FAQ
© 2015 Staats- und Universitätsbibliothek
Hamburg, Carl von Ossietzky

Öffnungszeiten heute09.00 bis 24.00 Uhr alle Öffnungszeiten

Eingang zum Volltext in OPUS

Hinweis zum Urheberrecht

Dissertation zugänglich unter
URN: urn:nbn:de:gbv:18-69864
URL: http://ediss.sub.uni-hamburg.de/volltexte/2014/6986/


Low Mach number equations with a heat source on networks : Modelling and analysis

Kleine Machzahl Gleichungen mit einer Hitzequelle auf Netzwerken : Modellierung und Analysis

Roggensack, Arne

pdf-Format:
 Dokument 1.pdf (1.252 KB) 


SWD-Schlagwörter: Partielle Differentialgleichung , Analysis , Modellierung , Graph
Basisklassifikation: 31.45 , 31.80
Institut: Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Dissertation
Hauptberichter: Gasser, Ingenuin (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 04.07.2014
Erstellungsjahr: 2014
Publikationsdatum: 29.09.2014
Kurzfassung auf Englisch: In this thesis, we study analytically a low Mach number model on a network describing the flow of fluids or gases driven by a strong heat source. This model can for example be used to describe fires in tunnel systems or to describe exhaust systems of vehicles.
In the first part of the work, the model is formally derived from the three-dimensional Euler equations. Using the Frenet-Serret-frame and asymptotic expansions, the Euler equations are transferred to a non-hyperbolic system of one-dimensional partial differential equations on a graph.
On each edge of the graph, the flow is governed by differential equations for the density, the velocity and the pressure. The equations are completed by reasonable coupling conditions at the nodes reflecting physical principles like the conservation of mass and the conservation of internal energy.
These equations were shown to be solvable globally in time for single edges in (Gasser and Steinrück (2006), COMMUN MATH SCI, 4(3):609–619).
In the second part of the thesis, we generalize this result to the case of networks. For the analysis, we study the involved equations - a transport equation for the density and a nonlinear ODE for the velocity - separately using a combination of graph theoretical and functional analytical concepts.
Kurzfassung auf Deutsch: In dieser Arbeit untersuchen wir analytisch ein mathematisches Modell für Gas- oder Fluidströmung mit kleiner Machzahl auf Netzwerken, die durch starke Hitzequellen angetrieben wird. Das Modell kann zum Beispiel verwendet werden, um Brände in Tunnelsystemen oder das Verhalten von Auspuffsystemen zu beschreiben.
Im ersten Teil der Dissertation wird das Modell formal aus den dreidimensionalen Eulergleichungen hergeleitet. Mit Hilfe des Frenet-Serret-Koordinatensystems und asymptotischen Entwicklungen werden die Eulergleichungen in ein nichthyperbolisches System eindimensionaler partieller Differentialgleichungen auf einem Graphen überführt.
Auf jeder Kante des Graphen wird die Strömung durch Differentialgleichungen für die Dichte, die Geschwindigkeit und den Druck beschrieben. Die Gleichungen werden an den Knoten durch Kopplungsbedingungen, die durch die physikalischen Grundsätze wie z.B. Massen- oder Energieerhaltung gegeben sind, abgeschlossen.
In (Gasser und Steinrück (2006), COMMUN MATH SCI, 4(3):609–619) wurde gezeigt, dass die Gleichungen für einzelne Kanten immer eine Lösung besitzen.
Im zweiten Teil der Arbeit verallgemeinern wir dieses Resultat auf Netzwerke. Für die Analysis untersuchen wir die beiden Gleichungen - eine Transportgleichung für die Dichte und eine nichtlineare gewöhnliche Differentialgleichung für die Geschwindigkeit - separat, wobei wir Konzepte der Graphentheorie mit Konzepten der Funktionalanalysis kombinieren.

Zugriffsstatistik

keine Statistikdaten vorhanden
Legende