Nachweis des über den Thromboxanrezeptor vermittelten Effekts von Isoprostanen auf die Angiogenese durch lentiviralen Knockdown

Dissertation
zur Erlangung des Grades eines Doktors der Humanmedizin an der Medizinischen Fakultät der Universität Hamburg

vorgelegt von

Raihana Taheri
aus Hamburg

Hamburg 2010
Angenommen von der Medizinischen Fakultät der Universität Hamburg am: 08.11.2010

Veröffentlicht mit Genehmigung der Medizinischen Fakultät der Universität Hamburg.

Prüfungsausschuss, der/die Vorsitzende: Prof. Dr. R. Böger

Prüfungsausschuss, zweite/r Gutachter/in: PD Dr. K. Sydow

Prüfungsausschuss, dritte/r Gutachter/in: PD Dr. J. Heeren
Inhalt

<table>
<thead>
<tr>
<th>1</th>
<th>Einleitung</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Oxidativer Stress</td>
<td>6</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Reaktive Sauerstoffspezies (ROS)</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Isoprostan</td>
<td>8</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Mechanismus der Bildung von Isoprostanen</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2</td>
<td>F_{2}-Isoprostan und ihr Prototyp 8-iso-PGF_{2}</td>
<td>9</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Bedeutung von Isoprostanen als Marker von oxidativem Stress</td>
<td>10</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Bedeutung von Isoprostanen als Mediatoren von oxidativem Stress</td>
<td>12</td>
</tr>
<tr>
<td>1.3</td>
<td>Der Thromboxanrezeptor (TBXA2R)</td>
<td>13</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Aufbau und Verteilung des TBXA2R</td>
<td>14</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Signaltransduktionswege des TBXA2R</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>RNA-Interferenz (RNAi)</td>
<td>17</td>
</tr>
<tr>
<td>1.5</td>
<td>Lentiviraler Gentransfer</td>
<td>19</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Lentivirale Gene und ihre Proteine</td>
<td>20</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Herstellung replikationsinkompetenter Lentiviren</td>
<td>20</td>
</tr>
<tr>
<td>1.6</td>
<td>Fragestellung</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Materialien</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Substanzen und Kits</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Verbrauchsmaterialien</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Geräte</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Zellen und Zellkultur</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>Puffer und Lösungen</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Methoden</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>PCR</td>
<td>37</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Primer</td>
<td>37</td>
</tr>
<tr>
<td>3.1.2</td>
<td>PCR-Programm</td>
<td>38</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Gelelektrophorese</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>Quantitative Messung von RNA</td>
<td>39</td>
</tr>
<tr>
<td>3.2.1</td>
<td>mRNA-Isolierung aus Zellen</td>
<td>39</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Reverse Transkription der préparierten RNA</td>
<td>40</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Real-Time-PCR</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Herstellung chemisch kompetenter E. coli-Zellen</td>
<td>42</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Transformation</td>
<td>42</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Präparation von Plasmid-DNA in kleinem Maßstab (Minipräp)</td>
<td>43</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Restriktionsanalyse</td>
<td>43</td>
</tr>
</tbody>
</table>
3.3.4 Präparation von Plasmid-DNA in großem Maßstab (Maxipräp)44
3.4 Zellkultur ..44
3.4.1 Endothel- und HEK-Zellen ..44
3.4.2 Einrieren von Zellen (Kryokultur) ..45
3.4.3 Transfektion von Zellen..46
3.5 Knockdown des Thromboxanrezeptors mit shRNA46
3.5.1 Auswahl einer geeigneten shRNA Sequenz46
3.5.2 Generierung lentiviraler Überstände zur Transduktion von Endothelzellen ...47
3.5.3 Transduktion von Endothelzellen ...48
3.5.4 Vektorkarten, der für die Lentivirus Produktion verwendeten Plasmide ..49
3.6 Generierung einer stabilen, den TBXA2-Rezeptorsubtyp α exprimierenden Zelllinie ..51
3.6.1 Transfektion von HEK 293 Zellen ...51
3.6.2 Selektion mit Geneticin ..51
3.7 Western Blot ..53
3.7.1 Proteingewinnung ...53
3.7.2 Proteinbestimmung nach Bradford ...53
3.7.3 SDS-Polyacrylamid-Gelelektrophorese54
3.7.4 Probenvorbereitung ...54
3.7.5 Blotten der Proteine auf Nitrocellulosemembran55
3.7.6 Proteinmembranfärbung mit Ponceau S56
3.7.7 Blocken der Membran ...56
3.7.8 Immunfärbung der Membran ..56
3.8 Migration und Kapillardöhrenbildung ..57
3.8.1 Durchführung des Migrations-Assays57
3.8.2 Durchführung des Matrigel Tube Formation Assays58
3.9 Statistische Analyse ...59
4 Ergebnisse ..60
4.1.1 Identifikation des TBXA2R auf mRNA Ebene und der TBXA2R-Subtypen in HDMECs ..60
4.1.2 Nachweis des lentiviralen Knockdowns des TBXA2-Rezeptors auf mRNA-Ebene ...60
4.1.3 Nachweis des lentiviralen Knockdown des TBXA2-Rezeptors auf Proteinebene ...61
4.2 Effekte von 8-iso-PGF$_{2\alpha}$ nach lentiviralem Knockdown des TBXA2R62
4.2.1 Effekte von 8-iso-PGF$_{2\alpha}$ und dem TBXA2-Rezeptorantagonist SQ 29548 auf die VEGF-induzierte Kapillardöhrenbildung von unbehandelten HCAECs ...62
4.2.2 Effekte von 8-iso-PGF\(_{2\alpha}\) auf die Kapillarröhrenbildung nach lentiviraler Transduktion mit \(\text{shRNA}\) gegen den TBXA2R ..63
4.2.3 Effekte von TBXA2R-Antagonisten auf die durch 8-iso-PGF\(_{2\alpha}\) reduzierte VEGF-induzierte Migration von HDMECs65
4.2.4 Effekte von 8-iso-PGF\(_{2\alpha}\) auf die Migration nach lentiviraler Transduktion mit \(\text{shRNA}\) gegen den TBXA2R ..66
4.3 Generierung einer stabilen, den TBXA2-Rezeptorsubtyp \(\alpha\) exprimierenden Zelllinie ...67
4.3.1 Nachweis des \(\alpha\) Subtypes des TBXA2-Rezeptorse auf mRNA- und Proteinebene ..68

5 Diskussion ..70
5.1.1 Einfluss von 8-iso-PGF\(_{2\alpha}\) auf die VEGF- induzierte Migration und Kapillarröhrenbildung \textit{in vitro} ...70
5.1.2 Einfluss von 8-iso-PGF\(_{2\alpha}\) auf die VEGF-induzierte Migration und Kapillarröhrenbildung nach lentiviralem Knockdown des TBXA2R72
5.1.3 Bedeutung des anti-angiogenen Signalwegs von Isoprostanen über den TBXA2R ..73
5.1.4 Bedeutung der beiden TBXA2-Rezeptorsubtypen – Etablierung einer stabilen, den Subtyp \(\alpha\) exprimierenden Zelllinie75
5.1.5 Therapeutische Bedeutung des über den TBXA2R-vermittelten anti-angiogenen Effekt von Isoprostanen ..76

6 Zusammenfassung ...79
7 Abkürzungsverzeichnis ..80
8 Literaturverzeichnis ..84
9 Lebenslauf ..88
10 Publikationen ..99
11 Eidesstattliche Versicherung ...100
12 Danksagung ..101
1 Einleitung

1.1 Oxidativer Stress

Als Mediatoren von oxidativem Stress und damit von potentiell oxidativem Schaden, werden reaktive Sauerstoffspezies (reactive oxygen species, ROS) angesehen. Reaktive Sauerstoffspezies entstehen in aeroben Organismen während physiologischer zellulärer Vorgänge. ROS können mit Lipiden, Proteine und DNA reagieren und diese schädigen (8). Die Zelle besitzt zur Abwehr
des oxidativen Schadens verschiedene antioxidative Mechanismen, die auf unterschiedliche Weise reaktive Sauerstoffspezies abfangen und damit die unkontrollierte Oxidation von Biomolekülen verhindern (9).

1.1.1 Reaktive Sauerstoffspezies (ROS)

1.2 Isoprostane

1.2.1 Mechanismus der Bildung von Isoprostanen

Neben der Bildung von F₂-Isoprostanen, ist auch die Bildung von D- und E-Ring Isoprostanen aus dem PGH₂-ähnlichem Endoperoxid durch Umlagerung in vivo bekannt (17). D- und E-Ring-Isoprostanen bilden durch Dehydratisierung weitere Untergruppen, die A₂- und J₂-Isoprostane (18). Eine weitere Klasse der Isoprostane sind Isothromboxane, die entsprechend der Bildung von F₂/D₂ und E₂-

1.2.2 F₂-Isoprostane und ihr Prototyp 8-iso-PGF₂α

\[\text{8-iso-PGF}_2^{\alpha} \hspace{1cm} \text{8-iso-PGE}_2 \]

Abb. 1.1 Chemische Strukturformeln von 8-iso-PGF₂α und 8-iso-PGE₂.
Isoprostane finden sich im Blutplasma in freier und an Phospholipide veresterter Form. Freie Isoprostane werden in der Niere filtriert und mit dem Urin ausgeschieden. Die Referenzmethode zur Quantifizierung von Isoprostanen ist die GC-MS (26). Sie ermöglicht im NICI- (negative ion chemical ionization) Modus eine zuverlässige Messung von 8-iso-PGF$_{2\alpha}$ bis zu einer Detektionsgrenze von 5 pg/ml (27). Da die Massenspektrometrie eine kostenintensive und zeitaufwändige analytische Methode ist, wurden Immunoassays zur Messung von Isoprostanen entwickelt, wie der Radioimmunoassay (RIA) und der Enzym immunoassay (EIA). Vergleichende Studien für die Messung von 8-iso-PGF$_{2\alpha}$ in Urinproben zeigen eine Korrelation zwischen EIA und GC-MS von $r=0,63$ und $r=0,86$ (26), (27). Die mit EIA gemessenen Werte liegen jedoch durchweg über denjenigen, die mit GC-MS gemessen wurden und zeigen sowohl einen proportionalen als auch einen konstanten Fehler.

1.2.3 Bedeutung von Isoprostanen als Marker von oxidativem Stress

(COPD) (36), korreliert die gemessene 8-iso-PGF$_{2\alpha}$-Konzentration in der Ausatemluft mit dem Schweregrad der Entzündung. Bei der Herzinsuffizienz korreliert die Konzentration von perikardialen F$_2$-Isoprostanen mit ihrem funktionellen Schweregrad und ist assoziiert mit der Ventrikeldilatation. Dies deutet auf eine wichtige Rolle von oxidativem Stress im Remodelling der Ventrikel und der Progression der Herzinsuffizienz hin (124).

Kardiovaskuläre Erkrankungen

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>(37)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arteriosklerose</td>
<td></td>
</tr>
<tr>
<td>Ischämischer-/Reperfusionsschaden</td>
<td>(38), (39)</td>
</tr>
<tr>
<td>Koronare Herzkrankheit</td>
<td>(40)</td>
</tr>
<tr>
<td>Herzinsuffizienz</td>
<td>(41)</td>
</tr>
<tr>
<td>Renovaskuläre Erkrankungen</td>
<td>(42)</td>
</tr>
</tbody>
</table>

Lungenerkrankungen

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>(34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma</td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>(43)</td>
</tr>
<tr>
<td>Zystische Fibrose</td>
<td>(35)</td>
</tr>
<tr>
<td>Interstitielle Lungenerkrankung</td>
<td>(44)</td>
</tr>
<tr>
<td>Akuter Lungenschaden/ARDS</td>
<td>(45)</td>
</tr>
</tbody>
</table>

Risikofaktoren für kardiovaskuläre Erkrankungen

<table>
<thead>
<tr>
<th>Risikofaktor</th>
<th>(46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rauchen</td>
<td></td>
</tr>
<tr>
<td>Hypercholesterinämie</td>
<td>(47)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>(3)</td>
</tr>
<tr>
<td>Hyperhomocystinämie</td>
<td>(48)</td>
</tr>
<tr>
<td>Männliches Geschlecht</td>
<td>(49)</td>
</tr>
<tr>
<td>Adipositas</td>
<td>(5)</td>
</tr>
</tbody>
</table>

Neurologische Erkrankungen

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>(33), (50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morbus Alzheimer</td>
<td></td>
</tr>
<tr>
<td>Morbus Huntington</td>
<td>(51)</td>
</tr>
<tr>
<td>Multiple Sklerose</td>
<td>(52)</td>
</tr>
<tr>
<td>Creutzfeld-Jacob</td>
<td>(53)</td>
</tr>
</tbody>
</table>

Renale Erkrankungen
Tabelle 1 Zusammenstellung von Erkrankungen, bei denen entsprechend der Messung von F₂-Isoprostanen vermehrter oxidativer Stress vorkommt.

1.2.4 Bedeutung von Isoprostanen als Mediatoren von oxidativem Stress

Die biologischen Effekte von Isoprostanen weisen darauf hin, dass sie neben ihrer Rolle als Biomarker für oxidativen Stress in vivo, eine bedeutende Rolle in der Pathophysiologie von oxidativem Schaden und den damit assoziierten Erkrankungen haben. In der Gruppe der F₂-Isoprostanate ist über die biologische Aktivität von 8-iso-PGF₂α am meisten bekannt. In zahlreichen Gefäßbettsystemen wie den Pulmonalarterien (15), Koronararterien (63), retinalen Gefäßen (64), in der Portalvene (65), cerebralen Arteriolen (66) und den Nierengefäßen (67), zeigt das 8-iso-PGF₂α einen konzentrationsabhängigen vasokonstriktorischen Effekt. Auch sein Hauptmetabolit 2,3-dinor-5,6-dihydro-8-iso-PGF₂α zeigt vasokonstriktorische Wirkung auf retinale und cerebrale Kapillaren (68).

Weitere biologische Effekte von 8-iso-PGF₂α weisen auf eine Rolle in der Pathophysiologie der Arteriosklerose hin. Dazu gehört, dass 8-iso-PGF₂α die Thrombozytenaktivierung fördert (69), die Mitogenese von vaskulären glatten...
Muskulzellen induziert (70) und die Bindung von Neutrophilen an oxidativ modifizierte LDL stimuliert (71). Zu den initialen Schritten in der Entstehung der Arteriosklerose gehört die Monozytenadhäsion an Endothelzellen, die durch 8-iso-PGF$_{2\alpha}$ stimuliert wird (72). Im atherosklerotischen Tiermodell der LDL-Rezeptor(-/-)-Maus und der ApoE(-/-)-Maus verursachte 8-iso-PGF$_{2\alpha}$ eine Zunahme der atherosklerotischen Plaques (73). Interessanter Weise finden sich auch in menschlichen atherosklerotischen Plaques hohe Konzentrationen von an Phospholipide veresterten Isoprostanen (37). Die genannten biologischen Effekte der Isoprostane werfen die Frage nach ihrem genauen Wirkungsmechanismus auf.

1.3 Der Thromboxanrezeptor (TBXA2R)

Der genaue Wirkungsmechanismus der Isoprostane ist bisher nicht vollständig bekannt. Lange Zeit dominierte die Vorstellung von einem eigenen Isoprostan-Rezeptor (74), (75). Dagegen spricht, dass der vasokonstriktorische Effekt von 8-iso-PGF$_{2\alpha}$ durch den Thromboxanrezeptorantagonisten SQ 29548 aufgehoben werden kann (76), (77). Darüber hinaus zeigt 8-iso-PGF$_{2\alpha}$ keinen vaskulokonstriktorischen und auch keinen co-stimulatorischen Effekt auf die Plättchenaggregation in der TBXA2R(-/-)-Maus (78). Der physiologische Agonist des TBXA2R ist das Thromboxan A$_2$, welches eine HWZ von 30 Sekunden hat. Es ist ein starker Induktor der Plättchenaggregation, wirkt vasokonstriktorisch und hat einen mitogenen Effekt auf vaskuläre glatte Muskulzellen (79). Des Weiteren stimuliert es die Freisetzung von Prostazyclin (80), welches gegensinnig zum Thromboxan A$_2$ wirkt. In einer Reihe von kardiovaskulären Störungen, wie z.B beim Myokardinfarkt (81), der instabilen Angina (82), der ischämischen Herzkrankheit (83) und beim schwangerschaftsinduzierten Hypertonus (84) aber auch in der Neovaskularisation (85) und in der Metastasierung von Tumorzellen (86) ist das Thromboxan A$_2$ involviert.
1.3.1 Aufbau und Verteilung des TBXA2R

Der TBXA2R gehört zur Familie der G-Protein-gekoppelten Rezeptoren und spielt eine bedeutende Rolle in der vaskulären Hämostase. Analysen der mRNA-Expression in unterschiedlichen Organen, haben gezeigt, dass der TBXA2R im Thymus, in der Milz und Plazenta exprimiert wird, des Weiteren in etwas geringerem Ausmaß in der Lunge, Niere, im Uterus, Herzen und Gehirn (87). Das für den TBXA2R codierende Gen ist auf Chromosom 19p13.3 lokalisiert und hat eine Größe von 15 kb. Das Gen besteht aus drei Exons und wird von zwei Introns unterbrochen (88). Es existieren zwei Isoformen, TBXA2R-α und -β, die durch alternatives Splicing des Exons 3 entstehen (88), (89), (90). Der TBXA2R, der ursprünglich aus humaner Plazenta-DNA kloniert wurde, wird als TBXA2R-α bezeichnet, während der aus humanen Endothelzellen klonierte TBXA2R, als Subtyp β bezeichnet wird. Die beiden Isoformen sind identisch in ihrer aus 328 Aminosäuren bestehenden N-terminalen Domäne, unterscheiden sich jedoch in ihrer zytoplasmatischen Domäne, die bei TBXA2R-α aus 15 Aminosäuren und bei TBXA2R-β aus 75 Aminosäuren besteht (Abbildung 1.2).

Abb. 1.2 Organisation der beiden Isoformen des TBXA2R (nach Kinsella BT, 2001, (123))

1.3.2 Signaltransduktionswege des TBXA2R

Als G-Protein-gekoppelter Rezeptor ist der TBXA2R an einer Vielzahl von zellulären Vorgängen beteiligt. So werden unterschiedliche zelluläre Ziele und Mechanismen wie das Zytoskelett, die Zelladhäsion, die Zellmotilität, nukleäre Transkriptionsfaktoren, das Zellüberleben und die Zellapoptose durch den TBXA2R reguliert (94). Für alle Gq-Subtypen ist bisher eine Interaktion mit dem TBXA2R nachgewiesen. Die Kopplung mit Gq führt über Aktivierung der Phospholipase C-β zur Bildung von Inositoltriphosphat (IP₃) und Diacylglycerin (DAG). Anschließend kommt es zur Calcium-Freisetzung aus dem En-
Abb. 1.3 G-Protein gekoppelter Thromboxanrezeptor und mögliche Signaltransduktionswege

1.4 RNA-Interferenz (RNAi)

Das Prinzip der RNA-Interferenz (RNAi) zur spezifischen Genregulation ist ein weit verbreitetes Phänomen in der Natur und wird als molekularbiologisches Werkzeug mit zunehmendem therapeutischem Potential genutzt (Medizin-Nobelpreis 2006 für Andrew Fire und Craig Mello). Die RNAi wird als evolutionärer Abwehrmechanismus von Viren verstanden und ist an der Steuerung der Genexpression von zahlreichen zellulären Differenzierungsprozessen beteiligt. Trigger der RNAi sind doppelsträngige RNA-Duplexe, die endogenen Ursprung, in Form von kleinen nicht-codierenden micro-RNAs (miRNAs) sein können oder
exogenen Ursprungs in Form von small interfering RNAs (siRNA), short hairpin RNA (shRNA) oder RNA-Viren.

Abb. 1.4 Schematische Darstellung der durch siRNA getriggerten RNA-Interferenz (nach Rana, 2007, modifiziert (96))

1.5 Lentiviraler Gentransfer

Lentivirale Vektoren ermöglichen die stabile Integration von fremdem genetischem Material in eukaryontische Zellen. Dabei spricht man von lentiviraler Transduktion der Zellen mit einem Fremdgen, um diesen Vorgang von einer viralen Infektion zu differenzieren. Lentiviren gehören in die Gruppe der Retroviren, ihr bekanntester Vertreter ist das Humane Immundefizienzvirus (HIV). Der

1.5.1 Lentivirale Gene und ihre Proteine

1.5.2 Herstellung replikationsinkompetenter Lentiviren

Für den viralen Gentransfer werden replikationsinkompetente Lentiviren verwendet, um eine unkontrollierte Ausbreitung der Viren zu verhindern. Replikationsinkompetente Viren können Zielzellen transduzieren, sind aber nicht in der Lage, sich in der transduzierten Zelle zu vermehren, weil sie selbst keine
viralen Proteine produzieren können. Diese Eigenschaft haben die replikationsinkompetenten Lentiviren z.B. dadurch verloren, dass sie die hierfür benötigten Verpackungsgene nicht mehr kodieren.

Es gibt drei Generationen lentiviraler Verpackungssysteme. Die erste Generation der lentiviralen Vektoren besteht aus zwei Verpackungsplasmiden und dem Transferplasmid, wobei eines der Verpackungsplasmide alle Gene des ursprünglichen lentiviralen Genoms enthält, bis auf das env-Gen, das sich auf einem zweiten Verpackungsplasmid befindet (99).

Das env-Gen befindet sich, wie in der ersten Generation, auf einem weiteren Verpackungsplasmid.

1.6 Fragestellung

Das Ziel dieser Arbeit ist es, die Wirkung von 8-iso-PGF$_{2\alpha}$ auf verschiedene Schritte der Angiogenese in humanen Endothelzellen zu untersuchen. Darüber hinaus soll untersucht werden, ob die Wirkung von 8-iso-PGF$_{2\alpha}$, auf verschiedene Schritte der durch VEGF-induzierten Angiogenese über den TBXA2R vermittelt wird.
Folgende Fragestellungen sollten hierfür beantwortet werden:

- Welche Effekte übt 8-iso-PGF\textsubscript{2\alpha} auf die VEGF-induzierte Migration und Kapillarröhrenbildung, zwei entscheidende Schritte in der Angiogenese von humanen Endothelzellen, aus?

- Lassen sich diese Effekte von 8-iso-PGF\textsubscript{2\alpha} durch einen siRNA-induzierten Knockdown des TBXA2R antagonisieren?

Für den Knockdown des TBXA2R wurde das Prinzip der RNA-Interferenz mit shRNA angewendet. Hierbei wurde die shRNA mit Hilfe eines Lentivirus in die Endothelzellen eingeschleust.
Materialien

2.1 Substanzen und Kits

<table>
<thead>
<tr>
<th>Substanz/Kit</th>
<th>Hersteller/Standort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonitril</td>
<td>Merck (Darmstadt)</td>
</tr>
<tr>
<td>Agar</td>
<td>Difco (Detroit, USA)</td>
</tr>
<tr>
<td>Agarosepulver</td>
<td>Invitrogen (San Diego, USA)</td>
</tr>
<tr>
<td>Albumin Fraktion V, Pulver Bovine (BSA)</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Antikörper (rabbit anti-human, polyklonal)</td>
<td>Lifespan Biosciences (MI, USA)</td>
</tr>
<tr>
<td>TBXA2R</td>
<td></td>
</tr>
<tr>
<td>Antikörper (donkey anti-rabbit IgG)</td>
<td>Dianova (Hamburg)</td>
</tr>
<tr>
<td>Ammoniumacetat</td>
<td>Fluka (Deisenhofen)</td>
</tr>
<tr>
<td>Ammoniumpersulfat</td>
<td>Bio Rad Laboratories (Hercules, USA)</td>
</tr>
<tr>
<td>Ampicillin-Trihydrat</td>
<td>Serva (Heidelberg)</td>
</tr>
<tr>
<td>Aqua ad iniectabilia</td>
<td>Baxter (Unterschleissheim)</td>
</tr>
<tr>
<td>Bam HI</td>
<td>Fermentas GmbH (St. Leon-Rot)</td>
</tr>
<tr>
<td>Bis−Acrylamid, 40%</td>
<td>Bio Rad (Hercules, USA)</td>
</tr>
<tr>
<td>BM 567</td>
<td>Cayman Chemical Europe (Tallin, Estland)</td>
</tr>
<tr>
<td>Bradford Reagenz</td>
<td>BioRad (München)</td>
</tr>
<tr>
<td>BSTFA-N,O-bis(Trimethylsilyl)-triflouracetamid</td>
<td>Pierce (Rockford, USA)</td>
</tr>
<tr>
<td>Kalciumchlorid</td>
<td>Caeb (Hilden)</td>
</tr>
<tr>
<td>Dimethylsulfoxid (DMSO)</td>
<td>Merck (Darmstadt)</td>
</tr>
<tr>
<td>Material</td>
<td>Hersteller und Adresse</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DEPC-Wasser</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>N, N-Diisopropylethylamin</td>
<td>Sigma GmbH (Steinheim)</td>
</tr>
<tr>
<td>E.coli DH10B</td>
<td>Invitrogen (San Diego, USA)</td>
</tr>
<tr>
<td>ECL Western Blotting Substrate</td>
<td>Amersham Bioscience (Freiburg)</td>
</tr>
<tr>
<td>Endofree Plasmid Maxi Purification Kit</td>
<td>Qiagen (Hilden)</td>
</tr>
<tr>
<td>Ethanol</td>
<td>J.T. Baker (Deventer, NL)</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>Fluka (Deisenhofen)</td>
</tr>
<tr>
<td>(Ethidiumbromid wird als karzinogen und mutagen eingestuft)</td>
<td></td>
</tr>
<tr>
<td>Gene Ruler DNA Ladder Mix</td>
<td>Fermentas GmbH (St. Leon-Rot)</td>
</tr>
<tr>
<td>Gene Ruler 50 bp DNA Ladder</td>
<td>Fermentas GmbH (St. Leon-Rot)</td>
</tr>
<tr>
<td>Glycerin</td>
<td>Merck (Darmstadt)</td>
</tr>
<tr>
<td>Glycin</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Geneticin (G 418 Sulfat)</td>
<td>GIBCO (Eggenstein)</td>
</tr>
<tr>
<td>Giemsa Lösung</td>
<td>Dade Behring (Marburg)</td>
</tr>
<tr>
<td>HIV-1 p24 Antigen ELISA</td>
<td>Zeptometrix Corp. (Buffalo, USA)</td>
</tr>
<tr>
<td>8-Isoprostan-Affinitätssäulen</td>
<td>Cayman Chemical (Michigan, USA)</td>
</tr>
<tr>
<td>8-iso-PGF$_{2\alpha}$</td>
<td>Cayman Chemical Europe (Tallin, Estland)</td>
</tr>
<tr>
<td>ICI 192,605</td>
<td>Cayman Chemical Europe (Tallin, Estland)</td>
</tr>
<tr>
<td>Kaliumchlorid</td>
<td>Caeb (Hilden)</td>
</tr>
<tr>
<td>Kaliumhydroxid</td>
<td>Merck (Darmstadt)</td>
</tr>
<tr>
<td>Kollagen Typ 1</td>
<td>Cohesion (Palo Alto, USA)</td>
</tr>
<tr>
<td>6x Loading Dye</td>
<td>Fermentas GmbH (St. Leon-Rot)</td>
</tr>
<tr>
<td>Chemical</td>
<td>Supplier</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Lysozym</td>
<td>SIGMA GmbH (Steinheim)</td>
</tr>
<tr>
<td>Milchpulver</td>
<td>Roth (Karlsruhe)</td>
</tr>
<tr>
<td>MOPS</td>
<td>Sigma GmbH (Steinheim)</td>
</tr>
<tr>
<td>Natriumhydroxid</td>
<td>Merck (Darmstadt)</td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td>J.T. Baker (Deventer, NL)</td>
</tr>
<tr>
<td>Nitrozellulose−Membran</td>
<td>Schleicher & Schuell (Dassel)</td>
</tr>
<tr>
<td>Nonidet P 40</td>
<td>SIGMA GmbH (Steinheim)</td>
</tr>
<tr>
<td>O`GeneRuler™ 50bp DNA- Ladder</td>
<td>Fermentas GmbH (St. Leon-Rot)</td>
</tr>
<tr>
<td>Ponceau Rot</td>
<td>Sigma GmbH (Steinheim)</td>
</tr>
<tr>
<td>PolyFect Transfektion Reagenz</td>
<td>Qiagen (Hilden)</td>
</tr>
<tr>
<td>Proteinstandard</td>
<td>Bio Rad (Hercules, USA)</td>
</tr>
<tr>
<td>2,3,4,5,6- Pentafluorbenzyl Bromid</td>
<td>SIGMA GmbH (Steinheim)</td>
</tr>
<tr>
<td>2−Propanol</td>
<td>Merck (Darmstadt)</td>
</tr>
<tr>
<td>Rubidiumchlorid</td>
<td>Merck (Darmstadt)</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>Invitrogen (San Diego, USA)</td>
</tr>
<tr>
<td>Serum (anti-goat)</td>
<td>Dianova (Hamburg)</td>
</tr>
<tr>
<td>SQ 29548</td>
<td>Cayman Chemical Europe (Tallin, Estland)</td>
</tr>
<tr>
<td>Natrium Dodecyl Sulfat</td>
<td>SIGMA GmbH (Steinheim)</td>
</tr>
<tr>
<td>Tango Puffer</td>
<td>Fermentas GmbH (St. Leon-Rot)</td>
</tr>
<tr>
<td>Taqman Genexpression Assay Kit TXA2R</td>
<td>Applied Biosystems (Weiterstadt)</td>
</tr>
<tr>
<td>Taqman Genexpression Assay Kit GAPDH</td>
<td>Applied Biosystems (Weiterstadt)</td>
</tr>
<tr>
<td>Taqman universal PCR MasterMix</td>
<td>Applied Biosystems (Weiterstadt)</td>
</tr>
<tr>
<td>N,N,N′,N′−Tetramethylethyldiamin (TEMED)</td>
<td>Merck (Darmstadt)</td>
</tr>
<tr>
<td>Materialien</td>
<td>Hersteller/Land</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>NdeI</td>
<td>Fermentas GmbH (St. Leon-Rot)</td>
</tr>
<tr>
<td>Trichloressigsäure</td>
<td>Fluka (Deutschland)</td>
</tr>
<tr>
<td>Triple Master PCR System</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Tris(hydroxymethyl)-aminomethan</td>
<td>SIGMA GmbH (Steinheim)</td>
</tr>
<tr>
<td>(Tris baze, 99,9%)</td>
<td></td>
</tr>
<tr>
<td>Triton X</td>
<td>Merck (Deutschland)</td>
</tr>
<tr>
<td>Restriktionsenzyme BamH1 und Nde1</td>
<td>Fermentas (St. Leon-Rot)</td>
</tr>
<tr>
<td>RNAzol</td>
<td>Bio Rad (Hercules, USA)</td>
</tr>
<tr>
<td>Tween 20</td>
<td>SIGMA GmbH (Steinheim)</td>
</tr>
<tr>
<td>TRC shRNA</td>
<td>Open Biosystems (Huntsville, USA)</td>
</tr>
<tr>
<td>rHu VEGF</td>
<td>PromoKine (Heidelberg)</td>
</tr>
<tr>
<td>U-46119</td>
<td>Cayman Chemical Europe (Tallin, Estland)</td>
</tr>
<tr>
<td>Universal PCR Master Mix</td>
<td>Applied Biosystems (Weiterstadt)</td>
</tr>
<tr>
<td>Whatman−Papier</td>
<td>Whatman (Kent, UK)</td>
</tr>
<tr>
<td>Wasser, doppelt destilliert (Aqua bidest)</td>
<td>Wasseraufbereitungsanlage Millipore (Schwalbach)</td>
</tr>
</tbody>
</table>

2.2 Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Materialien</th>
<th>Hersteller/Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eppendorfgefäße (1.5 / 2 ml)</td>
<td>Sarstedt (Nümbrecht)</td>
</tr>
<tr>
<td>Falconröhrchen (15 / 50 ml)</td>
<td>Sarstedt (Nümbrecht)</td>
</tr>
<tr>
<td>Spritzenvorsatzfilter (0,22 µm)</td>
<td>Qualilab (Bruchsal)</td>
</tr>
<tr>
<td>Gummischaber (Cell Scraper)</td>
<td>Sarstedt (Nümbrecht)</td>
</tr>
<tr>
<td>Küvetten (10x4x45 mm)</td>
<td>Sarstedt (Nümbrecht)</td>
</tr>
<tr>
<td>Material/Gerät</td>
<td>Hersteller/Country</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Nitrocellulosemembran</td>
<td>Whatman (Kent, UK)</td>
</tr>
<tr>
<td>Pipettenspitzen</td>
<td>Sarstedt (Nümbrecht)</td>
</tr>
<tr>
<td>Rührspatel</td>
<td>Sarstedt (Nümbrecht)</td>
</tr>
<tr>
<td>Serologische Pipetten, Kunststoff (1/2/5/10 ml)</td>
<td>Sarstedt (Nümbrecht)</td>
</tr>
<tr>
<td>10 cm Schalen</td>
<td>Sarstedt (Nümbrecht)</td>
</tr>
<tr>
<td>6-well-Schale</td>
<td>Sarstedt (Nümbrecht)</td>
</tr>
<tr>
<td>Whatman-Papier</td>
<td>Whatman (Kent, UK)</td>
</tr>
</tbody>
</table>

2.3 Geräte

<table>
<thead>
<tr>
<th>Material/Gerät</th>
<th>Hersteller/Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysewaage</td>
<td>Sartorius (Göttingen)</td>
</tr>
<tr>
<td>Autoklav</td>
<td>H+P (Oberschleißheim)</td>
</tr>
<tr>
<td>Accu-jet Pipettierhilfe</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>96-well-Boyden chamber</td>
<td>Neuro Probe (Gaithersburg, USA)</td>
</tr>
<tr>
<td>Brutschrank</td>
<td>Heraeus (Hanau)</td>
</tr>
<tr>
<td>ChemiGenius2 Bioimaging System</td>
<td>Syngene (Cambridge, UK)</td>
</tr>
<tr>
<td>Digitalwaage</td>
<td>Sartorius (Göttingen)</td>
</tr>
<tr>
<td>Eismaschine</td>
<td>Scotsman (Vernon Hills, USA)</td>
</tr>
<tr>
<td>Evaporator, Turbo Vap LV</td>
<td>Zymark (Hopkinton, USA)</td>
</tr>
<tr>
<td>Glasplatten</td>
<td>BioRad (Hercules, USA)</td>
</tr>
<tr>
<td>Gelkammer</td>
<td>BioRad (Hercules, USA)</td>
</tr>
<tr>
<td>Gaschromatograph-Massenspektrometer</td>
<td>Varian (Palo Alto, USA)</td>
</tr>
<tr>
<td>Kühlschrank</td>
<td>Liebherr (Ochsenhausen)</td>
</tr>
<tr>
<td>Kühltruhe (-20°C)</td>
<td>Liebherr (Ochsenhausen)</td>
</tr>
<tr>
<td>gerät</td>
<td>Marke und Ort</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Kühltruhe (-80°C)</td>
<td>Kyrotec (Hamburg)</td>
</tr>
<tr>
<td>Laufkammer</td>
<td>BioRad (Hamburg)</td>
</tr>
<tr>
<td>Mini Protean System Kamm (0,7 mm)</td>
<td>BioRad (Hamburg)</td>
</tr>
<tr>
<td>Mikroskop, Axiovert 25</td>
<td>Zeiss (Göttingen)</td>
</tr>
<tr>
<td>Mikroskop, Axioskop 2</td>
<td>Zeiss (Göttingen)</td>
</tr>
<tr>
<td>Thermal Cycler</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Photometer Smart Spec 3000</td>
<td>Biorad (München)</td>
</tr>
<tr>
<td>Pipetten, 0,5−10µl / 10−100µl / 100−1000µl / 1000−5000µl</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Polycarbonatfilter</td>
<td>Neuro Probe (Gaithersburg, USA)</td>
</tr>
<tr>
<td>Sicherheitswerkbank, HeraSafe S2</td>
<td>Heraeus (Hanau)</td>
</tr>
<tr>
<td>Smartspec 3000</td>
<td>BioRad (Hercules, USA)</td>
</tr>
<tr>
<td>Thermomixer compact 436</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Thermoblock</td>
<td>Bioblock Scientific (Illkirch Cedex, Frankreich)</td>
</tr>
<tr>
<td>Tischzentrifuge</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>TaqMan 7900 HT Sequence Detection System</td>
<td>Applied Biosystems (Weiterstadt)</td>
</tr>
<tr>
<td>Voltmeter</td>
<td>Bio Rad (Hercules, USA)</td>
</tr>
<tr>
<td>Vortexer, Reax Top</td>
<td>Heidolph (Kelheim)</td>
</tr>
<tr>
<td>Spectrophotometer</td>
<td>NanoDrop (Wilmington, USA)</td>
</tr>
<tr>
<td>Wasserdeionisierungsanlage</td>
<td>Millipore (Billerica, USA)</td>
</tr>
<tr>
<td>Zentrifuge 5415 R</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Zentrifuge 5415 D</td>
<td>Eppendorf (Hamburg)</td>
</tr>
</tbody>
</table>
2.4 Zellen und Zellkultur

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller/Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal Endothelial medium</td>
<td>PromoCell (Heidelberg)</td>
</tr>
<tr>
<td>DH10B Zellen</td>
<td>Invitrogen (San Diego, USA)</td>
</tr>
<tr>
<td>DMEM mit Glutamax</td>
<td>Gibco (Karlsruhe)</td>
</tr>
<tr>
<td>Einfrierröhrchen</td>
<td>Nunc (Roskilde, Dänemark)</td>
</tr>
<tr>
<td>Fetal bovine serum (FBS)</td>
<td>Invitrogen (Grand Island, USA)</td>
</tr>
<tr>
<td>Gelatine</td>
<td>SIGMA GmbH (Steinheim)</td>
</tr>
<tr>
<td>HEK</td>
<td>QBiogene (Heidelberg)</td>
</tr>
<tr>
<td>HEK 293 T</td>
<td>Heinrich Pette Institut (Hamburg)</td>
</tr>
<tr>
<td>Humane Koronare Arterielle Endothelzellen</td>
<td>PromoCell (Heidelberg)</td>
</tr>
<tr>
<td>Humane Dermale Microvaskuläre Endothelzellen</td>
<td>PromoCell (Heidelberg)</td>
</tr>
<tr>
<td>Matrigel</td>
<td>BD Biosciences (Bedford, USA)</td>
</tr>
<tr>
<td>Trypsin</td>
<td>Gibco (Karlsruhe)</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>Gibco (Karlsruhe)</td>
</tr>
<tr>
<td>Phosphate buffered saline (138 mM NaCl, 2,7mM KCl, 1,5 mM KH₂PO₄, 8,1 mM Na₂HPO₄H₂O)</td>
<td>Biochrom AG (Berlin)</td>
</tr>
<tr>
<td>Zellkulturlaschen (T25,T75)</td>
<td>Sarstedt (Nümbrecht)</td>
</tr>
</tbody>
</table>
2.5 Puffer und Lösungen

Ampicillin Stammlösung 50 mg/ml:

2500 mg Ampicillin – Trihydrat in 25 ml Aqua bidest,
2,5 ml NaOH 10 M,
25 ml Aqua bidest hinzufügen,
pH-Wert Einstellung bei 8,6.

Glycerolstock:

0,15 ml Glycerol (100%) in Reaktionsgefäße vorlegen und autoklavieren,
0,85 ml der Bakterienkultur hinzufügen,
für 20 Sekunden in flüssigen Stickstoff geben und anschließend bei -80°C lagern.

Lämmipuffer:

50% Glycerin 20 ml
Bromphenolblau 20 mg mit Aqua bidest zu 40 ml auffüllen.

Laufpuffer:

10x Tris-Glycin Puffer 100 ml
20% SDS 5 ml mit Aqua bidest zu 1000 ml auffüllen.

LB-Medium:

Bacto-Tryptone 10 g
Hefeextrakt 5 g
NaCl 10 g in 1000 ml Aqua bidest lösen.
LB-Agar:

- Tryptone: 10 g
- Hefeextrakt: 5 g
- NaCl: 10 g
- Agar: 15 g

In 1000 ml Aqua bidest aufnehmen und in 10 cm² Schalen gießen.

Lower Tris pH 8,8:

- Tris (1,5 M): 18,17 g
- 20% SDS: 2 ml

Mit Aqua bidest zu 100 ml auffüllen.

Lysispuffer:

- Triton X 100: 0,5%
- Nonidet P 40: 0,5%
- Tris pH 7,5: 10 mM
- KCL: 2,5 mM
- NaCl: 150 mM
- b-Glycerolphosphat: 30 mM
- NaF: 50 mM
- Na₃VO₄: 1 mM

Protease-Inhibitor Mix 0,1% wird kurz vor der Proteingewinnung hinzugegeben.

Lysozym (10 mg/ml):

10 mg Lysozym in 1 ml Aqua bidest lösen. Nach steriler Filtration bei -20 °C lagern.
Ponceau- Lösung:

Ponceau S 26 mM
Trichloressigsäure 30 mM in wässriger Lösung.

Probenpuffer:

50% Glycerin 2 ml
20% SDS 1,5 ml
Upper Tris 1,25 ml
Mercaptoethanol 0,5 ml mit Aqua bidest zu 10 ml auffüllen.

RF 1 Puffer:

RbCl 100 mM
MnCl$_2$ 5 mM
Kaliumacetat 30 mM
CaCl$_2$ 10 mM
Glycerin 15 % pH 5,8 mit Essigsäure einstellen, bei 4 °C lagern.

RF 2 Puffer:

MOPS 10 mM
RbCl 10 mM
CaCl$_2$ 75 mM
Glycerin 15 % pH 6,8 mit 1 M KOH einstellen.
Sammelgel 4%:

Aqua bidest 2,44 ml

Acrylamid (4,3 M) 530 µl

Upper Tris 1 ml

TEMED 4 µl

Ammoniumpersulfat (0,44 M) 30 µl

Säulenpuffer:

Dikaliumhydrogenphosphat (K$_2$HPO$_4$·3H$_2$O) 17,4 g

Kaliumdihydrogenphosphat (KH$_2$PO$_4$) 3,22 g

Natriumchlorid (NaCl) 29,2 g

Natriumacid (NaN$_3$) 0,5 g

in 1000 ml Aqua bidest lösen.

STET- Puffer:

Saccharose 8%

Triton X100 5%

EDTA 50 mM

Tris-HCl 50 mM in wässriger Lösung, pH 8,0.
1x TAE- Puffer:

Tris- HCL 2 M
Essigsäure 1 M
Essigsäure 0,1 M in wässriger Lösung, pH 8.

Transferpuffer:

10x Tris-Glycin Puffer 100 ml
Methanol 200 ml mit Aqua bidest zu 1000 ml auffüllen.

Tris-Glycin Puffer 10x:

Tris (25 mM) 30 g
Glycin (0,2 M) 144 g mit Aqua bidest zu 1000 ml auffüllen, pH 8,3.

Trenngel 10%:

50% Glycerin/Aqua bidest 6,2 ml
Acrylamid 3,1 ml
Lower Tris 3,16 ml
TEMED 6 µl
10% Ammoniumpersulfat 64 µl

Upper Tris pH 6,8:

Tris (0,5 M) 6,06 g
20% SDS 2 ml mit Aqua bidest zu 100 ml auffüllen.
TBS 10x:

Tris (0.2 M)
42.2 g

NaCl (1.37 M)
80 g
mit Aqua bidest zu 100 ml auffüllen,
pH 7.6.

TBS-t:

Tween 20
1 ml
mit 10x TBS zu 10 ml auffüllen.
3 Methoden

3.1 PCR

3.1.1 Primer

Folgende Primer wurden zur Detektion der mRNA der beiden Splicevarianten des TBXA2R gewählt: Als forward-Primer 5\`GTGTTGGCTGCCCTTCT3` (MWG Biotech, Ebersberg, Exon 2) für beide Varianten, als reward-Primer 5\`GCGCTCGTCCACTTCTAC3` zum Nachweis vom Subtyp TBXA2R-\(\alpha\) (Intron zwischen Exon 3 und 4) und als zweiter reward-Primer 5\`CAAATTCAGGGTCAAAGAGCA3` zum Nachweis von TBXA2R-\(\beta\) (MWG Biotech, Ebersberg, Exon 4). Die zu erwartenden cDNA-Fragmente für TBXA2R-\(\alpha\) und TBXA2R-\(\beta\) haben eine Größe von 285 bp bzw. 385 bp. Es wurde folgender Reaktionsansatz angesetzt:

<table>
<thead>
<tr>
<th>Master Mix 1</th>
<th>Master Mix 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua ad iniectabilia: 7 µl</td>
<td>10x Tuning Puffer: 2,5 µl</td>
</tr>
<tr>
<td>Primer forward (0,5 pmol/µL): 1,25 µl</td>
<td>dNTPs (2,5 mM): 2,5 µl</td>
</tr>
<tr>
<td>Primer reward (0,5 pmol/µL): 1,25 µl</td>
<td>Triple Master Enzyme Mix : 0,2 µl</td>
</tr>
</tbody>
</table>

Aqua ad iniectabilia: 11,3 µl

8 µl aus Master Mix 1 wurden in PCR-Reaktionsgefäße vorgelegt und von jeder DNA-Probe wurden 10 ng hinzupipettiert. 15 µl aus Master Mix 2 wurden hinzugeben und nach kurzer Zentrifugation wurde das PCR-Programm gestartet.
3.1.2 PCR-Programm

Zunächst wurde der Reaktionsansatz für 5 Minuten bei 94 °C erhitzt, dann folgten 20 Zyklen mit folgenden Temperaturen:
- 30 Sekunden bei 94 °C (Denaturierung),
- 30 Sekunden bei 62 °C im ersten Zyklus und in jedem weiteren Zyklus 0,2 °C Temperaturabfall (Annealing),
- 30 Sekunden bei 72 °C (Elongation).

Danach erfolgten 15 weitere Zyklen mit folgenden Temperaturen:
- 30 Sekunden bei 94 °C (Denaturierung),
- 30 Sekunden bei 58 °C (Annealing)
- 30 Sekunden bei 72 °C (Elongation)

Als letzter Schritt wurde für 7 Minuten auf 72 °C erhitzt. Anschließend erfolgte die Kühlung bei 4 °C. Zur Überprüfung der PCR wurden die Produkte auf ein Agarosegel aufgetragen.

3.1.3 Gelelektrophorese

Je nach Größe der aufzutrennenden DNA-Fragmente wurden 1-1,5 %-ige Agarose-Gele angefertigt. Dafür wurde die entsprechende Menge Agarosepulver mit TAE-Puffer zum Kochen gebracht und damit vollständig gelöst. Nachdem die Agaroselösung abgekühlt war (handwarm), wurde Ethidiumbromid (0,03 %) hinzugefügt. Das Ethidiumbromid interkaliert zwischen den Basen der DNA und fluoresziert unter UV-Strahlung, so dass DNA detektiert werden kann. Die Agaroselösung wurde in eine Gelkammer gegossen, in die zuvor ein Taschenkamm eingesetzt wurde. Nach 15 Minuten war das Gel ausgehärtet. Anschließend wurde das Gel in die mit TAE als Laufpuffer gefüllte Gelkammer überführt. Die Taschen des Gels wurden mit den entsprechenden DNA-Proben befüllt. Die

3.2 Quantitative Messung von RNA

3.2.1 mRNA-Isolierung aus Zellen

Die mRNA-Isolierung wurde aus 6-Well Platten durchgeführt. Dazu wurde die Platte zunächst mit PBS gewaschen. Danach wurden 600 µl RNAzol auf jede Schale gegeben und anschließend wurden die Zellen mit einem Zellschaber von der Schalenoberfläche abgekratzt. Die Zellsuspension eines jeden Wells wurde in 1,5 ml-Eppendorf Reaktionsgefäße, die 200 µl eiskühltes Chloroform enthielten, überführt. Nach dem Vortexen wurden die Proben für 15 Minuten auf Eis gestellt. Im nächsten Schritt wurden die Proben bei 4 °C und 12000 g für 15 Minuten zentrifugiert.

Der Überstand von etwa 200 µl wurde abgenommen und in ein weiteres Reaktionsgefäß überführt, welches 600 µl eiskaltes Isopropanol enthielt. Die Proben wurden danach für mindestens eine Stunde bei -20 °C gelagert. Im nächsten Schritt wurden die Proben bei 4 °C und 12000 g für 20 Minuten zentrifugiert. Der Überstand wurde vorsichtig abpipettiert und das Pellet in 60 µl 70 %-igen Ethanol gewaschen.

Erneut wurden die Proben bei 4 °C und 12000 g für 10 Minuten zentrifugiert und der Überstand abpipettiert. Das Pellet wurde getrocknet und in 20 µl RNase-freiem Wasser (DEPC-Wasser) aufgenommen. Es erfolgt im Anschluss die photometrische Konzentrationsbestimmung der mRNA bei einer Wellenlänge von 260 nm im Photometer. Die Intaktheit der mRNA wurde mit einem 1 %-igen

3.2.2 Reverse Transkription der präparierten RNA

Nach der RNA-Isolierung wurden von jeder Probe 2 µg RNA nach Herstellerangaben mit „Omniscript“ (Qiagen) im Thermocycler in cDNA umgeschrieben.

3.2.3 Real-Time-PCR

Zur Detektion der mRNA des TBXA2R wurde der Expressionsassay Hs00169054_m1 (Applied Biosystems) verwendet. Die eingesetzte cDNA war das Produkt der vorhergegangenen reversen Transkription. Da die Effizienz der reversen Transkription unterschiedlich ist, kann man die Proben nur miteinander vergleichen, wenn man ein zweites Gen, das sogenannte Housekeeping Gen, welches vom Zielgen unabhängig ist, amplifiziert. Hier wurde GAPDH als Housekeeping Gen verwendet (Hs99999905_m1). Für jedes Gen wurde ein Master Mix angesetzt, bestehend aus 4 µl Universal PCR Master Mix, 0,5 µl Taqman Genexpression Assay Kit und 3,5 µl Aqua ad iniectabilia für jedes Well. Aus den C_T-Werten beider Gene wird dann ein Quotient gebildet. Der Master Mix wurde kurz zentrifugiert und 8 µl wurden in jedes Well pipettiert. Die cDNA ist das Produkt der vorhergegangenen reversen Transkription. Pro Reaktionsansatz von insgesamt 10 µl wurde 1 µl der cDNA Lösung eingesetzt. Anschließend wurde das Real-Time-PCR Programm bei folgenden Temperaturen gestartet:

Temperaturprogramm:

2 Minuten 50 °C
10 Minuten 95 °C
40 Zyklen
Denaturierungstemperatur: 15 Sekunden bei 95 °C
Annealing-Temperatur: 1 Minute bei 60 °C

3.3 Herstellung chemisch kompetenter E. coli-Zellen

E. coli-Zellen zeigen keine natürlichen Resistenzen und werden daher mit Rubidiumchlorid behandelt. Das Rubidiumchlorid verringert die Abstoßung zwischen negativ geladener DNA und Zellmembran. Dazu wurden 150 ml LB-Medium (Nährmedium zur Kultivierung von Bakterien) mit Streptomycin versetzt und mit *E. coli* vom DH10B-Typ angeimpft. Die Bakterien wurden bis zu einer OD$_{600}$ von 0,6 bei 37 °C kultiviert. Die Kultur wurde anschließend für 15 Minuten auf Eis abgekühlt und bei 1000 g und 4 °C für 15 Minuten zentrifugiert. Das Zellpellet wurde in 16,7 ml kaltem RF 1 Puffer resuspendiert und erneut für 15 Minuten auf Eis inkubiert. Nach Zentrifugation bei 1000 g und 4 °C für 15 Minuten wurde das Zellpellet in 4 ml kaltem RF 2 Puffer resuspendiert und wiederum für 15 Minuten auf Eis inkubiert. Die kompetenten Bakterien wurden in 200 µl Aliquots in 1,5 ml Eppendorfgefäße pipettiert, in flüssigem Stickstoff schockgefroren und anschließend bei -80 °C gelagert.

3.3.1 Transformation

Für die Transformation wurde die Hitzeschock-Methode verwendet, bei der Poren in der Membran der Bakterien zur Aufnahme der DNA entstehen. Dazu wurden 100 µl der chemisch kompetenten *E. coli*-Kultur vom DH10B-Typ auf Eis aufgetaut. Anschließend wurden 5 µl des Plasmids (0,03 µg/µl) der Bakteriensuspension zugefügt und eine halbe Stunde auf Eis inkubiert. Nach der Inkubation wurden die Bakterien für 90 Sekunden auf 42 ºC erhitzt um die Poren zur Plasmidaufnahme zu öffnen. Danach wurden die Bakterien für drei Minuten auf Eis gestellt, so dass die Poren sich verschloßen. 300 µl vorgewärmtes LB-Medium wurden dem Transformationsansatz zugesetzt. Anschließend wurde für 30 Minuten bei 37 ºC unter Schütteln inkubiert. Danach erfolgte das Ausstreichen der Bakterien auf Agaroseplatten, die das entsprechende Selektionsme-
3.3.2 Präparation von Plasmid-DNA in kleinem Maßstab (Minipräp)

Mit sterilen Pipettenspitzen wurde je eine Bakterienkolonie gepickt und mit 3 ml LB-Medium und Selektionsantibiotikum im Kulturröhrchen im Schüttelinkubator kultiviert. Nach 16 Stunden bei 37 °C wurde die Präparation der Plasmid DNA in kleinem Maßstab durchgeführt. Dazu wurden 1,5 ml der Bakterienkulturen in 2 ml Eppendorffäße überführt und für eine Minute bei 5000 x g zentrifugiert. Der Überstand wurde dekantiert und das Pellet in 500 µl STET- Puffer durch Vortexen resuspendiert. Nach Zugabe von 50 µl Lysozym (10 mg/ml) wurden die Eppendorffäße mehrfach invertiert und 2-3 Minuten bei Raumtemperatur inkubiert. Daraufhin wurden die Proben bei 95 °C für 90 Sekunden auf dem Thermomixer inkubiert und für fünf Minuten bei 13000 x g zentrifugiert. Das entstandene Pellet wurde mit einem Tupfer vorsichtig entfernt. Nach Zugabe von 50 µl Ammoniumacetat und 500 µl Isopropanol wurden die Proben invertiert und die Plasmid DNA durch 10 Minuten Zentrifugation bei 13000 x g und 4 °C präzipitiert. Der Überstand wurde dekantiert und das Pellet nach Lufttrocknung in 20 µl Aqua ad iniecbilia aufgenommen. Es erfolgte die Bestimmung der DNA-Konzentration bei 260 nm im Spektrometer und anschließend wurden die Klone durch einen Restriktionsverdau verifiziert.

3.3.3 Restriktionsanalyse

Zur Verifizierung des DNA-Plasmides erfolgte ein Verdau mit Restriktionsenzyme. Das pLKO.1-Plasmid hat eine Größe von 7084 bp und die enthaltene shRNA ist von den Schnittstellen der Enzyme BamH1 und Nde1 flankiert. Für die Restriktionsanalyse wurde ein Master Mix angesetzt. Pro Ansatz wurden 2,5
µl Tango Puffer, 1500 IU BamH1, 1500 IU Enzym Nde1, 300 µg cDNA zusammenpipettiert und mit entsprechender Menge Aqua ad iniectabilia zu 25 µl pro Ansatz aufgefüllt. Alle Schritte erfolgten auf Eis. Anschließend erfolgte eine einstündige Inkubation bei 37 °C. Danach konnten die beiden entstandenen DNA-Fragmente mit einer Größe von 6238 bp und 794 bp im Agarosegel aufgetrennt werden.

3.3.4 Präparation von Plasmid-DNA in großem Maßstab (Maxipräp)

Um die DNA in großem Maßstab aufzureinigen, wurden am Vorabend 250 ml LB-Medium mit 1 ml Vorkultur angeimpft und über Nacht im Schüttler bei 37 °C inkubiert. Für das pLKO.1-Plasmid wurde zusätzlich das Selektionsantibiotikum Ampicillin in einer Konzentration von 50 mg/ml hinzugefügt. Nach 16 Stunden Inkubation wurde die Schüttelkultur für 15 Minuten bei 13000 x g zentrifugiert und das entstandenen Pellet wurde mit dem „Endofree Maxi Kit“ (Qiagen, Hilden) nach Herstellerangaben aufgereinigt.

3.4 Zellkultur

3.4.1 Endothel- und HEK-Zellen

Humane koronare arterielle Endothelzellen (HCAEC) und Humane dermale microvaskuläre Endothelzellen (HDMEC) wurden von humanen Spendern kryo-konserviert geliefert (Promocell, Heidelberg). Zellen der vierten bis siebten Passage wurden für die Experimente genutzt, um sicher zu gehen, dass die Zellen ihre charakteristischen Eigenschaften nicht verlieren. Als Medium wurde Endothelzellmedium (Endothelial Cell Growth Medium MV, EGM, Promocell, Heidelberg) verwendet, welches Vitamin C, Hydrokortison, Gentamicin, Amphotericin B, Fetal bovine Serum (FBS) und verschiedene Wachstumsfaktoren enthielt.

Die Zellen wurden in 25- oder 75-cm² Kulturschalen oder in 6-Well Platten kultiviert. Das Medium wurde jeden zweiten Tag gewechselt. Die Inkubation der Zellen erfolgte bei 5% CO₂ und 37 °C. Die Zellen wurden bei einer Zelldichte von 70-80% passagiert. Dazu wurde zunächst mit PBS gewaschen und anschließend mit 1 %iger Trypsinlösung trypsiniert. Für HEK-Zellen wurde PBS mit CaCl₂ und MgCl₂ verwendet. Die Enzymaktivität wurde durch Hinzufügen von Medium bzw. im Falle der HCAECs und HDEMCs mit Stopplösung, bestehend aus Wachstumsmedium und 10% FCS, nach dem Ablösen der Zellen beendet. Danach wurde die Zellsuspension im Falle der HEK-Zellen für 5 Minuten bei 200 g und im Falle der HCAECs und HDMECs für 5 Minuten bei 220 g zentrifugiert. Der Überstand wurde abgesaugt und das Pellet wurde in frischem Medium resuspendiert und auf neue Kulturschalen oder -flaschen verteilt. Um die Zelladhäsion sicherzustellen, mussten die Kulturschalen oder -flaschen für HCAECs und HDMECs zuvor mit Gelatine beschichtet werden. Dazu wurden sie bei 37 °C für 30 Minuten mit 0,2 %iger Gelatine inkubiert. Nach Absaugen der überflüssigen Gelatine wurde die Zellsuspension hinzugegeben.

3.4.2 Einfrieren von Zellen (Kryokultur)

Zur Konservierung der Zellen wurden Kryokulturen angelegt. Dazu wurden die Zellen aus 25 cm²-Flaschen pelletiert. Das Pellet wurde in 1,5 ml Medium mit 10
% DMSO resuspendiert und in Kryoröhrchen (Nunc, Dänemark) überführt. In einer mit Isopropanol befüllten Einfrierbox wurden die Zellen langsam auf −80 °C gekühlt und konnten nach 24 Stunden in flüssigem Stickstoff gelagert werden.

3.4.3 Transfektion von Zellen

3.5 Knockdown des Thromboxanrezeptors mit shRNA

3.5.1 Auswahl einer geeigneten shRNA Sequenz

Die shRNA zur Herunterregulation der Genexpression des Thromboxanrezeptors hatte folgende Basensequenz: 5'-CCGG CTGC CGTC TCTG TCGC TTCA TCTC GAGA TGAA GCGA CAGA GACG GCAG TTTT T-3'. Die shRNA zur unspezifischen Herunterregulation der Genexpression (scrambled shRNA) hatte folgende Basensequenz: 5'-CCGG CCTAA GGTT AAGT CGCC CTCG CTCG AGCG AGGG CGAC TTAAC CTTA GGTT TTT-3'. Der Aufbau der shRNA ist in Abbildung 3.1 dargestellt. Als Vektorsystem für die shRNA wurde der pLKO.1-Vektor von Open Biosystems gewählt.
Abb. 3.1 Aufbau der shRNA

3.5.2 Generierung lentiviraler Überstände zur Transduktion von Endothelzellen

10^6 HEK 293T Zellen wurden zwei Tage vor der Transfektion in eine 10 cm²-Kulturschale ausgesät. Am Tag der Transfektion wurde das Medium abgesaugt und durch 6 ml frisches Medium ohne Zusatz eines Antibiotikums ersetzt.

Folgendes Transfektionsgemisch wurde hergestellt:

- 5 µg psPAX2 (gag, pol, rev)
- 2 µg pMD2.G (VSV.G)
- 5 µg Ziel Plasmid-DNA (pLKO.1 shRNA, pLKO non target, pLKO GFP)
Die Plasmide wurden in 750 µl Medium ohne Zusätze gelöst. 30 µl Polyfect-Transfektionsgemisch wurden hinzugefügt. Es erfolgte eine Inkubation für 15 Minuten bei Raumtemperatur. Danach wurde das Transfektionsgemisch tropfenweise auf die Zellen aufgetragen und die Zellen wurden für drei Stunden bei 37 °C im Brutschrank inkubiert. Danach wurde das Medium auf 10 ml aufgefüllt.

Abb. 3.2 Produktion von shRNA-exprimierenden Lentiviren: LTR - long terminal repeat, RRE - rev responsive element, cPPT - zentraler Polypurintrakt, ψ-Verpackungssignal

3.5.3 Transduktion von Endothelzellen

48 Stunden nach der Transfektion der HEK 293T Zellen wurde der erste viruspartikelhaltige Überstand abgenommen, der nächste Überstand weitere 24 Stunden später. Um Zelltrümmer zu beseitigen, wurden die Überstande steril filtriert (Porengröße 0,45 µm). Danach wurde der Überstand mit Endothelzellmedium im Verhältnis 1:1 verdünnt und für die Transduktion der Endothelzellen verwendet. Zunächst erfolgte die Transduktion mit dem 48-Stunden-Überstand für 24 Stunden, dann wurde das Medium durch den 72-Stunden-Überstand ersetzt und für zwei weitere Tage inkubiert. Über diesen Zeitraum wurde der Vektor zum Knockdown des TBXA2R in die Endothelzellen integriert. Der Erfolg des Knockdown des TBXA2R wurde auf der Ebene der Expression von mRNA,
Proteinen und mit funktionellen Assays (Kapillarröhrenbildung und Migrations-Assays) nachgewiesen.

3.5.4 Vektorkarten, der für die Lentivirus Produktion verwendeten Plasmide

Abb. 3.3 Vektorkarte des Plasmids psPAX2 zur Expression der Proteine gag, pol und rev
Abb. 3.4 Vektorkarte des Plasmids pMD2.G zur Expression des Hüllproteins VSV.G

Abb. 3.5 Vektorkarte des Plasmids pLKO.1
3.6 Generierung einer stabilen, den TBXA2-Rezeptorsubtyp α exprimierenden Zelllinie

3.6.1 Transfektion von HEK 293 Zellen

Zur Herstellung einer stabilen Zelllinie wurden ein Tag vor der Transfektion HEK 293 Zellen ausplattiert, so dass am Tag der Transfektion eine Zelldichte von 80-90 % vorlag. Die Transfektion des Plasmids zur Überexpression von Subtyp α erfolgte mit dem Polyfect Transfection Reagent von Qiagen, dabei wurden 2 µg des Plasmids für die Transfektion verwendet. 24 Stunden nach der Transfektion wurden die Zellen im Verhältnis 1:5 gesplittet und die Transfektionseffizienz wurde anhand der GFP-Expression unter UV- Licht ermittelt.

3.6.2 Selektion mit Geneticin

Zur Generierung einer stabilen Zelllinie, ist es notwendig nur die Zellen zu kultivieren, die das Plasmid in ihr Genom integriert haben. Das Plasmid (Katalognr. TXA2R00000, UMR cDNA Resource Center, Rolla, USA) enthält eine Neomycinresistenz, so dass als Selektionsantibiotikum das Aminoglykosid Antibiotikum Geneticin verwendet wurde. Die cDNA-Sequenz zur Expression des Subtyp α liegt zwischen den Schnittstellen EcoRI und Xhol. Um die letale Dosis für untransfizierte HEK Zellen zu ermitteln, wurde eine „Killcurve“ mit nicht-transfizierten HEK Zellen und steigender Geneticinkonzentration erstellt. Dies erfolgte in einer 6- well Platte, wobei ein well der 6-well Platte ohne Antibiotikum als Kontrolle diente. Das Medium wurde alle drei Tage gewechselt und nach sechs Tagen wurde die letale Dosis von 1000 µg/ml festgestellt. 48 Stunden nach der Transfektion wurde den Zellen geneticinhaltiges Medium mit einer Konzentration von 1000 µg/ml hinzugefügt. Nach vier Tagen war die nicht-transfizierte Kontrollschale zellfrei, während in den transfizierten Schalen einzelne Zellen dem Selektionsdruck standhalten konnten. Nach etwa 7 Tagen begann-
nen sich einzelne Klone zu bilden, d.h. eine Gruppe von Zellen, die durch Teilung einer Zelle hervorgegangen und damit genetisch identisch sind. Um die einzelnen Klone weiter zu kultivieren wurden einige Klone mit einer sterilen Pipettenspitze gepickt und in eine Petrischale überführt, in der der Selektionsdruck für drei weitere Wochen aufrechterhalten wurde. Die Überexpression des TBXA2-Rezeptorsubtyp α wurde mithilfe der Realtime PCR und Western Blot nachgewiesen.

Abb. 3.6 Vektorkarte des Rezeptorsubtyp-α exprimierenden Plasmids
3.7 Western Blot

3.7.1 Proteingewinnung

3.7.2 Proteinbestimmung nach Bradford

<table>
<thead>
<tr>
<th>Erwartete Proteinkonzentration</th>
<th>0 µg/ml</th>
<th>1,725 µg/ml</th>
<th>3,45 µg/ml</th>
<th>6,9 µg/ml</th>
<th>10,35 µg/ml</th>
<th>13,8 µg/ml</th>
<th>17,25 µg/ml</th>
<th>20,7 µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1:10 verdünnt</td>
<td>0 µl</td>
<td>5 µl</td>
<td>10 µl</td>
<td>20 µl</td>
<td>30 µl</td>
<td>40 µl</td>
<td>50 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Aqua ad inyectabilia</td>
<td>800 µl</td>
<td>795 µl</td>
<td>790 µl</td>
<td>780 µl</td>
<td>770 µl</td>
<td>760 µl</td>
<td>750 µl</td>
<td>740 µl</td>
</tr>
<tr>
<td>Bradford-Reagenz</td>
<td>200 µl</td>
</tr>
</tbody>
</table>

\[\text{Konz}_{\text{Probe}} (\mu g / \mu l) = \frac{\text{Messwert}(\mu g / ml) \times \text{Verdünnung}^{-1}}{10} (ml / \mu l) \]

Gleichung 1 Berechnung der Proteinkonzentration

3.7.3 SDS-Polyacrylamid-Gelelektrophorese

gegossen und die Kammer mit dem Sammelgel befüllt, in das ein 10-Taschen Kamm eingesetzt wurde.

3.7.4 Probenvorbereitung

3.7.5 Blotten der Proteine auf Nitrocellulosemembran

3.7.6 Proteinmembranfärbung mit Ponceau S

3.7.7 Blocken der Membran

Unspezifische Bindungsstellen auf der Blot-Membran wurden mit einer Lösung aus 5 % Milchpulver und 2 % BSA in 0,1 % TBS-tween Puffer geblockt. Dazu wurde die Blot-Membran für eine Stunde bei Raumtemperatur inkubiert.

3.7.8 Immunfärbung der Membran

3.8 Migration und Kapillarröhrenbildung

3.8.1 Durchführung des Migrations-Assays

Die eingesetzten Substanzen, VEGF (50 ng/ml), 8-iso-PGF$_2\alpha$ (3x10$^{-5}$ mol/l), U 46119 (3x10$^{-5}$ mol/l) sowie die drei TBXA2-Rezeptorantagonisten SQ 29548 (3x10$^{-5}$ mol/l), BM 567 (3x10$^{-5}$ mol/l) und ICI 192605 (3x10$^{-5}$ mol/l) wurden in basalem Endothelzellmedium (ohne FCS und Wachstumsfaktoren, jedoch mit 0,1 % BSA) gelöst und möglichst blasenfrei in die Wells der unteren Kammer pipettiert, so dass ein leicht konvex gewölbter Flüssigkeits-Meniskus zu sehen war. Auf die untere Kammer wurde ein Polykartenfilter (Porengrösse 8 µm) platziert. Die rauhe Seite des Filters wurde zur unteren Kammer gerichtet. Der
Filter wurde zuvor über Nacht mit Kollagen Typ 1 (100 µg/ml), gelöst in 2 mmol/l Essigsäure, beschichtet und anschließend mit PBS gewaschen.

Für die Migrationsversuche wurden HDMECs verwendet. Sie wurde vor dem Versuch mit basalem Endothelzellmedium (0,1 % BSA) über Nacht inkubiert. 2x10^4 Zellen wurden in 50 µl basalem Endothelzellmedium (0,1 % BSA) in die Wells der oberen Kammer der Boyden Chamber pipettiert und anschließend erfolgte die Inkubation für fünf Stunden bei 37 ºC. Nach der Inkubation wurde der Filter abgenommen und die Zellen wurden für 15 Minuten mit Methanol fixiert. Anschließend erfolgte die Färbung nach Giemsa (Eosin färbte die Kerne purpurrot und Methylenblau das Cytoplasma blau). Zellen, die nicht migrierten, wurden mit einem Wattestäbchen von der glatten Seite des Filters entfernt und der Filter wurde in der Sterilwerkbank getrocknet. Die Anzahl der migrierten Zellen wurde mit dem Lichtmikroskop unter der 400-fach Vergrößerung in sechs zufällig ausgewählten Abschnitten ausgezählt. Die Migration wurde in Prozent zur basalen Zellmigration angegeben.

3.8.2 Durchführung des Matrigel Tube Formation Assays

Im Tube Formation Assay stellt das Matrigel die Basalmembranmatrix dar, in der Endothelzellen Gefäßtubuli ausbilden. Zur Durchführung des Tube Formation Assays wurde eine 48-well-Platte verwendet. Das Matrigel wurde über Nacht auf Eis zum Auftauen gebracht (4 ºC). 100 µl Matrigel wurden für ein Well verwendet. Es erfolgte eine Inkubation für 30 Minuten bei 37 ºC zur Verfestigung des Gels, währenddessen wurden die Zellen vorbereitet. Hierzu wurden 5x10^4 HCAECs in basalem Endothelzellmedium mit 1 % FCS in jedes Well gegeben. Zur Adhäsion der Zellen wurden diese für eine Stunde bei 37 ºC inkubiert. Anschließend wurden die Testsubstanzen, gelöst in basalem Endothelzellmedium (1% FCS), den Zellen hinzugefügt. Als Kontrolle wurde Medium mit 0,1 % Ethanol und VEGF (20 ng/ml) mit 0,1 % Ethanol verwendet. VEGF diente als Positivkontrolle und wurde allen weiteren Ansätzen zugesetzt. 8-iso-PGF_2α (3x10^-5 mol/l), U 46119 (3x10^-5 mol/l) wurden als Thromboxan A₂ Agonist getes-
tet, SQ 29548 (3x10⁻⁵ mol/l) und BM 567 (3x10⁻⁵ mol/l) als TBXA2R-Antagonisten. Die Platte wurde für 24 Stunden bei 37 °C und 5 % CO₂ inkubiert. Von jedem Well wurden vier Fotos gemacht und die Länge der Tubes wurde mit der 40-fach Vergrößerung der Zeiss Axiovision Software bemessen und in mm/mm² angegeben.

3.9 Statistische Analyse

Die statistische Analyse der aufgezeichneten Daten wurde mit Graph-Pad Prism 4.0 durchgeführt. Die Analyse der Daten erfolgte mit dem 1-way ANOVA, gefolgt vom Fischer Signifikanztest. Ein P Wert von <0.05 wurde als statistisch signifikant angesehen.
4 Ergebnisse

4.1.1 Identifikation des TBXA2R auf mRNA Ebene und der TBXA2R-Subtypen in HDMECs

Die PCR wurde wie in Abschnitt 3.1 beschrieben durchgeführt, um die mRNA der beiden TBXA2R-Subtypen nachzuweisen. Sowohl TBXA2R-α mit einer Größe von 285 bp als auch -β mit einer Größe von 385 bp konnten in HDMECs nachgewiesen werden.

Abb. 4.1 Expression von TBXA2R-α und -β mRNA in HDMECs, im dritten Abschnitt des Gels befindet sich Aqua ad injectabilia als Negativkontrolle.

4.1.2 Nachweis des lentiviralen Knockdowns des TBXA2-Rezeptors auf mRNA-Ebene

Um den Knockdown des Thromboxanrezeptors nachzuweisen, wurde eine Realtime-PCR mit mRNA aus unbehandelten HDEMCs, nach lentiviraler Transduktion mit scrambled-shRNA und shRNA gegen den TBXA2-Rezeptor durchgeführt. 48 Stunden nach der Transduktion wurde die mRNA aus den Zellen isoliert und die Realtime-PCR durchgeführt.
Diese zeigte, dass die scrambled-shRNA verglichen zur Kontrolle keinen Effekt auf die mRNA-Expression des TBXA2-Rezeptors hatte. Die gegen den TBXA2-Rezeptors gerichtet shRNA, führte zu einer signifikanten Runterregulation (p<0,05) der mRNA-Expression verglichen zur scrambled-Sequenz und zur Kontrolle.

Abb. 4.2 Analyse der mRNA-Expression (normalisiert zur GAPDH-Expression) von unbehandelten Zellen, nach lentiviraler Transduktion mit scrambled-shRNA und shRNA gegen TBXA2-Rezeptor. Mittelwerte ±SD, n=8.

4.1.3 Nachweis des lentiviralen Knockdown des TBXA2-Rezeptors auf Proteinebene

Um auch auf Proteinebene die Herunterregulation des TBXA2-Rezeptors nachzuweisen, wurde ein Western Blot mit Proteinen aus unbehandelten HCAECs, nach lentiviraler Transduktion mit scrambled-shRNA und gegen den TBXA2-Rezeptor gerichtete shRNA durchgeführt. Der Western Blot erfolgte nach 72-stündiger lentiviraler Inkubation. Der Western Blot zeigte eindeutig die Herunterregulation des Thromboxanrezeptors nach Transduktion mit shRNA gegen den TBXA2R.
Abb. 4.3 Analyse der Proteinexpression in HCAECs nach lentiviraler Transduktion mit scrambled-shRNA und shRNA gegen TBXA2-Rezeptor.

4.2 Effekte von 8-iso-PGF$_{2\alpha}$ nach lentiviralem Knockdown des TBXA2R

4.2.1 Effekte von 8-iso-PGF$_{2\alpha}$ und dem TBXA2-Rezeptorantagonist SQ 29548 auf die VEGF-induzierte Kapillarröhrenbildung von unbehandelten HCAECs

Der Tube Formation Assay, der mit HCAECs durchgeführt wurde, zeigte eine signifikante Zunahme der Kapillarröhrenbildung durch VEGF verglichen zur Kontrolle. Die VEGF-induzierte Stimulation wurde durch 8-iso-PGF$_{2\alpha}$ gehemmt ($p<0.001$). Der hemmende Effekt von 8-iso-PGF$_{2\alpha}$ wurde durch den TBXA2-Rezeptor Antagonisten SQ 29548 aufgehoben.
4.2.2 Effekte von 8-iso-PGF$_{2\alpha}$ auf die Kapillarröhrenbildung nach lentiviraler Transduktion mit shRNA gegen den TBXA2R

Der Tube Formation Assay wurde mit HCAECs durchgeführt, die 48 Stunden mit der shRNA gegen den TBXA2-Rezeptor und der scrambled-shRNA transduziert waren. Die Kapillarröhren wurden 24 Stunden nach der Transduktion mit der 40x Vegrößerung des Zeiss Axiovision Mikroskops fotografiert. Abbildungen 4.5 und 4.6 zeigen die Kapillarröhren von shRNA transduzierten HCAECs mit einer durch VEGF induzierten Zunahme der Kapillarröhrenbildung. Die Kapillarröhrenbildung, der mit scrambled-shRNA transduzierten Zellen, wurde signifikant durch 8-iso-PGF$_{2\alpha}$ gehemmt (Abbildungen 4.7 und 4.9). Dies zeigt, dass die scrambled-shRNA keinen Effekt auf den Signalweg des TBXA2R hatte, so dass 8-iso-PGF$_{2\alpha}$ weiterhin über den TBXA2R seinen hemmenden Effekt auf die Kapillarröhrenbildung entfalten konnte. Nach Herunterregulation des TBXA2R konnte 8-iso-PGF$_{2\alpha}$ keinen Effekt mehr auf die Kapillarröhrenbildung
ausüben (Abbildungen 4.8 und 4.9). Dies zeigt, dass 8-iso-PGF$_{2\alpha}$ seinen hemmenden Effekt auf die Kapillarröhrenbildung über eine Aktivierung des TBXA2-Rezeptors auslöst.

Abb. 4.5 Transduzierte Zellen: Kontrolle

Abb. 4.6 Transduzierte Zellen: mit VEGF

Abb. 4.7 Unbehandelte Zellen: VEGF + 8-iso-PGF$_{2\alpha}$

Abb. 4.8 Transduzierten Zellen: VEGF+8-iso-PGF$_{2\alpha}$
Abb. 4.9 Effekt der shRNA induzierten Runterregulation des TBXA2-Rezeptors auf die durch 8-iso-PGF$_{2\alpha}$ induzierte Hemmung der Kapillarröhrenbildung. Mittelwerte ±SD, n=8.

4.2.3 Effekte von TBXA2R-Antagonisten auf die durch 8-iso-PGF$_{2\alpha}$ reduzierte VEGF-induzierte Migration von HDMECs

Der Migrationsassay, der mit HDMECs durchgeführt wurde, zeigte wie der Tube Formation Assay eine signifikante Zunahme (p<0,01) der Zellmigration durch VEGF, verglichen mit der Kontrolle. 8-iso-PGF$_{2\alpha}$ hemmt die VEGF-induzierte Stimulation (p<0,01). Der hemmende Effekt von 8-iso-PGF$_{2\alpha}$ wird durch den TBXA2-Rezeptor Antagonisten SQ 29548 vollständig aufgehoben, sowie durch zwei weitere TBXA2-Receptorantagonisten ICI 192605 und BM 567.
4.2.4 Effekte von 8-iso-PGF$_2\alpha$ auf die Migration nach lentiviraler Transduktion mit shRNA gegen den TBXA2R

In den durchgeführten Migrations Assays konnte gezeigt werden, dass die shRNA-induzierte Herunterregulation der TBXA2R-Expression zu einer Antagonisierung des hemmenden Effekts von 8-iso-PGF$_2\alpha$ auf die Migration von HDMECs (p<0,001) führt. Dies zeigt, dass 8-iso-PGF$_2\alpha$ über eine Aktivierung des TBXA2R auf die Migration von HDMECs wirkt. In den mit der scrambled-shRNA transduzierten Zellen, zeigte 8-iso-PGF$_2\alpha$ weiterhin einen hemmenden Effekt auf die Zellmigration.

Abb. 4.10 Effekte von 8-iso-PGF$_2\alpha$ und den TBXA2-Rezeptorantagonist SQ-29548, ICI 192605 und BM 567 auf die VEGF-induzierte Zellmigration von HDMECs. Mittelwerte ±SD, n=12.
Abb. 4.11 Effekt des shRNA induzierten Knockdowns auf die 8-iso-PGF$_{2\alpha}$ induzierte Hemmung der Zellmigration von HDMECs. Mittelwerte ±SD, n=12.

4.3 Generierung einer stabilen, den TBXA2-Receptorsubtyp α exprimierenden Zelllinie

Damit bei zukünftigen Experimenten der Effekt der Isoprostane auf den α-Subtyp des TBXA2R untersucht werden kann, wurde eine Zelllinie generiert, die den Subtyp α überexprimiert. Eine solche Zelllinie sollte zudem eine einfache Testmöglichkeit für subtypspezifische shRNA Sequenzen darstellen. Für die Generierung einer solchen Zelllinie wurden HEK 293 Zellen verwendet, die mit einem Plasmid zur Überexpression von Subtyp α transfiziert wurden. 48 Stunden nach der Transfektion, wurde das geneticinhaltige Selektionsmedium (1 mg/ml) hinzugegeben. Nach drei Tagen war der größte Teil der Zellen verstorben (Abb. 4.12), die das Plasmid nicht stabil in das Genom integriert hatten. Nach insgesamt sieben Tagen waren einzelne Zellkolonien sichtbar (Abb. 4.13), die dem Selektionsdruck standhalten konnten.
Abb. 4.12 Transfizierte HEK 293 Zellen nach dreitägiger Selektion mit Geneticin in einer Konzentration von 1 mg/ml.

Abb. 4.13 Transfizierte HEK 293 Zellkolonien nach siebentägiger Selektion mit Geneticin in einer Konzentration von 1mg/ml.

4.3.1 Nachweis des α Subtypes des TBXA2-Rezeptorse auf mRNA- und Proteinebene

Um die stabile Überexpression von TBXA2R-Subtyp α in transfizierten HEK 293 Zellen nachzuweisen, wurden Realtime-PCR und Western Blot-Analysen 30 Tage nach der Transfektion durchgeführt. Die quantitative PCR zur Detektion der mRNA des TBXA2R erfolgte ohne eine Differenzierung zwischen den
Subtypen. Der spezifische Nachweis des TBXA2R-α erfolgte im Western Blot mit einem subtypenspezifischen Antikörper (Lifespan Biosciences, MI, USA). In der Realtime-PCR konnte eine eindeutige Überexpression gezeigt werden (Abb. 4.14), die sich auch auf Proteinebene im Western Blot bestätigen ließ (Abb. 4.15).

Abb. 4.14 Nachweis der erfolgreichen Überexpression von Subtyp α in transfizierten HEK 293 Zellen im Vergleich zu nicht transfizierten Zellen in der Realtime-PCR, Mittelwerte ±SD angegeben, n=9.

Abb. 4.15 Nachweis der Überexpression von Subtyp α (Proteingröße von 50 kD) in HEK 293 Zellen im Western Blot.
5 Diskussion

Dazu wurde untersucht, welchen Effekt 8-iso-PGF$_{2\alpha}$ auf wichtige Schritte der VEGF-stimulierten Angiogenese hat und ob dieser über den TBX2A2R vermittelt wird. Hierzu wurde die TBX2A2R-Expression in humanen Endothelzellen mit Hilfe von shRNA herunterreguliert und die Effekte von 8-iso-PGF$_{2\alpha}$ auf die VEGF-induzierte Migration und Kapillarröhrenbildung untersucht.

5.1.1 Einfluss von 8-iso-PGF$_{2\alpha}$ auf die VEGF-induzierte Migration und Kapillarröhrenbildung in vitro

VEGF ist ein Wachstumsfaktor der an wichtigen Mechanismen der Angiogenese beteiligt ist (105). Im Serum von Patienten nach Myokardinfarkt ist seine Konzentration zwischen Tag 3 und 28 nach dem Infarkt erhöht, was die Neovaskularisation des Myokards fördert (105). Gleichzeitig entstehen im geschädigten Myokard, insbesondere während der Reperfusion nach Myokardinfarkt, größere Mengen an Isoprostana (39), (106). Eine weitere wichtige vaskuläre
Quelle für Isoprostanate sind vulnerable Plaques, so zeigen Patienten mit instabiler Angina sowohl in atherosklerotischen Plaques als auch im Blut erhöhte Isoprostanakonzentrationen (107), (108). Wie die Abb. 4.4 zeigt, hat 8-iso-PGF$_{2a}$ einen hemmenden Effekt auf die VEGF-stimulierte Kapillarröhrenbildung von HCAECs. Dieser anti-angiogene Effekt von 8-iso-PGF$_{2a}$ kann durch den TBXA2R-Antagonisten SQ 29548 aufgehoben werden (Abb. 4.4), was zeigt, dass 8-iso-PGF$_{2a}$ einen inhibitorischen Effekt auf die Angiogenese über den TBXA2R vermittelt. Weitere eingesetzte synthetische TBXA2R-Antagonisten wie ICI 192605 und BM 567 zeigten denselben Effekt auf die Migration von HDMECs wie SQ 29548 (Abb. 4.10), was den Signalweg über den TBXA2R bestätigt. Somit könnten Isoprostanate wichtige Gegenspieler des VEGF bei der Angiogenese sein. Insbesondere bei Patienten mit instabiler Angina oder frischem Myokardinfarkt könnten Isoprostanate die wichtige Rekapillarisierung von minderperfundiertem Gewebe verhindern.

In Übereinstimmung mit diesen Kenntnissen hat die pharmakologische Antagonisierung des TBXA2R gezeigt, dass der anti-angiogene Effekt von 8-iso-PGF$_{2a}$ über den TBXA2R vermittelt wird. Die Gruppe von Brault et al. konnte zeigen, dass 8-iso-PGF$_{2a}$ Thromboxan A$_2$-abhängig zum Zelltod von mikrovaskulären endothelialen Zellen führt (110). Um herauszufinden, ob die Hemmung der VEGF-stimulierten Angiogenese aus einer durch 8-iso-PGF$_{2a}$-induzierten Bildung von Thromboxan A$_2$ resultiert, wurde in unserer Arbeitsgruppe der spezifische Thromboxan A$_2$ Synthase Inhibitor Ozagrel im Migrationsassay eingesetzt, mit dem Ergebnis, dass keine Beeinträchtigung des inhibitorischen Effekts von 8-iso-PGF$_{2a}$ festzustellen war (111). Daraus konnte geschlussfol-
gert werden, dass der inhibitorische Effekt von 8-iso-PGF$_{2\alpha}$ nicht Thromboxan A$_2$-abhängig und ausschließlich auf 8-iso-PGF$_{2\alpha}$ selber zurückzuführen ist.

5.1.2 Einfluss von 8-iso-PGF$_{2\alpha}$ auf die VEGF-induzierte Migration und Kapillarröhrenbildung nach lentiviralem Knockdown des TBXA2R

Neben der pharmakologischen Antagonisierung des TBXA2R, zeigte auch der lentivirale Knockdown des TBXA2R eine Aufhebung des inhibitorischen Effekts von 8-iso-PGF$_{2\alpha}$ auf die Kapillarröhrenbildung von HCAECs und die Migration von HDMECs (Abb. 4.5 und 4.11). Diese Ergebnisse bestätigen, dass der anti-angiogene Effekt von 8-iso-PGF$_{2\alpha}$ über den TBXA2R vermittelt wird. In den Endothelzellen, die mit einer scrambled-Sequenz transduziert wurden, zeigte 8-iso-PGF$_{2\alpha}$ im Vergleich zur Kontrolle einen ähnlich starken inhibitorischen Effekt auf die Kapillarröhrenbildung und die Migration. Dies zeigt, dass die Aufhebung des inhibitorischen Effekts von 8-iso-PGF$_{2\alpha}$ in den mit einer shRNA-transduzierten Endothelzellen nicht auf unspezifische Effekte des lentiviralen Konstruks zurückzuführen ist, sondern ausschließlich auf der Herunterregulation des Receptors beruht.

In Übereinstimmung mit unseren Ergebnissen zeigten Ashton et al., Gao et al. und Pal et al., dass anti-angiogene Effekte auf Endothelzellen über den TBXA2R vermittelt werden (95), (104), (112). Im Gegensatz dazu beschreibt die Gruppe von Nie et al., dass die Aktivierung des TBXA2R einen pro-angiogenen Effekt hat (113). Sie zeigten, dass der TBXA2R-Agonist U-46619 zu einer Stimulation der Migration von HUVEC führt, während höhere Konzentrationen von U-46619 eine Hemmung bewirken. Dieser biphasische Effekt auf die Migration von Endothelzellen wird auf die Desensitivierung des TBXA2R zurückgeführt, bei der es durch permanente Anwesenheit eines Liganden zu einem Abbruch des Signaltransduktionsweges kommt (114), (115).

Unsere Ergebnisse haben gezeigt, dass 8-iso-PGF$_{2\alpha}$, ein endogen gebildetes Produkt der Lipidperoxidation, wichtige Schritte der Angiogenese über den

5.1.3 Bedeutung des anti-angiogenen Signalwegs von Isoprostanen über den TBX2A2R

Abb. 5.1 ROS-regulierte pro- und anti-angiogene Signalwege während kardiovaskulärer Erkrankungen (Sauer und Wartenberg, modifiziert (125)), FLK-1 (VEGFR-2).

5.1.4 Bedeutung der beiden TBXA2-Rezeptorsubtypen – Etablierung einer stabilen, den Subtyp α exprimierenden Zelllinie

Humane Endothelzellen exprimieren zwei Isoformen des TBXA2R, Rezeptorsubtyp α und β. Die beiden Subtypen unterscheiden sich in ihrem Signaltransduktionsweg und weisen ein unterschiedliches Expressionsmuster in einer Vielzahl von Zell- und Gewebetypen auf (91). Die Bedeutung der beiden Isoformen für die VEGF-induzierte Migration und Angiogenese ist nicht ausreichend geklärt. Ergebnisse von Asthon et al. haben gezeigt, dass die Expression des Rezeptorsubtyps β für eine Reduktion der VEGF-stimulierten Angiogenese durch TBXA2R-Liganden notwendig ist (95). Ergebnisse aus transfizierten Humanen Endothelzellen aus der Vena umbilicalis (HUVEC), die entweder den Subtyp α oder β überexprimierten, zeigen, dass für eine durch den TBXA2R-Liganden IBOP vermittelte Hemmung der Migration und Kapillarröhrenbildung die Expression von Subtyp β, aber nicht von α erforderlich war. Um herauszufinden welcher Subtyp für den Signalweg von 8-iso-PGF$_2\alpha$ verantwortlich ist, wurde eine den Rezeptorsubtyp α überexprimierende Zelllinie generiert, mit dem Ziel eine geeignete shRNA-Sequenz zu finden, die spezifisch gegen den Subtyp α gerichtet ist. Die erfolgreiche Überexpression wurde mit Hilfe der Realtime-PCR und Western Blots bestätigt. Das Ergebnis der Realtime PCR zeigte eine deutliche Überexpression des Rezeptorsubtyps α um 224 % im Vergleich zu nicht-transfizierten HEK Zellen (Abb. 4.14), was sich in einem deutlichen Signal im Western Blot bei einer Proteingröße von 50 kD widerspiegelt (Abb. 4.15). Die Überexpression des Subtyp β ist in weiteren Experimenten geplant. Entsprechend des durchgeführten unspezifischen lentiviralen Knockdowns des TBXA2R, soll mit einer geeigneten shRNA in Zukunft nur der Rezeptorsubtyp α oder β herunterreguliert werden. Würde sich in Übereinstimmung mit den Daten von Asthon et al., der Rezeptorsubtyp β für den Wirkungsweg von 8-iso-PGF$_2\alpha$ auf die Angiogenese zeigen, könnte ein spezifischer Rezeptorsubtyp-Antagonist die Isoprostan-induzierte Hemmung der Angiogenese blockieren und damit die anti-angiogene Wirkung von 8-iso-PGF$_2\alpha$ aufheben, was

75
therapeutische Bedeutung hätte, beispielsweise bei der Behandlung der myokardialen Ischämie.

5.1.5 Therapeutische Bedeutung des über den TBXA2R-vermittelten antiangiogenen Effekt von Isoprostanen

In dieser Arbeit konnte durch lentiviralen Knockdown des TBXA2R gezeigt werden, dass der anti-angiogene Effekt von 8-iso-PGF₂α auf die VEGF-induzierte Kapillarröhrenbildung und Migration über eine Aktivierung des TBXA2R vermittelt wird. Dies könnte von wichtiger klinischer Bedeutung für die Behandlung kardiovaskuläre Erkrankungen sein. Hier kommt es bei fortgeschrittenem Krankheitsstadium durch vermehrten oxidativen Stress zur Bildung von bioreaktiven Isoprostanen, die einen hemmenden Effekt auf die Revaskularisierung von
hypoxischem Gewebe ausüben und damit die kardiovaskuläre Regeneration reduzieren. Isoprostane akkumulieren im hypoxischen Myokard und führen zu einer Rarefikation von vaskulären Strukturen, die zur Aufrechterhaltung der Sauerstoffversorgung benötigt werden.

Hinsichtlich der Existenz der beiden Isoformen des TBXA2R wäre eine weitere Möglichkeit der Behandlung, die isolierte Antagonisierung derjenigen Isoform, die in die Angiogenese involviert ist. Es konnte gezeigt werden, dass der Rezeptorsubtyp β für eine Hemmung der VEGF-induzierten Migration benötigt wird, nicht jedoch Rezeptorsubtyp α. Würde sich in Übereinstimmung damit
zeigen, dass der anti-angiogene Effekt von 8-iso-PGF$_{2\alpha}$ nur über einen der beiden Isoformen vermittelt wird, könnte ein Subtyp-spezifischer Antagonist eingesetzt werden. Eine Antagonisierung des Rezeptorsubtyps β hätte den Vorteil, dass die Hämostase nicht beeinträchtigt würde. Ist jedoch eine Thrombozytenaggregationshemmung erforderlich, würde sich der Einsatz eines β-selektiven Antagonisten nicht eignen, da auf Thrombozyten nur der Receptorsubtyp α zu finden ist (122).
6 Zusammenfassung

7 Abkürzungsverzeichnis

Vorsätze für SI-Einheiten

k \quad \text{kilo} \; (10^3)

c \quad \text{centi} \; (10^{-2})

m \quad \text{milli} \; (10^{-3})

\mu \quad \text{mikro} \; (10^{-6})

n \quad \text{nano} \; (10^{-9})

p \quad \text{pico} \; (10^{-12})

A \quad \text{Ampere}

ASS \quad \text{Acetylsalicylsäure}

Amp \quad \text{Ampicillin}

BSA \quad \text{Bovines Serum Albumin}

bp \quad \text{Basenpaare}

\degree C \quad \text{Grad Celsius}

CAM \quad \text{Chorioallantois Membran}

cAMP \quad \text{cyclisches Adenosinmonophophat}

cDNA \quad \text{copy Desoxyribonucleinsäure}

COX \quad \text{Cycloooxygenase}

COPD \quad \text{chronische obstruktive Lungenkrankung}

CMV \quad \text{Zytomegalie Virus}

cPPT \quad \text{zentraler Polypurin- Trakt}

C_T \quad \text{Schwellenzyklus}
DAG Diacylglycerin
Da Dalton
DNA Desoxyribonukleinsäure
dNTP Desoxynukleosidtriphosphat
DMSO Dimethylsulfoxid
E. coli Escherichia coli
ECL enhanced chemiluminescence
EIA Enzymimmunoassay
env Gen der Hüllproteine (envelope)
ERK extra-regulated protein kinase
FCS Fötales Kälberserum
g Gramm
g Erdbeschleunigung (9,8 m/s²)
gag gruppenspezifisches Antigen
GAPDH Glycerinaldehyd-3-phosphat-Dehydrogenase
GC-MS Gaschromatograph-Massenspektrometer
GFP grün fluoreszierendes Protein
GTP Guanosintriphosphat
HCAEC Humane koronare arterielle Endothelzelle
HDMEC Humane dermale mikrovaskuläre Endothelzelle
HEK Humane embryonale Nierenzelle
HIV Humane Immundefizienzvirus
HUVEC Humane Nabelschnurvenen Endothelzelle
IP₃ Inositoltriphosphat
Ig Immunglobulin
IU Internationale Einheiten
KHK Koronare Herzkrankheit
LTR Long Terminal Repeat
LB-Medium Luria Bertani Medium
l Liter
m Meter
M Molar
mRNA Messenger Ribonucleinsäure
miRNA Micro Ribonucleinsäure
n Anzahl
n.s nicht signifikant
Neo Neomycin
OD optische Dichte
% Prozent
PBS Phosphat-gepufferte Kochsalzlösung
PCR Polymerase-Kettenreaktion
PG Prostaglandin
PKA Proteinkinase A
PLC Phospholipase C
pol Polymerase
Puro Puromycin
rev regulator of expression of the virion
RIA Radioimmunoassay
RISC RNA-induced silencing complex
RNAi Ribonucleinsäure Interferenz
ROS Reaktive Sauerstoffspezies
rRNA Ribosomale Ribonucleinsäure
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRE</td>
<td>rev responsive element</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
</tr>
<tr>
<td>shRNA</td>
<td>short hairpin RNA</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus</td>
</tr>
<tr>
<td>TBXA2R</td>
<td>Thromboxanrezeptor</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris-gepufferte Kochsalzlösung</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetat Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>v/v</td>
<td>Volumengehalt in Prozent</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular Endothelial Growth Factor</td>
</tr>
<tr>
<td>VSV</td>
<td>vesikuläres Stomatitis Virus</td>
</tr>
</tbody>
</table>
8 Literaturverzeichnis

45. Carpenter CT, Price PV, Christman BW. Exhaled breath condensate isoprostanes are elevated in patients with acute lung injury or ARDS. Chest 1998;114:1653-1659.

76. Morrow JD, Minton TA, Roberts LJ. The F2-isoprostane, 8-epi-prostaglandin F2 alpha, a potent agonist of the vascular thromboxane/endoperoxide receptor, is a platelet thromboxane/endoperoxide receptor antagonist. Prostaglandins 1992;44:155-163.

78. Audoly LP, Rocca B, Fabre JE, Koller BH, Thomas D, Loeb AL, Coffman TM, FitzGerald GA. Cardiovascular responses to the isoprostanes iPF(2alpha)-III and iPE(2)-III are mediated via the thromboxane A(2) receptor in vivo. Circulation 2000;101:2833-2840.

9 Publikationen

Benndorf RA, Schwedhelm E, Gnann A, Taheri R, Kom G, Didié M, Steenpass A, Ergün S, Böger RH. Isoprostanes inhibit vascular endothelial growth factor-induced endothelial cell migration, tube formation, and cardiac vessel sprouting in vitro, as well as angiogenesis in vivo via activation of the thromboxane A(2) receptor: a potential link between oxidative stress and impaired angiogenesis. Circ. Res. 2008;103:1037-1046
10 Eidesstattliche Versicherung

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachverte ter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Unterschrift: ...
11 Danksagung

Ich bedanke mich bei Herrn Prof. Dr. T. Eschenhagen für die Möglichkeit, im Institut für Experimentelle und Klinische Pharmakologie und Toxikologie diese Doktorarbeit durchzuführen.

Besonderen Dank gilt Herrn Prof. Dr. R. Böger für die Aufnahme in seinen Arbeitsbereich und die umfassende Art der Betreuung.

Des Weiteren danke ich besonders Herrn Dr. Edzard Schwedhelm für die Hilfe bei der Planung der Experimente und für die stets motivierenden und hilfreichen Gespräche.

Frau Dorothee Atzler danke ich für die großartige Hilfsbereitschaft.

Auch Frau Anna Steenpaß, Frau Mariola Kastner und Frau Cornelia Woermann danke ich herzlich für die Unterstützung bei allen das Labor betreffenden Fragen.

Weiterhin möchte ich allen nichtgenannten Mitgliedern des Instituts, insbesondere dem Arbeitsbereich Klinische Pharmakologie, für die ständige Hilfsbereitschaft und den stets freundlichen Umgang danken.

Meiner Familie danke ich besonders für die jederzeit uneingeschränkte Unterstützung.