Immunologische Untersuchungen am Schlüsselenzymsystem der Ammoniakoxidanten

Dissertation
zur Erlangung des Doktorgrades
des Fachbereichs Biologie
der Universität Hamburg

vorgelegt von
Claudia Pinck
aus Hamburg

Hamburg 2001
Genehmigt vom
Fachbereich Biologie der
Universität Hamburg
auf Antrag von Herrn Professor Dr. E. Bock

Weitere Gutachter der Dissertation:
Herr Professor Dr. R. Conrad

Tag der Disputation: 30.11.01

Hamburg, den 29. November 2001
INHALTSVERZEICHNIS

Abkürzungsverzeichnis ... 1

1 Zusammenfassung ... 3

2 Einleitung ... 5

3 Material und Methoden .. 19
 3.1 Bakterienstämme ... 19
 3.1.1 Chemolithotrophe Ammoniak- und Nitritoxidanten ... 19
 3.1.2 Chemoorganotrophe Bakterien .. 20
 3.2 Nährmedien und Kulturführung .. 21
 3.2.1 Ammoniakoxidanten ... 21
 3.2.2 Anreicherung von Ammoniakoxidanten .. 23
 3.2.3 Nitritoxidanten .. 24
 3.2.4 Methanoxidanten ... 25
 3.2.5 Methylordotrophe Bakterien .. 26
 3.2.6 Weitere chemoorganotrophe Bakterien ... 27
 3.3 Reinheitskontrollen .. 27
 3.4 Ernte der Bakterienzellen ... 28
 3.5 Zellaufschluss ... 28
 3.5.1 French Pressure Cell Press ... 29
 3.5.2 Ultraschall .. 29
 3.5.3 Glasperlen .. 29
 3.6 Analytische Nachweismethoden ... 29
 3.6.1 Bestimmung des Proteingehaltes .. 29
 3.6.2 Bestimmung von Ammonium ... 31
 3.6.3 Bestimmung von Hydroxylamin ... 31
 3.6.4 Bestimmung von Nitrit ... 32
 3.6.5 Bestimmung von Metallionen ... 32
 3.7 Isolierung des AmoA- und AmoB-Proteins ... 33
 3.8 Identifizierung des AmoA- und AmoB-Proteins mit Hilfe der Sequenzierung 34
 3.9 Synthese eines AmoA-Oligopeptids .. 35
 3.10 Herstellung von Antikörpern gegen die AmoA und AmoB 35
 3.11 Gelelektrophorese .. 35
 3.11.1 SDS-Polyacrylamidgelelektrophorese .. 35
 3.11.2 Native Polyacrylamidgelelektrophorese ... 38
 3.12 Färbung der Proteinbanden im Gel .. 39
3.12.1 Comassie-Blaufärbung ... 39
3.12.2 Zinkfärbung .. 39
3.12.3 Peroxidasefärbung zum Nachweis von Hämproteinen 39
3.13 Trocknung und Dokumentation der Gele .. 40
3.14 Westernblot .. 40
 3.14.1 Elektroblot mit diskontinuierlichem Puffersystem 41
 3.14.2 Elektroblot mit kontinuierlichem Puffersystem 42
 3.14.3 Immunologischer Nachweis .. 42
 3.14.4 Quantitativer Nachweis der AmoA und AmoB im Westernblot 44
3.15 Permeabilisierung ganzer Zellen in Reinkulturen und Anreicherungskulturen .. 45
3.16 Immunfluoreszenzfärbung ganzer Zellen .. 45
 3.16.1 IF-Färbung mit Antikörpern gegen die AmoA 45
 3.16.2 IF-Färbung mit Antikörpern gegen die AmoB 46
 3.16.3 Gekoppelte IF-Färbung mit Antikörpern gegen die AmoA und AmoB . 47
3.17 In situ-Hybridisierung mit fluoreszenzmarkierten Oligonukleotidsonden 47
3.18 Mikroskopische Untersuchungen ... 48
 3.18.1 Zellzahlbestimmung von Bakterien 48
 3.18.2 Epifluoreszenzmikroskopie ... 48
 3.18.3 Konfokale-Laser-Raster-Mikroskopie 49
 3.18.4 Transmissionselektronenmikroskopie 49
 3.18.4.1 Einbettung nach Spurr .. 49
 3.18.4.2 Einbettung in Lowicryl® bei tiefen Temperaturen 50
 3.18.4.3 Herstellung von Ultradünnschnitten und Nachkontrastierung 51
 3.18.4.4 Negativkontrastierung der Ammoniakmonooxygenase 52
3.19 Immuncytochemischer Nachweis der AmoA und AmoB mit Hilfe der Immun-goldmarkierung... 52
3.20 Isolierung der Ammoniakmonooxygenase .. 53
 3.20.1 Ionenaustauschchromatographie 53
 3.20.2 Gradientenzentrifugation .. 55
3.21 Bestimmung der Ammoniakoxidationsaktivität 55
3.22 Absorptionsspektrum der Ammoniakmonooxygenase 57

4 Ergebnisse .. 59
 4.1 Isolierung der Untereinheiten der Ammoniakmonooxygenase 59
 4.1.1 Anreicherung des AmoA-Proteins .. 59
 4.1.2 Isolierung des AmoB-Proteins .. 61
 4.2 Herstellung polyklonaler Antikörper gegen die Untereinheiten der Ammoniak-monooxygenase ... 62
 4.3 Zusammenfassende Darstellung der Verwendung der Antikörper 63
 4.4 Spezifität der Antikörper im Immunblot 64
4.4.1 Untersuchungen der Gattung *Nitrosomonas* und *Nitrosococcus mobilis* .. 64
4.4.2 Untersuchungen der Gattungen *Nitrosospira, Nitrosovibrio, Nitrosolobus*
und *Nitrosococcus* .. 66
4.4.3 Kontrollen zur Spezifität der Antikörper ... 67
4.5 Quantitativer Nachweis der Ammoniakmonooxygenase im Westernblot 68
4.5.1 Bestimmung des prozentualen Anteils der AmoA und AmoB am Gesamt-
protein von *N. eutropha* .. 68
4.5.2 Abhängigkeit des AmoA- und AmoB-Gehaltes von der Ammonium-
konzentration .. 70
4.5.3 Abhängigkeit des AmoA- und AmoB-Gehaltes von alternativen
Substraten ... 71
4.5.4 AmoA- und AmoB-Gehalt in hungernden Zellen von *Nitrosomonas* 72
4.5.5 Abhängigkeit des AmoA- und AmoB-Gehaltes von der Temperatur und
dem pH-Wert .. 74
4.6 Immunfluoreszenzfärbung von Ammoniakoxidantien in Reinkulturen 74
4.6.1 Fixierung und Permeabilisierung der Zellen ... 74
4.6.2 IF-Färbung mit Antikörpern gegen die AmoA .. 75
4.6.3 IF-Färbung mit Antikörpern gegen die AmoB .. 76
4.6.4 Gekoppelte IF-Färbung mit Antikörpern gegen die AmoA und AmoB 78
4.7 Identifizierung verschiedener Isolate von Ammoniakoxidantien 80
4.8 In situ Untersuchungen in Anreicherungskulturen von Ammoniakoxidantien..... 82
4.9 Immuncytochemischer Nachweis der AmoA und AmoB mit Hilfe der Immun-
goldmarkierung .. 88
4.9.1 IG-Markierung der AmoA ... 88
4.9.2 IG-Markierung der AmoB ... 88
4.10 Überblick über die immunologischen Untersuchungen mit den Antikörpern .. 93
4.11 Transmissionselektronenmikroskopische Untersuchungen von *N. eutropha* .. 95
4.12 Isolierung der Ammoniakmonooxygenase .. 97
4.12.1 Ionenaustauschchromatographie ... 97
4.12.2 Gradientenzentrifugation .. 100
4.13 Nachweis der Ammoniakoxidationsaktivität .. 103
4.13.1 Aktivität ganzer Zellen .. 103
4.13.2 Aktivität zellfreier Extrakte .. 104
4.13.3 Aktivität angereicherter Ammoniakmonooxygenase 106
4.14 Charakterisierung der Ammoniakmonooxygenase ... 108
4.14.1 Absorptionsspektrum ... 108
4.14.2 Relative Molekülmasse .. 109
4.14.3 Kupfer- und Eisengehalt .. 110
4.14.4 Elektronenmikroskopische Untersuchungen .. 110
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>spezifische Ammoniakoxidationsaktivität</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>abs.</td>
<td>absolut</td>
</tr>
<tr>
<td>ad.</td>
<td>auffüllen auf</td>
</tr>
<tr>
<td>AK</td>
<td>Antikörper</td>
</tr>
<tr>
<td>AMO</td>
<td>Ammoniakmonooxygenase</td>
</tr>
<tr>
<td>AmoA</td>
<td>A-Untereinheit der Ammoniakmonooxygenase</td>
</tr>
<tr>
<td>amoA</td>
<td>Gen der AmoA</td>
</tr>
<tr>
<td>AmoB</td>
<td>B-Untereinheit der Ammoniakmonooxygenase</td>
</tr>
<tr>
<td>amoB</td>
<td>Gen der AmoB</td>
</tr>
<tr>
<td>AmoC</td>
<td>C-Untereinheit der Ammoniakmonooxygenase</td>
</tr>
<tr>
<td>amoC</td>
<td>Gen der AmoC</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumperoxodisulfat</td>
</tr>
<tr>
<td>aqua bidest.</td>
<td>doppelt destilliertes Wasser</td>
</tr>
<tr>
<td>aqua deion.</td>
<td>deionisiertes Wasser</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure(n)</td>
</tr>
<tr>
<td>ATCC</td>
<td>engl.: American Type Culture Collection</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosin-5'-triphosphat</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninicsäure</td>
</tr>
<tr>
<td>BP-Filter</td>
<td>Bandpass-Filter</td>
</tr>
<tr>
<td>β-Proteobakterien</td>
<td>β-Unterklasse der Proteobakterien</td>
</tr>
<tr>
<td>BSA</td>
<td>Rinderserumalbumin</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>c</td>
<td>Konzentration</td>
</tr>
<tr>
<td>CAPS</td>
<td>3-(Cyclohexylamino)-1-propansulfonsäure</td>
</tr>
<tr>
<td>CLSM</td>
<td>Konfokales Laser Scanning Mikroskop</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>cyt</td>
<td>Cytochrom</td>
</tr>
<tr>
<td>ΔG₀⁻</td>
<td>Änderung der freien Energie bei pH 7,0</td>
</tr>
<tr>
<td>Δt</td>
<td>Zeitintervall</td>
</tr>
<tr>
<td>DAPI</td>
<td>4'-Diamidino-2-phenylindol</td>
</tr>
<tr>
<td>DEAE</td>
<td>Diethylaminoethylagarose</td>
</tr>
<tr>
<td>DGGE</td>
<td>denaturierende Gradientengelelektrophorese</td>
</tr>
<tr>
<td>DMB</td>
<td>Dimethoxybenzidin</td>
</tr>
<tr>
<td>DSMZ</td>
<td>Deutsche Stammsammlung für Mikroorganismen und Zellkulturen</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleinsäure</td>
</tr>
<tr>
<td>e⁻</td>
<td>Elektron</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>ELISA</td>
<td>engl.: enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>engl.</td>
<td>englisch</td>
</tr>
<tr>
<td>EPR</td>
<td>elektromagnetisches Resonanzspektrum</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii</td>
</tr>
<tr>
<td>Fa.</td>
<td>Firma</td>
</tr>
<tr>
<td>FISH</td>
<td>engl.: fluorescence in situ hybridisation</td>
</tr>
<tr>
<td>γ-Proteobakterien</td>
<td>γ-Unterklasse der Proteobakterien</td>
</tr>
<tr>
<td>g</td>
<td>Gramm oder vielfaches der Erdbeschleunigung</td>
</tr>
<tr>
<td>Gl.</td>
<td>Gleichung</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HAO</td>
<td>Hydroxylaminoxidoreduktase</td>
</tr>
<tr>
<td>Hao</td>
<td>Gen der HAO</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-2-Hydroxyethylpiperazin-N'-2-ethansulfonsäure</td>
</tr>
<tr>
<td>HPLC</td>
<td>engl.: high performance liquid chromatographie</td>
</tr>
<tr>
<td>Hrsg.</td>
<td>Herausgeber</td>
</tr>
<tr>
<td>ICMs</td>
<td>intracytoplasmatische Membranen</td>
</tr>
<tr>
<td>IF</td>
<td>Immunfluoreszenz</td>
</tr>
<tr>
<td>IG</td>
<td>Immungold</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasenpaare</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>kbar</td>
<td>Kilobar</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>KHL</td>
<td>Keyhole Limpet Hämocyanin</td>
</tr>
<tr>
<td>kJ</td>
<td>Kilojoule</td>
</tr>
<tr>
<td>K_m</td>
<td>MICHAELIS-MENTEN-Konstante</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LP-Filter</td>
<td>Langpass-Filter</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>µM</td>
<td>Mikromolar</td>
</tr>
<tr>
<td>µm</td>
<td>Mikrometer</td>
</tr>
<tr>
<td>µmol</td>
<td>Mikromol</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>m</td>
<td>Masse</td>
</tr>
<tr>
<td>mA</td>
<td>Milliamper</td>
</tr>
<tr>
<td>Mb</td>
<td>Megabasenpaare</td>
</tr>
<tr>
<td>min</td>
<td>Minute(n)</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>MM</td>
<td>Mol</td>
</tr>
<tr>
<td>MPN</td>
<td>engl.: most probable number</td>
</tr>
<tr>
<td>M_r</td>
<td>relative Molekülmasse</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger Ribonucleinsäure</td>
</tr>
<tr>
<td>mV</td>
<td>Millivolt</td>
</tr>
<tr>
<td>N</td>
<td>normal</td>
</tr>
<tr>
<td>n</td>
<td>Stoffmenge</td>
</tr>
<tr>
<td>NAD</td>
<td>oxidiertes Nicotinamid-Adenin-Dinucleotid</td>
</tr>
<tr>
<td>NADH</td>
<td>reduziertes Nicotinamid-Adenin-Dinucleotid</td>
</tr>
<tr>
<td>n.b.</td>
<td>nicht bestimmt</td>
</tr>
<tr>
<td>NCIMB</td>
<td>engl.: National Collection of Industrial and Marine Bacteria Ltd.</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>n.n.</td>
<td>nicht nachweisbar</td>
</tr>
<tr>
<td>NOR</td>
<td>Nitritoxidoreduktase</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamideelektrophorese</td>
</tr>
<tr>
<td>PBS</td>
<td>engl.: phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>engl.: polymerase chain reaction</td>
</tr>
<tr>
<td>pH</td>
<td>negativer dekadischer Logarithmus der H_3O^+ -Konzentration</td>
</tr>
<tr>
<td>PHB</td>
<td>Poly-β-Hydroxybuttersäure</td>
</tr>
<tr>
<td>pl</td>
<td>isoelektrischer Punkt</td>
</tr>
<tr>
<td>pMMO</td>
<td>partikuläre Methanmonooxygenase</td>
</tr>
<tr>
<td>PmoA</td>
<td>A-Untereinheit der partikulären Methanmonooxygenase</td>
</tr>
<tr>
<td>PmoB</td>
<td>B-Untereinheit der partikulären Methanmonooxygenase</td>
</tr>
<tr>
<td>PmoC</td>
<td>C-Untereinheit der partikulären Methanmonooxygenase</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylen</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>®</td>
<td>eingetragenes Warenzeichen</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomale Ribonucleinsäure</td>
</tr>
<tr>
<td>S</td>
<td>SVEDBERG-Einheit</td>
</tr>
<tr>
<td>s</td>
<td>Sekunde</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecysulfat</td>
</tr>
<tr>
<td>sMMO</td>
<td>lösliche Methanmonooxygenase</td>
</tr>
<tr>
<td>s. o.</td>
<td>siehe oben</td>
</tr>
<tr>
<td>spec.</td>
<td>species</td>
</tr>
<tr>
<td>s. u.</td>
<td>siehe unten</td>
</tr>
<tr>
<td>t</td>
<td>Zeit</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmissionselektromikroskopie</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N′,N′-Tetramethylethylenediamin</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>TU</td>
<td>technische Universität</td>
</tr>
<tr>
<td>Tween</td>
<td>Polyoxyethylensorbitan Monolaurat</td>
</tr>
<tr>
<td>u.a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>Upm</td>
<td>Umdrehungen pro Minute</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
</tr>
<tr>
<td>z. B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
1 ZUSAMMENFASSUNG

Im Rahmen dieser Arbeit wurden polyklonale Antikörper gegen die A- und die B-Untereinheit der Ammoniakmonooxygenase (AMO) von *Nitrosomonas eutropha* hergestellt. Die AmoA-Antikörper wurden mit Hilfe eines AmoA-Oligopeptids gewonnen. Die Herstellung der AmoB-Antikörper erfolgte über die Isolierung des AmoB-Proteins.

Die Antikörper dienten immunologischen Untersuchungen ganzer Zellen von Ammoniakoxidanten und der Isolierung und Charakterisierung der AMO.

Beide Antiseren waren spezifisch für die AMO-Untereinheiten der Ammoniakoxidanten. Im Immunblot detektierten die AmoA-Antikörper das AmoA-Protein von vier Arten der Gattung *Nitrosomonas*. Die AmoB-Antikörper markierten dagegen das AmoB-Protein aller getesteten Ammoniakoxidanten der β-Proteobakterien. Beide Antikörper reagierten nicht mit der AMO der Ammoniakoxidanten der γ-Proteobakterien sowie mit den Proteinen der Methanoxidanten, Nitritoxidanten und weiteren getesteten Bakterien.

In hungernden Zellen, die lange Zeit ohne Ammonium gestanden hatten, wurde bis zu einem Jahr nach dem Ammoniumverbrauch noch AMO nachgewiesen. Der AMO-Gehalt korrelierte nicht mit der Ammoniakoxidationsaktivität.

Die Antiseren ermöglichten die Isolierung der AMO. Die AMO-Untereinheiten wurden während der Reinigung der AMO mittels Ionenaustauschchromatographie und anschließender Gradientenzentrifugation mit Hilfe der Antiseren identifiziert. Das Enzym wies sowohl unter oxischen Bedingungen mit O₂ als auch unter anoxischen Bedingungen in Gegenwart von N₂O₄ Ammoniakoxidationsaktivität auf. Wurde die AMO in Abwesenheit von Sauerstoff isoliert, so wurde das Enzym durch O₂, nicht jedoch durch N₂O₄ vollständig gehemmt.

Mit Hilfe der gewonnenen Erkenntnisse über die Eigenschaften des Enzyms konnte ein Modell der Enzymreaktion der AMO entwickelt werden.
2 EINLEITUNG

Zu den Ammoniakoxidanten gehören die Vertreter der Gattungen Nitrosomonas, Nitrososira, Nitrosovibrio, Nitrosolobus und Nitrosococcus (Watson et al., 1981, 1989). Diese wurden aufgrund genetischer und physiologischer Untersuchungen in 16 Arten

Ammoniakoxidanten konservieren Energie durch Oxidation von Ammoniak zu Nitrit. An dieser Reaktion sind zwei Schlüsselenzyme, die Ammoniakmonooxygenase (AMO) und die Hydroxylaminoxidoreduktase (HAO), beteiligt. Die AMO katalysiert die Oxidation von Ammoniak zum Zwischenprodukt Hydroxylamin (Gl. 2.3). Diese Oxidation läuft in zwei Teilreaktionen ab (Gl. 2.1, Gl. 2.2). Die endergonische Reaktion der Ammoniakoxidation wird durch eine an sie gekoppelte exergonische Reduktion von Sauerstoff ermöglicht, wobei zwei Reduktionsäquivalente verbraucht werden (Wood, 1988 a).
Einleitung

\[
\begin{align*}
\text{NH}_3 + \frac{1}{2} \text{O}_2 & \rightarrow \text{NH}_2\text{OH} \quad \Delta G_0^\circ = +17 \text{ kJ \cdot mol}^{-1} \quad \text{(Gl. 2.1)} \\
\frac{1}{2} \text{O}_2 + 2 \text{H}^+ + 2e^- & \rightarrow \text{H}_2\text{O} \quad \Delta G_0^\circ = -137 \text{ kJ \cdot mol}^{-1} \quad \text{(Gl. 2.2)} \\
\text{NH}_3 + \text{O}_2 + 2 \text{H}^+ + 2e^- & \rightarrow \text{NH}_2\text{OH} + \text{H}_2\text{O} \quad \Delta G_0^\circ = -120 \text{ kJ \cdot mol}^{-1} \quad \text{(Gl. 2.3)}^* \\
\end{align*}
\]

*Zur Berechnung des Energiegehaltes der eingesetzten Reduktionsäquivalente wurde reduziertes Ubichinon (+110 mV) zugrunde gelegt (Schmidt & Bock, 1998).

Das von der AMO gebildete Hydroxylamin wird vom zweiten Schlüsselenzym der Ammoniakoxidanten, der periplasmatischen Hydroxylaminoxidoreduktase (HAO), zu Nitrit oxidiert (Andersson & Hooper, 1983) (Gl. 2.4).

\[
\begin{align*}
\text{NH}_2\text{OH} + \text{H}_2\text{O} & \rightarrow \text{NO}_2^- + 5 \text{H}^+ + 4e^- \quad \Delta G_0^\circ = +23 \text{ kJ \cdot mol}^{-1} \quad \text{(Gl. 2.4)} \\
\end{align*}
\]

Da die Ammoniakmonooxygenase (AMO) ein wichtiges Schlüsselenzym der Nitrifikation ist, wurden viele Versuche unternommen, die AMO zu isolieren. Aufgrund der Instabilität des Enzyms in zellfreien Extrakten ist es bisher noch nicht gelungen, die AMO in ihrer aktiven

Mit Hilfe der [14C]Acetylen-Markierung des 27-kDa-Proteins konnte das kodierende Gen für dieses Protein in *Nitrosomonas europaea* identifiziert werden (McTavish et al., 1993 a). Das Protein wurde AmoA genannt. Das Gen *amoA* kodiert für ein 32 kDa großes hydrophobes Protein mit einem isoelektrischen Punkt (pI) von 7,9, welches vier bis fünf transmembrane Abschnitte enthält (McTavish et al., 1993 a; Hooper et al., 1997). Das Gen *amoA* kodiert für keine N-terminale Signalsequenz. Trotzdem erscheint das Protein AmoA im SDS-Gel mit 27 kDa kleiner als das Molekulargewicht, das aus dem Gen *amoA* abgeleitet wird (s.o.). Diese Eigenschaft ist mehrfach für Membranproteine beschrieben worden (Youvan et al., 1984; Kok et al., 1989). Im selben Operon wurde ein zweites Gen *amoB* identifiziert und sequenziert (McTavish et al., 1993 a; Bergmann & Hooper, 1994 a). Das Gen *amoB* kodiert für ein 43 kDa großes Protein mit einem pI von 6,8. Dieses Protein ist leicht hydrophob, es enthält zwei bis drei transmembrane Abschnitte und ein langes hydrophiles N-terminales und ein langes hydrophiles C-terminales Ende (McTavish et al., 1993 a; Bergmann & Hooper, 1994 a). Im Gegensatz zum *amoA*-Gen kodiert das *amoB*-Gen für eine N-terminale 37 Aminosäuren lange hydrophobe Signalsequenz (McTavish et al., 1993 a). Im SDS-Gel ergibt das AmoB-Protein eine 41-kDa-Bande. Da das AmoB-Protein zusammen mit dem AmoA-Protein isoliert wurde, nimmt man an, dass es eine weitere Untereinheit der AMO ist (McTavish et al., 1993 a). Die Gene *amoA* und *amoB* werden mit einem weiteren Gen *amoC* auf eine 3,5 kb große mRNA transkriptiert (Sayavedra-Soto et al., 1998). Das Gen *amoC* kodiert für ein 31 kDa großes Protein AmoC mit einem pI von 6,6. Es wird vermutet, dass es sich bei diesem hydrophoben Protein mit sechs transmembranen Abschnitten um ein Chaperon handelt, welches die Synthese der AMO aus AmoA und AmoB kontrolliert (Klotz et al., 1997). *Nitrosomonas europaea* besitzt zwei Kopien des *amo*-Operons (McTavish et al.,

eigenen Methanoxidanten bei Kupfermangel gebildet werden kann (Fox et al., 1989; McTavish et al., 1993 a; Lipscomb, 1994; Semrau et al., 1995).

Neben den chemolithotrophen Ammoniakoxidanten ist auch die taxonomisch diverse Gruppe der heterotrophen Nitrifikanten in der Lage, Ammonium und/oder Hydroxylamin zu Nitrit und zum Teil weiter zu Nitrat zu oxidieren (Kuenen & Robertson, 1994). Dabei handelt es sich in der Regel um einen Co-Metabolismus, der mit keinem Energiegewinn für die Zellen verbunden ist (Hooper et al., 1997; Stouthamer et al., 1997). Heterotrophe Nitrifikation findet man bei Algen, Pilzen und einzigen Bakterien (Spiller et al., 1976; Robertson & Kuenen, 1988; Stams et al., 1990; Nishio et al., 1994). Das memranassozierte Ammoniak oxidierende Enzym von *Paracoccus denitrificans* wurde isoliert und charakterisiert (Moir et al., 1996). Das aus zwei Untereinheiten, 38 und 46 kDa, bestehende Enzym ist eine Chinol Oxidase. Obwohl die AMO von *Paracoccus denitrificans* einige enzymatische Eigenschaften der AMO von *Nitrosomonas europaee* aufweist wie z. B. Oxidation von Alkenen, Aktivierung durch Cu$^{2+}$ und Hemmung durch Metalchelatoren, sind die für die Enzyme kodierenden Gene sehr unterschiedlich (Crossman et al., 1997). Dagegen konnten Daum et al. (1998) 28 bis 46%ige Ähnlichkeiten zwischen der Aminosäuresequenzen der AMO-Proteine der Ammoniakoxidanten der β-Proteobakterien und der AMO-Proteine des heterotrophen Nitrifikanten *Pseudomonas putida* feststellen.

Aufgrund der Instabilität der Ammoniakoxidationsaktivität in zellfreien Systemen ist es bisher noch nicht gelungen, die AMO in aktiver Form zu isolieren. Alle Untersuchungen zur Ammoniakoxidationsaktivität wurden an ganzen Zellen oder zellfreien Extrakten durchgeführt. Versuche zeigten, dass zellfreie Extrakte von *Nitrosomonas europaee* und *Nitrosococcus oceanien* nur in Gegenwart von stabilisierenden Agenzien wie z. B. Rinderserumalbumin (BSA), Spermin und MgCl$_2$ in der Lage waren, Ammoniak zu oxidieren.

Die Ammoniakoxidation und die Hydroxylaminoxidation sind eng gekoppelt. Hydroxylamin kann nur in Gegenwart von Ammonium als Substrat zum Zellwachstum genutzt werden (Böttcher & Koops, 1994; de Bruijn et al., 1995). Neuere Versuche zeigten jedoch, dass ein

Ein Teil der verbleibenden Elektronen wird über Cytochrom c\textsubscript{552} auf die membrangebundene terminale Cytochromoxidase aa\textsubscript{3} (DiSpirito et al., 1986) oder die periplasmatische kupferhaltige Nitritreduktase (DiSpirito et al. 1985 b; Miller & Nicholas, 1985) übertragen. Es ist möglich, dass die Elektronen dabei nicht direkt vom Cytochrom c\textsubscript{554} auf Cytochrom c\textsubscript{552} übertragen werden, sondern über den zwischengeschalteten Ubichinon-Cytochrom bc\textsubscript{1}-Komplex fließen (Wood, 1986). Ubichinon (Q\textsubscript{8}) und membrangebundene Cytochrome vom b- und c-Typ wurden in \textit{Nitrosomonas europaea} nachgewiesen (Hooper et al., 1972; Miller & Wood, 1983 a; DiSpirito et al., 1985 a; Whittaker et al., 2000). Weitere Elektronenüberträger wurden identifiziert, deren Funktion jedoch bisher ungeklärt ist (Hooper et al., 1997; Whittaker et al., 2000).

Einige Gene der dargestellten Elektronentransportkette wurden identifiziert. Sie liegen häufig in mehreren ähnlichen oder identischen Kopien vor. Im 2,2 Mb großen Genom von *Nitrosomonas europaea* wurden drei Gene der HAO (*hao*) detektiert, die in unmittelbarer Nachbarschaft zu den ebenfalls in dreifacher Kopie vorliegenden Genen von Cytochrom c₅₅₄ (*cycA* oder *hcy*) auftreten (McTavish et al., 1993 b; Bergmann et al., 1994; Sayavedra-Soto et al., 1994; Hommes et al., 1996). Die Gene der HAO und Cytochrom c₅₅₄ werden jedoch nicht gemeinsam transkribiert. Zwei der *cycA*-Gene liegen jeweils mit einem Gen des Tetrahäm c-Cytochroms Cyt c₅₅₂ (Cyt c₈, ORF 2) in einem Operon (Bergmann et al., 1994; Hommes et al., 1996). Das Gen für das Cytochrom P₄₆₀ (*cyp*) ist im Genom von *Nitrosomonas* in Einzahl vorhanden (McTavish et al., 1993 b).

3 MATERIAL UND METHODEN

3.1 BAKTERIENSTÄMME

Im Rahmen der vorliegenden Arbeit wurden Untersuchungen an den folgenden Bakterienstämmen durchgeführt.

3.1.1 CHEMOLITHOTROPHE AMMONIAK- UND NITRITOXIDANTEN

Die in Tabelle 3.1 und 3.2 aufgeführten Stämme der Ammoniak- und Nitritoxidanten werden in der Stammsammlung der Abteilung für Mikrobiologie im Institut für Allgemeine Botanik der Universität Hamburg gehalten.

Tabelle 3.1: Verwendete Stämme der Ammoniakoxidanten und deren Herkunftsort.

<table>
<thead>
<tr>
<th>Art</th>
<th>Stamm</th>
<th>isoliert aus</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrosomonas aestuari</td>
<td>Nm 36</td>
<td>Brackwasser, Nordsee, Dünenmark</td>
<td>(Koops et al., 1991)</td>
</tr>
<tr>
<td>Nitrosomonas communis</td>
<td>Nm 2</td>
<td>Boden, Insel Korfu, Griechenland</td>
<td>(Koops et al., 1991)</td>
</tr>
<tr>
<td>Nitrosomonas cryotolerans</td>
<td>Nm 55/4W30</td>
<td>Meerwasser, Kasitsna Bucht, Alaska</td>
<td>(Jones et al., 1988)</td>
</tr>
<tr>
<td>Nitrosomonas europaea</td>
<td>Freitag</td>
<td>Abwasser, Hamburg</td>
<td>(Lott, 1990)</td>
</tr>
<tr>
<td>Nitrosomonas eutropha</td>
<td>N904</td>
<td>Gülle, Hamburg</td>
<td></td>
</tr>
<tr>
<td>Nitrosomonas eutropha¹</td>
<td>Dave</td>
<td>Prozesswasser eines Biofermenters, Hamburg</td>
<td></td>
</tr>
<tr>
<td>Nitrosomonas halophila</td>
<td>Nm 1</td>
<td>Meerwasser, Nordsee</td>
<td>(Koops et al., 1991)</td>
</tr>
<tr>
<td>Nitrosomonas marina</td>
<td>Nm 22</td>
<td>Meerwasser, Süd pazifik, Australien</td>
<td>(Koops et al., 1991)</td>
</tr>
<tr>
<td>Nitrosomonas nitrosa</td>
<td>Nm 90/Nc 5</td>
<td>Industriebelastiger, Marl</td>
<td>(Koops et al., 1991)</td>
</tr>
<tr>
<td>Nitrosomonas oligotropha</td>
<td>Nm 45</td>
<td>Boden, Hamburg</td>
<td>(Koops et al., 1991)</td>
</tr>
<tr>
<td>*Nitrosomonas spec.*²</td>
<td>Nm R1.24</td>
<td>Sandstein, Regensburger Dorn</td>
<td></td>
</tr>
<tr>
<td>Nitrosomonas ureae</td>
<td>Nm 10</td>
<td>Boden, Sardinien, Italien</td>
<td>(Koops et al., 1991)</td>
</tr>
<tr>
<td>Nitrosococcus mobilis³</td>
<td>Nc 2</td>
<td>Meerwasser, Hafen von Husum, Nordsee</td>
<td>(Koops et al., 1976)</td>
</tr>
</tbody>
</table>

Tabelle 3.2: Verwendete Stämme der Nitritoxidanten und deren Herkunftsort.

<table>
<thead>
<tr>
<th>Art</th>
<th>Stamm</th>
<th>isoliert aus</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrosospira spec.</td>
<td>Nsp 1</td>
<td>Boden, Sardinien, Italien</td>
<td></td>
</tr>
<tr>
<td>Nitrosospira spec.</td>
<td>Nsp G1.6</td>
<td>Sandstein, Marienkirche in Gelnhausen</td>
<td></td>
</tr>
</tbody>
</table>
Nitrosospira spec. Nsp M1.3 Sandstein, Alte Pinakothek, München

Nitrosospira spec. Nsp R6.2 Sandstein, Regensburger Dom

Gattung Nitrosovibrio (β-Unterklasse der Proteobakterien)

Nitrosovibrio spec. Nv G1.3 Sandstein, Marienkirche in Gelnhausen

Nitrosovibrio spec. Nv K7.1 Sandstein, Kölner Dom (Spieck et al., 1992)

Gattung Nitrosolobus (β-Unterklasse der Proteobakterien)

Nitrosolobus multiformis NI 13/ C-71/ ATCC 25196 Boden, Paramaribo, Surinam (Watson et al., 1971; Harms & Koops, 1980)

Gattung Nitrosococcus (γ-Unterklasse der Proteobakterien)

Nitrosococcus halophilus Nc 4 Salzlagune, Sardinien, Italien (Koops et al., 1990)

Nitrosococcus oceani Nc 1/ ATCC 19707 Meerwasser, Atlantik (Watson, 1965; Trüper & de Clari, 1997)

1 Nitrosomonas spec. Dave zeigte 99,6 % Sequenzähnlichkeit zu der 16S rDNA und 98 % Ähnlichkeit zum Gen amoA von *N. eutropha* Nm 57 (M. Wagner, TU München, mündliche Mitteilung). Ebenso besaß N. spec. Dave eine 102,3%ige Ähnlichkeit bei der DNA-DNA-Hybridisierung mit *N. eutropha* N904 (DSMZ, mündliche Mitteilung) und wurde daher der Art *N. eutropha* zugeordnet.

2 siehe Abschnitt 4.4.1

3 Nitrosococcus mobilis ist phylogenetisch eng verwandt mit der Gattung Nitrosomonas (Head et al., 1993).

Tabelle 3.2: Verwendete Stämme der Nitritoxidanten und deren Herkunftsort.

<table>
<thead>
<tr>
<th>Art</th>
<th>Stamm</th>
<th>isoliert aus</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gattung Nitrobacter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrobacter hamburgensis X₁₄</td>
<td></td>
<td>Boden, Hamburg</td>
<td>(Bock et al., 1983)</td>
</tr>
<tr>
<td>Nitrobacter vulgaris K₈₈</td>
<td></td>
<td>Sandstein, Kölner Dom</td>
<td>(Bock et al., 1990)</td>
</tr>
<tr>
<td>Nitrobacter winogradskyi Engel</td>
<td></td>
<td>Boden, Hamburg</td>
<td>(Bock et al., 1990)</td>
</tr>
<tr>
<td>Gattung Nitrospina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrospina gracilis 3</td>
<td></td>
<td>Meerwasser, Küste von Peru</td>
<td>(Watson & Waterbury, 1971)</td>
</tr>
<tr>
<td>Nitrospina spec. 347</td>
<td></td>
<td>Schwarzes Meer</td>
<td></td>
</tr>
<tr>
<td>Gattung Nitrospha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrospira mosoviensis M-1</td>
<td></td>
<td>Heizungssystem, Moskau</td>
<td>(Ehrich et al., 1995)</td>
</tr>
<tr>
<td>Gattung Nitrococcus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrococcus mobilis 231</td>
<td></td>
<td>Meerwasser, Pazifik</td>
<td>(Watson & Waterbury, 1971)</td>
</tr>
</tbody>
</table>

3.1.2 Chemooorganotrophe Bakterien

3.2 NÄHRMEDIEN UND KULTURFÜHRUNG

3.2.1 AMMONIAKOXIDANTEN

MINERALISCHES NÄHRMEDIUM

Alle nichtmarinen Ammoniakoxidanten wurden in mineralischem Nährmedium folgender Zusammensetzung angezogen.

<table>
<thead>
<tr>
<th>NÄHRMEDIUM</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stammlösung für Ammoniakoxidanten (10fach)</td>
<td>100 ml</td>
</tr>
<tr>
<td>Spurenelementelösung für Ammoniakoxidanten (1000fach)</td>
<td>1 ml</td>
</tr>
<tr>
<td>Kresolrot</td>
<td>1 ml</td>
</tr>
<tr>
<td>HEPES (Fa. Gerbu)</td>
<td>3 g</td>
</tr>
<tr>
<td>CaCl₂ · 2 H₂O</td>
<td>0,147 g</td>
</tr>
<tr>
<td>aqua deion.</td>
<td>ad 1000 ml</td>
</tr>
</tbody>
</table>

Der pH-Wert des Mediums wurde nach dem Sterilisieren mit 1-M-NaOH-Lösung auf pH 7,3 eingestellt.

STAMMLÖSUNG FÜR AMMONIAKOXIDANTEN (10FACH)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄Cl (10 mM)</td>
<td>5,349 g</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0,544 g</td>
</tr>
<tr>
<td>KCl</td>
<td>0,744 g</td>
</tr>
<tr>
<td>MgSO₄ · 7 H₂O</td>
<td>0,493 g</td>
</tr>
<tr>
<td>NaCl</td>
<td>5,840 g</td>
</tr>
<tr>
<td>aqua deion.</td>
<td>ad 1000 ml</td>
</tr>
</tbody>
</table>
SPURENELEMENTELÖSUNG FÜR AMMONIAKOXIDANTEN (1000FACH)

\[
\begin{align*}
\text{MnSO}_4 \cdot \text{H}_2\text{O} & \quad 0,033 \text{ g} \\
\text{H}_3\text{BO}_3 & \quad 0,049 \text{ g} \\
\text{ZnSO}_4 \cdot 7 \text{H}_2\text{O} & \quad 0,043 \text{ g} \\
(\text{NH}_4)_6\text{Mo}_7\text{O}_{24} \cdot 4 \text{H}_2\text{O} & \quad 0,037 \text{ g} \\
\text{FeSO}_4 \cdot 7 \text{H}_2\text{O} & \quad 0,973 \text{ g} \\
\text{CuSO}_4 \cdot 5 \text{H}_2\text{O} & \quad 0,025 \text{ g} \\
aqua \text{deion. mit 0,025 N HCl ad 1000 ml} & \\
\end{align*}
\]

KRESOLROTLÖSUNG

\[
\begin{align*}
\text{Kresolrot} & \quad 0,050 \text{ g} \\
& \quad \text{in 1 ml 1 M NaOH lösen} \\
aqua \text{deion.} & \quad \text{ad 100 ml} \\
\end{align*}
\]

Für einige Versuche wurde das Medium leicht abgewandelt. Anstelle von 10 mM Ammonium wurden dem mineralischen Medium 1, 12 bzw. 100 mM Ammonium, 6 mM Harnstoff oder 5 mM L-Glutamin zugefügt. Zum Teil erfolgte eine mixotrophe Anzucht, bei der dem mineralischen Medium 5 mM Na-Pyruvat, 1,5 g/l Hefeextrakt (Fa. Difco) und 1,5 g/l Pepton (Fa. Difco) oder jeweils 9,1 mM Na-Pyruvat und 9,1 mM L-Alanin zugegeben wurde.

BRACKWASSER-NÄHRMEDIUM

MEERWASSER-NÄHRMEDIUM

NÄHRMEDIUM

\[
\begin{align*}
\text{NH}_4\text{Cl (10 mM)} & \quad 0,535 \text{ g} \\
\text{KH}_2\text{PO}_4 & \quad 0,054 \text{ g} \\
\text{HEPES (Fa. Gerbu)} & \quad 3 \text{ g} \\
\text{Kresolrot} & \quad 1 \text{ ml} \\
\text{Meerwasser (Nordsee)} & \quad 400 \text{ ml (40 %)} \text{ bzw. 750 ml (75 %)} \\
aqua \text{deion.} & \quad \text{ad 1000 ml} \\
\end{align*}
\]

Der pH-Wert des Mediums wurde nach dem Sterilisieren mit 1-M-NaOH-Lösung auf pH 7,3 eingestellt.
KULTURFUHRUNG DER AMMONIAKOXIDANTEN

3.2.2 ANREICHERUNG VON AMMONIAKOXIDANTEN

Für Immunfluoreszenzuntersuchungen wurden Ammoniaoxidanten aus verschiedenen Naturproben angereichert. Es wurde Belebtschlamm aus dem Belebungsbecken der Kläranlage in Dradenau/Hamburg (pH 8,0), Gartenerde aus dem Neuen Botanischen Garten in Hamburg (pH 7,6), Teichsediment aus dem Neuen Botanischen Garten in Hamburg (pH 7,6)
sowie Baumberger Sandstein (pH 8,4) verwendet. Drei 5 · 5 · 1 cm große Sandsteinproben waren zuvor fünf Jahre im Neuen Botanischen Garten in Hamburg exponiert worden. Die Sandsteinproben wurden aufgrund der Lagerung auf mit Sand gefüllten Petrischalen nahezu ständig feucht gehalten. Zur Herstellung der Anreicherungskulturen wurde jeweils 5 ml Belebtschlammprobe, 5 ml Teichsedimentprobe, 1 g Boden oder 1 g gemörserte Sandsteinprobe auf 150 ml mineralisches Medium in 300-ml-Erlenmeyerkolben gegeben und zwei Wochen lang stehend bei 28 °C inkubiert.

3.2.3 NITRITOXIDANTEN

MINERALISCHES NÄHRMEDIUM

Die Anzucht von *Nitrospira moscoviensis* M-1 erfolgte in mineralischem Medium mit 0,2 g/l NaNO₂ (Bock et al. 1990).

NÄHRMEDIUM

Stammlösung für Nitrit oxidanten (10fach) 100 ml
Spurenelementlösungen für Ammoniakoxidanten (1000fach) 1 ml
NaNO₂ (3 mM) 0,2 g
aqua deion. ad 1000 ml pH 8,6 mit KOH

STAMMLÖSUNG FÜR NITRITOXIDANTEN (10 FACH)

CaCO₃ 0,07 g
NaCl 5 g
MgSO₄ · 7 H₂O 0,50 g
KH₂PO₄ 1,50 g
aqua deion. ad 1000 ml

MIXOTROPE ANZUCHT

Die Anzucht von *Nitrobacter hamburgenis* X₁₄, *Nitrobacter winogradskyi* Engel und *Nitrobacter vulgaris* K₄₈ erfolgte mixotroph mit 2 g/l NaNO₂. Für die mixotrophe Anzucht wurden dem mineralischen Medium folgende organische Substanzen zugefügt: Hefeextrakt 1,5 g/l, Pepton 1,5 g/l und Na-Pyruvat 0,55 g/l. Der pH-Wert des Mediums wurde vor dem Autoklavieren auf 7,4 eingestellt.

MEERWASSER-NÄHRMEDIUM

NÄHRMEDIUM

Stammlösung für marine Nitritoxidanten (10fach) 100 ml
Spurenelementelösung für marine Nitritoxidanten (1000fach) 1 ml
NaNO₂ (20 mM) 1,4 g
Meerwasser (Nordsee) 700 ml
aqua deion. ad 1000 ml pH 6,0 mit KOH

STAMMLÖSUNG FÜR MARINE NITRITOXIDANTEN (10FACH)

CaCl₂ · 2 H₂O 0,05 g
FeSO₄ · 7 H₂O 0,01 g
MgSO₄ · 7 H₂O 1 g
KH₂PO₄ 0,02 g
Meerwasser (Nordsee) 700 ml
aqua deion. ad 1000 ml

SPURENELEMENTELÖSUNG FÜR MARINE NITRITOXIDANTEN (1000FACH)

CoCl₂ · 6 H₂O 0,5 mg
MnCl₂ · 4 H₂O 0,050 g
Na₂MoO₄ · 2 H₂O 0,025 g
ZnSO₄ · 7 H₂O 0,025 g
aqua deion. ad 1000 ml

KULTURFÜHRUNG DER NITRITOXIDANTEN

Die Anzucht der Nitritoxidanten erfolgte in 300-ml-Erlenmeyerkolben mit 150 ml Medium. Die Medien wurden mit 5%igem Inokulum beimpft und stehend bei 28 °C im Dunkeln inkubiert. Kulturen von Nitrospira moscoviensis M-1 wurden bei 37 °C angezogen und wöchentlich mit 0,3 mM Nitrit nachgefüttert.

3.2.4 METHANOXIDANTEN

Die Methanoxidanten wurden in mineralischem Medium mit 3 % Methan in synthetischer Luft angezogen (Whittenbury et al., 1970). Das Medium enthielt eine erhöhte Konzentration an CuSO₄ (1 mg/l).

NÄHRMEDIUM

Stammlösung für Methanoxidanten (10fach) 100 ml
Phosphatpuffer (100fach) 10 ml
Spurenelementelösung für Methanoxidanten (1000fach) 1 ml
aqua deion. ad 1000 ml

Die drei Lösungen wurden getrennt voneinander sterilisiert und danach vereinigt.
STAMMLÖSUNG (10FACH)

\[
\begin{align*}
\text{MgSO}_4 \cdot 7 \text{H}_2\text{O} & : 1,0 \text{ g} \\
\text{CaCl}_2 & : 0,2 \text{ g} \\
\text{KNO}_3 & : 1,0 \text{ g} \\
\text{aqua deion.} & : \text{ad 1000 ml}
\end{align*}
\]

PHOSPHATPUFFER (100FACH)

\[
\begin{align*}
\text{KH}_2\text{PO}_4 & : 0,26 \text{ g} \\
\text{Na}_2\text{HPO}_4 & : 0,33 \text{ g} \\
\text{aqua deion.} & : \text{ad 1000ml pH 7,0}
\end{align*}
\]

SPURENELEMENTELÖSUNG FÜR METHANOXIDANTEN (1000FACH)

\[
\begin{align*}
\text{Na}_2\text{-EDTA (Triplex III)} & : 500 \text{ mg} \\
\text{FeSO}_4 \cdot 7 \text{H}_2\text{O} & : 200 \text{ mg} \\
\text{ZnSO}_4 \cdot 7 \text{H}_2\text{O} & : 10 \text{ mg} \\
\text{MnCl}_2 \cdot 4 \text{H}_2\text{O} & : 3 \text{ mg} \\
\text{H}_3\text{BO}_3 & : 30 \text{ mg} \\
\text{CaCl}_2 \cdot 6 \text{H}_2\text{O} & : 20 \text{ mg} \\
\text{CuSO}_4 \cdot 5 \text{H}_2\text{O} & : 1000 \text{ mg} \\
\text{NiCl}_2 \cdot 6 \text{H}_2\text{O} & : 2 \text{ mg} \\
\text{Na}_2\text{MoO}_4 \cdot 2 \text{H}_2\text{O} & : 3 \text{ mg} \\
\text{aqua deion.} & : \text{ad 1000 ml}
\end{align*}
\]

Die Anzucht der Methanoxidanten erfolgte in 120-ml-Serumflaschen mit 30 ml Medium. Die mit einem Gummistopfen verschlossenen Flaschen wurden mit 3 % Methan in synthetischer Luft (80 % N₂, 20 % O₂, 0,03 % CO₂, Fa. Messer Griesheim) begast, mit 5%igem Inokulum beimpft und bei 28 °C auf dem Schüttler inkubiert.

3.2.5 METHYLOTROPE BAKTERIEN

Die methylotrophen Bakterien *Methylobacterium radiotolerans* und *Pseudomonas* spec. AM1 wurden in mineralischem Medium mit 0,15 % Methanol angezogen (Green et al., 1988).

NÄHRMEDIUM

Stammlösung für Nitritoxidanten (10fach) 100 ml

Spurenelementelösung für Ammoniakoxidanten (1000fach) 1 ml

\[
\begin{align*}
\text{NH}_4\text{Cl (8 mM)} & : 0,43 \text{ g} \\
\text{HEPES (Fa. Gerbu)} & : 5 \text{ g} \\
\text{aqua deion.} & : \text{ad 1000 ml pH 8,3}
\end{align*}
\]

Nach dem Autoklavieren wurden dem Medium 15 ml/l steril filtriertes Methanol zugefügt.
Die Zellen wurden in 300-ml-Erlenmeyerkolben mit 150 ml Nährmedium stehend bei 28 °C im Dunkeln inkubiert.

3.2.6 Wei ter e chemoorganotrophe Bak terien

Paracoccus denitrificans

Die Anzucht von Paracoccus denitrificans 001/ATCC 19367 erfolgte in folgendem Medium.

Nährmedium

- Spurenelementelösung für Ammoniakoxidanten (1000fach) 1 ml
- KH$_2$PO$_4$ 6 g
- NH$_4$Cl 0,3 g
- MgSO$_4$ · 7 H$_2$O 0,1 g
- Na-Acetat 0,8 g
- aqua deion. ad 1000 ml pH 7,5

Die Kulturen wurden mit 5%igem Inokulum auf 300-ml-Erlenmeyerkolben mit 150 ml Nährmedium überimpft und bei 28 °C auf dem Schüttler inkubiert.

Escherichia coli und Bacillus subtilis

Weitere Mikroorganismen

Alle weiteren unter Abschnitt 3.1.2 genannten Organismen wurden von C. Cœur der Universität Claude Bernard Lyon I in Frankreich nach den Angaben der American Type Culture Collection (ATCC) angezogen und zur Verfügung gestellt. Sie wurden direkt für die Versuche eingesetzt und im Rahmen dieser Arbeit nicht weiter kultiviert.

3.3 Reinheitskontrollen

Bei jedem Überimpfen wurde von den Reinkulturen der Nitrifikanten ein Tropfen der Kultur auf eine Reinheitsagarplatte und in 5 ml Hefewasserbouillon gegeben. Wenn nach einer zweiwöchigen Inkubation bei 28 °C keine Kolonien auf der Platte auftraten bzw. keine Trübung der Hefewasserbouillon erkennbar war, wurde die Kultur als rein angesehen. Die Reinheitskontrollen aller übrigen Kulturen erfolgte optisch am Phasenkontrastmikroskop.
REINHEITSAGAR MODIFIZIERT NACH STEINMÜLLER & BOCK (1976)

\[
\begin{align*}
\text{NaCl} & \quad 0,5 \text{ g} \\
\text{Hefeextrakt (Fa. Difco)} & \quad 1 \text{ g} \\
\text{KH}_2\text{PO}_4 & \quad 1 \text{ g} \\
\text{Fleischextrakt} & \quad 5 \text{ g} \\
\text{Casamino acids} & \quad 5 \text{ g} \\
\text{Agar} & \quad 15 \text{ g} \\
aqua \text{ deion.} & \quad \text{ad 1000 ml pH 7,4}
\end{align*}
\]

HEFEWASSERBOUILLON

\[
\begin{align*}
\text{Bactopepton (Fa. Difco)} & \quad 0,50 \text{ g} \\
\text{Fleischextrakt} & \quad 0,50 \text{ g} \\
\text{Hefeextrakt (Fa. Difco)} & \quad 0,50 \text{ g} \\
\text{NaCl} & \quad 0,58 \text{ g} \\
aqua \text{ deion.} & \quad \text{ad 1000 ml pH 7,4}
\end{align*}
\]

3.4 ERNTE DER BAKTERIENZELLEN

PS1-PUFFER

\[
\begin{align*}
\text{HEPES} & \quad 5 \text{ g} \\
\text{MgCl}_2 \cdot 6 \text{ H}_2\text{O} & \quad 0,20 \text{ g} \\
\text{NH}_4\text{Cl (6,5 mM)} & \quad 0,35 \text{ g} \\
aqua \text{ deion.} & \quad \text{ad 1000 ml pH 7,4}
\end{align*}
\]

Nach dem Sterilisieren wurden 1 ml steril filtrierte 300 mM CuSO₄ · 5 H₂O-Lösung zugefügt.

3.5 ZELLAUFSCHLUSS

Zur Herstellung von zellfreien Extrakten wurden Zellkonzentrationen von ca. 3 · 10¹⁰ Zellen pro ml eingesetzt. Es wurden verschiedene Zellaufschlussmethoden angewandt. Der Aufschluss erfolgte aerob bei einem Zellvolumen größer als 800 µl mit der French Pressure Cell Press und bei einem Volumen kleiner als 800 µl mit Ultraschall. Alternativ zum aeroben

3.5.1 **French Pressure Cell Press**

3.5.2 **Ultraschall**

Die Zellen wurden mit Hilfe eines Ultraschallstabes (Ultraschallprozessor UP 200, Fa. Dr. Hielscher GmbH) aufgeschlossen. Dabei wurden die Zellen 2 bis 5 min einer Ultraschallstärke von 50 % mit einem Impuls von 0,5 ausgesetzt. Während der Behandlung wurden die Zellen gut gekühlt.

3.5.3 **Glasperlen**

3.6 **Analytische Nachweismethoden**

3.6.1 **Bestimmung des Proteingehaltes**

definierten Rinderserum Albumin (BSA)-Lösungen verschiedener Konzentrationen (0 bis 1,5 mg/ml) wurden die Proteinkonzentrationen der Proben ermittelt.

METHODE NACH BRADFORD

BRADFORD-REAGENZ

Coomassie Brillant Blue G-250 (Fa. Serva) 40 mg
Ethanol (96 %) 50 ml
o-Phosphorsäure (85 %) 100 ml
aqua deion. ad 1000 ml

Die Lösung wurde nach der Herstellung filtriert.

BCA-METHODE

DC-PROTEINANALYSE

Mit der DC-Proteinanalyse kann der Proteingehalt in Gegenwart von Detergenzien wie z. B. 10 % SDS oder 1 % Triton X-100 bestimmt werden. Die DC-Proteinanalyse basiert, wie die BCA-Methode, auf der Proteinbestimmung nach Lowry et. al. (1951). Im Gegensatz zur BCA-Methode reagieren die an die Proteine gebundenen Cu$^{+}$-Ionen mit Folinreagenz zu einem blauen Farbkomplex. Die Methode erfolgte nach den Angaben des Herstellers (Fa. Bio-

3.6.2 BESTIMMUNG VON AMMONIUM

DERIVATISIERUNGSREAGENZ

<table>
<thead>
<tr>
<th>Phtaldialdehyd</th>
<th>540 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol abs.</td>
<td>10 ml</td>
</tr>
<tr>
<td>β-Mercaptoethanol (Fa. Sigma)</td>
<td>50 µl</td>
</tr>
<tr>
<td>Phosphatpuffer (0,2 M)</td>
<td>ad 100 ml</td>
</tr>
</tbody>
</table>

PHOSPHATPUFFER (0,2 M)

<table>
<thead>
<tr>
<th>KH₂PO₄</th>
<th>27,22 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>aqua deion.</td>
<td>ad 1000 ml</td>
</tr>
<tr>
<td>K₂HPO₄</td>
<td>34,43 g</td>
</tr>
<tr>
<td>aqua deion.</td>
<td>ad 1000 ml</td>
</tr>
</tbody>
</table>

Beide Lösungen wurden derart gemischt, dass sich ein pH-Wert von 7,3 einstellte.

3.6.3 BESTIMMUNG VON HYDROXYLAMIN

3.6.4 Bestimmung von Nitrit

3.6.5 Bestimmung von Metallionen

Bestimmung von Kupfer

BESTIMMUNG VON EISEN

Die quantitative Bestimmung von Eisen (II)-Ionen und Eisen (III)-Ionen erfolgte photometrisch. Fe$^{2+}$-Ionen bilden mit 1,10-Phenanthroliniumchlorid einen roten Farbkomplex. Der Gesamteisenionengehalt wurde analog nach Reduktion der Fe$^{3+}$-Ionen durch Hydroxylamin zu Fe$^{2+}$-Ionen gemessen. Aus dem Gesamteisenionengehalt wurde die Fe$^{3+}$-Ionenkonzentration abgeleitet.

3.7 ISOLIERUNG DES AMOA- UND AMOB-PROTEINS

Vor dem Zusammensetzen der Elutionseinheiten wurden die Auffangbehälter 1 h bei 60 °C im Laupuffer der SDS-PAGE (siehe Abschnitt 3.11.1) erhitzt. Zudem wurden die Fritten unter Vakuum mit Hilfe einer Wasserstrahlpumpe 15 min im Laupuffer entgast. Die Fritten wurden nun auf die Glasröhrchen gesetzt und die Elutionseinheit im Laupuffer zusammengesetzt, um Lufteinchlüsse zu vermeiden. Der Elektro-Eluter wurde mit sechs Elutionseinheiten bestückt. Die untere Kammer wurde mit 600 ml und die obere Kammer und

3.8 IDENTIFIZIERUNG DES AMOA- UND AMOB-PROTEINS MIT HILFE DER SEQUENZIERUNG

3.9 SYNTHESE EINES AMOA-OLIGOPEPTIDS

3.10 HERSTELLUNG VON ANTİKÖRPERN GEGEN DIE AMOA UND AMOB

Im Gegensatz zu der Herstellung der AmoA-Antikörper erfolgte die Herstellung der Antikörper gegen die AmoB mit Hilfe des isolierten AmoB-Proteins aus *Nitrosomonas eutropha* N904 (siehe Abschnitt 3.7). Das gereinigte aufkonzentrierte AmoB-Protein wurde zur Herstellung polyklonaler Antikörper in Hühner injiziert (Fa. Valbex, Frankreich). Für die Immunisierung wurden 500 µg AmoB-Protein verwendet.

3.11 GELELEKTROPHORESE

3.11.1 SDS-POLYACRYLAMIDGELELEKTROPHORESE

PROBENVORBEREITUNG

LYSISPUFFER (2FACH)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS (Fa. Sigma)</td>
<td>2 g</td>
</tr>
<tr>
<td>Saccharose</td>
<td>20 g</td>
</tr>
<tr>
<td>Tris (Tris(hydroxymethyl)aminomethan)</td>
<td>1,21 g</td>
</tr>
<tr>
<td>β-Mercaptoethanol (Fa. Sigma)</td>
<td>1 ml</td>
</tr>
<tr>
<td>Bromphenolblau (Fa. Sigma)</td>
<td>1 mg</td>
</tr>
<tr>
<td>Aqua deion.</td>
<td>ad 100 ml pH 6,8</td>
</tr>
</tbody>
</table>

Der Puffer wurde proportioniert bei –20 °C gelagert.

Erfolgte im Anschluss an die Gelelektrophorese eine Peroxidasefärbung der Hämproteine, wurde das Reduktionsmittel β-Mercaptoethanol im Lysispuffer (2fach) durch Dithiothreitol (DTT, 10 mM, Fa. Sigma) ersetzt. Die Proben wurden im Verhältnis 1:1 mit dem Lysispuffer versetzt und 5 min bei 100 °C erhitzt.

GELHERSTELLUNG

Trenngel (12 %)

<table>
<thead>
<tr>
<th></th>
<th>Mini-PROTEAN II-Kammer</th>
<th>PROTEAN II-Kammer</th>
</tr>
</thead>
<tbody>
<tr>
<td>aqua deion.</td>
<td>3,36 ml</td>
<td>26,88 ml</td>
</tr>
<tr>
<td>1,5 M Tris/HCl pH 8,8</td>
<td>2,5 ml</td>
<td>20 ml</td>
</tr>
<tr>
<td>10 % SDS (Fa. Sigma)</td>
<td>0,1 ml</td>
<td>0,8 ml</td>
</tr>
<tr>
<td>30 % Acrylamid/0,8 % Bisacrylamid</td>
<td>4 ml</td>
<td>32 ml</td>
</tr>
<tr>
<td>10 % APS (Fa. Sigma)</td>
<td>50 µl</td>
<td>360 µl</td>
</tr>
<tr>
<td>TEMED (Fa. Sigma)</td>
<td>10 µl</td>
<td>58 µl</td>
</tr>
</tbody>
</table>

Sammelgel (4 %)

<table>
<thead>
<tr>
<th></th>
<th>Mini-PROTEAN II-Kammer</th>
<th>PROTEAN II-Kammer</th>
</tr>
</thead>
<tbody>
<tr>
<td>aqua deion.</td>
<td>3,05 ml</td>
<td>12,2 ml</td>
</tr>
<tr>
<td>0,5 M Tris/HCl pH 6,8</td>
<td>1,25 ml</td>
<td>5 ml</td>
</tr>
<tr>
<td>10 % SDS (Fa. Sigma)</td>
<td>50 µl</td>
<td>200 µl</td>
</tr>
<tr>
<td>30 % Acrylamid/0,8 % Bisacrylamid</td>
<td>650 µl</td>
<td>2,6 ml</td>
</tr>
<tr>
<td>10 % APS (Fa. Sigma)</td>
<td>25 µl</td>
<td>100 µl</td>
</tr>
<tr>
<td>TEMED (Fa. Sigma)</td>
<td>10 µl</td>
<td>40 µl</td>
</tr>
</tbody>
</table>

Laufpuffer (10fach)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris (1 M)</td>
<td>30 g</td>
</tr>
<tr>
<td>Glycin (2 M)</td>
<td>144 g</td>
</tr>
<tr>
<td>SDS (0,25 M) (Fa. Sigma)</td>
<td>10 g</td>
</tr>
<tr>
<td>aqua deion.</td>
<td>ad 1000 ml pH 8,3-8,6</td>
</tr>
</tbody>
</table>

Erfolgte im Anschluss an die Gelelektrophorese eine Hämfärbung der Proteine, wurde dem Laufpuffer 50 µl/l Thioglykolat (Fa. Sigma) zugefügt.

Elektrophorese

Wurden die Proteine im Anschluss an die SDS-PAGE sequenziert, erfolgte vor Auftragung der Proben eine Entfernung freier Radikale aus dem SDS-Gel. Dieses sollte einer N-terminalen Blockierung der Proteine bei der Sequenzierung vorbeugen. Dazu wurde dem Laufpuffer 700 µl/l Na-Thioglykolat (Fa. Sigma) zugefügt und zunächst an die Gele für 2 h eine Spannung von 100 V angelegt. Nach dem Austauschen des Puffers durch gewöhnlichen Laufpuffer wurden die Proteine in die Taschen gegeben und elektrophoretisch aufgetrennt. Die Taschen des Sammelgels wurden, soweit nicht anders angegeben, mit 15 µg Protein in einem maximalen Volumen von 30 µl (Mini-PROTEAN II-Kammer) bzw. 120 µg Protein in einem maximalen Volumen von 100 µl (PROTEAN II-Kammer) gefüllt. Für die Bestimmung

3.11.2 Native Polyacrylamidgelelektrophorese

LYSISPUFFER (2FACH)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natriumdesoxycholat</td>
<td>1,0 g</td>
</tr>
<tr>
<td>Glycerin</td>
<td>5 ml</td>
</tr>
<tr>
<td>Tris</td>
<td>0,8 g</td>
</tr>
<tr>
<td>Bromphenolblau</td>
<td>2 mg</td>
</tr>
<tr>
<td>aqua deion.</td>
<td>ad 100 ml</td>
</tr>
<tr>
<td>pH 7,0</td>
<td></td>
</tr>
</tbody>
</table>

Die Proben wurden im Verhältnis 1:1 mit dem Lysispuffer (2fach) versetzt und 1 h bei –20 °C inkubiert. Dem Trenngel und Sammelgel (siehe Abschnitt 3.11.1) wurde anstelle von 10 % SDS 25 % Natriumdesoxycholat zugefügt. Es wurden verschiedene Polyacrylamidkonzentrationen von 5 bis 12 % (w/v) im Trenngel eingesetzt. Im Sammelgel wurde stets eine Konzentration von 4 % (w/v) verwendet. Im 10fachen Laufpuffer (siehe Abschnitt 3.11.1) wurde das 1%ige SDS durch 2,5%iges Natriumdesoxycholat ersetzt. Ansonsten erfolgte die Gelelektrophorese wie unter Abschnitt 3.11.1 beschrieben.
3.12 FÄRBUNG DER PROTEINBANDEN IM GEL

3.12.1 COOMASSIE-BLAUFÄRBUNG

FÄRBELÖSUNG

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol (96 %)</td>
<td>400 ml</td>
</tr>
<tr>
<td>Essigsäure (96-100 %)</td>
<td>100 ml</td>
</tr>
<tr>
<td>Coomassie Brillant Blue R-250</td>
<td>0,7 g</td>
</tr>
<tr>
<td>aqua deion.</td>
<td>ad 1000 ml</td>
</tr>
</tbody>
</table>

3.12.2 ZINKFÄRBUNG

3.12.3 PEROXIDASEFÄRBUNG ZUM NACHWEIS VON HÄMPROTEINEN

Der Nachweis von Hämproteinen erfolgte über die Peroxidasefärbung (Francis & Becker, 1984). Partiell denaturierte Hämproteine besitzen eine Peroxidaseaktivität (Jones & Poole, 1985) und lassen sich in Gelen über diese Reaktion identifizieren. Vorwiegend die kovalent gebundenen Hämgruppen der c-Cytochrome bleiben unter den stark denaturierenden
Bedingungen noch in detektierbaren Mengen an das Protein gebunden. Bei der Peroxidasereaktion wird Wasserstoffperoxid durch das Reduktionsmittel Dimethoxybenzidin (DMB) zu Wasser reduziert. Im oxidierten Zustand nimmt DMB eine bräunliche Farbe an. Nach einer leicht abgewandelten Gelelektrophorese (siehe Abschnitt 3.11.1) wurden die Gele 30 min in 12,5%iger Trichloressigsäure inkubiert. Anschließend wurden die Gele 30 min mit aqua deion. gewaschen und über Nacht mit der Färbelösung inkubiert.

FÄRBELÖSUNG

Dimethoxybenzidin (DMB = o-Dianisidin, Fa. Sigma) 200 mg
in aqua deion. 180 ml lösen
Na-Citrat (0,5 M, pH 4,4) 20 ml
H₂O₂ (30 %) 0,4 ml

3.13 TROCKNUNG UND DOKUMENTATION DER GELE

3.14 WESTERNBLOT

3.14.1 Elektroblot mit diskontinuierlichem Puffersystem

Der elektrophoretische Transfer der Proteine aus dem Gel auf eine Cellulosenitrat-Membran (Porengröße 0,2 µm, Fa. Schleicher & Schuell) wurde mit Hilfe eines diskontinuierlichen Puffersystems im Semi-Dry-Verfahren durchgeführt (Kyse-Andersen, 1984). Die Membran wurde entsprechend der Größe der Gele und die Filterpapiere entsprechend der Elektrodenfläche des Blotgerätes (Pegasus, Fa. PHASE) zugeschnitten. Das Gel und die Membran wurden zwischen in Puffer getränkten Filterpapieren (WHATMAN Chromatographiepapier 3MM) luftblasenfrei eingeschlossen (Abb. 3.2). Die Proteine wurden für 2 h bei einem konstanten Strom von 0,8 mA/cm² Membranfläche auf die Membran transferiert.

<table>
<thead>
<tr>
<th>Anode</th>
<th>Kathode</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Filterpapiere in Blotpuffer I</td>
<td></td>
</tr>
<tr>
<td>2 Filterpapiere in Blotpuffer II</td>
<td></td>
</tr>
<tr>
<td>Cellulosenitrat-Membran</td>
<td></td>
</tr>
<tr>
<td>Gel</td>
<td></td>
</tr>
<tr>
<td>4 Filterpapiere in Blotpuffer III</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 3.2: Schema des diskontinuierlichen Puffersystems für den Elektroblot von Proteinen aus dem Gel auf eine Cellulosenitrat-Membran.

Blotpuffer I

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris</td>
<td>18,17 g</td>
</tr>
<tr>
<td>Methanol</td>
<td>100 ml</td>
</tr>
<tr>
<td>Aqua deion.</td>
<td>ad 500 ml pH 10,4</td>
</tr>
</tbody>
</table>

Blotpuffer II

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris</td>
<td>1,15 g</td>
</tr>
<tr>
<td>Methanol</td>
<td>100 ml</td>
</tr>
<tr>
<td>Aqua deion.</td>
<td>ad 500 ml pH 10,4</td>
</tr>
</tbody>
</table>

Blotpuffer III

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris</td>
<td>1,15 g</td>
</tr>
<tr>
<td>Methanol</td>
<td>100 ml</td>
</tr>
<tr>
<td>Aminocapronsäure (Fa. Sigma)</td>
<td>0,66 g</td>
</tr>
<tr>
<td>Aqua deion.</td>
<td>ad 500 ml pH 9,4</td>
</tr>
</tbody>
</table>

Nach dem Elektroblot wurden die Proteine auf der Membran für 5 min mit Ponceaux-Lösung reversibel rot gefärbt. Für die spätere Orientierung wurden die Molekulargewichtsmarker und
die Proteinspuren mit Bleistift markiert. Die Proteine wurden im Anschluss auf der Membran mit Hilfe der Antikörper gegen AmoA und AmoB immunologisch nachgewiesen.

Ponceaux-Färbelösung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponceaux S (Fa. Sigma)</td>
<td>1 g</td>
</tr>
<tr>
<td>Trichloressigsäure</td>
<td>15 g</td>
</tr>
<tr>
<td>aqua deion.</td>
<td>ad 500 ml</td>
</tr>
</tbody>
</table>

3.14.2 Elektroblot mit kontinuierlichem Puffersystem

Blotpuffer

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPS (3-(Cyclohexylamino)-1-propan sulfonsäure, Fa. Sigma)</td>
<td>1 g</td>
</tr>
<tr>
<td>Methanol (100 %)</td>
<td>50 ml</td>
</tr>
<tr>
<td>aqua deion.</td>
<td>ad 500 ml</td>
</tr>
</tbody>
</table>

Vor dem Elektroblot wurde das Gel 5 min in Blotpuffer gewaschen und die Membran mit Methanol angefeuchtet. Im Anschluss an den Elektroblot wurde die Membran zweimal mit aqua deion. gewaschen und 1 bis 2 min mit 0,1 % Coomassie Blau R-250 in 50 % Methanol reversibel gefärbt. Die Proteinbanden wurden markiert, mit 10 % Essigsäure in 50 % Methanol entfärbt und mit aqua deion. gewaschen. Die Membran wurde getrocknet und bis zur Sequenzierung bei –20 °C aufbewahrt.

3.14.3 Immunologischer Nachweis

Der Nachweis der AmoA und AmoB wurde stets in zwei getrennten Westernblots durchgeführt. AmoA oder AmoB wurden mit Hilfe der primären und sekundären Antikörper durch die Enzymreaktion einer alkalischen Phosphatase nachgewiesen. Dieses Enzym war entweder direkt an die sekundären Antikörper gebunden oder indirekt über ein Biotin-Streptavidin-System mit den sekundären Antikörpern verbunden (Abb. 3.3a, b). Beim indirekten Westernblot ist die Sensitivität des Nachweises erhöht.
PBS-PUFFER

NaCl 8,0 g
KCI 0,2 g
KH₂PO₄ 0,2 g
Na₂HPO₄ · 2 H₂O 1,44 g
aqua deion. ad 1000 ml pH 7,4

ANTIKÖRPERLÖSUNG

BSA (Fa. Sigma) 50 mg
Tween 20 (Polyxyethylensorbitan Monolaurat, Fa. Sigma) 25 µl
PBS-Puffer ad 100 ml

SUBSTRATPUFFER

NaHCO₃ 8,4 g
Na₂CO₃ 5,3 g
MgCl₂ 0,8 g
aqua deion. ad 1000 ml

3.14.4 QUANTITATIVER NACHWEIS DER AMO A UND AMO B IM WESTERNBLOT

3.15 PERMEABILISIERUNG GANZER ZELLEN IN REINKULTUREN UND ANREICHERUNGSKULTUREN

Damit die Antikörper bzw. die Oligonukleotidsonden in die Zellen gelangen konnten, mussten die Zellen zuvor permeabilisiert werden. Die Proben wurden 10 min bei 14.000 g bei Raumtemperatur zentrifugiert (Haemofuge-Haereus-Christ) und in etwa 100 µl 0,9%iger NaCl-Lösung aufgenommen, so dass eine Zelldichte von ca. 10^8 bis 10^9 Zellen pro ml vorlag. Für die Fixierung und Permeabilisierung wurden die Proben 1:3 mit 4%iger Formaldehydlösung versetzt und für 1h auf Eis fixiert. Die Zellen wurden anschließend 10 min bei 14.000 g bei Raumtemperatur zentrifugiert (Haemofuge-Haereus-Christ) und einmal mit PBS gewaschen. Danach wurden die Zellen in PBS-Puffer aufgenommen, 1:1 mit –20 °C kaltem Ethanol versetzt und mindestens über Nacht bei – 20 °C gelagert. Alternativ wurden Zellen direkt nach dem ersten Zentrifugieren unfixiert in PBS und Ethanol aufgenommen und eingefroren.

4%IGE FORMALDEHYDLÖSUNG

PBS-Puffer, 60 °C (siehe Abschnitt 3.14.3)	25 ml
Paraformaldehyd	1 g
NaOH (1 M)	20 µl

3.16 IMMUNFLUORESZENZFÄRBUNG GANZER ZELLEN

Für eine optimale Immunfluoreszenz (IF)-Färbung der Zellen wurden für die jeweiligen polyklonalen Antikörper unterschiedliche Methoden verwendet. In beiden Fällen wurde eine Fluoreszenzmarkierung mit Hilfe von sekundären Antikörpern gewählt, da so eine Signalverstärkung erreicht werden konnte (Hock, 1996).

3.16.1 IF-FÄRBUNG MIT ANTIKÖRPERN GEGEN AMOΑ

Jeweils 3 µl der unfixierten Proben (siehe Abschnitt 3.15) wurden auf einen Objektträger (6 Reaktionsfelder, 8 mm, Fa. Paul Marienfeld) pipettiert und für wenige Minuten bei 37 °C getrocknet. Danach folgte eine stufenweise Entwässerung der Zellen mit steigender Ethanolkonzentration (50, 80, 96 %) für je 3 min. Nach dem Trocknen der Objektträger mit

3.16.2 IF-FÄRBUNG MIT ANTIKÖRPERN GEGEN DIE AMO B

Für die IF-Färbung mit Antikörpern gegen AmoB wurde die Methode der IF-Färbung mit AmoA-Antikörpern leicht abgewandelt (siehe Abschnitt 3.16.1). Für die Färbung wurden fixierte Zellen verwendet (siehe Abschnitt 3.15). Die Lysozymbehandlung entfiel. Die Inkubation der primären Antikörper erfolgte für 1 h. Als sekundäre Antikörper wurden Anti-

<table>
<thead>
<tr>
<th>TE-Puffer</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris (100 mM)</td>
<td>12,1 g</td>
<td></td>
</tr>
<tr>
<td>Na2-EDTA (Titriplex III, 5 mM)</td>
<td>1,46 g</td>
<td></td>
</tr>
<tr>
<td>aqua deion</td>
<td>ad 100 ml</td>
<td>pH 7,5</td>
</tr>
</tbody>
</table>
Huhn-Immunglobuline des IgG-Types eingesetzt, die mit dem Fluoreszenzfarbstoff Cy3 gekoppelt waren (Fa. Biotrend). Der Farbstoff Cy3 absorbiert grünes Licht (552 nm) und emittiert oranges Licht (565 nm).

3.16.3 GEKOPPELTE IF-FÄRBUNG MIT ANTIKÖRPERN GEGEN DIE AMO\textsubscript{A} UND AMO\textsubscript{B}

Für die gleichzeitige Färbung der Zellen mit den Antikörpern gegen die AmoA und AmoB wurde die unter Abschnitt 3.16.1 beschriebenen Methode leicht verändert. Es wurden jeweils 1 µl primärer Antikörper gegen die AmoA und AmoB zu den 10 µl Antikörperlösung in ein Reaktionsfeld pipettiert und über Nacht inkubiert. Wie die primären Antikörper wurden die sekundären Antikörper gemeinsam in ein Reaktionsfeld pipettiert und 1 h inkubiert.

3.17 IN \textit{SITU}-HYBRIDISIERUNG MIT FLUORESZENZMARKIERTEN OLGONUKLEOTIDSONDEN

HYBRIDISIERUNGSPUFFER

NaCl (5 M) 360 µl
Tris/HCl (1 M, pH 7,2) 40 µl
Formamid (Nsv443) 600 µl (30 %)
bzw. (Nso190 und NEU-CTE) 800 µl (40 %)
aqua deion. ad 2 ml
SDS (10 %) 2 µl

WASCHPUFFER

NaCl (5 M) (Nsv443) 1020 µl
bzw. (Nso190 und NEU-CTE) 460 µl
Tris/HCl (1 M, pH 7,2) 1 ml
aqua deion. ad 50 ml
SDS (10 %) 50 µl

3.18 MIKROSKOPISCHE UNTERSUCHUNGEN

3.18.1 ZELLZAHLBESTIMMUNG VON BAKTERIEN

Die Gesamtzellzahl der Bakterien wurde im Lichtmikroskop mit einer Helber-Zählkammer bestimmt. Die Zählkammer besitzt ein Raster aus 16 Großquadraten, die jeweils in 16 Kleinquadrate unterteilt sind. Jedes Kleinquadrat hat eine Fläche von 0,0025 m² und eine Höhe von 0,02 mm. Die Zellzahl pro ml errechnet sich aus:

\[\text{Zellzahl} \cdot \text{ml}^{-1} = \text{Zellzahl pro Kleinquadrat} \cdot 2 \cdot 10^7 \]

Die Zählung erfolgte im Mikroskop (Fa. Leitz) bei 400facher Vergrößerung. Zur statistischen Absicherung wurden insgesamt 5 Großquadrate ausgezählt.

3.18.2 EPIFLUORESZENZMIKROSKOPIE

3.18.3 Konfokale-Laser-Raster-Mikroskopie

3.18.4 Transmissionselektronenmikroskopie

3.18.4.1 Einbettung nach Spurr

Die Proben wurden mit 2,5 % Glutaraldehyd in Arsenatpuffer (100 mM C₂H₆AsNaO₂ · 3 H₂O) für 2 h fixiert und danach dreimal mit Arsenatpuffer gewaschen. Die Zellen wurden in 2 % Agar-Noble in Arsenatpuffer resuspendiert und in Würfel mit 2 mm Kantenlänge geschnitten. Die Proben wurden über Nacht bei 4 °C mit 2 % Osmiumtetroxid in Arsenatpuffer kontrastiert bzw. fixiert. Nach sechsmaligem Waschen mit Arsenatpuffer erfolgte eine stufenweise Entwässerung der Zellen mit steigender Acetonkonzentration (15, 30, 50, 70, 90, 100 %) für je 10 min bei 4 °C, gefolgt von zwei 10-minütigen Entwässerungsschritten mit 100 % Aceton bei Raumtemperatur. Die anschließende Einbettung nach Spurr (1969) wurde nach dem folgenden Schema durchgeführt.

<table>
<thead>
<tr>
<th>Spurr/Aceton (100 %)</th>
<th>Inkubationszeit [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>1</td>
</tr>
<tr>
<td>1/1</td>
<td>1</td>
</tr>
<tr>
<td>3/1</td>
<td>über Nacht</td>
</tr>
<tr>
<td>100 % Spurr</td>
<td>4</td>
</tr>
</tbody>
</table>

Die Proben wurden anschließend in Einbettungsformen aus Silikon gefüllt und mit Spurr überschichtet. Die Polymerisation erfolgte für 24 h bei 70 °C.
SPURR-EINBETTUNGSGEMISCH (LVG = LOW VISCOSITY-GEMISCH)

VCD (E.R.L. 4206, Vinylcyclohexendioxid) 5 g
D.E.R. 736 (Diglycidether) 3 g
NSA (Nonenyl-Bernsteinsäureanhydrid) 13 g
DMAE (S-1, Dimethylaminoethanol) 0,2 g

Zuerst wurde die VCD, D.E.R 736 und NSA gut vermischt, dann erst DMAE unter Rühren hinzugegeben.

3.18.4.2 EINBETTUNG IN LOWICRYL® BEI TIEFEN TEMPERATUREN

LOWICRYL® K4M EINBETTUNG

Die Proben wurden mit 2,5 % Paraformaldehyd (in PBS, pH 7,5, siehe Abschnitt 3.14.3) 1 h auf Eis fixiert und anschließend dreimal mit Glycinlösung (10 mM, in PBS, pH 7,4) gewaschen. Die Zellen wurden in 2 % Agar-Noble in Glycinlösung resuspendiert und in Würfel mit 2 mm Kantenlänge geschnitten. Danach wurden die Proben über Nacht bei 4 °C in Glycinlösung aufbewahrt. Es folgte eine stufenweise Entwässerung der Zellen mit steigender Ethanolkonzentration und abnehmender Temperatur nach folgendem Schema.

<table>
<thead>
<tr>
<th>Ethanol [%]</th>
<th>Inkubationszeit [min]</th>
<th>Temperatur [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>0 bis -5</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>-5 bis -15</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>-15</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>-25</td>
</tr>
<tr>
<td>70</td>
<td>60</td>
<td>-35</td>
</tr>
<tr>
<td>90</td>
<td>60</td>
<td>-35</td>
</tr>
<tr>
<td>96</td>
<td>60</td>
<td>-35</td>
</tr>
<tr>
<td>96</td>
<td>60</td>
<td>-35</td>
</tr>
</tbody>
</table>

Die Temperaturen wurden mit Eis und NaCl sowie mit Trockeneis konstant gehalten. Die anschließende Einbettung erfolgte weiterhin bei −35 °C, sie wurde nach dem folgenden Schema durchgeführt.
MATERIAL UND METHODEN

LOWYCRL® K4M/Ethanol (96 %) Inkubationszeit [h]

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Inkubationszeit [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>1/1</td>
<td>1</td>
</tr>
<tr>
<td>3/1</td>
<td>1</td>
</tr>
<tr>
<td>100 % Lowicryl® K4M</td>
<td>1</td>
</tr>
<tr>
<td>100 % Lowicryl® K4M</td>
<td>über Nacht</td>
</tr>
<tr>
<td>100 % Lowicryl® K4M</td>
<td>2</td>
</tr>
</tbody>
</table>

LOWICRYL® K4M (Fa. Lowi GmbH)

- Crosslinker: 2,7 g
- Monomer: 17,3 g
- Initiator: 0,1 g

Zuerst wurde der Crosslinker und das Monomer gut vermischt, dann erst der Initiator unter Rühren hinzugegeben.

LOWICRYL® HM20 EINBETTUNG

3.18.4.3 HERSTELLUNG VON ULTRADÜNNSSCHNITTEN UND NACHKONTRASTIERUNG

3.18.4.4 Negativkontrastierung der Ammoniakmonooxygenase

3.19 Immuncytochemischer Nachweis der AmoA und AmoB mit Hilfe der Immungoldmarkierung

Die gereinigte native AMO wurde ebenfalls mittels IG-Markierung nachgewiesen. Dazu wurde ein Tropfen der AMO-Fraktion entnommen und auf ein Kupfernetzchen pipettiert. Der Tropfen wurde 5 min inkubiert, so dass die Proteine an die Netzchen binden konnten. Anschließend wurde der Tropfen mit Filterpapier entfernt. Danach wurde die IG-Markierung durchgeführt, an die sich eine Negativkontrastierung anschloss (siehe Abschnitt 3.18.4.4).

Material und Methoden

3.20 Isolierung der Ammoniakmonooxygenase

Die Ammoniakmonooxygenase (AMO) wurde mit Hilfe der Ionenaustauschchromatographie angereichert und mit der anschließenden Gradientenzentrifugation gereinigt.

3.20.1 Ionenaustauschchromatographie

Die Isolierung der AMO erfolgte über eine anionische Ionenaustauschchromatographie. Als Trägermatrix wurde positiv geladene Diethylaminoethylagarose (DEAE-Sepharose) verwendet. Zur Isolierung der AMO wurde die von McTavish et al. (1993a) entwickelte Methode leicht abgewandelt. Der pH-Wert und die Salzkonzentration der Pufferlösung wurden derart gewählt, dass die AMO nicht an die positiv geladene Säule bindet und so von den übrigen Proteinen abgetrennt werden konnte.

Probenvorbereitung

Es wurden 1 g Zellen in 5 ml Probenpuffer aufgenommen und mit 250 µl Proteaseinhibitor (Proteaseinhibitorcocktail ohne Metalchelatoren P8849, Fa. Sigma) versetzt. Der Aufschluss der Zellen erfolgte mit Hilfe der French Pressure Cell Press (siehe Abschnitt 3.5.1). Der Rohextrakt wurde mit 5 mg DNase I (Fa. Sigma) versetzt und mit Probenpuffer auf 35 ml aufgefüllt. Anschließend wurden die Membranproteine durch Zugabe von 11,5 ml 20%iger Triton-X-100-Lösung bzw. 6%iger Dodecyl-β-D-maltosid-Lösung durch 15-minütige Inkubation auf Eis in Lösung gebracht. Unlösliche Membranproteine und Zelltrümmer
wurden durch Zentrifugation bei 4 °C 10 min bei 25.000 g (Kontron-Hermel-Comrikon H-401, Rotor A8.24) niedergeschlagen. Der Überstand wurde auf die Säule aufgetragen.

PROBENPUFFER (50 mM)

Na$_2$HPO$_4$ · H$_2$O
17,90 g
aqua deion.
ad 1000 ml

NaH$_2$PO$_4$ · 2H$_2$O
6,89 g
aqua deion.
ad 1000 ml

Beide Lösungen wurden derart gemischt, dass sich ein pH-Wert von 7,5 einstellte.

SÄULENCHROMATOGRAPHIE

Alle im Folgenden beschriebenen Arbeitschritte wurden bei 4 °C durchgeführt. Vor dem Auftragen der Probe auf die Säule (HiPrep 16/10 DEAE, 1,6 · 10 cm, Fa. Amersham Pharmacia Biotech) wurde diese mit 100 ml Startpuffer, 100 ml Elutionspuffer und erneut mit 100 ml Startpuffer gewaschen. Das Auftragen der Puffer erfolgte mit Hilfe einer Pumpe (MS-Reglo, Fa. IsomaTec), die der Säule vorgeschaltet war. Die Geschwindigkeit der Pumpe wurde auf 5 ml/min eingestellt. Im Anschluss wurde die Probe mit einer Durchflussgeschwindigkeit von 1 ml/min auf die Säule aufgetragen. Die nichtbindenden Proteine wurden mit Hilfe eines nachgeschalteten Fraktionssammlers (Microcol TDC 80, Fa. Gilson) in 1-ml-Fraktionen gesammelt. Nachdem die Probe vollständig auf die Säule aufgetragen wurde, wurde die Säule mit 30 ml Startpuffer nachgespült und das Eluat weiter fraktioniert. Im Anschluss erfolgte die Elution der gebundenen Proteine mit Hilfe eines Salzgradienten. Hierzu wurden 100 ml Startpuffer und 100 ml Elutionspuffer in einem Gradientenmischer der Säule vorgeschaltet und die eluierten Proteine fraktioniert.

STARTPUFFER (37,6 mM)

Na$_2$HPO$_4$ · H$_2$O
13,47 g
aqua deion.
ad 1000 ml

NaH$_2$PO$_4$ · 2H$_2$O
5,19 g
aqua deion.
ad 1000 ml

Beide Lösungen wurden derart gemischt, dass sich ein pH-Wert von 7,5 einstellte. Im Anschluss wurden der Lösung 5 ml 20%ige Triton-X-100-Lösung bzw. 10%ige Dodecyl-β-D-maltosid-Lösung pro Liter zugegeben.
ELUTIONSPUFFER (37,6 mM)

NaCl (1 M) 58,44 g
Startpuffer ad 1000 ml

Die Säulenchromatographie erfolgte in einigen Versuchen unter Ausschluss von Luftsaerstoff in der anaeroben Werkbank (Glovebox MK3, Fa. DWS Laborgeräte GmbH) bei Raumtemperatur in Gegenwart eines Stickstoff-Kohlendioxidgemisches (0,03 % CO₂ in N₂, Fa. Messer-Griesheim).

Im Anschluss wurde die Säule mit 100 ml aqua deion., 40 ml 2 M NaCl und 20 ml Startpuffer gewaschen und bis zum nächsten Einsatz bei 4 °C in Startpuffer gelagert. Nach etwa 10 Einsätzen wurde die Säule mit 80 ml 2 M NaCl, 50 ml aqua deion., 80 ml 1 M NaOH, 80 ml 70 % Ethanol und 60 ml aqua deion. regeneriert. Das 70%ige Ethanol wurde in Form eines Gradienten mit aqua deion. aufgetragen. Im Anschluss wurde die Säule in 20%igem Ethanol bei 4 °C gelagert.

3.20.2 GRADIENTENZENTRIFUGATION

Um die angereicherte AMO zu reinigen, wurde im Anschluss an die Säulenchromatographie eine Dichtegradientenzentrifugation durchgeführt. Dazu wurden 800 µl der Fraktion mit der höchsten Proteinkonzentration der angereicherten AMO auf einen linearen Saccharosegradienten (3,2 ml, 10 bis 35 % Saccharose in Startpuffer (siehe Abschnitt 3.20.1) gegeben. Es wurden Proteinkonzentrationen von 1,8 mg/ml eingesetzt. Die angereicherte AMO wurde gegebenenfalls durch Gefriertrocknung aufkonzentriert (Freezemobile 12, Fa. Virtis). Der Gradient wurde bei 4 °C für 19 h bei 120.000 g zentrifugiert (Zentrifuge: Beckman L8-M Ultrazentrifuge, Rotor: SW 60 Ti). Nach der Zentrifugation wurde der Gradient mit einer Pipette in 500-µl-Fraktionen aufgeteilt und der Niederschlag in Startpuffer resuspendiert.

3.21 BESTIMMUNG DER AMMONIAKOXIDATIONSAKTIVITÄT

Es wurde die Ammoniakoxidationsaktivität von ganzen Zellen, von zellfreien Extrakten und von angereicherte AMO von Nitrosomonas eutropha N904 bestimmt. Es wurden stets Zellen der logarithmischen Wachstumsphase für die Versuche eingesetzt.

Für die Bestimmung der Ammoniakoxidationsaktivität ganzer Zellen und zellfreier Extrakte wurden Zellen abgeerntet und 1 bis 2 g Zellen in 3 ml PS1-Puffer (siehe Abschnitt 3.4) aufgenommen. Die Zellen wurden mit 250 µl Proteaseinhibitor pro g Zellen (Proteaseinhibitorcocktail ohne Metalchelatoren P8849, Fa. Sigma) versetzt. Ein Teil der Zellsuspension wurde auf eine Zellzahl von 1 bis 3 · 10⁸ Zellen/ml für den aeroben
Aktivitätstest bzw. $8 \cdot 10^9$ Zellen/ml für den anaeroben Aktivitätstest ganzer Zellen eingestellt. Die restlichen Zellen wurden zur Herstellung zellfreier Extrakte in der Regel aerob aufgeschlossen (siehe Abschnitt 3.5.1). In einigen Fällen erfolgte der Aufschluss anaerob (siehe Abschnitt 3.5.3). Die zellfreien Extrakte wurden auf eine Proteinkonzentration von 1,5 bis 3 mg/ml PS1-Puffer eingestellt. Im Anschluss wurden zu den ganzen Zellen und dem Rohextrakt jeweils 5 mM NADH (Fa. Fluka) und 10 mg/ml BSA (Fa. Sigma) zugefügt und der Aktivitätstest durch Überführung der Proben in die Reaktionsgefäße gestartet.

Zur Bestimmung der Ammoniakoxidationsaktivität der angereicherten AMO wurden die Fraktionen 20 bis 40 aus der Säulenchromatographie gemeinsam gesammelt (siehe Abschnitt 3.20.1) und für den Aktivitätstest verwendet. Für den Aktivitätstest wurden Proteinkonzentrationen der AMO von 1,2 bis 2,6 mg/ml eingesetzt. Nach Zugabe von 20 mM Ammoniumchloridlösung, 300 µM Kupfersulfatlösung, 5 mM NADH und 10 mg/ml BSA wurden jeweils 3 ml der angereicherten AMO in die Reaktionsgefäße des aeroben und anaeroben Aktivitätstests überführt. In einigen Versuchen wurden die Ansätze mit den genannten Zusätzen jedoch ohne Ammonium 10 min auf Eis inkubiert, bevor der Aktivitätstest durch die Zugabe von Ammonium gestartet wurde (siehe Abschnitt 4.13.3). Die spezifische Ammoniakoxidationsaktivität wurde direkt über den Ammoniumverbrauch und/oder indirekt über die Hydroxylaminbildung und/oder Nitritbildung der Zellen, zellfreier Extrakte bzw. angereicherter AMO bestimmt. Die spezifische Aktivität (a) ist die Stoffmenge (n) an Substrat bzw. Produkt, die bezogen auf eine definierte Proteinmenge (m) in einem bestimmten Zeitintervall (Δt) verbraucht bzw. gebildet wird.

$$a \left[\frac{\mu \text{mol}}{g \times h} \right] = \frac{n \left[\mu \text{mol} \right]}{m \left[g \right] \times \Delta t \left[h \right]}$$
3.22 ABSORPTIONSSPEKTRUM DER AMMONIAKMONOOXYGENASE

4 ERGEBNISSE

4.1 ISOLIERUNG DER UNTEREINHEITEN DER AMMONIAKMONOOXYGENASE

Nach Auftrennung des Gesamtproteins von *Nitrosomonas eutropha* N904 mit Hilfe der SDS-PAGE waren zwei Hauptproteinbanden, ein 27-kDa-Protein und ein 41-kDa-Protein, deutlich zu erkennen (Abb. 4.1a, b). McTavish et al. (1993a) postulierten, dass diese Proteine die A-bzw. B-Untereinheiten der Ammoniakmonooxygenase (AMO) sind. Die Proteine wurden als AmoA- bzw. AmoB-Protein bezeichnet. Im Rahmen dieser Arbeit wurde aus dem Gesamtprotein von *N. eutropha* N904 das AmoA-Protein angereichert und das AmoB-Protein isoliert.

4.1.1 ANREICHERUNG DES AMOA-PROTEINS

wurden, konnte die Aminosäure (AS)-Sequenz 1SIFRTEFILKAAKMPHEAVHMSRL24 abgeleitet werden. Diese Sequenz wurde mit der AS-Sequenz des AmoA-Proteins von \textit{N. eutropha} Nm 57 verglichen. Hierfür wurde die AS-Sequenz der AmoA aus den Gensequenzen abgeleitet. An dieser Stelle sei erwähnt, dass das AmoA-Protein in \textit{N. eutropha} Nm 57 durch zwei fast identische Gene kodiert wird (\textit{amoA1} und \textit{amoA2}, GenBank Nummern U51630 und U72670). Ein Vergleich mit der AS-Sequenz des AmoA-Proteins von \textit{N. eutropha} N904 war nicht möglich, da diese Gensequenzen nicht vorlagen. Das N-terminale Ende des Proteins, welches in der 27-kDa-Bande von \textit{N. eutropha} N904 in höchster Konzentration vorkam, zeigte in diesem Abschnitt 96 % (23/24) AS-Sequenzähnlichkeit zu der Sequenz des AmoA-Proteins von \textit{N. eutropha} Nm 57. Es wurde somit als AmoA-Protein identifiziert. Aus einem Teil der übrigen Aminosäuren des Edman-Abbaus wurde die Sequenz 3DAPFE7 abgeleitet. Homologieuntersuchungen mit Hilfe von Proteindatenbanken (siehe Abschnitt 3.8) zeigten, dass diese Sequenz mit der AS-Sequenz des Cytochrom c\textsubscript{554}-Vorläuferproteins von \textit{Nitrosomonas europaea} übereinstimmt (abgeleitet aus der Gensequenz, GenBank Nummer O57142).

Für die weitere Reinigung des AmoA-Proteins wurden die Proteine der 27-kDa-Bande aus dem SDS-Gel eluiert (siehe Abschnitt 3.7) und anschließend von der Firma ChromaTec GmbH (Greifswald) über eine „reversed-phase“-HPLC aufgetrennt. Im Eluat wurde das AmoA-Protein mit Hilfe der Sequenzierung identifiziert. Anhand des Elutionsprofils der HPCL wurde deutlich, dass das AmoA-Protein in hoher Konzentration im Eluat vorhanden war (Abb. 4.2). Etwa 94 % der eluierten Proteine wurden als AmoA-Protein identifiziert. Mit dieser Methode war jedoch keine vollständige Reinigung der AmoA möglich.

Das angereicherte AmoA-Protein wurde für die Bestimmung des AmoA-Gehaltes am Gesamtprotein von \textit{N. eutropha} N904 mit Hilfe des quantitativen Immunblots verwendet (siehe Abschnitt 4.5.1).

Eine Reinigung der AmoA aus dem Gesamtprotein von \textit{N. eutropha} N904 war auch mit anderen Methoden wie z. B. der fraktionierten Zentrifugation oder Gradientenzentrifugation und anschließender SDS-PAGE oder nativer Gelelektrophorese nicht möglich (nicht dargestellt).
Abb. 4.2: Auftrennung der Proteine der 27-kDa-Bande über reversed-phase HPLC. Es wurden 6 µg Protein auf die Säule aufgetragen. Die 27-kDa-Bande wurde zuvor nach Auftrennung des Gesamtproteins von *N. eutropha* N904 über eine SDS-PAGE aus dem Gel isoliert. Der Peak der AmoA wurde durch Sequenzierung des Proteins identifiziert.

4.1.2 Isolierung des AmoB-Proteins

Pro Edmanzyklus wurde nur eine Aminosäure abgespalten. In der 41-kDa-Bande befand sich demnach nur ein Protein. Das N-terminale Ende des isolierten 41-kDa-Proteins von *N. eutropha* N904 zeigte 82 % (18/22) Sequenzähnlichkeit zu den Aminosäuren 41 bis 62 beider AmoB-Proteine von *N. eutropha* Nm 57. Das N-terminale Ende des isolierten 41-kDa-Proteins war somit 38 Aminosäuren kürzer als das N-terminale Ende der abgeleiteten AmoB-Proteine. Unterschiede zwischen der Sequenz des 41-kDa-Proteins und der AmoB-Proteine wurden meist durch die Aminosäure Glycin (G) im 41-kDa-Protein hervorgerufen. Die AS-
Sequenzen von AmoB1 und AmoB2 von *N. eutropha* Nm 57 unterscheiden sich nur in der 43. und 47. Aminosäure. Die AS-Sequenz des 41-kDa-Proteins von *N. eutropha* N904 stimmte mit der Aminosäure 43 und 47 einer der beiden AmoB-Proteine von *N. eutropha* Nm 57 überein. Aufgrund der hohen Übereinstimmung des 41-kDa-Proteins von *N. eutropha* N904 mit dem AmoB-Protein von *N. eutropha* Nm 57 wurde das 41-kDa-Protein als AmoB-Protein identifiziert. Das AmoB-Protein wurde mittels Elektroelution aus dem Gel eluiert und aufkonzentriert (siehe Abschnitt 3.7). Im Anschluss wurde das reine AmoB-Protein dazu verwendet polyklonale Antikörper des IgG-Typs herzustellen (siehe Abschnitt 3.10, 4.2).

Abb. 4.3: Vergleich der AS-Sequenz des isolierten 41-kDa-Proteins von *N. eutropha* N904 (a) mit den aus den zwei *amoB* Genen abgeleiteten AS-Sequenzen der beiden AmoB-Proteine von *N. eutropha* Nm 57: AmoB1 (b) und AmoB2 (c). Punkte kennzeichnen die Übereinstimmung mit der AS-Sequenz des aus *N. eutropha* N904 isolierten 41-kDa-Proteins. Der Strich kennzeichnet eine Lücke in der Sequenz.

4.2 HERSTELLUNG POLYKLONALER ANTIKÖRPER GEGEN DIE UNTEREINHEITEN DER AMMONIAKMONOOXYGENASE

4.3 ZUSAMMENFASSENDE DARSTELLUNG DER VERWENDUNG DER ANTIKÖRPER

Zur besseren Übersicht sind die Untersuchungen, die in den folgenden Abschnitten mit Hilfe der Antikörper gegen die AmoA und die AmoB durchgeführt wurden, in einem Flussdiagramm aufgezeichnet (Abb. 4.4). Die Untersuchungen der vorliegenden Arbeit basierten auf der Herstellung der Antikörper gegen die Ammoniakmonooxygenase (AMO) von *Nitrosomonas eutropha*.

Abb. 4.4: Schematische Darstellung in Form eines Flussdiagrammes der im Verlauf dieser Arbeit durchgeführten Untersuchungen, die auf dem Einsatz von Antikörpern gegen die AMO von *N. eutropha* beruhen.
4.4 Spezifität der Antikörper im Immunblot

4.4.1 Untersuchungen der Gattung *Nitrosomonas* und *Nitrosococcus mobilis*

AmoA-Antikörper

Die Antikörper gegen die AmoA reagierten im Westernblot nach Auftragung des Gesamtproteins von *Nitrosomonas eutropha* N904 nur mit dem 27 kDa großen AmoA-Protein (Abb. 4.5b, Spur 5, 11, 12). Andere Proteine wurden nicht markiert. Weiterhin detektierten die AmoA-Antikörper die 27 kDa großen AmoA-Proteine der halotoleranten und halophilen Arten *N. eutropha* Dave, *N. europaea* Freitag und *N. halophila* Nm 1 sowie der marinen Art *N. aestuarii* Nm 36 (Abb. 4.5b, Spur 1 bis 4). In allen weiteren Arten von *Nitrosomonas* und *Nitrosococcus mobilis* Nc 2 wurde mit den AmoA-Antikörpern kein Protein markiert (Abb. 4.5b, Spur 6 bis 10, 13 bis 15).
AmoB-Antikörper

Wie die AmoA-Antikörper waren auch die AmoB-Antikörper spezifisch. Sie reagierten im Immunblot nach Auftragung des Gesamtproteins von *N. eutropha* N904 nur mit dem 41 kDa großen AmoB-Protein (Abb. 4.5c, Spur 5, 11, 12). Andere Proteine wurden nicht markiert.

Im Gegensatz zu den AmoA-Antikörpern reagierten die AmoB-Antikörper jedoch mit den AmoB-Proteinen aller zehn beschriebenen Arten der Gattung *Nitrosomonas* sowie mit *Nitrosococcus mobilis* Nc 2 (Abb. 4.5c). Weitere Proteine des Gesamtproteins (Abb. 4.5a) wurden von den Antikörpern nicht markiert. Mit Ausnahme von zwei Stämmen wurde jeweils ein 41-kDa-Protein detektiert. In Zelleextrakten von *Nitrosomonas* spec. R1.24 und *Nitrosomonas ureae* Nm 10 reagierten die AmoB-Antikörper mit einem 42,5 kDa großen Protein (Abb. 4.5c, Spur 9, 10). Daher wird angenommen, dass es sich bei dem aus Sandstein isolierten Stamm *N.* spec. R1.24 um einen Vertreter der Art *N. ureae* spec. handelt. Diese Annahme wurde durch DNA-Sequenzierungen bestätigt. *N.* spec. R1.24 zeigte 100 % Sequenzähnlichkeit zu der 16S rDNA und 99,4 % AS-Sequenzähnlichkeit zur AmoA von *N. ureae* Nm 10 (M. Schmid, TU München, persönliche Mitteilung).

4.4.2 Untersuchungen der Gattungen Nitrosospira, Nitrosovibrio, Nitrosolobus und Nitrosococcus

AmoA-Antikörper

Die Antikörper gegen AmoA reagierten in Zelleextrakten von *Nitrosospira, Nitrosovibrio, Nitrosolobus* und *Nitrosococcus* mit keinem Protein (nicht dargestellt).

AmoB-Antikörper

Mit den AmoB-Antikörpern wurde dagegen in Zelleextrakten der sieben getesteten Arten von *Nitrosospira, Nitrosovibrio* und *Nitrosolobus* jeweils ein 41-kDa-Protein markiert. In Abbildung 4.6 ist exemplarisch der Immunblot jeweils eines Vertreters der Gattungen dargestellt. Mit den Ergebnissen von Abschnitt 4.4.1 lässt sich somit zusammenfassen, dass...
die AmoB-Antikörper mit den AmoB-Proteinen aller getesteten Ammoniakoxidanten der \(\beta \)-
Proteobakterien reagierten.

Im Gegensatz zu den Ammoniakoxidanten der \(\beta \)-Proteobakterien wurde in den Zellextrakten
der Ammoniakoxidanten \textit{Nitrosococcus oceani} Nc 1 (Abb. 4.6) und \textit{Nitrosococcus halophilus}
Nc 4 mit den AmoB-Antikörpern kein Protein markiert. Beide Arten gehören zu der \(\gamma \)-
Unterklasse der Proteobakterien.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig4.6.png}
\caption{Westernblot mit AmoB-Antikörpern nach Auftrennung des Gesamtproteins von Ammoniakoxidanten
verschiedener Gattungen. Spur 1: \textit{Nitrosomonas eutropha} N904, Spur 2: \textit{Nitrosovibrio} spec. K7.1, Spur 3:
Molekulargewichtsstandards sind schematisch rechts angegeben. Pro Spur wurden 15 µg Protein aufgetragen.
M\textsubscript{r} = relative Molekülmasse in kDa.}
\end{figure}

\textbf{4.4.3 Kontrollen zur Spezifität der Antikörper}

\textbf{Methanoxidanten}

Sequenzähnlichkeiten zwischen den Genen der partikulären Methanmonooxygenase (pMMO)
der Methanoxidanten und der AMO der Ammoniakoxidanten weisen auf eine enge
strukturelle und funktionelle Verwandtschaft der beiden Enzymsysteme hin (Holmes et al.,
1995). Daher wurde überprüft, ob beide Proteine auch serologische Gemeinsamkeiten
aufweisen. Beide Antiseren reagierten jedoch nicht mit den Proteinen der Methanoxidanten
\textit{Methylococcus capsulatus} Bath, \textit{Methylomonas methanica} Oo52006 und \textit{Methylocystis parvus} 4a (nicht dargestellt).
WEITERE BAKTERIEN

4.5 QUANTITATIVER NACHWEIS DER AMMONIAKMONOOXYGENASE IM WESTERNBLOT

4.5.1 BESTIMMUNG DES PROZENTUALEN ANTEILS DER AMO A UND AMO B AM GESAMTPROTEIN VON N. EUTROPHA

Der prozentuale Anteil der AmoA und AmoB am Gesamtprotein von *N. eutropha* N904 wurde zuerst bei Zellen ermittelt, die unter Standardbedingungen kultiviert worden waren (mineralisches Medium mit 10 mM Ammonium, pH 7,3, 28 °C). Die Zellen wurden in der logarithmischen Wachstumsphase geerntet. Als Eichkurven dienten definierte Konzentrationen der angereicherten AmoA (0,1 bis 1,8 µg) (Abb. 4.7c, d) bzw. der reinen AmoB (0,01 µg bis 0,42 µg) (Abb. 4.8c, d). Bei beiden Eichkurven stieg die Farbintensität der Immunfärbung linear mit der Proteinmenge. Auch bei der Immunfärbung der Gesamtproteine von *N. eutropha* N904 mit den AmoA-Antikörpern (Abb. 4.7a, b) und mit den AmoB-Antikörpern (Abb. 4.8a, b), war ein Anstieg der Farbintensität mit zunehmender Proteinmenge zu beobachten. Ein Nachweis der AmoA und AmoB war ab einer Proteinmenge von ca. 0,1 µg möglich. In beiden Fällen kam es bei einer Gesamtproteinnenge von 10 µg jedoch zu einer Sättigung der Färbung. Die Messwerte, die innerhalb der Eichgeraden lagen, wurden zur Bestimmung der prozentualen AmoA- und AmoB-Gehalte am Gesamtprotein herangezogen.
Abb. 4.7: Direkter Westernblot mit AmoA-Antikörpern und Gesamtprotein von N. eutropha N904 (a) bzw. mit angereichertem AmoA (c) in Abhängigkeit von der Proteinmenge. Die Proteingehalte sind unten, die Molekulargewichtsstandards sind rechts neben den Westernblots angegeben. Mr = relative Molekulmasse in kDa. Neben den Westernblots ist die Farbintensität der Immunfärbung in Abhängigkeit von der Gesamtproteinmenge (b) bzw. der Proteinmenge der angereicherten AmoA (d) graphisch dargestellt. Die Farbintensitäten wurden mit Hilfe eines Densitometerprogramms bestimmt (siehe Abschnitt 3.14.4).

Abb. 4.8: Indirekter Westernblot mit AmoB-Antikörpern und Gesamtprotein von N. eutropha N904 (a) bzw. mit reiner AmoB (c) in Abhängigkeit von der Proteinmenge. Die Proteingehalte sind unten, die Molekulargewichtsstandards sind rechts neben den Westernblots angegeben. Mr = relative Molekulmasse in kDa. Neben den Westernblots ist die Farbintensität der Immunfärbung in Abhängigkeit von der Gesamtproteinmenge (b) bzw. der Proteinmenge der reinen AmoB (d) graphisch dargestellt. Die Farbintensitäten wurden mit Hilfe eines Densitometerprogramms bestimmt (siehe Abschnitt 3.14.4).
Wie in Tabelle 4.1 aufgeführt, konnte ein prozentualer AmoA-Gehalt von 6,9 ± 2,0 % und ein prozentualer AmoB-Gehalt von 5,9 ± 1,8 % am Gesamtprotein von *N. eutropha* N904 bestimmt werden. Die A- und die B-Untereinheit kamen somit in der Zelle in etwa im gleichen Verhältnis vor. Zur Berechnung der AmoA- und AmoB-Gehalte am Gesamtprotein wurden jeweils vier ähnliche Versuche durchgeführt. Die Standardabweichung der Ergebnisse vier gleicher Versuche lag bei ± 9 %.

Tabelle 4.1: Prozentuale AmoA- und AmoB-Gehalte am Gesamtprotein von *N. eutropha* N904 berechnet aus den Farbintensitäten der Immunblotfärbungen. Die Zellen wurden in Gegenwart von 10 mM Ammonium angezogen. Die Standardabweichung vier gleicher Versuche lag bei ± 9 %.

<table>
<thead>
<tr>
<th>Gesamtprotein [µg]</th>
<th>prozentualer AmoA-Gehalt [µg]</th>
<th>%</th>
<th>prozentualer AmoB-Gehalt [µg]</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,54</td>
<td>5,4</td>
<td>n.u.</td>
<td>n.u.</td>
</tr>
<tr>
<td>8</td>
<td>n.u.</td>
<td>n.u.</td>
<td>0,30</td>
<td>3,8</td>
</tr>
<tr>
<td>5</td>
<td>0,31</td>
<td>6,2</td>
<td>n.u.</td>
<td>n.u.</td>
</tr>
<tr>
<td>4</td>
<td>n.u.</td>
<td>n.u.</td>
<td>0,21</td>
<td>5,3</td>
</tr>
<tr>
<td>2,5</td>
<td>0,23</td>
<td>9,2</td>
<td>n.u.</td>
<td>n.u.</td>
</tr>
<tr>
<td>2</td>
<td>n.u.</td>
<td>n.u.</td>
<td>0,13</td>
<td>6,5</td>
</tr>
<tr>
<td>1</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0,08</td>
<td>8,0</td>
</tr>
</tbody>
</table>

Mittelwert 6,9 ± 2,0 % 5,9 ± 1,8 %

n.a. = Wert ist anhand der verwendeten Eichkurve nicht ablesbar

4.5.2 Abhängigkeit des AmoA- und AmoB-Gehaltes von der Ammonium-Konzentration

Bei Anzucht von *N. eutropha* N904 in mineralischem Medium mit einer niedrigen Ammoniumkonzentration von 1 mM wurde ein Anteil von 11,4 ± 1,9 % AmoA am Gesamtprotein gefunden. Dieser lag deutlich über dem AmoA-Gehalt von Zellen, die mit 10 mM Ammonium kultiviert wurden. Wie im vorherigen Abschnitt gezeigt wurde, betrug der AmoA-Gehalt in diesen Zellen 6,9 ± 2,0 %. Dagegen wurde in Gegenwart hoher Ammoniumkonzentrationen von 100 mM ein niedriger prozentualer AmoA-Gehalt von 3,0 ± 1,8 % gemessen (Abb. 4.9a, b).

Auch im Fall der AmoB nahm der prozentuale Gehalt am Gesamtprotein von *N. eutropha* N904 mit zunehmender Ammoniumkonzentration im Anzuchtsmedium ab. In Gegenwart von 1 mM Ammonium wurde ein AmoB-Gehalt von 14,0 ± 1,4 % gemessen. Bei Anzucht mit 10 mM Ammonium lag ein AmoB-Gehalt von 5,9 ± 1,8 % (siehe Abschnitt 4.5.1) und bei Anzucht mit 100 mM Ammonium ein AmoB-Gehalt von 4,0 ± 0,8 % vor (Abb. 4.9c, d).

Diese Ergebnisse zeigten, dass der AmoA- und AmoB-Gehalt in den Zellen von *N. eutropha* N904 abhängig von der Ammoniumkonzentration ist. Außerdem traten das AmoA- und
AmoB-Protein in den Zellen unabhängig von der Substratkonzentration im Medium stets in etwa im Verhältnis 1:1 auf.

Abb. 4.9: Quantitativer Immunblot von AmoA (a, b) und AmoB (c, d) an zellfreien Extrakten von *N. eutropha* N904. a, c) Westernblot mit Antikörpern gegen AmoA (a) und AmoB (c) mit einer Proteinmenge von je 4 µg. Spur 1: Zellen wurden in mineralischem Medium mit 1 mM, Spur 2: mit 10 mM, Spur 3: mit 100 mM Ammonium angezogen. Molekulargewichtsstandards sind rechts angegeben. Mr = relative Molekülmasse in kDa.

b, d) Abnahme des prozentualen Gehaltes an AmoA (b) und AmoB (d) am Gesamtprotein mit zunehmender Ammoniumkonzentration in mineralischem Medium. Die Fehlerbalken geben die Standardabweichungen von drei Versuchen wieder.

4.5.3 Abhängigkeit des AmoA- und AmoB-Gehaltes von alternativen Substraten

N. aestuarii Nm 36 wurde mit 6 mM Harnstoff bzw. mit 12 mM Ammonium angezogen. Zellen, die in Gegenwart von Harnstoff gewachsen sind, zeigten einen um etwa 30 % höheren
AmoA- und AmoB-Gehalt als Zellen, die mit einer äquivalenten Menge an Ammonium angezogen wurden (Abb. 4.10). Auch bei der Anzucht von *N. eutropha* Dave mit 5 mM Glutamin wurde ein etwa 30 % höherer Gehalt an AmoA und AmoB im Vergleich zur Anzucht mit 5 mM Ammonium gefunden (nicht dargestellt).

Abb. 4.10: Quantitativer Immunblot von AmoA und AmoB an zellfreien Extrakten von *Nitrosomonas aestuarii* Nm 36. a) Westernblot gegen AmoA (Spur 1, 2) und AmoB (Spur 3, 4) mit Auftragung einer jeweiligen Proteinmenge von 4 µg. Die Zellen wurden in Gegenwart von 6 mM Harnstoff (Spur 1, 3) oder 12 mM Ammonium (Spur 2, 4) angezogen. Molekulargewichtsstandards sind rechts angegeben. M_r = relative Molekülmasse in kDa. b) Farbintensität des Westernblots in Abhängigkeit des Substrates. Die Fehlerbalken geben die Standardabweichungen von drei Versuchen wieder.

Zellen von *N. eutropha* N904, die mixotroph mit 10 mM Ammonium in Gegenwart von Na-Pyruvat, Hefeextrakt und Pepton oder Na-Pyruvat oder L-Alanin gewachsen sind, zeigten in etwa den gleichen AmoA- und AmoB-Gehalt wie lithotroph angezogene Zellen (nicht dargestellt).

4.5.4 AmoA- und AmoB-Gehalt in hungernenden Zellen von *Nitrosomonas*

Neben den AmoA- und AmoB-Gehalten wurde die spezifische Ammoniakoxidationsaktivität der Zellen bestimmt. Die durchschnittlich höchste Aktivität mit 2,6 mmol NH₄⁺ · g⁻¹ · h⁻¹ hatten Zellen der logarithmischen Wachstumsphase. Die Aktivität nahm in den hungernden Zellen innerhalb des ersten Monats in Abwesenheit von Ammonium auf etwa ein Drittel ab (0,9 mmol NH₄⁺ · g⁻¹ · h⁻¹). Nach einem Jahr wurde in den hungernden Zellen noch eine Aktivität von 0,5 mmol NH₄⁺ · g⁻¹ · h⁻¹ nachgewiesen. Fasst man die Ergebnisse zusammen, so ist festzustellen, dass der Gehalt beider Untereinheiten der AMO nicht mit der Ammoniakoxidationsaktivität der Zellen korrelierte.

Versuche mit Zellen von *N. eutropha* Dave und *N. europaea* Freitag führten zu ähnlichen Ergebnissen (nicht dargestellt).

4.5.5 Abhängigkeit des AmoA- und AmoB-Gehaltes von der Temperatur und dem pH-Wert

N. eutropha N904 wurde bei unterschiedlichen Temperaturen (10, 16, 20, 28 °C) und pH-Werten (6,5; 7,5; 8,5) angezogen. Zur Adaptation der Zellen an die Anzuchtsbedingungen wurden die Kulturen nach Verbrauch von 10 mM Ammonium dreimal auf frisches Medium überimpft. Danach wurde der AmoA und AmoB-Gehalt der Zellen aus der logarithmischen Wachstumsphase überprüft.

In allen Kulturen war der Anteil von AmoA und AmoB am Gesamtprotein in etwa gleich hoch (nicht dargestellt). Die Ergebnisse deuten daraufhin, dass weder die Temperatur noch der pH-Wert einen Einfluss auf den Gehalt der AMO-Untereinheiten von *N. eutropha* N904 haben.

4.6 Immunfluoreszenzfärbung von Ammoniakoxidanten in Reinkulturen

4.6.1 Fixierung und Permeabilisierung der Zellen

4.6.2 IF-FÄRBUNG MIT ANTIKÖRPERN GEGEN DIE AMO A

Mit Hilfe der IF-Färbung unter Verwendung der AmoA-Antikörpern war eine Färbung lithotroph angezogener Zellen von *N. eutropha* N904 möglich. Eine Gegenfärbung mit dem DNA-bindenden Farbstoff DAPI zeigte, dass fast jede Zelle mit Hilfe der Antikörper gefärbt wurde (Abb. 4.12a, b). Die Zellen wurden hauptsächlich in der Zellperipherie gefärbt (Abb. 4.12c). In einigen Fällen war die Fluoreszenz zudem über die gesamte Zelle verteilt (Abb. 4.12b, 4.15a). Kontrollexperimente ohne primäre Antikörper zeigten keine Fluoreszenz.

Tabelle 4.2: IF-Färbungen mit Hilfe der AmoA-Antikörper verschiedener Arten der Gattung *Nitrosomonas*.
- = keine, + = leichte, ++ = mittlere und +++ = starke Fluoreszenzfärbung der Zellen.

<table>
<thead>
<tr>
<th>Art</th>
<th>Stamm</th>
<th>Stärke der IF-Färbung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrosomonas aestuarii</td>
<td>Nm 36</td>
<td>+++</td>
</tr>
<tr>
<td>Nitrosomonas communis</td>
<td>Nm 2</td>
<td>++</td>
</tr>
<tr>
<td>Nitrosomonas cryotolerans</td>
<td>Nm 55</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosomonas europaea</td>
<td>Freitag</td>
<td>+++</td>
</tr>
<tr>
<td>Nitrosomonas eutropha</td>
<td>N904</td>
<td>+++</td>
</tr>
<tr>
<td>Nitrosomonas eutropha</td>
<td>Dave</td>
<td>+++</td>
</tr>
<tr>
<td>Nitrosomonas halophila</td>
<td>Nm 1</td>
<td>+++</td>
</tr>
<tr>
<td>Nitrosomonas marina</td>
<td>Nm 22</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosomonas nitrosa</td>
<td>Nm 90</td>
<td>++</td>
</tr>
<tr>
<td>Nitrosomonas oligotropha</td>
<td>Nm 45</td>
<td>++</td>
</tr>
<tr>
<td>Nitrosomonas ureae</td>
<td>Nm 10</td>
<td>++</td>
</tr>
<tr>
<td>Nitrosococcus mobilis</td>
<td>Nc 2</td>
<td>-</td>
</tr>
</tbody>
</table>

1 *Nitrosococcus mobilis* ist phylogenetisch eng verwandt mit der Gattung *Nitrosomonas* (Head et al., 1993).

4.6.3 IF-FÄRBUNG MIT ANTIKÖRPERN GEGEN DIE AMO*B*

Mit Hilfe der IF-Färbung mit Antikörpern gegen die AmoB war eine Färbung lithotroph angezogener Zellen von *N. eutropha* N904 möglich. Die Zellen wurden stets in der Zellperipherie gefärbt (Abb. 4.13).

Abb. 4.13: IF-Untersuchungen mit AmoB-Antikörpern an Zellen von *N. eutropha* N904. a) DAPI-Färbung b) IF-Färbung der gleichen Zellen c) vergrößerte Darstellung der IF-Färbung anderer Zellen von *N. eutropha* N904. Größenbalken = 10 µm. Es wurde ein Neofluotar Objektiv: 100x/1,4 Öl verwendet. Die DAPI-Färbung in (a) wurde mit dem Leica Filterset A (BP 340-380 exc./RKP 400/LP 425 em.) und die IF-Färbung mit dem Filter Set N 2.1 (BP 515-560 exc./RKP 580/LP 590 em.) dargestellt. Die IF-Färbung in (c) wurde mit dem CLSM und einem Zoom von 2,4 aufgenommen (Leica TCS 4D, Argon-/Krypton-Laser (568 exc./LP 590 em.)).

Abb. 4.14: IF-Färbung mit AmoB-Antikörpern von Ammoniakoxidanten der β-Proteobakterien. a) Nitrosomonas eutropha N904 (Zoom 16,4) b) Nitrosovibrio spec. Nv K7.1 (Zoom 17,0) c) Nitrosococcus mobilis Nc 2 (Zoom 15,8) d) Nitrosospira spec. Nsp R6.2 (Zoom 20,0) e) Nitrosolobus multiformis Nl 13 (Zoom 23,0). Größenbalken = 1 µm. Es wurde ein Neofluotar Objektiv: 100x/1,4 Öl verwendet. Die IF-Färbungen wurden mit dem CLSM bei unterschiedlichen Zoom-Einstellungen aufgenommen (Leica TCS 4D, Argon-/Krypton-Laser (568 exc./LP 590 em.).)

4.6.4 GEKOPPELTE IF-FÄRBUNG MIT ANTİKÖRPERN GEGEN DIE AMO A UND AMO B

Abb. 4.15: Gekoppelte IF-Färbung mit Antikörpern gegen AmoA und AmoB von *N. eutropha* N904, a) Grünfluoreszenz der Cy2-gefärbten AmoA-Antikörper b) Rotfluoreszenz der AmoB-Antikörper c) gemeinsame Darstellung der unter (a) und (b) abgebildeten Fluoreszenzen. Größenbalken = 5 µm. Es wurde ein Neofluotar Objektiv: 100x/1,4 Öl verwendet. Die IF-Färbungen wurden mit dem CLSM bei einem Zoom von 6,3 aufgenommen (Leica TCS 4D, Argon-/Krypton-Laser (488/568 exc./LP 590 und BP 520-560 em.)).

In Kontrollversuchen, bei denen einer der beiden primären oder sekundären Antikörper weggelassen wurde, waren die Zellen stets einfarbig markiert. Eine unspezifische Kreuzreaktion der vier eingesetzten Antikörper konnte daher ausgeschlossen werden. Wie in den vorherigen Kapiteln beschrieben (siehe Abschnitt 4.6.2, 4.6.3), detektieren die AmoA-Antikörper mit Hilfe der IF-Technik nur die Gattung *Nitrosomonas* mit Ausnahme von *Nitrosococcus mobilis*. Dagegen färben die AmoB-Antikörper alle Gattungen der Ammoniakoxidanten der β-Proteobakterien. Aufgrund der spezifischen Markierung der Gattung *Nitrosomonas* durch beide Antikörper, wurde im Folgenden mit Hilfe der
ergebnuß 79

Abb. 4.16: Gekoppelte IF-Färbung mit Antikörpern gegen AmoA und AmoB einer definierten Mischkultur aus *N. eutropha* N904 (Nm) und a) *Nitrospira* spec. G1.6 (Ns) (Zoom 5,4) b) *Nitrosolobus multiformis* Nl 13 (Nl) (Zoom 3,8) c) *Nitrosovibrio* spec. K7.1 (Nv) (Zoom 5,0) d) *Nitrosococcus mobilis* Nc 2 (Nc) (Zoom 6,2). Gemeinsame Darstellung der Grünfluoreszenz der Cy2-gefärbten AmoA-Antikörper und Rotfluoreszenz der Cy3-gefärbten AmoB-Antikörper. Größenbalken = 5 µm. Es wurde ein Neofluotar Objektiv: 100x/1,4 Öl verwendet. Die IF-Färbungen wurden mit dem CLSM bei unterschiedlichen Zoom-Einstellungen aufgenommen (Leica TCS 4D, Argon-/Krypton-Laser (488/568 exc./LP 590 und BP 520-560 em.)).
4.7 IDENTIFIZIERUNG VERSCHIEDENER ISOLATE VON AMMONIAKOXIDANTEN

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Herkunft</th>
<th>Lichtmikroskop</th>
<th>Morphologie IF-Färbung TEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AmoA</td>
<td>AmoB</td>
</tr>
<tr>
<td>R1.24</td>
<td>Sandstein, Regensburger Dom</td>
<td>Stäbchen +, gerade</td>
<td>+, gerade</td>
</tr>
<tr>
<td>R6.2</td>
<td>Sandstein, Regensburger Dom</td>
<td>Stäbchen +</td>
<td>+, gewunden</td>
</tr>
<tr>
<td>G1.6</td>
<td>Sandstein, Marienkirche in Gelnhausen</td>
<td>Stäbchen -</td>
<td>+, gewunden</td>
</tr>
<tr>
<td>M1.3</td>
<td>Sandstein, Alte Pinakothek in München</td>
<td>Kurzstäbchen -</td>
<td>+, gewunden</td>
</tr>
<tr>
<td>Nitrosomonas eutropha N904</td>
<td>Gülle, Hamburg</td>
<td>Stäbchen +, gerade</td>
<td>+, gerade</td>
</tr>
<tr>
<td>Nitrosospira spec. Nsp 1</td>
<td>Boden, Sardinien</td>
<td>Kurzstäbchen -</td>
<td>+, gewunden</td>
</tr>
</tbody>
</table>

+ = positive IF-Färbung, - = negative IF-Färbung, n. b. = nicht bestimmt.

M1.3 der Gattung Nitrosospira zugeordnet werden. Die Gattungszuordnung der Isolate wurde durch elektronenmikroskopische Untersuchungen unterstützt. Der Stamm R1.24 hatte unter dem Elektronenmikroskop die Gestalt eines geraden Stäbchens wie Nitrosomonas und die Stämme R6.2 und G1.6 (siehe Abb. 4.21c) zeigten eine für die Gattung Nitrosospira typische gewundene Zellform (Tabelle 4.3). Die Zellen von Stamm R1.24 waren etwa 0,7 · 1,4 µm groß und enthielten Carboxysomen (nicht dargestellt). In den Zellen von R6.2 und G1.6 wurden keine Carboxysomen nachgewiesen, sie waren 0,5 · 1,1 µm bzw. 0,5 · 1,3 µm groß und hatten drei bis vier bzw. vier bis sechs Windungen (nicht dargestellt).

Im Fall des Stammes R1.24 wurde die Zuordnung zur Gattung Nitrosomonas außerdem anhand von DNA-Sequenzierungen der 16S rDNA und amoA bestätigt. Der Stamm R1.24 kann vermutlich der Art Nitrosomonas ureae zugeordnet werden (siehe Abschnitt 4.4.1).

4.8 *In situ* Untersuchungen in Anreicherungskulturen von Ammoniakoxidantenz

Mit der fluoreszenzmarkierten Oligonukleotidsonde NEU-CTE wurden, wie mit den AmoA-Antikörpern, etwa 90 % der freisuspendierten Zellen (Abb. 4.18a, b) sowie etwa 40 % der Einzelzellen und Zellen der Mikrokolonien in den Flocken gefärbt (Abb. 4.18c, d). Die spezifische Sondenfärbung lässt vermuten, dass in den Anreicherungskulturen der Belebtschlammproben viele Nitrosomonaden vorhanden waren. Allerdings kam es bei der Sondenfärbung zu leichten unspezifischen Reaktionen mit dem Flockematerial, so dass Hintergrundfluoreszenz auftrat. Diese war etwas stärker als die leichte Hintergrundfluoreszenz der IF-Färbung mit den AmoA-Antikörpern. Sie führten dazu, dass an einigen Stellen die rot fluoreszierenden Zellen nicht von der roten Hintergrundfluoreszenz unterschieden werden konnten. Die unspezifischen Reaktionen traten vor allem im Inneren der Flocken auf (Abb. 4.18d). Allgemein war die Intensität der Sondenfärbung sehr viel schwächer als die IF-Färbung (Abb. 4.18b).

<table>
<thead>
<tr>
<th>Anreicherung</th>
<th>spezifische IF-Färbung</th>
<th>Oligonukleotidsonde NEU-CTE (Wagner et al., 1995)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belichtschlammp</td>
<td>etwa 90 % der freisuspendierten Zellen wurden mit AmoA- + AmoB-AK gefärbt ⇒ Nitrosomonas</td>
<td>- Färbung von etwa 90 % der freisuspendierten Zellen sowie etwa 40 % der Einzelzellen und Zellen der Mikrokolonien der Flocken ⇒ Nitrosomonas - leichte unspezifische Färbung der Flocken</td>
</tr>
<tr>
<td>Sandstein</td>
<td>etwa 68 % der Zellen wurden mit den AmoA- + AmoB-AK gefärbt ⇒ Nitrosomonas - etwa 17 % der Zellen wurden nur mit AmoB-AK gefärbt ⇒ Nitrosospira und Nitrosococcus</td>
<td>deutliche unspezifische Färbung mit den Sandsteinpartikeln ⇒ keine Aussage, ob an den Partikeln Nitrosomonaden vorkommen es wurden nur wenige freisuspendierte Zellen mit der Sonde gefärbt ⇒ Nitrosomonas</td>
</tr>
<tr>
<td>Teichsediment</td>
<td>etwa 50 % der freisuspendierten Zellen wurden nur mit AmoB-AK gefärbt ⇒ Nitrosospira - nur vereinzelte Zellen wurden mit AmoA- + AmoB-AK gefärbt ⇒ Nitrosomonas</td>
<td>es wurden keine Zellen gefärbt ⇒ keine Nitrosomonaden</td>
</tr>
<tr>
<td>Boden</td>
<td>etwa 85 % der Zellen wurden nur mit den AmoB-AK gefärbt ⇒ Nitrosospira, Nitrosolobus und coccoide Ammoniakoxidanten - vereinzelte Zellen wurden mit AmoA- + AmoB-AK gefärbt ⇒ Nitrosomonas</td>
<td>deutliche unspezifische Färbung mit den Bodenpartikeln ⇒ keine Aussage, ob Nitrosomonas vorkommt</td>
</tr>
</tbody>
</table>

AK = Antikörper
4.9 IMMUNCYTOCHEMISCHER NACHWEIS DER AMO A UND AMO B MIT HILFE DER IMMUNGOLDMARKIERUNG

4.9.1 IG-MARKIERUNG DER AMO A

4.9.2 IG-MARKIERUNG DER AMO B

Das AmoB-Protein konnte durch den immuncytochemischen Nachweis mit Hilfe der AmoB-Antikörper in Ultradünnsschnitten von *Nitrosomonas eutropha* N904 lokalisiert werden. Lithotroph angezogene Zellen der exponentiellen Wachstumsphase waren zuvor bei tiefen Temperaturen in Lowicryl® K4M eingebettet worden. In den Ultradünnsschnitten waren die ringförmig, parallel zur Zellperipherie angeordneten intracytoplasmatischen Membranen (ICMs) deutlich zu erkennen (Abb. 4.21a). Die 10 nm großen elektronendichten Goldpartikel markierten hauptsächlich die Zellperipherie. Insgesamt wurden die Goldpartikel von ca. 300 Ultradünnsschnitten vier verschiedener Einbettungen ausgezählt. Etwa 92 ± 6 % der IG-Markierung fand sich in Nähe der äußeren Cytoplasmamembran. Nur etwa 7 ± 6 % der Goldpartikel waren mit den ICMs verbunden (Abb. 4.21a). Wenige Goldpartikel befanden
sich im Cytoplasma und außerhalb der Zellen. In Kontrollexperimenten ohne die primären Antikörper wurden keine Zellen immuncytochemisch markiert (nicht dargestellt).

4.10 ÜBERBLICK ÜBER DIE IMMUNOLOGISCHEN UNTERSUCHUNGEN MIT DEN ANTIKÖRPERN

Zur besseren Übersicht werden die Ergebnisse aus den Untersuchungen mit den Antikörpern gegen die AmoA und AmoB in der Tabelle 4.5 zusammengefasst. Die Tabelle vergleicht die Ergebnisse, die mit den Methoden des Immunblots, der Immunfluoreszenz (IF)-Färbung und des immuncytochemischen Nachweises an Reinkulturen erzielt wurden (siehe Abschnitt 4.4, 4.6, 4.9).

Die Antikörper gegen die AmoB wiesen im Gegensatz zu den AmoA-Antikörpern ein breiteres Wirkungsspektrum auf. Im Immunblot, bei der IF-Färbung und bei der IG-Markierung detektierten sie das AmoB-Protein aller getesteten Ammoniakoxidanten der β-Proteobakterien. Darüber hinaus markierten die AmoB-Antikörper bei der IF-Färbung die beiden Arten der Ammoniakoxidanten der γ-Proteobakterien *Nitrosococcus oceani* und *Nitrosococcus halophilus* sowie den nahe verwandten Methanoxidanten *Methylococcus capsulatus* schwach. Die AmoB von *Nitrosococcus oceani* und die B-Untereinheit der partikulären Methanmonooxygenase (pMMOB) von *Methylococcus capsulatus* wurde zudem mit den AmoB-Antikörpern immuncytochemisch nachgewiesen.
Tabelle 4.5: Untersuchungen von Ammoniakoxidanten, Methanoxidanten, Nitritoxidanten und verschiedenen
chemoorganotrophen Bakterien mit den Antikörpern gegen AmoA und AmoB im Westernblot, bei der IF-
Färbung und im immuncytochemischen Nachweis.

<table>
<thead>
<tr>
<th>Art</th>
<th>Stamm</th>
<th>Westernblot</th>
<th>IF-Färbung</th>
<th>IG-Markierung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AmoA- AK</td>
<td>AmoB- AK</td>
<td>AmoA- AK</td>
</tr>
<tr>
<td>Ammoniakoxidanten der β-Unterklasse der Proteobakterien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrosomonas aestuarii</td>
<td>Nm 36</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Nitrosomonas communis</td>
<td>Nm 2</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosomonas cryotolerans</td>
<td>Nm 55</td>
<td>-</td>
<td>+</td>
<td>+/=</td>
</tr>
<tr>
<td>Nitrosomonas europaea</td>
<td>Freitag</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosomonas eutropha</td>
<td>N904</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosomonas halophila</td>
<td>Nm 1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosomonas marina</td>
<td>Nm 22</td>
<td>-</td>
<td>+</td>
<td>+/=</td>
</tr>
<tr>
<td>Nitrosomonas nitrosa</td>
<td>Nm 90</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosomonas oligotropha</td>
<td>Nm 45</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosomonas spec.</td>
<td>Nm R1.24</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosomonas ureae</td>
<td>Nm 10</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosococcus mobilis</td>
<td>Nc 2</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosospira spec.</td>
<td>Nsp 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosospira spec.</td>
<td>Nsp G1.6</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosovibrio spec.</td>
<td>Nv G1.3</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosovibrio spec.</td>
<td>Nv K7.1</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrosolobus multiformis</td>
<td>Ni 13</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Ammoniakoxidanten der γ-Unterklasse der Proteobakterien

<table>
<thead>
<tr>
<th>Art</th>
<th>Stamm</th>
<th>Westernblot</th>
<th>IF-Färbung</th>
<th>IG-Markierung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AmoA- AK</td>
<td>AmoB- AK</td>
<td>AmoA- AK</td>
</tr>
<tr>
<td>Nitrosococcus halophilus</td>
<td>Nc 4</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
</tr>
<tr>
<td>Nitrosococcus oceani</td>
<td>Nc 1</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
</tr>
</tbody>
</table>

Methanoxidanten der γ-Unterklasse der Proteobakterien

<table>
<thead>
<tr>
<th>Art</th>
<th>Stamm</th>
<th>Westernblot</th>
<th>IF-Färbung</th>
<th>IG-Markierung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AmoA- AK</td>
<td>AmoB- AK</td>
<td>AmoA- AK</td>
</tr>
<tr>
<td>Methylococcus capsulatus</td>
<td>Bath</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
</tr>
<tr>
<td>Methylococcus methanica</td>
<td>Oo52006</td>
<td>-</td>
<td>-</td>
<td>+/-</td>
</tr>
</tbody>
</table>

Methanoxidanten der α-Unterklasse der Proteobakterien

<table>
<thead>
<tr>
<th>Art</th>
<th>Stamm</th>
<th>Westernblot</th>
<th>IF-Färbung</th>
<th>IG-Markierung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AmoA- AK</td>
<td>AmoB- AK</td>
<td>AmoA- AK</td>
</tr>
<tr>
<td>Methylocystis parvus</td>
<td>4a</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Nitritoxidanten

<table>
<thead>
<tr>
<th>Art</th>
<th>Stamm</th>
<th>Westernblot</th>
<th>IF-Färbung</th>
<th>IG-Markierung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AmoA- AK</td>
<td>AmoB- AK</td>
<td>AmoA- AK</td>
</tr>
<tr>
<td>Nitrobacter hamburgensis</td>
<td>X14</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrobacter vulgaris</td>
<td>K58</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrobacter winogradskyi</td>
<td>Engel</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrospira gracilis</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrospira spec.</td>
<td>347</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrospira moscoviensis</td>
<td>M-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrococcus mobilis</td>
<td>231</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

verschiedene chemoorganotrophe Bakterien

<table>
<thead>
<tr>
<th>Art</th>
<th>Stamm</th>
<th>Westernblot</th>
<th>IF-Färbung</th>
<th>IG-Markierung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AmoA- AK</td>
<td>AmoB- AK</td>
<td>AmoA- AK</td>
</tr>
<tr>
<td>Achromobacter cycloclaste</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
<tr>
<td>Agrobacterium tumefaciens</td>
<td>GM 19023</td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
<tr>
<td>Alcaligenes faecalis</td>
<td>ATCC 8750</td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
<tr>
<td>Azorhizobium spec.</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
<tr>
<td>Azospirillum lipoferum</td>
<td>ATCC 29707</td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
<tr>
<td>Bacillus azotoformans</td>
<td>ATCC 29788</td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>019</td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
<tr>
<td>Bradyrhizobium dentirificans</td>
<td></td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
<tr>
<td>Chromobacterium violaceum</td>
<td></td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>ATCC 23716</td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
<tr>
<td>Methyllobacterium radiotolerans</td>
<td>ATCC 19367</td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
<tr>
<td>Paracoccus dentirificans</td>
<td></td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
<tr>
<td>Pseudomonas spec.</td>
<td>AK15</td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
<tr>
<td>Pseudomonas spec.</td>
<td>AM1</td>
<td>-</td>
<td>-</td>
<td>n.b.</td>
</tr>
</tbody>
</table>

+ = positive Reaktion. +/- = leichte Reaktion. - = keine Reaktion mit den Antikörpern
AK = Antikörper, n.b. = nicht bestimmt, n.n. = nicht nachweisbar
4.11 Transmissionselektronenmikroskopische Untersuchungen von *N. eutropha*

Im Rahmen der folgenden Untersuchungen wurde überprüft, welchen Einfluss die Ammoniumkonzentration im Anzuchtsmedium auf die Ultrastruktur der Zellen von *N. eutropha* N904 hat.

Zellen, die in mineralischem Medium mit 1 bzw. 10 mM Ammonium angezogen wurden, hatten deutliche ringförmige, parallel zur Zellperipherie angeordnete intracytoplasmatische Membranen (ICMs) (Abb. 4.22a, b). Dagegen waren die ICMs in Zellen, die mit 100 mM Ammonium kultiviert wurden, weniger deutlich ausgeprägt (Abb. 4.22c). Allgemein kann festgestellt werden, dass die Anzahl der Membranen bei Anzucht der Zellen in Gegenwart geringer Ammoniumkonzentrationen deutlich höher war, als bei Anzucht in Gegenwart hoher Ammoniumkonzentrationen. Zellen, die mit wenig Ammonium (1 mM) gewachsen waren, enthielten durchschnittlich 4,5 ICMs pro Querschnitt. Zellen, die mit 10 mM bzw. 100 mM Ammonium angezogen wurden, besaßen durchschnittlich 2,8 ICMs bzw. 2,0 ICMs pro Querschnitt. Es wurden 200 Zellen ausgezählt. In den Zellen, die mit 10 mM und 100 mM Ammonium angezogen wurden, traten gehäuft elektronendichte Einschlusskörper auf, bei denen es sich vermutlich um Glykogen ähnliche Reservestoffe handelt. Außerdem waren im Cytoplasma der Zellen polyedrische Carboxysomen, Ribosomen und Poly-β-Hydroxybuttersäure (PHB) zu erkennen.
Abb. 4.22: Transmissionselektronenmikroskopische Aufnahmen von Ultradünn schnitten von *N. eutropha* N904 nach Einbettung in Spurr. Die Zellen wurden in Gegenwart von a) 1 mM Ammonium b) 10 mM Ammonium und c) 100 mM Ammonium in mineralischem Medium angezogen. Vergrößerungen (a) 41.800fach, (b) 51.400fach, (c) 63.000fach. Größenbalken = 0,4 µm. C = Carboxysomen, Cy = Cytoplasma, Gl = Glykogen, ICM = intracytoplasmatische Membranen, PHB = Poly-β-Hydroxybuttersäure und R = Ribosomen.
4.12 Isolierung der Ammoniakmonooxygenase

Neben den in den vorherigen Abschnitten beschriebenen immunologischen Untersuchungen an ganzen Zellen und zellfreien Extrakten der Ammoniakoxidanten, wurde im Folgenden mit Hilfe der Antikörper versucht, die Ammoniakmonooxygenase (AMO) aus *Nitrosomonas eutropha* N904 zu isolieren. Die Antikörper ermöglichten dabei während der Isolierung die Identifizierung des Enzyms. Die AMO wurde mittels Ionenaustauschchromatographie angereichert und mit einer anschließenden Gradientenzentrifugation gereinigt.

4.12.1 Ionenaustauschchromatographie

Zellfreie Extrakte lithoautotroph angezogener Zellen von *N. eutropha* N904 der exponentiellen Wachstumsphase wurden bei pH 7,5 auf eine anionische Ionenaustauschsäule aufgetragen. Die Proteine, die nicht an die positiv geladene Matrix gebunden haben, wurden fraktioniert gesammelt. In Abb. 4.23 sind die Proteinkonzentrationen und die Absorption bei 550 nm der nichtbindenden Fraktionen eines Versuches exemplarisch dargestellt.

Abb. 4.24: a) Coomassie gefärbtes SDS-Gel (12 % Polyacrylamid) der Fraktion 23 (Spur 1), die während der Auftragung zellfreier Extrakte von *N. eutropha* N904 auf die DEAE-Säule (HiPrep® 16/10 DEAE) gesammelt wurde. b) Westernblot mit AmoA-Antikörpern (Spur 2) und AmoB-Antikörpern (Spur 3) der Fraktion 23. Im SDS-Gel wurden 15 µg Protein, im Westernblot 4 µg Protein pro Spur aufgetragen. Molekulargewichtsstandards sind schematisch links neben dem Gel bzw. rechts neben dem Blot dargestellt. Mr = relative Molekülmasse in kDa.
Nach dem Vorlauf wurden die Proteine, die an die Säule gebunden hatten, mittels eines Salzgradienten eluiert und fraktioniert gesammelt. In Abb. 4.25 sind die Proteinkonzentration und die Absorption bei 550 nm der eluierten Fraktionen eines Versuches exemplarisch dargestellt.

Abb. 4.25: Proteinkonzentration und Absorption bei 550 nm der Fraktionen, die mittels Salzgradient nach Auftragung der zellfreien Extrakte von *N. eutropha* N904 von der DEAE-Säule (HiPrep® 16/10 DEAE) eluiert wurden. Die Absorption bei 550 nm gibt die Cytochrom c-(Cyt c)-Konzentration wieder. Für diesen Versuch wurde zellfreier Extrakt von 1 g Zellen mit einer absoluten Proteinmenge von 87 mg auf die Säule aufgetragen. Die mit Sternchen (*) gekennzeichneten Fraktionen wurden auf ein SDS-Gel aufgetragen und immunologisch im Westernblot untersucht.

Im Eluat waren mehrere Proteinpeaks zu erkennen. Die Fraktionen 44 und 83 waren deutlich rot gefärbt, sie absorbieren Licht der Wellenlänge von 550 nm und enthielten somit Cytochrom c. Die Fraktionen 44, 59, 78 und 83 (*) in Abb. 4.25) wurden auf ein SDS-Gel aufgetragen (Abb. 4.26) und im Westernblot mit Antikörpern gegen die AmoA und AmoB untersucht. In Fraktion 44 traten Proteine mit einem Molekulargewicht von ca. 130 kDa, 46 kDa und 27 kDa deutlich hervor. In Fraktion 59 war ein 46-kDa- und 27-kDa-Protein zu erkennen. In Fraktion 78 wurden 22, 23, 27 und 46 kDa große Proteine detektiert. In Fraktion 83 wurde ein 30-kDa-Protein angereichert. Mit Hilfe des Immunblots konnte in keiner dieser Fraktionen ein AmoA- oder AmoB-Protein nachgewiesen werden (nicht dargestellt).

Aufgrund der Molekulargewichte der Proteine und des hohen Gehaltes an c-Cytochromen wurde vermutet, dass es sich bei der Fraktion 44 um eine Anreicherung der Hydroxylaminoxidoreduktase (HAO) handelte. Das in dieser Fraktion angereicherte 46-kDa-Protein ist vermutlich ein zusätzliches c-Hämprotein, welches häufig zusammen mit der HAO isoliert wurde (DiSpirito et al., 1985 a). Das in Fraktion 83 angereicherte 30-kDa-Protein
können das Cytochrom c-Tetrahämprotein cM₅₅₂ sein (Whittaker et al., 2000). Dieses Protein wurde im SDS-Gel in Form einer 30-kDa-Bande detektiert (nicht dargestellt).

Die Ergebnisse der Elution zeigen, dass die Untereinheiten der AMO nicht an die anionische Säule binden.

Abb. 4.26: Coomassie gefärbtes SDS-Gel (12 % Polyacrylamid) der Proteine, die mittels Salzgradienten nach Auftragung zellfreier Extrakte von *N. eutropha* N904 von der DEAE-Säule (HiPrep® 16/10 DEAE) eluiert wurden. Es wurde zellfreier Extrakt von 1 g Zellen mit einer absoluten Proteinmenge von 87 mg auf die Säule aufgetragen. Spur 1: Fraktion 44, Spur 2: Fraktion 59, Spur 3: Fraktion 78, Spur 4: Fraktion 83. Pro Spur wurden 15 µg Protein auf das Gel aufgetragen. Die Molekulargewichtsstandards sind rechts wiedergegeben. Mᵣ = relative Molekülmassen in kDa.

4.12.2 G R A D I E N T E N Z E N T R I F U G AT I O N

Die mit Hilfe der Säulenchromatographie angereicherte AMO wurde mittels Gradientenzentrifugation gereinigt. Dazu wurde die Fraktion mit der höchsten Proteinkonzentration der angereicherten AMO (entsprechend Fraktion 23 in Abschnitt 4.12.1) mit Hilfe eines linearen Saccharosegradienten (10-35 % Saccharose) aufgetrennt (siehe Abschnitt 3.20.2). In Abb. 4.27 ist exemplarisch ein typischer Saccharosegradient schematisch dargestellt. Die Fraktionen F₁ und F₂a zeigten eine deutliche orange Färbung. Die Fraktion F₂b war milchig trüb und das Sediment P hellbraun gefärbt. Aus den absoluten Proteinmengen der Fraktionen war ablesbar, dass sich 17 % des aufgetragenen Proteins in der Fraktion F₁ und F₂a und 78 % in dem Sediment P wiederfanden.
Die Proteine der Fraktionen F1, F2a, F2b und das Sediment P wurden gelektrophoretisch aufgetrennt und anschließend mittels Coomassie-Blaufärbung sichtbar gemacht. Mit Hilfe der Peroxidasefärbung wurden zusätzlich kovalent an Proteine gebundene Hämgruppen und somit c-Cytochrome gefärbt. Zudem wurden die genannten Fraktionen im Immunblot mit Antikörpern gegen die AmoA und AmoB untersucht.

Anhand der Peroxidasefärbung wurde deutlich, dass in den orange gefärbten Fraktionen F1 und F2a Cytochrome des c-Typs mit einem Molekulargewicht von 67 kDa und in geringer Konzentration mit einem Molekulargewicht von 40 kDa vorkamen (Abb. 4.28). In diesen Fraktionen wurde neben den Hämproteinen ein 27-kDa- und 30-kDa-Protein detektiert. In der Fraktion F2b wurde ein 27-kDa-Protein jedoch keine Cytochrome nachgewiesen. Aufgrund der deutlichen milchigen Trübung der Fraktion F2b und der geringen Proteinkonzentration wird vermutet, dass in dieser Fraktion Speicherstoffe wie z. B. Glykogen vorhanden waren.

Im Sediment P wurden ebenfalls keine Cytochrome detektiert. Dort traten die für die AMO charakteristischen Proteine, ein 27-kDa- und ein 41-kDa-Protein, in hohen Konzentrationen auf. Dabei war das 41-kDa-Protein in etwas höherer Konzentration vorhanden als das 27-kDa-Protein. Neben diesen Proteinen wurden in geringen Konzentrationen Proteine im 54-, 80- und 100-kDa-Bereich detektiert (Abb. 4.28).

Abb. 4.28: Elektrophoretische Auftrennung der Fraktionen F1, F2a, F2b und des Sedimentes P aus dem linearen Saccharosegradienten (10-35 %). Das SDS-Gel (12 % Polyacrylamid) wurde anschließend mit der Peroxidase- und Comassie-Färbung gefärbt. Die Peroxidase-Färbung ist an der braunen Färbung der Banden und die Coomassie-Färbung ist an der blauen Färbung der Banden zu erkennen. Pro Spur wurden 15 µg Protein auf das Gel aufgetragen. Die Molekulargewichtsstandards sind in der Spur M dargestellt. Mr = relative Molekülmasse in kDa.

Abb. 4.29: Westernblot mit Antikörpern gegen AmoA (a) und AmoB (b) von Proteinen der Fraktionen F1, F2a, F2b und des Sedimentes P des linearen Saccharosegradienten (10-35 %). Pro Spur wurden 4 µg Protein aufgetragen. Die Molekulargewichtsstandards sind in den Spuren M aufgetragen. Mr = relative Molekülmasse in kDa.
Dabei traten sie nach einer Inkubation für 10 min bei 65 °C bzw. 5 min bei 100 °C in Gegenwart von Lysispuffer der SDS-PAGE auf.
Mit Hilfe der AmoB-Antikörper wurde nachgewiesen, das es sich bei dem 41-kDa-Protein im Sediment P um die AmoB handelte (Abb. 4.29b). In den anderen Fraktionen wurde kein AmoB-Protein detektiert. Im Gegensatz zur AmoA traten keine Aggregate des AmoB-Proteins auf, obwohl auch das AmoB-Protein beim Erhitzen in Gegenwart von Reduktionsmitteln aggregierte (nicht dargestellt).

Damit wurde gezeigt, dass mittels Dichtegradientenzentrifugation eine Reinigung der AMO möglich war. Verunreinigende Cytochrome des c-Typs und ein 30-kDa-Protein wurden bei niedrigen Dichten zurückgehalten, während sich die gereinigte AMO im Sediment wiederfand. Anhand der Proteinmengen (Abb. 4.27) und der Intensität der Bandenfärbungen im SDS-Gel (Abb. 4.28) konnte ermittelt werden, dass der Anteil an c-Cytochromen und des 30-kDa-Proteins in der angereicherten AMO vor der Reinigung mit der Gradientenzentrifugation etwa 6 % betrug.

4.13 NACHWEIS DER AMMONIAKOXIDATIONSAKTIVITÄT

4.13.1 AKTIVITÄT GANZER ZELLEN

In fünf Versuchsansätzen besaßen 1 bis 3 · 108 Zellen/ml über einen Zeitraum von 4 h eine spezifische aerobe Ammoniakoxidationsaktivität von 500 bis 13.000 µmol NO$_2^-$ · g Protein$^{-1}$ · h$^{-1}$. Die aerobe Aktivität ganzer Zellen schwankte somit erheblich. Der für die folgenden
Berechnungen eingesetzte Mittelwert der Ammoniakoxidationsaktivitäten lag bei 5.366 µmol NO₂⁻ · g Protein⁻¹ · h⁻¹. Über diesen Zeitraum kam es zu einer kontinuierlichen Nitritbildung. In zellfreien Kontrollen wurde kein Nitrit gebildet (nicht dargestellt).

In einer anaeroben Stickstoffatmosphäre mit 25 ppm Stickstoffdioxid (NO₂) bzw. Distickstofftetraoxid (N₂O₄) wiesen 8 · 10⁹ Zellen/ml in zwei Versuchsansätzen über einen Zeitraum von 80 h eine spezifische anaerobe Ammoniakoxidationsaktivität von 120 bis 190 µmol NO₂⁻ · g Protein⁻¹ · h⁻¹ auf. Der Mittelwert der Aktivitäten lag bei 155 µmol NO₂⁻ · g Protein⁻¹ · h⁻¹. Über diesen Zeitraum kam es zu einer kontinuierlichen Nitritbildung. Die kontinuierliche chemische Nitritbildung in den Kontrollen, die durch die Reaktion von NO₂/N₂O₄ mit Wasser bedingt war, wurde bei den ermittelten Aktivitäten berücksichtigt.

Anaerob in Gegenwart von NO₂/N₂O₄ war die spezifische Aktivität ganzer Zellen somit deutlich geringer als aerob in Gegenwart von Sauerstoff.

4.13.2 Aktivität zellfreier Extrakte

Ein Nachweis der aeroben und anaeroben Ammoniakoxidationsaktivität zellfreier Extrakte war nur in Gegenwart der Substanzen Mg²⁺, Cu²⁺, NADH und Proteaseinhibitoren möglich (siehe Abschnitt 3.21). In Abwesenheit dieser Substanzen wurde keine Aktivität nachgewiesen. Über einen Versuchszeitraum von 4 bis 5 h war die Nitritbildung der zellfreien Extrakte konstant. Die spezifischen Aktivitäten waren von der eingesetzten Proteinkonzentration mit 1,5 bis 3 mg/ml unabhängig. Ohne den Zusatz von BSA wurden aerob Aktivitäten von 30 bis 173 µmol NO₂⁻ · g Protein⁻¹ · h⁻¹ gemessen. Die Aktivitäten zellfreier Extrakte unterlagen somit in Gegenwart von Sauerstoff deutlichen Schwankungen. Anaerob in Gegenwart von 25 ppm NO₂ bzw. N₂O₄ besaßen zellfreie Extrakte Aktivitäten von 12 bis 15 µmol NO₂⁻ · g Protein⁻¹ · h⁻¹ (Tabelle 4.6). Durch die Zugabe von BSA zu den zellfreien Extrakten konnte sowohl die aerobe als auch die anaerobe Aktivität in etwa verdoppelt werden (Tabelle 4.6). In den zellfreien Kontrollen wurde aerob kein Nitrit gebildet. In Gegenwart von NO₂/N₂O₄ kam es in den Kontrollen zu einer geringfügigen Nitritbildung, die bei den ermittelten anaeroben Aktivitäten berücksichtigt wurde. In den zellfreien Extrakten wurde kein Hydroxylamin gebildet.
Tabelle 4.6: Spezifische aerobe und anaerobe Ammoniakoxidationsaktivität zellfreier Extrakte von *N. eutropha* N904 in Gegenwart von Luftsauerstoff bzw. in Gegenwart von 25 ppm NO$_2$/N$_2$O$_4$. Die Zellen wurden aerob aufgeschlossen. Die Aktivitätstests wurden in PS1-Puffer mit und ohne den Zusatz von 10 mg/ml BSA über einen Zeitraum von 4 bis 5 h durchgeführt. Es wurden Proteinkonzentrationen von 1,5 bis 3 mg/ml eingesetzt. Die relative Fehlergrenze der Parallelen in den Versuchsansätzen lag bei ±5 %.

<table>
<thead>
<tr>
<th>Atmosphäre</th>
<th>Anzahl der Ansätze</th>
<th>Zusatz</th>
<th>Aktivität NO$_2^-$ [µmol · g Protein$^{-1}$ · h$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2$ (21 %)</td>
<td>3</td>
<td>kein BSA</td>
<td>30-173/79</td>
</tr>
<tr>
<td>O$_2$ (21 %)</td>
<td>7</td>
<td>BSA</td>
<td>68-217/154</td>
</tr>
<tr>
<td>NO$_2$/N$_2$O$_4$ (25 ppm)</td>
<td>2</td>
<td>kein BSA</td>
<td>12-15/14</td>
</tr>
<tr>
<td>NO$_2$/N$_2$O$_4$ (25 ppm)</td>
<td>5</td>
<td>BSA</td>
<td>14-104/38</td>
</tr>
</tbody>
</table>

Die mittleren Aktivitäten der zellfreien Extrakte waren in Gegenwart von Sauerstoff in etwa fünfmal höher als in Gegenwart von 25 ppm NO$_2$/N$_2$O$_4$. Die zellfreien Extrakte wiesen in etwa 3 % der aeroben Aktivität und in etwa 25 % der anaeroben Aktivität ganzer Zellen auf.

Wurden die zellfreien Extrakte in Abwesenheit von Sauerstoff hergestellt, konnte keine aerobe Ammoniakoxidationsaktivität gemessen werden. Dagegen wurde die anaerobe Aktivität der zellfreien Extrakte durch den Zellaufschluss unter anoxischen Bedingungen erheblich gesteigert (Tabelle 4.7). Demnach ist die AMO nach einem anaeroben Zellaufschluss sauerstoffempfindlich. Die höchste Ammoniakoxidationsaktivität zellfreier Extrakte mit durchschnittlich 184 µmol NO$_2^-$ · g Protein$^{-1}$ · h$^{-1}$ wurde nach einem anaeroben Zellaufschluss in Gegenwart von NO$_2$/N$_2$O$_4$ gemessen (Tabelle 4.7). Sie war sogar höher als die anaerobe Aktivität ganzer Zellen.

Tabelle 4.7: Spezifische aerobe und anaerobe Ammoniakoxidationsaktivität zellfreier Extrakte von *N. eutropha* N904 in Gegenwart von Luftsauerstoff bzw. in Gegenwart von 25 ppm NO$_2$/N$_2$O$_4$. Die Zellen wurden aerob oder anaerob aufgeschlossen. Die Aktivitätstests wurden über einen Zeitraum von 4 bis 5 h durchgeführt. Es wurden Proteinkonzentrationen von 1,5 bis 3 mg/ml eingesetzt. Die relative Fehlergrenze der Parallelen in den Versuchsansätzen lag bei ±5 %.

<table>
<thead>
<tr>
<th>Atmosphäre</th>
<th>Anzahl der Ansätze</th>
<th>Zellaufschluss</th>
<th>Aktivität NO$_2^-$ [µmol · g Protein$^{-1}$ · h$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2$ (21 %)</td>
<td>7</td>
<td>aerob</td>
<td>68-217/154</td>
</tr>
<tr>
<td>O$_2$ (21 %)</td>
<td>4</td>
<td>anaerob</td>
<td>0/0</td>
</tr>
<tr>
<td>NO$_2$/N$_2$O$_4$ (25 ppm)</td>
<td>5</td>
<td>aerob</td>
<td>14-104/38</td>
</tr>
<tr>
<td>NO$_2$/N$_2$O$_4$ (25 ppm)</td>
<td>4</td>
<td>anaerob</td>
<td>0-370/184</td>
</tr>
</tbody>
</table>

Das Detergenz Triton X-100 hatte in jedem Fall einen hemmenden Einfluss auf die spezifische Ammoniakoxidationsaktivität. In Gegenwart von Triton X-100 im Startpuffer der Säulenchromatographie (siehe Abschnitt 3.20.1) wurde die aerobe und anaerobe Aktivität der zellfreien Extrakte in etwa um die Hälfte verringert (Tabelle 4.8).
Tabelle 4.8: Spezifische aerobe und anaerobe Ammoniakoxidationsaktivität zellfreier Extrakte von *N. eutropha* N904 in Gegenwart von Luftsaurestof bzw. in Gegenwart von 25 ppm NO$_2$/N$_2$O$_4$. Die Zellen wurden aerob aufgeschlossen. Die Aktivitätstests wurden in PS1-Puffer oder Startpuffer der Säulenchromatographie (siehe Abschnitt 3.20.1) über einen Zeitraum von 4 bis 5 h durchgeführt. Es wurden Proteinkonzentrationen von 1,5 bis 3 mg/ml eingesetzt. Die relative Fehlergrenze der Parallelen in den Versuchsansätzen lag bei ± 5 %.

<table>
<thead>
<tr>
<th>Atmosphäre</th>
<th>Anzahl der Ansätze</th>
<th>Puffer</th>
<th>Aktivität NO$_2^-$ [µmol · g Protein$^{-1}$ · h$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2$ (21 %)</td>
<td>7</td>
<td>PS1-Puffer</td>
<td>von bis 68-217 Mittelwert 154</td>
</tr>
<tr>
<td>O$_2$ (21 %)</td>
<td>4</td>
<td>Startpuffer mit Triton X-100</td>
<td>von bis 0-211 Mittelwert 71</td>
</tr>
<tr>
<td>NO$_2$/N$_2$O$_4$ (25 ppm)</td>
<td>5</td>
<td>PS1-Puffer</td>
<td>von bis 14-104 Mittelwert 38</td>
</tr>
<tr>
<td>NO$_2$/N$_2$O$_4$ (25 ppm)</td>
<td>5</td>
<td>Startpuffer mit Triton X-100</td>
<td>von bis 3-91 Mittelwert 24</td>
</tr>
</tbody>
</table>

4.13.3 Aktivität angereicherter Ammoniakmonooxygenase

In den oben angegebenen Puffern konnte in Gegenwart von Triton X-100 erstmals eine Ammoniakoxidationsaktivität angereicherter AMO über die Bildung von Hydroxylamin nachgewiesen werden. In einem Versuchszeitraum von 3,5 bis 4,5 h kam es in einigen Versuchsansätzen zu einer konstanten Hydroxylaminbildung. Eine Nitritbildung trat nicht auf. In enzymfreiem PS1-Puffer sowie in Eluaten der Säulenchromatographie ohne AmoA- und AmoB-Protein wurde kein Hydroxylamin gebildet.

Die aeroben und anaeroben spezifischen Hydroxylaminbildungsrate waren nach Anreicherung der AMO in Gegenwart von Sauerstoff mit durchschnittlich 9 bzw. 10 µmol NH$_2$OH · g Protein$^{-1}$ · h$^{-1}$ in etwa gleich hoch (Tabelle 4.9). Wenn die AMO in Abwesenheit von Sauerstoff angereichert wurde, war die aerobe Ammoniakoxidation im Gegensatz zur anaeroben Ammoniakoxidation deutlich gehemmt (Tabelle 4.9). Auch die angereicherte AMO war somit nach einer Isolierung unter anoxischen Bedingungen sauerstoffempfindlich.

Tabelle 4.9: Spezifische aerobe Ammoniakoxidationsaktivität in Gegenwart von Luftsaurestof und anaerobe Aktivität in Gegenwart von 25 ppm NO$_2$/N$_2$O$_4$ angereicherter AMO aus *N. eutropha* N904. Die AMO wurde mit Hilfe der Säulenchromatographie unter oxischen oder anoxischen Bedingungen angereichert. Die Zellen wurden zuvor aerob aufgeschlossen. Die Aktivitätstests wurden über einen Zeitraum von 4 bis 5 h durchgeführt. Es wurden Proteinkonzentrationen der AMO-Fraktion von 1,2 bis 2,6 mg/ml eingesetzt. Die relative Fehlergrenze der Parallelen in den Versuchsansätzen lag bei ± 5 %.

<table>
<thead>
<tr>
<th>Atmosphäre</th>
<th>Anzahl der Ansätze</th>
<th>Säule</th>
<th>Aktivität NH$_2$OH [µmol · g Protein$^{-1}$ · h$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2$ (21 %)</td>
<td>6</td>
<td>aerob</td>
<td>von bis 0-21 Mittelwert 9</td>
</tr>
<tr>
<td>O$_2$ (21 %)</td>
<td>7</td>
<td>anaerob</td>
<td>von bis 0-9 Mittelwert 2</td>
</tr>
<tr>
<td>NO$_2$/N$_2$O$_4$ (25 ppm)</td>
<td>6</td>
<td>aerob</td>
<td>von bis 2-24 Mittelwert 10</td>
</tr>
<tr>
<td>NO$_2$/N$_2$O$_4$ (25 ppm)</td>
<td>8</td>
<td>anaerob</td>
<td>von bis 3-26 Mittelwert 10</td>
</tr>
</tbody>
</table>
Wurden die angereicherten AMO-Fraktionen vor der Zugabe von Ammonium, das heißt vor dem Start des Aktivitätstests, 10 min in Gegenwart von 5 mM NADH inkubiert, so wurde die spezifische Hydroxylaminbildung in etwa um die Hälfte verringert (nicht dargestellt).

In weiterführenden Versuchen wurde bei der Anreicherung der AMO anstelle des Detergenzes Triton X-100 das Detergenz Dodecyl-β-D-maltosid verwendet. In Gegenwart dieses Detergenzes kam es zu keiner Steigerung der spezifischen Aktivität, denn nach beiden Anreicherungsmethoden wurden ähnliche Hydroxylaminbildungs raten der AMO gemessen (nicht dargestellt).

Obwohl die AMO mit Hilfe der Ionenaustauschchromatographie deutlich angereichert wurde (Abschnitt 4.12), kam es zu keiner Steigerung der spezifischen Ammoniakoxidationsaktivität, sie nahm bei der Anreicherung der AMO sogar deutlich ab (Tabelle 4.10). In Gegenwart von Sauerstoff besaßen zellfreie Extrakte von *N. eutropha* N904 in Startpuffer etwa 1,3 % und die angereicherte AMO etwa 0,2 % der mittleren aeroben Aktivität ganzer Zellen. In Gegenwart von NO₂/N₂O₄ wiesen zellfreie Extrakte in Startpuffer dagegen etwa 15,5 % und das isolierte Enzym etwa 6,5 % der mittleren anaeroben Aktivität ganzer Zellen auf.

Tabelle 4.10: Abnahme der spezifischen aeroben und anaeroben Ammoniakoxidationsaktivität bei der Anreicherung der AMO von *N. eutropha* N904 mit Hilfe der Säulen chromatographie.

<table>
<thead>
<tr>
<th></th>
<th>mittlere spezifische Aktivität [NO₂⁻ bzw. NH₂OH µmol · g Protein⁻¹ · h⁻¹]</th>
<th>Aktivität [%] bezogen auf die Aktivität ganzer Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>aerobe Aktivität in Gegenwart von Sauerstoff</td>
</tr>
<tr>
<td>ganze Zellen</td>
<td>5,366</td>
<td>100</td>
</tr>
<tr>
<td>zellfreie Extrakte¹</td>
<td>71</td>
<td>1,3</td>
</tr>
<tr>
<td>angereicherte AMO²</td>
<td>9</td>
<td>0,2</td>
</tr>
</tbody>
</table>

¹ Die Zellen wurden aerob aufgeschlossen. Die Messung der Aktivität erfolgte in Startpuffer mit dem Detergenz Triton X-100
² Die Anreicherung der AMO erfolgte mit einer aeroben Säule
4.14 Charakterisierung der Ammoniakmonooxygenase

In den folgenden Untersuchungen wurde die Ammoniakmonooxygenase (AMO) von *N. eutropha* N904 biochemisch charakterisiert. Dazu wurde ein Absorptionsspektrum des Enzyms erstellt. Zudem wurde die relative Molekülmasse mit Hilfe der nativen Gelelektrophorese bestimmt, und es wurde der Gehalt an Kupfer und Eisen ermittelt. Weiterhin wurde die AMO elektronenmikroskopisch visualisiert. Die Untersuchungen wurden entweder an der mit Hilfe der Säulenchromatographie angereicherten AMO oder an der mittels Gradientenzentrifugation gereinigten AMO durchgeführt.

4.14.1 Absorptionsspektrum

Abb. 4.30: Absorptionsspektrum gereinigter AMO aus *N. eutropha* N904 unter reduzierenden Bedingungen bei pH 7,3. Die Reduktion erfolgte mit Natriumdithionit. Es wurden 1 mg Enzym pro ml Puffer eingesetzt. Oben rechts ist eine Ausschnittsvergrößerung des Absorptionsspektrums dargestellt.

4.14.2 **Relative Molekülmasse**

Zur Bestimmung der relativen Molekülmasse der AMO wurde eine native Gelelektrophorese (7,5%iges Trenngel) in Gegenwart von Natriumdesoxycholat durchgeführt (Abb. 4.31). Die Untersuchungen erfolgten mit angereicherter AMO. Im nativen Gel waren mehrere Proteinbanden zu erkennen. Deutliche Banden waren bei 205 kDa, 136 kDa und 68 kDa zu sehen. Die Antikörper gegen die AmoA und AmoB reagierten im Immunblot mit allen Proteinbanden des Gels (nicht dargestellt). Daraus lässt sich schließen, dass die A- und B-Untereinheit der AMO in allen Banden vorhanden war. Die native AMO hatte somit kein einheitliches Molekulargewicht.

Mit Hilfe des quantitativen Immunblots wurde nachgewiesen, dass beide Untereinheiten der AMO im Verhältnis 1:1 vorlagen (siehe Abschnitt 4.5.1). Bei einer äquimolaren Konzentration von AmoA und AmoB mit einem Molekulargewicht von 27 kDa bzw. 41 kDa ergibt sich für die kleinste Einheit des Enzyms eine relative Molekülmasse von 68 kDa. Es ist daher anzunehmen, dass es sich bei den 68 kDa großen Proteinen um Monomere (AB), bei der 136-kDa-Bande um Dimere (*A₂B₂*) bzw. bei der 204-kDa-Bande um Trimere (*A₃B₃*) des AMO-Heterodimers (*AₙBₙ*) handelt.
4.14.3 **Kupfer- und Eisengehalt**

Für die AMO wurde vielfach postuliert, dass sie Kupfer (Loveless & Painter, 1968; Ensign et al., 1993) oder Eisen (Zahn et al., 1996) enthält. Es wurden daher die Kupfer-, Eisen (II)- und Eisen (III)-Gehalte der gereinigten AMO ermittelt. Mit Hilfe der Atom-Absorptionsspektroskopie wurde in vier Parallelversuchen ein Gehalt von $6,56 \pm 2$ ng Cu/mg Protein gemessen. Dieses entspricht in etwa dem Gehalt von einem Kupferatom pro AMO-Dimer (A_2B_2). Das in dem enzymfreien Puffer befindliche Kupfer wurde bei der Berechnung des Kupfergehaltes der AMO berücksichtigt. Im Gegensatz zum Kupfer wurden keine Eisen (II)- und Eisen (III)-Ionen nachgewiesen.

4.14.4 **Elektronenmikroskopische Untersuchungen**

Die angereicherte AMO wurde mit Hilfe der Immungold (IG)-Markierung durch die AmoB-Antikörper markiert und nach Negativ-Kontrastierung elektronenmikroskopisch dargestellt (siehe Abschnitt 3.18.4.4, 3.19). Die Goldpartikel traten stets in Verbindung mit partikulären Strukturen auf (Abb. 4.32a). Hingegen wurden in Fraktionen der Säulenchromatographie, in denen das AmoA- und AmoB-Protein nicht nachgewiesen wurde (siehe Abschnitt 4.12), keine Goldpartikel gebunden (nicht dargestellt). Bei höherer Vergrößerung waren einheitliche Partikel mit einem Durchmesser von $6,7 \pm 1,2$ nm zu erkennen (Abb. 4.32b). Für die Bestimmung der Größe wurden 100 Partikel ausgemessen. In einigen Fällen war das Zentrum der Partikel dunkel gefärbt. Die Partikel waren stets aggregiert.
Abb. 4.32: Transmissionselektronenmikroskopische Aufnahmen der angereicherten AMO aus *N. eutropha* N904. Immungoldmarkierung der AmoB und nachfolgender Negativkontrastierung. Es sind Goldpartikel (G) der IG-Markierung und partikuläre Strukturen (P) der AMO zu erkennen. a) Vergrößerung 120.000fach, Größenbalken 0,2 µm b) Vergrößerung 260.000fach, Größenbalken 0,1 µm.
5 DISKUSSION

In dieser Arbeit konnte erstmals gezeigt werden, dass sowohl das AmoA-Protein als auch das AmoB-Protein Bestandteile des ammoniakoxidierenden Enzyms sind. Der Nachweis gelang mit Hilfe von Antikörpern gegen die AmoA und die AmoB, die im Rahmen dieser Arbeit hergestellt wurden. Die AMO wurde in aktiver Form isoliert und charakterisiert. Darüber hinaus ermöglichte die Verwendung der Antikörper den quantitativen Nachweis der AMO unter bestimmten Wachstumsbedingungen. Außerdem konnten die Antiseren für die in situ Detektion von Ammoniakoxidanten in Anreicherungskulturen eingesetzt werden.

5.1 ANTIKÖRPER GEGEN DAS AMO A- UND AMO B-PROTEIN

Da die AmoA-Antikörper bei der IF-Färbung im Gegensatz zum Immunblot alle Arten von *Nitrosomonas* detektierten, war die Methode der IF-Färbung empfindlicher als der Immunblot. Das hängt möglicherweise damit zusammen, dass sowohl bei der IF-Färbung im Gegensatz zum Immunblot einzelne Zellen untersucht wurden, als auch das Antikörper/Proteinverhältnis bei der IF-Färbung um den Faktor 400 höher war als beim Immunblot.

5.2 AmoA- und AmoB-Protein

Die Antiseren ermöglichten es, die Untereinheiten der AMO während der Reinigung des Enzyms zu identifizieren. Mit Hilfe der Ionenaustauschchromatographie und anschließender Gradientenzentrifugation ist es in dieser Arbeit erstmals gelungen, eine aktive Form der

I) Die AmoB ist gleichmäßig über die gesamten Membranen, d. h. die äußere Cytoplasmamembran und die ICMs, verteilt. Die Antikörper konnten jedoch nur die AmoB-Proteine der äußeren Cytoplasmamembran detektieren, da die übrigen AmoB-Proteine möglicherweise räumlich verdeckt sind. Der periplasmatische Raum zwischen den ICMs ist sehr viel kleiner als zwischen der Zellwand und der äußeren Membran. Hinweise, dass die Antikörper an Teilen der Membran aufgrund räumlicher Hindernisse nicht binden, geben die immuncytochemischen Untersuchungen der β-Untereinheit der Nitritoxidoreduktase (NOR) von Nitrobacter (Spieck et al., 1996). Mit dieser Vermutung ließe sich erklären, warum jedoch die ICMs von Nitrosolobus mit den Antikörperrn markiert werden können. Im Gegensatz zu den ICMs in Nitrosomonas und Nitrosococcus, die durch Einstülpungen der äußeren Cytoplasmamembran gebildet werden, entstehen die ICMs von Nitrosolobus durch Einstülpungen der Cytoplasmamembran und Teilen der inneren Zellwand, wie z. B. der Mureinschicht (Watson et al., 1971). Daher ist es möglich, dass die Größe des periplasmatischen Raumes auch im Inneren der Zelle von Nitrosolobus konstant gehalten wird.

II) Die AmoB-Proteine sind möglicherweise unregelmäßig über die Membranen von Nitrosomonas und Nitrosococcus verteilt. An der äußeren Cytoplasmamembran befinden

5.3 Identifizierung von Ammoniakoxidanten

Darüber hinaus konnte die IF-Färbung erfolgreich in Anreicherungskulturen angewandt werden. Dabei wurden die Antikörper gegen die AmoA und AmoB gleichzeitig verwendet (gekoppelte IF-Färbung). In den Anreicherungen aus Belebtschlamm (Dradenau/Hamburg) wurde ein Großteil der Zellen der Gattung *Nitrosomonas* zugeordnet. Die Anwesenheit von
Untersuchung der Sandstein- und Bodenproben gegenüber den Sonden aufgrund der geringeren Hintergrundfluoreszenz als vorteilhaft. Zudem waren die Signale der IF-Färbung sehr viel intensiver als die der *in situ*-Hybridisierung mit fluoreszenzmarkierten Sonden (FISH) und blieben nicht so schnell aus.

5.4 Eigenschaften der AMO

Wie bereits erwähnt, ermöglichten die Antiseren, die AMO während der Anreicherung und Reinigung aus *Nitrosomonas eutropha* N904 zu identifizieren. Die Antikörper bereiteten somit nicht nur den Weg für ökologische Untersuchungen der Ammoniakoxidanten, sondern auch für die biochemische Charakterisierung des Schlüsselenzmys. Die AMO wurde bei der Ionenaustauschchromatographie bei einem pH-Wert von 7,5 nicht an die positiv geladene Säule gebunden. Daher ist der isoelektrische Punkt der AMO vermutlich größer als pI 7,5. Dieser Wert liegt nahe den in der Literatur angegebenen pI-Werten der AMO-Untereinheiten. Für die AmoA wird ein Wert von pI 7,9 (McTavish et al., 1993 a) und für die AmoB ein Wert von pI 6,8 (Bergmann & Hooper, 1994 a) angegeben. Mit Hilfe der anschließenden Gradientenzentrifugation wurde die AMO von c-Cytochromen gereinigt. Vor der Gradientenzentrifugation betrug der Anteil der c-Cytochrome an der angereicherten AMO in etwa 6 %. Nach der Zentrifugation konnte der c-Cytochrom-Anteil der gereinigten AMO auf 0,6 % gemindert werden. Mit Hilfe des Absorptionsspektrums konnte gezeigt werden, dass es sich dabei höchstwahrscheinlich um Cytochrom c₅₅₂ handelte. Weitere Proteine wurden in der gereinigten AMO-Fraktion mit Hilfe der SDS-PAGE nicht detektiert. Das 27 kDa große AmoA- und das 41 kDa große AmoB-Protein traten im Sediment jedoch nicht im Verhältnis

5.5 Aktivität der AMO

II) Die spezifische Aktivität der Zellen und zellfreien Extrakte wurde über die Nitritbildungsrate bestimmt. Unter anoxischen Bedingungen kann es jedoch zur
Diskussion 125

Denitrifikation kommen, was zum Verlust von Nitrit führt (Bock et al., 1995; Schmidt, 1997; Zart, 1997). Diese kann trotz hoher Ammoniumumsatzraten eine geringe Aktivität unter anoxischen Bedingungen vortäuschen.

Der hohe Ammoniakoxidationsaktivitätsverlust während der Anreicherung der AMO ist vermutlich auf verschiedene Faktoren zurückzuführen.

5.6 Enzymmodell der AMO

Basierend auf den Ergebnissen dieser Arbeit wurde ein hypothetisches Enzymmodell (Abb. 5.1) für die AMO entwickelt. In diesem Modell sind zwei Kupferionen an das katalytische Zentrum der AMO gebunden. Wie schon Schmidt et al. (2001 a) postulierten,

Aus den Teilreaktionen ergeben sich folgende Gleichungen (Gl. 5.1, 5.2) (Schmidt et al., 2001 a).

\[
\begin{align*}
\text{NH}_3 + \text{N}_2\text{O}_4 + 2 \text{H}^+ + 2 e^- & \rightarrow \text{NH}_2\text{OH} + 2 \text{NO} + \text{H}_2\text{O} \quad \text{(Gl. 5.1)} \\
2 \text{NO} + \text{O}_2 & \rightarrow \text{N}_2\text{O}_4 \quad \text{(Gl. 5.2)} \\
\text{NH}_3 + \text{O}_2 + 2 \text{H}^+ + 2 e^- & \rightarrow \text{NH}_2\text{OH} + \text{H}_2\text{O} \quad \text{(Gl. 5.3)}
\end{align*}
\]

Die anaerobe Ammoniakoxidation mit N\textsubscript{2}O\textsubscript{4} findet im Gegensatz zur aeroben Oxidation mit O\textsubscript{2} nur in zwei Teilschritten statt. Der dritte Schritt (3 in Abb. 5.1 und Gl. 5.2) erfolgt nicht, da kein Sauerstoff zur Verfügung steht. Das enzymgebundene NO wird durch N\textsubscript{2}O\textsubscript{4} des Mediums ersetzt und NO wird ins Medium abgegeben. Die NO-Freisetzung bei der anaeroben Ammoniakoxidation steht in Einklang mit den Ergebnissen von Schmidt (1997), Schmidt & Bock (1997, 1998) und Schmidt et al. (2001 a).

Der angegebene, dreistufige Mechanismus beruht auf dem Reaktionsmechanismus der kupferhaltigen Monoxygenasen Tyrosinase und Hämocyanin (Lerch et al., 1986). Die drei Zustände der AMO werden dabei als Oxy-, Met- und Deoxyform bezeichnet (Abb. 5.1) (Shears & Wood, 1985; Bédard & Knowles, 1989). In diesem Modell wird die Deoxyform durch Metalchelatoren gehemmt. Neueste Ergebnisse zeigten, dass vermutlich auch Acetylen an die Deoxyform bindet und somit die aerobe, nicht aber die anaerobe Ammoniakoxidation hemmt (Schmidt et al., 2001 a). Da Acetylen an das AmoA-Protein bindet und diese markiert (McTavish et al., 1993 a), hat die AmoA wahrscheinlich, nicht wie bisher vermutet, die Funktion der Aktivierung von Ammoniak. Die AmoA scheint vielmehr Sauerstoff zu aktivieren.

Anhand des Modells der AMO können die Ergebnisse der Aktivitätstests interpretiert werden, insbesondere die Sauerstoffempfindlichkeit der Zelleextrakte nach einem anaeroben Zellaufschluss im Gegensatz zum aeroben Zellaufschluss. Werden die Zellen für den Aktivitätstest in Gegenwart von Sauerstoff und Ammonium aufgeschlossen, kann enzymgebundenes NO zu N\textsubscript{2}O\textsubscript{4} oxidiert werden (Schritt 3, Abb. 5.1). Der Stickoxidzyklus der AMO ist damit geschlossen. Im nachfolgenden Aktivitätstest hatten die zellfreien Extrakte in

5.7 OFFENE FRAGEN

5.8 Ausblick

Neben den beschriebenen ökologischen Untersuchungen wurden die Antikörper vor allem zur Charakterisierung der enzymatischen Eigenschaften der AMO eingesetzt. Dabei ist hervorzuheben, dass mit Hilfe der Antikörper eine Vielzahl neuer Erkenntnisse über das
6 LITERATURVERZEICHNIS

Andersson, K. K. und A. B. Hooper. 1983. O$_2$ and H$_2$O are each the source of one O in NO$_2^-$ produced from NH$_4^+$ by \textit{Nitrosomonas}: 15N-NMR evidence. FEBS Lett. 164:236-240.

Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. J. Gen. Microbiol. 137:1689-1699.

Remy, H. 1957. Lehrbuch der anorganischen Chemie, Bd. 1, Akadem. Verlagsgemeinschaft Geest + Portig KG.

VERÖFFENTLICHUNG

Teile der vorliegenden Arbeit wurden, nach vorheriger Genehmigung durch den Fachbereich Biologie der Universität Hamburg, veröffentlicht. Die Publikation ist auf den folgenden Seiten wiedergegeben.

Polyclonal Antibodies Recognizing the AmoB Protein of Ammonia Oxidizers of the β-Subclass of the Class Proteobacteria

CLAUDIA PINCK,1* CAROLINE COEUR,2 PATRICK POTIER,2 AND EBERHARD BOCK1

Institut für Allgemeine Botanik, Universität Hamburg, D-22609 Hamburg, Germany,1 and Laboratoire d’Ecologie Microbienne, UMR CNRS 5557, Université Claude Bernard Lyon 1, 69622 Villeurbanne cedex, France2

Received 5 June 2000/Accepted 22 September 2000

A 41-kDa protein of Nitrosomonas eutropha was purified, and the N-terminal amino acid sequence was found to be nearly identical with the sequence of AmoB, a subunit of ammonia monoxygenase. This protein was used to develop polyclonal antibodies, which were highly specific for the detection of the four genera of ammonia oxidizers of the β-subclass of Proteobacteria (Nitrosomonas, including Nitrosococcus mobilis, which belongs phylogenetically to Nitrosomonas; Nitrospira; Nitrosolobus; and Nitrosothrix). In contrast, the antibodies did not react with ammonia oxidizers affiliated with the γ-subclass of Proteobacteria (Nitrosococcus oceanich and Nitrosococcus halophilus). Moreover, methane oxidizers (Methylococcus capsulatus, Methylocystis parvus, and Methylosomonas mehtanica) containing the related particulate methane monoxygenase were not detected. Quantitative immunoblot analysis revealed that total cell protein of N. eutropha consisted of approximately 6% AmoB, when cells were grown using standard conditions (mineral medium containing 10 mM ammonium). This AmoB amount was shown to depend on the ammonium concentration in the medium. About 14% AmoB of total protein was found when N. eutropha was grown with 1 mM ammonium, whereas 4% AmoB was detected when 100 mM ammonium were used. In addition, the cellular amount of AmoB was influenced by the absence of the substrate. Cells starved for more than 2 months contained nearly twice as much AmoB as actively growing cells, although these cells possessed low ammonia-oxidizing activity. AmoB was always present and could even be detected in cells of Nitrosomonas after 1 year of ammonia starvation.

Nitrification, the microbial oxidation of ammonia to nitrate, is an essential part of the microbial nitrogen cycle in marine, freshwater, and soil environments. Two physiologically different groups of chemolithoautotrophic bacteria, the ammonia and nitrite oxidizers, are involved in this oxidation. The ammonia oxidizers derive their energy from the oxidation of ammonia to nitrite. The first step, the oxidation of ammonia to hydroxylamine is catalyzed by ammonia monooxygenase (AMO) (18, 60). Hydroxylamine is further oxidized to nitrite by hydroxylamine oxidoreductase (HAO) (5, 53). Since the AMO is an important key enzyme of nitrification, many efforts have been initiated to isolate the enzyme. However, it has not been purified thus far since the enzyme is not stable once isolated from the cells (16, 51, 52). Therefore, little is known about its structure and enzymatic mechanism. Information on the molecular properties of AMO has been deduced from studies with intact cells. It was demonstrated that the AMO has a broad substrate specificity (4, 22, 28, 54) and is irreversibly inhibited by C2H2 (25, 26). A similar substrate range and inhibitor profiles including C2H2 effects were found for the biochemically related particulate methane monoxygenase (pMMO) of methane oxidizing bacteria (7, 14, 20, 42). Moreover, the AMO and the pMMO may be evolutionary related, since their encoding genes share high sequence similarities (3, 19).

Inactivation of AMO by 14C2H2 labels a membrane bound 27-kDa polypeptide, which is called AmoA (21). This protein seems to be the active-site-containing subunit of the enzyme (21, 24). A corresponding gene amoA has been identified and, within the same operon, another gene called amoB was sequenced (39). The amoB codes for a 41-kDa polypeptide (AmoB), which could be copurified with the 27-kDa AmoA (10, 39). Upstream of the amoA-amoB tandem, a third gene was identified, amoC (3, 30). The numbers of copies of the amo operon seem to be genus specific. Two nearly identical copies are present in strains of Nitrosomonas and Nitrosothrix, and three copies were found in strains of Nitrosospira and Nitrosothrix (29, 31, 39, 41, 45), whereas only a single copy could be detected in marine Nitrosococcus strains of the γ-subclass of Proteobacteria (3). However, neither the expressed polypeptides of amoA and amoB nor the purified proteins from Nitrosomonas cell homogenates showed ammonia-oxidizing activity (21, 23).

In previous studies antibodies were developed using whole cells of ammonia oxidizers, which recognize epitopes of the cell wall (8, 43, 47, 55, 56). These antibodies were applied in ecological studies to detect and count ammonia oxidizers in bacterial communities by using fluorescence microscopy. Their application was supposed to overcome the disadvantages of traditional counting methods such as the most-probable-number technique (38), which often underestimates the number of ammonia oxidizers in the natural environment (9). However, the application of these antibodies was limited since ammonia oxidizers show high serological diversity even within one genus. Therefore, ecologically relevant strains had to be isolated prior to antibody development. In the case of nitrite-oxidizing bacteria, it was shown that antibodies recognizing the conserved key enzyme can be used for the detection of all known genera of these organisms (6). They can be applied for studies of the
key enzyme, as well as for the detection of as-yet-non-isolated strains in the environment.

In this study, the AmoB subunit of the AMO of *N. eutropha* N904 was used for the development of polyclonal antibodies. Evidence is given that these antibodies are highly specific for all genera of ammonia oxidizers affiliated with the β-subclass of Proteobacteria. Quantitative immunoblot analysis was used to measure the cellular amount of AmoB of *Nitrosomonas eutropha* N904 under different growth and starvation conditions. (This study is based in part on the doctoral study of C. Pinck at the University of Hamburg.)

MATERIALS AND METHODS

Bacterial strains and culture conditions. The strains of ammonia oxidizers isolated from soil and used in this study were *Nitrosomonas communis* Nm 2 (34), *Nitrosomonas oligotropha* Nm 45 (34), *Nitrosomonas ureae* Nm 10 (34), *Nitrosospira* sp. strain Nsp 1, and *Nitrolobas detriti* LMN 13 (ATCC 25196). *Nitrosomonas europaea* Freitag and *Nitrosomonas nitroa* Nm 90 (34) were obtained from sewage. The strains *Nitrosomonas* sp. strain Dave and *N. eutropha* N904 originated from a biowaste fermenter and from cattle manure, respectively. *Nitrosomonas* sp. strain Nm R1.24, *Nitrospa* sp. strain Np G1.6, *Nitrospa* sp. strain Nsp M.3, *Nitrospa* sp. strain Nsp R6.2, *Nitrosovirilb* sp. strain Nv G1.3, and *Nitrosovirilb* sp. strain Nv K.7.1 were isolated from sandstone of historical buildings. The marine ammonia oxidizers of the β-subclass of the *Proteobacteria* isolates *Nitrosomonas aestuari* Nm 36 (34), *Nitrosomonas cryotol- erans* Nm 55, *Nitrosomonas halophila* Nm 1 (34), *Nitrosomonas marina* Nm 22 (34), *Nitrosochloris mobilis* Nc 2 (32), and the two marine ammonia oxidizers belonging to the γ-subclass of *Proteobacteria* isolates *Nitrospoglobulus halophilus* Nc 4 (33) and *Nitrosochloris ocean* Nc 1 (ATCC 19707) were obtained from seawater.

The nitrite oxidizers *Nitrobacter hamburgensis* Xm X (11) and *Nitrobacter winogradskii* Engel (12) originated from soil. *Nitropia maritimus* M-1 (15) was obtained from a heating system. *Nitrobacter vulgaris* Ks 1 (12) originated from the sandstone of historical buildings. *Nitropia* gracilis 3(211) (57), *Nitropia* sp. strain 347, and *Nitropia mobilis* 231 (57) were isolated from seawater. All ammonia oxidizers, nitrite oxidizers, the methane oxidizer *Methylococcus capsulatus* Bath (NCIBM 11132), *Methyloctys parus* 4a, *Methylomonas methanica* Oo52600, and *Bacillus sultis* 019, *Escherichia coli* K-12087 (ATCC 23716), *Methylobacterium radiotolerans*, *Paracoccus denitrificans* 4001 (ATCC 19367), and *Pseudomonas* sp. strain AM1 are stored in the culture collection of the Institut für Allgemeine Botanik, Abteilung Mikrobiologie, Universität Hamburg. The strains *Achromobacter cycloclastes* GM 1.5 grown in the same medium containing 10 g of NaCl liter–1 (12) were starved of ammonia at 16°C in the dark. To test the AmoB activities were determined colorimetrically according to the method of Bradford (13) as modified by Spector (48). Crude extracts were adjusted to 3.0 mg of protein ml–1. The samples were diluted (1:1) with 10 mM Tris-HCl buffer (pH 8.6) containing 2% sodium dodecyl sulfate (SDS), 20% glycerol, 1% 2-mercaptoethanol, and 0.001% bromophenol blue and then solubilized for 15 min at room temperature. Samples (75 μl) were loaded onto lanes of 0.75-mm-thick SDS-polyacrylamide gels, prepared as described by Laemmli (36). The stacking and separating gels contained 4 and 12% polyacrylamide, respectively. Electrophoresis was performed at 60 V and 10°C by using a PROTEIN II Blot Cell (20 by 16 cm; Bio-Rad). After electrophoresis the gels were reversibly stained by using the Zinc Stain & Destain Kit (Bio-Rad) to determine the position of the 41-kDa protein. The protein bands were cut out of the gels. The staining of the slices was removed, and the protein was electroeluted from the gel at 60 mA for 6 h in an Electro-Eluter Model 422 (Bio-Rad). The protein was concentrated by lyophilization (Freezemobile 12; Virtis). Antiserum against this polypeptide was produced by Valbex (Villeurbanne, France) in chickens. Injections of 50 μg of protein were given at prescribed intervals. For protein sequencing by Edman degradation, the 41-kDa protein was isolated by a modified SDS-polyacrylamide gel electrophoresis (PAGE). In order to avoid N-terminal blockage the gel had been pre-electrophoresed for 2 h, adding 0.07% sodium thioglycolate to the Laemmli running buffer. The separated proteins were electroblotted (Pegasus; PHASE) onto a 0.2-μm-pore-size polyvinylidene difluoride membrane filter (Schleicher & Schuell), using the procedure described by Matsudaï (37). The amino acid sequencing of the isolated protein was done by the Institute of Biology and Chemistry of Proteins (University of Lyon I, Villeurbanne, France). Protein sequence was used to search for homologous proteins in the EMBL and SwissProt data banks (http://www.ncbi.nlm.nih.gov/BLAST/) (2).

Immunoblotting. Cells were harvested, and crude extracts were prepared as described above. SDS-PAGE analyses were performed at 40 mA by using a Mini-PROTEIN II Cell (8 by 7.3 cm; Bio-Rad). The separated proteins were electroblotted (Pegasus; PHASE) for 2 h at 0.8 mA per cm² onto a cellulose nitrate membrane (pore size, 0.2 μm; Schleicher & Schuell) using a discontinuous buffer system (35). The membrane was then blocked for 1.5 h in a phosphate-buffered saline (PBS) containing 1% bovine serum albumin (BSA). The proteins on the nitrocellulose membrane were incubated with antiserum (1:20,000 in PBS containing 0.05% BSA and 0.025% Tween 20) overnight at room temperature. After two washes with PBS, the proteins were incubated with biotin-conjugated secondary antibodies (Biotrend, Cologne, Germany) diluted 1:3,000 in PBS containing 0.05% BSA—0.025% Tween 20 for 1 h at room temperature. The membrane was washed twice with PBS, and the proteins were incubated with a streptavidin-biotinylated alkaline phosphatase complex (diluted 1:3,000 in PBS containing 0.05% BSA and 0.025% Tween 20) for another 1.5 h. After two washes with 10 mM Tris-HCl (pH 8.6) containing 0.02% BSA and 0.05% Tween 20, the cellulose nitrate membrane was incubated with a substrate solution containing 0.005% 5-bromo-4-chloro-3-indolyl-phosphate (BCIP), 0.001% 4-ni- troblue tetrazolium, 0.1 M NaHCO3, 0.05 M Na2CO3, and 0.004 M MgCl2. The enzymatic reaction was stopped by adding distilled water. A dense blue color indicates a positive reaction. Eastern immunoblotting was introduced at least three times. The membrane was scanned (ScanMagic 962; S. Muctek), a densitogram of the bands was performed, and the AmoB was quantified using software program origin 4.0 (Microcal).

Determination of ammonia oxidation activity. Exponentially grown cells of *N. eutropha* N904 cultivated in 1-litter Erlenmeyer flasks were harvested by centrifugation, washed, and resuspended in mineral medium. The ammonia oxidation activity of the cells was reflected by the decrease in ammonia as well as by the increase in nitrite concentration in suspensions of 5 × 105 cells per ml. The activities were determined as mean values of three experiments. Ammonia and nitrite levels were measured by high-pressure liquid chromatography (50).
RESULTS

Purification and identification of AmoB protein. The N terminus of the 41-kDa protein of *N. eutropha* N904, separated by SDS-PAGE, was sequenced by Edman degradation (positions 3 to 24). The derived amino acid sequence was compared with the amino acid sequences deduced from the *amoB* genes of *N. eutropha* Nm 57, since an *amoB* gene sequence of *N. eutropha* N904 is not available yet. The AmoB subunit of *N. eutropha* Nm 57 is encoded by two nearly identical gene copies (*amoB1* and *amoB2*, GenBank accession numbers U51630 and U72670). The N terminus of the isolated 41-kDa protein of *N. eutropha* N904 showed 82% amino acid sequence identity to the deduced AmoB sequences of *N. eutropha* Nm 57 from positions 41 to 62 onwards (Fig. 1). The sequences AmoB1 and AmoB2 from *N. eutropha* Nm 57 differ in positions 43 and 47, respectively, compared to the N-terminal sequence from *N. eutropha* N904 (positions 5 and 9). As a consequence, the AmoB sequence of *N. eutropha* N904 tallied only with one amino acid of AmoB1 or AmoB2 of *N. eutropha* Nm 57, respectively. Mismatches were often represented by the amino acid glycine (positions 14 and 17 of *N. eutropha* N904).

Specificity of the antibodies. Polyclonal antibodies were produced against the purified AmoB of *N. eutropha* N904. The reactivity of the antibodies was tested by immunoblotting of crude extracts of numerous ammonia oxidizers, including all described species of the genus *Nitrosomonas*. All tested strains are listed in Materials and Methods. The antibodies were highly specific for the detection of 41-kDa proteins in cell extracts of the four genera of ammonia oxidizers of the β subclass of Proteobacteria (*Nitrosooccus*, including *Nitrosooccus mobilis*, which belongs phylogenetically to *Nitrosooccus; Nitrosospira; Nitrosohabitans*, and *Nitrosohabitans*). In six strains of ammonia oxidizers isolated from building stones, strains which have been characterized as yet only by their morphology, 41-kDa proteins were recognized as well. The antibodies did not show any unspecific reactions with other proteins of these crude extracts (Fig. 2). No proteins were recognized in crude extracts of *Nitrosooccus oceani* Nc 1 (Fig. 2) and *Nitrosooccus halophilus* Nc 4 (data not shown), which belong to the γ subclass of Proteobacteria. Hence, the antiserum could be used to detect AmoB in ammonia oxidizers of the β subclass of Proteobacteria including not-yet-described isolates, but not for the detection of AmoB in ammonia oxidizers of the γ subclass of Proteobacteria.

In order to prove the specificity of the antiserum, control experiments were performed with pure cultures of the methane-oxidizing bacteria *Methylococcus capsulatus* Bath, *Methylococcus methylaminotrophicus* Oo52006, and *Methylocystis parvus* 4a. The key enzyme in CH₄ oxidation of these organisms, the pMMO, was shown to possess high sequence similarities to the AMO. Furthermore, the heterotrophic nitrifier *Paracoccus denitrificans* 001 was analyzed, since this organism also contains an ammonia-oxidizing system. In addition, immunoblot analysis was carried out with several other bacteria, such as nitrite oxidizers and methylo trophic and denitrifying bacteria. The antiserum did not react with any of these organisms.

Quantitative immunoblot analysis of the AmoB amount. The AmoB amount of total cellular protein of *N. eutropha* N904 was measured using immunoblot analysis of crude extracts with protein amounts ranging from 0.25 to 16 μg (Fig. 3a and b), which corresponded to 2.9 × 10⁶ cells and 1.9 × 10⁸ cells, respectively. The protein coloration increased with the protein amount, and a saturation curve was obtained. These data could be used to determine the specific cellular amount of AmoB (Table 1). Purified AmoB ranging from 0.03 to 0.42 μg served as standards (Fig. 3c and d). By using standard growth conditions (mineral medium with 10 mM ammonium), a cellular amount of 5.9% ± 1.8% AmoB was found in the total cell protein of *N. eutropha* N904. As shown in Fig. 4, this cellular AmoB amount depended on the ammonium concentration in the mineral medium. The amount of AmoB increased to 14% ± 1.4% when the substrate was reduced to 1 mM. When cells were grown with 100 mM ammonium, only a low AmoB amount of 4% ± 0.8% was found.
The AmoB amount increased when *N. eutropha* N904 was starved of ammonia. Cells, which did not receive ammonium for more than 60 days, contained 9.7% ± 0.9% AmoB (Fig. 5). That is nearly twice the amount compared to that found in active growing cells or cells that had been starved of ammonia for 20 days. The AmoB could even be detected after 1 year of ammonia starvation. These results did not correlate with the ammonia oxidation activity. The highest activity was found within cells in the exponential growth phase using standard cultivation conditions (575 \(\mu \text{mol of NH}_4^+ \text{g of protein}^{-1} \text{h}^{-1} \)). The specific activity was reduced to 255 \(\mu \text{mol of NH}_4^+ \text{g of protein}^{-1} \text{h}^{-1} \) when cells were starved of ammonia for 1 month, a level which remained nearly constant during further starvation. Experiments with cells of *Nitrosomonas* sp. strain Dave and *N. europaea* Freitag showed similar results (data not shown).

Mixotrophic growth of the bacteria with ammonia and organic N compounds had no influence on the AmoB amount of the cells. Cells of *N. eutropha* N904, which were grown mixotrophically in the presence of pyruvate, yeast extract, and peptone, as well as pyruvate or alanine, showed nearly the same AmoB amount as lithoautotrophically grown cells.

DISCUSSION

The isolated 41-kDa protein of *N. eutropha* N904 shows high sequence similarity to the sequences AmoB1 and AmoB2 of *N. eutropha* Nm 57. The mismatches in positions 14 and 17 of the partially sequenced AmoB protein of *N. eutropha* N904 (Fig. 1) might be a contamination of glycine used in the transfer buffer for blotting the protein on the membrane. The *amoB* genes of *N. eutropha* Nm 57 encode hydrophobic 37-amino-acid leader sequences (39) that was not present in the isolated AmoB of *N. eutropha* N904. Apparently, this part of the N terminus was removed during protein processing. Nevertheless, the purified 41-kDa protein can be regarded as the AmoB of *N. eutropha* N904. Sequence differences in the AmoB peptides between *N. eutropha* N904 and *N. eutropha* Nm 57 may be due to strain differences.

In this study, an antiserum against the AmoB was developed which recognized the 41-kDa subunit of the AMO in crude

TABLE 1. Specific AmoB amount in cells of *N. eutropha* N904 grown with 10 mM ammonium as measured by using immunoblot analysis

<table>
<thead>
<tr>
<th>Total protein amt ((\mu \text{g}))</th>
<th>Specific AmoB amt ((\mu \text{g}))</th>
<th>% Total protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
<td>3.8</td>
</tr>
<tr>
<td>4</td>
<td>0.21</td>
<td>5.3</td>
</tr>
<tr>
<td>2</td>
<td>0.13</td>
<td>6.5</td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>8.0</td>
</tr>
<tr>
<td>0.5</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>0.25</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Cell extracts of different total protein amounts were analyzed to obtain statistically meaningful data. Purified AmoB ranging from 0.01 to 0.42 \(\mu \text{g} \) of protein were used as standards. The mean value of the specific AmoB amount was calculated with 5.9% ± 1.8% of the total protein (100%). The standard deviation for three replicated experiments was ±9%.

ND, not detectable.
extracts of *N. eutropha* N904. It could be demonstrated that this antiserum has a broad serological specificity for all tested ammonia oxidizers of the β-subclass of *Proteobacteria*. Thus far, only antibodies recognizing specific epitopes of the cell wall of ammonia oxidizers have been described (43, 47, 55), and these were limited in the application to specific serological groups (8, 56). The AMO is a highly conserved enzyme in ammonia oxidizers affiliated with the β-subclass of *Proteobacteria*. Therefore, the broad serological specificity of the antibodies against AmoB may be due to their 73% AmoB sequence similarity (3). Thus, it seems likely that the antibodies can be used for in situ detection of ammonia oxidizers of the β-subclass in natural bacterial communities. First, evidence is given as the antibodies reacted with the AmoB in new strains of ammonia oxidizers isolated from building stones. Recent studies also proved in a similar approach that monoclonal antibodies recognizing the key enzyme of nitrite oxidizers are a useful tool for microbial ecological studies (1, 6).

In contrast, the antiserum did not react with the ammonia oxidizers belonging to the γ-subclass of *Proteobacteria*. This might be due to the low similarities between the AmoB of these bacteria to that of ammonia oxidizers belonging to the β-subclass of *Proteobacteria*. The phylogenetically related pMMO of methanotrophic bacteria also did not react with the antibodies. Indeed, the amino acid sequence of the AmoB of *Nitrosococcus oceani* (γ-proteobacteria) shows higher similarity (50 to 52%) to the pMMO sequence of *Methylococcus capsulatus* (γ-proteobacteria) than to the AmoB sequence (38 to 39%) of the ammonia oxidizers of the β-subclass of *Proteobacteria* (3).

The antibodies could be used to determine for the first time the amount of AmoB in cells of *N. eutropha* N904. It was shown...
that the total cell protein consisted of approximately 6% AmoB when cells were grown using standard substrate conditions (mineral medium containing 10 mM ammonium). During cell growth, the specific cellular amount of the AmoB was regulated by the ammonium concentration in the medium. When ammonium was limited, higher amounts of AmoB could be detected in cells of \textit{N. eutropha} N904 in comparison to cells grown with standard concentrations. At ammonium concentrations below the \(K_m \) value of the AMO (1.8 mM) (46), the low activity of the enzyme seemed to be compensated for by high amounts of the key enzyme. At high substrate concentrations the activity of the enzyme is maximal. Therefore, the cells were able to grow, although the enzyme concentration was reduced.

Organic compounds had no influence on the AmoB amount in cells of \textit{N. eutropha} N904 as it was found for the nitrite oxidizer \textit{Nitro bacter}. In \textit{Nitro bacter} spp. a higher level of the nitrite oxidoreductase was observed in mixotrophically growing cells compared to cells growing in mineral medium (1).

Starved cells contained higher amounts of AmoB than actively growing cells, although they possessed far less ammonia oxidation activity. Previous studies also found considerable amounts of active AMO in starved cells of \textit{N. europaea} (40, 59). Hence, our studies and these investigations indicate that the amount of AMO does not correlate with the activity of ammonia oxidation in \textit{Nitrosomonas}. Although the AmoB was detected in high concentrations in cells of \textit{N. eutropha} N904, \textit{N. europaea} Freitag, and \textit{Nitrosomonas} strain Dave after 1 year of ammonia starvation and their AMO remained active, the AMO seems not to be a constitutive enzyme. Sayavedra-Soto et al. (44) found that the mRNA of the AMO in cells of \textit{N. europaea} was totally degraded a few hours after the depletion of ammonia. Moreover, it was shown that the endogenous respiration of \textit{N. cryotolerans} cells decreased to undetectable levels under starvation conditions (27). Accordingly, the AMO seems to be strongly protected from degradation so that the energy supply is ensured as soon as ammonia is available. The increase of the AmoB amount in the cells during ammonia starvation might be due to the decline of unproctected proteins.

Similar results were also reported for the second key enzyme of the ammonia oxidation, the HAO. Using immunoblot analysis, the HAO level remained constant within 81 days of ammonia starvation in cells of \textit{N. europaea} and a high amount of active HAO was detected (40, 59), while the mRNA was degraded during ammonia starvation (44).

This study demonstrated that the antibodies recognizing the AmoB could be applied successfully for physiological studies. Cytological analyses are in progress that will provide information about the localization of the enzyme by immunogold and immunofluorescence labeling. If the antibodies can be employed for isolation of the enzyme, there is even a good prospect for a detailed biochemical characterization of the AmoB protein.

ACKNOWLEDGMENTS

This work was supported by a grant from the Deutscher Akademischer Austauschdienst (DAAD, PROCOPE) and by the European Union (ENV4-CT96-0707). We thank H.-P. Koops for contributing pure cultures of ammonia oxidizers, S. Bartosch for technical assistance and comments on the manuscript, and E. Spieck for the initiation of antibody development and for scientific discussions.

REFERENCES

LEBENSLAUF

Name Claudia Pinck
Geburtsort und -ort 24.05.1973 Hamburg
Familienstand ledig
Schulbildung 1979-1983 Grundschule Hamburg-Fuhlsbüttel
Abschluss: Abitur
Hochschulstudium 1992-1997 Studium der Biologie an der Universität Hamburg
Hauptfach: Mikrobiologie,
Nebenfächer: Botanik, Genetik/Molekularbiologie
08/97-05/98 Diplomarbeit im Hauptfach Mikrobiologie zum Thema:
„Versuche zum Nachweis des heterotrophen Wachstums von Nitrosomonas spec."
seit 5/98 Promotion an der Universität Hamburg, Fachbereich
Biologie, Abteilung Mikrobiologie zum Thema:
„Immunologische Untersuchungen am Schlüsselzym-
system der Ammoniakoxidanten“
5/98-12/99 Häufiger, mehrwöchiger Aufenthalt an der Universität
Lyon I in Villeurbanne/Frankreich im Rahmen des
DAAD-Austauschprojektes „Nitrifying bacteria:
biodiversity, ecology and activity in natural environments“
Berufstätigkeit 12/95-12/97 Studentische Hilfskraft in der Abteilung Mikrobiologie
am Institut für Allgemeine Botanik, Hamburg. Mitarbeit
im BMBF-Forschungsprojekt „Steinzerfall und Stein-
konservierung“
10/98-4/01 Wissenschaftliche Angestellte der Universität Hamburg
im EU-Projekt „Development of an innovative water
repellent/biocide surface treatment for mortars: assessment
of their performance by using modern analytical tools and
surface analysis“
seit 5/01 Wissenschaftliche Angestellte der Universität Hamburg
im DFG-Projekt „Regulation der Ammoniakoxidations-
aktivität von Nitrosomonas in Rein- und Mischkulturen“

Hamburg, den 03.10.01

Claudia Pinck

Herrn Prof. Dr. E. Bock danke ich für die Themenstellung, für sein großes Interesse an dieser Arbeit, für seine ständige Gesprächsbereitschaft und für die wertvollen Ratschläge.

Herrn Dr. H.-P. Koops möchte ich für die Bereitstellung der vielen Ammoniakoxidantenstämmé danken.

Ein besonderer Dank gilt Dr. Sabine Bartosch für die fachkompetente Beratung in Sachen Antikörper, CLSM und die Geduld bei der Korrektur meiner Arbeit. Ähnlicher Dank gebührt Dr. Eva Spieck. Zudem danke ich Dr. Eva Spieck für die Idee zur Herstellung der Antikörper.

Herrn Prof. Dr. P. Potier und Caroline Cœur der Abteilung ökologische Mikrobiologie der Universität Lyon in Frankreich danke ich für die freundliche Aufnahme in ihrem Labor sowie für die Unterstützung bei der Herstellung der Antikörper.

Dr. H. Hohenberg des Heinrich-Pette-Institut und Irmgard Wachholz danke ich für die große Unterstützung bei den elektronenmikroskopischen Untersuchungen insbesondere den „Tiefentemperatureinbettungen“. Außerem möchte ich Frau Adami für die Hilfe bei der Entwicklung der Negative danken.

Dr. Reiner Mansch danke für die Hilfe beim EU-Projekt und bei den vielen Fragen bezüglich der „Mörtel und Steine“.

Außerdem Danke ich Heike Block, die mir bei der Entwicklung des Aktivitätstests eine große Hilfe war.

Nicht zuletzt ein Dank sei an all die fleißigen Hiwis Sandra, Felix, Nadine, Björn, Alex, Jan, Mashall und Katharina gerichtet.

Natürlich dürfen bei all´ dem Dank nicht die „Mit-Doktorandinnen“ Christiane Look und Christine Hartwig und die anderen Kollegen fehlen. Allen danke ich für die nette Zeit in Klein Flottbek.

Zum Schluss danke ich Jochen, meinen Freunden und meiner Familie für die Unterstützung außerhalb der Uni.
Ich versichere an Eides statt, dass ich bisher weder an der Universität Hamburg noch an einer anderen Universität einen Versuch zur Promotion unternommen habe. Weiterhin erkläre ich eidesstattlich, dass ich diese Arbeit selbständig verfasst habe und zur Durchführung und Abfassung keine anderen als die angegebenen Hilfsmittel verwendet wurden.

Hamburg, den 03.10.01

Claudia Pinck