Charakterisierung der Pathogenität und Transmissibilität von 2009 pandemischen H1N1 Influenza A Viren in Kleintiermodellen

Dissertation

Anna Otte
Hamburg 2013
Korrigierte Fassung

Genehmigt vom Fachbereich Biologie
der Fakultät für Mathematik, Informatik und Naturwissenschaften
an der Universität Hamburg
auf Antrag von Frau Priv.-Doz. Dr. G. GABRIEL
Weiterer Gutachter der Dissertation:
Professor Dr. T. DOBNER
Tag der Disputation: 13. Dezember 2013

Professor Dr. C. Lohr
Vorsitzender des
Fach-Promotionsausschusses Biologie
Die Untersuchungen zur vorliegenden Arbeit wurden von Juli 2009 bis Oktober 2013 am Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Direktor: Prof. Dr. Thomas Dobner, Fachbereich Biologie der Universität Hamburg, unter der Leitung von PD Dr. Gülsah Gabriel durchgeführt.

Angenommen vom Fachbereich Biologie der Universität Hamburg am: 28.11.2013

Erstgutachter: PD. Dr. Gülsah Gabriel

Zweitgutachter: Prof. Dr. Thomas Dobner

Tag der mündlichen Prüfung am: 13.12.2013

Mitglieder der Prüfungskommission: Prof. Dr. Jörg Ganzhorn

Prof. Dr. Wolfram Brune

PD. Dr. Gülsah Gabriel
<table>
<thead>
<tr>
<th>1 Einleitung</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Influenza A Viren</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Taxonomie</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Virionstruktur</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3 Genomaufbau</td>
<td>3</td>
</tr>
<tr>
<td>1.1.4 Replikationszyklus</td>
<td>5</td>
</tr>
<tr>
<td>1.1.5 Wirtsspektrum und Evolution</td>
<td>8</td>
</tr>
<tr>
<td>1.1.6 Epidemiologie im Menschen</td>
<td>11</td>
</tr>
<tr>
<td>1.1.6.1 Influenza-Epidemien</td>
<td>11</td>
</tr>
<tr>
<td>1.1.6.2 Influenza-Pandemien</td>
<td>12</td>
</tr>
<tr>
<td>1.1.6.3 Influenza-Zoonosen</td>
<td>14</td>
</tr>
<tr>
<td>1.1.7 Pathogenese im Menschen</td>
<td>15</td>
</tr>
<tr>
<td>1.1.8 Adaptive Mutationen und Pathogenitätsdeterminanten im Säugetier</td>
<td>17</td>
</tr>
<tr>
<td>1.2 2009 pandemische H1N1 Influenza (2009 pH1N1)</td>
<td>21</td>
</tr>
<tr>
<td>1.2.1 Epidemiologie der 2009 pH1N1 Influenza</td>
<td>21</td>
</tr>
<tr>
<td>1.2.1.1 Ursprung der 2009 pH1N1 Influenzaviren</td>
<td>23</td>
</tr>
<tr>
<td>1.2.2 Pathogenese der 2009 pH1N1 Influenza</td>
<td>25</td>
</tr>
<tr>
<td>1.2.3 Pathogenitätsdeterminanten der 2009 pH1N1 Influenza</td>
<td>26</td>
</tr>
<tr>
<td>1.3 Tiermodelle in der Influenzaforschung</td>
<td>27</td>
</tr>
<tr>
<td>1.3.1 Mäuse</td>
<td>28</td>
</tr>
<tr>
<td>1.3.2 Meerschweinchen</td>
<td>30</td>
</tr>
<tr>
<td>1.3.3 Frettchen</td>
<td>31</td>
</tr>
<tr>
<td>1.3.4 Weitere Tiermodelle</td>
<td>33</td>
</tr>
<tr>
<td>1.4 Zielsetzung dieser Arbeit</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Material</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Chemikalien, Lösungen und Puffer</td>
<td>35</td>
</tr>
<tr>
<td>2.2 Kulturmedien und -zusätze</td>
<td>36</td>
</tr>
<tr>
<td>2.3 Enzyme, Reaktionssysteme und Zusätze</td>
<td>38</td>
</tr>
<tr>
<td>2.4 Primer</td>
<td>39</td>
</tr>
<tr>
<td>2.5 Plasmide und Vektoren</td>
<td>39</td>
</tr>
<tr>
<td>2.6 Virusstämme</td>
<td>39</td>
</tr>
<tr>
<td>2.7 Bakterienstämme</td>
<td>40</td>
</tr>
<tr>
<td>2.8 Eukaryotische Zelllinien</td>
<td>40</td>
</tr>
<tr>
<td>2.9 Versuchstiere</td>
<td>40</td>
</tr>
<tr>
<td>2.10 Antikörper</td>
<td>41</td>
</tr>
<tr>
<td>2.11 Narkotika, Analgetika und Zusätze</td>
<td>41</td>
</tr>
<tr>
<td>2.12 Verbrauchsmaterialien</td>
<td>41</td>
</tr>
</tbody>
</table>
3 Methoden .. 44

3.1 Molekularbiologische Methoden .. 44
3.1.1 Isolierung von viraler RNA .. 44
3.1.2 Design von PCR-Primern ... 44
3.1.3 Sequenzierung viraler RNA ... 44
3.1.4 Klonierung viraler DNA .. 45
 3.1.4.1 Zweistufige RT-PCR ... 45
 3.1.4.2 DNA-Gelelektrophorese .. 46
 3.1.4.3 Ligation .. 47
 3.1.4.4 Restriktionsverdau .. 47
 3.1.4.5 Transformation kompetenter E. coli-Bakterien 47
3.1.5 Zielgerichtete PCR-Mutagenese ... 48
3.1.6 Plasmidamplifikation in E. coli Bakterien .. 49
3.1.7 Plasmidpräparation ... 49
3.1.8 Archivierung plasmidtragender E-coli Bakterien ... 49
3.1.9 Bestimmung Polymeraseaktivität .. 49
 3.1.9.1 Transfektion von HEK293T-Zellen ... 50
 3.1.9.2 Messung der relativen Polymeraseaktivität 50
3.1.10 Zytokinbestimmung mittels enzymgekoppeltem Immunadsorptionstest (ELISA) ... 50

3.2 Zellkultur ... 51
3.2.1 Kultivierung .. 51
3.2.2 Archivierung .. 51

3.3 Virologische Methoden .. 52
3.3.1 Virusanzucht ... 52
 3.3.1.1 Anzucht im Hühnerei ... 52
 3.3.1.2 Anzucht in MDCK-Zellen ... 52
3.3.2 Reverse Genetik ... 53
 3.3.2.1 Generierung rekombinanter pH1N1 Viren .. 53
3.3.3 Virusgenotypisierung ... 54
3.3.4 Hämagglutinationstest .. 55
3.3.5 Hämagglutinationsinhibitionstest ... 55
3.3.6 Titerbestimmung mittels Plaquetest .. 56
3.3.7 Wachstumskurven von Viren ... 57

3.4 Tierexperimentelle Methoden .. 57
3.4.1 Narkose und Tötungsmethoden ... 58
3.4.2 Infektion und Überlebensversuch (MLD50 -Bestimmung) 58
3.4.3 Blutentnahme, Organentnahme und Nasenspülung 59
3.4.4 Herstellung von Organhomogenaten ... 60
3.4.5 Zellzahlbestimmung in Vollblut mittels Hämatologiegerät 60
3.4.6 Transmissionsversuche .. 61
3.5 Histologische Methoden ... 63
 3.5.1 Präparation von Gewebeschnitten .. 63
 3.5.2 Entparaffinierung und Rehydrierung von Gewebeschnitten .. 63
 3.5.3 in situ-Hybridisierung ... 64
 3.5.3.1 Herstellung der in situ-Sonde .. 64
 3.5.3.2 Permeabilisierung der Gewebeschnitte .. 66
 3.5.3.3 Hybridisierung der Gewebeschnitte .. 66
 3.5.3.4 Posthybridisierung ... 67
 3.5.3.5 Autoradiographie und Entwicklung .. 67
 3.5.4 Hämatoxylin-Eosin Färbung ... 67
 3.5.5 Immunhistochemische Färbung ... 68
4 Ergebnisse ... 69
 4.1 Klinische Isolate der 2009 pandemischen H1N1 Influenza (2009 pH1N1) 69
 4.2 Sequenzanalyse der 2009 pH1N1 Virusisolate .. 70
 4.3 Wachstumsverhalten der 2009 pH1N1 Influenzaviren in humanen Lungenzellen 71
 4.4 Charakterisierung der 2009 pH1N1 Influenzaviren im Mausmodell 72
 4.4.1 Pathogenität und Virulenz der 2009 pH1N1 Viren im Vergleich zu alt-saisonaler H1N1
 und humaner H5N1 Influenza in BALB/c und C57BL/6J Mäusen ... 73
 4.4.2 Organ tropismus der 2009 pH1N1 Viren im Vergleich zu alt-saisonaler H1N1 und
 humaner H5N1 Influenza in BALB/c und C57BL/6J Mäusen .. 75
 4.4.3 Virustropismus der 2009 pH1N1 Viren im Vergleich zu alt-saisonaler H1N1 und
 humaner H5N1 Influenza in der Lunge von BALB/c und C57BL/6J Mäusen 77
 4.4.4 Blutbild nach Infektion mit 2009 pH1N1, alt-saisonaler H1N1 und humaner H5N1
 Influenza in BALB/c und C57BL/6J Mäusen .. 79
 4.4.5 Th1/Th2-Immunantwort nach Infektion mit pH1N1, alt-saisonaler H1N1 und humaner
 H5N1 Influenza in BALB/c und C57BL/6J Mäusen ... 81
 4.5 Rekombinante 2009 pH1N1 Influenzaviren (2009 pH1N1rek) ... 84
 4.5.1 Generierung von 2009 pH1N1rek Influenzaviren .. 84
 4.5.2 Charakterisierung der 2009 pH1N1rek Influenzaviren im C57BL/6J Mausmodell 85
 4.5.2.1 Pathogenität der 2009 pH1N1rek Influenzaviren in C57BL/6J Mäusen 85
 4.5.2.2 Tropismus der 2009 pH1N1rek Influenzaviren in der Lunge von C57BL/6J Mäusen 87
 4.5.2.3 Lymphozytenwerte nach Infektion mit 2009 pH1N1rek Influenzaviren in C57BL/6J
 Mäusen .. 89
 4.6 Analyse der Mutationen im Hämagglutinin und Nukleoprotein .. 90
 4.6.1 Rezeptorbindingseigenschaften der 2009 pH1N1 Influenzaviren 92
 4.6.2 Polymeraseaktivität der RNP-Komplexe der 2009 pH1N1 Influenzaviren in humanen
 Zellen .. 93
 4.7 Charakterisierung der 2009 pH1N1 Influenzaviren im Meerschweinchenmodell 95
1 Einleitung

In dieser Arbeit wurden zwei klinische Isolate der 2009 pandemischen H1N1 Influenza in vitro und in vivo in verschiedenen Tiermodellen charakterisiert. Da bisher bekannte Signaturen der Pathogenität und der Anpassung von Influenzaviren im Menschen in den 2009 pandemischen H1N1 Influenza A Viren nicht gefunden wurden, war das Ziel dieser Arbeit neue Determinanten zu identifizieren. Daher werden im Folgenden zuerst die Biologie und Epidemiologie von Influenza A Viren zusammengefasst, sowie die molekularen Grundlagen der Adaptation und der Pathogenität im Menschen beschrieben. Darauf folgt eine detailliertere Ausführung zu den bisher bekannten Charakteristika der 2009 pandemischen H1N1 Influenza. Im letzten Teil der Einleitung werden Tiermodelle, die in dieser Arbeit verwendet wurden, vorgestellt.

1.1 Influenza A Viren

1.1.1 Taxonomie

Influenza A Viren gehören zur Familie der Orthomyxoviridae und besitzen ein segmentiertes und negativ-orientiertes einzelsträngiges RNA-Genom (Palese und Shaw, 2007). Die Virionen sind von einer Lipid-Doppelschicht umgeben und somit zählen die Orthomyxoviridae zu den behüllten Viren. Eine weitere Besonderheit von Influenza A Viren, im Vergleich zu den meisten anderen RNA-Viren, ist, dass sie im Zellkern des Wirtsorganismus transkribieren und replizieren. Deshalb sind sie auf den effizienten Import ihrer Viruspolymerase in den Zellkern sowie die Interaktion mit weiterenzellulären Faktoren angewiesen (1.1.4). Neben den Influenzaviren A, B und C gehören die Gattungen Thogotovirus, Quarjavirus und Isavirus zu den Orthomyxoviridae (Presti et al., 2009). Einige der Thogotoviren und der kürzlich neu klassifizierten Quarjaviren wurden bisher in erster Linie aus Vögeln und Zecken isoliert, können jedoch auf Säugetiere, darunter auch den Menschen, übertragen werden (Butenko et al., 1987; Presti et al., 2009; Davies et al., 1986). Der Gattung der Isaviren ist das Virus der infektiösen Lachsanämie (Infectious Salmon Anemia Virus) untergeordnet, das eine Erkrankung bei Lachsen auslöst (Mjaaland et al., 1997). Die verschiedenen Influenzaviren werden nach der Antigenität des viralen Nukleoproteins und des viralen Matrixproteins unterschieden und sind in Influenza A, B und C Viren gegliedert. Die drei Arten unterscheiden sich in der Anzahl der Genomsegmente sowie in ihrem Wirtsspektrum (Palese und Shaw, 2007). Influenza A Viren können eine Vielzahl unterschiedlicher Spezies infizieren (1.1.5), während Influenza B Viren bisher nur in Seehunden und Menschen nachgewiesen wurden. Das Genom beider Virusarten ist in acht
Einleitung

1.1.2 Virionstruktur

Die behüllten infektiösen Virusspartikel von Influenza A Viren haben meist eine sphärische Form mit einer Größe von 80-120 nm im Durchmesser (Webster et al., 1992; Nayak et al., 2009). Virusspartikel konnten jedoch besonders in klinischen Isolaten auch in filamentöser Form nachgewiesen werden. Die Morphologie der Virionen wird Studien zufolge von verschiedenen viralen und auch zellulären Determinanten bestimmt, wobei die Funktion unterschiedlich geformter Virusspartikel bisher noch nicht geklärt werden konnte (Rossman und Lamb, 2011).

Die Oberfläche der Virionen besteht aus einer Lipiddoppelschicht, welche sich aus der Zellmembran der Wirtszelle ableitet (1.1.4; Rossman und Lamb, 2011). In die äußere Hüle sind drei verschiedene virale Transmembranproteine integriert, das Hämagglutinitin (HA), die Neuraminidase (NA) und das Ionenkanalprotein M2 (Abb. 1B). Die extramembranen Anteile der Glykoproteine HA und NA sind in elektronenmikroskopischen Abbildungen als sogenannte Spikes auf der Oberfläche der Virionen auszumachen (Abb. 1A; Nayak et al., 2009). Das virale HA-Protein kommt dabei im vierfachen Verhältnis zu NA vor (Palese und Shaw, 2007). An der Innenseite der Lipidhülle befindet sich eine weitere Hülle des Virions, das aus dem Matrixprotein M1 gebildet wird. Die M1-Matrix umgibt das in acht Segmente unterteilte virale Genom im Inneren, welche als Ribonukleoprotein-Komplexe vorliegen (Palese und Shaw, 2007). In diesen Komplexen wird die virale RNA von Nukleoproteinmonomeren enkapsidiert und ist an beiden Enden mit der viralen Polymerase assoziiert (Abb. 1B; 1.1.3; Boivin et al., 2010; Resa-Infante und Gabriel, 2013). Des Weiteren ist noch das Kernexportprotein (NEP oder NS2) im Virusspartikel nachzuweisen, welches im
Einleitung

Abb. 1: Morphologie von Influenza A Virionen. A) Kolorierte elektronenmikroskopische Aufnahme von Influenzaviruspartikeln der 2009 pandemischen H1N1 Influenza. Die sphärischen Virionen haben einen durchschnittlichen Durchmesser von ca. 100 nm. Die Oberflächenglykoproteine Hämaggglutinin (HA) und Neuraminidase (NA) sind in der äußeren Hülle als Spikes sichtbar (Abteilung Elektronenmikroskopie, Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie). B) Schematische Darstellung eines Influenzaviruspartikels (modifiziert nach Karlsson Hedestam et al., 2008). Die Glykoproteine HA und NA sowie das Ionenkanalprotein M2 sind in die Virushülle, die von der Doppellipidmembran der Wirtszelle abgeleitet ist, eingebettet. Der Viruskern enthält die Ribonukleoproteinkomplexe (vRNP) der acht Gensegmente. In diesen Komplexen wird die virale RNA von Nukleoproteinmonomeren enkapsidiert und ist an beiden Enden mit der viralen Polymerase bestehend aus PB1, PB2 und PA, assoziiert.

1.1.3 Genomaufbau

Das Genom von Influenzaviren besteht aus acht unterschiedlich großen Segmenten negativ-orientierter, einzelsträngiger RNA. Zusammen ergeben die Segmente eine Genomgröße von 13,6 kb und kodieren nach heutigem Wissensstand für bis zu 13 virale Proteine (Jagger et al., 2012). Die Genomsegmente haben an ihren 3'- sowie 5'-Enden jeweils eine für Influenzaviren hochkonservierte, nichtkodierende Region, welche die regulatorischen Sequenzen für die Transkriptions- und Replikationspromotoren, für das Verpackungssignal sowie für die mRNA-Prozessierung enthält (Naffakh et al., 2008). Für die Transkription und Replikation der viralen RNA benötigt das Virus eine RNA-abhängige RNA-Polymerase. Diese liegt im Viruskern bereits in Assoziation mit der RNA im viralen Ribonukleoprotein (vRNA)-Komplex vor.
Einleitung

<table>
<thead>
<tr>
<th>Segment</th>
<th>Länge</th>
<th>Protein</th>
<th>Proteinfunktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB2</td>
<td>2341 bp</td>
<td>PB2</td>
<td>Basisches Polymeraseprotein 2, Untereinheit des RNP- und Polymerasekomplexes, Erkennung der Cap-Struktur zellulärer mRNA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PB1-F2</td>
<td>Regulation von Apoptose und viraler Polymeraseaktivität (Chen et al., 2001; Knipe und Howley, 2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PB1-N40</td>
<td>Unbekannte Funktion (Wise et al., 2009)</td>
</tr>
<tr>
<td>PB1</td>
<td>2341 bp</td>
<td>PB1</td>
<td>Basisches Polymeraseprotein 1, Untereinheit des RNP- und Polymerasekomplexes, RNA-abhängige RNA-Polymerase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PB1-F2</td>
<td>Regulatorische Funktion (Chen et al., 2001; Knipe und Howley, 2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PB1-N40</td>
<td>Unbekannte Funktion (Wise et al., 2009)</td>
</tr>
<tr>
<td>PA</td>
<td>2233 bp</td>
<td>PA</td>
<td>Saures Polymeraseprotein: Untereinheit des RNP- und Polymerasekomplexes, Proteaseaktivität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PA-X</td>
<td>Modulierung Immunantwort des Wirtes (Jagger et al., 2012)</td>
</tr>
<tr>
<td>HA</td>
<td>1778 bp</td>
<td>HA</td>
<td>Hämagglutinin, Oberflächenglykoprotein, stärkstes Antigen, Rezeptorbindung, Fusion</td>
</tr>
<tr>
<td>NP</td>
<td>1565 bp</td>
<td>NP</td>
<td>Nukleoprotein, Komponente des RNP-Komplexes, RNA-Synthese, Kernimport</td>
</tr>
<tr>
<td>NA</td>
<td>1413 bp</td>
<td>NA</td>
<td>Neuraminidase, Oberflächenglykoprotein, Sialidaseaktivität, Antigen</td>
</tr>
<tr>
<td>M</td>
<td>1027 bp</td>
<td>M1</td>
<td>Matrixprotein 1, Interaktion mit vRNP-Komplexen und Oberflächenglykoproteinen, Kernexport, Virusfreisetzung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M2</td>
<td>Matrixprotein 2, Membranprotein, Ionenkanalaktivität</td>
</tr>
<tr>
<td>NS</td>
<td>890 bp</td>
<td>NS1</td>
<td>Nichtstrukturprotein 1, multifunktionales Protein, Interferonantagonist, Regulierung der zellulären Genexpression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NS2 (NEP)</td>
<td>Nichtstrukturprotein 2/Kernexportprotein, Regulatorisches Protein, vRNP-Export</td>
</tr>
</tbody>
</table>

Tab. 1: Die Genomsegmente und die jeweiligen Genprodukte von Influenzaviren.
Die virale Polymerase ist ein heterotrimärer Proteinkomplex, bestehend aus den basischen Polymeraseproteinen PB1 und PB2 sowie dem sauren Polymeraseprotein PA. Die 3'- und 5'-Enden der viralen RNA sind teilweise komplementär zueinander und bilden einen kurzen Duplexbereich aus, welcher mit der RNA-Polymerase assoziiert ist (Klumpp et al., 1997; Resa-Infante und Gabriel, 2013). Dadurch ist jedes Genomsegment in eine doppelhelikale Haarnadelstruktur gewunden, in der die RNA mit zahlreichen Nukleoproteinen (NP) enkapsidiert vorliegt. Die Segmente für PB2, NP, HA und NA kodieren jeweils für ein Genprodukt, dagegen können die Segmente PB1, PA, M und NS für zwei oder wie im Fall von PB1 für drei Genprodukte kodieren (Tab. 1). Dies geschieht beispielsweise im Fall von M1 und M2 durch alternatives Spleißen oder wie im Fall von PB1-F2 durch einen überlappenden Leserahmen in der PB1-mRNA (Lamb und Choppin, 1981; Chen et al., 2001). Alle bisher beschriebenen viralen Proteine und deren Funktionen sind in Tab. 1 aufgeführt.

1.1.4 Replikationszyklus

Adsorption und receptorvermittelte Endozytose

Membranfusion und Freisetzung der vRNPs
Das Endosom wird im Zytoplasma durch Protonenpumpen in der zellulären Membran angesäuert, um eine Lyse des Vesikels herbeizuführen. Der saure pH-Wert im Endosom hat

Transkription und Replikation

Für die Initiation der Transkription und Replikation ist die virale Polymerase auf zelluläre Kernprozesse angewiesen. Daher müssen die vRNPs zunächst in den Zellkern transportiert werden. Dies geschieht durch aktive Kernimportprozesse der Wirtszelle und wird vorrangig über die Kernlokalisationsesignale (NLS) im NP-Protein vermittelt (Cros et al., 2005; Resa-Infante und Gabriel, 2013). Im Zellkern wird die virale mRNA-Synthese durch den Mechanismus des cap-snatching des viralen Polymerasekomplexes initiiert. Dabei bindet die PB2-Untereinheit die 5'-Cap-Strukturen von zellulären prä-mRNAs. Diese werden durch die Endonukleaseaktivität von PA von den zellulären mRNA-Produkten abgeschnitten und als Primer für die virale mRNA-Synthese verwendet (Krug, 1981; Boivin et al., 2010). Das hat zusätzlich eine Inhibierung der zellulären Replikation zur Folge. Die virale mRNA wird ins Zytoplasma transportiert, wo an den Ribosomen die Translation der viralen Proteine stattfindet. Die Polymeraseproteine werden für die weitere Transkription und die Replikation in den Zellkern transportiert. Nach Transkription großer Mengen viraler mRNA findet die Replikation viraler RNA (vRNA) in virale positivorientierte komplementäre RNA (cRNA) statt. Diese dient in einer späteren Phase des Replikationszyklus als Matrise neuer vRNA-Produkte (Palese und Shaw, 2007). Die Replikation der cRNA und vRNA wird von der viralen Polymerase über die Promotoren in den nichtkodierenden Bereichen der Genomsegmente Primer-unabhängig durchgeführt (Neumann et al., 2004). Das Nichtstrukturprotein NS1, welches im Viruspartikel nicht nachzuweisen ist, wird während der frühen Phase der Replikation synthetisiert, um die virale Replikation durch Manipulation zellulärer Signalwege zu begünstigen (Kochs et al., 2007; Marazzi et al., 2012).

Zusammenlagerung und Freisetzung neuer Viruspartikel

Während die viralen Kernproteine PB₁, PB₂, PA, NP, NS₁, NS₂ und M₁ im Zytoplasma an freien Ribosomen translatiert werden, geschieht dies für die Oberflächenproteine HA, NA und M₂ an den Ribosomen des rauen endoplasmatischen Retikulums. Noch während der Proteinsynthese werden diese Proteine zu Polymeren zusammengelagert, anschließend

Die viralen nicht-Struktur Proteine PB1-F2, NS1 und PA-X sind nur indirekt am Replikationszyklus von Influenzaviren beteiligt. Sie ermöglichen eine effiziente Replikation des Virus durch die Inhibierung oder Modulation der Immunantwort des infizierten Wirts (Jagger et al., 2012; Knipe und Howley, 2006). Besonders NS1 spielt dabei eine wichtige Rolle als Interferonantagonist (Geiss et al., 2002). Für das Protein PB1-N40, welches durch alternatives Spießen transkribiert wird, konnte bisher keine Funktion beschrieben werden (Wise et al., 2009).

1.1.5 Wirtsspektrum und Evolution

Influenzaviren konnten bereits in diversen Land- und Wassersäugern, aber auch in anderen Vogelordnungen und in domestiziertem Geflügel nachgewiesen werden (Abb. 3). Dabei handelt es sich bei einer Vielzahl der Fälle um gelegentliche Transmissionen ohne die
Etablierung neuer stabiler Viruslinien. Ausbrüche von Influenzaerkrankungen mit großem Ausmaß sind wiederkehrend in Vögeln zu beobachten. Hier unterscheidet man für Hühner zwischen niedrigpathogenen aviären oder hochpathogenen aviären Influenzaviren (Webster et al., 1992). Niedrigpathogene aviäre Influenzaviren (LPAIV), die nahezu alle bekannten HA-Subtypen enthalten können, lösen im Huhn und auch anderen Vögeln nur milde oder asymptotische Erkrankungen aus (Webster et al., 1992; Wright et al., 2007). Eine Infektion mit LPAIVs im Menschen wurde für die Subtypen H6N1, H7N2, H7N3, H7N9 und H9N2 nachgewiesen, wobei es sich bisher meist um Einzelfälle mit mildem Krankheitsverlauf handelte (Guo et al., 1999; Belser et al., 2009a). Jüngste Berichte über eine steigende Anzahl schwerwiegender Erkrankungen nach Infektion mit dem H7N9 Influenzasubtyp zeigen jedoch, dass von LPAIV auch eine Gefahr für den Menschen ausgeht (Yu et al., 2013). Die hochpathogenen aviären Influenzaviren (HPAIV) sind bisher alle vom H5- oder H7-Subtyp und auch als Vogelgrippe oder Geflügelpest bekannt. Sie lösen eine systemische Erkrankung von Hühnern aus, die innerhalb weniger Tage zum Tod führt (Webster et al., 1992; Jeong et al., 2009). Da neben anderen Vögeln hauptsächlich domestiziertes Geflügel betroffen ist und sich die Viren sowohl über die Ausscheidungen als auch über Aerosole in einer gesamten Vogelpopulation ausbreiten ist dies von erheblichen wirtschaftlichen Schäden begleitet (Wright et al., 2007). HPAIVs können auch auf den Menschen übertragen werden. Seit den Neunzigern wurden immer wieder Übertragungen von H5N1 und H7N7 Influenzaviren auf den Menschen beobachtet (Subbarao et al., 1998; Horimoto, 2001; Fouchier et al., 2004; Belser et al., 2009a). Früher datierte Fälle von H7N7 Infektionen erfolgten nur in Einzelfällen nach direktem Kontakt mit infektiösem Material (Belser et al., 2009a). Besonders HPAIV des H5N1 Subtyps führen zu schweren Erkrankungen im Menschen nicht selten mit tödlichem Ausgang (1.1.7) und sind daher auch von großer gesellschaftlicher Bedeutung. Ein befürchtetes Szenario sind adaptive Veränderungen die zu einer Übertragbarkeit von Mensch zu Mensch führen und so eine Pandemie auslösen können (Horimoto und Kawaoka, 2005). Unter 1.1.6.3 wird näher auf die Übertragung von aviären Influenzaviren auf den Menschen eingegangen.

1.1.6 Epidemiologie im Menschen

1.1.6.1 Influenza-Epidemien

Influenzaviren führen im Menschen zur klassischen Virusgrippe oder Influenza. Dabei handelt es sich um fiebrige Atemwegserkrankungen dessen Pathogenese unter 1.1.7 beschrieben wird.

Krankenhausaufnahmen und Todesfälle, die mit Influenzaviren in Verbindung stehen weltweit von Referenzzentren registriert. Diese Datenerhebungen laufen bei der Weltgesundheitsorganisation zusammen und ermöglichen aktualisierte Impfempfehlungen sowie eine schnellstmögliche Reaktion auf Epidemien und Pandemien. Dabei ist die Erforschung von sogenannten adaptiven Mutationen und Pathogenitätsdeterminanten für eine Risikoabschätzung von großer Bedeutung (1.1.8).

1.1.6.2 Influenza-Pandemien

Einleitung

hohe Sterberate der Spanischen Pandemie wird jedoch auch zum Großteil auf Sekundärerkrankungen zurückgeführt. Bakterielle Pneumonien, vor allem durch den Erreger Hemophilus influenzae, waren vermutlich die häufigste Todesursache da zu der Zeit noch keine Behandlung mit Antibiotika statt fand (Morens et al., 2008).

Der Auslöser der 1957 ursprünglich in China ausgebrochenen „Asiatischen Grippe“ (H2N2) war eine Reassortante aus den zu der Zeit zirkulierenden Influenzaviren mit aviären Influenzaviren. Dabei wurden neben der Polymeraseuntereinheit PB1 das H2 und das N2 aus aviären Viren in die im Menschen zirkulierenden Influenzaviren eingeführt (Scholtissek et al., 1978; Kawaoka et al., 1989). Da es sich dabei um die stark immunogenen Oberflächenproteine handelte, lag keine Immunität gegen das neu reассortierte Virus im Menschen vor. Die Opfer waren meist sehr jung oder bereits im höheren Alter. Weltweit erlagen mehr als eine Million Menschen dieser Pandemie sowie einer zweiten Welle 1958 (Wilschut et al., 2006; Wright et al., 2007).

Einleitung

1.1.6.3 Influenza-Zoonosen

Einleitung
dem Menschen ähnlichen Virusrezeptorverteilung in den Atemwegen sowie einer ähnlichen Grippesymptomatik als Modellorganismus für human relevante Influenzaviren verwendet (1.3.3; Belser et al., 2011b). Besorgnisregend war dabei, dass für eine Übertragung der Viren in diesem Säugetiermodell nur einige wenige Mutationen im Rezeptorbindenprotein HA nötig waren. Diese Viren waren zwar niedriger pathogen als die Parentalviren, unterstreichen jedoch, dass H5N1 Influenzaviren zumindest tierexperimentell die Fähigkeit besitzen können, Pandemien auszulösen.

Die jüngsten Vorkommnisse von Übertragungen des LPAIV-Subtyps H7N9 auf den Menschen lassen nun neben HPAIV auch LPAIV mehr in den Fokus der Forschung und der Gesundheitsüberwachung rücken. Im Gegensatz zu einigen wenigen Übertragungen von LPAIV vom H6N1-, H7N2-, H7N3- und H9N2-Subtyp (Guo et al., 1999; Belser et al., 2009a; www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_03July13.pdf), werden seit März 2013 vermehrt Fälle von H7N9-Infektionen in Menschen gemeldet. Besorgnisregend ist hierbei die steigende Anzahl an schweren Krankheitsverläufen und Todesfällen (Yu et al., 2013).

1.1.7 Pathogenese im Menschen
Einleitung

1.1.8 Adaptive Mutationen und Pathogenitätsdeterminanten im Säuger

Influenzaviren sind an ihren ursprünglichen Wirt, die Wasservögel, optimal angepasst (1.1.5). Findet eine Übertragung auf eine andere Spezies statt, haben in der Regel Veränderungen im Virusgenom, sogenannte adaptive Mutationen, stattgefunden und eine Infektion des neuen Wirts ermöglicht. Der Selektionsdruck in einem neuen Wirt führt zu weiteren adaptiven Mutationen, die zur Etablierung des Virusstamms in diesem Wirt führen können (1.1.5; Webster et al., 1992). Veränderungen im Virusgenom, die eine Erkranzung in einem Wirt auslösen, werden als Pathogenitätsdeterminanten bezeichnet. Dies beinhaltet auch genetische Veränderungen, die zu einer erhöhten Letalität oder zu einem schwerwiegenderen Krankheitsverlauf führen. Neben adaptiven Mutationen können Zwischenwirte eine Anpassung an einen neuen Wirt ermöglichen (Subbarao und Katz, 2000; Ma et al., 2008). Ein Beispiel für einen solchen Zwischenwirt ist das Schwein (Scholtissek, 1990). Die Verteilung der viralen Rezeptoren im Respirationstrakt von Schweinen ermöglicht eine Infektion mit aviären wie auch humanen Influenzaviren (s.u.). Eine Koinfektion mit Viren

Durch den Vergleich von aviären und humanen Influenzaviren konnten viele Determinanten identifiziert werden, die die Gefahr einer Anpassung an den Menschen, einer erhöhten Pathogenität oder der Fähigkeit von Mensch zu Mensch zu transmittieren bergen. Es folgt eine Übersicht über einige der wichtigsten bisher beschriebenen Determinanten der Pathogenität und des Wirtsspektrums.

Um einen neuen Wirt zu infizieren, ist die erste zelluläre Barriere, die eine Anpassung erfordert, die Bindung des viralen Hämagglutinins (HA) an seinen Rezeptor, die Sialinsäure (1.1.4). Dabei unterscheidet sich die Spezifität von aviären und humanen Influenzaviren (Connor et al., 1994). Aviäre Viren binden präferenziell α2,3-konjugierte Sialinsäuren, die im Intestinaltrakt von Vögeln vorkommen, und ermöglichen so eine eine Infektion in diesen Bereichen. Die Epithelzellen im oberen Respirationstrakt des Menschen weisen hingegen überwiegend α2,6-konjugierte Sialinsäuren auf (Couceiro et al., 1993). Humane Influenzaviren haben durch adaptive Mutationen in der Rezeptorbindungsstelle des Hämagglutinins die Fähigkeit erworben, präferenziell an diesen Sialinsäuretyp zu binden (Neumann et al., 2009). Eine Infektion mit humanen Influenzaviren ist im Menschen daher meist auf die oberen Atemwege beschränkt (1.1.7). Der untere Respirationstrakt von Menschen enthält im Gegensatz dazu eine hohe Anzahl an α2,3-konjugierte Sialinsäuren. Eine Infektion mit aviären Viren ist über die Eintrittspforte des oberen Respirationstrakts von Menschen zwar vergleichsweise ineffizient, kann sich dann jedoch über die Rezeptorspezifität effizient in der Lunge ausbreiten und zu schweren Pneumonien führen (1.1.7; Bouvier und Palese, 2008).

Eine weitere wichtige Pathogenitätsdeterminante ist die proteolytische Spaltstelle im viralen HA-Protein. Für die fusogene Aktivität des HAs bei der Freisetzung der viralen RNPs im Replikationszyklus (1.1.4) muss diese durch zelluläre Proteasen aktiviert werden (Steinhauer, 1999; Palese und Shaw, 2007). Niedrigpathogene und nicht-aviäre Influenzaviren besitzen an dieser Stelle ein einzelnes Arginin. Die Spaltung erfolgt durch zelluläre Proteasen, welche im Respirationstrakt, bei Vögeln auch im Intestinaltrakt, exprimiert werden (Webster et al., 1992). Neben trypsinähnlichen Proteasen wurden kürzlich

Eine weitere zelluläre Barriere im Infektionszyklus von Influenzaviren stellt die Kernmembran dar. Für die Replikation und Transkription der vRNP-Komplexe im Zellkern ist das Influenzavirus auf die Kernimportmaschinerie der Zelle angewiesen (1.1.4; Resa-Infante und Gabriel, 2013). Dabei vermitteln in erster Linie Importin-α Isoformen als Adapterproteine der zellulären Importmaschinerie die Bindung der zu transportierenden Proteine (Chook und Blobel, 2001). Eine Anpassung an diese Importin-α Isoformen als Kernimportkomponenten des Wirts wird durch Mutationen in der viralen Polymerase und dem NP-Protein erreicht (Gabriel et al., 2005; Naffakh et al., 2008; Resa-Infante und Gabriel, 2013). Es wurde gezeigt, dass aviäre und humane Influenzaviren an unterschiedliche Isoformen angepasst sind (Gabriel et al., 2011; Hudjetz und Gabriel, 2012).

Des Weiteren wurden in der PB2 Untereinheit der viralen Polymerase entscheidende Signaturen des Wirtsspektrums und der Pathogenität identifiziert (Gabriel et al., 2007; Naffakh et al., 2008; Mehle und Doudna, 2009). An der Aminosäureposition 627 von PB2 dominiert bei aviären Viren ein Glutamat, wo hingegen humane Viren meist ein Lysin besitzen. Es konnte gezeigt werden, dass ein Lysin an dieser Stelle eine effizientere Replikation im oberen Respirationsstrakt von Säugern zur Folge hat (Hatta et al., 2007). Dies führt, wie experimentelle Versuche in Meerschweinchen gezeigt haben, auch zu einer erhöhten Transmission von Influenzaviren mit dieser Signatur (Steel et al., 2009). Im Menschen wurde diese Pathogenitätsdeterminante erstmals in einem H3N2 Virus mit erhöhter Replikationseffizienz beschrieben (Subbarao et al., 1993). Im Umkehrschluss führt die Aminosäure Glutamat an der Position 627 zu einer weniger effizienten Replikation und niedrigeren Pathogenität im Säuger, was den wirtsadaptiven Charakter dieser Signatur unterstreicht (Clements et al., 1992; Mehle und Doudna, 2008). Eine weitere wichtige Pathogenitätsdeterminante im PB2 ist eine Mutation an Position 701. Es wurde gezeigt, dass ein Asparagin an dieser Aminosäureposition im Säuger mit einer erhöhten Virusreplikation und Pathogenität einen vergleichbaren Effekt hat wie die 627 Signatur (Gabriel et al., 2005;
Einleitung

de Jong et al., 2006). Beide Signaturen kommen jedoch in natürlichen Isolaten nicht gleichzeitig vor, was darauf schließen lässt, dass sie sich durch eine ähnliche Funktion ersetzen. Weitere wirtsadaptative Signaturen wurden für die Polymeraseuntereinheit PB1 und das NP Protein beschrieben (Gabriel et al., 2007; Watanabe et al., 2009; Xu et al., 2012a; Gabriel et al., 2013).

Das Nichtstrukturprotein NS1 stellt eine zusätzliche Pathogenitätsdeterminante dar. NS1 inhibiert unter anderem zelluläre Signalwege, wie die Aktivierung von Replikationsfaktoren, sowie die antivirale Immunantwort der Wirtszelle und wird daher als Interferonantagonist bezeichnet (Wang et al., 2000; Hale et al., 2008). Unterschiedliche Mutationen wurden mit einer erhöhten Pathogenität unterschiedlicher Virusstämme in Verbindung gebracht (Wright et al., 2007; Jiao et al., 2008). Daher scheinen Pathogenitätsdeterminanten in NS1 abhängig vom jeweiligen Virusstamm zu sein. Eine Glutaminsäure an Position 92 von NS1 in HPAIV vermittelt beispielsweise eine Resistenz gegenüber der Interferonantwort des Wirts (Seo et al., 2002). Dies führt zu einer überschießenden Zytokinantwort, welches im Menschen als einer der Faktoren für die hohe Mortalität von H5N1-Infektionen gilt (Yuen et al., 1998; Peiris et al., 2004). Reassortanten von humanen Influenzaviren mit dem NS1 der „Spanischen Grippe“ von 1918 verursachen in experimentellen Versuchen eine erhöhte Virulenz in Mäusen (Jackson et al., 2008). Hier wurden insgesamt vier Aminosäurereste am C-Terminus des Proteins als verantwortliche Determinanten beschrieben.

Das durch einen offenen Leserahmen im PB1-Segment exprimierte virale Protein PB1-F2 kommt im Viruspartikel nicht vor sondern spielt eine Rolle bei der Regulation der Polymeraseaktivität im Replikationszyklus und induziert die Apoptoseantwort der Wirtszellen (1.1.4; Palese und Shaw, 2007). Daher kann dieses Protein ebenfalls einen wichtigen Pathogenitätsfaktor von Influenzaviren darstellen, abhängig vom jeweiligen Influenzastamm (Zamarin et al., 2006; Neumann et al., 2009; Krumbholz et al., 2011). Ein Serin an der Position 66 im PB1-F2 von H5N1 Influenzaviren erhöht beispielsweise die Pathogenität von humanen Viren in der Maus (Conenello et al., 2007). Das Influenzavirus der 1918 Pandemie enthielt ebenfalls ein Serin an Position 66 (Krumbholz et al., 2011). Klassische Schweineviren vom H1N1-Subtyp und humane H1N1 Influenzaviren seit 1950 kodieren hingegen für eine verkürzte Version dieses Proteins ohne bekannte Funktion (Zell et al., 2007).
1.2 2009 pandemische H1N1 Influenza (2009 pH1N1)

1.2.1 Epidemiologie der 2009 pH1N1 Influenza

Auch wenn die Höhepunkte weltweit gemeldeter Fälle der 2009 Pandemie im August und Dezember 2009 auftraten, kam es in verschiedenen Regionen der Erde zu unterschiedlichen Infektionswellen. Länder wie die USA, Kanada, Neuseeland und viele weitere meldeten zwei Wellen an Infektionen (Helferty et al., 2010; Bandaranayake et al., 2011; Mummert et al., 2013). In den USA kam es Anfang Juni und Mitte Oktober jeweils zu Höchstständen der gemeldeten Fälle (Abb. 5A). Dies war früher als die zwei weltweit gemeldeten Höchststände

Einleitung

Todesfolge (Wilking et al., 2010). Damit ist Deutschland eines der Länder mit der niedrigsten Mortalität der 2009 pH1N1 Influenza. Die Anzahl der Infektionen wurde seit Dezember 2009 nicht mehr von der WHO erhoben, da milde Fälle der 2009 Pandemie nicht mehr erfasst oder die Patienten gar nicht mehr vorstellig wurden. Da es im Vergleich zu vorherigen Pandemien im Schnitt zu mehr milden Erkrankungsfällen kam (1.2.2) und die etwa 18 500 Todesfälle im Vergleich zur saisonalen Influenza mit jährlich bis zu 500 000 Influenza-Epidemieopfern weltweit viel weniger waren, kam die Frage auf, ob die 2009 Pandemie überschätzt wurde. Um die Mortalität dieser Pandemie im Nachhinein einzuschätzen, wurde die Anzahl der verlorenen Lebensjahre der Opfer berechnet (Miller et al., 2010; Dawood et al., 2012). Im Vergleich zu saisonalen Influenza-Epidemien trat bei der 2009 Pandemie die größte Anzahl der Erkrankungen mit Todesfolge unter Kindern und jungen Erwachsenen auf, welche nach statistischer Lebenserwartung noch mehr Lebensjahre vor sich hatten als ältere Menschen (1.2.2; Vaillant et al., 2009; Karageorgopoulos et al., 2011). Des Weiteren wurde bei Erhebung der Daten viele Todesfälle von Menschen mit vorliegenden Vorerkrankungen oder anderen Komplikationen nicht erfasst. Ebenfalls nicht in die Mortalität einbezogen sind Fälle von Patienten, bei denen zum Zeitpunkt des Todes keine Viren mehr nachgewiesen wurden. Bei Schätzungen der Mortalität vergangener Pandemien wurde oftmals nur die statistische Sterberate als Referenz genommen (Serfling, 1963; Miller et al., 2010). Ein weiterer Nachteil der von der WHO veröffentlichten Mortalitätsrate ist die Verlässlichkeit und die Flächenabdeckung der einzelnen Referenzzentren weltweit (Viboud und Simonsen, 2012). Schätzungen der zusammengefassten Todesrate der 2009 pH1N1 Influenza sind oftmals nur für einzelne Länder, meist Industrienationen mit guter medizinischer Infrastruktur, erhältlich (Wilking et al., 2010; Lemaitre et al., 2012). Aktuelle anerkannte Schätzungen der 2009 Pandemie-assoziierten Todesfälle liegen bei 152 000 bis 575 000 Menschen, also 15-fach höher als die von der WHO gemeldeten Zahlen (Dawood et al., 2012).

1.2.1.1 Ursprung der 2009 pH1N1 Influenzaviren

Die morphologische Charakterisierung der neuen 2009 pH1N1 Influenzaviren zeigte sphärische und filamentöse Viruspartikel, wobei die filamentöse Form in erster Linie in klinischen Isolaten zu finden war (Itoh et al., 2009; Neumann et al., 2009; Goldsmith et al., 2011) Nach Sequenzierung der ersten Isolate der 2009 pH1N1 Influenza wurde die genetische Zusammenstellung des Virusstamms entschlüsselt. Es konnte gezeigt werden, dass die neuen Influenzaviren Reassortanten aus vier verschiedenen Ursprungsstämmen sind (Abb. 6). Die Segmente der Polymeraseproteine PB2 und PA stammen aus einer nordamerikanischen aviären Influenzalinie, die des Polymeraseproteins PB1, aus einer im Menschen zirkulierende saisonale H3N2 Influenza. Die Genomssegmente HA, NP und NS hingegen kommen aus klassischen Schweineinfluenzastämmen. NA und M stammen aus eurasischen Vogelinfluenza-ähnlichen Schweineviren (Dawood et al., 2009; Garten et al., 2011).
Einleitung

2009; Neumann et al., 2009). Vor der direkten Übertragung auf den Menschen kam es bei der Entstehung der 2009 pH1N1 Influenzaviren in zwei Stufen zur Reassortierung im Schwein. Wie unter 1.1.8 beschrieben, ist das Schwein ein bekanntes Mischgefäß für Viren aviären und humanen Ursprungs (Scholtissek, 1990). Dreifach-Reassortanten von denen das 2009 pH1N1 Virus abstammt, zirkulierten bereits seit 1997/98 in Schweinen (Dawood et al., 2009; Neumann et al., 2009).

Abb. 6: Ursprung und genetische Zusammensetzung der 2009 pH1N1 Influenzaviren. Die vierfache Reassortante entstand vermutlich im Schwein und wurde von diesem auf den Menschen übertragen. Die Gensegmente PB2 und PA stammen aus einer nordamerikanischen Vogelinfluenzalinie, PB1 aus humanen H3N2 Influenzaviren, HA, NP und NS hingegen aus klassischen Schweineinfluenzaviren, NA und M stammen aus eurasischen Vogelinfluenza-ähnlichen Schweineviren (Neumann et al., 2009).

Es gibt Berichte, dass kurz vor Ausbruch der 2009 Pandemie Schweineviren eine ähnliche Dreifach-Reassortante in den USA bereits auf den Menschen übertragen wurde und einen ungewöhnlich schweren Krankheitsverlauf zur Folge hatten (Shinde et al., 2009). Dies könnte eine Zwischenstufe in der Entstehung gewesen sein, die durch weitere Reassortierung auf den Menschen übertragen wurde. Bisher bekannte Determinanten, die die Pathogenität von Influenzaviren im Menschen erhöhen oder deren Anpassung an den Menschen ermöglichen, wurden nicht identifiziert (Chen und Shih, 2009; Dawood et al., 2009; Garten et al., 2009). Eine detailliertere Analyse der genetischen Determinanten ist
Einleitung

1.2.2 Pathogenese der 2009 pH1N1 Influenza

Die Krankheitsfälle während der Pandemie verliefen überwiegend mild mit einer auf den Respirationstrakt beschränkten Virusgrippe, wie ausführlicher unter 1.1.7 beschrieben (Dawood et al., 2009). Die 2009 pH1N1 Influenza transmittierte effizient von Mensch zu Mensch. Die schnellere Ausbreitung der Pandemie wird auf die effiziente Übertragung und auf die oftmals unerkennnten milden Krankheitsfälle und eine längere Viruskette der Patienten zurückgeführt. Ein Unterschied zu den jährlich auftretenden Influenzavirusinfektionen war das häufigere Auftreten der begleitenden Symptome, wie Erbrechen und Diarrhö (Dawood et al., 2009). Dazu kam, dass eine ungewöhnlich hohe Anzahl an schweren Krankheitsverläufen bei Kindern und jungen Erwachsenen auftrat. Es gab eine starke Verschiebung der Altersverteilung im Vergleich zu saisonaler Influenza, bei welcher meist Kleinkinder und Menschen über 65 Jahre betroffen waren. Während der 2009 Pandemie zeigte sich für Menschen über 65 hingegen kein erhöhtes Infektionsrisiko. Die größte Anzahl an gemeldeten Krankenhausaufnahmen mit 2009 pandemischer H1N1 Influenza trat unter Kindern und Jugendlichen bis 18 Jahre auf (Dawood et al., 2009, Poggensee et al., 2010; Karageorgopoulos et al., 2011). Die meisten Todesfälle ereigneten sich unter Jugendlichen und jungen Erwachsenen, auch ohne vorliegende Vorerkrankungen (Vaillant et al., 2009; Karageorgopoulos et al., 2011; Dawood et al., 2012). Es wird spekuliert, dass ältere Menschen eine gewisse Teilimmunität gegen die 2009 Pandemie besitzen (Dawood et al., 2009). So konnte gezeigt werden, dass Menschen, geboren vor 1930, durch den Kontakt zu früher zirkulierenden H1N1 Viren tatsächlich über eine Kreuzimmunität verfügten (Hancock et al., 2009; Itoh et al., 2009; Verma et al., 2012). Dies reicht jedoch nicht für eine Erklärung der hohen Anzahl an Todesfällen unter jungen, gesunden Menschen. Neben der ungewöhnlichen Altersverteilung waren Risikogruppen für schwere Infektionsverläufe vergleichbar mit denen einer epidemischen Influenza. Dazu zählten Menschen mit chronischen Lungen- und Herzerkrankungen, Diabetes oder supprimiertem Immunsystem.

Insbesondere Kinder unter zwei Jahren hatten ebenfalls ein erhöhtes Risiko, an der 2009
Einleitung

pandemischen H1N1 Influenza schwer zu erkranken (http://www.who.int/csr/disease/swineflu/frequently_asked_questions/risk/en/index.html). Im Unterschied zu vorherigen Pandemien waren schwangere Frauen und Menschen mit metabolischen Einschränkungen, wie Fettleibigkeit, ebenfalls Risikogruppen und wurden in den Impfempfehlungen besonders berücksichtigt (Robert-Koch-Institut, 2009; Vaillant et al., 2009). Die schweren Verläufe der 2009 pH1N1 Influenza wiesen Pneumonien auf, welche häufig eine künstliche Beatmung notwendig machten. Die Pathologie der viralen Pneumonien war vergleichbar mit der vergangener Pandemien, mit diffus zerstörter Alveolarstruktur und Ödemen (1.1.7; Gill et al., 2010). Virustiter wurden vorrangig im Respirationstrakt, insbesondere in den Epithelzellen der oberen Atemwege, der Trachea und der Bronchien sowie in alveolaren Epithelzellen Typ 1 und 2 aber auch in alveolaren Makrophagen der Patienten detektiert. (Gill et al., 2010; Peiris et al., 2010; Shieh et al., 2010). Es gibt jedoch auch Berichte über schwere Erkrankungsfälle mit Auftreten einer Virämie (Oughton et al., 2011). Schwere Fälle der 2009 Pandemie waren oftmals mit einer bakteriellen Koinfektion der Lunge assoziiert, welche im Gegensatz zu anderen Pandemien jedoch nicht zu den häufigsten Todesursachen gehörte (Perez-Padilla et al., 2009). Auffällig war zudem, dass in den Patienten länger Virus nachzuweisen war als bei schweren Fällen epidemischer Influenzavirusinfektionen. Auch proinflammatorische Zytokine waren im Krankheitsverlauf länger erhöht (Peiris et al., 2010; To et al., 2010). Bei rechtzeitiger Applikation führte eine Medikation mit den Neuraminidasehemmern Oseltamivir oder Zanamivir zu einem Behandlungserfolg. Gegen die zweite große Gruppe verfügbarer Antiviralia, der Ionenkanalinhibitoren, wies die 2009 pH1N1 Influenza Resistenzen auf (Dawood et al., 2009; Neumann et al., 2009). Warum neben den Risikogruppen mit vorliegenden medizinischen Einschränkungen ein Großteil der schweren Infektionsverläufe unter jungen, gesunden Erwachsenen auftraten, konnte bisher noch nicht abschließend geklärt werden.

1.2.3 Pathogenitätsdeterminanten der 2009 pH1N1 Influenza

Kurz nach Ausbruch der 2009 pH1N1 Influenza wurde die genetische Zusammensetzung der Reassortante entschlüsselt (1.2.1.1; Neumann et al., 2009). Bisher bekannte Signaturen, die die Anpassung und Pathogenität von Influenzaviren im Menschen beeinflussen, wie auch unter 1.1.8 beschrieben, wurden allerdings kaum gefunden (Dawood et al., 2009; Garten et al., 2009; Neumann et al., 2009). Das Hämagglutinin der 2009 Pandemie enthält eine monobasische Spaltstelle für die Aktivierung wie sie bei niedrigpathogenen Influenzaviren vorkommt. Für eine effiziente Infektion des oberen Respirationstraktes im Menschen müssen die aus Vögeln stammenden Influenzaviren an die dort vorkommenden Rezeptoren binden können. Es wurde gezeigt, dass die 2009 pH1N1 Influenzaviren sowohl die sogenannten
Einleitung

aviären α2,3-ständigen als auch die humanen α2,6-ständigen Sialinsäuren binden (Childs et al., 2009). Wie auch schon bei der Spanischen Pandemie 1918 wird dies durch die Mutationen E190D und G225D in der Rezeptorbindedomäne des HAs vermittelt (Yang et al., 2010; Xu et al., 2012b). Die Anpassung an humane Rezeptoren ging bisher jedoch mit dem Verlust der α2,3-ständigen Sialinsäure-Bindung einher. Die breite Rezeptorspezifität der 2009 pH1N1 Viren ermöglicht daher nicht nur die Replikation der Viren in den oberen Atemwegen sondern auch die effiziente Infektion des unteren Respirationstrakts, wodurch es zu schweren Pneumonien kommen kann. Daher wird das Hämagglutinin für die gesteigerte Pathogenität der 2009 Pandemie im Vergleich zu saisonaler Influenza verantwortlich gemacht (Childs et al., 2009).

Signaturen in der viralen Polymerase, die mit einer gesteigerten Pathogenität für Säuger einhergehen, wie beispielsweise E627K und D701N in PB2, sind im Genom der 2009 Pandemie nicht enthalten (Garten et al., 2009; Neumann et al., 2009). Selbst eine experimentelle Einführung dieser Mutationen zeigte im Mausmodell keinen pathogenitätssteigernden Effekt (Herfst et al., 2010). Ein weiterer bekannter viraler Pathogenitätsfaktor ist das über einen offenen Leserahmen exprimierte PB1-F2 (1.1.8; Krumbholz et al., 2011). Das PB1 Gensegment von 2009 pH1N1 Viren kodiert jedoch nur für eine verkürzte Version des Proteins, das bisher mit einer niedrigeren Pathogenität in Verbindung gebracht wurde (Garten et al., 2009; Trifonov et al., 2009). Auch das virale Nichtstrukturprotein NS1, welches als Pathogenitätsfaktor beschrieben wurde, wird in 2009 pH1N1 Influenzaviren mit einer Deletion am C-Terminus kodiert. Daher fehlt die funktionelle Domäne, die mit einer erhöhten Pathogenität von anderen Influenzaviren in Verbindung gebracht werden konnte (Jackson et al., 2008).

1.3 Tiermodelle in der Influenzaforschung

Tiermodelle spielen in der biomedizinischen Forschung eine wichtige Rolle, um Krankheiten zu verstehen und zu kontrollieren. In der Virusforschung wurden bereits Anfang des

Für eine Charakterisierung der Pathogenität oder der Immunantwort einer Influenzavirusinfektion ist die Wahl des Tiermodells entscheidend. Viele etablierte Versuchstiermodelle sind kein natürlicher Wirt für Influenzaviren und können meist nur durch künstliche Adaptation des Virus infiziert werden (Barnard, 2009; Bouvier und Lowen, 2010). Ebenfalls muss der Fokus der Studie, also die zu untersuchenden klinischen Ausprägungen, in dem entsprechenden Tiermodell reflektiert werden. Im Folgenden wird auf die wichtigsten Tiermodelle und deren Anwendung in der Influenzforschung eingegangen.

1.3.1 Mäuse

Die Labormaus (Mus musculus) ist aufgrund ihrer Größe und des vergleichsweise niedrigen Kostenaufwands ein beliebtes Säugermodell in der biomedizinischen Forschung. Die Genetik der verwendeten Mäusestämme ist umfassend beschrieben und es steht ein umfangreiches Spektrum an Technologien zur genetischen Modifikation und Charakterisierung zur Verfügung. Durch Inzucht der Labormausstämme sind Versuche gut reproduzierbar, wobei die Vielzahl der verschiedenen Zuchtstämme bis zu einem gewissen Grad die genetische Vielfalt in der Bevölkerung reflektiert (Trammell und Toth, 2008; Kroeze et al., 2012).

Da Mäuse kein natürlicher Wirt von Influenzaviren sind, ist eine Infektion mit natürlichen Virusisolaten nur begrenzt möglich. Humane Influenzaviren binden präferentiell an Rezeptoren mit α2,6-gebundenen Sialinsäuren auf der Zelloberfläche (Connor et al., 1994). Mäuse besitzen hingegen vorwiegend α2,3-gebundene Sialinsäuren im Respirationstrakt (Ibricevic et al., 2006; van Riel et al., 2007), weshalb dort humane Influenzaviren nur begrenzt replizieren. Um dennoch Infektionsversuche durchführen zu können, werden die
Viren künstlich an die Maus adaptiert. Dies geschieht meist durch serielle Passagen von Lungenhomogenaten in Mäusen (Hirst, 1947; Brown, 1990; Gabriel et al., 2005). Eine Infektion mit Labor-adaptierten Influenzaviren wie PR8 oder WSN, benötigen keine vorherige Adaptation an Labormäuse (Bouvier und Lowen, 2010). Aufgrund der Rezeptorspezifität von aviare Influenzaviren für α2,3-gebundene Sialinsäuren ist eine Infektion mit humanen HPAIV Isolaten ebenfalls möglich (Tumpey et al., 2005; Boon et al., 2009). Es gibt auch einige Mausstämme, wie DBA/2J und A/J, die für eine Infektion mit humanen Influenzaviren generell empfänglicher sind. Die genetische Variabilität der Mäuse hinsichtlich ihrer Immunantwort auf eine Infektion wird teilweise dafür verantwortlich gemacht (Srivastava et al., 2009; Alberts et al., 2010). Die Mausstämme BALB/c und C57BL/6 werden in der Influenzforschung am häufigsten verwendet.

Die Pathogenese und die Virulenz eines Influenzavirus in der Maus sind neben dem Virusstamm abhängig von der Infektionsdosis (Barnard, 2009; Bouvier und Lowen, 2010). Die Virulenz wird mittels serieller Infektionsdosen bestimmt (3.4.2; Reed und Muench, 1938). Je nach Versuchsfookus wird jedoch meist eine letale Dosis gewählt, um den vollen Umfang einer Influenzaerkrankung zu untersuchen (Bouvier und Lowen, 2010). Etwa 24 Stunden nach Infektion kann es zu den ersten Krankheitsanzeichen kommen, darunter Lethargie, struppiges Fell und verminderte Nahrungs- und Wasseraufnahme, die zu einem Gewichtsverlust der Tiere führen (Lu et al., 1999; Trammell und Toth, 2008). Der Gewichtsverlust, bezogen auf das Körpergewicht bei der Infektion, wird als wichtiger Parameter für den Infektionsverlauf und zur Endpunktbestimmung verwendet (Barnard, 2009). Durch die Replikation im gesamten Respirationstrakt kommt es bei hohen Infektionsdosen oder einer Infektion mit HPAIV und 1918 pandemischen Viren zu viralen Pneumonien (Kobasa et al., 2004; Bouvier und Lowen, 2010). Diese sind mit charakteristischen Lungenläsionen und -ödemen sowie Immunzellinfiltraten mit schweren Pneumonien im Menschen zu vergleichen (1.1.7; Perrone et al., 2008; Kroeze et al., 2012). HPAIV und Maus-adaptierte Influenzaviren können in Mäusen eine systemische Infektion zur Folge haben (Belser et al., 2009b; Bouvier und Lowen, 2010; Gabriel et al., 2009). So wurden unter anderem Viren in extrapulmonalen Organen wie Gehirn, Leber oder Herz, detektiert. Andere klinische Zeichen einer Virusgrippe, wie Fieber, Husten und Schleimbildung in den oberen Atemwegen, fehlen im Mausmodell (Barnard, 2009; Bouvier und Lowen, 2010). Darüber hinaus kommt es in Mäusen häufiger zu einer systemischen Ausbreitung und zu höheren Virustitern (Bouvier und Lowen, 2010). Jedoch kann die Transmission von Influenzaviren in der Maus nicht untersucht werden, da für die meisten Virusstämme eine Übertragung von Maus zu Maus weder durch Kontakt noch durch Aerosolbildung nachweisbar war (Lowen et al., 2006; Bouvier und Lowen, 2010). Berichte
über eine Transmission von H2N2 Influenzaviren in Mäusen konnte für andere Subtypen nicht gezeigt werden oder war nicht reproduzierbar (Schulman und Kilbourne, 1963).

1.3.2 Meerschweinchen
die Zuchtstämme 2 und 13 und den Hartley Stamm gezeigt (Lowen et al., 2006; Bouvier und Lowen, 2010). Da bisher nur in einem Fall Unterschiede in der Empfänglichkeit und der Pathogenese zwischen den Stämmen gezeigt wurden, werden überwiegend Hartley Meerschweinchen in der Influenzaforschung verwendet, die auch kommerziell verfügbar sind (Lowen et al., 2006; Bouvier und Lowen, 2010). Zu beachten ist, dass Meerschweinchen nicht wie Labormäuse durch Inzucht gezüchtet werden und daher auch innerhalb eines Stammes genetische Unterschiede aufweisen.

Eine Charakterisierung der Pathogenität von Influenzaviren ist wegen Fehlens klinischer Zeichen und Unterschiede in der Pathologie schlecht auf den Menschen übertragbar. Daher beschränken sich Studien in diesem Tiermodell meist auf Untersuchungen zu immunologischen Fragestellungen, die Transmission und Studien zur Replikation. Die Effekte von antiviralen Medikamenten und Impfstoffen oder auch Mutationen auf die Virusreplikation und Transmission können im Meerschweinchen untersucht werden (Gao et al., 2009; Lowen et al., 2009; Steel et al., 2009; Van hoeven et al., 2009). Im Gegensatz zur Transmissionseffizienz von Influenzaviren ist die Untersuchung der Übertragungswege der Viren jedoch schwierig, da bei infizierten Meerschweinchen weder Husten noch Niesen beobachtet wurde (Mubareka et al., 2009).

1.3.3 Frettchen

Das Frettchen (Mustela putorius furo) ist eine domestizierte Form des Ilits und gilt als „Goldstandard“ unter den kleinen Säugermodellen in der Influenzaforschung. Eine Reihe von respiratorischen Infektionskrankheiten, insbesondere Influenzaviren, führen in Frettchen zu einer Erkrankung, die der im Menschen ähnlich ist (Maher und DeStefano, 2004; Barnard, 2009; Bouvier und Lowen, 2010; Belser et al., 2011b). Anfang der Dreißiger wurden
Erstmalig Frettchen experimentell mit humanen Influenzaviren infiziert, wobei ebenfalls die Transmission zu nicht-infizierten Tieren nachgewiesen wurde (Smith et al., 1933; Francis und Magill, 1935; Smith und Sweet, 1988). Eine Infektion von Frettchen wurde für eine Reihe von humanen sowie H5N1 Influenzaviren gezeigt (Bouvier und Lowen, 2010). Ähnlich wie beim Menschen kommen im oberen Respirationstrakt von Frettchen vorherrschend α2,6-gebundene Sialinsäuren auf den Epithelzellen vor und ermöglichen so die effiziente Infektion durch humane Influenzaviren (Leigh et al., 1995). Eine Adaptation der Viren wie bei Mäusen ist daher nicht nötig. Darüber hinaus sind Frettchen ebenfalls empfänglich für eine Infektion mit Schweine- und Vogelinfluenzaviren (Shope, 1934; Wan et al., 2008).

Humane Influenzaviren transmittieren effizient von Frettchen zu Frettchen sowohl durch direkten Kontakt als auch über Aerosole (Bouvier und Lowen, 2010; Belser et al., 2011b; Kroese et al., 2012). Eine weitere Parallele zum Menschen ist, dass humane H5N1 Influenzaviren nur eingeschränkt auf nicht-infizierte Frettchen übertragen werden (Maines et al., 2006). Die potenzielle Gefahr von adaptiven Mutationen in HPAIV, die eine Transmission von Mensch zu Mensch ermöglichen, kann so mit Hilfe des Frettchenmodells evaluiert werden. Erst kürzlich wurden zwei Studien veröffentlicht, in denen durch experimentelle Adaptation an Frettchen gezeigt wurde, dass nur wenige Mutationen in humanen H5N1 Isolaten für eine effiziente Transmission von Frettchen zu Frettchen nötig sind (Herfst et al., 2012; Imai et al., 2012). Die Pathogenität der adaptierten H5N1 Influenzaviren war jedoch niedriger als die der Parentalviren. Da eine Tröpfcheninfektion von Frettchen vergleichbar zu der im Menschen ist, wurden Frettchen zur Infektion zerstäubten Virusproben ausgesetzt. Dadurch soll die Vergleichbarkeit mit natürlichen Bedingungen einer Infektion optimiert werden (Gustin et al., 2011; Maclnnes et al., 2011).

Die infizierten Tiere haben oftmals bereits einen Tag nach Infektion eine erhöhte Körpertemperatur (Sweet et al., 1979). Es kommt zur Mucusbildung in den oberen Atemwegen und einer Abgeschlagenheit der Tiere, die von Gewichtsverlust begleitet sein kann (Maher und DeStefano, 2004; Belser et al., 2011b). Saisonale humane Influenzaviren replizieren zu hohen Titern in den oberen Atemwegen von Frettchen (Maher und DeStefano, 2004; Bouvier und Lowen, 2010). Im Gegensatz zur Virusgrippe im Menschen ist Niesen eines der häufigsten klinischen Symptome von infizierten Frettchen (Matsuoka et al., 2009). Eine Infektion mit humanen H5N1 Isolaten oder 1918 pandemischen Influenzaviren führt hingegen, wie im Menschen, zu einer verstärkten Virusreplikation im unteren Respirationstrakt (Zitzow et al., 2002; Maines et al., 2005; Tumpey et al., 2007). Es kommt zu schweren Krankheitsverläufen mit viraler Pneumonie, die auch den Tod der Tiere zur Folge haben kann. Humane H5N1 Viren wurden in infizierten Frettchen auch aus extrapulmonalen Organen isoliert (Zitzow et al., 2002; Belser et al., 2011b). Kürzlich wurde
Die Replikation von humanen H5N1 Influenzaviren in mehreren Regionen des zentralen Nervensystems von Frettchen gezeigt (Schrauwen et al., 2012).

1.3.4 Weitere Tiermodelle

Auch wenn viele Fragestellungen in der Influenzaforschung mit Hilfe von Labormäusen, Meerschweinchen und Frettchen untersucht werden können, bieten Halbaffen, aufgrund des engen Verwandtschaftsgrades, den bestmöglichen Vergleich zu Influenzavirusinfektionen im Menschen (Barnard, 2009; Bouvier und Lowen, 2010; Kroeze et al., 2012). In der Influenzaforschung werden verschiedene Makakenarten verwendet. Eine Infektion in Halbaffen wurde mit verschiedenen humanen Influenzaviren gezeigt, darunter auch 1918 pandemische sowie H5N1 Influenza (Bouvier und Lowen, 2010). Die Pathogenese ist der im Menschen sehr ähnlich. Aufgrund der guten Übertragbarkeit werden neben therapeutischen Studien auch Fragestellungen zur Zytokin- und Genexpression in Halbaffen untersucht (Baas et al., 2006; Kobasa et al., 2007; Stittelaar et al., 2008). Die Verwendung von Halbaffen in der Forschung ist jedoch nicht nur aus ethischen Gründen sondern auch aufgrund der hohen Kosten und der Verfügbarkeit der Tiere begrenzt.

1.4 Zielsetzung dieser Arbeit

Folgende Kernfragen sollten dabei beantwortet werden:

• Wie unterscheiden sich die 2009 pH1N1 Influenzaviren bezüglich ihrer Pathogenität von alt-saisonalen Influenzaviren und hochpathogenen aviären Influenzaviren des Menschen?

• Was sind die Transmissionseigenschaften von 2009 pH1N1 Influenzaviren?

• Welche viralen Determinanten sind für potenzielle Unterschiede in der Pathogenese von 2009 pH1N1 Influenzaviren verantwortlich?
2 Material

2.1 Chemikalien, Lösungen und Puffer

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zusammensetzung/ Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarose</td>
<td>Serva</td>
</tr>
<tr>
<td>β-Mercaptoethanol</td>
<td>Fluka</td>
</tr>
<tr>
<td>Citratpuffer (10x)</td>
<td>DCS</td>
</tr>
<tr>
<td>Dextransulfat</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Diethylpyrocarbonat (DEPC)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Dithiothreitol (DTT)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>DNA-Ladepuffer (6X MassRuler DNA Loading Dye)</td>
<td>Fermentas / Thermo Scientific</td>
</tr>
<tr>
<td>DNA-Leiterstandart (MassRuler DNA Ladder Mix, 80-10 000 bp)</td>
<td>Fermentas / Thermo Scientific</td>
</tr>
<tr>
<td>Eosin G</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Entwicklerlösung D19</td>
<td>Kodak</td>
</tr>
<tr>
<td>Ethidiumbromid (EtBr)</td>
<td>Fluka</td>
</tr>
<tr>
<td>Ethanol (EtOH)</td>
<td>Merck</td>
</tr>
<tr>
<td>Ethylendiamintetraacetat (EDTA)</td>
<td>Merck</td>
</tr>
<tr>
<td>Ficol</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Fixierlösung</td>
<td>Kodak</td>
</tr>
<tr>
<td>Formamid</td>
<td>Merck</td>
</tr>
<tr>
<td>Gewebeinfiltrationsautomat ASP 3000</td>
<td>Leica</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Glykogen (Mytilus edulis)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Hämatoxylin</td>
<td>Shandon</td>
</tr>
<tr>
<td>Hühnervollblut mit Citrat</td>
<td>Lohmann Tierzucht</td>
</tr>
<tr>
<td>Isopropanol (2-Propanol)</td>
<td>Fluka</td>
</tr>
<tr>
<td>Jodlösung</td>
<td>volumetrisch, 0,5 M I₂ (1,0 N) (Fluka)</td>
</tr>
<tr>
<td>Kristallviolettlösung</td>
<td>37 % Formaldehyd (Merck) in ddH2O</td>
</tr>
<tr>
<td></td>
<td>1 g Kristallviolett (Merck) auf 1 L</td>
</tr>
<tr>
<td>Lipofectamin®2000</td>
<td>LifeTechnologies</td>
</tr>
<tr>
<td>Natriumchlorid (NaCl)</td>
<td>Merck</td>
</tr>
<tr>
<td>Natriumdodecylsulfat (SDS)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Paraffin</td>
<td>DCS</td>
</tr>
<tr>
<td>Paraformaldehyd (PFA)</td>
<td>4 % PFA (AppliChem) in 1x PBS</td>
</tr>
<tr>
<td>PBS (10x)</td>
<td>26,8 mM KCl (Carl Roth)</td>
</tr>
<tr>
<td></td>
<td>17,6 mM KH₂PO₄ (Merck)</td>
</tr>
</tbody>
</table>
Material

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zusammensetzung/ Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,37 M NaCl (Merck)</td>
<td></td>
</tr>
<tr>
<td>51,3 mM Na₂HPO₄ · 2H₂O (Merck)</td>
<td></td>
</tr>
<tr>
<td>ad. 1 L ddH₂O</td>
<td></td>
</tr>
<tr>
<td>pH 7,4</td>
<td></td>
</tr>
<tr>
<td>PBS-Tween (0.05 %)</td>
<td>0,05 % Tween-20 (Serva) in 1x PBS</td>
</tr>
<tr>
<td>PEI</td>
<td>1 mg/ml Polyethylenamin (Polysciences)</td>
</tr>
<tr>
<td></td>
<td>pH 7,2</td>
</tr>
<tr>
<td>Polyvinylpyrrolidin</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Proteinase K Puffer</td>
<td>20 mM Tris/HCl, pH 7,4 (Merck)</td>
</tr>
<tr>
<td></td>
<td>2 mM CaCl₂ (Merck)</td>
</tr>
<tr>
<td>Salzsäure (HCL)</td>
<td>Merck</td>
</tr>
<tr>
<td>Sephadex G50</td>
<td>Roche</td>
</tr>
<tr>
<td>SSC (20x)</td>
<td>3 M NaCl</td>
</tr>
<tr>
<td></td>
<td>0,35 M tri-Natriumcitrat (Merck)</td>
</tr>
<tr>
<td>SuperBlock T20 (TBS)</td>
<td>Pierce / Thermo Scientific</td>
</tr>
<tr>
<td>Transkriptionslösung</td>
<td>40 mM Tris/HCl, pH 8,0</td>
</tr>
<tr>
<td>(Sonden-Markierung</td>
<td>10 mM DTT</td>
</tr>
<tr>
<td>in situ-Hybridisierung)</td>
<td>6 mM MgCl₂ (Merck)</td>
</tr>
<tr>
<td></td>
<td>2 mM Spermidin</td>
</tr>
<tr>
<td></td>
<td>100 mg/ml BSA (RNase- und DNase frei)</td>
</tr>
<tr>
<td></td>
<td>500 μM ATP</td>
</tr>
<tr>
<td></td>
<td>500 μM CTP</td>
</tr>
<tr>
<td></td>
<td>500 μM GTP</td>
</tr>
<tr>
<td></td>
<td>25 μM ³⁵S-UTP</td>
</tr>
<tr>
<td></td>
<td>1 U RNAse Inhibitor</td>
</tr>
<tr>
<td>TBE (10x)</td>
<td>108 g TRIS</td>
</tr>
<tr>
<td></td>
<td>55 g Borsäure</td>
</tr>
<tr>
<td></td>
<td>9,3 g EDTA</td>
</tr>
<tr>
<td></td>
<td>ad 100 ml ddH₂O</td>
</tr>
<tr>
<td></td>
<td>pH 8,3</td>
</tr>
<tr>
<td>Triton-X-100</td>
<td>Merck</td>
</tr>
<tr>
<td>TrueBlue™ Peroxidase Substrat</td>
<td>KPL</td>
</tr>
<tr>
<td>Vollblut, human, EDTA-Zusatz</td>
<td>Transfusionsmedizin Universitätsklinikum Eppendorf</td>
</tr>
<tr>
<td>Xylol</td>
<td>Merck</td>
</tr>
</tbody>
</table>

2.2 Kulturmedien und -zusätze

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zusammensetzung/ Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin Lösung (BSA; 35 % in DPBS)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>Ampicillin (100 mg/ml)</td>
<td>Serva</td>
</tr>
<tr>
<td>Avicel (mikrokristalline Cellulose)</td>
<td>FMC BioPolymer</td>
</tr>
<tr>
<td>Avicel-Overlay-Medium</td>
<td>50 % Overlay-Medium</td>
</tr>
<tr>
<td></td>
<td>50 % Avicel-Lösung (2,5% Avicel in 1xPBS)</td>
</tr>
<tr>
<td>Bakterieneinfriermedium</td>
<td>50 % LB-Amp-Medium</td>
</tr>
<tr>
<td></td>
<td>50 % Glycerol</td>
</tr>
<tr>
<td>Dulbecco’s Modified Eagle Medium (DMEM)</td>
<td>PAA</td>
</tr>
<tr>
<td>Dulbecco’s PBS (1x)</td>
<td>PAA</td>
</tr>
<tr>
<td>Föttales Kälberserum (FCS)</td>
<td>PAA</td>
</tr>
<tr>
<td>Infektionsmedium MDCK</td>
<td>MEM</td>
</tr>
<tr>
<td></td>
<td>0,2 % BSA</td>
</tr>
<tr>
<td></td>
<td>1 % L-Glutamin</td>
</tr>
<tr>
<td></td>
<td>1 % Penicillin und Streptomycin</td>
</tr>
<tr>
<td>LB-Amp100-Agar</td>
<td>LB-Amp100-Medium</td>
</tr>
<tr>
<td></td>
<td>1,5 % Bakto-Agar (BD Biosciences)</td>
</tr>
<tr>
<td>LB-Amp100-Medium</td>
<td>10 g/L Pepton</td>
</tr>
<tr>
<td></td>
<td>5 g/L Hefextrakt</td>
</tr>
<tr>
<td></td>
<td>10 g/L NaCl</td>
</tr>
<tr>
<td></td>
<td>pH 7,5</td>
</tr>
<tr>
<td></td>
<td>0,1 mg/ml Ampicillin</td>
</tr>
<tr>
<td>Minimal Essential Medium (MEM)</td>
<td>PAA</td>
</tr>
<tr>
<td>Modified Eagle Medium 2x (2x MEM)</td>
<td>PAA</td>
</tr>
<tr>
<td>Overlay-Medium für Plaquetest</td>
<td>2x MEM</td>
</tr>
<tr>
<td></td>
<td>0,4 % BSA</td>
</tr>
<tr>
<td></td>
<td>2 % L-Glutamin</td>
</tr>
<tr>
<td></td>
<td>2 % Penicillin und Streptomycin</td>
</tr>
<tr>
<td>Penicillin und Streptomycin (P/S, 100x)</td>
<td>PAA</td>
</tr>
<tr>
<td>Reduced Serum Medium (OPTI-MEM I)</td>
<td>GIBCO</td>
</tr>
<tr>
<td>Transfektionsmedium HEK 293T</td>
<td>DMEM</td>
</tr>
<tr>
<td></td>
<td>10 % FCS</td>
</tr>
<tr>
<td></td>
<td>1 % L-Glutamin</td>
</tr>
<tr>
<td>Trypsin-EDTA (1x)</td>
<td>PAA</td>
</tr>
<tr>
<td>Wachstumsmedium MDCK</td>
<td>MEM</td>
</tr>
<tr>
<td></td>
<td>10 % FCS</td>
</tr>
<tr>
<td></td>
<td>1 % L-Glutamin</td>
</tr>
<tr>
<td></td>
<td>1 % Penicillin und Streptomycin</td>
</tr>
<tr>
<td>Wachstumsmedium HEK 293T</td>
<td>DMEM</td>
</tr>
<tr>
<td></td>
<td>10 % FCS</td>
</tr>
</tbody>
</table>
Material

Zelleinfriermittel	FCS
1 % L-Glutamin	
1 % Penicillin und Streptomycin	
10 % DMSO	

2.3 Enzyme, Reaktionssysteme und Zusätze

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA (Salmon Sperm)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>DNA-Polymerase Phusion</td>
<td>NEB</td>
</tr>
<tr>
<td>DNA-Polymerase Pfu Turbo</td>
<td>Stratagene</td>
</tr>
<tr>
<td>DNase I, RNase frei</td>
<td>Roche</td>
</tr>
<tr>
<td>Dual-Luciferase® Reporter Assay System</td>
<td>Promega</td>
</tr>
<tr>
<td>LEGEND MAX™ Mouse IFN-γ ELISA Kit</td>
<td>Biologend</td>
</tr>
<tr>
<td>LEGEND MAX™ Mouse IL-4 ELISA Kit</td>
<td>Biologend</td>
</tr>
<tr>
<td>LEGEND MAX™ Mouse TNF-α ELISA Kit</td>
<td>Biologend</td>
</tr>
<tr>
<td>Mouse/Rat CCL2/JE/MCP-1 Quantikine ELISA Kit</td>
<td>R&D Systems</td>
</tr>
<tr>
<td>Mouse IL-6 Quantikine ELISA Kit</td>
<td>R&D Systems</td>
</tr>
<tr>
<td>Mouse IL-10 Quantikine ELISA Kit</td>
<td>R&D Systems</td>
</tr>
<tr>
<td>Omniscript RT Kit</td>
<td>QIAGEN</td>
</tr>
<tr>
<td>peqGOLD dNTP-Mix (10 mM each)</td>
<td>Peqlab</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>Roche</td>
</tr>
<tr>
<td>QIAamp Viral RNA Mini Kit</td>
<td>QIAGEN</td>
</tr>
<tr>
<td>QIAfilter Plasmid Maxi Kit</td>
<td>QIAGEN</td>
</tr>
<tr>
<td>QIAGEN OneStep RT-PCR Kit</td>
<td>QIAGEN</td>
</tr>
<tr>
<td>QIAprap Spin Miniprep Kit</td>
<td>QIAGEN</td>
</tr>
<tr>
<td>QIAquick Gel Extraction Kit</td>
<td>QIAGEN</td>
</tr>
<tr>
<td>QIAquick PCR Purification Kit</td>
<td>QIAGEN</td>
</tr>
<tr>
<td>QuickChange Site-Directed Mutagenesis Kit</td>
<td>Stratagene</td>
</tr>
<tr>
<td>Restriktionsenzym DpnI (10 U/µl)</td>
<td>Fermentas/ Thermo Scientific</td>
</tr>
<tr>
<td>Restriktionsenzym EcoRI (20 U/µl)</td>
<td>NEB</td>
</tr>
<tr>
<td>Restriktionsenzym KpnI (20 U/µl)</td>
<td>NEB</td>
</tr>
<tr>
<td>Ribonukleotid (ATP, CTP, GTP)</td>
<td>Roche</td>
</tr>
<tr>
<td>RiboLock RNase Inhibitor (40 U/µL)</td>
<td>Fermentas / Thermo Scientific</td>
</tr>
<tr>
<td>³⁵S-UTP</td>
<td>Perkin Elmer</td>
</tr>
<tr>
<td>T4-Ligase (4 U/µl)</td>
<td>Stratagene</td>
</tr>
<tr>
<td>T7-Polymerase</td>
<td>Roche</td>
</tr>
<tr>
<td>t-RNA (Kaninchen Leber)</td>
<td>Sigma-Aldrich</td>
</tr>
</tbody>
</table>
2.4 Primer

Die Oligonukleotide für die Sequenzierung und Genotypisierung von Virus-DNA sowie zur Mutagenese und Klonierung von Plasmid-DNA wurden wie unter 3.1.2 beschrieben entworfen und vom Dienstleister Eurofins MWG Operon synthetisiert. Die Bezeichnung der Primer und die jeweiligen DNA-Sequenzen sind im Anhang unter 9.4 zu finden.

2.5 Plasmide und Vektoren

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Beschreibung/ Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHW2000</td>
<td>Leervektor für Reverse Genetik (Hoffmann et al., 2000b)</td>
</tr>
<tr>
<td>pHWSccdB</td>
<td>Klonierungsvektor (Stech et al., 2008)</td>
</tr>
<tr>
<td>pRL-TK</td>
<td>Luciferase-Reporter (Renilla reniformis) (Promega)</td>
</tr>
<tr>
<td>pPol-I-NP-Luc-human</td>
<td>Luciferase-Reporter (Photinus Pyralis) mit Luciferase-Gen (GenBank: AF053462), das unter der Kontrolle des humanen Polymerase I-Promotors steht und von den 3'- und 5'-Enden der nicht-kodierenden Regionen des A/WSN/33 (H1N1) Virus (GenBank: M30746) flankiert wird. (T. Wolff, Robert Koch-Institut, Berlin, Deutschland)</td>
</tr>
<tr>
<td>pBluescript II KS+</td>
<td>Stratagene</td>
</tr>
</tbody>
</table>

2.6 Virusstämme

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/Hamburg/05/09 (pH1N1) → HH05</td>
<td>Sigrid Baumgarte, Institut für Hygiene und Umwelt, Hamburg, Deutschland (Otte et al., 2011)</td>
</tr>
<tr>
<td>A/Hamburg/NY1580/09 (pH1N1) → HH15</td>
<td>Sigrid Baumgarte, Institut für Hygiene und Umwelt, Hamburg, Deutschland (Gabriel et al., 2011)</td>
</tr>
<tr>
<td>SC35M (H7N7)</td>
<td>Rekombinantes, mausadaptiertes SC35M Influenzavirus (H7N7) (Scheiblauer et al., 1995)</td>
</tr>
<tr>
<td>A/Solomon Islands/3/06-like (H1N1)</td>
<td>Armin Balliot, Niedersächsisches Landesgesundheitsamt, Hannover, Deutschland</td>
</tr>
<tr>
<td>A/Thailand/KAN-1/04 (H5N1)</td>
<td>Hans-Dieter Klenk, Institut für Virologie, Philipps Universität Marburg, Deutschland (Puthavathana et al., 2005)</td>
</tr>
</tbody>
</table>
Material

2.7 Bakterienstämme

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Beschreibung/ Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli SURE-2</td>
<td>Genotyp: e14 (McrA^-) Δ(mcrCB-hsdSMR-mrr) 171 endA1 gyrA96 thi-1 supE44 relA1 lac recB recJ sbcC umuC::Tn5 (Kan^r) uvrC [F' proAB lacI^Q ZDA15 Tn10 (Tet^r) Amy Cam^r] Stratagene</td>
</tr>
<tr>
<td>Escherichia coli XL1-Blue</td>
<td>Genotyp: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F' proAB lacI^Q ZDA15 Tn10 (Tet^r)] Stratagene</td>
</tr>
</tbody>
</table>

2.8 Eukaryotische Zelllinien

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A549 (Human Lung Adenocarcinoma Cells)</td>
<td>humane Lungeneithelzellenlinie</td>
</tr>
<tr>
<td>HEK293T (Human Embryonic Kidney Cells)</td>
<td>humane Niereneithelzellenlinie</td>
</tr>
<tr>
<td>MDCK (Madin-Darby Canine Kidney Cells)</td>
<td>canine Niereneithelzellenlinie</td>
</tr>
</tbody>
</table>

2.9 Versuchstiere

Mäuse:
Für die tierexperimentellen Versuche dieser Arbeit wurden weibliche C57BL/6J Mäuse bzw. BALB/c Mäuse im Alter von fünf bis acht Wochen verwendet. Mäuse des C57BL/6J Stamms wurden von Charles River bzw. Harlan Laboratories bezogen. Die verwendeten BALB/c Mäuse entstammten der hauseigenen SPF-Zucht des Heinrich-Pette-Instituts, Leibniz-Institut für Experimentelle Virologie.

Meerschweinchen:
Für weitere tierexperimentelle Versuche mit Meerschweinchen wurden 300-400 Gramm schwere weibliche Tiere des Hartley-Zuchtstammes von Charles River Laboratories bezogen.

Material

Frettchen:

Embryonierte Hühnereier:
Für die Virusanzucht wurden frische SPF-Hühnereier von Lohmann Tierzucht bezogen und in einem Eierinkubator in der Versuchstierhaltung des Universitätskrankenhauses Eppendorf bebrütet.

2.10 Antikörper

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Ursprung</th>
<th>Hersteller</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-NP</td>
<td>Frettchen polyklonal</td>
<td>WHO</td>
<td>1:500 Histologie</td>
</tr>
<tr>
<td>Anti-NP</td>
<td>Maus monoklonal</td>
<td>Abcam (ab43821)</td>
<td>1:1000 Plaquetest</td>
</tr>
<tr>
<td>Anti-Maus IgG-HRP</td>
<td>Kaninchen polyklonal</td>
<td>SouthernBiotech (6170-05)</td>
<td>1:1000 Plaquetest</td>
</tr>
<tr>
<td>Anti-Frettchen-Biotin</td>
<td>Ziege polyklonal</td>
<td>Rockland</td>
<td>1:200 Histologie</td>
</tr>
</tbody>
</table>

2.11 Narkotika, Analgetika und Zusätze

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bepantene Augensalbe</td>
<td>Bayer Vital GmbH</td>
</tr>
<tr>
<td>Forene (Isofluran 100 %)</td>
<td>Abbott</td>
</tr>
<tr>
<td>Ketamin Gräub (100 mg/ml)</td>
<td>Albrecht</td>
</tr>
<tr>
<td>Natriumchlorid (0,9 % Lösung)</td>
<td>B. Braun Melsungen AG</td>
</tr>
<tr>
<td>Pentobarbital-Natrium-Salz</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Sedaxylan (Xylazin-Hydrochlorid, 20 mg/ml)</td>
<td>WDT</td>
</tr>
<tr>
<td>T61 Injektionlösung</td>
<td>Intervet</td>
</tr>
</tbody>
</table>

2.12 Verbrauchsmaterialien
Wenn im Folgenden nicht weiter vermerkt, wurden Einwegartikel von folgenden Firmen bezogen: Falcon, Sarstedt, Biozym, Nunc.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applikatoren, steril, Holz</td>
<td>Böttger</td>
</tr>
<tr>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Bastelkleber ohne Lösungsmittel</td>
<td>UHU</td>
</tr>
<tr>
<td>Einmal-Injektionskanüle Microlance™ 3 (26G 3/8", 0,45 x 10 mm)</td>
<td>BD</td>
</tr>
<tr>
<td>Einmal-Injektionskanüle Microlance™ 3 (25G 1", 0,5 x 25 mm)</td>
<td>BD</td>
</tr>
<tr>
<td>Einmal-Injektionskanüle (20G 1", 0,9 x 25 mm)</td>
<td>BD</td>
</tr>
<tr>
<td>Einmalskalpell (Surgical Disposable Scalpels)</td>
<td>B. Braun Melsungen AG</td>
</tr>
<tr>
<td>Einmalspritzen Omnifix® (3 ml / Luer Lock Solo)</td>
<td>B. Braun Melsungen AG</td>
</tr>
<tr>
<td>Einmalspritzen Omnifix® (10 ml / Luer Solo)</td>
<td>B. Braun Melsungen AG</td>
</tr>
<tr>
<td>Einmalspritzen TERUMO® U-100 Insulin (1 ml / 6 % Luer)</td>
<td>TERUMO Corporation</td>
</tr>
<tr>
<td>Einmalspritzen Soft Ject (1 ml)</td>
<td>Henke Sass Wolf</td>
</tr>
<tr>
<td>EDTA-Kapillarblutentnahme-Röhrchen (200 µl)</td>
<td>KABE Labortechnik</td>
</tr>
<tr>
<td>Lanzetten, steril, ACCU-CHEK Softclix XL (21G 0,8 mm)</td>
<td>Roche</td>
</tr>
<tr>
<td>Mahlknöpfe (Glasperlen: Ø 0,50-0,75 mm)</td>
<td>Menzel-Gläser</td>
</tr>
<tr>
<td>SuperFrost/Plus Objekträger</td>
<td>Menzel-Gläser</td>
</tr>
<tr>
<td>96-Vertiefungen-MTP MicroAmp® Optical 96-Well Reaction Plate with Barcode</td>
<td>Invitrogen / Life Technologies</td>
</tr>
</tbody>
</table>

2.13 Geräte

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Badumwälz-Thermostat Precitherm PFV</td>
<td>Labora Mannheim</td>
</tr>
<tr>
<td>Chirurgische Feinschere</td>
<td>Fine Science Tools</td>
</tr>
<tr>
<td>Chirurgische Standard-Pinzette</td>
<td>Fine Science Tools</td>
</tr>
<tr>
<td>CO₂-Inkubator BBD6220</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>CO₂-Inkubator HERACELL 150</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Digitalkamera SZ-10</td>
<td>Olympus</td>
</tr>
<tr>
<td>Durchlichtmikroskop Axioskop 2</td>
<td>Zeiss</td>
</tr>
<tr>
<td>Durchlichtmikroskop IM</td>
<td>Zeiss</td>
</tr>
<tr>
<td>Eierprüflampe</td>
<td>Fritz Gössner</td>
</tr>
<tr>
<td>Feinwaage Extend</td>
<td>Sartorius</td>
</tr>
<tr>
<td>Flüssigssintillationszähler Tri-Carb 1600TR</td>
<td>Packard</td>
</tr>
<tr>
<td>Gefriercontainer Mr. Frosty</td>
<td>Nalgene</td>
</tr>
<tr>
<td>Geldokumentationssystem Gel Doc XR</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Gelelektrophoresesystem Sub-Cell GT</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Hämatologie-Analysegerät pocH-100i</td>
<td>Sysmex</td>
</tr>
<tr>
<td>Magnetrührer MR3001</td>
<td>Heidolph</td>
</tr>
<tr>
<td>Material</td>
<td>Hersteller</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Magnetrührer MR80</td>
<td>Heidolph</td>
</tr>
<tr>
<td>Mikrotiterplatten Lesegerät Safire2</td>
<td>Tecan</td>
</tr>
<tr>
<td>Magellan™ - Data Analysis Software</td>
<td>Magellan Software</td>
</tr>
<tr>
<td>Mikrotiterplatten Lesegerät Tristar LB 941</td>
<td>Berthold Technologies,</td>
</tr>
<tr>
<td>Mikrowin2000-Software v.4.41</td>
<td>Software von Mikrotek Laborsysteme GmbH</td>
</tr>
<tr>
<td>Mikrotom HM325</td>
<td>Microm</td>
</tr>
<tr>
<td>Mikrowellenofen R-647</td>
<td>Sharp</td>
</tr>
<tr>
<td>PCR-Gerät GeneAmp® PCR System 9700</td>
<td>Applied Biosystems</td>
</tr>
<tr>
<td>pH-Messgerät 766 Calimatic</td>
<td>Knick</td>
</tr>
<tr>
<td>Pipetten Eppendorf Reference</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Pipettierhilfe Pipetus</td>
<td>Hirschmann Laborgeräte</td>
</tr>
<tr>
<td>Präzisionswaage ED224S</td>
<td>Sartorius</td>
</tr>
<tr>
<td>Reinstwassersystem Milli Q Aca</td>
<td>Millipore</td>
</tr>
<tr>
<td>Schüttler Digital MaxQ 6000</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Schüttelwasserbad SW-22</td>
<td>Julabo</td>
</tr>
<tr>
<td>Schwingmühle MM400</td>
<td>Retsch</td>
</tr>
<tr>
<td>Spannungsquelle Powerpac Basic</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Spektralphotometer Nanodrop 1000</td>
<td>Peqlab</td>
</tr>
<tr>
<td>Sterile Werkbank Herasafe KS 12</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Sterile Werkbank Herasafe KS 18</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Sterile Werkbank SG400E</td>
<td>Baker Company</td>
</tr>
<tr>
<td>Taumel-Wipptisch WT12</td>
<td>Biometra</td>
</tr>
<tr>
<td>Thermomixer Comfort</td>
<td>Analytik Jena</td>
</tr>
<tr>
<td>Trockenschrank 6120</td>
<td>Heraeus</td>
</tr>
<tr>
<td>Vortex-Mixer 7-2020</td>
<td>neoLab</td>
</tr>
<tr>
<td>Wasserbad H15-2</td>
<td>Kunz Instruments</td>
</tr>
<tr>
<td>Zentrifuge Multifuge 3S-R</td>
<td>Heraeus</td>
</tr>
<tr>
<td>Zentrifuge Varifuge 3.0R</td>
<td>Heraeus</td>
</tr>
<tr>
<td>Zentrifuge 5417R</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Zentrifuge Biofuge Pico</td>
<td>Heraeus</td>
</tr>
<tr>
<td>Zentrifuge Avanti J-E</td>
<td>Beckham Coulter</td>
</tr>
</tbody>
</table>
3 Methoden

3.1 Molekularbiologische Methoden

3.1.1 Isolierung von viraler RNA
Die virale RNA (vRNA) wurde mit Hilfe des QIAamp Viral RNA Mini Kits (QIAGEN) nach Herstellerangaben isoliert. Dafür wurden 900 µl des jeweiligen Virus-Arbeitsstocks (3.3.1) eingesetzt und mit 30 µl ddH₂O eluiert, anschließend aliquotiert und bei -80 °C gelagert.

3.1.2 Design von PCR-Primern

3.1.3 Sequenzierung viraler RNA
Da die Nukleotidsequenz der hier charakterisierten 2009 pandemischen H1N1 (pH1N1)-Isolate noch unbekannt war, wurde das Genom dieser Viren aus zwei unabhängigen RNA-Isolierungen (3.1.1) nach Umschreiben in DNA mittels RT-PCR (3.1.4.1) vom Dienstleister Seqlab vollständig sequenziert. Die Sequenzen wurden anschließend in die Influenzavirus-Datenbank vom NCBI (Influenza Virus Resource; http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) unter folgenden Zugriffsschlüsseln eingeäpflegt:

HH05 (pH1N1): HQ111361 (PB2), HQ111362 (PB1), HQ111363 (PA), HQ111365 (NP), HQ111364 (HA), HQ111366 (NA), HQ111367 (M) and HQ111368 (NS).

HH15 (pH1N1): GU480807 (PB2), HQ104924 (PB1), HQ104925 (PA), HM598305 (NP), HQ104926 (HA), HQ104927 (NA), HQ104928 (M) and HQ104929 (NS).
3.1.4 Klonierung viraler DNA
Für die Charakterisierung des Influenzavirus Genoms in einem Vektor wurde für diese Arbeit, wie unter 3.1.1 und 3.1.3 beschrieben, virale RNA isoliert und sequenziert. Anschließend wurde die RNA in vitro wie folgt zu DNA umgeschrieben. Die amplifizierte DNA wurde in den Plasmid-Vektor pHWSccdB (Stech et al., 2008) ligiert und konnte so in kompetente XL1-Blue oder SURE-2 Bakterien (Stratagene) transformiert werden.

3.1.4.1 Zweistufige RT-PCR
Zur DNA-Synthese wurde die unter 3.1.1 isolierte vRNA einer zweistufigen Reversen Transkriptase-Polymerase Kettenreaktion (RT-PCR) unterzogen. Dabei transkribierte zunächst eine Reverse Transkriptase unspezifisch die RNA in einzelsträngige cDNA. Für die reverse Transkription wurde ein Omniscript RT Kit (QIAGEN) den Herstellerangaben entsprechend und ein Uni12 Primer verwendet, welcher an die hochkonservierte Promotorregion aller viralen Gensegmente bindet (Hoffmann et al., 2001). In einem zweiten Reaktionsansatz wurde mittels DNA-abhängiger-DNA-Polymerase mit Virusgen-spezifischen Primern die cDNA zu doppelsträngiger DNA amplifiziert. Für jedes virale Gen wurde demnach ein Reaktionsansatz benötigt. Die hierfür verwendete Phusion Polymerase (NEB) verfügt über eine hohe "proofreading"-Aktivität.

RT-Ansatz: 10x Omniscript Puffer 2 µl
dNTP 5 mM 2 µl
RNAse Inhibitor 0,25 µl
Uni12-Primer 10 µM 2 µl
Omniscript 1 µl
RNA Template 4 µl
ad 20 µl ddH2O
→1 h 37 °C

PCR-Ansatz: 5x Puffer 10 µl
dNTPs 5 mM 2 µl
Primer fw 10 µM 2,5 µl
Primer rv 10 µM 2,5 µl
Phusion Polymerase 1 µl
cDNA Template 2 µl
ad 50 µl dH2O

PCR-Programm: Initiale Denaturierung 98 °C 30 s
35 mal 3-Schritt Zyklen mit:
Denaturierung 98 °C 10 s
Methoden

Primerhybridisierung 60 °C 30 s
Elongation 72 °C 6 min
Finale Elongation 72 °C 5 min

3.1.4.2 DNA-Gelelektrophorese

Um die amplifizierten viralen DNA-Segmente auf ihre zu erwartende Molekülmasse zu überprüfen und aufzureinigen, wurde zur Größenauf trennung eine Gelelektrophorese durchgeführt. Dafür wurde durch Erhitzen 1 % Agarose in 1x TBE-Puffer gelöst, mit Ethidiumbromid versetzt und in eine entsprechende Laufkammer gegossen. Die Proben wurden vor dem Auftragen mit 6x Probenpuffer versetzt und zur späteren Größenbestimmung der MassRuler DNA Ladder Mix (Thermo Scientific) zusammen mit den Proben auf das Gel aufgetragen. Die Elektrophorese erfolgte bei 100-120 V. Die Visualisierung der DNA-Banden fand anschließend unter UV-Licht statt (Bsp.: Abb. 7). Zur Extraktion der überprüften DNA-Banden wurden diese unter UV-Licht ausgeschnitten und einer DNA-Aufreinigung mittels QIAquick Gel Extraction Kits (QIAGEN) nach Angaben des Herstellers unterzogen. Die aufgereinigte DNA konnte nun zur weiteren Kontrolle sequenziert (3.1.3) und für die Ligation (3.1.4.3) in einen Vektor verwendet werden.

Abb. 7: Darstellung der zu erwartenden Bandengrößen der viralen Gensegmente auf einem Agarosegel. Die jeweils angegebenen Banden wurden für die Aufreinigung nach der elektrophoretischen Auftrennung ausgeschnitten. (aus Stech et al., 2008)
Methoden

3.1.4.3 Ligation
Die überprüften und aufgereinigten DNA-Segmente aus 3.1.4.2 wurden in einer PCR in den Plasmid-Vektor pHWS\text{ccd}B (Stech et al., 2008) eingeführt. Aufgrund der Amplifikation der DNA-Segmente mit Gen- und Vektorspezifischen Primern binden diese am 5’ Ende komplementär an das hier verwendete Plasmid. Die Genspezifische Sequenz ist zum einen komplementär zu der konservierten nicht-kodierenden Region, die Influenzavirus Gene flankieren, zum anderen komplementär zu einer für jedes Gen spezifischen Anfangssequenz. In diesem Fall wurde Primer spezifisch gegen die viralen Gene eines 1918 pandemischen Influenzavirusstamms (H1N1) verwendet, da eine hohe Übereinstimmung mit den 2009 pandemischen Influenzaviren (pH1N1) zu erwarten war. Die PCR wurde mit der bereits unter 3.1.4.1 beschriebenen Phusion Polymerase (NEB) in mehreren Ansätzen mit jeweils verschiedenen Mengen DNA durchgeführt, um ein optimales Verhältnis von Vektor zu Insert zu erreichen.

Ligations-PCR-Ansatz: 5x Puffer 10 μl
dNTP 10mM 1 μl
Phusion Polymerase 1 μl
pHWS\text{ccd}B Plasmid (1:100) 10 μl
DNA Insert 1/3/7 μl
ad 50 μl ddH2O

PCR-Programm: Initiale Denaturierung 98 °C 30 s
35 mal 3-Schritt Zyklen mit
Denaturierung 98 °C 10 s
Primerhybridisierung 48 °C 1 min
Elongation 72 °C 5:30 min

3.1.4.4 Restriktionsverdau
Nach der Ligations-PCR wurde dem Ansatz jeweils 1 μl des Restriktionsenzymys DpnI (10 U/μl) zugegeben und für 1 h bei 37 °C inkubiert. Da die, in ihrer ursprünglichen Form aus \textit{E. coli}-Bakterien stammende, DNA methyliert vorliegt, werden Plasmide die noch methylierte DNA oder hemimethylierte DNA beinhalten vom DpnI-Enzym erkannt und durch Verdau ausselektiert. Die Plasmide konnten dann für eine anschließende Amplifikation in kompetente XL1-Blue oder SURE-2 Bakterien (Stratagene) transformiert werden.

3.1.4.5 Transformation kompetenter \textit{E. coli}-Bakterien
Zur Transformation wurden kompetente Bakterien des \textit{E. coli} Stammes XL1-Blue oder SURE-2 (Stratagene) verwendet, dabei wurde die sogenannte Hitzeschock-Methode angewandt. Dafür wurden jeweils 50 μl der fertigen Bakterien-Suspension mit
ß-Mercaptoethanol versetzt und auf Eis vorinkubiert und nach Zugabe von 10 µl des Ligationsansatzes (3.1.4.3) wurde 30 min lang auf Eis inkubiert. Darauf folgte die Inkubation von 45 s bei 42 °C in einem Wasserbad. Nach weiteren 2 min auf Eis wurden jedem Ansatz 450 µl vorgewärmtes (42 °C) TB-Kulturmedium hinzugegeben und für eine weitere Stunde bei 37 °C in einem Schüttler inkubiert. Durch anschließende Zentrifugation wurde das Reaktions-Medium entfernt. 100 µl vom Zellpellet wurden auf Ampicillin-Agarplatten ausplattiert und die Bakterien über Nacht bei 37 °C angezogen. Aufgrund des Ampicillins erfolgte eine Negativselektion der Bakterien ohne Plasmide.

3.1.5 Zielgerichtete PCR-Mutagenese

PCR-Ansatz:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x Pfu Puffer</td>
<td>5 µl</td>
</tr>
<tr>
<td>dNTP-Mix 10 mM</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer fw 10 µM</td>
<td>2 µl</td>
</tr>
<tr>
<td>Primer rv 10 µM</td>
<td>2 µl</td>
</tr>
<tr>
<td>PfuTurbo Polymerase (2,5 U/µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Plasmid pHW2000</td>
<td>50 ng/µl</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>50 µl</td>
</tr>
</tbody>
</table>

PCR-Programm:

- Initiale Denaturierung 95 °C 1 min
- 20 mal 3-Schritt Zyklen mit
 - Denaturierung 95 °C 30 s
 - Primerhybridisierung 48 °C 1 min
 - Elongation 68 °C 10 min
3.1.6 Plasmidamplifikation in *E. coli* Bakterien

Die Vervielfältigung viraler Plasmid-DNA (3.1.4, 3.1.5) erfolgte in *E. coli*-Bakterien des Stammes XL1-Blue oder SURE-2 (Stratagene). Dafür wurden einzelne Klone nach der Anzucht auf Agarplatten gepickt und in eine LB-Amp-Flüssignährösung mit 100 µg/ml des Antibiotikums Ampicillin überführt. Für kleine Mengen wurden ca. 5 ml, für größere Mengen ca. 250 ml Nährösung verwendet. Die angeimpften Nährösungen wurden für 18-24 h bei 37 °C im Schüttelinkubator bis zur gewünschten Zelldichte inkubiert.

3.1.7 Plasmidpräparation

3.1.8 Archivierung plasmidtragender E-coli Bakterien

Für die Archivierung plasmidtragender *E. coli*-Bakterien wurde 1 ml einer Bakterienkultur in Nährösung mit 1ml Glycerol versetzt und bei -80 °C gelagert. Diese sogenannten Kryostocks können zum Animpfen von Nährösungen zur Vervielfältigung der entsprechenden Plasmid-DNA verwendet werden.

3.1.9 Bestimmung Polymeraseaktivität

3.1.9.1 Transfektion von HEK293T-Zellen

3.1.9.2 Messung der relativen Polymeraseaktivität

3.1.10 Zytokinbestimmung mittels enzymgekoppeltem Immunadsorptionstest (ELISA)

Um Unterschiede in der Expression einzelner Zytokine während der Immunantwort auf eine Influenzavirus Infektion zu untersuchen, wurden deren absolute Mengen in der Lunge und im Serum von infizierten und nicht-infizierten Mäusen bestimmt (3.4). Bei einem enzymgekoppelten Immunadsorptionstest (ELISA) wird das nachzuweisende Antigen, in diesem Fall ein Zytokin, an einen spezifischen Erstantikörper gebunden, wobei dieser wiederum mit einem enzymgekoppelten Zweiantikörper detektiert werden kann. Bei der hier verwendeten Sandwich-Methode werden zwei Erstantikörper verwendet, wovon einer bereits an eine Mikrotiterplatte gebunden ist. Die Antigen enthaltende Probe konnte
Methoden

nun auf der Mikrotiterplatte angereichert werden, um dann mit Hilfe eines weiteren Erstantikörpers nachgewiesen zu werden.

Für diese Arbeit wurden die Zytokine IL-4, TNF-α und IFN-γ in Serum und Lungenhomogenaten von Mäusen (3.4.3) mit Hilfe des jeweiligen *LEGEND MAX™ Mouse ELISA Kits* (Biolegend) detektiert. Für MCP-1, IL-6 und IL-10 hingegen wurden die jeweiligen *Mouse Quantikine ELISA Kits* (R&D Systems), den Herstellerangaben entsprechend, verwendet. Die absolute Mengenbestimmung erfolgte mit Hilfe einer Verdünnungsreihe des aufgereinigten Antigens. Der Farbumschlag der verschiedenen Ansätze, durch enzymatische Reaktion einer Meerrettichperoxidase, wurde bei 450 nm in einem Mikrotiterplatten Lesegerät Safire2 (Tecan) gemessen.

3.2 Zellkultur

3.2.1 Kultivierung

3.2.2 Archivierung

Für die Archivierung der verwendeten Zellen wurden diese vom Kulturgefäß abgelöst (3.2.1) und abzentrirefugiert (5 min, 1000 xg). Die Zellen wurden in einem Milliliter Zelleinfriermedium resuspendiert und in Kryoröhrchen mittels Gefriercontainer (runterkühlen von -1 °C/min) bei -80 °C eingefroren. Für die Archivierung von mehr als einigen Wochen sollte ein Flüssigstickstoffkontainer verwendet werden.

Um eingefrorene Zellen wieder in Kultur zu nehmen, wurden diese bei 37 °C im Wasserbad aufgetaut und anschließend langsam Kulturmedium zu den Zellen hinzugegeben. Reste des Einfriermediums wurden mittels Zentrifugation entfernt und die Zellen in frischem Kulturmedium resuspendiert. Die erste Passage oder ggf. ein Mediumwechsel sollte bereits am nächsten Tag stattfinden.
3.3 Virologische Methoden

3.3.1 Virusanzucht
Um Virusisolate, die direkt von einem infizierten Wirt entnommen wurden, untersuchen zu können, wurden diese zu einem Arbeitsstock hochgezogen. Zur Minimierung adaptiver Mutation sollte dies im jeweils ursprünglichen Wirtsorganismus geschehen. So wurden Influenzavirusisolate aviären Ursprungs in embryonierten Hühnereiern hochgezogen Isolate aus Säugetieren hingegen in Säugerzellen hochgezogen. Um die Anhäufung von zufallsbedingten Mutationen der viralen Polymerase, welche über keine Korrekturlese-Aktivität verfügt (Drake, 1993), zu minimieren, wird die Anzahl der Passagen so gering wie möglich gehalten. Für die vorliegende Arbeit wurden Arbeitsstocks mit maximal zwei Passagen verwendet. Die Lagerung der Arbeitsstocks erfolgte in 100 µl bis 1 ml Aliquots (meist 300 µl) bei -80 °C.

3.3.1.1 Anzucht im Hühnerei
Für die Anzucht im embryonierten Hühnerei wurden elf Tage lang bebrütete Hühnereier mit Virus infiziert. Zunächst wurde mittels Eierprüflampe kontrolliert, ob das Ei befruchtet und der Embryo lebendig ist. Die stumpfe Seite des Eis wurde mit Jodlösung desinfiziert und mit einem Handbohrer vorsichtig ein kleines Loch in die Schale gebohrt. Pro Ei wurden hier 200 µl Virusverdünnung (10⁻³ oder 10⁻⁴) mittels Kanüle (0,5 x 25 mm) in die Allantoishöhle injiziert. Um diese zu erreichen und dabei den Embryo nicht zu verletzen wurde die Kanüle senkrecht in die Öffnung der Schale vollständig eingeführt. Anschließend wurde die Öffnung mit Lösungsmittel freiem Klebstoff verschlossen und die Eier für weitere 48 Stunden bei 37 °C inkubiert. Die infizierten Hühnereier wurden anschließend über Nacht bei 4 °C gelagert um durch Vasokonstruktion eine blutfreie Entnahme der Allantoisflüssigkeit zu erleichtern. Die Eier wurden hierfür am stumpfen Ende über der Luftkammer geöffnet und die Allantoisflüssigkeit mittels Einweg-Plastikpipette entnommen, dazu wurde der Dottersack mit einem stumpfen Werkzeug zur Seite gedrückt. Die Allantoisflüssigkeit verschiedener Eier konnten nun mittels Hämagglutinationstest (3.3.4) auf Viruspartikel überprüft und Chargen mit ähnlichen Werten zusammengeführt werden, um mit Hilfe eines Plaquetests den Titer an infektiösen Viruspartikeln zu bestimmen (3.3.6).

3.3.1.2 Anzucht in MDCK-Zellen
Für die Virusanzucht in Säugerzellen wurden MDCK-Zellen verwendet die am vorherigen Tag in 75 cm² Kulturschalen ausgesät wurden. Die Zellen sollten eine Konfluenz von
Methoden

80-90 % aufweisen und wurden vor Infektion mit ca. 5 ml Infektionsmedium gewaschen. Anschließend wurde 2 ml Virusverdünnung in Infektionsmedium auf die Zellen gegeben und für 30 min bei 37°C im CO²-Inkubator inokuliert. Danach wurde das Inokulum entfernt und ca. 6 ml Infektionsmedium auf die Zellen gegeben. Bei der Anzucht von Viren mit monobasischer Spaltstelle im HA wurde dem Infektionsmedium 1 µg/ml TPCK-Trypsin hinzugegeben. Es folgte eine Inkubation der infizierten Zellen bis zu einem Zytopathischen Effekt (CPE) von mehr als 50 % und/oder der Detektion einer Hämagglutination von Hühnerblut (3.3.4) (ca. 24-48 h). Der Zellkulturüberstand wurde daraufhin abgenommen und Zelltrümmer bei 1000 xg für 5 min abzentrifugiert. Für die Verwendung als Arbeitsstock wurde der Überstand aliquotiert und der Titer an infektiösen Viruspartikeln mittels Plaquetest bestimmt (3.3.6).

3.3.2 Reverse Genetik

3.3.2.1 Generierung rekombinanter pH1N1 Viren

Rekombinante 2009 pandemische H1N1 (pH1N1) Viren, deren Reassortanten und Punktmutanten wurden nach der unter 3.3.2 beschriebenen Methode hergestellt. Für einen Transfektionsansatz wurden die Vektoren mit allen acht Gensegmenten zusammenpipettiert und mit 250 µl Optimem versetzt. Dabei wurden für das HH05 Virus (pH1N1) jeweils 1 µg und für Segment des HH15 Virus (pH1N1) jeweils 2 µg eingesetzt. Pro Plasmidansatz wurden weitere 250 µl Optimem mit dem Transfektionsreagenz Lipofectamin®2000 im Verhältnis Plasmid [µg] : LF 2000 [µl] = 1:2 für 5 min vorinkubierte. Diese Mischung wurde anschließend zum Plasmidansatz hinzugegeben und 20 min bei Raumtemperatur inkubierte. Für einen Transfektionsansatz in einer 6 cm Zellkulturschale wurden ca. 3*10⁰ HEK293T-
Zellen in 3 ml Transfektionsmedium suspendiert und die Plasmidmischung langsam hinzugegeben. Es folgte eine Inkubation von 48 h bei 37 °C in einem CO₂-Inkubator. Für eine effiziente Vermehrung der neu entstandenen Viruspertikel wurden 500 µl des Zellkulturüberstands nach Transfektion auf konfluente MDCK-Zellen (mit 1 ml Infektionsmedium) in einer 35 mm Zellkulturschale gegeben. Nach weiteren 72 h Inkubation wurde eine erneute Virusanzucht in MDCK-Zellen, wie unter 3.3.1.2, durchgeführt (Abänderungen: 25 cm² Zellkulturflosche, 1 ml Überstand als Inokulum, 4 ml Infektionsmedium).

3.3.3 Virusgenotypisierung
Um nach Generierung rekombinanter Viren (3.3.2.1) zu überprüfen, ob an den definierten Stellen des Virusgenoms die erwarteten Nukleinsäuren vorhanden sind, wurden mit spezifischen Primern einzelne Bereiche des viralen Genoms sequenziert. Dafür wurden die entsprechenden Genomabschnitte mittels einstufiger PCR revers transkribiert und amplifiziert. Die Gewinnung viraler DNA über eine zweistufige PCR, wie für die Klonierung beschrieben (3.1.4), ist hochspezifisch mit maximaler Genauigkeit der Polymerase, wird aber für eine partielle Überprüfung, wie hier bei der Genotypisierung, nicht zwangläufig benötigt.

In dieser Arbeit wurde mit Hilfe des QIAamp Viral RNA Mini Kits (QIAGEN), virale RNA isoliert, wie unter 3.1.1 beschrieben. Die entsprechenden DNA-Abschnitte wurden mit grund- und abschnittsspezifischen Primern (3.1.2) mittels eines QIAGEN OneStep RT-PCR Kits (QIAGEN) in einem Reaktionsansatz transkribiert und amplifiziert. Nach der PCR wurde die virale DNA mit Hilfe eines PCR Purification Kits (QIAGEN) aufgereinigt und anschließend sequenziert (3.1.3).

RT-PCR-Ansatz:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 x OneStep Puffer</td>
<td>10 µl</td>
</tr>
<tr>
<td>dNTP 10 mM</td>
<td>2 µl</td>
</tr>
<tr>
<td>OneStep Enzyme Mix</td>
<td>2 µl</td>
</tr>
<tr>
<td>RNasin (40 U/µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer fw 10 µM</td>
<td>3 µl</td>
</tr>
<tr>
<td>Primer rv 10 µM</td>
<td>3 µl</td>
</tr>
<tr>
<td>Template</td>
<td>1,0 µl</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>50 µl</td>
</tr>
</tbody>
</table>

PCR-Programm:

- Reverse Transkription 50 °C 30 min
- Initiale Denaturierung 95 °C 15 min
- 35 mal 3-Schritt Zyklen mit
- Denaturierung 94 °C 1 min
- Primerhybridisierung 52 °C 30 s
3.3.4 Hämagglutinationstest

In der vorliegenden Arbeit wurde humanes Blut oder Hühnervollblut für die Herstellung einer 1 %igen Erythrozytensuspension in 0,9 %-iger NaCl-Lösung verwendet.

3.3.5 Hämagglutinationsinhibitionstest

Für die Bestimmung der Antikörperkonzentration gegen einen bestimmten Influenzavirus Subtyp im Serum, wurde dieses zunächst für 30 min bei 56 °C im Wasserbad inaktiviert. Ausgehend von einer 1:5 Vorverdünnung wurde eine 2-fach Verdünnungsreihe in 96-Loch-Titerplatten mit einem v-förmigen Boden erstellt. Dafür wurden jeweils 25 µl aus der vorangehenden Vertiefung zu 25 µl vorgelegten PBS in die nächste gegeben. Mittels HA-Test (3.3.4) wurde vom Virus, gegen das getestet werden sollte, die Verdünnung bestimmt.

Für diese Arbeit wurden für Hämagglutinationsinhibitionstests stets Hühnererythrozyten in 0,9 %igen NaCl-Lösung verwendet.

3.3.6 Titerbestimmung mittels Plaquetest

Für die vorliegende Arbeit wurden die Virustiter mittels Immunfärbung des viralen NP-Proteins bestimmt. Dazu wurden die Zellen mit PBS gewaschen und für 30 min mit 0,3 % Triton-X auf einem Taumelwipptisch permeabilisiert. Anschließend folgte eine Inkubation mit 500 µl Erstantikörper, ein Anti-NP Antikörper (Abcam), pro Vertiefung für ca. 1 h bei Raumtemperatur. Nach drei Waschschritten mit PBS-Tween (0,05 %) wurde für eine weitere Stunde mit 500 µl Zweiantikörper, ein Anti-Maus-IgG HRP-gekoppelter Antikörper (SouthernBiotech), inkubierte. Beide Antikörper wurden für diese Arbeit mit einer Verdünnung von 1:1000 in Superblock-Puffer eingesetzt. Die Detektion erfolgte nach zwei Waschschritten
mit dem HRP-Substrat enthaltenden True-Blue (KPL). Dabei wurde jeweils die letzte Vertiefung der Zellkulturplatte ausgewertet, in der noch Plaques zu detektieren waren.

Alternativ kann für die Titerbestimmung auch eine indirekte Detektion mittels Kristallviolett verwendet werden. Dafür werden die infizierten Zellkulturplatten nach 72 h Inkubation gewaschen und fixiert (s.o.) und mit Kristallviolett überschichtet. Nach ca. 5 min wird die Kristallviolett-Lösung wieder abgenommen und die Zellen gewaschen. Intakte Zellen weisen anschließend eine violette Färbung auf, durch Virusinfektion lysierte Zellen oder Löcher im Zellrasen bleiben farblos.

3.3.7 Wachstumskurven von Viren

Das Wachstumsverhalten der hier verwendeten Viren in humanen Lungenzellen, wurde anhand einer Titer-Kinetik bestimmt. Humane A549-Zellen wurden hierfür bei einer Konfluenz von 80-90 % in 35 mm-Durchmesser Zellkulturschalen mit dem zu untersuchenden Virus infiziert und 24, 48, 72 und 96 h danach 100 µl vom Überstand abgenommen. Die jeweiligen Virustiter wurden zu den verschiedenen Zeitpunkten nach Infektion (p.i.) mittels Plaquetest (3.3.6) bestimmt. Infiziert wurde mit einer Multiplizität der Infektion (MOI) von 0,01 der 2009 pandemischen H1N1 Influenzaviren und des saisonalen H1N1 und mit MOI=0,001 des humanen H5N1 Isolats. Die Verdünnungen wurden in PBS angesetzt, das Inokulationsvolumen betrug 500 µl. Nach 30 min Inkubation bei 37 °C wurde das Inokulum entfernt und mit 2 ml Infektionsmedium ersetzt. Zur anschließenden Titerbestimmung mittels Plaquetest (3.3.6) wurde zu den entsprechenden Zeitpunkten 100 µl Kulturüberstand abgenommen und bei -20 °C gelagert.

3.4 Tierexperimentelle Methoden

3.4.1 Narkose und Tötungsmethoden

Mäuse:
Für die Infektion (3.4.2) von Mäusen wurde eine Anästhesie-Mischung mit 100 mg/kg Ketamin und 10 mg/kg Xylazin in 200 µl 0,9 %iger NaCl-Lösung mittels einer 26G Kanüle intraperitoneal injiziert. Zur kurzen Sedierung für die Blutentnahme (3.4.3) wurde eine Inhalationsnarkose mit Isofluran verabreicht. Die Entnahme von Organen erfolgte erst nach Tötung der Versuchstiere (3.4.3). Das Töten der Mäuse wurde mittels zervikaler Dislokation (Strecken) durchgeführt, diesem ging zusätzlich eine Inhalationsnarkose mit Isofluran voraus.

Meerschweinchen:
Für die Narkose während der Infektion und der Nasenspülung von Meerschweinchen (3.4.2, 3.4.3) wurde eine 30 mg/kg Ketamin und 2 mg/kg Xylazin-Mischung verwendet und in einer 0,9 %igen NaCl-Lösung von 200 µl intramuskulär in den Oberschenkel injiziert (26G-Kanüle). Um das Austrocknen der Hornhaut während der Narkose zu verhindern, wurde Augensalbe auf die Augen der Meerschweinchen gegeben. Die finale Blut- und Organentnahme (3.4.3) fand unter einer überdosierten Barbiturat-Narkose statt. Hierfür wurden 100 mg/kg Pentobarbital-Natriumsalz zu 50 mg/ml in ddH2O gelöst und intraperitoneal mit einer 26G Kanüle injiziert. Fand keine Probenentnahme nach Ende des Tierversuchs statt, wurde das Embutramid T61 zur Tötung eingesetzt. Hierfür wurde mittels 25 G Kanüle 2 ml der Injektionslösung intrakardial verabreicht.

Frettchen:
Für die Narkose während der Infektion und der Nasenspülung von Frettchen (3.4.2, 3.4.3) wurde jeweils 0,25 ml/kg einer 1 ml Ketamin/0,4 ml Xylazin Injektionslösung intramuskulär in den Oberschenkel injiziert. Bei der finalen Blut- oder Organentnahme aller infizierten Tiere (3.4.3) wurden diese unter Narkose ausgeblutet.

3.4.2 Infektion und Überlebensversuch (MLD₀₀-Bestimmung)

Mäuse:
Für die Infektion von Mäusen mit Influenzavirusisolaten wurde nach erfolgter Narkose die entsprechende Viruskonzentration in 50 µl PBS verdünnt und dem narkotisierten Tier durch langsames Pipettieren in die Nasenlöcher verabreicht. Kontrolltieren wurde intranasal die entsprechende Menge PBS verabreicht. Danach wurden die Versuchstiere über 14 Tage hinweg täglich kontrolliert und regelmäßig gewogen. Der humane Endpunkt wurde bei einem Gewichtsverlust von mehr als 25 % des Ausgangsgewichts oder wenn ein Tier offensichtliche Schmerzen und/oder nicht mehr selbstständig fressen/trinken konnte erreicht. Das Tier wurde dann vorzeitig getötet. Die Letalität der hier untersuchten Virusisolate in
Mäusen wurde mit der MLD\textsubscript{50} Methode nach Reed und Muench, 1938 bestimmt. Dabei wird mit seriellen 10-fachen Virusverdünnungen infiziert und die Dosis bei der 50\% der Versuchstiere überleben, berechnet.

Meerschweinchen:
Für die Infektion von Meerschweinchen wurde nach erfolgter Narkose die Virusverdünnung in 300 µl PBS angesetzt und je Nasenloch 150 µl appliziert. Kontrolltieren wurde ausschließlich die entsprechende Menge PBS verabreicht. Anschließend wurden die Versuchstiere über 14 Tage hinweg täglich kontrolliert und regelmäßig gewogen. Bei einem Gewichtsverlust von mehr als 15\% des Ausgangsgewichts oder wenn ein Tier offensichtliche Schmerzen und/oder nicht mehr selbstständig fressen/trinken konnte war der humane Endpunkt erreicht und das Tier wurde vorzeitig getötet. Für die Pathogenitäts- und Transmissionsstudien in Meerschweinchen wurde eine Virusedosis von 105 p.f.u. verwendet.

Frettchen:
Für die Infektion von Frettchen wurde nach erfolgter Narkose eine Virusverdünnung in 200 µl PBS angesetzt und je Nasenloch 100 µl appliziert. Kontroll-Tieren wurde ebenfalls intranasal die entsprechende Menge PBS verabreicht. Im Anschluss wurden die Versuchstiere über 14 Tage hinweg täglich kontrolliert und gewogen. Für die Pathogenitäts- und Transmissionsstudien wurde eine Virusedosis von 105 p.f.u. verwendet.

3.4.3 Blutentnahme, Organentnahme und Nasenspülung

Mäuse:

Meerschweinchen:
Die finale Blutentnahme bei Meerschweinchen erfolgte unter Pentobarbital-Narkose über direkte Punktion des Herzens. Hierfür wurde eine 25 mm lange 20 G Kanüle von der ventralen Seite des Brustkorbes senkrecht in das Herz eingeführt. Für die Entnahme von
Methoden

Lunge und Trachea, die ebenfalls unter Pentobarbital-Narkose stattfand, wurde das Tier longitudinal vom Brustkorb bis zum Unterkiefer geöffnet und die Trachea direkt unterhalb des Kehlkopfes durchtrennt. Für eine vergleichende Pathologie wurden die Lungen vor der weiteren Prozessierung photographisch dokumentiert. Jeweils die Hälfte eines Organs wurde anschließend für histologische Untersuchungen (3.5) in 4 % PFA fixiert, in PBS gelagert und die andere Hälfte für die Virustiter-Bestimmung homogenisiert (3.4.4). Zur Analyse der replizierenden Viren im oberen Respirationstrakt der Meerschweinchen wurde eine Spülung der Nasenhöhle vorgenommen. Dabei wurden dem narkotisierten Tier 700 µl PBS (+ 0,2 %BSA; + 1 % Pen/Strep) zügig in jedes Nasenloch gegeben und wieder in einer Petrischale aufgefangen. Die Nasenspülung wurde durch kurze Zentrifugation (5 min, 2000 xg) von Nasenepithelzellen u.ä. getrennt und der Virustiter mittels Plaquetest (3.3.6) bestimmt. Die Lagerung erfolgte bei -80 °C.

Frettchen:

3.4.4 Herstellung von Organhomogenaten
Für die Bestimmung der Viruslast in einem Organ wurde das entsprechende Gewebe gewogen und anschließend mit Glaskügelchen in 1 ml PBS 20 min lang in einer Schwingmühle bei 30 Hz zerkleinert. Größere Gewebetrümmer wurden anschließend runterzentrifugiert (5 min, 5000 rpm). Der Überstand wurde bei -80 °C gelagert und der Virustiter mittels Plaquetest (3.3.6) bestimmt.

3.4.5 Zellzahlbestimmung in Vollblut mittels Hämatologiegerät
Ein Blutbild, insbesondere zur Analyse der Immunzellen im Blut der Versuchstiere während des Infektionsverlaufs, wurde mit frischem Vollblut in einem pocH-100i Hämatologiegerät erstellt. Eine Zellzahlbestimmung wurde hier mittels Impedanz-Messung durchgeführt, wobei 15 µl Vollblut über eine Kapillare angesogen wurden.
3.4.6 Transmissionsversuche

Meerschweinchen:

Im Gegensatz zu Mäusen können Meerschweinchen Influenzaviren übertragen (1.3.2; Lowen et al., 2006). Deshalb wurde die Transmissionsfähigkeit der 2009 pandemischen H1N1 Influenzaviren in dieser Arbeit unter anderem in diesem Tiermodell untersucht. Es sollte zum einen die Übertragbarkeit durch direkten Kontakt von infizierten zu naiven Tieren untersucht werden, zum anderen die Übertragbarkeit ausschließlich über die Luft mittels Aerosolbildung. Die Versuche fanden unter BSL-3 Bedingungen statt, wobei die Transmissions-Käfige in einem isolierten Luftstromschrank mit vertikalem Luftaustausch (Ehret) untergebracht waren.

Abb. 8: Aufbau zur Evaluierung der Kontakt-Transmission bei Meerschweinchen. Jeweils ein naives Tier wird zusammen mit einem infizierten Tier über die Dauer des Versuchs in einem Käfig, bei ca. 22 °C und ca. 45 % Luftfeuchtigkeit, gehalten.

Für die Evaluierung der Kontakt-Transmission wurde jeweils ein infiziertes Meerschweinchen zusammen mit einem naiven Tier über die Versuchsduer von 14 Tagen in einem Käfig gehalten (Abb. 8.) Dabei wurde jeweils nach 1, 3, 6 und 9 Tagen nach Infektion (d p.i.) eine Nasenspülung zur Virustiter-Bestimmung im oberen Respirationstrakt von beiden Tieren durchgeführt (3.4.3).

Für die Evaluierung der Aerosol-Transmission wurden jeweils zwei Tiere aus einem Käfig mit einem der 2009 pandemischen H1N1 Influenzaviren infiziert. Zwei naive nicht-infizierte Tiere wurden dann über die Versuchsduer von 14 Tagen in einem zweiten Käfig in 10 cm
Entfernung im Luftstrom des ersten platziert (Abb. 9). Beide Käfige haben mit Drahtgitter perforierte Seitenwände, so dass der Luftstrom erst den Käfig mit den infizierten Tieren und dann ungehindert den Käfig mit den naiven Tieren passieren konnte. Der Abstand von 10 cm verhinderte jeglichen Kontakt der Tiere sowie eine Übertragung von Einstreu o.ä. von einem Käfig in den anderen. Es wurden jeweils 1, 3, 6 und 9 d p.i. eine Nasenspülung zur Virustiter-Bestimmung im oberen Respirationstrakt von allen Tieren durchgeführt (3.4.3).

Frettchen:
Frettchen wurden als gutes Tiermodell zur Charakterisierung sowohl der Pathogenität als auch der Transmission von Influenzaviren beschrieben (1.3.3; Belser et al., 2011b). In dieser Arbeit wurde die Transmissionsfähigkeit der untersuchten 2009 pandemischen Isolate über die Luft mittels Aerosolbildung neben Meerschweinchen auch in Frettchen untersucht. Die Versuche dafür fanden unter BSL-3 Bedingungen statt, wobei die Tiere in isolierten Transmissions-Käfigen untergebracht waren. Jeweils zwei Tiere wurden mit einem der 2009 pH1N1 Influenzaviren infiziert und in einem Käfig untergebracht. Einen Tag später wurden jeweils zwei naive nicht-infizierte Tiere in einem Käfig untergebracht, der mit dem Käfig der infizierten Tieren verbunden war (Abb. 10). Dadurch konnte ausgeschlossen werden, dass bei einer Transmission das für die Infektion verwendete Inokulum beteiligt ist. Da dies zum Zeitpunkt der Versuchsdurchführung mit Meerschweinchen nicht bekannt war, wurde es erst hier berücksichtigt. Die Luft wurde in den Käfig der infizierten Tiere eingeleitet und nach Passieren der Verbindung am Ende des Käfigs mit den nicht-infizierten Tieren wieder heraus geleitet. Ein Abstand von 10 cm und ein Drahtgitter in der Verbindung verhinderte dabei Kontakt der Tiere sowie eine Übertragung von Einstreu o.ä. von einem Käfig in den anderen. Es wurden jeweils 1, 3, 5, 6, 7, 8, 9, 11 und 13 d p.i. eine Nasenspülung zur Virustiter-Bestimmung im oberen Respirationstrakt von allen Tieren durchgeführt (3.4.3).

Abb. 10: Aufbau zur Evaluierung der Aerosol-Transmission bei Frettchen. Zwei naive Tiere werden in einem Käfig in 10 cm Entfernung im Luftstrom eines zweiten Käfigs mit zwei infizierten Tieren, bei ca. 20 °C und ca. 55 % Luftfeuchtigkeit, gehalten.
3.5 Histologische Methoden

3.5.1 Präparation von Gewebeschnitten

Infiltrations-Programm:
- Ethanol 70 % 1 h
- Ethanol 80 % 1 h
- Ethanol 90 % 1 h
- Ethanol 95 % 1 h
- Ethanol 100 % 1 h
- Ethanol 100 % 1,5 h
- Xylol I 1 h
- Xylol II 1 h
- Paraffin Typ 3 58 °C 1 h
- Paraffin Typ 3 58 °C 1 h
- Paraffin Typ 3 58 °C 1 h

3.5.2 Entparaffinierung und Rehydrierung von Gewebeschnitten
Vor der in situ-Hybridisierung oder einer Färbung der Paraffinschnitte wurden diese unmittelbar vor Verwendung entparaffiniert und rehydriert. Für die Gewebeschnitte dies am Institut für Pathologie des Universitätsklinikums Tübingen nach folgender Reihenfolge durchgeführt:
- Xylol 3 x 5 min
- Ethanol 100 % 5 min
- Ethanol 70 % 5 min
- Ethanol 40 % 1 min
3.5.3 in situ-Hybridisierung

3.5.3.1 Herstellung der in situ-Sonde

Für die Herstellung einer RNA-Sonde wird die sogenannte „run-off“-Methode verwendet. Dabei wird ein Fragment, komplementär zur Zielsequenz und von einem T7- bzw. T3-Promotor flankiert, in einen Transkriptionsvektor kloniert. Zusätzlich werden an beiden Seiten des klonierten Fragments Schnittstellen eingefügt, damit die transkribierten Inserts nach Linearisierung mit den entsprechenden Restriktionsenzymen eine definierte Länge haben. Da für die ISH in dieser Arbeit RNA der 2009 pH1N1 Influenzaviren in Gewebeschnitten detektiert werden sollte, wurde ein 374 bp langes Fragment des NP-Gens von A/Hamburg/NY1580/09 (pH1N1) in den Expressionsvektor pBluescript II KS+ (Stratagene) kloniert.

Für das Insert wurde, wie unter 3.1.4.1 beschrieben, mittels zweistufiger RT-PCR die DNA des NP-Gens spezifisch amplifiziert. Schnittstellen für einen Restriktionsverdau mit EcoRI und/oder KpnI (NEB) wurden mit Hilfe spezifischer Primer (3.1.2) in einem weiteren PCR-Ansatz eingeführt.

Schnittstellen-PCR: 5x Puffer 10 µl
dNTPs 10 mM 1 µl
Primer fw 10 mM 2,5 µl
Primer rv 10 mM 2,5 µl
Phusion Polymerase 1 µl
DNA Template 1 µl
ad 50 µl ddH$_2$O

Nach Aufreinigung mittels QIAquick PCR Purification Kit (QIAGEN) wurde mit dem PCR-Produkt anhand der eingefügten Schnittstellen ein doppelter Restriktionsverdau durchgeführt. Ebenso wurde mit dem Transkriptionsvektor pBluescript II KS+ (Stratagene) verfahren, in den das Insert anschließend über die Schnittstellen ligiert werden konnte.
Methoden

Doppelverdau-Ansatz:
- NEB Puffer 15 µl
- 10x BSA 5 µl
- EcoRI (20 U/µl) 1µl
- NotI (20 U/µl) 2µl
- DNA 2 µg oder Plasmid 2 µl
- *ad* 50 µl H₂O

Nach Doppelverdau wurde das Verhältnis von Vektor zu Plasmid mittels eines analytischen Agarosegels bestimmt (3.1.4.2). In der anschließenden Ligation wurde jeweils ein Ansatz mit einem Vektor:Insert-Verhältnis von 1:2, 1:5 und 1:10 eingesetzt.

Ligations-Ansatz:
- 10x Ligationspuffer 1 µl
- ATP 10 mM 1 µl
- T4-Ligase (4 U/µl) 0,5 µl
- ddH₂O 2,5 µl
- Vektor und Insert 1:2/ 1:5/ 1:10
 → 4 °C über Nacht

Für die Amplifikation wurden die Plasmide in *E. coli*-Bakterien transformiert (3.1.4.5). Nach anschließender Präparation der Plasmide (3.1.7) wurden diese mittels Restriktionsenzym KpnI linearisiert, um bei der folgenden *in vitro*-Transkription mit einer T7-RNA-Polymerase eine antisense-RNA-Sonde zu erhalten. Diese hybridisiert mit mRNA und cRNA des viralen NP-Proteins und ermöglicht dadurch den Nachweis von replizierenden 2009 pH1N1 Influenzaviren in den Gewebeschnitten.

Für die radioaktive Markierung der RNA-Sonde wurden 25 µCi ³⁵S-UTP mit einer Aktivität von 1300 Ci/mmol eingedampft und das Pellet in 10 µl Transkriptionslösung aufgenommen. Von der linearisierten Plasmid-DNA wurden 1 µg zusammen mit 20 U T7-RNA Polymerase hinzugegeben und der Ansatz für 90 Minuten bei 37 °C inkubiert. Anschließend wurde der Ansatz mit 20 Einheiten DNase I in 50 µl DEPC-H₂O bei 37 °C 20 min verdaut und die nicht eingebauten Nukleotide durch eine Säulenzentrifugation (Sephadex G50) abgetrennt. Nach Aufreinigung der RNA wurde das Pellet 2x mit 70 %igem Ethanol gewaschen, getrocknet und die RNA in DEPC-Wasser gelöst. Diesem wurden 10 mM Dithiotreitol (DTT) als Oxidationsschutz zugegeben. Die Aktivität der Proben wurde in einem Flüssigszintillationszähler (Packard) bestimmt. Die Länge der RNA-Fragmente wurde durch Agarosegelelektrophorese und anschließende Autoradiographie bestimmt (3.5.3.5).
3.5.3.2 Permeabilisierung der Gewebeschnitte

Vor der Hybridisierung wurden die Gefrierschnitte permaebilisiert um den Eintritt der RNA-Sonde in das Gewebe zu erleichtern. Dafür wurde folgendes Protokoll einer enzymatischen und chemischen Denaturierung durchgeführt. Im Anschluss wurden die Gewebeschnitte bei 37 °C ca. 30 Minuten lang getrocknet.

ddH2O 20 s
HCL 0,2 N 20 min
ddH2O 20 s
2x SSC bei 70 °C 30 min
ddH2O 20 s
Puffer für den Proteinase K Verdau mit 1 µg Proteinase K/ml bei 37 °C 15 min
2x ddH2O 20 s
2x Ethanol 70 % 3 min
Ethanol 100 % 5 min

3.5.3.3 Hybridisierung der Gewebeschnitte

Für die Hybridisierung der Proben wurden 14 µl Hybridisierungslösung auf die permeabilierten, getrockneten Gewebeschnitte aufgetragen und diese anschließend mit einem silikonisierten Deckgläschen abgedeckt. Nach Abdichten wurden die Objektträger 18 h lang bei 42 °C im Dunkeln inkubiert.

Die Hybridisierungslösung wurde wie folgt zusammengesetzt:

3x10^5 cpm/Gewebeschnitt in vitro transkribierte, hydrolysierte ^35S-H1N1-RNA-Sonde
50 % deionisiertes Formamid
Tris/HCl 10 mM pH 7,4
EDTA 1 mM pH 7,2
sonifizierte Salmon Sperm DNA/ml 200 µg
t-RNA (Kaninchenleber)/ml 100 µg

Die Komponenten wurden gut vermischt. Zur Denaturierung der Nukleinsäuren wurde die Mischung 5 min auf 100 °C erhitzt und für 10 min auf Eis gestellt. Anschließend wurden folgende Chemikalien zugegeben und erneut gemischt.

NaCl 600 mM
Dextransulfat 10 %
BSA, RNase-und DNase-frei 0,05 %
Ficoll 0,02 %
Polyvinylpyrrolidon 0,02 %
Dithiotreitol (DTT) 0,02 %
Natriumdodecylsulfat (SDS) 0,1 %
3.5.3.4 *Posthybridisierung*

2x SSC 2x 10 min
SSC 2x /50 % Formamid bei 42 °C 30 min
Puffer für RNase A Verdau mit 20 μg /ml RNase A bei 37 °C 30 min
Puffer für RNase A Verdau (ohne RNase A) bei 37 °C 30 min
SSC 2x /50 % Formamid bei 50 °C 30 min
SSC 2x bei 55 °C 60 min
Ethanol 70 % 3 min
Ethanol 100 % 3 min

3.5.3.5 *Autoradiographie und Entwicklung*

Die Visualisierung der hybridisierten RNA Sonde auf den Gewebeschnitten erfolgte mittels Autoradiographie und anschließender Entwicklung in der Dunkelkammer. Zum Befilmen der Objektträger wurden diese einzeln in, bei 43 °C verflüssigter, Filmemulsion getaucht und in einem Objektträgerkasten lichtdicht verpackt. Die anschließende Exponierung bei Raumtemperatur dauerte routinemäßig ca. 4 Wochen. Zur Entwicklung wurden die befilmtten Objektträger in Entwicklerlösung (Kodak D19, 8 g/100 ml) 4 min bei 18 °C inkubiert und 2 mal 20 s lang mit dH₂O gewaschen. Dann folgte 8 min Inkubation in Fixierlösung (Kodak Fixer, 18 g/100 ml) und ein finaler Waschschritt für 5 min. Die hybridisierte Sonde war nun als bestrahlter schwarzer Granula sichtbar, die nach zusätzlicher Hämatoxylin-Eosin Färbung (3.5.4) der Schnitte lichtmikroskopisch ausgewertet wurden.

3.5.4 *Hämatoxylin-Eosin Färbung*

dH₂O 2 min
Hämatoxylinlösung 4 min
dH₂O 10 s
Methoden

fließendes Leitungswasser 4 min
Eosin G-Lösung, wässrig, 1 % 30 s
3x dH₂O 15 s
2x Ethanol 70 % 15 s
2x Ethanol 90 % 15 s
2x Ethanol 100 % 15 s
3x Xylol 5 min

3.5.5 Immunhistochemische Färbung

Alternativ zur Virus-Detektion in Gewebeschnitten mittels *in situ*-Hybridisierung (3.5.3) wurden für diese Arbeit Viruspartikel in den Organen infizierter Mäuse durch immunhistochemischer Färbung nachgewiesen. Dabei wurde ein gegen das virale NP-Protein gerichteter Erstantikörper verwendet, der wiederum mittels Biotin-gekoppelten Zweitantikörpers detektiert werden konnte. Die Färbung wurde am Institut für Pathologie des Universitätsklinikums Tübingen durchgeführt. Aus den Organen wurden, wie unter 3.5.1 beschrieben, Gefrierschnitte angefertigt und vor der Färbung entparaffiniert (3.5.2). Die Gewebeschnitte wurden mit 0.1 M Citratpuffer (pH 6.0) renaturiert und anschließend mit dem Erstantikörper in einer 1:500 Verdünnung inkubiert. Dieser polyklonale Frettchen Antikörper (freundlicher Weise von der WHO zur Verfügung gestellt) ist gegen das A/Vic/3/75 (H3N2) Influenzavirus gerichtet und kreuzreagiert mit dem NP-Protein diverser Influenzavirus Subtypen (Gabriel *et al.*, 2011). Der biotinylierte Anti-Frettchen Zweitantikörper wurde mit einer Verdünnung von 1:200 verwendet (Rockland) und mit Hilfe des Zytomed-Plus HRP Kits (Zytomed) nach Herstellerangaben detektiert. Vor der lichtmikroskopischen Auswertung wurde eine HE-Gegenfärbung durchgeführt (3.5.4).
4 Ergebnisse

4.1 Klinische Isolate der 2009 pandemischen H1N1 Influenza (2009 pH1N1)

Die 22-jährige Patientin, von welcher das HH05 Isolat stammt, erkrankte nach einem Aufenthalt in Mexiko und wurde nach Aufnahme ins Krankenhaus mit dem Neuraminidase-Hemmer Oseltamivir behandelt (Tab. 2). Der Krankheitsverlauf wurde als mild mit erhöhter Körpertemperatur sowie erhöhten Werten des C-reactiven Proteins (CRP) und der Leukozyten (WBC), welche beide auf eine entzündliche Erkrankung hindeuten, beschrieben. Der 29-jährige Patient, von dem das HH15 Isolat stammt, kam vor seiner Aufnahme ins Krankenhaus aus New York. Er wurde ebenfalls direkt nach Aufnahme mit Oseltamivir behandelt, erhielt aber zusätzlich intravenös Flüssigkeit und eine symptomatische Behandlung (Tab. 2). Der Krankheitsverlauf dieses Patienten war ebenfalls mild mit erhöhter Körpertemperatur, vergleichbar erhöhtem CRP-Wert und erhöhter Leukozytenzahl wie bei der HH05-Patientin.

Tab. 2: Daten beider Patienten und deren Krankheitsverlauf der 2009 pandemischen H1N1 Influenza.

<table>
<thead>
<tr>
<th></th>
<th>A/Hamburg/05/09</th>
<th>A/Hamburg/NY1580/09</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→ HH05 (pH1N1)</td>
<td>→ HH15 (pH1N1)</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>Weiblich</td>
<td>Männlich</td>
</tr>
<tr>
<td>Geburtsjahr</td>
<td>1987</td>
<td>1980</td>
</tr>
<tr>
<td>Erstes Auftreten von Symptomen</td>
<td>25.04.09</td>
<td>05.06.09</td>
</tr>
<tr>
<td>Krankenhausaufnahme</td>
<td>28.04.09</td>
<td>07.06.09</td>
</tr>
<tr>
<td>Krankenhausaufenthalt</td>
<td>6 Tage</td>
<td>5 Tage</td>
</tr>
<tr>
<td>Aufenthaltsort vor Erkrankung</td>
<td>Mexiko</td>
<td>USA (New York)</td>
</tr>
<tr>
<td>Bekannte Vorerkrankungen</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Medikation</td>
<td>Oseltamivir</td>
<td>Oseltamivir</td>
</tr>
<tr>
<td></td>
<td>Acetylcystein</td>
<td>Metamizol</td>
</tr>
<tr>
<td>Krankheitsverlauf</td>
<td>Mild, typische Symptome einer Influenzavirusinfektion</td>
<td>Mild, typische Symptome einer Influenzavirusinfektion</td>
</tr>
<tr>
<td>Max. Körpertemperatur</td>
<td>39 °C</td>
<td>39,8 °C</td>
</tr>
<tr>
<td>CRP [<=0,5 mg/dl]</td>
<td>25</td>
<td>23,6</td>
</tr>
<tr>
<td>WBC [3,8-11,9 Mrd/l]</td>
<td>3,7</td>
<td>3,2</td>
</tr>
</tbody>
</table>

Aufgeführt sind alle vergleichbaren, übermittelten Daten der beiden 2009 pH1N1 Patienten, welche im Universitätskrankenhaus Eppendorf bzw. der Asklepios Klinik Hamburg stationiert waren. Die Virusproben wurden vor antiviraler Behandlung mittels Rachenabstrich isoliert. Der Blutwert für das C-reaktive Protein (CRP) und die Leukozyten (WBC) sind für Tag 4 nach Auftreten der Symptome angegeben.

4.2 Sequenzanalyse der 2009 pH1N1 Virusisolate

Um die 2009 pandemischen H1N1 Isolate auf molekularer Ebene zu charakterisieren, wurde deren Genom sequenziert (3.1.3) und alle viralen Gensegmente mittels Sequenzalignment verglichen.

Das HH15 Isolat unterscheidet sich in 12 Aminosäuren von HH05 (Tab. 3). Im viralen Ribonukleoproteinkomplex (vRNP) sind jeweils zwei Punktmutationen in den Polymeraseuntereinheiten PB2 und PA und drei Austausche im Polymerase-assoziierten Nukleoprotein (NP) aufgetreten (Tab. 3). In den Oberflächenproteinen, welche eine wichtige Rolle bei der Erkennung von Antikörpern spielen, gibt es einen Aminosäureaustausch im HA und drei im NA (Tab. 3). Der Interferon Antagonist NS1 von...
HH15 unterscheidet sich in einer Aminosäure von HH05 (Tab. 3). Die viralen Proteine PB1 und M wiesen keine Unterschiede in der Aminosäuresequenz auf.

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>PB2</th>
<th>PA</th>
<th>NP</th>
<th>HA</th>
<th>NA</th>
<th>NS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH05</td>
<td>K</td>
<td>R</td>
<td>I</td>
<td>V</td>
<td>I</td>
<td>S</td>
</tr>
<tr>
<td>HH15</td>
<td>N</td>
<td>K</td>
<td>V</td>
<td>M</td>
<td>I</td>
<td>T</td>
</tr>
</tbody>
</table>

Die Nukleotidsequenz beider 2009 pH1N1 Isolate wurde nach zwei unabhängigen Sequenzierungen (3.1.3) in einem Alignment verglichen. Die Unterschiede im Genotyp der beiden Isolate sind hier gezeigt. Dabei unterscheidet sich das Genom der beiden Isolate in der Polymeraseuntereinheit PB2 und PA, dem Nukleoprotein (NP), den Oberflächenproteinen Hämagglutinin (HA) und Neuraminidase (NA) und dem Nichtstrukturprotein 1 (NS1). Die Nummerierung der Aminosäuren im HA entsprechen der H1- und im NA der N1-Nummerierung.

4.3 Wachstumsverhalten der 2009 pH1N1 Influenzaviren in humanen Lungenzellen

Für die Charakterisierung der beiden klinischen 2009 pH1N1 Isolate HH05 und HH15 (4.1) wurde jeweils ein Arbeitsstock angelegt (3.3.1). Anschließend wurde deren Wachstumsverhalten in humanen Zellen charakterisiert, wobei zusätzlich ein alt-saisonales H1N1 Isolat aus 2006 (A/Solomon Islands/3/06-like) sowie ein humanes HPAIV-Isolat (A/Thailand/KAN-1/04 (H5N1)) als Referenz verwendet wurden. Hierfür wurde eine Viruskinetik in der humanen Lungenepipethelzelllinie A549 erstellt (Abb. 11). Die Zellen wurden infiziert und der Virustiter 24, 48, 72 und 96 Stunden nach der Infektion im Kulturüberstand bestimmt (3.3.6).

Das alt-saisonale H1N1 Virus replizierte effizient in humanen Lungenzellen mit dem höchsten Titer von ca. 4 log p.f.u./ml 48 Stunden nach Infektion (Abb. 11). Die 2009 pandemischen H1N1 Isolate replizierten zu vergleichbaren Virustitern wie das alt-saisonale H1N1, wobei HH15 (pH1N1) über den untersuchten Zeitraum von 96 Stunden im Mittel zehnfach höhere Titer erreichte als HH05 (pH1N1) (Abb. 11). Das humane H5N1 replizierte trotz niedrigerer Infektionsdosis mit einer um vier bis fünf Logstufen höheren Replikationseffizienz im Vergleich zum alt-saisonalen H1N1 und den 2009 pH1N1 Isolaten und erreichte Virustiter von bis zu 8 log p.f.u./ml (Abb. 11).
Ergebnisse

Abb. 11: Wachstumsverhalten von alt-saisonalen H1N1, HH05 und HH15 (pH1N1) und humanen H5N1 Influenzaviren in humanen Lungenzellen. Humane Lungenepipithelzellen (A549) wurden mit einer MOI von 0,01 des alt-saisonalen H1N1, des HH05 (pH1N1), des HH15 (pH1N1) und MOI=0,001 des humanen H5N1 Influenzavirus infiziert. Jeweils 24, 48, 72 und 96 Stunden nach Infektion (h p.i.) wurde Überstand abgenommen und der Titer mittels Plaquetest (3.3.6) bestimmt. Dargestellt ist jeweils der Virustiter mit der Standardabweichung zweier unabhängiger Experimente.

Aus diesen Ergebnissen kann man schließen, dass sich die Replikation der 2009 pH1N1 Influenzaviren in humanen Lungenepipithelzellen nicht von der eines alt-saisonalen H1N1 unterscheidet. Das HH15 Virusisolat führt dabei tendenziell zu höheren Virustitern als das HH05 Virusisolat.

4.4 Charakterisierung der 2009 pH1N1 Influenzaviren im Mausmodell

Ergebnisse

alt-saisonalen H1N1 Isolat A/Solomon Islands/3/06-like und dem humanen HPAIV-Isolat A/Thailand/KAN-1/04 (H5N1) infiziert. Das humane H5N1 Virus stammt von einem fünfjährigen Jungen, der an den Folgen der Infektion verstarb (Puthavathana et al., 2005).

4.4.1 Pathogenität und Virulenz der 2009 pH1N1 Viren im Vergleich zu alt-saisonaler H1N1 und humaner H5N1 Influenza in BALB/c und C57BL/6J Mäusen

BALB/c und C57BL/6J Mäuse wurden mit beiden klinischen 2009 pH1N1 Isolaten sowie dem alt-saisonalen H1N1 Influenzavirus als Referenz mit einer Dosis von 10^5 p.f.u. intranasal infiziert. Für das humane H5N1 Virus hingegen wurde eine Dosis von 10^2 p.f.u. für die Infektion eingesetzt, da dieses Virus als hochvirulent für Mäuse beschrieben wurde (Gabriel et al., 2011).

In C57BL/6J Mäusen führte die Infektion mit alt-saisonalem H1N1 erwartungsgemäß, wie auch bei BALB/c Mäusen, nur zu einem geringen Gewichtsverlust mit einer Überlebensrate von 100 % (Abb. 12C,D). Die Infektion mit dem 2009 pH1N1 Isolat HH05 hingegen hatte in C57BL/6J Mäusen im Mittel einen Verlust von ca. 20 % des Ausgangsgewichts zur Folge und nur 66 % der Tiere überlebten (Abb. 12C,D). C57BL/6J Mäuse infiziert mit dem 2009 pH1N1 Isolat HH15 erlagen dagegen vollständig der Infektion bei gleicher Dosis mit einer Letalität von 100 % (Abb. 12C). Wie erwartet führte das humane H5N1 Influenzavirus, wie auch in BALB/c Mäusen, zu einer Letalität von 100 % (Abb. 12C).

Für einen Vergleich der Virulenz des alt-saisonalen H1N1, der 2009 pH1N1 Isolate und des humanen H5N1 in beiden Mäusestämmen wurden, wie unter 3.4.2 beschrieben, die entsprechenden MLD$_{50}$ Werte bestimmt, also die Dosis eines Virus bei der 50 % der jeweiligen Mäuse nach Infektion versterben.
Ergebnisse

Abb. 12: Überlebensrate und Gewichtsverlust von alt-saisonalen H1N1-, HH05- (pH1N1), HH15- (pH1N1) und humanen H5N1-infizierten BALB/c und C57BL/6J Mäusen. BALB/c (A,B) oder C57BL/6J Mäuse (C,D) wurden mit 10^5 p.f.u. des alt-saisonalen H1N1 (n=14), HH05 (pH1N1) (n=21) und HH15 (pH1N1) (n=21), sowie mit 10^2 p.f.u. des humanen H5N1 (n=20) infiziert. Kontrolltiere wurde ausschließlich PBS verabreicht. Anschließend wurden die Tiere 14 Tage lang auf Gewichtsverlust (B,D) und Überleben (A,C) überprüft (d p.i. Tage nach Infektion).

Die MLD$_{50}$ Werte aus Tab. 4 zeigten, dass im BALB/c Modell das alt-saisonale H1N1 sowie beide 2009 pH1N1 Influenzaviren mit einer MLD$_{50}$ von >6 log p.f.u. niedrigpathogen waren. Das humane H5N1 Influenzavirus hingegen hatte einen MLD$_{50}$ Wert von 0,3 und war damit hochpathogen für BALB/c Mäuse. Im C57BL/6J Mausmodell war das alt-saisonale H1N1 mit einer MLD$_{50}$ von >6 log p.f.u. ebenso wenig letal wie im BALB/c-Modell (Tab. 4). Korrelierend mit dem Überlebensversuch in Abb. 12 zeigten die 2009 pH1N1 Isolate jedoch eine erhöhte Virulenz in C57BL/6J Mäusen, welche sich auch untereinander unterschied. Das HH15 Virus war in diesem Mausmodell mit einer MLD$_{50}$ von 3,5 log p.f.u., etwa 50-fach letaler als das HH05 Virus, für welches eine MLD$_{50}$ von 5,2 log p.f.u. bestimmt wurde (Tab. 4). Das humane H5N1 war mit einem Wert von 1,8 log p.f.u. auch in C57BL/6J Mäusen hochpathogen, wobei in BALB/c Mäusen die Virulenz sogar noch höher war (Tab. 4).

Zusammenfassend bestätigen diese Ergebnisse, dass das alt-saisonale H1N1 niedrigpathogen und das humane H5N1 Influenzavirus hochpathogen in beiden Mausmodellen ist. Beide 2009 pandemische H1N1 Influenzaviren sind niedrigpathogen in BALB/c Mäusen mit einer vergleichbar niedrigen Virulenz ähnlich der des alt-saisonalen H1N1 Influenzavirus. Im Gegensatz dazu konnte gezeigt werden, dass die C57BL/6J Mäuse

Tab. 4: MLD₉₀ Werte von alt-saisonalen H1N1, HH05 (pH1N1), HH15 (pH1N1) und humanen H5N1 Influenzaviren in BALB/c und C57BL/6J Mäusen.

| MLD₉₀ |
saisonales H1N1 | HH05 (pH1N1) | HH15 (pH1N1) | humanes H5N1 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BALB/c</td>
<td>> 6</td>
<td>> 6</td>
<td>> 6</td>
<td>0,3</td>
</tr>
<tr>
<td>C57BL/6J</td>
<td>> 6</td>
<td>5,2</td>
<td>3,5</td>
<td>1,8</td>
</tr>
</tbody>
</table>

BALB/c und C57BL/6J Mäuse wurden mit seriellen zehnfach-Verdünnungen (10⁶ p.f.u. - 10⁰ p.f.u.) des alt-saisonalen H1N1, der beiden 2009 pandemischen H1N1-Viren und des humanen H5N1 infiziert. Die Überlebensraten wurden über einen Verlauf von 14 Tagen dokumentiert und die MLD₉₀ mittels der von Reed und Muench beschriebenen Methode berechnet (Reed und Muench, 1938).

4.4.2 Organtropismus der 2009 pH1N1 Viren im Vergleich zu alt-saisonaler H1N1 und humaner H5N1 Influenza in BALB/c und C57BL/6J Mäusen

Die Ausbreitung von alt-saisonalen H1N1, 2009 pH1N1 und humanen H5N1 Influenzaviren im Mäuseorganismus wurde durch eine Virustiter-Bestimmung in Lunge, Gehirn und Darm der infizierten Tiere untersucht (3.3.6).

Auch im C57BL/6J Mausmodell unterschieden sich die Virustiter in der Lunge 3 d p.i. nicht innerhalb der verschiedenen Influenzaviren (Abb. 13B). Dies war, im Gegensatz zu den BALB/c Mäusen, auch 6 d p.i. der Fall. Signifikante extrapulmonale Virustiter wurden in C57BL/6J Mäusen nur im Darm von HH15-infizierten Tieren nachgewiesen (Abb. 13B).

Die Virustiter in der Lunge von BALB/c Mäusen korrelieren demnach 6 d p.i. mit der Pathogenität des jeweiligen Influenzavirus mit den niedrigsten Virustitern des niedrigpathogenen alt-saisonalen H1N1 und den höchsten Titern nach Infektion mit dem hochpathogenen humanen H5N1. Im Gegensatz dazu spiegeln die Virustiter in den Lungen der infizierten C57BL/6J Mäuse auch nach sechs Tagen die differenzielle Virulenz verschiedener Virusisolate, wie unter 4.4.1 gezeigt, nicht wider. Demzufolge lässt die
Ergebnisse

Viruslast in der Lunge von infizierten C57BL/6J Mäusen, im Gegensatz zu der in BALB/c Mäusen, keinen Rückschluss auf Pathogenität und Virulenz von Influenzaviren in diesem Mausmodell zu.

Der Organtropismus des alt-saisonalen H1N1 und der des 2009 pH1N1 Isolats HH05 beschränkt sich in beiden Mausmodellen auf die Lunge. Das HH15 Isolat hingegen, welches in C57BL/6J Mäusen hochvirulent ist, scheint sich nach Infektion auch auf den Darm von Tieren dieses Mäusestamms auszubreiten. Ein extrapulmonaler Organtropismus wurde bereits mehrfach für H5N1-infizierte Mäuse beschrieben (Maines et al., 2005) und ist auch hier für das BALB/c Mausmodell im Gehirn der Fall.

4.4.3 Virustropismus der 2009 pH1N1 Viren im Vergleich zu alt-saisonaler H1N1 und humaner H5N1 Influenza in der Lunge von BALB/c und C57BL/6J Mäusen

Für die Analyse der pathologischen Veränderungen in den Lungen infizierter Mäuse sowie des Virustropismus in diesem Organ wurden histologische Schnitte angefertigt und eine Immunfärbung gegen das kreuzreaktive NP Protein von Influenzaviren durchgeführt (3.5.5). Dafür wurden BALB/c und C57BL/6J Mäuse mit dem alt-saisonalen H1N1, HH05 (pH1N1), HH15 (pH1N1) oder dem humanen H5N1 Influenzavirus infiziert und nach sechs Tagen die Lungen entnommen (3.4.3).

Auch in den Lungenschnitten alt-saisonaler H1N1-infizierter C57BL/6J Mäuse zeigten sich mononukleäre Infiltrationen des Interstitiums mit einigen infizierten Alveolar- und Bronchialzellen (Abb. 14G). Die Lungen von HH05-infizierten C57BL/6J Mäuse waren wiederum höhergradig entzündet als die der alt-saisonalen H1N1-infizierten und wiesen dilatierte Kapillaren und eine vergleichsweise größere Anzahl infizierter Zellen auf (Abb. 14H). Das 2009 pandemische H1N1 Isolat HH15 verursachte in den Lungen der C57BL/6J
Ergebnisse

Mäuse hochgradige Veränderungen mit sichtbaren Alveolar- und Bronchialepithelzellnekrosen (Abb. 14I). Im Vergleich zu HH05 waren hier mehr Zellen positiv für das Virusantigen. Das humane H5N1 zeigte im C57BL/6J-Mausmodell, im Vergleich zu den anderen Influenzaviren, eine höchstgradige Zerstörung der Lungenstruktur mit diversen Virus-infizierten Lungenepithelzellen und Hämorrhagien (Abb. 14J).

Abb. 14: Immunhistologische Färbung von Lungenschnitten von alt-saisonalen H1N1-, HH05 (pH1N1)-, HH15 (pH1N1)- und humanen H5N1-infizierten BALB/c und C57BL/6J Mäusen. BALB/c (obere Reihe) und C57BL/6J Mäuse (untere Reihe) wurden mit 10⁵ p.f.u. des alt-saisonalen H1N1 (B,G), HH05 (pH1N1) (C,H) und HH15 (pH1N1) (D,I), sowie mit 10² p.f.u. des humanen H5N1 (E,J) infiziert. Kontrolltiere wurde ausschließlich PBS verabreicht (A,F). An Tag sechs nach Infektion (6 d p.i.) wurden jeweils drei Tiere getötet und die Lungen entnommen (3.4.3). Die Schnitte wurden immunhistologisch gegen das Influenzaantigen und anschließend mit H&E gefärbt (3.5.4; 3.5.5). Antigen-positive Zellen haben eine rot-braune Färbung und sind zum Teil mit Pfeilen markiert (←). Auffällig stark infiltrierte Gewebebereiche sind durch einen Stern markiert (*). Die lichtmikroskopischen Bilder wurden in einer 400fachen-Vergrößerung aufgenommen.

4.4.4 Blutbild nach Infektion mit 2009 pH1N1, alt-saisonaler H1N1 und humaner H5N1 Influenza in BALB/c und C57BL/6J Mäusen

Die Bestimmung von Parametern im Blut kann wichtige Hinweise bezüglich der Immunbeteiligung einer Erkrankung liefern. Ein Blutbild kann einfach und minimalinvasiv mittels eines Hämatologiegerätes erstellt werden (3.4.5). BALB/c und C57BL/6J Mäuse wurden mit alt-saisonalen H1N1, HH05 (pH1N1), HH15 (pH1N1) oder humanen H5N1 Influenzaviren infiziert und jeweils nach drei und sechs Tagen eine Blutprobe entnommen (3.4.3). Es wurden die absoluten Zellzahlen von Leukozyten (WBC), Erythrozyten (RBC), Thrombozyten (PTL), Lymphozyten (LYM) und Granulozyten (GRA), sowie der Hämoglobingehalt (HGB) und der Hämatokritanteil (HCT) im Blut von BALB/c (Tab. 5) und C57BL/6J Mäusen (Tab. 6) bestimmt.

Tab. 5: Blutparameter von alt-saisonalen H1N1-, HH05 (pH1N1)-, HH15 (pH1N1)- und humanen H5N1-infizierten BALB/c Mäusen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Kontrolle</th>
<th>saisonales H1N1</th>
<th>HH05 (pH1N1)</th>
<th>HH15 (pH1N1)</th>
<th>humanes H5N1</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC [10³/mm³]</td>
<td>7,3 ± 1,8</td>
<td>5,3 ± 1,1</td>
<td>7,3 ± 1,3</td>
<td>5,0 ± 1,4</td>
<td>7,4 ± 1,3</td>
</tr>
<tr>
<td>RBC [10³/mm³]</td>
<td>10,7 ± 0,7</td>
<td>9,4 ± 0,4</td>
<td>9,9 ± 0,1</td>
<td>10,4 ± 1,6</td>
<td>11,3 ± 0,8</td>
</tr>
<tr>
<td>HGB [g/dl]</td>
<td>19,0 ± 1,2</td>
<td>17,3 ± 1,0</td>
<td>17,4 ± 0,4</td>
<td>18,7 ± 2,4</td>
<td>19,9 ± 1,2</td>
</tr>
<tr>
<td>HCT [%]</td>
<td>49,6 ± 1,7</td>
<td>46,4 ± 3,0</td>
<td>49,8 ± 0,3</td>
<td>48,0 ± 7,2</td>
<td>52,1 ± 3,9</td>
</tr>
<tr>
<td>PLT [10³/mm³]</td>
<td>823 ± 227</td>
<td>1007 ± 218</td>
<td>967 ± 101</td>
<td>620 ± 410</td>
<td>778 ± 484</td>
</tr>
<tr>
<td>LYM [10³/mm³]</td>
<td>5,4 ± 1,1</td>
<td>3,6 ± 0,7</td>
<td>4,8 ± 1,0</td>
<td>3,5 ± 1,2</td>
<td>4,1 ± 1,2</td>
</tr>
<tr>
<td>GRA [10³/mm³]</td>
<td>1,9 ± 0,9</td>
<td>1,7 ± 0,5</td>
<td>2,5 ± 0,4</td>
<td>1,5 ± 0,3</td>
<td>3,3 ± 0,2</td>
</tr>
</tbody>
</table>

Jeweils 3-5 BALB/c Mäuse wurden mit 10⁵ p.f.u. des alt-saisonalen H1N1, HH05 (pH1N1) und HH15 (pH1N1), sowie 10² p.f.u. des humanen H5N1 Virus infiziert. Kontrolltieren wurde ausschließlich PBS verabreicht. An Tag drei und sechs nach Infektion (3 und 6 d.p.i.) wurden je Tier ca. 50 µl Vollblut entnommen und die Parameter mittels eines Hämatologiegerätes bestimmt (3.4.3; 3.4.5). Dargestellt sind die Parameter mit Standardabweichung (±) für Leukozyten (WBC), Erythrozyten (RBC), Thrombozyten (PTL), Lymphozyten (LYM) und Granulozyten (GRA) sowie der Hämoglobingehalt (HGB) und der Hämatokritanteil (HCT). Die statistische Signifikanz (p ≤ 0,05) der Parameter wurde durch einen Student’s-t-Test, im Vergleich zu alt-saisonalen H1N1-infizierten Tieren ermittelt (unterstrichen).

An 3 d.p.i. waren die Leukozyten, im Vergleich mit den Kontrolltieren, bei allen infizierten BALB/c Mäusen erniedrigt (Tab. 5). Dies ist eine zu erwartende Reaktion der angeborenen Immunabwehr auf eine Virusinfektion. An 6 d.p.i. hatten sich die Leukozyten von BALB/c
Mäusen, welche mit dem alt-saisonalen H1N1 bzw. den 2009 pH1N1 Isolaten infiziert wurden, wieder vergleichbar zur nicht-infizierten Kontrollgruppe normalisiert (Tab. 5). Die H5N1-Infektion in diesem Mausmodell führte hingegen 6 d p.i. im Vergleich zu alt-saisonaler H1N1-Infektion zu stark verringerten Leukozytenwerten, die mit einer signifikanten Lymphopenie einhergingen (Tab. 5). Eine signifikante Veränderung im Blutbild war auch ein erhöhter Hämatokritwert in H5N1-infizierten BALB/c Mäusen (Tab. 5). Dieser lässt eine gesteigerte Hämoglobinfreisetzung aufgrund eines hämorrhagischen Krankheitsverlaufs vermuten.

Tab. 6: Blutparameter von alt-saisonalen H1N1-, HH05 (pH1N1)-, HH15 (pH1N1)- und humanen H5N1-infizierten C57BL/6J Mäusen.

<table>
<thead>
<tr>
<th></th>
<th>Kontrolle</th>
<th>saisonales H1N1</th>
<th>HH05 (pH1N1)</th>
<th>HH15 (pH1N1)</th>
<th>humanes H5N1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 d.p.i.</td>
<td>6 d.p.i.</td>
<td>3 d.p.i.</td>
<td>6 d.p.i.</td>
<td>3 d.p.i.</td>
</tr>
<tr>
<td>WBC [10⁹/mm³]</td>
<td>9.4 ± 2.8</td>
<td>10.3 ± 1.2</td>
<td>9.8 ± 1.0</td>
<td>5.5 ± 1.4</td>
<td>10.2 ± 0.5</td>
</tr>
<tr>
<td>RBC [10⁹/mm³]</td>
<td>9.8 ± 1.3</td>
<td>10.9 ± 0.3</td>
<td>9.3 ± 6.0</td>
<td>11.3 ± 0.8</td>
<td>9.9 ± 0.7</td>
</tr>
<tr>
<td>HGB [g/dl]</td>
<td>15.1 ± 2.0</td>
<td>16.8 ± 0.4</td>
<td>14.6 ± 0.7</td>
<td>17.7 ± 1.4</td>
<td>15.4 ± 0.8</td>
</tr>
<tr>
<td>HCT [%]</td>
<td>48.1 ± 6.9</td>
<td>47.6 ± 1.5</td>
<td>40.7 ± 2.0</td>
<td>48.6 ± 3.9</td>
<td>41.7 ± 2.9</td>
</tr>
<tr>
<td>PLT [10⁹/mm³]</td>
<td>1051 ± 303</td>
<td>779 ± 260</td>
<td>1248 ± 76</td>
<td>1541 ± 172</td>
<td>1417 ± 289</td>
</tr>
<tr>
<td>LYM [10⁹/mm³]</td>
<td>7.9 ± 2.3</td>
<td>8.2 ± 1.0</td>
<td>8.0 ± 0.8</td>
<td>3.8 ± 1.3</td>
<td>6.1 ± 0.8</td>
</tr>
<tr>
<td>GRA [10⁹/mm³]</td>
<td>1.6 ± 0.6</td>
<td>2.1 ± 0.4</td>
<td>1.8 ± 0.2</td>
<td>1.6 ± 0.2</td>
<td>4.1 ± 0.8</td>
</tr>
</tbody>
</table>

Jeweils 3 - 5 C57BL/6J Mäuse wurden mit 10⁵ p.f.u. des alt-saisonalen H1N1, HH05 (pH1N1) und HH15 (pH1N1) sowie 10² p.f.u. des humanen H5N1 Virus infiziert. Kontrolltieren wurde ausschließlich PBS verabreicht. An Tag drei und sechs nach Infektion (3 und 6 d.p.i.) wurden je Tier ca. 50 µl Vollblut entnommen und die Parameter mittels eines Hämatologiegerätes bestimmt (3.4.3; 3.4.5). Dargestellt sind die Parameter mit Standardabweichung (±) für Leukozyten (WBC), Erythrozyten (RBC), Thrombozyten (PTL), Lymphozyten (LYM) und Granulozyten (GRA) sowie der Hämoglobingehalt (HGB) und der Hämatokritanteil (HCT). Die statistische Signifikanz (p≤0.05) der Parameter wurde durch einen Student’s-t-Test, im Vergleich zu alt-saisonalen H1N1-infizierten Tieren ermittelt (unterstrichen).

Im C57BL/6J Mausmodell waren 3 d.p.i. nach 2009 pH1N1-Infektion im Vergleich zu alt-saisonaler H1N1-Infektion die Leukozyten- sowie die Lymphozytenwerte signifikant erniedrigt (Tab. 6). 6 d.p.i. hatten die Leukozyten und Lymphozyten bei der HH05-Infektion der C57BL/6J Mäuse, im Gegensatz zur HH15-Infektion, wieder Normalwerte erreicht (Tab. 6). Ebenso wie bei den HH15-infizierten Tieren kam es 6 d.p.i. auch bei den H5N1-infizierten C57BL/6J Mäusen zu einer Lymphopenie mit signifikant erniedrigten Leukozytenwerten (Tab. 6). Andere Blutparameter während der Infektion mit den 2009 pH1N1 Isolaten oder
Ergebnisse

H5N1 unterschieden sich in diesem Mausmodell weder von denen der alt-saisonalen H1N1-Infektion, noch von denen der nicht-infizierten Kontrolltiere.

4.4.5 Th1/Th2-Immunantwort nach Infektion mit pH1N1, alt-saisonaler H1N1 und humaner H5N1 Influenza in BALB/c und C57BL/6J Mäusen

Einer der am besten untersuchten Unterschiede zwischen den BALB/c und C57BL/6J Inzucht-Mausstämmen ist die Polarisierung der Immunantwort von T-Helferzellen (Th) (Heinzel et al., 1989). C57BL/6J Mäuse bilden eine stärkere Th1-Antwort aus, wobei die aktivierten T-Lymphozyten Zytokine ausschütten, die an der zellulären Immunabwehr beteiligt sind. In BALB/c Mäusen hingegen kommt es zur Aktivierung einer größeren Anzahl an Typ 2 T-Helferzellen, welche in der humoralen Immunantwort eine maßgebliche Rolle spielen. Für einen optimalen Schutz gegen Krankheitserreger sollten sich beide Th-Antworten in einem ausbalancierten Verhältnis befinden.

Die Aktivierung des Immunsystems während der Infektion beider Maustämme wurde für diese Arbeit durch die Analyse der Proteinlevel von Th-Zellen ausgeschütteter Zytokine untersucht. Die Zytokinmengen der Typ1-Zytokine TNF-α, IFN-γ und MCP-1 und der Th2-Zytokine IL-4, IL-6 und IL-10 (Heinzel et al., 1989; Kidd, 2003) wurden zum einen direkt in der Lunge der infizierten Mäuse untersucht und zum anderen für eine systemische Bestimmung im Serum (Abb. 15). Hierfür wurden BALB/c und C57BL/6J Mäuse mit alt-saisonalen H1N1, HH05 (pH1N1), HH15 (pH1N1) oder humanen H5N1 Influenzaviren infiziert und nach sechs Tagen die Lungen sowie Blutproben entnommen (3.4.3).
Abb. 15: Lokale und systemische Level von Th1- (TNF-α, IFN-γ, MCP-1) und Th2- Zytokinen (IL-4, IL-6, IL-10) in alt-saisonalen H1N1-, HH05 (pH1N1)-, HH15 (pH1N1)- und humanen H5N1-infizierten BALB/c und C57BL/6J Mäusen. BALB/c (graue Balken) oder C57BL/6J Mäuse (schwarze Balken) wurden mit 10^5 p.f.u. des alt-saisonalen H1N1, HH05 (pH1N1) und HH15 (pH1N1) sowie mit 10^2 p.f.u. des humanen H5N1 infiziert. Kontrolltieren wurde ausschließlich PBS verabreicht. An Tag 6 nach Infektion wurden jeweils die vereinigten Lungenhomogenate von drei Tieren (A,B) und die vereinigten Serumproben von 4 – 6 Tieren (C,D) im Duplett einem enzymgekoppelten Immunoabsorptions-Assay (ELISA; 3.1.10) unterzogen. Dabei wurden in zwei unabhängigen Durchläufen die Proteinlevel von Typ1-Zytokinen Tumornekrosefaktor-α (TNF-α), Interferon-γ (IFN-γ) und monocyte chemotactic protein-1 (MCP-1) (A,C) und Th2-Zytokinen Interleukin-4 (IL-4), Interleukin-6 (IL-6) und Interleukin-10 (IL-10) (B,D) bestimmt. Werte unter dem Detektionslimit des Assays wurden als „nicht detektiert“ (n.d.) gekennzeichnet. Die statistische Relevanz wurde durch einen Student’s-t-Test ermittelt (* entspricht p≤0,05; ** entspricht p≤0,01).
4.5 Rekombinante 2009 pH1N1 Influenzaviren (2009 pH1N1rek)

4.5.1 Generierung von 2009 pH1N1rek Influenzaviren

Für eine Analyse der viralen Determinanten von HH05 und HH15 (pH1N1), die im C57BL/6J Mausmodell zu einer differenziellen Pathogenität geführt haben (4.4), wurden rekombinante 2009 pH1N1 Influenzaviren (2009 pH1N1rek) generiert. Dafür wurden, wie unter 3.3.2 beschrieben, die viralen Gensegmente in Expressionsvektoren integriert und anschließend für die Rekonstruktion von Viruspartikeln in Zellen transfiziert. Neben den rekombinanten 2009 pH1N1 Viren der parentalen Wildtypisolate (wt) HH05wt und HH15wt wurden auch Reassortanten beider Isolate hergestellt, zum einen 7+1 Einzelgenreassortanten, wobei jeweils ein Genomsegment des höher pathogenen HH15 Virusisolats mit den übrigen Genomsegmenten des HH05 Influenzavirus kombiniert wurde. Dies wurde jedoch nur mit HH15-Segmenten durchgeführt, die sich von HH05 unterscheiden (PB2, PA, HA, NP, NA, NS). Zum anderen wurden auch eine 6+2-Reassortante, mit den beiden Oberflächenproteinen HA und NA von HH15, sowie eine 5+3-Reassortante, mit den vRNP Segmenten PB2, PA und NP von HH15 im Hintergrund von HH05, hergestellt. Anhand dieser Reassortanten sollte des Weiteren untersucht werden, welche Genomsegmente von HH15 maßgeblich zur erhöhten Pathogenität, im Vergleich zu HH05, in C57BL/6J Mäusen beitragen (4.5.2.1). Mit den 6+2- und 5+3-Reassortanten sollten auch Unterschiede des Phänotyps untersucht werden können, die durch eine Wechselwirkung von funktionell interagierenden viralen Faktoren vermittelt werden. Für die Bestimmung einzelner Aminosäuren als Pathogenitätsdeterminanten, wurde für Genomsegmente von HH15, die sich an mehreren Sequenzpositionen von HH05 unterschieden, Punktmutanten hergestellt. Dafür wurden mittels zielgerichteter Mutagenese (3.1.5) die einzelnen HH15-spezifischen Aminosäureaustausche in das entsprechende Gen von HH05 eingeführt. Die so generierten
Reassortanten und Punktmutanten können nun in vivo und in vitro zur Untersuchung von HH15-spezifischen Pathogenitätsdeterminanten verwendet werden.

4.5.2 Charakterisierung der 2009 pH1N1rek Influenzaviren im C57BL/6J Mausmodell

4.5.2.1 Pathogenität der 2009 pH1N1rek Influenzaviren in C57BL/6J Mäusen

Zur Kontrolle des Phänotyps der 2009 pH1N1rek Viren im Vergleich zu den parentalen Virusisolaten, wurden C57BL/6J Mäuse infiziert und die MLDeinfizierten bestimmt (3.4.2; Abb. 16). Die Virulenz des rekombinanten HH05 (HH05rek) entsprach dabei dem des parentalen HH05-Isolats (HH05wt). Beide sind im C57BL/6J Mausmodell niedrigpathogen mit von >5 log p.f.u. (Abb. 16). Auch die Virulenz des rekombinanten HH15 (HH15rek) war vergleichbar mit der des parentalen Virusisolats HH15wt mit einer MLDeinfizierten von >4,5 log p.f.u. (Abb. 16; 4.4.1). Somit entspricht der Phänotyp der 2009 pH1N1rek Influenzaviren dem der klinischen 2009 pH1N1 Virusisolate in C57BL/6J Mäusen und können für die weitere Charakterisierung und Identifikation der HH15-spezifischen Pathogenitätsdeterminanten verwendet werden.

Einzelgenreassortanten mit HH15-spezifischen PB2 (HH05-PB2HH15) oder NS (HH05-NSHH15) im genetischen Hintergrund von HH05 entsprachen mit einer MLDeinfizierten >5 log p.f.u. dem des parentalen sowie des rekombinanten HH05 im C57BL/6J Mausmodell (Abb. 16). Auch die HH15-spezifischen Genomsegmente PA (HH05-PAHH15) und NA (HH05-NAHH15) führten im Hintergrund von HH05, mit MLDeinfizierten von >4,5 bzw. 4,4 log p.f.u., zu keiner signifikanten Erhöhung der Virulenz im Vergleich zu HH05 (Abb. 16). Im Gegensatz dazu, wiesen die Reassortanten mit HH15-spezifischem NP (HH05-NP_{HH15}) oder NA (HH05-HA_{HH15}) hingegen eine MLDeinfizierten von >3,2 bzw. 3,6 log p.f.u. auf und waren mit der hohen Virulenz von HH15 vergleichbar (Abb. 16). Die 5+3-Reassortante mit HH15-spezifischem PB2, PA und NP im HH05-Hintergrund (HH05-PB2/PA/NP_{HH15}) war, ebenso wie die 6+2-Reassortante mit den beiden Oberflächenproteinen von HH15 (HH05-HA/NA_{HH15}) virulenter als das HH05 Virusisolat. Die MLDeinfizierten dieser rekombinanten Influenzaviren entsprach mit >3,5 bzw. 3,8 log p.f.u. der von HH15 in C57BL/6J Mäusen (Abb. 16). Demnach führen Reassortanten, die das HH15-spezifische NP oder HA Genomsegment im genetischen Hintergrund von HH05 enthalten, zu einer erhöhten Pathogenität in C57BL/6J Mäusen.
Ergebnisse

Abb. 16: Genotyp, MLD_{50} und Virustiter in der Lunge von 2009 pH1N1rek-infizierten C57BL/6J Mäusen. Der Genotyp der generierten rekombinanten Influenzaviren ist dem Farbcode der Abbildung zu entnehmen, wobei graue Kästchen für ein Genomsegment des HH05 Isolats und schwarze Kästchen für ein Genomsegment des HH15 Isolats stehen. HH05rek bzw. HH15rek steht für die rekombinanten Isolate, HH05wt bzw. HH15wt für die parentalen Virusisolate. Für Punktmutanten ist die Mutation im Kästchen des entsprechenden Genomsegments angegeben. Da sich PB1 und M von HH05 und HH15 nicht unterscheiden gibt es für diese viralen Proteine keine Angabe. Für die Maus-letale-Dosis 50 (MLD_{50}) wurden jeweils fünf C57BL/6J Mäuse intranasal mit seriellen zehnfach-Verdünnungen (10^{5} p.f.u. - 10^{0} p.f.u.) der 2009 pH1N1rek Influenzaviren infiziert. Die Überlebensraten wurden über einen Verlauf von 14 Tagen dokumentiert und die MLD_{50} mittels der von Reed und Muench beschriebenen Methode berechnet (3.4.2). MLD_{50}-Werte von Reassortanten und Punktmutanten, die denen des HH15 Virus (rek & wt) mehr entsprechen als der MLD_{50} von HH05 sind fett hervorgehoben. Für die Analyse der Virustiter in der Lunge wurden C57BL/6J Mäuse intranasal mit 10^{5} p.f.u. der 2009 pH1N1 Influenzaviren infiziert. An Tag drei und sechs nach Infektion (3 und 6 d p.i.) wurden jeweils von drei Tieren die Lungen entnommen und der Virustiter mittels Plaquetest bestimmt (3.4.3; 3.3.6) Die Titer sind hier logarithmisch in p.f.u. pro Gramm Organ mit der jeweiligen Standardabweichung (±) angegeben. Die Detektionsgrenze für die Virustiter lag bei 0,5 log p.f.u./ml Organhomogenat. Eine statistische Relevanz wurde durch einen Sudent's-t-Test überprüft.

Da sich im Gegensatz zum HH15-spezifischen HA, das NP-Protein in mehr als einer Aminosäure vom HH05 Virusisolat unterscheidet, wurden dafür Punktmutanten generiert (4.5.1). Diese enthalten jeweils nur einen HH15-spezifischen Aminosäureaustausch im NP Protein im genetischen Hintergrund von HH05. So konnte die Rolle aller drei Mutationen für die erhöhte Pathogenität von HH15 bzw. HH05-NP_{HH15} untersucht werden. Die drei Punktmutanten, HH05-NP_{V100I}, HH05-NP_{133L} und HH05-NP_{373T}, waren mit MLD_{50} Werten von 3,4, 2,9 bzw. 3,6 log p.f.u. alle hochpathogen im C57BL/6J Mausmodell mit einer vergleichbaren Virulenz wie die des HH15 Influenzavirus (Abb. 16).

Die Virustiter in der Lunge 2009 pH1N1rek-infizierter C57BL/6J Mäusen wiesen, trotz beobachteter Unterschiede in der Virulenz, weder 3 d p.i. noch 6 d p.i. Unterschiede auf
Ergebnisse

(Abb. 16). Für alle rekombinanten Influenzaviren wurden vergleichbar hohe Titer wie für die parentalen 2009 pH1N1 Virusisolate detektiert (Abb. 16; 4.4.2).

Zusammenfassend kann festgestellt werden, dass die HH15-spezifischen Mutation im HA (S202T) und die drei Mutationen im NP (V100I, I133L, I373T) einzeln sowie in Kombination maßgeblich zu einer erhöhten Pathogenität im C57BL/6J Mausmodell führen. Demnach tragen diese Determinanten maßgeblich zu der, im Vergleich zu HH05, erhöhten Pathogenität von HH15 bei. Die Bestimmung von infektiösen Viruspartikeln in der Lunge mittels Plaquetest lässt hingegen keine Rückschlüsse auf die Pathogenität der 2009 pH1N1 Influenzaviren zu. Dies wurde bereits für die klinischen 2009 pH1N1 Virusisolate unter 4.4.2 postuliert.

4.5.2.2 Tropismus der 2009 pH1N1rek Influenzaviren in der Lunge von C57BL/6J Mäusen

Wie unter 4.4.2 bereits für die 2009 pH1N1 Influenzaviren beobachtet und 4.5.2.1 auch für die 2009 pH1N1rek Viren gezeigt, ist in C57BL/6J Mäusen die Bestimmung der Viruslast in der Lunge mittels Plaquetest kein Korrelat für die Pathogenität von Influenzaviren. Eine immunhistologische Detektion von Viruspartikeln in der Lunge zeigte hingegen Unterschiede in Pathologie und Viruslast HH05- und HH15-infizierter C57BL/6J Mäuse (4.4.3). Demnach wurden auch von den Lungen 2009 pH1N1rek-infizierter C57BL/6J Mäuse histologische Schnitte für eine Analyse des Virustropismus durchgeführt. Dabei sollte die Viruslast auf RNA-Ebene mittels in situ-Hybridisierung untersucht werden (3.5.3). Die Detektion von viraler RNA (vRNA) lässt dabei auf aktiv replizierende Influenzaviren schließen. Es sollten in erster Linie die Viruslast und Pathologie von 2009 pH1N1rek Influenzaviren, im Vergleich zu HH05, untersucht werden die zu einer erhöhten Pathogenität im C57BL/6J Modell führen. Dafür wurden die Lungenschnitte von HH05rek- und HH15rek-, HH05-HAHH15- und HH05-NP_HH15- sowie HH05-NPV100I-, HH05-NPI133L- und HH05-NPI373T-infizierten C57BL/6J Mäusen untersucht (Abb. 17).

HH05rek verursachte in der Lunge von infizierten C57BL/6J Mäusen, im Vergleich zu den Kontrollschnitten (Abb. 17A) eine Infiltration des Lungengewebes mit einigen vRNA-positiven Zellen (Abb. 17B). Auch HH15rek-infizierte Lungen wiesen Infiltrate und vRNA-positive Zellen auf, die Alveolarstruktur war jedoch zu einem höheren Grad zerstört als nach HH05rek-Infektion (Abb. 17C). Infektion der C57BL/6J Mäuse mit den Einzelgenreassortanten HH05-HAHH15 und HH05-NP_HH15 hatte eine hochgradig zerstörte Alveolarstruktur in den Lungen zur Folge (Abb. 17D,E), vergleichbar mit HH15rek-infizierten C57BL/6J Mäusen. Hierbei wurde, im Vergleich zu HH05rek, eine größere Anzahl vRNA-positiver Zellen detektiert. Die Punktmutante HH05-NPV100I führte zu einer Gewebeinfiltration,
die vergleichbar zu der einer HH05rek-Infektion war, jedoch wurde hier eine größere Anzahl vRNA-positiver Zellen detektiert. Die beiden Punktmutanten HH05-NP_{133L} und HH05-NP_{373T} führten in der C57BL/6J Maus zu zahlreichen mononukleären Infiltraten, einhergehend mit zerstörten Alveolarstrukturen, vergleichbar zur HH15rek-Infektion. Die vRNA dieser beiden Punktmutanten wurde jedoch nur zu einer geringen Menge detektiert.

Abb. 17: In situ-Hybridisierung viraler RNA in Lungenschnitten von 2009 pH1N1rek-infizierten C57BL/6J Mäusen. C57BL/6J Mäuse wurden intranasal mit 10^3 p.f.u. der rekombinanten 2009 pH1N1 Virusisolate (HH05rek & HH15rek) (B,C), der Einzelgenreassortanten mit HH15-spezifischem HA und NP im genetischen Hintergrund von HH05 (HH05-HA_{HH15} & HH05-NP_{HH15}) (D,E) und HH15-spezifischen Punktmutanten des NP (HH05-NP_{V100I}, HH05-NP_{133L}, HH05-NP_{373T}) (F,G,H) infiziert. Kontrolltieren wurde ausschließlich PBS verabreicht (A). An Tag sechs nach Infektion wurden jeweils drei Tiere getötet und die Lungen entnommen (3.4.3). Die RNA des viralen NP-Proteins von 2009 pH1N1 wurde mittels einer radioaktiv markierten in situ-Sonde detektiert (3.5.3). Anschließend wurde eine H&E-Gegenfärbung der Schnitte durchgeführt (3.5.4). Virus RNA-positive Zellen haben eine schwarze Färbung. Die lichtmikroskopischen Bilder wurden in einer 100facher-Vergrößerung aufgenommen.

Die erhöhte Pathogenität der verschiedenen 2009 pH1N1rek Influenzaviren korreliert demnach mit einer unterschiedlich hohen Virusrate und einer unterschiedlich starken Entzündungsreaktion in der Lunge von C57BL/6J Mäusen. Während vor allem bei HH05-NP_{HH15} und HH05-NP_{V100I} eine erhöhte Virusreplikation eine Rolle spielt, führt eine Infektion mit HH05-HA_{HH15}, HH05-NP_{133L} und HH05-NP_{373T} zu einer starken Infiltration mit hochgradiger Zerstörung der Alveolarstruktur. Diese deutet auf unterschiedliche virale
Mechanismen der einzelnen HH15-spezifischen Mutationen hin, die zu einer erhöhten Pathogenität führen.

4.5.2.3 Lymphozytenwerte nach Infektion mit 2009 pH1N1rek Influenzaviren in C57BL/6J Mäusen

Unter 4.4.4 konnte gezeigt werden, dass die Virulenz von Influenzaviren in Mäusen mit einer Lymphozytenleukopenie korreliert. Daher sollte analysiert werden, ob die Mutationen, die zur erhöhten Pathogenität von HH15 im C57BL/6J Mausmodell beitragen, auch zu einer Lymphopenie führen (4.5.2.1). Dafür wurden die Lymphozytenwerte im Blut von HH05rek- und HH15rek-, HH05-HA$_{HH15^-}$ und HH05-NP$_{HH15^-}$ sowie HH05-NP$_{V100I^-}$, HH05-NP$_{I133L^-}$, HH05-NP$_{I373T^-}$-infizierten C57BL/6J Mäusen bestimmt (Abb. 18). Um auch geringe Unterschiede zwischen den verschiedenen 2009 pH1N1rek Influenzaviren detektieren zu können, wurden die C57BL/6J Mäuse mit einer niedrigeren Dosis als für die Blutbild-Analyse der klinischen 2009 pH1N1 Virusisolate, unter 4.4.4, infiziert.

Abb. 18: Lymphozytenwerte im Blut von 2009 pH1N1rek-infizierten C57BL/6J Mäusen. C57BL/6J Mäuse wurden intranasal mit 10^5 p.f.u. der rekombinanten 2009 pH1N1 Virusisolate (HH05rek & HH15rek), der Einzelgenreassortanten mit HA und NP von HH15 im genetischen Hintergrund von HH05 (HH05-HA$_{HH15^-}$ & HH05-NP$_{HH15^-}$) und den HH15-spezifischen Punktmutanten von NP (HH05-NP$_{V100I^-}$, HH05-NP$_{I133L^-}$, HH05-NP$_{I373T^-}$) infiziert. Kontrolltiere bekamen ausschließlich PBS verabreicht. An Tag drei nach Infektion wurden Blutproben entnommen und die Lymphozytenwerte von mindestens vier Tieren mittels eines Hämatologiegerätes bestimmt (3.4.5). Die Werte der nicht-infizierten Kontrolltiere wurden auf 100 % gesetzt. HH05rek infizierte Tiere dienten als Referenz, wobei die statistische Relevanz durch einen Student’s-t-Test ermittelt wurde (* entspricht $p \leq 0,05$; *** entspricht $p \leq 0,001$).

Im Vergleich zu den nicht-infizierten Kontrolltieren waren die Lymphozyten im Blut aller infizierten C57BL/6J Mäuse bereits 3 d p.i. um mindestens 50 % erniedrigt (Abb. 18). Die Lymphozytenwerte in HH15rek-infizierten Tieren waren nochmals signifikant geringer, bei ca. 25 % des Normalwertes, als in HH05rek-infizierten C57BL/6J Mäusen (Abb. 18). Die Einzelgenreassortanten HH05-HA$_{HH15^-}$ und HH05-NP$_{HH15^-}$ verursachten eine Lymphozytenleukopenie vergleichbar zu HH05rek (Abb. 18). Eine Infektion mit HH05-NP$_{V100I^-}$ und HH05-NP$_{I373L^-}$ hatte hingegen eine vergleichbar starke Lymphopenie, wie nach HH15wt-
Ergebnisse

Infektion, zur Folge (Abb. 18). HH05-NP1373T-infizierte C57BL/6J Mäuse wiesen ebenfalls eine, im Vergleich zu HH05rek, stärkere Lymphozytendepletion auf, jedoch geringer als die zwei Punktmutanten HH05-NPV100I und HH05-NP1133L.

Zusammenfassend lässt sich feststellen, dass alle hier untersuchten 2009 pH1N1rek Influenzaviren 3 d p.i. zu einer Lymphozytendepletion in C57BL/6J Mäusen führen. Den höchsten Grad einer Lymphopenie wird von den höher pathogenen HH15rek Influenzaviren sowie den NP-Punktmutanten ausgelöst. Demnach kann die Hypothese aufgestellt werden, dass die HH15-spezifischen Punktmutationen im NP Protein für einen höheren Grad einer Lymphopenie verantwortlich sind und so zur Letalität im C57BL/6J Mausmodell beitragen.

4.6 Analyse der Mutationen im Hämagglutinin und Nukleoprotein

Die Charakterisierung der Reassortanten unter 4.5.2 zeigte, dass neben einer Mutation im Hämagglutinin (HA) drei verschiedene Aminosäureaustausche im Nukleoprotein (NP) maßgeblich an der differenziellen Pathogenität von HH05 und HH15 im C57BL/6J Mausmodell beteiligt sind.

![Abb. 19: Strukturelle Lokalisierung der HH15 (pH1N1)-spezifischen HA Mutation.](image)

Ergebnisse

Ergebnisse

4.6.1 Rezeptorbindungseigenschaften der 2009 pH1N1 Influenzaviren

Aviare Influenzaviren binden präferenziell an α2,3-glykosidisch gebundene Sialinsäuren, die zu einem größeren Anteil auf der Oberfläche von Hühnererythrozyten vorkommen. Humane Influenzaviren hingegen binden in erster Linie α2,6-glykosidisch gebundene Sialinsäuren (Ito et al., 1997; Nobusawa et al., 2000). Es wurde bereits in der Literatur beschrieben, dass die 2009 pH1N1 Influenzaviren beide Rezeptoren binden können, allerdings mit einer Präferenz für α2,6-gebundene Sialinsäuren (Yang et al., 2010; Childs et al., 2009). Um einen möglichen Einfluss der HA-Mutation S202T auf die Rezeptorbindungseigenschaft zu untersuchen, wurde die Bindungspräferenz des HA-Proteins der rekombinanten und parentalen 2009 pH1N1 Influenzaviren mittels Hämaggglutinationstests mit humanen und Hühnererythrozyten untersucht (3.3.4; Abb. 21). Zur Kontrolle wurde das aviäre SC35M (H7N7) und das humane A/Solomon Islands/3/06-like (Solomon) (H1N1) ebenfalls mit Erythrozyten beider Spezies inkubiert (Abb. 21).

Die 2009 pH1N1rek Influenzaviren sowie die parentalen 2009 pH1N1 Virusisolate (HH05wt, HH15wt) hämagglutinierten stärker mit humanen Erythrozyten als mit Hühnererythrozyten (Abb. 21A,B). Ein signifikanter Unterschied zwischen HH05 und HH15 konnte nicht festgestellt werden. Die Hämagglutination durch die Einzelgenreassortante HH05-HAHH15 mit der HH15-spezifischen HA-Mutation war ebenfalls stärker mit humanen als mit Hühnererythrozyten (Abb. 21A,B). Das aviäre Virus SC35M hämagglutinierte wie erwartet die Hühnererythrozyten zu höheren Hämagglutinationseinheiten (HAU) als die humanen Erythrozyten (Abb. 21A,B), was besonders in der prozentualen Darstellung sichtbar wird (Abb. 21A). Im Gegensatz dazu hämagglutinierte das humane Solomon Virus...
erwartungsgemäß die humanen Erythrozyten stärker als die Hühnererythrozyten (Abb. 21A,B).

Abb. 21: Hämagglutination von humanen und Hühnererythrozyten durch rekombinante und parentale 2009 pH1N1 Influenzavirien. Das klinische Virusisolat und das rekombinante Virus von HH05 und HH15, sowie die HA-Reassortante HH05-HAHH15 wurden in einem Hämagglutinationstest (3.3.4) mit humanen (weiße Balken) oder Hühnererythrozyten (schwarze Balken) inkubiert. Zur Kontrolle wurde das aviäre SC35M (H7N7) und das humane A/Solomon Islands/3/06-like (Solomon) (H1N1) verwendet. Die Hämagglutinationseinheiten (HAU) mit Standardabweichung aus zwei unabhängigen Tests wurden zum einen in Prozent angegeben, wobei der mittlere Wert für humane Erythrozyten auf 100 % gesetzt wurde (A). Zum anderen wurden die absoluten HAU-Titer angegeben (B). Eine statistische Relevanz wurde durch einen Sudent's-t-Test überprüft.

4.6.2 Polymeraseaktivität der RNP-Komplexe der 2009 pH1N1 Influenzavirien in humanen Zellen

Das NP-Protein von Influenzaviren enkapsidiert im Ribonukleoprotein (RNP)-Komplex die virale RNA und trägt maßgeblich zu dessen Replikation bei (Portela und Digard, 2002).
Dementsprechend können Mutationen im NP die Prozessivität des ganzen RNP-Komplexes beeinflussen. Es wurde zusätzlich gezeigt, dass Mutationen in der Polymerase und dem NP von aviären Influenzaviren die Adaptation an den Säuger vermitteln können (Gabriel et al., 2005; Resa-Infante und Gabriel, 2013). Um einen möglichen Einfluss der Mutationen V100I, I133L und I373T im NP-Protein von HH15 auf die Polymeraseaktivität zu untersuchen, wurden Reporterassays (3.1.9) mit unterschiedlicher Kombination der RNP-Untereinheiten durchgeführt (Abb. 22). Dafür wurden die jeweiligen Polymeraseuntereinheiten (PB1, PB2, PA) und das Nukleoprotein (NP) in Expressionsvektoren in HEK293T-Zellen transfiziert. In diesen Zellen wurden die viralen RNP-Komplexe rekonstruiert und deren replikative Aktivität mittels eines Reportergens gemessen.

Ergebnisse

Komplexes. Ein Austausch der Polymereaseuntereinheit PB1 wurde nicht untersucht, da in diesem Protein keine Aminosäureunterschiede zwischen HH05 und HH15 vorliegen (Tab. 3).

Aus diesen Ergebnissen lässt sich schlussfolgernd, dass der Polymerasekomplex von HH15 in humanen Zellen generell eine niedrige Aktivität aufweist, welche von der PB2-Untereinheit vermittelt wird. Die Mutationen im NP, die zur erhöhten Pathogenität von HH15 im C57BL/6J-Modell beitragen, haben keine Änderung der Polymeraseaktivität im Vergleich zum HH05-RNP-Komplex zur Folge. Demzufolge ist die erhöhte Pathogenität von HH15 sowie die erhöhte Viruslast in C57BL/6J Mäusen, wie unter 4.4.3 und 4.5.2.2 gezeigt, nicht auf eine erhöhte Aktivität der viralen Polymerase zurückzuführen.

4.7 Charakterisierung der 2009 pH1N1 Influenzaviren im Meerschweinchenmodell

Charakteristikum einer Pandemie ist eine effiziente Mensch zu Mensch Transmission, wie sie auch für die 2009 pandemische H1N1 Influenza beobachtet wurde (Neumann et al., 2009). Mäuse eignen sich als kleines Säugermodell zwar gut für die Charakterisierung der Pathogenität und des Tropismus von Influenzaviren, lassen jedoch keinen Rückschluss auf die Übertragbarkeit im Sauер zu (Bouvier und Lowen, 2010). Hierfür wurde das Meerschweinchen als Transmissionsmodell beschrieben (Lowen et al., 2006). Es sind zwar keinerlei klinische Symptome einer Influenzaerkrankung im Meerschweinchen nachzuweisen, jedoch können humane Influenzaviren aufgrund der Rezeptorverteilung im Respirationstrakt der Tiere effizient replizieren. Eine Übertragung der Viren von infizierten zu nicht-infizierten Sentinelieren über direkten Kontakt konnte daher mehrfach gezeigt werden (Lowen et al., 2006; Bouvier und Lowen, 2010). Darüber hinaus wurde für einige Influenzavirusisolate ebenfalls eine Transmission über Aerosole, ohne direkten Kontakt der Tiere, nachgewiesen (Lowen et al., 2006; Gao et al., 2009; Mubareka et al., 2009; Sun et al., 2010). Im Folgenden sollte zunächst die Replikationseigenschaft sowie der Tropismus der hier charakterisierten 2009 pH1N1 Isolate im Respirationstrakt von Meerschweinchen analysiert (4.7.1) werden. Für die Analyse der Transmissionseigenschaften dieser Viren wurde zum einen die Übertragung über direkten Kontakt von Tieren untersucht, zum anderen die Übertragung über Aerosole, indem nicht-infizierte Tiere der Umgebungsluft von infizierten Tieren ausgesetzt wurden (4.7.2).

4.7.1 Virustropismus der 2009 pH1N1 Influenzaviren im Respirationstrakt von Meerschweinchen

Im oberen Respirationstrakt (ORT) von Meerschweinchen liegen α-2,6-glykosidisch gebundene Sialinsäuren auf der Oberfläche von Epithelzellen vor (Sun et al., 2010). Diese
werden von humanen Influenzaviren als Rezeptor gebunden und ermöglichen die Infektion dieser Zellen. In dieser Arbeit wurde die Replikation und der Virustropismus der 2009 pH1N1 Influenzaisolate im Respirationstrakt von Meerschweinchen untersucht (Abb. 24). Dafür wurden Tiere des Hartley Meerschweinchenstamms intranasal mit 10^5 p.f.u. des HH05 bzw. des HH15 Isolats infiziert (3.4.2). Zur Bestimmung der Virustiter im ORT wurden 1, 3, 6 und 9 d.p.i. Nasenspülungen der Tiere durchgeführt und anschließend der Virustiter bestimmt (3.4.2; 3.4.3; 3.3.6). Für eine Analyse des unteren Respirationstraktes (URT) wurden die Trachea und die Lunge der Tiere jeweils 3 und 6 d.p.i. entnommen und anschließend die Virustiter bestimmt sowie histologische Schnitte angefertigt (3.4.3; 3.5.1). Während des Versuchs über einen Zeitraum von 14 Tagen wurden die Meerschweinchen zur Kontrolle regelmäßig gewogen. Wie erwartet zeigten die Tiere keinerlei Gewichtsverlust oder weitere klinische Symptome (Abb. 23).

Abb. 23: Gewichtsverlust von HH05 (pH1N1)- oder HH15 (pH1N1)-infizierten Meerschweinchen. Hartley Meerschweinchen wurden intranasal mit 10^5 p.f.u. des HH05 (pH1N1) oder des HH15 (pH1N1) Influenzavirus infiziert. Kontrolltieren wurde ausschließlich PBS verabreicht. Das Gewicht aller Tiere wurde über 14 Tage nach Infektion (1-14 d.p.i.) dokumentiert und ist hier mit entsprechender Standardabweichung in Prozent zum jeweiligen Ausgangsgewicht angegeben.

Im URT von HH05-infizierten Meerschweinchen konnte weder 3 d.p.i. noch 6 d.p.i. Virus in den Trachea- und Lungenhomogenaten nachgewiesen werden (Abb. 24B,C). In HH15-infizierten Tieren hingegen wurde 3 d.p.i. in der Trachea von drei aus vier Tieren Virus
Ergebnisse

Abb. 24: Virustiter in der Nasenspülung der Trachea und der Lunge von HH05 (pH1N1)- und HH15 (pH1N1)-infizierten Meerschweinchen. Hartley Meerschweinchen wurden intranasal mit 10^5 p.f.u. des HH05 (pH1N1) oder des HH15 (pH1N1) Influenzavirus infiziert. Kontrolltieren wurde ausschließlich PBS verabreicht. An Tag eins, drei, sechs und neun nach Infektion (1,3,6,9 d p.i.) wurden mit mindestens acht Tieren eine Nasenspülung durchgeführt (3.4.3). An Tag drei und sechs nach Infektion (3 und 6 d p.i.) wurden von mindestens zwei Tieren die Lunge und die Trachea entnommen (3.4.3). Die Virustiter wurden mittels Plaquetest (3.3.6) in der Nasenspülung und den Organhomogenaten bestimmt. (ORT = oberer Respirationstrakt; URT = unterer Respirationstrakt). Die De tektionsgrenze für die Virustiter lag bei 0,5 log p.f.u./ml Nasenspülung bzw. Organhomogenat. Eine statistische Relevanz wurde durch einen Sudent’s-t-Test überprüft.

Zusammenfassend lässt sich feststellen, dass beide 2009 pH1N1 Viren mit vergleichbarer Effizienz im ORT von Meerschweinchen replizieren. Eine Eliminierung der Viren aus dem ORT findet etwa sechs Tage nach Infektion statt. Im URT hingegen scheint im Gegensatz zu
Ergebnisse

HH05 das HH15 Influenzavirus sowohl in der Trachea wie auch in der Lunge infizierter Tiere replizieren zu können. Diese Daten weisen darauf hin, dass HH15 im Vergleich zu HH05 effizienter im URT von Meerschweinchen repliziert.

Aufgrund der beobachteten Replikationsunterschiede von HH05 und HH15 im URT von Meerschweinchen (Abb. 24) wurde im Vergleich die Histologie von Trachea und Lunge der infizierten Tiere untersucht. Dabei sollte der Virustropismus der 2009 pH1N1 Isolate auf RNA-Ebene mittels in situ-Hybridisierung und die pathologischen Folgen einer 2009 pH1N1-Infektion in diesen Organen genauer untersucht werden.

Abb. 26: In situ-Hybridisierung viraler RNA in Trachea und Lunge von HH05 (pH1N1)- und HH15 (pH1N1)-infizierten Meerschweinchen. Hartley Meerschweinchen wurden intranasal mit \(10^5\) p.f.u. des HH05 (pH1N1) oder des HH15 (pH1N1) Influenzavirus infiziert. Kontrolltieren wurde ausschließlich PBS verabreicht. An Tag drei nach Infektion wurden von jeweils drei Tieren die Lunge und die Trachea entnommen (3.4.3). Die RNA des viralen NP-Proteins von 2009 pH1N1 wurden mittels einer radioaktiv markierten in situ-Sonde auf den Gewebeschnitten detektiert (3.5.3) Anschließend wurde eine H&E-Gegenfärbung der Schnitte durchgeführt (3.5.4). Influenza RNA-positive Zellen haben eine schwarze Färbung, einige sind repräsentativ mit einem Pfeil markiert (←). Die lichtmikroskopischen Bilder wurden in einer 100fach-Vergrößerung aufgenommen. (URT = unterer Respirationstrakt).

4.7.2 Transmissionseigenschaften der 2009 pH1N1 Influenzaviren im Meerschweinchen
Meerschweinchen dienen als Modellsysteme zur Untersuchung der Transmissionseigenschaften von Influenzaviren beschrieben (Lowen et al., 2006). Dabei wird zwischen einer Kontakt- und einer Aerosol-Transmission unterschieden. Bei der Kontakt-
Ergebnisse

Ergebnisse

Kontakt-Transmission

Abb. 27: Transmission von HH05 (pH1N1) und HH15 (pH1N1) im Meerschweinchen. Hartley Meerschweinchen wurden intranasal mit 10^5 p.f.u. des HH05 (pH1N1) oder des HH15 (pH1N1) Influenzavirus infiziert. Sentinel-tieren wurde ausschließlich PBS verabreicht (gestrichelte Linien). A) Zur Untersuchung der Kontakt-Transmission wurden jeweils eins von zwei infizierte Tieren mit einem von zwei nicht-infizierten Tieren über den Versuchsverlauf von 14 Tagen in einem Käfig gehalten (3.4.6.) B) Zur Untersuchung der Aerosol-Transmission wurden jeweils vier Tiere infiziert. Vier nicht-infizierte Tiere wurden, während der Versuchsduer von 14 Tagen in Käfigen in 10 cm Entfernung im Luftstrom der Käfige mit infizierten Tieren gehalten (3.4.6). An Tag eins, drei, sechs und neun nach Infektion (1,3,6,9 d.p.i.) wurde mit mindestens zwei Tieren eine Nasenspülung durchgeführt (3.4.3). Die Virustiter wurden mittels Plaquen-Test in der Nasenspülung bestimmt (3.3.6). Die Detektionsgrenze für die Virustiter lag bei $1,5 \log$ p.f.u./ml Nasenspülung.

Aerosol-Transmission

Abb. 27: Transmission von HH05 (pH1N1) und HH15 (pH1N1) im Meerschweinchen. Hartley Meerschweinchen wurden intranasal mit 10^5 p.f.u. des HH05 (pH1N1) oder des HH15 (pH1N1) Influenzavirus infiziert. Sentinel-tieren wurde ausschließlich PBS verabreicht (gestrichelte Linien). A) Zur Untersuchung der Kontakt-Transmission wurden jeweils eins von zwei infizierte Tieren mit einem von zwei nicht-infizierten Tieren über den Versuchsverlauf von 14 Tagen in einem Käfig gehalten (3.4.6.) B) Zur Untersuchung der Aerosol-Transmission wurden jeweils vier Tiere infiziert. Vier nicht-infizierte Tiere wurden, während der Versuchsduer von 14 Tagen in Käfigen in 10 cm Entfernung im Luftstrom der Käfige mit infizierten Tieren gehalten (3.4.6). An Tag eins, drei, sechs und neun nach Infektion (1,3,6,9 d.p.i.) wurde mit mindestens zwei Tieren eine Nasenspülung durchgeführt (3.4.3). Die Virustiter wurden mittels Plaquen-Test in der Nasenspülung bestimmt (3.3.6). Die Detektionsgrenze für die Virustiter lag bei $1,5 \log$ p.f.u./ml Nasenspülung.

Im Aerosol-Transmissionsversuch waren die Virustiter in der Nasenspülung der HH05- oder HH15-infizierten Meerschweinchen ebenfalls vergleichbar mit denen vorheriger Infektionsversuche (Abb. 24; Abb. 27). Das HH05 Virus konnte auch im ORT von zwei aus vier Sentinel-tieren nachgewiesen werden. Bei einem Tier wurde 6 d p.i. ein Virustiter von $4,8 \log$ p.f.u./ml, bei einem anderen Tier 9 d p.i. mit $2,7 \log$ p.f.u./ml Virus in der Nasenspülung nachgewiesen (Abb. 27C). Im Gegensatz dazu wurde in Sentinel-tieren, die im
Ergebnisse

Luftstrom von HH15-infizierten Meerschweinchen gehalten wurden, zu keinem der untersuchten Zeitpunkte Virus im ORT nachgewiesen (Abb. 27D).

Im Serum der HH05- und HH05-infizierten Meerschweinchen konnten 28 Tage nach Infektion Antikörper gegen das jeweilige Influenzavirus nachgewiesen werden (Abb. 28). Drei von vier Sentinelieren, die im Luftstrom der HH05-infizierten Meerschweinchen gehalten wurden, waren 28 Tage nach Versuchsbeginn serokonvertiert. In den Sentinelieren des Aerosol-Transmissionsversuchs mit dem HH15 Virusisolat konnten hingegen keine virusspezifischen Antikörper detektiert werden (Abb. 28).

4.8 Charakterisierung der 2009 pH1N1 Influenzaviren im Frettchenmodell

Das Frettchen wird in der Influenzaforschung unter den kleinen Säugermodellen häufig als „Goldstandard“ verwendet, da sowohl die Pathogenität als auch die Transmission von humanen Influenzaviren untersucht werden kann (1.3.3; Bouvier und Lowen, 2010). Im Gegensatz zu Meerschweinchen weisen Frettchen klinische Symptome auf, die denen einer Influenzaerkrankung im Menschen ähneln. Es können in infizierten Frettchen beispielsweise Fieber, Rhinitis oder Gewichtsverlust auftreten. Darüber hinaus ähnelt auch die Receptorverteilung im ORT von Frettchen der Receptorverteilung im ORT des Menschen. Es kommen dort überwiegend α-2,6-glykosidisch gebundene Sialinsäuren vor, welche von humanen Influenzaviren präferenziell als Rezeptor gebunden werden (Connor et al., 1994; Leigh et al., 1995). Im Meerschweinchen kommen hingegen humane sowie aviäre Rezeptoren im ORT vor (Sun et al., 2010; Gao et al., 2009). Humane Influenzaviren können demnach ohne vorherige Adaptation effizient im ORT von Frettchen replizieren und transmittieren von Tier zu Tier, sowohl über direkten Kontakt als auch über respiratorische Aerosole (Belser et al., 2011b). Für die weitere Charakterisierung der 2009 pH1N1 Influenzaviren wurden die Replikationseigenschaften, der Tropismus sowie die Transmission im Frettchen untersucht (4.8.1). Dabei sollte vor allem die Vergleichbarkeit zu Transmissionsstudien im Meerschweinchenmodell evaluiert werden (4.8.2).

4.8.1 Virustropismus der 2009 pH1N1 Influenzaviren im Respirationstrakt von Frettchen

In dieser Arbeit wurde der Virustropismus der 2009 pH1N1 Virusisolate im gesamten Respirationstrakt untersucht (Abb. 31). Dafür wurden Frettchen intranasal mit \(10^5\) p.f.u. von HH05 oder HH15 infiziert (3.4.2). Zur Bestimmung der Virustiter im ORT wurde an verschiedenen Tagen nach Infektion (1 - 9 d p.i.) eine Nasenspülung aller Tiere durchgeführt (3.4.2; 3.4.3; 3.3.6). Im URT, der Trachea und der Lunge wurden die Virustiter nach Entnahme der Organe jeweils 3 d p.i. und 6 d p.i. bestimmt sowie histologische Schnitte angefertigt (3.4.3; 3.3.6). Während des Versuchs über den Zeitraum von 14 Tagen wurden die Versuchstiere zur Kontrolle täglich gewogen und die Körpertemperatur mittels eines, zuvor in der Zucht subkutan transplantierten, Identifikations-Chips überprüft.

Ergebnisse

Körpertemperatur aufgrund der 2009 pH1N1-Infektion wurde ebenfalls nicht beobachtet (Abb. 30). Daraus lässt sich schließen, dass aus klinischer Sicht eine Infektion mit HH05 oder HH15 zu einer milden Erkrankung führt.

Abb. 29: Gewichtsverlust von HH05 (pH1N1)- oder HH15 (pH1N1)-infizierten Frettchen. Frettchen wurden intranasal mit 10^5 p.f.u. des HH05 (pH1N1) oder des HH15 (pH1N1) Influenzavirus infiziert. Kontrolltieren wurde ausschließlich PBS verabreicht. Das Gewicht aller Tiere wurde über 14 Tage nach Infektion (1-14 d p.i.) dokumentiert und ist hier mit entsprechender Standardabweichung in Prozent zum jeweiligen Ausgangsgewicht angegeben.

Abb. 30: Körpertemperatur von HH05 (pH1N1)- oder HH15 (pH1N1)-infizierten Frettchen. Frettchen wurden intranasal mit 10^5 p.f.u. des HH05 (pH1N1) oder des HH15 (pH1N1) Influenzavirus infiziert. Kontrolltieren wurde ausschließlich PBS verabreicht. Die Körpertemperatur aller Tiere wurde über 14 Tage nach Infektion (1-14 d p.i.) jeweils morgens und abends dokumentiert. Die Mittelwerte sind hier mit entsprechender Standardabweichung angegeben.

Die 2009 pH1N1 Isolate replizierten jedoch effizient im oberen Respirationstrakt der infizierten Frettchen. Einen Tag nach Infektion waren sowohl für HH05-infizierte als auch für HH15-infizierte Frettchen hohe Virustiter von durchschnittlich 7 log p.f.u./ml im ORT zu detektieren (Abb. 31A). Nach 3 d p.i. sanken die Titer beider Virusisolate in den Nasenspülungen um mehr als eine Log-Stufe (Abb. 31A). 6 d p.i. waren die Virustiter im
Ergebnisse

ORT der HH15-infizierten Frettchen auf durchschnittlich 3,6 log p.f.u./ml gesunken. Das HH05 Virusisolat war hingegen nur noch zu signifikant niedrigeren Titern von durchschnittlich 1,8 log p.f.u./ml detektiert (Abb. 31A). Beide 2009 pH1N1 Virusisolate waren 9 d p.i. aus dem ORT der infizierten Frettchen eliminiert.

Abb. 31: Virustiter in der Nasenspülung, der Trachea und der Lunge von HH05 (pH1N1)- oder HH15 (pH1N1)-infizierten Frettchen. Die Frettchen wurden intranasal mit 10^5 p.f.u. des HH05 (pH1N1) oder des HH15 (pH1N1) Wildtypisolats infiziert. Kontrolltieren wurde ausschließlich PBS verabreicht. An Tag eins, drei, vier, fünf, sechs und neun nach Infektion (1,3,6,9 d p.i.) wurden eine Nasenspülung mit mindestens vier Tieren durchgeführt (3.4.3). An Tag drei und sechs nach Infektion (3 und 6 d p.i.) wurden die Lunge und die Trachea von jeweils drei Tieren entnommen (3.4.3). Die Virustiter wurden mittels Plaquetest (3.3.6) in der Nasenspülung und den Organhomogenaten bestimmt. (ORT = oberer Respirationsstrakt; URT = unterer Respirationsstrakt). Die Detektionsgrenze für die Virustiter lag bei 0,5 log p.f.u./ml Nasenspülung bzw. Organhomogenat. Eine statistische Relevanz wurde durch einen Student’s-t-Test ermittelt (* entspricht p≤0,05).

Im URT, der Trachea und der Lunge der 2009 pH1N1-infizierten Frettchen konnte nur 3 d p.i. Virus detektiert werden (Abb. 31B,C). In der Trachea replizierte HH05 durchschnittlich zu einem Titer von 5,4 log p.f.u./ml (Abb. 31B), wo hingegen das HH15 Virusisolat zu signifikant höheren Titern von durchschnittlich 6,0 log p.f.u./ml nachgewiesen wurde. In der Lunge replizierten das HH15 Virusisolat in zwei von drei Tieren mit 5,5 log p.f.u./ml und
Ergebnisse

5,7 log p.f.u./ml ebenfalls zu höheren Titern als HH05, welches durchschnittlich zu einem Tier von 4,1 log p.f.u./ml replizierte (Abb. 31C). Ein signifikanter Unterschied der Virustiter von HH15 im Vergleich zu HH05 ergab sich in der Lunge jedoch nicht.

Diese Ergebnisse deuten auf eine effizientere Replikation von HH15 im Vergleich zu HH05, vor allem im ORT von Frettchen hin, wobei auch im URT tendenziell höhere Virustiter zu beobachten sind.

Abb. 32: In situ-Hybridisierung viraler RNA in Trachea und Lunge von HH05 (pH1N1)- und HH15 (pH1N1)-infizierten Frettchen. Die Frettchen wurden intranasal mit 10^5 p.f.u. des HH05 (pH1N1) oder des HH15 (pH1N1) Influenzavirus infiziert. Kontrolltiere bekamen ausschließlich PBS verabreicht. An Tag drei nach Infektion wurden von jeweils drei Tieren die Lunge und die Trachea entnommen (3.4.3). Die RNA des viralen NP-Proteins von 2009 pH1N1 wurde mittels einer radioaktiv markierten in situ-Sonde auf den Gewebeschnitten detektiert (3.5.3) Anschließend wurde eine H&E-Gegenfärbung der Schnitte durchgeführt (3.5.4). Influenza RNA-positive Zellen haben eine schwarze Färbung. Die lichtmikroskopischen Bilder wurden in einer 100fach-Vergrößerung aufgenommen. (ORT = oberer Respirationstrakt; URT = unterer Respirationstrakt).

Für eine weitere Analyse der unterschiedlichen Virustiter im Respirationstrakt der 2009 pH1N1-infizierten Frettchen wurden Viruslast und -tropismus in den Nasennebenhöhlen, der Trachea und der Lunge auf RNA-Ebene mittels in situ-Hybridisierung von histologischen Schnitten untersucht (3.5.3).
Ergebnisse

Zusammenfassend lässt sich feststellen, dass die 2009 pH1N1 Virusisolate einen milden Krankheitsverlauf im Frettchen zur Folge haben und sowohl im ORT wie auch im URT replizieren können. Dabei scheint das HH15 Virusisolat nach einer Infektion zu höheren Titern im ORT replizieren zu können als HH05. Darüber hinaus kann HH15, im Gegensatz zu HH05, effizienter in der Trachea replizieren. Dies spricht für einen Replikationsvorteil von HH15 gegenüber HH05 im ORT und URT von Frettchen.

4.8.2 Transmissionseigenschaften der 2009 pH1N1 Influenzaviren im Frettchen

Das Frettchenmodell ist nicht nur für eine Charakterisierung der Pathogenität von Influenzaviren geeignet sondern auch für die Untersuchung der Transmission (Belser et al., 2011b). Da im Meerschweinchenmodell unter 4.7.2 Unterschiede zwischen beiden 2009 pH1N1 Virusisolaten in der Aerosol-Transmission gezeigt wurden, wurde für einen Vergleich die Übertragung von Frettchen zu Frettchen speziell mittels Aerosolbildung analysiert. Dabei wird in dieser Arbeit die Größe der Aerosole nicht definiert. Durch eine Entfernung von 10 cm der Sentineltiere zu den infizierten Tieren wird jedoch eine mögliche Transmission durch große Respirationströpfchen (> 5 µm) weitestgehend ausgeschlossen (Cowling et al., 2013). Nicht-infizierte Sentineltiere wurden einen Tag nach HH05- bzw. HH15-Infektion von Überträgertieren 14 Tage lang in 10 cm Entfernung im Luftstrom der infizierten Frettchen gehalten (3.4.6). An mehreren Tagen nach Infektion (1 - 14 d p.i.) wurden die Virustiter im ORT in Nasenspülungen von jeweils drei Tieren bestimmt (3.3.6). Im Anschluss an den Versuch wurde das Serum aller Frettchen auf Antikörper gegen die 2009 pH1N1 Isolate untersucht (3.3.5). Dabei sollte festgestellt werden, welche der Sentineltiere durch den Kontakt zum Aerosol der infizierten Tiere serokonvertiert sind.
Ergebnisse

Abb. 33: Transmission von HH05 (pH1N1) und HH15 (pH1N1) im Frettchen. Die Frettchen wurden intranasal mit 10^5 p.f.u. des HH05 (pH1N1) (A) oder des HH15 (pH1N1) (B) Wildtypisolats infiziert. Sentineltiere bekamen ausschließlich PBS verabreicht (gestrichelte Linien). Zur Untersuchung der Aerosol-Transmission wurden die Sentineltiere einen Tag nach Infektion für die Versuchsduauer von 14 Tagen in Käfigen in 10 cm Entfernung im Luftstrom der infizierten Tieren gehalten (3.4.6). An mehreren Tagen nach Infektion (1, 3, 5, 6, 7, 8, 9 und 14 d.p.i.) wurde mit jeweils drei Tieren eine Nasenspülung durchgeführt (3.4.3). Die Virustiter in der Nasenspülung wurden mittels Plaquetest bestimmt (3.3.6). Die Detektionsgrenze für die Virustiter lag bei 2 log p.f.u./ml Nasenspülung.

Im Anschluss an den Aerosol-Tranmissionsversuch konnten im Serum der HH05- und HH15 infizierten Frettchen erwartungsgemäß Antikörper gegen die 2009 pH1N1 Influenzaviren nachgewiesen werden (Abb. 34). Auch die Sentineltiere waren nach dem Kontakt zu möglichen Aerosolen der infizierten Tiere zu 100 % serokonvertiert. In allen Sentineltieren konnten Antikörper gegen 2009 Influenzaviren zu vergleichbar hohen Titen wie in experimentell infizierten Frettchen detektiert werden (Abb. 34).
Abb. 34: HAI-Titer im Serum von Frettchen nach der Infektion mit HH05 (pH1N1) oder HH15 (pH1N1) sowie im Serum vonSentineltieren im Aerosol-Transmissionsversuch. Die Frettchen wurden intranasal mit 10^5 p.f.u. des HH05 (pH1N1) (A) oder des HH15 (pH1N1) (B) Influenzavirus infiziert. Zur Untersuchung derAerosol-Transmission wurden jeweils drei Tiere infiziert. Nicht-infizierte Sentineltiere wurden in einem Käfig in10 cm Entfernung im Luftstrom der infizierten Tieren gehalten (Abb. 10; 3.4.6). Nach 14 bzw. 21 Tagen wurden von den infizierten (schwarze Balken) bzw. von den Sentineltieren (weiße Balken) Blutproben entnommen undHAI-Titer mittels Hämagglutinationinhibitionstest mit Hühnererythrozyten bestimmt (3.3.5; 3.4.3). Zur Kontrollewurden Blutproben vor Versuchsbeginn entnommen und als Schwellenwert für den jeweiligen Graphen genommen.

Die Ergebnisse des Transmissionsversuches in Frettchen lassen auf eine zu 100 % effiziente Übertragung beider 2009 pH1N1 Virusisolate durch die Aerosole infizierter Tiere schließen. Dabei scheint das HH15 Virusisolat jedoch mindestens zwei Tage eher auf dieSentineltieren zu transmittieren als HH05. Da die Frettchen jeweils zu zweit in Käfigen gehalten wurden, kann jedoch vermutet werden, dass die Tiere mit zeitversetzten Virustitern des HH05 Virusisolats durch Kontakt-Transmission infiziert wurden. Darüber hinaus scheint HH15 nach einer Übertragung zu einer, nach initialer Detektion, länger andauerndenViruslast in den Sentineltieren zu führen. Demnach kann spekuliert werden, dass HH15 effizienter im Frettchen transmittiert als HH05.
5 Diskussion

5.1 Charakterisierung von 2009 pH1N1 Influenzaviren

Durch den Vergleich von aviären und humanen Influenzaviren konnten bereits genetische Determinanten identifiziert werden, die eine Anpassung an den Menschen mit erhöhter Pathogenität oder der Fähigkeit von Mensch zu Mensch zu transmittieren ermöglichen. Jene säugeradaptiven Determinanten, die vor allem in humanen HPAIV Isolaten identifiziert wurden, kamen jedoch nicht in den 2009 pH1N1 Influenzaviren vor (Neumann et al., 2009; Garten et al., 2009; Itoh et al., 2009). Die 2009 pH1N1 Influenzaviren besitzen Genomsegmente aviärer sowie porciner Influenzastämme. Demnach musste angenommen werden, dass bisher unbekannte Determinanten für die humane Adaptation und Pathogenität verantwortlich sein müssen. Die ersten sequenzierten 2009 pH1N1 Virus-isolate aus Patienten zeigten, dass diese Viren noch viele typische aviäre Signaturen beinhalten (Garten et al., 2009; Dawood et al., 2009; Neumann et al., 2009; Chen und Shih, 2009). Daher wurde eine noch weitergehende Anpassung an den Menschen erwartet, bei der in den bereits zirkulierenden 2009 pH1N1 Influenzaviren Mutationen auftreten, die die Pathogenität erhöhen oder eine bereits vorhandene Immunität umgehen können.

Um die 2009 pH1N1 Influenzaviren in dieser Arbeit zu charakterisieren, wurden Virus-isolate von zwei Patienten miteinander sowie mit anderen bereits charakterisierten Influenzaviren anderer Stämme verglichen. Das erste Isolat HH05 wurde zwei Monate nach Ausbruch der Pandemie von einer Patientin entnommen, die aus Mexiko kam, wo die Pandemie höchstwahrscheinlich ihren Ursprung hatte (Fraser et al., 2009). Das zweite Isolat HH15 wurde über einen Monat später von einem Besucher aus New York isoliert. Die Patienten hatten beide einen milden Krankheitsverlauf, erhielten jedoch bereits wenige Tage nach Auftreten der Symptome eine antivirale Medikation mit Oseltamivir (4.1). Eine Spekulation über den Krankheitsverlauf der beiden Patienten ohne Behandlung ist daher nicht möglich, da die zeitnahe Behandlung mit Oseltamivir oder Zanamivir in vielen 2009 pH1N1-infizierten Patienten ohne zusätzliche Risikofaktoren oder Vorerkrankungen einen schnellen Genesungsprozess zeigte (Smith et al., 2010).

Sequenzanalysen von HH05 und HH15 wiesen zwölf verschiedene Aminosäureaustausche zwischen beiden Isolaten auf (4.2). Der Genotyp des HH05 Virusisolats weist eine höhere
Diskussion

Es wurde zunächst das Wachstumsverhalten der zwei klinischen Isolate (HH05 und HH15) auf humanen LungenepitHELzellen untersucht (4.3), wobei die Replikationseigenschaften der 2009 pH1N1 Viren denen von alt-saisonalen H1N1 Influenzaviren entsprachen, die 2006 zirkulierten. Das HH15 Virusisolat repliziert jedoch zu etwa einer Log-Stufe höheren Titern als HH05. Dies spricht dafür, dass HH15 durch Mutationen eine höhere Replikationseffizienz in humanen Zellen erworben haben könnte. Ob dieser Replikationsvorteil auch im Säugetorganismus zu beobachten ist und möglicherweise zu einer erhöhten Pathogenität oder Transmissibilität beiträgt, wurde weitergehend in dieser Arbeit untersucht. Eine vergleichbare Replikationseffizienz der 2009 pH1N1 zu alt-saisonalen Influenzaviren wurde bereits in der Literatur beschrieben (Itoh et al., 2009; Chan et al., 2010; Octaviani et al., 2011). In einer erst kürzlich veröffentlichten Studie replizierte ein 2009 pH1N1 Influenzavirus eines letalen Falls zu signifikant höheren Titern als das Virus eines milden Krankheitsfalls (Rodriguez et al., 2013). Eine Korrelation der in dieser Arbeit beschriebenen Replikationsunterschiede zum Krankheitsverlauf konnte aufgrund einer Medikation der Patienten, wie oben diskutiert, nicht untersucht werden.

Insgesamt bieten die beiden in dieser Arbeit verwendeten klinischen 2009 pH1N1 Virusisolate zwei Modellsysteme, um Pathogenitätsdeterminanten der 2009 pH1N1 Influenzaviren zu identifizieren und charakterisieren: HH05 als frühes 2009 pH1N1 Isolat mit einer hohen Homologie zu den ersten identifizierten 2009 pH1N1 Influenzaviren und HH15
mit genetischen Signaturen, die sich später in der Pandemie durchgesetzt haben und auf einen Selektionsvorteil hindeuten. Die Relevanz der genetischen Unterschiede im Phänotyp der beiden Isolate wird in dieser Arbeit eingehend evaluiert.

5.2 Unterschiedliche Pathogenitätsdeterminanten für 2009 pH1N1 und humane H5N1 Influenzaviren im Mausmodell

Für eine Charakterisierung der 2009 pH1N1 Influenzaviren wurden in dieser Arbeit zwei klinische Virusisolate mit einem alt-saisonalen H1N1 aus 2006 sowie einem humanen HPAIV H5N1 von einem tödlichem Krankheitsverlauf (Puthavathana et al., 2005) in zwei verschiedenen Mäusestämmen (BALB/c und C57BL/6J) verglichen. Beide Mausmodelle werden häufig in der Influenzaforschung verwendet. Das alt-saisonale H1N1 Influenzavirus war, wie bereits in der Literatur beschrieben, niedrigpathogen mit einer Überlebensrate von 100 % in beiden Mäusestämmen (4.4.1; Tumpey et al., 2005; Glaser et al., 2007). Das humane H5N1 Isolat hingegen zeigte in beiden Mausmodellen eine hohe Pathogenität mit 100 % Letalität (4.4.1) trotz niedrigerer Infektionsdosis. Eine hohe Virulenz von humanen H5N1 Influenzaviren in BALB/c Mäusen wurde ebenfalls in früheren Publikationen gezeigt (Prabhu et al., 2009; Lu et al., 1999). Im Respirationstrakt von Mäusen herrschen in erster Linie Rezeptoren aviärer Influenzaviren vor. Demnach ist die Replikation aviärer Viren dort hocheffizient und führt zu einer hohen Virulenz (Ibricevic et al., 2006). Im Kontrast zu dem alt-saisonalen H1N1 und den humanen H5N1 Influenzaviren wiesen die zwei 2009 pH1N1 Viren eine differenzielle Pathogenität in den zwei Maustämmen auf (4.4.1). In BALB/c Mäusen waren die 2009 H1N1 Influenzaviren mit Überlebensraten von 100 % niedrigpathogen, vergleichbar zum alt-saisonalen H1N1 Virus. C57BL/6J Mäuse waren hingegen empfänglicher für die 2009 pH1N1 Influenzaviren. Im diesem Mausstamm führten beide Virusisolate zu einer erhöhten Pathogenität. HH05 führte zu einer Letalität von 34 %. HH15 war im Vergleich dazu 50-fach virulenter mit einer Letalität von 100 %. Demnach sind die 2009 pH1N1 Influenzaviren pathogen für C57BL/6J jedoch nicht für BALB/c Mäuse.

Mäuse des BALB/c Stammes wurden bereits mehrfach für die Charakterisierung von pH1N1 Isolaten verwendet (Itoh et al., 2009; Maines et al., 2009; Belser et al., 2010). In den Veröffentlichungen dazu wird die 2009 pH1N1 Influenza überwiegend als niedrigpathogen für BALB/c Mäuse beschrieben, vergleichbar zu der von alt-saisonalen Influenzaviren. Eine erhöhte Pathogenität wurde nur in einzelnen Fällen mit höheren Infektionsdosen in BALB/c Mäusen beobachtet (Rodriguez et al., 2013). Dies korreliert mit der in dieser Arbeit beobachteten niedrigen Pathogenität der 2009 pH1N1 Isolate in BALB/c Mäusen (4.4). Das C57BL/6J Mausmodell wurde anfangs nur in einzelnen Fällen für die Charakterisierung der 2009 pH1N1 Influenza verwendet, wobei nur für ein Isolat eine erhöhte Pathogenität gezeigt wurde.
Diskussion

wurde (Manicassamy et al., 2010). Um humane Influenzaviren im Mausmodell zu charakterisieren, werden diese aufgrund der meist niedrigen Pathogenität und Empfänglichkeit in der Maus meist durch serielle Passagen an den Wirt adaptiert (Hirst, 1947; Brown, 1990; Gabriel et al., 2005). Dabei akkumulieren adaptive Mutationen der Maus, die eine Untersuchung des ursprünglichen Genotyps erschweren. Die in der vorliegenden Arbeit beobachtete Empfänglichkeit und Pathogenität der beiden klinischen 2009 pH1N1 Influenzaviren in der C57BL/6J Maus ermöglicht eine weitergehende Charakterisierung dieser Viren ohne eine vorherige Adaptation zum Tiermodell. Die erhöhte Pathogenität der 2009 pH1N1 Influenzaviren im Vergleich zu alt-saisonalen, konnte auch in weiteren etablierten Pathogenitätsmodellen für Influenzaviren wie Frettchen, Schweinen und Makaken beobachtet werden (Itoh et al., 2009; Maines et al., 2009; Munster et al., 2009). Im Vergleich zu alt-saisonalen Influenzaviren korreliert die erhöhte Pathogenität der 2009 pH1N1 Viren in Säugermodellen, wie hier in C57BL/6J Mäusen, mit der höheren Mortalität und mitunter schweren Krankheitsverläufen der 2009 pH1N1 Influenza (1.2.2).

Bereits bekannte virale Determinanten von HPAIV, die die Pathogenität und Empfänglichkeit von Influenzaviren für den Säuger beeinflussen, wie beispielsweise die PB2 Mutation E627K, sind nicht in den 2006 pH1N1 Isolaten präsent. Eine artifizielle Einführung dieser Marker in 2009 pH1N1 Influenzaviren führte zu keiner gesteigerten Pathogenität in BALB/c Mäusen (Garten et al., 2009; Itoh et al., 2009; Herfst et al., 2010). Da in dieser Arbeit jedoch gezeigt wurde, dass die 2009 pH1N1 Virusisolate nur in C57BL/6J und nicht in BALB/c Mäusen eine erhöhte Pathogenität und Virulenz aufweisen, kann davon ausgegangen werden, dass ein möglicher Einfluss dieser Pathogenitätsdeterminanten erst im C57BL/6J Modell sichtbar werden würde. Deshalb sollte eine artifizielle Einführung dieser bekannten Pathogenitätsdeterminanten sowie die Identifikation von neuen Determinanten zukünftig in den hier verwendeten C57BL/6J Mäusen untersucht werden.

Diskussion

Diese Ergebnisse deuten darauf hin, dass die 2009 pH1N1 Influenzaviren andere Pathogenitätsdeterminanten besitzen als humane H5N1 Influenzaviren, da eine erhöhte Viruslast und eine stärkere Entzündungsreaktion im Gegensatz zu humanen H5N1 Influenzaviren in 2009 pH1N1-infizierten BALB/c Mäusen keinen Einfluss auf die Virulenz haben.

Humane H5N1 Influenzaviren können, wie im Menschen beschrieben, auch in der Maus eine extrapulmonale Virusausbreitung zur Folge haben (Wright et al., 2007; Gabriel et al., 2009). Dies konnte in der vorliegenden Arbeit im BALB/c Mausmodell ebenfalls gezeigt werden (4.4.2). Darüber hinaus wurden hohe Titer des höher pathogenen 2009 pH1N1 Virus HH15 im Darm von infizierten C57BL/6J Mäusen detektiert. In immunhistologischen Färbungen von Darmschnitten der infizierten Mäuse konnten jedoch keine aktiv replizierenden Viren nachgewiesen werden (Daten nicht gezeigt). Der Virusnachweis im Darm lässt daher auf eine vorausgegangene Virämie schließen. Bisher wurde eine virale Ausbreitung über den Blutkreislauf experimentell meist nur für HPAIV gezeigt (Rimmelzwaan et al., 2006; Gabriel et al., 2009; Gao et al., 1999), auch gibt es vereinzelt klinische Berichte, in denen eine Virämie bei humanen H5N1 Influenzavirusinfektionen nachgewiesen wurde (Beigel et al., 2005; Likos et al., 2007). Während der 2009 Pandemie waren gastrointestinale Beschwerden ein häufiges Symptom bei 2009 pH1N1-Erkrankten, was auf eine extrapulmonale Virusausbreitung hindeuten könnte (Dawood et al., 2009; Riquelme et al., 2009). Dementsprechend wurden auch bei 2009 pH1N1-Patienten mit schweren Krankheitsverläufen Virustiter im Blut nachgewiesen (To et al., 2010; Oughton et al., 2011). Eine weitere Untersuchung einer Virämie sowie von weiteren Organen nach HH15-Infektion
Diskussion

ist demnach von großem Interesse, da eine extrapulmonale Virusausbreitung, wie hier mit HH15 vermutet wird, zu hoher Morbidität und Mortalitäten führen kann.

Ein signifikantes Korrelat der Pathogenität und Virulenz von alt-saisonalen H1N1, 2009 pH1N1 und humanen H5N1 Influenzaviren in beiden Mausstämmen zeigte sich in der Analyse des Blutbildes infizierter Tiere (4.4.4). In beiden Mausstämmen, infiziert mit humanen H5N1 Viren, sowie in 2009 pH1N1-infizierten C57BL/6J Mäusen, konnte eine Lymphozytendepletion im Blut nachgewiesen werden. Dies korrelierte mit einer erhöhten Pathogenität sowie Letalität im jeweiligen Mausstamm. Eine Lymphopenie wurde bereits für Infektionen mit HPAIV im Säuger einhergehend mit hoher Letalität beobachtet (Gabriel et al., 2009; Maines et al., 2008). Nach Ausbruch der 2009 Pandemie gab es vereinzelte Berichte von verringerten Lymphozytenwerten mit steigender Viruslast (To et al., 2010). Auch in den Patienten, von denen die in dieser Arbeit untersuchten 2009 pH1N1 Isolate isoliert wurden, war die Gesamtzahl der Leukozyten verringert (4.1). Das Auftreten einer Lymphopenie ist demnach, wie hier gezeigt, ein Indikator für erhöhte Virulenz zum einen für unterschiedliche Influenzaviren, zum anderen auch in Mausstämmen mit unterschiedlichem genetischem Hintergrund.

zu detektieren. Es existiert ein Bericht in dem IL-10 auch in pH1N1-infizierten Patienten herabreguliert war (Liu et al., 2012). Das führt zu der Vermutung, dass die Th2-Zytokine IL-4 und IL-10 im Krankheitsverlauf der 2009 pH1N1-infizierten BALB/c Mäuse eine vorteilhafte Rolle spielen könnten. Dies bedarf jedoch genauerer Untersuchungen, die sich neben den sezernierten Zytokinen auch auf die T-Helferzellen direkt beziehen. In der Literatur konnte bereits gezeigt werden, dasszelluläre Modulatoren, die eine IL-4 Expression in Influenzavirus-infizierten Mäusen erhöhen, die Letalität reduzieren können (Aldridge et al., 2009). Die Rolle von IL-10 im Infektionsverlauf von Influenzaviren wurde ebenfalls bereits untersucht, wird in der Literatur jedoch kontrovers diskutiert, da ein Fehlen dieses Zytokin zu einem mit vorteilhaften zum anderen mit negativen Auswirkungen auf den Infektionsverlauf infizierter Mäuse beschrieben worden ist (McKinstry et al., 2009; Sun et al., 2009). Die Ergebnisse in dieser Arbeit deuten allerdings darauf hin, dass eine 2009 pH1N1-Infektion in BALB/c Mäusen eine andere Immunantwort als in C57BL/6 Mäusen auslöst, sich jedoch die wirtsspezifische Immunantwort nach einer H5N1-Infektion in beiden Mausmodellen ähnelt.

Pathogenitätsdeterminanten der 2009 pH1N1 Influenza scheinen im BALB/c Mäusestamm im Gegensatz zu C57BL/6J Mäusen maskiert zu sein. Dies ist nur für die 2009 pH1N1 Influenzaviren der Fall und verdeutlicht, dass für diese Influenzaviren andere, vor allem wirtsspezifische Determinanten, eine entscheidende Rolle für die Pathogenität spielen als für humane H5N1 Influenzaviren. Vor allem die Immunantwort des jeweiligen Wirts scheint ausschlaggebend zu sein, da eine erhöhte Virusreplikation allein nicht für die erhöhte Pathogenität verantwortlich ist. Für die Charakterisierung von 2009 pH1N1 Influenzaviren sollte demnach künftig das C57BL/6J Mausmodell verwendet werden. Wie im nächsten Punkt diskutiert, kann es dazu dienen, neue noch unbekannte Pathogenitätsdeterminanten der 2009 pandemischen H1N1 Influenza zu identifizieren.

5.3 Differenzielle Pathogenität von 2009 pH1N1 Influenzaviren im C57BL/6J Modell

Wie unter 5.2 diskutiert, wiesen die zwei klinischen 2009 pH1N1 Virusisolate im Vergleich zu alt-saisonalen Influenzaviren eine erhöhte Pathogenität im C57BL/6J Modell auf. In diesem Mausmodell waren auch zwischen den zwei untersuchten Isolaten Unterschiede in Pathogenität und Virulenz zu beobachten (4.4). Das 2009 pH1N1 Influenzavirus HH15 war im C57BL/6J Mausmodell 50-fach virulenter als das HH05 Virusisolat. Die Unterschiede in der Pathogenität der 2009 pH1N1 Viren spiegeln sich auch in der Pathologie der Lunge infizierter C57BL/6J Mäuse wider. Diese zeigten eine stärkere Infiltration und Destruktion in HH15-infizierten Mäusen im Vergleich zu HH05-infizierten (4.4.3). Des Weiteren war eine
Diskussion

höhere Viruslast in der Lunge der HH15-infizierten C57BL/6J Mäuse als in HH05-infizierten zu detektieren. Hinweise auf eine Virämie wurden ebenfalls nur nach Infektion mit dem höher pathogenen HH15 Virus in den C57BL/6J Mäusen festgestellt. Die ebenfalls unter 5.2 diskutierte auftretende Lymphopenie als Korrelat von Pathogenität und Virulenz für Influenzaviren in beiden Mäusestämmen zeigt ebenfalls Unterschiede zwischen den beiden pH1N1 Isolaten in der C57BL/6J Maus (4.4.4). Drei Tage nach Infektion mit beiden 2009 pH1N1 Influenzaviren sind die Lymphozyten im Blut der Mäuse depletiert, nach sechs Tagen hingegen nur noch in HH15-infizierten Mäusen. Demzufolge korreliert auch der Grad einer Lymphopenie mit einer höheren Pathogenität und Virulenz im C57BL/6J Mausmodell.

Differenzielle Pathogenität für verschiedene 2009 pH1N1 Influenzaviren wurde auch in anderen etablierten Säugetiermodellen wie Frettchen und Makaken gezeigt (Safronetz et al., 2011; Maines et al., 2009). Diese Unterschiede in Pathogenität für verschiedene 2009 pH1N1 Virusisolate korrelieren mit der Beobachtung, dass die 2009 pH1N1 Influenzaviren während der Pandemiephase sehr unterschiedliche Krankheitsverläufe zur Folge hatten. Die Mehrzahl der Betroffenen wies eine milde Influenzaerkrankung auf. Andere, darunter auffallend viele junge immunkompetente Erwachsene, erlitten schwere Krankheitsverläufe, mitunter mit Todesfolge (Karageorgopoulos et al., 2011; Dawood et al., 2009; Dawood et al., 2012). Dabei benötigten Patienten mit schweren 2009 pH1N1-Erkrankungen oftmals künstliche Beatmung aufgrund einer viralen Pneumonie (Gill et al., 2010). Die in dieser Arbeit beobachtete stärkere Entzündungsreaktion und Viruslast in der Lunge von HH15-infizierten C57BL/6J Mäusen könnte daher für eine höhere Pathogenität sprechen. Zumal allein eine höhere Viruslast, wie sie für HH15 auch in humanen Zellen gezeigt wurde, zu einem schwereren Krankheitsverlauf führen könnte. Hohe Mortalitätsraten, assoziiert mit der 2009 pH1N1 Pandemie, traten vor allem bei Menschen mit vorliegenden Vorerkrankungen auf (Dawood et al., 2012). Liegt bereits eine immunschwächende Erkrankung vor, können bereits geringe Unterschiede, wie beispielsweise ein höherer Virustiter, zu einer erheblich schwereren Erkrankung führen. Die Patienten, von denen die beiden in dieser Arbeit charakterisierten 2009 pH1N1 Influenzaviren isoliert wurden, wiesen keine signifikanten Unterschiede im Krankheitsverlauf auf, was wahrscheinlich auf die zeitnahe Behandlung mit antiviralen Medikamenten zurück zu führen ist. Auch waren in beiden Patienten keine Ko-Morbiditäten bekannt, die den Grad der Erkrankung hätten zusätzlich beeinflussen können (4.1).

Die differenzielle Pathogenität von HH05 und HH15 in C57BL/6J Mäusen kann aufgrund der unter 5.1 diskutierten Sequenzunterschiede der beiden Virusisolate die Identifizierung und Charakterisierung von adaptiven Pathogenitätsdeterminanten, die während der Pandemie auftraten, ermöglichen.
5.4 Einzelne Mutationen in NP und HA sind für die differenzielle Pathogenität im C57BL/6J Modell verantwortlich

In C57BL/6J Mäusen zeigten die in dieser Arbeit charakterisierten klinischen 2009 pH1N1 Influenzaviren eine differenzielle Pathogenität und Virulenz, welche mit dem Grad der Entzündungsreaktion in der Lunge sowie dem Grad einer Lymphopenie korrelierten (5.3). Da sich die beiden Influenzavirusisolate nur in zwölf Aminosäuresubstitutionen unterscheiden, müssen unter diesen auch virale Determinanten zu identifizieren sein, die zu der differenziellen Pathogenität beitragen. Um diese festzustellen, wurden mittels reverser Genetik rekombinante 2009 pH1N1 Viren generiert (4.5.1). Ein großer Vorteil der reversen Genetik ist es, gezielt einzelne Mutationen in rekombinante Viren einzuführen, um deren Rolle hinsichtlich der Pathogenität zu untersuchen (Stech et al., 2008). Die rekombinanten Viren wurden anschließend hinsichtlich Pathogenität und Virulenz im C57BL/6J Modell im Vergleich zu den parentalen Viren der klinischen 2009 pH1N1 Influenzaisolate untersucht. Die Ergebnisse zeigten, dass rekombinante 2009 pH1N1 Viren, welche die HH15-spezifische HA Mutation S202T oder die HH15-spezifischen NP Mutationen V100I, I133L und I373T im genetischen Hintergrund von HH05 enthielten, eine vergleichbar hohe Pathogenität und Virulenz im C57BL/6J Modell haben wie das klinische HH15 Isolat (4.5.2). Diese Mutationen führten dabei nicht nur in Kombination sondern auch einzeln zu einer erhöhten Virulenz im Vergleich zu HH05 und einer stärkeren Infiltration oder Viruslast in der Lunge der infizierten Mäuse. Die beobachteten Unterschiede in der Lungenpathologie könnten darauf hindeuten, dass die einzelnen Mutationen mit unterschiedlichen Mechanismen zu der erhöhten Pathogenität in der Lunge von C57BL6/J Mäusen beitragen. Eine höhere Viruslast kann beispielsweise zu einer ähnlich schweren Erkrankung führen wie eine stärkere Immunsuppression. Um das in dieser Arbeit beschriebene Virulenz-Korrelat einer länger andauernden Lymphopenie zu untersuchen, wurden ebenfalls die Blutbilder der infizierten Mäuse analysiert (4.5.2.3). Auch hier wiesen die rekombinanten Viren mit den HH15-spezifischen Mutationen im HA und NP eine signifikant stärkere Lymphozytendepletion auf als das HH05 Virusisolat. Demnach sind einzelne HH15-spezifische Mutationen im HA und NP für die hier beobachtete differenzielle Pathogenität der 2009 pH1N1 Viren im C57BL/6J Modell verantwortlich.

identifiziert wurden, die zwar mit den 2009 pH1N1 Viren kreuzreagieren, aber keine schützende Immunität gegen das Virus vermitteln (Monsalvo et al., 2011). Sollte die S202T Mutation einen solchen Effekt auf die Antigenität haben, würde dies die hohe Virulenz in Verbindung mit wirtspezifischen Determinanten erklären. Des Weiteren ist die S202T Mutation in der Domäne lokalisiert, welche die Rezeptorbinding während einer Influenzainfektion vermittelt. Die Position 202 liegt nicht direkt in der Rezeptorbindingtasche des Proteins. Dennoch ist ein indirekter Einfluss auf die Rezeptorbindungseigenschaften denkbar. Die Rezeptorbindungseigenschaften von HH15 im Vergleich zu HH05 sowie dem rekombinanten Virus mit der HH15-spezifischen HA Mutation S202T wurden hier anhand der Hämagglutination von Erythrozyten untersucht. Hierbei zeigten alle 2009 pH1N1 Viren eine vergleichbare Bindungspräferenz von humanen Virusrezeptoren (4.6.1). In der Literatur wurde beschrieben, dass die 2009 pH1N1 Influenzaviren humane α2,6-ständige Sialinsäuren stärker binden als aviäre α2,3-ständige (Yang et al., 2010; Childs et al., 2009). Um eine Rolle der HH15-spezifischen HA Mutation für die erhöhte Pathogenität aufgrund von verschiedenen Rezeptorbindungseigenschaften auszuschließen, sollte jedoch die spezifische Bindungspräferenz an α2,3- und α2,6-ständige Sialinsäuren untersucht werden. Dabei sollten ebenfalls die seltener untersuchten α2,8-ständigen Sialinsäuren mit einbezogen werden, da Influenzaviren auch diese binden können (Wu und Air, 2004). Eine stärkere Bindung des HH15 im Vergleich zu HH05 von solchen zusätzlichen Rezeptoren könnte zu einer erhöhten Infektionseffizienz führen. Es wurde bereits eine andere HA Position in 2009 pH1N1 Viren identifiziert, an der eine Mutation die Rezeptorbindungseigenschaft der 2009 pH1N1 Influenzaviren verändert (Chutinimitkul et al., 2010; Liu et al., 2010). Die D222G Mutation tritt vermehrt im HA Protein von 2009 pH1N1 Influenzaviren auf und wurde mit schweren Krankheitsverläufen assoziiert. Diese Mutation führt zu einer breiteren Rezeptorspezifität der 2009 pH1N1 Viren mit einer erhöhten Präferenz für aviäre Virusrezeptoren (WHO, 2010; Chen et al., 2010; Chutinimitkul et al., 2010; Liu et al., 2010). Eine erhöhte Pathogenität in der Maus von 2009 pH1N1 Viren mit dieser Mutation konnte ebenfalls gezeigt werden (Zheng et al., 2010; Belser et al., 2011a). Die in dieser Arbeit charakterisierten 2009 pH1N1 Isolate enthielten beide die ursprüngliche 222D Signatur im HA Protein.

Die drei Mutationen von HH15 in NP, V100I, I133L und I373T, trugen ebenfalls zu einer erhöhten Pathogenität in C57BL/6J Mäusen bei (4.5.2). Da alle drei der NP Mutationen in Bereichen des Proteins liegen, die im viralen RNP-Komplex mit dem Polymereaseprotein PB2 interagieren, wurde ein möglicher Einfluss auf die Polymeraseaktivität mittels eines in vitro Reporter-assays analysiert (4.6.2). Der Polymerasekomplex des HH15 Virus zeigte im Vergleich zu dem des HH05 Virus eine deutlich reduzierte Aktivität. Dies ist ein unerwartetes Ergebnis, da das HH15 Virus in humanen Lungenzellen sowie in der Lunge

Diskussion

Die Evaluierung, besonders von T-Zellepitopen, basiert jedoch auf komplizierten Algoryhtmen und Peptid-Vorhersage Programmen jeweils für bestimmte HLA Allele (Assarsson et al., 2008; Grant et al., 2013). Eine Untersuchung der Immundominanz für einzelne Mutationen ist daher erschwert (Varich et al., 2009). Es ist jedoch nicht auszuschließen, dass adaptive Mutationen, wie hier in HH15 beobachtet, zu einer Umgehung der Immunabwehr gegen die bereits vorhandenen 2009 pH1N1 Influenzaviren in der Bevölkerung führen.

5.5 Pathogenität und Replikationseigenschaften von 2009 pH1N1 Influenzaviren in Meerschweinchen und Frettchen

Um die Transmissionseigenschaften von 2009 pH1N1 Influenzaviren zu untersuchen, wurden die bereits in der Literatur beschriebenen Kleinsäugermodelle Meerschweinchen und Frettchen verwendet (1.3; Bouvier und Lowen, 2010). Humane Influenzaviren replizieren effizient im ORT von Meerschweinchen, ohne dass eine vorherige Adaptation notwendig ist. Diese Eigenschaft resultiert in einer hohen Übertragbarkeit von Influenzaviren zwischen den Tieren (Lowen et al., 2006). Allerdings kommt es in Meerschweinchen zu keinem Ausbruch einer klinischen Symptomatik (Bouvier und Lowen, 2010). Frettchen hingegen eignen sich aufgrund vieler Parallelen zum Krankheitsverlauf einer Influenzaviruserkrankung im Menschen. In Frettchen kann sowohl die Transmission von Influenzaviren als auch deren Pathogenität untersucht werden (Barnard, 2009; Maher und DeStefano, 2004; Belser et al., 2011b). In dieser Arbeit wurde zunächst die Pathogenität und der Tropismus der 2009 pH1N1 Influenzaviren in beiden Modellen verglichen (4.5; 4.8).

In 2009 pH1N1-infizierten Meerschweinchen waren, wie erwartet keine klinischen Anzeichen einer Erkrankung wie erhöhte Temperatur, Gewichtsverlust oder Lethargie zu beobachten.
Bei den beiden 2009 pH1N1 Isolate replizierten effizient im ORT der Tiere und waren mit hohen Titern zu detektieren (4.7.1). Die effiziente Replikation ist auf das Vorkommen der humanen Virusrezeptoren, der α2,6-verknüpften Sialinsäuren, im ORT von Meerschweinchen zurückzuführen (Sun et al., 2010; Gao et al., 2009). Dies wurde auch von anderen Gruppen in Infektionsexperimenten mit 2009 pH1N1 Influenzaviren in Meerschweinchen beobachtet (Sun et al., 2010; Steel et al., 2010). Im URT der 2009 pH1N1-infizierten Meerschweinchen wurde nur für das HH15 Virusisolat eine Replikation nachgewiesen, jedoch zu niedrigen Titern. HH05 scheint demnach gar nicht im URT von Meerschweinchen replizieren zu können. In der Lunge von Meerschweinchen kommen vermehrt die aviären Virusrezeptoren, α2,3-verknüpfte Sialinsäuren, vor (Gao et al., 2009). Eine Replikation von HH15 im URT von Meerschweinchen, vor allem in der Lunge, könnte entweder auf eine allgemein erhöhte Replicationseffizienz oder auf eine stärkere Bindung von aviären Rezeptoren zurückzuführen sein. Wie unter 5.4 diskutiert, konnte letzteres für HH15 mittels Hämagglutination von humanen und aviären Erythrozyten nicht gezeigt werden. Um den Einfluss der Rezeptoren auszuschließen, müsste jedoch eine detaillierte Analyse der Sialinbindung durchgeführt werden. Eine breitere Rezeptorspezifität kann zu einer erhöhten Pathogenität des Virus führen (Zheng et al., 2010; Belser et al., 2011a). Die Replikation von 2009 pH1N1 Influenzaviren im URT von Meerschweinchen wurde ebenfalls von Zhang et al. gezeigt (Zhang et al., 2012). Dort wird jedoch eine effiziente Replikation unabhängig von der Rezeptorspezifität postuliert. Dabei beziehen sich Zhang et al. jedoch nur auf eine Änderung der Rezeptorspezifität durch eine HA-Mutation, welche sich von der HH15-spezifischen unterscheidet (5.4). Eine histologische Auswertung des URT der 2009 pH1N1-infizierten Meerschweinchen reflektierte die Ergebnisse der Virustiter-Bestimmung, da eine signifikant größere Anzahl replizierender HH15 Viren in den Lungen nachzuweisen war als HH05 Viren (4.7.1). Dieses Ergebnis stützt die Annahme, dass HH15 im Vergleich zu HH05 im URT von Meerschweinchen einen Replikationsvorteil hat. Hätte HH15 durch spezifische Mutationen, wie beispielsweise die im HA vorkommende, eine höhere Bindungssaffinität zu aviären Rezeptoren erlangt, würde das hypothetisch zu einer effizienteren Replikation in den Lungen vieler Säuger und demnach einer schwereren Erkrankung führen. Auch die Pathologie wies nach HH15-Infektion im Vergleich zu HH05 in den Lungen der Meerschweinchen einen höheren Entzündungsgrad mit deutlich zerstörter Alveolarstruktur auf. Diese Ergebnisse sprechen dafür, dass HH15 insgesamt zu einer schwereren Erkrankung im Meerschweinchen führt als HH05.

Auch im Frettchenmodell wurden keine signifikanten Unterschiede von Körpertemperatur, -gewicht oder Virulenz der 2009 pH1N1-infizierten Tiere im Vergleich zu nicht-infizierten beobachtet (4.8). Beide 2009 pH1N1 Influenzaviren replizieren effizient im ORT, wobei HH15 im Vergleich zu HH05 länger zu höheren Titern nachgewiesen wurde (4.8.1). Die effiziente
Diskussion

Replikation kann ebenfalls mit dem vermehrten Vorkommen von humanen Virusrezeptoren im ORT von Frettchen erklärt werden (Leigh et al., 1995; Belser et al., 2011b). Die 2009 pH1N1 Viren wiesen ebenfalls im URT, der Trachea und der Lunge infizierter Frettchen eine effiziente Replikation mit hohen Virustitern auf. Dabei replizierte HH15 in der Trachea signifikant und in der Lunge tendenziell zu höheren Titern als das HH05 Virusisolat. Da in der Lunge von Frettchen ein höherer Anteil aviärer Virusrezeptoren als im ORT vorhanden ist (Leigh et al., 1995; Thongratsakul et al., 2010), könnte ein Replikationsvorteil von HH15 analog zum Meerschweinchen auf eine breitere Rezeptorspezifität hindeuten. Für humane Influenzaviren ist in der Literatur die effiziente Replikation hauptsächlich im ORT beschrieben. Eine Replikation im URT, wie auch bei humanen H5N1 Influenzaviren, wird auf die dort vorkommenden aviären Virusrezeptoren zurückgeführt (Maher und DeStefano, 2004; Bouvier und Lowen, 2010; Belser et al., 2011b). Die erhöhte Replikation von HH15 im URT wurde in der Histologie von Trachea und Lunge der infizierten Frettchen bestätigt (4.8.1). Ein genereller Replikationsvorteil von HH15 könnte jedoch neben einer veränderten Rezeptorbindung auch zu der effizienteren Replikation im URT im Vergleich zu HH05 führen.

Die Pathologie der Frettchenlungen weist nach HH15-Infektion eine Entzündungsreaktion einhergehend mit zerstörter Alveolarstruktur auf. Dies trägt zu der Annahme bei, dass HH15 im Frettchen pathogener ist als HH05. Von anderen Gruppen durchgeführte 2009 pH1N1-Infektionsversuche im Frettchen wiesen zum Teil unterschiedlich schwere Krankheitsverläufe für verschiedene Isolate auf, von milden bis zu letalen Fällen mit Virusreplikation in ORT und URT (Huang et al., 2011; Maines et al., 2009; Itoh et al., 2009; Munster et al., 2009). Die in dieser Arbeit untersuchten 2009 pH1N1 Virusisolate sind im Frettchen nicht letal und zeigen keine klinische Symptomatik. Die Ergebnisse zeigen jedoch, dass HH15 durch seinen Replikationsvorteil zu einer schwereren Erkrankung im Frettchen führt als HH05. Des Weiteren gibt es einen Bericht über die Detektion von Virustitern im Darm von 2009 pH1N1-infizierten Frettchen (Maines et al., 2009). Da dies hier für das HH15 Isolat auch in C57BL/6J Mäusen beobachtet wurde und gastrointestinale Beschwerden auffallend häufig in 2009 pH1N1 Patienten vorkamen, sollte der Darm zukünftig auch in Meerschweinchen und Frettchen in weiterführenden Studien untersucht werden.

Die Ergebnisse zur Virusreplikation lassen darauf schließen, dass aufgrund des Vorkommens humaner Virusrezeptoren die 2009 pH1N1 Influenzaviren effizient im ORT von Meerschweinchen und Frettchen replizieren können. Im URT zeigte das HH15 Virusisolat in beiden Modellen einen Replikationsvorteil gegenüber HH05. Im Meerschweinchen sowie im Frettchen kommen dort aviäre Rezeptoren vor. Es ist bekannt, dass 2009 pH1N1 Viren zwar verstärkt die humanen Rezeptoren, aber im Gegensatz zu alt-saisonalen Influenzaviren, auch noch signifikant aviäre Rezeptoren binden können (Childs et al., 2009; Yang et al., 2010; Xu et al., 2012b). Dies deutet darauf hin, dass HH15 durch Mutationen entweder eine

Im Vergleich der drei Säugermodelle hinsichtlich Pathogenität und Virusreplikation lässt sich zusammenfassen, dass die Ergebnisse für die 2009 H1N1 Influenzaviren vergleichbar sind. Die Virustiter im Respirationstrakt von Meerschweinchen, vor allem im URT, sind allerdings insgesamt niedriger als in Frettchen. Dies könnte teilweise durch geringe Unterschiede in der Rezeptorverteilung im Respirationstrakt der beiden Säugermodelle erklärt werden. Meerschweinchen haben im ORT humane sowie aviäre Virusrezeptoren, im URT dagegen vermehrt aviäre. Frettchen hingegen haben im ORT mehr humane, im URT jedoch beide Virusrezeptoren (Sun et al., 2010; Gao et al., 2009; Leigh et al., 1995; Thongratsakul et al., 2010). Dadurch könnte eine breitere aviäre und humane Rezeptorbindepräferenz von Influenzaviren, wie hier für HH15 vermutet, im Meerschweinchenmodell zu deutlicheren Unterschieden führen. Darüber hinaus korreliert der Befund der erhöhten Replikation und Pathogenität von HH15 im Vergleich zu HH05 in allen drei Säugermodellen. Bezüglich der Transmissibilität dagegen scheinen beide Modelle, Meerschweinchen und Frettchen, unterschiedliche Ergebnisse zu liefern, die in der unterschiedlichen Verteilung der Virusrezeptoren oder aber unterschiedlichen Immunantworten in diesen liegen könnten. Daher gilt es Aussagen zur Transmissionseffizienz von Influenzaviren vorsichtig im untersuchten Hintergrund des Tiermodells zu evaluieren.

5.6 Differenzielle Transmissionseigenschaften von 2009 pH1N1 Influenzaviren in Meerschweinchen und Frettchen

Die 2009 pH1N1 Influenza zeichnete sich unter anderem durch eine effiziente Übertragung von Mensch zu Mensch aus, was für eine schnelle Ausbreitung der Pandemie sorgte (1.2.1). Zur Charakterisierung der Transmissionseigenschaften der beiden hier untersuchten 2009 pH1N1 Influenzaviren wurden Meerschweinchen und Frettchen verwendet. Beide gelten als etablierte Kleinsäugermodelle für die Transmission von Influenzaviren (Maher und DeStefano, 2004; Lowen et al., 2006). Im Frettchen ähnelt eine Influenzavirusinfektion, vor allem aufgrund der Rezeptorverteilung im Respirationstrakt und des klinischen Krankheitsverlaufs der des Menschen (Belser et al., 2011b; Bouvier und Lowen, 2010). Frettchen gelten daher neben Halbaffen als „Goldstandard“ für die Untersuchung der
Pathogenität und Transmission von Influenzaviren. Da in Meerschweinchen ebenfalls humane Influenzavirusrezeptoren im ORT vorkommen, werden diese häufig als vergleichsweise kosten- und aufwandgünstigeres Modell verwendet, sind aber weitestgehend auf die Transmission beschränkt (Lowen et al., 2006). Voraussetzung für eine Übertragung von Tier zu Tier in diesen beiden Modellen ist, dass das entsprechende Virus zu ausreichend hohen Titern in den oberen Atemwegen repliziert. Da gezeigt werden konnte, dass beide hier untersuchten 2009 pH1N1 Virusisolate, wie unter 5.5 diskutiert, ähnlich effizient im ORT von Meerschweinchen und Frettchen replizieren, wurden Transmissionsstudien mit Sentineltieren durchgeführt (4.7.2; 4.8.2.).

Kontakt-Transmission

Die Übertragung von 2009 pH1N1 Influenzaviren durch direkten Kontakt war im Meerschweinchenmodell, gemessen an Virustiter im ORT der Sentineltiere, zu 100 % effizient. Dies galt für das HH05 Virusisolat ebenso wie für HH15. Die sequenziellen Unterschiede zwischen HH05 und HH15 scheinen dementsprechend keinen Einfluss auf die effiziente Kontakt-Transmission im Meerschweinchen zu haben. Eine effiziente Kontakt-Transmission der 2009 pH1N1 Influenzaviren konnte bereits in zwei weiteren Publikationen gezeigt werden (Steel et al., 2010; Sun et al., 2010; Kaminski et al., 2013). Kaminski et al. untersuchten die Kontakt-Transmission des hier ebenfalls verwendeten HH05 Isolats und bestätigten die effiziente Transmission auf Sentineltiere. Im Gegensatz dazu werden für alt-saisonale Influenzaviren unterschiedliche Transmissionseffizienzen für den direkten Kontakt von Meerschweinchen gezeigt. Mit Ausnahme eines alt-saisonalen H1N1 Influenzavirus, welches ebenfalls zu 100 % übertragen wurde, wiesen ein anderes alt-saisonales H1N1 und ein H3N2 Influenzavirus lediglich Übertragungsraten zwischen 25 % und 66 % auf (Mubareka et al., 2009; Sun et al., 2010; Lowen et al., 2006). Dies könnte auf eine höhere Effizienz der Kontakt-Transmission der 2009 pH1N1 Influenza im Gegensatz zu alt-saisonalen Influenzaviren hindeuten und zur schnellen Ausbreitung der Pandemie in 2009 beigetragen haben.

Die Kontakt-Transmission im Frettchenmodell wird in der Literatur als hoch effizient für humane Influenzaviren verschiedener Subtypen beschrieben (Bouvier und Lowen, 2010). Ebenso zeigten Maines et al., dass auch 2009 pH1N1 Influenzaviren zu 100 % über direkten Kontakt von Frettchen zu Frettchen transmittieren (Maines et al., 2009). Die Kontakt-Transmission im Frettchen wurde in dieser Arbeit nicht untersucht.

Aerosol-Transmission

Für die Untersuchung einer Übertragung von Tier zu Tier durch Aerosolbildung wurden jeweils nicht-infizierte Meerschweinchen bzw. Frettchen im Luftstrom von infizierten Tieren
Diskussion

gehalten (3.4.6). Durch einen Abstand von etwa 10 cm der Käfige voneinander wurde sichergestellt, dass keine Übertragung durch direkten Kontakt oder große Respirationsströpfchen erfolgte.

In Meerschweinchen konnte eine Transmission über Aerosole nur für das HH05 Isolat nachgewiesen werden. In zwei von vier Sentinelieren konnte während des Versuchs Virus im ORT nachgewiesen werden (4.7.2). In einem Sentinelier war nach sechs Tagen Virus zu detektieren und im anderen zeitversetzt nach neun Tagen. Da die Tiere jeweils in Zweiergruppen gehalten wurden und eine effiziente Kontakt-Transmission für das HH05 Isolat bereits gezeigt wurde, ist hier eine direkte Übertragung vom ersten Sentinelier auf das zweite wahrscheinlich. Ein Antikörperrnachweis der Sentineliere zeigte eine Serokonversion von drei aus vier Sentinelieren (4.7.2). Die Virustiter im ORT des dritten Tieres lagen demnach voraussichtlich unter der Detektionsgrenze. Daraus ergibt sich für die Aerosol-Transmission von HH05 eine Effizienz von 75 %. Der Antikörperrnachweis bestätigte weitgehend, dass für HH15 keine Aerosol-Transmission in Meerschweinchen stattfindet. Die beobachtete Replikation von HH15 im Gegensatz zu HH05 im URT von Meerschweinchen scheint demnach mit dem Verlust der Transmissibilität über Aerosole zu korrelieren. Es ist bekannt, dass HPAIV, die tiefer in der Lunge von Menschen replizieren, auch schlechter von Mensch zu Mensch transmitieren, was meistens aber mit einer ineffizienteren Replikation im ORT einhergeht (Shinya et al., 2006). Dies war im Fall von HH15 nicht zu beobachten, da es ebenso effizient im ORT replizierte wie das HH05 Isolat. Es wurde jedoch in der Literatur beschrieben, dass ein humanes H5N1 Influenzavirus, welches auch zu hohen Titern im ORT replizierte und über Kontakt transmittierte, nicht über Aerosol-Transmission auf naive Meerschweinchen übertragen wurde (Bouvier und Lowen, 2010; Steel et al., 2009). Eine Erklärung dafür liefert unter anderem eine Veröffentlichung von Zhang et al. (Zhang et al., 2012). Dort wird gezeigt, dass eine stärkere Affinität von 2009 pH1N1 Influenzaviren zu aviären Virusrezeptoren eine Aerosol-Transmission im Meerschweinchen trotz effizienter Replikation im ORT unterbindet. Dies stützt die Hypothese unter 5.5, nach der HH15 aviäre Virusrezeptoren stärker binden könnte als HH05. Dadurch könnte die Effizienz der Aerosol-Transmission eingebüßt worden sein. Steel et al. untersuchten ebenfalls die Aerosol-Transmission von 2009 pH1N1 Influenzaviren im Meerschweinchen (Steel et al., 2010). Dort transmittierten zwei verschiedene 2009 pH1N1 Influenzaviren mit einer Effizienz von 100 %. Das eine Influenzavirus wurde jedoch mit als erstes in 2009 sequenziert und weist zu HH05 eine höhere Sequenzhomologie auf als zu HH15, was darauf hindeutet, dass die HH15-spezifischen Mutationen zu den Unterschieden in der Aerosol-Transmission im Meerschweinchen beitragen.
Diskussion

Eine Aerosol-Transmission von Frettchen zu Frettchen fand mit beiden 2009 pH1N1 Influenzaviren statt (4.8.2). Das HH05 Virus wurde initial jeweils zeitversetzt im ORT der Sentinel-Tiere detektiert, in einem der Tiere erst 8 d p.i.. Das HH15 Virus hingegen wurde bereits früh im Verlauf des Versuchs in allen Sentinel-Tieren detektiert und über einen längeren Zeitraum im ORT der einzelnen Tiere nachgewiesen als beim HH05 der Fall. Eine effiziente Aerosol-Transmission von 100 % wurde mittels Antikörper-Test für HH05- sowie HH15-Sentinel-Tiere bestätigt. Da die Frettchen jeweils zu zweit im Käfig gehalten wurden, liegt die Vermutung auch hier nahe, dass die Tiere mit Virus titern zu späteren Zeitpunkten, besonders bei HH05, durch eine Kontakt-Transmission infiziert wurden. Demzufolge könnte vermutet werden, dass das HH15 Virus tendenziell effizienter über Aerosole transmittiert als HH05, denn obwohl HH05 nach einer Übertragung auf die Sentinel-Tiere zu höheren Titern im ORT repliziert, führt HH15 zu einer länger andauernden Viruslast. Dies würde bestätigen, dass eine effiziente Virusreplikation im ORT zu einer effizienten Aerosol-Transmission beiträgt. Zusammen mit dem für HH15 beobachteten Replikationsvorteil im URT der Frettchen, deuten diese Ergebnisse darauf hin, dass HH15 tendenziell zu einer effizienteren Infektion im Frettchen führt als HH05.

In Studien anderer Gruppen zur Aerosol-Transmission von 2009 pH1N1 Influenzaviren im Frettchenmodell wurde ebenfalls eine Effizienz von 100 % beschrieben (Itoh et al., 2009; Zhang et al., 2012; Munster et al., 2009). Zhang et al. zeigten dabei jedoch eine zeitversetzte Infektion der Sentinel-Tiere, vergleichbar zu HH05, was ebenfalls auf eine Kontakt-Transmission der Sentinel-Tiere untereinander vermuten lässt. In einer weiteren Publikation transmittierten drei verschiedene 2009 pH1N1 Isolate jeweils nur mit einer Effizienz von 66 %, gemessen an Virus titern im ORT der Frettchen (Maines et al., 2009). Die unterschiedliche Effizienz in der Aerosol-Transmission von 2009 pH1N1 Influenzaviren wurde bisher nicht untersucht. Human-adaptierte, alt-saisonale oder pandemische 1918 Influenzaviren transmittieren effizient im Frettchen, aviäre Influenzaviren, unter anderem auch humane H5N1 Isolate, hingegen nicht (Bouvier und Lowen, 2010; Maines et al., 2009; Maines et al., 2006). In zwei parallel veröffentlichten Studien wurde gezeigt, dass human-adaptive Mutationen von aviären H5N1 Viren eine Transmission im Frettchen ermöglichen, was jedoch mit einer niedrigeren Replikation und Pathogenität einhergeht (Imai et al., 2012; Herfst et al., 2012). Sollte HH15 eine höhere Affinität zu aviären Virusrezeptoren erworben haben als HH05, würde die effizientere Replikation im URT mit diesen Ergebnissen zwar korrelieren, nicht aber die tendenziell effizientere Aerosol-Transmission erklären. Demnach könnte auch eine generell höhere Replikationseffizienz von HH15 für den tendenziellen Transmissionsvorteil verantwortlich sein. Zusammenfassend sprechen die Ergebnisse zur Replikation und Transmission in 2009 pH1N1-infizierten Frettchen dafür, dass HH15 durch adaptive Mutationen zum einen pathogener und zum anderen auch transmissiver geworden
sein könnte als HH05. Dies würde zusätzlich unterstreichen, dass bei den 2009 pH1N1 andere Pathogenitätsdeterminanten eine Rolle spielen als bei HPAIV.

5.7 Eine höhere Pathogenität von HH15 im Vergleich zu HH05

Die Ergebnisse zur Charakterisierung der 2009 pH1N1 Influenzaviren in dieser Arbeit lassen deutlich auf eine höhere Pathogenität des HH15 Virusisolats im Vergleich zu HH05 schließen. Wie in Tab. 7 schematisch zusammengefasst, repliziert HH15 in humanen Lungenzellen zu höheren Titern als HH05. In vivo ist HH15 im C57BL/6J Mausmodell 50-fach virulenter und führt zu einer schwereren Erkrankung mit andauernder Lymphopenie im Vergleich zu HH05. Darüber hinaus scheint HH15 im Gegensatz zu HH05 in C57BL/6J Mäusen auch zu einer Virämie zu führen. Dementsprechend kommt es auch im Meerschweinchen und Frettchenmodell zu einer schwereren Erkrankung nach HH15-

Pathogenitätsdeterminanten identifizierten Mutationen noch heute in zirkulierenden 2009 pH1N1 Influenzaviren prevalent sind.

Tab. 7: Schematische Darstellung der in vitro und in vivo Unterschiede von HH15 (pH1N1) im Vergleich zu HH05 (pH1N1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Modelisystem</th>
<th>HH15 / HH05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymeraseaktivität</td>
<td>🌟</td>
<td>↓</td>
</tr>
<tr>
<td>Lymphopenie</td>
<td>🐇</td>
<td>↑</td>
</tr>
<tr>
<td>Virusreplikation</td>
<td>🐷 ORT, 🐭 URT</td>
<td>↔, ↑</td>
</tr>
<tr>
<td>Virulenz</td>
<td>🐺</td>
<td>↑</td>
</tr>
<tr>
<td>Transmission</td>
<td>🐣 Kontakt, 🐣 Austrocken</td>
<td>↔, ↑</td>
</tr>
</tbody>
</table>

Dargestellt sind untersuchte in vitro und in vivo Parameter zur Pathogenität und Transmission der 2009 pH1N1 Influenzaviren in humanen Zellen, C57BL/6J Mäusen, Meerschweinchen oder Frettchen. Es wird jeweils eine Erhöhung (↑), eine Erniedrigung (↓) oder kein Unterschied (↔) des jeweiligen Parameters von HH15 im Vergleich zu HH05 gezeigt (ORT = oberer Respirationstrakt, URT = unterer Respirationstrakt).
6 Zusammenfassung

Es wurden zwei klinische 2009 pH1N1 Isolate verwendet, die früh (HH05) bzw. später (HH15) im Verlauf der Pandemie isoliert wurden. Der Vergleich von 2009 pH1N1 Influenzaviren in Mäusen bestätigte, dass für deren Pathogenese im Säuger im Gegensatz zu hochpathogen aviären Influenzaviren andere Determinanten verantwortlich sind. Während HH15 in C57BL/6J Mäusen etwa 50-fach virulenter ist als HH05, sind beide Isolate in BALB/c Mäusen niedrig pathogen. Intrinsische Pathogenitätsdeterminanten von HH15, die in C57BL/6J Mäusen zu einer letalen Infektion führen, scheinen daher in BALB/c Mäusen maskiert zu sein. Für die hohe Pathogenität von HH15 in C57BL/6J Mäusen konnten Mutationen im viralen HA (S202T) und NP Protein (V100I, I133L, I373T) als Determinanten identifiziert werden. Die in C57BL/6J Mäusen beobachtete erhöhte Replikation und Virulenz von HH15 korrelierte mit der Lymphopenie in diesen Tieren, welche von Mutationen im NP ausgelöst wurden. Diese Daten sprechen dafür, dass der Replikationsvorteil von HH15 durch die Immunsuppression (Lymphopenie und reduzierte Zytokinexpression) in C57BL/6J Mäusen bedingt wird. Der Replikationsvorteil von HH15 im Vergleich zu HH05 konnte auch im Respirationstrakt von Meerschweinchen und Frettchen bestätigt werden.

Die Transmissionseigenschaften der 2009 pH1N1 Influenzaviren sind im Meerschweinchen- und Frettchenmodell jedoch unterschiedlich. Im Meerschweinchen findet mit HH15 im Gegensatz zu HH05 keine Aerosol-Transmission statt. Demnach hätte eine höhere Replikationseffizienz der 2009 pH1N1 Viren zu Einbußen in der Transmission geführt. Im Frettchenmodell hingegen scheint HH15 sogar tendenziell effizienter über Aerosole zu transmittieren als HH05. Dieses würde darauf schließen lassen, dass die 2009 pH1N1 Influenzaviren durch adaptive Mutationen nicht nur einen Replikationsvorteil erworben haben, sondern auch zusätzlich transmissiver geworden sind. Diese Ergebnisse zeigen,
dass die Transmissionseffizienz vom verwendeten Tiermodell abhängt und jeweils im Hintergrund des verwendeten Tiermodells diskutiert werden müssen.

Zusammenfassend lässt sich feststellen, dass sich die HH15-spezifische Mutationen im Verlauf der Pandemie durchgesetzt haben, da sie noch heute in zirkulierenden 2009 pH1N1 Influenzaviren prävalent sind. Dadurch könnte vermutet werden, dass die 2009 pH1N1 Influenzaviren sehr früh nach Ausbruch der Pandemie erste Mutationen erworben haben, die zu einer erhöhten Virusreplikation im Säuger führen. Dies könnte vor allem bei Menschen mit Ko-Morbiditäten, die während der Pandemie am schwersten betroffen waren, zu einem schweren Infektionsverlauf geführt haben.
7 Summary

2009 pandemic H1N1 influenza viruses were the causative agents of the first pandemic of the 20th century. These viruses contained gene segments from avian and swine influenza viruses and are believed to have transmitted from swine to humans. Previously described determinants of mammalian adaptation and pathogenicity of influenza viruses were mostly identified in studies with avian influenza viruses. Surprisingly, they were not present in the 2009 pandemic H1N1 influenza viruses (pH1N1). Thus, novel determinants seem to be responsible for the adaptation and enhanced pathogenicity of the 2009 pH1N1 viruses in humans and need to be identified. The aim of this study was to analyze the pathogenicity and transmissibility of 2009 pH1N1 influenza viruses in small animal models (mice, guinea pigs and ferrets).

Therefore, two clinical 2009 pH1N1 isolates, obtained early (HH05) and later (HH15) during the pandemic, were used in this study. Comparison of the 2009 pH1N1 viruses in mice confirmed that determinants involved in the pathogenesis of 2009 pH1N1 influenza viruses differ from those of highly pathogenic avian influenza viruses. Moreover, HH15 was approximately 50 times more virulent in C57BL/6J mice compared to HH05. In contrast, both virus isolates are low pathogenic in BALB/c mice. Hence, intrinsic pathogenicity determinants leading to lethal infection in C57BL/6J mice seem to be masked in the BALB/c mouse model. Mutations in HA (S202T) and NP (V100I, I133L, I373T) could be identified as viral determinants mediating enhanced pathogenicity in C57BL/6J mice. Further lymphopenia, caused by mutations in NP, correlated with enhanced replication and virulence of HH15 in C57BL/6J mice. This leads to the conclusion that immunosuppression (lymphopenia and reduced cytokine expression) leads to the enhanced replication in C57BL/6J mice. The replicative advantage of HH15 compared to HH05 could be confirmed in the respiratory tract of guinea pig and ferrets.

Transmission properties of 2009 pH1N1 influenza viruses differed in the guinea pig and the ferret model. In guinea pigs, HH15 did not transmit via aerosols in contrast to HH05. This would suggest that enhanced replication of HH15 correlates with a loss of aerosol transmission. In the ferret model, HH15 seemed to transmit even more efficiently than HH05. This would suggest that HH15 acquired higher replication properties as well as higher transmission efficiencies by acquisition of adaptive mutations. Overall, these data show that transmission properties are dependent on the animal model used and therefore need to be carefully discussed in this respect.
In summary, these data suggest that adaptive mutations in 2009 pH1N1 influenza viruses have occurred very early after the pandemic outbreak. HH15-specific signatures are still prevalent in currently circulating influenza virus strains suggesting that they might have contributed to the replicative fitness of pandemic strains. Furthermore, the enhanced replication properties of 2009 pH1N1 influenza viruses which emerged very early during the pandemic might have contributed to severe disease outcome, especially in humans with underlying co-morbidities that accounted for the highest morbidities during the pandemic.
8 Literaturverzeichnis

135

Lowen, A. C., Mubareka, S., Steel, J. and Palese, P. (2007). "Influenza virus transmission is dependent on relative humidity and temperature."

9 Anhang

9.1 Abkürzungsverzeichnis

°C Grad Celsius
µg Mikrogramm
µl Mikroliter
aa Aminosäure
Abb. Abbildung
ad an/zu
AK Antikörper
Amp Ampicillin
ATP Adenosintriphosphat
bp Basenpaar
BSA bovines Serumalbumin
C- Carboxyterminal / Carboxy-Terminus
CaCl₂ Kalziumchlorid
Ci Curie
CO₂ Kohlenstoffdioxid
cpm counts per minute (Zählimpulse pro Minute)
cRNA copy RNA
d Tag (day)
Da Dalton
ddH₂O Doppelt destilliertes Wasser
DECP Diethylpyrocarbonat
dl Deziliter
DMEM Dulbecco’s modified Eagles medium
DNA Desoxyribonukleinsäure
dNTP desoxy-NPT
DTT Dithiotreitol
E.coli Escherichia coli
E.coli Escherichia coli Bakterien
EDTA Ethylendiamintetraacetat
FCS fötales Kälber Serum
g Gramm
GRA Granulozyten
h Stunde
H₂ Wasserstoff
H₂O Wasser
HA Hämagglutinin
HAI Hämagglutinationsinhibition-Titer
<table>
<thead>
<tr>
<th>Anhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAU</td>
</tr>
<tr>
<td>HCL</td>
</tr>
<tr>
<td>HCT</td>
</tr>
<tr>
<td>HE</td>
</tr>
<tr>
<td>HGB</td>
</tr>
<tr>
<td>HPAIV</td>
</tr>
<tr>
<td>HRP</td>
</tr>
<tr>
<td>HSV</td>
</tr>
<tr>
<td>Hz</td>
</tr>
<tr>
<td>IFN-γ</td>
</tr>
<tr>
<td>IL-10</td>
</tr>
<tr>
<td>IL-4</td>
</tr>
<tr>
<td>IL-6</td>
</tr>
<tr>
<td>ISH</td>
</tr>
<tr>
<td>kDA</td>
</tr>
<tr>
<td>kg</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>LB</td>
</tr>
<tr>
<td>log</td>
</tr>
<tr>
<td>LPAIV</td>
</tr>
<tr>
<td>LYM</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>M1/2</td>
</tr>
<tr>
<td>MCP-1</td>
</tr>
<tr>
<td>mg</td>
</tr>
<tr>
<td>MgCl₂</td>
</tr>
<tr>
<td>min</td>
</tr>
<tr>
<td>Mio.</td>
</tr>
<tr>
<td>ml</td>
</tr>
<tr>
<td>MLD₅₀</td>
</tr>
<tr>
<td>mM</td>
</tr>
<tr>
<td>MOI</td>
</tr>
<tr>
<td>mol</td>
</tr>
<tr>
<td>mRNA</td>
</tr>
<tr>
<td>N-</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Na</td>
</tr>
<tr>
<td>NA</td>
</tr>
<tr>
<td>NaCl</td>
</tr>
<tr>
<td>NEP</td>
</tr>
<tr>
<td>NLS</td>
</tr>
</tbody>
</table>
Anhang

nm Nanometer
NP Nukleoprotein
NS Nichtstrukturprotein
ORT oberer Respirationstrakt
p.f.u. plaque forming units (Virustiter Angabe)
p.i. nach Infektion (post infection)
PA polymerase acidic protein
PB1 polymerase basic protein 1
PB2 polymerase basic protein 2
PBS Phosphatgepufferte Kochsalzlösung
PCR Polymerasekettenreaktion
PEI Polyethylenimin
PFA Parafomaldehyd
pH negativ dekadischer Logarithmus der Protonenkonzentration
pH1N1 pandemische H1N1
PTL Thrombozyten (platelets)
RBC Erythrozyten (red blood cells)
rek rekombinant
RLU Relative Lichteinheiten (relative light units)
RNA Ribonukleinsäure
RNP Ribonukleoprotein
rpm Umdrehungen pro Minute
s Sekunde
SSC Natriumdodecylsulfat
Tab. Tabelle
TBE TRIS-Borat-EDTA-Puffer
TNF-α Tumornekrosefaktor α
TRIS Tris(hydroxymethyl)-aminomethan
t-RNA transfer-RNA
U Unit, Einheit der Enzymaktivität
URT unterer Respirationstrakt
UTP Uridistriphosphat
UV Ultraviolett
V Volt
vRNA virale RNA
WBC Leukozyten (white blood cells)
wt Wildtyp
xg Erdbeschleunigung (Angabe zur Zentrifugationsstärke)
9.2 Tabellenverzeichnis

Tab. 1: Die Genomsegmente und die jeweiligen Genprodukte von Influenzaviren 4

Tab. 2: Daten beider Patienten und deren Krankheitsverlauf der 2009 pandemischen H1N1 Influenza .. 70

Tab. 3: Aminosäuresequenz-Unterschiede im Genotyp von HH05 und HH15 (pH1N1) 71

Tab. 4: MLD_{50} Werte von alt-saisonalen H1N1, HH05 (pH1N1), HH15 (pH1N1) und humanen H5N1 Influenzaviren in BALB/c und C57BL/6J Mäusen. .. 75

Tab. 5: Blutparameter von alt-saisonalen H1N1-, HH05 (pH1N1)-, HH15 (pH1N1)- und humanen H5N1-infizierten BALB/c Mäusen .. 79

Tab. 6: Blutparameter von alt-saisonalen H1N1-, HH05 (pH1N1)-, HH15 (pH1N1)- und humanen H5N1-infizierten C57BL/6J Mäusen ... 80

Tab. 7: Schematische Darstellung der \textit{in vitro} und \textit{in vivo} Unterschiede von HH15 (pH1N1) im Vergleich zu HH05 (pH1N1) .. 130
9.3 Abbildungsverzeichnis
Abb. 1: Morphologie von Influenza A Virionen. ...3
Abb. 2: Replikationszyklus von Influenzaviren. ...7
Abb. 3: Wirtsspektrum von Influenzaviren ...10
Abb. 4: Influenza-Pandemien des letzten Jahrhunderts ..13
Abb. 5: Anzahl gemeldeter Fälle der 2009 pH1N1 Influenza in den USA und Deutschland in 2009. ..22
Abb. 6: Ursprung und genetische Zusammensetzung der 2009 pH1N1 Influenzaviren.24
Abb. 7: Darstellung der zu erwartenden Bandengrößen der viralen Gensegmente auf einem Agarosegel. ...46
Abb. 8: Aufbau zur Evaluierung der Kontakt-Transmission bei Meerschweinchen61
Abb. 9: Aufbau zur Evaluierung der Aerosol-Transmission bei Meerschweinchen61
Abb. 10: Aufbau zur Evaluierung der Aerosol-Transmission bei Frettchen62
Abb. 11: Wachstumsverhalten von alt-saisonalen H1N1, HH05 und HH15 (pH1N1) und humanen H5N1 Influenzaviren in humanen Lungenzellen ...72
Abb. 12: Überlebensrate und Gewichtsverlust von alt-saisonalen H1N1-, HH05- (pH1N1), HH15- (pH1N1) und humanen H5N1-infizierten BALB/c und C57BL/6J Mäusen.74
Abb. 13: Virustiter in Lunge, Gehirn und Darm von alt-saisonalen H1N1-, HH05 (pH1N1)-, HH15 (pH1N1)- und humanen H5N1-infizierten BALB/c und C57BL/6J Mäusen.76
Abb. 14: Immunhistologische Färbung von Lungenschnitten von alt-saisonalen H1N1-, HH05 (pH1N1)-, HH15 (pH1N1)- und humanen H5N1-infizierten BALB/c und C57BL/6J Mäusen. 78
Abb. 15: Lokale und systemische Level von Th1- (TNF-α, IFN-γ, MCP-1) und Th2- Zytokinen (IL-4, IL-6, IL-10) in alt-saisonalen H1N1-, HH05 (pH1N1)-, HH15 (pH1N1)- und humanen H5N1-infizierten BALB/c und C57BL/6J Mäusen. ...82
Abb. 16: Genotyp, MLD_{50} und Virustiter in der Lunge von 2009 pH1N1rek-infizierten C57BL/6J Mäusen. ..86
Abb. 17: In situ-Hybridisierung viraler RNA in Lungenschnitten von 2009 pH1N1rek-infizierten C57BL/6J Mäusen. ..88
Abb. 18: Lymphozytenwerte im Blut von 2009 pH1N1rek-infizierten C57BL/6J Mäusen......89
Abb. 19: Strukturelle Lokalisierung der HH15 (pH1N1)-spezifischen HA Mutation..............90
Abb. 20: Strukturelle Lokalisierung der HH15 (pH1N1)-spezifischen NP Mutationen V100I, I133L und I373T. ...91
Abb. 21: Hämagglutination von humanen und Hühnererythrozyten durch rekombinante und parentale 2009 pH1N1 Influenzaviren. ...93
Abb. 22: Polymeraseaktivität der RNP-Komplexe von HH05, HH15 und deren Kombination in humanen Zellen ..94
Abb. 23: Gewichtsverlust von HH05 (pH1N1)- oder HH15 (pH1N1)-infizierten Meerschweinchen. ..96
Abb. 24: Virustiter in der Nasenspülung der Trachea und der Lunge von HH05 (pH1N1)- und HH15 (pH1N1)-infizierten Meerschweinchen ..97
Abb. 25: Pathologie der Lunge von HH05 (pH1N1)- und HH15 (pH1N1)-infizierten Meerschweinchen. ...98
Abb. 26: In situ-Hybridisierung viraler RNA in Trachea und Lunge von HH05 (pH1N1)- und HH15 (pH1N1)-infizierten Meerschweinchen ..99
Abb. 27: Transmission von HH05 (pH1N1) und HH15 (pH1N1) im Meerschweinchen........101
Abb. 28: HAI-Titer im Serum von Meerschweinchen 28 Tage nach HH05 (pH1N1)- und HH15 (pH1N1)-Infektion, sowie im Serum von Sentineltieren des Aerosol-Transmissionsversuchs. ...102
Abb. 29: Gewichtsverlust von HH05 (pH1N1)- oder HH15 (pH1N1)-infizierten Frettchen. 104
Abb. 30: Körpertemperatur von HH05 (pH1N1)- oder HH15 (pH1N1)-infizierten Frettchen. 104
Abb. 31: Virustiter in der Nasenspülung, der Trachea und der Lunge von HH05 (pH1N1)- oder HH15 (pH1N1)-infizierten Frettchen ...105
Abb. 32: In situ-Hybridisierung viraler RNA in Trachea und Lunge von HH05 (pH1N1)- und HH15 (pH1N1)-infizierten Frettchen ...106
Abb. 33: Transmission von HH05 (pH1N1) und HH15 (pH1N1) im Frettchen108
Abb. 34: HAI-Titer im Serum von Frettchen nach der Infektion mit HH05 (pH1N1) oder HH15 (pH1N1) sowie im Serum von Sentineltieren im Aerosol-Transmissionsversuch.109
9.4 Primerlisten

Die Oligonukleotide für die Sequenzierung und Genotypisierung von Virus-DNA sowie für die Mutagenese und die Klonierung von Plasmid-DNA wurden wie unter 3.1.2 beschrieben entworfen und vom Dienstleister Eurofins MWG Operon synthetisiert. F oder fw steht für Vorwärtsprimer und RV oder rv steht für Rückwärtsprimer.

Sequenzierung-/Genotypisierungsprimer

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz (5’→3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1918-PB2-501F</td>
<td>GGCACAGGATGTAATCATGG</td>
</tr>
<tr>
<td>1918-PB2-1025F</td>
<td>CAAGTGCTCATCAGTCAGAAG</td>
</tr>
<tr>
<td>1918-PB2-1505F</td>
<td>GGGTGTTGGTGACATATG</td>
</tr>
<tr>
<td>1918-PB2-2019F</td>
<td>ACTCACAGTTCTCGGAAGGG</td>
</tr>
<tr>
<td>PB2_299_FW1</td>
<td>ACATGGTGGAGTAATGGAATGG</td>
</tr>
<tr>
<td>PB2_1003_FW2</td>
<td>AAGGACAAGGAGATCATCAG</td>
</tr>
<tr>
<td>PB2_1701_FW3</td>
<td>GGTCAACAGATCCCACATG</td>
</tr>
<tr>
<td>PB2_2265_RV4</td>
<td>TTGGTGCAGTCGCTGGCTGGTC</td>
</tr>
<tr>
<td>PB2_1684_RV3</td>
<td>TTCCCAGTTCTGGATTATCC</td>
</tr>
<tr>
<td>PB2_1024_RV2</td>
<td>GACTGATGATCGCTGGATCGCC</td>
</tr>
<tr>
<td>PB2_496_RV1</td>
<td>CACATCCTGTCGCTCCCTTGG</td>
</tr>
<tr>
<td>1918-PB1-484F</td>
<td>GGCTTCAGGCCGCAATGAATC</td>
</tr>
<tr>
<td>1918-PB1-1000F</td>
<td>ACCAGAAATCAGCCGCAATG</td>
</tr>
<tr>
<td>1918-PB1-1542F</td>
<td>CATGGAGCTTCCAGCCTTTG</td>
</tr>
<tr>
<td>1918-PB1-1901F</td>
<td>ACCCCTGAACCCCTTTGTC</td>
</tr>
<tr>
<td>PB1_396fw</td>
<td>CGCCAGACTTTATGATGGG</td>
</tr>
<tr>
<td>PB1_1062fw</td>
<td>ATGGCAAGACTAGGGAAAGG</td>
</tr>
<tr>
<td>PB1_1764fw</td>
<td>CAAAGCCCAATCAGGAGTTGAGG</td>
</tr>
<tr>
<td>PB1_873rv</td>
<td>CATTGGCCAGTTGGCCTTTC</td>
</tr>
<tr>
<td>PB1_1642rv</td>
<td>GGTCCAAGGTCATGTTATTC</td>
</tr>
<tr>
<td>1918-PA-491F</td>
<td>CCACAAGGGAAGCCGACTACACT</td>
</tr>
<tr>
<td>1918-PA-1038F</td>
<td>GAAGCAAGACTGCGCAGAAC</td>
</tr>
<tr>
<td>1918-PA-1498F</td>
<td>AAGGAGGGAAGACGAAAGAC</td>
</tr>
<tr>
<td>1918-PA-2025F</td>
<td>TATCGTTCAGGCTCTTAGGG</td>
</tr>
<tr>
<td>PA_257fw</td>
<td>TTGAAGGAGAGACCGAATC</td>
</tr>
<tr>
<td>PA_965fw</td>
<td>TTGGCTGGAGAGAGCCTAACC</td>
</tr>
<tr>
<td>PA_1666fw</td>
<td>CTCTTAGGAGACTGCGATAGG</td>
</tr>
</tbody>
</table>
Anhang

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz (5'→3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA_815rv</td>
<td>GGTGTCGTCTTCAAGAATGG</td>
</tr>
<tr>
<td>PA_1502rv</td>
<td>CCTTTCTTGTCCTACATT TG</td>
</tr>
<tr>
<td>1918-HA-531F</td>
<td>TGGCTGACAAGAAGGGAG</td>
</tr>
<tr>
<td>1918-HA-1020F</td>
<td>AGGATGGGCTACAGAAGG</td>
</tr>
<tr>
<td>1918-HA-1381F</td>
<td>GAAACCTGGATTTCCATGAC</td>
</tr>
<tr>
<td>HA_601fw</td>
<td>ACTAGTGCTGACCAAAAG</td>
</tr>
<tr>
<td>1918-NP-503F</td>
<td>CTCTTGGTTCACCCGGAG</td>
</tr>
<tr>
<td>1918-NP-940F</td>
<td>GTCGGAATAGACCCTTCAG</td>
</tr>
<tr>
<td>1918-NP-1255F</td>
<td>GGCGAAATCAGCGTCGAA</td>
</tr>
<tr>
<td>NP_744fw</td>
<td>CTTGTTCGCACCCGGAG</td>
</tr>
<tr>
<td>NP_977fw</td>
<td>AAACCCAGCTCAAGGAG</td>
</tr>
<tr>
<td>NP_781rv</td>
<td>TCTTCAATCTCAGCGTTG</td>
</tr>
<tr>
<td>NP_1297rv</td>
<td>GCGACAAGGTGCTTCAG</td>
</tr>
<tr>
<td>1918-NA-490F</td>
<td>CTTATGACTGACCCTGTTG</td>
</tr>
<tr>
<td>1918-NA-997F</td>
<td>GCGTCCTAAGATGGAACAG</td>
</tr>
<tr>
<td>NA_510fw</td>
<td>GTCGAATCTCAGTGAGTAC</td>
</tr>
<tr>
<td>1918-M-506F</td>
<td>TCTCAGAGGCAAATGGTAC</td>
</tr>
<tr>
<td>1918-NS-516F</td>
<td>CCTTCTCTCCAGGATA</td>
</tr>
<tr>
<td>CMV_F</td>
<td>CGCAAATGGCCGGTACG</td>
</tr>
<tr>
<td>BGH_R</td>
<td>TAGAAGGCACAGTCGAG</td>
</tr>
</tbody>
</table>

Mutagenseseprimer

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz (5'→3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB2_Mut_1020fw</td>
<td>GCGGATCATCACTCAAGAAGAAGAAGAAGTGCTAAG</td>
</tr>
<tr>
<td>PB2_Mut_1020rv</td>
<td>CGTGGTACCTCAGCTTTCTGAGTTCG</td>
</tr>
<tr>
<td>PB2_Mut_1577fw</td>
<td>TGAAACGCAAGAAGGAGCTGAGGTTGCAATAACTTATTCGTAC</td>
</tr>
<tr>
<td>PB2_Mut_1577rv</td>
<td>GATGACGATAGTTGTCACCCCTACTCTGCGCTT</td>
</tr>
<tr>
<td>PA_Mut_1741fw</td>
<td>CAGATGAAATGAGGGCATGGAGAATCGG</td>
</tr>
<tr>
<td>PA_Mut_1741rv</td>
<td>CTTGATCAGCTTCCCAGTTCAGT</td>
</tr>
<tr>
<td>NP_Mut_298fw</td>
<td>GAGGGACCCCATATAGAAGAGTACGAGGAAATG</td>
</tr>
<tr>
<td>NP_Mut_298rv</td>
<td>CCTTCTCTTCCCTCTGCTTCTATGATGGG</td>
</tr>
<tr>
<td>NP_Mut_397fw</td>
<td>GCGCAAGATGCAAGCAGGTTACTTACATCATGATTG</td>
</tr>
<tr>
<td>NP_Mut_397rv</td>
<td>CCAAATCATGATGAGTACCCCTACGT</td>
</tr>
<tr>
<td>NP_Mut_1118fw</td>
<td>CTTCAAATGAGAAGGAAATCATGGACTCCAATACCCGG</td>
</tr>
</tbody>
</table>

152
<table>
<thead>
<tr>
<th>Anhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP_Mut_1118rv</td>
</tr>
<tr>
<td>NA_Mut_95fw</td>
</tr>
<tr>
<td>NA_Mut_95rv</td>
</tr>
<tr>
<td>NA_Mut_316fw</td>
</tr>
<tr>
<td>NA_Mut_316rv</td>
</tr>
<tr>
<td>NA_Mut_742fw</td>
</tr>
<tr>
<td>NA_Mut742rv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klonierungsprimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung</td>
</tr>
<tr>
<td>PHW-1918-PB2f</td>
</tr>
<tr>
<td>PHW-1918-PB2r</td>
</tr>
<tr>
<td>PHW-1918-PB1f</td>
</tr>
<tr>
<td>PHW-1918-PB1r</td>
</tr>
<tr>
<td>PHW-1918-PAf</td>
</tr>
<tr>
<td>PHW-1918-PAr</td>
</tr>
<tr>
<td>PHW-1918-HAf</td>
</tr>
<tr>
<td>PHW-1918-HAr</td>
</tr>
<tr>
<td>PHW-1918-NPf</td>
</tr>
<tr>
<td>PHW-1918-NPr</td>
</tr>
<tr>
<td>PHW-1918-NAf</td>
</tr>
<tr>
<td>PHW-1918-NAr</td>
</tr>
<tr>
<td>PHW-1918-Mf</td>
</tr>
<tr>
<td>PHW-1918-Mr</td>
</tr>
<tr>
<td>PHW-1918-NSf</td>
</tr>
<tr>
<td>PHW-1918-NSr</td>
</tr>
<tr>
<td>Uni12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schnittstellenprimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung</td>
</tr>
<tr>
<td>NP-Sonde-fw</td>
</tr>
<tr>
<td>NP-Sonde-rv</td>
</tr>
</tbody>
</table>
Veröffentlichungen, Vorträge und Posterpräsentationen

Publikationen
Die Ergebnisse dieser Arbeit wurden zum Teil in den folgenden Publikationen veröffentlicht:

Manuskript in Vorbereitung.

Otte A. and Gabriel G. (2011)
2009 Pandemic H1N1 Influenza A Virus Strains Display Differential Pathogenicity in C57BL/6J but not BALB/c Mice.

Differential Host Determinants Contribute to the Pathogenesis of 2009 Pandemic H1N1 and Human H5N1 Influenza A Viruses in Experimental Mouse Models.
Am J Pathol. 179:1

Weitere Publikationen während der Promotion

Pathogenicity of Influenza A Virus of Subtype H5N1 to Mice is Increased by Mutation PB2 S714R of the Polymerase.
Manuskript in Vorbereitung.

Adaptive Mutations in the PB2-subunit of Pandemic A/Hamburg/05/2009 (H1N1) Increase the *in vitro* Polymerase Activity and *in vivo* Pathogenicity in the C57BL/6 Mouse Model.
Manuskript in Vorbereitung.
Veröffentlichungen, Vorträge und Posterpräsentationen

Differential Use of Importin-α Isoforms Governs Cell Tropism and Host Adaptation of Influenza Virus.
Nat Commun. 2:156.

Vorträge auf Fachtagungen
(*präsentierender Autor)*

Otte A.., Gabriel G. (2012)
Molecular Determinants of 2009 Pandemic H1N1 Influenza Virus Pathogenicity and Transmission in Experimental Animal Models
HPI Joint Scientific Retreat, Hamburg, Deutschland

Differential Host Determinants Contribute to the Pathogenesis of 2009 Pandemic H1N1 and Human H5N1 Influenza A Viruses in Experimental Mouse Models.
P³AGI Summer School 2012 - Imaging Innovations of the Lung, Göttingen, Deutschland

Molecular Determinants of 2009 pandemic H1N1 pathogenicity: Virus-Host Interactions.
1st Flupharm Annual Meeting, Paris, Frankreich

Differential Host Determinants Contribute to the Pathogenesis of 2009 Pandemic H1N1 and Human H5N1 Influenza A Viruses in Experimental Mouse Models
Flupharm Kickoff Meeting 2011, Grenoble, Frankreich

Interspecies Transmission and Pathogenesis of Influenza A Viruses.
LCI Symposium Co-Infection 2011, Hamburg, Deutschland
Veröffentlichungen, Vorträge und Posterpräsentationen

Differential Pathogenicity of Pandemic 2009 (H1N1v) Influenza A Virus Strains in Mice.
HPI Scientific Retreat, Hamburg, Deutschland

Differential use of importin-α isoforms governs cell tropism and host adaptation of influenza virus.
14th International Conference on Negative Strand Viruses (2010), Brügge, Belgien

Posterpräsentationen auf Fachtagungen
(*präsentierender Autor)

Single mutations in HA and NP mediate enhanced pathogenicity of 2009 H1N1 pandemic influenza virus in mice.
8th International Conference on Options for the Control of Influenza, Cape Town, South Africa

Single mutations in HA and NP mediate enhanced pathogenicity of 2009 H1N1 pandemic influenza virus in mice.
15th International Conference on Negative Strand Viruses, Granada, Spanien

*Otte A. and Gabriel G. (2012)
Single mutations in HA and NP mediate enhanced pathogenicity of 2009 H1N1 pandemic influenza virus in mice.
3rd International Influenza Meeting, Münster, Deutschland

*Otte A. and Gabriel G. (2012)
Single mutations in HA and NP mediate enhanced pathogenicity of 2009 H1N1 pandemic influenza virus in mice.
22nd Annual Meeting of the German Society for Virology, Essen, Deutschland
Differential Host Determinants Contribute to the Pathogenesis of 2009 Pandemic H1N1 and Human H5N1 Influenza A Viruses in Experimental Mouse Models.
HPI Joint Scientific Retreat, Hamburg, Deutschland

Differential Host Determinants Contribute to the Pathogenesis of 2009 Pandemic H1N1 and Human H5N1 Influenza A Viruses in Experimental Mouse Models.
4th ESWI Influenza Conference, Malta

Differential Host Determinants Contribute to the Pathogenesis of 2009 Pandemic H1N1 and Human H5N1 Influenza A Viruses in Experimental Mouse Models.
21st Annual Meeting of the German Society for Virology, Freiburg, Deutschland

Stolter C., Averdung M., Billerbeck S., Deventer S., Kleinschmidt B., Kremers D., Ostwald A.,
Otte A., Waldmann M., Yousef S. (2008)
The influence of secondary plant metabolites of coniferous trees on bank voles.
101st Annual Conference of the German Society for Zoology, Jena, Deutschland
Wissenschaftlicher Werdegang

2003 - 2008
Studium der Biologie, Universität Hamburg,
Hauptfächer: Zoologie, Biochemie

2008 – 2009
Diplomarbeit am Zoologischen Institut der Universität Hamburg,
Abteilung Tierphysiologie bei Prof. Dr. Thorsten Burmester
Thema: „Differenzielle Genexpression während der Ästivation
des Kleinen Igeltenrek Echinops telfairi“

2009 – 2013
Promotion am Heinrich-Pette-Institut, Leibniz-Institut für
Experimentelle Virologie, Abteilung Influenza Pathogenese bei
PD Dr. Gülsah Gabriel
Thema: „Charakterisierung der Pathogenität und
Transmissibilität von 2009 pandemischen H1N1 Influenza A
Viren in Kleintiermodellen“

Stipendien

Reisekostenförderung durch die GlaxoSmithKline Stiftung für die Teilnahme an der „8th
International Conference on Options for the Control of Influenza, Cape Town, South Africa“. (2013)

Reisekostenförderung durch die Universität Hamburg, Abteilung für Forschung und
Wissenschaftsförderung zur Teilnahme an „22nd Annual Meeting of the German Society for
Virology, Essen, Deutschland“. (2012)

Mobilitätsstipendium vom Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie
für Forschungsarbeiten an der Health Protection Agency, Porton Down, Großbritannien.
(2012)

European Young Scientist Fund Stipendium vom Young Scientist Fund zur Teilnahme an der
4th ESWI Influenza Conference, Malta. (2011)
Danksagung

An erster Stelle möchte ich mich bei PD Dr. Gülsah Gabriel bedanken, vor allem für die Möglichkeit meine Doktorarbeit über ein so spannendes und gesellschaftsrelevantes Thema anzufertigen, für die gute Betreuung und Unterstützung während der Promotion sowie die Breitschaft zur Begutachtung dieser Arbeit.

Prof. Dr. Thomas Dobner möchte ich für sein Einverständnis zur schriftlichen Begutachtung dieser Arbeit danken.

Prof. Dr. Jörg Ganzhorn und Prof. Dr. Wolfram Brune danke ich für Ihre Bereitschaft als Prüfungskommission, zusammen mit PD Dr. Gülsah Gabriel, meine Disputation zu leiten bzw. zu begutachten.

Bei Prof. Dr. Karin Klingel und Dr. Martina Sauter möchte ich mich für die Durchführung sowie für die Hilfe bei der Auswertung der *in situ*-Hybridisierung und der immunhistologischen Färbung der Gewebeschnitte bedanken.

Dr. Bastian Tiemann und Bianca Ziesch danke ich für die Hilfe bei der Etablierung des Meerschweinchenmodells.

Dorothee Kampmann danke ich für die tatkräftige Unterstützung bei den Experimenten zu dieser Arbeit.

Bei meinen jetzigen und früheren Kollegen aus der Arbeitsgruppe von PD Dr. Gülsah Gabriel möchte ich mich herzlich für jegliche fachliche und nicht-fachliche Unterstützung sowie die außergewöhnlich tolle Atmosphäre bedanken; besonders bei Julia Hoffmann und Patricia Resa Infante die zu jeder Tag- und Nachtzeit für mich da waren.

Mein größter Dank gilt natürlich meinen Eltern sowie meinem Lebenspartner Oliver für die unendliche, liebevolle und geduldige Unterstützung.
Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Hamburg, den 13.02.2014

(Anna Otte)