. Ein Grund könnte darin liegen, dass die Reaktionstemperatur von 469°C in Versuch TP53 etwas niedriger lag als in Versuch TP44 mit 476°C. Der Wert 476°C liegt deutlich dichter an der optimalen Temperatur von 475°C für eine maximale Ölausbeute. Der Unterschied zu 469°C ist jedoch relativ gering, so dass davon ausgegangen werden kann, dass die Qualität der Produkte aus TP44 und TP53 in Bezug auf die Pyrolyse-Öl Zusammensetzung vergleichbar ist.

Tabelle 85: Zusammensetzung der Gasfraktion der Buchenholzpyrolyse TP53

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Komponente</th>
<th>Formel</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-Gase</td>
<td>Kohlenmonoxid</td>
<td>CO</td>
<td>53,11</td>
</tr>
<tr>
<td></td>
<td>Kohlendioxid</td>
<td>CO₂</td>
<td>28,72</td>
</tr>
<tr>
<td></td>
<td>Methan</td>
<td>CH₄</td>
<td>10,30</td>
</tr>
<tr>
<td>C2-Gase</td>
<td>Ethan</td>
<td>C₂H₆</td>
<td>1,93</td>
</tr>
<tr>
<td></td>
<td>Ethen</td>
<td>C₂H₄</td>
<td>1,10</td>
</tr>
<tr>
<td></td>
<td>Ethin</td>
<td>C₂H₂</td>
<td>2,12</td>
</tr>
<tr>
<td>C3-Gase</td>
<td>Propan</td>
<td>C₃H₈</td>
<td>0,47</td>
</tr>
<tr>
<td></td>
<td>Propen</td>
<td>C₃H₆</td>
<td>0,05</td>
</tr>
<tr>
<td>C4-Gase</td>
<td>n-Butan</td>
<td>C₄H₁₀</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>iso-Butan</td>
<td>C₄H₁₀</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>cis-Buten</td>
<td>C₄H₈</td>
<td>0,12</td>
</tr>
<tr>
<td></td>
<td>trans-Buten</td>
<td>C₄H₈</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td>iso-Buten</td>
<td>C₄H₈</td>
<td>0,07</td>
</tr>
<tr>
<td>Andere</td>
<td>Wasserstoff</td>
<td>H₂</td>
<td>0,56</td>
</tr>
<tr>
<td></td>
<td>Sauerstoff*</td>
<td>O₂</td>
<td>0,27</td>
</tr>
<tr>
<td></td>
<td>Stickstoff*</td>
<td>N₂</td>
<td>1,02</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

*Rest aus Inertisierung

Im Pyrolyse-Öl des Versuches TP44 wurden 3,25 m% Lävoglukosan im organischen Anteil des Pyrolyse-Öls gefunden. Der maximale Lävoglukosanwert in TP53 entspricht einem Anteil von 4,88 m% des organischen Anteils im Pyrolyse-Öl. Der Katalysator Blähschiefer konnte also den Anteil an Lävoglukosan im Pyrolyse-Öl um den Faktor 1,5 erhöhen. Der von WULZINGER gefundene Faktor von 3,7 konnte an der LWS-Holz nicht bestätigt werden. Eine Verbesserung des Faktors durch optimale Auslegung des Reaktors auf das Wirbelmaterial Blähschiefer ist sicherlich möglich und auch notwendig. Blähschiefer unterscheidet sich in seinen physikalischen Eigenschaften wie Schüttdichte usw. und seiner äußeren Form, starke Abweichung von der idealen Kugelform (dadurch verharken der
Partikel möglich) stark von dem üblicherweise verwendeten Quarzsand. In Anbetracht des hohen kommerziellen Wertes von Lävoglukosan kann eine Verbesserung der Ausbeute um den Faktor 1,5 jedoch durchaus als Erfolg gewertet werden.

Abbildung 53: Lävoglukosanausbeute, zeitlich aufgelöst

Erfahrungen mit Quarzsand als Wirbelmaterial zeigen, dass dieser nach einem Versuch stark graphitiert und berußt ist. Der von WULZINGER eingesetzte Blähschiefer zeigt ebenfalls eine deutliche Berührung. Sollte die katalytische Wirkung des Blähschiefer auf Oberflächeneffekte und Porenstruktur zurückzuführen sein, so besteht die Möglichkeit, dass

16.3 Schlussfolgerungen zur katalytischen Pyrolyse

Aufgrund der weiter oben geführten Diskussion der Ergebnisse der katalytischen Pyrolyse von Buchenholz mit Blähschiefer als Wirbelmaterial lassen sich schlussfolgernd folgende Aussagen treffen:

- Mit Blähschiefer als Wirbelmaterial lässt sich trotz der stark unterschiedlichen physikalischen Eigenschaften mit der LWS-Holz eine gut fluidisierte Wirbelschicht mit homogener Temperaturverteilung erzeugen.
- Die Ausbeute an Lävoglukosan ließ sich durch die Verwendung von Blähschiefer statt Quarzsand als Wirbelmaterial um den Faktor 1,5 (bzw. um 50%) steigern.
- Der Katalysator Blähschiefer zeigt im Versuchsverlauf eine steigende Aktivität bis zu einem maximalen Lävoglukosananteil am organischen Anteil des Pyrolyse-Öls von 4,88m%.
Für eine kommerzielle Nutzung der katalytischen Pyrolyse zur Lävoglukosangewinnung aus Holz ist eine optimale Auslegung des Reaktors auf das Wirbelmaterial Blähschiefer notwendig.

Die Flash-Pyrolyse mit Blähschiefer als Wirbelmaterial ist ein geeignetes Verfahren um relativ hohe Ausbeuten an Lävoglukosan zu erhalten. Die Wahl eines Biomasse-Abfallstoffes mit einem höheren Anteil an Cellulose als Buchenholz und eine Vorbehandlung des Eintragsgutes mit Phosphorsäure nach DOBELE könnte die absolute Ausbeute an Lävoglukosan weiter steigern (> 5m% des organischen Anteils am Pyrolyse-Öl).
17 Methoden

17.1 Versuchsdurchführung mit der LWS-Holz

Die für die Durchführung von Pyrolysen nötigen technischen Detailkenntnisse und Arbeitsschritte sind sehr komplex. Daher wurde für die LWS-Holz eine eigene Betriebsanleitung erstellt. Sie befindet sich im Anhang der vorliegenden Arbeit.

17.2 Versuchsdurchführung mit der LWS-LP

Abbildung 54 Fließschema der LWS-LP

Die weitere Gasreinigung erfolgte durch einen Elektroabscheider (Elektrofilter), mit dessen Hilfe Aerosole, die nicht im Kühler abgeschieden werden können, aus dem Gasstrom entfernt werden. Die so gereinigten Pyrolysegase durchfließen noch eine Waschflasche, die mit circa
250 ml Ethanol gefüllt ist, um letzte Rückstände zu binden. Die nichtkondensierbaren Gase verlassen die Apparatur über eine Gasuhr durch einen Drei-Wege-Hahn, an dem Gasproben entnommen werden können.

17.3 Aufarbeitung der Pyrolyse-Produkte

17.4 Analytik der Produktfraktionen aus den Pyrolyse-Experimenten

Zur Analyse der Produktfraktionen der Pyrolyse wurden verschiedene Analyseverfahren und -techniken angewendet, die teilweise auch bei den Experimenten im Labormaßstab eingesetzt wurden. Im Folgenden werden daher nur die spezifischen Techniken für die Versuche im Pilotmaßstab beschrieben. Alle Kalibrierungen wurden in Anlehnung an die DIN 38402 (Teil1) durchgeführt. Tabelle 86 zeigt eine Übersicht über die angewendeten Analysemethoden.

Tabelle 86 Übersicht über die Analyse-Methoden

<table>
<thead>
<tr>
<th>Analyt</th>
<th>Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eintragsgut</td>
<td>Glührückstandsbestimmung</td>
</tr>
<tr>
<td></td>
<td>Elementaranalyse</td>
</tr>
<tr>
<td></td>
<td>Feuchtegehaltbestimmung</td>
</tr>
<tr>
<td></td>
<td>Inductive-Coupled-Plasma (ICP-Spektalanalyse)</td>
</tr>
<tr>
<td>Pyrolyse-Öl</td>
<td>GC/MS</td>
</tr>
<tr>
<td></td>
<td>GC/FID</td>
</tr>
<tr>
<td></td>
<td>Wassergehalt nach Karl Fischer (Titration)</td>
</tr>
<tr>
<td></td>
<td>Viskosität</td>
</tr>
<tr>
<td></td>
<td>pH-Wert (Ein-Stab-Messkette)</td>
</tr>
<tr>
<td></td>
<td>Carboxylgruppenbestimmung</td>
</tr>
<tr>
<td></td>
<td>Dichtebestimmung</td>
</tr>
<tr>
<td></td>
<td>Neutralisationszahl (Titration)</td>
</tr>
<tr>
<td></td>
<td>Kapillardestillaton</td>
</tr>
<tr>
<td></td>
<td>SPE-Festphasenextraktion</td>
</tr>
<tr>
<td></td>
<td>Inductive-Coupled-Plasma (ICP-Spektalanalyse)</td>
</tr>
<tr>
<td>Pyrolyse-Koks/Kohle</td>
<td>Glührückstandsbestimmung</td>
</tr>
<tr>
<td></td>
<td>Elementaranalyse</td>
</tr>
<tr>
<td></td>
<td>Inductive-Coupled-Plasma (ICP-Spektalanalyse)</td>
</tr>
<tr>
<td>Pyrolyse-Gas</td>
<td>GC/FID</td>
</tr>
<tr>
<td></td>
<td>GC/WLD</td>
</tr>
</tbody>
</table>

17.4.1 Charakterisierung der Pyrolyse-Öl Fraktion

17.4.2 Quantitative und qualitative Ölanalytik mit GC

Die quantitative Ölanalytik wurde mit einem GC/FID (Chrompack 9000), die qualitative Analytik mit einem GC/MS System (HP-MSD 6890) durchgeführt. Zur Kalibrierung des Chrompack GC-CP 9000 (FID) wurden Standards unterschiedlicher Konzentration in Aceton mit Fluoranthen (200 µg/ml) als internen Standard angesetzt.

Tabelle 87: Gerät und Einstellungen für die Charakterisierung der Pyrolyseöle

<table>
<thead>
<tr>
<th>Gaschromatograph</th>
<th>Hewlett Packard MSD 6890</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detektor</td>
<td>MSD</td>
</tr>
<tr>
<td>Trägergas</td>
<td>He, konst. Fluß von 1 ml/min</td>
</tr>
<tr>
<td>Säule</td>
<td>CP Sil 19 CB (Chrompack) 60 m x 0.25 mm, Filmdicke 0,25 µm</td>
</tr>
<tr>
<td>Einspritzmenge</td>
<td>Split: 1:30</td>
</tr>
<tr>
<td>Bedingungen</td>
<td>Ofen: 45°C 4 min. isotherm, mit 3 °C/min. bis 260°C, 15 min. isotherm bei 260°C</td>
</tr>
</tbody>
</table>

17.4.3 Quantifizierung des Pyrolyseöls

Die Probenaufgabe erfolgte mit einem automatischen Probengeber der Firma Chrompack (Automatic-Liquid-Sampler-Model 910).

Tabelle 88: Gerät und Einstellungen für die Quantifizierung der Pyrolyseöle

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Chrompack (NL) CP 9000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detektor</td>
<td>FID</td>
</tr>
<tr>
<td>Trägergas</td>
<td>He, 2 bar</td>
</tr>
<tr>
<td>Säule</td>
<td>DB 1701 (J&W), 60 m x 0,25 mm, Filmdicke 0.25 µm</td>
</tr>
<tr>
<td>Einspritzmenge</td>
<td>Split: 1:35</td>
</tr>
<tr>
<td>Bedingungen</td>
<td>Detektor: 280°C,</td>
</tr>
<tr>
<td></td>
<td>Injektor: 250°C,</td>
</tr>
<tr>
<td></td>
<td>Ofen: 45°C 4 min isotherm,</td>
</tr>
<tr>
<td></td>
<td>mit 3°C/min bis 280°C, 15 min</td>
</tr>
<tr>
<td></td>
<td>isotherm bei 280°C</td>
</tr>
</tbody>
</table>

17.4.3.1 Kalibriermischungen

Für die Quantifizierung des Pyrolyse-Öls wurden verschiedene Kalibriermischungen mit den wichtigsten Bestandteilen der Pyrolyse-Öle angefertigt. Dafür wurden standardmäßig 60 Substanzen in Methanol eingewogen und unter den oben genannten Bedingungen in den Gaschromatographen mit FI-Detektor eingespritzt. Die Tabelle 89 gibt Auskunft über die Kalibriersubstanzen..
Tabelle 89: Liste der Kalibriersubstanzen

<table>
<thead>
<tr>
<th>ID-Nr.</th>
<th>Br.-Nr.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>Hydroxyacetaldehyd</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>Crotonaldehyd</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>Essigsäure</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>Hydroxypropanon, Acetol, Hydroxyaceteton</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>1,2 Ethandiol</td>
</tr>
<tr>
<td>6</td>
<td>17.1</td>
<td>1-Hydroxy-2-butyl-1-on</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>3-Hydroxypropynal</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
<td>2-Furfural</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>α-Angelicalacton</td>
</tr>
<tr>
<td>10</td>
<td>34</td>
<td>2-Hydroxy-2-Cyclopentene-1-on</td>
</tr>
<tr>
<td>11</td>
<td>35</td>
<td>Dihydromethylfuranon</td>
</tr>
<tr>
<td>12</td>
<td>36</td>
<td>Isomer von Br.-Nr. 41</td>
</tr>
<tr>
<td>13</td>
<td>36.2</td>
<td>3-Methyl-2-Cyclopentene-1-on Öl</td>
</tr>
<tr>
<td>14</td>
<td>37</td>
<td>γ-Butyro lactone, Dihydro-2-(3H)-furanon</td>
</tr>
<tr>
<td>15</td>
<td>38</td>
<td>(5H)-Furan-2-on</td>
</tr>
<tr>
<td>16</td>
<td>40.1</td>
<td>3-Methyl-(5H)-Furan-2-on</td>
</tr>
<tr>
<td>17</td>
<td>41</td>
<td>4-Hydroxy-5,6-dihydro-(2H)-Pyran-2-on</td>
</tr>
<tr>
<td>18</td>
<td>43.1</td>
<td>2-Hydroxy-1-methyl-1-Cyclopentene-3-on</td>
</tr>
<tr>
<td>19</td>
<td>45</td>
<td>Phenol</td>
</tr>
<tr>
<td>20</td>
<td>46</td>
<td>Guajacol</td>
</tr>
<tr>
<td>21</td>
<td>49.1</td>
<td>α-Cresol</td>
</tr>
<tr>
<td>22</td>
<td>50.4</td>
<td>p-Cresol</td>
</tr>
<tr>
<td>23</td>
<td>50.5</td>
<td>m-Cresol</td>
</tr>
<tr>
<td>24</td>
<td>54</td>
<td>4-Methyguajacol</td>
</tr>
<tr>
<td>25</td>
<td>57</td>
<td>2,4- and 2,5-Dimethylphenol</td>
</tr>
<tr>
<td>26</td>
<td>57.1</td>
<td>3- and 4-Ethybenol</td>
</tr>
<tr>
<td>27</td>
<td>60</td>
<td>4-Ethyguajacol</td>
</tr>
<tr>
<td>28</td>
<td>64</td>
<td>1,4,3,6-Dianhydromannopyranose</td>
</tr>
<tr>
<td>29</td>
<td>66</td>
<td>4-Vinylguajacol</td>
</tr>
<tr>
<td>30</td>
<td>68</td>
<td>Eugenol</td>
</tr>
<tr>
<td>31</td>
<td>68.1</td>
<td>4-Propylguajacol</td>
</tr>
<tr>
<td>32</td>
<td>69</td>
<td>5-Hydroxymethyl-2-furaldehyd</td>
</tr>
<tr>
<td>33</td>
<td>70</td>
<td>Syringol</td>
</tr>
<tr>
<td>34</td>
<td>72</td>
<td>Isoeugenol (cis)</td>
</tr>
<tr>
<td>35</td>
<td>75</td>
<td>Isoeugenol (trans)</td>
</tr>
<tr>
<td>36</td>
<td>76</td>
<td>4-Methylyringol</td>
</tr>
<tr>
<td>37</td>
<td>77</td>
<td>Vanillin</td>
</tr>
<tr>
<td>38</td>
<td>80</td>
<td>Hornovanillin</td>
</tr>
<tr>
<td>39</td>
<td>81</td>
<td>4-Ethyllyringol</td>
</tr>
<tr>
<td>40</td>
<td>83</td>
<td>Acetoguajaceton</td>
</tr>
<tr>
<td>41</td>
<td>86</td>
<td>4-Vinyllyringol</td>
</tr>
<tr>
<td>42</td>
<td>87</td>
<td>Guajacyleceton</td>
</tr>
<tr>
<td>43</td>
<td>88</td>
<td>4-Allyl- and 4-Propyllyringol</td>
</tr>
<tr>
<td>44</td>
<td>92.1</td>
<td>Isomer von Coniferylalkohol</td>
</tr>
<tr>
<td>45</td>
<td>93</td>
<td>4-Propenyllyringol (cis)</td>
</tr>
<tr>
<td>46</td>
<td>96</td>
<td>Lävoglukosan</td>
</tr>
<tr>
<td>47</td>
<td>97</td>
<td>4-Propenyleyringol (trans)</td>
</tr>
<tr>
<td>48</td>
<td>99</td>
<td>Syringaldehyd</td>
</tr>
<tr>
<td>49</td>
<td>100</td>
<td>Homosyringaldehyd</td>
</tr>
<tr>
<td>50</td>
<td>102</td>
<td>Acetosyringol</td>
</tr>
<tr>
<td>51</td>
<td>103</td>
<td>Coniferylalkohol (trans)</td>
</tr>
<tr>
<td>52</td>
<td>104</td>
<td>Coniferaldehyd</td>
</tr>
<tr>
<td>53</td>
<td>105</td>
<td>Syringylaceton</td>
</tr>
<tr>
<td>54</td>
<td>106</td>
<td>Propiosyringon</td>
</tr>
<tr>
<td>55</td>
<td>107.1</td>
<td>Isomer von Sinapylalkohol</td>
</tr>
<tr>
<td>56</td>
<td>108</td>
<td>Dihydrosinapylalkohol</td>
</tr>
<tr>
<td>57</td>
<td>109</td>
<td>Sinapylalkohol (cis)</td>
</tr>
<tr>
<td>58</td>
<td>115</td>
<td>Fluoranten</td>
</tr>
<tr>
<td>59</td>
<td>110.1</td>
<td>Sinapaldehyd</td>
</tr>
</tbody>
</table>

Die Auswertung erfolgte mit Hilfe der Software *Maestro* der Firma *Chrompack* nach der Internen-Standard-Methode, die aus den Peakflächen die Gehalte der Substanzen ermittelt. Folgende Berechnungen bilden die Basis der Quantifizierung:
\[
AMOUNT(X) = \frac{IS \cdot AMOUNT}{SAMPLE \cdot AMOUNT} \cdot \frac{AREA(X)}{AREA(IS)} \cdot RRF
\]

Gleichung 4: Berechnung des Substanzgehaltes

\[
RF(X) = \frac{CALIBRATION \cdot AMOUNT(X)}{AREA(X)}
\]

Gleichung 5: Berechnung des RF-Wertes

\[
RRF = \frac{RF(X)}{RF(IS)}
\]

Gleichung 6: Berechnung des RRF-Wertes

17.4.4 Analytik der Pyrolyse-Gas-Fraktion

Die niedermolekularen Bestandteile der Pyrolyse-Gase wurde Online gemessen (Micro-GC-Chrompack-CP2002), während zur Bestimmung der höhermolekularen Bestandteile Proben entnommen wurden, die nach der Pyrolyse vermessen wurden (Chrompack GC-438A).

17.4.4.1 On-line Analytik der niedermolekularen Pyrolyse-Gase

Tabelle 90: Gerät und Einstellungen für die Messung von niederer Kohlenwasserstoffe

<table>
<thead>
<tr>
<th>Gaschromatograph</th>
<th>Chrompack (NL) Micro-GC CP 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detektor</td>
<td>WLD</td>
</tr>
<tr>
<td>Trägergas</td>
<td>He</td>
</tr>
<tr>
<td>Fluss</td>
<td>30 [ml/min.]</td>
</tr>
<tr>
<td>Säulen</td>
<td>CO : 4 m Molsieb-MSA</td>
</tr>
<tr>
<td></td>
<td>CO₂: 0,25 m, Plot-Säule-HSA</td>
</tr>
<tr>
<td>Spülzeit d. Probenschleife</td>
<td>120 [s]</td>
</tr>
<tr>
<td>Einspritzmenge</td>
<td>-</td>
</tr>
<tr>
<td>Split</td>
<td>-</td>
</tr>
<tr>
<td>Temp.-Programm</td>
<td>CO : Ofen: 50 °C isotherm,</td>
</tr>
<tr>
<td></td>
<td>Injektionszeit: 250 ms</td>
</tr>
<tr>
<td></td>
<td>CO₂: Ofen: 70 °C isotherm,</td>
</tr>
<tr>
<td></td>
<td>Injektionszeit: 250 ms</td>
</tr>
</tbody>
</table>

17.4.4.2 Kalibrierung des Micro-GC-Chrompack-CP2002

Tabelle 91: Zusammensetzung der Gasmischung zur Kalibrierung

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>Wert [Vol.%]</th>
<th>Messunsicherheit [+/- % rel.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserstoff 3.0</td>
<td>5,1</td>
<td>2</td>
</tr>
<tr>
<td>Methan 2.5</td>
<td>10,3</td>
<td>2</td>
</tr>
<tr>
<td>Kohlenmonoxid 1.8</td>
<td>30,1</td>
<td>2</td>
</tr>
<tr>
<td>Kohlendioxid 4.5</td>
<td>45,2</td>
<td>2</td>
</tr>
<tr>
<td>Ethen 3.0</td>
<td>1,94</td>
<td>2</td>
</tr>
<tr>
<td>Ethan 2.5</td>
<td>1,98</td>
<td>2</td>
</tr>
<tr>
<td>Stickstoff 5.0</td>
<td>Rest</td>
<td>-</td>
</tr>
</tbody>
</table>

17.4.4.3 Off-line Analytik der höhermolekulare Pyrolyse-Gase

Die Identifizierung der höhermolekularen Gaskomponenten war nur anhand der Retentionszeiten des Standards möglich. Deshalb beschränkt sich die quantitative Analytik auf die kalibrierten Gase.

Tabelle 92: Gerät und Einstellungen für die Messung von höheren Kohlenwasserstoffen

<table>
<thead>
<tr>
<th>Gaschromatograph</th>
<th>Chrompack (NL) Model 438A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detektor</td>
<td>FID</td>
</tr>
<tr>
<td>Trägergas</td>
<td>He</td>
</tr>
<tr>
<td>Säule</td>
<td>PLOT (Al₂O₃+ KCl) 50 m x 0,32 mm</td>
</tr>
<tr>
<td>Einspritzmenge</td>
<td>Split: 1:40</td>
</tr>
<tr>
<td>Bedingungen</td>
<td>Detektor: 280 °C</td>
</tr>
<tr>
<td></td>
<td>Injektor: 80 °C</td>
</tr>
<tr>
<td></td>
<td>Ofen: 60 °C 10 min isotherm, 13 °C/min bis 200 °C</td>
</tr>
</tbody>
</table>
17.4.4 Kalibrierung des Chrompack-GC-438A

Tabelle 93: Konzentrationen der gesättigten Kohlenwasserstoff-Gasmischung

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>Wert [Vol.%]</th>
<th>Messunsicherheit [+/- % rel.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methan</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>Ethan</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>Propan</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>n-Butan</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>iso-Butan</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>Pentan</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>Hexan</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>Helium</td>
<td>Rest</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 94: Konzentrationen der ungesättigten Kohlenwasserstoff-Gasmischung

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>Wert [Vol.%]</th>
<th>Messunsicherheit [+/- % rel.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethen</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>Propen</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>Ethin</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>trans-Buten</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>cis-Buten</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>iso-Buten</td>
<td>0,1</td>
<td>2</td>
</tr>
<tr>
<td>Helium</td>
<td>Rest</td>
<td>-</td>
</tr>
</tbody>
</table>

Bei der Kalibrierung des Verfahrens stellte sich heraus, dass die Standardabweichungen zwischen mehreren Wiederholungsmessungen teilweise deutlich über 50% lagen. Deshalb wurden für die nachfolgenden untersuchten Proben grundsätzlich Mehrfachbestimmungen durchgeführt. Darüber hinaus wurden diese Messergebnisse auf die Messungen abgestimmt, die mit dem Micro-GC durchgeführt wurden. Sowohl mit dem Micro-GC als auch mit dem
GC-438A wurden: Methan, Ethen und Ethan bestimmt. Die Korrelation fand anhand dieser doppelt vorhandenen Messdaten statt.

17.5 Analytik der Pyrolyse-Koks bzw. -Kohle Fraktion

Die Kohle- oder Pyrolyse-Koks-Fraktion ist im Rahmen dieser Arbeit nicht so interessant. Auf diese Produktfraktion wurden lediglich die Instrumente der Allgemeinen Analytik und naturgemäß die Instrumente der Feststoffanalytik angewendet.

17.6 Allgemeine Analytik

Mit Allgemeiner Analytik sind Analysemethoden und -techniken gemeint, die auf alle oder mehrere der Pyrolyse-Produkte und/oder Eintragsgüter angewendet werden können. Sie werden im Folgenden näher erläutert.

17.6.1 Wasserbestimmung nach Karl Fischer

\[
\begin{align*}
\text{SO}_2 + \text{C}_5\text{H}_5\text{N} & \rightarrow \text{C}_5\text{H}_5\text{N} \cdot \text{SO}_2 \\
\text{C}_5\text{H}_5\text{N} \cdot \text{I}_2 + \text{H}_2\text{O} & \rightarrow \text{C}_5\text{H}_5\text{N}^+ + \text{IOH}^- + \text{I}^- \\
\text{IOH}^- + \text{C}_5\text{H}_5\text{N} \cdot \text{SO}_2 + \text{C}_5\text{H}_5\text{N} & \rightarrow \text{C}_5\text{H}_5\text{N} \cdot \text{SO}_3 + \text{C}_5\text{H}_5\text{N}^+ + \text{I}^- \\
\text{C}_5\text{H}_5\text{N} \cdot \text{SO}_3 + \text{CH}_3\text{OH} & \rightarrow \text{C}_5\text{H}_5\text{N}^+ + \text{CH}_3\text{OSO}_3^- \\
\text{SO}_2 + \text{C}_5\text{H}_5\text{N} \rightarrow & \text{C}_5\text{H}_5\text{N} \cdot \text{SO}_2 \\
\text{C}_5\text{H}_5\text{N} \cdot \text{I}_2 + \text{H}_2\text{O} \rightarrow & \text{C}_5\text{H}_5\text{N}^+ + \text{IOH}^- + \text{I}^- \\
\text{IOH}^- + \text{C}_5\text{H}_5\text{N} \cdot \text{SO}_2 + \text{C}_5\text{H}_5\text{N} \rightarrow & \text{C}_5\text{H}_5\text{N} \cdot \text{SO}_3 + \text{C}_5\text{H}_5\text{N}^+ + \text{I}^- \\
\text{C}_5\text{H}_5\text{N} \cdot \text{SO}_3 + \text{CH}_3\text{OH} \rightarrow & \text{C}_5\text{H}_5\text{N}^+ + \text{CH}_3\text{OSO}_3^- \\
\end{align*}
\]

Gleichungen 7: Elementarreaktionen der Karl-Fischer Titration

Als Bruttoreaktion ergibt sich Gleichung 8.

\[
3 \text{Py} + \text{I}_2 + \text{SO}_2 + \text{CH}_3\text{OH} + \text{H}_2\text{O} \rightarrow 3 \text{PyH}^+ + 2 \Gamma^- + \text{CH}_3\text{OSO}_3^- \\
\]

Gleichung 8: Bruttogleichung der Karl-Fischer Titration

Der Titrationsendpunkt wird potentionometrisch durch Dead-Stop-Indikation ermittelt. Die Bestimmung erfolgte nach Karl-Fischer mit dem Titriergerät Titro Line Alpha der Firma
Als Titrant wurde das Einkomponentenreagenz Hydranal Composite 2 der Firma Riedel de Haën und als Lösungsmittel Methanol verwendet. Für die Bestimmung wurden ca. 50-100 mg des Pyrolyse-Öls eingewogen und anschließend automatisch titriert.

17.6.2 Bestimmung der Eintragsgutfeuchte nach DIN 52183

Der Feuchtigkeitsgehalt der luftgetrockneten Probe wurde durch Trocknen im Trockenschrank bei 103°C ± 2°C unter Atmosphärendruck gravimetrisch bestimmt. Eine Menge von mehr als 20 g der lufttrockenen Probe wurden auf 0,001 g genau in einem vorgeglühten Porzellantiegel eingewogen, im Trockenschrank bis zur Gewichtskonstanz getrocknet und die Wägedifferenz ermittelt. Bei Annahme, dass die Probe vorher luftgetrocknet vorliegt und keine leichtflüchtigen Verbindungen enthält, ist der Gesamtwassergehalt gleich dem hygroskopischen Wassergehalt. Die Holzfeuchte wird nach folgender Formel berechnet und in Gewichtsprozent auf 0,1% gerundet angegeben.

\[
W = \frac{a - b}{a} \cdot 100\%
\]

Gleichung 9: Berechnung der Eintragsgutfeuchte \((W = \text{Holzfeuchte [%]}, a = \text{Einwaage [g]}, b = \text{Auswaage [g]})\)

Die absolute zulässige Abweichung der Einzelwerte vom Mittelwert bei Parallelbestimmungen aus der gleichen Probe sollte bei Messungen der Restfeuchtigkeit nicht mehr als ±0,1% betragen.

17.6.3 Bestimmung der Glührückstände nach DIN 51719

Bei der Flash-Pyrolyse werden die Biomasse-Partikel nur sehr kurz den hohen Temperaturen der Pyrolyse unterworfen. Durch die Bestimmung der Glührückstände einer Probe lässt sich der Anteil thermisch oxidierbarer Produkte und damit auch der Anteil der nicht weiter thermisch oxidierbaren anorganischen Rückstände bestimmen.

Die Glührückstände wurden durch Veraschung nach DIN 51719 in einem Muffelofen bei 815°C gravimetrisch bestimmt.

Der Aschegehalt gibt Aufschluss über den Gehalt anorganischen Materials in einer Probe. Asche ist per Definition der bei 815°C erhaltene Verbrennungsrückstand. Dazu wurde die
lufttrockene Probe in einem elektrisch beheizten Muffelofen bei 815°C ±15°C vollständig verascht. Der Aschegehalt wird aus der Menge des Verbrennungsrückstandes bestimmt. Es wurden Proben > 30 g auf 0,001 g genau in vorgeglühte Porzellantiegel eingewogen und die Rückstände ermittelt.

Der Aschegehalt ergibt sich aus der Wägedifferenz der Probe vor und nach der Veraschung. Das Ergebnis wird in Gewichtsprozent und auf 0,01 % angegeben. Die Genauigkeit sollte bei Parallelbestimmungen und einem Wassergehalt von < 10 m% ±0,2 % vom Mittelwert betragen.

17.6.4 Elementaranalysen

Da die Öle teils inhomogen vorlagen, wurden Mehrfachbestimmungen zur Ermittlung der Kohlenstoff-, Wasserstoff- und Stickstoff-Bestimmung durchgeführt. Sauerstoffgehalte wurden als Differenz zu 100% ermittelt.

17.6.5 Carbonylgruppengehaltsbestimmung

17.6.6 Bestimmung der Viskosität nach DIN 51562

Die Bestimmung der Viskositäten erfolgt mit einem automatischem Kapillar-Viskosimeter der Firma Schott, Typ AVS 350. Die Bestimmung der Viskosität ist bei verschiedenen Temperaturen durch zwei temperierte Wasserbäder der Firma Schott, Typ CT 1650 möglich.

Das Messprinzip und die Konstruktion des Kapillar-Viskosimeters ist in der DIN 51562 ausführlich beschrieben. Das verwendete Gerät ist vom Typ Ubbelohde-Viskosimeter zur
Bestimmung der Viskosität \(\nu \) durch Messung der Ausflusszeit bei 10–100°. Durch das hängende Kugelniveau ist die mittlere Druckhöhe unabhängig von der Füllmenge. Der Einfluss der Oberflächenspannung ist weitgehend ausgeschaltet.

17.6.7 pH-Wert Bestimmung

Die pH-Werte der flüssigen Pyrolyse-Produkte wurde mit einer Einstabmesskette der Firma Ingold Messtechnik GmbH, Steinbach/Taunus, Typ 405-88TE (165 mm, 9811 = 3 mol/l KC, min. 5% H\(_2\)O) und einem entsprechenden pH-Meter des Herstellers Wissenschaftlich-Technische-Werkstätten (WTW), Weilheim vom Typ pH 530 gemessen.

17.6.8 Dichtebestimmung

Die Dichten der flüssigen Pyrolyse-Produkte wurde durch Wägung eines handelsüblichen Pygnometers (rundliches Glasfläschchen mit ebenem Boden und einem eingeschliffenen Kapillarstopfen) bestimmt. Das Pygnometer wird vorsichtig so befüllt, dass die Flüssigkeit die ganze Kapillare des aufgesetzten Kapillarstopfens ausfüllt; die aus der Kapillare austretende Flüssigkeit wird mit Fließpapier entfernt.

17.6.9 Bestimmung der Neutralisationszahl nach DIN 51558

In der Schmierstoffanalytik ist die Neutralisationszahl definiert als die Laugenmenge, ausgedrückt in mg KOH, die notwendig ist, um die in 1 g der Probe enthaltenen sauren Bestandteile zu neutralisieren. Die Neutralisationszahl dient zur Charakterisierung von Schmierölen und -fetten hinsichtlich ihres Gehalts an wasserlöslichen Säuren, welche mit Methylorange titrierbar sind, beziehungsweise Gesamtsäuren, welche mit Alkaliblau titrierbar sind. Auch bei Fetten und fetten Ölen sowie bei Harzen benutzt man die Neutralisationszahl als Kennzahl. Im Gegensatz zur Säurezahl werden bei der Neutralisationszahl nicht nur die organischen Säuren, sondern der Gesamtsäure-Gehalt erfasst.

17.6.10 Berechnung des Heizwertes von Pyrolyse-Öl nach DIN-Vorschriften

von Kohlenstoff und Schwefel müssen (Kohlendioxid und Schwefeldioxid) gasförmig vorliegen. Eine Oxidierung des Stickstoffs darf nicht stattfinden. Für den Heizwert \((H_u) \) gelten die gleichen Versuchsbedingungen, mit der Ausnahme, dass das vor der Verbrennung im Brennstoff vorhandene Wasser und das beim Verbrennen gebildete Wasser nach der Verbrennung im dampfförmigen Zustand bei 25°C vorliegen muß.

Als bezogene Größen haben der spezifische bzw. der molare Brennwert die Dimension kJ/kg bzw. kJ/mol und der auf das Normvolumen bezogene Brennwert die Dimension kJ/m³. Größenmäßig ist der Heizwert kleiner als der Brennwert; er lässt sich aus diesem mit Hilfe der Verdampfungsenthalpie des Wassers berechnen, da experimentell gewöhnlich der Brennwert auf kalorimetrischen Wege bestimmt wird. [216] Die Berechnung kann nach \(H_u = H_o - r \cdot W_{Wasser} \) vorgenommen werden, wobei \(r = 2,442 \text{ kJ/g} \) die spezifische Verdampfungswärme des Wassers bei 25°C ist, \(W_{Wasser} \) der Quotient aus den Massen des \(H_2O \) ist, welches bei der Brennstoffelementaranalyse gebildet wird. Weitere Angaben über Heiz- und/oder Brennwerte finden sich in der Literatur sowie in entsprechender DIN-Vorschrift. [217] Anhaltswerte für \(H_o \) bzw. \(H_u \) organischer Stoffe ergeben sich durch Anwendung der *Dalongschen Formel* auf die bei der Elementaranalyse erhaltenen Prozentwerte an Kohlenstoff, Wasserstoff, Sauerstoff, Schwefel und den Wassergehalt:

\[
H_o = 80,8 \cdot C + 344,6 \cdot (H - 0,125 \cdot O) + 25 \cdot S \\
\text{Gleichung 10: Berechnung des oberen Heizwertes}
\]

\[
H_u = 81 \cdot C + 290 \cdot (H - 0,125 \cdot O) + 25 \cdot S - 6 \cdot W_{Wasser} \\
\text{Gleichung 11: Berechnung des unteren Heizwertes}
\]

Die erhaltenen Werte in kcal/kg müssen durch Multiplikation mit dem Faktor 4,1868 in kJ/kg umgerechnet werden. [218] [219] [220] [221] Die Berechnung des Heizwertes für organische Verbindungen, die lediglich Kohlenstoff, Wasserstoff und Sauerstoff enthalten, kann direkt nach Gleichung 12 in MJ/kg erfolgen.

\[
H_o = 0,001 \cdot [338,2 \cdot C + 1442,8 \cdot (H - \frac{O}{8})] \\
\text{Gleichung 12: Berechnung des oberen Heizwerts (bei Vorhandensein von C, H und O)}
\]
17.6.11 Kapillar-Destillation von flüssigen Pyrolyse-Produkten

Abbildung 56: MicroDestiller der Firma Eppendorf

<table>
<thead>
<tr>
<th>Tabelle 95: Technische Daten des MicroDestiller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
</tr>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Probenmenge</td>
</tr>
<tr>
<td>Probenanzahl</td>
</tr>
<tr>
<td>Heizrate</td>
</tr>
<tr>
<td>Heizung</td>
</tr>
<tr>
<td>Kühlung</td>
</tr>
</tbody>
</table>
Tabelle 96: Versuchsparameter für die Kapillar-Destillation

<table>
<thead>
<tr>
<th>Probenmenge</th>
<th>ca. 10 [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperaturprogramm</td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td>120 [°C]</td>
</tr>
<tr>
<td>Haltephase</td>
<td>300 [min]</td>
</tr>
<tr>
<td>Nachlauf</td>
<td>300 [min]</td>
</tr>
<tr>
<td>Kühlend</td>
<td>-9 [°C]</td>
</tr>
</tbody>
</table>

17.6.12 Flüssigchromatographie mit SPE-Festphasenextraktion

SPE kann ebenfalls für die Bestimmung von polykondensierten Aromaten (PAH) dienen, die Detektion erfolgt dann mit GC/MS im Single-Ion-Monitoring (SIM) Modus. Es können so sehr geringe Mengen an PAH’s analysiert werden.

Abbildung 57: Flüssigphasen-Extraktionsgerät von *ICT International Sorbent Technology*

Tabelle 97: Technischen Daten des Extraktionsgerätes und der Festphasenkartuschen

<table>
<thead>
<tr>
<th>Festphasenkartuschen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>Varian</td>
<td>[-]</td>
</tr>
<tr>
<td>Typ</td>
<td>C18 Bond Elut</td>
<td>[-]</td>
</tr>
<tr>
<td>Trennphase</td>
<td>Silika</td>
<td>[-]</td>
</tr>
<tr>
<td>Trennung</td>
<td>unpolar</td>
<td>[-]</td>
</tr>
<tr>
<td>Max. Probenmenge</td>
<td>500 [mg]</td>
<td></td>
</tr>
<tr>
<td>Max. Elutionsvolumen</td>
<td>3 [ml]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extraktionsgerät</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>International Sorbent Technology</td>
<td>[-]</td>
</tr>
<tr>
<td>Kartuschenanzahl</td>
<td>10</td>
<td>[-]</td>
</tr>
<tr>
<td>Funktionsprinzip</td>
<td>Vakuumextraktion</td>
<td>[-]</td>
</tr>
</tbody>
</table>

Die Festphasenextraktion wird folgendermaßen durchgeführt:

- Konditionieren der Kartuschen: erst mit 3ml Methanol, dann mit 3ml Lösungsmittel
- Aufgabe der Öl-Probe auf die Kartusche: ca. 200 mg Einwaage
- Öl mit Vakuum leicht in die stationäre Phase der Kartusche einziehen
- Eluieren der Öl-Probe mit je 3ml Lösungsmittel in oben genannter Reihenfolge
- Aliquoter Anteil der eluierten Fraktion mit GC-FID-Methode analysieren.
Die Einstellungen und technischen Daten des Gerätes sind in Tabelle 96 aufgelistet.

Tabelle 98 Gerät und Geräteeinstellungen für die Messung der eluierten Fraktion

<table>
<thead>
<tr>
<th>Gaschromatograph</th>
<th>Chrompack (NL) CP 9001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detektor</td>
<td>FID</td>
</tr>
<tr>
<td>Trägergas</td>
<td>He, 2 bar</td>
</tr>
<tr>
<td>Säule</td>
<td>DB 1701 Länge: 60m,</td>
</tr>
<tr>
<td></td>
<td>Filmdicke: 0.25µm</td>
</tr>
<tr>
<td>Einspritzmenge</td>
<td>splitlos</td>
</tr>
<tr>
<td>Bedingungen</td>
<td>Detektor: 280°C,</td>
</tr>
<tr>
<td></td>
<td>Injektor: 250°C,</td>
</tr>
<tr>
<td></td>
<td>Ofen: 45°C, 4 min. isotherm,</td>
</tr>
<tr>
<td></td>
<td>mit 3°C/min bis 280°C,</td>
</tr>
<tr>
<td></td>
<td>20 min isotherm bei 280°C</td>
</tr>
</tbody>
</table>

17.6.13 Abgas-Emissionsmessungen nach 17. BImSchV

Die Pyrolyse-Gase der Pyrolyse von Altholz (TP 49) werden einer Verbrennung zugeführt. Diese Verbrennungsabgase sollen auf die Parameter untersucht werden, welche in der siebzehnten Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes, (17. BImSchV), begrenzt sind. Bei den Messwerten werden die bei den jeweiligen Abgas-Sauerstoffgehalten gemessenen Konzentrationen angeführt. Gemessen wird über einen Zeitraum von einer ½ Stunde bzw. bei den Metallen und Dioxinen / Furanen über die jeweilige Probenahmezeit entsprechend 17. BImSchV.

17.6.13.1 Beschreibung der Probenahmestelle

17.6.13.2 Strömungsgeschwindigkeit

Die Strömungsgeschwindigkeit wurde mit einem Flügelrad (Anemometer) gemessen.
17.6.13.3 Wasser dampanteil im Abgas (Abgasfeuchte)

Der Wasserdampanteil im Abgas wurde durch Adsorption an Silikagel und nachfolgende gravimetrische Bestimmung ermittelt.

17.6.13.4 Analysatoren

Die im Folgenden aufgeführten Analysatoren wurden eingesetzt.

Tabelle 99: Analysatoren

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Meßverfahren</th>
<th>Meßbereich</th>
<th>Hersteller / Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauerstoff</td>
<td>Paramagnetismus</td>
<td>0 - 25 Vol.%</td>
<td>Servomex Typ: OA 570</td>
</tr>
<tr>
<td>Kohlenmonoxid</td>
<td>Binos IR</td>
<td>0 - 1000 mg/m³</td>
<td>Leybold/Rosemount</td>
</tr>
<tr>
<td>Stickstoffmonoxid</td>
<td>NO-IR Binos</td>
<td>0 - 500 mg/m³</td>
<td>Leybold/Rosemount</td>
</tr>
<tr>
<td>Stickstoffdioxid</td>
<td>NO₂-UV Binos</td>
<td>0 - 200 mg/m³</td>
<td>Leybold/Rosemount</td>
</tr>
<tr>
<td>organische Stoffe als</td>
<td>FID</td>
<td>0 - 10000 mg/m³</td>
<td>Bernath Atomic GmbH & Co.</td>
</tr>
<tr>
<td>Gesamtkohlenstoff</td>
<td></td>
<td></td>
<td>KG, Wennigsen, Modell 3005</td>
</tr>
</tbody>
</table>

17.6.13.5 Gesamtstaub

Für die Erfassung partikelförmiger Stoffe wird das Verfahren der isokinetischen Probeentnahme angewendet. Die Partikel werden dabei an Messfiltern abgeschieden, die vor und nach der Probenahme gewogen werden. Aus der Massendifferenz ergibt sich die Staubmenge, die auf das Probegasvolumen zu beziehen ist. Das Verfahren ist in der VDI-Richtlinie 2066, Blatt 7 beschrieben.

17.6.13.6 Dampf- und gasförmige anorganische Chlorverbindungen (als HCl)

17.6.13.7 Fluorwasserstoff (als HF)

17.6.13.8 Schwefeldioxid (als SO₂)

17.6.13.9 Metalle

Die Probenahme für staubförmige Metalle und Metalloide erfolgt in Anlehnung an die VDI 3868, Blatt 1 vom Dez. 94 und Blatt 2E vom Nov. 95.

Die Metalle und Metalloide wurden atomabsorptionsspektrometrisch durch Anregung in einem elektrisch geheizten Graphitrohr (G-AAS) oder atomemissionsspektrometrisch mit einem induktiv gekoppelten Plasma (ICP-AES) bestimmt. Die Bestimmung des Quecksilbers wurde mittels AAS-Kaldampftechnik durchgeführt.

17.6.13.10 Polychlorierte Dibenzodioxine und -furane

18 Formelzeichen- und Abkürzungsverzeichnis

Tabelle 100: Formel- und Abkürzungszeichen

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fläche</td>
<td>$[m^2]$</td>
</tr>
<tr>
<td>c_p</td>
<td>Wärmekapazität des Eintragsgutes</td>
<td>$[kJ/kgK]$</td>
</tr>
<tr>
<td>Δp</td>
<td>Druckverlust</td>
<td>$[Pa]$</td>
</tr>
<tr>
<td>ΔT</td>
<td>Temperaturdifferenz</td>
<td>$[K]$</td>
</tr>
<tr>
<td>d</td>
<td>Partikeldurchmesser</td>
<td>$[m]$</td>
</tr>
<tr>
<td>E</td>
<td>Feldstärke</td>
<td>$[V/m]$</td>
</tr>
<tr>
<td>ε</td>
<td>Bettporosität</td>
<td>[-]</td>
</tr>
<tr>
<td>H</td>
<td>Höhe des expandierten Wirbelbettes</td>
<td>$[m]$</td>
</tr>
<tr>
<td>η</td>
<td>dynamische Viskosität</td>
<td>$[Ns/m^2]$</td>
</tr>
<tr>
<td>ν</td>
<td>kinematische Viskosität</td>
<td>$[m^2/s]$</td>
</tr>
<tr>
<td>Q</td>
<td>ausgetauschte Wärmemenge</td>
<td>$[W]$</td>
</tr>
<tr>
<td>q</td>
<td>Ladungszahl der Teilchen</td>
<td>$[eV]$</td>
</tr>
<tr>
<td>ρ</td>
<td>Dichte</td>
<td>$[kg/m^3]$</td>
</tr>
<tr>
<td>u</td>
<td>Lineargeschwindigkeit</td>
<td>$[m/s]$</td>
</tr>
<tr>
<td>u_W</td>
<td>Wanderungsgeschwindigkeit der geladenen Teilchen</td>
<td>$[m/s]$</td>
</tr>
<tr>
<td>V</td>
<td>Volumenstrom</td>
<td>$[m^3/h]$</td>
</tr>
</tbody>
</table>
19 Literaturverzeichnis

[10] Siebzehnte Verordnung zur Durchführung des BImSchG (Verordnung über Verbrennungsanlagen für Abfälle und ähnliche brennbare Stoffe - 17. BImSchV) vom 23.11.90, BGBl. I (1990) 2545

[37] Anonymus, Mitteilung des Bundesverbandes der Altholzaufbereiter und -verwerter e.V. (www.altholzverband.de) Koblenz-Ehrenbreitstein 2001

[49] Faix O., Abbildung aus dem Institut für Holzchemie der Bundesforschungsanstalt für Forst und Holzwirtschaft, Hamburg 1999
[54] Steinhofer A. et al., Erdöl u. Kohle-Erdgas-Petrochemie, 16 (1963) 540

[82] Faix O., Mitteilung aus dem Institut für Holzchemie der Bundesforschungsanstalt für Forst und Holzwirtschaft, Hamburg 1999

[95] Boon J.J., Pastorova I, Botto R.E., Arisz P.W., Structural studies on cellulose pyrolysis and cellulose chars by PY-MS, PY-GC/MS, FTIR, NMR and by wet chemical techniques; Biomass Energy 7 (1994) 25-32

[117] Ormrod D., Mitteilung von Ormrod-Diesels, Unit 4 Peel Industrial Estate, West Pimbo, Skelmersdale, Lancashire, UK 2000

[126] Panagiotis N., Binders for the wood industry made with pyrolysis oil, Newsletter of the PyNe-Network 6 (1998)

[178] VDI-Richtlinien, VDI 3678, März 1980

[179] Piskorz J., Mitteilung der Firma RTI, Kanada 1997

[198] Kelley S.S., Wang X.M., Myers M.D., Davis M.F., Use of model compounds to study the reactivity and cross-linking of natural phenolics, ACS Symp. Ser. 784 (2001)

[200] Amen-Chen C., Pakdel H., Roy C., Production of monomeric phenols by thermochemical conversion of biomass: a review, Bioresource Technology 79 (3) 2001

[205] RTI, Levoglucosan/Levoglucosenone - High potential chemical feedstocks, Firmenschrift der Resource Transformations International Ltd. (RTI), 382 Arden Place, Waterloo, Ontario, Kanada, 1993

[211] Südzucker AG, Deutsche Patentschrift vom 06.06., Patent Nr. DE 38 03 339 C 2, 1991

[215] DIN 5499 (1972)

[216] DIN 51900 Teil 1–3 (1977)

[218] Kohlrausch, Praktische Physik, Band 1, Teubner-Verlag, Stuttgart 1985, 426

[220] DIN 5499 (1972)

Inhaltsverzeichnis Anhang

1 Betriebsanleitung der LWS Holz

1.1 Sicherheit ... 205
1.2 Grundsätzliches zum Thema Sicherheit 205
1.3 Sicherheitseinrichtungen des Institutes für Holzchemie der BFH 206
1.4 Allgemeine Angaben zur LWS-Holz .. 206
1.5 Abkürzungsverzeichnis der Betriebsanleitung 207
1.6 Fließpläne der LWS-Holz .. 208
1.7 Übergabe der Anlage ... 209
1.8 Allgemeine Montagearbeiten .. 209
1.8.1 Montage des Reaktors ... 210
1.8.2 Montage der Zykline ... 211
1.8.3 Dichtigkeitsprüfung des Stahlteils .. 211
1.8.4 (A) Montage der Stahlkühler .. 212
1.8.5 (A) Montage der Abscheidevorrichtungen aus Glas 212
1.8.6 (B) Montage der Strahlwäscher .. 213
1.8.7 (B) Montage der Abscheidevorrichtungen aus Glas 214
1.9 Versuche mit der LWS-Holz .. 215
1.9.1 Versuchsvorbereitung ... 215
1.9.2 Versuchsduurchführung ... 219
1.9.3 Anfahrprozedur .. 219
1.9.4 Versuchsarbeit ... 222
1.9.5 Betrieb mit Inertgas ... 223
1.9.6 Betrieb mit Dampf .. 224
1.9.7 Abfahrprozedur .. 225
1.10 Demontage und Reinigung der Anlage 226
1.10.1 (A) Reinigungsarbeiten .. 227
1.10.2 (B) Reinigungsarbeiten .. 227
1.11 Betriebssicherheit .. 229
1.12 Technische Daten .. 231
1.13 Anlagenwartung .. 232
1.14 Datenerfassung (A) .. 233
1.15 Maße für Schrauben und Dichtungen (A) 234
1.16 Datenerfassung (B) .. 235
1.17 Maße für Schrauben und Dichtungen (B) 236
1.18 Sicherheitsdaten ... 236

2 Technische Zeichnungen

3 Chromatogramme

3.1 Ölanalytik ... 239
3.2 SPE-Chromatogramme ... 240
3.3 Gas-Analytik ... 243
3.3.1 Analytik der niederen Kohlenwasserstoffe sowie der Permanent-Gase 243
3.3.2 Analytik der höheren Kohlenwasserstoffe ... 245

4 Emissionsmessungen nach den Regelungen der 17. BImSchV

5 Sicherheitsdatenblätter

6 Wissenschaftliche Veröffentlichungen
6.1 Wissenschaftliche Veröffentlichungen in Textform .. 264
6.2 Wissenschaftliche Vorträge.. 264
6.3 Wissenschaftliche Posterbeiträge... 265

7 Lebenslauf.. 266
7.1 Persönliche Daten... 266
7.2 Ausbildung ... 266
7.3 Weiterbildung... 266
7.4 Beruflicher Hintergrund .. 266
1 Betriebsanleitung der LWS Holz

1.1 Sicherheit

1.2 Grundsätzliches zum Thema Sicherheit

Als persönliche Schutzausrüstung für Montagearbeiten sowie für den Versuchsbetrieb sind:
- Schutzbrille
- Arbeitshandschuhe
- Schutzkleidung (Arbeitsanzug mit kurzer Jacke)
- geschlossenes Schuhwerk (Sicherheitsschuhe) zu tragen.

1.3 Sicherheitseinrichtungen des Institutes für Holzchemie der BFH

- Kohlensäure-Feuerlöscher und Löschdecke befinden sich in Eingangsrichtung zu den Technika durch den Glasgäng links neben der Tür im Vorraum zum Pyrolyse-Technikum.
- Der Feuermelder befindet sich links neben der Eingangstür zum Pyrolyse-Technikum.
- Eine Notdusche befindet sich über der Eingangstür zum Pyrolyse-Technikum.
- Das Telefon und ein Erste-Hilfe-Schrank befinden sich ebenfalls in Eingangsrichtung zu den Technika durch den Glasgäng links neben der Tür im Vorraum zum Pyrolyse-Technikum.
- Notausgänge sind die Tür vom Technikum zum Hof bzw. der Eingang zu den Technika durch dem Glasgäng!
- Türen und Fluchtwäge dürfen nie versperrt oder zugestellt werden!

1.4 Allgemeine Angaben zur LWS-Holz

1.5 Abkürzungsverzeichnis der Betriebsanleitung

Zunächst werden in alle wichtigen Abkürzungen zum Verständnis der Betriebsanleitung erläutert.

Tabelle 1: Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Fi</td>
<td>Elektroabscheider</td>
</tr>
<tr>
<td>K</td>
<td>Kugelhahn</td>
</tr>
<tr>
<td>NV</td>
<td>Nadelventil</td>
</tr>
<tr>
<td>ROTA</td>
<td>Schwebekörperdurchflussmesser</td>
</tr>
<tr>
<td>VA bzw. V2A</td>
<td>Trivialabkürzung für Edelstahl</td>
</tr>
<tr>
<td>KG</td>
<td>Kreisgas</td>
</tr>
<tr>
<td>ÜG</td>
<td>Überschussgas</td>
</tr>
</tbody>
</table>

Tabelle 2: Bezeichnung und Ort der Kugelhähne und Nadelventile

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Ort:</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>zwischen Überschussgasuhr und Kreisgasuhr</td>
</tr>
<tr>
<td>K2</td>
<td>zwischen Verdichter und Fackel</td>
</tr>
<tr>
<td>K3</td>
<td>zwischen Verdichter und Reaktor</td>
</tr>
<tr>
<td>K4</td>
<td>zwischen Rota 2 und Überlauftonne</td>
</tr>
<tr>
<td>K5</td>
<td>zwischen Magnetventil und Fackel</td>
</tr>
<tr>
<td>K6</td>
<td>in der Bypassleitung für das Magnet- und Sicherheitsventil</td>
</tr>
<tr>
<td>K7</td>
<td>in der Bypassleitung für Inertgas zu Rota 2 und Rota 3</td>
</tr>
<tr>
<td>K8</td>
<td>zwischen Inertgas / Kreisgasleitung und Rota 2 und Rota 3</td>
</tr>
<tr>
<td>K9</td>
<td>Einfüllhahn am Silodeckel</td>
</tr>
<tr>
<td>NV1</td>
<td>zwischen Kreisgasuhr und Verdichter</td>
</tr>
<tr>
<td>NV2</td>
<td>in der Bypassleitung vom Verdichter</td>
</tr>
<tr>
<td>NV3</td>
<td>zwischen Inertgasversorgung und Anlage</td>
</tr>
<tr>
<td>NV4</td>
<td>in der Bypassleitung zu K1</td>
</tr>
<tr>
<td>NV5</td>
<td>in Strömungsrichtung des Gases vor Rota 3</td>
</tr>
<tr>
<td>NV6</td>
<td>in Strömungsrichtung des Gases vor Rota 2</td>
</tr>
<tr>
<td>NV7</td>
<td>zwischen Vorwärmer 1 und Rota 1</td>
</tr>
<tr>
<td>NV8</td>
<td>zwischen Silodeckel und Druckaufnehmer</td>
</tr>
<tr>
<td>NV9</td>
<td>am Silodeckel</td>
</tr>
</tbody>
</table>
1.6 Fließpläne der LWS-Holz

Abbildung 1: Fließplan der LWS-Holz in der Konfiguration A
1.7 Übergabe der Anlage

1.8 Allgemeine Montagearbeiten

Die Reaktorflansche werden mit einem Drehmomentschlüssel mit 80 Nm angezogen. Vor der Montage sind alle Graphitdichtungen auf Beschädigungen zu prüfen und gegebenenfalls gegen neue auszutauschen.

Sämtliche Thermoelemente sind so einzustecken, dass sie bis an den Boden des jeweiligen Tauchrohres hinabreichen (leichtes Kratzgeräusch beim Drehen des Thermoelements um seine Achse)!

1.8.1 Montage des Reaktors

Zuerst wird das Aufsteckrohr (20 x 1 mm) mit Kupferpaste bestrichen und anschließend im Inneren des Reaktors auf den dafür vorgesehenen Stutzen gesteckt bzw. der korrekte Sitz des bereits montierten Rohrstücks kontrolliert. Sind Vorwärmer 2 und Haken-Wirbelboden demontiert, wird der Wirbelboden mit je einer Graphitdichtung oberhalb und unterhalb in den oberen Flansch des Vorwärmer 2 gelegt und mit acht 16 mm Schrauben an den Reaktor angeflanscht. Dabei ist auf richtigen Sitz des Wirbelbodens zu achten. Die Heizschalen werden überprüft und gegebenenfalls instand gesetzt. Schließlich werden die Druckmessstellenanschlüsse und die Thermoelemente befestigt und die restliche Isolierung angebracht.

Wurde die Eintragschnecke demontiert, so ist diese samt Lager und Stopfbuchse einzusetzen. Dabei vorsichtig und ohne Gewalt vorgehen, damit sich die Schnecke nicht verzieht. Die Stopfbuchsenbrille darf nur ganz langsam nachgezogen werden.

Silo und Eintragssystem mit der Vibrationsrinne sind auf korrekten Zusammenbau zu prüfen. Wenn erwünscht, kann vor Verschließen des Silos schon das abgewogene zu pyrolysierende Eintragmaterial in das Silo eingefüllt werden.
Nun kann die abgewogene Menge an Wirbelgut (z.B. 6 kg Sand der Körnung 0,3-0,5 mm) in den Reaktor eingefüllt werden. Hierzu ist unbedingt die Eintragschnecke in Betrieb zu nehmen, da sonst Sand in den Schneckengang eindringen kann (Gefahr von Verstopfung!). Zusätzlich wird der Verdichter in Betrieb genommen und ein geringer Volumenstrom an Luft durch den Wirbelboden und das Eintragssystem über die Rotameter Rota 1 und Rota 3 eingeregelt. Das Einfüllen des Wirbelsandes erfolgt schräg zur Seite, um mögliche Sandverluste über das Überlaufrohr zu vermeiden.

1.8.2 Montage der Zyklone

Vor dem Einbau sind die Zyklontöpfe zu wiegen. Die Zyklone werden nacheinander an das Abgangsstück zu den Sicherheitsventilen geflanscht.

1.8.3 Dichtigkeitsprüfung des Stahlteils

Ist der Stahlteil der Anlage bis zu den Zyklonen aufgebaut, so kann für diesen Teil eine separate Dichtigkeitsprüfung durchgeführt werden. Dazu wird die Anlage hinter den Zyklonen mit einem Gummistopfen verschlossen (Stopfen mit Kabelbindern gegen Gefahr des Herausschießens sichern!). Aus der Stickstoffflasche wird bei laufender Eintragschnecke über ROTA 3 und das Eintragssystem auf die Anlage ein Druck von 150-200 mbar gegeben und der Druckabfall in Abhängigkeit von der Zeit gemessen. Der Stahlteil gilt als ausreichend dicht, wenn der Druckabfall 20 mbar in einer halben Stunde nicht übersteigt. Undichtigkeiten sind mit Seifenwasserlösung bzw. Lecksuchflüssigkeit aufzuspüren (Blasenbildung!) und vor der eigentlichen Inbetriebnahme zu beheben.
Ist der Stahlteil dicht, so wird der Reaktordeckel isoliert. Anschließend werden die Anschlüsse der Heizdrähte am Reaktorkopf und den Zyklonen angeschlossen. Zum Schluss werden noch Isolierungen für die Zyklone und Rohrleitungen bis zum jeweiligen Kühlereingang angebracht.

1.8.4 (A) Montage der Stahlkühler

1.8.5 (A) Montage der Abscheidevorrichtungen aus Glas

Sind Intensivkühler und Elektrofilter montiert und ausgerichtet, so können die Hähne und Auffangkolben angebracht werden. Schließlich werden die Anschlüsse der Druck- und Temperaturaufnehmer verbunden und die Verbindungsschläuche zum Kryostaten angeschlossen.

Danach werden die Kappen der Elektrofilter montiert und die Ausrichtung der Sprühelektroden überprüft. Hierbei ist darauf zu achten, dass der Abstand zwischen der Sprühelektrode und den Mantelelektroden axial symmetrisch ist. Sollten Zweifel am Zustand
Anhang 1 Betriebsanleitung der LWS Holz

1.8.6 (B) Montage der Strahlwäscher

Ist der Wäscher soweit montiert, wird über das Saugrohr der Strahlwäscher mit Quenchflüssigkeit befüllt, der Kugelhahn in der Saugleitung ist dabei offen. Zunächst wird die Stromzufuhr der Quencherpumpe am Schaltschrank der Anlage eingeschaltet, dann wird der große Hebelschalter der Pumpe von Schaltzustand 0 (stromlos) auf den Schaltzustand 1
Umgelegt und damit die Pumpe in Betrieb genommen. Die Excentschneckenpumpe ist mit halber Leistung (Bei laufender Pumpe mit dem Handrad einregeln!) in Betrieb zu nehmen (Eigene Betriebsanleitung beachten!). Der Kugelhahn in der Leitung vom Sammler zum Reservoir ist dabei offen zu halten, die Kugelhähne unter dem Sammler (Ablasshahn und Hahn in der Steigrohrleitung) sind geschlossen. Der Wäscher wird bis zu einem Füllstand von 50-70 vol% aufgefüllt. Nach Füllen des Wäschers ist der Saugleitungshahn zu schließen und umgehend der große Hebelschalter der Pumpe wieder von Schaltzustand 1 (stromführend) auf den Schaltzustand 0 (stromlos) umzulegen und damit die Pumpe wieder außer Betrieb zu nehmen.

<table>
<thead>
<tr>
<th>Armatur</th>
<th>Schaltzustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ksaugeleitung</td>
<td>auf</td>
</tr>
<tr>
<td>Kreservoirzuleitung</td>
<td>auf</td>
</tr>
<tr>
<td>Ksteigrohrzuleitung</td>
<td>zu</td>
</tr>
<tr>
<td>Kablasshahn</td>
<td>zu</td>
</tr>
<tr>
<td>Pumpengetrieberad</td>
<td>Regeln</td>
</tr>
</tbody>
</table>

Danach wird der Strahlwäscher durch den flexiblen Metallschlauch mit dem Anschlussrohr nach den Zyklonen verbunden. (Kupferpaste an den Quetschverschraubungen nicht vergessen!). Der Metallschlauch erhält nun noch ein elektrisches Heizband, das mit einem Strombegrenzungsregler neben dem Schaltschrank verbunden wird. Der Druck- und Temperaturaufnehmer des Gaseintrittsflansches wird angeschlossen und abschließend wird die gesamte Leitungsführung vom zweiten Zyklon bis zum Gaseintritt des Wäschers gut isoliert.

1.8.7 (B) Montage der Abscheidevorrichtungen aus Glas

Anschließend werden die Kappen der Elektrofilter montiert und die Ausrichtung der Sprühelektroden überprüft. Hierbei ist darauf zu achten, dass der Abstand zwischen Sprühelektrode und Mantelektrode axial symmetrisch ist. Sollten Zweifel am Zustand der Elektrodendrähte bestehen, so sind diese vor Inbetriebnahme der Anlage gegen neue Drähte auszutauschen.

Zum Schluss werden die Steckanschlüsse für die Hochspannungsnetzteile auf die Elektrofilterkappen gesteckt, (Steckanschlüsse der Nummer 1 an Elektrofilter 1, Steckanschlüsse der Nummer 2 an Elektrofilter 2!). Auf festen Sitz der Kabel und sicheren Anschluss der Erdung ist zu achten! Schließlich werden noch die Rohrverbindungen zur Gasregelung (Gasuhren und Verdichter) montiert. Abschließend findet eine optische Kontrolle der zusammengesetzten Anlage auf Risse, falschen Sitz etc. statt. Insbesondere ist auf den korrekten Anschluss der Druckleitungen und Thermoelemente zu achten.

1.9 Versuche mit der LWS-Holz

Im folgenden Abschnitt sind alle zur Versuchsdurchführung notwendigen Schritte zusammengestellt. Dabei wird vom Grundzustand der Anlage ausgegangen, d.h. alle Anlagenteile sind montiert, alle Hähne und Ventile sind geschlossen, die Stromversorgung ist angeschlossen. Betriebswerte der Anlage sind am Ende der Betriebsanleitung aus einem Beispielversuch angegeben.

1.9.1 Versuchsvorbereitung

Nachdem alle Abscheidungseinheiten montiert sind kann mit der Inbetriebnahme begonnen werden. Zunächst wird die Inertgasversorgung (in der Regel Stickstoff) auf ausreichenden Flaschendruck kontrolliert. Dann ist eine Druckprobe für die komplette Anlage notwendig. Folgende Reihenfolge der Arbeitsschritte ist einzuhalten:

- Sämtliche Verbindungskabel zu den benötigten Aggregaten sind einzustecken.
- Hauptschalter am Schaltschrank einschalten.
- Funktionsfähigkeit der Datenerfassung für Druck und Temperatur am Computer ist zu überprüfen.
- Magnetventil mit Schalter am Schaltschrank schließen.
- Kühlwasser der Eintragsschnecke anstellen.
- Eintragsschnecke mit Schalter am Schaltschrank einschalten und anschließend an der Regeleinheit starten.
- Kugelhähne K_3, K_4, K_8 und Nadelventile NV_1, NV_2, NV_5, NV_6, NV_7, NV_8 ganz öffnen.
- Die Kugelhähne K_1, K_2, K_5, K_6, K_7, und K_9 sowie Nadelventile NV_3, NV_4 und NV_9 bleiben geschlossen.
- Anlage über NV_3 mit Inertgas langsam auf 150-200 mbar aufdrücken, dabei internen Druckausgleich abwarten.
Tabelle 4: Schaltzustände der Armaturen beim Drucktest

<table>
<thead>
<tr>
<th>Armatur</th>
<th>Schaltzustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>zu</td>
</tr>
<tr>
<td>K2</td>
<td>zu</td>
</tr>
<tr>
<td>K3</td>
<td>auf</td>
</tr>
<tr>
<td>K4</td>
<td>auf</td>
</tr>
<tr>
<td>K5</td>
<td>zu</td>
</tr>
<tr>
<td>K6</td>
<td>zu</td>
</tr>
<tr>
<td>K7</td>
<td>auf</td>
</tr>
<tr>
<td>K8</td>
<td>auf</td>
</tr>
<tr>
<td>K9</td>
<td>zu</td>
</tr>
<tr>
<td>NV1</td>
<td>auf</td>
</tr>
<tr>
<td>NV2</td>
<td>auf</td>
</tr>
<tr>
<td>NV3</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV4</td>
<td>zu</td>
</tr>
<tr>
<td>NV5</td>
<td>auf</td>
</tr>
<tr>
<td>NV6</td>
<td>auf</td>
</tr>
<tr>
<td>NV7</td>
<td>auf</td>
</tr>
<tr>
<td>NV8</td>
<td>auf</td>
</tr>
<tr>
<td>NV9</td>
<td>zu</td>
</tr>
</tbody>
</table>

bei Wäscherbetrieb:
- K\textsubscript{Reservoirzuleitung} auf
- K\textsubscript{Steigrohrzuleitung} zu
- K\textsubscript{Ablasshahn} zu

Ist die gesamte Anlage dicht, so ist als nächstes die in der Anlage befindliche Luft durch Inertisieren mit Stickstoff zu entfernen. Vor dem Inertisieren der Anlage wird, falls noch nicht erfolgt, das gewogene Eintragsgut über K9 in das Silo gefüllt. Hierfür ist folgende Reihenfolge der Arbeitsschritte einzuhalten:
- Kugelhahn $K1$, $K5$ und $NV4$ öffnen.
- Stickstoffstrom durch die Anlage über Nadelventil $NV3$ einregeln.
- Eintragssystemspülung über $NV5$ ($ROTA 3$) einregeln.
- Überlauftopf durch Regeln von NV6 über ROTA 2 spülen.
- Ventil NV9 am Silokopf für ca. 15 Minuten öffnen, vorher Volumenstrom über NV5 (ROTA 3) vergrößern.
- Für ca. 5 Minuten K2 öffnen und für diese Zeit K1 schließen, um diesen Teil der Leitungen zu spülen.
- Insgesamt mindestens 1,5 m³ Inertgas zur Fackel spülen (anhand der Überschussgasuhr kontrollieren).

Tabelle 5: Schaltzustände der Armaturen beim Spülvorgang

<table>
<thead>
<tr>
<th>Armatur:</th>
<th>Schaltzustand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>zu (zeitweilig auf)</td>
</tr>
<tr>
<td>K2</td>
<td>zu (zeitweilig auf)</td>
</tr>
<tr>
<td>K3</td>
<td>auf</td>
</tr>
<tr>
<td>K4</td>
<td>auf</td>
</tr>
<tr>
<td>K5</td>
<td>zu</td>
</tr>
<tr>
<td>K6</td>
<td>zu</td>
</tr>
<tr>
<td>K7</td>
<td>auf</td>
</tr>
<tr>
<td>K8</td>
<td>auf</td>
</tr>
<tr>
<td>K9</td>
<td>zu</td>
</tr>
<tr>
<td>NV1</td>
<td>auf</td>
</tr>
<tr>
<td>NV2</td>
<td>auf</td>
</tr>
<tr>
<td>NV3</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV4</td>
<td>zu</td>
</tr>
<tr>
<td>NV5</td>
<td>auf</td>
</tr>
<tr>
<td>NV6</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV7</td>
<td>auf</td>
</tr>
<tr>
<td>NV8</td>
<td>auf</td>
</tr>
<tr>
<td>NV9</td>
<td>zu (zeitweilig auf)</td>
</tr>
</tbody>
</table>

bei Wäscherbetrieb:
KReservoirzuleitung auf
KSteigrohrzuleitung zu
KAblasshahn zu

Nach dem Spülvorgang wird zuerst das Nadelventil NV3 geschlossen (Inertgasversorgung). Dann wird der Kugelhahn K1 sowie die Nadelventile NV und NV2 wieder geschlossen. Außerdem wird die Druckgasflasche am Hauptventil geschlossen.

Abschließend werden alle Zusatzapparate wie z.B.: Spannungsversorgung, Computer, Kryostat, Online Gaschromatograph usw. auf ihre Funktionsfähigkeit hin überprüft.
1.9.2 Versuchsdurchführung

In diesem Abschnitt sind die notwendigen Schritte zum An- und Abfahren eines Versuches zusammengestellt. Dabei wird von der Standardsituation, d. h. dem Betrieb mit Pyrolysegas als Wirbelmedium, ausgegangen (Kreisgasbetrieb). Der Betrieb der Anlage mit Wasserdampf- oder Inertgas ist in eigenen Abschnitten später beschrieben.

1.9.3 Anfahrprozedur

Als erstes wird der Hauptschalter am Schaltschrank eingeschaltet und der Computer zur Druck- und Temperaturdatenerfassung sowie der Computer zu Datenerfassung der Micro-GC Daten in Betrieb genommen. Die Inertgasversorgung wird am Hauptventil der Flasche geöffnet.

Die Anlage wird nun, wie bei der Druckprüfung in einem früheren Kapitel dieser Betriebsanleitung beschrieben, inertisiert. Das Magnetventil wird geschlossen und die Eintragschnecke gestartet. Hierfür ist folgende Reihenfolge der Arbeitsschritte einzuhalten: (Siehe auch Schaltzustände Tabelle 4)

- Kugelhahn K1, K5 und NV4 öffnen.
- Stickstoffstrom durch die Anlage über Nadelventil NV3 einregeln.
- Eintragssystemspülung über NV5 (ROTA 3) einregeln.
- Überlaufopf durch Regeln von NV6 über ROTA 2 spülen.
- Ventil NV9 am Silokopf für ca. 15 Minuten öffnen, vorher Volumenstrom über NV5 (ROTA 3) vergrößern.
- Für ca. 5 Minuten K2 öffnen und für diese Zeit K1 schließen, um diesen Teil der Leitungen zu spülen.
- Insgesamt mindestens 1,5 m³ Inertgas zur Fackel spülen (anhand der Überschussgasuhr kontrollieren).
Nach der Inertisierung werden die Kugellhähne und Nadelventile für die Wirbelgasversorgung (Kreisgas) geöffnet. Folgende Reihenfolge der Arbeitsschritte ist einzuhalten:

- Kugellhähne K1, K3, K4, K5 und K8 und Nadelventile NV1, NV2, NV5, NV6, NV7, NV8 bleiben offen.
- Kugellhähne K2, K6, K7, K9 und Nadelventile NV3, NV4 und NV9 sind bzw. werden geschlossen.
- Starten des Verdichters durch Einschalten des Schalters am Schaltschrank

Nach dem Starten des Verdichters wird mit Nadelventil NV1 und NV2 über Rotameter ROTA 1 ein Wirbelgasstrom eingestellt. Dieser kann während der Aufheizphase, bis der Stahlteil des Reaktors auf Betriebstemperatur erwärmt ist, geringer als bei Eintragsbeginn gewählt werden. Gleichzeitig zum Wirbelgasstrom wird der Spülgasstrom (Pyrolysegas oder Stickstoff) für die Schnecke mit Nadelventil NV5 über ROTA 3 und der Spülgasstrom (Pyrolysegas oder Stickstoff) für die Überlauftonne mit NV6 über ROTA 2 eingeregelt.

Tabelle 6: Schaltzustände bei Betrieb des Wäschers

<table>
<thead>
<tr>
<th>Armatur</th>
<th>Schaltzustand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{\text{Saugleitung}}$</td>
<td>zu</td>
</tr>
<tr>
<td>$K_{\text{Reservoirzuleitung}}$</td>
<td>auf</td>
</tr>
<tr>
<td>$K_{\text{Steigrohrzuleitung}}$</td>
<td>auf</td>
</tr>
<tr>
<td>$K_{\text{Ablasshahn}}$</td>
<td>zu</td>
</tr>
<tr>
<td>Pumpengetrieberad</td>
<td>Regeln</td>
</tr>
</tbody>
</table>

Tabelle 7: Schaltzustände der Armaturen bei Versuchen mit Kreisgasbetrieb

<table>
<thead>
<tr>
<th>Armatur</th>
<th>Schaltzustand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>auf</td>
</tr>
<tr>
<td>K2</td>
<td>zu</td>
</tr>
<tr>
<td>K3</td>
<td>auf</td>
</tr>
<tr>
<td>K4</td>
<td>auf</td>
</tr>
<tr>
<td>K5</td>
<td>auf</td>
</tr>
<tr>
<td>K6</td>
<td>zu</td>
</tr>
<tr>
<td>K7</td>
<td>zu</td>
</tr>
<tr>
<td>K8</td>
<td>auf</td>
</tr>
<tr>
<td>K9</td>
<td>zu</td>
</tr>
<tr>
<td>NV1</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV2</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV3</td>
<td>zu</td>
</tr>
<tr>
<td>NV4</td>
<td>zu</td>
</tr>
<tr>
<td>NV5</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV6</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV7</td>
<td>auf</td>
</tr>
<tr>
<td>NV8</td>
<td>auf</td>
</tr>
<tr>
<td>NV9</td>
<td>zu</td>
</tr>
</tbody>
</table>

Anschließend werden die Heizsysteme (Vorwärmer, Reaktorheizung, Heizdrähte) in Betrieb genommen (Schalter am Schaltschrank). Die gewünschten Temperaturen sind an den Reglern (am Schaltschrank) einzustellen. Vorwärmer 1 ist in der Regel auf 300 - 350°C eingestellt, um ein Verkoken des Vorwärmers und der Zuleitungen durch Spaltprozesse der Pyrolyse-Gase zu vermeiden.

Nun kann der Kryostat eingeschaltet und die Spannung am Hochspannungsnetzteil der Elektrofilter eingeregelt werden. Meist lässt sich noch nicht die gewünschte Spannung
einstellen; dies ist erst möglich, wenn der Eintrag läuft und Pyrolyse-Gase den Elektrofilter passieren.

1.9.4 Versuchsbetrieb

Tabelle 8: Schaltzustände bei Entleeren des Wäschers (kurzzeitig)

<table>
<thead>
<tr>
<th>Armatur</th>
<th>Schaltzustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{Saugleitung}</td>
<td>auf</td>
</tr>
<tr>
<td>K_{Reservoirzuleitung}</td>
<td>auf</td>
</tr>
<tr>
<td>K_{Steigrohrzuleitung}</td>
<td>zu</td>
</tr>
<tr>
<td>K_{Ablasshahn}</td>
<td>auf</td>
</tr>
<tr>
<td>Pumpengetrieberad</td>
<td>Regeln</td>
</tr>
</tbody>
</table>

1.9.5 Betrieb mit Inertgas

Für den Betrieb mit Inertgas als Wirbelgas wird im Prinzip vorgegangen wie imvorigen Kapitel dieser Betriebsanleitung beschrieben. Folgende Veränderungen sind notwendig:

- Kugelhähne K1 und K3 werden geschlossen, Kugelhahn K2 wird geöffnet.
- Wirbelgasstrom mit Nadelventil NV3 über Rotameter ROTA 1 einregeln und den Anlagendruck mit dem Verdichter und über die Nadelventil NV1 und NV2 einstellen.
- Der Spülstrom über das Eintragssystem wird über K7 eingespeist (K8 geschlossen) und über NV5 geregelt.
- Der Spülstrom über die Überlauftonne wird ebenfalls über K7 eingespeist (K8 geschlossen) und über NV6 geregelt.
Tabelle 9: Schaltzustände der Armaturen bei Versuchen mit Inertgasbetrieb:

<table>
<thead>
<tr>
<th>Armatur</th>
<th>Schaltzustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>zu</td>
</tr>
<tr>
<td>K2</td>
<td>auf</td>
</tr>
<tr>
<td>K3</td>
<td>zu</td>
</tr>
<tr>
<td>K4</td>
<td>auf</td>
</tr>
<tr>
<td>K5</td>
<td>auf</td>
</tr>
<tr>
<td>K6</td>
<td>zu</td>
</tr>
<tr>
<td>K7</td>
<td>auf</td>
</tr>
<tr>
<td>K8</td>
<td>zu</td>
</tr>
<tr>
<td>K9</td>
<td>zu</td>
</tr>
<tr>
<td>NV1</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV2</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV3</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV4</td>
<td>zu</td>
</tr>
<tr>
<td>NV5</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV6</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV7</td>
<td>auf</td>
</tr>
<tr>
<td>NV8</td>
<td>auf</td>
</tr>
<tr>
<td>NV9</td>
<td>zu</td>
</tr>
</tbody>
</table>

1.9.6 Betrieb mit Dampf

Der Betrieb mit Dampf ist prinzipiell möglich, jedoch muss dazu die Anlage entsprechend umgerüstet werden. Es muss ein Kugelhahn \(K_{Dampf}\) mit Dampfeinspeisung auf einer Seite und einem Anschluss zwischen \(NV7\) und Vorwärmer 1 auf der anderen Seite eingebaut werden.

Für den Betrieb mit Dampf als Wirbelgas wird zuerst wie oben beschrieben im Kreisgasbetrieb aufgeheizt. Dann wird auf Dampfbetrieb umgestellt. Folgende Reihenfolge der Arbeitsschritte ist einzuhalten:

- Verdichter abschalten.
- Kugelhähne \(K1, K2, K3, K8\) und Nadelventile \(NV1, NV2, NV3\) werden geschlossen.
- Kugelhahn \(K7\) und Nadelventil \(NV7\) werden geöffnet.
- Über Nadelventil \(NV5\) wird ein Inertgasstrom für die Schnecke, über Nadelventil \(NV6\) ein Inertgasstrom für die Überlauftonne eingestellt und \(K1\) geöffnet.
- Durch Öffnen von \(K_{Dampf}\) wird Dampf eingeleitet.
Tabelle 10: Schaltzustände der Armaturen beim Dampfversuch

<table>
<thead>
<tr>
<th>Armatur</th>
<th>Schaltzustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>zu</td>
</tr>
<tr>
<td>K2</td>
<td>zu</td>
</tr>
<tr>
<td>K3</td>
<td>zu</td>
</tr>
<tr>
<td>K4</td>
<td>auf</td>
</tr>
<tr>
<td>K5</td>
<td>auf</td>
</tr>
<tr>
<td>K6</td>
<td>zu</td>
</tr>
<tr>
<td>K7</td>
<td>auf</td>
</tr>
<tr>
<td>K8</td>
<td>zu</td>
</tr>
<tr>
<td>K9</td>
<td>zu</td>
</tr>
<tr>
<td>KDampf</td>
<td>auf</td>
</tr>
<tr>
<td>NV1</td>
<td>zu</td>
</tr>
<tr>
<td>NV2</td>
<td>zu</td>
</tr>
<tr>
<td>NV3</td>
<td>zu</td>
</tr>
<tr>
<td>NV4</td>
<td>zu</td>
</tr>
<tr>
<td>NV5</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV6</td>
<td>Regeln</td>
</tr>
<tr>
<td>NV7</td>
<td>auf</td>
</tr>
<tr>
<td>NV8</td>
<td>auf</td>
</tr>
<tr>
<td>NV9</td>
<td>zu</td>
</tr>
</tbody>
</table>

Sollte der Anlagendruck im Glasteil durch sehr große Volumen an produziertem Pyrolysegas ansteigen und nicht allein über K1 ableitbar sein, so kann der Anlagendruck auch mit dem Verdichter geregelt werden. Dazu wird K2 geöffnet, K1 geschlossen, der Verdichter in Betrieb genommen und über NV1 und NV2 die Verdichterleistung und damit der Anlagendruck geregelt.

1.9.7 Abfahrprozedur

Beim Abkühlen des Systems verringert sich das Gasvolumen in der Anlage, so dass von Zeit zu Zeit Inertgas (über N\textsubscript{2}V3) zugespeist werden muss, um Unterdruck zu vermeiden.

Bei Betrieb des Strahlwäschers ist dieser abzuschalten, bevor der Verdichter außer Betrieb genommen wird, um ein Volllaufen des zweiten Zyklons mit dem Quenchmedium zu vermeiden.

Ist die Reaktortemperatur auf 250 °C gefallen, so kann der Verdichter abgeschaltet werden. Danach kann auch die Eintragschnecke gestoppt werden. Anschließend wird die Spannungsversorgung der Elektrofilter abgeschaltet. Auch der Kryostat kann nun außer Betrieb genommen werden.

Zum Schluss wird die Kühlung vom Schneckenmantel und den Stahlkühlern abgestellt und die Fackel durch Schließen der Pilotgasversorgung (Propangas) gelöscht.

Jetzt können die Produkte geborgen, mit der Demontage von Anlageteilen und den Reinigungs- und Wartungsarbeiten begonnen werden.

1.10 Demontage und Reinigung der Anlage

Dieser Abschnitt beschreibt die notwendigen Demontage- und Reinigungsarbeiten für die LWS Holz.

1.10.1 (A) Reinigungsarbeiten

Der Glasteil der Anlage wird gereinigt, indem ein zweiter Kryostat mit einem geeigneten Lösungsmitteln (i. d. Regel Ethanol) gefüllt und wie folgt angeschlossen wird:

- Oberen Flanschdeckel von Kühler 1 entfernen und den Ausgangsschlauch des Kryostaten ca. 15 cm tief in Kühler 1 einschieben und festdrücken.
- Den Eingangsschlauch des Kryostaten am Auslasshahn des Intensivkühlers anschließen.
- Falls sehr viel Kohle in der Anlage geblieben ist, so ist eine Sedimentationsfall zwischen den Auslasshahn und den Kryostaten zu schalten.
- Kryostaten in Betrieb nehmen.

Bei eventuellen Resten an Eintragsgut im Silo erfolgt das Entleeren über die Vibrationsrinne in ein Vorratsgefäss, das an die Vibrationsrinne mit einem Schlauch angeschlossen wird.

Soll zusätzlich die Eintragschnecke demontiert werden, so ist zunächst die Antriebskette abzunehmen. Dann wird der Flansch am Reaktor geöffnet und die Schnecke samt Lager (vorsichtig!) aus dem Rohr gezogen und gegebenenfalls gereinigt. Ist die Schnecke verklemmt, so kann sie mit einem Holzstück (am Flansch ansetzen) vorsichtig aus dem Mantel getrieben werden.

1.10.2 (B) Reinigungsarbeiten

Der Glasteil der Anlage wird gereinigt, indem ein zweiter Kryostat mit einem geeigneten Lösungsmittel (i. d. Regel Ethanol) gefüllt und wie folgt angeschlossen wird:
- Sprühelektrode von Elektrofilter 1 entfernen und den Ausgangsschlauch des Kryostaten ca. 30 cm tief in Elektrofilter 1 einschieben.
- Den Eingangsschlauch des Kryostaten am Ablasshahn des Wäschers anschließen.
- Kryostaten in Betrieb nehmen.
- Nach dem Spülvorgang den Kryostaten wieder außer Betrieb nehmen.
- Sprühelektrode von Elektrofilter 2 entfernen und den Ausgangsschlauch des Kryostaten ca. 30 cm tief in Elektrofilter 2 einschieben.
- Den Eingangsschlauch des Kryostaten am Ablasshahn des Elektrofilters 2 anschließen.
- Kryostaten in Betrieb nehmen.

Der Wäscher selbst wird nach vollständigem Entleeren über den Ablasshahn am Sammler (Ablassschraube am T-Stück der Steigleitung im Sammler nicht vergessen!) mit einem geeigneten Lösungsmittel (i. d. Regel Ethanol) gereinigt. Er wird wie weiter oben in dieser Betriebsanleitung beschrieben gefüllt und betrieben, nun jedoch mit dem gewählten Lösungsmittel. Es ist jedoch darauf zu achten, dass bei der Reinigung der Eingang des Wäschers, die Schneidringverschraubung, an die der flexible Metallschlauch angeschlossen wird, mit einem Gummistopfen verschlossen wird. Das Quenchflüssigkeitsreservoir wird demontiert und ebenfalls mit Lösemitteln gespült.

Bei eventuellen Resten an Eintragsgut im Silo erfolgt das Entleeren über die Vibrationsrinne in ein Vorratsgefäß, das an die Vibrationsrinne mit einem Schlauch angeschlossen wird.

Soll zusätzlich die Eintragschnecke demontiert werden, so ist zunächst die Antriebskette abzunehmen. Dann wird der Flansch am Reaktor geöffnet und die Schnecke samt Lager (vorsichtig!) aus dem Rohr gezogen und gegebenenfalls gereinigt. Ist die Schnecke
verklemmt, so kann sie mit einem Holzstück (am Flansch ansetzen) vorsichtig aus dem Mantel getrieben werden.

1.11 Betriebssicherheit

Während eines Pyrolyseversuches kann es auch bei bester Vorbereitung zu Betriebsstörungen kommen. Am häufigsten kommen Verstopfungen in Anlageteilen vorkommen; diese machen sich durch steigenden Druckverlust über das betroffene Bauteil bemerkbar.

Bei Verstopfung des Intensivkühlers (Eisbildung!) kann meist mit einer Erhöhung der Kühlmitteltemperatur Abhilfe geschaffen werden.

Bei Verstopfungen im Stahlkühlerbereich kann die Wasserkühlung kurzzeitig abgestellt werden. Hier muss aber auf die Eintrittstemperatur in die nachfolgenden Intensivkühler geachtet werden.

Sollte die Eintragschnecke blockiert sein, müssen sofort kurzfristig der Eintrag, der Wirbelgasstrom sowie die Heizungen ausgeschaltet werden, bis die Eintragschnecke wieder frei läuft. Bei Festsitzen der Eintragschnecke nie mit einer Zange an der Schneckenwelle drehen! Immer am Motor ansetzen!

Sind die Ursachen von außergewöhnlichen Betriebszuständen nicht sofort zu erkennen, so ist sowohl der Eintrag als auch die Wirbelgas - und Reaktorheizung abzuschalten. Lässt sich der Betrieb dadurch nicht stabilisieren, so muss der Versuch abgebrochen werden! Dies geschieht indem die Kreisgasführung unterbrochen wird, und die Anlage dann mit Inertgas zur Fackel gespült wird.

Bei größeren Leckagen oder unvorhergesehenen Störungen ist sofort der Not-Aus-Schalter am Schaltschrank zu betätigen! Dadurch werden alle Aggregate abgeschaltet und der
Anlagendruck über das Magnetventil zur Fackel entlassen. Die Anzeigeinstrumente bleiben in Betrieb.

Dann sollte - falls möglich - das Leck verschlossen werden (mit angelegter Gasmaske!). Danach ist die Anlage mit Inertgas zur Fackel zu spülen.
1.12 Technische Daten

Im folgenden Abschnitt sind die wichtigsten technischen Daten der LWS-Holz zusammengefasst. Daran schließt sich eine Liste der Messstelleneingaben für das Datenerfassungssystem an.

Alle hier zusammengestellten Betriebsdaten sind einerseits empirische Versuchsdaten mit Holzpartikeln als Eintragsgut und andererseits anlagespezifische Parameter.

Tabelle 11: Betriebsdaten (entsprechen etwa den Werten von Versuch TP 20)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mittelwert</th>
<th>Einheit</th>
<th>Maximal- oder Sollwert bzw. Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirbelsand</td>
<td>6</td>
<td>[kg]</td>
<td>>0.5 mm</td>
</tr>
<tr>
<td>Eintragsgut (Holz)</td>
<td>2-3</td>
<td>[mm]</td>
<td>5</td>
</tr>
<tr>
<td>Wirbelgas</td>
<td>11,5</td>
<td>[Skt]</td>
<td>Rota1</td>
</tr>
<tr>
<td>Gas zum Silo</td>
<td>3</td>
<td>[Skt]</td>
<td>Rota3</td>
</tr>
<tr>
<td>Gas zur Überlauftonne</td>
<td>2</td>
<td>[Skt]</td>
<td>Rota3</td>
</tr>
<tr>
<td>Netzgerät Elektrofilter</td>
<td>15</td>
<td>[kV]</td>
<td>25</td>
</tr>
<tr>
<td>Kryostateinstellung für K3</td>
<td>-10</td>
<td>[°C]</td>
<td>variabel</td>
</tr>
<tr>
<td>Einstellung Eintragschnecke</td>
<td>+ 40</td>
<td>[Skt]</td>
<td>nur positive Werte</td>
</tr>
<tr>
<td>Einstellung Silo</td>
<td>4,5</td>
<td>[Skt]</td>
<td>1-10</td>
</tr>
<tr>
<td>Einstellung Vibrationsrinne</td>
<td>4,5</td>
<td>[Skt]</td>
<td>1-10</td>
</tr>
<tr>
<td>Einstellung Koaxialheizleiter 1</td>
<td>550</td>
<td>[°C]</td>
<td>20-800</td>
</tr>
<tr>
<td>Einstellung Koaxialheizleiter 2</td>
<td>550</td>
<td>[°C]</td>
<td>20-800</td>
</tr>
<tr>
<td>Einstellung Reaktorheizung</td>
<td>500</td>
<td>[°C]</td>
<td>20-800</td>
</tr>
<tr>
<td>Einstellung Vorwärmer 1</td>
<td>370</td>
<td>[°C]</td>
<td>20-500</td>
</tr>
<tr>
<td>Einstellung Vorwärmer 2</td>
<td>520</td>
<td>[°C]</td>
<td>20-800</td>
</tr>
<tr>
<td>Temperatur nach Vorwärmer 1</td>
<td>370</td>
<td>[°C]</td>
<td>300-400</td>
</tr>
<tr>
<td>Temperatur nach Vorwärmer 2</td>
<td>550</td>
<td>[°C]</td>
<td>300-800</td>
</tr>
<tr>
<td>Temp. in der Wirbelschicht Mitte</td>
<td>500</td>
<td>[°C]</td>
<td>-</td>
</tr>
<tr>
<td>Temperatur im Freeboard</td>
<td>470</td>
<td>[°C]</td>
<td>-</td>
</tr>
<tr>
<td>Temperatur vor Stahlkühler 1</td>
<td>550</td>
<td>[°C]</td>
<td>-</td>
</tr>
<tr>
<td>Temperatur vor Stahlkühler 2</td>
<td>170</td>
<td>[°C]</td>
<td>-</td>
</tr>
<tr>
<td>Temperatur vor Elektrofilter 1</td>
<td>2</td>
<td>[°C]</td>
<td>-</td>
</tr>
<tr>
<td>Temperatur vor Elektrofilter 2</td>
<td>20</td>
<td>[°C]</td>
<td>-</td>
</tr>
<tr>
<td>Druck vor Verdichter</td>
<td>10</td>
<td>[mbar]</td>
<td>200 (Sicherheitsventil)</td>
</tr>
<tr>
<td>Druck am Silokopf</td>
<td>190</td>
<td>[mbar]</td>
<td>-</td>
</tr>
<tr>
<td>Druck nach Wirbelschicht</td>
<td>162</td>
<td>[mbar]</td>
<td>200 (Sicherheitsventil)</td>
</tr>
<tr>
<td>Druck vor Zyklon 1</td>
<td>165</td>
<td>[mbar]</td>
<td>200 (Sicherheitsventil)</td>
</tr>
<tr>
<td>Druck vor Zyklon 2</td>
<td>160</td>
<td>[mbar]</td>
<td>200 (Sicherheitsventil)</td>
</tr>
<tr>
<td>Druck nach Zyklon 2</td>
<td>24</td>
<td>[mbar]</td>
<td>200 (Sicherheitsventil)</td>
</tr>
<tr>
<td>Druck vor Wirbelschicht</td>
<td>200</td>
<td>[mbar]</td>
<td>-</td>
</tr>
</tbody>
</table>
1.13 Anlagenwartung

Verschiedene bewegte Anlagenteile wie Verdichter, Motoren, Getriebe, Antriebskette etc. bedürfen der regelmäßigen Wartung. Über ausreichende Schmierintervalle, besondere Störungen etc. muss sich der/die VersuchsleiterIn bei Anlagenübergabe darüber informieren. Insbesondere der Kettenantrieb der Eintragschnecke bedarf ständiger Kontrolle des Schmiermittels.

Alle demontierten Dichtungen, insbesondere die Graphitdichtungen, sind auf ihre Verschleißzustände zu überprüfen und gegebenenfalls auszutauschen.

Alle demontierten Schrauben und Muttern sind auf intakte Gewindegänge zu überprüfen. Bei allen Schrauben an Heißteilen der Anlage ist die verbrannte Kupferpaste abzubürsten und die Gewinde sind wieder dünn mit Kupferpaste einzustreichen.

Alle Heizleiter sind auf Beschädigungen zu überprüfen und, falls nötig, gegen neue zu ersetzen. Dies gilt auch für sämtliche Schläuche und Gummiteile wie z.B.: den Kompensator am Eintragssystem.
1.14 Datenerfassung (A)

Die folgenden Abbildungen und die Tabellen geben die Bezeichnungen und Orte der Messstellen an der LWS-Holz wieder.

Tabelle 12: Datenerfassung, Orte und Bezeichnungen der Messstellen

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Ort der Messstelle</th>
<th>Bezeichnung der Messstelle in der Datenerfassung (ASC-Datei)</th>
<th>Bezeichnung der Messstelle in der Datenerfassung (MS-Excel-Datei)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diginst.00</td>
<td>Vorwärmer 1</td>
<td>Schreiben 0</td>
<td>Vorw.1</td>
</tr>
<tr>
<td>Diginst.06</td>
<td>Vorwärmer 2</td>
<td>Schreiben 1</td>
<td>Vorw.2</td>
</tr>
<tr>
<td>Diginst.07</td>
<td>Wirbelschicht Unten</td>
<td>Schreiben 2</td>
<td>Reaktor1</td>
</tr>
<tr>
<td>Diginst.08</td>
<td>Wirbelschicht Mitte</td>
<td>Schreiben 3</td>
<td>Mitte Wirbelschicht</td>
</tr>
<tr>
<td>Diginst.09</td>
<td>Wirbelschicht Oben</td>
<td>Schreiben 4</td>
<td>3</td>
</tr>
<tr>
<td>Diginst.10</td>
<td>Freeboard</td>
<td>Schreiben 5</td>
<td>4</td>
</tr>
<tr>
<td>Diginst.11</td>
<td>vor Zyklon 1</td>
<td>Schreiben 6</td>
<td>Koax1</td>
</tr>
<tr>
<td>Diginst.12</td>
<td>vor Zyklon 2</td>
<td>Schreiben 7</td>
<td>Koax2</td>
</tr>
<tr>
<td>Diginst.13</td>
<td>vor Stahlkühler 1</td>
<td>Schreiben 8</td>
<td>K1</td>
</tr>
<tr>
<td>Diginst.14</td>
<td>vor Stahlkühler 2</td>
<td>Schreiben 9</td>
<td>K2</td>
</tr>
<tr>
<td>Diginst.15</td>
<td>vor Elektrofilter 1</td>
<td>Schreiben 10</td>
<td>E1</td>
</tr>
<tr>
<td>Diginst.16</td>
<td>vor Elektrofilter 2</td>
<td>Schreiben 11</td>
<td>E2</td>
</tr>
<tr>
<td>Diginst.24</td>
<td>vor Verdichter</td>
<td>Schreiben 12</td>
<td>kompressor</td>
</tr>
<tr>
<td>Diginst.19</td>
<td>vor Verdichter</td>
<td>Schreiben 0</td>
<td>v. Verd.</td>
</tr>
<tr>
<td>Diginst.20</td>
<td>am Silokopf</td>
<td>Schreiben 1</td>
<td>Silo</td>
</tr>
<tr>
<td>Diginst.21</td>
<td>vor Elektrofilter 1</td>
<td>Schreiben 2</td>
<td>v. K2</td>
</tr>
<tr>
<td>Diginst.22</td>
<td>vor Zyklon 2</td>
<td>Schreiben 3</td>
<td>vor Zyk1.2</td>
</tr>
<tr>
<td>Diginst.01</td>
<td>vor Elektrofilter 2</td>
<td>Schreiben 4</td>
<td>v. E-Fi</td>
</tr>
<tr>
<td>Diginst.02</td>
<td>nach Wirbelschicht</td>
<td>Schreiben 5</td>
<td>n. WS</td>
</tr>
<tr>
<td>Diginst.03</td>
<td>vor Zyklon 1</td>
<td>Schreiben 6</td>
<td>v. Zyk1.1</td>
</tr>
<tr>
<td>Diginst.04</td>
<td>nach Zyklon 2</td>
<td>Schreiben 7</td>
<td>n. Zyk1.2</td>
</tr>
<tr>
<td>Diginst.05</td>
<td>vor Wirbelschicht</td>
<td>Schreiben 8</td>
<td>v. WS</td>
</tr>
</tbody>
</table>
1.15 Maße für Schrauben und Dichtungen (A)

Tabelle 13: Maße für Schrauben und Dichtungen

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>Schrauben (V2A)</th>
<th>Dichtungen</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirbelgasheizung</td>
<td>M16x40</td>
<td>152x115x2 (DN 100)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Wirbelboden</td>
<td>M16x70</td>
<td>139x129x2</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Überlaufrohr</td>
<td>M10x45</td>
<td>50x22x2 (DN15)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Überlaufonnnendeckel</td>
<td>M8x30</td>
<td>220x195x2</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Reaktorkopf</td>
<td>M16x60</td>
<td>182x141x2 (DN150)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Reaktordeckel</td>
<td>M16x60</td>
<td>152x115x2 (DN100)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Reaktorkopfleitun</td>
<td>M10x45</td>
<td>63x35x2 (DN25)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Zyklone</td>
<td>M10x45</td>
<td>63x35x2 (DN25)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>M8x30</td>
<td>75x43x2</td>
<td>Graphit-Spießblech</td>
<td></td>
</tr>
<tr>
<td>Zyklontopfe</td>
<td>M8x45</td>
<td>220x160x2 (DN125)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Stahlkühler</td>
<td>M10x45</td>
<td>63x35x2 (DN25)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Schneckenmantel (am Reaktor)</td>
<td>M10x45</td>
<td>90x70x2 (DN50)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Schneckenmantel (Mitte)</td>
<td>M10x45</td>
<td>63x35x2 (DN25)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Schnecken-Stopfbuchse</td>
<td>M8x30</td>
<td>10x10</td>
<td>Graphit/Seide/Teflon/Silikonöl</td>
</tr>
</tbody>
</table>
1.16 Datenerfassung (B)

Die folgenden Abbildungen und die Tabellen geben die Bezeichnungen und Orte der Messstellen an der LWS-Holz wieder.

Tabelle 14: Datenerfassung, Orte und Bezeichnungen der Messstellen

<table>
<thead>
<tr>
<th>Messstelle</th>
<th>Ort der Messstelle</th>
<th>Bezeichnung der Messstelle in der Datenerfassung (ASC-Datei)</th>
<th>Bezeichnung der Messstelle in der Datenerfassung (MS-Excel-Datei)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diginst.00</td>
<td>Vorwärmer1</td>
<td>Schreiben 0</td>
<td>Vorw.1</td>
</tr>
<tr>
<td>Diginst.06</td>
<td>Vorwärmer2</td>
<td>Schreiben 1</td>
<td>Vorw.2</td>
</tr>
<tr>
<td>Diginst.07</td>
<td>Wirbelschicht Unten</td>
<td>Schreiben 2</td>
<td>Reaktor1</td>
</tr>
<tr>
<td>Diginst.08</td>
<td>Wirbelschicht Mitte</td>
<td>Schreiben 3</td>
<td>Mitte Wirbelschicht</td>
</tr>
<tr>
<td>Diginst.09</td>
<td>Wirbelschicht Oben</td>
<td>Schreiben 4</td>
<td>3</td>
</tr>
<tr>
<td>Diginst.10</td>
<td>Freeboard</td>
<td>Schreiben 5</td>
<td>4</td>
</tr>
<tr>
<td>Diginst.11</td>
<td>vor Zyklon1</td>
<td>Schreiben 6</td>
<td>Koax1</td>
</tr>
<tr>
<td>Diginst.12</td>
<td>vor Zyklon2</td>
<td>Schreiben 7</td>
<td>Koax2</td>
</tr>
<tr>
<td>Diginst.13</td>
<td>vor Strahlwäscher</td>
<td>Schreiben 8</td>
<td>K1</td>
</tr>
<tr>
<td></td>
<td>(Übergangsrohr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diginst.14</td>
<td>Wäscherkopf</td>
<td>Schreiben 9</td>
<td>K2</td>
</tr>
<tr>
<td>Diginst.15</td>
<td>Sammler</td>
<td>Schreiben 10</td>
<td>E1</td>
</tr>
<tr>
<td>Diginst.16</td>
<td>vor Elektrofilter2</td>
<td>Schreiben 11</td>
<td>E2</td>
</tr>
<tr>
<td>Diginst.24</td>
<td>vor Verdichter</td>
<td>Schreiben 12</td>
<td>kompressor</td>
</tr>
</tbody>
</table>

Druck

<table>
<thead>
<tr>
<th>Messstelle</th>
<th>Ort der Messstelle</th>
<th>Bezeichnung der Messstelle in der Datenerfassung (ASC-Datei)</th>
<th>Bezeichnung der Messstelle in der Datenerfassung (MS-Excel-Datei)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diginst.19</td>
<td>vor Verdichter</td>
<td>Schreiben 0</td>
<td>v. Verd.</td>
</tr>
<tr>
<td>Diginst.20</td>
<td>am Silokopf</td>
<td>Schreiben 1</td>
<td>Silo</td>
</tr>
<tr>
<td>Diginst.21</td>
<td>Wäscherkopf</td>
<td>Schreiben 2</td>
<td>v. K2</td>
</tr>
<tr>
<td>Diginst.22</td>
<td>vor Zyklon2</td>
<td>Schreiben 3</td>
<td>vor Zykl.2</td>
</tr>
<tr>
<td>Diginst.01</td>
<td>vor Elektrofilter2</td>
<td>Schreiben 4</td>
<td>v. E-Fi</td>
</tr>
<tr>
<td>Diginst.02</td>
<td>nach Wirbelschicht</td>
<td>Schreiben 5</td>
<td>n. WS</td>
</tr>
<tr>
<td>Diginst.03</td>
<td>vor Zyklon1</td>
<td>Schreiben 6</td>
<td>v. Zykl.1</td>
</tr>
<tr>
<td>Diginst.04</td>
<td>vor Strahlwäscher</td>
<td>Schreiben 7</td>
<td>n. Zykl.2</td>
</tr>
<tr>
<td></td>
<td>(Übergangsrohr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diginst.05</td>
<td>vor Wirbelschicht</td>
<td>Schreiben 8</td>
<td>v. WS</td>
</tr>
</tbody>
</table>
1.17 Maße für Schrauben und Dichtungen (B)

Tabelle 15: Maße für Schrauben und Dichtungen

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>Schrauben (V2A)</th>
<th>Dichtungen</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirbelgasheizung</td>
<td>M16x40</td>
<td>152x115x2 (DN 100)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Wirbelboden</td>
<td>M16x70</td>
<td>139x129x2</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Überlaufrohr</td>
<td>M10x45</td>
<td>50x22x2 (DN15)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Überlauftonnendeckel</td>
<td>M8x30</td>
<td>220x195x2</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Reaktordeckel</td>
<td>M16x60</td>
<td>182x141x2 (DN150)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Reaktorkopfleitung</td>
<td>M10x45</td>
<td>63x35x2 (DN25)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Zyklone</td>
<td>M10x45</td>
<td>63x35x2 (DN25)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td></td>
<td>M8x30</td>
<td>75x43x2</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Zyklontöpfe</td>
<td>M8x45</td>
<td>220x160x2 (DN125)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Strahlwäscherkopf</td>
<td>M16x60</td>
<td>152x115x2 (DN 100)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Strahlwäscher (unten)</td>
<td>M16x60</td>
<td>152x115x2 (DN 100)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Sammler</td>
<td>M16x60</td>
<td>220x160x2 (DN125)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Schneckenmantel (am Reaktor)</td>
<td>M10x45</td>
<td>90x70x2 (DN50)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Schneckenmantel (Mitte)</td>
<td>M10x45</td>
<td>63x35x2 (DN25)</td>
<td>Graphit-Spießblech</td>
</tr>
<tr>
<td>Schnecken-Stopfbuchse</td>
<td>M8x30</td>
<td>10x10</td>
<td>Graphit/Seide/Teflon/Silikonöl</td>
</tr>
</tbody>
</table>

1.18 Sicherheitsdaten

Die Sicherheitsdatenblätter der bei der Pyrolyse von Biomasse auftretenden Gefahrstoffe befinden sich weiter unten im Anhang der vorliegenden Dissertation.
Abbildung 3: Technische Zeichnung des Reaktorkopfes in der ursprünglichen Ausführung
Abbildung 4: Technische Zeichnung des Reaktorkopfes in der modifizierten Ausführung
3 Chromatogramme

3.1 Ölanalytik

Abbildung 5: Chromatogramm des Pyrolyse-Öls: TP 39, Trennung auf DB 1701 (J&W), 60 m x 0,25 mm, Filmdicke 0,25 µm, Detektor: FID

Abbildung 6: Chromatogramm des Pyrolyse-Öls: TP 39, Trennung auf CP Sil 19 CB (Chrompack) 60 m x 0,25 mm, Filmdicke 0,25 µm, Detektor: MS
3.2 SPE-Chromatogramme

Abbildung 7: SPE-Chromatogramm, Elutionsmittel: Hexan, Trennung auf DB 1701 Länge: 60m, Filmdicke: 0.25µm, Detektor: FID

Abbildung 8: SPE-Chromatogramm, Elutionsmittel: 1-Chlorbutan, Trennung auf DB 1701 Länge: 60m, Filmdicke: 0.25µm, Detektor: FID
Abbildung 9: SPE-Chromatogramm, Elutionsmittel: Dichlormethan, Trennung auf DB 1701
Länge: 60m, Filmdicke: 0.25µm, Detektor: FID

Abbildung 10: SPE-Chromatogramm, Elutionsmittel: Ethylacetat, Trennung auf DB 1701
Länge: 60m, Filmdicke: 0.25µm, Detektor: FID
Abbildung 11: SPE-Chromatogramm, Elutionsmittel: Methanol, Trennung auf DB 1701
Länge: 60m, Filmdicke: 0.25µm, Detektor: FID
3.3 Gas-Analytik

Im Folgenden sind Chromatogramme der Analytik der Pyrolyse-Gase gezeigt.

3.3.1 Analytik der niederen Kohlenwasserstoffe sowie der Permanent-Gase

Abbildung 12: Chromatogramm der Kalibriermischung, Trennung von H₂, O₂, N₂, CH₄ und CO auf Molsieb-MSA, 4 m, Detektor: WLD

Abbildung 13: Chromatogramm der Luft-Kalibrierung, Trennung von N₂ und O₂ auf Molsieb-MSA, 4 m, x-Achse [s], y-Achse*1/10 [V], Detektor: WLD
Abbildung 14: Chromatogramm der Pyrolyse-Gase (TP 53), Trennung von H₂, O₂, N₂, CH₄ und CO auf Molsieb-MSA, 4 m, x-Achse [s], y-Achse*1/10 [V], Detektor: WLD

Abbildung 15: Chromatogramm der Kalibriermischung, Trennung von CH₄, CO₂, C₂H₄ und C₂H₆ auf Plot-Säule-HSA, 0,25 m (N₂ und O₂ werden nicht getrennt), Detektor: WLD
Abbildung 16: Chromatogramm der Pyrolyse-Gase (TP 53), Trennung von CH₄, CO₂, C₂H₄ und C₂H₆ auf Plot-Säule-HSA, 0,25 m, x-Achse [s], y-Achse*1/10 [V], (N₂ und O₂ werden nicht getrennt), Detektor: WLD

3.3.2 Analytik der höheren Kohlenwasserstoffe

Abbildung 17: Chromatogramm der Kalibriermischung: gesättigte Kohlenwasserstoffe, Trennung von Methan, Ethan, Propan, n-Butan, iso-Butan, Pentan, Hexan auf PLOT (Al₂O₃+ KCl) 50 m x 0,32 mm, Detektor: FID
Abbildung 18: Chromatogramm der Kalibriermischung: ungesättigte Kohlenwasserstoffe
Trennung von Ethen, Propen, Ethin, trans-, cis- und iso-Buten auf PLOT
(Al₂O₃+ KCl) 50 m x 0,32 mm, Detektor: FID

Abbildung 19: Chromatogramm der Pyrolyse-Gase (TP 53), Trennung der höheren
Kohlenwasserstoffe auf PLOT (Al₂O₃+ KCl) 50 m x 0,32 mm, Detektor: FID
4 Emissionsmessungen nach den Regelungen der 17. BImSchV

In den nachfolgenden Tabellen sind die Probenahmezeiten angegeben. Da für die gesamten Messungen nur ein begrenzter Zeitraum zur Verfügung stand, wurden die Probenahmezeiten teilweise (insbesondere bei den Dioxinen / Furanen) gekürzt. Die Messung der organischen Stoffe als Gesamtkohlenstoff erfolgte mehrfach stichpunktartig (nicht über einen Zeitraum von 30 Minuten), da sich die Anzeige aufgrund der hohen Konzentrationen am Messbereichsende befand.
Tabelle 16: Konzentrationen an Chlorwasserstoff, Fluorwasserstoff, Schwefeloxiden, Staub, Kohlenmonoxid und Stickstoffoxiden

<table>
<thead>
<tr>
<th>Datum</th>
<th>11.05.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barometerstand [hPa]</td>
<td>1016</td>
</tr>
</tbody>
</table>

Abgas-Parameter (Mittelwerte)

Statischer Druck [hPa]	1016
Abgastemperatur [°C]	192
Abgasfeuchte [kg/m³]	0,1
abs. Abgasfeuchte [Vol.%]	11,1
Sauerstoffgehalt [Vol.%]	2,0
Abgasgeschwindigkeit [m/s]	1,9

Betriebszustand

| mittlerer Abgasvolumenstrom bezogen auf den Normzustand, trocken [m³/h] | 2,4 |

Messzeit

<table>
<thead>
<tr>
<th>12:08-12:32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauerstoffgehalt [Vol.%]</td>
</tr>
<tr>
<td>Chlorwasserstoff (HCl) [mg/m³]</td>
</tr>
<tr>
<td>Fluorwasserstoff (HF) [mg/m³]</td>
</tr>
</tbody>
</table>

Messzeit

<table>
<thead>
<tr>
<th>13:05-13:28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauerstoffgehalt [Vol.%]</td>
</tr>
<tr>
<td>Schwefeloxide (SO₂ + SO₃ als SO₂) [mg/m³]</td>
</tr>
<tr>
<td>Kohlenmonoxid (CO) [mg/m³]</td>
</tr>
<tr>
<td>Gesamtkohlenstoff (C₆₅₃) [mg/m³]</td>
</tr>
<tr>
<td>Stickstoffmonoxid (NO) [mg/m³]</td>
</tr>
<tr>
<td>Stickstoffdioxid (NO₂) [mg/m³]</td>
</tr>
<tr>
<td>Stickstoffoxide (NO + NO₂ als NO₂) [mg/m³]</td>
</tr>
</tbody>
</table>

Messzeit

<table>
<thead>
<tr>
<th>12:37-12:56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauerstoffgehalt [Vol.%]</td>
</tr>
<tr>
<td>Gesamtstaub [mg/m³]</td>
</tr>
<tr>
<td>Datum</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Barometerstand</td>
</tr>
</tbody>
</table>

Abgas-Parameter (Mittelwerte)

<table>
<thead>
<tr>
<th>Statischer Druck</th>
<th>[hPa]</th>
<th>1016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abgastemperatur</td>
<td>[°C]</td>
<td>192</td>
</tr>
<tr>
<td>Abgasfeuchte</td>
<td>[kg/m³]</td>
<td>0,1</td>
</tr>
<tr>
<td>abs. Abgasfeuchte</td>
<td>[Vol.%]</td>
<td>11,1</td>
</tr>
<tr>
<td>Sauerstoffgehalt</td>
<td>[Vol.%]</td>
<td>2,0</td>
</tr>
<tr>
<td>Abgasgeschwindigkeit</td>
<td>[m/s]</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Mittlerer Abgasvolumenstrom bezogen auf den Betriebszustand

<table>
<thead>
<tr>
<th>[m³/h]</th>
<th>2,4</th>
</tr>
</thead>
</table>

Normzustand, feucht

<table>
<thead>
<tr>
<th>[m³/h]</th>
<th>1,4</th>
</tr>
</thead>
</table>

Normzustand, trocken

<table>
<thead>
<tr>
<th>[m³/h]</th>
<th>1,2</th>
</tr>
</thead>
</table>

Konzentration bezogen auf den Normzustand, trocken

<table>
<thead>
<tr>
<th>Messzeit</th>
<th>11:30-11:58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauerstoffgehalt</td>
<td>[Vol.%]</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Thallium (TI)</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Summe Cd und TI</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Quecksilber (Hg)</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Antimon (Sb)</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Arsen (As)</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Blei (Pb)</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Chrom (Cr)</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Kobalt (Co)</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Kupfer (Cu)</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Mangan (Mn)</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Vanadium (V)</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Zinn (Sn)</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Summe Sb bis Sn</td>
<td>[µg/m³]</td>
</tr>
<tr>
<td>Datum</td>
<td>11.05.00</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Barometerstand</td>
<td>1016</td>
</tr>
</tbody>
</table>

Abgas-Parameter (Mittelwerte)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>[hPa]</th>
<th>[°C]</th>
<th>[kg/m³]</th>
<th>[Vol.%]</th>
<th>[m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statischer Druck</td>
<td>1016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abgastemperatur</td>
<td></td>
<td>192</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abgasfeuchte</td>
<td></td>
<td></td>
<td>0,1</td>
<td>11,1</td>
<td>1,9</td>
</tr>
<tr>
<td>abs. Abgasfeuchte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sauerstoffgehalt</td>
<td></td>
<td></td>
<td></td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>Abgasgeschwindigkeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mittlerer Abgasvolumenstrom bezogen auf den Betriebszustand

<table>
<thead>
<tr>
<th>[m³/h]</th>
<th>2,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normzustand, feucht</td>
<td>1,4</td>
</tr>
<tr>
<td>Normzustand, trocken</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Konzentration bezogen auf den Normzustand, trocken

<table>
<thead>
<tr>
<th>Messzeit</th>
<th>13:37-14:15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauerstoffgehalt</td>
<td>[Vol.%] 2,8</td>
</tr>
<tr>
<td>2,3,7,8-Tetra-CDD</td>
<td>[µg/m³] 0,5</td>
</tr>
<tr>
<td>1,2,3,7,8-Penta-CDD</td>
<td>[µg/m³] 0,5</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexa-CDD</td>
<td>[µg/m³] 0,5</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexa-CDD</td>
<td>[µg/m³] 6,2</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexa-CDD</td>
<td>[µg/m³] 6,5</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Hepta-CDD</td>
<td>[µg/m³] 77,0</td>
</tr>
<tr>
<td>Octa-CDD</td>
<td>[µg/m³] 444,0</td>
</tr>
<tr>
<td>2,3,7,8-Tetra-CDF</td>
<td>[µg/m³] 28,0</td>
</tr>
<tr>
<td>1,2,3,7,8-Penta-CDF</td>
<td>[µg/m³] 7,2</td>
</tr>
<tr>
<td>2,3,4,7,8-Penta-CDF</td>
<td>[µg/m³] 6,2</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexa-CDF</td>
<td>[µg/m³] 12,0</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexa-CDF</td>
<td>[µg/m³] 7,0</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexa-CDF</td>
<td>[µg/m³] 7,3</td>
</tr>
<tr>
<td>2,3,4,6,7,8-Hexa-CDF</td>
<td>[µg/m³] 11,0</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Hepta-CDF</td>
<td>[µg/m³] 45,0</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-Hepta-CDF</td>
<td>[µg/m³] 8,8</td>
</tr>
<tr>
<td>Octa-CDF</td>
<td>[µg/m³] 85,0</td>
</tr>
<tr>
<td>PCDD/F-TE-Wert (17. BImSchV)</td>
<td>[µg/m³] 13,0</td>
</tr>
<tr>
<td>PCDD/F-TE-Wert (EN 1948)</td>
<td>[µg/m³] 13,0</td>
</tr>
</tbody>
</table>
Tabelle 19: Konzentrationen an Chlorwasserstoff, Fluorwasserstoff, Schwefeloxiden, Staub, Kohlenmonoxid und Stickstoffoxiden, bezogen auf einen Sauerstoffgehalt von 11 Vol.%

<table>
<thead>
<tr>
<th>Datum</th>
<th>11.05.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abgasfeuchte</td>
<td>0,1</td>
</tr>
<tr>
<td>Sauerstoffgehalt</td>
<td>11,1</td>
</tr>
<tr>
<td>Abgasgeschwindigkeit</td>
<td>1,9</td>
</tr>
<tr>
<td>Statischer Druck</td>
<td>[hPa] 1016</td>
</tr>
<tr>
<td>Abgastemperatur</td>
<td>[°C] 192</td>
</tr>
<tr>
<td>Abgasfeuchte</td>
<td>[kg/m³]</td>
</tr>
<tr>
<td>abs. Abgasfeuchte</td>
<td>[Vol.%]</td>
</tr>
<tr>
<td>Sauerstoffgehalt</td>
<td>[Vol.%] 2,0</td>
</tr>
<tr>
<td>Barometerstand</td>
<td>1016</td>
</tr>
</tbody>
</table>

Abgas-Parameter (Mittelwerte)

<table>
<thead>
<tr>
<th>Datum</th>
<th>11.05.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abgasfeuchte</td>
<td>0,1</td>
</tr>
<tr>
<td>Sauerstoffgehalt</td>
<td>11,1</td>
</tr>
<tr>
<td>Abgasgeschwindigkeit</td>
<td>1,9</td>
</tr>
<tr>
<td>Statischer Druck</td>
<td>[hPa] 1016</td>
</tr>
<tr>
<td>Abgastemperatur</td>
<td>[°C] 192</td>
</tr>
<tr>
<td>Abgasfeuchte</td>
<td>[kg/m³]</td>
</tr>
<tr>
<td>abs. Abgasfeuchte</td>
<td>[Vol.%]</td>
</tr>
<tr>
<td>Sauerstoffgehalt</td>
<td>[Vol.%] 2,0</td>
</tr>
<tr>
<td>Barometerstand</td>
<td>1016</td>
</tr>
</tbody>
</table>

Mittlerer Abgasvolumenstrom bezogen auf den Betriebszustand [m³/h] 2,4
Normzustand, feucht [m³/h] 1,4
Normzustand, trocken [m³/h] 1,2

Konzentration bezogen a. d. Normzustand, tr. und einen Sauerstoffgehalt von 11 Vol.%

<table>
<thead>
<tr>
<th>Datum</th>
<th>12:08-12:32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauerstoffgehalt</td>
<td>[Vol.%] 1,1</td>
</tr>
<tr>
<td>Chlorwasserstoff (HCl)</td>
<td>[mg/m³] 2,9</td>
</tr>
<tr>
<td>Fluorwasserstoff (HF)</td>
<td>[mg/m³] < 0,3</td>
</tr>
<tr>
<td>Messzeit</td>
<td>12:08-12:32</td>
</tr>
</tbody>
</table>

Sauerstoffgehalt | [Vol.%] 1,2
Schwefeloxide (SO₂ + SO₃ als SO₂) | [mg/m³] 9,6
Kohlenmonoxid (CO) | [mg/m³] > 505
Gesamtkohlenstoff (Cₐ₆ₑ₆) | [mg/m³] > 5050
Stickstoffmonoxid (NO) | [mg/m³] 62,0
Stickstoffdioxid (NO₂) | [mg/m³] 35,0
Stickstoffoxide (NO + NO₂ als NO₂) | [mg/m³] 130,0
| Messzeit | 12:37-12:56 |

Sauerstoffgehalt | [Vol.%] 0,7
Gesamtstaub | [mg/m³] 0,9

Messzeit | 12:08-12:32 |

Gesamtstaub | [mg/m³] 0,9
Tabelle 20: Konzentrationen an Metallen, bezogen auf einen Sauerstoffgehalt von 11 Vol.%

<table>
<thead>
<tr>
<th>Datum</th>
<th>11.05.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barometerstand</td>
<td>1016</td>
</tr>
</tbody>
</table>

Abgas-Parameter (Mittelwerte)

<table>
<thead>
<tr>
<th>Statischer Druck [hPa]</th>
<th>1016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abgastemperatur [°C]</td>
<td>192</td>
</tr>
<tr>
<td>Abgasfeuchte [kg/m³]</td>
<td>0,1</td>
</tr>
<tr>
<td>abs. Abgasfeuchte [Vol.%)</td>
<td>11,1</td>
</tr>
<tr>
<td>Sauerstoffgehalt [Vol.%)</td>
<td>2</td>
</tr>
<tr>
<td>Abgasgeschwindigkeit [m/s]</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Mittlerer Abgasvolumenstrom bezogen auf den Betriebszustand

<table>
<thead>
<tr>
<th>Betriebszustand [m³/h]</th>
<th>2,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normzustand, feucht [m³/h]</td>
<td>1,4</td>
</tr>
<tr>
<td>Normzustand, trocken [m³/h]</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Messzeit: 11:30-11:58

<table>
<thead>
<tr>
<th>Sauerstoffgehalt [Vol.%)</th>
<th>3,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium (Cd) [µg/m³]</td>
<td>0,5</td>
</tr>
<tr>
<td>Thallium (TI) [µg/m³]</td>
<td>< 0,6</td>
</tr>
<tr>
<td>Summe Cd und TI [µg/m³]</td>
<td>1,1</td>
</tr>
<tr>
<td>Quecksilber (Hg) [µg/m³]</td>
<td>0,2</td>
</tr>
<tr>
<td>Antimon (Sb) [µg/m³]</td>
<td>2,0</td>
</tr>
<tr>
<td>Arsen (As) [µg/m³]</td>
<td>1,3</td>
</tr>
<tr>
<td>Blei (Pb) [µg/m³]</td>
<td>4,6</td>
</tr>
<tr>
<td>Chrom (Cr) [µg/m³]</td>
<td>2,2</td>
</tr>
<tr>
<td>Cobalt (Co) [µg/m³]</td>
<td>0,4</td>
</tr>
<tr>
<td>Kupfer (Cu) [µg/m³]</td>
<td>62,0</td>
</tr>
<tr>
<td>Mangan (Mn) [µg/m³]</td>
<td>66,0</td>
</tr>
<tr>
<td>Nickel (Ni) [µg/m³]</td>
<td>15,0</td>
</tr>
<tr>
<td>Vanadium (V) [µg/m³]</td>
<td>< 1</td>
</tr>
<tr>
<td>Zinn (Sn) [µg/m³]</td>
<td>3,1</td>
</tr>
<tr>
<td>Summe Sb bis Sn [µg/m³]</td>
<td>157,0</td>
</tr>
</tbody>
</table>
Tabelle 21: Konzentrationen an PCDD/PCDF, bezogen auf einen Sauerstoffgehalt von 11 Vol.%

<table>
<thead>
<tr>
<th>Datum</th>
<th>11.05.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barometerstand</td>
<td>1016</td>
</tr>
<tr>
<td>Abgasparameter (Mittelwerte)</td>
<td></td>
</tr>
<tr>
<td>Statischer Druck [hPa]</td>
<td>1016</td>
</tr>
<tr>
<td>Abgastemperatur [°C]</td>
<td>192</td>
</tr>
<tr>
<td>Abgasfeuchte [kg/m³]</td>
<td>0,1</td>
</tr>
<tr>
<td>abs. Abgasfeuchte [Vol.%]</td>
<td>11,1</td>
</tr>
<tr>
<td>Sauerstoffgehalt [Vol.%]</td>
<td>2,0</td>
</tr>
<tr>
<td>Abgasgeschwindigkeit [m/s]</td>
<td>1,9</td>
</tr>
<tr>
<td>Mittlerer Abgasvolumenstrom bezogen auf den Betriebszustand [m³/h]</td>
<td>2,4</td>
</tr>
<tr>
<td>Normzustand, feucht [m³/h]</td>
<td>1,4</td>
</tr>
<tr>
<td>Normzustand, trocken [m³/h]</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Konzentration bezogen a. d. Normzustand, tr. und einen Sauerstoffgehalt von 11 Vol.%

<table>
<thead>
<tr>
<th>Messzeit</th>
<th>13:37-14:15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauerstoffgehalt [Vol.%]</td>
<td>2,8</td>
</tr>
<tr>
<td>2,3,7,8-Tetra-CDD [mg/m³]</td>
<td>0,3</td>
</tr>
<tr>
<td>1,2,3,7,8-Penta-CDD [mg/m³]</td>
<td>0,3</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexa-CDD [mg/m³]</td>
<td>0,3</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexa-CDD [mg/m³]</td>
<td>3,4</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexa-CDD [mg/m³]</td>
<td>3,6</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Hepta-CDD [mg/m³]</td>
<td>43,0</td>
</tr>
<tr>
<td>Octa-CDD [mg/m³]</td>
<td>244,0</td>
</tr>
<tr>
<td>2,3,7,8-Tetra-CDF [mg/m³]</td>
<td>15,0</td>
</tr>
<tr>
<td>1,2,3,7,8-Penta-CDF [mg/m³]</td>
<td>3,9</td>
</tr>
<tr>
<td>2,3,4,7,8-Penta-CDF [mg/m³]</td>
<td>3,4</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexa-CDF [mg/m³]</td>
<td>6,5</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexa-CDF [mg/m³]</td>
<td>3,8</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexa-CDF [mg/m³]</td>
<td>4,0</td>
</tr>
<tr>
<td>2,3,4,6,7,8-Hexa-CDF [mg/m³]</td>
<td>6,2</td>
</tr>
<tr>
<td>1,2,3,4,6,T,8-Hepta-CDF [mg/m³]</td>
<td>25,0</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-Hepta-CDF [mg/m³]</td>
<td>4,8</td>
</tr>
<tr>
<td>Octa-CDF [mg/m³]</td>
<td>47,0</td>
</tr>
<tr>
<td>PCDD/F-TE-Wert (17. BImSchV) [mg/m³]</td>
<td>7,2</td>
</tr>
<tr>
<td>PCDDIF-TE-Wert (EN 1948) [mg/m³]</td>
<td>7,3</td>
</tr>
</tbody>
</table>
Tabelle 22: Massenströme an Chlorwasserstoff, Fluorwasserstoff, Schwefeloxiden, Staub, Kohlenmonoxid und Stickstoffoxiden

<table>
<thead>
<tr>
<th>Datum</th>
<th>11.05.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barometerstand</td>
<td>1016</td>
</tr>
<tr>
<td>Abgas-Parameter (Mittelwerte)</td>
<td></td>
</tr>
<tr>
<td>Statischer Druck [hPa]</td>
<td>1016</td>
</tr>
<tr>
<td>Abgastemperatur [°C]</td>
<td>192</td>
</tr>
<tr>
<td>Abgasfeuchte [kg/m³]</td>
<td>0,1</td>
</tr>
<tr>
<td>ab. Abgasfeuchte [Vol.%]</td>
<td>11,1</td>
</tr>
<tr>
<td>Sauerstoffgehalt [Vol.%]</td>
<td>2,0</td>
</tr>
<tr>
<td>Abgasgeschwindigkeit [m/s]</td>
<td>1,9</td>
</tr>
<tr>
<td>Mittlerer Abgasvolumenstrom bezogen auf den Betriebszustand</td>
<td></td>
</tr>
<tr>
<td>[m³/h]</td>
<td>2,4</td>
</tr>
<tr>
<td>Normzustand, feucht [m³/h]</td>
<td>1,4</td>
</tr>
<tr>
<td>Normzustand, trocken [m³/h]</td>
<td>1,2</td>
</tr>
<tr>
<td>Massenstrom</td>
<td></td>
</tr>
<tr>
<td>Messzeit</td>
<td>12:08-12:32</td>
</tr>
<tr>
<td>Sauerstoffgehalt [Vol.%]</td>
<td>1,1</td>
</tr>
<tr>
<td>Chlorwasserstoff (HCl) [g/h]</td>
<td>0,007</td>
</tr>
<tr>
<td>Fluorwasserstoff (HF) [g/h]</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Messzeit</td>
<td>13:05-13:28</td>
</tr>
<tr>
<td>Sauerstoffgehalt [Vol.%]</td>
<td>1,2</td>
</tr>
<tr>
<td>Schwefeloxide (SO₂ & SO₃ als SO₂) [g/h]</td>
<td>0,023</td>
</tr>
<tr>
<td>Kohlenmonoxid (CO) [g/h]</td>
<td>> 1,2</td>
</tr>
<tr>
<td>Gesamtkohlenstoff (C₃ges.) [g/h]</td>
<td>> 12</td>
</tr>
<tr>
<td>Stickstoffmonoxid (NO) [g/h]</td>
<td>0,15</td>
</tr>
<tr>
<td>Stickstoffsdiioxid (NO₂) [g/h]</td>
<td>0,08</td>
</tr>
<tr>
<td>Stickstoffoxide (NO & NO₂ als NO₂) [g/h]</td>
<td>0,31</td>
</tr>
<tr>
<td>Messzeit</td>
<td>12:37-12:56</td>
</tr>
<tr>
<td>Sauerstoffgehalt [Vol.%]</td>
<td>0,7</td>
</tr>
<tr>
<td>Gesamtstaub [g/h]</td>
<td>0,002</td>
</tr>
</tbody>
</table>
Tabelle 23: Massenströme an Metallen

<table>
<thead>
<tr>
<th>Datum</th>
<th>11.05.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barometerstand</td>
<td>1016</td>
</tr>
</tbody>
</table>

Abgas-Parameter (Mittelwerte)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statischer Druck</td>
<td>1016 hPa</td>
</tr>
<tr>
<td>Abgastemperatur</td>
<td>192 °C</td>
</tr>
<tr>
<td>Abgasfeuchte</td>
<td>0,1 kg/m³</td>
</tr>
<tr>
<td>abs. Abgasfeuchte</td>
<td>11,1 Vol.%</td>
</tr>
<tr>
<td>Sauerstoffgehalt</td>
<td>2,0 Vol.%</td>
</tr>
<tr>
<td>Abgasgeschwindigkeit</td>
<td>1,9 m/s</td>
</tr>
</tbody>
</table>

Mittlerer Abgasvolumenstrom bezogen auf den Betriebszustand

<table>
<thead>
<tr>
<th>Zustand</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebszustand</td>
<td>2,4 m³/h</td>
</tr>
<tr>
<td>Normzustand, feucht</td>
<td>1,4 m³/h</td>
</tr>
<tr>
<td>Normzustand, trocken</td>
<td>1,2 m³/h</td>
</tr>
</tbody>
</table>

Massenstrom

<table>
<thead>
<tr>
<th>Messzeit</th>
<th>11:30-11:58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauerstoffgehalt</td>
<td>3,4 Vol.%</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>< 0,01 mg/h</td>
</tr>
<tr>
<td>Thallium (TI)</td>
<td>< 0,01 mg/h</td>
</tr>
<tr>
<td>Summe Cd und TI</td>
<td>< 0,01 mg/h</td>
</tr>
<tr>
<td>Quecksilber (Hg)</td>
<td>< 0,01 mg/h</td>
</tr>
<tr>
<td>Antimon (Sb)</td>
<td>< 0,01 mg/h</td>
</tr>
<tr>
<td>Arsen (As)</td>
<td>< 0,01 mg/h</td>
</tr>
<tr>
<td>Blei (Pb)</td>
<td>0,01 mg/h</td>
</tr>
<tr>
<td>Chrom (Cr)</td>
<td>< 0,01 mg/h</td>
</tr>
<tr>
<td>Kobalt (Co)</td>
<td>< 0,01 mg/h</td>
</tr>
<tr>
<td>Kupfer (Cu)</td>
<td>0,13 mg/h</td>
</tr>
<tr>
<td>Mangan (Mn)</td>
<td>0,14 mg/h</td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>0,03 mg/h</td>
</tr>
<tr>
<td>Vanadium (V)</td>
<td>< 0,01 mg/h</td>
</tr>
<tr>
<td>Zinn (Sn)</td>
<td>0,01 mg/h</td>
</tr>
<tr>
<td>Summe Sb bis Sn</td>
<td>0,33 mg/h</td>
</tr>
</tbody>
</table>
Tabelle 24: Massenströme an PCDD/PCDF

<table>
<thead>
<tr>
<th>Datum</th>
<th>11.05.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barometerstand</td>
<td>1016</td>
</tr>
<tr>
<td>Abgas-Parameter (Mittelwerte)</td>
<td></td>
</tr>
<tr>
<td>Statischer Druck</td>
<td>[hPa] 1016</td>
</tr>
<tr>
<td>Abgastemperatur</td>
<td>[°C] 192</td>
</tr>
<tr>
<td>Abgasfeuchte</td>
<td>[kg/m³] 0,1</td>
</tr>
<tr>
<td>abs. Abgasfeuchte</td>
<td>[Vol.%] 11,1</td>
</tr>
<tr>
<td>Sauerstoffgehalt</td>
<td>[Vol.%] 2,0</td>
</tr>
<tr>
<td>Abgasgeschwindigkeit</td>
<td>[m/s] 1,9</td>
</tr>
<tr>
<td>Mittlerer Abgasvolumenstrom bezogen auf den Betriebszustand</td>
<td>[m³/h] 2,4</td>
</tr>
<tr>
<td>Normzustand, feucht</td>
<td>[m³/h] 1,4</td>
</tr>
<tr>
<td>Normzustand, trocken</td>
<td>[m³/h] 1,2</td>
</tr>
<tr>
<td>Massenstrom</td>
<td></td>
</tr>
<tr>
<td>Messzeit</td>
<td>13:37-14:15</td>
</tr>
<tr>
<td>Sauerstoffgehalt</td>
<td>[Vol.%] 2,8</td>
</tr>
<tr>
<td>2,3,7,8-Tetra-CDD</td>
<td>[ng/h] 0,001</td>
</tr>
<tr>
<td>1,2,3,7,8-Penta-CDD</td>
<td>[ng/h] 0,001</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexa-CDD</td>
<td>[ng/h] 0,001</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexa-CDD</td>
<td>[ng/h] 0,007</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexa-CDD</td>
<td>[ng/h] 0,008</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Hepta-CDD</td>
<td>[ng/h] 0,093</td>
</tr>
<tr>
<td>Octa-CDD</td>
<td>[ng/h] 0,533</td>
</tr>
<tr>
<td>2,3,7,8-Tetra-CDF</td>
<td>[ng/h] 0,033</td>
</tr>
<tr>
<td>1,2,3,7,8-Penta-CDF</td>
<td>[ng/h] 0,009</td>
</tr>
<tr>
<td>2,3,4,7,8-Penta-CDF</td>
<td>[ng/h] 0,007</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexa-CDF</td>
<td>[ng/h] 0,014</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexa-CDF</td>
<td>[ng/h] 0,008</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexa-CDF</td>
<td>[ng/h] 0,009</td>
</tr>
<tr>
<td>2,3,4,6,7,8-Hexa-CDF</td>
<td>[ng/h] 0,014</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Hepta-CDF</td>
<td>[ng/h] 0,054</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-Hepta-CDF</td>
<td>[ng/h] 0,011</td>
</tr>
<tr>
<td>Octa-CDF</td>
<td>[ng/h] 0,102</td>
</tr>
<tr>
<td>PCDD/F-TE-Wert (17. BImSchV)</td>
<td>[ng/h] 0,016</td>
</tr>
<tr>
<td>PCDD/F-TE-Wert (EN 1948)</td>
<td>[ng/h] 0,016</td>
</tr>
</tbody>
</table>
5 Sicherheitsdatenblätter

Abbildung 20: Sicherheitsdatenblatt Pyrolyse-Öl der Veba Oel, Seite 1
Abbildung 21: Sicherheitsdatenblatt Pyrolyse-Öl der Veba Oel, Seite 2
Abbildung 22: Sicherheitsdatenblatt, Buchenholztee der Firma Commentz & Co. GmbH & Co., Seite 1
DIN-Sicherheitsdatenblatt

Datum: 001 45/2512 2000/001

Blatt 2 von 3

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>Buchenholztee, mittelflußig</th>
</tr>
</thead>
</table>

4 Vorschriften

Kennzeichnung nach Chemikaliengesetz (01.10.1986):

- Ja [x]
- Nein []

Kennzeichnung nach GefStoffV gemäß Anh. I 2.2 (x), Anh. II 1.1:

- Ja [x]
- Nein []

Gefahrensymbol(e): An

- R-Sätze: 21/22
- S-Sätze: 2-28-44

MAK-Werte (1987): 5 ppm, 19 mg/m³ bez. auf Phenol

TRK-Werte (19): ppm, mg/m³ bez. auf

Berufsgenossenschaftliche Weisungen:

- **Sonstige Hinweise:**
 - Unsere bisherigen Analysen ergaben keinen Hinweis auf einen Benzol(a)pyren-Gehalt, der über den Grenzen der GefStV (0,005 o/o) bzw. TRG 126 (0,002 mg/m³) liegt.

5 Schutzmaßnahmen, Lagerung und Handhabung

5.1 Technische Schutzmaßnahmen:

- Gebinde verschossen halten; Objektabsaugung; Zuendquellen fernhalten; ggf. Massnahmen gegen elektrostatische Aufladung

5.2 Persönliche Schutzmaßnahmen:

- [x] Atmschutz
- [x] Augenschutz
- [x] Randschutz

5.3 Arbeitsschutz:

- Atmgifte: Flt-Kennbuchstabe A, Farbe braun

5.4 Brand/Explosion:

- Keine

5.5 Entsorgung:

- Falls Recycling nicht moeglich, Beseitigung nach den jeweils oertlich gültigen Abfallbeseitigungsgesetzen und Vorschriften (behoerdlciche Auskunftspflicht)

6 Massnahmen bei Unfällen und Bränden

6.1 Nach Verschütteten und Auslaufenden kleinerer Mengen:

- Mechanisch mit Adsorptionsmittel auf Basis von Aktivkohle oder Saesepaeder aufnehmen und in geeigneten Behaeltern sammeln.

- Gasausstritt n.a.

6.2 Loschmittel, geeignet:

- [x] Wasser
- [x] Trockenloschmittel
- [x] Schaum
- [x] Wassernebel

- Nicht zu verwenden:

6.3 Erste Hilfe:

- **Haut-, Schleimhautkontakt:** Gruendlich mit Seife und Wasser abwaschen.

- **Perorale Aufnahme:** Paraffinum subluidum (3 ml/kg) und Natrium sulfuricum (1 Essl. auf 250 ml Wasser)

- Cave: Keine Magenausbecherung ohne Intubation.

- Vorsorglich Klinikeinweisung.

- **Inhalation:** Frischluft, evtl. Sauerstoffbeatmung.

Abbildung 24: Sicherheitsdatenblatt, Buchenholztreer der Firma Commentz & Co. GmbH & Co., Seite 3
1 STOFF/VERBEUTERTS- UND FIRMENBEZEICHNUNG
Sicherheitsdatenblatt-Nr.: 019
Produzent: Messer Griesheim GmbH

2 ZUSAMMENSETZUNG/ANGABEN ZU BESTANDTEILEN
CAS-Nr.: 630-08-0
ERN-EC-Nr.: 211283

3 MÖGLICHE GEFÄHREN
Gefahrenhinweise:
Kann das Kind im Muttermittel schädigen. (*)

4 ERSTE-HILFE-MASNAHMEN
Einsatz:
Giffig beim Einatmen. Das Opfer ist unter Benutzung eines um-
luftunabhängigen Atemgerätes in frische Luft zu bringen. Wann-
und ruhig halten. Art hinausziehen. Bei Erschöpfung: künstliche
Beatmung.
Symptome können: Schwindelgefühl, Kopfschmerzen, Übelkeit
und Verlust der Koordinationsfähigkeit sein. (*).

5 MASNAHMEN ZUR BRANDBEKÄMPFUNG
Gegenmittel:
Sondereinsatzmittel}

6 MASNAHMEN BEI UNBEABSICHTIGTER FREISETZUNG
Einhalen:

7 HANDHABUNG UND LAGERUNG
Handhabung:
Verzichten Sie auf eine gasförmige oder dampfförmige Anwendung.

8 EXPOSITIONSBEGRENZUNG UND PERSONLICHE
SCHUTZAUSTRÜSTUNGEN
Expositionswerte:
Gefahren:

10 STABILITÄT UND REAKTIVITÄT
Stabilität:
Nicht flüchtig. Kann mit anderen Stoffen reagieren.

Abbildung 25: Sicherheitsdatenblatt Kohlendioxid der Firma Messer Griesheim, Seite 1
Kohlenmonoxid
Version: 2.00

Seite: 2/2
Datum: 01.02.1997
Ersetzt SDB vom: 01.05.1995

15 VORSCHRIFTEN

Nummer in Anhang I der Direktive 67/548/EWG
006/001-402

Einstufung
Ac: R12 | Repr. Cat. 1; R61 (*); R23-48/23 (*)

Symbole
†: hochentzündlich
T: giftig

R-Sätze
61-12-23-48/23 (*)

S-Sätze
53-45 (*)

"IG-Kennzeichnung" (*)

Hinweise auf die besonderen Gefahren
R 61-23 Kann das Kind im Mutterleib schädigen. Auch giftig beim Einatmen (*).
R 12 Hochentzündlich
R 45/23 Giftig: Gefahr erster Gesundheitsschäden bei längerer Exposition durch Einatmen (*).

Sicherheitszuschläge
S 53 Exposition vermeiden - vor Gebrauch besondere Anweisungen sichten (*).
S 45 Bei Unfall oder Unwohlsein sofort Arzt hinzuziehen (wenn möglich dieses Etikett/Dateienvblatt vorzeigen).

Nationale Vorschriften:
Druckbehälterverordnung (DruckbehV), Technische Regel Druckbehälter (TRD), Technische Regel Druckgase (TRG), Umfahrungsverordnung (VFG), Gefahrstoff-Verordnung (GefStoffV), Explosionsschutz-Richtlinien (Ex-R).

16 SONSTIGE ANGABEN

Die Angaben sind keine vertraglichen Zusicherungen von Produkterzeugnissen. Sie dienen sich auf den heutigen Stand der Kenntnisse.

Änderungen bzw. Ergänzungen zu vorhergehenden Versionen sind mit einem (*) gekennzeichnet.
6 Wissenschaftliche Veröffentlichungen

6.1 Wissenschaftliche Veröffentlichungen in Textform

6.2 Wissenschaftliche Vorträge

6.3 Wissenschaftliche Posterbeiträge

Gerdes C., Verflüssigung von Biomasse durch Flash-Pyrolyse, Messe: Achema 2000, 22.-27.05.2000 Frankfurt am Main

Meier D., Gerdes C., Holzverflüssigung durch Flash-Pyrolyse
Tag der offenen Tür: BFH., 27.09.1998 Hamburg
7 Lebenslauf

7.1 Persönliche Daten

Name: Christian Gerdes
Geburtsdatum: 26. August 1969
Geburtsort: Aurich
Familienstand: ledig
16.11.1991: Geburt meines Sohnes Maximilian-Christian

7.2 Ausbildung

seit Juni 1998 Aufbaustudium: Chemie (Promotion)
Schwerpunkt: Technische und makromolekulare Chemie
Februar 1998 Studienabschluss als Diplom Chemiker
1990-1998 Studium der Chemie an der Universität Hamburg
1989-1990 Grundwehrdienst
1989 Allgemeiner Hochschulreife
1982-1989 Mariengymnasium Jever
1980-1982 Orientierungsstufe Schortens
1976-1980 Grundschule Glarum

7.3 Weiterbildung

2000 Pyrolysis Network (PyNe) Seminar:
 Periodic Workshop (IEA-Bioenergy & PyNe) on Fast-Pyrolysis, Birmingham, UK
1998 Pyrolysis Network (PyNe) Workshop:
 The science of Biomass Pyrolysis, Stratford-on-Avon, UK

7.4 Beruflicher Hintergrund

seit September 2001 Mitarbeiter der Haase-Energietechnik GmbH, Neumünster
März 1998-Juli 2001 Wissenschaftlicher Mitarbeiter
 am Institut für Holzchemie und chemische Technologie des Holzes
 der Bundesforschungsanstalt für Forst und Holzwirtschaft (BFH),
 Hamburg-Bergedorf