Wirksamkeit und Toxizität von antifungaler Prophylaxe
bei Patienten nach allogener Stammzelltransplantation

Dissertation

Zur Erlangung des Grades eines Doktors der Medizin
an der Medizinischen Fakultät der Universität Hamburg

vorgelegt von:

Corinna Bendig
aus Hamburg

Hamburg 2010
Angenommen von der
Medizinischen Fakultät der Universität Hamburg am: 14.01.2011

Veröffentlicht mit Genehmigung der
Medizinischen Fakultät der Universität Hamburg.

Prüfungsausschuss, der Vorsitzende: Prof. Dr. Nicolaus Kröger

Prüfungsausschuss, zweiter Gutachter: PD Dr. Holger Rohde

Prüfungsausschuss, dritter Gutachter: PD Dr. Francis Ayuketang Ayuk
Inhaltsverzeichnis

1 Problemstellung ..8
2 Einleitung ..9

2.1 Stammzelltransplantation ..9
 2.1.1 Definition ..9
 2.1.2 Indikation ...9
 2.1.3 Formen der Stammzelltransplantation ..9
 2.1.3.1 Allogene Stammzelltransplantation ..10
 2.1.4 Konditionierung bei allogener HSZT ...10
 2.1.5 Immunsuppressive Therapie bei allogener HSZT ...11
 2.1.6 Risikofaktoren und Komplikationen der allogenen
 Stammzelltransplantation ..12
 2.1.7 Infektionsprophylaxe bei Neutropenie ...16

2.2 Pilzinfektionen im Rahmen von Stammzelltransplantationen16
 2.2.1 Definitionen ...16
 2.2.2 Epidemiologie ..17
 2.2.3 Keimspektrum ..18
 2.2.4 Risikofaktoren ...19
 2.2.5 Klinik ..19
 2.2.6 Diagnostik ...20
 2.2.7 Therapie ..22
 2.2.8 Antimykotika ..22
 2.2.8.1 Azole ...23
 2.2.8.2 Echinocandine ..26
 2.2.8.3 Amphotericin B ...27
 2.2.8.3.1 Historie ..27
 2.2.8.3.2 Pharmakochemie ..27
 2.2.8.3.3 Wirkmechanismus ..28
2.2.8.3.4 Pharmakokinetik ...28
2.2.8.3.5 Wirkspektrum und Indikation ...29
2.2.8.3.6 Dosierung ...29
2.2.8.3.7 Unerwünschte Arzneimittelwirkungen29
2.2.8.3.8 Wechselwirkungen ..31
2.2.8.3.9 Amphotericin B Lipid Formulierungen31
2.2.9 Antifungale Prophylaxe ..37

2.3 Studien zur antifungalen Prophylaxe ...39
 2.3.1 Überarbeitete Definition Invasive Pilzerkrankung (IFD) nach EORTC/MSG 2008: ...41

2.4 Fragestellung ..47

3 Material und Methoden ...48
 3.1 Patienten ..48

3.2 Allogene Stammzelltransplantation in der Klinik und Poliklinik für
Stammzelltransplantation des onkologischen Zentrums im
Universitätsklinikum Hamburg-Eppendorf ...48
 3.2.1 Ablauf der stationären Behandlung ..48
 3.2.2 Standards zum medizinischen Regime49
 3.2.2.1 Medikamentöse Infektionsprophylaxe49
 3.2.2.2 Diagnostik ..50
 3.2.2.2.1 Routinediagnostik zur frühzeitigen Detektion invasier
 Pilzinfektionen ..50
 3.2.2.2.2 Erweiterte Diagnostik bei Verdacht auf eine invasive
 Pilzinfektion ..51
 3.2.2.3 Therapie von Infektionen ...51
 3.2.2.4 Standardisierte Medikation ...51

3.3 Untersuchung ..52
Inhaltsverzeichnis

3.4 Datenerhebung ...52
 3.4.1 Erhebungsparameter ...52
 3.4.2 Erläuterungen zum Vorgehen der Datenerhebung:53
 3.4.3 EORTC/MSG Kriterien für die Diagnose einer IFI
 zusammengefasst für ABLC Erhebung 2007/0860

3.5 Statistische Auswertung ..60

4 Ergebnisse ..62
 4.1 Patienten ..62
 4.2 Antimykotische Prophylaxe vor ABLC64
 4.3 Amphotericin B Lipid Komplex - Rahmendaten66
 4.3.1 Dauer der Medikation ..66
 4.3.2 Dauer der Neutropenie ..67

4.4 Ergebnisse zur Toxizität von ABLC69
 4.4.1 Ergebnisse zur akuten Toxizität69
 4.4.1.1 Prämedikation ...69
 4.4.1.2 Umstellung bei Unverträglichkeit69
 4.4.1.3 Effektivität der Prämedikation71
 4.4.1.4 Abweichungen zwischen den Jahren 2007 und 200873
 4.4.2 Ergebnisse zur Nephrotoxizität75
 4.4.2.1 Serum Kreatinin Veränderungen unter ABLC75
 4.4.2.2 Nephrotoxische Arzneistoffe78
 4.4.2.3 Vergleich von Altersgruppen bezüglich Nierenfunktion80
 4.4.2.4 Kreatinin im Verhältnis zur Neutropeniedauer83

4.5 Ergebnisse zur Wirksamkeit von ABLC83
 4.5.1 IFI nach EORTC/MSG 2008 ..83
 4.5.2 Umstellung auf Pilztherapie ..84
 4.5.3 Antifungale Medikation nach ABLC85
Inhaltsverzeichnis

4.5.4 Diagnosen und Outcome ...87
4.5.5 IFI Entstehung im Zusammenhang mit Neutropeniedauer ..88
4.5.6 Auftreten von IFI im zeitlichen Zusammenhang91

4.6 Zusammenfassung ..91

5 Diskussion ...97

5.1 Toxizität von ABLC ..97

5.1.1 Akute Toxizität ..97

5.1.1.1 Effektivität der Prämedikation99

5.1.1.2 Abweichungen der Ergebnisse der akuten Toxizität zwischen den Jahren 2007 und 2008 ..101

5.1.2 Einfluss von ABLC auf die Dauer der Neutropenie101

5.1.3 Ergebnisse zur Nephrotoxizität102

5.1.3.1 Nephrotoxische Arzneimittel102

5.1.3.2 Serumkreatinin Veränderungen unter ABLC103

5.1.3.3 Eingeschränkte Kreatininausgangswerte....................108

5.1.3.4 Vergleich von Altersgruppen bzgl. der Nierenfunktion109

5.1.4 Toxizität im Vergleich mit Antimykotika anderer Wirkstoffgruppen ...110

5.1.5 Fazit Toxizität...111

5.2 Wirksamkeit von ABLC ...112

5.2.1 Beurteilung der Ergebnisse im Vergleich mit Literaturdaten ..112

5.2.2 Fazit Wirksamkeit..121

5.3 Einordnung der Untersuchung ..122

5.4 Fazit ..124

6 Zusammenfassung ...126

7 Abkürzungsverzeichnis ...128
<table>
<thead>
<tr>
<th>Seite</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Literaturverzeichnis</td>
</tr>
<tr>
<td>9</td>
<td>Danksagung</td>
</tr>
<tr>
<td>10</td>
<td>Curriculum vitae</td>
</tr>
<tr>
<td>11</td>
<td>Anhang</td>
</tr>
<tr>
<td>11.1</td>
<td>Abbildungsverzeichnis</td>
</tr>
<tr>
<td>11.2</td>
<td>Tabellenverzeichnis</td>
</tr>
<tr>
<td>11.3</td>
<td>Erhebungsbogen, Access-Datei</td>
</tr>
<tr>
<td>11.4</td>
<td>Genehmigung zur Verwendung der Patientendaten</td>
</tr>
<tr>
<td>12</td>
<td>Eidesstattliche Versicherung</td>
</tr>
</tbody>
</table>
1 Problemstellung

Eine der medizinischen Voraussetzungen für die Transplantation von allogenen peripheren Stammzellen oder Knochenmark im Rahmen von hämatoonkologischen Therapieregimen ist die immunsuppressivive Therapie. Medikamentös muss dem aus dieser Therapie resultierenden hochgradigen Infektionsrisiko des Patienten mit einer antibakteriellen, antiviralen und antifungalalen Prophylaxe begegnet werden.

Im Rahmen einer retrospektiven Untersuchung werden die Wirksamkeit und Toxizität einer intravenös verabreichten prophylaktischen Dosierung (1mg/kg Körpergewicht) des Antimykotikums Amphotericin B Lipidkomplex (Abelcet®) untersucht.

Die Untersuchung beruht auf Patientendaten, die im Zeitraum vom 01.01.2007 bis zum 30.09.2008 im Rahmen der stationären Versorgung in der interdisziplinären Klinik und Poliklinik für Stammzelltransplantation des Onkologischen Zentrums im Universitätsklinikum Hamburg-Eppendorf erhoben wurden.
2 Einleitung

2.1 Stammzelltransplantation

2.1.1 Definition

Bei der Stammzelltransplantation handelt es sich um eine Behandlungsmethode, bei der eigene oder fremde hämatopoetische Stammzellen dem Transplantatempfänger transfundiert werden. Das Ziel ist, dass die Stammzellen des Spenders beim Empfänger die hämatopoetischen Aufgaben des Knochenmarks vollständig übernehmen.

2.1.2 Indikation

2.1.3 Formen der Stammzelltransplantation

Nach der Herkunft der Stammzellen unterscheidet man drei verschiedene Formen der hämatopoetischen Stammzelltransplantation (HSZT).
Bei der autologen Transplantation werden patienteneigene Stammzellen, die zu einem früheren Zeitpunkt entnommen und kryokonserviert wurden, retransplantiert.

Die syngene Transplantation ist eine Übertragung von genetisch identischen Stammzellen durch die Spende eines eineiigen Zwillings.

Bei der allogenen Transplantation werden genetisch nicht identische aber möglichst immunologisch ähnliche (nach HLA-Typisierung) Stammzellen von Fremd- oder Familienspendern transplantiert.

Gewonnen werden die Stammzellen entweder durch eine Punktion direkt aus dem Knochenmark, nach medikamentöser Mobilisierung mit dem Wachstumsfaktor Granulocyte-colony-stimulating-factor (G-CSF) aus dem peripheren Blut oder aus Nabelschnurblut.

2.1.3.1 Allogene Stammzelltransplantation

Bei der allogenen Stammzelltransplantation werden die hämatopoetischen Stammzellen des Spendern entweder aus dem Knochenmark oder durch das heute häufiger verwendete Verfahren der Leukapherese aus dem peripheren Blut entnommen. Um eine Leukapherese durchführen zu können, wird beim Spender eine Mobilisierungstherapie durchgeführt, bei der, angeregt durch den Wachstumsfaktor G-CSF, Stammzellen aus dem Knochenmark mobilisiert und dann aus dem peripheren Blut mittels eines Leukapherese-Gerätes zur Separation der Stammzellen gesammelt werden.

Nach der Übertragung der Stammzellen auf den Empfänger findet das Engraftment, also das Einsetzen der hämatopoetischen Funktion der Spenderstammzellen, mit einer Stabilisierung der neutrophilen Granulozyten auf einen Wert über 500/µl Blut, in der Regel nach 12 bis 16 Tagen statt [2].

2.1.4 Konditionierung bei allogener HSZT

Konditionierung nennt sich die der Stammzelltransplantation vorausgehende hochdosierte zytostatische Therapie bzw. die Kombination von zytostatischer Therapie mit Ganzkörperbestrahlung, die das pathologisch veränderte aber
Einleitung

Die akut oder intermediär auftretenden nicht hämatologischen unerwünschten Effekte der Konditionierung sind Übelkeit und Erbrechen, allergische und entzündliche Reaktionen (z.B. Mucositis und Pneumonie), Alopezie und Organversagen [2]. Durch die Immunsuppression sind die Patienten besonders infektionsgefährdet.

2.1.5 Immunsuppressive Therapie bei allogener HSZT

Die Immunsuppression muss erfolgen, um eine Transplantat-Abstoßung und eine Graft-versus-Host-Disease (GvHD) zu vermeiden bzw. das Risiko zu minimieren.

Folgende Immunsuppressiva werden als Standard im Rahmen von allogenen HSZT eingesetzt: Glucocorticoide, Ciclosporin A (CsA), Tacrolimus, Mycophenolatmofetil, Methotrexat (MTX), Sirolimus, Everolimus oder Anti-Thymozyten-Globulin (ATG). In der Regel erhalten alle Patienten CsA in Kombination mit MTX oder Mycophenolatmofetil. Bei Bedarf wird um weitere Immunsuppressiva erweitert.

Die immunsuppressive Wirkung der Glucocorticoide ergibt sich aus einer Transkriptionshemmung proinflammatorischer Gene und damit kommt es zu einer Reduktion proinflammatorischer Zytokine wie Interleukin-2 oder
Tumornekrosefaktor-alpha (TNF-α). CsA, Tacrolimus (beides Calcineurin-Inhibitoren) und Mycophenolatmofetil (Hemmung der Nukleotid-Synthese) wirken hemmend auf die T-Zellfunktion und ATG ist ein polyklonaler Antikörper, der gegen T-Zell- und andere Oberflächenantigene gerichtet ist [2].

Aufgrund der intensiven Immunsuppression durch die Konditionierungstherapie und die GvHD Prophylaxe sind die Patienten einem erheblichen Infektionsrisiko ausgesetzt, entsprechend muss auch eine intensive Infektionsprophylaxe auf medikamentöser Ebene stattfinden [3].

2.1.6 Risikofaktoren und Komplikationen der allogenen Stammzelltransplantation

Je nach Konditionierungsschema sowie Art und Stadium der Grunderkrankung durchlaufen die Patienten eine unterschiedlich lange neutropenische Phase in der eine besonders hohe Infektionsgefährdung besteht. Ab einer erwarteten Neutropeniedauer von zehn Tagen werden die Patienten nach Einteilung der Deutschen Gesellschaft für Hämatologie und Onkologie (DGHO) der Hochrisikogruppe für die Entwicklung einer schweren, lebensbedrohlichen Infektion zugeordnet [4].

Abb. 1: Infektionshäufigkeit bei Granulozytopenie < 1000/µl Blut im zeitlichen Verlauf abgewandelt nach Bodey et al. [10]

Die Anlage eines zentralen Venenkatheters (ZVK), der für die Transplantation unerlässlich ist, birgt ein weiteres Infektionsrisiko. Der ZVK ist als Fremdkörper mit Kontakt zur Außenwelt eine häufige Eintrittspforte für Infektionen, die sich schnell systemisch ausbreiten können.

Bei Patienten mit einer Graft-versus-Host-Disease besteht ein deutlich erhöhtes Infektionsrisiko [2, 8, 12].

Der hämatopoetischen Stammzelltransplantation vorausgegangene Neutropeniephasen können die Virulenz von Erregern erhöhen und sind entsprechend ein zusätzlicher Risikofaktor für die Entwicklung einer Infektion [2].
Neutropenisches Fieber ist eine der wesentlichen Komplikationen von allogenen HSZT und ist definiert als einmaliges Fieber $\geq 38,3^\circ C$ oder $\geq 38,0^\circ C$ über mindestens eine Stunde oder zweimal innerhalb von 24 Stunden bei einer neutrophilen Granulozyten Zahl $< 500/\mu l$ Blut [2]. Fieberauslösender Grund kann immer eine Infektion sein, so dass ohne Verzug diagnostiziert und behandelt werden muss.

unzureichende immunsupprimierende Konditionierungsbehandlung und HLA-inkompatible Spender [2].

2.1.7 Infektionsprophylaxe bei Neutropenie

Allgemeine antiinfektiöse Infektionsprophylaxe:
Im Rahmen der Krankenhaushygiene sollen folgende Regeln und Maßnahmen befolgt bzw. durchgeführt werden: reverse Isolation, gefilterte Raumluft, keimarme Ernährung, Vermeidung von Verneblern und Blasenkathetern, tägliche Versorgung der zentralen Venenkatheter und Verweilkathetern von qualifiziertem Fachpersonal unter maximal klinikhygienischen Bedingungen, konsequente Händedesinfektion, Mundschutz und Einmalkittel [2, 4].

Spezielle medikamentöse Infektionsprophylaxe:
Zur Vermeidung von Infektionen erhalten die Patienten eine breite medikamentöse Prophylaxe bestehend aus Breitspektrum-Antibiotika für den grampositiven und gramnegativen bakteriellen Bereich sowie antivirale und antimykotische Arzneistoffe (s.u.).
Zur weiteren Prophylaxe vor Infektionen werden bei lang andauernder Neutropenie hämatopoetische Wachstumsfaktoren (G-CSF) verabreicht, um die Granulopoese zu stimulieren.

2.2 Pilzinfektionen im Rahmen von Stammzelltransplantationen

2.2.1 Definitionen

Einleitung
disseminiertem Organbefall ist die Prognose erheblich schlechter als bei lokalisierter invasiver Mykose [7, 14].
Es wird vermutet, dass jeder invasiven Candidose eine Candidämie vorausgeht [13].

2.2.2 Epidemiologie
Über die Hälfte der schweren Infektionen bei neutropenen Patienten wird durch Pilze verursacht [15].
Bei Patienten mit malignen hämatologischen Erkrankungen fanden sich in 20-50% der Obduktionsergebnisse [29] und bei HSZT Patienten in 36% invasive Mykosen [16].
In den meisten Fällen tritt die invasive Pilzinfektion erst Wochen bis Monate nach der Stammzelltransplantation auf [30]. Insbesondere invasive Aspergillosen entwickeln sich oft erst in der Postengraftment Phase [31, 32].

2.2.3 Keimspektrum

Eingeteilt werden die humanpathogenen Pilze in Schimmelpilze/Fadenpilze (z.B. Aspergillus Sp.), Sprosspilze (Hefen, z.B. Candida Sp.), dimorphe Pilze (Coccidioides Sp.) und Dermatophyten.

2.2.4 Risikofaktoren

Die Tatsache, dass vor der Einführung von Hochdosischemotherapien opportunistische Pilzinfektionen kaum eine Rolle gespielt haben [39], zeigt, welche Bedeutung die oben genannten Risikofaktoren für die Entwicklung einer invasiven Mykose haben.

2.2.5 Klinik

Aspergillosen zeigen sich in über 80% als invasive pulmonale Aspergillosen [7]. Weiter zeigen sie sich durch disseminierte ZNS Infektionen, Leber- und Milzbeteiligungen, Haut- und sinunasale Infektionen.

Candida Sp. verursachen orale, ösophageale und vaginale Infektionen, Fungämien mit Leber und Milzbeteiligung, Septikämien, Haut- und Augenbeteiligung [7].

2.2.6 Diagnostik

Die mikrobiologischen Ergebnisse können nicht abgewartet werden, sondern dienen nur zur Bestätigung oder Modifikation der bereits eingeleiteten empirischen antimikrobiellen Therapie.

Abgesehen von histologischen Techniken gibt es keine spezifischen diagnostischen Werkzeuge, die eine invasive Pilzinfektion beweisen.

Bezüglich der gesuchten Pilze sind Blutkulturen oft steril (50-60%) [42, 43]. Bei Candidosen ist die Nachweisquote mit 59% deutlich besser als bei Aspergillosen, die sich fast gar nicht kulturell nachweisen lassen [44, 45].
Einleitung

Auch in der Bronchiallavageflüssigkeit werden Pilze nur in 50% der Erkrankungsfälle nachgewiesen [46].

Befunde aus Kulturen können durch Verunreinigungen oder durch Kolonisation von nicht sterilen Geweben falsch positiv ausfallen [47].

Gewebeproben sind schwierig zu gewinnen, da sie invasive Verfahren erfordern, die aufgrund der Blutungsgefährdung durch Gerinnungsstörungen, die durch die Aplasie hervorgerufen werden, oftmals wegen des zu hohen Risikos nicht durchgeführt werden [20].

Molekulare Methoden zur Diagnostik, wie die Polymerase-Ketten-Reaktion (PCR) zum Nachweis von fungaler DNS aus Körpersekreten und Biopsiematerial, werden zwar eingesetzt und sind in der Erprobung bereits weit fortgeschritten, aber es liegen noch keine Standards zum klinischen Einsatz vor. Die Sensitivität wird zwischen 79 und 100% und die Spezifität zwischen 81 und 93% angegeben [56, 57]. Zurzeit werden weitere evaluierende Studien dieses diagnostischen Verfahrens durchgeführt [25].

2.2.7 Therapie
Im Fall von neutropenischem Fieber wird empirisch immer mit einer breit wirksamen antibiotischen Behandlung begonnen. Wenn es zu keinem Fieberabfall kommt oder eine fungale Infektion durch die o.g. Diagnostik wahrscheinlich erscheint, wird heute meist schon frühzeitig auf eine antimykotische Therapie eskaliert. Die Behandlung erfolgt mit Triazolen insbesondere Voriconazol und Posaconazol, liposomalem Amphotericin B und Echinocandinen [4, 21].

2.2.8 Antimykotika
2.2.8.1 Azole

Man unterscheidet die Gruppe der Imidazole, die für lokale Anwendungen eingesetzt werden und die Gruppe der Triazole, die in der Behandlung von systemischen Infektionen Anwendung finden. Orale und intravenöse Darreichungsformen stehen zur Verfügung.

Unerwünschte Arzneiwirkungen sind Allergien, Exantheme, Übelkeit, Erbrechen, Diarrhoen, Transaminasenerhöhungen bis zu medikamentös induzierter Hepatitis sowie Impotenz, Zykusstörungen und Gynäkomastie infolge gehemmerter Steroidsynthese [58].

Fluconazol

Eine Metaanalyse aus 16 Studien aus dem Jahr 2000 mit Fluconazol als antimykotischem Prophylaktikum von Kanda et al. konnte bei HSZT einen signifikanten Vorteil gegenüber Placebo mit weniger invasiven Mykosen und gesenkter Mortalität nachweisen [61].

Fluconazol ist in oralen und intravenösen Zubereitungen erhältlich [13, 63].
Die Konzentration von Fluconazol in allen Körperflüssigkeiten entspricht nahezu der im Serum. Also ist Fluconazol z.B. bei Kryptokokken-Meningitiden indiziert.
Fluconazol wird fast nicht metabolisiert und unverändert über die Niere ausgeschieden [64].

Itraconazol
Itraconazol zeigt ein breites Wirkspektrum gegen Hefen und Fadenpilze, so dass sich eine Indikation für Aspergillosen, Candidosen und Kryptokokkosen ergibt. Zugelassen ist Itraconazol für die Prophylaxe von Systemmykosen und für die Behandlung lokaler Mykosen wie vulvovaginale und orale Candidosen, Dermato- und Onychomykosen und Pityriasis versicolor [65].
Es ist in oralen und intravenösen Zubereitungen erhältlich.
Itraconazol wird extensiv über die Leber metabolisiert.
Für die Wirksamkeit sind konstante Plasmaspiegel erforderlich, die bei Resorptionsstörungen nur in der intravenösen Form gewährleistet werden können. Durch die schwache Bindung an Säugeter-Cytochrom P450 ist die Toxizität relativ gering. In Studien konnte gezeigt werden, dass das Nebenwirkungsprofil von Itraconazol gegenüber cAmB bei neutropenischen Patienten mit FUO deutlich geringer ist [66].
Voriconazol
Es ist als orale und intravenöse Zubereitung verfügbar, die orale Bioverfügbarkeit ist größer als 90% [68].
Abgesehen von häufiger auftretenden passageren Sehsstörungen unterscheidet sich das Nebenwirkungsspektrum nicht von anderen Triazolen.
Zugelassen ist Voriconazol für die Behandlung invasiver Aspergillosen, Candidämien bei nicht neutropenischen Patienten, Fluconazol-resistenten invasiven Candidosen und schweren Pilzinfektionen durch Scedosporium und Fusarium Sp. Voriconazol sollte in erster Linie bei Patienten mit progressiven, vital bedrohlichen Infektionen eingesetzt werden [65].
Zur Prophylaxe von invasiven Mykosen ist Voriconazol bislang nicht zugelassen.

Posaconazol
Posaconazol ist zur Prophylaxe und Therapie invasiver Mykosen bei HSZT-Empfängern unter Hochdosis-Immunsuppression zugelassen.
Es ist nur in der oralen Darreichungsform verfügbar.
Posaconazol zeigt strukturell eine große Ähnlichkeit mit Itraconazol, die antimykotische Aktivität ist jedoch durch die Strukturmodifikationen deutlich verstärkt [65, 69]. Wirksam ist Posaconazol gegen Candida und Aspergillus Sp. sowie Coccidioides und Fusarium Sp. Im Vergleich zu anderen Triazol-Antimykotika ist Posaconazol gut wirksam gegen Zygomyceten [70].
Posaconazol wird im Gegensatz zu Itraconazol und Voriconazol nicht über das Cytochrom P450 Isoenzym System metabolisiert, allerdings wirkt es trotzdem als Inhibitor des CYP 3A4 und kann dadurch den Metabolismus gleichzeitig verabreichter anderer Arzneistoffe blockieren [70].

2.2.8.2 Echinocandine

Caspofungin

In Studien konnte eine Überlegenheit von Caspofungin bezüglich Wirksamkeit und Verträglichkeit gegenüber konventionellem Amphotericin B bei invasiver Candidiasis gezeigt werden [75]. Insgesamt zeichnet sich das Antimykotikum durch hohe Effektivität und geringe Toxizität aus [76].

Weitere in Deutschland zugelassene Substanzen sind Micafungin und Anidulafungin.
2.2.8.3 Amphotericin B

2.2.8.3.1 Historie

2.2.8.3.2 Pharmakochemie

Amphotericin B ist ein hoch lipophiles Polyen-Makrold-Antibiotikum (heptaenes Makrold mit 7 konjugierten Doppelbindungen und einer Mykosamingruppe, die am Hautring glykosidisch verknüpft ist). Das amphotere Verhalten (namensgebend) leitet sich durch die Anwesenheit einer Carboxylgruppe am Hautring und einer primären Aminogruppe am Mykosamin ab. Diese Gruppen verleihen dem Molekül Wasserlöslichkeit bei extremen pH-Werten.

Abb. 3: Molekülbild AmB [13]

AmB ist hydrophob, bildet aber mit Desoxycholsäure einen löslichen Komplex, der sich zur intravenösen Infusion eignet. Das Molekül hat die Summenformel \(\text{C}_{47}\text{H}_{73}\text{NO}_{17} \) [58, 77].
2.2.8.3.3 Wirkmechanismus
Die Wirkung von Amphotericin B beruht auf der irreversiblen Komplexbildung mit Ergosterol [78], dem Hauptbestandteil der Pilzzytoplasmamembran. Durch diese Komplexbindung wird eine Inhibierung von ATPase-Pumpen ausgelöst und die Lipidperoxidation gefördert.

Auf diese Weise wirkt Amphotericin B fungistatisch, in höheren Konzentrationen auch fungizid auf ruhende und proliferierende Pilzkeime [80].

2.2.8.3.4 Pharmakokinetik
Amphotericin B wird oral kaum resorbiert, so dass es nur intravenös verabreicht systemische Wirksamkeit erreicht. Es ist schlecht gewebegängig, nicht liquorgängig und nicht dialysierbar. Der Transport im Blut findet zu über 90% an Lipoproteine gebunden statt. Durchschnittlich werden 27% der Gesamtdosis in der Leber, 5% in der Milz, 3% in den Lungen und 1,5% in den Nieren gefunden [81]. Die Serumspiegel sind abhängig von Dosis, Frequenz und Infusionsgeschwindigkeit, jedoch ergibt sich keine Korrelation zwischen Serumspiegel und klinischer Effektivität [58].

Die Elimination verläuft biphasisch, es besteht eine kürzere initiale Halbwertszeit von ca. 24 Stunden und eine längere terminale Halbwertszeit von ca. 15 Tagen (ausgeprägte Gewebebindung). Ein geringer Teil, < 10%, wird renal eliminiert, 30-40% biliär. Der übrige Teil wird vermutlich in noch nicht bekannten Kompartimenten gespeichert und langsam ausgeschieden. Die Pharmakokinetik wird durch eine Niereninsuffizienz nicht besonders beeinflusst, so dass sich auch keine Konsequenzen für die Dosierung ergeben. Auch bei
Leberinsuffizienz ist keine Dosisanpassung erforderlich, allerdings steigt bei biliärer Obstruktion der Amphotericin B Serumspiegel [63].

2.2.8.3.5 Wirkpektrum und Indikation
Das Spektrum von Amphotericin B ist breiter als das der Azol-Antimykotika [83]. In der Metaanalyse von Robenshtok et al. hat sich gezeigt, dass die Prophylaxe mit Amphotericin B signifikant die Mortalität nach Chemotherapie oder HSZT senkt [20].

2.2.8.3.6 Dosierung
Die empfohlene Dosierung liegt bei 0,5mg/kg/d (max. 1,5mg/kg/d).

2.2.8.3.7 Unerwünschte Arzneimittelwirkungen
Amphotericin B ist ein stark toxischer Arzneistoff, deshalb besteht eine Dosislimitierung auf 3-5g Gesamtdosis [63].
Ein Großteil der unerwünschten Wirkungen ist vermutlich bedingt durch die Bindung von AmB an Cholesterin in Zellmembranen der menschlichen Zelle [84].
Die bedeutendste unerwünschte Wirkung von AmB ist die Nephrotoxizität. Die Retentionswerte steigen unter der Therapie bei bis zu 90% der Patienten an, meistens innerhalb der ersten 2 Therapiewochen. Die Ursache ist ein Abfall der

Die Einschränkung der Nierenfunktion ist dosisabhängig und meist reversibel, kann jedoch nach Überschreitung einer Kumulativdosis von 4-5g irreversibel sein [63].

Nephrotoxische Reaktionen sind bei 80% der Patienten mit Systemmykosen beschrieben [85].

Oft treten kurz nach der Infusion von Amphotericin B Fieber und Schüttelfrost (vermutlich durch IL1 und TNF von Monozyten und Makrophagen induziert) sowie Übelkeit und Erbrechen auf. Häufig klagen die Patienten über Kopfschmerzen, Unwohlsein und Gewichtsverlust und im Verlauf entstehen hypochrome normozytäre Anämien, vermutlich wegen der reduzierten Erythropoetinproduktion in den Nieren.

Thrombophlebitiden entstehen an den Infusionsstellen, jedoch kann man dieser Nebenwirkung durch die Verabreichung durch einen ZVK vorbeugen.

Gelegentlich wird von respiratorischem Stridor und Hyperpnoe berichtet, selten kommt es zu anaphylaktischen Reaktionen, weshalb eine Testdosis von 1 mg vor der Erstgabe empfohlen wird [58, 62, 77].

Eine schnellere Infusionsgeschwindigkeit führt zu häufigeren Fieberschüben. Fieberige Reaktionen klingen meist mit weiteren Infusionen ab [63].
Die Inzidenz der häufigsten Nebenwirkungen kann durch die Gabe von Prämedikationen wie Paracetamol, Acetylsalicylsäure, Diphenhydramin, Pethidin oder Hydrocortison gesenkt werden, jedoch ist der Nutzen dieser supportiven Maßnahmen nicht durch Studien nachgewiesen [86].

2.2.8.3.8 Wechselwirkungen

Amphotericin B kann die nephrotoxischen Eigenschaften von Aminoglykosiden, Vancomycin, Ciclosporin A, Cisplatin, Furosemid, Aciclovir und anderen nephrotoxischen Arzneimitteln sowie die Hypokaliämie verursachenden Eigenschaften von Mineralcorticoiden erhöhen [65].

2.2.8.3.9 Amphotericin B Lipid Formulierungen

Amphotericin B war über viele Jahre Goldstandard der systemischen antimykotischen Therapie. Die gute Wirksamkeit wird allerdings durch die ausgesprochen schlechte Verträglichkeit und geringe Löslichkeit deutlich beeinträchtigt. Die verschiedenen Versuche zur Modifizierung des Moleküls für eine bessere Verträglichkeit mündeten in den Lipiddispergierungen von Amphotericin B. Sie zeichnen sich durch unterschiedliche pharmakokinetische Eigenschaften aus, die eine deutlich geringere Intensität an unerwünschten Arzneimittelwirkungen hervorrufen [87, 88]. Insbesondere die Nephrotoxizität konnte im Vergleich zu konventionellem Amphotericin B (cAmB) verringert werden. Das zeigt sich auch durch die Tatsache, dass bei allen Zubereitungen AmB stark konzentriert in Milz und Leber gefunden wird, die Nierenkonzentrationen dagegen bei vergleichbaren Dosierungen geringer als bei cAmB sind [63].

Die Indikationen sind die gleichen wie für cAmB. Amphotericin B Lipid Komplex ist weiterhin nur zugelassen für den Fall der Unverträglichkeit bzw. des Versagens von cAmB, obwohl alle Lipiddispergierungen im Vergleich zu cAmB eine signifikant niedrigere Nephrotoxizität aufweisen und die Gesamtmortalität signifikant senken (28%) [88, 89, 90, 91, 92]. Liposomales AmB [L-AmB] ist zugelassen für die empirische Behandlung der febrilen Neutropenie. In

Folgende drei Lipidformulierungen sind derzeit auf dem weltweiten Markt erhältlich:

2.2.8.3.9.1 Liposomales Amphotericin B (L-AmB, Ambisome®)

In dieser Lipidformulierung ist das Amphotericin B in kleine echte Liposomen eingelagert, die aus Phosphatidylcholin, Cholesterol und Distearlylphosphatidylglycerol bestehen und durch Gefriertrocknung in eine lagerungsstabile Form gebracht wurden.

Als eine entscheidende Verbesserung gegenüber konventionellem Amphotericin B ergibt sich bei liposomalem AmB eine stark verminderte Nephrotoxizität [84]. Durch das größere Molekulargewicht ist die Penetrationsrate in die Nierenzelle minimal.

2.2.8.3.9.2 Amphotericin-B-Kolloid-Dispersion (ABCD, Amphocil®, Amphotec®)

ABCD ist eine kolloidale Mischung bestehend aus Amphotericin B und Cholesterylsulfat in einem 1:1 Verhältnis, die zu einem stabilen Komplex von scheibenförmigen Mikropartikeln führt. Die Partikelgröße ist 115nm im Durchmesser.

Ein Nachteil von ABCD ergibt sich aus der geringen Blutkonzentration. Die Nephrotoxizität ist im Gegensatz zu cAmB deutlich herabgesetzt [95, 96]. Allerdings ist die Verträglichkeit im Vergleich zu den anderen beiden Lipidformulierungen deutlich schlechter [63]. Typische Nebenwirkungen sind wie bei konventionellem Amphotericin B Fieber und Schüttelfrost.

ABCD ist in Deutschland nicht zugelassen.

2.2.8.3.9.3 Amphotericin B Lipid Komplex (ABLC, Abelcet®)

ABLC wurde Mitte der 1980er Jahre entwickelt und wird seitdem in Human-Studien beforscht.

Es besteht aus einem Komplex aus Amphotericin B und 2 Phospholipiden, Dimyristoylphosphatidylcholin und Dimyristoylphosphatidylglycerol, in einem 1:1 Arzneimittel:Lipid Verhältnis [97]. ABLC zeigt eine flache bandförmige multilamellare Vesikelstruktur und ist im Gegensatz zu L-AmB kein Liposom.
Die Partikelgröße beträgt 1,6-11nm [98]. In den Lipiddoppelschichten der Phospholipide, die zwiebelschalenartig um einander gewickelt sind, können große lipophile Wirkstoffmengen Platz finden. Die Konzentration von Amphotericin B in ABLC beträgt 33 mol [99].

In dieser Zubereitung bindet sich der Wirkstoff überwiegend an Pilzzellmembranen und kaum an Säugetier- bzw. menschliche Zellmembranen [58].

Abb. 4: Querschnitt durch einen multilamellaren Vesikel [87]
An die Pilzzellmembran gebunden, verändert Amphotericin B Lipid Komplex die Membranpermeabilität und bewirkt einen Verlust von Zellbestandteilen und somit den Zelltod. Vermutlich werden zusätzlich durch einen oxidativen Prozess Makrophagen stimuliert [99].

Bei gleicher Dosierung zeigt ABLC einen niedrigeren maximalen Plasmaspiegel, eine längere Halbwertszeit, eine entsprechend höhere Clearance und ein sehr hohes Verteilungsvolumen im Vergleich zu cAmB und den anderen Lipidformulierungen [63]. Z.B. findet sich ABLC in ca. 10x höheren Konzentrationen in der Lunge als bei cAmB [100, 101] und auch in deutlich höheren Konzentrationen im Gegensatz zu den beiden anderen Lipidformulierungen. Leicht erhöhte Konzentrationen im Vergleich zu L-AmB und ABCD finden sich bei ABLC in Leber und Milz [88]. Die AUC₀₋₂₄ gemessen unter einer Dosierung von 5mg/kg/d beträgt 9,5 µgxh/ml [65].
Tab. 1: Pharmakokinetische Daten [63]

<table>
<thead>
<tr>
<th>Pharmakokinetik der AmB-Lipidformulierungen</th>
<th>cAmB 1mg/kg</th>
<th>L-AmB 1mg/kg 5mg/kg</th>
<th>ABLC 1mg/kg 5mg/kg</th>
<th>ABCD 1mg/kg 5mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blut Cmax in mg/ml</td>
<td>Ca. 2</td>
<td>10-15 75-100</td>
<td>Ca. 0,5 Ca. 2</td>
<td>Ca.1 Ca. 5</td>
</tr>
<tr>
<td>Eliminationshalbwertszeit in Stunden</td>
<td>Ca. 100</td>
<td>8-12 100-200</td>
<td></td>
<td>150-250</td>
</tr>
<tr>
<td>Verteilungsvolumen in (l/kg)</td>
<td>1-5</td>
<td>0,1-0,5 50-100</td>
<td></td>
<td>5-10</td>
</tr>
<tr>
<td>Höchste Gewebekonzentration</td>
<td></td>
<td></td>
<td>Lungen Leber</td>
<td></td>
</tr>
</tbody>
</table>

Zugelassen ist ABLC in Deutschland zur Behandlung von invasiven Mykosen durch Candida- und Aspergillen-Spezies bei Patienten, die auf eine Therapie mit konventionellem Amphotericin B nicht ansprechen oder diese nicht vertragen [65].

Die therapeutische Dosierung liegt bei täglich 5mg/kg Körpergewicht über mindestens 14 Tage. Die maximale Infusionsgeschwindigkeit beträgt 2,5mg/kg/h [65].

Als seltene und sehr seltene Nebenwirkungen werden u.a. Herzstillstand, Bilirubinämie, Diarrhoen, Blutungen bei Thrombozytoopenien, Nierenversagen, Multiorganversagen und Dyspnoe bei respiratorischen Störungen angegeben.

2.2.9 Antifungale Prophylaxe

Das ideale prophylaktische Antimykotikum sollte über eine längere Zeitspanne sicher verabreicht werden können, sollte hohe fungizide Wirksamkeit gegenüber einem breiten Spektrum an pathogenen Pilzen, die für lebensbedrohliche systemische Infektionen verantwortlich sind, aufweisen, in oralen und intravenösen Zubereitungen erhältlich sein, möglichst kostengünstig sein und die Pilzerreger sollten keine Resistenzen gegenüber diesem Arzneimittel entwickeln. Ein diese Anforderungen erfüllendes antifungales Mittel gibt es bislang nicht [106], aber es wird intensiv an der Entwicklung neuer und der Verbesserung bereits zugelassener bewährter Antimykotika geforscht, um möglichst viele der genannten Kriterien erfüllen zu können.

Seit über 20 Jahren wird im Rahmen von allogenen Stammzelltransplantationen antifungale Prophylaxe verabreicht und noch immer gibt es keinen Konsens darüber, wie diese Prophylaxe durchgeführt werden soll [18]. Gerade weil die frühe Diagnosestellung und die antifungale Therapie von invasiven Pilzinfektionen häufig sehr schwierig sind, hat sich die Prävention dieser Infektionen zu einer wichtigen Strategie zur Verminderung der Morbidität und Mortalitätsraten bei malignen hämatologischen Erkrankungen entwickelt [38, 106].
Antifungale Prophylaxe reduziert die Häufigkeit der parenteralen antifungalen Therapie und der gesicherten invasiven Mykosen signifikant, besonders bei allogenen HSZT Patienten [38]. Für HSZT Patienten mit langen Neutropenien wurde sogar eine Senkung der Mortalität festgestellt, dieser Effekt ließ sich auch für AmB nachweisen [20, 38].

Die antifungale Therapie von invasiven Mykosen ist häufig nicht effektiv [18] und deshalb ist die frühzeitige Einleitung einer antifungalen Prophylaxe entscheidend, um die hohe Mortalität zu senken.

Bei stammzelltransplantierten Patienten wurde durch antimykotische Prophylaxe die Gesamtmortalität signifikant gesenkt [20].

Aktualisierte deutsche Leitlinien zur antimykotischen Prophylaxe bei allogener Stammzelltransplantation der DGHO liegen zurzeit noch nicht vor, befinden sich aber in der Vorbereitung. Allerdings wurde auf der DGHO Jahrestagung 2008 bereits berichtet, dass Posaconazol im Vergleich zu Itraconazol und Fluconazol in der prophylaktischen Anwendung bei neutropenischen Patienten mit AML oder MDS signifikant bessere Ergebnisse mit erheblich reduzierten Mortalitätsraten (Evidenzgrad A1) erbringt [72].

2007 empfahlen Maertens et al. [93, 109] im European Journal of Cancer als antifungale Primärprophylaxe bei Leukämiepatienten unter allogener HSZT (ECIL Recommendations = European Conference on Infections in Leukemia) Fluconazol 400mg/d mit Evidenzgrad A1, Itraconazol 200mg/d (B1), Posaconazol 200mg/d (A1), Micafungin (C1) und Amphotericin B (cAmB max. 0,5mg/kg/d und liposomales AmB 1mg/kg/d bzw. 2mg/kg/3x wöchentlich) mit Evidenzgrad C1.

2.3 Studien zur antifungalen Prophylaxe
erfährt und eine IFI ausbildet, müssen die Patientenzahlen sehr groß sein, um signifikante und damit repräsentative Daten zu erbringen.
Solange repräsentative Daten noch nicht für jedes potentiell einsetzbare antifungale Prophylaktikum und für jede Patientenpopulation vorliegen, werden weiterhin kleinere Erhebungen, wie die vorliegende Arbeit, erforderlich sein, um die Wirksamkeit und Toxizität der Antimykotika in der prophylaktischen Anwendung für einzelne Zentren zu überprüfen.
Ein ernst zu nehmendes Problem ist allerdings die begrenzte Vergleichbarkeit von Prophylaxestudien durch zu verschiedene Patientenkollektive mit unterschiedlichen Risikofaktoren für IFI und verschiedene Kriterien für die Evaluation [111].

Die Beurteilung der Wirksamkeit einer Prophylaxe erfolgt durch die Häufigkeit des Auftretens der zu verhindern Situation.
Im Fall der antifungal Prophylaxe im Rahmen von allogenen Stammzelltransplantationen ist diese Situation die Entwicklung einer invasiven Mykose.

Für wissenschaftliche Arbeiten wurden von der EORTC/MSG (European Organisation for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycosis Study Group) Consensus Group Kriterien erstellt, die invasive Mykosen definieren und die einheitliche Beurteilung von klinischen, laborchemischen und technischen Befunden im Rahmen der Diagnostik von invasiven Mykosen für Studienzwecke erlauben (Tab. 2-4). Diese Kriterien gelten ausschließlich für die wissenschaftliche Forschung und werden für klinische Studien eingesetzt. Für die klinische Entscheidung am Patienten im individuellen Fall sollen diese Kriterien nicht herangezogen werden [112].
2.3.1 Überarbeitete Definition Invasive Pilzerkrankung (IFD) nach EORTC/MSG 2008:

In der letzten veröffentlichten Ausgabe der EORTC/MSG, die die neuen Kriterien für invasive Mykosen beschreibt, wurde eine neue Nomenklatur eingeführt: Statt des Begriffs invasive Pilzinfektion (IFI) wird in dieser Ausgabe von 2008 der Begriff invasive Pilzerkrankung (Invasive fungal disease, IFD) verwendet. In allen herangezogenen Quellen wird jedoch der Begriff IFI verwendet, so dass auch in der vorliegenden Arbeit, um bei einem einheitlichen Ausdruck zu bleiben, weiterhin von invasiven fungalen Infektionen (IFI) gesprochen wird.

Tab. 2: Kriterien für gesicherte invasive Mykosen (ausgenommen endemische Mykosen) [112]

<table>
<thead>
<tr>
<th>Analyse und Probenmaterial</th>
<th>Schimmelpilze</th>
<th>Hefen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikroskopie: steriles Material</td>
<td>Durch Nadelspiration oder Biopsie gewonnene Probe, die histopathologisch, zytologisch oder direkt mikroskopisch untersucht, Hyphen oder dunkle hefenartige Formen mit begleitender Gewebezerstörung zeigt</td>
<td>Durch Nadelspiration oder Biopsie gewonnene Probe (keine Schleimhäute), die histolopathologisch, zytologisch oder direkt mikroskopisch untersucht, Hefezellen, z.B. Kryptokokken (zu erkennen an umkapselten Knospenhefen) oder Candida Spezies mit Pseudohyphen oder echten Hyphen zeigt</td>
</tr>
<tr>
<td>Kultur: Steriles Material</td>
<td>Wachstum von Schimmelpilzen oder schwarzen Hefen in einer Kultur aus steril gewonnenem Material eines klinisch oder radiologisch ungewöhnlichen Manifestationsortes, der mit einem infektiösen Krankheitsprozess vereinbar ist; ausgeschlossen sind BAL Sekrete, Material aus den Nasennebenhöhlen und Urin</td>
<td>Wachstum von Hefen in einer Kultur aus steril gewonnenem Material einer normalerweise sterilen Lokalisation, die eine klinische oder radiologische Auffälligkeit zeigt bei einem infektiösem Krankheitsgeschehen</td>
</tr>
<tr>
<td>Blut</td>
<td>Wachstum von Schimmelpilzen (z.B. Fusarium Sp.) im Kontext eines dazu passenden infektiösen Krankheitsprozesses (falls Aspergillen nachgewiesen werden, liegt dies an einer Kontamination)</td>
<td>Wachstum von Hefen oder hefeähnlichen Pilzen (Trichosporon Sp.)</td>
</tr>
</tbody>
</table>
Serologische Analyse: Liquor

Kryptokokken Antigen deutet auf disseminierte Kryptokokkose hin

Tab. 3: Kriterien für wahrscheinliche IFD (ausgenommen endemische Mykosen)

[112]

Wirtsspezifische Faktoren:
- kürzlich durchgemachte Neutropenie (<0,5/µl Neutrophile für >10 Tage) in zeitlichem Zusammenhang zum Beginn der Pilzerkrankung
- Durchführung einer allogenen Stammzelltransplantation
- längere Steroidbehandlung (außer Patienten mit allergischer bronchopulmonaler Aspergillose) mit einer durchschnittlichen Dosis von mind. 0,3g/kg KG/d Prednisolon Äquivalent für >3 Wochen
- Behandlung mit anderen T-Zell Immunsuppressiva wie Ciclosporin A, TNF-α Blocker, spezifische monoklonale Antikörper (wie Alemtuzumab) oder Nukleosid Analogana während der letzten 90 Tage
- vererbte schwere Immunsuppression (wie Chronische granulomatöse Erkrankung oder schwere kombinierte Immunschwäche)

Klinische Kriterien:
- Pilzinfektion des tiefen Respirationstraktes eines der folgenden Zeichen im tCT
 - dichte, gut umschriebene Läsionen mit/ohne halo sign
 - air-crescent sign
 - Höhlen
- Tracheobronchitis
 - Tracheobronchiale Ulzerationen, Knoten, Pseudomembranen, Plaque, oder Schorfbildung in der Bronchoskopie
- Sinunasale Infektion
 - Sinusitis in der Bildgebung plus eines der folgenden Zeichen
 - akuter lokalisierter Schmerz (auch ausstrahlender Schmerz in die Augen)
 - nasale Ulzeration mit schwarzem Schorf
 - Ausdehnung des paranasalen Sinus durch Knochegrenze, auch bis in die Augenhöhle
- ZNS Infektion eines der folgenden zwei Zeichen
 - fokale Läsionen in der Bildgebung
 - meningeales Enhancement im MRT oder CT
- Disseminierte Candidiasis mindestens eine der beiden folgenden Erscheinungen nach einer Candida-Infektion innerhalb der letzten 14 Tage
 - kleine, target-like Abszesse (bull’s-eye-lesions) in Leber oder Milz
 - fortschreitende Absonderungen der Retina in der ophthalmologischen Untersuchung
Einleitung

Mykologische Kriterien:

- direkte Tests (Zytologie, Mikroskopie, Kultur)
 - Schimmel im Sputum, BAL Flüssigkeit, Bronchialabstrich oder Sinusaspirat
 - Anzeichen für Schimmelpilzbesiedlung
 - positives Ergebnis in der Schimmelpilzkultur (Aspergillen, Fusarium, Zygomyceten, Scedosporium Spezies)

- indirekte Tests (Nachweis von Antigenen oder Zellwandbestandteilen von Aspergillus und Candida Sp.)
 - Aspergillose (Galactomannan AG Nachweis im Serum, Plasma, BAL Sekret oder Liquor cerebrospinalis)
 - invasive Pilzerkrankung, darunter fallen keine Kryptokokkosen und Zygomycosen (β-D-Glucan im Serum)

Wahrscheinliche IFD erfordern das Vorliegen eines wirtsspezifischen Faktors, eines klinischen Kriteriums und eines mykologischen Kriteriums. Fälle, in denen ein wirtsspezifischer Faktor und ein klinisches Kriterium vorliegen, aber ein mykologisches Kriterium fehlt, sind als mögliche IFD einzuordnen.

Tab. 4: Kriterien für die Diagnosestellung einer endemischen Mykose [112]

<table>
<thead>
<tr>
<th>Diagnose und Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesicherte endemische Mykose</td>
</tr>
<tr>
<td>Patient, der Zeichen einer endemischen Mykose zeigt und eines der folgenden Kriterien erfüllt</td>
</tr>
<tr>
<td>- eine positive Blut- oder Gewebekultur</td>
</tr>
<tr>
<td>- histopathologischer oder direkt mikroskopischer Nachweis von passenden morphologischen Formen mit sicher zu unterscheidenden charakteristischen dimorphen Pilzen, wie kugelförmige Coccidioides Sp, dickwandige breitbasige Knospenhefen Blastomyces dermatitides, verschiedene Knospenhefen Paracoccidioides brasiliensis und im Fall von Histoplasma der Nachweis von charakteristischen intrazellulären Hefen in einer Phagozyte im peripheren Blutausstrich oder in einem Gewebsmakrophagen</td>
</tr>
<tr>
<td>- für Coccidioidomykose Nachweis von Coccidioides AK im Liquor, oder ein Anstieg um zwei Verdünnungsstufen gemessen in zwei aueinander folgenden Blutproben, die während eines floriden Krankheitsprozesses gewonnen wurden</td>
</tr>
<tr>
<td>- für Paracoccidioidomykose Nachweis von 2 übereinstimmenden Präzipitations-Banden für Paracoccidioidin in 2 aufeinander folgenden Serumproben während eines laufenden infektiösen Krankheitsprozesses</td>
</tr>
</tbody>
</table>

| Wahrscheinliche endemische Mykose |
| Vorliegen eines wirtsspezifischen Faktors, der die Einschlusskriterien aber nicht die Ausschlusskriterien aus Tabelle 2 erfüllt, ein klinisches Bild, das eine endemische Mykose zeigt und ein positiver Histoplasma Antigen Test aus Urin, Blut oder Liquor |

Der Vorteil dieser festgelegten Einteilung von invasiven Pilzinfektionen im Rahmen von wissenschaftlichen Erhebungen liegt klar auf der Hand: Nur durch die Verwendung einheitlicher Definitionen von Pilzinfektionen sind Studienergebnisse überhaupt vergleichbar [112].

Die in der Klinik häufig nicht durchführbare oder nicht erforderliche bronchoskopische Untersuchung mit Materialgewinnung für eine mykologische Diagnostik bei Verdacht auf eine invasive Pilzinfektion sind die hauptsächlichen allgemeinen Nachteile der EORTC/MSG Kriterien.

Es hat sich gezeigt, dass sichere Infektionen oft nicht identifiziert werden, weil die geforderten Untersuchungen nicht durchgeführt werden [113]. Nur in seltenen Fällen werden Organbiopsien zur Gewebegewinnung für den histologischen Nachweis gewonnen, da das Risiko für den Patienten zu groß ist.

Bei entsprechenden Eingriffen unter Konditionierungschemotherapien oder während der neutropenischen Phase ohne funktionsfähige Hämatopoese und mit konsekutiv unzureichendem Gerinnungsstatus ist die Gefahr einer möglicherweise letal verlaufenden Blutung erheblich. Auch fällt die Nutzen-Risiko Relation der sicheren Diagnosestellung für den Kliniker eher schlecht aus, weil die Therapie mit und ohne histologische Bestätigung des Erregers in den meisten Fällen identisch ist.

Im Vergleich zu der vorherigen Ausgabe haben sich in der im Mai 2008 veröffentlichten neuen Ausgabe wesentliche Kriterien verändert. Die Unterschiede, die zu einer veränderten Einschätzung von Studienergebnissen führen, sind in folgender Tabelle 5 dargestellt:
<table>
<thead>
<tr>
<th></th>
<th>Alte EORTC/MSG Kriterien</th>
<th>Neue EORTC/MSG Kriterien (s. Tab. 1-3 EORTC Kriterien)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veröffentlichung</td>
<td>1/2002</td>
<td>5/2008</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Invasiv fungale Infektion (IFI)</td>
<td>Invasiv fungale Erkrankung (IFD)</td>
</tr>
<tr>
<td>gesicherte IFI</td>
<td>Histologischer oder kultureller Pilznachweis aus befallenem Gewebe, Kryptokokken oder</td>
<td>Histologischer oder kultureller Pilznachweis aus befallenem Gewebe, Kryptokokken oder</td>
</tr>
<tr>
<td></td>
<td>Kryptokokkenantigennachweis aus Liquor cerebrospinalis</td>
<td>Kryptokokkenantigennachweis aus Liquor cerebrospinalis</td>
</tr>
<tr>
<td>wahrscheinliche IFI</td>
<td>Es sind 1 wirtsspezifischer Faktor, 1 mikrobiologisches Kriterium und 1 major oder 2 minor klinische Kriterien notwendig: - wirtsspezifischer Faktor, der das Risiko bewertet, - klinische Zeichen, die die Infektion anzeigen, - mykologische Zeichen durch Kultur, Histologie oder Antigen-Serologien Einteilung in „major“ and „minor“ klinische Kriterien</td>
<td>3 notwendige Elemente: - Wirtsspezifischer Faktor, der das Risiko bewertet, - klinische Zeichen, die die Infektion anzeigen, - mykologische Zeichen durch Kultur, Histologie oder Antigen-Serologien</td>
</tr>
<tr>
<td>mögliche IFI</td>
<td>Es sind 1 wirtsspezifischer Faktor, 1 mikrobiologisches Kriterium oder 1 major oder 2 minor klinische Kriterien notwendig: - wirtsspezifischer Faktor, der das Risiko bewertet, - klinische Zeichen, die die Infektion anzeigen, - mykologische Zeichen durch Kultur, Histologie oder Antigen-Serologien Einteilung in „major“ and „minor“ klinische Kriterien</td>
<td>Wirtsspezifischer Faktor und klinisches Zeichen aber fehlendes mykologisches Kriterium</td>
</tr>
<tr>
<td>Wirtsspezifischer Faktor</td>
<td>Neutropenie, > 3 Wochen Glucocorticoide, andere Immunsuppressiva, FUO trotz Antibiose, GvHD, vorausgegangene IFI, AIDS</td>
<td>Neutropenie, > 3 Wochen Glucocorticoide, allogene HSZT, T-Zell Immunsuppression, angeborene schwere Immunschwäche</td>
</tr>
</tbody>
</table>
Die alten Kriterien der EORTC/MSG von 2002 (eingereicht 11/00) [113] unterscheiden sich insbesondere bezüglich der möglichen IFI. Ursprünglich wurden die Situationen, in denen nur ein wirtsspezifischer Faktor und ein mykologisches Kriterium oder in denen ein klinisches aber kein radiologisches Kriterium gefunden wurden, als mögliche IFI eingestuft. In einer Studie von Borlenghi et al. [114] wurde jedoch gezeigt, dass mit diesen Kriterien viel zu viele Patienten mit pulmonalen Infiltraten als Träger einer möglichen IFI detektiert wurden und von den Autoren die Kategorie „possible“ nicht als

<table>
<thead>
<tr>
<th>Klinische Zeichen</th>
<th>Alte EORTC/MSG Kriterien</th>
<th>Neue EORTC/MSG Kriterien (s. Tab. 1-3 EORTC Kriterien)</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Major“:</td>
<td>- spezifische Zeichen im TCT</td>
<td>- Spezifische Zeichen im TCT</td>
</tr>
<tr>
<td></td>
<td>- radiologisch bewiesene NNH Infektion</td>
<td>- Radiologisch bewiesene NNH Infektion mit spezifischen klinischen Zeichen</td>
</tr>
<tr>
<td></td>
<td>- radiologisch bewiesene ZNS Infektion</td>
<td>- spezifische ZNS Zeichen</td>
</tr>
<tr>
<td></td>
<td>- typische Zeichen einer disseminierten Candidiasis in Leber oder Milz</td>
<td>- typische noduläre Raumforderungen in Leber und Milz</td>
</tr>
<tr>
<td></td>
<td>- Haut und/oder Augenbeteiligung</td>
<td></td>
</tr>
</tbody>
</table>

| Mykologische Kriterien | Positive Schimmelpilzkultur aus Sputum, BAL, Gewebeprobe, Schimmelpilz aus NNH Aspirat, Mikroskopischer Pilznachweis aus normalerweise sterilen Geweben oder Sekreten, Antigennachweis aus BAL, Blut oder Liquor | Zusätzlich β-D-Glucan Nachweis in BAL, Blut oder Liquor Pneumocystis jirovecii Infektionen sind ausgeschlossen |

| Kollektiv | Malignomerkrankungen, HSZT | Zusätzlich: Organtransplantierte, primäre Immununsuffizienz, immunsuppressive Therapie |

| Nachteile | In der Kategorie „mögliche IFI“ können zu viele unklare Fälle von Neutropenien, unspezifischen pulmonalen Infiltraten und FUO ohne klaren Hinweis auf eine fungale Infektion eingruppiert werden. | |
Einleitung

2.4 Fragestellung

Im Rahmen dieser Untersuchung soll der Frage nachgegangen werden, ob die Prophylaxe mit Amphotericin B Lipid Komplex bei immunsupprimierten Patienten im Rahmen einer allogen hämatopoetischen Stammzelltransplantation in Bezug auf Wirksamkeit und Toxizität bei Patienten im Universitätsklinikum Hamburg Eppendorf sinnvoll eingesetzt werden kann. Verglichen werden sollen die Ergebnisse aus der retrospektiven Untersuchung mit Literaturdaten aus publizierten Studien. Insbesondere soll dabei festgestellt werden, ob ABLC im Vergleich mit anderen Arzneistoffen zur antifungalen Prophylaxe mindestens gleichwertig ist.
3 Material und Methoden

3.1 Patienten
In der Zeit vom 01.01.2007 bis zum 30.09.2008 haben in der Interdisziplinären Klinik und Poliklinik für Stammzelltransplantation des Onkologischen Zentrums am Universitätsklinikum Hamburg-Eppendorf 279 Patienten eine hämopoetische Stammzelltransplantation erhalten. Für die vorliegende Untersuchung wurden von diesen Patienten die ausgewählt, die eine allogene Transplantation erhalten haben und zum Zeitpunkt der Transplantation mindestens 18 Jahre alt waren. Aus dieser Gruppe wurden die Patienten ausgewählt, die während des stationären Aufenthaltes mindestens einmal Amphotericin B Lipidkomplex (Abelcet®) in der Dosierung von 1mg/kg Körpergewicht ohne ein zweites gleichzeitig verabreichtes antifungales Arzneimittel als primäre Prophylaxe gegen die Entwicklung einer invasiven Pilzinfektion erhalten haben. Die Patienten, die Abelcet® nur für einen Zeitraum von 1-6 Tage erhielten, wurden in die Gruppe zur Beurteilung der schnell auftretenden unerwünschten Arzneimittelwirkungen eingeteilt, während die Patienten, die den Arzneistoff mindestens 7 Tage erhielten, der Gruppe zur Beurteilung der Wirksamkeit und Toxizität (akute Infusionsreaktionen und Nierenfunktionsstörungen) zugeordnet wurden.

3.2 Allogene Stammzelltransplantation in der Klinik und Poliklinik für Stammzelltransplantation des onkologischen Zentrums im Universitätsklinikum Hamburg-Eppendorf

3.2.1 Ablauf der stationären Behandlung
Die Spendersuche und die notwendigen Voruntersuchungen finden vor der stationären Aufnahme des Patienten statt. Nach der Aufnahme wird die Konditionierung begonnen, die je nach Krankheitsbild mit verschiedenen Protokollen nach Abteilungsstandards zwischen sechs und elf Tagen dauert.

3.2.2 Standards zum medizinischen Regime

3.2.2.1 Medikamentöse Infektionsprophylaxe

Die medikamentöse primäre Pilzprophylaxe beginnt für stationäre Patienten entweder am Tag der Stammzelltransplantation oder an dem Tag, an dem die Leukozytenzahl im Blut erstmals den Wert von 1000/µl unterschreitet. Täglich wird evaluiert, ob der Patient schlucken bzw. die orale Prophylaxe resorbieren kann. Ist dies der Fall wird seit 2/2008 Posaconazol in einer Dosierung von 3x200mg p.o. täglich verabreicht. Vorher wurden Itraconazol (initial 2x200mg p.o./d, danach Dosierung nach Wirkstoffplasmaspiegel) oder Voriconazol (2x200mg p.o./Tag nach einer Erstdosis von 2x400mg am ersten Tag) gegeben. Sofern der Patient unter Übelkeit/Erbrechen und/oder einer höhergradigen Mucositis leidet, bekommt er Amphotericin B Lipidkomplex (Abelcet®) intravenös in der Dosierung von 1x täglich 1mg/kg Körpergewicht als Kurzinfusion über eine Stunde verabreicht. Falls die Patienten Arzneistoffe, die zu Arzneimittelinteraktionen mit Azolen führen, wie z.B. Cyclophosphamid und Busulfan, erhalten, wird statt des Azols ABLC verabreicht. Eine halbe Stunde vor der Abelcet®-Infusion erhält jeder Patient ein Antihistaminikum vom Typ der H1-Antagonisten (Clemastin 2mg (Tavegil®) oder Dimetidin 4mg (Fenistil®)) als Prämedikation gegen allergische unerwünschte Arzneiwirkungen intravenös verabreicht. Die prophylaktische Gabe von Paracetamol in der Dosierung von 500mg erfolgt nur bei Patienten, die mit Schüttelfrost auf die Abelcet®-Gabe reagiert haben.
In der Fachinformation wird empfohlen, vor der Erstgabe der therapeutischen Dosierung von 5mg/kg KG eine Testdosis (1mg/15min, 30min Beobachtungszeit) zu applizieren, um allergische Nebenwirkungen frühzeitig zu identifizieren. Aufgrund der fünfach niedrigeren Dosierung und der intensiven Überwachung der Patienten wird keine Testdosis verabreicht.

Patienten, die in ihrer Vorgeschichte eine invasive Pilzinfektion aufweisen, bekommen als sekundäre Prophylaxe von Pilzinfektionen Posaconazol in einer höheren Dosierung von 4x200mg/d p.o. oder alternativ Voriconazol in einer Dosierung von 2x200mg/d (nach einer loading dose an Tag 1 von 2x400mg). Die sekundäre intravenöse Prophylaxe mit Abelcet® entspricht der primären Prophylaxe.

Die Prophylaxe von bakteriellen Infektionen wird mit Ciprofloxacin (2x500mg p.o oder 2x400mg i.v.) und Metronidazol (3x500mg p.o. oder 3x400mg i.v) ab Beginn der Konditionierung gegeben. Cotrimoxazol bekommt jeder Patient an drei aufeinander folgenden Tagen jeder Woche zur Prophylaxe einer Pneumocystis jiroveci Pneumonie und einer Toxoplasmose.

Die Prophylaxe von viralen Infektionen wird mit Aciclovir 3x 400mg p.o. ab Tag +1 nach der Transplantation durchgeführt.

Zur Unterstützung der Leukopoese erhalten alle Patienten nach Abteilungsstandard G-CSF von Tag +5 durchgehend bis zum stabilen Engraftment.

3.2.2.2 Diagnostik

3.2.2.2.1 Routinediagnostik zur frühzeitigen Detektion invasiver Pilzinfektionen

Mehrfach täglich wird die Körperkerntemperatur gemessen. Routinemäßig werden täglich laborchemische Entzündungsparameter bestimmt und wöchentlich serologische Antigenbestimmungen auf Aspergillus- und Candida Sp. durchgeführt (Platelia® Aspergillus-Ag-EIA, Serion®-ELISA Antigen
Candida). Regelmäßig werden Haut- und Schleimhautabstriche untersucht. Im Rahmen der täglich durchgeführten ärztlichen Visiten, werden die Patienten gründlich körperlich untersucht.

3.2.2.2.2 Erweiterte Diagnostik bei Verdacht auf eine invasive Pilzinfektion
Bei Auftreten von Fieber oder dem Verdacht auf eine Katheterinfektion in der akuten Transplantationsphase werden Blutkulturen abgenommen und eine hochauflösende thorakale Computertomographie und ggf. eine Bronchoskopie mit bronchoalveolärer Lavage durchgeführt.

3.2.2.3 Therapie von Infektionen
Sobald bei Patienten in der neutropenischen Phase FUO auftritt, erfolgt die empirische Therapieeskalation mit folgendem Antibiotika Regimen entsprechend den Leitlinien der Fachgesellschaften:
Falls das Fieber unter der höchsten antibiotischen Eskalationsstufe nicht rückläufig ist und über 24 Stunden persistiert, wird von der Möglichkeit einer invasiven Pilzinfektion ausgegangen und empirisch auf Caspofungin (Cancidas®) eskaliert. Bei einer nachgewiesenen Pilzinfektion wird ebenso auf Caspofungin umgestellt.

3.2.2.4 Standardisierte Medikation
Zusätzlich erhalten die Patienten ihre individuelle Medikation, soweit diese im Rahmen der Transplantation benötigt wird.
3.3 Untersuchung
Es handelt sich um eine retrospektive single-institution Untersuchung. Die Daten wurden mittels eines standardisierten Untersuchungsbogens (Access Datei, s. Anhang) anhand von retrospektivem Aktenstudium erhoben. Die Autorisation zur Verwendung der Daten haben die Patienten vor ihrer Stammzelltransplantation schriftlich abgegeben (s. Anhang).

3.4 Datenerhebung
3.4.1 Erhebungsparameter
• Diagnose
• Geburtsdatum
• Geschlecht
• Datum der Stammzelltransplantation
• Datum des Neutopenie-Begins
• Datum des Neutopenie-Endes
• Datum ABLC-Beginn
• Datum ABLC-Ende
• Antifungale Prophylaxe vor ABLC
• Startdatum antifungale Prophylaxe vor ABLC
• Prämedikation vor ABLC
• Grund für Umstellung auf ABLC
• Antimykotisches Arzneimittel nach Absetzen von ABLC
• Verträglichkeit der ABLC Gabe nach berichteten Nebenwirkungen
• Grund für Umstellung auf antimykotische Therapie
• Serum-Kreatinin bei Therapiebeginn (vor der ersten ABLC-Gabe)
• Datum und Wert des maximalen Serum-Kreatinins
• Serum-Harnstoff bei Therapiebeginn
• Datum und Wert des maximalen Serum-Harnstoffes
• Anzahl der parallel zu ABLC verabreichten nephrotoxischen Arzneimittel
• Datum und Ergebnis der Pilz-Antigen Bestimmungen
• Datum und Ergebnis der mikrobiologischen Untersuchungen
• Datum und Ergebnis von thorakalen Computertomographien

Daraus konnten folgende Daten errechnet bzw. abgeleitet werden:

• Alter zum Zeitpunkt der Stammzelltransplantation
• Dauer der Neutropenie
• Dauer der Prophylaxe vor ABLC
• Dauer der ABLC Gabe
• Dauer bis Zeitpunkt des maximalen Kreatinins bzw. Harnstoffes
• Kreatinineinteilung nach Bearman
• Vorliegen einer invasiv fungalen Infektion in der Einteilung nach EORTC

3.4.2 Erläuterungen zum Vorgehen der Datenerhebung:

Die Patientendaten wurden jeweils vom Zeitpunkt der stationären Aufnahme bis zur Entlassung erhoben. Wiederaufnahmen bei Komplikationen oder Erkrankungsprogress wurden nicht berücksichtigt.

Es wurden jeweils der erste und der letzte Tag der Verabreichung von ABLC dokumentiert.
2. Bezüglich der antifungalen Prophylaxe wurde erhoben, ob die Patienten Itraconazol, Voriconazol, Posaconazol oder keine Prophylaxe vor der Verabreichung von ABLC erhalten haben.

3. Es wurde erhoben, ob und welche Prämedikation die Patienten erhalten haben. Die vier Möglichkeiten waren
 1. keine Prämedikation
 2. nur Paracetamol
 3. nur H1-Antihistaminikum

4. Der Grund der Umstellung auf ABLC wurde aus der Visitendokumentation (Fließtext) entnommen und kategorisiert in
 - keine orale Medikation möglich aufgrund von Übelkeit/Erbrechen oder fehlender Resorption bei Mucositis
 - Unverträglichkeit des Azols
 - Unzureichende Azol-Blutspiegel
 - Hepatotoxische Komedikation mit laborchemisch steigenden Leberenzymen oder Bilirubin
 - Keine antifungale Medikation vor ABLC erhalten
 - Grund in der Akendentokumentation nicht angegeben

5. Für die Variable „antimykotisches Arzneimittel nach ABLC“ wurden folgende Kategorien gebildet
 - Orale Prophylaxe
 - Intravenöse Prophylaxe
 - Therapie
 - Keine Angabe

Als orale Prophylaxe wurden Voriconazol (initial 2x400mg, ab Tag 2 2x200mg) oder Posaconazol (3x200mg) gegeben. In einem Fall wurde auch Itraconazol p.o. verabreicht.

Als intravenöse Prophylaxe kam liposomales Amphotericin B (Ambisome®) in der Dosierung von 1mg/kg KG zum Einsatz.

6. Die Verträglichkeit wurde der Visitendokumentation entnommen und kategorisiert in:
 - Gute Verträglichkeit
 - Fieber und/oder Schüttelfrost
 - Andere unerwünschte Arzneimittelwirkungen (UAW)
 - fehlende Dokumentation

Unter UAW wurden alle akuten Infusionsunverträglichkeitsreaktionen, die über Fieber/Schüttelfrost hinaus auftraten, eingruppiert. Folgende Symptome wurden dokumentiert:
 - Exanthem
 - Anaphylaktische Reaktionen
 - Schmerzen

7. Der jeweilige Grund der Umstellung auf eine antymykotische Therapie wurde aus den Visitendokumentationen kombiniert mit den Ergebnissen der radiologischen und serologischen Diagnostik ermittelt. Folgende Kategorien wurden gebildet:
 - Empirische Eskalation
 - TCT (thorakale Computertomographie)
 - Positiver Antigentest
 - Positive Kultur
 - Keine Angabe für Umstellung dokumentiert
 - Keine Umstellung erfolgt.

nach Beendigung der ABLC Gabe dokumentiert. Wenn an mehreren Tagen ein maximaler Wert von Kreatinin oder Harnstoff gemessen worden war, wurde der jeweils erste Tag gewertet.

Nach Beendigung der ABLC Prophylaxe wurden die Retentionsparameter nur für weitere 2 Tage untersucht, obwohl die Eliminationshalbwertszeit für ABLC 100-200 Stunden, also bis zu acht Tage beträgt [63]. Die Beobachtungsdauer wurde so gewählt, um durch die Einflüsse der nach Absetzen von ABLC neu hinzutretenden Wirkstoffe, wie die Folgeprophylaxe und ggf. eine breite Palette an Antiinfektiva im Falle einer Eskalation, keine verfälschten Ergebnissen zu erhalten. In Studien, die sich mit der Nephrotoxizität von AmB Präparaten beschäftigt haben, wurde die Nierenfunktion zum Teil nur bis zum Behandlungsende [115,116], zum Teil aber auch noch bis zu 4 Wochen nach letzter Applikation untersucht [117, 97]. Diese langen Beobachtungszeiträume wurden aber nur bei prospektiven Studien genutzt, bei denen kein Wirkstoffwechsel nach Beendigung des zu untersuchenden Wirkstoffes durchgeführt wurde.

Ausgangs- und Verlaufswerte von Elektrolyten und Bilirubin zur Beurteilung einer möglichen Hepatotoxizität werden nicht herangezogen.

10. Für den Zeitraum der Erhebung (erster Tag ABLC bis Tag +7 nach ABLC) wurden die Ergebnisse der mikrobiologischen Untersuchungen bezüglich Pilzdiagnostik (Kulturen aus Blut, BAL-Sekret und Rachenspülwasser) dokumentiert. Positive Haut- und Schleimhautabstriche wurden nach den EORTC Kriterien als nicht relevant eingestuft und sind nicht in die
Bewertung eingeflossen.

11. Es wurden alle Befunde von thorakalen Computertomographien, die im Zeitraum von der ersten ABLC Gabe bis sieben Tage nach der letzten Gabe angefertigt wurden, daraufhin untersucht, ob sie die nach EORTC Richtlinien (s. Einleitung) typischen Hinweise einer invasiven
Pilzpneumonie zeigten. Positive Befunde wurden mit Datum dokumentiert.

12. Um den Schweregrad der Nephrotoxizität möglichst mit vielen verschiedenen Studien vergleichen zu können, wurde das maximal erreichte Serumkreatinin auf drei Weisen dargestellt. Bei der Kreatininbeurteilung abgewandelt nach Bearman et al. [120] handelt es sich um folgende festgelegte Einteilung der Werte, die in den pathologischen Bereich gestiegen sind:

I: Serumkreatininanstieg bis zum zweifachen Ausgangswert
II: Serumkreatininanstieg auf höheres Niveau als doppelt Ausgangswert (Dialyse nicht erforderlich)
III: Hämodialyse erforderlich

Da in dieser Einteilung die Serumkreatininveränderungen, die sich im Normalbereich abspielen, nicht berücksichtigt werden, wurde eine weitere Unterteilung vorgenommen:

- Keine Veränderung
- Anstieg um mindestens 0,3mg/dl
- Mindestens Verdopplung des Ausgangswertes

Weiterhin wurde eine Unterteilung des maximalen Kreatinins in kleiner oder größer/gleich 2,0mg/dl vorgenommen.

Da alle HSZT Patienten mit potentiell nephrotoxischen Wirkstoffen behandelt werden und in der Regel zu Beginn der Therapie normale Nierenfunktion aufweisen, sind sie nicht geeignet für die Bestimmung der GFR über die Näherungsformeln. Also müsste bei jedem Patienten für eine sichere Bestimmung der GFR täglich die Kreatinin-Clearance mittels 24 Stunden Urin bestimmt werden. Der Aufwand erscheint doch enorm hoch und im klinischen Alltag kaum durchführbar. Deshalb werden zur Bestimmung der Nierengüte in der Klinik für Stammzelltransplantation am UKE und entsprechend auch in der vorliegenden Arbeit in der Regel die Serum Kreatininwerte zur Bestimmung der Nierenfunktion eingesetzt.

Die Ergebnisse wurden nur gewertet, sofern die IFI während oder innerhalb von 7 Tagen nach der letzten ABLC Gabe aufgetreten ist.

3.4.3 EORTC/MSG Kriterien für die Diagnose einer IFI zusammengefasst für ABLC Erhebung 2007/08

- Gesicherte IFI:
 direkter Pilznachweis durch Histologie oder Kultur, (serologisch nur Kryptokokken AG im Liquor)
- Wahrscheinliche IFI: mindestens je ein Kriterium erfüllt:
 1. wirtsspezifischer Faktor (erfüllen alle)
 2. klinische Kriterien (im TCT dichte, gut umschriebene Läsionen mit/ohne Halo sign oder air crescent sign oder Hohlen; ZNS Infektion: fokale Läsionen oder meningeales Enhancement)
 3. mykologisches Zeichen: positives Antigen
- Mögliche IFI:
 Wirtsspezifischer Faktor und klinisches Kriterium erfüllt

3.5 Statistische Auswertung

Die Daten wurden in einer Access Datei (s. Anhang) erhoben und anschließend in Excel transformiert. Dort wurden die Daten zur statistischen Auswertung mit SPSS aufbereitet.

Es wurde mit der Statistik Software SPSS Version 11,5 für Windows auf einem Samsung Q45 Notebook gearbeitet.

Da es in der vorliegenden Erhebung keine Kontrollgruppe gibt, wurde überwiegend deskriptive Statistik mit der Bestimmung von Häufigkeiten, Mittelwerten, Standardabweichungen und Medianen berechnet.

Um Zusammenhänge zwischen den Variablen auf Nominal- und Ordinalskaenniveau zu überprüfen, wurden Kreuztabellen erstellt. Mittels des Chi-Quadrat Tests wurde geprüft, ob die Ergebnisse signifikant
Material und Methoden

auf einem Signifikanzniveau von 5% sind.

4 Ergebnisse

4.1 Patienten

Von 279 Patienten, die im Zeitraum vom 01.01.2007 bis zum 30.09.2008 in der Interdisziplinären Klinik und Poliklinik für Stammzelltransplantation des Onkologischen Zentrums am Universitätsklinikum Hamburg-Eppendorf eine Stammzelltransplantation erhalten haben, erfüllten 207 die Einschlusskriterien für die vorliegende Erhebung (allogene Transplantation, Alter ≥ 18 Jahre).

103 Patienten von diesen und damit 49,8% haben Amphotericin B Lipid Komplex als Pilzprophylaxe erhalten. Bei diesen 103 Patienten wurde die akute Toxizität untersucht. 60 Patienten dieser Gruppe (58,3%) haben ABLC mindestens 7 Tage lang bekommen und sind damit in die Subgruppe zur Untersuchung der Wirksamkeit, akuten Toxizität und Nephrotoxizität eingeteilt worden.

Das Durchschnittsalter der Patienten zum Zeitpunkt der Stammzelltransplantation lag in der Gesamtgruppe der ABLC Patienten bei 48,7 Jahren und in der Subgruppe der Wirksamkeitsprüfung bei 47,3 Jahren. Die Geschlechterverteilung war mit 51 männlichen und 52 weiblichen Patienten innerhalb der ABLC Gesamtgruppe nahezu ausgeglichen. Die Subgruppe zur Wirksamkeitsprüfung unterteilte sich in 28 männliche und 32 weibliche Patienten (s. Tab. 6).

Die Erkrankungen, aufgrund derer die Patienten die Stammzelltransplantationen erhielten, waren zu 34% akute Leukämien, 33% myeloproliferative Syndrome, 28% maligne Lymphome und zu 5% schwere Anämien (s. Tab. 6).

Abb. 6: Flussdiagramm Patientenauswahl
Tab. 6: Patientencharakteristika

<table>
<thead>
<tr>
<th>Charakteristikum</th>
<th>Anzahl</th>
<th>Prozentzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtzahl Stammzelltransplantations-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patienten Jan. 2007 bis Sept. 2008 am UKE</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>Patienten mit erfüllten Einschlusskriterien</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>ABLC Patienten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABLC ≥ 7 Tage</td>
<td>103</td>
<td>36,9% (297)</td>
</tr>
<tr>
<td>ABLC < 7 Tage</td>
<td>60</td>
<td>58,3% (103)</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>41,8% (103)</td>
</tr>
<tr>
<td>Geschlecht</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Männlich</td>
<td>(103)</td>
<td>(103)</td>
</tr>
<tr>
<td>Weiblich</td>
<td>(60)</td>
<td>(60)</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>49,5%</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>46,7%</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>53,3%</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Diagnosen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maligne Lymphome</td>
<td>(103)</td>
<td></td>
</tr>
<tr>
<td>Akute Leukämien</td>
<td>29</td>
<td>28%</td>
</tr>
<tr>
<td>Myeloproliferative Syndrome</td>
<td>35</td>
<td>34%</td>
</tr>
<tr>
<td>Anämien</td>
<td>34</td>
<td>33%</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5%</td>
</tr>
</tbody>
</table>

4.2 Antimykotische Prophylaxe vor ABLC

Die mediane antimykotische Prophylaxedauer vor ABLC der Patienten aus der Subgruppe zur Wirksamkeitsprüfung, betrug 6,5 Tage mit einer Range von 0 bis 16 Tagen. Die Substanzen, die verabreicht wurden, waren ausschließlich Triazol-Antimykotika in folgenden Häufigkeiten: Itraconazol (N=37, 61,7%), Posaconazol (n=8, 13,3%) und Voriconazol (n=5, 8,3%). 10 Patienten (16,7%) haben vor ABLC keine antimykotische Prophylaxe bekommen.
Ergebnisse

Antimykotische Prophylaxe vor ABLC

kein Azol; 10
16,7%

Voriconazol; 5
8,3%

Posaconazol; 8
13,3%

Itraconazol; 37
61,7%

Abb. 7: Antimykotische Prophylaxe vor ABLC der Subgruppe zur Wirksamkeitsprüfung

Es lagen unterschiedliche Gründe vor, weshalb die Azol-Prophylaxe beendet und mit ABLC begonnen wurde. In 42 Fällen (70%) konnten die Patienten aufgrund von Mucositis, Übelkeit und Erbrechen oder Diarrhoen mit nicht mehr sicher gestellter enteraler Resorption das Azol nicht mehr oral zu sich nehmen. 5 Patienten (8,3%) reagierten mit einer Unverträglichkeit auf das Azol. Bei jeweils einem Patienten (je 1,7%) bestand eine hepatotoxische Begleitmedikation, die es notwendig machte, das Azol abzusetzen bzw. es wurde ein zu geringer Medikamtspeigel trotz adäquater Dosierung gemessen bzw. in der Akte war kein Grund für die Umstellung angegeben. 10 Patienten (16,6%) haben initial ABLC bekommen und es wurde entsprechend keine Umstellung vorgenommen.
Ergebnisse

Umstellungsgrund auf ABLC

Mucositis; 42; 70,0%
Unverträglichkeit; 5; 8,3%
Hepatotoxizität; 1; 1,7%
Wirkstoffspiegel niedrig; 1; 1,7%
unbekannt; 1; 1,7%
keine Prophylaxe; 10; 16,6%

Abb. 8: Umstellungsgrund auf ABLC der Subgruppe zur Wirksamkeitsprüfung

4.3 Amphotericin B Lipid Komplex - Rahmendaten

4.3.1 Dauer der Medikation

Betrachtet man die gesamte ABLC-Patientengruppe, so lag die Dauer der ABLC-Prophylaxe im Median bei 9 Tagen mit einer Spannweite (Range) von 1 bis 30 Tagen. Die Subgruppe zur Wirksamkeitsprüfung hat ABLC durchschnittlich (Mittelwert) 13,5 Tage bekommen mit einem Median von 12 Tagen. Von dieser Patientengruppe (n=60) haben die meisten Patienten, nämlich 48 (80,0%), die intravenöse Prophylaxe 7 bis 16 Tage erhalten. Nur 12 weitere Patienten (20%) erhielten ABLC zwischen 17 und 30 Tagen (s. Tab. 17)
4.3.2 Dauer der Neutropenie

Der Median der Neutopeniedauer in der Wirksamkeitsprüfgruppe beträgt 14 Tage mit einer Range von 3 bis 37 Tagen. Wie in Abbildung 8 dargestellt, lag bei 6 Patienten (10%) die Dauer der Neutropenie zwischen 0 und 7 Tagen, bei 45%, also in 27 Fällen, zwischen 8 und 14 Tagen, bei 23 Fällen (38,3%) zwischen 15 und 21 Tagen. Kein Patient zeigte eine Neutopeniedauer von 22 bis 28 Tagen. In 2 Fällen (3,3%) wurde eine Zeit zwischen 29 und 35 Tagen dokumentiert und in einem Fall dauerte die Neutropenie zwischen 36 und 42 Tagen. Ein Patient (1,7%) ist während der neutropenischen Phase nach 15 Tagen verstorben.
Ergebnisse

Neutropeniedauer der Subgruppe zur Wirksamkeitsprüfung

Abb. 10: Neutropeniedauer in der Subgruppe zur Wirksamkeitsprüfung

Neutropeniedauer

Abb. 11: Neutropeniedauer der Subgruppe zur Wirksamkeitsprüfung

- **Mittelwert**: 14,1
- **Minimum**: 3
- **Maximum**: 37
- **Standardabweichung**: 5,77
4.4 Ergebnisse zur Toxizität von ABLC

4.4.1 Ergebnisse zur akuten Toxizität

4.4.1.1 Prämedikation

Als Prämedikation vor der ABLC Infusion zur Verhinderung oder Reduktion von akuten Unverträglichkeitsreaktionen haben von der gesamten Patientengruppe 77 Patienten (74,8%) nur ein H1-Antihistaminikum bekommen. 16 Patienten (15,5%) haben eine Kombination aus einem Antihistaminikum und Paracetamol erhalten und bei 10 Patienten (9,7%) ist keine Prämedikation im Arzneimittelplan dokumentiert worden. Bei diesen Patienten ist davon ausgegangen worden, dass keine Prämedikation verabreicht wurde (s. Abb. 12).

![Abbildung 12: Häufigkeit der Prämedikation](image)

Abb. 12: Häufigkeit der Prämedikation

4.4.1.2 Umstellung bei Unverträglichkeit

Von 103 Patienten, die ABLC als Pilzprophylaxe erhalten haben, wurde bei 24 (23,3%) aufgrund einer Unverträglichkeit auf eine andere Substanz umgestellt.
Die Umstellung erfolgte im Mittel nach 5,7 Tagen mit einer Standardabweichung von 5,9. Der Median liegt bei 3 Tagen mit einer Range von 1 bis 20 Tagen. 71 Patienten (68,9%) erhielten ABLC ohne Zeichen einer Unverträglichkeit, 8 Patienten (7,8%) berichteten über eine leichte Unverträglichkeitsreaktion, jedoch konnte ABLC weiterhin infundiert werden.

Als Unverträglichkeitsreaktionen zeigten sich bei 22 Patienten (21,4%) Fieber und/oder Schüttelfrost als Nebenwirkung, 5 Patienten (4,9%) zeigten andere unerwünschte Arzneimittelwirkungen wie unspezifische Gliederschmerzen, Übelkeit und Erbrechen, anaphylaktische Reaktionen und Exantheme (keine Doppelnennungen). Bei weiteren 5 Patienten wurde die Art der Unverträglichkeitsreaktion in der Patientenakte nicht dokumentiert. Entsprechend waren 81,5% (22 von 27 Fällen) der dokumentierten Unverträglichkeitsreaktionen Fieber und Schüttelfrost. Kein Patient hat Dyspnoe oder andere pulmonale Nebenwirkungen entwickelt.

Abb. 13: Verteilung der unerwünschten Arzneimittelwirkungen, die zur Umstellung auf ein anderes prophylaktisches Antimykotikum geführt haben
4.4.1.3 Effektivität der Prämedikation

Trägt man die Prämedikation und die Verträglichkeit von ABLC in einer Kreuztabelle (Tab. 7) gegeneinander auf, ergibt sich, dass 15 der 22 Patienten (68,2%), die Fieber und Schüttelfrost entwickelten, dies nach der Prämedikation mit einem Antihistaminikum entwickelt haben, 5 der 22 Patienten (22,7%) trotz der kombinierten Gabe von Antihistaminikum und Paracetamol unter Fieber und Schüttelfrost litten und dass 2 Patienten (9,1%) trotz der Nebenwirkung von Fieber und Schüttelfrost keine Prämedikation erhalten haben. In einem Fall, der in die Gruppe „nur Antihistaminikum“ eingeordnet wurde, ist beim Auftreten von Fieber und Schüttelfrost nach Abelcet noch eine Gabe am Folgetag mit Paracetamol als Prämedikation appliziert worden ohne Verminderung der UAW. Andere unerwünschte Arzneimittelwirkungen sind insgesamt nur in 5 von 103 Fällen (4,6%) aufgetreten. Dabei hatte der Patient, der beide Prämedikationen erhalten hat, über Gliederschmerzen geklagt, während 3 von den 4 anderen Patienten eine anaphylaktische Reaktion bzw. Exantheme entwickelten, also potentielle Nebenwirkungen, die durch ein H1-Antihistaminikum abgeschwächt oder verhindert werden sollten. In einem Fall sind Fieber/Schüttelfrost und eine generalisierte Exantheme nach der Gabe von ABLC aufgetreten. Bei einem Patienten haben Übelkeit und Erbrechen zur Umstellung auf ein anderes Arzneimittel geführt. 5 Patienten haben ohne Angabe, welche Unverträglichkeitsreaktion auftrat, eine andere Prophylaxe erhalten. Insgesamt haben 54 von 77 Patienten (70,13%), die nur ein Antihistaminikum erhielten, 9 von 16 Patienten (56,25%), die beide Prämedikationen bekamen und 8 von 10 Patienten (80%), die keine Prämedikation einnahmen, keine Nebenwirkungen angegeben. Von 93 Patienten, die mit einem Antihistaminikum prämediziert wurden, wurden nur in 3 Fällen allergische Nebenwirkungen angegeben (3,2%). Allerdings hat keiner der 10 Patienten, die keine Prämedikation erhielten, mit allergischen Nebenwirkungen reagiert. Abb. 14 zeigt ein Balkendiagramm zur Verträglichkeit von ABLC unterteilt nach den verschiedenen Prämedikationen.
Tab. 7: Prämedikation * Verträglichkeit von ABLC

<table>
<thead>
<tr>
<th>Prämedikation</th>
<th>Verträglichkeit von ABLC</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gut</td>
<td>Fieber u/o Schüttelfrost</td>
</tr>
<tr>
<td>nur Antihistaminium</td>
<td>54</td>
<td>15</td>
</tr>
<tr>
<td>Antihistaminium und Paracetamol</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>keine Prämedikation</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Gesamt</td>
<td>71</td>
<td>22</td>
</tr>
</tbody>
</table>

Prämedikation

Verträglichkeit

- **gut**
- **Fieber & Schüttelfr.**
- **andere UAW**
- **Umstellungsgrund unklar**

Abb. 14: Verträglichkeit von ABLC unter Prämedikation
4.4.1.4 Abweichungen zwischen den Jahren 2007 und 2008

Auffällig ist ein erheblicher Unterschied dieser Ergebnisse zur Verträglichkeit zwischen den Jahren 2007 und 2008. 2007 wurde in 83,3% (55 Patienten) der Fälle eine gute Verträglichkeit dokumentiert und es wurde bei 10,6% (7 Pat.) der Fälle wegen einer Unverträglichkeit eine Alternativprophylaxe angesetzt. Im Jahr 2008 dagegen sank die Anzahl der gut vertragenen ABLC-Gaben auf 43,2% (16 Pat.) und die Umstellung auf einen anderen Arzneistoff erfolgte in 45,9% (17 Pat.). Die Tabellen 8a-d und Abb. 15 und 16 zeigen diese Abweichungen zwischen den Jahren 2007 und 2008:

Tab. 8a-d: Verträglichkeit von ABLC im Jahresvergleich

a) Verträglichkeit von ABLC 2007

<table>
<thead>
<tr>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozente</th>
<th>Kumulierte Prozente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gültig</td>
<td>gut</td>
<td>55</td>
<td>83,3</td>
</tr>
<tr>
<td></td>
<td>Fieber u/o Schütteln</td>
<td>8</td>
<td>12,1</td>
</tr>
<tr>
<td></td>
<td>andere UAW</td>
<td>3</td>
<td>4,5</td>
</tr>
<tr>
<td>Gesamt</td>
<td>66</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

b) Umstellung wegen Unverträglichkeit 2007

<table>
<thead>
<tr>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozente</th>
<th>Kumulierte Prozente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gültig</td>
<td>nein</td>
<td>59</td>
<td>89,4</td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>7</td>
<td>10,6</td>
</tr>
<tr>
<td>Gesamt</td>
<td>66</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>
c) Verträglichkeit von ABLC 2008

<table>
<thead>
<tr>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozente</th>
<th>Kumulierte Prozente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gültig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gut</td>
<td>16</td>
<td>43,2</td>
<td>43,2</td>
</tr>
<tr>
<td>Fieber u/o Schüttelfrost</td>
<td>14</td>
<td>37,8</td>
<td>37,8</td>
</tr>
<tr>
<td>andere UAW</td>
<td>2</td>
<td>5,4</td>
<td>5,4</td>
</tr>
<tr>
<td>Umstellungsgrenzen unklar</td>
<td>5</td>
<td>13,5</td>
<td>13,5</td>
</tr>
<tr>
<td>Gesamt</td>
<td>37</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

d) Umstellung wegen Unverträglichkeit 2008

<table>
<thead>
<tr>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozente</th>
<th>Kumulierte Prozente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gültig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>20</td>
<td>54,1</td>
<td>54,1</td>
</tr>
<tr>
<td>ja</td>
<td>17</td>
<td>45,9</td>
<td>100,0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>37</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Umstellung bei Unverträglichkeit im Jahresvergleich

![Diagramm der Umstellung von 2007 zu 2008](image.png)

Abb. 15: Umstellung wegen Unverträglichkeit im Jahresvergleich
4.4.2 Ergebnisse zur Nephrotoxizität

4.4.2.1 Serum Kreatinin Veränderungen unter ABLC

Von den Patienten der Subgruppe zur Wirksamkeitsprüfung ist das Serumkreatinin in 33 Fällen (55%) im Normbereich geblieben, allerdings hat es bei diesen Patienten in 42,4% (14 Fälle) einen Anstieg um mindesten 0,3mg/dl und in 12,1% (4 Fälle) mindestens eine Verdopplung des Ausgangswertes gegeben. Lediglich bei 15 Patienten (45,5%) ist das Serumkreatinin unverändert geblieben.

Die Kreatininwerte, die im Verlauf pathologische Werte angenommen haben, wurden nach Bearman Kriterien eingeteilt. Es kam bei 11 Patienten (18,3%) zu einem Anstieg bis unterhalb des zweifachen Ausgangswertes und bei 14 Patienten (23,3%) mindestens zu einer Verdopplung des Serumkreatinins.

Ein Patient (1,7%) zeigte einen erheblichen Anstieg des Serumkreatinins in den dialysepflichtigen Bereich und ein weiterer (1,7%) hatte bereits initial einen pathologischen Kreatininwert, der sich im Verlauf aber nicht weiter verschlechterte (s. Abb. 17).
Unterteilt man das maximale Kreatinin in eine Gruppe kleiner 2,0mg/dl und eine größer-gleich 2,0mg/dl, so ergibt sich, dass 93,3% der Patienten (56 Fälle) unterhalb 2,0 mg/dl bleiben, während nur 4 Patienten, 6,7%, einen maximalen Kreatininwert größer-gleich 2,0 mg/dl gezeigt haben (s. Abb. 18).
Der maximale Serumkreatininwert der Wirksamkeitsprüfgruppe wurde im Mittel nach 9,5 Tagen (Median 9,5; Standardabweichung 5,2) erreicht bei einer Range von 0 bis 28 Tagen.
Um bei dieser Wertung die Gesamtdauer der ABLC Prophylaxe mit einzubeziehen, wurde ein Balkendiagramm erstellt (Abb. 19), das die Einzelfälle der Patienten, bei denen sich das Serumkreatinin mindestens verdoppelt hat, mit der Dauer der ABLC-Gabe und dem maximalen Serumkreatinin zeigt:

Abb. 18: Maximales Serumkreatinin
Abb. 19: Einzelfälle der Patienten mit einem mindestens verdoppelten Serumkreatininwert unter ABLC mit den maximalen Kreatininwerten und der Dauer der ABLC Prophylaxe

Anhand dieser Gegenüberstellung kann kein Zusammenhang zwischen der Dauer der ABLC-Gabe und dem maximalen Kreatinin-Wert festgestellt werden.

4.4.2.2 Nephrotoxische Arzneistoffe

Parallel zu ABLC wurden allen Patienten im Rahmen des medikamentösen Stammzelltransplantationskonzeptes zusätzlich nephrotoxische Arzneistoffe verabreicht. 33 Patienten (55%) haben 2-4 und 27 Patienten (45%) 5-6 nephrotoxische Arzneistoffe zeitgleich erhalten. Kein Patient hat weniger als 2 nephrotoxische Substanzen zusätzlich zu ABLC erhalten. Es ist möglich, dass einzelne Patienten noch zusätzliche, in einem nicht stammzelltransplantationsbezogenen Zusammenhang verordnete nephrotoxische Medikamente bekommen haben, die nicht unter die im Material und Methodenteil aufgezählten häufig parallel verabreichten Arzneistoffe fallen.
Stellt man die Anzahl der parallel zu ABLC verabreichten nephrotoxischen Arzneimittel bei jedem einzelnen Patienten seiner Nierenfunktion, eingeteilt nach Bearman [120], gegenüber, so zeigt sich, dass bei den Patienten, die nur 2 bis 4 zusätzliche potentiell nieren schädigende Substanzen erhalten haben, deutlich mehr, nämlich 66,7% gegenüber 40,7%, im Normbereich blieben. Entsprechend stieg bei weniger Patienten, 12,1% gegenüber 29,6%, das Kreatinin bis unterhalb des verdoppelten Wertes und bei nur 18,2% im Vergleich zu 25,9% erhöhte sich das Serumkreatinin bis zur Verdopplung des Ausgangswertes und darüber hinaus. Insgesamt ergibt sich eine größere Nierenbelastung durch eine größere Zahl gleichzeitig verordneter nephrotoxischer Arzneimittel unter ABLC. Diesen Zusammenhang gibt auch der Boxplot graphisch wieder (Abb. 20).

Tab. 9: Nephrotoxische Arzneimittel * Kreatinin

<table>
<thead>
<tr>
<th>Kreatininbeurteilung nach Bearman</th>
<th>Anzahl nephrotox. Medikamente kategorisiert</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-4</td>
<td>5-6</td>
</tr>
<tr>
<td>Kreatininanstieg bis zum 2fachen Ausgangswert</td>
<td>4 (12,1%)</td>
<td>8 (29,6%)</td>
</tr>
<tr>
<td>Kreatinin mindestens verdoppelt</td>
<td>6 (18,2%)</td>
<td>7 (25,9%)</td>
</tr>
<tr>
<td>Dialysepflichtigkeit</td>
<td>0 (1,7%)</td>
<td>1 (2,7%)</td>
</tr>
<tr>
<td>Kreatinin unverändert im pathologischen Bereich</td>
<td>1 (3,3%)</td>
<td>0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>33</td>
<td>27</td>
</tr>
</tbody>
</table>

(Die Prozentwerte in den Klammern beziehen sich jeweils auf die Gesamtzahl der Spalte)
Ergebnisse

Abb. 20: Maximales Serumkreatinin in [mg/dl] unter verschiedener Anzahl nephrotoxischer Substanzen im Vergleich

4.4.2.3 Vergleich von Altersgruppen bezüglich Nierenfunktion

Um zu untersuchen, ob das Alter des Patienten während der Stammzelltransplantation in einem Zusammenhang steht mit der Höhe der Retentionsparameter unter der ABLC Prophylaxe, wurde eine Kreuztabelle gebildet und das Alter in 2 Kategorien, 18-59 Jahre und 60-75, der Nierenfunktion nach Bearman gegenübergestellt. Die Aussagemöglichkeit ist eingeschränkt, da in die Gruppe der 60-75jährigen nur 15 Patienten eingeordnet wurden. In der jüngeren Altergruppe lagen 25 von 45, also 55,6%, im Normbereich, bei 7 von 45 Patienten, 15,6%, stieg das Kreatinin bis unterhalb des zweifachen Ausgangswertes an, immerhin 11 von 45, entsprechend 24,4%, zeigten mindestens eine Verdopplung des Serumkreatinin-Ausgangswertes und jeweils ein Patient (2,2%) wurde dialysepflichtig bzw. es ergab sich keine Veränderung bei einem initial schon pathologischen Wert. Von den älteren Patienten blieben in 8 von 15 Fällen,
53,3%, die Werte im Normbereich, 5 (33,3%) stiegen mit den Werten aber blieben unterhalb einer Verdopplung und bei 2 Patienten, 13,3%, wurde laborchemisch mindestens eine Verdopplung festgestellt. So ergibt sich, dass beide Gruppen näherungsweise gleiche Häufigkeiten im Normbereich zeigen, während der Anstieg bis unterhalb des zweifachen Ausgangswertes in der älteren Gruppe häufiger vertreten ist, aber im Gegensatz dazu die Patienten der jüngeren Altersgruppe häufiger Werte über eine Verdopplung hinaus zeigen. In dieser Stichprobe liegt kein signifikanter Zusammenhang zwischen dem Patientenalter zum Zeitpunkt der Stammzelltransplantation und dem Ausmaß des Serumkreatininspiegels im Verlauf der ABLC Prophylaxe vor.

Tab. 10: Kreatinin im Verlauf * Patientenalter

<table>
<thead>
<tr>
<th>Kreatininbeurteilung nach Bearman</th>
<th>Alter kategorisiert</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18-59</td>
<td>60-75</td>
</tr>
<tr>
<td>Normbereich</td>
<td>25 (56%)</td>
<td>8 (53%)</td>
</tr>
<tr>
<td>Kreatininanstieg bis zum 2fachen Ausgangswert</td>
<td>7 (16%)</td>
<td>5 (33%)</td>
</tr>
<tr>
<td>Kreatinin mindestens verdoppelt</td>
<td>11 (24%)</td>
<td>2 (13%)</td>
</tr>
<tr>
<td>Dialysepflichtigkeit</td>
<td>1 (2%)</td>
<td>0</td>
</tr>
<tr>
<td>Kreatinin unverändert im pathologischen Bereich</td>
<td>1 (2%)</td>
<td>0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>45</td>
<td>15</td>
</tr>
</tbody>
</table>

(Die Prozentzahlen in den Klammern beziehen sich auf die Gesamtzahl der Spalte)
Abb. 21: Maximales Serumkreatinin in [mg/dl] im Verhältnis zum Patientenalter

Abb. 22: Maximaler Serumharnstoff in [mg/dl] im Verhältnis zum Patientenalter
4.4.2.4 Kreatinin im Verhältnis zur Neutropeniedauer

In der unten aufgeführten Kreuztabelle ist das Verhältnis der Neutropeniedauer zum maximalen Serumkreatinin aufgetragen. In den Zellen der Neutropeniedauer von 29 bis 42 Tagen sind nur 3 Patienten eingetragen, so dass diese Werte nicht richtungweisend ausgewertet werden können. Bei einer Neutropeniedauer bis zu 21 Tagen ergibt sich kein Hinweis für eine geringere Verschlechterung der Nierenfunktion bei kürzerer Neutropeniedauer.

Tab. 11: Kreatinin * Neutropeniedauer

<table>
<thead>
<tr>
<th>Dauer Neutropenie kategorisiert</th>
<th>0-7</th>
<th>8-14</th>
<th>15-21</th>
<th>29-35</th>
<th>36-42</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropeniedauer</td>
<td>4</td>
<td>14</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Kreatininbeurteilung nach Bearman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normbereich</td>
<td>4</td>
<td>14</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Kreatininanstieg bis zum 2fachen Ausgangswert</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Kreatinin mindestens verdoppelt</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Kreatinin unverändert im pathologischen Bereich</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Gesamt</td>
<td>6</td>
<td>27</td>
<td>23</td>
<td>2</td>
<td>1</td>
<td>59</td>
</tr>
</tbody>
</table>

4.5 Ergebnisse zur Wirksamkeit von ABLC

4.5.1 IFI nach EORTC/MSG 2008

Nach der Einteilung der EORTC Kriterien von 2008 ist es bei 47 von 60 Patienten (78,3%) zu keiner invasiven Pilzinfektion gekommen. Bei 13 Patienten bestand der Verdacht auf oder es lag eine gesicherte IFI vor. Bei 2 Patienten (3,3%) konnte eine invasive Pilzinfektion gesichert (proven) werden, in 4 Fällen (6,7%) war die Diagnose wahrscheinlich (probable) und 7 Patienten (11,7%) wurden als mögliche Erkrankte (possible) an einer invasiven Pilzinfektion eingestuft.
Die Entwicklung einer möglichen, wahrscheinlichen oder gesicherten invasiven Pilzinfektion hat im Mittel 9,8 Tage (Median = 10) mit einer Spannweite von 1 bis 16 Tagen gedauert.

4.5.2 Umstellung auf Pilztherapie

Bei deutlich mehr Patienten als bei denen mit nachgewiesenen oder vermuteten IFI, nämlich bei 20 (33,3%), wurde aufgrund von verschiedenen klinischen und diagnostischen Befunden empirisch auf eine therapeutische Antimykotikagabe eskaliert. Die Umstellung aufgrund von pilzverdächtigen Infiltraten im hochauflösenden thorakalen Computertomogramm war mit 9 Patienten (15%) der häufigste Grund, gefolgt von 7 Patienten (11,7%), bei denen nach klinischen Überlegungen empirisch eskaliert wurde. Bei 3 Patienten (5%) sind Pilze in Blutkulturen gewachsen, was zu einer Umstellung auf eine antimykotische Therapie führte und bei einem Patienten (1,7%) wurde keine

Bei 3 Patienten erfolgte die Umstellung auf eine antimykotische Therapie, kurz nachdem sie von ABLC auf ein Folgeprophylaktikum umgestellt worden waren (1x nach einem Tag und 2x nach zwei Tagen).

Die genannte Verteilung zeigt die folgende Abbildung 24:

Abb. 24: Eskalationsgründe

4.5.3 Antifungale Medikation nach ABLC

Die antifungale Medikation nach Absetzen von ABLC wurde kategorisiert in die Umstellung auf eine orale Prophylaxe mit einem Triazol bei wiedererlangter Schluckfähigkeit, in die fortgesetzte intravenöse Prophylaxe mit liposomalem Amphotericin B aufgrund von weiterhin bestehender Schluck- bzw. Resorptionsunfähigkeit bei einer ABLC Unverträglichkeit und in die empirische oder gesicherte antimykotische Therapie mit Caspofungin. Von der Subgruppe zur Wirksamkeitsprüfung erhielten 38 Patienten (63,3%) eine orale Prophylaxe, bei 4 (6,7%) wurde die Prophylaxe intravenös mit liposomalem Amphotericin B
fortgesetzt und 17 Patienten (28,3%) wurden aus den oben genannten Gründen auf Caspofungin umgestellt. Bei 3 Patienten, die nach ABLC eine orale oder intravenöse Prophylaxe erhalten haben, wurde diese innerhalb von wenigen Tagen auf eine Pilztherapie mit Caspofungin eskaliert, nachdem Befunde erhoben wurden, die auf eine invasive Mykose hindeuteten. Zu einem Patienten konnten die Daten bezüglich der Pilzprophylaxe oder -therapie aufgrund der Verlegung in eine andere Abteilung nicht erhoben werden.

Bezogen auf die Gesamtzahl der ABLC Patienten (n=103) haben 43,3% ein orales und 22,1% ein intravenöses Prophylaktikum und 31,7% eine Pilztherapie erhalten. Zu 2 (1,9%) Patienten konnten keine Daten erhoben werden.

(Von den 43 Patienten, die ABLC weniger als 7 Tage bekommen haben, wurden 44,2% (19 Fälle) auf AmBisome® umgestellt, 16,3% (7 Fälle) konnten eine orale Prophylaxe bekommen und 37,2% (16 Fälle) benötigten eine Pilztherapie. In einem Fall ließen sich keine Daten erheben.) Diese prozentualen Werte sind in Abb. 25 wiedergegeben.

Abb. 25: Pilzmedikation nach ABLC
4.5.4 Diagnosen und Outcome

Von den Patienten, die ihre orale Prophylaxe nach ABLC ohne Umstellung fortsetzen konnten, also nach ABLC direkt ein Azol erhalten haben, waren alle Diagnosen gleichmäßig verteilt. Im Verhältnis haben die meisten der Patienten mit chronisch myeloproliferativen Syndromen die Prophylaxe regulär fortgesetzt und keine IFI ausgebildet (20/24 = 83,3%), bei den malignen Lymphomen und den akuten Leukämien waren es deutlich weniger (9/18=50% bzw. 9/15=60%). Die Zahlenwerte der anderen Folgemedikationen sind zu klein, um ein aussagekräftiges Ergebnis zu erbringen (Tab. 12).

Unter den Patienten, die die IFI Kriterien erfüllen, erhielten die meisten, nämlich 5 von 13 (38,5%), die HSZT wegen der Diagnose eines Lymphoms, jeweils 3 von 13 Patienten, 23,1%, litten unter einer akuten Leukämie bzw. einem myeloproliferativen Syndrom und 2 von 13, 15,4%, hatten schwere Anämien. Wie sich diese Diagnosen auf die IFI-Einteilung aufgliedern zeigt Tab. 13.

Tab. 12: Antifungale Medikation nach ABLC * Diagnosen

<table>
<thead>
<tr>
<th>Diagnose kategorisiert</th>
<th>Maligne Lymphome</th>
<th>Akute Leukämien</th>
<th>Chron. myeloproliferative Syndrome</th>
<th>Anämien</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.v. Prophylaxe</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>orale Prophylaxe</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>keine Angabe</td>
<td>9</td>
<td>9</td>
<td>20</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>Gesamt</td>
<td>18</td>
<td>15</td>
<td>24</td>
<td>3</td>
<td>60</td>
</tr>
</tbody>
</table>
Tab. 13: Diagnose * IFI

<table>
<thead>
<tr>
<th>Diagnose kategorisiert</th>
<th>IFI possible</th>
<th>IFI probable</th>
<th>IFI proven</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maligne Lymphome</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5 (38,5%)</td>
</tr>
<tr>
<td>Akute Leukämien</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3 (23,1%)</td>
</tr>
<tr>
<td>Chron. myeloproliferative Syndrome</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3 (23,1%)</td>
</tr>
<tr>
<td>Anämien</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2 (15,2%)</td>
</tr>
<tr>
<td>Gesamt</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>13</td>
</tr>
</tbody>
</table>

4.5.5 IFI Entstehung im Zusammenhang mit Neutropeniedauer

In folgenden Kreuztabellen wurde die Entwicklung einer invasiven Pilzinfektion gegen die Neutropeniedauer aufgetragen. Dabei fällt auf, dass in dieser kleinen Stichprobe von 13 Patienten die meisten, nämlich 8 (61,5%), ihre IFI während einer 2-3 Wochen anhaltenden neutropenischen Phase entwickelten. Im Vergleich dazu waren von den Patienten der Subgruppe zur Wirksamkeitsprüfung, die keine IFI entwickelt haben, die meisten (51,1%) in der Gruppe einer 1-2 Wochen anhaltenden Neutropeniephase. Bei 31,9% dieser IFI-freien Patientengruppe betrug die Neutropeniedauer 14 bis 21 Tage. Bei weniger Patienten (3/13; 23,1%) wurde innerhalb einer kurzen, nur bis 14 Tage dauernden Neutropeniephase, eine IFI diagnostiziert. 2 wahrscheinliche invasiv fungale Infektionen (15,4%) fanden sich innerhalb der Patientengruppe mit einer Dauer der Neutropenie über 4 Wochen.

Trägt man die Dauer der Neutropenie kategorisiert in die Gruppen 1-14 Tage und 15-37 Tage gegen das Auftreten von IFI (gesicherte, wahrscheinliche und mögliche IFI) in einer Kreuztabelle auf, ergibt sich im Chi-Quadrat Test eine deutliche Signifikanz. Das Auftreten von IFI ist entsprechend umso wahrscheinlicher, je länger die neutropenische Phase andauert.
Tab. 14: Neutropeniedauer * IFI

<table>
<thead>
<tr>
<th>IFI</th>
<th>8-14</th>
<th>15-21</th>
<th>29-35</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>possible</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>probable</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>proven</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Gesamt</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>13</td>
</tr>
</tbody>
</table>

Tab. 15: Neutropeniedauer der Subgruppe zur Wirksamkeitsprüfung unter den IFI-freien Patienten

<table>
<thead>
<tr>
<th>Häufigkeit</th>
<th>Prozent</th>
<th>Gültige Prozente</th>
<th>Kumulierte Prozente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gültig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-7</td>
<td>6</td>
<td>12,8</td>
<td>13</td>
</tr>
<tr>
<td>8-14</td>
<td>24</td>
<td>51,1</td>
<td>65,2</td>
</tr>
<tr>
<td>15-21</td>
<td>15</td>
<td>31,9</td>
<td>97,8</td>
</tr>
<tr>
<td>36-42</td>
<td>1</td>
<td>2,1</td>
<td>100</td>
</tr>
<tr>
<td>Gesamt</td>
<td>46</td>
<td>97,9</td>
<td>100</td>
</tr>
<tr>
<td>Fehlend System</td>
<td>1</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>47</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 16: Neutropeniedauer der gesamten Subgruppe zur Wirksamkeitsprüfung

<table>
<thead>
<tr>
<th>IFI kategorisiert</th>
<th>keine IFI</th>
<th>IFI</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenie-dauer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-14 d</td>
<td>30</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>15-37 d</td>
<td>16</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>Gesamt</td>
<td>46</td>
<td>13</td>
<td>59</td>
</tr>
</tbody>
</table>

(Mittelwert der Neutropeniedauer = 14 d)
p=0,07
Ergebnisse

IFI kategorisiert

Abb. 26: Auftreten von IFI zur Neutropeniedauer, zusammengefasst

Abb. 27: Auftreten von IFI zur Neutropeniedauer, aufgegliedert
4.5.6 Auftreten von IFI im zeitlichen Zusammenhang

Die Entwicklung einer invasiven Pilzinfektion fand im Mittel nach 9,8 Tagen (Median = 10) mit einer Range von 1 bis 16 Tagen und einer Standardabweichung von 4 statt.

4.6 Zusammenfassung

Von 207 Patienten mit erfüllten Einschlusskriterien haben 103 ABLC erhalten, 60 von ihnen mindestens über 7 Tage. Die die HSZT indizierenden Erkrankungen waren zu 34% akute Leukämien, 33% myeloproliferative Syndrome, 28% maligne Lymphome und zu 5% schwere Anämien. 83,3% der Patienten haben vor ABLC ein Azol-Antimykotikum in einer medianen Dauer von 6,5 Tagen bekommen. Die mediane Prophylaxedauer mit ABLC der Gesamtgruppe lag bei 9 Tagen mit einer Range von 1 bis 30 Tagen. Nach durchschnittlich 5,7 Tagen mit einem Median von 3 Tagen wurde bei 23,3% der gesamten ABLC Gruppe aufgrund von akuten Unverträglichkeitsreaktionen auf eine Ausweichsubstanz umgestellt, weitere 7,8% haben Unverträglichkeiten angegeben, ohne dass umgestellt wurde. 81,5% der Unverträglichkeitsreaktionen bestanden in Fieber und Schüttelfrost. 22,7% haben trotz Prämedikation mit Paracetamol Fieber und Schüttelfrost entwickelt und 4,8% haben trotz H1-Antihistaminikum allergische Nebenwirkungen gezeigt. Es besteht ein erheblicher Unterschied der Verträglichkeit zwischen den Jahren 2007 und 2008. 2007 wurde bei 83,3% eine gute Verträglichkeit dokumentiert und nur bei 10,6% wegen Unverträglichkeit eine Alternativprophylaxe angesetzt. Im Jahr 2008 sank die Anzahl der gut vertragenen ABLC Gaben auf 43,2% und die Umstellung auf einen anderen Arzneistoff erfolgte in 45,9%. Die Subgruppe zur Wirksamkeitsprüfung hat ABLC durchschnittlich 13,5 Tage erhalten. Der Median der Neutropeniedauer in der Subgruppe zur Wirksamkeitsprüfung betrug 14 Tage mit einer Range von 3 bis 37 Tagen. 74,8% dieser Subgruppe haben als Prämedikation ein H1-Antihistaminikum,
15,5% zusätzlich auch noch Paracetamol und 9,7% keine Prämedikation erhalten.

Zeitgleich mit der ABLC Prophylaxe haben 55% 2-4 und 45% 5-6 nephrotoxische Substanzen erhalten. Von den Patienten, die nur 2-4 zusätzliche nephrotoxische Substanzen parallel zu ABLC erhalten haben, blieben 66,7% im Gegensatz zu 40,7% der Patienten, die 5-6 nephrotoxische Substanzen zusätzlich erhielten, im Serumkreatinin-Normbereich und bei nur 12,1% im Vergleich zu 29,6% stieg das Serumkreatinin bis unterhalb des verdoppelten Ausgangswertes. Je mehr nephrotoxische Substanzen die Patienten parallel zu ABLC erhielten, desto höher waren die Nierenretentionswerte.

Von den Patienten der Subgruppe zur Wirksamkeitsprüfung ist das Serumkreatinin in 55% im Normbereich geblieben. Bei 18,3% kam es zu einem Anstieg bis unterhalb des zweifachen Ausgangswerts und bei 23,3% mindestens zu einer Verdopplung des Serumkreatinins. Ein Patient zeigte einen erheblichen Anstieg des Serumkreatinins in den dialysepflichtigen Bereich. 93,3% der Patienten blieben unterhalb von 2mg/dl Serum-Kreatinin und nur 6,7% erreichten einen maximalen Wert größer-gleich 2mg/dl. Der maximale Serumkreatininwert wurde im Mittel nach 9,5 Tagen erreicht.

In dieser Stichprobe zeigte sich kein signifikanter Zusammenhang zwischen dem Patientenalter zum Zeitpunkt der Stammzelltransplantation und dem Ausmaß des Serumkreatininspiegels im Verlauf der ABLC Prophylaxe.

Nach der Einteilung der EORTC Kriterien von 2008 ist es bei 78,3% zu keiner invasiven Pilzinfektion gekommen. Bei 21,6% lag mindestens der Verdacht auf eine IFI vor. Bei 3,3% konnte eine invasive Pilzinfektion gesichert werden, bei 6,7% war die Diagnose wahrscheinlich und 11,7% wurden als mögliche Erkrankte eingestuft. Die Entwicklung einer möglichen, wahrscheinlichen oder gesicherten invasiven Pilzinfektion hat im Mittel 9,8 Tage (Median = 10) mit einer Range von 1 bis 16 Tagen gedauert. Bei 20 von 60 Patienten wurde aufgrund von verschiedenen klinischen und diagnostischen Befunden auf eine Pilztherapie eskaliert. Diese Umstellung erfolgte bei 9 von 60 Patienten aufgrund von pilzverdächtigen Infiltraten im hochauflösenden thorakalen
Computertomogramm, bei 7 von 60 Patienten aus empirischen Überlegungen und bei 3 von 60 Patienten aufgrund von positiven Blutkulturen. Bei einem Patienten ist aus den Akten kein Eskalationsgrund zu entnehmen. 63,3% der Patienten erhielten nach Absetzen von ABLC eine orale Prophylaxe, bei 6,7% wurde die Prophylaxe i.v. mit AmBisome® fortgesetzt und 28,3% wurden auf Caspofungin umgestellt. Bezogen auf die Gesamtzahl der ABLC Patienten haben 43,3% ein orales und 22,1% ein intravenöses Prophylaktikum und 31,7% eine Pilztherapie bekommen. Von den 43 Patienten, die ABLC weniger als 7 Tage bekommen haben, wurden 44,2% auf AmBisome® umgestellt, 16,3% konnten eine orale Prophylaxe bekommen und 37,2% benötigten eine Pilztherapie. Von den Patienten, die ihre Prophylaxe regulär fortsetzen konnten, waren alle Diagnosen gleichmäßig verteilt. Im Verhältnis haben die meisten der Patienten mit chronisch myeloproliferativen Syndromen die Prophylaxe regulär fortgesetzt und keine IFI ausgebildet (83,3%), bei den malignen Lymphomen und den akuten Leukämien waren es deutlich weniger (50% bzw. 60%). Von den 13 Patienten, die eine invasive Mykose entwickelten, haben 61,5% die Pilzinfektion während einer 2-3 Wochen anhaltenden und 23,1% während einer bis 14 Tage anhaltenden neutropenischen Phase akquiriert. Nur 15,4% fanden sich innerhalb der Patientengruppe mit einer Neutropeniedauer über 4 Wochen. Die Entwicklung einer invasiven Pilzinfektion fand im Mittel nach 9,77 Tagen mit einer Range von 1 bis 16 Tagen statt.
Tab. 17: Zusammenfassung Ergebnisse: Patientencharakteristika, Prophylaxe, Begleitmedikation, Verlaufsbeurteilung, Verträglichkeit und klinisches Outcome unter ABLC

<table>
<thead>
<tr>
<th>Antimykotische Prophylaxe vor ABLC</th>
<th>(60)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Itraconazol</td>
<td>37</td>
<td>61,7</td>
</tr>
<tr>
<td>Voriconazol</td>
<td>5</td>
<td>8,3</td>
</tr>
<tr>
<td>Posaconazol</td>
<td>8</td>
<td>13,3</td>
</tr>
<tr>
<td>Keine</td>
<td>10</td>
<td>16,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer ABLC in Tagen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6</td>
<td>43</td>
<td>41,8</td>
</tr>
<tr>
<td>7-11</td>
<td>25</td>
<td>24,3</td>
</tr>
<tr>
<td>12-16</td>
<td>23</td>
<td>22,3</td>
</tr>
<tr>
<td>17-21</td>
<td>8</td>
<td>7,8</td>
</tr>
<tr>
<td>22-26</td>
<td>2</td>
<td>1,9</td>
</tr>
<tr>
<td>27-31</td>
<td>2</td>
<td>1,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prämedikation</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td>10</td>
<td>9,7</td>
</tr>
<tr>
<td>Nur Antihistaminikum</td>
<td>77</td>
<td>74,8</td>
</tr>
<tr>
<td>PCM + Antihistaminikum</td>
<td>16</td>
<td>15,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umstellungsgrund auf ABLC</th>
<th>(60)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucositis, Nausea/Emesis</td>
<td>42</td>
<td>70,0</td>
</tr>
<tr>
<td>Unverträglich Azol</td>
<td>5</td>
<td>8,4</td>
</tr>
<tr>
<td>Hepatotoxische Begleitmedikation</td>
<td>1</td>
<td>1,7</td>
</tr>
<tr>
<td>Medikamentenspiegel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unzureichend</td>
<td>1</td>
<td>1,7</td>
</tr>
<tr>
<td>Grund unbekannt</td>
<td>1</td>
<td>1,7</td>
</tr>
<tr>
<td>Keine vorherige Prophylaxe</td>
<td>10</td>
<td>16,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neutropeniedauer in d</th>
<th>(60)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>8-14</td>
<td>27</td>
<td>45</td>
</tr>
<tr>
<td>15-21</td>
<td>23</td>
<td>38,3</td>
</tr>
<tr>
<td>22-28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29-35</td>
<td>2</td>
<td>3,3</td>
</tr>
<tr>
<td>36-42</td>
<td>1</td>
<td>1,7</td>
</tr>
<tr>
<td>in Neutropenie verstorben</td>
<td>1</td>
<td>1,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anzahl nephrotoxische Medikamente</th>
<th>(60)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4</td>
<td>33</td>
<td>55</td>
</tr>
<tr>
<td>5-6</td>
<td>27</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter in Jahren bei Stammzelltransplantation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(103)</td>
<td>(60)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48,65</td>
<td>47,28</td>
<td>12,95</td>
<td>18-72</td>
<td></td>
</tr>
<tr>
<td>13,14</td>
<td>48</td>
<td>18-70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>Mittelwert</td>
<td>Standardabweichung</td>
<td>Median</td>
<td>Range</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Dauer antimykotische Prophylaxe vor ABLC in Tagen</td>
<td>(60)</td>
<td>6,35</td>
<td>4,85</td>
<td>6,5</td>
</tr>
<tr>
<td>Dauer ABLC in Tagen</td>
<td>(103)</td>
<td>9,18</td>
<td>6,47</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(60)</td>
<td>13,53</td>
<td>4,96</td>
<td>12</td>
</tr>
<tr>
<td>Neutropeniedauer in Tagen</td>
<td>(60)</td>
<td>14,1</td>
<td>5,8</td>
<td>14</td>
</tr>
</tbody>
</table>

Clinical Outcome

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Prozentzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antwort auf Prophylaxe</td>
<td>(103)</td>
</tr>
<tr>
<td>Keine Umstellung</td>
<td>24</td>
</tr>
<tr>
<td>Umstellung wegen Unverträglichkeit</td>
<td>79</td>
</tr>
</tbody>
</table>

Unverträglichkeitsreaktion	(103)	
Keine	71	68,9%
Fieber u/o Schüttelfrost	22	21,4%
Andere UAW	5	4,9%
Unklar/keine Angabe	5	4,9%

IFI (nach EORTC 2008)	(60)	
Keine	47	78,3%
Possible	7	11,7%
Probable	4	6,7%
Proven	2	3,3%

Umstellungsgrund auf Therapie	(60)	
Keine Umstellung	40	66,7%
Empirisch	7	11,7%
TCT	9	15%
Antigennachweis	0	0%
Blutkultur	3	5%
Keine Angabe	1	1,7%

Antimykotika nach ABLC	(103)(%)	(60)(%)	(43)(%)
Orale Prophylaxe (Azol)	45 (43,3)	38 (63,3)	7 (16,3)
i.v. Prophylaxe (AmBisome®)	23 (22,1)	4 (6,7)	19 (44,2)
Therapie (Caspofungin)	33 (31,7)	17 (28,3)	16 (37,2)
Keine Angabe	2 (1,9)	1 (1,7)	1 (2,3)

<p>| Kreatinin nach Bearman | (60) |
| Im Normbereich | 33 | 55% |
| Anstieg bis zu 2fachem Ausgangswert | 11 | 18,3% |
| Anstieg über 2fachen Ausgangswert | 14 | 23,3% |
| Dialysepflichtig | 1 | 1,7% |
| Unverändert pathologisch | 1 | 1,7% |</p>
<table>
<thead>
<tr>
<th>Clinical Outcome</th>
<th>Anzahl</th>
<th>Prozentzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreatininveränderungen unter ABLC bei Werten im Normbereich</td>
<td>(33/60)</td>
<td></td>
</tr>
<tr>
<td>In Norm gleich geblieben</td>
<td>15</td>
<td>45,5%</td>
</tr>
<tr>
<td>Ab 0,3mg/dl Anstieg</td>
<td>14</td>
<td>42,4%</td>
</tr>
<tr>
<td>mindestens Verdopplung des Ausgangswertes</td>
<td>4</td>
<td>12,1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer bis IFI (d)</td>
<td>9,77</td>
<td>4,05</td>
<td>10</td>
<td>1-16</td>
</tr>
</tbody>
</table>
5 Diskussion

5.1 Toxizität von ABLC

5.1.1 Akute Toxizität

In der vorliegenden Erhebung entwickelten 23% der Patienten eine Unverträglichkeitsreaktion, die sich in 92% in Form von Fieber und/oder Schüttelfrost zeigte. Leider gibt es in der Referenzliteratur kaum Angaben über die prozentualen Anteile der Unverträglichkeitsreaktionen mit Fieber und/oder Schüttelfrost. In der Regel werden die akuten Unverträglichkeitsreaktionen zusammengefasst beschrieben bzw. ausgewertet.

Die Umstellung auf ein alternatives antifungales Prophylaktikum bei dokumentierter Unverträglichkeit erfolgte nach Einschätzung der behandelnden Ärzte aufgrund der Angaben und klinischen Befunde der betroffenen Patienten. In einigen Fällen ist die Umstellung rückblickend nicht sicher auf eine Unverträglichkeitsreaktion durch ABLC zurückzuführen, da die wenigsten Fieberreaktionen im klinischen Alltag sicher einem auslösenden Faktor zugerechnet werden können.

In einem Fall ist nach der zwölften ABLC Infusion eine schwere allergische Reaktion aufgetreten. Am selben Tag wurden allerdings auch ATG verabreicht.
und der Verdacht auf eine ZVK-Infektion und eine bakterielle Pneumonie im thorakalen CT gestellt, so dass nicht sicher entschieden werden kann, welcher Arzneistoff bzw. welche Infektion diese Reaktionen verursacht hat.

Deutlich wird durch diese Einzelfälle, dass die Erhebung von Nebenwirkungen durch die täglichen Berichte der Patienten und des Pflegepersonals und die Beurteilung der Ärzte ohne standardisierte Einteilung (z.B. Common Toxicity Criteria [123]) zu uneindeutigen Einschätzungen führen kann, die dann die Ergebnisse von retrospektiven Untersuchungen negativ beeinflussen. Wenn man die oben beschriebenen Ereignisse nicht als akute Toxizitätsfälle einstuft und die Durchschnittswerte neu ermittelt, reduziert sich der Anteil an Unverträglichkeitsreaktionen auf 18,5%.

In einer weiteren Studie von Mattiuzzi et al. [117], die die Prophylaxe von invasiven Pilzinfektionen durch ABLC und L-AmB in einer Dosierung von 2,5mg/kg bzw. 3mg/kg dreimal pro Woche vergleich, traten Grad 3-4 infusionsbedingte Nebenwirkungen unter ABLC bei nur 4% der Patienten auf. Allerdings sind 18% (n=131) der Patienten aus der Studie ausgeschieden, weil Nebenwirkungen aufgetreten sind, die vermutlich durch die Infusion von ABLC ausgelöst wurden. Bei L-AmB waren es 15% (n=70) Studienabbrcher.
Es sind keine statistisch signifikanten Unterschiede in der Häufigkeit der Grad 3 und 4 Infusionsreaktionsreaktionen zwischen ABLC und L-AmB festzustellen [117]. Unter L-AmB Prophylaxe in einer Dosierung von 2mg/kg dreimal wöchentlich verabreicht im Rahmen von autologen und allogenoten Knochenmarktransplantationen untersucht von Kelsey et al. [125], entwickelten nur 5 von 74 Patienten (6,8%) eine starke Infusionsreaktion, so dass auf Alternativpräparate umgestellt wurde. Insgesamt entwickelten 45,5% der Patienten dieser Studie Fieber als Nebenwirkung, also deutlich mehr als in der vorliegenden Erhebung. In einer prospektiven Studie von Wingard et al. [104], in der die Sicherheit von L-AmB und ABLC während der antimykotischen Therapie (5mg/kg/d) bei neutropenischen Patienten ohne Prämedikationen verglichen wird, haben am ersten Tag der Gabe ohne Prämedikation 23,5% der L-AmB- im Gegensatz zu 79,5% der ABLC Patienten und an den Tagen 2 bis 5, an denen eine Prämedikation zulässig war, 24,3% der L-AmB- und 50,7% der ABLC Patienten mit Schüttelfrost reagiert. Mindestens ein Grad Temperaturanstieg war bei den ABLC Patienten im Gegensatz zu den L-AmB Patienten auch häufiger zu verzeichnen (19,8% und 28,4% unter L-AmB und 57,7% und 45,1% unter ABLC). Auffällig an diesen Daten ist, dass bei L-AmB die betrachteten Nebenwirkungen im Verlauf der ersten Tage in der Häufigkeit eher zunehmen, während sie bei ABLC abnehmen. Auch von anderen Autoren wird berichtet, dass die Verträglichkeit von ABLC nach einigen Infusionen deutlich zunimmt [13, 88].

5.1.1.1 Effektivität der Prämedikation

In der Literatur findet man keine Studien, die die Wirksamkeit von Prämedikationen in Bezug auf die Verträglichkeit von Amphotericin B Formulierungen nachweisen [91, 92]. Die Betrachtung der 3 Untergruppen von Patienten die entweder nur ein Antihistaminikum, ein Antihistaminikum plus Paracetamol oder keine Prämedikation erhalten haben (s. Kap. 4.4.1.3.), ergibt, dass nur in 4,8% der Fälle allergische Nebenwirkungen trotz einer Prämedikation mit einem
Diskussion

5.1.1.2 Abweichungen der Ergebnisse der akuten Toxizität zwischen den Jahren 2007 und 2008

Im Rahmen der Datenrecherche ist aufgefallen, dass die Unverträglichkeitsreaktionen auf die ABLC Infusionen im Jahr 2008 im Vergleich zu 2007 stark zugenommen haben (Abb. 15, Kapitel 4.4.1.4). Der Grund für diese Veränderungen der Verträglichkeit bzw. die Häufigkeit der Notwendigkeit für Umstellungen auf andere Pilzprophylaxe-Wirkstoffe konnte bislang nicht geklärt werden. Eine Nachfrage bei der Hersteller- und Bezugsfirma von Abelcet® (Cephalon GmbH, Martinsried) erbrachte keine Hinweise für eine Veränderung der Art der Herstellung oder die Art und die Zusammensetzung der Hilfsstoffe.

5.1.2 Einfluss von ABLC auf die Dauer der Neutropenie

Die durchschnittliche Neutropeniedauer lag bei den untersuchten Patienten bei 14,1 Tagen. Im Vergleich mit Patientengruppen aus Literaturangaben ohne oder mit anderen antimykotischen Prophylaxen ist die durchschnittliche Neutropeniedauer nicht verlängert (17 Tage [107], 19,3 Tage [38], 17-18 Tage [126]) so dass man davon ausgehen kann, dass ABLC keine Verzögerung des Engraftment und kein Graftversagen verursacht [2].

Die Unterteilung der Patientengruppe in Knochenmarks- und periphere Blutstammzelltransplantationsempfänger wurde nicht vorgenommen. In der Regel erfolgt das Engraftment etwas schneller bei KM-SZT als bei PB-SZT Empfängern. Da die Neutropeniephase aber insgesamt nicht verlängert war und
somit diesbezüglich kein Anhalt für toxische Auswirkungen von ABLC gesehen wurde, wurden keine weiteren Untersuchungen vorgenommen.

5.1.3 Ergebnisse zur Nephrotoxizität

5.1.3.1 Nephrotoxische Arzneimittel

In einer Studie von Wingard et al. konnte gezeigt werden, dass gleichzeitig verabreichte nephrotoxische Arzneimittel assoziiert sind mit einer höheren Mortalität [127]. Auch wurde festgestellt, dass die Anzahl dieser zusätzlichen die Ausscheidungsfunktion einschränkenden Wirkstoffe ausschlaggebend für das Outcome der Nierenfunktion ist [115]. Diesen Zusammenhang bestätigen die Daten dieser Arbeit, wenn auch in abgeschwächter Form. Je mehr nephrotoxische Arzneistoffe parallel zu ABLC verabreicht werden, desto höher steigen die durchschnittlichen Serumkreatininwerte, auch wenn die Daten keine Signifikanzen ergeben und somit nicht verallgemeinert werden dürfen. Diese Tendenz zeigt sich auch in der Vergleichsliteratur, allerdings auch hier ohne Signifikanzen bei kleinen Patientenkollektiven [104].

Aus den beschriebenen Daten wird ersichtlich, dass die Veränderungen der Retentionswerte, die sich im Verlauf der ABLC Prophylaxe ergeben, nicht nur auf dieselbige zurückgeführt werden können, sondern immer ein Mischbild aller gleichzeitig ablaufender nephrotoxischer Prozesse darstellen.
Weitere nephrotoxische Risikofaktoren können initial pathologische Nierenwerte (z.B. bei Patienten mit Plasmozytom), Dehydrierung auch durch Diuretika, eine Sepsis, höheres Patientenalter, vorbestehende Arteriosklerose, Diabetes mellitus oder eine Herzensuffizienz sein [88].

5.1.3.2 Serumkreatinin Veränderungen unter ABLC

Leider wurde in der Referenzliteratur nicht mit einem einheitlichen Bewertungsschema der Nierenfunktion im Verlauf der Gabe von potentiell nephrotoxischen Arzneistoffen gearbeitet, so dass Vergleiche mehrerer Studien untereinander wenig aussagekräftig sind. In den meisten Studien wird allerdings die Serumkreatininerdopplung zur Beurteilung herangezogen, so dass mit diesen Werten verglichen werden kann. Die vorliegende Arbeit zeigt eine Verdopplung des Kreatininausgangswertes in einen pathologischen Bereich in 22% der Fälle und einen Anstieg des Serumkreatinins ≥ 2 mg/dl in 6,7% der Fälle. In nur 13% gab es einen status quo, wobei man bedenken muss, dass eine Spannweite von +/- 20-30% des Ausgangswertes physiologisch ist und eine Zunahme des Serum-Kreatinins um 100% oder mehr ein Nierenversagen anzeigt [88].

Es kann also kein zuverlässiger Zusammenhang zwischen der Erhöhung der Retentionswerte und der Dauer der Prophylaxe mit ABLC gezeigt werden.

In der Literatur finden sich unterschiedliche Studienergebnisse bezüglich des Ausmaßes an nephrotoxischen Eigenschaften von ABLC.

Im Vergleich zu konventionellem Ambphotericin B jedoch, darüber besteht Einigkeit unter allen Autoren, kann durch den Einsatz von ABLC oder den beiden anderen Lipidformulierungen die Nephrotoxizität deutlich reduziert werden [13, 89, 90, 91, 92, 115, 128].

Die Frage, ob ABLC und L-AmB eine unterschiedlich ausgeprägte Nephrotoxizität bewirken, wurde in einigen Studien verneint [129, 130, 131], wohingegen in anderen Studien [104, 132] ABLC als nephrotoxischer eingestuft wurde. So haben Wingard et al. [104] in ihrer Studie bei ABLC in therapeutischer Dosierung bei Patienten mit febriler Neutropenie im Vergleich zu liposomalem AmB eine deutlich höhere Inzidenz an nephrotoxischen Reaktionen gezeigt: Kreatininnanstiege über 3mg/dl wurden bei 12,8% der ABLC Patienten in einer Dosierung von 5mg/kg festgestellt gegenüber 1,2 bis 7,1% der L-AmB Patienten, die L-AmB in einer Dosierung von 3mg/kg bzw. 5mg/kg KG erhielten. In dieser Erhebung von Wingard et al. gibt es keine Daten zu niedriger dosiertem ABLC in prophylaktischem Einsatz. Anders als in dem am UKE untersuchten Patientengut wurden in der beschriebenen Studie Kinder ab 2 Jahren in die Untersuchung integriert.
Obwohl weniger Risikofaktoren (Art der Malignomerkrankung, Art der HSZT, Anzahl der nephrotoxischen Begleitmedikationen) in dem Patientenkollektiv der beschriebenen Studie von Wingard et al. vorlagen, sind deutlich schlechtere Ergebnisse für die ABLC Patienten als in der vorliegenden Erhebung zu verzeichnen. Dies liegt vermutlich an der therapeutischen, also 5fach höheren Dosierung. Ein weiterer möglicher Grund für diese Unterschiede könnte die tägliche Serumkreatinin-Überwachung im UKE im Vergleich zu nur 3 Kontrollen pro Woche der genannten Studie sein. Denn bei den HSZT Patienten am UKE konnte auf beginnende Einschränkungen der Nierenfunktion schneller reagiert werden, z.B. durch zusätzliche nephroprotektive Infusionen mit isotoner Natriumchloridlösung [133].

Von den Patienten mit unauffälligen Kreatininausgangswerten in der therapeutischen Studie bei nachgewiesener IFI von Ullmann et al. [134] haben 30,7% der L-AmB Patienten (Dosierung: 2,6 +/- 0,8mg/kg KG) eine Verschlechterung der Nierenfunktion mit mindestens 1,5fach erhöhten Ausgangswerten erfahren. Ein direkter Vergleich mit der vorliegenden Untersuchung ist auch hier nicht möglich durch die verschiedenen Dosierungen und die unterschiedliche Serumkreatininbeurteilung (1,5-fache versus 2-fache Spiegel erhöhung). Auch in der genannten Studie schneiden die ABLC Patienten schlechter ab, dies kann aber nicht anhand von Zahlenwerten dargelegt werden, da die ABLC und die ABCD Patienten zusammen als ein Kollektiv gehandhabt wurden.

Nicht vergessen werden darf bei der Beurteilung von ansteigenden Nierenfunktionparametern, die anhand von Vervielfachungen der Ausgangswerte beurteilt werden, dass eine Vervielfachung eines niedrigen Wertes im Verhältnis viel schneller erreicht wird, als die eines höheren Wertes [115]. Nicht bei allen verglichenen Studien wurden die Vervielfachungen erst dann als nephrotoxisch eingestuft, wenn die erhöhten Werte auch wirklich im pathologischen Referenzbereich lagen. Um dieses Problem in zukünftigen Studien zu umgehen, könnten Differenzen im Serumkreatinin oder in der GFR (berechnet aus der Kreatininclearance (s.o.)) genutzt werden.
Wie in der Prophylaxestudie von Mattiuzzi et al. [117], in der auch keine Grad 3-4 nephrotoxischen Ereignisse eintraten, sind in der vorliegenden Erhebung trotz häufiger Kreatininwerterhöhungen nur wenig wirklich einschränkende Retentionswerte gemessen worden. In der genannten Studie wurden allerdings nur Patienten unter Induktionschemotherapie und keine HSZT Patienten untersucht.

Leider standen zum Vergleich keine weiteren Studien an allogen HSZT Patienten, die eine prophylaktische Amphotericin B Lipid Formulierung erhalten haben, zur Verfügung. Deshalb sind die Vergleiche nur sehr begrenzt verwertbar.

Insgesamt liegt trotz der häufig aufgetretenen Erhöhung der Nierenfunktionsparameter ein gutes Ergebnis vor mit nur einem Patienten, dessen Nierenfunktion sich bis zur Dialysepflichtigkeit verschlechtert hat. Bei diesem Patienten handelte es sich um einen Mann, der an einem Lymphom im Rahmen einer fortgeschrittenen AIDS-Erkrankung litt und die Niereninsuffizienz während eines Multiorganversagens bei schwerer nicht fungaler Infektion entwickelte.

In der folgenden Tabelle sind Vergleichsstudien zur Ermittlung der Nephrotoxizität von ABLC und anderen Amphotericin B Formulierungen zusammengefasst:
Tab. 18: Zusammenfassung der Literaturergebnisse zur Nephrotoxizität

<table>
<thead>
<tr>
<th>Studie</th>
<th>Patientenkollektiv</th>
<th>Dosierung</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>[131] Miller et al.</td>
<td>Therapie von IFI bei autologen und allogenen HSZT Patienten,</td>
<td>3,77 +/- 2,69 mg/kg/d für L-AmB, 4,76 +/- 1,42 mg/gl/d für ABLC</td>
<td>Nephrotoxizität, definiert als Kreatininanstieg > 2,5mg/dl oder Verdopplung des Ausgangswertes, wurde in 41,2% unter ABLC und in 44,4% unter L-AmB gemessen</td>
</tr>
<tr>
<td></td>
<td>retrospektiver Vergleich von cAmB mit Lipidformulierungen, Multicenterstudie,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kreatinin Bestimmung nur 2x wöchentlich, 34 ABLC Pat. zeigten initial schon erhöhtes Kreatinin, mind. 50% zusätzlich mind. 1 nephrotox. Wirkstoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[104] Wingard et al.</td>
<td>Neutropenische Patienten ab 2 Jahren mit FUO und einer vermuteten IFI und einem</td>
<td>ABLC 5mg/kg/d L-AmB 3 oder 5 mg/kg/d</td>
<td>Signifikant weniger Nephrotoxizität unter L-AmB unabhängig von Alter, Behandlungsmethode und Immunsuppression. Krea >3 mg/dl in 7,1% der 3mg/kg/d L-AmB Patienten, 1,2% der 5mg/dl/d L-AmB Patienten und 12,8% der ABLC Patienten. Nicht signifikanter Trend zu stärkerer nephrotoxischer Reaktion in der Tacrolimus/CsA Gruppe</td>
</tr>
<tr>
<td></td>
<td>Kreatinin unter 3mg/dl, 49% autologe und allogene HSZT, 51% Malignome, MDS,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>andere Erkrankungen, 14% Gabe von Tacrolimus/Cyclosporin A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[115] Alexander und Wingard</td>
<td>Retrospektive Multicenterstudie, 3514 allogene und autologue HSZT Pat., die</td>
<td>Mittlere Dosis von 4,4mg/kg/d (0,2-10mg/kg/d) über eine Dauer von 12 Tagen (1-378 d)</td>
<td>Verdoppelter Kreatinin in 13%, 12% >= 2,5mg/dl, Dialyse 3%, verdoppeltes Kreatinin bei allogenen HSZT 17%, besseres Outcome bei Pat. unter 18J., Zahl der nephrotox. Arzneimittel ausschlaggebend, nicht der Wirkstoff.</td>
</tr>
<tr>
<td></td>
<td>ABLC bei einer IFI erhielten, Clearance und Serum-Kreatinin-Bestimmung zu Beginn und zum Ende der Untersuchung, verdoppeltes Krea od. >=2,5mg/dl wurden unterschieden als nephrotox. Reaktion.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.1.3.3 Eingeschränkte Kreatininausgangswerte

Zu der Frage, ob ABLC als antimykotische Prophylaxe bei Patienten, die zum Zeitpunkt des Prophylaxebeginns schon erhöhte Retentionswerte aufweisen, nicht eingesetzt werden sollte, kann aus der vorliegenden Erhebung keine statistisch sinnvolle Aussage gemacht werden, da sich nur ein Patient mit initial pathologischem Serumkreatininvwert in der Untersuchungsgruppe befand. Bei diesem Fall hat sich die Nierenfunktion unter ABLC nicht weiter verschlechtert. Es ist möglich und sogar wahrscheinlich, dass bei Stammzelltrans-
plantationspatienten mit erhöhten Retentionswerten trotz notwendiger
intravenöser Prophylaxe kein ABLC eingesetzt wurde, um keine weitere
Verschlechterung der Nierenfunktion zu riskieren. Diese Patienten sind dann
aufgrund der beschriebenen Vorauswahl nicht in die Untersuchungsgruppe
integriert worden.

In einer prospektiven Studie von Ullmann et al [134] zur Untersuchung aller
Amphotericin B Präparate in der Therapie von invasiven Pilzinfektionen wurde
gezeigt, dass sich bei den Patienten, die L-AmB erhalten haben und bereits
zum Therapiestart eingeschränkte Nierenfunktionsparameter aufwiesen, nur bei
einem von 11 Patienten diese Nierenretentionswerte weiter verschlechterten.

5.1.3.4 Vergleich von Altersgruppen bzgl. der Nierenfunktion

Die Überlegung, älteren Patienten mit einer möglicherweise schlechteren
Kompensationsfähigkeit der Nierenfunktion ABLC wegen der nephrotoxischen
Komponente nicht zu verabreichen, kann bezüglich des untersuchten
Patientenkollektivs nicht unterstützt werden. Es hat sich kein Hinweis für eine
Korrelation von höheren maximalen Kreatininwerten und dem Patientenalter
gezeigt.

In der retrospektiven Studie von Alexander und Wingard zeigte sich an 3514
untersuchten Patienten, die ABLC als antymykotische Therapie in einer
medianen Dosierung von 4,4mg/kg KG erhalten haben, dass Patienten unter 18
Jahren im Vergleich zu den Patienten ab 18 Jahren in Bezug auf die
Nephrotoxizität (Kreatinin zum Ende der Therapie und Kreatininanstieg über 2,5
mg/dl) im Vorteil sind. Weitere Unterteilungen von Altergruppen wurden nicht
vorgenommen [115]. In einer anderen Studie fanden Wingard et al. einen
allerdings bei kleinen Fallzahlen nicht signifikanten Zusammenhang zwischen
höherem Alter und höheren Serumkreatinin-Peaks [104].

Zur Klärung der Frage nach dem Einfluss des Alters auf die Nierenfunktion im
Verlauf der ABLC Prophylaxe oder Therapie sollten also noch weitere Studien
mit größeren Patientenzahlen durchgeführt werden.
5.1.4 Toxizität im Vergleich mit Antimykotika anderer Wirkstoffgruppen

In einer Prophylaxestudie bei HSZT Patienten (117 von 123 Studienteilnehmern wurden allogen transplantiert) sind unter Caspofungin mit einer durchschnittlichen Prophylaxedauer von 73 Tagen keine UAW aufgetreten [135]. Die UAW von Micafungin zeigten sich in einer prospektiven, nicht randomisierten Prophylaxestudie bei allogen HSZT Patienten ebenfalls als eher gering ausgeprägt, denn nur bei einem von 41 Patienten trat ein allergischer Hautausschlag auf, der zur Umstellung auf eine andere Substanz führte [136].

In einer weiteren Studie von van Burik et al. [137], in der die Prophylaxebehandlungen von allogen und autologen/syngenen HSZT Patienten mit Micafungin und Fluconazol einander gegenüber gestellt werden, kam es in 4,2% der Micafungin und in 7,2% der Fluconazol-Prophylaxen zu Arzneistoffumstellungen wegen Unverträglichkeitsreaktionen. Die UAW zeigten sich u.a. als Infusionsreaktionen in 0,5 bzw. 0,9%, als allergische Reaktionen in 3,5 bzw. 3,7% und als Hypokaliämie in 1,9 bzw. 1,8% der Fälle.

Cornely et al. [138] haben in einer Studien mit 602 nicht-HSZT Patienten, die im Rahmen der Chemotherapie bei AML eine Neutropenie entwickelt hatten, unter Posaconazol-Prophylaxe 6% und unter Itraconazol- oder Fluconazol-Prophylaxe 2% schwere UAW verzeichnet, die im Wesentlichen aus gastrointestinalen, z.T. auch aus cardialen Nebenwirkungen bestanden. Die Prophylaxe wurde überwiegend oral verabreicht.

Auch in weiteren Studien konnte dokumentiert werden, dass unter Itraconazol im Vergleich mit Fluconazol die Rate der UAW höher ist [139].

Einen Vergleich zwischen oral verabreichten Posaconazol- und Fluconazol-Prophylaxen führten Ullmann et al. [140] bei Patienten mit schwerer GvHD durch. Die randomisierte, doppelblinde Studie erbrachte 13% schwere UAW bei Posaconazol gegenüber 10% bei Fluconazol.

In einer randomisierten Studie bei Patienten unter Induktionschemotherapie von Mattiuzzi et al. [141] zeigten sich unter Caspofungin und Itraconazol als wesentliche UAW reversible Hyperbilirubinämien (Grad 3-4 adverse events) mit
einer ansonsten guten Verträglichkeit. 7% der Patienten beider Wirkstoffgruppen mussten wegen UAW auf andere Prophylaxen umgestellt werden.

5.1.5 Fazit Toxizität

Zusammenfassend lässt sich festhalten, dass die akuten Infusionsreaktionen von ABLC in der vorliegenden Untersuchung zwar recht häufig auftreten und im Vergleich mit Literaturangaben über L-AmB z.T. auch schlechter abschneiden, dass die Datenlage aber insgesamt nicht eindeutig ist und weitere Studien insbesondere mit größeren Patientenkollektiven und über längere Zeiträume erforderlich sind, um die akute Toxizität richtig einschätzen zu können. Die Intensität der Reaktionen scheint im Vergleich mit anderen Erhebungen eher weniger stark auszufallen.

Häufigkeit und Ausmaß der Nephrotoxizität ist im Studienvergleich gering. Die Gründe dafür sind am wahrscheinlichsten die höheren Dosierungen der Lipidformulierungen im therapeutischen im Vergleich zum prophylaktischen Gebrauch.

Allerdings stehen mit den Azolen und Echinocandinen andere Wirkstoffgruppen zur Verfügung, die UAW in geringerem Ausmaß hervorrufen. Es existiert kein direkter Vergleich von ABLC mit Azolen oder Echinocandinen, so dass dies nicht direkt belegt werden kann. In den zitierten Studien zeigen diese Substanzen jedoch alle eine relativ gute Verträglichkeit, so dass sie, auch wegen der nicht eindeutigen Studienlage, eher empfohlen werden als ABLC oder andere AmB Formulierungen [142].

In der vorliegenden Arbeit wurden aus einem großen Patientenpool von HSZT Patienten nur die ausgewählt, die eine intravenöse Prophylaxe erhielten, weil

Für die Entscheidung, welches Antimykotikum im individuellen Fall eingesetzt wird, sollte die Ausgangssituation der laborchemischen Leber- und Nierenparameter mit einzubezogen werden.

5.2 Wirksamkeit von ABLC

5.2.1 Beurteilung der Ergebnisse im Vergleich mit Literaturdaten

Leider existieren keine Ergebnisse von retrospektiven Untersuchungen einer antimykotischen Prophylaxe durch Amphotericin B Lipidformulierungen bei allogenen HSZT Patienten, so dass zum Vergleich auf Studien mit anderem Design ausgewichen werden muss.

Insgesamt haben 13 Patienten (21,7%) dieser Erhebung die Kriterien einer IFI erfüllt, darunter 2 (3,3%) gesicherte Fälle, 4 (6,7%) wahrscheinliche und 7 (11,7%) mögliche. Bei 20 von 60 Patienten der Subgruppe zur Wirksamkeitsprüfung, also 33,3%, wurde auf eine antifungale Therapie mit Caspofungin eskaliert. Das bedeutet, dass 7 von 60 Patienten, 11,7%, mit einer antifungalen Therapie behandelt wurden, obwohl nach den EORTC/MSG Kriterien keine IFI vorlag.

In der Studie von Mattiuzzi et al. [117], in der 131 neutropenische Patienten eine ABLC Prophylaxe in einer Dosierung von 2,5mg/kg 3x/Woche bei neu diagnostizierter akuter myeloischer Leukämie oder myelodysplastischem Syndrom unter Induktionschemotherapie (nicht-HSZT) erhielten, haben 49% die Prophylaxe regulär fortgesetzt. In 5% wurde eine „documented“ IFI
diagnostiziert, davon 4x pulmonale Aspergillose und 2x disseminierte Fusarium-Infektionen. „Suspected“ IFI wurden in 21% bei FUO und in 7% bei Pneumonien unbekannter Erreger (Pneumonia of unknown pathogen, PUP) festgestellt. In 28% der Fälle erfolgte eine antymykotische Eskalationstherapie bei Fieber und/oder Pneumonie.

In einer weiteren Prophylaxestudie von Mattiuzzi et al. [124], in der L-AmB wiederum bei AML und MDS Patienten während Hochdosis-induktionschemotherapien untersucht wurde, haben ebenfalls 49% die Prophylaxe regulär beendet.

In 31% erfolgte eine Therapieeskalation bei FUO oder PUP, in 4% traten „documented“ IFI auf, darunter aber auch Hautmanifestationen, so dass die „documented“ IFI, wie oben erwähnt, nicht mit gesicherten (proven) IFI nach EORTC/MSG 1:1 verglichen werden dürfen. In dieser Studie wurde L-AmB mit 3mg/kg 3x pro Woche bis zum Ende der neutropenen Phase verabreicht.

Eine europäische randomisierte, doppeltverblindete, placebokontrollierte Studie von Kelsey et al. [83], in der 74 allogene und autologe SZT-Patienten eine Pilzprophylaxe mit L-AmB im Rahmen von hämatonkologischen Erkrankungen erhalten haben, hat 42% „suspected“ und 28,3% „suspected deep seated“ IFI ergeben. Gesicherte IFI wurden nicht gefunden. 36% der Patienten konnten ihre Prophylaxe regulär beenden. Die Prophylaxe mit L-AmB wurde 3x wöchentlich mit 2mg/kg Körpergewicht verabreicht. Wenn ein Patient über 37,5°C Temperatur über 96 Stunden ohne ein Ansprechen auf eine breite antibiotische Eskalation oder klinische Zeichen einer IFI zeigte, wurde unter dem Verdacht einer IFI (suspected IFI) das antymykotische Regime eskaliert (Nach der aktuellen EORTC/MSG Ausgabe kein Kriterium, noch nicht mal ein Unterkriterium für IFI). Unklar bleibt, welche klinischen Zeichen der Autor gemeint hat, die typisch für eine invasive Mykose sein sollen.

In dieser Studie wurde die mykotische Kolonisation mitbeurteilt. Es hat sich gezeigt, dass L-AmB die Häufigkeit der Kolonisation reduziert. Dieser Aspekt ist interessant, insbesondere vor dem Hintergrund, dass die überwiegende Zahl
der invasiven Candidamykosen auf der Basis einer vorbestehenden Besiedelung der Schleimhäute auftritt. Nur ein ganz geringer Prozentsatz wird durch unzureichende hygienische Bedingungen übertragen [143].

In einer randomisierten, doppeltverblindeten placebokontrollierten Studie von Tollemar et al. aus dem Jahr 1993 [144], in der bei autologen und allogen KMT Patienten L-AmB in einer Dosierung von 1 mg/kgKG/Tag als Prophylaxe eingesetzt wurde, haben 3% (im Gegensatz zur Placebogruppe (8%)) eine invasive Mykose entwickelt (unteilt in vermutete und gesicherte IFI).

Wolff et al. [145] haben in einer randomisierten, unverblindeten Studie niedrig dosiertes konventionelles Amphotericin B (0,2 mg/kg/Tag) als Prophylaktikum bei allogen und autogen Knochenmarktransplantationen untersucht. Gesicherte IFI, definiert nach den alten EORTC Kriterien, sind in 7,5% der Fälle bzw. bei 14,3% der allogen Transplantationen aufgetreten. 57,9% haben die Prophylaxe nicht beendet.

Weitere Studien bestätigen die Inzidenz von „documented“ IFI bei AML-Patienten unter antifungaler Prophylaxe zwischen 1-4% [146, 147] während die Prozentzahl bei einem Kollektiv von Stammzelltransplantierten auf 3-6% steigt [144, 148].

Der Vergleich mit diesen prospektiven Studien deutet darauf hin, dass die Wirksamkeit der ABLC Prophylaxe, sofern diese Daten aufgrund der verschiedenen Ausgangsbedingungen und IFI Kriterien überhaupt vergleichbar sind, nicht schlechter und mit den Ergebnissen der Literaturdaten vergleichbar ist.

Die Ergebnisse von 2 weiteren randomisierten, doppelblind, placebokontrollierten klinischen Untersuchungen, die niedrig dosiertes cAmB und L-AmB als Pilzprophylaxe bei HSCT Patienten verglichen haben, ergeben ebenfalls, dass beide Arzneistoffe vermutete und gesicherte invasive
Pilzinfektionen ähnlich gut verhindern können [149, 150].
Es wurde auch gezeigt, dass ABLC und L-AmB gleich wirksam in der Behandlung von vermuteten und gesicherten IFI sind, aber bislang ist nur bei L-AmB eine Zulassung bezüglich der Prophylaxe erfolgt ist [124, 129].

Im Rahmen der Literatur-Internetrecherche wurde keine Humanstudie, die die antifungale Prophylaxe mit ABLC mit einem Azol oder Echinocandin vergleicht, gefunden. Es existiert eine Studie, in der an Mäusen die Therapie von ABLC mit der von Fluconazol verglichen wird. Hier schneidet ABLC besser ab [151].
In einer prospektiven, randomisierten, unverblindeten Studie von Wolff et al. [145], in der niedrig dosiertes cAmB mit Fluconazol als antimykotische Prophylaxe bei allogenen Stammzelltransplantationen verglichen wurde, traten bei 9,1% der Fluconazol und bei 14,3% der cAmB Patienten gesicherte IFI auf.
Eine weitere Studie, die Fluconazol mit niedrig dosiertem cAmB bei HSZT vergleicht [152], zeigt gleiche Ergebnisse bezüglich der Wirksamkeit beider Antimykotika.

Direkte Vergleichsmöglichkeiten mit den Daten der vorliegenden Erhebung bestehen nicht, weil der Beobachtungszeitraum der Patientenkollektive und die Bestimmungskriterien für IFI so stark voneinander abweichen (Tab. 20).

In der Studie von Mattiuzzi et al. [117] wurde ein Zusammenhang zwischen der Prophylaxedauer, also der Neutropeniedauer, denn die Prophylaxe wurde nur bis zum sicheren Neutropenieende verabreicht, und der Wahrscheinlichkeit einer IFI-Entwicklung unabhängig von der Einteilung in die ABLC oder L-AmB Gruppe gesehen.

In der vorliegenden Untersuchung lässt sich dieser Zusammenhang zwischen Neutropeniedauer und Wahrscheinlichkeit einer IFI-Entwicklung statistisch signifikant nachweisen.

Überleben nachgewiesen werden. Da die Patienten der vorliegenden Untersuchung alle nach der ABLC-Gabe noch für längere Zeit, aber mindestens bis Tag +100, ein Azol erhalten haben, fallen sie somit in die Kategorie der Patienten mit einem besseren Outcome. Dieses Überleben kann natürlich nicht auf die ABLC-Prophylaxe allein bzw. wenn überhaupt nur zu einem geringen Prozentsatz auf diese bezogen werden, sondern nur auf die Gesamtprophylaxe während des gefährdeten Zeitraumes. Für eine Erörterung des Überlebens in Beziehung zur antimykotischen Prophylaxe ist eine erneute Untersuchung erforderlich.

Als mögliche Variable, die zu unterschiedlichen Ergebnissen der Wirksamkeit von antimykotischen Prophylaxen führt, sollte an die nicht medikamentöse

Tab. 19: Prophylaxe-Studien von Amphotericin B Lipidformulierungen im Vergleich

<table>
<thead>
<tr>
<th>Studie</th>
<th>Patientenkollektiv / Beobachtungszeitraum / IFI Definition</th>
<th>Dosierung der Prophylaxe</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mattiuzzi et al. [117]</td>
<td>AML und MDS Patienten unter Induktionschemo-therapie, keine HSZT Patienten/ Beobachtung bis 4 Wo. nach Prophylaxe/ documented IFI durch Pilznachweis im Blut oder Gewebe, suspected IFI durch Fieber >72h und klin. Zeichen ohne bakteriellen Nachweis, kategorisiert in PUP oder FUO</td>
<td>3x/Woche 2,5mg/kg</td>
<td>Wirksamkeit ähnlich P=0,95 131 ABLC vs. 70 L-AmB, je 49% keine IFI, documented IFI 5% vs. 4%;</td>
</tr>
</tbody>
</table>
Diskussion

<table>
<thead>
<tr>
<th>Studie</th>
<th>Patientenkollektiv / Beobachtungszeitraum / IFI Definition</th>
<th>Dosierung der Prophylaxe</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mattiuzzi et al. [124] L-AmB vs. Flu + Itra</td>
<td>AML und MDS Patienten unter Induktionschemo-therapie, keine HSZT/ bis 2 Tage nach Engraftment/ alte Kriterien, possible in PUP und FUO eingeteilt</td>
<td>3x/Woche 3mg/kg</td>
<td>49% Prophylaxe regulär beendet, 31% Therapie-escalation bei FUO od. PUP, 4% documented IFI, (auch Haut-infektion, Cellulitis)</td>
</tr>
<tr>
<td>Kelsey et al. [83] doppellblind, placebokontrolliert, randomisiert</td>
<td>Chemotherapie od. autolog. und allogene KMT, 74 L-AmB/ Prophylaxe von Beginn Chemoth. bis Neutrophilen-erholung oder IFI/ proven: mikrobiologische Identifikation des Pathogens mit klinischem oder radiologischem Anhalt (keine Histo), suspected: Fieber > 37,5°C über 96h ohne Reaktion auf Antibiose oder klinische Zeichen, die typisch für eine IFI sind, Kolonisa- tion und oberflächliche Mykosen wurden bewertet</td>
<td>3x/Woche 2mg/kg</td>
<td>42% suspected, 28,3% suspected deep seated inf., keine proven IFI</td>
</tr>
<tr>
<td>Tollemar et al. [144] L-AmB</td>
<td>Autologe und allogene KMT Patienten (6:30), Prophylaxe ab Neutropenie <500/µl bis Engraftment, max. 3 Monate, gesicherte IFI: kulturell oder mikroskopisch; vermutete IFI: therapierefraktäres Fieber, Kolonisation, pos. Serologie/AG, Bronchoskopieergebnis</td>
<td>1mg/kg/d, keine Prämedikation</td>
<td>reduzierte IFI (3%) vs Placebo (8%) ohne statistische Signifikanz bei kleiner Prüfgruppe</td>
</tr>
</tbody>
</table>

Tab. 20: Prophylaxe Studien anderer Wirkstoffgruppen bei allogenem HSZT Patienten

<table>
<thead>
<tr>
<th>Studie</th>
<th>Patientenkollektiv / IFI Definition</th>
<th>Wirkstoff / Beobachtungszeitraum</th>
<th>Ergebnis</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marr [159] randomisiert</td>
<td>Allogene HSZT, n=304, wahrscheinliche undgesicherte IFI nach EORTC 2002 [113]</td>
<td>Itraconazol, Fluconazol, bis Tag +180</td>
<td>Itra < Flu, 5% vs 12% Schimmelpilz Infektionen, Hefen etwa gleich häufig</td>
<td>Keine genaue IFI Angabe</td>
</tr>
<tr>
<td>Studie</td>
<td>Patientenkollektiv / IFI Definition</td>
<td>Wirkstoff / Beobachtungszeitraum</td>
<td>Ergebnis</td>
<td>Anmerkung</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>----------------------------------</td>
<td>---------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Wingard [155]</td>
<td>Allogene HSZT, n=600</td>
<td>Fluconazol, Voriconazol, bis 6 Monate nach HSZT</td>
<td>Flu: 10,6%, Vori: 6,6% IFI</td>
<td>Nur Abstract</td>
</tr>
<tr>
<td>Trifilio [33]</td>
<td>Allogene HSZT, n=71, keine EORTC Kriterien</td>
<td>Voriconazole, max. 956 Tage</td>
<td>14% gesicherte IFI</td>
<td>Nur gesicherte IFI</td>
</tr>
<tr>
<td>Chou [135]</td>
<td>HSZT, 95% allogen, n=123, EORTC 2002 Kriterien [113]</td>
<td>Caspofungin, bis Tag +100</td>
<td>7,3% IFI, Median 63 d bis IFI</td>
<td></td>
</tr>
<tr>
<td>Hashino [136]</td>
<td>Allogene HSZT, n=44 Mica vs. n=29 Flu</td>
<td>Micafungin, Fluconazol, bis Tag 36 bzw. 34 nach TX</td>
<td>Mica: 12,2% possible IFI, no probable oder proven IFI Flu: 34,5% IFI</td>
<td>Nur Abstract</td>
</tr>
<tr>
<td>Goodman [148]</td>
<td>Autologe und allogene KMT, n=179, keine EORTC Kriterien</td>
<td>Fluconazol, Prophylaxe bis Engraftment, Beobachtung bis 14 Tage nach Prophylaxe</td>
<td>2,8% IFI</td>
<td>Keine Angabe, wie viele allogene KMT</td>
</tr>
<tr>
<td>Slavin [19]</td>
<td>HSZT, 88% allogen, n=152, keine EORTC Kriterien</td>
<td>Fluconazol, bis 75 Tage nach TX</td>
<td>7% IFI</td>
<td></td>
</tr>
</tbody>
</table>

5.2.2 Fazit Wirksamkeit

Vermutlich haben Unterschiede im Studiendesign, in den Patientencharakteristika, im zytotoxischen Regime, bei den Dosierungen der Antimykotika, in der Dauer der neutropenischen Phasen und verschiedene Resistenzlagen in bisherigen Studien zu sehr unterschiedlichen Ergebnissen in der Wirksamkeit von Pilzprophylaxen geführt [38, 83, 147].
Es sollte dafür gesorgt werden, dass weitere Studien nach identischen Kriterien ausgewertet werden, um sie vergleichbar zu machen. Kriterien zur Kategorisierung liegen sowohl für invasive Mykosen als auch für Nebenwirkungen vor [112, 123]. Wenn die diagnostische Entwicklung voran schreitet, wird es natürlich immer wieder Ergänzungen und Veränderungen der Kriterien geben müssen, z.B. wird dies der Fall sein sobald ein standardisierter PCR Test zum Pilznachweis vorliegt, so dass die Ergebnisse vermutlich auch weiterhin schwierig zu vergleichen sein werden. Allerdings sollten nicht für jede Studie eigene Kriterien erstellt werden, denn ohne Vergleichsmöglichkeiten ergeben die Studien nur eingeschränkt verwertbare Ergebnisse.

5.3 Einordnung der Untersuchung

Die Studienergebnisse der letzten 15 Jahre bezüglich der Sicherheit und Wirksamkeit antifungaler Prophylaxe und Therapie liefern z.T. sehr unterschiedliche und sich widersprechende Ergebnisse. Mögliche Gründe für diesen Sachverhalt können verschiedene Studiendesigns, die Verwendung von mehreren parallel verabreichten Antimykotika, unterschiedliche Dosierungen, Resistenzentwicklungen, der Engraftment-unterstützende Einsatz bzw. der Verzicht von hämatopoetischen Wachstumsfaktoren, heterogene Patientenpopulationen, die Diversität hämatologischer Erkrankungen im Patientenkollektiv, unterschiedliche zytotoxische Regimes [38], verschiedene Definitionen für Neutropenie und invasive Pilzinfektionen und in Bezug auf die Toxizität verschiedene Methoden zur Erfassung von unerwünschten und organschädigenden Wirkungen sein [104].

5.4 Fazit

Aus den ausgeführten Ergebnissen ergibt sich, dass Abelcet® klinisch sicher und effektiv eingesetzt wurde. Um von den Daten des beobachteten Patientenkollektivs auf die Grundgesamtheit an allogenen Stammzelltransplantationspatienten zu schließen, fehlten leider Fallzahlen in ausreichender Größe für signifikante Ergebnisse. Weitere klinische Studien, die
sich mit dieser Fragestellung beschäftigen, erscheinen sinnvoll und gerechtfertigt.

Da mit den Azolen und Echinocandinen antifungale Arzneistoffe vorliegen, die bei ähnlich guter Wirksamkeit ein im Vergleich zu AmB Formulierungen besseres Verträglichkeitsprofil zeigen, kann man, wie dies bereits in unterschiedlichen Metaanalysen geschehen ist [20, 111, 142], empfehlen, diese, nach Ausschluss der Kontraindikationen, als Mittel der ersten Wahl den AmB Formulierungen vorzuziehen. Alle Autoren sind sich jedoch einig, dass weitere große Studien in klar definierten Patientenkollektiven erforderlich sind, um Empfehlungen für antifungale Prophylaxe bei Hochrisikopatienten mit einem hohen Evidenzgrad aussprechen zu können [20, 108, 109, 111, 142].
6 Zusammenfassung

Die invasive Pilzinfektion ist eine schwere Komplikation der allogenen Stammzelltransplantation. Sie tritt als Folge der notwendigen immun-suppressiven Therapie auf. Von der DGHO werden Stammzell-transplantationspatienten mit einem hohen Risiko für die Entwicklung einer invasiven Pilzinfektion eingestuft.

Antifungale Prophylaxe reduziert die Häufigkeit der parenteralen antifungalen Therapie und der gesicherten invasiven Mykosen signifikant, besonders bei allogenen HSZT Patienten.

103 Patienten haben ABLC als antifungale Prophylaxe erhalten, 60 davon mindestens 7 Tage. Die Verträglichkeit von ABLC wurde bei allen Patienten anhand akut auftretender Infusionsreaktionen untersucht. Die nephrotoxischen Reaktionen und die Wirksamkeit wurden nur bei den 60 Patienten untersucht, die ABLC mindestens 7 Tage erhalten haben.

Bei 23% der Patienten trat eine akute Unverträglichkeitsreaktion auf. Von den 60 Patienten bei denen die nephrotoxischen Reaktionen untersucht wurden, zeigten 22% einen auffälligen Serumkreatininanstieg.

Bezüglich der Frage der Wirksamkeit von ABLC haben insgesamt 13 Patienten (22%) die Kriterien einer IFI erfüllt, darunter 2 gesicherte Fälle, 4 wahrscheinliche und 7 mögliche.

Im Vergleich mit Literaturangaben lag ABLC bezüglich der Anzahl von entwickelten akuten Toxizitätsreaktionen im suboptimalen Bereich bei insgesamt milderem Verlauf, während die Ergebnisse zur Nephrotoxizität gute Ergebnisse zeigen. Die Wirksamkeit entspricht der von L-AmB.
Durch das Vorliegen von Arzneistoffen mit weniger toxischen Reaktionen bei gleicher Wirksamkeit wird ABLC voraussichtlich in der antifungal Prophylaxe von Hochrisikopatienten ein Mittel der 2. Wahl bleiben. Für valide Ergebnisse, die auf die Grundgesamtheit übertragen werden können, sollten in der Zukunft breiter angelegte Untersuchungen mit größeren, aber klarer definierten Patientenkollektiven angestrebt werden.
7 Abkürzungsverzeichnis

Abb. Abbildung
ABLC Amphotericin B Lipid Komplex (Abelcet®)
AG Antigen
AGIHO Arbeitsgemeinschaft Infektionen in der Hämatologie und Onkologie
AK Antikörper
AmB Amphotericin B
AML Akute Myeloische Leukämie
ATG Anti-Thymozyten-Globulin
BAL Broncho-alveoläre Lavage
cAmB konventionelles Amphotericin B
CsA Ciclosporin A
DGHO Deutsche Gesellschaft für Hämatologie und Onkologie
DNS Desoxyribonukleinsäure
ECIL European Conference on Infections in Leukemia
EIA Enzymimmunoassay
EORTC/MSG European Organisation for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycosis Study Group Consensus Group
FUO Fever of unknown origin / unklares Fieber
G-CSF Granulocyte-colony-stimulating-factor
GvHD Graft-versus-Host-Disease / Spender gegen Wirt Erkrankung
HLA Humanes Leukozyten Antigen
HSZT Hämatopoetische Stammzelltransplantation
IA Invasive Aspergillose / Invasive Aspergillose
IDSA Infectious Disease Society of America
IFD Invasive fungal disease / Invasive Pilzerkrankung (neue Nomenklatur)
IFi Invasive fungal infection / Invasive Pilzinfektion
(alte Nomenklatur)
KG Körpergewicht
KM-SZT Stammzelltransplantation aus Knochenmark
L-AmB Liposomales Amphotericin B (AmBisome®)
KMT Knochenmarktransplantation
MDS Myelodysplastisches Syndrom
NNH Nasennebenhöhlen
NSAID Nicht steroidale antiinflammatorische Arzneimittel
(alt: NSAR)
PB-SZT Stammzelltransplantation aus peripheren Blutstammzellen
PCR Polymerase chain reaction, Polymerasekettenreaktion
PUP Pneumonia of unknown pathogen / Pneumonie unbekannter Erreger
Sp. Spezies
SZT Stammzelltransplantation
Tab. Tabelle
TCT thorakale Computertomographie/ -tomogramm
TNF-α Tumornekrosefaktor-alpha
UKE Universitätsklinikum Hamburg-Eppendorf
UAW Unerwünschte Arzneimittelwirkung
ZVK Zentraler Venenkatheter

Maßeinheiten
kg Kilogramm nm Nanometer
mg Milligramm min Minute
µg Mikrogramm h Stunde

Aus Gründen der Vereinfachung werden Patientinnen und Patienten unter der maskulinen Form des Wortes zusammengefasst.
8 Literaturverzeichnis

Knochenmark und Blutstammzelltransplantation
Deutsche Gesellschaft für Hämatologie und Onkologie (DGHO)
www.dgho.de

[2] Kröger N, Zander A
Allogene Stammzelltherapie – Grundlagen, Indikationen und Perspektiven

[3] Leather HL, Wingard JR
Infections after hematopoietic stem cell transplantation

Infektionen bei hämatologischen und onkologischen Erkrankungen
DGHO / www.dgho.de [12.03.2009]

Malden: Blackwell Science, 1999

Philadelphia: Churchill Livingstone, 2000

[7] Ruhnke M
Invasive Mykosen in der Onkologie
Im Focus Onkologie 6/2008
www.onkosupport.de/ascors/content/e974/e1778/e2343/ifo0806_45.pdf [13.03.2009]
Invasive fungal disease in adults undergoing remission-induction therapy for acute myeloid leukemia: The pathogenetic role of the antileukemic regimen

[9] Goodrich JM, Reed EC, Mori LD et al.
Clinical features and analysis of risk factors for invasive candidal infection after marrow transplantation
J Infect Dis 1991; 164: 731-40

Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia
Annals of Internal Medicine 1966; 64, 1: 328-40

Epidemiology and interventional treatment strategies of infectious complications after allogenic stem-cell transplantation
Dtsch Med Wochenschr 2001; 126 (45): 1278-84

Infections in patients with hematological cancer: recent developments
Hematology Am Soc Hematol Educ Program 2003: 438-72

[13] Doctor fungus
www.doctorfungus.org [12.03.2009]
Aspergillose – Stand des Wissens zu Diagnose, Therapie,
Umweltbedingungen – ein Assessment – 4/2001
Österreichische Akademie der Wissenschaft – ITA

Managing fungal and viral infections in the immunocompromised host
Rec Res Cancer Res 1988; 108: 61-70

Trendwende in der Mykosefrequenz bei hämatologischen Neoplasien:
Obduktionsergebnisse von 1976 bis 2005
Deutsches Ärzteblatt 2008; 105 (28-29): 501-6

[17] Bartsch HH, Mertelsmann R
Knochenmark und periphere Stammzelltransplantation, Kapitel 3
1996 Karger

Evidence based review of antifungal prophylaxis in neutropenic patients
with haematological malignancies
Journal of Antimicrobial Chemotherapy 2005; 56, Suppl. S1

[19] Slavin MA, Osborne B, Adam R et al.
Efficacy and safety of fluconazole prophylaxis for fungal infections after
marrow transplantation – a prospective randomized, double-blind study
J Infect Dis 1995; 171: 1545-52
Antifungal prophylaxis in cancer patients after chemotherapy or
haematopoietic stem cell transplantation: systematic review and meta-
analysis

[21] Cornely OA
Invasive Mykosen –CME (Bayerische Landesärztekammer)
Springer

Invasive aspergillosis following hematopoietic cell transplantation:
Outcomes and prognostic factors associated with mortality
Clin Infect Dis 2007; 44: 531-40

[23] Neue Entwicklungen in der Therapie systemischer Pilzinfektionen
Supportivtherapie Folge 18
Im Fokus Onkologie 7/2002

[24] Heinz WJ
Pilzinfektionen: Prophylaxe bei hämatologischen Patienten

[25] Conference Abstract Search:
Report from the 35th Annual Meeting of the European Group for Blood
and Marrow Transplantation, Göteborg, Sweden, 29 März bis 1. April
2009
www.aspergillus.org.uk/secure/conferences/confabstracts/
searchconf.php [05.09.2009]
[26] Morell M, Fraser VJ, Kollef MH
 Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality

[27] Parkins MD, Sabuda DM, Elsayed S et al.
 Adequacy of empirical antifungal therapy and effect on outcome among patients with invasive candida species infection

 Kongressbericht

[29] Ascoiglu S, de Pauw BE, Meis JF
 Prophylaxis and treatment of antifungal infections associated with hematological malignancies
 Int J Antimicrob Agents 2000; 15: 159-68

[30] Nucci M, Marr KA
 Emerging fungal infections
 Clin Infect Dis 2005; 41: 521-26

 Epidemiology of aspergillus infections in a large cohort of patients undergoing bone marrow transplantation
 J Infect Dis 1997; 175: 459-66
Invasive filamentous infections in allogeneic hematopoietic stem cell transplant recipients after recovery from neutropenia: clinical, radiologic and pathologic characteristics.
Mycopathologia 2005; 159: 181-8

Breakthrough fungal infections after allogeneic hematopoietic stem cell transplantation in patients on prophylactic voriconazol
Bone marrow transplantation 2007; 40: 451-6

[34] Invasive Pilzinfektionen bei Leukämiepatienten: Empirische Antimykotikatherapie im aktuellen europäischen Leitlinienstandard
Journal Onkologie 19.2.2008

[35] Marr KA
Invasive candida infections: the changing epidemiology
Oncology 2004; 18: 9-14

Increase in candida crusei infection among patients with bone marrow transplantation and neutropenia treated prophylactically with fluconazole

[37] Wingard JR
The changing face of invasive fungal infections in hematopoietic cell transplant recipients
Curr Opin Oncol 2005; 17: 89-92
[38] Bow EJ, Laverdiere M, Lussier N et al.
Antifungal prophylaxis for severely neutropenic chemotherapy recipients - metaanalyse
Cancer 2002; 94: 3230-46

[39] Uderzo C, Angelo PD, Rizzari C et al.
Central venous catheter-related complications after bone marrow transplantation in children with hematological malignancies
Bone marrow transplantation 1991; 9: 113-7

[40] Diagnostik invasiver Pilzinfektionen
www.cancidas.de/secure/hintergrund/diag_1300.html [02.02.2010]

Fatal outcome of disseminated candidosis after allogeneic bone marrow transplantation under treatment with liposomal and conventional amphotericin B. A report of 4 cases with determination of the mic values.

[42] Rinaldi MG
Problems in the diagnosis of invasive fungal diseases
Rev Infect Dis 13; 493-5

Ann Hematol 2003; 82 Suppl 2: 141-8

Update on detection of bacteremia and fungemia
[45] Willinger B
Infektionen - Diagnostik invasiver Pilzinfektionen
Jatros Infektiologie 1/2007

[46] Horvath JA, Dummer S
The use of respiratory tract cultures in the diagnosis of invasive pulmonary aspergillosis
Am J Med 1996; 100: 171-8

β-D-Glucanas a diagnostic adjunct for invasive fungal infections: Validation, cutoff development, and performance in patients with AML and MDS
Clin Inf Dis 2004; 39: 199-205

[48] Marr KA, Balajee SA, McLaughlin L et al.
Detection of galactomannan antigenemia by enzyme immunoassay for the diagnosis of invasive aspergillosis: Variables that affect performance
J of Inf Dis 2004; 190: 641-9

Screening for circulating galactomannan as a noninvasive diagnostic tool for invasive aspergillosis in prolonged neutropenic patients and stem cell transplantation recipients: a prospective validation
Blood 2001; 97: 604-10

Value of antigen detection using an enzyme immunoassay in the diagnositis and prediction of invasive aspergillosis in two adult and pediatric haematology units during a 4-year prospective study
Cancer 2001; 91: 311-8
[51] Sulahian A, Touratier S, Ribaud P
False positive test for aspergillus antigenemia related to concomitant administration of piperacillin and tazobactam

Occurrence and kinetics of false-positive aspergillus galactomannan test results following treatment with β-lactam antibiotics in patients with haematological disorders

Enolase antigen, mannan antigen, cand-tec antigen and beta glucan in patients with candidemia
J Clin Microbiol 1996; 34: 1918-21

[54] Pasqualotto AC, Denning DW
Diagnosis of invasive fungal infections – Current limitations of classical and new diagnostic methods
Business Briefing: European Oncology Review 2005

[55] De Repentigny L
Serodiagnosis of candidiasis, aspergillosis and cryptococcosis

[56] Buchheidt D, Baust C, Skladny H et al.
Detection of aspergillus species in blood and bronchoalveolar lavage samples from immunocompromised patients by means of 2-step polymerase chain reaction: clinical results
Clin Infect Dis 2001; 33: 428-35
Use of real time PCR on blood samples for diagnosis of invasive aspergillosis
Clin Infect Dis 2001; 33: 1-504-12

[58] Hardman JG, Limbird LE, Gilman AG
Pharmakologische Grundlage der Arzneimitteltherapie, Kapitel Antimikrobielle Wirkstoffe – Antimykotika

[59] Zonios DI, Bennett JE
Update on azole antifungals

[60] Deutschsprachige Mykologische Gesellschaft
www.dmykG.de/history//geschichtliches.html [27.02.2009]

[61] Kanda Y, Yamamoto R, Chizuka A et al.
Prophylactic action of oral fluconazole against fungal infection in neutropenic patients.
A metaanalysis of 16 randomized controlled trials.
Cancer 2000; 89(7): 1611-25

[62] Mykosen Online
Alles über systemische Mykosen in Hämatologie und Onkologie
www.mykosen-online.de/antimykotika [26.02.2009]

[63] Böhme A, Buchheidt D, Einsele H et al.
Leitlinie Antimykotika der AGIHO
www.dgho-infektionen.de [25.02.2009]
[64] Pharmainformation 7/1
www2.i-med.ac.at/pharmakologie/info/info7-1.html#triazol [26.02.2009]

[65] Fachinformationsservice der Roten Liste online
www.rote-liste.de [16.02.2010]

[66] Boogaerts M, Winston DJ, Bow EJ et al.
Intravenous and oral itraconazole versus intravenous amphotericin B deoxycholate as empirical antifungal therapy for persistent fever in neutropenic patients with cancer who are receiving broad-spectrum antibacterial therapy
Annals of Internal Med 2001; 135, 6: 412-22

[67] Walsh TJ, Anaissie EJ, Denning DW et al.
Treatment of aspergillosis: Clinical practice guidelines of the Infectious Diseases Society of America
Clin Infect Dis 2008; 46: 327-60

[68] Johnson LB, Kauffmann CA
Voriconazole: A new triazole antifungal agent
Clin Infect Dis 2001; 36 (5): 630-7

[69] Keating GM
Posaconazole
Drugs 2005; 65: 1553-65

[70] Zeitschrift für Chemotherapie, Heft 1/06
Posaconazol
www.zct-berlin.de [18.02.2010]
[71] Cornely OA, Maertens J, Winston DJ et al.
Posaconazole versus fluconazole or itraconazole prophylaxis in patients with neutropenia

[72] Onkologie Telegramm
Jahrestagung DGHO in Wien 10/08
Höchste Evidenz für Prophylaxe mit Posaconazol bestätigt
www.onkologie-telegramm.com [18.02.2010]

Preliminary animal pharmacokinetics of the parenteral antifungal agent MK-0991
Antimicrob. Agents Chemother. 11/1997; 11, 41: 2339-44

[74] Antiinfektiva
Caspofungin
www.infektionsschutz.at/AntimykotikaCaspofungin.phtml [19.02.2010]

[75] Mora-Duarte J, Betts R et al.
Comparison of caspofungin and amphotericin B for invasive candidiasis

[76] Cornely AC
Caspofungin
www.p-e-g.org/archiv_tmp/jahrestagung_18/ss/abs_cornely.htm
[19.02.2010]

[77] The drug monitor
A non-for-profit website edited and maintained by Nasr Anaizi, PhD
Amphotericin B Preparations
www.thedrugmonitor.com [30.01.2009]
[78] Bennett JE
Antimicrobial agents: Antifungal agents
Goodman & Gilman’s The Pharmacological Basis of Therapeutics

[79] Adam D, Christ W
Antibiotika und Chemotherapeutika
Pharmakologie und Toxikologie
BI Wissenschaftsverlag 1987, pp 580-750

[80] Kroker R
Pharmaka zur Behandlung von Pilzinfektionen.
Pharmakotherapie bei Haus- und Nutztieren
4. Auflage 1999, pp 290-4

Tissue concentrations and bioactivity of amphotericin B in cancer
patients treated with amphotericin B deoxycholate

[82] Kleinberg
What is the current and future status of conventional amphotericin B?
Antimicrobial agents 2006; 27: 12-6

[83] Kelsey SM, Goldman JM, McCann S et al.
Liposomal amphotericin (AmBisome) in the prophylaxis of fungal
infections in neutropenic patients: a randomised, double-blind, placebo-
controlled study
Bone Marrow Transplantation 1999; 23: 163-8
[84] Boswell GW, Buell, Bekersky
AmBisome: A comparative review

[85] Carlson MA, Condon RE
Nephrotoxity of amphotericin B
Journal of the American College of Surgeons 1994; 179(3): 361-81

[86] Goodwin SD, Cleary JD, Walawander CA et al.
Pretreatment regimens for adverse events related to infusion of amphotericin B

[87] Slain D
Lipid based amphotericin B for the treatment of fungal infections
Pharmacotherapy 1999; 19(3): 306-23

[88] Saliba F
Antifungals and renal safety – getting the balance right
Antimicrobial agents 2006; 275: 21-4

Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia

[90] White MH, Bowden RA, Sandler ES et al.
Randomized, double-blind clinical trial of amphotericin colloidal dispersion vs. Amphotericin B in the empirical treatment of fever and neutropenia
[91] Sharkey PK, Graybill SR, Johnson ES et al.
Amphotericin B lipid complex compared with amphotericin B in the
treatment of cryptococcal meningitis in patients with AIDS

Amphotericin B lipid complex versus amphotericin B for treatment of
hematogenous and invasive candidiasis: A prospective randomised
 multicenter trial
Proceedings of the 35th ICAAC Washington DC; Am Soc Microbiol 1995;
21: 330

Primary antifungal prophylaxis in leukemia patients
EJC 2007 ; Suppl 5: 43-8

[94] Liposomales AmB
Zeitschrift für Chemotherapie Heft 4, 1993
www.zct-berlin.de/neueinführungen [30.01.2009]

[95] Bowden RA, Cays M, Gooley T et al.
Phase 1 study of amphotericin B colloidal dispersion for the treatment of
 invasive fungal infection after marrow transplant
J Infect Dis 1996; 173: 1208-15

[96] Herbrecht R
Safety of amphotericin B colloidal dispersion
Amphotericin B lipid complex for invasive fungal infections: Analysis of safety and efficacy in 556 cases
Clinical Inf Dis 1998; 26: 1383-96

Unusual lipid structures selectively reduce the toxicity of AmB
Proc Natl Acad Sci USA 1988; 85: 6122-6

[99] Amphotericin B (Lipid Complex)
Drug information provided by Lexi-Comp
www.merck.com/mmpe/lexicomp/amphotericinB(LipidComplex).html
[29.01.2009]

[100] Gonzalez C, Sein T, Bacher T et al.
Penetration of lipid formulations of amphotericin B into cerebrospinal fluid and brain tissue.
Abstracts of the 37th Interscience Conference on Antimicrobial Agents and Chemotherapy.
Toronto Sep 28-Oct 1 1997: 19

Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental candida albicans infection of the central nervous system.

[102] Rapp RP, Gubbins PO, Evans ME
Amphotericin B lipid complex
[103] Dix SP
Pharmacology of lipid formulations of amphotericin B

A randomized, double blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia
Clinical infectious diseases 2000; 31: 1155-63

[105] Wong-Beringer A, Jacobs RA, Guglielmo BJ
Lipid formulations of amphotericin B: Clinical efficacy and toxicities
Clin Infect Dis 1998; 27: 603-18

[106] Uzun O, Anaissie EJ
Antifungal prophylaxis in patients with hematologic malignancies: a reappraisal
Blood 1995; 86: 2063-72

[107] Rex JH
Correspondence: Systemic antifungal prophylaxis reduces invasive fungal infections in AML: a retrospective review of 833 episodes of neutropenia in 322 adults
Leukemia 2002; 16: 1197-1203

Prophylaxis of invasive fungal infections in patients with hematological malignancies and solid tumors
Guidelines of the Infectious Disease Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO)
Ann Hematol 9/2003 82 Suppl 2: 186-200
[109] Maertens J
Evaluating prophylaxis of invasive fungal infections in patients with haematologic malignancies
European Journal of Haematology ISSN 0902-4441 (2007)

A systemic review of the antifungal effectiveness and tolerability of amphotericin B formulations
Clin Ther 2003; 25(5): 1295-320

[111] Ullmann AJ, Cornely OA
Antifungal prophylaxis for invasive mycosis in high risk patients
Curr Opin Infect Dis 2006; 19: 571-6

Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group
Clin Infect Dis 2008; 46: 1813-21

Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus
Clin Infect Dis 2002; 34: 7-14
[114] Borlenghi E, Cattaneo C, Capucci MA et al.
Usefulness of the MSG/IFICG/EORTC diagnostic criteria of invasive pulmonary aspergillosis in the clinical management of patients with acute leukaemia developing pulmonary infiltrates

[115] Alexander BD, Wingard JR
Study of renal safety in amphotericin B lipid complex treated patients
Clin Infect Dis 2005; 40: 414-21

[116] Ito JI, Chandrasekar PH, Hooshmand-Rad R
Effectiveness of amphotericin B lipid complex (ABLC) treatment in HCT recipients with invasive aspergillosis (IA)
Bone marrow transplantation 2005; 36: 873-877

Amphotericin B lipid complex as prophylaxis of IFI in patients with acute myelogenous leukemia and myelodysplastic syndrome undergoing induction chemotherapy
Cancer 2004; 100: 581-9

Invasive mold infections in allogenic bone marrow transplant recipients
Clin Infect Dis 2001; 32: 1319-24

Invasive aspergillosis in allogeneic stem cell transplant recipients: Changes in epidemiology and risk factors
Blood 2002; 100: 4358-66
[120] Bearman SI, Appelbaum FR, Buckner CD et al.
Regimen-related toxicity in patients undergoing bone marrow transplantation
J Clin Oncol 1988; 6: 1562-8

[121] Stevens LA, Coresh J, Feldman HI et al.
Evaluation of the modification of diet in renal disease study equation in a large diverse population

[122] Glomeruläre Filtrationsrate
Wikipedia [20.09.2009]

[123] Common toxicity criteria (CTC)
Cancer Therapy Evaluation Program
Version 2.0
DCTD, NCI, NIH, DHHS 3/1998
www.ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcv20_4-30-992.pdf [04.03.2009]

Liposomal amphotericin B versus the combination of fluconazole and itraconazole as prophylaxis for invasive fungal infections during induction
Cancer 2002; 97: 450-6

[125] Kelsey SM, Goldman JM, McCann S et al.
Liposomal amphotericin (AmBisome) in the prophylaxis of fungal infections in neutropenic patients: a randomized, double blind, placebo-controlled study
Bone marrow transplant 1999; 23: 163-8
An open-label randomized trial comparing itraconazole oral solution with
fluconazole oral solution for primary prophylaxis of fungal infections in
patients with haematological malignancy and profound neutropenia
Journal of Antimicrobial Chemotherapy 2005

Clinical significance of nephrotoxicity in patients treated with amphotericin
B for suspected or proven aspergillosis
Clin Infect Dis 1999; 29: 1402-07

[128] Leenders ACAP, Daenen S, Jansen RLH et al.
Liposomal amphotericin B compared with amphotericin B deoxycholate
in the treatment of documented and suspected neutropenia-associated
invasive fungal infections
Br J Haematol 1998; 103: 205-12

Comparison of amphotericin B lipid complex vs. Ambisome in the
treatment of suspected or documented fungal infections in patients with
leukemia.
Leuk Lymphoma 2001; 40: 511-20

[130] Cannon JP, Garey KW, Danziger LH
A prospective and retrospective analysis of the nephrotoxicity and
efficacy of lipid based amphotericin B formulations
Pharmacother 2001; 21: 1107-14

Lipid formulations of amphotericin B preserve and stabilize renal function
in HSCT recipients
Bone Marrow Transplant 2004; 33: 543-8
Amphotericin B lipid complex versus liposomal amphotericin B monotherapy for invasive aspergillosis in patients with hematologic malignancies
Cancer 2008; 112(6): 1282-7

Safety, tolerance and pharmacokinetics of high-dose liposomal amphotericin B in patients infected with aspergillus species and other filamentous fungi: Maximum tolerated dose study
Antimicrob Agents Chemother 2001; 45: 3487-96

Prospective study of Amphotericin B formulations in immunocompromised patients in 4 European countries
Clin Inf dis 2006; 43:e29-38

Caspofungin as primary prophylaxis in stem cell transplant recipients
Pharmacother 2007; 2, 12: 1644-50

Administration of micafungin as prophylactic antifungal therapy in patients undergoing allogeneic stem cell transplantation
Int J Hematol. 2008; 87(1): 91-7

[137] van Burik JH, Ratanatharathorn V, Stephan DE et al.
Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation
Clin Infect Dis 2004; 39: 1407-16
Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia

[139] Vardakas KZ, Michalopopoulos A, Falagas ME
Fluconazole versus itraconazole for antifungal prophylaxis in neutropenic patients with haematological malignancies: A meta-analysis of randomised-controlled trials
BJH research papers 2005; 131: 22-28

[140] Ullmann AJ, Lipton JH, Vesole DH
Posaconazole or Fluconazole for Prophylaxis in Severe Graft-versus-Host Disease

Open-label, randomized comparison of itraconazole versus caspofungin for prophylaxis in patients with hematologic malignancies

[142] Wirk B, Wingard JR
Current approaches in antifungal prophylaxis in high risk hematological malignancy and hematopoietic stem cell transplant patients
Mycopathologia 2009; 168: 299-311

[143] Pfaffer MA
Nosocomial candidiasis: Emerging species reservoirs and modes of transmission
Clin infect Dis 1996; 22 (Suppl.2): 89-94
[144] Tollemar J, Ringden O, Anderson S et al
Randomized double-blind study of liposomal amphotericin B (AmBisome)
prophylaxis of invasive fungal infections in bone marrow transplant recipients
Bone marrow transplant 1993; 12: 577-82

[145] Wolff et al
Fluconazol vs low dose amphotericin B for the prevention of fungal infections in patients undergoing bone marrow transplantation: A study of the north american marrow transplant group

A randomised controlled trial of itraconazole versus fluconazole for the prevention of fungal infections in patients with haematological malignancies.
Br J Haematol 1999; 105: 901-11

Antifungal prophylaxis with itraconazole in neutropenic patients with acute leukemia.
Leukemia 1998; 12: 1338-43

A controlled trial of fluconazole to prevent fungal infections in patients undergoing bone marrow transplantation.

[149] Perfect JR, Klotman ME, Gilbert CC et al.
Prophylactic intravenous amphotericin B in neutropenic autologous bone marrow transplant recipients
J Infect Dis 1992; 165: 891-97
[150] Riley DK, Pavia AT, Beatty PG et al.
The prophylactic use of low-dose amphotericin B in bone marrow transplant recipients.

[151] Warn PA, Morrisey J, Moore CB et al.
In vivo activity of amphotericin B lipid complex in immunocompromised mice against fluconazole-resistant or fluconazole susceptible candida tropicalis
Antimicrob Agents and Chemother 2000; 44, 10: 2664-71

Randomized trial of fluconazole versus low dose amphotericin B in prophylaxis against fungal infections in patients undergoing hematopoietic stem cell transplantation
American Journal of hematology 2002; 71: 260-7

[153] InfektLiga-Antimykotika-Echinocandine
www.infektliga.de [02.02.2010]

Open label, randomized comparison of Itraconazol versus caspofungin for prophylaxis in patients with hematologic malignancies
Antimicrobial Agents and Chemotherapy 2006; Vol. 50, 1: 143-7

Results of a randomized, double blind trial of fluconazole vs. voriconazole for the prevention of invasive fungal infections in 600 allogeneic blood and marrow transplant patients
Blood 2007; Vol 110, 11: abstract #163
[156] Denning DW, Donnelly JP, Hellreigel KP et al.
Antifungal prophylaxis during neutropenia or allogeneic bone marrow transplantation: What is the state of the art?
Chemotherapy 1991; 38, 43 (Suppl 1)

[157] Milliken ST, Powles RL
Antifungal prophylaxis in bone marrow transplantation.
Rev Infect Dis 1990; 12 (Suppl 3): 374

[158] Winston DJ, Maziarz RT, Chandrasekar PH et al.
Intravenous and oral itraconazole versus intravenous and oral fluconazole for long-term antifungal prophylaxis in allogeneic hematopoietic stem cell transplant recipients:
A multicenter, randomized trial
Ann intern Med 2003; 138: 705-13

[159] Marr KA, Crippa F, Leisenring W et al.
Itraconazole versus fluconazole for prevention of fungal infections in patients receiving allogeneic stem cell transplants
Blood 2006; 103: 1527-33

Posaconazole or fluconazole for prophylaxis in severe graft-versus-host-disease
9 Danksagung

Für seine Geduld und fachliche Unterstützung und besonders für die schnellen Reaktionen auf meine Fragen danke ich meinem Doktorvater Herrn Prof. Dr. med. Nikolaus Kröger.

Ganz herzlich danke ich meiner engagierten Betreuerin Frau Dr. Claudia Langebrake für die strukturierte Anleitung, die unzähligen praktischen Tipps, die Zeit, die sie mir sogar während ihres Mutterschutzes zur Verfügung stellte und ihre freundliche, unkomplizierte Art, die das Zurechtfinden im undurchsichtigen Universitätsbetrieb zu einem Kinderspiel machte.

Den Mitarbeitern der interdisziplinären Klinik und Poliklinik für Stammzelltransplantation danke ich für ihre Hilfsbereitschaft.

Ich bedanke mich für die Einführung in das Statistikprogramm SPSS bei Friederike von Neindorff und für die technische Unterstützung bei der Layout-Gestaltung bei Ralph Gärtner und meinem Bruder Mario Bendig.

Von ganzem Herzen danke ich meinen Eltern, Frau Ingrid Bendig und Herrn Dr. med. dent. Rainer Bendig, für ihre liebevolle und finanzielle Unterstützung und das Vertrauen über die vielen Jahre der Aus- und Weiterbildung.

Allen genannten Personen und meinen Freunden danke ich für die wiederholten motivierenden Worte, wenn die Arbeit mal nicht so flüssig von der Hand gehen wollte.
10 Curriculum vitae

Persönliche Daten:
Name: Corinna Bendig
Geburtsdatum: 29.03.1977
Geburtsort: Hamburg
Adresse: Holsteiner Chaussee 183 b
22457 Hamburg
Staatsangehörigkeit: deutsch
Familienstand: ledig

Schulausbildung:
1983 - 1986 Grundschule Lemsahl-Mellingstedt / Hamburg
1986 - 1992 Gymnasium Buckhorn / Hamburg
1996 Schulabschluss: Allgemeine Hochschulreife

Studium:
1997 – 2004 Medizinstudium an der medizinischen Fakultät der Universität Hamburg
2004 Approbation als Ärztin

Berufsweg:
2005 – 2008 Weiterbildungsassistentin in der Internistischen Abteilung des Asklepios Westklinikum Hamburg
seit 4 / 2009 Weiterbildungsassistentin in der Praxisweiterbildung zum Facharzt für Innere und Allgemeinmedizin in Hamburg
11 Anhang

11.1 Abbildungsverzeichnis

Abb. 1: Infektionshäufigkeit bei Granulozytopenie 13
Abb. 2: Infektionshäufigkeit im Verhältnis zur Granulozytenzahl 14
Abb. 3: Molekülbild AmB 27
Abb. 4: Querschnitt durch einen multilamellaren Vesikel 34
Abb. 5: Struktureller Aufbau von ABLC 35
Abb. 6: Flussdiagramm Patientenauswahl 63
Abb. 7: Antimykotische Prophylaxe vor ABLC 65
Abb. 8: Umstellungsgrund auf ABLC 66
Abb. 9: Gruppenvergleich Dauer ABLC Prophylaxe 67
Abb. 10: Neutropeniedauer in der Subgruppe zur Wirksamkeitsprüfung 68
Abb. 11: Neutropeniedauer (Boxplot) 68
Abb. 12: Häufigkeit der Prämedikation 69
Abb. 13: Verteilung der unerwünschten Arzneimittelwirkungen 70
Abb. 14: Verträglichkeit von ABLC unter Prämedikation 72
Abb. 15: Umstellung wegen Unverträglichkeit im Jahresvergleich 74
Abb. 16: Verträglichkeit von ABLC im Jahresvergleich 75
Abb. 17: Serumkreatinin Veränderungen nach Bearman 76
Abb. 18: Maximales Serumkreatinin 77
Abb. 19: Maximales Kreatinin zu ABLC Dauer 78
Abb. 20: Maximales Serumkreatinin unter nephrotoxischen Substanzen 80
Abb. 21: Maximales Serumkreatinin im Verhältnis zum Patientenalter 82
Abb. 22: Maximaler Serumharnstoff im Verhältnis zum Patientenalter 82
Abb. 23: Verteilung der invasiven Mykosen 84
Abb. 24: Eskalationsgründe 85
Abb. 25: Pilzmedikation nach ABLC 86
Abb. 26: Auftreten von IFI zur Neutropeniedauer, zusammengefasst 90
Abb. 27: Auftreten von IFI zur Neutropeniedauer, aufgegliedert 90
11.2 Tabellenverzeichnis

Tab. 1: Pharmakokinetische Daten 36
Tab. 2: Kriterien für gesicherte invasive Mykosen 41
Tab. 3: Kriterien für wahrscheinliche IFD 42
Tab. 4: Kriterien für die Diagnosestellung einer endemischen Mykose 43
Tab. 5: Unterschiede der verschiedenen EORTC/MSG Definitionen 45
Tab. 6: Patientencharakteristika 64
Tab. 7: Prämedikation * Verträglichkeit von ABLC 72
Tab. 8a-d: Verträglichkeit von ABLC im Jahresvergleich 73
Tab. 9: Nephrotoxische Arzneimittel * Kreatinin 79
Tab. 10: Kreatinin im Verlauf * Patientenalter 81
Tab. 11: Kreatinin * Neutropeniedauer 83
Tab. 12: Antifungale Medikation nach ABLC * Diagnosen 87
Tab. 13: Diagnose * IFI 88
Tab. 14: Neutropeniedauer * IFI 89
Tab. 15: Dauer der Neutropenie, Nicht-IFI-Patienten 89
Tab. 16: Dauer der Neutropenie der Subgruppe zur Wirksamkeitsprüfung 89
Tab. 17: Zusammenfassung Ergebnisse 94
Tab. 18: Zusammenfassung der Literaturergebnisse zur Nephrotoxizität 107
Tab. 19: Prophylaxestudien von AmB Lipidformulierungen im Vergleich 119
Tab. 20: Prophylaxestudien anderer Wirkstoffgruppen 120
11.3 Erhebungsbogen, Access-Datei
11.4 Genehmigung zur Verwendung der Patientendaten

Einwilligung von Patienten
in die Weitergabe von Daten für die Zwecke des
Deutschen Registers für Stammzelltransplantationen
(„DRST“)
(Zum Verbleib in der Patientenakte)

1. Vorwort
Sehr geehrte Patientin, sehr geehrter Patient!
In dem Bemühen, die Behandlungsmethoden ständig zu verbessern, hat sich unsere Transplantationseinheit mit anderen zusammengeschlossen und das deutsche Register für Stammzelltransplantationen, abgekürzt „DRST“ genannt, aufgebaut.
Dieses Register hat die Aufgabe, möglichst viele und genaue medizinische Befunde aus den einzelnen Krankheitsverläufen von allen in Deutschland durchgeführten Knochenmark- und Blutstammzelltransplantationen zu erfassen und auszuwerten. Die Datenerfassung durch das „DRST“ ermöglicht unabhängigen Gutachtern, die einzelnen Transplantationszentren daraufhin zu überprüfen, ob die Güte der durchgeführten Behandlungen den bekannten wissenschaftlich gesicherten Anforderungen entspricht. Für die behandelnden Ärzte und die Patienten noch wichtiger ist aber, dass eine bundesweite Auswertung von Therapieerfolgen es erlaubt, Verbesserungen in der Behandlung schnell zu erkennen und allen Patienten zugute kommen zu lassen, unabhängig davon, welche Transplantationseinheit den Fortschritt für die Patienten erarbeitet hat.
Um aus medizinischen Befunden nützliche Rückschlüsse ziehen zu können, muss das „DRST“ die Befunde im Verlauf personenbezogen erfassen und auswerten. Aus Gründen des Datenschutzes muss aber gleichzeitig jeder Rückschluss auf konkrete Einzelpersonen ausgeschlossen werden. Wir beabsichtigen daher, dem „DRST“ Ihr Alter, Geschlecht, Geburtsdatum, die Art Ihrer Erkrankung, die gewählte Therapiemethode und deren Erfolg
(Therapieverlauf) mitzuteilen. Nicht gemeldet werden hingegen personenbezogene Daten im eigentlichen Sinn, d.h. Name, Vorname, Familienstand, Beruf, Konfession, Nationalität oder gar Adresse, Telefon- oder Faxnummer.

Nach den gesetzlichen Bestimmungen ist es erforderlich, dass uns Ihre schriftliche Zustimmung für unsere Vorhaben geben. Wir bitten Sie daher, die nachfolgende Einwilligung sorgfältig zu lesen und zu unterschreiben. Ihr Einverständnis ist freiwillig. Für den Fall, dass Sie Ihre Mitwirkung versagen, werden Ihnen diesbezüglich hier und heute sicher keine Nachteile entstehen.

Mit freundlichen Grüßen

Ihr Ärzteteam

2. Einwilligung in die Erfassung von anonymisierten Daten zur Krankheitsgeschichte und deren Weitergabe an Dritte durch das DRST

Patient Name:
 Vorname:
 Geburtsdatum:

Arzt Name:

Hiermit willige ich ein, dass die anonymisierten [d.h. bezüglich Namen, Vornamen, Adresse unkenntlich gemachten] Daten über meine Erkrankung und
deren Behandlung vom DRST erfasst und an folgende Stellen zu folgenden Zwecken weitergeleitet werden dürfen:

a) die einzelnen Transplantationseinheiten. Jede Einheit hat das Recht, die gemeldeten eigenen Daten einzusehen, um diese auf Richtigkeit und Vollständigkeit zu prüfen.

b) die „Konzertierte Aktion Stammzelltransplantation“. Diese Aktion besteht aus Vertretern mehrerer deutscher wissenschaftlicher Fachgesellschaften und der gesetzlichen Krankenkassen. Aufgabe dieser Aktion ist es zu überprüfen, ob die Therapiequalität der einzelnen Transplantationseinheiten in Deutschland den aktuellen wissenschaftlichen Erkenntnissen entspricht. Zu diesem Zweck benennt die Aktion unabhängige Expertenkommissionen, die die Zentren in Kenntnis der gemeldeten Daten (Therapieerfolge) in regelmäßigen Abständen vor Ort begutachten.

c) das Europäische Register (EBMT) und das US-amerikanische Register (IBMTR) für Stammzelltransplantationen, um festzustellen, ob die in Deutschland erzielten Therapieerfolge mit den Therapieverbesserungen in anderen Ländern Schritt halten können.

d) die Leiter von nationalen oder internationalen wissenschaftlichen Studienprojekten. Sobald dem DRST in Zusammenarbeit mit den o.g. internationalen Registern auffällt, dass bestimmte Fragen zur Verbesserung der Therapie wissenschaftlich geklärt werden müssen, wird ein Forschungsprojekt veranlasst. Die von der zuständigen Fachgesellschaft ernannte Projektleiter erhält dann das Recht, die Daten des DRST zur Lösung seiner Fragestellung einzusehen und die notwendigen Maßnahmen zur Klärung seiner Aufgabe in die Wege zu leiten.

Ferner hat man mich darüber informiert, dass das DRST über seine Tätigkeit in Form eines Jahresberichtes Rechenschaft ablegt, der Sammelstatistiken über die in Deutschland durchgeführten Stammzelltransplantationen erhalten wird. Die heute für das DRST verantwortlichen Personen haben auch den theoretischen Fall bedacht, dass das DRST irgendwann einmal nicht mehr „zeitgemäß“ ist und aufgelöst werden soll. Für diesen unwahrscheinlichen Fall sieht die Satzung des DRST vor, dass die Datenbank „an eine geeignete Nachfolgeorganisation“ übergeben werden soll. Steht eine solche hier nicht zur Verfügung, soll die Sicherung der Daten des DRST nach den Vorgaben der Ärztekammer im Einverständnis mit dem Datenschutzbeauftragten geregelt werden. Dieser Regelung stimme ich zu.

Mir ist bekannt, dass ich die vorliegende Einwilligung jederzeit ohne Angaben von Gründen widerrufen kann.

Datum: ---------------------------------------

Unterschriften: ---------------------------------------

(Patient/Sorgeberechtigter)

(aufklärender Arzt)
12 Eidesstattliche Versicherung

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe. Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Unterschrift: ..