Semiconductor Nanocrystals as Building Blocks for Organized Superstructures

A dissertation submitted to the University of Hamburg for the degree of Doctor of Natural Sciences

Alexey Shavel from Vitebsk (Belarus)

December 2005
The work described in this thesis was carried out in the Institute of Physical Chemistry, University of Hamburg in the group of Prof. Dr. H. Weller.

1. Referee: Prof. Dr. H. Weller
2. Referee: Prof. Dr. A. Eychmüller
Acknowledgements

I want to thank Prof. Dr. Horst Weller and Prof. Dr. Alexander Eychmüller for the invitation to join their working group, for a very interesting research topic, for providing excellent experimental facilities and for many useful discussions. Additional gratitude is expressed for a friendly group atmosphere.

I want to specially thank Prof. Dr. Alexander Eychmüller for supervising my investigations and for stimulating discussions and especially for writing and correcting our manuscripts.

My special thanks go to my adviser and friend Dr. Nikolai Gaponik for his help and for useful discussions. His insight and advises were always valuable and appreciated. Without him, I would not be writing this thesis in this place today. Additional thanks for prompt and perfect corrections of our manuscripts.

I want to thank my friends and colleagues Dr. Dimitri V. Talapin and Dr. Elena V. Schevchenko for very stimulating discussions and help.

I am indebted to Dr. Kathrin Hoppe, to Dr. Stephen G. Hickey and to Marija Nicolic for thorough reading of this thesis, multiple corrections and valuable comments.

I am very thankful to Thomas Franzl, Dr. Thomas A. Klar, Dr. Andrey L. Rogach and Prof. Dr. Jochen Feldmann (Ludwig-Maximilians-Universität München) for their help and for the successful collaboration in the FRET investigation.

I am very thankful to Dr. Sergey Poznyak and Dr. Nikolai P. Osipovich (Physico-Chemical Research Institute, Belarussian State University) for performing the successful electrochemical investigations on the CdTe and ZnSe nanocrystals.

I want to thank Prof. Dr. Jordi Martorell, Dr. Albert Molinos and Marc Maymo for successful collaboration in preparation of composite materials for photonic application.
I want to thank Dipl.-Ing. Andreas Kornowski and Sylvia Bartholdi-Nawrath for excellent TEM and HRTEM images. Almut Barck is acknowledged for the powder XRD measurements and Frank Bürli and Lothar Ruth for technical support.

I am also very thankful to Rosemarie Pakula for her willingness to help us in all bureaucratic affairs.

The work described in this thesis was carried out in the Institute of Physical Chemistry, University of Hamburg, from September 2002 to April 2005, and was supported by the DFG SP 1072, EU project FUNLIGHT, EU Network of Excellence “PHOREMOST” and by the NATO Scientific and Environmental Affairs Division (PST.CLG 979631).

I want to thank everyone in the nanochemistry group and in particular Vesna, Marija, Kathrin, Stephen, Dirk, Nadja, Mona, and Jan for making the lab an enjoyable and productive place to work, for fruitful discussions and for pleasant ways of spending time together.
Content

Titel i
Acknowledgements iii
Content v
Notations vi

1. Introduction. 1

2. Synthesis of thiol-stabilized nanocrystals. 5
 2.1 Introduction 5
 2.2 Synthesis of aqueous ZnSe NCs 7
 2.3 Synthesis of aqueous CdTe NCs. Optimization of the initial condition of synthesis of CdTe nanocrystals 10
 2.4 Conclusions 19
 2.5 References 20

3. Post preparative treatment of semiconducting NCs. 24
 3.1 Introduction 24
 3.2 Efficient UV-blue photoluminecing thiol-stabilized water soluble alloyed ZnSe(S) nanocrystals. 26
 3.3 Post preparative improvement of luminescence efficiency of CdTe NCs. 31
 3.4 Conclusions 36
 3.5 References 37

4. Electrochemical properties of aqueous nanocrystals. 40
 4.1 Introduction 40
 4.2 Size dependent electrochemical properties of CdTe nanocrystals. 41
 4.3 *In situ* electrochemical observation of photo induced formation of alloyed ZnSe(S) nanocrystals 47
 4.4 Conclusions 51
 4.5 References 52

5. The Assembling of Semiconductor Nanocrystals. 54
 5.1 Introduction 54
 5.2 Layer-by-layer assembly of semiconductor nanocrystals. 55
 5.3 Electrostatic assembly of semiconductor nanocrystals 58
 5.4 Covalent coupling of SC NCs 60
 5.4.1 Covalent linking of CdTe NCs to flat surfaces 60
 5.4.2 Covalent linking of CdTe NCs to silica and glass beads 62
 5.4.3 Covalent linking of CdTe NCs to the functionalized Latex beads 64
 5.5 Rapid Förster energy transfer 66
 5.5.1 Förster energy transfer in the close-packed structures. 68
 5.6 Conclusions 70
 5.7 References 71

6. Summary 74

7. Appendix 1. Calculation of concentration cadmium ions in solution. 77
 Appendix 1a. Estimation of the calculation validity. 87

8. Appendix 2. Experimental section 89

9. Appendix 3. Safety precaution information on the used chemicals 93
Notations

3APTES 3-(aminopropyl)-triethoxysilane
AFM Atomic Force Microscopy
CV cyclic voltammetry
DDA Dodecylamine
DIC N,N'-diisopropylcarbodiimide
DMAP 4-dimethylaminopyridine
DMF N,N-Dimethylformamide
EDC 1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride
EDX Energy Dispersive X-ray analysis
HDA Hexadecylamine
HRSEM High Resolution Scanning Electron Microscopy
HRTEM High Resolution Transmission Microscopy
ITO Indium Tin Oxides
MA 2-mercaptoethylamine
MES buffer (2-(N-morpholino)ethanesulfonic acid 0.1 mM
MHS N-Hydroxysuccinimide
MPA Mercaptopropionic acid
NCs Nanocrystals
OA Oleic Acid
PEI poly(ethyleneimine)
PDDA poly(diallyldimethylammonium chloride)
PL photoluminescence
QD Quantum dots
QE Quantum efficiency
QY Quantum yield
SAXS Small Angle X-Ray Scattering
SEM Scanning Electron Microscopy
TDPA Tetradecylphosphonoiic Acid
TEM Transmission Electron Microscopy
TG Thioglycerol
TGA Thioglycolic acid
TOP Tri-n-octylphosphine
TOPO Tri-n-octylphosphine Oxide
vol. Volume
wt. Weight
XRD X-Ray Diffraction
XRD-size Nanoparticle size calculated by Debye-Sherrer equation
UV Ultraviolet light
Chapter 1

Introduction.

The unique size-dependent optical properties of colloidal semiconductor nanocrystals (NCs) have been the subject of considerable interest in the past two decades [1, 2]. Strongly luminescing II-VI semiconductor NCs have found potential applications in biological imaging and labeling [3-6], photovoltaics [7], electroluminescence devices [8-11], optical sensors [12] etc. Structural [13], photophysical, [1, 13, 14] photochemical [15, 16] and photoelectrochemical [17-19] properties of the semiconductor NCs have been intensively studied. Among the II-VI semiconductor the nanocrystals synthesized in organic media are most intensively studied. The nanocrystals synthesized in this way have a high QY (up to 80%), high photostability but relatively low stability against water and oxygen. By comparison the nanocrystals synthesized in water are stable against oxidation and biological surroundings (biological buffers), but have relatively low quantum yield and do not cover all spectral regions. Thus, the improvement of the QY of thiol-stabilized NCs as well as synthesis of the new NCs’ types is an important task.

True color image of the various samples of the aqueous thiol-capped CdTe and ZnSe nanocrystals.
There are two general possibilities for improving the quantum efficiency: i) improving the synthesis itself (changing conditions, precursors etc) and ii) post-preparative treatment of the nanocrystals (shell growth, phototreatment, etching etc).

Chapter 2 is devoted to the first successful synthesis of high quality ZnSe nanocrystals as well as to the improvement of the well known aqueous synthesis of the CdTe NCs. In order to understand the influence of the synthetic conditions on the quantum yield of CdTe nanocrystals the distribution of the cadmium complexes in the synthetic solution have been simulated. The details of the simulation procedure and their correlation with the experimental conditions are described in chapter 2.3 and in appendix 1.

Chapter 3 describes the improving of the quantum yield of aqueous, thiol-stabilized ZnSe and CdTe nanocrystals. The photoassisted “switching on” of the ZnSe nanocrystals and possible explanation of the mechanism of the switching-on processes are described in chapter 3.2. Chapter 3.3 is mainly focused on the photo-assisted shell formation. The photo-assisted quantum yield improvement (up to 50-60%) will be demonstrated.

Chapter 4 focused on the electrochemical investigation semiconductor nanocrystals preadsorbed on the gold electrodes. The aqueous thiol-capped CdTe and ZnSe nanocrystals have demonstrated several distinct oxidation and reduction peaks in the voltammograms. The peak positions are dependent on the nanocrystals’ size and on the post preparative treatment. The sensitivity of electrochemical methods to the surface state will be demonstrated. The clear correlation between peak position (i.e. presence of surface state) and PL quantum yield of ZnSe NCs will be shown.

Chapter 5 is mainly focused on the Layer-by-Layer techniques (LbL) [20] as well as linking of the nanocrystals to functionalized substrates [21]. In this chapter the efforts in the building of organizing superstructure via LbL techniques will be demonstrated. The building up of the superstructure, constructed from alternating layers of differently sized and charged aqueous nanocrystals, will be demonstrated. The possibility of producing an electrostatic assembly of nanocrystals (a kind of LbL without using intermediate polyelectrolyte layers) will also be demonstrated. The direct linking of the thio-acid stabilized nanocrystals to the substrate functionalized with amino-groups is also the issue of chapter 5. Carbodiimide chemistry was used for the preparation of monolayer structures on flat and spherical substrates.
Great interest attract last time the Förster energy transfer in organized superstructures [22, 23]. The chapter 5.5 is devoted to the study of rapid FRET in such systems. The higher FRET rate (near the theoretical limit) in the electrostatic assembly of nanocrystals is demonstrated in this chapter.

References

Chapter 2

Synthesis of thiol-stabilized nanocrystals.

The aqueous synthesis of thiol-stabilized II-VI semiconductor (CdTe, ZnSe) colloidal nanocrystals has been studied. The optimal condition of synthesis of the high quality ZnSe NCs has been found. The influence of the initial conditions of synthesis (structure and concentration of the Cd-Thiol complexes) on the quality of the CdTe nanocrystals has been revealed. The numerical simulation undertaken has shown clear correlation between the concentration of CdL (where L is (SCH_{2}COO)^{2-}) in the initial solution and the photoluminescence quantum yield of CdTe nanocrystals.

2.1. Introduction

Chemically synthesized semiconductor nanocrystals (or colloidal quantum dots (QDs)) have attracted considerable interest during the last decades. Narrow and intensive emission spectra, continuous absorption bands, high chemical and photobleaching stability, processability and surface functionality are among the most attractive properties of these materials. The properties of the QDs depend strongly on the type of nanocrystals, the size (quantum-confinement) and the capping agent, thus they can be tuned by a proper choice of the synthetic conditions.

There is a wide range of very efficient light emitting QDs which can be synthesized by wet chemical approach. Worthy of mention are ZnSe [1], ZnSe/ZnS [2] and CdS [3, 4] (UV-blue spectral region), CdSe [5-7], InP [8, 9], CdTe [10-12] (visible region), PbSe [13, 14], HgTe [15], and InAs [16] (near-infrared region). The majority of successful syntheses were done in organic media. However, the potential applications of such particles are restricted by their incompatibility with water and/or air. This kind of compatibility is especially important in the field of bio-applications. Worthy of mention is that the phase transfer of NCs from organics to aqueous solution is a time consuming procedure involving capping-agent exchange [17], encapsulation in phospholipid micelles [18], silanization of the individual QDs [19] and preparation of polymeric or dendrimer shells around the
2. Synthesis of thiol-stabilized nanocrystals.

particles [20]. Beside the complicity, the main drawbacks of these procedures are limited stability, low PL quantum yield, large increase of the actual size (critical in the case of conjugation with single bio-molecules or penetration markers through membrane).

At the same time the direct aqueous synthesis of NCs can be a good alternative to the organometallic approach, especially when possible applications demand stability in aqueous media. The simplicity and use of relatively soft conditions, as well as less dangerous materials in comparison with organometallic approach have made aqueous synthesis attractive for researches during the last two decades. For example, IR-emitting HgTe [15] and CdHgTe [21] as well as blue-emitting CdSe [22] are now available. Aqueous CdTe NCs have been successfully synthesized using the traditional procedure [23, 24] as well as in a microwave irradiated sell [25]. Thus, the possibilities to synthesize a wide range of aqueous II-VI semiconductor colloidal nanocrystals have been revealed. Scheme presents an example of a general procedure for the aqueous synthesis of thiol-capped NCs [10].

Scheme for the synthesis of aqueous semiconducting nanocrystals.

It is worth to mention that aqueous nanocrystals which may efficiently emit light in the UV-blue spectral region (below 500 nm) are rare. Among them mainly CdS (PL QE up to 10%) [3] and ZnSe (PL QE below 1%) [26, 27] QDs can be mentioned. In the case of
CdTe the aqueous synthesis allows to produce CdTe NCs with a quantum efficiency of about 5-10% for “as prepared” particles and up to 40% after post-preparative treatment [10]. At the same time the organometallic approach to the synthesis of CdTe NCs leads to nanocrystals with a QE of up to 65% [11, 12].

Thus, there are two main disadvantages of the aqueous synthesis of NCs: i) relatively low QY (2-10 times lower then in the case of the organometallic approach) and ii) PL of the existing aqueous NCs does not cover all spectral regions. Thus, the search for new aqueous synthetic approaches as well as improvements of the known procedures is now of special interest.

Here the first successful aqueous synthesis of ZnSe(S) nanocrystals [28] and the sufficient improvement of the synthesis of CdTe nanocrystals [10] is reported. Worth to mention that after our publication [28] a number of the papers devoted to the improving of the quality of the ZnSe NCs have been published [29-31].

2.2. Synthesis of aqueous ZnSe NCs.

The synthesis of ZnSe NCs was developed on the basis of a well known synthetic procedure [10]. In a typical synthesis 0.875 g (2.35 mmol) of Zn(ClO$_4$)$_2$×6H$_2$O was dissolved in 125 mL of water, and 5.7 mmol of the thiol stabilizer (thioglycerol (TG), thioglycolic acid (TGA), thiomalic acid or 3-mercaptopropionic acid (MPA)) were added under stirring, followed by adjusting the pH by dropwise addition of a 1 M solution of NaOH to 6.5 in the case of TGA or MPA capping, or to 11.2-11.8 in the case of TG. The above mentioned pH values were found experimentally to be optimal for the synthesis of stable colloids. The solution was placed in a three-necked flask fitted with a septum and valves and was deaerated by N$_2$ bubbling for 1 hour. Under stirring, H$_2$Se gas (generated by the reaction of 0.134 g (0.46 mmol) of Al$_2$Se$_3$ lumps with an excess amount of 1 N H$_2$SO$_4$ under N$_2$ atmosphere) was passed through the solution together with a slow nitrogen flow for nearly 20 min. ZnSe precursors were formed at this stage. The further nucleation and growth of the nanocrystals proceeded on refluxing at 100°C under open-air conditions (with a condenser attached). To follow the evolution of the NC ensemble, aliquots of the colloidal solution were taken for spectroscopic characterization after different times of reflux. A typical temporal evolution of the absorption spectra of the ZnSe QDs is shown in Figure 2.2.1A.
2. Synthesis of thiol-stabilized nanocrystals.

Figure 2.2.1 Evolution of the absorption spectra of a crude solution of ZnSe NCs during the synthesis (A). Absorption and luminescence spectra of the crude solution of the ZnSe NCs (B). The peaks in the PL spectrum correspond to water Raman signal (P1), band-gap emission (P2) and trap-emission (P3).

A growth of the NCs during reflux is indicated by a low-energy shift of the absorption edge. The PL of the crude solutions (Figure 2.2.1B) is negligible and shows mainly a broad trap emission band (Peak P3, 400-600 nm). An additional very weak band-edge emission (Peak P2) appears only after long times of reflux. It is observed that among the capping agents used a relatively stronger trap-emission is found to be characteristic for TG-capped ZnSe QDs. The synthesis and characterization of this type of “whitish – blue” emitting QDs with PL QE being below 1% was reported recently [26].

In order to improve the quality of the nanoparticles, a size selective precipitation procedure has been applied to the crude solution of ZnSe NCs [32]. Briefly, the ZnSe QDs were concentrated 3-5 times with the rotor-evaporator and precipitated from the concentrated crude solution by portion-wise addition of a non-solvent (2-propanol) and subsequent centrifugation. The precipitates were separated from the supernatant and were redissolved in pure water giving stable colloidal solutions. The absorption spectra of
different size selected fractions of ZnSe NCs are shown in Figure 2.2.2A. The fractions of ZnSe NCs possess a narrow size distribution and well pronounced first exitonic transition (especially for the smallest particles). The selected fractions of the smallest and largest particles possess no luminescence properties (only the water Raman signal (P1) is detectable in the PL spectra). At the same time the fraction in the middle shows weak broad PL similar to the crude solution (see Figure 2.2.1B, peak P3).

Figure 2.2.2. Absorption spectra of size selected fractions of ZnSe. Gray rhombs show the absorption spectrum of “as prepared” ZnSe nanocrystals. The right panel presents the XRD patterns of three different size selected fractions of ZnSe NCs. The lines, corresponding to the absorption spectra and XRD patterns of the same samples have the same colors in the panels A and B.

Figure 2.2.2B shows the XRD patterns of three fractions of size selected ZnSe NCs. Reflexes of the ZnSe NCs correspond to the cubic ZnSe structure. The sizes
2. Synthesis of thiol-stabilized nanocrystals.

(diameters) of the ZnSe NCs in the Figure 2.2.2B are calculated from the broadening of the XRD reflexes.

In order to improve the PL properties of ZnSe NCs a post preparative phototreatment has been applied to the solution of nanocrystals. Briefly, irradiation by “white light” leads to the creation of an inorganic alloyed ZnSeS shell on the surface of the nanocrystals which provide a high QY (25-30%) from the NCs. The source of materials for the shell formation are molecules of TGA (sulfur) and Zn ions (see Chapter 3 for details). This finding may explain the very weak band gap emission which appears after a long time of refluxing (see Figure 2.2.1B, peak P3). The emission can be as a result of the illumination of an unprotected flask in the day light (the reaction mixture contains zinc ions and molecules of TGA).

The absence of luminescence from “as prepared” ZnSe nanoparticles may be explained through the existence of Se traps on the surface of the NCs. Presence of the Se traps on the NC’s surface was proven by electrochemical methods (see Chapter 4 for details).

2.3. Synthesis of aqueous CdTe NCs. Optimization of the initial conditions of synthesis of CdTe nanocrystals.

It is known that changing of the type and amount of stabilizer strongly influences the PL properties of nanocrystals synthesized both in organic [33, 34] and aqueous media [10]. The pH of the solution is another important factor which may influence the PL of thiol-capped aqueous nanocrystals [35, 36]. The pH dependence of the PL appears due to the formation of thiolates under basic conditions which may play a role in hole trapping [36]. Thus, changing the amount of stabilizer and pH of the solution may lead to an improvement in the PL of the NCs. Moreover, changing of the initial conditions of the synthesis (before injection of H₂Te) may lead to an improvement in the quality of aqueous nanocrystals in the same way.

The improvement of the synthesis of the aqueous CdTe nanocrystals was based on the optimization of the well known experimental procedure [10, 37]. According to the ref [10] the optimum pH value is strongly dependent on the nature of the stabilizer and the recommended value for thioglycolic acid and 3-mercaptopropionic acid is 11.2-11.8. The proposed value for the TGA/Cd ratio is 2.45. In order to investigate the influence of the
initial conditions on the optical properties and quantum efficiency the initial conditions of synthesis (pH and Cd/thiol ratio) were systematically changed.

Briefly, CdTe nanocrystals were prepared as follows [10]. In a typical synthesis 0.985 g (2.35 mmol) of Cd(ClO$_4$)$_2$×6H$_2$O (Alfa Aesar) was dissolved in 125 mL of water, and 5.7 mmol of the thiol stabilizer were added under stirring, followed by adjusting the pH by dropwise addition of a 1 M solution of NaOH. The solution was placed in a three-necked flask fitted with a septum and valves and was deaerated by N$_2$ bubbling for 1 hour. Under stirring, H$_2$Te gas (generated by the reaction of 0.2 g (0.46 mmol) of Al$_2$Te$_3$ lumps with an excess amount of 1 N H$_2$SO$_4$ under N$_2$ atmosphere) was passed through the solution together with a slow nitrogen flow for nearly 20 min. CdTe precursors were formed at this stage. The further nucleation and growth of the nanocrystals proceeded on refluxing at 100°C under open-air conditions (with a condenser attached). The typical evolution of the absorption and luminescence spectra during the synthesis has been shown in Figure 2.3.1.

![Figure 2.3.1](image_url)

Figure 2.3.1. Typical evolution of the absorption and luminescence spectra of a crude solution of CdTe NCs during the synthesis. Experimental condition: pH 11.5, TGA/Cd ratio 1/1.3.
It is possible to determine three main steps in the aqueous synthesis: i) formation of the Cd-thiolate complexes in solution of the cadmium salt and stabilizer, ii) injection of the chalcogen precursors (for example H$_2$Se or H$_2$Te) into the reaction solution and, iii) growing nanocrystals at the temperature of boiling water.

Here, the optimization of the synthesis of CdTe by changing the conditions at the initial stage of synthesis of CdTe NCs namely the pH and TGA/Cd ratio, by maintaining the initial cadmium ion concentration constant. TGA/Cd ratios between 2.45 and 1.1 were used. The experimental data show that decreasing the TGA/Cd ratio leads to a drastic increase of the quantum yield of the CdTe NCs. See Figure 2.3.2.

![Figure 2.3.2](image_url)

Figure 2.3.2. The relationship between TGA/Cd ratio in the initial reaction mixture and quantum yield of a crude solution of CdTe NCs. Experimental conditions: 20 hrs of synthesis, pH 11.5.

In order to understand the influence of the initial conditions of the synthesis on the properties of the NCs, the experimental data were compared with the results of the numerical simulation of the solution composition. Unfortunately, there are only a few reports on the stability constant of cadmium complexes with thiols: thioglycolic acid [38-40], 3-mercaptopropionic acid [39, 41], 2-mercaptopropionic acid [42, 43] and mercaptocand dimercaptosuccinic acid [44]. The most complete data devoted to the study of the cadmium complexes of thioglycolic acid (TGA) over a wide range of pH values were
2. Synthesis of thiol-stabilized nanocrystals.

provided by ref [38]. This data together with the earliest results [39, 40] and together with information about the stability constants of the hydroxy- complexes of cadmium [45], provided us with the complete information about the composition of the cadmium complexes with thioglycolic acid. It is worth to mention that the stability constants of cadmium complexes with thioglycolic acid are much higher than the stability constants of hydroxy- complexes (few orders of magnitude) and as a result hydroxy- complexes play an important role only at very high pH. See Appendix A1 for details of calculations.

Briefly, the calculation of concentration and composition of cadmium complexes was carried out as shown below:

Taking into account the total concentration of the cadmium ions and TGA:

\[
C_{\text{TGA}} = \left[L^{2-} \right] + \left[HL^{-} \right] + \left[H_{2}L \right] +
\]
\[
+ 3\left[\text{CdL}_{3}^{4-} \right] + 2\left[\text{CdL}_{2}^{2-} \right] + \left[\text{CdL} \right] + 2\left[\text{CdH}_{2}L_{2}^{+} \right] +
\]
\[
+ 3\left[\text{CdH}_{2}L_{3}^{-} \right] + 2\left[\text{CdH}_{2}L_{2} \right] + 3\left[\text{CdH}_{2}L_{3}^{2-} \right] \quad (1)
\]

\[
C_{\text{Cd}} = \left[\text{Cd}^{2+} \right] +
\]
\[
+ \left[\text{CdL}_{3}^{4-} \right] + \left[\text{CdL}_{2}^{2-} \right] + \left[\text{CdL} \right] + \left[\text{CdH}_{2}L_{2}^{+} \right] +
\]
\[
+ \left[\text{CdH}_{2}L_{3}^{-} \right] + \left[\text{CdH}_{2}L_{2} \right] + \left[\text{CdH}_{2}L_{3}^{2-} \right] +
\]
\[
+ \left[\text{Cd(OH)}_{2}^{+} \right] + \left[\text{Cd(OH)}_{2} \right] + \left[\text{Cd(OH)}_{3}^{-} \right] + \left[\text{Cd(OH)}_{4}^{2-} \right] \quad (2)
\]

where L represent the TGA^2^- ions

Using the expression for the protonation constants of mercaptoacetate ion:

\[
\beta_{i} = \frac{[L^{2-}]^{i-2}}{[H^{+}]^{i}} \quad (3)
\]

and for the stability complexes:

\[
\beta_{1ij} = \frac{[Cd(H)]_{i}(L)_{j}^{2+i-2j}}{[Cd^{2+}][H^{+}][L^{2-}]^{j}} \quad (4)
\]

the final equations for the equilibrium concentration of cadmium and TGA ions in solution depending only on pH and the total concentration of cadmium and TGA have been obtained:

\[
C_{\text{Cd}} = \left[\text{Cd}^{2+} \right] \left(1 + B_{3}[L^{2-}]^{3} + B_{2}[L^{2-}]^{2} + B_{1}[L^{2-}] + K \right) \quad (5)
\]

\[
C_{\text{TGA}} = B_{0}[L^{2-}] + \left[\text{Cd}^{2+} \right] (3B_{3}[L^{2-}]^{3} + 2B_{2}[L^{2-}]^{2} + B_{1}[L^{2-}]) \quad (6)
\]
where B_0, B_1, B_2, B_3, B_4 and K are parameters, which depend only on pH and stability constants:

$$B_0 = \beta_2[H^+]^2 + \beta_1[H^+] + 1$$
$$B_1 = \beta_{111}[H^+] + \beta_{101}$$
$$B_2 = \beta_{122}[H^+]^2 + \beta_{112}[H^+] + \beta_{102}$$
$$B_3 = \beta_{123}[H^+]^2 + \beta_{113}[H^+] + \beta_{103}$$
$$K = \beta_{10}[\text{OH}^-] + \beta_{20}[\text{OH}]^2 + \beta_{30}[\text{OH}]^3 + \beta_{40}[\text{OH}]^4$$

Numerical simulation of Eqs 5 and 6 should allow the determination of the equilibrium concentration of cadmium ions and TGA ions and finally the concentration of all complexes in solution.

In this calculation a several presumptions which can reduce the validity of our calculation are used. The most important source of deviation is using the concentration of the ions for calculation instead of the activity. A second source of deviation is the low solubility of the uncharged complexes of cadmium (for example CdL). The precipitation of the uncharged species leads to the shifting of the equilibrium and further production of these substances. Thus, precipitation leads to the underestimation of the overall amount of the insoluble complex. It is assumed here that the deviation induced by all of our presumptions is within 10% (see appendix A1.1 for details).

The calculation has shown that only three complexes play an important role at high pH: CdL$_3^{4-}$, CdL$_2^{2-}$ and CdL. **Figure 2.3.3** depict the calculated concentration of important complexes in solution together with the QY of CdTe NCs depending on the TGA/Cd ratio at pH 12. As seen from the figure, changing the TGA/Cd ratio between 5 and 0.85 is followed by a decrease in the concentration of CdL$_3^{4-}$ complex and an increase in the concentration of the CdL complex. At the same time the concentration of the complex CdL$_2^{2-}$ goes through a maximum at a TGA/Cd ratio of approximately 2. Simultaneously, **Figure 2.3.3** shows that the evolution of the quantum yield of CdTe NCs is in good correlation with the concentration of the CdL complex at the initial stage of the synthesis.

In other words the increase of the quantum yield of CdTe with the decrease in the TGA concentration can be attributed to the increase in the concentration of the CdL complex. The following deceleration of the growth of the QY of the nanocrystals at very low values of Cd/TGA ratio (near 1) can be explained by an insufficient amount of stabilizer in the system. In fact the thioglycolic acid plays the role of stabilizer, source of sulfur, surfactant in the system, and is also necessary for the formation of cadmium
2. Synthesis of thiol-stabilized nanocrystals.

complexes in the solution. Actually, there is a competition of factors during the synthesis: i) improving the quality of the nanocrystals with the increase in the concentration of CdL complex (by means of decreasing the concentration of TGA) and ii) the necessity for sufficient amount of stabilizer to provide stability and surface passivation of growing particles to be present in solution. As a result of this competition the optimum concentration of the TGA (TGA/Cd ratio) can exist only under certain conditions in the initial solution.

![Graphical representation of Cd complexes distribution](image)

Figure 2.3.3. Distribution of cadmium complexes in solution and QY of CdTe NCs after 20hrs of synthesis (black dots) depending on the TGA/Cd ratio in initial reaction mixture.

It should be noted that the solution of Cd-precursor at low TGA/Cd ratios is turbid. This fact is additional indirect evidence of the domination of the uncharged, low soluble CdL complex. This observation also means that the CdL concentration has been underestimated as was mentioned above. The turbidity of the solution does not disappear during reflux and the precipitate can be easily removed from the solution of NCs by filtration. The precipitate of CdL plays an additional role as a source of cadmium. Gradual dissolution of the CdL complex during the particle growth could provide a constant rate of transport of Cd ions to the particles. A slow flux of the cadmium precursor provides the possibility to grow the particles under diffusion control which, as has been theoretically
2. Synthesis of thiol-stabilized nanocrystals.

predicted [46], is preferable for narrowing of the size distribution. It’s should be mentioned that precipitation of the CdL complex shifts the equilibrium in the solution towards this complex. Thus, the real amount of this complex is even higher than shown by numerical simulation.

The simulation also shows that the changing of the pH does not really influence the distribution of the cadmium complexes in the solution. As is seen from figure 2.3.4 the distribution of the complexes in solution is stable in a pH range of between 10.5 and 12.5. At the same time the situation in the “real” solution changes. The pH in the initial solution was adjusted by the addition of a certain amount of the 1M NaOH solution. Therefore a different pH means a different volume of the NaOH solution added and as a result different ionic strength. The deviation is about 6% for pH 12 and TGA/Cd ratio 1.3 (about 7.3 mL of 1.0 M NaOH). Thus, it is may be assumed that different ionic strengths could influence the kinetics of nanocrystal growth.

![Figure 2.3.4](image)

Figure 2.3.4. Distribution of cadmium complexes in solution as a function of the pH in the initial reaction mixture.
2. Synthesis of thiol-stabilized nanocrystals.

Figure 2.3.5. Evolution of the positions of the s1-s1 transition in absorption spectra (left) and stokes shift (right) during the synthesis at pH 11.5 (Black), pH 12.0 (Red) and pH 12.5 (Blue).

Figure 2.3.6. Evolution of the QY of CdTe NCs during the syntheses at different pH values (left) and PL spectra of CdTe NCs with the same position of PL maxima (Right). The PL spectra were taken after: 285 min of synthesis (Black), 171 min of synthesis (Red) and 42 min of synthesis (Blue). The same colors in the panels correspond the same pH of synthesis.
The experimental data shows an increase of the pH of the initial solution followed by the acceleration of the rate of the nanocrystal growth (figure 2.3.5 left). At the same time, particles synthesized at pH 12.0 have the smallest Stokes’ shift (near 0.1 eV) (figure 2.3.5 right) and narrower size distribution - a smaller FWHM of the PL spectra (figure 2.3.6 right). The evolution of QY during the synthesis is shown on the figure 2.3.6 left. The largest quantum efficiency was also obtained at pH 12. Thus, pH 12 is found to be an optimum for the synthesis of aqueous TGA stabilized CdTe nanocrystals.

Another important factor which may have an influence on the quality of the thiol stabilized aqueous nanoparticles is the sulfur content. The sulfur content in a typical synthesis is quite high due to thermo hydrolysis of the TGA at high pH and incorporation of the sulfur into the CdTe nanocrystals which is followed by the formation of a mixed phase [10, 47]. Figure 2.3.7C shows the relative shift of the XRD reflexes during the synthesis of nanocrystals. The process of nanocrystal growth (boiling of the nanoparticle solution) followed by the continuous shift of XRD reflexes toward a position corresponding to cubic CdS.

![Figure 2.3.7. XRD patterns of the CdTe NCs synthesized with a TGA/Cd ratio of 1.3 (Red) and 2.45 (black) after 20hrs of synthesis (A). Panel B shows the influence of the TGA/Cd ratio on the relative positions of the XRD reflexes of the CdTe NCs. Panel C presents the evolution of the relative shift of the XRD reflexes of the CdTe NCs during the synthesis.](image)
It should be noted, that reduction of the amount of the stabilizer used for synthesis leads to the reduction of the sulfur content in the nanoparticles. XRD patterns of the CdTe NCs show that reduction of the TGA/Cd ratio results in a smaller shift of the reflexes toward the position corresponding to cubic CdS (see figure 2.3.7 A and B). This finding can be explained by the fact that decreasing the amount of stabilizer in solution during particle preparation and acceleration of the particles growth leads to a decreasing probability of TGA hydrolysis and, as a result, to a lower sulfur content. Thus, increasing the duration of the synthesis as well as the TGA/Cd ratio leads to an increasing of the sulfur content in the CdTe nanoparticles. Thus, changing the pH of the initial solution allows to regulate the rate of particle growth and as a result the amount of sulfur in the CdTe NCs.

2.4. Conclusions

The aqueous synthesis of thiol-stabilized II-VI semiconductor colloidal nanocrystals has been studied. The optimal conditions of synthesis of the ZnSe NCs have been found. The aqueous ZnSe NCs possess narrow size distributions but poor luminescence properties. The influence of the initial conditions of synthesis (structure and concentration of the Cd-Thiol complexes) on the quality of the CdTe nanocrystals has been revealed. The distribution of the complexes of cadmium with TGA has been across a wide range of pH value and concentration of the cadmium ions. Only the CdL$_3^{4-}$, CdL$_2^{2-}$ and CdL (where L is (SCH$_2$COO)$_2^{-}$) complexes play an important role at the across synthetic condition (pH 9.0-12.5). The numerical simulation shows a clear correlation between the concentration of CdL in the initial solution and the photoluminescence quantum yield of the CdTe NCs. Improvement of the QY of CdTe NCs was achieved through decreasing of the TGA/Cd ratio which is preferable for increasing of the concentration of the CdL complex. Reduction of the TGA/Cd ratio allowed preparation of highly luminescent (PL QY up to 50% for the crude solution) CdTe NCs. Thus, the optimum conditions of synthesis for the CdTe NCs is a pH 12 and low TGA/Cd ratio (the best ratio is 1.3). The existence of optimal conditions can be explained by the growing of CdTe particles at an optimum rate. Quick particle
growth leads to an insufficient quality: low crystallinity and a high amount of defects and surface states. Conversely two slow rate leads to incorporation of a large amount of sulfur and the formation of a mixed phase. Decreasing the amount of stabilizer also leads to a decrease in the sulfur content. Thus, judicious choose of the initial conditions of the synthesis can lead to the synthesis of high quality aqueous CdTe nanocrystals.

2.5. References

2. Synthesis of thiol-stabilized nanocrystals.

2. Synthesis of thiol-stabilized nanocrystals.

Post preparative phototreatment of semiconductor nanocrystals.

The post preparative irradiation of the solution of ZnSe and CdTe nanoparticles improves their luminescence properties. In particular, illumination of the ZnSe nanocrystals leads to strong (up to 25-30% photoluminescence quantum yield) band gap UV-blue emission. The irradiation results in an incorporation of sulfur into the particles and in the formation of ZnSe(S) alloyed nanocrystals. In the case of CdTe nanocrystals illumination leads to the drastically improved PL (up to 10 times) and both photoetching and shell formation can be realized.

3.1. Introduction.

The optical properties and, in particular, the photoluminescence of as prepared colloidal QDs can be improved post-preparatively. The creation of inorganic shells in organic [1, 2] and aqueous [3, 4] media, size-selective precipitation [5, 6], photochemical etching [6-9], oxidizing of NCs surface [10, 11] are among the methods for obtaining strong-luminescing nanocrystals. Changing of solution properties (e.g. pH) [6, 12], nature of capping agent [13, 14] or solvent [15] also may lead to drastic improvement of the luminescence properties of the semiconductor nanocrystals.

Recently, photo-assisted methods of post-preparative treatment were shown to be powerful tool to improve the PL QE of the NCs. Worth to mention are the photoetching of thiol-capped CdTe NCs [6], citric acid capped water soluble CdSe NCs [7, 8], TOPO-capped CdSe/CdS/ZnS nanorods [16], peptide coated CdSe/ZnS NCs in water [17], HDA-capped CdSe NCs [18, 19], and the photochemical etching in the presence of HF of TOPO-capped InP NCs [9], and preparation of CdS shell on the surface of CdTe NCs [3]. Photoassisted PL improvement in solid layered structures is also possible [7, 18-20]. A moderate (3-10 times) improvement of the PL QE of the CdTe QDs and the nanorods as
well as a drastic improvement in the cases of CdSe and InP (hundreds of times) were demonstrated.

The several hypothetical mechanisms have been proposed for PL enhancement: i) photoinduced surface etching [6, 9], ii) oxidation of surface (oxide shell formation) [10, 11], iii) photoinduced shell formation [3, 7, 8], iv) reversible photo assisted absorption of water [18, 21] or methanol [22] molecules.

This chapter focuses on the photo-assisted creation of inorganic shell as well as on the photoetching of water soluble semiconductor nanoparticles. Figure 3.1.1 shows photograph of experimental setup for photoetching of the aqueous CdTe nanocrystals.

Figure 3.1.1. The picture of the experimental setup for photoetching of NCs.
3.2. Efficient UV-blue photoluminescing thiol-stabilized water soluble alloyed ZnSe(S) nanocrystals.

As it was shown in the Chapter 2, the PL of “as prepared” ZnSe NCs is negligible and shows mainly a whitish-blue broad trap emission band. The PL QY of this type QDs are normally below 1% [23]. An additional very weak band-edge emission appears only after long times of reflux (see, for example, Figure2.1.1).

The ZnSe NCs were synthesized according to slightly modified standard aqueous synthesis developed for CdTe NCs [6]. See Chapter 2.2 and Ref [24] for details.

In order to improve the PL properties of the ZnSe NCs (enhancement of the band-edge and suppression of the trap-emission), the colloidal solutions were irradiated with the “white light” of a 100 W xenon lamp with a water filter to cut off the NIR part of the spectrum. The intensity of the light was approximately 200 mW/cm² (measured by a Powerlitemeter C5100 (Continuum) with a PowerMax PM30V2 detector). The photochemical treatment was performed as follows. The solutions were exposed to the light and aliquots were taken for spectroscopic measurements after different periods of time. The dependence of the PL properties of selected fraction of NCs on the duration of the irradiation is shown in Figure 3.2.1. After several hours under illumination, the PL QE increases from near zero (≤ 0.1%), being characteristic for the as prepared solutions, up to 10-30% depending on the conditions used. The room-temperature PL QE of the ZnSe nanocrystals was estimated following the procedure of Ref [25] by comparison with Quinine (Fluka) in 1 N H₂SO₄ solution assuming its PL QE to be 51%. Being removed from the light, the colloids showed a reasonable stability. Several months of storage in the dark under air resulted neither in coagulation, nor in recognizable changes in the optical properties. It should be mentioned that ZnSe QDs capped with TGA, MPA or TG showed a similar increase in PL efficiency. However, for both MPA- and TG- capped QDs a pronounced increase also of the trap-emission band under irradiation is observed. Therefore, only the TGA-capped QDs were chosen for more detailed studies.
3. Post preparative phototreatment of semiconductor nanocrystals

Figure 3.2.1. Evolution of the absorption and PL spectra (A) and excitation spectra (B) (emission wavelength 375 nm) of ZnSe NCs during illumination with white light (Xenon lamp, 100 W with a water filter to cut off the NIR part of the spectrum). Inset shows a color photograph of two solutions of the ZnSe NCs before (left) and after (right) illumination. Solutions are excited by 366 nm line of the Hg UV-lamp. Total irradiation time: 422 minutes.

To understand the nature of the photoinduced processes the influence of the chemical composition of the solution on the resulting PL QE was studied. The ZnSe QDs were precipitated from the crude solution by addition of a non-solvent (2-propanol) and subsequent centrifugation. The precipitate was separated from the supernatant and was redissolved in pure water giving a stable colloidal solution with its optical properties being generally similar to the initial one. Purified by this way the QDs were used for preparation of 3 different solutions (S1-S3, see the Table). In addition, the crude solution of NCs was divided into fractions with narrower size distribution (by size-selective precipitation technique [5]) and one of the fractions was used for the preparation of solution S4. The experiments with these solutions as well as with the crude solution (S0) were done under the same conditions and were repeated 3 times to avoid possible mistakes and confirm reproducibility.
As is seen from the Table the phototreatment of the ZnSe QDs proceeds efficiently only in the presence of an excess amount of both TGA and Zn\(^{2+}\) ions in solution. Note that free unreacted stabilizer molecules and Zn\(^{2+}\) ions are present also in the crude solution because they are used for the synthesis in excess over the Se source (see above the reaction recipe).

Table. Chemical composition of the QDs solutions used for irradiation (pH 6.5 by adding NaOH).

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>ZnSe QDs, mmol/L (ref. to Se)</th>
<th>TGA, mmol/L</th>
<th>(\text{Zn}^{2+}), mol/L (in form of (\text{Zn(ClO}_4)))</th>
<th>Result of Phototreatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0 (crude)</td>
<td>10.2</td>
<td>not added</td>
<td>not added</td>
<td>Stable; PL QE of up to 10%</td>
</tr>
<tr>
<td>S1</td>
<td>10.2</td>
<td>-</td>
<td>-</td>
<td>Coagulation after 10 min; no improvement of PL QE</td>
</tr>
<tr>
<td>S2</td>
<td>10.2</td>
<td>42.2</td>
<td>-</td>
<td>Stable; increase of PL QE is negligible</td>
</tr>
<tr>
<td>S3</td>
<td>10.2</td>
<td>42.2</td>
<td>17.4</td>
<td>Stable; PL QE of up to 10%</td>
</tr>
<tr>
<td>S4 (selected fraction)</td>
<td>10.2(^a)</td>
<td>42.2</td>
<td>17.4</td>
<td>Stable; PL QE of up to 25-30%</td>
</tr>
</tbody>
</table>

\(^a\)The absorption is equal to the crude solution in the region of the first excitonic maximum.

As is seen from Figure 3.2.1, the PL efficiency of the TGA-capped QDs increases mainly due to the appearance of a pronounced narrow band gap emission band, while the trap-associated emission is negligible. The position of the PL maximum and the absorption edge shifted to the lower energy region, which is in contrast to the high-energy shift observed recently for the phototching of thiol-stabilized CdTe nanocrystals [6]. Since the QDs studied are in the regime of size-confinement, i.e. a low energy band edge corresponds to larger particles, it can be assumed, that the colloidal ZnSe particles grow under irradiation.

These findings together with the data of the Table allow us to consider that the growth proceeds not through the Ostwald ripening mechanism but instead consumes mainly Zn\(^{2+}\) ions and TGA from the solution. In the case of Ostwald ripening the smaller particles in an ensemble dissolve giving the "monomer" species for the growth of the
larger ones. It is noted, that the observed evolution of the PL properties of the ZnSe(S) NCs is generally followed by a decrease of the Stokes shift.

The appearance of the strong band-gap emission and the small level of the trap-associated one allow us to suggest that such a photoinduced growth is accompanied with a transition of the nanoparticles in the direction of sulfur enriched alloyed particles. Moreover, the small level of surface trap emission can be a result of the formation of an efficient passivating shell. More detailed information can be obtained from the XRD and TEM data (Figures 3.2.2 and 3.2.3).

Figure 3.2.2 XRD patterns of ZnSe NCs before (down) and after (up) irradiation by white light. The line spectra show the cubic ZnSe and ZnS reflection with their relative intensities.

The position of the XRD peaks exhibits a small shift from their normal position for the ZnSe cubic structure. EDX data show that the content of sulfur continually rises during
the irradiation from 19 at% before to 29 at% after the process (the sulfur in the EDX data of the initial samples appears mainly due to the stabilizer (TGA)). Indeed, the particles’ growth under these conditions can proceed only by involving the sulfur as a chalcogenide source, which appears as a product of the photodecomposition or hydrolysis of the thioglycolic acid in solution. As a result, the XRD lines shift to values which are characteristic for ZnSe-ZnS alloys, i.e. located between the positions of the corresponding lines for pure ZnSe and ZnS (Figure 3.2.2). Such kind of XRD-spectrum evolution accompanied also with the growth of thiol-stabilized CdTe(S) QDs is reported in detail recently [4, 22]. The sulfur enriched phase is formed during the phototreatment as a kind of an alloyed shell on the surface of the preformed ZnSe particle cores, followed by a reorganization of the particles’ structure and by this the content of sulfur increases towards the surface of the nanoparticles. The formation of such an alloyed shell constructed from larger band gap material can explain the improvement of the optical properties (higher PL QE and stability) [6, 11].

Figure 3.2.3. High-resolution transmission electron microscopy (HRTEM) image of luminescent ZnSe(S) NCs.

It has to be emphasized, that distinctions between true core-shell and the above mentioned alloyed crystals, with a gradient of the sulfur content, are probably not possible from the point of view of their physical properties. In fact, such small crystals (2-3 nm in
size) have only a few lattice planes per crystal (the lattice constant a is near 0.56 nm for the ZnSe cubic structure, see also Figure 3.2.3). From this, a removal and/or intermixing of a second chalcogenide (S) into the surface layer leads almost automatically to an alloyed crystal structure.

3.3. Post preparative improvement of luminescence efficiency of the CdTe NCs

Commonly used approach for the aqueous synthesis of the CdTe allows to produce NCs with quantum efficiency about 5-10% for “as prepared” particles and up to 40% after applying the size selective precipitation procedure [6]. At the same time the organometallic approach to the synthesis of CdTe NCs leads to QE of nanocrystals up to 65% [26, 27]. Improvement of the QE of water soluble nanocrystals is the important task especially for small green emitting NCs which are normally less stable and emit with less efficiencies. This chapter is devoted to the investigation of the possibility of the improving the QE of CdTe NCs by utilizing both photoetching and photoassisted inorganic shell formation.

The CdTe aqueous nanocrystals were synthesized according to the procedure described in Chapter 2, by using 2.45 TGA/Cd ratio and pH 11.2-11.8. See Appendix 2 and Ref [6] for more details of synthetic procedure. The solution of the NCs was irradiated by the light of 450 W Xenon lamp equipped with the water filter to cut off NIR irradiation. Photoassisted shell formation was performed in solution containing the metal ions and thioglycolic acid. Oppositely, the photoetching can be performed in pure solution of the CdTe NCs in MilliQ water.

The phototreatment was done according to the following procedure. The solutions for treatment were prepared by dissolving $\text{Me(ClO}_4\text{)}_2$ ($\text{Me} = \text{Zn, Cd}$) and TGA in MilliQ water with 4-fold excess of all components in comparison with concentration commonly used for the NCs synthesis. The pH of these solutions was adjusted to 11.4-11.6 by dropwise addition of 1 M solution of NaOH. These solutions are named below as “Zn-TGA” and “Cd-TGA” solutions.

The certain amount of CdTe NCs solution was added to the 0.5 mL of “Zn-TGA” or “Cd-TGA” solutions and volume was adjusted to 2 mL. Final concentrations of metal ions and thioglycolic acid were 0.019M ($\text{Me(ClO}_4\text{)}_2$) and 0.046M (TGA) correspondingly. Irradiation was performed in quartz vessel under permanent flow of nitrogen.
Worth to mention, that addition of the TGA leads at the beginning to the decreasing of PL intensity (near 25% of initial QY for 630 nm emitting particles in 10^{-4} M TGA solution). Decreasing of QY after addition TGA to the solution of the CdTe NCs size selected fraction can be explain by the partial dissolution of nanoparticles surface due to formation of the stable complexes of cadmium with TGA. Actually, the instability constant for CdL, CdL$_2$ and CdL$_3$ are $10^{11.45}$, $10^{15.63}$ and $10^{19.11}$ correspondingly [28] and solubility product constant for CdTe is near 10^{-42} [29, 30] (see Appendix 1 for more details about complexes formations). Irradiation of such system leads to the establishment of the new equilibrium in the system followed by the recovering of initial PL intensity and finally to the improving of the PL properties of the CdTe NCs.

Figure 3.3.1 shows the typical changes in the absorption and photoluminescence properties of CdTe NCs irradiated by UV-white light in the Cd-TGA and Zn-TGA solutions. Such solutions of nanocrystals may absorb light only with wavelength in region between 200 nm (limit for quartz, material of flask for irradiation) and 500 nm (band gap absorption of CdTe NCs). The illumination of small (green emitting) nanocrystals both in Zn-TGA and Cd-TGA solution leads to the drastic improvement of the luminescence of NCs. Both solutions demonstrate the red shift in absorption and luminescence spectra which can be attributed to the growing of nanoparticles during photo-assisted ZnS- and CdS-shell formation. Formation of the CdS and ZnS NCs as by product in the solution should not be excluded.

The aqueous synthesis of thiol capped CdTe NCs at basic pH (11.2-11.8) resulted in the incorporation of the sulfur in to the nanoparticles [6, 31]. Sulfur atoms are incorporated in the nanoparticles during thermal decomposition of the stabilizer molecules, but photo-assisted decomposition should not be excluded (as a result of using unprotected flask). The big particles can contain relatively large amount of sulfur atoms (8 day of reflux) in comparison with the small (green emitting) which synthesis takes only 1-2 hours. Continuous shift of CdTe-cubic phase XRD reflexes during the synthesis of CdTe NCs toward the position of reflexes corresponding to the CdS-cubic phase has been demonstrated in Ref [6]. The direct heat-assisted synthesis of CdS NPs from water soluble thiols and cadmium salt [32] as well as the irradiative-assisted CdS formation [33] are well known.
Figure 3.3.1 Absorption and normalized PL spectra of CdTe NCs before (black) and after (red) irradiation in the presence of Cd-TGA (left) and Zn-TGA (right) solutions. The irradiation time is 800 minutes.

Therefore, for small CdTe nanocrystals, which have only a few lattice plains and relatively small sulfur content, shell growing leads to formation of CdTe(CdS) and CdTe(ZnS) alloyed shells. In this case it is impossible to distinguish between pure core/shell system and S or ZnS enriched external alloyed shell. Figure 3.3.1 also shows that irradiation of the CdTe NCs in the Zn-TGA solution leads to the smaller red shift than irradiation in Cd-TGA solution. Smaller red shift appears, in the case of ZnS shell, due to large band gap of the ZnS and as a result due to the smaller possibility for distribution of the electron-wave function in the nanoparticles.

Thus the large CdTe particles have the surface enriched with sulfur and further incorporation of sulfur can not lead to the improvement of PL and pronounced red shift. Oppositely a small, wide band gap particle can consume sulfur from solution more efficiently. As a result, the competition of processes of photoetching and shell formation leads mainly to the etching in case of large (red and IR emitting) nanoparticles and to the shell formation for small (green emitting) nanoparticles. Therefore effectiveness of shell growing is size dependent. (See Figure 3.3.2).
3. Post preparative phototreatment of semiconductor nanocrystals

![Absorption and normalized PL spectra](image)

Figure 3.3.2 Absorption and normalized PL spectra of CdTe NCs before (black) and after (red) irradiation in the Cd-TGA solution. Irradiation time is 805 min.

In order to investigate the possibility of the formation of CdS NCs as a “by product the solution of red-emitting CdTe nanocrystals was irradiated during 24 hours. **Figure 3.3.3** shows the absorption and PL spectra of irradiated CdTe together with PLE spectrum.

A PL spectra of irradiated sample have two clear distinguishable peaks: broad and weak peak at 400-500 nm and strong narrow at 585 nm correspondingly (**Figure 3.3.3A**, black line). A PLE spectrum (emission 470 nm, **Figure 3.3.3C**) shows that this emission can be assigned to the trap-related luminescence of CdS NPs. Oppositely, the emission at 585 nm can be assigned to a band gap luminescence of the CdTe/CdS core/shell structure (**Figure 3.3.3B**). Panel A shows the increase of band gap emission during irradiation (blue line shows emission before phototreatment). Increasing of QE of nanoparticles together with the appearance of “blue” shoulder in absorption spectra allow assume that shell formation is followed by the CdS NCs by-product formation.
3. Post preparative phototreatment of semiconductor nanocrystals

Figure 3.3.3 Absorption, luminescence and excitation spectra of the CdTe/CdS core/shell NCs obtained by the phototreatment during 24 hours. Panel A presents PL (excitation at 300 nm) spectra before (blue) and after (black) phototreatment. Panels B and C (black lines) present the same absorption spectrum, but the scale of the Y axes in B is chosen to be 10 times smaller compares to that C in order to pronounce absorption maximum of ca 560 nm. The PLE spectra (red lines) measured at 600 nm (B) and at 470 nm (C) are also shown.

In general, the irradiation of the aqueous solution of semiconductor NCs can initiate at least two processes i) photodissolution (photoetching) of the NCs and ii) photoassisted modification of NC surface [3].

Photoetching is a process of photo-assisted degradation of nanoparticles with releasing of cadmium ions and by product in the solution followed by decrease of the particle size. Photoetching leads to the blue shift both in absorption and luminescence spectra. At the initial stage photoetching improves PL properties of nanocrystals as a result of removing of surface defects. Further irradiation can lead to the complete degradation of the nanocrystals, which are loosing their stability and precipitate as a result of decomposition of molecules of the stabilizers.
Oppositely to the photoetching, the photoassisted modification can lead to the increasing of particles size, i.e. shell formation. Shell formation is followed by the red shift in optical spectra as a result of a weaker confinement of electron–hole pairs. The appearance of electron transitions corresponding to the shell materials in absorption spectra is also possible. Shell formation in aqueous media is going through consumption of cadmium ions and molecules of stabilizer. Shell formation leads to the drastic improvement of quantum efficiency as a result of passivation of the surface states by material of inorganic shell.

Irradiation of the pure solution of nanocrystals may lead only to the photoetching of nanoparticles. The addition of some amount of molecules of stabilizer improves drastically the stability of the nanocrystals suspension under irradiation.

Results of competition of photoetching and photo-assisted shell formation depend on the nature of semiconductor material and stabilizer. Materials with different band gaps possess different energy of electrons and holes which can be involved in photochemical processes. From the other side, different stabilizer molecules have different ability to take part in the photo-assisted processes. In particular, the post-preparative photochemical treatment of thiol-stabilized ZnSe and CdTe nanocrystals leads to the improvement of their luminescence properties with different contribution of photoetching and shell formation mechanisms.

3.4. Conclusions.

The post-preparative photochemical treatment of thiol-stabilized ZnSe and CdTe nanocrystals has been investigated.

Phototreatment of ZnSe NCs is going mainly through inorganic shell formation. The illumination of “dark” ZnSe NCs leads to the strong (up to 25-30% PL QE) band gap luminescence. Phototreatment is followed by increase of NC’s size, due to incorporation of the sulfur in to the particles, which results in the formation of ZnSe(S) alloyed protective shell on the surface of nanoparticles.

Oppositely, photo-treatment of CdTe NCs goes through the competition of i) photoetching of nanocrystals and ii) photo-assisted shell formation. Both processes are size
dependent. Small (green emitting) CdTe NCs undergo mainly the shell formation and show pronounced red shift both in absorption and luminescence spectra. Increase of particles’ size is followed by the improvement of the photoetching efficiency due to the increasing of sulfur content.

The post preparative irradiation of aqueous CdTe nanocrystals allows achieving the PL quantum efficiency as high as 50-60% which is comparable with quantum efficiencies of CdTe NCs synthesized by hot injection procedure in organic media.

3.5. References.

3. Post preparative phototreatment of semiconductor nanocrystals

3. Post preparative phototreatment of semiconductor nanocrystals

4. Electrochemical properties of aqueous nanocrystals.

Chapter 4

Electrochemical properties of aqueous nanocrystals.

Electrochemical studies of aqueous thiol-capped CdTe and ZnSe nanocrystals have demonstrated several distinct oxidation and reduction peaks in the voltammograms. The peak positions are dependent on the nanocrystals’ size and on the post preparative treatment. Experimental observations allow to assign these peaks to the oxidation of Se- or Te-related surface traps for ZnSe and CdTe NCs, respectively. The intra-band-gap energy levels of aqueous NCs assigned to these Te- and Se-related trap states shift towards the top of the valence band as the nanocrystal size increases. The position of these intra band gap states are linearly depend on the position of the first excitonic transition of the NCs and move towards higher potentials with size. The photo-assisted formation of ZnSe(S) NCs leads to even more pronounced and nonlinear shift of the intra band gap levels. Finally, the trap level merges into the valence band. Moving of the trap level is followed by a drastic increase of the luminescence of the ZnSe(S) nanocrystals (from negligible to up to 25-30%).

4.1. Introduction

As opposed to other important physicochemical properties of colloidal semiconducting nanocrystals less attention has been paid to their electrochemical behavior [1-5]. Several reports have been devoted to the study of a correlation between the optical band gap of the NCs and the band gap estimated from the oxidation and reduction peak positions in cyclic voltammograms [1, 2]. These studies have been performed in non-aqueous media and the results obtained are somewhat contradictory. Whereas Kucur et al. [2] found good agreement between electrochemical and optical E_g values for CdSe NCs with different sizes, Bard and coworkers [1] revealed that the electrochemical band gaps were smaller than the optical gaps for CdS NCs. In their recent work, Bard et al. found that the electrochemical band gap (~ 2.1 eV) between the first anodic and cathodic peaks was close to the optical E_g value (2 eV) for TOPO-capped CdTe nanoparticles [6]. The authors of the electrochemical studies noted that upon changing the particle size the reduction and oxidation peaks in the voltammograms were shifted in the direction predicted by theory [1-3, 6].
4. Electrochemical properties of aqueous nanocrystals.

Thus, since the size dependent electrochemical behavior of nanoparticles is not studied properly yet here we report on the study of the correlations between the electrochemical properties of MPA and TGA capped CdTe NCs of different sizes and their optical properties. Another point of our interest is the size dependent behavior of ZnSe NCs, a material not being studied so far, and especially an in situ observation of a light induced formation on alloyed ZnSe(S) NCs.

4.2. Size dependent electrochemical properties of CdTe nanocrystals.

The CdTe NCs stabilized by thioglycolic (TGA) or 3-mercaptopropionic (MPA) acids were synthesized according to the procedure described previously (see details of the procedure in Appendix 2 and Ref [7]). Portions of CdTe NCs of different sizes were taken from the crude solution at different refluxing times and size selective precipitation was applied to the crude solutions of the nanocrystals. Each portion of the crude solution was divided into a series of fractions with narrower size distributions by this means [7, 8]. This procedure allowed also washing out reaction by-products and excessive stabilizing agents, which is important taking into account the high-sensitivity of the electrochemical methods.

A series of the electrochemical experiments was carried out using pre-adsorbed NCs. The cleaned electrodes were dipped into the deaerated colloidal solutions of the NCs for 5 min. This procedure results in the adsorption of NCs on the electrode surface (see Figure 4.2.1) giving a surface concentration corresponding to approximately 50% surface coverage. The nanocrystal-coated electrodes were then washed with buffer solution and transferred to the electrochemical cell under Ar atmosphere. The cell electrolyte was deaerated by purging purified Argon for 30 min (see Appendix 2 and Ref [9] for experimental details).

The cyclic voltammogram (CV) of the bare Au electrode in buffer solution is shown in Figure 4.2.2 (black line). The current is negligible in the wide potential region from 1.0 to 0.5 V. Oxidation of the gold electrode surface starts from 0.5 V with an anodic current peak at 0.67 V that gives a cathodic current peak at 0.36 V during the reverse potential scan.
4. Electrochemical properties of aqueous nanocrystals.

Figure 4.2.1. High-resolution SEM images of the surface of the Au electrode before (a) and after adsorption of CdTe nanocrystals stabilized with TGA (b) and MPA (c).

Figure 4.2.2. Voltammograms of the Au electrode with pre-adsorbed CdTe nanocrystals in blank buffer solution. The black line presents the CV of the bare Au electrode. Scan from E_{OC} in anodic direction (red) Scan from E_{OC} in cathodic direction (green). The potential sweep rate was 20 mV s$^{-1}$. E_{OC}: open circuit potential.

The CV curves of the gold electrode with preadsorbed CdTe NCs shows several additional electrochemical peaks. When the potential of the electrode is swept from the open circuit potential (E_{OC}) in the positive direction (red line), two distinct anodic peaks can be recorded in the potential regions from 0.3 to 0.4 V and from 0.75 to 0.8 V. The peak positions depend on the CdTe NC size (see **Figure 4.2.3**). The subsequent potential cycling between -0.5 and 1.2 V results in the disappearance of the anodic peaks, and the CV curves become similar to those recorded in the supporting electrolyte, suggesting that the oxidation products block the electrode surface. **Figure 4.2.2** (green line) also shows the
first CV curve for the Au electrode with preadsorbed CdTe NCs by scanning the potential in the negative direction from the open circuit potential. A cathodic current peak is observed at about \(-1.2\) V, which is most likely associated with the reduction of the NCs. This peak is absent if the potential is initially scanned in the positive direction through the anodic peaks.

Figure 4.2.3 shows the first CV curves of CdTe NCs of four different sizes at the Au electrode in the blank buffer solution both for TGA stabilized CdTe NCs (left) and for MPA stabilized CdTe NCs right (right). In both cases the first anodic peak moves in the negative direction with decreasing the NCs size.

Figure 4.2.3 Voltammograms of the Au electrode in blank buffer solution after preadsorption of the TGA- (left) and MPA-capped (right) CdTe nanocrystals of four different sizes. The potential sweep rate was 20 mV s\(^{-1}\).

The dependence of the potential corresponding to the first anodic peak for the NCs of different sizes on the PL peak energy is shown in **Figure 4.2.4**. To assure reproducibility, three different size-series of TGA-capped CdTe NCs were investigated. As can be seen, this dependence is practically linear both for TGA-capped and for MPA-capped CdTe NCs and the potential of the first oxidation peak increases with increasing the particle size or with decreasing the NCs band gap. Characteristically, the slope of the \(E_{A1}\)
4. Electrochemical properties of aqueous nanocrystals.

vs. E_{PL}^{max} curve is markedly greater for MPA-capped NCs in comparison with TGA-capped ones.

Figure 4.2.4. Dependence of the peak A_1 potential on the photon energy corresponding to the PL peak for three series of TGA-capped CdTe NC size-selected fractions and for a series of MPA-capped CdTe NC size-selected fractions.

Figure 4.2.5 depicts the first cyclic voltammograms of the cathodic reduction of TGA-capped CdTe NCs of two different sizes. The reduction peak also moves in the negative direction with decreasing NC size.

Since the positions of both the anodic and the cathodic current peaks depend on the NC size, it was of interest to elucidate the relationship between the electrochemical redox potentials and the semiconductor band gap energies. The separation between the peaks A_1 and C_1 is 1.4 – 1.6 V which is markedly smaller than the optical band gap of the CdTe NCs (2.0 – 2.3 eV) estimated from their spectra. At the same time, the A_2 - C_1 peak separation correlates better with the optical gap, remaining slightly smaller than the latter value (cf. Table 4.1).
4. Electrochemical properties of aqueous nanocrystals.

Figure 4.2.5. Cathodic voltammograms of the Au electrode in buffer solution after the pre-adsorption of TGA-capped CdTe nanocrystals of different sizes on the electrode surface. The potential sweep rate was 20 mV s\(^{-1}\).

Table 4.1. Comparison of the band gap energies estimated for TGA-capped CdTe NCs of three different sizes from the PL maximum (\(E_{\text{g, lum}}\)) position with the electrochemical estimates \(\Delta E\) (the difference between oxidation and reduction peaks).

<table>
<thead>
<tr>
<th>Size of CdTe NCs(^a), nm</th>
<th>(\Delta E_1) (A(_1)-C(_1))(^b), V</th>
<th>(\Delta E_2) (A(_2)-C(_1))(^b), V</th>
<th>(E_{\text{g, lum}}), eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>1.43</td>
<td>1.95</td>
<td>2.26</td>
</tr>
<tr>
<td>3.3</td>
<td>1.445</td>
<td>1.91</td>
<td>2.13</td>
</tr>
<tr>
<td>3.6</td>
<td>1.47</td>
<td>1.85</td>
<td>1.96</td>
</tr>
</tbody>
</table>

\(^a\) the NC size was estimated using the energy of the first absorption peak [10]

\(^b\) peak separation at the scan rate of 20 mV s\(^{-1}\).

According to our expectation, the smaller CdTe NCs should be oxidized at more positive potentials and reduced at more negative ones than the larger NCs since the top of the valence band is shifted towards lower energies and the bottom of the conduction band is moved to higher energies with decreasing the particle size. It is important to note that the direction of the size dependent shift of the second anodic peaks and cathodic peaks is in accord with this expectation. In contrast, the first oxidation peak behaves abnormally, i.e. it shifts to the negative direction with decreasing the NC size.

These observations allow us to assume that the first anodic peak can be related to the oxidation of surface defects forming intra-band-gap surface states. The existence of trap states has been proven by fluorescence studies on CdS, CdSe and CdTe NCs prepared in
4. Electrochemical properties of aqueous nanocrystals.

Aqueous media [11, 12]. Generally, the traps can be associated with both Cd and Te dangling bonds on the nanocrystal surface where the oxidation of CdTe NCs will start. A previous high resolution photoelectron spectroscopy study of TGA-capped CdTe NCs has revealed that a larger amount of Te atoms occurs on the surface of low luminescent NCs in comparison with highly luminescent ones [13]. The traps at the NC surface may give rise to non-radiative recombination pathways. Since the low luminescent samples possess much more Te atoms at the surface than the high luminescent ones, it becomes apparent why the peak A\textsubscript{1}, tentatively related to the oxidation of these traps, is markedly higher for the lowly luminescing fractions.

The shift of this peak to more positive potentials with increasing the NC size indicates that the energy levels of Te-related traps move to lower energies when the NC size increases. Here it is important to note that this effect is markedly dependent on the chain length of the thiol ligands. Figure 4.2.4 clearly demonstrates that the first anodic peak is shifted more drastically to the positive direction with decreasing the CdTe band gap for MPA-coated NCs as compared to TGA-coated ones. The shift becomes so large for the largest available NCs synthesized with MPA (PL maximum at about 800 nm), that the peak simply merges into the second anodic peak. This allows us to assume that for these NCs the energy levels of Te-related traps appear inside the valence band. For such kind of particles the highest possible photostability and PL life-times are expected, which corresponds very well with our preliminary observations [14].

Whereas the detailed mechanism of the electrochemical oxidation of the CdTe NCs remains largely unknown at the moment, the second anodic peak is most likely to be due to the oxidation of the rest of the CdTe core. The adsorption of reaction products on the electrode surface (both at the Au and ITO electrodes) suppresses the nanocrystal electrooxidation at the second and further scans. The electrochemical activity of thus passivated electrodes can be again restored by cleaning the electrode surface (see Experimental section). Since the second anodic peak shifts only slightly in the positive direction with decreasing the NCs size, the electrochemical band gap calculated as a separation between the second anodic peak and the cathodic peak (A\textsubscript{2} – C\textsubscript{1}) is less than the optical band gap especially for the smallest NCs. A similar difference has been previously observed for thioglycerol-capped CdS NCs and was attributed to a multielectron transfer process where the electrons (or holes) are consumed by fast coupled chemical reactions due to decomposition of the particles [1]. A total multielectron reaction usually involves
4. Electrochemical properties of aqueous nanocrystals.

several consecutive steps and the redox potential of the rate-limiting step may be different from that of the total reaction.

4.3. \textit{In situ} electrochemical observation of photo induced formation of alloyed ZnSe(S) nanocrystals.

The photochemical treatment is a successful method for improving the photoluminescence quantum yields \cite{7, 15-18} of semiconductor nanocrystals as well as for narrowing of their size distribution \cite{7, 19}. (See Chapter 3 for details of the photochemical treatment of ZnSe and CdTe NCs.)

Taking into account the high sensitivity of the electrochemical methods to the NC surface states as well as the similarity of ZnSe and CdTe NCs (TGA-capping, aqueous synthesis, etc) the evolution of the ZnSe NC surface properties under light irradiation was chosen to be an object for a cyclo voltammetric study.

The nanocrystals as-prepared possess a weak broad whitish-blue emission that is mainly associated with trap states. The irradiation of thus obtained ZnSe NCs with “white light” led to a dramatic improving of the PL properties, i.e. narrow UV-blue band-edge emission appeared and reached in the best cases quantum efficiencies of up to 25-30%. The improvement was explained in terms of the formation of a sulfur enriched shell on the surface of the nanocrystals. Photodestruction of the excess thiol molecules is assumed to be the source of the sulfur which together with the also present zinc ions are consumed for the shell formation \cite{17}. (See for example Figure 3.2.1 for a typical evolution of the absorption and PL spectra of thioglycolic acid (TGA) stabilized ZnSe NCs under irradiation with a 100 W Xe lamp.)

The photochemical treatment was performed as follows. A size selected fraction of nanocrystals (83µL) was added to 10 mL of a fresh solution of Zn(ClO₄)₂×6H₂O (16mM) and TGA (40mM) at pH 6.6. In order to assign the anodic peaks and understand better the details of the shell formation the behavior of the ZnSe NCs in a solution of TGA only (40mM, pH 6.6.) and in pure water has also been studied. The solution was illuminated by the light of a high-pressure Hg lamp equipped with an aqueous IR filter and a filter to cut the UV irradiation with $\lambda < 300$ nm. The total intensity of the photochemically active light in the wavelength range from 300 to 400 nm was about 75 mW cm⁻². All experiments were
performed in a quartz cell under open air conditions and intensive stirring. Aliquots of the solution were taken for spectroscopic and electrochemical measurements after different periods of time.

For electrochemical measurements the aliquots were precipitated by 2-propanol and centrifuged. The precipitates were separated from the supernatant and redissolved in acetate buffer giving stable colloidal solutions. After that, the gold foil was dipped for 5 minutes into the buffer solution of ZnSe NCs. Our previous study on CdTe NCs showed that efficient adsorption (at least 50% of surface coverage) of thiol-capped NCs on the gold surface took place under these conditions (cf. Chapter 4.2 and ref. [9]). The electrode with adsorbed ZnSe NCs was thoroughly washed in fresh buffer solution and re-placed into the electrochemical cell as working electrode for the investigations. Electrochemical measurements were performed in a standard three-electrode two-compartment cell with a platinum counter electrode and an Ag | AgCl | KCl(sat.) electrode as the reference electrode. See Appendix A2.6 for experimental details.

Typical cyclic voltammograms of four different fractions of the “as prepared” ZnSe NCs preadsorbed on the Au electrode are shown in Figure 4.3.1A. The anodic scans of the electrodes have three different peaks in the potential region 0.35 – 0.50 V (A_1), 0.66-0.67V (A_2) and 0.93-0.94 V (A_3), correspondingly. Figure 4.3.1B presents the size dependent behavior of the potentials A_1 and A_3 of this series of differently sized ZnSe NCs.

The evolution of the cyclic voltammograms of the ZnSe NCs during the photochemical treatment in the solution of TGA and zinc ions is shown in Figure 4.3.2A. The position of the first anodic peak (A_1) drastically shifts, while the positions of the second (A_2) and the third (A_3) peaks appear to be stable during the illumination. However, it has to be noted that the position of the second peak (A_2) becomes unrecognizable due to the masking by the moving first anodic peak. The evolution of the peak positions A_1 and A_3 and the PL intensity as a function of the illumination time are shown in Figure 4.3.2B and 4.3.2D, respectively. The figure shows a clear correlation between first peak (A_1) position and the PL properties of the NCs. The increasing of QY of ZnSe NCs is followed by the shifting of the A_1 peak toward valence band. Finally peak merges the valence band and the PL intensity decreases due to the photodegradation of the solution of the ZnSe NCs as a result of long-time irradiation with the powerful light source.
4. Electrochemical properties of aqueous nanocrystals.

Figure 4.3.1 Four examples of typical anodic voltammograms of the ZnSe NCs (A) and dependence of the peak positions A_1 and A_3 on the photon energy corresponding to the first excitonic maxima for the full series of the TGA-capped ZnSe NC size-selected fractions (B). ZnSe NCs preadsorbed on Au electrodes in acetic buffer solution (pH 6). The black dashed line presents the voltammogram of the bare Au electrode. The potential sweep direction was $-0.15 > 1.19 > +0.375$ V. The potential sweep rate was 20 mV s$^{-1}$.

Figure 4.3.2 Evolution of the cyclic voltammograms of ZnSe NCs preadsorbed on the Au electrodes upon the time of the photochemical treatment (A), evolution of the relative positions of first (A_1) and third (A_3) anodic electrochemical peaks (B), Position of the 1s-1s electronic transition (C), and the PL intensity (D) during the photochemical treatment of the ZnSe NCs. Open and full squares present the evolution of the ZnSe NCs in the solution containing TGA and Zn$^{2+}$ ions and TGA only, respectively. The potential sweep direction was $-0.18 > 1.05 > 1.33 > -0.18$ V. The potential sweep rate was 20 mV s$^{-1}$.
According to our previous findings for analogously prepared CdTe NCs (cf. ref. [9] and Chapter 4.2), the first anodic peak \(A_1 \) can be associated with the oxidation of the intra-band-gap surface states. Moreover, the position of this peak in the case of the CdTe NCs was shown to be size dependent, i.e. it was moving to lower energies (higher electrochemical potentials) with the increase of the NCs’ size [9]. The maximum size dependent shift of the \(A_1 \) peak was about 120 mV for the first excitonic transition range of the NCs from 550 nm to ca. 635nm. In the case of the ZnSe NCs studied, the size-span is more limited compared to the CdTe series. However, ZnSe NCs exhibiting a first excitonic transition between 312 and 350 nm are available and the maximum size dependent shift of the potential \(A_1 \) is about 170 mV. The shift depends linearly on the optical band gap of the nanoparticles (Figure 4.3.1B) which is consistent with the findings for the CdTe NCs.

Under irradiation by white light the shift of the first excitonic maximum from 336 nm to 365 nm (about 340 meV) is accompanied by a shift of the \(A_1 \) peak of as much as 400 mV. The observed behavior can be explained as a simultaneous influence of both increasing of NCs’ size and changing of the surface composition during the assumed shell formation. Thus, the photochemical growing of the protecting shell improves the PL quantum yields of the ZnSe NCs and is followed by the moving of the surface states towards the valence band.

The irradiation of the solution of the ZnSe NCs in a mixture with TGA only demonstrates neither PL increasing nor a shift in the absorption spectra while the CV curves show the typical shift of the first peak \(A_1 \) towards the positive direction (see Figure 4.3.2, squares). In fact, the absence of the zinc ions in the solution makes impossible the photo-assisted formation of the ZnS shell which is necessary for the PL improvement [17]. At the same time photoexcitation of the ZnSe NCs may lead to the dissolution of the relatively unstable surface selenium atoms or to their replacement by the sulfur being present as a result of the TGA degradation. The presence of an excess of TGA in this case provides an additional stabilization to the NCs. Both dissolution and replacement of the Se atoms should result in an anodic shift of the oxidation peak corresponding to the surface Se atoms (peak \(A_1 \)) which corresponds to the experimental finding (Figure 4.3.2A, open squares). Neither a PL improvement nor changes in the electrochemical behavior were observed when the phototreatment was done in the absence of both, Zn ions and TGA in solution. A degradation of the colloidal solution took place during only a few minutes under these conditions making impossible further investigations.
4. Electrochemical properties of aqueous nanocrystals.

This supports our assumption that TGA plays a role of both a sulfur source and stabilizing agent for the NCs under phototreatment.

The small second peak (A_2) may be associated with oxidation of TGA molecules. The position of this peak matches the oxidation potential of the TGA solution [9] as found recently. A small amount of TGA may appear in the solution due to the incomplete washing as well as due to the existence of an equilibrium between the TGA on the surface of the NCs and in the solution [20].

The third anodic peak (A_3) can be assigned to the direct oxidation of the core of the ZnSe NCs. The slight shift of this peak (about 10 mV) towards lower potentials can be the result of a band gap decrease of the ZnSe NCs during the shell formation. The photochemical treatment gives rise a competition of two processes: i) the increase of the band gap due to the incorporation of sulfur into the NCs, and ii) the decrease of the band gap as a result of the nanocrystal growth (size-confinement effect). The overall result of this competition is a decrease of the band gap [17]. It is noted that the decrease of the optical band gap during illumination reached about 0.35 eV which is considerably higher than the electrochemically observed shift of the position of the A_3 peak. This founding can be explained by the more effective shift of the conductive band in comparison with valence one.

4.4. Conclusions

Electrochemical studies of thiol-capped CdTe NCs in an aqueous buffer solution (pH 9.2) have demonstrated several distinct oxidation and reduction peaks in the voltammograms, with the peak positions being size dependent. While the size-dependence of the reduction (C_1) and oxidation (A_2) potentials can be attributed to moving the energetic band positions owing to the quantum size effect, an extraordinary behavior was found for the oxidation peak A_1 observed at less positive potentials. This peak moves to more negative potentials as the NCs size decreases. This peak is assigned to the oxidation of Te-related surface traps. The results obtained indicate that the energy levels of these traps are shifted to lower energies as the NCs size increases, allowing thus to explain the higher photostability of the larger NCs.

The thiol-capped aqueous ZnSe NCs demonstrate the same type of behavior. The A_1 anodic peak is responsible for the general quality of the nanocrystals and correlate very
well with the QY of the ZnSe NCs. The evolution of the position of anodic peak A\textsubscript{1} in the voltammetric curves of the ZnSe NCs is a function of the improving NCs quality (i.e. the formation of a sulfur-enriched surface shell) during the photochemical treatment. Thus, the cyclic voltammetry confirms the previously proposed mechanism of the ZnSe NC phototreatment.

Thus the current research has demonstrated that the CV method is very sensitive to the nanocrystal surface state, providing complimentary information for better understanding of special size-dependent optical properties of semiconductor NCs.

4.5. References

4. Electrochemical properties of aqueous nanocrystals.

Chapter 5

The Assembling of Semiconductor Nanocrystals

The arranging of the semiconductor nanoparticles in superstructures is shown in this chapter. Coupling mechanisms utilized for this purpose include electrostatic and covalent interactions. The layer-by-layer assembly and covalent attachment of nanoparticles to the functionalized surface (aminated) are employed. The fast Förster energy transfer in nanocrystal superstructures is observed.

5.1. Introduction

Ordered assemblies of nanocrystalline materials receive increasing interest in recent years. Nanoparticles (often referred to as artificial atoms) are used to build up artificial molecules and solids [1]. These arrays and superlattices offer new perspectives for the application of nanoparticles for example in optoelectronic devices. Various approaches toward assembling nanocrystals are known. Three dimensional superlattices of semiconductor nanoparticles have been built up via self organization [2] and crystallization [3-5]. Another main route towards ordered structures of nanocrystals is covalent binding with and without special linker molecules. These efforts have a direct correlation to the investigations in the fields of covalent coupling of nanoparticles to biomolecules and surface functionalization of nanocrystals [6].

Worth to mention that, still only little is known about the properties of solids evolving from these assembled structures. Some work has been published by Heath et al. on collective properties of interacting metal nanoparticles [7, 8]. Depending on the interparticle distance, those solids reflect dipole-dipole interaction followed by pure electronic coupling when the particles come into closest contact. Later, Remacle and Levine studied theoretically electron transfer processes in arrays of quantum dots [9]. A shift of the first electronic absorption of small cadmium sulfide clusters to lower energies compared to their solutions was first published by Vossmeier et al. [10] for closely packed layers of cadmium sulfide nanocrystals. The layers were built up from solutions of the
clusters by a spin-coating technique and were examined by absorption spectroscopy. Besides some further studies on Förster energy transfer in semiconductor quantum solids consisting of particles of different sizes [11, 12] little is known about the interaction between semiconductor nanoparticles.

This chapter is devoted to the layer-by-layer assembling of semiconductor nanocrystals with and without interfacial polyelectrolytes as well as direct covalent linking of nanocrystals with aminated surface.

5.2. Layer-by-layer assembly of semiconductor nanocrystals

Uniform and multicomponent thin films consisting of functional molecules and/or nanocrystals may be formed by applying the so-called layer-by-layer (LbL) assembly technique. Figure 5.2.1 shows schematically the LbL procedure which was originally introduced for the assembly of polymer electrolytes [13] and which was recently adapted to the deposition of charged nanocrystals both on flat [14, 15] and on curved surfaces [16, 17]. As seen from the figure the formation of monolayers of deposited material is based on the electrostatic interaction between the nanocrystals and the surface. Alternation of the sign of the charges of the species to be deposited allows to grow quite thick multilayers while the introduction of new components in one of the layers yields the opportunity of virtually non-limited but controllable variations of LbL-multistructure compositions [18, 19]. The application of the method described for the modification of artificial opals allowed to obtain intrinsically light emitting photonic crystals which were successfully used for investigations on photonic confinement phenomena [20, 21].

The following standard cyclic procedure is normally used for the preparation of layered structures of negatively charged nanocrystals: (i) dipping of the substrate into a solution of polyelectrolyte (PE) (e.g. 5 mg/ml in 0.5 M NaCl) for 10 min (poly(ethyleneimine) - PEI was used for the first layer and poly(diallyldimethylammonium chloride) - PDDA for the 2nd and further layers); (ii) rinsing with water for 1 min; (iii) dipping into aqueous dispersions of the nanocrystals for 20 min; (iv) rinsing with water again for 1 min (cf. Figure 5.2.1). On each surface exposed this procedure results in a ‘bilayer’ consisting of a polymer/NC composite. Figure 5.2.2 shows spectra of an example of a polymer/CdTe “bilayer”.
5. The Assembling of Semiconductor Nanocrystals.

Figure 5.2.1. Schematic representation of the LbL assembly involving polyelectrolyte molecules and oppositely charged nanoparticles. The procedures 1-4 can be repeated to assemble more PE/nanoparticles bilayers.

Figure 5.2.2 PL and absorption spectra of a polymer/CdTe ‘bilayer’ (black lines) in comparison with a solution of CdTe NCs (blue lines) together with a PLE spectrum of a layered structure (red line).
The cycle can be repeated as many times as necessary to obtain a multilayer film of desired thickness. The thickness of the LbL film depends linearly on the number of “bilayers”. Moreover, a linear dependence of the absorption in the region of the first absorption maximum on the number of bilayers was observed [22, 23]. Figure 5.2.3 presents an example of a PDDA-ZnSe layered structure.

Figure 5.2.3 Example of the evolution of film absorption during the LbL assembly of PDDA/ZnSe film. The inset shows the PL of a structure constructed from 5 “bilayers”.

Worth to mention that in some cases the LbL-assembly appeared to be non-efficient. When using freshly prepared colloidal solutions of nanocrystals occasionally incomplete layer formation was observed. Low-molecular weight by-products of the synthesis as well as nanocrystal precursors can be responsible for this because they may be attracted by the polyelectrolyte sub-layers with higher efficiency than the nanocrystals themselves. Aging of nanocrystal colloidal solutions might lead to the reduction of the activity of those poisoning species due to their association with particle shells, aggregation.
5. The Assembling of Semiconductor Nanocrystals.

and precipitation, etc. To avoid this problem, i.e. to make nanocrystal colloidal solutions useful for LbL without aging them, an electrophoretic activation of the colloidal solutions of thiol-capped nanocrystals has been developed. The nanocrystal solution to be activated is placed in a 2-electrode electrochemical cell and 1.5-2 V potential is applied to the cell. The commonly used electrodes are flat stainless steel or ITO-glass plates of 1 cm\(^2\) working surface and 5 mm gap in-between. The current density drops from ca. 100-120 µAcm\(^{-2}\) in the very beginning down to 5-10 µAcm\(^{-2}\) after one hour of this treatment. The above mentioned by-products and possibly other charged species are electrophoretically assembled or reacted at the electrodes and thus the cleaned activated solutions can be used for the LbL-deposition as usual after removal from the cell.

5.3. Electrostatic assembly of semiconductor nanocrystals

However, in these LbL systems the distance between donors and acceptors can not be shorter than the thickness of the polyelectrolyte monolayer. In order to avoid this limitation which may be unfavorable for efficient interparticle interactions (see below) a new kind of LbL structure has been generated [24]. The building blocks of the system were water soluble CdTe NCs with opposite surface charges (the charge of the CdTe NCs depends on the kind of stabilizer [25]) which were LbL assembled without polyelectrolytes between the particle layers. However, we encountered intrinsic limitations like an easy removal of the already deposited layers and the unbeneificial balance of charges during the film growth [26]. These limitations might have less influence in the case of the assembly of only one NC bilayer, while at the same time the inter-layer distance in this case would be further reduced leading to more efficient interactions. Bilayers of oppositely charged NCs can indeed be formed by a direct assembly of water-soluble CdTe NCs capped with amino- and carboxyl-group terminated short chain thiols (see inset figure 5.3.1).
5. The Assembling of Semiconductor Nanocrystals.

Figure 5.3.1 Examples of two close-packed structures utilizing MA-capped CdTe NCs (positively charged) of approximately 2 nm (black solid lines) and 4 nm (red dotted lines) as the bottom layer. MPA-capped nanocrystals (negatively charged) of 6-8 nm in diameter were used as the top layer in both structures shown. Whereas the absorption spectra of the structures show only the features corresponding to the bottom layer, the photoluminescence of the top layer (centered at ca. 780 nm) dominates in both structures.

The preparation of this layered structure was performed in two steps. In the first step a polyelectrolyte sub-layer was formed by this standard procedure: (i) dipping of the substrate into PEI solution for 20 min; (ii) rinsing with water for 1 min; and (iii) dipping into PSS solution (iv) and final rinsing in water. The first PEI-layer was used to improve the quality of the layered structure in terms of uniform surface coverage [15]. In a second step, close-packed nanoparticle structures were assembled on the surface of the polyelectrolyte bilayer as follows. The substrate with the PE bilayer was (i) dipped into aqueous dispersions of the 2-mercaptoethylamine (MA) -capped nanocrystals for 20 min, (ii) rinsed with water for 1 min and finally (iii) dipped into an aqueous dispersion of the mercaptopropionic acid (MPA) or thioglycolic acid (TGA) capped nanocrystals again for 20 min. Such a procedure results in a layered structure consisting of a support/polymer/NCs-NCs composite. Typical absorption and photoluminescence spectra
of the system are shown in figure 5.3.1. The composite of the nanoparticles exhibits absorption only from the bottom layer of NCs (the absorption from the top NC layer is below the limit of the sensibility of our spectrophotometer). At the same time emission associated mainly with the top layer is observed which is taken as a first hint to efficient energy transfer (see below).

5.4. Covalent coupling of SC NCs

5.4.1. Covalent linking of CdTe NCs to flat surfaces

Besides electrostatic coupling of NCs the generation of covalent bonds between selected nanocrystalline entities constitutes a very attractive and vast field. As an example of bridging two different sorts of NCs the linkage of CdTe nanocrystals stabilized by TGA and MA can be shown [27]. The coupling has been carried out directly at the ligands without using an additional bridging molecule only with the aid of carbodiimide acting as a mediator for the reaction. The reaction between nanocrystal and silica bead is described in Scheme 5.1.

Scheme 5.1 of carbodiimide assisted amide bond formation.

While the covalent coupling of SC NCs is still in an infant status the acting chemistry may well be applied to the coupling of NCs to pre-treated surfaces. Accordingly, the appropriate fractions of CdTe NCs for the conjugation with various substrates like glass, silica or silicon with different surfaces shapes have been used [28]. A general illustration of the binding of the acid-stabilized NCs to aminated surfaces with the aid of carbodiimide as a mediator in the formation of the amide bond is shown in Figure 5.4.1 (inset).
The silicon wafers, the quartz and the glass slides were pre-treated before conjugation in the following manner: the glass (Menzel-Glaser, Germany) and the quartz slides (Hellma Optic GmbH, Germany) as well as the silicon wafers (with a 400nm SiO₂ layer) were cleaned by sonication first in 0.1 M NaOH solution, then in methanol, and finally in pure water for 15 min each. To form an amino-terminated layer on their surface, the substrates were immersed in a 3 vol% solution of 3-(aminopropyl)-triethoxysilane (Fluka) in 95 % methanol (named below “3APTES solution”) under sonication for 15 min followed by thorough rinsing with methanol. Drying was performed by a thermal treatment at 120°C for half an hour in an oven.

The details of the linking of the CdTe NCs to flat substrates are as follows. An appropriate amount (0.1-0.5 mL) of aqueous solutions of CdTe NCs was mixed with 0.5 mL of MES buffer (2-(N-morpholino)ethanesulfonic acid 0.1 mM, Sigma) and 8 mL of Milli-Q water. The preliminarily cleaned aminated substrate was dipped into this solution. Subsequently, 0.5 mL of a solution of 1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (Sigma) 0.025 M and N-hydroxysuccinimide (Aldrich) 0.025M (named
below “EDC/NHS solution”) was added under vigorous stirring which was continued for another 10 min. After conjugation, the slides were washed three times in Milli-Q water and rinsed thoroughly in acetone and toluene and dried under vacuum conditions. Figure 5.4.1 shows optical spectra of the modified slides. The PL properties of the films prepared were found to be more stable in time as compared to analogously LbL-assembled monolayer films. Although the surface coverage estimated from the optical densities of the modified glass slides is roughly 100% (i.e. one monolayer), the formation of island-like multilayers could not be excluded [14].

5.4.2 Covalent linking of CdTe NCs to silica and glass beads.

The method described is not limited to flat substrates but is of more generality as shown by successful attempts to coat glass spheres of micron size by CdTe NCs [28]: A dispersion (5 wt % in 10% solution of ethanol in water) of borosilicate glass microspheres (2 ± 0.5 µm, Duke Sci. Co., USA) was treated with 0.1 M NaOH for 15 minutes under sonication and washed three times in methanol by centrifugation. The treated microspheres were immersed in the 3APTES solution under sonication for 15 min and washed thoroughly with methanol by centrifugation. The final methanol dispersion was heated up to the boiling point for 1 hour. After that, the microspheres were separated from the methanol, redispersed in 0.5 ml of MES buffer and subsequently 0.1 ml of an aqueous solution of CdTe NCs and 0.5 ml of the EDC/NHS solution was added to the dispersion under vigorous shaking which was continued for another 10 min. The conjugation was terminated by the addition of an excess amount of 0.1 M glycine solution. The spheres were washed three times with Milli-Q water and stored in an appropriate solvent like water or DMF. In Figure 5.4.2 displayed a fluorescence microscopy image of the glass spheres conjugated with the CdTe NCs. The persistency of the luminescence of the NCs is nicely seen. This luminescence is not altered for at least 3 months. The inset shows a SEM image of one particle of the same sample providing an impression of the coverage of the spheres with nanoparticles.
The Assembling of Semiconductor Nanocrystals.

Figure 5.4.2. Fluorescence microscopy image of glass spheres conjugated with CdTe NCs. The inset shows a SEM image of one of those particles.

Figure 5.4.3 shows some optical properties of conjugates of CdTe NCs with silica beads. For the generation of these conjugates the CdTe NCs of two different sizes, namely 3 – 4 nm in diameter and 6 – 8 nm in diameter, respectively have been used. The absorption spectra of the conjugates possess well pronounced first electronic transitions and strong emissions. The positions of the absorption and luminescence maxima relate well to the sizes of the NCs in accord with the size quantization effect being operative in semiconductor nanoparticles of such sizes. It is seen that the emission of the larger particles reaches into the near-IR spectral region and that absorption spectra of monolayers of NCs have been gained in this study.

For the preparation of the silica beads we used a well known literature method [29]. Tetraethyl orthosilicate (1,5ml) was added to a solution of ammonium hydroxide (2 ml) in ethanol (50 ml) in order to prepare particles at around 100 nm in diameter. The reaction mixture was stirred for 24 h to yield silica nanoparticles. The amino-functionalization of the particles’ surfaces was accomplished by the addition of 25 µl of 3APTES to the reaction mixture and continuing stirring for additional 24 hours. After this, the mixture was heated up to the boiling point for 1 hour. The cooled mixture was washed three times with ethanol by centrifugation to give a stable dispersion of amino-functionalized silica spheres. Before conjugation, the silica particles were transferred into DMF by consecutive centrifugation and adding of fresh portions of DMF.
Conjugates of CdTe NCs with aminated silica beads have been prepared as follows. 0.05 ml of aqueous solutions of the CdTe NCs and 0.25 ml of the dispersion of the aminated silica particles in DMF were added to 0.70 ml of DMF. Then, 0.5 mL of the EDC/NHS solution (in DMF) was added under vigorous shaking. The shaking was continued for another 5-20 min. The conjugation was stopped by centrifugation of the silica particles. The conjugated silica particles were washed 3 times with pure DMF and stored as dispersions in the dark.

5.4.3 Covalent linking of CdTe NCs to the functionalized Latex beads.

The method of carbodiimide-assisted linking may also be used for formation of ester bonds in non aqueous media. In order to demonstrate conjugation through ester bond formation the CdTe NCs with surface OH groups were coupled with latex beads whose surface were modified by –COOH and –SO\textsubscript{2}OH groups.
The linking solution contained N,N'-diisopropylcarbodiimide (DIC, 0.1M) and 4-dimethylaminopyridine (DMAP, 0.01M) in methanol. In order to prepare the non-aqueous suspension of latex beads consecutive centrifugation and redispersion in fresh methanol have been used. Finally, a methanol suspension of latex beads with 4.8×10^{-6} mol of the –COOH group per mL was obtained. The methanol soluble CdTe NCs (1.6×10^{-6} M, 3.6 nm in diameter; see Appendix 2.3 for details) were used for the coupling reaction (see Appendix 2.2 for details of the CdTe NCs synthesis).

Conjugates of CdTe NCs with functionalized latex beads have been prepared as follows. 100µL of the latex beads dispersion were added to 1 mL of methanol solution of CdTe NCs and afterwards 10 µL of linker solution were added under extensive stirring. The mixture was stirred overnight and washed through consecutive centrifugation and adding of fresh methanol. Finally a stable suspension of CdTe–modified latex beads in methanol was obtained. Figure 5.4.5 shows the SEM images and optical spectra of the conjugated latex beads.

![Figure 5.4.5](image)

Figure 5.4.5. SEM images of latex beads conjugated with CdTe NCs (left) and optical spectra of the conjugates (red lines) in comparison with methanol solution of CdTe NCs (black lines).
The formation of ester bonds between methanol and the latex beads can not be excluded. Actually, there is a competition between the conjugation of latex beads with OH-groups of thioglycerol-capped CdTe NCs and with OH-groups of the solvent (methanol). The conjugation of methanol molecules does the beads’ surface still accessible for the CdTe NCs since each latex bead has one carboxy-group per 0.92 nm² which is much smaller then cross section of the CdTe nanoparticles (for 3.6 nm particles). Thus, only few carboxy-groups have the possibility to be conjugated with CdTe nanoparticles. Other carboxy-groups are still free for conjugation with molecules of methanol (solvent). Both i) steric effects and ii) kinetic competition of molecules of stabilizer and solvent lead to the high amount of linked methanol molecules. Nevertheless, conjugation of latex beads with CdTe NCs is sufficiently effective to produce nicely covered surfaces.

5.5. Rapid Förster energy transfer

To investigate the Förster energy transfer from smaller (green emitting, PL maximum at approx. 555 nm) to bigger NCs (red emitting, 650 nm) in LbL layered assemblies two different structures both consisting of 10 polyelectrolyte/NCs bilayers have been prepared. The first structure consists of 5 bilayers of the same NCs size followed by 5 bilayers of the other NCs size on top while the second structure consists of alternating bilayers of NCs of both sizes, as is schematically shown in Figure 5.5.1. The disappearance of the green PL band and the simultaneous relative amplification of the red emission is inherent for both structures and is a consequence of the Förster energy transfer (FRET), i.e. energy transfer takes place between donor and acceptor NCs, when the interparticle distance is smaller than the so-called Förster radius. At the same time the efficiency of the FRET appears to be relatively higher in the case of alternating layers. Indeed, the mean distance between the NCs of different sizes is smaller in the case of the alternating structure. In the other case only the closest red and green NC layers participate in the energy transfer efficiently, while others are too far apart. Furthermore, the applicability of the LbL method for the creation of even more complex structures has been demonstrated. This structure consisted of alternating bilayers of NCs of three different sizes with a gradual decrease of the electronic band gap and it shows PL originating from the biggest NCs only, while the features corresponding to all NCs’ sizes appear in the absorption spectrum (Figure 5.5.2)
5. The Assembling of Semiconductor Nanocrystals.

Figure 5.5.1. Absorption and PL spectra of the LbL formed assemblies sketched on the right hand side. Green and red layers correspond to the emission colour of the particles constituting the assembled PE/NCs bilayers.

Figure 5.5.2. Absorption and PL spectra of the LbL structure consisted of alternating bilayers of NCs of three different sizes.
The FRET efficiency of thin alternating films of NCs of 2.4 and 3.5 nm in size with PDDA as opposite polyelectrolyte was estimated to be as high as 50% with an average interlayer energy transfer rate of \((254 \text{ ps})^{-1}\) reaching the value of \((134 \text{ ps})^{-1}\) for certain subspecies in the inhomogeneous distribution of the donor NCs having larger spectral overlap with the acceptor NCs [30].

5.5.1 Förster energy transfer in the close-packed structures.

As described above LbL-composite can be prepared with NCs as building blocks only, i.e. without polyelectrolytes in between the NC layers. These structures have been made in order to study Förster energy transfer in nanocrystal solids, assuming that the FRET will be facilitated by a smaller mean interlayer distance. The bilayer structure is supposed to be composed of MA-capped CdTe NCs (donors) in the bottom layer and TGA-capped CdTe NCs (acceptors) in the top layer (Figure 5.3.1). For comparison, two monolayer samples comprising only donors (MA-capped CdTe NCs) or only acceptors (TGA-capped CdTe NCs) are also deposited on the polymer underlayer. For both NC sizes the electronic transitions can be distinguished in the absorption spectrum of the bilayer sample, although the contribution of the acceptor NCs is reduced in comparison to the monolayer sample. This is not surprising because the bottom layer of the donor NCs is deposited on a polymer underlayer in both cases, favoring the attachment of the NCs, while the top layer of acceptor NCs in the bilayer sample is deposited onto a pre-formed donor NC layer, which is apparently limited in its ability to attract and accommodate oppositely charged NCs in comparison to a polymer underlayer. This is indicated schematically by an incomplete layer of acceptor NCs in the inset of Figure 5.3.1. The use of electric-field directed layer-by-layer assembly (EFDLA) [31] which relies on the additional attraction of NCs by applying an electric field to the substrate may allow to overcome this problem. The absorption spectrum of the bilayer sample can be reproduced by a linear superposition of 1.0x the donor and 0.33x the acceptor absorption spectra. PL spectra show that almost all of the emission from the bilayer sample originates from the acceptor NCs, while the contribution from the donor NCs is strongly diminished. From the quenching of the donor and the enhancement of the acceptor NC PL in the bilayer sample, the efficiency of energy transfer in the bilayer structure is estimated to be ~80%.

In order to figure out the energy transfer rate, the streak camera data binned by wavelengths rather than time was analyzed. Figure 5.5.3 compares the PL decay of the
5. The Assembling of Semiconductor Nanocrystals.

donor NCs in the bilayer sample with the PL decay of the donor NCs in the monolayer sample at the same wavelength.

Figure 5.5.3. Fluorescence decays of the donor NCs in the monolayer donor sample (dotted line) and the donor NCs in the bilayer sample (solid line). In both samples the PL is integrated from 500 to 525 nm. The 1/e times are 286 ps and 57 ps, respectively. The inset sketches the different decay channels of an exciton in a NC of the donor layer including the corresponding timescales. Thick solid lines represent the first excitonic transition, thin lines represent vibronic progressions and dashed lines indicate trap states from where the excitons decay nonradiatively. Apart from a resonant energy transfer of excitons in donor NC groundstates, a recycling of trapped excitons by resonant transfer to a radiating state in an acceptor NC is also possible on an unknown timescale.

To ensure that the donor decay in the bilayer sample is not affected by PL cross-talk from the acceptor NCs a wavelength-binning region of interest from 500 nm to 525 nm has been chosen. For both samples the PL transients appear as non-exponential decays as it is typical for thiol-capped CdTe NCs [30, 32]. Nevertheless, one can deduce a 1/e decay time which decreases from 286 ps for the monolayer sample down to 57 ps for the bilayer sample. A transfer rate of (71 ps)$^{-1}$ is calculated from these numbers which is 3.5 times higher than the average transfer rate reported before for a CdTe NC bilayer structure with a polymer linker between the layers [30]. If one chooses the wavelength binning region of interest being more shifted to the high energy side of the donor spectrum (from 475 to 500
nm), an energy transfer time as low as 50 ps is derived, which is very close to the energy transfer rates of \((38 \text{ ps})^{-1}\) predicted by Klimov et al. [33]. We attribute this increase of the energy transfer rate to the reduced average distance between the NC layers by eliminating a polymer linker in between. From the decay times provided above we derive an energy transfer efficiency of 80\%, consistent with the efficiency we have calculated from time integrated PL spectra.

5.6. Conclusions

The arranging of semiconductor nanoparticles in superstructures has been shown. The layer-by-layer assembly and direct electrostatic assembling of CdTe NCs were used for the preparation of layered structures. A system with alternating layers of nanocrystals with different sizes (i.e. band gaps) has been constructed. Effective FRET is possible in these structures. The layer-by-layer assembly may also be applied for the preparation of a “monolayered” structure through formation of “sandwich” PE-CdTe layers. Fast Förster energy transfer in such nanocrystal superstructures is observed.

The covalent attachment of nanoparticles to functionalized surfaces (aminated inorganic substrates and carboxy-functionalized latex beads) is used for the formation of monolayered structures. The carbodiimide assisted amide- or ester- bond formation was used in order to link nanocrystals with substrates at mild conditions in various media (water and methanol). The higher stability of such structures in comparison with conventional LbL techniques has been shown. Covalent coupling was applied to various flat (glass, silicon and quartz slides) and spherical (silica, glass and latex beads) substrates. Therefore, using carbodiimide chemistry opens the possibility to form stable layers of semiconducting nanocrystals on surfaces of various functionalized substrates.
5. The Assembling of Semiconductor Nanocrystals.

5.7. References

Summary

The present thesis focusses on the synthesis of aqueous thiol-stabilized II-VI semiconductor nanocrystals, their post-preparative photo-treatment, their electrochemical characterization and the preparation of ordered superstructures using nanocrystals (NCs) as building blocks.

In particular, the first successful synthesis of aqueous ZnSe NCs has been developed and its optimal conditions have been found. The “as prepared” aqueous ZnSe NCs possess a narrow size distribution but have negligible and broad (deep trap) emission. The photoluminescence (PL) quantum yield (QY) of the ZnSe NCs is improved by a post-preparative photochemical treatment. The illumination of ZnSe NCs by “white light” of a xenon lamp leads to strong (up to 25-30 % QY) band gap PL. This phototreatment leads to the formation of a ZnSe(S) alloyed shell. Due to the incorporation of sulfur into the particles their size increases. The proposed mechanism has been confirmed by an electrochemical study.

An improvement of the PL properties of the CdTe NCs synthesized in aqueous media is shown. The influence of the initial conditions of the synthesis (structure and concentration of the Cd-thiol complexes in the synthesis solution before injection of the H₂Te) on the quality of the CdTe nanocrystals is revealed. The distribution of the complexes of cadmium with the stabilizer thioglycolic acid (TGA) is calculated in a wide range of pH values and concentrations of the cadmium ions. It is found that only CdL₃⁴⁻, CdL₂²⁻ and CdL (where L is (SCH₂COO)₂⁻)) complexes play an important role under the synthetic conditions used (pH 9.0-12.5). The results of the numerical simulation show that the CdL concentration in the initial solution correlates clearly with the PL QY of the CdTe NCs. An improvement of the QY of the CdTe NCs is achieved by decreasing the TGA/Cd ratio which leads to an increasing concentration of the CdL complex. Reducing the TGA/Cd ratio allows the preparation of strongly luminescing (PL QY up to 50% for the crude solution) CdTe NCs.
6. Summary

Another possibility to improve the PL of CdTe NCs is again the photochemical treatment. The illumination of a solution of the CdTe NCs leads to i) photoetching of the nanocrystals and ii) to a photo-assisted formation of a protective shell. Both processes are size dependent. Small CdTe NCs undergo mainly the process of shell formation and show a pronounced red shift both in absorption and in the luminescence. Thus, the post preparative irradiation of aqueous CdTe nanocrystals as well as the changing of the initial conditions in the synthesis results in PL QYs as high as 50-60% which is comparable with the QY of CdTe NCs synthesized by the hot injection procedure in organic media. The CdTe NCs exhibiting this sufficiently high PL QY and this simple water based synthetic procedure offers a good compatibility with biological surroundings and superior stability against oxidation.

Electrochemical properties of thiol-capped CdTe and ZnSe NCs which were pre-adsorbed on an electrode are studied. The voltammograms demonstrate several distinct oxidation and reduction peaks with the peak positions being size dependent. The size-dependence of the reduction and the second oxidation peaks can be attributed to moving the energetic band positions owing to the quantum size effect. An extraordinary behavior (moving to more negative potentials as the NC size decreases) was found for the first oxidation peak (observed at less positive potentials). This peak can be assigned to the oxidation of Se- and Te-related surface traps, respectively. The results obtained indicate that the energy levels of these traps are shifted to lower energies as the NCs size increases leading finally to an enhanced emission QY. The process of the photo-assisted shell formation (ZnSe NCs) is reflected by the position of the first oxidation peak. This peak moves towards the direction of the conduction band of the ZnSe NCs correlating with an improvement of the PL QY of the NCs. Finally, the peak merges with the valence band of the ZnSe NCs. Thus, the current research has demonstrated that electrochemical methods provide important information about surface states and the size-dependent behavior of semiconductor NCs.

The arranging of semiconductor nanoparticles in superstructures has been studied. The layer-by-layer assembly and the direct electrostatic assembly of CdTe NCs is used for the preparation of layered structures. A system with alternating layers of nanocrystals with different sizes (i.e. band gaps) has been constructed. Effective Förster resonant energy transfer (FRET) is possible in this kind of structures. The layer-by-layer assembly may also be applied to the preparation of “mono-layered” structures through
the formation of “sandwich” polyelectrolyte-CdTe layers. Extremely fast FRET in such nanocrystal superstructures is observed.

The covalent attachment of nanoparticles to functionalized surfaces (aminated inorganic substrates and carboxy-functionalized latex beads) is utilized for the formation of monolayer structures. The carbodiimide assisted bond formation is used in order to link nanocrystals with substrates under mild conditions. The covalent attachment of semiconductor NCs through an amide- and an ester-bond formation in various media (water and methanol) is shown. A higher stability of such structures in comparison with the conventional LbL techniques is observed. Covalent coupling is applied to various flat (glass, silicon and quartz slides) and spherical (silica, glass and latex beads) substrates. Therefore, the use of the carbodiimide chemistry opens the possibility to form stable layers of semiconducting nanocrystals on the surface of various functionalized substrates.
Appendix 1

Calculation of the distribution of the complexes of cadmium with thioglycolic acid.

Here the calculation of the distribution of the concentration of cadmium complexes as a function of the pH and TGA/Cd ratio is presented. This calculation is carried out to compare its result with experimental data (quantum yield, stokes shift etc) and assumes the importance of different complexes for the successful synthesis of aqueous NCs. The stability constants of cadmium complexes with thioglycolic acid were taken from ref [1]. These data together with information about the stability constants of the hydroxy-complexes of cadmium [2] which may play an important role at very high pH, provides us with a full set of information about complexes in solution (see table).

Table. Stability constants of Cadmium(II) complexes in solution containing thioglycolic acid.

<table>
<thead>
<tr>
<th>Complex.</th>
<th>Initial ions</th>
<th>Logarithm of stability constants</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd(SCH$_2$CO$_2$)$_3$</td>
<td>Cd$^{2+}$, 3 SCH$_2$CO$_2$$^{2-}$</td>
<td>Logβ_{103} = 19.11±0.04</td>
<td>[1]</td>
</tr>
<tr>
<td>Cd(SCH$_2$CO$_2$)$_2$</td>
<td>Cd$^{2+}$, 2 SCH$_2$CO$_2$$^{2-}$</td>
<td>Logβ_{102} = 15.63±0.1</td>
<td>[1]</td>
</tr>
<tr>
<td>Cd(SCH$_2$CO$_2$)$_3$</td>
<td>Cd$^{2+}$, SCH$_2$CO$_2$$^{2-}$</td>
<td>Logβ_{101} = 11.45±0.2</td>
<td>[1]</td>
</tr>
<tr>
<td>CdH(SCH$_2$CO$_2$)$_2$</td>
<td>Cd$^{2+}$,H$^+$, SCH$_2$CO$_2$$^{2-}$</td>
<td>Logβ_{111} = 18.68±0.1</td>
<td>[1]</td>
</tr>
<tr>
<td>CdH(SCH$_2$CO$_2$)$_3$</td>
<td>Cd$^{2+}$,H$^+$, 2 SCH$_2$CO$_2$$^{2-}$</td>
<td>Logβ_{112} = 24.30±0.2</td>
<td>[1]</td>
</tr>
<tr>
<td>CdH(SCH$_2$CO$_2$)$_3$</td>
<td>Cd$^{2+}$,H$^+$, 3 SCH$_2$CO$_2$$^{2-}$</td>
<td>Logβ_{113} = 28.35±0.1</td>
<td>[1]</td>
</tr>
<tr>
<td>CdH$_2$(SCH$_2$CO$_2$)$_3$</td>
<td>Cd$^{2+}$, 2 H$^+$, 2 SCH$_2$CO$_2$$^{2-}$</td>
<td>Logβ_{122} = 30.88±0.1</td>
<td>[1]</td>
</tr>
<tr>
<td>CdH$_2$(SCH$_2$CO$_2$)$_3$</td>
<td>Cd$^{2+}$, 2 H$^+$, 3 SCH$_2$CO$_2$$^{2-}$</td>
<td>Logβ_{123} = 36.34±0.2</td>
<td>[1]</td>
</tr>
<tr>
<td>Cd(OH)$_2$</td>
<td>Cd$^{2+}$, OH</td>
<td>Logβ_{10} = 3.92</td>
<td>[2]</td>
</tr>
<tr>
<td>Cd(OH)$_2$</td>
<td>Cd$^{2+}$, 2OH</td>
<td>Logβ_{20} = 7.65</td>
<td>[2]</td>
</tr>
<tr>
<td>Cd(OH)$_3$</td>
<td>Cd$^{2+}$, 3OH</td>
<td>Logβ_{30} = 8.7</td>
<td>[2]</td>
</tr>
<tr>
<td>Cd(OH)$_5$</td>
<td>Cd$^{2+}$, 4OH</td>
<td>Logβ_{40} = 8.65</td>
<td>[2]</td>
</tr>
</tbody>
</table>

The expression for the total concentration of cadmium and thioglycolic acid through the equilibrium concentration of cadmium ions and concentration of fully dissociated thioglycolic acid allows to find the equilibrium concentration of each ion. The equilibrium concentration of all ions and complexes depends only on the total concentration of TGA, cadmium salt and pH (at a given temperature). Knowledge about the equilibrium concentration of cadmium ions and the concentration of completely dissociated thioglycolic acid allows the calculation of the concentration of each complex in solution.

Details of the calculation of the concentration and composition of cadmium complexes are shown below:

Eq 1 expresses the total concentration of TGA in solution:

\[
C_{\text{TGA}} = [L^2] + [HL] + [H_2L] + \\
+ 3[CdL_3^4] + 2[CdL_2^2] + [CdL] + [CdH_1L_1^1] + \\
+ 2[CdH_1L_2^1] + 3[CdH_1L_3^3] + 2[CdH_2L_2] + 3[CdH_3L_3^2]
\] (1)

In order to express the concentrations of the cadmium complexes through the equilibrium concentration of cadmium ions [Cd^{2+}], the concentration of fully dissociated thioglycolic acid [L^2] and pH the equations for the stability constant:

\[
\beta_{1ij} = \frac{[Cd(H)_i(L)_j^{(2+i-2j)}]}{[Cd^{2+}][H^+]^{i}[L^2]^{j}}
\] (2)

and for the protonation constant of thioglycolic acid

\[
\beta_i = \frac{[(H_iL)^{i-2}]}{[L^2][H^+]^i}
\] (3)

can be used.

Substitution of **eqs 2** and **3** in to **eq 1** and by using the values of the stability constants (see table) and protonation constants of thioglycolic acid (\(\beta_1 = 5.62 \times 10^9\) and \(\beta_2 = 1.41 \times 10^{13}\) correspondingly [1]; in 1M NaClO₄) allows the expression of the total concentration of TGA through the equilibrium concentration of cadmium ions [Cd^{2+}] and fully dissociated thioglycolic acid [L^2]:

78

\[C_{\text{TGA}} = [L^2^-] + \beta_1[L^2^-][H^+] + \beta_2[L^2^-][H^+]^2 + \\
+ 3\beta_{103}[Cd^{2+}][L^2^-]^3 + 3\beta_{113}[H^+][Cd^{2+}][L^2^-]^3 + 3\beta_{123}[H^+][Cd^{2+}][L^2^-]^3 + \\
+ 2\beta_{102}[Cd^{2+}][L^2^-]^2 + 2\beta_{112}[H^+][Cd^{2+}][L^2^-]^2 + 2\beta_{122}[H^+][Cd^{2+}][L^2^-]^2 + \\
+ \beta_{101}[Cd^{2+}][L^2^-] + \beta_{111}[H^+][Cd^{2+}][L^2^-] \] \((4) \)

Grouping the like terms together in to eq 4:

\[
C_{\text{TGA}} = [L^2^-] \left(1 + \beta_1[H^+] + \beta_2[H^+]^2\right) + \\
+ [Cd^{2+}] \left(3[L^2^-]^3(\beta_{103} + \beta_{113}[H^+] + \beta_{123}[H^+]^2) + \\
+ 2[L^2^-]^2(\beta_{102} + \beta_{112}[H^+] + \beta_{122}[H^+]^2) + [L^2^-](\beta_{101} + \beta_{111}[H^+]\right) \] \((5) \)

where all expressions in brackets depend only on the pH of the solution.

\[
B_0 = \beta_2[H^+]^2 + \beta_1[H^+] + 1 \quad (6) \\
B_1 = \beta_{111}[H^+] + \beta_{101} \quad (7) \\
B_2 = \beta_{122}[H^+]^2 + \beta_{112}[H^+] + \beta_{102} \quad (8) \\
B_3 = \beta_{123}[H^+]^2 + \beta_{113}[H^+] + \beta_{103} \quad (9)
\]

Using the pH dependent parameters \(B_0, B_1, B_2, B_3\) finally allows the expression of the total TGA concentration through equilibrium concentration of cadmium \([Cd^{2+}]\) and thioglycolic acid \([L^2^-]\):

\[C_{\text{TGA}} = B_0[L^2^-] + [Cd^{2+}](3B_3[L^2^-]^3 + 2B_2[L^2^-]^2 + B_1[L^2^-]). \] \((10) \)

It is possible to express the total concentration of cadmium in solution in the same way. The overall cadmium in solution is in the form of cadmium (II) ions, complexes with TGA and hydroxo-complexes:

\[C_{\text{Cd}} = [Cd^{2+}] + \\
+ [CdL_1{}^4^+] + [CdL_2{}^2^-] + [CdL] + [CdH_1L_1{}^1^+] + [CdH_1L_2{}^1^-] + \\
+ [CdH_1L_3{}^3^-] + [CdH_2L_2] + [CdH_2L_2{}^2^-] + \\
+ [Cd(OH)_1{}^1^+] + [Cd(OH)_2] + [Cd(OH)_3{}^1^-] + [Cd(OH)_3{}^2^-] \] \((11) \)

The equation for the stability constant eq 2 allows to express the complex’s concentration through the equilibrium concentration of cadmium (II) and the concentration of fully deprotonated TGA ions:

\[C_{Cd} = [Cd^{2+}] + \beta_{103}[Cd^{2+}][L^2^-]^3 + \beta_{113}[H^+][Cd^{2+}][L^2^-]^3 + \beta_{123}[H^+]^2[Cd^{2+}][L^2^-]^3 + \\
+ \beta_{102}[Cd^{2+}][L^2^-]^2 + \beta_{112}[H^+][Cd^{2+}][L^2^-] + \beta_{122}[H^+]^2[Cd^{2+}][L^2^-]^2 + \\
+ \beta_{101}[Cd^{2+}][L^2^-] + \beta_{111}[H^+]^2[Cd^{2+}][L^2^-] + \\
+ \beta_{10}[Cd^{2+}][OH^-] + \beta_{20}[Cd^{2+}][OH^-]^2 + \beta_{30}[Cd^{2+}][OH^-]^3 + \beta_{40}[Cd^{2+}][OH^-]^4 \]

Grouping the like terms together:

\[C_{Cd} = [Cd^{2+}][1 + B_{103}[L^2^-]^3 + B_{113}[H^+][L^2^-]^3 + B_{123}[H^+]^2[L^2^-]^3 + \\
+ B_{102}[L^2^-]^2 + B_{112}[H^+][L^2^-]^2 + B_{122}[H^+]^2[L^2^-]^2 + B_{101}[L^2^-] + B_{111}[H^+]][L^2^-] + \\
+ B_{10}[OH^-] + B_{20}[OH^-]^2 + B_{30}[OH^-]^3 + B_{40}[OH^-]^4] \]

or:

\[C_{Cd} = [Cd^{2+}][1 + [L^2^-]^3(\beta_{103} + \beta_{113}[H^+] + \beta_{123}[H^+]^2) + \\
+[L^2^-]^2(\beta_{102} + \beta_{112}[H^+] + \beta_{122}[H^+]^2) + [L^2^-](\beta_{101} + \beta_{111}[H^+] + \\
+ \beta_{10}[OH^-] + \beta_{20}[OH^-]^2 + \beta_{30}[OH^-]^3 + \beta_{40}[OH^-]^4] \]

Substituting eqs 6-9 in to eq 13b, one can get the expression for the concentration of all cadmium in solution as a function of the equilibrium concentration of ions of cadmium ([Cd^{2+}]) and thioglycolic acid in solution ([L^2^-]):

\[C_{Cd} = [Cd^{2+}](1 + B_3[L^2^-]^3 + B_2[L^2^-]^2 + B_1[L^2^-] + K) \]

Where K = \beta_{10}[OH^-] + \beta_{20}[OH^-]^2 + \beta_{30}[OH^-]^3 + \beta_{40}[OH^-]^4 which depends only on the pH as for eqs 6-9.

Finally, we have equations for overall concentrations of TGA (eq 10) and cadmium (eq 14) which are expressed only through the equilibrium concentration of cadmium, thioglycolic acid and the pH of the solutions.

The equilibrium concentration of cadmium (II) ions from eqs 14 may be expressed as:

\[[Cd^{2+}] = \frac{C_{Cd}}{1 + B_3[L^2^-]^3 + B_2[L^2^-]^2 + B_1[L^2^-] + K} \]

Substitution of the equilibrium concentration of cadmium in eq 10 allows expression of the equilibrium concentration of fully dissociated thioglycolic acid only.

through the external parameters – overall concentration of cadmium, TGA and pH of solution:

\[
C_{TGA} = B_0[L^2^-] + \frac{C_{Cd}(3B_3[L^2^-]^3 + 2B_2[L^2^-]^2 + B_1[L^2^-])}{1 + B_3[L^2^-]^3 + B_2[L^2^-]^2 + B_1[L^2^-] + K} \tag{16}
\]

Rearranging of equation 16 allows writing of the following expressions:

\[
\left(C_{TGA} - B_0[L^2^-] \right) \left((1 + K) + B_3[L^2^-]^3 + B_2[L^2^-]^2 + B_1[L^2^-] \right) = C_{Cd} \left(3B_3[L^2^-]^3 + 2B_2[L^2^-]^2 + B_1[L^2^-] \right) \tag{17}
\]

\[
C_{TGA}(1 + K) + C_{TGA} \left(B_3[L^2^-]^3 + B_2[L^2^-]^2 + B_1[L^2^-] \right) - B_0[L^2^-](1 + K)
- B_0[L^2^-] \left(B_3[L^2^-]^3 + B_2[L^2^-]^2 + B_1[L^2^-] \right)
= C_{Cd} \left(3B_3[L^2^-]^3 + 2B_2[L^2^-]^2 + B_1[L^2^-] \right) \tag{18}
\]

\[
C_{TGA}(1 + K) + C_{TGA}B_3[L^2^-]^3 + C_{TGA}B_2[L^2^-]^2 + C_{TGA}B_1[L^2^-] - B_0[L^2^-](1 + K)
- B_0B_3[L^2^-]^4 - B_0B_2[L^2^-]^3 - B_0B_1[L^2^-]^2
= 3C_{Cd}B_3[L^2^-]^3 + 2C_{Cd}B_2[L^2^-]^2 + C_{Cd}B_1[L^2^-] \tag{19}
\]

Now by grouping the like terms together in the parenthesis we have an expression for the equilibrium concentration of TGA ions in the solution which depends only on the pH of the solution.

\[
- [L^2^-]^4B_0B_3 + [L^2^-]^3 \left(C_{TGA}B_3 - 3C_{Cd}B_3 - B_0B_2 \right) +
+ [L^2^-]^2 \left(C_{TGA}B_2 - 2C_{Cd}B_2 - B_0B_1 \right) +

+ [L^2^-] \left(C_{TGA}B_1 - C_{Cd}B_1 - B_0(1 + K) \right) + C_{TGA}(1 + K) = 0 \tag{20}
\]

Numerical simulation of eqs 20 allows to find the equilibrium concentration of TGA ([L^2^-]) ions. Substitution of the [L^2^-] value in equation 15 allows the calculation of the concentration of cadmium ions ([Cd^{2+}]) in solution. Finally, knowledge about the equilibrium concentration of Cd(II) and TGA ions in solution allows to find the concentrations of each of the complexes in solution at the given pH and total concentration.

of cadmium and thioglycolic acid. Results of the numerical simulation are shown below (Figure A1-A4).

Figure A1. Concentration of Cd(L)4+ versus the total concentration of cadmium and the TGA/Cd ratio.

Figure A2. Concentration of \(\text{Cd}(L)_{2}^{2-} \) versus the total concentration of cadmium and the TGA/Cd ratio.

Figure A3. Concentration of \(\text{Cd}(L) \) versus the total concentration of cadmium and the TGA/Cd ratio.
Figure A4. Concentration of Cd(L)$_3$$^{4-}$ versus the total concentration of cadmium and the pH of the solution.
Figure A5. Concentration of Cd(L)$_2^{2-}$ versus the total concentration of cadmium and the pH of the solution.
Figure A6. Concentration of Cd(L) versus the total concentration of cadmium and the pH of the solution.

In this calculation the several presumptions which can reduce the validity of the calculation have been made. The most important source of deviation is using the concentration of the ions instead the activity for calculation. In order to estimate the relative deviation of the calculation the ionic strength of the solution has been calculated using the following equation:

\[I = \frac{1}{2} \sum C_i z_i^2 \]

(1)

Using Davis’ equation allows the calculation of the activity coefficient of the ions in the solution:

\[
-\frac{\log f_i}{z_i^2} = \frac{0.511\sqrt{I}}{1 + 1.5\sqrt{I}} - 0.2I
\]

(2)

In fact, the activity of hydrogen ions instead the concentrations in this calculation has been used. Practically, the substitution of activities instead the correspondent concentrations is not influence on the result of calculation. Comparing of calculated complexes concentration with a real system where pH is measured by pH-meter (see below) lead to the using activity for hydrogen ions.

Taking into account that the activity coefficient for neutral species is nearly equal to the concentration, we may estimate the deviation for the dissociation constant of thioglycolic acid:

\[K_1 = \frac{a_{(H^+)}[HL^-]}{[H_2L]} = \frac{a_{(H^+)}a_{(HL^-)}f_{(HL^-)}}{a_{(H_2L)}} \]

Taking the logarithm gives:

\[\log(K_1) = \log\left(\frac{a_{(H^+)}a_{(HL^-)}}{a_{(H_2L)}}\right) + \log(f_{(HL^-)}) = \log(K_1^T) + \log(f_{(HL^-)}) \]

\(K_1^T \) is the thermodynamic constant which does not depend on the concentrations of the species and the value of the \(\log(f_{(HL^-)}) \) can be calculated from eq 2.

Numerical calculation shows that the parameter on the left side of the Davis equation is 0.081 at ionic strength 0.064 M (pH 12; TGA/Cd ratio 1.3) which gives a deviation of about 3% \((pK_{A1} = 3.31 \[1\]) \). The same result shows the calculation for the second ionization step. In fact the ionic strength is even smaller (about 6%) because the pH
Calculation of distribution of the cadmium complexes with thioglycolic acid.

value in the synthesis is fixed by adding a portion of the solution of 0.1M NaOH (7.3 mL for pH 12.0 at TGA/Cd ratio 1.3).

A second source of deviation is the low solubility of the uncharged complexes of cadmium (for example CdL). The precipitation of the uncharged species leads to the shifting of the equilibrium and further production of those substances. Thus, precipitation leads to the underestimation of the overall amount of the purely soluble complexes. Here we assume that the mistake induced by the all our presumptions is within 10%.

References

Appendix 2

Experimental part.

All chemicals used were of analytical grade or of the highest purity available and were used without additional purification. All aqueous solutions were prepared using MilliQ water (Millipore) as the solvent. Cadmium lactate (ABCR) and Cd(ClO$_4$)$_2$×6H$_2$O (Alfa Aesar) were used as precursors for the syntheses of CdTe NCs. Thioglycerol (TG, Fluka), thioglycolic acid (TGA, Fluka), mercaptosuccinic acid (Fluka) or 3-mercaptopropionic acid (MPA, Fluka) were used as the stabilizing agents.

A2.1 Synthesis of water soluble CdTe NCs.

The nanocrystals synthesized according to this method are used for the electrochemical studies as well as for all kinds of linking procedures. Improving of the synthesis of aqueous CdTe nanocrystals are described in Chapter 2.3.

The “standard” synthesis of CdTe nanocrystals was done according to a well known experimental procedure [1]. In a typical synthesis 3.98 g (9.5 mmol) of Cd(ClO$_4$)$_2$×6H$_2$O is dissolved in 500 mL of water, and 23.3 mmol of the thiol stabilizer (MPA or TGA) are added under stirring, followed by adjusting the pH to 11.2-11.8 by dropwise addition of an appropriate amount of 1M NaOH solution. The mentioned pH values were experimentally found to be optimal for the synthesis of stable colloids [1]. The solution is placed into a three-necked flask fitted with a septum and valves and is deaerated by N$_2$ bubbling for 1.5 hours. Under stirring, H$_2$Te gas (generated by the reaction of 0.8 g (1.83 mmol) of Al$_2$Te$_3$ lumps with an excess amount of 1N H$_2$SO$_4$ under N$_2$ atmosphere) is passed through the solution together with a slow nitrogen flow for nearly 20 min. CdTe precursors are formed at this stage. The further nucleation and growth of the nanocrystals proceeds when refluxing at 100°C under open-air conditions with a condenser attached.
A2.2 Synthesis of CdTe NCs in DMF.

The synthesis of DMF soluble CdTe NCs is done according to a slightly modified procedure from ref [2]. In a typical synthesis 664 mg (2.28 mmol) of cadmium lactate is mixed with 50 mL of DMF and this mixture is stirred overnight giving a slightly turbid suspension. The suspension of the cadmium precursor is placed in a three-necked flask fitted with a septum and valves and 2.73 mmol of the thiol stabilizer (thioglycerol) are added. The reaction mixture is deaerated by N₂ bubbling for one hour. Under stirring, H₂Te gas (generated by the reaction of 0.08 g (0.183 mmol) of Al₂Te₃ lumps with an excess amount of 1 N H₂SO₄ under N₂ atmosphere) is passed through the solution together with a slow nitrogen flow for nearly 20 min. CdTe precursors are formed at this stage. The further nucleation and growth of the nanocrystals proceeds when refluxing at the boiling temperature of DMF under open-air conditions with a condenser attached. It takes approximately 1.5 hours to prepare nanoparticles emitting near 600 nm. The clear solution of red-emitting CdTe NCs is cooled down and precipitated by adding an equivalent amount of diethyl ether. The precipitate is redispersed in pure MeOH giving a clear transparent solution. Solutions of CdTe NCs in methanol are stable for at least 6-8 months.

A2.3 Determination of the size and concentration of CdTe NCs.

The size and the extinction coefficient are determined according to procedure by X. Peng [3]. Pengs data together with the data about aqueous NCs from Reference [4] allow finding the sizes and the extinction coefficient of various CdTe NCs.

A2.4 Optical spectra.

UV-Vis absorption spectra are recorded either with a Cary 50 or Cary 500 spectrophotometers (Varian). Photoluminescence measurements were carried out at room temperature using FluoroMax-2 and FluoroLog-3 spectrometers (Instruments SA). The scattering samples were measured on the Cary 500 spectrophotometer (Varian) equipped with a LabSphere (Varian).
A2.5 HRTEM and HRSEM.

High-resolution scanning electron microscopy was done using a LEO 1550 microscope operating at 20 kV. High-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray analysis (EDX) were performed on a Philips CM-300 microscope operating at 300 kV.

Samples for electron microscopy were prepared by transferring aqueous nanocrystals in organic solvent (chloroform or toluene) according ref [5] (for CdTe NCs) or by dilution of aqueous NCs’ solution by DMF (H₂O : DMF = 1 : 10) (for ZnSe NCs). Diluted solutions were dropped onto 400-mesh carbon-coated copper grids and the excessive solvent is evaporated immediately. A mixture with DMF was chosen for ZnSe NCs to facilitate uniform drying of the drop on the hydrophobic grid surface.

A2.6 XRD.

Powder X-ray diffraction (XRD) measurements were carried out with a Philips X’Pert diffractometer (Cu Kα-radiation, variable entrance slit, Bragg-Brentano geometry, secondary monochromator). Samples for this study were prepared by placing finely dispersed powders of nanocrystals on standard Si supports.

A2.7 Electrochemical measurements.

Electrochemical measurements were performed in a standard three-electrode two-compartment cell with a platinum counter-electrode and an Ag|AgCl|KCl(sat.) electrode as the reference electrode (+0.201 V vs. SHE). All potentials were determined with respect to this reference electrode and were controlled by a conventional potentiostat with a controller. The working electrode compartment of the electrochemical cell was separated from the counter-electrode compartment by a fine porous glass membrane.

Gold plates or ITO films on a glass substrate were used as working electrodes. The surface of the gold plates was polished by diamond paste followed by boiling in concentrated HNO₃ and H₂SO₄. Then, the gold electrodes were thoroughly washed with
doubly distilled water and annealed at 700°C for 15 min in air. ITO electrodes were cleaned with a mixture of aqueous solutions of NH₃ and H₂O₂ and rinsed thoroughly with doubly distilled water. Before the measurements, the electrodes were cycled in the supporting electrolyte in the potential region from -0.5 to 1.1 V.

For electrochemical measurements, CdTe NC colloidal solutions (particle concentration in the range of 2⋅10⁻⁶ - 4⋅10⁻⁶ M) in a buffer containing 0.1 M Na₂SO₄ and 0.02 M Na₂B₄O₇ (pH 9.2) were prepared. The CdTe NC colloids were sufficiently stable in the presence of this supporting electrolyte in the dark. After addition of the buffer solution, no noticeable changes of the colloids were found at least for periods of weeks judging from their absorption and fluorescence spectra.

The electrochemical measurements of ZnSe NCs’ solutions were performed in acetate buffer solution (0.1M CH₃COONa + 0.0046M CH₃COOH (pH6)).

A2.8 Referenses

Appendix 3

Safety precaution information on the used chemicals.

<table>
<thead>
<tr>
<th>Substance</th>
<th>R-phrases</th>
<th>S-phrases</th>
<th>Hazard signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-(aminopropyl)-triethoxysilane</td>
<td>22-34</td>
<td>26-36/37/39-45</td>
<td>[C]</td>
</tr>
<tr>
<td>Acetone</td>
<td>11-36-66-67</td>
<td>9-16-26</td>
<td>[F][Xi]</td>
</tr>
<tr>
<td>Al₂Te₃</td>
<td>Not fully examined compound</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Al₂Se₃</td>
<td>Not fully examined compound</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cd(ClO₄)₂·6H₂O</td>
<td>20/21/22-50/53</td>
<td>60-61</td>
<td>[Xn][N]</td>
</tr>
<tr>
<td>Ethanol</td>
<td>11-20/21/22-68/20/21/22</td>
<td>16-36/37</td>
<td>[F][Xn]</td>
</tr>
<tr>
<td>i-propanol</td>
<td>11-36-67</td>
<td>7-16-24/25-26</td>
<td>[F][Xi]</td>
</tr>
<tr>
<td>N,N'-diisopropylcarbodiimide</td>
<td>10-26-36/37/38-41-42/43</td>
<td>26-36/37/39-45</td>
<td>[T][x]</td>
</tr>
<tr>
<td>N,N-Dimethylformamide</td>
<td>61-20/21-36</td>
<td>53-45</td>
<td>[T]</td>
</tr>
<tr>
<td>1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride</td>
<td>20/21/22-34-42/43</td>
<td>23-36/37/39-45</td>
<td>[C]</td>
</tr>
<tr>
<td>N-Hydroxysuccinimide</td>
<td>-</td>
<td>22-24/25</td>
<td>-</td>
</tr>
<tr>
<td>H₂SO₄ 1M</td>
<td>35</td>
<td>26-30-45</td>
<td>[C]</td>
</tr>
<tr>
<td>2-mercaptoethylamine</td>
<td>22-36/37/38</td>
<td>26-36</td>
<td>[Xn]</td>
</tr>
<tr>
<td>Mercaptopropionic acid</td>
<td>25-34</td>
<td>7-26-36/37/39-45</td>
<td>[T]</td>
</tr>
<tr>
<td>(2-(N-morpholino)ethanesulfonic acid</td>
<td>10-20-36/37</td>
<td>-</td>
<td>[Xn]</td>
</tr>
<tr>
<td>NaOH 1M</td>
<td>34</td>
<td>6-37/39-45</td>
<td>[C]</td>
</tr>
<tr>
<td>poly(ethyleneimine)</td>
<td>-</td>
<td>22-24/25</td>
<td>-</td>
</tr>
<tr>
<td>poly(diallyldimethylammonium chloride)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thioglycolic acid</td>
<td>23/24/25-34</td>
<td>25-27-28-45</td>
<td>[T]</td>
</tr>
<tr>
<td>Thioglycerol</td>
<td>21/22-36/37/38</td>
<td>26-36</td>
<td>[Xn]</td>
</tr>
<tr>
<td>Zn(ClO₄)₂·6H₂O</td>
<td>8-34</td>
<td>17-26-27-36/37/39-45</td>
<td>[O][C]</td>
</tr>
</tbody>
</table>
A3. Safety precaution information on the used chemicals

Risk (R-) and safety precaution (S-) phrases used in the classification, packaging, labelling and provision of information on dangerous substances

Risk phrases (R-Phrases)
R1: Explosive when dry
R2: Risk of explosion by shock, friction fire or other sources of ignition
R3: Extreme risk of explosion by shock friction, fire or other sources of ignition
R4: Forms very sensitive explosive metallic compounds
R5: Heating may cause an explosion
R6: Explosive with or without contact with air
R7: May cause fire
R8: Contact with combustible material may cause fire
R9: Explosive when mixed with combustible material
R10: Flammable
R11: Highly flammable
R12: Extremely flammable
R13: Extremely flammable liquefied gas
R14: Reacts violently with water
R15: Contact with water liberates highly flammable gases
R16: Explosive when mixed with oxidising substances
R17: Spontaneously flammable in air
R18: In use, may form flammable/explosive vapour-air mixture
R19: May form explosive peroxides
R20: Harmful by inhalation
R21: Harmful in contact with skin
R22: Harmful if swallowed
R23: Toxic by inhalation
R24: Toxic in contact with skin
R25: Toxic if swallowed
R26: Very toxic by inhalation
R27: Very toxic in contact with skin
R28: Very toxic if swallowed
R29: Contact with water liberates toxic gas
R30: Can become highly flammable in use
R31: Contact with acids liberates toxic gas
R32: Contact with acids liberates very toxic gas
R33: Danger of cumulative effects
R34: Causes burns
R35: Causes severe burns
R36: Irritating to eyes
R37: Irritating to respiratory system
R38: Irritating to skin
R39: Danger of very serious irreversible effects
R40: Possible risk of irreversible effects
R41: Risk of serious damage to eyes
R42: May cause sensitisation by inhalation
R43: May cause sensitisation by skin contact
R44: Risk of explosion if heated under confinement
R45: May cause cancer
A3. Safety precaution information on the used chemicals

R46: May cause heritable genetic damage
R47: May cause birth defects
R48: Danger of serious damage to health by prolonged exposure
R49: May cause cancer by inhalation
R50: Very toxic to aquatic organisms
R51: Toxic to aquatic organisms
R52: Harmful to aquatic organisms
R53: May cause long-term adverse effects in the aquatic environment
R54: Toxic to flora
R55: Toxic to fauna
R56: Toxic to soil organisms
R57: Toxic to bees
R58: May cause long-term adverse effects in the environment
R59: Dangerous to the ozone layer
R60: May impair fertility
R61: May cause harm to the unborn child
R62: Possible risk of impaired fertility
R63: Possible risk of harm to the unborn child
R64: May cause harm to breastfed babies

Combination of risks
R14/15: Reacts violently with water, liberating highly flammable gases
R15/29: Contact with water liberates toxic, highly flammable gas
R20/21: Harmful by inhalation and in contact with skin
R20/21/22: Harmful by inhalation, in contact with skin and if swallowed
R20/22: Harmful by inhalation and if swallowed
R21/22: Harmful in contact with skin and if swallowed
R23/24: Toxic by inhalation and in contact with skin
R23/24/25: Toxic by inhalation, in contact with skin and if swallowed
R23/25: Toxic by inhalation and if swallowed
R24/25: Toxic in contact with skin and if swallowed
R26/27: Very toxic by inhalation and in contact with skin
R26/27/28: Very toxic by inhalation, in contact with skin and if swallowed
R26/28: Very toxic by inhalation and if swallowed
R27/28: Very toxic in contact with skin and if swallowed
R36/37: Irritating to eyes and respiratory system
R36/37/38: Irritating to eyes, respiratory system and skin
R36/38: Irritating to eyes and skin
R37/38: Irritating to respiratory system and skin
R42/43: May cause sensitisation by inhalation and skin contact.
R48/20: Harmful: danger of serious damage to health by prolonged exposure
R48/20/21: Harmful: danger of serious damage to health by prolonged exposure through inhalation and in contact with the skin
R48/20/21/22: Harmful: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed
R48/20/22: Harmful: danger of serious damage to health by prolonged exposure through inhalation, and if swallowed
R48/21: Harmful: danger of serious damage to health by prolonged exposure in contact with skin
R48/21/22: Harmful: danger of serious damage to health by prolonged exposure in contact with skin and if swallowed

95
R48/22: Harmful: danger of serious damage to health by prolonged exposure if swallowed
R48/23: Toxic: danger of serious damage to health by prolonged exposure through inhalation
R48/23/24: Toxic: danger of serious damage to health by prolonged exposure through inhalation and in contact with skin
R48/23/24/25: Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed
R48/23/25: Toxic: danger of serious damage to health by prolonged exposure through inhalation and if swallowed
R48/24: Toxic: danger of serious damage to health by prolonged exposure in contact with skin
R48/24/25: Toxic: danger of serious damage to health by prolonged exposure in contact with skin and if swallowed
R48/25: Toxic: danger of serious damage to health by prolonged exposure if swallowed
R50/53: Very toxic to aquatic organisms, may cause long term adverse effects in the aquatic environment
R51/53: Toxic to aquatic organisms, may cause long term adverse effects in the aquatic environment
R52/53: Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment

Safety precaution phrases (S-Phrases)
S1: Keep locked up
S2: Keep out of reach of children
S3: Keep in a cool place
S4: Keep away from living quarters
S5: Keep contents under ... (appropriate liquid to be specified by the manufacturer)
S6: Keep under ... (inert gas to be specified by the manufacturer)
S7: Keep container tightly closed
S8: Keep container dry
S9: Keep container in a well ventilated place
S12: Do not keep the container sealed
S13: Keep away from food, drink and animal feeding stuffs
S14: Keep away from ... (incompatible materials to be indicated by the manufacturer)
S15: Keep away from heat
S16: Keep away from sources of ignition-No Smoking
S17: Keep away from combustible material
S18: Handle and open container with care
S20: When using do not eat or drink
S21: When using do not smoke
S22: Do not breathe dust
S23: Do not breathe gas/fumes/vapour/spray (appropriate wording to be specified by manufacturer)
S24: Avoid contact with skin
S25: Avoid contact with eyes
S26: In case of contact with eyes, rinse immediately with plenty of water and seek medical advice
S27: Take off immediately all contaminated clothing
S28: After contact with skin, wash immediately with plenty of . . (to be specified by the manufacturer)
S29: Do not empty into drains
S30: Never add water to this product
S33: Take precautionary measures against static discharges
S34: Avoid shock and friction
S35: This material and its container must be disposed of in a safe way
S36: Wear suitable protective clothing
S37: Wear suitable gloves
S38: In case of insufficient ventilation, wear suitable respiratory equipment
S39: Wear eye/face protection
S40: To clean the floor and all objects contaminated by this material use (to be specified by the manufacturer)
S41: In case of fire and/or explosion do not breath fumes
S42: During fumigation/spraying wear suitable respiratory equipment (appropriate wording to be specified by the manufacturer)
S43: In case of fire, use . . . (indicate in the space the precise type of fire fighting equipment. If water increases the risk, add "never use water")
S44: If you feel unwell, seek medical advice (show the label where possible)
S45: In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible)
S46: If swallowed, seek medical advice immediately and show the container or label
S47: Keep at temperature not exceeding . . . °C (to be specified by the manufacturer)
S48: Keep wetted with . . . (appropriate material to be specified by the manufacturer)
S49: Keep only in the original container
S50: Do not mix with . . . (to be specified by the manufacturer)
S51: Use only in well ventilated areas
S52: Not recommended for interior use on large surface areas
S53: Avoid exposure - obtain special instructions before use
S54: Obtain the consent of pollution control authorities before discharging to waste-water treatment plants
S55: Treat using the best available techniques before discharge into drains or the aquatic environment
S56: Do not discharge into drains or the environment, disposer to an authorised waste collection point
S57: Use appropriate containment to avoid environmental contamination
S58: To be disposed of as hazardous waste
S59: Refer to manufacturer/supplier for information on recovery/recycling
S60: This material and/or its container must be disposed of as hazardous waste
S61: Avoid release to the environment. Refer to special instructions / safety data sheet
S62: If swallowed, do not induce vomiting: seek medical advice immediately and show the container or label
Combined safety phrases
S1/2: Keep locked up and out of reach of children
S3/9: Keep in a cool, well ventilated place
S3/7/9: Keep container tightly closed in a cool, well ventilated place
S3/14: Keep in a cool place away from ... (incompatible materials to be indicated by the manufacturer)
S3/9/14: Keep in a cool, well ventilated place away from ... (incompatible materials to be indicated by the manufacturer)
S3/9/49: Keep only in the original container in a cool, well ventilated place
S3/9/14/49: Keep only in the original container in a cool, well ventilated place away from (incompatible materials to be indicated by the manufacturer)
S3/9/49: Keep only in the original container in a cool, well ventilated place
S3/14: Keep in a cool place away from...(incompatible materials to be indicated by the manufacturer)
S7/8: Keep container tightly closed and dry
S7/9: Keep container tightly closed and in a well ventilated place
S7/47: Keep container tightly closed and at a temperature not exceeding...°C (to be specified by manufacturer)
S20/21: When using do not eat, drink or smoke
S24/25: Avoid contact with skin and eyes
S29/56: Do not empty into drains, dispose of this material and its container to hazardous or special waste collection point
S36/37: Wear suitable protective clothing and gloves
S36/37/39: Wear suitable protective clothing, gloves and eye/face protection
S36/39: Wear suitable protective clothing, and eye/face protection
S37/39: Wear suitable gloves and eye/face protection
S47/49: Keep only in the original container at temperature not exceeding...°C (to be specified by the manufacturer)