Interaktionen zwischen dem endogenen NO Synthase Inhibitor asymmetrisches Dimethylarginin (ADMA) und der leukozytären Peroxidase Myeloperoxidase (MPO) in mus musculus und homo sapiens

Dissertation
durch die Erlangung des Doktorgrades
an der Fakultät für Mathematik, Informatik und Naturwissenschaften
aus dem Department Biologie
der Universität Hamburg

vorgelegt von
Eike-Christin von Leitner
Hamburg 2009
Genehmigt vom Department Biologie
der Fakultät für Mathematik, Informatik und Naturwissenschaften
an der Universität Hamburg
auf Antrag von Professor Dr. T. Meinertz
Weiterer Gutachter der Dissertation:
Professor Dr. Wolfgang Streit
Tag der Disputation: 03. April 2009

Hamburg, den 20. März 2009

[Signature]

Professor Dr. Jörg Ganzhorn
Leiter des Departments Biologie
Ein Gelehrter in seinem Laboratorium ist nicht nur ein Techniker, er steht auch vor den Naturgesetzen wie ein Kind vor einer Märchenwelt.

Marie Curie
## Inhaltsverzeichnis

### 1 Einleitung

1.1 Das Blutgefässystem ................................................................. 3
  1.1.1 Funktionen des Endothels......................................................... 4
  1.1.2 Endotheliale Dysfunktion und Arteriosklerose .............................................. 6

1.2 Stickstoffmonoxid (NO) ............................................................. 7
  1.2.1 Synthese.................................................................................. 7
  1.2.2 Wirkungen.................................................................................. 8

1.3 Asymmetrisches Dimethylarginin (ADMA) ................................. 9
  1.3.1 Pathophysiologische Relevanz .................................................... 10
  1.3.2 Synthese.................................................................................. 11
  1.3.3 Transport.................................................................................. 11
  1.3.4 Degradierung ........................................................................... 12
  1.3.5 Bedeutung der DDAH im Kontext der ADMA Degradierung............................. 12

1.4 Myeloperoxidase (MPO) ............................................................ 16
  1.4.1 Pathophysiologische Relevanz .................................................... 16
  1.4.2 Synthese.................................................................................. 17
  1.4.3 Enzymatische Reaktion der MPO ................................................. 18

1.5 Neutrophile Granulozyten .......................................................... 19
  1.5.1 Margination, Adhäsion und Transmigration ......................................... 19
  1.5.2 Degranulierung und oxidativer burst .............................................. 21

1.6 Ziel der Arbeit ............................................................................ 22

### 2 Material

2.1 Allgemeine Puffer und Lösungen ............................................... 23

2.2 Antikörper.................................................................................. 25

2.3 Primer......................................................................................... 26

2.4 Tiermodelle................................................................................. 26

### 3 Methoden

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
</tr>
</tbody>
</table>
3.1 Versuche am Tiermodell ................................................................. 28
  3.1.1 Haltung und Zucht ................................................................. 28
  3.1.2 Behandlungen ................................................................. 28
    3.1.2.1 Intraperitoneale Injektionen ......................................... 28
    3.1.2.2 Implantation von osmotischen Minipumpen ...................... 29
    3.1.2.3 Telemetrische Messungen ................................................. 29
    3.1.2.4 Organentnahme .......................................................... 30
  3.1.3 DNA Analysen ................................................................. 31
    3.1.3.1 Isolierung der DNA aus dem Gewebe ......................... 31
    3.1.3.2 Genotypisierung ......................................................... 31
  3.1.4 Proteinanalysen ................................................................. 33
    3.1.4.1 Gewebepräparation und Homogenisierung ...................... 33
    3.1.4.2 Quantitative Bestimmung der Proteinkonzentration ......... 34
    3.1.4.3 SDS PAGE und Blotten auf eine Nitrozellulosemembran .... 35
    3.1.4.4 Immunreaktionen ......................................................... 35
    3.1.4.5 Stripping der Nitrozellulose Membranen ............... 36
  3.1.5 RNA Analysen ................................................................. 36
    3.1.5.1 Isolierung der RNA aus dem Gewebe ..................... 36
    3.1.5.2 Reverse Transkription .............................................. 37
    3.1.5.3 Realtime PCR ............................................................ 38
  3.2 Versuche an HUVECS in der Zellkultur ...................................... 39
    3.2.1 Kultivierung von HUVECS ............................................. 39
    3.2.2 Immunfluoreszenz ........................................................ 40
  3.3 Versuche mit neutrophilen Granulozyten .................................... 40
    3.3.1 Isolierung von humanen neutrophilen Granulozyten ............ 41
    3.3.2 Inkubation der isolierten Zellen ..................................... 41
    3.3.3 Bestimmung der freigesetzten MPO Konzentration ......... 42
    3.3.4 Bestimmung der freigesetzten Elastase Menge ............ 42
    3.3.5 Bestimmung der Superoxidfreisetzung ....................... 43
    3.3.6 Bestimmung der MPO Aktivität .................................... 43
    3.3.7 Bestimmung der NOS Aktivität ................................... 44
    3.3.8 Adhäsion von neutrophilen Granulozyten an HUVECS .... 45
  3.4 Bestimmung von ADMA, SDMA und DDAH Aktivität .................. 45
3.5 Statistik.................................................................................................................................46
3.6 Legende .................................................................................................................................47

4 Ergebnisse........................................................................................................................................48

4.1 Charakterisierung der DDAH 1 transgenen Maus.................................................................48
  4.1.1 Expression des humanen Transgens und den murinen DDAH 1 und 2..............................49
  4.1.2 Expression der eNOS und iNOS..........................................................................................52
  4.1.3 ADMA und SDMA Plasma Konzentrationen.........................................................................54
  4.1.4 Modulation des NO Signalweges durch DDAH .................................................................56

4.2 Hypothese I: MPO induziert ADMA Akkumulation ..............................................................58
  4.2.1 Voraussetzungen..................................................................................................................59
  4.2.2 MPO moduliert die Genexpression.......................................................................................60
    4.2.2.1 DDAH Expression.........................................................................................................60
    4.2.2.2 PRMT Expression.........................................................................................................62
    4.2.2.3 NOS Expression..........................................................................................................64
  4.2.3 MPO moduliert die Proteinexpression der NOS .................................................................66
  4.2.4 MPO moduliert den NO Signalweg ....................................................................................67
  4.2.5 MPO moduliert die DDAH 1 Aktivität ................................................................................68
  4.2.6 MPO moduliert die NOS Aktivität .....................................................................................70
  4.2.7 MPO moduliert ADMA Plasma Konzentrationen ..............................................................71
  4.2.8 MPO moduliert physiologische Parameter .......................................................................74

4.3 Hypothese II: ADMA induziert die Sezernierung von MPO .................................................76
  4.3.1 Voraussetzungen..................................................................................................................76
    4.3.1.1 Der Transporter SLC7A1 in PMN .................................................................................77
    4.3.1.2 ADMA in PMN ............................................................................................................77
  4.3.2 ADMA aktiviert PMN ..........................................................................................................78
    4.3.2.1 ADMA führt zur Degranulierung von PMN .................................................................79
    4.3.2.2 ADMA induziert Superoxidfreisetzung aus PMN .........................................................80
    4.3.2.3 ADMA erhöht die MPO Aktivität in PMN .................................................................82
    4.3.2.4 ADMA hemmt die NO Synthese in PMN .................................................................83
    4.3.2.5 ADMA Infusion führt zur Akkumulation von MPO in vivo .........................................84
  4.3.3 ADMA führt zu Adhäsion von PMN ..................................................................................85

5 Diskussion........................................................................................................................................88
1 EINLEITUNG


Abbildung 1: Todesursachen in den Industrienationen 2006, Quelle der Daten WHO. Dargestellt sind die häufigsten nachgewiesenen Todesursachen, an deren Spitze mit 43,5% die Herz- und Gefäßerkrankungen stehen, gefolgt von Tumoren mit 26,0%, Erkrankungen der Atmungsorgane mit 6,7%, sowie der Verdauungsorgane mit 5,3%. Unfälle machen 4% der Gesamt mortalität aus und auf sonstige Ursachen entfallen lediglich 14,7%.

Die morphologischen Aspekte der Arteriosklerose sind bereits lange bekannt, doch erst in den letzten Jahrzehnten konnten Teile der pathophysiologischen Grundlagen dieser komplexen Erkrankung aufgedeckt werden. Ein entscheidender Schritt dabei war 1980 die Entdeckung der endothelabhängigen Vasorelaxation (Furchgott et al, 1980), eine Entdeckung, die 1998 mit dem Nobelpreis der Medizin ausgezeichnet wurde. Kurz danach wurde entdeckt, dass Substanzen aus den arteriosklerotischen Plaques wie Sauerstoffradikale und oxidierte Lipoproteine den damals noch unbekannten endothelialen relaxierenden Faktor (EDRF= Endothelium Derived Relaxing Factor) degradieren und so dessen vasodilatierende Wirkung abschwächen. Es vergingen fast zehn Jahre bis man zeigen konnte, dass es sich bei dem EDRF um Stickstoffmonoxid (NO) handelt. In den nachfolgenden Jahren wurde bewiesen, dass die Arteriosklerose mit einer verringerten NO Produktion bzw. NO Wirkung einhergeht, sowie dass NO unter diesen Bedingungen vermehrt inaktiviert wird. Hierbei spielen endogene Inhibitoren des NO generierenden Enzyms (NO Synthase) wie das asymmetrische Dimethylarginin (ADMA) eine entscheidende Rolle. ADMA Plasma Konzentrationen, die in gesunden Menschen bei $1,0 \pm 0,1 \, \mu\text{mol/l}$ liegen, sind sowohl bei kardiovaskulären Risikofaktoren als auch bei unterschiedlichen Erkrankungen deutlich erhöht (Abbildung 2).
### Risikofaktoren und Erkrankungen

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>ADMA Plasma Konzentrationen im Vergleich zu den Kontrollen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterieller Hypertonus</td>
<td>2 fach</td>
</tr>
<tr>
<td>Diabetes mellitus Typ II</td>
<td>2 fach</td>
</tr>
<tr>
<td>Hypertriglyceridemie</td>
<td>2 fach</td>
</tr>
<tr>
<td>Hypercholesterinämie</td>
<td>2-3 fach</td>
</tr>
<tr>
<td>Chronische Herzinsuffizienz</td>
<td>2-3 fach</td>
</tr>
<tr>
<td>Periphere arterielle Verschlusskrankheit</td>
<td>2-4 fach</td>
</tr>
<tr>
<td>Pulmonale Hypertonie</td>
<td>2-3 fach</td>
</tr>
<tr>
<td>Chronische Niereninsuffizienz</td>
<td>2-12 fach</td>
</tr>
</tbody>
</table>


Studien am Tiermodell sowie auch am Menschen konnten zeigen, dass es bereits vor dem Auftreten eines schweren kardiovaskulären Ereignisses zu einem Anstieg von ADMA kommt. Unklar ist allerdings noch, ob die erhöhten ADMA Konzentrationen *per se* zu einer vaskulären Erkrankung führen. Diese Frage ist ein wichtiger Aspekt dieser Arbeit, da es von großem medizinischen Interesse ist, die möglichen Folgen ansteigender ADMA Werte frühzeitig zu erkennen und diesen gegebenenfalls präventiv entgegenwirken zu können.

#### 1.1 DAS BLUTGEFÄSSYSTEM

Das kardiovaskuläre System besteht aus einer komplexen Verknüpfung von Gefäßen, die dem Transport des Blutes vom Herz bis in die Peripherie des Körpers und von dort aus zurück zum Herzen dienen. Im Verlauf verzweigen sich die Arterien bis zu kleinen Kapillaren, diese werden danach wieder zu den Venen zusammengeführt. Gefäße spielen eine entscheidende Rolle bei verschiedensten Funktionen: Sie bilden in ihrer Gesamtheit die anatomische Grundlage für den Blutkreislauf und damit für die Sauerstoff- und Nährstoffversorgung des menschlichen Körpers. Über den Blutstrom werden Atmung,
Abbildung 3: Der Aufbau eines Gefäßes. Unabhängig von Art und Funktion zeigt der Wandaufbau größerer Gefäße eine typische Dreischichtung in Tunica intima (kurz auch: Intima), Tunica media (Media) und Tunica adventitia (Adventitia).


1.1.1 Funktionen des Endothels

Das Gefäßendothel ist mehr als eine physikalische Barriere, die das Blutkompartiment von den Geweben und Organen des Körpers trennt. Es ist ein multifunktionelles Organ und für eine Vielzahl von zellulären Signal- und Syntheseleistungen verantwortlich. Das Endothel


1.2 STICKSTOFFMONOXID (NO)

Stickstoffmonoxid ist das kleinste endogen gebildete, bioaktive Molekül und ein einzigartiger Signaltransmitter: Es kann als Gas frei durch die Zellmembranen diffundieren und ist deshalb weder auf Transportsysteme noch extrazelluläre Rezeptoren angewiesen wie alle Botenstoffe auf Protein- oder Aminosäurebasis es sind. Aufgrund seiner Eigenschaften als freies Radikal kann NO mit verschiedensten Makromolekülen wie Proteinen und DNA oder anderen Radikalen reagieren, zu nennen sind hier vor allem Superoxid (O$_2^-$) und Oxyhämoglobin. Aus der hohen Reaktivität von NO resultiert dessen geringe Halbwertszeit von nur wenigen Millisekunden und eine Reichweite von etwa 100 µM. Für eine konstante Signalwirkung ist es demnach nötig, dass ständig neues NO in unmittelbarer Umgebung des Wirkungsortes gebildet und freigesetzt wird.

1.2.1 SYNTHЕSЕ


Das gebildete NO diffundiert zu den Zielzellen und bindet dort an die freie Ligandenstelle im Häm Eisen der löslichen Guanylatzyklase (sGC). Diese wird durch die Bindung aktiviert, es kommt zu einer Konformationsänderung. Daraus resultiert eine gesteigerte Produktion von zyklischem Guanosinmonophosphat (cGMP) und eine intrazelluläre Abnahme des Kalziums. Der second messenger cGMP hat zahlreiche potenzielle Zielproteine, am wichtigsten für die NO vermittelte Vasodilatation ist jedoch eindeutig die Aktivierung der Proteinkinase 1 (cGK1) (Walter et al, 1988). Die aktivierte cGK1 phosphoryliert eine Vielzahl von Proteinen und führt so zu einer Hemmung der Thrombozytenaggregation sowie -adhäsion und bewirkt durch Relaxation vaskulärer glatter Muskelzellen eine Vasodilatation (Abbildung 4). Ein wichtiges Effektorprotein ist das Vasodilator stimuliert Phosphoprotein (VASP), dessen Phosphorylierungsgrad als funktioneller Marker für die Aktivität des gesamten NO:cGMP Signalwegs verwendet wird.

Neben dieser Kurzzeitregulation des Vasotonus ist eine ausreichende NO Bioverfügbarkeit wegen seiner antiproliferativen, antimigrativen und antiarteriosklerotischen Wirkung zudem entscheidend für die Gewährleistung der Langzeitvasoprotektion. Ein weiterer Mechanismus, der für eine reduzierte NO Bioverfügbarkeit und somit eine verschlechterte Endothelfunktion verantwortlich ist, ist eine endogene Hemmung der NO Synthese durch methylierte L-Arginin Analog nur wie das asymmetrische Dimethylarginin (ADMA).

1.3 ASYMMETRISCHES DIMETHYLARGININ (ADMA)

Asymmetrisches Dimethylarginin (ADMA) ist eine endogen vorkommende Aminosäure. ADMA wurde erstmals 1970 aus humanem Urin isoliert (Kakimoto et al, 1970) und als physiologisches Stoffwechselprodukt eingestuft, das über die Niere ausgeschieden wird. Ein Mensch generiert täglich etwa 300 µmol ADMA, das sind ungefähr 60 mg ADMA (Achan et al, 2003). ADMA ist eine posttranslational modifizierte Form von L-Arginin: Es wird wie seine Stereoisomere symmetrisches Dimethylarginin (SDMA) und N-Monomethylarginin (L-NMMA) in allen Körperzellen von den Protein-Arginin-N-
Methyltransferasen (PRMT), durch Methylierung der endständigen Stickstoffe der Guanidinogruppe von proteinständigen L-Argininen generiert (Paik et al., 1968).

Abbildung 6: Biosynthese, Metabolismus und Wirkung von ADMA. Die Synthese von ADMA erfolgt durch posttranslationale Methylierung proteinständiger L-Argininreste. Dieser Schritt wird katalysiert durch das Enzym Protein-Arginin-N-Methyltransferase (PRMT). Durch anschließende Hydrolyse erfolgt die Freisetzung von freiem ADMA. Das entscheidende Enzym für den ADMA Abbau ist die Dimethylarginin Dimethylaminohydrolase (DDAH), ein geringer Teil wird auch über die Nieren ausgeschieden. ADMA wirkt als endogener Inhibitor der NO Synthase und verhindert so die Bildung von NO aus L-Arginin.

Abbildung 6 zeigt zusammenfassend die im Folgenden beschriebenen Aspekte der Synthese sowie des Metabolismus des asymmetrischen Dimethylarginin.

1.3.1 PATHOPHYSIOLOGISCHE RELEVANZ

führte eine arterielle Infusion von ADMA zur deutlichen Verminderung der Durchblutung des Unterarms um 44 % verglichen mit dem Ausgangswert (Vallance et al, 1992), sowohl die Herzfrequenz als auch die kardiale Auswurflistung sank. Der Effekt war noch bis zu 40 Minuten nach Ende der Infusion nachweisbar und konnte durch die Gabe von L-Arginin abgeschwächt werden.

1.3.2 SYNTHSE


1.3.3 TRANSPORT

Kationische Aminosäuretransporter (SLC7A1-4, auch bekannt als CAT oder γ+ System) transportieren kationische Aminosäuren wie Arginin, Lysin, Histidin und Ornithin durch erleichterte Diffusion mit trans Stimulation, bei der erhöhte intrazelluläre Substrat Konzentrationen den Aminosäure Influx stimulieren (Verrey et al, 2002). Auch ADMA wird über dieses System in die Zellen transportiert und konkurriert mit L-Arginin um die
Aufnahme (Verrey et al., 2004). In einigen Zellen kann so die NO Synthese geregelt werden, indem die Aufnahme von L-Arginin beschränkt wird. SLC7A1 wird fast ubiquitär exprimiert, wobei die Expression stark von dem Gewebe und Zelltypen abhängig ist. SLC7A1 scheint das Hauptsystem der γ+ Transporter in den meisten Zellen, insbesondere der NO produzierenden Zelltypen zu sein und ist somit zuständig für die Substratversorgung der NO Synthasen in Endothelzellen und Makrophagen (Zharikov et al., 2001).

1.3.4 DEGRADIERUNG


1.3.5 BEDEUTUNG DER DDAH IM KONTEXT DER ADMA DEGRADIERUNG

Bereits 1976 untersuchte die Gruppe um McDermott die Eliminierung von ADMA und seinen Stereoisomeren. Sie stellten fest, dass die renale Eliminierung von SDMA ca. dreißigfach höher ist als die von ADMA und L-NMMA. 1987 wurde dann erstmals ein Enzym beschrieben, (Ogawa et al., 1987) welches für den Abbau von ADMA verantwortlich gemacht wurde, die Dimethylarginin Dimethylaminohydrolase (DDAH). Es konnte gezeigt werden (Vallance et al., 2002), dass es zwei Isoformen dieses Enzyms gibt, DDAH 1 und
DDAH 2, welche in Bakterien, Schafen, Mäusen, Ratten und Menschen vorkommen. Die Beobachtung, dass beide Formen der DDAH und die verschiedenen NOS Isoformen unterschiedliche Expressionen in Gefäßen und Organen aufweisen (Tojo et al., 2000) und dass DDAH und NOS in Zellen koexprimiert werden (Tojo et al., 1997), legte den Schluss nahe, dass die Bioverfügbarkeit von Stickstoffmonoxid (NO) über die DDAH induzierte Änderung der ADMA Konzentration zellspezifisch reguliert wird (Leiper et al., 1999, Wang et al., 2007).


Es wurden verschiedene Substanzen identifiziert, die die Expression der redoxsensitiven DDAH modifizieren: Beide Isoformen werden nach Aktivierung des Angiotensin Typ 1 Receptors weniger exprimiert (Onozato in press, Tojo et al, 2000), die DDAH 1 Expression ist außerdem negativ reguliert durch oxLDL, TNFα sowie die NADPH Oxidase. IL 1ß hingegen führt zu erhöhter DDAH 1 Expression (Ueda et al, 2003).
Abbildung 7: Flussdiagramm der Faktoren, die die Aktivität der DDAH beeinflussen. Substanzen wie bakterielle Lipopolysaccharide (LPS), oxLDL und TNFα beeinflussen durch die Expressionsänderung der DDAH die ADMA Konzentrationen im Organismus. Andere Mediatoren wie reaktive Sauerstoffspezies (ROS) und NO modulieren direkt die Aktivität der DDAH und führen so zu einer Änderung der ADMA Degradierung.

Die Aktivität der DDAH hängt nicht nur von der Menge an translatiertem Protein ab, sondern auch von dem umgebenden Milieu: Unterschiedliche Oxidantien sind in der Lage, die Aktivität zu hemmen, so auch NO, welches im Rahmen einer Sepsis in zytotoxischen Mengen freigesetzt werden kann (Leiper et al., 2002). NO S-nitrosyliert die Zysteine der DDAH und inaktiviert so das aktive Zentrum (Knipp et al., 2003, Leiper et al., 2002). Diese Ergebnisse zeigen, dass es einen Regelkreis zwischen NO Synthese und DDAH Aktivität gibt: Wird viel NO gebildet, so wird die DDAH dadurch inaktiviert, die ADMA Konzentrationen steigen und verhindern so durch die Inhibierung der NOS eine weitere überschießende NO Produktion. Viele Hemmstoffe der DDAH, wie etwa LPS (Xin et al., 2007) und oxLDL (Ito et al., 1999) gehen mit oxidativem Stress einher. Viele aktivierende Stimuli der DDAH wirken, hier sind vor allem Pravastatin, Taurin und Estradiol (Holden 2003) zu nennen. Diese Feststellungen demonstrieren, wie relevant diese Veränderungen der Redoxverhältnisse für die Aktivität der DDAH ist, über die die Menge an endogenem ADMA und folglich auch die NO Synthese reguliert wird.
Ein weiterer Mechanismus, der zu einer verminderten NO Bioverfügbarkeit führt, ist der beschleunigte Abbau von NO durch reaktive Sauerstoffspezies (ROS), wie z.B. das Superoxidanion. In Blutgefäßen ist daher eine gesteigerte Superoxidproduktion assoziiert mit einer verminderten NO vermittelten Vasorelaxation. Eine wichtige Quelle von ROS im Endothel ist neben der NADPH Oxidase und der Xanthinoxidase die leukozytäre Peroxidase Myeloperoxidase (MPO).

### 1.4 MYELOPEROXIDASE (MPO)


### 1.4.1 PATHOPHYSIOLOGISCHE RELEVANZ


1.4.2 SYNTHESE


\[
\text{H}_2\text{O}_2 + \text{Cl}^- + \text{H}^+ \rightarrow \text{HOCl} + \text{H}_2\text{O}
\]

Abbildung 8: Die Reaktion von MPO. Das Enzym katalysiert die Oxidation von Chloridionen mit Hilfe von Wasserstoffperoxid: Während des oxidativen burst der Granulozyten bildet MPO aus Wasserstoffperoxid und Chlorid- sowie Bromidanionen (Cl-, Br-) Chlor (Cl\(_2\)), Brom (Br\(_2\)) wie auch Bromchlorid (BrCl). Unter physiologischen Bedingungen entstehen daraus sofort Hypochlorid (HOCl) und Hypobromit (HOBrom). Neben Haliden oxidiert MPO auch Nitrit (NO\(_2\)), Stickstoffmonoxid (NO), Thiocyanat (SCN-) und Tyrosin.


Neben der Oxidation von Chloridionen katalysiert MPO auch weitere Reaktionen, die in der Lage sind, das kardiovaskuläre Gleichgewicht zu stören und so den gesamten Organismus negativ zu beeinflussen. Zu nennen ist hier vor allem die Verringerung der NO Bioverfügbarkeit durch MPO: MPO katalysiert die Oxidation von NO zu Nitrit, so dass NO seine vasoprotektiven Eigenschaften nicht mehr ausüben kann, ähnlich wie bereits unter 1.3 für ADMA beschrieben.

1.5.1 MARGINATION, ADHÄSION UND TRANSMIGRATION

Abbildung 9: **Der Vorgang der Rekrutierung von neutrophilen Granulozyten zum Infektionsherd.** Dieser Prozess lässt sich in drei Schritte unterteilen: Selektinvermitteltes Entlangrollen am Gefäßendothel, stabile Integrinvermittelte Adhäsion an das Endothel und letztlich die Durchwanderung des endothelialen Gewebes.

Lücken zwischen den Endothelzellen entlang eines Konzentrationsgradienten aus Chemokinen zum Ort der Infektion.


1.5.2 DEGRANULIERUNG UND OXIDATIVER BURST

1.6 ZIEL DER ARBEIT


Ziel dieser Arbeit ist es herauszufinden, ob diese beiden Mechanismen ausschließlich voneinander getrennt zu sehen sind oder ob sie sich vielmehr gegenseitig beeinflussen oder sogar bedingen: Aus der Frage, ob die reduzierte NO Bioverfügbarkeit durch MPO eine verminderte NO Synthese durch ADMA durch die Inaktivierung des redoxsensitiven ADMA abbauenden Enzyms DDAH vorantreibt, resultiert die erste zu testende Hypothese: \textbf{MPO induziert eine Akkumulation von ADMA.}

Denkbar ist auch, dass ADMA durch die Verringerung der NO Synthese zu einer Aktivierung der neutrophilen Granulozyten und somit zu einer verstärkten Ausschüttung von MPO führt, wodurch die Zellen verstärkt mit oxidativem Stress konfrontiert werden. Aus dieser Annahme ist die zweite zu testende Hypothese hervorgegangen: \textbf{ADMA induziert die Sezernierung von MPO.}

Beide Hypothesen sollen in dieser Arbeit untersucht und in ihrer Gültigkeit überprüft werden, da NO eine bedeutende Größe in der kardiovaskulären Physiologie und Pharmakologie ist und somit die Aufklärung der Interaktionen verschiedener Mediatoren der Arteriosklerose eine enorme Relevanz für die Früherkennung und Therapie dieser Erkrankung besitzt.
2 MATERIAL

Für die durchgeführten Experimente werden die speziell für diese Versuche benötigten Substanzen und Puffer direkt im Methodenteil angefügt, im Folgenden sind zunächst die allgemeinen Puffer und Lösungen genannt, die für diese Arbeit verwendet werden.

2.1 ALLGEMEINE PUFFER UND LÖSUNGEN

Für Agarosegele

Herstellung eines 1 % Gels
1 g Agarose
5 ml 10x TBE
Ad 100 ml Aqua bidest.
15 µl Ethidiumbromid (10 mg/ml)

Die Agarose wird in dem hergestellten 1x TBE aufgekocht, erst nachdem die Lösung auf ca. 50°C abgekühlt ist wird das Ethidiumbromid hinzugegeben und das Gel kann gegossen werden.

Ladepuffer
130 mM Tris-HCl, pH 8,0
20 % Glyzerol
4,6 % SDS
0,02 % Bromphenolblau
2 % DTT

DNA Leitern
100 bp DNA ladder (Biolabs)
1 kb DNA ladder (Biolabs)

Für Western Blots

10x Laufpuffer
30,3 g Tris
144 g Glycin
10 g SDS
Ad 1000 ml Aqua bidest.
10x Blotpuffer
30,3 g Tris
144 g Glyzin
Ad 1000 ml Aqua bidest.
Zum Ansetzen von 1 l Puffer
100 ml 10x Puffer
200 ml Methanol
Ad 1000 ml Aqua bidest.

Waschpuffer TBST
1,21 g Tris
4 g NaCl
250 μl Tween
Ad 500 ml Aqua bidest.
pH Wert einstellen auf 7,6

Waschpuffer PBSTT
8,765 g NaCl
2,850 g Na₂HPO₄
0,550 g NaH₂PO₄
500 μl Tween
3,0 ml Triton-X-100
Ad 1000 ml Aqua bidest.

Blockierpuffer
Waschpuffer +
3 % Bovines Serum Albumin
oder
Waschpuffer +
1 % Hämoglobin

3x Lämmli
188 μl 1 M Tris-HCl pH 6,8
300 μl 20 % SDS
300 μl Glycerol
30 μl 1 % Bromphenolblau
150 μl β-Mercaptoethanol
32 μl Aqua bidest.

Proteinleitern
Prestained protein ladder PageRuler
(Fermentas)
10 kDa ladder (Life Technologies)
Für die Homogenisierung der Organe

Hg Puffer

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCl</td>
<td>0,121 g</td>
</tr>
<tr>
<td>Saccharose</td>
<td>4,280 g</td>
</tr>
<tr>
<td>EGTA</td>
<td>0,057 g</td>
</tr>
<tr>
<td>EDTA</td>
<td>0,292 g</td>
</tr>
</tbody>
</table>

Ad 50 ml Aqua bidest. pH 7,5

Hg Lösung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprotinin</td>
<td>100 µl</td>
</tr>
<tr>
<td>Pepstatin</td>
<td>35 µl</td>
</tr>
<tr>
<td>Leupeptin</td>
<td>10 µl</td>
</tr>
<tr>
<td>0,1 M PMSF</td>
<td>50 µl</td>
</tr>
<tr>
<td>1 mM Cantharidin</td>
<td>10 µl</td>
</tr>
<tr>
<td>1 % Triton-X100</td>
<td>100 µl</td>
</tr>
</tbody>
</table>

2.2 ANTIKÖRPER

Primärantikörper

Für Western Blots
- cGK1 (Abgent)
- sGC (Cayman Chemical)
- VASP/P-VASP (Immunoglobe)
- eNOS (BD Biosciences)
- iNOS (BD Biosciences)
- SLC7A1 (Abnova)

Für Immunfluoreszenz
- DDAH 1 (Santa Cruz)
- MPO (Calbiochem)
- ADMA (Covalab)

Sekundärantikörper

Für Western Blots
- Anti mouse/rabbit/goat IgG, Konjugat HRP (Vector)

Für Immunfluoreszenz
- Anti rabbit IgG, Konjugat Alexa Fluor 488 (Molecular Probes)
- Anti mouse IgG, Konjugat Alexa Fluor 594 (Molecular Probes)
Für die Genotypisierung der hDDAH 1 transgenen Mäuse:

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>hDDAH 1 forward</td>
<td>5′-ATG CAA CTT TAG ATG GCG GAG-3′</td>
</tr>
<tr>
<td>hDDAH 1 reverse</td>
<td>5′-TCA TCA GGC ACA GTG AGT TTG-3′</td>
</tr>
<tr>
<td>GAPDH forward</td>
<td>5′-GCA TCT GAG GGC CCA CTG AAG-3′</td>
</tr>
<tr>
<td>GAPDH reverse</td>
<td>5′-GTC CAC CAC CCT GTT GCT GTA-3′</td>
</tr>
</tbody>
</table>

Für die realtime PCRs verwendete Genexpressionsassays (Applied Biosystems):

<table>
<thead>
<tr>
<th>Gen</th>
<th>Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>hDDAH 1</td>
<td>Hs00201707_m1</td>
</tr>
<tr>
<td>DDAH 1</td>
<td>Mm01319453_m1</td>
</tr>
<tr>
<td>DDAH 2</td>
<td>Mm00516768_m1</td>
</tr>
<tr>
<td>PRMT 3</td>
<td>Mm00659701_m1</td>
</tr>
<tr>
<td>PRMT 5</td>
<td>Mm00550466_m1</td>
</tr>
<tr>
<td>PRMT 1</td>
<td>Mm00480133_m1</td>
</tr>
<tr>
<td>PRMT 6</td>
<td>Mm00619134_m1</td>
</tr>
<tr>
<td>iNOS</td>
<td>Mm00440502_m1</td>
</tr>
<tr>
<td>eNOS</td>
<td>Mm01134916_m1</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Mm03302249_g1</td>
</tr>
</tbody>
</table>

2.4 TIERMODELLE

**hDDAH 1 transgene Maus** (Jackson Laboratory, dort geführt unter dem Namen C57BL/6J-Tg(ACTB-DDAH1)1Jpck/J)

Die Mäuse haben einen C57BL/6J Hintergrund und tragen heterozygot das humane DDAH1 Gen, sie sind lebensfähig und fruchtbar ohne jegliche anatomische Anomalien. Zur Herstellung der Linie wurde humane DDAH 1 cDNA in einem modifizierten Aguti Expressionsvektor unter die Kontrolle des humanen ACTB β Aktin Promotors gestellt. Dieses Konstrukt wurde in befruchtete C57BL76J Eizellen injiziert, die Embryos wurden in die Ovidukte von schein schwangeren Ammen transferiert. Die Expression des Transgens ist beschrieben für Aorta, Herz und Gehirn. Die transgene Aktivität der DDAH zeigt sich in
erniedrigten ADMA Konzentrationen im Plasma der Tiere. Die Aktivität der NO Synthase ist signifikant erhöht im Skelett- sowie Herzmuskel, die Tiere haben einen niedrigeren Blutdruck und eine höhere Herzfrequenz als die Wildtypen.

Die eigene Zucht wurde mit Tieren aus dem Universitätsklinikum Erlangen von Dr. Jacobi aufgebaut.

**MPO knockout Maus** (Jackson Laboratory, dort geführt unter dem Namen B6.129X1-Mpotm1Lus/J)

3 METHODEN

3.1 VERSUCHE AM TIERMODELL

Für die Versuche am Mausmodell werden 10-14 Wochen alte weibliche Mäuse mit einem Körpergewicht von 25 g bis 30 g verwendet. Es werden folgende Tierstämme eingesetzt:
- hDDAH 1 transgene Maus
- MPO knockout Maus
- C57BL/6J Maus

3.1.1 HALTUNG UND ZUCHT


3.1.2 BEHANDLUNGEN

Eine Tierversuchsgenehmigung für die nachfolgend beschriebenen Experimente gemäß des § 7 TSchG sowie eine Ausnahmegenehmigung zur Durchführung durch die Promovendin liegen vor.

3.1.2.1 INTRAPERITONEALE INJEKTIONEN

LPS: Den Mäusen wird intraperitoneal (i.p.) 12,5 mg pro kg Körpergewicht LPS injiziert, den Kontrolltieren entsprechende Volumina NaCl. Die Mäuse werden dann nach einer Zeit
von maximal 24 Stunden durch eine ebenfalls intraperitoneale Gabe von Ketamin/Xylazin anästhesiert und nach Organentnahme durch zervikale Dislokation sakrifiziert.

\[ ^{15} \text{N-Arginin} \]: Analog zu den LPS Injektionen werden 100 µl \(^ {15} \text{N-Argininlösung} \) injiziert. Nach vier Stunden wird unter Isofluran Narkose die Blase punktiert und Urin entnommen, anschließend erfolgt ebenfalls die Sakrifizierung.

3.1.2.2 IMPLANTATION VON OSMOTISCHEN MINIPUMPEN

Zur kontinuierlichen Gabe von ADMA (250 µmol/kg/Tag) über einen Zeitraum von 28 Tagen werden osmotische Minipumpen der Firma Alzet vom Typ 2004 (Charles River) mit einem Befüllungsvolumen von 100 µl und einer Pumprate von 0,11 µl/h verwendet.


3.1.2.3 TELEMETRISCHE MESSUNGEN

Die Operationen sowie die Versuchsdurchführung erfolgt in den Laboren des Instituts für Vegetative Physiolologie und Pathophysiologie in Kooperation mit Herrn Professor Ehmke durch Frau Birgit Hirsch-Hoffmann. Zur radiotelemetrischen Messung von mittlerem arteriellen Blutdruck, Herzfrequenz und lokomotorischer Aktivität der Mausgruppen basal sowie nach LPS Injektion werden die
Transmitter (PhysioTel® PA Implants) vom Typ TA11PA-C20 genutzt. Die Tiere werden durch die intraperitoneale Gabe von Ketamin (120 mg/kg Körpergewicht) und Xylazin (18 mg/kg Körpergewicht) narkotisiert und vom Hals bis zum Sternum rasiert, die Fläche wird mit Betaisodona Lösung desinfiziert. Die Maus wird zur Implantation des Katheters in Rückenlage auf einer auf 37°C temperierten Wärmeplatte fixiert um eine Auskühlung zu verhindern. Die Freipräparation der linken A. carotis communis wird unter stereomikroskopischer Aufsicht (LEICA MZ 75) durchgeführt. Die Arterie wird hinter einem angebrachten Haltefaden eröffnet und der Katheter wird implantiert und soweit vorgeschoben, bis die Spitze in den Aortenbogen hineinragt, dort wird er fixiert. Anschließend erfolgt die Plazierung des Telemetriesenders im Flankenbereich des Tieres, und der Verschluss der Wunde mit einer Einzelknopfnahrt (Mersilene 5-0, Ethicon).


3.1.2.4 ORGANENTNAHME

Nach der Narkotisierung des Tieres durch die Gabe von Ketamin (120 mg/kg Körpergewicht) und Xylazin (18 mg/kg Körpergewicht) oder einer inhalativen Isoflurannarkose erfolgt zunächst eine Überprüfung des Schmerzreizes. Ist dieser völlig ausgeschaltet, wird das Tier zur Organentnahme in Rückenlage verbracht und fixiert. Es folgt die Eröffnung des Abdomens über die Medianlinie. Anschließend wird das Darmkonvolut ausgelagert und das Zwerchfell durchschnitten, die Blutentnahme erfolgt durch die Punktion des Herzens. Das Blut wird umgehend heparinisert und für 10 min bei 5000 rpm und 4°C abzentrifugiert, der Überstand wird bis zur weiteren Verwendung bei -20°C eingefroren. Anschließend werden die Aorta, Nieren, Herz und Leber vorsichtig entnommen und bis zur Feinpräparation in physiologischer PBS Lösung bei 4°C aufbewahrt. Unter mikroskopischer Kontrolle erfolgt die vorsichtige Entfernung des
umgebenden Bindegewebes der Organe und die Spülung verbleibender Blutreste durch intravasale Applikation der PBS Lösung. Die präparierten Organe werden in flüssigem Stickstoff schockgefroren und bei -80°C aufbewahrt. Für Immunhistologische Analysen werden die Organe in tissue-tek (Sakura) gewebeschonend zunächst in Methylbutan und dann in flüssigem Stickstoff in Blöcken eingefroren.

3.1.3 DNA ANALYSEN

Da es sich bei der Linie der hDDAH 1 transgenen Maus um eine heterozygote Zucht handelt, muss vor Versuchsbeginn der Genotyp jeder Maus ermittelt werden. Hierzu werden den Tieren im Alter von sieben Tagen Schwanzbiopsien entnommen, aus denen dann die DNA isoliert und mit Hilfe einer PCR der Genotyp bestimmt werden kann.

3.1.3.1 ISOLIERUNG DER DNA AUS DEM GEWEBE

Die DNA Isolierungen werden mit dem DNeasy Kit (Qiagen) durchgeführt. Hierfür werden ca. 20 mg Gewebeproben über Nacht bei 56°C in Lysepuffer inkubiert und anschließend nach dem Protokoll des Herstellers weiterverarbeitet. Das Homogenat mit der DNA wird dann unter hohen Salzkonzentrationen an eine Memran aus Silikagel gebunden, durch mehrere Waschschritte von restlichen Protein-, Polysaccharid- und Salzanteilen befreit und anschließend mit einem Puffer geringen Salzgehaltes eluiert. Die Reinheit der erhaltenen DNA reicht für die erforderlichen PCRs zur Genotypisierung aus, so dass auf weitere Aufreinigungsschritte verzichtet werden kann.

3.1.3.2 GENOTYPISIERUNG

Mit der Polymerase Kettenreaktion (polymerase chain reaction, PCR) werden selektiv bestimmte Abschnitte der DNA exponentiell amplifiziert. Die eingesetzten Oligonukleotide fungieren in dieser Reaktion als Startermoleküle. Der Abschnitt, den die Primer beidseitig flankieren, wird in jedem Zyklus der Reaktion verdoppelt. Ein Zyklus selbst besteht aus drei Schritten: Denaturierung der doppelsträngigen DNA bei 94°C, dabei wird die DNA in Einzelstränge aufgespalten. Es folgt das Annealing der Primer an die DNA Einzelstränge bei einer primerspezifischen Temperatur. Der letzte Schritt ist die Extension des komplementären DNA Doppelstranges durch die DNA Polymerase. Den Zyklen wird eine
zusätzliche 15 minütige Denaturierungsphase vorangestellt, um sicherzustellen, dass die gesamte eingesetzte DNA in einzelsträngiger Form vorliegt. Am Ende der PCR wird eine 10 minütige Extensionsphase angehängt, damit alle PCR Produkte vervollständigt werden können.

Zur Genotypisierung der hDDAH 1 transgenen Mäuse bzw. ihrer nicht transgenen *littermates* wird eine PCR mit spezifischen Primern für die humane DDAH 1 durchgeführt, so dass nur bei den Tieren, die diese genetische Veränderung tragen, eine Bande von 300 bp erscheint. Zur Kontrolle wird mit allen Proben zusätzlich eine PCR mit murinen GAPDH Primern durchgeführt, GAPDH ist ein typisches Haushaltsgen und deshalb wird bei allen Proben ein Amplifikat von ca. 200 bp erstellt.

Die PCRs werden in einem 30 µl Ansatz durchgeführt, verwendet wird der Hot Star Taq Mastermix (Qiagen). Die Primer werden mit sterilem Wasser auf eine Konzentration von 50 pmol/µl eingestellt.

**PCR Ansatz:**

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Star Taq Mastermix 2x</td>
<td>15 µl</td>
</tr>
<tr>
<td>Primer forward</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer reverse</td>
<td>1 µl</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µl</td>
</tr>
<tr>
<td>Ad 30 µl Aqua bidest</td>
<td>12 µl</td>
</tr>
</tbody>
</table>

Das verwendete PCR Programm für beide Primerpaare:

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Temperatur</th>
<th>Zeitspanne</th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C für 15 min</td>
<td>94°C für 1 min</td>
<td>36 Zyklen</td>
</tr>
<tr>
<td>56°C für 1 min</td>
<td>72°C für 1 min</td>
<td></td>
</tr>
<tr>
<td>72°C für 10 min</td>
<td>4°C ∞</td>
<td></td>
</tr>
</tbody>
</table>

Nach erfolgter PCR werden die Proben mit Ladepuffer (Fermentas) versetzt und mit einer 100 bp DNA Leiter (Biolabs) auf ein Agarosegel aufgetragen und bei 120 V für 30 min in Horizontalgelmännern mit einem Gelvolumen von 30 ml mit TBE als Laufpuffer angestellt. Zur Herstellung des Geles werden 1 % Agarose mit 1x TBE Puffer in der Mikrowelle kurz aufgekocht, nach Abkühlen auf ca. 50°C mit Ethidiumbromid versetzt und das Gel gegossen. Das Ethidiumbromid dient dabei dem späteren Sichtbarmachen der Banden, da

Abbildung 12: Darstellung eines typischen Bandenmusters auf einem Agarosegel. Gezeigt sind die PCR Produkte der humanen DDAH 1 Primer (A) sowie die GAPDH Kontroll PCRs (B). Von den getesteten 18 Tieren liefern 10 eine Bande mit den DDAH 1 Primern, diese Tiere werden somit als transgen eingestuft. Die verbleibenden 8 anderen werden als Wildtypen verwendet.

Da GAPDH in allen Proben vorhanden sein sollte dient dieses PCR Produkt lediglich als Kontrolle dafür, dass in allen Proben DNA isoliert werden konnte. Bei den hDDAH 1 PCR Ansätzen zeigt sich bei etwa 50 % aller Proben eine Bande, diese Tiere sind somit Träger des humanen DDAH 1 Gens. Bei den Proben, die keine Bande liefern, ist diese Insertion nicht erfolgt und somit handelt es sich bei diesen Tieren um Wildtypen.

3.1.4 PROTEINANALYSEN


3.1.4.1 GEWEBEPRÄPARATION UND HOMOGENISIERUNG

Nach der Entnahme werden die einzelnen Organe (Aorta, Leber, Niere) in PBS Puffer sofort auf Eis gekühlt und unter einer Lupe vom umgebenden Bindegewebe und Fett befreit. Es folgt die Homogenisierung des Gewebes in Hg Lösung im Tissue Lyser, hierbei werden 20-30 mg mit RLT Puffer und einer Stahlkugel für 2 min bei 30 Hz geschüttelt.
Handelt es sich bei den zu untersuchenden Proben um Zellen wie etwa isolierte neutrophile Granulozyten, so entfällt dieser erste Schritt, stattdessen werden die Zellen bis zur Lyse sonifiziert. Anschließend werden die unlöslichen Bestandteile des Homogenats bzw. der Zellsuspension für 5 min bei 6000 rpm und 4°C abzentrifugiert und der Überstand in ein neues Eppendorf Gefäß überführt. Bis auf ein Aliquot für die Proteinbestimmung wird der Überstand mit Lämmli versetzt und bei 95°C für 5 min denaturiert.

3.1.4.2 QUANTITATIVE BESTIMMUNG DER PROTEINKONZENTRATION

Die quantitative Analyse der Homogenate erfolgt nach der Bradford Methode, die auf der Bindung des Farbstoffes Coomassie Brilliant Blue G-250 an Polypeptide (MG > 3000) unter sauren Bedingungen basiert. Sie ist mit einer Verschiebung der Wellenlänge von 465 nm nach 595 nm verbunden. Da der Farbwechsel nicht linear verläuft, muss bei jeder Bestimmung eine Standardkurve angefertigt werden.


BSA Standardreihe:

<table>
<thead>
<tr>
<th>Aqua bidest</th>
<th>BSA Lösung 0,1 μg/μl</th>
<th>BioRad Bradford Reagenz</th>
<th>Enthaltene Menge Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 μl</td>
<td>0 μl</td>
<td>200 μl</td>
<td>0 μg</td>
</tr>
<tr>
<td>795 μl</td>
<td>5 μl</td>
<td>200 μl</td>
<td>0,5 μg</td>
</tr>
<tr>
<td>790 μl</td>
<td>10 μl</td>
<td>200 μl</td>
<td>1 μg</td>
</tr>
<tr>
<td>780 μl</td>
<td>20 μl</td>
<td>200 μl</td>
<td>2 μg</td>
</tr>
<tr>
<td>760 μl</td>
<td>40 μl</td>
<td>200 μl</td>
<td>4 μg</td>
</tr>
<tr>
<td>740 μl</td>
<td>60 μl</td>
<td>200 μl</td>
<td>6 μg</td>
</tr>
<tr>
<td>720 μl</td>
<td>80 μl</td>
<td>200 μl</td>
<td>8 μg</td>
</tr>
<tr>
<td>700 μl</td>
<td>100 μl</td>
<td>200 μl</td>
<td>10 μg</td>
</tr>
</tbody>
</table>
Vorbereitung der Proben:

<table>
<thead>
<tr>
<th>Aqua bidest</th>
<th>BioRad Bradford Reagenz</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 µl – x µl</td>
<td>200 µl</td>
<td>x µl</td>
</tr>
</tbody>
</table>

3.1.4.3 SDS PAGE UND BLOTTEN AUF EINE NITROZELLULOSEMEMBRAN

Je nach Größe des zu detektierenden Proteins werden 7,5 %-15 %ige Poliacrylamidgele der Firma Lonza verwendet, da kleine Proteine leichter durch das Gel wandern, während große Proteine eher zurückgehalten werden und dadurch langsamer sind. Es werden neben den Protein Größenstandards 10µg der denaturierten Proteinlösung auf das Gel aufgetragen. Die Elektrophorese wird bei konstant 120 V für 45 min durchgeführt.

Die aufgetrennten Proteine werden anschließend mit dem Wetblot System (BIO-RAD) für 120 min auf eine Nitrozellulosemembran geblottet, es wird ein senkrecht zum Polyacrylamid Gel gerichtetes elektrisches Feld mit 200 mA angelegt, so dass die Proteine aus dem Gel auf die Membran wandern. Zur anschließenden Kontrolle des Transfers wird die Membran für 1 min mit Ponceau-S (Sigma) gefärbt und der Größenstandard markiert.

3.1.4.4 IMMUNREAKTIONEN

Nach dem Transfer der Proteine werden zuerst die freien Bindungsstellen auf der Membran blockiert, da sich sonst der Antikörper an diese Bindungstellen heften und einen spezifischen Nachweis von Antigenen unmöglich machen würde. Das Blockieren erfolgt für 1 h bei Raumtemperatur mit einem für den Antikörper nicht erkennbaren Protein, verwendet wird hier abhängig vom verwendeten Antikörper BSA (bovines Serum Albumin) oder Hämoglobin. Anschließend wird die Membran für 2h bei Raumtemperatur mit dem in der Blockierlösung verdünnten Primärantikörper inkubiert. Es folgen 5 Waschschritte von je 5 min mit einem für jeden Antikörper unterschiedlichen Waschpuffer, hierbei werden schwächer haftende, unspezifisch gebundene Antikörper von der Membran entfernt. Die Sekundärantikörperlösung wird dann für 1,5 h auf die Membran gegeben, dieser Antikörper ist spezifisch gegen die Fc Bereiche des ersten Antikörpers gerichtet und bindet an diesen. Es folgen erneut die Waschschritte. Der sekundäre Antikörper ist mit dem Enzym HRP (*horseradish peroxidase*) gekoppelt. Die HRP katalysiert die Umsetzung von
Luminol in seine oxidierte Form, dessen Chemilumineszenz dann auf einem Film detektiert wird. Verwendet werden sowohl ECL (enhanced chemiluminescence) als auch das sensitivere Femto.

3.1.4.5 STRIPPING DER NITROZELLULOSE MEMBRANEN

Da von den meisten Proben nur wenig Protein vorhanden ist, werden die Membranen mehrfach verwendet. Dazu müssen zunächst die Antikörper vom vorherigen Western Blot von der Membran entfernt werden, um ein erneutes Binden der neuen Antikörper zu ermöglichen. Die Membran wird zweimal für 20 Minuten bei Raumtemperatur mit 0,2M Glycin (pH 2,5) gewaschen und anschließend ebenfalls zweimal für 20 Minuten mit 50mM Tris (pH 7,5). Nach diesem Procedere kann die Membran entweder direkt für die nächste Immunreaktion verwendet werden oder auch durch Trocknung für mehrere Monate konserviert werden.

3.1.5 RNA ANALYSEN

Zum besseren Verständnis der zugrunde liegenden zellulären Prozesse und Mechanismen ist es essentiell, die Gen Expressionsprofile der unterschiedlichen Gruppen zu analysieren. Aus diesem Grunde wird im Folgenden die Menge an synthetisierter RNA in Leber und Niere mittels real-time PCR ermittelt. Das dem realtime Verfahren zugrunde liegende Prinzip ist die kontinuierliche Messung eines Fluoreszenzsignals, das während der PCR proportional mit der Menge des Amplifikationsproduktes ansteigt. Verwendet werden Gen Expressionassays von Applied Biosystems, diese Primer sind sequenzspezifisch und komplementär zur Ziel DNA aufgebaut und ermöglichen so eine exakte Quantifizierung der cDNA des gewählten Transkripts. Als interne Kontrolle dient das Haushaltsgen GAPDH.

3.1.5.1 ISOLIERUNG DER RNA AUS DEM GEWEBE

Zur Gewinnung der Gesamt RNA wird das RNeasy Mini Kit (Qiagen) verwendet. Es werden 20-30 mg des Gewebes im Tissue Lyser (Qiagen) mit RLT Puffer für 2 min bei 30 Hz homogenisiert, anschließend wird das Lysat kurz abzentrifugiert und der Überstand auf die im Kit enthaltene Säule gegeben. Die RNA wird an eine Membran aus Silikagel gebunden, gewaschen und mit H₂O eluiert. Auf diese Weise können alle RNA Moleküle,
die länger als 200 Nukleotide sind, isoliert werden. Kleinere RNAs werden unter den genannten Bedingungen nicht quantitativ gebunden, da diese ca. 20 % der Gesamt RNA einer Zelle ausmachen, werden die anderen RNAs auf diese Weise gleichzeitig angereichert.

Die Kontrolle der Qualität der RNA erfolgt durch die Ermittlung der Quotienten 260 nm/280 nm sowie 260 nm/230 nm im Photometer. Akzeptiert werden für beide Quotienten Werte im Bereich von 1,8-2,2.

### 3.1.5.2 REVERSE TRANSKRIPTION

Dient mRNA oder Gesamt RNA als Ausgangsmaterial für die PCR, so muss vor der eigentlichen PCR eine reverse Transkription durchgeführt werden. Die Reaktion wird mit der RNA abhängigen DNA Polymerase reverse Transkriptase durchgeführt, wobei als Produkt eine zur eingesetzten RNA Matriz komplementäre Einzelstrang DNA gebildet wird. Diese cDNA wird dann in der nachfolgenden PCR zur Doppelstrang DNA ergänzt. Bei der reversen Transkription werden zuerst Oligo-(dT)-Primer an die Poly-(A)-Überhänge der mRNA angeheftet und so die gesamte cDNA synthetisiert. Erst in einer anschließenden PCR erfolgt die Anlagerung der für den gesuchten Genabschnitt spezifischen Primer an die cDNA.

Die Synthese der cDNA erfolgt mit dem *High-capacity cDNA archive Kit* (Applied Biosystems). Für die Synthesen werden je 1 μg RNA eingesetzt. Die Kontrolle der Qualität der cDNA wird durch eine PCR mit GAPDH Primern durchgeführt, die Ansätze werden bei folgenden Temperaturen und Zeiten inkubiert:

- 25°C; 10 Minuten
- 37°C; 2 Stunden
- Kühlung auf 4°C

Die Größe und Menge des Amplifikats wird auf einem Agarosegel überprüft,

Abbildung 13: **Typisches Agarosegel zur Kontrolle der cDNA Synthese.** In allen PCR Reaktionen wird eine vergleichbare Menge des GAPDH Gens amplifiziert, daraus wird geschlossen, dass die RNA Isolierung sowie die cDNA Synthese erfolgreich gewesen ist und das Amplifikat für die weiteren Versuche eingesetzt werden kann.
Nach der Reaktion werden 150 µl nukleasefreies H₂O in den Ansatz pipettiert, dieser aliquotiert und die Aliquots bis zur Verwendung in einer realtime PCR bei -20°C gelagert. Als Vorlage für einen PCR Ansatz werden 11 µl dieser verdünnten cDNA eingesetzt.

### 3.1.5.3 REALTIME PCR


Abbildung 14: **Ergebnis einer typischen realtime PCR.** Je nach Menge an RNA, die im Organismus vorhanden war, erreichen die Amplifikate der cDNA zu unterschiedlichen Zeitpunkten den Schwellenwert, den sogenannten CT Wert.
Die Auswertung erfolgt durch eine relative Quantifizierung, der ΔΔCT Methode: Die unterschiedliche Expression wird hier als x fache Expression angegeben. Für die Normalisierung werden die CT Werte der GAPDH Kontrolle herangezogen, die CT Werte werden hierbei einfach voneinander abgezogen (delta CT). Dann werden die beiden delta-CT Werte der einzelnen Gruppen (z.B. Wildtyp/MPO knockout, basal/ nach LPS Gabe) voneinander abgezogen (delta delta CT-Wert) und in die Gleichung x fache Expression (Gruppe A zu Gruppe B) = $2^{-\text{delta-delta-CT}}$ eingesetzt.

3.2 VERSUCHE AN HUVECS IN DER ZELLKULTUR

3.2.1 KULTIVIERUNG VON HUVECS

Die Kultivierung der Endothelzellen (human umbilical vein endothelial cells = HUVECs) erfolgt bis zur Konfluenz in 75 cm$^2$ Zellkulturflaschen in einem befeuchteten Inkubator bei 37°C, 5 % CO$_2$ und einer relativen Luftfeuchtigkeit von 98 %. Die Kultivierung der HUVECs erfolgt in Endothelial Cell Growth Medium, dem 100 U/ml Penicillin und 100 μg/ml Streptomycin zugesetzt werden. Ein Mediumwechsel wird im Abstand von 2 Tagen vorgenommen. Der konfluente Monolayer zeigt im Phasenkontrast Mikroskop das für Endothelzellen typische Bild polygonaler, pflastersteinartiger Zellen. Nach erreichter Konfluenz wird das Kulturmedium abgesaugt, der Zellrasen in 4 ml PBS gewaschen und die Zellen durch Zugabe von 2 ml 0,05 % Trypsin/EDTA für 3 min im Brutschrank trypsiniert. Durch Zugabe von 1 ml Kälberserum in Kulturmedium wird die Trypsinreaktion gestoppt, die Zellen in ein 15 ml Falcon überführt und zentrifugiert (1000 rpm, 3 min). Das Zellpellet wird in Kulturmedium resuspendiert und auf neue, mit 1 % Gelatinelösung beschichtete Kulturgefäße ausgesät. Einige Tage vor Versuchsbeginn werden die Zellen dann in chamber slides überführt und dort kultiviert, bis erneut ein dichter Zellrasen entstanden ist.
3.2.2 IMMUNFLUORESZENZ

Mit den folgenden Versuchen soll die intrazelluläre Lokalisation der Enzyme DDAH 1 und MPO in HUVECs untersucht werden. Da diese Zellen per se kein MPO enthalten, werden sie vorher mit 5 µg/ml MPO inkubiert.

Die Zellen auf den chamber slides werden für 1 h mit der MPO in Medium bei 37°C inkubiert und danach kurz mit PBS Puffer gewaschen. Anschließend werden die Zellen in 3 % Formaldehyd in PBS für 45 min fixiert und dreimal fünf min gewaschen. Zum Permeabilisieren des Gewebes erfolgt eine Inkubation mit 0,1 % Triton X-100 in PBS für 20 min. Unspezifische Bindungsstellen werden durch das Blocken für 2 h mit 10 % Ziegenserum/0,1 % Triton in PBS abgesättigt. Es folgt eine Koinkubation bei 4°C über Nacht mit 1:100 Verdünnungen der Primärantikörper gegen DDAH 1 und MPO, dies wird dadurch ermöglicht, dass die Antikörper in verschiedenen Spezies hergestellt werden und somit über verschiedene Sekundärantikörper detektiert werden. Die slides werden erneut gewaschen und dann für 2 h mit den Alexa Fluor Sekundärantikörpern im Blockmedium inkubiert, es ist wichtig dass die folgenden Schritte in Dunkelheit durchgeführt werden, da sonst das Fluoreszenzsignal stark abnimmt. Nach einem weiteren Waschschritt werden die Zellkerne mit DAPI angefärbt, wobei 1 µg DAPI (1 mg/ml)/ ml PBS eingesetzt wird. Nach einer Inkubationszeit von 15 min wird erneut gewaschen, die Kammern der slides werden entfernt und das DakoCytomation Faramount Aqueous Mounting Fluid auf den Objektträger gegeben. Zum Schluss wird ein Deckglas aufgelegt und nach einer Trocknungszeit von etwa 30 min werden die Zellen unter dem Fluoreszenzmikroskop analysiert. Die Bilder werden an einem Fluoreszenzmikroskop (Leica) mit einer CCD Kamera von Retiga (1300 QImaging) gemacht, die Nachbearbeitung der Bilder erfolgt mittels Photoshop.

3.3 VERSUCHE MIT NEUTROPHILEN GRANULOZYTEN

Im Folgenden soll geklärt werden, ob ADMA in der Lage ist, eine Aktivierung und damit eine MPO Ausschüttung von neutrophilen Granulozyten zu induzieren. Als Positivkontrolle dient die chemoattractive Substanz formyl-Methyl-Leucyl-Phenylalanin (fMLP). Als

3.3.1 ISOLIERUNG VON HUMANEN NEUTROPHILEN GRANULOZYTEN

Gesunden Probanden werden 50 ml Blut entnommen, dieses wird umgehend heparinisert und im gleichen Volumen Dextranlösung (45 mg/ml in Natriumchlorid) aufgenommen. Nach einer Sedimentationszeit von 45 Minuten bei Raumtemperatur wird der Überstand in ein neues Gefäß überführt und mit 15 ml Histopaque 1077 unterschichtet. Es erfolgt eine Zentrifugation für 30 min bei 600 U/min. Zur hypotonen Lyse der noch vorhandenen kontaminierenden Erythrozyten wird der Überstand verworfen und das Zellpellet in 5 ml steriles Aqua bidest resuspendiert. Nach 10 s werden 45 ml 0,9% NaCl Lösung zugegeben um wieder isotope Bedingungen herzustellen. Es folgt eine weitere Zentrifugation für 10 min bei 400 U/min. Anschließend wird der Überstand verworfen und das Pellet in sterilfiltriertem HBSS mit 0,25% BSA resuspendiert. Bis zum Versuchsbeginn werden die Zellen auf Eis gelagert.

3.3.2 INKUBATION DER ISOLIERTEN ZELLEN

Pro Ansatz werden je zwei Millionen Granulozyten in 1 ml HBSS/0,25% BSA aufgenommen und mit den entsprechenden Stimulanzien (ADMA, SDMA, fMLP) versetzt fMLP ist ein typischer Vertreter der Gruppe der Formylpeptide. Dies sind starke bekannte Stimuli für eine Aktivierung der PMN, Di-, Tri- und Tetrapeptide bakterieller Herkunft. Sie werden in vivo oder nach Lyse eines Bakteriums freigesetzt. fMLP spielt in Entzündungsprozessen eine Schlüsselkomponente im Anlocken von PMN. ADMA sowie SDMA als Testsubstanzen werden mit einer Endkonzentration von 100 µM verwendet, fMLP mit 10 µM. Er folgt eine
Inkubation im Thermomixer (Eppendorf) für 30 min bei 37°C und leichtem Schütteln. Im Anschluss werden die Zellen bei 800 rpm für 5 min abzentrifugiert, der Überstand wird für die anschließenden Versuche verwendet.

### 3.3.3 BESTIMMUNG DER FREIGESETZTEN MPO KONZENTRATION


### 3.3.4 BESTIMMUNG DER FREIGESETZTEN ELASTASE MENGE

Der Nachweis erfolgt mit Hilfe eines Elastase ELISAs (human PMN Elastase EIA, ALPCO Diagnostics). Die Durchführung erfolgt nach Angaben des Herstellers: Die Überstände werden zunächst 1:100 verdünnt und die Standardreihe wird pipettiert. Es werden 100 µl der verdünnten Proben in die wells gegeben, die anschließende Inkubation wird bei 200 rpm für eine Stunde bei Raumtemperatur durchgeführt. Nach vier Waschschritten werden 150 µl des HRP Konjugates in die wells pipettiert und es folgt ein erneuter Inkubationsschritt sowie Waschschritt analog den ersten. Es werden anschließend 200 µl der TMB Substratlösung in die wells gegeben und 20 min bei Raumtemperatur inkubiert, die Reaktion wird dann durch Zugabe von 50 µl Stopflösung beendet. Die photometrische Messung erfolgt bei 450 nm.

3.3.5 BESTIMMUNG DER SUPEROXIDFREISETZUNG


3.3.6 BESTIMMUNG DER MPO AKTIVITÄT

Die MPO als Peroxidase ist in der Lage verschiedene Substrate zu oxidieren. Bei dem verwendeten Assay nutzt man diese Tatsache, um das Substrat (3,3,5,5 Tetramethylbenzidin = TMB) in Anwesenheit von Wasserstoffperoxid zu oxidieren, das dann seine Absorption bei 655 nm ändert. Die Menge an oxidiertem Substrat ist somit der
Enzymaktivität proportional. Durch Bildung des $\Delta A/\text{min} \ (A_{1\ \text{min}} - A_{0\ \text{min}})$ der Absorption bei 655 nm kann so die MPO Aktivität bestimmt werden.

Die Proben werden im Puffer (80 mM NaH$_2$PO$_4$ pH 5,5) aufgenommen, wobei 930 µl Puffer abzüglich des Probenvolumens eingesetzt werden. Nach der Zugabe von 60 µl TMB Lösung (4,8 mg/ml Dimethylformamid) wird die Reaktion mit 10µl H$_2$O$_2$ Lösung (10 mM in Aqua bidest) gestartet und die OD (optische Dichte) bei 655 nm im Photometer gemessen.

3.3.7 BESTIMMUNG DER NOS AKTIVITÄT

Die Zellen werden für 30 min bei 37°C mit 100 µM ADMA bzw. SDMA in HBSS vorinkubiert, um somit in die Zellen aufgenommen zu werden. Um noch in der Lösung befindliches ADMA und SDMA abzuwaschen, werden die Zellen dann kurz bei 800 rpm zentrifugiert, der Puffer ausgetauscht. Anschließend werden die Zellen sonifiziert und mit Protesaeinhibitoren versetzt, um die enthaltenen Enzyme aktiv zu belassen. Zur Bestimmung der Aktivität der in den PMN exprimierten nNOS und iNOS wird isotopenmarkiertes $^{15}$N Arginin eingesetzt. Hiervon werden 100 µM auf die Zellen gegeben, es wird für 30 min bei 37°C inkubiert. Die Bestimmung der NOS Aktivität erfolgt in Kooperation mit dem Institut für Experimentelle und Klinische Pharmakologie und Toxikologie des UKE durch Herrn Dr. Schwedhelm. Hierfür wird eine GC MS (gas chromatography mass spectrometry) Methode verwendet (Böger et al., 2004). Die Trennung der Analyten Nitrat und Nitrit erfolgt mit dem Gas Chromatographen und die anschließende Quantifizierung mit dem Massenspektrometer. Hierfür wird mit $^{15}$N markiertes Arginin verwendet, welches durch die NOS in der Probe bzw. bei den in vivo Versuchen im Organismus zu $^{15}$N markiertem NO metabolisiert wird. Dieses wird wiederum zu Nitrit und dann zu Nitrat oxidiert. Nitrat und Nitrit werden mit mit PFB Bromid derivatisiert und anschließend mit GC MS gemessen.
3.3.8 ADHÄSION VON NEUTROPHILEN GRANULOZYTEN AN HUVECS


Im folgenden Versuch werden nun isolierte PMN mit den zu testenden Substanzen SDMA und ADMA vorinkubiert und anschließend auf HUVECs überführt. Damit soll geprüft werden, ob ADMA in der Lage ist, eine Adhäsion der PMN auf den HUVECs zu induzieren. Hierzu werden die PMN wie beschrieben isoliert und jeweils eine Million PMN für 20 min bei 30°C mit 20mM Calcein AM (AM = Acetoxyester) inkubiert. Calcein AM wird durch die Zellmembran hindurch in lebende Zellen transportiert. In der Zelle wird die Acetoxyethylgruppe unspezifisch durch Esterasen abgespalten und in Calcein umgewandelt. Dieses ist dann in der Lage, Kalziumionen innerhalb der Zelle zu binden, was in einer starken, grünen Fluoreszenz resultiert. Diese Fluoreszenz erlaubt eine kurzzeitige Markierung der PMN, von denen anschließend 100.000 Zellen mit 100 µM SDMA oder ADMA bzw. nur HBSS Puffer als Negativkontrolle auf eine 96 well Platte mit HUVECs gegeben werden. Es folgt eine Inkubation von 20 min bei 30°C, dann werden die wells je einmal mit HBSS Puffer gewaschen, um die nicht gebundenen PMN abzuwaschen. Die Messung der Fluoreszenz der nun an die HUVECs gebundenen PMN erfolgt im Luminometer (Berthold).

3.4 BESTIMMUNG VON ADMA, SDMA UND DDAH AKTIVITÄT

Die Bestimmung von ADMA und SDMA erfolgt in der Klinischen Pharmakologie des UKE durch Dr. Schwedhelm nach der von ihm beschriebenen Methode (Schwedhelm et al. 2005). Verwendet wird ein LC MS/MS System (liquid chromatography tandem mass

Für die Messung der DDAH Aktivität wird ebenfalls das mit Deuterium markierte ADMA verwendet (Maas et al, 2007). Die zu untersuchende Probe wird dann für 0 und 30 min mit dem markierten ADMA inkubiert, so dass die enthaltene DDAH dessen Degradierung bewirkt. Dieser ADMA Abbau wird in der LC MS/MS gemessen und somit kann die Aktivität der in der Probe enthaltenen DDAH bestimmt werden. Die Vorbereitung der Proben erfolgt wie oben beschrieben, jedoch wird als interner Standard ein mit \(^{14}\text{C}\) markiertes ADMA verwendet.

### 3.5 STATISTIK

Alle Daten werden als arithmetischer Mittelwert ± Standardfehler des Mittelwerts (SEM) angegeben. Die statistische Signifikanz wird mit Hilfe des Student’schen t-Test ermittelt. Die Wahrscheinlichkeit eines Fehlers erster Art wird mit \(\alpha= 0,05\) angenommen, das Signifikanzniveau wird dementsprechend mit einer Irrtumswahrscheinlichkeit von \(p= 0,05\) festgelegt.
3.6 LEGENDE

**Farbwahl:** Zur besseren Übersicht werden in dieser Arbeit bestimmte Gruppen einheitlichen Farben zugeordnet:

- hDDAH 1 transgene Maus
- MPO knockout Maus
- Wildtyp Maus
- Probe behandelt mit ADMA
- ± Kontrolle

**Signifikanz:** Ist $p < 0,05$, so wird ein signifikanter Unterschied zwischen den angegebenen Gruppen angenommen, dies wird in den Grafiken mit * gekennzeichnet.
4 ERGEBNISSE

4.1 CHARAKTERISIERUNG DER DDAH 1 TRANSGENEN MAUS


Leber und Niere sind die Hauptorgane des ADMA Metabolismus, was zu einem Gradienten zwischen Blutkreislauf und diesen Organen führt (Nijveldt et al, 2003). DDAH 1 wird hier besonders stark exprimiert und es wurde eine Kolokalisation mit allen Isoformen der NOS beschrieben (Tojo et al, 2000). Im Folgenden wird daher hauptsächlich mit diesen Organen gearbeitet. Zunächst wurde mittels realtime PCRs untersucht, ob es in Leber- und Nierengewebe nicht nur endogene murine DDAH Aktivität, sondern als Unterschied in den transgenen Tieren zusätzlich eine Expression der humanen Form der DDAH gibt.

<table>
<thead>
<tr>
<th>Gen</th>
<th>Organ</th>
<th>Maus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>hDDAH 1</td>
<td>Leber</td>
<td>WT</td>
<td>2,14</td>
<td>1,68</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDAH +/T</td>
<td>353,24</td>
<td>29,79</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Niere</td>
<td>WT</td>
<td>1,75</td>
<td>1,48</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDAH +/T</td>
<td>912,05</td>
<td>72,64</td>
<td>5</td>
</tr>
</tbody>
</table>

Abbildung 15: Expression der humanen DDAH 1 in Leber- und Nierengewebe von Wildtypmäusen und DDAH 1 transgenen Mäusen im Vergleich. Bei den Wildtypieren DDAH +/- ist keine cDNA nachweisbar, in den transgenen Tieren DDAH +/- (gezeigt in blau) dagegen kann humane cDNA der DDAH 1 deutlich gezeigt werden.

Für beide Organe zeigte sich erwartungsgemäß, dass nur in den transgenen Mäusen cDNA der humanen DDAH 1 nachweisbar war. Diese PCRs dienten somit als Nachweis, dass die
in der weiteren Arbeit untersuchten Gewebe tatsächlich die humane DDAH 1 exprimieren und somit eine nähere Charakterisierung der eventuell bestehenden Unterschiede zwischen den Mausgruppen auf diese genetischen Unterschiede zurückgeführt werden können. Um zu untersuchen, ob es in den transgenen Tieren kompensatorisch zu einer starken Herunterregulierung der Expression der endogenen DDAH 1 und 2 kommt, weil das humane Genprodukt im starken Überschuss vorhanden ist und es somit insgesamt wieder zu einem Ausgleich der Gesamtmenge an verfügbarer DDAH kommt, wurden beide murinen DDAH Isoformen ebenfalls in realtime PCRs untersucht.

<table>
<thead>
<tr>
<th>Gen</th>
<th>Organ</th>
<th>Maus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WT</td>
<td>1,10</td>
<td>0,08</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDAH +/-T</td>
<td>1,07</td>
<td>0,09</td>
<td>5</td>
</tr>
<tr>
<td>DDAH 1</td>
<td>Leber</td>
<td>WT</td>
<td>0,89</td>
<td>0,02</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDAH +/-T</td>
<td>0,76</td>
<td>0,03</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Niere</td>
<td>WT</td>
<td>0,95</td>
<td>0,13</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDAH +/-T</td>
<td>0,85</td>
<td>0,04</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WT</td>
<td>0,89</td>
<td>0,02</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDAH +/-T</td>
<td>0,76</td>
<td>0,03</td>
<td>5</td>
</tr>
</tbody>
</table>

---

![Graph A](image-url)

- **Relative Expression**
- **DDAH 1**
- **DDAH 2**
Abbildung 16: Expression der endogenen DDAH 1 und 2 in Lebergewebe (A) und Nierengewebe (B) von Wildtypmäusen und hDDAH 1 transgenen Mäusen im Vergleich. Bei beiden Organen ist eine leichte Verringerung der Expression bei den transgenen Tieren zu sehen, diese sind jedoch nicht statistisch signifikant.

In beiden untersuchten Geweben zeigte sich sowohl bei DDAH 1 als auch 2 eine leichte Herunterregulierung bei den transgenen Tieren im Vergleich zu den entsprechenden Wildtypen, allerdings ist dieser Effekt zwischen den Gruppen nicht signifikant. In der Bilanz haben die hDDAH 1 transgenen Tiere durch das humane Transgen eine stark erhöhte DDAH Expression in Leber und Niere.
4.1.2 EXPRESSION DER ENOS UND INOS


<table>
<thead>
<tr>
<th>Gen</th>
<th>Organ</th>
<th>Maus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>eNOS</td>
<td>Leber</td>
<td>WT</td>
<td>2,63</td>
<td>0,56</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDAH +/-T</td>
<td>0,89</td>
<td>0,05</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Niere</td>
<td>WT</td>
<td>1,76</td>
<td>0,09</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDAH +/-T</td>
<td>0,99</td>
<td>0,08</td>
<td>5</td>
</tr>
<tr>
<td>iNOS</td>
<td>Leber</td>
<td>WT</td>
<td>0,83</td>
<td>0,06</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDAH +/-T</td>
<td>0,37</td>
<td>0,03</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Niere</td>
<td>WT</td>
<td>1,55</td>
<td>0,10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDAH +/-T</td>
<td>0,96</td>
<td>0,08</td>
<td>5</td>
</tr>
</tbody>
</table>
Abbildung 17: Die relative Expression von eNOS und iNOS in Lebergewebe (A) und Nierengewebe (B) von Wildtyp und hDDAH 1 transgenen Mäusen im Vergleich. Es ist deutlich zu sehen, dass die iNOS in beiden Mausmodellen in der Leber schwächer exprimiert wird als die eNOS, in Nierengewebe ist dieser Unterschied nicht vorhanden. Darüber hinaus besteht ein signifikanter Unterschied zwischen WT und hDDAH 1 Mäusen: Beide Isoformen werden in beiden Organen der transgenen Tiere wesentlich weniger transkribiert.
Die Auswertung der realtime PCRs zeigen starke Unterschiede in der Genexpression von hDDAH 1 und WT Tieren. DDAH 1 Mäuse exprimieren in beiden untersuchten Organen signifikant weniger von beiden NOS Isoformen. Im Lebergewebe ist zusätzlich noch erkennbar, dass die eNOS bei beiden Mausmodellen stärker exprimiert wird als die iNOS.

4.1.3 ADMA UND SDMA PLASMA KONZENTRATIONEN

Aufgrund der beschriebenen Unterschiede in der DDAH Genexpression zwischen den hDDAH 1 transgenen und Wildtypieren in 4.1.1 sollte nun der funktionelle Nachweis erbracht werden, dass als Resultat auch die Proteinexpression und Enzymaktivität bei den hDDAH 1 transgenen Mäusen erhöht ist. Hierzu wurde das Plasma beider Tiergruppen entnommen und die ADMA und SDMA Konzentrationen darin bestimmt.

<table>
<thead>
<tr>
<th></th>
<th>Maus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal ADMA</td>
<td>WT</td>
<td>0,67</td>
<td>0,03</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>DDAH +/T</td>
<td>0,48</td>
<td>0,02</td>
<td>9</td>
</tr>
<tr>
<td>LPS</td>
<td>WT</td>
<td>0,95</td>
<td>0,08</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>DDAH +/T</td>
<td>0,52</td>
<td>0,02</td>
<td>9</td>
</tr>
<tr>
<td>Basal SDMA</td>
<td>WT</td>
<td>0,15</td>
<td>0,01</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>DDAH +/T</td>
<td>0,17</td>
<td>0,01</td>
<td>9</td>
</tr>
<tr>
<td>LPS</td>
<td>WT</td>
<td>0,2</td>
<td>0,02</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>DDAH +/T</td>
<td>0,25</td>
<td>0,02</td>
<td>9</td>
</tr>
</tbody>
</table>
Abbildung 18: ADMA und SDMA Konzentrationen im Plasma von transgenen Tieren und Wildtypen basal und nach Gabe von LPS. (A) Die ADMA Plasmakonzentrationen unterscheiden sich statistisch signifikant mit p ≤ 0,01 bei den Mausgruppen, wobei die transgenen Mäuse weniger haben. Nach 4 Stunden nach LPS Gabe ist bei den Wildtypen ein deutlicher ADMA Anstieg zu sehen, bei den transgenen Tieren nicht. (B) Bei den SDMA Konzentrationen ist basal kein signifikanter Unterschied vorhanden.

Es sind basal deutliche Unterschiede in den ADMA Plasmakonzentrationen zwischen den Wildtypen und den transgenen Tieren zu sehen. Die SDMA Werte hingegen unterscheiden sich nicht. Nach erfolgter LPS Injektion ändert sich dieses Bild: Die transgenen Tiere haben keine geänderten ADMA Werte, bei den Wildtypen hingegen ist ein signifikanter Anstieg
zu sehen. Die SDMA Werte steigen bei beiden Tiergruppen als Ausdruck verschlechterter Nierenfunktion unter septischen Bedingungen signifikant an.

4.1.4 MODULATION DES NO SIGNALWEGES DURCH DDAH


Da die hDDAH1 transgenen Mäuse weniger ADMA besitzen als die Wildtypen kann die NOS verstärkt NO produzieren, weil weniger Hemmstoff vorhanden ist. Im Folgenden soll untersucht werden, welchen Einfluss diese Tatsache auf die Moleküle hat, die downstream der NOS die NO Effekte modulieren. Da es sich bei diesen Molekülen um Enzyme handelt, kommt es nicht nur auf die Expression auf Genebene an, sondern auch auf die Aktivität. Als Maß der Aktivität des NO Signalweges dient der Phosphorylierungsgrad von VASP. Aus diesem Grunde wurde neben der Proteinexpression der löslichen Guanylatzyklase und Proteinkinase 1 auch dieser Quotient von P-VASP am Gesamt VASP ermittelt.
Abbildung 19: Typisches Ergebnis sowie die Auswertungen eines Western Blots mit Antikörpern gegen das Haushaltsgen Aktin als Ladekontrolle, sGC, cGK1 sowie beiden Formen von VASP in Aortengewebe. (A) Die Banden eines Blots (B) Die Auswertung mit allen Western Blots. Die erste Bande gehört jeweils zu drei gepoolten Aorten von WT Mäusen (n=1 entspricht also den Aorten von je 3 Tieren), analog dazu die zweiten Banden zu Aorten von hDDAH1 transgenen Tieren. In der Ladekontrolle ist kein Unterschied in der Bandenstärke zu sehen, bei sGC und cGK1 ist die zweite Bande sehr viel stärker ausgeprägt und bei den hDDAH1 Tieren ist der Anteil von phosphoryliertem VASP am Gesamt VASP stark erhöht. Alle Daten in (B) wurden auf die Menge an Aktin in den jeweiligen Blots normalisiert.

Die Versuche wurden an Aortengewebe durchgeführt, da das NO im Endothel gebildet wird und somit hier ein direkter Einfluss der verfügbaren NO Menge auf die weitere Signalkaskade nachweisbar ist. Da eine murine Aorta keine ausreichenden Mengen an Protein zur Verfügung stellt, wurden für die Versuche je drei Aorten gepoolt. Dies wurde

<table>
<thead>
<tr>
<th>Protein</th>
<th>Maus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>sGC</td>
<td>WT</td>
<td>0,63</td>
<td>0,06</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DDAH +/-T</td>
<td>0,76</td>
<td>0,14</td>
<td>3</td>
</tr>
<tr>
<td>cGK1</td>
<td>WT</td>
<td>0,40</td>
<td>0,02</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DDAH +/-T</td>
<td>0,70</td>
<td>0,04</td>
<td>3</td>
</tr>
<tr>
<td>P-VASP/</td>
<td>WT</td>
<td>43,70</td>
<td>3,66</td>
<td>3</td>
</tr>
<tr>
<td>VASP</td>
<td>DDAH +/-T</td>
<td>56,30</td>
<td>0,78</td>
<td>3</td>
</tr>
</tbody>
</table>
dreimal mit verschiedenen Tieren wiederholt, um die Ergebnisse zu validieren. Bei den hDDAH 1 transgenen Tieren ist signifikant mehr sGC und cGK1 vorhanden, auch die Aktivität der cGK1 ausgedrückt im Phosphorylierungsgrad von VASP ist erhöht. Somit resultiert eine gesteigerte DDAH 1 Expression in niedrigeren ADMA Konzentrationen und einer Verstärkung der NO Signalkaskade.

4.2 HYPOTHESE I: MPO INDUZIERT ADMA AKKUMULATION


Es ist bekannt, dass die Aktivität der DDAH sehr sensitiv für derartige Stimuli ist: Die Aktivität wird generell beeinträchtigt durch oxidativen Stress, was zu einer Akkumulation von ADMA führt. Es ist gezeigt, dass NO Zysteine der DDAH S-nitrosylieren kann, dies geschieht vor allem bei überschießender NO Produktion nach Induzierung der iNOS und ist als negativer feedback Mechanismus anzusehen (Palm et al, 2007). Eine Vielzahl von weiteren Ursachen kommt aber ebenfalls für die Entstehung von oxidativem Stress und somit für eine unerwünschte Inaktivierung der DDAH in Frage wie etwa oxidiertes LDL Cholesterol, inflammatorische Zytokine oder auch Infekte (Cooke et al, 2004). Vor allem aber könnte die MPO Aktivität in diesem Zusammenhang ein wichtiger Mediator sein.

Abbildung 20: Immunfloureszenzaufnahmen von HUVECs mit Antikörpern gegen DDAH1 (rot) und MPO (grün). In den übereinander gelegten Bildern (merge) rechts erscheinen die Überschneidungen in der Lokalisaton beider Antikörper in gelb.

Die Zellkerne der Endothelzellen sind in blau eingefärbt, die DDAH 1 erscheint in rot. Wie auf dem Bild zu sehen ist, handelt es sich bei diesem Enzym um ein primär zytoplasmatisches Protein, wobei es jedoch auch in der Membran von Endothelzellen lokalisiert werden konnte (Birdsey et al, 2000). Die MPO akkumuliert ebenfalls im
Zytoplasma und kann wie auch die DDAH um den Kern herum bzw. im Kern lokalisiert werden. Zusätzlich ist zu sehen, dass einige Moleküle MPO noch von der Inkubation außen an den Zellen haften, wodurch die typischen pflastersteinartigen Strukturen der Endothelzellen sichtbar werden. Im übereinander gelegten Bild sind die Orte der Kolokalisation beider Proteine gelb gefärbt- somit konnte gezeigt werden, dass MPO und DDAH 1 intrazellulär ähnlich lokalisiert sind und deshalb eine direkte Interaktion zwischen diesen Enzymen möglich ist.

4.2.2 MPO MODULIERT DIE GENEXPRESSION

In den folgenden Versuchen wurde untersucht, ob die Produkte von MPO oder die MPO selbst die Expression der am ADMA Metabolismus beteiligten Proteine auf Genebene ändern.

4.2.2.1 DDAH EXPRESSION

Im Folgenden wurde der Einfluss von MPO auf die Genexpression der DDAH 1 und DDAH 2 anhand des MPO knockout Mausmodells im Vergleich zu Wildtypieren untersucht.

<table>
<thead>
<tr>
<th>Gen</th>
<th>Organ</th>
<th>Maus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDAH 1</td>
<td>Leber</td>
<td>WT</td>
<td>1,01</td>
<td>0,05</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>14,14</td>
<td>2,11</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Niere</td>
<td>WT</td>
<td>1,00</td>
<td>0,05</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>12,41</td>
<td>0,55</td>
<td>5</td>
</tr>
<tr>
<td>DDAH 2</td>
<td>Leber</td>
<td>WT</td>
<td>1,00</td>
<td>0,04</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>1,05</td>
<td>0,07</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Niere</td>
<td>WT</td>
<td>1,02</td>
<td>0,08</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>1,40</td>
<td>0,09</td>
<td>5</td>
</tr>
</tbody>
</table>
Abbildung 21: Expression der DDAH 1 und 2 in Lebergewebe (A) und Nierengewebe (B) von Wildtypmäusen und MPO knockout Tieren im Vergleich. Bei beiden Organen ist eine starke Erhöhung der DDAH 1 Expression bei den knockout Tieren zu sehen. Die DDAH 2 Expression ist bei beiden Mausgruppen ähnlich.

Die Ergebnisse der realtime PCRs zeigen drastische Unterschiede in der DDAH 1 Expression zwischen Wildtyp und MPO knockout Tieren: In beiden untersuchten Organen haben die
MPO knockouts eine 12-14 fach erhöhte Expression. Bei der DDAH 2 Expression hingegen sind keine Unterschiede vorhanden. Es konnte somit gezeigt werden, dass MPO durch eine Änderung der Genexpression stark in den ADMA Metabolismus eingreift. Da das ADMA abbauende Enzym DDAH betroffen ist, wurden im Folgenden ebenfalls die ADMA bildenden Proteine, die Protein Methyltransferasen (PRMT), untersucht.

4.2.2.2 PRMT EXPRESSION

Die Gruppe der PRMT wird in zwei Klassen unterteilt: Typ 1 (PRMT 1, 3, 4, 6) methyliert einen Stickstoff zweimal und führt so zur Bildung von ADMA, Typ 2 (PRMT 5) führt durch die einfache Methylierung beider endständigen Stickstoffe zur Synthese von SDMA. Es wurde untersucht, ob sich die Expression diese ADMA bzw. SDMA generierenden Proteine bei MPO Defizienz ändert.

<table>
<thead>
<tr>
<th>Gen</th>
<th>Organ</th>
<th>Maus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRMT 1</td>
<td>Leber</td>
<td>WT</td>
<td>1,01</td>
<td>0,05</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>0,67</td>
<td>0,11</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Niere</td>
<td>WT</td>
<td>1,00</td>
<td>0,03</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>0,80</td>
<td>0,02</td>
<td>5</td>
</tr>
<tr>
<td>PRMT 3</td>
<td>Leber</td>
<td>WT</td>
<td>1,00</td>
<td>0,03</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>0,74</td>
<td>0,07</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Niere</td>
<td>WT</td>
<td>1,01</td>
<td>0,08</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>0,96</td>
<td>0,07</td>
<td>5</td>
</tr>
<tr>
<td>PRMT 6</td>
<td>Leber</td>
<td>WT</td>
<td>1,00</td>
<td>0,03</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>0,60</td>
<td>0,09</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Niere</td>
<td>WT</td>
<td>1,03</td>
<td>0,12</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>0,94</td>
<td>0,08</td>
<td>5</td>
</tr>
<tr>
<td>PRMT 5</td>
<td>Leber</td>
<td>WT</td>
<td>1,01</td>
<td>0,07</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>1,18</td>
<td>0,13</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Niere</td>
<td>WT</td>
<td>1,01</td>
<td>0,06</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>1,42</td>
<td>0,06</td>
<td>5</td>
</tr>
</tbody>
</table>
Abbildung 22: Expression der PRMT in Leber- und Nierengewebe bei Wildtyp und MPO knockout Tieren. In beiden untersuchten Organen, Leber (A) und Niere (B), ist die Expression der ADMA generierenden PRMT 1,3 und 6 leicht erniedrigt, während die Expression der SDMA generierenden PRMT 5 leicht erhöht ist.

Die Daten zeigen, dass die Expression der PRMT durch MPO leicht geändert wird: Die für die ADMA Synthese zuständigen PRMT 1,3 und 6 werden in den knockout Tieren in beiden untersuchten Organen weniger exprimiert als in den Wildtypen. Die SDMA generierende PRMT 5 hingegen wird in den knockout Mäusen verstärkt exprimiert.
Da die vorherigen Versuche zeigen, dass MPO in der Lage ist, die Genexpression von sowohl DDAH als auch PRMTs zu ändern, sollte im Folgenden untersucht werden, ob auch die NOS Isoformen eNOS und iNOS Expression beeinflusst wird.

<table>
<thead>
<tr>
<th>Gen</th>
<th>Organ</th>
<th>Maus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>eNOS</td>
<td>Leber</td>
<td>WT</td>
<td>1,01</td>
<td>0,09</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>1,54</td>
<td>0,24</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Niere</td>
<td>WT</td>
<td>1,05</td>
<td>0,17</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>1,83</td>
<td>0,24</td>
<td>5</td>
</tr>
<tr>
<td>iNOS</td>
<td>Leber</td>
<td>WT</td>
<td>1,09</td>
<td>0,17</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>1,85</td>
<td>0,37</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Niere</td>
<td>WT</td>
<td>1,02</td>
<td>0,10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO -/-</td>
<td>2,33</td>
<td>0,20</td>
<td>5</td>
</tr>
</tbody>
</table>
Abbildung 23: Die relative Expression von eNOS und iNOS in Lebergewebe (A) und Nierengewebe (B) von Wildtyp und MPO knockout Mäusen im Vergleich. Es ist deutlich zu sehen, dass beide Formen der NOS in beiden Organen in knockout Tieren stärker exprimiert werden als in den Wildtypen.

Beide untersuchten Isoformen der NOS wurden in Leber und Niere der MPO knockout Tiere stärker exprimiert als in den Wildtypen. Auch hier konnte also ein Einfluss von MPO auf die Transkription nachgewiesen werden. Deshalb sollte im Folgenden untersucht werden, ob sich diese Unterschiede auch auf Proteinebene bestätigen lassen.
4.2.3 MPO MODULIERT DIE PROTEINEXPRESSION DER NOS

Nachdem die realtime Expressionsversuche mit den NOS in Leber- und Nierengewebe durchgeführt wurden, sollte nun die Menge an gebildeter eNOS und iNOS in Aortengewebe untersucht werden, da sich hier der Hauptort der für die Endothelfunktion relevante NO Synthese befindet.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Maus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>eNOS</td>
<td>WT</td>
<td>0,99</td>
<td>0,02</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MPO -/-</td>
<td>2,02</td>
<td>0,09</td>
<td>3</td>
</tr>
<tr>
<td>iNOS</td>
<td>WT</td>
<td>0,99</td>
<td>0,12</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MPO -/-</td>
<td>1,71</td>
<td>0,26</td>
<td>3</td>
</tr>
</tbody>
</table>

Abbildung 24: Ergebnisse der Western Blots von eNOS und iNOS in Aortengewebe. Beide Formen der NOS sind in den MPO knockout Tieren verstärkt vorhanden.

Die Western Blots zeigen deutlich, dass auch auf Proteinebene bei den MPO knockout Tieren mehr iNOS und eNOS als bei den Wildtypen vorhanden ist, dies bestätigt die Beobachtungen zur Expression von eNOS und iNOS auf Genebene unter 4.2.2.3.
4.2.4 MPO MODULIERT DEN NO SIGNALWEG

Analog zu den vorherigen Versuchen unter 4.1.4 wurde nun der NO downstream Weg in den MPO knockout Mäusen untersucht. Da diese Tiere kein MPO besitzen, welches das gebildete NO inaktivieren könnte, ist eine höhere NO Bioverfügbarkeit zu erwarten. Im Folgenden soll untersucht werden, ob dies auch in einer verstärkten Expression und Aktivität der beteiligten Moleküle des NO Signalwegs resultiert.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Maus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>sGC</td>
<td>WT</td>
<td>0,92</td>
<td>0,15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MPO -/-</td>
<td>1,31</td>
<td>0,12</td>
<td>3</td>
</tr>
<tr>
<td>cGK1</td>
<td>WT</td>
<td>0,50</td>
<td>0,05</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MPO -/-</td>
<td>0,88</td>
<td>0,03</td>
<td>3</td>
</tr>
<tr>
<td>P-VASP/ VASP</td>
<td>WT</td>
<td>61,70</td>
<td>3,53</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MPO -/-</td>
<td>75,00</td>
<td>3,06</td>
<td>3</td>
</tr>
</tbody>
</table>

Abbildung 25: Auswertung der Western Blots mit Antikörpern gegen das Haushaltsen Aktin als Ladekontrolle, sGC, cGK1 sowie beiden Formen von VASP in Aortengewebe. (A) Die Banden eines Blots(B) Die Auswertung mit allen Western Blots. Die erste Bande gehört jeweils zu drei gepoolten Aorten von WT Mäusen, analog dazu die zweiten Banden zu Aorten von MPO knockout Tieren. Es ist mehr sGC und cGK1 bei den knockout Mäusen zu sehen, auch der Anteil von phosphoryliertem VASP am Gesamt VASP ist hier erhöht. Alle Daten wurden auf die Menge an Aktin in den jeweiligen Blots normalisiert.
Auch für diese Experimente wurden für die Versuche je drei Aorten gepoolt. Es ist deutlich zu sehen, dass bei den MPO knockout Tieren signifikant mehr sGC und cGK1 exprimiert wird, auch der Phosphorylierungsgrad vom VASP ist erhöht. Somit konnte gezeigt werden, dass auch MPO Defizienz zu einer Verstärkung der NO Signalkaskade führt.

4.2.5 MPO MODULIERT DIE DDAH 1 AKTIVITÄT

Im Folgenden wurde überprüft, ob MPO oder ihre Produkte neben der Beeinflussung der Gen- sowie Proteinexpression auch direkt einen Einfluss auf die Aktivität der am ADMA Metabolismus beteiligten Enzyme nehmen können. Hierbei wurde das intakte DDAH 1 Enzym mit MPO und den entsprechenden Substraten für MPO inkubiert und anschließend die Aktivität der DDAH mit der unbehandelten DDAH verglichen. Um zu evaluieren, ob es sich um eine direkte Protein Protein Interaktion oder um die Auswirkungen des MPO Produktes HOCl handelt, wurde die DDAH 1 zusätzlich statt mit MPO nur mit HOCl inkubiert bzw. mit inaktivierter MPO.

<table>
<thead>
<tr>
<th>DDAH Aktivität</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>basal</td>
<td>0,66</td>
<td>0,03</td>
<td>6</td>
</tr>
<tr>
<td>mit MPO</td>
<td>0,14</td>
<td>0,03</td>
<td>6</td>
</tr>
<tr>
<td>mit HOCl</td>
<td>0,003</td>
<td>0,003</td>
<td>3</td>
</tr>
<tr>
<td>mit inaktiver MPO</td>
<td>0,67</td>
<td>0,016</td>
<td>3</td>
</tr>
</tbody>
</table>
Abbildung 26: **Modulierung der DDAH Aktivität durch MPO.** Dargestellt sind die Ergebnisse von drei Versuchsdurchgängen, die DDAH Aktivität wird durch Zugabe von MPO stark reduziert, ebenso durch Zugabe von HOCl. Wird die MPO jedoch vor Zugabe inaktiviert, so ist keine Änderung der DDAH Aktivität festzustellen.


Diese Versuche wurden mit definierten Mengen und aufgereinigten Proteinen durchgeführt, es sollte im Anschluss daran geprüft werden, ob MPO diese Effekte auch unter physiologischen Bedingungen in den Organen auf die DDAH hat.
Abbildung 27: **Modulierung der DDAH Aktivität durch MPO im Organhomogenat.** In beiden untersuchten Organen Leber und Niere ist bei den MPO knockout Mäusen eine höhere DDAH Aktivität zu sehen als in den Wildtypen.

Die Ergebnisse bestätigen die vorherigen Versuche an der isolierten DDAH: Auch in den Organhomogenaten von Leber und Niere sind bei den MPO knockout Tieren erhöhte DDAH Aktivitäten festzustellen.

---

**4.2.6 MPO MODULIERT DIE NOS AKTIVITÄT**

Da in 4.2.5 gezeigt werden konnte, dass MPO bzw. ihre Produkte die DDAH Aktivität hemmt, sollte anschließend überprüft werden, ob dieser Effekt sich auch in einer geänderten NOS Aktivität wiederspiegelt, da eine redoxsensitive Inhibierung der DDAH zu einer erhöhten Kapazität des endogenen NOS Inhibitors ADMA und so zu einer reduzierten NOS Aktivität führen müsste.

---

<table>
<thead>
<tr>
<th>Organ</th>
<th>Maus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leber</td>
<td>WT</td>
<td>7,55</td>
<td>0,36</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MPO-/-</td>
<td>8,50</td>
<td>0,40</td>
<td>5</td>
</tr>
<tr>
<td>Niere</td>
<td>WT</td>
<td>11,26</td>
<td>0,73</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MPO-/-</td>
<td>15,27</td>
<td>1,37</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOS Aktivität</th>
<th>Maus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>basal</td>
<td>WT</td>
<td>4,12</td>
<td>0,30</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MPO -/-</td>
<td>5,74</td>
<td>0,54</td>
<td>5</td>
</tr>
<tr>
<td>mit LPS</td>
<td>WT</td>
<td>4,38</td>
<td>0,11</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MPO -/-</td>
<td>11,29</td>
<td>0,87</td>
<td>3</td>
</tr>
</tbody>
</table>

Abbildung 28: Aktivität der NOS in Wildtyp und MPO knockout Tieren. MPO knockout Mäuse haben bereits basal eine höhere NOS Aktivität, unter LPS bleibt die Aktivität der Wildtypiere gleich, bei den knockout Tieren steigt sie noch einmal signifikant an.

Die Messungen der NO Synthase Aktivität ergaben, dass die MPO knockout Mäuse verglichen mit den Wildtypen basal wie auch unter LPS eine signifikant höhere NOS Aktivität haben. Besonders auffallend ist, dass es bei den Wildtypen nach LPS Gabe zu keinem Anstieg der NOS Aktivität kommt, während sich die Aktivität bei den knockout Mäusen annähernd Verdoppelt.

4.2.7 MPO MODULIERT ADMA PLASMA KONZENTRATIONEN

Da unter 4.2.5 gezeigt wurde, dass MPO knockout Mäuse in Leber und Nierengewebe eine höhere DDAH Aktivität haben als Wildtypmäuse und sich dies unter 4.2.6 mit einer
ebenfalls gesteigerten systemischen NOS Aktivität bestätigte, soll nun untersucht werden, ob diese Unterschiede der ADMA Metabolisierung ausreichen, um eine Änderung der ADMA Plasma Konzentrationen zu induzieren. Analog zu den Messungen unter 4.1.3 der DDAH transgenen Tiere wurden im Folgenden unter basalen Bedingungen sowie nach LPS Injektion die ADMA und SDMA Konzentrationen im Plasma bestimmt.

<table>
<thead>
<tr>
<th></th>
<th>Maus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal</td>
<td>ADMA</td>
<td>WT</td>
<td>0,84</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO-/-</td>
<td>0,82</td>
<td>0,04</td>
</tr>
<tr>
<td>LPS</td>
<td></td>
<td>WT</td>
<td>1,08</td>
<td>0,08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO-/-</td>
<td>0,95</td>
<td>0,07</td>
</tr>
<tr>
<td>Basal</td>
<td>SDMA</td>
<td>WT</td>
<td>0,16</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO-/-</td>
<td>0,16</td>
<td>0,01</td>
</tr>
<tr>
<td>LPS</td>
<td></td>
<td>WT</td>
<td>0,25</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPO-/-</td>
<td>0,25</td>
<td>0,02</td>
</tr>
</tbody>
</table>


In der Abbildung ist deutlich der Tag/Nacht Rhythmus der Tiere zu verfolgen. Da sie tagsüber schlafen ist die Herzfrequenz entsprechend niedrig, nachts hingegen sind aufgrund ihrer Aktivität deutliche Spitzen zu sehen. An Tag vier wurde morgens LPS injiziert, dies hat zunächst bei beiden Tiergruppen einen starken Anstieg, gefolgt von
einem massiven Abfall der Herzfrequenz zur Folge. Es sind keine signifikanten Unterschiede zwischen den Tiergruppen vorhanden.

Die gemessenen Blutdrücke folgen ebenfalls dem Tag/Nacht Rhythmus der Tiere und liefern daher ein ähnliches Bild wie die Herzfrequenz (Daten nicht gezeigt). Bemerkenswert hingegen war die unterschiedliche Blutdruckänderung nach LPS Gabe bei den beiden Mausgruppen.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>89,80</td>
<td>4,83</td>
<td>4</td>
</tr>
<tr>
<td>MPO -/-</td>
<td>65,63</td>
<td>3,90</td>
<td>3</td>
</tr>
</tbody>
</table>


Beim Vergleich der Blutdrücke vor bzw. 24 Stunden nach LPS Gabe fällt auf, dass bei den MPO knockout Tieren ein stark ausgeprägter Abfall des Blutdrucks um 34,37 % gemessen wurde. Bei den Wildtypen hingegen ist dieser Blutdruckabfall mit 10,20 % sehr viel schwächer ausgeprägt.
Im vorangehenden Teil der Arbeit konnte gezeigt werden, dass freigesetztes MPO im Organismus über eine Modulation der DDAH Expression und Aktivität in der Lage ist, die zirkulierenden ADMA Konzentrationen zu erhöhen. Im folgenden Teil soll nun untersucht werden, ob ADMA per se in der Lage ist, die Freisetzung von MPO aus Neutrophilen Granulozyten zu steigern. Zunächst soll der hypothetische Mechanismus kurz skizziert werden: Erhöhte ADMA Konzentrationen konnten in verschiedenen Studien korelliert werden mit einem gesteigerten Risiko für kardiovaskuläre Erkrankungen, wie unter 1. beschrieben. Diese Tatsache wird dem Effekt zugeschrieben, dass ADMA über eine Hemmung der NO Synthase dessen Bioverfügbarkeit einschränkt und so die vasoprotektiven Funktionen nicht mehr ausgeübt werden können. NO wird in vielen Zelltypen gebildet, so auch in Blutzellen, wobei für diese Arbeit speziell die neutrophilen Granulozyten relevant sind, da diese für die MPO Sezernierung verantwortlich sind. PMN synthetisieren ähnlich große Mengen an NO wie Endothelzellen (Sethi und Dikshit et al, 2000).

Dieser Befund unterstreicht die bislang kaum untersuchte Bedeutung dieser Zellen für den NO Haushalt unter physiologischen wie auch pathologischen Bedingungen. Es wurde kürzlich gezeigt, dass die nNOS in PMN konstitutiv exprimiert wird, nach Induzierung mit LPS wurde auch die iNOS nachgewiesen (Saini et al, 2006). Bislang ist bekannt, dass endogenes NO das Rollen, die Adhäsion sowie die Migration von PMN inhibiert (Secco et al, 2003). Die genauen Mechanismen, über die die verfügbare NO Menge reguliert wird, konnten bisher nicht gezeigt werden.

4.3.1 VORAUSSETZUNGEN

Als Voraussetzung dafür, dass im Organismus erhöhte ADMA Konzentrationen einen Einfluss auf die NO Synthese in neutrophilen Granulozyten nehmen können, muss das ADMA entweder direkt in den PMN gebildet werden oder aber es muss in die Zellen hineingelangen können. Es muss also zunächst geklärt werden, ob ADMA über entsprechende Transportsysteme in diese Zellen gelangen kann.
4.3.1.1 DER TRANSPORTER SLC7A1 IN PMN

Wie unter 1.3.3 beschrieben, ist der Transporter für ADMA wie auch für Arginin die SLC7A Familie, dessen am meisten verbreiteter und bereits in Makrophagen beschriebener Vertreter SLC7A1 ist. Im Folgenden wurden deshalb Western Blots mit isolierten neutrophilen Granulozyten auf dieses Transportprotein gemacht.

Abbildung 32: Western Blot vom SLC7A1 Transporter mit α Aktin (obere Bande) als Ladekontrolle. In Spur 1 wurden 250.000 Zellen verwendet, in 2 500.000, in 3 1.000.000 und in Spur 4 2.000.000 Zellen. Es ist deutlich zu sehen, dass die Bande vom Transporter proportional zur Ladekontrolle mit steigender Zellzahl ansteigt.

Die Abbildung zeigt, dass der Transporter SLC7A1 in isolierten PMN vorhanden ist. Die Menge an Transporterprotein steigt proportional zur Menge der Ladekontrolle, also der Zellzahl an. Der Nachweis des SLC7A1 Transporters in den PMN legt den Schluss nahe, dass zirkulierendes ADMA in neutrophile Granulozyten gelangen kann.

4.3.1.2 ADMA IN PMN

Da der Transporter in der Membran der PMN vorhanden ist, sollte nun gezeigt werden, dass sich tatsächlich ADMA in diesen Zellen befindet und dass es möglich ist, die intrazelluläre ADMA Konzentration durch die Zugabe von externem ADMA zu steigern. Dies dient dem Nachweis, dass der Transporter aktiv ist und ADMA in die Zelle hineinbefördert. Dazu wurden PMN isoliert und Immunfluoreszenzaufnahmen mit bzw. ohne ADMA Inkubation der Zellen durchgeführt.
Die Kontrolle ohne Erstantikörper (oben links) zeigt nur den segmentierten Zellkern nach DAPI Färbung in blau, keinerlei rote Fluoreszenz, weshalb ausgeschlossen werden kann, dass PMN eine Eigenfluoreszenz aufweisen oder der Sekundärantikörper unspezifisch an die Zellen bindet. Im zweiten Bild (oben rechts) wurden die Zellen ebenfalls permeabilisiert, um dem Antikörper zu ermöglichen, in die Zelle hinein zu gelangen. Anhand der roten Fluoreszenz wird deutlich, dass ADMA im Zytoplasma detektiert wurde. Wurden die Zellen zusätzlich vor dem Permeabilisieren mit ADMA vorinkubiert, wird die Fluoreszenz noch stärker (unten). Aus dieser Tatsache wurde geschlossen, dass ADMA über die SLC7A1 Transporter in der Membran in die Zelle eingeschleust werden konnte.

4.3.2 ADMA AKTIVIERT PMN

Es wurde unter 4.3 bereits dargestellt, dass NO für PMN wichtig ist, um die Aktivierung der Zellen zu verhindern. Im Folgenden sollte untersucht werden, welche Rolle ADMA als endogener Inhibitor der NO Synthase, der in der Lage ist, in die PMN zu gelangen und dort zu akkumulieren (siehe 4.3.1.1) dabei spielt.
4.3.2.1 ADMA FÜHRT ZUR DEGRANULIERUNG VON PMN

Sowohl MPO als auch Elastase sind Proteine, die sich in spezifischen Granula der neutrophilen Granulozyten befinden und nur nach erfolgter Degranulierung freigesetzt werden. Ist also im Überstand der isolierten PMN eines dieser Proteine nachweisbar, spricht dies für eine Aktivierung und damit einhergehende Degranulierung der PMN. Im Folgenden wurden daher die Überstände auf MPO und Elastase untersucht.

<table>
<thead>
<tr>
<th></th>
<th>Stimulus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPO</td>
<td>Kontrolle</td>
<td>139,55</td>
<td>7,40</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SDMA</td>
<td>137,50</td>
<td>7,17</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>ADMA</td>
<td>184,30</td>
<td>7,94</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>fMLLP</td>
<td>256,40</td>
<td>14,24</td>
<td>6</td>
</tr>
<tr>
<td>Elastase</td>
<td>Kontrolle</td>
<td>4,89</td>
<td>0,39</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>SDMA</td>
<td>5,72</td>
<td>0,25</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ADMA</td>
<td>7,41</td>
<td>0,65</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>fMLLP</td>
<td>9,76</td>
<td>0,88</td>
<td>5</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Abbildung 34: **MPO (A) und Elastase (B) Freisetzung aus neutrophilen Granulozyten.** Beide Grafiken zeigen das gleiche Ergebnis: Durch eine Inkubation der PMN mit 100 µM ADMA kann eine Freisetzung von beiden Proteinen hervorgerufen werden. Dieser Effekt ist nach Inkubation mit 10 µM fMLP noch stärker ausgeprägt, bei 100 µM SDMA hingegen kommt es zu keiner verstärkten Freisetzung von MPO oder Elastase im Vergleich zur Kontrolle.

Tatsächlich konnte gezeigt werden, dass PMN nach erfolgter ADMA Inkubation offenbar degranulieren, da beide untersuchten Proteine, MPO und Elastase, in den Überständen signifikant erhöht waren. fMLP Inkubation führte zu einem ähnlichen Bild, allerdings bei beiden Proteinen sogar stärker als ADMA. SDMA scheint keinen Effekt zu haben, die Proteine wurden beide auf Kontrollniveau detektiert.

### 4.3.2.2 ADMA INDUZIERT SUPER OXIDFREISETZUNG AUS PMN

Der oxidative *burst* ist die Freisetzung von reaktiven Sauerstoffspezies durch PMN und Kennzeichen ihrer Aktivierung (siehe 1.5.2). Im Folgenden wurde untersucht, ob eine Konfrontation von neutrophilen Granulozyten mit ADMA ausreicht, um diese Reaktion auszulösen.
Abbildung 35: *Ergebnis einer Superoxidmessung in PMN.* Durch die Inkubation der Zellen in SDMA ist ein leichter Anstieg der freigesetzten Superoxidmenge zu sehen, dieser Effekt ist bei ADMA Inkubation noch verstärkt. Am meisten Radikale werden durch die Inkubation der Zellen mit fMLP freigesetzt.

Diese Abbildung zeigt ein typisches Ergebnis der Superoxidmessung. Zur weiteren Auswertung wurden die Messungen mehrfach wiederholt und die Änderung der Absorption pro Minute pro 1.000.000 Zellen als Ausdruck freigesetzter Superoxidmenge bestimmt.
Abbildung 36: Ergebnisse der Superoxidmessung in PMN nach Inkubation mit SDMA, ADMA, fMLP oder nur Puffer. Es ist deutlich zu sehen, dass die Zellen durch Inkubation mit ADMA signifikant mehr Superoxid produzieren als unter Kontrollbedingungen nur mit Puffer. SDMA Inkubation liefert hingegen keinen signifikanten Anstieg. Am meisten Radikale werden durch die Inkubation der Zellen mit fMLP freigesetzt.

Die Ergebnisse zeigen, dass ADMA offenbar in der Lage ist, ähnlich wie die bekannte chemoattraktive Substanz fMLP einen oxidativen burst auszulösen. Auch nach SDMA Inkubation ist ein leichter jedoch nicht signifikanter Anstieg der Superoxidmenge. Um sicherzustellen, dass auch tatsächlich MPO für diese Produktion verantwortlich ist, wurden im Folgenden weitere Untersuchungen durchgeführt.

4.3.2.3 ADMA ERHÖHT DIE MPO AKTIVITÄT IN PMN

Durch den gewählten Assay war es möglich, die Aktivität von MPO in der Zellsuspension zu messen. MPO kann nur dann aktiv sein, wenn die PMN degranuliert sind, weil das MPO ansonsten nicht aktiv ist, wie unter 1.4 beschrieben.
<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>0,04</td>
<td>0,01</td>
<td>6</td>
</tr>
<tr>
<td>SDMA</td>
<td>0,03</td>
<td>0,01</td>
<td>6</td>
</tr>
<tr>
<td>ADMA</td>
<td>0,06</td>
<td>0,01</td>
<td>6</td>
</tr>
<tr>
<td>fMLP</td>
<td>0,08</td>
<td>0,01</td>
<td>6</td>
</tr>
</tbody>
</table>

Abbildung 37: **MPO Aktivität in PMN nach Inkubation mit SDMA, ADMA, fMLP oder nur Puffer.** Die Zellen haben durch Inkubation mit ADMA signifikant mehr MPO Aktivität als unter Kontrollbedingungen nur mit Puffer oder SDMA. Am höchsten ist die MPO Aktivität durch die Inkubation der Zellen mit fMLP.

ADMA hat auch in diesem Versuch einen Effekt auf die PMN, wenn auch schwächer ausgeprägt als nach Behandlung mit fMLP. PMN entwickeln nach ADMA Inkubation eine höhere MPO Aktivität als unter Kontrollbedingungen. SDMA Inkubation hingegen führt zu keinerlei Unterschieden in der MPO Aktivität verglichen mit der Negativkontrolle.

**4.3.2.4 ADMA HEMMT DIE NO SYNTHESE IN PMN**

Die vorherigen Versuche zeigen, dass ADMA einen aktivierenden Einfluss auf neutrophile Granulozyten besitzt. Im Folgenden sollte der Mechanismus dahinter untersucht werden. Da bekannt ist, dass ADMA ein potenter NOS-Inhibitor ist, wurde untersucht, ob ADMA seine Effekte auf PMN über eine Hemmung der dort exprimierten nNOS und iNOS ausübt.
Hierzu wurde isotopenmarkiertes $^{15}$N-Arginin eingesetzt, um die Aktivität der NOS zu bestimmen.

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDMA</td>
<td>3,92</td>
<td>0,38</td>
<td>4</td>
</tr>
<tr>
<td>ADMA</td>
<td>2,18</td>
<td>0,50</td>
<td>4</td>
</tr>
</tbody>
</table>

Abbildung 38: **Hemmung der NOS Aktivität in PMN durch ADMA.** Es ist eine signifikante Hemmung der NOS nach Inkubation der Zellen mit ADMA zu sehen. SDMA hatte keinen Effekt.

Es konnte gezeigt werden, dass ADMA die NO Synthasen in PMN signifikant hemmt. Die Zugabe von ADMA zu den Zellen reicht aus, um den Umsatz von markiertem Arginin um mehr als die Hälfte zu senken. Somit ist es denkbar, dass die aktivierenden Effekte von ADMA über diesen Mechanismus ausgeübt werden.

4.3.2.5 **ADMA INFUSION FÜHRT ZUR AKKUMULATION VON MPO IN VIVO**

Nachdem die vorherigen *in vitro* Versuche zeigten, dass ADMA in der Lage ist, eine Aktivierung von PMN zu induzieren, sollte im Folgenden untersucht werden, ob dieser Effekt auch *in vivo* stattfindet.

Hierzu wurden Mäusen mit ADMA befüllte Pumpen implantiert, nach der definierten Zeit von 28 Tagen wurde das Blut entnommen und darin die MPO Mengen bestimmt.
diese war mit NaCl gefüllt. Bei diesen Tieren konnte kein signifikanter Anstieg von MPO im Gewebe beobachtet werden, so dass der Effekt bei den ADMA Pumpen tatsächlich auf dem Reiz der Pumpenimplantation beruhen.


<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Tage</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMA</td>
<td>0</td>
<td>58</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>99</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>NaCl</td>
<td>0</td>
<td>50</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>58</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

4.3.3 ADMA FÜHRT ZU ADHÄSION VON PMN

Adhäsion von neutrophilen Granulozyten an das Endothel ist ein frühes Stadium ihrer Rekrutierung zu inflammatorischen Läsionen (Marks et al, 1989). NO ist ein Regulator der Adhäsion, wie unter 1.2 näher beschrieben. Die vorherigen Versuche zeigten bereits, dass ADMA in der Lage ist, PMN zu aktivieren und eine Degranulierung auszulösen, im
Folgenden soll darüber hinaus untersucht werden, ob ADMA auch eine verstärkte Adhäsion dieser Zellen an das Endothel induzieren kann.

Abbildung 40: Adhäsion von PMN auf HUVECs. Die PMN wurden entweder direkt auf die Endothelzellen gegeben (oben links) oder während der Inkubation mit den HUVECs stimuliert mit SDMA (oben rechts) oder ADMA (unten). Es ist zu sehen, dass nach ADMA Inkubation deutlich mehr PMN auf den Endothelzellen haften bleiben als bei der Kontrolle und SDMA.

Die Bilder zeigen, dass auch schon ohne Stimulation (oben links) einige vereinzelte PMN an die HUVECs binden. Es lässt sich nicht vermeiden, dass bei der Isolierung einige Zellen aktiviert werden, da die Prozedur mehrfaches Zentrifugieren sowie direkte Zellkontakte beinhaltet. Bei Inkubation der Zellen mit SDMA (oben rechts) auf den Endothelzellen sind etwas mehr PMN gebunden als bei der Kontrolle. Bei den mit ADMA inkubierten Zellen allerdings sind deutlich die meisten Zellen an die HUVECs gebunden. Dieses Experiment konnte zeigen, dass ADMA in der Lage ist, die Adhäsion von neutrophilen Granulozyten an Endothelzellen zu induzieren. Um diesen Effekt zu quantifizieren, wurde im Folgenden der gleiche Ansatz vorbereitet, die PMN wurden aber zusätzlich fluoreszenzmarkiert, so dass die Menge an gebundenen Zellen an den Endothelzellen über die Menge an Fluoreszenz detektiert werden konnte.
Abbildung 41: **Fluoreszenzmarkierte PMN im Fluorometer.** Oben zu sehen ist eine Doppelbestimmung mit SDMA inkubierten Zellen, unten deutlich stärker eine Doppelbestimmung nach ADMA Inkubation.

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Mittelwert</th>
<th>SEM</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDMA</td>
<td>42,98</td>
<td>2,63</td>
<td>6</td>
</tr>
<tr>
<td>ADMA</td>
<td>85,41</td>
<td>17,48</td>
<td>6</td>
</tr>
</tbody>
</table>

Abbildung 42: **Auswertung der Adhäsionsversuche im Fluorometer.** Mit 100 µM ADMA stimulierten PMN adhären signifikant mehr an Endothelzellen als mit 100 µM SDMA behandelte. Die Werte wurden auf unbehandelte Kontrollen normalisiert.

Die Auswertung zeigt, dass ADMA als Stimulus ausreicht, um eine Adhäsion von PMN an Endothelzellen zu induzieren. Mit SDMA inkubierte PMN hingegen zeigen zwar mehr Adhäsion als die Kontrollzellen, dieser Unterschied ist aber nicht signifikant.
5 DISKUSSION

Die vorliegende Arbeit wurde durchgeführt um zu untersuchen, ob zwei bislang als unabhängig voneinander betrachtete Wege der Verringerung der NO Bioverfügbarkeit durch einerseits gesteigerte NO Inaktivierung durch MPO Freisetzung aus neutrophilen Granulozyten und andererseits der reduzierten NO Synthese durch Akkumulation von ADMA isoliert voneinander zu betrachten sind oder sich gegenseitig beeinflussen und verstärken können. Nachdem eine Interaktion zwischen ADMA und MPO grundsätzlich bestätigt werden konnte, wurden die dahinterstehenden Mechanismen der gegenseitigen Regulation weiter charakterisiert. Im Folgenden sollen die Ergebnisteil beschriebenen Experimente interpretiert und zu den Forschungsergebnissen anderer Arbeitsgruppen in Beziehung gesetzt werden.

Das vom Endothel freigesetzte Stickstoffmonoxid ist der potenteste endogene Vasodilator, es übt seine Effekte über die Stimulierung der löslichen Guanylatzyklase zur cGMP Bildung aus (Murad et al., 1996). NO ist somit ein Modulator des Blutflusses und des Blutdruckes, beeinflusst aber auch die vaskuläre Struktur durch die Inhibierung der Interaktionen der zirkulierenden Blutbestandteile mit der Gefäßwand: Thrombozytenaggregation und Adhäsion von Leukozyten sind bei einem gesunden Endothel kaum vorhanden (Stamler et al., 1989), der Verlust von NO hingegen forciert die Entstehung von vaskulären Läsionen (Cayatte et al., 1994). Eine Verminderung der NO Bioverfügbarkeit tritt bereits in frühen Stadien vaskulärer Erkrankungen auf und wirkt bei der Initiation und Progression von Arteriosklerose mit. Die Mechanismen der endothelialen Dysfunktion sind multifaktoriell und abhängig von der Art der vaskulären Störung. Sie kann sowohl auf eine erhöhte Menge an Vasokonstruktoren oder eine verringerte Menge an Vasodilatoren zurückgeführt werden.
Bei der Verringerung der vasodilatorischen Einflüsse kommen vor allem Veränderungen im NO Signalweg in Frage, deren mögliche Ursachen im Folgenden dargestellt und untersucht werden:

- Verringerung der NO Halbwertszeit
- Verringerung der Sensitivität gegenüber NO
- Verringerung der NOS Expression oder
- Verringerung der NOS Aktivität.

Experimentelle Belege gibt es für jeden dieser Mechanismen. Eine erhöhte Ausschüttung von Superoxiden im Gefäß ist meist die Folge von Arteriosklerose und deren Risikofaktoren (Ohara et al., 1993). Die Halbwertszeit von NO ist unter Bedingungen von oxidativem Stress stark reduziert (Rubanyani et al., 1985), es kommt zu zellulären Schäden wie der Zerstörung von Zellmembranen, Signalkaskaden und letztlich zum Absterben ganzer Zellen (Beckman et al., 1996). Zu diesen oxidativen Enzymsystemen, die für den oxidativen Stress in der Gefäßwand verantwortlich sind, zählt die Myeloperoxidase. Im Gegensatz zu den oxidierenden Substanzen und Enzymen verlängern Antioxidantien die NO Halbwertszeit, verstärken die NOS Expression und stellen die Endothelfunktion wieder her (Ramasamy et al., 1999). In späteren Stadien der Arteriosklerose wird eine reduzierte NO Sensitivität beobachtet, vermutlich durch die Inaktivierung von NO oder der löslichen Guanylatzyklase als NO Effektormolekül. Außerdem ist unter diesen pathologischen Bedingungen eine verringerte Expression der NOS beschrieben (Oemar et al., 1998).

Letztlich hat die intensive Forschung auf diesem Gebiet in den vergangenen Jahren zeigen können, dass endogene Inhibitoren der NOS für die Dysfunktion des endothelialen Vasodilatators bei Patienten mit koronaren und peripheren Arterienerkrankungen sowie einer Vielzahl anderer kardiovaskulärer Krankheiten (1, Abbildung 2) verantwortlich sind. Bei diesen Inhibitoren handelt es sich um ADMA und L-NMMA. Da Untersuchungen aber ergaben, dass ADMA in zehnfach höheren Konzentrationen im Organismus vorkommt als L-NMMA, stand in dieser Arbeit ADMA im Fokus der Untersuchungen.

Um den Einfluss von ADMA auf den NO Signalweg zu untersuchen, wurde ein transgenes Mausmodell gewählt, welches durch die Überexpression der humanen DDAH 1, also dem ADMA metabolisierenden Enzym, eine um etwa dreißig Prozent erniedrigte ADMA Plasmakonzentrationen aufweist. Dieses Modell wurde zwar bereits von verschiedenen
Arbeitsgruppen untersucht (2.4), für die Ziele dieser Arbeit jedoch war es zunächst nötig, eine weitere Charakterisierung vorzunehmen (4.1). Es sollte geklärt werden, ob es durch eine Verringerung des zirkulierenden NOS Inhibitors zu Änderungen in der Expression der am NO Weg beteiligten Enzyme und folglich eventuell zu einer Änderung des weiteren NO Signalweges kommt. Es zeigte sich, dass es durch die starke Expression der hDDAH 1 in den untersuchten Geweben Leber und Niere (4.1.1) zu einer kompensatorischen, jedoch nicht statistisch signifikanten Herunterregulierung der Expression der murinen DDAH 1 sowie DDAH 2 kommt. Auch die Expression der NOS Isoformen eNOS und iNOS wurde untersucht, in beiden Organen fand sich in den transgenen Tieren eine signifikant verringerte Expression (4.1.2). Auch dies lässt auf einen Rückkopplungsmechanismus schließen: Da sich in den DDAH transgenen Tieren weniger ADMA in der Zirkulation befindet (4.1.3), wird die NOS nicht inhibiert und kann so viel mehr NO produzieren als bei den Wildtypieren, bei denen das ADMA die NO Synthese behindert. Als Reaktion auf die höhere NO Produktion wird bei den DDAH 1 transgenen Tieren offenbar die Genexpression der NOS Formen inhibiert, da ansonsten zu viel NO gebildet werden würde, welches für die Zelle in großen Mengen, wie etwa unter septischen Bedingungen, zytotoxisch wirkt (Leiper et al., 2002). NO ist außerdem in der Lage, die Zysteine der DDAH zu nitrosylieren und so das aktive Zentrum zu inaktivieren (Knipp et al., 2003). Es gelang der Arbeitsgruppe um Leiper zu zeigen, dass es einen Regelkreis zwischen NO Synthese und DDAH Aktivität gibt: Wird viel NO gebildet, so wird die DDAH dadurch inaktiviert, die ADMA Konzentrationen steigen und verhindern so durch die Inhibierung der NOS die weitere NO Produktion. In dieser Arbeit konnte gezeigt werden, dass eine Regulierung nicht nur auf Ebene der Enzymaktivität sondern zusätzlich auf Genexpressionsebene stattfindet.

Die ADMA und SDMA Plasma Konzentrationen beider Tiergruppen, DDAH 1 transgene Mäuse sowie Wildtypen, wurden basal gemessen, sowie, basierend auf der großen Bedeutung die NO im Rahmen septischer Vorgänge spielt, nach intraperitonealer Gabe von LPS (Lipopolysaccharide). Es handelt sich hierbei um ein etabliertes Sepsismodell: Bei der gewählten LPS Dosis wird in Mäusen eine Sepsis induziert, die nach etwa 36-48 Stunden zum Tod der Tiere durch Multiorganversagen führt. Dabei stellt LPS ein hoch

Die vorherigen Versuche lassen bereits vermuten, dass aufgrund der verringerten NOS Inhibitor Konzentration mehr NO in den hDDAH 1 transgenen Tieren gebildet wird. Dies konnte bereits von anderen Gruppen gezeigt werden (Konishi et al, 2007). Um zu evaluieren, ob eine erhöhte NO Bildung tatsächlich einen verstärkten Reiz zur Vasodilatation bedingt, wurde im Folgenden der Einfluss einer verstärkten Synthese von NO auf seinen weiteren Signalweg hin untersucht. Wie unter 1.2.2 beschrieben, stimuliert das gebildete NO die cGMP Produktion durch die löschliche Guanylatzyklase (sGC), daraus resultiert dann die Aktivierung der Proteinkinase 1 (cGK1), die letztlich das Vasodilator

Aufgrund dieser Ergebnisse wurde dann der NO Signalweg auch im MPO knockout Mausmodell untersucht. Diese Tiere haben durch die MPO Defizienz eine verlängerte Halbwertszeit von NO im Organismus, da dieses nicht vom MPO inaktiviert werden kann. Wie nach den Ergebnissen unter 4.1.4 bei den hDDAH 1 transgenen Tieren zu erwarten war, zeigte sich auch bei den MPO knockout Tieren eine statistisch signifikante Erhöhung der Proteinmenge der NO Signalmoleküle (4.2.4). Somit konnte für den weiteren Verlauf der Arbeit davon ausgegangen werden, dass beide Mausgruppen im Vergleich zu den jeweiligen Wildtypen mehr bioverfügbares NO besitzen, bei den hDDAH 1 Tieren wegen verstärkter NO Synthese, bei den MPO knockout Mäusen wegen der verlängerten Halbwertszeit des Radikals.

5.1 HYPOTHESE 1

Es wurde in diesem Teil der Arbeit die Hypothese untersucht, dass eine verstärkte MPO Sezernierung per se in der Lage ist, eine Akkumulation von ADMA zu induzieren. Ein wichtiger Mechanismus, über den MPO die ADMA Konzentrationen modulieren könnte wurde in 4.2.2 überprüft. MPO könnte die Expression der DDAH auf Genebene ändern, woraus eine veränderte Synthese der DDAH und somit ein geänderter ADMA Metabolismus resultieren würde: Oxidantien wie die MPO Produkte sind verantwortlich für Gewebeschäden und provozieren Onkogenese, ihre pathophysiologische Rolle in der Modifizierung von Nukleobasen und Aminosäuren ist weitreichend erforscht. Ihre Fähigkeit, Proteine und DNA zu crosslinken jedoch wurde kaum beachtet, obwohl reversible DNA Protein Interaktionen der Schlüssel zur Genexpression, DNA Replikation und Reparatur sind. Die Gruppe um Patricia konnte zeigen, dass HOCl als
Reaktionsprodukt der MPO sowohl Einzel- als auch Doppelstrang DNA an Proteine *crosslinken* kann (Patricia *et al*, 2001). Dies ist ein bislang völlig neuer Mechanismus, über den HOCl seine toxischen Effekte ausübt. Die Autoren der Untersuchungen unterstreichen die Tatsache, dass die Effizienz des DNA Protein *crosslinking* nicht groß sein muss, um entscheidenden Einfluss auf die zelluläre Funktion auszuüben: Durch HOCl können beispielsweise Transkriptionsfaktoren permanent an Promotoren gebunden werden oder Polymerasen an Gene, so dass die Transkription dauerhaft geändert wird. Es ist außerdem denkbar, dass HOCl auch RNA und Proteine *crosslinken* kann, was die Anordnung und Funktion der Ribosomen schädigen könnte. Es wird davon ausgegangen, dass HOCl als kleines membrandiffundierendes Molekül in den Zellkern gelangen müsste, um dort auf die DNA treffen zu können. Dies wäre aufgrund der hohen Reaktivität schwierig. Da die Gruppe um Murao 1988 zeigen konnte, dass MPO selbst in der Lage ist, in den Kern zu gelangen und dort zu akkumulieren ist auch diese Möglichkeit, dass die MPO im Kern aktiv ist und dort HOCl freisetzt, welches dann mit der DNA interagieren kann, denkbar und wahrscheinlicher. Es wurden in dieser Arbeit die Genexpressionsprofile am ADMA Metabolismus beteiligter Proteine von Wildtypmäusen mit denen der MPO knockout Tiere verglichen (4.2.2.1). Es zeigte sich, dass die MPO knockout Tiere ca.14 mal soviel DDAH 1 in beiden untersuchten Organen exprimieren als die Wildtypen. Somit ist es gelungen, eine Beteiligung von MPO an der Genexpression nachzuweisen. Es wurde dann die Spezifität dieses Effekts dadurch gezeigt, dass ebenfalls die Genexpression der DDAH 2 beider Tiergruppen analysiert wurde, hier wurde kein Unterschied festgestellt. Um zu sehen, ob MPO an weiteren Expressionsänderungen von Proteinen aus dem ADMA Stoffwechsel beteiligt ist, wurden anschließend die PRMTs untersucht (4.2.2.2): Auch hier ändert MPO die Expression. Die ADMA generierenden PRMTs 1,3 und 6 wurden signifikant weniger exprimiert, während die SDMA generierende PRMT 5 tendenziell stärker exprimiert wird.

Es konnte also gezeigt werden, dass MPO die Akkumulation von ADMA dadurch verstärkt, dass sie die Expression des ADMA metabolisierenden Enyzms DDAH 1 drastisch vermindert und außerdem die Bildung von ADMA durch vermehrte Expression der entsprechenden PRMTs begünstigt.
Es bleibt die Frage, ob die gesteigerte NO Bioverfügbarkeit (4.2.4) und die stärkere NOS Aktivität (4.2.6) der MPO knockout Tiere allein auf weniger ADMA zurückgeführt werden kann, oder ob auch hier MPO die Genexpression ändert (4.2.2.3). Es wurde deshalb die Expression beider relevanter NOS Formen, iNOS und eNOS untersucht. Tatsächlich exprimieren die MPO knockout Tiere mehr von beiden Isoformen sowohl in Leber als auch Nierengewebe. Dies ließ sich auch auf Proteinebene bestätigen (4.2.3): Auch im Western Blot konnte gezeigt werden, dass die MPO knockout Tiere signifikant mehr eNOS und iNOS Protein haben als die Wildtypen. Auch hier also greift MPO regulatorisch in die Gen- bzw. daraus resultierend auch in die Proteinexpression ein.


Diese Ergebnisse ließen sich auch mit homogenisiertem Leber- und Nierengewebe bestätigen: Die MPO knockout Tiere weisen eine stärkere DDAH Aktivität auf als die Wildtypen, wenn auch dieser Unterschied in der Leber klein und deshalb nicht signifikant ist. Dies kann darauf zurückgeführt werden, dass die individuelle DDAH Aktivität jeder
Maus ein wenig variiert, weshalb eine signifikante Unterscheidung beider Tiergruppen nur in Organen höchster DDAH 1 Expression wie der Niere möglich ist.

Aus einer geänderten DDAH Aktivität sollte auch eine Änderung der NOS Aktivität resultieren: Da die MPO knockout Tiere eine gesteigerte DDAH Aktivität aufweisen, ist davon auszugehen dass diese Tiere weniger ADMA besitzen und somit weniger Hemmung der NOS erfolgt, die somit aktiver sein müsste. Es wurde daher in vivo die NOS Aktivität in den Tieren gemessen (4.2.6): In der Tat ist die Aktivität in den MPO knockout Tieren bereits basal signifikant höher als bei den Wildtypen. Da MPO unter diesen Bedingungen allerdings nur in sehr geringem Maß freigesetzt wird und die NOS Aktivität nach induzierter iNOS unter septischen Bedingungen erst einen kritischen maximalen Wert erreicht, wurde in den Tieren ebenfalls unter diesen pathologischen Bedingungen im bereits beschriebenen LPS Sepsismodell die NOS Aktivität gemessen. Es zeigte sich, dass die NOS Aktivität als Ausdruck der nun eingeschalteten iNOS bei den Wildtypen leicht ansteigt, während sich die sowieso schon stärkere Aktivität bei den KO Tieren nochmals verdoppelte. Dies ist dadurch zu erklären, dass es zwar bei beiden Tiergruppen zu einer Induzierung der iNOS kommt (dies wurde mit entsprechenden realtime PCR Versuchen bestätigt, Daten nicht gezeigt), die ausgeschüttete MPO jedoch führt zur Inaktivierung der DDAH, somit zu einer Akkumulation von ADMA. ADMA kann somit alle Formen der NOS in einem solchen Ausmaß hemmen, dass es nur zu einem schwachen Anstieg der NOS Aktivität kommt. Bei den MPO knockout Tieren hingegen ist kein MPO vorhanden, welches die DDAH hemmen könnte. Somit wird hier das ADMA weiterhin metabolisiert und es kommt zum starken Anstieg der NOS Aktivität. Um diese Theorie zu bestätigen, wurden die ADMA sowie SDMA Plasmakonzentrationen in den beiden Tiergruppen bestimmt (4.2.7). Wie zu erwarten war, haben die MPO knockout Tiere unter septischen Bedingungen signifikant weniger zirkulierendes ADMA als die Wildtypen als Ausdruck der noch aktiven DDAH, welche nur bei den Wildtyp von den freigesetzten MPO Produkten inhibiert wird. Die SDMA Werte hingegen unterscheiden sich weder basal noch nach LPS in beiden Gruppen, denn es wird anders als ADMA ausschließlich über die Nieren ausgeschieden und nicht enzymatisch metabolisiert. Der Anstieg in beiden Gruppen nach LPS Gabe ist somit mit der stark eingeschränkten Nierenfunktion unter septischen
Bedingungen zu erklären. Basal ist zwar eine Tendenz feststellbar, nach der weniger ADMA in den MPO knockout Tieren vorliegt. Dieser Trend ist statistisch betrachtet jedoch nicht signifikant. Dies überrascht zunächst, kann aber damit begründet werden, dass basal nur sehr wenig MPO freigesetzt wird, welches sich dann nicht primär in der Zirkulation sondern im Gewebe aufhält. Entsprechende Versuche wurden durchgeführt (Daten nicht gezeigt) und ergaben signifikant weniger ADMA in den MPO knockout Tieren in der Niere. Diese Arbeit konnte somit zeigen, dass MPO über die Inaktivierung der DDAH zu einer Akkumulation von ADMA führt, zur Vervollständigung dieser Ergebnisse wurden abschließend die Auswirkungen auf die physiologischen Parameter Herzfrequenz und Blutdruck getestet. Hierzu wurden diese Parameter bei Wildtypen und MPO knockout Tieren unter physiologischen sowie pathologischen Bedingungen nach LPS Gabe miteinander verglichen. Basal konnten keine signifikanten Unterschiede festgestellt werden, dies kann erneut auf die geringen MPO Konzentrationen, die unter diesen Bedingungen freigesetzt werden, zurückgeführt werden. Nach LPS Gabe hingegen war bei den MPO knockout Mäusen ein massiver Blutdruckabfall zu beobachten, dieser fiel bei den Wildtypen signifikant schwächer aus. Hierfür kommen zwei Erklärungen in Betracht: Entweder haben die MPO knockout Tiere eine stark verschlechterte Herzleistung oder stark erweiterte Gefäße. Da bei beiden Tierkollektiven eine ähnliche Herzfrequenz gefunden wurde, lässt vermuten dass der Blutdruckabfall auf einer verstärkten Vasodilatation bei MPO knockout Tieren beruht. Bei den Wildtypen bewirkte die unter LPS erfolgende MPO Ausschüttung einerseits eine Inaktivierung des gebildeten NO wie in 4.2.4 beschrieben und andererseits eine Inaktivierung der DDAH wie in 4.2.5 gezeigt, welche wiederum zu einer Akkumulation von ADMA führt (4.2.7). Beides resultiert in einer Eindämmung der überschießenden NO Produktion im Rahmen der LPS induzierten Sepsis durch die iNOS, die Gefäße werden also nur geringfügig erweitert. Bei den MPO knockout Tieren hingegen fehlt die MPO Ausschüttung, so dass das gebildete NO nicht inaktiviert wird und die DDAH weiterhin ADMA metabolisiert, der NO Synthese wird nicht entgegengewirkt. NO als starker Vasodilator bewirkt dann eine starke Gefäßerweiterung, die Ursache für den beobachteten massiven Blutdruckabfall.
Diese Erkenntnisse implizieren, dass MPO nicht nur schädigende Effekte hat, sondern dass die MPO induzierte Inaktivierung der DDAH mit konsekutiver ADMA Akkumulation auch als negativer feedback Mechanismus verstanden werden kann, durch den der Organismus vor weiterem Schaden bewahrt wird.

Abbildung 43: Die Mechanismen, über die MPO die Akkumulation von ADMA induziert. Im Rahmen von inflammatorischen Zuständen im Organismus wird die Expression der iNOS induziert und MPO wird von den PMN freigesetzt. Die jetzt aktive iNOS produziert große Mengen NO, durch die MPO Aktivität wird HOCl gebildet. Beide Reaktionsprodukte verringern durch Oxidation die Aktivität der DDAH. MPO und HOCl inhibieren zusätzlich die Transkription des DDAH 1 Gens und verringern so dessen Expression, dies verringert die Enzymaktivität zusätzlich. Durch den verminderten Abbau kommt es zu einem Anstieg der ADMA Konzentration.

Insgesamt wurde die erste Hypothese, dass MPO in der Lage ist, eine Akkumulation von ADMA zu induzieren, bestätigt. Es konnten mehrere Mechanismen identifiziert werden, über die MPO ihre Wirkungen ausübt (Abbildung 43): Zum Einen verringert das MPO Reaktionsprodukt HOCl die DDAH Aktivität und zum Anderen verändert MPO die Genexpression mehrerer am ADMA Stoffwechsel beteiligter Enzymsysteme. Beide Wege haben so die gleiche Konsequenz und ergänzen einander: Es kommt zur verstärkten Synthese und verringertem Abbau und somit zur MPO induzierten Akkumulation von ADMA.
Die Mechanismen, über die ADMA als endogener NOS Inhibitor diese Effekte ausüben kann sind bislang nicht untersucht worden. Die Rolle von NO in der inflammatorischen Antwort des Organismus in verschiedenen pathologischen Zuständen ist aber bereits gut verstanden (Nussler et al, 1993): Während bislang meist das im Endothel gebildete NO für die nach erfolgter Induzierung einer Inflammation entstehenden Gewebeschäden verantwortlich gemacht wird, könnten auch die migrierenden inflammatorischen Zellen wie PMN deutlich zur NO Produktion beitragen und selbst Quellen der NO Synthese am Ort der Entzündung sein. Neutrophile produzieren in vitro 10-100 nM/5min/10^6 Zellen NO, ähnlich viel wie auch Endothelzellen (Salvemini et al, 1989). Daher könnten PMN, die immerhin bis zu 60 % der zirkulierenden Leukozyten darstellen, die vollständige für den Organismus benötigte NO Menge in der Zirkulation zur Verfügung stellen. Inflammatorische Zustände wie eine Sepsis (Ochoa et al, 1991) sind mit einer Hochregulation der iNOS und resultierenden erhöhten NO Mengen in Plasma und Urin assoziiert (Wheeler et al, 1997). Diese Erkenntnisse dienten als Grundlage für die nachfolgenden Experimente: Es wurde vorausgesetzt, dass neutrophile Granulozyten NO über die nNOS und iNOS produzieren (Saini et al, 2006) und dass das gebildete NO die Aktivierung von neutrophilen Granulozyten, Adhäsion und Migration verhindert (Secco et al, 2003). Es wurde daher in dieser Arbeit untersucht, inwiefern ADMA als Inhibitor der NO Synthese in diese Mechanismen eingreifen und sie ändern kann. Daher wurde zunächst überprüft, ob ADMA zu den NO Synthasen in PMN vordringen kann, um diese dann zu inhibieren. Dazu wurde das für ADMA zuständige Transportsystem SLC7A1 in PMN untersucht: Es wurde bisher in Neuronen, im Endothel sowie in Makrophagen beschrieben (Schmidt et al, 1993). Tatsächlich konnte dieser Transporter nun ebenfalls in isolierten PMN nachgewiesen werden (4.3.1.1). Somit kann davon ausgegangen werden, dass nicht nur endogenes ADMA in den PMN als Inhibitor agieren kann, sondern auch das zirkulierende ADMA kann in die PMN aufgenommen werden und dort wirken. Als nächstes wurde untersucht, ob dieser Prozess auch tatsächlich stattfindet. Es wurde mittels Immunfluoreszenz das in PMN vorhandene ADMA sichtbar gemacht (4.3.1.2), um außerdem zu zeigen, dass ADMA effektiv über die Transporter in die Zellen transportiert
wird. Außerdem wurde dargestellt, dass nach Inkubation der Zellen mit ADMA ein
deutlicher Anstieg der in der Zelle vorhandenen ADMA Konzentration zu verzeichnen ist.
Somit ist ADMA potentiell in der Lage, einen Einfluss auf die NO Synthese und damit auf
die Aufrechterhaltung des inaktiven Zustands der PMN zu nehmen. Die Entwicklung von
einem frei mit der Zirkulation fließenden neutrophilen Granulozyten zu einem aktivierten
Zustand ist ein koordinierter Prozess: PMN reagieren auf sezernierte inflammatorische
Mediatoren wie Zytokine mit der Freisetzung der Granulainhalte, also mit Degranulierung,
urn eventuelle eingedrungene Erreger unschädlich machen zu können. Die Rolle von
Stickstoffmonoxid in diesem Prozess ist bislang zwar nicht vollständig aufgeklärt, ihm wird
aber ein protektiver Effekt im Rahmen der Degranulierung zugeschrieben (Mócsai et al,
1999). In dieser Arbeit wurde der Einfluss von ADMA auf die Aktivierung der PMN
untersucht, dazu wurden die Zellen mit ADMA bzw. den entsprechenden Kontrollen
inkubiert und anschließend einige Parameter untersucht, die für eine Aktivierung
charakteristisch sind (4.3.2.1 bis 4.3.2.3). Es zeigte sich, dass die in den Granula der PMN
befindlichen Substanzen MPO und Elastase nach ADMA Inkubation der Zellen auch in den
Überständen, also außerhalb der Granula nachzuweisen waren. Ursache hierfür muss eine
erfolgte und durch ADMA induzierte Degranulierung sein, ein bislang unbekannter
Stimulus. Zur Bestätigung dieser Ergebnisse wurde in den Überständen der PMN die
freigesetzte Menge an Superoxiden als Maß für den oxidativen burst nach Aktivierung der
PMN sowie die Aktivität der Myeloperoxidase gemessen. Auch diese Versuche zeigten
einen signifikanten Anstieg in beiden untersuchten Größen nach ADMA Inkubation der
Zellen. ADMA konnte somit durch diese Versuche als neuer Mediator der Aktivierung von
neutrophilen Granulozyten identifiziert werden. Um Einsicht in den dahinterstehenden
Mechanismus zu erhalten, wurde anschließend geprüft, ob ADMA in der Lage ist, die NO
Synthasen der PMN zu hemmen. Es ist bereits bekannt, dass NO von diesen Zellen
benötigt wird, um eine Aktivierung zu unterdrücken (Secco et al, 2003). Es konnte gezeigt
werden (4.3.2.4), dass ADMA die NO Produktion der PMN inhibiert, so dass die in den
vorherigen Versuchen beobachtete ADMA induzierte Aktivierung der PMN auf die
Hemmung der intrazellulären NOS zurückzuführen ist.
Nach diesen *in vitro* erhobenen Erkenntnissen sollte untersucht werden, ob dieser Mechanismus auch *in vivo* relevant ist. Hierzu wurde Wildtyptieren über vier Wochen ADMA infundiert (4.3.2.5), nach dieser Zeit wurde die MPO Konzentration im Plasma bestimmt. Es konnte gezeigt werden, dass es durch eine endogene Erhöhung der ADMA Konzentration zu einem signifikanten Anstieg der MPO Konzentrationen kommt. Bei den Kontrolltieren war kein signifikanter Effekt zu sehen, was bestätigt, dass in der Tat ausschließlich das infundierte ADMA zu den gestiegenen MPO Mengen führt.

Nachdem nun ADMA als aktivierender Stimulus der PMN identifiziert wurde, sollte nun der Einfluss von ADMA auf eine weitere wichtige Funktion der PMN untersucht werden: Die Adhäsion der Zellen an das Endothel als Grundlage für die nachfolgende Transmigration (Bienvenu *et al.*, 1994). Die Rekrutierung von PMN an den Ort der Inflammation wird hauptsächlich bestimmt von Ereignissen, die in den betroffenen Regionen der Mikrovaskulatur stattfinden. Wenn die Leukozyten in Kontakt mit der Gefäßwand kommen, induzieren Faktoren der Endothelzellen bzw. der PMN selbst adhäsive Interaktionen zwischen diesen Zellen. Oftmals handelt es sich bei diesen Faktoren um Stoffe, die auch für die Aktivierung und Degranulierung der PMN verantwortlich sind. Da dies für ADMA gezeigt wurde, sollte untersucht werden, ob ADMA auch einen Einfluss auf die Adhäsion der PMN hat. Hierzu wurden PMN mit ADMA stimuliert und auf kultivierte Endothelzellen gegeben (4.3.3). Nachdem die ungebundenen PMN abgewaschen wurden, hatten in den Kontrollgruppen einige PMN an die Endothelzellen gebunden, da aufgrund der vorhergehenden Isolierung der Zellen eine Aktivierung einiger weniger Zellen nicht ausgeschlossen werden kann. Bei den mit ADMA stimulierten PMN allerdings war eine starke Adhäsion der neutrophilen Granulozyten an die Endothelzellen zu sehen. Um diese Beobachtung quantifizieren zu können wurden die PMN fluoreszenzmarkiert und der Versuch wiederholt. Dabei diente die Menge an Fluoreszenz an den Endothelzellen als Maß für die Menge der daran gebundenen PMN. So wurde gezeigt, dass durch eine Inkubation mit ADMA mehr als doppelt so viele PMN an die Endothelzellen gebunden hatten als bei den Kontrollen, somit konnte ADMA auch für den Vorgang der Adhäsion der PMN als wichtiger Mediator identifiziert werden.
Abbildung 44: **Mechanismus der ADMA Wirkung auf neutrophile Granulozyten.** Durch verschiedene kardiovaskuläre Risikofaktoren oder Erkrankungen kommt es zur Akkumulation von ADMA im Organismus. Dies führt zu einer endogenen Hemmung der NO Synthasen, besonders relevant sind hier die NOS der PMN sowie der Endothelzellen. Es wird weniger NO produziert, wodurch dessen protektive Effekte auf die Aufrechterhaltung eines inaktiven Zustandes der PMN nicht mehr ausgeübt werden können.

Insgesamt konnte die zweite Hypothese, dass ADMA in der Lage ist, die Sezernierung von MPO zu induzieren, bestätigt werden. Darüber hinaus wurden die Mechanismen untersucht, über die ADMA eine Aktivierung von neutrophilen Granulozyten bewirkt (Abbildung 44). Durch die Inhibierung der leukozytären NO Synthasen sinken die NO Konzentrationen, dies führt zur Degranulierung, zur Auslösung des oxidativen bursts sowie zur Adhäsion der PMN an das Endothel.
6 AUSBLICK

In dieser Arbeit wurde eine bislang unbekannte Interaktion von zwei Stoffwechselwegen aufgedeckt und charakterisiert. Die zugrunde liegenden Mechanismen konnten aufgezeigt und ausführlich beschrieben werden. Es verbleiben jedoch noch unbeachtete Teilspekte, welche in nachfolgenden Projekten bearbeitet werden sollen.


Es wurde in dieser Arbeit gezeigt, dass MPO, bzw. die Produkte der MPO Aktivität wie HOCl, durch die Hemmung des ADMA metabolisierenden Enzyms DDAH zu einer Akkumulation von ADMA führen. Da die DDAH bereits von anderen (1.3.3) als sehr redoxsensitives Enzym beschrieben wurde, welches durch oxidativen Stress inaktiviert werden kann, wäre es folgerichtig möglich, dass nicht nur MPO als oxidatives Enzymsystem der PMN für die Inaktivierung in Frage kommt, sondern auch andere Komponenten in diesem Zusammenhang eine wichtige Rolle spielen. Es wäre für weitere Studien sehr interessant zu untersuchen, ob eventuell auch bei anderen Enzymsystemen, welche für die Generierung von ROS verantwortlich sind, eine Interaktion mit ADMA nachzuweisen ist. Potenziell zu testende Enzyme wären beispielsweise die Xanthin Oxidase oder die NADPH Oxidase. Beide sind hinreichend charakterisiert und für beide gibt es entsprechende transgene Mausmodelle.


Insgesamt wurde in dieser Arbeit eine Interaktion zwischen dem ADMA und MPO Stoffwechselweg nachgewiesen, welche von beiden Seiten ausgeht und so zur Verstärkung der einzelnen Signalwege führt. Da beide Wege bereits für sich genommen hohe Risiken für die Entstehung und Progression arteriosklerotischer Veränderungen bergen, bietet das Wissen um die hier untersuchte Interaktionen einen neuen Ansatz im Verständnis der Pathogenese sowie mögliche Therapieansätze dieser Erkrankung.
8 ABBILDUNGSVERZEICHNIS

<table>
<thead>
<tr>
<th></th>
<th>Todesursachen in den Industrienationen 2006.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Klinische Bilder mit erhöhten ADMA Plasma Konzentrationen.</td>
</tr>
<tr>
<td>3</td>
<td>Der Aufbau eines Gefäßes.</td>
</tr>
<tr>
<td>4</td>
<td>Die Effekte von Stickstoffmonoxid im Kardiovaskulären System.</td>
</tr>
<tr>
<td>5</td>
<td>Struktur von ADMA</td>
</tr>
<tr>
<td>6</td>
<td>Biosynthese, Metabolismus und Wirkung von ADMA</td>
</tr>
<tr>
<td>7</td>
<td>Flussdiagramm der Faktoren, die die Aktivität der DDAH beeinflussen.</td>
</tr>
<tr>
<td>8</td>
<td>Die Reaktion von MPO.</td>
</tr>
<tr>
<td>9</td>
<td>Der Vorgang der Rekrutierung von neutrophilen Granulozyten zum Infektionsherd.</td>
</tr>
<tr>
<td>10</td>
<td>Osmotische Minipumpe</td>
</tr>
<tr>
<td>11</td>
<td>Telemetriesender</td>
</tr>
<tr>
<td>12</td>
<td>Darstellung eines typischen Bandenmusters auf einem Agarosegel.</td>
</tr>
<tr>
<td>13</td>
<td>Typisches Agarosegel zur Kontrolle der cDNA Synthese.</td>
</tr>
<tr>
<td>14</td>
<td>Ergebnis einer typischen realtime PCR.</td>
</tr>
<tr>
<td>15</td>
<td>Expression der humanen DDAH 1 in Leber- und Nierengewebe von Wildtypmäusen und DDAH transgenen Mäusen im Vergleich.</td>
</tr>
<tr>
<td>16</td>
<td>Expression der endogenen DDAH 1 und 2 in Lebergewebe (A) und Nierengewebe (B) von Wildtypmäusen und DDAH transgenen Mäusen im Vergleich.</td>
</tr>
</tbody>
</table>
Die relative Expression von eNOS und iNOS in Lebergewebe (A) und Nierengewebe (B) von Wildtyp und DDAH1 transgenen Mäusen im Vergleich.

ADMA und SDMA Konzentrationen im Plasma von transgenen Tieren und Wildtypen basal und nach Gabe von LPS.

Typisches Ergebnis sowie die Auswertungen eines Western Blots mit Antikörpern gegen das Haushaltsgen Aktin als Ladekontrolle, sGC, cGK1 sowie beiden Formen von VASP in Aortengewebe.

Immunfluoreszenzaufnahmen von HUVECs mit Antikörpern gegen DDAH1 (rot) und MPO (grün).

Expression der DDAH 1 und 2 in Lebergewebe (A) und Nierengewebe (B) von Wildtypmäusen und MPO knockout Tiere im Vergleich.

Expression der PRMT in Leber- und Nierengewebe bei Wildtyp und MPO knockout Tieren.

Die relative Expression von eNOS und iNOS in Lebergewebe (A) und Nierengewebe (B) von Wildtyp und MPO knockout Mäusen im Vergleich.

Ergebnisse der Western Blots von eNOS und iNOS in Aortengewebe.

Auswertung der Western Blots mit Antikörpern gegen das Haushaltsgen Aktin als Ladekontrolle, sGC, cGK1 sowie beiden Formen von VASP in Aortengewebe.

Modulierung der DDAH Aktivität durch MPO.

Modulierung der DDAH Aktivität durch MPO im Organhomogenat.

Aktivität der NOS in Wildtyp und MPO knockout Tieren.
ADMA und SDMA Konzentrationen im Plasma von MPO knockout Tieren und Wildtypen basal und nach Gabe von LPS.

Herzfrequenz bei Wildtyp Tieren und MPO knockout Tieren.

Blutdruckänderung nach LPS Gabe bei Wildtypen und MPO knockout Tieren.

Western Blot vom SLC7A1 Transporter mit α Aktin (obere Bande) als Ladekontrolle.

Immunfluoreszenzaufnahmen von PMN.

MPO (A) und Elastase (B) Freisetzung aus neutrophilen Granulozyten.

Ergebnis einer Superoxidmessung in PMN.

Ergebnisse der Superoxidmessung in PMN nach Inkubation mit SDMA, ADMA, fMLP oder nur Puffer.

MPO Aktivität in PMN nach Inkubation mit SDMA, ADMA, fMLP oder nur Puffer.

Hemmung der NOS Aktivität in PMN durch ADMA.

Messung der MPO Konzentrationen in ADMA/ SDMA bepumpten Wildtyp Tieren.

Aufnahmen von adhärenten PMN auf HUVECs.

Fluoreszenzmarkierte PMN im Fluorometer.

Auswertung der Adhäsionsversuche im Fluorometer.

Die Mechanismen, über die MPO die Akkumulation von ADMA induziert.

Mechanismus der ADMA Wirkung auf neutrophile Granulozyten.
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMA</td>
<td>asymmetrisches Dimethylarginin</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>BSA</td>
<td>(bovines) Rinderserum Albumin</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>cGK1</td>
<td>Proteinkinase 1</td>
</tr>
<tr>
<td>DDAH</td>
<td>Dimethylarginin Dimethylaminohydrolase</td>
</tr>
<tr>
<td>DDAH +/-T</td>
<td>hDDAH 1 transgen</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>ECL</td>
<td>enhanced chemiluminescence</td>
</tr>
<tr>
<td>E.coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol tetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked-immunosorbent-assay</td>
</tr>
<tr>
<td>EMSA</td>
<td>Electrophoretic Mobility Shift Assay</td>
</tr>
<tr>
<td>eNOS</td>
<td>endotheliale NO Synthase</td>
</tr>
<tr>
<td>hDDAH 1</td>
<td>humane DDAH 1</td>
</tr>
<tr>
<td>HOCl</td>
<td>hypochlorige Säure</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>iNOS</td>
<td>induzierbare NO Synthase</td>
</tr>
</tbody>
</table>
i.p.        intraperitoneal
kb         Kilobasenpaare
kDa        Kilo Dalton
KO         knock out
LPS        Lipopolysaccharid
MPO        Myeloperoxidase
MPO -/-    MPO knockout
mRNA       messenger RNA
nm         Nanometer
nNOS       neuronale NO Synthase
NO         nitric oxide
OD         optische Dichte
PA         Polyacrylamid
PAGE       Polyacrylamidgelektrophorese
PCR        Polymerase Kettenreaktion
PBS        Phosphat-gepufferte Saline
PMN        neutrophiler Granulozyt
PRMT       Proteinmethyltransferase
RNA        Ribonukleinsäure
ROS        reactive oxygen species
rpm        Umdrehungen pro Minute
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>SDMA</td>
<td>symmetrisches Dimethylarginin</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>sGC</td>
<td>lösliche Guanylatzyklase</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxiddismutase</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)aminomethan</td>
</tr>
<tr>
<td>ü.N.</td>
<td>über Nacht</td>
</tr>
<tr>
<td>VASP</td>
<td>Vasodilator stimuliertes Phosphoprotein</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp</td>
</tr>
</tbody>
</table>
10 LITERATURVERZEICHNIS

Achan V, Broadhead M, Malaki M et al. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler Thromb Vasc Biol 23: 1455–1459


119


11 ANHANG

- Erklärung
- Publikationen
- Curriculum vitae
- Danksagung

ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die der Universität Hamburg zur Promotion eingereichte Dissertation mit dem Titel:

Interaktionen des endogenen NO Synthase Inhibitors asymmetrisches Dimethylarginin (ADMA) mit der leukozytären Peroxidase Myeloperoxidase (MPO) in *mus musculus* und *homo sapiens*

in der experimentellen Kardiologie des Universitären Herzzentrums Hamburg unter Leitung von Herrn Prof. Dr. Meinertz ohne sonstige Hilfe durchgeführt und bei der Abfassung der Dissertation keine anderen als die aufgeführten Hilfsmittel verwendet habe.

Ich habe bisher an keiner in- oder ausländischen Fakultät ein Gesuch um Zulassung zur Promotion eingereicht, noch diese oder eine andere Arbeit als Dissertation vorgelegt.

Hamburg, 9. Februar 2009
129

PUBLIKATIONEN

MANUSKRIPTE


(2) Eike-Christin von Leitner; Anna Klinke, PhD, Edzard Schwedhelm, PhD; Jan T. Kielstein, MD; Renke Maas, MD, Stephan Willems, MD; Thomas Meinertz, MD; Heimo Ehmke, MD; Rainer H. Böger, MD; Stephan Baldus, MD; Karsten Sydow, MD. Asymmetric dimethylarginine increases myeloperoxidase concentrations by activating polymorphonuclear neutrophil granulocytes. In Vorbereitung.

(3) Eike-Christin von Leitner; Edzard Schwedhelm, PhD; Anna Klinke, PhD, Dorothee Atzler, PhD; Olaf Hellwinkel, PhD; Renke Maas, MD, Denise Lau, PhD; Thomas Meinertz, MD; Heimo Ehmke, MD; Rainer H. Böger, MD; Stephan Baldus, MD; Karsten Sydow, MD. Myeloperoxidase increases asymmetric dimethylarginine concentrations by impairing dimethylarginine dimethylaminohydrolase activity. In Vorbereitung.

(4) Edzard Schwedhelm, PhD; Eike-Christin von Leitner; Dorothee Atzler, PhD, Christine Schmitz, MD; Johannes Jacobi, MD; Thomas Meinertz, MD; Stephan Baldus, MD; Thomas Munzel, MD; John P. Cooke, MD, PhD; Rainer H. Böger, MD; Renke Maas, MD, Karsten Sydow. Intensive characterization of the human DDAH1 transgenic mice. In Vorbereitung.

AKZEPTIERTE ABSTRACTS


129
CURRICULUM VITAE

Persönliche Angaben

Familienstand   ledig
Geburtstag   16.12.1979
Geburtsort   Stade

AUSBILDUNG

1995 - 1999     Vincent-Lübeck-Gymnasium, Stade
07 1999   Abitur
07 2000 - 06 2002  Technische Universität Carolo-Wilhelmina zu Braunschweig
                  Grundstudium der Biologie
08 2002   Vordiplom in den Fächern Botanik, Zoologie, Mikrobiologie,
                  Organische Chemie, Mathematik und Genetik
08 2002 - 12 2005  Christian-Albrechts-Universität zu Kiel (CAU)
                  Hauptstudium der Mikrobiologie, Zellbiologie und
                  Toxikologie
01 2006   Abschluss des Studiums als Diplom-Biologin
05 2006 - 04 2009  Doktorandin am Universitätsklinikum Hamburg Eppendorf in
                  der experimentellen Kardiologie
DANKSAGUNG

Herrn Prof. Dr. Meinertz danke ich für die Möglichkeit diese Arbeit in seiner Klinik durchzuführen, sowie für die interessante Themenstellung.

Ich danke Herrn Prof. Dr. Streit für seine Bereitschaft zur Betreuung dieser Arbeit und für die hilfreichen Gespräche.

Herrn Prof. Dr. Wenzel danke ich für die nette Kooperation und Übernahme der Position des Disputationsgutachters.

Ich danke Herrn PD Dr. Warneck, Herrn PD Dr. Lorbiecke, Frau PD Dr. Lüthje und Herrn PD Dr. Lüthen für die Mitarbeit in meiner Disputation als Prüfungskommission.

Desweiteren möchte ich mich für die Betreuung während der gesamten Arbeit bei Herrn Dr. Karsten Sydow bedanken. Seine zahlreichen Anregungen und Ideen waren eine große Hilfe für das Gelingen meiner Arbeit.

Ich danke Herrn Prof. Dr. Böger, Herrn Dr. Edzard Schwedhelm und Frau Atzler aus dem Institut für Experimentelle und Klinische Pharmakologie und Toxikologie sowie Prof. Dr. Ehmke und Frau Hirsch-Hoffmann des Instituts für Vegetative Physiologie und Pathophysiologie für die fruchtbaren Kooperationen.
