PDX1-Amplifikationen im humanen Kolonkarzinom

Zur Erlangung des Grades eines Doktors der Medizin an der Medizinischen Fakultät der Universität Hamburg.

vorgelegt von:

Caroline Lück

Hamburg 2012
Angenommen von der
Medizinischen Fakultät der Universität Hamburg am 05.03.2013

Veröffentlicht mit Genehmigung der
Medizinischen Fakultät der Universität Hamburg.

Prüfungsausschuss, der Vorsitzende: Herr Prof. Dr. G. Sauter

Prüfungsausschuss, zweiter Gutachter: Herr PD Dr. rer. nat. R. Simon

Prüfungsausschuss, dritter Gutachter: Herr Prof. Dr. J. Izbicki
Inhaltsverzeichnis

1. Einleitung ... 4
 1.1. Das kolorekte Karzinom ... 4
 1.1.1. Epidemiologie und Ätiologie .. 4
 1.1.2. Prävention, Klinik und Staging ... 5
 1.1.3. Therapie .. 7
 1.1.4. Genetik ... 8
 1.2. PDX1 .. 12
 1.3. Das PDX1-Amplikon ... 14
 1.4. Ziel der Arbeit .. 15

2. Material und Methoden .. 16
 2.1. Material .. 16
 2.1.1. Multitumor Tissue-Microarray ... 16
 2.1.2. Kolorektaler Adenom Tissue-Microarray ... 18
 2.1.3. Kolonkarzinom Tissue-Microarray .. 18
 2.1.4. Zelllinien Tissue-Microarray ... 20
 2.1.5. pBAC-E.coli-Klon-Kultivierung ... 21
 2.1.6. DNS-Extraktion aus der E.coli-Kultur ... 21
 2.1.7. DNS-Markierung mittels Nick-Translation ... 22
 2.1.8. FISH .. 22
 2.2. Methoden ... 24
 2.2.1. FISH .. 24
 2.2.2. Auswahl und Anzucht von BAC Klonen .. 25
 2.2.3. DNS-Extraktion ... 25
 2.2.4. Entparaffinierung und proteolytische Vorbehandlung 26
 2.2.5. Hybridisierung .. 27
 2.2.6. Fluoreszenz-Detektion ... 28
 2.2.7. Auswertung .. 28
 2.3. Statistik ... 29
3. Ergebnisse .. 30
 3.1. PDX1-Amplifikationen in humanen Tumoren... 30
 3.2. PDX1-Amplifikationen in Kolonadenomen... 31
 3.3. PDX1-Amplifikationen in Kolonkarzinomen .. 31
 3.3.1. Technische Resultate .. 31
 3.3.2. Assoziation zum Phänotyp .. 32
 3.3.3. Assoziation zu molekularen Markern des Kolonkarzinoms............................... 33
 3.3.4. PDX1-Amplifikationen und die Prognose von KRK-Patienten 34
 3.4. PDX1-Amplifikation in humanen Tumorzelllinien .. 35
4. Diskussion .. 36
5. Zusammenfassung ... 44
6. Abkürzungsverzeichnis .. 46
7. Literaturverzeichnis .. 48
8. Danksagung ... 68
9. Anhang ... 69
10. Eidesstattliche Versicherung .. 73
1. Einleitung

1.1. Das kolorektale Karzinom

1.1.1. Epidemiologie und Ätiologie

Das kolorektale Karzinom (KRK), zu dem Karzinome des Kolons und des Mastdarms zählen, ist die zweithäufigste Krebserkrankung (Abb. 1) und Krebstodesursache in Deutschland. Dank des Fortschritts in Früherkennung und Therapie hat sich die 5-Jahres-Überlebensrate seit den 80er Jahren von 50 % auf Werte zwischen 53 und 63% verbessert, dennoch verstarben 2006 über 27.000 Menschen in Deutschland an diesem Tumor [1].

Abb. 1: Prozentualer Anteil ausgewählter Tumorlokalisationen an allen Krebsneuerkrankungen (ohne nicht-melanotischen Hautkrebs) in Deutschland 2006 [1].

Als auslösende Faktoren für die Entartung der Darmzellen werden die hohe metabolische Aktivität der Darmflora und in den Darm gelangte Karzinogene gesehen, die zur Epithelschädigung und später zu Malignität des Gewebes führen können [2].

Es gibt zudem zahlreiche Faktoren, die ein KRK begünstigen. Genetische Erkrankungen wie das hereditäre non-polypöse Kolonkarzinom (HNPCC) oder die familiäre adenomatöse Polyposis (FAP) führen mit einer Wahrscheinlichkeit von 80 bzw. 100 % zu der Tumorерkrankung [3]. Hier liegen bereits in der Keimbahn mutierte Gene zugrunde (s. S. 8 und 9). Weitere Risikofaktoren sind langjährige
chronisch-entzündliche Darmerkrankungen, die Familienanamnese eines KRKs und Einflüsse der Lebensführung wie ballaststoffarme, fett- und fleischreiche Ernährung, Übergewicht und langjähriger Zigaretten- und Alkoholkonsum [1]. Nicht steroidale Antiphlogistika, die über Cyclooxygenase abhängige und unabhängige Mechanismen Apoptose induzieren, scheinen protektiv zu wirken [4-7]. Sie werden aber in den aktuellen S3-Leitlinien „Kolorektales Karzinom“ aufgrund der noch unklaren Datenlage nicht empfohlen [8].

1.1.2. Prävention, Klinik und Staging

Ein kolorektales Karzinom kann durch lokale Anzeichen wie Blutbeimengungen im Stuhl, Blähungen, Verstopfung und Ikterusymptome oder durch allgemeine Krankheitszeichen wie Anämie, Leistungsminderung und Gewichtsverlust auffallen [14].
Bei Verdacht auf diesen Tumor wird eine Koloskopie durchgeführt, wobei der Dickdarm nicht nur systematisch abgesucht, sondern zugleich eine Biopsie von suspekten Befunden entnommen und somit die Diagnose histologisch gesichert werden kann. Wenn ein invasives KRK diagnostiziert wird, schließt sich eine Staging-Diagnostik an, um mögliche Metastasen zu finden. Zu dieser zählt ein Röntgen-Thorax in zwei Ebenen und eine Abdomensonographie, bei unklaren Befunden CT-Aufnahmen. Der Tumor wächst per continuitatem durch die Darmwand und breitet sich über die regionalen Lymphabflusswege und hämatogen über das venöse Abflussystem aus, was primär zu Streuherden in Leber, später auch in Lunge, Skelett und Peritoneum führt. Beim tiefsitzenden Rektumkarzinom erfolgt die primäre Metastasierung in die Lunge.

Das Kolonkarzinom wird entsprechend seiner Histologie, der Infiltrationstiefe, den Lymph- und Fernmetastasen im TNM-System klassifiziert (s. Tab. 1). Histologisch unterscheidet man zwischen Adenokarzinomen, welche mit 95 % die größte Gruppe stellen, kleinzelligen, Plattenepithel- und undifferenzierten Karzinomen. Das Karzinom entsteht in über 90 % der Fälle aus gutartigen Adenomen [15, 16].

Tab. 1: Einteilung des KRK im TNM-System [15]. T= Tumor: Ausdehnung des Primärtumors; N= Nodus: Vorhandensein von regionären Lymphknotenmetastasen; M= Metastasen: Vorhandensein von Fernmetastasen

<table>
<thead>
<tr>
<th>Class (TNM)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>Kein Anhalt für Primärtumor</td>
</tr>
<tr>
<td>Tis</td>
<td>Carcinoma in situ</td>
</tr>
<tr>
<td>T1</td>
<td>Tumor infiltriert die Submukosa</td>
</tr>
<tr>
<td>T2</td>
<td>Tumor infiltriert die Muscularis propria</td>
</tr>
<tr>
<td>T3</td>
<td>Tumor infiltriert die Subserosa</td>
</tr>
<tr>
<td>T4</td>
<td>Tumor infiltriert andere Organe/Strukturen</td>
</tr>
<tr>
<td>N0</td>
<td>Kein Anhalt für Lymphknotenmetastasen (mind. 12 untersuchte Lymphknoten)</td>
</tr>
<tr>
<td>N1</td>
<td>Metastasen in 1-3 regionären Lymphknoten</td>
</tr>
<tr>
<td>N2</td>
<td>Metastasen in 4 oder mehr regionären Lymphknoten</td>
</tr>
<tr>
<td>M0</td>
<td>Kein Anhalt für Fernmetastasen</td>
</tr>
<tr>
<td>M1</td>
<td>Fernmetastasen gesichert</td>
</tr>
</tbody>
</table>

Auf Basis der TNM-Klassifikation wird jedes KRK in die UICC-Stadiengruppierung 0-IV (Union internationale contre le cancer, 2002) eingeteilt. Die Stadien sind mit unterschiedlichen Prognosen verbunden (s. Tab. 2).
Tab. 2: Stadieneinteilung des KRK nach UICC-Klassifikation und die damit verbundene Prognose [16]. 5-JÜR= 5-Jahres-Überlebensrate

<table>
<thead>
<tr>
<th>UICC</th>
<th>Definition</th>
<th>5-JÜR</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>T1-2 N0 M0</td>
<td>>90 %</td>
</tr>
<tr>
<td>II</td>
<td>T3-4 N0 M0</td>
<td>70-90 %</td>
</tr>
<tr>
<td>III</td>
<td>Tx N1-2 M0</td>
<td>40-75 % je nach N-Stadium</td>
</tr>
<tr>
<td>IV</td>
<td>Tx Nx M1</td>
<td><30 %</td>
</tr>
</tbody>
</table>

1.1.3. Therapie

Beim Kolonkarzinom wird das tumortragende Darmstück en-bloc und in der sogenannten „no-touch“-Technik entfernt, um eine Streuung von Tumorzellen in den Bauchraum zu vermeiden. Ab dem UICC-Stadium III schließt sich eine adjuvante Chemotherapie mit Oxaliplatin und 5-Flourouracil an, womit in 70 % der Fälle eine 5-Jahres-Tumorfreiheit erreicht werden kann.

Beim Rektumkarzinom wird je nach Ausbreitung des Tumors entschieden, ob sphinktererhaltend operiert werden kann. Fortgeschrittene rektale Tumoren werden ab dem UICC-Stadium II mit einer neoadjuvanten kombinierten Radio-Chemotherapie behandelt, die unter Umständen noch einen Sphinktererhalt ermöglicht und das Risiko eines Lokalrezidivs um 50 % senkt.

In den letzten Jahren werden zusätzlich zur Chemotherapie bestimmte Formen der Immuntherapie bei der Behandlung des KRK im UICC-Stadium IV eingesetzt. Das Immunsystem eliminiert normalerweise laufend entartete Zellen, die auch im gesunden Menschen entstehen. Dieser Vorgang, der bei Krebspatienten nicht mehr greift, soll in der Krebsimmuntherapie initiiert bzw. unterstützt werden. Während viele

1.1.4. Genetik
Die genetischen Mechanismen, die die Tumorigenese des KRKs bestimmen, werden seit Jahren intensiv beforscht. Schon 1974 stellte Morson die Adenom-Karzinom-Sequenz als Modell für die Genese des KRKs vor. Sie nimmt eine kontinuierliche Entwicklung von gesundem Kolonepithel über ein Adenom zu einem Karzinom an [36].
Nach Vogelstein und Kinzler liegen die Ursachen für die Adenom-Karzinom-Sequenz in der Inaktivierung von Tumorsuppressorgen und der Aktivierung von Onkogenen [37]. Demnach sind sukzessive die Gene APC (adenomatous polyposis coli) [38], KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) [39], DCC/SMAD4 (Deleted in Colon Cancer/mothers against DPP homolog 4) [40, 41] und Tumorprotein p53 [42] von einem Allelverlust (Loss of Heterozygosity) und/oder Mutationen betroffen (Abb. 2).
Bei der hereditären Erkrankung „familiäre adenomatöse Polyposis“ ist ein Allel von APC bereits in der Keimbahn durch Mutation inaktiviert. Bei Ausfall des zweiten, noch funktionsfähigen Allels wird das tumoröse Wachstum im Kolon initiiert. Es entwickeln sich zum Teil Hunderte Polypen im Dickdarm dieser Patienten, aus welchen unbehandelt in 100 % der Patienten ein Kolonkarzinom entsteht [43].

In den meisten Kolonkarzinomen besteht eine genetische Instabilität, die mit einer erhöhten Mutationsrate einhergeht [44, 45].

Molekulargenetisch werden Karzinome, in denen das MMR ausgefallen ist, deshalb durch die sogenannte Mikrosatelliteninstabilität (MSI) charakterisiert [47]. Beim spontanen Kolonkarzinom der westlichen Hemisphäre tritt MSI in 10 % der Fälle auf [48], hier ist die Ursache aber keine Mutation wie beim HNPCC, sondern eine epigenetische Aberration. Das Mismatch Repair Gen hMLH1 (mutL homolog 1, colon cancer, nonpolyposis type 2) liegt in solchen Tumoren hypermethyliert vor. Dies ereignet sich meistens im Rahmen des CpG island methylation pathway (CIMP), einem neu beschriebenen Tumorigenesepfad. Er zeichnet sich durch epigenetische Veränderungen an DNS-Regionen aus, in denen es eine hohe Zahl von Cytosin- und Guanin-Basenpaaren gibt, die durch Phosphodiester gebunden sind (CpG). Durch
die Hypermethylierung wird hMLH1 inaktiviert („silenced“) [49, 50]. CIMP spielt nicht nur bei MSI-positiven KRKS eine Rolle. In einigen Kolonkarzinomen werden Tumorsuppressorgene wie p16 (cyclin-dependent kinase inhibitor 2A), THBS1 (thrombospondin 1) [51] und Cyclooxygenase 2 [52] durch die Hypermethylierung inaktiviert. Die Inzidenz von CIMP ohne Mikrosatelliteninstabilität wird mit 5-10 % angegeben [48].

![Abb.3](image-url)

Abb.3. Es werden die verschiedenen genetischen Instabilitätswege im KRK mit ihren sich überlappenden Beziehungen dargestellt. Die Anteile, die die genetischen Instabilitätswege am KRK ausmachen, sind prozentual angegeben. CIMP= CpG island methylation pathway, MSI= Mikrosatelliteninstabilität, CIN= chromosomale Instabilität (verändert nach S. Markowitz und M. Bertagnolli 2009, Abb. 3 [60]).

In malignen humanen Tumoren kommen Amplifikationen in 10- 50 % der Fälle vor [61]. In Neuroblastomen beispielsweise ist N-MYC (neuroblastoma-derived v-myc avian myelocytomatosis viral related oncogene) in bis zu 40 % der Fälle amplifiziert und bestimmt die Prognose [63]. EGFR-Amplifikationen kommen in bis zu 50 % der Glioblastome vor [64] und im Blasenkrebs ist die E2F3 (E2F transcription factor 3)-Amplifikation stark mit einem invasivem Tumorwachstum assoziiert [65]. Neu identifizierte amplifizierte Regionen deuten dementsprechend auf putative Onkogene hin.

Für das Kolonkarzinom ist keine typisch Amplifikation bekannt, es existieren viele amplifizierte Gene mit normalerweise geringen Häufigkeiten. Al-Kuraya et al. ermittelten in 518 untersuchten Karzinomen Amplifikationsraten von 2,2- 13,5 % für HER2, Cyclin D1, EGFR und C-MYC (v-myc myelocytomatosis viral oncogene homolog) [67]. Für EGFR exprimierende KRKs steht eine gezielte Therapie (Target-Therapie) in Form eines monoklonalen Antikörpers zur Verfügung (s. S. 8).

Da Amplifikationen potentiell gute molekulare Angriffsziele bieten, könnten neu entdeckte amplifizierte Gene eine individuelle und effektive Therapie des KRKs...
ermöglichen. Selbst bei niedrigen Amplifikationsraten würden bei jährlich 28.000 Neuerkrankten noch viele Patienten behandelt werden können [1].

1.2. PDX1
In einer Studie wurde mit Proben eines metastasierten Kolonkarzinoms evaluiert, ob das Protein PDX1 (Pancreatic and duodenal homebox gene 1) sich als Tumormarker eignet. Es wurde von einer sich graduell steigernden PDX1-Expression vom Normalgewebe zum Primärtumor bis zu der Metastase berichtet [68]. Eine Überexpression kann durch eine Amplifikation ausgelöst sein (s. S. 11). PDX1 könnte demnach in einem Teil der Kolonkarzinome amplifiziert sein und womöglich eine gezielte Antikörpertherapie ermöglichen oder die Prognose mitbestimmen.

PDX1, auch bekannt unter STF1 (somatostatin transactivating factor 1), IPF1 (insulin promoter factor 1), IUF1 (insulin upstream factor 1) und IDX1 (islet/duodenum homeobox 1), ist ein Transkriptionsfaktor, der die Expression von Insulin in vitro initiiert [69] und wichtig für die Entwicklung und Differenzierung des Pankreas, der endokrinen Zellen des Magens und des Duodenums ist [70, 71]. Das Protein wird auch in sich entwickelnden Neuronen und in der Epidermis exprimiert [72, 73].

PDX1 ist ein zu der Hox Gruppe gehörendes Gen aus der Familie der Homeobox-Gene [74]. Das humane Gen besteht aus zwei Exons, die etwa fünf Kilobasenpaare auf Chromosom 13 umfassen. Das zweite Exon kodiert für die Homeodomäne [75], die unter anderem bei der Transkription die spezifische Bindung an den DNS-Strang vermittelt [76].

PDX1 ist zudem für die embryonale Entwicklung des Pankreas entscheidend. Dies wird durch die Pankreasagenesie bei Menschen mit mutiertem PDX1 [80] und bei Mäusen mit gentechnisch inaktiviertem PDX1 verdeutlicht [81]. Weiterhin entstehen im ventralen Duodenum der Maus strukturelle Fehlentwicklungen, wenn PDX1 mutiert ist [82] und im Magen fehlen Gastrinzellen fast vollständig, während sich mehr endokrine Vorläuferzellen zu Serotoninzellen differenzieren [70].

PDX1 fällt in Bezug auf das Pankreaskarzinom in die zweite Kategorie. Im Embryonalstadium wird in murinem Gewebe, welches sich später zu exokrinem Pankreas differenziert, eine PDX1-Expression gemessen, während es im humanen adulten exokrinen Pankreas keine PDX1-Expression gibt. Bei manchen humanen Karzinomen des exokrinen Pankreas setzt die PDX1-Expression wieder ein und korreliert positiv mit klinischen Parametern wie Lymphknotenmetastasierung, histologischer Klassifikation, TNM-Stadium und einem schlechteren Gesamtüberleben der Patienten gegenüber den Pankreaskarzinomen ohne PDX1-Expression. Koizumi et al. und Liu et al. konnten bei 43 bzw. 39 % der Pankreaskarzinome eine PDX1-Expression nachweisen [84, 85].

Im Kolonepithel wird PDX1 weder im embryonalen noch im adulten Normalgewebe exprimiert, in tumorösen Veränderungen tritt eine Expression hingegen auf.

1.3. Das PDX1-Amplikon
Am Institut für Pathologie des UKE (Universitätsklinikum Hamburg- Eppendorf) wurden in einer Studie (Antje Krohn) Zelllinien und Primärtumoren verschiedener humaner Tumortypen mittels array-komparativer genomischer Hybridisierung (aCGH) auf DNS-Kopiezahleränderungen untersucht. Im Zuge dieser Analysen wurde bei einer Kolonkarzinomzelllinie (Colo 320 DM) ein Amplikon auf Chromosom 13q12 detektiert (Abb. 4).

Abb. 4: Array Comparative Genomic Hybridazation der Zelllinie Colo 320 DM. Das Amplikon ist mit einem Pfeil markiert.
Dieses Amplikon enthielt 3 Gene: ATP5EP2 (ATP Synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit pseudogene 2), CDX2 (caudal type homeobox 2) und PDX1 (s. Abb. 5).

Sowohl die bekannte Funktion von PDX1 als auch die bisher publizierten Daten zur PDX1-Expression in verschiedenen humanen Tumortypen sind mit einer onkogenen Rolle von PDX1 vereinbar (s. S. 14).

1.4. Ziel der Arbeit

Aufgrund der möglichen onkogenen Funktion von PDX1 wurde es für weitere Validierungsexperimente ausgewählt. Ziel dieser Arbeit ist es, die molekulare Epidemiologie von PDX1-Amplifikationen in vielen humanen Tumortypen und vornehmlich im Kolonkarzinom zu klären.
2. Material und Methoden

2.1. Material

2.1.1. Multitumor Tissue-Microarray

Tab. 3: Zusammenstellung des Multi-Tumor-Arrays.

<table>
<thead>
<tr>
<th>Tumortyp</th>
<th>Anzahl (Slide A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostatakzinom</td>
<td>63</td>
</tr>
<tr>
<td>Teratom</td>
<td>60</td>
</tr>
<tr>
<td>Seminom</td>
<td>92</td>
</tr>
<tr>
<td>Nicht-Seminom</td>
<td>45</td>
</tr>
<tr>
<td>Peniskarzinom</td>
<td>46</td>
</tr>
<tr>
<td>Onkozytom</td>
<td>62</td>
</tr>
<tr>
<td>Nierenzellkarzinom, papillär</td>
<td>31</td>
</tr>
<tr>
<td>Nierenzellkarzinom, chromophob</td>
<td>56</td>
</tr>
<tr>
<td>Nierenzellkarzinom, klarzellig</td>
<td>68</td>
</tr>
<tr>
<td>Nierenzellkarzinom, andere</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumortyp</th>
<th>Anzahl (Slide B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magen-Adenokarzinom, intestinal</td>
<td>62</td>
</tr>
<tr>
<td>Magen-Adenokarzinom, diffus</td>
<td>56</td>
</tr>
<tr>
<td>Dünndarmkarzinom</td>
<td>22</td>
</tr>
<tr>
<td>Analkarzinom</td>
<td>18</td>
</tr>
<tr>
<td>Kolonadenom, geringgradig dysplastisch</td>
<td>56</td>
</tr>
<tr>
<td>Kolonadenom, hochgradig dysplastisch</td>
<td>40</td>
</tr>
<tr>
<td>Kolonkarzinom</td>
<td>60</td>
</tr>
<tr>
<td>Ösophagus-Plattenepitelkarzinom</td>
<td>60</td>
</tr>
<tr>
<td>Ösophagus-Adenokarzinom</td>
<td>60</td>
</tr>
<tr>
<td>Hepatozelluläres Karzinom</td>
<td>55</td>
</tr>
<tr>
<td>Karzinoide</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumortyp</th>
<th>Anzahl (Slide C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphoepitheliales Karzinom</td>
<td>5</td>
</tr>
<tr>
<td>Mundbodenkarzinom</td>
<td>54</td>
</tr>
<tr>
<td>Larynxkarzinom</td>
<td>57</td>
</tr>
<tr>
<td>Thymom</td>
<td>57</td>
</tr>
<tr>
<td>Schilddrüsen-Adenom</td>
<td>65</td>
</tr>
<tr>
<td>Schilddrüsenkarzinom, papillär</td>
<td>54</td>
</tr>
<tr>
<td>Schilddrüsenkarzinom, folliculär</td>
<td>47</td>
</tr>
<tr>
<td>Tumortyp</td>
<td>Anzahl (Slide D)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>Schilddrüsenkarzinom, medullär</td>
<td>28</td>
</tr>
<tr>
<td>Schilddrüsenkarzinom, anaplastisch</td>
<td>3</td>
</tr>
<tr>
<td>Astrozytom</td>
<td>49</td>
</tr>
<tr>
<td>Ependymom</td>
<td>10</td>
</tr>
<tr>
<td>Medulloblastom</td>
<td>4</td>
</tr>
<tr>
<td>Oligodendrogliom</td>
<td>28</td>
</tr>
<tr>
<td>Neuroblastom</td>
<td>51</td>
</tr>
<tr>
<td>Phäochromozytom</td>
<td>64</td>
</tr>
<tr>
<td>Nebennieren-Adenom</td>
<td>21</td>
</tr>
<tr>
<td>Nebennierenkarzinom</td>
<td>8</td>
</tr>
<tr>
<td>Paragangliom</td>
<td>34</td>
</tr>
<tr>
<td>Urothelkarzinom (T2-4)</td>
<td>60</td>
</tr>
<tr>
<td>Urothelkarzinom (Ta)</td>
<td>62</td>
</tr>
<tr>
<td>Urothelkarzinom, andere</td>
<td>10</td>
</tr>
<tr>
<td>Benigner Naevus</td>
<td>59</td>
</tr>
<tr>
<td>Malignes Melanom</td>
<td>37</td>
</tr>
<tr>
<td>Spinaliom</td>
<td>51</td>
</tr>
<tr>
<td>Basaliom</td>
<td>67</td>
</tr>
<tr>
<td>Pilomatrixom</td>
<td>37</td>
</tr>
<tr>
<td>Merkelzell-Karzinom</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumortyp</th>
<th>Anzahl (Slide E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hodgkin Lymphom</td>
<td>43</td>
</tr>
<tr>
<td>Non-Hodgkin-Lymphom</td>
<td>9</td>
</tr>
<tr>
<td>Malignes Mesotheliom</td>
<td>28</td>
</tr>
<tr>
<td>Riesenzell-Sehnenscheidenkarzinom</td>
<td>40</td>
</tr>
<tr>
<td>Kleinzelliges Bronchialkarzinom</td>
<td>15</td>
</tr>
<tr>
<td>Nichtkleinzelliges Bronchialkarzinom</td>
<td>14</td>
</tr>
<tr>
<td>Bronchialkarzinom, Plattenepithel</td>
<td>59</td>
</tr>
<tr>
<td>Bronchialkarzinom, adenös</td>
<td>71</td>
</tr>
<tr>
<td>GroBzelliges Bronchialkarzinom</td>
<td>48</td>
</tr>
<tr>
<td>Bronchialkarzinom, bronchoalveolär</td>
<td>14</td>
</tr>
<tr>
<td>Pankreas-Adenokarzinom, duktal</td>
<td>56</td>
</tr>
<tr>
<td>Pankreas-Adenokarzinom, Papille</td>
<td>29</td>
</tr>
<tr>
<td>Pankreas-Adenokarzinom, neuroendokrin</td>
<td>20</td>
</tr>
<tr>
<td>Gallenblasenkarzinom</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumortyp</th>
<th>Anzahl (Slide F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiosarkom</td>
<td>7</td>
</tr>
<tr>
<td>Chondrosarkom</td>
<td>5</td>
</tr>
<tr>
<td>Dermatofibrosarkom protuberans</td>
<td>5</td>
</tr>
<tr>
<td>Desmoid</td>
<td>9</td>
</tr>
<tr>
<td>Gastrointestinaler Stromatumor (GIST)</td>
<td>46</td>
</tr>
<tr>
<td>Granulzarzelltumor</td>
<td>8</td>
</tr>
<tr>
<td>Hämangioperizytom</td>
<td>7</td>
</tr>
<tr>
<td>Leiomyom</td>
<td>27</td>
</tr>
<tr>
<td>Leiomyosarkom</td>
<td>28</td>
</tr>
<tr>
<td>Liposarkom</td>
<td>16</td>
</tr>
<tr>
<td>Malignes Schwannom</td>
<td>14</td>
</tr>
<tr>
<td>Malignes fibröses Histiozytom</td>
<td>25</td>
</tr>
<tr>
<td>Neurofibrom</td>
<td>60</td>
</tr>
<tr>
<td>Warthin Tumor</td>
<td>57</td>
</tr>
<tr>
<td>Pleomorphes Adenom (Parotis)</td>
<td>61</td>
</tr>
</tbody>
</table>
Basalzellanadenom | 37
Mukoepidermoid-Karzinom | 46

<table>
<thead>
<tr>
<th>Tumortyp</th>
<th>Anzahl (Slide G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovarialkarzinom, serös</td>
<td>63</td>
</tr>
<tr>
<td>Ovarialkarzinom, muzinös</td>
<td>46</td>
</tr>
<tr>
<td>Ovarialkarzinom, endometroid</td>
<td>22</td>
</tr>
<tr>
<td>Ovar, Brenner-Tumor</td>
<td>45</td>
</tr>
<tr>
<td>Zervixkarzinom, Plattenepithel</td>
<td>63</td>
</tr>
<tr>
<td>Zervixkarzinom, adenös</td>
<td>48</td>
</tr>
<tr>
<td>Zervixkarzinom, adenosquamös</td>
<td>3</td>
</tr>
<tr>
<td>Endometriumkarzinom, endometroid</td>
<td>60</td>
</tr>
<tr>
<td>Endometriumkarzinom, serös</td>
<td>58</td>
</tr>
<tr>
<td>Vulvakarzinom, Plattenepithel</td>
<td>61</td>
</tr>
<tr>
<td>Vaginalkarzinom, Plattenepithel</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumortyp</th>
<th>Anzahl (Slide H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammakarzinom, duktal</td>
<td>62</td>
</tr>
<tr>
<td>Mammakarzinom, lobulär</td>
<td>65</td>
</tr>
<tr>
<td>Mammakarzinom, muzinös</td>
<td>61</td>
</tr>
<tr>
<td>Mammakarzinom, medullär</td>
<td>64</td>
</tr>
<tr>
<td>Mammakarzinom, tubulär</td>
<td>60</td>
</tr>
<tr>
<td>Mammakarzinom, phylloid</td>
<td>48</td>
</tr>
<tr>
<td>Mammakarzinom, kribiform</td>
<td>26</td>
</tr>
<tr>
<td>Mammakarzinom, apokrin</td>
<td>17</td>
</tr>
<tr>
<td>Stromasarkom des Uterus</td>
<td>13</td>
</tr>
<tr>
<td>Karzinosarkom</td>
<td>38</td>
</tr>
</tbody>
</table>

2.1.2. Kolorektaler Adenom Tissue-Microarray

2.1.3. Kolonkarzinom Tissue-Microarray

Der TMA besteht insgesamt aus 2154 Proben, wovon 1793 primäre Kolonkarzinome sind. 1413 primäre Karzinome wurden in Basel und Zürich entnommen, weitere 380 Proben stammen aus Hamburg, bei denen zusätzlich 156 korrespondierende Lymphknoten, 51 Lebermetastasen und 24 Rezidive entfernt wurden. Das Alter der Patienten betrug durchschnittlich 68 Jahre (Spanne 14-96 Jahre), der Median des Alters liegt bei 70 Jahren und die Operationen erfolgten am UKE in den Jahren 1990-

Für die Proben aus der Schweiz wurden den Pathologieberichten folgende Daten entnommen: Tumorlokalisation, maximaler Tumordurchmesser, pT-Stadium, histologischer Grad, Radikalität der Operation (im Gesunden, nicht im Gesunden reseziert), Lymphknotenstatus (Anzahl untersuchte und Anzahl positive Lymphknoten, pN-Stadium). Die mittlere Nachbeobachtungszeit betrug 50,6 Monate (1-152 Monate). Regionäre Lymphknoten waren bei 1366 Patienten untersucht worden. Das pN-Stadium war pN0 in 714, pN1 in 358 und pN2 in 294 Patienten. 673 (47,5 %) Patienten waren Männer und 741 (52,3 %) Frauen, in drei Fällen fehlte diese Information.

Dieser Arbeit vorangegangene Studien, die am Institut für Pathologie am UKE durchgeführt wurden, analysierten den Kolonkarzinom-Array mit verschiedenen immunhistochemischen Markern. Dazu gehörten EGFR1, c-Myc [67, 96, 97], sowie p53, Antigen Ki67, BCL2 (B-Cell Lymphoma 2), p27 (Cyclin-dependent kinase inhibitor 1B) und Beta-Catenin. Der TMA wurde mittel FISH auch auf ein Vorkommen von HER2- Amplifikationen untersucht. Die Zusammenstellung des Kolonkarzinom Tissue-Microarrays ist in Tabelle 4 zusammengefasst und die Kaplan-Meier Überlebenskurven des Arrays für das Tumorstadium (pT1-4) und den histologischen Grad (Grad 1-3) in Abbildung 6 dargestellt.

| Abb. 6: Kaplan-Meier Überlebenskurven des Kolonkarzinom-Arrays für a) das Tumorstadium (pT1-4) und b) den histologischen Grad (Grad 1-3). |

<table>
<thead>
<tr>
<th>TMA</th>
<th>Alle Proben</th>
<th>n=2154</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolonkarzinom</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stadium</td>
<td>pT1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pT2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pT3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pT4</td>
</tr>
<tr>
<td></td>
<td>Lymphknotenstatus</td>
<td>pN0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pN1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pN2</td>
</tr>
<tr>
<td></td>
<td>Metastasenstatus</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pM1</td>
</tr>
<tr>
<td></td>
<td>Histologischer Grad</td>
<td>G1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3</td>
</tr>
<tr>
<td></td>
<td>Überlebensdaten verfügbar</td>
<td></td>
</tr>
<tr>
<td>Weiteres Tumorgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korrespondierende Lymphknoten</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lebermetastasen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rezidive</td>
<td></td>
</tr>
<tr>
<td>Kontrollen</td>
<td></td>
<td>130</td>
</tr>
</tbody>
</table>

2.1.4. Zelllinien Tissue-Microarray

Die auf dem Array vorliegenden 143 Zelllinien stammen von LGC-Promocem (ATCC), DSMZ, ECACC, ICLC, LGC, NCI-60 sowie unterschiedlichen Forschungslaboren der Universität Basel. Es handelt sich überwiegend um humane
Zelllinien, ebenfalls wurden Zelllinien vom Rind (bos taurus), Affen (african green; cercopithecus aethiops) und von der Ratte (rattus norvegicus) verwendet. Bei den verwendeten Zelllinien handelt es sich um Tumor-, Nicht-Tumor, als auch um präneoplastische Zellen. Diese entstammen verschiedenen Organen wie Knochenmark, Gehirn, Zervix, Kolon, Niere, Lunge, Brustdrüse, Muskel, Eierstock, Pankreas, Blut, Haut, Schilddrüse und Harnblase. Detaillierte Angaben zu den einzelnen Zelllinien sind im Anhang (s. Tab. 8) tabellarisch gelistet.

2.1.5. pBAC-E.coli-Klon-Kultivierung

- pBAC-E.coli-Klon, RZPD-Nr.: RP11-328P22 (stab-stock-Kultur)
- Kulturmedium: autoklavierte 25 g Luria-Broth-Base (25 g/l destilliertes Wasser (dH2O); Invitrogen
- Antibiotikum: Chloramphenikel (34 mg/ml Ethanol abs.); Sigma-Aldrich
- Erlenmeyerkolben
- Pipetten
- Küvetten
- Pinzette
- Zahnstocher
- Schüttelinkubator- Thermocycler K 15/300; Incutec IH 50
- Schüttelmaschine LS10; Gerhardt

2.1.6. DNS-Extraktion aus der E.coli-Kultur

- „QIAprep Spin Miniprep Kit 250“; Qiagen
 - P1, P2, N3, PE und EB Puffer (Elution Buffer: 10 mM Tris-Cl, pH 8,5)
 - „QIAprep spin“ Säulen
- Pipetten
- Küvetten
- Eppendorf-Reaktionsgefäße
- Zentrifugen
 - Biofuge fresco; Heraeus Instruments
 - JOTA-AVE; B.Braun Biotech International
- NanoDrop ND-1000 Spectrophotometer; PeqLab
- Thermomixer compact; Eppendorf
2.1.7. DNS-Markierung mittels Nick-Translation

- Nick Translation System; Invitrogen
- Digoxigenin 11-dUTP (Desoxyuridintriphosphat); Roche
- Polymerase I; Invitrogen
- dNTP (Desoxyribonukleosidtriphosphat) ohne dTTP (Desoxythymidintriphosphat); Invitrogen
- DNase I; Invitrogen
- pBac-DNA-Lösung; eigene Herstellung
- Pipetten
- Küvetten
- Zentrifugen
 - Biofuge fresco; Heraeus Instruments
 - JOTA-AVE; B.Braun Biotech International
- Thermocycler
- Minishaker IKA, Vibrofix VF1 Electronic; Janke&Kunkel IKA Labortechnik

2.1.8. FISH

Paraffinpretreatment und proteolytische Vorbehandlung der TMA-Schnitte

- Objektträger; Starfrost
- dH₂O
- Ethanol (70 %/ 80 %/ 96 %); Merck
- VP 2000 Pretreatment Reagent; Vysis
- VP 2000 Protease Buffer (0,01 N HCL); Vysis
- Xylol; Merck
- Heizplatte; Medax
- Wasserbäder, Typ 1002 und 1083; GFL-Gesellschaft für Labortechnik
- Slideholder

Hybridisierung

- Hybridisierungsmix (14 µl Basis-Hybridisierungsmix, 2 µl Cot Human DNA (Roche),
 3,5 µl Sonden-DNS, 0,5 µl CEP-12-Sonde bzw. TEL-13-Sonde= 20 µl)
- Hybrite- Thermobrite, Statspin; Abbot Molecular
- Deckgläschen; Marienfeld-Superior
- Pipetten
• Küvetten 100m; Glaswerk Wertheim
• Fixogum; Marabu

Basishybridisierungsmix:
• 20×SSC (Sodiumcitrat, NaCl)
• Cot Human DNA; Roche
• Dextransulfat
• Formamid (deionisiert)
• Pipetten
• Küvetten 100m; Glaswerk Wertheim
• Digital pH-Meter pH 525; WTW-Wissenschaftlich Technische Werkstätten

Waschen
• 2×SSC
• dH₂O
• NP40 (NP40= Octylphenoloxypolyethoxyethanol)
• Wasserbäder, Typ 1002 und 1083; GFL-Gesellschaft für Labortechnik

Antikörperdetektion
• „Flourescent Antibody Enhancer Set for DIG Detection“; Roche
 - Blocking Solution
 - Anti-DIG monoclonal antibody against digoxigenin mouse IgG1,
 - Anti-Mouse-Ig-DIG-F(ab)₂ fragment from sheep
• Waschpuffer
 - 0,2 % TWEEN (TWEEN=Polyoxyethylene(20)-sorbitan-monolaurat)
 - in 1x PBS, phosphate buffered saline pH= 7,4; (Natriumchlorid,
 (Di)Natriumhydrogenphosphat; DakoCytomation)
• Pipetten
• Küvetten 100m; Glaswerk Wertheim
• DAPI (DAPI= 0,2 mM 4′5-Diamindino-2-Phenyl-Indol, Vectashield Mounting
 Medium for Fluorescence with DAPI; H-1200; Vector)
• Antifade – p-Phenylenediamine
• Deckglässchen; Marienfeld-Superior
• Brutschrank; WTB Binder
• Wasserbäder, Typ 1002 und 1083; GFL-Gesellschaft für Labortechnik

Auswertung
• Epifluoreszensmikroskop; Zeiss mit grünem FITC (Fluorescein isothiocyanate) - Filter und orangefarbenem Rhodamin Filter

2.2. Methoden

2.2.1. FISH

• pBAC-E.coli-Klon-Kultivierung
• DNS-Extraktion aus der E. coli-Kultur
• DNS-Markierung mittels Nick-Translation
• Paraffinpretreatment und proteolytische Vorbehandlung der TMA-Schnitte
• Hybridisierung
• Waschen
• Antikörperdetektion
• Auswertung
2.2.2. Auswahl und Anzucht von BAC Klonen

2.2.3. DNS-Extraktion

Säule entfernt und die DNS im NanoDrop quantifiziert werden. Das Eluat wurde nur dann weiterverwendet, wenn der DNS-Gehalt mindestens 50 ng/µl und wenn sich die Reinheitsratio zwischen 1,8 und 2,0 befand (DNS/Proteine: Absorption bei 260nm/280nm). Aufbewahrt wurde die DNS im 1,5 ml-Reaktionsgefäß bei 4 °C.

2.2.4. Sondenmarkierung

Pipettieransatz im 0,5 ml-Reaktionsgefäß, damit sich 50 µl Ansatzmenge ergeben:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>dNTP-Mix ohne dTTP</td>
<td>5 µl</td>
</tr>
<tr>
<td>Digoxigenin 11-dUTP</td>
<td>1 µl</td>
</tr>
<tr>
<td>pBAC-DNS-Lösung</td>
<td>38 µl</td>
</tr>
<tr>
<td>Pol I-/DNase Enzym Mix (0,5 U/µl Pol I, 0,4 mU/µl DNase I)</td>
<td>5 µl</td>
</tr>
<tr>
<td>DNS Polymerase I</td>
<td>1 µl</td>
</tr>
<tr>
<td></td>
<td>=50 µl</td>
</tr>
</tbody>
</table>

2.2.5. Entparaffinierung und proteolytische Vorbehandlung
Die TMA-Schnitte wurden vor der Hybridisierung gemäß des Protokolls des „Paraffin Pretreatment Reagent Kit“ (Vysis) behandelt.

Die TMA-Schnitte wurden drei Mal für jeweils zehn Minuten in Xylol gestellt. Dann wurden die Schnitte zwei Mal für jeweils fünf Minuten in 96-prozentiges Ethanol

2.2.6. Hybridisierung

Herstellung des Basishybridisierungsmix

Fünf Milliliter deionisiertes Formamid, 1,5 ml 20×SSC und ein Gramm Dextran sulfat wurden in ein kleines Becherglas gegeben und bei 60 °C auf dem Heizrührer so lange gerührt, bis sich das Dextran sulfat gelöst hatte. Die Suspension wurde mit Salzsäure auf den pH-Wert 7 eingestellt und mit dH₂O auf sieben Milliliter aufgefüllt. Der Mix wurde bei 4 °C aufbewahrt.

Der Hybridisierungs- mix wurde auf den TMA gegeben, mit einem 24× 32 mm Deckgläsen eingedeckelt und mit Rubbercement versiegelt. Für zehn Minuten wurden die Arrays im Hybrite bei 72 °C denaturiert und dann über Nacht bei 37 °C im Hybrite inkubiert.
2.2.7. Waschen
Im Anschluss an die Hybridisierung wurden die TMA-Schnitte stringent gewaschen, um unspezifische Hybridisierungen zu entfernen.

Die TMA-Schnitte wurden aus dem Hybride genommen und Rubercement und Deckgläschen entfernt. Sie wurden in Waschpuffer (2×SSC; 0,3 % NP40) bei Raumtemperatur gestellt und dann zwei Minuten bei 72 °C im Waschpuffer (2×SSC; 0,3 % NP40) gewaschen. Anschließend wurden sie kurz in dH₂O waschen und im Dunkeln luftgetrocknet.

2.2.8. Fluoreszenz-Detektion

2.2.9. Auswertung
das Vorliegen von mindestens doppelt so vielen PDX1-Signalen wie Chromosom markierender Signale (Ratio PDX1/CEP12 bzw. TEL13 ≥ 2,0) definiert. Gewebeproben, die eine PDX1/CEP12 bzw. TEL13-Ratio von über 1,0, aber unter 2,0 aufwiesen (1,0 < Ratio PDX1/CEP12 bzw. TEL13 < 2,0), wurden als „Gains“ bezeichnet. Proben, in denen die CEP12- bzw. TEL13-Signale auf über 2 erhöht waren und die Ratio PDX1/CEP12 bzw. TEL13 <2 betrug, wurden als Polysomien gewertet. Alle anderen Gewebeproben (Ratio PDX1/Chr13 ≤ 1,0) wurden als normal definiert.

Bei den im Multi-Tumor-Array gefundenen PDX1-Amplifikationen lassen sich Polysomien aufgrund der fehlenden korrekten Referenzsonde nicht ausschließen.

2.3. Statistik
Um den Zusammenhang zwischen histologischem Tumortyp, Grad des Tumors, Staging und Genamplifikationen darzustellen, wurden die „Contingency table analysis“ und der Chi-Quadrat-Test angewandt. Das Signifikanzniveau wurde auf fünf Prozent festgelegt.

3. Ergebnisse

3.1. PDX1-Amplifikationen in humanen Tumoren

Bei der Untersuchung des Multi-Tumor-TMAs konnten 1886 Tumorstanzen (47,4 %) der 3981 Tumoren auf ein Vorkommen von Amplifikationen geprüft werden. Entweder fehlten die weiteren Proben auf dem TMA-Schnitt (449; 11,3 %) oder sie wiesen kein Fluoreszenzsignal für PDX1 auf (1646, 41,3 %).

PDX1-Amplifikationen wurden in sieben (0,37 %) der untersuchten Tumoren gefunden. Eine hochgradige PDX1-Amplifikation (>20 Gensignale, s. Abb. 8) zeigte sich in einem von 19 (5,3 %) auswertbaren Kolonkarzinomen. Die weiteren Amplifikationen (5-8 Gensignale) traten in einem Urothelkarzinom des Stadiums T2-T4 und einem weiteren des Stadiums Ta, zwei intestinalen Magenkarzinomen, einem großzellen Bronchialkarzinom und einem Plattenepithelkarzinom des Ösophagus mit Amplifikationsraten zwischen 2,2 und 4,8 % auf. Es ergaben sich in weiteren vier (0,21 %) Tumoren Gains (s. Tab. 5).

Tab. 5: PDX1-Amplifikationen und Gains im Multi-Tumor-Array. Amp (%), (x/n)= Amplifikationsrate in % auf die einzelne Tumorentität bezogen (amplifizierte Tumorstanzen/Gesamtzahl der Tumorstanzen), Gain (%), (x/n)= Rate der Gains in % auf die einzelne Tumorentität bezogen (amplifizierte Tumorstanzen/Gesamtzahl der Tumorstanzen) PDX1/CEP12= Anzahl PDX1-Signale/ Anzahl Zentromer 12-Signale

<table>
<thead>
<tr>
<th>Tumor Typ</th>
<th>Amp (%) (x/n)</th>
<th>Gain (%) (x/n)</th>
<th>PDX1/CEP12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolonkarzinom</td>
<td>5,3 (1/19)</td>
<td>20 / 2,5</td>
<td></td>
</tr>
<tr>
<td>Magenkarzinom, Intestinal</td>
<td>4,8 (2/42)</td>
<td>6 / 2</td>
<td>6 / 2</td>
</tr>
<tr>
<td>Urothelkarzinom T2-T4</td>
<td>4,3 (1/23)</td>
<td>8 / 2</td>
<td></td>
</tr>
<tr>
<td>Urothelkarzinom Ta</td>
<td>3,4 (1/29)</td>
<td>7 / 2,5</td>
<td></td>
</tr>
<tr>
<td>Ösophagus, Platteneptelkarzinom</td>
<td>2,2 (1/45)</td>
<td>2,2 (1/45)</td>
<td>5 / 2,5</td>
</tr>
<tr>
<td>Bronchialkarzinom, großzellig</td>
<td>3,2 (1/31)</td>
<td>3,2 (1/31)</td>
<td>4 / 2,5</td>
</tr>
<tr>
<td>Ovar, Brenner</td>
<td>3,7 (1/27)</td>
<td>3,5 / 2</td>
<td></td>
</tr>
<tr>
<td>Paragangliom</td>
<td>10,0 (1/10)</td>
<td>5 / 3</td>
<td></td>
</tr>
</tbody>
</table>
3.2. PDX1-Amplifikationen in Kolonadenomen
Es ließen sich 161 (69,1 %) der 233 Kolonadenome des Kolonadenom Tissue-
Microarrays analysieren. 23 (9,9 %) Tumorstanzen fehlten, 49 (21,0 %) waren nicht
auswertbar. Die Amplifikationsrate betrug 1,3 % (2/161), Gains fanden sich in drei
Tumorstanzen (1,9 %) und Polysomien wurden in 18 Proben nachgewiesen (10,8 %).
Beide Amplifikationen wurden in reinen Adenomen mit geringgradiger Dysplasie mit
einer Ratio von 2,0 bzw. 6,25 PDX1/TEL13 nachgewiesen.

3.3. PDX1-Amplifikationen in Kolonkarzinomen
3.3.1. Technische Resultate
1288 Tumorstanzen (69,2 %) der 1861 Primärtumoren des Kolonkarzinom-TMAs
konnten untersucht werden. 88 (4,7 %) Tumorstanzen waren nicht mehr auf dem
Array vorhanden und für 485 (26,1 %) war kein Fluoreszenzsignal für PDX1 sichtbar.
62 (4,8 %) der untersuchten Tumorstanzen wiesen PDX1-Amplifikationen auf. Bei
zwölf (19 % der Amplifikationen) zeigten sich hochgradige Amplifikationen mit mehr
als zehn Gensignalen (s Abb. 8). In 71 weiteren Tumorstanzen (5,5 %) konnten
Gains festgestellt werden, Polysomien wurden in 13,7 % der Fälle nachgewiesen.
Die Verteilung der Kopiezahlen der PDX1-Amplifikationen in Kolonkarzinomen ist in
Abbildung 7 dargestellt.

![Diagramm PDX1-Kopiezahlen](image-url)

Abb. 7: PDX1-Kopiezahlen in 62 Kolonkarzinomen mit PDX1-Genamplifikation.
3.3.2. Assoziation zum Phänotyp

Die PDX1-Ergebnisse wurden auf Assoziationen mit dem Tumor-Phänotyp untersucht. Hierbei wurden mehrere Parameter analysiert: das Stadium (pT1-pT4), die Differenzierung des Gewebes (G1-G3), der Lymphknotenstatus (N0-N2), der histologische Gewebetyp, der Typ der Invasionsfront (expansiv oder infiltrierend), und ob eine Gefäßinvasion nachweisbar war oder nicht (s. Tab. 6).

Die Daten lassen einen Trend hinsichtlich einer häufigeren PDX1-Amplifikation in fortgeschrittenen Tumoren erkennen. Einer von 51 (2.0 %) der frühen Tumoren (pT1) zeigte eine PDX1-Amplifikation, während in den pT4-Tumoren bei zehn von 185 (5,4%) Karzinomen eine Amplifikation gefunden wurde (p= 0,4498). Keines der als G1 klassifizierten Karzinome war amplifiziert (n= 20), während in zehn von 170 als G3 klassifizierten Tumore eine PDX1-Amplifikation nachgewiesen werden konnte (p= 0,3281). Ein ähnlicher Trend zeigte sich auch beim Nodalstatus: 4,2 % der Tumoren ohne Lymphknoten-Metastasen (pNO) hatten eine PDX1-Amplifikation, Tumoren mit ausgeprägter Lymphknotenmetastasierung (pN2) wiesen in 5,6 % der Fälle eine PDX1-Amplifikation auf (p= 0,2193). Diese Unterschiede erreichten jedoch keine statistische Signifikanz.
Tab. 6: Assoziation der PDX1-Amplifikation mit dem Tumorphänotyp. n= Anzahl untersuchter Tumoren; Auswertbar= Anzahl auswertbarer Tumoren; Normal= Rate der Tumoren mit normalen PDX1-Befund (Ratio≤1); Poly= Rate der Tumoren mit Polysomien (TEL-13>2); Gain= Rate der Tumoren mit PDX1-Gains (1<Ratio<2); Amp= Rate der Tumoren mit PDX1-Amplifikation (Ratio≥2). p= postoperativ; K.= Karzinom; Siegelringz. = Siegelringzellekarzinom

<table>
<thead>
<tr>
<th>Stadium</th>
<th>n</th>
<th>Auswertbar</th>
<th>Normal (%)</th>
<th>Poly (%)</th>
<th>Gain (%)</th>
<th>Amp (%)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDX1</td>
<td>1861</td>
<td>1288</td>
<td>75,9</td>
<td>13,7</td>
<td>5,5</td>
<td>4,8</td>
<td></td>
</tr>
<tr>
<td>pT1</td>
<td>80</td>
<td>51</td>
<td>82,4</td>
<td>7,8</td>
<td>7,8</td>
<td>2,0</td>
<td>0,4498</td>
</tr>
<tr>
<td>pT2</td>
<td>281</td>
<td>204</td>
<td>81,4</td>
<td>11,8</td>
<td>3,4</td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>pT3</td>
<td>1134</td>
<td>791</td>
<td>75,4</td>
<td>14,0</td>
<td>5,6</td>
<td>5,1</td>
<td></td>
</tr>
<tr>
<td>pT4</td>
<td>267</td>
<td>185</td>
<td>72,4</td>
<td>16,2</td>
<td>6,0</td>
<td>5,4</td>
<td></td>
</tr>
<tr>
<td>Grad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>33</td>
<td>20</td>
<td>85</td>
<td>5,0</td>
<td>10</td>
<td>0</td>
<td>0,3281</td>
</tr>
<tr>
<td>G2</td>
<td>1489</td>
<td>1041</td>
<td>76,2</td>
<td>13,5</td>
<td>5,6</td>
<td>4,8</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>242</td>
<td>170</td>
<td>74,1</td>
<td>16,5</td>
<td>3,5</td>
<td>5,9</td>
<td></td>
</tr>
<tr>
<td>Nodal-status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pN0</td>
<td>902</td>
<td>644</td>
<td>78,7</td>
<td>11,5</td>
<td>5,6</td>
<td>4,2</td>
<td>0,2193</td>
</tr>
<tr>
<td>pN1</td>
<td>447</td>
<td>304</td>
<td>74,0</td>
<td>16,1</td>
<td>4,9</td>
<td>4,9</td>
<td></td>
</tr>
<tr>
<td>pN2</td>
<td>392</td>
<td>267</td>
<td>71,9</td>
<td>17,2</td>
<td>5,2</td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td>Gefäß-invasion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V0</td>
<td>782</td>
<td>552</td>
<td>76,3</td>
<td>13,2</td>
<td>6,2</td>
<td>4,4</td>
<td>0,6345</td>
</tr>
<tr>
<td>V1</td>
<td>603</td>
<td>448</td>
<td>73,9</td>
<td>16,1</td>
<td>5,6</td>
<td>4,5</td>
<td></td>
</tr>
</tbody>
</table>

Invasionsfront							
Infiltrierend	871	606	73,9	15,2	6,6	4,3	0,5333
Expansiv	513	393	76,8	13,5	4,8	4,8	

Histologischer Subtyp							
Adenok. medulläres K.	1261	924	75,3	14,0	5,8	4,9	0,1136
5	0	0	0,0	0,0	0	0	
muzinöses K.	119	78	74,4	19,2	6,4	0,0	
5	2	50	50,0	0	0	0	
Siegelringz.	12	7	100	0,0	0	0	

3.3.3. Assoziation zu molekularen Markern des Kolonkarzinoms

In der vorliegenden Untersuchung wurden acht für das Kolonkarzinom relevante molekulare Marker auf einen Zusammenhang mit PDX1-Amplifikationen geprüft. p53, BCL2 (B-Cell Lymphoma 2), p27 (Cyclin-dependent kinase inhibitor 1B), das proliferationsassozierte Antigen Ki67, EGFR, C-MYC und Beta-Catenin wurden per Immunhistochemie in vorherigen Untersuchungen auf eine Expression geprüft und der HER2-Amplifikationsstatus per FISH erhoben (s. S. 19). Es ergaben sich bei drei Markern signifikante Assoziationen zu PDX1-Amplifikationen. So waren PDX1-Amplifikationen signifikant mit einer nukleären Akkumulation von p53 (p= 0,0162),
fehlender BCL2-Expression (p= 0,021) und fehlender p27-Expression (p= 0,0429) assoziiert. Bei den übrigen Markern erreichte die Auswertung keine statistische Signifikanz. Die Berechnungen werden in Tabelle 7 dargestellt.

Tab. 7: Assoziation der PDX1-Amplifikation mit molekularen Markern für das KRK. neg. = keine Expression; pos. = Expression vorhanden; Nukl. = Nukleusmembran; Membr. = Zellmembran; amp. = amplifiziert

<table>
<thead>
<tr>
<th>Marker</th>
<th>n</th>
<th>Auswertbar</th>
<th>Normal (%)</th>
<th>Poly (%)</th>
<th>Gain (%)</th>
<th>Amp (%)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDX1</td>
<td>1437</td>
<td>1288</td>
<td>75,9</td>
<td>13,7</td>
<td>5,5</td>
<td>4,8</td>
<td></td>
</tr>
<tr>
<td>p53 neg.</td>
<td>350</td>
<td>83,1</td>
<td>8,0</td>
<td>5,4</td>
<td>3,4</td>
<td>0,0162</td>
<td></td>
</tr>
<tr>
<td>p53 pos.</td>
<td>269</td>
<td>72,9</td>
<td>14,9</td>
<td>7,1</td>
<td>5,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCL2 neg.</td>
<td>460</td>
<td>77,6</td>
<td>10,2</td>
<td>7,6</td>
<td>4,6</td>
<td>0,021</td>
<td></td>
</tr>
<tr>
<td>BCL2 pos.</td>
<td>159</td>
<td>81,8</td>
<td>13,2</td>
<td>1,9</td>
<td>3,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p27 neg.</td>
<td>334</td>
<td>76,4</td>
<td>10,8</td>
<td>8,7</td>
<td>4,2</td>
<td>0,0429</td>
<td></td>
</tr>
<tr>
<td>p27 pos.</td>
<td>277</td>
<td>81,2</td>
<td>11,2</td>
<td>3,3</td>
<td>4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ki67 LI</td>
<td>1169</td>
<td>16.1±9,7</td>
<td>14,8±10,5</td>
<td>16,9±9,8</td>
<td>16,9±11,7</td>
<td>0,327</td>
<td></td>
</tr>
<tr>
<td>EGFR neg.</td>
<td>622</td>
<td>81,0</td>
<td>10,0</td>
<td>4,8</td>
<td>4,2</td>
<td>0,1708</td>
<td></td>
</tr>
<tr>
<td>EGFR pos.</td>
<td>202</td>
<td>74,3</td>
<td>12,4</td>
<td>5,9</td>
<td>7,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-MYC neg.</td>
<td>111</td>
<td>77,5</td>
<td>15,3</td>
<td>3,6</td>
<td>3,6</td>
<td>0,3008</td>
<td></td>
</tr>
<tr>
<td>C-MYC pos.</td>
<td>501</td>
<td>78,8</td>
<td>10,2</td>
<td>6,6</td>
<td>4,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta-Catenin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nukl. neg./ Membr. neg.</td>
<td>459</td>
<td>76,5</td>
<td>12,9</td>
<td>5,2</td>
<td>5,5</td>
<td>0,2643</td>
<td></td>
</tr>
<tr>
<td>Nukl. neg./ Membr. stark</td>
<td>313</td>
<td>74,8</td>
<td>15,7</td>
<td>7,0</td>
<td>2,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nukl. stark/ Membr. neg.</td>
<td>39</td>
<td>69,2</td>
<td>23,1</td>
<td>2,6</td>
<td>5,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nukl. stark/ Membr. stark</td>
<td>7</td>
<td>71,4</td>
<td>28,6</td>
<td>0,0</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HER2 FISH normal</td>
<td>986</td>
<td>75,4</td>
<td>14,4</td>
<td>5,9</td>
<td>4,4</td>
<td>0,2648</td>
<td></td>
</tr>
<tr>
<td>HER2 FISH amp.</td>
<td>26</td>
<td>57,7</td>
<td>26,9</td>
<td>7,7</td>
<td>7,7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3.4. PDX1-Amplifikationen und die Prognose von KRK-Patienten

Von 921 Patienten mit klinischen Daten (Überlebenszeit nach der Operation) konnten Daten über die PDX1-Kopiezahl erhoben werden. Um einen möglichen Einfluss der PDX1-Amplifikation auf den Verlauf der Erkrankung zu untersuchen, wurde eine Überlebensanalyse nach Kaplan-Meier durchgeführt (Abb. 9). Es zeigte sich, dass weder Amplifikationen noch Gains einen signifikanten Einfluss auf die Prognose ausüben.
Einfluss der PDX1-Amplifikation auf die Patientenprognose berechnet mithilfe einer Kaplan-Meier Überlebenskurve (p-Wert = 0,4363).

3.4. PDX1-Amplifikation in humanen Tumorzelldinien

4. Diskussion

Im ersten Teil dieser Studie wurden insgesamt 1886 Tumoren aus über 100 verschiedenen Tumortypen erfolgreich untersucht. Der Nachweis von PDX1-Amplifikationen in lediglich sieben dieser Tumoren zeigt, dass diese Veränderung in humanen Tumoren eher selten ist. Amplifikationen mit 6-20 Genkopien wurden in zwei Magenkarzinomen, zwei Urothelkarzinomen in den Stadien Ta und T2-4, einem großzellen Bronchialkarzinom, einem Plattenepithelkarzinom des Ösophagus und einem Kolonkarzinom mit auf die jeweilige Tumorentität bezogene Amplifikationsraten von 2,2-5,3 % gefunden. PDX1-Amplifikationen in diesen oder anderen Tumorentitäten sind in der Literatur bisher nicht beschrieben. Es gibt allerdings mehrere Studien, die sich mit der Funktion und Expression von PDX1 im Magenkarzinom beschäftigen. Ma et al. maßen mittels Immunhistochemie, Western Blot, Reverse Transkriptase-Polymerase-Kettenreaktion (RT-PCR) und quantitativer real-time RT-PCR eine im Vergleich zum umliegenden Normalgewebe erniedrigte PDX1-Expression in 29 von 39 untersuchten Magenkarzinomen. Auch in sieben Magenkarzinomzelllinien wiesen sie nur eine geringe oder keine Expression nach. Zudem hemmte ektop in den Zelllinien exprimiertes PDX1 die Zellproliferation und induzierte Apoptose [98]. Auch andere Studien geben Hinweise auf eine tumorsuppressive Funktion von PDX1 im Magenkarzinom [94, 99]. Interessant ist aber, dass von den zehn verbleibenden von Ma et al. untersuchten Magenkarzinomen, die keine verminderte PDX1-Expression aufwiesen, sechs Tumoren eine PDX1-Überexpression zeigten. Diese Untergruppe von Magenkarzinomen könnte einen anderen Tumorigenesepfad eingeschlagen haben, der von einer erhöhten PDX1-Expression profitiert. Zudem ist eine differenzierte Betrachtung der Expressionsmuster von PDX1 bei der Analyse von Magenschleimhaut wichtig, da eine PDX1-Expression normalerweise nur in Pylorus und Antrum vorkommt [93]. Ma et al. sind in ihrer Studie von 2008 leider nicht auf diesen Aspekt eingegangen [98]. Leys et al. und Sakai et al. berücksichtigten diesen Sachverhalt und ermittelten immunhistochemisch eine PDX1-Expression in 50,0 % (n=46) bzw. 81,0 % (n=21) der Tumoren antralen Ursprungs, während Tumoren des Fundus bzw. Korpus in 77,0 % (n=39) bzw. 41,4 % (n=58) der Fälle PDX1 exprimierten [93, 94]. Die PDX1-Expression verliert sich demnach einerseits in Karzinomen des Antrums und tritt andererseits ektop in Tumoren des Korpus und
Fundus auf. PDX1 scheint eine unterschiedliche Rolle für die Entstehung von Magenkarzinomen in Abhängigkeit von der Lokalisation zu spielen: Im Antrum geht die PDX1-Expression während der Karzinogenese verloren, während im Korpus und Fundus PDX1 erst im Karzinom exprimiert wird.

Studien über PDX1-Amplifikationen oder die PDX1-Expression in der Harnblase oder im Bronchialkarzinom gibt es bislang nicht. Geringgradige Erhöhungen der Genkopiezahl (5 bzw. 3,5 Kopien) fielen in zwei Plattenepithelkarzinomen des Ösophagus auf. Interessanterweise wiesen Takahashi et al. 2007 nach, dass PDX1 im Normalepithel des Ösophagus praktisch nicht exprimiert, in Plattenepithelkarzinomen (n= 48) aber signifikant höher exprimiert wurde. Dabei ergaben sich keine Unterschiede für die erhöhten Expressionslevel bezüglich klinisch-pathologischer Parameter [92].

In der Literatur ist PDX1 bisher vor allem als putatives Onkogen im Pankreaskarzinom diskutiert worden (s. S. 13). In fast der Hälfte der exokrinen Pankreaskarzinome setzt eine PDX1-Expression wieder ein, während sie sonst auf das Embryonalstadium des exokrinen Gewebes beschränkt ist [84, 85]. Liu et al. konnten nachweisen, dass eine forcierte PDX1-Überexpression in Pankreaskrebszellen die Zellproliferation und Invasion steigert [86]. Die Gründe für die erneute PDX1-Expression im Pankreaskarzinom sind noch nicht bekannt. Eine mögliche Ursache einer Überexpression ist die Amplifikation, in dieser Arbeit sind aber keine PDX1-Amplifikationen nachgewiesen worden (40 von 105 Pankreaskarzinomen auswertbar). Daraus lässt sich schlussfolgern, dass die PDX1-Amplifikation im Pankreas zumindest sehr selten ist und andere Mechanismen für die Überexpression in den meisten Pankreaskarzinomen verantwortlich sein dürften.

fanden sich PDX1-Amplifikationen vergleichsweise häufiger in fortgeschrittenen (5,4%) als in frühen (2,0 %) Karzinomen oder in Adenomen (0,62 %). Genauso fanden sich Amplifikationen häufiger in entdifferenzierten Tumoren (Grad 3: 5,9 %) als in differenzierten Karzinomen (Grad 1: 0 %). Dies ist für Genamplifikationen typisch, weil sie als Folge genetischer Instabilität auftreten. Amplifikationen können grundsätzlich nur im Rahmen einer gestörten DNS-Reparatur entstehen. Nur wenn veränderte DNS den Zellzyklus ungehindert durchlaufen kann und keine Reparatur- bzw. Apoptosesysteme initiiert werden, kann sie an die Tochterzellen weitergegeben werden. Das Vorliegen von Amplifikationen ist dementsprechend mit genetischer Instabilität assoziiert, sie ist ein häufiges Merkmal fortgeschrittener Tumoren. Beispiele für eine Assoziation von Amplifikationen mit fortgeschrittenen und entdifferenzierten Tumoren sind Cyclin C-, c-MET (hepatocyte growth factor receptor)- und MDM2 (p53 E3 ubiquitin protein ligase homolog)- Amplifikationen im KRK [100-103], MYC-, FGFR1 (fibroblast growth factor receptor 1)-, RAF1 (v-raf-1 murine leukemia viral oncogene homolog 1)-, MDM2- und E2F3-Amplifikationen im Blasenkrebs [65, 104-106] und Amplifikationen von HER2, EGFR, C-MYC, Cyclin D1 und MDM2 in Mammakarzinomen [107, 108]. Ein solcher Zusammenhang konnte in der vorliegenden Studie nicht mit statistischer Signifikanz belegt werden, dies liegt vermutlich in erster Linie an der geringen Anzahl PDX1-amplifizierter Tumoren (62/1288).

In der gesunden Zelle unterliegt die Apoptose, der programmierte Zelltod, einer strengen Kontrolle. Der Verlust dieser Mechanismen ist ein weiterer wichtiger Faktor der Tumorprogression. In dieser Studie war die PDX1-Amplifikation signifikant mit dem Verlust der BCL2-Expression assoziiert. Da BCL2 ein anti-apoptotisches Protein

In dieser Arbeit wurde geprüft, ob PDX1-Amplifikationen häufiger in HER2-amplifizierten Tumoren vorkamen als in Karzinomen ohne HER2-Amplifikation. PDX1-Amplifikationen fanden sich vergleichsweise häufiger in HER2-amplifizierten (7,7 %) als in nicht HER2-amplifizierten (4,4 %) Karzinomen und nur 57,7 % der HER2-amplifizierten Tumore wurden bezüglich der PDX1-Kopiezahl als normal eingestuft. Obwohl sich ein Trend andeutete, erreichte die Auswertung wahrscheinlich aufgrund der geringen Fallzahl an HER2-amplifizierten Tumoren (n= 26) keine statistische Signifikanz (p= 0,2648). In der Literatur wird diskutiert, ob durch bestimmte onkogene Veränderungen Amplifikationen begünstigt werden [125]. Eine überzufällige Häufung von Amplifikationen verschiedener Genomregionen fällt in bestimmten Mammakarzinomen auf, hier wird von einem sogenannten „Amplifier“

Der Nachweis einer PDX1-Amplifikation in einer Zelllinie wäre für anknüpfende Experimente sehr nützlich. Um zu erfahren, inwieweit die PDX1-Kopiezahll Einfluss auf die Expression hat, könnten Gen und Genprodukt gezielt ausgeschaltet oder gesteigert werden.

PDX1 wurde beim Menschen auf Chromosom 13, Zytobande 13q12.1, lokalisiert [130]. Der Chromosomenarm 13q und auch kleinere DNS-Sequenzen, die PDX1 beinhalten, sind im Kolonkarzinom amplifiziert nachgewiesen worden. In einer Meta-Analyse von 2006 wurde die amplifizierte Sequenz 13q11-q34 in Primärtumoren im Vergleich zu Adenomen signifikant häufiger beobachtet [131]. Solche Amplifikationen könnten die Ursache für die oben beschriebene Überexpression im Kolonkarzinom sein.

Nicht alle Gene innerhalb eines Amplikons werden auch exprimiert. Daher werden oft Expressionsanalysen angeschlossen, um nicht exprimierte Gene aus der Liste möglicher Kandidaten auszuschließen [125]. Scheffer et al. haben die Genomveränderungen im KRK von 299 Expressions- und 130 SNP- (Single Nucleotide Polymorphism) Arrays untersucht und statistisch analysiert. POLR1D (polymerase (RNA) I polypeptide D, 16kDa), ein Gen, das für eine Untereinheit der
RNA-Polymerase I und III kodiert, wurde als Kandidatengen gehandelt, weil es nicht nur amplifiziert war, sondern auch vermehrt exprimiert wurde. PDX1 liegt nur etwa 250 Kilobasenpaare von diesem Gen entfernt, wurde von den Autoren aber nicht speziell untersucht [132].

ATP5EP2 ist ein Pseudogen [136], deshalb kodiert es wahrscheinlich nicht für ein funktionierendes Protein. Es gibt keine Literatur zu diesem Gen.

Das vermutlich damit verwandte Gen ATP5E (synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit), welches auf Zytobande 20q13 lokalisiert ist, kodiert für eine Untereinheit des F1-Komplexes der mitochondrialen ATP-Synthase. Die ATP-Synthase ist für die Energiebereitstellung in der Zelle und für den Ablauf einer wirksamen Apoptose essentiell [137, 138]. Passend hierzu ist der katalytische F1-Komplex der Synthase in vielen Karzinomen herunterreguliert [139, 140], so auch im Kolonkarzinom [141, 142]. In der Zusammenschau dieser Daten...
erscheint es unwahrscheinlich, dass das Pseudogen ATP5EP2 Ziel einer Amplifikation ist.

Diese Studie ist ein Beispiel für die Effizienz der Gewebemikroarray-Technologie zur Detektion von seltenen molekularen Veränderungen. Die Analyse von über 5500 Tumoren mit klassischen Verfahren—Schnitt für Schnitt an jedem Tumor einzeln—wäre im Rahmen der zur Verfügung stehenden Zeit nicht möglich gewesen. Die TMA Technologie erlaubt darüber hinaus ein Maß an Standardisierung der Analyse, das mit herkömmlichen Methoden nicht erreichbar ist. Weil die Menge an Gensonde, die in einem Versuchsansatz hergestellt werden kann, begrenzt ist, hätten im klassischen Verfahren nur etwa 15 Objektträger mit derselben FISH-Sonde analysiert werden können. Abgesehen von den enormen Kosten der Reagensien, die bei der

Für das Kolonkarzinom ergab sich bei der Analyse humaner Tumoren eine Amplifikationsrate von 5,3 % (1/19 Kolonkarzinomen). In der Untersuchung von 1288 Kolonkarzinomen war die Amplifikationsrate mit 4,8 % nahezu identisch mit der Häufigkeit auf dem Multitumorarray. Dies kann als Beweis gelten, dass auch eine Untersuchung kleinerer Fallzahlen einzelner Tumorentitäten einen guten Überblick über die Häufigkeit und damit Bedeutung einer Amplifikation verschaffen kann.

Die Häufigkeit der PDX1-Amplifikation in humanen Tumoren bleibt aufgrund der fehlenden korrekten Referenzsonde trotzdem fraglich. Da Cluster aber sicher erkannt werden konnten und sie in dieser Arbeit nur selten waren, kann zumindest festgehalten werden, dass es nur selten High-Level PDX1-Amplifikationen in humanen Tumoren gibt.
5. Zusammenfassung

Die Ziele der Arbeit waren, a) die Häufigkeit der PDX1-Amplifikation in über 100 verschiedenen humanen Tumortypen zu bestimmen, b) nach möglichen Assoziationen zwischen der PDX1-Amplifikation und dem Tumorphänotyp sowie der Patientenprognose in einem großen Kollektiv von Kolonkarzinomen zu suchen und c) das Vorliegen einer PDX1-Amplifikation mit anderen molekularen Markern des Kolonkarzinoms (p53, BCL2, p27, Ki67, EGFR, C-MYC, Beta-Catenin, HER2) zu korrelieren, für die Daten bereits vorlagen. Dazu wurden zwei Gewebemikroarrays (TMAs) mit insgesamt über 5.800 Tumorgewebsproben mit einer selbst hergestellten PDX1-Sonde mittels Fluoreszenz in-situ Hybridisierung (FISH) untersucht und eine statistische Datenanalyse durchgeführt.

Die Ergebnisse dieser Studie zeigen, dass Amplifikationen von PDX1 in humanen Tumoren generell selten sind. Nur 0,4 % von 1.886 analysierbaren Tumoren zeigten eine Amplifikation, darunter zwei Harnblasenkarzinome, zwei Magenkarzinome und jeweils ein Lungen-, Ösophagus- und Kolonkarzinom. Die Analyse des Kolonkarzinom-spezifischen TMAs ergab bei 1.288 analysierbaren Tumorstanzen eine mittlere PDX1-Amplifikationsrate von 4,8 %. Es zeigte sich eine Zunahme der Amplifikationshäufigkeit mit steigendem Tumorstadium (pT1: 2,0 %, pT4: 5,4 %) und Malignitätsgrad (G1: 0 %, G2: 4,8 %, G3: 5,9 %), jedoch waren diese Assoziationen nicht signifikant (p= 0,4498 bzw. p= 0,3281). Dies ist vermutlich auf die geringe Anzahl von Amplifikationen (n= 62) zurückzuführen. Die Amplifikation zeigte keinen
Einfluss auf die Patientenprognose. Der Vergleich mit weiteren Markern des Kolonkarzinoms ergab, dass die PDX1-Amplifikation signifikant mit der nukleären Akkumulation des Tumorsuppressor-Proteins p53 (gleichbedeutend mit dessen Inaktivierung; p= 0,0162) sowie dem Verlust der Expression des Apoptose-Regulators BCL2 (p= 0,021) und des Zellzyklus-Inhibitors p27 (p= 0,0429) assoziiert war.

Zusammenfassend zeigen diese Daten, dass die PDX1-Amplifikation zu den eher seltenen molekularen Veränderungen in humanen Tumoren gehört. Beim Kolonkarzinom ist sie mindestens tendenziell mit ungünstigen Parametern des Tumors wie fortgeschrittenem Stadium und Entdifferenzierung sowie ungünstigen molekularen Parametern assoziiert.
6. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>ATP5E</td>
<td>ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit</td>
</tr>
<tr>
<td>ATP5EP2</td>
<td>ATP Synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit pseudogene 2</td>
</tr>
<tr>
<td>BCL2</td>
<td>B-Cell Lymphoma 2</td>
</tr>
<tr>
<td>CA-19.9</td>
<td>Carbohydrate Antigen 19.9</td>
</tr>
<tr>
<td>CDKN1B/p27</td>
<td>Cyclin-dependent kinase inhibitor 1B</td>
</tr>
<tr>
<td>CDX2</td>
<td>caudal type homeobox 2</td>
</tr>
<tr>
<td>CEA</td>
<td>carcinoembryonales Antigen</td>
</tr>
<tr>
<td>CEP</td>
<td>Zentromer</td>
</tr>
<tr>
<td>CGH</td>
<td>Komparative genomische Hybridisierung</td>
</tr>
<tr>
<td>CIMP</td>
<td>CpG island methylation pathway „CpG Inselmethylierungsweg“</td>
</tr>
<tr>
<td>CIN</td>
<td>Chromosomale Instabilität</td>
</tr>
<tr>
<td>CK20</td>
<td>Zytokeratin 20</td>
</tr>
<tr>
<td>c-MET</td>
<td>hepatocyte growth factor receptor</td>
</tr>
<tr>
<td>C-MYC</td>
<td>v-myc myelocytomatosis viral oncogene homolog</td>
</tr>
<tr>
<td>DAPI</td>
<td>0,2 mM 4',5'-Diamindino-2-Phenyl-Indol</td>
</tr>
<tr>
<td>DCC</td>
<td>Deleted in Colon Cancer</td>
</tr>
<tr>
<td>DNS</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleosidtriphosphat</td>
</tr>
<tr>
<td>dUTP</td>
<td>Desoxyuridintriphosphat</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermaler Wachstumsfaktorrezeptor</td>
</tr>
<tr>
<td>E2F3</td>
<td>E2F transcription factor 3</td>
</tr>
<tr>
<td>FAP</td>
<td>Familiäre adenomatöse Polyposis</td>
</tr>
<tr>
<td>FGFR1</td>
<td>fibroblast growth factor receptor 1</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluoreszenz in-situ Hybridisierung</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FOBT</td>
<td>Fäkaler okkult Bluttest</td>
</tr>
<tr>
<td>G</td>
<td>Histologischer Differenzierungsgrad von Tumorgewebe</td>
</tr>
<tr>
<td>GIST</td>
<td>Gastrointestinaler Stromatumor</td>
</tr>
<tr>
<td>HER2</td>
<td>v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2</td>
</tr>
<tr>
<td>hMLH1</td>
<td>mutL homolog 1, colon cancer, nonpolyposis type 2</td>
</tr>
<tr>
<td>HNPCC</td>
<td>Hereditäres non-polyposes Kolonkarzinom</td>
</tr>
<tr>
<td>IDX1</td>
<td>islet/dudendum homeobox 1</td>
</tr>
<tr>
<td>IPF1</td>
<td>insulin promoter factor 1</td>
</tr>
<tr>
<td>IUF1</td>
<td>insulin upstream factor 1</td>
</tr>
<tr>
<td>KRAS</td>
<td>v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog</td>
</tr>
</tbody>
</table>
Kolorektales Karzinom
Metastasenstatus; Vorhandensein von Fernmetastasen
p53 E3 ubiquitin protein ligase homolog
Mismatch Repair
maturity onset diabetes of the young
Mikrosatelliteninstabilität
neuroblastoma-derived v-myc avian myelocytomatosis viral related oncogene
Nodalstatus; Vorhandensein von regionären lymphknotenmetastasen
phosphate buffered saline
polymerase chain reaction (engl.)= Polymerase Kettenreaktion
pancreatic and duodenal homeobox 1
polymerase (RNA) I polypeptide D, 16kDa
Polymerase 1
cyclin-dependent kinase inhibitor 2A
v-raf-1 murine leukemia viral oncogene homolog 1
rounds per minute
Reverse Transkriptase Polymerase Kettenreaktion
soluble Cluster of Differentiation 26
Sodiumcitrat, NaCl
severe combined immunodeficiency
mothers against DPP homolog 4
Single Nucleotide Polymorphism
somatostatin transactivating factor 1
postoperativ festgestelltes Tumorstadium; Ausdehnung des Primärtumors
Tabelle
Telomer
Thrombospordin 1
Tissue-Microarray
Polyoxyethyleng(20)-sorbitan-mono-laurat
Union internationale contre le cancer
World Health Organization
5-Jahresüberlebensrate
7. Literaturverzeichnis

the N-Myc/Max/Mad1 network resulting in repression of N-Myc target genes in MYCN-amplified neuroblastoma cells. Mol Cancer Ther 6: 2634-41.

8. Danksagung

Mein Dank gilt Herrn Professor Dr. med. Guido Sauter für die Übernahme des Erstgutachtens und für die Möglichkeit, an seinem Institut arbeiten zu dürfen.

Ich danke besonders dem Betreuer meiner Arbeit Herrn PD Dr. rer. nat. Ronald Simon für die Überlassung des Themas und seine große Unterstützung bei der Verfassung der Dissertionsschrift.

Vielen Dank an Pierre Temstedt für den Einsatz bei der statistischen Auswertung und an Frederick Holst und Antje Krohn für die Einführung in die Methodik.

Den Mitarbeitern des Labors an der Frickestraße möchte ich für ihre freundliche Hilfe danken.

Meinem Freund und meiner Familie bin ich dankbar für ihre Liebe und Unterstützung.
9. Anhang

Tabelle 8: Detaillierte Auflistung der Zelllinien vom Zelllinien-TMA (s. S. 22).

<table>
<thead>
<tr>
<th>Array Koordinate</th>
<th>Zelllinie</th>
<th>ATCC-Nr.</th>
<th>DSMZ-Nr. **</th>
<th>Herkunftsgewebe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>HCT 116</td>
<td>CCL-247</td>
<td>ACC 581</td>
<td>Dickdarm; kolorektales Adenokarzinom</td>
</tr>
<tr>
<td>1b</td>
<td>HCT-15</td>
<td>CCL-225</td>
<td>ACC 357</td>
<td>Dickdarm; kolorektales Adenokarzinom, Duke`s Typ C</td>
</tr>
<tr>
<td>1c</td>
<td>Hep G2</td>
<td>HB-8065</td>
<td>ACC 180</td>
<td>Leber; hepatozelluläres Karzinom</td>
</tr>
<tr>
<td>1e</td>
<td>HT-29</td>
<td>HTB 38</td>
<td>ACC 299</td>
<td>Dickdarm; kolorektales Adenokarzinom</td>
</tr>
<tr>
<td>1h</td>
<td>IGROV1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1i</td>
<td>K-562</td>
<td>CCL-243</td>
<td>ACC 10</td>
<td>Knochenmark; chronische myeloische Leukämie (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>1k</td>
<td>LOX IMVI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1l</td>
<td>MCF7</td>
<td>HTB-22</td>
<td>ACC 115</td>
<td>Brustdrüse, epithelial; Adenokarzinom (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>1m</td>
<td>MDA-MB-231</td>
<td>HTB-26</td>
<td></td>
<td>Brustdrüse, epithelial; Adenokarzinom (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>1n</td>
<td>NCI-H226</td>
<td>CRL-5826</td>
<td></td>
<td>Lunge; squamöses Karzinom, Mesotheliom (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>1o</td>
<td>NCI-H460</td>
<td>HTB-177</td>
<td></td>
<td>Lunge; großzelliges Karzinom (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>1p</td>
<td>PC-3</td>
<td>CRL-1435</td>
<td>ACC 465</td>
<td>Vorsteherdrüse; Adenokarzinom, Grad IV (stammend aus Knochenmark)</td>
</tr>
<tr>
<td>1r</td>
<td>RPMI 8226</td>
<td>CCL-155</td>
<td>ACC 402</td>
<td>Peripheres Blut, B-Lymphozyt; Plasmozytom, multiples Myelom</td>
</tr>
<tr>
<td>2a</td>
<td>RXF-393</td>
<td>HTB-46</td>
<td></td>
<td>Niere; Hypernephrom</td>
</tr>
<tr>
<td>2b</td>
<td>SF-268</td>
<td></td>
<td></td>
<td>Gehirm; anaplastisches Astrozytom</td>
</tr>
<tr>
<td>2e</td>
<td>SK-MEL-2</td>
<td>HTB-68</td>
<td></td>
<td>Haut; malignes Melanom (stammend aus Haut vom Oberschenkel)</td>
</tr>
<tr>
<td>2f</td>
<td>SK-MEL-28</td>
<td>HTB-72</td>
<td></td>
<td>Haut; malignes Melanom</td>
</tr>
<tr>
<td>2g</td>
<td>SK-MEL-5</td>
<td>HTB-70</td>
<td></td>
<td>Haut; malignes Melanom (stammend aus axillärem Lymphknoten)</td>
</tr>
<tr>
<td>2h</td>
<td>SK-OV-3</td>
<td>HTB-77</td>
<td></td>
<td>Eierstock; Adenokarzinom (stammend aus Aszites)</td>
</tr>
<tr>
<td>2i</td>
<td>SN-12C</td>
<td></td>
<td></td>
<td>Niere; Karzinom</td>
</tr>
<tr>
<td>2k</td>
<td>SNB-19</td>
<td></td>
<td>ACC 325</td>
<td>Gehirm, links parietookzipital; Glioblastom</td>
</tr>
<tr>
<td>2l</td>
<td>SW620 (SW-620)</td>
<td>CCL-227</td>
<td></td>
<td>Dickdarm; kolorektales Adenokarzinom, Duke`s Typ C (stammend aus Lymphknoten)</td>
</tr>
<tr>
<td>2m</td>
<td>T-47D</td>
<td>HTB-133</td>
<td></td>
<td>Brustdrüse; duktales Karzinom (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>2n</td>
<td>TK-10</td>
<td></td>
<td></td>
<td>Niere; Karzinom</td>
</tr>
<tr>
<td>2o</td>
<td>U-251</td>
<td></td>
<td></td>
<td>Gehirm; Glioblastom</td>
</tr>
<tr>
<td>2p</td>
<td>UACC-257</td>
<td></td>
<td></td>
<td>Haut; malignes Melanom</td>
</tr>
<tr>
<td>2q</td>
<td>UACC-62</td>
<td></td>
<td></td>
<td>Haut; malignes Melanom</td>
</tr>
<tr>
<td>2r</td>
<td>A549</td>
<td>CCL-185</td>
<td>ACC 107</td>
<td>Lunge; Adenokarzinom</td>
</tr>
<tr>
<td>3a</td>
<td>MDA-MB-435S</td>
<td>HTB-129</td>
<td></td>
<td>Brustdrüse; duktales Adenokarzinom (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>3b</td>
<td>MOLT-4</td>
<td>CRL-1582</td>
<td>ACC 362</td>
<td>Peripheres Blut, T-Lymphoblast; akute lymphoblastische Leukämie</td>
</tr>
<tr>
<td>3c</td>
<td>NCI-H23 (H23)</td>
<td>CRL-5800</td>
<td></td>
<td>Lunge; Nicht-kleinzelliges Adenokarzinom</td>
</tr>
<tr>
<td>Array Koordinate</td>
<td>Zelllinie</td>
<td>ATCC-Nr. *</td>
<td>DSMZ-Nr. **</td>
<td>Herkunftsgewebe</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>3d</td>
<td>NCI-H322M</td>
<td>CRL-5806</td>
<td></td>
<td>Lunge; Nicht-kleinzeliges Karzinom</td>
</tr>
<tr>
<td>3e</td>
<td>NCI-H522 (H522)</td>
<td>CRL-5810</td>
<td></td>
<td>Lunge; Nicht-kleinzeliges Adenokarzinom</td>
</tr>
<tr>
<td>3f</td>
<td>OVCAR-3</td>
<td>HTB-161</td>
<td></td>
<td>Eierstock; Adenokarzinom (stammend aus Aszites)</td>
</tr>
<tr>
<td>3g</td>
<td>OVCAR-4</td>
<td></td>
<td></td>
<td>Eierstock; Adenokarzinom</td>
</tr>
<tr>
<td>3h</td>
<td>OVCAR-5</td>
<td></td>
<td></td>
<td>Eierstock; Adenokarzinom</td>
</tr>
<tr>
<td>3i</td>
<td>OVCAR-8</td>
<td></td>
<td></td>
<td>Eierstock; Adenokarzinom</td>
</tr>
<tr>
<td>3k</td>
<td>SF-295</td>
<td></td>
<td></td>
<td>Gehirn; multiformes Glioblastom</td>
</tr>
<tr>
<td>3l</td>
<td>SF-539</td>
<td></td>
<td></td>
<td>Gehirn; Gliosarkom</td>
</tr>
<tr>
<td>3m</td>
<td>SNB-75</td>
<td></td>
<td></td>
<td>Gehirn; Astrozytom</td>
</tr>
<tr>
<td>3n</td>
<td>SR</td>
<td>CRL-2262</td>
<td></td>
<td>Lymphoblast; großzeliges immunoblastisches Lymphom (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>3o</td>
<td>UO-31</td>
<td></td>
<td></td>
<td>Niere; Karzinom</td>
</tr>
<tr>
<td>3p</td>
<td>786-O (786-0)</td>
<td>CRL-1932</td>
<td></td>
<td>Niere; Adenokarzinom</td>
</tr>
<tr>
<td>3q</td>
<td>A-498</td>
<td>HTB-44</td>
<td>ACC 55</td>
<td>Niere; Karzinom</td>
</tr>
<tr>
<td>3r</td>
<td>ACHN</td>
<td>CRL-1611</td>
<td></td>
<td>Niere; Adenokarzinom (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>4a</td>
<td>BT-549</td>
<td>HTB-122</td>
<td></td>
<td>Brustdrüse; duktales Karzinom (stammend aus Lymphknoten)</td>
</tr>
<tr>
<td>4b</td>
<td>Caki-1</td>
<td>HTB-46</td>
<td>ACC 142</td>
<td>Niere; Klarzellenkarzinom (stammend aus Haut)</td>
</tr>
<tr>
<td>4c</td>
<td>CCRF-CEM (CCRF-CEM)</td>
<td>CCL-119</td>
<td>ACC 240</td>
<td>Peripheres Blut, T-Lymphoblast; akute lymphoblastische Leukämie</td>
</tr>
<tr>
<td>4d</td>
<td>COLO 205</td>
<td>CCL-222</td>
<td></td>
<td>Dickdarm; kolorektales Adenokarzinom, Duke’s Typ D (stammend aus Aszites)</td>
</tr>
<tr>
<td>4e</td>
<td>EKVX</td>
<td></td>
<td></td>
<td>Lunge; Nicht-kleinzeliges Karzinom</td>
</tr>
<tr>
<td>4f</td>
<td>HCC-2998</td>
<td></td>
<td></td>
<td>Dickdarm; kolorektales Adenokarzinom</td>
</tr>
<tr>
<td>4g</td>
<td>HOP-62</td>
<td></td>
<td></td>
<td>Lunge; Nicht-kleinzeliges Karzinom</td>
</tr>
<tr>
<td>4h</td>
<td>HOP-92</td>
<td></td>
<td></td>
<td>Lunge; Nicht-kleinzeliges Karzinom</td>
</tr>
<tr>
<td>4i</td>
<td>Hs 578T</td>
<td>HTB-126</td>
<td></td>
<td>Brustdrüse; duktales Karzinom</td>
</tr>
<tr>
<td>4k</td>
<td>KM-12</td>
<td></td>
<td></td>
<td>Dickdarm; kolorektales Adenokarzinom</td>
</tr>
<tr>
<td>4l</td>
<td>M-14</td>
<td></td>
<td></td>
<td>Haut; amelanotisches Melanom</td>
</tr>
<tr>
<td>4m</td>
<td>Malme-3M</td>
<td>HTB-64</td>
<td></td>
<td>Haut; malignes Melanom (stammend aus Lunge)</td>
</tr>
<tr>
<td>4n</td>
<td>KRIB</td>
<td></td>
<td></td>
<td>Osteosarkom</td>
</tr>
<tr>
<td>4o</td>
<td>T98G (T98-G)</td>
<td>CRL-1690</td>
<td></td>
<td>Gehirn; multiformes Glioblastom</td>
</tr>
<tr>
<td>4p</td>
<td>U-343-MG</td>
<td></td>
<td></td>
<td>Glioblastom</td>
</tr>
<tr>
<td>4q</td>
<td>LN-401</td>
<td></td>
<td></td>
<td>Glioblastom</td>
</tr>
<tr>
<td>4r</td>
<td>LN-229</td>
<td>CRL-2611</td>
<td></td>
<td>Gehirn, rechts frontaler parietooczipitaler Kortex; Glioblastom</td>
</tr>
<tr>
<td>5a</td>
<td>BS 149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>MEL-HO</td>
<td>ACC 62</td>
<td></td>
<td>Haut; Melanom</td>
</tr>
<tr>
<td>5c</td>
<td>COLO-849</td>
<td>ACC 216</td>
<td></td>
<td>Malignes Melanom (stammend aus axillärem Lymphknottent rechts)</td>
</tr>
<tr>
<td>5d</td>
<td>ECV-304</td>
<td>ACC 310</td>
<td></td>
<td>Harnblase; Karzinom</td>
</tr>
<tr>
<td>5e</td>
<td>Caki-2</td>
<td>HTB-47</td>
<td>ACC 54</td>
<td>Niere; Klarzellenkarzinom</td>
</tr>
<tr>
<td>5f</td>
<td>RT-112</td>
<td>RT-112 D21</td>
<td>ACC 418</td>
<td>Harnblase; Transitionalzellenkarzinom, Grad II</td>
</tr>
<tr>
<td>5g</td>
<td>293 (HEK-293)</td>
<td>CRL-1573</td>
<td>ACC 305</td>
<td>Niere; transformiert durch Adenovirus 5 DNS</td>
</tr>
<tr>
<td>5h</td>
<td>A-375 (A375)</td>
<td>CRL-1619</td>
<td></td>
<td>Haut; malignes Melanom</td>
</tr>
<tr>
<td>Array Koordinate</td>
<td>Zelllinie</td>
<td>ATCC-Nr.*</td>
<td>DSMZ-Nr. **</td>
<td>Herkunftsgewebe</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>5i</td>
<td>MBC-5/MRC-5</td>
<td>CCL-171</td>
<td></td>
<td>Lunge, Fibroblast; normal</td>
</tr>
<tr>
<td>5k</td>
<td>SM</td>
<td></td>
<td></td>
<td>Melanom</td>
</tr>
<tr>
<td>5l</td>
<td>BT-474</td>
<td>HTB-20</td>
<td>ACC 64</td>
<td>Brustdrüse; duktales Karzinom</td>
</tr>
<tr>
<td>5m</td>
<td>EAL-29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5n</td>
<td>SJCRH30 (RC13; RMS 13; SJRH30)</td>
<td>CRL-2061</td>
<td></td>
<td>Muskel; Rhabdomyosarkom (stammend aus Knochenmark)</td>
</tr>
<tr>
<td>5o</td>
<td>IM-9</td>
<td>CCL-159</td>
<td>ACC 117</td>
<td>Peripheres Blut, B-Lymphoblast; transformiert durch Ebstein-Barr-Virus (EBV)</td>
</tr>
<tr>
<td>5p</td>
<td>VM-CUB 1</td>
<td></td>
<td>ACC 400</td>
<td>Hamblase; Transitionalzellkarzinom</td>
</tr>
<tr>
<td>5q</td>
<td>HeLa</td>
<td>CCL-2</td>
<td>ACC 57</td>
<td>Gebärmutterhals, epithelial; Adenokarzinom</td>
</tr>
<tr>
<td>5r</td>
<td>HACAT</td>
<td></td>
<td></td>
<td>Haut</td>
</tr>
<tr>
<td>6a</td>
<td>KU-19-19</td>
<td>ACC 395</td>
<td></td>
<td>Hamblase; Transitionalzellkarzinom</td>
</tr>
<tr>
<td>6b</td>
<td>GAMG</td>
<td>ACC 242</td>
<td></td>
<td>Gehirn; Glioblastom</td>
</tr>
<tr>
<td>6c</td>
<td>IGR-1</td>
<td>ACC 236</td>
<td></td>
<td>malignes Melanom (stammend aus inguinalen Lymphknoten)</td>
</tr>
<tr>
<td>6d</td>
<td>CRL-7930</td>
<td>CRL-7930</td>
<td></td>
<td>Hamblase; Karzinom</td>
</tr>
<tr>
<td>6e</td>
<td>172</td>
<td></td>
<td></td>
<td>Glioblastom</td>
</tr>
<tr>
<td>6f</td>
<td>COS-1</td>
<td>CRL-1650</td>
<td>ACC 63</td>
<td>Niere; Fibroblast, transformiert durch eine origin-fehlerhafte Mutante von SV-40</td>
</tr>
<tr>
<td>6g</td>
<td>Hs 766T</td>
<td>HTB-134</td>
<td></td>
<td>Pankreas; Karzinom (stammend aus Lymphknoten)</td>
</tr>
<tr>
<td>6h</td>
<td>HUT 12</td>
<td></td>
<td></td>
<td>Fibrosarkom</td>
</tr>
<tr>
<td>6i</td>
<td>HUVEC</td>
<td></td>
<td></td>
<td>endothelial (Nabelschnuvrene)</td>
</tr>
<tr>
<td>6k</td>
<td>IMR-90</td>
<td>CCL-186</td>
<td></td>
<td>Lunge, Fibroblast; normal</td>
</tr>
<tr>
<td>6l</td>
<td>U-138 MG</td>
<td>HTB-16</td>
<td>ACC 291</td>
<td>Gehirn; Glioblastom</td>
</tr>
<tr>
<td>6m</td>
<td>U-87 MG</td>
<td>HTB-14</td>
<td></td>
<td>Gehirn; Glioblastom, Astrozytom, Grad III</td>
</tr>
<tr>
<td>6n</td>
<td>WSS-1 (WS-1)</td>
<td>CRL-2029</td>
<td></td>
<td>Niere; transformiert durch Adenovirus 5 DNS</td>
</tr>
<tr>
<td>6o</td>
<td>Hs68</td>
<td>CRL-1635</td>
<td></td>
<td>Haut, Vorhaut, Fibroblast; Aspartoacylase-Mangel, mögliche Canavan Erkrankung</td>
</tr>
<tr>
<td>6p</td>
<td>MCF 10A</td>
<td>CRL-10317</td>
<td></td>
<td>Brustdrüse, epithelial; fibrozystische Krankheit</td>
</tr>
<tr>
<td>6q</td>
<td>RT-112</td>
<td>RT-112 D21</td>
<td>ACC 418</td>
<td>Hamblase; Transitionalzellkarzinom, Grad II</td>
</tr>
<tr>
<td>6r</td>
<td>MDA-HER2</td>
<td></td>
<td></td>
<td>Brustdrüse; Adenokarzinom</td>
</tr>
<tr>
<td>7a</td>
<td>MDA-NEO</td>
<td></td>
<td></td>
<td>Brustdrüse; Adenokarzinom</td>
</tr>
<tr>
<td>7b</td>
<td>CAL-62</td>
<td>ACC 448</td>
<td></td>
<td>Schildrüse; anaplastisches Karzinom</td>
</tr>
<tr>
<td>7c</td>
<td>DBTRG-05MG</td>
<td>CRL-2020</td>
<td>ACC 359</td>
<td>Gehirn, Gliazelle; multiformes Glioblastom</td>
</tr>
<tr>
<td>7d</td>
<td>HBL-100</td>
<td>HTB-124</td>
<td></td>
<td>Brustdrüse</td>
</tr>
<tr>
<td>7e</td>
<td>HT-1080</td>
<td>CCL-121</td>
<td>ACC 315</td>
<td>Bindegewebe; Fibrosarkom</td>
</tr>
<tr>
<td>7f</td>
<td>LN-405</td>
<td>ACC 189</td>
<td></td>
<td>Gehirn; Astrozytom, Grad IV</td>
</tr>
<tr>
<td>7g</td>
<td>MDA-MB-433</td>
<td>ACC 65</td>
<td></td>
<td>Brustdrüse</td>
</tr>
<tr>
<td>7h</td>
<td>NCI-H82 (H82)</td>
<td>HTB-175</td>
<td>ACC 556</td>
<td>Lunge; kleinzeliges Karzinom (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>7i</td>
<td>CRO-AP3</td>
<td>ACC 275</td>
<td></td>
<td>B-Zell-Lymphom</td>
</tr>
<tr>
<td>7k</td>
<td>SW-548</td>
<td></td>
<td></td>
<td>Dickdarm, kolorektales Adenokarzinom, Dukes’ Typ B</td>
</tr>
<tr>
<td>7l</td>
<td>A431NS</td>
<td>CRL-2592</td>
<td>ACC 91</td>
<td>Haut, Epidermis; epidermoides Karzinom</td>
</tr>
<tr>
<td>7m</td>
<td>CRO-AP2</td>
<td>ACC 48</td>
<td></td>
<td>B-Zell-Lymphom</td>
</tr>
<tr>
<td>7n</td>
<td>BHT-101</td>
<td>ACC 279</td>
<td></td>
<td>Schildrüse; anaplastisches papilläres</td>
</tr>
<tr>
<td>Array Koordinate</td>
<td>Zelllinie</td>
<td>ATCC-Nr.*</td>
<td>DSMZ-Nr. **</td>
<td>Herkunftsgewebe</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>7o</td>
<td>BT 717</td>
<td></td>
<td></td>
<td>Schildrüsenkarzinom (stammend aus Lymphknoten)</td>
</tr>
<tr>
<td>7p</td>
<td>A-172 (A172)</td>
<td>CRL-1620</td>
<td></td>
<td>Gehirn; Glioblastom</td>
</tr>
<tr>
<td>7q</td>
<td>S-117</td>
<td>ACC 266</td>
<td></td>
<td>Schilddrüse; Sarkom</td>
</tr>
<tr>
<td>7r</td>
<td>CRO-AP5</td>
<td>ACC 215</td>
<td></td>
<td>B-Zell-Lymphom</td>
</tr>
<tr>
<td>8a</td>
<td>B-CPAP</td>
<td>ACC 273</td>
<td></td>
<td>Schilddrüse; Karzinom</td>
</tr>
<tr>
<td>8b</td>
<td>BLD 4-1-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8c</td>
<td>HCT-8 (HRT-18)</td>
<td>CCL-244</td>
<td></td>
<td>Dickdarm; kolorektales Adenokarzinom</td>
</tr>
<tr>
<td>8d</td>
<td>SU-DHL-6</td>
<td>ACC 572</td>
<td></td>
<td>B-Zell Non-Hodgkin-Lymphom (B-NHL) (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>8e</td>
<td>MD 435 (MDA-MB-435)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8f</td>
<td>OCI-LY-19</td>
<td>ACC 528</td>
<td></td>
<td>Knochenmark; B-Zell-Lymphom (Non-Hodgkin-Lymphom)</td>
</tr>
<tr>
<td>8g</td>
<td>ZR-75-1</td>
<td>CRL-1500</td>
<td></td>
<td>Brustdrüse, epithelial; duktales Karzinom (stammend aus Aszites)</td>
</tr>
<tr>
<td>8h</td>
<td>ML-1</td>
<td>ACC 464</td>
<td></td>
<td>Schilddrüse; folliculäres Karzinom</td>
</tr>
<tr>
<td>8i</td>
<td>BT-747 (BT-474)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8k</td>
<td>8305C</td>
<td>ACC 133</td>
<td></td>
<td>Schilddrüse; Karzinom</td>
</tr>
<tr>
<td>8l</td>
<td>NCI-HS10A (HS10A; NCI-HS10)</td>
<td>HTB-184</td>
<td>ACC 568</td>
<td>Lunge; kleinlitziges Karzinom, extrapolmalen Ursprungs (stammend aus Nebenniere)</td>
</tr>
<tr>
<td>8m</td>
<td>SU-DHL-4</td>
<td>ACC 495</td>
<td></td>
<td>B-Zell Non-Hodgkin-Lymphom (B-NHL) (stammend aus Peritonealerguss)</td>
</tr>
<tr>
<td>8n</td>
<td>ONCO-DG-1</td>
<td>ACC 507</td>
<td></td>
<td>Schilddrüse; oxyphiles papilläres Karzinom</td>
</tr>
<tr>
<td>8o</td>
<td>MDA-MB-435S</td>
<td>HTB-129</td>
<td></td>
<td>Brustdrüse; duktales Adenokarzinom (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>8p</td>
<td>A-498</td>
<td>HTB-44</td>
<td>ACC 55</td>
<td>Niere; Karzinom</td>
</tr>
<tr>
<td>8q</td>
<td>CRL-1472</td>
<td>CRL-1472</td>
<td></td>
<td>Harnblase; Karzinom, Grad 3</td>
</tr>
<tr>
<td>8r</td>
<td>Caco-2</td>
<td>HTB-37</td>
<td>ACC 169</td>
<td>Dickdarm; kolorektales Adenokarzinom</td>
</tr>
<tr>
<td>9a</td>
<td>SK-CO-1</td>
<td>HTB-39</td>
<td></td>
<td>Dickdarm; kolorektales Adenokarzinom (stammend aus Aszites)</td>
</tr>
<tr>
<td>9b</td>
<td>HT-29</td>
<td>HTB-38</td>
<td>ACC 299</td>
<td>Dickdarm; kolorektales Adenokarzinom</td>
</tr>
<tr>
<td>9c</td>
<td>Saos-2</td>
<td>HTB-85</td>
<td>ACC 243</td>
<td>Knochen; Osteosarkom</td>
</tr>
<tr>
<td>9d</td>
<td>SW480 (SW-480)</td>
<td>CCL-228</td>
<td>ACC 313</td>
<td>Dickdarm; kolorektales Adenokarzinom, Duke’s Typ B</td>
</tr>
<tr>
<td>9e</td>
<td>786-O (786-0)</td>
<td>CRL-1932</td>
<td></td>
<td>Niere; Adenokarzinom</td>
</tr>
<tr>
<td>9f</td>
<td>KARPAS-1106P</td>
<td>ACC 545</td>
<td></td>
<td>B-Zell-Lymphom (Non-Hodgkin-Lymphom)</td>
</tr>
<tr>
<td>9g</td>
<td>MDA-MB-415</td>
<td>HTB-128</td>
<td></td>
<td>Brustdrüse; Adenokarzinom (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>9h</td>
<td>8505C</td>
<td>ACC 219</td>
<td></td>
<td>Schilddrüse; papilläres Adenokarzinom</td>
</tr>
<tr>
<td>9i</td>
<td>DLD-1</td>
<td>CCL-221</td>
<td>ACC 278</td>
<td>Dickdarm, epithelial; kolorektales Adenokarzinom, Duke’s Typ C</td>
</tr>
<tr>
<td>9k</td>
<td>HCT-8 (HRT-18)</td>
<td>CCL-244</td>
<td></td>
<td>Dickdarm; kolorektales Adenokarzinom</td>
</tr>
<tr>
<td>9l</td>
<td>SW403 (SW-403)</td>
<td>CCL-230</td>
<td>ACC 294</td>
<td>Dickdarm; kolorektales Adenokarzinom, Duke’s Typ C, Grad III</td>
</tr>
<tr>
<td>9m</td>
<td>T-47D</td>
<td>HTB-133</td>
<td></td>
<td>Brustdrüse; duktales Karzinom (stammend aus Pleuraerguss)</td>
</tr>
<tr>
<td>9n</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ATCC = American tissue culture collection (www.ATCC.org)
** DSMZ = Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (www.dsmz.de)
10. Eidesstattliche Versicherung

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Unterschrift: ..