Erfassung von Tetanus Toxoid- und Influenza Nukleoprotein-
spezifischen Antikörpern bei Patienten
mit Multiplem Myelom

Dissertation

zur Erlangung des Grades eines Doktors der Medizin
an der Medizinischen Fakultät der Universität Hamburg

vorgelegt von:
Britta Marlen Bartels
aus Bochum

Hamburg 2011
Angenommen von der
Medizinischen Fakultät der Universität Hamburg am: 09.02.2012

Veröffentlicht mit Genehmigung
der Medizinischen Fakultät der Universität Hamburg.

Prüfungsausschuss, der Vorsitzende:
Prof. Dr. med. Carsten Bokemeyer

Prüfungsausschuss, zweiter Gutachter:
PD Dr. med. Djordje Atanackovic

Prüfungsausschuss, dritter Gutachter:
PD Dr. med. Francis Ayuketang Ayuk
Inhaltsverzeichnis

1 Einleitung .. 5

1.1 Multiples Myelom ... 5
 1.1.1 Definition ... 5
 1.1.2 Epidemiologie und Ätiologie .. 6
 1.1.3 Pathogenese ... 7
 1.1.4 Klinik .. 9
 1.1.5 Diagnostik .. 10
 1.1.6 Stadieneinteilung und Prognosefaktoren .. 12
 1.1.7 Therapie .. 14

1.2 Fragestellung und Ziel dieser Arbeit ... 17

2 Material und Methoden .. 18

2.1 Material .. 18
 2.1.1 Sera von Myelompatienten und gesunden Personen 18
 2.1.2 ELISA-Proteine .. 18
 2.1.3 Chemikalien ... 19
 2.1.4 Laborgeräte .. 19
 2.1.5 Verbrauchsmaterialien ... 20
 2.1.6 Studiendesign ... 20

2.2 Methode .. 21
 2.2.1 Versuchsbeschreibung – indirekter ELISA .. 21
 2.2.2 Rezepturen der verwendeten Lösungen ... 23
 2.2.3 Herstellung der Proteinverdünnungen .. 23
 2.2.4 Herstellung der Serumverdünnungen .. 23
 2.2.5 Herstellung der sekundären Antikörperlösung ... 24
 2.2.6 Versuchsstatistik – indirekter ELISA .. 24
 2.2.7 Statistische Auswertung ... 25

3 Ergebnisse .. 26

3.1 Eigenschaften des Patientenkollektivs ... 26
3.2 Auswirkungen von Stammzelltransplantation und Chemotherapie auf die Immunantwort .. 27
 3.2.1 Einfluss von allogener und autologer Stammzelltransplantation ... 27
 3.2.2 Einfluss durch Chemotherapie ... 34
3.3 Zusammenhang von Immunantwort und klinischen Parametern .. 35

4 Diskussion ... 43
 4.1 Patientenkollektiv ... 43
 4.2 Einfluss von Stammzelltransplantation und Chemotherapie auf die Immunantwort .. 44
 4.3 Zusammenhang von Immunantwort und klinischen Parametern ... 47
 4.4 Kritikpunkte ... 49

5 Zusammenfassung .. 50

6 Abkürzungsverzeichnis .. 52

7 Literaturverzeichnis ... 55

8 Anhang: Patientenaufklärung und -einstimmniserklärung 62

9 Danksagung .. 67

10 Lebenslauf ... 68

11 Eidesstattliche Versicherung .. 69
1 Einleitung

1.1 Multiples Myelom

1.1.1 Definition

Zur Gruppe der niedrigmalignen Non-Hodgkin-Lymphome gehörend handelt es sich beim Multiplen Myelom (MM) um eine neoplastische Proliferation eines Klons plasmazellulär differenzierter B-Lymphozyten. Die Infiltration des Knochenmarks erfolgt dabei entweder diffus oder multilokulär (Kyle et al. 2003). Mit Ausnahme des asekretorischen MM (ca. 1 %) werden komplette monoklonale Immunglobuline produziert (meist vom Typ IgG oder IgA) oder nur deren Leichtketten Kappa und Lambda (Bence-Jones-Typ), welche im Serum und / oder Urin nachweisbar sind (Matzdorff und Fritze 2009).

2 - 4 % der Multiplen Myelome präsentieren sich zudem als Plasmazellenleukämie, welche sowohl primär entstehen kann (pPCL) als auch im Verlauf des immer wieder progredienten Myeloms (sekundäre Plasmazellenleukämie, sPCL). Kennzeichnend für diese aggressive Variante sind > 20 % Plasmazellen im Differentialblutbild und / oder > 2x10⁹/l Plasmazellen im peripheren Blut (Jimenez-Zepeda und Dominguez-Martinez 2009) sowie eine insgesamt schlechtere Prognose mit einer durchschnittlichen Überlebenszeit von nur 1,3 Monaten bei sPCL bzw. 11,1 Monaten bei pPCL (Tiedemann et al. 2008).

Abzugrenzen vom MM sind Krankheiten mit ebenfalls auffälligem M-Gradienten in der Serumelektrophorese; insbesondere die Monoklonale Gammopathie unklarer Signifikanz (MGUS) und das Smoldering multiple Myeloma (SMM). Aber auch der Morbus
Waldenström, die Leichtketten-Amyloidose oder die Leichtketten-Ablagerungs-Krankheit gehören dazu (Leung und Rajkumar 2007).

Die MGUS ist eine prämaligne Plasmazellproliferationsstörung assoziiert mit einem lebenslangen Risiko der Konvertierung in ein Multiples Myelom (1 % pro Jahr). Die Betroffenen weisen jedoch neben der monoklonalen Antikörperproduktion keine Endorganschäden auf und es finden sich charakteristischerweise < 10 % Plasmazellen im Knochenmark sowie < 30 g/l M-Protein im Serum (Kyle und Rajkumar 2007).

Das Smoldering Myeloma (asymptomatisches Myelom) hingegen ist gekennzeichnet durch einen Serumspiegel von ≥ 30 g/l des monoklonalen Proteins und/oder > 10 % atypische Plasmazellen im Knochenmark, zeigt jedoch diesbezüglich keine Progredienz und es liegen wie bei MGUS keine myelomtypischen klinischen Zeichen vor (Kyle und Rajkumar 2007).

1.1.2 Epidemiologie und Ätiologie

Bisher bleibt die Frage zur Entstehung des Multiplen Myeloms weitgehend ungeklärt. Überwiegend ist man auf Vermutungen angewiesen, die sowohl genetische Faktoren als auch Umwelteinflüsse umfassen. Am besten ist wohl die Strahlenexposition belegt mit ihrem potenziell karzinogenen Einfluss auf die DNA. Ichimaru und Mabuchi fanden bei Atombomben-Überlebenden von Hiroshima und Nagasaki ein signifikant vermehrtes Auftreten von MM nach einer langen Latenzperiode. Mortalitätsuntersuchungen bei

1.1.3 Pathogenese

Für das Multiple Myelom lässt sich ein pathogenetisches Modell (siehe Abbildung (Abb.) 1) postulieren, wonach ausgehend von einer normalen Plasmazelle durch die schrittweise Zunahme molekularer Veränderungen die Entwicklung von MGUS und nachfolgende Progression zum MM stattfindet. Stehen die Myelomzellen zu Beginn noch in enger Assoziation mit den Knochenmarkstromazellen, kann in weiterer Folge das Myelomzellausscheidungsvermögen auch stromaunabhängig und somit extramedullär erfolgen. Im letzten Schritt ist sogar die in vitro-Kultivierung von Myelomzellen möglich.

Abb. 1: Genetisches Modell der Myelomgenese nach Hallek et al. (Hallek et al. 1998)
Nach Hallek, Bergsagel und Anderson wird dieser Prozess unterteilt in Immortalisierung, Etablierung und Entkopplung (Hallek et al. 1998).

Immortalisierung

Die wohl wichtigste und frühzeitig genetische Läsion in vielen B-Zell-Neoplasien ist die Dysregulation eines Onkogens als Folge seiner Positionierung in den Einflussbereich eines oder mehrerer Ig-Enhancer (Hallek et al. 1998). So weisen bereits die Plasmazellklone von ungefähr 50 % der Patienten mit MGUS primäre Translokationen im Bereich des Ig-Schwerkettenlokus 14q32 auf (Rafael Fonseca et al. 2004). Bezüglich der Partnerchromosomen sind diese Translokationen zwar sehr heterogen, bevorzugt beteiligt sind jedoch die Regionen 11q13 (BCL-1, Cyclin D1) und 4p16.3 (FGFR3) (Hallek et al. 1998).

Neben diesen strukturellen Aberrationen können zudem numerische Veränderungen auftreten. Mittels Fluoreszenz in situ Hybridisierung (FISH) konnte eine chromosomale Aneuploidie in mindestens 50 % der Patienten mit MGUS (Drach et al. 1995) und in bis zu 90 % der Patienten mit MM gezeigt werden (Drach et al. 1995). Charakteristische numerische Chromosomenanomalien betreffen vor allem die Trisomien der Chromosomen 3, 5, 7, 9, 11, 15, 19 und 21 sowie die Monosomien 13, 14, 16, und 22 (Fonseca et al. 2004).

Hervorzuheben ist neben dem vollständigen Verlust eines Chromosoms 13 auch die partielle Monosomie, die aus dem Verlust der Sequenz 13q14 resultiert und häufig mit der bereits beschriebenen Translokation t(4; 14) assoziiert ist (Magrangeas et al. 2004).

Etablierung

Wie eingangs erwähnt ist neben den genetischen Veränderungen in den Myelomzellen auch die Interaktion zwischen Myelom- und Knochenmark-Stroma-Zellen von zentraler Bedeutung.

Durch die Kommunikation via Adhäsionsmoleküle werden von den Stromazellen verstärkt Zytokine produziert, die die Lebensdauer, die Zellteilung und die Differenzierung der Myelomzellen unterstützen (Hideshima et al. 2004). Eine zentrale Rolle spielt in diesem Zusammenhang das Interleukin-6 (IL-6), welches neben seinem proliferationsfördernden Effekt auch hemmend auf die Apoptose von Myelomzellen wirkt (Lauta 2001).

Desweiteren ermöglicht es den Tumorzellen auch erst die Anlagerung an die Stromazellen, osteoklastische Zytokine wie Interleukin 1-beta (IL-1β) und Tumornekrosefaktor-alpha (TNF-α) freizusetzen und so zu der für das MM typischen Knochendestruktion beizutragen (Roux und Mariette 2004).
Entkopplung

1.1.4 Klinik

Mit einer Niereninsuffizienz muss bei ca. 20 % aller Myelompatienten gerechnet werden, wobei die pathogenetischen Mechanismen hierfür sehr unterschiedlich sind. Neben der sogenannten „Myelomniere“, einer Tubulusnephropathie infolge Bence-Jones-Proteinurie, kann die Niere auch durch eine länger andauernde Hyperkalzämie (Nephrokalzinose), Amyloidablagerungen oder Infektionen geschädigt werden.

1.1.5 Diagnostik

Die Basisdiagnostik beim Multiplen Myelom umfasst neben der Anamnese bezüglich der häufigsten Symptome (siehe oben) eine klinische Untersuchung, bildgebende Verfahren sowie Labor- und Knochenmarkuntersuchungen.

Laut dem „Pariser Schema“ sind die proximalen langen Röhrenknochen, das Achsenskelett, das Becken, die Rippen und der Schädel zu röntgen. Typisch für das MM ist hierbei der sog. „Schrotschussenschädel“, hervorgerufen durch zahlreiche Osteolyseherde im Schädelknochen. Durch eine Beckenkamm-Punktion lässt sich Knochenmark für die zytologische und histologische Diagnostik gewinnen. Zwar können die Plasmazellen manchmal auch eine atypische Form aufweisen, häufig gibt aber nur ihr gesteigerter Anteil einen Hinweis auf die Myelomerkrankung (Goldschmidt et al. 2004).

Kriterien der International Myeloma Working Group zur Diagnosesicherung sind in Tabelle (Tab.) 1 dargestellt.

Tab. 1: Kriterien zur Diagnosesicherung des Multiplen Myeloms

- alle 3 Kriterien müssen erfüllt sein

<table>
<thead>
<tr>
<th>1. Monoklonale Plasmazellen im Knochenmark > 10% und / oder ein durch Biopsie gesicherter Plasmozytomherd</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Nachweis eines monoklonalen Proteins im Serum und / oder Urin a)</td>
</tr>
<tr>
<td>3. Myelomassoziierte Organdysfunktionen (mindestens eine) b)</td>
</tr>
<tr>
<td>[C] Kalziumerhöhung im Blut (Serumkalzium > 10,5 mg/l oder oberhalb des Referenzbereiches)</td>
</tr>
<tr>
<td>[R] Niereninsuffizienz (Serumkreatinin > 2 mg/dl)</td>
</tr>
<tr>
<td>[A] Anämie (Hämoglobin < 10 g/dl oder 2 g unterhalb des Referenzbereichs)</td>
</tr>
<tr>
<td>[B] Osteolysen oder Osteoporose c)</td>
</tr>
</tbody>
</table>

a) Falls kein monoklonales Protein nachweisbar ist (asekretorisches MM), müssen ≥ 30 % (monoklonale) Plasmazellen im Knochenmark vorhanden sein und/oder ein durch Biopsie gesicherter Plasmozytomherd.

b) Weitere Organdysfunktionen sind möglich. Diese können verwendet werden, wenn gesichert ist, dass sie durch das Myelom bedingt sind.

c) Falls ein solitäres (biopsiegesichertes) Plasmozytom oder eine Osteoporose allein vorliegt, müssen ≥ 30 % Plasmazellen in der Knochenmarkbiopsie nachweisbar sein.

nach: Palumbo et al. 2009
1.1.6 Stadieneinteilung und Prognosefaktoren

Tab. 2: Stadieneinteilung des Multiplen Myeloms nach Salmon und Durie

- mit Angabe der Tumorzellmasse: Zellen x 10^{12}/m² Körperoberfläche

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Kriterien</th>
<th>Medianes Überleben</th>
</tr>
</thead>
</table>
| I: (niedrige Tumorzellmasse: \(< 0,6) | Erfüllung aller 4 Kriterien:
1. Hb-Wert > 10 g/dl
2. Serum-Ca-Wert normal
3. Röntgenologisch normales Skelett oder nur eine solitäre Osteolyse
4. Geringe Konzentrationen monoklonaler Immunglobuline:
a) IgG < 5 g/dl
b) IgA < 3 g/dl
c) Leichte Ketten im Urin: < 4 g/24h | IA: 62 Monate
IB: 22 Monate |
| II: | Weder zu Stadium I noch zu Stadium III Passend | IIA: 58 Monate
IIB: 34 Monate |
| III: (hohe Tumorzellmasse: \(> 1,2) \) | Eines oder mehrere der folgenden Zeichen:
1. Hb-Wert < 8,5 g/dl
2. Serum-Ca-Wert erhöht
3. Fortgeschrittene osteolytische Knochenveränderungen
4. Hohe Konzentrationen monoklonaler Immunglobuline:
a) IgG > 7 g/dl
b) IgA > 5 g/dl
c) Leichte Ketten im Urin: > 12 g/24h | IIIA: 45 Monate
IIIB: 24 Monate |
| | A: Serumkreatinin < 2 mg/dl; B: Serumkreatinin \(\geq 2\) mg/dl | nach: Greipp et al. 2005, Herold et al. 2011 |

Zwecks besserer Charakterisierung und Quantifizierung von Knochenveränderungen wurde dieses System durch die Einbeziehung bildgebender Verfahren wie MRT, Ganzkörper-FDG-PET und Ganzkörper-CT erweitert (Durie/Salmon PLUS myeloma staging system); es konnte sich bisher jedoch nicht etablieren (Durie 2006). Hingegen wird das etwas später formulierte International Staging System (ISS, siehe Tab. 3), welches aus der retrospektiven
Datenauswertung von über 10 000 Patienten entstand und auf dem β2-Mikroglobulin- und Albuminspiegel im Serum basiert, immer häufiger angewendet (Greipp et al. 2005).

Tab. 3: International Staging System (ISS)

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Kriterien</th>
<th>Medianes Überleben</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>β2-Mikroglobulin i. S. < 3,5 mg/l</td>
<td>62 Monate</td>
</tr>
<tr>
<td></td>
<td>Albumin i.S. > 3,5 g/dl</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Weder Stadium I noch Stadium III</td>
<td>44 Monate</td>
</tr>
<tr>
<td>III</td>
<td>β2-Mikroglobulin i. S. > 5,5 mg/l</td>
<td>29 Monate</td>
</tr>
</tbody>
</table>

nach: Greipp et al. 2005

1.1.7 Therapie

Ab Stadium II kommen für die Patienten verschiedene, im Folgenden aufgeführte Therapieansätze in Frage.

Konventionelle Chemotherapie

Hingegen führt die Integration von Thalidomid oder auch Bortezomib in das MP-Behandlungsschema (MPT bzw. MPV) zu einer deutlich höheren Remissionsrate, einer Verlängerung der progressionsfreien Überlebenszeit sowie der Gesamtüberlebenszeit (Minnema et al. 2010).

Induktionschemotherapie vor geplanter autologer Stammzelltransplantation

Die Kombination dieser neueren Substanzen mit Dexamethason in der Induktionstherapie verbessert die Ansprechraten vor und nach Stammzelltransplantation im Vergleich zur klassischen, jetzt nicht mehr empfohlenen vincristininhaltigen Induktionstherapie (VAD: Vincristin/Adriamycin/Dexamethason) (Harousseau 2008). In welchem Ausmaß dies auch zu
einem längeren krankheitsfreien Überleben und vor allem auch zu einem längeren Gesamtüberleben führt, kann allerdings noch nicht abschließend bewertet werden.

Hochdosis-Chemotherapie mit autologer Stammzelltransplantation

Allogene Stammzelltransplantation (myeloablativ / nicht-myeloablativ)

Die allogene Stammzelltransplantation wird weiterhin als die einzige potentiell kurative Therapieoption in der Behandlung des MM angesehen. Im Gegensatz zur autologen Transplantation sind die von einer gesunden Person gespendeten Stammzellen nicht mit Tumorzellen kontaminiert und es kann über die transplantierten immunkompetenten Donorzzellen ein Graft-versus-Myeloma (GvM)-Effekt induziert werden (Lokhorst et al. 2010). Durch diesen GvM-Effekt ist die Rezidivwahrscheinlichkeit nach allogener Stammzelltransplantation deutlich niedriger als nach autologer SZT. Nicht zu unterschätzen ist jedoch die nach konventioneller (=myeloablativer) allogener SZT wesentlich höhere therapiebedingte Mortalität (41 % vs. 13 %) durch die „Graft-versus-Host-Disease“ (GvHD), Organtoxizität und Infektionen (Björkstrand et al. 1996).

Methoden der Stammzellgewinnung
Grundsätzlich gibt es zwei Methoden zur Gewinnung von Stammzellen.
Da unter physiologischen Bedingungen allerdings nur eine geringe Anzahl an hämatopoetischen Stammzellen im peripheren Blut zirkuliert, ist eine verstärkte Mobilisierung dieser Zellen aus dem Knochenmark Voraussetzung für die periphere Stammzellapherese. Ermöglicht wird dies durch die Gabe von hämatopoetischen Wachstumsfaktoren wie zum Beispiel G-CSF (Granulozyten-Kolonie-stimulierender Faktor) (Klinker und Weißinger 2004).
1.2 Fragestellung und Ziel dieser Arbeit

Das Multiple Myelom ist eine Erkrankung, bei der häufig schwere Infektionen das Krankheitsbild prägen und zur Diagnosestellung führen. Diese erhöhte Infektanfälligkeit beruht neben einer Neutropenie auch auf einer Schwäche des humoralen Immunsystems, da durch die Monoklonalität der Immunglobuline kein ausreichender Schutz gegenüber einer Vielzahl von Erregern gegeben ist. Ebenso liegen die Hauptursachen der therapieassoziierten Mortalität nach allogener SZT entweder in einer zu schwachen Immunantwort (Infektionen) oder aber in einer zu starken (GvHD).

Im zweiten Schritt soll die Antikörperantwort auf einen möglichen Zusammenhang mit prognostisch relevanten klinischen Daten der Myelompatienten überprüft werden, um beurteilen zu können, ob auch für die Immunantwort auf Influenza Nukleoprotein und Tetanus Toxoid eine prognostische Aussagefähigkeit besteht.
2 Material und Methoden

2.1 Material

2.1.1 Sera von Myelompatienten und gesunden Personen

Schriftliche Einverständniserklärungen der Patienten zur Entnahme und wissenschaftlichen Nutzung der Proben liegen vor (siehe „Patientenaufklärung und –einverständniserklärung“ im Anhang); ebenso die Genehmigung der Ethikkommission der Hamburger ÄrZtekammer.

2.1.2 ELISA-Proteine

<table>
<thead>
<tr>
<th>Protein</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>Imgenex, San Diego (USA)</td>
</tr>
<tr>
<td>TT</td>
<td>Chiron Behring, Marburg (Deutschland)</td>
</tr>
<tr>
<td>GST</td>
<td>Abnova, Heidelberg (Deutschland)</td>
</tr>
</tbody>
</table>
2.1.3 Chemikalien

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diethanolamin</td>
<td>Sigma-Aldrich®, Hamburg (Deutschland)</td>
</tr>
<tr>
<td>Dulbecco’s Phosphate-Buffered Saline (D-PBS) 1x</td>
<td>Invitrogen, Karlsruhe (Deutschland)</td>
</tr>
<tr>
<td>Dulbecco’s Phosphate-Buffered Saline (D-PBS) 10x</td>
<td>Invitrogen, Karlsruhe (Deutschland)</td>
</tr>
<tr>
<td>Goat-Anti-human-IgG-Ap</td>
<td>Southern Biotech, Birmingham (USA)</td>
</tr>
<tr>
<td>Natriumhydroxid (NaOH)</td>
<td>Sigma-Aldrich®, Hamburg (Deutschland)</td>
</tr>
<tr>
<td>Magermilchpulver</td>
<td>Spinnrad®, Bad Segeberg (Deutschland)</td>
</tr>
<tr>
<td>Magnesiumchlorid (MgCl$_2$)</td>
<td>Fluka, Basel (Schweiz)</td>
</tr>
<tr>
<td>Para-Nitrophenylphosphat (PNPP)</td>
<td>Southern Biotech, Birmingham (USA)</td>
</tr>
<tr>
<td>Salzsäure (HCl)</td>
<td>Roth, Karlsruhe (Deutschland)</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Sigma-Aldrich®, Hamburg (Deutschland)</td>
</tr>
</tbody>
</table>

2.1.4 Laborgeräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Modell</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA-Reader</td>
<td>Sunrise</td>
<td>Tecan, Männedorf (Schweiz)</td>
</tr>
<tr>
<td>Mikroplatten Washer</td>
<td>Columbus Pro</td>
<td>Tecan, Männedorf (Schweiz)</td>
</tr>
<tr>
<td>pH-Meter</td>
<td>CG 811</td>
<td>Schott. Mainz (Deutschland)</td>
</tr>
<tr>
<td>Schüttler</td>
<td>IKA-Vibrax-VXR Typ VX7</td>
<td>Janke & Kunkel, Staufen (Deutschland)</td>
</tr>
<tr>
<td>Vortex</td>
<td>Lab Dancer S40</td>
<td>VWR, Darmstadt (Deutschland)</td>
</tr>
<tr>
<td>Waagen</td>
<td>PB 300</td>
<td>Mettler, Bergisch-Gladbach (Deutschland)</td>
</tr>
<tr>
<td></td>
<td>AT 261 Delta Range®</td>
<td></td>
</tr>
</tbody>
</table>
2.1.5 Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Material</th>
<th>Modell</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multikanalpipette</td>
<td>10 – 100 µl</td>
<td>Eppendorf, Hamburg (Deutschland)</td>
</tr>
<tr>
<td>Parafilm</td>
<td>PM-996</td>
<td>Brand, Wertheim (Deutschland)</td>
</tr>
<tr>
<td>Pipetten</td>
<td>0,5 – 10 µl</td>
<td>10 – 100 µl</td>
</tr>
<tr>
<td>Pipetten für Pipettierhilfe</td>
<td>Falcon® 5 ml, 25 ml</td>
<td>Becton Dickinson, Franklin Lakes (USA)</td>
</tr>
<tr>
<td>Pipettenspitzen</td>
<td>20 µl, farblos</td>
<td>Sarstedt, Nürmrecht (Deutschland)</td>
</tr>
<tr>
<td>Pipettierhilfe</td>
<td>Pipetus®</td>
<td>Hirschmann, Eberstadt (Deutschland)</td>
</tr>
<tr>
<td>PP-Test Tubes</td>
<td>Cellstar® 15 ml, 50 ml</td>
<td>Greiner Bio-One Frickenhausen (Deutschland)</td>
</tr>
<tr>
<td>Reagenzienreservoir</td>
<td>4873</td>
<td>Costar, Cambridge (USA)</td>
</tr>
</tbody>
</table>

2.1.6 Studiendesign

Bei der vorliegenden Arbeit handelt es sich um eine retrospektiv angelegte, nicht-randomisierte Studie zur experimentellen Erfassung von NP- und TT-spezifischen Antikörpern bei Patienten mit Multiplem Myelom.
2.2 Methode

2.2.1 Versuchsbeschreibung – ELISA (Enzyme Linked Immunosorbent Assay)

Abb. 2: Prinzip des indirekten ELISA
Es sind die Einzelschritte des Testes inklusive Waschgänge (→) dargestellt.

Die für den Versuch verwendeten Antigenlösungen NP, TT und GST sowie die Blutseren wurden vor ihrer Verwendung aufgetaut und bis zum erneuten Einfrieren auf Eis kaltgestellt. Desweiteren wurden sämtliche zu pipettierende Lösungen unmittelbar vor Gebrauch auf dem Vortexer vemischt und soweit nicht anders beschrieben in ein Reagenzienreservoir gegeben, welches nach dem Pipettiervorgang mit destilliertem Wasser gereinigt wurde.
2.2.2 Rezepturen der verwendeten Lösungen

Waschpuffer PBS-T: 2 ml Tween-20 in 1000 ml D-PBS

Blockpuffer: 25 g Magermilchpulver in 500 ml D-PBS lösen und Hinzugabe von 1,5 ml 10 % NaN₃

Substratpuffer für PNPP: zu 400 ml destilliertem Wasser wurden 24,5 mg MgCl₂ und 48 ml Diethanolamin hinzugefügt; mittels 5molarer HCl wurde der pH-Wert auf 9,8 adjustiert und anschließend der Lösungsansatz mit destilliertem Wasser auf 500 ml aufgefüllt

3molare NaOH-Lösung: 30 g NaOH in 250 ml destilliertem Wasser lösen

2.2.3 Herstellung der Proteinverdünnungen

Um eine einheitliche Endkonzentration von 1 µg/ml zu erreichen, wurden die Antigene vorab mit D-PBS verdünnt. Die im Folgenden genannten Mengenangaben beziehen sich dabei auf die Beschichtung von insgesamt 4 EIA-Platten à 96 Näpfe.

NP-Lösung (1 mg/ml): 1 µl NP + 999 µl D-PBS

TT-Lösung (4100 Lf/ml): 1.) 2 µl TT + 1394 µl D-PBS
 2.) davon 500 µl + 3500 µl D-PBS

GST-Lösung (0,135 mg/ml): 40 µl GST + 5360 µl D-PBS

2.2.4 Herstellung der Serumverdünnungen

Die Verdünnung der Seren erfolgte auf Mikrotiterplatten, wobei zunächst jeder zweite Napf mit 399 µl Blockpuffer gefüllt wurde und anschließend 1 µl des entsprechenden Serums hinzugegeben wurde. Auf diese Weise konnte die gewünschte Verdünnung von 1:400 erreicht werden.
2.2.5 Herstellung der sekundären Antikörperlösung

Zur Verdünnung des sekundären Antikörpers auf 1:300 wurde dieser mit Blockpuffer gemischt. Für 4 Platten wurden beispielsweise 13,5 ml Blockpuffer in ein 15 ml PP-Test Tube pipettiert und anschließend 4,5 µl Antikörper hinzugefügt.

2.2.6 Versuchs durchführung – ELISA

Zunächst wurden mit einer Multikanalpipette 25 µl der verdünnten Antigenlösungen (siehe 2.2.3) in die Näpfe der EIA-Platte eingebracht. Hierbei wurden die Zeilen A, C, E und G mit dem Testprotein NP bzw. TT, die Zeilen B, D, F und H mit GST beschichtet. Anschließend wurden die Platten mit Parafilm abgedichtet und bei 4° Celsius im Kühlschrank über Nacht inkubiert.

Am folgenden Tag wurden die Näpfe der Platten durch Ausschlagen geleert, mit PBS-T 2x sowie mit D-PBS 1x im Mikroplatten Washer gewaschen und dann mit 30 µl Blockpuffer pro Napf gefüllt. Die Inkubation erfolgte nun bei Raumtemperatur für etwa 90 Minuten.

Nach dem erneuten Ausschlagen und Waschen der Näpfe nach obigem Schema wurden die in der Zwischenzeit hergestellten Serumverdünnungen (siehe 2.2.4) in die Näpfe eingebracht (30 µl/Napf). Hierfür wurde an die Multikanalpipette nur jede zweite Spitze gesteckt und die einzelnen Seren insgesamt 4x pro EIA-Platte pipettiert:

z.B. Mikrotiterplatte A1 → EIA-Platte A1, A2, B1 und B2

Mikrotiterplatte A3 → EIA-Platte A3, A4, B3 und B4

usw.

Zur späteren Kontrolle des gesamten Versuchs wurden in die Näpfe G11, G12 und H11, H12 eine als positiv bekannte Serumprobe bzw. eine Negativkontrolle aus Blockpuffer gegeben.

Die Inkubationszeit der mit Serumlösung beschichteten Platten betrug daraufhin 2 Stunden bei Raumtemperatur, anschließend wurden die Platten erneut ausgeschüttelt und gewaschen.

Die nächsten Arbeitsschritte umfassten zum einen die Eingabe von 30 µl sekundärer Antikörperlösung (siehe 2.2.5) pro Napf mit nachfolgender Inkubation für 1 Stunde bei Raumtemperatur, zum anderen das nach 30 Minuten stattfindende Lösen von PNPP in Substratpuffer. Für 4 Platten wurden hierbei 8 PNPP-Tabletten in 40 ml Pufferlösung
gegeben, der 50 ml PP-Test-Tube in Alufolie gewickelt und für 30 Minuten auf den Schüttler gelegt.

Nachdem die EIA-Platten nach erfolgter Inkubationszeit durch Ausschlagen geleert und im Washer wiederum mit 2x PBS-T und 1x D-PBS gewaschen wurden, erfolgte dann das Befüllen der Näpfe mit jeweils 100µl Substratlösung und die Inkubation für 30 Minuten im Dunkeln bei Raumtemperatur.

2.2.7 Statistische Auswertung

3 Ergebnisse

3.1 Eigenschaften des Patientenkollektivs

Die Analyse der insgesamt 190 Myelompatienten bezüglich ihrer klinischen Daten erbrachte eine Prädominanz des männlichen Geschlechts mit einem Anteil von 60,5 % sowie ein Durchschnittsalter von 55 Jahren.

Die Mehrzahl der Patienten wies ein IgG-Myelom auf und befand sich bei Erstdiagnose (ED) nach der in dieser Arbeit verwendeten Durie und Salmon-Klassifikation im Stadium III. Während knapp 43 % der Patienten im Rahmen ihrer Krankheitsprogression eine allogene Stammzelltransplantation erhalten haben, betrug der Anteil derer mit alleiniger autologer SZT 14 % bzw. derer mit alleiniger konventioneller Chemotherapie 4 %. Den übrigen Patienten ließ sich mit den vorhandenen Daten keines dieser Therapieregime zuordnen.

Diese und weitere für das Multiple Myelom klinisch und prognostisch relevante Patientencharakteristika sind in Tabelle 4 zusammengefasst.

Tabelle 4: Übersicht der Patientencharakteristika

<table>
<thead>
<tr>
<th>Charakteristika</th>
<th>Anzahl Patienten (%) *</th>
<th>Charakteristika</th>
<th>Mittelwert (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>115 (61%)</td>
<td>Alter (Jahre)</td>
<td>55 (10,78)</td>
</tr>
<tr>
<td>weiblich</td>
<td>75 (39%)</td>
<td>Hämoglobin (g/l)</td>
<td>11,39 (1,7)</td>
</tr>
<tr>
<td>Isotypen</td>
<td></td>
<td>Albumin (g/l)</td>
<td>40,88 (6,68)</td>
</tr>
<tr>
<td>IgG</td>
<td>86 (45 %)</td>
<td>LDH (U/l)</td>
<td>196,82 (94,2)</td>
</tr>
<tr>
<td>IgA</td>
<td>43 (23 %)</td>
<td>Kalzium (mmol/l)</td>
<td>2,31 (0,17)</td>
</tr>
<tr>
<td>Kappa-Leichtketten</td>
<td>16 (8 %)</td>
<td>Kreatinin (mg/dl)</td>
<td>1,25 (1,09)</td>
</tr>
<tr>
<td>Lambda-Leichtketten</td>
<td>13 (7 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>asekretorisch</td>
<td>2 (1 %)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 4: Übersicht der Patientencharakteristika.

<table>
<thead>
<tr>
<th>Stadium ED</th>
<th>β2-Mikroglobulin (mg/l)</th>
<th>3,25 (2,63)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>31 (16 %)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>51 (27 %)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>95 (50 %)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chromosomenaberration</th>
<th>IgG (g/l)</th>
<th>15,1 (16,34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deletion 13q14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deletion 17p13</td>
<td>12 (6 %)</td>
<td></td>
</tr>
<tr>
<td>Translokation t (4;14)</td>
<td>9 (5 %)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therapie</th>
<th>IgA (g/l)</th>
<th>4,42 (10,59)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nur Chemotherapie</td>
<td>8 (4 %)</td>
<td></td>
</tr>
<tr>
<td>Autologe SZT</td>
<td>26 (14 %)</td>
<td></td>
</tr>
<tr>
<td>Allogene SZT</td>
<td>81 (43 %)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IgM (g/l)</th>
<th>0,59 (0,65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgKappa (g/l)</td>
<td>4,39 (5,34)</td>
</tr>
<tr>
<td>IgLambda (g/l)</td>
<td>1,72 (2,35)</td>
</tr>
</tbody>
</table>

| Plazmazellanteil im Knochenmark (%) | 21,13 (27,2) |

* Die Prozentangabe bezieht sich auf das gesamte Patientenkollektiv von 190 Personen.
SD = Standardabweichung

3.2 Auswirkungen von Stammzelltransplantation und Chemotherapie auf die Immunantwort

3.2.1 Einfluss von allogener und autologer Stammzelltransplantation

Da sowohl die autologe als auch die allogene Stammzelltransplantation wichtige mögliche Behandlungsansätze des Multiplen Myeloms darstellen, wurde zunächst untersucht, inwiefern sie sich tendenziell auf die Antikörpertiter auswirken. Hierfür wurde eine Einteilung der Patientenseren vorgenommen, welche die zeitliche Relation zur allogenen bzw. zur autologen SZT berücksichtigt. Für die nach der SZT entnommenen Blutproben wurden zudem folgende Zeitfenster festgelegt: „0 - 3 Monate“, „3 - 6 Monate“, „6 - 9 Monate“, „9 - 12 Monate“", „1 - 3 Jahre“, „3 - 5 Jahre“ und „> 5 Jahre“ post-SZT. Ließen sich hier bei bestimmten Patienten mehrere Proben einer Kategorie zuordnen, wurde lediglich die erste dieser Blutentnahmen in die Auswertung mit einbezogen.
Wie aus den Abbildungen 3 und 4 hervorgeht, spricht die zunächst starke Erhöhung der OD-Mediane für ein vermehrtes Auftreten von Antikörpern (AK) gegen NP und TT nach allogener SZT. Sind die OD-Mediane in den ersten 6 Monaten mit denen der gesunden Kontrollgruppe vergleichbar, ist im Verlauf allerdings eine Erniedrigung zu erkennen, so dass sie nach 1 - 3 Jahren wieder unterhalb der OD-Mediane der prä-allo-Gruppe liegen. Während die Antikörperantwort gegen TT dauerhaft niedrig bleibt, nimmt sie gegen NP in den folgenden Jahren hingegen erneut zu.

Erläuternd hinzuzufügen ist, dass es sich bei den Patienten der prä-allo-Gruppe um ein Kollektiv handelt, das zuvor bereits eine autologe Stammzelltransplantation erhalten hat und somit vortherapiert ist.

Abb. 3: Boxplots der OD bei Testung auf NP-AK über einen Zeitraum von > 5 Jahren bei allogener Stammzelltransplantation

Als Vergleichsgruppe sind die gesunden Spender mit dargestellt.
Abb. 4: Boxplots der OD bei Testung auf TT-AK über einen Zeitraum von > 5 Jahren bei allogener Stammzelltransplantation

Als Vergleichsgruppe sind die gesunden Spender mit dargestellt.

In den Abbildungen 5 und 6 sind die OD-Werte für die Antikörper gegen NP und TT dargestellt. Steigt der Median bei beiden getesteten Antikörpern in den ersten 3 Monaten nach autologer SZT leicht an, findet sich für NP bereits in den folgenden Monaten eine abnehmende Antikörperantwort, während die Immunantwort gegen TT erst nach 9 Monaten abnimmt.
Abb. 5: Boxplots der OD bei Testung auf NP-AK über einen Zeitraum von > 5 Jahren bei autologer Stammzelltransplantation

Als Vergleichsgruppe sind die gesunden Spender mit dargestellt.

Abb. 6: Boxplots der OD bei Testung auf TT-AK über einen Zeitraum von > 5 Jahren bei autologer Stammzelltransplantation

Als Vergleichsgruppe sind die gesunden Spender mit dargestellt.

Es zeigte sich, dass sowohl gegen NP als auch gegen TT nach allogener SZT signifikant höhere Antikörperantworten vorhanden waren als unmittelbar davor. Von insgesamt 21 Patienten fand sich ein Anstieg des OD-Wertes für NP-Antikörper bei 17 Patienten (p = 0,000), für TT-Antikörper sogar bei 18 Erkrankten (p = 0,001).

Im Vergleich dazu lässt sich bei der autologen Stammzelltransplantation kein signifikanter Unterschied der Immunantwort zwischen den Blutproben vor und nach der Behandlung feststellen. Stieg sowohl bei NP (p = 0,472) als auch bei TT (p = 0,586) bei 10 Patienten der OD-Wert nach der autologen SZT an, nahm er hingegen bei den übrigen 8 Patienten ab.

In den Abbildungen 7 und 8 sind die hierzu gehörigen Verläufe der OD-Werte als Liniendiagramme dargestellt.

![Abb. 7 a und b: Liniendiagramme für den Vergleich der OD bei Testung auf NP-AK vor und nach Stammzelltransplantation](image-url)
Es war außerdem festzustellen, dass nach allogener SZT die Antikörperantworten im Verlauf wiederum signifikant abfielen. Beim Vergleich der Proben, welche innerhalb der ersten 6 Monate nach allogener SZT abgenommen wurden, mit denen, die von einem späteren Zeitpunkt stammten, zeigte der OD-Wert für NP-AK bei 13 von 21 Patienten einen Abfall ($p = 0,012$), für TT-AK bei 19 der 21 Erkrankten ($p = 0,000$) (Abb. 9a und 10a).

Im Gegensatz hierzu konnten nach autologer SZT keine signifikanten Änderungen der Immunantworten gegen NP ($p = 0,500$) bzw. TT ($p = 0,686$) beobachtet werden. Wie in den Abbildungen 9b und 10b dargestellt, zeigten 3 von 5 Patienten im Verlauf für NP-AK einen Abfall des OD-Wertes, für TT-AK stieg der Wert hingegen bei 3 Personen an und nahm bei 2 Patienten ab. Aufgrund dieser geringen Datenlage ist jedoch keine abschließende Beurteilung möglich.
a) Allogene Stammzelltransplantation

Abb. 9 a und b: Liniendiagramme für die Entwicklung der OD bei Testung auf NP-AK nach Stammzelltransplantation

b) Autologe Stammzelltransplantation

Abb. 10a und b: Liniendiagramme für die Entwicklung der OD bei Testung auf TT-AK nach Stammzelltransplantation
3.2.2 Einfluss durch Chemotherapie

Zusätzlich zu den Stammzelltransplantationen wurde auch der Einfluss einer Chemotherapie auf die Immunantwort untersucht. Bei 4 Patienten wurden Blutproben sowohl vor als auch nach der Chemotherapie entnommen (siehe Abb. 11). Für NP-AK war bei diesen Patienten eine tendentielle Reduktion des mittleren OD-Wertes zu erkennen. Jedoch waren aufgrund der geringen Fallzahl weder bei den NP-AK (p = 0,144) noch bei den TT-AK (p = 0,715) signifikante Unterschiede zu verzeichnen.

Abb. 11a und b: Liniendiagramme für den Vergleich der OD bei Testung auf NP- und TT-AK vor und nach Chemotherapie
3.3 Zusammenhang von Immunantwort und klinischen Parametern

Neben dem Einfluss der verschiedenen Therapieregime wurde untersucht, inwieweit ein Zusammenhang zwischen der Immunantwort auf NP bzw. TT und verschiedenen klinischen und laborchemischen Daten der Patienten besteht. Als Parameter dienten hierbei allgemeine Faktoren wie Alter und Geschlecht sowie krankheitsspezifische und prognostisch relevante Kriterien (siehe Tab. 5 und 6). Außerdem wurde das Patientenkollektiv mit den gesunden Knochenmarkspendern der Kontrollgruppe verglichen.

Es zeigte sich, dass sowohl die Immunantwort auf NP als auch auf TT innerhalb der Gruppe der Myelompatienten signifikant schwächer war als bei der gesunden Kontrollgruppe (p = 0,000). Ein weiterer statistisch signifikanter Unterschied der OD-Werte für NP-AK (p = 0,013) und TT-AK (p = 0,045) konnte für den Parameter IgG beim IgG-Myelom festgestellt werden, wobei die Immunantwort jeweils in der Gruppe mit den pathologisch erhöhten Laborwerten geringer ausgeprägt war. Jedoch ließ sich ein entsprechender Zusammenhang zwischen Paraprotein und Antikörperantwort bei den Patienten mit IgA- und Leichtkettenmyelom weder für NP noch für TT finden.

Bei den OD-Werten für TT-AK ergaben sich zudem signifikante Unterschiede bei den Untergruppen für die Parameter Alter und Albumin. So haben Patienten < 60 Jahre eine stärkere Immunantwort als solche > 60 Jahre (p = 0,041), während bei Erkrankten mit Albuminwerten unterhalb des Referenzwertes die OD niedriger war als in ihrer Vergleichsgruppe (p = 0,002).
Tab. 5: Beziehung zwischen der OD bei Testung auf NP-AK und klinischen Parametern
Es sind die Signifikanzwerte beim Vergleich der Parameter-Untergruppen dargestellt sowie deren OD- Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einteilung<sup>a)</sup></th>
<th>N</th>
<th>Mittelwert/SD</th>
<th>p -Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td>Spender</td>
<td>100</td>
<td>1,328 / 0,389</td>
<td>0,000<sup>∗</sup></td>
</tr>
<tr>
<td></td>
<td>MM-Patient</td>
<td>190</td>
<td>0,920 / 0,710</td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td>männlich</td>
<td>115</td>
<td>1,042 / 0,556</td>
<td>0,161</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>75</td>
<td>0,918 / 0,523</td>
<td></td>
</tr>
<tr>
<td>Alter</td>
<td>≤ 60 Jahre</td>
<td>122</td>
<td>0,969 / 0,543</td>
<td>0,495</td>
</tr>
<tr>
<td></td>
<td>> 60 Jahre</td>
<td>67</td>
<td>1,034 / 0,555</td>
<td></td>
</tr>
<tr>
<td>Hämaglobin</td>
<td>zu niedrig</td>
<td>157</td>
<td>1,022 / 0,540</td>
<td>0,126</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>30</td>
<td>0,859 / 0,550</td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td>< 35 g/l</td>
<td>27</td>
<td>0,877 / 0,566</td>
<td>0,197</td>
</tr>
<tr>
<td></td>
<td>≥ 35 g/l</td>
<td>158</td>
<td>1,015 / 0,540</td>
<td></td>
</tr>
<tr>
<td>LDH</td>
<td>≤ 225 U/l</td>
<td>137</td>
<td>1,007 / 0,566</td>
<td>0,803</td>
</tr>
<tr>
<td></td>
<td>> 225 U/l</td>
<td>49</td>
<td>0,972 / 0,485</td>
<td></td>
</tr>
<tr>
<td>Kalzium</td>
<td>≤ 2,63 mmol/l</td>
<td>182</td>
<td>0,995 / 0,540</td>
<td>0,883</td>
</tr>
<tr>
<td></td>
<td>> 2,63 mmol/l</td>
<td>2</td>
<td>1,040 / 0,028</td>
<td></td>
</tr>
<tr>
<td>Kreatinin</td>
<td>≤ 1,3 mg/dl</td>
<td>146</td>
<td>0,990 / 0,551</td>
<td>0,481</td>
</tr>
<tr>
<td></td>
<td>> 1,3 mg/dl</td>
<td>37</td>
<td>1,035 / 0,536</td>
<td></td>
</tr>
<tr>
<td>IgG beim IgG-Myelom</td>
<td>≤ 16 g/l</td>
<td>44</td>
<td>1,018 / 0,535</td>
<td>0,013<sup>∗</sup></td>
</tr>
<tr>
<td></td>
<td>> 16 g/l</td>
<td>41</td>
<td>0,746 / 0,420</td>
<td></td>
</tr>
<tr>
<td>IgG beim IgA-Myelom</td>
<td>≤ 16 g/l</td>
<td>39</td>
<td>0,994 / 0,509</td>
<td>0,738</td>
</tr>
<tr>
<td></td>
<td>> 16 g/l</td>
<td>4</td>
<td>0,883 / 0,817</td>
<td></td>
</tr>
<tr>
<td>IgA beim IgA-Myelom</td>
<td>≤ 4 g/l</td>
<td>17</td>
<td>0,986 / 0,527</td>
<td>0,911</td>
</tr>
<tr>
<td></td>
<td>> 4 g/l</td>
<td>26</td>
<td>0,982 / 0,546</td>
<td></td>
</tr>
<tr>
<td>Kappa- Leichtketten</td>
<td>≤ 3,7 g/l</td>
<td>14</td>
<td>1,116 / 0,584</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>> 3,7 g/l</td>
<td>0</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Lambda- Leichtketten</td>
<td>≤ 2 g/l</td>
<td>12</td>
<td>1,164 / 0,443</td>
<td>0,109</td>
</tr>
<tr>
<td></td>
<td>> 2 g/l</td>
<td>1</td>
<td>0,210 / ---</td>
<td></td>
</tr>
<tr>
<td>Deletion 13q14</td>
<td>vorhanden</td>
<td>46</td>
<td>0,900 / 0,488</td>
<td>0,137</td>
</tr>
<tr>
<td></td>
<td>nicht vorhanden</td>
<td>117</td>
<td>1,038 / 0,539</td>
<td></td>
</tr>
<tr>
<td>Deletion 17p13</td>
<td>vorhanden</td>
<td>13</td>
<td>1,058 / 0,331</td>
<td>0,670</td>
</tr>
<tr>
<td></td>
<td>nicht vorhanden</td>
<td>150</td>
<td>0,989 / 0,540</td>
<td></td>
</tr>
<tr>
<td>Translokation t (4;14)</td>
<td>vorhanden</td>
<td>9</td>
<td>0,933 / 0,419</td>
<td>0,658</td>
</tr>
<tr>
<td></td>
<td>nicht vorhanden</td>
<td>153</td>
<td>0,998 / 0,534</td>
<td></td>
</tr>
<tr>
<td>β2-Mikroglobulin</td>
<td>≤ 3 mg/l</td>
<td>60</td>
<td>0,970 / 0,482</td>
<td>0,136</td>
</tr>
<tr>
<td></td>
<td>> 3 mg/l</td>
<td>32</td>
<td>0,807 / 0,538</td>
<td></td>
</tr>
<tr>
<td>GvHD</td>
<td>vorhanden</td>
<td>42</td>
<td>0,885 / 0,476</td>
<td>0,983</td>
</tr>
<tr>
<td></td>
<td>nicht vorhanden</td>
<td>21</td>
<td>0,893 / 0,491</td>
<td></td>
</tr>
<tr>
<td>Plasmazzellanteil im Knochenmark</td>
<td>≤ 10 %</td>
<td>68</td>
<td>0,978 / 0,520</td>
<td>0,755</td>
</tr>
<tr>
<td></td>
<td>> 10 %</td>
<td>37</td>
<td>0,949 / 0,471</td>
<td></td>
</tr>
</tbody>
</table>

^{a)} Die Einteilung der nicht nominalen Laborparameter erfolgte anhand der jeweiligen Grenzwerte, die spezifisch für das MM über- bzw. unterschritten werden.
[∗] auf dem Niveau von 0,05 statistisch signifikant
Tab. 6: Beziehung zwischen der OD bei Testung auf TT-AK und klinischen Parametern
Es sind die Signifikanzen beim Vergleich der Parameter-Untergruppen dargestellt sowie deren OD-Mittelwerte und Standardabweichungen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einteilunga)</th>
<th>N</th>
<th>Mittelwert/SD</th>
<th>p -Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spender</td>
<td>100</td>
<td>1,894/0,666</td>
<td>0,000 *</td>
<td></td>
</tr>
<tr>
<td>MM-Patient</td>
<td>190</td>
<td>1,026/0,973</td>
<td>0,522</td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>115</td>
<td>1,202/0,831</td>
<td>0,041 *</td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td>75</td>
<td>1,133/0,897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 60 Jahre</td>
<td>122</td>
<td>1,253/0,837</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 60 Jahre</td>
<td>67</td>
<td>1,023/0,880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hämoglobin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zu niedrig</td>
<td>157</td>
<td>1,181/0,821</td>
<td>0,352</td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td>30</td>
<td>1,087/1,040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 35 g/l</td>
<td>27</td>
<td>0,699/0,649</td>
<td>0,002 *</td>
<td></td>
</tr>
<tr>
<td>≥ 35 g/l</td>
<td>158</td>
<td>1,247/0,870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 225 U/l</td>
<td>137</td>
<td>1,156/0,861</td>
<td>0,887</td>
<td></td>
</tr>
<tr>
<td>> 225 U/l</td>
<td>49</td>
<td>1,194/0,866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalzium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 2,63 mmol/l</td>
<td>182</td>
<td>1,145/0,854</td>
<td>0,045 *</td>
<td></td>
</tr>
<tr>
<td>> 2,63 mmol/l</td>
<td>2</td>
<td>2,470/0,042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kreatinin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 1,3 mg/dl</td>
<td>146</td>
<td>1,123/0,871</td>
<td>0,122</td>
<td></td>
</tr>
<tr>
<td>> 1,3 mg/dl</td>
<td>37</td>
<td>1,355/0,821</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG beim IgG-Myelom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 16 g/l</td>
<td>44</td>
<td>1,248/0,843</td>
<td>0,045 *</td>
<td></td>
</tr>
<tr>
<td>> 16 g/l</td>
<td>41</td>
<td>0,874/0,706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG beim IgA-Myelom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 16 g/l</td>
<td>39</td>
<td>1,103/0,667</td>
<td>0,490</td>
<td></td>
</tr>
<tr>
<td>> 16 g/l</td>
<td>4</td>
<td>0,870/1,010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgA beim IgA-Myelom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 4 g/l</td>
<td>17</td>
<td>1,151/0,571</td>
<td>0,637</td>
<td></td>
</tr>
<tr>
<td>> 4 g/l</td>
<td>26</td>
<td>1,034/0,769</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kappa-Leichtketten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 3,7 g/l</td>
<td>14</td>
<td>1,557/1,128</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>> 3,7 g/l</td>
<td>0</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lambda-Leichtketten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 2 g/l</td>
<td>12</td>
<td>1,007/0,824</td>
<td>0,109</td>
<td></td>
</tr>
<tr>
<td>> 2 g/l</td>
<td>1</td>
<td>0,030/---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deletion 13q14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vorhanden</td>
<td>46</td>
<td>1,014/0,782</td>
<td>0,165</td>
<td></td>
</tr>
<tr>
<td>nicht vorhanden</td>
<td>117</td>
<td>1,218/0,862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deletion 17p13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vorhanden</td>
<td>13</td>
<td>1,350/0,773</td>
<td>0,675</td>
<td></td>
</tr>
<tr>
<td>nicht vorhanden</td>
<td>150</td>
<td>1,142/0,848</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translokation t (4;14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vorhanden</td>
<td>9</td>
<td>0,793/0,829</td>
<td>0,125</td>
<td></td>
</tr>
<tr>
<td>nicht vorhanden</td>
<td>153</td>
<td>1,178/0,840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β2-Mikroglobulin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 3 mg/l</td>
<td>60</td>
<td>1,200/0,817</td>
<td>0,149</td>
<td></td>
</tr>
<tr>
<td>> 3 mg/l</td>
<td>32</td>
<td>0,942/0,691</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GvHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vorhanden</td>
<td>42</td>
<td>0,965/0,660</td>
<td>0,284</td>
<td></td>
</tr>
<tr>
<td>nicht vorhanden</td>
<td>21</td>
<td>1,172/0,745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasmazellanteil im Knochenmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 10 %</td>
<td>68</td>
<td>1,241/0,789</td>
<td>0,137</td>
<td></td>
</tr>
<tr>
<td>> 10 %</td>
<td>37</td>
<td>1,006/0,759</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Die Einteilung der nicht nominalen Laborparameter erfolgte anhand der jeweiligen Grenzwerte, die spezifisch für das MM über- bzw. unterschritten werden.

* auf dem Niveau von 0,05 statistisch signifikant
Desweiteren wurde die Korrelation der OD-Werte von NP- und TT-AK mit dem Alter der Patienten und ihren Laborwerten untersucht. Hierbei zeigte sich in der Korrelationsanalyse nach Pearson für die Antikörper gegen NP ein signifikanter Zusammenhang mit Kalzium ($p = 0.049; r = 0.145$) sowie mit IgG beim IgG-Myelom ($p = 0.039; r = -0.225$). Für die Antikörper gegen TT konnte eine signifikante Assoziation zum Alter ($p = 0.008; r = -0.193$), zur Albumin- ($p = 0.002; r = 0.225$) und zur Kalziumkonzentration ($p = 0.028; r = 0.162$) gefunden werden. In den Abbildungen 12 – 16 sind die genannten Korrelationen dargestellt.

Abb. 12: Positive Korrelation zwischen der OD bei Testung auf NP-AK und der Kalziumkonzentration

Abb. 13: Negative Korrelation zwischen der OD bei Testung auf NP-AK und der IgG-Konzentration
Abb. 14: Negative Korrelation zwischen der OD bei Testung auf TT-AK und dem Alter

Abb. 15: Positive Korrelation zwischen der OD bei Testung auf TT-AK und der Albuminkonzentration
Abb. 16: Positive Korrelation zwischen der OD bei Testung auf TT-AK und der Kalziumkonzentration

Kalziumkonzentration in mmol/l

OD bei Testung auf TT-AK

\[p = 0.028 \]
\[r = 0.162 \]
Zu den übrigen getesteten Parametern ließ sich weder für die Antikörper gegen NP noch gegen TT ein signifikanter Zusammenhang finden. Eine Übersicht der jeweiligen Signifikanzen und Korrelationskoeffizienten findet sich in den Tabellen 7 und 8.

Tab. 7: Korrelation der OD bei Testung auf NP-AK mit klinischen Parametern

<table>
<thead>
<tr>
<th>Parameter</th>
<th>OD (NP-AK)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p - Wert</td>
</tr>
<tr>
<td>Alter</td>
<td>0,732</td>
</tr>
<tr>
<td>Hämoglobin</td>
<td>0,523</td>
</tr>
<tr>
<td>Albumin</td>
<td>0,208</td>
</tr>
<tr>
<td>LDH</td>
<td>0,755</td>
</tr>
<tr>
<td>Kalzium</td>
<td>0,049 *</td>
</tr>
<tr>
<td>Kreatinin</td>
<td>0,597</td>
</tr>
<tr>
<td>IgG beim IgG-Myelom</td>
<td>0,039 *</td>
</tr>
<tr>
<td>IgG beim IgA-Myelom</td>
<td>0,343</td>
</tr>
<tr>
<td>IgA beim IgA-Myelom</td>
<td>0,087</td>
</tr>
<tr>
<td>Kappa-Leichtketten</td>
<td>0,333</td>
</tr>
<tr>
<td>Lambda-Leichtketten</td>
<td>0,090</td>
</tr>
<tr>
<td>β2-Mikroglobulin</td>
<td>0,089</td>
</tr>
<tr>
<td>Plazmazellanteil im Knochenmark</td>
<td>0,710</td>
</tr>
</tbody>
</table>

p-Wert = statistische Signifikanz
r = Korrelationskoeffizient nach Pearson
Tab. 8: Korrelation der OD bei Testung auf TT-AK mit klinischen Parametern

<table>
<thead>
<tr>
<th>Parameter</th>
<th>OD (TT-AK)</th>
<th>p – Wert</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td></td>
<td>0,008 *</td>
<td>-0,193</td>
</tr>
<tr>
<td>Hämoglobin</td>
<td></td>
<td>0,642</td>
<td>-0,034</td>
</tr>
<tr>
<td>Albumin</td>
<td></td>
<td>0,002 *</td>
<td>0,225</td>
</tr>
<tr>
<td>LDH</td>
<td></td>
<td>0,566</td>
<td>0,042</td>
</tr>
<tr>
<td>Kalzium</td>
<td></td>
<td>0,028 *</td>
<td>0,162</td>
</tr>
<tr>
<td>Kreatinin</td>
<td></td>
<td>0,441</td>
<td>-0,057</td>
</tr>
<tr>
<td>IgG beim IgG-Myelom</td>
<td></td>
<td>0,801</td>
<td>-0,028</td>
</tr>
<tr>
<td>IgG beim IgA-Myelom</td>
<td></td>
<td>0,314</td>
<td>-0,157</td>
</tr>
<tr>
<td>IgA beim IgA-Myelom</td>
<td></td>
<td>0,250</td>
<td>-0,179</td>
</tr>
<tr>
<td>Kappa-Leichtketten</td>
<td></td>
<td>0,896</td>
<td>0,039</td>
</tr>
<tr>
<td>Lambda-Leichtketten</td>
<td></td>
<td>0,129</td>
<td>-0,444</td>
</tr>
<tr>
<td>β2-Mikroglobulin</td>
<td></td>
<td>0,270</td>
<td>-0,116</td>
</tr>
<tr>
<td>Plasmazellanteil im Knochenmark</td>
<td></td>
<td>0,259</td>
<td>0,111</td>
</tr>
</tbody>
</table>

p-Wert = statistische Signifikanz
r = Korrelationskoeffizient nach Pearson
4 Diskussion

4.1 Patientenkollektiv

Da die vorliegende Studie retrospektiv angelegt worden ist, wurden zunächst die Eigenschaften dieses somit nicht selektionierten Patientenguts untersucht, um zu überprüfen, ob es sich um ein repräsentatives Kollektiv handelt. Die vorhandene Prädominanz des männlichen Geschlechts (61 %) sowie der Isotypen IgG (45 %) und IgA (23 %) ist auch in der Literatur beschrieben (Alexander et al. 2007). Ebenso befand sich die Mehrzahl der von mir untersuchten Patienten bei Erstdiagnose bereits in einem fortgeschrittenen und somit therapiebedürftigen Stadium (16 % Stadium I versus 27 % Stadium II und 50 % Stadium III). Konsekutiv und auch infolge eines eher niedrig einzustufenden Altersdurchschnitts von 55 Jahren wurde bei den meisten Erkrankten das Auto-Allo-Konzept angewandt.
Zusammenfassend liegt daher ein repräsentatives Kollektiv vor, womit eine der Grundvoraussetzungen valider Datenerhebung erfüllt wird.

4.2 Einfluss von Stammzelltransplantation und Chemotherapie auf die Immunantwort

Während nur ein sehr geringer Anteil der von mir untersuchten Patienten (4 %) ausschließlich chemotherapeutisch behandelt worden ist, erhielt die Mehrzahl im Verlauf ihrer Krankheit eine zusätzliche Stammzelltransplantation. Mit der peripheren Stammzellapherese wurde die inzwischen bevorzugte Methode zur Stammzellgewinnung angewandt, da sie gegenüber der konventionellen Knochenmarkentnahme eine klinisch schnellere hämatopoetische Rekonstitution verspricht (Ottinger et al. 1996).

Wie sich bei meinen Untersuchungen herausstellte, fand durch die allogene SZT eine Beeinflussung der Immunantwort auf NP und TT statt. Hier stieg der OD-Wert in den ersten Monaten nach der Behandlung signifikant an und zeigte im weiteren Verlauf wiederum eine Abnahme. Bei der autologen Stammzelltransplantation sowie bei den chemotherapeutisch behandelten Patienten ließen sich bei mitunter geringeren Fallzahlen hingegen keine Änderungen der Antikörperantworten feststellen.

Umso interessanter sind diese Ergebnisse vor dem Hintergrund, dass Patienten nach allogener SZT Immunsuppressiva erhalten, um eine durch das Spendertransplantat ausgelöste GvHD besser kontrollieren zu können.
In der Literatur liegen insgesamt unterschiedliche Ergebnisse über das Persistieren der Immunität gegenüber Tetanus nach allogener und autologer SZT vor.

Aufgrund dieser vorliegenden Daten spricht die European Group for Blood and Marrow Transplantation (EBMT) sich für eine Impfung gegen Tetanus bei Empfängern einer allogenen oder autologen Stammzelltransplantation aus. Durch Verabreichung einer dreimaligen Dosis 6 – 12 Monate nach Transplantation sowie durch eine vorherige Impfung des Spendern soll die Ansprechrate bei den Patienten verbessert werden (Ljungman et al. 2005).
Bezüglich Influenza ließen sich in der Literatur keine Studien finden, die sich mit dem direkten Einfluss einer SZT auf die Antikörperlevel auseinander setzen und somit zum Vergleich mit der vorliegenden Arbeit herangezogen werden konnten. Es sind jedoch viele Untersuchungen zur Wirksamkeit einer posttransplantären Impfung beschrieben, da Infektionen insbesondere bei immunsupprimierten Menschen eine hohe Rate an Komplikationen aufweisen und die mit ihnen assoziierte Mortalität nach hämatopoetischer Stammzelltransplantation etwa 15 % beträgt (Ljungman et al. 2001). Es konnte im Vergleich zur gesunden Bevölkerung ein schlechteres Impfansprechen mit einer niedrigeren Rate an seroprotektiven Tibern bei Patienten nach Erhalt einer SZT gezeigt werden (Ljungman und Avetisyan 2008). Außerdem wurde festgestellt, dass der Zeitpunkt der Vakzinierung Einfluss auf die Antikörperantwort hat. Ein höherer Prozentsatz der Patienten wies eine Serokonversion auf, wenn das Intervall zwischen Stammzelltransplantation und Impfung > 6 Monate betrug (Issa et al. 2011). Empfehlungen der EBMT sehen daher ähnlich wie bei Tetanus auch bei Influenza die Einhaltung eines Intervalls von 4 – 6 Monaten nach Transplantation vor, bevor die erste der jährlich angeratenen Impfungen stattfinden soll (Ljungman et al. 2005).

Insgesamt zeigten die Ergebnisse der eigenen Untersuchungen, dass in den ersten Monaten nach allogener Stammzelltransplantation die Antikörperantworten gegen NP und TT trotz Immunsuppression signifikant angestiegen sind, während durch die autologe SZT keine Beeinflussung stattfand.

Dass trotz der Antikörperzunahme klinisch jedoch noch kein ausreichend protektives Level erreicht wird, zeigt sich an den häufig auftretenden schweren Infektionen nach allogener SZT. Diese sind außerdem durch eine deutlich reduzierte zelluläre Immunität in den ersten Monaten nach Transplantation bedingt, so dass die Notwendigkeit der empfohlenen Revakzinierung nicht in Frage gestellt werden sollte.
Abschließend ist festzuhalten, dass sich an einer Zunahme der Immunantwort das kurative Potential der allogenen Stammzelltransplantation erkennen lässt und es wäre wünschenswert, wenn zukünftige Studien die zugrunde liegenden Mechanismen für die in dieser Arbeit festgestellten Ergebnisse als Forschungsgegenstand behandeln. Dies könnte Möglichkeiten eröffnen, aktiv in den Prozess der Antikörperproduktion nach SZT einzugreifen und auf diese Weise die therapieassoziierte Mortalität weiter zu reduzieren.

Ebenso wären Untersuchungen zur Entwicklung der Immunantwort auf weitere für MM-Patienten relevante Krankheitserreger sehr interessant.

4.3 Zusammenhang von Immunantwort und klinischen Parametern

IgG-Konzentration zu beobachten war. Dieses Ergebnis lässt sich darauf zurückführen, dass bei Krankheitsprogression mit steigender Tumorzellmasse zwar vermehrt das monoklonale Protein gebildet wird, infolge der Verdrängung der normalen Hämatopoese jedoch klinisch ein Antikörpermangelsyndrom besteht. Dass bei den Patienten mit IgA-Myelom dagegen kein signifikanter Unterschied zwischen den IgG-Untergruppen bestand, unterstützt diese These zusätzlich.

Für Tetanus Toxoid konnte desweiteren eine signifikante Abnahme der OD-Werte mit zunehmendem Alter festgestellt werden, was mit einer insgesamt reduzierten humoralen Immunantwort bei älteren Menschen zu vereinbaren ist (Weiskopf et al. 2009). Sowohl diese Beziehung als auch der ermittelte positive Zusammenhang zwischen TT-AK und der Albuminkonzentration konnten jedoch für Antikörper gegen NP nicht bestätigt werden.

Die signifikant positive Korrelation in der Analyse nach Pearson, die sich bei beiden Antikörpern in Bezug auf die Kalziumkonzentration feststellen ließ, erscheint zunächst widersprüchlich, da erhöhte Kalziumwerte auf ein fortgeschrittenes Stadium hinweisen, bei der eine zunehmende Schwächung des Immunsystems zu erwarten wäre. Jedoch lagen die Kalziumkonzentrationen bei 182 der 184 untersuchten Patienten im Normbereich. Folglich steht eine höhere, aber noch normwerte Kalziumkonzentration nicht unmittelbar mit einer Krankheitsprogression in Verbindung.

4.4 Kritikpunkte

Kritische Aspekte der vorliegenden Studie ergeben sich zum einen aus ihrem retrospektiven Charakter. Dadurch, dass die zur Durchführung der Versuche verwendeten Seren primär nicht zum Anfertigen dieser Arbeit entnommen wurden, waren sie interindividuell in Bezug auf Anzahl und Zeitpunkte vor und nach erfolgter Therapie sehr heterogen. Es stellte sich im Verlauf der Studie heraus, dass infolge dieser Heterogenität innerhalb des Patientenkollektivs viele der untersuchten Proben bei bestimmten Fragestellungen keine Berücksichtigung finden konnten. Zudem konnten bei einigen Patienten die klinischen Daten nicht vollständig erhoben werden, was zwar mitunter zu verminderten, aber aufgrund des insgesamt großen Kollektivs zu ausreichenden Gruppengrößen bei der statistischen Auswertung führte. Desweiteren waren die Zeitpunkte eventuell stattgefandener Impfungen gegen Tetanus Toxoid und Influenza nicht bekannt, so dass diese Einflussgröße in der Studie keine Berücksichtigung finden konnte.

5 Zusammenfassung

Das Multiple Myelom ist eine Erkrankung, bei der insbesondere eine Schwäche des humoralen Immunsystems zu einer erhöhten Infektanfälligkeit bei den Betroffenen führt. Zudem ist die therapieassozierte Mortalität nach allogener Stammzelltransplantation auch heute noch häufig durch Infektionen bedingt. In der vorliegenden Arbeit wurden daher mithilfe des enzymgekoppelten Immunadsorptionstest (ELISA) die Antikörperantworten auf Tetanus Toxoid (TT) und Influenza Nukleoprotein (NP) bei Patienten mit Multiplem Myelom erfasst und auf ihre Entwicklung im Rahmen der Krankheitsprogression analysiert. Hierzu wurden Blutproben von 190 Patienten über den Verlauf der Erkrankung und über die verschiedenen Phasen der Therapie hinweg untersucht, wobei als Kontrolle das Blut von 100 gesunden Spendern diente.

6 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AK</td>
<td>Antikörper</td>
</tr>
<tr>
<td>BCL-1</td>
<td>B-Cell-Lymphoma</td>
</tr>
<tr>
<td>BSG</td>
<td>Blutsenkungsgeschwindigkeit</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>Ca</td>
<td>Kalzium</td>
</tr>
<tr>
<td>ca.</td>
<td>zirka</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktives Protein</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>dl</td>
<td>Deziliter</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>D-PBS</td>
<td>Dulbecco’s Phosphate-Buffered Saline</td>
</tr>
<tr>
<td>DSMM</td>
<td>Deutsche Studiengruppe Multiples Myelom</td>
</tr>
<tr>
<td>EBMT</td>
<td>European Group for Blood and Marrow Transplantation</td>
</tr>
<tr>
<td>ED</td>
<td>Erstdiagnose</td>
</tr>
<tr>
<td>EIA</td>
<td>enzymgekoppelter Immunadsorptionstest</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>FDG-PET</td>
<td>Fluor-18-Deoxyglukose-Positronenemissionstomographie</td>
</tr>
<tr>
<td>FGFR</td>
<td>Fibroblast Growth Factor Receptor</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluoreszenz in situ Hybridisierung</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>G-CSF</td>
<td>Granulozyten-Kolonie-stimulierender Faktor</td>
</tr>
<tr>
<td>ggf.</td>
<td>gegebenenfalls</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathion-S-Transferase</td>
</tr>
<tr>
<td>GvHD</td>
<td>Graft-versus-Host-Disease</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Begriff</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>GvM</td>
<td>Graft-versus-Myeloma</td>
</tr>
<tr>
<td>Hb</td>
<td>Hämoglobin</td>
</tr>
<tr>
<td>HCl</td>
<td>Salzsäure</td>
</tr>
<tr>
<td>HDT</td>
<td>Hochdosistherapie</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>Il-1β</td>
<td>Interleukin 1-beta</td>
</tr>
<tr>
<td>Il-6</td>
<td>Interleukin 6</td>
</tr>
<tr>
<td>ISS</td>
<td>International Staging System</td>
</tr>
<tr>
<td>i. S.</td>
<td>im Serum</td>
</tr>
<tr>
<td>KM</td>
<td>Knochenmark</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LDH</td>
<td>Laktatdehydrogenase</td>
</tr>
<tr>
<td>Lf</td>
<td>Limes flocculationis, spezifische Aktivität des Tetanus Toxoids</td>
</tr>
<tr>
<td>m²</td>
<td>Quadratmeter</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesiumchlorid</td>
</tr>
<tr>
<td>MGUS</td>
<td>Monoklonale Gammopathie unbestimmter Signifikanz</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>MM</td>
<td>Multiples Myelom</td>
</tr>
<tr>
<td>MP</td>
<td>Melphalan/Prednison</td>
</tr>
<tr>
<td>MPT</td>
<td>Melphalan/Prednison/Thalidomid</td>
</tr>
<tr>
<td>MPV</td>
<td>Melphalan/Prednison/Velcade</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>NaN₃</td>
<td>Natriumazid</td>
</tr>
<tr>
<td>NaOH</td>
<td>Natriumhydroxid</td>
</tr>
<tr>
<td>NP</td>
<td>(Influenza) Nukleoprotein</td>
</tr>
</tbody>
</table>
OD optische Dichte = Extinktion
OSHO Ostdeutsche Studiengruppe Hämatologie und Onkologie
PBS-T phosphate-buffered saline-Tween (Phosphat-gepufferte Salzlösung)
PLI Plasmazell-Labeling-Index
PNPP Para-Nitrophenylphosphat
pPCL primäre Plasmazellenleukämie
ras rat sarcoma
SD Standardabweichung
SMM Smoldering multiple Myeloma (indolentes Myelom)
sog. sogenannt
sPCL sekundäre Plasmazellenleukämie
SZT Stammzelltransplantation
T Translokation
Tab. Tabelle
TNF-α Tumornekrosefaktor-alpha
TT Tetanus Toxoid
U Einheit
VAD Vincristin/Adriamycin/Dexamethason
VGPR very good partial remission (sehr gute Partialremission)
z.B. zum Beispiel
7 Literaturverzeichnis

[Online im Internet.] URL:
http://www.chemie.uni-kl.de/wcms/fileadmin/chemie/Dokumente/Dokumente_BC/fuer_stud/bc-skript200910CWI.pdf [Stand: 29.03.2011, 10:50].

Anhang: Patientenaufklärung und -einverständniserklärung

Patientenaufklärung und -einverständniserklärung
Untersuchung von Blut und Knochenmark
(einschl. genetischer Untersuchung)

Forschungsprojekt
Untersuchung von Expressionsmuster und immunologischer
Relevanz von Cancer-Testis-Antigenen als möglichen Zielstrukturen
für Tumorvakzinierung nach allogener Stammzelltransplantation
bei Patienten mit Multiplem Myelom

Vorname, Name und Geburtsdatum des
Patienten bzw. Patientenaufkleber
1.1 Patienteninformation

Sehr geehrte Patientin, sehr geehrter Patient,

bei Ihnen besteht der Verdacht auf das Vorliegen einer Erkrankung des blutbildenden Systems, des Multiplen Myeloms, oder die Erkrankung konnte bereits zu einem früheren Zeitpunkt diagnostiziert werden.

Es steht mittlerweile fest, dass das Immunsystem einen Einfluss auf die Entstehung und den Verlauf vieler Erkrankungen, einschließlich bösartiger Tumoren, hat. Wir möchten anhand der Ihnen entnommenen Knochenmarkproben untersuchen, ob das Gewebe genetische Merkmale aufweist, die vom Immunsystem als „fremd“ erkannt werden. Außerdem möchten wir ermitteln, ob Ihr Immunsystem bereits auf das mögliche Vorhandensein „fremder“ Strukturen aufmerksam geworden ist. Hierzu möchten wir Sie um eine zusätzliche Blutprobe (20 ml) bitten, die im Rahmen der routinemäßig entnommenen Blutproben mit gewonnen werden kann.

Um künftig bei Patienten, die an einem ähnlichen Leiden wie Sie erkrankt sind, Therapieentscheidungen noch besser treffen zu können, aber auch, um an Ihrem Material vielleicht später neue Erkenntnisse zu gewinnen, möchten wir Sie um Zustimmung bitten, dass dieses Knochenmark- und Blutmaterial asserviert, d. h. aufbewahrt, und später gesondert untersucht werden kann. Das während der Diagnostik bzw. während der Transplantation und im nachfolgenden Verlauf Ihrer Erkrankung gewonnene Material (Blut / Knochenmark) wird im Forschungslabor der II. Medizinischen Klinik des UKE in Hamburg aufbewahrt. Im Rahmen der vorliegenden Untersuchung werden Knochenmark und Blut dann im Verlauf auf das Vorliegen bestimmter Gene hin untersucht werden, die Tumoren für das menschliche Immunsystem erkennbar und damit angreifbar machen. Weiterhin sollen die Proben daraufhin
untersucht werden, ob eine solche durch Antikörper- oder Immunzellen vermittelte Anti-Tumor-Antwort bereits vorliegt.

Die Untersuchungsergebnisse können in medizinischen Fachzeitschriften veröffentlicht werden, allerdings ohne Offenlegung Ihrer persönlichen Daten. Bei der Verarbeitung Ihrer personenbezogenen Daten werden die Bestimmungen des Bundesdatenschutzgesetzes eingehalten werden.

Die geplanten Untersuchungen werden ausschließlich in der II. Medizinischen Klinik des UKE durchgeführt. Eine Weitergabe an Dritte ist nur in Ausnahmefällen vorgesehen. Diese Ausnahmefälle liegen vor, wenn bestimmte wissenschaftliche Methoden nur in entsprechenden Speziallabors durchgeführt werden können. In diesem Fall werden die Daten pseudonymisiert, d. h. die personenbezogenen Daten werden so verändert, dass die Einzelangaben über persönliche und sachliche Verhältnisse nicht mehr oder nur mit einem unverhältnismäßig großen Aufwand an Zeit, Kosten, Arbeitskraft einer bestimmten oder bestimmmbaren natürlichen Personen zugeordnet werden können.

Sollten andere Forschungslaboratorien oder Universitätsklinika sich an gemeinsamen Forschungsprojekten beteiligen, so werden die von uns bei Ihnen erhobenen Daten, insbesondere die klinischen Daten, ebenfalls nur in pseudonymisierter Form weitergegeben, d. h. in einem solchen Fall sind Ihre persönlichen Daten derart verändert, dass Einzelangaben über persönliche und sachliche Verhältnisse nicht mehr oder nur mit einem enormen, unverhältnismäßig großen Aufwand an Zeit, Kosten und Arbeitskraft einer bestimmten oder bestimmmbaren natürlichen Person zugeordnet werden können.
Aus diesem Grunde bitten wir Sie, diese Aufklärung durch Ihre Unterschrift zu bestätigen. Für eine ggf. sich ergebende Fragestellung, die nicht im Zusammenhang mit Ihrer derzeitigen Grunderkrankung steht, würden wir Sie gesondert kontaktieren und um Ihre Zustimmung bitten.

Ihre Zustimmung zur Untersuchung Ihres Bluts und Ihres Knochenmarks ist unabhängig von Ihrer ggf. vorliegenden Zustimmung zur Teilnahme an einer Therapiestudie.
1.2 Patienteneinverständniserklärung

Ich willige ein, dass mein Blut- und/oder Knochenmarkmaterial zu Forschungszwecken verwendet wird, die ausschließlich im Zusammenhang mit meiner o. g. Erkrankung bzw. mit Erkenntnissen über die Stammzelltransplantation stehen.

Ich weiß, dass die im Rahmen dieser Studie erhobenen Daten und persönlichen Mitteilungen der ärztlichen Schweigepflicht unterliegen und zur Verarbeitung und Auswertung nur ohne meinen Namen (pseudonymisiert) zusammengeführt werden dürfen. Ich weiß, dass die Untersuchungsergebnisse in medizinischen Fachzeitschriften veröffentlicht werden können, allerdings ohne Offenlegung meiner persönlichen Daten. Ich wurde darüber aufgeklärt, dass bei der Verarbeitung meiner personenbezogenen Daten die Bestimmungen des Bundesdatenschutzgesetzes eingehalten werden.

Ich wurde über den Inhalt der geplanten Untersuchungen detailliert aufgeklärt; mir wurden alle Fragen vollständig beantwortet. Eine Kopie der unterschriebenen Einverständniserklärung wurde mir ausgehändigt. Ich versichere, dass ich die Patientenaufklärung sorgfältig gelesen und sie verstanden habe und dass ich keine weiteren Fragen habe.

Ort / Datum (Eigenhändig unterzeichnet: Name, Datum und Unterschrift)

Patientin/Patient

Ort / Datum (Eigenhändig unterzeichnet: Name, Datum und Unterschrift)

Aufklärende(r) Ärztin/Arzt
9 Danksagung

Herrn Prof. Dr. med. Carsten Bokemeyer, Direktor der Medizinischen Klinik II am Universitätsklinikum Hamburg-Eppendorf, danke ich für die Überlassung dieses interessanten Dissertationsthemas.

Herrn PD Dr. med. Djordje Atanackovic, Oberarzt der Medizinischen Klinik II am Universitätsklinikum Hamburg-Eppendorf und Leiter des Tumorimmunologisches Labors, möchte ich für die ständige Begleitung und Unterstützung bei der Ausarbeitung danken.

Besonderer Dank gilt Dr. med. Tim Lütkens, wissenschaftlicher Mitarbeiter des Tumorimmunologischen Labors, für seine große Hilfe und Anregungen bei der statistischen Auswertung und der graphischen Darstellung der Ergebnisse.

Ebenso möchte ich mich bei Tanja Stahl für die Einarbeitung im Labor bedanken sowie bei Dr. med. Sebastian Kobold, der mir insbesondere zu Beginn meiner Auswertung viele Hilfestellungen gegeben hat.

Lorenz danke ich für die Beantwortung aller meiner Fragen rund um das Thema Doktorarbeit und seine Computerkompetenz. Ohne dich und deine „superguten“ Tipps wäre die Fertigstellung um einiges mühsamer gewesen!

Und auch meiner Familie möchte ich ganz besonders danken: Dafür, dass ihr immer für mich da seid und ich zu jeder Zeit um eure Unterstützung weiß!
10 Lebenslauf

Der Lebenslauf ist in der digitalen Version nicht enthalten.
11 Eidesstattliche Versicherung

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Unterschrift: ..

Britta Marlen Bartels