Aus dem Institut für Rechtsmedizin
des Universitätsklinikums Hamburg-Eppendorf
Direktor: Univ.-Prof. Dr. med. Klaus Püschel

Die Bedeutung der neueren Hypno-Sedativa
Zopiclon und Zolpidem im klinisch-toxikologischen
Untersuchungsgut unter besonderer
Berücksichtigung der klassischen Benzodiazepine

DISSERTATION
zur
Erlangung des Grades eines Doktors der Medizin

der Medizinischen Fakultät der Universität Hamburg vorgelegt von

Levke Sonntag
aus Kiel

Hamburg 2009
Angenommen vom Fachbereich Medizin
der Universität Hamburg am: 23.09.2009
Veröffentlicht mit Genehmigung des Fachbereichs
Medizin der Universität Hamburg
Prüfungsausschuss, der / die Vorsitzende: Prof. Dr. A. Schmoldt
Prüfungsausschuss: 2. Gutachter / in: Prof. Dr. M. Korth
Prüfungsausschuss: 3. Gutachter / in: PD Dr. D. Reuter
Meiner Familie und Oskar Schulz gewidmet
Inhaltsverzeichnis

1 EINLEITUNG ... 6

2 FRAGESTELLUNG .. 15

3 MATERIAL UND METHODEN ... 17
 3.1 MATERIAL ... 17
 3.1.1 Humanes Untersuchungsmaterial ... 17
 3.1.2 Herstellung der Stammlösungen .. 18
 3.1.3 Herstellung weiterer Lösungen ... 19
 3.1.4 Geräte .. 19
 3.1.5 Verbrauchsmaterial ... 20
 3.1.6 Software .. 20
 3.2 METHODEN .. 20
 3.2.1 Serumproben ... 20
 3.2.2 Validierung: Leistungsfähigkeit der LC-MS-Methode ... 22

4 ERGEBNISSE ... 28
 4.1 Etablierung einer LC-MS-Methode zur Analytik von Zolpidem und Zopiclom im Serum 28
 4.1.1 Validierung: Leistungsfähigkeit der LC-MS-Methode ... 28
 4.1.2 Ergebnis der Validierung .. 30
 4.1.3 Verifizierungs-Protokoll .. 30
 4.2 ERGEBNISSE DER UNTERSUCHUNG AUF ZOLPIDEM UND ZOPICLON 30
 4.2.1 Häufigkeit der Untersuchungen auf Zopiclom/Zolpidem aufgrund der Anamnese 30
 4.2.2 Zopiclom-/Zolpidem-Nachweis bei der toskologischen Erstuntersuchung 31
 4.2.3 Zopiclom-/Zolpidem-Nachweis bei der retrospektiven LC-MS-Analyse 32
 4.2.4 Untersuchung auf weitere Substanzen ... 35
 4.2.5 Quantifizierung von Zolpidem und Zopiclom ... 36
 4.2.6 Patientenkollektiv bezogen auf Zolpidem-/Zopiclom-Einnahme 38
 4.2.7 Benzodiazepine in Kombination mit Zolpidem-/Zopiclom-Einnahme 40
 4.3 PATIENTENKOLLEKTIV .. 41
 4.3.1 Sozialdemographische Angaben zu Alter und Geschlecht des untersuchten Patientenkollektivs .. 41
 4.3.2 Angaben zur Anforderung der Untersuchungen ... 43
 4.3.3 In der Notfallanalytik bestätigte Verdachtsdiagnosen ... 44
 4.3.4 Geschlechts- und Altersverteilung der untersuchten Patienten in Bezug auf die Verdachtsdiagnosen .. 49
 4.3.5 Aufschlüsseung nach angegebenen und indizationsverursachenden Medikamenten 51
 4.3.6 Angaben zum Alkohol-Konsum ... 56

5 DISKUSSION .. 59
 5.1 ANALYSEMETHODEN ZUM NACHWEIS VON ZOLPIDEM UND ZOPICLON 59
 5.2 MISSBRAUCH UND INTOXIKATION MIT ZOLPIDEM UND ZOPICLON .. 65
 5.3 SCHLUSSFOLGERUNGEN .. 74

6 ZUSAMMENFASSUNG ... 76

7 LITERATURVERZEICHNIS ... 77

8 ABKÜRZUNGSVERZEICHNIS ... 85

9 TABELLEN- UND ABBILDUNGSVERZEICHNIS .. 88
 9.1 TABELLENVERZEICHNIS ... 88
9.2 ABBILDUNGSVERZEICHNIS .. 89

10 DANKSAGUNG .. 90

11 ANHANG ... I

11.1 WEITERE TABELLE ... I

11.2 VALISTAT-PROTOKOLLE ... III

11.2.1 Validierungsprotokoll zur Bestimmung von Zopiclon mittels LC-MS III

11.2.2 Validierungsprotokoll zur Bestimmung von Zolpidem mittels LC-MS IX

11.3 CHROMATOGRAMME .. XV

11.3.1 exemplarisches Chromatogramm einer Zopiclon-Messung mittels LC-MS XV

11.3.2 exemplarisches Chromatogramm einer Zolpidem-Messung mittels LC-MS XVI

11.4 POSTER .. XVII

11.4.1 Poster anlässlich der 16. Frühjahrstagung (Nord) der Deutschen Gesellschaft für

Rechtsmedizin, Hamburg, 11. – 12.05.2007 ... XVII

11.5 EIDESSTATTLICHE ERKLÄRUNG .. XVIII
1 Einleitung

Im Rahmen der notfallmedizinischen Versorgung machen Vergiftungsnotfälle etwa 3-5% aller Gesamteinsätze aus, wobei schlaffördernde Mittel zu ca. 35% am Intoxikationsgeschehen beteiligt sind, meistens aufgrund einer suizidalen oder parasuizidalen Handlung. Die Schätzung 3-5% erscheint zu niedrig. Eine Überprüfung der Notfall-Einweisungen in die Hamburger Krankenhäuser UKE, AK-Altona, Wandsbek und Harburg ergab einen Anteil von Intoxikationen von 9,8% im Jahr 1985. Er lag damit höher als der der Herzinfarkte (7,3%) (Kaliner 1995).

Benzodiazepine nehmen hier eine Spitzenstellung ein, dicht gefolgt von stark sedierend wirkenden H1-Antihistaminika und den neueren Hypno-Sedativa Zolpidem und Zopiclon (Albrecht 1997).

Folgend dargestellt sind die verschiedenen Konzentrationsbereiche für einige Benzodiazepine, die in dieser Untersuchung vorkommen, hinsichtlich therapeutischer, toxischer und letaler Plasmakonzentration:
Einleitung

Tabelle 1: Therapeutische/toxische/letale Plasmakonzentrationen für Benzodiazepine

<table>
<thead>
<tr>
<th>Wirkstoff</th>
<th>therapeutische Konzentration (µg/ml)</th>
<th>toxische Konzentration (µg/ml)</th>
<th>letale Konzentration (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alprazolam</td>
<td>0,005 – 0,05 (- 0,08) 0,1 – 0,4</td>
<td>k.A.</td>
<td></td>
</tr>
<tr>
<td>Bromazepam</td>
<td>(0,05 -) 0,08 – 0,2</td>
<td>0,3 – 0,4 (1 -) 2</td>
<td></td>
</tr>
<tr>
<td>Clobazam</td>
<td>0,1 – 0,4</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Diazepam</td>
<td>0,2 – 2 (- 2,5)</td>
<td>3 – 5</td>
<td>k.A.</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>(0,02 -) 0,08 – 0,25</td>
<td>0,3 – 0,5</td>
<td>k.A.</td>
</tr>
<tr>
<td>Midazolam</td>
<td>0,04 – 0,1 (- 0,25)</td>
<td>1 – 1,5</td>
<td>k.A.</td>
</tr>
</tbody>
</table>

k.A. = keine Angabe

Quelle: M. Schulz, A. Schmoldt (2003)

Tabelle 2: Therapeutische/toxische/letale Plasmakonzentrationen für Zopiclon und Zolpidem

<table>
<thead>
<tr>
<th></th>
<th>therapeutische Konzentration (µg/ml)</th>
<th>toxische Konzentration (µg/ml)</th>
<th>letale Konzentration (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zopiclon</td>
<td>< 0,1</td>
<td>0,15</td>
<td>0,6 - 1,8</td>
</tr>
<tr>
<td>Zolpidem</td>
<td>0,08 - 0,15 (-0,2)</td>
<td>0,5</td>
<td>2 - 4</td>
</tr>
</tbody>
</table>

Einleitung

Die Benzodiazepin-ähnlichen Hypnotika Zolpidem und Zopiclon wurden somit mit insgesamt 68,1 Mio. DDD um mehr als 2 Mio. definierte Tageeinzeldosen häufiger verschrieben als die klassischen Benzodiazepine.

Während die Benzodiazepine aber in der Regel an alle α-Untereinheiten des Gamma-Aminobuttersäure-A (GABA_A)-Receptors binden, bevorzugen Zopiclon wie auch Zolpidem die α1-Untereinheit des GABA_A-Receptors und haben gar keine oder nur geringe Affinität zu Rezeptoren mit anderen α-Untereinheiten (Graham 1996). Diese Selektivität ist bei Zolpidem am ausgeprägtesten. Durch diese Bindung verstärken beide Substanzen im ZNS die GABAerge Neurotransmission.

Zopiclon, ein Cyclopyronon-Derivat -1-(6-((5-Chlor-2-pyridyl)-6,7-dihydro-7-oxo-5H-pyrrolo (3,4-b) pyrazin-5-yl 4-methylpiperazin-1-carboxylat) (Abb. 1), ist das einzige therapeutisch eingesetzte Hypnotikum aus der Klasse der Cyclopyrolone (Goa und Heel 1986). Es wirkt v.a. auf die GABA_A-Rezeptoren.
Einleitung

Abb. 1: Strukturformel Zopiclon

Zopiclon wird nach oraler Gabe, (im Allgemeinen 7,5 mg als therapeutische Dosis), schnell resorbiert, die maximale Plasmakonzentration wird bereits nach einer Stunde erreicht und liegt bei 0,02 bis 0,08 µg/ml (Kennel et al. 1990). Die Bioverfügbarkeit beträgt 80%, und die Plasmaproteinbindung ist mit 45% gering, wodurch das Interaktionspotential mit anderen Wirkstoffen in dieser Hinsicht als niedrig anzusetzen ist. Die Substanz wird rasch ins Zentrale Nervensystem (ZNS) aufgenommen. Die Metabolisierung erfolgt über eine Oxidation und Demethylierung der Muttersubstanz, die Metabolite spielen bei der Wirksamkeit und Wirkdauer von Zopiclon keine Rolle. Die Eliminationshalbwertszeit liegt bei etwa fünf Stunden, wodurch eine Verlängerung der Gesamtschlafzeit und Reduktion der nächtlichen Aufwachphasen erzielt werden kann, so dass Durchschlafstörungen behoben werden können. Eine Beeinträchtigung der Tagesbefindlichkeit tritt in der Regel
Einleitung

nicht auf. Im Gegensatz zu den meisten Benzodiazepinen führt Zopiclon zu keiner relevanten Beeinträchtigung der Schlafarchitektur (das ist das Wechselspiel der unterschiedlichen Schlafphasen). Als häufigste unerwünschte Nebenwirkung tritt bei etwa 4% der Patienten ein unangenehmer metallischer Geschmack auf, der auf die Ausscheidung des Wirkstoffes im Speichel zurückzuführen ist (Lüpke 2005).

\[\text{Abb. 2: Strukturformel Zolpidem} \]

Nach oraler Gabe (Einzeldosis 10 mg Zolpidemtartrat, entsprechend 8,03 mg Zolpidem pro Filmtablette) wird Zolpidem rasch resorbiert und führt innerhalb
einer halben bis zwei Stunden zu maximalen Plasmakonzentrationen. Die therapeutische Serumkonzentration liegt bei 0,06-0,2 µg/ml, der toxische bei >0,2-0,5 µg/ml. Eine Serumkonzentration von 2-4 µg/ml gilt als komatös-fatal und potentiell letal. Zolpidem ist eher für Ein- als für Durchschlafstörungen geeignet, da die Eliminationshalbwertszeit mit ca. zweieinhalb Stunden kurz ist und die Wirkdauer etwa sechs Stunden beträgt.

Im Vergleich mit den Benzodiazepinen wird jedoch ein geringeres Missbrauchs- und Abhängigkeitspotenzial angenommen (Rüther und Parnham 1998; Hajak et al. 2003), zumal es sich bei den bisher berichteten Fällen um Einzelfälle handelt (Soyka et al. 2000).

Eine Analyse der bisher weltweit publizierten Fälle von Missbrauch und Abhängigkeit kommt zu dem Schluss, dass ein Risiko im Wesentlichen nur bei
Einleitung

Patienten mit bekannten Abhängigkeiten sowie bei psychiatrischen Patienten besteht (Hajak et al. 2003), weshalb vor allem davor gewarnt wird, diese Substanzen bei Benzodiazepinabhängigen zu verordnen (Keup 2004). Für die Einschätzung des Abhängigkeitsrisikos scheinen auch Faktoren wie Alter, Geschlecht und Alkoholmissbrauch neben der Dosierung und Dauer der Anwendung relevant zu sein (Göder et al. 2001).

Auch wenn bei den so genannten Z-Drugs Zolpidem und Zopiclon im Rahmen von Monointoxikationen ein Koma mit Atemdepression offenbar nur nach Einnahme von extrem hohen Dosen auftritt, sind allerdings Mischintoxikationen, insbesondere in Kombination mit Ethanol, bezüglich ihrer überadditiven Wirkungen ebenso gefährlich wie bei Benzodiazepin-Mischintoxikationen zu bewerten (Kretschmar 2001).

Intoxikationen mit Zolpidem und Zopiclon scheinen in jüngster Zeit allerdings häufiger vorzukommen als bisher angenommen. Der Giftnotruf Berlin berichtet für das Jahr 2005 über 484 Intoxikationsfälle mit Benzodiazepinen in ganz Deutschland, im Vergleich dazu wurden 110 Intoxikationsfälle mit Zolpidem und 158 mit Zopiclon erfasst, was ca. 50% der Intoxikationen mit Benzodiazepinen entspricht. Eine Ungenauigkeit in der angegebenen Anzahl besteht darin, dass nur die gemeldeten Intoxikationen berücksichtigt werden, die möglicherweise nur einen Teil der tatsächlichen Intoxikationen in Deutschland darstellt (Intensivstationen mit Erfahrungen mit dieser Art von Intoxikationen melden solche Fälle im Allgemeinen nicht).
Einleitung

Das Giftinformationszentrum Nord (GIZ Nord) in Göttingen berichtet für diesen Zeitraum über insgesamt 143 Vergiftungen mit diesen Substanzen, die von den Bundesländern Niedersachsen, Hamburg, Bremen und Schleswig-Holstein gemeldet wurden. Es handelte es sich um 79 Intoxikationen mit Zopiclon und 64 mit Zolpidem (siehe Tab. 3).

Tabelle 3: Anzahl der Monointoxikationen von Zopiclon und Zolpidem anhand der Daten des GIZ Nord (2005)

<table>
<thead>
<tr>
<th>Gewichtung</th>
<th>Zopiclon</th>
<th>Zolpidem</th>
<th>Gesamtergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>symptomlos</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>leicht</td>
<td>60</td>
<td>53</td>
<td>113</td>
</tr>
<tr>
<td>mittel</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>schwer</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>nicht beurteilbar</td>
<td>9</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td>79</td>
<td>64</td>
<td>143</td>
</tr>
</tbody>
</table>

Quelle: Giftinformationszentrum (GIZ) Nord, Göttingen 2006

Einleitung

Tabelle 4: Anzahl der Intoxikationen von Benzodiazepinen anhand der Daten des GIZ Nord (2005)

<table>
<thead>
<tr>
<th>Gewichtung</th>
<th>Benzodiazepine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomlos</td>
<td>144</td>
</tr>
<tr>
<td>Leicht</td>
<td>613</td>
</tr>
<tr>
<td>Mittel</td>
<td>72</td>
</tr>
<tr>
<td>Schwer</td>
<td>18</td>
</tr>
<tr>
<td>nicht beurteilbar</td>
<td>83</td>
</tr>
<tr>
<td>Gesamtsumme</td>
<td>930</td>
</tr>
</tbody>
</table>

Quelle: Giftinformationszentrum (GIZ) Nord, Göttingen 2007

Führende Symptome der Intoxikation mit Z-Drugs sind die verschiedenen Grade der Bewusstseinsstörungen (von Somnolenz bis Koma), wobei die Erweckbarkeit noch lange erhalten bleibt.

Nach Aufnahme von hohen Dosen bei noch fehlender Symptomatik eignet sich als Ersttherapie die Verabreichung von Aktivkohle, sofern kein Aspirationsrisiko vorliegt. Die spezifische Antidottherapie wird mit Flumazenil (einem Benzodiazepin-Antagonisten) in der Dosierung von 0,3-2,0 mg (intravenös appliziert) durchgeführt.

Erst der Nachweis der Substanz in Untersuchungsmaterialien wie Blut, Erbrochenem, Mageninhalt, Urin, Getränken oder ggf. Resten von Tabletten ermöglicht in vielen Fällen, die (Vergiftungs-)Symptome zu erklären und adäquat zu behandeln.

In diesem Rahmen kommt den toxikologischen Laboratorien der Rechtsmedizin eine besondere Bedeutung hinsichtlich der Diagnose und Therapie zu. Für die Analytik muss ein differenziertes, ständig neuen Anforderungen angepasstes Methodenspektrum erarbeitet und optimiert werden, das beweissichere Analysen liefert. Neben dem qualitativen Wirkstoffnachweis gewinnen auch die präzisen quantitativen Konzentrationsbestimmungen zunehmend an Bedeutung, auch hinsichtlich der Sensitivität und Genauigkeit.
Fragestellung

2 Fragestellung

Welchen Stellenwert haben Zolpidem und Zopiclon in der klinischen Toxikologie?

Fragestellung

3 Material und Methoden

3.1 Material

3.1.1 Humanes Untersuchungsmaterial

3.1.1.1 Humanserum

3.1.1.2 Leerenserum

Das Leerenserum entstammt der Transfusionsmedizin des Universitätsklinikums Hamburg-Eppendorf. Es handelte sich um Seren von Blutspendern, die vor der Verwendung auf das Vorhandensein toxikologisch oder analytisch relevanter Fremdsubstanzen getestet worden waren.

3.1.1.3 Chemikalien

Zopiclon (Ch.-B.: T603, Rhône-Poulenc Rorer, Frankreich)
Zolpidem (Sigma-Aldrich, Steinheim, Deutschland)
Fentanyl-D5, 100 µg/ml Stammlösung (Promochem, Wesel, Deutschland)
1-Chlorbutan (Merck-Schuchardt, Darmstadt, Deutschland)
Ameisensäure (Merck p.a., Darmstadt, Deutschland)
Na₂CO₃ (Merck, Darmstadt, Deutschland)
n-Butylacetat (Merck p.a., Darmstadt, Deutschland)
K$_2$HPO$_4$ (Merck, Darmstadt, Deutschland) (gesättigt)
Tetrachlorobiphenyl (Sigma-Aldrich, Steinheim, Deutschland)
Acetonitril (UltraGradient HPLC Grade) (J.T. Baker, Deventer, Holland)
Ethanol (J.T. Baker p.a., Deventer, Holland)
H$_2$O (destilliert) p.a.

3.1.2 Herstellung der Stammlösungen

3.1.2.1 Stammlösung Zopiclon
Zopiclon wird in einer Konzentration von 1 mg/ml in Acetonitril angesetzt, eine Arbeitslösung (1 µg/ml) wird durch 1:1000-Verdünnung mit Acetonitril hergestellt. Die Lösungen werden im Gefrierschrank bei -20°C gelagert.

3.1.2.2 Stammlösung Zolpidem
Zolpidem wird in einer Konzentration von 1 mg/ml in Ethanol angesetzt, eine Arbeitslösung (1 µg/ml) wird durch 1:1000-Verdünnung mit Ethanol hergestellt. Die Lösungen werden im Kühlschrank bei +4°C gelagert.

3.1.2.3 Stammlösung Interner Standard (I.S.) Fentanyl-D5 für Zopiclon/Zolpidem
Fentanyl D5 wird in der Konzentration 100 µg/ml in Methanol käuflich erworben. Die Arbeitslösung mit einer Konzentration von 1 µg/ml wird durch 1:100-Verdünnung mit Ethanol hergestellt. Beide Lösungen werden bei +4°C gelagert.

3.1.2.4 Stammlösung I.S. für Benzodiazepine (3,4-3‘,4‘
Tetrachlorobiphenyl)
3,4-3‘,4‘ Tetrachlorobiphenyl wird in einer Arbeitslösung in einer Konzentration von 1 ng/ml in Toluol angesetzt und bei +4°C gelagert.
3.1.3 Herstellung weiterer Lösungen

ECD-Puffer:
Natriumcarbonatpuffer 1 mol/L
10,5 g Na₂CO₃ (wasserfrei) in 100 ml destilliertem Wasser lösen
pH-Wert: 11,4

Alkalischer Phosphatpuffer:
(1 Teil gesättigte K₂HPO₄-Lösung + 3 Teile H₂O)

Eluent C:
20% Acetonitril, 80% Wasser, 0,1% Ameisensäure

Die Haltbarkeit der Lösungen ist auf 2 Jahre festgesetzt worden.

3.1.4 Geräte

Vortex Mixer "Vortex Genie 2" (Scientific Industries, New York, USA)
Schüttler, Eppendorf Mixer 5432 (Eppendorf AG, Hamburg, Deutschland)
Zentrifuge, Eppendorf Centrifuge 5415D (Eppendorf AG, Hamburg, Deutschland)
N₂-Evaporator mit Metallblock-Thermostat VLM 2.0 (VLM GmbH, Bielefeld, Deutschland)
Pipetten (Eppendorf AG, Hamburg, Deutschland)
Gaschromatograph mit Elektronen-Capture-Detektor, Hewlett Packard 5890, Serie II (Hewlett Packard, Avondale, Pennsylvania, USA)
LC-MS, Thermo Finnigan LCQ Duo mit ESI-Interface (Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA)
Material und Methode

3.1.5 Verbrauchsmaterial

Pipettenspitzen 10, 100, 1000 µl (Eppendorf AG, Hamburg, Deutschland)
Reaktionsgefäße 1,5 ml (Eppendorf AG, Hamburg, Deutschland)
Reaktionsgefäße 2 ml (Sarstedt AG & Co., Nümbrecht, Deutschland)
Autosampler-Gefäße (z.B. Varian Inc., Palo Alto, California, USA)

3.1.6 Software

Valistat® 1.0 Software (Arvecon GmbH, Walldorf, Deutschland)

3.2 Methoden

3.2.1. Serumproben

3.2.1.1 Untersuchungsablauf

Die Routine-Untersuchungen im Rahmen der toxikologischen Notfalldiagnostik werden i.d.R. wie in folgendem Schema dargestellt durchgeführt:
Abbildung 3: Untersuchungsablauf für Notfallproben

Die zu untersuchenden Blutproben der eingewiesenen Notfallpatienten werden zunächst bei fehlender Angabe der Anamnese einem immunologischen Screening unterzogen. Fällt dieses negativ aus, wird mit dem anfordernden Arzt / der anfordernden Ärztin geklärt, ob in einer ungerichteten Suchanalyse (sog. „General unknown Screening“) mittels GC-MS die Suche nach unbekannten, im immunologischen Screening nicht erfassten Analyten fortgesetzt werden soll. Sind in dem immunologischen Screening Benzodiazepine nachweisbar, werden diese mittels Gaschromatographie und ECD bestätigt. Können Tricyclische Antidepressiva im Vortest nachgewiesen werden, so folgt die weitere Bestimmung per GC-MS und GC NPD. Um weitere Analyten zu erfassen, für die keine immunologischen Tests auf dem Markt sind,
Material und Methoden

wird ein „General unknown Screening“ mittels GC-MS und ggf. LC-MS durchgeführt. Für die Z-Drugs existiert bislang kein eigener Immunoassay. In dieser Arbeit wurden alle 172 Serumproben mit der neu etablierten LC-MS-Methode zum Nachweis von Zopiclon und Zolpidem retrospektiv untersucht.

3.2.1.2 Grundprinzip der LC-MS

3.2.2 Validierung: Leistungsfähigkeit der LC-MS-Methode

3.2.2.1 Selektivität

Die Selektivität ist die Fähigkeit einer Methode, verschiedene nebeneinander zu bestimmende Analyten ohne gegenseitige Störungen oder Störungen durch andere endogene oder exogene Substanzen (Metaboliten, Verunreinigungen, Abbauprodukte, Matrix) zu erfassen und sie somit eindeutig zu identifizieren.
3.2.2.2 Linearity

Die Linearität einer analytischen Methode ist ihre Fähigkeit, innerhalb eines gegebenen Bereiches Testergebnisse zu liefern, die direkt proportional zur Konzentration (Menge) des Analyten in der Probe sind.

3.2.2.3 Accuracy

Unter Genauigkeit wird der Abstand eines einzelnen Wertes vom Sollwert verstanden, hervorgerufen durch systematische und zufällige Fehler.

An acht verschiedenen Tagen wurden je zwei Proben pro Konzentration aufgearbeitet (QC1, QC2). Es wurden folgende Parameter bestimmt: Richtigkeit und Präzision (Wiederholpräzision und Laborpräzision).

Richtigkeit: Unter Richtigkeit wird der Abstand des Mittelwertes vom Sollwert verstanden. Das Ausmaß wird gewöhnlich in Form eines systematischen Fehlers (Bias) (in Prozent) ausgedrückt.

Die Wiederholpräzision (= Intraday-Präzision) ist als Präzision unter Bedingungen, bei denen unabhängige Messergebnisse mittels derselben Methode mit identischem Probenmaterial im selben Labor von derselben Person mit derselben Gerätschaft innerhalb kurzer Zeitintervalle (z.B. innerhalb eines Tages) erhalten werden, zu verstehen.

Die Richtigkeit wurde für eine Konzentration im unteren (QC1) und eine im oberen (QC2) Bereich der Kalibrationskurve bestimmt. Es wurde eine relative
Material und Methoden

Standardabweichung (RSD) von maximal ±20% im niedrigen und ±15% im hohen Konzentrationsbereich gefordert.

3.2.2.4 Stabilität

Die chemische Stabilität eines Analyten in einer gegebenen Matrix wird unter bestimmten Bedingungen für gegebene Zeitintervalle (z.B. unter Lagerungsbedingungen) definiert.
Eine aufgearbeitete QC2-Probe wurde an fünf aufeinander folgenden Tagen unter identischen Untersuchungsbedingungen gemessen. Zwischen den Messungen wurde sie bei Kühlschranktemperatur (+4°C.) gelagert.

3.2.2.5 Nachweisgrenze und Bestimmungsgrenze

Die Nachweisgrenze (NG oder Limit of Detection, LOD) stellt den kleinsten Analytgehalt dar, der mit einer vorgegebenen Sicherheit (99%) vom Leerwert unterscheidbar ist. Besitzt eine Probe genau diesen Gehalt des Analyten, so wird in 50% aller Fälle der konkrete Messwert kleiner sein als die Nachweisgrenze.

Die Bestimmungsgrenze (BG oder Limit of Quantification, LOQ) ist der kleinste Gehalt, der mit einer vorgegebenen relativen Ergebnisunsicherheit (33%, Signifikanz: 99%) bestimmt werden kann. Diese Grenzen wurden in dieser Studie basierend auf der DIN 32645 berechnet.

3.2.2.6 Wiederfindungsrate

Die absolute Wiederfindung ist definiert als kompletter Transfer des Analyten aus der Matrix in die zu vermessende Lösung. Sie wird bestimmt aus einem Verhältnis der Signale einer gleich zugesetzten Menge des Analyten bzw. Standards zu einer biologischen Probe und einer nicht extrahierten Originallösung (= 100%) (Peters et al. 2004).
3.2.2.7 Extraktion von Zopiclon und Zolpidem aus dem Serum

- 250 µl Serum werden in ein 2 ml-Reaktionsgefäß gegeben
- Zugabe von 20 µl der Arbeitslösung des internen Standards (I.S.) Fentanyl-D5 (1 µg/ml) (Endkonzentration: 20 ng / 250 µl Serum)
- Zugabe von 250 µl alkalischem Phosphatpuffer
- 5 min schütteln
- Zugabe von 1000 µl 1-Chlorbutan
- 5 min schütteln
- 5 min zentrifugieren bei 14.000 rpm
- Überstand in 1,5 ml-Reagiergefäß überführen
- unter Stickstoff bei 40°C einengen
- mit 250 µl Eluent C aufnehmen
- 2 min sorgfältig schütteln
- 10 min zentrifugieren bei 14.000 rpm
- je 100 µl Extrakt in ein GC-Proben-Gefäß mit Insert überführen und verschließen.

3.2.2.8 Kalibration

Für die Validierung der Methode wurden sechs Kalibrationskurven an sechs verschiedenen Tagen zur Bestimmung der Linearität und der analytischen Grenzen aufgearbeitet und vermessen. Außerdem wurden an acht verschiedenen Tagen jeweils zwei Qualitätskontrollen in zwei verschiedenen Konzentrationen aufgearbeitet (QC1 und QC2).

Für die Erstellung der Kalibrationskurven und der Qualitätskontrollen wurden homogene Serum-Pools jeweils mit Zopiclon und Zolpidem dotiert. Diese wurden anschließend zu einzelnen Proben à 250 µl aliquotiert und bis zur Aufarbeitung bei –20°C gelagert.

Die für die jeweiligen Analyten verwendeten Konzentrationen sind in den folgenden Tabellen aufgeführt:
Material und Methoden

Tabelle 5: Kalibrationskurve für Zopiclon

<table>
<thead>
<tr>
<th>($)g/ml</th>
<th>Kalib. 0</th>
<th>Kalib. 1</th>
<th>Kalib. 2</th>
<th>Kalib. 3</th>
<th>Kalib. 4</th>
<th>Kalib. 5</th>
<th>QC1</th>
<th>QC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,01</td>
<td>0,05</td>
<td>0,1</td>
<td>0,15</td>
<td>0,2</td>
<td>0,25</td>
<td>0,025</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Kalib. = Kalibrator

QC = Qualitätskontrolle

Tabelle 6: Kalibrationskurve für Zolpidem

<table>
<thead>
<tr>
<th>($)g/ml</th>
<th>Kalib. 0</th>
<th>Kalib. 1</th>
<th>Kalib. 2</th>
<th>Kalib. 3</th>
<th>Kalib. 4</th>
<th>Kalib. 5</th>
<th>QC1</th>
<th>QC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1</td>
<td>0,2</td>
<td>0,3</td>
<td>0,4</td>
<td>0,5</td>
<td>0,2</td>
<td>0,5</td>
<td></td>
</tr>
</tbody>
</table>

Kalib. = Kalibrator

QC = Qualitätskontrolle

3.2.2.9 Bestimmung der Selektivität

Leerproben:
Es wurden zehn Serumproben von verschiedenen Probanden ohne Zusatz von Zolpidem, Zopiclon und I.S. gemäß Vorschrift aufgearbeitet und mittels LC-MS gemessen.

3.2.2.10 Bestimmung der Wiederfindung

2. Lösungsmittelproben: Es wurden je vier Proben angesetzt, die entsprechend der QC1-Proben die Konzentrationen 0,0065 µg Zopiclon und 0,050 µg Zolpidem sowie 5 ng Fentanyl-D5, bzw. entsprechend QC2: 0,050 µg Zopiclon, 0,125 µg Zolpidem und 5 ng internen Standard enthielten.

Nach Analyse mittels LC-MS wurden die Peakflächen des IS und des Analyten ermittelt und die Wiederfindungsrate nach Extraktion bestimmt.
Material und Methoden

3.2.2.11 Extraktionsmethode zur Bestimmung von Benzodiazepinen im Serum mittels GC-ECD (Electron Capture Detector)

- 500 µl Serum in 2 ml-Reagiergefäße vorlegen
- Zugabe von 20 ng des I.S. (Tetrachlorobiphenyl)
- Zugabe von 500 µl „ECD-Puffer“
- 2 min schütteln
- Zugabe von 500 µl Butylacetat
- 5 min schütteln
- 3 min zentrifugieren bei 14.000 rpm
- Überführung des Überstandes (je 100 µl) in GC-Röhrchen mit Einsatz.

3.2.2.12 LC-MS Methode

HPLC:
- Säule: Waters Symmetry RP18, 150x2,1 mm, 3 µm
- Eluent: 20% Acetonitril, 80% Wasser, 0,1% Ameisensäure
- isokratische Elution bei 0,2 ml/min

MS:
- ESI + 4KV, heated capillary: 150°C, capillary voltage: 5V, tube lens 0V, sheath gas 45 arbitrary units, run time 20 min.
- Segment 1: 4,4 min: Full scan ms/ms parent ion: m/z 389, collision energy 30%
- Segment 2: 7,6 min: Full scan ms/ms parent ion m/z 308, collision energy 50%
- Segment 3: 8 min: Full scan ms/ms parent ion m/z 342, collision energy 50%

Tune file: zopiclon-tune.LCQtune

Methode: zopiclon_zolpidemsegm.meth

Validierung mittels Valistat® 1.0 Software (Arvecon GmbH, Walldorf, Deutschland)
Ergebnisse

4 Ergebnisse

4.1 Etablierung einer LC-MS-Methode zur Analytik von Zolpidem und Zopiclon im Serum

4.1.1 Validierung: Leistungsfähigkeit der LC-MS-Methode

4.1.1.1 Selektivität

Bei keiner der untersuchten Proben traten Interferenzen beim Nachweis bzw. der Bestimmung der Analyten Zopiclon und Zolpidem auf.

4.1.1.2 Linearität

Die Bestimmungsmethode erwies sich für Zopiclon als linear im Kalibrierbereich von 0,01 bis 0,25 µg/ml und als linear für Zolpidem im Kalibrierbereich von 0,1 bis 0,5 µg/ml (s. Valistat-Protokoll für Zolpidem und für Zopiclon im Anhang). Der Korrelationskoeffizient r^2 lag für Zopiclon bei 0,999, für Zolpidem ebenfalls bei 0,999.

Bei der Testung auf Ausreißer mittels Grubbs-Test (Signifikanzniveau: 95%) konnten keine Ausreißer festgestellt werden.
4.1.1.3 Genauigkeit

Im Detail konnte für Zolpidem für die niedrige Konzentration hinsichtlich Wiederhol- und Laborpräzision eine RSD von im Mittel 7,14% erzielt werden, für die hohe Konzentration eine RSD von im Mittel 9,69%. Für Zopiclon betrug die RSD bei niedriger Konzentration im Mittel 16,6% und bei hoher Konzentration im Mittel 11,74%.

4.1.1.4 Stabilität

Die nachgewiesenen Konzentrationen lagen innerhalb einer Schwankungsbreite von 10% und damit innerhalb der erforderlichen Grenzen (±15%).

4.1.1.5 Nachweisgrenze und Bestimmungsgrenze

Für Zolpidem ließ sich eine Bestimmungsgrenze von 0,1 µg/ml bei einer Signifikanz von 99% ermitteln, die Nachweisgrenze wurde mit 0,03 µg/ml bestimmt. Bei Zopiclon lag die Bestimmungsgrenze mit 0,04 µg/ml bei einer Signifikanz von 99%. Die Nachweisgrenze konnte mit 0,01 µg/ml bestimmt werden.

4.1.1.6 Wiederfindungsrate

Bei Zolpidem lag die Wiederfindungsrate für die niedrige Konzentration (0,2 µg/ml) bei 50,0%. Für die hohe Konzentration (1,0 µg/ml) wurde die Wiederfindungsrate bei 67,5% gemessen. Für Zopiclon ließ sich für die niedrige Konzentration (0,025 µg/ml) eine Wiederfindungsrate von 68,1% messen. Für die hohe Konzentration (0,5 µg/ml) lag die Wiederfindungsrate bei 57,4%. Gefordert sind hier Wiederfindungsraten von mindestens 50%.
Ergebnisse

4.1.2 Ergebnis der Validierung

Als Ergebnis der Validierung lässt sich feststellen, dass alle ermittelten Validierungsparameter wie Spezifität, Linearität, Präzision, Richtigkeit und Stabilität innerhalb der vorgegebenen Grenzen lagen. Damit erfüllt die in dieser Arbeit verwendete LC-MS-Methode zum Nachweis von Zolpidem und Zopiclon die gültigen Anforderungen an die Durchführung von Analysen gemäß den Richtlinien der GTFCh zur Qualitätssicherung bei forensisch-toxikologischen Untersuchungen.

4.1.3 Valistat-Protokoll

Die Validierung ist zusammenfassend in dem „Valistat-Protokoll“ zusammengefasst und wurde in das Qualitäts-Handbuch des Labors integriert. Das „Valistat-Protokoll“ ist im Anhang angefügt (s. Anhang S. III ff.).

4.2 Ergebnisse der Untersuchung auf Zolpidem und Zopiclon

4.2.1 Häufigkeit der Untersuchungen auf Zopiclon/Zolpidem aufgrund der Anamnese

Abbildung 4: Anzahl der Zopiclon- und Zolpidem-Einnahme bekannt durch Anamnese
Blauer Abschnitt = Zopiclon-Einnahme (n = 8); grüner Abschnitt = Zolpidem-Einnahme (n = 3); gelber Abschnitt = Verlaufskontrolle Zopiclon (n = 3); roter Abschnitt = Verlaufskontrolle Zolpidem (n = 1); hellgelber Abschnitt = nicht-Zopiclon bzw. –Zolpidem-Einnahme (n = 157)

4.2.2 Zopiclon-/Zolpidem-Nachweis bei der toxikologischen Erstuntersuchung

Bei der chemisch toxikologischen Untersuchung der Blutproben auf Zolpidem und Zopiclon wurden bei der notfallmäßigen Erstuntersuchung der insgesamt 168 Notfall-Patienten (die Untersuchung beinhaltete insgesamt 172 Fälle, von denen vier Verlaufskontrollen waren) in vier Fällen Zolpidem und acht Fällen Zopiclon gefunden (s. Tab. 7, 8 und Abb. 5). Nicht in allen Fällen wurden die Proben vollständig analysiert, z.B. dann nicht, wenn die bereits erhobenen und mitgeteilten Befunde oder andere klinische Untersuchungen die Symptome des Patienten hinreichend erklärten und die Klinik auf weitere Analysen (auf Rücksprache) verzichtete.
Abbildung 5: Häufigkeit des Nachweises von Zopiclon und Zolpidem anhand der toxikologischen Erstuntersuchung
Blauer Abschnitt = Zopiclon - Einnahme (n = 8); grüner Abschnitt = Zolpidem - Einnahme (n = 4); gelber Abschnitt = Verlaufskontrolle Zopiclon (n = 4); roter Abschnitt = Verlaufskontrolle Zolpidem (n = 0); hellgelber Abschnitt = nicht-Zopiclon bzw. –Zolpidem - Einnahme (n = 156)

4.2.3 Zopiclon-/Zolpidem-Nachweis bei der retrospektiven LC-MS-Analyse

Bei der vollständigen Nachuntersuchung aller Proben mit der neu etablierten LC-MS-Methode wurden in drei weiteren Blutproben (Fall 17, 18, 19) zusätzlich Zolpidem nachgewiesen (s. Tab. 7, 8 und Abb. 6), die vorher weder anamnestisch angegeben noch durch die erste toxikologische Untersuchung detektiert wurden, weil die Klinik nach der Durchsage vorläufiger Ergebnisse auf weitere Untersuchungen verzichtete (weil die Befunde der z.B. immunologischen Untersuchungen die Symptomatik bereits hinreichend erklärten).
Abbildung 6: Anzahl des Nachweises von Zopiclon und Zolpidem anhand der retrospektiven LC-MS

Blauer Abschnitt = Zopiclon-Einnahme (n = 8); grüner Abschnitt = Zolpidem-Einnahme (n = 7); gelber Abschnitt = Verlaufskontrolle Zopiclon (n = 4); roter Abschnitt = Verlaufskontrolle Zolpidem (n = 0); hellgelber Abschnitt = nicht-Zopiclon bzw. –Zolpidem-Einnahme (n = 153)

Bei der quantitativen Analyse zeigte sich, dass als noch therapeutisch geltende Konzentrationen (< 0,2 µg/ml Zolpidem, < 0,1 µg/ml Zopiclon) nur in je zwei Fällen der Zolpidemaufnahme (Fall 1 und 17) und Zopiclonaufnahme (Fall 6 und 16) vorkamen. Bei zwei Zolpidem-Intoxikationen (Fall 4 und 18) und einer Zopiclon-Intoxikation (Fall 9) wurden über zehnfach übertherapeutische Serumkonzentrationen gemessen (Tab. 7).
Ergebnisse

Tabelle 7: Genaue Auflistung der Zopiclon- und Zolpidem-Fälle mit zusätzlichem Nachweis anderer Fremdstoffe und klinischen Angaben

<table>
<thead>
<tr>
<th>Fall</th>
<th>Probe (Jahre)</th>
<th>Alter (Jahre)</th>
<th>Sex</th>
<th>Zolpidem (µg/ml) Erstuntersuchung</th>
<th>Zolpidem (µg/ml) Nachuntersuchung</th>
<th>Zopiclon (µg/ml) Erstuntersuchung</th>
<th>Zopiclon (µg/ml) Nachuntersuchung</th>
<th>Alkohol (‰)</th>
<th>Zusätzlicher Nachweis anderer Fremdstoffe (µg/ml)</th>
<th>Klinische Angaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
<td>21</td>
<td>w</td>
<td>0,3</td>
<td>0,15</td>
<td>Promethazin (0,7)</td>
<td></td>
<td></td>
<td>Promethazin-Intoxikation in suizidaler Absicht</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>40</td>
<td>m</td>
<td>1,3</td>
<td>0,93</td>
<td>Benzodiazepine Psychopharmaka nnb</td>
<td></td>
<td></td>
<td>Alkohol-Intoxikation und fragliche andere Medikamenten-Intoxikation bei chronischer Depression</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>95</td>
<td>87</td>
<td>w</td>
<td>0,37</td>
<td>0,23</td>
<td></td>
<td></td>
<td></td>
<td>Medikamenten-spiegel-Bestimmung Zolpidem</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>134</td>
<td>85</td>
<td>m</td>
<td>nicht untersucht</td>
<td>2,47</td>
<td>Clobazam (0,3)</td>
<td></td>
<td></td>
<td>Unklare Intoxikation, ev. Benzodiazepine</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>143</td>
<td>56</td>
<td>w</td>
<td>0,93</td>
<td><0,001</td>
<td></td>
<td></td>
<td></td>
<td>Verdacht auf Intoxikation</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>152</td>
<td>83</td>
<td>m</td>
<td>0,004</td>
<td>bestätigt</td>
<td>Diazepam/Nordazepam (0,07), Carbamazepin (11,6)</td>
<td></td>
<td></td>
<td>Verdacht auf unkontrollierte Tabletteneneinnahme bei Depression</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>155</td>
<td>57</td>
<td>m</td>
<td>0,51</td>
<td>bestätigt</td>
<td>Olanzapin (0,03)</td>
<td></td>
<td></td>
<td>Mischintoxikation in suizidaler Absicht</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>156</td>
<td>57</td>
<td>m</td>
<td>0,21</td>
<td>bestätigt</td>
<td></td>
<td></td>
<td></td>
<td>Verlaufskontrolle Zopiclon von Proben-Nr. 155</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>157</td>
<td>51</td>
<td>w</td>
<td>0,26</td>
<td>bestätigt</td>
<td>Diazepam (2,5), Lorazepam (1,4), Nordazepam (0,47)</td>
<td></td>
<td></td>
<td>Intoxikation</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>158</td>
<td>74</td>
<td>w</td>
<td>nicht untersucht</td>
<td>0,61</td>
<td>Hydromorphon (0,08)</td>
<td></td>
<td></td>
<td>Verdacht auf Intoxikation</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>161</td>
<td>57</td>
<td>w</td>
<td>0,2</td>
<td>bestätigt</td>
<td>Tramipramin (0,3)</td>
<td></td>
<td></td>
<td>Mischintoxikation</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>162</td>
<td>43</td>
<td>w</td>
<td>7,9</td>
<td>bestätigt</td>
<td>Mirtazapin (0,02)</td>
<td></td>
<td></td>
<td>Verlaufskontrolle Zopiclon und fragliche andere Medikamenteneinnahme</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>163</td>
<td>43</td>
<td>w</td>
<td>0,3</td>
<td>bestätigt</td>
<td></td>
<td></td>
<td></td>
<td>Verlaufskontrolle Zopiclon von Proben-Nr. 164</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>164</td>
<td>85</td>
<td>m</td>
<td>0,87</td>
<td>0,66</td>
<td></td>
<td></td>
<td></td>
<td>Verlaufskontrolle Zopiclon und Benzodiazepin-Intoxikation</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>165</td>
<td>85</td>
<td>m</td>
<td>0,09</td>
<td>bestätigt</td>
<td>Benzodiazepine</td>
<td></td>
<td></td>
<td>Verlaufskontrolle Zopiclon von Proben-Nr. 164</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>166</td>
<td>39</td>
<td>w</td>
<td>0,6</td>
<td>0,4</td>
<td>0,50</td>
<td></td>
<td></td>
<td>Verlaufskontrolle Zopiclon und Benzodiazepin-Intoxikation</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>167</td>
<td>39</td>
<td>w</td>
<td>0,13</td>
<td>0,09</td>
<td>Benzodiazepine</td>
<td></td>
<td></td>
<td>Verlaufskontrolle Zopiclon von Proben-Nr. 166</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>168</td>
<td>66</td>
<td>w</td>
<td>10,9</td>
<td>3,53</td>
<td>Benzodiazepine</td>
<td></td>
<td></td>
<td>Verlaufskontrolle Zopiclon-Intoxikation</td>
<td></td>
</tr>
</tbody>
</table>
Obgleich nach bisherigen klinischen Erfahrungen selbst hochgradige
Überdosierungen intensivmedizinisch relativ gut beherrschbar sind, ist bei
Vorliegen von Mischintoxikationen mit anderen zentralwirksamen Arzneimitteln
oder Alkohol mit z.T. sehr schweren Intoxikationen zu rechnen.

Zusammengefasst lässt sich die Anzahl der detektierten Zopiclon- und
Zolpidem-Fälle wie folgt darstellen:

Tabelle 8: Anzahl der Zopiclon- und Zolpidem-Fälle

<table>
<thead>
<tr>
<th></th>
<th>anamnestisch bekannt</th>
<th>in Erstuntersuchung detektiert</th>
<th>in LC-MS-Nachuntersuchung detektiert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zolpidem</td>
<td>3 (+ 1 Verlaufskontrolle)</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Zopiclon</td>
<td>8 (+ 3 Verlaufskontrollen)</td>
<td>8 (+ 4 Verlaufskontrollen)</td>
<td>8 (+ 4 Verlaufskontrollen)</td>
</tr>
<tr>
<td>gesamt</td>
<td>15</td>
<td>16</td>
<td>19</td>
</tr>
</tbody>
</table>

4.2.4 Untersuchung auf weitere Substanzen

Die Untersuchung auf weitere Substanzen ergab, dass nur in drei Fällen reine
Monointoxikationen mit den Z-Drugs vorlagen (Tab. 7). Die Analyse auf
zusätzliche, für die Intoxikationen mitverantwortliche Substanzen zeigt die
Abb. 7:
Die bei weitem häufigste Kombination stellten die Benzodiazepine dar. Im Fall 6 und 12 hätten die gemessenen Konzentrationen der zusätzlichen Arzneimittel per se bereits eine Intoxikation hervorgerufen (Tab. 7). Hauptursache für die Intoxikationen waren die Z-Drugs.

4.2.5 Quantifizierung von Zolpidem und Zopiclon

Die Werte der Serumkonzentrationen von Zopiclon ergaben eine Spannbreite von 0,004 bis 7,9 µg/ml. Werte über 0,2 µg/ml liegen im toxischen, über 0,6 µg/ml im wohl komatös-letalen Konzentrationsbereich. Die Fälle 5, 7, 11, 14 waren Analysen des Konzentrationszeit-Verlaufs einer schon bekannten Intoxikation (Tab. 7).

Die in der retrospektiven Untersuchung entdeckten drei weiteren positiven Zolpidem-Proben ergaben folgende quantitative Ergebnisse:
Ergebnisse

Tabelle 9: Serumkonzentrationen der positiven Zolpidemfälle in der retrospektiven Untersuchung mittels LC-MS

<table>
<thead>
<tr>
<th>Fall-Nr.</th>
<th>Untersuchung mittels LC-MS (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0,03</td>
</tr>
<tr>
<td>18</td>
<td>2,47</td>
</tr>
<tr>
<td>19</td>
<td>0,61</td>
</tr>
</tbody>
</table>

Ein exemplarischer Vergleich bei fünf Proben nach den üblichen Methoden der routinemäßigen Erstuntersuchung ergab folgende quantitative Werte in toxikologischer Erstuntersuchung und nachfolgender Analytik mittels LC-MS:

Tabelle 10: Vergleich der gemessenen Serumkonzentrationen bei der Erstuntersuchung (GC-TSD) und der Nachuntersuchung (LC-MS)

<table>
<thead>
<tr>
<th>Fall-Nr.</th>
<th>Wirkstoff</th>
<th>Toxikologische Erstuntersuchung (µg/ml)</th>
<th>LC-MS-Nachuntersuchung (µg/ml)</th>
<th>Diskrepanz der quantitativen Werte (µg/ml)</th>
<th>Diskrepanz in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zolpidem</td>
<td>0,3</td>
<td>0,15</td>
<td>0,15</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Zolpidem</td>
<td>1,3</td>
<td>0,93</td>
<td>0,37</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>Zopiclon</td>
<td>0,13</td>
<td>0,09</td>
<td>0,04</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>Zopiclon</td>
<td>0,6</td>
<td>0,4</td>
<td>0,2</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>Zopiclon</td>
<td>0,87</td>
<td>0,66</td>
<td>0,21</td>
<td>24</td>
</tr>
</tbody>
</table>

Bei den in Tabelle 10 mittels LC-MS exemplarisch nachuntersuchten Proben wurden im Vergleich zur toxikologischen Erstuntersuchung geringere quantitative Werte ermittelt. In den fünf Vergleichs-Proben lag die Diskrepanz zwischen 24 und 50%.
4.2.6 Patientenkollektiv bezogen auf Zolpidem-/Zopiclon-Einnahme

4.2.6.1 Zopiclon-Einnahme

Tabelle 11: Auflistung der Zopiclon-Einnahme hinsichtlich Geschlechterverteilung, Alter, Indikation und Einnahme sonstiger Wirkstoffe

<table>
<thead>
<tr>
<th>Zopiclon</th>
<th>m</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl (n)</td>
<td>3 + 2 VK</td>
<td>5 + 2 VK</td>
</tr>
<tr>
<td>Alter (Jahre)</td>
<td>57-85</td>
<td>39-57</td>
</tr>
<tr>
<td>Indikation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intoxikation allgemein</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Medikamenten-Intoxikation</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Alkohol + Medikamenten-Intoxikation</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Suizidversuch + Mischintoxikation</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Verlaufskontrolle</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mischintoxikation</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Kombination mit:
- Benzodiazepinen + Alkohol | 0 | 1 |
- Benzodiazepinen | 2 | 1 |
- Benzodiazepinen + Sonstige Medikamente | 0 | 0 |
- Psychopharmaka | 1 | 2 |
- Sonstigen Medikamenten | 0 | 0 |

VK = Verlaufskontrolle; m = männlich; w = weiblich

Bei den insgesamt acht positiven Zopiclon-Fällen handelte es sich insgesamt sechsmal um Intoxikationen (Tabelle 7, 8 und 11): Es waren insgesamt zwei männliche Patienten intoxikiert, und zweimal wurde eine Verlaufskontrolle durchgeführt (Serumkonzentration: 0,21 µg/ml, 0,51 µg/ml (in Kombination mit 0,03 µg/ml Olanzapin) und 0,66 µg/ml). Bei den Frauen wurden fünf Intoxikationen mit folgenden Zopiclon-Serumkonzentration nachgewiesen: 0,2 µg/ml (in Kombination mit 0,3 µg/ml Trimipramin), 0,26 µg/ml (in Verbindung mit 2,5 µg/ml Diazepam, 1,4 µg/ml Lorazepam und 0,47 µg/ml Nordazepam), 0,6µg/ml (in Kombination mit immunologisch nachgewiesenen Benzodiazepinen und Alkohol 0,5‰), 0,93 µg/ml und 7,9 µg/ml (d.h. im potentiell komatös-leitalen Bereich und kombiniert mit 0,02 µg/ml Mirtazapin).

In einem Fall wurde eine Verlaufskontrolle durchgeführt (0,3 µg/ml), womit insgesamt vier Frauen mit Zopiclon intoxikiert waren.
4.2.6.2 Zolpidem-Einnahme

Tabelle 12: Auflistung der Zolpidem-Einnahme hinsichtlich Geschlechterverteilung, Alter, Indikation und Einnahme weiterer Wirkstoffe

<table>
<thead>
<tr>
<th>Zolpidem</th>
<th>m</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Alter</td>
<td>40-85</td>
<td>21-87</td>
</tr>
<tr>
<td>Indikation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intoxikation allgemein</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Medikamenten-Intoxikation</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Trauma</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Alkohol + Medikamenten-Intoxikation</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Suizidversuch + Medikamenten-Intoxikation</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Medikamenten-Konzentration-Bestimmung</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kombination mit</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkohol</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Benzodiazepinen</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Benzodiazepinen + Psychopharmaka</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Psychopharmaka</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sonstigen Medikamenten</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

m = männlich, w = weiblich

Bei den insgesamt sieben Zolpidemfällen (Tab. 12) handelte es sich fünfmal um Intoxikationen. Drei Frauen waren intoxikiert, eine im komatös-letalen Bereich (3,53 µg/ml, kombiniert mit immunologisch bestimmten Benzodiazepinen) und zwei im toxischen Bereich (einmal 0,23 µg/ml und einmal 0,61 µg/ml, kombiniert mit sonstigen Medikamenten, d.h. in diesem Fall 0,08 µg/ml Hydromorphon). Zwei Männer waren ebenfalls intoxikiert, einer im komatös-letalen (2,47 µg/ml) und einer im toxischen (0,93 µg/ml) Bereich (Einstufung nach Schulz und Schmoldt 2003) (s. auch Tabelle 7 und 8).
4.2.7 Benzodiazepine in Kombination mit Zolpidem-/Zopiclon-Einnahme

Zolpidem wurde in drei Fällen gemeinsam mit Benzodiazepinen eingenommen. Hierbei handelte es sich einmal um Clobazam (0,3 µg/ml) und einmal um immunologisch nachgewiesene, nicht näher bestimmte Benzodiazepine. In einem Fall wurden nicht näher bestimmte Benzodiazepine mit immunologisch nachgewiesenen, nicht näher bestimmten Psychopharmaka kombiniert (s. Tab. 7 und 12).

Bei Zopiclon konnte in drei Fällen eine mit Benzodiazepinen kombinierte Einnahme festgestellt werden. In einem Fall handelte es sich um Diazepam (0,07 µg/ml, kombiniert mit dem Antiepileptikum Carbamazepin in einer toxischen Konzentration von 11,6 µg/ml), in dem anderen Fall konnten Diazepam (2,5 µg/ml) und sein Metabolit Nordazepam (0,47 µg/ml) plus Lorazepam (1,4 µg/ml) detektiert werden. Einmal wurde Zopiclon in Kombination mit immunologisch bestimmten Benzodiazepinen in Kombination mit Alkohol (0,5‰) nachgewiesen (s. Tab. 7 und 11).
4.3 Patientenkollektiv

4.3.1 Soziodemographische Angaben zu Alter und Geschlecht des untersuchten Patientenkollektivs

Das hier untersuchte Patientenkollektiv setzte sich aus 77 (45%) Männern und 88 (51%) Frauen zusammen. Bei sieben (4%) Proben waren keine weiteren Angaben zur Person vorhanden (s. Abb. 8).

Abbildung 8: Geschlechtsverteilung des untersuchten Patientenkollektivs in Prozent
Roter Abschnitt = weiblich; blauer Abschnitt = männlich; gelber Abschnitt = nicht bekannt

Die Altersverteilung bezog sich auf eine Altersspanne von 13 bis 88 Jahre (bei den Männern 19 bis 85 Jahre, bei den Frauen 13 bis 88 Jahre), der Mittelwert aller Patienten betrug 41,5 Jahre, der Median 39 Jahre (s. Tab. 13).

In der Aufschlüsselung der Altersklassen in Bezug auf das Geschlecht zeigte sich die folgende Verteilung:
Ergebnisse

Tabelle 13: Altersverteilung des untersuchten Patientenkollektivs

<table>
<thead>
<tr>
<th>Alter (Jahre)</th>
<th>männlich</th>
<th>weiblich</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>44,6</td>
<td>39,1</td>
<td>41,5</td>
</tr>
<tr>
<td>Median</td>
<td>40,0</td>
<td>37,0</td>
<td>39</td>
</tr>
</tbody>
</table>

Die Geschlechter-getrennte Darstellung zeigt, dass Frauen in der Altersgruppe der 10- bis 20-jährigen mit 18 Fällen von allen (10%) überproportional hoch vertreten sind. Bei den Männern ist dies in der Altersklasse 31 bis 40 Jahre der Fall (s. Abb. 9).

Abbildung 9: Altersverteilung im untersuchten Patientenkollektiv
(Anzahl = n), nach Altersgruppen (in Jahren) und Geschlecht geordnet
Rote Säulen = weiblich; blaue Säulen = männlich; gelbe Säulen = gesamt (n)
Ergebnisse

In der Altersverteilung der intoxikierten Patienten fällt auf, dass die Intoxikationen mit Zopiclon und Zolpidem vornehmlich bei älteren Patienten auftraten (s. Abb. 10).

Abbildung 10: Altersverteilung der Zopiclon- und Zolpidemintoxikationen (Anzahl = n), nach Altersgruppen (in Jahren) und Geschlecht geordnet
Rot = weiblich; blau = männlich; gelb = Zolpidemintoxikation bei den Frauen; grün = Zopiclonintoxikationen bei den Männern; orange = Zopiclonintoxikationen bei den Frauen; Türkis = Zolpidemintoxikationen bei den Männern)

4.3.2 Angaben zur Anforderung der Untersuchungen
Ergebnisse

Tabelle 14: Zusammenstellung der Verdachtsdiagnosen mit anamnestischen Angaben bezogen auf die Anforderungen zur Untersuchung von Serumproben beim Tox-Screening

<table>
<thead>
<tr>
<th>Fragestellung / Verdacht auf / anamnestische Angaben</th>
<th>Anzahl (n)</th>
<th>davon</th>
<th>Anteil in % von allen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intoxikation allgemein</td>
<td>22</td>
<td>15</td>
<td>12,8</td>
</tr>
<tr>
<td>Medikamenten-Intoxikation gesamt</td>
<td>27</td>
<td>15</td>
<td>15,7</td>
</tr>
<tr>
<td>• nnb</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Barbiturate</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Benzodiazepine</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Antidepressiva</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Neuroleptika</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Zopiclon</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Zolpidem</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trauma allgemein</td>
<td>10</td>
<td>6</td>
<td>5,8</td>
</tr>
<tr>
<td>Alkohol</td>
<td>14</td>
<td>7</td>
<td>8,1</td>
</tr>
<tr>
<td>Alkohol + Medikamente</td>
<td>8</td>
<td>5</td>
<td>4,6</td>
</tr>
<tr>
<td>Suizidversuch</td>
<td>24</td>
<td>16</td>
<td>14,0</td>
</tr>
<tr>
<td>Bewusstseinsstörung</td>
<td>36</td>
<td>18</td>
<td>21,0</td>
</tr>
<tr>
<td>Psychose</td>
<td>4</td>
<td>3</td>
<td>2,3</td>
</tr>
<tr>
<td>Medikamentenkonzentration-Bestimmung, Verlaufskontrolle, Screening</td>
<td>12</td>
<td>9</td>
<td>7,0</td>
</tr>
<tr>
<td>illegale Drogen</td>
<td>1</td>
<td>1</td>
<td>0,6</td>
</tr>
<tr>
<td>keine Diagnose</td>
<td>2</td>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>Mischintoxikation</td>
<td>12</td>
<td>9</td>
<td>7,0</td>
</tr>
<tr>
<td>Summe</td>
<td>172</td>
<td>116</td>
<td>100</td>
</tr>
</tbody>
</table>

nnb = nicht näher bekannt

4.3.3 In der Notfallanalytik bestätigte Verdachtsdiagnosen

Nach erfolgter toxikologischer Untersuchung ließen sich bei den insgesamt 172 Verdachtsdiagnosen 95 Intoxikationen nachweisen. In diesen 95 Fällen lag die Konzentration der eingenommenen Wirkstoffe, die zu einer Intoxikation geführt hatten, oberhalb des therapeutischen Bereiches und innerhalb des toxischen Bereiches (Angaben zu Konzentrationen gemäß Schulz und Schmoldt 2003). Neben den Wirkstoffen in toxischer Konzentration wurden in den meisten Fällen auch zusätzlich andere Substanzen nachgewiesen, deren Konzentrationen sich jedoch im therapeutischen Bereich befanden (s. Tab. 15).

Die folgende Tabelle zeigt die Aufschlüsselung der „sonstigen Intoxikationen“ nach Wirkstoffgruppen.
Ergebnisse

Tabelle 16: Aufschlüsselung der „sonstigen Intoxikationen“ nach Wirkstoffgruppen und Konzentrationsangaben

<table>
<thead>
<tr>
<th>Proben-Nr.</th>
<th>Alter (Jahre)</th>
<th>Sex</th>
<th>Substanz in toxischer Konzentration (µg/ml) oder (%)</th>
<th>Wirkstoffgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>88</td>
<td>n.b.</td>
<td>Hydroxycin 0,13</td>
<td>Antihistaminikum</td>
</tr>
<tr>
<td>130</td>
<td>44</td>
<td>m</td>
<td>Tramadol 1,3</td>
<td>Opioid-Analgetikum</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>w</td>
<td>Metamizol 99,8 Tramadol 4,33</td>
<td>Nicht-Opioid-Analgetikum und Opioid-Analgetikum</td>
</tr>
<tr>
<td>1</td>
<td>44</td>
<td>m</td>
<td>Codein 0,73</td>
<td>Antitussivum</td>
</tr>
<tr>
<td>66</td>
<td>17</td>
<td>w</td>
<td>Carbamazepin 44,0</td>
<td>Antikonvulsivum</td>
</tr>
<tr>
<td>152</td>
<td>83</td>
<td>m</td>
<td>Carbamazepin 11,6</td>
<td>Antikonvulsivum</td>
</tr>
<tr>
<td>112</td>
<td>21</td>
<td>m</td>
<td>Olanzapin 3,1 Alkohol 1,8</td>
<td>Neuroleptikum Alkohol</td>
</tr>
<tr>
<td>146</td>
<td>30</td>
<td>w</td>
<td>Quetiapin 1,8</td>
<td>Neuroleptikum</td>
</tr>
<tr>
<td>144</td>
<td>42</td>
<td>w</td>
<td>Mirtazapin 2,11</td>
<td>Tetracyclisches Antidepressivum</td>
</tr>
<tr>
<td>82</td>
<td>39</td>
<td>w</td>
<td>Venlafaxin 1,03 Alkohol 1,9</td>
<td>Antidepressivum (SNRI) Alkohol</td>
</tr>
<tr>
<td>41</td>
<td>48</td>
<td>m</td>
<td>Mirtazapin 2,0</td>
<td>Tetracyclisches Antidepressivum</td>
</tr>
<tr>
<td>149</td>
<td>51</td>
<td>w</td>
<td>Amitriptylin 0,56</td>
<td>Tricycl. Antidepressivum</td>
</tr>
<tr>
<td>40</td>
<td>33</td>
<td>w</td>
<td>Amitryptilin 0,8 Alkohol 1,3</td>
<td>Tricycl. Antidepressivum Alkohol</td>
</tr>
<tr>
<td>59</td>
<td>22</td>
<td>w</td>
<td>Amitriptylin 0,81</td>
<td>Tricycl. Antidepressivum</td>
</tr>
<tr>
<td>170</td>
<td>28</td>
<td>w</td>
<td>Citalopram 0,5</td>
<td>Antidepressivum (SSRI)</td>
</tr>
<tr>
<td>132</td>
<td>27</td>
<td>m</td>
<td>Levomepromazin 0,8 Alkohol 0,9</td>
<td>Neuroleptikum Alkohol</td>
</tr>
<tr>
<td>70</td>
<td>23</td>
<td>w</td>
<td>Doxepin 0,76</td>
<td>Tricycl. Antidepressivum</td>
</tr>
<tr>
<td>71</td>
<td>23</td>
<td>w</td>
<td>Doxepin 0,78</td>
<td>Tricycl. Antidepressivum</td>
</tr>
<tr>
<td>44</td>
<td>34</td>
<td>m</td>
<td>Doxepin 0,87</td>
<td>Tricycl. Antidepressivum</td>
</tr>
<tr>
<td>105</td>
<td>26</td>
<td>w</td>
<td>Doxylamin 1,0</td>
<td>Antihistaminikum</td>
</tr>
<tr>
<td>65</td>
<td>22</td>
<td>w</td>
<td>Fluoxetin 1,67 Alkohol 1,7</td>
<td>Antidepressivum (SSRI) Alkohol</td>
</tr>
</tbody>
</table>
Ergebnisse

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>38</td>
<td>w</td>
<td>Haloperidol 0,17</td>
<td>Neuroleptikum</td>
</tr>
<tr>
<td>4</td>
<td>66</td>
<td>m</td>
<td>Prothipendyl 1,4</td>
<td>Neuroleptikum</td>
</tr>
<tr>
<td>55</td>
<td>37</td>
<td>w</td>
<td>Amisulpid 6,6</td>
<td>Neuroleptikum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chlorprothixen 0,44</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>35</td>
<td>m</td>
<td>Clomethiazol 2,2</td>
<td>Hypnotikum</td>
</tr>
<tr>
<td>57</td>
<td>19</td>
<td>m</td>
<td>Diphenhydramin 2,15</td>
<td>Antihistaminikum</td>
</tr>
<tr>
<td>111</td>
<td>27</td>
<td>w</td>
<td>Methadon 0,65</td>
<td>Substitutionsmedikament</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ecstasy 0,32</td>
<td>Illegale Droge</td>
</tr>
<tr>
<td>19</td>
<td>63</td>
<td>w</td>
<td>Methadon 0,68</td>
<td>Substitutionsmedikament</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Opiate 0,68</td>
<td>Drogen / Opiate</td>
</tr>
<tr>
<td>81</td>
<td>39</td>
<td>m</td>
<td>Opiate 0,2</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>44</td>
<td>m</td>
<td>Opiate 1,075</td>
<td>Opiate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diazepam 2,6</td>
<td>Benzodiazepine</td>
</tr>
<tr>
<td>145</td>
<td>42</td>
<td>w</td>
<td>Diazepam 2,6</td>
<td>Benzodiazepine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mirtazapin 2,11</td>
<td>Tetracycl. Antidepressivum</td>
</tr>
<tr>
<td>23</td>
<td>48</td>
<td>m</td>
<td>Nordiazepam/Diazepam 2,4</td>
<td>Benzodiazepine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mirtazepin 2,0</td>
<td>Neuroleptikum</td>
</tr>
<tr>
<td>53</td>
<td>40</td>
<td>m</td>
<td>Benzodiazepine > 3,0</td>
<td>Benzodiazepine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zolpidem 1,3</td>
<td>Zolpidem</td>
</tr>
<tr>
<td>159</td>
<td>44</td>
<td>m</td>
<td>Bromazepam 2,6</td>
<td>Benzodiazepine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alkohol 1,90</td>
<td>Alkohol</td>
</tr>
<tr>
<td>32</td>
<td>61</td>
<td>m</td>
<td>Diazepam/Nordazepam 2,1</td>
<td>Benzodiazepine</td>
</tr>
<tr>
<td>39</td>
<td>35</td>
<td>m</td>
<td>Benzodiazepine 0,44</td>
<td>Benzodiazepine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alkohol 4,0</td>
<td>Alkohol</td>
</tr>
<tr>
<td>141</td>
<td>38</td>
<td>w</td>
<td>Diazepam 2,5</td>
<td>Benzodiazepine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lorazepam 0,47</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>63</td>
<td>w</td>
<td>Bromazepam 0,4</td>
<td>Benzodiazepine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alkohol 3,7</td>
<td>Alkohol</td>
</tr>
<tr>
<td>135</td>
<td>24</td>
<td>w</td>
<td>Bromazepam 0,9</td>
<td>Benzodiazepine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alkohol 1,7</td>
<td>Alkohol</td>
</tr>
</tbody>
</table>

Die für die Intoxikationen nachgewiesenen Substanzen wurden von beiden Geschlechtern in etwa zu gleichen Anteilen eingenommen. Eine Ausnahme stellen die Psychopharmaka dar, deren Einnahme bei den Frauen häufiger als bei den Männern vorkam (Abb. 11).
Ergebnisse

Abbildung 11: Nachgewiesene für die Intoxikationen verantwortliche Substanzen, bezogen auf das Geschlecht

Rote Säulen = Frauen; blaue Säulen = Männer; A = Alkohol; B = Benzodiazepine; M = sonstige Medikamente; P = Psychopharmaka

Die folgende Tabelle zeigt eine Darstellung der Intoxikationen mit „sonstigen Medikamenten“, aufgeschlüsselt nach Zopiclon- und Zolpidem-Intoxikationen.

Tabelle 17: Aufschlüsselung der Intoxikationen mit „sonstigen Medikamenten“ nach Intoxikation mit Zopiclon und Zolpidem

<table>
<thead>
<tr>
<th>Intoxikation (toxische Konzentration)</th>
<th>Anzahl gesamt (n)</th>
<th>mit Nachweis von</th>
<th>Anzahl (n)</th>
<th>Frauen</th>
<th>Männer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zopiclon</td>
<td>6</td>
<td>allein</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Psychopharmaka</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Alkohol</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Benzodiazepine</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Benzodiazepine</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Zolpidem</td>
<td>5</td>
<td>allein</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Sonstige Medikamente</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Benzodiazepine</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Benzodiazepine</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Psychopharmaka</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3.4 Geschlechts- und Altersverteilung der untersuchten Patienten in Bezug auf die Verdachtsdiagnosen

In Bezug auf die Geschlechtsverteilung verhielt sich die für die Notfall-Analytik gestellte Indikation der einweisenden Ärzte/Ärztinnen wie folgt (Abb. 12 und Tab. 18):

Abbildung 12: Aufstellung der Anzahl der für die Notfall-Analytik gestellte Indikation in Bezug auf die Geschlechtsverteilung im untersuchten Patientenkollektiv

Oberer Säulenteil (lila) = Frauen; unterer Säulenteil (hellblau) = Männer

Bei den insgesamt 88 weiblichen Patienten wurde in elf Fällen ein Notfall-Screening aufgrund einer nicht näher eingegrenzten Intoxikation durchgeführt, in 15 Fällen war eine fragliche vorher erfolgte Medikamenten-Intoxikation die Grundlage für die Fragestellung. Bei 20 Patientinnen war eine Bewusstseinsstörung diagnostiziert, allein sechsmal in der Altersgruppe von 10-
Ergebnisse

Tabelle 18: Anzahl der für die Notfall-Analytik gestellte Indikation in Bezug auf die Altersverteilung bei den weiblichen Patienten

<table>
<thead>
<tr>
<th>Indikation / Alter (Jahre)</th>
<th>10-20</th>
<th>21-30</th>
<th>31-40</th>
<th>41-50</th>
<th>51-60</th>
<th>61-70</th>
<th>71-80</th>
<th>81-90</th>
<th>n gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intoxikation allg.</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Medikamenten-Intoxikation gesamt</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Trauma allgemein</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Alkohol</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Alkohol + Medikamente</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Suizidversuch</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Bewusstseinsstörung</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Psychose</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Medikamentenkonzentration-Bestimmung,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verlaufskontrolle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>illegale Drogen</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>keine Diagnose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Mischintoxikationen</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Tabelle 19: Anzahl der für die Notfall-Analytik gestellte Indikation in Bezug auf die Altersverteilung bei den männlichen Patienten

<table>
<thead>
<tr>
<th>Indikation / Alter (Jahre)</th>
<th>10-20</th>
<th>21-30</th>
<th>31-40</th>
<th>41-50</th>
<th>51-60</th>
<th>61-70</th>
<th>71-80</th>
<th>81-90</th>
<th>n gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intoxikation allgemein</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Medikamenten-Intoxikation gesamt</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Trauma allgemein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Alkohol</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Alkohol + Medikamente</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Suizidversuch</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Bewusstseinsstörung</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Psyche</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Medikamentenkonzentra- tion-Bestimmung, Verlaufskontrolle</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>illegale Drogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>keine Diagnose</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mischintoxikationen</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

4.3.5 Aufschlüsselung nach angegebenen und indikationsverursachenden Medikamenten

Bei dem Patientenkollektiv wurden als (Dauer-) Medikation eine Vielzahl von Therapeutika angegeben, die jedoch nicht immer Ursache der Intoxikationen waren.

Es wurde berücksichtigt, ob jeweils nur die festgestellte Substanz als Einzelsubstanz oder in Kombination mit weiteren Therapeutika nachgewiesen werden konnte. Die anamnestischen Angaben waren in den meisten Fällen nicht eindeutig auswertbar. Im Rahmen der toxikologischen Erstuntersuchung wurden folgende Wirkstoffe nachgewiesen:
Ergebnisse

Tabelle 20: Aufstellung der nachgewiesenen Psychopharmaka

<table>
<thead>
<tr>
<th>Psychopharmaka</th>
<th>gesamt</th>
<th>Mono-therapie</th>
<th>in Kombination mit anderen Wirkstoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitriptylin</td>
<td>9</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Chlorprothixen</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Citalopram</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Clozapin</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Doxepin</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Fluoxetin</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Levomepromazin</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Mirtazapin</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Olanzapin</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pipamperon</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Promazin/ Promethazin</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Promethazin</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Prothipendyl</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Quetiapin</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TCA* immunologisch positiv</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Trimipramin</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Venlafaxin</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Summe</td>
<td>52</td>
<td>34</td>
<td>18</td>
</tr>
</tbody>
</table>

*TCA = Tricyclische Antidepressiva

Bei den Psychopharmaka konnten Amitriptylin, Doxepin und Tricyclische Antidepressiva häufiger als andere Psychopharmaka detektiert werden (s. Tab. 20).

Bei den sonstigen Substanzen wurden Cannabis und Opiate am häufigsten nachgewiesen. Auch Zopiclon wurde in elf Fällen, Zolpidem in insgesamt vier Fällen analysiert.

Tabelle 21 gibt einen detaillierten Überblick der bei dem untersuchten Patientenkollektiv gemessenen Substanzen.
Tabelle 21: Aufstellung der nachgewiesenen sonstigen Substanzen

<table>
<thead>
<tr>
<th>Sonstige Substanzen</th>
<th>gesamt</th>
<th>Monotherapie</th>
<th>in Kombination mit anderen Wirkstoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphetamine</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Barbiturate</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cannabis</td>
<td>18</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Carbamazepin</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Clomethiazol</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Diphenhydramin</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Doxylamin</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ecstasy</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hydroxyzin</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Kokain</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Lokal-Anästhetika</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Metamizol</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Methadon</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Metoprolol</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Morphin</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Opiate</td>
<td>14</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Propofol</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Salicylate</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tramadol</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Zolpidem</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Zopiclon</td>
<td>11</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Summe</td>
<td>101</td>
<td>46</td>
<td>55</td>
</tr>
</tbody>
</table>

In insgesamt 57 Fällen wurden Benzodiazepine nachgewiesen, entweder allein oder in Kombination mit anderen Wirkstoffen (n=46) (Psychopharmaka, sonstige Arzneimittel, Alkohol) (s. Tab. 22 und 23).
Tabelle 22: Aufstellung der nachgewiesenen Benzodiazepine

<table>
<thead>
<tr>
<th>Benzodiazepine</th>
<th>gesamt</th>
<th>Monotherapie</th>
<th>in Kombination mit anderen Wirkstoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alprazolam</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Bromazepam</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Clobazam</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Diazepam (incl. seiner Metaboliten Nordazepam, Oxazepam und Temazepam)</td>
<td>19</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Midazolam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Benzodiazepine n.d.</td>
<td>19</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Summe Benzodiazepine</td>
<td>57</td>
<td>11</td>
<td>46</td>
</tr>
</tbody>
</table>

n.d. = nicht differenziert

Die analysierten Benzodiazepine wurden keiner pharmakologischen Klasse zugeordnet, da sie sowohl als Psychopharmaka als auch als Hypnotiva und Substitutionsdrogen eingesetzt werden.

Tabelle 23: Auflistung der Benzodiazepin-Einnahme als Mono- oder Kombinationseinnahme mit anderen Wirkstoffen (Psychopharmaka, Alkohol und/oder sonstigen Medikamenten)

<table>
<thead>
<tr>
<th>Benzodiazepine</th>
<th>Männer</th>
<th>Frauen</th>
<th>n.b.</th>
</tr>
</thead>
<tbody>
<tr>
<td>allein</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>+ Psychopharmaka</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>+ Sonstige Medikamente</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>+ Alkohol</td>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>+ Psychopharmaka + Sonstige Medikamente</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Psychopharmaka + Sonstige Medikamente + Alkohol</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>+ Psychopharmaka + Alkohol</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>+ Sonstige Medikamente + Alkohol</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>27</td>
<td>28</td>
<td>2</td>
</tr>
</tbody>
</table>

54
Ergebnisse

Abbildung 13: Angabe der Benzodiazepin-Einnahme in Bezug auf Alter und Geschlecht
Lila Säule = Frauen; hellblaue Säule = Männer

Ergebnisse

zusätzliche Analytik mittels GC-ECD, um die Einzelsubstanzen zu bestimmen (Tab. 24).

Tabelle 24: Nachträgliche Bestimmung der Benzodiazepin-Einzelsubstanzen aus der Benzodiazepin-Wirkstoffgruppe mittels GC-ECD (zusätzlich über das Screening hinaus)

<table>
<thead>
<tr>
<th>Benzodiazepin</th>
<th>Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromazepam</td>
<td>1</td>
</tr>
<tr>
<td>Diazepam</td>
<td>3</td>
</tr>
<tr>
<td>Diazepam und Oxazepam</td>
<td>1</td>
</tr>
<tr>
<td>Diazepam und Nordazepam</td>
<td>3</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>1</td>
</tr>
<tr>
<td>Midazolam</td>
<td>1</td>
</tr>
<tr>
<td>Nordazepam</td>
<td>1</td>
</tr>
<tr>
<td>keine Identifizierung</td>
<td>6</td>
</tr>
</tbody>
</table>

4.3.6 Angaben zum Alkohol-Konsum

In dem vorliegenden Patientenkollektiv hatten 41,6% der Männer (n=32) und 37,5% der Frauen (n=33) Alkohol konsumiert (s. Tab. 25). Es wurde eine Blutalkoholkonzentration von im Mittel 2,0‰ erfasst, wobei die Blutalkoholkonzentrationen zwischen 0,3‰ und 4,6‰ lagen.

Tabelle 25: Aufschlüsselung des Patientenkollektivs mit Alkoholkonsum

<table>
<thead>
<tr>
<th></th>
<th>Alkohol ja</th>
<th>Alkohol nein</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Männer insgesamt</td>
<td>32</td>
<td>45</td>
<td>77</td>
</tr>
<tr>
<td>Anteil (%) Männer</td>
<td>41,6</td>
<td>58,4</td>
<td>100,0</td>
</tr>
<tr>
<td>Frauen insgesamt</td>
<td>33</td>
<td>55</td>
<td>88</td>
</tr>
<tr>
<td>Anteil (%) Frauen</td>
<td>37,5</td>
<td>62,5</td>
<td>100,0</td>
</tr>
<tr>
<td>Anteil (%) von allen</td>
<td>19,2</td>
<td>32,0</td>
<td>51,2</td>
</tr>
<tr>
<td>unbekannt (n)</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Anteil (%) von unbekannt</td>
<td>57,1</td>
<td>42,9</td>
<td>100,0</td>
</tr>
<tr>
<td>Anteil (%) von allen</td>
<td>2,3</td>
<td>1,7</td>
<td>4,0</td>
</tr>
</tbody>
</table>
Ergebnisse

Intoxikiert mit Alkohol (von einer Alkoholintoxikation wird ab 0,8‰ ausgegangen) waren 55 Personen, davon 26 Frauen und 26 Männer, bei drei Personen war das Geschlecht nicht angegeben (s. Tabelle 15).

Abbildung 14: Anteil der Alkohol-konsumierenden gegenüber den nicht-Alkohol-konsumierenden Männern im Patientenkollektiv in Prozent

Dunkelblauer Abschnitt = nicht-Alkohol-konsumierende Männer (58,4%); hellblauer Abschnitt = Alkohol-konsumierende Männer (41,6%)

41,6% aller Männer im Patientenkollektiv hatten Alkohol konsumiert, 58,4% nicht. Bei den Frauen zeigte sich ein Alkoholkonsum bei 37,5% aller Patientinnen (Abb. 14 und 15).
Ergebnisse

Abbildung 15: Anteil der Alkohol-konsumierenden gegenüber den nicht-Alkohol-konsumierenden Frauen im Patientenkollektiv in Prozent

Gelber Abschnitt = nicht-Alkohol-konsumierende Frauen (62,5%); roter Abschnitt = Alkohol-konsumierende Frauen (37,5%)

5 Diskussion

5.1 Analysemethoden zum Nachweis von Zolpidem und Zopiclon

Seit nunmehr etwa fünf bis sechs Jahren hat die LC-MS (Liquid Chromatography Mass Spectrometry) für die Analytik von Wirkstoffen in biologischen Matrices Eingang in die Routine gefunden und inzwischen eine führende Rolle in der Bioanalytik erlangt. Wesentliche Vorteile dieser Methode sind:
Diskussion

- die Anforderungen an die Extrakte bezüglich Reinheit sind deutlich geringer als z.B. in der GC-MS (Pfuhl 2006),
- meist ist keine Derivatisierung nötig,
- die quantitativen Bestimmungen vieler Analyten können sensitiver, selektiver und mit einer meist einfacheren Probenvorbereitung durchgeführt werden als mit den bisher genutzten Methoden,
- es besteht die Möglichkeit eines höheren Probendurchsatzes aufgrund kurzer Analysenzeiten.

Die LC-MS stellt eine Kopplung der Flüssigkeitschromatographie mit der Massenspektrometrie dar. Die Ionisation der Analytmoleküle findet bei Atmosphärendruck als chemische Ionisation (ACPI) oder als Elektrospray-Ionisation (ESI) statt. Sie ermöglicht daher die Analytik eines sehr großen Spektrums von Verbindungen, die hinsichtlich ihres Molekulargewichtes, ihrer Ionisierbarkeit und Polarität sehr unterschiedlich sind. Prinzipiell sind alle Verbindungen, welche mittels HPLC getrennt werden können, für die LC-MS-Technik geeignet. Hierzu zählen auch Verbindungen mit hohem Molekulargewicht (> 250 Dalton), ionische Verbindungen, ionisierbare Verbindungen sowie polare, nicht ionische (thermolabile) Verbindungen, zu denen z.B. auch Zopiclon gehört. Die Analyse erfolgt unter Umgebungstemperatur, daher erlaubt die LC-MS die Ionisation der großen Mehrzahl medizinisch relevanter Analyten ohne thermische Belastung und ohne vorherige Derivatisierung. Es wird geschätzt, dass lediglich 20% der bis heute bekannten organischen Verbindungen ohne vorherige Derivatisierung mittels GC-MS, jedoch 80% dieser Substanzen mittels LC-MS detektierbar sind (Willoughby et al. 1998).

Diskussion

(Xu et al. 2005). Ionensuppression in der LC-MS kann auftreten, wenn eine coeluierende Fremdsubstanz die Ionisierung des oder der Analyten in der Ionenquelle unterdrückt. Veränderungen der Tröpfcheneigenschaften in Gegenwart höher konzentrierter, weniger flüchtiger Substanzen (Sulfate, Phosphate, mitgefallter Analyt, leicht ionische Störkomponenten) verursachen die meisten Ionensuppressionen bei der Bestimmung aus biologischen Matrices im ESI-Modus, welcher höher ist als z.B. im APCI-Modus.

Eine Ionensuppression kann
- zu einer schlechten Reproduzierbarkeit der Ergebnisse
- zur unkorrekten Identifizierung der Analyten und
- zur negativen Beeinflussung der Konzentrationsbestimmung der Analyten führen (Pfuhl 2006).

Bhatt et al. (2006) etablierten und validierten eine LC-MS-Methode zum Nachweis der Z-Substanzen aus menschlichem Untersuchungsmaterial. Wesentliche Parameter dabei waren:

- die Herstellung von Standards von Zolpidem und Escitalopram mit medikamentenfreiem Humanplasma, gespiked mit drei verschiedenen Analyten-Konzentrationen (7.5, 90 und 210 ng/ml) und deren paralleler Einsatz bei jedem Probendurchlauf,
- die Überprüfung der Stabilität der Standards nach Aufbewahrung bei Zimmertemperatur, bei Kühlzimmertemperatur und nach Einfrieren bei –70°C sowie Lagerzeiten von 60 Tagen bei konstanter Probenvorbereitung.

Mit dieser standardisierten Methode konnten die Autoren eine hohe Sensitivität, Selektivität und Wiederfindungsraten von Zolpidem in menschlichem Untersuchungsmaterial erreichen.

In unseren Untersuchungen wurde die neu etablierte Methode zum Nachweis der beiden Analyten Zopiclon und Zolpidem mittels LC-MS im ESI-Modus eingesetzt, um anhand der Nachuntersuchung von bereits mit anderen Analysemethoden untersuchten Notfallproben das Vorhandensein von Zopiclon und Zolpidem einerseits zu bestätigen und andererseits Proben, die bisher nicht auf diese Analyten untersucht worden waren, auf deren Vorhandensein zu überprüfen.

Während in der Erstuntersuchung zwölf von 172 Proben positiv für Zopiclon und vier von 172 Proben positiv für Zolpidem getestet wurden, ergab die Nachuntersuchung mit der LC-MS-Methode ebenfalls zwölf von 172 Proben positiv für Zopiclon und jedoch sieben von 172 Proben positiv für Zolpidem, d.h.
Diskussion

die Sensitivität konnte für Zolpidem um 42,8% gesteigert werden. Letzteres könnte darin eine Erklärung finden, dass in der toxikologischen Erstuntersuchung aufgrund eines eingeschränkten Untersuchungsauftrages nur zum Teil die Untersuchungen mit GC/MS und teilweise weniger selektiv nur mit GC-NPD-Verfahren durchgeführt werden mussten. Für Zopiclon blieb die Sensitivität hingegen unverändert. Auffällig ist allerdings, dass die ermittelten quantitativen Werte in der Nachuntersuchung mittels LC-MS von den Werten in der toxikologischen Erstuntersuchung zum Teil deutlich abweichen (s. Tab. 10 im Ergebnisteil).
Ein weiterer Faktor ist die Wiederfindungsrate. Der Nachweis und die Quantifizierung von Zopiclon sind problematisch, da es ein höheres Molekulargewicht als die meisten anderen gebräuchlichen Medikamente besitzt und die therapeutischen Serumkonzentrationen im niedrigen Bereich liegen. Ein anderer Punkt betrifft die Interferenz mit anderen Substanzen, z.B. Desmethylmetaboliten oder weiteren Analyten, die dann, wenn sie nicht
Diskussion

hinsichtlich abgetrennt werden, Einfluss auf die Signalintensität nehmen können und somit eine korrekte Quantifizierung der Analyten Zopiclon und Zolpidem beeinflussen könnten.

Eine weitere Erklärungsmöglichkeit könnte mit dem Vorliegen einer Ionensuppression begründet werden. Zum Ausschluss und zur Einflussnahme dieses Störfaktors sind eine Reihe von Maßnahmen im Testablauf erforderlich, wie beispielsweise

- Einbringung möglichst deuterierter interner Standards,
- Optimierung der Aufbereitungsmethode (z.B. Festphasenextraktion)
- Wechsel der Ionisationsquelle (APCI anstelle von ESI)
- Änderung der Fließmittelzusammensetzung und
- Änderung des pH-Wertes.

Die Ergebnisse und Diskussionspunkte legen nahe, dass trotz der Euphorie, mit der in den letzten Jahren die LC-MS-Methode in die Routineuntersuchungen zur einfachen qualitativen und quantitativen Analyse von Pharmazeutika in Humanplasma eingeführt worden ist, sich über die Zeit und Erfahrung hinweg doch eine Reihe von system- und substanzbedingten Problemen aufgetan haben, die zumindest die häufig postulierte Vereinfachung der Analytik durch diese Methode infrage stellen.

Mit dem Ziel, Kosten zu reduzieren, wird immer häufiger in den Kliniken nur ein immunologisches Screening angefordert, mit dem viele der häufig vertretenen Substanzen (Neuroleptika, Tramadol, Z-Drugs) nicht erfasst werden können. Bezüglich des Nachweises von Zopiclon und Zolpidem aus Notfallproben mittels LC-MS muss auch unter dem Aspekt des derzeitig geringen Vorkommens dieser Substanzen kritisch hinterfragt werden, ob der Einsatz dieser Methode als Screeningmethode auch bezüglich einer Nutzen/Kosten-Relation (die Anschaffungskosten eines LC-MS-Gerätes liegen ca. viermal so hoch wie für ein GC/MS-Gerät) sinnvoll erscheint, und ob ein eigenständiger immunologischer Assay für diese Substanzen wirklich notwendig ist. Die hohen Intoxikationszahlen hingegen zeigen, dass auf eine weiterführende und umfangreiche Analytik nicht verzichtet werden sollte (Immunoassays sind von
den Kosten her günstig und von den Analysezeiten her auch sehr kurz.) Es kann daher angenommen werden, dass der Einsatz weiterführender Methoden, z.B. die der Massenspektrometrie, für ergänzende und forensisch relevante Fragestellungen erforderlich ist.

5.2 Missbrauch und Intoxikation mit Zolpidem und Zopiclon

Ein mögliches Missbrauchsverhalten mit den Benzodiazepinagonisten Zolpidem und Zopiclon wird bislang in der Literatur kontrovers diskutiert. Laut „Zweiter Essener Erklärung“ von 1994 zur Therapie der Opiatabhängigkeit gelten Zolpidem und Zopiclon nach dem damaligen Stand des Wissens als nicht
Diskussion

verändert sind. Ebenso haben tierexperimentelle Studien mit Ratten gezeigt, dass auch Alter, Geschlecht und Alkoholkonsum einen Einfluss auf die Expression der Rezeptoruntereinheiten in einzelnen Hirnregionen haben, was neben Dauer und Dosis der Anwendung relevant für das Abhängigkeitsrisiko sein könnte (Göder et al. 2001).

Wyss (1996) stellte fest, dass akute Monointoxikationen mit Zolpidem bis zu einer Dosis von 0,6 g relativ harmlos verliefen (als therapeutische Dosis werden 0,01-0,02 g empfohlen). In seiner Untersuchung kam es meist nur zu leichten Bewusstseinsstörungen (Somnolenz). Damit war die akute Toxizität von Zolpidem bei Überdosierung deutlich geringer als diejenige der kurzwirksamen Benzodiazepine und machte im Allgemeinen keine spezielle Therapiemaßnahme erforderlich. Hingegen führten bei Kombinationsintoxikationen mit anderen am Zentralnervensystem wirksamen Medikamenten (beispielsweise Benzodiazepine, Antihistaminika, Neuroleptika und Antidepressiva) oder Alkohol bereits relativ niedrige Zolpidemdosen von 0,1-0,15 g zu einem komatösen Zustand, der aber mit Flumazenil antagonisiert werden konnte.

Diskussion

dokumentierten einen Fall, bei dem ein 31jähriger Mann nach massiver Einnahme von Zopiclon in der Badewanne ertrunken war. Bramness et al. (2001) beschrieben den Fall einer 72 Jahre alten norwegischen Patientin mit respiratorischer Insuffizienz aufgrund eines kleinzelligen Bronchial-Karzinoms, die nach Einnahme von wahrscheinlich 0,2-0,35 g Zopiclon (= 25 bis 50 Tabletten Zopiclon à 7,5 mg) verstarb. In der nachfolgenden (post mortem) Untersuchung des Blutes wurden außer Zopiclon in einer Konzentration von 1,9 µg/ml keine anderen Wirkstoffe nachgewiesen.

In einer weiteren Untersuchung von Mannaert et al. (1996) wurde dargestellt, dass die kombinierte Einnahme von Zopiclon und dem Benzodiazepin Diazepam (allerdings in einer therapeutischen Dosis) zu einer schwerwiegenden Sedation geführt hatte.

Diskussion

Diskussion

Trotz der geringen Zahl deutet die Verteilung darauf hin, dass Zolpidem und Zopiclon generell keinen Eingang etwa in die Drogenszene gefunden haben und im hiesigen Einzugsgebiet keine erhebliche Bedeutung für Arzneimittelabhängigkeit besteht.

Die Rolle der Z-Drugs spielt im Vergleich zu anderen zentral wirksamen Substanzen für Intoxikationen gegenwärtig offenbar nur eine untergeordnete Rolle. Die Abbildung 16 zeigt die Fallzahlen der durch andere Substanzgruppen hervorgerufenen Intoxikationen, die Tabelle 16 im Ergebnisteil eine genaue Auflistung der Wirkstoffe:

Abbildung 16: Zolpidem- / Zopiclon-Intoxikationen in Relation zu Intoxikationen mit anderen Arzneimitteln oder Alkohol

Bei den in unserer Untersuchung bestätigten Intoxikationen ist ein hoher Anteil an Alkoholvergiftungen auffällig: Insgesamt 55 Personen waren mit Alkohol (BAK \(\geq 0,8\%\)) intoxikiert (je 26 Frauen und Männer, bei drei Personen war das Geschlecht nicht angegeben), womit dies den Hauptteil der insgesamt 95
Diskussion

Intoxikationen ausmacht (siehe Tab. 15). Jedoch wurde Alkohol nur in zwei Fällen mit Z-Drugs kombiniert, jeweils einmal mit Zopiclon und einmal mit Zolpidem.

Im Vergleich der Benzodiazepine zu den Z-Drugs in unserer Untersuchung zeigen sich folgende Ergebnisse: Hinsichtlich der Z-Drugs wurden in dem vorliegenden Patientenkollektiv in 19 Fällen Zopiclon oder Zolpidem nachgewiesen. Abzüglich vier Verlaufskontrollen, die durchgeführt wurden, hatten insgesamt 15 Patienten Zopiclon oder Zolpidem eingenommen. In insgesamt elf Fällen konnte eine Intoxikation festgestellt werden, sechs Patienten waren mit Zopiclon und fünf Patienten mit Zolpidem intoxikiert (s. Tab. 7). Hingegen konnte in insgesamt 57 Fällen eine Einnahme von Benzodiazepinen nachgewiesen werden, bei zehn Patienten lagen die Konzentrationen der Benzodiazepine im toxischen Bereich (s. Tab. 15).

Im Vergleich zu Zopiclon und Zolpidem wurden die Benzodiazepine dreimal häufiger nachgewiesen (9% vs. 33%), die Anzahl der tatsächlichen Intoxikationen lag jedoch bei den Z-Drugs höher als bei den Benzodiazepinen (11 vs. 10 Fälle). Die Frage, warum Z-Drugs entgegen der Literatur in unseren Untersuchungen weitaus weniger nachgewiesen wurden als die Benzodiazepine, lässt folgende mögliche Hypothesen zu:

Eine Möglichkeit wäre, dass Z-Drugs in Hamburg und seinem Umland weniger verschrieben werden als Benzodiazepine. Weiterhin könnten die bei einer Intoxikation auftretenden und vorherrschenden Symptome bei den Z-Drugs weniger schwerwiegend sein als bei den Benzodiazepinen, so dass mit Zolpidem und/oder Zopiclon Intoxikierte weniger häufig als Notfall in einem Krankenhaus vorstellig werden.

In unseren Untersuchungen fällt auf, dass sowohl bei Intoxikationen mit Benzodiazepinen als auch mit den Z-Drugs eine kombinierte Einnahme mit anderen Wirkstoffen wesentlich häufiger nachgewiesen werden konnte als eine Mono-Intoxikation mit den jeweiligen Einzelsubstanzen: Bei den Benzodiazepin-
Einnahmen wurden insgesamt 82% (n = 46) in Kombination mit anderen Substanzen nachgewiesen und nur 18% (n = 11) als singulärer Nachweis (s. Tabelle 22 und 23). Bei Zolpidem verhielt es sich ähnlich: Von insgesamt sieben Einnahmen wurden 86% (n = 6) mit anderen Substanzen kombiniert, in den übrigen 14% (n = 1) allein eingenommen (s. Tabelle 12). Auch bei den acht Zopiclon-Einnahmen wurden mehr kombinierte Einnahmen (58%, n = 7) als die Einzelsubstanz (42%, n = 5) nachgewiesen (s. Tabelle 11). Deshalb sollte bei dem Verdacht auf eine oder dem Nachweis einer Mischintoxikation auch immer an eine Mitwirkung der Z-Drugs oder von Benzodiazepinen gedacht werden, besonders da Mischintoxikationen laut Kretschmar (2001) bezüglich ihrer überadditiven Wirkung äußerst kritisch zu bewerten seien.

Zolpidem und Zopiclon spielen aufgrund unserer Ergebnisse eine durchaus zu beachtende Rolle als Ursache von Intoxikationen, die denen der Benzodiazepine gleichgesetzt werden muss. Obwohl die Anwendungshäufigkeit der Z-Drugs in der Literatur höher als die der Benzodiazepine angegeben wird, konnte eine häufige Einnahme dieser Substanzen als Hinweis für eine potentielle Missbrauchsgefahr durch diese Studie nicht belegt werden. Trotz der scheinbar geringeren Einnahme der Z-Drugs ist deren Intoxikationshäufigkeit jedoch gleichzusetzen mit der der Benzodiazepine.

Die Frage, warum der Nachweis von Z-Drugs auch in unseren Untersuchungen also nicht in der Häufigkeit gelingt wie die Anwendungshäufigkeiten es vermuten lassen, ist nicht abschließend durch diese Studie zu beantworten.
5.3 Schlussfolgerungen

Im Vergleich dazu waren in diesem Probenkollektiv zehn Patienten mit Benzodiazepinen intoxikiert, aber in insgesamt 57 Fällen konnte eine Einnahme von Benzodiazepinen nachgewiesen werden. Obwohl Benzodiazepine laut Literatur seltener als die Z-Drugs verschrieben werden, scheinen sie immer noch vermehrt eingenommen zu werden, was der häufige Nachweis in den Proben bestätigt.

Die Frage, ob die beiden Benzodiazepin-Agonisten Zopiclon und Zolpidem in Hamburg und Umgebung wenig verordnet werden oder ob aufgrund geringerer Toxizität im Notfall-Patientengut diese Substanzen weniger häufig vorkommen, lässt sich aufgrund des vorliegenden Datenmaterials nicht beantworten.

Diese Ergebnisse zeigen, dass bei dem Verdacht einer Intoxikation als Ursache für eine unklare Bewusstseinslage auf eine umfangreichere Analytik, über ein reines Screening mittels Immunoassay hinaus, nicht verzichtet werden sollte. Weitere Untersuchungen und Trendbeobachtungen zur Häufigkeit einer
Diskussion

Einnahme der Z-Drugs müssen zeigen, ob zukünftig die Etablierung eines eigenständigen immunologischen Assays zum routinemäßigen Screening für Zopiclon und Zolpidem in der Notfallanalytik sinnvoll ist, um schon im Vorfeld entscheiden zu können, ob im vorliegenden Fall eine gezielte Analyse mittels LC-MS vonnöten ist.
Zusammenfassung

6 Zusammenfassung

7 Literaturverzeichnis

Literaturverzeichnis

Medizin Verlag, Heidelberg (Kapitel 30, S. 650-662)

Nirogi RVS, Kandikere VN, Mudigonda K (2006) Quantification of zopiclone and

Schulz M, Schmoldt A. (2003) Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie 58:447-474

Abkürzungsverzeichnis

8 Abkürzungsverzeichnis

A
Abb. Alkohol
AG Aktiengesellschaft
AK Allgemeines Krankenhaus
APCI Atmospheric Pressure Chemical Ionization
B Benzodiazepine
BAK Blutalkoholkonzentration
BG Bestimmungsgrenze
BRD Bundesrepublik Deutschland
bsp. Beispielsweise
bzgl. bezüglich
bzw. beziehungsweise
C Celsius
ca. circa
d.h. das heißt
DDD Defined daily doses
DHS Deutsche Hauptstelle für Suchtfragen
DIN Deutsche Industrienorm
ECD Electron Capture Detection
EEG Elektroenzephalogramm
ESI Elektrospray-Ionisierung
et al. et alii
FDA Food and Drug Association
GABAA Gamma-Aminobuttersäure (Gamma-Amino-Butter-Acid)
GC NPD Gaschromatographie mit Stickstoff-Phosphor-selektivem Detektor
GC Gaschromatographie
GC-MS Gaschromatographische Massenspektrometrie
ggf. gegebenenfalls
GIZ Giftinformationszentrum
GmbH Gesellschaft mit beschränkter Haftung
GTFCh Gesellschaft für Toxikologische und Forensische Chemie
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>i.d.R.</td>
<td>in der Regel</td>
</tr>
<tr>
<td>I.S.</td>
<td>interner Standard</td>
</tr>
<tr>
<td>k.A.</td>
<td>keine Angabe</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Flüssigkeitschromatographie-Massenspektrometrie („Liquid Chromatography-Mass Spectrometry“)</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of quantification</td>
</tr>
<tr>
<td>m</td>
<td>männlich</td>
</tr>
<tr>
<td>M</td>
<td>Sonstige Medikamente</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>Mio.</td>
<td>Millionen</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitern</td>
</tr>
<tr>
<td>MS</td>
<td>Massenspektrometrie</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl (numerus)</td>
</tr>
<tr>
<td>n.b.</td>
<td>nicht bekannt</td>
</tr>
<tr>
<td>n.d.</td>
<td>nicht differenziert</td>
</tr>
<tr>
<td>NG</td>
<td>Nachweigrenze</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>nnb</td>
<td>nicht näher bekannt</td>
</tr>
<tr>
<td>o.g.</td>
<td>oben genannte</td>
</tr>
<tr>
<td>P</td>
<td>Psychopharmaka</td>
</tr>
<tr>
<td>pp</td>
<td>pages</td>
</tr>
<tr>
<td>pH</td>
<td>potentia Hydrogenii</td>
</tr>
<tr>
<td>QC</td>
<td>Qualitätskontrolle (quality control)</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute</td>
</tr>
<tr>
<td>RSD</td>
<td>relative Standardabweichung</td>
</tr>
<tr>
<td>S.</td>
<td>Seite</td>
</tr>
<tr>
<td>s.</td>
<td>siehe</td>
</tr>
<tr>
<td>sog.</td>
<td>sogenannte</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TCA</td>
<td>Tricyclische Antidepressiva</td>
</tr>
<tr>
<td>u.a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Name/Erklärung</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>UKE</td>
<td>Universitäts-Klinikum-Eppendorf</td>
</tr>
<tr>
<td>USA</td>
<td>Vereinigte Staaten von Amerika (United States of America)</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
</tr>
<tr>
<td>v.a.</td>
<td>vor allem</td>
</tr>
<tr>
<td>VK</td>
<td>Verlaufskontrolle</td>
</tr>
<tr>
<td>w</td>
<td>weiblich</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>z.T.</td>
<td>zum Teil</td>
</tr>
<tr>
<td>Z-Drugs</td>
<td>Zolpidem und Zopiclon</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
</tr>
</tbody>
</table>
9 Tabellen- und Abbildungsverzeichnis

9.1 Tabellenverzeichnis

TABELLE 1: THERAPEUTISCHE/TOXISCHE/LETALE PLASMAKONZENTRATIONEN FÜR BENZODIAZEPINE .. 7
TABELLE 2: THERAPEUTISCHE/TOXISCHE/LETALE PLASMAKONZENTRATIONEN FÜR ZOPICLON UND ZOLPIDEM .. 7
TABELLE 3: ANZAHL DER MONOINTOXIKATIONEN VON ZOPICLON UND ZOLPIDEM ANHAND DER DATEN DES GIZ NORD (2005) .. 7
TABELLE 4: ANZAHL DER INTOXIKATIONEN VON BENZODIAZEPINEN ANHAND DER DATEN DES GIZ NORD (2005) ... 13
TABELLE 5: KALIBRATIONS Kurve für ZOPICLON .. 26
TABELLE 6: KALIBRATIONS Kurve für ZOLPIDEM .. 26
TABELLE 7: GENAUE AUFLISTUNG DER ZOPICLON- UND ZOLPIDEM-FÄLLE MIT ZUSÄTZLICHEM NACHWEIS ANDERER FREMDSTOFFE UND KLINISCHEN ANGABEN ... 34
TABELLE 8: ANZAHL DER ZOPICLON- UND ZOLPIDEM-FÄLLE .. 35
TABELLE 9: SERUMKONZENTRATIONEN DER POSITIVEN ZOLPIDEMFÄLLE IN DER RETROSPEKTIVEN UNTERSUCHUNG MITTELS LC-MS ... 37
TABELLE 10: VERGLEICH DER GEMESSENEN SERUMKONZENTRATIONEN BEI DER ERSTUNTERSUCHUNG (GC-TSD) UND DER NACHUNTERSUCHUNG (LC-MS) ... 37
TABELLE 11: AUFLISTUNG DER ZOPICLON-ENNAHME HINSICHTLICH GESCHLECHTERVERTEILUNG ... 38
TABELLE 12: AUFLISTUNG DER ZOLPIDEM-ENNAHME HINSICHTLICH GESCHLECHTERVERTEILUNG .. 38
TABELLE 13: ALTERSVERTEILUNG DES UNTERSUCHTEN PATIENTENKOLLEKTIVS ... 42
TABELLE 14: ZUSAMMENSTELLUNG DER VERDACHTSDIAGNOSEN MIT ANAMNESTISCHEN ANGABEN BEZOGEN AUF DIE ANORDERUNGEN ZUR UNTERSUCHUNG VON SERUMPROBE BEIM TOXICUM SCREENING .. 44
TABELLE 15: NACHGEWIESENE FÜR DIE INTOXIKATIONEN VERANTWORTLICHE SUBSTANZEN .. 45
TABELLE 16: AUFSCHLÜSSELUNG DER „SONSTIGEN INTOXIKATIONEN“ NACH WIRKSTOFFGRUPPEN UND KONZENTRATIONSANGABEN .. 46
TABELLE 17: AUFSCHLÜSSELUNG DER INTOXIKATIONEN MIT „SONSTIGEN MEDIKAMENTEN“ NACH INTOXIKATION MIT ZOPICLON UND ZOLPIDEM .. 48
TABELLE 18: ANZAHL DER FÜR DIE NOTFALL-ANALYTIK GESTELLTE INDIKATION IN BEZUG AUF DIE ALTERSVERTEILUNG BEI DEN WEIBLICHEN PATIENTEN .. 50
TABELLE 19: ANZAHL DER FÜR DIE NOTFALL-ANALYTIK GESTELLTE INDIKATION IN BEZUG AUF DIE ALTERSVERTEILUNG BEI DEN MÄNNLICHEN PATIENTEN .. 51
TABELLE 20: AUFSSTELLUNG DER NACHGEWIESenen PSYCHOHARMAKA .. 52
TABELLE 21: AUFSSTELLUNG DER NACHGEWIESENEN SONSTIGEN SUBSTANZEN .. 53
TABELLE 22: AUFSSTELLUNG DER NACHGEWIESENEN BENZODIAZEPINE .. 54
TABELLE 23: AUFLISTUNG DER BENZODIAZEPIN-ENNAHME ALS MONO- ODER KOMBINATIONSEINNAHME MIT ANDEREN WIRKSTOFFEN (PSYCHOHARMAKA, ALKOHOL UND/ODER SONSTIGEN MEDIKAMENTEN) .. 54
TABELLE 24: NACHTRÄGLICHE BESTIMMUNG DER BENZODIAZEPIN-EINZELSUBSTANZEN AUS DER BENZODIAZEPIN-WIRKSTOFFGRUPPE MITTELS GC-ECD (ZUSÄTZLICH ÜBER DAS SCREENING HINAUS) .. 56
TABELLE 25: AUFSCHLÜSSELUNG DES PATIENTENKOLLEKTIVS MIT ALKOHOLKONSUM .. 56
TABELLE 26: AUSFÜHRLICHE DARSTELLUNG DER NACHGEWIESENEN FÜR DIE INTOXIKATIONEN VERANTWORTLICHEN SUBSTANZEN IN VERBINDUNG MIT SUBSTANZEN IN NICHT TOXISCHER (D.H. THERAPEUTISCHER) KONZENTRATION .. 56
9.2 Abbildungsverzeichnis

ABBRIDUNG 1: STRUKTURFORMEL ZOPICLON ... 9
ABBRIDUNG 2: STRUKTURFORMEL ZOLPIDEM ... 10
ABBRIDUNG 3: UNTERSUCHUNGSABLAUF FÜR NOTFALLPROBABILITÄT 21
ABBRIDUNG 4: ANZAHL DER ZOPICLON- UND ZOLPIDEM-EINNAHME BEKANNT
DURCH ANAMNSE ... 31
ABBRIDUNG 5: HÄUFIGKEIT DES NACHWEISES VON ZOPICLON UND ZOLPIDEM ANHAND DER
TOXIKOLOGISCHEN ERSTUNTERSUCHUNG ... 32
ABBRIDUNG 6: ANZAHL DES NACHWEISES VON ZOPICLON UND ZOLPIDEM ANHAND DER RETROSPEKTIVEN
LC-MS .. 33
ABBRIDUNG 7: ZUSÄTZLICHE, FÜR DIE INTOXIKATIONEN MIT Z-DRUGS MITVERANTWORTLICHE
SUBSTANZEN .. 36
ABBRIDUNG 8: GESCHLECHTSVERTEILUNG DES UNTERSUCHTEN PATIENTENKOLLEKTIVS IN PROZENT 41
ABBRIDUNG 9: ALTERTSVERTEILUNG IM UNTERSUCHTEN PATIENTENKOLLEKTIV (ANZAHL = N), NACH
ALTERSGRUPPEN (IN JAHREN) UND GESCHLECHT GEORDNET 41
ABBRIDUNG 10: ALTERTSVERTEILUNG DER ZOPICLON- UND ZOLPIDEMINTOXIKATIONEN (ANZAHL = N),
NACH ALTERSGRUPPEN (IN JAHREN) UND GESCHLECHT GEORDNET 42
ABBRIDUNG 11: NACHGEWIESENE FÜR DIE INTOXIKATIONEN VERANTWORTLICHE SUBSTANZEN, BEZOGEN
AUF DAS GESCHLECHT .. 48
ABBRIDUNG 12: AUFSTELLUNG DER ANZAHL DER FÜR DIE NOTFALL-ANALYTIK GESTELLTE INDIKATION IN
BEZUG AUF DIE GESCHLECHTSVERTEILUNG IM UNTERSUCHTEN PATIENTENKOLLEKTIV 41
ABBRIDUNG 13: ANGABE DER BENZODIAZEPIN-EINNAHME IN BEZUG AUF ALTER UND GESCHLECHT 54
ABBRIDUNG 14: ANTEIL DER ALKOHOL-KONSUMIERENDEN GEGENÜBER DEN NICHT-ALKOHOL-
KONSUMIERENDEN MÄNNERN IM PATIENTENKOLLEKTIV IN PROZENT 57
ABBRIDUNG 15: ANTEIL DER ALKOHOL-KONSUMIERENDEN GEGENÜBER DEN NICHT-ALKOHOL-
KONSUMIERENDEN FRAUEN IM PATIENTENKOLLEKTIV IN PROZENT 58
ABBRIDUNG 16: ZOLPIDEM/ZOPICLON INTOXIKATIONEN IN RELATION ZU INTOXIKATIONEN MIT ANDEREN
ARZNEIMITTELN ODER ALKOHOL ... 70
Danksagung

10 Danksagung

Der Betreuerin meiner Promotionsarbeit, Frau Dr. rer. nat. Hilke Andresen, Forensische Toxikologin GTFCh, Leiterin Arbeitsbereich Toxikologie, Leiterin Abteilung Alkohologie am Institut für Rechtsmedizin des Universitätsklinikum Hamburg-Eppendorf möchte ich für die Überlassung des Themas, die allzeit gute Betreuung und die intensive Unterstützung herzlich danken.

Meinem Doktorvater, Herrn Professor Dr. med. Achim Schmoldt, Institut für Rechtsmedizin des Universitätsklinikum Hamburg-Eppendorf, danke ich herzlich für die fortwährende konstruktive Kritik und die intensive Überarbeitung der vorliegenden Dissertation.

Herrn Alexander Müller einen ganz herzlichen Dank für die tatkräftige Unterstützung bei der Auswertung der Proben und die geduldige Heranführung an die LC-MS.

Ich danke besonders herzlich allen Mitarbeiterinnen und Mitarbeitern der Toxikologie des Institutes für Rechtsmedizin der Universität Hamburg für die durchgehend freundliche Unterstützung und Hilfe und die ausgezeichnete Einarbeitung in das Laborleben.

11 Anhang

11.1 Weitere Tabelle

Tabelle 26: Ausführliche Darstellung der nachgewiesenen für die Intoxikationen verantwortlichen Substanzen in Verbindung mit Substanzen in nicht toxischer (d.h. therapeutischer) Konzentration

<table>
<thead>
<tr>
<th>Intoxikation (toxische Konzentration)</th>
<th>mit Nachweis von (in nicht toxischer Konzentration)</th>
<th>Anzahl (n)</th>
<th>Anzahl gesamt (n)</th>
<th>Frauen</th>
<th>Männer</th>
<th>n.b.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkohol (≥ 0,8‰ BAK)</td>
<td>allein</td>
<td>19</td>
<td>46</td>
<td>8</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>+ Benzodiazepine</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Psychopharmaka</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Sonstige Medikamente</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Benzodiazepine + Neuroleptika</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Benzodiazepine + Sonstige Medikamente</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Psychopharmaka + Sonstige Medikamente</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Benzodiazepine + Psychopharmaka + Sonstige Medikamente</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkohol (≥0,8‰ BAK) + Psychopharmaka</td>
<td>allein</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Sonstige Medikamente</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Benzodiazepine</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Benzodiazepine + Sonstige Medikamente</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzodiazepine</td>
<td>allein</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Psychopharmaka + Sonstige Medikamente + Alkohol</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzodiazepine + Psychopharmaka</td>
<td>allein</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Benzodiazepine + Sonstige Medikamente</td>
<td>allein</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Psychopharmaka</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzodiazepine + Alkohol (≥ 0,8‰ BAK)</td>
<td>allein</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychopharmaka</td>
<td>allein</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Benzodiazepine</td>
<td></td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Benzodiazepine + Alkohol</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Sonstige Medikamente</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Alkohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonstige Medikamente</td>
<td>allein</td>
<td>14</td>
<td>22</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(incl. Zolpidem und Zopiclon)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Psychopharmaka</td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Benzodiazepine</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Benzodiazepine + Psychopharmaka</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Psychopharmaka + Alkohol</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Benzodiazepine + Alkohol</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Psychopharmaka + Alkohol</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11.2 Valis-Protokolle

11.2.1 Validierungsprotokoll zur Bestimmung von Zopiclon mittels LC-MS:

Validierungsprotokoll

<table>
<thead>
<tr>
<th>Titel</th>
<th>Bestimmung von Zopiclon mittels LC-MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID-Code</td>
<td>MET-ARZ/32</td>
</tr>
</tbody>
</table>

Angaben zur Methode

<table>
<thead>
<tr>
<th>Kurzbezeichnung der Methode (ggf. Nr. der SOP)</th>
<th>Bestimmung von Zopiclon im Blut mittels LC/MS nach flüssig/flüssig-Extraktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendungsbereich</td>
<td>Fragestellungen im Bereich der klinischen und forensischen Toxikologie</td>
</tr>
<tr>
<td>Arbeitsbereich</td>
<td>0,01 - 0,25 µg/ml</td>
</tr>
<tr>
<td>Analyt</td>
<td>Zopiclon</td>
</tr>
</tbody>
</table>

Verantwortlichkeiten

<table>
<thead>
<tr>
<th>Leiter der Validierung</th>
<th>Dr. rer. nat. H. Andresen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beteiligte Mitarbeiter</td>
<td>Lea-kev Sonntag, Alexander Müller</td>
</tr>
</tbody>
</table>

Methoden gültig erklärt am

| Methoden gültig erklärt am | 07.08.2006 |

Zusammenfassung und Bewertung

Inhaltsverzeichnis

1. Arbeitsbereich und Kalibrationsmodell
 - A. Target
 - A.1 Prüfung auf Varianzhomogenität (F-Test)
 - A.2 Prüfung auf Linearität (Mandel-Test)
 - B. Qualifier
 - B.1 Prüfung auf Varianzhomogenität (F-Test)
 - B.2 Prüfung auf Linearität (Mandel-Test)
2. Genauigkeit
 - A. Niedrige Konzentration (QC1)
 - A.1 Wiederholpräzision
 - A.2 Laborpräzision
 - A.3 Richtigkeit
 - B. Mittlere Konzentration (QC2)
 - B.1 Wiederholpräzision
 - B.2 Laborpräzision
 - B.3 Richtigkeit
3. Grenzwerte
 - 3.1 Bestimmung der Nachweisgrenze (schwaches Ion)
 - 3.2 Bestimmung der Bestimmungsgrenze (intensives Ion)
4. Wiederfindungsrate (bei Lösungsmittelmikrokalibrationen)
 - 4.1 Bestimmung der Wiederfindungsfunktion
 - 4.2 Linearitätsprüfung der Wiederfindungsfunktion
 - 4.3 Varianzhomogenitätsprüfung der Wiederfindungsfunktion
5. Wiederfindung
 - 5.1 Bestimmung der Wiederfindung für niedrige Konzentration
 - 5.1 Bestimmung der Wiederfindung für hohe Konzentration
Anhang

Validierungsprotokoll

<table>
<thead>
<tr>
<th>Seite: 2 von 0</th>
<th>Institution: Institut für Rechtsmedizin Universitätsklinikum Hamburg-Eppendorf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gültig ab: 07.08.09</td>
<td>Methode: LC/MS</td>
</tr>
</tbody>
</table>

1. Arbeitsbereich und Kalibrationsmodell

A. Target

| Messsignal: 389 | Messgröße: arearatio | Einheit: μg/ml |

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Leerwert</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.079</td>
<td>0.384</td>
<td>0.332</td>
<td>1.719</td>
<td>1.694</td>
<td>1.932</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.050</td>
<td>0.450</td>
<td>0.800</td>
<td>1.220</td>
<td>2.257</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.020</td>
<td>0.749</td>
<td>1.230</td>
<td>1.519</td>
<td>2.578</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.009</td>
<td>0.483</td>
<td>1.484</td>
<td>1.049</td>
<td>2.258</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.000</td>
<td>0.074</td>
<td>0.460</td>
<td>0.884</td>
<td>1.675</td>
<td>2.132</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.000</td>
<td>0.195</td>
<td>0.530</td>
<td>1.527</td>
<td>1.942</td>
<td>2.569</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

| Mittelwert | 0.000 | 0.054 | 0.407 | 1.515 | 1.573 | 2.008 | 2.475 |
| Varianz | 0.002 | 0.053 | 0.079 | 0.073 | 0.075 | 0.342 | 0.205 |

| Verteilung | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

- **Grubbs-Test auf Ausreißer (Signifikanz: 95%)**
 - Tabellenwert: 1.622
 - Ausreißer: nein

- **Grubbs-Test auf Ausreißer (Signifikanz: 99%)**
 - Tabellenwert: 1.644
 - Ausreißer: nein

- **F-Test auf Varianzhomogenität (Signifikanz: 99%)**
 - Prüfwert: 1.485
 - Prüfwert: 1.485
 - Homogen?: nein

- **Mandel-Test auf Linearität (Signifikanz: 99%)**
 - Prüfwert: 80.067
 - Hinweis: Voraussetzungen nicht erfüllt!

2. Qualifier

| Messsignal: 389 | Messgröße: arearatio | Einheit: μg/ml |

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Leerwert</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.079</td>
<td>0.384</td>
<td>0.332</td>
<td>1.719</td>
<td>1.694</td>
<td>1.932</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.050</td>
<td>0.450</td>
<td>0.800</td>
<td>1.220</td>
<td>2.257</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.020</td>
<td>0.749</td>
<td>1.230</td>
<td>1.519</td>
<td>2.578</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.009</td>
<td>0.483</td>
<td>1.484</td>
<td>1.049</td>
<td>2.258</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.000</td>
<td>0.074</td>
<td>0.460</td>
<td>0.884</td>
<td>1.675</td>
<td>2.132</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.000</td>
<td>0.195</td>
<td>0.530</td>
<td>1.527</td>
<td>1.942</td>
<td>2.569</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

| Mittelwert | 0.000 | 0.054 | 0.407 | 1.515 | 1.573 | 2.008 | 2.475 |
| Varianz | 0.002 | 0.053 | 0.079 | 0.073 | 0.075 | 0.342 | 0.205 |

- **Grubbs-Test auf Ausreißer (Signifikanz: 95%)**
 - Tabellenwert: 1.622
 - Ausreißer: nein

- **Grubbs-Test auf Ausreißer (Signifikanz: 99%)**
 - Tabellenwert: 1.644
 - Ausreißer: nein

- **F-Test auf Varianzhomogenität (Signifikanz: 99%)**
 - Prüfwert: 1.485
 - Prüfwert: 1.485
 - Homogen?: nein

- **Mandel-Test auf Linearität (Signifikanz: 99%)**
 - Prüfwert: 80.067
 - Hinweis: Voraussetzungen nicht erfüllt!

Formula 1.0

Valstat - Protokoll

Druckdatum: 20.04.2009 - 21:26

IV
Anhang

Validierungsprotokoll

Seite: 3 von 6 Institution: Institut für Rechtsmedizin Universitätshospital Hamburg-Eppendorf
Gültig ab: 07.08.06 Methode: LC/MS

2. Genauigkeit

A. Niedrige Konzentration (QC-1): 0,025 µg/ml

<table>
<thead>
<tr>
<th>Tag</th>
<th>Tag 1</th>
<th>Tag 2</th>
<th>Tag 3</th>
<th>Tag 4</th>
<th>Tag 5</th>
<th>Tag 6</th>
<th>Tag 7</th>
<th>Tag 8</th>
<th>Tag 9</th>
<th>Tag 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,026</td>
<td>0,026</td>
<td>0,026</td>
<td>0,026</td>
<td>0,026</td>
<td>0,026</td>
<td>0,027</td>
<td>0,028</td>
<td>0,030</td>
<td>0,029</td>
</tr>
<tr>
<td>2</td>
<td>0,022</td>
<td>0,027</td>
<td>0,023</td>
<td>0,028</td>
<td>0,027</td>
<td>0,026</td>
<td>0,028</td>
<td>0,026</td>
<td>0,029</td>
<td>0,029</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Mittelwert: 0,026 Bias, %: 0,028 SD: 0,008 RSD, %: 3,14

B. Mittlere Konzentration (QC-2): 0,00 µg/ml

<table>
<thead>
<tr>
<th>Tag</th>
<th>Tag 1</th>
<th>Tag 2</th>
<th>Tag 3</th>
<th>Tag 4</th>
<th>Tag 5</th>
<th>Tag 6</th>
<th>Tag 7</th>
<th>Tag 8</th>
<th>Tag 9</th>
<th>Tag 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,026</td>
<td>0,026</td>
<td>0,030</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,030</td>
<td>0,030</td>
<td>0,030</td>
<td>0,030</td>
</tr>
<tr>
<td>2</td>
<td>0,026</td>
<td>0,026</td>
<td>0,030</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,030</td>
<td>0,030</td>
<td>0,030</td>
<td>0,030</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Mittelwert: 0,026 Bias, %: 0,03 SD: 0,007 RSD, %: 1,38

C. Hohe Konzentration (QC-3): 0,20 µg/ml

<table>
<thead>
<tr>
<th>Tag</th>
<th>Tag 1</th>
<th>Tag 2</th>
<th>Tag 3</th>
<th>Tag 4</th>
<th>Tag 5</th>
<th>Tag 6</th>
<th>Tag 7</th>
<th>Tag 8</th>
<th>Tag 9</th>
<th>Tag 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,206</td>
<td>0,206</td>
<td>0,206</td>
<td>0,195</td>
<td>0,200</td>
<td>0,190</td>
<td>0,200</td>
<td>0,190</td>
<td>0,200</td>
<td>0,190</td>
</tr>
<tr>
<td>2</td>
<td>0,190</td>
<td>0,190</td>
<td>0,190</td>
<td>0,190</td>
<td>0,200</td>
<td>0,190</td>
<td>0,200</td>
<td>0,190</td>
<td>0,200</td>
<td>0,190</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Mittelwert: 0,206 Bias, %: 0,025 SD: 0,008 RSD, %: 3,73

<table>
<thead>
<tr>
<th>NV (ppb)</th>
<th>SD</th>
<th>RSD, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Formular: 1.0 Valstat - Protokoll Druckdatum: 20.04.2009 - 21:26
Validierungsprotokoll

3 Grenzwerte (DIN 32645)

<table>
<thead>
<tr>
<th>Kalibrator</th>
<th>Target</th>
<th>Qualifier</th>
<th>Target</th>
<th>Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>509,0000</td>
<td>0</td>
<td>509,0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0,52</td>
<td>0,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,52</td>
<td>0,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,52</td>
<td>0,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,52</td>
<td>0,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,52</td>
<td>0,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,52</td>
<td>0,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0,52</td>
<td>0,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,52</td>
<td>0,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0,52</td>
<td>0,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,52</td>
<td>0,52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wertepaare</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genauigkeit</th>
<th>100 %</th>
<th>100 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>lin. Fehler</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Erwartung</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Bestimmungsgrenze</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Lineare Funktionen und Vertrauensbereiche

\[f(x) = ax + b \]

<table>
<thead>
<tr>
<th>a</th>
<th>1,023</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0,024</td>
</tr>
</tbody>
</table>

\[f(y) = xy + b \]

<table>
<thead>
<tr>
<th>a</th>
<th>1,023</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0,024</td>
</tr>
</tbody>
</table>

Vertrauensbereich

\[a_{\text{ver}}^2 = 94,00 \]

\[b_{\text{ver}} = -0,40 \]

\[a_{\text{ver}} = 0,04 \]

\[b_{\text{ver}} = 0,04 \]
Validierungsprotokoll

4. Lösungsmittelkalibration

Signifikanz: 1,00 %

<table>
<thead>
<tr>
<th>Kaliibrator</th>
<th>LW</th>
<th>Modifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[X_0 = \text{Messwerte mit Volatilkalibration} \]
\[X_1 = \text{Messwerte mit Lösungsmittelkalibration} \]

Wiederfindungskonstanz \(X_n = a_n X_1 + b_n \)

\[a_n = \frac{\sum X_1 - \sum X_0}{\sum X_1} \]
\[b_n = \frac{\sum X_0}{\sum X_1} \]

\[X_0 = \text{Ausreißer-Test (\%)} \]
\[X_1 = \text{Lineare-F-Mittel (\%)} \]
\[X_2 = \text{Vollständig-Mittel (\%)} \]

Kaliibrator-Nummer	Prüfwert	Kritischer Wert
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |

Formular 1.0

Vollst.-Protokoll

Druckdatum: 04.04.2000 - 21:26
Validierungsprotokoll

Seite: 6 von 6
Institution: Institut für Rechtsmedizin Universitätsklinikum Hamburg-Eppendorf
Stiftung: 37.08.08
Methode: LC/MS

5. Wiederfindung

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Lösung</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>niedrig</td>
<td>0,025</td>
<td>0,025</td>
</tr>
<tr>
<td>1</td>
<td>0,0311</td>
<td>0,0313</td>
</tr>
<tr>
<td>2</td>
<td>0,0314</td>
<td>0,0316</td>
</tr>
<tr>
<td>3</td>
<td>0,0312</td>
<td>0,0307</td>
</tr>
<tr>
<td>4</td>
<td>0,0312</td>
<td>0,0306</td>
</tr>
<tr>
<td>5</td>
<td>0,0312</td>
<td>0,0306</td>
</tr>
<tr>
<td>6</td>
<td>0,0312</td>
<td>0,0306</td>
</tr>
<tr>
<td>7</td>
<td>0,0312</td>
<td>0,0306</td>
</tr>
<tr>
<td>8</td>
<td>0,0312</td>
<td>0,0306</td>
</tr>
<tr>
<td>9</td>
<td>0,0312</td>
<td>0,0306</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Lösung</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(high)</td>
<td>0,30</td>
<td>0,30</td>
</tr>
<tr>
<td>1</td>
<td>0,3040</td>
<td>0,3175</td>
</tr>
<tr>
<td>2</td>
<td>0,3040</td>
<td>0,3175</td>
</tr>
<tr>
<td>3</td>
<td>0,3071</td>
<td>0,3175</td>
</tr>
<tr>
<td>4</td>
<td>0,3075</td>
<td>0,3175</td>
</tr>
<tr>
<td>5</td>
<td>0,3075</td>
<td>0,3175</td>
</tr>
<tr>
<td>6</td>
<td>0,3075</td>
<td>0,3175</td>
</tr>
<tr>
<td>7</td>
<td>0,3075</td>
<td>0,3175</td>
</tr>
<tr>
<td>8</td>
<td>0,3075</td>
<td>0,3175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mittelwert</th>
<th>0,0312</th>
<th>0,0306</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variante</td>
<td>0,0320</td>
<td>0,0306</td>
</tr>
<tr>
<td>Anzahl der Werte</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederfindung, %</th>
<th>niedrig</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>68,08</td>
<td>57,42</td>
<td></td>
</tr>
<tr>
<td>10. %</td>
<td>32,9</td>
<td>68,6</td>
</tr>
</tbody>
</table>

Fertiger: 1.0
Valisat - Protokoll
Druckdatum: 20.04.2020 - 21:26

VIII
11.2.2 Validierungsprotokoll zur Bestimmung von Zolpidem mittels LC-MS:

Validierungsprotokoll

<table>
<thead>
<tr>
<th>Seite: 1 von 8</th>
<th>Institution: Institut für Rechtsmedizin Universitätsklinikum Hamburg-Eppendorf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gültig ab: 01.09.06</td>
<td>Methode: LC-MS</td>
</tr>
</tbody>
</table>

Angaben zur Methode

<table>
<thead>
<tr>
<th>Kurzbezeichnung der Methode (ggf. Nr. der SOP)</th>
<th>Bestimmung von Zolpidem am Blut mittels LC/MS nach flüssig/flüssig-Extraktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendungsbereich</td>
<td>Fragestellungen im Bereich der klinischen und forensischen Toxikologie</td>
</tr>
<tr>
<td>Arbeitsbereich</td>
<td>0,1 - 0,5 µg/ml</td>
</tr>
<tr>
<td>Analyt</td>
<td>Zolpidem</td>
</tr>
<tr>
<td>Weitere bestimmbare Analyte</td>
<td>Zolpiden</td>
</tr>
</tbody>
</table>

Verantwortlichkeiten

<table>
<thead>
<tr>
<th>Leiter der Validierung</th>
<th>Dr. rer. nat. Hilke Andresen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beteiligte Mitarbeiter</td>
<td>Lavka Sonntag, Alexander Müller</td>
</tr>
<tr>
<td>Bearbeitungszeitraum</td>
<td>12.10.05-06.04.06</td>
</tr>
<tr>
<td>Methode gültig erklärt am</td>
<td>01.06.06</td>
</tr>
<tr>
<td>Methode ungültig erklärt am</td>
<td></td>
</tr>
<tr>
<td>Zusammenfassung und Bewertung</td>
<td>Die Methode erwies sich als linear, präzise und richtig</td>
</tr>
</tbody>
</table>

Inhaltsverzeichnis

1. **Arbeitsbereich und Kalibrierungsmodell**
 - A. **Target**
 - A.1 Prüfung auf Varianzhomogenität (F-Test)
 - A.2 Prüfung auf Linienität (Mandel-Test)
 - B. **Qualifier**
 - B.1 Prüfung auf Varianzhomogenität (F-Test)
 - B.2 Prüfung auf Linienität (Mandel-Test)

2. **Genauigkeit**
 - A. **Niedrige Konzentration (QC1)**
 - A.1 Wiederholpräzision
 - A.2 Laborpräzision
 - A.3 Richtigkeit
 - B. **mittlere Konzentration (QC2)**
 - B.1 Wiederholpräzision
 - B.2 Laborpräzision
 - B.3 Richtigkeit

3. **Grenzwerte**
 - 3.1 Bestimmung der Nachweisgrenze (schwaches Ion)
 - 3.2 Bestimmung der Bestimmungsgrenze (intensives Ion)

4. **Wiederfindungsrate (bei Lösungsmittlekalibrationen)**
 - 4.1 Bestimmung der Wiederfindungsfunktion
 - 4.2 Lineäritätsprüfung der Wiederfindungsfunktion
 - 4.3 Varianzhomogenitätssprüfung der Wiederfindungsfunktion

5. **Wiederfindung**
 - 5.1 Bestimmung der Wiederfindung für niedrige Konzentration
 - 5.2 Bestimmung der Wiederfindung für hohe Konzentration
Validierungsprotokoll

A. Target

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Leerrfertig 1</th>
<th>Leerrfertig 2</th>
<th>Leerrfertig 3</th>
<th>Leerrfertig 4</th>
<th>Probenfertig 1</th>
<th>Probenfertig 2</th>
<th>Probenfertig 3</th>
<th>Probenfertig 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.012</td>
<td>0.011</td>
<td>0.010</td>
<td>0.011</td>
<td>0.010</td>
<td>0.011</td>
<td>0.010</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td>0.023</td>
<td>0.022</td>
<td>0.021</td>
<td>0.022</td>
<td>0.021</td>
<td>0.022</td>
<td>0.021</td>
<td>0.022</td>
<td>0.021</td>
</tr>
<tr>
<td>0.034</td>
<td>0.033</td>
<td>0.032</td>
<td>0.033</td>
<td>0.032</td>
<td>0.033</td>
<td>0.032</td>
<td>0.033</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Grubbs-Test auf Streuung (Signifikanz: 99%)

<table>
<thead>
<tr>
<th>Tabellenwert</th>
<th>Leerrfertig 1</th>
<th>Leerrfertig 2</th>
<th>Leerrfertig 3</th>
<th>Leerrfertig 4</th>
<th>Probenfertig 1</th>
<th>Probenfertig 2</th>
<th>Probenfertig 3</th>
<th>Probenfertig 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>reinst</td>
<td>reinst</td>
<td>reinst</td>
<td>reinst</td>
<td>reinst</td>
<td>reinst</td>
<td>reinst</td>
<td>reinst</td>
</tr>
</tbody>
</table>

B. Qualifier

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Leerrfertig 1</th>
<th>Leerrfertig 2</th>
<th>Leerrfertig 3</th>
<th>Leerrfertig 4</th>
<th>Probenfertig 1</th>
<th>Probenfertig 2</th>
<th>Probenfertig 3</th>
<th>Probenfertig 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.012</td>
<td>0.011</td>
<td>0.010</td>
<td>0.011</td>
<td>0.010</td>
<td>0.011</td>
<td>0.010</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td>0.023</td>
<td>0.022</td>
<td>0.021</td>
<td>0.022</td>
<td>0.021</td>
<td>0.022</td>
<td>0.021</td>
<td>0.022</td>
<td>0.021</td>
</tr>
<tr>
<td>0.034</td>
<td>0.033</td>
<td>0.032</td>
<td>0.033</td>
<td>0.032</td>
<td>0.033</td>
<td>0.032</td>
<td>0.033</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Grubbs-Test auf Streuung (Signifikanz: 99%)

<table>
<thead>
<tr>
<th>Tabellenwert</th>
<th>Leerrfertig 1</th>
<th>Leerrfertig 2</th>
<th>Leerrfertig 3</th>
<th>Leerrfertig 4</th>
<th>Probenfertig 1</th>
<th>Probenfertig 2</th>
<th>Probenfertig 3</th>
<th>Probenfertig 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>reinst</td>
<td>reinst</td>
<td>reinst</td>
<td>reinst</td>
<td>reinst</td>
<td>reinst</td>
<td>reinst</td>
<td>reinst</td>
</tr>
</tbody>
</table>

F-Test auf Varianzhomogenität (Signifikanz: 99%)

<table>
<thead>
<tr>
<th>Prüfvert</th>
<th>Tabellenwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Mandel-Test auf Linearität (Signifikanz: 99%)

<table>
<thead>
<tr>
<th>Prüfvert</th>
<th>Tabellenwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Datum: 20.04.2009 - 21:24

X
Validierungsprotokoll

|-------|---------|--iesz | |

2. Genauigkeit

A. Niedrige Konzentration (QC-1): 0.20 μg/ml

<table>
<thead>
<tr>
<th>Tag</th>
<th>Tag 1</th>
<th>Tag 2</th>
<th>Tag 3</th>
<th>Tag 4</th>
<th>Tag 5</th>
<th>Tag 6</th>
<th>Tag 7</th>
<th>Tag 8</th>
<th>Tag 9</th>
<th>Tag 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.252</td>
<td>0.248</td>
<td>0.255</td>
<td>0.256</td>
<td>0.259</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
</tr>
<tr>
<td>2</td>
<td>0.252</td>
<td>0.252</td>
<td>0.259</td>
<td>0.259</td>
<td>0.259</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
</tr>
<tr>
<td>3</td>
<td>0.252</td>
<td>0.252</td>
<td>0.259</td>
<td>0.259</td>
<td>0.259</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
</tr>
<tr>
<td>4</td>
<td>0.252</td>
<td>0.252</td>
<td>0.259</td>
<td>0.259</td>
<td>0.259</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
</tr>
<tr>
<td>5</td>
<td>0.252</td>
<td>0.252</td>
<td>0.259</td>
<td>0.259</td>
<td>0.259</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
</tr>
<tr>
<td>6</td>
<td>0.252</td>
<td>0.252</td>
<td>0.259</td>
<td>0.259</td>
<td>0.259</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
</tr>
<tr>
<td>7</td>
<td>0.252</td>
<td>0.252</td>
<td>0.259</td>
<td>0.259</td>
<td>0.259</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
</tr>
<tr>
<td>8</td>
<td>0.252</td>
<td>0.252</td>
<td>0.259</td>
<td>0.259</td>
<td>0.259</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
</tr>
<tr>
<td>9</td>
<td>0.252</td>
<td>0.252</td>
<td>0.259</td>
<td>0.259</td>
<td>0.259</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
</tr>
<tr>
<td>10</td>
<td>0.252</td>
<td>0.252</td>
<td>0.259</td>
<td>0.259</td>
<td>0.259</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
</tr>
</tbody>
</table>

Mittelwert: 0.252 μg/ml | **Bias %**: 0.27 | **RSD %**: 0.02

B. Mittlere Konzentration (QC-2): 0.40 μg/ml

C. Hohe Konzentration (QC-3): 0.50 μg/ml
Validierungsprotokoll

3. Grenzwerte (DIN 32645)

<table>
<thead>
<tr>
<th>Kalibrator</th>
<th>Target</th>
<th>Qualifer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>2</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>3</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>4</td>
<td>0,30</td>
<td>0,30</td>
</tr>
<tr>
<td>5</td>
<td>0,40</td>
<td>0,40</td>
</tr>
<tr>
<td>6</td>
<td>0,50</td>
<td>0,50</td>
</tr>
<tr>
<td>7</td>
<td>0,60</td>
<td>0,60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausreißer F-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalibrator Nr.</td>
</tr>
<tr>
<td>Frühjahr</td>
</tr>
<tr>
<td>Kritischer Wert</td>
</tr>
<tr>
<td>Streuung?</td>
</tr>
<tr>
<td>Kritischer Wert</td>
</tr>
<tr>
<td>Ausreißer?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linearf-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frühjahr</td>
</tr>
<tr>
<td>Kritischer Wert</td>
</tr>
<tr>
<td>Linear?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grenzwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-Fehler</td>
</tr>
<tr>
<td>Vertrauensbereich</td>
</tr>
<tr>
<td>Rechsnachweis</td>
</tr>
<tr>
<td>Erlassungsgrenze</td>
</tr>
<tr>
<td>Bestimmungsgrenze</td>
</tr>
</tbody>
</table>

Target

![Graph](image1)

Qualifer

![Graph](image2)

Lineare Funktionen und Vertrauensbereiche

\[f(x) = a \cdot x + b \]

- **Vertrauensbereich**
 - \(a = 39,954 \)
 - \(b = 3,793 \)
 - \(a_{\text{min}} = 37,893 \)
 - \(b_{\text{min}} = -1,192 \)

- **Vertrauensbereich**
 - \(a = 16,814 \)
 - \(b = 0,072 \)
 - \(a_{\text{min}} = 16,814 \)
 - \(b_{\text{min}} = 0,781 \)

Verfasser: Institut für Rechtsmedizin Universitätsklinikum Hamburg-Eppendorf

Datum: 20.04.2009 • 21:24
Validierungsprotokoll

4. Lösungsmittelkalibration

Signifikanz: 0.001%

<table>
<thead>
<tr>
<th>Kalibrierung</th>
<th>LM t</th>
<th>Nach x_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$x_0 =$ Messwert mit Linearisierung
$x_1 =$ Messwert mit Lösungskalibration

Wiederfindungsfunktion $x_0 = a_0 + x_1 + b_1$

$e = e_0$
$b = b_0$
$r = r_0$

Ausreißer-Tests (%)

Kalibrier-Nr.	Profilwert	Kritischer Wert	Ausreißer?

Linealitäts-Tests (%)

Kalibrier-Nr.	Profilwert	Kritischer Wert	Linearität?

Varianzkonvergenz-Tests (%)

Kalibrier-Nr.	Profilwert	Kritischer Wert	Konvergenz?

Formular: 1.0
Variasi - Protokoll
Druckdatum: 20.04.2009 - 21:24
Validierungsprotokoll

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Lösung</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,30 µg/ml</td>
<td>1,388</td>
<td>2,058</td>
</tr>
<tr>
<td>0,30</td>
<td>1,366</td>
<td>1,946</td>
</tr>
<tr>
<td>0,30</td>
<td>2,107</td>
<td>2,814</td>
</tr>
<tr>
<td>0,30</td>
<td>2,191</td>
<td>2,919</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Lösung</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00 µg/ml</td>
<td>1,212</td>
<td>2,291</td>
</tr>
<tr>
<td>1,00</td>
<td>1,189</td>
<td>2,253</td>
</tr>
<tr>
<td>1,00</td>
<td>1,154</td>
<td>2,180</td>
</tr>
<tr>
<td>1,00</td>
<td>1,127</td>
<td>2,104</td>
</tr>
</tbody>
</table>

Ergebnisse

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Mittelwert</th>
<th>Variante</th>
<th>Anzahl der Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,30 µg/ml</td>
<td>1,371</td>
<td>0,090</td>
<td>4</td>
</tr>
<tr>
<td>1,00 µg/ml</td>
<td>1,381</td>
<td>0,090</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wiederfindung %</th>
<th>DD, %</th>
<th>Wiederfindung %</th>
<th>DD, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,30 µg/ml</td>
<td>95,62</td>
<td></td>
<td>3,77</td>
</tr>
<tr>
<td>1,00 µg/ml</td>
<td>97,56</td>
<td></td>
<td>3,00</td>
</tr>
</tbody>
</table>
11.3 Chromatogramme

11.3.1 Exemplarisches Chromatogramm einer Zopiclon-Messung mittels LC-MS

![Chromatogramm Diagramm]
11.3.2 Exemplarisches Chromatogramm einer Zolpidem-Messung mittels LC-MS
Anhang

11.4 Poster

11.4.1 Poster anlässlich der 16. Frühjahrsstagung (Nord) der Deutschen Gesellschaft für Rechtsmedizin, Hamburg, 11. – 12.05.2007

Die Bedeutung der neueren Hypno-Sedativa Zopiclon und Zolpidem im klinisch-toxikologischen Untersuchungsgut unter besonderer Berücksichtigung der klassischen Benzodiazepine

L. Sonntag, A. Müller, A. Schmoldt, H. Andresen

Einleitung

Die Hypno-Sedativa Zopiclon und Zolpidem wurden 2005 in der SDR mit über 2 Milliarden definierten Tagestoxik lag hängig verschieden als die klassischen Benzodiazepine und haben diese als Substanzkreise in der Behandlung von Schlafstörungen in Deutschland abgebildet (Abb. 1 und 2).

Methoden

Ergebnisse

In insgesamt 57 der 172 untersuchten Proben konnten Benzodiazepine nachgewiesen werden (35,9%). Eine Konzentration mit Benzodiazepinen lag dabei in 10 Fällen vor. Bei diesen PatientInnen wurden 1,4% als die darin vorhandenen Benzodiazepine festgelegt. Diese Proben wurden in 5 Fällen im Vergleich zu den restlichen Proben. In Tabelle 1 und 2 sind die Analysen der Proben ausgewählt. In Tabelle 1 und 2 sind die Analysen der Proben ausgewählt.

Schlussfolgerung

Zopiclon und Zolpidem sollten durch ihre hohe Anwendungsrate als Ursache für Intoxikationen eine mögliche rolle für die Benzodiazepine zu spielen. Derzeit und bei der Untersuchung der Substanzen der Arbeiten kann festgehalten werden, dass Zopiclon und Zolpidem die Benzodiazepine 11,4% häufiger färberisch in den Proben nachgewiesen wurden (11% vs. 3%). Die Anzahl der tatsächlich in Proben nachgewiesen wurde jedoch bei den Z-Dreieck nicht bei den Benzodiazepinen (11 vs. 10 Fälle).
11.5 Eidesstattliche Versicherung

EIDESSTATTLICHE VERSICHERUNG:

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.