Die Rolle des EGFR/HER2-Signalwegs in Gehirnmetastasen des Mammakarzinoms

DISSERTATION

zur Erlangung des Doktorgrades "Doctor rerum naturalium"

an der Fakultät für Mathematik, Informatik und Naturwissenschaften

Fachbereich Biologie

der Universität Hamburg

vorgelegt von

INA HOHENSEE

aus Gernsbach

Hamburg 2014
Genehmigt vom Fachbereich Biologie
der Fakultät für Mathematik, Informatik und Naturwissenschaften
an der Universität Hamburg
auf Antrag von Frau Dr. H. WIKMAN-KOCHER
Weiterer Gutachter der Dissertation:
Professor Dr. T. BURMESTER
Tag der Disputation: 07. März 2014

Hamburg, den 20. Februar 2014

[Signature]
Professor Dr. C. Lohr
Vorsitzender des
Fach-Promotionsausschusses Biologie
Für meine Eltern
Inhaltsverzeichnis

1 Einleitung .. 3
 1.1 Metastasierung epithelialer Tumore ... 3
 1.1.1 Mechanismen der Metastasierung epithelialer Tumore 4
 1.1.2 Organotropie .. 5
 1.1.3 Gehirnmetastasierung .. 7
 1.2 Das Mammakarzinom ... 8
 1.2.1 Epidemiologie des Mammakarzinoms ... 8
 1.2.2 Klassifikation des Mammakarzinoms .. 9
 1.2.3 Tumorgenese des Mammakarzinoms .. 10
 1.2.4 Therapie des Mammakarzinoms ... 13
 1.2.5 Gehirnmetastasen des Mammakarzinoms ... 15
 1.3 Der EGFR/HER2-Signalweg im Mammakarzinom ... 16
 1.3.1 Rezeptortyrosinkinasen der ERBB-Familie ... 17
 1.3.2 Das Onkogen PI3K .. 19
 1.3.3 Der Tumorsuppressor PTEN ... 20
 2 Fragestellung .. 22

3 Material und Methoden ... 23
 3.1 Material .. 23
 3.1.1 Patientenmaterial ... 23
 3.1.2 Zelllinien und Kulturmedien ... 25
 3.1.3 Verbrauchsmaterialien ... 28
 3.1.4 Geräte .. 32
 3.1.5 Verbrauchsmaterial .. 32
 3.1.6 Software, Onlinetools und Datenbanken .. 33
 3.2 Methoden .. 34
 3.2.1 Molekularbiologische Methoden .. 34
 3.2.2 Histochemische Methoden ... 58
 3.2.3 Proteinbiochemische Methoden ... 60
 3.2.4 Zellbiologische Methoden .. 64
 3.2.5 Informatische und bioinformatische Methoden ... 70

4 Ergebnisse ... 71
 4.1 Untersuchung des EGFR-HER2-Signalwegs an Gewebe von primären Mammakarzinom-
 patientinnen und Mammakarzinompatientinnen mit Gehirnmetastasen 71
 4.1.1 Der EGFR-Status ... 71
 4.1.2 Der HER2-Status ... 86
 4.1.3 Der PTEN-Status .. 89
 4.1.4 Der PIK3CA-Mutationstatus .. 102
 4.1.5 Analyse des EGFR/HER2-Signalwegs ... 108
 4.2 Funktionelle Untersuchung von PTEN im Zellkulturmodell 113
 4.2.1 Differentielle PTEN-Expression in Mammakarzinomzelllinien 113
Knockdown der PTEN-Expression in MCF-10A Zellen .. 114

PTEN-Überexpression in MDA-MB-231 BR Zellen .. 115

5 Diskussion .. 127

5.1 Die klinische Rolle des EGFR/HER2-Signalwegs in der Gehirnmetastasierung von Mammakarzinompatientinnen .. 127

5.1.1 Klinische Relevanz von EGFR-Alterationen im Mammakarzinom 128

5.1.2 Klinische Relevanz von HER2-Alterationen im Mammakarzinom 133

5.1.3 Klinische Relevanz von PTEN-Alterationen im Mammakarzinom 135

5.1.4 Klinische Relevanz von PIK3CA-Mutationen im Mammakarzinom 138

5.1.5 Assoziation des Mammakarzinoms subtypes mit Alterationen des EGFR/HER2-Signalwegs und Metastasierungsprofilen .. 140

5.2 Die funktionelle Rolle von PTEN in der Gehirnmetastasierung des Mammakarzinoms 142

5.2.1 Induktion eines weniger aggressiven Phänotyps einer in gehirnmetastatischen Mammakarzinomzelllinie durch PTEN-Überexpression .. 143

5.2.2 Auswirkungen der Interaktion einer in gehirnmetastatischen Mammakarzinomzelllinie mit Gliazellen .. 144

5.3 Ausblick .. 147

6 Zusammenfassung .. 148

7 Summary ... 150

8 Literaturverzeichnis ... 152

9 Anhang ... 163

9.1 Zusätzliche Tabellen ... 163

9.2 Oligonukleotide .. 175

9.3 Verwendete shRNA-Sequenzen ... 176

9.4 Verwendete Plasmide .. 177

9.5 Chemikalien ... 179

9.6 Kit-Systeme .. 180

9.7 Geräte ... 181

10 Eigene Veröffentlichungen ... 183

11 Lebenslauf .. 184

12 Danksagung .. 185

13 Eidesstattliche Versicherung ... 185
Einleitung

Krebs ist eine allgemeine Bezeichnung für eine große Gruppe von Erkrankungen, die alle Organ-

1.1 Metastasierung epithelialer Tumore

1.1.1 Mechanismen der Metastasierung epithelialer Tumore

1.1.2 Organotropie

aus Kolonkarzinomen werden beispielsweise häufige im Knochenmark detektiert, jedoch bilden sich Metastasen selten im Knochen aus. Dies weist auf eine Streuung einzelner Tumorzellen in andere, möglicherweise sogar alle, Organe ohne zwingende Ausbildung solider Metastasen hin.

1.1.3 Gehirnmetastasierung

1.2 Das Mammakarzinom

1.2.1 Epidemiologie des Mammakarzinoms

1.2.2 **Klassifikation des Mammakarzinoms**

Die Stadieneinteilung erfolgt durch Kombination des *Stagings* mit dem histologischen Differenzierungsgrad (*Grading*), welches zur Beurteilung der Malignität und der Gewebedifferenzierung invasiver Karzinome dient. Es bezieht sich auf das Ausmaß von Tubulusbildung, die Kernpleomorphologie sowie die Mitoserate und wird in drei Stufen (G1-3) von gut nach schlecht differenziert eingeteilt. Das Staging ist von großer Bedeutung für die Überlebensspanne der Patientinnen. So weisen Patientinnen der Stadien I und II eine hohe Fünf-Jahres-Überlebensrate von 83-88 % auf, wohingegen nur ein Viertel der Patientinnen im fortgeschrittenen Stadium (Stadien III & IV) nach dieser Zeitspanne noch am Leben ist.

Tabelle 1.1: pTNM-Klassifikation. Dargestellt ist die Einteilung von Mammakarzinomen nach der Tumogröße (pT), des Lymphknotenstatus (pN), dem Vorhandensein von Mikrometastasen (pN1mi) oder von Fernmetastasen (pM).

<table>
<thead>
<tr>
<th>pT</th>
<th>Primärtumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>pTis</td>
<td>Carcinoma in situ</td>
</tr>
<tr>
<td>pT1</td>
<td>Tumordurchmesser 2 cm oder weniger</td>
</tr>
<tr>
<td>pT2</td>
<td>Tumordurchmesser mehr als 2 cm, aber weniger als 5 cm</td>
</tr>
<tr>
<td>pT3</td>
<td>Tumordurchmesser mehr als 5 cm</td>
</tr>
<tr>
<td>pT4</td>
<td>Tumordurchmesser jeder Größe mit Infiltration auf Brustwand oder Haut</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pN</th>
<th>Lymphknotenmetastasen</th>
</tr>
</thead>
<tbody>
<tr>
<td>pN0</td>
<td>keine Lymphknotenmetastasen</td>
</tr>
<tr>
<td>pN1</td>
<td>Metastasen in 1-3 axillären Lymphknoten, mindestens eine größer als 2 mm im Durchmesser</td>
</tr>
<tr>
<td>pN2</td>
<td>Metastasen in 4-9 axillären Lymphknoten oder in Lymphknoten der A. mammaria interna, mindestens eine größer als 2 mm im Durchmesser</td>
</tr>
<tr>
<td>pN3</td>
<td>Metastasen in 10 oder mehr axillären Lymphknoten oder in infraklavikulären Lymphknoten oder in Lymphknoten der A. mammaria interna, mindestens eine größer als 2 mm im Durchmesser</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pN1mi</th>
<th>Mikrometastasen von 0,2 - 2 mm Durchmesser</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>pM</th>
<th>Fernmetastasen</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>keine Fernmetastasen</td>
</tr>
<tr>
<td>M1</td>
<td>Fernmetastasen</td>
</tr>
</tbody>
</table>
Ein weiteres Kriterium zur Charakterisierung von Tumoren stützt sich auf den immunhistochemisch bestimmten Expressionsstatus der Rezeptoren für Östrogen und Progesteron. Im gesunden Brustgewebe regulieren die beiden Hormone das Zellwachstum, fördern jedoch unter Expression der entsprechenden Rezeptoren auch das Wachstum von Tumoren. Gleiches gilt für den Expressionsstatus des humanen epidermalen Wachstumsrezeptors 2 (ERBB2 / HER2), der in einem Viertel aller Brustkrebspatientinnen stark exprimiert vorliegt (detailliere Angabe siehe Abschnitte 1.2.3.1 und 1.3.1.3). Gegen die Expression dieser Rezeptoren existieren mittlerweile wirksame Therapiemöglichkeiten, weshalb das Wissen über ihren Status von großer Bedeutung ist.

1.2.3 Tumorgenese des Mammakarzinoms

Neben lobulären Karzinomen oder Mischformen, stellen duktale Karzinome, die aus den inneren Schichten der Milchgänge hervorgehen, mit ca. 85 % den Hauptanteil unter Tumorerkrankungen der Brust dar.
Einleitung

1.2.3.1 Molekulare Ursachen

Während der verschiedenen Stadien der Tumorgenese sind folglich die Anzahl betroffener Gene, die Art der vorliegenden Mutationen und die Interaktion der betroffenen Genprodukte stetigen Veränderungen unterworfen und sehr heterogen. Basierend auf Mikroarray-Analysen lassen sich...
Einleitung

Tabelle 1.2: Klassifizierung des Mammakarzinoms nach molekularen Subtypen. Dargestellt sind die Einteilung von Mammakarzinomen in auf Genexpressionsanalysen basierenden Subtypen (luminal, HER2-positiv und basal-like) sowie deren Definition auf immunhistochemischer Ebene (IHC-Klassifikation).

<table>
<thead>
<tr>
<th>Subtyp</th>
<th>IHC Klassifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminal</td>
<td>Östrogenrezeptor und/oder Progesterorezeptor HER2 positiv und/oder Progesterorezeptor HER2 pos</td>
</tr>
<tr>
<td>HER2 positiv (nicht luminal)</td>
<td>Östrogenrezeptor und/oder Progesterorezeptor HER2 positiv positiv</td>
</tr>
<tr>
<td>Basal-like (triple-negativ)</td>
<td>Östrogenrezeptor und Progesterorezeptor HER2 negativ negativ</td>
</tr>
</tbody>
</table>

Aufgrund ihrer spezifischen biologischen Besonderheiten zeigen die molekularen Subtypen des Mammakarzinoms ausgeprägte Unterschiede im Krankheitsverlauf und im Ansprechen auf ihre Behandlung. Die schnell proliferierenden basal-like-Karzinome, welche eine schlechter Prognose aufweisen, haben in diesen Zusammenhang einen besonderen Stellenwert, da ihre weitere molekulare Charakterisierung von großer klinischer Bedeutung ist\(^\text{43,44}\).

Im Laufe der Jahre stellte sich heraus, dass die Einteilung des Mammakarzinoms in molekulare Subtypen deutlich komplexer ist als initial angenommen\(^\text{39,45}\) und vor allem bezüglich auf die Therapieempfehlungen für die klinische Anwendung stetig überarbeitet werden müssen.
1.2.4 Therapie des Mammakarzinoms

Durch die Erfolge systemischer Behandlungsmethoden und verbesserter Bildgebungsverfahren ist eine steigende Inzidenz von Gehirnmetastasen zu verzeichnen. Daher repräsentiert der Umgang mit der Erkrankung an Gehirnmetastasen ein Gebiet mit wachsendem wissenschaftlichem Interesse der Erforschung organspezifischer Metastasierung 55–59. Ein Grund hierfür die steigende Inzidenz ist u.a. das größenbedingte Unvermögen von Antikörper-Präparaten die Bluthirnschranke zu passieren, während \textit{small molecules} hingegen häufig von Effluxpumpen wieder aus dem Gehirn heraus transportiert werden 60. Die mangelnde Therapierbarkeit von Hirnmetastasen des Mammakarzinoms (\textit{breast cancer brain metastases}, BCBM) ist eine vermehrt auftretende klinisch relevante Problematik, weshalb die Erforschung der zugrundeliegenden Mechanismen von außerordentlicher Bedeutung für die Weiterentwicklung gezielter Therapiemaßnahmen ist (Abb. 1.4).

1.2.5 Gehirnmetastasen des Mammakarzinoms

Das metastasierende Mammakarzinom ist eine heterogene Erkrankung, die sich in verschiedenen klinischen Auswüchsen manifestiert, welche von einzelnen bis zu diffusen metastatischen Läsionen und der Beteiligung multipler Organe reicht. Neben Knochen, Lunge und Leber bildet das Gehirn eines der bevorzugten Metastasierungswege des Mammakarzinoms.\(^61,62\)

Eine der Risikogruppen für die Entwicklung von BCBM bilden junge Patientinnen \(^{65,76}\). Ferner wurde in einigen Studien, neben weiteren Faktoren, eine Assoziation zwischen BCBM und negativem HR-Status, basalem Brustkrebssubtyp oder \(BRCA1\)-Mutationen belegt \(^{77,78}\). Weiterhin sind BCBM häufig mit einer HER2-Überexpression assoziiert, für die eine steigende Inzidenz zu verzeichnen ist \(^{79-82}\). Zugrunde liegt hier neben einem Organotropismus für BCBM das Unvermögen von Trastuzumab, dem derzeitigen Standard in der Behandlung HER2-positiver Patientinnen, die Blut-Hirn-Schanke zu überqueren. Dies bedeutet, dass zum Zeitpunkt des Behandlungsbeginns bereits im Gehirn angesiedelte DTCs nicht durch die Therapie erreicht werden und zu Metastasen auswachsen können \(^{58,59}\).

Das Vorhandensein von BCBM stellt für die Therapie einer metastastischen Mammakarzinomkrankung eine Hürde dar, weil 50 \(\%\) der BCBM-Patientinnen an den neurologischen Folgen der BCBM-Erkrankung versterben \(^{83}\). Hieraus erwächst die Notwendigkeit zur lokalen Kontrolle der BCBM, um das Langzeitüberleben der Patientinnen zu steigern. Es ist daher von außerordentlicher klinischer Bedeutung ihre molekulare Ursache der BCBM zu erforschen, um das Risiko für die Entwicklung von BCBM vorhersagen und wirksame Therapien entwickeln zu können.
1.3 Der EGFR/HER2-Signalweg im Mammakarzinom

Da Krebserkrankungen allgemein, besonders aber auch dem Mammakarzinom, multigenische Ursachen zugrunde liegen, sind verschiedenste Signalwege dysreguliert. Etwa 32.000 der menschlichen Gene kodieren für Proteine, die teilweise an der Weiterleitung zellulärer Signale (Signaltransduktion) beteiligt sind. Zu ihnen zählen unter anderem über 520 Proteinkinasen, die in Tyrosin- und Serin/Threonin-Spezifität unterteilt werden - darunter 58 transmembrane Rezeptortyrosinkinasen (RTKs), die sich wiederum in 20 Klassen untergliedern. Die RTKs haben eine tragende Rolle bei der Regulation des Wachstums, der Differenzierung, Migration und dem Zelltod, daher nehmen sie eine Schlüsselrolle in vielen Krebs-assoziierten Prozessen ein.

RTKs sind Zelloberflächenproteine, die nach Ligandenbindung Homo- bzw. Heterodimere ausbilden. Dies begünstigt die sterische Anordnung der beiden intrazellulären Domänen zueinander und ermöglicht eine Aktivierung der Tyrosinkinasedomänen (TKD) mit anschließender Autophosphorylierung von Tyrosinresten in der carboxyterminalen Region. Hierdurch werden Signalproteine rekrutiert und ebenfalls aktiviert, was nach einer Signaltransduktionskaskade hintereinander geschalteter biochemischer Reaktionen (downstream signaling) schlussendlich Prozesse wie Zellwachstum, Migration und Differenzierung reguliert.

Die Vertreter der Familie der humanen epidermalen Wachstumsrezeptoren (nach HUGO Gennomenklatur ERBB, alias HER) sind im Zusammenhang mit Mammakarzinomkrankungen am besten beschrieben. Zu den wichtigsten ERBB-bezogenen Signalwegen zählen die JAK/STAT- (Januskinase / signal transducer and activator of transcription), MAPK- (mitogen-activated protein kinase), Proteinkinase C und PI3K/AKT- (Phosphoinositol-3-Kinase / Proteinkinase B) Routen. In dieser Arbeit liegt das Augenmerk jedoch auf dem über PI3K/AKT-regulierten Signalweg (Abb. 1.5).

Im PI3K/AKT-Signalweg rekrutieren die Rezeptoren die PI3K, auf die dort ein Phosphatrest übertragen wird. Die katalytische Untereinheit der aktivierten PI3K katalysiert die Umsetzung von Phosphatidylinositol-4,5-Bisphosphat (PIP₂) zu Phosphatidylinositol-3,4,5-Trisphosphat (PIP₃). Dies vermittelt die Rekrutierung der Serin- / Threoninkinase AKT an die Plasmamembran, wo diese ebenfalls durch Phosphorylierung aktiviert wird (pAKT). pAKT phosphoryliert eine Reihe von Zielproteinen, die in eine Vielzahl von Prozessen involviert sind, zu denen Überleben, Proliferation, Migration, Zellzyklus, Glykolyse, Angiogenese, Proteinsynthese und die Inhibition von Apoptose zählen. Die Signalweiterleitung induziert folglich die meisten an der Tumorgenese beteiligten Prozesse. Unter Normalbedingungen katalysiert das Phosphatase- und Tensinhomolog (PTEN) die Gegenreaktion der durch PI3K vermittelten Lipid-Phosphorylierung und wirkt somit als Tumorsuppressor regulierend auf die durch pAKT induzierten Prozesse. Um einen genaueren Einblick in die Funktionen der in dieser
Studie untersuchten EGFR, HER2, PTEN und PI3K im Mammakarzinom zu erhalten, werden diese nachfolgend einzeln eingeführt.

Abb. 1.5: Schema der PI3K/AKT-Signaltransduktionskaskade. Nach Dimerisierung und folgender Autophosphorylierung der RTKs EGFR und HER2, erfolgt durch Übertragung einer Phosphatgruppe die Aktivierung von PI3K, welches an der Plasmamembran die Umsetzung von PIP2 zu PIP3 veranlasst. Hierdurch wird AKT an die Plasmamembran rekrutiert und ebenfalls phosphoryliert. Es kommt zur Ausbildung eines Komplexes mit PDK1, was mTOR inhibiert. Ferner wird über einen Rückkopplungs-Regulationsmechanismus die Expression des PI3K-Antagonisten PTEN herauf reguliert. Diese Signalweiterleitung beeinflusst das Überleben und die Proliferation der Zellen. Ferner ist die Signalweiterleitung über HER2 in Tumorentstehung und Progression involviert.

1.3.1 Rezeptortyrosinkinasen der ERBB-Familie

Die ERBB-Familie besteht aus den hochkonservierten und zueinander stark homologen Monomeren ERBB1 (EGFR/HER1), ERBB2 (HER2), ERBB3 (HER3) und ERBB4 (HER4) 97. Die Liganden dieser Rezeptoren setzen sich aus EGF-ähnlichen Wachstumsfaktoren und Neuregulinen zusammen, die über ihre bevorzugte Bindung an bestimmte Rezeptoren der ERBB-Familie die Bildung unterschiedlicher Rezeptor-Dimere hervorrufen und somit verschiedene Signaltransduktionswege aktivieren 98–100.
1.3.1.1 Tumorgenese und onkogene Mutationen Rezeptortyrosinkinasen der ERBB-Familie

1.3.1.2 Das Onkogen EGFR

Der EGF-Rezeptor ist das am längsten bekannte und am ausführlichsten untersuchte Mitglied der Familie und verfügt über eine intrinsische Tyrosinkinaseaktivität \(^{105}\). In der carboxyterminalen Region verfügt er über mehrere Autophosphorylierungsstellen, von denen die Tyrosinreste Tyr1148, Tyr1068 und Tyr1173 nach Ligandenbindung und Dimerisierung am häufigsten phosphoryliert werden \(^{106,107}\). Zahlreiche Studien belegen neben dem Mammakarzinom eine EGFR-Überexpression in unterschiedlichen Tumorentitäten wie dem Kolon-, Bronchial-, Ovarial- oder dem Pankreaskarzinom \(^{108-111}\). Eine Überexpression von EGFR führt zu einer gesteigerten Zellproliferation, Angiogenese und Metastasierungsrate und vermindert zugleich die Apoptoserate. Aktuell werden Targeted-Therapien gegen EGFR bereits zur Behandlung von Bronchial- oder Kolonkarzinomen eingesetzt \(^{112,113}\).

Die Ursachen für eine gesteigerte EGFR-Aktivierung sind vielfältig. Für das primäre Mammakarzinom ist eine eng begrenzte, den EGFR-Lokus umgebende Amplifikation der chromosomalen Region 7p11.2 in <5 % der Fälle beschrieben \(^{114-116}\). Die Amplifikation wird durch Doppelstrangbrüche an speziellen Sollbruchstellen und anschließende homogene Rekombination der Bruchstücke über einen sogenannten Breakage Fusion Bridge-Zyklus hervorgerufen \(^{117}\). Das vermehrte Vorliegen des EGFR-Gens führt zur gesteigerten Expression \(^{118}\).

Eine gesteigerte Aktivierung von EGFR wird ferner durch das Vorliegen des bereits oben erwähnten EGFRvIII-Transkripts hervorgerufen. Der Verlust der Ligandenbindedomäne führt zu einer Konformation, welche die Dimerbildung ohne gebundenen Liganden begünstigt und somit eine gesteigerte Signalweiterleitung induziert. Das EGFRvIII-Transkript ist vor allem mit dem Gehirntumor Glioblastoma multiforme assoziiert und wurde nur selten (≤4 %) im Mammakarzinom nachgewiesen \(^{119-121}\).

1.3.1.3 Das Onkogen HER2

1.3.2 Das Onkogen PI3K

Mutationen im PIK3CA-Gen (3q26.3) treten zu variierenden Frequenzen (15-45 %) in primären Mammakarzinomtumoren auf. Es ist belegt, dass sich diese Mutationen in bestimmten Regionen anhäufen, die auf Exon 9 (E542, E545, Q546) und Exon 20 lokalisiert sind (H1047), welche für die helikale bzw. katalytische Domäne kodieren. Diese Regionen werden auch als Hotspots bezeichnet. Die Mutationen liegen alle oberflächenexponiert an Positionen, die mit PIK3R interagieren und imitieren die durch Bindung eines physiologischen Aktivators ausgelöste Konformationsänderung. Dies führt zu einer konstitutiven Aktivierung von PI3K, was eine verstärkte Signalweiterleitung in dem angeschlossenen AKT-Signalweg zur Folge hat.

1.3.3 Der Tumorsuppressor PTEN

Das 403 Aminosäuren umfassende PTEN-Protein enthält zwei funktionelle Domänen und drei strukturgebende Regionen. Über das katalytische Signaturmotif in der Phosphatasedomäne ist PTEN in der Lage Serin-, Threonin- und Tyrosinreste hochgradig saurer Substrate zu dephosphorylieren. Die C2-Domäne des Proteins vermittelt, wie auch bei PI3K, die Rekrutierung von PTEN an die Plasmamembran, wo es durch seine Lipidphosphataseaktivität als PI3K-Antagonist wirkt. Ferner verfügt es über eine N-terminale PIP2-Bindedomäne und C-terminale, regulatorische PEST-Sequenzen, gefolgt von einem PDZ-Motif, welches ebenfalls in die Regulation der PTEN-Aktivität involviert ist. Neben der mit diversen Krebsentitäten assoziierten Lipidphosphataseaktivität ist PTEN auch in der...
Lage Proteine zu dephosphorylieren147,148. Über diese Proteinphosphataseaktivität ist PTEN beispielsweise durch negative Regulation von Cyclin D1 an der Zellzykluskontrolle beteiligt149.

PTEN-Funktionsverlust ist mit diversen epithelialen Tumorentitäten wie dem Prostata- und Mammakarzinom, sowie Gehirntumoren wie dem \textit{Glioblastoma multiforme} (GBM) assoziiert150–153. Im Zusammenhang mit PTEN-Funktionsverlust spricht man von Haploinsuffizienz154. Dies bedeutet, dass schon verringerte Proteinlevels für Defekte in den durch PTEN regulierten Prozessen führen.

Der Funktionsverlust von PTEN kann durch verschiedene Mechanismen ausgelöst werden. Er ist sowohl im GBM (90 \%) als auch im primären Mammakarzinom (15-37 \%) ein häufiges Ereignis und ist mit einer schlechten Prognose assoziiert150,153,155–158. Zu den auslösenden Mechanismen zählen Verlust des \textit{PTEN}-Genlokus (10q23.3), Mutationen oder Methylierung. Eine häufige genomische Ursache für den Funktionsverlust von PTEN ist eine hetero- oder homozygote Deletion des \textit{PTEN}-Genlokus. Eine Deletion nur eines Allels, zieht einen Verlust der Heterozygotie nach sich159. Im Normalfall liegen für jedes Gen beim Menschen zwei verschiedene Allele vor, auch als Mischvererbung (Heterozygotie) bezeichnet. Bei dem Verlust eines Allels spricht man dementsprechend von einem Verlust der Heterozygotie (allelische Imbalanz, AI). AI des \textit{PTEN}-Lokus’ auf dem Chromosomenabschnitt 10q23.3 tritt in 70 \% der GBM-Patienten auf, wurde jedoch auch häufig für das Mammakarzinom (25-40\%) berichtet160–163. Treten zusätzlich im zweiten Allel Mutationen auf, welche die katalytische Aktivität beeinträchtigen oder sind Methylierungen vorhanden, kommt es zum vollständigen Verlust von funktionsfähigem PTEN.

Eine weitere Ursache für den PTEN-Funktionverlust sind Mutationen im \textit{PTEN}-Gen selbst. Berichtet sind sowohl Punktmutationen als auch großflächige Deletionen, die mehrere Exone umfassen. Die Lokalisation der Mutationen ist über die gesamte PTEN-Sequenz verteilt, allerdings tritt in Mammakarzinomen und Gehirntumoren eine Anhäufung im Bereich um die Exone 3 und 5, wo sich u.a. das katalytische Zentrum befindet96,164. \textit{PTEN}-Mutationen stellen in primären Mammakarzinomen mit ≤10 \% eine relativ seltene Alteration dar136,140,165,166.

Neben Alterationen in der PTEN-Sequenz ist die Methylierung der \textit{PTEN}-Genlokus ursächlich für einen Funktionsverlust167. Ziel von Methylierungen ist die Promotorregion, wodurch das Ablesen der Sequenz unterbunden wird168. Methyliertes PTEN wurde in 30 \% von Mammakarzinompatientinnen nachgewiesen168,169.
Fragstellung

Material und Methoden

3.1 Material

3.1.1 Patientenmaterial

Das Untersuchungsmaterial und die Patientendaten wurden durch die Klinik und Poliklinik für Gynäkologie, die Klinik und Poliklinik für Neurochirurgie, das Institut für Pathologie und das Institut für Neuropathologie (Universitätsklinik Hamburg-Eppendorf, UKE) zur Verfügung gestellt. Alle klinischen Untersuchungen wurden nach den Prinzipien der Deklaration von Helsinki durchgeführt. Eine Einwilligungserklärung aller Patientinnen für die Verwendung ihrer Gewebe zu Forschungszwecken sowie eine entsprechende Genehmigung der zuständigen Ethikkommission liegt vor.

Des Weiteren wurden Gewebe-Microarrays (tissue microarray, TMA) aus Stanzen von primären Mammakarzinomen durch das Institut für Pathologie (UKE) zur Verfügung gestellt.

Tabelle 3.1 gibt eine Übersicht über die Patienteninformationen und die klinischen Parameter.
Tabelle 3.1: Patientencharakteristika. Verändert nach Hohensee et al. 198

<table>
<thead>
<tr>
<th>Vergleichsgröße</th>
<th>Primärtumoren</th>
<th>Gehirnmetastasen</th>
<th>andere Metastasen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Alter bei PT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median [a]</td>
<td>56</td>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>Bereich [a]</td>
<td>17,5 - 81,3</td>
<td>32 - 70,2</td>
<td>50,7 - 62,8</td>
</tr>
<tr>
<td>Alter bei Residiv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median [a]</td>
<td>-</td>
<td>56</td>
<td>58,01</td>
</tr>
<tr>
<td>Bereich [a]</td>
<td>-</td>
<td>38,7 - 76</td>
<td>50,2 - 72,5</td>
</tr>
<tr>
<td>Tumorstatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT1</td>
<td>19 (32,2)</td>
<td>7 (36,8)</td>
<td>0 (0,0)</td>
</tr>
<tr>
<td>pT2</td>
<td>32 (54,2)</td>
<td>10 (52,6)</td>
<td>2 (66,7)</td>
</tr>
<tr>
<td>pT3+4</td>
<td>8 (13,6)</td>
<td>2 (10,5)</td>
<td>1 (33,3)</td>
</tr>
<tr>
<td>Lymphknotenstatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pNO</td>
<td>32 (55,2)</td>
<td>7 (36,8)</td>
<td>1 (50,0)</td>
</tr>
<tr>
<td>pN+</td>
<td>26 (44,8)</td>
<td>12 (63,2)</td>
<td>1 (50,0)</td>
</tr>
<tr>
<td>Metastasierungsstatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMO</td>
<td>54 (91,5)</td>
<td>15 (88,2)</td>
<td>1 (50,0)</td>
</tr>
<tr>
<td>pM1</td>
<td>5 (8,5)</td>
<td>2 (11,8)</td>
<td>1 (50,0)</td>
</tr>
<tr>
<td>Differenzierungsgrad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1+2</td>
<td>26 (44,1)</td>
<td>5 (35,7)</td>
<td>3 (60,0)</td>
</tr>
<tr>
<td>G3</td>
<td>33 (55,9)</td>
<td>9 (64,3)</td>
<td>2 (40,0)</td>
</tr>
<tr>
<td>Tumortyp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duktal</td>
<td>41 (68,3)</td>
<td>10 (76,9)</td>
<td>2 (25,0)</td>
</tr>
<tr>
<td>Lobulär</td>
<td>9 (15,0)</td>
<td>1 (7,7)</td>
<td>1 (12,5)</td>
</tr>
<tr>
<td>andere</td>
<td>10 (16,7)</td>
<td>2 (15,4)</td>
<td>5 (62,5)</td>
</tr>
<tr>
<td>HR-Status PT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negativ</td>
<td>16 (27,6)</td>
<td>5 (27,8)</td>
<td>2 (100,0)</td>
</tr>
<tr>
<td>Positiv</td>
<td>42 (72,4)</td>
<td>13 (72,2)</td>
<td>0 (0,0)</td>
</tr>
<tr>
<td>HR-Status Metastasen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negativ</td>
<td>-</td>
<td>9 (32,1)</td>
<td>0 (0,0)</td>
</tr>
<tr>
<td>Positiv</td>
<td>-</td>
<td>19 (67,9)</td>
<td>1 (100,0)</td>
</tr>
<tr>
<td>HER2-Status PT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negativ</td>
<td>49 (84,5)</td>
<td>13 (68,4)</td>
<td>1 (50,0)</td>
</tr>
<tr>
<td>Positiv</td>
<td>9 (15,5)</td>
<td>6 (31,6)</td>
<td>1 (50,0)</td>
</tr>
<tr>
<td>HER2-Status Metastasen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negativ</td>
<td>-</td>
<td>17 (58,6)</td>
<td>9 (81,9)</td>
</tr>
<tr>
<td>Positiv</td>
<td>-</td>
<td>12 (41,4)</td>
<td>2 (18,1)</td>
</tr>
<tr>
<td>Subtyp PT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-positiv</td>
<td>32 (57,1)</td>
<td>7 (41,2)</td>
<td>0 (0,0)</td>
</tr>
<tr>
<td>Triple-negativ</td>
<td>15 (26,8)</td>
<td>4 (23,5)</td>
<td>1 (50,0)</td>
</tr>
<tr>
<td>HER2</td>
<td>9 (16,1)</td>
<td>6 (35,3)</td>
<td>1 (50,0)</td>
</tr>
<tr>
<td>Subtyp Metastasen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-positiv</td>
<td>-</td>
<td>9 (32,1)</td>
<td>1 (100,0)</td>
</tr>
<tr>
<td>Triple-negativ</td>
<td>-</td>
<td>7 (25,0)</td>
<td>0 (0,0)</td>
</tr>
<tr>
<td>HER2</td>
<td>-</td>
<td>12 (42,9)</td>
<td>0 (0,0)</td>
</tr>
</tbody>
</table>

1) PT: Primärtumor
2) Metastasierungsstatus wurde zum Zeitpunkt der PT-Operation ermittelt
3) HR: Hormonrezeptor
4) Tumor, Lymphknoten und Metastasierungsstatus, Differenzierungsgrad und Tumortyp, HR PT, HER2 PT und Subtyp PT sind Informationen über den Primärtumor.
3.1.2 Zelllinien und Kulturmedien

Nährmedien für die Kultur eukaryotischer Zellen

<table>
<thead>
<tr>
<th>Zellkulturmedium 1</th>
<th>90% (v/v)</th>
<th>DMEM-Medium (4,5 g/l D-Glucose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% (v/v)</td>
<td></td>
<td>Fetales bovines Serum (FBS)</td>
</tr>
<tr>
<td>2 mM</td>
<td></td>
<td>L-Glutamin (200 mM)</td>
</tr>
<tr>
<td>200 U/ml</td>
<td></td>
<td>Penicillin/Streptomycin (10.000 U/ml)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zellkulturmedium 2</th>
<th>90% (v/v)</th>
<th>RPMI 1640- Medium (4,5 g/l D-Glucose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% (v/v)</td>
<td></td>
<td>FBS</td>
</tr>
<tr>
<td>2 mM</td>
<td></td>
<td>L-Glutamin (200 mM)</td>
</tr>
<tr>
<td>200 U/ml</td>
<td></td>
<td>Penicillin/Streptomycin (10.000 U/ml)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zellkulturmedium 3 (MCF10A)</th>
<th>90% (v/v)</th>
<th>DMEM/F12 (4,5 g/l D-Glucose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% (v/v)</td>
<td></td>
<td>Pferdeserum</td>
</tr>
<tr>
<td>100 ng/ml</td>
<td></td>
<td>Choleratoxin (500 µg/ml)</td>
</tr>
<tr>
<td>20 ng/ml</td>
<td></td>
<td>EGF (500 µg/ml)</td>
</tr>
<tr>
<td>500 ng/ml</td>
<td></td>
<td>Hydrocortison (1 mg/ml)</td>
</tr>
<tr>
<td>10 µg/ml</td>
<td></td>
<td>Insulin (10 mg/ml)</td>
</tr>
<tr>
<td>200 U/ml</td>
<td></td>
<td>Penicillin/Streptomycin (10.000 U/ml)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zellkulturmedium 4 (Astrozyten)</th>
<th>90% (v/v)</th>
<th>DMEM (4,5 g/l D-Glucose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% (v/v)</td>
<td></td>
<td>FBS</td>
</tr>
<tr>
<td>2 mM</td>
<td></td>
<td>L-Glutamin (200 mM)</td>
</tr>
<tr>
<td>200 U/ml</td>
<td></td>
<td>Penicillin/Streptomycin (10.000 U/ml)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zellkulturmedium 5 (Mikroglia)</th>
<th>90% (v/v)</th>
<th>MEM (6 g/l D-Glucose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% (v/v)</td>
<td></td>
<td>FBS</td>
</tr>
<tr>
<td>2 mM</td>
<td></td>
<td>L-Glutamin (200 mM)</td>
</tr>
<tr>
<td>200 U/ml</td>
<td></td>
<td>Penicillin/Streptomycin (10.000 U/ml)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einfriermedium</th>
<th>90% (v/v)</th>
<th>Zellkulturmedium 1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% (v/v)</td>
<td></td>
<td>DMSO</td>
</tr>
</tbody>
</table>
Nährmedien für die Bakterienkultur

Teriffic broth - Medium (TB-Medium):

TB-Lösung 1	12 g	Bactotrypton
TB-Lösung 1	24 g	Hefeextrakt
TB-Lösung 1	4 ml	Glycerin
in 900 ml destilliertes Wasser		autoklavieren

TB-Lösung 2	17 mM	KH₂PO₄
TB-Lösung 2	72 mM	K₂HPO₄
(pH 7,2)		autoklavieren

TB-Lösung 1 und 2 nach dem Autoklavieren in einem Verhältnis von 10:1 vereinen

25 µg/ml Chloramphenicol (25 mg/ml)

Luria Broth-Medium (LB-Medium):

1 %	Bactotrypton
0,5 %	Hefeextrakt
1 %	NaCl
	Autoklavieren

25 µg/ml Chloramphenicol (25 mg/ml) bzw.
50 µg/ml Ampicillin (100mg/ml)

LB-Agarplatten:

1,5 %	Bactoagar
in 1l	LB-Medium (ohne Antibiotikum)
	Autoklavieren
Material und Methoden

Zelllinien

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Typ</th>
<th>Ursprungs-gewebe</th>
<th>Metastasen</th>
<th>Kultur-Medium</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-20 1)</td>
<td>Adenokarzinom der Brust duktals</td>
<td>Brustdrüse</td>
<td>Ja</td>
<td>1</td>
<td>170</td>
</tr>
<tr>
<td>BT-549 2)</td>
<td>duktales Mammakarzinom</td>
<td>Primärtumor</td>
<td>Lymphknoten</td>
<td>2</td>
<td>171</td>
</tr>
<tr>
<td>GI-101 3)</td>
<td>duktales Mammakarzinom</td>
<td>Rezidiv</td>
<td>Nein</td>
<td>1</td>
<td>172</td>
</tr>
<tr>
<td>HEK-293T 4)</td>
<td>duktales Mammakarzinom</td>
<td>Nierenepithe</td>
<td>Nein</td>
<td>1</td>
<td>173</td>
</tr>
<tr>
<td>MCF-7 4)</td>
<td>nicht-tumoriges Epithel der Brust</td>
<td>Pleuraerguss</td>
<td>Ja</td>
<td>1</td>
<td>174</td>
</tr>
<tr>
<td>MCF 10A</td>
<td>Adenokarzinom der Brust</td>
<td>Pleuraerguss</td>
<td>Nein</td>
<td>4</td>
<td>175</td>
</tr>
<tr>
<td>MDA-MB-231 WT 1)</td>
<td>Adenokarzinom der Brust</td>
<td>Pleuraerguss</td>
<td>Ja</td>
<td>1</td>
<td>176</td>
</tr>
<tr>
<td>MDA-MB-231 SA ¶</td>
<td>Adenokarzinom der Brust</td>
<td>Pleuraerguss</td>
<td>Ja</td>
<td>1</td>
<td>177</td>
</tr>
<tr>
<td>MDA-MB-231 BR ¶</td>
<td>Adenokarzinom der Brust</td>
<td>Pleuraerguss</td>
<td>Ja</td>
<td>1</td>
<td>178</td>
</tr>
<tr>
<td>MDA-MB-468 2)</td>
<td>Adenokarzinom der Brust</td>
<td>Pleuraerguss</td>
<td>Ja</td>
<td>1</td>
<td>179</td>
</tr>
<tr>
<td>CHME3 6)</td>
<td>Humane Mikroglia</td>
<td>Gehirn</td>
<td>Nein</td>
<td>5</td>
<td>180</td>
</tr>
</tbody>
</table>

1) erhalten von der American Type Culture Collection (ATCC), Manassas, USA
2) erhalten von Cell Lines Service, Eppelheim
3) erhalten von Dr. J. Hurst, Goodwin Institut for Cancer Research, Plantation, Florida, USA
4) erhalten aus der Zellkulturbank des ICRF Laboratory, St Thomas' Hospital, London, UK
5) erhalten von VTT, Sirkku Pollari, Finnland;
6) erhalten von Dr. Alexander Schulte, Universitätsklinikum Hamburg-Eppendorf.

Primäre Zellen

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Typ</th>
<th>Ursprungs-gewebe</th>
<th>Metastasen</th>
<th>Kultur-Medium</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrozyten</td>
<td>Primäre humane Astrozyten</td>
<td>Gehirn</td>
<td>Nein</td>
<td>4</td>
<td>N7805-100, Life Technologies</td>
</tr>
</tbody>
</table>
3.1.3 Verbrauchsmaterialien

3.1.3.1 Chemikalien

Im Rahmen dieser Arbeit verwendete Chemikalien und Reagenzien sind im Anhang aufgeführt (siehe Kapitel 9.5). Die Lösungen wurden, wenn nicht anders erwähnt, mit demineralisiertem Wasser ange- setzt. Sollten Lösungen für Arbeiten mit RNA verwendet werden, wurden sie mit Diethylenpyrocarbonat (DEPC, Sigma) behandeltes Wasser angesetzt.

3.1.3.2 Größenstandards

Zur Bestimmung der Größe von DNA-Fragmenten in Agarosegelen (siehe Kapitel 3.2.1.3.2) wurden folgende Größenstandards verwendet:

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Bereich [bp]</th>
<th>Hersteller/Vertreiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 bp DNA Molecular Weight Marker XIV</td>
<td>100-2642</td>
<td>Roche Diagnostics, Mannheim</td>
</tr>
<tr>
<td>GeneRuler™ 100 bp Plus DNA Ladder</td>
<td>100-3000</td>
<td>Thermo Fisher Scientific, Waltham, USA</td>
</tr>
<tr>
<td>Hyperladder I</td>
<td>200-10.000</td>
<td>Bioline, Luckenwalde</td>
</tr>
</tbody>
</table>

Das Molekulargewicht von Proteinen im SDS-Gel (siehe Kapitel 3.2.3.3.1) wurde mit Hilfe des folgenden Größenstandards ermittelt:

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Bereich [kDa]</th>
<th>Hersteller/Vertreiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page Ruler™ Plus</td>
<td>10-250</td>
<td>Thermo Fisher Scientific, Waltham, USA</td>
</tr>
</tbody>
</table>

3.1.3.3 Oligonukleotide

Eine vollständige Auflistung aller in dieser Arbeit verwendeten Oligonukleotide befindet sich im Anhang (siehe Kapitel 0). Alle Oligonukleotide wurden von der Firma Sigma Aldrich bezogen und mit dem Reinheitsgrad HPSF (High Purity Salt Free) im 0,025 µmol-Maßstab synthetisiert.
3.1.3.4 Antikörper

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Klon</th>
<th>Ursprungsorganismus</th>
<th>Hersteller</th>
<th>Verdünnung*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akt</td>
<td>-</td>
<td>Kaninchen</td>
<td>Cell Signaling Technology, Frankfurt am Main</td>
<td>1:1.000 (WB)</td>
</tr>
<tr>
<td>Phospho Akt (S473)</td>
<td>D9E</td>
<td>Kaninchen</td>
<td>Cell Signaling Technology, Frankfurt am Main</td>
<td>1:2.000 (WB)</td>
</tr>
<tr>
<td>Anti-GFP</td>
<td>II</td>
<td>Maus</td>
<td>Torben Lübke, Universität Bielefeld</td>
<td>1:1.000 (WB)</td>
</tr>
<tr>
<td>Anti-human EGFR</td>
<td>E30</td>
<td>Maus</td>
<td>Dako, Glostrup Dänemark</td>
<td>1:20 (IHC)</td>
</tr>
<tr>
<td>Anti-human ErbB-2 Onkoprotein</td>
<td>NCL-CB11</td>
<td>Maus</td>
<td>Novocastra Laboratories, Newcastle Upon Tyne, England</td>
<td>1:80 (IHC)</td>
</tr>
<tr>
<td>EGFR</td>
<td>1005</td>
<td>Kaninchen</td>
<td>Santa Cruz, Heidelberg</td>
<td>1:3.000 (WB)</td>
</tr>
<tr>
<td>HSC 70</td>
<td>B-6</td>
<td>Maus</td>
<td>Santa Cruz, Heidelberg</td>
<td>1:10.000 (WB)</td>
</tr>
<tr>
<td>PTEN</td>
<td>138G6</td>
<td>Kaninchen</td>
<td>Cell Signaling Technology, Frankfurt am Main</td>
<td>1:100 (IHC), 1:1.000 (WB)</td>
</tr>
</tbody>
</table>

Sekundärantikörper:

- APAAP-Komplex (Alkalische Phosphatase-Anti-Alkalische Phosphatase)
 | Maus | Dako, Glostrup Dänemark | 1:100 |
- Polyclonal Rabbit Anti-Mouse Immunoglobulins/HRP
 | Kaninchen | Dako, Glostrup Dänemark | 1:2 000 (WB) |
- Polyclonal Swine Anti-Mouse Immunoglobulins/HRP
 | Schwein | Dako, Glostrup Dänemark | 1:2 000 (WB) |

* eingesetzte Verdünnung für die Immunhistochemie (IHC) und im Western Blot (WB).

3.1.3.5 Puffer und Lösungen

Puffer und Lösungen für molekularbiologische Methoden

DNA-Beladungspuffer

<table>
<thead>
<tr>
<th>6 ml</th>
<th>Glycerin (60 %)</th>
<th>EDTA</th>
<th>Bromphenolblau</th>
<th>Xylene Cyanol FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>100mM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,15 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,15 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 M Natriumacetat (pH 5,2)

<table>
<thead>
<tr>
<th>3 M</th>
<th>Natriumacetat</th>
</tr>
</thead>
</table>

TE-Puffer (pH 7)

| 10 mM | Trizma Base |
| 1mM | EDTA |

50 x TAE (Tris-Acetat-EDTA) (pH 8,5)

| 2 M | Trizma Base |
| 50 mM| EDTA |
Material und Methoden

Puffer und Lösungen für FISH-Analysen

FISH-Fixierungslösung (FISH: Fluoreszenz-**in situ**-Hybridisierung)
- 2 % 37% Formaldehyd in 100 ml Methanol

50 % Formamid / 2 x SSC-Puffer (pH 7)
- 50 % Formamid
- 10 % 20 x SSC-Puffer (SSC: saline-sodium citrate)

Hybridisierungspuffer (pH 7)
- 20 % Dextransulfat
- 50 % Formamid
- 20 % 20 x SSC-Puffer bei 70 °C lösen aliquotieren und bei -20 °C lagern

20 x SSC-Puffer (pH 7)
- 3 M Natriumchlorid (NaCl)
- 0,3 M Na$_2$Citrat x 2 H$_2$O autoklavieren

2 x SSC / 0,3 % NP-40-Puffer (pH 7)
- 10 % 20 x SSC-Puffer
- 0,3 % Nonidet P-40

Puffer und Lösungen für proteinbiochemische Methoden

10x PBS (pH 7,4)
- 1,54 M NaCl
- 0,08 M Na$_2$HPO$_4$ x 2 H$_2$O
- 0,02 M KH$_2$PO$_4$

TBST-Puffer (pH 7,6)
- 0,5 M Trizma base
- 1,5 M NaCl
(TBST: *Tris-Buffered Saline* mit Tween 20)
- 0,5 % Tween-20

3.1.3.6 Kit-Systeme

Eine Übersicht der verwendeten käuflichen Systeme ist im Anhang aufgeführt(siehe Kapitel 9.6).
3.1.3.7 **BAC-Klone und FISH-Sonden**

Tabelle 3.2: BAC-Klon und Zentromer-Sonden.

<table>
<thead>
<tr>
<th>Klon/Sonde</th>
<th>Bindungsstelle</th>
<th>Lokalisation</th>
<th>Markierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP5-1091E12</td>
<td>7p11.2</td>
<td>EGFR</td>
<td>Spektrum Orange</td>
</tr>
<tr>
<td>LSI HER-2/neu 1)</td>
<td>17q11.2-12</td>
<td>HER2</td>
<td>Spektrum Orange</td>
</tr>
<tr>
<td>CEP 4</td>
<td>4p11.1-q11.1</td>
<td>Zentromer 4</td>
<td>Spektrum Aqua</td>
</tr>
<tr>
<td>CEP 7</td>
<td>7p11.1-q11.1</td>
<td>Zentromer 7</td>
<td>Spektrum Aqua</td>
</tr>
<tr>
<td>CEP 17 1,2)</td>
<td>17p11.1-q11.1</td>
<td>Zentromer 17</td>
<td>Spektrum Green</td>
</tr>
</tbody>
</table>

1) aus dem PathVysion HER-2 DNA Probe Kit II (Abbott Laboratories)
2) CEP: Zentromersonde

3.1.3.8 **shRNAs und Vektoren**

Tabelle 3.3: shRNA-Vektoren.

<table>
<thead>
<tr>
<th>shRNA</th>
<th>Ziel-Gen</th>
<th>Lokalisation</th>
<th>Vektor</th>
</tr>
</thead>
<tbody>
<tr>
<td>shPTEN1</td>
<td>PTEN</td>
<td>3'-UTR</td>
<td>p.LKO_TRC005</td>
</tr>
<tr>
<td>shPTEN2</td>
<td>PTEN</td>
<td>3'-UTR</td>
<td>p.LKO_TRC005</td>
</tr>
<tr>
<td>NTC</td>
<td>Non-target control</td>
<td>-</td>
<td>p.LKO.1</td>
</tr>
</tbody>
</table>

3.1.4 Geräte
Alle im Rahmen dieser Arbeit verwendeten Laborgeräte sind im Anhang detailliert aufgelistet (siehe Kapitel 9.7).

3.1.5 Verbrauchsmaterial
Soweit nicht anders beschrieben, wurden Verbrauchsmaterialien wie Pipettenspitzen, Falconröhrchen und Reaktionsgefäße von den Firmen Eppendorf (Hamburg), Sarstedt (Nümbrecht), Greiner Bio One (Frickenhausen) und VWR (Darmstadt) verwendet.
3.1.6 **Software, Onlinetools und Datenbanken**

3.1.6.1 **Software**

- Realplex Software V2.02 (Eppendorf): Quantitative PCR Steuerungs- und Auswertungssoftware
- GeneMapper (Applied Biosystems): Auswertungssoftware für PCR-Fragmentanalysen
- Sequence Analysis Tool (Applied Biosystems): Auswertungssoftware für Sequenzierungen
- ClustalW V2.0 (www.ebi.ac.uk/clustalw/): Onlinetool zum Abgleichen (Alignment) einer oder mehrerer Proben mit einer Referenzsequenz.
- Primer3plus (www.bioinformatics.nl/cgi-bin/Primer3plus/Primer3plus.cgi): Onlinesoftware zum Design von Oligonukleotiden für Detektion, Sequenzierung, quantitative Assays uvm.
- VectorNTI Advanced 10 (Invitrogen): Software zum Design von Sequenzen, Plasmiden, Oligonukleotiden und zur *in vitro*-Simulation von Restriktionsverdau, Agarosegelelektrophorese etc.
- Mendeley Desktop (Mendeley Ltd.): Freies Literaturverwaltungsprogramm
- Image J (NIH): Freie wissenschaftliche Bildbearbeitungssoftware
- GraphPad Prism 5 (GraphPad Software, Inc.): wissenschaftliche Software zur Erstellung von 2D-Grafiken und zur statistischen Analyse
- Gene Runner (Hastings Software, Inc.): Freies Programm zum Design von Oligonukleotiden
- Pymol (DeLano Scientific LLC): Freie 3D-Grafiksoftware zur Darstellung von Biomolekülen
- SPSS Version 19 (SPSS Inc.): Statistikprogramm

3.1.6.2 **Onlinetools und Datenbanken**

- UCSC (http://genome.ucsc.edu/): DNA, RNA, Proteindatenbank, PCR-Primer Test tool etc.
- COSMIC (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/): Datenbank über somatische, krebsassozierte Mutationen
3.2 Methoden

3.2.1 Molekularbiologische Methoden

3.2.1.1 Isolierung von Nukleinsäuren

3.2.1.1.1 Isolierung von genomischer DNA aus FFPE-Gewebeschritten

Die entparaffinierten und rehydrierten, sowie Toluidinblau-gefärbten (siehe Kapitel 3.2.2.3.2) Gewebestücke wurden zunächst in 0,01 % Triton X100 in H₂O disseziert und in 100 % Ethanol (EtOH) 5 min inkubiert. Nach einer Zentrifugation für 1 min bei 13000 rpm wurde das luftgetrocknete Pellet nochmals in zwei Schritten für 10 min bei 65 °C in Xylol entparaffiniert und anschließend in einer absteigenden EtOH-Reihe (100 %, 90 %, 70 %, 50 %) rehydriert. Die Desoxyribonukleinsäure- (DNA-) Isolierung erfolgte mit geringen Abweichungen nach den Angaben des Herstellers mit dem *innuPREP DNA Micro Kit* (Analytik Jena Bio Solutions) aus dem luftgetrocknetem Pellet. Abweichend vom Herstellerprotokoll wurde in 50 µl Nuklease-freiem H₂O eluiert. Die Qualität und Quantität wurde mit dem *NanoDrop* Spektrophotometer (PeqLab) bestimmt (siehe Kapitel 3.2.1.3.1). Die Ausbeute an genomischer DNA betrug ca. 30 µg (komplette Tumorgewebeschritte) bzw. 15 µg (manuell dissektierte Gewebeschritte). Einzelheiten zur manuellen Dissektion von Tumorarealen sind in Kapitel 3.2.2.4 beschrieben. Bis zur weiteren Verwendung wurden die Proben bei -20 °C gelagert.

3.2.1.1.2 Isolierung von genomischer DNA aus nicht-fixiertem Gewebe

Die DNA-Isolierung aus nicht-fixiertem Patientenmaterial (fresh frozen-Gewebeschritte oder EDTA-Blut) wurde dem *QIAmp® DNA Micro (<1 µg)* oder *QIAmp® DNA Mini Kit* (Qiagen) mit leichten Abwandlungen nach Angaben des Herstellers durchgeführt. Die Gewebestücke wurden in 180 µl Lyse-Puffer und 20 µl Proteinase K (20 mg/ml) abweichend vom Herstellerprotokoll für 48 h bei 56° C inkubiert. Die verlängerte Inkubation führte zu einer erheblich gesteigerten Ausbeute an hochmolekularer DNA. Vor der Elution der DNA wurde die Säule mit 25 µl bzw. 60 µl DNase-freiem Wasser für 3 min bei Raumtemperatur (RT) inkubiert und diese anschließend bei maximaler Geschwindigkeit zentrifugiert. Die Qualität und Quantität der genomischen DNA wurde mit dem *NanoDrop* Spektrophotometer (PeqLab) bestimmt (siehe Kapitel 3.2.1.3.1). Die Ausbeute betrug ca. 30 µg (Tumorgewebeschritte) bzw. 5 µg (manuell dissektierte Gewebeschritte). Bis zur weiteren Verwendung wurde die genomische DNA bei -20°C gelagert.
3.2.1.1.3 Isolation von Sonden-DNA

Vor die Isolation der DNA-Sonden (RP5-1091E12, LSI HER-2/neu) für FISH-Analysen wurde eine modifizierte Form der alkalischen Lyse nach Birnboim und Doly geschaltet. Diese beinhaltet einen Verdau mit ATP-abhängiger Exonuklease und eine anschließende Anionenaustauschchromatographie. Daraufhin erfolgte die DNA-Isolation mit dem *Large Construct* Kit (Qiagen) mit geringen Abweichungen von den Herstellerangaben. Zunächst wurde eine E. coli-Kolonie über Nacht bei 37 °C und 200 rpm in 500 ml TB-Medium mit dem Selektionsantibiotikum Chloramphenicol (25 µg/ml) kultiviert. Im Unterschied zum Herstellerprotokoll wurde in jedem nachfolgenden Schritt die doppelte Puffermenge verwendet. Die Sonden-DNA wurde nach der Elution von der Säule in dem 0,6-fachen Volumen Isopropanol für 30 min bei 1800 x g und 4 °C gefällt. Hierfür wurde die Lösung auf 1,5 ml Röhrchen verteilt und das Gefäß mit einem sichtbaren DNA-Faden markiert. Nach der Aufreinigung der DNA mittels EtOH-Fällung (siehe Kapitel 3.2.1.4.1) wurden die Pellets über Nacht bei 4 °C in dH₂O gelöst und mit Ausnahme des markierten Gefäßes gepoolt. Die Bestimmung der DNA-Konzentration erfolgte photometrisch mit dem *NanoDrop* (siehe Kapitel 3.2.1.3.1). Bis zur weiteren Verwendung wurden DNA-Sonden bei -20 °C gelagert.

3.2.1.1.4 Isolierung von Plasmid-DNA

Die Konzentration und Reinheit der Plasmid-DNA wurden photometrisch mit dem *NanoDrop* bestimmt (siehe Kapitel 3.2.1.3.1) und die DNA wurde bis zur Verwendung bei -20 °C gelagert.
3.2.1.1.5 Isolierung von Gesamt-RNA

Die Isolierung erfolgte unter RNase-freien Bedingungen und für alle Lösungen wurde DEPC-H₂O verwendet.

Alle Isoformen von Ribonukleinsäuren (Gesamt-RNA) wurden aus Patientenmaterial mit dem RNeasy® Micro (<1 µg) bzw. Mini Kit (Qiagen) nach dem Herstellerprotokoll isoliert. Das Tumorgewebe wurde in 250 µl Lyse-Puffer (1 % β-Mercaptoethanol) homogenisiert. Zunächst erfolgte ein Zell-Aufschluss über QIAshredder-Säulen (Qiagen). Um hochreine RNA ohne DNA-Kontaminationen zu erhalten wurde für 15 min bei RT mit 30 U DNase (Qiagen) verdaut. Die RNA wurde in 14 µl bzw. 60 µl RNase-freiem H₂O von der Säule eluiert.

Die Menge und Qualität der RNA wurden mit dem NanoDrop Spektrophotometer bestimmt (siehe Kapitel 3.2.1.3.1). Bis zur weiteren Verwendung wurde die RNA bei -80 °C gelagert.

3.2.1.2 Herstellung von DNA-Sonden

Es wurden DNA-Sonden für die Chromosomenabschnitte 7p11.2 und 17q11.2-12 hergestellt. Die Vermehrung der BAC-Klone LSI HER-2/neu und RP5-1091E12 erfolgte in rekombinanten E. coli-Stämmen in TB-Medium. Anschließend wurden die BAC-Klone isoliert (siehe Kapitel 0) und durch die Methode des "Random Primings" Fluoreszenz-markiert.

3.2.1.2.1 Markierung der DNA-Sonden durch Random Priming

Die DNA-Sonden wurden durch “Random Priming” unter Verwendung des BioPrime DNA Labeling Systems (Invitrogen) markiert. Hierfür wurde 1 µg Sonden-DNA für 5 min bei 100 °C denaturiert und Desoxynukleotidtriphosphate (dNTPs), Random-Hexamere und das Klenow-Fragment der DNA-Polymerase I sowie 2,5 mM mit Spektrum Orange-markierten dUTPs (Invitrogen) hinzugegeben. Die Markierung erfolgte für 2 h bei 37 °C durch den Einbau der Fluoreszenz-markierten Desoxyuraciltriphosphate (dUTPs) während der Synthese eines neuen Doppelstranges mit Hilfe des Klenow-Fragments, wobei die Hexanukleotide als Oligonukleotide an die DNA hybridisierten. Im Anschluss wurden nichtgebundene Nukleotide durch Filtrierung über Bio-Spin 30 Tris-Säulen (Biorad) nach Anweisung des Herstellers entfernt. Die Resuspension der DNA in Hybridisierungspuffer erfolgte nach einer EtOH-Aufreinigung (siehe Kapitel 3.2.1.4.1). Die markierten Sonden wurden bis zur weiteren Verwendung bei -20 °C gelagert.
3.2.1.3 Quantitäts- und Qualitätsbestimmung von Nukleinsäuren

3.2.1.3.1 Photometrische Messung

Die Konzentrationsbestimmung von DNA- und RNA-Proben wurde mit je 1 µl Probe am NanoDrop ND-1000-Spektrophotometer (Peqlab) durchgeführt. Der Absorptionsquotient \(A_{260nm/280nm} \) einer reinen DNA-Lösung sollte 1,8 und für eine reine RNA-Lösung 2,0 betragen. In dem Wellenlängenbereich von 220 nm bis 350 nm konnten zusätzlich Substanzen wie Alkohole und Verunreinigungen durch Proteine detektiert werden, welche die Absorptionsmessung beeinflussen.

3.2.1.3.2 Agarose-Gelelektrophorese

Die Agarose-Gelelektrophorese von Nukleinsäuren für analytische sowie préparative Zwecke wurde in horizontalen Elektrophoreseapparaturen durchgeführt. Je nach Länge der zu analysierenden Nukleinsäurefragmente wurden 0,8 – 2 %ige (w/v) TAE-Agarosegele mit 0,1 µg/ml Ethidiumbromid verwendet. Die DNA-Proben wurden in 0,2 Vol DNA-Ladepuffer aufgetragen und bei einer Spannung von 120 V (analytisch) bzw. 90 V (préparativ) aufgetrennt. Zur Kalkulation der Fragmentlänge wurde in demselben Gel parallel ein DNA-Standard (Roche, Fermentas oder Bioline) aufgetrennt und anschließend die DNA über die Fluoreszenz des interkalierten Ethidiumbromids durch einen Transilluminator (Anregungswellenlänge 234 nm) sichtbar gemacht. Die Gele wurden schlussendlich zur Dokumentation mit dem Geldokumentationssystem Gene Genius 2 (Syngene, Cambridge, UK) fotografiert.

3.2.1.4 Aufreinigung von Nukleinsäuren

3.2.1.4.1 Ethanolfällung

Zur Aufreinigung und ggf. Ankonzentrierung wurde die DNA mit 2,5 Vol. 100 % EtOH sowie 0,1 Vol. 3 M Natriumacetat (pH 5,4) versetzt und 1 h bei -20 °C ausgefällt. Nach der Pelletierung für 30 min bei 14000 x g wurden Salz- und wasserlösliche Substanzen mit 70 % EtOH ausgewaschen. Die luftgetrocknete DNA wurde in Nuklease-freiem H₂O gelöst und bis zur Verwendung bei -20 °C gelagert.

Zur Fällung von DNA-Sonden wurde die gewünschte Menge der aufzureinigenden Sonde zusammen mit je 1 µl humaner Plazenta-DNA, die mit repetitiven Sequenzen einer Länge von 50-100bp angereichert ist (Cot 1-DNA) sowie reiner humaner Plazenta-DNA vermischt und gemeinsam gefällt. Hierbei dienten die Cot 1- und die Plazenta-DNA im späteren FISH-Ansatz zur Blockierung repetitiver DNA-Abschnitte, die besonders an den Zentromeren und Telomeren auftreten. Der Waschschnitt in 70 % EtOH entfiehl. Die pelletierte DNA wurde nach dem Trocknen bei Dunkelheit für 4 h bei 300 rpm und 37 °C im Thermocycler in 9,25 µl Hybridisierungspuffer resuspendiert und direkt weiterverarbeitet.
3.2.1.4.2 **DNA-Extraktion aus dem PCR-Ansatz**

Um überschüssige Oligonukleotide, Oligonukleotiddimere oder nichtpolymerisierte dNTPs aus dem PCR-Ansatz zu entfernen, wurden die PCR-Produkte aufgereinigt. Zunächst wurden 2µl des PCR-Ansatzes in einem Agarosegel (siehe Kapitel 3.2.1.3.2) aufgetrennt. War bei der Detektion unter UV-Licht (250nm) nur ein spezifisches Produkt zu erkennen, wurde dieses mit dem **PcrExtract Kit** (5Prime) nach dem Hersteller-Protokoll direkt aus dem PCR-Ansatz isoliert. Als einzige Abweichung wurden beide Elutionsschritte mit 50µl auf 56 °C vorgewärmtem dH₂O durchgeführt. Die isolierte DNA wurde bis zur Verwendung bei -20 °C gelagert.

3.2.1.4.3 **DNA-Extraktion aus dem Agarosegel**

Waren nach der Gelelektrophorese (siehe Kapitel 3.2.1.3.2) neben dem spezifischen PCR-Produkt bzw. nach einem Restriktionsverdau noch weitere Banden in dem Agarosegel vorhanden, wurde der Rest der PCR-Ansatzes in einem präparativen Agarosegel aufgetrennt, das gewünschte Produkt unter UV-Licht (250nm) aus dem Gel herausgeschnitten und in ein 1,5ml-Reaktionsgefäss untergebracht. Die Aufreinigung von PCR-amplifizierter Patienten-DNA geschah mit dem **Agarose GelExtract Kit** (5Prime) nach den Angaben des Herstellers mit der Abweichung, dass beide Elutionsschritte mit 30µl auf 56 °C vorgewärmtem dH₂O durchgeführt wurden. Die Isolierung von PCR-amplifizierter DNA aus Zelllinien oder Plasmiden sowie von Restriktionsenzym-verdauter Plasmid-DNA geschah mit dem **NucleoSpin® Gel and PCR Clean-up Kit** (Macherey-Nagel) nach den Herstellerangaben unter Verwendung des optimierten Protokolls für die Aufreinigung hochmolekularer DNA. Die DNA-Konzentration wurde mit dem **NanoDrop** (siehe Kapitel 3.2.1.3.1) bestimmt und die isolierte DNA bis zur Verwendung bei -20 °C gelagert.

3.2.1.5 **Erststrang cDNA-Synthese**

3.2.1.6 **DNA-Amplifikation durch Polymerase-Kettenreaktion**

3.2.1.6.1 **Design von Oligonukleotiden für die PTEN-Mutationsanalyse**

Für das Design von Oligonukleotiden zur Amplifikation der PTEN cDNA und für die Sequenzierung musste die Sequenzhomologie zu dem Pseudogen PTENP1 in die Überlegungen miteinbezogen werden. Die PTENP1-Sequenz weist eine Homologie von 93 % zu der PTEN-mRNA auf.\(^{164}\) Daher wurden die Oligonukleotidsequenzen für die Amplifikation der PTEN-mRNA in Bereiche gelegt, die keine 100 %-ige Homologie zu der PTENP1-Sequenz aufwiesen (siehe Abb. 3.1). Da die Intronssequenzen der PTEN-Gensequenz in jener von PTENP1 nicht enthalten sind, wurden die Oligonukleotide zur Amplifikation von PTEN aus DNA-Proben in Intronbereichen von PTEN gelegt.
Material und Methoden

Abb. 3.1: Alignment der PTEN- und der PTENP1-mRNA Sequenzen. Dargestellt ist der Abgleich der PTEN mRNA-Sequenz (Query, NM_000314.4) gegen die PTENP1 mRNA-Sequenz (Sbjct, NR_023917.1) über das Alignment-Werkzeug der NCBI-Datenbank. In beiden Sequenzen identische Basen sind in der Sbjct-Zeile als Punkte und sich unterscheidende Basen in Form des Symbols für die jeweilige Base illustriert. Die Zahlen am linken Rand geben die Position der ersten Base und jene auf der rechten Seite die Position der letzten Base in der jeweiligen Zeile an. Die Oligonukleotide zur Amplifikation der PTEN-cDNA (PTEN CDS_F1 und PTEN CDS_R2) sind als rote Pfeile eingepflegt. A: Adenin, C: Cytosin, G: Guanin, T: Thymin.

3.1.6 Amplifikation von Patienten-DNA für Mutationsanalysen

Einzel-Ansatz:

<table>
<thead>
<tr>
<th>Volumen</th>
<th>Reagenz</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 μl</td>
<td>PCR-Puffer</td>
<td>(10x)</td>
</tr>
<tr>
<td>2,4 μl</td>
<td>MgCl₂</td>
<td>(3,5 mM)</td>
</tr>
<tr>
<td>3 μl</td>
<td>dNTP</td>
<td>(8 mM, Roche Diagnostics)</td>
</tr>
<tr>
<td>1 μl</td>
<td>Forward-Primer</td>
<td>(100 pmol/μl)</td>
</tr>
<tr>
<td>1 μl</td>
<td>Reverse-Primer</td>
<td>(100 pmol/μl)</td>
</tr>
<tr>
<td>0,5 μl</td>
<td>DNA-Polymerase</td>
<td>(5 U/μl)</td>
</tr>
<tr>
<td>2 μl</td>
<td>DNA (10 ng/μl)</td>
<td>(2 μl cDNA 1:10*)</td>
</tr>
<tr>
<td></td>
<td>dH₂O auf 20 μl</td>
<td></td>
</tr>
</tbody>
</table>

* für die Mutationsanalyse an PTEN wurde die cDNA unverdünnt eingesetzt

Multiplex-Ansatz:

<table>
<thead>
<tr>
<th>Volumen</th>
<th>Reagenz</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 μl</td>
<td>PCR-Puffer</td>
<td>(10x)</td>
</tr>
<tr>
<td>2 μl</td>
<td>MgCl₂</td>
<td>(3,5 mM)</td>
</tr>
<tr>
<td>2 μl</td>
<td>dNTP</td>
<td>(8 mM)</td>
</tr>
<tr>
<td>1 μl</td>
<td>Forward-Primer</td>
<td>(100 pmol/μl)</td>
</tr>
<tr>
<td>1 μl</td>
<td>Reverse-Primer</td>
<td>(100 pmol/μl)</td>
</tr>
<tr>
<td>0,25 μl</td>
<td>DNA-Polymerase</td>
<td>(5 U/μl)</td>
</tr>
<tr>
<td>2 μl</td>
<td>DNA (10 ng/μl)</td>
<td>(2 μl cDNA 1:10)</td>
</tr>
<tr>
<td></td>
<td>dH₂O auf 20 μl</td>
<td></td>
</tr>
</tbody>
</table>

PCR-Protokoll:

<table>
<thead>
<tr>
<th>Zyklen</th>
<th>Schritt</th>
<th>Temperatur [°C]</th>
<th>Zeit [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>Initiale Denaturierung</td>
<td>95</td>
<td>0:10</td>
</tr>
<tr>
<td>35-40x</td>
<td>Denaturierung</td>
<td>95</td>
<td>0:30</td>
</tr>
<tr>
<td></td>
<td>Annealing</td>
<td>Variation A</td>
<td>0:30</td>
</tr>
<tr>
<td></td>
<td>Extension</td>
<td>72</td>
<td>Variation B</td>
</tr>
<tr>
<td>1x</td>
<td>Finale Amplifikation</td>
<td>72</td>
<td>7:00</td>
</tr>
<tr>
<td></td>
<td>Kühlung</td>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Variation A: Annealing-Temperatur lag zwischen 54 °C und 64 °C und wurde abhängig vom AT-Gehalt der jeweiligen Oligonukleotide variiert (siehe Kapitel 0).

Variation B: Die Extensionszeit lag zwischen 0:30 min und 1:30 min und wurde je nach erwarteter Länge des PCR-Produktes variiert (siehe Kapitel 0).
3.2.1.6.3 Amplifikation von Plasmid-DNA

Für die Klonierung von cDNA-Fragmenten oder shRNAs in Vektoren wurde die *Pfu DNA Polymerase* (Fermentas) verwendet. An die PTEN-CDS wurden mittels Add-on-PCR am 5'-Ende eine EcoRI-Restriktionsschnittstelle und eine Kozak-Sequenz (CCACC) sowie eine NotI-Schnittstelle am 3'-Ende angehängt. Die Schnittstellen dienten zur Ligation in den Zielvektor und die Kozak-Sequenz als Erkennungsmerkmal für Ribosomen zum Start der Translation. Die Etablierung von PCR-Protokollen fand ebenfalls zunächst durch die Bestimmung der optimalen Annealingtemperatur der selbstentworfenen Oligonukleotidpaare über eine Gradienten-PCR (siehe Abschnitt 3.2.1.6.1) ermittelt. Anschließend wurde der PCR-Ansatz ggf. durch Zusetzen von 5-10% DMSO optimiert. DMSO unterstützt die Auflösung von Sekundärstrukturen, wie z.B. die Haarnadel- (hairpin-) Strukturen von shRNAs.

Ansatz:

<table>
<thead>
<tr>
<th>Volumen</th>
<th>Reagenz</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 µl</td>
<td>PCR-Puffer (incl. MgCL₂)</td>
<td>(10x)</td>
</tr>
<tr>
<td>10 µl</td>
<td>dNTP</td>
<td>(8 mM)</td>
</tr>
<tr>
<td>x µl</td>
<td>DMSO</td>
<td>(100%)</td>
</tr>
<tr>
<td>2,5 µl</td>
<td>Forward-Primer</td>
<td>(100 pmol/µl)</td>
</tr>
<tr>
<td>2,5 µl</td>
<td>Reverse-Primer</td>
<td>(100 pmol/µl)</td>
</tr>
<tr>
<td>0,5 µl</td>
<td>DNA-Polymerase</td>
<td>(5 U/µl)</td>
</tr>
<tr>
<td>y µl</td>
<td>DNA</td>
<td>(Endkonzentration: 100ng/µl)</td>
</tr>
<tr>
<td></td>
<td>dH₂O auf 20 µl</td>
<td></td>
</tr>
</tbody>
</table>

PCR-Protokoll:

<table>
<thead>
<tr>
<th>Zyklen</th>
<th>Schritt</th>
<th>Temperatur [°C]</th>
<th>Zeit [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>Initiale Denaturierung</td>
<td>95</td>
<td>3:00</td>
</tr>
<tr>
<td>35-40x</td>
<td>Denaturierung</td>
<td>95</td>
<td>1:00</td>
</tr>
<tr>
<td></td>
<td>Annealing</td>
<td>Variation A</td>
<td>1:00</td>
</tr>
<tr>
<td></td>
<td>Extension</td>
<td>Variation B</td>
<td></td>
</tr>
<tr>
<td>1x</td>
<td>Finale Amplifikation</td>
<td>72</td>
<td>5:00</td>
</tr>
<tr>
<td></td>
<td>Kühlung</td>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Variation A: *Annealing*-Temperatur lag zwischen 53 °C und 57 °C und wurde abhängig vom AT-Gehalt der jeweiligen Oligonukleotide variiert (siehe Kapitel 0).

Variation B: Die Extensionszeit lag zwischen 0:50 min und 1:30 min und wurde je nach erwarteter Länge des PCR-Produktes variiert (siehe Kapitel 0).
3.2.1.7 **Quantitative Realtime-PCR**

Der Verlauf einer PCR ist in eine frühe, eine exponentielle (Log-Phase) und eine Plateau-Phase unterteilt. In der frühen Phase werden die Signale des PCR-Produkts von der Intensität der Hintergrundsignale (**Threshold**) überstrahlt. Ein spezifisches Signal wird ab einem bestimmten Schwellenwert während der linearen Log-Phase detektiert, welche eine optimale Amplifikationsrate aufweist. Dieser Schwellenwert stellt jenen Zyklus dar, in welchem die Signalintensität des PCR-Produkts signifikant über jene des Hintergrundsignals ansteigt und wird als **C_t**-Wert (**Threshold Cycle**) bezeichnet. Der Vergleich der **C_t**-Werte der untersuchten Proben während der Log-Phase ermöglicht den quantitativen Rückschluss auf die Ausgangsmenge an Ziel-DNA. Je geringer die Ausgangsmenge, desto später wird der Schwellenwert erreicht, was einen späten **C_t**-Wert zur Folge hat (siehe Abb. 3.2 A). Anschließend wurde zur indirekten Bestimmung der Spezifität der gebildeten Produkte eine Schmelzkurvenanalyse durchgeführt. Jedes PCR-Produkt besitzt aufgrund unterschiedlicher Fragmentlängen und Nukleotidzusammensetzung eine spezifische Schmelztemperatur. Durch die kontinuierliche Steigerung der Temperatur von 60 °C auf 90 °C, werden die doppelsträngigen PCR-Produkte bei Erreichen dieser Schmelztemperatur denaturiert und die hierdurch ausgelöste Freisetzung des **SYBR-Green**-Farbstoffes wurde als Fluoreszenzabnahme erfasst. Unspezifische Oligonukleotiddimere können von spezifischen PCR-Produkten unterschieden werden, da sie im Allgemeinen einen niedrigeren Schmelzpunkt besitzen (siehe Abb. 3.2 B).
Material und Methoden

Abb. 3.2: Darstellung der Amplifikationsmenge und der Schmelzkurven einer qPCR. Die Amplifikationskurven (A) geben die Menge an PCR-Produkt nach jedem Zyklus an und werden aus der logarithmierten Auftragung der gemessenen Fluoreszenzintensität (FI) gegen die Zykluszahl erstellt. Der Schnittpunkt der Amplifikationskurve mit dem Schwellenwert in der exponentiellen Phase (graue Box) stellt den C\textsubscript{T}-Wert dar. Die Schmelzkurvenanalyse (B) dient der Überprüfung der Spezifität des gebildeten PCR-Produktes anhand dessen Schmelztemperatur und Größe. Der Quotient aus der FI und der Zeit wurde gegen die Temperatur dargestellt. Der Schwellenwert entspricht jenem aus der Darstellung der Amplifikationskurven.

Ansatz unter Verwendung des Maxima SYBR Green/ROX qPCR Master Mix

<table>
<thead>
<tr>
<th>Volumen</th>
<th>Reagenz</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,5 µl</td>
<td>Mastermix</td>
<td>(2x)</td>
</tr>
<tr>
<td>0,4 µl</td>
<td>Forward-Primer</td>
<td>(100 pmol/µl)</td>
</tr>
<tr>
<td>0,4 µl</td>
<td>Reverse-Primer</td>
<td>(100 pmol/µl)</td>
</tr>
<tr>
<td>2 µl</td>
<td>DNA</td>
<td>(10 ng/µl)</td>
</tr>
<tr>
<td></td>
<td>add dh2O 15 µl</td>
<td></td>
</tr>
</tbody>
</table>
Material und Methoden

3. Material und Methoden

PCR-Protokoll:

<table>
<thead>
<tr>
<th>Zyklen</th>
<th>Schritt</th>
<th>Temperatur [°C]</th>
<th>Zeit [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>Initiale Denaturierung</td>
<td>95</td>
<td>15:00</td>
</tr>
<tr>
<td>35-40x</td>
<td>Denaturierung</td>
<td>95</td>
<td>0:15</td>
</tr>
<tr>
<td></td>
<td>Annealing</td>
<td>Variation A</td>
<td>0:30</td>
</tr>
<tr>
<td></td>
<td>Extension</td>
<td>68</td>
<td>0:30</td>
</tr>
<tr>
<td>1x</td>
<td>Denaturierung</td>
<td>95</td>
<td>0:15</td>
</tr>
<tr>
<td>1x</td>
<td>Schmelzkurvenanalyse</td>
<td>60</td>
<td>0:15</td>
</tr>
<tr>
<td></td>
<td>(Gradient)</td>
<td>95</td>
<td>0:15</td>
</tr>
</tbody>
</table>

Variation A: Annealing-Temperatur lag zwischen 58 °C und 64 °C und wurde abhängig vom AT-Gehalt der jeweiligen Oligonukleotide variiert (siehe Kapitel 0).

3.2.1.7.1 Auswertung der Messdaten

Eine relative Quantifizierung setzt identische Reaktionseffizienz der zu vergleichenden Analysen voraus. Daher wurde im Vorfeld die Effizienz jedes verwendeten Oligonukleotidpaares mit Hilfe einer Standardreihe ermittelt. Aus den Cₜ-Werten der Standardreihe kann eine Eichgerade gebildet werden, welche durch folgende Geradengleichung definiert wird:

\[y = m \cdot x + c \]

Die Standardgerade gibt den linearen Zusammenhang zwischen den Cₜ-Werten und dem Logarithmus der Konzentration des Standards wieder (Abb. 3.3).

Die Steigung (m) gibt die prozentuale Reaktionseffizienz der PCR wieder und wird nach folgender Gleichung berechnet:

\[\text{Effizienz (E)} = 10^{-\frac{1}{m}} \cdot 100 \]

In den durchgeführten Analysen wurden nur Oligonukleotidpaare mit einer Effizienz von >95% verwendet.

Bei Untersuchungen auf DNA-Ebene wird die Kopienanzahl des Zielgens auf jene eines chromosomalen Referenzabschnittes (Housekeeper) normalisiert, die unter den experimentellen Bedingungen nicht variieren sollte. In dieser Studie diente die chromosomale Region 2q31.1 als Referenzabschnitt für die Analyse der Kopienanzahl.

Bei der Analyse der mRNA-Expression wird die Expression des Zielgens in Abhängigkeit von der Expression eines Referenzgens angegeben, das konstitutiv exprimiert wird und dessen Expression unter den experimentellen Bedingungen nicht variieren sollte. Die Expression von Housekeeper-Genen ist im Allgemeinen zur Erhaltung der Zellfunktion lebensnotwendig. In dieser Studie diente die große Untereinheit des ribosomalen Proteins (ribosomal protein, large, P0; RPLP0) als Referenzgen für die Expressionsanalyse.

In dem ersten Normalisierungsschritt wurde ein einfach normalisierter Ct-Wert für die analysierte Probe (Target) und den verwendeten Housekeeper erstellt:

\[\Delta C_t = (\text{Mittelwert } C_t \text{ Target}) - (\text{Mittelwert } C_t \text{ Housekeeper}) \]

Es folgt ein Normalisierungsschritt, der den \(\Delta C_t \)-Wert des Targets auf jenen der Referenzprobe mit bekannter Kopienanzahl bzw. Expressionshöhe bezieht:

\[\Delta \Delta C_t = (\Delta C_t \text{ Target}) - (\Delta C_t \text{ Referenz}) \]

Das Verhältnis der Kopienanzahl bzw. der Expression (fold change) wurde durch Einsetzen in folgende Formel errechnet, die sich auf die Verdoppelung des Templates in jedem Zyklus stützt:

\[\text{Ratio} = 2^{-\Delta C_t} \]
Bei der Analyse der Kopienanzahl des EGFR-Gens diente Leukozyten-DNA eines gesunden Probanden als Referenzprobe für eine normale Kopienanzahl verwendet. Subkline der Mammakarzinom-Zelllinie MDA-MB-468 dienten als Referenz für high-level (Kopienanzahl ca. 40) oder moderate EGFR-Amplifikation (Kopienanzahl = 5). In die Expressionsanalysen wurde cDNA einer Universal Human Reference mRNA (UHR) als Referenz für unveränderte mRNA-Expression einbezogen. Eine EGFR-Kopienanzahl von 1,7-2,0 wurden als normal, 2,1-5,0 als Zugewinn und ≥5 als Amplifikation definiert.

3.2.1.8 Mikrosatellitenanalyse

Für die hier durchgeführten Analysen wurde für die DNA-Proben nur Tumorgewebe verwendet, dass anteilig ≥ 70 % Tumorzystellen aufwies. Die Isolation der DNA erfolgte wie in Abschnitt 3.2.1.1.1 beschrieben. DNA aus mononukleären Zellen des peripheren Blutes oder nicht-malignes Brustgewebe der jeweiligen Patientin diente als Referenz. Die chromosomale Region 10q23 wurde durch die Analyse der Mikrosatelliten D10S541 und D10S1765 auf das Vorhandensein von AIs analysiert (siehe Abschnitt 9.2 im Anhang). Für die Amplifikation der DNA-Abschnitte wurden 5’-Oligonukleotide eingesetzt, die an ihrem 5’-Ende mit 6-Carboxyfluorescein- (FAM) oder HEX-markiert (hexachloriertes FAM) waren. Die 3’-Oligonukleotid waren nicht Fluoreszenz-markiert.

Ansatz:

<table>
<thead>
<tr>
<th>Volumen</th>
<th>Reagenz</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 μl</td>
<td>PCR-Puffer</td>
<td>(10x)</td>
</tr>
<tr>
<td>1 μl</td>
<td>MgCl₂</td>
<td>(3,5 mM)</td>
</tr>
<tr>
<td>1 μl</td>
<td>dNTP</td>
<td>(8 mM, Roche Diagnostics)</td>
</tr>
<tr>
<td>0,5 μl</td>
<td>Forward-Primer</td>
<td>(100 pmol/μl)</td>
</tr>
<tr>
<td>0,5 μl</td>
<td>Reverse-Primer</td>
<td>(100 pmol/μl)</td>
</tr>
<tr>
<td>0,1 μl</td>
<td>DNA-Polymerase</td>
<td>(5 U/μl)</td>
</tr>
<tr>
<td>2 μl</td>
<td>DNA (5 ng/μl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dH₂O auf 10 μl</td>
<td></td>
</tr>
</tbody>
</table>
Material und Methoden

PCR-Protokoll:

<table>
<thead>
<tr>
<th>Zyklen</th>
<th>Schritt</th>
<th>Temperatur [°C]</th>
<th>Zeit [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>Initiale Denaturierung</td>
<td>95</td>
<td>10:00</td>
</tr>
<tr>
<td>35-40x</td>
<td>Denaturierung</td>
<td>95</td>
<td>0:30</td>
</tr>
<tr>
<td></td>
<td>Annealing Variation A</td>
<td>Variation A</td>
<td>0:30</td>
</tr>
<tr>
<td></td>
<td>Extension</td>
<td>72</td>
<td>0:30</td>
</tr>
<tr>
<td>1x</td>
<td>Finale Amplifikation</td>
<td>72</td>
<td>7:00</td>
</tr>
<tr>
<td></td>
<td>Kühlung</td>
<td>8</td>
<td>∞</td>
</tr>
</tbody>
</table>

Variation A: *Annealing*-Temperatur lag zwischen 54 °C und 64 °C und wurde abhängig vom AT-Gehalt der jeweiligen Oligonukleotide variiert (siehe Abschnitt 9.2).

Die entstandenen PCR-Produkte wurden 1:20 in HPLC-aufgereinigtem H₂O verdünnt, ein Ansatz mit einem internen Standard (*GenescanRox*) in ultrareinem HiDi-Formamid hergestellt und nach einer Denaturierung für 2 min bei 94 °C sofort für 10 min auf Eis abgekühlt.

Ansatz:

<table>
<thead>
<tr>
<th>Volumen</th>
<th>Reagenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 μl</td>
<td>verdünntes PCR-Produkt</td>
</tr>
<tr>
<td>0,1 μl</td>
<td>GenescanRox</td>
</tr>
<tr>
<td>20 μl</td>
<td>HiDi-Formamid</td>
</tr>
</tbody>
</table>

Abb. 3.4: Elektropherogramm eines Mikrosatellitenmarkers. Dargestellt sind Signale eines amplifizierten Mikrosatelliten von Proben, in der dieser Marker heterozygot (links) oder ein Verlust der Heterozygotie (AI, Mitte) vorliegt. Rechts ist eine Probe mit nicht informativen Signalen illustriert. Die Signale im oberen Bereich stammen aus Kontroll-DNA, jene im unteren Bereich von Tumor-DNA.

\[
\text{Ratio} = \frac{(\text{Fläche Allel 1})_{\text{Tumor}}}{(\text{Fläche Allel 1})_{\text{Normal}}} \times \frac{(\text{Fläche Allel 2})_{\text{Tumor}}}{(\text{Fläche Allel 2})_{\text{Normal}}}
\]

Werte ≥2 oder ≤5 wurden als AI und Werte <2 als unverändert definiert.

Die Mikrosatellitenanalyse an DNA-Proben der meisten Fälle aus der verwendeten Kohorte wurde bereits vor Beginn dieser Studie durchgeführt. Im Zuge dieser Studie wurde der AI-Status für noch fehlende Fälle soweit als möglich komplettiert und durch Jolanthe Kropidlowski umgesetzt.

3.2.1.9 Klonierung von DNA-Fragmenten

3.2.1.9.1 Restriktionsverdau

sions-Konstrukte mit NheI verdaut, da in beiden Fällen durch den Einbau der jeweiligen Inserts eine zusätzliche Restriktionsschnitte entstehen sollte. Die DNA wurde mit jeweils 20 U Enzym (New England BioLabs) in einem 20 µl bzw. 40 µl Restriktionsansatz mit dem entsprechenden Restriktionspuffer in 1-facher Konzentration und 10µg BSA für 2-14 h bei 37 °C einem Verdau unterzogen. Für den Verdau wurden max. 2 µg DNA eingesetzt und eine Konzentration von 5% Glycerol im Ansatz wurde nicht überschritten. Zur weiteren Verwendung wurden die Fragmente in einem 0,8-2%-igen Agarosegel aufgetrennt, die entsprechenden Banden aus dem Gel ausgeschnitten und die DNA extrahiert (siehe Abschnitt 3.2.1.4.3).

3.2.1.9.2 Ligation
Zur Unterbindung der Religation der Plasmide wurde 1 µg restriktionsverdaute Plasmid-DNA mit 2,5 U antarktischer Phosphatase (Fermentas) in einem 10 µl Ansatz mit 1fach-konzentriertem Puffer für 15 min bei 37 °C dephosphoryliert und anschließend das Enzym für 5 min bei 65 °C deaktiviert. Restriktionsverdaute (siehe Abschnitt 3.2.1.9.1) CDS- bzw. shRNA-Sequenzen wurden in einem molekularen Verhältnis von 5:1 (Insert : Vektor) in die entsprechenden Vektoren kloniert. Um ein Konstrukt mit dosis-abhängiger PTEN-Überexpression zu erhalten, wurde die PTEN CDS aus dem LeGO-iG2- in das p2spuro++tTRKRAB-System kloniert. Zur Nutzung einer GFP-Markierung wurden shRNAs (NTC, shPTEN1, shPTEN2) aus dem pLKO-TRC005- in das LeGO-G/Puro+-System eingebracht. Die gerichtete Ligation wurde in 10 µl Reaktionsansätzen mit 2.000 U T4-DNA-Ligase und 1x Ligationspuffer (New England Biolabs) 1 h bei RT oder alternativ für 16 h bei 16 °C durchgeführt. Die entstandenen Plasmide wurden zur Transformation kompetenter E. coli-Zellen verwendet.

3.2.1.9.3 Transformation
Zur Vervielfältigung von Plasmid-DNA wurde ein Aliquot chemisch-kompetenter E. coli-Zellen des Stammes DH5α (siehe Abschnitt 3.2.4.5) auf Eis aufgetaut, 1 µl der zu transformierenden Plasmid-DNA hinzugefügt und der Ansatz durch vorsichtiges Rühren mit der Pipettenspitze gemischt. Die Aufnahme der DNA in die E. coli-Zellen erfolgte für 30 min auf Eis und anschließenden Hitzeschock für 30 sec bei 42 °C. Die Zellen wurden sofort für 5min auf Eis gekühlt und danach für 1 h bei 37 °C und 200 rpm in 200 µl LB-Medium inkubiert, um die Expression der Antibiotikaresistenzgene zu gewährleisten. Der vollständige Transformationsansatz wurde auf LB-Platten mit dem Selektionsantibiotikum Ampicillin ausplattiert und maximal 16 h bei 37 °C kultiviert. Am nächsten Tag wurden Einzelkлоne gepickt und für eine Vorkultur im analytischen Maßstab in 5ml LB-Amp-Medium für ebenfalls max. 16 h bei 37 °C und 200 rpm kultiviert. 300 µl dieser Kultur wurden zum Herstellen von Glycerolstocks mit 700 µl Glycerol vermischt und bei -80 °C gelagert. Der Rest der Kultur wurde für eine Übernachtkultur im präparativen Maßstab in 100 ml LB-Amp-Medium oder direkt für die Isolation der Plasmid-
DNA (siehe Abschnitt 3.2.1.4) verwendet. Nachfolgend wurden die Plasmide zunächst per Restiktionenverdau (siehe Abschnitt 3.2.1.9.1) auf den Einbau des Inserts überprüft und anschließend die Inserts per Sequenzierung (siehe Abschnitt 3.2.1.13) auf Mutationen überprüft.

3.2.1.10 **Herstellung von GFP-codierenden Knockdown-Konstrukten**

Zur Herstellung von Plasmiden für die gleichzeitige Expression PTEN-spezifischer shRNAs und dem GFP-Protein als Fluoreszenzmarker wurden die shRNAs aus dem ursprünglichen pLKO-TRC005-Plasmid in das LeGO-G/Puro+-Plasmid umkloniert (zur Verfügung gestellt von Prof. Boris Fehse, Klinik für Stammzelltransplantation, UKE). Hierfür wurden die shRNA-Sequenzen zunächst über eine Add-on-PCR amplifiziert, in der im 5’-Bereich eine XbaI- und im 3’-Bereich eine SalI-Restriktionschnittstelle angefügt wurden (Abb. 3.5 A). Die PCR-Produkte wurden anschließend einem Doppelrestriktionsverdau mit diesen beiden Enzymen unterzogen, bevor sie in den XbaI- und Xhol-verdauten LeGO-G/puro+-Vektor kloniert wurden (Abb. 3.5 B). Da die Haarnadelstruktur der shRNAs eine Xhol-Schnittstelle enthält, war ein Verdau der shRNAs mit diesem Enzym nicht möglich. Allerdings produzieren Xhol und SalI einen homologen Überhang, so dass eine gerichtete Klonierung möglich war. Die transformierten Konstrukte LeGO-G/Puro+ _shNTC, Plasmide LeGO-G/Puro+_shPTEN1 und Plasmide LeGO-G/Puro+_shPTEN2 wurden einem Testverdau mit EcoRI unterzogen, durch den nach erfolgreichem Einbau des Inserts zwei Fragmente der Größen von 6200 bp und 1900 bp entstehen sollten. Wie in Abb. 3.5 C dargestellt, konnten alle shRNAs erfolgreich in das LeGO-G/Puro+-Plasmid eingebracht werden.

Abb. 3.5: Produkte der Add-on-PCR und des Testverdaus der Knockdown-Konstrukte im LeGO-G/Puro+-System. Dargestellt sind die PCR-Produkte der Add-on-PCR auf die pLKO-TRC005-Konstrukte (A), das Produkt der Linearisierung des LeGO-G/Puro-Plasmids (B) und die entsprechenden Produkte des Testverdaus der LeGO-G/Puro+-Konstrukte (C) in einem 0,75 %-igen Agarosegel. Zur Bestimmung der Sequenzlänge wurde ein DNA-Standard verwendet.
3.2.1.11 Herstellung von GFP-kodierenden Überexpressions-Konstrukten

Um die Selektion erfolgreich transduzierter Zellklone über Durchflusszytometrie zu ermöglichen, wurde die PTEN-cDNA aus einem pCDNA3.1-System (zur Verfügung gestellt von Dr. Alexander Schulte, Institut für Neurochirurgie, UKE) in das für das GFP-Protein kodierende LeGO-iG2-Plasmid umkloniert (zur Verfügung gestellt von Prof. Boris Fehse, Klinik für Stammzelltransplantation, UKE). Hierfür wurde die cDNA-Sequenz über eine Add-on-PCR amplifiziert, in der im 5’-Bereich eine EcoRI-Schnittstelle und eine Kozak-Sequenz sowie im 3’-Bereich eine NotI-Schnittstelle angefügt wurden (Abb. 3.6 A). Die PCR-Produkte wurden anschließend einem Restriktionsverdau mit diesen beiden Enzymen unterzogen, bevor sie in den auf die gleiche Art verdauten LeGO-iG2-Vektor kloniert wurden (Abb. 3.6 B). Das transformierte Konstrukt LeGO-iG2/PTEN wurde einem Testverdau mit Nh1 unterzogen. Bei erfolgreicher Insertion sollten hierbei zwei Fragmente der Größen von 7459 bp und 1528 bp entstehen. Wie in Abb. 3.6 C dargestellt, war die Klonierung erfolgreich.

![Abb. 3.6: Produkte der Add-on-PCR und des Testverdaus des Überexpressions-Konstrukts im LeGO-iG2-System. Dargestellt sind die PCR-Produkte der Add-on-PCR auf das pCDNA3.1-Konstrukt (A), das Produkt der Linearisierung des LeGO-iG2-Plasmids (B) und das entsprechende Produkt des Testverdaus des LeGO-iG2-Konstrukts (C) in einem 0,75 %-igen Agarosegel. Zur Bestimmung der Sequenzlänge wurde ein DNA-Standard verwendet.](image-url)
3.2.1.12 Herstellung von ZsGreen-kodierenden, induzierbaren Überexpressions-Konstrukten

Abb. 3.7: Produkte der Umklonierung der Überexpressions-Konstrukte in das pZspuro++tTRKRAB-System. Dargestellt sind das Produkt der Linearisierung des LeGO-iG2_PTEN CDS-Plasmids (A) und das entsprechende Produkt des Testverdaus des pZspuro++tTRKRAB-Konstrukts (B) in einem 0,75 %-igen Agarosegel. Zur Bestimmung der Sequenzlänge wurde ein DNA-Standard verwendet.

3.2.1.13 Sequenzierung von DNA-Fragmenten nach Sanger

Für den folgenden 20 μl-Ansatz wurden 100 ng aufgereinigte DNA bzw. cDNA pro 1000 bp in maximal 13 μl dH₂O eingesetzt.

<table>
<thead>
<tr>
<th>Volumen</th>
<th>Reagenz</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 μl</td>
<td>Sequenzierungspuffer (5x)</td>
<td></td>
</tr>
<tr>
<td>2 μl</td>
<td>BigDye</td>
<td></td>
</tr>
<tr>
<td>1 μl</td>
<td>Oligonukleotide (100 pmol/μl)</td>
<td></td>
</tr>
<tr>
<td>x μl</td>
<td>DNA bzw. cDNA (100 ng pro 1000 bp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dH₂O auf 20 μl</td>
<td></td>
</tr>
</tbody>
</table>

Anschließend wurde folgende Sequenzierungsreaktion im Thermocycler durchgeführt:

<table>
<thead>
<tr>
<th>Zyklus</th>
<th>Schritt</th>
<th>Temperatur [°C]</th>
<th>Zeit [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>Initiale Denaturierung</td>
<td>96</td>
<td>2:00</td>
</tr>
<tr>
<td>30x</td>
<td>Denaturierung</td>
<td>96</td>
<td>0:30</td>
</tr>
<tr>
<td></td>
<td>Annealing</td>
<td>50</td>
<td>0:15</td>
</tr>
<tr>
<td></td>
<td>Extension</td>
<td>60</td>
<td>Variation A</td>
</tr>
<tr>
<td>1x</td>
<td>Kühlung</td>
<td>4</td>
<td>∞</td>
</tr>
</tbody>
</table>

Variation A: Die Extensionszeit betrug 2 - 4 min und wurde der Länge des zu sequenzierenden DNA-Abschnitts angepasst (siehe Kapitel 0).

3.2.1.13.1 Mutationsanalyse an Patientenmaterial

Mutationen im \textit{EGFR}-Gen sind bei in anderen Tumorentitäten als dem Mammakarzinom bekannt, wurden bislang im Mammakarzinom selten beschrieben. Hierzu zählen Punktmutationen in der Tyrosinkinasedomäne (TK) \textit{z.B.} Bronchialkarzinom sowie die EGFRvIII-Variante, bei der die Exone 2-7 deletiert sind (Glioblastom). Um zu verifizieren, ob Mutationen auch in BCBM vorkommen, wurden die Exone 17-21 in cDNA-Proben von 17 BCBM-Patientinnen auf Basenpaarsubstitutionen in der TK-Domäne untersucht und Proben von 14 BCBM-Patientinnen auf die Anwesenheit der EGFRvIII-Variante analysiert. Für die Mutationsanalyse der TK-Domäne dienten Mammakarzinomzellenlinien mit bekannten Mutationen (BT-549 und T47D) dienten hierbei als Kontrolle. Ein Plasmid mit humanen EGFRvIII-Variante (pCDNA3.1+/EGFRvIII) diente in der EGFRvIII-Analyse als Positivkontrolle (zur Verfügung gestellt von Dr. Alexander Schulte, Institut für Neurochirurgie, UKE)\footnote{191}.

Im \textit{PTEN}-Gen sind ebenfalls diverse Mutationen bekannt, die mit Mammakarzinom korrelieren. Um zu überprüfen, ob dies auch in BCBM zutrifft, wurde die vollständige CDS in cDNA-Proben von 11 BCBM-Patientinnen auf Mutationen überprüft. Zusätzlich wurden die Exone 3 und 5 in genomischer DNA von 22 BCBM, drei BCOM und 33 Primärtumorproben untersucht, da dort eine Häufung der Mutationen auftritt. Als Kontrollen wurden hier die Mammakarzinomzellenlinien MCF-7 und GI-101 genutzt.

Im \textit{PIK3CA}-Gen sind zwei Hotspot-Regionen bekannt, in denen Mutationen zu finden sind, die mit Mammakarzinom korrelieren. Aus diesem Grund wurde die Exone 6-10 sowie 19-20 auf cDNA-Ebene sowie die Exone 9 und 20 in genomischen DNA-Proben von 26 BCBM, fünf BCOM und 57 Primärtumoren analysiert. Hier dienten die Mammakarzinomzellenlinien MCF-7, MDA-MB-231 und T47D als Kontrollen.

Detektierte Mutationen wurden durch erneute Sequenzierung derselben Probe in Gegenrichtung bestätigt. Bislang unbekannte Mutationen wurden als Einzelnukleotidpolymorphismen (SNPs) durch zusätzliche Sequenzierung von DNA aus Blut der jeweiligen Patientin ausgeschlossen. Ein SNP stellt eine häufig in der Bevölkerung auftretende Sequenzvariante dar, die nicht mit einer Erkrankung assoziiert ist. Alle für die Mutationsanalysen verwendeten Oligonukleotide sind im Anhang in Kapitel 0 aufgeführt.
3.2.1.14 Fluoreszenz-in situ-Hybridisierung

Zur Verifizierung der IHC-Ergebnisse (siehe Kapitel 3.2.3.4) von Fällen mit heterogenen Proteinlevels wurden FISH-Analysen mit der Sonde RP5-1091E124q21 an FFPE-Schnitten von BCBM-Patientinnen durchgeführt. Der HER2-Status aller Fälle mit einem Immunoscore von 2+ wurden unter Verwendung des PathVysion HER-2 DNA Probe Kit II (Abbott Laboratories) verifiziert.

3.2.1.14.1 FISH an Paraffingewebe

Für die Hybridisierung mit der Spektrum Orange-markierten DNA-Sonde wurde folgender Probenansatz verwendet:

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Volumen [µl]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spektrum Orange-markierte, gefällte DNA-Sonde</td>
<td>9,25</td>
</tr>
<tr>
<td>Spektrum Aqua-markierte Zentromersonde</td>
<td>0,75</td>
</tr>
<tr>
<td>Gesamtvolumen</td>
<td>10</td>
</tr>
</tbody>
</table>

Für die Hybridisierung mit der kombinierten HER2/Cep17 DNA-Sonde wurden 10µl des direktmarkierten Sondengemisches eingesetzt.
Material und Methoden

Der Probenansatz wurde auf die getrockneten Gewebeschnitte gegeben, bevor das Gewebe mit einem Deckgläschen eingedeckelt und mit Fixogum versiegelt wurde. Nach der Denaturierung für 5 min bei 75 °C (EGFR) bzw. für 3 min bei 95 °C (HER2) folgte die Hybridisierung für 16 h bei 37 °C. Nach dem Ablösen des Deckgläschens folgte ein Waschschritt in 2x SSC/0,3% NP-40 für je 2 min bei 70 °C sowie in 2x SSC/0,3% NP-40 und PBS bei RT. Nach einer Dehydrierung in einer aufsteigenden EtOH-Reihe wurden die Schnitte mit Vectashield-DAPI eingedeckelt und bis zur Auswertung im Dunkeln bei 4 °C gelagert.

3.2.1.14.2 Auswertung der FISH-Analysen

Die Auswertung der FISH-Gewebeschnitte bzw. -Metaphasechromosomen erfolgte über ein Fluoreszenzmikroskop (Zeiss, Jena, Deutschland) mit dem Bilddokumentationsprogramm ISIS (Applied Imaging).

Abb. 3.8: Beurteilung von FISH-Signalen. Auswertbare Zellen enthielten je zwei oder mehr Signale von beiden Sonden in sich nicht überlappenden Nuclei (A). Zellen wurden als nicht auswertbar deklariert, wenn sich ihre Nuclei überlappten (B). Konnten Signale einer Sonde nicht klar voneinander abgegrenzt werden, so wurden sie als ein Signal gewertet (C) und diffuse Signale (D) gingen nicht in die Auswertung mit ein (nach Vysis).
3.2.2 Histochemische Methoden

3.2.2.1 Gewebe-Aufarbeitung

3.2.2.1.1 Histologie an kryokonserviertem Gewebe

3.2.2.1.2 Histologie an FFPE-Gewebe

3.2.2.2 Entparaffinierung von FFPE-Gewebeschnitten

Zur Verarbeitung von FFPE-Schnitten muss das Gewebe zunächst entparaffiniert werden. Hierfür wurden die Schnitte über Nacht bei 56 °C im Ofen inkubiert, um das Paraffin zu verflüssigen, bevor es durch drei Waschschritte für je 10 min mit Xylol gelöst wurde. Es schloss sich eine absteigende EtOH-Reihe an, um das Xylol zu entfernen und die Schnitte durch Rehydrierung auf nachfolgende Behandlungen vorzubereiten.
3.2.2.3 Färbungen von Gewebeschnitten

3.2.2.3.1 Hämatoxylin/Eosin-Färbung

3.2.2.3.2 Toluidinblau/Methylenblau-Färbung

Die Toluidinblau/Methylenblau-Färbung bietet einen sehr guten Kontrast, da Tumorzellen durch die vergrößerten Zellkerne dunkelblau und das Stroma schwach rosa angefärbt werden. Daher fand sie im Zuge dieser Studie Anwendung zur Vorbereitung von entparaffinierten FFPE-Schnitten sowie EtoH-fixierten und Kryoschnitten auf die Mikrodissektion. Vor der Isolation von genomischer DNA oder Gesamt-RNA aus Tumorzellen wurden die Schnitte zunächst rehydriert und anschließend für 30 sec in filtrierter Toluidinblau/Methylenblau-Lösung (1 % (w/v) Toluidinblau, 0,2 % (w/v) Methylenblau in dH₂O) gefärbt. Nach dem Auswaschen von Farbresten in H₂O wurden die Schnitte in 75% und 100%igem EtOH dehydriert. Für eine nachfolgende RNA-Isolation wurden alle Lösungen in DEPC-H₂O angesetzt. Die Gewebeschnitte wurden direkt zur Dissektion der Tumorzellen verwendet (siehe Kapitel 3.2.1.1.1 bzw. 0).
Material und Methoden

3.2.2.4 Manuelle Dissektion von Tumorgewebe

Mammakarzinome stellen eine heterogene Gruppe von Tumoren dar, die von Stroma, Bindegewebe und Lymphozyten durchzogen sein können. Dies führt bei der Isolation zu einer Verunreinigung der Tumor-DNA und –RNA. Zur Gewinnung hochreiner Tumor-DNA und –RNA mit einem Anteil von mindestens 70% Tumorzellen, wurden abhängig von der Homogenität der Tumorgewebschnitte, entweder ganze Tumorgewebschnitte verwendet oder mittels manueller Dissektion homogene Tumorrareale aus dem Gesamttumor gewonnen. Hierfür wurden Tumorrareale anhand von HE-gefärbten Gewebeschnitten lokalisiert und markiert. Weitere 10 μm dicke Gewebeschnitte wurden angefertigt (siehe Kapitel 3.2.2.1.1 bzw. 0) und entsprechend gefärbt (siehe Kapitel 3.2.2.3.1). Für die manuelle Dissektion wurden die Tumorzellen mit einer sterilen 27 G Injektionsnadel (Braun) unter einem inversen Lichtmikroskop (Hund Wetzlar) disseziert und in den jeweiligen Puffer für die DNA- bzw. für die RNA-Isolierung überführt (siehe Kapitel 0).

3.2.3 Proteinbiochemische Methoden

3.2.3.1 Herstellung von Ganzzellextrakten

Proteinlysate zur Analyse im Western Blot wurden aus Ganzzellextrakten gewonnen. Hierfür wurden ca. 2 x 10^6 adhäsente Zellen in 6 cm-Zellkulturschale ausgesät, so dass sie nach 24h >50 % konfluent waren. Die Zellen wurden mit 2 ml eiskaltem PBS gewaschen, in 1 ml mittels Zellschaber vom Boden des Gefäßes abgelöst und bei 750 x g für 3 min pelletiert. Das Pellet wurde in einem angemessenen Volumen 1x RIPA-Lysepuffer incl. Protease- und Phosphataseinhibitoren (150-200 µl) für 30 min auf Eis aufgeschlossen. Im Lysat enthaltene genomische DNA wurde per Sonifizierung mit einem Ultraschallprozessor bei einem Zyklus von 1 und einer Amplitude von 80-100 % für 10 Sekunden degradiert. Mit 10 µl Lysat wurde eine Proteinbestimmung durchgeführt (siehe Abschnitt 3.2.3.2) und der Rest des Lysates mit 1:4 mit 4x Laemmli Probenpuffer versetzt. Die Proben wurden bis zur weiteren Verwendung bei -20°C gelagert.

<table>
<thead>
<tr>
<th>2% SDS-Lysepuffer</th>
<th>2% (v/v)</th>
<th>SDS (20%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>63mM Tris/HCl (1M, pH 6,8)</td>
<td>10% (v/v)</td>
<td>Glycerin auf 100 ml mit H₂O</td>
</tr>
<tr>
<td>10% (v/v) Protease-Inhibitoren</td>
<td>10% (v/v) Phosphatase-Inhibitoren</td>
<td>(Haltbar für max. 1 Woche bei 4°C)</td>
</tr>
</tbody>
</table>

direkt vor der Verwendungzugeben: 1mM 100mM PMSF
3.2.3.2 **Bestimmung der Proteinkonzentration von Zellextrakten (DC-Assay)**

| 4x Laemmli-Probenpuffer | 0,4% w/v Bromphenolblau | 4% v/v SDS (20%) | 40% v/v Glycerin | 250mM Tris/HCL (1M, pH 6,8) |

3.2.3.3 **Proteinanalyse von Zelllysaten mittels Western-Blot-Analyse**

3.2.3.3.1 **SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)**

Die Proteingemische aus den Zelllysaten wurden durch SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE) mit einem diskontinuierlichen Puffersystem über ein Sammelgel oberhalb des Trenngels in einem elektrischen Feld gebündelt und anschließend ihrer Größe nach aufgetrennt, um ihre Detektion im Immunblot zu ermöglichen. Voraussetzung hierfür ist die Denaturierung der Proteine mittels Sodiumdodecylsulfat (SDS) und kochen für 5 min bei 95 °C. Das SDS versieht gleichzeitig durch Anlagerung an hydrophobe und kationische Seitengruppen alle Proteine mit einer gleichstarken negativen Überschussladung, wodurch kleine Ladungsunterschiede unterschiedlicher Proteine vernachlässigbar werden. Das auspolymerisierte Trenngel wurde mit einem Sammelgel überschichtet. Nachdem auch dieses ausgehärtet war, wurden 50 µg Proteinlysat eingesetzt und zur Gewährleistung einer gleichmäßigen Auftrennung aller Proben wurden leere Taschen des Gels mit Probenpuffer beladen. Als Größenstandard wurden 3 µl Page Ruler™ Plus (Thermo Scientific) aufgetragen. Die Gelelektrophorese wurde in Minigelkammern Model SE250 der Firma Hoefer bei einer Stromstärke 25 mA/Gel für 1 h durchgeführt. Die Analyse der Elektrophorese erfolgte anschließend durch Immunoblot (siehe Abschnitte 3.2.3.3.2, 3.2.3.3.3).
Material und Methoden

<table>
<thead>
<tr>
<th>Trenngel</th>
<th>8 bzw. 10%</th>
<th>Acrylamid/Bisacrylamid (37,5:1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400mM</td>
<td>Tris/HCl (pH 8,8)</td>
</tr>
<tr>
<td></td>
<td>0,05%</td>
<td>SDS</td>
</tr>
<tr>
<td></td>
<td>0,05%</td>
<td>Ammoniumpersulfat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sammelgel</th>
<th>5%</th>
<th>Acrylamid/Bisacrylamid (37,5:1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400mM</td>
<td>Tris/HCl (pH 8,8)</td>
</tr>
<tr>
<td></td>
<td>0,05%</td>
<td>SDS</td>
</tr>
<tr>
<td></td>
<td>0,05%</td>
<td>Ammoniumpersulfat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laemmli-Laufpuffer</th>
<th>192mM</th>
<th>Glycin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,1%</td>
<td>v/v</td>
</tr>
<tr>
<td></td>
<td>25mM</td>
<td>Tris/HCL (pH 8,5)</td>
</tr>
</tbody>
</table>

3.2.3.3.2 Semi-Dry-Transfer aufgetrennter Proteine auf eine Trägermembran

<table>
<thead>
<tr>
<th>Transferpuffer</th>
<th>48 mM Tris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>39 mM Glycin</td>
</tr>
<tr>
<td></td>
<td>0,04 % v/v 20% SDS</td>
</tr>
<tr>
<td></td>
<td>20 % v/v Methanol</td>
</tr>
</tbody>
</table>

3.2.3.3.3 Western-Blot-Analyse

Der Nachweis einzelner auf einer Membran immobilisierter Proteine ist mit spezifischen gegen Epitope des zu untersuchenden Proteins gerichteten Primärantikörpern (pAK) in einer Immunoblot-Analyse (Western Blot) möglich. Die Visualisierung des Signals des pAKs erfolgt mit einem gegen diesen gerichteten Sekundärantikörper (sAK, DAKO), an dessen FC-Teil eine Meerrettichperoxidase (HRP) konjugiert wurde. Der Nachweise der Protein geschieht durch Inkubation in einer Luminol enthaltenden Lösung (enhanced chemoluminescence, ECL). Durch die HRP wird Luminol chemilumineszient umgesetzt und das Signal belichtet die entsprechenden Regionen eines Röntgenfilms (FUJIFILM). Die unspezifischen Bindestellen wurden durch Inkubation der Membran mit einer 5 %-igen Blockierlösung aus Milchpulver (MP) in TBS-T für 1 h bei RT blockiert. Der pAK wurde dann in einer für jeden Antikörper individuellen Verdünnung in entweder 5% BSA oder 5% MP in TBS-T über Nacht bei 4 °C
an das zu analysierende Protein gebunden. Die Membran wurde anschließend dreimal für 5 min in TBS-T gewaschen und dann mit dem sAK (1:2.000 in Blockierungslösung) für 1 h bei RT inkubiert. Nach erneutem dreimaligen Waschen in TBS-T wurde die Membran mit frisch angesetzter ECL-Lösung für 2 min inkubiert und vorhandene Signale durch Auflegen eines Röntgenfilms detektiert. Der Film wurde im Film-Entwickler Model Hyperprocessor (Amersham) für je 1 min zunächst in Entwicklerlösung, dann in Fixierer (Agfa) und zuletzt in Wasser geschwenkt, bevor er getrocknet wurde. Zur Auswertung der Signale wurde der Film mit dem Epson 1680 (Epson) eingescannt und die Intensität der Signale mit der ImageJ Software semiquantitativ bestimmt.

3.2.3.4 Immuno histochemische Färbung auf Patientenmaterial

Die Proteinlevels von EGFR und PTEN von 29 BCBM, 14 BCOM und 43 Primärtumorproben wurden mittels Immunhistochemie (IHC) bewertet. Der HER2-Status von 11 BCOM wurde ebenfalls immunhistochemisch bestimmt.

Die HER2-Proteinlevels wurden über den Dako HercepTest (Dako) nach dem Herstellerprotokoll nachgewiesen, welches ebenfalls bereits im Institut etabliert war.

3.2.3.4.1 Auswertung der IHC-Analysen

Die EGFR-Membranfärbung und die cytoplastmatische PTEN-Färbung wurden nach folgenden Kriterien interpretiert: negativ (0), schwache (1+), moderate (2+) oder starke Färbung (3+). In den endgültigen statistischen Analysen wurden die Proteinlevels als entweder negativ (0) oder positiv (1+, 2+, 3+) definiert.115 Die HER2-Membranfärbung wurde als negativ (0), schwach (1+), moderate (2+) oder stark (3+) nach Wolff et al. 2007 klassifiziert.191 Fälle mit negativer oder starker Färbung wurden als negativ bzw. positiv definiert. Alle Fälle mit einem Immunoscore von 1+ und 2+ wurden über eine FISH-Analyse (siehe Kapitel 0) verifiziert.
3.2.4 Zellbiologische Methoden

3.2.4.1 Kultivierung eukaryotischer Zellen

Die Kultivierung aller Zelllinien erfolgte in sterilen Kulturflaschen in Hera150-Brutschränken (Kendro) bei 37 °C in wassergesättigter Atmosphäre mit 10 % CO₂ (in Kulturmedium 1, 4 und 5) bzw. 5 % CO₂ (in Kulturmedium 2 und 3). Die Zelllinien wurden abhängig von der Zellteilungsrate ein- bzw. zweimal wöchentlich unter sterilen Bedingungen bei einer Konfluenz von ca. 80% passagiert. Die adhärent wachsenden Zellen wurden durch Trypsin/EDTA-Lösung (0,05% / 0,02%) von der Kulturschale abgelöst. Da BSA die Effizienz des Trypsinverdaus vermindert, wurde im Medium enthaltenes BSA zuvor durch waschen der Zellen mit 37 °C-warmem PBS entfernt. Der Ablösevorgang wurde mit 2 Vol auf 37 °C vorgewärmtes Vollmedium gestoppt und die resuspendierten Zellen in einer Dichte von 20-30 % ausgesät.

3.2.4.2 Herstellung und Rekultivierung von kryokonservierten Zellen

Aktivierung von Gliazellen

Herstellung konditionierter Zellkulturüberstände

Es ist bekannt, dass sowohl Mikroglia als auch Astrozyten auf die Anwesenheit von Tumorzellen im Gehirnparenchym reagieren. Um den Effekt der durch Gliazellen sezernierten Zytokine auf das Proliferationsverhalten von Tumorzellen im Zellkulturmodell zu analysieren, sollten die Tumorzellen in durch aktivierte Gliazellen konditioniertem Kulturmedium kultiviert werden. Primäre humane Astrozyten sowie Zellen der humanen immortalisierten Mikroglia-Zelllinie CHME3 wurden wie in Abschnitt 3.2.4.3 beschrieben stimuliert. Die Kulturüberstände wurden anschließend quantitativ abgenommen und Zelltrümmer sowie mögliche bakterielle oder virale Verunreinigungen über filtrieren durch einen 0,2 µm-Filter entfernt. Die konditionierten Überstände wurden entweder direkt zur Kultivierung von Tumorzellen verwendet oder bei -20 °C gelagert.

Herstellung chemisch kompetenter Bakterien

Damit E. coli Zellen während der Transformation mit Plasmid-DNA in der Lage sind Fremd-DNA aufzunehmen, müssen die Bakterien zunächst kompetent gemacht werden. Hier wurde die Methode der chemischen Kompetenz gewählt. Es wurden 5 ml LB-Medium ohne Antibiotikazusatz mit einer Kolonie von E. coli des Stammes DH5α inokuliert und bei 37 °C über Nacht (max. 16 h) bei 200 rpm kultiviert. Am nächsten Tag wurden 50 ml LB-Medium mit 500 µl der Übernachtkultur angeimpft und bei
37 °C und 200 rpm bis zu einer OD₅₅₀ von 0,4-0,6 kultiviert. Die Bakterienkultur wurde dann für 45 min auf Eis gelagert und bei 4 °C mit 3000 x g für 15 min pelletiert. Der Überstand wurde quantitativ abgenommen, das Pellet in 17 ml einer Kalium-/Calciumchlorid-Lösung (KCl/CaCl₂-Lösung) resuspendiert und für weitere 40 min auf Eis gelagert. Nach erneuter Sedimentierung wurde das Pellet in 4 ml der (KCl/CaCl₂-Lösung) resuspendiert und die Bakterienuspension zu je 100 µl in auf Trockeneis stehende Reaktionsgefäße aliquotiert. Die kompetenten Zellen wurden bis zur Verwendung bei -80 °C gelagert.

<table>
<thead>
<tr>
<th>KCl/CaCl₂-Lösung (pH 6,4)</th>
<th>100 mM KCl</th>
<th>50 mM CaCl₂·2H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 % v/v Glycerol</td>
<td></td>
<td>10 mM Kaliumacetat</td>
</tr>
<tr>
<td></td>
<td>sofort verwenden</td>
<td></td>
</tr>
</tbody>
</table>

Mycoplasmen-Kontaminationstest

Zellzählung mit Neubauer-Zählkammer

Herstellung lentiviraler Zellkulturüberstände

Für die Herstellung lentiviraler Zellkulturüberstände muss zunächst Plasmid-DNA in eukaryotische Zellen eingeführt werden. Dies wurde hier über Lipofektion mit dem Reagenz TurboFect (Fermentas) vermittelt. Die Transfektion wurde nach Herstellerangaben in OptiMEM-Zellkulturmedium durchgeführt. Am Tag vor der Transfektion wurden ca. 4 x 10⁵ bzw. 1,5 x 10⁶ HEK293T Produzentenzellen in 25cm²- oder 75cm²-Zellkulturflaschen ausgesät. Bei ca. 50 % Konfluenz erfolgte die Transfektion mit einem Gemisch aus lentivalem Expressions-, Verpackungs- (psPAX2) und Hüllplasmid (pMD2.G) in
einem Verhältnis von 4:3:1. Als Überexpressionskonstrukt wurde LeGO-iG2/PTEN oder pZspuro++tTRKRAB_PTEN verwendet. LeGO-iG2 und pZspuro++tTRKRAB_leer dienten als Negativkontrollen. Die Plasmide LeGO-G/Puro+_shPTEN1 und LeGO-G/Puro+_shPTEN2 fungierten als Knockdownkonstrukte mit LeGO-G/Puro+_NTC als Kontrollvektor (siehe Abschnitt 9.4 im Anhang). Nach 16 h erfolgte ein Mediumwechsel mit frischem Zellkulturmedium 1. Nach weiteren 48 h wurde das Kulturmäum abgenommen, Zelltrümmer über Filtrieren durch einen Nitrozellulosefilter (Millipore) mit einer Porengröße von 0,45 μm entfernt und der so gewonnene virale Überstand entweder umgehend zur Infektion von Zielzellen (siehe Abschnitt 3.2.4.8) verwendet oder für eine spätere Verwendung zu je 500 µl aliquotiert, direkt auf Trockeneis transferiert und bei -80°C gelagert.

3.2.4.9 Bestimmung des Virentiters

\[T = N \times P ÷ V \]

Zur Bestimmung des Titers wurde die Verdünnung eingesetzt, welche zu einem Anteil transduzierter Zellen zwischen 5-20 % resultiert. Höhere Transduktionsraten führen zu multiplen Integrationen, welche eine Fehlinterpretation des Titers zur Folge haben.

3.2.4.10 Gentransfer mittels RNA-Interferenz
Am Tag vor der Infektion wurden die Zielzellen (MDA-MB-231 BR oder MCF-10A) in 75cm²-Zellkulturflaschen so ausgesät, dass die Konfluenz der Zellen am Tag der Infektion zwischen 50-70 % betrug. Die Zellen wurden einmal mit PBS gewaschen und zur Infektion wurde 1/10 Vol Virusüber-
Material und Methoden

stand (siehe Abschnitt 3.2.4.8) auf frisches Zellkulturmedium 1 oder 3 mit 4 µg/ml Hexadimetrinbromid (Polybrene) getropft. MDA-MB-231 BR Zellen wurden mit Überexpressions- und den entsprechenden Kontrollkonstrukten infiziert. In MCF-10A Zellen wurde ein PTEN-Knockdown eingeführt. Die Zellen wurden 24 h bei 37 °C unter 10 % CO₂ im Brutschrank inkubiert. Nach einem Waschschritt mit PBS wurde in den Knockdownzellen die Puromycin-Selektion gestartet. In den Überexpressionszellen wurde zunächst (wie in Abschnitt 3.2.4.9 beschrieben) die Expression über Doxycyclin-Gabe induziert, bevor nach 72 h ebenfalls nicht-infizierte Zellen über die Puromycin-Resistenz der infizierten Zellen negativ selektiert wurden. Hierbei wurde für MDA-MB-231 BR Zellen Zellkulturmedium 1 mit 1 µg/ml und für MCF-10A Zellen Zellkulturmedium 3 mit 4 µg/ml Puromycin verwendet (Selektionsmedium). Nach 72h wurde das Selektionsmedium mit frischem Zellkulturmedium 1 bzw. 3 ersetzt (Kulturmedium) und die Zellen für anschließende Assays in entsprechender Dichte ausgesät.

3.2.4.11 Proliferations-Assay (MTT-Assay)

Material und Methoden

\[
Ratio_{2/1} = \frac{\text{Mittelwert}_{E540} (48 \text{ h})}{\text{Mittelwert}_{E540} (24 \text{ h})}
\]

\[
Ratio_{3/1} = \frac{\text{Mittelwert}_{E540} (72 \text{ h})}{\text{Mittelwert}_{E540} (24 \text{ h})}
\]

Zusätzlich wurden die Verhältnisse von Tag 1 zu Tag 3 aus MDA-MB-231 BR/basal mit denen aus MDA-MB-231 BR/PTEN bzw. jene Verhältnisse der Kultivierung in frischem mit denen jener in konditioniertem Kulturmedium in Bezug gesetzt.

\[
\Delta PTEN = Ratio_{3/1} (\text{basal}) - Ratio_{3/1} (\text{PTEN})
\]

\[
\Delta Medium = Ratio_{3/1} (\text{konditioniert}) - Ratio_{3/1} (\text{frisch})
\]

| MTT-Lösung | 5mg/ml | Tetrazoliumbromid in PBS
| | | steril filtrieren zu je 500µl aliquotieren und bei -20°C lagern

| MTT-Lysepuffer | 4mM | HCl in Isopropanol
| | 0,4% | Lagerung bei RT

3.2.4.12 Zell-Migrations-Assay (Transwell-Assay)

Material und Methoden

ΔPTEN = \frac{\text{Mittelwert (basal)}}{\text{Mittelwert (PTEN)}}

ΔMedium = \frac{\text{Mittelwert (konditioniert)}}{\text{Mittelwert (frisch)}}

3.2.5 Informatische und bioinformatische Methoden

3.2.5.1 Statistik

Ergebnisse

4.1 Untersuchung des EGFR-HER2-Signalwegs an Gewebe von primären Mammakarzinompatientinnen und Mammakarzinompatientinnen mit Gehirnmetastasen

4.1.1 Der EGFR-Status

4.1.1.1 Ermittlung der EGFR-Kopienanzahl

Im Zuge dieser Analyse wurde die EGFR-Kopienanzahl in Tumorgewebe von insgesamt 29 BCBM, sechs BCOM, 60 Primärtumorpatientinnen und sechs DCIS-Arealen bestimmt. In dem untersuchten Patientenkollektiv wurden diploid vorliegendes EGFR sowie EGFR-Zugewinne wie auch -Amplifikationen detektiert. In Abb. 4.1 ist beispielhaft eine FISH-Analyse von diploiden Tumorzellen mit einer normalen (diploiden) EGFR-Kopienanzahl (Abb. 4.1A) illustriert. Des Weiteren sind Tumorzellen (CEP7) mit einem Zugewinn von EGFR (vier Signale, Abb. 4.1B) bzw. einer EGFR-Amplifikation dargestellt (sieben Signale, Abb. 4.1B, C).
Die verschiedenen Varianten der EGFR-Kopienzahl stellen sich in einer qPCR-Analyse wie folgt dar (siehe Abb. 4.2). Die Signalintensität einer Probe mit diploid vorliegendem EGFR (DNA isoliert aus Blut gesunder Probanden) diente als Referenz und überschreitet im Beispiel die Intensität der Hintergrundsignale bei Zyklus 26 (Ct). Im Vergleich hierzu wurde das Signal einer Probe mit moderater bzw. hochgradiger Amplifikation bei Ct 22,5 bzw. Ct 20 detektiert. Da sich bei jedem Zyklus der PCR-Reaktion das amplifizierte Produkt verdoppelt, liegt somit in der Probe mit moderater Amplifikation ein 6-faches und bei der Probe mit hochgradiger Amplifikation ein 32-faches der EGFR-Kopienzahl vor. In den durchgeführten Analysen wurde dieses Verhältnis mit dem Ct-Wert des Kontrollabschnittes (Chr2) verrechnet. Die Berechnung eines Verhältnisses des EGFR-Kopienstatus zum jeweiligen Kontrollabschnitt (EGFR-Ratio) ist in Abschnitt 3.2.1.7.1 und 3.2.1.14.2 ausführlich beschrieben.

Eine EGFR-Amplifikation (Ratio > 5) wurde in vier Proben von BCBM-Gewebe (14 %) und in drei Primärtumorproben (5 %) identifiziert (Abb. 4.3 A). Von Letzteren wiesen zwei Patientinnen (22 %) BCBM auf (Abb. 4.3 B). Dagegen wurde bei keiner der Patientinnen mit BCOM und keiner der Primärtumorpatientinnen ohne Metastasen oder mit Knochenmetastasen eine Genamplifikation detektiert. Es konnten keine signifikanten Unterschiede zwischen den untersuchten Subgruppen von Patientinnen bezüglich einer EGFR-Amplifikation ermittelt werden. Zugewinne der EGFR-Kopienzahl (Ratio zwischen 2-5) trugen elf BCBM-Patientinnen (38 %) (Abb. 4.3 C, D). Die Hälfte der BCOM-Kohorte sowie zehn Primärtumorproben (17 %), davon knapp ein Drittel der Primärtumorpatientinnen mit Knochenmetastasen, wiesen ebenfalls einen Zugewinn von EGFR-Kopien auf (Abb. 4.3 D). Des Weiteren wurden Zugewinne in jeweils fünf Primärtumorproben ohne Metastasen (22 %) und Primärtumorproben mit BCOM gefunden (17 %). Somit trat ein Zugewinn der EGFR-Kopienzahl in BCBM-Patientinnen signifikant häufiger auf als in Primärtumorpatientinnen, im Speziellen in solchen mit BCOM (beides p < 0,05). Alle untersuchten DCIS-Areale wiesen eine normale (diploide) EGFR-Kopienzahl auf (siehe Abb. 4.5 sowie Tabelle 9.2 im Anhang).
Abb. 4.2: qPCR-Analyse an genomischer DNA von Tumorgewebe. Die logarithmierte Fluoreszenzintensität der Signale der EGFR-spezifischen PCR-Produkte (*Fluorescence*) wurde dem Zyklus der PCR-Reaktion (*Cycle*) gegenübergestellt. Da die Menge an PCR-Produkt direkt proportional zur Fluoreszenzintensität ist, kann über den Zeitpunkt (Zyklus), an dem die Signalintensität das Hintergrundrauschen (horizontale Linie) überschreitet, auf die eingesetzte DNA-Menge rückgeschlossen werden. Dargestellt sind eine Probe mit diploiden *EGFR* (Zyklus 26), mit *EGFR*-Zugewinn (22,5) und mit EGFR-Amplifikation (Zyklus 20) sowie eine Negativkontrolle ohne DNA (Signale rechts im Bild, die nicht die Markierung überschreiten).

Nachfolgend wurden sowohl ein Zugewinn als auch eine Amplifikation als veränderter Status der *EGFR*-Kopienanzahl gewertet (Abb. 4.4). Zusammengenommen wies etwa die Hälfte der BCBM- und BCOM-Patientinnen (52 % und 50 %) einen veränderten *EGFR*-Kopienstatus auf, verglichen mit 22 % der Primärtumorpatientinnen (Abb. 4.4 A). Aus der Kohorte der Primärtumorpatientinnen trugen je 22 % der nicht-metastasierten Fälle und der BCBM-Patientinnen sowie 20 % der Fälle mit nachfolgend entwickelten BCOM – hiervon 29 % der Patientinnen mit späteren Knochenmetastasen – eine veränderte *EGFR*-Kopienzahl (Abb. 4.4 B). Ein statistisch signifikanter Unterschied der *EGFR*-Kopienanzahl wurde zwischen BCBM- und Primärtumorpatientinnen beobachtet, der besonders die Patientinnen ohne Metastasen bzw. mit BCOM betraf (alle $p \leq 0,05$).

4.1.1.2 **EGFR-Mutationsanalyse**

In Bronchialkarzinomen treten häufig Punktmutationen in der TKD auf, die zu einer konstitutiven Aktivierung des Rezeptors führen \(^{122}\). Sie befinden sich hauptsächlich in Abschnitten auf Exon 19 und Exon 21, die für die Nukleotidbindeschleife die Aktivierungsschleife kodieren. Da Anhäufungen von Mutationen in der TKD auch im primären Mammakarzinom beschrieben sind (Abb. 4.6), über ihr Auftreten in BCBM jedoch Unklarheit herrscht, lag ein Fokus dieser Arbeit auf der Analyse dieser Region an BCBM-Proben.

![Abb. 4.6: Histogramm von EGFR-Mutationen im primären Mammakarzinom.](image)

Im oberen Bereich ist auf der y-Achse die Anzahl belegter Fälle mit Punktmutationen (Substitutions) im Mammakarzinom gegen deren Position in der EGFR-Proteinsequenz illustriert. Darunter ist die Lokalisation der einzelnen Domänen in der Proteinsequenz abgebildet (Pfam). Grün: Ligandenbinde-Domänen (Recep L domain), rot: Cystein-reiche Domäne I (Furin-like), blau: Cystein-reiche Domäne I (EGF recep IV), gelb: Tyrosinkinasedomäne (Pkinase Tyr). Ferner ist die Anzahl der Fälle komplexen Mutationen und deren Lokalisation (Complex) sowie die Lokalisation belegter Insertionen (blau) und Deletionen (rot) (Ins/del) dargestellt. Die Daten wurden aus der COSMIC Datenbank entnommen und veranschaulichen die Anhäufung von Mutationen in der Tyrosinkinasedomäne.\(^{164}\)

Eine großflächige Deletion ist häufig bei GBM-Patienten zu finden und wird als EGFRvIII-Transkript bezeichnet. Die Deletion schließt die Exone 2-7 mit ein (p.del6-273), was zum Verlust eines Teils der extrazellulären Domäne (vollständige Ligandenbindedomäne 1 und Großteil der Cystein-reichen Domäne 1) führt \(^{199}\). Das Auftreten des EGFRvIII-Transkripts wurde auch in Mammakarzinompatientinnen nachgewiesen \(^{116}\). Nach der Seed-and-Soil-Hypothese legen diese beiden Fakten nahe, dass das Vorhandensein dieser Mutation den Tumorzellen einen Selektionsvorteil in der Mikroumgebung des Gehirns verschafft. Daher wurde in dieser Studie die BCBM-Kohorte mittels PCR an cDNA auf die Deletion des mRNA-Abschnittes von Exon 2-8 (EGFRvIII-Transkript) untersucht.
Die EGFR TKD wurde aus cDNA-Proben durch eine PCR-Reaktion über Oligonukleotide in den Exonen 17 und 22 amplifiziert und anschließend mittels Sanger-Sequenzierung auf Mutationen untersucht. Auf diese Weise wurden Proben von 17 BCBM-Patientinnen analysiert (siehe Tabelle 4.1). Nur eine der analysierten Proben wies eine stille Mutation (c.2508C>T) in Kombination mit einem bereits dokumentierten Einzelnukleotidpolymorphismus (SNP) auf (c.2361G>A, Abb. 4.7 A), wohingegen alle verbleibenden Patientinnen nur einen c.2361G>A SNP trugen (siehe Abb. 4.7 B). Da ein SNP eine häufig in der Bevölkerung auftretende Keimbahnvariante in einem Gen dargestellt, die nicht mit einer Erkrankung assoziiert ist, und die detektierte Mutation nicht zu einem Aminosäureaustausch führt, wurden betroffene Patientinnen als nicht-mutiert eingestuft.

<table>
<thead>
<tr>
<th>Patientin</th>
<th>EGFR-Mutationen</th>
<th>mRNA</th>
<th>Protein</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCBM-02</td>
<td>c.2361G>A</td>
<td>p.Q787Q</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>BCBM-04</td>
<td>c.2361G>A</td>
<td>p.Q787Q</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>BCBM-05</td>
<td>c.2361G>A</td>
<td>p.Q787Q</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>BCBM-06</td>
<td>c.2361G>A</td>
<td>p.Q787Q</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>BCBM-08</td>
<td>c.2361G>A</td>
<td>p.Q787Q</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>BCBM-17</td>
<td>c.2361G>A</td>
<td>p.Q787Q</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>BCBM-18</td>
<td>c.2361G>A</td>
<td>p.Q787Q</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>BCBM-21</td>
<td>c.2361G>A</td>
<td>p.Q787Q</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>BCBM-22</td>
<td>c.2361G>A</td>
<td>p.Q787Q</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>BCBM-23</td>
<td>c.[2361G>A, 2508C>T]</td>
<td>p.[Q787Q, R836R]</td>
<td>SNP, stille Mutation</td>
<td></td>
</tr>
<tr>
<td>BCBM-24</td>
<td>c.2361G>A</td>
<td>p.Q787Q</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>BCBM-26</td>
<td>c.2361G>A</td>
<td>p.Q787Q</td>
<td>SNP</td>
<td></td>
</tr>
</tbody>
</table>

Ergebnisse

Zusammenfassend kann davon ausgegangen werden, dass Mutationen in der TKD und die Deletionsvariante EGFRvIII in BCBM eine untergeordnete Rolle spielen.
4.1.1.3 Analyse des EGFR-Proteinlevels

EGFR-Proteinspiegel konnte in 28 BCBM-, 13 BCOM- und 39 Primärtumorproben ermittelt werden. Eine Membranfärbung wurde in zehn BCBM- (36%), einer BCOM (8%) und vier Primärtumorpatientinnen (10%) detektiert (Abb. 4.10 A). Je zwei der untersuchten Primärtumorproben mit BCBM (25%) bzw. mit BCOM (10%) wiesen messbare EGFR-Proteinspiegel auf (Abb. 4.10 B). Ein statistisch signifikanter Unterschied wurde zwischen den EGFR-Proteinspiegel der BCBM-Proben und Primärtumorproben, besonders jener ohne Metastasen oder BCOM, nachgewiesen (beide p ≤ 0,05).

Alle drei verfügbaren korrespondierenden Primärtumor- und BCBM-Proben zeigten übereinstimmende Proteinspiegel (siehe Abb. 4.11). In Proben von zwei Patientinnen waren keine detektierbaren EGFR-Proteinspiegel nachweisbar. Unter ihnen war auch der Fall mit abweichendem EGFR-Zugewinn im korrespondierenden BCBM-Gewebe. Dagegen war das Tumorgewebe einer Patientin EGFR-positiv.

4.1.1.4 Korrelation der EGFR-Kopienanzahl mit dem EGFR-Proteinspiegel

Abb. 4.12: Vergleich der EGFR-Kopienanzahl und der Proteinspiegel in allen untersuchten Proben. Dargestellt ist die Kopienanzahl (linke y-Achse) gegen die Proteinspiegel derselben Proben (rechte y-Achse) in allen untersuchten Proben, für die Resultate beider Analysen verfügbar waren (n = 47). Linke y-Achse: Proben mit diploider vorliegendem EGFR, einem EGFR-Zugewinn und einer -Amplifikation sind mit einem Wert von 2, 4 bzw. 5 illustriert. Rechte y-Achse: Nicht detekierbare Proteinspiegel sind als Wert von 0 und schwache, moderate oder hohe Proteinspiegel als Werte von 1, 2 oder 3 dargestellt. Diploides EGFR wurde mit nicht-detekterbaren Proteinspiegel gleichgestellt. Dasselbe gilt für einen Zugewinn und moderate Proteinspiegel. Daher wurden die entsprechenden Werte auf denselben Höhen der jeweiligen Achsen angeordnet. Patientinnen mit diploider EGFR-Kopienanzahl und EGFR-negativem Tumorgewebe (n = 44) bzw. hohen EGFR-Proteinspiegel (n = 2), mit EGFR-Zugewinn und EGFR-negativem Tumorgewebe (n = 13) bzw. moderaten oder hohen Proteinspiegel (n = 2 bzw n = 4) sowie mit EGFR-Amplifikation und schwachen Proteinspiegel (n = 1) bzw. hohen Proteinspiegel (n = 6).

Somit kann summiert werden, dass sich Analysen der Kopienanzahl und des Proteinspiegels generell gut ergänzen, jedoch ein Zugewinn der EGFR-Kopienanzahl (auch innerhalb des Tumorgewebes einer Patientin) zu variablen Proteinspiegeln und somit verfälschten Werten der qPCR-Analyse führt.

Abb. 4.13: Darstellung der FISH- und der IHC-Analyse einer BCBM-Patientin mit heterogenen EGFR-Proteinspiegeln. FISH-Analyse eines Tumorareals mit EGFR-Zugewinn (A) bzw. mit einer -Amplifikation (B) sowie diploidem Zentromer 7 (CEP7). Die Signale der EGFR-Sonde sind in rot und die des CEP7 in grün dargestellt. Der Vergrößerungsfaktor ist 1000x. Die IHC-Analyse derselben Tumorareale zeigt entsprechende schwache (C) bzw. starke EGFR-Membranfärbung. Verändert nach Hohensee et al. 198
4.1.1.5 Kombinierter EGFR-Status

Etwa ein Drittel (35 %) der BCBM-Patientinnen wies einen veränderten EGFR-Status auf. Dies war dagegen bei nur 7 % der BCOM- und Primärtumorpatientinnen der Fall. Unter den Primärtumorpatientinnen ohne Rezidivbildung (0 %) oder mit BCOM (7 %), insbesondere unter jenen mit späteren Knochenmetastasen (0 %), war eine Veränderung des EGFR-Status signifikant seltener als unter den BCBM-Patientinnen (alle p < 0,05, siehe Abb. 4.14).

![Diagramm A](image1)

Wie sich schon in der Analyse der Proteinspiegel angedeutet hat, wurde auch im kombinierten Status nachgewiesen, dass Patientinnen mit verändertem EGFR signifikant häufiger unter den BCBM-Patientinnen und Primärtumorpatientinnen mit BCBM, jedoch nicht unter Primärtumorpatientinnen ohne Rezidive oder mit Knochenrezidiven zu finden sind. Dies unterstützt die These der gehirnspezifischen Metastasierung EGFR-alterierter, primärer Mammakarzinome.
4.1.1.6 **Korrelation des EGFR-Status mit klinischen Daten**

Der EGFR-Status von Primärtumor- und BCBM-Patientinnen wurde mit den klinischen Daten in Beziehung gesetzt. Für die Parameter Alter bei Primärtumor- bzw. bei Rezidivresektion, Tumor-, Lymphknoten- bzw. Metastasierungsstatus, Differenzierungsgrad und Tumortyp war keine Korrelation zu verändertem EGFR-Status nachweisbar. Der HR-Status sowie der Mammakarzinomsubtyp wiesen eine signifikante Korrelation zu EGFR-Alterationen auf. BCBM-Patientinnen mit verändertem EGFR-Status wurden in 86% der Gruppe mit triple-negativem Mammakarzinom (TNBC) detektiert, jedoch nur in 17% der HER2- sowie in 22% der HR-positiven Patientinnen (p < 0,01). Auch unter Primärtumorpatientinnen trat ein veränderter EGFR-Status hauptsächlich bei TNBC-Fällen (20%) auf, verglichen mit 0% der HER2- bzw. 3% der HR-positiven Patientinnen (p = 0,063) (siehe Tabelle 4.2).

Tabelle 4.2: Korrelation des kombinierten EGFR-Status mit Brustkrebssubtyp und Hormonstatus in primärem BC und BCBM. Dargestellt ist die Anzahl und der Prozentsatz (in Klammern) von Primärtumor- und BCBM-Patientinnen mit positivem (HR+) bzw. negativem (HR-) Hormonreptorstatus sowie mit HR+, HER2-positivem (HER2+) oder triple-negativem (HR- und HER2-negativ, TNBC) Brustkrebsstatus aus den Fällen mit Wildtyp (WT) bzw. verändertem-EGFR-Status. Die Signifikanz wurde in Form eines p-Wertes illustriert. p < 0,05 entspricht hierbei einem signifikanten und p < 0,01 einem hochsignifikanten Wert. Nicht signifikante Werte wurden als n.s. angegeben. Verändert nach Hohensee et al.198

<table>
<thead>
<tr>
<th></th>
<th>Hormonrezeptor</th>
<th></th>
<th>Subtyp</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>positiv</td>
<td>negativ</td>
<td>p-Wert</td>
<td>HR+</td>
</tr>
<tr>
<td>Primärtumoren</td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
<td>n (%)</td>
</tr>
<tr>
<td>EGFR WT</td>
<td>40 (97,6)</td>
<td>13 (81,3)</td>
<td>n.s.</td>
<td>31 (96,9)</td>
</tr>
<tr>
<td>mutiert</td>
<td>1 (2,4)</td>
<td>3 (18,7)</td>
<td></td>
<td>1 (3,1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9 (100,0)</td>
</tr>
<tr>
<td>Tumor</td>
<td>31 (96,9)</td>
<td>12 (80,0)</td>
<td>n.s.</td>
<td>7 (77,8)</td>
</tr>
<tr>
<td>Herzmetastasen</td>
<td></td>
<td></td>
<td></td>
<td>10 (83,3)</td>
</tr>
<tr>
<td>mutiert</td>
<td></td>
<td></td>
<td></td>
<td>1 (14,3)</td>
</tr>
<tr>
<td></td>
<td>2 (22,2)</td>
<td>6 (66,7)</td>
<td>< 0,05</td>
<td>2 (22,2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 (85,7)</td>
</tr>
<tr>
<td>TNBC</td>
<td>7 (77,8)</td>
<td>1 (14,3)</td>
<td>< 0,01</td>
<td>6 (85,7)</td>
</tr>
</tbody>
</table>

Die Überlebensanalyse der Primärtumorpatientinnen ergab eine signifikante Korrelation von verkürztem progressionsfreien Überleben (recurrence-free survival, RFS) mit einem erhöhten EGFR-Proteinspiegel, sowie mit Veränderungen der -Kopienanzahl und des -Status (alle p < 0,001). Auch die Gesamtüberlebenszeit (overall survival, OS) zeigte eine signifikante Assoziation mit dem EGFR-Proteinspiegel sowie dem kombinierten -Status (alle p < 0,001) (siehe Abb. 4.15).

Es kann somit geschlussfolgert werden, dass bereits ein Zugewinn der EGFR-Kopienanzahl zu einem verminderten progressionsfreiem Überleben führt und daher die Analyse der EGFR-Kopienanzahl unter Einbeziehung eines (moderaten) Zugewinns und nicht nur der Betrachtung einer hochgradigen Amplifikation möglicherweise Eingang in der Routinediagnostik finden sollte.
4.1.2 Der HER2-Status

4.1.2.1 Ermittlung des HER2-Status

Eine HER2-Überexpression tritt in etwa einem Viertel aller primären Mammakarzinomtumore auf \(^{126}\). Die Ursache hierfür liegt in den meisten Fällen in der Amplifikation des Chromosomenabschnittes, der den HER2-Lokus umgibt \(^{128}\). Die Bestimmung des HER2-Status ist mittlerweile Bestandteil der klinischen Routine zur Definition eines Mammakarzinomsubtyps. Sie erfolgt primär immunhistochemisch über die Ermittlung des HER2-Proteinspiegels und wird über FISH-Analysen verifiziert, wenn das Resultat der IHC-Analysen keine eindeutige Zuordnung zulässt \(^{193}\).

Abb. 4.16: FISH-Analysen von HER2. Dargestellt sind diploide Zellen mit diploid vorliegendem HER2 (A), einem Zugewinn (B) und hochgradig amplifiziertem HER2 (C) sowie Zellen mit einer Polysomy des Chromosoms 17 (D).
Der HER2-Status wurde in insgesamt 29 BCBM-, 11 BCOM- und 58 Primärtumorproben ermittelt, von denen 12 BCBM- (41 %), zwei BCOM- (18 %) und neun Primärtumorpatientinnen (16 %) als HER2-positiv eingestuft wurden. In der Primärtumorkohorte wurden HER2-Amplifikationen in drei der Patientinnen ohne Rezidiv, einer Patientin mit BCBM (beide 13 %) und in sechs Patientinnen mit BCOM (21 %) detektiert. Von Primärtumorpatientinnen mit Knochenmetastasen verfügten zwei über HER2-Amplifikationen (15 %). Diese Verteilung entspricht einer signifikant höheren Frequenz in BCBM- als in Primärtumproben, was besonders auf den Vergleich mit Primärtumoren ohne Rezidivbildung zutrifft (beides p < 0,05) (siehe Abb. 4.17).

Für diese Analyse des HER2-Status standen insgesamt 18 Paare von korrespondierendem Primärtumor- und BCBM-Gewebe zur Verfügung, an denen abgelesen werden konnte, ob der HER2-Status zwischen Primärtumor- und BCBM-Stadium variierte (Tabelle 4.3). Die Resultate der gepaarten Primärtumor- und BCBM-Gewebe waren zu 83 % identisch. Drei Patientinnen wiesen jedoch eine de novo auftretende HER2-Expression im BCBM-Gewebe auf (Abb. 4.18).

Tabelle 4.3: HER2-Status der analysierten BCBM-Proben und ihren gepaarten Primärtumorgewebe.

Der HER2-Status in Primärtumorgewebe (PT) und BCBM-Proben (BCBM) der jeweiligen Patientin wurde als normal (WT) oder amplifiziert (AMP) angegeben.

<table>
<thead>
<tr>
<th>Patientin</th>
<th>HER2-Status</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PT</td>
<td>BCBM</td>
</tr>
<tr>
<td>BCBM-01</td>
<td>WT</td>
<td>AMP</td>
</tr>
<tr>
<td>BCBM-02</td>
<td>AMP</td>
<td>AMP</td>
</tr>
<tr>
<td>BCBM-03</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-04</td>
<td>AMP</td>
<td>AMP</td>
</tr>
<tr>
<td>BCBM-07</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-08</td>
<td>AMP</td>
<td>AMP</td>
</tr>
<tr>
<td>BCBM-09</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-10</td>
<td>WT</td>
<td>AMP</td>
</tr>
<tr>
<td>BCBM-12</td>
<td>WT</td>
<td>AMP</td>
</tr>
<tr>
<td>BCBM-13</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-14</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-15</td>
<td>AMP</td>
<td>AMP</td>
</tr>
<tr>
<td>BCBM-16</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-18</td>
<td>AMP</td>
<td>AMP</td>
</tr>
<tr>
<td>BCBM-19</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-20</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-24</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-26</td>
<td>WT</td>
<td>WT</td>
</tr>
</tbody>
</table>

Abb. 4.18: HER2-Status der verfügbaren gepaarten BCBM- und Primärtumorproben.

Dargestellt ist der HER2-Status in Primärtumorpatientinnen (linke Y-Achse) gegen den Status ihrer gepaarten Metastasen (rechte Y-Achse). HER2-negative Fälle wurde als 0 und HER2-positive Fälle als 1 illustriert. Patientinnen mit HER2-negativem Primärtumor- und BCBM-Gewebe (n = 10), HER2-positivem Primärtumor- und BCBM-Gewebe (n = 5) bzw. HER2-positivem Primärtumor- und HER2-negativem BCBM-Gewebe (n = 3).

4.1.2.2 Korrelation des HER2-Status mit klinischen Daten

4.1.3 Der PTEN-Status

4.1.3.1 Analyse der allelischen Imbalanz des PTEN-Gens

Im Normalfall liegen für jedes Gen beim Menschen zwei Allele vor, die von beiden Elternteilen vererbt werden. Man spricht hierbei von Heterozygotie. Kommt es durch Deletion zum Verlust eines Allels, wird dies als allelische Imbalanz (AI) bezeichnet. AI des PTEN-Lokus auf dem Chromosomenabschnitt 10q23.3 ist ein häufig auftretendes Merkmal im Mammakarzinom und GBM160,162,163,203. Generell wird der Verlust eines Allels von dem gesunden Allel kompensiert, jedoch wurde belegt, dass bezüglich PTEN ein Dosiseffekt vorliegt204.

Die Mikrosatellitenanalyse der meisten Fälle wurde bereits vor Beginn dieser Studie durchgeführt189. Im Zuge dieser Studie wurde der AI-Status für die untersuchte Kohorte soweit als möglich komplettiert. Der AI-Status aus der Mikrosatellitenanalyse wurde mit dem bereits vor Beginn dieser Studie durch komparative genomische Hybridisierung (CGH) ermittelten Status des PTEN-Lokus zu einer PTEN-Genkopienanzahl abgeglichen. Die Resultate beider Analysen stimmten in 92 % aller untersuchten Fälle überein. In den beiden Fällen mit abweichenden Resultaten wurde die PTEN-Genkopienanzahl basierend auf der CGH-Analyse definiert.

<table>
<thead>
<tr>
<th>Patientin</th>
<th>Mikrosatelliten</th>
<th>CGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehirnmetastasen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCBM-01</td>
<td>AI</td>
<td>Verlust</td>
</tr>
<tr>
<td>BCBM-02</td>
<td>heterozygot</td>
<td>diploid</td>
</tr>
<tr>
<td>BCBM-03</td>
<td>heterozygot</td>
<td>Verlust</td>
</tr>
<tr>
<td>BCBM-04</td>
<td>AI</td>
<td>Verlust</td>
</tr>
<tr>
<td>BCBM-05</td>
<td>AI</td>
<td>Verlust</td>
</tr>
<tr>
<td>BCBM-06</td>
<td>AI</td>
<td>Verlust</td>
</tr>
<tr>
<td>BCBM-07</td>
<td>AI</td>
<td>Verlust</td>
</tr>
<tr>
<td>BCBM-21</td>
<td>AI</td>
<td>Verlust</td>
</tr>
<tr>
<td>Primärtumore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT-004</td>
<td>heterozygot</td>
<td>diploid</td>
</tr>
<tr>
<td>PT-005</td>
<td>AI</td>
<td>diploid</td>
</tr>
<tr>
<td>PT-007</td>
<td>heterozygot</td>
<td>diploid</td>
</tr>
<tr>
<td>PT-010</td>
<td>heterozygot</td>
<td>diploid</td>
</tr>
<tr>
<td>PT-013</td>
<td>AI</td>
<td>Verlust</td>
</tr>
<tr>
<td>PT-014</td>
<td>heterozygot</td>
<td>diploid</td>
</tr>
<tr>
<td>PT-015</td>
<td>heterozygot</td>
<td>diploid</td>
</tr>
<tr>
<td>PT-016</td>
<td>heterozygot</td>
<td>diploid</td>
</tr>
<tr>
<td>PT-017</td>
<td>heterozygot</td>
<td>diploid</td>
</tr>
<tr>
<td>PT-018</td>
<td>AI</td>
<td>Verlust</td>
</tr>
<tr>
<td>PT-019</td>
<td>heterozygot</td>
<td>diploid</td>
</tr>
<tr>
<td>PT-020</td>
<td>heterozygot</td>
<td>diploid</td>
</tr>
<tr>
<td>PT-021</td>
<td>heterozygot</td>
<td>diploid</td>
</tr>
<tr>
<td>PT-022</td>
<td>heterozygot</td>
<td>Verlust</td>
</tr>
<tr>
<td>PT-023</td>
<td>AI</td>
<td>diploid</td>
</tr>
<tr>
<td>PT-024</td>
<td>AI</td>
<td>diploid</td>
</tr>
<tr>
<td>PT-036</td>
<td>AI</td>
<td>diploid</td>
</tr>
</tbody>
</table>

Die PTEN-Kopienanzahl wurde 21 BCBM- und 5 BCOM-Patientinnen sowie 50 Primärtumorpatientinnen, bestimmt. Zwölf Patientinnen aus der BCBM-Kohorte (57%), vier der BCOM- (80 %) und elf Primärtumorpatientinnen (22 %) wiesen einen PTEN-Verlust auf. Dagegen wurde ein Verlust in drei der Primärtumorpatientinnen ohne Fernmetastasen (15 %) und vier Patientinnen mit BCOM (17 %) nachgewiesen – davon zwei Patientinnen mit Knochenmetastasen (15 %). In fünf Primärtumorpatientinnen mit BCBM (63 %) lag ebenfalls eine AI vor. Diese Verteilung legt einen signifikant höheren Anteil von BCBM-Patientinnen mit PTEN-Verlust im Vergleich zu Patientinnen mit primärem Mammakarzinom dar (p < 0,01), was auf alle Subgruppen außer Patientinnen, die im weiteren Krankheitsverlauf BCBM entwickelten, zutrifft (p < 0,05 und p < 0,01).

Zusammenfassend sollte erwähnt werden, dass der Verlust der PTEN-Kopienanzahl signifikant häufiger in BCBM-Patientinnen und Primärtumorpatientinnen mit BCBM auftritt, jedoch sogar in einer höheren Frequenz unter BCOM auftritt.

4.1.3.2 PTEN-Mutationsanalyse

PTEN-Mutationen wurden in vier BCBM-Patientinnen (17 %), aber in keiner der Primärtumorpatientinnen detektiert. Somit traten Mutationen im Vergleich zu den Primärtumoren signifikant häufiger in BCBM-Patientinnen auf (p < 0,05, siehe Tabelle 4.5). In einer Patientin fand sich die Basenpaarsubstitution c.389G>T (p.R130L) in Exon 5. Drei Patientinnen wiesen umfangreiche Deletionen auf. Eine Patientin trug eine 39 bp umfassende-Deletion, welche die Spliceakzeptorstelle von Exon 4 miteinschloss (g.72586del39). Dies verursacht den Verlust des gesamten Exon 4 auf Transkriptebene und führt somit zu einem trunkierten Protein (p.L70fs*7) 206. Eine weitere Patientin trug eine heterozygote Deletion, die Teile von Exon 5 sowie die vollständigen Exone 6-9 umfasste und bei bp 424 der 3'-untranslatierten Region (3'-UTR) endete, was ein verkürztes Protein zur Folge hat (c.476del737, p.V165fs*7). Bei der dritten Patientin wurde ein komplexes Mutationsmuster detektiert, das sich aus einer Deletion der Exone 4-6 auf dem einen Allel und einem Austausch (Konversion) der Exone 1-3 mit den Exonen 3-5 sowie einem deletierten Exon 6 auf dem zweiten Allel zusammensetzte (siehe Abb. 4.21).

<table>
<thead>
<tr>
<th>Patientin</th>
<th>mRNA</th>
<th>PTEN-Mutationen</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCBM-6</td>
<td>g.72586del39</td>
<td>p.L70fs*7</td>
<td>Deletion</td>
</tr>
<tr>
<td>BCBM-7</td>
<td>c.[209_634del426]+[1_208con165_492; 165_492con1_208; 493_634del142]</td>
<td>nicht bekannt</td>
<td>Deletion, Konversion</td>
</tr>
<tr>
<td>BCBM-8</td>
<td>c.389G>T</td>
<td>p.R130L</td>
<td>CDS-Mutation</td>
</tr>
<tr>
<td>BCBM-24</td>
<td>c.493del720</td>
<td>p.G165_*404del</td>
<td>Deletion</td>
</tr>
</tbody>
</table>

Abb. 4.21: Mutationen in der PTEN mRNA. Im oberen Abschnitt ist die Wildtypsequenz der PTEN mRNA dargestellt. Der mittlere Teil schematisiert die heterozygote Deletion von Teilen des Exons 5 sowie der vollständigen Exone 6-9 bis in die 3'-untranslatierte Region hinein. Im unteren Teil ist die Sequenz einer PTEN-Mutante illustriert, bei der auf dem einen Allel eine Deletion der Exone 4-6 (Allel 1) und auf dem anderen Allel eine Konversion der Exone 1-3 mit den Exonen 3-5 vorliegt, die eine Duplikation des Exons 3 sowie eine Deletion des Exons 6 mit einschließt.

Somit kann zusammengefasst werden, dass PTEN-Mutationen häufig in BCBM auftreten und der Mutationsstatus höchstwahrscheinlich bereits im Primärtumorgewebe vorhanden ist, da die Patientin mit zwei verschiedenen Gehirnmetastasen dieselbe Mutation trug.

4.1.3.3 Analyse des PTEN-Proteinstatus

Abb. 4.22: IHC-Analyse der PTEN-Proteinspiegel. Dargestellt sind Tumorareale ohne detektierbare PTEN-Signale umgeben von PTEN-positiven Stromazellen (A) und Tumorareale mit schwachem (C), moderatem (D) oder starkem PTEN-Signal (D). Die Bilder wurden mit 20x-Vergrößerung aufgenommen.

Nicht-detektierbare (0) zytoplasmatische bzw. nukleäre Signale wurden als PTEN-Verlust und schwache (1+), moderate (2+) sowie starke Signale (3+) wurden als normale PTEN-Proteinspiegel eingestuft (Abb. 4.22). Eine genaue Beschreibung der immunhistochemischen PTEN-Analyse findet sich in Ab-
schnitt 3.2.3.4.1. Die PTEN-Proteinspiegel von 9 BCBM-, 14 BCOM- und 43 Primärtumorproben wurden einer IHC-Analyse unterzogen. In neun BCBM (31 %), drei BCOM (21 %) und acht Primärtumorproben (19 %) wurde der Verlust der zytoplasmatischen Proteinexpression nachgewiesen. Zwei Primärtumorpatientinnen mit BCBM (25 %) sowie drei mit BCOM (14 %) bzw. ohne Rezidivbildung (19 %) wiesen ebenfalls einen Verlust der Proteinexpression auf (Abb. 4.23). Es konnten keine signifikanten Unterschiede bezüglich des PTEN-Proteinspiegels zwischen den untersuchten Subgruppen der Patientinnen ermittelt werden.

Zwei der drei verfügbaren gepaarten Primärtumor- und BCBM-Proben wiesen identische PTEN-Proteinspiegel auf, während im BCBM-Gewebe der dritten Patientin überraschenderweise abweichende, im Primärtumor nicht detektierbare, Proteinspiegel ermittelt wurden (siehe Abb. 4.24).

Die PTEN-Proteinspiegel wiesen in einigen Proben intratumorale Heterogenität auf. Heterogene Signalintensitäten wurden in 17 % der BCBM- und 21 % der BCOM sowie in 12 % der Primärtumorpatientinnen nachgewiesen. Unter Letzteren trat dies am häufigsten in Patientinnen mit BCBM (25 %) bzw. Knochenmetastasen auf (33 %) und war in Patientinnen mit BCOM zu 14 % zu verzeichnen. Dagegen wiesen nur 2 % der Primärtumorpatientinnen ohne Fernmetastasen heterogene PTEN-Spiegel auf (Abb. 4.25).

Neben der zytoplasmatischen Funktion als Lipidphosphatase verfügt PTEN über eine Proteinphosphataseaktivität, die mit der Zellzykluskontrolle in Zusammenhang steht und eine nukleäre Lokalisation des Enzyms bedingt. Daher wurde neben der zytoplasmatischen auch die nukleare Lokalisation betrachtet. Der Verlust nukleärer PTEN-Signale wurden in 38 % der BCBM- und 43 % der BCOM-sowie in 45 % der Primärtumorpatientinnen nachgewiesen (siehe Abb. 4.26 A). Unter Letzteren war dies am häufigsten in Patientinnen mit BCBM (75 %) der Fall. In den anderen Primärtumorsubgruppen lag ein Verlust nuklear lokalisierten PTENs etwa gleichhäufig vor (nicht rezidiviert: 50 %, BCOM: 52 %, Knochenmetastasen: 55 %; Abb. 4.26 B). Es konnten keine signifikanten Unterschiede bezüglich heterogener PTEN-Proteinspiegel zwischen den untersuchten Subgruppen der Patientinnen festgestellt werden.

Alle bis auf einen Fall wiesen einen kombinierten PTEN-Verlust zytoplasmatisch und nuklear lokalisierter PTENs auf (Tabelle 4.6). Ein Verlust von ausschließlich nuklear lokalisiertem PTEN trat in drei BCBM- (10 %), vier BCOM- (21 %) und 16 Primärtumorpatientinnen (37 %) auf. Unter letzteren war dies am seltensten unter Patientinnen ohne Rezidive Fall (31 %) und mit BCOM (38 %). Unter den anderen Subgruppen wies etwa die Hälfte ausschließlich einen Verlust nukleären PTEN auf.

Ergebnisse

Tabelle 4.6: Mammakarzinompatientinnen mit divergierendem nukleärem und zytoplasmatischem PTEN-Proteinspiegel. Der nukleäre (Nukleus) und der zytoplasmatische (Zytoplasma) PTEN-Proteinspiegel in den untersuchten BCBM-, BCOM- und Primärtumorpatientinnen (PT) ist hier vergleichend dargestellt. Proteinspiegel sind als normal (1+, 2+, 3+) oder als Verlust (0) illustriert.

<table>
<thead>
<tr>
<th>Patientin</th>
<th>Rezidiv</th>
<th>Proteinlevel</th>
<th>Zytoplasma</th>
<th>Nukleus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehirnmetastasen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCBM-01</td>
<td>BCBM</td>
<td>0</td>
<td>1+</td>
<td></td>
</tr>
<tr>
<td>BCBM-27</td>
<td>BCBM</td>
<td>2+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCBM-29</td>
<td>BCBM</td>
<td>2+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCBM-31</td>
<td>BCBM</td>
<td>1+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>andere Metastasen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCOM-09</td>
<td>BCOM</td>
<td>1+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCOM-11</td>
<td>BCOM</td>
<td>1+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCOM-15</td>
<td>BCOM</td>
<td>2+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Primärtumore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT-004</td>
<td>Keines</td>
<td>2+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-005</td>
<td>Knochen</td>
<td>2+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-010</td>
<td>Andere</td>
<td>1+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-020</td>
<td>Keines</td>
<td>3+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-021</td>
<td>Keines</td>
<td>1+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-028</td>
<td>Gehirn</td>
<td>1+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-042</td>
<td>Gehirn</td>
<td>1+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-071</td>
<td>Knochen</td>
<td>2+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-073</td>
<td>Gehirn</td>
<td>2+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-075</td>
<td>Andere</td>
<td>1+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-077</td>
<td>Knochen</td>
<td>2+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-099</td>
<td>Knochen</td>
<td>1+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-100</td>
<td>Gehirn + Knochen</td>
<td>2+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-101</td>
<td>Keines</td>
<td>1+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-103</td>
<td>Andere</td>
<td>2+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-104</td>
<td>Keines</td>
<td>1+</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

4.1.3.4 Korrelation der PTEN-Kopienanzahl mit dem Mutationsstatus und dem Proteinlevel

Tabelle 4.7: Resultate der Analysen von Kopienanzahl, Mutationsstatus und Proteinspiegel. Die PTEN-Kopienanzahl, der -Mutationsstatus und die -Proteinspiegel in den untersuchten BCBM- (BCBM) und Primärtumorpatientinnen (PT) ist hier vergleichend dargestellt. Kopienanzahl, Mutationsstatus bzw. Proteinspiegel sind als unverändert (diploid, WT bzw. 1+, 2+ und 3+) oder als mutiert (Verlust, MUT bzw. 0) aufgelistet.

<table>
<thead>
<tr>
<th>Patientin</th>
<th>Rezidiv</th>
<th>PTEN</th>
<th>Kopienanzahl</th>
<th>Mutation</th>
<th>Proteinspiegel</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCBM-01</td>
<td>Gehirn</td>
<td>Verlust</td>
<td>WT</td>
<td>1+</td>
<td></td>
</tr>
<tr>
<td>BCBM-02</td>
<td>Gehirn</td>
<td>Verlust</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>BCBM-03</td>
<td>Gehirn</td>
<td>Verlust</td>
<td>WT</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCBM-04</td>
<td>Gehirn</td>
<td>Verlust</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>BCBM-05</td>
<td>Gehirn</td>
<td>Verlust</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>BCBM-06</td>
<td>Gehirn</td>
<td>Verlust</td>
<td>MUT</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCBM-07</td>
<td>Gehirn</td>
<td>Verlust</td>
<td>MUT</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCBM-08</td>
<td>Gehirn</td>
<td>diploid</td>
<td>MUT</td>
<td>3+</td>
<td></td>
</tr>
<tr>
<td>BCBM-09</td>
<td>Gehirn</td>
<td>Verlust</td>
<td>WT</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCBM-10</td>
<td>Gehirn</td>
<td>diploid</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>BCBM-11</td>
<td>Gehirn</td>
<td>Verlust</td>
<td>WT</td>
<td>3+</td>
<td></td>
</tr>
<tr>
<td>BCBM-12</td>
<td>Gehirn</td>
<td>diploid</td>
<td>WT</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCBM-13</td>
<td>Gehirn</td>
<td>diploid</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>BCBM-14</td>
<td>Gehirn</td>
<td>Verlust</td>
<td>WT</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCBM-15</td>
<td>Gehirn</td>
<td>diploid</td>
<td>WT</td>
<td>3+</td>
<td></td>
</tr>
<tr>
<td>BCBM-16</td>
<td>Gehirn</td>
<td>diploid</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>BCBM-19</td>
<td>Gehirn</td>
<td>diploid</td>
<td>WT</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCBM-20</td>
<td>Gehirn</td>
<td>Verlust</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>BCBM-21</td>
<td>Gehirn</td>
<td>Verlust</td>
<td>WT</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCBM-26</td>
<td>Gehirn</td>
<td>diploid</td>
<td>MUT</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCOM-03</td>
<td>andere</td>
<td>Verlust</td>
<td>WT</td>
<td>3+</td>
<td></td>
</tr>
<tr>
<td>BCOM-04</td>
<td>andere</td>
<td>Verlust</td>
<td>WT</td>
<td>3+</td>
<td></td>
</tr>
<tr>
<td>BCOM-05</td>
<td>andere</td>
<td>Verlust</td>
<td>WT</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-013</td>
<td>andere</td>
<td>Verlust</td>
<td>WT</td>
<td>1+</td>
<td></td>
</tr>
<tr>
<td>PT-014</td>
<td>keines</td>
<td>diploid</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>PT-017</td>
<td>andere</td>
<td>diploid</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>PT-018</td>
<td>andere</td>
<td>Verlust</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>PT-021</td>
<td>keines</td>
<td>diploid</td>
<td>WT</td>
<td>3+</td>
<td></td>
</tr>
<tr>
<td>PT-022</td>
<td>keines</td>
<td>Verlust</td>
<td>WT</td>
<td>1+</td>
<td></td>
</tr>
<tr>
<td>PT-023</td>
<td>keines</td>
<td>diploid</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>PT-024</td>
<td>keines</td>
<td>diploid</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>PT-025</td>
<td>keines</td>
<td>diploid</td>
<td>WT</td>
<td>3+</td>
<td></td>
</tr>
<tr>
<td>PT-029</td>
<td>Gehirn</td>
<td>Verlust</td>
<td>WT</td>
<td>1+</td>
<td></td>
</tr>
<tr>
<td>PT-036</td>
<td>andere</td>
<td>diploid</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>PT-045</td>
<td>keines</td>
<td>diploid</td>
<td>WT</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT-093</td>
<td>andere</td>
<td>diploid</td>
<td>WT</td>
<td>1+</td>
<td></td>
</tr>
<tr>
<td>PT-101</td>
<td>keines</td>
<td>diploid</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>PT-102</td>
<td>andere</td>
<td>diploid</td>
<td>WT</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>PT-104</td>
<td>keines</td>
<td>diploid</td>
<td>WT</td>
<td>1+</td>
<td></td>
</tr>
</tbody>
</table>

Hieraus ergibt sich die Schlussfolgerung, dass die Analysen der Kopienanzahl und des Mutationsstatus für sich genommen den PTEN-Status nicht vollständig widergeben. Eine klare Aussage über diese kann nur über Analysen der Proteinspiegel getroffen werden.
4.1.3.5 **Kombinierter PTEN-Status**

Zusammenfassend ist festzuhalten, dass etwa in Drittel der BCBM-, BCOM- und Primärtumorpatientinnen mit Gehirnmetastasen einen PTEN-Verlust aufwiesen, jedoch Patientinnen mit BCBM unter den Primärtumorsubgruppen den größten Anteil mit PTEN-Verlust stellten. Dies impliziert eine Organotropie PTEN-alterierter Zellen primärer Mammakarzinome für das Gehirn sowie eine Assoziation dieser Alterationen mit BCBM.
Korrelation des PTEN-Status mit klinischen Daten

Der Vergleich des PTEN-Status mit dem Alter bei Primärtumor- bzw. bei Rezidivresektion, dem Tumor-, Lymphknoten- bzw. Metastasierungsstatus, Differenzierungsgrad und Tumortyp lieferte keine Anhaltspunkte für die Korrelation mit einem der klinischen Parameter. Es war jedoch eine signifikante Assoziation von verändertem PTEN-Status in Primärtumor- als auch in BCBM-Patientinnen mit dem TNBC-Subtyp (71% und 33 %, p < 0,05) sowie ein Trend zur Korrelation mit einem HR-negativen Status zu beobachten, wohingegen Wildtyp-PTEN hauptsächlich in HR-positiven Patientinnen nachgewiesen wurde (siehe Tabelle 4.8).

Tabelle 4.8: Korrelation des kombinierten PTEN-Status mit Brustkrebssubtyp und Hormonstatus in primärem BC und BCBM. Dargestellt ist die Anzahl und der Prozentsatz (in Klammern) von Primärtumor- und BCBM-Patientinnen mit positivem (HR+) bzw. negativem (HR-) Hormonreptorstatus sowie mit HR+, HER2-positivem (HER2+) oder triple-negativem (HR- und HER2-negativ, TNBC) Brustkrebssubtyp aus den Fällen mit Wildtyp- (WT) bzw. verändertem-PTEN-Status. Die Signifikanz wurde in Form eines p-Wertes illustriert. p < 0,05 entspricht hierbei einem signifikanten Wert. Nicht signifikante Werte wurden als n.s. angegeben. Verändert nach Hohensee et al.198

<table>
<thead>
<tr>
<th>Hormonrezeptor</th>
<th>Subtyp</th>
<th>p-Wert</th>
<th>Primärtumoren</th>
<th>Gehirnmetastasen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>37</td>
<td>(90,2)</td>
<td>11 (68,8)</td>
<td>n.s.</td>
</tr>
<tr>
<td>mutiert</td>
<td>3</td>
<td>(9,8)</td>
<td>5 (31,3)</td>
<td>2 (6,3)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>(93,7)</td>
<td>8 (88,9)</td>
<td>1 (11,1)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>(66,7)</td>
<td>1 (33,3)</td>
<td>5 (71,4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HER2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Es kann somit zusammengefasst werden, dass verändertes PTEN in einer Subpopulation von triple-negativen Primärtumoren auftritt, die in der Lage sind zu BCBM bilden.
4.1.4 Ergebnisse

4.1.4.1 PIK3CA-Mutationsanalyse

In sechs Patientinnen mit BCBM (23 %), einem Fall mit BCOM (20 %) und 13 Primärtumorpatientinnen wurden Mutationen detektiert. In den Primärtumorsubgruppen waren fünf Patientinnen ohne Rezidivbildung (22 %), acht Patientinnen BCOM (29 %) und eine Patientin mit Knochenmetastasen (8 %) Trägerinnen eines Basenpaaraustausches (siehe Abb. 4.29). Es konnten keine signifikanten Unterschiede zwischen den untersuchten Subgruppen der Patientinnen festgestellt werden.

Im Tumorgewebe einer BCBM-Patientin wurde eine Splicevariante detektiert, die ein zusätzliches 83 bp-langes Exon zwischen Exon 19 und 20 an der Position c.2937G enthielt. Hierdurch entsteht ein alternatives Stopcodon, was zu einem verkürzten Protein ohne Exon 20 führt (Abb. 4.30 D).
Zwei Primärtumorpatientinnen mit BCOM trugen Basenpaarsubstitutionen in der 3'-UTR von PIK3CA (g.85871T>C und g.85875G>A). Diese Patientinnen wurden in der Auswertung jedoch nicht als mutiert gewertet, da sich die Substitutionen außerhalb der kodierenden Region befinden und keine Vorraussage darüber möglich ist, ob sie einen Einfluss auf die Expression haben könnten. Alle identifizierten Mutationen sind in Tabelle 4.9 aufgelistet.

Alle vier verfügbaren gepaarten Primärtumor- und BCBM-Gewebe sowie die beiden BCBM-Proben von einer Patientin hatten einen identischen nicht-mutierten PIK3CA-Status (siehe Abb. 4.31).
Ergebnisse

<table>
<thead>
<tr>
<th>Patientin</th>
<th>PIK3CA-Mutationen</th>
<th>mRNA</th>
<th>Protein</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCBM-8</td>
<td>c.3075C>T</td>
<td>p.1025</td>
<td>SNP</td>
<td></td>
</tr>
<tr>
<td>BCBM-11</td>
<td>c.1637A>T</td>
<td>p.Q546L</td>
<td>CDS-Mutation</td>
<td></td>
</tr>
<tr>
<td>BCBM-13</td>
<td>c.2937ins83</td>
<td>p.R979fs*21</td>
<td>CDS-Mutation†</td>
<td></td>
</tr>
<tr>
<td>BCBM-16</td>
<td>c.1633G>A</td>
<td>p.E545K</td>
<td>CDS-Mutation</td>
<td></td>
</tr>
<tr>
<td>BCBM-22</td>
<td>c.3140A>G</td>
<td>p.H1047R</td>
<td>CDS-Mutation</td>
<td></td>
</tr>
<tr>
<td>BCBM-24</td>
<td>c.1624A>G</td>
<td>p.E542K</td>
<td>CDS-Mutation</td>
<td></td>
</tr>
<tr>
<td>BCBM-26</td>
<td>c.1633G>A</td>
<td>p.E545K</td>
<td>CDS-Mutation</td>
<td></td>
</tr>
<tr>
<td>PT-10</td>
<td>c.3104C>T</td>
<td>p.A1035V</td>
<td>CDS-Mutation†</td>
<td></td>
</tr>
<tr>
<td>PT-14</td>
<td>c.1697C>T</td>
<td>p.P566L</td>
<td>CDS-Mutation†</td>
<td></td>
</tr>
<tr>
<td>PT-16</td>
<td>c.3132T>G</td>
<td>p.N1044K</td>
<td>CDS-Mutation†</td>
<td></td>
</tr>
<tr>
<td>PT-23</td>
<td>c.3140A>G</td>
<td>p.H1047R</td>
<td>CDS-Mutation</td>
<td></td>
</tr>
<tr>
<td>PT-36</td>
<td>c.1633G>A</td>
<td>p.E545K</td>
<td>CDS-Mutation</td>
<td></td>
</tr>
<tr>
<td>PT-60</td>
<td>c.3140A>G</td>
<td>p.H1047R</td>
<td>CDS-Mutation</td>
<td></td>
</tr>
<tr>
<td>PT-74</td>
<td>g.85871T>C</td>
<td>-</td>
<td>3' UTR-Mutation</td>
<td></td>
</tr>
<tr>
<td>PT-77</td>
<td>g.85875G>A</td>
<td>-</td>
<td>3' UTR-Mutation</td>
<td></td>
</tr>
<tr>
<td>PT-103</td>
<td>c.1612G>T</td>
<td>p.D538Y</td>
<td>CDS-Mutation†</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 4.31: PIK3CA-Mutationsstatus in allen untersuchten gepaarten BCBM- und Primärtumorproben. Dargestellt ist der PIK3CA-Mutationsstatus in Primärtumorpatientinnen (linke y-Achse) gegen die Spiegel ihrer gepaarten Metastasen (rechte y-Achse). Fälle ohne Mutationen wurde als 0 und Fälle mit Mutationen als 1 illustriert. n = 4.

Es kann somit zusammengefasst werden, dass hauptsächlich Mutationen in den Hotspot-Regionen detektiert wurden und dass PIK3CA-Mutationen etwa gleichhäufig in BCBM- und Primärtumorpatientinnen auftreten, jedoch nicht bei Primärtumorpatientinnen mit Gehirnmetastasen nachgewiesen werden konnten.
4.1.4.2

Korrelation des PIK3CA-Status mit klinischen Daten

Der PIK3CA-Mutationsstatus lieferte keine Anhaltspunkte für die Korrelation mit dem Alter bei Primärtumor- bzw. bei Rezidivresektion, dem Tumor-, Lymphknoten- bzw. Metastasierungsstatus, Differenzierungsgrad und Tumortyp. Es ergab sich jedoch eine signifikante Assoziation mit dem Brustkrebssubtyp. In den BCBM-Patientinnen wurde eine Korrelation von mutiertem PIK3CA mit HR-positivem Subtyp (57 %) im Vergleich mit 17 % in HER2-positiven und 0 % der TNBC-Patientinnen nachgewiesen (p < 0,05) (siehe Tabelle 4.10).

Tabelle 4.10: Korrelation des PIK3CA-Status mit Brustkrebssubtyp und Hormonstatus in primärem BC und BCBM. Dargestellt ist die Anzahl und der Prozentsatz (in Klammern) von Primärtumor- und BCBM-Patientinnen mit positivem (HR+) bzw. negativem (HR-) Hormonrezeptorstatus sowie mit HR+, HER2-positivem (HER2+) oder triple-negativem (HR- und HER2-negativ, TNBC) Brustkrebssubtyp aus den Fällen mit Wildtyp-(WT) bzw. verändertem PIK3CA-Status (mutiert). Die Signifikanz wurde in Form eines p-Wertes illustriert. p < 0,05 entspricht hierbei einem signifikanten Wert. Nicht signifikante Werte wurden als n.s. angegeben. Verändert nach Hohensee et al. 198.

<table>
<thead>
<tr>
<th>Hormonrezeptor</th>
<th>Subtyp</th>
<th>n</th>
<th>(%)</th>
<th>n</th>
<th>(%)</th>
<th>p-Wert</th>
<th>n</th>
<th>(%)</th>
<th>n</th>
<th>(%)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIK3CA</td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td></td>
<td>29</td>
<td>(72,5)</td>
<td>13</td>
<td>(86,7)</td>
<td>n.s.</td>
<td>23</td>
<td>(74,2)</td>
<td>6</td>
<td>(66,7)</td>
<td>12</td>
</tr>
<tr>
<td>mutiert</td>
<td></td>
<td>11</td>
<td>(27,5)</td>
<td>2</td>
<td>(13,3)</td>
<td></td>
<td>8</td>
<td>(25,8)</td>
<td>3</td>
<td>(33,3)</td>
<td>2</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>Gehirnmetastasen</td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td></td>
<td>11</td>
<td>(64,7)</td>
<td>8</td>
<td>(100,0)</td>
<td>n.s.</td>
<td>3</td>
<td>(42,9)</td>
<td>10</td>
<td>(83,3)</td>
<td>6</td>
</tr>
<tr>
<td>mutiert</td>
<td></td>
<td>6</td>
<td>(35,3)</td>
<td>0</td>
<td>(0,0)</td>
<td></td>
<td>4</td>
<td>(57,1)</td>
<td>2</td>
<td>(16,7)</td>
<td>0</td>
</tr>
</tbody>
</table>
Zusätzlich waren PIK3CA-Mutationsträgerinnen der Primärtumorkohorte mit pT1 assoziiert (44 %), während nur 13 % mit pT3+4 PIK3CA-Mutationen trugen (p < 0,05, Tabelle 4.11).

Tabelle 4.11: Korrelation des PIK3CA-Status mit der Tumorgröße in primärem BC und BCBM. Dargestellt ist die Anzahl und der Prozentsatz (in Klammern) von Primärtumor- und BCBM-Patientinnen mit einem Tumordurchmesser ≤2 cm (pT1), zwischen 2 bis ≤5 cm (pT2) bzw. >5 cm (pT3) aus den Fällen mit Wildtyp- (WT) bzw. verändertem PIK3CA-Status (mutiert). Die Signifikanz wurde in Form eines p-Wertes illustriert. p < 0,05 entspricht hierbei einem signifikanten Wert. Nicht signifikante Werte wurden als n.s. angegeben.

<table>
<thead>
<tr>
<th>Tumorgröße</th>
<th>pT1</th>
<th>pT2</th>
<th>pT3</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>(%)</td>
<td>n</td>
<td>(%)</td>
</tr>
<tr>
<td>Primärtumoren</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIK3CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>10</td>
<td>(55,6)</td>
<td>27</td>
<td>(87,1)</td>
</tr>
<tr>
<td>mutiert</td>
<td>8</td>
<td>(44,4)</td>
<td>4</td>
<td>(12,9)</td>
</tr>
<tr>
<td>Gehirnmetastasen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIK3CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>6</td>
<td>(85,7)</td>
<td>8</td>
<td>(80,0)</td>
</tr>
<tr>
<td>mutiert</td>
<td>1</td>
<td>(14,3)</td>
<td>2</td>
<td>(20,0)</td>
</tr>
</tbody>
</table>

4.1.5 Analyse des EGFR/HER2-Signalwegs
Um einen Eindruck über die Verteilung der Veränderungen im EGFR/HER2-vermittelten Signalweg zu erhalten, wurden die kombinierten Resultate zu den einzelnen Genen in verschiedenen Kombinationen zusammengefügt, so dass sich diverse Varianten für einen Signalwegstatus ergaben. Die Verteilung der Mutationsfrequenzen auf die untersuchten Subgruppen wurde für jede gebildete Variante eines Signalwegstatus ermittelt. Patientinnen, die in mindestens einem Status eine Veränderung aufwiesen, wurden in dem jeweiligen kombinierten Status ebenfalls als Mutante eingestuft. Patientinnen, für die nicht alle der betrachteten Resultate verfügbar waren, wurden aus dem jeweiligen Status ausgeschlossen.

4.1.5.1 Kombinierter EGFR/PTEN-Status
Der EGFR/PTEN-Status kombiniert die Resultate des EGFR- und des PTEN-Status. EGFR/PTEN-Mutanten wurden in 52% der BCBM-, 20% der BCOM und 22% der Primärtumorpatientinnen ermittelt (siehe Abb. 4.32). Unter den Primärtumorpatientinnen stellten 44% der Fälle mit BCBM Mutanten dar, während dies bei nur einer Patientin mit späteren Knochenmetastasen (7%) der Fall war (p < 0.01 im Vergleich mit BCBM-Patientinnen). Weiterhin wurden signifikante Unterschiede der Mutanten-Häufigkeit zwischen BCBM- und Primärtumorpatientinnen ohne Rezidiv und solchen mit BCOM (beide 17%) beobachtet (p < 0.05 und p < 0.01). Dies impliziert, dass EGFR/PTEN-alterierte primäre Mammakarzinome eine Subpopulation von TNBC darstellen, die mit BCBM assoziiert sind.

4.1.5.2 **Der EGFR-Signalwegsstatus**

Der EGFR-Signalwegsstatus setzt sich aus dem EGFR-, dem PTEN sowie dem PIK3CA-Status zusammen. EGFR-Signalwegsmutanten wurden in 66 % der BCBM-, 33 % der BCOM- und 42 % der Primär-tumorpatientinnen detektiert (siehe Abb. 4.35). Auch hier waren Mutanten unter den Primärtumor-patientinnen mit BCBM (44 %) etwa gleich häufig wie in der BCBM-Kohorte und wurden unter den Primärtumoren mit Knochenmetastasen (14 %) in signifikant niedrigerer Frequenz nachgewiesen ($p < 0.01$). Mutanten waren ebenfalls unter den BCOM-Fällen seltener als unter BCBM-Fällen, jedoch erreicht dies aufgrund der niedrigen Anzahl untersuchter Patientinnen keine statistische Signifikanz.

4.1.5.3 Der HER2-Signalwegsstatus

Der HER2-Signalwegsstatus wurde analog zu dem EGFR-Signalwegsstatus aus den Resultaten des HER2, des PTEN- und des PIK3CA-Status definiert. HER2-Signalwegsmutanten wurden in 79% der BCBM-, 40% der BCOM- und 47% der Primärtumorpatientinnen identifiziert. Mutanten waren in allen Primärtumorsubgruppen signifikant seltener als in den BCBM-Patientinnen (alle \(p < 0.05 \), Abb. 4.35). Die Frequenz der Mutanten unter den BCOM-Patientinnen erreichte auch hier aus demselben Grund wie im EGFR-Signalwegsstatus keine statische Signifikanz.

![Diagramm A](image1.png)

Abb. 4.34: Verteilung der HER2-Signalwegsmutanten unter den analysierten Kohorten und deren Subgruppen. Der prozentuale Anteil der jeweiligen Subgruppe mit Alterationen im HER2-Signalweg (A, B) ist auf der y-Achse dargestellt. Auf der Abszisse ist die Anzahl der in dieser Analyse untersuchten Proben eingefügt. BCBM: Patientinnen mit Gehirnmetastasen, BCOM: Patientinnen mit Metastasen in anderen Organen als dem Gehirn, PT all: Primärtumorpatientinnen inkl. aller Subgruppen, PT non-relapsed: Primärtumorpatientinnen ohne Fernmetastasen, PT brain-relapsed: Primärtumorpatientinnen mit Gehirnmetastasen, PT bone-relapsed: Primärtumorpatientinnen mit Knochenmetastasen, PT other-relapsed: Primärtumorpatientinnen mit Metastasen in andere Organe als dem Gehirn (inkl. Knochen). *: \(p < 0.05 \); ** \(p < 0.01 \). Verändert nach Hohensee et al. [198]

4.1.5.4 Der EGFR/HER2-Signalwegsstatus

Es wurde zusätzlich ein Signalwegsstatus erstellt, der alle untersuchten Gene ausschließlich PIK3CA beinhaltete (EGFR-, HER2-, PTEN-Status), da die Untersuchungen von PIK3CA-Mutationsträgerinnen ebendiese als eine gesonderte Gruppe mit guter Prognose nahelegen. Dieser Status war von 88 Patientinnen verfügbar. Der Anteil von BCBM-Patientinnen mit Veränderungen (73%) war höher als im EGFR- und niedriger als im HER2-Signalwegsstatus, wohingegen der Anteil von BCOM-Patientinnen (40%) jenem im HER2-Signalwegsstatus entsprach. Mutanten traten in allen Primärtumorsubgruppen mit Ausnahme von Patientinnen mit späteren BCBM signifikant seltener als in BCBM-Patientinnen auf (\(p < 0.001 \)). Unter Primärtumorpatientinnen mit BCBM (56%) war der höchste Anteil und unter jenen mit Knochenmetastasen der geringste Anteil von Mutanten zu verzeichnen (21%, siehe Abb. 4.35 A, B).

Der EGFR/HER2-Signalwegsstatus setzt sich aus den Resultaten der Analysen aller vier untersuchten Gene (EGFR-, HER2-, PTEN- und PIK3CA-Status) zusammen und war für ebenfalls 88 Patientinnen
verfügbar. Unter den BCBM-Patientinnen stellten fast alle EGFR/HER2-Signalwegsmutanten dar (93 %), wohingegen nur etwa die Hälfte der BCOM- (40 %) und der Primärtumorpatientinnen (52 %) von EGFR/HER2-Signalwegsmutationen betroffen war (siehe Abb. 4.35 C,D). Mutanten waren in allen Primärtumorsubgruppen signifikant seltener als in den Gehirnmetastasen. Dies galt im Speziellen für die Primärtumorpatientinnen mit Knochenmetastasen (29 %, p < 0,001).

Aus demselben Grund wie in dem EGFR- und dem HER2-Signalwegstatus erreicht die im Vergleich zu den BCBM-Fällen verringerte Frequenz der Mutanten unter BCOM-Fällen keine statistische Signifikanz.

Folglich ist zusammenfassend zu erwähnen, dass nur eine einzige der BCBM-Patientinnen keine Mutation in einem der untersuchten Mitglieder des EGFR/HER2-Signalwegs trug, jedoch weniger als die Hälfte der BCOM-Patientinnen Mutationen in mindestens einem der Gene aufwiesen. Ferner traten unter den Primärtumorsubgruppen Alterationen am häufigsten unter den Patientinnen mit BCBM
auf. Die Signifikanz dieser Population unter Einbeziehung PIK3CA-mutierter Fälle verschwindet aufgrund der Assoziation dieser Alterationen mit allen Primärtumorsubgruppen außer jenen mit BCBM.

4.1.5.4.1 Multiple Alterationen der Mitglieder des EGFR/HER2-Signalwegs

Es kann demzufolge zusammengefasst werden, dass Kombinationen multipler Alterationen in den analysierten Mitgliedern des EGFR/HER2-Signalwegs grundsätzlich selten auftraten und die in den Abschnitten 4.1.5.6 und 0 beschriebene Korrelation mit dem Brustkrebssubtyp widerspiegeln. Daher traten Kombinationen von EGFR- und PTEN-Alterationen am häufigsten auf, jedoch schlossen sich Kombinationen beider Alterationen mit HER2-Überexpression fast vollständig gegenseitig aus.
4.2 Funktionelle Untersuchung von PTEN im Zellkulturmodell

4.2.1 Differentielle PTEN-Expression in Mammakarzinomzelllinien

Die differenziellen EGFR- und PTEN-Proteinspiegel der metastatischen MDA-MB-231-Subklone im Vergleich zur parentalen Zelllinie weisen auf eine mögliche Rolle des PTEN-Verlustes und der EGFR-Überexpression in der Metastasierung des Mammakarzinoms hin.

4.2.2 **Knockdown der PTEN-Expression in MCF-10A Zellen**

4.2.2.1 **Knockdown auf Proteinebene**

Um einen PTEN-Knockdown hervorzurufen, wurden PTEN-spezifische shRNAs über lentiviralen Gentransfer in MCF-10A Zellen eingeführt. Hierfür wurden zwei PTEN-spezifische shRNAs (shPTEN1, shPTEN2) und als Negativkontrolle eine shRNA verwendet, die gegen keine in Säugetieren exprimierte mRNA gerichtet ist (non-target control, NTC). Der Knockdown wurde über Immunoblot-Analysen überprüft.

Abb. 4.38: Immunoblot-Analyse mit shRNA-infizierten MCF-10A Zellen. Die PTEN- und GFP-Proteinspiegel in Gesamtproteinlysaten wurden in zwei mit PTEN-spezifischen shRNAs infizierten (shPTEN1, shPTEN2) MCF-10A-Klone und dem mit einer Kontroll-shRNA (shNTC) infizierten Klon über einen PTEN- bzw. GFP-spezifischen Antikörper bei 54 kDa und 29 kDa nachgewiesen. Als Ladekontrolle diente das Signal des Hitzeschockproteins HSC-70 bei 72 kDa.
4.2.3 **PTEN-Überexpression in MDA-MB-231 BR Zellen**

4.2.3.1 **PTEN-Überexpression im LeGO-iG2-System**

![Abb. 4.39: GFP-Expression der mit dem LeGO-iG2-System infizierten MDA-MB-231 BR- Zellen. Dargestellt ist die GFP-Intensität in Kontrollzellen (MDA-MB-231 BR/LeGO-iG2, A) und PTEN-überexprimierenden Zellen (MDA-MB-231 BR/LeGO-iG2/PTEN CDS, B) gegen die Zellgröße einer durchflusszytometrischen Analyse.](image)

Nach der Positivselektion zeigte das Kontrollplasmid keine Auswirkungen auf das Proliferationsverhalten transduzierter Zellen, wohingegen mit dem Überexpressions-Konstrukt transduzierte Zellen abstarben (Abb. 4.40). Des Weiteren verdeutlicht diese Abbildung die bereits in der durchflusszyto-
Ergebnisse

Eine metrischen Analyse aufgefallene, verminderte GFP-Expression in PTEN-transduzierten Zellen. Da die Zellen innerhalb von 3 Tagen nach der Selektion abstarben, war ein anschließender Nachweis der PTEN-Überexpression auf Proteinebene nicht möglich.

Da PTEN als PI3K-Antagonist regulierend auf die Signaltransduktion im PI3K/AKT-Signalweg wirkt, liegt die Vermutung nahe, dass die PTEN-Überexpression der Auslöser für die erhöhte Apoptoserate der mit dem Überexpressionskonstrukt infizierten Zellen war.

4.2.3.2 Herstellung von ZsGreen-kodierenden, induzierbaren Überexpressionskonstrukten

Da die konstitutive PTEN-Überexpression das Absterben infizierter Zellen zur Folge hatte, wurde für weitere Analysen ein alternatives Expressionssystem gewählt, in welchem eine dosisabhängige induzierbare Überexpression möglich ist (pZspuro++tTRKRAB, zur Verfügung gestellt von Dr. Stefan Horn, Klinik für Stammzelltransplantation, UKE). In diesen Vektor wurde für eine Überexpression die PTEN-cDNA eingeführt. Die Expression wird in diesem System dosisabhängig durch Doxycyclin-Gabe eingeleitet (pZspuro++tTRKRAB/PTEN tet-on). Als Negativkontrolle diente der Leervektor (pZspuro++tTRKRAB/leer tet-on).

Wie anhand durchflusszytometrischer Analysen veranschaulicht, zeigten infizierte Zellen deutlich nachweisbare GFP-Signale und damit eine erfolgreiche, lentivirale Einführung des pZspuro++tTRKRAB-Systems in MDA-MB-231 BR-Zellen (Abb. 4.41). Die verminderte Expression des Fluoreszenzmarkers ZsGreen war jedoch auch in diesem System vorhanden (vgl. Abb. 4.41 mit Abb. 4.39). Nichtsdestotrotz konnte durch die dosisabhängige PTEN-Überexpression das Überleben der Zellen unter 1 µg/ml Doxycyclin gewährleistet werden. Diese Dosis war ausreichend, um eine mess-
baren PTEN-Überexpression zu induzieren, ohne den EGFR/HER2-Signalweg so stark herabzulegen, dass die Zellen in Apoptose gingen.

4.2.3.3 **PTEN-Überexpression im pZspuro++tTRKRAB-System**

4.2.3.4 **Auswirkungen der PTEN-Überexpression auf den AKT-Signalweg**

![Immunoblot-Analyse der PTEN-Proteinspiegel in transduzierten MDA-MB-231 BR-Klonen.](image)

Vor der Präparation der Proteinlysate wurde die PTEN-überexprimierende sowie die Sublinie mit endogener PTEN-Expression hierfür 10 min mit 10 ng/ml EGF inkubiert und Immoblot-Analysen mit AKT-spezifischen Antikörpern durchgeführt. In Lysaten der PTEN-überexprimierenden Sublinie konnte eine verringerte AKT-Phosphorylierung an Serin 473 im Vergleich zu Lysaten aus Zellen mit endogenem PTEN-Spiegel nachgewiesen werden. Somit wurde gezeigt, dass verminderte PTEN-Proteinspiegel eine gesteigerte Aktivierung des EGFR/HER2-Signalwegs auslösen.

4.2.3.5 Auswirkungen der PTEN-Überexpression auf das Proliferationsverhalten

nächst untersucht, ob das Kulturmedium selbst Auswirkungen auf die Proliferationsraten der Sublinien hat.

Eine weitere Fragestellung war, ob die PTEN-Überexpression in der aggressiveren MDA-MB-231 BR Sublinie zu einem abgemilderten Phänotyp führt, der eher jenem der parentalen Zelllinie gleicht. Dies sollte ebenfalls anhand des Proliferationsverhaltens ermittelt werden.

Die MDA-MB-231 BR Sublinie mit endogener PTEN-Expression proliferierte an Tag 5 unabhängig von den verwendeten Kulturmedien im Vergleich zu jener der parentalen Zelllinie deutlich stärker. Die PTEN-überexprimierende Sublinie wies zwar eine erhöhte Proliferationsrate im Vergleich zur parentalen Zelllinie, jedoch eine geringere Rate als die Sublinie mit endogener PTEN-Expression auf (Abb. 4.44 A-C). Die durch Kultivierung in verschiedenen Medien ausgelöste Veränderung der Proliferationsraten wurde durch den Abgleich der Proliferation in DMEM gegen jene in Astrozyten- (Ratio₄₀/₃₀) bzw. Mikroglia-Kulturmedium (Ratio₄₀/₃₀) ermittelt. Es wurde nachgewiesen, dass alle Subklone unter Kultivierung in Astrozyten-Medium stärker und in Mikroglia-Medium marginal schwächer proliferierten (Abb. 4.44 D). Die in Astrozyten-Medium vorliegende erhöhte FBS-Konzentration fördert somit die Proliferation aller untersuchten Zelllinien (1,5- bis 1,9-fach erhöht), wohingegen die von DMEM divergierende Zusammensetzung des Mikroglia-Mediums keine Auswirkungen auf die Proliferation der Mammakarzinomzelllinien hat.
Ergebnisse

Abb. 4.44: Proliferationsunterschiede von MDA-MB-231 Sublinien in verschiedenen Kulturmedien. Für die Proliferationsanalysen wurden 1×10^5 Zellen in 96-well Platten ausgesät. Die Versuche wurden in Quadruplikaten durchgeführt und die Proliferation nach 1, 3 und 5 Tagen mittels MTT-Assay photometrisch bestimmt. Die Verhältnisse der Proliferationsraten von Tag 3 bzw. Tag 5 zu Tag 1 (Ratio$_{3/1}$ bzw. Ratio$_{5/1}$) wurden für die parentale MDA-MB-231-Zelllinie (WT) sowie für die Sublinien MDA-MB-231 BR/leer (endogen) und MDA-MB-231 BR/PTEN (PTEN) aufgetragen, die in DMEM (A) oder in unbehandeltem Astrozyten-Medium (B) bzw. Mikroglia-Medium kultiviert wurden (C). Die Proliferationsunterschiede der Zelllinien in DMEM verglichen mit Astrozyten-(Ratio$_{A/D}$) bzw. Mikroglia-Kulturmplex (Ratio$_{M/D}$) sind tabellarisch aufgeführt (D).

4.2.3.6 Auswirkungen der Aktivierung des EGFR/HER2-Signalwegs auf das Migrationsverhalten in Abhängigkeit der PTEN-Expression

Wurde nur FBS als Lockstoff eingesetzt, führte dies zu keiner Veränderung der Migrationsrate durch die Einführung der PTEN-Überexpression. EGF löste als Lockstoff in Zellen der Sublinie mit endogener PTEN-Expression eine 4,5-fach erhöhte Migration im Vergleich zu Zellen der PTEN-überexprimierenden Sublinie aus (Abb. 4.45 A). In Zellen der Sublinie mit endogener PTEN-Expression löste EGF selbst eine 27-fach gesteigerte Migration aus. In Zellen der PTEN-überexprimierenden Sublinie wurde die Migration nur um das 5-fache erhöht. Es wurden signifikante Unterschiede im Migrationsverhalten zwischen EGF-stimulierten und unstimulierten Zellen sowie zwischen EGF-stimulierten Zellen mit endogener PTEN-Expression und PTEN-Überexpression festgestellt. Somit wurde nachge-
wiesen, dass eine veränderte PTEN-Expression das Migrationsverhalten in Abhängigkeit des Aktivierungsstatus' des EGFR/HER2-Signalwegs steuert.

![Diagram](https://via.placeholder.com/150)

4.2.3.7 Auswirkungen durch Astrozyten sezernierter Botenstoffe auf das Proliferationsverhalten in Abhängigkeit der PTEN-Expression

Die Proliferationsratio der PTEN-überexprimierenden Sublinie an Tag 3 im Vergleich zu jener mit endogener PTEN-Expression war unter Kultivierung in unbehandeltem Astrozyten-Medium um einen Wert von 1,1 verringert (Abb. 4.46 A). Unter Kultivierung in konditioniertem Astrozyten-Medium war eine Verringerung um einen Wert von 0,6 zu verzeichnen (Abb. 4.46 B). Die Kultivierungsbedingungen in konditioniertem Astrozyten-Medium bewirkten an Tag 3 eine Verringerung der Proliferationsrate der Sublinie mit endogener PTEN-Expression um einen Wert von 1,7. Die Proliferationsrate der PTEN-überexprimierenden Sublinie war durch die Kultivierungsbedingungen um einen Wert von 1,1 verringert (Abb. 4.46 C). Da in Abschnitt 4.2.3.4 nachgewiesen werden konnte, dass in Zellen mit geringem PTEN-Proteinspiegel eine erhöhte Aktivierung des EGFR/HER2-Signalwegs vorliegt, kann nun geschlussfolgert werden, dass die durch aktivierte Astrozyten sezernierten Substanzen in diesen Zellen die Proliferation hemmen.

4.2.3.8 **Auswirkungen durch Astrozyten sezernierter Botenstoffe auf das Migrationsverhalten in Abhängigkeit der PTEN-Expression**

Um die Auswirkungen der PTEN-Überexpression auf das Migrationsverhalten von MDA-MB-231 BR-Sublinien unter Einfluss von durch Astrozyten sezernierte Botenstoffe zu analysieren, wurden Transwell-Assays in einer Boyden-Kammer wie in Abschnitt 4.2.3.6 beschrieben durchgeführt. Für diese Fragestellung wurden allerdings primäre humane Astrozyten in die unteren Kammern ausgesät und die Migration gegen unbehandeltes Astrozytenmedium verglichen.

4.2.3.9 **Auswirkungen durch Mikroglia sezernierte Botenstoffe auf das Proliferationsverhalten in Abhängigkeit der PTEN-Expression**

Es konnte nachgewiesen werden, dass durch aktivierte Astrozyten sezernierte Substanzen die Proliferation von MDA-MB-231 BR-Zellen in Abhängigkeit der PTEN-Expression unterstützen. Nun sollte überprüft werden, ob durch aktivierte Mikroglia sezernierte Botenstoffe einen ähnlichen Einfluss auf das Proliferationsverhalten von MDA-MB-231 BR-Zellen haben. Hierfür wurden die Zellen wie in Abschnitt 3.2.4.11 beschrieben in unbehandeltem bzw. durch aktivierte Mikrogliakulturen konditioniertem Medium kultiviert. Die Proliferation wurde nach den in Abschnitt 4.2.3.7 beschriebenen Inkubationszeiten photometrisch bestimmt und die bereits erwähnten Berechnungen angestellt.

Unter unbehandeltem Mikrogliamedium war die Proliferationsratio der Zellen mit endogener PTEN-Expression an Tag 3 um einen Wert von 0,9 höheren als jene von PTEN-überexprimierenden Zellen. Gleiches war unter konditioniertem Mikrogliamedium der Fall (Abb. 4.48 A). Die Kultivierung unter konditioniertem Medium löste an Tag 5 eine Verringerung der Proliferationsratio sowohl der PTEN endogen exprimierenden als auch der PTEN-überexprimierenden Zellen um einen Wert von 0,3 aus. Es kann somit geschlossen werden, dass eine verringerte PTEN-Expression zu gesteigerter Proliferation führt, diese jedoch nicht über durch Mikroglia-sezernierte Substanzen beeinflusst wird.

Abb. 4.48: Proliferationsunterschiede von MDA-MB-231 BR/leer und MDA-MB-231 BR/PTEN in Mikroglia-Kulturmedium.

Für die Proliferationsanalysen wurden 1 x 10^5 Zellen in 96-well Platten ausgesät. Nach 24 h (Tag 1) erfolgte die erste Messung sowie ein Mediumwechsel mit unbehandeltem (A) bzw. durch aktivierte Mikrogliakulturen konditioniertem Medium (B). Nach weiteren 24 (Tag 2) und 48 h (Tag 3) erfolgten weitere Messungen. Die Versuche wurden in Quintruplikaten durchgeführt und die Proliferation mittels MTT-Assay photometrisch bestimmt. Die Verhältnisse der Proliferationsraten von Tag 2 bzw. Tag 3 zu Tag 1 (Ratio_{2/1} bzw. Ratio_{3/1}) wurden für MDA-MB-231 BR/leer (endogen) und MDA-MB-231 BR/PTEN (PTEN) aufgetragen, die in unbehandeltem (A) oder konditioniertem Mikroglia-Medium kultiviert wurden (B). Die Proliferationsunterschiede der MDA-MB-231 BR-Sublinien in unbehandeltem verglichen mit konditioniertem Mikroglia-Kulturmedium (ΔMedium) sind tabellarisch aufgeführt (C).
4.2.3.10 Auswirkungen durch Mikroglia sezernierter Botenstoffe auf das Migrationsverhalten in Abhängigkeit der PTEN-Expression

Unter Verwendung von Mikrogliamedium als Lockstoff migrierten kaum Zellen (ca. 10 Zellen/Abschnitt). Zudem wurden keine Unterschiede der Migrationsraten induziert. Die durch Mikroglia sezernierten Substanzen lösten in PTEN endogen exprimierenden Zellen eine 2,5x stärkere Migration als in PTEN-überexprimierenden Zellen aus (Abb. 4.49 A).

kultivierung mit Mikroglia und der Kultivierung in Medium sowie zwischen Zellen mit endogener PTEN-Überexpression und PTEN-Überexpression unter Mikrogliakokultur festgestellt. Wie schon für Astrozyten gezeigt, wird dieser Effekt jedoch ebenfalls durch eine erhöhte PTEN-Expression in Tu-
morzellen vermindert.
Diskussion

5.1 Die klinische Rolle des EGFR/HER2-Signalwegs in der Gehirnmetastasierung von Mammakarzinompatientinnen

5.1.1 Klinische Relevanz von EGFR-Alterationen im Mammakarzinom

Punktmutationen in der TKD des EGFR sind besonders im Bronchial- und Kolonkarzinom eine häufige Ursache für die konstitutive Aktivierung des Rezeptors und treten ebenfalls eher selten im Mammakarzinom auf122,124,125. Die Mutationen rufen eine Konformationsveränderung hervor, welche in der Wildtypform von EGFR erst durch Ligandenbindung initiiert wird. Durch die veränderte Konformation wird die dauerhafte Dimerbildung ermöglicht und so eine konstitutive Autophosphorylierung eingeleitet123. Bezüglich Bronchial- und Kolonkarzinomen sind small molecule-Inhibitoren aktuell bereits im klinischen Einsatz. Die Assoziation von TKD-Mutationen mit BCBM würde ebenfalls neue Therapieoptionen eröffnen. Da in dieser Studie keine solchen Mutationen in BCBM nachgewiesen werden konnten, bestätigen die Resultate die publizierten Ergebnisse anderer Studien hinsichtlich einer untergeordneten Rolle von TKD-Mutationen im Mammakarzinom114,229.
Die unterschiedlichen Varianten genetischer Veränderungen von EGFR manifestieren sich auf Proteinebene sowohl in Hinsicht auf Proteinspiegel als auch posttranslationale Modifikation (Phosphorylierung). Wie bereits erwähnt, liegt der Rezeptor bei einer Amplifikation vermehrt in seiner Wildtypform vor. Daher bietet sich die immunhistochemische Detektion auf Proteinebene mittels Wildtyp-EGFR-spezifischer Antikörper an. Aufgrund der meist geringen verfügbaren Tumormasse ist die Detektion über Immunoblot praktisch ausgeschlossen, welche zudem keine Aussage über intratumorale Heterogenität ermöglicht. Bei Vorliegen konstitutiv aktivierten EGFRs ist eine die Detektion über phosphorylierungsspezifische Antikörper eine Option, die dementsprechend die aktivierte Form des Rezeptors nachweist. Da die bereits diskutierten genomischen Analysen keine Anhaltspunkte für das Vorliegen konstitutiv aktiverer EGFR-Varianten lieferten, wurde die Analyse des Proteinspiegels immunhistochemisch über einen gegen Wildtyp-EGFR gerichteten Antikörper durchgeführt183,230.

Wie auch auf genomischer Ebene existiert kein einheitliches Protokoll zur Festlegung des EGFR-Proteinstatus‘. Yoshida et al unterschieden in negative Proben (keine Signale, 0), schwache (1+) und starke Signale (2+) ungeachtet des Anteils an der Tumormasse231. Teng et al führten zusätzlich eine moderate Signalintensität ein (0, 1+, 2+, 3+)125. Beide bildeten aus diesen Resultaten einen EGFR-Status, der sich in negativ und positiv untergliederte. Gümuskaya et al, Kersting et al, Collins et al, Yoshida et al sowie Nielsen et al definierten einen EGFR-positiven Status für jegliche messbare Signalintensität, wohingegen Tham et al nur starke Signale miteinbezogen115,116,231–234. Bhargava et al, Grupka et al sowie Gaedcke et al wiederum teilten zusätzlich nach dem Anteil der Zellen mit einer definier-ten Signalintensität an der Gesamtumormasse ein114,235,236. Durch diese methodisch bedingte Heterogenität wurden durch verschiedene Studien EGFR-positive primäre Mammakarzinome zu variierenden Anteilen von 13–78 % beschrieben. Unter BCBM-Fällen wurde eine EGFR-Expression dagegen in ca. 40 % festgestellt235–237. Die in dieser Arbeit untersuchten Patientenkollektive wurden hinsichtlich der EGFR-Proteinspiegel analog zu der Klassifizierung von Teng et al eingeteilt und enthielten nur 10 % EGFR-positive Primärtumorfälle, jedoch wiesen 25 % der Primärtumorpatientinnen mit BCBM und 36 % der BCBM-Patientinnen EGFR-Expression auf. Somit fügen sich die Resultate dieser Arbeit gut in den Kontext der bestehenden Literatur ein.

Im Zuge dieser Arbeit wurde nachgewiesen, dass alle untersuchten Patientinnen mit EGFR-Amplifikationen messbare EGFR-Proteinspiegel aufwiesen. Im Gegensatz hierzu wurden in Fällen mit einer EGFR/Cen7-Ratio von 2-5 auf Proteinebene Areale mit unterschiedlich starken EGFR-Signalen nachgewiesen. Basierend hierauf kann keine genaue Aussage darüber getroffen werden, welche Kopienanzahl oder Proteinspiegel in die Definition EGFR-positiven Tumorgewebes einbezogen werden sollten. In einem Fall mit heterogenen Proteinspiegeln konnten jedoch Areale mit schwachen Pro-

5.1.2 Klinische Relevanz von HER2-Alterationen im Mammakarzinom

HER2 ist Startpunkt derselben Signalkaskaden wie auch EGFR, die regulierend auf verschiedene zelluläre Mechanismen wirken. Der Anteil HER2-positiver Fälle aus der in dieser Arbeit analysierten Primärtumorkohorte ist mit 16 % im Vergleich zu dem in der Literatur berichteten Anteil von ca. 20-25 % leicht unterrepräsentiert1,126. Der Anteil der HER2-positiven BCBM-Fälle fügt sich mit 41 % in die Resultate anderer Studien ein (33-50 %) und impliziert einen signifikant höheren Anteil HER2-positiver Fälle unter BCBM im Vergleich zu Primärtumorpatientinnen237,239,240. Dass jedoch auch in der BCOM-Kohorte HER2-positive Fälle nachgewiesen wurden (18 %), impliziert eine HER2-Überexpression als generellen Faktor einer schlechten Prognose.

In dieser Studie wurde ein de novo auftretender HER2-positiver Status in drei BCBM-Fällen (17 %) nachgewiesen. Ein Umschlag des HER2-Status’ zwischen dem Primärtumor und der zugehörigen Fernmetastase wird von verschiedenen Studien in variierenden Frequenzen berichtet (4-48 %)241-245. Gancberg et al. detektierten in 6 % der untersuchten Fälle einen abweichenden HER2-positiven Status in den Fernmetastasen. Unter den analysierten Fällen befanden sich zwei BCBM, die beide keinen abweichenden HER2-Status zwischen Primärtumor und Metastase aufwiesen241. In der Studie von Lower et al. wiesen 24 % der Metastasen einen vom Primärtumorgewebe abweichenden HER2-positiven und 10 % einen abweichenden HER2-negativen Status auf, dabei wurde nicht näher auf die Lokalisation der untersuchten Metastasen eingegangen244. Die Studie von Zidan et al. enthielt keine BCBM, wohingegen die Studien von Regitnig et al. und Nishimura et al. zwar BCBM-Proben enthielten, darauf jedoch bei der Betrachtung des HER2-Status’ nicht Bezug genommen wurde242,243,245. Studien, die BCBM in größeren Umfang miteinschließen sind rar, belegen jedoch ebenso die Existenz von Veränderungen des HER2-Status’ zwischen Primärtumoren und ihren korrespondierenden BCBM. Fuchs et al. analysierten ausschließlich BCBM-Patientinnen und fanden unter 29 zugehörigen Primärtumorsproben in nur eine, in welcher ein abweichender HER2-positiver Status detektiert wurde246. Bachmann et al. belegten einen abweichenden HER2-positiven Status in 9 % und einen abweichenden HER2-negativen Status in 23 % der Primärtumoren im Vergleich zu ihren korrespondierenden BCBM240.

Ein Umschlag des HER2-Status’ im Vergleich zum Primärtumor wurde interessanterweise auch in zirkulierenden Tumorzellen von Mammakarzinompatientinnen belegt247. Diese Funde implizieren, dass in einzelnen Zellen nach Verlassen des Primärtumors möglicherweise eine Konvertierung des HER2-Status’ stattgefunden hat und die betroffenen Zellen den Subklon darstellen, aus dem sich die nachfolgende Metastase entwickelt hat. Es besteht jedoch auch die Möglichkeit einer Heterogenität des HER2-Status’ in Primärtumorgewebe mit einem HER2-positiven Subklon, der aufgrund seines geringen Anteils bei der Primärtumordiagnose übersehen wurde. HER2-positive Zellen werden gene-
rell als aggressiv angesehen. Da in diesem Fall keine gezielt gegen HER2-gerichtete Therapie der Patientinnen angewandt wurde, sind (analog zu EGFR) die Disseminierung und das Auswachsen dieser HER2-positiven Zellen zu Metastasen im Gehirn wahrscheinlich. Sollte ein HER2-positiver Subklon übersehen worden sein, ist eine sorgfältige Untersuchung des Primärtumorgewebes für die Diagnose umso wichtiger, da schon das Übersehen einzelner HER2-positiver Tumorzellen die Grundlage für BCBM bilden könnte. Genau dies bedingt jedoch die im Klinikalltag eingesetzte Bildung eines Mittelwertes aus den Werten der analysierten Tumorzellen, wodurch eine mögliche Tumorheterogenität nicht berücksichtigt wird193.

Eine Veränderung des HER2-Status’ der Patientinnen im Laufe der Metastasierung wird durch die Analyse in CTCs von Mammakarzinomprimärtumorpatientinnen unterstützt, welche eine Heterogenität des HER2-Status’ in CTCs belegten248–250. Diese Studien wiesen abhängig von der verwendeten Detektionsmethode einen vom Primärtumor abweichenden HER2-positiven Status in 6-48\% der CTCs auf Einzelzellenniveau nach und zeigten, dass CTCs eines HER2-positiven Primärtumors nicht zwingend einen übereinstimmenden Status aufweisen. Demnach könnte der CTC-Status als guter Indikator eines Umschlags im Tumorphänotyp dienen und eine Indikation zur Früherkennung BCBM bilden. Die betroffenen Patientinnen profitieren hinsichtlich der eingesetzten Therapie von einer Diagnose der BCBM in einem frühen Stadium. Patientinnen mit solitären Metastasen weisen ein deutlich längeres Gesamtüberleben auf, da diese oft operabel sind57,65,73,74. Wenn die HER2-Amplifikation sowohl in Primärtumoren als auch in deren korrespondierenden BCBM vorliegt, besteht die Möglichkeit durch engmaschigere Kontrollen der Patientinnen deren Überlebenszeit zu erhöhen. Die Weiterentwicklung der gezielten HER2-Therapie mit small molecule-Inhibitoren, welche in der Lage sind die Blut-hirnschranke zu überqueren und direkt die BCBM anzugreifen, wäre insbesondere zur Behandlung HER2-positiver BCBM förderlich. Denn monoklonale Antikörper wie Trastuzumab sind aufgrund ihrer Größe nicht in der Lage die engen Zell-Zell-Kontakte der Endothelzellen des zentralen Nervensystems zu passieren48,60.

Zusammengenommen ist ein HER2-positiver Status generell mit einem metastatischen Mammakarzinomphänotyp und nicht ausschließlich mit BCBM assoziiert. Allerdings tritt in einem Anteil der Patientinnen während der Metastasierung mindestens einmal ein Umschlag des HER2-Status’ auf. Zur Sicherstellung einer angemessenen Therapie der Metastasen könnte die zusätzliche Analyse von CTCs hilfreich sein. In diesem Kontext wird in Deutschland aktuell eine große Phase III Studie an HER2-positiven Patientinnen durchgeführt und eine weitere ist bereits abgeschlossen251–253.
5.1.3 Klinische Relevanz von PTEN-Alterationen im Mammakarzinom

PTEN wirkt an der Plasmamembran über seine Lipidphosphatase-Aktivität als PI3K-Antagonist144,146. Der Funktionsverlust von PTEN kann durch verschiedene Mechanismen ausgelöst werden. Er ist sowohl im Glioblastom (90 \%) als auch im primären Mammakarzinom (15-37 \%) ein häufiges Ereignis und mit einer schlechten Prognose assoziiert150,153,155–158. Zu den auslösenden Mechanismen zählen Verlust des PTEN-Genlokus’ (10q23.3), Mutationen der CDS oder Methylierung der Promotorregion. Eine häufige genomische Ursache für den Funktionsverlust von PTEN ist eine hetero- oder homozytote Deletion des PTEN-Genlokus’. Eine Deletion nur eines Allels, zieht einen Verlust der Heterozygotie nach sich159. Treten zusätzlich Mutationen im zweiten Allel auf, welche die katalytische Aktivität beeinträchtigen oder liegt das zweite Allel methyliert vor, kommt es zum vollständigen Verlust von funktionsfähigem PTEN. Generell wird der Verlust eines Allels von dem gesunden Allel kompensiert, jedoch liegt bezüglich PTEN ein Dosiseffekt der Haploinsuffizienz vor154,204,254,255.

Der eindeutige Nachweis des PTEN-Verlustes kann folglich nur auf Proteinebene erfolgen. Hierfür bieten sich IHC-Analysen an, da im Gegensatz zu Immunoblot-Analysen neben einer (semi-) quantitativen Bewertung die intrazelluläre Lokalisation (Zytosol bzw. Nucleus) von PTEN quantitatativ auf Einzelzelniveau ermittelt werden kann. Außerdem werden für Immunoblot-Analysen verhältnismäßig große Proteinmengen benötigt, die aufgrund der meist limitierten Tumormasse in Patientenproben verfügbar ist. Die verlässlichste Aussage über den Verlust funktioneller PTENs kann durch Verwendung von Antikörpern getroffen werden, die gegen phosphoryliertes, also aktiviertes, PTEN-Protein gerichtet sind. Der Basenpaaraustausch c.389G>T könnte für eine funktionelle inaktive, jedoch stabile Form des PTEN-Proteins kodieren, die durch einen nicht-phosphospezifischen Antikörper erkannt werden kann. Durch Verwendung eines phosphospezifischen Antikörpers könnte eine valide Aussage über das Vorliegen einer funktionell inaktiven PTEN-Form getroffen werden.

Knochenmetastasen am häufigsten einen Verlust nukleär lokalisierten PTENs auf. Die Rolle nukleären PTENs in der Zellzykluskontrolle scheint daher in Primärtumoren wichtiger zu sein als in Metastasen. Eine mögliche Funktion von PTEN als Metastasensuppressor in der Gehirnmetastasierung wäre somit nicht mit der Zellzykluskontrolle im Nukleus, sondern mit dem AKT-Signalweg im Zytoplasma gekoppelt.

Diese Erkenntnisse legen die Vermutung nahe, dass während der Metastasierung in das Gehirn sowohl eine fehlende Zellzykluskontrolle als auch eine gesteigerte Aktivierung des PI3K-Signalwegs zum Tragen kommt, während die Interaktion anderer solider Metastasen mit der Mikroumgebung vor Ort über PTEN-regulierte Zellzykluskontrolle beeinflusst wird.

5.1.4 Klinische Relevanz von PIK3CA-Mutationen im Mammakarzinom

Krebserkrankungen, u.a. Mammakarzinome, sind mit einer konstitutiven Aktivierung von Mitgliedern der Klasse IA der PI3Ks assoziiert, was besonders für den Vertreter p110α gilt131-133. Mutationen im PIK3CA-Gen sind zwar für die gesamte CDS beschrieben, der Großteil ist jedoch in \textit{Hotspots} konzentriert, die in Abschnitten auf Exon 9 (E542, E545, Q546) und Exon 20 lokalisiert sind (H1047), welche für die helikale bzw. die katalytische Domäne kodieren142. Alle Mutationen führen zu Aminosäuresubstitutionen an oberflächenexponierten an Positionen, die mit der regulatorischen Untereinheit interagieren und imitieren die durch die Bindung eines physiologischen Aktivators ausgelöste Konformationsänderung. Dies führt zu einer konstitutiven Aktivierung von PI3K, was eine verstärkte Signalweiterleitung in dem angeschlossenen AKT-Signalweg zur Folge hat143.

Abb. 5.1: Lokalisation der mutierten Aminosäuren im nativen Protein. Dargestellt sind die betroffenen Aminosäurereste der bereits bekannten Hotspotmutationen neben den in dieser Arbeit neu identifizierten Punktmutationen in der helikalen Domäne (A) und der Kinasedomäne (B) eingebettet in die PI3K-Proteinstruktur. Die betroffenen Aminosäurereste der Hotspotmutationen sind in lila illustriert und jene der neue Mutationen sind in blau hervorgehoben und durch Pfeile markiert.

5.1.5 **Assoziation des Mammakarzinoms subtyps mit Alterationen des EGFR/HER2-Signalwegs und Metastasierungsprofilen**

EGFR/PTEN- und HER2-Alterationen schlossen sich in dem hier untersuchten Patientenkollektiv gegenseitig fast vollständig aus. Dies legt eine Untergliederung der untersuchten Fälle in eine Gruppe mit EGFR/PTEN- oder HER2-Alterationen sowie eine mit PIK3CA-Mutationsträgerinnen nahe (Abb. 5.2).

Abb. 5.2: Alterationen von Mitgliedern des EGFR/HER2-Signalwegs in Metastasen des Mammakarzinoms. Dargestellt ist der Anteil der HER2-positiven Fälle sowie der Patientinnen mit PIK3CA-Mutationen und TNBC unter BCBM (roter Rahmen) und Knochenmetastasen des Mammakarzinoms (grauer Rahmen), sowie der Anteil der Patientinnen mit Alteration des EGFR/HER2-Signalwegsstatus (grau ausgefüllte Umrandung).

Beide Alterationen waren auch in BCBM des in der vorliegenden Arbeit untersuchten Kollektivs mit einem TNBC-Subtyp assoziiert. Unter BCBM-Patientinnen wiesen 100 % der TNBC-Fälle eine EGFR/PTEN-Alteration auf. Eine erhöhte Tendenz von TNBC-Tumoren zur Gehirnmetastasierung wurde in diversen Studien nachgewiesen. Im Speziellen traf dies auf basal-like Tumore zu, die u.a. durch EGFR-Expression charakterisiert sind. Somit repräsentieren EGFR/PTEN-alterierte primäre Mammakarzinome eine Subpopulation von TNBCs mit einer Präferenz BCBM auszubilden. Dagegen wurde durch diverse Studien belegt, dass basal-like Mammakarzinome selten Knochenmetastasen ausbilden, was auch in der vorliegenden Arbeit bestätigt wurde.

5.2 Die funktionelle Rolle von PTEN in der Gehirnmetastasierung des Mammakarzinoms

5.2.1 Induktion eines weniger aggressiven Phänotyps einer in gehirnmetastatischen Mammakarzinomzelllinie durch PTEN-Überexpression

zeichneten, dass in MDA-MB-231 BR Zellen mit endogener PTEN-Expression im Vergleich zu PTEN-überexprimierenden Zellen eine ebenfalls erhöhte AKT-Aktivierung vorlag. Dies impliziert eine gesteigerte Chemoprotektion von BCBM-Zellen mit verringelter PTEN-Expression, was der Früherkennung PTEN-negativer primärer Mammakarzinome eine noch größere Bedeutung beimisst. Diese Hypothese muss anhand weiterführender Analysen jedoch erst belegt werden.

5.2.2 Auswirkungen der Interaktion einer in gehirnmetastatischen Mammakarzinomzelllinie mit Gliazellen

Wang et al. kultivierten parentale MDA-MB-231-Zellen in durch Astrozyten konditioniertem Medium und wiesen eine gesteigerte Invasion im Vergleich zur Kulturierung in hitzeinaktiviertem, konditioniertem Astrozytenmedium bzw. DMEM nach. Ferner belegten sie im Vergleich zur Kulturierung in DMEM verringerte Proliferationsraten, vergleichbar mit einer Kulturierung in DMEM ohne FBS.

5.3 Ausblick

Zusammenfassung

Die translationalen und funktionellen Ergebnisse deuten eine mögliche PTEN-abhängige Veränderung des Tumorphänotyps durch Interaktion mit dem Gehirnmilieu an, der die Besiedlung des Zielgewebes unterstützt. Diese Hypothese muss anhand weiterführender Analysen erst belegt werden, bestärkt jedoch die Wichtigkeit der Früherkennung PTEN-negativer Mammakarzinommerkrankungen.
Summary

Brain metastases represent the final stage of cancerous diseases and are so far incurable. Besides lung cancer, breast cancer is the most common cause for brain metastases. The dissemination of single tumor cells from the primary tumor is as an early step in the metastatic cascade. These disseminated tumor cells are able to rest within distant sites like the brain and can grow out to overt metastases even years after the primary diagnosis. Therefore, such minimal residual disease is thus already present at distant site of relapse at time of primary tumor diagnosis. These cells remain undetected and may be inaccessible for therapeutics due to the non-proliferative state of the cells. An early diagnosis of breast cancers is of tremendous importance in order to prevent the formation of metastases.

The exact molecular mechanism responsible for brain metastasis is still unclear. However, diverse cell functions involved in tumorigenesis are regulated by the PI3K pathway, which can be activated by the receptor tyrosine kinases EGFR and HER2. So far, HER2-targeted therapies are in clinical use and other pathway members are under intensive investigation. For maximal efficiency of treatment, combined targeting of multiple proteins of the same or parallel pathways may be potentially useful and thus be of clinical significance. Several studies have reported frequent alterations of EGFR, HER2, PTEN and PIK3CA in breast cancer brain metastases. However, this thesis is the first comparative study of all four proteins in different subgroups of primary and metastatic breast cancer patients including brain and other metastases. Copy number variations were studied by using qPCR, FISH and microsatellite analyses. Mutation analyses were done by Sanger sequencing and protein levels were determined by immunohistochemistry.

This study revealed a significant association between EGFR and PTEN alterations and the presence of brain metastasis. Even a weak gain of EGFR locus caused shortened survival rates and intratumoral heterogeneous protein levels. Neither mutations in the tyrosin kinase domain nor the EGFRvIII transcript variant were detected within the analyzed patient cohort and thus seem to be irrelevant for EGFR overexpression in breast cancer brain metastases. PTEN loss was shown to be mainly caused by allelic imbalance followed by mutations. Moreover, an organ-specific, differential, intracellular localization of PTEN was detected, implicating a relevance of complete PTEN loss in brain metastasis and an involvement of nuclear PTEN in brain microenvironment interaction. In contrast, activation of PI3K signaling seems to be important in bone metastasis rather than brain metastasis. Furthermore, alterations of HER2 and EGFR were found to be almost mutually exclusive. Therefore, patients can be categorized into three groups based on their alteration status. Both EGFR and PTEN alterations are significantly associated with hormone receptor and HER2 negative (triple-negative) breast cancer possessing a distinct organ-specific homing to the brain. The HER2 overexpressing group is generally
associated with distant metastasis, which is not limited to the brain. PIK3CA mutant tumors correlate with a primary tumor subtype with a good prognosis, which rarely metastasizes to brain. Importantly, only one of the studied brain metastases samples harbored no alterations in any of the analyzed proteins. Therefore, these results suggest that almost all brain metastases patients would benefit from a combined use of novel targeted therapies against EGFR/HER2 pathway members.

Aberrations of EGFR and PTEN loci are also commonly found in primary brain tumors and malignant melanoma, which metastasizes preferentially to the brain. The translational results of this thesis suggest brain as favored distant site for cells harboring EGFR/PTEN alterations due to its specialized microenvironment. Therefore, the functional role of PTEN in breast cancer brain metastasis was analyzed in a cell culture model. Hence, PTEN overexpression was introduced into the highly aggressive, triple-negative MDA-MB-231 BR cell line. In contrast to the parental cell line (MDA-MB-231 WT), these cells metastasize preferentially to the brain and show a decreased PTEN expression. PTEN overexpression in MDA-MB-231 BR cells caused a decreased AKT activation and proliferation as well as diminished migration. Overexpression of PTEN thus caused a less aggressive phenotype resembling more the parental MDA-MB-231 WT cell line. PTEN-dependent tumor cell migration was induced by astrocytes and microglia. PTEN-dependent effect on proliferation decreased in tumor cells grown with secreted factors from activated astrocytes. In contrast, secreted factors from activated microglia had no effect on tumor cell proliferation.

Translational and functional results point to a possible PTEN-dependent switch of the tumor cell phenotype supporting the colonization of target tissue caused by brain microenvironment interaction. This hypothesis has to be proven by further analyzes. However, it encourages the importance of early diagnosis of PTEN-negative breast tumors.
Literaturverzeichnis

on patterns of breast carcinomas distinguish tumor subclasses with clinical
targeted cancer.

Vrbic, S., Pejcic, I., Filipovic, S., Kocic, B. & Vrbic, M. Current and future anti-HER2 therapy in breast cancer. J. BUON. 18, 4–16

I table chromosomes in cancer: causes and consequences.

DETECT III. http://www.detect-studien.de/

SUCCESS B. http://www.success-studie.de/b/

9.1 Zusätzliche Tabellen

<table>
<thead>
<tr>
<th>Patientin</th>
<th>Paar</th>
<th>Rezidiv</th>
<th>Subtyp</th>
<th>EGFR</th>
<th>PTEN</th>
<th>PIK3CA</th>
<th>HER2</th>
<th>EGFR+ PTEN+ PIK3CA</th>
<th>HER2+ PTEN+ PIK3CA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kopien</td>
<td>Protein</td>
<td>Status</td>
<td>Kopien</td>
<td>Mutation</td>
<td>Protein</td>
</tr>
<tr>
<td>BCBM-05</td>
<td>1</td>
<td>Gehirn</td>
<td>HER2</td>
<td>0</td>
<td>●</td>
<td>-</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>PT-030</td>
<td>1</td>
<td>Gehirn + Knochen</td>
<td>HER2</td>
<td>● - ● -</td>
<td></td>
</tr>
<tr>
<td>BCBM-20</td>
<td>2</td>
<td>Gehirn</td>
<td>HR+</td>
<td>●</td>
<td>●</td>
<td>-</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>PT-039</td>
<td>2</td>
<td>Gehirn</td>
<td>nd</td>
<td>●</td>
<td>● - ●</td>
<td>● - ●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>BCBM-01</td>
<td>3</td>
<td>Gehirn</td>
<td>HER2</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>PT-029</td>
<td>3</td>
<td>Gehirn</td>
<td>TNBC</td>
<td>● ● ●</td>
<td>● ● ●</td>
<td>● ● ●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>BCBM-14</td>
<td>4</td>
<td>Gehirn</td>
<td>HR+</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>PT-040</td>
<td>4</td>
<td>Gehirn</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patientin</th>
<th>Paar</th>
<th>Rezidiv</th>
<th>Subtyp</th>
<th>EGFR</th>
<th>PTEN</th>
<th>PIK3CA</th>
<th>HER2</th>
<th>EGFR+ PTEN+ PIK3CA</th>
<th>HER2+ PTEN+ PIK3CA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kopien</td>
<td>Protein</td>
<td>Status</td>
<td>Kopien</td>
<td>Mutation</td>
<td>Protein</td>
</tr>
<tr>
<td>PT-005</td>
<td>5</td>
<td>Knochen</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DCIS-01</td>
<td>5</td>
<td>Knochen</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PT-011</td>
<td>6</td>
<td>Keine</td>
<td>HR+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DCIS-02</td>
<td>6</td>
<td>Keine</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PT-015</td>
<td>7</td>
<td>Keine</td>
<td>HR+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DCIS-03</td>
<td>7</td>
<td>Keine</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PT-017</td>
<td>8</td>
<td>Andere</td>
<td>HER2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DCIS-04</td>
<td>8</td>
<td>Andere</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PT-022</td>
<td>9</td>
<td>Keine</td>
<td>HR+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DCIS-05</td>
<td>9</td>
<td>Keine</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PT-103</td>
<td>10</td>
<td>Andere</td>
<td>HER2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DCIS-06</td>
<td>10</td>
<td>Andere</td>
<td>nd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patientin</th>
<th>Rezidiv</th>
<th>Subtyp</th>
<th>EGFR</th>
<th>PTEN</th>
<th>PIK3CA</th>
<th>HER2</th>
<th>EGFR+PTEN+PIK3CA</th>
<th>HER2+PTEN+PIK3CA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Köpfe</td>
<td>Köpfe</td>
<td>Mutation</td>
<td>Köpfe</td>
<td>Mutation</td>
<td>Köpfe</td>
</tr>
<tr>
<td>BCBM-02</td>
<td>Gehirn</td>
<td>HER2</td>
<td>o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCBM-03</td>
<td>Gehirn</td>
<td>TNBC</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-04</td>
<td>Gehirn</td>
<td>HER2</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCBM-06</td>
<td>Gehirn</td>
<td>TNBC</td>
<td>o</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-07</td>
<td>Gehirn</td>
<td>TNBC</td>
<td>o</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-08</td>
<td>Gehirn</td>
<td>HER2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCBM-09</td>
<td>Gehirn</td>
<td>HR+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCBM-10</td>
<td>Gehirn</td>
<td>HER2</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-11</td>
<td>Gehirn</td>
<td>HER2</td>
<td>o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCBM-12</td>
<td>Gehirn</td>
<td>HER2</td>
<td>-</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-13</td>
<td>Gehirn</td>
<td>HR+</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-15</td>
<td>Gehirn</td>
<td>HER2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCBM-16</td>
<td>Gehirn</td>
<td>HR+</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-17</td>
<td>Gehirn</td>
<td>HER2</td>
<td>o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCBM-18</td>
<td>Gehirn</td>
<td>HER2</td>
<td>o</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-19</td>
<td>Gehirn</td>
<td>TNBC</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-21</td>
<td>Gehirn</td>
<td>TNBC</td>
<td>o</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-22</td>
<td>Gehirn</td>
<td>HER2</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-23</td>
<td>Gehirn</td>
<td>nd</td>
<td>o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCBM-24</td>
<td>Gehirn</td>
<td>HR+</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BCBM-25</td>
<td>Gehirn</td>
<td>HR+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCBM-26</td>
<td>Gehirn</td>
<td>HER2</td>
<td>o</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-27</td>
<td>Gehirn</td>
<td>TNBC</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-28</td>
<td>Gehirn</td>
<td>HR+</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-29</td>
<td>Gehirn</td>
<td>HR+</td>
<td>o</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>BCBM-31</td>
<td>Gehirn</td>
<td>TNBC</td>
<td>o</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |
| | | | | | | | | | |
| | Metastasen in anderen Organen als dem Gehirn |
| BCOM-01 | Andere | nd | - | - | - | - | - | - | - |
| BCOM-02 | Andere | nd | - | - | - | - | - | - | - |
| BCOM-03 | Andere | nd | - | - | - | - | - | - | - |
| BCOM-04 | Andere | nd | o | - | - | - | - | - | - |
| BCOM-05 | Andere | nd | o | ● | ● | ● | ● | ● | ● |
| BCOM-06 | Andere | nd | o | ● | ● | ● | ● | ● | ● |
| BCOM-07 | Knochen | nd | - | - | - | - | - | - | - |
| BCOM-08 | Knochen | nd | - | - | - | - | - | - | - |
| BCOM-09 | Knochen | nd | - | - | - | - | - | - | - |
| BCOM-10 | Knochen | nd | - | - | - | - | - | - | - |
| BCOM-11 | Knochen | nd | - | - | - | - | - | - | - |
| BCOM-12 | Knochen | nd | - | - | - | - | - | - | - |
| BCOM-13 | Knochen | nd | - | - | - | - | - | - | - |
| BCOM-14 | Knochen | nd | - | - | - | - | - | - | - |
| BCOM-15 | Knochen | nd | - | - | - | - | - | - | - |</p>
<table>
<thead>
<tr>
<th>Primärtumoren</th>
<th>Primärtumoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT-004 Keine HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-007 Keine HER2</td>
<td>- -</td>
</tr>
<tr>
<td>PT-010 Andere HER2</td>
<td>- -</td>
</tr>
<tr>
<td>PT-013 Andere HER2</td>
<td>- -</td>
</tr>
<tr>
<td>PT-014 Keine HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-016 Keine HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-018 Andere HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-019 Keine HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-020 Keine HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-021 Keine HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-023 Keine HER2</td>
<td>○ -</td>
</tr>
<tr>
<td>PT-024 Keine HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-025 Keine HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-028 Gehirn nd</td>
<td>- -</td>
</tr>
<tr>
<td>PT-033 Keine HER2</td>
<td>- -</td>
</tr>
<tr>
<td>PT-036 Andere HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-038 Gehirn HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-041 Knochen HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-042 Gehirn + Knochen TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-044 Keine TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-045 Keine TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-046 Keine TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-047 Keine HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-048 Keine TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-049 Andere HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-052 Andere TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-053 Andere TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-054 Knochen HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-055 Knochen HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-056 Knochen HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-058 Knochen HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-071 Knochen HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-072 Knochen HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-073 Gehirn HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-074 Knochen HER2</td>
<td>- -</td>
</tr>
<tr>
<td>PT-075 Andere HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-076 Andere HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-077 Knochen HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-089 Andere HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-090 Andere TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-091 Andere TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-092 Andere TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-093 Andere HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-094 Andere TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-095 Andere TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-097 Andere TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-098 Gehirn HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-099 Knochen HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-100 Knochen HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-101 Keine HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-102 Andere HR+</td>
<td>- -</td>
</tr>
<tr>
<td>PT-103 Knochen TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-104 Keine TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-105 Keine TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-106 Keine TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-107 Andere TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-108 Knochen TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-109 Andere TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-110 Andere TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-111 Keine TNBC</td>
<td>- -</td>
</tr>
<tr>
<td>PT-112 Andere TNBC</td>
<td>- -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patientin¹</th>
<th>EGFR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kopien-</td>
</tr>
<tr>
<td></td>
<td>anzahl²</td>
</tr>
<tr>
<td>BCBM-01</td>
<td>AMP</td>
</tr>
<tr>
<td>BCBM-02</td>
<td>GAIN</td>
</tr>
<tr>
<td>BCBM-03</td>
<td>AMP</td>
</tr>
<tr>
<td>BCBM-04</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-05</td>
<td>GAIN</td>
</tr>
<tr>
<td>BCBM-06</td>
<td>GAIN</td>
</tr>
<tr>
<td>BCBM-07</td>
<td>GAIN</td>
</tr>
<tr>
<td>BCBM-08</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-09</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-10</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-11</td>
<td>GAIN</td>
</tr>
<tr>
<td>BCBM-13</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-14</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-15</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-16</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-17</td>
<td>GAIN</td>
</tr>
<tr>
<td>BCBM-18</td>
<td>GAIN</td>
</tr>
<tr>
<td>BCBM-19</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-20</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-21</td>
<td>GAIN</td>
</tr>
<tr>
<td>BCBM-22</td>
<td>AMP</td>
</tr>
<tr>
<td>BCBM-23</td>
<td>GAIN</td>
</tr>
<tr>
<td>BCBM-24</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-26</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-27</td>
<td>AMP</td>
</tr>
<tr>
<td>BCBM-28</td>
<td>WT</td>
</tr>
<tr>
<td>BCBM-29</td>
<td>GAIN</td>
</tr>
<tr>
<td>BCBM-31</td>
<td>GAIN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patientin¹</th>
<th>EGFR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kopien-</td>
</tr>
<tr>
<td></td>
<td>anzahl²</td>
</tr>
<tr>
<td>BCOM-02</td>
<td>WT</td>
</tr>
<tr>
<td>BCOM-03</td>
<td>WT</td>
</tr>
<tr>
<td>BCOM-04</td>
<td>GAIN</td>
</tr>
<tr>
<td>BCOM-05</td>
<td>GAIN</td>
</tr>
<tr>
<td>BCOM-06</td>
<td>GAIN</td>
</tr>
</tbody>
</table>
Tab. 9.6: EGFR-Kopienanzahl und Proteinspiegel der Primärtumorpatientinnen. Dargestellt sind die EGFR-Kopienanzahl und die Proteinlevels der jeweiligen Patientinnen mit zugehöriger Lokalisation des Rezidivs. Aufgeführt sind Patientinnen, die im weiteren Krankheitsverlauf keine Rezidive (Keine), Rezidive im Gehirn (Gehirn), im Knochen (Knochen), in Gehirn und Knochen (Gehirn+Knochen) oder in anderen Geweben als dem Gehirn (Andere) entwickelten. Diploid vorliegendes EGFR, EGFR-Zugewinn und –Amplifikation sind als WT, GAIN bzw. AMP illustriert. Nicht messbare, schwache und hohe EGFR-Proteinlevels wurden als 0, 1+ bzw. 3+ dargestellt.

<table>
<thead>
<tr>
<th>Patientin*</th>
<th>Rezidiv†</th>
<th>EGFR Kopienanzahl†</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT-007</td>
<td>keines</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-013</td>
<td>andere</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-014</td>
<td>keines</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-017</td>
<td>andere</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-018</td>
<td>andere</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-021</td>
<td>keines</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-022</td>
<td>keines</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-023</td>
<td>keines</td>
<td>GAIN</td>
<td>0</td>
</tr>
<tr>
<td>PT-024</td>
<td>keines</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-025</td>
<td>keines</td>
<td>GAIN</td>
<td>0</td>
</tr>
<tr>
<td>PT-028</td>
<td>Gehirn</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-029</td>
<td>Gehirn</td>
<td>AMP</td>
<td>3+</td>
</tr>
<tr>
<td>PT-030</td>
<td>Gehirn+Knochen</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-033</td>
<td>keines</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-036</td>
<td>andere</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-038</td>
<td>Gehirn</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-039</td>
<td>Gehirn</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-042</td>
<td>Gehirn+Knochen</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-045</td>
<td>keines</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-048</td>
<td>keines</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-053</td>
<td>andere</td>
<td>GAIN</td>
<td>0</td>
</tr>
<tr>
<td>PT-071</td>
<td>Knochen</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-072</td>
<td>Knochen</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-073</td>
<td>Gehirn</td>
<td>AMP</td>
<td>3+</td>
</tr>
<tr>
<td>PT-075</td>
<td>andere</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-077</td>
<td>Knochen</td>
<td>GAIN</td>
<td>0</td>
</tr>
<tr>
<td>PT-093</td>
<td>andere</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-097</td>
<td>andere</td>
<td>AMP</td>
<td>1+</td>
</tr>
<tr>
<td>PT-098</td>
<td>Gehirn</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-099</td>
<td>Knochen</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-101</td>
<td>keines</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-102</td>
<td>andere</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-103</td>
<td>andere</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-106</td>
<td>keines</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-108</td>
<td>keines</td>
<td>GAIN</td>
<td>0</td>
</tr>
<tr>
<td>PT-109</td>
<td>andere</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-110</td>
<td>andere</td>
<td>WT</td>
<td>3+</td>
</tr>
<tr>
<td>PT-112</td>
<td>andere</td>
<td>WT</td>
<td>0</td>
</tr>
</tbody>
</table>

Tab. 9.7: Patientendaten über Nachsorge, Rezidiventwicklung und Versterben der Primärtumorpatientinnen. Dargestellt sind Daten der Nachsorge (Follow-up) sowie die Zeitspanne von der Resektion des Primärtumors bis zu jener der Fernmetastase bzw. bis zum Tod der jeweiligen Patientin in Monaten mit zugehöriger Lokalisation des Rezidivs. Aufgeführt sind Patientinnen, die im weiteren Krankheitsverlauf keine Rezidive (Keine), Rezidive im Gehirn (Gehirn), im Knochen (Knochen), in Gehirn und Knochen (Gehirn+Knochen) oder in anderen Geweben als dem Gehirn (Andere) entwickelten. Kein Rezidiv: bis zum Datum der letzten Nachsorge wurde kein Rezidiv diagnostiziert, M1: Diagnose des Rezidivs zum Zeitpunkt der Primärtumorresektion, Nicht bekannt: es konnte keine Zeitspanne der Nachsorge ermittelt werden, Nicht verstorben: bis zum Datum der letzten Nachsorge war die Patientin noch am leben.
<table>
<thead>
<tr>
<th>Patientin</th>
<th>Rezidiv</th>
<th>Follow-up [Monate]</th>
<th>Zeitspanne bis Rezidivierung [Monate]</th>
<th>Zeitspanne bis Versterben [Monate]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT-004</td>
<td>keines</td>
<td>90,9</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-005</td>
<td>Knochen</td>
<td>20,8</td>
<td>16,4</td>
<td>21,6</td>
</tr>
<tr>
<td>PT-007</td>
<td>keines</td>
<td>91,0</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-010</td>
<td>andere</td>
<td>27,9</td>
<td>nicht bekannt</td>
<td>27,9</td>
</tr>
<tr>
<td>PT-011</td>
<td>keines</td>
<td>83,0</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-013</td>
<td>andere</td>
<td>80,1</td>
<td>63,6</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-014</td>
<td>keines</td>
<td>97,6</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-015</td>
<td>keines</td>
<td>71,9</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-016</td>
<td>keines</td>
<td>138,8</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-017</td>
<td>andere</td>
<td>76,1</td>
<td>51,0</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-018</td>
<td>andere</td>
<td>74,8</td>
<td>39,9</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-019</td>
<td>keines</td>
<td>73,4</td>
<td>kein Rezidiv</td>
<td>73,4</td>
</tr>
<tr>
<td>PT-020</td>
<td>keines</td>
<td>73,0</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-021</td>
<td>keines</td>
<td>73,7</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-022</td>
<td>keines</td>
<td>61,1</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-023</td>
<td>keines</td>
<td>62,6</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-024</td>
<td>keines</td>
<td>63,8</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-025</td>
<td>keines</td>
<td>54,5</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-028</td>
<td>Gehirn</td>
<td>nicht bekannt</td>
<td>M1</td>
<td>nd</td>
</tr>
<tr>
<td>PT-029</td>
<td>Gehirn</td>
<td>14,5</td>
<td>11,4</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-030</td>
<td>Gehirn + Knochen</td>
<td>140,0</td>
<td>69,0</td>
<td>140</td>
</tr>
<tr>
<td>PT-033</td>
<td>keines</td>
<td>97,9</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-036</td>
<td>andere</td>
<td>92,6</td>
<td>68,5</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-038</td>
<td>Gehirn</td>
<td>52,0</td>
<td>36,6</td>
<td>52,0</td>
</tr>
<tr>
<td>PT-039</td>
<td>Gehirn</td>
<td>nicht bekannt</td>
<td>122</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-040</td>
<td>Gehirn</td>
<td>13,0</td>
<td>13,0</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-041</td>
<td>Knochen</td>
<td>68,4</td>
<td>66,5</td>
<td>68,4</td>
</tr>
<tr>
<td>PT-042</td>
<td>Gehirn + Knochen</td>
<td>18,9</td>
<td>12,0</td>
<td>18,9</td>
</tr>
<tr>
<td>PT-045</td>
<td>keines</td>
<td>48,2</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-047</td>
<td>keines</td>
<td>39,0</td>
<td>kein Rezidiv</td>
<td>39,0</td>
</tr>
<tr>
<td>PT-048</td>
<td>keines</td>
<td>56,9</td>
<td>kein Rezidiv</td>
<td>nicht bekannt</td>
</tr>
<tr>
<td>PT-049</td>
<td>andere</td>
<td>14,4</td>
<td>M1</td>
<td>14,4</td>
</tr>
<tr>
<td>PT-053</td>
<td>andere</td>
<td>48,0</td>
<td>M1</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-059</td>
<td>Knochen</td>
<td>13,1</td>
<td>13,1</td>
<td>13,1</td>
</tr>
<tr>
<td>PT-060</td>
<td>Knochen</td>
<td>45,6</td>
<td>23,5</td>
<td>45,6</td>
</tr>
<tr>
<td>PT-061</td>
<td>Knochen</td>
<td>45,5</td>
<td>M1</td>
<td>45,5</td>
</tr>
<tr>
<td>PT-065</td>
<td>Knochen</td>
<td>42,5</td>
<td>M1</td>
<td>42,5</td>
</tr>
<tr>
<td>PT-071</td>
<td>Knochen</td>
<td>18,5</td>
<td>5,8</td>
<td>18,5</td>
</tr>
<tr>
<td>PT-072</td>
<td>Knochen</td>
<td>71,4</td>
<td>10,7</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-073</td>
<td>Gehirn</td>
<td>15,6</td>
<td>10,6</td>
<td>15,5</td>
</tr>
<tr>
<td>PT-074</td>
<td>Knochen</td>
<td>22,5</td>
<td>22,6</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-075</td>
<td>andere</td>
<td>62,3</td>
<td>13,7</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-077</td>
<td>Knochen</td>
<td>39,0</td>
<td>5,5</td>
<td>39</td>
</tr>
<tr>
<td>PT-093</td>
<td>andere</td>
<td>12,8</td>
<td>12,3</td>
<td>12,8</td>
</tr>
<tr>
<td>PT-097</td>
<td>andere</td>
<td>0,5</td>
<td>0,3</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-098</td>
<td>Gehirn</td>
<td>118,6</td>
<td>nicht bekannt</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-099</td>
<td>Knochen</td>
<td>82,0</td>
<td>56,0</td>
<td>82</td>
</tr>
<tr>
<td>PT-100</td>
<td>Knochen</td>
<td>39,3</td>
<td>28,6</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-101</td>
<td>keines</td>
<td>93,5</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-102</td>
<td>andere</td>
<td>47,6</td>
<td>29,1</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-103</td>
<td>andere</td>
<td>84,0</td>
<td>6,6</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-104</td>
<td>keines</td>
<td>57,2</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-105</td>
<td>keines</td>
<td>70,7</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-106</td>
<td>keines</td>
<td>66,5</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-107</td>
<td>andere</td>
<td>31,2</td>
<td>28,2</td>
<td>31,2</td>
</tr>
<tr>
<td>PT-108</td>
<td>keines</td>
<td>67,5</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
<tr>
<td>PT-109</td>
<td>andere</td>
<td>20,9</td>
<td>8,2</td>
<td>20,8</td>
</tr>
<tr>
<td>PT-110</td>
<td>andere</td>
<td>11,3</td>
<td>10,7</td>
<td>11,3</td>
</tr>
<tr>
<td>PT-111</td>
<td>keines</td>
<td>56,6</td>
<td>kein Rezidiv</td>
<td>nicht verstorben</td>
</tr>
</tbody>
</table>

168

Anhang

<table>
<thead>
<tr>
<th>Patientin</th>
<th>Zeitspanne bis Rezidivierung [Monate]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCBM-01</td>
<td>11,4</td>
</tr>
<tr>
<td>BCBM-02</td>
<td>32,2</td>
</tr>
<tr>
<td>BCBM-03</td>
<td>0,7</td>
</tr>
<tr>
<td>BCBM-04</td>
<td>63,1</td>
</tr>
<tr>
<td>BCBM-05</td>
<td>36,4</td>
</tr>
<tr>
<td>BCBM-06</td>
<td>Nicht bekannt</td>
</tr>
<tr>
<td>BCBM-07</td>
<td>58,3</td>
</tr>
<tr>
<td>BCBM-08</td>
<td>37,6</td>
</tr>
<tr>
<td>BCBM-09</td>
<td>43,6</td>
</tr>
<tr>
<td>BCBM-10</td>
<td>222,0</td>
</tr>
<tr>
<td>BCBM-11</td>
<td>Nicht bekannt</td>
</tr>
<tr>
<td>BCBM-12</td>
<td>84,0</td>
</tr>
<tr>
<td>BCBM-13</td>
<td>12,4</td>
</tr>
<tr>
<td>BCBM-14</td>
<td>69,6</td>
</tr>
<tr>
<td>BCBM-15</td>
<td>25,0</td>
</tr>
<tr>
<td>BCBM-16</td>
<td>86,6</td>
</tr>
<tr>
<td>BCBM-17</td>
<td>168,2</td>
</tr>
<tr>
<td>BCBM-18</td>
<td>97,4</td>
</tr>
<tr>
<td>BCBM-19</td>
<td>17,7</td>
</tr>
<tr>
<td>BCBM-20</td>
<td>120,0</td>
</tr>
<tr>
<td>BCBM-21</td>
<td>7,0</td>
</tr>
<tr>
<td>BCBM-22</td>
<td>4,0</td>
</tr>
<tr>
<td>BCBM-23</td>
<td>9,0</td>
</tr>
<tr>
<td>BCBM-24</td>
<td>84,0</td>
</tr>
<tr>
<td>BCBM-26</td>
<td>132,0</td>
</tr>
<tr>
<td>BCBM-27</td>
<td>Nicht bekannt</td>
</tr>
<tr>
<td>BCBM-28</td>
<td>Nicht bekannt</td>
</tr>
<tr>
<td>BCBM-29</td>
<td>Nicht bekannt</td>
</tr>
<tr>
<td>BCBM-31</td>
<td>Nicht bekannt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient</th>
<th>Rezidiv</th>
<th>PTEN Kopienanzahl</th>
<th>Mutation</th>
<th>Proteinlevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT-005</td>
<td>Knochen</td>
<td>LOSS</td>
<td>WT</td>
<td>-</td>
</tr>
<tr>
<td>PT-041</td>
<td>Knochen</td>
<td>WT</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>PT-059</td>
<td>Knochen</td>
<td>WT</td>
<td>WT</td>
<td>-</td>
</tr>
<tr>
<td>PT-060</td>
<td>Knochen</td>
<td>WT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PT-061</td>
<td>Knochen</td>
<td>WT</td>
<td>WT</td>
<td>-</td>
</tr>
<tr>
<td>PT-065</td>
<td>Knochen</td>
<td>WT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PT-071</td>
<td>Knochen</td>
<td>WT</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>PT-072</td>
<td>Knochen</td>
<td>WT</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>PT-074</td>
<td>Knochen</td>
<td>WT</td>
<td>-</td>
<td>3+</td>
</tr>
<tr>
<td>PT-077</td>
<td>Knochen</td>
<td>WT</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>PT-099</td>
<td>Knochen</td>
<td>WT</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>PT-100</td>
<td>Knochen</td>
<td>-</td>
<td>-</td>
<td>1+</td>
</tr>
<tr>
<td>PT-028</td>
<td>Gehirn</td>
<td>WT</td>
<td>-</td>
<td>1+</td>
</tr>
<tr>
<td>PT-029</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>WT</td>
<td>1+</td>
</tr>
<tr>
<td>PT-038</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>PT-039</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>PT-040</td>
<td>Gehirn</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PT-073</td>
<td>Gehirn</td>
<td>WT</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>PT-098</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>PT-030</td>
<td>Gehirn + Knochen</td>
<td>LOSS</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>PT-042</td>
<td>Gehirn + Knochen</td>
<td>WT</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>PT-004</td>
<td>Keine</td>
<td>WT</td>
<td>WT</td>
<td>-</td>
</tr>
<tr>
<td>PT-007</td>
<td>Keine</td>
<td>WT</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>PT-011</td>
<td>Keine</td>
<td>WT</td>
<td>WT</td>
<td>-</td>
</tr>
<tr>
<td>PT-014</td>
<td>Keine</td>
<td>WT</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>PT-015</td>
<td>Keine</td>
<td>WT</td>
<td>WT</td>
<td>-</td>
</tr>
<tr>
<td>PT-016</td>
<td>Keine</td>
<td>WT</td>
<td>WT</td>
<td>-</td>
</tr>
<tr>
<td>PT-019</td>
<td>Keine</td>
<td>WT</td>
<td>WT</td>
<td>-</td>
</tr>
<tr>
<td>PT-020</td>
<td>Keine</td>
<td>WT</td>
<td>-</td>
<td>3+</td>
</tr>
<tr>
<td>PT-021</td>
<td>Keine</td>
<td>WT</td>
<td>WT</td>
<td>3+</td>
</tr>
<tr>
<td>PT-022</td>
<td>Keine</td>
<td>LOSS</td>
<td>WT</td>
<td>1+</td>
</tr>
<tr>
<td>PT-023</td>
<td>Keine</td>
<td>WT</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>PT-024</td>
<td>Keine</td>
<td>WT</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>PT-025</td>
<td>Keine</td>
<td>WT</td>
<td>WT</td>
<td>3+</td>
</tr>
<tr>
<td>PT-033</td>
<td>Keine</td>
<td>WT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PT-045</td>
<td>Keine</td>
<td>WT</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-047</td>
<td>Keine</td>
<td>LOSS</td>
<td>WT</td>
<td>-</td>
</tr>
<tr>
<td>PT-048</td>
<td>Keine</td>
<td>WT</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>PT-101</td>
<td>Keine</td>
<td>WT</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>PT-104</td>
<td>Keine</td>
<td>WT</td>
<td>WT</td>
<td>1+</td>
</tr>
<tr>
<td>PT-105</td>
<td>Keine</td>
<td>-</td>
<td>WT</td>
<td>1+</td>
</tr>
<tr>
<td>PT-106</td>
<td>Keine</td>
<td>-</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>PT-108</td>
<td>Keine</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>PT-111</td>
<td>Keine</td>
<td>LOSS</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>PT-010</td>
<td>Andere</td>
<td>WT</td>
<td>WT</td>
<td>-</td>
</tr>
<tr>
<td>PT-013</td>
<td>Andere</td>
<td>LOSS</td>
<td>WT</td>
<td>1+</td>
</tr>
<tr>
<td>PT-017</td>
<td>Andere</td>
<td>WT</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>PT-018</td>
<td>Andere</td>
<td>LOSS</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>PT-036</td>
<td>Andere</td>
<td>WT</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>PT-049</td>
<td>Andere</td>
<td>WT</td>
<td>WT</td>
<td>-</td>
</tr>
<tr>
<td>PT-053</td>
<td>Andere</td>
<td>WT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PT-075</td>
<td>Andere</td>
<td>WT</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>PT-093</td>
<td>Andere</td>
<td>WT</td>
<td>WT</td>
<td>1+</td>
</tr>
<tr>
<td>PT-097</td>
<td>Andere</td>
<td>-</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>PT-102</td>
<td>Andere</td>
<td>WT</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>PT-103</td>
<td>Andere</td>
<td>-</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-107</td>
<td>Andere</td>
<td>-</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>PT-109</td>
<td>Andere</td>
<td>WT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PT-110</td>
<td>Andere</td>
<td>-</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>PT-112</td>
<td>other</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patientin</th>
<th>Rezidiv</th>
<th>PTEN-Kopienanzahl</th>
<th>Mutation</th>
<th>Proteinlevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCBM-01</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>WT</td>
<td>1+</td>
</tr>
<tr>
<td>BCBM-02</td>
<td>Gehirn</td>
<td>WT</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>BCBM-03</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>BCBM-04</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>BCBM-05</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>BCBM-06</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>MUT</td>
<td>0</td>
</tr>
<tr>
<td>BCBM-07</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>MUT</td>
<td>0</td>
</tr>
<tr>
<td>BCBM-08</td>
<td>Gehirn</td>
<td>WT</td>
<td>MUT</td>
<td>3+</td>
</tr>
<tr>
<td>BCBM-09</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>BCBM-10</td>
<td>Gehirn</td>
<td>WT</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>BCBM-11</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>WT</td>
<td>3+</td>
</tr>
<tr>
<td>BCBM-12</td>
<td>Gehirn</td>
<td>WT</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>BCBM-13</td>
<td>Gehirn</td>
<td>WT</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>BCBM-14</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>BCBM-15</td>
<td>Gehirn</td>
<td>WT</td>
<td>WT</td>
<td>3+</td>
</tr>
<tr>
<td>BCBM-16</td>
<td>Gehirn</td>
<td>WT</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>BCBM-17</td>
<td>Gehirn</td>
<td>-</td>
<td>WT</td>
<td>3+</td>
</tr>
<tr>
<td>BCBM-18</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>BCBM-19</td>
<td>Gehirn</td>
<td>WT</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>BCBM-20</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>BCBM-21</td>
<td>Gehirn</td>
<td>LOSS</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>BCBM-22</td>
<td>Gehirn</td>
<td>-</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>BCBM-23</td>
<td>Gehirn</td>
<td>-</td>
<td>WT</td>
<td>2+</td>
</tr>
<tr>
<td>BCBM-24</td>
<td>Gehirn</td>
<td>-</td>
<td>MUT</td>
<td>3+</td>
</tr>
<tr>
<td>BCBM-26</td>
<td>Gehirn</td>
<td>WT</td>
<td>MUT</td>
<td>0</td>
</tr>
<tr>
<td>BCBM-27</td>
<td>Gehirn</td>
<td>-</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>BCBM-28</td>
<td>Gehirn</td>
<td>-</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>BCBM-29</td>
<td>Gehirn</td>
<td>-</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>BCBM-31</td>
<td>Gehirn</td>
<td>-</td>
<td>-</td>
<td>1+</td>
</tr>
<tr>
<td>BCOM-01</td>
<td>Andere</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BCOM-02</td>
<td>Andere</td>
<td>WT</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>BCOM-03</td>
<td>Andere</td>
<td>LOSS</td>
<td>WT</td>
<td>3+</td>
</tr>
<tr>
<td>BCOM-04</td>
<td>Andere</td>
<td>LOSS</td>
<td>WT</td>
<td>3+</td>
</tr>
<tr>
<td>BCOM-05</td>
<td>Andere</td>
<td>LOSS</td>
<td>WT</td>
<td>0</td>
</tr>
<tr>
<td>BCOM-06</td>
<td>Andere</td>
<td>LOSS</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>BCOM-07</td>
<td>Knochen</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>BCOM-08</td>
<td>Knochen</td>
<td>-</td>
<td>-</td>
<td>3+</td>
</tr>
<tr>
<td>BCOM-09</td>
<td>Knochen</td>
<td>-</td>
<td>-</td>
<td>1+</td>
</tr>
<tr>
<td>BCOM-10</td>
<td>Knochen</td>
<td>-</td>
<td>-</td>
<td>3+</td>
</tr>
<tr>
<td>BCOM-11</td>
<td>Knochen</td>
<td>-</td>
<td>-</td>
<td>1+</td>
</tr>
<tr>
<td>BCOM-12</td>
<td>Knochen</td>
<td>-</td>
<td>-</td>
<td>3+</td>
</tr>
<tr>
<td>BCOM-13</td>
<td>Knochen</td>
<td>-</td>
<td>-</td>
<td>3+</td>
</tr>
<tr>
<td>BCOM-14</td>
<td>Knochen</td>
<td>-</td>
<td>-</td>
<td>2+</td>
</tr>
<tr>
<td>BCOM-15</td>
<td>Knochen</td>
<td>-</td>
<td>-</td>
<td>2+</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

Δ delta
°C Temperatur (Grad Celsius)
AI allelische Imbalanz (Allelic Imbalance)
AKT Proteinkinase B
Amp Ampicillin
AMP Amplikation
APAAP Alkalische Phosphatase Anti-Alkalische Phosphatase
ATCC American Type Culture Collection
BAC Bacterial Artificial Chromosome
BCBM Gehirnmetastasen des Mammakarzinoms (breast cancer brain metastases)
BCOM Mammakarzinommetastasen in andere Organe als dem Gehirn (breast cancer other metastases)
bp Basenpaar (base pair)
BSA Rinderserumalbumin (bovine serum albumine)
cDNA komplementäre DNA (complementary DNA)
CDS codierende Sequenz
CEP Zentromersonde (centromere probe)
CGH komparative genomische Hybridisierung (comparative genomic hybridization)
Chr Chromosom
CO2 Kohlenstoffdioxid
Con Konversion (conversion)
Cot-1 Schwellenwert-Zyklus (threshold cycle)
CTC zirkulierende Tumorzelle (circulating tumor cell)
CXCR4 CXC-Motiv-Chemokinrezeptor 4
Da Dalton
DAB Diaminobenzidin
DAPI 4,6-Diamidino-2-phenylindol-Dihydrochlorid
del Deletion
de novo „zum ersten Mal“
DEPC Diethylenpyrocarbonat
DFS rezidivfreies Überleben (disease-free survival)
dh2O deionisiertes Nuklease-freies Wasser
DMEM Dulbecco’s Modified Eagle Medium
DMSO Dimethylsulfoxid
DNA Desoxyribonukleinsäure (deoxyribonucleic acid)
DNase Deoxyribonuklease
ddTTP Desoxynukleotid
DTC disseminierte Tumorzellen (disseminated tumor cells)
dUTP Desoxyuridintriphosphat
E Extinktion
ECL Enhanced Chemiluminescence Substrate
E. coli Eschericia coli
EDTA Ethylenediamintetraessigsäure (ethylen diamin tetraacetic acid)
EGF epidermaler Wachstumsfaktor (epidermal growth factor)
EGFR EGF Rezeptor
EGFRvIII EGFR-Transkriptvariante
EMT epitheliale-mesenchymale Transition
et al. „und andere“ (et alii)
EtOH Ethanol
evtl. Eventuell
FAM 6-Carboxyfluorescein
FBS fetales Rinderserum (fetal bovine serum)
FDA Food and Drug Administration
FFPE Formalin-fixiert und in Paraffin eingebettet (formalin-fixed paraffin-embedded)
FI Fluoreszenzintensität
FISH Fluoreszenz in-situ Hybridisierung
G Differenzierungsstufen (Grading)
g Gramm
g. Lokalisation in der genomischen Sequenz
GBM Glioblastoma multiforme
GFP grün fluoreszierendes Protein
h Stunde
HE Hämatoxylin / Eosin
HER2 Humaner epidermaler Wachstumsfaktor Rezeptor 2
HEX hexachloriertes FAM
HPLC Hochleistungsflüssigkeitschromatographie (high performance liquid chromatography)
Anhang

HR Hormonrezeptor
HRP Meerrettichperoxidase (horseradish peroxidase)
IFNy Interferon gamma
IHC Immunhistochemie
ISH in situ-Hybridisierung
in situ „am Ort“
in vitro „im Glas“
in vivo „im Lebendigen“
JAG-1 jagged 1
JAK Januskinase
KCI/CaCl₂ Kaliumchlorid / Kalziumchlorid
I Liter
LB Luria-Bertani
Log₂ Logarithmus zur Basis 2
M Molar
m Steigung
mA Milliampère
MAPK Mitogenaktivierter Proteinkinase
MET mesenchymale-epitheliale Transition
min Minute
mRNA Boten-RNA (messenger RNA)
MTT Tetrazoliumbromid
MUT Mutante
N Normal
n Anzahl
NGS Next Generation Sequencing
nm Nanometer
n.s. nicht signifikant
NTC Negativkontrolle (non-target control)
OD optische Dichte
OS Gesamtoberleben (overall survival)
p phosphoryliert
p Lokalisation in der Proteineinheit
PAGE Polyacrylamidgelelektrophorese
pan gesamt
PBS Phosphate buffered saline
PCR Polymerase-Kettenreaktion (polymerase chain reaction)
PFA Paraformaldehyd
PI3K Phosphoinositol-3-Kinase
PIK3CA katalytische Untereinheit von PI3K
PIP₂ Phosphatidylinositol-4,5-Bisphosphat
PIP₃ Phosphatidylinositol-3,4,5-Trisphosphat
PTEN Phosphatase und Tensin Homolog
pH negativer dekadischer Logarithmus der Wasserstoffionenkonzentration
pM Status der Fernmetastasen
pN Status der Lymphknoten-Metastasen (Node)
p-Wert Wahrscheinlichkeit (probability)
qPCR quantitative Realtime-PCR
RNA Ribonukleinsäure (ribonucleic acid)
RNase Ribonuklease
RPLP0 große Untereinheit der ribosomenalen RNA (ribosomal protein, large, P0)
rpm Umdrehungen pro Minute (rounds per minute)
RT Raumtemperatur
RTK Rezeptortyrosinkinase
RT-PCR Reverse Transkriptase-PCR
SDS Natriumdodecylsulfat
sec Sekunde
shRNA short hairpin RNA
SNP Einzelnukleotid-Polymorphismen (single nucleotide polymorphism)
SSC saline sodium citrate
STAT signal transducer and activator of transcription
pT Tumorausdehnung
TAE Tris-Acetat-EDTA
TB Terrific Broth
TBS Tris-buffered saline
TBS-T TBS mit Tween-20
Template zu untersuchende DNA-Vorlage
TKD Tyrosinkinasedomäne
TMA Gewebe-Mikroarray (tissue microarray)
TEMED Tetramethylthelylendiamin
TNBC triple-negatives Mammakarzinom (triple negative breast cancer)
TNFα Tumornekrosefaktor alpha
TNM Stadieneinteilung
Tris Tris(hydroxymethyl)aminomethan
U Einheit (Unit)
UHR universale humane Referenz mRNA
UKE Universitätsklinikum Hamburg-Eppendorf
USA United States of America
UTR untranslatierte Region
UV Ultraviolett
V Volt
Vol Volumanteil
v/v Volumen pro Volumen
w/v Masse pro Volumen (weight per volume)
WB Western Blot
WT Wildtyp
x g mehrfaches der Gravitation
z.B. zum Beispiel

Größentabelle

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-12}</td>
<td>pico</td>
<td>p</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>micro</td>
<td>µ</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>centi</td>
<td>c</td>
</tr>
<tr>
<td>10^1</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>10^6</td>
<td>mega</td>
<td>M</td>
</tr>
</tbody>
</table>

Aminosäurecodes

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanin</td>
<td>Ala</td>
<td>A</td>
</tr>
<tr>
<td>Arginin</td>
<td>Arg</td>
<td>R</td>
</tr>
<tr>
<td>Asparagin</td>
<td>Asn</td>
<td>N</td>
</tr>
<tr>
<td>Asparat</td>
<td>Asp</td>
<td>D</td>
</tr>
<tr>
<td>Cystein</td>
<td>Cys</td>
<td>C</td>
</tr>
<tr>
<td>Glutamin</td>
<td>Gln</td>
<td>Q</td>
</tr>
<tr>
<td>Glutamat</td>
<td>Glu</td>
<td>E</td>
</tr>
<tr>
<td>Glycin</td>
<td>Gly</td>
<td>G</td>
</tr>
<tr>
<td>Histidin</td>
<td>His</td>
<td>H</td>
</tr>
<tr>
<td>Isoleucin</td>
<td>Ile</td>
<td>I</td>
</tr>
<tr>
<td>Leucin</td>
<td>Leu</td>
<td>L</td>
</tr>
<tr>
<td>Lysin</td>
<td>Lys</td>
<td>K</td>
</tr>
<tr>
<td>Metionin</td>
<td>Met</td>
<td>M</td>
</tr>
<tr>
<td>Phenylalanin</td>
<td>Phe</td>
<td>F</td>
</tr>
<tr>
<td>Prolin</td>
<td>Pro</td>
<td>P</td>
</tr>
<tr>
<td>Serin</td>
<td>Ser</td>
<td>S</td>
</tr>
<tr>
<td>Threonin</td>
<td>Thr</td>
<td>T</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>Trp</td>
<td>W</td>
</tr>
<tr>
<td>Tyrosin</td>
<td>Tyr</td>
<td>Y</td>
</tr>
<tr>
<td>Valin</td>
<td>Val</td>
<td>V</td>
</tr>
</tbody>
</table>
9.2 Oligonukleotide

<table>
<thead>
<tr>
<th>Bezeichnung 1)</th>
<th>Sequenz (5' → 3')</th>
<th>Gen/Region</th>
<th>T° [°C]</th>
<th>Amplikon [Bp]</th>
<th>Literatur</th>
<th>PCR 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequenzierung der CDS von PTEN, der Exone 17-22 von EGFR sowie der Exone 8-10 und 19-21 von PIK3CA auf cDNA-Ebene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeqEGFR TK_F1</td>
<td>CTGCCCTGTCTCGTGGTGTT</td>
<td>EGFR</td>
<td>64</td>
<td>695</td>
<td>198</td>
<td>P/S</td>
</tr>
<tr>
<td>SeqEGFR TK_R1</td>
<td>GATTTGCACTCCACACTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeqPIK3CA_F1</td>
<td>CATCTCTGATTTCTCCTCGT</td>
<td>PIK3CA</td>
<td>58</td>
<td>575</td>
<td>198</td>
<td>M/P/S</td>
</tr>
<tr>
<td>SeqPIK3CA_R1</td>
<td>CGTGTGCAATTTGGTTCGAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeqPIK3CA_R2</td>
<td>GGTCTTTGCCGCTGGAGAGT</td>
<td>PIK3CA</td>
<td>58</td>
<td>431</td>
<td>198</td>
<td>M/P/S</td>
</tr>
<tr>
<td>PTEN CDS_F1</td>
<td>TTGTCTCGAGAAAGAC</td>
<td>PTEN</td>
<td>62</td>
<td>1756</td>
<td>198</td>
<td>P</td>
</tr>
<tr>
<td>PTEN CDS_R2</td>
<td>TCGGAACACTCTCTTAGCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeqPTEN_F1</td>
<td>TCAAGAGGATGGATCGACTT</td>
<td>PTEN</td>
<td>-</td>
<td>-</td>
<td>198</td>
<td>S</td>
</tr>
<tr>
<td>SeqPTEN_R1</td>
<td>AGCCTCTTGTTCTGTTGAGG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeqPTEN_F2</td>
<td>AGTCCTCCAGCGCTTACC</td>
<td>PTEN</td>
<td>-</td>
<td>-</td>
<td>198</td>
<td>S</td>
</tr>
<tr>
<td>SeqPTEN_R2</td>
<td>TGGCTTTGTCTTTATTTGGTG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequenzierung der genomischen Sequenz der Exone 9 und 20 des PIK3CA-Gens sowie der Exone 3-6 des PTEN-Gens auf DNA-Ebene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeqPIK3CA Ex9_F</td>
<td>TGAAACTCAGGAGGGAAA</td>
<td>PI3K</td>
<td>54</td>
<td>261</td>
<td>198</td>
<td>M/P/S</td>
</tr>
<tr>
<td>SeqPIK3CA Ex9_R</td>
<td>TGGATACAGAAAATTTCCAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeqPIK3CA Ex20_F</td>
<td>CAGGAGATGTCTCAAG</td>
<td>PI3K</td>
<td>54</td>
<td>361</td>
<td>301</td>
<td>M/P/S</td>
</tr>
<tr>
<td>SeqPIK3CA Ex20_R</td>
<td>GTGAATCCAGAGGGGAAAA</td>
<td>PI3K</td>
<td>54</td>
<td>261</td>
<td>198</td>
<td>M/P/S</td>
</tr>
<tr>
<td>PTEN Ex3_F</td>
<td>ATGTCTTCTAGGTTGCAATG</td>
<td>PTEN</td>
<td>60</td>
<td>726</td>
<td>301</td>
<td>M/P</td>
</tr>
<tr>
<td>PTEN Ex3_R</td>
<td>GGACTTCTCTCTCTCTCTTAG</td>
<td>PTEN</td>
<td>-</td>
<td>-</td>
<td>198</td>
<td>S</td>
</tr>
<tr>
<td>PTEN Ex3_F2</td>
<td>ATGTAATGACGAAATTCGATCG</td>
<td>PTEN</td>
<td>60</td>
<td>698</td>
<td>301</td>
<td>P/S</td>
</tr>
<tr>
<td>PTEN Ex4_R</td>
<td>ATGTCTTCTAGGTTGCAATG</td>
<td>PTEN</td>
<td>60</td>
<td>698</td>
<td>301</td>
<td>P/S</td>
</tr>
<tr>
<td>PTEN SeqEx4_F</td>
<td>GGGTGTGATACAGTCAATCTTACG</td>
<td>PTEN</td>
<td>60</td>
<td>698</td>
<td>301</td>
<td>P/S</td>
</tr>
<tr>
<td>PTEN SeqEx4_R</td>
<td>TAAATTATCTCTCAGTCTACG</td>
<td>PTEN</td>
<td>60</td>
<td>698</td>
<td>301</td>
<td>P/S</td>
</tr>
<tr>
<td>PTEN Ex5_P1_R</td>
<td>ATGATATGACGAAATTCGATCG</td>
<td>PTEN</td>
<td>60</td>
<td>1036</td>
<td>301</td>
<td>M/P</td>
</tr>
<tr>
<td>PTEN SeqEx5_F</td>
<td>ATGGGATACAGTCAATCTTACG</td>
<td>PTEN</td>
<td>60</td>
<td>698</td>
<td>301</td>
<td>M/P</td>
</tr>
<tr>
<td>PTEN SeqEx5_R</td>
<td>ATGGGATACAGTCAATCTTACG</td>
<td>PTEN</td>
<td>60</td>
<td>698</td>
<td>301</td>
<td>M/P</td>
</tr>
<tr>
<td>PTEN Ex5_P2_R</td>
<td>ATGATATGACGAAATTCGATCG</td>
<td>PTEN</td>
<td>60</td>
<td>1036</td>
<td>301</td>
<td>M/P</td>
</tr>
<tr>
<td>PTEN Ex6_F</td>
<td>AATGTATATGACTACATCTACG</td>
<td>PTEN</td>
<td>60</td>
<td>698</td>
<td>301</td>
<td>M/P</td>
</tr>
<tr>
<td>PTEN Ex6_R</td>
<td>ATGGGATACAGTCAATCTTACG</td>
<td>PTEN</td>
<td>60</td>
<td>698</td>
<td>301</td>
<td>M/P</td>
</tr>
<tr>
<td>PTEN exon6 P1_R</td>
<td>ATGATATGACGAAATTCGATCG</td>
<td>PTEN</td>
<td>60</td>
<td>1036</td>
<td>301</td>
<td>M/P</td>
</tr>
<tr>
<td>PTEN exon6 P2_R</td>
<td>ATGGGATACAGTCAATCTTACG</td>
<td>PTEN</td>
<td>60</td>
<td>698</td>
<td>301</td>
<td>M/P</td>
</tr>
<tr>
<td>Mutationsanalyse der EGFR CDS auf die vIII-Deletionsvariante</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeqEGFR vIII_F2</td>
<td>CTGGGGGGAGCGCGATGCGAC</td>
<td>EGFR</td>
<td>58</td>
<td>1044 [WT], 243 (vIII)</td>
<td>198</td>
<td>D</td>
</tr>
<tr>
<td>SeqEGFR vIII_R2</td>
<td>ACCAATACCATTTTCGATCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) F: Forward-Primer (sense); R: Reverse-Primer (antisense); F2/R2 zweites Primer Set
2) T: Annealingstemperatur
3) D: Deletion, M: Multiplex, P: Präsequenzierung, Q: qPCR, S: Sequenzierung
<table>
<thead>
<tr>
<th>Bezeichnung (^1)</th>
<th>Gen/Region</th>
<th>Sequenz (5' → 3') (^2)</th>
<th>T (^3) [°C]</th>
<th>Amplikon [Bp]</th>
<th>Literatur</th>
<th>PCR (^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QEGFR_F</td>
<td>EGFR</td>
<td>TCTGATTCCTGGCAGATTC</td>
<td>58</td>
<td>94</td>
<td>203</td>
<td>Q</td>
</tr>
<tr>
<td>QEGFR_R</td>
<td>GCAGTCCACTCCATGCTCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYBR green-Assay basierte quantitative Analyse der Genkopienanzahlen im EGFR-Gen

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Gen/Region</th>
<th>Sequenz (5' → 3') (^2)</th>
<th>T (^3) [°C]</th>
<th>Amplikon [Bp]</th>
<th>Literatur</th>
<th>PCR (^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTEN_EcoRI_F</td>
<td>LeGO-IG2</td>
<td>ctaGAAATTCGCCatgcagccataaatagag</td>
<td>56</td>
<td>1121</td>
<td>Eigene</td>
<td>S</td>
</tr>
<tr>
<td>PTEN_NotI_R</td>
<td>LeGO-IG2</td>
<td>gcgcctagTCTGAatgcagccataaatagag</td>
<td></td>
<td></td>
<td>Eigene</td>
<td>S</td>
</tr>
<tr>
<td>TRC005_F</td>
<td>LeGO-G/Puro</td>
<td>ggcctagTCTGACatgcagccataaatagag</td>
<td>57</td>
<td>380</td>
<td>Eigene</td>
<td>S</td>
</tr>
<tr>
<td>TRC005_R</td>
<td>LeGO-G/Puro</td>
<td>ggcctagTCTGACatgcagccataaatagag</td>
<td></td>
<td></td>
<td>Eigene</td>
<td>S</td>
</tr>
</tbody>
</table>

Umrklonierung der PTEN CDS bzw. von shRNA-Sequenzen in LeGO-Vektoren

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Gen/Region</th>
<th>Sequenz (5' → 3') (^2)</th>
<th>T (^3) [°C]</th>
<th>Amplikon [Bp]</th>
<th>Literatur</th>
<th>PCR (^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LeGO-iG2_F</td>
<td>LeGO-IG2</td>
<td>AAGAGGCTACACCCCTCA</td>
<td>-</td>
<td>1437</td>
<td>Eigene</td>
<td>S</td>
</tr>
<tr>
<td>LeGO-iG2_R</td>
<td>LeGO-IG2</td>
<td>CCAAAAGGCGAATATGGT</td>
<td>-</td>
<td></td>
<td>Eigene</td>
<td>S</td>
</tr>
<tr>
<td>LeGO-G/Puro_F</td>
<td>LeGO-G/Puro</td>
<td>GTACAGTGCGGGGGAAGA</td>
<td>-</td>
<td>650</td>
<td>Eigene</td>
<td>S</td>
</tr>
<tr>
<td>LeGO-G/Puro_R</td>
<td>LeGO-G/Puro</td>
<td>GCCGCTAAAGCTGGAACC</td>
<td>-</td>
<td></td>
<td>Eigene</td>
<td>S</td>
</tr>
</tbody>
</table>

SYBR green-Assay basierte quantitative Analyse der PTEN-Genexpression

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Gen/Region</th>
<th>Sequenz (5' → 3') (^2)</th>
<th>T (^3) [°C]</th>
<th>Amplikon [Bp]</th>
<th>Literatur</th>
<th>PCR (^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTEN prom_F</td>
<td>PTEN</td>
<td>TGCTGCAGGAAGCTGAAACAC</td>
<td>64</td>
<td>119</td>
<td>Eigene</td>
<td></td>
</tr>
<tr>
<td>PTEN prom_R</td>
<td>PTEN</td>
<td>CACCATCGAGATCTGATGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-RPLP0-F</td>
<td>RPLP0</td>
<td>ACCCAGCTGAGAAACTGC</td>
<td>58</td>
<td>72</td>
<td>Eigene</td>
<td></td>
</tr>
<tr>
<td>RT-RPLP0-R</td>
<td>RPLP0</td>
<td>TGGAGCTCCTTCTTGGAACCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) F: Forward-Primer (sense); R: Reverse-Primer (antisense)
2) unterstrichene Abschnitte: eingefügte zusätzliche Sequenzen (add-on)
3) T: Annealingstemperatur
4) D: Deletion, M: Multiplex, P: Präsequenzierung, Q: qPCR, S: Sequenzierung

9.3 Verwendete shRNA-Sequenzen

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>ID</th>
<th>Sequenz (5' → 3') (^2)</th>
<th>Spezies</th>
<th>Target</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>shPTEN1</td>
<td>TRCN0000219043</td>
<td>CTCTCTTGTGCTGTTGTGTGTTGTTGT</td>
<td>Homo sapiens</td>
<td>PTEN</td>
<td>c.5217 (3'UTR)</td>
</tr>
<tr>
<td>shPTEN2</td>
<td>TRCN0000219043</td>
<td>GTATTGCTGGATCTGCGCTGGGT</td>
<td>Homo sapiens</td>
<td>PTEN</td>
<td>c.4405 (3'UTR)</td>
</tr>
<tr>
<td>shNTC</td>
<td>SHC002</td>
<td>ACTTCTGATCCCTTCTCGTG</td>
<td>Homo sapiens</td>
<td>keines</td>
<td>-</td>
</tr>
</tbody>
</table>

176
9.4 Verwendete Plasmide

<table>
<thead>
<tr>
<th>Name</th>
<th>Spezies</th>
<th>Marker</th>
<th>Expression</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCDNA3.1/PTEN</td>
<td>Eukaryotisch</td>
<td>-</td>
<td>PTEN CDS</td>
<td>Ursprungsvektor zur Überexpression von PTEN</td>
</tr>
<tr>
<td>LeGO-iG2</td>
<td>Lentiviral</td>
<td>eGFP</td>
<td>-</td>
<td>Leervektor zur cDNA-Expression, Negativkontrolle im Überexpressionsversuch</td>
</tr>
<tr>
<td>LeGO-iG2/PTEN</td>
<td>Lentiviral</td>
<td>eGFP</td>
<td>PTEN CDS</td>
<td>Etablierung von Modellsystemen mit stabiler PTEN-Überexpression</td>
</tr>
<tr>
<td>piZs2puro++tTKRAB</td>
<td>Lentiviral</td>
<td>ZsGreen, Tetracyclin, Puromycin</td>
<td>-</td>
<td>Leervektor zur induzierbaren cDNA-Expression, Negativkontrolle im Überexpressionsversuch</td>
</tr>
<tr>
<td>piZs2puro++tTKRAB_PTEN</td>
<td>Lentiviral</td>
<td>ZsGreen, Tetracyclin, Puromycin</td>
<td>PTEN CDS</td>
<td>Etablierung von Modellsystemen mit induzierbarer PTEN-Überexpression</td>
</tr>
<tr>
<td>pLKO_TRC005/shPTEN1</td>
<td>Lentiviral</td>
<td>Puromycin</td>
<td>shRNA-PTEN1 (gegen die PTEN-mRNA gerichtet)</td>
<td>Ursprungsvektor zum stabilen Knockdown von PTEN</td>
</tr>
<tr>
<td>pLKO_TRC005/shPTEN2</td>
<td>Lentiviral</td>
<td>Puromycin</td>
<td>shRNA-PTEN1 (gegen die PTEN-mRNA gerichtet)</td>
<td>Ursprungsvektor zum stabilen Knockdown von PTEN</td>
</tr>
<tr>
<td>pLKO_TRC005/shNTC</td>
<td>Lentiviral</td>
<td>Puromycin</td>
<td>shRNA gegen keine humane oder murine</td>
<td>Ursprungsvektor für die Negativkontrolle im Knockdownversuch</td>
</tr>
<tr>
<td>LeGO-G/Puro+</td>
<td>Lentiviral</td>
<td>eGFP, Puromycin</td>
<td>-</td>
<td>Leervektor zur shRNA-Expression</td>
</tr>
<tr>
<td>LeGO-G/Puro+/shPTEN1</td>
<td>Lentiviral</td>
<td>eGFP, Puromycin</td>
<td>shRNA-PTEN1</td>
<td>Etablierung von Modellsystemen mit PTEN-Knockdown</td>
</tr>
<tr>
<td>LeGO-G/Puro+/shPTEN2</td>
<td>Lentiviral</td>
<td>eGFP, Puromycin</td>
<td>shRNA-PTEN2</td>
<td>Etablierung von Modellsystemen mit PTEN-Knockdown</td>
</tr>
<tr>
<td>LeGO-G/Puro+/shNTC</td>
<td>Lentiviral</td>
<td>eGFP, Puromycin</td>
<td>shRNA-NTC</td>
<td>Negativkontrolle im Knockdownversuch</td>
</tr>
<tr>
<td>psPAX2</td>
<td>Lentiviral</td>
<td>-</td>
<td>lentivirale Verpackungsproteine</td>
<td>Herstellung von Viren</td>
</tr>
<tr>
<td>pMD2.G</td>
<td>Lentiviral</td>
<td>-</td>
<td>lentivirale Hüllproteine</td>
<td>Herstellung von Viren</td>
</tr>
</tbody>
</table>

Lentivirale Verpackungsproteine und Hüllproteine für die Herstellung von Viren.
Knockdownvektoren

Überexpressionsvektoren
9.5 Chemikalien

<table>
<thead>
<tr>
<th>Chemikalien und Bioreagenzien</th>
<th>Hersteller/Vertreiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-Serum</td>
<td>Biotest AG, Dreieich</td>
</tr>
<tr>
<td>Aceton</td>
<td>J.T. Baker, Deventer Niederlande</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Ammoniumpersulfat (APS)</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Bactoagar</td>
<td>BD Medical, Le Pont de Clai, Frankreich</td>
</tr>
<tr>
<td>Bacto<sup>TM</sup> Yeast Extract</td>
<td>BD Medical, Le Pont de Clai, Frankreich</td>
</tr>
<tr>
<td>Bactotrypton</td>
<td>BD Medical, Le Pont de Clai, Frankreich</td>
</tr>
<tr>
<td>B-Mercaptoethanol</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Borsäure (H3BO3)</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Bovines Serumalbumin</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Bromphenolblau</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Choleratoxin</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Citratpuffer (pH 6) (10x)</td>
<td>Dako, Glostrup Dänemark</td>
</tr>
<tr>
<td>Dako REAL<sup>TM</sup> Antibody Diluent</td>
<td>Dako, Glostrup Dänemark</td>
</tr>
<tr>
<td>Dako REAL<sup>TM</sup> Peroxidase-Blocking Solution</td>
<td>Dako, Glostrup Dänemark</td>
</tr>
<tr>
<td>DAKO Blocking Solution</td>
<td>Roche, Mannheim</td>
</tr>
<tr>
<td>Desoxykoseidstriphosphat-Set</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Dextranulfat</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Diethylprocarbonat (DEPC)</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>di-Kaliumhydrogenphoshat (K2HPO4)</td>
<td>Serva, Heidelberg</td>
</tr>
<tr>
<td>Dimethylsulfoxid (DMSO)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>di-Natriumhydrogenphoshat-Dihydrat (Na2PO4 x 2 H2O)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>DMEM/F12 Medium (ohne Phenolrot)</td>
<td>Dako, Glostrup Dänemark</td>
</tr>
<tr>
<td>DMEM High Glucose-Medium</td>
<td>Dako, Glostrup Dänemark</td>
</tr>
<tr>
<td>Desoxykoseidstriphosphate Set</td>
<td>DAKO Blocking Solution</td>
</tr>
<tr>
<td>Doxycyclin</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>dUTPs (Spektrum orange)</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>EDTA (Diethylen-diamin-tetraessigsäure)</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>EGF</td>
<td>Miltenyi Biotec, Bergisch Gladbach</td>
</tr>
<tr>
<td>Eosin G-Lösung (0,5%, wässrig)</td>
<td>Carl Roth GmbH, Karlsruhe</td>
</tr>
<tr>
<td>Eissäure (96%)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Ethanol (Molekularbiologie abs.)</td>
<td>Sigma-Aldrich, St. Louis USA</td>
</tr>
<tr>
<td>Ethanol (99%)</td>
<td>Walter-CMP GmbH, Kiel</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>Sigma-Aldrich, St. Louis USA</td>
</tr>
<tr>
<td>Ethyldiamintetraacetat (EDTA)</td>
<td>Sigma-Aldrich, St. Louis USA</td>
</tr>
<tr>
<td>Eukitt</td>
<td>O. Kindler GmbH, Freiburg</td>
</tr>
<tr>
<td>Fetal Bovine Serum Mycoplex</td>
<td>PAA Laboratories GmbH, Pasching Österreich</td>
</tr>
<tr>
<td>FISH Enzyme Reagent</td>
<td>Invitrogen GmbH, Karlsruhe</td>
</tr>
<tr>
<td>Fixogum</td>
<td>Marabuwerke GmbH&Co., Tamm</td>
</tr>
<tr>
<td>Formaldehyde (37%)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Formamid</td>
<td>Sigma-Aldrich, St. Louis USA</td>
</tr>
<tr>
<td>Glycerin</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Hämatoxylin</td>
<td>Merck Eurolab, Darmstadt</td>
</tr>
<tr>
<td>Hefeextrakt</td>
<td>BD Biosciences, Heidelberg</td>
</tr>
<tr>
<td>Hexadimethrine bromide (≥95%)</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>humane Cot 1-DNA</td>
<td>Roche Diagnostics GmbH, Mannheim</td>
</tr>
<tr>
<td>Hydrocortison</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Insulin</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Interferon γ</td>
<td>R&D Systems, Minneapolis, MN, USA</td>
</tr>
<tr>
<td>Isopropanol (2-Propanol)</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Luminol</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Kaliumchlorid (KCl)</td>
<td>Merck Eurolab, Darmstadt</td>
</tr>
<tr>
<td>Kaliumhydrogenphoshat (KH2PO4)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Kaliumhydrogenphoshat (K2HPO4)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Levamisol</td>
<td>Sigma-Aldrich, St. Louis USA</td>
</tr>
<tr>
<td>L-Glutamine (200mM) (100x)</td>
<td>Gibco BRL, Life Technologies, Egggenstein</td>
</tr>
<tr>
<td>MEM, High Glucose, High Sodium Bicarbonate Medium</td>
<td>Gibco BRL, Life Technologies, Egggenstein</td>
</tr>
<tr>
<td>Mayer’s-Hämatoxylinlösung</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Mercaptoethanol</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Methanol</td>
<td>J.T. Baker, Deventer Niederlande</td>
</tr>
</tbody>
</table>
Methylenblau
Milchpulver
Natriumacetat (C₂H₃NaO₂)
Natriumchlorid (NaCl)
Natriumdihydrogenphosphatdihydrat (Na(HPO₄)₂ · 2 H₂O)
Natriumhydrogencarbonat (NaHCO₃)
Natronlauge (NaOH)
Nonidet P-40
Nuklease-freies Wasser
Opti-MEM® Medium
Paraformaldehyd (PFA)
PBS, Dulbecco’s
p-Cumarsäure
Penicillin Streptomycin (10.000 U/ml)
Pepsin
Pferdeserum
Proteinase K-Lösung
Protogel®
Puromycin
RPMI 1640-Medium
Salzsäure (HCl)
Seakem LE Agarose
Sodiumdodecylsulfat (SDS)
Sodium-Pyruvat
Spot-Light Tissue Heat Pretreatment
Tetramethylmethylenediamin
Tumornekrosefaktor α
Toluidinblau
Triton X100
Trizma Base
Trypanblaulösung (0,4%)
Trypsin-EDTA-Lösung (25%)
Tween-20
Vectashield® Mounting Medium with DAPI
Xylene (Xylol)
Xylenolol FF

Agarose GelExtract Mini Kit
AmpliTaq Gold Kit
BigDye® Terminator v.1.1. Cycle Sequencing Ready Reaction Kit
BioPrime DNA Labeling System
Bio-Spin 30 Tris Columns
DAKO REAL™ Detection System
DAKO REAL™ EnVision™ Detection System
First Strand cDNA Synthesis Kit
INNUPREP DNA Mikrokit
Maxima® SYBR Green/Rox qPCR Master Mix
NucleoBond® Xtra Midi
NucleoSpin® Gel and PCR Clean-up
NucleoSpin® RNA II
PathVysion HER-2 DNA Probe Kit II
QIAGEN® Large-Construct Kit
QI Amp® DNA Micro / Mini Kit
Qiaprep® Spin Miniprep Kit
QIAshredder
PCRExtract Mini Kit
RNeasy® Micro / Mini Kit
Whole Blood Erythrocyte Lysing Kit

Anhang

9.6 Kit-Systeme

Verwendete käufliche Systeme (Kits)	Hersteller/Vertreiber
Agarose GelExtract Mini Kit | 5Prime, Hamburg
AmpliTaq Gold Kit | Applied Biosystems, Darmstadt
BioPrime DNA Labeling System | Invitrogen, Karlsruhe
Bio-Spin 30 Tris Columns | Bio-Rad Laboratories, Hercules, USA
DAKO REAL™ Detection System | Dako, Glostrup Dänemark
DAKO REAL™ EnVision™ Detection System | Dako, Glostrup Dänemark
First Strand cDNA Synthesis Kit | Fermentas, St. Leon-Rot
INNUPREP DNA Mikrokit | Analytik Jena, Jena
Maxima® SYBR Green/Rox qPCR Master Mix | Fermentas, St. Leon-Rot
NucleoBond® Xtra Midi | Macherey-Nagel, Düren
NucleoSpin® Gel and PCR Clean-up | Macherey-Nagel, Düren
NucleoSpin® RNA II | Macherey-Nagel, Düren
PathVysion HER-2 DNA Probe Kit II | Abbott Laboratories, Abbott Park, IL, USA
QIAGEN® Large-Construct Kit | Qiagen, Hilden
QIAmp® DNA Micro / Mini Kit | Qiagen, Hilden
Qiaprep® Spin Miniprep Kit | Qiagen, Hilden
QIAshredder | Qiagen, Hilden
PCRExtract Mini Kit | 5Prime, Hamburg
RNeasy® Micro / Mini Kit | Qiagen, Hilden
Whole Blood Erythrocyte Lysing Kit | R&D Systems, Minneapolis, USA
9.7 Geräte

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller/Vertreiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeine Laborgeräte</td>
<td></td>
</tr>
<tr>
<td>Analysenwaage CPA224S-OCE</td>
<td>Sartorius AG, Göttingen</td>
</tr>
<tr>
<td>Bio Imaging System, GeneGenius</td>
<td>Syngene, Cambridge UK</td>
</tr>
<tr>
<td>CO₂-Zellkulturrinkubator HERAcell® 150</td>
<td>Thermo Fisher Scientific, Waltham USA</td>
</tr>
<tr>
<td>Cryotom JUNG CM1800</td>
<td>Leica, Nussloch</td>
</tr>
<tr>
<td>Dampfkochtopf Decloaking Chamber™</td>
<td>Biocare Medical, Concord USA</td>
</tr>
<tr>
<td>Eisbereiter FM-120 DE</td>
<td>Hoshizaki, Amsterdam, Niederlande</td>
</tr>
<tr>
<td>Elektrophorese power supply consort e 143</td>
<td>Sigma-Aldrich, St. Louis USA</td>
</tr>
<tr>
<td>Elektrophoresekammer ComPhor L Mini/Midi</td>
<td>Bioplastics, Landgraaf Niederlande</td>
</tr>
<tr>
<td>Filmentwickler Curix 60</td>
<td>AGFA HealthCare, Bonn</td>
</tr>
<tr>
<td>FISHER-THERMOMULTI 100</td>
<td>Biozym, Hessisch Oldendorf</td>
</tr>
<tr>
<td>Gefrierschrank -20 °C</td>
<td>Liebherr, Kirchdorf</td>
</tr>
<tr>
<td>Gelkammer ComPor L Mini</td>
<td>Bioplastics RV, Landgraaf, NL</td>
</tr>
<tr>
<td>GeneAmp® PCR System 9700</td>
<td>Applied Biosystem, Kalifornien USA</td>
</tr>
<tr>
<td>Genetic Analyzer 3130</td>
<td>Applied Biosystem, Kalifornien USA</td>
</tr>
<tr>
<td>Gefriertruhe -80 °C, KLT 4785</td>
<td>Kryotec-Kryosafe GmbH, Hamburg</td>
</tr>
<tr>
<td>Giessstand Hoefer</td>
<td>Amersham Biosciences, Buckinghamshire, UK</td>
</tr>
<tr>
<td>Heizblock HBT 130</td>
<td>HLC Biotech, Bovenden</td>
</tr>
<tr>
<td>Hyperheizblock 75 J S</td>
<td>Amersham, Pharmacia Biotech, Freiburg</td>
</tr>
<tr>
<td>Magnetruhner MR 3000</td>
<td>H+P Labortechnik AG, Oberschließheim</td>
</tr>
<tr>
<td>Mastercycler gradient</td>
<td>Heidolph, Schwabach</td>
</tr>
<tr>
<td>Mikrobiologische Sicherheitswerkbank HERAsafe®</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Mikrobiologischer Brutschrank, Function Line</td>
<td>Thermo Fisher Scientific, Waltham</td>
</tr>
<tr>
<td>Mikrowelle 800</td>
<td>Heraeus Holding GmbH, Hanau</td>
</tr>
<tr>
<td>Minigelkammern Hoefer SE 250</td>
<td>Severin, Sundern</td>
</tr>
<tr>
<td>PeqSTAR</td>
<td>Amersham Biosciences, Buckinghamshire, UK</td>
</tr>
<tr>
<td>pH-Meter inoLab pH level 1</td>
<td>PEQLAB Biotechnologie GmbH, Erlangen</td>
</tr>
<tr>
<td>Pipetten (2,5 µl, 10 µl, 200 µl, 1000 µl)</td>
<td>WTW, Weilheim</td>
</tr>
<tr>
<td>Pipetus</td>
<td>Amersham, Pharmacia Biotech, Freiburg</td>
</tr>
<tr>
<td>Präzisionswaage BP 610</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Reinstwasser-System Ultra Clear</td>
<td>Hirschmann Laborgeräte, Eberstadt</td>
</tr>
<tr>
<td>Rollmischer, Stuart SRT1</td>
<td>Sartorius AG, Göttingen</td>
</tr>
<tr>
<td>Scanner 2D Epson 1680</td>
<td>Bibby Sterilin, Staffordshire, UK</td>
</tr>
<tr>
<td>Schlitzenmikrometer SM2000 R</td>
<td>EPSON Deutschland GmbH, Meerbusch</td>
</tr>
<tr>
<td>Schüttler</td>
<td>Leica, Nussloch</td>
</tr>
<tr>
<td>Semidry-Blotapparat</td>
<td>Heidolph Instruments GmbH, Schwabach</td>
</tr>
<tr>
<td>Spektrofluoreszmeter NanoDrop ND-1000</td>
<td>Biorad, München</td>
</tr>
<tr>
<td>Stickstoff-Gefriereihalter LS 4800</td>
<td>Peqlab, Erlangen</td>
</tr>
<tr>
<td>Thermomixer comfort</td>
<td>Taylor-Wharton, Theodore, USA</td>
</tr>
<tr>
<td>Vortex-Genie 2</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Wärmeschrank, Tissue Drying Oven TDO 66</td>
<td>Scientific Industries, Bohemia USA</td>
</tr>
<tr>
<td>Wasserbad 1002 und 1003</td>
<td>Medite, Burgdorf</td>
</tr>
<tr>
<td>Wasserbad Hi 1210</td>
<td>GFL Gesellschaft für Labortechnik GmbH, Burgwedel</td>
</tr>
<tr>
<td>Zählkammer, Neubauer improved</td>
<td>Leica, Nussloch</td>
</tr>
<tr>
<td>Zentrifugen und Zubehör</td>
<td>Optik Labor, Fried</td>
</tr>
<tr>
<td>Zentrifuge 5417R</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>Zentrifuge Biofuge fresco</td>
<td>Heraeus Holding GmbH, Hanau</td>
</tr>
<tr>
<td>Zentrifuge Multifuge 3 S-R</td>
<td>Heraeus Holding GmbH, Hanau</td>
</tr>
<tr>
<td>Zentrifuge Sorvall RC-5C Plus</td>
<td>Thermo Fisher Scientific, Waltham USA</td>
</tr>
<tr>
<td>Zentrifuge Rotofix 32</td>
<td>Hettich, Tuttlingen</td>
</tr>
<tr>
<td>Mikroskope und Zubehör</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Fluoreszenzmikroskop Axioplan 2 Imaging, MetaSystem</td>
<td>Zeiss, Göttingen</td>
</tr>
<tr>
<td>Filterblock DAPI: Set 01</td>
<td>Zeiss, Göttingen</td>
</tr>
<tr>
<td>Filterblock Alexa Fluor 488: MC-2B</td>
<td>AHF Analysetechnik AG, Tübingen</td>
</tr>
<tr>
<td>Filterblock Spektrum orange: MC-4</td>
<td>AHF Analysetechnik AG, Tübingen</td>
</tr>
<tr>
<td>Filterblock Spektrum aqua: Aqua</td>
<td>AHF Analysetechnik AG, Tübingen</td>
</tr>
<tr>
<td>10 x Objektiv: Fluar</td>
<td>Zeiss, Göttingen</td>
</tr>
<tr>
<td>40 x Objektiv: Plan-Neofluar</td>
<td>Zeiss, Göttingen</td>
</tr>
<tr>
<td>63 x Öl Objektiv: Plan-Neofluar</td>
<td>Zeiss, Göttingen</td>
</tr>
<tr>
<td>100 x Öl Objektiv: Plan-Neofluar</td>
<td>Zeiss, Göttingen</td>
</tr>
<tr>
<td>Software isis: in situ imaging system</td>
<td>Zeiss, Göttingen</td>
</tr>
<tr>
<td>Fluoreszenzmikroskop DM LB</td>
<td>Leica, Nussloch</td>
</tr>
<tr>
<td>10 x Objektiv: HC PL Fluotar 506505</td>
<td>Leica, Nussloch</td>
</tr>
<tr>
<td>20 x Objektiv: HC PL Fluotar 506003</td>
<td>Leica, Nussloch</td>
</tr>
<tr>
<td>40 x Objektiv: PL Fluotar 506004</td>
<td>Leica, Nussloch</td>
</tr>
<tr>
<td>100 x Öl Objektiv: PL Fluotar 506009</td>
<td>Leica, Nussloch</td>
</tr>
<tr>
<td>Kamera: KAPPA DX 30 colour camera System</td>
<td>Kappa, Gleichen</td>
</tr>
<tr>
<td>Kappa ImageBase Software</td>
<td>Kappa, Gleichen</td>
</tr>
<tr>
<td>Lichtmikroskop Axiostar plus</td>
<td>Carl Zeiss, Oberkochen</td>
</tr>
<tr>
<td>Lichtmikroskop Wilovert S</td>
<td>Hund, Wetzlar</td>
</tr>
</tbody>
</table>
Eigene Veröffentlichungen

Aus dieser Dissertation hervorgegangene Veröffentlichungen:

Im Zusammenhang mit dieser Dissertation stehende Posterbeiträge:

Hohensee I, et al. Involvement of EGFR and HER2 Pathway alterations in breast cancer brain metastases formation. Symposium des SFB850 - Control of Cell Motility in Development and Cancer 2013, Freiburg

Stipendien

Post-Doc Stelle aus dem Forschungsförderungsfonds der Medizinischen Fakultät der Universität Hamburg (November 2013-Oktober 2014)
Danksagung

Mein besonderer Dank gilt Haiju Wikman, die mir das interessante und aktuelle Thema in der Krebsforschung zur Verfügung gestellt hat. Ich möchte mich bei ihr auch für die intensive, gute und vertrauensvolle Betreuung der Arbeit bedanken. Ihr Wissen und die Bereitschaft dieses zu teilen sowie ihr Enthusiasmus haben mich auf sehr vielen Ebenen vorangebracht und ihre eigene Begeisterung für die Forschung hat mich stets motiviert.

Herrn Prof. Dr. Klaus Pantel danke ich für die Möglichkeit diese Arbeit an seinem Institut anfertigen zu können. Darüber hinaus bedanke ich mich bei ihm für die umfangreichen Erfahrungen, die ich im Rahmen meiner Arbeit sammeln durfte. Herrn Prof. Dr. Burmester und Prof. Dr. Schmidt-Rhaesa danke ich für ihre Bereitschaft in der Funktion als Dissertations- bzw. Disputationsgutachters aufzutreten sowie für die Übernahme des Vorsitzes der Disputation als Vertreter des Fachbereiches Zoologie.

Prof. Dr. Markus Glatzel, Prof. Dr. Kathrin Lamszus, Dr. Volkmar Müller und Prof. Dr. Guido Sauter danke ich für die Bereitstellung des Patientenmaterials und der Patientendaten. Prof. Dr. Markus Glatzel, Prof. Dr. Kathrin Lamszus sowie Dr. Alexander Schulte danke ich darüber hinaus für die gute Kooperation. Des Weiteren gebührt mein Dank Stefan Horn, Stefan Werner, Sönke Meyer-Staeckling und Natalia Bednarz-Knoll für die Hilfe und fachlichen Unterstützung bei der Durchführung der gen-manipulatorischen Arbeiten, der qPCR- und des FISH-Analyse.

Ein ganz besonderer Dank gilt meinem Freund Markus: ohne Deine grenzenlose Geduld und den wissenschaftlichen Austausch – vor allem während der Schreib- und Lernphase – und die mentale Unterstützung hätte ich das alles nicht geschafft! DU BIST DER FELS IN MEINER BRANDUNG.

Mein letzter und wohl auch wichtigster Dank geht an die Menschen, die diese Arbeit überhaupt erst ermöglicht haben – den Patientinnen, die durch ihre Gewebeproben einen großen Beitrag zur Forschung tragen.
Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Hamburg, den 03.01.2014

Ina Hohensee