Untersuchungen zur Rolle des Zellpolaritätsgens
Crumbs 3 (CRB3) bei der Progression des humanen
Mammakarzinoms

Dissertation
zur Erlangung des Grades
Doktor der Naturwissenschaften
im Department Biologie
an der Fakultät für Mathematik, Informatik und Naturwissenschaften
der Universität Hamburg

vorgelegt von
Susann Schirmer
aus Lengefeld

Hamburg 2009
Genehmigt vom Department Biologie
der Fakultät für Mathematik, Informatik und Naturwissenschaften
an der Universität Hamburg
auf Antrag von Herrn Professor Dr. Klaus Pantel
Weiterer Gutachter der Dissertation:
Herr Professor Konrad Wiese
Tag der Disputation: 28. August 2009

Hamburg, den 13. August 2009

Professor Dr. Jörg Ganzhorn
Leiter des Departments Biologie
Erster Gutachter: Prof. Dr. Klaus Pantel
Zweiter Gutachter: Prof. Dr. Konrad Wiese
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Kapitel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zusammenfassung</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Einleitung</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Das humane Mammakarzinom</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Die Klassifizierung invasiver Mammakarzinome</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Tumorprogression und Metastasierung</td>
<td>5</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Epithelial-Mesenchymale-Transition (EMT) in der Tumorprogression</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Die epitheliale Zellpolarität</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Die apikobasalen Zellpolaritäts-Komplexe</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Die Familie der Crumbs (Crb) Proteine</td>
<td>13</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Die humanen Crumbs (CRB) Homologe</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Crumbs3 (CRB3)</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Fragestellung</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Material und Methoden</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Material</td>
<td>18</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Chemikalien</td>
<td>18</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Häufig verwendete Puffer und Lösungen</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Zellkulturmethoden</td>
<td>18</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Kulturmedien und -zusätze</td>
<td>18</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Herkunft der Zelllinien</td>
<td>19</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Kulturbedingungen</td>
<td>19</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Kryokonservierung eukaryontischer Zellen</td>
<td>20</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Mycoplasmen-Test</td>
<td>21</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Transfektion eukaryontischer Zellen mit kationischen Lipiden</td>
<td>21</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Retroviraler Gentransfer</td>
<td>22</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Tet-On Genexpressions-System</td>
<td>23</td>
</tr>
<tr>
<td>3.2.9</td>
<td>Bestimmung der Zellproliferationsrate</td>
<td>24</td>
</tr>
<tr>
<td>3.2.10</td>
<td>Fokus-Assay</td>
<td>24</td>
</tr>
<tr>
<td>3.2.11</td>
<td>Soft-Agar Assay</td>
<td>25</td>
</tr>
<tr>
<td>3.2.12</td>
<td>Implantation von Zellen in immundefizierte Mäuse</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Molekularbiologische Methoden</td>
<td>26</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Kultivierung von E.coli</td>
<td>26</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

4.1.3	Stabile Transfektion von NIH3T3-Zellen mit isoformspezifischen FLAG-CRB3-Expressionsplasmiden	...	62
4.1.4	CRB3A induziert die morphologische Transformation von NIH3T3 Zellen	..	63
4.1.5	CRB3A und CRB3B vermitteln eine Steigerung der Teilungsaktivität in NIH3T3-Fibroblasten	...	64
4.1.6	CRB3A exprimierende NIH3T3-Zellen wachsen Substrat-unabhängig	...	65
4.1.7	NIH3T3/CRB3A-Zellen bilden Tumoren in immundefizienten Mäusen	...	66

4.2	Die Signalkaskade der CRB3A-induzierten Transformation	...	68
4.2.1	CRB3A ist intrazellulär lokalisiert in NIH3T3-Zellen	...	68
4.2.2	Das C-terminale ERLI-Motiv ist essentiell für die CRB3A-induzierte Transformation von NIH3T3-Zellen	...	69
4.2.3	Identifizierung von CRB3A-Bindungspartnern in NIH3T3-Zellen	...	72
4.2.4	Der CRB3A-Par6-Komplex rekrutiert die Rho-GTPasen Cdc42 und Rac1/2/3	...	73

| 4.3 | CRB3A führt zu Veränderungen im Genexpressionsmuster von NIH3T3-Zellen | ... | 75 |

4.4	Studien zur Expression von CR3B an humanen Mammakarzinom-Zelldlinien	...	78
4.4.1	Herstellung von polyklonalen CRB3-Antikörpern	...	78
4.4.2	CRB3-Expression in humanen Mammakarzinom-Zelllinien	...	79
4.4.3	Die Expression von Zellpolaritäts- und Zelladhäsionsproteinen in Mammakarzinom-Zelllinien	...	82

4.5	Untersuchung der CRB3A-Signalwege in MCF-7 Zellen	...	83
4.5.1	Stabile Transfektion von MCF-7 Tet-On Zellen zur induzierbaren CRB3A-Expression	...	84
4.5.2	CRB3A ist intrazellulär lokalisiert in Mammakarzinom-Zelllinien	...	86
4.5.3	Identifizierung von CRB3A-Bindungspartnern in MCF-7 Zellen	...	87
4.5.4	Untersuchung der CRB3A-vermittelten Aktivierung von Cdc42 und Rac1/2/3 in MCF-7 Zellen	...	88

4.6	Untersuchungen zur Expression des CRB3B-Proteins	...	90
4.6.1	Untersuchungen zur Stabilität des CRB3B-Proteins	...	90
4.6.2	Mutationsstudien zur Untersuchung einer Ubiquitin-vermittelten Degradation des CRB3B-Proteins	...	91

<p>| 4.7 | CRB3A-Expression in Mammakarzinomen und Normalgeweben | ... | 92 |
| 4.8 | CRB3A-Expression in verschiedenen humanen Normalgeweben | ... | 95 |
| 4.9 | CRB3A-Expression in verschiedenen humanen Tumoren | ... | 97 |</p>
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Diskussion</td>
<td>100</td>
</tr>
<tr>
<td>5.1</td>
<td>Transformierende Eigenschaften des CRB3-Gens</td>
<td>100</td>
</tr>
<tr>
<td>5.2</td>
<td>Mechanismen der CRB3A-induzierten Transformation in NIH3T3-Zellen</td>
<td>101</td>
</tr>
<tr>
<td>5.3</td>
<td>Expressionsstudien an humanen Mammakarzinom-Zelllinien</td>
<td>105</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Die CRB3-Expression in Mammakarzinom-Zellen</td>
<td>105</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Untersuchung CRB3A-induzierter Signalwege in Mammakarzinom-Zellen</td>
<td>107</td>
</tr>
<tr>
<td>5.4</td>
<td>Die Expression des CRB3A-Proteins in normalen und malignen Geweben</td>
<td>109</td>
</tr>
<tr>
<td>5.5</td>
<td>Untersuchungen zur Expression und Funktion des CRB3B-Proteins</td>
<td>110</td>
</tr>
<tr>
<td>5.6</td>
<td>Allgemeine Schlussfolgerungen</td>
<td>111</td>
</tr>
<tr>
<td>5.7</td>
<td>Ausblick</td>
<td>112</td>
</tr>
<tr>
<td>6</td>
<td>Literaturverzeichnis</td>
<td>114</td>
</tr>
<tr>
<td>7</td>
<td>Anhang</td>
<td>124</td>
</tr>
<tr>
<td>8</td>
<td>Abkürzungsverzeichnis</td>
<td>129</td>
</tr>
<tr>
<td>9</td>
<td>Eidesstattliche Erklärung</td>
<td>131</td>
</tr>
<tr>
<td>10</td>
<td>Danksagung</td>
<td>132</td>
</tr>
</tbody>
</table>
1 Zusammenfassung

Das Ziel dieser Arbeit war die onkogenen Eigenschaften des Zellpolaritätsgens Crumbs3 (CRB3) und dessen Rolle bei der Entstehung und Progression des humanen Mammakarzinoms zu untersuchen.

Im Zuge weiterführender funktioneller Studien konnten molekulare Zusammenhänge der CRB3A-Signalkaskade in NIH3T3-Zellen aufgedeckt werden. Durch Mutationsstudien, Gentransfer-Experimente und biochemische Analysen wurde gezeigt, dass intrazelluläres CRB3A über eine C-terminale PDZ-Bindedomäne das Gerüstprotein Par6 bindet, das wiederum die kleinen RhoGTPasen Cdc42 und Rac1/2/3 rekrutiert. Die dadurch induzierten multiplen Signalwege, die sich in drastischen Veränderungen des Genexpressionsmusters widerspiegelten, sind als Auslöser der malignen Entartung der NIH3T3-Zellen zu betrachten.

werden, dass die in gesunden Epithelzellen detektierte apikale CRB3A-Expression während der Karzinogenese verloren geht und es zur intrazellulären Akkumulation oder zum Verlust des Proteins in Tumorzellen kommt. Interessanterweise wurde eine intrazelluläre CRB3A-Expression auch in verschiedenen nicht-neoplastischen Geweben beobachtet, was auf eine noch unbekannte Funktion des Proteins hindeutet.

Zur Funktion der CRB3B-Isoform konnten ebenfalls neue und interessante Erkenntnisse gesammelt werden. Beispielsweise wurde erstmals eine CRB3B-vermittelte Steigerung der Proliferationsrate in NIH3T3-Zellen beschrieben. Zusätzlich lieferten verschiedene Expressionsanalysen und auch Mutationsstudien ernstzunehmende Hinweise für eine sehr kurze Halbwertszeit und eine Ubiquitin-vermittelte Degradation des CRB3B-Proteins, was wiederum im Zusammenhang mit einer regulatorischen Funktion im Ablauf des Zellzyklus stehen könnte.

Einleitung

2.1 Das humane Mammakarzinom

Die weibliche Brust besteht im Wesentlichen aus Drüsengewebe und Fett und ist von zahlreichen Blutgefäßen, Nerven und Lymphgefäßen durchsetzt. Die Drüsenläppchen (Lobuli) produzieren die Muttermilch, die durch die Milchgänge (Ductuli) zur Brustwarze fließt. In den als duktilo-lobuläre Einheiten (Abb. 2.1) bezeichneten terminalen Gangsegmenten und den dazugehörigen Lobuli entstehen die meisten Mammakarzinome. Breiten sich die Tumorzellen nur innerhalb der Milchgänge (duktales Karzinom) oder Läppchen (lobuläres Karzinom) aus und wachsen nicht in umliegendes Gewebe ein, bezeichnet man sie als in situ Karzinom. Bei invasiven Karzinomen handelt es sich um Tumore, die das umliegende Stroma und Nachbargewebe infiltrieren und später in die Blut- und Lymphgefäße einwandern. Das duktile Karzinom in situ (DCIS) geht häufiger in die invasive Form über als das lobuläre Karzinom in situ (LCIS). Insgesamt wird zwischen 12 Typen des Mammakarzinoms unterschieden, von denen das duktile Karzinom mit über 85% am häufigsten auftritt, gefolgt vom lobulären Karzinom mit 10%. Sel-
Einleitung

Abb. 2.1: Anatomie der gesunden Mamma (links) und histologische Veränderungen. Vergrößert dargestellt ist die duktulo-lobuläre Einheit (Mitte) und normale duktale Zellen, ein duktales Karzinom in situ, sowie ein invasives Karzinom im Vergleich (rechts), modifiziert nach [2].

tenere Formen des invasiven Karzinoms mit vergleichsweise günstigen Prognosen
sind das muzinöse, medulläre, papilläre und tubuläre Karzinom [3, 4]. Innerhalb
eines Tumors können verschiedene Typen kombiniert vorliegen, was zu einer
großen morphologischen Variabilität des Mammakarzinoms führt.

2.1.1 Die Klassifizierung invasiver Mammakarzinome

Nach Vorgaben der Internationalen Union gegen Krebs (UICC) gibt die TNM-
Klassifizierung die Tumorgröße (T), den Status der regionalen Lymphknoten (N)
und das Vorhandensein von Fernmetastasen (M) zum Zeitpunkt der Diagnose an.
Die postoperative (p) pTNM-Klassifizierung orientiert sich als histopathologische
Einteilung an der Auswertung des Operationspräparats (Tab. 2.1). Die Stadieneinteilung des Mammakarzinoms (Tab. 2.3) erfolgt nach der pTNM-Klassifizierung
(Staging), kombiniert mit der Bestimmung des histologischen Differenzierungs-
grades (Grading). Das Grading invasiver Karzinome zur Beurteilung der Malignität
und der Gewebendifferenzierung berücksichtigt das Ausmaß der Tubulusbildung,
der Kernpleomorphologie, sowie die Mitoserate, und wird in drei Stufen (G1-3) angegeben (Tab 2.2). G1 stellt dabei ein gut differenziertes, G2 ein mäßig differen-
dziertes und G3 ein schlecht differenziertes Karzinom dar [5]. Ein weiteres Kriterium
zur Charakterisierung von Tumoren ist deren Status für die Expression von
Rezeptoren für Östrogen und Progesteron. Beide Hormone regulieren das Zell-
wachstum im gesunden Brustgewebe und fördern auch das Wachstum von
Tumoren, sofern sie die entsprechenden Rezeptoren exprimieren. Der Nachweis dieser Hormonrezeptoren im Tumorgewebe erfolgt immunhistochemisch [6].

<table>
<thead>
<tr>
<th>pT</th>
<th>Primärtumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>pT1</td>
<td>Tumor ≤ 2 cm in der größten Ausdehnung</td>
</tr>
<tr>
<td>pT2</td>
<td>Tumor > 2 cm, aber < 5 cm in der größten Ausdehnung</td>
</tr>
<tr>
<td>pT3</td>
<td>Tumor > 5 cm in der größten Ausdehnung</td>
</tr>
<tr>
<td>pT4</td>
<td>Jeder Tumor mit Infiltration der Haut oder Brustwarze</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pN</th>
<th>Regionale Lymphknoten</th>
</tr>
</thead>
<tbody>
<tr>
<td>pN0</td>
<td>Kein Hinweis auf Befall der regionalen Lymphknoten</td>
</tr>
<tr>
<td>pN+</td>
<td>Metastasen in axillären Lymphknoten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pM</th>
<th>Fernmetastasen</th>
</tr>
</thead>
<tbody>
<tr>
<td>pM0</td>
<td>Kein Hinweis auf Fernmetastasen</td>
</tr>
<tr>
<td>pM1</td>
<td>Fernmetastasen vorhanden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stadium</th>
<th>pTNM-Klassifizierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>T1, N0, M0</td>
</tr>
<tr>
<td>II</td>
<td>T1, N1, M0; T2, N0-1, M0</td>
</tr>
<tr>
<td>III</td>
<td>Alle T, N2-3, M0; T3, alle N, M0; T4, alle N, M0</td>
</tr>
<tr>
<td>IV</td>
<td>Alle T, alle N, M1</td>
</tr>
</tbody>
</table>

2.1.2 Tumorprogression und Metastasierung

Einleitung

charakterisierte Molekül ist das Zelladhäsionsprotein E-Cadherin. Es ist als essen-
tieller Bestandteil der adherens junctions (Zonula adhaerens) entscheidend an der
Ausbildung homotypischer Zell-Zell-Kontakte beteiligt und wird als wichtiger
Metastasierungs-Suppressor bei verschiedensten malignen Erkrankungen ange-
sehen. Zahlreiche Studien belegen den E-Cadherin-Verlust in unterschiedlichen
Tumorarten [13]. Im Gegensatz zu den adherens junctions sind andere homo-
typische Zell-Zell-Kontaktstrukturen, wie gap junctions (Nexus) oder tight junctions
(Zonula occludens), und ihre mögliche Rolle bei der Invasion und Metastasierung
deutlich weniger gut untersucht [9-11], was zum Teil auf die unzureichende
Kenntnis der molekularen Zusammensetzungen zurück zu führen ist. Im Falle der
tight junctions gelang es in den letzten Jahren wichtige Proteine zu identifizieren,
die an Aufbau und Funktion dieser Strukturen beteiligt sind [14].
Der mit der Tumorprogression einhergehende Abbau von Zell-Zell-Kontakten und
die damit verbundene Dedifferenzierung von Tumorzellen stellen bemerkenswerte
Parallelen zu einem entwicklungsbiologischen Prozess dar, der als Epithelial-
Mesenchymale-Transition (EMT) bezeichnet wird. Eine zunehmend akzeptierte
Theorie besagt, dass es in Tumorzellen epithelialen Ursprungs zumindest teil-
weise zur Rekapitulation dieses morphogenetischen Programms kommt.

2.1.3 Epithelial-Mesenchymale-Transition (EMT) in der Tumorprogression

Als EMT wird allgemein die Abfolge von Ereignissen bezeichnet, die zur Umwand-
lung von epithelialen zu mesenchymalen Zellen führt. Der Prozess wurde erstmals
1982 von Greenburg und Hay beschrieben [15]. Hauptmerkmale einer EMT sind
die derangierte epitheliale Zellpolarität, der Abbau von Zell-Zell-Kontakten, eine
reduzierte Anheftung der Zellen an der Basallamina und eine geänderte Zell-
morphologie, was zur Aufhebung der ursprünglichen Gewebsarchitektur und
Gewebsfunktion führt [16]. Einzelne Stadien der EMT sind in Abb. 2.2 dargestellt.
EMT-Auslöser sind Veränderungen in der Expression, der intrazellulären Vertei-
lung und Funktion von Wachstumsfaktoren (TGF-β, transforming growth factor
beta), Transkriptionsfaktoren (Snail, nukleäres β-Catenin), Zell-Zell-Adhäsionsmo-
lekülen (Cadherine, Claudine, Occludine), Zell-Matrix-Adhäsionsmolekülen (Inte-
grine), Modulatoren des Zytoskeletts (Rho GTPasen) und extrazellulären Protea-
sen (Matrixmetalloproteinasen) [17].
Einleitung

Ein sehr frühes Schlüssereignis stellt die Dissoziation der tight junctions dar, gefolgt vom Verlust der adherens junctions, bedingt durch die initiale Repression von E-Cadherin. Mit fortschreitender Transition werden die am Aufbau der Intermediärfilamente beteiligten Cytokeratine häufig gegen Vimentin ausgetauscht und vermehrt Moleküle exprimiert, die den Zellen migratorische Fähigkeiten verleihen, wie Fibronektin und Vitronektin [19-21]. Durch den reversen Prozess, die Mesenchymal-Epitheliale-Transition (MET), kann es zur Wiederherstellung des epithelialen Phänotyps kommen [18].

Snail reprimiert die Expression von \textit{Shotgun}, dem Orthologen des E-Cadherin-Gens bei Vertebraten [23]. Die Gastrulation bei Mäusen (\textit{Mus musculus}) wird durch den FGFR1 (\textit{fibroblast growth factor receptor-1}) kontrolliert, der die Expression des SNAI1-Faktors reguliert, der wiederum E-Cadherin inhibiert [23].

Die EMT-Transkriptionsfaktoren Snail und ZEB-1/-2 regulieren neben E-Cadherin auch epithelzellspezifische Gene herab, die Komponenten der \textit{tight junctions} sind. Eine direkte Regulation für Occludin und Claudin-1 und -7 wurde beschrieben [26, 30-33]. Durch Genexpressionsstudien an Karzinomzellen konnte eine verringerte Expression von Claudin-4 und JAM-1 (\textit{junctonal adhesion molecule-1}) nachgewiesen werden. Die gleichen Gene werden auch in MDCK-Zellen (Hundenierenzellen) reprimiert, die eine EMT durchlaufen [26, 34, 35]. Da der Aufbau und die Funktion von \textit{tight junctions} direkt mit der Organisation der zellulären Polarität
Einleitung

assoziert ist, liegt die Vermutung nahe, dass auch Mitglieder der sogenannten Zellpolaritätskomplexe in die Regulation der EMT involviert sind. Es konnte bereits gezeigt werden, dass direkte Wechselwirkungen zwischen Ocludin, dem TGF-β-Rezeptor 1 und dem Zellpolaritäts-Protein Par6 [36, 37] zur Dissoziation von \textit{tight junctions} und zum Verlust der Zellpolarität beitragen [38]. Erste Hinweise deuten darauf hin, dass Snail und ZEB1 ebenfalls die Expression des in dieser Arbeit untersuchten Crumbs3 (CRB3)-Gens regulieren [39, 40]. Bei CRB3 und Par6 handelt es sich um Komponenten der sogenannten epithelialen Zellpolaritätskomplexe, deren Aufbau und Funktion im folgenden Kapitel erläutert werden.

2.2 Die epitheliale Zellpolarität

(Discs Lost) und Par3(Bazooka)-Par6-aPKC an der apikalen und Scribble/DLG/LGL an der lateralen Membrandomäne (Abb. 2.3).

2.2.1 Die apikobasalen Zellpolaritäts-Komplexe

Für die im Rahmen dieser Studie durchgeführten Analysen sind ausschließlich die Interaktionen zwischen den Crumbs- und Par-Komplexen relevant. Um dennoch den Überblick über das Zusammenspiel der Zellpolaritätskomplexe zu wahren, wird neben den Crumbs- und Par-Komplexen auch die Komposition des Scribble-Proteinkomplexes ausführlicher erläutert.

Abb. 2.3: Ein komplexes Netzwerk von Proteinen reguliert die Entstehung und Aufrechterhaltung der apikalen, lateralen und basalen Membranstrukturen in Epithelzellen. Die gepunktete Linie zeigt die Grenze zwischen apikalen und basolateralen Membrandomänen an. Vergrößert dargestellt sind die direkt interagierenden und apikal lokalisierten Proteinkomplexe Crumbs/PALS1/PATJ (dunkelgrün) und PAR6/Par3/aPKC (hellgrün), aus [47].

Der Crumbs-Komplex

Das ursprünglich in *Drosophila melanogaster* identifizierte Transmembran-Protein Crumbs ist in der apikalen Membran verankert und bindet über seinen C-Terminus an eine PDZ-Domäne in PALS1 (Stardust) [48, 49]. Über ein weiteres intrazelluläres Bindemotiv interagiert Crumbs mit einem Mitglied der Ezrin-Radixin-Moesin

Der Par-Komplex

Die Bedeutung des Par-Komplexes für die Zellpolarität wurde zuerst am Modell der *C. elegans* Zygote beschrieben und mittlerweile auch an anderen Zellsystemen bestätigt [54, 55]. In Vertebraten ist der Par-Komplex beispielsweise auch an Prozessen der gerichteten Zellmigration [56] und des Axon-Wachstums in Nervenzellen [57] beteiligt. Par3 und Par6 sind Zellgerüst-Proteine, die über ihre PDZ-Bindedomänen in zahlreiche Protein-Protein-Interaktionen involviert sind. Par6 bindet über das PB1-Motiv die atypische Proteinkinase C (aPKC; Abb. 2.3). Die aPKC-vermittelte Phosphorylierung einiger Proteine (Par6, Par1, LGL, etc.) beeinflusst deren Lokalisation entlang des apikolbasalen Gradienten, was ein
Einleitung

Schlüsselmechanismus für die Formierung der Proteinkomplexe zu sein scheint. Die Phosphorylierung von LGL (lethal giant larvae) führt zum Zerfall des apikalen LGL-Par6-aPKC-Komplexes und zur lateralen Sortierung des Proteins, wo es in Wechselwirkung mit Scribble und DLG (Discs Large) tritt [58-60]. Weitere wichtige Effektoren des Par-Komplexes sind die kleinen Rho-GTPasen Cdc42 und Rac1/2/3, wobei insbesondere die Funktion von Cdc42 evolutionär hochkonserviert ist. Cdc42 bindet an Par6 und erhöht die Aktivität von aPKC innerhalb des Par3-Par6-aPKC-Komplexes [61-63]. Eine zusätzliche Wechselwirkung zwischen Rac und Tiam1, das seinerseits von Par3 rekrutiert wird, scheint ebenfalls wichtig zu sein für die Bildung der tight junctions [64].

Der Scribble-Komplex

Funktionelle Interaktionen zwischen den Polaritätskomplexen

Der Crumbs-Komplex wird epithelspezifisch exprimiert und erfüllt die Funktion eines Adapters, der den Par-Komplex zur apikalen Membran rekrutiert.

Die Crumbs-Proteine stellen als einzige membranständige Proteine innerhalb der Polaritätskomplexe einen „Kristallisationspunkt“ für die Etablierung der epithelialen Zellarchitektur dar. In Anbetracht der Tatsache, dass die meisten Tumore beim Menschen durch die Entartung von Epithelzellen entstehen, drängt sich die Frage nach einer Verwicklung dieser Proteine in Prozesse, die zu epithelialen Wucherungen führen könnten, auf. In der hier vorliegenden Arbeit wird erstmals untersucht, ob ein Vertreter der humanen Crumbs-Proteine, das CRB3, in die Progression des Mammakarzinoms involviert ist.

2.3 Die Familie der Crumbs (Crb) Proteine

Einleitung
das Zebrafisch-Genom (*Danio rerio*) enthält 5 homologe Gene, was teilweise auf
die Duplikation des Gesamtgenoms bei Echten Knochenfischen (*Teleostei*)
zurückgeführt wird. Das Genom von Maus (*Mus musculus*) und Mensch (*Homo sapiens*) kodiert jeweils für 3 Crb-Gene [78].

2.3.1 Die humanen Crumbs (CRB) Homologe
Die humanen Crumbs Homologe - CRB1, CRB2 und CRB3 - weisen ein gewebs-
spezifisches Expressionsmuster auf. Während die Expression von CRB1 und
CRB2 auf Retina, Gehirn und Niere beschränkt ist, wird CRB3 in einem breiteren
Spektrum von Geweben epithelialen Ursprungs exprimiert [79-83]. Für CRB1 sind
zwei alternative Splicevarianten beschrieben, die sich in den 3'-Enden ihrer Trans-
skripte unterscheiden. Die längere Variante kodiert für ein aus 1406 Aminosäuren
aufgebautes Transmembranprotein mit zahlreichen *EGF-like* und *Laminin A-like repeats* in der extrazellulären Proteindomäne (Abb 2.4). Die kürzere Transkript-
variante kodiert für eine sekretierte Form des Proteins, dem die Transmembran-
und zytoplasmatische Domäne fehlen. Mutationen im CRB1-Gen können retinale
Dystrophien, wie die autosomale reessive Retinitis Pigmentosa (arRP) oder
Lebersche Kongenitale Amaurose (arLCA), verursachen [78].

Abb. 2.4: Proteinstruktur der drei humanen Crumbs Homologe. Im Gegensatz zu CRB1 und
CRB2 besitzt CRB3 eine sehr kurze extrazelluläre Domäne. Die Transmembran- und zyto-
plasmatischen Domänen sind bei allen 3 CRB-Proteinen hochkonserviert.

Zur Charakterisierung von CRB2 gibt es bisher nur wenige Arbeiten. Das CRB2-
Protein ist aus 1285 Aminosäuren aufgebaut (Abb 2.4) und enthält, ähnlich wie
CRB1, eine große extrazelluläre Domäne mit *EGF-like* und *Laminin A-like* Domä-
nen. Ein Zusammenhang zwischen Mutationen im CRB2-Gen und den CRB1-
assozierten Augenkrankheiten konnte nicht gefunden werden. Welche Funktionen die großen extrazellulären Domänen von CRB1 und CRB2 im Einzelnen erfüllen, ist noch ungeklärt. Potenzielle Liganden der EGF-like und Laminin-A-like repeats konnten bisher nicht identifiziert werden. Im Gegensatz zu CRB1 und CRB2 kodiert das CRB3-Gen für ein relativ kleines Protein mit einer sehr kurzen extrazellulären Domäne (Abb 2.4). Hohe Sequenzhomologien zwischen allen 3 CRB-Proteinen zeigen sich in den Transmembran- und zytoplasmatischen Domänen, die als „Anker“ und Adapter für andere Polaritätsproteine agieren [83].

2.3.2 Crumbs3 (CRB3)

Das auf Chromosom 19p13.3 lokalisierte Crumbs3 (CRB3)-Gen kodiert für 2 unterschiedliche Isoformen des CRB3-Proteins. Das CRB3-Primärtranskript enthält 4 Exons und 3 Introns, wobei die kodierenden Sequenzen in den Exonen 2, 3 und 4 liegen. Durch alternatives Splicing kommt es zur Deletion eines Sequenzausschnittes in Exon 4, wodurch ein zusätzliches 5. Exon kreiert wird. Die resultierenden mRNA-Transkripte unterscheiden sich somit in ihren 3'-kodierenden Sequenzbereichen [84].

Die längere Transkript-Variante (1439 bp) kodiert für ein Protein mit 120 Aminosäuren, die CRB3 Isoform A (CRB3A). Das kürzere Transkript wird in ein aus 123 Aminosäuren aufgebautes Protein translatiert, die CRB3 Isoform B (CRB3B). Für beide Isoformen ist die extrazelluläre Domäne mit einer N-Glykosylierungsstelle, die Transmembrandomäne und Teile der zytoplasmatischen Domäne, inklusive einer FERM-Bindestelle, bis zur Aminosäure-Position 100 identisch. Die aus 20 beziehungsweise 23 Aminosäuren bestehenden C-terminalen Proteindomänen

Abschließend lässt sich festhalten, dass es sich bei CRB3 um ein epithelzell-spezifisches, membranständiges Zellpolaritätsprotein handelt, über dessen mögliche Bedeutung in der Karzinogenese bisher noch nichts bekannt ist.
2.4 Fragestellung

Die Grundlage für die hier vorliegende Studie wurde innerhalb der eigenen Arbeitsgruppe durch die Entwicklung einer retroviralen Expressionsbibliothek zur Identifizierung Brustkrebs-assoziierter Proto-Onkogene geschaffen. Im Rahmen dieser Arbeiten wurde unter anderem CRB3 als potenzieller Vermittler der zellulären Transformation identifiziert.

Im ersten Teil der Arbeit war das primäre Ziel die im Vorfeld gemachten Beobachtungen durch entsprechende experimentelle Ansätze am Modellsystem der murinen NIH3T3-Fibroblasten zu validieren und verifizieren, um zu klären ob CRB3 als ein neues Proto-Onkogen klassifiziert werden kann. Darauf aufbauend galt das Interesse der Entschlüsselung molekularer Signalwege, die an der Vermittlung einer CRB3-induzierten Transformation beteiligt sind.

Im Mittelpunkt eines anderen Arbeitsabschnitts stand die Frage nach der physiologischen Relevanz und der Rolle von CRB3 bei der Progression des humanen Mammakarzinoms. Für die Durchführung umfangreicher Expressionsstudien an kultivierten Zelllinien und Gewebeschnitten sollten zunächst isoformspezifische CRB3-Antikörper hergestellt und charakterisiert werden. Die Etablierung eines geeigneten Modellsystems sollte anschließend die Grundlage für weiterführende funktionelle Studien und die Untersuchung der CRB3-Signalwege in Mammakarzinom-Zellen bilden.

Das Hauptziel dieser Arbeit ist aufzuklären, ob CRB3 an der malignen Entartung von Zellen, insbesondere von Brustepithelzellen, beteiligt ist. Damit sollen neue Einsichten in zelluläre Vorgänge und die Progression des humanen Mammakarzinoms gewonnen werden, was ferner der Entwicklung innovativer Therapieansätze zur Bekämpfung dieser Erkrankung dienen könnte.
3 Material und Methoden

3.1 Material

Die Auflistung aller verwendeten Geräte, Plasmide und Oligonukleotid-Primer, sowie Antikörper ist dem Anhang der Arbeit zu entnehmen.

3.1.1 Chemikalien

Chemikalien und Reagenzien wurden, sofern nicht anders angegeben, von den Firmen Sigma-Aldrich (München), Roche Diagnostics (Mannheim), Roth (Karlsruhe) und Merck (Darmstadt) bezogen.

3.1.2 Häufig verwendete Puffer und Lösungen

<table>
<thead>
<tr>
<th>PBS</th>
<th>TBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>137 mM NaCl</td>
<td>50 mM Tris-HCl</td>
</tr>
<tr>
<td>2,7 mM KCl</td>
<td>2,7 mM KCl</td>
</tr>
<tr>
<td>4,3 mM Na₂HPO₄·2H₂O</td>
<td>138 mM NaCl</td>
</tr>
<tr>
<td>1,4 mM KH₂PO₄</td>
<td>pH 8,0</td>
</tr>
<tr>
<td>pH 7,3</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Zellkulturmethoden

3.2.1 Kulturmedien und -zusätze

Kulturmedium 1 – DMEM-Medium
90 % (v/v) DMEM (4,5 g/L D-Glucose, 110 mg/L Pyruvat; Gibco, Eggenstein)
10 % (v/v) FCS (PAA Laboratories GmbH, Pasching, Österreich)
2 mM Glutamin (Gibco)

Kulturmedium 2 – RPMI-Medium
90 % (v/v) RPMI 1640 Medium (Gibco)
10 % (v/v) FCS (PAA Laboratories GmbH)
2 mM Glutamin (Gibco)
Trypsin/EDTA-Lösung (1x)
0,25 % (w/v) Trypsin (Gibco)
1 mM EDTA (Gibco)
in PBS ohne Mg²⁺ und Ca²⁺ (Gibco)

3.2.2 Herkunft der Zelllinien

Tab. 3.1: Bezeichnung und Herkunft der verwendeten Zelllinien

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>Ursprung</th>
<th>Tumorart</th>
<th>Kulturmedium</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-20¹)</td>
<td>Primärtumor</td>
<td>duktales Mammakarzinom</td>
<td>1</td>
</tr>
<tr>
<td>BT-474¹)</td>
<td>Primärtumor</td>
<td>duktales Mammakarzinom</td>
<td>2</td>
</tr>
<tr>
<td>GI-101³)</td>
<td>lokales Rezidiv</td>
<td>duktales Mammakarzinom</td>
<td>1</td>
</tr>
<tr>
<td>MCF-7²)</td>
<td>Pleuraeffusion</td>
<td>duktales Mammakarzinom</td>
<td>1</td>
</tr>
<tr>
<td>MDA-MB-231¹)</td>
<td>Pleuraeffusion</td>
<td>duktales Mammakarzinom</td>
<td>1</td>
</tr>
<tr>
<td>MDA-MB-435S²)</td>
<td>Pleuraeffusion</td>
<td>duktales Mammakarzinom</td>
<td>1</td>
</tr>
<tr>
<td>MDA-MB-468²)</td>
<td>Pleuraeffusion</td>
<td>duktales Mammakarzinom</td>
<td>1</td>
</tr>
<tr>
<td>SK-BR-3²)</td>
<td>Pleuraeffusion</td>
<td>duktales Mammakarzinom</td>
<td>2</td>
</tr>
<tr>
<td>T-47D²)</td>
<td>Pleuraeffusion</td>
<td>duktales Mammakarzinom</td>
<td>2</td>
</tr>
<tr>
<td>ZR-75-1²)</td>
<td>Aszites</td>
<td>duktales Mammakarzinom</td>
<td>1</td>
</tr>
<tr>
<td>Hela²)</td>
<td>Primärtumor</td>
<td>Xervix-Adenokarzinom</td>
<td>1</td>
</tr>
<tr>
<td>MDCK⁴)</td>
<td>Nierenzellen (Canis)</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>NIH3T3²)</td>
<td>murine embryonale Fibroblasten</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>ΨNX-eco²)</td>
<td>humane embryonale Nierenzellen</td>
<td>--</td>
<td>1</td>
</tr>
</tbody>
</table>

¹) erhalten von American Type Culture Collection (ATCC), Manassas, USA
²) erhalten aus der Zellkulturbank des ICRF Laboratory, St Thomas’ Hospital, London, UK
³) erhalten von Dr. J. Hurst, Goodwin Institut for Cancer Research, Plantation, Florida, USA
⁴) erhalten von Prof. Dr. Thomas Braulke, Institut für Biochemie/Kinderklinik, UKE Hamburg

3.2.3 Kulturbedingungen

Alle Zelllinien wurden in sterilen Kulturschalen der Firmen BD Falcon (Heidelberg) und Nunc (Wiesbaden) kultiviert. Eine Übersicht über die verwendeten Kulturgefäße gibt Tab 3.2. Die Kultivierung erfolgte in Hera150-Brutschränken
(Kendro, Langenselbold) bei 37°C in wassergesättigter Atmosphäre mit 5% CO₂ für Zellen in RPMI-Medium bzw. 10% CO₂ für Zellen in DMEM-Medium. Die Zelllinien wurden zwei- bis dreimal wöchentlich unter sterilen Bedingungen passagiert. Hierzu wurden die adhärent wachsenden Zellen mit PBS (Gibco) bei 37°C gewaschen und anschließend mit Trypsin/EDTA-Lösung von der Kulturschale abgelöst. Der Vorgang wurde durch Zugabe von vorgewärmtem Vollmedium und anschließender Zentrifugation für 3 min bei 1200 g abgestoppt, die Zellen in 5-10 ml Kulturmedium resuspendiert und in einer Dichte von 10-20% ausgesät.

Tab. 3.2: Verwendete Zellkulturgefäße

<table>
<thead>
<tr>
<th>Kulturschalen</th>
<th>Oberfläche pro well¹</th>
<th>Mediumvolumen</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-well-Platte</td>
<td>0,2 cm²</td>
<td>0,15 ml</td>
<td>BD Falcon</td>
</tr>
<tr>
<td>24-well-Platte</td>
<td>1,9 cm²</td>
<td>1 ml</td>
<td>BD Falcon</td>
</tr>
<tr>
<td>6-well-Platte</td>
<td>9,4 cm²</td>
<td>2,5 ml</td>
<td>BD Falcon</td>
</tr>
<tr>
<td>6cm-Schale</td>
<td>22 cm²</td>
<td>5 ml</td>
<td>BD Falcon</td>
</tr>
<tr>
<td>10cm-Schale</td>
<td>78 cm²</td>
<td>15 ml</td>
<td>BD Falcon</td>
</tr>
<tr>
<td>T25-Zellkulturschale</td>
<td>25 cm²</td>
<td>5 ml</td>
<td>Nunc</td>
</tr>
<tr>
<td>T75-Zellkulturschale</td>
<td>75 cm²</td>
<td>15 ml</td>
<td>Nunc</td>
</tr>
<tr>
<td>T175-Zellkulturschale</td>
<td>175 cm²</td>
<td>50 ml</td>
<td>Nunc</td>
</tr>
</tbody>
</table>

¹In dieser Arbeit wird an Stelle des deutschen Begriffes „Vertiefung“ das für Laborarbeiten gebräuchliche englische Wort „well“ benutzt.

3.2.4 Kryokonservierung eukaryontischer Zellen

Eukaryontische Zellen können durch Einfrrieren in flüssigem Stickstoff (-196°C) für lange Zeit gelagert und wieder in Kultur genommen werden. Um die Bildung von Eiskristallen zu verhindern, wird den Zellen durch Zugabe des stark hygroskopischen Dimethylsulfoxids (DMSO) langsam das Wasser entzogen. Mindestens 2x10⁶ Zellen wurden in 1 ml Einfrriermedium (90% (v/v) Vollmedium, 10% (v/v) DMSO) resuspendiert, in 1,5 ml-Kryoröhrchen (Nunc) überführt und auf -80°C gekühlt. Nach 24 h wurden die Kryoröhrchen zur Langzeitlagerung in flüssigen Stickstoff überführt.

Das Auftauen kryokonservierter Zellen erfolgte für 1-2 min bei 37°C im Wasserbad. Die Zellsuspension wurde mit 5 ml Vollmedium versetzt und pelletiert um das toxische DMSO zu entfernen. Anschließend wurden die Zellen in 12 ml Vollmedium resuspendiert und in geeigneter Dichte wieder ausgesät.
3.2.5 Mycoplasmen-Test

3.2.6 Transfektion eukaryontischer Zellen mit kationischen Lipiden

Transient transfizierte Zellen wurden 48 h nach der Transfektion lysiert und die Expression des Transgens durch eine Western Blot Analyse (siehe 3.4.3) überprüft.

Für die Herstellung stabil transfizierter Zelllinien wurden die Zellen 24 h nach der Transfektion trypsiniert und je nach Konfluenz in einem Verhältnis von 1:15 oder 1:30 in 10 cm-Kulturschalen umgesetzt. Nach weiteren 24 h wurden die Zellen mit 0,5 mg/ml Geneticin (G-418, Calbiochem, Darmstadt) selektioniert. Um klonale, stabile Zelllinien zu generieren wurden etwa zehn Tage nach Beginn der Selektion einzelne Zellklone isoliert. Mit Hilfe von kleinen Trypsin-getränkten Filterpapieren wurden die Zellklone vom Boden der Kulturschale abgelöst und in 96-well-Platten transferiert. Die Klone wurden expandiert, kryokonserviert und hinsichtlich der stabilen Expression des Transgens mittels Western Blot (siehe 3.4.3) analysiert. In Abhängigkeit von der Zelllinie wurden verschiedene Reagenzien für die Durchführung der Transfektion verwendet.

3.2.6.1 Transfektion eukaryontischer Zellen mit Lipofectamine 2000™

Für eine Transfektion mit Lipofectamine 2000™ (Invitrogen, Karlsruhe) wurden einen Tag zuvor Zellen in einer T25-Zellkulturschale ausgesät, so dass am Tag der Transfektion eine Zelldichte von 80-90% erreicht war. Zur Durchführung der Transfektion wurden 8 µg Plasmid-DNA mit 500 µl OptiMEM (Gibco) gemischt. In
Material und Methoden

3.2.6.2 Transfektion eukaryontischer Zellen mit Effectene™

3.2.6.3 Transfektion eukaryontischer Zellen mit Fugene® HD

Für eine Transfektion mit Fugene® HD (Roche, Mannheim) wurden Zellen einen Tag zuvor mit geeigneter Zellzahl in T25-Kulturflaschen ausgesät, so dass am Tag der Transfektion eine Konfluenz von 60-80% erreicht war. 2 μg Plasmid-DNA wurden in 100 μl serumfreiem OptiMEM (Gibco) vorgelegt und mit 10 μl Fugene® HD gemischt. Der Transfektions-Cocktail inkubierte für 15 min bei RT und wurde dann tropfenweise zu den Zellen gegeben, die zuvor mit PBS gewaschen und 4 ml Medium versehen wurden. Nach 6-8 h erfolgte ein Mediumwechsel.

3.2.7 Retroviraler Gentransfer

Für die Durchführung eines retroviralen Gentransfers in die Zielzellen NIH3T3 wurden zunächst ψNX-eco-Verpackungszellen unter Verwendung von Effectene™ (Qiagen) transient transfiziert (siehe 3.2.6.2.) Von den ψNX-eco-Zellen produzierte und in den Zellkulturüberstand abgegebene retrovirale Partikel enthalten das
Transgen. Der Überstand wurde 48 h nach der Transfektion abgenommen und für 5 min bei 500 g zentrifugiert, um störende Zellen und Zelltrümmer zu pelletieren. Unter Verwendung eines Nitrozellulosefilters mit 0,45 µm Porengröße wurde der geklärte retrovirale Überstand anschließend sterilfiltriert und entweder direkt für die Infektion der Zielzellen verwendet oder bei -80°C gelagert. Einen Tag vor der Infektion wurden 2x10^5 NIH3T3-Zellen in einer T25-Zellkulturflasche oder einer 6-cm-Zellkulturschale ausgesät. Der Infektionscoocktail wurde aus 1 ml retroviralem Überstand, 1 ml DMEM und 2 µl Polybrene (1000x Stammlösung) zusammengesetzt. Dieser Cocktail wurde tropfenweise auf die zuvor mit PBS gewaschenen Zellen gegeben. Die Inkubation der Zellen mit dem Cocktail erfolgte für 6-8 h oder ü.N., danach wurde der Cocktail durch Medium ersetzt. Die stabile Expression des Transgens wurde nach 48 h untersucht.

3.2.8 Tet-On Genexpressions-System

Als Modellsystem für eine induzierbare Genexpression wurde die MCF-7 Tet-On Zelllinie von Clontech (Mountain View, USA) verwendet. Diese Zellen wurden vom Anbieter bereits stabil mit dem pUHD17-neo-Plasmid transfiziert und exprimieren den reversen Tetrazyklin-kontrollierten Transaktivator (rtTA). Die MCF-7 Tet-On Zellen wurden in DMEM mit 10% Tetrazyklin-freiem FCS (Clontech), 2 mM Glutamin (Gibco) und 0,25 mg/ml Geneticin (Calbiochem) kultiviert.

3.2.8.1 Stabile Transfektion der MCF-7 Tet-On Zellen

Durch eine zweite stabile Transfektion der MCF-7 Tet-On Zellen mit Fugene® HD (Roche) wurde das pTRE-Tight-Plasmid (Clontech) in die Zellen eingebracht, welches das Epitop-markierte Gen von Interesse unter Kontrolle des Tet Response Elements (TRE) exprimiert. Die Selektion der doppelt-transfizierten Zellen erfolgte mit 0,25 µg/ml Puromycin (Calbiochem) im Medium. Die isolierten Klone wurden mit 0,25 mg/ml Geneticin und 0,1 µg/ml Puromycin im Medium auf mehrere T25-Kulturflaschen expandiert, kryokonserviert und hinsichtlich der induzierbaren Expression des Transgens untersucht.
3.2.8.2 Induktion der Genexpression durch Doxyzyklin

Die Zellen wurden einen Tag vor der Induktion je nach Fragestellung in T25 oder T75-Zellkulturschalen ausgesät. Hatten die Zellen eine Konfluenz von mindestens 50% erreicht, wurde das Medium mit 0.05-1µg/ml Doxyzyklin (Sigma) supplementiert. Doxyzyklin ist ein Tetrazyklin-Derivat und vermittelt im Komplex mit dem reversen Tetrazyklin-abhängigen Transaktivator die Bindung an das Tet-Response Element, wodurch die Expression des Transgens induziert wird. Nach 48 h wurden die Zellen geerntet und Proteinlysate hergestellt, um die Expression des Transgens mittels Western Blot Analyse zu untersuchen oder Gesamt-RNA isoliert, um eine PCR Analyse durchzuführen.

3.2.9 Bestimmung der Zellproliferationsrate

3.2.10 Fokus-Assay

Für die Durchführung des Fokus-Assays wurden 5x10^5 NIH3T3-Zellen in einer 10-cm-Kulturschale ausgesät und einen Tag später mit retroviralem Überstand infiziert (siehe 3.2.7). Nachdem die infizierten Zellen 100%-ige Konfluenz erreichten, wurden sie für weitere 14 Tage kultiviert. Während dieser Zeit wurde zweimal wöchentlich das Zellkulturmedium gewechselt. Zur Beurteilung einer veränderten Morphologie wurden die transformierten NIH3T3-Zellen bei 40-facher Vergrößerung im Lichtmikroskop begutachtet und mit der parentalen Zelllinie verglichen.
3.2.11 Soft-Agar Assay

3.2.12 Implantation von Zellen in immundefizierte Mäuse

Die Tierversuche wurden unter der Nummer 29/07 vom Hamburger Amt für Gesundheit und Verbraucherschutz genehmigt und in Kooperation mit dem Institut für Anatomie II des Universitätsklinikums Eppendorf durchgeführt. Die zu implantierten Zellen wurden wie unter 3.2.4 beschrieben in Kultur genommen und zweimal vor der Implantation passagiert. Am Tag der Implantation wurde aus den kultivierten Zellen eine Einzelzellsuspension in serumfreiem Medium hergestellt. Die Zellsuspension wurde auf 5x106 Zellen pro ml eingestellt und bis zur Implantation auf Eis gehalten. Die Implantation von 200 µl der Zellsuspension, was 1x106 Zellen entsprach, erfolgte subkutan zwischen die Schulterblätter der Mäuse. Für den Versuch wurden weibliche Nacktmäuse (Stamm: NMRI) verwendet, die bei Versuchsbeginn sieben Wochen alt waren. Die Begutachtung der Mäuse
erfolgte dreimal wöchentlich. Als Tag des beginnenden Tumorwachstums wurde der Tag definiert, an dem die Tumoren erstmals äußerlich sichtbar waren. Die Terminierung der Mäuse erfolgte bei einer Tumorgröße von 1 cm^3 durch Betäubung in CO_2-haltiger Atmosphäre und Genickbruch. Nach 19 Tagen wurde der Versuch eingestellt. Alle noch verbliebenen tumorfreien Tiere wurden nach 70 Tagen terminiert.

3.3 Molekularbiologische Methoden

3.3.1 Kultivierung von *E.coli*

3.3.1.1 Bakterienstämmе

3.3.1.2 Vermehrung von *E.coli*

LB-Medium (pH 7,5):

- 1% (w/v) Bacto-Trypton (BD Biosciences)
- 0,5% (w/v) Hefeextrakt (BD Biosciences)
- 1% (w/v) NaCl

Zusatz für feste Nährböden:

- 1,5% (w/v) Bacto-Agar (BD Biosciences)

Ampicillin (Sigma):

- Stammlösung: 50 mg/ml in H_2O
- Endkonzentration: 100 µg/ml

Kanamycin (Roth):

- Stammlösung: 100 mg/ml
- Endkonzentration: 25 µg/ml
Für die Herstellung von festen Nährböden wurde dem autoklavierten LB-Medium nach Abkühlen auf ca. 55°C je nach Selektionsanforderung des Plasmids das entsprechende Antibiotikum zugesetzt. Antibiotikahaltige Platten wurden bis zu 4 Wochen bei 4°C gelagert.

Zur Vermehrung von *E.coli* wurde eine 5 ml Vorkultur (LB-Medium) mit einer Einzelkolonie von einer Agarplatte beimpft. Die Anzucht der Bakterien erfolgte in einem Inkubationsschüttler bei 37°C und 220 U/min ü.N.

3.3.2 Herstellung kompetenter Bakterien

<table>
<thead>
<tr>
<th>Lösung 1</th>
<th>Lösung 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mM Kaliumacetat</td>
<td>10 mM Na-MOPS</td>
</tr>
<tr>
<td>50 mM MnCl₂</td>
<td>75 mM CaCl₂</td>
</tr>
<tr>
<td>100 mM KCl</td>
<td>10 mM KCl</td>
</tr>
<tr>
<td>10 mM CaCl₂</td>
<td>15% (w/v) Glycerol</td>
</tr>
<tr>
<td>15% (w/v) Glycerol</td>
<td>pH 7,0</td>
</tr>
<tr>
<td>pH 5,8</td>
<td></td>
</tr>
</tbody>
</table>

Zur Herstellung kompetenter Bakterien wurden 5 ml LB-Medium mit *E.coli* DH5α inokuliert und über Nacht im Inkubationsschüttler bei 37°C kultiviert. Am nächsten Tag wurden mit diesem Ansatz 100 ml LB-Medium für eine erneute Übernachtkultur angeimpft. Die Bakterien wurden bis zu einer OD$_{550}$ von 0,6 bis 0,8 kultiviert und dann sedimentiert (6000 g; 10 min; 4°C). Der Überstand wurde verworfen und das Pellet in 40 ml eiskalter Lösung 1 resuspendiert. Nach 10-minütiger Inkubation auf Eis wurde erneut sedimentiert (6000 g; 10 min; 4°C) und das Pellet in 4 ml Lösung 2 resuspendiert. Die kompetenten Bakterien wurden aliquotiert (á 50 µl) und bei -80°C gelagert.

3.3.3 Transformation von *E.coli*

50 µl transformationskompetente Bakterien (3.3.2) wurden auf Eis aufgetaut und mit <0,1 µg Plasmid-DNA in TE-Puffer versetzt. Die Zellsuspension inkubierte 30 min auf Eis. Anschließend wurde der Ansatz im Wasserbad für 30-60 sec auf 42°C erwärmt und nach 2 min auf Eis mit 450 µl LB-Medium (3.3.1.2) aufgefüllt. Nach einer Inkubation von 60 min bei 37°C und 220 U/min im Inkubationsschüttler
wurden die transformierten Bakterien in unterschiedlichen Verdünnungen auf antibiotikahaltige LB-Agarplatten ausgestrichen und ü.N. bei 37°C im Brutschrank inkubiert. Um nachfolgend das Zellwachstum zu verlangsamen und die Plasmidstabilität zu gewährleisten, wurden die Kulturplatten bis zum Animpfen von Flüssigkulturen bei 4°C gelagert.

3.3.4 Plasmidisolierung im analytischen Maßstab (Miniprep)

3.3.5 Plasmidisolierung im präparativen Maßstab (Maxiprep)

3.3.6 Bestimmung der Konzentration und Reinheit von DNA

Konzentration und Reinheitsgrad von DNA-Präparationen wurden durch Messung der OD$_{260}$ bzw. OD$_{260}$/OD$_{280}$ bestimmt. Hierbei gilt, dass eine OD$_{260}$ von 1 einer Konzentration von 50 µg/ml doppelsträngiger DNA entspricht. Der Reinheitsgrad der untersuchten Proben lässt sich durch die Ermittlung des Quotienten OD$_{260}$/OD$_{280}$ beurteilen. Für nachfolgende Arbeiten wurden nur Plasmidpräparationen verwendet, deren Quotient mindestens 1,8 betrug.

3.3.7 Restriktionsverdau

Alle Restriktionsenzyme und dazugehörige Reaktionspuffer wurden von der Firma New England BioLabs (Frankfurt/Main) bezogen. Restriktionsspaltungen wurden
bei 37°C für 2-6 h durchgeführt. Die DNA-Konzentration im Ansatz betrug maximal 0,5 µg/µl. Das Enzym wurde im Überschuss (3-5 U/µg DNA) eingesetzt, wobei eine Glycerolkonzentration von 5% nicht überschritten wurde.

3.3.8 Dephosphorylierung von Plasmid-DNA

Die Behandlung mit alkalischer Phosphatase verhindert die Eigenligation von gespaltener Plasmid-DNA durch die Entfernung der terminalen 5'-Phosphatgruppen. Nach dem Restriktionsverdau von 2 µg Vektor-DNA in einem 60 µl Reaktionsansatz wurden 1,5 µl Antarctic Phosphatase (5 U/µl; New England BioLabs) und 7 µl 10x Antarctic Phosphatase-Reaktionspuffer zugesetzt. Nach 30 min Inkubation bei 37°C wurden erneut 1,5 µl Phosphatase zugegeben und die Inkubation für weitere 30 min fortgesetzt. Die geschnittene und dephosphorylierte Vektor-DNA wurde mit DNA-Probenpuffer (siehe 3.3.9) versetzt und elektrophoretisch in Agarosegelen aufgetrennt (siehe 3.3.9). Die DNA wurde aus dem Gel extrahiert (siehe 3.3.10) und direkt im Anschluss für eine Ligationsreaktion eingesetzt (siehe 3.3.11) oder bis zur weiteren Verwendung bei -20°C gelagert. Bei einer gerichteten Klonierung mit zwei unterschiedlichen Restriktionsenzymen konnte auf die Dephosphorylierung der Plasmid-DNA verzichtet werden.

3.3.9 Gelelektrophoretische Analyse von Nukleinsäuren

<table>
<thead>
<tr>
<th>TAE-Puffer</th>
<th>TBE-Puffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mM Tris-Acetat</td>
<td>89 mM Borsäure</td>
</tr>
<tr>
<td>1 mM EDTA</td>
<td>89 mM Tris-HCl</td>
</tr>
<tr>
<td>1% (v/v) Essigsäure</td>
<td>2 mM Na₂EDTA × 2H₂O</td>
</tr>
<tr>
<td>pH 8,3</td>
<td>pH 8,0</td>
</tr>
</tbody>
</table>

DNA-Probenpuffer

50% (v/v) Glycerol	1 mM EDTA
0,4% (w/v) Bromphenolblau	0,4% (w/v) Xylencyanol
pH 8,0	pH 8,0

3.3.10 Aufreinigung von DNA aus Agarose-Gelen

Zu klonierende cDNA-Fragmente wurden nach Restriktionsverdau (siehe 3.3.7) im Agarosegel aufgetrennt und mit Hilfe des QIAquick Gel Extraction Kits (Qiagen) isoliert. Dazu wurde unter UV-Licht (UV Transilluminator, Syngene) die entsprechende Bande aus dem Gel geschnitten, in ein Reaktionsgefäß überführt und entsprechend den Herstellerangaben aufgearbeitet. Alle Zentrifugationsschritte wurden bei maximaler Drehzahl in der Eppendorf Zentrifuge 5417R durchgeführt. Die DNA wurde mit 30 µl EB-Puffer (10 mM Tris, pH 8,5) eluiert und direkt für die Ligation (siehe 3.3.11) verwendet oder bis zur weiteren Verwendung bei -20°C gelagert.

3.3.11 Ligation von DNA-Fragmenten

3.3.12 Isolierung von genomischer DNA aus Zellkulturen

Die Isolierung genomischer DNA aus Zellkulturen wurde mit Hilfe des DNeasy® Tissue Kit (Qiagen) nach Angaben des Herstellers durchgeführt. Hierfür wurden subkonfluente Zellen aus einer T25-Zellkulturflasche verwendet. Um die Gesamt-ausbeute zu steigern, wurde die Elution der DNA in einem Volumen von 100 µl zweimal durchgeführt. Der DNA-Gehalt und die DNA-Reinheit wurden durch Messung der OD$_{260}$ bzw. OD$_{260}$/OD$_{280}$ bestimmt. Die durchschnittliche Ausbeute betrug hierbei rund 1 µg DNA.

3.3.13 Isolierung von Gesamt-RNA

Ausgehend von einem Zellmaterial einer subkonfluenten T75-Zellkulturflasche erfolgte die Isolierung von Gesamt-RNA mit dem TRIZOL®-Reagens (Invitrogen). Die Zellen wurden pelletiert, in 2 ml TRIZOL® aufgenommen, homogenisiert und gleichmäßig auf zwei 1,5 ml-Reaktionsgefäße verteilt. Die Proben inkubierten ca. 5 min bei RT und wurden dann mit jeweils 200 µl Chloroform versetzt. Nach einer Inkubation von 2-3 min bei RT folgte eine Zentrifugation für 15 min bei 12000 g. Hierbei kam es zur Phasentrennung von organischem Zellmaterial und wasserlöslichen Substanzen. Die obere wässrige Phase wurde abgenommen, in ein neues Reaktionsgefäß überführt und mit 1 ml kaltem Isopropanol gemischt, um die RNA zu präzipitieren. Nach 15 min Inkubation bei RT folgte eine Zentrifugation bei 12000 g, 4°C für 10 Minuten um die RNA zu sedimentieren. Das erhaltene RNA-Pellet wurde für 30 min mit 1 ml 75% Ethanol inkubiert, was dem Herauslösen von verunreinigenden Salzen diente. Anschließend wurde das Pellet getrocknet und in einem geeigneten Volumen H$_2$O aufgenommen. RNA-Konzentration und -Reinheit wurden am Photometer bestimmt und die Proben bei -80°C gelagert.

3.3.14 Erststrang-cDNA-Synthese

Zur Synthese von cDNA aus mRNA wurden die Reagenzien des SuperScript® First-Strand Synthesis Systems (Invitrogen) verwendet. Die hier eingesetzten Oligo(dT)$_{12-18}$-Primer hybridisieren mit poly(A)-Überhängen der mRNA-Moleküle, die somit als Matrize für die reverse Transkriptionsreaktion dienen. 1-3 µg Gesamt-RNA (siehe 3.3.13) in 8 µl RNase-freiem H$_2$O wurden mit 1 µl dNTP-Mix (10 mM) und 1 µl Oligo(dT)$_{12-18}$-Primern (0,5 µg) gemischt, für 5 min bei 65°C
denaturiert und anschließend sofort für 1 min auf Eis abgekühlt. Dem RNA-Nukleotid-Gemisch wurden 9 µl Reaktionslösung bestehend aus 2 µl 10x Reaktionspuffer, 4 µl MgCl₂-Lösung (25 mM), 2 µl DTT-Lösung (0,1 M) und 1 µl RNase Inhibitor (4 U/µl), zugesetzt. Nach Inkubation für 2 min bei 42°C wurde dem Ansatz 1 µl (200 U) SuperScript II RT hinzugefügt. Die Synthese-Reaktion erfolgte bei 42°C für 50 min und wurde durch Erhitzen auf 70°C für 15 min abgestoppt. Die cDNA wurde mit Hilfe des QIAquick PCR Purification Kit (Qiagen) aufgereinigt und bis zur weiteren Verwendung bei -20°C gelagert.

3.3.15 DNA-Amplifikation durch Polymerasekettenreaktion (PCR)

3.3.15.1 Amplifikation mit PfuTurbo® Hotstart DNA Polymerase

Als Matrix für die Amplifikationsreaktion mit der PfuTurbo® Hotstart DNA Polymerase (Stratagene) wurde cDNA (siehe 3.3.14) oder 3-5 ng Plasmid-DNA eingesetzt. Die 50 µl-Reaktionsansätze wurden auf Eis angesetzt und enthielten: 5 µl DNA, 5 µl 10x PfuTurbo-Reaktionspuffer, 1 µl dNTPs (10 mM; Promega, Mannheim), je 2 µl Primer (100 ng/µl), 2,5 µl DMSO, 31,5 µl H₂O und 1 µl PfuTurbo® Hotstart DNA-Polymerase (2,5 U/µl). Die Reaktion wurde im Flexigene-Thermocycler von Techne (Staffordshire, UK) durchgeführt und lief bei folgendem Programm ab:
Material und Methoden

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Zeit</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiale Denaturierung</td>
<td>5 min</td>
<td>95°C</td>
</tr>
<tr>
<td>Denaturierung</td>
<td>1 min</td>
<td>95°C</td>
</tr>
<tr>
<td>Primer-Annealing</td>
<td>1 min</td>
<td>58-65°C</td>
</tr>
<tr>
<td>Primer-Extension</td>
<td>2 min/kb</td>
<td>72°C</td>
</tr>
<tr>
<td>Auffüllreaktion</td>
<td>10 min</td>
<td>72°C</td>
</tr>
</tbody>
</table>

30 Zyklen

3.3.15.2 Amplifikation mit Taq DNA Polymerase

Als Matrize für eine PCR-Analyse mit der Taq DNA Polymerase (Qiagen) wurden 5 µl cDNA, 3-5 ng Plasmid-DNA oder 100 ng genomische DNA eingesetzt. Die 50 µl-Reaktionsansätze wurden auf Eis pipettiert und enthielten neben der DNA noch 5 µl 10x Qiagen PCR Reaktionspuffer, 0,5 µl dNTPs (10 mM), je 2 µl Primer (100 ng/µl), 35 µl H₂O und 0,5 µl Taq DNA Polymerase (5 U/µl). Die Amplifikationsreaktion lief mit dem unter 3.3.15.1 beschriebenen Programm ab. Die Extensionszeit betrug hier 1 min/1 kb. Üblicherweise umfasste das PCR-Programm 30 Zyklen, bei der Verwendung von genomischer DNA wurden 35 PCR-Zyklen durchlaufen.

3.3.16 Klonierung von PCR-Produkten

Sollten PCR-Produkte in Plasmidvektoren kloniert werden, wurden entsprechend synthetisierte Oligonukleotid-Primer (MWG, Köln) für die PCR-Amplifikation verwendet. Die Primer tragen an ihren 5'-Enden eine Guanidin (G)- und Cytosin (C)-reiche Schutzgruppe (z.B. GCGCATGGC). Dieser Sequenz folgt eine spezifische Erkennungssequenz für das zur Klonierung verwendete Restriktionsenzym. Am 3'-Ende der Oligonukleotid-Primer befindet sich die zur Zielsequenz komplementäre genspezifische DNA-Sequenz. Die GC-reichen Schutzgruppen des PCR-Amplikons verhindern ein Aufschmelzen der DNA während des folgenden Restriktionsverdaus, so dass dieser mit hoher Effizienz erfolgen kann.
Material und Methoden

Die PCR-Reaktion erfolgte mit der PfuTurbo® Hotstart DNA Polymerase (siehe 3.3.15.1). Die PCR-Produkte wurden nach erfolgreicher Amplifikation mit dem QIAquick® PCR Purification Kit (Qiagen) nach Angaben des Herstellers aufge-reinigt und anschließend mit den entsprechenden Restriktionsenzymen verdaut (siehe 3.3.7). Anschließend wurden die DNA-Fragmente im Agarose-Gel aufgetrennt, aus dem Gel isoliert und in den linearisierten Plasmidvektor ligiert (siehe 3.3.9 bis 3.3.11).

3.3.17 Zielgerichtete Mutagenese

3.3.17.1 Einbau der zielgerichteten Mutation durch PCR

Für eine Mutagenese-PCR enthielten die 50 µl-Reaktionsansätze neben 50 ng Template-DNA, 5 µl 10x Reaktionspuffer (Stratagene), 5 µl dNTPs (2 mM, Promega), je 1,25 µl Primer (100 ng/µl), das entsprechende Volumen H₂O und 1 µl PfuTurbo® Hotstart DNA Polymerase (Stratagene; 2,5 U/µl). Die Mutagenese-PCR lief mit folgendem Amplifikationsprogramm ab:

- Initiale Denaturierung: 5 min, 95°C
- Denaturierung: 30 sec, 95°C
- Primer-Annealing: 1 min, 55°C
- Primer-Extension: 1 min/kb, 68°C

Nach 12 Durchgängen des Amplifikationsprogramms wurde der Reaktionsansatz für 2 min auf Eis inkubiert. Der Verdau der Template-DNA erfolgte durch Zugabe von 1 µl DpnI (New England Biolabs) und Inkubation für 1 h bei 37°C. Zur Vermeh-
Material und Methoden

Rung der so gewonnenen Plasmid-DNA wurde 1 µl des DpnI-verdauten Reaktionsansatzes für die Transformation des Bakterienstammes *E.coli* TOP10F' eingesetzt. Der korrekte Einbau der zielgerichteten Mutation wurde durch eine DNA-Sequenzanalyse überprüft (siehe 3.3.18).

3.3.18 Automatische DNA-Sequenzierung

Für einen 20 µl-Sequenzieransatz wurden 0,5 -1 µg DNA in maximal 11 µl H₂O, 1 µl Primer (3,2 pmol/µl) und 8 µl BigDye-Mix eingesetzt. Im Thermocycler (Techne) wurden 25 Zyklen des folgenden Programms durchlaufen:

- **Denaturierung** 10 sec 96°C
- **Primer-Annealing** 15 sec 50°C
- **Primer-Extension** 4 min 60°C

Der Sequenzieransatz wurde anschließend mit 16 µl H₂O versetzt und die DNA durch Zugabe von 64 µl 100% Ethanol für 30 min bei RT gefällt. Die DNA wurde abzentrifugiert (13000 rpm, 30 min, 4°C) und das Pellet mit 250 µl 70% Ethanol gewaschen. Danach wurde die DNA für 5-10 min bei RT getrocknet. Die Auftrennung der DNA auf einem Polyacrylamid-Gel und die weitere Detektion und Analyse der Sequenzierung erfolgte am Institut für Pathologie (UKE, Hamburg) mit dem Applied Biosystem DNA-Sequencer ABI PRISM (Modell 3100).

3.3.19 Qualitative mRNA-Analyse durch Northern-Blot-Hybridisierung

Die RNA wird zunächst gelektrophoretisch nach ihrer Größe aufgetrennt und anschließend auf Nylonmembran immobilisiert. Der spezifische Nachweis der mRNA erfolgt mit einer radioaktiv markierten DNA-Sonde.

3.3.19.1 Agarose-Gelektrophorese unter denaturierenden Bedingungen

<table>
<thead>
<tr>
<th>FA Gelpuffer</th>
<th>FA Laufpuffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mM MOPS</td>
<td>1x FA-Gelpuffer</td>
</tr>
<tr>
<td>5 mM Natrium Acetat</td>
<td>2,5 M Formaldehyd</td>
</tr>
<tr>
<td>1 mM EDTA (pH 7,0)</td>
<td></td>
</tr>
</tbody>
</table>

RNA Ladepuffer:
- 0,25% Bromphenolblau
- 4 mM EDTA
- 0,9 M Formaldehyd
- 20% Glycerol
- 30,1% Formamid
- 4x FA Gelpuffer

Material und Methoden

3.3.19.2 RNA-Transfer auf Nylonmembran

Transferpuffer (20x SSC):
3 M NaCl
0,3 M Natrium Citrat

Sofort nach der Dokumentation der RNA-Auftrennung wurde das Gel für den folgenden Transfer zugeschnitten. Unbeladene Bahnen, sowie die Bereiche oberhalb der Probentaschen und unterhalb der Lauffront wurden abgetrennt und das Gel anschließend für 10 min bei RT in 200 ml Wasser geschwenkt. Zur partiellen Hydrolyse der RNA folgte eine Inkubation von 15 min in 200 ml 0,05 M NaOH. Anschließend wurde mit 200 ml 10x SSC-Puffer für 10 min neutralisiert. Der Transfer der RNA auf die Nylonmembran erfolgte im Kapillarblotverfahren. Zunächst wurden die Hybond N+-Nylonmembran (GE-Healthcare) und zwei Whatman-Filterpapiere auf die Größe des Gels zugeschnitten und in Transferpuffer äquilibriert. Eine 20 cm x 30 cm große Plastikwanne, befüllt mit Transferpuffer, diente als Pufferreservoir. Auf diese Wanne wurde eine Glasplatte gelegt, auf welcher eine in Transferpuffer getränkte Bahn Whatman-Filterpapier positioniert wurde, so dass die Enden des Papiers in das Pufferreservoir hineinragten (siehe Abb. 3.1). Das behandelte Gel wurde nun mit der Unterseite nach oben, zentral auf das Filterpapier gelegt. Das Gel wurde an den Seiten sorgfältig mit Frischhaltefolie umgeben, so dass der Strom des Transferpuffers ausschließlich durch das Gel geleitet wird.

Abb. 3.1: Schematischer Aufbau eines RNA-Transfer-Blots
Material und Methoden

3.3.19.3 Herstellung einer [α-³²P]-markierten DNA-Sonde

Zur spezifischen Detektion der RNA wurde eine radioaktiv markierte DNA-Sonde hergestellt. Diese Form des Nachweises bietet die höchstmögliche Sensitivität und ist aufgrund der direkten Markierung gut reproduzierbar.

3.3.19.4 Hybridisierung einer DNA-Sonde mit immobilisierter RNA

<table>
<thead>
<tr>
<th>Hoch-Stringenz-Waschpuffer</th>
<th>Niedrig-Stringenz-Waschpuffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1x SSC</td>
<td>2x SSC</td>
</tr>
<tr>
<td>0,1% SDS</td>
<td>0,1% SDS</td>
</tr>
<tr>
<td>Hochsalz-Waschpuffer</td>
<td></td>
</tr>
<tr>
<td>5x SSC</td>
<td></td>
</tr>
<tr>
<td>0,5% SDS</td>
<td></td>
</tr>
</tbody>
</table>

3.3.20 Erstellung und Auswertung von Expressionsprofilen mittels Mikroarray-Technologie

Unter Anwendung der Mikroarray-Technologie sollten Genexpressionsprofile von parentalen und CRB3A-überexprimierenden NIH3T3-Zellen erstellt und bezüglich ihrer Unterschiede analysiert werden. Als Plattform hierfür wurden Whole Mouse Genome 4x44k Mikroarrays von Agilent (St. Clara, Californien, USA) eingesetzt.
Ein solcher Array enthält mehr als 44 000 Oligonukleotide, die wiederum mehr als 41 000 bekannte Gene und Transkripte repräsentieren. Mit der technischen Durchführung der Mikroarray-Analyse und der anschließenden Auswertung der Rohdaten wurde die Firma Indivicon Diagnostics (Ochtrup) beauftragt.

3.3.20.1 Isolierung von Gesamt-RNA für Mikroarray-Analysen

3.3.20.2 Auswertung der Mikroarray-Rohdaten

3.3.21 Quantitative Realtime-PCR
Das Prinzip der Realtime-PCR beruht auf dem Einsatz von fluoreszierenden Reporterfarbstoffen, die eine Verfolgung der Reaktion in Echtzeit (engl. realtime) und eine Quantifizierung der eingesetzten DNA ermöglichen. Die Farbstoffmoleküle (SYBR-Green) werden unspezifisch in Doppelstrang-DNA eingebaut, was mit fortschreitender PCR-Reaktion zu einem Fluoreszenzanstieg führt, der sich proportional zur PCR-Produktmenge verhält.

Die Reaktionsansätze einer Realtime-PCR hatten ein Endvolumen von 20 µl und wurden stets im Triplett angefertigt. Pro Ansatz wurden 10 µl Quantitect®-SYBR-Green-Mastermix (Qiagen), jeweils 0,5 µl Primer (10 pm/µl) und 9 µl der verdünnten cDNA verwendet. Die Ansätze wurden zunächst in 0,5 ml-Reaktionsgefäßen angesetzt und dann auf die twin.tec PCR-Platte (Eppendorf) übertragen. Durchgeführt wurde die PCR-Analyse mit dem realplex^4-PCR-Gerät (Eppendorf). Das PCR-Programm startete mit 2 min bei 55°C, gefolgt von der initialen Denaturierung für 10 min bei 95°C. Dann wurden 40 Zyklen im Thermocycler durchlaufen:

<table>
<thead>
<tr>
<th>Reaktion</th>
<th>Zeit</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturierung</td>
<td>15 sec</td>
<td>95°C</td>
</tr>
<tr>
<td>Primer-Annealing</td>
<td>30 sec</td>
<td>58°C</td>
</tr>
<tr>
<td>Primer-Extension</td>
<td>30 sec</td>
<td>68°C</td>
</tr>
</tbody>
</table>

Es folgte ein Denaturierungsschritt von 15 sec bei 95°C. Danach wurden die Proben noch jeweils für 30 sec bei 60°C inkubiert. Das Programm endete mit einem über 20 min laufenden Anstieg der Temperatur auf 95°C. Mit Hilfe der realplex^4-PCR-Software erfolgte die Auswertung der Rohdaten. Weitere Berechnungen wurden mit dem Microsoft-Excel-Programm vorgenommen.

3.3.21.1 Relative mRNA-Quantifizierung

Zur Berechnung der relativen Genexpressionen auf Grundlage der aus der quantitativen PCR gewonnenen Daten wurde die ΔΔCP-Methode verwendet, wobei der CP-Wert (CP; Crossing Point) den PCR-Zyklus beschreibt, bei dem die Fluoreszenz der neusynthetisierten DNA erstmalsig signifikant über die Hintergrund-Fluoreszenz steigt.

Die Expression des Zielgens wird zunächst auf die Expression eines homogen exprimierten Referenzgens bezogen. Wichtig hierbei ist die gleiche Effizienz der
Material und Methoden

PCR-Reaktionen für Ziel- und Referenzgen. Als Referenzgen wurde Glyceraldehyd-3-phosphat-dehydrogenase (GAPDH) oder (RPL32) gewählt.

\[
\Delta CP = CP_{\text{Zielgen}} - CP_{\text{Referenzgen}}
\]

Nach dieser Normierung wird vom \(\Delta CP \)-Wert der Proben (CRB3A) der \(\Delta CP \)-Wert der Kontrolle (parental) abgezogen:

\[
\Delta \Delta CP = \Delta CP_{\text{CRB3A}} - \Delta CP_{\text{parental}}
\]

Der relative Expressionsunterschied (Ratio) zwischen verschiedenen Proben normalisiert auf ein Referenzgen, ergibt sich aus der Formel

\[
\text{Ratio} = 2^{\Delta \Delta CP}
\]

Liegt der relative Expressionsunterschied unter 1, so ist das analysierte Gen in der Probe im Vergleich zur Kontrolle herunterreguliert, liegt er über 1, so ist das Gen heraufreguliert. Die Daten wurden als Mittelwerte ± Standardabweichung dargestellt und basieren auf mindestens drei unabhängigen Experimenten.

3.4 Proteinchemische Methoden

3.4.1 Herstellung polyklonaler Antiseren

Herstellung der Antikörper im Kaninchen wurden Primärserum, Test-Seren und finales Serum hinsichtlich einer veränderten Reaktivität im Western Blot (siehe 3.4.3) verglichen. Wurde dabei eine spezifische Reaktivität des Serums festgestellt, erfolgte eine Affinitätsreinigung des polyklonalen Antikörpers.

3.4.2 Affinitätschromatographische Aufreinigung von Antiseren

Die Durchführung der Antikörper-Aufreinigung erfolgte unter Verwendung des SulfoLink® Kits von Pierce Biotechnology (Rockford, USA) nach Angaben des Herstellers.

3.4.2.1 Immobilisierung von Peptiden

<table>
<thead>
<tr>
<th>Kopplungspuffer</th>
<th>Waschpuffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mM Tris/HCl (pH 8,5)</td>
<td>1 M NaCl</td>
</tr>
<tr>
<td>5 mM Na-EDTA</td>
<td>0,05% Natriumazid</td>
</tr>
</tbody>
</table>

Für die Peptid-Kopplung an die Matrix wurden zunächst 2 mg Peptid in 2 ml Kopplungspuffer gelöst und für 15 min bei 4°C drehtend inkubiert. Währenddessen wurde die mit Sulfo-Link®-Matrix gefüllte Säule auf RT erwärmt, senkrecht in einem Stativ positioniert und die Lagerungslösung abgelassen. Die Matrix wurde zunächst mit 8 ml Kopplungspuffer äquilibriert und anschließend mit dem gelösten Peptid für 15 min bei RT unter Drehen inkubiert. Für weitere 30 min inkubierte die Säule in senkrechter Position. Sämtlicher Puffer wurde abgelassen und die Matrix mit 6 ml Kopplungspuffer gewaschen. Zur Blockierung ungenutzter Bindungsstellen an der Matrix wurde diese mit 15,8 mg L-Cystein, gelöst in 2 ml Kopplungspuffer, versetzt. Matrix und Cystein-Lösung wurden 15 min unter Drehen inkubiert. Anschließend wurde die Säule für 30 min aufrecht positioniert. Überschüssiges L-
Cystein wurde mit 12 ml Waschpuffer von der Matrix entfernt. Ein anschließender Waschschritt mit 12 ml Elutionspuffer diente dem Abtrennen von ungebundenem Peptid. Abschließend erfolgte ein Waschschritt mit 6 ml PBS. Bis zur weiteren Verwendung wurde die Matrix mit 2 ml PBS überschichtet, die Säule abgedichtet und bei 4°C gelagert.

3.4.2.2 Immunaffinitätschromatographie

<table>
<thead>
<tr>
<th>Elutionspuffer</th>
<th>Neutralisationspuffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1 M Glycin</td>
<td>1 M Natriumphosphat</td>
</tr>
<tr>
<td>1 M HCl (pH 2,5)</td>
<td>1 M Tris/HCl (pH 8,5)</td>
</tr>
</tbody>
</table>

3.4.3 Western Blot Analyse von Proteinen

3.4.3.1 Herstellung von NP40-Gesamtzellextrakten

NP-40 Lysispuffer:
1% (w/v) Nonidet P-40 (Roche)
150 mM NaCl
50 mM Tris-HCl (pH 7,4)

Vor Gebrauch frisch zugesetzt: 1x Protease-Inhibitor (Roche)

<table>
<thead>
<tr>
<th>2x</th>
<th>4x</th>
<th>Probenpuffer (nicht-reduzierend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2% (w/v)</td>
<td>4% (w/v)</td>
<td>SDS</td>
</tr>
<tr>
<td>20% (w/v)</td>
<td>40% (w/v)</td>
<td>Glycerol</td>
</tr>
<tr>
<td>120 mM</td>
<td>240 mM</td>
<td>Tris-HCl (pH 6,8)</td>
</tr>
<tr>
<td>0,01% (w/v)</td>
<td>0,02% (w/v)</td>
<td>Bromphenolblau</td>
</tr>
</tbody>
</table>

Für den Aufschluss der Zellen wurden diese im Zellkulturgefäss zweimal mit PBS gewaschen, mit einem Zellschaber vom Boden abgelöst und in max. 1 ml PBS aufgenommen. Nach Überführung der Zellen in ein 1,5 ml-Reaktionsgefäss erfolgte eine Zentrifugation bei 5000 U/min für 3 min. Überschüssiges PBS wurde entfernt, das Zell pellet in einem angemessenen Volumen NP40-Lysispuffer resuspendiert und für 20-30 min auf Eis inkubiert. Durch eine Zentrifugation bei 13.200 U/min für 10 min wurden Zellkerne und unlösliche Bestandteile abgetrennt. Der Überstand wurde in ein frisches Reaktionsgefäss überführt. Die Bestimmung des Proteingehalts erfolgte nach Bradford (3.4.3.3). Abschließend wurde das Lysat mit entsprechendem Volumen 2x- oder 4x-Probenpuffer versetzt und für 5 min bei 95°C denaturiert. Die Proben lagerten bis zur weiteren Verwendung bei -20°C.
3.4.3.2 Herstellung von Gesamtzellextrakten mit SDS-Lysispuffer

SDS-Lysispuffer:
2% (w/v) SDS
62,5 mM Tris/HCl (pH 6,8)
10% (v/v) Glycerin

vor Gebrauch frisch zugesetzt: 1x Protease-Inhibitor (Roche)

3.4.3.3 Proteinbestimmung nach Bradford

Zur Proteinbestimmung wurde das kommerziell erhältliche Bradford-Reagenz der Firma BioRad (München) benutzt. Die zu messende Probe wurde mit 0,1 N NaOH zu einem Endvolumen von 800 µl aufgefüllt, mit 200 µl Farbreagenz versetzt, gut durchmischt und für 15 min bei RT inkubiert. Als Leerwert diente ein Ansatz bestehend aus 800 µl 0,1 NaOH und 200 µl Farbreagenz. Die Auswertung erfolgte durch Messung der Extinktion bei 595 nm gegen den Leerwert im Photometer. Es wurden jeweils Dreifachbestimmungen vorgenommen.

Für die Erstellung einer Eichkurve, die den Bereich von 1-32 µg Protein abdeckte, wurde eine BSA-Stammlösung (1 mg/ml in 0,1 N NaOH) verwendet. Definierte Volumina der Stammlösung wurden mit entsprechenden Volumina 0,1 N NaOH und 200 µl Farbreagenz versetzt, 15 min bei RT inkubiert und im Photometer
gegen den Leerwert vermessen.

3.4.3.4 Proteinbestimmung nach der BCA-Methode

Zur Proteinbestimmung von SDS-Ganzzelllysaten (siehe 3.4.3.2) wurde das Pierce® BCA Protein Assay Kit (Perbio) benutzt. Hierzu wurde zunächst die Detektionslösung nach Angaben des Herstellers hergestellt. Für jede zu messende Probe wurden 200 µl Detektionsreagenz in einem 96-well vorgelegt. Anschließend wurden 2 µl des Proteinlysates hinzugefügt.

Für die Erstellung einer Eichgrade wurden im Duplikat je 2 µl einer BSA-Lösung mit definiertem Proteingehalt von 1 µg, 2 µg, 5 µg und 10 µg mit 200 µl der Detektionslösung vermischt. Die Proben wurden für 1 h bei RT inkubiert. Die Extinktionsmessung erfolgte bei 562 nm im Photometer (Eppendorf).

3.4.3.5 SDS-Polyacrylamid-Gelelektrophorese

Sammelgel (2 ml)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>1,4 ml</td>
</tr>
<tr>
<td>30% Acrylamid</td>
<td>0,33 ml</td>
</tr>
<tr>
<td>1,5 M Tris (pH 8,8)</td>
<td>0,25 ml</td>
</tr>
<tr>
<td>10% (v/v) SDS</td>
<td>0,02 ml</td>
</tr>
<tr>
<td>10% (w/v) APS</td>
<td>0,02 ml</td>
</tr>
<tr>
<td>TEMED</td>
<td>0,004 ml</td>
</tr>
</tbody>
</table>

Trenngel (5 ml)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>6%</th>
<th>12%</th>
<th>15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>2,6 ml</td>
<td>1,6 ml</td>
<td>2,0 ml</td>
</tr>
<tr>
<td>30% Acrylamid</td>
<td>1,0 ml</td>
<td>2,0 ml</td>
<td>1,6 ml</td>
</tr>
<tr>
<td>1,5 M Tris (pH 8,8)</td>
<td>1,3 ml</td>
<td>1,3 ml</td>
<td>1,3 ml</td>
</tr>
<tr>
<td>10% (v/v) SDS</td>
<td>0,05 ml</td>
<td>0,05 ml</td>
<td>0,05 ml</td>
</tr>
<tr>
<td>10% (w/v) APS</td>
<td>0,05 ml</td>
<td>0,05 ml</td>
<td>0,05 ml</td>
</tr>
<tr>
<td>TEMED</td>
<td>0,004 ml</td>
<td>0,004 ml</td>
<td>0,004 ml</td>
</tr>
</tbody>
</table>
Laufpuffer (Laemmli):
- 192 mM Glycin
- 0,1 % (w/v) SDS
- 25 mM Tris-HCl

Die Auf trennung von Proteinen nach ihrer Größe erfolgte durch eine denaturierende SDS-Polyacrylamidgel-Elektrophorese (SDS-PAGE) nach Laemmli [89]. Hierfür wurden zunächst die Polyacrylamidgele in Hoefer Dual Gel Caster Gießständen (Amersham Biosciences, Freiburg) angefertigt. Je nach Größe der zu analysierenden Proteine wurde ein Trenngel mit 6-15% Acrylamid-Gehalt hergestellt. Nach vollständiger Polymerisierung wurde das Trenngel mit dem Sammelgel überschichtet, in welches vor Einsetzen der Polymerisierung ein Probentaschenkamm eingelassen wurde. Zur Durchführung der Elektrophorese wurde das Gel in eine Hoefer Minigelkammer Model SE250 (Amersham Biosciences) eingespannt und die Pufferreservoirs mit Laemmli-Laufpuffer befüllt. Die zu untersuchenden Proteinproben wurden für 5 min bei 95°C denaturiert und auf Eis abgekühlt. Dabei werden die Proteine durch das im Probenpuffer enthaltene SDS mit einer zu ihrer Größe proportionalen Ladung versehen, was die Auf trennung der Proteine nach ihrem Molekulargewicht im Gel ermöglicht. Als Referenz für die Proteingröße wurde der Molekulargewichts-Standard "Full Range Rainbow RPN800" (Amersham Biosciences) mitgeführt. Die Gelelektrophorese lief bei 25 mA pro Gel für ca. 1 h. Der Nachweis gelektrophoretisch aufgetrennter Proteine erfolgte entweder unspezifisch durch eine Coomassie-Färbung des Gels (siehe 3.4.3.6) oder spezifisch durch einen Immunoblot (siehe 3.4.3.9)

3.4.3.6 Coomassie-Brilliant-Blue Färbung von Polyacrylamid-Gelen

<table>
<thead>
<tr>
<th>Färbelösung</th>
<th>Entfärbelösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% (v/v) Methanol</td>
<td>20% (v/v) Methanol</td>
</tr>
<tr>
<td>10% (v/v) Essigsäure</td>
<td>7,5% (v/v) Essigsäure</td>
</tr>
<tr>
<td>0,25% (w/v) Coomassie-Brilliant Blue R-250</td>
<td></td>
</tr>
</tbody>
</table>

Gelektrophoretisch aufgetrennte Proteine können in ihrer Gesamtheit durch eine irreversible Färbung mit Coomassie-Brilliant-Blue im Polyacrylamid-Gel nachgewiesen werden. Nach beendeter Elektrophorese wurde das Sammelgel vom
Material und Methoden

Trenngel abgelöst und verworfen. Das Trenngel wurde in ausreichend Färbelösung überführt und hierin unter leichtem Schwenken für 1 h bei RT inkubiert. Die Färbelösung wurde durch das gleiche Volumen Entfärbelösung ersetzt, und das Gel über mehrere Stunden vollständig entfärbt. Fotografisch dokumentiert wurde das Gel mittels Scanner (Expression 1680 Pro, Epson).

3.4.3.7 Semidry-Transfer auf Nitrozellulose-und PVDF-Membranen

Transferpuffer

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Komponente</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 mM</td>
<td>Tris-HCl</td>
</tr>
<tr>
<td>39 mM</td>
<td>Glycin</td>
</tr>
<tr>
<td>20% (v/v)</td>
<td>Methanol</td>
</tr>
<tr>
<td>0,0388% (v/v)</td>
<td>SDS</td>
</tr>
</tbody>
</table>

Für einen nachfolgenden Immunoblot wurden gelektrophoretisch aufgetrennte Proteine durch einen Elektrotransfer aus dem SDS-Gel auf eine Trägermembran zugänglich gemacht. Mittels der Trans-Blot SD Semidry-Blotapparatur (Bio-Rad) wurden die Proteine entweder auf eine Hybond ECL Nitrozellulose-Membran (Amersham Biosciences) oder auf eine Immobilon PVDF-Membran (Millipore, Schwalbach) transferiert. PVDF-Membranen zeichnen sich im Vergleich zu Nitrozellulose-Membranen durch eine größere Proteinbindungskapazität aus. Aufgrund ihrer hydrophoben Oberflächenbeschaffenheit müssen sie allerdings vor dem Transfer aktiviert werden. Dazu wurden die Membranen für 1 min in 100% Methanol inkubiert, dann für 3-5 min in H₂O gewaschen und anschließend für 5-10 min in Transferpuffer äquilibrirt. PVDF-Membranen wurden verwendet, wenn das zu untersuchende Protein in sehr geringer Konzentration im Lysat vorlag.

Für den Transfer wurden jeweils eine Membran und vier 3MM-Whatmann-Filter (VWR, Darmstadt) auf Gelgröße zugeschnitten und in Transferpuffer inkubiert. Auf der Anodenseite der Blotapparatur wurde folgender Aufbau vorgenommen: auf zwei 3MM-Whatmann-Filter folgte die Nitrozellulose- oder PVDF-Membran, das Gel wurde aufgelegt und mit zwei 3MM-Whatmann-Filtern bedeckt. Nach Aufsetzen der Kathode erfolgte der Transfer mit 0,8 mA/cm² je nach Größe der zu transferierenden Proteine für 1-2 h.
3.4.3.8 Ponceau-S-Färbung von Proteinen

Durch reversibles Anfärben der Proteine auf einer Nitrozellulose-Membran wurde der Elektrotransfer (siehe 3.4.3.7) anschließend überprüft. Dazu wurde die Membran 1 min in Ponceau-S-Lösung (Sigma) inkubiert, durch Waschen in H$_2$O teilweise entfärbt und schließlich für den Immunoblot weiterverwendet.

3.4.3.9 Immunoblot-Analyse

PBS-Blotto
4% (w/v) Trockenmilchpulver, fettfrei

PBS-Tween
0,05% (v/v) Tween-20

ECL-Lösung 1
0,1 M Tris-HCl pH 8,5
25 mM Luminol (Sigma)
9 mM p-Cumarinsäure (Sigma)

ECL-Lösung 2
0,1 M Tris-HCl pH 8,5
0,018% H$_2$O$_2$

vor Gebrauch: Lösungen 1 und 2 im Verhältnis 1:1 mischen.

3.4.3.10 Entfernung der Antikörper von Nitrozellulosemembranen

„Stripping“-Puffer
100 mM 2-Mercaptoethanol
2% (v/v) SDS
62,5 mM Tris-HCl; pH 6,7

Um gebundene Primär- und Sekundär-Antikörper von einer Nitrozellulose-Membran zu entfernen, wurde diese zunächst für 15 min in PBS-Tween gewaschen und anschließend für 30 min bei 50°C in 1 ml „Stripping“-Puffer inkubiert. Vor einem erneuten Blockierungsschritt wurde die Membran zweimal für 15 min in PBS-Tween gewaschen.

3.4.4 Immunprézipitation von FLAG-Fusionsproteinen

IP-Lysis-Puffer	IP-Waschpuffer
150 mM NaCl | 1,5 M NaCl
50 mM Tris-HCl (pH 7,4) | 0,5 mM Tris-HCl (pH 7,4)
1 mM EDTA |
1% (v/v) Triton-X-100 |
frisch vor Gebrauch: 1x Protease-Inhibitoren (Roche)

Zunächst wurden aus Zellen, welche FLAG-Fusionsproteine exprimierten, unter Verwendung des IP-Lysis-Puffers Gesamt-Zelllysate, wie unter 3.4.3.1 beschrieben, hergestellt. Die Proteinkonzentration der Lysate wurde nach der Bradford-Methode (3.4.3.3) bestimmt. Für die Immunprézipitation (IP) wurden 1-2 mg Gesamtprotein eingesetzt. Jeweils 50 µl der entsprechend eingestellten Proteinlösungen wurden als Ladekontrolle entnommen, mit 2x Probenpuffer versetzt und für 5 min bei 95°C denaturiert. Die verbliebenen 950 µl der Probe wurden für die IP verwendet. Hierfür wurden zunächst 100 µl des ANTI-FLAG® M2 Affinitätsgels durch 5 repetitive Waschschritte mit 1 ml Lysis-Puffer vorsichtig resuspendiert und für 1 min bei 2000 U/min, 4°C sedimentiert. Da das Gel als 50% „slurry“ vorlag,
resultierte daraus ein 50 µl Gelbett pro Ansatz, auf welches das Proteinlysat gegeben wurde. Die IP erfolgte ü.N. bei 4°C. Um unbefundene Proteine auszublaschen wurde die Matrix anschließend in 5 Wiederholungen nach dem Verfahren der Äquilibrierung mit IP-Waschpuffer behandelt, wobei der Waschpuffer stets vollständig abgenommen wurde. Die Elution der Proteine erfolgte durch Zugabe eines gleichen Volumens 2x Probenpuffer und Erhitzen für 10 min bei 95°C. Nach 5-minütiger Inkubation auf Eis wurde die Matrix für 1 min bei 10000 U/min sedimentiert, das überstehende Proteinlysat komplett abgenommen und für eine Western Blot Analyse (siehe 3.4.3) verwendet oder bei -20°C gelagert.

3.4.5 Expression und Aufreinigung von GST-Fusionsproteinen

3.4.5.1 IPTG-induzierte Expression von GST-Fusionsproteinen in E.coli

Jeweils 50µl E.coli BL2-CodonPlus®(DE3)-RIPL von Stratagene wurden mit Plasmid-DNA transformiert (siehe 3.3.3), auf LB-Amp⁺-Platten ausgestrichen und über Nacht bei 37°C im Brutschrank inkubiert. Die mit Kolonien bewachsenen Platten wurden bis zum Animpfen von 5 ml-Vorkulturen (LB-Medium mit Zusatz von 100 µg/ml Ampicillin) bei 4°C gelagert. Nach 16 h Inkubation bei 37°C, 225 U/min wurden die 5 ml-Vorkulturen mit LB-Medium auf ein Gesamtvolumen von 50 ml aufgefüllt. Es folgte eine Inkubation zunächst für 1 h bei 37°C, 225 U/min und für weitere 1,5 h bei 37°C, 110 U/min. Von der Bakterienkultur wurden 500 µl als Kontrolle entnommen, pelletiert, in 100 µl 1x Probenpuffer resuspendiert und nach Denaturierung bei -20°C gelagert. Die Induktion durch Zugabe von IPTG (1 mM Endkonzentration) erfolgte für 4,5 h bei 37°C, 225 U/min. Erneut wurden 500 µl der Bakterienkultur zur späteren Kontrolle der induzierten Expression von GST-Fusionsproteinen entnommen. Die 50 ml-Bakterienkultur wurde für 30 min bei 5850 U/min, 4°C zentrifugiert. Das resultierende Pellet wurde zweimal mit
10 ml PBS/1% Tx-100 gewaschen und anschließend bis zur weiteren Verarbeitung bei -20°C gelagert.

3.4.5.2 Aufreinigung von GST-Fusionsproteinen

"slurry"-Glutathion-Sepharose wurden in 15 ml-Falcon-Gefäße überführt und dreimal durch Resuspendieren in je 10 ml PBS mit anschließendem Sedimentieren für 3 min bei 2000 U/min gewaschen. In PBS äquilibrierte Affinitätsmatrix wurde bis zur Inkubation mit Proteinlysat bei 4°C aufbewahrt.

Auf Eis lagernd aufgetaute Bakterienpellets wurden in 18 ml PBS/1% Tx-100 re-suspendiert und in drei Portionen à 6 ml auf 15 ml-Gefäße verteilt. Die Bakterien-suspension wurde zum Zellaufschluss einer Ultraschall-Behandlung (3 Zyklen, je 10 Impulse, max. Amplitude) unterzogen, wobei die Proben auf Eis lagerten. Anschließend wurden die Lysate auf 2 ml-Reaktionsgefäße verteilt und Zelltrümmer durch Zentrifugation für 30 min, 13200 U/min, 4°C pelletiert. Die Überstände wurden zum Rohlysat vereinigt. Als Kontrolle wurden 100 µl Rohlysat entnommen und wie unter 3.4.7.2 beschrieben aufgearbeitet. Jeweils 12 ml Rohlysat wurden für die Kopplung der GST-Proteine an die Sepharose-Matrix eingesetzt. Die Inkubation erfolgte ü.N., 4°C auf dem Rollmischer. Vom Lysat-Matrix-Gemisch wurden 100 µl als Kontrolle entnommen. Durch Zentrifugation für 2 min bei 2000 U/min wurde die Matrix mit gebundenen GST-Fusionsproteinen pelletiert. Um ungebundene Proteine von der Matrix zu entfernen, folgten fünf repetitive Waschschritte mit je 10 ml PBS/1% Tx-100 und Zentrifugation für 2 min bei 2000 U/min. Anschließend wurde die Matrix in ein 2 ml-Reaktionsgefäß überführt, um die GST-Fusionsproteine mit jeweils 500 µl 5 mM Glutathion/ 50mM Tris-HCl zu eluieren. Der Elutionsschritt wurde fünfmal wiederholt und die sechs Fraktionen à 500 µl zum Gesamt-Eluat (3 ml) vereinigt. Die finale Proteinkonzentration wurde nach Bradford (siehe 3.4.3.3) bestimmt. Um die Abtrennung der Proteine von der Matrix zu überprüfen, wurden 100 µl Sepharose nach der Elution entnommen. Expression und Aufreinigung der GST-Fusionsproteine wurden durch SDS-PAGE mit den entnommenen Kontrollen und jeweils einem 5 µl-Aliquot des Gesamt-Eluats und anschließender Coomassie-Färbung des Gels überprüft.
3.4.6 Cdc42/Rac1/2/3-Aktivierungsassay

Basierend auf der Tatsache, dass viele Rho-GTPase Effektorproteine spezifisch die aktivierte, GTP-gebundene, aber nicht die inaktive, GDP-gebundene Form von Cdc42 und Rac1/2/3 erkennen und komplexieren, kann mit einem Bindungsassay der Aktivierungsstatus der beiden GTPasen untersucht werden. Die als GST-Fusionsprotein exprimierte CRIB-Domäne (*Cdc42/Rac Interactive Binding Region*) des PAK1-Proteins (*p21 activated kinase 1*) wird als Bindungspartner für Cdc42 und Rac1/2/3 eingesetzt, um deren Aktivierungsstatus in verschiedenen Zelllinien zu analysieren. Das CRIB-Motiv bindet mit sehr hoher Affinität und spezifisch nur die GTP-gebundene Form der beiden Rho-GTPasen. Die Bindung resultiert zudem in einer verminderten Hydrolyse des gebundenen GTP zu GDP. Somit ist eine Aufreinigung bzw. ein „Pulldown“ von GTP-Cdc42 und GTP-Rac1/2/3 aus den Zellyphaten möglich. Anhand einer nachfolgenden Western Blot Analyse können die präzipitierten Cdc42- und Rac1/2/3-Mengen verglichen werden.

3.4.6.1 Pulldown von GTP-Cdc42 und Rac1/2/3 mit GST-PAK1(CRIB)*

*: Das pGEX-2T-PAK1(CRIB)-Expressionsplasmid wurde freundlicherweise von Prof. Äpfelbacher (Institut für Mikrobiologie, UKE Hamburg) zur Verfügung gestellt.

<table>
<thead>
<tr>
<th>PD-Lysis-Puffer</th>
<th>PD-Waschpuffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 mM NaCl</td>
<td>150 mM NaCl</td>
</tr>
<tr>
<td>50 mM Tris-HCl (pH 7,4)</td>
<td>50 mM Tris-HCl (pH 7,4)</td>
</tr>
<tr>
<td>5 mM MgCl₂</td>
<td>5 mM MgCl₂</td>
</tr>
<tr>
<td>0,1 mM Natriumdeoxycholat</td>
<td>1% (v/v) Triton X-100</td>
</tr>
<tr>
<td>0,1% (v/v) SDS</td>
<td></td>
</tr>
<tr>
<td>1% (v/v) Triton X-100</td>
<td></td>
</tr>
<tr>
<td>frisch vor Gebrauch: 1x Protease-Inhibitoren (Roche)</td>
<td></td>
</tr>
</tbody>
</table>

Zur Durchführung des Cdc42/Rac1/2/3-Aktivierungsassays wurden pro Ansatz je 20 µg GST-PAK1-CRIB bzw. GST-Protein an Glutathion-Sepharose 4B (GE Healthcare) gekoppelt. Hierfür wurden jeweils 100 µl der als 50% „slurry“ vorliegenden Matrix in PBS äquilibriert und mit GST-Proteinen in 200 µl PBS für 2 h bei 4°C inkubiert. Um ungebundene GST-Proteine zu entfernen, wurde dreimal mit jeweils 1 ml PBS gewaschen und 1 min bei 2000 U/min zentrifugiert. Während der Herstellung der Proteinlysat portrayed die Matrix bei 4°C.
Zu analysierende Zellen wurden geerntet und mit 1 ml PD-Lysis-Puffer pro konfluenter T75-Zellkulturflasche aufgeschlossen. Die Zelllyse erfolgte für 10 min auf Eis, es folgte eine Zentrifugation für 10 min, 4°C bei 13,200 U/min. Der Überstand wurde in frische 1,5 ml-Reaktionsgefäße überführt. Die Konzentration des Proteinlysats wurde nach Bradford (siehe 3.4.3.3) ermittelt und durch Zugabe von PD-Lysis-Puffer auf 1 µg/µl eingestellt. Pro Ansatz wurden 0,5-1 mg Gesamtprotein mit 100 µM GDP oder dem nicht-hydrolysierbaren GTP-Derivat GMP-PNP (Sigma) versetzt und zum „Pulldown“ mit Sepharose-gekoppeltem GST-PAK1-CRIB oder GST-Protein ü.N. bei 4°C inkubiert. Die Matrix wurde dreimal vorsichtig mit je 1 ml PD-Waschpuffer resuspendiert und 1 min bei 2000 U/min zentrifugiert. Die Elution gebundener Proteine erfolgte durch Erhitzen der Matrix in 50 µl 2x Probenpuffer für 10 min bei 95°C mit anschließender Inkubation auf Eis. Die Sepharose wurde durch Zentrifugation bei 5000 U/min sedimentiert, der Überstand quantitativ abgenommen und für eine nachfolgende Western Blot Analyse verwendet.

3.4.7 Tunikamycin-induzierte Inhibition der N-Glykosylierung

Die Tunikamycin-Stocklösung enthielt 1 mg/ml Tunikamycin (Sigma) in DMSO. Die zu untersuchenden Zellen wurden in 6-well-Kulturschalen bis zu einer Konfluenz von 50%-60% im entsprechenden Medium kultiviert. Für die Tunikamycin-Behandlung wurde das Kulturmedium gegen Medium ausgetauscht, welches 0,1-10 µg/ml Tunikamycin enthielt. Die Zellen wurden für weitere 24 h im Brutschrank kultiviert. Als Kontrolle wurden parallel Zellen mit der entsprechenden Menge DMSO (0,1-10 µl DMSO/ml Medium) kultiviert. Eine veränderte Glykosylierung des Zielproteins wurde mittels Western Blot analysiert.
Material und Methoden

3.4.8 Inhibition der Ubiquitin-vermittelten Proteindegradation

Der proteasomale Abbau von Ubiquitin-konjugierten Proteinen kann durch das Reagenz MG-132 (Calbiochem) gezielt inhibiert werden, was zur Akkumulation der entsprechenden Proteine innerhalb der Zellen führt. Auf diese Weise können Rückschlüsse auf die Stabilität von Proteinen gezogen werden.

Für die Behandlung mit MG-132 über einen Zeitraum von 2 h bis 16 h wurden pro Zeitwert jeweils 2x10^5 Zellen in T25-Kulturflaschen ausgesät. Nach Erreichen einer 80-90% Konfluenz wurde eine Flasche unbehandelter Zellen als Kontrolle geerntet, und somit der Zeitpunkt T₀ markiert. Bei den verbliebenen Zellkulturflaschen wurden das Medium gegen ein mit 10 µM MG-132 (10 mM Stock in DMSO) versetztes Medium ausgetauscht. Nach jeweils 2 h, 4 h, 8 h, 12 h und 16 h Inkubation wurden die Zellen geerntet. Parallel zu jedem Zeitwert wurden Zellen als Kontrollen geerntet, deren Medium mit 0,5% (v/v) DMSO versetzt war. Die inhibierte Degradation des Zielproteins wurde anschließend in einer Western Blot Analyse untersucht.

3.4.9 Indirekte Immunfluoreszenz-Färbungen

Zellen wurden auf Vierkammer-Objektträgern (Nunc) ausgesät. Bei geeigneter Zelldichte wurde das Kulturmedium abgenommen, die Zellen zweimal mit jeweils 750 µl PBS gewaschen und anschließend mit 100% Methanol (-20°C) auf Eis für 10 min fixiert und permeabilisiert. Danach wurden die Zellen dreimal mit jeweils 750 µl PBS gewaschen. Zur Absättigung unspezifischer Bindungsstellen wurden die Zellen mit 1% (w/v) BSA/PBS für 30 min bei RT inkubiert. Der primäre Antikörper wurde in geeigneter Verdünnung in 1% (w/v) BSA/PBS verdünnt und für 90 min bei RT inkubiert. Nach dieser Inkubation wurden die Zellen viermal mit 750 µl PBS gewaschen. Die Inkubation mit sekundärem Antikörper (Alexa Fluor® 488 donkey anti-rabbit IgG) erfolgte bei einer Verdünnung von 1:200 in 1% (w/v) BSA/PBS für 90 min im Dunkeln. Die Zellen wurden nun dreimal mit 750 µl PBS gewaschen. Zur unspezifischen Färbung der Zellkerne wurden jeweils 500 µl einer 1:5000 in PBS verdünnten DAPI-Färbelösung auf die Zellen gegeben und 1 min bei RT inkubiert. Anschließend wurden die Zellen dreimal mit 750 µl PBS gewaschen. Zur Entfernung der Plastikkammern von dem Objektträger wurden 500 µl 70% Ethanol in die Kammern gefüllt und 10 min inkubiert. Dies führte zur
Material und Methoden

Auflösung des Klebstoffes, so dass die Plastikkammern entfernt werden konnten. Die Zellen wurden abschließend in jeweils 30 µl Mowiol eingebettet und bis zur Auswertung an einem dunklen Ort gelagert. Die Färbung der Zellen wurde im Fluoreszenzmikroskop (Leica, Type DM LB) begutachtet und mit Hilfe einer an das Mikroskop gekoppelten Kamera dokumentiert. Mit dem digitalen Bildverarbeitungssystem KAPPA (KAPPA opto-electronics GmbH, Gleichen) wurden die Aufnahmen verwaltet und bearbeitet.

3.4.9.1 Herstellung von Mowiol

Zur Herstellung von Mowiol Mounting Medium wurden 2,4 g Mowiol Typ 4-88 (Calbiochem) mit 6 ml Glycerol in einem 50 ml-Röhrchen verrührt, mit 6 ml H₂O versetzt und 2 h auf einem Drehschüttler vermischt. Nach Zugabe von 12 ml 200 mM Tris-HCl (pH 8,5) wurde die Lösung für 10 min auf 50°C erwärmt und nach Abkühlung auf RT 15 min bei 5000 g zentrifugiert. Das Pellet wurde verworfen. Vom Überstand wurden Mowiol-Aliquots à 500 µl angefertigt und bei -20°C gelagert.

3.4.10 Immunhistochemische Färbung von Paraffin-Schnitten und TMAs

Anhand von immunhistochemischen Färbungen wurden Untersuchungen zu Proteinexpressionen im Gewebe angestellt. Als Material für diese Analysen dienten Gewebeschnitte von operativ entfernten Mammakarzinomen (n=42), angefertigt am Institut für Pathologie (UKE, Hamburg) und freundlicherweise zur Verfügung gestellt von Prof. Dr. Löning. Desweiteren wurden verschiedene AccuMax™ Tissue Micro Arrays (TMAs) der Firma ISU ABXIS Co., Ltd (Tab. 3.3) verwendet.

Tab. 3.3: Zusammenfassung der verwendeten TMAs

<table>
<thead>
<tr>
<th>TMA</th>
<th>Bezeichnung</th>
<th>Anzahl der Fälle</th>
<th>Spots pro Fall</th>
<th>Spots Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalgewebe</td>
<td>A103 (VI)</td>
<td>45</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>verschiedene Tumoren</td>
<td>A301 (V)</td>
<td>30</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>+ korrespondierende Normalgewebe</td>
<td>A301 (V)</td>
<td>30</td>
<td>1</td>
<td>90</td>
</tr>
</tbody>
</table>
Die Formalin-fixierten und in Paraffin eingebetteten Gewebeschnitte wurden zunächst deparaffiniert und anschließend im Dampfdruckinkubator (BioGenex, San Ramon, USA) für 5 min bei 125°C in Zitrat-Puffer (BioGenex) inkubiert und danach dreimal für 3 min mit TBS, 0.05% Tween-20 gewaschen. Die endogene Peroxidase-Aktivität wurde durch eine Behandlung mit jeweils 100 µl DAKO REAL™ (DAKO, Glostrup) nach Angaben des Herstellers blockiert. Anschließend wurden die Schnitte dreimal 3 min mit TBS-Tween gewaschen. Die Inkubation mit dem 1:500-verdünnten primären Antikörper erfolgte über Nacht bei 4°C. Im Anschluss daran wurden die Schnitte dreimal 3 min mit TBS-T gewaschen. Es folgten eine Inkubation mit jeweils 150 µl DAKO REAL™ Envision™/HRP (DAKO) für 15 min bei RT und erneut drei Waschschritte. Zum Ablauf der Detektionsreaktion wurden die Schnitte für 10 min mit DAB (3,3'-Diaminobenzidine) inkubiert. Zur Gegenfärbung wurde für 2 sec eine Behandlung mit Mayers-Hemalaun-Lösung (Merck) vorgenommen. Danach wurden die Präparate für 2 min mit H₂O gewaschen und eingedeckelt.
4 Ergebnisse

4.1 Transformierende Eigenschaften von CRB3

4.1.1 Identifizierung von zwei CRB3-Transkriptvarianten

Für erste Untersuchungen standen murine, embryonale NIH3T3-Fibroblasten, die mit einem für das CRB3-Protein kodierenden retroviralen Expressionsplasmid (pMXs-CRB3) transduziert wurden, zur Verfügung. Bioinformatische Analysen deuteten darauf hin, dass sich von der als Provirus in das Wirtsgenom integrierten CRB3A-cDNA möglicherweise unterschiedliche Gentranskripte ableiten könnten. Wie bereits beschrieben (siehe 2.3.2), entstehen durch alternatives Spießen des vom CRB3-Gen abgeleiteten Primärtranskripts zwei mRNA-Transkriptvarianten, die jeweils für unterschiedliche Isoformen des CRB3-Proteins kodieren. Dass die alternativen CRB3-Transkriptvarianten auch von der proviral integrierten CRB3-cDNA abgeleitet werden können, ist in Abb. 4.2 dargestellt. Sowohl die Donor- als auch die Akzeptorsequenz der alternativen Spießstelle sind in Exon 4 der CRB3-cDNA enthalten, was die Expression beider Transkriptvarianten zur Folge haben könnte. Um diese Möglichkeit genauer zu untersuchen, wurde aus den NIH3T3/CRB3-Zellen genomische DNA und Gesamt-RNA isoliert und einer PCR-Analyse unterworfen.
Ergebnisse

Die Amplifikation der proviralen CRB3-cDNA erfolgte mit vektorspezifischen Primern, die die CRB3-cDNA flankierten. CRB3-Gentranskripte wurden mittels RT-PCR-Analyse mit den CRB3-spezifischen Primern MP25-4/MP25-12 (siehe Tab. 7.3, Anhang) dargestellt. Als Kontrollen für die PCR-Analysen wurden jeweils Ansätze mit genomischer DNA bzw. cDNA der parentalen, d.h. nicht transduzierten NIH3T3-Fibroblasten mitgeführt.

Von genomischer DNA der stabil transduzierten NIH3T3/CRB3-Zellen wurde ein ca. 1400 Bp-Fragment amplifiziert (Abb. 4.1, A). Eine nachfolgende Sequenzanalyse bestätigte, dass es sich hierbei um die stabil in das Wirtsgenom integrierte CRB3-cDNA handelte. Bei der RT-PCR Amplifikation von CRB3-Gentranskripten wurden überraschenderweise zwei PCR-Produkte mit Fragmentgrößen von ca. 500 Bp
und 850 Bp gebildet (Abb. 4.1, B). Die DNA-Sequenzierung dieser PCR-Produkte ergab, dass die Amplifikationsprodukte zwei unterschiedliche CRB3-Gentranskripte darstellten, die ihrerseits für zwei unterschiedliche Isoformen des CRB3-Proteins kodieren. Das 800 Bp-Fragment entspricht dabei der Transkriptvariante (Genebank accession number: NM_139161.3), welche für die CRB3A-Isoform kodiert. Das kürzere 500 Bp-Fragment entspricht der Transkriptvariante (Genebank accession number: NM_174881.2), die für die CRB3B-Isoform kodiert (siehe 2.3.2; Abb. 2.5) Auf die Verwendung der offiziellen Bezeichnung als Transkriptvariante II (CRB3A) bzw. III (CRB3B) wurde in dieser Arbeit aus Übersichtsgründen verzichtet.

Die Erkenntnis, dass die NIH3T3/CRB3-Zelllinie beidere Spleißvarianten des CRB3-Transkripts und demzufolge beide CRB3-Isoformen exprimiert, warf die Frage auf, welches der beiden Genprodukte die beobachteten transformierenden Eigenschaften vermittelt.

4.1.2 Herstellung von CRB3A- und CRB3B-Expressionsplasmiden

Um eindeutig zu klären, welche der beiden CRB3-Isoformen die onkogene Transformation der Zellen vermittelt, wurden Expressionsplasmide generiert, die ausschließlich für CRB3A oder CRB3B, nicht aber für CRB3A und CRB3B kodierten. Da zu Beginn dieser Studien keine CRB3-spezifischen Antikörper zur Verfügung standen, sollten Expressionsplasmide generiert werden, die für Epitop-getaggt CRB3-Proteine kodierten. Weil im C-terminalen Bereich wichtige Binde-domänen lokalisiert sind, deren Funktion durch das Anhängen eines FLAG-Tags beeinträchtigt sein könnte, kam ausschließlich eine N-terminale Markierung der Proteine in Frage. Hierbei musste wiederum beachtet werden, dass die ersten 20 Aminosäuren der CRB3-Proteine als Signalpeptid fungieren, dessen Abspaltung zum Verlust eines N-terminalen FLAG-Tags führen würde. Um das zu vermeiden, wurden CRB3-cDNAs in die Plasmide eingebracht, denen die für das Signalpeptid kodierende DNA-Sequenz fehlte. Ersetzt wurde das CRB3-Signalpeptid durch eine dem FLAG-Tag vorgeschaltete Preprotrypsin-Sequenz. Die CRB3A- und CRB3B-cDNAs wurden unter Verwendung der Primerpaare CRB3-1/CRB3-IIa-6 bzw. CRB3-1/CRB3-2 (siehe Tab. 7.3, Anhang) amplifiziert und in den pFLAG-CMV-3-Vektor (Sigma) kloniert. Die Funktionalität der Konstrukte wurde in

4.1.3 Stabile Transfektion von NIH3T3-Zellen mit isoformspezifischen FLAG-CRB3-Expressionsplasmiden

Abbildung 4.4 zeigt exemplarisch die Western Blot Analyse von jeweils 6 CRB3A- und CRB3B-exprimierenden Zellklonen. Bemerkenswert ist, dass alle CRB3A-exprimierenden Zellklone eine starke Überexpression des Proteins aufweisen, während die im Western Blot detektierten Signale für das CRB3B-Protein in allen Zellklonen fragwürdig und schwer zu deuten waren. Die Expression des CRB3B-Transgens konnte zwar auf transkriptioneller, nicht aber auf Proteinebene belegt werden. Diese Befunde gaben Anlass zur Durchführung weiterer Untersuchungen zur Stabilität des CRB3B-Proteins (siehe 4.6).
Ergebnisse

4.1.4 CRB3A induziert die morphologische Transformation von NIH3T3 Zellen

Veränderungen der Zellmorphologie sind ein wichtiges Indiz für die Transformation von NIH3T3-Fibroblasten. Um die Morphologie von parentalen, CRB3A-, CRB3B-, sowie RAF1-überexprimierenden NIH3T3-Zellen vergleichend auszuwerten, wurden die Zelllinien bei annähernd gleicher Konfluenz (~70%) lichtmikroskopisch begutachtet und bei 40-facher Vergrößerung fotografisch dokumentiert.

Parentale NIH3T3-Zellen besitzen flache Zellkörper, relativ kurze Zellfortsätze und weisen ein regelmäßiges Wachstum auf. Wie in Abb. 4.5 zu sehen ist, weichen RAF1- und CRB3A-überexprimierenden Zellen in ihrer Morphologie sehr stark von der parentalen Zelllinie ab.
Abb. 4.5: Die Morphologie von parentalen, RAF1-, CRB3A- und CRB3B-überexprimierenden NIH3T3-Zellen im Vergleich. Die Auswertung erfolgte bei 40-facher Vergrößerung im Lichtmikroskop.

Die Zellkörper der RAF1-exprimierenden Fibroblasten sind kleiner, stark lichtbrechend und wachsen im Vergleich zu parentalen Zellen deutlich ungeordneter. CRB3A-exprimierende Zellen sind auffallend spindelförmig, ebenfalls stark lichtbrechend und bilden lange Zellfortsätze aus. Bei zunehmender Konfluenz fällt die „verwirbelte“ Anordnung der Zellen auf. CRB3B-überexprimierenden Fibroblasten weisen keine erkennbaren morphologischen Veränderungen auf. Sie unterscheiden sich in Form und Anordnung nicht von den parentalen NIH3T3-Zellen (siehe Abb. 4.5)

4.1.5 CRB3A und CRB3B vermitteln eine Steigerung der Teilungsaktivität in NIH3T3-Fibroblasten

Die in Abb. 4.6 dargestellten Proliferationskurven zeigen, dass die Expression von CRB3A im gleichen Maß zu einer erhöhten Teilungsaktivität von NIH3T3-Zellen führt wie die Expression des Onkogens RAF1. Interessanterweise wird ein noch stärkerer proliferationsfördernder Effekt durch die CRB3B-Expression erzielt.
Abb. 4.6: Die Analyse des Proliferationsverhaltens von parentalen, RAF1-, CRB3A und CRB3B-exprimierenden NIH3T3-Zellen über einen Zeitraum von 6 Tagen. Die Expression von CRB3A und CRB3B führt zur Steigerung der Teilungsaktivität in NIH3T3 Zellen.

Die aus dem Verlauf der Proliferationskurven berechneten Verdopplungszeiten (T_D) spiegeln einen Anstieg in der Teilungsaktivität durch die Expression von CRB3A und CRB3B in NIH3T3-Fibroblasten ebenfalls wieder (siehe Tab. 4.1).

Tab. 4.1: Verdopplungszeiten (T_D) der analysierten Zelllinien

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>NIH3T3</th>
<th>RAF1</th>
<th>CRB3A</th>
<th>CRB3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_D [h]</td>
<td>20,8</td>
<td>19,3</td>
<td>19,4</td>
<td>18,1</td>
</tr>
</tbody>
</table>

4.1.6 CRB3A exprimierende NIH3T3-Zellen wachsen Substrat-unabhängig

Parentale NIH3T3-Fibroblasten waren unter den im Soft-Agar Assay gegebenen Kulturbedingungen nicht teilungsfähig. Sie bildeten keine Zellkolonien aus, nur vereinzelt wurden Zellcluster im 2-4-Zellstadium beobachtet.
Ergebnisse

Abb. 4.7: Substrat-unabhängiges Wachstum von parentalen, RAF1-, CRB3A- und CRB3B-exprimierenden NIH3T3-Zellen im Soft-Agar-Assay. Gezeigt sind repräsentative Zellkolonien der untersuchten Zelllinien, aufgenommen bei 40-facher Vergrößerung im Lichtmikroskop (A) und die Quantifizierung der gebildeten Kolonien im Diagramm (B).

4.1.7 NIH3T3/CRB3A-Zellen bilden Tumoren in immundeizenten Mäusen

Die in vivo Tumorigenität von CRB3A- und CRB3B-exprimierenden NIH3T3-Fibroblasten wurde durch Implantation der Zellen in immundeizenten Nacktmäuse (Stamm: NMRI) ermittelt. Parallel dazu wurden die parentalen und RAF1-exprimierenden Zelllinien als Kontrollen mitgeführt. Die Injektion von jeweils 1×10^6 Zellen erfolgte subkutan zwischen die Schulterblätter der Tiere, wobei pro Zelllinie fünf Tiere injiziert wurden. Die Tiere wurden anschließend alle drei Tage begutachtet und hinsichtlich der Bildung von Tumoren untersucht. Die Terminierung der
Tiere wurde bei einer Tumorgröße von 1 cm³ vorgenommen. Alle verbliebenen tumorfreien Versuchstiere wurden nach insgesamt 70 Tagen terminiert.

Abb. 4.8: Die Untersuchung der in vivo Tumorigenität von parentalen, RAF1-, CRB3A und CRB3B-exprimierenden NIH3T3-Fibroblasten. Gezeigt ist jeweils ein repräsentatives Tier aus jeder Versuchsgruppe. RAF1 und CRB3A induzierten ein starkes Tumorwachstum. Parentale und CRB3B-exprimierende Zellen bildeten nach 70 Tagen keine Tumoren aus.

Jeweils ein repräsentatives Tier pro Versuchsgruppe ist in Abb. 4.8 dargestellt. Eine starke Tumorigenität konnte für CRB3A-exprimierende NIH3T3-Zellen festgestellt werden. Erwartungsgemäß induzierte auch RAF1 Tumorwachstum in allen fünf Versuchstieren. Tab. 4.2 ist zu entnehmen, dass die mittlere Latenz der CRB3A-induzierten Tumore mit 11,5 Tagen im Vergleich zur RAF1-Positivkontrolle mit 15 Tagen sogar verkürzt war. Für parentale NIH3T3 und NIH3T3/CRB3B-Zellen konnte kein Tumorwachstum festgestellt werden.

Tab. 4.2: Anzahl und Latenz der Tumorbildung verschiedener NIH3T3-Zelllinien

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>NIH3T3</th>
<th>RAF1</th>
<th>CRB3A</th>
<th>CRB3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumoren pro Injektion (tastbar)</td>
<td>0/5</td>
<td>5/5</td>
<td>5/5</td>
<td>0/5</td>
</tr>
<tr>
<td>Latenz (Tage)</td>
<td>--</td>
<td>13-19</td>
<td>10-13</td>
<td>--</td>
</tr>
<tr>
<td>Median (Tage)</td>
<td>--</td>
<td>15</td>
<td>11,5</td>
<td>--</td>
</tr>
</tbody>
</table>

Anhand der durchgeführten Transformations-Assays konnte erstmals gezeigt werden, dass ein CRB3-Genprodukt onkogene Eigenschaften besitzt. Die stabile Expression von CRB3A in NIH3T3-Zellen führte zu Veränderungen der Morphologie, steigerte die Zellteilungsaktivität, vermittelte die Fähigkeit zum

4.2 Die Signalkaskade der CRB3A-induzierten Transformation

4.2.1 CRB3A ist intrazellulär lokalisiert in NIH3T3-Zellen

4.2.2 Das C-terminale ERLI-Motiv ist essenziell für die CRB3A-induzierte Transformation von NIH3T3-Zellen

Durch Studien mit MDCK-Zellen wurde gezeigt, dass die C-terminale ERLI-Domäne des CRB3A-Proteins essenziell ist für die Ausbildung der epithelialen Zellpolarität und die Bildung von tight junctions. Dem ebenfalls in der zytoplasmatischen Domäne gelegenen FERM-Bindemotiv wird eine stabilisierende Funktion bei der Interaktion mit CRB3A-Komplexeptnern zugeschrieben (siehe 2.2.1). Um zu klären, welche der CRB3-Proteindomänen für die Entwicklung des transformierenden Potenzials essenziell sind, wurden die „Wildtyp“ CRB3-Isoformen und verschiedene CRB3-Mutanten durch einen retroviralen Gentransfer in NIH3T3-Zellen eingebracht und anschließend im Fokus Assay hinsichtlich ihrer
 transformierenden Eigenschaften untersucht. Hierfür wurden retrovirale pMXs-Expressionplasmide hergestellt, welche für CRB3A oder B, CRB3A und B, CRB3aa1-100 und CRB3A-\(\Delta\)ERLI kodierten (Abb. 4.8, A). Die CRB3aa1-100-Mutante kodiert für ein trunkiertes CRB3-Protein, welches die für beide Isoformen identische Aminosäuresequenz (1-100) enthält. Bei CRB3A-\(\Delta\)ERLI handelt es sich um eine verkürzte Variante von CRB3A. Durch Deletion der C-terminalen Aminosäuren -ERLI fehlt dieser Mutante die PDZ-Protein-Bindedomäne. Der schematische Aufbau der Konstrukte ist in Abb. 4.10 dargestellt. Als Template für die Amplifikation der entsprechenden DNA-Fragmente dienten die unter 4.1.2 beschriebenen pIRES-Konstrukte, die verwendeten Oligonukleotide sind Tab. 7.3 im Anhang zu entnehmen.

Zur Durchführung des retroviralen Gentransfers wurden \(\psi\)nx-eco-Zellen mit pMXs-Expressionsvektoren transfiziert (siehe 3.2.7). Nach 48 h wurden die in den Zell-

Ob die ERLI-Sequenz auch für die Steigerung der Zellteilungsaktivität essenziell ist, wurde an NIH3T3-Zellen untersucht, die CRB3A und CRB3A-ΔERLI nach retroviraler Transduktion stabil überexprimierten. Analog zu den in 4.1.5 durchgeführten Studien wurde das Teilungsverhalten der Zelllinien über einen Zeitraum von 6 Tagen analysiert und mit dem der parentalen Zellen verglichen.

Die Deletion der ERLI-Domäne führt zum Verlust der proliferationsfördernden Funktion von CRB3A. Anhand der erstellten Proliferationskurven (Abb. 4.11) ist zu erkennen, dass die CRB3A-ΔERLI exprimierende Zelllinie ein nahezu identisches Teilungsverhalten wie die parentale NIH3T3-Zelllinie aufweist.
4.2.3 Identifizierung von CRB3A-Bindungspartnern in NIH3T3-Zellen

Abb. 4.12: Identifizierung eines CRB3A-Interaktionspartners in NIH3T3-Zellen durch Co-Immunpräzipitation (Co-IP) mit FLAG-CRB3A und FLAG-CRB3-∆ERLI. Für die Durchführung der Co-IP wurden Sepharose-gekoppelte FLAG-Antikörper verwendet. Das PDZ-Protein Par6 konnte mit FLAG-CRB3A, aber nicht mit FLAG-CRB3-∆ERLI co-präzipitiert und im Western Blot nachgewiesen werden. Parentale NIH3T3-Zellen dienten als Kontrollen.

Wie die Western Blot Analysen (Abb. 4.12) belegen, wurden gleiche Mengen FLAG-CRB3A- und FLAG-CRB3-ERLI-Protein für die Co-Immunpräzipitationen eingesetzt. Der Immunoblot mit Par6-spezifischen Antikörpern (Abcam) ergab ein Signal für die Co-IP mit FLAG-CRB3A, aber nicht für die Co-IP mit der ERLI-Mutante. Durch die mitgeführten Lysat-Kontrollen konnte ausgeschlossen werden, dass dieses Signal als Folge einer gesteigerten Par6-Expression in den CRB3A-
exprimierenden Zellen zustande kam. Der Nachweis von PALS1 blieb für alle Co-IP-Ansätze ohne Befund.

4.2.4 Der CRB3A-Par6-Komplex rekrutiert die Rho-GTPasen Cdc42 und Rac1/2/3

Basierend auf dem Nachweis der CRB3A-Par6-Interaktion in NIH3T3-Zellen wurde eine Arbeitshypothese zur Entschlüsselung der weiteren Signalkaskade aufgestellt. In Studien zum transformierenden Potenzial der neuronalen Proteine Rin und Rit wurde gezeigt, dass deren Bindung an die PDZ-Domäne von Par6 zur GTP-abhängigen Rekrutierung der kleinen RhoGTPasen Cdc42 und Rac1/2/3 an die CRIB-Domäne des Par6-Proteins führt (Abb. 4.13) [91]. Die Aktivierung von Cdc42 und Rac1/2/3 trägt wiederum zur onkogenen Transformation in NIH3T3-Fibroblasten bei.

Des Weiteren belegen Studien an MDCKII-Zellen, dass die Interaktion zwischen Par6 und Cdc42 die Ausbildung der tight junctions und somit die Differenzierung der epithelialen Zellen negativ reguliert [92]. Eine ähnliche Signalkaskade könnte auch für die CRB3A-induzierte Transformation verantwortlich sein. Um zu überprüfen, ob es in Folge der Komplexbildung zwischen CRB3A und Par6 tatsächlich zur Rekrutierung der Rho-GTPasen Cdc42 und Rac1/2/3 kommt, wurden GTPase-
Aktivierungsassays mit parentalen, CRB3A- und CRB3A-\(\Delta\)ERLI-exprimierenden NIH3T3-Zelllinien durchgeführt. Das Prinzip des angewendeten Assays beruht auf dem für Rho-GTPasen charakteristischen zyklischen Wechsel zwischen unterschiedlichen Aktivierungszuständen und der damit assoziierten Bindungsaffinität gegenüber spezifischen Effektorproteinen (vereinfacht dargestellt in Abb. 4.15).

Abb. 4.14: Die kleinen Rho-GTPasen Cdc42 und Rac1/2/3 wechseln zyklisch zwischen verschiedenen Aktivierungszuständen. Spezifische Guanosin-Austausch-Faktoren (GEFs, guanosine exchange factors) katalysieren die Auswechslung von gebundenem GDP durch GTP, was zu einer Aktivierung der GTPasen führt. Eine intrinsische Hydrolyse des gebundenen GTP zu GDP, die durch GTPase-aktivierende Proteine (GAPs) verstärkt wird, hat wiederum die Inaktivierung der GTPasen zur Folge.

Ergebnisse

4.3 CRB3A führt zu Veränderungen im Genexpressionsmuster von NIH3T3-Zellen

Um festzustellen, ob die CRB3A-Expression Unterschiede im Genexpressionsprofil von NIH3T3-Zellen hervorruft, wurde eine vergleichende Mikroarray Analyse

<table>
<thead>
<tr>
<th>NIH3T3</th>
<th>CRB3A</th>
<th>CRB3A-∆ERLI</th>
<th>Lysat</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>GST</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>GST-PAK1</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>GDP</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>GMP-PNP</td>
</tr>
</tbody>
</table>

Cdc42
Rac1/2/3
mit NIH3T3- und NIH3T3/CRB3A-Zelllinien (siehe 4.1.3) durchgeführt. Unter Verwendung von Agilent Whole Mouse Genome 4x44 K Mikroarrays wurden die Expressionsprofile der beiden Zelllinien im Triplikat bestimmt.

Tab. 4.4: Auswahl der durch die CRB3A-Expression deregulierten Gene

<table>
<thead>
<tr>
<th>Gen-Name</th>
<th>Gen-Symbol</th>
<th>Genebank-Nr.</th>
<th>FC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochregulierte Gene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix metallopeptidase 3</td>
<td>Mmp3</td>
<td>NM_010809</td>
<td>+271,19</td>
</tr>
<tr>
<td>Dickkopf homolog 2 (Xenopus laevis)</td>
<td>Dkk2</td>
<td>NM_020265</td>
<td>+236,85</td>
</tr>
<tr>
<td>Interleukin 33</td>
<td>9230117N10Rik</td>
<td>NM_133775</td>
<td>+202,42</td>
</tr>
<tr>
<td>1110018M03Rik</td>
<td>1110018M03Rik</td>
<td>NM_026271</td>
<td>+135,31</td>
</tr>
<tr>
<td>Cholecystokinin</td>
<td>Cck</td>
<td>NM_031161</td>
<td>+126,34</td>
</tr>
<tr>
<td>Matrix metallopeptidase 10</td>
<td>Mmp10</td>
<td>NM_019471</td>
<td>+112,21</td>
</tr>
<tr>
<td>Killer cell lectin-like receptor, subfamily A, member 15</td>
<td>Ktra15</td>
<td>NM_013793</td>
<td>+81,68</td>
</tr>
<tr>
<td>Killer cell lectin-like receptor, subfamily A, member 22</td>
<td>Ktra22</td>
<td>NM_053152</td>
<td>+81,53</td>
</tr>
<tr>
<td>Killer cell lectin-like receptor, subfamily A, member 7</td>
<td>Ktra7</td>
<td>NM_014194</td>
<td>+74,07</td>
</tr>
<tr>
<td>Matrix metallopeptidase 13</td>
<td>Mmp13</td>
<td>NM_008607</td>
<td>+66,37</td>
</tr>
<tr>
<td>Herunterregulierte Gene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serine (or cysteine) peptidase inhibitor, clade A, member 3G</td>
<td>Serpina3g</td>
<td>NM_009251</td>
<td>-3333,33</td>
</tr>
<tr>
<td>Chitinase 3-like 1</td>
<td>Chi3l1</td>
<td>NM_007695</td>
<td>-1666,66</td>
</tr>
<tr>
<td>Sulfatase 2</td>
<td>Sufl2</td>
<td>NM_028072</td>
<td>-434,78</td>
</tr>
<tr>
<td>Immunoglobulin superfamily containing leucine-rich repeat</td>
<td>Islr</td>
<td>NM_012043</td>
<td>-333,33</td>
</tr>
<tr>
<td>Serum amyloid A 3</td>
<td>Saa3</td>
<td>NM_011315</td>
<td>-322,58</td>
</tr>
<tr>
<td>Eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked</td>
<td>Eif2s3y</td>
<td>NM_012011</td>
<td>-204,08</td>
</tr>
<tr>
<td>CD302 antigen</td>
<td>Cd302</td>
<td>NM_025422</td>
<td>-196,09</td>
</tr>
<tr>
<td>RNA printed and accumulated in nucleus</td>
<td>Rian</td>
<td>AK017440</td>
<td>-185,19</td>
</tr>
<tr>
<td>Insulin-like growth factor 2</td>
<td>Igf2</td>
<td>NM_010514</td>
<td>-175,44</td>
</tr>
<tr>
<td>Ring finger protein 113A2</td>
<td>Rnf113a2</td>
<td>NM_025525</td>
<td>-151,51</td>
</tr>
</tbody>
</table>

*: FC, „Fold Change“; relater Expressionsunterschied zur parentalen Zelllinie

**: Exemplarisch sind die zehn am stärksten hoch- und herunterregulierten Gene aufgelistet

Auf die vollständige Auflistung der deregulierten Gene wird in dieser Arbeit verzichtet. In Tab. 4.4 sind jeweils zehn Gene benannt, deren Expression in der NIH3T3/CRB3A-Zelllinie im Vergleich zur parentalen Zelllinie am stärksten hoch- bzw. herunterreguliert ist.
Validierung der Mikroarray-Daten durch quantitative RT-PCR

Um die Resultate der Mikroarray-Analyse zu validieren, wurden die relativen Expressionsunterschiede von zehn zufällig ausgewählten Genen mit Hilfe einer quantitativen PCR-Analyse (qRT-PCR) bestimmt. Ein Vergleich der relativen Expressionsunterschiede, die mit Hilfe der beiden Methoden ermittelt wurden, ist in Abb. 4.16 dargestellt.

Abb. 4.16: Vergleich der relativen Expressionsunterschiede von zehn deregulierten Genen in parentalen und CRB3A-exprimierenden NIH3T3-Zellen. Die Expressionsunterschiede wurden durch quantitative RT-PCR ermittelt und mit den Daten der Mikro-Array-Analyse verglichen. Die offiziellen Bezeichnungen der analysierten Gene sind in Klammern aufgeführt: Fas (TNF receptor superfamily member 6), Notch (Notch gene homolog 1), Pde1a (phosphodiesterase 1A, calmodulin-dependent), Hoxb5 (Homeo box B5), Arhgap29 (Rho GTPase activating protein 29), Gnb4 (guanine nucleotide binding protein (G protein), beta 4), Cflar (CASP8 and FADD-like apoptosis regulator), Tnc (tenascin), Adcy7 (Adenylate cyclase 7), Itgb3 (Integrin beta 3)

Die Ergebnisse beider Methoden zeigen eine sehr gute Übereinstimmung, so dass die mit der Mikroarray-Analyse ermittelten Expressionsunterschiede bestätigt werden konnten.
4.4 Studien zur Expression von CRB3 an humanen Mammakarzinom-Zelllinien

4.4.1 Herstellung von polyklonalen CRB3-Antikörpern

Für umfassende Analysen auf Ebene der Proteinexpression ist die Verfügbarkeit eines geeigneten Antikörpers Grundvoraussetzung. Um Expressionstudien durchführen zu können, sollten im Rahmen dieser Arbeit polyklonale spezifische Antikörper gegen beide CRB3-Isoformen in Kaninchen hergestellt werden. Zunächst erfolgte die Auswahl möglicher Peptide für das Immunisierungsverfahren. Durch die Auswahl der Peptidsequenzen VGARVPPTPNKLPPERE für CRB3A und FSHAAEARAPQDSTVQG für CRB3B aus den isoformspezifischen Bereichen am C-Terminus der Proteine sollte eine Kreuzreaktivität der generierten Antikörper mit der jeweils anderen CRB3-Isoform vermieden werden (Abb. 4.17).

Abb. 4.17: Schematische Darstellung der Lage der zur Immunisierung eingesetzten CRB3A- und CRB3B-Peptide innerhalb der isoformspezifischen Sequenzbereiche.

Ergebnisse

4.18: Die Reaktivität der hergestellten Antiseren (obere Reihe) und der affinitätsschmatographisch aufgereinigten Antikörper (untere Reihe) gegen CRB3A und CRB3B wurde im Western Blot an transient exprimierten FLAG-Fusionsproteinen getestet. Die Detektion mit FLAG-Antikörpern diente als Kontrolle.

Sowohl das anti-CRB3A-Serum als auch die daraus aufgereinigten Antikörper zeigten eine starke und spezifische Reaktivität mit dem CRB3A-Protein im Western Blot (Abb. 4.18). Für das anti-CRB3B-Serum wurde zunächst eine Reaktivität mit beiden CRB3-Isoformen nachgewiesen. Aufgereinigte CRB3B-Antikörper zeigten dann aber eine spezifische Reaktivität mit dem CRB3B-Protein. Kreuzreactierende Antikörper wurden durch die Aufreinigung des Anti-CRB3B-Serums erfolgreich eliminiert.

4.4.2 CRB3-Expression in humanen Mammakarzinom-Zelllinien

Um die CRB3-Expression in zehn humanen Mammakarzinom-Zelllinien auf mRNA- und Protein-Ebene zu bestimmen, wurden eine Northern Blot Analyse, eine RT-PCR-Analyse und Western Blot Analysen durchgeführt. Für die Northern Blot Analyse wurde die elektrophoretisch aufgetrennte und immobilisierte Gesamt-RNA der Mammakarzinom-Zelllinien mit einer radioaktiv-markierten, CRB3-
Ergebnisse

Abb. 4.19: Untersuchung der CRB3-Expression in zehn humanen Mammakarzinom-Zelllinien. Die Expression der beiden CRB3-Transkriptvarianten wurde anhand von Northern Blot (A) und RT-PCR-Analysen (B) nachgewiesen. Als Ladekontrolle für die Northern Blot Analyse wurde ein RNA-Gel mit Ethidiumbromid gefärbt. Der Nachweis der CRB3-Proteine (C) erfolgte mit CRB3A- bzw. CRB3B-Antikörper im Western Blot.

Aus den in Abb. 4.19 gezeigten Ergebnissen der Northern Blot Analyse ist ersichtlich, dass beide CRB3-Transkriptvarianten in allen untersuchten Zelllinien, mit

Wie in Abb. 4.19 auch zu erkennen ist, exprimieren die verschiedenen Zelllinien das CRB3A-Protein mit variierendem Molekulargewicht (MW). Diese Größenunterschiede sind möglicherweise auf eine Zelltyp-spezifische N-Glykosylierung des Proteins zurückzuführen. Um das zu überprüfen, wurden die Zelllinien T47D, BT-20 und SK-BR-3 einer Tunikamycin-Behandlung unterworfen, was eine Inhibition der N-Glykosylierung neusynthetisierter Proteine bewirkt. Effekte auf die CRB3A-Proteinexpression wurden anschliessend im Western Blot analysiert. In Abb. 4.20 ist stellvertretend das Resultat für T47D-Zellen dargestellt.

Abb. 4.20: Nachweis der CRB3A-Glykosylierung durch Behandlung mit Tunikamycin, stellvertretend dargestellt für T47D-Zellen. Mit steigender Tunikamycin-Konzentration wird die Glykosylierung des CRB3A-Proteins zunehmend inhibiert. Das Glykoprotein besitzt ein Molekulargewicht von ca. 30kD, das unglykosylierte Protein von ca. 12kD.

4.4.3 Die Expression von Zellpolaritäts- und Zelladhäsionsproteinen in Mammakarzinom-Zelllinien

Im Hinblick auf weiterführende funktionelle Studien wurden zunächst umfangreiche Western Blot Analysen zur genaueren Charakterisierung der Mammakarzinom-Zelllinien durchgeführt. Im Zuge dieser Untersuchungen wurde die Expression der CRB3A-Interaktionspartner PALS1 und Par6, der beiden Zelladhäsionsproteine E-Cadherin und ZO-1, sowie des Transkriptionsfaktors ZEB-1 untersucht. Es galt zu klären, ob möglicherweise eine deregulierte Expression von PALS1 und Par6 in den Karzinomzellen vorliegt, was mit dem Verlust der CRB3A-Funktion assoziiert sein könnte. Des Weiteren drängte sich die Frage nach einer Korrelation zwischen den Expressionsprofilen von CRB3A und ZEB-1 auf, denn an MDA-MB-231 durchgeführte Promotorstudien ergaben, dass ZEB-1 als Suppressor epithelialer Zelladhäsions- und Zellpolaritätsgene, darunter E-Cadherin, CRB3A und PALS1, fungiert [39].

Zur Durchführung der Western Blot Analysen wurden Ganzzellextrakte der Mammakarzinom-Zelllinien eingesetzt und Antikörper gegen PALS1, Par6 (St. Cruz), E-Cadherin, ZO-1 und ZEB-1 zum Nachweis der Proteine verwendet. Die Ergebnisse der Expressionsanalysen sind zusammen mit dem CRB3A-Immunoblot (siehe 4.4.2, Abb. 4.19) in Abb. 4.21 dargestellt.
Abb. 4.21: Western Blot Analysen zum Nachweis der Zellpolaritätsproteine CRB3A, PALS1 und Par6, sowie der Zelladhäsionsproteine E-Cadherin und ZO-1 und des Transkriptionsfaktors ZEB-1 in humanen Mammakarzinom-Zelllinien.

4.5 Untersuchung der CRB3A-Signalwege in MCF-7 Zellen

In weiterführenden Untersuchungen galt das Interesse den CRB3A-assoziierten Signalwegen die an der malignen Entartung von Mammakarzinom-Zellen beteiligt sind. In Anlehnung an die zuvor gewonnenen Erkenntnisse der CRB3A-induzierten Transformation von NIH3T3-Fibroblasten, sollte untersucht werden, ob die CRB3A-Par6-Signalkaskade auch in Mammakarzinom-Zellen aktiviert ist. Wie in mehreren Publikationen bereits beschrieben wurde, ist die Funktion von CRB3A bei starker Überexpression in Zellen epithelialen Ursprungs beeinträchtigt oder geht verloren [71, 86, 87]. Unter Berücksichtigung der in 4.4.3 erstellten Expressionsprofile wurde die Zelllinie MCF-7 als Modellsystem für weiterführende
Ergebnisse

4.5.1 Stabile Transfektion von MCF-7 Tet-On Zellen zur induzierbaren CRB3A-Expression

Anhand der Westen Blot Analysen, die exemplarisch für jeweils fünf der untersuchten Zellklone in Abb. 4.22, B dargestellt sind, konnten insgesamt drei Zellklone identifiziert werden, die eine Doxyzyklin-induzierte Expression von FLAG-CRB3A aufwiesen. Ein weiterer Zellklon (K-a19; Abb.4.22, B) exprimierte das Protein auch ohne Zusatz von Doxyzyklin.

Um die Sensibilität und Regulierbarkeit des Expressionssystems zu überprüfen wurde anschließend ein responsiver Zellklon (K-a36) zur Erstellung einer „Induktionskurve“ ausgewählt. Hierfür wurde das Kulturmedium der Zellen für 48 h mit jeweils $0 / 0.05 / 0.1 / 0.2 / 0.3 / 0.4 / 0.5 / 1 \mu g/ml$ Doxyzyklin supplementiert. Die FLAG-CRB3A-Expression wurde anschließend im Western Blot mittels FLAG-M2-Anitkörper analysiert.

Wie Abbildung 4.23 zeigt, erfolgte die Induktion der CRB3A-Expression in der MCF-7 TetOn/CRB3A-Zelllinie in Abhängigkeit von der eingesetzten Doxyzyklin-Konzentration. Die Zellen weisen ohne Doxyzyklin eine leichte Expression des Transgens auf, was auf die Grundaktivität des induzierbaren Promotors im pTRE-Tight-Expressionsplasmid zurückzuführen ist. Mit 0,05 bis 0,5 µg/ml Doxyzyklin wird eine kontinuierlich ansteigende Expression erzielt. Bei einer Konzentration von 1 µg/ml Doxyzyklin wird eine starke CRB3A-Überexpression induziert.

4.5.2 CRB3A ist intrazellulär lokalisiert in Mammakarzinom-Zelllinien

Ergebnisse

4.5.3 Identifizierung von CRB3A-Bindungspartnern in MCF-7 Zellen

Zur Aufdeckung der CRB3A-Signalwege in Mammakarzinom-Zellen wurden Bindungsstudien am Modell der MCF-7 TetOn/CRB3A-Zellen durchgeführt. Dabei sollte untersucht werden, ob eine Varianz der CRB3A-Expression Auswirkungen
auf die Interaktion mit anderen Proteinen und die Aktivierung potenzieller „downstream“-Effektoren hat.

Mit Hilfe von Co-Immunpräzipitationen sollte zunächst untersucht werden, ob für MCF-7 Zellen eine direkte Interaktion zwischen CRB3A und PALS1 bzw. Par6 nachgewiesen werden kann. Es wurden Zellextrakte aus MCF-7 TetOn/CRB3A angefertigt, in denen die Expression des Transgens mit jeweils 0,5 und 1 µg/ml Doxyzyklin induziert wurde. Die Immunpräzipitation der FLAG-CRB3A-Fusionsproteine und daran gebundener Proteine erfolgte unter Verwendung des ANTI-FLAG® M2 Affinitätsgels von Sigma. Der Nachweis (co-)präzipitierter Proteine erfolgte in Western Blot Analysen mittels PALS1- und Par6-spezifischer Antikörper.

4.5.4 Untersuchung der CRB3A-vermittelten Aktivierung von Cdc42 und Rac1/2/3 in MCF-7 Zellen

Um zu überprüfen ob die Bindung von Par6 an CRB3A auch in MCF-7 Zellen zur dosisabhängigen Aktivierung von Cdc42 und Rac1/2/3 führt, wurden GTPase-

Die Expression von CRB3A führt zur dosisabhängigen Aktivierung der kleinen RhoGTPasen Cdc42 und Rac1/2/3 in MCF-7 Zellen. Während eine Zunahme der Grundaktivität nur für Rac1/2/3 zu nachzuweisen war, konnte sowohl für Cdc42 als auch für Rac1/2/3 eine mit der gesteigerten CRB3A-Expression einhergehende Akkumulation der aktivierten Proteine erzielt werden. Diese Befunde deuten darauf hin, dass die Signalkaskade der CRB3A-vermittelten Transformation von NIH3T3-Zellen auch in Mammakarzinom-Zellen aktiviert ist und zur malignen Entartung der Zellen beiträgt.
4.6 Untersuchungen zur Expression des CRB3B-Proteins

4.6.1 Untersuchungen zur Stabilität des CRB3B-Proteins

Mit Hilfe des Proteasomen-Inhibitors MG-132 kann die Ubiquitin-vermittelte Proteinendegradation blockiert werden, was die Akkumulation zahlreicher Proteine in den Zellen zur Folge hat. NIH3T3/CRBB-Zellen (siehe 4.1.3) wurden für jeweils 0, 2, 4, 8, 12 und 16 h mit 10 µM MG-132 im Kulturmedium inkubiert und Zelllysate zur Durchführung von Western Blot Analysen hergestellt. Nach 16-stündiger MG-132-Behandlung wurde zusätzlich eine Immunpräzipitation unter Verwendung von ANTI-FLAG®M2 Affinitätsgebs (Sigma) durchgeführt. Als Kontrollen dienten hierbei DMSO-behandelte NIH3T3/CRB3B-Zellen. Der Nachweis des FLAG-CRB3B-Proteins erfolgte anschließend in Western Blot Analysen mittels FLAG- und CRB3B-spezifischer-Antikörper.

Die über die Dauer der MG-132-Behandlung steigenden Signale im Western Blot (Abb. 4.27, A) zeigen, dass es durch eine blockierte Proteinendegradation zur Akkumulation des FLAG-CRB3B-Proteins in den Zellen kommt.
Ergebnisse

Abb. 4.27: Nachweis der FLAG-CRB3B-Expression nach MG-132-Behandlung stabil transfizierter NIH3T3/CRB3B-Zellen. (A) In Abhängigkeit von der Behandlungsdauer kommt es nachweisbar zur Steigerung der FLAG-CRB3B-Proteinmenge, als Ladekontrolle diente HSC-70. (B) Das akkumulierte FLAG-CRB3B-Protein wurde nach der MG-132-Behandlung immunpräzipitiert und im Western Blot nachgewiesen.

Wie in Abb. 4.27, B zu sehen ist, konnte das CRB3B-Protein ausschließlich aus MG-132-behandelten und nicht aus unbehandelten NIH3T3/CRB3B-Zellen präzipitiert werden. Hieraus kann geschlussfolgert werden, dass die CRB3B-Expression über die proteasomale Degradation des Proteins reguliert wird. Ob die beobachteten Effekte tatsächlich auf die Ubiquitylierung des C-terminalen Lysin-Restes zurückzuführen sind, sollte anschließend mit Hilfe von Mutationsstudien geklärt werden.

4.6.2 Mutationsstudien zur Untersuchung einer Ubiquitin-vermittelten Degradation des CRB3B-Proteins

Der Einbau einer zielgerichteten Punktmutation in die CRB3B-kodierende Sequenz erfolgte mittels PCR. Hierfür wurde die FLAG-CRB3-cDNA zunächst in den pBlueskript-SKII-Vektor einkloniert, und dieses Konstrukt als Template für die Mutagenese-PCR (siehe 3.3.17) verwendet. Für die vollständige Amplifikation des Plasmids wurden zwei komplementäre Primer eingesetzt, welche die gewünschte Mutation trugen (siehe Tab. 7.6). In Folge der eingeführten Punktmutation kommt es zum Austausch der Aminosäure Lysin gegen Arginin an Position 114 im CRB3B-Protein. Der erfolgreiche Einbau der Mutation wurde durch eine DNA-Sequenzanalyse überprüft und die mutierte FLAG-CRB3-cDNA (siehe Abb. 4.26, A) anschließend zur Durchführung weiterer Analysen in das pIRES-Expressionsplasmid umkloniert. Die CRB3B-Mutante wird im Folgenden als CRB3B^{K114R} bezeichnet.
Um mögliche Auswirkungen auf die Expression des CRB3B-Proteins aufzudecken, wurden \(\psi \)nx eco-Zellen transient mit Expressionplasmiden, die für N-terminal FLAG-getaggte CRB3A-, CRB3B- bzw. CRB3B\(^{K114R}\)-Fusionsproteine kodierten, transfiziert und die Expression der Proteine anschließend im Western Blot durch Verwendung FLAG-spezifischer Antikörper analysiert.

![Diagramm](image)

Abb. 4.28: Die Einführung einer Punktmutation führt zum Austausch von Lysin durch Arginin an Position 114 (A). Für die mutierte CRB3B-Variante wurde im Western Blot nach transgener Expression in \(\psi \)nx-eco-Zellen ein stärkeres Signal detektiert als für Wildtyp-CRB3B (B).

Verglichen mit Wildtyp-CRB3B konnte für die CRB3B\(^{K114R}\)-Mutante eine stärkere Expression nachgewiesen werden (siehe Abb.4.28). Die Eliminierung des Lysin-Rests hatte somit durchaus einen stabilisierenden Effekt, doch trotz Einführung dieser Mutation weist das CRB3B-Protein bei identischen Transfektionsbedingungen nach wie vor eine schwächere Expression auf als das CRB3A-Protein. Die hier gezeigten preliminären Ergebnisse deuten auf eine Ubiquitin-vermittelte Regulation der CRB3B-Expression hin.

4.7 CRB3A-Expression in Mammakarzinomen und Normalgeweben

Im Einklang mit seiner Funktion als apikal sortiertes Zellpolaritätsprotein wird das
Ergebnisse

Immunreaktionen im Zytoplasma und in Vakuolen wurden bei *in situ* Karzinomen seltener beobachtet.

Tab. 4.5: CRB3-Expression in Mammakarzinomen

<table>
<thead>
<tr>
<th>Tumor Klassifizierung</th>
<th>Fälle n</th>
<th>apikale Membran</th>
<th>Zytoplasma</th>
<th>Vakuolen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Histol. Typ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duktal</td>
<td>20</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Lobulär</td>
<td>14</td>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>anderer</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Grading</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>14</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Tumorstadium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>10</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lymphknotenstatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>positiv</td>
<td>17</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>negativ</td>
<td>19</td>
<td>11</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>positiv</td>
<td>34</td>
<td>18</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>negativ</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>positiv</td>
<td>36</td>
<td>20</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>negativ</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HER2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>14</td>
<td>7</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1+</td>
<td>11</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2+</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3+</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*: zelluläre Lokalisation der Immunfärbung; 0: keine, +: schwache, ++: mäßige, +++: starke CRB3A-Expression

4.8 CRB3A-Expression in verschiedenen humanen Normalgeweben

Ergebnisse

<table>
<thead>
<tr>
<th>Gewebe</th>
<th>Zelltyp</th>
<th>Int.*</th>
<th>Lokal.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zunge</td>
<td>Plattenepithelzellen</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Lunge</td>
<td>Alveoli</td>
<td>+</td>
<td>a</td>
</tr>
<tr>
<td>Ösophagus</td>
<td>Plattenepithelzellen</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Parotis</td>
<td>Azini</td>
<td>++</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Saumepithelzellen</td>
<td>+</td>
<td>z</td>
</tr>
<tr>
<td>Magen</td>
<td>Zylinderepithel- & schleimsekretierende Zellen,</td>
<td>+</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Saumepithelzellen</td>
<td>+</td>
<td>z</td>
</tr>
<tr>
<td>Dünn darm, Duodenum, ileum, Kolon, Rektum</td>
<td>absorptive, Becher- und Kryptzellen, am stärksten Zellen des Blindarms</td>
<td>+/-++/+++</td>
<td>a</td>
</tr>
<tr>
<td>Gallenblase</td>
<td>Zylinderepithelzellen</td>
<td>+</td>
<td>a</td>
</tr>
<tr>
<td>Leber</td>
<td>Hepatozyten</td>
<td>+</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Kupferzellen</td>
<td>++/+++</td>
<td>z</td>
</tr>
<tr>
<td>Pankreas</td>
<td>Azini</td>
<td>++</td>
<td>a,z</td>
</tr>
<tr>
<td></td>
<td>Zentroazinäre Zellen</td>
<td>++</td>
<td>a,z</td>
</tr>
<tr>
<td></td>
<td>Zylinderepithelzellen, duktile Zellen</td>
<td>++</td>
<td>a,z</td>
</tr>
<tr>
<td></td>
<td>Langerhans'sche Inseln</td>
<td>+++</td>
<td>z</td>
</tr>
<tr>
<td>Mamma, Drüsen</td>
<td>Luminale Zellen</td>
<td>+</td>
<td>a</td>
</tr>
<tr>
<td>Niere, Kortex</td>
<td>Tubuläre Zellen, proximal</td>
<td>+</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td>Tubuläre Zellen, distal</td>
<td>+</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Glomeruli</td>
<td>+++</td>
<td>z</td>
</tr>
<tr>
<td>Niere, Medulla</td>
<td>Tubuläre Zellen, distal</td>
<td>++</td>
<td>z</td>
</tr>
<tr>
<td>Uterus, Ektoxervix</td>
<td>Basale and parabasale Zellen</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Uterus, Endometrium</td>
<td>- proliferativ Drüsenzellen</td>
<td>++</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>- sekretorisch Drüsenzellen</td>
<td>+</td>
<td>a</td>
</tr>
<tr>
<td>Eileiter</td>
<td>Ziliäre und sekretorische Zellen</td>
<td>+++</td>
<td>a</td>
</tr>
<tr>
<td>Ovar</td>
<td>Stromazellen</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Plazenta</td>
<td>Amnion und Chorionvilli</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Chorionepithel</td>
<td>+</td>
<td>z</td>
</tr>
<tr>
<td>Prostata</td>
<td>Zylinderepithel-, sekretorische Zellen</td>
<td>+++</td>
<td>a,z</td>
</tr>
<tr>
<td>Testis</td>
<td>Spermatogonium, prim., sek. Spermatozyten</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Haut, oberste Schicht</td>
<td>Basalzellen</td>
<td>0/+</td>
<td>z</td>
</tr>
<tr>
<td>Schildrüse</td>
<td>Follikuläre Epithelzellen</td>
<td>+</td>
<td>a,z</td>
</tr>
<tr>
<td>Nebenniere</td>
<td>Kortikale Zellen</td>
<td>+/+++</td>
<td>z</td>
</tr>
<tr>
<td>Lymphknoten, Thymus</td>
<td>Lymphoblasten, -zyten</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Mastzellen, Monozyten</td>
<td>+++</td>
<td>z</td>
</tr>
<tr>
<td>Zerebraler Kortex</td>
<td>Astrozyten, Neurone, Endothelzellen</td>
<td>+</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td>Oligodendrozyten</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Zerebellum</td>
<td>Purkinje Zellen</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Endothelzellen</td>
<td>+</td>
<td>z</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>Astrozyten</td>
<td>+</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td>Oligodendrozyten, Neurone</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Herz</td>
<td>Myozyten</td>
<td>+</td>
<td>z</td>
</tr>
<tr>
<td>Skelett Muskulatur</td>
<td>k.A.</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

*: Intensität und **: zelluläre Lokalisation der Immunfärbung; +: schwache, ++: mäßige, +++: starke CRB3A-Expression

4.9 CRB3A-Expression in verschiedenen humanen Tumoren

Zur Untersuchung der CRB3A-Proteinexpression in verschiedenen Tumortypen wurde der AccuMax™ A301 V Gewebearray (ISU ABXIS; siehe 3.4.10) verwendet. Auf diesem TMA waren jeweils 2 Stanzen (1 mm Durchmesser) von 30 verschiedenen Tumorgeweben und zusätzlich jeweils 1 Stanze des korrespondierenden Normalgewebes, das angrenzend an den Tumor reseziert wurde, lokalisiert. Die Immunfärbung wurde mit dem aufgereinigten CRB3A-spezifischen Antikörper vorgenommen.

<table>
<thead>
<tr>
<th>Organ</th>
<th>Normalgewebe</th>
<th>Tumorgewebe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organ</td>
<td>Zelltyp</td>
<td>Int.*</td>
</tr>
<tr>
<td>Gehirn</td>
<td>Astrozyten</td>
<td>0</td>
</tr>
<tr>
<td>Ösophagus</td>
<td>Plattenepithelzellen</td>
<td>0</td>
</tr>
<tr>
<td>Larynx</td>
<td>k.A.</td>
<td>-</td>
</tr>
<tr>
<td>Hypopharynx</td>
<td>Plattenepithelzellen</td>
<td>0</td>
</tr>
<tr>
<td>Leber</td>
<td>Hepatozyten</td>
<td>++</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>Strumazellen</td>
<td>++</td>
</tr>
<tr>
<td>Weichteile</td>
<td>Muskelzellen</td>
<td>0</td>
</tr>
<tr>
<td>Haut</td>
<td>Plattenepithelzellen</td>
<td>0</td>
</tr>
<tr>
<td>Zunge</td>
<td>Plattenepithelzellen</td>
<td>0</td>
</tr>
<tr>
<td>Lunge</td>
<td>k.A.</td>
<td>0</td>
</tr>
<tr>
<td>Lunge</td>
<td>k.A.</td>
<td>0</td>
</tr>
<tr>
<td>Pankreas</td>
<td>Azini</td>
<td>+++</td>
</tr>
<tr>
<td>Pankreas</td>
<td>Azini</td>
<td>+++</td>
</tr>
<tr>
<td>Kolon</td>
<td>Kryptzellen</td>
<td>+</td>
</tr>
<tr>
<td>Magen</td>
<td>Drüsenzellen</td>
<td>+</td>
</tr>
<tr>
<td>Magen</td>
<td>Drüsenzellen</td>
<td>++</td>
</tr>
<tr>
<td>Niere</td>
<td>Tubuläre Zellen</td>
<td>++</td>
</tr>
<tr>
<td>Niere</td>
<td>Glomeruläre Zellen</td>
<td>++</td>
</tr>
<tr>
<td>Parotis</td>
<td>Azini</td>
<td>+</td>
</tr>
<tr>
<td>Ovar</td>
<td>k.A.</td>
<td>0</td>
</tr>
<tr>
<td>Ovar</td>
<td>k.A.</td>
<td>0</td>
</tr>
<tr>
<td>Uterus</td>
<td>Plattenepithelzellen</td>
<td>0</td>
</tr>
<tr>
<td>Zervix</td>
<td>Plattenepithelzellen</td>
<td>0</td>
</tr>
<tr>
<td>Brust</td>
<td>Lobuloalveoläre Einheiten, luminales Zellen</td>
<td>+</td>
</tr>
<tr>
<td>Brust</td>
<td>Lobuloalveolische Luminales Zellen</td>
<td>+</td>
</tr>
<tr>
<td>Prostata</td>
<td>Drüsenzellen (Hyperplasie)</td>
<td>+++</td>
</tr>
<tr>
<td>Prostata</td>
<td>k.A.</td>
<td>-</td>
</tr>
<tr>
<td>Testis</td>
<td>Seminiferöse Tubuli, Spermatogonien, prim., sek. Spermazellen</td>
<td>0</td>
</tr>
<tr>
<td>Thymus</td>
<td>k.A.</td>
<td>-</td>
</tr>
</tbody>
</table>

*: Intensität der Färbung; +: schwache, ++: mäßige, +++: starke Färbeintensität

**: zelluläre Lokalisation der Färbung
Ergebnisse

In Abb. 4.30 sind exemplarisch mikroskopische Aufnahmen der CRB3-Immunfärbungen an Normal- und Tumorgewebe aus Kolon, Niere, Pankreas, Leber und Prostata dargestellt. Am Beispiel des Kolonkarzinoms (Abb. 4.30) ist besonders gut zu erkennen, dass die apikale Expression des CRB3A-Proteins in Abhängigkeit vom Differenzierungsgrad der Tumorzellen verloren geht und das Protein im Zytoplasma der Zellen akkumuliert. Um jedoch allgemeingültigere Aussagen über die Rolle des CRB3A-Proteins in der Karzinogenese treffen zu können, sind umfangreichere Untersuchungen zu den einzelnen Tumorentitäten unabdingbar.

5 Diskussion

5.1 Transformierende Eigenschaften des CRB3-Gens

Diskussion

5.2 Mechanismen der CRB3A-induzierten Transformation in NIH3T3-Zellen

Die intrazelluläre Lokalisation des CRB3A-Proteins

Das ERLI-Motiv in CRB3A ist essenziell für die Induktion der Transformation

CRB3A-Proteins zugeschrieben, da sie als Bindungsdomäne für die beiden PDZ-Proteine PALS1 und Par6 fungiert [71, 86, 87], was wiederum für die Ausbildung der apikalen Zellpolaritätskomplexe von Bedeutung ist.

Die Identifikation von Par6 als CRB3A-Interaktionspartner

Die Aktivierung der kleinen RhoGTPasen Cdc42 und Rac1/2/3

Der Nachweis der CRB3A-Par6-Interaktion war von großer Bedeutung für nachfolgende Arbeiten. Auf Basis mehrerer Studien zum transformierenden Potenzial
Diskussion

des Par6-Proteins wurde eine Arbeitshypothese zur CRB3A-induzierten Signalkaskade entwickelt. Es ist bekannt, dass die Par6-vermittelte Transformation von NIH3T3-Zellen abhängig ist von der Bindung GTP-beladener, also aktiver Cdc42- und Rac1/2/3-Moleküle an das Par6-Protein [98]. Dass eine Expression von Par6 mit konstitutiv aktiven Cdc42- und Rac1/2/3-Mutanten eine synergistische Wirkung hat, wurde von Noda et al. gezeigt [63]. In einer weiteren Studie wurde nachgewiesen, dass die Bindung der neuronalen Proteine Rin und Rit an die PDZ-Domäne in Par6 zur Rekrutierung GTP-gebundener Cdc42- und Rac1/2/3-Moleküle an die CRIB-Domäne des Par6-Proteins führt, was wiederum zur zellulären Transformation beiträgt [91]. Damit stellte sich die Frage, ob eine Aktivierung dieses Signalwegs auch durch die Bindung anderer Proteine, wie z.B. CRB3A, an die PDZ-Domäne von Par6 erfolgen könnte. Um zu überprüfen ob es in Folge der CRB3A-Par6-Interaktion zur Rekrutierung aktiverer Cdc42 und Rac1/2/3-Proteine kommt, wurden GTPase Aktivierungsassays durchgeführt. In der Tat konnte eine gesteigerte Cdc42- und Rac1/2/3-Aktivierung in CRB3A-exprimierenden NIH3T3-Zellen, nicht aber in Zellen, die eine CRB3A-∆ERLI-Deletionsmutante exprimierten, nachgewiesen werden. Die kleinen Rho-GTPasen fungieren als molekulare Schalter, die eine Vielzahl von Prozessen, z.B. die Modellierung des Aktin-Zytoskeletts oder die Ausbildung der Zellteilungsfurche, regulieren und somit zur zellulären Transformation beitragen [99].

Die Aktivierung der CRB3A-Signalkaskade induziert starke Veränderungen im Genexpressionsprofil

Da die Transformation von Zellen eine drastische Veränderung darstellt, wurde erwartungsgemäß eine hohe Anzahl deregulierter Gene in CRB3A-exprimierenden NIH3T3-Zellen identifiziert. Ganz offensichtlich kommt es in Folge der CRB3A-Par6-Interaktion zur (De-)Regulation zahlreicher Signalkaskaden, was im Einklang mit den von Qiu et al. beschriebenen Effekten der Par6-induzierten Transformation steht [98]. Vom Par6-Protein rekrutierte Cdc42 und Rac1/2/3-Moleküle induzieren unter anderem die Transkription von Cyclin D1, was letztendlich zur Inaktivierung des Tumorsuppressor-Proteins Rb führt [100]. Zusätzlich sind die kleinen GTPasen in der Lage den Transkriptionsfaktor NF-κB zu aktivieren, der seinerseits eine Steigerung der Zellteilungsrate vermittelt und gleichzeitig die Apoptose inhibiert, was zur zellulären Transformation von Zellen beiträgt [101].
Eine ausführliche Analyse der Genexpressions-Daten konnte im Rahmen dieser Arbeit nicht vorgenommen werden, aber bereits die ersten Auswertungen lieferten interessante Hinweise. So sind beispielsweise unter den 10 am stärksten hochregulierten Genen drei Vertreter der Matrixmetalloproteasen zu finden (siehe 4.3, Tab. 4.4). Diesen Proteinen wird bei der Progression von Tumoren eine metastasierungsfördernde Funktion zugeschrieben, da sie am Abbau der Extrazellulären Matrix beteiligt sind und somit die Migration und Invasion von Tumorzellen in das umliegende Stroma begünstigen [102]. Die Analyse gemeinsam regulierter Gengruppen (Gen-Ontologien, GO) ergab, dass unter anderem Gene, die eine Rolle im Lipidstoffwechsel von Zellen spielen, dereguliert sind. Dies lässt Spekulationen über eine Verwicklung des ursprünglich membranständigen CRB3A-Proteins in intrazelluläre Sortierungsprozesse zu, denkbar wäre auch eine Funktion bei Exozytose- oder Endozytose-Prozessen. Für das in den Drosophila-Rhabdomeren exprimierte Crumbs-Protein und auch für das humane CRB1-Protein wird im Zusammenhang mit einer lichtinduzierten Degeneration der Photorezeptoren über eine Beteiligung der Proteine an Transportprozessen von und zur Zellmembran spekuliert (persönliche Mitteilung Prof. Dr. Elisabeth Knust). Auch für andere Zellpolaritätsproteine, wie beispielsweise DLG und LGL, wurde eine Funktion im Proteintransport und eine Verknüpfung mit der Exozytose-Maschinerie in MDCK-Zellen bereits beschrieben [67].

5.3 Expressionsstudien an humanen Mammakarzinom-Zelllinien

5.3.1 Die CRB3-Expression in Mammakarzinom-Zellen

Mit der Herstellung spezifischer, polyklonaler Antikörpern gegen die CRB3A- und CRB3B-Isoformen wurden essenzielle Werkzeuge für Analysen zur CRB3-

5.3.2 Untersuchung CRB3A-induzierter Signalwege in Mammakarzinom-Zellen

Die Etablierung eines Modellsystems für funktionelle Studien

In Anlehnung an zuvor durchgeführte Analysen an NIH3T3/CRB3A- und T47D-Zellen wurde zunächst die subzelluläre Lokalisation des transient überexprimierten CRB3A-Proteins in MCF-7 TetOn/CRB3A-Zellen untersucht. In dieser Zelllinie wurde ebenfalls ausschließlich eine zytoplasmatische Expression des CRB3A-

Der CRB3A-Par6-Signalweg

Zusammengefasst lieferten die Untersuchungen zur CRB3A-Expression und Funktion Hinweise darauf, dass die NIH3T3-Signalwege auch in Mammakarzinom-Zelllinien eine Rolle spielen. Zytoplasmatisch exprimiertes CRB3A-Protein trägt im Zusammenspiel mit Par6 und Cdc42/Rac1/2/3 zur onkogenen Transformation von Tumorzellen bei und könnte somit eine wichtige Rolle in der Progression des humanen Mammakarzinoms spielen.

5.4 Die Expression des CRB3A-Proteins in normalen und malignen Geweben

Um Informationen über die physiologische Relevanz des CRB3A-Proteins im humanen Mammakarzinom zu erhalten, wurde die Expression des Proteins in Gewebeschnitten, die nach operativer Entfernung von Primärtumoren angefertigt wurden, untersucht. Im Normalgewebe der Mamma wird das CRB3A-Protein ausschließlich an der apikalen Membran epithelialer luminaler Zellen exprimiert, was mit seiner Funktion als apikal sortiertes Zellpolaritätsprotein einhergeht. Die Ergebnisse der Immunfärbungen deuten an, dass dieses Expressionsmuster in Mammakarzinomen möglicherweise in Abhängigkeit vom Differenzierungsgrad der Tumorzellen verloren geht. Bemerkenswert ist, dass neoplastische Zellen eine diffuse zytoplasmatische Färbung oder eine Akkumulation des CRB3A-Proteins in Vakuolen-ähnlichen Kompartimenten aufwiesen. Diese Beobachtungen unterstreichen die physiologische Relevanz der intrazellulären Lokalisation des Proteins in kultivierten Mammakarzinom-Zellen.

Ausgehend von diesen hochinteressanten Ergebnissen wurden die CRB3A-Expressionsanalysen auf andere normale und maligne Gewebe ausgeweitet. Hierfür wurden verschiedene Gewebarrays, auf denen Gewebestanzen mit 1 mm Durchmesser aufgebracht waren, verwendet. Aufgrund der geringen Größe der Gewebeproben können sicher Tendenzen erkannt, aber keine allgemeingültigen Aussagen zum jeweiligen Gewebetyp gemacht werden. Eine CRB3A-Expression wurde überwiegend in epithelialen Geweben nachgewiesen. Interessanterweise zeigten die immunhistochemischen Färbungen, dass das CRB3A-Protein nicht nur in Tumoren sondern auch in einigen Normalgeweben zytoplasmatisch exprimiert wird, als Beispiele seien hier Leber (Kupferzellen), Pankreas (Langerhans’sche...

5.5 Untersuchungen zur Expression und Funktion des CRB3B-Proteins

5.6 Allgemeine Schlussfolgerungen

Möglicherweise liefern die hier gemachten Beobachtungen auch Erklärungs-

5.7 Ausblick

Um weiteren Aufschluss über die Funktion des Zellpolaritätsgens CRB3 in der malignen Transformation von Zellen, insbesondere im humanen Mammakarzinom, zu erhalten, sind vielfältige molekularbiologische Untersuchungen nötig.

6 Literaturverzeichnis

2. Feinberg, B.A., Breast Cancer Answers: Understanding and Fighting Breast Cancer. Sudbury: Jones and Bartelett Publisher. 2005. 120.

13. Behrens, J., Cadherins and catenins: role in signal transduction and tumor

37. Ozdamar, B., et al., Regulation of the polarity protein Par6 by TGFbeta receptors.

51. Straight, S.W., et al., Loss of PALS1 expression leads to tight junction and polarity

76-85.

84. Gene, N.-E.,

88. Fan, S., et al., A novel Crumbs3 isoform regulates cell division and ciliogenesis via

113. Thomas, M., et al., Analysis of specificity determinants in the interactions of different

7 Anhang

Tab. 7.1: Häufig verwendete Laborgeräte und deren Hersteller

<table>
<thead>
<tr>
<th>Gerätebezeichnung</th>
<th>Hersteller / Vertreiber</th>
<th>Firmensitz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysenwaage Satorius BP6100</td>
<td>Satorius BP6100 MS Laborgeräte</td>
<td>Heidelberg</td>
</tr>
<tr>
<td>Analysenwaage Satorius CP2245</td>
<td>Satorius CP2245 MS Laborgeräte</td>
<td>Heidelberg</td>
</tr>
<tr>
<td>Biofuge pico Heraeus</td>
<td>Kendro</td>
<td>Langenselbold</td>
</tr>
<tr>
<td>DAKO Färbeautomat</td>
<td>DAKO Diagnostika GmbH</td>
<td>Hamburg</td>
</tr>
<tr>
<td>Dampfsterilisator</td>
<td>H+P</td>
<td>Oberschleißheim</td>
</tr>
<tr>
<td>Digitale Bildverarbeitung KAPPA</td>
<td>KAPPA opto-electronics GmbH</td>
<td>Gießen</td>
</tr>
<tr>
<td>DNA Engine PTC-200</td>
<td>MJ Research</td>
<td>Waltham, USA</td>
</tr>
<tr>
<td>Durchlichtmikroskop mit Kamera</td>
<td>Leica Mikroskopie und Systeme GmbH</td>
<td>Wetzlar</td>
</tr>
<tr>
<td>Durchlichtmikroskop Wilovert S</td>
<td>Helmut Hund GmbH</td>
<td>Wetzlar</td>
</tr>
<tr>
<td>Filmentwickler Hyperprocessor</td>
<td>Amersham Biosciences</td>
<td>Buckinghamshire, UK</td>
</tr>
<tr>
<td>Geldokumentations-System</td>
<td>Syngene</td>
<td>Cambridge, UK</td>
</tr>
<tr>
<td>GeneGenius 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelkammer ComPor L Mini</td>
<td>Bioplastics RV</td>
<td>Landgraaf, NL</td>
</tr>
<tr>
<td>Geltrockner 583</td>
<td>Bio-Rad</td>
<td>München</td>
</tr>
<tr>
<td>Gießstand Hoefer</td>
<td>Amersham Biosciences</td>
<td>Buckinghamshire, UK</td>
</tr>
<tr>
<td>Heizblock DRI-BLOCK® DB-2A</td>
<td>Techne</td>
<td>Staffordshire, UK</td>
</tr>
<tr>
<td>Hera150-Brutschrank Heraeus</td>
<td>Kendro</td>
<td>Langenselbold</td>
</tr>
<tr>
<td>Kühltzentrifuge 5415R</td>
<td>Eppendorf AG</td>
<td>Hamburg</td>
</tr>
<tr>
<td>Mikrowelle</td>
<td>Promicro</td>
<td>München</td>
</tr>
<tr>
<td>Minigelkammern Hoefer SE 250</td>
<td>Amersham Biosciences</td>
<td>Buckinghamshire, UK</td>
</tr>
<tr>
<td>Netzteil E143</td>
<td>Consort</td>
<td>Turnhout, BE</td>
</tr>
<tr>
<td>Netzteil E835</td>
<td>Consort</td>
<td>Turnhout, BE</td>
</tr>
<tr>
<td>pH-Meter inoLab</td>
<td>WTW</td>
<td>Heidelberg</td>
</tr>
<tr>
<td>Photometer 6131</td>
<td>Eppendorf AG</td>
<td>Hamburg</td>
</tr>
<tr>
<td>Pipettierhilfe pipetus®</td>
<td>Hirschmann Laborgeräte</td>
<td>Eberstadt</td>
</tr>
<tr>
<td>Reagenzglas-Mischer</td>
<td>neoLab</td>
<td>Heidelberg</td>
</tr>
<tr>
<td>Realplex Mastercycler epgradient S</td>
<td>Eppendorf AG</td>
<td>Hamburg</td>
</tr>
<tr>
<td>Rollmischer Stuart SRT1</td>
<td>Bibby Sterlin</td>
<td>Staffordshire, UK</td>
</tr>
<tr>
<td>Scanner Epson 1680</td>
<td>LaserSoft Imaging AG</td>
<td>Kiel</td>
</tr>
<tr>
<td>Schüttler</td>
<td>Heidolph Instruments GmbH</td>
<td>Schwabach</td>
</tr>
<tr>
<td>Semidry-Blotapparatur</td>
<td>Bio-Rad</td>
<td>München</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Experiment</td>
<td>Größe</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>pBluescript II SK(+)</td>
<td>4.6.2</td>
<td>2961 bp</td>
</tr>
<tr>
<td>pFLAG-CMV™.3</td>
<td>4.1.2</td>
<td>6271 bp</td>
</tr>
<tr>
<td>pGEX-2T</td>
<td>4.2.4</td>
<td>~4900 bp</td>
</tr>
<tr>
<td>pMXs</td>
<td>4.1.1 / 4.2.2</td>
<td>5871 bp</td>
</tr>
<tr>
<td>pIRES-N1</td>
<td>4.1.2</td>
<td>5284 bp</td>
</tr>
<tr>
<td>pTRE-Tight</td>
<td>4.5.1</td>
<td>2600 bp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Art</th>
<th>Experiment</th>
<th>Ziel</th>
<th>Nukleotidsequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP25-12</td>
<td>5'</td>
<td>4.1.1</td>
<td>CRB3</td>
<td>GCGCCCGGAATTCTGAATAGCCCACCCTCCTGACC</td>
</tr>
<tr>
<td>MP25-4</td>
<td>3'</td>
<td>4.1.1</td>
<td>CRB3</td>
<td>GCGCCCGGAATTCTGCAAACTGCAAGCCACC</td>
</tr>
<tr>
<td>Crb3-1</td>
<td>5'</td>
<td>4.1.2 / 4.4.2</td>
<td>CRB3</td>
<td>GCGCCGGGATCCATCCTCTCCTGACCTCAGG</td>
</tr>
<tr>
<td>Crb3-2</td>
<td>3'</td>
<td>4.1.2 / 4.4.2</td>
<td>CRB3</td>
<td>GCGCCGGGATCCATCCTCTCCTGACCTCAGG</td>
</tr>
<tr>
<td>Crb3-4</td>
<td>5'</td>
<td>4.2.2</td>
<td>CRB3</td>
<td>GCGCATAGGATCGCGGGAAGCTCGCGGGAAG</td>
</tr>
<tr>
<td>Crb3-5</td>
<td>3'</td>
<td>4.2.2</td>
<td>CRB3</td>
<td>GCGCATAGAATCCCGCCGACCCTGAGTCTCAGG</td>
</tr>
<tr>
<td>Crb3-as1-100</td>
<td>3'</td>
<td>4.2.2</td>
<td>CRB3</td>
<td>GCGCATGAGATCCCTACTGCTCCTGAGTCTCAGG</td>
</tr>
<tr>
<td>Crb3-ERLI</td>
<td>3'</td>
<td>4.2.2</td>
<td>CRB3A</td>
<td>GCGCATGAGATCCCTACTGCTCCTGAGTCTCAGG</td>
</tr>
<tr>
<td>Crb3-IIa-6</td>
<td>3'</td>
<td>4.1.2</td>
<td>CRB3A</td>
<td>GCGCATGAGATCCCTACTGCTCCTGAGTCTCAGG</td>
</tr>
<tr>
<td>Crb3-IIa-7</td>
<td>3'</td>
<td>4.2.2</td>
<td>CRB3A</td>
<td>GCGCATGAGATCCCTACTGCTCCTGAGTCTCAGG</td>
</tr>
</tbody>
</table>
Anhang

<table>
<thead>
<tr>
<th>Name</th>
<th>Art</th>
<th>Experiment</th>
<th>Zielgen</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crb3-IIa-9-XhoI</td>
<td>3'</td>
<td>4.1.2</td>
<td>CRB3A</td>
<td>GCCGATGACTCGAGTGGCGAGTGGTTGGCTGA</td>
</tr>
<tr>
<td>Crb3-IIIb-8</td>
<td>3'</td>
<td>4.2.2</td>
<td>CRB3B</td>
<td>GCCGATGACCTCATCGACCTCGATGCAG</td>
</tr>
<tr>
<td>Crb3-IIIb-10-XhoI</td>
<td>3'</td>
<td>4.1.2</td>
<td>CRB3B</td>
<td>GCCGATGACTCGAGCCTCATCGACCTCGATGCAG</td>
</tr>
<tr>
<td>FLAG-Crb3-XhoI</td>
<td>5'</td>
<td>4.1.2</td>
<td>pFLAG-CMV-3-Vektor</td>
<td>GCCGATGACTCGAGATCGATGCCGACCTCGATGCTGAG</td>
</tr>
<tr>
<td>pMX-1</td>
<td>5'</td>
<td>4.1.1</td>
<td>pMXs-Vektor</td>
<td>GGGTGGACCCTCATCTAGACTGC</td>
</tr>
<tr>
<td>pMX-2</td>
<td>3'</td>
<td>4.1.1</td>
<td>pMXs-Vektor</td>
<td>AACCTACAGGTTGTTTCTTTTACATTCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tab. 7.4 Für quantitative Realtime-PCR eingesetzte Oligonukleotide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Art</td>
<td>Experiment</td>
<td>Zielgen</td>
<td>Sequenz</td>
</tr>
<tr>
<td>Cflar</td>
<td>5'</td>
<td>4.3.1</td>
<td>Cflar</td>
<td>CAGGCTTCGCTCCCAAAATGTG</td>
</tr>
<tr>
<td>Fas</td>
<td>5'</td>
<td>4.3.1</td>
<td>Fas</td>
<td>TGCAAGTGCAAACCAGACTC</td>
</tr>
<tr>
<td>Hoxb5</td>
<td>5'</td>
<td>4.3.1</td>
<td>Hoxb5</td>
<td>GGGGCCAGACCGAAAAAGGG</td>
</tr>
<tr>
<td>Itgb3</td>
<td>5'</td>
<td>4.3.1</td>
<td>Itgb3</td>
<td>CCCCGATGAACCTGTGAGAAGA</td>
</tr>
<tr>
<td>Notch1</td>
<td>5'</td>
<td>4.3.1</td>
<td>Notch1</td>
<td>GCCGCAAGAGCCTTGAGA</td>
</tr>
<tr>
<td>Notch1</td>
<td>3'</td>
<td>4.3.1</td>
<td>Notch1</td>
<td>GCCGCAAGAGCCTTGAGA</td>
</tr>
<tr>
<td>Adcy7</td>
<td>5'</td>
<td>4.3.1</td>
<td>Adcy7</td>
<td>AAGGGCGCTACTTTAACATC</td>
</tr>
<tr>
<td>Adcy7</td>
<td>3'</td>
<td>4.3.1</td>
<td>Adcy7</td>
<td>GTGTCTGCCGAGACCTCCA</td>
</tr>
<tr>
<td>Arhgap29</td>
<td>5'</td>
<td>4.3.1</td>
<td>Arhgap29</td>
<td>AGCAAAACGACACTCAAAGGTCT</td>
</tr>
<tr>
<td>Arhgap29</td>
<td>3'</td>
<td>4.3.1</td>
<td>Arhgap29</td>
<td>GGGACTGTAACCTGTTGCA</td>
</tr>
<tr>
<td>Gnb4</td>
<td>5'</td>
<td>4.3.1</td>
<td>Gnb4</td>
<td>CAGGAGGCTGAACGGCTCC</td>
</tr>
<tr>
<td>Gnb4</td>
<td>3'</td>
<td>4.3.1</td>
<td>Gnb4</td>
<td>GGGCCAGAGCTGAGCCT</td>
</tr>
<tr>
<td>Pde1a</td>
<td>5'</td>
<td>4.3.1</td>
<td>Pde1a</td>
<td>ATGTGTGAGAAGGCTAC</td>
</tr>
<tr>
<td>Pde1a</td>
<td>3'</td>
<td>4.3.1</td>
<td>Pde1a</td>
<td>GGGCTTTTCAATTCCCCACAGCTCGT</td>
</tr>
<tr>
<td>Tnc</td>
<td>5'</td>
<td>4.3.1</td>
<td>Tnc</td>
<td>GCTACCGCACGGGCTCATG</td>
</tr>
<tr>
<td>Tnc</td>
<td>3'</td>
<td>4.3.1</td>
<td>Tnc</td>
<td>TAGCCGTGGTACTGATGG</td>
</tr>
</tbody>
</table>
Tab. 7.5: Für DNA-Sequenzierungsanalysen verwendete Primer

<table>
<thead>
<tr>
<th>Name</th>
<th>Art</th>
<th>Experiment</th>
<th>Ziel</th>
<th>Nukleotidsequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pFLAG-CMV-3-S</td>
<td>5’</td>
<td>4.1.2</td>
<td>pFLAG-CMV-3-Vektor</td>
<td>ATGTCTGCACTTCTGATCCTAGC</td>
</tr>
<tr>
<td>pTRE-Tight-S1</td>
<td>5’</td>
<td>4.5.1</td>
<td>pTRE-Tight-Vektor</td>
<td>CGTTTAGTAACCCATCGAGATCG</td>
</tr>
<tr>
<td>pTRE-Tight-S2</td>
<td>3’</td>
<td>4.6.2</td>
<td>pTRE-Tight-Vektor</td>
<td>CGTCGACAAAGTTATCGATGCG</td>
</tr>
<tr>
<td>pIRES-S1</td>
<td>5’</td>
<td>4.1.2</td>
<td>pIRES-N1-Vektor</td>
<td>GTCCACTCCCAGTTCAATTACAGC</td>
</tr>
<tr>
<td>pIRES-S2</td>
<td>3’</td>
<td>4.1.2</td>
<td>pIRES-N1-Vektor</td>
<td>CTTCAGAGGAACGCTCCTTCCAGC</td>
</tr>
<tr>
<td>M13</td>
<td>5’</td>
<td>4.6.2</td>
<td>pBlueskriptIISK+</td>
<td>GTAAAACGACGGCCAGT</td>
</tr>
<tr>
<td>pMX-1</td>
<td>5’</td>
<td>4.2.2</td>
<td>pMXs-Vektor</td>
<td>GGTGGACATCTCTAGACTGC</td>
</tr>
<tr>
<td>pMX-2</td>
<td>3’</td>
<td>4.2.2</td>
<td>pMXs-Vektor</td>
<td>AACCTACAGGTGGGTTTCATTCC</td>
</tr>
</tbody>
</table>

Tab. 7.6: Zur Einführung zielgerichteter Mutationen verwendete Primer

<table>
<thead>
<tr>
<th>Name</th>
<th>Art</th>
<th>Experiment</th>
<th>Ziel</th>
<th>Nukleotidsequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRB3B-M1</td>
<td>5’</td>
<td>4.6.2</td>
<td>CRB3B</td>
<td>GCCCCTCAGGAGCTCCAGGGGAGGGTGCGAGG</td>
</tr>
<tr>
<td>CRB3B-M2</td>
<td>3’</td>
<td>4.6.2</td>
<td>CRB3B</td>
<td>GCCCCTCAGGAGCTCCAGGGGAGGGTGCGAGG</td>
</tr>
</tbody>
</table>

Tab. 7.7: Für immunchemische Analysen verwendete Erstantikörper

<table>
<thead>
<tr>
<th>Antigen</th>
<th>m*, p*</th>
<th>Spezies</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRB3A</td>
<td>P</td>
<td>Kaninchen</td>
<td>eigene Herstellung (SIGMA Genosys)</td>
</tr>
<tr>
<td>CRB3B</td>
<td>P</td>
<td>Kaninchen</td>
<td>eigene Herstellung (SIGMA Genosys)</td>
</tr>
<tr>
<td>Cdc-42</td>
<td>P</td>
<td>Kaninchen</td>
<td>Cell Signaling Technologies; Danvers, USA</td>
</tr>
<tr>
<td>E-Cadherin</td>
<td>M</td>
<td>Maus</td>
<td>BD Biosciences; Heidelberg</td>
</tr>
<tr>
<td>FLAG (M2)</td>
<td>M</td>
<td>Maus</td>
<td>Sigma-Aldrich; München</td>
</tr>
<tr>
<td>HSC-70</td>
<td>M</td>
<td>Maus</td>
<td>Invitrogen; Karlsruhe</td>
</tr>
<tr>
<td>PALS-1</td>
<td>P</td>
<td>Kaninchen</td>
<td>Upstate; Billerica, USA</td>
</tr>
<tr>
<td>PAR6A</td>
<td>P</td>
<td>Kaninchen</td>
<td>St. Cruz Biotechnology; St. Cruz, USA</td>
</tr>
<tr>
<td>Par6</td>
<td>P</td>
<td>Kaninchen</td>
<td>Abcam; Cambridge, UK</td>
</tr>
<tr>
<td>Rac1/2/3</td>
<td>P</td>
<td>Kaninchen</td>
<td>Cell Signaling Technologies; Danvers, USA</td>
</tr>
<tr>
<td>ZEB-1</td>
<td>M</td>
<td>Ziege</td>
<td>St.Cruz Biotechnology; St. Cruz, USA</td>
</tr>
<tr>
<td>ZO-1</td>
<td>M</td>
<td>Maus</td>
<td>BD Biosciences; Heidelberg</td>
</tr>
</tbody>
</table>

*: m = monoklonal; p = polyklonal
Anhang

Tab. 7.8: Verwendete konjugierte Sekundärantikörper

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Spezies</th>
<th>Konjugat</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaninchen</td>
<td>Schwein</td>
<td>Peroxidase</td>
<td>DakoCytomation; Glostrup, Dänemark</td>
</tr>
<tr>
<td>Maus</td>
<td>Kaninchen</td>
<td>Peroxidase</td>
<td>DakoCytomation; Glostrup, Dänemark</td>
</tr>
<tr>
<td>Maus</td>
<td>k.A*</td>
<td>Peroxidase</td>
<td>eBiosciences; San Diego, USA</td>
</tr>
<tr>
<td>Ziege</td>
<td>Kaninchen</td>
<td>Peroxidase</td>
<td>DakoCytomation; Glostrup, Dänemark</td>
</tr>
<tr>
<td>Kaninchen</td>
<td>Affe</td>
<td>Alexa Fluor® 488</td>
<td>Molecular Probes; Karlsruhe</td>
</tr>
<tr>
<td>Maus</td>
<td>Kaninchen</td>
<td>Alexa Fluor® 546</td>
<td>Molecular Probes; Karlsruhe</td>
</tr>
</tbody>
</table>

*: k.A. = keine Angabe
8 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>apikal</td>
</tr>
<tr>
<td>A</td>
<td>Ampere</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>aPKC</td>
<td>atypische Protein Kinase C</td>
</tr>
<tr>
<td>Bp</td>
<td>Basenpaar</td>
</tr>
<tr>
<td>BSA</td>
<td>Rinderserumalbumin</td>
</tr>
<tr>
<td>C. elegans</td>
<td>Caenorhabditis elegans</td>
</tr>
<tr>
<td>cDNA</td>
<td>komplementäre DNA</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalovirus</td>
</tr>
<tr>
<td>Crb / CRB</td>
<td>Crumbs</td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>Drosophila melanogaster</td>
</tr>
<tr>
<td>DAPI</td>
<td>4,6-Diamidino-2-phenylindol Dihydrochlorid</td>
</tr>
<tr>
<td>DCIS</td>
<td>Ductal carcinoma in situ</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxynukleotidtriphosphat</td>
</tr>
<tr>
<td>Dox</td>
<td>Doxyzyklin</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>ECL</td>
<td>Enhanced Chemoluminescence</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>EMT</td>
<td>Epitheliale-mesenchymale Transformation</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetale Calf Serum; fetales Rinderseum</td>
</tr>
<tr>
<td>FLAG</td>
<td>Peptid bestehend aus den Aminosäuren: DYDDDDK</td>
</tr>
<tr>
<td>G-418</td>
<td>Geneticin-418</td>
</tr>
<tr>
<td>H</td>
<td>Stunde</td>
</tr>
<tr>
<td>HEPES</td>
<td>2-[4-(2-Hydroxyethyl)-1-piperazinyl]-ethansulfonsäure</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish Peroxidase</td>
</tr>
<tr>
<td>HSC-70</td>
<td>Heat Shock Protein Cognate 70</td>
</tr>
<tr>
<td>IHRES</td>
<td>Internal Ribosomal Entry Site</td>
</tr>
<tr>
<td>kD</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>LCIS</td>
<td>Lobulärer Karzinom in situ</td>
</tr>
<tr>
<td>MCS</td>
<td>Multiple Cloning Site</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Name</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger Ribonucleic acid</td>
</tr>
<tr>
<td>NP-40</td>
<td>Nonidet P-40</td>
</tr>
<tr>
<td>PALS-1</td>
<td>protein associated with Lin-7 1</td>
</tr>
<tr>
<td>PAR; Par</td>
<td>partitioning defective protein</td>
</tr>
<tr>
<td>PATJ</td>
<td>protein associated with tight junctions</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidenfluorid</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodiumdodecylsulfat</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>SDS-Polyacrylamidgel-Elektrophorese</td>
</tr>
<tr>
<td>Sek</td>
<td>Sekunde</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris buffered acetic acid EDTA</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethylendiamin</td>
</tr>
<tr>
<td>Tet</td>
<td>Tetrazyklin</td>
</tr>
<tr>
<td>TMA</td>
<td>Tissue Microarray</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>U/min</td>
<td>Umdrehungen per Minute</td>
</tr>
<tr>
<td>ü.N.</td>
<td>über Nacht</td>
</tr>
<tr>
<td>V</td>
<td>vakuolär</td>
</tr>
<tr>
<td>v/v</td>
<td>Volumen pro Volumen</td>
</tr>
<tr>
<td>w/v</td>
<td>Gewicht pro Volumen</td>
</tr>
<tr>
<td>Z</td>
<td>zytoplastisch</td>
</tr>
</tbody>
</table>
9 Eidesstattliche Erklärung

Susann Schirmer Hamburg, den 09. Juli 2009
10 Danksagung

Ganz besonders danke ich Herrn Prof. Dr. Klaus Pantel, dem Direktor des Instituts für Tumorbiologie, für die Möglichkeit diese Dissertation an seinem Institut in einem hervorragenden Arbeitsumfeld anfertigen zu können. Ich danke ihm für die fachkundige Begleitung und die stetige Unterstützung meiner Arbeit.

Herrn Prof. Dr. Konrad Wiese danke ich für die Bereitschaft diese Dissertation seitens des Departments Biologie der Universität Hamburg zu begutachten.

Bei Dr. Volker Assmann möchte ich mich ganz ausdrücklich für die Bereitstellung dieses interessanten Projekts, sowie für die rundum exzellente Betreuung meiner Doktorarbeit bedanken. Seine Ideen, Anregungen und nicht zuletzt das Vertrauen, das er mir entgegenbrachte, haben ganz entscheidend zum Gelingen dieser Arbeit beigetragen.

Bei Dr. Sabine Riethdorf, Dr. Lutz Riethdorf und Malgorzata Stoupiec bedanke ich mich ganz herzlich für das große Engagement bei der Durchführung und Auswertung der immunhistologischen Studien.

Ich danke allen Mitarbeitern des Instituts für Tumorbiologie für die freundliche Arbeitsatmosphäre, die tatkräftige Unterstützung im Laboralltag und auch für den wissenschaftlichen Austausch.

Dr. Stefan Werner danke ich ganz besonders für die seelische, moralische und praktische Unterstützung bei manchem Experiment, und vor allem danke ich ihm für das allzeit harmonische und aufheiternde Arbeitsklima in unserem Labor.

Herrn Prof. Dr. Udo Schumacher, Kornelia Burger und Susanne Feldhaus danke ich für die fachkundige Begleitung der tierexperimentellen Arbeiten.

Sabrina Föge und Marcel Krepstakies danke ich für das Korrigieren dieser Arbeit.

Meinen Mitbewohnern Britta, Christina und Marcel danke ich für das wunderbar unkomplizierte und ausgesprochen lustige Zusammenleben in unserer WG.

Ich danke all meinen Freunden, ganz besonders „meinen Mädels“ aus der Heimat, weil mit ihnen einfach alles leichter ist.

Meinen Eltern und Geschwistern danke ich aufrichtig und aus tiefstem Herzen für die bedingungslose Unterstützung und den Rückhalt, den sie mir in allen Lebenslagen geben.