Effects of ambient temperature on tropical hibernation in the lesser hedgehog tenrec, *Echinops telfairi*

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)
des Departments Biologie der Fakultät für Mathematik, Informatik
und Naturwissenschaften an der Universität Hamburg

vorgelegt von

Jens Wein

Hamburg, Juni 2010
Genehmigt vom Department Biologie
der Fakultät für Mathematik, Informatik und Naturwissenschaften
an der Universität Hamburg
auf Antrag von Frau Professor Dr. K. DAUSMANN
Weiterer Gutachter der Dissertation:
Professor Dr. W. J. FOLEY
Tag der Disputation: 13. August 2010

Hamburg, den 29. Juli 2010

Professor Dr. Axel Temming
Leiter des Departments Biologie
May 29 2010

To Whom it May Concern

As a native speaker I hereby confirm that the PhD thesis of Jens Wein, titled "Effects of ambient temperature on tropical hibernation in the lesser hedgehog tenrec, Echinops telfairi" is written in good English grammar and comprehensible style.

Yours sincerely.

William J Foley
Professor and Head, Division of Evolution, Ecology and Genetics
I have gotten a lot of results. I know several thousand things that won't work.

Thomas A. Edison
Contents

1 Introduction .. 7
 1.1 Energy expenditure 7
 1.2 Composition of energy consumption 7
 1.3 Adaptations for energy conservation 9
 1.4 Hypometabolic states ----------------------------- 10
 1.4.1 General properties of daily torpor and hibernation . 10
 1.4.2 Hibernation .. 12
 1.4.3 Torpor ... 12
 1.5 Tropical hibernation 13
 1.6 The lesser hedgehog tenrec 15
 1.7 Summary of hypotheses 18

2 Methods .. 19
 2.1 Animals ... 19
 2.1.1 Animal care and housing 19
 2.2 Experimental procedure 20
 2.3 Measured parameters 23
 2.3.1 Oxygen consumption 23
 2.3.1.1 Construction and setup of the respirometry system 23
 2.3.1.2 Calibration 23
 2.3.2 Body temperature 24
 2.3.3 Ambient temperature 24
 2.4 Data analysis .. 25
 2.4.1 Hibernation bouts, arousals and activity phase 25
 2.4.2 Temperature .. 25
 2.4.3 Oxygen consumption 25
 2.5 Statistics .. 27
3 Results

3.1 Summer 28
 3.1.1 Behavior and body mass 28
 3.1.2 Ambient temperature 28
 3.1.3 Daily torpor pattern 29
 3.1.3.1 Constant ambient temperature condition S_{const} 29
 3.1.3.2 Fluctuating ambient temperature condition S_{fluc} 30
 3.1.4 Body temperature 30
 3.1.4.1 Constant ambient temperature condition S_{const} 30
 3.1.4.2 Fluctuating ambient temperature condition S_{fluc} 31
 3.1.5 Oxygen consumption 33
 3.1.5.1 Normothermy 33
 3.1.5.2 Oxygen consumption during constant ambient temperatures (S_{const}) 33
 3.1.5.3 Oxygen consumption during fluctuating ambient temperatures (S_{fluc}) 34

3.2 Winter 36
 3.2.1 Behavior and body mass 36
 3.2.2 Ambient temperature 36
 3.2.3 Hibernation bouts and arousal patterns 37
 3.2.3.1 Constant ambient temperature conditions W_{const} and W_{low} 37
 3.2.3.2 Fluctuating ambient temperature condition W_{fluc} 38
 3.2.4 Body temperature 41
 3.2.4.1 Constant ambient temperature conditions W_{const} and W_{low} 41
 3.2.4.2 Fluctuating ambient temperature condition W_{fluc} 42
 3.2.5 Oxygen consumption 43
 3.2.5.1 Constant ambient temperature condition W_{const} 43
 3.2.5.2 Fluctuating ambient temperature condition W_{fluc} 44

4 Discussion

4.1 Methodological considerations 51
 4.1.1 Definition of daily torpor and hibernation bouts 51
 4.1.2 Body temperature measurements 52
 4.1.3 Measurement of energy consumption 53

4.2 Daily torpor during summer 54
 4.2.1 Daily torpor pattern 54
 4.2.2 Energy savings 56
 4.2.3 Effects of fluctuating ambient temperature 56

4.3 Hibernation during winter 59
 4.3.1 Hibernation pattern 59
 4.3.2 Energy savings 63
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.3</td>
<td>Effects of fluctuating ambient temperature</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
<td>67</td>
</tr>
<tr>
<td>6</td>
<td>Zusammenfassung</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>72</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Energy expenditure

Of all fundamental principles in biology, energy expenditure is perhaps the single-most important as it is a prerequisite for life. All organisms on this planet have to consume energy in order to stay alive. In contrast to plants and other photoautotrophic organisms that utilize solar energy to fuel their metabolism, animals rely on energy-rich molecules supplied in their food\footnote{An exception to this are animals that lead a symbiotic lifestyle with photo- or chemoautotrophic symbionts, e.g. stony corals and zooxanthellae or beard worms and sulfur-reducing bacteria.}. Since food is limited and high-energy food is even scarcer, food becomes, besides oxygen and water, the most important resource for survival. Precisely because energy plays such a critical role in animal survival, numerous strategies have evolved to maximize energy intake and to minimize energy expenditure. Because the amount of energy that can be assimilated is ultimately limited by the energy supplied by the habitat, it seems more feasible to achieve an economic energy budget by reducing energy consumption.

1.2 Composition of energy consumption

Mammals, like all endotherms, are able to maintain a constant high body temperature (T_b) by endogenous heat production. A constant high T_b makes mammals highly efficient in numerous ways and allows them to conquer habitats inaccessible to ectotherms. It is even believed that the ability to maintain a constant high T_b is a major reason for their evolutionary success (Miller and Harley, 1996). But this ability comes at a high cost, namely high energy requirements. When compared to ectotherms of equal body size and at the same T_b, mammals expend around eight times more energy (Else and Hulbert, 1981). Even at the same T_b and within the thermoneutral zone, mammalian metabolism always requires more energy.
1.2. COMPOSITION OF ENERGY CONSUMPTION

Chapter 1. INTRODUCTION

Mammalian metabolic rate (MR) consists of various processes that account for different, but dynamic proportions of overall energy expenditure. The MR of a fasted adult animal at rest in its thermoneutral zone is called basal metabolic rate (BMR)\(^2\). Basal metabolic rate comprises all processes that are essential to keep the “machinery” of the animal running. This includes vital processes such as respiratory, circulatory and renal activity. But other maintenance processes, e.g. preservation of electro-chemical gradients by ion pumps or RNA and protein biosynthesis add to BMR as well.

Not surprisingly, overall, large animals need more energy than do small animals. But the relation between body mass and BMR is not linear. If MR is calculated per unit body mass, bigger animals need less energy than do smaller ones. This allometric scaling of BMR in the form of \(MR = a \cdot M^b\) \(^3\) was first investigated in detail by Kleiber (1932). He proposed that BMR scaled to body mass with an exponent of 3/4 rather than to the exponent of 2/3 as previously proposed, yielding \(BMR = 3.9 \cdot M^{0.75}\) \(^4\). To date numerous studies have been undertaken that have compared BMR to body mass in various clades of mammals and birds, as well as ectotherms and even single-cell organisms. A comparison across all mammals, including more than 250 species, revealed a body mass exponent of 0.71 rather than the exponent of 0.75 (Heldmaier, 2003; Lovegrove, 2003). The exponent seems to be quite stable when compared across systematic groups, but can vary widely within different mammalian orders and exponents from 0.42 to 1.08 have been observed (Hulbert and Else, 2000).

The reason why BMR does not scale linearly with body mass is still under debate. The MR of smaller mammals is higher when thermoregulatory costs are included. Small animals have a high surface to volume ratio and thus lose more heat to their surroundings than larger animals, especially in cold conditions. But why this also affects BMR, which is measured in the thermoneutral zone and therefore excludes thermoregulatory costs, is less clear. Evolutionary, there is a tendency to increase MR proportionally to body mass \((b=1)\) since larger animals are copies of small animals, but the geometry of body structures means that surface area changes only with the two third power of size \((b=0.67)\), and this produces a fundamental conflict (Hemmingsen, 1960). Surface-volume ratio is certainly of major importance. Absorption of food or respiratory gases and waste elimination are all functions related to surface area and so limit metabolism with increasing size. With this effect alone one would obtain an exponent of 0.67 because volume increases to the power of three while surface area only increases to the power of two with increasing body mass. It has been suggested that other aspects might also play a role, such as changing structural demands on the skeletal system and metabolising organs with increasing body size (McMahon, 1973) or structural and functional properties of vertebrate cardiovascular and respiratory systems (West et al., 1997). Hulbert and Else (2000) argued that species would be selected for decreases in their mass-specific MR or for increases in the areas of the surfaces

\(^2\)Since the requirement of a fasted animal at rest is sometimes impracticable to satisfy, the MR during a stretch of time where the animal is calm is taken and named resting metabolic rate (RMR)

\(^3\)This formula describes overall energy consumption with \(M\) being body mass (g)

\(^4\)When noted per gram body weight, the formula is \(BMR = 3.9 \cdot M^{-0.25}\)
that service metabolism as they increased in body size. Because both evolutionary strategies were followed, the measured exponents represent a compromise between these two tendencies.

Although BMR is a valuable tool for interspecific or phylogenetic comparisons on a larger scale, its relevance for ecological and evolutionary aspects of a species is arguable (Kozlowski and Weiner, 1997; Kozlowski and Konarzewski, 2005). Every activity or process in an animal that goes beyond maintenance of the status quo requires further energy. Locomotion, growth, mating, communication or thermoregulation will increase MR, to name just a few. From this it follows that daily energy expenditure (DEE) will exceed BMR many fold. Captive animals have a DEE of about 2-3 times the BMR and the MR of free-ranging animals in the wild are 3-4 times the BMR (Heldmaier, 2003). Therefore, the forces of natural selection will act on DEE rather than BMR. In order to gain an advantage over competing species, evolution has, and will, favour those species that use energy efficiently.

1.3 Adaptations for energy conservation

In order to save energy, evolution led to many different adaptations in mammals. Since energy saving is most important in cold climates, where the temperature difference between the animal and its surrounding is most pronounced, it is not surprising that the most sophisticated adaptations and mechanisms are found in animals from temperate and arctic regions.

The adaptations employed may affect the animal’s life in numerous ways. Morphological adaptations often reduce thermal conductance between body and environment. Thick insulation layers, such as fur, reduce heat loss in cold weather conditions, although dense fur can also be used for protection from the sun. Many mammals grow denser and longer fur during the winter to maximize the benefit from insulation. Apart from fur, some mammals use a counter-current heat exchanger to reduce heat loss from their extremities. This is done by a rete mirabilis, where highly branched arterioles and venules come in close contact, heating the blood coming from the extremity and cooling the blood flowing to the extremity. By reducing the temperature gradient between the extremities and the surrounding, less heat is lost via the extremities and more heat is retained in the body core.

Besides morphological adaptations, different behavioural strategies have also evolved. Many mammals build nests and dig burrows. These nests and burrows can be well-buffered against the weather and thus provide a safe sanctuary in adverse weather conditions. Social animals often huddle together with mates in cold conditions. This behaviour reduces the effective body surface of each individual and thus less heat is transferred externally.

Food hoarding is another behavioural adaptation. Although food hoarding has no immediate effect on energy consumption, it liberates the animal from the need to search for food. This is beneficial especially in bad weather and cold temperatures, when the animal can rest in a safe burrow instead of exposing itself to the weather. Furthermore, food availability might be strongly reduced during those times and foraging would take longer, if it was successful at all. Thus food
hoarding has a strong effect on ultimate energy consumption (Humphries et al., 2002).

Not only morphological and behavioural adaptations have evolved. The most powerful tool in order to save energy lies within the animal’s physiology. Several mammals are capable of temporarily lowering their metabolism in order to conserve energy. A decrease of about 20% in metabolic activity during the resting phase compared to the active phase has been observed in most mammals. This is normally accompanied by a reduction in T_b of 0.5 to 2°C (Heldmaier et al., 2004). Apart from this moderate metabolic reduction during sleep and rest, some mammals can lower their MR drastically, even to levels that are clearly below BMR. A variety of mammals from small shrews to large bears employ these mechanisms.

1.4 Hypometabolic states

Hypometabolic states are characterised by a reduction of metabolic activity below resting levels. They are normally accompanied by a reduction in T_b and general lethargy. Depending on the duration of metabolic and T_b reduction, two different states can be distinguished, i.e. daily torpor and hibernation. In daily torpor, the reduction of T_b and MR lasts less than 24 h, while it exceeds 24 h in hibernation (Geiser, 2004). Although daily torpor and hibernation are classified as different states based on their duration, the physiological differences might be more quantitative than qualitative (Wilz and Heldmaier, 2000). Daily torpor and hibernation might share the same evolutionary origin and might represent merely two regions of a physiological gradient of hypometabolism and hypothermia (Lovegrove et al., 2001).

1.4.1 General properties of daily torpor and hibernation

Torpor and hibernation are both characterized by alternating normothermic, normometabolic periods and hypothermic, hypometabolic periods. A complete cycle of these can be divided into four distinct phases (Heldmaier, 2003). The first phase is a normothermic, normometabolic period, i.e. a normal activity phase for daily torpor or an arousal for hibernation. This is followed by entry into torpor, during which MR is rapidly reduced and T_b declines. During the subsequent torpor or hibernation bout, MR remains low and T_b follows ambient temperature (T_a) closely. The torpor or hibernation bout is ended by the fourth phase, the re-warming phase, during which MR rises rapidly and T_b increases towards normothermic levels. Arousals include both the normothermic and the re-warming phase, i.e. both energetically costly phases.

Periodic arousals are very costly and account for most of the energy used during hibernation (Boyer and Barnes, 1999). These were formerly considered obligatory for hibernators (Carey et al., 2003; Humphries et al., 2003), but Daussmann et al. (2005) showed in the fat-tailed dwarf lemur *Cheirogaleus medius*, that was not arousals per se, but recurring high T_b which were an obligatory part of hibernation. These lemurs hibernate in the tropics and are exposed to large daily T_a and thus T_b fluctuations. However, if T_b was passively elevated above 30°C regularly,
C. medius remained in hibernation without arousals for many weeks or even months. Although an arousal or periodically high T_b appears to be essential, its function is still unclear.

French (1985) suggested that at the low T_b normally found in hibernators, some metabolism-linked process must go amiss and that recurring, high T_b is needed to re-establish homeostasis. Different physiological demands have been proposed to explain the need for periodic arousals and high T_b. For example, during hibernation, liver and kidney function is diminished or absent, and so metabolic by-products accumulate and have to be eliminated (Deevers and Musacchia, 1980). It might also be impossible for hibernators to sleep at low T_b and an increasing “sleep debt” might force hibernators to warm-up periodically to maintain adequate sleep (Daan et al., 1991; Strijkstra and Daan, 1997; Larkin and Heller, 1996). A third possibility is that periodic high brain temperatures are needed to consolidate memory and preserve neural connections in the central nervous system (Popov and Bocharova, 1992; Popov et al., 1992). Finally, high body temperatures might be needed to temporarily boost the immune system and to counteract bacterial infection because the immune system is depressed during hibernation (Prendergast et al., 2002; Luis and Hudson, 2006).

Physiological regulation of hibernation and daily torpor is also poorly understood. The molecular basis of, and neural signalling in initiating and reversing hibernation are still a mystery (Heldmaier et al., 2004; Carey et al., 2003). Although some progress has been made to elucidate the molecular biology of hibernation, research in this area is still in its infancy (Andrews, 2007).

Energy savings during hibernation and daily torpor are considerable. Metabolic rate during torpor (TMR) can be as little as 1% of RMR (Geiser and Ruf, 1995; Geiser, 2004; Wang, 1978). Even factoring in the costly arousals, daily energy expenditure can be reduced by 90-96% (Heldmaier, 2003). But the physiological basis of this is still under intense debate. The temperature-dependent hypothesis suggests that observed reductions in MR with decreasing T_b are based on Q10-effects of biochemical reactions and that this is why T_b and MR drop concurrently when the animal enters torpor (Snapp and Heller, 1981; Guppy and Withers, 1999; Hammel et al., 1968). Because the former hypothesis can not explain the large MR reductions observed during hibernation, it has been rejected as an exclusive explanation for MR reduction. The temperature-independent hypothesis proposes that MR is actively suppressed or downregulated on entry to torpor and that the fall of T_b is the consequence and not the reason for a reduction of metabolism (Heldmaier and Ruf, 1992; Heldmaier et al., 1993b; Storey, 1997). These two hypotheses are not mutually exclusive and it has been suggested that temperature effects as well as physiological inhibition must be involved in the reduction of MR (Geiser, 1988; Storey and Storey, 1990). Furthermore, MR during hibernation might also be reduced by low thermal conductance of torpid animals (Snyder and Nestler, 1990).

Daily torpor and hibernation can be found in a range of mammals from temperate and arctic (Heldmaier et al., 2004), as well as tropical climates (Kelm and von Helversen, 2007; Dausmann et al., 2004; Lovegrove and Genin, 2008). This indicates that these hypometabolic states are not primarily aimed at cold defence, but instead they seem to be a measure to cope
with temporal or seasonal energy and water shortage (Heldmaier et al., 2004). That states of hypometabolism are found in a variety of mammals and are common in monotremes (Grigg et al., 2004, 1989), marsupials (Geiser, 1994; Geiser and Ruf, 1995) and basal placental mammals (Lovegrove et al., 1999a) also indicates that hypometabolism is likely to be a basic property of mammalian physiology (Heldmaier et al., 2004).

1.4.2 Hibernation

Hibernation is a physiological and behavioural adaptation to survive seasonal periods of energy shortage by a combination of pre-hibernal energy storage and hibernal metabolic depression (Humphries et al., 2003). Preparations for hibernation must be made during the pre-hibernation period, i.e. adequate energy stores have to be accumulated either by hoarding and storing of food or by building up fat stores in the body. It is thus an obligatory behaviour and part of a fixed seasonal timing program (Heldmaier et al., 2004).

Hibernation bouts always last longer than 24 h and normally increase in length towards the middle of the hibernation season. During the start and end of the hibernation season, hibernation bouts are around one to five days in length. Although hibernators are capable of bouts of less than a day in length (Geiser and Kenagy, 1988; Song et al., 1997; French, 1985), it appears that these bouts are different from the daily torpor bouts they resemble. Functionally they can be considered as short hibernation bouts (Geiser, 1988; Geiser and Brigham, 2000; Wilz and Heldmaier, 2000). Hibernation bouts last up to 20 d in the middle of the hibernation season (Heldmaier, 2003) and extremely long hibernation bouts of up to 45 d have been found in the European badger Meles meles (Fowler and Racey, 1988). The length of the hibernation season differs from species to species as well as between habitats (Turbill et al., 2003a; Geiser, 2004; Arnold, 1993). A typical hibernation season might last from a couple of months to over half a year and if held under suitable hibernation conditions in the lab, the pygmy-possum Cercartetus nanus can remain in hibernation for over a year (Geiser, 2007).

As mentioned above, metabolic savings during hibernation can be pronounced. Most of the energy required during the hibernation season is consumed during arousals and the euthermic periods. In the alpine marmot Marmota marmota, these make up over 70% of the overall energy budget (Heldmaier et al., 1993a). Nevertheless, energy expenditure during hibernation is normally reduced to below 15% of what the animal would have expended if it remained normothermic throughout the winter (Wang, 1978).

1.4.3 Torpor

Torpor, or daily torpor, is a controlled reduction of MR and T_b to low levels for periods less than 24 h (Geiser, 2004). It is used by many small mammals in arctic and temperate regions as well as in the tropics. Torpor may be used as a routine energy saving strategy on a daily basis or as an emergency measure when thermoregulatory costs are high during cold periods (Christian and
1.5. TROPICAL HIBERNATION

Although the animals are normally only torpid during the resting phase, the energy savings achieved are nevertheless considerable. Daily energy savings through the use of torpor are normally about 20-50\% because of the high recurring costs of re-warming, even though MR may be reduced by 90\% during a torpor bout (Geiser and Ruf, 1995; Lovegrove et al., 1999b). Although energy savings are not as large as during hibernation, daily torpor allows the maintenance of territorial and social activities. Additionally, no pre-hibernal energy reserves have to be accumulated and thus it may be an attractive alternative to hibernation (Heldmaier et al., 2004).

1.5 Tropical hibernation

Hibernators are best known for their occurrence most frequently in arctic and temperate climates, but they are not limited to these regions and also occur in the tropics. Thus far, only three groups of animals are known to hibernate or use daily torpor in the tropics, various bats (Kelm and von Helversen, 2007; Bartels et al., 1998), cheirogaleid lemurs (Dausmann et al., 2004; Schmid, 2001; Kobbe and Dausmann, 2009) and tenrecs (Scholl, 1974; Lovegrove and Genin, 2008).

The main difference between temperate or arctic hibernation and tropical hibernation is the high, and often strongly fluctuating T_a at which hibernation occurs. Avoidance of very low T_a, normally found in temperate and arctic regions during winter, is thus not a crucial part of tropical hibernation. The “cold” season in the tropics is usually a season with limited precipitation and resulting limited food and water availability. These seasonal food shortages might be one of the main reasons to use hibernation in the tropics. But as the season or the environment gets drier, the water saving potential of hibernation and daily torpor becomes more significant. Although the primary purpose of daily torpor is energy conservation (Boyer and Barnes, 1999), it may also be important for water conservation, especially in arid-zone species (Macmillen, 1965; Cryan and Wolf, 2003). The reductions in MR, T_b, food requirements and activity are accompanied by reductions in evaporative, faecal and urinary water loss, which may lead to substantial water savings (Cooper et al., 2005). Schmid and Speakman (2000) revealed in a field study on the Madagascan grey mouse lemur Microcebus murinus, that this species conserves water during the dry season by entering daily torpor.

Arctic and temperate hibernators encounter very low T_a during the hibernation season and subsequently exhibit very low T_b. Alpine marmots prefer a hibernation T_b of 5-10°C (Ortmann and Heldmaier, 2000) and other rodents prefer 1-6°C (Heldmaier et al., 2004). The arctic ground squirrel Spermophilus parryii can even withstand T_b of -3°C during hibernation (Barnes, 1989). In the tropics on the other hand, T_a is generally above that observed in temperate regions and minimal T_a rarely drops below 5°C (Lovegrove, 2003). Since the reduction in MR seems to be at least in part an effect of lowered T_b (Geiser, 2004), lower T_a during hibernation should lead to larger metabolic reductions. The first example came from a field study on the tropical...
hibernating primate *C. medius*, that saves around 70% of energy during hibernation compared to the active season (Dausmann et al., 2009). Compared to energy saving of temperate and arctic hibernators, that can conserve up to 90% of energy (Heldmaier, 2003), this is notably lower. If reduced energy savings are a common property of tropical hibernation has to be verified for other tropical hibernators as well. It is thus hypothesized that:

Tropical hibernation, i.e. hibernation at high ambient temperatures, is energetically less efficient than hibernation at low ambient temperatures.

The energetic costs of arousals will be less in warmer conditions, but energy consumption during the hibernation bout will increase. It is thus hypothesized that:

At low ambient temperatures tropical hibernators use less energy during hibernation bouts, but require more energy for re-warming during arousals.

Another characteristic that differs between temperate and tropical hibernation is the course and pattern of *Tₐ*, or, to be more specific, the temperature within the hibernaculum. Arctic and temperate hibernators usually retreat into caves or deep burrows in the ground. These burrows are well buffered against fluctuations of cold winter temperatures, meaning that arctic and temperate hibernators are exposed to relatively constant (albeit low) *Tₐ* (Arnold et al., 1991; Buck and Barnes, 1999). Because *Tₐ* resembles *Tₐ* of the hibernaculum closely during hibernation, temperate and arctic animals have a relatively constant *Tₐ* during hibernation bouts (Arnold, 1993).

Tropical hibernators on the other hand often inhabit poorly insulated hibernacula, either because of the lack of better insulated ones or because of the lack of pressure to have a well insulated hibernaculum (Dausmann et al., 2005). Tree hollows, that are often used as a hibernaculum, have an insulating effect and act as a buffer, but much less pronounced than deep underground burrows (Schmid, 1998). Therefore, tropical hibernators often experience considerable fluctuations of both *Tₐ* and *Tₘ*. Daily *Tₘ* fluctuations of up to 20°C have been found in the hibernating lemurs *Microcebus griseorufus* and *C. medius*, these are among the highest found in any hibernating mammal (Kobbe and Dausmann, 2009; Dausmann et al., 2005). These fluctuations may be further exacerbated by heating of the hibernaculum by solar radiation during the day.

Since arousals are very costly and consume most of the energy required over the whole hibernation season (Heldmaier et al., 1993a), any reduction of arousal costs could be beneficial for the animal. Passive heating during arousals, such as using the daily *Tₐ* fluctuations, could reduce energy consumed during arousals. The animal would benefit from reduced arousal costs not only during hibernation, but also during daily torpor. That re-warming can be to a large extent be a passive process, using *Tₐ* fluctuations, has been shown in several species (Schmid et al., 2000; Lovegrove et al., 1999b; Mizilikazi et al., 2002). Although a strongly fluctuating *Tₐ* within the hibernaculum in contrast to a more constant one had no apparent effect on overall MR in the fat-tailed dwarf lemur *C. medius*, arousals were less costly when warming was passively assisted by fluctuating *Tₐ* (Dausmann et al., 2009). It is thus hypothesized that:
Fluctuating ambient temperatures are energetically beneficial compared with constant ambient temperatures, both for hibernation and daily torpor because of reduced rewarming costs.

Fluctuating T_a elicit an extraordinary response in *C. medius* (Dausmann et al., 2005). This primate displays a normal hibernation pattern in well insulated tree hollows, where T_a fluctuations are small, and where hibernation bouts are interrupted by periodic arousals. However, if the lemurs choose poorly insulated tree hollows, where T_a fluctuates markedly and exceeds $30^\circ C$ regularly, they remain torpid for long periods without any arousals. To date *C. medius* is the only mammal showing such a response. Whether other tropical hibernators are capable of a similar behaviour is as yet unknown. On the other hand, daily fluctuations in T_a could lead to more frequent arousals since an arousal might be triggered by rising T_a. This has been observed in the mouse lemur *M. murinus*, where torpor is actively terminated when ambient temperature exceeds a threshold temperature (Schmid, 1998). This would not only change the pattern of hibernation, i.e. arousal frequency and hibernation bout length, but also increase the overall energetic costs. It is thus hypothesized that:

\[\text{Arousal frequency and hibernation bout length are affected by fluctuating ambient temperatures.} \]

To answer the above established hypotheses, the lesser Madagascan hedgehog-tenrec was used as a model organism for tropical hibernation because it is the only tropical hibernator, that hibernates with certainty under laboratory conditions and it is easy to keep in captivity.

1.6 The lesser hedgehog tenrec

The lesser Madagascan hedgehog tenrec (*Echinops telfairi*; Martin, 1838) is a small insectivorous mammal endemic to Madagascar. Superficially it resembles a European hedgehog, although with a length of 14-18 cm and an average weight of 140g it is considerably smaller (fig. 1.6.1). Its belly is sparsely haired and its back is armoured with rigid spines, ranging in colour from pale grey to nearly black. If threatened, it can curl into a ball with head and legs tucked inside, only exposing its spiny back.

E. telfairi occurs in the south-western parts of Madagascar (fig. 1.6.2), where it inhabits deciduous, gallery and xerophytic spiny forests (Garbutt, 2007). Despite its appearance, *Echinops* is a good climber and leads a semi-arboreal life. It feeds mainly on insects and fruits in the branches of trees and shrubs as well as on the ground (Gould and Eisenberg, 1966). The lesser hedgehog tenrec is a nocturnal or crepuscular animal and rests during the day in tree hollows. Although reputed to be solitary it can also be found in groups of two or three when resting during the day. During its nightly excursions it may be able to orientate itself by echolocation.
using tongue clicks (Gould, 1965). Male hedgehog tenrecs are capable of secreting a white liquid used for marking their territory from both nasal and eye-glands (Nicol, 2001).

The lesser hedgehog tenrec belongs to the family Tenrecidae, which consists of 32 species separated in four subfamilies (see table 1.1 for a full account of the Tenrecidae). The tenrecs had traditionally been placed with shrews, moles, solenodons and golden moles in the insectivoran suborder Soricomorpha (MacPhee and Novacek, 1993), but newer molecular data dispute this classification. Nowadays, the tenrecs and the closely-related golden moles (Chrysochloridae) are placed in the order Afrosoricida (Stanhope et al., 1998a,b). The Afrosoricida do not belong to the Insectivora, but instead are part of the Afrotheria (Nikaido et al., 2003), which is a clade of endemic African mammals that include a variety of diverse mammals, such as elephants, hyraxes, manatees, aardvarks and elephant shrews. *E. telfairi* is thus more closely related to the elephant than to the European hedgehog and is a stunning example of convergent evolution.
The Tenrecidae are a very old mammalian group, that possess basal traits such as a cloaca or internal testicles. The oldest tenrecoid fossils date back to the Miocene (24 million years ago) and were found in sediments from Kenya (Nicoll, 2001). Tenrecs colonized Madagascar after its separation from the African mainland, which occurred 120 to 165 million years ago (Rabinowitz et al., 1983). How they dispersed to Madagascar is unclear. McCall (1997) proposed a land bridge across the Mozambique channel, but newer research indicates that tenrecs and most other Madagascan mammals likely drifted on ocean currents on vegetation rafts to Madagascar (Ali and Huber, 2010). Also unresolved is the question of whether there have been multiple colonization events and whether the Tenrecidae are monophyletic or paraphyletic. Asher (1999) favours a multiple colonization scenario with a paraphyletic origin of the Tenrecidae, whereas the molecular phylogenetic analyses from Douady et al. (2002) provide support for the monophyly of the Tenrecidae and Malagasy tenrecs.

Table 1.1: Systematic classification of the Tenrecidae

Family Tenrecidae - Tenrecs
- Subfamily Tenrecinae - Spiny tenrecs:
 - greater hedgehog tenrec (*Setifer setosus*)
 - lesser hedgehog tenrec (*Echinops telfairi*)
 - common tenrec (*Tenrec ecaudatus*)
 - lowland streaked tenrec (*Hemicentetes semispinosus*)
 - highland streaked tenrec (*Hemicentetes nigriceps*)
- Subfamily Geogalinae - Large-eared tenrecs:
 - large-eared tenrec (*Geogale aurita*)
- Subfamily Oryzorictinae - Furred tenrecs:
 - aquatic tenrec (*Limnogale mergulus*)
 - rice tenrecs (*Oryzorictes*, 2 species)
 - shrew tenrecs (*Microgale*, 20 species)
- Subfamily Potamogalinae - Otter shrews:
 - otter shrews (*Micropotamogale*, 2 species)
 - giant otter shrew (*Potamogale velox*)

E. telfairi is considered a proto-endotherm, as it has the lowest normothermic T_b and displays the most primitive form of adaptive heterothermy of all placental mammals (Lovegrove and Genin, 2008). It uses daily torpor obligatory in the summer, i.e. it lacks periods of normothermy lasting more than 24 h and enters torpor every day (Scholl, 1974). Nevertheless, it can produce endogenous heat and females can maintain a high normothermic T_b for up to one month during the breeding season (Poppitt et al., 1994). In winter the lesser hedgehog tenrec hibernates and hibernation bouts last on average 3 to 4 d, with the longest observed hibernation bout lasting

5An exception to this is the naked-mole rat _Heterocephalus glaber_, that is unable of effective thermoregulation and is considered an “poikilothermic” mammal (Woodley and Buffenstein, 2002)
1.7 Summary of hypotheses

1. Tropical hibernation, i.e. hibernation at high ambient temperatures, is energetically less efficient than hibernation at low ambient temperatures.

2. At low ambient temperatures tropical hibernators use less energy during hibernation bouts, but require more energy for re-warming during arousals.

3. Fluctuating ambient temperatures are energetically beneficial compared with constant ambient temperatures, both for hibernation and daily torpor because of reduced re-warming costs.

4. Arousal frequency and hibernation bout length are affected by fluctuating ambient temperatures.
Chapter 2

Methods

2.1 Animals

Twenty-seven lesser Madagascan hedgehog-tenrecs (*Echinops telfairi*) were used for the experiments. The animals were laboratory bred and accustomed to human contact. All animals were earmarked or marked with an injectable micro transponder (ID-100, Trovan ltd., Hessle, UK). Age, sex and mass of the animals are summarized in table 2.1.

<table>
<thead>
<tr>
<th>sex</th>
<th>number</th>
<th>age (years)</th>
<th>mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MD</td>
<td>R</td>
</tr>
<tr>
<td>male</td>
<td>9</td>
<td>4</td>
<td>4 - 5</td>
</tr>
<tr>
<td>female</td>
<td>18</td>
<td>4</td>
<td>3 - 5</td>
</tr>
<tr>
<td>total</td>
<td>27</td>
<td>4</td>
<td>3 - 5</td>
</tr>
</tbody>
</table>

Table 2.1: Age, sex and mass of the animals

MD = median, R = range, ME = mean average

2.1.1 Animal care and housing

The animals were kept in an 8 m² climate chamber (3 x 2.5 m) equipped with day-light lamps. Day-and-night cycle, ambient temperature and relative humidity were accurately regulated (for climate details see table 2.2). The summer and winter period were reversed relative to that prevailing in Madagascar because the animals had been previously kept under these conditions.

1 A preliminary study was conducted in a laboratory during the preceding winter. Ambient temperature and day-and-night cycle were kept according to the values given for the climate chamber. However, relative humidity could not be controlled and the day-and-night cycle was not shifted.

2 Since the natural habitat of hedgehog tenrec is in the southern hemisphere, it is summer there when it is winter in the northern hemisphere.
Table 2.2: Climate parameters within a seasonal cycle

<table>
<thead>
<tr>
<th>month</th>
<th>daylight (h per day)</th>
<th>temperature (°C)</th>
<th>humidity (rel. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>11</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>February</td>
<td>11</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>March</td>
<td>12</td>
<td>22</td>
<td>60</td>
</tr>
<tr>
<td>April</td>
<td>13</td>
<td>22</td>
<td>70</td>
</tr>
<tr>
<td>May</td>
<td>13</td>
<td>25</td>
<td>70</td>
</tr>
<tr>
<td>June</td>
<td>14</td>
<td>25</td>
<td>70</td>
</tr>
<tr>
<td>July</td>
<td>13</td>
<td>25</td>
<td>70</td>
</tr>
<tr>
<td>August</td>
<td>13</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>September</td>
<td>12</td>
<td>22</td>
<td>50</td>
</tr>
<tr>
<td>October</td>
<td>11</td>
<td>22</td>
<td>50</td>
</tr>
<tr>
<td>November</td>
<td>11</td>
<td>22</td>
<td>40</td>
</tr>
<tr>
<td>December</td>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>

To limit disturbance of the animals, the day-and-night cycle was shifted by 12 h to allow feeding and handling during the animals' activity phase (twilight and night).

Two or three animals (at most one male per group) were kept together in modified steel rabbit cages (fig. 2.1.1). The cages measured 60 x 45 x 30 cm (l x w x h) and were made of stainless perforated steel plates on which the animals could climb. The steel tray at the bottom of the cage was filled with aspen tree litter or bark mulch. A lockable front door allowed easy access into the cage. Each cage was fitted with a plastic running wheel and wooden frames for climbing. At least one nest box and one additional place of concealment was provided per cage. The nest boxes (14 x 20 x 14 cm) were made of wood and were equipped with a divider in the middle of the box and a hinged lid to allow easy access to animals in the box (fig.2.1.1).

Fresh water was supplied *ad libitum* in a ceramic cup. The animals were fed at least three times each week with a diverse diet consisting of living insects (mealworms, cockroaches and zophobas), wet canned cat food, dry dog food, dry hedgehog food, boiled egg and fresh fruit (banana and grapes).

2.2 Experimental procedure

The experiments took place between October 2008 and June 2009 in the biocentre “Klein Flottbek” of Hamburg University, Germany. The control measurements during summer were con-

3The preliminary study took place during winter 2007/2008 in the biocentre “Grindel” of Hamburg University. Of the 10 animals that were investigated in the condition \(W_{\text{const}}\), only four were included in the analysis.
DUCTED IN THE SAME CLIMATE CHAMBERS AS THOSE DESCRIBED ABOVE. FOR ALL OTHER EXPERIMENTS THE ANIMALS WERE MOVED TO A SMALLER CLIMATE CHAMBER (1.5 x 2.5 m) EQUIPPED SIMILARLY TO THE CLIMATE CHAMBER THEY WERE HOUSED IN. THE ANIMALS WERE PLACED IN WOODEN CAGES (35 x 21 x 35 cm) EQUIPPED WITH IDENTICAL NEST BOXES, TREE LITTER AND FOOD AND WATER CUPS. AFTER THE ANIMALS HAD BEEN WEIGHED AND EQUIPPED WITH TEMPERATURE LOGGERS (FOR DETAILS SEE CHAPTER 2.3.2) THEY WERE PLACED IN THE NEST BOXES AND THE MEASUREMENTS STARTED.

A TOTAL OF FIVE DIFFERENT EXPERIMENTAL CONDITIONS WERE INVESTIGATED (FIGURE 2.2.1 SUMMARIZES THE DIFFERENT CONDITIONS). EACH EXPERIMENTAL CONDITION LASTED FOR A MINIMUM OF TWO WEEKS AND THE SEQUENCE OF EXPERIMENTAL CONDITIONS WAS RANDOMIZED. ANIMALS WERE RANDOMLY ASSIGNED TO THE DIFFERENT EXPERIMENTAL CONDITIONS AND WERE USED IN MULTIPLE EXPERIMENTS. TABLE 2.3 SHOWS THE NUMBER OF ANIMALS (N) AND DAYS MEASURED (n) FOR EACH CONDITION, SEPARATED INTO OXYGEN CONSUMPTION (VO₂) AND T_b MEASUREMENTS. DUE TO TECHNICAL PROBLEMS WITH THE EQUIPMENT, FAULTY AND MISSING DATA, NOT ALL DATA SETS WERE USED FOR THE ANALYSES.

Table 2.3: Number of animals/groups and days measured/analysed for all experimental conditions, divided by VO_2 and T_h measurements

<table>
<thead>
<tr>
<th>condition</th>
<th>T_a</th>
<th>N</th>
<th>n (T_h)</th>
<th>n (VO_2)</th>
<th>N</th>
<th>n (T_h)</th>
<th>n (VO_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_{const}</td>
<td>20°C</td>
<td>15</td>
<td>307</td>
<td>135</td>
<td>15</td>
<td>172</td>
<td>115</td>
</tr>
<tr>
<td>W_{fluc}</td>
<td>15-25°C</td>
<td>14</td>
<td>160</td>
<td>160</td>
<td>12</td>
<td>75</td>
<td>71</td>
</tr>
<tr>
<td>W_{low}</td>
<td>15°C</td>
<td>8</td>
<td>102</td>
<td>96</td>
<td>8</td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td>S_{const}</td>
<td>25°C</td>
<td>21</td>
<td>165</td>
<td>118</td>
<td>10</td>
<td>40</td>
<td>31</td>
</tr>
<tr>
<td>S_{fluc}</td>
<td>20-30°C</td>
<td>11</td>
<td>228</td>
<td>232</td>
<td>8</td>
<td>33</td>
<td>30</td>
</tr>
</tbody>
</table>

$N =$ number of animals/groups, $n =$ number of days measured/analysed

Figure 2.2.1: Summary of experimental conditions

$S_{const}: 25°C$, $S_{fluc}: 20°C-30°C$, $W_{const}: 20°C$, $W_{low}: 15°C$, $W_{fluc}: 15°C-25°C$
2.3 Measured parameters

2.3.1 Oxygen consumption

2.3.1.1 Construction and setup of the respirometry system

Oxygen consumption was measured with two differential oxygen analyzers (OxBox2 and OxBox3, FIWI, Vienna University, Vienna, Austria). OxBox2 was a two-channel differential oxygen analyzer with one channel analyzing measurement air and the other channel analyzing reference (ambient) air to allow for correction of temperature drift. The updated model Oxbox3 consisted only of one analysis channel. In both instruments, the measuring air channel switched to reference air for five minutes once per hour for null balancing.

Figure 2.3.1 shows a schematic setup of the complete respiratory system including the nest boxes. The open-circuit respirometry systems included a flow pump that was regulated via a feedback loop by the mass flow meter of the oxygen analyzer and this kept the set flow rate constant. The air was drawn at a rate of 50 l/h from the nest boxes which served as respiratory chambers and thus were fitted with adapters to accommodate the tubes of the respirometry system. To lessen air mixing between ambient air and the inside of the nest box, a divider was installed in the middle of the box. A gas splitter (RM Gas Flow Multiplexer, Sable Systems, Las Vegas, USA) was used to rotate air flow amongst four different nest boxes. Thus a total of eight animals could be measured at the same time with two oxygen analyzers. During the one hour long rotation cycle, all nest boxes were measured for 15 min. Once per hour, reference air was measured for five minutes to obtain a baseline value. Depending on the time that the oxygen analyzer started and the timing of the gas splitter, the reference air measurement fell into the measurement period of different animals. Before air entered the analyzer, it was dried by passing it through a tube filled with silica gel (Silica Gel Orange, 2-5 mm, Carl Roth, Karlsruhe, Germany). Depending on ambient conditions and activity of the animals, the desiccant was replaced every two to four days. After the air destined for measurement entered the oxygen analyzer, an aliquot (ca. 20 l/h) was drawn for the main airstream and analyzed.

The complete respirometry system was transportable and battery-powered by a standard 12 volt car battery. Gas-tight rubber tubes (Tygon tube ST, Saint-Gobain, Charny, France) were used for all connections between the parts of the respirometry system. Data points were stored once a minute in the internal memory of the analyzer.

2.3.1.2 Calibration

The linear output of the oxygen analyzer was calibrated using fresh air (with an assumed oxygen percentage of 20.96%) and air with reduced oxygen content (19.91% and 18.86%). The latter gas mixtures were produced with a gas-mixing pump (2KM300/a, H. Westhoft GmbH, Bochum, Germany) using fresh air and adding five and ten per cent nitrogen, respectively. From these three points a calibration value corresponding to an oxygen reduction of one per cent was calculated.
2.3. MEASURED PARAMETERS

2.3.2 Body temperature

Body temperature was measured with miniaturised temperature data loggers (iButton, DS1922L, Maxim Integrated Products, Inc., Sunnyvale, USA). These were taped to the animals’ abdomen with medical tape (Fixomull stretch, BSN medical, Hamburg, Germany). Figure 2.3.2 shows the iButton compared to a 1€ coin and attached to an animal. To improve adherence of the tape, the abdomen was shaved and wiped with alcohol prior to fixation of the tape. Logging interval of the iButtons was set to 15 min. The iButton stayed on the animals’ abdomen until it dropped off by itself or was removed after the experiments. If an iButton fell off before the end of the experiment, it was retaped. Attachment of the iButtons was checked by sight every second day. If the iButton was detached at this time, only those data collected up to the point where the iButton was observed attached or at the last arousal/activity phase was included in the analysis.

2.3.3 Ambient temperature

Ambient temperature was measured with the same data loggers as T_b. In each nest box one iButton was attached to the inside of the lid. An additional temperature logger was fixed to the wooden cage. Logging intervals of T_b and T_a data loggers were synchronized.
2.4 Data analysis

2.4.1 Hibernation bouts, arousals and activity phase

The animals did not show extended periods of normothermy, i.e. \(T_b \) fluctuated on a daily basis with high \(T_b \) during the activity phase (summer) or arousals (winter) and low \(T_b \) during daily torpor bouts (summer/winter) or hibernation bouts (winter). The animals were regarded as normothermic when \(T_b \) rose above 28°C.

A daily torpor or hibernation bout was defined as the period when \(T_b \) resembled \(T_a \) closely, i.e. \(T_b \) remained within a limit of two degrees Celsius above \(T_a \). When \(T_b \) rose above this limit for at least three consecutive hours, the animal was regarded as in an activity phase or arousal (see fig. 2.4.1). The activity phase or arousal started when \(T_b \) exceeded the limit for the first time and ended when \(T_b \) dropped below the limit again. Start and end time was noted for every daily torpor bout, hibernation bout, activity phase, arousal and normothermic period, and the duration of each was calculated.

2.4.2 Temperature

Temperature data were averaged over each hour. Minimum, maximum and average ambient, nest (\(T_n \)) and body temperature values were calculated for each daily torpor bout, hibernation bout, arousal and activity phase. For arousals and activity phases \(T_b \), warming rates were calculated as °C hr\(^{-1}\). The warming phase was defined as the period from the start of the arousal or activity phase until normothermic \(T_b \) (\(> 28°C \)) was reached.

2.4.3 Oxygen consumption

Output values of the oxygen analyzer were corrected for baseline values and drift. The hourly reference air measurements served as baseline values. To account for drift of the oxygen analyzer,
Figure 2.4.1: Definition of hibernation bouts and arousals
Ambient temperature (T_a), body temperature (T_b) and oxygen consumption (V_O_2) are shown in the upper part of the diagram, whereas the lower part shows the difference between T_b and T_a. An arousal (A) is defined as the time T_b-T_a exceeds 2°C (dotted vertical line in the lower part of the diagram) for more than three consecutive hours, otherwise the animal is in an hibernation bout (B). Arousals and hibernation bouts are marked with red and blue boxes, respectively. Vertical dashed lines indicate midnight, whereas white and black areas of the box in the upper x-axis indicate day and night, respectively.

A linear regression between each two consecutive reference air measurements was calculated and the calculated baseline values were subtracted from the corresponding output values.

The difference in oxygen concentration between ambient and measurement air was calculated with the formula:

$$\Delta O_2 = D_O_2 / Calib$$

with ΔO_2: O_2 difference between measurement and ambient air in %; D_O_2: output value of the oxygen analyzer corrected for baseline and drift; $Calib$: calibration value (see section 2.3.1.2)

and was corrected for the cross-sensitivity of the O_2-sensor to exhaled CO_2 with formula\(^4\):

$$\Delta V_{O_2} = \Delta O_2 + \Delta O_2 \ast S_{CO_2}$$

with ΔV_{O_2}: O_2 difference between measurement and ambient air in % corrected for CO_2 side effect; S_{CO_2}: value for the ΔO_2 side effect of 1% CO_2 ($S_{CO_2} = 0.0818$)

\(^4\)Cross-sensitivity of the O_2-sensor (O_2-sensor, Bieler + Lang GmbH, Achern, Germany) to CO_2 was calculated by estimating the CO_2 concentration of the measurement air for an assumed RQ of 0.85 and comparing it to manufacturer information of the O_2-sensor (Ruf, 2010, pers. comm.)
2.5. STATISTICS

Oxygen consumption was calculated as milliliters O_2 per hour ($ml_O_2 h^{-1}$) using the following formula:

$$VO_2 [ml_O_2 h^{-1}] = \Delta Vol\%O_2 \times flow [lh^{-1}] \times 10 \quad \text{(Heldmaier and Ruf, 1992)}$$

and was converted to VO_2 per gram body weight ($ml_O_2 g^{-1} h^{-1}$). Body weight was calculated as the average of body weight before and after the experiments. Oxygen consumption values were averaged over each hour and synchronized with corresponding temperature readings. For each daily torpor bout, hibernation bout, arousal and activity phase minimum, maximum and average oxygen consumption was calculated. Additionally, the average oxygen consumption for the warming phase was calculated. Oxygen consumption reflects resting metabolic rate (RMR) in most cases, but see section 4.1.3 for a full discussion. Daily energy expenditure (DEE) was calculated using a respiratory quotient (RQ) of 0.85, which reflects a metabolic combustion of 50% fat and 50% carbohydrates. At this RQ, the caloric equivalent is $20.37 \, kJ O_2^{-1}$. Values for DEE are given in the form of $kJ d^{-1} g^{-1}$.

2.5 Statistics

All statistical procedures were performed with SPSS 15 (SPSS Inc., Chicago, USA) or R (Fox, 2005; R Core Development Team, 2004). All data were checked for normality with Kolmogorov-Smirnov test and for homogeneity of variance with Levene’s test. Comparisons between two experimental conditions were made with Student’s t-tests. Comparisons between three or more experimental conditions were made using one-way Analysis of Variance. Pair-wise multiple comparison procedures (Bonferroni method) were employed to identify which variables differed from each other. Significance was accepted at $P < 0.05$.
Chapter 3

Results

3.1 Summer

Two different conditions were investigated during the summer; the constant \(T_a \) condition \(S_{\text{const}} \) and the fluctuating \(T_a \) condition \(S_{\text{fluc}} \). A summary of all relevant values as well as a statistical summary is given in table 3.3, table 3.4 and table 3.5 at the end of this chapter.

3.1.1 Behavior and body mass

The animals were active during the late day and early night throughout summer\(^1\). They rested inside their nestboxes during daily torpor bouts and were frequently outside the nestboxes during their activity phase. They ate and drank regularly. A separate student study revealed that animals ate 8.2 ± 0.5 g (values are means ± standard deviation; dry weight (DW); N=6, n=18) of mealworms (\(Tenebrio molitor \)) and 4.1 ± 2.8 g (DW; N=6, n=18) of banana within one month (Lund, 2009). Average body mass during summer was 156 ± 28 g (N=29), ranging from 111 g to 234 g, whereas females (160 g, N=18) were heavier than males (144 g, N=11; \(t\)-test, \(t = 2.0739, p = 0.047 \)).

3.1.2 Ambient temperature

Preset values for the climatic chambers and recorded ambient temperatures differed. The average recorded \(T_a \) was 24.1 ± 1.7 °C for \(S_{\text{const}} \). For \(S_{\text{fluc}} \), \(T_a \) at night averaged 19.0 ± 0.3 °C and was on average 28.4 ± 0.6 °C during the day. Ambient temperature took two hours to reach night and day values, respectively. The values of this transitional period were excluded for night and day \(T_a \) calculations.

\(^1\)times refer to the manipulated time, i.e. 12:00 and 24:00 hours are the middle of the day and night phase, respectively
Figure 3.1.1: Daily torpor pattern at constant ambient temperature in summer

Body temperature, T_a and VO_2 during daily torpor at constant T_a (S_{const}) in animal F0603. Vertical dashed lines indicate midnight, whereas white and black boxes on the x-axis indicate day and night, respectively.

3.1.3 Daily torpor pattern

In summer, activity phases alternated with daily torpor bouts, i.e. all animals entered torpor every day with one particular exception (see section 3.1.3.1 for details).

3.1.3.1 Constant ambient temperature condition S_{const}

A typical sequence of activity phases and daily torpor bouts for S_{const} is shown in figure 3.1.1. At the end of a daily torpor bout (which announced the activity phase), VO_2 increased manifold within three or four hours. After reaching its maximum, VO_2 remained elevated as long as the animal was normothermic but dropped quickly towards the end of the activity phase. Body temperature followed a similar pattern. With a lag of about one hour relative to VO_2, it rose from values close to T_a within two to four hours to a maximum of approximately 30°C. After being elevated for this period, T_b decreased linearly until it approximated T_a at the end of the activity phase. Oxygen consumption remained consistently low and T_b remained close to T_a during the daily torpor bout.

The duration of the daily torpor bouts and activity phases were 11:10 ± 4:00 h (N=10, n=41) and 11:15 ± 8:31 h (N=10, n=31), respectively (fig.3.2.2). One animal (F0604) showed normothermic activity phases exceeding 24 h twice (fig. 3.1.2). These were the only two occasions where this was observed. The two activity phases in that animal lasted 28:00 and 40:00 h. If that animal is excluded from analysis, the duration of the activity phases is reduced to 8:41 ± 2:31 h (N=9, n=36). During the activity phase the animals were normothermic (T_b above 28°C) for 7:50 ± 4:57 h (N=10, n=31). If animal F0604 is excluded from analysis, the duration of normothermy is reduced to 6:22 ± 1:52 h (N=9, n=36).
3.1.3.2 Fluctuating ambient temperature condition S_{fluc}

The pattern of daily torpor in fluctuating T_a was similar to that seen in constant T_a. An example is shown in figure 3.1.3. During daily torpor bouts, T_b followed fluctuations in T_a passively, but there was a lag between T_a and T_b because of thermal inertia of the animals. Oxygen consumption increased and decreased slightly with rising and falling T_b, respectively. During the diurnal phase, T_b followed the increase in T_a passively and T_b reached T_a midway through the diurnal phase. At that point VO_2 rose sharply to reach values manifold greater than that during torpor and T_b rose quickly to its maximum and exceeded T_a. From then on T_b declined steadily until reaching values close to T_a towards the end of the nocturnal phase.

The duration of the daily torpor bout and the activity phase were $15:16 \pm 0:53$ h ($N=8$, $n=36$) and $6:39 \pm 0:36$ h ($N=8$, $n=37$), respectively (fig. 3.2.2). Duration of daily torpor bouts ($ANOVA$, $F = 29.010$, $p < 0.001$; Bonferroni, $p = 1$) and activity phases ($ANOVA$, $F = 1.845$, $p = 0.139$) did not differ between S_{const} and S_{fluc}. The animals were normothermic for $4:15 \pm 0:26$ h ($N=8$, $n=37$) during the activity phase. This was shorter compared to S_{const} (t-test, $t = 3.282$, $p = 0.009$)2.

3.1.4 Body temperature

3.1.4.1 Constant ambient temperature condition S_{const}

During daily torpor bouts, T_b averaged 24.6 ± 1.7 °C ($N=10$, $n=41$) which was slightly higher than T_a (t-test, $t = -4.570$, $p = 0.001$). Mean as well as maximal T_b during the activity phase were always higher than corresponding T_a (t-test, $t = -8.263$, $p < 0.001$ for average T_b; t-test,2excluding the two 24+ hour long activity phases of animal F0604 in the S_{const} condition
3.1. SUMMER CHAPTER 3. RESULTS

Figure 3.1.3: Pattern of daily torpor in fluctuating ambient temperature in summer
Body temperature, T_a and VO_2 during daily torpor at fluctuating T_a (S_{fluc}) in animal F0603. Vertical dashed lines indicate midnight, whereas white and black boxes on the x-axis indicate day and night, respectively.

$t = -8.873, p < 0.001$ for maximal T_b). The highest recorded T_b of an animal during the S_{const} condition was 32.8 °C, while mean maximal T_b was 30.8 ± 0.9 °C (N=10, n=31; fig. 3.2.7A). Body temperature over the whole activity phase averaged 28.5 ± 0.8 °C (N=10, n=31) whereas during the normothermic part of the activity phase ($T_b > 28$°C), T_b was 29.8 ± 0.7 °C (N=10, n=31). Maximal T_b and the time when it occurred are shown in figure 3.1.4A. It can be seen from the plot that highest T_b occurred near dusk or during the first half of the night. Warming rate for S_{const} was 2.7 ± 0.5 °C/h (N=10, n=31; fig. 3.2.7B).

3.1.4.2 Fluctuating ambient temperature condition S_{fluc}

During fluctuating T_a during the summer, T_b lagged behind T_a because of thermal inertia of the animals. Since T_a changed rapidly between the diurnal and nocturnal phases, the difference between T_b and T_a was most pronounced at the beginning of both day and night.

Maximal T_b during the activity phase averaged 29.8 ± 1.0 °C (N=8, n=37) and the highest observed individual T_b was 31.7 °C. Mean as well as maximal T_b during the activity phase was higher than the corresponding T_a (t-test, $t = -6.605, p < 0.001$ for average T_b; t-test, $t = -7.840, p < 0.001$ for maximal T_b). Average maximal T_b for S_{fluc} did not differ from S_{const} (ANOVA, $F = 22.977, p < 0.001$; Bonferroni, $p = 1$). During the normothermic part of the activity phase, T_b was 29.3 ± 0.7 °C (N=8, n=37) and it averaged 28.4 ± 0.6 °C (N=8, n=37) over the whole activity phase. Compared to S_{const}, maximal T_b occurred earlier during the day, at around 14:00 to 16:00 hours, as shown in figure 3.1.4B. The warming rate of 1.5 ± 0.1 °C/h was lower compared to S_{const} (ANOVA, $F = 11.516, p < 0.001$; Bonferroni, $p = < 0.001$).
Figure 3.1.4: Circular distribution of maximum body temperature during activity phases and arousals.

Time of day (degrees) and level (radial distance) of maximum T_b during activity phases and arousal for S_{const} (A), S_{fluc} (B), W_{const} (C) and W_{fluc} (D). Labels around the circle denote the time (format HH:MM) and shaded areas indicate the night phase. Lighter shaded areas are transitional times between night and day phase. Temperature is plotted on the right radius.
3.1.5 Oxygen consumption

3.1.5.1 Normothermy

Oxygen consumption of normothermic animals, i.e. $T_b > 28$ °C, was calculated from both the constant $T_a S_{const}$ and fluctuating $T_a S_{fluc}$ experimental conditions. Overall normothermic VO_2 is shown in fig. 3.1.5A and averaged $0.56 \pm 0.24 \text{ mlO}_2\text{g}^{-1}\text{h}^{-1}$ ($N=16$, $n=50$), whereas separate values of S_{const} (0.67 ± 0.25 $\text{ mlO}_2\text{g}^{-1}\text{h}^{-1}$; $N=9$, $n=26$) were higher than those of S_{fluc} (0.43 ± 0.16 $\text{ mlO}_2\text{g}^{-1}\text{h}^{-1}$; $N=8$, $n=33$; t-test, $t = -2.7948$, $p = 0.027$). As can be seen in fig. 3.1.5B, VO_2 during normothermy was positively correlated with T_b (linear regression, $VO_2 = 0.226 + T_b - 6.148$, $R^2 = 0.481$, $F = 44.4$, $p < 0.001$).

3.1.5.2 Oxygen consumption during constant ambient temperatures (S_{const})

When the complete activity phase is considered, VO_2 averaged $0.55 \pm 0.19 \text{ mlO}_2\text{g}^{-1}\text{h}^{-1}$ ($N=9$, $n=26$). Maximal VO_2 during the activity phase was $1.24 \pm 0.55 \text{ mlO}_2\text{g}^{-1}\text{h}^{-1}$ ($N=9$, $n=26$), whereas the highest observed VO_2 was $3.43 \text{ mlO}_2\text{g}^{-1}\text{h}^{-1}$. The animals consumed $0.73 \pm 0.44 \text{ mlO}_2\text{g}^{-1}\text{h}^{-1}$ ($N=9$, $n=26$) during the warming phase of the activity phase, i.e. from the start of warming until the animals became normothermic. Oxygen consumption was greatly reduced when an animal commenced daily torpor bouts (t-test, $t = 6.670$, $p < 0.001$). Average VO_2 during daily torpor bouts was $0.18 \pm 0.05 \text{ mlO}_2\text{g}^{-1}\text{h}^{-1}$ ($N=9$, $n=34$) which was only one third of that observed during the activity phase. Minimum values of a complete daily torpor bout were $0.12 \pm 0.05 \text{ mlO}_2\text{g}^{-1}\text{h}^{-1}$ ($N=9$, $n=34$) and the lowest observed value for a complete daily torpor bout was below $0.05 \text{ mlO}_2\text{g}^{-1}\text{h}^{-1}$. The animals consumed on average $0.38 \pm 0.21 \text{ mlO}_2\text{g}^{-1}\text{h}^{-1}$ per day ($N=9$) over the whole length of S_{const}, including activity phases and daily torpor bouts.
This amounted to a DEE of $0.188 \pm 0.104 \text{kJ d}^{-1} \text{g}^{-1}$ (N=9). Table 3.1 summarizes the above values and describes energy savings compared to animals in normothermy (ANOVA, $F = 11.246$, $p < 0.001$; *Bonferroni* see table). A graphical display of S_{const} V_O2 values is also given in figure 3.2.8.

In figure 3.1.6A V_O2 is plotted as a function of T_a over a 24 h period. A consistent pattern was found in most animals. Oxygen consumption rose rapidly during the warming phase (red line) and maximal T_a was reached quickly in around three to four hours. During the cooling phase (black line), V_O2 declined steadily with decreasing T_a.

3.1.5.3 Oxygen consumption during fluctuating ambient temperatures (S_{fluc})

For S_{fluc}, V_O2 averaged $0.36 \pm 0.12 \text{ml}_{O2}\text{g}^{-1}\text{h}^{-1}$ (N=8, n=33) over the activity phase, which was similar to that observed during S_{const} (ANOVA, $F = 16.096$, $p < 0.001$; *Bonferroni, $p = 0.056$).

The highest observed maximal V_O2 was $1.69 \text{ml}_{O2}\text{g}^{-1}\text{h}^{-1}$, while the average maximal V_O2 was $0.95 \pm 0.28 \text{ml}_{O2}\text{g}^{-1}\text{h}^{-1}$ (N=8, n=33), which was the same as for S_{const} (ANOVA, $F = 3.490$, $p = 0.029$; *Bonferroni, $p = 1$). Oxygen consumption during the warming phase was $0.20 \pm 0.09 \text{ml}_{O2}\text{g}^{-1}\text{h}^{-1}$ (N=8, n=33) which was lower than that observed during S_{const} (ANOVA, $F = 19.003$, $p < 0.001$; *Bonferroni, $p = 0.002$). Oxygen consumption fell to $0.08 \pm 0.04 \text{ml}_{O2}\text{g}^{-1}\text{h}^{-1}$ (N=8, n=32) during daily torpor bouts. This was only one quarter of the values observed during the activity phase (*t-test, $t = 7.447$, $p < 0.001$) and was lower than during daily torpor bouts under constant T_a (ANOVA, $F = 11.396$, $p < 0.001$; *Bonferroni, $p < 0.001$).

When V_O2 was split between the nocturnal and diurnal part of the daily torpor bout, the nocturnal values ($0.06 \pm 0.04 \text{ml}_{O2}\text{g}^{-1}\text{h}^{-1}$; N=8, n=32) were lower than the diurnal values ($0.10 \pm 0.05 \text{ml}_{O2}\text{g}^{-1}\text{h}^{-1}$; N=8, n=32; *t-test, $t = 5.843$, $p < 0.001$). This difference is also shown in figure 3.2.10. Minimum values of a complete daily torpor bout were $0.03 \pm 0.03 \text{ml}_{O2}\text{g}^{-1}\text{h}^{-1}$ (N=8, n=32) and the lowest observed value for a complete daily torpor bout was below $0.02 \text{ml}_{O2}\text{g}^{-1}\text{h}^{-1}$. Daily V_O2 averaged $0.16 \pm 0.05 \text{ml}_{O2}\text{g}^{-1}\text{h}^{-1}$ (N=8) which corresponds to a DEE of $0.080 \pm 0.025 \text{kJ d}^{-1} \text{g}^{-1}$ (N=8) and was less than that observed during S_{const} (ANOVA, $F = 8.099$, $p = 0.001$; *Bonferroni, $p = 0.006$). Energy savings compared to conditions of
3.1. SUMMER

CHAPTER 3. RESULTS

Figure 3.1.6: Oxygen consumption as a function of body temperature during the summer conditions S_{const} and S_{fluc}

Oxygen consumption over a 24 h period, including an activity phase and a daily hibernation bout, plotted against corresponding T_b for constant T_a condition S_{const} (A, left: animal F0504, right: animal M0512) and fluctuating T_a condition S_{fluc} (B, left: animal F0408, right: animal F0508). Red lines and squares are active and passive warming (start to T_b maximum), black lines and squares are cooling (T_b maximum to end). Shaded areas indicate the T_a range over the displayed 24 h period.
normothermy are shown in table 3.1 (ANOVA, $F = 20.076$, $p < 0.001$; $Bonferroni$ see table). Data on VO_2 under other conditions are summarized in figure 3.2.8.

The pattern of VO_2 plotted against T_b over a 24 h period is shown in fig. 3.1.6B. The animals warmed up passively using the high T_a during the day, thus VO_2 stayed low even with rising T_b (first part of red line). At the point where T_b reached T_a, the animals started warming up actively and VO_2 rose sharply (second part of red line; see fig. 3.1.3 for the daily pattern). Therefore, the energetic cost for heating was greatly reduced (compare to fig. 3.1.6A). The VO_2 and T_b pattern during cooling was similar to S_{const}.

3.2 Winter

Three different conditions were investigated during the winter, two constant T_a conditions W_{low} and W_{const} and a fluctuating T_a condition W_{fluc}. A summary of all relevant values as well as a statistical summary is given in table 3.3, table 3.4 and table 3.5 at the end of this chapter.

3.2.1 Behavior and body mass

The animals were lethargic during the winter and spend most time inside their nest boxes. They slept curled into a ball. Normally the animals stayed within their nestboxes even during arousals, but some briefly left their boxes to drink. Most animals did not eat during the winter. If animals ate during the winter it was only a small fraction of the amount they ate during the summer.

The monthly average dry food intake was 0.7 ± 0.5 g ($N=6$, $n=18$) for mealworms and 0.6 ± 0.6 g ($N=6$, $n=11$) for banana (Lund, 2009). In both cases this was less than was eaten in summer (t-test, $t = -26.393$, $p < 0.001$ for mealworms; t-test, $t = -2.696$, $p = 0.043$ for banana). Mean body mass fell to 126 ± 24 g ($N=23$) during the winter (t-test, $t = 10.616$, $p < 0.001$), with a range of 80 g to 179 g. There was no difference in body mass between males (123 g, $N=9$) and females (127 g, $N=14$) during winter (t-test, $t = 0.460$, $p = 0.650$).

3.2.2 Ambient temperature

Preset values for the climatic chambers and recorded ambient temperatures differed. The average recorded T_a was 12.3 ± 0.1 °C for W_{low} and 17.7 ± 0.6 °C for W_{const}. For W_{fluc}, average night T_a was 14.1 ± 0.7 °C and average day T_a was 24.3 ± 0.3 °C. Ambient temperature took two hours to reach night and day values, respectively. The values of this transitional period were excluded for night and day T_a calculations.
3.2. WINTER

CHAPTER 3. RESULTS

3.2.3 Hibernation bouts and arousal patterns

3.2.3.1 Constant ambient temperature conditions W_{const} and W_{low}

During W_{const} and W_{low} conditions the general pattern of hibernation was similar. Hibernation or torpor bouts of varying lengths alternated with periodic arousals. Fig. 3.2.1 depicts a typical hibernation bout and arousal sequence during constant T_a (W_{const}).

At the end of a hibernation bout, prior to arousal, VO_2 increased rapidly within three or four hours to values manifold higher than that seen in hibernation. Shortly after reaching maximal values, VO_2 declined again and reached values typical of hibernation at the end of the arousal. With a lag of about one hour, T_b rose rapidly over four to six hours from near T_a to approximately 28 °C. After a short period (less than 3 h) in which T_b was maintained at high levels, T_b decreased linearly until it reached T_a at the end of the arousal. During hibernation bouts, T_b remained at ambient levels and VO_2 stayed consistently low.

The average duration of hibernation bouts for W_{const} was 4.3 ± 2.2 days ($N=16$, $n=45$), with individual bouts ranging from 0.7 to 8.1 d, which was higher than for S_{const} (ANOVA, $F = 29.010$, $p < 0.001$; Bonferroni, $p < 0.001$). During W_{low}, the duration of hibernation bouts increased to 8.5 ± 3.1 d ($N=8$, $n=12$; ANOVA, $F = 29.010$, $p < 0.001$; Bonferroni, $p < 0.001$), with individual bouts ranging from 3.5 to 12.0 d (see fig. 3.2.2A for details). Some hibernation bouts were interrupted by the end of the experiment and therefore could have been longer. If these hibernation bouts are excluded from the analysis, the duration of hibernation bouts changed to 9.2 ± 2.6 d for W_{low} ($N=5$, $n=8$). Figure 3.2.3 shows the duration of different hibernation bouts and patterns of hibernation of one animal for all three constant T_a conditions.

The duration of hibernation bouts changed dramatically with changing T_a, ranging from daily torpor bouts in S_{const} to short hibernation bouts in W_{const} to longer hibernation bouts in W_{low}.

Figure 3.2.1: General hibernation bout and arousal pattern for constant T_a. Body temperature, T_a and VO_2 during hibernation at constant ambient temperature (W_{const}) in animal F0501. Vertical dashed lines indicate midnight, whereas white and black boxes on the x-axis indicate day and night, respectively.
Figure 3.2.2: Hibernation/daily torpor bout and arousal/activity phase duration
Duration of hibernation and daily torpor bouts in days (A) and duration of arousals and activity phases in hours (B) for W_{const}, W_{fluc}, S_{const}, S_{fluc} and S_{const}. Values are means, whiskers indicate the standard deviation and dashed boxes indicate the range (**p < 0.001, *p < 0.01, *p < 0.05)

The average duration of arousals was 9:16 ± 2:21 h (N=13, n=40) for W_{const} and 11:48 ± 3:57 h (N=5, n=5) for W_{low}, respectively (fig. 3.2.2B). No differences in the duration of arousals and activity phases were found between the different conditions (ANOVA, $F = 1.845$, $p = 0.139$).

3.2.3.2 Fluctuating ambient temperature condition W_{fluc}

The general pattern of hibernation bouts and arousals during the fluctuating T_a condition W_{fluc} is shown in figure 3.2.4A.

During hibernation bouts, T_b followed fluctuating T_a with a lag due to thermal inertia of the animals. The animals warmed and cooled passively, whereas T_b reached the low T_a towards the end of the nocturnal phase, but remained slightly below the high T_a at the end of the diurnal phase. Oxygen consumption during hibernation was low during the nocturnal phase and rose with rising T_b during the day, but remained below arousal values.

An arousal was characterized by a sudden increase of VO_2 during the middle of the day, when T_b was already elevated and would have almost reached the maximum via passive heating. Following the increase of VO_2, T_b rose quickly to values distinctly above T_a. After peaking at about 29°C, T_b declined linearly until reaching low T_a at the end of the nocturnal phase.

The average duration of hibernation bouts for W_{fluc} was 1.9 ± 1.4 d (N=12, n=42), with the duration of an individual bout ranging from 0.5 to 4.6 d (fig. 3.2.2A). This was shorter compared that observed in W_{const} conditions (ANOVA, $F = 29.010$, $p < 0.001$; Bonferroni, $p = 0.017$) but did not differ from S_{fluc} conditions (ANOVA, $F = 29.010$, $p < 0.001$; Bonferroni, $p = 1.000$). The duration of arousals averaged 8:05 ± 1:09 h (N=10, n=40; fig. 3.2.2B).
Figure 3.2.3: Hibernation/daily torpor pattern in constant ambient temperature conditions

Body temperature and T_a of animal M0506 for eight days during S_{const} (top panel), W_{const} (middle panel) and W_{low} (bottom panel). Vertical dashed lines indicate midnight, whereas white and black boxes on the x-axis indicate day and night, respectively.
Figure 3.2.4: Hibernation bout and arousal pattern for fluctuating T_a condition W_{fluc}

Body temperature, T_a and VO$_2$ during hibernation at fluctuating T_a (W_{fluc}) in animal F0508 (A) and M0510 (B). Vertical dashed lines indicate midnight, whereas white and black boxes on the x-axis indicate day and night, respectively.
3.2. WINTER CHAPTER 3. RESULTS

3.2.4 Body temperature

3.2.4.1 Constant ambient temperature conditions W_{const} and W_{low}

Body temperature followed ambient temperature closely during hibernation bouts. When plotted against each other (including the values of W_{low}, W_{const}, and S_{const}), the resulting linear regression line had a slope close to one ($T_b = 1.040 * Ta - 0.514$, $R^2 = 0.988$, $F = 6685$, $p < 0.001$). Figure 3.2.5A shows this relationship. Consequently, mean T_b did not differ from mean T_a and was $12.7 \pm 0.2 \degree$C ($N=8$, $n=12$) and $17.6 \pm 0.4 \degree$C ($N=16$, $n=45$) for W_{low} and W_{const}, respectively (t-test, $t = -0.100$, $p = 0.923$ for W_{low}; t-test, $t = 1.227$, $p = 0.239$ for W_{const}).

The average T_b at arousal was always higher than the corresponding T_a (t-test, $t = -3.072$, $p = 0.037$ for W_{low}; t-test, $t = 22.863$, $p < 0.001$ for W_{const}). In figure 3.2.5B maximum T_b is plotted against average T_a (including the values of all conditions). A linear regression yielded $T_b = 0.351 * Ta + 21.157$ ($R^2 = 0.367$, $F = 88.07$, $p < 0.001$). When the three outlying points (see below for details) were omitted from analysis, the linear regression yielded $T_b = 0.221 * Ta + 24.349$ ($R^2 = 0.323$, $F = 70.95$, $p < 0.001$). These three outlying points (belonging to the W_{low} condition) were thought to be “unsuccessful” arousals, based on the criteria for arousal described in the methods section. But instead of reaching a usual maximal T_b of over $25 \degree$C, the animals’ T_b remained with $15 \degree$C only slightly above T_a. Figure 3.2.6 shows an “unsuccessful” arousal of animal F0501 (A) compared to a successful arousal of animal M0507 (B). During this event T_b of animal F0501 reached a maximum of only $14.7 \degree$C, which was $3.1 \degree$C above T_a. The arousal lasted for nine hours (indicated by the shaded red box), during which the difference between T_b and T_a was always more than $2 \degree$C. The successful arousal (B) was uncharacteristic as well, as

![Figure 3.2.5](image-url)
it lasted for 17 h, which is 5 h above average for W_{low} (see fig. 3.2.3 bottom panel for another W_{low} arousal). Furthermore, it was the longest arousal observed under all conditions, apart from the two arousals exceeding 24 h described in section 3.1.3.1.

Average maximal arousal T_b was 19.6 ± 6.3 °C ($N=5$, $n=5$) and 28.1 ± 1.4 °C ($N=13$, $n=40$) for W_{low} and W_{const}, respectively (fig. 3.2.7A). When the two “unsuccessful” arousals were excluded, maximal T_b for W_{low} increased to 23.1 ± 6.1 °C ($N=3$, $n=3$). Maximal T_b of W_{low} was lower than maximal T_b of W_{const} (ANOVA, $F = 22.977$, $p < 0.001$; Bonferroni, $p < 0.001$). No difference in maximal T_b was found between W_{const} and S_{const} (ANOVA, $F = 22.977$, $p < 0.001$; Bonferroni, $p = 0.063$). The highest observed T_b during an arousal in any individual was $26.7°C$ for W_{low} and $30.1°C$ for W_{const}. Maximal arousal T_b for W_{const} occurred two to three hours before the start of the night or during the first half of the night (see fig. 3.1.4C). Warming rate was 2.7 ± 0.6 °C/h for W_{const} and did not differ compared to that observed in S_{const} (ANOVA, $F = 11.516$, $p < 0.001$; Bonferroni, $p = 1$; fig. 3.2.7B).

3.2.4.2 Fluctuating ambient temperature condition W_{fluc}

Body temperature followed T_a during hibernation bouts with a time lag due to thermal inertia of the animals. The biggest difference between T_b and T_a occurred at the beginning of both the nocturnal and diurnal phase because of the rapidly changing T_a at those times. The difference diminished during the course of nocturnal and diurnal phase and was lowest towards the end of each phase. Because of changing T_a, average hibernation T_b (17.7 ± 0.6 °C; $N=12$, $n=42$) was slightly lower than average T_a, which was 18.5 ± 0.5 °C (t-test, $t = 5.112$, $p < 0.001$). No such
3.2. WINTER

CHAPTER 3. RESULTS

3.2.5 Oxygen consumption

Due to technical problems, no VO₂ data are available for the Wlow condition.

3.2.5.1 Constant ambient temperature condition Wconst

During hibernation bouts, VO₂ averaged 0.06 ± 0.02 mlO₂g⁻¹h⁻¹ (N=4, n=12; fig. 3.2.8A), which was lower than VO₂ during daily torpor bouts during Sconst (ANOVA, F = 11.396,
Table 3.2: Oxygen consumption and percentage of energy saving compared to normothermy for ambient temperature conditions W_{const} and W_{fluc}

<table>
<thead>
<tr>
<th></th>
<th>W_{const}</th>
<th>W_{fluc}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean ± SD</td>
<td>energy saving</td>
</tr>
<tr>
<td>normothermy</td>
<td>0.56 ± 0.24</td>
<td>-</td>
</tr>
<tr>
<td>daily average</td>
<td>0.18 ± 0.09</td>
<td>68 % *</td>
</tr>
<tr>
<td>arousal</td>
<td>0.79 ± 0.12</td>
<td>-36 % n.s.</td>
</tr>
<tr>
<td>hibernation bout</td>
<td>0.06 ± 0.02</td>
<td>89 % **</td>
</tr>
</tbody>
</table>

Oxygen consumption is given in $ml_O_2 g^{-1}h^{-1}$; normothermy values are an average of S_{const} and S_{fluc}.

$p < 0.001; \text{Bonferroni, } p < 0.001$. Minimum VO_2 during hibernation bouts was $0.03 \pm 0.01 ml_O_2 g^{-1}h^{-1}$ ($N=4$, $n=12$). When the animal aroused, VO_2 increased over 20-fold to $0.79 \pm 0.12 ml_O_2 g^{-1}h^{-1}$ ($N=4$, $n=8$) as shown in figure 3.2.8B (t-test, $t = 14.681$, $p < 0.001$) and maximal arousal VO_2 averaged $1.73 \pm 0.20 ml_O_2 g^{-1}h^{-1}$ ($N=4$, $n=8$), with the highest observed value reaching $2.16 ml_O_2 g^{-1}h^{-1}$. Maximal arousal VO_2 did not differ compared to maximal activity phase VO_2 of S_{const} (ANOVA, $F = 3.490$, $p = 0.029; \text{Bonferroni, } p = 0.565$) and neither did average arousal VO_2 (ANOVA, $F = 16.096$, $p < 0.001; \text{Bonferroni, } p = 0.060$). Oxygen consumption during the warming phase was $1.11 \pm 0.23 ml_O_2 g^{-1}h^{-1}$ ($N=4$, $n=8$; fig. 3.2.8C) and did not differ compared to S_{const} (ANOVA, $F = 19.003$, $p < 0.001; \text{Bonferroni, } p = 0.114$). Average daily VO_2 was $0.18 \pm 0.09 ml_O_2 g^{-1}h^{-1}$ ($N=4$; fig. 3.2.8D), which equated to a DEE of $0.088 \pm 0.043 kJd^{-1}g^{-1}$ ($N=4$) and was not different from daily VO_2 of S_{const} (ANOVA, $F = 8.099$, $p = 0.001; \text{Bonferroni, } p = 0.062$). The energy savings compared to normothermy (calculated from S_{const} and S_{fluc}) are described in table 3.2 (ANOVA, $F = 13.281$, $p < 0.001; \text{Bonferroni see table}$).

The pattern of VO_2 as a function of T_b is shown in figure 3.2.9A. Oxygen consumption rose quickly and remained elevated over a broad range of T_b, from around 18 to 28 °C (red line). When T_b declined again, VO_2 decreased rapidly to low levels (black line).

3.2.5.2 Fluctuating ambient temperature condition W_{fluc}

Oxygen consumption during hibernation bouts during W_{fluc} was $0.10 \pm 0.04 ml_O_2 g^{-1}h^{-1}$ ($N=12$, $n=42$; fig. 3.2.8A) and did not differ compared to that observed during W_{const} (ANOVA, $F = 11.396$, $p < 0.001; \text{Bonferroni, } p = 0.935$) nor during S_{fluc} (ANOVA, $F = 11.396$, $p < 0.001; \text{Bonferroni, } p = 1$). Dividing the hibernation bout VO_2 between the nocturnal and diurnal phase showed that the values were lower during the nocturnal phase ($0.06 \pm 0.02 ml_O_2 g^{-1}h^{-1}$; $N=12$, $n=42$) compared to the diurnal phase ($0.13 \pm 0.06 ml_O_2 g^{-1}h^{-1}$; $N=12$, $n=42$; t-test, $t = 3.921$, $p = 0.002$). This relationship is shown in figure 3.2.10A, that shows VO_2 versus T_b during hibernation. It can be seen that VO_2 stays constant at low T_b, but rises with elevating T_b. The minimum values during hibernation were $0.03 \pm 0.01 ml_O_2 g^{-1}h^{-1}$ ($N=12$, $n=42$). A
Average V_{O_2} for daily torpor/hibernation bouts (A), average V_{O_2} for activity phases/ arousals (B), warming V_{O_2} during activity phases/arousals (C) and average daily V_{O_2} (D) for the winter conditions W_{fluc} and W_{const}, and for the summer conditions S_{fluc} and S_{const}. Values are means, whiskers indicate the standard deviation and dashed boxes indicate the range ($*** = p < 0.001$, $$ = p < 0.01$, $* = p < 0.05$)
3.2. WINTER CHAPTER 3. RESULTS

Figure 3.2.9: Oxygen consumption as a function of body temperature during the winter conditions W_{const} and W_{fluc}

Oxygen consumption over a 24 hour period plotted against corresponding T_b for S_{const} (A; left: animal F0501, right: animal M0501) and S_{fluc} (B; left: animal F0402, right: animal F0508), both including an arousal and parts of a hibernation bout, and for S_{fluc} during a hibernation bout only (C; left: animal F0402, right: animal F0508). Red lines and squares are active and passive warming (start to T_b maximum), black lines and squares are cooling (T_b maximum to end). Shaded areas indicate the T_a range over the displayed 24 hour period. Note the different scale of the y-axis in part C.
2.5-fold increase was noted for the arousal, yielding $0.26 \pm 0.11 \text{ mlOO}_2 \text{ g}^{-1} \text{ h}^{-1}$ (N=10, n=39; t-test, $t = 6.064$, $p < 0.001$), with an average maximal arousal VO$_2$ of $0.90 \pm 0.55 \text{ mlOO}_2 \text{ g}^{-1} \text{ h}^{-1}$ (N=10, n=39) and the highest observed arousal VO$_2$ was $3.09 \text{ mlOO}_2 \text{ g}^{-1} \text{ h}^{-1}$ (see fig. 3.2.8B). Average and maximal arousal VO$_2$ were lower than for W_{const} (ANOVA, $F = 16.096$, $p < 0.001$; Bonferroni, $p < 0.001$ for average arousal VO$_2$; ANOVA, $F = 3.490$, $p = 0.029$; Bonferroni, $p = 0.037$ for maximal arousal VO$_2$), but no difference was found compared to S_{fluc} (ANOVA, $F = 16.096$, $p < 0.001$; Bonferroni, $p = 0.935$ for average arousal VO$_2$; ANOVA, $F = 3.490$, $p = 0.029$; Bonferroni, $p = 1$ for maximal arousal VO$_2$). Warming phase VO$_2$ averaged $0.17 \pm 0.08 \text{ mlOO}_2 \text{ g}^{-1} \text{ h}^{-1}$ (N=10, n=39; fig. 3.2.8C), which was lower compared to W_{const} (ANOVA, $F = 19.003$, $p < 0.001$; Bonferroni, $p < 0.001$) but did not differ compared to S_{fluc} (ANOVA, $F = 19.003$, $p < 0.001$; Bonferroni, $p = 1$). Daily VO$_2$ was $0.12 \pm 0.04 \text{ mlOO}_2 \text{ g}^{-1} \text{ h}^{-1}$ (N=10) which corresponded to a DEE of $0.060 \pm 0.018 \text{ kJ d}^{-1} \text{ g}^{-1}$ (N=10). This did not differ from W_{const} or S_{fluc} (ANOVA, $F = 8.099$, $p = 0.001$; Bonferroni, $p = 1$ for W_{const} and S_{fluc}). The energy savings compared to normothermy are described in table 3.2 (ANOVA, $F = 29.022$, $p < 0.001$; Bonferroni see table).

Figure 3.2.9B shows the pattern of VO$_2$ as a function of T_b over a 24 h period including an arousal. Oxygen consumption stayed low over a wide range of T_b (14 to 24 °C), indicating a reliance on passive heating (left part of red line). When the animals warmed above T_a, VO$_2$ rose quickly but declined rapidly as well after reaching the maximum T_b (right part of red line). Part C of the figure shows two 24 h periods during hibernation with no arousal. Oxygen consumption remained low over the whole T_b range (note the different scale of the y-axis compared to part A and B), but was nevertheless slightly correlated with T_b (linear regression, VO$_2 = 0.011 \times T_b - 0.113$, $R^2 = 0.307$, $F = 60.34$, $p < 0.001$).

![Figure 3.2.10: Oxygen consumption versus body temperature during hibernation and daily torpor bouts of W_{fluc} and S_{fluc}.](image.png)

Hibernation VO$_2$ versus hibernation T_b for W_{fluc} (A) and S_{fluc} (B). Error bars indicate the standard deviation.
Table 3.3: Summary of body temperature values and duration of hibernation/daily torpor bouts and arousals/activity phases

<table>
<thead>
<tr>
<th>condition</th>
<th>hibernation / torpor bouts</th>
<th>arousals / activity phases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>duration (days)</td>
<td>T_b (°C)</td>
</tr>
<tr>
<td>W_{low}</td>
<td>mean</td>
<td>8.5 ± 3.1</td>
</tr>
<tr>
<td>range</td>
<td>3.5 - 12.0</td>
<td>11.9 - 12.5</td>
</tr>
<tr>
<td>N, n</td>
<td>N=8, n=12</td>
<td>N=8, n=12</td>
</tr>
<tr>
<td>W_{const}</td>
<td>mean</td>
<td>4.3 ± 2.2</td>
</tr>
<tr>
<td>range</td>
<td>0.6 - 8.0</td>
<td>16.53 - 18.32</td>
</tr>
<tr>
<td>N, n</td>
<td>N=16, n=45</td>
<td>N=16, n=45</td>
</tr>
<tr>
<td>W_{fluc}</td>
<td>mean</td>
<td>1.9 ± 1.4</td>
</tr>
<tr>
<td>range</td>
<td>0.3 - 4.6</td>
<td>15.8 - 19.2</td>
</tr>
<tr>
<td>N, n</td>
<td>N=12, n=42</td>
<td>N=12, n=42</td>
</tr>
<tr>
<td>S_{const}</td>
<td>mean</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>range</td>
<td>0.1 - 0.9</td>
<td>22.0 - 27.4</td>
</tr>
<tr>
<td>N, n</td>
<td>N=10, n=41</td>
<td>N=10, n=41</td>
</tr>
<tr>
<td>S_{fluc}</td>
<td>mean</td>
<td>0.6 ± 0.0</td>
</tr>
<tr>
<td>range</td>
<td>0.5 - 1.0</td>
<td>19.4 - 23.6</td>
</tr>
<tr>
<td>N, n</td>
<td>N=8, n=36</td>
<td>N=8, n=36</td>
</tr>
</tbody>
</table>

Values of the mean are given as mean ± SD
Table 3.4: Summary of oxygen consumption values

<table>
<thead>
<tr>
<th>condition</th>
<th>daily (V_O_2) ((ml O_2 g^{-1} h^{-1}))</th>
<th>hibernation / torpor bouts (V_O_2) ((ml O_2 g^{-1} h^{-1}))</th>
<th>minimal (V_O_2) ((ml O_2 g^{-1} h^{-1}))</th>
<th>arousals / activity phases (V_O_2) ((ml O_2 g^{-1} h^{-1}))</th>
<th>maximal (V_O_2) ((ml O_2 g^{-1} h^{-1}))</th>
<th>warming (V_O_2) ((ml O_2 g^{-1} h^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_{\text{const}})</td>
<td>mean 0.18 ± 0.09</td>
<td>0.06 ± 0.02</td>
<td>0.03 ± 0.01</td>
<td>0.79 ± 0.12</td>
<td>1.73 ± 0.20</td>
<td>1.11 ± 0.23</td>
</tr>
<tr>
<td></td>
<td>range 0.11 - 0.29</td>
<td>0.03 - 0.11</td>
<td>0.01 - 0.06</td>
<td>0.66 - 1.07</td>
<td>1.47 - 2.16</td>
<td>0.77 - 1.51</td>
</tr>
<tr>
<td></td>
<td>N, n N=4, n=12</td>
<td>N=4, n=12</td>
<td>N=4, n=12</td>
<td>N=4, n=8</td>
<td>N=4, n=8</td>
<td>N=4, n=8</td>
</tr>
<tr>
<td>(W_{\text{fluc}})</td>
<td>mean 0.12 ± 0.04</td>
<td>0.10 ± 0.04</td>
<td>0.02 ± 0.02</td>
<td>0.26 ± 0.11</td>
<td>0.90 ± 0.55</td>
<td>0.17 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>range 0.06 - 0.18</td>
<td>0.04 - 0.19</td>
<td>0.01 - 0.05</td>
<td>0.08 - 0.63</td>
<td>0.11 - 3.09</td>
<td>0.04 - 0.53</td>
</tr>
<tr>
<td></td>
<td>N, n N=10, n=42</td>
<td>N=12, n=42</td>
<td>N=12, n=42</td>
<td>N=10, n=39</td>
<td>N=10, n=39</td>
<td>N=10, n=39</td>
</tr>
<tr>
<td>(S_{\text{const}})</td>
<td>mean 0.38 ± 0.21</td>
<td>0.18 ± 0.05</td>
<td>0.12 ± 0.05</td>
<td>0.55 ± 0.19</td>
<td>1.24 ± 0.55</td>
<td>0.73 ± 0.44</td>
</tr>
<tr>
<td></td>
<td>range 0.15 - 0.86</td>
<td>0.07 - 0.38</td>
<td>0.01 - 0.26</td>
<td>0.17 - 1.05</td>
<td>0.32 - 3.43</td>
<td>0.22 - 1.68</td>
</tr>
<tr>
<td></td>
<td>N, n N=9, n=34</td>
<td>N=9, n=34</td>
<td>N=9, n=34</td>
<td>N=9, n=26</td>
<td>N=9, n=26</td>
<td>N=9, n=26</td>
</tr>
<tr>
<td>(S_{\text{fluc}})</td>
<td>mean 0.16 ± 0.05</td>
<td>0.08 ± 0.04</td>
<td>0.03 ± 0.03</td>
<td>0.36 ± 0.12</td>
<td>0.95 ± 0.28</td>
<td>0.20 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>range 0.10 - 0.26</td>
<td>0.04 - 0.25</td>
<td>0.01 - 0.14</td>
<td>0.10 - 0.59</td>
<td>0.21 - 1.69</td>
<td>0.05 - 0.35</td>
</tr>
<tr>
<td></td>
<td>N, n N=8, n=32</td>
<td>N=8, n=32</td>
<td>N=8, n=32</td>
<td>N=8, n=33</td>
<td>N=8, n=33</td>
<td>N=8, n=33</td>
</tr>
</tbody>
</table>

Values of the mean are given as mean ± SD
3.2 Winter Chapter 3. Results

Table 3.5: Summary of statistics

<table>
<thead>
<tr>
<th>comparison</th>
<th>hibernation / torpor bouts</th>
<th>arousals / activity phases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>duration</td>
<td>T_b</td>
</tr>
<tr>
<td>$W_{\text{low}} - W_{\text{const}}$</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$W_{\text{low}} - S_{\text{const}}$</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$W_{\text{const}} - S_{\text{const}}$</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$S_{\text{fluc}} - W_{\text{fluc}}$</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>$S_{\text{fluc}} - S_{\text{fluc}}$</td>
<td>n.s.</td>
<td>***</td>
</tr>
</tbody>
</table>

$\star \star \star = p < 0.001$, $\star \star = p < 0.01$, $\star = p < 0.05$, n.s. = not significant
Chapter 4

Discussion

4.1 Methodological considerations

4.1.1 Definition of daily torpor and hibernation bouts

Although it seems obvious that hibernation bouts and arousals or daily torpor bouts and activity phases are different physiological states, the distinction between these remains arbitrary. Different definitions of what constitutes a daily torpor or hibernation bout are found in the literature. An early definition was that of Hudson (1978), who suggested that the torpid state was reached when T_b falls below 31 °C. Criteria that are based on the animal reaching a particular set temperature have been used in numerous studies (see Barclay et al. (2001) for an exhaustive review). However, such an approach disregards the fact that different species have different normothermic T_b. A fall from a normothermic T_b of 40 °C, e.g. birds, to <31 °C cannot be compared to a fall from a normothermic T_b of 33 °C as found in some marsupials.

Therefore, Barclay et al. (2001) proposed that once normothermic T_b is known, torpor should be defined as T_b below that level. This should be done at the least for the species, but far better for individuals. Although this approach controls for variation at the species and individual level, it is still not a useful definition for the work with *E. telfairi*. The lesser hedgehog tenrec relies entirely on daily torpor and hibernation and does not show prolonged phases of normothermy. Thus it is very difficult to obtain a credible estimate of normothermic T_b in this species.

The definition of normothermy used in the present study ($T_b > 28$ °C) is an arbitrary one and was chosen to gain an estimate of normothermic VO_2. Nonetheless, this definition of normothermy is unsuitable for discrimination between daily torpor/hibernation bouts and activity phases/arousals, particularly since maximum T_b during activity phases and arousals decreases with decreasing T_a and sometimes did not exceed 28 °C during the W_{low} experimental condition. To obtain a working definition for all experimental conditions, a different approach was taken. The animals were regarded as torpid when T_b was at or only slightly above T_a ($T_b - T_a \leq 2$ °C). Similar definitions had been used successfully by other researchers (e.g. Arlettaz et al., 2000;
4.1. METHODOLOGICAL CONSIDERATIONS

Although this is workable, such a definition has some drawbacks. The difference between T_b and T_a decreases at high T_a and when T_a approaches normothermic T_b this method no longer works. Nevertheless, the definition remained useful within the range of T_a employed in this study.

4.1.2 Body temperature measurements

The most accurate and reliable method to measure T_b in normothermic, as well as in hibernating animals is to implant temperature-sensitive data loggers into the abdominal cavity of the animals. But this requires anaesthesia and surgery, both potentially harmful for the animals. It was thus decided to measure T_b with externally attached temperature loggers (iButtons), that measure skin temperature rather than T_b. That externally attached devices can deliver accurate data has been shown on many occasions. A comparison of rectal versus skin temperature in big brown bats *Eptesicus fuscus* at T_a between 2 °C and 26 °C showed that skin temperature was a good estimate of rectal temperature in torpid and active animals, although there was a slight effect of T_a on skin temperature (Barclay et al., 1996). In that study skin temperature was never > 3.3 °C below rectal temperature and even small decreases in T_b could be accurately inferred from skin temperatures. Similar findings have been reported for the bat *Carollia perspicillata* (Audet and Thomas, 1996). Dausmann (2005) compared data from external collar temperature transmitters to that from implanted temperature-loggers in the fat-tailed dwarf lemur *Cheirogaleus medius*. She found that temperature data from collar transmitters can be used to estimate core T_b over a wide range of T_a and concluded that external devices are adequate for determining general patterns of T_b. This applies particularly to small animals that sleep or hibernate in a curled up position, like *E. telfairi*.

Scholl (1974) measured T_b in lesser hedgehog tenrecs with a monitor attached to the skin. He reported skin temperatures during activity phases of around 30 °C and the highest observed T_b was slightly below 33°C. This corresponds with the values observed during my study. In a recent study temperature loggers were implanted into three lesser hedgehog tenrecs (Lovegrove and Genin, 2008). That study was under semi-natural conditions wherein T_a fluctuated between 19.6 °C and 31.1 °C diurnally. They found a mean maximum T_b of 30.7 °C and the highest individual T_b was 36.2 °C. While their mean maximum T_b is similar to the mean maximum T_b in my study, the highest individual T_b observed by Lovegrove and Genin is considerably higher. If this is caused by the different T_b measurement method or by the higher T_a remains unclear. Nevertheless, the similarity of the observed values is a good indication of the reliability and accuracy of externally attached temperature loggers. The accuracy will be even higher when the animals are in torpor or hibernation because they sleep curled up into a ball thereby ensuring even better contact between skin and data logger.

Taping temperature loggers to the animal’s belly proved to be the best solution but it remained difficult to maintain consistent adhesion between the monitor and the skin. When temperature loggers are implanted into the abdomen or under the skin, they remain permanently
in place. However, if the loggers are just taped to the shaved skin, they will drop off eventually and the degree of adhesion needs to be monitored regularly.

Handling of the animals, i.e. picking them up and checking the taped loggers, did not seem to effect the animals’ behaviour or T_b. They continued with their behaviour after being put down, regardless of being active or in hibernation. Adhesion of the logger and tape during the hibernation period, when the animals were inactive for most of the time, was excellent and only rarely did the loggers require attention. During summer, when the animals were active and running through the cage, the loggers became unstuck after three to four days and had to be reinstalled. Nonetheless, doing so did not appear to interfere with their normal behaviour.

4.1.3 Measurement of energy consumption

Energy expenditure can be measured by direct calorimetry since all energy consumed is ultimately released as heat. But this method has many drawbacks and is not suitable for long-term measurements, as were required in this study. Hence another, indirect method had to be used to measure energy consumption.

Indirect calorimetry measures turnover rates of substances and products involved in metabolism. There are two methods that are routinely used, the doubly-labelled water method and measurement of respiratory gases. While the doubly-labelled water method is suitable for long-term measurements, it yields only an overall energy budget over the whole measurement and does not allow for any temporal resolution (Butler et al., 2004).

The analysis of respiratory gases, namely oxygen and carbon dioxide, has developed as the gold standard for measurements of metabolic rate when temporal resolution is required (Walsberg and Hoffman, 2005). It has been widely used in hibernation studies as well. In the present study an open-circuit respirometry system was used because it allowed us to use the animals’ nestboxes as respirometry chambers. This way they could remain in a familiar environment at least in part. That animals could leave the nestboxes on their own volition during the experiments rendered their natural behaviour possible but it also decreased the reliability of VO$_2$ data. I did not track when the animals left and entered the nestboxes. During the winter the animals were inactive and spent nearly the entire time in the nestboxes. The animals stayed in the nestboxes during most arousals and if they left the nestboxes, they did so only for a short time, i.e. a few minutes, to drink or urinate. Therefore, VO$_2$ measurements during winter should be accurate.

Summer measurements, on the other hand, most likely underestimate real VO$_2$. The animals were active throughout summer and entered and left their nestboxes frequently. Although data was excluded from analysis, when VO$_2$ fell to zero, indicating that the animals were not inside the nestbox, the time shortly after an animal left or entered the nestbox did not reflect real VO$_2$ since a new steady state within the nestbox had to be established. The available data cannot identify whether an animal left the nestbox only for a brief moment or left and entered it multiple times in close succession. Furthermore, the highest rate of VO$_2$ most likely occurred outside the nestbox, when the animals were running and climbing inside the cage. Maximal VO$_2$
can increase by 10-fold the BMR and even during moderate activity, \(VO_2 \) increases by three to four fold the BMR (Heldmaier, 2003). Oxygen consumption during the activity phase during summer is therefore most likely underestimated. Energy consumption during daily torpor bouts, when the animals were resting inside the nestbox, however, should be accurate.

4.2 Daily torpor during summer

Daily torpor is found in a wide range of mammalian orders, including marsupials, rodents, elephant shrews, primates, colugos, bats, insectivores and even-toed ungulates (Heldmaier et al., 2004). These animals represent a wide range of taxonomic as well as habitat and climatic affinities. Subsequently, torpor pattern, use and function differ between species and habitats.

4.2.1 Daily torpor pattern

Most species are facultative users of daily torpor, using it at certain times within a seasonal cycle or sporadically if needed. If daily torpor is predominantly used during one season of the year, it is normally the cold season, when \(T_a \) is low and food resources are scarce (Geiser, 2004). This is understandable since this hypometabolic state is primarily used for energy conservation (Boyer and Barnes, 1999). In other habitats, times with low food availability might coincide with the warm season, making this the daily torpor season. This is the case for the subtropical blossombat \(Sycomycteris australis \) that feeds on nectar and becomes torpid in the summer when nectar availability in its habitat is low (Coburn and Geiser, 1998). In contrast to temperate and arctic regions, where energy conservation is the predominant function of daily torpor, subtropical and tropical species benefit from saving water during daily torpor (Cryan and Wolf, 2003; Cooper et al., 2005; Schmid and Speakman, 2000). The gerbil \(Gerbillus pusillus \) enters torpor not only in response to food deprivation, but also in response to water deprivation (Buffenstein, 1985) and the mouse lemur \(Microcebus marinus \) has lower field water turnover rates when using torpor compared to normothermic individuals (Schmid and Speakman, 2000).

\(E. telfairi \) appears to be obliged to use torpor every day during summer. Animals entered torpor every single day measured, except for one female that remained normothermic for two days on two occasions. This is similar to the findings of other investigators, who also observed torpor in this species on every day that they were studied (Lovegrove and Genin, 2008; Scholl, 1974). There are only few reports of other species that rely similarly on daily torpor. Although the lesser long-eared bat \(Nyctophilus geoffroyi \) enters torpor every day in the field during summer (Turbill et al., 2003a,b), there are indications that this species is capable of longer stretches of normothermy (Geiser and Brigham, 2000).

Although both sexes of lesser hedgehog tenrecs do not lack the ability to maintain a high \(T_b \) for longer periods on principle, only females are known to elevate their \(T_b \) during both pregnancy and lactation to about 32°C to 34°C (Poppitt et al., 1994). The female in the present study was neither pregnant nor lactating, presenting the first evidence of extended normothermy outside.
4.2. DAILY TORPOR DURING SUMMER

Gestation and lactation in this species. While female lesser hedgehog tenrecs are evidently capable of longer stretches of normothermy, this has never been observed in males. Heterothermy in general is widespread amongst the Tenrecidae. Torpor or hibernation are found in spiny tenrecs (Lovegrove and Genin, 2008; Nicoll, 1986; Buffenstein and Salton, 2003), large-eared tenrecs (Stephenson and Racey, 1993a) and furred tenrecs (Stephenson, 1994; Stephenson and Racey, 1993b). Otter shrews have yet to be investigated. Besides being heterothermic, many species within the Tenrecidae also show limited or poorly developed thermoregulation, but can elevate their T_b and keep it relatively constant, i.e. homeothermic, during pregnancy and lactation (Racey and Stephenson, 1996).

Evolutionary, *E. telfairi* could have either lost or never developed the ability to maintain extended periods of elevated T_b. If the species lost this ability and as a result obligate heterothermy is a derived trait, what environmental conditions would favour the loss of homeothermy? No factor comes to mind immediately. The ability to employ torpor to minimize energy consumption under unfavourable conditions, i.e. bad weather or food and water shortages, is surely a major selective advantage. But being unable to maintain elevated T_b and extend foraging or mating under highly favourable conditions, when food and other resources are plentiful, does not seem to have any plausible benefit. Torpor is a viable adaptation to lower the risk of extinction in highly variable and quickly changing environments (Geiser and Turbill, 2009; Liow et al., 2009), but this occurs in both good and bad environmental conditions. It seems unlikely that Madagascar’s climate promoted the loss of homeothermy since no other Madagascan mammal thus far investigated behaves similarly. The division of the Madagascan climate into a dry and wet season (Jury, 2004) surely fostered the development of hibernation during the unfavourable dry season in some indigenous mammals, including *E. telfairi*, but this cannot account for *E. telfairi*’s thermogenic limitations and neither can factors associated with their habitat or diet.

It is therefore likely that the obligatory heterothermy and poor thermogenetic capacity found in *E. telfairi* is an ancestral trait. The occurrence of torpor in many different mammalian clades speaks strongly for a plesiomorphic origin of heterothermy (Lovegrove et al., 1999a) and as Grigg et al. (2004) argue, homeothermic endothermy evolved likely via heterothermy. From this perspective, *E. telfairi* can be considered a proto-endotherm, displaying the most primitive form of heterothermy (Lovegrove and Genin, 2008). How endothermy has evolved is still under intense debate and different concepts have been brought forward (Koteja, 2004). Apart from the popular aerobic capacity model (Bennett and Ruben, 1979) that explains endothermy as a by-product of maintaining a high level of perpetual locomotor activity, some newer models highlight the potential benefit of (intermittent) endothermy for parental care (Farmer, 2000; Koteja, 2000). Higher T_b can accelerate incubation and growth of the young and also enhance energy assimilation needed for lactation.

E. telfairi meets many of the criteria for a hypothetical, evolutionarily early species that can elevate its T_b briefly only during the activity phase and during the gestation period. The short-beaked echidna *Tachyglossus aculeatus* is another animal that is considered a proto-endotherm,
displaying primitive traits such as a strikingly heterothermic T_b pattern most of the time and shivering thermogenesis (Grigg et al., 2004). Similar to *E. telfairi* during gestation and lactation, short-beaked echidnas possess the capacity for homeothermic endothermy during incubation of their eggs (Beard and Grigg, 2000). Thus it can be assumed that the lack of normothermy in the lesser hedgehog tenrec is an ancestral trait, which, with its position within the basal afrotherian clade, argues for plesiomorphy of heterothermy in mammals.

4.2.2 Energy savings

Daily torpor is a very effective mechanism for saving energy. Metabolic rate during daily torpor bouts can be reduced by over 90%, yielding daily energy savings of 20-50% (Geiser and Ruf, 1995). The tropical hibernator *E. telfairi* lowered its MR by approximately 80% compared to normothermy, which is a considerable reduction given the high T_a and consequently high T_b during daily torpor bouts. Calculation of daily energy savings is not possible in the lesser hedgehog tenrec because it enters daily torpor every day. However, it is possible to compare the VO_2 of the female that remained normothermic for more than 10 h on two occasions, although VO_2 data is just available for one episode. During the normothermic 24 h period this animal consumed 0.96 $\text{mlO}_2\text{g}^{-1}\text{h}^{-1}$ compared to 0.65 $\text{mlO}_2\text{g}^{-1}\text{h}^{-1}$ on a daily torpor day. This suggests a daily energy saving of around 30%, whereas the significance of this calculation is doubtful due to the lack of longer normothermic periods in *E. telfairi*.

Nectar feeding bats of the species *Glossophaga soricina*, that enter torpor in response to energetic restrictions, lower their torpid MR to 5% of normothermic MR (Kelm and von Helversen, 2007). Another tropical bat, the northern blossom-bat *Macroglossus minimus*, can reduce its MR by 60-80% (Bartels et al., 1998). Although Madagascar’s lemurs do not use daily torpor during the wet season as *E. telfairi* does, some become torpid during the dry season in the winter. The pygmy mouse lemur *Microcebus myoxinus* uses daily torpor during the dry season and reduces its MR during torpor by 86% compared to normothermic RMR, yielding DEE reductions of 40% (Schmid et al., 2000). Similar reductions have been found in the gray mouse lemur *M. murinus* (Schmid, 1998). Compared to these tropical mammals, the observed MR reduction of 80% in *E. telfairi* is of the same magnitude, suggesting that daily torpor in the tropics is of the same energetic significance in different animals. Furthermore, it shows that tropical daily torpor can be as efficient as daily torpor in temperate and arctic regions.

4.2.3 Effects of fluctuating ambient temperature

There are few natural habitats that experience little or no fluctuations in diurnal T_a. Among these are marine and limnic habitats, that are well buffered by the high specific heat capacity of water, as well as caves and deep burrows. All other habitats are exposed to fluctuations in T_a sometimes of considerable magnitude. Therefore, an experimental regime of fluctuating T_a reflects the natural habitat of most mammals more accurately than a regime of constant T_a.

56
The lesser hedgehog tenrec, as an inhabitant of south-western Madagascar is exposed to diurnal \(T_a\) fluctuations of more than 10°C (Jury, 2004; Lovegrove and Genin, 2008). The experimental summer condition \(S_{fluc}\) imitates its natural habitat as it mimics the diurnal \(T_a\) fluctuations \(E.\) telfairi is exposed to. An experimental regime with fluctuating \(T_a\) allows an investigation of how the lesser hedgehog tenrec copes with similar fluctuations in its natural habitat. Furthermore, such a regime enables insights into if and how these animals utilize daily \(T_a\) fluctuations for passive warming and if fluctuations in \(T_a\) affect the pattern of hibernation. A constant \(T_a\) regime is, in effect, an artificial condition that would never be encountered by a hedgehog tenrec in the wild, unless it spends extended periods of time in a well-buffered place, such as an underground burrow or a deep tree hollow. Nonetheless, including this as an experimental treatment serves to demonstrate \(E.\) telfairi’s thermogenic capacities and daily torpor pattern in the absence of passive warming.

Maximal \(T_b\) during activity phases did not differ between the two summer conditions and was of the same magnitude as that reported for intraperitoneally-implanted temperature loggers by Lovegrove and Genin (2008). This is a good indication of the validity of our methods as discussed in section 4.1.2.

Fluctuating \(T_a\) influenced the timing of activity phases. As can be seen in the circular plots (see fig. 3.1.4), maximal \(T_b\), which acts as an indicator of the most active time of the activity phase, is better synchronised during the fluctuating \(T_a\) regime than the constant \(T_a\) regime. As \(E.\) telfairi follows a diel activity cycle, this must be triggered and synchronised by external zeitgebers, especially since timing of daily torpor is importance for its optimal effectiveness (Körntner and Geiser, 2000). Although photoperiod has a pronounced effect on the timing of daily torpor (Heldmaier et al., 1982, 1989), there are some species (e.g. the small marsupial dunnarts) that are insensitive to photoperiodic cues (Holloway and Geiser, 1996). In the stripe-faced dunnart, Smynthopsis macroura, daily fluctuations in \(T_a\) act as weak zeitgebers (Francis and Coleman, 1990). The results of the present study suggest that fluctuating \(T_a\) is an effective zeitgeber for the timing of the activity phase in the lesser hedgehog tenrec.

Although the duration of the activity phase for \(S_{fluc}\) of around 7 h was lower compared to 11 h for \(S_{const}\), this was not statistically significant. The difference could be caused by the different definition of activity phases and daily torpor bouts between fluctuating and constant \(T_a\) conditions. But the time spent normothermic within the activity phases was reduced by nearly 50% during \(S_{fluc}\) compared to \(S_{const}\). The reason for this reduction in normothermic time is unclear. Energetically, \(E.\) telfairi could afford to stay normothermic in fluctuating \(T_a\) conditions for longer because less energy is used for warming. That the observed response is reversed could indicate that the zeitgeber function of fluctuating \(T_a\) enables a more “orderly” daily torpor pattern. During constant \(T_a\) the thermal stimuli that synchronize the circadian clock are absent. This could not only affect the timing of the activity phase and maximal \(T_b\), but also the duration of the normothermic period.

While there was no effect of fluctuating \(T_a\) on \(T_b\) and duration of torpor bouts, \(VO_2\) was
strongly affected. Oxygen consumption during daily torpor bouts for S_{fluc} was less than half that for S_{const}, which is remarkable since there is no obvious reason for this reduction. A lower T_a and the consequentially lower T_b reduce VO_2 during hibernation bouts in the golden-mantled ground squirrel *Spermophilus lateralis*, demonstrating the temperature-dependence of VO_2 in the torpid state (Zimmer and Milsom, 2001). Lower VO_2 at lower T_a during daily torpor bouts has also been found in the tropical primate *M. myoxinus* (Schmid et al., 2000). However, although T_b during an average daily torpor bout under S_{fluc} ($21.1^\circ C$) was lower compared to S_{const} ($24.6^\circ C$), a T_b reduction of $4^\circ C$ is not sufficient to elicit such a big difference in VO_2. If the reduction of VO_2 was caused by temperature effects alone, this would imply a Q10 of over 10, which is considerably higher than the Q10s of 2 to 4 that are normally found in biological systems (Heldmaier, 2003). This indicates increased active metabolic inhibition at lower T_b. However, it is unclear why *E. telfairi* should show a great downregulation of its metabolism at lower T_b compared to higher T_b during daily torpor bouts. The answer could lie in the more synchronized and orderly daily torpor pattern during fluctuating T_a, that allows *E. telfairi* to achieve deeper daily torpor bouts compared to constant T_a conditions.

The lower energetic costs of the activity phase during fluctuating T_a can be better explained. Warming up from the torpid state to normothermic T_b is a costly process. During the hibernation season, most of the energy used is consumed for this process (Boyer and Barnes, 1999). Re-warming during daily torpor occurs each day and thus adds greatly to overall energy consumption compared to hibernation (Geiser and Ruf, 1995; Lovegrove et al., 1999b). Although MR during torpor can be as low as during hibernation (Lovegrove et al., 1999a; Wilz and Heldmaier, 2000), the frequent warming up increases the overall energy consumption considerable. Even small energy savings during re-warming will lead to considerable overall energy savings. Not surprisingly, many species use passive warming to reduce their warming costs by exploiting fluctuating T_a or radiant heat (Schmid et al., 2000; Lovegrove et al., 1999b; Kobbe and Dausmann, 2009; Dausmann et al., 2005; Mizlikazi et al., 2002).

The lesser hedgehog tenrec can also use daily T_a fluctuations very effectively. Warming costs, i.e. from the start of passive/active warming until reaching the normothermic T_b ($>28^\circ C$), were reduced by nearly 75% during S_{fluc} compared to S_{const} (0.20 $mlO_2.g^{-1}.h^{-1}$ vs. 0.73 $mlO_2.g^{-1}.h^{-1}$). Overall this resulted in a reduction of daily energy requirements of about 60%. The difference between T_b at the start of warming and the normothermic state T_b was nearly twice that of S_{fluc}, but warming was effectively a passive process using the high T_a ($28.1^\circ C$). Although active warming was more costly, it was also faster. During active warming the animals reached normothermy after only 1.7 h at a warming rate of 2.7 °C/h compared to nearly 6 h at a rate of 1.5 °C/h during S_{fluc}. Nonetheless it remains uncertain whether the benefits of faster re-warming, e.g. extending foraging time, can offset the higher costs of warming in a natural setting.

The observed reduction in energy expenditure of *E. telfairi* during passive heating corresponds well with the findings of other authors. Schmid et al. (2000) calculated the potential energy
4.3. HIBERNATION DURING WINTER

Two decades ago, hibernation was believed to occur exclusively in temperate and arctic mammals in order to cope with cold temperatures and food shortages during the winter. Only recently have mammals in the tropics be found to hibernate as well. With the advances in miniaturized temperature loggers, future field (and laboratory) studies are likely to reveal more tropical hibernators.

The Tenrecidae, as a family of tropical small to medium-sized mammals, were among the first tropical species in which hibernation was observed. The two species of streaked tenrecs *Hemicentetes nigriceps* and *H. semispinosus* hibernate during the austral winter (Stephenson and Racey, 1994) and the common tenrec *Tenrec ecaudatus* is also known to hibernate (Nicoll, 1985). Because of the widespread occurrence of hibernation in the subfamily Tenrecinae it is not surprising that *E. telfairi* is capable of hibernation, too.

4.3.1 Hibernation pattern

The lesser hedgehog tenrec shows a hibernation pattern comparable to that seen in arctic and temperate hibernators. Hibernation bouts of varying length are disrupted by periodic arousals. But despite this basic similarity, there are some key differences between hibernation patterns in tropical species and those observed in hibernators from colder climates.

Hibernation bouts are much longer in arctic and temperate species compared to the lesser hedgehog tenrec. The average duration of a hibernation bout in *E. telfairi* at 18°C was 4.3 d, with a longest duration of 8 d. This is considerably lower compared to arctic and temperate hibernators, in which an average hibernation bout might last for one to two weeks. Longer bouts of over a month are found in numerous species. The edible dormouse *Glis glis* can hibernate up to 34 d at a stretch without an arousal (Heldmaier, 2003) and even longer bouts of up to 45
d have been found in the European badger Meles meles (Fowler and Racey, 1988). The length and pattern of hibernation bouts of the only other tropical hibernators, the cheirogaleids, vary widely between different species. The gray mouse lemur M. murinus shows only short bouts with a maximum duration of 3.7 d (Schmid and Ganzhorn, 2009), whereas its close relative M. griseorufus has an average hibernation bout duration of 12 d and the longest hibernation bouts exceeded one month (Kobbe and Dausmann, 2009). However, only 20% of M. griseorufus hibernate, the other 80% use mainly daily torpor during the dry season. The longest continuous hibernation bouts of up to 70 d have been found in the fat-tailed dwarf lemur C. medius, but only if Ta exceeds >4°C regularly; if these conditions are not met, it uses shorter hibernation bouts with periodic arousals (Dausmann et al., 2005).

The duration of hibernation bouts varies not only between species, but is also influenced by dietary and ambient factors. Polysaturated fatty acids (PUFAs), or more specifically the ratio of n-6 to n-3 PUFAs, influence hibernation bout duration, likeliness of entering torpor and Tb during hibernation. Higher ratios of n-6 to n-3 PUFAs increasing the length of hibernation bouts and the propensity to enter hibernation (Ruf and Arnold, 2008). Ambient temperature also affects the duration of hibernation bouts. Decreasing Ta increased the length of hibernation bouts (French, 1982). A reduction in Ta from 8°C to 2°C doubled the length of hibernation bouts in the golden-mantled ground squirrel Spermophilus saturatus (Geiser and Kenagy, 1988). A similar effect was observed in the present study, where duration of hibernation bouts of the lesser hedgehog tenrec increased from 4.3 d to 8.5 d with a reduction in Ta from 18°C to 12°C. This suggests that the duration of hibernation bouts is temperature-dependent in tropical as well as temperate and arctic hibernators.

Although lower Ta lengthens the duration of hibernation bouts, it is unlikely that a further decrease in Ta will yield longer hibernation bouts in E. telfairi. The lesser hedgehog tenrec has a very poorly developed thermogenic capacity, possessing only very small amounts of brown adipose tissue and so relies largely on shivering for thermogenesis (Scholl, 1974). Together with the observation that maximal Tb decreased with decreasing Ta, this indicates that there is a lower thermal limit from which E. telfairi cannot actively arouse. The two “unsuccessful” arousals observed during Wlow suggest that the lower limit of Ta is about 12°C. Support for this comes from Scholl (1974), who noted that E. telfairi was not able to arouse successfully at a Ta of 11°C. This sets an ultimate lower limit of Ta for long-term survival in this species and restricts its potential habitats.

Besides the limitations of temperature-dependence of hibernation patterns on habitat choice in the tropical E. telfairi, such thermoregulatory plasticity would open adaptive advantages for opportunistic hibernators. As more field studies on hibernation are published, it is apparent that numerous tropical species use a flexible hibernation pattern, with some individuals within a population using hibernation, while others utilize daily torpor or stay euthermic (Kobbe and Dausmann, 2009; Lehmer et al., 2006; Schmid and Ganzhorn, 2009). This confirms that hibernation is not a fixed trait determined solely by physiological capacity but an adaptive behaviour.
controlled and modulated by individual and environmental factors.

It is therefore surprising that to date no field observations of inter-hibernation bout foraging trips have been made. This type of facultative hibernation (i.e. using hibernation bouts when environmental conditions are adverse and becoming active when they are good and when food/water availability is adequate) would be evolutionary and ecologically beneficial for hibernators, especially in unpredictable and changing environments. There would be several advantages to this approach. The most immediate is that it allows the animals to forage and replenish energy stores when food availability during the hibernation season is good, which will normally be when T_a is high. This leads to greater energy stores on emergence after the hibernation season and thus more energy can be invested in reproduction. It might also be possible that due to higher energy stores, the animal could emerge earlier. Furthermore, facultative hibernators would not have to cease their territorial activities completely.

That inter-hibernation bout foraging is possible can be seen in hibernators that hoard food. Many rodents, e.g. members form the families Cricetidae, Gliridae and Sciuridae, support much of the energy needed for hibernation by hoarded food and consume the stored food during arousals (Vander Wall, 1990). Because food has to be digested and metabolized during the arousals, these euthermic phases are four times longer than that observed in fat-storing hibernators (Humphries et al., 2001). In fat-storing hibernators, which store the energy within their bodies, the digestive system often undergoes marked atrophy during hibernation (Carey, 1995), but digestive capability can be restored quickly after prolonged periods of fasting (Pennisi, 2005).

Therefore, why haven’t facultative hibernators been found? It might be difficult for temperate and arctic hibernators to monitor and respond to favourable times during the hibernation season. Because most of these species hibernate in well-buffered burrows and caves (Buck and Barnes, 1999; Arnold et al., 1991) short-term changes in T_a might not be detectable. Furthermore, arctic and temperate habitats have a more predictable seasonal cycle and thus might offer only transient opportunities for facultative hibernation. This in turn means that hibernators form these regions might be better off to continuously hibernate the whole winter.

The situation is different in the tropics. Although wet and dry season are predictable as well in most places, the differences between these seasons are not as pronounced as in arctic and temperate regions. Tropical hibernators within their often poorly insulated hibernacula (Dausmann et al., 2005; Schmid, 1998) could potentially sense changes in T_a, or even humidity, more easily and take advantage of more favourable conditions. Stephenson and Racey (1994) described the lowland streaked tenrec *Hemicentetes semispinosus*, a facultative hibernator that frequently arouses during the winter to forage. However, these authors made no continuous measurements of T_b or VO_2 and did not present any details on pattern of hibernation or torpor. Nevertheless, this might be the first incidence of facultative hibernation. The closely related highland streaked tenrec *H. nigriceps* lives at higher altitudes and is thought to be an obligate hibernator. In contrast, the lowland streaked tenrec lives in a warmer habitat and remains active during favourable climatic conditions (Stephenson and Racey, 1994). This allows for
winter breeding and a greater annual reproductive output in this species.

Staying inactive in a tree-hollow has been suggested to increase the probability of survival because of a lowered predation risk (Schmid and Kappeler, 1998). This might be one reason why more tropical mammals do not use an approach similar to that found in \textit{H. semispinosus}. Alternatively it might be counterproductive for tropical species to become active at high \(T_a\) if they use hibernation mainly for water conservations because higher \(T_a\) will increase evaporative water loss. The mouse lemur \textit{M. griseorufus} shows that at least one tropical hibernator has the right physiological capacities to potentially use facultative hibernation. Members of the same population of this species behave differently to cope with the unpredictability of their habitat (Kobbe et al., in manuscript). Some individuals use sporadic short torpor bouts, others daily torpor, short hibernation bouts or even long hibernation bouts. The seasonal accumulation of body fat partly determines which option is employed. Furthermore, it remains possible for individuals to vary their reliance on each of these strategies. \textit{E. telfairi} might have similar behavioural options because it displays a variable hibernation pattern, even at the individual level, with the duration of hibernation/torpor bouts ranging from one day to over a week.

Another difference between tropical and arctic/temperate hibernation patterns is the duration of arousals. Re-warming from a hibernation bout is followed by a normothermic period of varying length before the animal resumes hibernation. Arousal duration in the ground squirrel \textit{Spermophilus citellus} is about 15 to 18 h (Luis and Hudson, 2006; Hut et al., 2002) but much longer arousals are found in the European marmot \textit{Marmota marmota} (Heldmaier et al., 2004). In marmots the re-warming period is followed by euthermic periods of one to two days. Long euthermic periods are required in food-hoarding hibernators to ingest and metabolize food and replenish energy stores (Humphries et al., 2001). Although arousal durations of more than 15 h seem to be the norm in temperate and arctic mammals, some small hibernators display shorter arousals, including the edible dormouse \textit{G. glis}, in which arousals last for only 9 h (Wilz and Heldmaier, 2000). Duration of arousal seems to be affected by \(T_a\), although not consistently. In ground squirrels of the species \textit{Spermophilus beldingi} and \textit{S. lateralis} longer arousals are found at higher \(T_a\) (French, 1982), but higher \(T_a\) leads to shorter arousals in the edible dormouse \textit{G. glis} (Wilz and Heldmaier, 2000). The arousal duration of \textit{E. telfairi} (11.8 h during the \(W_{low}\) regime and 9.3 h under \(W_{const}\)) is clearly shorter compared to arctic and temperate hibernators, but nevertheless high compared to other tropical hibernators. The duration of arousal of the primate \textit{C. medius} is less than 6 h (Dausmann et al., 2005) and can be as low as 3 h in the subtropical hibernating bat \textit{Nyctophilus bifax} (Stawski et al., 2009). It is not clear why tropical hibernators exhibit shorter arousals. A general effect of \(T_a\) is conceivable, especially since arousal duration is affected by \(T_a\). However, the duration of arousals in the lesser hedgehog tenrec was not affected by \(T_a\) and the bat \textit{N. bifax} even increases arousal duration with increasing \(T_a\) (Stawski et al., 2009).
4.3.2 Energy savings

Hibernation in temperate and arctic regions offers potentially enormous energy savings of up to 90% compared to the summer (Heldmaier et al., 2004). While MR during hibernation is on average reduced to 5-30% of BMR, it can be as little as 1% of RMR (Geiser and Ruf, 1995; Geiser, 2004) and energy savings of 98% compared to the euthermic state have been found in Richardson’s ground squirrel *Spermophilus richardsonii* (Wang, 1978). However, these animals hibernate at a very low T_a and show long hibernation bouts, and because most energy during hibernation is used during arousals (Boyer and Barnes, 1999), the energy savings are maximized.

In contrast tropical hibernators are characterized by opposite patterns of relatively high T_a during hibernation and usually short hibernation bouts, at least at constant T_a. Nevertheless, tropical hibernation has the potential to realize significant energy savings as well as its beneficial effect on water usage (Cooper et al., 2005; Schmid and Speakman, 2000). Metabolic rate during hibernation bouts in the lesser hedgehog tenrec was reduced to 0.06 ml O$_2$ · g$^{-1}$ · h$^{-1}$ during W_{const}, which is only 10% of normothermic MR. Even compared to MR during daily torpor bouts (S_{const}), this corresponds to a reduction of over 65%. This illustrates the energy-saving potential of tropical hibernation. Overall daily MR was reduced by 50% compared to the summer. Although this reduction did not reach statistical significance, it is potentially even larger since the summer VO$_2$ values are likely to be underestimates (see section 4.1.3 for full discussion). Another tropical hibernator from Madagascar, the fat-tailed dwarf lemur *C. medius* can lower its MR by 90% during hibernation bouts and reduces its energy requirements by 70% during hibernation (Daussmann et al., 2009). The observed MR reductions of *E. telfairi* are thus comparable to other tropical species.

The reason for the reduced energetic benefit of hibernation in the tropics compared to temperate and arctic regions is most likely the high T_a at which tropical mammals hibernate. Temperate and arctic hibernators display a constant MR over a wide range of T_a and thus T_b. This temperature independence during steady-state hibernation bouts has been found in marmots, eastern pygmy possums and ground squirrels (Arnold et al., 1991; Song et al., 1997; Buck and Barnes, 2000). Metabolic rate thus stays stable over a range of T_a. In contrast to BMR, there is no allometric relation between the MR during hibernation bout and body size. Metabolic rate during hibernation bouts appears to be a constant at 0.03 ml O$_2$ · g$^{-1}$ · h$^{-1}$ for all hibernators (Heldmaier et al., 2004). If T_a falls below the thermally optimal temperature range, MR increases because the animals actively regulate their T_b which is now markedly above T_a (Ortmann and Heldmaier, 2000; Buck and Barnes, 2000). The same happens when T_a exceeds the optimal thermal zone (Ortmann and Heldmaier, 2000; Buck and Barnes, 2000), indicating that temperature independence of MR occurs only within a certain temperature range. However, some species do not display temperature independence of MR. The ground squirrel *S. lateralis* continuously increases its MR during hibernation when T_a is increased and at 14°C consumes nearly three times as much oxygen as it does at 5°C (Zimmer and Milsom, 2001).

Metabolic rate during hibernation in tropical mammals is noticeably higher. The lesser
4.3. HIBERNATION DURING WINTER

Hedgehog tenrec consumed 0.06 mlO\textsubscript{2}g-1h-1 during hibernation bouts (W\textsubscript{const}), which is twice as much as temperate and arctic hibernators, whereas the minimum observed value of 0.03 mlO\textsubscript{2}g-1h-1 was similar to that in non-tropical species. The tropical dwarf lemur C. medius also consumes 0.06 mlO\textsubscript{2}g-1h-1 during hibernation bouts (Dausmann et al., 2009). This is an indication that tropical hibernators in general consume more energy during hibernation.

Whether tropical hibernation at low T\textsubscript{a} is more efficient than at high T\textsubscript{a} remains uncertain because there are no data on VO\textsubscript{2} for the W\textsubscript{low} regime. However, there is some indirect evidence on the subject. First, MR during hibernation is temperature-dependent. When animals were hibernating under the fluctuating T\textsubscript{a} regime, VO\textsubscript{2} correlated with T\textsubscript{a} and was lower during the colder night phase compared to the warmer day phase. However in a manner similar to that seen in arctic and temperate hibernators, VO\textsubscript{2} stayed constant over the range of T\textsubscript{a} from about 13°C to 20°C and increased if T\textsubscript{a} rose above that range of T\textsubscript{a} (see fig. 3.2.10). Further evidence comes from observations that VO\textsubscript{2} during hibernation bouts under the W\textsubscript{const} regime was markedly higher than VO\textsubscript{2} during daily torpor bouts under the S\textsubscript{const} regime. Together with the longer duration of hibernation bouts at lower T\textsubscript{a} and thus fewer, energetically-costly arousals, it is likely that it is energetically favourable for E. telfairi to hibernate at lower T\textsubscript{a}.

4.3.3 Effects of fluctuating ambient temperature

One characteristic of tropical hibernation is that it occurs at high T\textsubscript{a}. A second is frequency of significant fluctuations of daily T\textsubscript{a}. Tropical hibernators can experience daily temperature fluctuations in their hibernaculum of over 20°C (Kobbe and Dausmann, 2009; Dausmann et al., 2005). The amplitude of these fluctuations is not only determined by changes in air temperature, but also by the insulating properties of the hibernaculum. Tree-hollows, which are often used as hibernacula by tropical mammals, display different insulating properties depending on the the size and species of tree (Dausmann et al., 2005; Schmid, 1998). The magnitude of changes in daily T\textsubscript{a} during hibernation is thus largely determined by the choice of hibernaculum. E. telfairi hibernates in tree-hollows, under logs on the ground or beneath the bark of a tree (Eisenberg and Gould, 1970). It seems to be quite opportunistic in its choice of hibernaculum and should therefore experience considerable fluctuations of T\textsubscript{a} in the wild.

Fluctuating T\textsubscript{a} can influence the pattern of hibernation, especially the occurrence of arousals. The factors triggering an arousal are not yet understood, but it has been suggested that T\textsubscript{a} triggers an arousal if it exceeds a critical value (Körtner and Geiser, 2000). This critical arousal temperature is not fixed for a given species, but can vary individually as well as through time (Turbill et al., 2008). A critical arousal temperature has been observed in a tropical hibernator, the mouse lemur M. murinus (Schmid, 1998). M. murinus can maintain torpor only below a threshold temperature of 28°C. If it is passively heated above this temperature, it actively arouses.

The existence of a critical arousal temperature for E. telfairi was not examined in the present study. Nevertheless, fluctuating T\textsubscript{a} had some effect on the occurrence of arousals. The average
duration of hibernation bouts was reduced by over 50% under the W_{fluc} regime compared to the W_{const} regime and thus the frequency of arousals increased. This suggests that there might also be a critical arousal temperature for the lesser hedgehog tenrec. A daily maximum T_a of 24°C, as used during W_{fluc}, might not have been sufficiently high to trigger an arousal, but the recurring high T_a evidently did increase the propensity for arousals. An altogether different hibernation pattern is found in the dwarf lemur *C. medius* (Daumann et al., 2005, 2004). Some individuals of that species hibernate in poorly insulated tree hollows and so experience large fluctuations in T_a. If this primate is passively heated to a T_b of over 30°C on a regular basis, it continues to hibernate for weeks or even months without any arousals. If *C. medius* chooses tree hollows with good insulating properties, and thus experiences less pronounced T_a fluctuations, it displays periodic arousals as do other hibernators. Whether a similar pattern could be found in the lesser hedgehog tenrec as well should be investigated in future studies.

As has been already described (section 4.2.3), re-warming costs can be largely reduced by passive heating (Schmid et al., 2000; Lovegrove et al., 1999b; Mziikazi et al., 2002), which is especially beneficial because most energy during the hibernation season is consumed during arousals (Boyé and Barnes, 1999). Despite being well-known for its energetic benefit during daily torpor, the effect of fluctuating T_a on arousals during hibernation has not been studied in detail. However, there are sources of external heat beyond that of ambient air or radiation. Young alpine marmots use the external heat provided by their parents to reduce the costs of re-warming (Arnold, 1993). Although this example demonstrates that passive warming is not limited to tropical hibernators, passive heating should occur most frequently in the tropics because of the high T_a fluctuations found there.

Australian bats of the genus *Nyctophilus*, that hibernate in a mild climate, use the daily T_a cycle to assist their arousals (Turbill and Geiser, 2008). They usually arouse after T_b has been substantially raised by external heat. *E. telfairi* follows a similar pattern and arouses when T_b has been increased passively by T_a. This is energetically advantageous and reduces arousal costs by nearly 70%. If we consider only the warming phase up to normothermic T_b, the energy savings amount to 85%, again highlighting the enormous benefit of passive heating. Further evidence of the energetic benefits comes from the observation of higher maximal T_b that were attained during arousals. Although the difference did not reach statistical significance, maximal arousal T_b was 1.5°C higher during the W_{fluc} regime compared to the W_{const} regime. This could be particularly advantageous in a species that has only a limited thermoregulatory capacity, as the lesser hedgehog tenrec.

In spite of the large effect of fluctuating T_a on arousal costs, average daily VO_2 was not affected and did not differ when compared to that observed under the W_{const} regime. Because hibernation bout VO_2 was the same for both winter conditions, the lack of effect of fluctuating T_a on daily energy requirements can only be attributed to the higher frequency of arousals during W_{fluc}. Although both the frequency and cost of arousal are affected by fluctuating T_a, this has no effect on overall energy expenditure. A similar result was observed in a field study by
Dausmann et al. (2009), who compared the energetic costs of hibernation by the lemur *C. medius* in tree hollows that varied in their insulative properties. Although the amplitude of fluctuations in T_a ranged from over 20°C to only 2°C, this had no effect on overall energy consumption. It can therefore be assumed that the choice of hibernaculum, i.e. well- versus poorly-insulated, is of no apparent energetic importance for *E. telfairi* as well.
Chapter 5

Summary

Energy in the form of food is an important resource for animals. This is especially true for mammals which use considerably more energy than ectotherms. Evolution has thus led to diverse adaptations that lower energy consumption. Mammals from temperate and arctic regions often use torpor and hibernation to save energy. Torpor and hibernation are physiological states that are characterized by a reduced body temperature and metabolic rate. Hibernation bouts can last from several days up to several weeks and are interrupted by short and energetically-costly arousals during which the animals warm until they reach normal body temperatures.

However, animals from the tropics can use torpor and hibernation as well, albeit at higher ambient temperatures. These higher ambient temperatures could affect energy consumption. Depending on the choice of hibernaculum, tropical hibernators are not only exposed to high ambient temperatures but also to significant daily fluctuations of ambient temperature. This in turn could affect the frequency as well as the energetic costs of arousals since fluctuating ambient temperatures offer the opportunity of passive heating to aid restoration of normal body temperature.

The effect of ambient temperature on hibernation by a tropical mammal, the lesser hedgehog tenrec (Echinops telfairi), was investigated. E. telfairi is a small insectivore weighing 140 g, that is endemic to Madagascar and superficially resembles a European hedgehog. From a total stock of 27 animals, a randomized sample of tenrecs was exposed to different ambient temperatures in a climate chamber. The experimental regimes included constant and fluctuating ambient temperatures both during the summer (S_{const}: 25°C and S_{fluc}: 20-30°C) and during the winter (W_{const}: 20°C, W_{low}: 15°C and W_{fluc}: 15-25°C). Energy consumption of the animals was measured by respirometry while the animals stayed within nestboxes in the climate chamber. Body temperature was measured with miniaturized temperature loggers (iButton), that were taped to the animals’ abdomen.

E. telfairi can be considered an obligate heterotherm because all animals entered torpor or hibernated on every day, except for one female that remained normothermic for more than 24 h.
on two occasions. Obligatory heterothermy and a lack of thermogenic capacity in this species are likely an ancestral trait. Body temperature in the summer followed ambient temperature closely during daily torpor bouts and reached maxima of 30.8°C (S_{const}) and 29.8°C (S_{fluc}) during the activity phase. Normothermic oxygen consumption was 0.67 $mlO_2 g^{-1} h^{-1}$ for S_{const} and 0.43 $mlO_2 g^{-1} h^{-1}$ for S_{fluc}. During torpor bouts, oxygen consumption was reduced by around 80% to 0.18 $mlO_2 g^{-1} h^{-1}$ and 0.08 $mlO_2 g^{-1} h^{-1}$ for S_{const} and S_{fluc}, respectively. Overall daily energy expenditure was 0.38 $mlO_2 g^{-1} h^{-1}$ for S_{const} and 0.16 $mlO_2 g^{-1} h^{-1}$ for S_{fluc}. Re-warming under regimes of fluctuating ambient temperature was largely a passive process, reducing the cost of re-warming by 75%. This led to a reduction of 60% in overall energy requirements. Furthermore, fluctuating ambient temperature acted as a zeitgeber during daily torpor and triggered and/or synchronized the activity phases.

The lesser hedgehog tenrecs hibernated during winter and hibernation bout duration was negatively correlated with ambient temperature. The duration of hibernation bouts averaged 4.3 d under the W_{const} regime and 8.5 d under W_{low} with the highest observed bout lasting 12 d. In the fluctuating ambient temperature condition, the duration of hibernation bouts was reduced by 50% to 1.9 d. During hibernation, body temperature followed ambient temperature closely. Body temperature maxima during arousals were 28.1°C and 29.5°C under the W_{const} and W_{fluc} regimes, respectively. Maximum body temperature at the lowest ambient temperature (15°C) dropped to 19.6°C, partly due to unsuccessful arousals. This suggests the existence of a lower temperature limit below which $E. \text{telfairi}$ cannot successfully arouse and thus suggests a limited thermoregulatory ability. Oxygen consumption during hibernation was reduced to 0.06 $mlO_2 g^{-1} h^{-1}$ and 0.10 $mlO_2 g^{-1} h^{-1}$ for W_{const} and W_{fluc}, respectively. Although energy savings by hibernation in tropical species appears lower than in arctic and temperate hibernators, the overall energy requirements were still reduced by 50% compared to the summer. The reduced effectiveness of tropical hibernation is presumably caused by the higher ambient temperature at which tropical mammals hibernate. Warming costs during arousals in fluctuating ambient temperature were reduced by 85%. Although passive heating reduced the energetic cost of arousals, overall energy consumption was unaffected by fluctuating ambient temperatures because of the more frequent arousals.
Zusammenfassung

Doch auch tropische Tiere nutzen Torpor und Winterschlaf, allerdings bei höheren Umgebungstemperaturen, welche sich auf den Energieverbrauch der Tiere auswirken können. Abhängig von der Wahl ihres Winterschlafquartiers sind tropische Winterschläfer nicht nur hohen, sondern täglich stark fluktuierenden Umgebungstemperaturen ausgesetzt. Dies kann sich nicht nur auf die Häufigkeit, sondern auch auf die energetischen Kosten der Aufwachphasen auswirken, da fluktuierende Umgebungstemperaturen die Möglichkeit zur passiven Erwärmung bieten.

E. telfairi kann als obligat heterotherm bezeichnet werden. Alle Tiere gingen jeden Tag entweder in Torpor oder Winterschlaf, mit der Ausnahme eines Weibchens welches zweimal länger als 24 Stunden normotherm war. Die obligate Heterothermie und die fehlende thermogenetische Kapazität sind wahrscheinlich ursprüngliche Merkmale. Während des Torpor im Sommer folgte die Körpertemperatur der Umgebungstemperatur und erreichte Maxima von 30,8°C (S_{const}) und 29,8°C (S_{fluc}) während der Aktivitätsphase. Der normotherme Sauerstoffverbrauch lag bei 0,67 mlO$_2$g$^{-1}$h$^{-1}$ für S_{const} und 0,43 mlO$_2$g$^{-1}$h$^{-1}$ für S_{fluc}. Während der Torporphasen wurde der Sauerstoffverbrauch um 80% auf 0,18 mlO$_2$g$^{-1}$h$^{-1}$ und 0,08 mlO$_2$g$^{-1}$h$^{-1}$ für S_{const} beziehungsweise S_{fluc} reduziert. Der Gesamtenergieverbrauch pro Tag lag 0,38 mlO$_2$g$^{-1}$h$^{-1}$ (S_{const}) und 0,16 mlO$_2$g$^{-1}$h$^{-1}$ (S_{fluc}). Das Aufwärmen während der Aktivitätsphasen war unter fluktuierenden Umgebungstemperaturen zum großen Teil ein passiver Prozess. Dies führte zu einer Reduzierung der Aufwärmmkosten um 75% und erniedrigte den Gesamtenergieverbrauch um 60%. Des weiteren fungierte die fluktuierende Umgebungstemperatur als ein Zeitgeber während des Torpor und synchronisierte die Aktivitätsphasen.

Der kleine Igeltenrek hielt während der Wintermonate Winterschlaf, wobei die Dauer der Winterschlafphasen negativ mit der Umgebungstemperatur korrelierte. Im Durchschnitt dauerten die Winterschlafphasen 4,3 Tage für W_{const} und 8,5 Tage für W_{low}, wobei die längste gemessene Winterschlafphase 12 Tage betrug. Im Versuchsansatz mit fluktuierenden Umgebungstemperaturen verringerte sich die Dauer der Winterschlafphasen um 50% auf 1,9 Tage. Während des Winterschlafes folgte die Körpertemperatur der Umgebungstemperatur und erreichte in den Aufwachphasen Maxima von 28,1°C und 29,5°C für W_{const}, bzw. W_{fluc}. Die maximale Körpertemperatur während des kältesten Versuchsansatzes (15°C) fiel auf 19,6°C, teilweise durch unerfolgreiche Aufwärmmversuche. Dies legt ein unteres Temperaturlimit nahe, unterhalb dessen sich E. telfairi nicht mehr erfolgreich aufwärmen kann und welches für eine eingeschränkte Fähigkeit zur Thermoregulation spricht. Der Sauerstoffverbrauch während der Winterschlafphasen fiel auf 0,06 mlO$_2$g$^{-1}$h$^{-1}$ für W_{const}, bzw. 0,10 mlO$_2$g$^{-1}$h$^{-1}$ für W_{fluc} ab. Obwohl tropische Winterschlaf im Vergleich zu temperatem oder arktischem Winterschlaf weniger effizient ist, wurde der Gesamtenergieverbrauch im Vergleich zum Sommer um 50% reduziert. Die verringerte Effektivität von tropischem Winterschlaf ist vermutlich durch die höheren Umgebungstemperaturen bedingt, unter denen tropische Säugetiere Winterschlaf halten. Die Kosten der Erwärmung während der Aufwachphasen wurden durch fluktuierende Temperaturen um 85% erniedrigt. Obwohl passives Aufwärmen die Energiekosten für die Aufwachphasen senkte, blieb der Gesamtenergieverbrauch durch das häufigere Auftreten von Aufwachphasen unter fluktuierenden Temperaturbedingungen unbeeinträchtigt.
Acknowledgements

During the seemingly endless years that this thesis took to reach completion, a lot of people contributed in various ways to my work.

Thank you very much indeed!

Special thanks go to the following people:

Prof. Kathrin Dausmann, for supervising my PhD project(s), for scientific expertise and advice during the experiments and writing of this thesis.

Prof. Jörg Ganzhorn, for helpful advice and support throughout my time as a PhD student.

Prof. William Foley, for reviewing the thesis and checking the English (Australian) grammar and spelling.

Prof. Heinz Künzle, for donating the hedgehog tenrecs to us and for advice on keeping them.

Prof. Tassilo Feuerer, for his generosity to let us use his climate chambers for considerable time.

Dr. Bastian Tiemann, for veterinary advice and treatment.

Susanne Kobbe, for scientific and non-scientific conservations and advice, and for sharing an office with me.

All PhD and diploma students, for their help in the lab, their advice and comments and for keeping me company over the years.

My family, my girlfriend and my friends, for their love and support throughout my studies.
Bibliography

BIBLIOGRAPHY

76

Kobbe, S., Ganzhorn, J., and Dausmann, K. Malagasy mouse lemurs show flexible hibernation behaviour as an adaptation to unpredictable environments.

