Assoziation von Glottisfläche, maximalem inspiratorischem Flow, Luftnot, sowie Stimm- und Lebensqualität bei Patienten mit beidseitiger Stimmlippenlähmung

Dissertation

Zur Erlangung des Grades eines Doktors der Medizin
Der Medizinischen Fakultät der Universität Hamburg

vorgelegt von
Katrin Micka, geb. Hohensee
aus Schwerin

Hamburg 2009
Angenommen von der Medizinischen Fakultät am: 21.04.2010

Veröffentlicht mit Genehmigung der medizinischen Fakultät der Universität Hamburg

Prüfungsausschuss, der Vorsitzende: Prof. Dr. M. Hess

Prüfungsausschuss, 2. Gutachter: Prof. Dr. M. Jaehne

Prüfungsausschuss, 3. Gutachter: PD Dr. H. Kutta
I N H A L T S V E R Z E I C H N I S

2. E I N L E I T U N G ... 7
2.1. Anatomie und Physiologie des Kehlkopfs ... 7
2.1.1. Makroskopie ... 7
2.1.2. Binnenraum des Kehlkopfs ... 7
2.1.3. Kehlkopfskelett ... 8
2.1.4. Bindegewebeapparat ... 10
2.1.5. Muskulatur des Kehlkopfs .. 10
2.1.6. Gefäßversorgung und Innervation ... 11
2.1.7. Aufbau der Stimmlippe ... 12
2.1.8. Stimmlippen bei Phonation .. 13
2.1.9. Stimmlippen bei Atmung und Husten .. 14
2.2. Stimmlippenparenen .. 14
2.2.1. Definition ... 14
2.2.2. Ätiologie der Stimmlippenparese ... 14
2.2.3. Klinik der Stimmlippenparese ... 15
2.2.4. Diagnostik der Stimmlippenparesen .. 19
2.2.5. Therapie der Stimmlippenparesen ... 22
2.3. Stimmlippenparesen und Dyspnoe .. 25
2.4. Stimmlippenparesen und Lebensqualität .. 26
3.1. Probanden .. 28
3.1.1. Patientengruppe .. 28
3.1.2. Kontrollgruppe ... 28
3.2. Einschlusskriterien ... 29
3.3. Ausschlusskriterien .. 29
3.4. Befragung mit generischem Fragebogen ... 29
3.4.1. SF-12 Gesundheitsfragebogen .. 29
3.4.2. Borg Dyspnoe Skala ... 30
3.4.3. Voice Handicap Index (VHI) .. 31
3.5. Endolaryngeale Laservermessung .. 31
3.5.1. Auswertung der videoendoskopischen Befunde .. 32
4. **ERGEBNISSE**

4.1. Vergleich Glottisfläche Kontroll- und Patientengruppe ... 36
4.2. Vergleich PIF Kontroll- und Patientengruppe .. 37
4.3. Bodymassindex (BMI) .. 38
4.4. Vergleich Glottisfläche und PIF der Patientengruppe .. 39
4.5. Vergleich Glottisfläche und Borg Dyspnoe Skala der Patientengruppe 42
4.6. Vergleich PIF mit Borg Dyspnoe Skala der Patientengruppe 44
4.7. Vergleich Glottisfläche und körperliche Summenskala SF-12 der Patientengruppe 46
4.8. Vergleich Glottisfläche und psychische Summenskala SF-12 der Patientengruppe 48
4.9. Vergleich körperliche Summenskala SF-12 und Borg Dyspnoe Skala der Patientengruppe ... 50
4.10. Vergleich psychische Summenskala SF-12 und Borg Dyspnoe Skala der Patientengruppe ... 52
4.11. Vergleich PIF mit körperlichen Summenskala SF-12 der Patientengruppe 54
4.12. Vergleich PIF mit psychischer Summenskala SF-12 der Patientengruppe 56
4.13. Ergebnisse des Voice Handicap Index der Patientengruppe 58

5. **DISKUSSION**

5.1. Diskussion der einzelnen Ergebnisse .. 59
5.1.1. Glottisfläche Patientengruppe versus Kontrollgruppe .. 59
5.1.2. PIF Patientengruppe versus Kontrollgruppe .. 60
5.1.3. Patientengruppe: Vergleich Glottisfläche und PIF ... 61
5.1.4. Patientengruppe: Vergleich Glottisfläche und Borg Dyspnoe Skala 63
5.1.5. Patientengruppe: Vergleich PIF und Borg Dyspnoe Skala .. 64
5.1.6. Patientengruppe: Vergleich Glottisfläche, körperliche Summenskala SF-12 und Voice Handicap Index .. 65
5.1.7. Patientengruppe: Vergleich Glottisfläche, psychische Summenskala SF-12 und Voice Handicap Index ... 67
5.1.8. Patientengruppe: Vergleich Borg Dyspnoe Skala und körperliche Summenskala SF-12 .. 68
1. ARBEITSHYPOTHESE UND FRAGESTELLUNGEN

Die beidseitige Stimmlippenparese tritt häufig als Folge einer bilateralen Recurrensparese auf. Klinisch steht eine erhebliche respiratorische Beeinträchtigung mit inspiratorischen Stridor durch die Lähmung der Stimmlippen in Adduktionsstellung im Vordergrund. Da bisher nur Schätzungen der Glottisfläche im Rahmen der Diagnostik der Glottisstenose möglich waren, fehlen Richtlinien, um eine genaue Assoziation von Glottisfläche und maximalem inspiratorischen Flow vorzunehmen. Das Aufstellen dieser Richtlinien ist Ziel dieser Studie. Es ergaben sich folgende Fragestellungen:

1. Korreliert die jetzt im Submillimeterbereich messbare Glottisfläche mit der subjektiv empfundenen Luftnot der Patienten?

2. Gibt es einen Zusammenhang zwischen der Glottisfläche und der objektiv gemessenen Lungenfunktion der Patienten (Peak Inspiratory Flow [PIF])?

3. Fühlen sich Patienten mit Verminderung des PIF und subjektiv empfundener Luftnot aufgrund der Stimmlippenparese in ihrer Lebensqualität beeinträchtigt?

4. Wie ist der Zusammenhang zwischen der Glottisfläche und der Lebensqualität der Patienten, fühlen sich Patienten mit geringerer Glottisfläche deutlich in ihrer Lebensqualität, das heißt vor allem in der physischen und mentalen Dimension, eingeschränkt?

5. Welchen Einfluss hat die Stimme auf die Lebensqualität von Patienten mit beidseitiger Stimmlippenlähmung?

2. **EINLEITUNG**

2.1. **Anatomie und Physiologie des Kehlkopfs**

2.1.1. Makroskopie

Der Kehlkopf besteht aus einem Kehlkopfskelett, dessen Einzelteile durch mehrere Gelenke miteinander verbunden sind. Durch Muskeln können sie gegeneinander bewegt werden. Seine bindegewebige Struktur dient unter anderem als Grundlage für die Tonerzeugung durch die Stimmlippen.

2.1.2. Binnenraum des Kehlkopfs

Der Binnenraum des Kehlkopfs ist an zwei Stellen durch Schleimhautfalten, den Plicae vestibulares und den Plicae vocales eingeengt. Dadurch ergibt sich eine Gliederung des Hohlraums des Kehlkopfs in 3 Räume:

1. Vestibulum laryngis
2. Glottis
3. Cavitas infraglottica

2.1.3. Kehlkopfskelett

Das Kehlkopfskelett besteht aus:

1. Cartilago thyroidea
2. Cartilago cricoidea
3. Cartilagines arytenoideae
4. Cartilago epiglottica
5. Cartilagines cuneiformes
6. Cartilagines corniculatae
7. Cartilagines triticeae

Bei 1 bis 3 handelt es sich um hyalinen Knorpel, bei 4 bis 7 um elastischen Knorpel.
Abbildung 2: Kehlkopf, Ansicht von unten und hinten (Quelle modifiziert nach Sobotta, 1998)

Abbildung 3: Kehlkopfknorpel und -bänder, Mediansagittalschnitt (Quelle modifiziert nach Sobotta, 1998)
Der Kehlkopf besitzt zwei einachsige Gelenke (Articulatio cricothyroidea und Articulatio cricoarytenoidea), die zur Erweiterung bzw. Verengung der Stimmritze dienen.

2.1.4. Bindegewebeapparat

Man unterscheidet innere und äußere Kehlkopfbänder:

Innere Bänder:
- Ligamentum (Lig.) cricothyroideum
 - Ligg. vocalia
 - Lig. vestibulare

Äußere Bänder:
- Membrana thyrohyoidea
 - Lig. cricopharyngeum

2.1.5. Muskulatur des Kehlkopfs

Die Kehlkopfmuskulatur, welche aus quergestreifter Skelettmuskulatur besteht, wird unterschieden in:

Stellmuskeln – verändern die Weite der Stimmritze
Spannmuskeln – verändern die Spannung des Stimmbandes

(Der Ursprung und der Ansatz jedes Muskels geht aus seinem Namen hervor.)

Die Spann- und Stellmuskeln sind in Tabellen 1 und 2 aufgelistet.

Tabelle 1: Stellmuskeln des Kehlkopfs (modifiziert nach Moll et al. 1997)

<table>
<thead>
<tr>
<th>Musculus (M.) cricoarytenoideus posterior</th>
<th>Nervus (N.) laryngeus inferior</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. cricoarytenoideus lateralis</td>
<td>N. laryngeus inferior</td>
</tr>
<tr>
<td>M. thyroarytenoideus</td>
<td>N. laryngeus inferior</td>
</tr>
<tr>
<td>M. thyroepiglotticus</td>
<td>N. laryngeus inferior</td>
</tr>
<tr>
<td>M. arytenoideus transversus</td>
<td>N. laryngeus inferior</td>
</tr>
<tr>
<td>M. arytenoideus obliquus</td>
<td>N. laryngeus inferior</td>
</tr>
<tr>
<td>M. aryepiglotticus</td>
<td>N. laryngeus inferior</td>
</tr>
</tbody>
</table>
Tabelle 2: Spannmuskeln

<table>
<thead>
<tr>
<th>M. cricothyroideus</th>
<th>N. laryngeus superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. vocalis</td>
<td>N. laryngeus inferior</td>
</tr>
</tbody>
</table>

Abbildung 4: Schema über die Wirkungsrichtung der Kehlkopfmuskeln (Quelle modifiziert nach Schiebler et al. 1997)

2.1.6. Gefäßversorgung und Innervation

Die arterielle Versorgung des Larynx erfolgt durch die Arteria (A.) laryngea superior (aus der A. thyroidea superior) und der A. thyroidea inferior (aus dem Truncus thyreocervicalis). Beide Arterien anastomosieren untereinander. Die Vena (V.) laryngea superior leitet das Blut des kranialen Larynxanteiles in die V. thyroidea superior ab. Das Blut der V. laryngea inferior wird in den Plexus thyroideus impar geleitet.

Der N. laryngeus superior versorgt motorisch den M. cricothyroideus und sensibel die Kehlkopfschleimhaut bis zur Stimmlippe. Der Nervus laryngeus inferior (N. recurrens) versorgt motorisch die innere Kehlkopfmuskulatur und übernimmt die sensible Innervation der Schleimhaut der subglottischen Region und der Trachea.

Abbildung 5: Nervenversorgung des Kehlkopfs (Quelle modifiziert nach Schiebler et al. 1997)

2.1.7. Aufbau der Stimmlippe

Die Stimmlippen haben einen schichtförmigen Aufbau. Die Basis bildet der Musculus Vocalis, darüber liegt die an elastischen Fasern reiche Lamina propria.

2.1.8. Stimmlippen bei Phonation

Die Phonation wird eingeleitet, wenn nach vorangegender Inspiration die Stimmritze verschlossen und der Verschluss danach durch Expiration gesprengt wird. Die Tonerzeugung selbst beginnt, wenn die Stimmlippen in Schwingung geraten. Ändert sich die Spannung der Stimmlippen durch die sich ändernde Innervation der Mm. vocales und Mm. cricothyroidei, ändert sich auch die Schwingungsfrequenz (Tonhöhe). Bei tiefen Frequenzen (geringe Stimmlippen-Spannung und geringe Muskelaktivität) werden Muskel und Schleimhaut gleichermaßen verformt. Zunehmende nervale Aktivierung führt zu geringerer Teilnahme des Muskels an der Wellenbewegung (Elastizitätskonstante wird größer). Bei hohen Frequenzen kommt es zu einer maximalen passiven Spannung von Muskel und Schleimhaut, die nur noch kleine Schwingungsamplituden ohne wellenförmige Deformierung ermöglichen.
2.1.9. Stimmlippen bei Atmung und Husten

Bei ruhiger Atmung ist nur die Pars intercartilaginea geöffnet, bei Forcierung der Atmung öffnen sich auch die vorderen Anteile. Beim Husten erfolgt die Öffnung explosionsartig (Schiebler et al. 1997).

2.2. Stimmlippenparesen

2.2.1. Definition

Als Stimmlippenparese bezeichnet man eine ein- oder beidseitige Fehlstellung und Beweglichkeitseinschränkung der Stimmlippen.

2.2.2. Ätiologie der Stimmlippenparese

Operationen an der Schilddrüse sind für die überwiegende Zahl der beidseitigen Recurrenslähmungen verantwortlich. Über die Häufigkeit finden sich in der Literatur nur wenige Angaben (Thermann et al. 1998; Eckel et al. 2001)

Die nachfolgende Tabelle gibt einen Überblick über die Ätiologie der Stimmlippenparesen.
Tabelle 3: Ätiologie der Stimmlippenparese (Tucker 1980; Biesalski 1994; Wirth 1995; Friedrich 2005)

1. Neurogene Lähmung (infranukleäre Lähmung)	Stimmbandläsion durch Läsion der Nn. laryngei
2. Nukleär ausgelöste und zentrale Lähmung	Stimmbandläsion durch Läsion der Hirnnervenkerngebiete oder des motorischen Kortex und der zentralen Bahnen
3. Arthrogene Lähmung	Ankylose des Aryknorpels z.B. chron. Polyarthritis, Langzeitbeatmung, Strahlentherapie
4. Myogene Lähmung	Stimmbandläsion durch direkte Schädigung der Kehlkopfmuskulatur (Ösophagusoperation, Strumektomie, Neck dissection, scharfes, stumpfes Halstrauma)
5. Entzündliche Ursachen	Virale Infektionen (Influenza-/Parainfluenzaviren, HSV I) Neuroborreliose
6. Sonstige Ursachen	Neurotoxisch Idiopathisch

2.2.3. Klinik der Stimmlippenparese

In Abhängigkeit von der Glottisfläche, dem aerodynamischen Widerstand, der physischen und psychischen Verfassung des Patienten sind unterschiedliche Folgeerscheinungen einer Stimmlippenparese zu erwarten.

Es ist sowohl eine ein- als auch beidseitige Lähmung der Stimmlippen möglich. Eine einseitige Stimmlippenlähmung äußert sich in einer Dysphonie, welche je nach Grad der Lähmung unterschiedlich ausgeprägt ist. Eine beidseitige Stimmlippenlähmung geht mit Dyspnoe einher.

Man unterscheidet je nach Ort der Schädigung zwischen einer zentralen und peripheren Stimmlippenlähmung (Biesalski 1994; Wirth 1995; Friedrich 2005).
a) Periphere Lähmung

Abbildung 6: Stimmlippenpositionen (Quelle modifiziert nach Schiebler et al. 1997)

1. Median- oder Phonationsstellung
2. Paramedianstellung
3. Intermediärstellung
4. Lateral- oder Respirationsstellung
(Sasaki et al. 1980; Sittel et al. 2001)

Parese des N. vagus (N. laryngeus superior und N. laryngeus inferior)

Die verschiedenen Stimmlippenpositionen können nur ein Hinweis auf die unterschiedlichen Läsionsorte darstellen, ein genauer Rückschluss ist dabei aber nicht zulässig (Böhme 2004).

Parese des N. laryngeus superior

Parese des N. laryngeus inferior (N. recurrens)

Einseitige Recurrensparese

Beidseitige Recurrensparese

Die simultane Lähmung beider Nervi recurrentes führt hingegen in erster Linie zu einem inspiratorischen Stridor. Die Stimmfunktion ist weniger gestört, zumindest in der mittleren Sprechstimmlage und bei anstrengungsloser Stimmlautstärke (Jahnke 1996; Probst 2000; Boeninghaus 2001; Sittel et al. 2001).

Die Ausprägung der Symptomatik korreliert häufig nicht mit dem visuell erhobenen Schweregrad der Lähmung. Es bestehen Unterschiede, die nicht nur mit der Glottisfläche, sondern auch mit der Stenoseform zusammenhängen.

b) zentrale Lähmung

2.2.4. Diagnostik der Stimmlippenparese

a) Lupenlaryngoskopie
b) Videostroboskopie
c) Auditive Analyse (Rauigkeit, Behauchtheit, Heiserkeitsgrad (RBH))
d) Bildgebung (konventionell, Computertomographie (CT), Magnetresonanztomographie (MRT))
e) Elektromyographie
f) Duplexsonographie
g) Lungenfunktionsdiagnostik

a) Lupenlaryngoskopie

Bei der Lupenlaryngoskopie handelt es sich um eine indirekte Kehlkopfspiegelung mit einem Stabendoskop (z.B. 90°-Winkeloptik). Dadurch ist eine Beurteilung der Stellung der Stimmlippen möglich.

b) Videostroboskopie
Zur Diagnostik der Stimmlippenparesen bietet sich dieses Verfahren an. Hier können die schnellen Bewegungen der Stimmlippen unter endoskopischer Sicht in ihren Schwingungsphasen dargestellt werden und eine Analyse des Bewegungsablaufes der Stimmlippen kann vorgenommen werden (Schneider 2007).

c) Auditive Bewertung der Stimmqualität

Bei diesem Verfahren wird auditiv vom geschulten Untersucher die Heiserkeit der Dysphoniepatienten bewertet.

d) CT, MRT

Beide Verfahren dienen dem Ausschluss von Raumforderungen im Bereich des Kehlkopfes. Wichtig ist zudem die vollständige Darstellung des X. Hirnnerven von der Schädelbasis bis in das Mediastinum.

e) Elektromyographie

Dieses elektrophysiologische Verfahren überprüft die Integrität der neuromuskulären Einheit durch die Aufzeichnung von Aktionspotentialen der Kehlkopfmuskulatur. Die Interpretation der Befunde dieser dynamischen Untersuchung ist nur im Zusammenhang mit anderen Befunden sinnvoll (Eckel 2001). Zusammenfassend gibt die Elektromyographie Aufschluss über den Grad der Denervierung, den Ort der Nervenschädigung, sowie über die Reinnervation durch die Aufzeichnung von
Reinnervationspotentialen. Eine Prognose hinsichtlich der Ausheilungswahrscheinlichkeit ist möglich.

f) Duplexsonographie

Die Duplexsonographie beruht auf Frequenzverschiebungen durch fließende reflektierende Flüssigkeiten (Doppler-Effekt). Eine Farbkodierung erlaubt es, Richtung und Strömungsstärke sichtbar zu machen. Im Rahmen der Diagnostik dient sie zur Darstellung der den Kehlkopf versorgenden Gefäße (Aa. thyroidea superior et inferior).

g) Lungenfunktion

Die Spirometrie (Fluss-Volumen-Kurve) ist die einfachste und aussagekräftigste Untersuchung, um eine zentrale Atemwegsobstruktion zu diagnostizieren. Über den widerstandserhöhenden Effekt, die im Bereich hoher Stromstärken entstehende Turbulenz und über die Abnahme des Querschnitts verändern Glottisstenosen die Fluss-Volumen-Kurve.
Bei beidseitiger Stimmlippenparese ist die Atemwegsverengung durch eine druckpassive Weitstellung der Stimmlippen bei der Ausatmung und eine Einwärtsbewegung (Medialisierung) durch einen Sogeffekt bei der Einatmung gekennzeichnet. Eine wichtige Rolle spielt außerdem die Kontur der gelähmten Stimmlippen.
Dies entspricht dem Flussprofil einer extremen inspiratorischen Abflachung und einer weitgehenden normalen Exspirationsphase.
Als behandelungspflichtige Stenose gilt eine inspiratorische Resistance (Widerstand) von 2,5 kPa x s/l. Letztlich wird aber die Entscheidung zur operativen Therapie in Abhängigkeit vom Leidensdruck der Patienten gestellt (Eckel 2001).
2.2.5. Therapie der Stimmlippenparesen

Um eine Stimmlippenlähmung zu therapieren, gibt es verschiedene Behandlungsmöglichkeiten. Wichtig ist hierbei die Unterscheidung zwischen einseitiger und beidseitiger Parese (Wendler 1996; Böhme 2004).

a) Einseitige Stimmlippenlähmung

1. Konservative Behandlung
2. Phonochirurgische Stimmlippenchirurgie
3. Phonochirurgische Operationen am Skelett des Kehlkopfes
4. Maßnahmen zur Reinnervation

1. Konservative Behandlung

Im Rahmen der konservativen Therapie steht neben intensiven logopädischen Stimmübungsbehandlungen die Elektrotherapie zur Verfügung. Diese dient der Analgesie, der Muskelstimulation sowie der Diathermie des Kehlkopfes.
Hier wird durch eine perkutane Reizstromtherapie des Kehlkopfs (Exponentialstrom), eine selektive Reizung der gelähmten Muskulatur erreicht und somit versucht, eine Atrophie des Muskels zu verhindern (Wendler 1996).

2. Phonochirurgische Stimmlippenchirurgie

Hier steht eine Verbesserung der Stimmfunktion im Vordergrund. Die gesunde Stimmlippe ermöglicht eine für die Atmung ausreichende Öffnung der Glottis.

Folgende Operationsverfahren stehen zur Verfügung:

Medialisation einer Stimmlippe

Phonochirurgische Operationen am Skelett des Kehlkopfes

Thyreoplastik nach Isshiki

Dieses Operationsverfahren wird angewendet, wenn die gelähmte Stimmlippe weit entfernt von der Mittellinie steht (in Intermediär- bis Abduktionsstellung).

Hier wird am Hals von extern ein kleines Fenster im Schildknorpel angelegt und von dort aus mit einem kleinen Platzhalter die Stimmlippe nach medial verlagert. Dabei wird das Kehlkopfhinnere nicht eröffnet (Sittel et al. 2001).
3. Reinnervation

b) beidseitige Stimmlippenlähmung

Folgende Operationsverfahren stehen zur Verfügung:

a) Tracheotomie

b) Lateralisierung einer oder beider Stimmlippen

c) Resektionsverfahren

1. Rethi-I-Operation
Über einen translaryngealen Zugang durch eine Thyreotomie werden Anteile der paralysierten Glottis reseziert (Kleinsasser 1968).

2. Operation nach Kleinsasser

3. Posteriore Chordektomie

2.3. Stimmlippenparesen und Dyspnoe

Es gibt bisher kein allgemeines Übereinkommen in Bezug auf präzise Kriterien, die den Schweregrad einer Dyspnoe einer beidseitigen Recurrensparese bestimmen.
Mitentscheidend sind die Entstehungsbedingungen der Stenose (akut oder chronisch) und die daraus resultierende Adaptation der Atemmuskulatur an den erhöhten zentralen Atemwegswiderstand und speziell das Ausmaß, in dem eine gewohnte körperliche
Belastung durch das unphysiologische Atemhindernis eingeschränkt ist. Wenn die akute respiratorische Beeinträchtigung durch eine neu aufgetretene beidseitige Recurrenslähmung durch Adaptation der Atemmuskulatur überwunden ist, können die meisten Patienten in Ruhe und bei geringer körperlicher Belastung ausreichend atmen.

2.4. Stimmlippenparesen und Lebensqualität

Lebensqualität setzt sich aus verschiedenen Einzelkomponenten zusammen. Die Definition der Gesundheit durch die WHO von 1948 als Zustand „vollständigen physischen, psychischen und sozialen Wohlbefindens und nicht allein das Fehlen von Krankheit und Gebrechlichkeit“ hat die Lebensqualitätsforschung geprägt. Lebensqualität ist eine qualitative Variable, die nur indirekt über Indikatoren gemessen werden kann. Um die verschiedenen Dimensionen des Faktors Lebensqualität in adäquater Weise zu erfassen, müssen verschiedene Komponenten (Lebensbereiche oder Domainen) des Wohlbefindens und Verhaltens berücksichtigt werden. Diese werden mit Hilfe des SF12 Fragebogens (Health Survey Short Form 12) in dieser Studie ermittelt.

Deshalb möchten wir durch die Einbeziehung des Voice Handicap Index in die Studie, welcher eine subjektive Wahrnehmung der Stimme der Patienten widerspiegelt, einen detaillierten Einblick in die Lebensqualität der Patientengruppe ermöglichen.

Die Darstellung möglicher Zusammenhänge zwischen Lebensqualität, Glottisfläche und dem Schweregrad der Dyspnoe der Patienten ist unter anderem Ziel dieser Studie.
3. MATERIAL UND METHODE

3.1. Probanden

3.1.1. Patientengruppe

Im Zeitraum vom 01.02.2007 bis 23.05.2007 wurden 11 Patienten mit beidseitiger Stimmlippenparese (9 Frauen, 2 Männer) im Alter von 40 bis 82 Jahren in die Studie eingeschlossen. Nach Erhebung der Daten aus der Aktenlage wurden alle Teilnehmer, die die Einschlusskriterien erfüllten, zur Untersuchung eingeladen.

Ätiologie der Stimmlippenlähmung der Patientengruppe

Die Erfassung der Ätiologie erfolgte durch die Vorbefunde aus der Krankenakte, dem ärztlichen Gespräch und durch den durch die Studienteilnehmer ausgefüllten Fragebogen, welcher detailliert auf die Anamnese bezüglich der Stimmlippenerkrankung und Nebenerkrankungen, sowie auf Medikamenteneinnahme einging, um andere Ursachen der Dyspnoe auszuschließen.

Eine Zusammenfassung der Ätiologie der Stimmlippenparese zeigt folgende Tabelle:

Tabelle 4: Ätiologie der Stimmlippenparese

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Anzahl der Patienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strumaresektion</td>
<td>8</td>
</tr>
<tr>
<td>Unklare Ursache</td>
<td>3</td>
</tr>
</tbody>
</table>

3.1.2. Kontrollgruppe

Als Kontrollgruppe dienten 11 Personen ohne pathologischen Befund im Glottisbereich, die sowohl in Geschlecht als auch Alter mit der Versuchsgruppe korrespondierten.
3.2. Einschlusskriterien

- beidseitige Stimmlippenparese

3.3. Ausschlusskriterien

- Minderjährigkeit
- Schwangerschaft
- Allergie gegen Lokalanästhetika (da sie während der Untersuchung verwendet werden)
- Nicht Geschäftsfähigkeit
- übermäßiger Würgereiz
- ansteckende Erkrankungen
- Tracheotomie (keine physiologische Funktion der Stimmlippen)

3.4. Befragung mit generischem Fragebogen

3.4.1. SF-12 Gesundheitsfragebogen

Der SF-36 Gesundheitsfragebogen gehört zu den krankheitsübergreifenden Verfahren, die die subjektive Gesundheit verschiedener Populationen unabhängig von ihrem Gesundheitszustand aus der Sicht der Betroffenen erfassen.

Der SF-36 Fragebogen ist für Personen ab dem 14. Lebensjahr geeignet und besonders wegen seiner Kürze (36 Fragen) und Verständlichkeit beliebt. Er ist ein geeignetes Messinstrument um die Unterschiede zwischen Gesunden und Kranken darzustellen. Später wurde entdeckt, dass 80 bis 85% der reliablen Varianz in den 8 Subskalen durch jeweils 2 Items erreicht wurde, was zur Entwicklung eines gekürzten Fragebogens mit gleichem Ergebnis führte (Maruish 1991).

Der SF-12 stellt eine Kurzform des SF-36 dar, mit einer Reduktion auf 12 Items und der Möglichkeit einer Auswertung bezogen auf die amerikanische Normpopulation (Bullinger et al. 1998). Allerdings liegen, im Gegensatz zum SF-36, bisher wenige Studien vor, die ausschließlich mit dem SF-12 durchgeführt wurden. Der SF-12 besteht somit aus 12 Fragen, bzw. Items, der 8 Subskalen zugeordnet werden.

3.4.2. Borg Dyspnoe Skala

Zur Quantifizierung des subjektiven Dyspnoe-Empfindens des Patienten dient die Borg Dyspnoe Skala. Der Patient schätzt die subjektive Dyspnoe auf einer Skala von 1-10 ein. Punktwerte sind mit subjektiven Empfindungskategorien bezeichnet, von sehr leicht (kaum bemerkbar) bis sehr schwer (nahezu maximal).
3.4.3. Voice Handicap Index (VHI)

3.5. Endolaryngeale Laservermessung

Der Abstand zwischen beiden Laserpunkten beträgt 2,0 mm und ist abhängig von der Dicke des Spiegels. Der Proband wurde während der Untersuchung aufgefordert, maximal einzutauen. Beide Laserpunkte mussten auf der Stimmlippe abgebildet sein.
Die Methode ermöglicht eine Vermessung der Glottisfläche bei Patienten im Submillimeterbereich (Schade et al. 4/2005; Schade et al. 5/2005; Schade et al. 2002; Schade et al. 2004).

Abbildung 7: Seitenansicht des Laservermessungsgerätes, Befestigung hier am starren Endoskop

3.5.1. Auswertung der videoendoskopischen Befunde

3.6. Pneumotachographie

3.6.1. Funktionsprinzip der Pneumotachographie

3.7. Meßgrößen

Für die Darstellung des Zusammenhangs zwischen Glottisfläche, PIF und Lebensqualität bei Patienten mit Stimmlippenlähmung ist das Ermitteln von folgenden Messwerten und deren Gegenüberstellung nötig:

b) Vergleich des PIF von Patienten- und Kontrollgruppe. Hier wird ein größerer PIF bei der gesunden Kontrollgruppe vermutet.

c) Gegenüberstellung der Glottisfläche der Patientengruppe mit dem PIF der Patientengruppe. Hier erwartet man eine positive Korrelation, ein steigender Wert für die Glottisfläche korrespondiert mit größeren PIF Werten.

d) Gegenüberstellung Glottisfläche und Borg Dyspnoe Skala der Patientengruppe. Es wird erwartet, dass eine geringe Glottisfläche eine erhöhte subjektive Luftnot bewirkt.

e) Gegenüberstellung des PIF und Borg Dyspnoe Skala der Patientengruppe. Es wird erwartet, dass ein geringer PIF eine erhöhte subjektive Luftnot beinhaltet.

f) Gegenüberstellung der Glottisfläche mit dem körperlichen und psychischen Summenskala des SF-12 der Patientengruppe. Je größer der Glottisspalt, desto höher ist die Punktzahl im Bereich der körperlichen und psychischen Summenskala, je höher ist die Lebensqualität.

g) Gegenüberstellung des PIF und der körperlichen und psychischen Summenskala des SF-12 der Patientengruppe. Je größer der PIF, desto höher ist die Punktzahl im Bereich der körperlichen und psychischen Summenskala, je höher ist die Lebensqualität.

h) Gegenüberstellung der Borg Dyspnoe Skala und der körperlichen und psychischen Summenskala des SF-12 der Patientengruppe. Je geringer die subjektive Luftnot, desto höher ist die Punktzahl im Bereich der körperlichen und psychischen Summenskala, je höher ist die Lebensqualität.
3.8. Statistische Berechnungen

Die statistische Auswertung der Daten, sowie die Erstellung der Graphiken erfolgte gemäß der Zielsetzung mit Hilfe des Statistikprogrammes SPSS (Version 17.0). Es wurden Korrelationen zwischen der Patienten- und der Kontrollgruppe in Bezug auf PIF Wert, glottale Öffnungsfläche, subjektive Dyspnoe (Borg Dyspnoe Skala) und Lebensqualität dargestellt.
4. **ERGEBNISSE**

4.1. Vergleich Glottisfläche Kontroll- und Patientengruppe

Tabelle 5: Vergleich Glottisfläche Kontroll- und Patientengruppe

<table>
<thead>
<tr>
<th>Paar</th>
<th>Geschlecht</th>
<th>Glottisfläche [mm²] gesund</th>
<th>Glottisfläche [mm²] krank</th>
<th>Glottisfläche krank/ gesund [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paar 1</td>
<td>W</td>
<td>110</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Paar 2</td>
<td>W</td>
<td>100</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Paar 3</td>
<td>W</td>
<td>61</td>
<td>30</td>
<td>49</td>
</tr>
<tr>
<td>Paar 4</td>
<td>M</td>
<td>149</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>Paar 5</td>
<td>W</td>
<td>66</td>
<td>29</td>
<td>44</td>
</tr>
<tr>
<td>Paar 6</td>
<td>W</td>
<td>10</td>
<td>24</td>
<td>228</td>
</tr>
<tr>
<td>Paar 7</td>
<td>W</td>
<td>8</td>
<td>32</td>
<td>362</td>
</tr>
<tr>
<td>Paar 8</td>
<td>W</td>
<td>98</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>Paar 9</td>
<td>W</td>
<td>91</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Paar 10</td>
<td>W</td>
<td>126</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Paar 11</td>
<td>M</td>
<td>177</td>
<td>18</td>
<td>10</td>
</tr>
</tbody>
</table>

Es zeigte sich eine deutlich größere Glottisfläche in der Kontrollgruppe im Vergleich zur Patientengruppe. Paar 6 und 7 können aufgrund von technischen Untersuchungsproblemen nicht gewertet werden (Ermittlung der Werte nicht bei maximaler Inspiration).
4.2. Vergleich PIF Kontroll- und Patientengruppe

Tabelle 6: Vergleich PIF zwischen gesund und krank

<table>
<thead>
<tr>
<th>Paar</th>
<th>Geschlecht</th>
<th>PIF [l/s] gesund</th>
<th>PIF [l/s] krank</th>
<th>PIF krank/gesund [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paar 1</td>
<td>W</td>
<td>6,13</td>
<td>2,51</td>
<td>41</td>
</tr>
<tr>
<td>Paar 2</td>
<td>W</td>
<td>5,84</td>
<td>2,92</td>
<td>50</td>
</tr>
<tr>
<td>Paar 3</td>
<td>W</td>
<td>4,15</td>
<td>1,32</td>
<td>32</td>
</tr>
<tr>
<td>Paar 4</td>
<td>M</td>
<td>4,81</td>
<td>5,33</td>
<td>111</td>
</tr>
<tr>
<td>Paar 5</td>
<td>W</td>
<td>3,26</td>
<td>1,48</td>
<td>45</td>
</tr>
<tr>
<td>Paar 6</td>
<td>W</td>
<td>3,26</td>
<td>1,23</td>
<td>38</td>
</tr>
<tr>
<td>Paar 7</td>
<td>W</td>
<td>2,73</td>
<td>2,07</td>
<td>76</td>
</tr>
<tr>
<td>Paar 8</td>
<td>W</td>
<td>4,29</td>
<td>2,45</td>
<td>57</td>
</tr>
<tr>
<td>Paar 9</td>
<td>W</td>
<td>4,26</td>
<td>3,86</td>
<td>91</td>
</tr>
<tr>
<td>Paar 10</td>
<td>W</td>
<td>3,39</td>
<td>1,05</td>
<td>31</td>
</tr>
<tr>
<td>Paar 11</td>
<td>M</td>
<td>6,99</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Es zeigte sich ein deutlich erhöhter PIF Wert in der Kontrollgruppe im Vergleich zur Patientengruppe. Der Patient des Paares 4 zeigt einen untypischen Kurvenverlauf. Bei Patient 11 konnte die Pneumotachographie aus gesundheitlichen Gründen nicht durchgeführt werden. (Verschlechterung des Allgemeinzustandes bei Nebendiagnose Lymphom.)
4.3. Bodymassindex (BMI)

Tabelle 7: Körpergröße, Gewicht und BMI der Patientengruppe

<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschlecht</th>
<th>Grösse [cm]</th>
<th>Gewicht [kg]</th>
<th>BMI [kg/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>180</td>
<td>75</td>
<td>23,1</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>172</td>
<td>86</td>
<td>29,1</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>179</td>
<td>67</td>
<td>20,9</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>190</td>
<td>94</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>178</td>
<td>97</td>
<td>30,6</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>165</td>
<td>74</td>
<td>27,2</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>172</td>
<td>85</td>
<td>28,7</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>168</td>
<td>77</td>
<td>27,3</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>178</td>
<td>105</td>
<td>33,1</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>170</td>
<td>74</td>
<td>25,6</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>181</td>
<td>89</td>
<td>27,2</td>
</tr>
</tbody>
</table>
4.4. Vergleich Glottisfläche und PIF der Patientengruppe

Tabelle 8: Vergleich Glottisfläche und PIF

<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschlecht</th>
<th>Glottisfläche [mm²]</th>
<th>PIF [l/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>22</td>
<td>2,51</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>17</td>
<td>2,92</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>30</td>
<td>1,32</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>24</td>
<td>5,33</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>29</td>
<td>1,48</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>24</td>
<td>1,23</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>32</td>
<td>2,07</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>32</td>
<td>2,45</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>20</td>
<td>3,86</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>17</td>
<td>1,05</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>18</td>
<td>-</td>
</tr>
</tbody>
</table>
Abbildung 8: Vergleich Glottisfläche, PIF und BMI

Abbildung 9: Vergleich Glottisfläche, PIF und Körpergröße

4.5. Vergleich Glottisfläche und Borg Dyspnoe Skala der Patientengruppe

Tabelle 9: Vergleich Glottisfläche und Borg Dyspnoe Skala

<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschlecht</th>
<th>Glottisfläche [mm²]</th>
<th>Borg Dyspnoe Skala</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>18</td>
<td>1</td>
</tr>
</tbody>
</table>
Patient 3, 7 und 8 litten trotz großer Glottisfläche an großer subjektiver Luftnot. Ein Ist-Soll-Verhältnis des PEF von 41,4; 55,6 und 71% ließe eine zusätzliche obstruktive Ventilationsstörung (z.B. Asthma bronchiale) vermuten. Da das Ist/Soll Verhältnis des PEF der anderen Probanden der Patientengruppe mit 66,6% (Patient 1), 77,8% (Patient 2), 132,1% (Patient 4), 52,4% (Patient 5), 45,4% (Patient 6), 73,9% (Patient 9) und 64,0% (Patient 10) betrug, kann die Vermutung einer zusätzlichen obstruktiven Ventilationsstörung nicht bestätigt werden. Patienten 4, 5 und 10 erlebten mit steigender Glottisfläche eine geringere subjektive Atemnot. R² betrug für einen linearen Zusammenhang von Eingangs- und Ausgangsgröße 0,151. Bei Patient 11 ist trotz geringer Glottisfläche die Luftnot nur gering ausgeprägt. Betrachtet man diesen Probanden als Ausreißer, ergibt sich ein linearer Zusammenhang zwischen Glottisfläche und Borg Dyspnoe Skala von R² 0,474.
Tabelle 10: Vergleich PIF mit Borg Dyspnoe Skala

<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschlecht</th>
<th>PIF [l/s]</th>
<th>Borg Dyspnoe Skala</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>2,51</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>2,92</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>1,32</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>5,33</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>1,48</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>1,23</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>2,07</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>2,45</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>3,86</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>1,05</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
Abbildung 11: Vergleich PIF mit Borg Dyspnoe Skala

Bei Patienten 1, 3, 6, 7, 8, 10 führt ein niedriger PIF auch zu subjektiv schwerer Luftnot. Patient 4 gibt trotz hohem PIF eine mittelgradig schwere Luftnot an. Patienten 2 und 9 erleben eine mittelgradige Luftnot von 5 bei einem durchschnittlichen PIF. Patient 5 gibt trotz geringem PIF nur eine subjektive Luftnot von 1 an. Der niedrige PIF Wert bei wenig Atembeschwerden kann bei dieser Patientin mit der Nebendiagnose Fibromyalgie in Zusammenhang stehen. Unter Ausschluss der Patientin 5 betrug R^2 für einen linearen Zusammenhang von Eingangs- und Ausgangsgröße 0,420, unter Einschluss von Patientin 5 0,044.
4.7. Vergleich Glottisfläche und körperliche Summenskala SF-12 der Patientengruppe

Tabelle 11: Vergleich Glottisfläche und körperliche Summenskala SF-12

<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschlecht</th>
<th>Glottisfläche [mm²]</th>
<th>Körperliche Summenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>22</td>
<td>35,4</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>17</td>
<td>46,7</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>30</td>
<td>40,38</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>24</td>
<td>54,48</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>29</td>
<td>58,17</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>24</td>
<td>42,36</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>32</td>
<td>34,72</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>32</td>
<td>39,92</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>21</td>
<td>41,58</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>17</td>
<td>46,7</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>18</td>
<td>25,44</td>
</tr>
</tbody>
</table>
Abbildung 12: Vergleich Glottisfläche und körperliche Summenskala SF-12

4.8. Vergleich Glottisfläche und psychische Summenskala SF-12 der Patientengruppe

Tabelle 12: Vergleich Glottisfläche und psychische Summenskala SF-12

<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschlecht</th>
<th>Glottisfläche [mm²]</th>
<th>Psychische Summenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>22</td>
<td>48,81</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>17</td>
<td>48,4</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>30</td>
<td>51,77</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>24</td>
<td>48,57</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>29</td>
<td>44,64</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>24</td>
<td>45,92</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>32</td>
<td>50,56</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>32</td>
<td>35,69</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>21</td>
<td>40,1</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>17</td>
<td>33,71</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>18</td>
<td>46,76</td>
</tr>
</tbody>
</table>
Abbildung 13: Vergleich Glottisfläche und psychische Summenskala SF-12

Die Patienten 1, 3, 4, 5, 6, 7, 9, 10. erleben ein hohes psychisches Wohlbefinden bei einer großen Glottisfläche. Patient 8 erreicht auch mit großer Glottisfläche eine geringe Punktzahl in der psychischen Summenskala. Die Anamnese des Patienten erlaubte keine Rückschlüsse über die Ursache der niedrigen Lebensqualität im psychischen Bereich. Die vermutete Störgröße konnte nicht identifiziert werden.

Patienten 2 und 11 erreichen auch bei niedriger Glottisfläche eine hohe Lebensqualität im psychischen Bereich. R² betrug für einen linearen Zusammenhang von Eingangs- und Ausgangsgröße 0,027, unter Ausschluss von Patient 8 0,291.
4.9. Vergleich körperliche Summenskala SF-12 und Borg Dyspnoe Skala der Patientengruppe

Tabelle 13: Vergleich körperliche Summenskala SF-12 und Borg Dyspnoe Skala

<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschlecht</th>
<th>Körpereiche Summenskala</th>
<th>Borg Skala</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>35,4</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>46,7</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>40,38</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>54,48</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>58,17</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>42,36</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>34,72</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>39,92</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>41,58</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>46,7</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>25,44</td>
<td>1</td>
</tr>
</tbody>
</table>
4.10. Vergleich psychische Summenskala SF-12 und Borg Dyspnoe Skala der Patientengruppe

Tabelle 14: Vergleich psychische Summenskala SF-12 und Borg Dyspnoe Skala

<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschlecht</th>
<th>Psychische Summenskala</th>
<th>Borg Dyspnoe Skala</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>48,81</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>48,4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>51,77</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>48,57</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>44,64</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>45,92</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>50,56</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>35,69</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>40,1</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>33,71</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>46,76</td>
<td>1</td>
</tr>
</tbody>
</table>
Bei den Patienten 5, 8, 9, 10, 11 geht schwere Luftnot einher mit einer schlechten psychischen Lebensqualität. Je weniger die Patienten unter Luftnot leiden, desto besser ist das Empfinden der Lebensqualität.

Patienten 1, 3, 6 und 7 erreichen trotz hoher Werte in der Borg Skala eine hohe Summenskala in der psychischen Lebensqualität. Patienten 2 und 4 fühlen sich von ihrer Luftnot durchschnittlich belastet (Borg Skala: 5) und erzielen überdurchschnittlich hohe Werte in der Summenskala. R^2 betrug für einen linearen Zusammenhang von Eingangs- und Ausgangsgröße 0,001.

Abbildung 15: Vergleich psychische Summenskala SF-12 und Borg Dyspnoe Skala
4.11. Vergleich PIF mit körperlichen Summenskala SF-12 der Patientengruppe

Tabelle 15: Vergleich PIF mit körperlicher Summenskala SF-12

<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschlecht</th>
<th>PIF [l/s]</th>
<th>Körperliche Summenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>2,51</td>
<td>35,4</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>2,92</td>
<td>46,7</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>1,32</td>
<td>40,38</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>5,33</td>
<td>54,48</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>1,48</td>
<td>58,17</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>1,23</td>
<td>42,36</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>2,07</td>
<td>34,72</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>2,45</td>
<td>39,92</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>3,86</td>
<td>41,58</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>1,05</td>
<td>46,7</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>-</td>
<td>25,44</td>
</tr>
</tbody>
</table>
Patienten 1, 2, 4, 7, 8, 9 fühlten sich bei höherem PIF körperlich besser. Trotz niedrigem PIF fühlten sich die Patienten 3, 6, 10 wenig eingeschränkt in ihrer körperlichen Lebensqualität und erreichten überdurchschnittliche Ergebnisse. Bei Patientin 5 spricht der niedrige PIF wieder für die Nebendiagnose Fibromyalgie. Eine Berechnung von R^2 ohne die Probandin ergibt einen linearen Zusammenhang von Eingangs- und Ausgangsgröße von 0,256. Bei Einschluss der Patientin wird ein R^2 Wert von 0,045 erreicht.
4.12. Vergleich PIF mit psychischer Summenskala SF-12 der Patientengruppe

Tabelle 16: Vergleich PIF mit psychischer Summenskala SF-12

<table>
<thead>
<tr>
<th>Patient</th>
<th>Geschlecht</th>
<th>PIF [l/s]</th>
<th>Psychische Summenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>2,51</td>
<td>48,81</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>2,92</td>
<td>48,4</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>1,32</td>
<td>51,77</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>5,33</td>
<td>48,57</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>1,48</td>
<td>44,64</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>1,23</td>
<td>45,92</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>2,07</td>
<td>50,56</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>2,45</td>
<td>35,69</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>3,86</td>
<td>40,1</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>1,05</td>
<td>33,71</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>-</td>
<td>46,76</td>
</tr>
</tbody>
</table>
Abbildung 17: Vergleich PIF mit psychischer Summenskala SF-12

Bei Patienten 8, 9, 10 geht ein niedriger PIF auch gleichzeitig mit einer niedrigen Lebensqualität im psychischen Bereich einher. Patient 4 erzielt eine hohe Lebensqualität bei hohem PIF. Die restlichen Patienten erreichen auch mit niedrigem PIF eine hohe Lebensqualität. Ausschließen kann man eine niedrige psychische Lebensqualität im psychischen Bereich bei einem hohen PIF. R^2 betrug für einen linearen Zusammenhang von Eingangs- und Ausgangsgröße 0,019.
4.13. Ergebnisse des Voice Handicap Index der Patientengruppe

Tabelle 17: Ergebnisse des VHI

<table>
<thead>
<tr>
<th>Patient</th>
<th>Gesamt- punktzahl</th>
<th>Funktionell</th>
<th>Physisch</th>
<th>Emotional</th>
<th>Handicap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>25</td>
<td>29</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>10</td>
<td>15</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>78</td>
<td>31</td>
<td>26</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>17</td>
<td>18</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>15</td>
<td>16</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>81</td>
<td>23</td>
<td>34</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>11</td>
<td>18</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
<td>17</td>
<td>14</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>43,5</td>
<td>15,4</td>
<td>17,5</td>
<td>10,6</td>
<td></td>
</tr>
<tr>
<td>Standard-abweichung</td>
<td>27,3</td>
<td>8,9</td>
<td>9,8</td>
<td>9,8</td>
<td></td>
</tr>
</tbody>
</table>

Die Ergebnisse des VHI zeigen, dass 30% unserer Patienten ein Handicap von 3 aufweisen, 40% ein Handicap von 2, 10 % erreichten nach subjektiver Einschätzung ein Handicap von 1 und 20% der Patienten gaben keine Stimmstörung an.
5. Diskussion

5.1. Diskussion der einzelnen Ergebnisse

5.1.1. Glottisfläche Patientengruppe versus Kontrollgruppe

Bis vor wenigen Jahren standen keine klinisch routinemäßig verwertbaren Verfahren zur morphometrischen Untersuchung des Kehlkopfs zur Verfügung (Schade et al. 2002). Eine von Schade 2002 eingeführte Laservermessungsmethode eröffnete neue technische Möglichkeiten, morphometrische Untersuchungen am Kehlkopf millimetergenau durchzuführen (Schade et al. 2002). Sittel wies in einer 2002 erschienenen Publikation dieser Form der klinischen Larynxmorphometrie ein erhebliches Potential sowohl für wissenschaftliche Fragestellungen als auch für die klinische Routine zu (Sittel 2002).
In einer ersten klinischen Studie 2004 mit der neuen Laservermessungstechnik wurden intraoperative Messergebnisse mit den Ergebnissen der präoperativ ermittelten Lasermethode bei 8 Patienten mit unterschiedlichen Erkrankungen der Stimmlippe verglichen. Es zeigten sich Abweichungen der Messungen im Submillimeterbereich (Schade et al. 2004).

Bei 81% der von uns untersuchten Patientenpaare konnte eine signifikant kleinere Glottisfläche diagnostiziert werden. Dieser Unterschied war zu erwarten.

5.1.2. PIF Patientengruppe versus Kontrollgruppe

Neben der Erfassung der Glottisfläche erfolgte auch der Vergleich des maximal inspiratorischen Flows (PIF) zwischen Patienten- und Kontrollgruppe.
Zur Ermittlung des PIF, welcher definiert ist als der maximale Atemstrom bei der Einatmung, wurde die Pneumotachographie verwendet. Das Messverfahren der Pneumotachographie ermöglicht die Aufzeichnung der Strömungsgeschwindigkeit der Exspirationsluft. Es werden dynamische Atemvolumina ermittelt.

In dieser Studie konnte gezeigt werden, dass die Kontrollgruppe höhere Werte für den PIF erreicht. Die von den Patienten erzielten Ergebnisse erreichten Werte zwischen 31,0 und 90,6% im Vergleich zur gesunden Kontrollgruppe. Hinsichtlich der Anwendbarkeit der Pneumotachographie muss noch auf die Motivation des Patienten als Einflussgröße des Verfahrens kritisch hingewiesen werden. Hiermit lässt sich einerseits die unterschiedlich große Spanne der Messwerte des PIF erklären, andererseits werden durch den unterschiedlichen Grad der Stimmlippenlähmung verschiedene PIF Werte erzielt.

Zusammenfassend wurde in der durchgeführten Studie der signifikant verminderte PIF der Patientengruppe nachgewiesen. In Kombination mit der endolaryngealen Laservermessung ist es damit möglich, eine umfassende klinische Einschätzung über die laryngeale Obstruktion des Patienten vorzunehmen.

5.1.3. Patientengruppe: Vergleich Glottisfläche und PIF

Im Rahmen der allgemeinen zentralen Atemwegsstenose wurde auf die Bedeutung des PIF als wichtiger inspiratorischer Parameter hingewiesen. Er wird hier als wichtiges
Unterscheidungsmerkmal zwischen oberer und unterer Atemwegsobstruktion angesehen (Lunn et al. 1995).

Hypothetisch würde man bei einer geringen Glottisfläche wegen des höheren Strömungswiderstands einen niedrigen PIF erwarten. Diese ist bei Patienten mit beidseitiger Stimmlippenparese durch die laryngeale Enge bedingt. Aber die Berechnung des Korrelationskoeffizienten R² der Studie ergab mit 0,035 keinen linearen Zusammenhang beider Parameter.

In einer anderen Studie wurde der PIF neben der FIV1 (Forced Inspiratory Ventilation) als bester Parameter angegeben, um eine laryngeale Obstruktion aufzudecken. Es wird aber auch darauf hingewiesen, dass diese noninvasive Methode nicht für die quantitative Bewertung der Obstruktion geeignet ist (Ejnell et al. 1984; Hoijer et al. 1991).

Der Zusammenhang zwischen inspiratorischen Lungenfunktionsparametern und sinkenden PIF Werten bei beidseitiger Stimmlippenparese wurde in mehreren Studien bewiesen (Cormier et al. 1979; Cormier et al. 2004). Cormier stellte 1979 bei 10 untersuchten Patienten eine Erhöhung der $\frac{V_{ESO}}{V_{ISO}}$ Ratio von Normwert 1 auf 1,65 fest. Es handelt sich hier um eine Messung der maximalen Inspiration und Exspiration bei 50% der Vitalkapazität. Eine Erhöhung des Wertes spricht für eine erhöhte inspiratorische Obstruktion.

Andere Arbeitsgruppen zeigten die Veränderung des PIF im prä- und postoperativen Vergleich (Bogaard et al. 1985; Bogaard et al. 1987; Leitersdorfer et al. 2002). Sie konnten bei Patienten mit bilateraler Parese nach Lateralisierung der Stimmlippe einen postoperativen Anstieg der inspiratorischen Parameter feststellen. Die Lateralisierung der Stimmlippen bewirkt eine größere Glottisöffnungsfläche und dadurch eine Erhöhung des PIF.

Eine Würzburger Forschungsgruppe konnte bei 10 Patienten mit bilateraler Stimmlippenparese 27 Monate postoperativ nach posteriorm transverser Cordotomie noch immer eine Reduktion der inspiratorischen Lungenfunktionsparameter, aber keine Korrelation zwischen Glottisfläche und Lungenfunktion nachweisen (Harnisch et al. 2008). Hier wurde die Glottisfläche mittels Mikrolaryngoskopie bestimmt. Da diese bei ruhiger Atmung und nicht beim forcierten Atmen durchgeführt wird, schließen die Autoren auf eine fehlende Korrelation beider Parameter. Im Rahmen der Studie wurde der Patient zwar angehalten während der Pneumotachographie maximal ein- und
auszuatmen, mangende Compliance könnte hier aber die Ursache für eine fehlende Korrelation von Glottisfläche und PIF sein.

5.1.4. Patientengruppe: Vergleich Glottisfläche und Borg Dyspnoe Skala

In unserer Studie kann bei Ausschluss von vermuteten Störgrößen (Patient 11 mit der Nebendiagnose Lymphom) bei einem R^2 Wert von 0,474 von einem linearen Zusammenhang zwischen Glottisfläche und subjektiv empfundener Luftnot ausgegangen werden. Je geringer die Glottisfläche, desto schwerer wird die Atemnot von den Patienten empfunden.

In der bereits vorgestellten Arbeit von Dursun et al. (2006) wurde an den Patienten zusätzlich eine subjektive Einschätzung der Dyspnoe der Patienten vorgenommen. Dazu wurde eine Dyspnoe Symptom Skala verwendet (Skala 1 bis 5, 1-keine Dyspnoe, 5-schwere Dyspnoe) Es konnte hier postoperativ eine signifikante Verbesserung des PEF verzeichnet werden.

5.1.5. Patientengruppe: Vergleich PIF und Borg Dyspnoe Skala

Aufgrund des schlechten Allgemeinzustandes eines Patienten konnten nur 10 von geplanten 11 Lungenfunktionstests in die Studie eingeschlossen werden.
Unter Ausschluss von vermuteten Störgrößen (Nebendiagnose Fibromyalgie der Patientin 5) kann bei einem Korrelationskoeffizienten R^2 von 0,420 von einem linearen Zusammenhang zwischen dem erreichten PIF und der subjektiv empfundenen Luftnot ausgegangen werden. In dieser Arbeit geht ein niedriger PIF mit einem schlechteren Empfinden der Luftnot einher.

Eine Göttinger Arbeitsgruppe untersuchte 17 Patienten nach bilateral posteror Cordektomie bei beidseitiger Stimmlippenparese. Die Patienten wurden hinsichtlich der Dyspnoe in 4 Gruppen eingeteilt, (Skala 0 bis 3) und prä- und postoperativ untersucht. Es stellte sich postoperativ neben der Verbesserung der Lungenfunktionsparameter (Erhöhung des Peak expiratory flow [PEF] und Senkung des Atemwegswiderstandes [RAW]) auch eine signifikante Verbesserung der Dyspnoe, sowie eine positive Korrelation zwischen RAW und Dyspnoe der Patienten dar (Olthoff et al. 2005).
Unsere Studiengruppe wurde hinsichtlich der Dyspnoe nicht in Gruppen eingeteilt, sondern jeder individuell angegebene Schweregrad der Dyspnoe nach Borg (Borg 1982) auf der Skala 1 bis 10 wurde mit dem PIF des Patienten korreliert. Dadurch ist ein genauerer Vergleich beider Parameter möglich.

5.1.6. Patientengruppe: Vergleich Glottisfläche, körperliche Summenskala SF-12 und Voice Handicap Index

Der SF-12 wurde als Kurzform aus dem SF-36 (Health Survey) entwickelt. Es wird versucht, die unterschiedlichen Aspekte der Gesundheit aus der Sicht der Patienten zu operationalisieren. Er wurde konstruiert, um von Patienten unabhängig vom aktuellen Gesundheitszustand und Alter einen Selbstbericht der gesundheitsbezogenen Lebensqualität zu erhalten (Bullinger et al. 1998) und wurde im klinischen Alltag getestet (Bullinger 1997). Der SF-12 besteht aus 12 Fragen, die wiederum 8 Subskalen zugeordnet werden. Die 8 Subskalen umfassen folgenden Gesundheitskonzepte: 1 körperliche Funktionsfähigkeit, 2 körperliche Rollenfunktion, 3 Schmerz, 4 allgemeine Gesundheitswahrnehmung 5 Vitalität, 6 allgemeine Funktionsfähigkeit, 7 emotionale Rollenfunktion und 8 psychisches Wohlbefinden. Die Subskalen werden zur körperlichen und psychischen Summenskala verrechnet.

Andere Studien, wie zum Beispiel Harnisch et al. (2008), führten bei Patienten mit bilateraler Stimmlippenparese neben Untersuchungen der Glottisfläche, Dyspnoe und Lungenfunktion auch eine objektive Beurteilung der Stimme durch ein Phonetogramm, Göttinger Heiserkeits Diagramm, GRBAS Skala (Heiserkeit; Rauigkeit, Luftnot) sowie durch die Beurteilung der stimmassoziierten Lebensqualität im Sinne eines Voice Handicap Index (VHI) (Nawka et al. 2003) durch.

Das Göttinger Heiserkeits Diagramm ergab signifikante Unterschiede zwischen der Patientengruppe postoperativ und Kontrollgruppen mit gesunden, aphonischen und

5.1.7. Patientengruppe: Vergleich Glottisfläche, psychische Summenskala SF-12 und Voice Handicap Index

Der SF-12 besteht aus 12 Fragen, die wiederum 8 Subskalen zugeordnet werden. Wie auch bei der körperlichen Summenskala werden die 8 Subskalen (1 körperliche Funktionsfähigkeit, 2 körperliche Rollenfunktion, 3 Schmerz, 4 allgemeine Gesundheitswahrnehmung, 5 Vitalität, 6 allgemeine Funktionsfähigkeit, 7 emotionale Rollenfunktion und 8 psychisches Wohlbefinden) für die psychische Summenskala verrechnet. Auch hier wird die subjektive Einschätzung der Stimmlage in die Diskussion der Ergebnisse mit einbezogen.

Unter Ausschluss der vermuteten Störgröße (Patientin 8), lag der Korrelationskoeffizient R² bei 0,291 und zeigt einen linearen Zusammenhang beider Parameter. Patienten mit größerer Glottisfläche empfinden eine bessere psychische Lebensqualität.

Diese Patientin gibt trotz großer Glottisfläche eine niedrige Lebensqualität im psychischen Bereich an. Sie lebt seit 9 Jahren mit ihrer Erkrankung, hat sich bereits 7

Zwei Patienten erreichen trotz geringer Glottisfläche eine hohe Lebensqualität im psychischen Bereich. Beide Patienten geben nur eine mittelgradig beziehungsweise gering belastende Dyspnoe (Grad 5 bzw. 1 Borg Skala) an. Die Stimmqualität ist bei einem der Patienten kaum beeinträchtigt (VHI-leichte Stimmstörung), die andere Patientin ist in logopädischerBehandlung.

5.1.8. Patientengruppe: Vergleich Borg Dyspnoe Skala und körperliche Summenskala SF-12

Die Berechnung des Korrelationskoeffizienten R² ergab unter Ausschluss von Störgrößen (Patient 11) mit 0,602 einen linearen Zusammenhang beider Parameter. Patienten, die ihre Luftnot als schwer empfinden, fühlen sich auch in ihrer körperlichen Lebensqualität eingeschränkt.

Der ausgeschlossene Proband gab ein schlechtes körperliches Befinden trotz geringer Luftnot (Borg Skala 1) an. Hierbei handelt es sich um den Patienten mit maligner Erkrankung. Zwei Patientinnen fühlen sich trotz Luftnot (Borg Skala 6 bzw. 7) körperlich wohl. Eine mögliche Erklärung für das Wohlbefinden einer der Patientinnen könnte die regelmäßige Atemtherapie sein. Die Auswertung des VHI erlaubt bei einer mäßigen

5.1.9. Patientengruppe: Vergleich Borg Dyspnoe Skala und psychische Summenskala SF-12

Die Hypothese, Patienten mit beidseitiger Stimmlippenparese fühlen sich durch zunehmende Dyspnoe psychisch eingeschränkt, trifft bei unserer Untersuchung nicht zu. Es konnte keine Korrelation zwischen der Borg Dyspnoe Skala und der psychischen Summenskala des SF-12 festgestellt werden (R²=0,001).

5.1.10. Patientengruppe: Vergleich PIF und körperliche Summenskala SF-12

In unserer Studie wollten wir außerdem herausfinden, ob ein Zusammenhang zwischen inspiratorischer Lungenfunktion (PIF) und körperlichem Wohlbefinden besteht. Die
Berechnung des Korrelationskoeffizienten konnte bei Ausschluss von vermuteten Störgrößen (Patientin 5), deren Ursache nicht identifiziert werden konnte, einen linearen Zusammenhang zwischen dem PIF und der Lebensqualität im körperlichen Bereich darstellen \((R^2 = 0,256)\). Patienten mit niedrigem PIF fühlten sich auch in ihrer körperlichen Lebensqualität eingeschränkt.

Die Literatur zeigt die Bedeutung dieser Parameter hinsichtlich der Lebensqualität auch im Vergleich mit anderen schwer erkrankten Patientengruppen (Benninger et al. 1998).

5.1.11. Vergleich PIF und psychische Summenskala SF-12

deutlich schlechtere Ergebnisse (25 bis 96) als unsere Patienten (0 bis 81). Deshalb fühlen sich deren Patienten möglicherweise in ihrer Lebensqualität mehr eingeschränkt. Außerdem wurden hier exspiratorische Lungenfunktionsparameter ermittelt. Unsere Studie bezieht sich ausschließlich auf die Inspiration. Möglicherweise spielt mangelnde Compliance beim Untersuchungsvorgang unserer Patienten eine Rolle.

des Wohlbefindens dieser Menschen durch unterschiedlichste Faktoren, wie zum Beispiel die Dysphonie. Dies wiederum zeigt die Notwendigkeit, kurze Lebensqualitätsfragebögen (SF-12, SF-36, VHI) in das Behandlungskonzept von Patienten mit Stimmlippenparese zu integrieren, um gezielter auf ihre Probleme eingehen zu können.
6. ZUSAMMENFASSUNG UND AUSBLICK

Die Vermutung, eine kleine Glottisfläche bedeutet gleichzeitig eine geringe inspiratorische Atemflussrate (PIF) konnte in dieser Arbeit nicht bestätigt werden ($R^2=0,035$). Kritisch muss aber auf die Motivation des Patienten bei Ermittlung des PIF durch die Pneumotachographie (maximale Inspiration) hingewiesen werden. Einen deutlichen Zusammenhang gab es zwischen den Größen Glottisfläche und Luftnot. Unsere Patienten empfanden bei kleinerer Glottisfläche mehr Luftnot ($R^2=0,474$) und fühlten sich außerdem bei kleiner Glottisfläche mehr in ihrer psychischen Lebensqualität eingeschränkt ($R^2=0,291$). Eine subjektive Beurteilung der Stimme, als wichtiger Einflussfaktor für das Wohlbefinden der Patienten, erfolgte durch den Voice Handicap Index (VHI). 30% unserer Patienten gaben eine schwere, 40% eine mittelschwere Stimmstörung an. Der Verlust an Lebensqualität im psychischen Bereich spiegelt den Einfluss der Stimme auf das Wohlbefinden der Patienten wieder. Kein Zusammenhang konnte zwischen Glottisfläche und körperlichem Wohlbefinden gefunden werden ($R^2=0,011$). Die Studie konnte eine Korrelation zwischen Luftnot und PIF nachweisen. Patienten mit beidseitiger Stimmlippenparese haben eine geringe inspiratorische Atemflussrate und empfinden dadurch mehr Luftnot ($R^2=0,42$). Weiterhin hat ein niedriger PIF nur Auswirkungen auf die körperliche ($R^2=0,256$) und nicht auf die psychische Lebensqualität ($R^2=0,019$). Ein geringer PIF lässt eine eingeschränkte
körperliche Belastbarkeit und damit Lebensqualität vermuten. In dieser Arbeit empfanden Patienten mit großer Luftnot außerdem eine schlechte körperliche Lebensqualität (R²=0,602), ein Zusammenhang zwischen psychischer Lebensqualität und Luftnot konnte nicht nachgewiesen werden (R²=0,001).

7. LITERATURVERZEICHNIS

8. ANHANG

8.1. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Arterie</td>
</tr>
<tr>
<td>BMI</td>
<td>Bodymassindex</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlendioxid</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic Obstructive Pulmonary Disease</td>
</tr>
<tr>
<td>CRQ-SAS</td>
<td>Chronic Respiratory Disease Questionnaire Self Administered Standardized</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>FIV1</td>
<td>Forced Inspiratory Volume</td>
</tr>
<tr>
<td>GHD</td>
<td>Göttinger Heiserkeits Diagramm</td>
</tr>
<tr>
<td>GRBAS</td>
<td>Grade, Roughness, Breathines, Asthenia, Strain</td>
</tr>
<tr>
<td>H&N 35</td>
<td>Head and Neck Questionaire</td>
</tr>
<tr>
<td>HSV</td>
<td>Herpes Simplex Virus</td>
</tr>
<tr>
<td>kPa x s/l</td>
<td>Kilopascal je Sekunde pro Liter</td>
</tr>
<tr>
<td>l/s</td>
<td>Liter pro Sekunde</td>
</tr>
<tr>
<td>Lig</td>
<td>Ligamentum</td>
</tr>
<tr>
<td>Ligg</td>
<td>Ligamenti</td>
</tr>
<tr>
<td>M</td>
<td>Musculus</td>
</tr>
<tr>
<td>Mm</td>
<td>Musculi</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>mW</td>
<td>Milliwatt</td>
</tr>
<tr>
<td>N</td>
<td>Nervus</td>
</tr>
<tr>
<td>P</td>
<td>Druck</td>
</tr>
<tr>
<td>PEF</td>
<td>Positive Expiratory Flow</td>
</tr>
<tr>
<td>PIF</td>
<td>Positive Inspiratory Flow</td>
</tr>
<tr>
<td>QLQ-C30</td>
<td>Quality Of Life Questionnaire</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>R</td>
<td>Ramus</td>
</tr>
<tr>
<td>R²</td>
<td>Korrelationskoeffizient</td>
</tr>
<tr>
<td>RAW</td>
<td>Resistance</td>
</tr>
<tr>
<td>RBH</td>
<td>Rauhigkeit, Behauchtheit, Heiserkeit</td>
</tr>
<tr>
<td>SF-12</td>
<td>Selbstaussagefragebogen</td>
</tr>
<tr>
<td>V</td>
<td>Volumen</td>
</tr>
<tr>
<td>V′</td>
<td>Strömung</td>
</tr>
<tr>
<td>V</td>
<td>Vena</td>
</tr>
<tr>
<td>VHI</td>
<td>Voice Handicap Index</td>
</tr>
<tr>
<td>WHO</td>
<td>World-Health-Organisation</td>
</tr>
</tbody>
</table>
8.2. Tabellen- und Abbildungsverzeichnis

Tabellen

Tabelle 1: Stellmuskeln des Kehlkopfs .. 10
Tabelle 2: Spannmuskeln .. 11
Tabelle 3: Ätiologie der Stimmlippenparese ... 15
Tabelle 4: Ätiologie der Stimmlippenparesen .. 28
Tabelle 5: Vergleich Glottisfläche Kontroll- und Patientengruppe ... 36
Tabelle 6: Vergleich PIF zwischen gesund und krank .. 37
Tabelle 7: Körpergröße, Gewicht und BMI der Patientengruppe .. 38
Tabelle 8: Vergleich Glottisfläche und PIF .. 39
Tabelle 9: Vergleich Glottisfläche und Borg Dyspnoe Skala ... 42
Tabelle 10: Vergleich PIF mit Borg Dyspnoe Skala .. 44
Tabelle 11: Vergleich Glottisfläche und körperliche Summenskala SF-12 ... 46
Tabelle 12: Vergleich Glottisfläche und psychische Summenskala SF-12 .. 48
Tabelle 13: Vergleich körperliche Summenskala SF-12 und Borg Dyspnoe Skala 50
Tabelle 14: Vergleich psychische Summenskala SF-12 und Borg Dyspnoe Skala 52
Tabelle 15: Vergleich PIF mit körperlicher Summenskala SF-12 .. 54
Tabelle 16: Vergleich PIF mit psychischer Summenskala SF-12 .. 56
Tabelle 17: Ergebnisse des VHI .. 58
Abbildungen

Abbildung 1: Frontalschnitt durch den Kehlkopf, Ansicht von dorsal .. 8
Abbildung 2: Kehlkopf, Ansicht von unten und hinten ... 9
Abbildung 3: Kehlkopfknope und -bänder, Mediansagittalschnitt .. 9
Abbildung 4: Schema über die Wirkungsrichtung der Kehlkopfmuskeln 11
Abbildung 5: Nervenversorgung des Kehlkopfs .. 12
Abbildung 6: Stimmlippenpositionen ... 16
Abbildung 7: Seitenansicht des Laservermessungsgerätes ... 32
Abbildung 8: Vergleich Glottisfläche, PIF und BMI ... 40
Abbildung 9: Vergleich Glottisfläche, PIF und Körpergröße ... 40
Abbildung 10: Vergleich Glottisfläche und Borg Dyspnoe Skala .. 43
Abbildung 11: Vergleich PIF mit Borg Dyspnoe Skala ... 45
Abbildung 12: Vergleich Glottisfläche und körperliche Summenskala SF-12 47
Abbildung 13: Vergleich Glottisfläche und psychische Summenskala SF-12 49
Abbildung 14: Vergleich körperliche Summenskala SF-12 und Borg Dyspnoe Skala... 51
Abbildung 15: Vergleich psychische Summenskala SF-12 und Borg Dyspnoe Skala........ 53
Abbildung 16: Vergleich PIF mit körperlichen Summenskala SF-12 55
Abbildung 17: Vergleich PIF mit psychischer Summenskala SF-12 .. 57
9. DANKSAGUNG

Ich danke meinem Doktorvater Prof. Dr. M. Hess für die Überlassung des Themas sowie für seine Hilfe bei der Untersuchung der Patienten mit Hilfe der neuen Laservermessungsmethode.

Meinen Betreuern Dr. Katharina Rohlfs und Frank Müller danke ich für die beispiellose und geduldige Betreuung der Arbeit, die praktische Hilfe bei der Untersuchung der Patienten, sowie für die Unterstützung bei der Auswertung der Ergebnisse und die Durchsicht der Niederschrift. Sie standen mir jederzeit mit Rat und Tat zur Seite.

Frau Prof. Dr. M. Bullinger und ihrer Mitarbeiterin Frau A. Brütt gilt mein Dank für die Unterstützung bei der Auswertung der Fragebögen.

Ein besonderer Dank gilt unseren Patienten und Kontrollpersonen für ihre Bereitschaft zur Mitarbeit.

Für Charlotte
10. **CURRICULUM VITAE**

Entfällt aus datenschutztechnischen Gründen.
11. **Eidesstattliche Versicherung:**

Ich versichere ausdrücklich, dass ich die Arbeit selbstständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich übernommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

...