Motor neuron differentiation in the developing and the regenerating adult spinal cord of zebrafish *Danio rerio* (HAMILTON, 1822)

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften des Fachbereichs Biologie der Universität Hamburg

vorgelegt von
Dipl.-Biol. Michell Mario Reimer
aus Siegen

Hamburg/Edinburgh,
August 2008
Genehmigt vom Department Biologie
der Fakultät für Mathematik, Informatik und Naturwissenschaften
an der Universität Hamburg
auf Antrag von Frau Priv.-Doz. Dr. C. BECKER
Weiterer Gutachter der Dissertation:
Herr Professor Dr. K. WIESE

Hamburg, den 10. Oktober 2008

[Signature]
Professor Dr. Jörg Ganzhorn
Leiter des Departments Biologie
Gutachter:
Herr Prof. Dr. L. Renwrantz
Frau PD Dr. C.G. Becker
1 INTRODUCTION

1.1 Aims of the study

1.2 Zebrafish (*Danio rerio*) as a model organism

1.3 Mammals, including humans, do not regenerate the lesioned or diseased CNS.

1.4 Anamniotes (amphibians and fish) have a high regenerative capacity, which includes the CNS.

1.5 The zebrafish shows anatomical and functional spinal cord regeneration.

1.6 Primary motor neurons in developing zebrafish provide a model for studying motor axon differentiation.

1.7 Cell recognition molecules in axonal pathfinding

1.8 Summary

2 MATERIAL AND METHODS

2.1 Materials

2.1.1 Enzymes

2.1.2 Bacterial strains

2.1.3 Bacterial media

2.1.4 Vectors

2.1.5 Kits

2.1.6 DNA Standards

2.1.7 Oligonucleotides

2.1.8 Primers

2.1.9 Morpholinos

2.1.10 Antibodies

2.1.11 Buffers and solutions

2.1.12 Chemicals

2.1.13 Equipment

2.1.14 Zebrafish

2.2 Molecular biological methods

2.2.1 Standard Polymerase chain reaction (PCR)

2.2.2 Nested PCR

2.2.3 Touchdown PCR
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.4</td>
<td>TA cloning</td>
<td>19</td>
</tr>
<tr>
<td>2.2.5</td>
<td>TOPO cloning</td>
<td>19</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Purification of DNA fragments and PCR products</td>
<td>19</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Restriction enzyme digestion of DNA</td>
<td>20</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Agarose gel electrophoresis of DNA fragments</td>
<td>20</td>
</tr>
<tr>
<td>2.2.9</td>
<td>Dephosphorylation of DNA fragments</td>
<td>20</td>
</tr>
<tr>
<td>2.2.10</td>
<td>Ligation of DNA fragments</td>
<td>21</td>
</tr>
<tr>
<td>2.2.11</td>
<td>Transformation of plasmid DNA into bacteria</td>
<td>21</td>
</tr>
<tr>
<td>2.2.12</td>
<td>Miniprep (small scale plasmid preparation)</td>
<td>21</td>
</tr>
<tr>
<td>2.2.13</td>
<td>Midiprep (medium scale plasmid preparation)</td>
<td>22</td>
</tr>
<tr>
<td>2.2.14</td>
<td>Quantification of DNA</td>
<td>22</td>
</tr>
<tr>
<td>2.2.15</td>
<td>Sequencing of DNA</td>
<td>22</td>
</tr>
<tr>
<td>2.2.16</td>
<td>Precipitation of DNA</td>
<td>22</td>
</tr>
<tr>
<td>2.2.17</td>
<td>Total RNA extraction from zebrafish tissue</td>
<td>23</td>
</tr>
<tr>
<td>2.2.18</td>
<td>First strand cDNA synthesis</td>
<td>23</td>
</tr>
<tr>
<td>2.2.19</td>
<td>In vitro transcription</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Histological Methods</td>
<td>25</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Immunohistochemistry on cryosections</td>
<td>25</td>
</tr>
<tr>
<td>2.3.2</td>
<td>In situ hybridisation on cryosections</td>
<td>25</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Immunohistochemistry on vibratome sections of adult spinal cord</td>
<td>27</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Stereological quantifications in spinal cord sections</td>
<td>28</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Profile counts in spinal cord sections</td>
<td>28</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Microinjection into zebrafish eggs</td>
<td>29</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Whole mount immunohistochemistry</td>
<td>29</td>
</tr>
<tr>
<td>2.3.8</td>
<td>Whole mount in situ hybridisation</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Animal experiments</td>
<td>31</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Perfusion fixation of adult zebrafish</td>
<td>32</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Spinal cord lesion of adult zebrafish</td>
<td>32</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Retrograde tracing of adult zebrafish</td>
<td>32</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Intraperitoneal substance application</td>
<td>32</td>
</tr>
</tbody>
</table>
3 RESULTS ..34
 3.1 Adult spinal cord regeneration ...34
 3.1.1 Spinal cytoarchitecture is not restored in a spinal lesion site34
 3.1.2 A spinal lesion triggers ventricular proliferation35
 3.1.3 Motor neurons show significant regenerative capacity38
 3.1.4 Olig2:GFP+ ependymo-radial glial cells are potential motor neuron
 stem cells in the adult spinal cord ...49
 3.1.5 Expression of ventral neural tube markers is increased in a
 developmentally appropriate pattern ..55
 3.1.6 Cyclopamine inhibits shh dependent motor neuron regeneration59
 3.2 Motor axon pathfinding during development ..63
 3.2.1 Cloning of plexinA3 ..63
 3.2.2 PlexinA3 is strongly expressed in spinal motor neurons64
 3.2.3 PlexinA3 is necessary for motor axon pathfinding66
 3.2.4 PlexinA3 morpholino phenotypes are specific69
4 DISCUSSION ..71
 4.1 Adult zebrafish are capable of motor neuron regeneration71
 4.2 Olig2+ ependymo-radial glial cells are the putative stem cells in adult
 motor neuron regeneration ...75
 4.3 Mechanisms of motor neuron regeneration in adult zebrafish are
 similar to developmental mechanisms ...76
 4.4 Implications of motor neuron regeneration in zebrafish for spinal cord
 regeneration in mammals ..77
 4.5 PlexinA3 is crucial for motor axon pathfinding78
 4.6 Conclusion ...80
5 SUMMARY ...81
6 ZUSAMMENFASSUNG ..83
7 LITERATURE ...86
8 APPENDIX ...94
 8.1 Abbreviations ...94
 8.2 Morpholinos ..96
 8.3 Overexpression-construct plexinA3 ...96
 8.3.1 Primers used to clone plexinA3 overexpression construct:96
8.3.2 Sequence of the overexpression construct for *plexinA3*: 97
8.3.3 Restriction enzyme map for *plexinA3* overexpression construct 100
8.4 Publications .. 101
8.5 Posters .. 101
8.6 Danksagung ... 103
8.7 Original Publications .. 104
1 INTRODUCTION

1.1 Aims of the study

(aim 1) Adult zebrafish, in contrast to mammals, show an amazing capacity for functional spinal cord repair (Kirsche, 1950; Becker et al., 1997; van Raamsdonk et al., 1998; Becker et al., 2004). However, cellular regeneration of spinal neurons, such as motor neurons has not been analysed. Therefore, this study asks whether motor neurons that are lost due to spinal injury regenerate in adult zebrafish and if so, what are the cellular and molecular mechanisms of neuronal regeneration.

(aim 2) In order to analyse the molecular mechanism of axonal differentiation of motor neurons, which may be recapitulated during regeneration, the well established system of axon growth from so-called primary motor neurons in embryonic zebrafish was used (Beattie, 2000). It has been shown that cell recognition molecules are important for axon growth and pathfinding (Beattie, 2000; Giger et al., 2000; Feldner et al., 2005). Therefore, this study asks which specific cell recognition molecules are necessary for correct growth of primary motor axons during embryonic development.

Together, these aims are intended to increase our understanding of motor neuron differentiation in general and during successful regeneration of the adult spinal cord in particular. Ultimately, insights from zebrafish into these evolutionarily conserved mechanisms may help to cure human conditions, such as spinal cord injury and motor neuron disease.
1.2 Zebrafish (*Danio rerio*) as a model organism

The zebrafish (*Danio rerio*) is part of the family of *Cyprinidae*. It belongs to the class of *Actinopterygii*, in the infraclass of the *Teleostei*. These 2-4 cm long freshwater fish can be found in South Asia, Northern India, Bhutan, Pakistan and Nepal.

The genome of the zebrafish is partially duplicated in evolution (Taylor et al., 2001). Therefore a substantial number (up to 30%) of mammalian genes have two orthologs in the zebrafish genome. Conveniently, the zebrafish genome is now fully sequenced (www.ensembl.org, Sanger Institute), providing easy access to gene sequences in-silico. This facilitates the design of transgenic reporter lines, which are relatively easy to generate in zebrafish, and of morpholinos (antisense-oligo nucleotides) for gene knock-down studies. The possibility to inject RNA overexpression constructs as well as morpholinos from the one cell stage egg and the transparancy of embryos makes the zebrafish an ideal model system for studying developmental processes in vivo (Nasevicius and Ekker, 2000; Malicki et al., 2002).

Furthermore, zebrafish development is well characterised and a variety of transgenic reporter lines that express fluorescent proteins in motor neurons as well as antibodies that label motor neurons are available (Renoncourt et al., 1998; Higashijima et al., 2000; William et al., 2003; Flanagan-Steet et al., 2005).

1.3 Mammals, including humans, do not regenerate the lesioned or diseased CNS.

CNS injury or disease in mammals often causes irreversible loss of motor and sensory function (Dijkers, 2005). The properties of axonal regeneration and its failure in mammals has been extensively studied. It is thought that the lack of
axonal regeneration in mammals is due to inhibitory molecules, such as myelin-associated inhibitors (e.g. nogo-A), myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein, that prevent axon outgrowth (Spencer et al., 2003; Schwab, 2004). Other inhibitory molecules are part of the extracellular matrix, such as chondroitin sulfate proteoglycans, which are found in the glial scar (Carulli et al., 2005). Another reason for regeneration failure is inflammation, which often leads to a further increase of damage to the CNS (Bambakidis et al., 2008).

The regeneration and replacement of lost neurons in adult mammals is not so well-characterised. Studies have show that neuronal progenitor cells in the subventricular zone and dentate gyrus in the adult mammalian brain proliferate and differentiate into neurons (Johansson, 2007). In the spinal cord of rats, proliferation and differentiation of glial progenitor cells that give rise to astrocytes and oligodendrocytes has been demonstrated (Horner et al., 2000) but neurogenesis has never been observed. To find the signalling pathways that trigger endogenous progenitor cells to differentiate into neurons after a lesion or disease and replace lost neurons could be one way to ameliorate the devastating effects after CNS damage.

1.4 Anamniotes (amphibians and fish) have a high regenerative capacity, which includes the CNS

The zebrafish is well established as a model in developmental studies and interest in adult regeneration, e.g. of heart tissue (Poss et al., 2002) and spinal cord (Becker et al., 1997), is increasing. Zebrafish show an impressive tissue regeneration capacity at the adult stage (Bernhardt, 1999; Becker et al., 2004). After a spinal cord lesion, zebrafish grow
an axonal bridge between the two ends of the fully transected spinal cord and regain swimming function (Becker et al., 2004). In tail regeneration paradigms in amphibians in which the tail, including the spinal cord is amputated (Echeverri and Tanaka, 2002; Beck et al., 2003) the tail is regenerating from an advancing blastema. This includes a completely regenerated spinal cord.

1.5 The zebrafish shows anatomical and functional spinal cord regeneration

In 1950, Walter Kirsche described in detail the morphological response to a complete spinal cord transection in adult teleosts (Poecilia reticulata) (Kirsche, 1950). Based on his morphological observations that large “ganglion cells” disappeared and later reappeared, he even hypothesized the replacement of lost neurons in response to a lesion event.

A complete transection of the spinal cord leads to loss of movement in the distal body part. Swimming performance in zebrafish has been tested in a tunnel with a constant water flow. Swimming behaviour recovered after a lesion and plateaued around 2.5 months post-lesion (van Raamsdonk et al., 1993). However, while significant recovery of swimming behaviour occurred, performance of the fish remained worse than in unlesioned fish. Another method to quantify functional recovery after a lesion is to measure spontaneous movement in an open-field setup. This test shows a recovery in swim distance at 6 weeks post-lesion, which was indistinguishable from sham (muscle)-lesioned controls (Becker et al., 2004). The difference in the results of these test paradigms may be that to be forced to swim against a flow is more challenging for the fish than to perform their normal swimming patterns. This indicates that while regeneration after spinal injury occurs, it is not perfect.
Anatomically, long-range axonal projections are destroyed after a complete transection. These include descending axons from the brainstem, intraspinal descending connections, ascending axons from dorsal root ganglia and intraspinal neurons providing sensory feedback to the brainstem. Substantial regrowth of spinal axons is only observed from brainstem neurons. Blocking the regrowth of these long-range axonal projections abolishes the capacity for functional recovery of the adult zebrafish (Becker et al., 2004). While this clearly demonstrates that axonal regrowth from the brainstem is essential for functional recovery after spinal cord injury, the plastic changes in the spinal cord, e.g. regeneration of target neurons, remain largely unknown.

The signalling cascade leading to motor neuron differentiation during development is well understood and is evolutionarily conserved. Progress in recent years in identifying extracellular signals and cell-intrinsic differentiation programs has led to a general model of early generation of different classes of neurons. Most of this data were obtained from studies with chick and mouse embryos, but motor neuron differentiation is very similar in embryonic zebrafish (Park et al., 2002). Generally, a gradient of the morphogen sonic hedgehog (Shh) regulates the expression of a set of transcription factors in progenitor cells of the ventral spinal cord. The pattern of transcription factor expression defines five domains of progenitor cells, termed p0, p1, p2, pMN and p3. Specific cell types are produced from each domain, leading to the generation of different types of interneurons and somatic motor neurons. The pMN domain gives rise to motor neurons (Fig. 1). Specifically, a high concentration of sonic hedgehog in combination with the transcription factors nkol.1, pax6 and olig2 define the motor neuronal cell fate in progenitor cells (Jessell, 2000; Briscoe and Ericson, 2001; Shirasaki and Pfaff, 2002). The resulting immature neurons are positive
for the motor neuron marker *islet1/2* and *HB9* (Higashijima et al., 2000; Flanagan-Steet et al., 2005).

The question arises, whether some or all of these mechanisms are recapitulated during adult motor neuron regeneration.

Fig. 1: Spinal cord neurons. Schematic diagram of the development of early classes of ventral spinal cord neurons in mice. A gradient of the morphogen *Sonic hedgehog* (*Shh*) regulates the expression of a set of transcription factors in progenitor cells of the ventral spinal cord. The pattern of transcription factor expression defines five domains of progenitor cells, termed p0, p1, p2, pMN, and p3. A specific cell type is produced from each domain, leading to the generation of V0, V1, V2, and V3 interneurons and somatic motor neurons (MN). After (Kullander, 2007).

1.6 Primary motor neurons in developing zebrafish provide a model for studying motor axon differentiation

A widely used model system to study signals for early motor axon growth, is the outgrowth of primary motor axons in zebrafish embryos (Beattie, 2000). This is because there are only three primary motor neurons per spinal hemi-segment. These neurons grow axons out of the spinal cord following a common path in the middle of each segment to the horizontal myoseptum. From there the axons paths diverge. The axon of the caudal primary motor neuron (CaP) grows
towards the ventral somite, pioneering the ventral motor nerve. The axon of the middle primary motor neuron (MiP) follows the CaP axon up to the horizontal myoseptum where it retracts and grows towards the dorsal somite. The rostral primary motor neuron (RoP) axon takes a lateral direction from the horizontal myoseptum (Fig. 2). In some of the hemisegments a variable primary motor neuron (VaP) is present, which sometimes develop beside the CaP and mostly die from interaction with the CaP (Eisen et al., 1986; Myers et al., 1986; Westerfield et al., 1986; Eisen et al., 1990; Sato-Maeda et al., 2008).

Fig. 2: Schematic illustration of primary motor axon outgrowth in embryonic zebrafish. A side view of zebrafish trunk segments at 18 and 24 hpf is given. At 18 hpf the caudal primary motor neuron (CaP) grows an axon out of the spinal cord. At 24 hpf, the axons of the middle (MiP) and rostral (RoP) primary motor neurons have followed on the common pathway to the horizontal myoseptum and the MiP has grown towards the dorsal somite. The CaP axon is the only one growing ventrally beyond the horizontal myoseptum.

1.7 Cell recognition molecules in axonal pathfinding

The molecular mechanisms underlying axonal pathfinding are pathway cues and axonal receptors. PlexinA1 to A4 are co-receptors for axon-repelling or
attracting class 3 extracellular semaphorins. It is thought that neuropilin-1 (NRP1) or neuropilin-2 (NRP2) is the ligand-binding part and plexins are the signal transducing part of semaphorin class 3 receptors (for recent review, see Kruger et al., 2005). Removing individual components from this guidance network leads to specific defects of nerve growth (Giger et al., 2000; Huber et al., 2005; Yaron et al., 2005), indicating distinct roles for different ligand/receptor combinations in the pathfinding of different axon populations. Sema3Aa and sema3Ab (zebrafish homologs of mammalian sema3A) are expressed in the trunk environment. Overexpression of either ligand reduces growth of primary motor axons (Roos et al., 1999; Halloran et al., 2000) and anti-sense morpholino oligonucleotide knockdown of sema3A1 leads mainly to aberrant branching of the CaP axon (Sato-Maeda et al., 2006). Knockdown of neuropilin-1a (NRP1a) alone or in double knockdown experiments with semaphorin ligands leads to nerve branching, additional exit points of axons from the spinal cord, and ventral displacement of neuronal somata along the extra-spinal motor axon pathway (Feldner et al., 2005). This suggests that semaphorins guide primary motor axons by repellent mechanisms via NRP1a containing axonal receptors. So far, the role of plexins has not been examined. The only class A member of the plexin family characterised in zebrafish is plexinA4, but it is not expressed in primary trunk motor neurons (Miyashita et al., 2004). Therefore, we have investigated the role of another plexinA, plexinA3 in the outgrowth of primary motor axons. The knowledge of embryonic neurogenesis and axonal outgrowth of motor neurons may lead to further insights into mechanisms of adult spinal cord regeneration.
1.8 Summary

In this study I demonstrate for the first time that adult zebrafish are capable of regenerating motor neurons lost after spinal cord lesion. Evidence is provided that these neurons fully differentiate and are integrated into the spinal network. I identify the morphogen shh as one of the signals that is important for motor neuron differentiation and progenitor cell proliferation at the adult stage. Embryonic studies indicate that the cell recognition molecule plexinA3 is pivotal for correct motor axon pathfinding. These findings provide insight into the differentiation processes of motor neurons, both in development and regeneration in a vertebrate.
2 MATERIAL AND METHODS

2.1 Materials

2.1.1 Enzymes

Restriction endonucleases
various (5-20 U/µl) New England Biolabs UK Ltd. (Hitchin, Hertfordshire, UK)

DNA polymerase
PfuUltra™ HF DNA Polymerase Stratagene (Amsterdam, NL)
Taq DNA Polymerase with Standard Taq Buffer New England Biolabs UK Ltd. (Hitchin, Hertfordshire, UK)

Reverse Transcriptases
SuperScript II™ RT Invitrogen (Karlsruhe, D)
SuperScript III™ RT Invitrogen Ltd. (Paisley, UK)
RNaseOUT™ Recombinant Ribonuclease Inhibitor Invitrogen Ltd. (Paisley, UK)

Ribonuclease Inhibitor
RNasin®Plus RNase Inhibitor Promega (Mannheim, D)

Miscellaneous
T4 DNA Ligase New England Biolabs UK Ltd. (Hitchin, Hertfordshire, UK)
Alkaline Phosphatase, shrimp (SAP) Roche (Mannheim, D)
Alkaline Phosphatase Roche Diagnostics Ltd. (Burgess Hill, UK)
Proteinase K Roche Diagnostics Ltd. (Burgess Hill, UK)

2.1.2 Bacterial strains

XL1-Blue competent cells Stratagene (UK)
NEB Turbo Competent *E. coli* (High Efficiency)
New England Biolabs UK Ltd. (Hitchin, Hertfordshire, UK)
dam*/dcm* Competent *E. coli*
New England Biolabs UK Ltd. (Hitchin, Hertfordshire, UK)

E. Coli One Shot®TOP10
Invitrogen (Karlsruhe, D)
E. Coli DH5α
Invitrogen (Karlsruhe, D)

2.1.3 Bacterial media

All bacterial media were autoclaved before use. If necessary Ampicillin or Kanamycin was added.

Bacterial growth media encapsulated media LB medium
QBIOgene, Fisher Scientific (UK)
LB Agar Miller Fisher BioReagents
Fisher Scientific (UK)
Antibiotics
Ampicillin (50mg/ml in H₂O stock, 50µg/ml working solution)
Kanamycin (50mg/ml in H₂O stock, 30µg/ml working solution)

2.1.4 Vectors

<table>
<thead>
<tr>
<th>Vector</th>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGEM®-T easy</td>
<td>Promega (Southamton, UK)</td>
<td>TA cloning vector</td>
</tr>
<tr>
<td>pCR®-Blunt II-TOPO®</td>
<td>Invitrogen (UK)</td>
<td>TOPO cloning vector</td>
</tr>
<tr>
<td>pCS2+MT (Rupp et al., 1994)</td>
<td></td>
<td>mRNA overexpression vector</td>
</tr>
<tr>
<td>pBlueScript® II</td>
<td>Stratagene (UK)</td>
<td></td>
</tr>
</tbody>
</table>

2.1.5 Kits

<table>
<thead>
<tr>
<th>Kit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGAscript™ (T3/T7/SP6)</td>
<td>Ambion (Cambridge, UK)</td>
</tr>
<tr>
<td>mMESSAGE mMACHINE™</td>
<td>Ambion (Cambridge, UK)</td>
</tr>
<tr>
<td>Poly (A) Tailing Kit</td>
<td>Ambion (Cambridge, UK)</td>
</tr>
</tbody>
</table>
Rapid DNA Ligation Kit Roche Diagnostics Ltd. (Burgess Hill, UK)
pGEM®-T easy vector system I Promega (Southamton, UK)
Zero Blunt® TOPO® PCR Cloning Kit Invitrogen (UK)
QIAquick™ Gel Extraction Qiagen (Crawley, UK)
QIAquick™ PCR Purification Qiagen (Crawley, UK)
MiniElute™ Gel Extraction Kit Qiagen (Crawley, UK)
MiniElute™ PCR Purification Kit Qiagen (Crawley, UK)
HiSpeed® Plasmid Midi Kit Qiagen (Crawley, UK)
RNeasy® Midi Kit Qiagen (Crawley, UK)
GFX™ Micro Plasmid Prep Kit GE Healthcare (Little Chalfont, UK)
High Pure PCR Product Purification Kit Roche (Mannheim, D)

2.1.6 DNA Standards
GeneRuler™DNA Ladder Mix, ready to use Fermentas (York, UK)
Ready-Load™ 1Kb Plus DNA Ladder Invitrogen (UK)
Quick-Load® 2-Log DNA Ladder(0.1-10.0 kb) New England Biolabs UK Ltd. (Hitchin, Hertfordshire, UK)
100 bp DNA Ladder New England Biolabs UK Ltd. (Hitchin, Hertfordshire, UK)
DNA sample buffer (10x) Eppendorf (UK)

2.1.7 Oligonucleotides
Primer (purification: desalted) metabion (Martinsried, D)
Primer (purification: RP-Column) TAGN Ltd (Gateshead, UK)
Primer (purification: RP-Column) VH Bio Ltd . (Gateshead, UK)

2.1.8 Primers
plexin A3 (BamHI) forward

5´- GTGGATCCATGAGGT TTGTGCTG -3´
plexinA3 (BamHI) reverse
5`- TAGGATCCGCTGCTGCCAGACATCAG-3`

olig2 forward
5`- TCCAGCAGACCTTCTTCTCC -3`

olig2 reverse
5`- ACAACTGGACGGATGGAAACC -3`

patched 1 forward
5`- GTCTGCAAGCCACTTTTGATGC -3`

patched 1 reverse
5`- GGGGTAGCCATTGGGATAGT -3`

GAPDH forward
5`- ACTCCACTCATGGCGTT -3`

GAPDH reverse
5`- TCTTCTGTGTGGCGGTGTAG -3`

2.1.9 Morpholinos

Synthetic antisense oligonucleotides (morpholino) were used to “knockdown” genes, blocking either the translation of the mRNA or the splicing of the preRNA. Morpholinos were synthesised by Gene Tools LLC (Philomath, OR, USA), sequences see appendix.

2.1.10 Antibodies

- **anti-HB9/MNR2 (81.5C10)** Dr. T.M. Jessell (Columbia University, New York, USA), 1:400, Developmental Studies Hybridoma Bank (Tanabe et al., 1998)
- **anti-islet-1/-2 (40.2D6)** Developmental Studies Hybridoma Bank (Iowa City, USA), 1:1000 (Tsuchida et al., 1994)
anti-acetylated tubulin (6-11B-1) Sigma Aldrich (UK), 1:1000
anti-NCAM-PSA (735) Prof. Dr. Rita Gerardy-Schahn (MHH, Hannover) 1:1000 (Kibbelaar et al., 1989)
anti-neurofilament-associated antigen (3A10) Dr. T.M. Jessell (Columbia University, New York, USA), 1:50, Developmental Studies Hybridoma Bank
anti-myc epitope (9E10) Santa Cruz Biotechnology, (Santa Cruz, CA, USA), 1:600
rat anti-BrdU (BU 1/75) AbD Serotec (Oxford, UK) 1:500
anti-PCNA (PC10) Dako Cytomation (Glostrup, Denmark) 1:500
anti-nkx6.1 (AB2024) O.Madsen (Hagedorn Research Institute, Gentofte, Denmark) 1:1000
anti-GFP (A11122) Invitrogen (UK) 1:200
pax6 (MiniPerm 95) Veronica van Heyningen (MRC, Edinburgh)

All Cy2-, Cy3-, Cy5 and HRP conjugated anti-rabbit, anti-rat and anti-mouse secondary antibodies were from Jackson ImmunoResearch Laboratories Inc. (West Grove, PA, USA) or Dianova (Hamburg, Germany), 1:200. Goat Serum (ab7481) was used for blocking in immunohistochemistry, (Abcam, Cambridge, UK) and heat inactivated prior use for 30 min at 60°C.

2.1.11 Buffers and solutions

Method-specific solutions that are not listed below are specified in the corresponding chapters.

- **blocking buffer (whole mount immunohistochemistry)**
 - 1x PBS
 - 1% (v/v) DMSO
 - 1% (v/v) normal goat serum (NGS)
 - 1% (w/v) BSA
 - 0.7% (v/v) Triton-X 100
blocking buffer (vibratome section immunohistochemistry)

blocking solution (whole mount in-situ hybridisation) 1% (w/v) blocking reagent (Boehringer) in PBST

Citrate buffer 10 mM sodium citrate in 1x PBS, pH 6.0

DAB stock solution 6% (w/v) diaminobenzidine (DAB)

Danieau solution 58 mM NaCl 0.7 mM KCl 0.4 mM MgSO₄ 0.6 mM Ca(NO₃)₂ 5 mM HEPES pH 7.6

DAB stock solution (100mM) dATP, dCTP, dGTP, dTTP, 25 mM each

phosphate buffer saline (10x PBS) 1.36 M NaCl 0.1 M Na₂HPO₄ 27 mM KCl 18 mM KH₂PO₄ pH 7.4

PBST 0.1% (v/v) Tween 20 in 1x PBS

PBStx 0.1% (v/v) Triton X 100 in 1x PBS

PFA 4% paraformaldehyde (w/v) in 1 xPBS

Saline sodium citrate buffer (SSC) (20x stock) 3 M NaCl 0.3 M tri-sodium citrate pH 7.4

Tris-acetate-EDTA buffer (TAE) (50x stock) 2M Tris-acetate 100mM EDTA pH 8.5

2.1.12 Chemicals

Chemicals were purchased as pro analysis quality from Sigma-Aldrich (UK) and Fisher Scientific (UK).
2.1.13 Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apotome</td>
<td>Zeiss (Goettingen, D)</td>
</tr>
<tr>
<td>Axiophot</td>
<td>Zeiss (Goettingen, D)</td>
</tr>
<tr>
<td>Bench-top centrifuges 5417 R and 5804 R</td>
<td>Eppendorf (Hamburg, D)</td>
</tr>
<tr>
<td>Centrifuge RC 5C Plus Sorvall</td>
<td>Kendro (Hanau, D)</td>
</tr>
<tr>
<td>Centrifuge Sigma 3K30C</td>
<td>Sigma Laborzentrifugen GmbH (Osterode am Harz, D)</td>
</tr>
<tr>
<td>Cryostat CM3050</td>
<td>Leica (Bensheim, D)</td>
</tr>
<tr>
<td>E.A.S.Y. UV-light documentation</td>
<td>Herolab (Wiesloh, D)</td>
</tr>
<tr>
<td>Fishsystem</td>
<td>Aqua Schwarz (Goettingen, D)</td>
</tr>
<tr>
<td>Hotplate stirrer Fisherbrand® metal top</td>
<td>Fisher Scientific (UK)</td>
</tr>
<tr>
<td>Hybridizer UVP HB-1000</td>
<td>Jencons PLS (East Grinstead, UK)</td>
</tr>
<tr>
<td>Incubated shaker MaxQ Mini 4450</td>
<td>Fisher Scientific (UK)</td>
</tr>
<tr>
<td>Laser scanning microscope LSM510</td>
<td>Zeiss (Goettingen, D)</td>
</tr>
<tr>
<td>Microcentrifuge 5415 D</td>
<td>Eppendorf (Hamburg, D)</td>
</tr>
<tr>
<td>Microinjector Narishige Intracel + manipulator</td>
<td>Intracel Ltd. (Herts, UK)</td>
</tr>
<tr>
<td>MJ mini gradient thermal cycler</td>
<td>Biorad (UK)</td>
</tr>
<tr>
<td>MJ PTC-200 DNA ENGINE™ Peltier Thermal Cycler</td>
<td>Biozym (Hessisch Oldendorf, D)</td>
</tr>
<tr>
<td>Qualicool incubator 260</td>
<td>LTE Scientific Ltd (Oldham, UK)</td>
</tr>
<tr>
<td>Spectrophotometer Ultrospec 3000/DPV</td>
<td>APB (Freiburgh, D)</td>
</tr>
<tr>
<td>Sub-Cell GT / Power Pac Basic System</td>
<td>Biorad (UK)</td>
</tr>
<tr>
<td>Technico Mini centrifuge</td>
<td>Fisher Scientific (UK)</td>
</tr>
<tr>
<td>Vibratome Microm</td>
<td>Optech Scientific Instruments (Oxfordshire, UK)</td>
</tr>
<tr>
<td>Wide Mini-Sub Cell GT / Power Pac Basic System</td>
<td>Biorad (UK)</td>
</tr>
</tbody>
</table>
2.1.14 Zebrafish

Zebrafish (*Danio rerio*) were kept at 26.5°C, 14-hour light and 10-hour dark cycle. They were fed two times a day, with dry flakes, ZM pellets (ZM Ltd., UK) and *Artemia salina* larvae. The fish were breed and raised according to standard protocols (Westerfield, 1989; Nusslein-Volhard).

2.2 Molecular biological methods

Standard molecular biological methods were carried out according to (J Sambrook et al., 1989) unless otherwise indicated.

2.2.1 Standard Polymerase chain reaction (PCR)

The standard PCR (Saiki et al., 1985), an amplification of DNA by *in vitro* enzymatic replication, was performed in an MJ mini-gradient thermal cycler (Biorad, UK).

Reagents:

- Template (cDNA, gDNA, Plasmid DNA) 10pg – 1ng
- dNTPs 200 µM (each dNTP)
- Primer (forward) 0.1 – 1 µM
- Primer (reverse) 0.1 – 1 µM
- Reaction buffer (10x) 1x
- DNA Polymerase (1min/kb Taq DNA Polymerase, 2min/kb Pfu Ultra DNA Polymerase) 2.5U
- add ddH₂O to final volume 50 µl
Program:
cycles | time | temperature
--- | --- | ---
1 | 5 min | 94 °C
| 30 s | 94 °C
25 - 40 | 45 s | Tm – 1 °C
| 1 min per kb | 72 °C
1 | 10 min | 72 °C

Usually the reaction was carried out in a 0.2 ml PCR reaction tube. Taq polymerase was routinely used for the amplification of up to 2 kb long DNA fragments. Proof reading PfuUltra™ HF DNA Polymerase was used to amplify DNA for overexpression and full-length constructs. After the PCR reaction was finished, 5 µl of the product was analysed by agarose gel electrophoresis.

2.2.2 Nested PCR

The nested PCR approach was used to amplify sequences from genomic DNA (gDNA). A very low number of copies of a specific DNA template, e.g. a regulatory sequence from gDNA, leads often to the amplification of the wrong DNA sequence. This approach prevents the amplification of the wrong product by sequentially using two primer pairs for the same sequence. The first primer pair includes the sequence of the second primer pair and the first PCR reaction is used as a template of the second (1:40 dilution). The reaction mix is equal to the standard PCR.

2.2.3 Touchdown PCR

Another modification of the standard PCR to reduce non-specific amplicons is touchdown PCR: starting the PCR program using a higher annealing temperature than the optimum in early PCR cycles. At every cycle the annealing temperature was decreased by 1 °C until Tm – 1 °C was reached. At that
METHODS AND MATERIAL

temperature 20 additional cycles were performed to allow the enrichment of the wanted product over any non-specific product.

Program:

<table>
<thead>
<tr>
<th>cycles</th>
<th>time</th>
<th>temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 min</td>
<td>94 °C</td>
</tr>
<tr>
<td></td>
<td>30 s</td>
<td>94 °C</td>
</tr>
<tr>
<td>20</td>
<td>30 s</td>
<td>Tm + 14 (first) °C</td>
</tr>
<tr>
<td></td>
<td>30 s</td>
<td>Tm – 1 (last) °C</td>
</tr>
<tr>
<td></td>
<td>1 min per kb</td>
<td>72 °C</td>
</tr>
<tr>
<td></td>
<td>30 s</td>
<td>94 °C</td>
</tr>
<tr>
<td>20</td>
<td>30 s</td>
<td>Tm – 1 °C</td>
</tr>
<tr>
<td></td>
<td>1 min per kb</td>
<td>72 °C</td>
</tr>
<tr>
<td>1</td>
<td>10 min</td>
<td>72 °C</td>
</tr>
</tbody>
</table>

2.2.4 TA cloning

DNA, obtained using Taq DNA polymerase, contains a single 3'-adenosine overhang to each site of the PCR product. These PCR products can directly be cloned into a linearized vector with a 3'-thymidine overhang. For this ligation reaction T4 DNA ligase is used (pGEM®-T easy vector system I, Promega).

2.2.5 TOPO cloning

PCR with PfuUltra™ HF DNA Polymerase leads to a product without any overhang. Such PCR fragments with a blunt-end were ligated in the pCR-BluntII TOPO vector, using the Zero Blunt® TOPO® PCR Cloning Kit (Invitrogen, UK).

2.2.6 Purification of DNA fragments and PCR products

Silica-matrix based columns to purify DNA (MiniElute™ PCR Purification Kit, QIAquick™ PCR Purification and High Pure PCR Product Purification Kit) were used according to manufacturer’s protocol. The DNA was eluted in 50µl ddH2O.
2.2.7 Restriction enzyme digestion of DNA

Double stranded DNA was digested with appropriate amounts of restriction enzymes (NEB) according to the manufacturer’s protocols. Control digestions were carried out in a 20 µl total volume reaction for 2-3 hours. For preparative digestions the total reaction volume was scaled up to 100 µl overnight at the recommended temperature.

2.2.8 Agarose gel electrophoresis of DNA fragments

To separate and analyse restriction digestions and PCR products, horizontal agarose gel electrophoresis was performed. Gels (0.8-1.5% w/v) were prepared by heating agarose (Fisher Scientific, UK) in 1x TAE buffer. The concentration was chosen depending on the size of the DNA sample to be separated. Before pouring the gel, Ethidium-bromide (Fisher Scientific, UK) was added (7µl/100ml). For loading the samples, loading buffer (Eppendorf, UK) was mixed to a final concentration of 1x fold. Electrophoresis was performed with 10 V/cm in BIORAD gel chambers with 1x TAE buffer. For documentation, pictures were taken in an E.A.S.Y. UV-light documentation system and if necessary, bands were cut out with a scalpel.

To extract DNA from agarose gels, the QIAquick™ Gel Extraction or MiniElute™ Gel Extraction Kit from Quiagen, UK was used according to the manufacturer’s protocol.

2.2.9 Dephosphorylation of DNA fragments

To prevent linearized DNA from religating in a ligation reaction using T4 DNA ligase, the 5'-phosphates of the DNA were removed. 1U of alkaline shrimp phosphatase (Roche) dephosphorylates approximately 50 ng of linearized DNA in 20 minutes at 37 °C.
2.2.10 Ligation of DNA fragments

To ligate DNA fragments into a vector, e.g. subcloning, 50 ng vector DNA was mixed with 5x molar amount of insert DNA for blunt end or 3x molar amount for sticky end ligation. 1 µl T4 DNA ligase and 2 µl of 2x reaction buffer was added to a final reaction volume of 20 µl. Incubation was performed for 2 hours at room temperature or overnight at 16 °C.

Alternatively, the Rapid DNA ligation kit (Roche Diagnostics Ltd. Burgess Hill, UK) was used according to manufacturer’s protocol.

After the ligation, an aliquot was directly used for transformation in E.coli.

2.2.11 Transformation of plasmid DNA into bacteria

2-10 µl of the ligation mix or 0.5 µl of a plasmid DNA preparation was used to transform heat shock competent E.coli. The DNA was added to 100 µl of the competent bacteria in a 1.5ml reaction tube and gently mixed, incubated for 30 minutes on ice, followed by a 45-second heat shock at 42 °C. After the heat shock 800 µl LB medium were added and the tube was incubated on ice for 2 minutes. Further incubation for 1 hour on a shaker at 200 rpm at 37 °C was followed by plating the bacterial solution on LB agar plates with the required antibiotic. Bacterial colonies were picked after 12-14 hours at 37 °C.

2.2.12 Miniprep (small scale plasmid preparation)

One picked colony was transferred into a 15 ml reaction tube containing 5 ml of LB medium with the required antibiotic. After incubation overnight at 200 rpm and 37 °C the plasmid was cleaned-up with the GFX™ Micro Plasmid Prep Kit (GE Healthcare).
2.2.13 Midiprep (medium scale plasmid preparation)

For large scale plasmid preparation, one colony was picked off from the LB agar plate and transferred into a sterile 250 ml Erlenmeyer flask with 50 ml LB medium. The LB medium contained the required amount of antibiotics (ampicillin 50 – 100 µg/ml, kanamycin 30 µg/ml). After overnight incubation in a shaker with 200 rpm at 37 °C, the plasmid was harvested using HiSpeed® Plasmid Midi Kit (Qiagen, Crawley, UK), according to the manufacturer’s protocol.

2.2.14 Quantification of DNA

The quantification of DNA samples was carried out directly in the aqueous solution by measuring the adsorption at a wavelength of 260 nm against blank (aquatous solution without DNA). An optical density (OD) of 1 absorption equals approximately 50g/ml dsDNA. Alternatively, the concentration was defined using agarose gel electrophoresis with a DNA mass ruler (Quick-Load® 2-Log DNA Ladder, NEB).

2.2.15 Sequencing of DNA

For sequencing, DNA samples were sent to the Sequencing Service, College of Life Sciences, MSI/WTB Complex University of Dundee, UK. Samples were prepared according the facilities protocols (http://www.dnaseq.co.uk) and obtained using their web interface.

2.2.16 Precipitation of DNA

Sodium acetate (3M, pH 4.9, 1:10 v/v) and 2.5x volumes cold (-20 °C) ethanol absolute were added to the DNA. After mixing, the reaction tubes were kept on ice for 30 minutes and centrifuged for 15 minutes at 16000x g (RT). The
supernatant was removed and the pellet was washed with 800 µl ethanol 70%. After centrifugation and removal of the supernatant the pellet was washed repeatedly with ethanol 70% in 400 µl and 200 µl. The pellet was dried for 15 minutes and resuspended in ddH₂O.

2.2.17 Total RNA extraction from zebrafish tissue

To extract total RNA from brain and spinal cord tissue or whole embryos, the animals were killed via a schedule 1 method (Home Office, UK). The tissue was removed quickly and total RNA was obtained using the RNeasy® Midi Kit (Qiagen, Crawley, UK), according to the manufacturer’s protocol.

2.2.18 First strand cDNA synthesis

First strand synthesis was carried out using the SuperScript III™ RT and the RNaseOUT™ Recombinant Ribonuclease Inhibitor (Invitrogen Ltd., Paisley, UK) according to the manufacturer’s protocols. The reaction steps were performed in a MJ mini-gradient thermal cycler (Biorad, UK).

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>total RNA</td>
<td>11 µl</td>
</tr>
<tr>
<td>random primers</td>
<td>1 µl</td>
</tr>
<tr>
<td>dNTP mix (10mM)</td>
<td>1 µl in 0.2ml PCR reaction tubes mix and spin down</td>
</tr>
<tr>
<td>5 min</td>
<td>65 °C</td>
</tr>
<tr>
<td>1 min</td>
<td>on ice, spin down</td>
</tr>
<tr>
<td>5x First strand buffer</td>
<td>4 µl</td>
</tr>
<tr>
<td>DTT (0.1M)</td>
<td>1 µl</td>
</tr>
<tr>
<td>RNase OUT</td>
<td>1 µl</td>
</tr>
<tr>
<td>Super Script III</td>
<td>1 µl</td>
</tr>
<tr>
<td>pipette to mix and spin down</td>
<td></td>
</tr>
<tr>
<td>5 min</td>
<td>25 °C</td>
</tr>
<tr>
<td>60 min</td>
<td>50 °C</td>
</tr>
<tr>
<td>15 min</td>
<td>70 °C, store at -20 °C</td>
</tr>
</tbody>
</table>
2.2.19 \textit{In vitro} transcription

To generate DIG labelled probes for \textit{in situ} hybridisation, an \textit{in vitro} transcription was performed using the MEGAscript™ Kit (Ambion, Cambridge, UK). 10 μg of plasmid DNA containing the wanted insert, flanked by a T3, T7 or SP6 promoter were digested with restriction endonucleases overnight. Thereby, only the promoter sequence and the desired DNA insert was transcribed. The digested plasmid DNA was precipitated as described in Precipitation of DNA (see above). For the generation of DIG labelled RNAs, DIG-11-dUTP (Roche, UK) was used instead of UTP provided by Ambion. Alternatively, e.g. for double labeling experiments, fluorescein labelled RNA probes were used. For this purpose, reactions were carried out using Fluorescein-12-UTP (Roche, UK) instead of DIG-11-UTP.

<table>
<thead>
<tr>
<th>DIG-UTP mix (10x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mM ATP</td>
</tr>
<tr>
<td>10 mM CTP</td>
</tr>
<tr>
<td>10 mM GTP</td>
</tr>
<tr>
<td>6.5 mM UTP</td>
</tr>
<tr>
<td>3.5 mM DIG-11-dUTP (Roche, UK)</td>
</tr>
</tbody>
</table>

To generate mRNA for overexpression studies, Ambion’s mMESSAGE mMACHINE™ Kit (Ambion, Cambridge, UK) was used. In both cases, 20 μl \textit{in vitro} transcriptions were performed according to the manufacturer´s protocol. After the incubation time, the template DNA was destroyed by adding 1 μl DNase to the reaction mix and incubating it for 15 min at 37°C. Generated RNAs were purified by lithium chloride precipitation (part of the Kit) and stored at −80°C.
2.3 Histological Methods

2.3.1 Immunohistochemistry on cryosections

Immunohistochemistry on 14 µm cryosections was performed as described (Becker and Becker, 2001). Sections were cut on a cryostat and mounted on poly-L-lysine (0.1% PLL) covered glass slides. After drying for 10 min up to a few hours the sections were encircled with Pap Pen and fixed in Methanol at -20°C for 10 min. A single wash in PBS to remove the Methanol was followed by 30 min blocking in PBS with goat serum (15 µl serum / ml) in a wet chamber. Then the sections were incubated in the primary antibody in PBS at 4°C in a humid chamber overnight. The following day the unbound antibody was removed by washing in PBS 3 times for 15 min and detected with the secondary antibody for 45 min at RT. Finally, 3 times washing in PBS removed the unbound antibody and mounted with Elvanol (DuPont, Wilmington, Delaware, USA).

2.3.2 In situ hybridisation on cryosections

Non-radioactive detection of mRNAs was performed in 14 µm cryosections. The sections were cut from freshly frozen tissue on a cryostat and mounted on glass slides, dried for maximally 45 mins and fixed in 4% PFA overnight. The next day, sections were washed 3 times in 1x PBS, treated with 0.1 M HCl for 20 min, acetylated in 0.1 M triethanolamine containing 0.25% acetic anhydride, and dehydrated in an ascending ethanol series. Finally, sections were air-dried and prehybridized for 3 hours at 37°C with hybridization mix. Hybridization with the DIG-labelled probes was performed at 55°C overnight in humid chambers. DIG-labelled probes were diluted 1:500 - 1:1000 in hybridization buffer. After
hybridization, the sections were washed twice in 0.2x SSC at 55°C, followed by three washing steps in 0.2x SSC containing 50% formamide (each 90 minutes at 55°C). To prevent unspecific binding, sections were incubated in blocking buffer for 30 min prior to the antibody detection. Anti-Digoxigenin-AP antibodies (Roche, Mannheim, D), diluted 1:2000 in blocking buffer, were applied and incubated overnight at 4°C. To remove unbound antibody, sections were washed twice in Buffer1 for 15 min. The Buffer1 was removed and the sections were equilibrated for 5 min with BCIP/NBT tablets (Sigma-Aldrich) and developed with the same staining solution until signals became visible under a stereomicroscope. Finally, sections were washed in 1x PBS and coverslipped with Elvanol.

Hybridisation buffer:

25 ml deionized formamide
5 ml 10x “Grundmix”
3.3 ml 5M NaCl
2.5 ml 2M DTT
10 ml dextran sulfate
4.7 ml RNase free H₂O

10x “Grundmix”:

2 ml 1 M Tris pH 7.5
200 μl 0.5 M EDTA
2 ml 50x Denhardt’s solution
2 ml tRNA (25 mg/ml)
1 ml poly A⁺ RNA (10 mg/ml)
2.8 ml RNase free H₂O
Buffer 1:
100 mM Tris
150 mM NaCl
pH 7.5

Blocking buffer:
1% (w/v) Blocking Reagent
0.5% (w/v) BSA
in Buffer 1

2.3.3 Immunohistochemistry on vibratome sections of adult spinal cord

Immunohistochemistry on vibratome sections was carried out with rat anti-BrdU (BU 1/75, 1:500, AbD Serotec, Oxford, UK), mouse anti-islet-1/-2 (Tsuchida et al., 1994) (40.2D6, 1:1000, Developmental Studies Hybridoma Bank, Iowa City, USA), mouse anti-HB9 (MNR2, 1:400, Developmental Studies Hybridoma Bank) mouse anti-PCNA (PC10, 1:500, Dako Cytomation, Glostrup, Denmark) and goat anti-ChAT (AB144P, 1:250, Chemicon, Temecula, USA) antibodies. Secondary Cy3-conjugated antibodies were purchased from Jackson ImmunoResearch Laboratories Inc. (West Grove, PA, USA). Animals were transcardially perfused with 4% paraformaldehyde and post-fixed at 4°C overnight. Spinal cords were dissected and floating sections (50 µm thickness) were produced with a vibrating blade microtome (Zeiss, Goettingen, D). Antigen retrieval was carried out by incubating the sections for 1 hour in 2 M HCl for BrdU immunohistochemistry, or by incubation in citrate buffer (10mM sodium citrate in PBS, pH=6.0) at 85°C for 30 minutes for HB9, islet-1/-2 and PCNA immunohistochemistry. All other steps were carried out in PBS (pH 7.4) containing 0.1% triton-X100. Sections were blocked in goat serum (15 µl/ml) for 30 minutes, incubated with the primary antibody at 4° overnight, washed three
times 15 minutes, incubated with the appropriate secondary antibody for 1h, washed again, mounted in 70% glycerol and analysed using a confocal microscope (Zeiss Axioskop LSM 510). Double-labeling of cells was always determined in individual confocal sections.

2.3.4 Stereological quantifications in spinal cord sections
Stereological counts (Coggeshall and Lekan, 1996) were performed in confocal image stacks of three randomly selected vibratome sections from the region up to 750 µm rostral to the lesion site and three sections from the region up to 750 µm caudal to the lesion site. Cell numbers were then calculated for the entire 1.5 mm surrounding the lesion site. Variability of values is given as standard error of the mean. Statistical significance was determined using the Mann-Whitney U-test (p < 0.05) or ANOVA with Bonferroni/Dunn post-hoc test for multiple comparisons.

2.3.5 Profile counts in spinal cord sections
$PCNA^+$ and BrdU$^+$ nuclear profiles in the ventricular zone (up to one cell diameter away from the ventricular surface) were determined in vibratome sections (50 µm thickness) in the same region of spinal cord. At least 6 sections were analysed per animal by fluorescence microscopy and values were expressed as profiles per 50 µm section. The observer was blinded to experimental treatments. Variability of values is given as standard error of the mean. Statistical significance was determined using the Mann-Whitney U-test (p < 0.05) or ANOVA with Bonferroni/Dunn post-hoc test for multiple comparisons.
2.3.6 Microinjection into zebrafish eggs

Freshly fertilized eggs were harvested 15 minutes after the light in the fish facility was switched on. Eggs were washed with autoclaved fishwater containing Methylene blue 10^{-5} % and arranged in a line in a petri dish containing 2% agarose in 1x PBS. To visualize the amount of injected liquid, 0.3 μl of 5% rhodamine dextran (MW = 10000) were added to a 1 μl aliquot of morpholino, mRNA, or Danieau solution. A glass micropipette (3 μm, GB 150F-8P, Science Products GmbH, Hofheim, D) was filled with the required solution by capillary force and attached to a micromanipulator (Microinjector Narishige, Intracel Ltd., Herts, UK). The solution was directly injected into the yolk of 1 - 4 cell staged eggs. Injected eggs were incubated in fishwater with Methylene blue at 28.5°C until the desired developmental stage was reached.

2.3.7 Whole mount immunohistochemistry

To detect proteins in 24 hpf zebrafish embryos, whole mount immunohistochemistry was performed. The chorions were removed and yolks were opened using an insect needle and fine forceps. Afterwards, embryos were fixed in 4% PFA containing 1% (v/v) DMSO for 45 min at RT. Then, embryos were washed in 1x PBS and incubated with blocking buffer to prevent unspecific binding of the primary antibody for 30 min at RT. Primary antibodies were diluted in blocking buffer and applied to the embryos and incubated overnight at 4°C. Three washing (1x PBS for 15 min) steps removed unbound primary antibody. To visualize primary antibodies, fluorescence- or HRP labelled secondary antibodies were diluted 1:200 in blocking buffer and applied to the embryos for 1h at RT. Unbound secondary antibody was removed by three washing steps with 1x PBS for 15 min each. To visualize the HRP signals,
Embryos were incubated in 0.5 mg/ml diaminobenzidine (DAB) in 1x PBS for 20 min at 4°C. The dark brown precipitate was developed by adding 1/10 volume of a 0.035% H₂O₂ solution in 1x PBS. After 5-10 min, the staining solution was removed, embryos were washed 3 times in 1x PBS and cleared in an ascending glycerol series (30, 50 and 70% glycerol in 1x PBS). Embryos were mounted in 70% glycerol.

2.3.8 Whole mount in situ hybridisation

To detect the expression patterns of mRNAs in 16-24 hpf zebrafish embryos, whole mount in situ hybridization was performed. Embryos at the desired developmental stages were anesthetized in 0.1% aminobenzoic acid ethyl methyl ester (MS222, Sigma-Aldrich, UK), dechorionated and fixed overnight in 4% PFA at 4°C. The following day, the embryos were washed 4 times with PBST (Phosphate Buffered Saline + 1% Tween®40) and incubated in 100% methanol (-20 °C) for 30 min. Methanol was removed using a descending methanol series (75%, 50% and 25% methanol in PBST) and washed twice in PBST. To enhance penetration of the DIG labelled RNA probes, embryos were digested with 1.4 μg/ml recombinant Proteinase K (Roche, UK) in PBST for 10 min at RT. Two wash steps in 2 mg/ml glycine in PBST followed. Embryos were post-fixed in 4% PFA for 20 min at RT and subsequently washed 4 times with PBST to remove residual PFA. Embryos were prehybridized in hybridization buffer at 55°C for at least 3 hours. Hybridization with the DIG-labelled probes occurred at 55°C overnight. DIG-labelled probes were diluted 1:250-1:4000 in hybridization buffer. After hybridization, embryos were washed twice in with 2x SSCT containing 50% formamide for 30 min, followed by a washing step in 2x SSCT for 15 min and two washing steps with 0.2x SSCT for 30 min. All washing
steps were executed at 55°C. To prevent unspecific binding of the anti-DIG AP-conjugated antibodies, embryos were incubated for 30 min in 1% w/v Blocking Reagent (Roche, Mannheim, D) in PBST. Anti-Digoxigenin-AP antibodies (Roche, Mannheim, D) were diluted 1:2000 in Blocking Reagent and applied overnight at 4°C. To remove unbound antibody, embryos were washed 6 times in 1x PBST for 20 min. The washing solution was removed and the signal was developed in the dark with SIGMA FAST™ BCIP/NBT tablets (Sigma-Aldrich) until the reaction product became visible under a stereomicroscope. Sense probes were developed in parallel under the same conditions as the antisense probes and did not show any labeling. Finally, embryos were washed 3 times in 1x PBS and cleared in an ascending glycerol series (30, 50 and 70% glycerol in 1x PBS). The yolk sack was removed and embryos were mounted in 70% glycerol.

Whole mount hybridisation buffer:

- 5 ml deionized formamide
- 2.5 ml 20x SSC
- 10 μl Tween 20
- 100 μl 100 mg/ml yeast RNA (Sigma Aldrich, Deisenhofen, D)
- 2.38 ml DEPC-H₂O
- 10 μl 50 mg/ml heparin

2.4 Animal experiments

All fish are kept and bred in our laboratory fish facility according to standard methods and all experiments have been approved by the Home Office.
2.4.1 **Perfusion fixation of adult zebrafish**

After killing fish in 0.1% aminobenzoic acid ethylmethylester (MS222; Sigma, St. Louis, MO) they were transcardially perfused with 4% paraformaldehyde and post-fixed at 4°C overnight.

2.4.2 **Spinal cord lesion of adult zebrafish**

Before the spinal cord lesion, fish were kept for at least 24h in water with 1300 µS salt concentration to prevent bacterial or fungal infections. As described previously (Becker et al., 1997), fish were anesthetized by immersion in 0.033% aminobenzoic acid ethylmethylester in PBS for 5 min. A longitudinal incision was made at the side of the fish to expose the vertebral column. The spinal cord was completely transected under visual control 4 mm caudal to the brainstem-spinal cord junction. Afterwards the lesioned fish were kept in single tanks with high salt concentration and ESHA2000.

2.4.3 **Retrograde tracing of adult zebrafish**

Motor neurons in the spinal cord were retrogradely traced by bilateral application of biocytin to the muscle periphery at the level of the spinal lesion, as described previously (Becker et al., 2005), with the modification that biocytin was detected with Cy3-coupled streptavidin (Invitrogen) in spinal sections.

2.4.4 **Intraperitoneal substance application**

Animals were anaesthetised and intraperitoneally injected. We injected 5-bromo-2-deoxyuridine (BrdU, Sigma-Aldrich, UK) solution (2.5 mg/ml) at a volume of 50 µl at 0, 2, 4 days post-lesion. Analysis took place at 14 days post-lesion.
Cyclopamine was purchased from LC Laboratories (Woburn, MA, USA). The related control substance tomatidine (Sigma-Aldrich, UK). For intraperitoneal injections into adult fish cyclopamine and tomatidine were dissolved in HBC (45% (2-Hydroxypropyl)-beta-cyclodextrin) (Sigma-Aldrich, UK) and injected at a concentration of 0.2mg/ml in a volume of 25µl (equaling 10 mg/kg, Sanchez and Ruiz i Altaba, 2005) at 3, 6 and 9 days post-lesion. Analysis took place at 14 days post-lesion
3 RESULTS

3.1 Adult spinal cord regeneration

Zebrafish show functional regeneration after a lesion and the role of descending axons from the brainstem in this process has been studied extensively. Here we address the plastic changes occurring in the spinal cord. Specifically, I ask whether neurogenesis takes place in the lesioned spinal cord.

3.1.1 Spinal cytoarchitecture is not restored in a spinal lesion site

To determine in which spinal cord region neurons might regenerate, we analysed the overall organization of the regenerated spinal cord (Fig. 3 A) at 6 weeks post-lesion, when functional recovery plateaus. Electron-microscopic analysis, performed by Dr. Catherina G. Becker, indicates that both ends of the severed spinal cord fuse and form a thin tissue bridge which consists mainly of regenerated, partially re-myelinated, axons (Fig. 3 B). Therefore, substantial neurogenesis in the lesion site is unlikely. The pre-lesioned spinal cord is still present after regeneration. Immediately adjacent to the axonal bridge the original cytoarchitecture is still found. Furthermore, white matter tracts are filled with myelin debris of degenerating fibres, indicating that this tissue was present before the lesion (Becker and Becker, 2001).
RESULTS

Fig. 3: The lesion site consists mainly of regenerated axons. A: A lateral stereomicroscopic view of a dissected spinal cord is shown (rostral is left). The dorsal aspect of the spinal cord is covered by melanocytes and the tissue bridging the lesion site appears translucent. B: An electron-microscopic cross-section through the lesion site is shown. The lesion site consists mainly of axons (ax), some of which are re-myelinated by Schwann cells (sc). Bar in A = 1 mm, in B = 5 µm.

3.1.2 A spinal lesion triggers ventricular proliferation

We analysed proliferation patterns in the lesioned spinal cord to determine in which region neuronal regeneration might take place. Proliferation activity in the spinal cord was studied by repeated injections of 5-bromo-2-deoxyuridine (BrdU). BrdU, a synthetic thymidine analogue, is incorporated into the DNA of dividing cells and later detected via immunohistochemistry. The injections were given at 0, 2 and 4 days post-lesion (dpi). Proliferation patterns were analysed at 2 weeks post lesion (wpl). In the unlesioned spinal cord only a few cells were labelled (Fig. 4, A left), indicating that cell division is a rare event. At 2 weeks post-lesion the number of newly generated cells in the spinal cord is
RESULTS

significantly increased (p=0.0001, n = 3 animals) compared to the unlesioned situation (Fig. 4, middle, right). This increase is detectable up to 3.6 mm rostral and 3.6 mm caudal from the lesion site. Thus, it spans up to 1/3 of the entire spinal cord (Fig. 4, B). Numbers of newborn cells were highest close to the lesion site and around the central canal.

To determine the location of acutely proliferating cells we used an antibody recognizing the Proliferating Cell Nuclear Antigen (PCNA). In contrast to BrdU, which labels dividing cells permanently, the PCNA antibody only labels acutely proliferating cells in the early G1 and S phase of the cell cycle. This showed a significant increase in proliferating cells only in the ventricular zone. Already at 3 dpl the increase in ventricular proliferation was significant (p < 0.0001, n = 3 animals/time point) and peaked at 2 wpl. At 6 wpl, the proliferation was reduced again to levels that were not significantly different from those in unlesioned animals. This corresponds to functional recovery, which is complete at the same time point.

These findings suggest that, after a spinal lesion, new cells were primarily generated at the ventricle and then migrated out into the parenchymal region.
Fig. 4: Lesion-induced proliferation in the adult spinal cord. Confocal images of spinal cross-sections are shown (dorsal is up). **A**: BrdU labeling of spinal cross-sections shows a massive increase in labeling in the ventricular zone at 2 wpl (injections 0, 2, and 4 days post-lesion). The highest density of BrdU+ cells is detectable in the ventricular zone close to the lesion site. **B**: Quantification of BrdU+ profiles at 2wpl indicates significant proliferative activity up to 3.6 mm rostral and caudal to the lesion epicenter (n = 3 animals per treatment, p < 0.0001). **C**: PCNA immunohistochemistry indicates a strong increase in the number of proliferating cells in the ventricular zone (arrows) at 14 days post-lesion. **D**: The number of proliferating ventricular, but not parenchymal cell profiles/section was significantly increased after a lesion and peaked at 2 wpl (n = 3 animals per time point, p <0.0001). Bar in A = 25 µm, in C = 50 µm.
3.1.3 Motor neurons show significant regenerative capacity

To determine whether neuronal death and/or regeneration occurs in the lesioned spinal cord, I focused on motor neurons, a cell type that never regenerates in mammals. To this end, numbers of GFP+ motor neurons in HB9:GFP and islet-1:GFP transgenic animals were analysed (Higashijima et al., 2000; Flanagan-Steet et al., 2005). These lines express green fluorescent protein (GFP) under the control of the promotor for HB9 or islet-1. In addition, antibodies against islet-1/2, HB9 (also called MNR2) and transmitter synthesizing enzyme choline acetyltransferase (ChAT) proteins were utilised. Islet-1/2 is a transcription factor of the LIM family and is expressed in various subpopulations of motor neurons in the spinal cord of adult zebrafish. The homeobox gene HB9 is expressed in an overlapping population together with the islet-1 and islet-2 proteins as well as in islet-1/2 motor neurons (Renoncourt et al., 1998). The antibody against ChAT protein labels mature motor neurons.

3.1.3.1 Numbers of large and small motor neurons show dynamic changes after a lesion

Unlesioned HB9:GFP animals showed 132.5 ± 34.88 large GFP+ motor neurons (diameter >12 µm, n = 4 animals) per 1500 µm spinal cord. Testing the specificity of the transgene with the corresponding antibody reveals that 97.8% (n = 3 animals) of the HB9:GFP+ cells were also HB9 immunopositive. Of the large HB9:GFP+ cells, 80.6% (n = 3 animals) express choline acetyl transferase (ChAT), a marker of mature motor neurons. This indicated that most large GFP+ cells were fully differentiated motor neurons. Furthermore, retrograde tracing from the muscle periphery in 8 weeks post-lesion animals with Biocytin, followed by detection with Streptavidin-Cy3, reveals that 52 of 55 traced cells
were HB9:GFP\(^*\) (n=3). This indicates that large HB9:GFP\(^*\) cells are innervating muscle tissue and therefore are mature motor neurons.

The response of small (< 12 \(\mu\)m diameter) and large (> 12 \(\mu\)m diameter) HB9:GFP\(^*\) motor neurons to a lesion was determined (Fig. 5) in an area of 750 \(\mu\)m rostral and caudal to the lesion site. The number of large GFP\(^*\) cells was significantly reduced at 1 wpl (\(p = 0.0035\), n = 4 vs. 3 animals) and 2 wpl (\(p = 0.0003\), n = 4 vs. 11 animals). After 6 to 8 weeks the number of large motor neurons was increased again to levels that were not significantly different from the unlesioned situation (\(p = 0.0867\), n = 4 unlesioned vs. 6 lesioned animals). This showed that the original number of mature HB9\(^*\) motor neurons is decreased in response to the lesion event. Furthermore it indicates a trend in recovery of the number of large cells.

Numbers of small HB9:GFP\(^*\) motor neurons responded inversely to the transection of the spinal cord. A significant increase after 2 wpl (\(p < 0.0001\), n = 4 unlesioned vs. 11 lesioned animals) was followed by a significant decrease in number of small neurons at 6 to 8 weeks (\(p = 0.0002\), n = 11 animals at 2 wpl vs. 6 animals at 6 to 8 wpl).
RESULTS

40

Fig 5: Dynamic changes in the numbers of HB9:GFP⁺ motor neurons after a lesion. A spinal cord lesion induces an increase in the number of small and a decrease in the number of large motor neurons at 2 wpl. At 6 to 8 wpl, the population of large motor neurons partly recovers, while numbers of small HB9:GFP⁺ cells return to original levels. Stereological counts of HB9:GFP⁺ cells calculated to 1500µm around the lesion site are given.

This transient, more than 43-fold increase, in the number of small HB9:GFP⁺ motor neurons indicates a highly dynamic response in the number of spinal motor neurons to the lesion event. In addition, the time course matches that of the functional recovery, indicating a possible link between motor neuron regeneration and functional recovery.

Using the islet-1/2 antibody the spatial distribution of differentiating motor neurons was analysed in 14 µm cryosections at increasing distances from the lesion site (Fig. 6). Close to the lesion site (0-250 µm) the number of islet-1/2 positive cell profile counts is highest and significantly increased 2 wpl (p = 0.0253, n = 5 animals each group) compared to unlesioned controls. This corresponds to proliferative activity in the ventricular zone, which is also highest close to the lesion site (Fig. 4 D).
RESULTS

Fig 6: *Islet-1/-2* immunohistochemistry confirms an increase in the number of differentiating motor neurons. **A:** Few large nuclei (arrowhead) are visible in the unlesioned spinal cord. In the lesioned situation, clusters of small *islet-1/-2* immunopositive cell nuclei appear in the ventro-lateral spinal cord (arrow). **B:** Numbers of *islet-1/-2* immunopositive cell profiles were determined in cryosections (14 µm in thickness) for the regions indicated, showing a significant increase in *islet-1/-2* immunopositive cell profiles around the lesion site. \((n = 5\) unlesioned animals; \(n = 5\) animals at 2 wpl; \(p = 0.0253\)). Bar = 50 µm.

3.1.3.2 Small motor neurons are newly generated after a lesion

To directly address whether motor neurons were newly generated, BrdU was injected into *HB9:GFP* and *islet-1:GFP* transgenic animals at 0, 2, and 4 dpl post-lesion and the number of double labelled neurons was determined at 2 wpl.

At 2 wpl there was an increase in the number of small *islet-1:GFP* positive cells, which was statistically significant compared with the unlesioned situation (unlesioned: 27 ± 3.9 cells, \(n = 5\) animals, 2 wpl: 870 ± 244.9 cells, \(n = 4\) animals, \(p = 0.0139\)). In BrdU injected animals, 184 ± 49.3 small cells (\(n = 3\) animals, \(p = 0.0104\)) were double labelled with the transgene and BrdU immunohistochemistry. In the unlesioned controls no double-labelled cells (\(n = 5\) animals) were found (Fig. 7).
RESULTS

Fig 7: Newly generated small islet-1:GFP* cells in the lesioned spinal cord. Cross-sections through the spinal cord of unlesioned A: and lesioned B-E: animals at 2 weeks post-lesion are shown. In unlesioned animals only large GFP* cells are detectable, whereas many smaller GFP* cells are present in the ventrolateral aspect of the lesioned spinal cord. Many of these cells are also BrdU*, as indicated by arrows in the higher magnification C-E: of the area boxed in B. Dots outline the ventricle. Bars = 25 μm.

The HB9:GFP transgenic fish confirms these observations: at 2 wpl the small HB9:GFP* cells were increased from 20.0 ± 7.66 in the unlesioned situation (n = 4 animals) to 869.5 ± 106.78 (n = 11 animals, p < 0.0001). In this transgenic fish, 200.0 ± 46.2 cells (n = 7 animals, p = 0.0076) were double-labelled by the transgene and BrdU at 2 wpl (Fig. 8). In the unlesioned spinal cord only one double-labelled motor neuron was observed (n = 4 animals). Even a BrdU injection protocol extended to the maximum number of injections tolerated by the fish (injections at 0, 2, 4, 6, 8 days post-lesion, analysis at 14 days post-
lesion) did not yield any HB9:GFP+/BrdU+ cells in unlesioned fish (n = 5 animals). Letting the fish swim in BrdU-treated water in order to label all newly generated cells over the entire time of the experiment does not show sufficient labeling of dividing cells (Dr. Thomas Becker, personal communication). Hence the unlesioned mature spinal cord appears virtually quiescent with respect to motor neuron generation. However, low rates of motor neuron formation may have been missed due to the limited metabolic availability of BrdU.

Fig. 8: Generation of new motor neurons in the lesioned spinal cord. HB9:GFP/BrdU double-labelled neurons are present in the lesioned, but not the unlesioned, ventrolateral spinal cord. These cells (boxed in upper right and shown in higher magnification in bottom row) bear elaborate processes (arrows) or show ventricular contact (arrowhead). Bars = 25 µm.

3.1.3.3 Lesion induces cell death

The number of large HB9+ motor neurons decreases significantly after a lesion. We performed TUNEL staining in HB9:GFP transgenic fish at 3 dpl and found TUNEL+/HB9:GFP+ cells (Fig. 9). The apoptosis marker TUNEL labels the nuclei of cells undergoing programmed cell death (Hewitson et al., 2006).
Fig. 9: Lesion induced apoptosis at 3 dpl. *HB9:GFP* (green), DAPI nuclear staining (blue) and TUNEL staining (red). Triple labelling indicates apoptotic motor neurons (arrow). Bars: left 15 µm, right 8 µm.

3.1.3.4 Different subpopulations of newly generated motor neurons may be present in the lesioned spinal cord

The *islet-1:GFP* and the *HB9:GFP* transgenic animals show a similar distribution of small motor neurons in the ventral horn of the lesioned spinal cord. For *islet-1*, the transgene expression confirms the expression of the endogenous gene because 89.5% of the *islet-1:GFP* cells were *islet-1/2* immunopositive at 2 wpl. The small proportion of cells only labelled by GFP in *islet-1:GFP* animals may result from higher stability of the GFP than endogenous islet-1 detected by the antibody. In contrast, a substantial proportion, 51.7%, of *HB9:GFP* cells were not double-labelled by the *islet-1/2* antibody and many cells were exclusively labelled by the islet-1/-2 antibody in both transgenic lines (55.7% in the *HB9:GFP* and 35.4% in the *islet-1:GFP* fish) (Fig. 10). This suggests heterogeneity among newly generated motor neurons with respect to marker expression (William et al., 2003).
Fig. 10: Partial overlap of *islet-1/-2* immunohistochemistry and transgenic motor neuron markers in the lesioned spinal cord. **A:** *Islet-1:GFP* cells are double-labelled by the *islet-1/-2* antibody, confirming specificity of transgene expression. A substantial proportion of *HB9:GFP* cells are not double-labelled by the antibody and many cells are only labelled by the *islet-1/-2* antibody in both transgenic lines, suggesting that different types of cells were generated after a lesion. Arrows indicate double-labelled neurons, arrowheads indicate neurons only labelled by the transgene and open arrowheads point to cells only labelled by the antibody. **B:** Summations of all cells counted in six sections (50 μm thickness) per animal from the region of 1.5 mm surrounding the lesion site (n = 3 animals for each transgene) are indicated. Bar = 25 μm.
3.1.3.5 Newly generated motor neurons show terminal differentiation and may be integrated into the spinal network

To determine whether newly generated motor neurons fully matured, expression of *ChAT*, a marker for terminally differentiated motor neurons (Arvidsson et al., 1997), and coverage of motor neurons by *SV2*+ contacts, a marker for synaptic coverage, was analysed. In the unlesioned situation 80.6% (n = 3 animals) of the large *HB9:GFP*+ cells expressed *ChAT*, indicating that the majority of *HB9:GFP*+ cells were mature motor neurons. Small *HB9:GFP*+ cells were rarely found. Furthermore, all *ChAT*+ cells were covered with synapses in the unlesioned spinal cord.

At 2 wpl, small *HB9:GFP*+ neurons were rarely *ChAT* positive (2.8%, n = 3 animals) and did not receive *SV2*+ contacts (Fig. 11, upper row). Of the large *HB9:GFP*+ cells, 36.4% (n = 3 animals) were double labelled with *ChAT* and often not covered with *SV2* labelled synapses (Fig. 11, middle row). This indicates that most small and some of the large *HB9:GFP*+ neurons were immature at 2 wpl.

To determine whether newly generated motor neurons show terminal differentiation and network integration at later stages of regeneration, BrdU injections at day 0, 2 and 4 were combined with anti-*ChAT* and anti-*SV2* immunohistochemistry. At 6 wpl 29.3 ± 23.14 *ChAT*+ cells/1500µm (n = 3 animals) were also BrdU+ and extensively covered with *SV2* labelled synapses. The inset in the lower row indicates that similar cells are part of the typical cytoarchitecture of the unlesioned spinal cord (Fig. 11, lower row). These observations are consistent with the hypothesis that newly generated motor neurons can fully mature and integrate into the spinal network.
Fig. 11: Maturation of newly generated motor neurons. Confocal images of spinal cross-sections are shown (dorsal is up). Clusters of newly generated $HB9:GFP^+$ motor neurons are $ChAT^+$ (arrow in top row indicates a $ChAT^+/HB9:GFP$ differentiated motor neuron). Somata (arrow in middle row) and proximal dendrites (arrowheads in middle row) receive few $SV2^+$ contacts at 2 wpl. At 6 wpl, $ChAT^+/BrdU^+$ somata are decorated with $SV2^+$ contacts (arrow in bottom row), inset: unlesioned situation. Bars = 25 µm.

3.1.3.6 Evidence for motor axon growth out of the spinal cord

To determine whether newly generated motor neurons grow axons out of the spinal cord, we applied the retrograde neuronal tracer biocytin to the muscle tissue surrounding the lesion site of BrdU injected animals. Biocytin tracing
marks muscle-innervating neurons in the spinal cord, which are bona fide motor neurons. Fish were injected at 12, 13 and 14 dpl with BrdU and biocytin was applied at 42 dpl. Out of 4 fish, we found one BrdU+/biocytin+ cell (Fig.12), indicating that this newly generated cell extended an axon out of the spinal cord. The ventro-lateral position of the cell in the spinal cord is consistent with a motor neuron identity of this cell. One reason for the scarcity of these double-labelled cells may be that BrdU labels only a sub-population of newly generated motor neurons (approximately 25% at 14 dpl) and retrograde tracing does not label all motor neurons, such that overlap of the two markers may be a rare event. However, this observation suggests that newly generated motor neurons are capable of regenerating a peripheral axon.

Fig.12: Retrograde tracing of a newborn motor neuron in the spinal cord from the muscle periphery. Confocal images of the same spinal cross-section are shown in low (left) and high (right) magnification (dorsal is up). Arrows point to the same biocytin/BrdU doubled labelled motor neuron at 8wpl. Bars = 50 µm (left), 15 µm (right).
3.1.4 Olig2\(^{+}\) ependymo-radial glial cells are potential motor neuron stem cells in the adult spinal cord

Olig2 expressing cells give rise to motor neurons during development. To determine whether this cell type also exists during adult regeneration and plays a similar role, we investigated adult expression of olig2. A transgenic fish expressing GFP under the control of the olig2 promoter outlines the entire morphology of the ventricle-contacting olig2 positive cells, including long radial processes in unlesioned animals (Fig. 13, upper row). Additionally, the transgene marks olig-2-expressing oligodendrocytes. These cells are morphologically distinguishable from olig2\(^{+}\) ependymo-radial glial cells and are distributed in the parenchyma of the spinal cord. For this study, I focused on the ependymo-radial glial cells because they are similar in morphology to radial glial progenitor cells in the developing CNS and their somata are located at the ventricle, where lesion-induced proliferation takes place. Indeed, olig2\(^{+}\) ependymo-radial glial cells respond to a spinal cord transection with proliferation, as demonstrated by immunohistochemistry for PCNA, which marks acutely proliferating cells (Fig. 13, lower row).
Fig. 13: *olig2:GFP*+ cells have long radial processes (arrows in upper left), contact the ventricle (upper row, middle and right), and are double-labelled (arrows) with *nkx6.1* and *PCNA* antibodies at 2 wpl. Confocal images of cross-sections are shown. Dots outline the ventricle. Bar = 25 µm.

To determine whether other transcription factors, known to be important for motor neuron development, are also expressed in *olig2:GFP*+ ependyomo-radial glial cells during regeneration, we double labelled with antibodies against *nkx6.1*. Developmentally, the homeodomain transcription factor *nkx6.1* is part of the mechanisms regulating *olig2* expression. It promotes *olig2* expression at an early stage in development and represses it at a later stage in chicken (Liu et al., 2003). In the adult spinal cord of zebrafish, *olig2:GFP*+ ependyomo-radial glial cells expressed *nkx6.1* at 2 wpl (Fig. 13, middle row). The presence of *nkx6.1* in *olig2*+ ependyomo-radial glial cells after a lesion indicates that during regeneration of motor neurons a gene expression program similar to development could occur.
3.1.4.1 Lineage tracing indicates that olig2:GFP+ ependymo-radial glial cells are motor neuron progenitor cells.

To directly demonstrate that olig2+ ependymo-radial glial cells are the progenitor pool for new motor neurons, I used GFP expression as a stable marker for lineage tracing. Olig2+ ependymo-radial glial cells that give rise to motor neurons may still be GFP+ when starting to express the motor neuron specific markers HB9 and islet-1. This is because GFP is a relatively stable protein (Tallafuss and Bally-Cuif, 2003).

Comparing unlesioned and lesioned spinal cord of olig2:GFP transgenic fish with anti-HB9 immunohistochemistry reveals that after a lesion olig2+ ventricular cells differentiate to HB9 expressing motor neurons (Fig.14, middle row). In the unlesioned fish no GFP+/HB9+ cells could be detected (Fig. 14, upper row) versus 204.0 ± 32.29 GFP+/HB9+ cells per 1500 µm around the lesion site in the group of the lesioned animals (n = 3 animals per group).
Fig. 14: Confocal images of spinal cross-sections unlesioned vs. 2 wpl are shown (dorsal is up). Olig2:GFP+ progenitor cells (arrows) have long radial processes (arrowheads), contact the ventricle (outlined by dots), and are double-labelled with HB9 or islet-1/2 antibodies at 2 wpl, but not in the unlesioned spinal cord. Bars in A = 25 µm; Bars in B = 7.5 µm (upper row), 15 µm (middle and lower row).

Similarly, transgenic zebrafish showed ependymo-radial glial cells double-labelled for olig2:GFP and islet-1/2+ cells at 2 wpl (Fig. 14, lower row). In the 1500 µm around the lesion site, 34.3 ± 8.93 cells (n = 4 animals) were double labelled. This indicates that olig2+ ependymo-radial glial cells have the capacity to proliferate and to give rise to cells expressing markers for motor neurons in response to a lesion. Moreover, this indicates a molecular switch of the olig2 expressing ependymo-radial glial cells from a gliogenic to a motor neuron cell fate after a lesion.
3.1.4.2 *Olig2:*GFP*+* ependymo-radial glial cells are polysialic acid and GFAP negative

Polysialic acid (PSA) and GFAP are progenitor cell markers (Rutishauser, 2008) and (Ninkovic and Götz, 2007). Surprisingly, *olig2:*GFP*+* ependymo-radial glial cells are selectively GFAP (data not shown) and PSA immuno-negative in unlesioned animals (Fig. 15). Other ependymo-radial glial cells around the entire ventricle express these antigens. However, *olig2:*GFP*+* ependymo-radial glial cells express another progenitor cell marker, brain lipid binding protein (Park et al., 2007). This indicates that *olig2:*GFP*+* ependymo-radial glial cells express a unique set of progenitor cell markers.

![Image of anti-PSA immunohistochemistry in unlesioned fish.](image)

Fig 15: Anti-PSA immunohistochemistry in unlesioned fish. *Olig2:*GFP*+* ependymo-radial glial cells (arrows) are PSA*. Cross sections of the spinal cord at the ventricular zone are shown. Bar = 10 µm.

3.1.4.3 Ependymo-radial glial cells, including *olig2:*GFP*+* cells, in the spinal cord are label-retaining cells

To determine whether ventricular cells have stem cell characteristics, I tested for BrdU retention over an extended time period, an indicator of slow proliferation (Chapouton et al., 2006). Lesioned animals were injected with a single pulse of BrdU at 14 days post-lesion and the number of ventricular BrdU*+* cells was assessed around the entire ventricle at 4 hours and 14 days post-
injection (Fig.16). There was no significant difference in the number of BrdU labelled cells at both time points ($p = 0.7237$), indicating the presence of slowly proliferating cells in the ventricular zone.

![Fig 16: The ventricular zone contains label-retaining cells. A: After a single injection of BrdU at 2 wpl and subsequent immunohistochemical analysis at 4 hours or 14 days after injection, BrdU labelled cell profiles were found at the ventricle. B: Numbers of BrdU$^+$ cell profiles around the ventricle (up to two nuclei away from the ventricular surface) were determined in confocal image stacks of three randomly selected vibratome sections each from the region up to 750 µm rostral and caudal to the lesion site. This analysis indicates no significant differences in the number of BrdU labelled cells at both time points ($p = 0.7237$). Bar = 50 µm.](image)

To examine whether the olig2:GFP$^+$ ventricular zone also contained label-retaining cells, I repeated the same experiment in olig2:GFP transgenic animals. Numbers of olig2:GFP$^+$/BrdU$^+$ ependymo-radial glial cells were not significantly different between the two time points (4 hours: 60 ± 11.5 cells, $n = 5$ animals; 14 days: 53 ± 13.3 cells, $n = 4$ animals, $p = 0.6$). This indicates that olig2:GFP$^+$ cells did indeed retain label (Fig. 17).
RESULTS

Fig. 17: Label retention in olig2:GFP ependymo-radial glial cells. A: A subpopulation of olig2:GFP+ ependymo-radial glial cells is BrdU+ at 4 hours and 14 days after a single application of BrdU at 2 wpl. Bar = 15 µm. B: No significant differences in the number of olig2:GFP+/BrdU+ cells were observed between both time points of analysis.

Both label-retention experiments indicate the stem cell characteristics of ventricular cells, specifically of olig2+ ependymo-radial glial cells.

Thus far I was able to show that in response to spinal cord lesion new motor neurons were generated. Some of these small motor neurons matured and integrated in the intraspinal circuitry. Evidence suggests that the origin of these new motor neurons is the olig2+ ependymo-radial glial cell domain. These ventricular cells even possess stem cell characteristics.

3.1.5 Expression of ventral neural tube markers is increased in a developmentally appropriate pattern

To determine the signals that may induce motor neuron regeneration we analysed expression of sonic hedgehog (shh), a key player in the organisation of spinal cord patterning in development (Lewis and Eisen, 2001). Transgenic zebrafish, expressing green fluorescent protein (GFP) under the promotor of shh revealed an increase in shh expression in response to a spinal cord lesion
at 2 wpl (Fig. 18, left column). These cells form the very ventral region of the ventricle. In situ hybridisation with a probe against shh mRNA confirms the localization of the transcript and the upregulation in response to a spinal cord transection.

Olig2 is a downstream gene of shh signalling. In situ hybridisation showed a lesion induced upregulation of olig2 expression at the enlarged ventricle, conterminous to the shh domain (Fig. 18, right column), suggesting that increased shh expression induced increased olig2 expression in the neighbouring ventricle zone.

Fig. 18: Lesion-induced expression of shh and olig2 at the ventricle of the lesioned spinal cord. Shh:GFP and in situ hybridisation signals are increased at 2 wpl. Cross-sections are shown. Bars = 25 µm.

Combination of the shh:GFP transgenic animals with immunohistochemistry detecting PCNA reveals that the ventricular shh:GFP⁺ cells are proliferating at 2 weeks post-lesion (Fig. 19). This finding is consistent with the increase in the density of shh:GFP⁺ cells and the intensity and region of shh RNA expression (Fig. 18, middle column).
RESULTS

Fig. 19: *Shh:GFP* ependymo-radial glial cells proliferate after a lesion. GFP*⁺* cells have a radial morphology, contact the ventricle at its ventral edge and are labelled by a *PCNA* antibody (arrows) at 2 wpl. Bar = 20 µm.

The increase in the expression of *shh* after a lesion and the increase of *olig2* expression in the adjacent *olig2* domain is consistent with the assumption that *shh* could be a key player in motor neuron regeneration.

Further important transcription factors that determine the cell fate of progenitor cells in the developing spinal cord are the ventrally expressed *nkx6.1* in combination with the *olig2:GFP* expression and the medio-dorsally expressed *pax6* (Becker and Becker, 2007).

Both *nkx6.1* and *pax6* were upregulated after a spinal cord lesion in the adult fish. Low levels of *nkx6.1* observed in the unlesioned ventral spinal cord were increased at 2 weeks post-lesion, but expression was still restricted to the ventral ventricular zone (Fig. 20, upper rows). At 1 wpl *pax6* was expressed in the lateral and dorsal domain of the ventricular zone and was upregulated in response to a spinal cord lesion in the same domain (Fig. 20). Double labelling of *nkx6.1* in *olig2:GFP* transgenic fish (Fig. 21) indicates that the *olig2:GFP⁺* ventricular zone is included in the *nkx6.1⁺* zone, with the *nkx6.1⁺* zone extending slightly more dorsally than the *olig2:GFP⁺* zone. This is comparable
RESULTS

58

to the spatial relationships of the two expression domains in the developing neural tube.

Fig 20: Nkx6.1 and pax6 expression is increased in the lesioned spinal cord. Labeling intensity of nkhx6.1 is increased around the ventral ventricle (arrows) at 2 wpl. Pax6 immunohistochemistry shows upregulation of pax6 after spinal cord lesion in the upper ventral and dorsal part of the spinal cord. 14 µm cryosections, unlesioned (overexposed to show low levels of immunoreactivity) vs. 1 wpl. Bar 20 µm.

Fig. 21: olig2:GFP+ ependymo radial glial cells are nkhx6.1 immunopositive in the lesioned adult spinal cord. Double-labelled (arrows) with nkhx6.1 antibody at 2 wpl. Confocal images of cross-sections are shown. Dots outline the ventricle. Bar = 25 µm.

These data indicate that transcription factors are expressed in different dorso-ventral domains of the neural tube. Additionally, the patterns in the ventricular
zone of the unlesioned adult spinal cord are comparable to the lesioned situation, but the expression is increased after a spinal lesion.

3.1.6 Cyclopamine inhibits shh dependent motor neuron regeneration

If increased shh expression is involved in the generation of new motor neurons after a lesion, a pharmacological block of this signaling pathway should reduce the number of newly generated motor neurons. To test this hypothesis, the shh signal was experimentally reduced by injections of cyclopamine, a specific small molecule inhibitor of shh signalling (Park et al., 2004).

To control the specific activity of cyclopamine I incubated embryos with the substance. This treatment resulted in cyclopia and loss of motor axons (Tab.1), which is consistent with published actions of cyclopamine in zebrafish (Park et al., 2004). In vehicle treated controls none of the animals showed cyclopia.

Tab. 1: Cyclopamine activity. 24 hpf HB9:GFP embryos were analysed after Cyclopamine treatment (n = 6 animals/group were analysed).

<table>
<thead>
<tr>
<th>treatment</th>
<th>vehicle control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>axons/fish</td>
</tr>
<tr>
<td></td>
<td>axons/fish</td>
</tr>
<tr>
<td>100 µM Cyclopamine/EtOH</td>
<td>1.2 ± 0.54</td>
</tr>
<tr>
<td>50 µM Cyclopamine/EtOH</td>
<td>2.3 ± 0.61</td>
</tr>
<tr>
<td>5 µM Cyclopamine/EtOH</td>
<td>9.7 ± 2.35</td>
</tr>
<tr>
<td></td>
<td>46.3 ± 0.95</td>
</tr>
<tr>
<td></td>
<td>46.3 ± 1.09</td>
</tr>
<tr>
<td></td>
<td>48.0 ± 0.52</td>
</tr>
</tbody>
</table>

The loss of motor axons was analysed in the transgenic line HB9:GFP after cyclopamine incubation from 6 to 24 hpf. Here the primary motor axons were massively effected. For islet-1:GFP embryos incubated from 24 to 72hpf the loss of motor neurons in the spinal cord is clearly visible (Fig. 22). This indicates that the shh pathway is necessary for the formation and development of motor neurons in development.
RESULTS

Fig. 22: Specific activity of Cyclopamine in transgenic lines HB9:GFP and islet-1:GFP. Control animals show normal axon growth, 5 µM Cyclopamine show severe effect on motor axon outgrowth (HB9:GFP) and loss of motor neurons (islet-1:GFP). Rostral is left, Bar = 25 µm.

Adult spinal cord lesioned zebrafish were repeatedly injected with the sonic hedgehog inhibitor cyclopamine at 10 mg/kg, a mouse specific non toxic concentration (Ecke et al., 2008), 3, 6 and 9 days post operation. To avoid the toxic effects of ethanol, I used (2-Hydroxypropyl)-β-cyclodextrin (HBC) as solvent. This solvent has negligible effects on the activity of cyclopamine (Tab.2).

Tab. 2: Cyclopamine activity in HBC at 24 hpf. HB9:GFP embryos were analysed after Cyclopamine treatment (n = 6 animals/group were analysed).

<table>
<thead>
<tr>
<th>treatment</th>
<th>axons/fish</th>
<th>Cyclopia</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 µM Cyclopamine/ HBC</td>
<td>3.7 ± 0.88</td>
<td>6 of 15</td>
</tr>
<tr>
<td>50 µM Cyclopamine/ HBC</td>
<td>6.0 ± 1.91</td>
<td>4 of 15</td>
</tr>
<tr>
<td>5 µM Cyclopamine/ HBC</td>
<td>30.8 ± 2.15</td>
<td>0 of 14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vehicle control</th>
<th>axons/fish</th>
<th>Cyclopia</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.7 ± 0.95</td>
<td>0 of 15</td>
<td></td>
</tr>
<tr>
<td>46.7 ± 1.33</td>
<td>0 of 12</td>
<td></td>
</tr>
<tr>
<td>46.0 ± 1.15</td>
<td>0 of 15</td>
<td></td>
</tr>
</tbody>
</table>

Injecting cyclopamine into spinal-lesioned adult animals highly significantly reduced the number of newly generated motor neurons within 1.5 mm surrounding the lesion site (377 ± 45.7 cells; n = 9 animals) compared with
animals injected with the related but ineffective substance tomatidine (747 ± 42.2 cells; n = 10 animals; p = 0.0004) at 2 wpl (Fig. 23 A, upper row).

Moreover, shh is a mitogen (Fuccillo et al., 2006) and I tested whether cyclopamine reduces ventricular proliferation in this region of the lesioned spinal cord by determining the numbers of PCNA⁺ ventricular cells after the same cyclopamine treatment scheme. The number of PCNA-labelled cell profiles at the ventricle in cyclopamine-injected animals (45 ± 2.8 profiles/section; n = 16 animals) was significantly lower compared with tomatidine-injected control animals (60 ± 7.0 profiles/section; n = 10 animals; p = 0.027; one-tailed test; Fig. 23 A, lower row). Thus, shh signalling appears to play a role for progenitor cell proliferation and motor neuron differentiation.

Fig 23: Cyclopamine treatment reduces the number of differentiating motor neurons and ventricular proliferation. **A:** Spinal cross-sections show reduced numbers of HB9:GFP⁺ cells and PCNA⁺ cells after cyclopamine treatment at 2 wpl. **B:** Numbers of
RESULTS

HB9:GFP+ cells and PCNA+ profiles are significantly reduced in cyclopamine injected animals. Numbers of animals/treatment are given. Bar = 50 µm.

To assess whether cyclopamine injections specifically influence expression of shh target and down-stream genes in the adult spinal cord, I performed RT-PCR to analyse expression of the shh target gene patched1 (Sanchez and Ruiz i Altaba, 2005) and of olig2, expression of which depends on shh during development (Lu et al., 2000). Expression of both patched1 and olig2 mRNA was clearly reduced in the lesioned spinal cord after the cyclopamine treatment, compared to tomatidine treatment (Fig. 24). The PCR was normalized against the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This suggests that cyclopamine affects ventricular proliferation and motor neuron differentiation by specifically blocking the shh pathway.

Fig 24: Intraperitoneal injection of cyclopamine reduces patched1 and olig2 expression in the lesioned spinal cord. A single injection of cyclopamine at 3 days post-lesion strongly reduces detectability of patched1 and olig2 by RT-PCR at 4 days post-lesion compared with tomatidine injection.
3.2 Motor axon pathfinding during development

To analyse the molecular mechanism of axonal differentiation of motor neurons, I turned to the axon growth of so-called primary motor neurons in embryonic zebrafish. The pioneering primary motor axons in the zebrafish trunk are guided by multiple cues along their pathways. We decided to analyse the function of plexins. Plexins are receptor components for semaphorins that influence motor axon growth and pathfinding. This study was a cooperation with Dr. Julia Feldner and is published (Feldner et al., 2007). I contributed mainly to cloning of plexinA3 overexpression construct, localization of plexinA3 mRNA in primary motor neurons during axon outgrowth and rescue experiments of morpholino phenotypes.

3.2.1 Cloning of plexinA3

A search of the Ensembl database (www.ensembl.org/Danio_rerio/) predicted ENSDARG0000016216 (Ensembl release 19) on zebrafish chromosome 8 to be most closely related to mouse and human plexinA3 gene sequences. We then analysed the general domain structure of the deduced protein (1892 amino acids). It is identical to that of plexinA3 in other vertebrate species: a Sema domain, followed by three MRS (Met Related Sequence) domains, four IPT (Immunoglobulin-like fold shared by Plexins and Transcription factors) motifs, and the characteristic intracellular Plexin domain at the C-terminus. The transmembrane domain of the zebrafish protein is located between the IPT motifs and the Plexin domain and comprises amino acids 1241-1263 (Fig. 26A). The protein sequence of the cloned gene has significant structural homology and overall amino acid identity (73%) with human (Maestrini et al., 1996) and mouse (Kameyama et al., 1996) plexinA3. Dr. J. Feldner showed in a
phylogenetic tree, constructed using the Clustal method (Chenna et al., 2003), that zebrafish \textit{plexinA3} segregated with \textit{plexinA3} homologs of other species (Fig. 26, B). These data strongly suggest that we cloned a species homolog of \textit{plexinA3}.

\textbf{Fig. 26:} Structural features and identity of \textit{plexinA3} in zebrafish. \textbf{A:} Domain structure of \textit{plexinA3}. SEMA, Sempaphorin domain; PLEXIN, plexin domain; MRS, Met-related sequence. \textbf{B:} Multiple comparisons in a phylogenetic tree group zebrafish \textit{plexinA3} with \textit{plexinA3} homologs in other vertebrates. \textit{Dosophila} was added as an outgroup. The scalebar represents 10 substitutions per 100 aa. z, zebrafish; m, mouse; h, human; x, Xenopus; d, Drosophila. (Feldner et al., 2007).

\subsection*{3.2.2 \textit{PlexinA3} is strongly expressed in spinal motor neurons}

In situ hybridization indicated expression of \textit{plexinA3} mRNA mainly in the developing nervous system (Fig. 27 A, B). A particularly strong signal was found in regular clusters of cells at the ventral edge of the spinal cord at 16 and 24 hpf, i.e. during the time of axon outgrowth of primary motor neurons. Double labeling of the mRNA with GFP immunohistochemistry in HB9:GFP transgenic
animals at 24 hpf revealed co-localization of the mRNA in GFP+ motor neuron clusters from which the CaP axon started to grow in developmentally younger caudal segments. Conspicuous plexinA3 mRNA expression was also found in more dorsal GFP negative spinal neurons (Fig. 27 C-E). In more rostral segments in which the MiP axon could be seen to grow out, the mRNA was detectable in adjacent cells that probably represent the CaP and MiP primary motor neurons (Fig. 27 F-H). Cells in the extra-spinal pathway of motor axons did not express detectable levels of plexinA3 mRNA. Thus, plexinA3 mRNA is expressed in primary motor neurons during axon outgrowth.

Fig 27: Expression pattern of plexinA3 mRNA. Lateral views of whole mounted 24 hpf embryos are shown, rostral is left. A,B: PlexinA3 mRNA is present in the telencephalon (tel), epiphysis (epi), tegmentum (teg), hindbrain neurons (hb) in the head (A), as well as in spinal cord (sp) and motor neurons (mn) (B). Additional expression is found in the tip of the tail (arrow in B). Yolk droplets (arrowhead in B) show non-specific staining. C–H: In situ hybridization of plexinA3-mRNA shows expression in clusters of GFP-immunopositive motor neurons of HB9:GFP transgenic fish in lateral views at 24 hpf. C–E, A caudal region in which CaP axons (D, arrowheads) are just growing out. The arrowhead in C and E depicts a more dorsal, GFP-immuno negative cell that shows strong expression of plexinA3-mRNA. At higher magnification in F–H, two adjacent intensely plexinA3 mRNA+ neurons in a more rostral segment are depicted. These are likely the CaP (right cell) and MiP (left cell) motor neurons, judging by the trajectories of
the GFP+ MiP (arrow) and CaP (arrowhead) axons. Bars A,B = 100 µm, C-E = 25 µm, F-H = 12.5 µm.

3.2.3 PlexinA3 is necessary for motor axon pathfinding

Ventral motor nerve growth in plexinA3 morpholino injected embryos was analysed at 24 hpf using anti-tubulin immunohistochemistry (Fig. 28, A-F). Injection of 1 mM plexinA3 morpholino1 led to abnormal growth of primary motor axons. Aberrations of ventral motor nerves, which have normally grown as one unbranched nerve beyond the ventral edge of the notochord at 24 hpf (Fig. 28 A,D), can be grouped into two categories: hemisegments showed an additional nerve exiting the spinal cord (Fig. 28 E, F) or nerves were abnormally branched (Fig. 28 B, C).

In 64% of the affected hemisegments, mostly one additional nerve of variable length grew ventrally from an additional exit point in the ventral spinal cord (Fig. 28 E, F). The additional nerve ran parallel to the main nerve or joined it at variable positions dorsal to the horizontal myoseptum. In 68% of the hemisegments showing additional exit points it could not be resolved whether the nerve emanated rostral or caudal to the segment border because the nerves grew very close to it. In the remaining hemisegments, 73% of the additional exit points were located in the posterior half of the somites, 25% were in the anterior half of the somites, or in both the anterior and posterior somite half (2%). On average, 4.7 ± 0.4 hemisegments/embryo had multiple exits in affected embryos.

Ventral motor nerves were aberrantly branched in 35% of the affected hemisegments (Fig. 28 C, D). The vast majority of these branches (82%) were directed caudally. Bifurcated (10%), rostrally (5%) and bilaterally (3%) branched
nerves were observed less frequently. On average, 3.4 ± 0.2 hemisegments/embryo showed aberrant branching in affected embryos. The effects were dose dependent with 26%, 43%, 64% of the embryos showing aberrant nerve branching and 18%, 56%, 94% of the embryos showing additional exit points from the spinal cord following injections of 0.25, 0.5, and 1 mM morpholino1, respectively. Injecting 1 mM morpholino2 phenocopied these effects (83% embryos affected by abnormal branching; 95% embryos affected by additional exits). Injections of 1 mM of a morpholino in which 5 bases were mismatched had no effect (14% embryos affected by branching, 12% embryos affected by additional exits).

Thus, knockdown of *plexinA3* induces both branching of ventral motor nerves and additional exit points from the spinal cord preferentially in the posterior half of the trunk segments.

To elucidate whether dorsal motor axons, which are obscured in anti-tubulin labelled embryos, were affected by the morpholino treatment we analysed *HB9:GFP* transgenic fish at 31 hpf. At this time point, *GFP*+ axons had grown into the dorsal MiP pathway at the level of the yolk extension in uninjected animals (Fig. 28, G). In 1 mM *plexinA3* morpholino1 (*n* = 10 embryos) or morpholino2 (*n* = 13 embryos) injected *HB9:GFP* embryos, axons were also present in the MiP pathway, including the segments with multiple exits (*n* = 47 segments). Interestingly, in nine of these segments, the additional exit points of ventral motor axons also produced additional axons that grew dorsally (Fig. 28, H). Most of these dorsally growing axons were located more laterally than the normal MiP axons as determined in confocal image stacks (not shown). This indicates that these ectopic axons did not simply follow a MiP pathway. Branching away from the normal MiP pathway was also slightly increased by
the morpholino treatment (Fig. 28 H). The frequency of dorsal motor nerves that were branched ventral to the level of GFP$^+$ ventral spinal neurons was $33.4\% \pm 2.84\%$ hemisegments/embryo ($n = 327$ hemisegments) in morpholino treated animals and $12.1\% \pm 2.04\%$ hemisegments/embryo ($n = 215$ hemisegments, Mann-Whitney U-test, $P < 0.0001$) in HB9:GFP embryos injected with 5 miss-match (mm) morpholino ($n=14$ embryos). Thus, additional nerves and increased nerve branching occur in both ventral and dorsal primary motor axon paths.

Fig. 28: Function of plexinA3 in primary motor neurons. A–F: Lateral views at midtrunk levels of anti-tubulin-labelled whole mounted 24 hpf embryos are shown. In uninjected embryos (A) or those injected with 1 mM plexinA3, 5 mm morpholino (5 mm; D), single unbranched motor nerves (arrows in A and D) grow ventrally out of the spinal cord. Injection of 1 mM plexinA3 morpholino1 (MO1) induces branching (arrow in B) or a second spinal exit point for motor nerves per hemisegment (arrows indicate additional nerves in E). Injection of 1 mM plexinA3 morpholino2 (MO2) also induced aberrant branching (arrows in C) of the ventral motor nerve and additional nerves exiting the spinal cord (arrows in F). G,H: Axons in the dorsal MiP pathway are visualized in
HB9:GFP transgenic fish in selected confocal image stacks at 31 hpf, indicating normal growth in uninjected embryos (arrowheads in G), and excessive branching (curved arrow in H) and supernumerary nerves (straight arrow in H) in 1 mM plexinA3 morpholino2-injected embryos. The asterisk in H indicates an additional nerve exit point with a dorsal and ventral nerve branch exiting the spinal cord. Arrowheads in H point to normal appearance of axons in the dorsal motor axon pathway. Rostral is left in A to P. Bar 25µm.

3.2.4 PlexinA3 morpholino phenotypes are specific.

Morpholino phenotypes need to be carefully controlled. One of the best controls is to rescue the morpholino-induced phenotype with a co-injected full length RNA of the targeted gene, which does not include a binding sequence for the morpholino. Overexpression of a full length myc-tagged plexinA3 mRNA alone had no effect on motor axon growth as determined by anti-tubulin immunohistochemistry at 24 hpf (data not shown). However, co-injection of plexinA3 morpholino2 (titrated to 0.3 mM), with plexinA3 mRNA, which does not have a binding sequence for the morpholino, led to a strong and significant reduction in the frequency of both abnormal branching (13% affected embryos) and additional exits (16% affected embryos). This was compared to injection of 0.3 mM plexinA3 morpholino2 alone at 24 hpf (embryos affected by branching: 87%, P < 0.0001; embryos affected by additional exits: 49%, P < 0.01; Tab. 3). This indicates that morpholino phenotypes are most likely due to reduction of plexinA3 expression.
In situ hybridization already indicated that *plexinA3* is mainly expressed in the spinal motor neurons and not in cells in other axonal pathways. However to analyse whether changes in the axonal pathways might have induced aberrant axon growth, we analysed other spinal neurons and trunk structures. Analysis of markers of the horizontal and vertical myosepta, as well as spinal floorplate, motor neuron somata, commissural primary ascending interneurons in the spinal cord and Mauthner neurons with their spinal axons, indicated normal differentiation of these structures after injection of 1mM *plexinA3* morpholino1, including those hemisegments with aberrant motor axon growth (Feldner et al. 2007). Thus, the spinal environment of primary motor axons was not detectably altered by the morpholino injections. Hence, we identified *plexinA3* as a crucial receptor in motor neurons for correct pathfinding of primary motor axons in embryonic zebrafish.
4 DISCUSSION

4.1 Adult zebrafish are capable of motor neuron regeneration

In adult zebrafish, a spinal lesion triggers neural stem cells in the spinal cord to produce motor neurons. These cells are added to pre-existing spinal tissue adjacent to a spinal lesion site, as evidenced by the presence of myelin debris at these levels and increased ventricular proliferation in a region covering more than a third of the entire spinal cord around the actual lesion site. In the lesion site itself, normal cytoarchitecture appears not to be restored. Thus, this model differs significantly from tail regeneration paradigms in amphibians in which the entire spinal cord tissue is completely reconstructed from an advancing blastema (Echeverri and Tanaka, 2002).

Two proliferation studies, one with the permanent marker BrdU and the other with a marker for acute proliferation (PCNA), revealed the time course and the distribution of newborn cells in the lesioned spinal cord. Both proliferation markers showed a strong increase in the number of labelled cells after a lesion. While BrdU labelled cells were found at the ventricle and in the parenchyma, the increase of PCNA labelled cells was only significant in the ventricular zone. These findings suggest that ventricular cells give rise to the majority of newborn cells after a lesion. Newborn cells at the ventricle may subsequently migrate into the parenchyma. Highest proliferative activity was detected close to the lesion site, which is consistent with proliferation being a specific lesion-induced response of the zebrafish spinal cord.
I focused on motor neurons in order to limit the scope of the analysis of different cell types that could theoretically could be newly generated after a lesion. This was because motor neuron loss is the major problem in amyotrophic lateral sclerosis (ALS) and other motor neuron diseases (Ryu and Ferrante, 2007), as well as one of the first problems that needs to be solved after a spinal cord injury. Moreover, the sequence of motor neuron differentiation during development is well-established and markers for motor neuron differentiation are available, such as antibodies (against ChAT, HB9 and islet-1/-2) and two independent transgenic reporter lines in which motor neurons are labelled (HB9:GFP and islet-1:GFP) (Higashijima et al., 2000; Flanagan-Steet et al., 2005).

Looking at the transgenic HB9:GFP line we expected that the numbers of the GFP+ motor neurons would be transiently reduced after a lesion and increase again to levels comparable to those in unlesioned animals. However, HB9:GFP+ motor neurons had more complex reaction patterns than originally anticipated. In the unlesioned situation the majority of HB9:GFP+ motor neurons were large (> 12 µm diameter) and mostly immunopositive for the mature motor neuron marker ChAT. Only very few smaller motor neurons (< 12 µm diameter) were present. The situation changed drastically after a lesion; the number of large motor neurons decreased significantly within the first week. In contrast small HB9:GFP+ motor neurons gradually increased from 20.0 ± 7.66 in the unlesioned situation to a maximal value of 869.5 ± 106.78 at 2 wpl. These small motor neurons were rarely ChAT+ or decorated by SV2+ contacts and were reduced in number in the following weeks. At the same time the number of large HB9:GFP+ motor neurons increased again. This result was confirmed with the transgenic islet-1:GFP line, in which motor neurons also express GFP. In this
line, the number of small motor neurons likewise increased transiently after a
lesion while large neurons disappeared. These observations led us to
hypothesize that small HB9:GFP or islet-1:GFP positive neurons were immature
motor neurons that were derived from the proliferating ventricular cells and in
the process of regeneration matured to large differentiated motor neurons.
Indeed, intraperitoneal BrdU injections indicated that small motor neurons were
newly generated after a lesion. The injections labelled 23% of the small, GFP+
motor neurons with BrdU. Repeated BrdU injections kills the fish, therefore only
three injections could be administered, one every other day. However, the
bioavailability of BrdU has been estimated to be only 4 hours after injection
(Zupanc and Horschke, 1995). This is one explanation why less than a quarter
of the small motor neurons were double labelled. Another reason might be that
after labelling with BrdU the number of cell divisions that occurred diluted the
BrdU labelling below the detection level of immunohistochemistry.
Nevertheless, the numbers of small HB9:GFP+ motor neurons increased from
20 in unlesioned animals to 870 at 2 wpl, which represents a 43-fold increase.
Moreover, a large proportion of these cells were BrdU+. This suggests that
nearly all small motor neurons at 2 wpl were newly generated.
Islet-1 and HB9 are markers for different subpopulations and/or differentiation
stages of motor neurons in the developing spinal cord of amniotes (William et
al., 2003). In this study I found evidence that this may also be the case for the
regenerating spinal cord of adult zebrafish, by using combinations of the islet-
1:GFP and HB9:GFP transgenic reporter lines and antibodies to islet-1/-2 and
HB9. In the lesioned situation, the islet-1/-2 antibody recognizes the majority of
all islet-1:GFP labelled small motor neurons and additionally a huge population
of cells that do not express the islet1 transgene. These are thought to be islet-2+.
neurons. Combining the HB9:GFP line with the islet-1/-2 antibody revealed that there is a large populations of motor neurons that are only labelled with the HB9:GFP transgene. Similarly, the HB9 antibody labelled mainly GFP- cells in the islet-1:GFP line (data not shown). This suggests heterogeneity among the newly generated motor neurons in terms of their marker expression profile. These findings indicate that spinal cord lesion in zebrafish may induce the generation of diverse motor neuron cell types.

One important question is whether newborn motor neurons are integrated into the spinal cord circuitry and fulfill their purpose as motor neurons. According to a time course study of ChAT immunohistochemistry conducted by a postgraduate student in our laboratory, Veronika Kuscha, the number of fully differentiated, ChAT+ cells drops from 478.0 ± 111.12 (n = 3 animals) cells in unlesioned animals to 234.7 ± 111.12 (n = 3 animals) at 2 wpl and recovers by 6 wpl to 348.4 ± 67.27 (n = 4 animals) in the 1500 µm around the lesion site. Hypothesizing that the increase in ChAT+ cells is due to the maturation of the newborn motor neurons (e.g. small HB9:GFP- cells), 114 ChAT+ cells must have been newly generated between 2 and 6 wpl. Taking into account that the BrdU injection scheme labels almost a quarter of all newborn motor neurons, we expect to find 28.5 ChAT+/BrdU+ double labelled cells within 1500 µm around the lesion site. Confirming this expectation, a triple-immunohistochemistry experiment using antibodies against ChAT, BrdU and the synaptic marker SV2 reveals that at 6 wpl 29.3 ± 23.14 (n = 3 animals) cells are double labelled for ChAT and BrdU and are decorated by SV2+ contacts within 1500 µm around the lesion site. This suggests that after a spinal cord lesion the loss of mature motor neurons is compensated for by maturation and integration of newly generated motor neurons. The presence of SV2+ contacts on these
neurons indicates that they may receive synaptic input and may thus be integrated into the spinal circuitry. Furthermore, double labelling with BrdU and retrograde tracing from the muscle tissue reveals that a newborn motor neuron contacted muscle tissue at 8 wpl, which is consistent with a motor neuron function of these newly generated cells. All these lesion induced morphological changes match the time course of functional recovery which plateaus at 6 wpl (Becker et al., 2004). Therefore, it is possible that newly generated fully mature motor neurons replace lost motor neurons and contribute to functional recovery after a spinal cord lesion.

4.2 *Olig2*⁺ ependymo-radial glial cells are the putative stem cells in adult motor neuron regeneration

Some observations suggest that *olig2*⁺ ependymo-radial glial cells are neural stem cells. Continued low level proliferation in the unlesioned adult (Park et al., 2007) and increased proliferation after a lesion do not lead to significant changes in the number of *olig2*:GFP⁺ cells, suggesting asymmetric cell divisions and some potential for self-renewal. Using a BrdU label retention experiment, I was able to confirm that *olig2*:GFP⁺ ependymo-radial glial cells were label-retaining, which is another stem cell characteristic (Grandel et al., 2006). Moreover, these cells express the stem cell markers *BLBP* and *atypical protein kinase C* protein (Park et al., 2007). A stem cell role for *olig*⁺ ependymo-radial glia cells would be in agreement with that of several other radial glia cell types in developing mammals and in adult zebrafish (Pinto and Götz, 2007). For example, Müller cells, the radial glia cell type in the adult retina, can produce different cell types in adult zebrafish, depending on which of these are lost after specific lesions (Bernardos et al., 2007; Fimbel et al., 2007).
Furthermore, lineage tracing experiments showed \textit{olig2:GFP} ependymo-radial glial cells already expressed \textit{HB9} and were BrdU* in a triple labelling experiment and were \textit{islet-1/-2*} in double labelling experiments. This was only observed after lesion as \textit{olig2:GFP} ependymo-radial glial cells were never found to produce neurons in the unlesioned situation. Therefore, \textit{olig2} expressing ependymo-radial glial cells switch from a gliogenic phenotype to motor neuron production, indicating that these are the likely adult stem cells. So far a fate switch for spinal progenitor cells has only been described for generating neurons to generating glial cells during development in different vertebrates (Götz and Barde, 2005).

4.3 Mechanisms of motor neuron regeneration in adult zebrafish are similar to developmental mechanisms

Comparing developmental mechanisms of motor neuron formation with motor neuron regeneration revealed similarities. In the development of vertebrate spinal cord motor neurons the morphogen \textit{Sonic Hedgehog (shh)} sets a dorso-ventral gradient which leads to five progenitor domains. Each of these domains is defined by the expression of a unique set of transcription factors (Jessell, 2000). The \textit{olig2*} domain in combination with the transcription factors \textit{nku6.1} and \textit{pax 6} defines the pMN progenitor cell domain that gives rise to motor neurons.

The ventricular zone of the adult spinal cord in zebrafish retains its embryonic polarity. The expression domains of \textit{shh, nku6.1} and \textit{olig2} around the ventral ventricle are comparable to those in the embryonic neural tube (Fuccillo et al., 2006). Even though expression of these markers was strongly increased after a lesion, they were expressed in a comparable pattern in unlesioned animals. The
transcription factor olig2 is detectable as a transgene but is below the detection threshold of in situ hybridization in unlesioned animals (Park et al., 2007).
The polarized increase of shh profoundly influences motor neuron regeneration. I tested this by using small molecule perturbation of shh function. We used the well established inhibitor cyclopamine, which also abrogates differentiation of motor neurons in developing zebrafish (Park et al., 2004; Fuccillo et al., 2006). Injecting the substance into adult zebrafish specifically reduced expression of the shh target gene patched1 and the down-stream gene olig2 in semi-quantitative PCR, indicating specific action of the compound on the shh pathway. Cyclopamine reduced ventricular proliferation and the number of regenerated motor neurons, suggesting that shh signaling is necessary for motor neuron regeneration.
So far, marker expression and shh signaling is remarkably similar between regeneration and developmental processes. However, the fate switch from gliogenesis to motor neuron production in progenitor cells appears to be specific for regeneration (Raya et al., 2003).

4.4 Implications of motor neuron regeneration in zebrafish for spinal cord regeneration in mammals

We were able to investigate proliferation of endogenous progenitor cells, neuronal differentiation signals and motor neuron regeneration in the injured spinal cord of the adult zebrafish, which shows successful recovery of function. In mammals, spinal cord injury leads to extensive secondary cell loss around the lesion site (Demjen et al., 2004). In the lesioned spinal cord of mammals, proliferation and expression of nestin, an intermediate filament marker for progenitor cells, is increased around the ventricle and in parenchymal
astrocytes, some of which carry radial processes (Yamamoto et al., 2001; Shibuya et al., 2002). Exogenous administration of shh to the lesioned spinal cord increases precursor cell proliferation (Bambakidis and Miller, 2004). Expression of pax6, a transcription factor of progenitor cells in the embryonic spinal cord (Fuccillo et al., 2006), is increased in the ependymal layer of the lesioned adult mammalian spinal cord. However, contrary to development, this expression is not polarized. Olig2 and several other factors are not re-expressed (Yamamoto et al., 2001) and no neurons were formed. One report (Chen et al., 2005) showed a surprisingly wide spread increase in shh mRNA expression in the entire ependyma and several parenchymal cell types in mice. Overall, these observations suggest that spinal progenitors in mammals show some plasticity after a lesion and could be induced to produce new motor neurons. This might be achieved by combining shh with other growth factors (Ohori et al., 2006).

It will be very interesting to elucidate whether other signaling pathways are involved in neuronal regeneration in the adult spinal cord (i.e. notch pathway, retinoic acid pathway and wnt pathway), either directly or indirectly by stimulating shh expression. Identifying signals that trigger and control neuronal replacement from endogenous progenitor cells in fish may inform future cell therapies for spinal cord injury, but also for neurodegenerative diseases, such as ALS (Roskams and Tetzlaff, 2005).

4.5 PlexinA3 is crucial for motor axon pathfinding

To understand motor neuron regeneration in the adult spinal cord it is important also to analyse motor neuron differentiation during development. We analysed the role of plexinA3 for axonal differentiation of motor neurons. Morpholino
knockdown experiments suggest that *plexinA3* in dorsal and ventral motor axons may be necessary to correctly read repellent cues from semaphorins during axon outgrowth. The observed phenotypes are consistent with those observed for knockdown of NRP1a in our lab (Bovenkamp et al., 2004), indicating that NRP/plexin receptor complexes are likely to exist in primary motor axons. The receptor knockdown phenotypes observed, additional exits from the spinal cord and branching of the ventral and dorsal motor nerve, are consistent with a release of axon growth from environmental restrictions. Indeed, class 3 semaphorins are expressed in the trunk environment and are thought to signal through plexin receptors (Birely et al., 2005; Gulati-Leekha and Goldman, 2006).

Up to 95% of *plexinA3* morpholino-injected embryos show specific types of motor axon aberrations and 30% of all hemi-segments analysed were aberrant. This is more than in comparable studies of other proteins in motor axon growth (Feldner et al., 2005; Sato-Maeda et al., 2006). Two sequence-independent morpholinos yielded identical results and I was able to rescue all of the phenotypes to a significant degree by supplementing *plexinA3* using mRNA overexpression. Using various markers, we could not find detectable changes in the spinal cord and trunk structures of morpholino treated embryos. This suggests a major and specific function of *plexinA3* in primary motor neurons.

We conclude that growth and pathfinding of primary motor axons in zebrafish is governed by a complex interplay of different semaphorin ligands and receptors of which *plexinA3* is a crucial component. Shortly after completion of our *plexinA3* knockdown study, two independent publications reported *plexinA3* mutant zebrafish with almost identical phenotypes (Palaisa and Granato, 2007; Tanaka et al., 2007). This shows that forward and reverse genetics approaches
have the potential to elucidate motor axon differentiation in this in vivo model in unprecedented detail. It will be interesting to determine to what degree adult regenerating motor neurons recapitulate embryonic gene expression.

4.6 Conclusion

We conclude that the zebrafish, a powerful genetic model which is accessible to pharmacological manipulations, provides an opportunity to identify the evolutionarily conserved signals that control embryonic motor neuron differentiation and massive regeneration of motor from endogenous stem cells in the adult spinal cord.
5 SUMMARY

Zebrafish, in contrast to mammals, are capable of functional spinal cord regeneration. Spinal motor neurons are major targets for axons regenerating from the brainstem. Using immunohistochemical markers and transgenic reporter fish for motor neuron markers (HB9, islet-1), this study demonstrates that large differentiated motor neurons are transiently lost after a spinal lesion, suggesting that these cells undergo cell death after a lesion and may be replaced by proliferation. Indeed, a massive and transient increase in the number of small, undifferentiated motor neurons, which were labelled by the proliferation marker bromodeoxyuridine, was observed. Proliferation and lineage tracing studies indicated significant proliferation only at the spinal ventricle and that a subset of olig2 expressing ependymo-radial glial cells are the likely motor neuron progenitor/stem cells in the lesioned spinal cord.

A spinal lesion increased expression of sonic hedgehog (shh), an embryonic differentiation signal for motor neurons. Blocking this signal with an antagonist reduced progenitor cell proliferation and motor neuron differentiation. This suggests that shh is an important signal for motor neuron differentiation during adult motor neuron regeneration.

To learn more about axonal differentiation of motor neurons, the role of the cell recognition molecule plexinA3 was investigated during the outgrowth of embryonic primary motor axons. The molecule is selectively expressed in primary motor neurons. Knockdown of expression led to ectopic exiting from the spinal cord and excessive branching of motor axons. Over-expression of full length plexinA3 rescued this effect, indicating specificity of experimental
manipulations. Thus, *plexinA3* expression is crucial for motor axon pathfinding during development.

Overall, this study demonstrates that adult zebrafish are capable of motor neuron regeneration from endogenous progenitor/stem cells and that *shh* is an important regulator of motor neuron regeneration. *PlexinA3* is crucial for motor axon differentiation in embryonic zebrafish. This study establishes adult spinal cord lesion as a model system for motor neuron regeneration, which may ultimately help to find ways to promote motor neuron regeneration also in human conditions, such as spinal cord injury or motor neuron disease.
6 ZUSAMMENFASSUNG

von Motorneuronen nach Rückenmarksverletzungen oder Behandlungen für Erkrankungen der Motorneuronen, wie beispielsweise der amyotrophen Lateralsklerose, zu entwickeln.
7 LITERATURE

Bernardos RL, Barthel LK, Meyers JR, Raymond PA (2007) Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells. J Neurosci 27:7028-7040.

partially inhibits Hh/Ptch signaling, but not tumor growth. Mol Carcinog 47:361-372.

LITERATURE

and red-intermediate spinal motoneurons in the zebrafish. Acta Histochem

term effects of spinal cord transection in zebrafish: swimming performances,
and metabolic properties of the neuromuscular system. Acta Histochem
100:117-131.

(\textit{Brachydanio rerio}). In: University of Oregon Press.

Westerfield M, McMurray JV, Eisen JS (1986) Identified motoneurons and their

by repressor activity of Mnx class homeodomain proteins. Development
130:1523-1536.

Yamamoto S, Nagao M, Sugimori M, Kosako H, Nakatomi H, Yamamoto N,
Takebayashi H, Nabeshima Y, Kitamura T, Weinmaster G, Nakamura K,
Nakafuku M (2001) Transcription factor expression and Notch-dependent
regulation of neural progenitors in the adult rat spinal cord. J Neurosci 21:9814-
9823.

Plexin-A3 and -A4 in mediating responses of sensory and sympathetic neurons

Zupanc GK, Horschke I (1995) Proliferation zones in the brain of adult gymnotiform
8 APPENDIX

8.1 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>amino acid</td>
</tr>
<tr>
<td>A</td>
<td>adenine</td>
</tr>
<tr>
<td>Amp</td>
<td>ampicillin</td>
</tr>
<tr>
<td>ATP</td>
<td>adensoin triphosphate</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumine</td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
</tr>
<tr>
<td>°C</td>
<td>degree celsius</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CTA</td>
<td>cytosine triphosphate</td>
</tr>
<tr>
<td>dATP</td>
<td>2′-desoxyadenosine triphosphate</td>
</tr>
<tr>
<td>dpf</td>
<td>days post fertilisation</td>
</tr>
<tr>
<td>dCTP</td>
<td>2′-desoxycytosine triphosphate</td>
</tr>
<tr>
<td>dGTP</td>
<td>2′-desoxyguanosine triphosphate</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNase</td>
<td>desoxyribonuclease</td>
</tr>
<tr>
<td>dNTP</td>
<td>2′-desoxyribonucleotide-5′-triphosphate</td>
</tr>
<tr>
<td>dpf</td>
<td>days post fertilization</td>
</tr>
<tr>
<td>dpi</td>
<td>days post-lesion</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>Fig.</td>
<td>figure</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>G</td>
<td>guanosine</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>h</td>
<td>human</td>
</tr>
<tr>
<td>hpf</td>
<td>hour post fertilisation</td>
</tr>
<tr>
<td>kan</td>
<td>Kanamycin</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base pairs</td>
</tr>
<tr>
<td>l</td>
<td>litre</td>
</tr>
<tr>
<td>LB medium</td>
<td>Luria Bertani medium</td>
</tr>
<tr>
<td>m</td>
<td>milli (10^{-3})</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>n</td>
<td>number of animals, nano (10^{-9})</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffer saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>T</td>
<td>thymine</td>
</tr>
<tr>
<td>Tab.</td>
<td>table</td>
</tr>
</tbody>
</table>
8.2 Morpholinos

PlexinA3 MO1:
5'-ATACCAGCAGCCACAAGGACCTCAT-3'

PlexinA3 MO2:
5'-AGCTCTTCCCTCAAGCGTATTCCAG-3'

PlexinA3 5mm MO:
5'-ATACACCACCCAGAAGCCTGAT-3'

8.3 Overexpression-construct *plexinA3*

8.3.1 Primers used to clone *plexinA3* overexpression construct:
plexin A3 (BamHI) forward
5`- GTGGATCCATGAGGTCCCTTGGTGGCTG -3`

plexinA3 (BamHI) reverse
5`- TAGGATCCGCTGCTGCCAGACATCAG-3`
8.3.2 Sequence of the overexpression construct for *plexinA3*:

5'-GTGGATCCATGAGGTCCTTGGCTGCTGGATTTTCTCTGTGGTTTG
ACTGGGACAACTGCTATTTCAATGATTCTGTCGGACGGCCCTGAACT
CACCAGGGACTTCAAGGTTAAAGACACAGAGTTCTCACCTACATCAGCAG
ACCCCAAACTGCTGAGGTGCTGGTGCTGAGTTCTAAACCCAGATCTACAAG
CTTTCGCAATCTCACCAGAACGCGTCTTCTACCAGACCGGTCCCGTGGA
AGACAACGCGGACAGTGCTATCCACCCCCAGTGTACGAGCTTGGACAGCA
AATTGGAGTCTACAGACAAACGTCAAATTGCTGCTGGATTATAGCGG
GCAACCGCTCTGCCGGCCCTGGAGCATCCTGCGAGGGCTGGTGCTGAT
CCTGCGGTTCGGAAGATCTCTTCTCAAAGCTGGTAGAACACATCACCAGTAAG
AGACTACCTCTCTCGGGAGCAGGAAGACTTCTGCTGAGGATGCTGAGTG
GTGGGAGTGATGACGGAGACTTTAAGAAAGGAAGAGGCTTGAGCTG
ACTCTTTCCATTGCTGGTGCAATCTGGAGCGAATCACTAGATATTTTCAACC
CTTACAGCGTAAACTGGTGCGGAGAAGGTGAATCTAGTGCACAGTTTCTAGT
GGCTACCAAAGTGAATTTTGTGCTCTCTCAATACAGATACCTTCAGACAC
CCTGCTCAGTGATCCGACATTGATATACTACGCTACGGTTCTCCAG
CGGACCTTACATCTATTTCTCACTTTGGCAACTGGAATCTCAGCTCCTCA
GGTGGAATGACGCGGGGAGAATTCTCCTCAAAATAGTCCCGCATGT
GCTCAATGACACTGAGTTTATTACTCTACGTAGATGCCCATGCCTGGG
CCAGAAGATGACACTGAGTTTATTACTCTACGTAGATGCCCATGCCTGG
CCTGATGCGGTACAGCAAGGGCTTTGGGCGCTGTCGAGGATGAGGTG
CCTGTTCTGATTTCTCCAGGGTCAGAAGAACGGGCTAACCACCCGGA
GAGAAACAGTGCTGTGCCTTCTCAGACTGACAGATTACCCTGGCCATG
CGAGAGAGGATCAAGTCTAGTCTACCGGAGAGGGAAGGTGAGTTCTGCTGC
CCTGGTGTTGCTCAACAAGGAGCTGCGCCTTCCATTAATACGCACGACCAGTAT
GGTGATGATTTTCGGGCCTGTCAGTGAATCGCCCCTTGGGGGATTGAT
GGTGATCGAGGGCATTCCCTCTGTTTGGACAGCGACGCACTGACGGCATGGCAT
CAGTGCGCTGACAACATCGAGCCATCGGCTGTTTGGTGTCGGACACT
CGCAGCGGCCACCTCAGAAGAATTCGAGTGATGCTGATCTCTCCGCGCCTC
AGAAACAGCTTTGGCTGTCGAGCAGCCGTCAGGGTTGGGAGAGCCACCACA
TCCTGAGGGACATGTTGCTTACGAGCTACCCATCTCAGTACATCTATCAGTG
GCGACAAACAGTGGAGTCTGCTGCTGCCGGTTGAGAGCTGTTCTCAGTACAGC
AGCTGTAAGACGTTGCTGGGCTCCTGAGAGATCTCACCTGGCGGCTGGTGCTTG
APPENDIX

CCTGCATAACAAGTGCTCCAGAAGGCCGCTTGAGAAGTGGGGCAGA
CCGCTTCACCTTCAGTACAGAGCTGAGCAGCTGTGAGCTGAGGTGGAAGGT
GGCAACGCAGACCAAGCAGCTCGGCAGCTGAGCTGAGGAGGTGGAGGAG
CTCACCGAGAGTCCGAGAAGCTGAGCTAGGAGCAGAACTCCTCGCAT
GTCCCCCTCCCTTCCGGAGCCGTCTCTGCTACTCAGGGATATGGGCGATA
AACGGGTCGTCGAAGCTTTCTGTGACTAAGCGGCAACGGGCTGCTCTCT
TCGTGTGTAGAGCTTTCTCTCGAATCGTACAGGCTACAGGCTACTCTCA
TGCACTAATAGTAGAGCGAGTGCTCCTCTCCAGCGAGGTGAGCAG
TGCAAGAGGGCTGCCACAGATTTTGGCCACAGTGACATCTCGTACCGG
CGGGGATCGTCTCGCCAATACACTTGCGAGGCCGAAACTCTGCCCAGCT
CAGTCTGGACAGAAGAATGAGAGCTGTGCTCTTTACATCGAGGAAGAT
GCAGGGTATTTCCGCGTGCCTCAAGCTGACTCCTGACATCGAGGTCA
ACACCTCTGTACTGTGATGAAGGGAAGGACAGGTGAGGATCTCTGTGGA
TTCTCCATCGTGTTGGGACCTGACTTTCTCCATCGACAAACCTCATCCATG
AGAGCTCTCTGTATAAGTGTGAGGCCTAGGGAGACGACTGTGAGACTATG
TCTGAAAGGCTGACGACTTTCTGTGAGTGCTGTGGGTGTTTGCCGATAAAG
AGTGCTCTCTAAAGCAACACTGTCATCGCCAACAACACTGAGGATGAC
AGGGACGACGCAACATCCGCTGCAAGCCATCAGGCGGATTAGTCTGCT
CCTCTGACGGGCCCGAAGGAGGAGAGACACGCGTCCACCATTGAAAGGG
AGAATCTGGGGTCTCAGGAAATCCTACCTACGCGCTGCTGGGTGCTGA
GTTCGCCTGAACCCCTGCTCAGCAGCTGAATACATCGAGGCTGAGGATTGT
GTGATATGGGAGGAGTCCCTGATGTGAGTGTTCTGTGTGGTTTGGCCCAGG
AGGATCTGGACCTGAGTAGAGGGATCTGTTTATTGATAAAGCAGAC
CAGCGACACCCGCTACATCTACACCTGAAATATCTCCACCATCGA
GCCCAACTGGAGCATCATCAAGGCACCAATATCTCCACCATCGA
GCCAACTGGAACGACATCAACACGGACACACCATCCAGGCTACAGGAA
GCCCAGACGCCGCTACATCGTACAGGAGACAGGGCTGAGCTGACTGCTG
GTCAGGAGGAGCGGTGCAGATTGTTGTGTGTGTGACGCTCCATCAGCTTC
AGGATCTGGACCTCTCAGTGTGAACTGTTTATTGATAAAGCAGAGATC
CAGCGACACCCGCTACATCTACACCTGAAATATCTCCACCATCGA
GCCCAACTGGAACGACATCAACACGGACACACCATCCAGGCTACAGGAA
GCCCAGACGCCGCTACATCGTACAGGAGACAGGGCTGAGCTGACTGCTG
8.3.3 Restriction enzyme map for *plexinA3* overexpression construct

- **plexinA3** with BamHI sites (5692 bps)
8.4 Publications

* These authors contributed equally

8.5 Posters

Reimer M.M., Inga Soerensen, Veronika Kuscha, Frank R.E., Chong L., Becker C.G., Becker T.
Motor Neuron Regeneration in Adult Zebrafish
(8th International Meeting on Zebrafish Development & Genetics, Madison 2008)

Ebert A., Becker T., Wyatt C., Reimer M.M., Roerink S., Rasband K., Chien C.-B., Becker C.
Robo2 and Axon Targeting Errors in the Unlesioned and Regenerated Adult Optic Projection
(8th International Meeting on Zebrafish Development & Genetics, Madison 2008)

Reimer M.M., Frank R.E., Chong L., Becker C.G., Becker T.
Sonic hedgehog dependent motor neurone regeneration in adult zebrafish.
(Scottish Neuroscience Group Meeting, Edinburgh 2007)
Reimer M.M., Frank R.E., Chong L., Becker C.G., Becker T.
Sonic hedgehog dependent motor neurone regeneration in adult zebrafish.
(Translational Research Symposium: Moving Forward with Motor Neurone Disease, Royal Society, Edinburgh 2007)

Reimer M.M., Sörensen I., Schweitzer J., Becker C.G., Becker T.
Progenitor cell-related gene expression and neurogenesis in the lesioned spinal cord of adult zebrafish.
(7th International Meeting on Zebrafish Development & Genetics, Madison 2006)

Differentiation of Mycobacterium abscessus (type I and II) and Mycobacterium chelonae based on LightCycler technology.
(DGHM meeting, Münster 2004)

Reimer M.M., Jäger T., Sedlacek L., Joost I., Maass S., Bange F.C.
The role of narGHJI and nirB in nitrate assimilation by Mycobacterium tuberculosis.
(DGHM meeting, Münster 2004)
8.6 Danksagung

Hiermit möchte ich mich ganz herzlich bei den Menschen bedanken, die mir bei der Durchführung meiner Doktorarbeit geholfen haben.

Meinen Eltern und Großeltern gilt meine Liebe und mein Dank für all die Zeit die sie mich während Studium und Doktorarbeit unterstützt haben.

Motor Neuron Regeneration in Adult Zebrafish

Michell M. Reimer,1 Inga Sörensen,2 Veronika Kuscha,1 Rebecca E. Frank,1 Chong Liu,1 Catherina G. Becker,1,* and Thomas Becker1,*

1Centre for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, United Kingdom, and 2Medizinische Hochschule Hannover, Molekularbiologie, 30625 Hannover, Germany

The mammalian spinal cord does not regenerate motor neurons that are lost as a result of injury or disease. Here we demonstrate that adult zebrafish, which show functional spinal cord regeneration, are capable of motor neuron regeneration. After a spinal lesion, the ventricular zone shows a widespread increase in proliferation, including slowly proliferating olig2-positive (olig2\(^{+}\)) ependymo-radial glial progenitor cells. Lineage tracing in olig2:green fluorescent protein transgenic fish indicates that these cells switch from a gliogenic phenotype to motor neuron production. Numbers of undifferentiated small HB9\(^{-}\) and islet-1\(^{-}\) motor neurons, which are double labeled with the proliferation marker 5-bromo-2-deoxyuridine (BrdU), are transiently strongly increased in the lesioned spinal cord. Large differentiated motor neurons, which are lost after a lesion, reappear at 6 – 8 weeks after lesion, and we detected ChAT\(^{+}\)/BrdU\(^{+}\) motor neurons that were covered by contacts immunopositive for the synaptic marker SV2. These observations suggest that, after a lesion, plasticity of olig2\(^{+}\) progenitor cells may allow them to generate motor neurons, some of which exhibit markers for terminal differentiation and integration into the existing adult spinal circuitry.

Key words: endogenous stem cells; radial glia; BrdU; PCNA; SV2; adult neurogenesis

Introduction

Damage to the spinal cord by injury or motor neuron diseases is devastating because lost neurons are not replaced in the adult mammalian spinal cord (Pinto and Götz, 2007; Bapreyre, 2008). Adult zebrafish have an impressively high regenerative capacity, even in the unlesioned brain of adult zebrafish (Zupanc et al., 2005; Adolf et al., 2006; Chapouton et al., 2006; Grandel et al., 2006). This is similar to mammals, which probably have fewer of these zones (Gould, 2007). However, the unlesioned adult zebrafish spinal cord shows very little, if any, proliferation and neurogenesis (Zupanc et al., 2005; Park et al., 2007). Therefore, a prerequisite for motor neuron regeneration would be plasticity of relatively quiescent spinal progenitor cells after injury.

These observations prompted us to investigate lesion-induced neuronal regeneration in the heavily myelinated spinal cord of the fully adult zebrafish (>4 months) after complete spinal transection. We focused on motor neurons because this cell type is often lost as a result of injury or neurodegenerative disease in mammals, and differentiation of motor neurons is highly conserved between mammals and zebrafish. For example, HB9 and islet-1/2 are transcription factors found in developing motor neurons of both mammals (Tsuchida et al., 1994; William et al., 2003) and zebrafish (Cheesman et al., 2004; Park et al., 2004).

We find that substantial numbers of new motor neurons are generated after a spinal lesion, some of which show evidence for terminal differentiation and integration into the spinal circuitry. Lineage tracing identifies olig2-positive (olig2\(^{+}\)) ependymo-radial glial cells as likely progenitor cells for motor neurons in the lesioned adult spinal cord.

Materials and Methods

Animals. Fish are kept and bred in our laboratory fish facility according to standard methods (Westerfield, 1989), and experiments have been approved by the British Home Office. We used wild-type (wik), HB9:green fluorescent protein (GFP) (Flanagan-Steet et al., 2005), islet-1:GFP (Higashijima et al., 2000), and olig2:GFP (Shin et al., 2003) transgenic fish. Consistency of transgene expression with that of the endogenous genes at the adult stage was verified by immunohistochemistry (HB9: data not shown; islet-1: supplemental Fig. 2, available at www.jneurosci.org as supplemental material) or in situ hybridization (olig2; data not shown) for the respective genes.

Spinal cord lesion. As described previously (Becker et al., 2004), fish were anesthetized by immersion in 0.033% aminobenzoic acid ethylmethyl ether (MS222; Sigma) in PBS for 5 min. A longitudinal incision was made at the side of the fish, and the spinal cord was completely transected under visual control 4 mm caudal to the brainstem–spinal-cord junction.

Electron microscopy. Ultrathin sections (75–100 nm in thickness) were
prepared and observed by electron microscopy as published previously (Becker et al., 2004).

Immunohistochemistry. We used rat anti-5-bromo-2-deoxyuridine (BrdU) (BU 1/75, 1:500, AbD Serotec), mouse anti-islet-1/2 (Tsuchida et al., 1994) (40.2D6, 1:1000; Developmental Studies Hybridoma Bank), mouse anti-HB9 (MNR2, 1:400; Developmental Studies Hybridoma Bank), mouse anti-proliferating cell nuclear antigen (PCNA) (PC10, 1:500; DakoCytomation), and goat anti-ChAT (AB144P, 1:250; Millipore Bioscience Research Reagents) antibodies. Secondary cyanine 3 (Cy3)-conjugated antibodies were purchased from Jackson ImmunoResearch. Immunohistochemistry on paraformaldehyde-fixed spinal cord sections (50 μm thickness) has been described previously (Becker et al., 2004). Antigen retrieval was performed by incubating the sections for 1 h in 2 M HCl for BrdU immunohistochemistry or by incubation in citrate buffer (10 mM sodium citrate in PBS, pH 6.0) at 85°C for 30 min for HB9, islet-1/2, and PCNA immunohistochemistry. Double labeling of cells was always determined in individual confocal sections.

Intrapertoneal BrdU application. Animals were anesthetized and intraperitoneally injected with BrdU (Sigma-Aldrich) solution (2.5 mg/ml) at a volume of 50 μl at 0, 2, and 4 d after lesion unless indicated otherwise.

Retrograde axonal tracing. Motor neurons in the spinal cord were retrogradely traced by bilateral application of biocytin to the muscle periphery at the level of the spinal lesion, as described previously (Becker et al., 2005), with the modification that biocytin was detected with Cy3-conjugated streptavidin (Invitrogen) in spinal sections. This was followed by immunohistochemistry for BrdU (see above).

Cell counts and statistical analysis. Stereological counts were performed in confocal image stacks of three randomly selected vibratome sections from the region up to 750 μm rostral to the lesion site and three sections from the region up to 750 μm caudal to the lesion site. Cell numbers were then calculated for the entire 1.5 mm surrounding the lesion site.

PCNA + and BrdU + nuclear profiles in the parenchyma and the ventricular zone (up to one cell diameter away from the ventricular surface) were counted in the same region of spinal cord at least six sections were analyzed per animal by fluorescence microscopy, and values were expressed as profiles per section. The observer was blinded to experimental treatments. Variability of values was given as SEM. Statistical significance was determined using the Mann–Whitney U test ($p < 0.05$) or ANOVA with Bonferroni’s or Dunn’s post hoc test for multiple comparisons.

Results
A spinal lesion induces widespread ventricular proliferation
To determine the spinal region in which new motor neurons might regenerate, we analyzed the overall organization of the regenerated spinal cord. At 6 weeks after lesion, when functional recovery is complete (Becker et al., 2004), the lesion site itself had not restored normal spinal architecture and consisted mainly of unmyelinated and remyelinated regenerated axons (Fig. 1). Immediately adjacent to this axonal bridge, spinal cross sections showed normal cytoarchitecture, with the exception that white matter tracts were filled with myelin debris of degenerating fibers (Becker and Becker, 2001). This indicated that this tissue existed before the lesion was made. Thus, no significant regeneration of whole spinal cord tissue occurred for up to at least 6 weeks after lesion.

To find newly generated cells in the spinal cord, we used immunohistochemical detection of repeatedly injected BrdU, which labels cells that have divided. This revealed that very few cells proliferated in the unlesioned spinal cord. At 2 weeks after lesion, the number of newly generated cells in the spinal tissue up to 3.6 mm rostral and caudal to the lesion site increased significantly, covering more than one-third of the length of the entire spinal cord. BrdU + cells were found throughout spinal cross sections but appeared to be concentrated at the midline and in the ventricular zone around the central canal (Fig. 2A). Numbers were highest close to the lesion site (Fig. 2B).

To localize acutely proliferating cells in the spinal cord, we used immunohistochemistry with the PCNA antibody, which labels cells in early G1 phase and S phase of the cell cycle. This revealed a significant increase in cell proliferation solely in the ventricular zone. Proliferation peaked at 2 weeks after lesion and returned to values that were similar to those of unlesioned animals by 6 weeks after lesion (Fig. 2C,D).

Numbers of differentiating motor neurons increased dramatically in the lesioned spinal cord
We determined whether new motor neurons are generated in the core region of proliferation comprising 1.5 mm surrounding the lesion site. We examined the numbers of cells expressing GFP in transgenic lines, in which GFP expression labels motor neurons under the control of the promoters for HB9 (Flanagan-Steet et al., 2005) or islet-1 (Higashijima et al., 2000). In unlesioned HB9:GFP animals, few large (diameter > 12 μm) motor neurons and very few smaller (diameter < 12 μm) GFP + motor neurons (20 ± 7.7 cells; $n = 4$) were observed in the ventral horn. The number of small HB9-GFP + cells was nonsignificantly increased at 1 week after lesion (207 ± 84.5 cells; $n = 3$; $p = 0.3$) but was significantly increased at 2 weeks after lesion (870 ± 106.8 cells; $n = 11$; $p = 0.004$) (Fig. 3A). Similar observations were made in islet-1:GFP

Figure 1. The regenerated spinal cord. A, A lateral stereomicroscopic view of a dissected spinal cord is shown (rostral is left). The tissue bridging the lesion site appears translucent. B, An electron-microscopic cross section through the lesion site is shown. The lesion site consists mainly of axons (ax), some of which are remyelinated by Schwann cells (sc). Scale bars: A, 1 mm; B, 5 μm.
HB9:GFP animals, 200 injected animals with BrdU. In lesioned rons were generated after a lesion, we in
motor neuron. on differentiation stage and/or subtype of verged in spinal motor neurons depending (Tsuchida et al., 1994; William et al.,
suggests that, similar to development (supplemental Fig. 2, available at www.jneurosci.org as supplemental material). This
demonstrated in marker expression (supplemental Fig. 1, available at www.jneurosci.org as supplemental material). Double labeling of islet-1/2 antibodies
in HB9:GFP and islet-1:GFP transgenic animals revealed that motor neurons were heterogeneous in marker expression (supplemental Fig. 2, available at www.jneurosci.org as supplemental material). This
suggests that, similar to development (Tsuchida et al., 1994; William et al., 2003), islet-1/2 and HB9 expression di-
creased after a spinal lesion.

To directly show that new motor neurons were generated after a lesion, we injected animals with BrdU. In lesioned HB9:GFP animals, 200 ± 46.2 cells (n = 7; p = 0.0076) and in islet-1:GFP animals, 184 ± 49.3 cells (n = 3; p = 0.0104) were
double labeled by the transgene and BrdU at 2 weeks after lesion (Fig. 3A) (supplemental Fig. 1, available at www.jneurosci.
org as supplemental material). Less than 8% of all BrdU + cells were HB9:GFP + (7.6 ± 1.86%) or islet-1:GFP + (6.3 ± 1.75%), suggesting proliferation of addi-
tional neuronal and non-neuronal cell types. Thus, a spinal lesion induces generation of new motor neurons and possibly other cell types in adult zebrafish.

In contrast, in the unlesioned spinal cord, we observed no double-labeled motor neurons in islet-1:GFP animals (n = 5) and only one cell so labeled in HB9:GFP animals (n = 4). Even an extended BrdU injection protocol (injections at days 0, 2, 4, 6, and 8, analysis at day 14) did not yield any HB9:GFP + /BrdU + cells in unlesioned fish (n = 5). Because the bioavailability of BrdU is ~4 h after injection (Zupanc and Horschke, 1995), we cannot exclude a very low proliferation rate of motor neurons. However, we do not find evidence for substantial motor neuron generation in the unlesioned mature spinal cord.

New motor neurons are likely derived from olig2-expressing ependymo-radial glial cells
Olig2 is essential for motor neuron generation during development (Park et al., 2004). In adult olig2-GFP transgenic fish, GFP is
found in oligodendrocytes and in a ventrolateral subset of ependymo-radial glial cells (Fig. 3B) (Park et al., 2007). After a lesion, these cells proliferated, as indicated by substantial double labeling with PCNA at 2 weeks after lesion (490 ± 224.2 PCNA + /olig2:GFP + ependymo-radial glial cells and 217 ± 103.8 non-ventricular PCNA + /olig2:GFP + cells; n = 2). Thus, olig2-expressing cells could give rise to motor neurons during regeneration.

To analyze the relationship between olig2-expressing potential stem cells and motor neurons more directly, we used immu-
nohistochemistry for HB9 and islet-1/2 in olig2:GFP transgenic animals. The relative stability of GFP has been used as a lineage
At 2 weeks after lesion, single parenchymal olig2:GFP subpopulation of olig2:GFP these cells gave rise to motor neurons. In contrast, a substantial not coexpress either HB9 or islet-1/2, which makes it unlikely that

Figure 3. Generation of new motor neurons in the lesioned spinal cord. Confocal images of spinal cross sections at 2 weeks after lesion are shown (dorsal is up; dots outline the ventricle). A, HB9:GFP + /BrdU + neurons are present in the lesioned, but not the unlesioned, ventral horn. These cells (boxed in top right and shown at higher magnification in bottom row) bear elaborate processes (arrows) or show ventricular contact (arrowhead). B, olig2:GFP + progenitor cells (arrows) have long radial processes (arrowheads), contact the ventricle, and are HB9 + in the lesioned, but not the unlesioned, spinal cord. Scale bars: A, 25 μm; B, top row, 7.5 μm; B, bottom row, 15 μm.
Table 1. Dynamics of motor neuron numbers after spinal cord lesion

<table>
<thead>
<tr>
<th></th>
<th>HB9:GFP</th>
<th>Islet-1:GFP</th>
<th>ChAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large cells</td>
<td>Small cells</td>
<td>Large cells</td>
</tr>
<tr>
<td>Unlesioned</td>
<td>133 ± 34.9</td>
<td>20 ± 7.7 (n = 4)</td>
<td>78 ± 17.2</td>
</tr>
<tr>
<td>1 week</td>
<td>42 ± 15.1*</td>
<td>207 ± 64.5 (n = 3)</td>
<td>n.d.</td>
</tr>
<tr>
<td>2 weeks</td>
<td>46 ± 7.3*</td>
<td>870 ± 106.8 (n = 11)*</td>
<td>32 ± 9.5</td>
</tr>
<tr>
<td>6–8 weeks</td>
<td>91 ± 11.5</td>
<td>251 ± 78.7 (n = 6)</td>
<td>870 ± 244.9 (n = 4)</td>
</tr>
</tbody>
</table>

*p < 0.05, significantly different from unlesioned control. n.d., Not determined.

mature motor neurons (Arvidsson et al., 1997), at 2 weeks after lesion (Fig. 4A).

In contrast to small HB9:GFP + cells, large HB9:GFP + cells were mostly ChAT + in unlesioned animals (80.6 ± 7.99%; p = 3), indicating that these were fully differentiated motor neurons. At 1 (42 ± 15.1 cells; n = 3; p = 0.0035) and 2 (40 ± 7.3 cells; n = 11; p < 0.0003) weeks after lesion, large-diameter HB9:GFP + motor neurons were strongly reduced in number compared with unlesioned animals (133 ± 34.9 cells; n = 4). This suggests lesion-induced loss of motor neurons, which was confirmed by terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling of 22.8 ± 11.39% of the HB9:GFP + motor neurons at 3 days after lesion (n = 3) (supplemental Fig. 5, available at www.jneurosci.org as supplemental material).

At 6–8 weeks after lesion, there was an increase in the number of large-diameter HB9:GFP + cells to 91 ± 11.5 cells (n = 6), such that cell numbers were not different from those in unlesioned animals (p = 0.081). Large-diameter islet-1:GFP + and ChAT + cells showed similar dynamics (Table 1). This suggests that some newly generated motor neurons matured and replaced lost motor neurons. Other newly generated cells might have died, as indicated by increased association with macrophages/microglial cells between 2 and 6 weeks after lesion (supplemental Fig. 6, available at www.jneurosci.org as supplemental material).

To directly demonstrate the presence of newly generated, terminally differentiated motor neurons, we used triple labeling of BrdU, ChAT, and SV2 at 6 weeks after lesion. In the 1500 μm surrounding the lesion site, we found 29 ± 23.1 large BrdU+/ ChAT + cells (n = 3) covered with SV2 + contacts at a density that was comparable with that of motor neurons in unlesioned animals (Fig. 4C). Application of the axonal tracer biocytin to the muscle periphery labeled one BrdU + cell in a motor neuron position in the ventromedial spinal cord near the lesion site (n = 8; 6–14 weeks after lesion) (Fig. 4D). This suggests that some newly generated motor neurons were integrated into the spinal circuitry and grew an axon out of the spinal cord.

Discussion

We show here for the first time that a spinal lesion triggers generation of motor neurons in the spinal cord of adult zebrafish. Lesion-induced proliferation and motor neuron marker expression in olig2 + ependymo-radial glial cells makes these the likely motor neuron progenitor cells. Some of the newly generated motor neurons show markers for terminal differentiation and network integration.

Newly generated motor neurons are added to preexisting spinal tissue adjacent to a spinal lesion site in which normal cytarchitecture is not restored. Thus, this model differs significantly from tail regeneration paradigms in amphibians in which the entire spinal cord tissue is completely reconstructed from an advancing blastema (Echeverri and Tanaka, 2002).

Our results suggest olig2 + ependymo-radial glial cells to be the progenitor cells for spinal motor neurons, because a lesion induces their proliferation and lineage tracing indicated that a substantial number of newly generated olig2:GFP + ependymo-radial glial cells coexpressed the motor neuron markers HB9 or islet-1/2. Moreover, parenchymal olig2:GFP + cells were never, and ependymo-radial glial cells outside the olig2:GFP + zone were rarely, labeled by HB9 or islet-1/2 antibodies. This supports the hypothesis that olig2:GFP + ependymo-radial glial cells are the main source of motor neurons after a lesion. However, we cannot exclude the possibility that some motor neurons might have regenerated from as yet unidentified olig2-negative (olig2 -) parenchymal progenitors.

During postembryonic development, olig2:GFP + cells only give rise to oligodendrocytes (Park et al., 2007). Thus, adult neuronal regeneration is not just a continuation of a late developmental process but an indication of significant plasticity of adult spinal progenitor cells in the fully mature spinal cord.

Additionally, olig2 + ependymo-radial glial cells have characteristics of neural stem cells. They are label retaining, and lesion-induced proliferation of these cells leads only to a moderate increase in their number, suggesting asymmetric cell divisions and some potential for self-renewal. Moreover, these cells express brain lipid binding protein, which is also expressed in mammalian radial glial stem cells, and the PAR (partitioning-defective) complex protein atypical PKC, an indicator of asymmetric cell division, at postembryonic stages (Park et al., 2007). A stem cell role for olig2 + ependymo-radial glial cells would be in agreement with that of other radial glia cell types in developing mammals and in adult zebrafish (Pinto and Götz, 2007). For example, Müller cells, the radial glia cell type in the adult retina, can produce different cell types in adult zebrafish depending on which cells are lost after specific lesions (Faskeit and Goldman, 2006; Bernardos et al., 2007; Fimbel et al., 2007).

We observed that numbers of differentiated motor neurons, i.e., large HB9:GFP + cells and ChAT + cells, were reduced at 2 weeks after lesion and recovered at 6–8 weeks after lesion. This suggests that motor neurons regenerate and is in agreement with previous observations in the guppy (Poecilia reticulata), in which large “ganglion cells” disappeared and reappeared after a lesion (Kirsch, 1950). In accordance with this finding, we detected terminally differentiated (ChAT +), newly generated (BrdU +) motor neurons that were covered by SV2 + contacts at 6–8 weeks after lesion, suggesting their integration into the spinal network. The rare observation of one BrdU + cell that was traced from the muscle periphery indicates that newly generated motor neurons may even be capable of growing their axons out of the spinal cord toward muscle targets. In contrast, at early time points, a transient population of small, newly generated motor neurons (HB9: GFP +, islet-1:GFP +) that were not fully differentiated (ChAT -) and not decorated by SV2 + contacts were present in large numbers. These cells varied in motor neuron marker expression and the extent of process elaboration. Together, these observations suggest that motor neurons are generated and undergo successive
morphological and gene expression differentiation steps toward integration into an existing spinal network after a lesion.

A spinal lesion in mammals leads to proliferation and expression of nestin (Shibuya et al., 2002) as well as Pax6 (Yamamoto et al., 2001), which are markers for progenitor cells, around the ventricle. In addition, parenchymal astrocytes, some of which carry radial processes, express nestin. However, olig2 and several other factors are not re-expressed (Ohori et al., 2006). These observations suggest that spinal progenitors in adult mammals show some plasticity after a lesion and could potentially be induced to produce new motor neurons.

We conclude that the zebrafish, a powerful genetically tractable model, provides an opportunity to identify the evolutionarily conserved signals that trigger massive stem cell-derived regeneration and network integration of motor neurons in the adult spinal cord.

References

Bernardos RL, Barthel LK, Meyers JR, Raymond PA (2007) Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells. J Neurosci 27:7028–7040.

PlexinA3 Restricts Spinal Exit Points and Branching of Trunk Motor Nerves in Embryonic Zebrafish

Julia Feldner, Michell M. Reimer, Jörn Schweitzer, Björn Wendik, Dirk Meyer, Thomas Becker, and Catherina G. Becker

1Centre for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom, 2Institute for Molecular Bioscience, University of Queensland, St Lucia QLD 4072, Australia, 3Instiut für Biologie 1, Universität Freiburg, Freiburg, D-79104, Germany, 4Institut für Molekularbiologie, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria, and 5Zentrum für Molekulare Neurobiologie, University of Hamburg, D-20246 Hamburg, Germany

The pioneering primary motor axons in the zebrafish trunk are guided by multiple cues along their pathways. Plexins are receptor components for semaphorins that influence motor axon growth and path finding. We cloned plexinA3 in zebrafish and localized plexinA3 mRNA in primary motor neurons during axon outgrowth. Antisense morpholino knock-down led to substantial errors in motor axon growth. Errors comprised aberrant branching of primary motor nerves as well as additional exit points of axons from the spinal cord. Excessively branched and supernumerary nerves were found in both ventral and dorsal pathways of motor axons. The trunk environment and several other types of axons, including trigeminal axons, were not detectably affected by plexinA3 knock-down. RNA overexpression rescued all morpholino effects. Synergistic effects of combined morpholino injections indicate interactions of plexinA3 with other axonal receptors. Thus, plexinA3 is a crucial receptor for axon guidance cues in primary motor neurons.

Key words: primary motor neurons; pioneer axons; neuropilin; semaphorin; zebrafish; development

Introduction

Axonal path finding during development is determined by an array of overlapping pathway cues and receptors. PlexinA1 to A4 are coreceptors for axon-repelling or -attracting class 3 extracellular semaphorins. It is thought that neuropilin-1 (NRP1) or NRP2 are the ligand-binding part, and plexins are the signal-transducing part of semaphorin class 3 receptors (for a recent review, see Kruger et al., 2005). Removing individual components from this guidance network leads to specific defects of nerve growth (Giger et al., 2000; Huber et al., 2005; Yaron et al., 2004), indicating distinct roles for different ligand/receptor combinations in the path finding of different axon populations.

Studying the outgrowth of primary motor axons in zebrafish offers the opportunity to unravel the role of individual guidance cues and receptors at the level of single pioneer axons in vivo. Three primary motor neurons per trunk hemisegment grow axons out of the spinal cord along a common pathway in the middle of each segment up to the horizontal myoseptum. The axon of the caudal primary motor neuron (CaP) is the first to grow, followed by the axons of the middle (MiP) and rostral primary motor neurons (RoP). At the horizontal myoseptum, the CaP axon continues its growth toward the ventral somite, pioneering the ventral motor nerve, whereas the MiP axon retracts and grows toward the dorsal somite. The RoP axon takes a lateral path from the horizontal myoseptum (for review, see Beattie, 2000).

Semaphorin 3A1 (sema3A1) and sema3A2 (zebrafish homologs of mammalian sema3A) are expressed in the trunk environment. Overexpression of either ligand reduces growth of primary motor axons (Roos et al., 1999; Halloran et al., 2000). Antisense morpholino oligonucleotide knock-down of sema3A1 leads mainly to aberrant branching of the CaP axon (Sato-Maeda et al., 2006). Knock-down of NRP1a alone or in double knock-down experiments with semaphorin ligands leads to nerve branching, additional exit points of axons from the spinal cord, and ventral displacement of neuronal somata along the extra-spinal motor axon pathway (Feldner et al., 2005). This suggests that semaphorins guide primary motor axons by repellent mechanisms via NRP1a-containing axonal receptors. Although this powerful system has attracted significant attention, for example in forward genetic screens for axon guidance molecules (Birely et al., 2005; Gulati-Leekha and Goldman, 2006), the role of plexins has not been examined. The only class A member of the plexin family characterized in zebrafish so far is plexinA4, which is not expressed in primary trunk motor neurons (Miyashita et al., 2004).

Here, we clone plexinA3 in zebrafish and show by antisense morpholino knock-down that plexinA3 is necessary for unbranched nerve growth and to restrict spinal exit points of primary motor axons to a midsegmental position. Morpholino coinjection experiments suggest that plexinA3 belongs to a receptor complex for semaphorins in primary motor neurons.
Materials and Methods

Zebrafish. Zebrafish were bred under standard conditions (Kimmel et al., 1995). The transgenic fish in which the promoter for h9b drives expression of green fluorescent protein (GFP) in primary motor neurons has been described previously (Flanagan-Steeet et al., 2005).

Cloning procedure. A search of the Ensembl database (www.ensembl.org/Danio_rerio/) predicted ENSDARG00000016216 (Ensembl release 19) on zebrafish chromosome 8 to be most closely related to mouse and human plexinA3. The predicted transcript lacked part of the 5′ region, which was included in the expressed sequence-tagged clone 24185179. Based on this information, the entire gene could be isolated from cDNA prepared from adult zebrafish brains using PCR with the proofreading polymerase PfUUltra (Stratagene, Cambridge, UK). The GenBank accession number for plexinA3 is EF538743.

Injection of mRNA and morpholinos. Two morpholinos of nonoverlapping sequence for plexinA3 (plexinA3 morpholino1, ATACCGACAGCACAAGGGACCTCTG; plexinA3 morpholino2, AGCTCTTCCCTCAAGGTTATCTCCAG) and a morpholino in which five bases were mismatched based on morpholino1 (plexinA3 5′ mm morpholino, ATACCGACAGCACAAGGGACCTCTG) were purchased from Gene Tools (Philomath, OR). Morpholinos against sema3A1, sema3A2 (Feldner et al., 2005), and NRP1a (Lee et al., 2002) have been described previously.

Messenger RNAs for injection experiments were synthesized as described previously (Feldner et al., 2005). Partial sequences of plexinA3 that contained untranslated 5′ sequences followed by a myc-tag were used to determine binding efficiency of the morpholinos. Full-length plexinA3 mRNA followed by a myc-tag was synthesized for rescue experiments. This construct did not contain the recognition sequence of morpholino2.

For injections, rhodamine dextran (0.8%; M, = 10 × 10^3; Invitrogen, Paisley, UK) was added to mRNA or morpholino solutions. A glass micropipette was filled with the mRNA (1–2 μg/μl) or morpholino solutions (≤2 mM), and a volume of 0.5 to 1 nl per egg (one-to-four-cell stage) was injected as described previously (Feldner et al., 2005). All injected animals showed normal overall growth and differentiation of nervous structures, such as head commissures, the dorsoventral diencephalic tract, and peripheral nerves, as indicated by anti-tubulin immunohistochemistry. Development was not retarded by any experimental procedures, as indicated by segmental positions of the lateral line nerve in situ hybridization. Development was not retarded by any experimental procedures, as indicated by segmental positions of the lateral line nerve in situ hybridization. Development was not retarded by any experimental procedures.

In situ hybridization. A full-length plexinA3 probe was labeled with digoxigenin using the Megascript kit (Ambion, Warrington, UK) and used on 16 and 24 h post fertilization (hpf) whole-mounted embryos as described previously (Feldner et al., 2005).

Immunohistochemistry. Whole-mount immunohistochemistry was performed as described previously (Feldner et al., 2005). Ventral motor axons were labeled with a monoclonal antibody against acetylated tubulin (6-11B-1; Sigma-Aldrich, Poole, UK). GFP was immunodetected after in situ hybridization with a polyclonal antibody (AB2080; Millipore, Bedford, MA). Different antibodies were used to label trunk structures in morpholino-injected animals (1 μM PlexinA3 morpholino1) (supplemental Fig. 3, available at www.jneurosci.org as supplemental material). The 412 monoclonal antibody to the HNK-1 epitope labels motor axons, as described previously (Becker et al., 2001). Monoclonal antibody (mAb) CS-56 to chondroitin sulfates labels the spinal floor plate and vertical myosepta (Bernhardt and Schachner, 2000) and was purchased from Sigma-Aldrich. A polyclonal antibody against tenasin-C of zebrafish (Tongiorgi, 1999) is used as a marker of the horizontal myoseptum region (Schweitzer et al., 2005). The 40.2D6 antibody to islet-1/2 that labels motor neuron somata and Rohon-Beard cells (Feldner et al., 2005) and the antibody 3A10 to a neurofilament-associated antigen that labels commissural primary ascending interneurons and Mauthner axons in the spinal cord (Feldner et al., 2005) were both developed by Dr. T. M. Jessell (Columbia University, New York, NY). These antibodies, as well as the 4D9 antibody to engrafted that labels muscle pioneer cells at the horizontal myoseptum (Patel et al., 1989), were obtained as cell culture supernatants from the Developmental Studies Hybridoma Bank maintained by The University of Iowa, Department of Biological Sciences (Iowa city, IA). To reveal potential alterations in the trunk environment in those segments in which nerve growth was aberrant, anti-tenascin-C and anti-engrailed immunolabeling was combined with the axonal markers anti-HNK-1 and anti-tubulin, respectively. For each antibody or combination of antibodies, 11–28 embryos were analyzed. Secondary antibodies were purchased from Dianova (Hamburg, Germany).

Results

Cloning of plexinA3 in zebrafish

Zebrafish plexinA3 was cloned as described in Materials and Methods. The general domain structure of the deduced protein (1892 aa) is identical to that of plexinA3 in other vertebrate species: a semaphorin domain, followed by three Met-related sequence domains, four IPT (immunoglobulin-like fold shared by plexins and transcription factors) motifs, and the characteristic intracellular plexin domain at the C terminus. The transmembrane domain of the zebrafish protein is located between the IPT motifs and the Plexin domain and comprises amino acids 1241–1263 (Fig. 1A).

The cloned protein has significant structural homology (supplemental Fig. 1, available at www.jneurosci.org as supplemental material) and overall amino acid identity (73%) with human (Maestrini et al., 1996) and mouse (Kameyama et al., 1996) plexinA3. In a phylogenetic tree constructed using the Clustal method (Chenna et al., 2003), zebrafish plexinA3 segregated with plexinA3 homologs of other species (Fig. 1B). These data strongly suggest that we cloned a species homolog of plexinA3. A search for a second paralog of plexinA3 using BLAST analysis of the cloned sequence on the zebrafish genome (Ensembl release 43) had a negative result.

PlexinA3 is expressed in primary motor neurons during axon outgrowth

In situ hybridization indicated expression of plexinA3 mRNA mainly in the developing nervous system but also in the developing heart (data not shown) and the non-neural tissue at the tip of the tail. Conspicuous expression was detected in the telencephalon, epiphysis, tegumentum, and regular cell clusters in the hindbrain at 24 hpf, suggesting expression in differentiating neurons. Low-level expression was found in cranial ganglia and the spinal cord (supplemental Fig. 2A, B, available at www.jneurosci.org as supplemental material). However, a particularly strong signal was found in regular clusters of cells at the ventral edge of the spinal cord at 16 and 24 hpf (i.e., during the time of axon out-
unbranched nerve beyond the ventral edge of the notochord at 24 hpf (Fig. 2I,L), can be grouped into two categories: hemisegments that showed an additional nerve exiting the spinal cord (Fig. 2M,N) or nerves that were abnormally branched (Fig. 2J,K).

In 64% of the affected hemisegments, mostly one additional nerve of variable length grew ventrally from an additional exit point in the ventral spinal cord (Fig. 2M,N). The additional nerve ran parallel to the main nerve or joined it at variable positions dorsoventrally of the horizontal myoseptum. In 68% of the hemisegments showing additional exit points, it could not be resolved whether the nerve emanated rostrally or caudally to the segment border because the nerves grew very close to it. In the remaining hemisegments, 73% of the additional exit points were located in the posterior half of the somites and 25% were in the anterior half of the somites or in both the anterior and posterior somite half (2%). On average, 4.7 ± 0.4 hemisegments per embryo had multiple exits in affected embryos.

Ventral motor nerves were aberrantly branched in 35% of the affected hemisegments (Fig. 2J,K). The vast majority of these branches (82%) were directed caudally. Bifurcated (10%), rostrally (5%), and bilaterally (3%) branched nerves were observed less frequently. On average, 3.4 ± 0.2 hemisegments per embryo showed aberrant branching in affected embryos.

The effects were dose dependent with 26, 43, and 64% of the embryos showing aberrant nerve branching and 18, 56, and 94% of the embryos showing additional exit points from the spinal cord after injections of 0.25, 0.5, and 1 mM morpholinol, respectively. Injecting 1 mM morpholinol2 phenocopied these effects (83% of embryos were affected by abnormal branching; 95% of embryos were affected by additional exits). Injections of 1 mM of a morpholinol in which five bases were mismatched (5 mM morpholinol) had no effect (14% of embryos were affected by branching; 12% of embryos were affected by additional exits) (for statistical significance, see Table 1). Thus, knock-down of plexinA3 induces both branching of ventral motor nerves and additional exit points from the spinal cord, preferentially in the posterior half of the trunk segments.

To determine whether dorsal motor axons, which are obscured in anti-tubulin-labeled embryos, were affected by the morpholinol treatment, we analyzed hb9:GFP transgenic fish at 31 hpf. At this time point, GFP-positive axons had grown into the dorsal MiP pathway at the level of the yolk extension in un.injected animals (Fig. 2O). In 1 mM plexinA3 morpholinol1- (n = 10 embryos) or morpholinol2- (n = 13 embryos) injected hb9:GFP embryos, axons were also present in the MiP pathway, including the segments with multiple exits (n = 47 segments). Interestingly, in nine of these segments, the additional exit points of ventral motor axons also produced additional axons that grew dorsally (Fig. 2P). Most of these dorsally growing axons were located more laterally than the normal MiP axons as determined from confocal image stacks (data not shown). This indicates that these ectopic axons did not simply follow an MiP pathway. Branching away from the normal MiP pathway was also slightly increased by morpholinol treatment (Fig. 2P). The frequency of dorsal motor nerves that were branched ventrally to the level of GFP-positive ventral spinal nerves was 33.4 ± 2.84% hemisegments per embryo (n = 327 hemisegments) in morpholinol-treated animals and 12.1 ± 2.04% hemisegments per embryo (n = 215 hemisegments; Mann–Whitney U test; p < 0.0001) in hb9:GFP embryos injected with 5 mM morpholinol (n = 14 embryos). Thus, additional nerves and increased nerve branching occur in both ventral and dorsal primary motor axon paths.
plexinA3 knock-down (data not shown). The trigeminal ganglion, which shows de-differentiation in its ophthalmic branch in plexinA3 deficient mice (Cheng et al., 2001; Yaron et al., 2005), appeared normal and contained 15.3 ± 0.61 (1 mM morpholino1) and 15.7 ± 0.64 (1 mM morpholino2) primary axon branches in morpholino-treated animals, which was not significantly different from embryos injected with 5 mm morpholino (16.4 ± 0.65; p > 0.1) (supplemental Fig. 2C–E, available at www.jneurosci.org as supplemental material).

Morpholino phenotypes are rescued by RNA overexpression and are not because of alterations of the trunk environment

Overexpression of a full-length myc-tagged plexinA3 mRNA had no effect on motor axon growth as determined by anti-tubulin immunohistochemistry at 24 hpf (data not shown). However, coinjection of plexinA3 morpholino2 (titrated to 0.3 mM) with mRNA that does not have a binding sequence for the morpholino, led to a strong and significant reduction in the frequency of both abnormal branching (13% affected embryos) and additional exits (16% affected embryos). This was compared with injection of 0.3 mM plexinA3 morpholino2 alone at 24 hpf (embryos affected by branching: 87%, p < 0.0001; embryos affected by additional exits: 49%, p < 0.01) (Table 1).

Analysis of markers of the horizontal and vertical myosepta, as well as spinal floorplate, motor neuron somata, commissural primary ascending interneurons in the spinal cord, and Mauthner neurons with their spinal axons, indicated normal differentiation of these structures after injection of 1 mM plexinA3 morpholino1 (supplemental Fig. 3, available at www.jneurosci.org as supplemental material).

Genetic interactions of plexinA3 with sema3A1 and sema3A2

To show synergisms of plexinA3 with potential ligands and coreceptors, we performed pairwise coinjections of morpholinos at subthreshold concentrations that did not elicit a phenotype in single-injection experiments. Coinjections of sema3A1 (2 mM) and sema3A2 (2 mM) morpholinos with plexinA3 morpholino1 (0.1 mM) at subthreshold concentrations induced significant branching (sema3A1, 60% affected embryos; sema3A2, 34% affected embryos) and additional exits (sema3A1, 38% affected embryos; sema3A2, 52% affected embryos) compared with embryos cojected with 0.1 mM plexinA3 5 mm morpholino and 2 mm sema3A1 morpholino.
(20% embryos with aberrantly branched ventral motor nerves and 19% embryos with additional exits of ventral motor nerves) (Fig. 3). Coinjections of morpholinos against the potential coreceptor NRP1a (0.1 mM) and against plexinA3 (0.1 mM) at subthreshold concentrations (Fig. 3) (Feldner et al., 2005) were ineffective. These experiments suggest the possibility that plexinA3 is part of a receptor complex for sema3A1 and sema3A2. Differences in the magnitude of synergistic effects that are strongest for branching when sema3A1 morpholinos are coinjected with plexinA3 morpholinos or multiple exits when sema3A2 morpholinos are used suggest specific roles of the two sema3A paralogs.

Discussion

Relatively little is known about the contribution of the plexin coreceptors to the guidance of pioneer axons by semaphorins in vivo. Here, we identify plexinA3 as a key player for correct spinal exit of primary motor axons and unbranched growth of primary nerves in the trunk of zebrafish. Double knock-down experiments suggest a complex interplay of ligands in the trunk environment and receptor components in primary motor neurons.

PlexinA3 expression in motor neurons is pivotal for motor axon growth. Up to 95% of plexinA3 morpholino-injected embryos showed specific types of aberrations, and 30% of all hemisegments analyzed were aberrant. This effect is larger than that found in comparable studies of other proteins in motor axon growth (Feldner et al., 2005; Sato-Maeda et al., 2006). Two sequence-independent morpholinos yielded identical results, and all of the phenotypes were almost completely rescued by supplementing plexinA3 by overexpression. Using various markers, we could not find detectable changes in other axons or the spinal cord and trunk structures of morpholino-treated embryos. This suggests a major and specific function of plexinA3 in primary motor neurons.

PlexinA3 in dorsal and ventral motor axons may be necessary to correctly integrate repellent cues from semaphorins during axon outgrowth. The receptor knock-down phenotypes observed showed additional exits from the spinal cord and branching of the ventral and dorsal motor nerve that are consistent with a release of axon growth from environmental restrictions. Indeed, class 3 semaphorins are expressed in the trunk environment (Fig. 2B) and are thought to signal through plexin receptors. Synergistic effects in double morpholino injections of plexinA3 with sema3A homologs support a role for plexinA3 as a signal-transducing receptor component for repellent sema3A signals. Also consistent with such an interaction, knock-down of sema3A1 alone induces similar phenotypes to plexinA3 knockdown, including aberrant branching. However, shortened axons were also observed to a lesser extent (Sato-Maeda et al., 2006). Conversely, overexpression of sema3A1 or sema3A2 mainly induces reduced growth of motor axons (Roos et al., 1999; Halloran et al., 2000). In mammals, plexinA3 also mediates semaphorin-induced pruning of axonal branches (Bagri et al., 2003). However, pruning appears not to be prominent during primary motor axon differentiation (Liu and Westerfield, 1990).

We provide evidence for subtle differences in the function of the two zebrafish homologs of sema3A for ventral motor nerve growth. Coinjections of plexinA3 and sema3A1 morpholinos primarily induced nerve branching, whereas coinjections of plexinA3 and sema3A2 morpholinos primarily induced additional nerve exits. This may be explained by differential distribution of the ligands (schematically shown in Fig. 2B). Sema3A mRNA is only expressed in the dorsal and ventral myotome, leaving a corridor free of sema3A1 mRNA expression that includes the ventral edge of the spinal cord. Sema3A1 may therefore be more important during ventral growth when axons have ex-
ited the spinal cord (Sato-Maeda et al., 2006). In contrast, sema3A2 mRNA is expressed continuously along the dorsoventral axis of the somite, including the level of nerve exit from the spinal cord but only in the caudal part of the somite (Roos et al., 1999). Thus, sema3A2 could restrict additional spinal exit points of motor nerves in the caudal part of the somite. Under plexinA3 knock-down conditions, consequently, 73% of the additional exits that were not exactly at the border between two segments occurred in the caudal half of the somite. Moreover, most aberrant nerve branches (82%) were also directed caudally. This bias may indicate a loss of sensitivity to a repellent sema3A2 activity in the caudal half of the somite under plexinA3 knock-down conditions. However, it is still unknown which keeps nerves from branching rostrally and from exiting the spinal cord in the rostral half of the somite (Bernhardt et al., 1998).

Interestingly, combined injections of morpholinos to NRP1a and plexinA3 did not produce synergistic effects, although single knock-down of plexinA3 and NRP1a did induce partially overlapping phenotypes (nerve branching, additional exits). It is possible that efficiency/concentrations of morpholinos were not suitable to reveal such a possible interaction. However, plexinA3 appears to preferentially associate with NRP2 in mammals (Cheng et al., 2001). A homolog of NRP2, NRP2b, is also expressed in primary motor neurons in zebrafish (gene expression database: http://zfin.org/cgi-bin/webdriver?Mival=aa-xpatselect.apg). Moreover, there is at least one additional class 3 semaphorin expressed in the trunk of zebrafish, sema3G, which could influence motor axon growth (Stevens and Halloran, 2005). PlexinA1, which has not yet been cloned in zebrafish, may also play a role in the motor neuron system. Interestingly, the requirement for plexinA3 in specific axons in zebrafish appears to differ from that in mice: a plexinA3-deficient mouse shows fasciculation defects of trigeminal axons but apparently normal motor axon growth (Cheng et al., 2001; Yaron et al., 2005), whereas in zebrafish, motor axons but not trigeminal axons are affected by plexinA3 knock-down.

The anatomical simplicity of the primary motor system in zebrafish makes it an excellent tool to unravel the in vivo interactions of several ligands and their receptors that determine the outgrowth of pioneer axons. It will, for example, be interesting to find out whether mutations in the semaphorin signaling cascade will be discovered in genetic screens (Birely et al., 2005; Gulati-Leekha and Goldman, 2006). We conclude that growth and path finding of primary motor axons in zebrafish is governed by a complex interplay of different semaphorin ligands and receptors that determine motor nerve guidance and development and interactions. Dev Biol 280:162–176.

