Aus dem Institut für Pathologie
des Zentrums für Klinisch-Theoretische Medizin
des Universitätsklinikums Hamburg-Eppendorf

Direktor Prof. Dr. med. Guido Sauter
unter der Anleitung von PD Dr. Ronald Simon

Mutationen von Zielgenen (EGFR, KIT, PDGFR) für
genspezifische Therapien: Keine unerwartete Anhäufung
in humanen Zelllinien verschiedener Primärtumoren

Dissertation

zur Erlangung des Grades eines Doktors der Zahnmedizin
dem Fachbereich Medizin der Universität Hamburg vorgelegt von

Claudia Dammehayn
aus Plauen
Hamburg 2009
Angenommen vom Fachbereich Medizin der Universität Hamburg am: 22.01.2010
Veröffentlicht mit Genehmigung des Fachbereichs Medizin der Universität Hamburg

Prüfungsausschuss, der/die Vorsitzende: Prof. Dr. G. Sauter
Prüfungsausschuss: 2. Gutachter/in: PD. Dr. R. Simon
Prüfungsausschuss: 3. Gutachter/in: PD. Dr. A. Block
Für meine Familie
I. Inhaltsverzeichnis

1. Einleitung ... 1
 1.1. Tumorigenese .. 1
 1.2. Molekulare Ursachen der Tumorentstehung ... 1
 1.3. Tyrosinkinasen ... 3
 1.3.1. EGF-Rezeptor .. 5
 1.3.2. KIT-Rezeptor .. 8
 1.3.3. PDGF-Rezeptor ... 12
 1.4. Tyrosinkinasen als Therapieziele .. 14
 1.4.1. 'Biologics' am Beispiel von Herceptin und Erbitux 15
 1.4.2. 'Small molecules' am Beispiel von Iressa, Tarceva und Glivec 18
 1.5. Zelllinien als Modellsysteme ... 21
 1.6. Fragestellung .. 23

2. Material und Methoden ... 24
 2.1. Verwendete Zelllinien ... 24
 2.2. Sequenzierung .. 26
 2.2.1. DNA-Isolation ... 26
 2.2.2. PCR und Primersets .. 27
 2.2.3. Nachweis der PCR-Produkte ... 31
 2.2.4. Ethanolpräzipitation der Nukleinsäuren ... 32
 2.2.5. Sequenzierreaktion ... 33
 2.2.6. 'Cycle sequencing' .. 34
 2.2.7. Detektion der Sequenz .. 35
 2.2.8. Auswertung der Sequenzen .. 36

3. Ergebnisse ... 39
 3.1. Mutationsanalysen ... 39
 3.1.1. Verwendetes Zelllinien-Material .. 39
 3.1.2. Übersicht der gesamten Zelllinien für EGFR-Untersuchung 41
 3.1.3. Übersicht der gesamten Zelllinien für PDGFR- und KIT-Untersuchung 43

4. Diskussion ... 46

5. Zusammenfassung ... 51

II. Abkürzungsverzeichnis ... III
<table>
<thead>
<tr>
<th>III. Abbildungsverzeichnis</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV. Tabellenverzeichnis</td>
<td>VIII</td>
</tr>
<tr>
<td>V. Literaturverzeichnis</td>
<td>IX</td>
</tr>
<tr>
<td>VI. Lebenslauf</td>
<td>XXIII</td>
</tr>
<tr>
<td>VII. Danksagung</td>
<td>XXIV</td>
</tr>
<tr>
<td>VIII. Eidesstattliche Versicherung</td>
<td>XXV</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1. Tumorigenese

1.2. Molekulare Ursachen der Tumorentstehung

Einleitung

komplett wegfällt oder eine neue hinzukommt. Hierbei verliert das Leseraster hinter der Mutation seinen ursprünglichen Sinn, da es nach links oder rechts verschoben wird (frameshift). Dies hat zur Folge, dass das translatierte Protein später eine völlig andere Struktur aufweist. Seine ursprüngliche Funktion geht dabei meist verloren. Bei einer Deletion handelt es sich um den Verlust einer Base. Die nachfolgenden Basen rücken gegen die Leserichtung auf, was das Leseraster der nachfolgenden Codons in eben diese Richtung verschiebt. Bei der Insertion handelt es sich um den Zugewinn einer Base. Die nachfolgenden Basen rücken in Leserichtung auf (2) (3).

Eine ganze Reihe von Noxen sind in der Lage, DNA-Schäden zu induzieren und werden daher als Mutagene bezeichnet. Solche Mutagene sind z.B. chemische Substanzen, welche in der Lage sind sich in die DNA einzulagern, wodurch deren einwandfreie Replikation nicht mehr gewährleistet ist. Außerdem gehört energiereiche Strahlung dazu, die einerseits direkte Schäden der DNA verursachen kann, indem z.B. radioaktive Strahlung direkt den DNA-Strang trifft und einen Doppelstrangbruch verursacht oder eine Veränderung einzelner Nukleotide. Andererseits kann energiereiche Strahlung auch indirekte Strahlenschäden an der DNA verursachen, wenn der Strahl nicht die DNA direkt trifft, sondern Wassermoleküle, wodurch freie Radikale entstehen, die wiederum das Erbgut schädigen. Außerdem gibt es verschiedene Viren, die in der Lage sind, das Erbgut ihrer Wirtszelle so zu verändern, dass wachstumsregulierende Gene verstärkt oder vermindert werden, wodurch es zur Entstehung von Tumoren kommen kann (2).

Einleitung

1.3. Tyrosinkinasen

Einleitung

Tyrosinkinaserezeptoren sind potentielle Onkogene, weil es durch eine unkontrollierte Aktivierung zu einer gesteigerten Tyrosinkinaseaktivität kommen kann, welche dann zu unkontrolliertem Zellwachstum, zur malignen Entartung und in der weiteren Folge zur Tumorprogression führt (1) (8).

Diese Signalkaskade wird zunächst durch die Bindung des Wachstumsfaktors (Ligand), z.B. TGFα / EGF, an den spezifischen Receptor, z.B. den EGF-Rezeptor (EGFR), initiiert. Nachfolgend der Tyrosin-Phosphorylierung werden Ras-Proteine gebunden bzw. aktiviert. Dieses kann verschiedene Pathways (downstream), so z.B. den RAS/RAF-MAP-Kinase-Signalweg oder den PI3K/AKT-Signalweg, regulieren (9).

Zur Tumorigenese kommt es dann, wenn im Rahmen der Signalkaskade eine oder mehrere Mutationen auftreten, die durch das Reparatursystem der Normalzelle unbemerkt bleiben und es damit zu unkontrolliertem Zellwachstum kommt.

Die Mutation kann sich auf verschiedene Ebenen auswirken. Sie kann z.B. den Liganden (Überexpression) oder den Rezeptor (onkogene, ligandenunabhängige

![Abb. 1: Modell der EGFR-abhängigen Signaltransduktion](image-url)
Einleitung

1.3.1. EGF-Rezeptor

Der EGF-Rezeptor (epidermal growth factor receptor) gehört, wie bereits erwähnt, zu den membranständigen Rezeptorprotein kinasen. Synonym verwendet wird die Bezeichnung HER1 und ErbB1, die zur Familie der ErbB-Membran-Rezeptoren gehört. Weitere EGF-Membranrezeptoren werden als HER2, HER3 und HER4 bzw. als ErbB2 bis ErbB4 bezeichnet.

Die Rezeptor-Tyrosinkinasen der ErbB-Familie sind eng in die Wachstumskontrolle von humanen Zellen einbezogen. In normalen Zellen werden sie durch Wachstumsfaktoren über parakrine und juxtakrine Mechanismen aktiviert. Als bedeutender kritischer Schritt in der neoplastischen Progression werden die ErbB-Rezeptor-Tyrosinkinasen in Karzinomzellen Teil eines autokrinen
Einleitung

Abb. 3: Rezeptordimerisation nach Ligandenbindung (26)

Einleitung

In humanen Tumoren sind vor allem Veränderungen von HER1 (EGFR) und HER2 bekannt. Während bei EGFR insbesondere aktivierende Mutationen klinisch relevant sind (z.B. in Lungenkarzinomen) (27) fällt der HER2 durch eine massive Überexpression aufgrund einer starken Vermehrung der Genkopiezahl (=Amplifikation) auf (z.B. in Mamma- und Magenkarzinomen) (28) (29) (30).

1.3.2. KIT-Rezeptor

KIT (synonym: cellular KIT bzw. c-KIT) wurde zunächst als virales Homolog v-KIT 1986 von Besmer und Mitarbeitern (34) im HZ4- (Hardy-Zuckerman4) Katzensarkomvirus nachgewiesen, wodurch die Bezeichnung KIT, das für kitten (deutsch: Kätzchen) steht, zustande kommt (35).
Einleitung

Der Ligand SCF, der in zwei Isoformen, einer löslichen und einer membrangebundenen Form, vorliegt (41), ist auch unter den Bezeichnungen KIT-Ligand, Mastzell-Wachstumsfaktor und ’steel factor’ bekannt (33). Die ersten drei aminoterminalen Ig-ähnlichen KIT-Domänen sind an der extrazellulären Ligandenbindung beteiligt, während die vierte Ig-ähnliche Domäne, wie bereits 1993 in den Arbeiten von Blechman und Lev postuliert, für die Rezeptordimerisierung verantwortlich ist (42) (43) (44) (45).

Einleitung

Zum Vorkommen von KIT lässt sich feststellen, dass es in einer Vielzahl von Zelltypen exprimiert wird, einschließlich hämatopoetischer Stamm- und Vorläuferzellen (48) (49), Keimzellen, Melanozyten (50), Mastzellen (51) (52), interstitieller Cajal-Zellen (ICC), bestimmter epithelialer Basalzellen, Untergruppen von zerebellären Neuronen (53) sowie einiger embryonaler und fetaler Endothelzellen (54), in deren Entwicklung, Differenzierung und Funktion es eine wichtige Rolle einnimmt (33). Mit Ausnahme der reifen Mastzellen, Melanozyten und Cajalzellen sowie einiger Subpopulationen von Megakaryozyten und Monozyten (41) geht jedoch die physiologische KIT-Expression im Laufe der Zelldifferenzierung verloren (33).

Einleitung

Bei Letzteren sind ca. 95% KIT-positiv. Entscheidend für die Pathogenese scheint jedoch nicht der Nachweis von KIT per se zu sein, sondern eine aktivierende (‘gain of function’-) Mutation im Rezeptor, die auf Proteinebene durch Zusammenlagerung zweier transmembranöser Kinasen zu einem Homodimer zu einer kontinuierlichen ligandenunabhängigen Aktivität der Tyrosinkinase führt. Diese ‘gain of function’-Mutation liegt bei KIT-positiven GIST’s zu 80 bis 85% vor. In einer Studie (322 GIST’s) von Corless et al ergaben sich folgende Mutationsereignisse im KIT-Gen: Am häufigsten im Exon11 (66,1%), seltener in den Exons9 (13%), 13 (1,2%) oder 17 (0,6%) (56).

Bemerkenswert ist, dass GIST’s aufgrund der verschiedenen Mutationen in Untergruppen eingeteilt werden können, die es sogar erlauben, Aussagen sowohl über die Lage als auch über die Prognose zu machen. So sind GIST’s mit einer aktivierenden Mutation im PDGF-Rezeptor häufig im Magen lokalisiert, wohingegen sich KIT-positive GIST’s eher im Dünndarm manifestieren können (57). Weiterhin haben GIST’s mit Mutation im Exon11 des KIT-Receptors häufiger eine bessere Prognose als GIST’s mit Mutationen im Exon9 des KIT-Receptors. Zudem kann man Aussagen darüber treffen, ob die Behandlung mit Imatinib (Glivec) sinnvoll ist, denn GIST’s mit Exon11 Mutationen sprechen auf Imatinib bis zu 80% an, hingegen reduziert sich die Ansprechrate bei GIST’s mit Exon9 Mutation auf bis zu 50%. GIST’s, die keine Mutation in vorher genannten Exons des KIT-Gens aufweisen, sind resistent gegenüber der Behandlung mit Imatinib.
Die Entwicklung von sekundären Resistenzen gegenüber Imatinib bei der Behandlung treten in 40% der Fälle auf und sind darin begründet, dass weitere Mutationen auftreten, die durch Imatinib nicht therapiert werden können (58).

1.3.3. PDGF-Rezeptor

Einleitung

Homo- als auch Heterodimere ausbilden können, existieren für C und D lediglich Homodimere.

Während der Embryogenese obliegt ihm eine essentielle Funktion bezüglich der adäquaten Entwicklung einzelner Organe (z.B. Niere, Gehirn) bzw. Organsysteme (z.B. kardiovaskuläres System), und im reifen Organismus kommt ihm eine wichtige Bedeutung im Rahmen der Wundheilung, Angiogenese, Gefäßtonusregulation sowie von Entzündungsprozessen zu (62) (64) (65).

Weiterhin scheint PDGFR auch eine wichtige Rolle bei der Entwicklung von Tumorerkrankungen wie z.B. GIST zu spielen. Bei der Untersuchung der gastrointestinalen Stromatumoren, die den Wildtyp des KIT-Gens exprimieren, haben sich verschiedene Mutationen an zwei Exons des PDGFR-A gezeigt. Zum Einen im Bereich des Exons12, das für die juxtamembranöse Domäne codiert, und zum Anderen im Bereich des Exons18, welches für das aktive Zentrum (activation loop) codiert. Es hat sich durch Versuche an Hamstern herausgestellt, dass der PDGF-Rezeptor trotz der Abwesenheit von entsprechenden Liganden (PDGF) in phosphorylierter Form vorliegt und damit einhergehend onkogene Wirkung zeigt (65).

Die Morphologie der PDGFR-positiven GIST’s zeigt sich in seiner Histologie eher epitheloid. Zudem sind offenbar viele von ihnen KIT-negativ bzw. exprimieren KIT nur in einem geringen Maße gleichzeitig mit PDGFR. Die Signalkaskaden, die bei
Einleitung

1.4. Tyrosinkinasen als Therapieziele

Um das wachstumsfördernde Verhalten von Tumoren zu unterbinden, wurden mehrere Strategien entwickelt, die in verschiedene Receptor-Signalwege eingreifen. Diese Signalwege bieten sich wegen ihrer Bedeutung in der Regulation von Proliferation, Transformation, Invasivität und Überleben bei verschiedenen malignen Tumoren als Ziel für eine therapeutische Intervention an. Wobei besonders RAS- und RAF-Proteinkinasen und deren übergeordnete Receptor-Tyrosinkinasen als Zielstrukturen für die Entwicklung von neuen Therapien attraktiv sind. So zielen auch alle zur Zeit gängigen genspezifischen Therapien auf Tyrosinkinasen ab (69) (70).

Diese als ‘targeted therapy’ bezeichnete Form der Behandlung vereint im Vergleich zu den bisherigen Therapiemöglichkeiten in sich gleich mehrere Vorteile. Wie der Name schon andeutet, handelt es sich um eine zielgerichtete Therapie, bei der die Medikamente gegen ganz bestimmte Gene, die mutierten Gene, wirken sollen. So besteht der Vorteil vor Behandlungsbeginn zu wissen, welche Patienten auf das Medikament ansprechen werden, zudem treten im Vergleich zur Chemotherapie deutlich weniger Nebenwirkungen auf (71). Dies ist darin begründet, dass die Chemotherapeutika ungezielt alle sich schnell teilenden Zellen angreifen und damit auch gesunde Zellen zugrunde gehen, wohingegen die Medikamente der ‘targeted therapy’ speziell nur Zellen mit entsprechender Mutation, also tumoröse Zellen, zugrunde gehen lassen. Es hat in den vergangenen Jahren schon mehrere Einsatzgebiete für solche Medikamente gegeben.
Einleitung

Zu den erfolgreichsten Prinzipien gehört dabei die Zuhilfenahme von spezifischen Antikörpern, sogenannte 'biologicals', zu denen als bekanntestes Medikament das Herceptin gehört. Ein weiteres ist das Erbitux (Cetuximab). Sie zeichnen sich dadurch aus, dass sie besonders nebenwirkungsarm in der Anwendung am Patienten sind, jedoch sind sie sehr aufwendig in der Entwicklung. Ein anderer Ansatz ist die Anwendung von sogenannten 'small molecules'. Dabei handelt es sich um kleine Moleküle, die in verschiedene Signalpfade greifen können. Zu dieser Stoffklasse gehören unter anderem Iressa (Gefitinib), Tarceva (Erlotinib) und Glivec (Imatinib), die in der Entwicklung geringere Aufwendungen bedürfen, aber gleichzeitig ein größeres Nebenwirkungsspektrum aufweisen, das allerdings keinesfalls mit dem von Chemotherapeutika zu vergleichen ist.

1.4.1. 'Biologicals` am Beispiel von Herceptin und Erbitux

Das Medikament Herceptin ist ein rekombinanter, humanisierter (95% humane Proteine), monoklonaler Antikörper. Er bindet selektiv an die extrazelluläre Domäne des 'human epidermal growth factor receptors` (HER2). Damit einhergehend kommt es intrazellulär zur raschen Aktivierung der PTEN-Lipid-Phosphatase, welche ihrerseits den Phosphatidyl-Inositol-3-Kinase-Pathway (PI3K) herunterreguliert. Das permanente Wachstum und die Teilung der HER2-überexprimierenden Krebszelle
Einleitung

werden damit blockiert. Darüber hinaus stimuliert der Einsatz des HER2-Antikörpers eine zellvermittelte Toxizität (ADCC: ‘antibody dependent cell mediated cytotoxicity’), die zur Vernichtung der Tumorzelle führt (74).

Die Therapie mit Trastuzumab kann in unterschiedlicher Weise erfolgen, was verschiedene Studien belegen. Trastuzumab kann sowohl als adjuvante als auch als neoadjuvante Therapie zum Einsatz kommen, wobei der größte Erfolg in Kombination mit anderen Chemotherapeutika, wie z.B. Anthrazyklinen, erzielt werden kann. Diese Kombinationstherapie birgt im Vergleich zu den anderen Therapieformen jedoch auch ein besonders hohes Risiko, einen Herzschaden zu erleiden (75).

Bei der Anwendung von Herceptin haben sich, besonders bei der Monotherapie, Misserfolge in der Behandlung des Mammakarzinoms ergeben. Es hat sich gezeigt, dass nach erfolgreichem Einsatz des Medikaments in einem folgenden Intervall Resistenzen auftreten können, die das Medikament unwirksam werden lassen. Der Grund hierfür ist, dass weitere Mutationen auftreten, die vom Medikament nicht erreicht werden können. Im Fall des Herceptins tritt die Mutation im Bereich der PTEN-Funktion auf, so dass erneut der PI3K/AKT-Signalweg heraufreguliert wird und damit ein Rezidiv bewirkt (74).

Ein weiteres Medikament aus der Gruppe der ‘biologicals’ ist das Cetuximab, das auf dem Markt als Erbitux gehandelt wird. Es ist ein therapeutischer monoklonaler Antikörper vom Typ IgG1, welches spezifisch an die extrazelluläre Domäne des EGF-
Einleitung

Rezeptors bindet. Durch diese Bindung werden die Aktivierung des Rezeptors und die nachgeschalteten Signalkaskaden gehemmt, wodurch sowohl die Invasion der Tumorzellen in gesundes Nachbargewebe als auch die Ausbreitung der Tumore in neue Körperregionen vermindert werden. Darüber hinaus wird angenommen, dass es die Fähigkeit der Tumorzellen, die durch Chemo- und Strahlentherapie verursachten Schäden zu reparieren, verringert sowie die Ausbildung neuer Blutgefäße in den Tumoren herabsetzt, was zu einer generellen Hemmung des Tumorwachstums zu führen scheint (77). Nach einer Serie erfolgreicher klinischer Studien wurde Cetuximab 2003 in den USA, und im Jahre 2004 auch in der Europäischen Gemeinschaft zur Behandlung von Kolorektalkarzinomen zugelassen, und zwar als Mittel in Fällen, bei denen eine Irinotecan-haltige zytostatische Chemotherapie versagt hat (78).

Die Anwendung von Cetuximab am Patienten erweist sich als relativ nebenwirkungsarm. Als häufigste Nebenwirkung tritt dabei ein akneartiger Hautausschlag auf, der wiederum mit einem guten Ansprechen auf die Therapie zu korrelieren scheint. Bei etwa 5% aller Patienten können unter der Behandlung mit Cetuximab Überempfindlichkeitsreaktionen auftreten (77).

Für die Kombinationsbehandlung mit Irinotecan bei Patienten mit EGFR-exprimierendem metastasierendem Kolorektalkarzinom, die auf eine vorherige Irinotecan-haltige Therapie nicht mehr ansprachen, liegt die Zulassung in 58 Ländern, darunter China, Europäische Union, Lichtenstein, Schweiz und USA, vor. In 44 Ländern ist es in Kombination mit einer Strahlentherapie für die Behandlung von lokal fortgeschrittenen Plattenepithelkarzinomen des Kopfes und Halses (SCCHN) zugelassen, unter anderem in der Europäischen Union, der Schweiz und der USA. In Argentinien, Chile, Israel, Mexiko, den Philippinen und den USA ist Cetuximab auch als Monotherapie bei Patienten mit rezidivierenden und/oder metastasierenden Plattenepithelkarzinomen des Kopfes und Halses zugelassen, die auf eine vorherige Chemotherapie nicht mehr angesprochen haben (78) (79) (80).
Einleitung

1.4.2. ‘Small molecules` am Beispiel von Iressa, Tarceva und Glivec

Ein Beispiel aus der Gruppe der ‘small molecules` ist das Medikament Iressa (Gefitinib/ZD1839). Es ist ein besonders bioverfügbares Medikament, welches bei NSCLC-Patienten (‘non small cell lung cancer`-Patienten) eingesetzt wird. Es kommt speziell in der EGFR-Signalkaskade zu einer kompetitiven Hemmung an der ATP-Bindungsstelle, so dass die intrazelluläre Tyrosinkinase keine Autophosphorylierungen vornehmen kann und damit die nachfolgende Signalkaskade nicht mehr ablaufen kann. Zu den Nebenwirkungen gehören unter anderem Hautausschlag und vor allem gastrointestinale Beschwerden (81).

![Diagramm der Wirkungsweise von Iressa](image)

Abb. 7: Wirkungsweise von Iressa: Hemmung der Proliferation (Zellvermehrung), Hemmung der Angiogenese (Ausbildung von Blutgefäßen, um dem Tumor das Wachstum zu ermöglichen), Hemmung der Metastasierung (Ausbreitung des Tumors in andere Körpergewebe, Organe), Förderung der Apoptose (programmierter (normaler) Zelltod) (82)

Es hat sich auch bei diesem Medikament gezeigt, dass nach erfolgreichem Einsatz in einem folgenden Intervall Resistenzen auftreten können und somit die Medikamente unwirksam werden. Der Grund hierfür ist, dass sekundär Mutationen auftreten, die vom Medikament nicht erreicht werden können. Bei der Behandlung des Lungenkarzinoms mit Iressa kommt die Resistenz entweder durch eine sekundäre EGFR-Mutation oder K-RAS-Mutation zustande (83).
Einleitung

Tarceva (Erlotinib/OSI-774), das ebenfalls bei Patienten mit NSCLC zum Einsatz kommt, gehört wie auch das Medikament Iressa zu den ’small molecules‘. Tarceva hemmt bei der EGFR-Signalübertragung die Tyrosinkinase-Aktivität innerhalb der Zelle, was zu einer Blockade des Tumorzellwachstums führen kann. Sehr häufige Nebenwirkungen sind Ausschlag zu 75% und Durchfälle zu 54%. Häufige Nebenwirkungen sind auch gastrointestinale Blutungen, Leberfunktionsstörungen und Keratitis (Hornhautentzündungen) (84) (85).

Abb. 8: Wirkungsweise von Tarceva: Tarceva hemmt die Phosphorylierung der intrazellulären Tyrosinkinasebereiche und kann daher jede Art der hier gezeigten HER1-Aktivierung ausschalten (86)

Wie bereits erwähnt sind 95% aller gastrointestinalen Stromatumoren KIT (CD117)-positiv. Damit ist es möglich, GIST diagnostisch gegenüber anderen Tumoren abzugrenzen. Dies erfolgt über immunhistochemische Färbung von CD117, welches als Oberflächenantigen auf der extrazellulären Domäne des KIT-Rezeptors zu finden
Einleitung

In klinischen Studien ergab sich durch die Behandlung mit Glivec eine Erfolgsrate mit Rückgang des Tumors von 50%, bei den Übrigen stagnierte das Wachstum der Tumore. Allerdings traten auch bei diesem Medikament zirka 18 bis 26 Monate nach Therapiebeginn gehäuft Resistenzen auf (93). Dabei sind verschiedene Resistenzmechanismen bei fortgeschrittenen GIST’s bekannt. Neben Mutationen in bestimmten Domänen der Kinase, hat man auch eine zwei- bis vierfache KIT-Überexpression beobachtet oder aber den Stopp der Expression, also einen kompletten Targetverlust, der von verstärkten alternativen Tyrosinkinase-Pathways
Einleitung

begleitet wurde (94). Deshalb unterliegt Glivec einer ständigen Weiterentwicklung, es liegt bereits in der dritten Generation vor.

Darüber hinaus laufen derzeit klinische Studien mit Patienten, die eine systemische Progression aufweisen und zusätzlich zu Glivec Substanzen erhalten, die zu einem späteren Zeitpunkt in die Signalkaskade eingreifen. Dazu zählt das Rapamycinderivat RAD001, welches als mTOR-Inhibitor (PI3K/AKT-Signalkaskade) einen direkten Antitumor- und Antiangiogeneseeffekt zeigt, sowie der Staurosporinabkömmling PKC412, der unter anderem konventionelle PKC-Isoformen hemmt. Alternativ zu Glivec könnte bei diesen Patienten künftig auch der Wirkstoff SU11248 eingesetzt werden, der mehrere Tyrosinkinasen, darunter auch KIT, hemmt (95).

1.5. Zelllinien als Modellsysteme

Einleitung

Vorteile der Zelllinien sind ihre leichte Verfügbarkeit bei geringem Kostenaufwand, zudem ist die Forschung an Zellkulturen ethisch vertretbar, denn sie reduziert Tierversuche und Probandenstudien.

Dabei muss aber eine Zelllinie bestimmte Bedingungen erfüllen, z.B. will man die Wirksamkeit eines neuen Medikaments untersuchen, das z.B. eine Resistenz gegen Glivec überwinden soll, muss dieses auch an einer entsprechenden Glivec-resistenten Zelllinie getestet werden. Davon gibt es allerdings nur wenige, der Grund dafür ist aber wahrscheinlich der allgemein schlechte Untersuchungszustand der vorhandenen Zelllinien. Wünschenwert wäre es, den Status möglichst aller zur Zeit verfügbaren Zelllinien, zumindest hinsichtlich der verfügbaren genspezifischen Therapien (z.B. der TRK-Inhibitoren), zu kennen (96) (97).

Es wäre somit beispielsweise möglich, direkt den Erfolg von Kombinationstherapeutika an ausgewählten Zelllinien, die mehrere Mutationen gleichzeitig in verschiedenen Genen aufweisen, wie z.B. eine EGFR-Mutation in Kombination mit einer KIT-Mutation, zu testen.
1.6. Fragestellung

Zelllinien sind wichtige Werkzeuge für die Erforschung zellulärer Regulationsmechanismen. Als nachteilig gilt allerdings, dass viele Zelllinien eine gewisse Diskrepanz zum Ursprungsgewebe zeigen. So haben zahlreiche Untersuchungen an humanen Tumorzelllinien gezeigt, dass oftmals ein „unphysiologisch“ hoher Grad an genetischer Instabilität vorliegt und Tumorzelllinien daher in der Regel viel mehr genetische Veränderungen zeigen als ihre klinischen „Vorläufer“-Tumoren.

Das Ziel dieser Arbeit war es daher abzuschätzen, wie „künstlich“ Zelllinien von humanen Tumoren tatsächlich sind. Dazu sollte untersucht werden, ob bestimmte Mutationen, die nur von einigen wenigen klinischen Tumorentitäten bekannt sind, tatsächlich nur in den erwarteten Zelllinien (d.h. in Zelllinien von Tumortypen, die ursprünglich diese Mutation zeigen) auftreten, oder ob auch Zelllinien aus anderen Tumortypen im Laufe ihrer weiteren Entwicklung solche „Indikatormutationen“ akquirieren können.
2. Material und Methoden

2.1. Verwendete Zelllinien

In der vorliegenden Arbeit wurden 57 humane Zelllinien verwendet, die in Tabelle 1 aufgeführt sind. Dabei sind aus der Tabelle genauere Details zu den Zelllinien ersichtlich. Dazu gehören u.a. die Gewebeart, die Tumorentität sowie die Kurzbezeichnung der Zelllinie. All diese Zelllinien wurden auf gleiche Weise untersucht (siehe dazu Abschnitt 2.2.)

<table>
<thead>
<tr>
<th>Organ</th>
<th>Zelllinien</th>
<th>Herkunftsgewebe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolon</td>
<td>DLD-1</td>
<td>kolorektales Adenokarzinom, Duke’s Typ C</td>
</tr>
<tr>
<td>Kolon</td>
<td>COLO 320 DM</td>
<td>kolorektales Adenokarzinom</td>
</tr>
<tr>
<td>Kolon</td>
<td>HCT-8</td>
<td>kolorektales Adenokarzinom</td>
</tr>
<tr>
<td>Kolon</td>
<td>COLO 201</td>
<td>kolorektales Adenokarzinom</td>
</tr>
<tr>
<td>Kolon</td>
<td>SK-CO-1</td>
<td>kolorektales Adenokarzinom (stammend aus Aszites)</td>
</tr>
<tr>
<td>Kolon</td>
<td>SW-620</td>
<td>epithelial; kolorektales Adenokarzinom, Duke’s Typ C</td>
</tr>
<tr>
<td>Kolon</td>
<td>HT 29</td>
<td>kolorektales Adenokarzinom</td>
</tr>
<tr>
<td>Kolon</td>
<td>HCT-15</td>
<td>kolorektales Adenokarzinom, Duke’s Typ C</td>
</tr>
<tr>
<td>Kolon</td>
<td>COLO 205</td>
<td>Adenokarzinom, Duke’s Typ D (stammend aus Aszites)</td>
</tr>
<tr>
<td>Kolon</td>
<td>HCT-116</td>
<td>kolorektales Adenokarzinom</td>
</tr>
<tr>
<td>Leber</td>
<td>HEP G2</td>
<td>hepatozelluläres Karzinom</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-3</td>
<td>Adenokarzinom, (stammend von Aszites)</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-4</td>
<td>Adenokarzinom</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-5</td>
<td>Adenokarzinom</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-8</td>
<td>Adenokarzinom</td>
</tr>
<tr>
<td>Ovar</td>
<td>OC-2</td>
<td>Adenokarzinom</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>K-562</td>
<td>Leukämie (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>HL-60 (TB)</td>
<td>promyeloitische Leukämie</td>
</tr>
<tr>
<td>Haut</td>
<td>SK-MEL-28</td>
<td>malignes Melanom</td>
</tr>
<tr>
<td>Haut</td>
<td>MEL-HO</td>
<td>malignes amelanotisches Melanom (stammend aus Lymphknoten)</td>
</tr>
<tr>
<td>Haut</td>
<td>IGR-1</td>
<td>malignes Melanom (stammend aus inguinalem Lymphknoten)</td>
</tr>
<tr>
<td>Haut</td>
<td>A 431</td>
<td>Epidermis; epidermoïdes Karzinom</td>
</tr>
<tr>
<td>Haut</td>
<td>HACAT</td>
<td>malignes Melanom</td>
</tr>
<tr>
<td>Haut</td>
<td>A-375</td>
<td>malignes Melanom</td>
</tr>
<tr>
<td>Organ</td>
<td>Zelllinien</td>
<td>Herkunftsgewebe</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Brust</td>
<td>ZR-75-I</td>
<td>Karzinom (stammend aus Aszites)</td>
</tr>
<tr>
<td>Brust</td>
<td>HBL-100</td>
<td>Brustdrüse</td>
</tr>
<tr>
<td>Brust</td>
<td>BT 549</td>
<td>Brustdrüse; duktales Karzinom (stammend aus Lymphknoten)</td>
</tr>
<tr>
<td>Brust</td>
<td>HS-578T</td>
<td>Brustdrüse; duktales Karzinom</td>
</tr>
<tr>
<td>Brust</td>
<td>MCF 7</td>
<td>Brustdrüse, Adenokarzinom (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>Brust</td>
<td>MDA-MB-435</td>
<td>Brustdrüse; duktales Karzinom</td>
</tr>
<tr>
<td>Brust</td>
<td>MDA-NEO</td>
<td>Brustdrüse; Adenokarzinom</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H23</td>
<td>Nicht-kleinzelliges Adenokarzinom</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H226</td>
<td>Nicht-kleinzelliges Karzinom</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H322M</td>
<td>Nicht-kleinzelliges Karzinom</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H522</td>
<td>Nicht-kleinzelliges Adenokarzinom</td>
</tr>
<tr>
<td>Niere</td>
<td>CAKI-2</td>
<td>Klarzellkarzinom</td>
</tr>
<tr>
<td>Niere</td>
<td>293</td>
<td>transformiert durch Adenovirus 5 DNS</td>
</tr>
<tr>
<td>Niere</td>
<td>786-0</td>
<td>Adenokarzinom</td>
</tr>
<tr>
<td>Gehirn</td>
<td>T98G</td>
<td>multiformes Glioblastom</td>
</tr>
<tr>
<td>Gehirn</td>
<td>SNB-19</td>
<td>links parietookzipital; Glioblastom</td>
</tr>
<tr>
<td>Gehirn</td>
<td>GaMG</td>
<td>Glioblastom</td>
</tr>
<tr>
<td>Gehirn</td>
<td>DBTRG-05MG</td>
<td>Gliazelle; multiformes Glioblastom</td>
</tr>
<tr>
<td>Gehirn</td>
<td>U-343MG</td>
<td>Glioblastom</td>
</tr>
<tr>
<td>Gehirn</td>
<td>172</td>
<td>Glioblastom</td>
</tr>
<tr>
<td>Knochen</td>
<td>SAOS-2</td>
<td>Osteosarkom</td>
</tr>
<tr>
<td>Harnwege</td>
<td>ECV 304</td>
<td>Harnblasenkarzinom</td>
</tr>
<tr>
<td>Harnwege</td>
<td>J-82</td>
<td>Harnblase; Transitionalzellkarzinom</td>
</tr>
<tr>
<td>Harnwege</td>
<td>SCABER</td>
<td>Harnblase, squam. Zellkarzinom</td>
</tr>
<tr>
<td>Harnwege</td>
<td>5637</td>
<td>Harnblasenkarzinom</td>
</tr>
<tr>
<td>Harnwege</td>
<td>TCC-SUP</td>
<td>Harnblase; Transitionalzellkarzinom</td>
</tr>
<tr>
<td>Harnwege</td>
<td>RT-II2</td>
<td>Harnblase; Transitionalzellkarzinom; Grad II</td>
</tr>
<tr>
<td>Gebärmutter</td>
<td>HEla</td>
<td>Zervixkarzinom</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>ONCO-DG-I</td>
<td>oxyphiles papilläres Karzinom</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>CAL-62</td>
<td>anaplastisches Karzinom</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>ML-1</td>
<td>follikuläres Karzinom</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>B-CPAP</td>
<td>Schilddrüsenkarzinom</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>8505C</td>
<td>Schilddrüsenkarzinom</td>
</tr>
</tbody>
</table>

Tab. 1: Verwendete Zelllinien
2.2. Sequenzierung

2.2.1. DNA-Isolation

Bei der Isolierung genomischer DNA aus Geweben ist der essentiellste Schritt der proteolytische Abbau der Zellproteine durch Proteinase K. Einfache Phenolextraktion der DNA zur Abtrennung sämtlicher Proteine würde in diesem Fall nicht ausreichen. Zudem ist die genomische DNA sehr komplext mit Histonen oder histonähnlichen Proteinen verpackt, deren Struktur durch Phenolisierung nicht vollständig aufgebrochen werden kann (98). Da ein vollständiger Proteinase-Verdau des Gewebes als entscheidend für die DNA-Ausbeute gesehen wird, wurde der Proteinase-Verdau solange durchgeführt bis die Lösung klar war, erschien sie noch trübe, wurde die Inkubation unter Proteinase K-Zugabe um einen weiteren Tag verlängert. Um eine möglichst hohe Ausbeute an hochmolekularer DNA zu erhalten und eine unnötige Scherung der DNA zu vermeiden, wurde der gesamte Extraktionsprozess so schonend wie möglich durchgeführt.

Laborprotokoll: DNA-Extraktion aus Gewebe mit QIAamp DNA Mini Kit

- Je nach Größe der Gewebsstücke 1 bis 4 Schnitte à 10µm in ein 2ml Reaktionsgefäß geben
- 1.200µl Xylol zum Entparaffinieren auf die Schnitte pipettieren, vortexen und 10 Minuten bei Raumtemperatur stehen lassen, dann 5 Minuten bei 13.200U/min zentrifugieren, Überstand vorsichtig in ein geeignetes Abfallgefäβ pipettieren (Xylol ist gesundheitsschädlich und muss gesondert entsorgt werden)
- diesen Schritt wiederholen
- 1.200µl EtOH zu dem Pellet pipettieren, vortexen und 5 Minuten bei 13.200 U/min zentrifugieren, Überstand vorsichtig in ein geeignetes Abfallgefäβ pipettieren (Xylolreste)
- diesen Schritt wiederholen
- Pellet mit geöffnetem Deckel 15 Minuten bei 37°C trocknen
- Pellet in 180µl ATL-Puffer resuspendieren und 20µl Proteinase K dazugeben, vortexen und 1-3 Stunden bei 56°C inkubieren (alle 20 Minuten vortexen) oder über Nacht inkubieren
- kurz zentrifugieren, 200µl AL-Puffer dazugeben, 15 Sekunden pulse-vortexen und 10 Minuten bei 70°C inkubieren
- kurz zentrifugieren, 200µl EtOH dazugeben, pulse-vortexen und wieder kurz zentrifugieren
- alles auf einen QIAamp Filter pipettieren und 1 Minute bei 8.000U/min zentrifugieren
- Filter in ein neues Reaktionsgefäß setzen, 500µl AW1-Puffer auf den Filter geben und 1 Minute bei 8.000U/min zentrifugieren
- Filter wieder in ein neues Reaktionsgefäß setzen, 500µl AW2-Puffer auf den Filter geben und 3 Minuten bei 13.200U/min zentrifugieren
- Flüssigkeit verwerfen und den Filter 1 Minute bei 13.200U/min trocken zentrifugieren
Material und Methoden

- Filter in ein sauberes 1,5ml Reaktionsgefäß setzen, 200µl AE-Puffer auf den Filter geben, 5 Minuten bei Raumtemperatur inkubieren und anschließend 1 Minute bei 8.000U/min zentrifugieren
- DNA mittels Nano Drop messen und evtl. den vorherigen Schritt wiederholen
- DNA kurzfristig bei 4°C lagern ansonsten bei -20°C lagern

QIAamp: QIAGEN Catalog no.51304 (50)
Xylol: z.B. 2,51 Fa Sds 0750021
EtOH: z.B. 2,51 Ethanol Fa. J.T.Baker 8006

2.2.2. PCR und Primersets

1. Denaturierungsschritt

Im Denaturierungsschritt erfolgt die Trennung des DNA-Doppelstrangs in zwei Einzelstränge, welches bereits bei einer Temperatur von 70°C beginnt und auf eine Temperatur von 94°C gesteigert wird. Einerseits leiden unter den hohen Temperaturen alle Komponenten, die Polymerase denaturiert, die Nukleotide
zerfallen und DNA sowie Primer werden depuriniert. Andererseits muss auf Grund der komplexen hochmolekularen Struktur der DNA die Temperatur so hoch gefahren werden, damit auch bei GC-reichen DNA-Fragmenten eine Denaturierung erfolgen kann. Deshalb hält man diese Phase so kurz wie möglich, aber so lange wie nötig (99).

2. Annealingschritt

Nun erfolgt die Primer-Hybridisierung an die einzelsträngige DNA, dazu muss der Reaktionsansatz auf eine durch den Primer festgelegte Temperatur abgekühlt werden. Die Anlagerung des Primers an den Einzelstrang der Zielsequenz bestimmt entscheidend die Spezifität der PCR (99).

3. Elongationsschritt

Laborprotokoll: PCR

- die Konzentration der durch die Extraktion gewonnenen DNA, wird zunächst im Nano Drop gemessen (Werte siehe Tabelle 7)
- um gleiche Konzentrationen der Ausgangs-DNA zu schaffen, werden alle Lösungen auf einen DNA-Gehalt von 20ng/µl eingestellt
- für eine optimale Ausbeute wird ein DNA-Einsatz von 60ng/µl gewählt
- die Ansätze beinhalten folgende Komponenten: HPLC-Wasser, Puffer (MgCl₂), dNTP’s (2pmol), Primermix forward/reverse (2,5pmol) (Primersets siehe Tabelle 2) und Taq-Polymerase (AmpliTaq Gold with GeneAmp)
Material und Methoden

Die folgenden Angaben gelten für 25µl Ansätze (3µl extrahierte DNA-Lösung + 22µl Mastermix). Der Mastermix setzt sich, wie aus Tabelle 2 zu ersehen, zusammen.

<table>
<thead>
<tr>
<th>Mastermix</th>
<th>5x</th>
<th>6x</th>
<th>9x</th>
<th>12x</th>
<th>15x</th>
<th>18x</th>
<th>21x</th>
<th>24x</th>
<th>27x</th>
<th>30x</th>
<th>34x</th>
<th>37x</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O für 3µl DNA</td>
<td>81.5</td>
<td>98</td>
<td>147</td>
<td>196</td>
<td>245</td>
<td>93.5</td>
<td>342</td>
<td>391</td>
<td>439</td>
<td>489</td>
<td>554</td>
<td>603</td>
</tr>
<tr>
<td>10x Taq-Puffer</td>
<td>12.5</td>
<td>15</td>
<td>22.5</td>
<td>30</td>
<td>37.5</td>
<td>45</td>
<td>52.5</td>
<td>60</td>
<td>67.5</td>
<td>75</td>
<td>85</td>
<td>92.5</td>
</tr>
<tr>
<td>2mM dNTP’s</td>
<td>0</td>
</tr>
<tr>
<td>Primermix</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>34</td>
<td>37</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
<td>1</td>
<td>1.2</td>
<td>1.8</td>
<td>2.4</td>
<td>3</td>
<td>3.6</td>
<td>4.2</td>
<td>4.8</td>
<td>5.4</td>
<td>6</td>
<td>6.8</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Tab. 2: Ansatzreihe für verwendete PCR-Ansätze

- die Gesamtmenge der einzelnen zu pipettierenden Lösungen ergibt sich aus der Anzahl durchgeführter PCR-Reaktionen
- den Mastermix kurz vortexen, jeweils 22µl Mastermix in sterile Tubes vorgeben
- jeweils 3µl DNA-Lösung zupipettieren, die Röhrchen verschließen und in das PCR-Gerät stellen
- die Ansätze mit dem Programm der nachfolgenden Tabelle fahren lassen

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Zeit</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aktivierung der Taq</td>
<td>10min</td>
<td>94°C</td>
</tr>
<tr>
<td>2. Denaturierung</td>
<td>10sec</td>
<td>94°C</td>
</tr>
<tr>
<td>3. Annealing</td>
<td>10sec</td>
<td>jeweilige Primertemperatur (siehe unten)</td>
</tr>
<tr>
<td>4. Elongation</td>
<td>20sec</td>
<td>72°C</td>
</tr>
<tr>
<td>5. Schlussreaktion</td>
<td>3min</td>
<td>72°C</td>
</tr>
<tr>
<td>6. Durchlauf Ende (hold)</td>
<td>hold</td>
<td>4°C</td>
</tr>
</tbody>
</table>

ein Zyklus beinhaltet die Schritte 2., 3. und 4.

<table>
<thead>
<tr>
<th>Gen</th>
<th>Exon</th>
<th>Annealing-Temp.</th>
<th>Zyklen</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR</td>
<td>18</td>
<td>58°C</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>58°C</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>58°C</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>56°C</td>
<td>50</td>
</tr>
<tr>
<td>c-KIT</td>
<td>9</td>
<td>55°C</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>55°C</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>55°C</td>
<td>50</td>
</tr>
<tr>
<td>PDGFR</td>
<td>12</td>
<td>55°C</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>61°C</td>
<td>60</td>
</tr>
</tbody>
</table>

Tab. 3: PCR-Programme
Material und Methoden

Verwendetes PCR-Gerät:

Bio Rad PTC-100
Modell: PTC-1196 rev: FA
Rating: 100-200 VAC 50-60Hz 350watts
Fuses: 4.5OA momentary (2) 4.0A 250V

Bei den Primern sollten folgende Parameter beachtet werden: Schmelztemperatur, 3’-Enden, Nukleotidzusammensetzung und -verteilung und Primer/Primerwechselwirkung. Die Primer sollten weder stabile Sekundärstrukturen noch Dimere bilden können, deshalb müssen Komplementaritäten innerhalb eines Primers und zwischen den Primern vermieden werden. Sie sollten dieselbe Schmelztemperatur besitzen. Für die sequenzspezifische Hybridisierung der Primer an die Template-DNA muss eine geeignete Temperatur, die Annealing-Temperatur, gewählt werden. Als Schmelztemperatur wird dabei diejenige Temperatur bezeichnet, bei der die betrachteten DNA-Moleküle zu 50% denaturiert sind, also einzelsträngig vorliegen. Die Schmelztemperatur (T_m) eines DNA-Doppelstrangs bis zu einer Größe von etwa 25bp kann annäherungsweise anhand der Zusammensetzung aus GC- und AT-Paaren berechnet werden. Der Beitrag eines GC-Paares zur Schmelztemperatur beträgt etwa 4°C, der eines AT-Paares 2°C.

Vereinfachte Formel zur Berechnung von T_m: $T_m = 2°C \times (A+T) + 4°C \times (G+C) \times 100$.

<table>
<thead>
<tr>
<th>Exon</th>
<th>Bezeichnung</th>
<th>Sequenz (5' -> 3')</th>
<th>Annealing-Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR18</td>
<td>forward</td>
<td>TGG CAC TGC TTT CCA GCA TG</td>
<td>58°C</td>
</tr>
<tr>
<td>EGFR18</td>
<td>reverse</td>
<td>TCC CCA CCA GAC CAT GAG AG</td>
<td>58°C</td>
</tr>
<tr>
<td>EGFR19</td>
<td>forward</td>
<td>GCA GCA TGT GGC ACC ATC TC</td>
<td>58°C</td>
</tr>
<tr>
<td>EGFR19</td>
<td>reverse</td>
<td>GAG GTT CAG AGC CAT GGA CC</td>
<td>58°C</td>
</tr>
<tr>
<td>EGFR20</td>
<td>forward</td>
<td>CTT CTG GCC ACC ATG CGA AG</td>
<td>58°C</td>
</tr>
<tr>
<td>EGFR20</td>
<td>reverse</td>
<td>CCT TAT CTC CCC TCC CGG TA</td>
<td>58°C</td>
</tr>
<tr>
<td>EGFR21</td>
<td>forward</td>
<td>CTT TCT CCC ATG ATG ATC TGT C</td>
<td>56°C</td>
</tr>
<tr>
<td>EGFR21</td>
<td>reverse</td>
<td>GGA AAA TGC TGG CTG ACC TA</td>
<td>56°C</td>
</tr>
<tr>
<td>c-KIT9</td>
<td>forward</td>
<td>TCC TAG AGT AAG CCA GGG CTT</td>
<td>50°C</td>
</tr>
<tr>
<td>c-KIT9</td>
<td>reverse</td>
<td>TGG TAG ACA GAG CCT AAA CAT CC</td>
<td>50°C</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Exon</th>
<th>Bezeichnung</th>
<th>Sequenz (5'→3')</th>
<th>Annealing-Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-KIT11</td>
<td>forward</td>
<td>CCA GAG TGC TCT AAT GAC TG</td>
<td>50°C</td>
</tr>
<tr>
<td>c-KIT11</td>
<td>reverse</td>
<td>AGC CCC TGT TTC ATA CTG AC</td>
<td>50°C</td>
</tr>
<tr>
<td>c-KIT13</td>
<td>forward</td>
<td>GCT TGA CAT CAG TTT GCC AG</td>
<td>50°C</td>
</tr>
<tr>
<td>c-KIT13</td>
<td>reverse</td>
<td>AAA GGC AGC TTG GAC ACG GCT TTA</td>
<td>50°C</td>
</tr>
<tr>
<td>PDGFR12</td>
<td>forward</td>
<td>ATG TGG AGT GAA CGT TGT TGG</td>
<td>55°C</td>
</tr>
<tr>
<td>PDGFR12</td>
<td>reverse</td>
<td>CTA GTT CTT ACT AAG CAC AAG C</td>
<td>55°C</td>
</tr>
<tr>
<td>PDGFR18</td>
<td>forward</td>
<td>CAG GGG TGA TGC TAT TCA GC</td>
<td>61°C</td>
</tr>
<tr>
<td>PDGFR18</td>
<td>reverse</td>
<td>GAT TAA AGT GAA GGA GGA TGA GCC</td>
<td>61°C</td>
</tr>
</tbody>
</table>

Tab. 4: Verwendete PCR-Primer

2.2.3. Nachweis der PCR-Produkte

Material und Methoden

Laborprotokoll: Gelelektrophorese

- es werden 7µl pro PCR-Ansatz mit 1µl Loadingpuffer des Promega 50bp Sets gemischt und mittels Gelelektrophorese (1,6%-iges Agarosegel in 1xTAE-Puffer) analysiert
- die Herstellung des Gels erfolgt, indem man 1,6g Agarosepulver zusammen mit 100ml 1xTAE-Puffer in der Mikrowelle aufkochen lässt
- anschließend werden 3µl Ethidiumbromid zugegeben und das flüssige Gel in ein ‘Gel-Tray’ gegossen und ein Kamm platziert
- nach der Aushärtung wird der Kamm entfernt und das Gel in eine mit 1xTAE-Puffer gefüllte Gelkammer überführt
- die mit Loadingpuffer gemischten PCR-Proben werden in die Geltaschen pipettiert, sowie auch der DNA-Längenmarker (Promega 50bp)
- die Elektrophorese läuft 25 Minuten bei 110Volt

Abb. 9: Beispiele einer PCR-Produkt-Analyse: Mit einem Elektrophoresegel für EGFR, KIT und PDGFR

2.2.4. Ethanolpräzipitation der Nukleinsäuren

Die Ethanolpräzipitation ist die gebräuchlichste Methode zur Aufreinigung und Konzentrierung der DNA. In Gegenwart monovalenter Kationen bildet die DNA in Ethanol einen unlöslichen Niederschlag, der durch Zentrifugation isoliert wird. Die monovalenten Kationen werden durch das Natriumacetat bereitgestellt.

Laborprotokoll: 1. Alkoholfällung

- in ein 1,5ml Reaktionsgefäß werden 17,5µl 3M Natriumacetat (NaAC) pH 5,5 gegeben
- hierzu werden 180µl HPLC-Wasser zupipettiert
- nun wird entsprechend der Stärke der Banden auf dem Agarosegel 2µl und bei schwachen Banden bis zu 5µl des PCR-Produkts hinzu gegeben
- anschließend wird 500µl 2,5x100% Ethanol dazu pipettiert
- das Gesamtvolumen von 700µl wird mittels Vortexen und einmal überkopfthalten gemischt
2.2.5. Sequenzierreaktion

einzusetzen, kann die Sequenzierreaktion auch in einer Eintopfreaktion durchgeführt und das Reaktionsprodukt nach Auftrennen in nur einer Gelspur mit einem auf die vier Farbstoffe adaptierten laseroptischen System detektiert werden.

2.2.6. ´Cycle sequencing´

Die Anwendung von thermostabilen DNA-Polymerasen ermöglicht in der DNA-Sequenzierung, analog zur PCR, die gleichzeitige Amplifikation und Sequenzierung. Dieses Verfahren wird ´cycle sequencing´ genannt. Im Gegensatz zur PCR befindet sich in der Reaktion nur ein Primer, es wird also lediglich linear und nicht exponentiell amplifiziert. In einer Mixtur aus DNA-Matrizen, Primer, thermostabiler Polymerase und einem dNTP/ddNTP-Gemisch wird ein thermisches Profil, bestehend aus Primerdenaturierung, Primer-Hybridisierung und DNA-Synthese etwa 30 mal durchlaufen, quasi eine Sequenzierungsreaktion 30 mal wiederholt. Entsprechend groß ist die Menge der produzierten Sequenzierungsfragmente (98).

Laborprotokoll: ´cycle sequencing´

- die Reaktionsgefäße mit den getrockneten Pellets mit 11µl HPLC-Wasser versetzen
- dazu gibt man zu den entsprechenden Tubes (forward oder reverse) 1µl des zugehörigen Primers
- auf niedriger Stufe vortexen damit sich das Pellet löst
- in die vorbereiteten Stripes 6µl Puffer und 2µl ´Big Dye´ hinzu pipettieren
- aus den gevortexten Reaktionsgefäßen wird nun das Gesamtvolumen von 12µl nach gründlichem Mischen in die Stripes überpipettiert
- die Stripes gibt man in den Thermocycler und startet das cycle sequencing-Programm
- die leeren Reaktionsgefäße werden aufbewahrt

(Big Dye Terminator V 1.1 cycle sequencing Kit)

Danach erfolgt noch einmal eine Aufreinigung der DNA, diese entspricht der 1. Alkoholfällung siehe 2.2.4. Ethanolpräzipitation der Nukleinsäuren.

Laborprotokoll: 2. Alkoholfällung

- in das aufbewahrte Reaktionsgefäß werden 10µl 3M Natriumacetat (NaAC) gegeben
- hierzu werden 70µl HPLC-Wasser zupipettiert
- nun wird der ´cycle sequencing´-Ansatz von 20µl in das Reaktionsgefäß überpipettiert und 250µl 2,5xEthanol dazu pipettiert
Material und Methoden

- das Gesamtvolumen von 350 µl wird mittels Vortexen und einmal überkopfthalten gemischt
- danach bei 14.000 U/min bei 4°C 20 Minuten zentrifugieren und den Überstand absaugen (Vakuumpumpe)
- bei geöffnetem Tube das DNA-Pellet unter dem Abzug trocknen lassen

2.2.7. Detektion der Sequenz

Laborprotokoll: ´sequencing´

- die aufbewahrten Reaktionsgefäße mit den getrockneten DNA-Pellets werden mit 35 µl Formamid versetzt und gemischt
- dann wird das Gesamtvolumen in die Mikrotiterplatten überpipettiert
- die Mikrotiterplatten werden in das Sequenziergerät gestellt, über Nacht läuft nun die Sequenzieranalyse

Verwendetes Sequenziergerät: AB Applied Biosystems Hitachi 3100 Genetic Analyzer
ABI Prism (Serial No.: 1476-016)
2.2.8. Auswertung der Sequenzen

<table>
<thead>
<tr>
<th>Gen</th>
<th>Referenzsequenz-Identifikationsnummern</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR</td>
<td>EGFR NM 005228</td>
</tr>
<tr>
<td>PDGFR</td>
<td>PDGFR NM 006206</td>
</tr>
<tr>
<td>KIT</td>
<td>KIT NM 0002222</td>
</tr>
</tbody>
</table>

Tab. 5: Referenzsequenz-Identifikationsnummern

Die Mutationsanalyse pro Zelllinie wurde an zwei separat angesetzten PCR-Reaktionen durchgeführt. Um eventuell auftretende Artefakte, wie z.B. falsche von der Taq-Polymerase verursachte Mutationen zu identifizieren, wird pro Exon die erste Probe vorwärts, die zweite Probe rückwärts sequenziert.

Als nicht mutiert wird gewertet, wenn:

- beide Exonsequenzen der Sequenzvorlage entsprechen
- nur eine Sequenz analysierbar ist und keine Mutation zeigt
- eine Sequenz mutiert ist, jedoch keine Mutation in der anderen Sequenz auftritt (entspricht Artefakt)

Als mutiert wird gewertet, wenn:

- beide Exonsequenzen an derselben Stelle dieselbe Mutation aufweisen
- als homozygot Mutation wird gewertet, wenn nur ein ’peak’ auf gleicher Höhe wie die umliegenden ’peaks’ vorliegt und klar die ausgetauschte Base zu erkennen ist
- als heterozygot Mutation wird gewertet, wenn zwei gleichhohe ’peaks’ vorliegen, die aber insgesamt nur die halbe Höhe der umliegenden ’peaks’ erreichen
Anhand der Codontabelle (siehe Tabelle 6) wurde dann der Aminosäureaustausch ermittelt.

<table>
<thead>
<tr>
<th>Erste Position des Codons</th>
<th>Zweite Position des Codons</th>
<th>Dritte Position des Codons</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>TTC</td>
<td>Phe [F]</td>
<td>TCC</td>
</tr>
<tr>
<td>TTA</td>
<td>Leu [L]</td>
<td>TCA</td>
</tr>
<tr>
<td>CTT</td>
<td>Leu [L]</td>
<td>CCT</td>
</tr>
<tr>
<td>CTC</td>
<td>Leu [L]</td>
<td>CCC</td>
</tr>
<tr>
<td>CCA</td>
<td>Pro [P]</td>
<td>CAA</td>
</tr>
<tr>
<td>ATT</td>
<td>Ile [I]</td>
<td>ACT</td>
</tr>
<tr>
<td>ATC</td>
<td>Ile [I]</td>
<td>ACC</td>
</tr>
<tr>
<td>ATA</td>
<td>Ile [I]</td>
<td>ACA</td>
</tr>
</tbody>
</table>

Tab. 6: Codontabelle zur Darstellung der zugehörigen Aminosäuren
Als nicht analysierbar gilt, wenn:

- trotz eingeleiteter Maßnahmen kein PCR-Produkt erhalten wird
- keine Sequenz erhalten wird

Die Sequenzierung wird wiederholt, wenn:

- trotz ausreichender PCR-Produktmenge keine Sequenz erhalten wird
- eine Mutation in einem PCR-Produkt auftritt, bei dem zweiten PCR-Produkt keine Sequenz (trotz ausreichender Produktmenge) erhalten wird
3. Ergebnisse

3.1. Mutationsanalysen

3.1.1. Verwendetes Zelllinien-Material

<table>
<thead>
<tr>
<th>Organ</th>
<th>Zelllinien</th>
<th>Datum</th>
<th>DNA ng/ul</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolon</td>
<td>DLD-1</td>
<td>01.02.2006</td>
<td>572,6</td>
<td>1,99</td>
</tr>
<tr>
<td>Kolon</td>
<td>COLO 320DM</td>
<td>26.01.2006</td>
<td>146,6</td>
<td>1,9</td>
</tr>
<tr>
<td>Kolon</td>
<td>HCT-8</td>
<td>14.02.2006</td>
<td>745,5</td>
<td>2,01</td>
</tr>
<tr>
<td>Kolon</td>
<td>COLO 201</td>
<td>27.01.2006</td>
<td>683,8</td>
<td>1,9</td>
</tr>
<tr>
<td>Kolon</td>
<td>SK-CO-1</td>
<td>12.03.2006</td>
<td>384,7</td>
<td>1,99</td>
</tr>
<tr>
<td>Kolon</td>
<td>SW-620</td>
<td>28.06.2006</td>
<td>524,1</td>
<td>2</td>
</tr>
<tr>
<td>Kolon</td>
<td>HAT 29</td>
<td>14.05.2006</td>
<td>692,2</td>
<td>2,03</td>
</tr>
<tr>
<td>Kolon</td>
<td>HCT-15</td>
<td>22.12.2005</td>
<td>380,2</td>
<td>2,06</td>
</tr>
<tr>
<td>Kolon</td>
<td>COLO 205</td>
<td>18.03.2006</td>
<td>33,3</td>
<td>1,92</td>
</tr>
<tr>
<td>Kolon</td>
<td>HCT-116</td>
<td>27.04.2006</td>
<td>400,4</td>
<td>1,99</td>
</tr>
<tr>
<td>Leber</td>
<td>HEP G2</td>
<td>28.04.2006</td>
<td>92,1</td>
<td>1,98</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-3</td>
<td>09.12.2005</td>
<td>418,5</td>
<td>2,05</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-4</td>
<td>20.12.2005</td>
<td>59,5</td>
<td>1,93</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-5</td>
<td>15.12.2005</td>
<td>77,4</td>
<td>2,07</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-8</td>
<td>25.11.2005</td>
<td>140,8</td>
<td>1,99</td>
</tr>
<tr>
<td>Ovar</td>
<td>OC-2</td>
<td>08.12.2005</td>
<td>107,9</td>
<td>2,03</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>KS62</td>
<td>12.01.2006</td>
<td>114,2</td>
<td>2,02</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>HL-60 (TB)</td>
<td>16.02.2006</td>
<td>262</td>
<td>1,98</td>
</tr>
<tr>
<td>Organ</td>
<td>Zelllinien</td>
<td>Datum</td>
<td>DNA ng/ul</td>
<td>ratio</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Haut</td>
<td>SK-MEL-28</td>
<td>15.07.2006</td>
<td>6,4</td>
<td>2,29</td>
</tr>
<tr>
<td>Haut</td>
<td>MEL-HO</td>
<td>09.05.2006</td>
<td>65,9</td>
<td>2,02</td>
</tr>
<tr>
<td>Haut</td>
<td>IGR-1</td>
<td>25.05.2006</td>
<td>52,3</td>
<td>1,82</td>
</tr>
<tr>
<td>Haut</td>
<td>A 431</td>
<td>28.06.2006</td>
<td>47,3</td>
<td>1,98</td>
</tr>
<tr>
<td>Haut</td>
<td>HACAT</td>
<td>25.05.2006</td>
<td>32,9</td>
<td>2,04</td>
</tr>
<tr>
<td>Haut</td>
<td>A375</td>
<td>03.05.2006</td>
<td>64</td>
<td>2,06</td>
</tr>
<tr>
<td>Brust</td>
<td>ZR-75-1</td>
<td>07.06.2006</td>
<td>40,9</td>
<td>2,11</td>
</tr>
<tr>
<td>Brust</td>
<td>HBL-100</td>
<td>02.03.2006</td>
<td>258,2</td>
<td>2,03</td>
</tr>
<tr>
<td>Brust</td>
<td>BT 549</td>
<td>06.05.2006</td>
<td>12,3</td>
<td>2</td>
</tr>
<tr>
<td>Brust</td>
<td>HS-578T</td>
<td>05.04.2006</td>
<td>33,4</td>
<td>2,23</td>
</tr>
<tr>
<td>Brust</td>
<td>MCF-7</td>
<td>05.04.2006</td>
<td>259,9</td>
<td>2,03</td>
</tr>
<tr>
<td>Brust</td>
<td>MDA-MB 435</td>
<td>04.05.2006</td>
<td>178,5</td>
<td>1,99</td>
</tr>
<tr>
<td>Brust</td>
<td>MDA-NEO</td>
<td>26.04.2006</td>
<td>483,2</td>
<td>2,08</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H23</td>
<td>04.03.2006</td>
<td>155,8</td>
<td>1,92</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H226</td>
<td>15.06.2006</td>
<td>10,5</td>
<td>1,79</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H322M</td>
<td>04.03.2006</td>
<td>398,3</td>
<td>2,03</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H522</td>
<td>13.04.2006</td>
<td>48,1</td>
<td>2,01</td>
</tr>
<tr>
<td>Niere</td>
<td>CAKI-2</td>
<td>13.07.2006</td>
<td>39,3</td>
<td>2,05</td>
</tr>
<tr>
<td>Niere</td>
<td>293</td>
<td>06.04.2006</td>
<td>972,6</td>
<td>2,18</td>
</tr>
<tr>
<td>Niere</td>
<td>786-0</td>
<td>11.05.2006</td>
<td>10,4</td>
<td>2,24</td>
</tr>
<tr>
<td>Gehirn</td>
<td>T98G</td>
<td>28.04.2006</td>
<td>49,5</td>
<td>1,94</td>
</tr>
<tr>
<td>Gehirn</td>
<td>SNB-19</td>
<td>28.06.2006</td>
<td>20,7</td>
<td>1,99</td>
</tr>
<tr>
<td>Gehirn</td>
<td>GaMG</td>
<td>28.06.2006</td>
<td>48,7</td>
<td>2,18</td>
</tr>
<tr>
<td>Gehirn</td>
<td>DBTRG-05MG</td>
<td>18.05.2006</td>
<td>106,7</td>
<td>1,99</td>
</tr>
<tr>
<td>Gehirn</td>
<td>U-343MG</td>
<td>12.07.2006</td>
<td>18,4</td>
<td>2,04</td>
</tr>
<tr>
<td>Gehirn</td>
<td>172</td>
<td>21.07.2006</td>
<td>7,5</td>
<td>1,75</td>
</tr>
<tr>
<td>Knochen</td>
<td>SAOS-2</td>
<td>09.07.2006</td>
<td>36,6</td>
<td>1,92</td>
</tr>
<tr>
<td>Harnwege</td>
<td>ECV 304</td>
<td>12.04.2006</td>
<td>138,7</td>
<td>2,06</td>
</tr>
<tr>
<td>Harnwege</td>
<td>J-82</td>
<td>08.06.2006</td>
<td>62,6</td>
<td>2</td>
</tr>
<tr>
<td>Harnwege</td>
<td>SCABER</td>
<td>15.07.2006</td>
<td>34,3</td>
<td>1,94</td>
</tr>
<tr>
<td>Harnwege</td>
<td>5637</td>
<td>03.02.2006</td>
<td>103,6</td>
<td>1,98</td>
</tr>
<tr>
<td>Harnwege</td>
<td>TCC-SUP</td>
<td>27.04.2006</td>
<td>23,1</td>
<td>1,88</td>
</tr>
<tr>
<td>Harnwege</td>
<td>RT-112</td>
<td>26.05.2006</td>
<td>152,8</td>
<td>2,01</td>
</tr>
<tr>
<td>Gebärmutter</td>
<td>HELA</td>
<td>15.02.2006</td>
<td>56,4</td>
<td>2,06</td>
</tr>
</tbody>
</table>
Ergebnisse

<table>
<thead>
<tr>
<th>Organ</th>
<th>Zelllinien</th>
<th>Datum</th>
<th>DNA ng/ul</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schilddrüse</td>
<td>ONCO-DG-I</td>
<td>13.07.2006</td>
<td>18,5</td>
<td>1,97</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>CAL-62</td>
<td>12.04.2006</td>
<td>100,6</td>
<td>2,06</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>ML-1</td>
<td>24.06.2006</td>
<td>40,5</td>
<td>1,97</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>B-CPAP</td>
<td>10.04.2006</td>
<td>243,6</td>
<td>2,02</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>8505C</td>
<td>01.06.2005</td>
<td>71,8</td>
<td>2,01</td>
</tr>
</tbody>
</table>

Tab. 7: DNA-Konzentrationen der Zelllinien-Extrakte

3.1.2. Übersicht der gesamten Zelllinien für EGFR-Untersuchung

Die folgende Tabelle gibt eine Übersicht über die Zelllinien, welche auf EGFR-Mutationen geprüft wurden. Untersucht wurden vier Exons von EGFR, darunter Exon 18, 19, 20 und 21, die allesamt für die Tyrosinkinase-Domäne codieren.

Es wurde neben verschiedenen Polymorphismen auch eine Mutation festgestellt.

<table>
<thead>
<tr>
<th>Organ</th>
<th>Zelllinien</th>
<th>EGFR18</th>
<th>EGFR19</th>
<th>EGFR20</th>
<th>EGFR21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolon</td>
<td>DLD-I</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>COLO 320 DM</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>HCT-8</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>COLO 201</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>SK-CO-1</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>SW-620</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>HT 29</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>HCT-15</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>COLO 205</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>HCT-116</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Leber</td>
<td>HEP G2</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-3</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-4</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-5</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-8</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Ovar</td>
<td>OC-2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>K-562</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>HL-60 (TB)</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Organ</td>
<td>Zelllinien</td>
<td>EGFR18</td>
<td>EGFR19</td>
<td>EGFR20</td>
<td>EGFR21</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Haut</td>
<td>SK-MEL-28</td>
<td>X</td>
<td>P 753 S hom</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Haut</td>
<td>MEL-HO</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Haut</td>
<td>IGR-1</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Haut</td>
<td>A 431</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Haut</td>
<td>HACAT</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Haut</td>
<td>A-375</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>ZR-75-I</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>HBL-100</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>BT 549</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>HS-578T</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>MCF 7</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>MDA-MB-435</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>MDA-NEO</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H23</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H226</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H322M</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H522</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Niere</td>
<td>CAKI-2</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Niere</td>
<td>293</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Niere</td>
<td>786-0</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Gehirn</td>
<td>T98G</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Gehirn</td>
<td>SNB-19</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Gehirn</td>
<td>GaMG</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Gehirn</td>
<td>DBTRG-05MG</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Gehirn</td>
<td>U-343MG</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gehirn</td>
<td>172</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>R 836 het</td>
</tr>
<tr>
<td>Knochen</td>
<td>SAOS-2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Harnwege</td>
<td>ECV 304</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Harnwege</td>
<td>J-82</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Harnwege</td>
<td>SCABER</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Harnwege</td>
<td>5637</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>R 836 het</td>
</tr>
<tr>
<td>Harnwege</td>
<td>TCC-SUP</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Harnwege</td>
<td>RT-II2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gebärmutter</td>
<td>HELA</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
</tbody>
</table>
Ergebnisse

<table>
<thead>
<tr>
<th>Organ</th>
<th>Zelllinien</th>
<th>EGFR18</th>
<th>EGFR19</th>
<th>EGFR20</th>
<th>EGFR21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schilddrüse</td>
<td>ONCO-DG-I</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>CAL-62</td>
<td>X</td>
<td>X</td>
<td>Q 787 hom</td>
<td>X</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>ML-1</td>
<td>X</td>
<td>X</td>
<td>Q 787 het</td>
<td>X</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>B-CPAP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>8505C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

| Mutation | Polymorphismus | X = keine Mutation | hom = homozygot het = hereozygot |

Tab. 8: Übersicht der gesamten Zelllinien für EGFR-Untersuchung

3.1.3. Übersicht der gesamten Zelllinien für PDGFR- und KIT-Untersuchung

Die folgende Tabelle zeigt alle auf KIT- und PDGFR-Mutationen geprüften Zelllinien. Untersucht wurden drei Exons des KIT-Gens, darunter Exon9, 11 und 13 sowie zwei Exons des PDGFR-Gens darunter Exon12 und 18. Dabei codiert KIT Exon9 für die extrazelluläre Domäne, die die Rezeptordimerisierung einleitet. Exon11 des KIT-
Ergebnisse

<table>
<thead>
<tr>
<th>Organ</th>
<th>Zelllinien</th>
<th>PDGFR12</th>
<th>PDGFR18</th>
<th>c-KIT9</th>
<th>c-KIT11</th>
<th>c-KIT13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolon</td>
<td>DLD-1</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>COLO 320 DM</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>HCT-8</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>COLO 201</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>SK-CO-1</td>
<td>P 567 hom</td>
<td>V 824 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>SW-620</td>
<td>P 567 hom</td>
<td>V 824 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>HT 29</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>HCT-15</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>COLO 205</td>
<td>P 567 hom</td>
<td>V 824 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kolon</td>
<td>HCT-116</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Leber</td>
<td>HEP G2</td>
<td>P 567 hom</td>
<td>V 824 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-3</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-4</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-5</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ovar</td>
<td>OVCAR-8</td>
<td>P 567 hom</td>
<td>V 824 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ovar</td>
<td>OC-2</td>
<td>P 567 hom</td>
<td>V 824 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>K-562</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>HL-60 (TB)</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Haut</td>
<td>SK-MEL-28</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Haut</td>
<td>MEL-HO</td>
<td>P 567 hom</td>
<td>V 824 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Haut</td>
<td>IGR-1</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Haut</td>
<td>A 431</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Haut</td>
<td>HACAT</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Haut</td>
<td>A-375</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>ZR-75-I</td>
<td>P 567 hom</td>
<td>V 824 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>HBL-100</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>BT 549</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>HS-578T</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>MCF 7</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>MDA-MB-435</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Brust</td>
<td>MDA-NEO</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Organ</td>
<td>Zelllinien</td>
<td>PDGFR12</td>
<td>PDGFR18</td>
<td>c-KIT9</td>
<td>c-KIT11</td>
<td>c-KIT13</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H23</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H226</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H322M</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lunge</td>
<td>NCI-H522</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Niere</td>
<td>CAKI-2</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Niere</td>
<td>293</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Niere</td>
<td>786-0</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gehirn</td>
<td>T98G</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gehirn</td>
<td>SNB-19</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gehirn</td>
<td>GaMG</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gehirn</td>
<td>DBTRG-05MG</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gehirn</td>
<td>U-343MG</td>
<td>P 567 hom</td>
<td>V 824 hom</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gehirn</td>
<td>172</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Knochen</td>
<td>SAOS-2</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Harnwege</td>
<td>ECV 304</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Harnwege</td>
<td>J-82</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Harnwege</td>
<td>SCABER</td>
<td>P 567 hom</td>
<td>V 824 hom</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Harnwege</td>
<td>5637</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Harnwege</td>
<td>TCC-SUP</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Harnwege</td>
<td>RT-II2</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gebärmutter</td>
<td>HELA</td>
<td>P 567 hom</td>
<td>V 824 hom</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>ONCO-DG-I</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>CAL-62</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>ML-1</td>
<td>P 567 hom</td>
<td>V 824 hom</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>B-CPAP</td>
<td>P 567 hom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Schilddrüse</td>
<td>8505C</td>
<td>P 567 hom</td>
<td>V 824 hom</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Mutation

Polymorphismus | X = keine Mutation | hom = homozygot | het = heterozygot

Tab. 9: Übersicht der gesamten Zelllinien für PDGFR- und KIT-Untersuchung
4. Diskussion

<table>
<thead>
<tr>
<th>Tumortyp</th>
<th>Zelllinie</th>
<th>EGFR-Mutation</th>
<th>Autor</th>
<th>Jahr</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myelom</td>
<td>RPMI8226</td>
<td>Typ T751I</td>
<td>Ikediobi</td>
<td>2006</td>
<td>(102)</td>
</tr>
<tr>
<td>NSCLC</td>
<td>PC-9</td>
<td>del E746-A750</td>
<td>Jackman</td>
<td>2006</td>
<td>(106)</td>
</tr>
<tr>
<td>NSCLC</td>
<td>DFCILU-011</td>
<td>del E747-E749</td>
<td>Jackman</td>
<td>2006</td>
<td>(106)</td>
</tr>
<tr>
<td>NSCLC</td>
<td>NCI-H1650</td>
<td>del E746-A750</td>
<td>Shimamura</td>
<td>2005</td>
<td>(105)</td>
</tr>
<tr>
<td>NSCLC</td>
<td>NCI-H3255</td>
<td>L858R</td>
<td>Shimamura</td>
<td>2005</td>
<td>(105)</td>
</tr>
<tr>
<td>NSCLC</td>
<td>NCI-H1975</td>
<td>L858R + T790M</td>
<td>Shimamura</td>
<td>2005</td>
<td>(105)</td>
</tr>
</tbody>
</table>

Tab. 10: Zelllinien mit EGFR-Mutation

Die EGFR-Mutationen, die in Zelllinien gefunden werden, unterscheiden sich nicht wesentlich von denen in den Primärtumoren. So zählen die Exon19-Deletion mit 53% (18/34), die häufig die Region E746-A750 umfasst (110), sowie die Punktmutation L858R in EGFR21 mit 26% (9/34) zu den häufigsten EGFR-Mutationen in NSCLC-Patienten, wie es auch die Studie von Sequist et al bestätigt: Von 89 untersuchten NSCLC-Patienten weisen insgesamt 34 Patienten (35%) eine

Zudem können in den Zelllinien auch sekundäre Mutationen gefunden werden, die zur Resistenz gegen die Anti-KIT-Therapie führen. Diese Mutationen sind typischerweise erst unter der Therapie entstanden bzw. herausselektiert. So berichten z.B. Tamborini et al von einem Patienten mit fortgeschrittenem GIST, der
Diskussion

unter der Anti-KIT-Therapie eine Sekundärmutation ausbildete. Dabei handelt es sich um eine Substitution im KIT-Gen, Exon14 T670I (112).

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>Primäre Mutation</th>
<th>Sekundäre Mutation</th>
<th>Autor</th>
<th>Jahr</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIST430</td>
<td>Exon11 16-bd del. (560-576)</td>
<td>Exon13 V654A</td>
<td>Fletcher</td>
<td>2005</td>
<td>(113)</td>
</tr>
<tr>
<td>GIST48</td>
<td>Exon11 V560D</td>
<td>Exon17 D820A</td>
<td>Fletcher</td>
<td>2005</td>
<td>(113)</td>
</tr>
<tr>
<td>GIST62</td>
<td>Exon11 K552-558T</td>
<td>Fletcher</td>
<td>Fletcher</td>
<td>2005</td>
<td>(113)</td>
</tr>
<tr>
<td>GIST522</td>
<td>Exon11 4-bp del. (554-558)</td>
<td>Fletcher</td>
<td>Fletcher</td>
<td>2005</td>
<td>(113)</td>
</tr>
<tr>
<td>GIST882</td>
<td>Exon13 K642E</td>
<td>Fletcher</td>
<td>Fletcher</td>
<td>2005</td>
<td>(113)</td>
</tr>
<tr>
<td>GIST-KUL-1</td>
<td>Exon9 dupAY502-503</td>
<td>Fletcher</td>
<td>Fletcher</td>
<td>2005</td>
<td>(113)</td>
</tr>
<tr>
<td>GIST-KUL-2</td>
<td>Exon9 dupAY502-503</td>
<td>Exon13 V654A</td>
<td>Fletcher</td>
<td>2005</td>
<td>(113)</td>
</tr>
<tr>
<td>GIST-T1</td>
<td>Exon11 57-bp del.</td>
<td>Jin</td>
<td>2006</td>
<td>(114)</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 11: Zelllinien mit KIT-Mutation

GIST-Zelllinien mit PDGFR-Mutationen sind nicht verfügbar. Dies mag vor allem daran liegen, dass PDGFR-Mutationen nur in etwa 7,1% (23/322) der GIST vorkommen (56). In Anbetracht der Seltenheit von GIST, nur etwa 800 bis 1.200 Neuerkrankungen pro Jahr in der BRD, also etwa 100 Mal seltener als Brust- oder Prostatakrebs, (115) und der Schwierigkeiten, erfolgreich Zelllinien zu generieren, nur etwa jeder zehnt bis 100ste Versuch ist erfolgreich, erstaunt das Fehlen von PDGFR-mutierten Zelllinien jedoch nicht.

Zusammenfassend zeigt diese Studie, dass Mutationen von EGFR, KIT und PDGFR selten in humanen Tumorzelllinien auftreten. Dies mag in erster Linie daran liegen, dass die Mutationen auch in klinischen Tumoren selten sind und Zelllinien letztendlich aus den klinischen Tumoren generiert worden sind. Wenn Mutationen
Diskussion

in den Zelllinien vorliegen, handelt es sich daher auch um dieselben, die typischerweise auch in den klinischen Tumoren gefunden werden.

In der vorliegenden Arbeit konnte jedoch in 56 von 57 Zelllinien das Vorliegen von EGFR-, KIT- und PDGFR-Mutationen mit Sicherheit ausgeschlossen werden. Anhaltspunkte für eine künstliche Anhäufung von Mutationen ergeben sich somit in dieser Studie nicht.
5. Zusammenfassung

Zelllinienexperimente stellen eine wichtige Basis für (Tumor-)zellbiologische Experimente dar. Allerdings wird häufig vermutet, dass viele Zelllinien sich durch die fortgesetzte Kultivierung in einem „körperfremden“ Medium bereits weit von den ursprünglichen Eigenschaften des Gewebes entfernt haben und daher nicht mehr uneingeschränkt repräsentativ für die Biologie des Ursprungsgewebes sind.

Mutationen bestimmter Gene werden praktisch nur in einigen wenigen klinischen Tumoren gefunden. Dazu zählen EGFR-Mutationen (epidermal growth factor receptor) bei nicht-kleinzeligen Lungenkrebsen, sowie PDGFR-Mutationen (platelet derived growth factor receptor) und KIT-Mutationen (kitten) bei gastrointestinalem Stromatumoren (GIST). Das Vorliegen dieser Mutationen kann somit als ein Maß für die „Ursprünglichkeit“ einer Zelllinie hinsichtlich des Ausgangsgewebes angesehen werden.

Ziel der vorliegenden Arbeit war es daher, Mutationen der Tyrosinkinase-Rezeptoren EGFR, KIT und PDGFR von 57 humanen Zelllinien aus verschiedenen Ursprungsgeweben aufzunehmen. Dazu wurde DNA aus Zelllinien isoliert und mit spezifischen Primersets für die Exons 18, 19, 20, 21 (EGFR), 9, 11, 13 (KIT) und 12, 18 (PDGFR) sequenziert.

Verzeichnisse

II. Abkürzungsverzeichnis

Abb. Abbildung
ADCC antibody dependent cell mediated cytotoxicity
AT Adenin, Thymin
ATP Adenintriphosphat
bp Basenpaare
°C Grad Celsius
c-KIT cellular KIT, zelluläres KIT
CTP Cytosintriphosphat
DNA deoxyribonucleic acid, Desoxyribonukleinsäure
ddNTP Didesoxynukleotidtriphosphat
dNTP Desoxynukleotidtriphosphat
EGF epidermal growth factor
EGFR epidermal growth factor receptor
EMEA European Medicines Agency
EtOH Ethanol
FDA Food and Drug Administration
g Gramm
GC Guanin, Cytosin
GIST gastrointestinaler Stromatumor
GRB2 growth factor receptor bound protein2
GTP Guanintriphosphat
HB-EGF Heparin bindender EGF-ähnlicher Faktor
HER human epidermal growth factor receptor
HPLC high performance liquid chromatography
HRG Heregulin
Hz Hertz
HZ4 Hardy-Zuckerman4
ICC interstitial cajal cells, interstitielle Cajal-Zellen
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAK</td>
<td>Janus-Kinase</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>KIT</td>
<td>kitten, Kätzchen</td>
</tr>
<tr>
<td>K-RAS</td>
<td>Kirsten rat sarcoma</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen activated protein kinase</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesiumchlorid</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid, messenger-Ribonukleinsäure</td>
</tr>
<tr>
<td>MSI</td>
<td>Mikrosatelliteninstabilität</td>
</tr>
<tr>
<td>µm</td>
<td>Mikrometer</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>NaAC</td>
<td>Natriumacetat</td>
</tr>
<tr>
<td>NRG</td>
<td>Neuregulin</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>NSCLC</td>
<td>non small cell lung cancer</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction, Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>PDGF</td>
<td>platelet derived growth factor</td>
</tr>
<tr>
<td>PDGFR</td>
<td>platelet derived growth factor receptor</td>
</tr>
<tr>
<td>pH</td>
<td>Potentia Hydrogenii, negativer dekadischer Logarithmus der Wasserstoffionenkonzentration</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphatidylinositol 3'-Kinase</td>
</tr>
<tr>
<td>PIP3</td>
<td>Phosphatidylinositol-3-Phosphat</td>
</tr>
<tr>
<td>PKB</td>
<td>Proteinkinase B</td>
</tr>
<tr>
<td>pmol</td>
<td>picomolar</td>
</tr>
<tr>
<td>PTEN</td>
<td>phosphatase and tensin homolog</td>
</tr>
<tr>
<td>RAS</td>
<td>rat sarcoma</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>RTK</td>
<td>Rezeptor-Tyrosinkinase</td>
</tr>
<tr>
<td>SCCHN</td>
<td>squamous cell carcinoma of head and neck</td>
</tr>
<tr>
<td></td>
<td>sqamöses Zellkarzinom des Kopfes und Halses</td>
</tr>
<tr>
<td>SCF</td>
<td>stem cell factor</td>
</tr>
<tr>
<td>SCFR</td>
<td>stem cell factor receptor</td>
</tr>
<tr>
<td>sec</td>
<td>Sekunde</td>
</tr>
<tr>
<td>SOS</td>
<td>son of sevenless</td>
</tr>
<tr>
<td>STAT</td>
<td>signal transducer and activator of transcription</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
<td>Thermus aquaticus-Polymerase</td>
</tr>
<tr>
<td>Temp.</td>
<td>Temperatur</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>TK</td>
<td>Tyrosinkinase</td>
</tr>
<tr>
<td>TKR</td>
<td>Tyrosinkinase-Rezeptoren</td>
</tr>
<tr>
<td>T<sub>m</sub></td>
<td>melting temperature</td>
</tr>
<tr>
<td>TNM-Klassifikation</td>
<td>von der International Union Against Cancer (UICC) festgelegte Tumorstadieneinteilung nach der klinisch und histopathologisch bestimmten anatomischen Ausdehnung eines Tumors aufgrund folgender Kriterien: Größe und Ausdehnung des Primärtumors (T), Fehlen bzw. Vorhandensein von regionalen Lymphknotenmetastasen (N) und Fehlen bzw. Vorhandensein von Fernmetastasen (M)</td>
</tr>
<tr>
<td>TTP</td>
<td>Thymintriphosphat</td>
</tr>
<tr>
<td>U/min</td>
<td>Umdrehungen pro Minute</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
</tr>
</tbody>
</table>
III. Abbildungsverzeichnis

Abb. 1: Modell der EGFR-abhängigen Signaltransduktion: Liganden-induzierte Dimerisierung führt über Autophosphorylierung zur Aktivierung des EGFR. Über die Adaptorproteine GRB2 und SOS und das GTP-bindende Protein RAS wird die MAPK-Kaskade aktiviert. Die PI3K-PKB/AKT-Kaskade stellt einen zweiten Hauptsignalweg dar. Durch Aktivierung der PI3K und Bildung von Phosphatidyl-Inositol-3-Phosphat (PIP3) wird PKB/AKT an die Zellmembran rekrutiert und phosphoryliert. PKB/AKT moduliert dann die Aktivität einer Vielzahl von Proteinen (10) ... 4

Abb. 3: Rezeptordimerisation nach Ligandenbindung (26) ... 6

Abb. 4: Grundsätzlicher Aufbau des KIT- und PDGFR-A-Rezeptors 8

Abb. 6: KIT-Rezeptor mit seinen häufigsten Mutationen (26) 12

Abb. 7: Wirkungsweise von Iressa: Hemmung der Proliferation (Zellvermehrung), Hemmung der Angiogenese (Ausbildung von Blutgefäßen, um dem Tumor das Wachstum zu ermöglichen), Hemmung der Metastasierung (Ausbreitung des Tumors in andere Körpergewebe, Organe), Förderung der Apoptose (programmierter (normaler) Zelltod) (82)..18

Abb. 8: Wirkungsweise von Tarceva: Tarceva hemmt die Phosphorylierung der intrazellulären Tyrosinkinasebereiche und kann daher jede Art der hier gezeigten HER1-Aktivierung auslösen (86)..19

Abb. 9: Beispiele einer PCR-Produkt-Analyse: Mit einem Elektrophoresegel für EGFR, KIT und PDGFR...32

Abb. 10: Sequenzausschnitt: SK-Mel-28 EGFR19 forward P753S Codon 753 CCG mutiert zu TCG...43

Abb. 11: Sequenzausschnitt: SK-Mel-28 EGFR19 reverse P753S..........................43
IV. Tabellenverzeichnis

Tab. 1: Verwendete Zelllinien ... 25

Tab. 2: Ansatzreihe für verwendete PCR-Ansätze 29

Tab. 3: PCR-Programme .. 29

Tab. 4: Verwendete PCR-Primer ... 31

Tab. 5: Referenzsequenz-Identifikationsnummern 36

Tab. 6: Codontabelle zur Darstellung der zugehörigen Aminosäuren 37

Tab. 7: DNA-Konzentrationen der Zelllinien-Extrakte 41

Tab. 8: Übersicht der gesamten Zelllinien für EGFR-Untersuchung 43

Tab. 9: Übersicht der gesamten Zelllinien für PDGFR- und KIT-Untersuchung 45

Tab. 10: Zelllinien mit EGFR-Mutation .. 47

Tab. 11: Zelllinien mit KIT-Mutation.. 49
V. Literaturverzeichnis

94. Sleijfer, S., Wiemer, E., Seynaeve, C., and Verweij, J. Improved insight into resistance mechanisms to imatinib in gastrointestinal stromal tumors: a basis

VI. Lebenslauf

Persönliche Daten:
Name: Claudia Dammehayn
Geboren am: 22.05.1982
Geburtsort: Plauen (Vogtland)
Staatsangehörigkeit: deutsch
Familienstand: ledig

Schulausbildung:
1988-1989 Polytechnische Oberschule “Ernst Schneller” Schwerin
1989-1992 Grundschule Neu Wulmstorf
1992-1997 Gymnasium Neu Wulmstorf
1997-2001 Städtisches Gymnasium Bad Segeberg
2001 Schulabschluss: Abitur

Hochschulausbildung:
2001 Beginn des Studiums der Zahnmedizin an der Universität Hamburg
2002 Zahnmedizinisches Vorphysikum
2004 Zahnmedizinisches Physikum
2007 Zahnmedizinisches Staatsexamen

Berufsausübung:
2007-2009 Assistenzahnärztin in Osten (Niedersachsen)
ab August 2009 Niedergelassene Zahnärztin in Achim (Niedersachsen)
VII. Danksagung

An dieser Stelle möchte ich mich bei all denen bedanken, die mir die Anfertigung dieser Arbeit ermöglicht und mich bei ihrer Ausführung unterstützt haben. Ich danke Prof. Dr. Guido Sauter und besonders PD Dr. Ronald Simon, der mich sowohl im praktischen Teil als auch beim Erarbeiten der Dissertation im theoretischen Teil sehr gut unterstützt hat.

Weiterhin möchte ich dem ganzen Laborteam, besonders Gaby und Agatha, für die nette Atmosphäre, die unkomplizierte Zusammenarbeit und Hilfsbereitschaft danken, und dass sie mich im praktischen Teil bei der Erörterung von Problemen tatkräftig unterstützt und mir die Geräte zur Verfügung gestellt haben.

VIII. Eidesstattliche Versicherung

Ich versichere ausdrücklich, dass ich die Arbeit selbstständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Unterschrift: ________________________________

(Claudia Dammenhayn)