Die Suche nach Schlüsselproteinen der Arteriogenese bei Ratten mit Hilfe der komparativen Proteomanalyse

D i s s e r t a t i o n
zur Erlangung des Grades eines Doktors der Medizin
dem Fachbereich Medizin der Universität Hamburg vorgelegt von

Björn Kitzing
aus Bremen
Hamburg 2005
Angenommen von dem Fachbereich Medizin
der Universität Hamburg am:

Veröffentlicht mit Genehmigung des Fachbereichs
Medizin der Universität Hamburg

Prüfungsausschuss, der/die Vorsitzende:

Prüfungsausschuss: 2. Gutachter/in:

Prüfungsausschuss: 3. Gutachter/in:
gewidmet meinen lieben Eltern
To the physician particularly a scientific discipline is an incalculable gift, which leavens his whole life, giving exactness to habits of thought and tempering the mind with that judicious faculty of distrust, which can alone, amid the uncertainty of practice, make him wise.

Sir William Osler (1849 – 1919)
FRAGESTELLUNG:

Das Ziel dieser wissenschaftlichen Arbeit ist die Anwendung der komparativen Proteomanalyse in der Erforschung des Kollateralarterienwachstums. Dabei sollte herausgefunden werden, inwieweit proteinbiochemische Methoden herangezogen werden können, um an einem etablierten Rattenmodell, die Regulation von Gefäßproteinen während des Wachstums der Kollateralarterien zu untersuchen.
EINLEITUNG:

1.1 Vaskulogenese

1.2 Angiogenese

1.3 Arteriogenese

Arteriogenese dagegen ist das Wachstum von Kollateralarterien aus präexistierenden arteriolären Verbindungen. Diese Gefäße werden nach der Terminologie von Longland et al. (5) in drei Abschnitte unterteilt: Stem Zone, Midzone und Re-entry Zone.

Aufgrund der Tatsache, dass die Stem und Re-entry Zone der präexistierenden Arteriolen fixiert sind, führt die zelluläre Hyperplasie und Hypertrophie der Gefäße zu einer spiralförmigen bzw. korkenzieherartigen Form dieser Kollateralarterien (1).
1.4 Klinische Anwendung in der Kardiologie und Angiologie

1.5 Proteomics

Eine der größten Herausforderungen der Proteomanalyse ist die reproduzierbare Fraktionierung dieser komplexen Proteingemische unter Beibehaltung der qualitativen und quantitativen Verhältnisse. Zur Zeit ist die zwei-dimensionale Polyacrylamide Gelelektrophorese (2-D PAGE) die einzige Methode, die diese Aufgabe bewältigen kann und hat demzufolge eine signifikante Bedeutung erlangt (8, 9). Aufgrund der Tatsache, dass 2-D PAGE in der Lage ist über 1,800 Proteine in einem einzelnen Gel aufzutrennen (10), ist es die Methode der Wahl der Proteomforschung, wo multiple Proteine für eine parallele Analyse getrennt werden müssen. Sie erlaubt es Hunderte
bis Tausende von Genprodukten gleichzeitig zu analysieren. In Kombination mit
computer-unterstützten Image Evaluationssystemen für qualitative und quantitative
Proteomuntersuchungen ermöglicht es diese Methode, die Daten mehrerer
Forschungsgruppen zu katalogisieren und zu vergleichen.
MATERIAL UND METHODEN:

2.1 Operationen

Alle Operationen wurden im Einklang mit dem Tierschutzgesetz durchgeführt
(Tierversuchsgenehmigung der Behörde für Arbeit, Gesundheit und Soziales der Freien
und Hansestadt Hamburg 12/01).

Das verwendete Tiermodell ist bereits etabliert und beruht auf der Induktion des
Kollateralarterienwachstums im Oberschenkel von Ratten durch Ligatur der Arteria
femoralis. Die folgenden vier Argumente sprechen für dieses Tiermodell:

- die Kollateralarterien der unteren Extremitäten weisen eine hohe
 Kompensationspotenz auf
- nach Ligatur der Arteria femoralis kommt es zu keinem Ausfall von Vitalfunktionen
- die Frühphasen der Arteriogenese lassen sich gut studieren
- die Operation stellt nur einen minimalinvasiven Eingriff dar

Es wurden 5 CD-Ratten mit einem Gewicht von ca. 300g ausgewählt, bei denen eine
Ligatur der Arteria femoralis durchgeführt werden sollte. Dabei wurde eine
Ethernarkose mit nachfolgender intraperitonealer Injektion von 0,5 ml Ketamin, 0,15 ml
Rompun und 0,2 ml Heparin angewandt. Nach erfolgreichem Einsetzen der Narkose,
wurde an der rechten Oberschenkelinnenseite der Ratte eine ca. 3 cm lange Hautinzision
gesetzt und daraufhin die Arteria femoralis teilweise freipräpariert. Dabei hat es sich als
sinnvoll erwiesen, eine oberflächliche Vene abzubinden und zu durchtrennen, um somit
einen besseren Zugang zu dem Gefäß-Nerven-Bündel zu erlangen. Nach Auffinden und
vorsichtiger Trennung von der Vena femoralis sowie von dem Nervus femoralis,
erfolgte eine zweifache Ligatur der Arterie im Abstand von ca. einem Zentimeter.
Danach wurde die Haut wieder zusammengenäht und die operierte Ratte bekam zur postoperativen Schmerzstillung einige Tropfen Novalgin in das Trinkwasser.
2.2 Materialgewinnung

2.3 Dismembrator

2.4 Sequentielle Proteineextraktion

2.5 2 D-Gelelektrophorese

2.5.1 Isoelektrische Fokussierung (1. Dimension)

Nach der Proteinbestimmung werden die bei der sequentiellen Proteinextraktion gewonnenen Überstände mit einem Rehydratisierungspuffer verdünnt, um die Idealkonzentration (ca. 1 mg/ml) für die isoelektrische Fokussierung zu bekommen. Der Rehydratisierungspuffer enthält 10 ml 8 M Urea, 4% (w/v) CHAPS, 40 mM Tris und 0,2% (w/v) Bio-Lyte 3/10. Die aufgetragene Proteinmenge pro ReadyStrip IPG Strip (11 cm, pH 3-10, NL) beträgt 0,1 mg.
Mit Hilfe der PROTEAN IEF-Cell von Bio-Rad werden 10 elf cm lange IPG-Streifen prozessiert. Die getrockneten IPG-Streifen müssen vor Beginn der eigentlichen Fokussierung 12 Stunden rehydratisiert werden. Dazu pipettiert man die Rehydratisierungslösung mit der gelösten Proteinprobe in die Mitte der einzelnen Vertiefungen des Kunststoffeinsatzes der PROTEAN IEF-Cell und legt die 3mm breiten IPG-Streifen luftblasenfrei mit der Gelseite nach unten vorsichtig hinein. Um die Streifen vor Austrocknung bzw. der Auskristallisation des Harnstoffs zu schützen, wird eine ausreichende Menge an Silikonöl auf die Streifen pipettiert. Folgende Parameter werden nach dem Schließen der Fokussierungskammer am Stromversorger der Bio-Rad PROTEAN IEF-Cell für eine analytische Fokussierung eingestellt:

Aktive Rehydratisierung: 12 Stunden

Temperatur: 20 Grad Celsius

S1: 250 V / 15 min

S2: 8000 V / 2 Std.

S3: 8000 V / 35000 Vh

S4: HOLD / 2 Std.

Nach Beendigung der Fokussierung werden die IPG-Streifen in eine Klarsichthülle gesteckt, festgeklammert und bis zur weiteren Verwendung für die SDS-PAGE bei –80 Grad Celsius gelagert (max. 9-12 Monate).
2.5.2 SDS-PAGE (2.Dimension)

Die SDS-Polyacrylamidgelelektrophorese ist eine Gelelektrophorese in Gegenwart des anionischen Detergens Natriumdodecylsulfat (englisch: sodium dodecyl sulphate, SDS) und trennt Proteine ausschließlich nach Molekülgröße. Die Proteine werden denaturiert und an die Peptidketten lagert sich SDS an, wobei anionische Mizellen mit konstanter Nettoladung pro Masseneinheit entstehen: ca. 1,4 g pro g Protein. Da sich aus diesem Sachverhalt eine lineare Beziehung zwischen dem Logarithmus der jeweiligen Molekulargewichte und den relativen Wanderungsstrecken der SDS-Polypeptid-Mizellen ergibt, kann man mit Hilfe von Markerproteinen eine Eichkurve aufstellen und die Molekulargewichte der aufgetrennten Proteine bestimmen.

Aufgrund der begrenzten Reproduzierbarkeit und der Probleme mit der Proteinanfärbung müssen immer Mehrfachbestimmungen (ca. 5-10 Gele der gleichen Probe, möglichst von unabhängigen Aufarbeitungen) durchgeführt werden, um eine statistisch sinnvolle, quantitative Aussage zu erhalten. Heute lässt sich bei optimal durchgeführten Analysen eine relativ gute Aussage bei Mengenveränderungen im Bereich von >15% treffen; es gibt aber durchaus Proteine, die spezifisch größere Variationen zeigen.

Bevor die zweite Dimension gefahren werden kann, müssen die IPG-Streifen äquilibriert werden. Hierzu werden sie 2 x 10 min in 2 x 10 ml Äquilibrerlösung (50 mM Tris/HCl, pH 8,8, 6 M Harnstoff, 30% Glycerin, 2% SDS, etwas Bromphenolblau) geschüttelt. Die Lösung des ersten Äquilibrierschrittes enthält zusätzlich 1% w/v DTT, die des zweiten 260 mM Jodacetamid, um Streifenbildung im gefärbten 2 D-Gel zu vermeiden.
Die 10 äquilibrierten IPG-Streifen werden kurz mit einer Pinzette in Tankpuffer getaucht, luftblasenfrei auf das vertikale SDS-Gel gelegt und mit einem geeigneten Spatel leicht angedrückt. Der IPG-Streifen wird mit heißer Agarose (0,5% (w/v) in 1x Elektrodenpuffer) fixiert. Nach dem Erstarren der Agarose wird das jeweilige SDS-Gel in die Elektrophoreseapparatur (Criterion Cell, Bio-Rad) eingesetzt und die Elektrophorese gestartet. Um einen optimalen Proteintransfer zu gewährleisten, wird die Elektrophorese 50-55 Minuten bei 200 V gefahren. Die Trennung wird dann solange fortgesetzt, bis die Bromphenolblaufront das Ende des Trenngels erreicht hat. Die Gelkassette wird dann vorsichtig mit einem Spatel geöffnet und das Gel für die Färbung entnommen.
2.6 Proteinfärbung und -darstellung

Um die aufgetrennten Proteine sichtbar machen zu können, werden die Gele mit dem Sypro Ruby Gel Stain von Bio-Rad gefärbt. Zunächst werden die Gele 30 Minuten lang in einer Methanol-Essigsäure-Lösung (10% Methanol, 7% Essigsäure) gewaschen. Nach diesem Fixationsschritt erfolgt die eigentliche Proteinfärbung mit dem fluoreszierenden Ruby Gel Stain. Dabei werden 50 ml der Färbelösung pro Gel benutzt und die Gele 3 Stunden lang lichtgeschützt gefärbt. Danach erfolgt eine Entfärbung, d.h. es wird nicht gebundener Farbstoff aus dem jeweiligen Gel mit einer Methanol-Essigsäure-Lösung herausgewaschen.

Ruby Gel Stain besitzt zwei Exzitations-Peaks (300 nm und 480 nm) und ein Emissionsmaximum bei 618 nm. Gefärbte Proteine können prinzipiell mit verschiedenen Exzitationsquellen wie z.B. einem 300 nm UV- oder Blue-Light-Transilluminator oder einem auf Laser basierendem System sichtbar gemacht werden. Mit Hilfe eines Fluor-S MultiImagers von Bio-Rad werden die Gele visualisiert (Belichtungszeit: 45 Sekunden), mit einer CCD Kamera digitalisiert und dann auf einem elektronischen Datenträger gespeichert.
2.7 Computer-unterstützte Proteindetektion und -quantifizierung

Die Analysesoftware (PDQuest von Bio-Rad) ist ein unersetzbares Hilfsmittel bei der Evaluation von komplexen 2-D Gelen. Sie erlaubt:

- die Speicherung und Strukturierung von großen Mengen gesammelter visueller Daten.
- die schnelle und genaue Analyse der gewonnen Informationen.
- die Weitergabe von Daten zwischen verschiedenen Arbeitsgruppen.
- den Aufbau von 2-D Proteindatenbanken.

Die computer-assistierte Analyse der digitalisierten Gele beinhaltet die Detektion von Spots, die Quantifizierung dieser Proteinansammlungen, den Vergleich der Gele untereinander sowie die statistische Analyse.

Der nächste Schritt bei der Evaluation der 2-D Gele ist die Identifizierung von Proteinen, die in allen Gelen einer Serie (nach 48 Stunden entnommene Kollateralarterien oder Kontrollgefäße) vorhanden sind. Diese Aufgabe wird
erschwert durch die Tatsache, dass die Reproduzierbarkeit der Gele Schwankungen aufweist, was sich auf die Position einzelner Proteine im jeweiligen Gel auswirkt. Die Gelanalyse Software muss in der Lage sein, geringe Positionsänderungen von einzelnen Proteinspots innerhalb einer Serie von Gelen zu erkennen. Dabei geht die Software bei der Erkennung bzw. Zuordnung der Spots davon aus, dass sich die relative Lokalisation der Spots zueinander nur geringfügig ändert.

2.8 Massenspektroskopie und Sequenzierung

2.9 Westernblot

Beim Blotten werden die Proteine eines SDS-Gels oder eines nativen Gels elektrophoretisch auf eine Membran übertragen. Diese membrangebundenen Proteine können dann angefärbt oder ansequenziert werden. Man kann sie mit Antikörpern reagieren lassen, mit Enzymen umsetzen, ihre Derivatisierungen bestimmen oder aber sie auf die Bindung von Liganden und Ionen prüfen. Der Westernblot, der auf eine Immunfärbung beruht, eignet sich ganz besonders als Kontrollmethode, um sequenzierte Proteine im 2-D Gel nachzuweisen.
2.10 Bioinformatik

übersichtlich Gemeinsamkeiten und Unterschiede in Wirkungs- oder Reaktionsmechanismen auf. Proteine mit gleicher Expressionscharakteristik können so erkannt, über Clusteranalyse zusammengefasst und weiter analysiert werden.
ERGEBNISSE:

3.1 Gele und Spotmuster

Nachfolgend ist exemplarisch ein Gel aus jeder Gruppe sowie dessen prozessierte Formen zu sehen.

Abb.1: Referenzgel der Gruppe A mit den zytosolischen Proteinen der nach 48 Stunden entnommenen Kollateralarterie

In Abbildung 1 erkennt man auf der rechten Seite die Banden des Proteinstandards, die eine Einschätzung des Molekulargewichts des jeweiligen Proteins zulassen. Ebenfalls deutlich zu sehen sind die Proteinspots.
Abb.2: Referenzgel der Gruppe B mit den zytosolischen Proteinen der nach 48 Stunden entnommenen Kontrollarterie

Sowohl Abbildung 1 als auch 2 zeigen die eingescannten Gele bevor sie von der Software PDQuest bearbeitet worden sind.

Abb.3: Referenzgel der Gruppe A nach automatischer Spoterkennung
Abb. 4: Referenzgel der Gruppe B nach automatischer Spoterkennung

Abb. 5: Referenzgel der Gruppe A nach Berechnung der Intensitäten der Spots mit Hilfe der Gaussfunktion
Abb.6: Referenzgel der Gruppe B nach Berechnung der Intensitäten der Spots mit Hilfe der Gaussfunktion

Um statistisch signifikante Unterschiede in der Proteinmenge zwischen den beiden Gruppen, also den Kollateralarterien und den Kontrollgefäßen, zu finden, wurden die Gele automatisch von der Software verglichen. Die erste Analyse war ein quantitativer Vergleich, die zweite ein statistischer und die dritte eine Boolsche Verknüpfung der beiden ersten. Dabei zeigte sich, dass zwei Proteinspots in den Kollateralgefäßen über das 2,5-fache hochreguliert waren. Diese beiden Spots wurden aus einem Gel herausgestoßen und sequenziert. Das Protein mit dem Molekulargewicht um 30 000 D erwies sich als Tropomyosin, das mit dem Molekulargewicht um 70 000 D als Albumin.
3.2 Tropomyosin

Tropomyosin ist ein aus zwei Polypeptidketten bestehendes, ca. 40 nm langes Muskelprotein. Es ein wichtiger Bestandteil der dünnen Filamente der Myofibrillen und liegt genau wie Troponin zwischen den Ketten von F-Aktin, wo es die Aktinfilamente stabilisiert und gleichzeitig Bindungsstellen, z.B. für Myosin, blockiert, die durch Kalziumionen aufgehoben werden.

Abb. 8: Tropomyosin (Molekulargewicht: ca. 30 kD) im Referenzgel
3.3 Albumin

Abb.8: Albumin (Molekulargewicht: ca. 70 kD) im Referenzgel
DISKUSSION:

4.1 Biphasischer Verlauf der Arteriogenese

Die erste drei Tage der ersten schnellen Phase sind die markantesten, an denen zweidrittel der Proliferation stattfindet. Aus diesem Grunde wurden bei diesem Experiment die Kollateralarterien nach 48 Stunden entnommen. Die Veränderungen und Wachstumsprozesse auf Proteinebene sollten näher durchleuchtet werden.
4.2 Initiation des Kollateralarterienwachstums

Folgende Faktoren wurden als Stimulatoren des Kollateralarterienwachstums angesehen (1-4):

- intralumenaler Druck und sein Gradient im Gefäßverlauf
- Schubspannung
- Produkte des ischämischen Metabolismus

Es sprechen jedoch mehrere Gründe gegen eine primäre metabolische Initiation des neointimalen Remodelings (1-4,12,13).

Die Kollateralarterien wachsen nach Rekonstitution des metabolischen Defizites noch tage- und wochenlang weiter. Messungen des Sauerstoffgehaltes und der Ischämiemediatoren im Bereich der Kollateralarterien haben Hypoxie als Stimulus ausgeschlossen und zeigen, dass die Arteriogenese im Gegensatz zur Angiogenese unter normoxämischen Bedingungen stattfindet (12,13).

Anstatt einer zentrifugalen Verteilung der Endothelzellhyperplasie mit Maximum der Proliferation im Ischämiebereich und Abnahme der Proliferation mit der Entfernung vom Hypoxieareal, zeigen die etablierten Modelle einen zentripetalen Proliferationsgradienten des Endothelwachstums, was gegen Ischämie als Initiator der Arteriogenese spricht.

Des weiteren wurde in anderen Experimenten mit proangiogenen Wachstumsfaktoren wie z.B. FGF oder MCP-1 (14-16) ein positiver Effekt nur im ligierten Bein gezeigt. Das Kontrollbein wies dagegen keine vermehrte Proliferation der Intima und Media auf, so dass man annehmen kann, dass Wachstumsfaktoren erst sekundär nach der Aktivierung des Endothels, z.B. durch Shear Stress, ihre Wirkung entfalten können.
So wird vielmehr Shear Stress (Schubspannung) als Initiator der Arteriogenese angesehen (17-19). Dieser mechanischer Faktor wird von den Endothelzellen der Kollateralarterien in ein biochemisches Signal umgewandelt.

Die Schubkraft ist der Gradient der Flussgeschwindigkeit in der Nähe der Arterienwand und sie tendiert dazu, die intimale Schicht der arteriellen Wand in Flussrichtung zu deplazieren.

Während des Wachstums der Kollateralarterien kommt es zur Erhöhung von Blutflüssen nach der Ligatur der Magistralarterie und zwangsläufig auch zur Erhöhung der Schubkraft.

Folgende Formel gilt für die Berechnung der Schubspannung:

\[tw = 4\mu Q/\pi r^3 \]

Während der Arteriogenese verändern sich drei Komponenten:

- der Radius \(r \) der Kollateralarterie nimmt zu
- der Blutfluss \(Q \) nimmt ab
- die Gefäßarchitektur zeigt longitudinales und korkenzieherartiges Wachstum

Da diese Veränderungen zu einer Abnahme des Shear Stress führen, kann man sagen, dass während des Kollateralarterienwachstums eine Anpassung an die Schubspannung durch Lumenexpansion und durch neointimale Proliferation in der Gefäßwand stattfindet.
Es konnte in verschiedenen Arbeiten gezeigt werden, dass der Shear Stress einen signifikanten Einfluss auf den Endothelzellstoffwechsel ausübt. So synthetisieren Endothelzellen, die Shear Stress ausgesetzt sind, vermehrt vasoaktive Substanzen wie NO.

Mit der Abnahme der Schubspannung infolge luminaler Anpassung an den erhöhten Blutfluss, kommt es dann zu einem Stop des Remodelings in den Kollateralarterien.
4.3 Mechanotransduktion

Zur Zeit ist der genaue Transduktionsmechanismus der mechanischen Kraft (Schubspannung) in biochemische Prozesse und die daraus resultierende Beeinflussung der Funktion und Form einer Zelle weitgehend ungeklärt.

Jedoch gibt es einige Studien (20), die die Wirkung der Transduktion mechanischer Kraft auf Form und Enzymkinetik der exponierten Zellen nachweisen. Dabei laufen die beobachteten Veränderungen auf der Zytoskelett- und Enzymebene ab. Auf der Zellebene kommt es zum Umbau im Zytoskelett mit konsekutiver Veränderung der Lokalisation und Aktivität der daran angehefteten Zellorganellen und Proteinkomplexen.

Die Tatsache, dass das Zytoskelett einer Zelle ein dynamisches Gebilde ist, erklärt die Fähigkeit zu einer raschen Änderung der Form und Struktur.

So sind Actin-Filamente sind durch Integrine in der Zellmembran eng mit der extrazellulären Matrix verbunden und können so strukturell auf die mechanischen Kräfte von außen auf die Zellmembran mit Polymerisation und Depolymerisation antworten.
4.4 Interpretation der Ergebnisse

In dieser Arbeit konnten zwei zytosolische Proteine identifiziert werden, die nach Ligatur der Arteria femoralis in Kollateralarterien von Ratten hochreguliert waren.

Der Grund für die erhöhte Synthese von Tropomyosin könnte in der gesteigerten Proliferation der glatten Muskelzellen in Intima und Media während der Arteriogenese liegen.

Es ist durchaus bekannt, dass Tropomyosin in Muskel- und Bindegewebszellen, die einer gewissen Zugspannung ausgesetzt werden, vermehrt synthetisiert wird (21) und dass es bei der Mechanotransduktion eine signifikante Rolle spielt (22).

Die vermeintliche Hochregulation von Albumin lässt sich am ehesten durch eine Blutkontamination der Proben erklären. Dies könnte bei Verwendung entsprechender Filter bei der Probenaufbereitung verhindert werden.
4.5 Problematik der Probenaufbereitung

Ein ganz zentraler Ansatzpunkt dabei ist die Reduzierung der Probenkomplexität, um die Sichtbarkeit von kleinen Proteinen auf den Gelen zu erhöhen. Techniken wie die differenzielle Extraktion (23), die subzelluläre Fraktionierung (24) sowie die Chromatographie (25) setzen hier an.

Diese Arbeit zeigt somit, dass die 2 D-Gelelektropherese zur Darstellung des Proteoms pathophysiologischer Zustände nur begrenzt einsetzbar ist. Die verbesserte Trennung der Proteinfraktionen unter Zuhilfenahme verschiedener Detergenzien ist daher zentral. Diese werden jedoch für jedes Peptid anders ausfallen (26).
4.6 Die Rolle der Proteomanalyse

Es kann untersucht werden inwieweit spezifische pathologische oder pharmakologische Veränderungen das Proteinprofil von Zellen oder Gewebe beeinflussen auch ohne die Notwendigkeit einer Proteinidentifikation. So würden sich bei Optimierung der Techniken zahlreiche Anwendungsmöglichkeiten in der Pharmakologie und klinischen Diagnostik ergeben.

In den letzten Jahren wurden die ersten Genome von Organismen vollständig entschlüsselt, und heute befindet sich die Aufarbeitung weiterer Gesamtgenome schon an der Grenze zur Routine. Und obwohl die Genomdaten in den letzten Jahren ihren Wert für die Analyse biochemischer und klinischer Fragestellungen bewiesen haben, bewegt sich der Schwerpunkt des Interesses der Post-Genome-Ära hin zu funktionellen Analysen der einzelnen Gene. Dies wird damit zur eigentlichen Herausforderung an die Wissenschaft der nächsten Generation. Heute erkennt man, dass auch die gesamte Geninformation nur einen begrenzten Einblick in die Komplexität und Dynamik eines lebenden Systems zu geben vermag.
ZUSAMMENFASSUNG:

ABKÜRZUNGSVERZEICHNIS:

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Dalton</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast Growth Factor</td>
</tr>
<tr>
<td>IEF</td>
<td>Isoelektrische Fokussierung</td>
</tr>
<tr>
<td>IPG</td>
<td>Immobilized pH Gradient</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte Chemoattractant Protein-1</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger-Ribonukleinsäure</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide Gelelektrophorese</td>
</tr>
<tr>
<td>rpm</td>
<td>rotations per minute</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>WWW</td>
<td>World Wide Web</td>
</tr>
</tbody>
</table>
LITERATURVERZEICHNIS:

1. Schaper W, Schaper J

 Collateral Circulation. Vol. 1; 1993

2. Carmeliet P

 Mechanisms of angiogenesis and arteriogenesis
 Nat Med. 2000; 6(4):389-95

3. Schaper W, Scholz D

 Factors regulating arteriogenesis [In Process Citation]
 Arterioscler Thromb Vasc Biol (United States), Jul 1 2003, 23(7) p1143-51

4. Buschmann I, Schaper W

 Arteriogenesis Versus Angiogenesis: Two Mechanisms of Vessel Growth [Record
 Supplied By Publisher]
 News Physiol Sci (), Jun 1999, 14 p121-125

5. Longland CJ

 Progress with proteome projects: Why all proteins expressed by a genome should de
 identified and how to do it

 Expression of the dihydropyrimidinase related protein 2 (DRP-2) in Down syndrome
 and Alzheimer’s disease brain is downregulated at the mRNA and dysregulated at the
 protein level

 An integrated proteomic approach to studying glomerular nephrotoxicity
 Electrophoresis 20, 3647-3658 (1999)

 An assessment of protein profiles from the marine oligotrophic ultramicrobacterium,
 Sphingomonas sp. Strain RB2256
 Electrophoresis 20, 2094-2098 (1999)

 The current state of two-dimensional electrophoresis with immobilized ph gradients
 Electrophoresis 21, 1037-1053 (2000)

11. Herzog S, Sager H, Khmelevski E, Deylig A, Ito WD

 Collateral arteries grow from preexisting anastomoses in the rat hindlimb.
 Am J Physiol Heart Circ Physiol (United States), Nov 2002, 283(5) pH2012-20
Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion.
Am J Physiol (United States), Sep 1997, 273(3 Pt 2) pH1255-65

Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit
Circ Res. 2001; 89(9):779-86

Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb.
J Clin Invest (United States), Jan 1 1998, 101(1) p40-50

Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion.
Circ Res (United States), Jun 1997, 80(6) p829-37

Involvement of the fibroblast growth factor system in adaptive and chemokine-induced arteriogenesis.
Circ Res (United States), Mar 21 2003, 92(5) p561-8

Shear level influences resistance artery remodeling: wall dimensions, cell density and eNOS expression.

18. Unthank JL, Fath SW, Burkhart HM, Miller SC, Dalsing MC
Wall remodeling during luminal expansion of mesenteric arterial collaterals in the rat

19. Fath SW, Burkhart HM, Miller SC, Dalsing MC, Unthank JL
Wall remodeling after wall shear rate normalization in rat mesenteric arterial collaterals

20. Khan S, Sheetz MP
Force effects on biochemical kinetics

21. Ralphs JR, Waggett AD, Benjamin M

22. Fajer P
Conformational switching in muscle.
Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis.
Electrophoresis 19, 837-844 (1998)

Proteomics in rat liver Golgi complex: minor proteins are identified through sequential fractionation.
Electrophoresis 21, 3441-3459 (2000)

Enrichment of low abundance proteins of Escherichia coli by hydroxyapatite chromatography.
Electrophoresis 20, 2181-2195 (1999)

Two-dimensional electrophoretic analysis of Corynebacterium glutamicum membrane fraction and surface proteins.
Elektrophoresis 21, 654-659 (2000)

Impaired collateral development in mature rats

28. Loscalzo J
Proteomics in cardiovascular biology and medicine.
Circulation (United States), Jul 29 2003, 108(4) p380-3

29. Arrell DK, Neverova I, Van Eyk JE
Cardiovascular proteomics: evolution and potential.
Circ Res (United States), Apr 27 2001, 88(8) p763-73

30. Califf RM
Genetics, genomics, proteomics: what is a cardiologist to do?
Am Heart J (United States), Oct 2000, 140(4) pS48-50

31. Macri J, Rapundalo ST
Application of proteomics to the study of cardiovascular biology.
Trends Cardiovasc Med (United States), Feb 2001, 11(2) p66-75

Proteomics: a new approach to the study of disease.
J Pathol (England), Nov 2000, 192(3) p280-8
DANKSAGUNG:

Ich möchte mich an dieser Stelle ganz herzlich bei Herrn Professor Dr. med. T. Meinert für das Überlassen des Themas und die Möglichkeit in seinen Laboren forschen zu dürfen danken. Außerdem geht mein Dank an Herrn Dr. med. Wulf D. Ito für die wissenschaftliche Betreuung sowie an Frau Natalie Obermeyer für die gute Zusammenarbeit. Ebenfalls herzlich danken möchte ich Herrn Dr. rer. nat. Buck für die Sequenzierung der Proteinproben.
LEBENSLAUF:

Name:

Björn Kitzing

Geburtsdatum:

18.10.1976

Geburtsort:

Bremen

Schulbildung:

1989-1997 Kreisgymnasium Bargteheide, Schleswig-Holstein, Deutschland

Schulabschluß:

1997 Abitur (allgemeine Hochschulreife)

Zivildienst:

1997-1998 Universitätskrankenhaus Eppendorf, Chirurgische Klinik

Medizinstudium:

1998-2004 Universität Hamburg

2002 University of Queensland (Australien), Famulatur

2003 University of Cambridge (England), PJ-Tertial

2004 University of Sydney (Australien), PJ-Tertial

Beruflicher Werdegang:

2004 Approbation als Arzt

2004-2005 Assistenzarzt, Universitätsklinikum Hamburg-Eppendorf, Herzzentrum, Klinik und Poliklinik für Herz- und Gefäßchirurgie

EIDESSTATTLICHE VERSICHERUNG:

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe

...