FAQ
© 2015 Staats- und Universitätsbibliothek
Hamburg, Carl von Ossietzky

Öffnungszeiten heute09.00 bis 24.00 Uhr alle Öffnungszeiten

Eingang zum Volltext in OPUS

Hinweis zum Urheberrecht

Dissertation zugänglich unter
URN: urn:nbn:de:gbv:18-63801
URL: http://ediss.sub.uni-hamburg.de/volltexte/2013/6380/


Organic Carbon Pools in Permafrost-Affected Soils of Siberian Arctic Regions

Die Pools des Organischen Kohlenstoffs in von Permafrost Beeinflussten Böden der Sibirischen Arktischen Regionen

Zubrzycki, Sebastian

pdf-Format:
 Dokument 1.pdf (9.804 KB) 


SWD-Schlagwörter: Dauerfrostboden , Kohlenstoff , Stickstoff , Klimaänderung , Sibirien , Lenadelta , Bodenkunde
Freie Schlagwörter (Deutsch): Permafrost , Bodendiversität , Organischer Kohlenstoff, Klimawandel
Freie Schlagwörter (Englisch): Permafrost , Organic Carbon, Nitrogen, Cliamte Change, Siberia
Basisklassifikation: 43.47 , 38.63 , 38.61 , 38.32 , 35.70
Institut: Geowissenschaften
DDC-Sachgruppe: Geowissenschaften
Dokumentart: Dissertation
Hauptberichter: Pfeiffer, Eva-Maria (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 23.01.2013
Erstellungsjahr: 2013
Publikationsdatum: 16.09.2013
Kurzfassung auf Englisch: Permafrost-affected soils of the Lena River Delta (Northern Siberia) and its hinterland are characterized by a high diversity. The three main soil groups of the permafrost-affected soils, which are organic-rich Histels, cryoturbated Turbels and mineral and non-cryoturbated Orthels, include a large variety of subgroups. This variability formed while time, temperature, and water saturation strongly slowed the soil-forming processes. These diverse North-Siberian soils have been only scarcely investigated by soil scientists so far, although they play a major role in global long-term carbon sequestration. Permafrost-affected soils started to attract broader attention since increasing knowledge about the carbon storage of these soils has been coupled with future climate trend projections indicating the potential of a positive feedback loop of warming when the predicted release of “permafrost carbon” will increase the greenhouse effect. Despite their small thickness of few decimetres, these soils and their carbon storage might play an important role in affecting the future climate when one considers the projected increases of temperature and recent models of the active layer depth development. The question if they are still sequestering carbon is still controversially discussed and will have different answers for different permafrost regions.
Approaches to determine the carbon source and sink functions of permafrost-affected soils require robust knowledge of the recent carbon storage of these soils, which is where this thesis begins. Here the author provides the first robust estimates of the carbon storage of the modern, Holocene geomorphologic units of the Lena River Delta as well as estimates of the carbon stocks of the seasonally thawed layer from a latitudinal transect in Northeast-Siberia extending from the Lena River Delta into its hinterland. For the area of the Lena River Delta, he also reports total nitrogen stocks.
The Lena River Delta, which is the largest delta in the Arctic, extends over an area of 32,000 km² and likely holds the major part of the soil organic carbon mass stored in the seven major deltas in the northern permafrost regions. The geomorphologic units of the Lena River Delta, which were formed by true deltaic sedimentation processes are a Holocene river terrace and active – still regularly flooded – floodplains. Their mean soil organic carbon stocks for the upper 1 m of soils were estimated at 29 kg m 2 ± 10 kg m-2 and at 14 kg m 2 ± 7 kg m-2, respectively. For the depth of 1 m, the total soil organic carbon storage of the Holocene river terrace was estimated at 121 Tg ± 43 Tg, and the soil organic carbon storage of the active floodplains was estimated at 120 Tg ± 66 Tg. The mass of soil organic carbon stored within the observed seasonally thawed active layer was estimated at about 127 Tg assuming an average maximum active layer depth of 50 cm. The soil organic carbon mass that is stored in the perennially frozen ground below the average maximum active layer, which is excluded from intense biogeochemical exchange with the atmosphere, was estimated at 113 Tg. The mean nitrogen stocks for the upper 1 m of soils were estimated at 1.2 kg m 2 ± 0.4 kg m 2 for the Holocene river terrace and 0.9 kg m 2 ± 0.4 kg m 2 for the active floodplain levels, respectively. For the depth of 1 m, the total nitrogen storage of the river terrace was estimated at 4.8 Tg ± 1.5 Tg, and the total nitrogen storage of the floodplains at 7.7 Tg ± 3.6 Tg. Considering the projections for deepening the seasonally thawed active layer up to 120 cm in the Lena River Delta region within the 21st century, these large carbon and nitrogen stocks could become increasingly available for decomposition and mineralization processes.
Twelve sites along a north-south latitudinal transect in Siberia were investigated to classify the soils and to determine their soil organic carbon stocks in the top 30 cm of the seasonally thawed layer, which was shallower compared to the intensive delta study mentioned above. There was a distinct arrangement into three groups of increasing soil organic carbon stocks along the transect with decreasing latitude. The greatest stocks, with mean values of 24 kg m 2 ± 9 kg m-2 were identified for the southern group of forest tundra and taiga sites on the ancient Central Siberian Plateau. The soils of Lena River Delta’s first and third river terraces had stocks of on average 12 kg m 2 ± 3 kg m-2 whereas the sand-dominated north-western part of the delta, the second river terrace, stored only 4 kg m 2 ± 2 kg m-2 in the top 30 cm of the soils. The climatological gradient with changing vegetation productivity and different parent materials result in varying pedogenetic processes and were identified as key controls on the soil organic carbon stocks.
Using the linear increase of the cumulative soil organic stock size with increasing soil depth determined for the investigated Lena River Delta soils in a regression model, the organic carbon stocks of soils investigated within the latitudinal transect are likely to reach up to 80 kg m 2 within a depth of 100 cm. The results of the pilot study encourage continuing the organic carbon quantification studies within this region to gain a more detailed knowledge about the soils of the unique and various landscapes of Northeast-Siberia.
Kurzfassung auf Deutsch: Die von Permafrost beeinflussten Böden des nordostsibirischen Lenadeltas und seines Hinterlandes sind durch eine sehr hohe Diversität charakterisiert. Die drei Bodenhauptgruppen der von Permafrost beeinflussten Böden, die organikreichen Histels, die kryoturbierten Turbels und die mineralischen und nicht-kryoturbierten Orthels, umfassen eine große Variabilität an untergeordneten Bodeneinheiten. Diese Variabilität entstand, obwohl Zeit, Temperatur und Wassersättigung die bodenbildenden Prozesse stark verlangsamten. Diese diversen, von Permafrost beeinflussten sibirischen Böden wurden bisher nur unzureichend bodenwissenschaftlich untersucht, obwohl sie bei der globalen Langzeit-Kohlenstoff-Sequestrierung eine entscheidende Rolle spielen. Sie gewannen erst an Bedeutung als das wachsende Wissen über die Kohlenstoffvorräte dieser Böden im Zusammenhang mit den aktuellen Projektionen zum zukünftigen, globalen Klima betrachtet wurden. Diese könnten in einem sich selbst verstärkenden Kreislauf resultieren, wenn freigesetzter „Permafrost-Kohlenstoff“ den Treibhauseffekt verstärken würde. Obwohl nur wenige Dezimeter mächtig, werden diese Böden mit ihren Vorräten an Kohlenstoff möglicherweise eine entscheidende Rolle bei der Entwicklung des zukünftigen Klimas spielen, wenn die aktuellen Projektionen zum Temperaturanstieg und die aktuellen Modelle zur Entwicklung der Mächtigkeit der saisonalen Auftauschicht betrachtet werden. Die Frage, ob diese Böden immer noch Kohlenstoff sequestrieren, wird noch kontrovers diskutiert und wird wahrscheinlich unterschiedliche Antworten aus unterschiedlichen permafrost-beeinflussten Regionen liefern.
Ansätze zur Beantwortung der Frage nach einer Kohlenstoff-Quellen- und Kohlenstoff-Senkenfunktion der von Permafrost beeinflussten Böden brauchen belastbares Wissen über die rezenten Kohlenstoffvorräte dieser Böden. Und genau hier setzt diese Arbeit an. Der Autor liefert eine erste robuste Abschätzung der Kohlenstoffvorräte in den modernen holozänen geomorphologischen Einheiten des Lenadeltas und darüber hinaus eine Abschätzung der Kohlenstoffgehalte in der saisonalen Auftauschicht entlang eines Nordsüd-Transekts im Nordosten Sibiriens, welcher sich vom Lenadelta bis zu seinem Hinterland erstreckt. Für den Bereich des Lenadeltas werden auch die Stickstoffvorräte geschätzt.
Das Lenadelta, das größte arktische Delta, erstreckt sich über eine Fläche von 32.000 km² und speichert wahrscheinlich einen Großteil des Gesamtkohlenstoffvorrats der sieben größten Deltas der nördlichen permafrostbeeinflussten Regionen. Zu den geomorphologischen Einheiten des Lenadeltas, welche durch echte fluviatile Sedimentationsprozesse entstanden sind, gehören die holozäne Flussterrasse und aktive Überflutungsebenen. Ihr mittlerer Gehalt an organischem Kohlenstoff im oberen Meter des Bodens wurde auf 29 kg m 2 ± 10 kg m 2 beziehungsweise auf 14 kg m 2 ± 7 kg m 2 geschätzt. Für die Tiefe von einem Meter liefert die Schätzung einen Kohlenstoffvorrat in der holozänen Flussterrasse von 121 Tg ± 43 Tg. Die aktiven Überflutungsebenen speichern 120 Tg ± 66 Tg. Der Kohlenstoffvorrat der beobachteten saisonalen Auftauschicht wurde auf circa 127 Tg geschätzt, wenn eine durchschnittliche maximale Tiefe von 50 cm angenommen wird. Der Kohlenstoffvorrat, welcher im Permafrost unter der Auftauschicht gespeichert vorliegt und nicht von intensiven biogeochemischen Austauschprozessen mit der Atmosphäre beeinflusst wird, wurde auf 113 Tg geschätzt. Die mittleren Stickstoffgehalte im ersten Meter der Böden wurden auf 1,2 kg m 2 ± 0,4 kg m 2 für die holozäne Flussterrasse und auf 0,9 kg m 2 ± 0,4 kg m 2 für die aktiven Überflutungsebenen geschätzt. Für die Tiefe von einem Meter beträgt der Vorrat des Gesamtstickstoffs der Flussterrasse 4,8 Tg ± 1,5 Tg und der Überflutungsebene 7,7 Tg ± 3,6 Tg. Unter den Annahmen der Projektionen der Entwicklung der Mächtigkeit der saisonalen Auftauschicht wird diese bis zu 120 cm im Bereich des Lenadeltas im 21. Jahrhundert erreichen. Demzufolge würden die großen Kohlenstoff- und Stickstoffvorräte verstärkt für Abbau- und Mineralisationsprozesse verfügbar sein.
Zwölf Standorte entlang eines Nordsüd-Transekts im Nordosten Sibiriens wurden untersucht, um die Böden zu klassifizieren und ihre Gehalte an organischem Kohlenstoff in den oberen 30 cm der saisonalen Auftauschicht zu quantifizieren. Die Auftauschicht dieser Gebiete war im Mittel nicht so tief wie die, der intensiven Studie im Lenadelta. Bei der Betrachtung der Gehalte des organischen Kohlenstoffs wurde eine Anordnung in drei Gruppen offensichtlich. Innerhalb dieser Gruppen nahm der Kohlenstoffgehalt bei abnehmender nördlicher Breite zu. Die höchsten Gehalte wurden an den südlichsten Standorten, nämlich der Waldtundra und Taiga des geologisch alten Zentralsibirischen Plateaus identifiziert. Sie betrugen im Mittel 24 kg m 2 ± 9 kg m 2. Die Böden der ersten und dritten Flussterrasse des Lenadeltas wiesen mittlere Kohlenstoffgehalte von 12 kg m 2 ± 3 kg m-2 auf, wohingegen die Böden des sanddominierten nordwestlichen Teils des Deltas, der zweiten Flussterrasse, nur 4 kg m 2 ± 2 kg m-2 in den oberen 30 cm beherbergten. Der klimatische Gradient mit sich ändernder Produktivität der Vegetation und unterschiedliches Ausgangsmaterial mit variierenden pedogenetischen Prozessen wurden als die Schlüsselprozesse identifiziert, welche die Höhe der Kohlenstoffgehalte steuern.
Unter Zuhilfenahme der kumulierten Gehalte an organischem Kohlenstoff der intensiven Bodenstudie im Lenadelta, welche mit zunehmender Profiltiefe annähernd linear steigen und unter Anwendung des dazugehörigen Regressionsmodells, beträgt der Gehalt des organischen Kohlenstoffs der im Nordsüd-Transekt untersuchten Böden möglicherweise bis zu 80 kg m-2 innerhalb der oberen 100 cm der Böden. Die Ergebnisse dieser Pilotstudie verdeutlichen die Bedeutung der Fortführung der Quantifizierungsstudien der Kohlenstoffgehalte dieser Regionen. Diese werden zur Vergrößerung des Wissens über die Böden der einzigartigen und mannigfaltigen Landschaften Nordost-Sibiriens beitragen sowie deren Bedeutung für globale Kohlenstoff-Flussbilanzen detaillierter darstellen.

Zugriffsstatistik

keine Statistikdaten vorhanden
Legende