Strukturelle und biochemische Analyse der Funktion
des Merkelzellpolyomavirus Large Tumor Antigens

Dissertation

Zur Erlangung des akademische Doktorgrades
der Naturwissenschaften (Dr. rer. nat.)

Eingereicht im Fachbereich Biologie,
der Fakultät für Mathematik, Informatik und Naturwissenschaften
an der Universität Hamburg

vorgelegt von
Sophie Borchert
aus Wernigerode

Hamburg, Dezember 2013
Genehmigt vom Fachbereich Biologie
der Fakultät für Mathematik, Informatik und Naturwissenschaften
an der Universität Hamburg
auf Antrag von Frau Priv.-Doz. Dr. N. FISCHER
Weiterer Gutachter der Dissertation:
Professor Dr. T. DOBNER
Tag der Disputation: 07. Februar 2014

Professor Dr. C. Lohr
Vorsitzender des
Fach-Promotionsausschusses Biologie
Die vorliegende Arbeit wurde in der Zeit von Dezember 2009 bis Dezember 2013 unter Anleitung von PD Dr. Nicole Fischer am Institut für Medizinische Mikrobiologie, Virologie und Hygiene am Universitätsklinikum Hamburg-Eppendorf durchgeführt.

Dissertationsgutachter: Frau PD Dr. Nicole Fischer

Herr Prof. Dr. Thomas Dobner
Für meine Familie
Inhaltsverzeichnis

Abkürzungsverzeichnis ... 3

1 Zusammenfassung – Summary... 5
 1.1 Zusammenfassung ... 5
 1.2 Summary .. 7

2 Einleitung .. 9
 2.1 Polyomaviren .. 9
 2.2 Interaktion zwischen pRb und viralen Onkoproteinen .. 26
 2.3 Ziel dieser Arbeit ... 28

3 Material ..30
 3.1 Allgemeine Verbrauchsmaterialien ... 30
 3.2 Plasmide und Primer .. 30
 3.3 Bakterienstämme ... 33
 3.4 Zelllinien ... 33
 3.5 Medien und Zusätze ... 33
 3.6 Proteinaufreinigung mittels chromatographischer Methoden 34
 3.7 Kommerzielle Reagenssysteme und Reagenzien .. 34
 3.8 Antikörper .. 36
 3.9 Geräte ... 36
 3.10 Software und Datenbanken ... 37

4 Methoden ...38
 4.1 Bestimmung der Nukleinsäurekonzentration .. 38
 4.2 Bestimmung der Proteinkonzentration ... 38
 4.3 Herstellung chemisch-kompetenter Bakterien .. 38
 4.4 Hitzeschock-Transformation ... 39
 4.5 Präparative Plasmidaufreinigung .. 39
 4.6 Replikationsassay .. 40
 4.7 Expression und Aufreinigung rekombinanter Proteine in Bakterien 46
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Ag</td>
<td>Antigen</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>ATCC</td>
<td>American type culture collection</td>
</tr>
<tr>
<td>BKPyV</td>
<td>BK Polyomavirus, benannt nach den Initialien des Patienten, aus dem das Virus isoliert wurde</td>
</tr>
<tr>
<td>BME</td>
<td>Beta-Mercaptoethanol</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaar</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>cMCPyV</td>
<td>Konsensus MCPyV</td>
</tr>
<tr>
<td>CPE</td>
<td>cytopathic effect, zytopathischer Effekt</td>
</tr>
<tr>
<td>DF</td>
<td>Durchfluss</td>
</tr>
<tr>
<td>DGZ</td>
<td>Dichtegradientenzentrifugation</td>
</tr>
<tr>
<td>DNA/ DNS</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxy-Nukleosidtriphosphat</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EM</td>
<td>Elektronenmikroskop</td>
</tr>
<tr>
<td>ECL</td>
<td>enhanced chemoluminescence - verstärkte Chemilumineszenz</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence activated cell sorting – Durchflusszytometrie</td>
</tr>
<tr>
<td>f.c.</td>
<td>finale Konzentration</td>
</tr>
<tr>
<td>FKS</td>
<td>fötales Kälberserum</td>
</tr>
<tr>
<td>GFP</td>
<td>grün fluoreszierendes Protein</td>
</tr>
<tr>
<td>hPyV</td>
<td>humanes Polyomavirus</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase, Meerrettich-Peroxidase</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactopyranosid</td>
</tr>
<tr>
<td>JCPyV</td>
<td>JC Polyomavirus, benannt nach den Initialien des Patienten, aus dem das Virus isoliert wurde</td>
</tr>
<tr>
<td>Kana</td>
<td>Kanamycin</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasen</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo-Dalton</td>
</tr>
<tr>
<td>KIPyV</td>
<td>Karolinska Institut Polyomavirus</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani Medium</td>
</tr>
<tr>
<td>LT</td>
<td>Large Tumor Antigen</td>
</tr>
<tr>
<td>LT<sub>NT</sub></td>
<td>verkürztes LT; N-Terminus des LT Antigens</td>
</tr>
<tr>
<td>Lys</td>
<td>Gesamtlösung</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>MCC</td>
<td>Merkelzellkarzinom</td>
</tr>
<tr>
<td>MCPyV</td>
<td>Merkelzell-Polyomavirus</td>
</tr>
<tr>
<td>MPyV</td>
<td>Mauspolyomavirus</td>
</tr>
<tr>
<td>NiNTA</td>
<td>Nickel-nitrilotriacetic acid</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NCCR</td>
<td>non-coding control region</td>
</tr>
<tr>
<td>n.I.</td>
<td>nach Induktion</td>
</tr>
<tr>
<td>OD</td>
<td>optische Dichte</td>
</tr>
<tr>
<td>P</td>
<td>Pellet</td>
</tr>
<tr>
<td>pH</td>
<td>negativ-dekadischer Logarithmus der Wasserstoffionen</td>
</tr>
<tr>
<td>PBST</td>
<td>Phosphat-gepufferte Saline mit 0,05% Tween 20</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction, Polymerasekettenreaktion</td>
</tr>
<tr>
<td>PDB</td>
<td>Research Collaboratory for Structural Bioinformatics Protein Data Bank</td>
</tr>
<tr>
<td>pRB</td>
<td>Retinoblastoma-assoziiertes Protein</td>
</tr>
<tr>
<td>p.i.</td>
<td>post infection</td>
</tr>
<tr>
<td>p.t.</td>
<td>post transfection</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidenfluorid</td>
</tr>
<tr>
<td>PyV</td>
<td>Polyomavirus</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodiumdodecylsulfat</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>SDS-Polyacrylamid-Gelelektrophorese</td>
</tr>
<tr>
<td>SN</td>
<td>Überstand</td>
</tr>
<tr>
<td>sT</td>
<td>Small Tumor Antigen</td>
</tr>
<tr>
<td>SV40</td>
<td>Simian-Virus 40</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>taq</td>
<td>Thermophilus aquaticus</td>
</tr>
<tr>
<td>Tag</td>
<td>engl., Markierung, in diesem Fall eine zusätzliche Aminosäuresequenz, notwendig für die Affinitätschromatographie</td>
</tr>
<tr>
<td>TFA</td>
<td>Thermofluor Assay</td>
</tr>
<tr>
<td>ÜE</td>
<td>Überexpression</td>
</tr>
<tr>
<td>v.I.</td>
<td>vor Induktion</td>
</tr>
<tr>
<td>VP</td>
<td>virales Kapsidprotein</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>WUPyV</td>
<td>Washington University Polyomavirus</td>
</tr>
<tr>
<td>Xa</td>
<td>Faktor Xa-Schnittstelle</td>
</tr>
</tbody>
</table>
1 Zusammenfassung – Summary

1.1 Zusammenfassung

Das Merkelzell-Polyomavirus (MCPyV) ist ein humane Polyomavirus, welches mit der Onkogenese des Merkelzell-Karzinoms (MCC), eines seltenen aggressiven Hautkrebs, assoziiert ist. Das virale Genom ist monoklonal in den Karzinomzellen integriert und sowohl Primärtumor als auch Metastasen eines Patienten zeigen die gleichen Integrationsstellen auf. Im Tumor werden nur die Gene der frühen viralen Region, das small T-Antigen (sT) und das Large T-Antigen (LT) exprimiert. Tumorzelllinien sind in ihrer Proliferation von der Expression der T-Antigene abhängig. Interessanterweise zeigen alle bislang identifizierten Genome innerhalb eines Tumors spezifische Stop-Mutationen im Bereich des LT auf, die dazu führen, dass nur der N-Terminus des LT-Antigens exprimiert wird und das Virus aufgrund des Verlustes des C-Terminus nicht mehr replikationsfähig ist. Es besteht somit ein positiver Selektionsdruck im Tumor für den N-terminalen Bereich des LT.

Das LT-Antigen ist ein multifunktionales Protein, welches nicht nur die Replikation des viralen Genoms vermittelt, sondern u.a. auch mit den Tumorsuppressorproteinen Retinoblastomprotein (pRb) und p53 interagiert. Das Interaktionsmotiv für das Rb-Protein befindet sich im N-Terminus des LT, wohingegen die Interaktion mit p53 über den C-Terminus vermittelt wird. Der Interaktion zwischen pRb und LT wird eine wichtige Rolle bei der Tumorgenese zugeschrieben, da bereits dem SV40 LT pRb-Bindemotiv transformierende Eigenschaften nachgewiesen wurden.

Das MCPyV infiziert 60-80% der Bevölkerung, vorwiegend während der Kindheit und persistiert im menschlichen Körper ohne klinische Symptome. In welchen Zellen das Virus im Körper repliziert, konnte bisher nicht aufgeklärt werden.

1.2 Summary

The Merkel cell polyomavirus (MCPyV) is a human polyomavirus that is associated with the oncogenesis of a rare and aggressive type of skin cancer, the Merkel cell carcinoma (MCC). The viral genome is monoclonally integrated into the tumor cells. The cells of the primary tumor as well as the cells of the resulting metastases of a single patient show identical integration sites. In the tumor tissue, only the early region of the virus is expressed, resulting in small T (sT) and large T (LT) antigens. It has been shown that proliferation of MCC cell lines is dependent on the expression of T antigens. Interestingly, all MCPyV genomes isolated from MCC tissue carry STOP codon or frameshift mutations in the early region resulting in the expression of truncated LT. Truncated LT proteins encompass the N-terminal part of the protein including the Retinoblastoma (pRb) binding motif, however, the C-terminal region of the protein encoding for origin binding and helicase activity is missing. Thus, truncated LT protein has lost its ability to induce viral replication and no viral progeny can be produced in the tumor cells. Statistical analysis has shown that there is positive selection on the LT N-terminus in MCC cells.

LT is a multifunctional protein that induces viral replication and interacts with cellular proteins, including pRb and p53. The pRb interaction motif lies within the LT N-terminus whereas the interaction with p53 is mediated by the C-terminus. The LT/pRb interaction is considered to be important for cell transformation as transforming properties of the SV40 LT pRb-motif have already been proved.

MCPyV infects about 60-80 % of the human population, and the primary infection occurs mostly during childhood. The virus persists lifelong in the human body without clinical symptoms, although the sites of persistence and the mechanism of persistence are elusive. Furthermore, it is unclear in which cell type MCPyV replicates.

One objective of this thesis was the implementation of an in vitro MCPyV replication system that enables the study of the MCPyV life cycle and its role during MCC oncogenesis. When this project began only MCPyV genome sequences from MCC tissues carrying MCPyV-specific STOP or frameshift mutations within the early region were available. Hence, a synthetic MCPyV genome was designed that represented the consensus of all MCC-derived MCPyV sequences and was considered to be close to a MCPyV wild-type genome. This genome was used to transfect ten different cell lines and primary cell types to observe viral replication. In four cell lines viral DNA-replication was observed and out of those cell lines three showed LT expression and in only two cell lines the late transcript VP1 was detected. None of the tested cell lines presented a cytopathic effect after transfection nor was cell-to-cell transmission observed in these cell lines. Nevertheless, viral particles could be isolated from the two cell lines expressing VP1 showing similar size as other polyomaviruses.
Unfortunately, infection experiments with these particles did not result in a productive infection. Taken together, a semi-permissive in vitro replication system was established that enables the study of the MCPyV life cycle as well as the identification of cellular proteins that interact with the virus and viral proteins. Furthermore, this provides a system where mutational studies can be performed to elucidate the role of MCPyV in MCC oncogenesis.

Previously it was shown that the LT N-Terminus (LT\textsubscript{NT}) that is expressed in MCC cells has proliferating and transforming abilities in immortalised and primary cells. Therefore, another objective was the structural and biochemical characterization of the LT N-Terminus (LT\textsubscript{NT}) that is expressed in MCC cells. To do so, quantitative analysis of the already described LT interaction with pRb was performed. For the first time direct interaction of LT\textsubscript{NT} with the pRb pocket domain was demonstrated, by applying microscale thermophoresis (MST), a new technique to measure protein interaction and affinities in solution. By applying MST, it was shown that the LT\textsubscript{NT}/pRb interaction is characterized by a high affinity of binding. Since MCC cell lines are dependent on LT expression and the presence of an intact pRb-motif, and both has been shown in vitro as well as in xenograft mouse experiments, this interaction provides promising strategies to identify new inhibitors in MCC therapy.

To design such a therapeutic agent, high resolution structural information of the LT\textsubscript{NT} are needed. Subsequently, the crystallization of the MCC derived LT\textsubscript{NT} was one goal of this thesis. Although initial crystallization screens using bacterial expressed LT\textsubscript{NT} failed, significant information about the biochemical properties of the protein with regard to purification strategies and future crystallization attempts were gained during this thesis.

To enhance the chances to obtain a LT\textsubscript{NT} crystal structure and due to the high interaction affinity between LT\textsubscript{NT} and the pRb pocket domain, experiments were performed to investigate whether both proteins could be purified as a complex. By following this approach, the complex was successfully isolated and proved to be stable in solution. It may thus be concluded that the LT\textsubscript{NT}/pRb\textsubscript{PD} complex is well suited for crystallization experiments and to generate structural data of the LT-Antigen N-terminus.
2 Einleitung

2.1 Polyomaviren

2.1.1 Die Familie der Polyomaviridae

2.1.2 Struktur und Genom von Polyomaviren

Die späte Region kodiert für ein Transkript aus dem auch hier durch alternatives Spleißen die Strukturproteine VP1, VP2 und VP3 entstehen, sowie ein viertes Protein, das Agnoprotein [4]. Bei SV40 wurde ein weiteres spätes Protein, das VP4, identifiziert [12].

Die Promotoren der frühen und späten Regionen befinden sich in der nicht-kodierenden Region in entgegengesetzter Richtung. Diese Region beinhaltet auch den Replikationsursprung, wie auch die Sequenzen für DNA-Bindeproteine und Transkriptionsfaktoren [4].

Abbildung 1 Allgemeine Genomstruktur von Polyomaviren. Ein zirkuläres DNA-Genom, eingeteilt in drei Regionen: ori – Replikationsursprung, frühe Transkripte (sT-Ag, LT-Ag) und späte Transkripte (VP1, VP2 und VP3).

2.1.3 Allgemeiner Replikationszyklus von Polyomaviren

Eintritt in die Zelle

Infiziert ein PyV eine permissive Zelle, bindet das Virus an einen Rezeptor und wird in die Zelle aufgenommen. Für mehrere PyV, u.a. SV40, wurden Ganglioside als spezifische Rezeptoren identifiziert, wohingegen bei anderen Viren Sialinsäuren für das Binden an die Zelle ausgemacht wurden [4]. Für das MCPyV wurde kürzlich ein neuer, mehrstufiger Prozess erläutert bei dem das Virus initial an Glykosaminoglykane, wie Heparansulfat bindet und im Anschluss an sialinsäurehaltige Glykan die Zelle.

Frühe Transkription

Virale DNA-Replikation

Für die DNA-Replikation ist es notwendig, dass die infizierte Zelle sich in der S-Phase befindet [4]. Da die infizierten Zellen nicht aktiv proliferieren, induziert LT den Übergang in die S-Phase, indem es mit pRb und den verwandten Proteinen, p107 und p130, interagiert. Diese Proteine verhindern normalerweise den Übergang in die S-Phase durch die Bindung

Späte Transkription

Parallel zur DNA-Replikation findet die späte Transkription statt und auch hier ist LT entscheidend für die Initiierung. Hierfür interagiert LT mit verschiedenen Proteinen der zellulären Transkriptionsmaschinerie. Als Folge werden die Proteine der späten Region transkribiert und im Zytosol translatiert [4].

Zusammensetzen der Viruspartikel und deren Freisetzung

Die Zusammensetzung der Viruspartikel findet im Zellkern statt, dafür müssen die Strukturproteine aus dem Zytosol in den Zellkern gelangen [4]. Alle drei Strukturproteine, VP1, VP2 und VP3 beinhalten im N-Terminus eine Kernlokalisierungssequenz. Für die Zusammensetzung des Kapsids ist das Hauptstrukturprotein VP1 essentiell. VP2 und VP3 können in Abwesenheit von VP1 keine Kapsomere bilden, wohingegen VP1 in der Lage ist sich zu Kapsomeren zusammenzulagern. Im SV40-Replikationszyklus scheinen sich die Strukturproteine vor dem Transport in den Nukleus als Kapsomere zusammenzulagern, wobei die Kapsidinformation mit dem Verpacken der de novo synthetisierten, Histon-assoziierten Virus-DNA im Zellkern mit Hilfe von Chaperonen geschieht [4]. Schowalter und Kollegen haben gezeigt, dass das MCPyV VP3-Protein nicht exprimiert wird, daher Viruspartikel nur aus VP1 und VP2 zusammengesetzt sind [20]. Wie die Viruspartikel die Zelle verlassen ist nicht vollständig verstanden. SV40 verursacht die Zelllyse, damit die Viruspartikel aus der Zelle freigesetzt werden. Es gibt auch Indizien dafür, dass das Virus durch Zell-zu-Zellkontakt die Zelle verlassen kann [4,21].

2.1.4 Humane Polyomaviren

Seitdem wurden sieben weitere hPyV identifiziert, hPyV6, hPyV7, Trichodysplasia Spinulosa-assoziiertes Virus (TSV), hPyV9, Malawi Polyomavirus (MWPyV), St. Louis Polyomavirus (STLPyV) und hPyV12 [29-32]. Von diesen sieben ist TSV mit einer Krankheit assoziiert, der Trichodysplasia Spinulosa, einer seltenen Hautkrankheit bei immunsupprimierten Patienten.

Tabelle 1 fasst alle bisher bekannten hPyV, ihre Seroprävalenz in Erwachsenen und die mit ihnen assoziierten Krankheiten zusammen. Acht der 12 identifizierten hPyV wurden bisher mit keiner Krankheit in Verbindung gebracht. Die Seroprävalenz der meisten hPyV ist in Erwachsenen bei über 50% (Tabelle 1) und die Infektion findet meist im Kindesalter statt, ohne klinische Symptome und gefolgt von lebenslanger Persistenz. Das und die Tatsache, dass ausschließlich immunsupprimierte und alte Menschen von hPyV-Krankheiten betroffen sind, sprechen dafür, dass humane Polyomaviren gut an ihren Wirt angepasst sind und in ihm unauffällig replizieren. MCPyV ist bisher das einzige hPyV, dass mit einer Tumorgenese assoziiert ist.
Tabelle 1 Übersicht über bisher identifizierte humane Polyomaviren, ihre GenBank accession Nummer, Entdeckungsjahr, das Material aus dem sie identifiziert wurden und die Seroprävalenz im Menschen, sowie hPyV-assoziierte Krankheiten. Modifiziert und zusammengefasst aus [29,33,34].

<table>
<thead>
<tr>
<th>hPyV/GenBank</th>
<th>Entdeckungs- jahr</th>
<th>Organ/ Material der ersten Identifizierung</th>
<th>Seroprävalenz in Erwachsenen [%]</th>
<th>hPyV-assoziierte Krankheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCPyV NC_001699</td>
<td>1971</td>
<td>Gehirn</td>
<td>39-81</td>
<td>Progressive Multifokale Leukoenzephalopathie</td>
</tr>
<tr>
<td>BKPyV NC_001538</td>
<td>1971</td>
<td>Urin</td>
<td>82-99</td>
<td>Nephropathie, hämorrhagische Zystitis</td>
</tr>
<tr>
<td>KIPyV NC_009238</td>
<td>2006</td>
<td>respiratorische Sekrete</td>
<td>55-90</td>
<td>-</td>
</tr>
<tr>
<td>WUPyV NC_009539</td>
<td>2006</td>
<td>respiratorische Sekrete</td>
<td>69-98</td>
<td>-</td>
</tr>
<tr>
<td>MCPyV NC_010277</td>
<td>2008</td>
<td>MCC-Tumor, Haut</td>
<td>60-81</td>
<td>Merkelzellkarzinom</td>
</tr>
<tr>
<td>hPyV6 NC_014406</td>
<td>2010</td>
<td>Haut</td>
<td>69</td>
<td>-</td>
</tr>
<tr>
<td>hPyV7 NC_014407</td>
<td>2010</td>
<td>Haut</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>TSV NC_014361</td>
<td>2010</td>
<td>Haut</td>
<td>70</td>
<td>Trichodysplasie Spinulosa</td>
</tr>
<tr>
<td>hPyV9 NC_015150</td>
<td>2011</td>
<td>Haut, Serum</td>
<td>21-53</td>
<td>-</td>
</tr>
<tr>
<td>hPyV 10 (MWPyV) JX262162</td>
<td>2012</td>
<td>Haut, Stuhl</td>
<td>42</td>
<td>-</td>
</tr>
<tr>
<td>STLPyV NC_020106</td>
<td>2013</td>
<td>Stuhl</td>
<td>nicht bestimmt</td>
<td>-</td>
</tr>
<tr>
<td>hPyV12 NC_020890</td>
<td>2013</td>
<td>Stuhl</td>
<td>33</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbildung 3 Phylogenetischer Stammbaum der humanen Polyomaviren inklusive SV40 und MPyV, basierend auf den Genomsequenzen. Der Stammbaum wurde mit CLC Main Workbench 6.6.1 erstellt. Die Accession Nummern der Genomsequenzen sind JCVPyV NC_001699, BKPyV NC_001538, KIPyV NC_009238, WUPyV NC_009539, MCPyV HM011555, hPyV6 HM011558, hPyV7 HM011564, TSPyV GU989205, hPyV9 HQ696595, hPyV10 JX262162, STLPyV JX463183, hPyV12 JX308829, SV40 J02400, MPyV NC_001515.

2.1.5 Das Merkelzellpolyomavirus (MCPyV)

2.1.5.1 Entdeckung des MCPyV in Merkelzellkarzinom (MCC) Proben

Das neuroendokrine MCC ist ein seltener Karzinom der Haut mit einer Incidenz von ca. 0,18-0,41 Neuerkrankungen pro 100.000 Einwohner pro Jahr, die sich während der letzten zwei Jahrzehnte verdreifacht hat [37]. MCC betrifft vorwiegend ältere (Durchschnittsalter >70 Jahre) und immunsupprimierte Patienten; so haben HIV-Infizierte, Organ-Transplantierte oder Patienten mit Leukämie ein etwa 15-fach höheres Risiko an MCC zu erkranken. Die Zunahme der Incidenz beruht auf dem Älterwerden der Bevölkerung, einer höheren Lebenserwartung immunsupprimierter Patienten sowie auf der verbesserten Diagnostik [37]. MCC ist ein äußerst aggressiver Tumor, ca. 50% aller Erkrankten mit Metastasen versterben in den ersten 6 Monaten nach Diagnose. Die allgemeine Fünfjahresüberlebensrate liegt bei 60% und derzeitige Therapieformen beinhalten die operative Entfernung von Primärtumor und Metastasen, Chemotherapie wie auch Strahlentherapie [37].

Die Pathogenese des MCC ist bisher weitgehend unverstanden [37]. Die Karzinome treten hauptsächlich an Licht-exponierten Körperregionen, wie Kopf, Armen und Beinen auf. Es wird daher angenommen, das UV-Licht zur Entstehung von MCC beiträgt. Dass MCC ausschließlich bei älteren und immunsupprimierten Menschen vorkommt, spricht dafür,
dass bei diesen Patienten immunologische Defizite existieren, die die Entstehung von MCC begünstigen. Damit liegt nahe, dass MCC eine infektiöse Ursache haben könnte.

Verschiedene Studien haben die MCPyV-Anwesenheit in MCC-Proben untersucht und MCPyV-DNA in ~80% der Gewebe gefunden [39-43]. Eine kürzlich veröffentlichte Studie hat mithilfe von verbesserten Detektionsmethoden sogar in allen in der Studie untersuchten MCC-Geweben MCPyV-DNA detektieren können und geht davon aus, dass mehr als 97% beziehungsweise alle Tumore MCPyV-DNA enthalten [44]. Weiterhin gehen die Autoren davon aus, dass das MCPyV zur Tumorgenese von allen MCC beiträgt [44].

Aufgrund der Assoziation von MCPyV mit der Entstehung von MCC hat die International Agency for Research on Cancer der Weltgesundheitsorganisation dieses Jahr MCPyV in die Gruppe 2A Karzinogen eingestuft, was bedeutet, dass MCPyV als „wahrscheinlich karzinogen für Menschen“ gilt, wie z.B. auch das humane Papillomavirus Typ 68. Das Merkelzellpolyomavirus ist eines von sieben humanen Onkoviren, neben dem Epstein-Barr-

2.1.5.2 Struktur und Genom von MCPyV

Das MCPyV hat den für Polyomaviren charakteristischen Genomanordnung mit der nicht-kodierenden Region, der frühen Region und der späten Region (siehe Kapitel 2.1.1, [28,38]). Das Genom ist ~5,4 kbp groß. Der Ablauf der Replikation mit früher Transkription, DNA-Replikation und später Transkription geht einher mit der oben beschriebenen Kaskade der PyV-Replikation (Kapitel 2.1.1, [45]).

In der späten Region sind die Strukturproteine VP1, VP2 und VP3 kodiert, wobei VP3 nicht exprimiert wird [20]. Unsere Arbeitsgruppe und eine weitere konnten zeigen, dass sich ungefähr 4 Tage nach Transfektion des MCPyV Episoms in transfizierten Zellen Viruspartikel mit einer Größe von ~40 nm bilden [45,47]. In diesen Viruspartikeln konnte virale DNA detektiert werden [47], so dass davon auszugehen ist, dass virale DNA während der Replikation in die Partikel verpackt wurde.
Vergleicht man die Aminosäuresequenzen der exprimierten Proteine sT, LT sowie VP1 und VP2 so haben sie eine höhere Homologie zu den Proteinen des MPyV als zu denen der anderen humanen Polyomaviren [28]. In Abbildung 4 ist ein phylogenetischer Vergleich der hPyV LTs mit SV40 LT und MPyV LT dargestellt.

2.1.5.3 Genprodukte des MCPyV T-Antigenlookus

Der MCPyV T-Antigenlookus erstreckt sich über einen Bereich von fast 3 kb und ist damit der längste T-Antigenlookus unter den Polyomaviren. Die MCPyV T-Antigene enthalten konservierte Domänen, die bei anderen Polyomaviren bereits identifiziert und studiert wurden (Abbildung 5) [38,48], was darauf schließen lässt, dass die MCPyV T-Antigene viele Funktionen mit anderen PyV T-Antigenen teilen. Nachfolgend werden die im T-Antigenlookus kodierten Proteine und deren Domänen benannt, sowie deren Funktion, soweit bereits bekannt, erläutert (Abbildung 5). Der MCPyV T-Antigenlookus kodiert für die T-Antigene sT, LT und 57 kT, sowie für das ALTO-Protein.

Die Proteine sT, LT und 57 kT teilen sich den gleichen N-Terminus mit der CR1 (conserved region 1) und der DnaJ-Domäne. Bei der Expression von sT wird über die Speißstelle des Exon1 des Primärtranskripts hinweggelesen. Dabei entsteht ein Protein mit 186 Aminosäuren, welches als einziges der drei T-Antigene das PP2A-Bindemotiv enthält. LT (817 aa) ist ein Speißprodukt aus Exon1 und Exon2 und enthält zusätzlich zu CR1 und der DnaJ-Domäne eine Kernlokalisierungsssequenz, das pRB-Bindemotiv (LxCxE), eine origin binding Domäne (OBD) mit der LT an den Replikationsursprung binden kann und eine

Die DnaJ-Domäne

Transkriptionsfaktor E2F aufgehoben, E2F-abhängige Promotoren werden aktiviert und die S-Phase des Zellzyklus wird initiiert (siehe Kapitel 2.1.1) [6]. Durch die Interaktion der DnaJ-Domäne mit Hsc70 werden auch noch weitere Signalmoleküle und damit Signalwege aktiviert (zusammengefasst in [9]).

Das pRb-Bindemotiv

Das Vam6p-Bindemotiv

Das PP2A-Bindemotiv

Das PP2A-Bindemotiv ist spezifisch und verantwortlich für die Interaktion mit der Proteinphosphatase 2A (PP2A). Es wurde gezeigt, dass durch diese Interaktion der zelluläre Translationsfaktor 4E-BP1 dauerhaft phosphoryliert, folglich inaktiv ist [51], was zur Induzierung der cap-abhängigen Translation führen kann. Dieser Prozess kann zur Transformation der Zelle führen [51].

Die Origin Binding Domain und die Helikase

Die OBD ist essentiell für die Initiation der DNA-Replikation, genauso wie die Helikasedomäne des LT. Die Helikase besitzt bei SV40 LT u.a. die Funktion p53 zu binden, was die Tumorsuppressoreigenschaft von p53 blockiert und damit dessen proapoptotische
Funktionen [6]. Eine solche direkte Bindung zwischen MCPyV LT und p53 konnte bisher nicht nachgewiesen werden [21,52].

Der äußerste LT C-Terminus

Eine kürzlich veröffentlichte Studie von Cheng und Kollegen impliziert, dass der äußerste LT C-Terminus mit den letzten 100 Aminosäuren (Exon 3) eine wachstumsinhibierende Funktion haben könnte, wodurch das Wachstum von MCPyV-infizierten Zellen gemindert wird [52]. Cheng und Kollegen haben beobachtet, dass Fibroblasten, die den LT N-Terminus exprimieren einen Wachstumsvorteil gegenüber Fibroblasten haben, die das Volllängen-LT oder 57 kT exprimieren. Anschließend wurde eine MCC-Zelllinie mit Exon 3 transduziert, welche gegenüber den Kontrollzellen vermindertes Zellwachstum zeigte. Ein ähnliches Ergebnis wurde beobachtet mit Fibroblastenzellen, die sowohl SV40 LT wie auch sT exprimieren und die mit Exon 3 transduziert wurde. Diese Zellen hatten eine deutlich geringere Wachstumsrate als die Kontrollzellen. Diese Ergebnisse deuten darauf hin, dass der äußerste C-Terminus mit einem oder mehreren zellulären Proteinen interagiert, welche für das Zellwachstum notwendig sind [52].

Das ALTO-Protein

Kürzlich haben Carter und Kollegen ein neues Protein identifiziert, welches im T-Antigenlokus kodiert ist [10]. Dieses Protein, ALTO (*Alternate frame of the large T open reading frame*) wird von einem Startkodon im zweiten Exon von LT im +1 Leserahmen transkribiert und während der DNA-Replikation exprimiert. Theoretisch können alle vier T-Antigen-Spleißprodukte (Abbildung 5) für ALTO kodieren. Die für ALTO kodierende Region umfasst auch die MUR des LT-Antigens. Die Autoren konnten zeigen, dass ALTO nicht für die virale DNA-Replikation notwendig ist, aber vermuten, dass das Protein eine unterstützende Rolle während des viralen Lebenszyklus spielt. Außerdem wurde anhand von bioinformatischen Analysen vorausgesagt, dass 19 von 46 ALTO-Sequenzen aus MCC-Gewebe Stopmutationen oder Leserahmenverschiebungen haben, die auch für die verkürzt exprimierten LTs in MCC verantwortlich sind [10].

Aufgrund der hier aufgeführten Eigenschaften der T-Antigene, werden diese auch als Onkoproteine bezeichnet. Welchen Einfluss die einzelnen Domänen auf die Transformation von Zellen und die Tumorgenese haben, hängt vom jeweiligen Polyomavirus ab [4]. Im folgenden Kapitel werden die Besonderheiten des MCPyV T-Antigenlookus in Merkelzellkarzinomen erläutert.
2.1.5.4 MCPyV T-Antigene und ihre Rolle in der MCC-Tumorgenese

Wie bereits in Kapitel 2.1.5.1 beschrieben, haben die in MCC-Gewebe integrierten MCPyV-Genome spezifische Mutationen und Deletionen, die in einem verkürzt exprimierten LT (LT_{NT}) resultieren (Abbildung 6). Diese Mutationen und Deletionen sind im C-Terminus zu finden. Die verkürzten LT enthalten den N-Terminus und somit die CR1 und DnaJ-Domäne, wie auch die Vam6p- und pRb-Bindemotive. Die Kernlokalisierungssequenz ist meist erhalten, jedoch wird der C-Terminus mit OBD und Helikase nicht exprimiert (Abbildung 6) [28,38,39]. Es ist auffällig, dass bei allen verkürzten LTs das pRb-Bindemotiv erhalten ist und der C-Terminus mit OBD und Helikase, verantwortlich für die Replikation des Virus nicht exprimiert wird. Dies lässt vermuten, dass im MCC-Kontext mit der Tumorgenese der LT_{NT} favorisiert ist und es eine Selektion gegen den C-Terminus gibt [47,52]. Tatsächlich konnte unsere Gruppe mithilfe einer statistischen Untersuchung von 42 LT_{NT}-Aminosäuresequenzen aus MCC-Gewebe eine signifikant positive Selektion für den N-Terminus inklusive des pRb-Bindemotivs bestimmen, wohingegen der Erhalt der Kernlokalisierungssequenz statistisch nicht relevant ist (Abbildung 6) [21].

sT ist von diesen MCC-spezifischen Mutationen nicht betroffen und das 57 kT wurde bisher nicht in MCC-Gewebe detektiert, was auch daran liegen kann, dass ein Teil der Stopmutationen im 2. Exon die Expression eines intakten 57 kT verhindert. Durch den Verlust des LT C-Terminus findet keine Virusreplikation statt und es werden keine viralen

Strukturproteine synthetisiert. Demnach werden in MCC-Geweben sT und LT\textsubscript{NT} mit den konservierten Regionen DnaJ-Domäne, PP2A-, Vamp6- sowie pRb-Bindemotiv exprimiert.

Virus-assoziierte Tumorgenese findet statt, wenn das Virus eine Zelle infiziert und die frühen Gene exprimiert werden, aber die Virusreplikation nicht vollständig abläuft. Letzteres geschieht, wenn entweder die Zelle nicht permissiv für die Virusreplikation ist oder das Virus unfähig ist, den kompletten lytischen Replikationszyklus zu durchlaufen (Abbildung 2) [4]. Damit das Virusgenom während der Zellteilung nicht verloren geht und die Zelle wieder ihren ursprünglichen Phänotyp annimmt, muss die Virus-DNA in das Zellgenom integrieren, wie es zum Beispiel bei SV40-transformierten Zellen und MCPyV-positiven MCCs beobachtet wurde [6,28].

Für die Transformation von Zellen durch SV40 ist der T-Antigenlokkus und die Interaktion von LT mit den Retinoblastomaproteinen, p53 und Hsc70 Proteinen ausreichend [4,6]. In einigen Zelldtypen sind sogar die ersten 121 Aminosäuren für die Transformation ausreichend, d.h. die Interaktion mit der p53-Bindedomäne ist bei diesen Zellen nicht für die Transformation notwendig [4]. SV40 LT ist in der Lage allein Zellen zu transformieren, jedoch wird unter bestimmten Bedingungen, z.B. für die Transformation von primären humanen Zellen sT benötigt. Im Gegensatz dazu ist sT allein nicht in der Lage, Zellen zu transformieren [4,6].

Bei MPyV hingegen ist das MT das primäre Onkoprotein und in der Lage etablierte Zelllinien zu transformieren, allerdings werden die anderen beiden T-Antigene für die Transformation von primären Zellen benötigt [4].

Shuda und Kollegen haben gezeigt, dass in den meisten untersuchten MCPyV-positiven MCC-Geweben das verkürzte MCPyV LT exprimiert wird, jedoch nicht in allen, wohingegen sT auch in Tumoren die kein LT\textsubscript{NT} exprimieren detektiert wurde [53]. Das ist erstaunlich aufgrund der Tatsache, dass die mRNAs für sT und LT\textsubscript{NT} Spließvarianten desselben Primärtranskripts sind und die Spließstelle im ersten Exon intakt ist. Eine andere Arbeitsgruppe hat diese Diskrepanz untersucht und festgestellt, dass der von Shuda und Kollegen benutzte LT-Antikörper Cm2B4 LT in 80% der untersuchten MCC-Geweben detektiert, wohingegen ein anderer Antikörper (Ab3) LT in 97% der untersuchten MCC-Geweben detektiert hat [44]. Das lässt darauf schließen, dass mit Cm2B4 nicht alle exprimierten LT\textsubscript{NT}-Proteine detektiert und in MCPyV-positiven MCC-Tumoren sowohl sT wie auch LT\textsubscript{NT} exprimiert werden.

Cheng und Kollegen haben die Proliferation von immortalisierten Nagerfibroblasten untersucht, die mit verschiedenen T-Antigen-Konstrukten stabil transfiziert wurden [52]. Zellen in denen sT und verkürztes LT exprimiert wurden, zeigten eine höhere Proliferation als die Kontrollzellen und Zellen mit 57 kT oder dem Volllängen-LT. Interessanterweise wuchsen Zellen mit 57 kT und dem Volllängen-LT schneller als die Kontrollzellen. Demnach besitzen sT und das verkürzte LT wachstumsfördernde Eigenschaften.

Unsere Arbeitsgruppe konnte zum ersten Mal zeigen, dass sowohl Volllängen-LT wie auch verkürzt exprimierte LTs aus MCCs in der Lage sind primäre Rattenzellen zu transformieren [21]. Quantitative Transformationsassays haben gezeigt, dass bis auf ein Konstrukt die verkürzten LT-Proteine ein ähnliches oder höheres Transformationspotential haben als das Volllängen-LT.

Während übereinstimmende Ergebnisse zur Transformationsfähigkeit von sT in primären Zellen veröffentlicht wurden und die Expression von LT in MCPyV-positiven MCC-Zellen als essentiell für den Erhalt und Wachstum angesehen wird, wird momentan die Rolle von sT in MCC-Zelllinien kontrovers diskutiert und benötigt weitere Experimente zur Aufklärung [57,58].

2.2 Interaktion zwischen pRb und viralen Onkoproteinen

Das Rb-Protein gehört zur Pocket-Protein-Familie, welche nach der Bindedomäne (pocket Domäne), mit der die Proteine an Interaktionspartner binden, benannt sind. Neben pRb gibt es im Menschen noch p107 (Retinoblastoma-like protein1) und p130 (Retinoblastoma-like protein 2). Eine essentielle Funktion dieser Proteine ist ihre Rolle in der E2F-abhängigen Zellzyklusregulation. Durch die Repression von E2F verhindern sie den Übergang der Zelle...
aus der G0/G1-Phase in die S-Phase und damit die Zellteilung bis die Zelle bereit ist. Aufgrund dieser Funktion wird pRb zu den Tumorsuppressorproteinen gezählt.

Virale Onkoproteine, die das LxCxE-Motiv enthalten, wie z.B. das SV40 LT, das humane Papillomavirus E7-Protein und das adenvirale E1A-Protein, binden das pRb über die LxCxE-Bindungsstelle [61-63], wodurch E2F freigesetzt wird. Der strukturelle Mechanismus dieses Vorgangs ist bisher nicht vollständig geklärt [60].

Abbildung 7: Struktur des ungebundenen pRb (aus [60]) dargestellt als Ribbondiagramm. Zu sehen sind verschiedene funktionelle pRb-Regionen, wie die Box A und Box B, die E2F-Bindungsstelle sowie die LxCxE-Stelle an die virale Onkoproteine mit dem LxCxE-Motiv binden können.
2.3 Ziel dieser Arbeit

2.3.1 Etablierung eines MCPyV-Replikationssystems

2.3.2 Strukturelle und biochemische Analyse des MCPyV LT N-Terminus

3 Material

3.1 Allgemeine Verbrauchsmaterialien

3.2 Plasmide und Primer

In Tabelle 2 und Tabelle 3 sind die Primer und Plasmide aufgelistet, die in dieser Arbeit verwendet wurden. Alle synthetisierten Oligonukleotide wurden bei der Firma MWG Eurofins bestellt.
<table>
<thead>
<tr>
<th>#</th>
<th>Bezeichnung</th>
<th>Vektor</th>
<th>Fremdgen</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>XMRV-RBD-PRR-GFP</td>
<td>eukaryotisch</td>
<td>XMRV RBD-GFP</td>
<td>Marc Sitbon</td>
</tr>
<tr>
<td>136</td>
<td>pUC18</td>
<td>bakteriell</td>
<td>-</td>
<td>ThermoScientific</td>
</tr>
<tr>
<td>144</td>
<td>pSV40 (pZIPTEX)</td>
<td>eukaryotisch</td>
<td>SV40 Tumor Antigen</td>
<td>Wolfgang Deppert</td>
</tr>
<tr>
<td>176</td>
<td>psV(SV40) Provirus kloniert in pBR322</td>
<td>eukaryotisch</td>
<td>SV40 genome</td>
<td>Wolfgang Deppert</td>
</tr>
<tr>
<td>220</td>
<td>TA p197 LT-Ag ohne Intron</td>
<td>bakteriell</td>
<td>MCCL12 LT<sub>1-244</sub> ohne Intron, mit Deletion</td>
<td>Arbeitsgruppe Fischer, [39]</td>
</tr>
<tr>
<td>245</td>
<td>pMCPyV (pMK-MCPyV complete, #10)</td>
<td>bakteriell/</td>
<td>Konsensus MCPyV genome</td>
<td>[47]</td>
</tr>
<tr>
<td>335</td>
<td>pRSET-A-LT<sub>MCCL12</sub> (K1-1)</td>
<td>bakteriell</td>
<td>6xHis-Xpress-EK-MCPyV LT<sub>1-244</sub> ohne Intron</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>336</td>
<td>pRSET-A-MCPyVLT<sub>MCCL12</sub> (K13-1)</td>
<td>bakteriell</td>
<td>6xHis-Xpress-EK-MCPyV LT<sub>1-313</sub> ohne Intron</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>338</td>
<td>pGEX4T3-Rb<sub>382-771</sub></td>
<td>bakteriell</td>
<td>GST-Rb pocket domain (aa 382-771)</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>376</td>
<td>pREST-A-SV40LT<sub>7-117</sub></td>
<td>bakteriell</td>
<td>6xHis-Xpress-EK-SV40 LT<sub>7-117</sub></td>
<td>Arbeitsgruppe Fischer</td>
</tr>
<tr>
<td>428</td>
<td>pET302-LT<sub>MCCL12</sub></td>
<td>bakteriell</td>
<td>6xHis-MCPyV LT<sub>1-244</sub> ohne Intron, mit Deletion</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>429</td>
<td>pET303-LT<sub>MCCL12</sub></td>
<td>bakteriell</td>
<td>MCPyV LT-6xHis<sub>1-244</sub> ohne Intron, mit Deletion</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>444</td>
<td>pAT110-Rb<sub>PD</sub></td>
<td>bakteriell</td>
<td>GST-Rb pocket domain ohne linker (aa380-787Δ582-642)</td>
<td>Ping An, James Pipas Labor, Pittsburgh, persönliche Kommunikation</td>
</tr>
<tr>
<td>484</td>
<td>pJC40</td>
<td>bakteriell</td>
<td>-</td>
<td>ATCC No. 87114</td>
</tr>
<tr>
<td>485</td>
<td>pJC40-MCV99fw/MCV100rv</td>
<td>bakteriell</td>
<td>MCCL12 LT<sub>1-244</sub> ohne Intron, mit Deletion</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>486</td>
<td>pJC40-MCV99fw/MCV101rv</td>
<td>bakteriell</td>
<td>MCPyVcons LT<sub>1-313</sub> ohne Intron</td>
<td>diese Arbeit</td>
</tr>
</tbody>
</table>
Tabelle 3 Primer und Primersequenzen

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb_378_EcoRI_F</td>
<td>ATGAATTCT ATCCAAACAATTAATG</td>
<td>Klonierung des Plasmids 338</td>
</tr>
<tr>
<td>Rb_772_Xhol_R</td>
<td>CTCGAG ATACTGCAAAATATTTG</td>
<td></td>
</tr>
<tr>
<td>MCV99fw</td>
<td>ATACATATGATGGATTTAGTCCTAAATAGGA AG</td>
<td>Klonierung des Plasmids pJC40 MCCL12 mit NdeI und EcoRI</td>
</tr>
<tr>
<td>MCV100rv</td>
<td>ATAGAATTCTTATGAGAATGGAGGAGGGGT C</td>
<td></td>
</tr>
<tr>
<td>MCV99fw</td>
<td>ATACATATGATGGATTTAGTCCTAAATAGGA AG</td>
<td>Klonierung des Plasmids pJC40 LT cons mit NdeI und EcoRI</td>
</tr>
<tr>
<td>MCV101rf</td>
<td>ATAGAATTCTTAAAGTAGGAACAGGAGGTTC T C</td>
<td></td>
</tr>
<tr>
<td>MCV104 fw</td>
<td>AGCTCGAGGAGAATCTTTATTTTTCAGGGAATGGATTTAGTCCTAAATAGGAAG</td>
<td>Klonierung des Plasmids 335 inkl. TEV-site mit XhoI und EcoRI</td>
</tr>
<tr>
<td>MCV100 rv</td>
<td>ATAGAATTCTTATGAGAATGGAGGAGGGGT C</td>
<td></td>
</tr>
<tr>
<td>MCV104 fw</td>
<td>AGCTCGAGGAGAATCTTTATTTTTCAGGGAATGGATTTAGTCCTAAATAGGAAG</td>
<td>Klonierung des Plasmids 336 inkl. TEV-site mit XhoI und EcoRI</td>
</tr>
<tr>
<td>MCV101 rv</td>
<td>ATAGAATTCTTAAAGTAGGAACAGGAGGTTC T C</td>
<td></td>
</tr>
<tr>
<td>pET302 LT fw</td>
<td>GTGAATTCGATGGATTTTAGTCCTAAATAGGAAG</td>
<td>Klonierung des Plasmids 428 mit EcoRI und XhoI</td>
</tr>
<tr>
<td>pET302 MCCL rv</td>
<td>ATCTCGAGTTATGGAATGGAGGAGGGGT C</td>
<td></td>
</tr>
<tr>
<td>pET303 LT fw</td>
<td>GGTCTAGAATGGATTTTAGTCCTAAATAGGAAG</td>
<td>Klonierung des Plasmids 429 mit XbaI und XhoI</td>
</tr>
<tr>
<td>pET303 MCCL rv</td>
<td>TGCTCGAGTTATGGAATGGAGGAGGGGT C</td>
<td></td>
</tr>
<tr>
<td>SV40LT-F-EcoRV fw</td>
<td>CCGATATCAATGGATATTAGTCTAAAAATAGGAAAG</td>
<td>Southern Blot Sonde von SV40 LT, Shuda et al., 2009</td>
</tr>
<tr>
<td>SV40LTmut-R-XhoI</td>
<td>GGGCTCGAGGACATGCAGCTTTTTCCTTTG</td>
<td></td>
</tr>
<tr>
<td>MCV196-429F</td>
<td>ATGGATTAGTCTAAATAGGAAA</td>
<td>Southern Blot Sonde von MCPyV LT, Shuda et al., 2009</td>
</tr>
<tr>
<td>MCV196-429R</td>
<td>CTCATCAACATAGAGAGTCAC</td>
<td></td>
</tr>
</tbody>
</table>
3.3 Bakterienstämme

Für Klonierungen und Amplifizierungen von Plasmiden wurde der Bakterienstamm *E. coli* Top10 (life technologies™) benutzt und für die Expression heterologer Proteine der Bakterienstamm *E. coli* BL21 Star™ (life technologies™).

3.4 Zelllinien

Tabelle 4 listet die verwendeten Zelllinien und ihre Ursprünge auf. Diese Zelllinien wurden ausschließlich für die MCPyV-Replikationsassays benutzt.

<table>
<thead>
<tr>
<th>Tabelle 4 Zelllinien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zelllinie</td>
</tr>
<tr>
<td>PFSK-1</td>
</tr>
<tr>
<td>HDF</td>
</tr>
<tr>
<td>HEK293</td>
</tr>
<tr>
<td>H1299</td>
</tr>
<tr>
<td>Makrophagen</td>
</tr>
<tr>
<td>LAN-1</td>
</tr>
<tr>
<td>Keratinozyten</td>
</tr>
<tr>
<td>HaCaT</td>
</tr>
<tr>
<td>Vero</td>
</tr>
<tr>
<td>CV1</td>
</tr>
</tbody>
</table>

3.5 Medien und Zusätze

3.5.1 Medien und Zusätze für Zellkulturen

Für die Kultivierung der Säugerzellen wurden folgenden Medien benutzt: Gibco® DMEM (Dubelco’s Modified Eagle medium, life technologies™) und Gibco® RPMI 1640 (Roswell Park Memorial Institute Nr. 1640 Medium, life technologies™). Zusätzlich wurden in der Zellkultur eingesetzt Gibco® DPBS (life technologies™), Trypsin/EDTA 0,05% (life technologies™) und als Zusätze in den Medien 10% (f.c.) FKS (Fötales Kälberserum, PAN
Biotech™), 20% humanes Serum, 1% (f.c.) L- Glutamin (2mM, Sigma-Aldrich®), sowie 1% (f.c.) 100 U/ml Penicillin/ 100 μg/ml Streptomycin-Lösung (Gibco BRL).

3.5.2 Medien und Zusätze für Bakterienkulturen

Für die Flüssigkultur von Bakterien wurde das Luria-Bertani (LB) Medium für Molekularbiologie (Carl Roth®) verwendet und als Festmedium wurde der LB-Agar für Molekularbiologie (Carl Roth®) benutzt. Weiterhin wurden in der Kultivierung Ampicillin (100µg/ ml f.c.), Kanamycin (25µg/ ml f.c.) und Glukose eingesetzt (1% f.c.)

3.5.3 Zusätze für die Dichtegradientenzentrifugation

Für die Dichtegradientenzentrifugation wurde die OptiPrep™ Lösung von Sigma-Aldrich eingesetzt. Dabei handelt es sich um eine 60%ige (w/v) Iodixanollösung. Außerdem wurde Gibco® 10xPBS (life technologies™) verwendet.

3.6 Proteinaufreinigung mittels chromatographischer Methoden

3.7 Kommerzielle Reagenzsysteme und Reagenzien

Für die Aufreinigung von PCR-Produkten und Plasmiden wurden die Systeme DNA Gel-Extrakions-Kit (Qiagen), peqGold DNA Kit (Peqlab), DNA Plasmid Purification Kit NucleoBond® PC 100 (Marcherey-Nagel) benutzt. Die Visualisierung von Western Blotting
Analysen fand mittels ECL Western Blotting Detection Reagents (GE Healthcare Life Sciences) statt, für Silberfärbungen wurde das Pierce SilverSNAP® stain für Massenspektrometrie Kit verwendet und für die MST-Analysen das Monolith™ NT.115 Protein Labeling Kit-NHS Red und hydrophile Kapillare (Nanotemper Technologies).

3.7.1 Enzyme

Für die Amplifikation, Aufreinigung, Klonierung, Ligation und Restriktionsanalyse von DNA und Plasmiden wurden die Proteine Taq-DNA Polymerase (5U/µl, Invitrogen), T4 DNA Ligase (New England Biolabs) Proteinase K (Roche) und die Restriktionsenzyme FastDigest Enzymes (Thermo Scientific), sowie Thrombin (Amersham Biosciences) benutzt.

Für die Proteinaufreinigung wurden Lysozym (Fluka) und Thrombin (Amersham Biosciences) eingesetzt. Subtilisin, Chymotrypsin, Papain, Trypsin für die partielle Proteolyse entstammten dem JBS Floppy-Choppy Kit von Jena Bioscience GmbH.

3.7.2 Größenstandards

3.8 Antikörper

Tabelle 5 Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Eigenschaften/ Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM2B4</td>
<td>Monoklonaler Maus-Antikörper gegen MCPyV LT, erkennt auch das 57k-T-Antigen, Santa Cruz Biotechnology (USA)</td>
</tr>
<tr>
<td>anti-SV40-VP1</td>
<td>Monoklonaler Kaninchen-Antikörper gegen SV40 VP1, freundlicherweise zur Verfügung gestellt von Wolfgang Deppert, HPI, Hamburg</td>
</tr>
<tr>
<td>Pab419</td>
<td>Monoklonaler Maus-Antikörper gegen SV40 LT, Hybridomzelllinie wurden von Wolfgang Deppert zur Verfügung gestellt [68]</td>
</tr>
<tr>
<td>HRP-anti-Maus IgG</td>
<td>HRP gekoppelter Antikörper gegen Maus-IgG aus Ziege, Santa Cruz Biotechnology (USA)</td>
</tr>
<tr>
<td>HRP-anti-Kaninchen IgG</td>
<td>HRP gekoppelter Antikörper gegen Kaninchen-IgG aus Ziege, Santa Cruz Biotechnology (USA)</td>
</tr>
</tbody>
</table>

Die in Tabelle 5 gelisteten Antikörper wurden für Western Blot-Analysen verwendet.

3.9 Geräte

In Tabelle 6 sind die Geräte aufgezählt, die über eine übliche Laborausstattung hinausgehen und die für die Durchführung dieser Arbeit genutzt wurden.

Tabelle 6 Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branson Digital Sonifizierer M250</td>
<td>Branson</td>
</tr>
<tr>
<td>DLS Gerät</td>
<td>SpectroSIZE 300 (Nabitec)</td>
</tr>
<tr>
<td>Mikroskop</td>
<td>Nikon Eclipse TS100</td>
</tr>
<tr>
<td>Photospektrometer</td>
<td>Nanodrop 1000</td>
</tr>
<tr>
<td>FPLC</td>
<td>ÄKTA Purifier (GE Healthcare)</td>
</tr>
<tr>
<td>FLA7000 Phospholmager</td>
<td>Fuji Film</td>
</tr>
<tr>
<td>Kristallisationsroboter</td>
<td>Honeybee 961 (Genomic Solutions)</td>
</tr>
<tr>
<td>CD-Spektrometer</td>
<td>J-815 Circular Dichroic Spectrometer (Jasco, UK)</td>
</tr>
<tr>
<td>Monolith™ NT.115</td>
<td>NanoTemper Technologies</td>
</tr>
<tr>
<td>FACSCantoll Durchflusszytometer</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>UV-Crosslinker</td>
<td>Stratagene</td>
</tr>
</tbody>
</table>

36
3.10 Software und Datenbanken

Es wurde hauptsächlich in den Datenbanken MEDLINE (NCBI) und RCSB Protein Data Bank (PDB) recherchiert. Primerdesign und Nukleotidsequenzanalysen wurden mit CLC Main Workbench 6 von CLC Bio durchgeführt.

Für die Auswertung der Southern Blots wurde die MultiGauge Software verwendet. Die Microscale Thermophoresedaten wurden mit der NanoTemper Control 1.1.8 Software von NanoTemper Technologies sowie GraphPad bearbeitet. GraphPad wurde auch für die graphische Darstellung und Auswertung von Chromatographiedaten verwendet.

Desweiteren wurden die Microsoft Office Programme Word, Excel und Powerpoint verwendet, sowie Adobe Photoshop für die Bildbearbeitung und EndNote X7 für die Literaturverwaltung.
4 Methoden

4.1 Bestimmung der Nukleinsäurekonzentration

Die Konzentration von Nukleinsäuren wurde spektrometrisch bei \(\lambda = 260 \text{ nm} \) mit Hilfe des NanoDrop1000 (Thermo Scientific) bestimmt. Bei der Durchführung wurde den Herstellerangaben gefolgt. Von den zu analysierenden Nukleinsäurelösungen wurde jeweils 1 µl auf die Messplattform pipettiert und eine Dreifachbestimmung durchgeführt.

4.2 Bestimmung der Proteinkonzentration

Die Proteinkonzentration in Lösungen wurde spektrometrisch bei \(\lambda = 280 \text{ nm} \) mit Hilfe des NanoDrop1000 (Thermo Scientific), wie vom Hersteller beschrieben, bestimmt. Diese Methode der Konzentrationsbestimmung kann nur durchgeführt werden, wenn die Proteine aromatische Aminosäuren (Tryptophan, Tyrosin und Phenylalanin) oder Disulfidbrücken enthalten. Es wurde dabei unterschieden, ob es sich um aufgereinigtes Protein oder Lösungen mit diversen Proteinen, z.B. Zelllysate, handelt. Bei Letzteren wurde die Proteinkonzentration mit der generellen Referenzeinstellung „1 Abs = 1 mg/ml“ gemessen.

Jeweils 2 µl der Proteinlösungen wurden auf die Messplattform pipettiert und für die Konzentrationsbestimmung eingesetzt. Es wurde jeweils eine Dreifachbestimmung durchgeführt.

4.3 Herstellung chemisch-kompetenter Bakterien

E. coli hat keine natürliche Kompetenz für die Aufnahme von DNA, daher werden die Bakterien einer chemischen Behandlung unterzogen, um sie kompetent für die DNA-Aufnahme zu machen. Dafür wurden 20 ml LB-Medium als Vorkultur mit dem gewünschten *E. coli* Stamm inokuliert und über Nacht bei 37°C, 180 rpm inkubiert. Sollte der *E. coli* Stamm
für ein Antibiotikum resistent sein, so wurde das Antibiotikum zum Medium hinzugegeben. Am nächsten Morgen wurden mit 2 ml der Vorkultur 200 ml LB-Medium, inklusive 4 mM MgSO₄ und 10 mM KCl, inokuliert. Diese Kultur wurde bei 37°C, 180 rpm bis zu einer OD₆₀₀ 0,3-0,5 inkubiert. Anschließend wurde die Kultur für ca. 15 min auf Eis abgekühlt und die Bakterien für 5 min bei 4°C und 4000g pelletiert. Die Bakterien wurden in 60 ml eiskaltem TFB1-Puffer aufgenommen und für 1 h auf Eis inkubiert. Anschließend wurden die Bakterien wieder pelletiert und das Pellet in 8 ml TFB2-Puffer resuspendiert. Direkt im Anschluss wurden jeweils 200 µl der Suspension in 1,5 ml Reaktionsgefäßen aliquotiert, direkt in Stickstoff eingefroren und bei -80°C bis zu Verwendung gelagert.

<table>
<thead>
<tr>
<th>TFB1</th>
<th>TFB2</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mM RbCl</td>
<td>10 mM MOPS</td>
</tr>
<tr>
<td>50 mM MnCl₂ x 4H₂O</td>
<td>10 mM RbCl</td>
</tr>
<tr>
<td>30 mM KAc</td>
<td>75 mM CaCl₂</td>
</tr>
<tr>
<td>10 mM CaCl₂</td>
<td>15% v/v Glycerin</td>
</tr>
<tr>
<td>15% v/v Glycerin</td>
<td></td>
</tr>
<tr>
<td>pH 5,8 mit 0,2 M Essigsäure einstellen</td>
<td>pH 7,0 mit 0,2 M NaOH einstellen</td>
</tr>
</tbody>
</table>

4.4 Hitzeschock-Transformation

Chemisch kompetente *E. coli* Top10 und Bl21 Star™ Bakterien wurden mit bakteriellen Plasmiden transformiert indem die Bakterien auf Eis aufgetaut wurden, die Plasmid-DNA mit den Bakterien gemischt und für ca. 10 min auf Eis inkubiert wurden. Danach wurden die Bakterien für 1 min auf 42°C erhitzt und danach auf Eis für ca. 3 min abgekühlt. Anschließend wurden 500 µl LB-Medium hinzugegeben und die Bakterien bei 37°C für 1 h schüttelnd inkubiert. 50 µl der Suspension wurden auf LB-Agarplatten ausplattiert und bei 37°C über Nacht inkubiert. Die LB-Platten enthielten die entsprechenden Antibiotika für die Selektion der transformierten Bakterien.

4.5 Präparative Plasmidaufreinigung

Für die préparative Plasmidaufreinigung wurden das DNA Plasmid Purifications Kit NucleoBond® PC100 (Macherey-Nagel) und das PeqGOLD Plasmid Mini Kit (Peqlab) verwendet. Dazu wurde LB-Medium inklusive entsprechendem Antibiotikum mit transformierten *E. coli* Top10 angeimpft und über Nacht bei 37°C, 180 rpm inkubiert. Anschließend wurden die Plasmide nach Herstellerangaben prépariert.
4.6 Replikationsassay

4.6.1 Herstellung proviraler DNA

Für die Herstellung proviraler DNA für anschließende Replikationsassays wurden die Plasmide pMCPyV und pSV40 mit SacI bzw. BamHI verdaut, um das bakterielle Gerüst dieser Vektoren, welches für die bakterielle Amplifizierung notwendig ist, zu entfernen. Dafür wurden pro Plasmid jeweils drei Ansätze à 10 µg mit dem entsprechenden Restriktionsenzym für 1 h bei 37°C geschnitten. Die verdaute DNA wurde mithilfe der Agarosegelelektrophorese in einem 0,8%-igen Gel der Größe nach aufgetrennt und mittels SafeRed™ sichtbar gemacht. Die DNA-Bande auf Höhe der proviralen DNA (5 bzw. 5,5 kb) wurde ausgeschnitten und mittels NucleoSpin® Gel and PCR Clean-up Kit (Marcherey-Nagel) aus dem Gel in 50 µl Elutionspuffer eluiert. Die lineare provirale DNA (50 µl) wurde dann über Nacht bei 16°C mit 10 µl T4 Ligase (NEB), 20 µl 10x Ligationspuffer (NEB) und 120 µl H₂O religiert. Anschließend wurde der Ligationsansatz mit dem NucleoSpin® Gel and PCR Clean-up Kit aufgereinigt und bei -20°C bis zur Transfektion gelagert.

4.6.2 Zelllinien

Tabelle 8 Zelllinien für den Replikationsassay, deren Ursprung, Kulturmedium und die angewandten Transfektionsmethode

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>Ursprung</th>
<th>Medium</th>
<th>Transfektionsmethode</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFSK-1</td>
<td>human</td>
<td>RPMI</td>
<td>Fugene</td>
</tr>
<tr>
<td>HDF</td>
<td>human</td>
<td>DMEM</td>
<td>PEI</td>
</tr>
<tr>
<td>HEK293</td>
<td>human</td>
<td>DMEM</td>
<td>PEI</td>
</tr>
<tr>
<td>H1299</td>
<td>human</td>
<td>DMEM</td>
<td>PEI</td>
</tr>
<tr>
<td>Makrophagen</td>
<td>human, primär</td>
<td>RPMI</td>
<td>Neontransfektion</td>
</tr>
<tr>
<td>LAN-1</td>
<td>human</td>
<td>RPMI</td>
<td>FuGENE</td>
</tr>
<tr>
<td>Keratinozyten</td>
<td>human, primär</td>
<td>Keratinocytes basic medium [73]</td>
<td>Amaxa</td>
</tr>
<tr>
<td>HaCaT</td>
<td>human</td>
<td>DMEM</td>
<td>Exgen</td>
</tr>
<tr>
<td>Vero</td>
<td>Affe</td>
<td>DMEM</td>
<td>PEI</td>
</tr>
<tr>
<td>CV1</td>
<td>Affe</td>
<td>RPMI</td>
<td>Fugene</td>
</tr>
</tbody>
</table>
4.6.3 Transfektionsmethoden

Transfektion mit FuGENE® HD Transfektionsreagenz

Für die Transfektion mit FuGENE® HD Transfektionsreagenz wurden am Vortag Zellen ausgesät. Pro Transfektionsansatz wurden 94 µl Medium ohne Zusätze und 6 µl FuGENE® HD Transfektionsreagenz für 2 s auf einem Vortex gemischt und anschließend für 5 min bei Raumtemperatur inkubiert. Anschließend wurde die Plasmid-DNA hinzugegeben. Nach nochmaligem Mischen und einer weiteren Inkubation von 15 min wurde die Suspension auf die Zellen gegeben.

Transfektion mit Polyethylenimin (PEI)

Polyethylenimin Puder wurde in Wasser resuspendiert, so dass die Konzentration 1 µg/µl war. Auf die am Vortag ausgesäten, zu transfizierenden Zellen wurde Medium ohne Zusätze gegeben. Die Plasmid-DNA wurde mit Medium ohne Zusätze vermischt, so dass das Gesamtvolumen 100 µl umfasste. Anschließend wurden 15 µl PEI hinzugegeben und für 30 min bei Raumtemperatur inkubiert. Danach wurde die Suspension auf Zellen gegeben und für 6 h inkubiert. Das Medium wurde im Anschluss gewechselt und es wurde Medium mit Zusätzen zu den Zellen gegeben.

Neon™ Transfektion

Transfektion mit Amaxa® Nucleofactor® Technologie

Amaxa® Nucleofactor® Technologie wurde für die Transfektion von primären Keratinozyten verwendet. Es wurden 1x10⁶ Keratinozyten in 100 µl Nucleofactor® Lösung aufgenommen. 3 µg Plasmid-DNA wurde hinzugegeben und die Suspension wurde in eine Transfektionsküvette gegeben. Die Zellen wurde mit dem Nucleofactor® Programm T-018 transfiziert und im Anschluss mit 500 µl Medium versetzt und ausgesät.
Transfektion mit ExGen 500

Das Transfektionsreagenz ExGen 500 ist linearisiertes 22 kDa großes PEI. Für einen Transfektionsansatz wurde die DNA mit 100 µl 150 mM NaCl auf dem Vortex gemischt und anschließend kurz zentrifugiert. 3,3 µl ExGen 500 wurden in die Lösung gegeben und sofort für 10 s auf dem Vortex gemischt. Das Gemisch wurde für 10 min bei Raumtemperatur inkubiert und anschließend auf die am Vortag ausgesäten, zu transfizierenden Zellen gegeben.

4.6.4 Transfektion mit pMCPyV und pSV40

Das Replikationsassay wurde in 6-well Schalen durchgeführt. Soweit nicht anders spezifiziert wurden pro Vertiefung wurden 1x10⁵ Zellen ausgesät. Die verwendeten Zelllinien und deren Transfektionsmethoden sind in Tabelle 8 bzw. in Kapitel 4.6.3 aufgeführt. Es wurden pro Vertiefung 500 ng Gesamt-DNA transfiziert. Bei der Transfektion von pMCPyV wurde 100 ng virales Genom und 400 ng pUC18 in die Zellen eingebracht. Für pSV40 wurden 80 ng pSV40 und 420 ng pUC18 transfiziert. Für die Mock-Kontrolle wurden 500 ng pUC18 und als Transfektionskontrolle 500 ng p6 transfiziert. Die transfizierten Zellen wurden bei 37°C, 5% CO₂ und 95% Luftfeuchtigkeit inkubiert. Die Zellen wurden 6 d nach Transfektion nach der HIRT-Methode (s. 4.6.5) geerntet.

Für die Transfektion der einzelnen Zelllinien wurden verschieden Methoden getestet und die mit der höchsten Effizienz für die Replikationsassays angewandt (Tabelle 8). Die Transfektionseffizienz, Anzahl der transfizierten Zellen, wurde per FACS-Analyse der Transfektionskontrolle ermittelt. Das transfizierte Plasmid p6 codiert für ein GFP-Fusionsprotein. Die Anzahl der GFP-exprimierenden Zellen im Verhältnis der nicht-exprimierenden Zellen ergab die Transfektionseffizienz.

4.6.5 Extraktion niedermolekularer DNA nach der HIRT-Methode

4.6.6 Southern Blot Analyse

Zur Analyse der verdauten DNA wurde sie auf ein 0,8%iges Agarosegel aufgetragen und bei 80 V der Größe nach aufgetrennt. Für den Transfer der DNA auf eine Membran muss das Gel für 10 min mit Depurinationspuffer, 30 min mit Denaturierungspuffer und danach für 30 min mit Neutralisierungspuffer gewaschen werden (Tabelle 3). Zwischen den einzelnen Waschschritten, wurde das Gel kurz mit destilliertem Wasser gespült. Anschließend wurde die DNA über Nacht mittels Kapillar-Transfer auf eine Hybond-N+ Membran transferiert. Als Transferpuffer wurde 20xSSC-Lösung eingesetzt. Die transferierte DNA wurde mit UV-Licht und einer Energie von 120.000 Mikrojoules/ cm² (Stratalinker UV crosslinker, Stratagene) mit der Membran quervernetzt.

Danach wurde die Membran mit einer radioaktiv-markierten Sonde (siehe 4.6.7) hybridisiert, indem die Sonde für 5 min bei 95°C denaturiert und anschließend 20 µl davon mit der Membran und 20 ml Ambion® ULTRAhyb®-Lösung (life technologies™) über Nacht bei 42°C rotierend inkubiert wurde. Am nächsten Tag wurde die Membran zweimal mit 2xSSC/ 0,1% Tween und einmal mit 0,2xSSC/ 0,1% Tween für je 20 min bei 42°C gewaschen. Im Anschluss wurde eine Imaging Plate BAS-MS (Fuji Film) auf die Membran gelegt und für mindestens 6 Tage belichtet. Die Imaging Plate BAS-MS wird durch die Radioaktivität belichtet/ angeregt und die daraus resultierenden Signale können mittels PhosphorImager ausgelesen und mit der MultiGauge Software (Fuji Film) bearbeitet werden.
Tabelle 9 Puffer für die Southern Blot Analyse und den semi-trocken Transfer. Alle Angaben beziehen sich auf 1 Liter finales Volumen.

<table>
<thead>
<tr>
<th>Puffer</th>
<th>Bestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depurinationspuffer</td>
<td>0,125 M HCl</td>
</tr>
<tr>
<td>Denaturierungspuffer</td>
<td>87,66 g NaCl, 20 g NaOH</td>
</tr>
<tr>
<td>Neutralisationspuffer</td>
<td>87,66 g NaCl, 60,5 g Trisma base, pH 7,5</td>
</tr>
<tr>
<td>20x SSC</td>
<td>88,23 g Tri-Natriumcitrat, 175,32 g NaCl</td>
</tr>
<tr>
<td>2X SSC/0,1% SDS</td>
<td>8,823 g Tri-Natriumcitrat, 175,32 g NaCl, 0,1% SDS</td>
</tr>
<tr>
<td>0,2x SSC/0,1% SDS</td>
<td>0,8823 g Tri-Natriumcitrat, 175,32 g NaCl, 0,1% SDS</td>
</tr>
</tbody>
</table>

4.6.7 Herstellung von DNA-Sonden

Für die Herstellung radioaktiver DNA-Sonden für die Southern Blot Analyse wurden PCR-Produkte von den MCPyV und SV40 Genomen hergestellt. Dafür dienten als PCR-Primer die Paare MCV196-429F/ MCV196-429R und SV40LT-F-EcoRV fw/ SV40LTmut-R-Xhol, mit den Annealingtemperaturen 50°C bzw. 55°C. Für den PCR-Reaktionsmix wurden folgende Reagenzien eingesetzt:

- 10x PCR-Puffer: 5 µl
- Taq-DNA-Polymerase (5U/µl): 2,5 U
- 100 mM MgCl₂: 2 µl
- 6,25 mM dNTPs: 0,5 µl
- 10 pMol Fw-Primer: 5 µl
- 10 pMol Rv-Primer: 5 µl
- Virus-DNA: 0,5 µg
- H₂O: add 50 µl

Die PCR-Zyklen wurden wie folgt durchlaufen:

- Denaturieren: 96°C, 2 min
- Denaturieren: 96°C, 20 sec
- Anlagerung der Primer: 50°C/ 55°C, 30 sec (35 Zyklen)
- Elongation: 72°C, 30 sec

5 µl des PCR-Ansatzes wurden via Elektrophorese im 1% Agarosegel aufgetrennt. Gab es nur ein PCR-Produkt und hatte es die erwartete Größe, so wurde der Rest des PCR-Ansatzes mit dem NucleoSpin® Gel and PCR Clean-up (Marcherey-Nagel) nach Herstellerangaben aufgereinigt und bis zum weiteren Gebrauch bei -20°C gelagert.
Für die Herstellung von radioaktiv-markierten DNA-Sonden wurden das Amersham Rediprime II DNA Labeling System (GE Healthcare) und α-32P-dCTP benutzt. Nach Markierung der DNA-Sonden wurden diese direkt benutzt oder bei -20°C gelagert.

4.6.8 Dichtegradientenzentrifugation von Virionen mit OptiPrep™

In dieser Arbeit wurde die DGZ eingesetzt, um SV40 und MCPyV Virionen vom Zelllysat zu separieren. Für die DGZ wurden mit pSV40 oder pMCPyV transfizierte Zellen für 4 Tage in 12-well Schalen inkubiert, anschließend trypsinisiert, um sie von der Kulturschale zu lösen und mit PBS gewaschen. Die Zellen wurden über Nacht bei 37°C lysiert mit PBS inkulsive 9,5 mM MgCl₂, 1% Penicillin-Streptomycin-Mix (Gibco), 0,5% Triton X-100 und 0,1% RNaseA [76].

Am nächsten Tag wurde das Lysat aufgearbeitet und die DGZ nach Protokoll [76] durchgeführt: Das Lysat wurde für 10 min bei 10.000xg und 4°C zentrifugiert, der Überstand in ein neues Gefäß überführt und das Pellet nochmals mit PBS gewaschen und zentrifugiert. Die Überstände wurden vereinigt. Es wurden für jeden DGZ-Ansatz die Überstände aus 2 wells kombiniert. Das finale Volumen lag zwischen 80-120 µl. Für den Gradienten wurde eine 46%ige OptiPrep™ Lösung und eine PBS/Salz-Lösung hergestellt (Tabelle 13). Anschließend wurden die 27%, 33% und 39% OptiPrep™ Lösungen (Tabelle 11) für die Zentrifugation hergestellt. Der Gradient wurde mit je 1,2 ml 27%, 33% und 39% OptiPrep™ Lösung in ein 4 ml Ultrazentrifugationsröhrchen geschichtet und für 4 h bei Raumtemperatur stehen gelassen, damit sich ein kontinuierlicher Gradient ausbilden kann. Anschließend wurde das präparierte Lysat bzw. dessen Überstand auf den Gradienten gegeben und die DGZ für 4 h bei 16°C, 52.00 rpm im SW60Ti Rotor durchgeführt. Durch Punktionierung der Ultrazentrifugationsröhrchen wurde der Gradient ausgetropft. Bis auf die erste Fraktion (~500 µl) enthielten alle Fraktionen ~250 µl. Anschließend wurden die Fraktionen auf die Anwesenheit von viraler DNA, Viruspartikeln und VP1 getestet.
<table>
<thead>
<tr>
<th>Reagenzien</th>
<th>46% OptiPrep™/Salzlösung</th>
<th>PBS/ Salzlösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>60% OptiPrep™</td>
<td>19,15 ml</td>
<td>-</td>
</tr>
<tr>
<td>10x PBS</td>
<td>2,5 ml</td>
<td>10 ml</td>
</tr>
<tr>
<td>5 M NaCl</td>
<td>3,25 ml</td>
<td>12,5 ml</td>
</tr>
<tr>
<td>2 M CaCl₂</td>
<td>11,5 µl</td>
<td>45 µl</td>
</tr>
<tr>
<td>2 M MgCl₂</td>
<td>6,5 µl</td>
<td>25 µl</td>
</tr>
<tr>
<td>1 M KCl</td>
<td>50 µl</td>
<td>210 µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>-</td>
<td>76,75 ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zusammensetzung der OptiPrep™-lösungen für Dichtegradientenzentrifugation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagenzien</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>46% OptiPrep™/Salzlösung</td>
</tr>
<tr>
<td>PBS/ Salzlösung</td>
</tr>
</tbody>
</table>

4.6.9 Silberfärbung von SDS-Polyacrylamidgelen

Im Gegensatz zur Coomassie-Färbung (siehe 4.7.10) ist die Silberfärbung von aufgetrennten Proteinen sensitiver, d.h. es können geringere Mengen an Protein nachgewiesen werden. Mit der Coomassie-Färbung können Proteinbanden ab ~100-500 ng nachgewiesen werden. Für die Silberfärbung von SDS-Polyacrylamidgelen wurde das Pierce SilverSNAP® stain für Massenspektrometrie Kit (Thermo Scientific) eingesetzt, welches Proteinmengen ab 25 ng nachweisen soll. Die SDS-Gele wurden nach Herstellerangaben gefärbt und entwickelt.

4.7 Expression und Aufreinigung rekombinanter Proteine in Bakterien

4.7.1 Heterologe Expression von His-MCPyV LT_{NT} und GST-pRb₃₈₂₋₇₇₁ in *E. coli*

Für diese Arbeit wurden His-markiertes MCPyV LT_{NT} und GST-markiertes pRb₃₈₂₋₇₇₁ in *E. coli BI21 Star™* heterolog exprimiert. Für die Expression beider Proteine wurden 50 ml LB-Medium inklusive Ampicillin mit 3-4 Kolonien transformierter Bakterien angeimpft und bei
37°C, 180 rpm über Nacht inkubiert. Am nächsten Morgen wurden die Bakterien bei 4000xg für 20 min pelletiert und in 20 ml frischem LB-Medium aufgenommen. Für die Expressionskultur wurden 500 ml LB-Medium inklusive Antibiotikum und 1% Glukose mit 5 ml der Bakteriensuspension inokuliert und bei 37°C und 120 rpm in 2 l Schikaneglashalben inkubiert. Das Wachstum der Kultur wurde durch die Messung der optischen Dichte bei \(\lambda = 600 \text{ nM (OD}_{600} \) beobachtet. Hatte die Kultur eine OD\(_{600} \) von 0,5-0,7 erreicht, so wurde die Expression induziert. Dafür wurden die Kulturen und der Incubator auf 18°C abgekühlt. Für die Induktion der Expression von His-MCPyV LT\(_{NT} \) wurden 1 mM IPTG (f.c.) und von GST-pRb\(_{382-771} \) 0,5 mM IPTG (f.c.) in die abgekühlte Kultur gegeben. Die Expressionskultur wurde anschließend für 12-16 h bei 18°C und 120 rpm inkubiert. Nach Beendigung der Expression wurden die Bakterien bei 6000 rpm (Sorvall RC-5B Zentrifuge, GS-3 Rotor) und 4°C pelletiert und das Pellet bis zur weiteren Verarbeitung bei -20°C gelagert.

Zur Überprüfung, ob die Proteine exprimiert wurden, wurde vor der Induktion und nach der Expression jeweils eine Probe genommen und die Proteinexpression mittels SDS-PAGE (siehe 4.7.9) und Coomassie-Färbung (siehe 4.7.10) überprüft.

4.7.2 Aufschluss von *E. coli* Bakterien zur Aufreinigung von heterolog exprimierten Proteinen

Das Bakterienpellet wurde auf Eis aufgetaut und in dem für das Protein entsprechenden eiskalten Bindepuffer resuspendiert (siehe 4.7.3), dafür wurden 25-50 ml Bindepuffer pro ml Expressionskultur eingesetzt. Nach der Resuspension wurden die Bakterien mit 1 mg/ml Lysozym lysiert und die Suspension 30 min auf Eis inkubiert. Anschließend wurde die enzymatische Reaktion, wie auch die Aktivität endogener Proteasen mit dem Proteaseinhibitormix Complete EDTA free für His-MCPyV LT\(_{NT} \) und Complete (beides Roche Diagnostics) für GST-pRb\(_{382-771} \) gestoppt. Um die Bakterien komplett aufzuschließen, wurden sie mit Ultraschall fünfmal 3x10 sec auf Eis beschallt, bei einer Leistung von 30% (Branson Digital Sonifier M250). Die festen Partikel wurden bei 14.000*g für 30 min abzentrifugiert. Der Überstand mit den löslichen Proteinen wurde vom Pellet getrennt und nochmals durch einen 0,45 µm Filter filtriert, um weitere unlösliche Partikel abzutrennen. Der Überstand wurde direkt in der Affinitätschromatographie weiterverarbeitet.

4.7.3 Affinitätschromatographische Methoden zur Aufreinigung von His-MCPyV LT\(_{NT} \), 6xHis-SV40 LT\(_{7-117} \) und GST-pRb\(_{382-771} \)

Automatisierte NiNTA Metall-Affinitätschromatographie von His-MCPyV LT\(_{NT} \)

Nach dem in Kapitel 4.7.2 beschriebenen Bakterienaufschluss wurden die His-MCPyV LT\(_{NT} \) Proteine entweder im *Batch*- oder im automatisierten Verfahren mithilfe der NiNTA Metall-

Für beide Verfahren wurden die gleichen Puffer eingesetzt. Für die NiNTA Affinitätschromatographie werden Bindepuffer, Waschpuffer und Elutionspuffer benötigt:

- **Bindepuffer**: 50 mM Tris, 750 mM NaCl, 20 mM Imidazol, 5% Glycerol, 5 mM BME, pH 8,0
- **Waschpuffer**: 50 mM Tris, 750 mM NaCl, 20 mM Imidazol, 5% Glycerol, 5 mM BME, 5 mM ATP, 10 mM MgCl\(_2\), pH 8,0
- **Elutionspuffer**: 50 mM Tris, 750 mM NaCl, 500 mM Imidazol, 5% Glycerol, 5 mM BME, pH 8,0

Alternativ zu 5 mM BME wurde auch 5 mM DTT eingesetzt, wobei bei beiden Detergenzien darauf geachtet wurde, dass die Lösungen nach Zugabe nur innerhalb von zwei Tagen benutzt wurden. Nach dem Bakterienauflösung wurde der Überstand nach Angaben der Hersteller (GE Healthcare und Qiagen) in das ÄktaPurifier System gegeben und über die 5 ml HisTrapFF-Säule (Qiagen) aufgeregogen. Dafür wurde die Säule vorher mit Bindepuffer gespült. Die Proteinlösung wurde mit einer Fließgeschwindigkeit von 0,5 ml/ min über die Säule laufen gelassen. Um alle unspezifisch gebundenen Proteine von der Säule zu waschen, wurde sie mit fünf Säulenvolumina Waschpuffer gespült und im Anschluss nochmals mit mindestens zwei Säulenvolumina Bindepuffer bis die OD\(_{280}\) einen konstanten Wert, ungefähr auf Höhe der Basislinie, erreicht hatte. Das gebundene His-MCPyV LT\(_{NT}\) wurde über einen Imidazolgradienten von der Säule eluiert. Es hat sich herausgestellt, dass eine langsame Elution zu einem saubereren Protein führt. Daher wurde die Imidazolkonzentration über einen Zeitraum von 50 bis 75 min und einem Volumen von 50 ml von 20 mM auf 250 mM gesteigert. Es wurden jeweils 1 ml Fraktionen gesammelt. Das ÄktaPurifier System wie auch alle Puffer standen im 4°C Raum.

NiNTA Metall-Affinitätschromatographie im Batch-Verfahren von His-MCPyV LT\(_{NT}\)

Im *Batch*-Verfahren erfolgt die Aufreinigung manuell, meist in kleinerem Maßstab und in einem geschlossenen Gefäß, wie z.B. einem 15 oder 50 ml Gefäß. Hierbei können die Parameter Fließgeschwindigkeit, Gradient etc. im Vergleich zum ÄktaPurifier System nicht
gesteuert werden. Der Aufschluss der Bakterien und die ersten Schritte des *Batch*-Verfahrens sind identisch mit der automatisierten ÄktaPurifier-Methode (s. Kapitel 4.7.2).

Für das *Batch*-Verfahren wurde als Chromatographiematerial NiNTA-Agarose (Qiagen) verwendet. Es wurde ca. 1 µl NiNTA-Agarose pro 1 ml Expressionsvolumen eingesetzt. Für das *Batch*-Verfahren wurde die NiNTA-Agarose dreimal mit zweifachem Agarosevolumen Bindepuffer gewaschen. Um nach jedem Wasch- und Elutionsschritt die NiNTA-Agarose zu pelletieren und vom Überstand zu trennen, wurde die Suspension bei 1000*g für mindestens 2 min zentrifugiert.

Nach Aufschluss der Bakterien und Vorbereitung der NiNTA-Agarose wurde der Bakterienüberstand mit der NiNTA-Agarose vermischt und die Suspension für mindestens zwei Stunden, meistens über Nacht, bei 4°C rotierend inkubiert, um His-MCPyV LT_{NT} an die Agarose zu binden. Anschließend wurde die NiNTA-Agarose dreimal mit zwei- bis dreifachem Agarosevolumen Waschpuffer gewaschen, jeweils für ca. 5 min bei Raumtemperatur. Für die Elution wurden Binde- und Elutionspuffer so gemischt, dass die finale Imidazolkonzentration 250 mM betrug. Gebundenes His-MCPyV LT_{NT} wurde von der NiNTA-Agarose eluiert, indem dreimal mit zweifachem Agarosevolumen Elutionspuffer (250 mM Imidazol) bei Raumtemperatur rotierend gewaschen wurde. Beim ersten Elutionsschritt wurde die Suspension für ca. 2 min inkubiert. Bei Elutionsschritt Zwei und Drei wurde die Suspension mindestens 20 min inkubiert. Es wurden mehrere Elutionsschritte durchgeführt, da sich gezeigt hatte, dass v.a. beim ersten Schritt auch unspezifisch gebundene Proteine eluiert wurden.

NiNTA Metall-Affinitätschromatographie im Batch-Verfahren von 6xHis-SV40 LT_{T,-117}

Die Aufreinigung im *Batch*-Verfahren von His-MCPyV LT_{NT} wurde wie das *Batch*-Verfahren von His-MCPyV LT_{NT} durchgeführt. Es wurden jedoch andere Puffer als Binde- bzw. Waschpuffer und Elutionspuffer benutzt:

- **Binde-/Waschpuffer**: 50 mM Tris, 150 mM NaCl, 10 mM Imidazol, 5% Glycerol, 1 mM DTT, pH 7,4

- **Elutionspuffer**: 50 mM Tris, 150 mM NaCl, 250 mM Imidazol, 5% Glycerol, 1 mM DTT, pH 7,4.

Affinitätschromatographie von GST-pRb₃₈₂₋₇₇₁ im Batch-Verfahren

Auch die Aufreinigung von GST-pRb₃₈₂₋₇₇₁ wurde als Affinitätschromatographie im *Batch*-Verfahren durchgeführt. Hierfür wurde die Glutathion Sepharose™ 4B von GE Healthcare,
die spezifisch für GST-Tags ist, verwendet. Der Aufschluss des Bakterienpellets fand wie in Kapitel 4.7.2 beschrieben statt. Alle Schritte wurden wenn nicht anders erwähnt bei 4°C durchgeführt. Für die Aufreinigung von GST-pRb\textsubscript{382-771} wurden folgende Puffer verwendet:

Bindepuffer: 1xPBS, 200 mM NaCl, 5 mM BME, pH 7,4

Elutionspuffer: 30 mM reduziertes L-Glutathion, pH 7,4, in Bindepuffer

Die Glutathion SepharoseTM wurde vor Verwendung, nach Herstellerangaben, mit dem Bindepuffer gewaschen. Danach wurde die Sepharose zur Proteinlösung gegeben und die Suspension über Nacht rotierend inkubiert. Anschließend wurde die Sepharose mit dem gebundenen Protein mit 500*g für 5 min pelletiert und der Überstand verworfen. Die Sepharose wurde danach dreimal mit mindestens dreifachem Sepharosevolumen Bindepuffer für jeweils 20 min rotierend gewaschen, um unspezifisch gebundenes Protein zu entfernen. Für die Elution des GST-pRb\textsubscript{382-771} wurden jeweils eines von zwei möglichen Verfahren angewandt: 1. Die Elution von GST-pRb\textsubscript{382-771} mit reduziertem Glutathion oder 2. das Schneiden von GST-pRb\textsubscript{382-771} durch Thrombin, so dass GST weiter an die Sepharose bindet und pRb\textsubscript{382-771} gelöst im Überstand vorliegt.

Die Elution von GST-pRb\textsubscript{382-771} wurde in drei Schritten durchgeführt, so dass möglichst viel Protein von der Sepharose gelöst wurde. Dafür wurde im ersten Schritt die Sepharose mit dem doppelten Sepharosevolumen Elutionspuffer für 30-60 min bei Raumtemperatur inkubiert und der Überstand abgenommen, der Vorgang wurde zweimal wiederholt, wobei eine Inkubation über Nacht bei 4°C stattfand.

Da in dem Fusionsprotein GST-pRb\textsubscript{382-771} zwischen dem GST und dem pRb\textsubscript{382-771} eine Thrombinschnittstelle liegt, können die beiden Proteine enzymatisch voneinander getrennt werden. Dafür wurde nach den Waschschritten nochmals Bindepuffer hinzugegeben, so dass Puffer und Sepharose zu ungefähr gleich Volumina vorlagen. Zu der Suspension wurden pro 100 µl Sepharose 7,5 U Thrombin hinzugegeben und für 1 h bei RT inkubiert. Anschließend wurde der Überstand abgenommen und die Prozedur wiederholt und der Ansatz bei 4°C rotierend über Nacht inkubiert. Ob das Enzym effektiv geschnitten hatte, wurde per SDS-PAGE kontrolliert und ja nach Bedarf nochmals Thrombin zur Sepharose gegeben, um verbliebenes ungeschnittenes GST-pRb\textsubscript{382-771} zu schneiden.
4.7.4 Ko-Aufreinigung von GST-pRb_{PD} und 6xHis-LT_{1-244} im Batch-Verfahren

Um zu überprüfen, ob sich beide Proteine in einem Verfahren als Komplex aufreinigen lassen, wurde eine Ko-Aufreinigung durchgeführt. Es wurden die Bakterienpellets aus 700 ml GST-pRbPD-Expressionsmedium und 1500 ml 6xHis-LT_{1-244}-Expressionsmedium in insgesamt 60 ml Aufschlusspuffer resuspendiert und wie unter 4.7.2 beschrieben aufgeschlossen. Da es sich um eine Kombination beider Proteine handelt, wurden veränderte Puffer als bei den Einzelaufräumigungen benutzt:

- **Aufschlusspuffer:** 50 mM Tris, 200 mM NaCl, 10 mM Imidazol, 2,5 mM BME, pH 7,5
- **Waschpuffer:** 50 mM Tris, 200 mM NaCl, 10 mM Imidazol, 5 mM ATP, 10 mM MgCl₂, 2,5 mM BME, pH 7,5
- **NiNTA-Elutionspuffer:** 50 mM Tris, 200 mM NaCl, 250 mM Imidazol, 2,5 mM BME, pH 7,5
- **GST-Elutionspuffer:** 50 mM Tris, 200 mM NaCl, 10 mM Imidazol, 2,5 mM BME, 30 mM reduziertes Glutathion, pH 7,5

Tabelle 12 Elution von GST-pRb_{PD} und 6xHis-LT_{1-244} bei der Ko-Aufreinigung

<table>
<thead>
<tr>
<th>Elutionsschritt</th>
<th>NiNTA-Elutionspuffer, Elutionszeit</th>
<th>GST-Elutionspuffer, Elutionszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Eluat</td>
<td>3 ml, fließend</td>
<td>2 ml, fließend</td>
</tr>
<tr>
<td>2. Eluat</td>
<td>3 ml, 1 h bei RT</td>
<td>3 ml, 1 h bei RT</td>
</tr>
<tr>
<td>3. Eluat</td>
<td>5 ml, ÜN bei 4°C</td>
<td>3 ml, ÜN bei 4°C</td>
</tr>
<tr>
<td>4. Eluat</td>
<td>-</td>
<td>2 ml, fließend</td>
</tr>
</tbody>
</table>

Die Eluate wurden mittels SDS-PAGE analysiert.
4.7.5 Gelfiltration von His-MCPyV LT_{NT}

Für die Gelfiltration (GF) wurde auch das ÄKTAPurifier System benutzt und die Superdex 200 10/300 GL Säule mit einem Säulenvolumen von 24 ml eingesetzt. Diese Säule trennt Proteine mit Molekulargewicht zwischen 10 und 600 kDa, gleichzeitig kann während eines Laufs über die Säule das Protein umgepuffert werden.

Die GF wurde über das ÄKTAPurifier System gesteuert und überwacht. Die Flussrate betrug 0,3-0,5 ml/min, maximal 0,75 ml/min, und es wurden Fraktionen mit einem Volumen von 1-1,5 ml gesammelt. Als Standardpuffer für die His-MCPyV LT_{NT} Aufreinigung wurde 50 mM Tris, 750 mM NaCl, 5% Glycerol, pH 8 verwendet oder ein Puffer, der für anschließende Anwendungen passend war. Die Sauberkeit des aufgereinigten Proteins wurde per SDS-PAGE überprüft.

4.7.6 Gelfiltration von His-SV40 LT_{NT}

Die GF wurde wie die Gelfiltration von His-MCPyV LT_{NT} durchgeführt, mit dem Puffer 50 mM Tris, 150 mM NaCl, 5% Glycerol, pH 7,4

4.7.7 Ionenaustauschchromatographie von GST-pRb₃₈₂₋₇₇₁

Auch die Ionenaustauschchromatographie (IEX) wurde mit dem ÄKTAPurifier-System durchgeführt und für die Aufreinigung von GST-pRb₃₈₂₋₇₇₁ benutzt. Hierfür wurde die UNO™ S6 Säule (6 ml, BioRad) eingesetzt. Hierbei handelt es sich um eine Kationenaustauschsäule. Für die IEX wurde GST-pRb₃₈₂₋₇₇₁ gegen den salzlosen Puffer (50 mM NaPO₄, pH 7,3) dialysiert und für 10 min bei 4°C und 14.000*g zentrifugiert. Die Säule wurde vor dem Lauf auf 50 mM NaPO₄, pH 7,3 eingestellt. Pro Lauf wurden 500 µl GST-pRb₃₈₂₋₇₇₁ in das ÄKTAPurifier-System gegeben. Der NaCl-Gradient wurde mit dem hochmolaren Salzpuffer (50 mM NaPO₄, 1 M NaCl, pH 7,3) kontinuierlich aufgebaut. Es wurden Fraktionen mit einem Volumen von 1 ml gesammelt. Die Sauberkeit des aufgereinigten Proteins wurde per SDS-PAGE überprüft.

4.7.8 SMART System

Analytische Gelfiltrationen wurden zum Teil mit dem SMART System (Pharmacia Biotech) durchgeführt. Dafür wurde die Superdex 200 PC 3.2/30 Säule (2,4 ml Säulenvolumen) verwendet. Das Probenvolumen betrug 50 µl und die Flussrate 40 µl/min. Es wurden jeweils 50 µl Fraktionen gesammelt. Da mit dem SMART-System verschiedene Proben und Proteine analysiert wurden, waren auch die Puffer unterschiedlich. Für die Analyse von LT_{NT}
Proteinen wurde sofern im Ergebnisteil nicht anders erwähnt 50 mM Tris, pH 8,0, 750 mM NaCl eingesetzt. In den Experimenten zur Komplexbildung (Kapitel 4.7.3) und Ko-Aufreinigung (Kapitel 4.7.4) wurde 50 mM Tris, pH 7,5, 200 mM NaCl, 2,5 mM BME als Laufpuffer benutzt.

Die Läufe mit dem SMART System wurden mit Hilfe von Claudia Trasak, Arbeitsgruppe Aepfelbacher, Institut für Medizinische Mikrobiologie, UKE, durchgeführt.

4.7.9 SDS-Polyacrylamidgelelektrophorese

Proteine wurden separiert und analysiert nach ihrer elektrophoretischen Mobilität mithilfe der denaturierenden Sodiumdodecyl-Polyacrylamidgelelektrophorese (SDS-PAGE) nach der Methode von Laemmli [77]. Bei dieser Methode werden die Proteine aufgrund ihrer Größe in einem elektrischen Feld voneinander separiert. Für die SDS-PAGE wurden jeweils ein 5%iges Sammelgel und ein 12%iges Trenngel verwendet (Tabelle 13). Die zu untersuchenden Proteinlösungen wurden mit 4x Protein-Probenpuffer versetzt und für 5 min bei 97°C erhitzt. Anschließend wurden die Proteine in einem Mini-PROTEAN®-System (BIO-RAD) nach Anleitung des Herstellers bei einer Spannung von 200 V getrennt. Im Anschluss wurde das Gel entweder mit Coomassie gefärbt (s. 4.7.10) oder in der Western Blot Analyse eingesetzt (s. 4.7.1).

<table>
<thead>
<tr>
<th>Lösungen</th>
<th>5% Sammelgel</th>
<th>12% Trenngel</th>
</tr>
</thead>
<tbody>
<tr>
<td>destilliertes Wasser</td>
<td>1,4</td>
<td>2,6</td>
</tr>
<tr>
<td>Acrylamid/Bis (30/0,8) [ml]</td>
<td>0,33</td>
<td>1,0</td>
</tr>
<tr>
<td>1,5 M Tris (pH 6,8) [ml]</td>
<td>0,25</td>
<td>-</td>
</tr>
<tr>
<td>1,5 M Tris (pH 8,8) [ml]</td>
<td>-</td>
<td>1,3</td>
</tr>
<tr>
<td>10% SDS [ml]</td>
<td>0,02</td>
<td>0,05</td>
</tr>
<tr>
<td>10% Ammoniumpersulfat [ml]</td>
<td>0,02</td>
<td>0,05</td>
</tr>
<tr>
<td>TEMED [ml]</td>
<td>0,002</td>
<td>0,004</td>
</tr>
</tbody>
</table>

4.7.10 Coomassiefärbung von SDS-Polyacrylamidgelen

SDS-Gele, die nach der Gelelektrophorese gefärbt werden sollten, wurden dreimal mit heißem destilliertem Wasser für 3-5 min gewaschen. Anschließend wurde die Coomassie-Lösung auf das Gel gegeben und kurzzeitig in der Mikrowelle erhitzt, so dass die Lösung nicht kochte aber heiß wurde. Das Gel wurde für mindestens 15 min geschüttelt und anschließend mit heißem destilliertem Wasser entfärbt.

4.7.11 Western Blot Analyse

Nach der SDS-PAGE wurden die separierten Proteine auf eine PVDF-Membran mittels halbtrockenem Verfahren transferiert. Der Proteintransfer erfolgt durch Anlegen einer Stromstärke von 200 bis 400 mA für 20-30 min. Anschließend wurde der Transfer überprüft indem die Membran mit Ponceau rot gefärbt wurde und transferierte Proteinbanden dadurch sichtbar gemacht wurden. Für die Antigen-Antikörperreaktion wurde die Membran mit einer 5%igen Milchpulver/ PBST-Lösung für 1 h unspezifisch mit Proteinen blockiert. Anschließend wurde der Erstantikörper in einer 5%igen Milchpulver/ PBST-Lösung auf die Membran gegeben und über Nacht bei 4°C schüttelnd inkubiert. Danach wurde die Membran dreimal 10 min mit PBST bei Raumtemperatur gewaschen und anschließend mit dem Sekundärantikörper in einer 5%igen Milchpulver/PBST-Lösung für 1 h bei Raumtemperatur inkubiert. Danach wurde die Membran nochmals gewaschen und die Antigen-Antikörper-Reaktion mittels ECL-Detektion (ECL Western blotting detection reagents and analysis system, Amersham) nach Herstellerangaben auf einem Röntgenfilm (FUJI Film Europe) sichtbar gemacht.

4.7.12 Microscale Thermophorese

Die MST wurde in dieser Arbeit eingesetzt, um die Dissoziationskonstante K_D zwischen 6xHis-TEV-LT$_{1-244}$ und GST-pRb$_{382-771}$ und zwischen SV40 6xHis-LT$_{7-117}$ und GST-pRb$_{382-771}$ zu bestimmen. Hierfür wurde der Monolith™ NT.115 von NanoTemper benutzt.
Für die Analyse wurden die Proteine aufgereinigt und als Monomere in der Messung eingesetzt. Bei der Standard-MST ist ein Interaktionspartner mit einem Fluoreszenzfärber markiert, in diesem Fall wurde GST-pRb\textsubscript{382-771} mit Alexa647, nach Anleitung des Herstellers (Protein Labeling Kit Red, NanoTemper Technologies), markiert. 6xHis-LT-Antigene wurden seriell, für eine Konzentrationsreihe verdünnt und mit fluoreszenzmarkiertem GST-pRb\textsubscript{382-771} gemischt, dessen Konzentration konstant bei 33 nM war. Die eingesetzten Konzentrationen von MCPyV 6xHis-TEV-LT\textsubscript{1-244} und SV40 6xHis-LT\textsubscript{7-117} waren 0,13-531 nM beziehungsweise 0,82-6725 nM. Die Proteine wurden für 30 min bei Raumtemperatur im Dunkeln inkubiert. Für die MST-Messung wurden hydrophile Kapillare (NanoTemper) benutzt. Die Protein-Protein-Interaktionen wurden außerdem unter verschiedene Salzkonzentrationen getestet und die MST-Messungen mit 20, 40 und 60% IR-Laserstärke durchgeführt. Die erhobenen Daten wurden mit der NanoTemper Analysis Software ausgewertet.

4.7.13 Kristallisationsscreens

Initiale Kristallisationsversuche zur Bestimmung von Kristallisationsbedingungen von His-MCPyV LT\textsubscript{NT} bzw. dessen Produkte aus der partiellen Proteolyse wurden mit den kommerziellen Kristallisationsscreens JCSG Suite (Qiagen), Classics Suite (Qiagen), comPAS Suite (Qiagen), Cryos Suite (Qiagen), PACT Premium Suite (Molecular Dimensions), Morpheus (Molecular Dimensions) und PGA Screen HT-96 (Molecular Dimensions) durchgeführt. Dafür wurden die Proteinlösungen 10 min bei 4°C und 16.000xg zentrifugiert. Die Kristallisationsansätze wurden mit dem Pipettierroboter Honeybee 961 (Genomic solutions) pipettiert. Dabei wurden 400 nl Proteinlösung mit 400 nl eines Präzipitanten in eine Vertiefung einer NeXtal QIA1-Platte (Qiagen) gemischt. Anschließend wurden die Platten luftdicht verschlossen und bei 20°C gelagert. Das Kristallwachstum wurde mikroskopisch überwacht.

4.7.14 Partielle Proteolyse

Die partielle Proteolyse ist eine Methode zur Optimierung der Proteinkristallisation [80]. Hierfür wird eine Protease \textit{in situ} dem aufgereinigten Protein vor dem Ansetzen der Kristallisationsscreens hinzugegeben. Die Protease verdaut im Idealfall das Protein in der Weise, dass nur unstrukturierte Regionen verdaut und strukturierte/ gefaltete Regionen intakt gelassen werden, welche dann eine höhere Wahrscheinlichkeit haben zu kristallisieren.

Für diese Methode wurden unterschiedliche Proteinmengen, Puffer und Proteasekonzentrationen getestet, um ein stabiles Produkt zu erhalten. Hierfür wurden die Proteasen des JBS Floppy-Choppy Kits (Jena Bioscience) verwendet. Darin enthalten waren
die Proteasen α-Chymotrypsin, Trypsin, Subtilisin A und Papain. Die Proteolyseansätze wurden bei 20°C inkubiert.

4.7.15 Zirkulärer Dichroismus (CD) Spektroskopie

Die CD-Spektroskopie ist eine Standardmethode in der Strukturbiochemie u.a. für die schnelle Bestimmung der Sekundärstruktur und der Faltung von Proteinen [81,82]. Dabei wird die Eigenschaft ausgenutzt, dass Peptidbindungen, aromatische Aminosäuren und Disulfidbindungen links- und rechtsgängiges polarisiertes Licht unregelmäßig absorbieren. Das führt dazu, dass verschiedene Sekundärstrukturen charakteristische CD-Spektren aufzeigen [81,82].

Die CD-Spektroskopie wurde angewandt, um zu überprüfen, ob der aufgereinigte His-MCPyV LT_{NT} Sekundärstrukturen aufweist. Die Messungen wurden unter Anleitung und mit Unterstützung von Raphael Eberle an der Universität Hamburg, Institut für Biochemie und Molekularbiologie, am J-815 CD-Spektrometer (Jasco) durchgeführt und ausgewertet. Das Probenvolumen lag bei 200 µl. Das Ergebnis wurde in molarer Elliptizität ([θ]₁₀₀₀[deg cm²/dmol]) angegeben.

Die Proteine hatten eine Konzentration von mind. 200 µg/ml und wurden für die Messung gegen 20-50 mM Phosphatpuffer mit maximal 25 mM NaCl dialysiert.

4.7.16 Dynamische Lichtstreuung (DLS)

4.7.17 Thermofluorassay

Der Thermofluorassay wurde eingesetzt, um die Thermostabilität von MCPyV LT_{NT} unter verschiedenen Pufferbedingungen zu bestimmen und damit Pufferbedingungen zu erhalten, die zu einer erhöhten Stabilität von aufgereinigtem, monomerem LT_{NT} führen. Eine erhöhte

4.7.18 Proteinstruktur-Modelling

Für die Vorhersage der Tertiärstruktur von MCPyV LT_{NT} wurde zum einen der FoldIndex[®] [69] bemüht, welcher die Wahrscheinlichkeit berechnet, ob ein Protein und wenn ja in welchen Regionen gefaltet ist. Zum anderen wurde die Platform SWISS-MODEL [70-72] genutzt, welche aufgrund von Homologien die Proteinstruktur modelliert.
5 Ergebnisse

5.1 Replikationsassay

5.1.1 Provirale MCPyV und SV40 Genome

Abbildung 9 Vektorkarte des MCPyV-Konsensusgenoms (MCVSyn) mit bakteriellem Vektorgerüst im T-Antigenlookus (links) und nach Restrikitsverdau und Ligation als MCPyV-Episom (rechts). Abbildung aus [47]

5.1.2 SV40 Replikationsassay

Die humanen Polyomaviren BKPyV und JCPyV sind bekannt für ihren engen Wirts- und Zelltropismus, d.h. in nur wenigen Zelltypen können Aspekte der Virusreplikation studiert und infektiöse Partikel produziert werden [4,84]. Für andere hPyV, wie z.B. KIPyV, WuPyV und TSPyV gibt es kein in vitro Replikationssystem. SV40 hingegen ist in der Lage verschiedene Zelltypen unterschiedlicher Wirtsspezies zu infizieren, dort zu replizieren und infektiöse

Es ist bekannt, dass SV40 unter anderem in der Affenzelllinie CV-1 repliziert, infektiöse Partikel bildet, welche durch Lyse aus der Zelle freigesetzt werden. Für unser Vorhaben ein MCPyV-Replikationssystem zu etablieren, haben wir als Kontrolle und zum Vergleich das SV40-Replikationssystem in CV-1 Zellen in unserem Labor etabliert und einzelne Phasen der Virusreplikation, wie frühe Transkription, DNA-Replikation, späte Transkription und Virusfreisetzung nachvollzogen.

Mit dem religierten Plasmid pSV40 wurden CV-1 Zellen transfiziert. Nach 6 Tagen wurden die Zellen geerntet und niedermolekulare DNA mithilfe der HIRT-Extraktionsmethode [75] isoliert. Mit der Southern Blot Analyse und einer radioaktiven Sonde gegen SV40 LT konnte neu replizierte SV40 DNA nachgewiesen werden (Abbildung 10A). Zusätzlich wurde die Expression des Strukturproteins VP1, einem späten Protein, überprüft. Hierfür wurden die transfigizierten Zellen nach 4 Tagen mit 10% Triton lysiert und ein Teil des Lysats per Western Blot Analyse auf die Anwesenheit von VP1 getestet. Das SV40-Strukturprotein VP1 konnte im Lysat transfigizierter Zellen nachgewiesen werden (Abbildung 10B.)
Abbildung 10 SV40 Replikationsassay. CV-1 Zellen wurden mit pSV40 transfiziert A) De novo synthetisierte SV40-DNA wird 6d p.t. durch Southern Blot Analyse detektiert. 8 µg niedermolekulare DNA, isoliert nach der HIRT-Methode und DpnI und EcoRI verdaut, wurden in einem Agarosegel separiert. Der Southern Blot wurde mit einer radioaktiven SV40 LT-Ag Sonde hybridisiert und für 24 h belichtet. B) Zelllysate wurden 6d p.t. im Western Blot auf VP1-Expression getestet. VP1 wird zwischen 40 und 50 kDa detektiert, die untere Bande ist ein Abbauprodukt.

Bei transfizierten CV-1-Zellen konnte 11 Tage nach Transfektion ein zytopatischer Effekt beobachtet (CPE) werden (Abbildung 11A), d.h. der Zellrasen wies im Gegensatz zur Kontrolle Löcher auf, die Zellen haben sich von der Kulturschale gelöst und sind lysiert. Dies ließ darauf schließen, dass SV40 Virionen produziert und diese durch Lyse freigesetzt wurden. Um zu überprüfen ob infektiöse Vironen freigesetzt wurden, wurde der Überstand abgenommen, durch einen 0,2 µM Filter gegeben und von dem Filtrat 20 µl auf frisch ausgesäte CV-1 Zellen pipettiert. Parallel dazu wurden CV-1 Zellen nochmals mit pSV40 transfiziert. Nach 5 Tagen zeigte der Ansatz mit dem Filtrat einen eindeutigen CPE, wobei der Transfektionsansatz im Vergleich zur Kontrolle noch keine Auffälligkeiten aufwies (Abbildung 11B).

Die oben genannten Ergebnisse zeigen, dass wir unter den beschriebenen Bedingungen in CV-1-Zellen replizierte SV40 DNA und VP1 nachweisen können und dass infektiöser Überstand mit dieser Methode gewonnen werden kann.
5.1.3 MCPyV Replikationsassay

Bis heute sind der Zelltyp beziehungsweise die Zelltypen in dem MCPyV im Menschen repliziert unbekannt. Das MCC als Hauttumor sowie die Tatsache das Virus-DNA in Stirnabstrichen von gesunden Probanden gefunden wurde [85,86], sind Indizien dafür, dass MCPyV in der menschlichen Haut replizieren könnte. Allerdings wurde MCPyV DNA zum Beispiel in HIV- und MCC-Patienten auch in Monozyten, im Serum und Schleimhautproben gefunden [87-89].

Für das MCPyV Replikationsassay wurde nach einer Zelllinie gesucht, die permissiv für die MCPyV-Replikation ist. Hierfür wurden zehn Zelllinien unterschiedlichen Ursprungs (Tabelle 4, Materialien) verwendet, hauptsächlich handelt es sich um Zellen dermalen oder epithelialen Ursprungs, aber es wurden auch Monozyten und Affenzelllinien untersucht. Die angewandten Transfektionsmethoden und -effizienzen sind in Tabelle 14 gelistet. Es wurden an jeder Zelllinie mehrere Transfektionsmethoden getestet, um dann die Methode zu bestimmen die die meisten Zellen transzfiziert und mit der in den anschließenden Experimenten weitergearbeitet wurde. Die Transfektionseffizienzen wurden mittels FACS-Analyse ermittelt. Hierfür wurden die Zellen mit dem GFP-Fusionsprotein exprimierenden
Plasmid transfiziert, worauf ein GFP-Fusionsprotein exprimiert wurde. Nach zwei Tagen Inkubation wurde der Anteil GFP-positiver Zellen im Durchflusszytometer ermittelt.

Tabelle 14 Verwendete Zelllinien, deren Transfektionsmethode und die Transfektionseffizienz

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>Transfektionsmethode</th>
<th>Transfektionseffizienz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFSK-1</td>
<td>Fugene</td>
<td>~30%</td>
</tr>
<tr>
<td>HDF</td>
<td>PEI</td>
<td>~50%</td>
</tr>
<tr>
<td>HEK293</td>
<td>PEI</td>
<td>~38%</td>
</tr>
<tr>
<td>H1299</td>
<td>PEI</td>
<td>~40%</td>
</tr>
<tr>
<td>Makrophagen</td>
<td>Neontransfektion</td>
<td>~30%</td>
</tr>
<tr>
<td>LAN-1</td>
<td>Fugene</td>
<td>~15%</td>
</tr>
<tr>
<td>Keratinozyten</td>
<td>Amaxa</td>
<td>~25%</td>
</tr>
<tr>
<td>HaCaT</td>
<td>Exgen</td>
<td>~24%</td>
</tr>
<tr>
<td>Vero</td>
<td>PEI</td>
<td>~35%</td>
</tr>
<tr>
<td>CV-1</td>
<td>Fugene</td>
<td>~12%</td>
</tr>
</tbody>
</table>

Nach Ermittlung der Transfektionsmethode für jede der zehn Zelllinien wurde, wie bei SV40, als erstes auf de novo replizierte MCPyV-DNA getestet. Hierfür wurden alle Zelllinien mit pMCPyV transfiziert und für 6 Tage inkubiert. Anschließend wurden die Zellen geerntet und niedermolekulare DNA mithilfe der HIRT-Extraktionsmethode [75] isoliert und mittels Southern Blot analysiert. In vier der zehn getesteten Zelllinien, HEK293, PFSK-1, H1299 und HDF, konnte neu replizierte MCPyV DNA detektiert werden (Abbildung 12, [47]). Nur diese zeigten sich permissiv für die de novo DNA-Replikation von MCPyV.

Nach Ermittlung der vier permissiven Zelllinien wurden diese von Mitgliedern des Labors auf die Expression eines frühen Transkripts, dem LT-Antigen getestet. Hierfür wurden die Zellen wieder mit pMCPyV transfiziert und nach verschiedenen Zeitpunkten, zwischen 2 und 44 Tagen, auf die LT-Expression durch Western Blot Analyse getestet. Drei der vier Zelllinien, HEK293, PFSK-1 und H1299 exprimierten das LT-Antigen [47]. Diese Ergebnisse werden in der Diskussion in Abbildung 49 präsentiert und diskutiert. Da in HDF-Zellen keine LT-Expression detektiert wurde, was aber essentiell für die Virusproduktion ist, sind weitere Experimente nur mit HEK293, PFSK-1 und H1299 durchgeführt worden. Es kann nicht ausgeschlossen werden, dass in HDF-Zellen LT exprimiert wird, wobei die Mengen so gering sind, dass sie unter der Nachweisgrenze der Western Blot Analyse liegen.
Abbildung 12 MCPyV Replikationsassay. Zellen wurden mit pMCPyV transfiziert. 6 d p.t. wurde de novo synthetisierte MCPyV DNA durch Southern Blot Analyse detektiert: nieder molekulare DNA wurde nach der HIRT-Methode isoliert und DpnI und EcoRI verdaut und in einem Agarosegel separiert. Der Southern Blot wurde mit einer radioaktiven MCPyV LT-Ag Sonde hybridisiert. Es wurden jeweils 8 µg nieder molekulare DNA aus HEK293, PFSK-1-, H1299-, Keratinozyten-, LAN-1- und Vero-Extrakten aufgetragen, 3,8 µg aus HDF-, 5,5 g aus Makrophagen-, 4,2 µg aus HaCaT- und 1 µg aus CV-1- Extrakten. Die Southern Blots wurden für 6 d belichtet, bis auf den Southern Blot für CV-1, der wurde 12 d belichtet.

Die Expression des Strukturproteins VP1 in den Zelllinien H1299, PFSK-1 und 293 wurde von Mitarbeitern der Arbeitsgruppe mithilfe der Immunfluoreszenz analysiert. In H1299 und PFSK-1 konnte VP1 detektiert werden, jedoch nicht in HEK293-Zellen (siehe Diskussion, Abbildung 50) [47]. Deswegen wurden nachfolgende Experimente mit H1299 und PFSK-1-Zellen durchgeführt.

5.1.4 Dichtegradientenzentrifugation zur Isolierung von SV40 und MCPyV Partikeln

Da wie unter 5.1.3 beschrieben, kein CPE in den getesteten Zelllinien beobachtet wurde und eine CPE-freie Virusfreisetzung bzw. die Virus-Migration von Zelle zu Zelle nicht ausgeschlossen werden konnte, wurde alternativ direkt nach MCPyV Viruspartikeln aus Zelllysaten via Dichtegradientenzentrifugation (DGZ) gesucht. Hierfür wurden die Zelllinien H1299 und PFSK-1 mit pMCPyV transfiziert und für 4 Tage inkubiert. Zeitgleich dazu wurden als Kontrolle und Referenz für das Experiment CV-1 Zellen mit pSV40 transfiziert und alle darauffolgenden Experimente parallel durchgeführt.

Wie im Methodenteil beschrieben (Kapitel 4.6.8), wurden transfizierte Zellen lysiert und das Lysat auf einen OptiPrep™ Gradienten gegeben und zentrifugiert. Damit wurden alle im Lysat enthaltenen Partikel ihrer Masse nach im Gradienten aufgetrennt. Für die Fraktionierung wurde der Gradient nach der Zentrifugation ausgetropft, es wurden 15 Fraktionen gesammelt, jede enthielt ca. 250 µl. Die ersten Fraktionen enthielten die leichten und die letzten Fraktionen die schweren Partikel.

Zeitgleich wurden 25 µl der Fraktionen F4-F15 auf je 1,5x10^5 CV-1 Zellen gegeben, die am Vortag ausgesät wurden, um zu testen, ob die Fraktionen infektiöse Virionen enthalten und diese erneut Virusreplikation initiieren können. Die Zellen wurden 36 h nach Infektion fixiert und mit dem SV40 LT Antikörper Pab419 gefärbt. Es wurde in einigen Zellen SV40 LT anhand der Immunfluoreszenz nachgewiesen. Dargestellt in Abbildung 14 sind exemplarisch die Immunfärbungen der CV-1 Zellen, die mit den Fraktionen 8, 9, 10 infiziert wurden. Neben der Kernfärbung in Blau ist in einigen Zellen SV40 LT in Rot angefärbt. Ungefähr 15% der Zellen aus den Fraktionen 8 und 9 und ~13% der Zellen aus Fraktion F10 waren mit SV40 infiziert. Das SV40 LT wurde im Zellkern detektiert.
Abbildung 14 Immunfluoreszenzfärbung von CV-1 Zellen, die mit den DGZ-Fraktionen F8, F9 und F10 infiziert wurden. Gefärbt wurde mit Vectashield-Medium inkl. Dapi (blau) für die Kernfärbung und dem anti-SV40 LT-Antikörper Pab419 (rot).

Ein weiterer Teil der MCPyV-DNA enthaltenden Fraktionen wurde elektronenmikroskopisch untersucht. In Abbildung 15 sind Bilder der H1299 Fraktionen F6 und F10 zu sehen [47]. In diesen sind vereinzelt Virionen zu erkennen, die kleiner als 40 nm und unregelmäßiger als die SV40-Partikel geformt sind.

Abbildung 15 MCPyV Gradient in H1299 und PFSK-1 Zellen Dichtegradientenzentrifugation von MCPyV-Partikeln (modifiziert nach [47]). OptiPrep™-DGZ wurden durchgeführt mit H1299- (A) und PFSK-1-Lysaten (B) 4 d p.t. mit pMCPyV. Es wurden 15 Fraktionen à 250 µl gesammelt, die auf den MCPyV-DNA Gehalt getestet wurden (linke Abbildungen). Zusätzlich wurden die Fraktionen elektronenmikroskopisch nach Viruspartikel untersucht. Exemplarisch dargestellt sind die Fraktionen 6 und 10 des H1299-Lysats.

Weiterhin wurde untersucht, ob in den DGZ-Fraktionen mit dem höchsten MCPyV-DNA Gehalt das Strukturprotein VP1 vorhanden ist. VP1 macht ca. 70% des gesamten Proteingehalts eines Polyomaviruspartikels aus und ist damit das häufigste Protein. Da zum Zeitpunkt der Experimente kein MCPyV VP1 Antikörper zur Verfügung stand, der in der Western Blot Analyse funktionierte und die Fraktionen trotzdem auf VP1 getestet werden
sollten, wurde eine Silberfärbung durchgeführt. Dafür wurden je 45 µl der Fraktionen F8 und F10 vom CV-1-Lysat als Kontrolle, F6, F12 und F12 vom H1299-Lysat und F6, F9 und F13 vom PFSK-1-Lysat in einem 12% SDS-Gel aufgetrennt. Das Gel wurde mit dem Pierce SilverSnap® Kit gefärbt. Das SV40 VP1 hat eine molekulare Masse von ca. 40 kDa und das MCPyV VP1 eine theoretische Masse von ca. 43 kDa. Nach der Silberfärbung konnte man in den SV40 Fraktionen eine Bande auf Höhe der 40 kDa-Markerbande sehen. In den anderen Fraktionen wurde keine Bande zwischen 40 und 50 kDa detektiert, die man MCPyV VP1 hätte zuordnen können (Abbildung 16). Die Fraktionen F12 und F13 der H1299- bzw. PFSK-1 Lysate enthalten Proteine jeglicher Größe, jedoch kann keine Aussage gemacht werden, ob darin VP1 enthalten ist. Auch in den anderen Fraktionen kann VP1 vorhanden gewesen sein, allerdings unterhalb der Nachweisgrenze.

Abbildung 16 VP1-Nachweis via Silberfärbung eines SDS-Gels in dem 45 µl verschiedener DGZ-Fraktionen aufgetragen wurden. Es wurden Fraktionen der Lysate von CV-1, H1299 und PFSK-1 aufgetrennt. In den CV-1 Fraktionen ist VP1 auf Höhe von 40 kDa zu sehen. Der Kasten umrahmt detektiertes SV40 VP1.

5.1.5 Zusammenfassung

Im Vergleich zu SV40 konnte keine Neuinfektion beobachtet werden. Es konnte nicht geklärt werden, ob die isolierten MCPyV-Partikel an sich infektiös beziehungsweise nicht-infektiös sind oder ob, falls sie infektiös sind, bei den Infektionsexperimenten auf Zellen gegeben wurden, die nicht die entsprechenden Rezeptoren für die Virusaufnahme haben, oder ob die Anzahl der isolierten MCPyV-Partikel zu gering für eine Infektion war.

5.2 Expression und Aufreinigung der MCPyV und SV40 LT N-Termini, sowie der pRb pocket Domäne für strukturelle und biochemische Analysen

5.2.1 Bakterielle Expression von MCPyV LT_{NT}, SV40 LT_{NT} und der pRb pocket Domäne

Das verkürzt exprimierte MCPyV LT ist neben sT das einzige MCPyV Protein, das in MCC-Gewebe exprimiert wird. Dabei befinden sich die tumorspezifischen Stopmutationen stets hinter dem pRb-Bindemotiv LxCxE. Aufgrund der positiven Selektion und damit dem Erhalt des LxCxE-Motifs, wird dieser Interaktion zwischen LT N-Terminus (LT_{NT}) und pRb eine wichtige Rolle in der Transformation und der daraus resultierenden MCC-Tumorgenese zugeschrieben. Ein Ziel dieser Doktorarbeit war es den MCPyV LT_{NT} zu kristallisieren. Mithilfe der Kristallstruktur des MCPyV LT_{NT} sollen Informationen generiert werden, die zur Aufklärung des funktionellen Mechanismus dieses verkürzten Proteins beitragen.
Des Weiteren sollte die Interaktion zwischen MCPyV LT\textsubscript{NT} und der pRb \textit{pocket} Domäne (pRb\textsubscript{PD}) biochemisch analysiert werden. Für die Bestimmung der Dissoziationskonstante wurden die Experimente zum Vergleich mit SV40 LT\textsubscript{NT} durchgeführt.

Für die strukturelle wie auch biochemische Analyse eines Proteins muss dieses in einem bakteriellen oder eukaryotischen System exprimiert werden. Für die Expression der drei Proteine MCPyV LT\textsubscript{NT}, SV40 LT\textsubscript{NT} und der pRb \textit{pocket} Domäne wurde sich für ein bakterielles Expressionssystem entschieden. Hierfür wurde der Bakterienstamm \textit{E. coli} BL21 Star verwendet, welcher für die Überexpression von Proteinen und hohe Proteinausbeute optimiert ist. Im Folgenden werden die Ergebnisse der Proteinaufreinigungen präsentiert.

5.2.2 Aufreinigung des MCPyV LT N-Terminus

Für die Expression vom MCPyV LT\textsubscript{NT} wurden die kodierenden Sequenzen für die Aminösäuren 1-244 bzw. 1-313 aus den cDNAs der MCPyV Sequenz der Merkelzellkarzinom-Zeillinie 12 (MCCL12) bzw. dem MCPyV Konsensus amplifiziert und in verschiedene bakterielle Expressionsvektoren mit His-\textit{Tags} kloniert. Der His-\textit{Tag} war jeweils N-terminal an LT fusioniert und alle Fusionsproteine wurden erfolgreich überexprimiert. Je nach Expressionskonstrukt bestand die Möglichkeit den His-\textit{Tag} enzymatisch zu entfernen. Die hier präsentierten Ergebnisse wurden vorwiegend mit den His-LT\textsubscript{1,244}-Konstrukten erzielt. Die Konstrukte wurden aufgrund ihrer Tags, der Tag-Länge und der enzymatischen Schnittstellen ausgesucht und in den Experimenten nach Bedarf austauschbar eingesetzt. Tabelle 15 fasst die hergestellten His-LT\textsubscript{NT}-Konstrukte zusammen. Soweit keine Unterscheidung zu anderen Polyomaviren bzw. ihrer LT-Antigene notwenig ist, werden die MCPyV LT N-Terminus-Konstrukte/-Proteine zur Vereinfachung wie in Tabelle 15 aufgeführt benannt. Um eine maximale Expression und lösliches Protein zu erzielen, fand die Expression standardmäßig in LB-Medium versetzt mit Glukose bei 16 und 18°C über Nacht statt (Kapitel 4.7, Methoden). In Tabelle 15 sind zusätzlich das theoretische, wie auch das in der Gelfiltration oder auf SDS-Gelen beobachtete Molekulargewicht aufgelistet. Bei allen Fusionsproteinen wurde ein höheres Molekulargewicht beobachtet, als das Theoretische.
Tabelle 15: Konstrukte mit ihren His-Tags und den entsprechenden Expressionsvektoren, sowie den errechneten, wie auch beobachteten Molekulargewichten.

<table>
<thead>
<tr>
<th>Proteinbezeichnung</th>
<th>N-terminal fusionierter Tag inklusive Enzymsschnittstelle und Peptidlänge</th>
<th>bakterieller Expressionsvektor</th>
<th>theoretisches Molekulargewicht [kDa]</th>
<th>beobachtetes Molekulargewicht [kDa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10xHis-LT<sub>1-244</sub></td>
<td>10xHis-Xa (22aa)</td>
<td>pJC40</td>
<td>~29</td>
<td>~38</td>
</tr>
<tr>
<td>10xHis-LT<sub>1-313</sub></td>
<td>10xHis-Xa (22aa)</td>
<td>pJC40</td>
<td>~37</td>
<td>~48</td>
</tr>
<tr>
<td>6xHis-TEV-LT<sub>1-244</sub></td>
<td>6xHis-Xpress-TEV (46aa)</td>
<td>pRSET-A</td>
<td>~32</td>
<td>~40</td>
</tr>
<tr>
<td>6xHis-TEV-LT<sub>1-313</sub></td>
<td>6xHis-Xpress-TEV (46aa)</td>
<td>pRSET-A</td>
<td>~39</td>
<td>~50</td>
</tr>
<tr>
<td>6xHis-LT<sub>1-244</sub></td>
<td>6xHis (9aa)</td>
<td>pET302</td>
<td>~28</td>
<td>~35</td>
</tr>
</tbody>
</table>

Aufreinigung und Gelfiltration resultieren in LT_{NT} Mono- und Multimeren

Abbildung 17 und Abbildung 18 zeigen exemplarisch die NiNTA-Batch-Aufreinigung und Gelfiltration eines LT_{NT}-Konstrukts. Die NiNTA-Reinigung wurde in HEPES-Puffer mit 50 mM HEPES (pH 8,0) und 300 mM NaCl durchgeführt und für die Gelfiltration wurde 50 mM Tris (pH 8,0) und 150 mM NaCl, 2 mM EDTA verwendet. LT_{NT} konnte erfolgreich aus den Bakterien isoliert werden, jedoch gab es nach beiden Reinigungsschritten Verunreinigungen durch andere Proteine, die nicht von LT_{NT} getrennt werden konnten. Hervorzuheben sind hierbei die Banden bei 60 und 70 kDa, die nicht durch GF entfernt wurden.

Auffällig bei der GF ist, dass LT_{NT} in zwei Maxima von der Superdex-Säule eluiert wird. Das späte Maximum bei einem Retentionsvolumen (RV) von 1,47 ml entspricht einer Masse von ca. 50 kDa. Das frühe Maximum bei einem Retentionsvolumen (RV) von 0,92 spricht dafür, dass das eluierte Protein eine Masse größer als 670 kDa hat. Die Fraktionen der GF wurden in einer SDS-PAGE untersucht und das prominenteste Protein beider Maxima und der dazwischen liegenden Fraktionen ist jeweils His-LT_{NT}. Bei der GF werden Proteine anhand ihres sphäroidischen Durchmessers eluiert. Da es sich anhand der SDS-PAGE um das gleiche Protein in allen Fraktionen handelt, ist davon auszugehen, dass His-LT_{NT} in
unterschiedlichen Konformationen von der Säule eluiert wird, d.h. nicht nur als Monomer bei ca. 1,47 ml, sondern auch als Multimere unterschiedlicher Größen.

Von 10xHis-LT\textsubscript{1-244} wurde der sphäroidische Radius nach NiNTA-Aufreinigung mithilfe einer weiteren Methode, der \textit{Dynamic light scattering} (DLS)-Analyse, bestimmt (Abbildung 19). Mit dieser Methode werden die sphäroidischen Radien von Partikeln in Lösung bestimmt. Damit wird unterschieden, ob die Partikel monodispers oder polydispers vorliegen, d.h. als Monomere oder als Aggregate. Bei den hier gezeigten Messungen wurden Radien von 20-100 nm gemessen, was eindeutig auf eine polydisperse Lösung schließen lässt. Bei einer monodispersen Proteinlösung, würde man einen Radius im unteren bis mittleren einstelligen nm-Bereich erwarten.

Die Elution von His-LT\textsubscript{NT} in verschiedenen Konformationen, wie auch die Verunreinigungen durch andere Proteine traten wiederholt in den Experimenten auf. Für Kristallisationsscreens ist es jedoch essentiell, dass das zu kristallisierende Protein als Monomer und von hoher Reinheit ist. Für die Optimierung der Aufreinigung, sowie der Ausbeute an Monomeren wurden Optimierungsscreens mit dem Thermofluor Assay durchgeführt.
Abbildung 17 NiNTA-Batch-Aufreinigung von 6xHis-TEV-LT$_{1-313}$. Die Bakterien wurde mit 50 mM HEPES, pH 8,0, 300 mM NaCl, 40 mM Imidazol aufgeschlossen. Für die Elution wurde 50 mM HEPES, pH 8,0, 300 mM NaCl, 500 mM Imidazol verwendet. DF – Durchfluss, E – Eluat, B – Beads

Abbildung 18 Chromatogramm und SDS-Gel einer Gelfiltration von 6xHis-TEV-LT$_{1-313}$ mit der Superdex 200 PC 3.2/30 Säule. Das Protein eluiert in zwei Maxima bei 0,92 ml und bei 1,47 ml. Als Laufpuffer wurde 50 mM Tris, pH 8,0, 150 mM NaCl, 2 mM EDTA verwendet.
Abbildung 19 DLS-Hitzekarte von 10xHis-LT$_{1-244}$ in 50 mM Tris, pH 8,0, 100 mM NaCl. Dargestellt ist die Radiusverteilung der Proteine, gemessen über einen Zeitraum von 157s. Die Farben der Hitzekarte deuten auf die Partikelkonzentration in einem bestimmten nm-Bereich. Blau zeigt die Bereiche ohne Protein, Rot die Bereiche mit der maximalen Proteinkonzentration.

Hohe Salzkonzentrationen und Glycerin stabilisieren LT$_{NT}$ im Thermofluor Assay

Der Thermofluorassay (TFA) wurde eingesetzt, um die Thermostabilität von MCPyV LT$_{NT}$ unter verschiedenen Pufferbedingungen zu analysieren und damit Pufferbedingungen zu bestimmen, die zu einer erhöhten Stabilität von aufgereinigtem, monomerem LT$_{NT}$ führen. Eine erhöhte Stabilität dient sowohl der effizienteren LT$_{NT}$-Aufreinigung, als auch der Kristallisation.

Die Stabilität wird anhand der Schmelztemperatur T$_{m}$ ermittelt. Der T$_{m}$-Wert ist die Temperatur, bei der die Hälfte der Proteine entfaltet bzw. denaturiert ist und wird anhand des Kurvenverlaufs bei ansteigender Temperatur ermittelt (Kapitel 4.7.17, Methoden). Für Kristallisationsexperimente wird ein T$_{m}$-Wert von über 45°C empfohlen [83].

Der Thermofluor Screen 1 wurde mit Stephane Boivin von der SPC Facility am EMBL Hamburg durchgeführt. Hierbei wurden 96 verschiedene Bedingungen getestet, wie pH-Werte, verschiedene Puffer, Puffer- wie auch Salzkonzentrationen (siehe Anhang, Abbildung 57). Die Proteine 6xHis-TEV-LT$_{1-244}$ und 6xHis-TEV-LT$_{1-313}$ wurden für den TFA in 50 mM Tris pH 8,0, 150 mM NaCl, 2 mM EDTA umgepuffert. 66 µM möglichst reines Protein wurden
Für den Assay eingesetzt. Bei den meisten Bedingungen im TFA gab es keine auswertbaren Ergebnisse, da der Kurvenverlauf eine Berechnung des \(T_m \)-Wertes nicht zuließ.

Auswertbare Ergebnisse gab es für beide LT-Konstrukte im TFA nur bei verschiedenen Salzkonzentrationen in den Puffern 50 mM Tris, pH 8 und 50 mM HEPES, pH 7,5. Hier konnte erst bei höheren Konzentrationen, d.h. ab 500 mM NaCl, einen \(T_m \)-Wert bestimmt werden. Exemplarisch sind hier die Ergebnisse für 6xHis-TEV-LT\textsubscript{1-244} präsentiert (Abbildung 20, Abbildung 21). Die Kurvenverläufe für 6xHis-TEV-LT\textsubscript{1-313} sind im Anhang (Abbildung 59 und Abbildung 60) aufgeführt.

Bei Salzkonzentrationen zwischen 500 mM und 1000 mM NaCl wurden für 6xHis-TEV-LT\textsubscript{1-244} \(T_m \)-Werte zwischen 30°C und 36°C im Tris-Puffer und zwischen 28°C und 30°C im HEPES-Puffer bestimmt. (Abbildung 20, Abbildung 21). Für Salzkonzentrationen unter 500 mM konnte anhand der Kurvenverläufe bei keinem der beiden Puffersysteme ein \(T_m \)-Wert ermittelt werden.

Für 6xHis-TEV-LT\textsubscript{1-313} hingegen konnten \(T_m \)-Werte zwischen 44°C und 52°C für alle Salzkonzentrationen im Tris- sowie im HEPES-Puffer detektiert werden (siehe Anhang, Abbildung 60). Die höchsten \(T_m \)-Werte wurden mit NaCl-Konzentrationen von 750 bzw. 1000 mM erzielt. Die Stabilität von 6xHis-TEV-LT\textsubscript{1-313} scheint unter diesen Bedingungen besser zu sein, als die von 6xHis-TEV-LT\textsubscript{1-244}. Jedoch ist auch hier der Kurvenverlauf atypisch, da bei Temperaturen unter 30°C die Fluoreszenz teilweise erst abnimmt, bevor sie wieder ansteigt.

Auffällig bei allen Kurven ist der Anstieg der Fluoreszenz bereits bei niedrigen Temperaturen, d.h. die Proteine entfalten sich schon bei niedriger Temperatur (<15°C) und verlieren dann mit zunehmender Temperatur an Stabilität, so dass ein Teil der Proteine bereits bei Raumtemperatur entfaltet ist.
Abbildung 20 TFA-Schmelzkurven von 6xHis-TEV-LT\textsubscript{1-244} in 50 mM Tris, pH 8,0 mit verschiedenen Salzkonzentrationen von 0 mM bis 1000 mM NaCl.

Abbildung 21 TFA-Schmelzkurven von 6xHis-TEV-LT\textsubscript{1-244} in 50 mM HEPES, pH 7,5 mit verschiedenen Salzkonzentrationen von 0 mM bis 1000 mM NaCl.
In den oben genannten Experimenten wurde mit gereinigtem His-LT\textsubscript{NT} gearbeitet, in dem sich sowohl Mono- wie auch Multimere befanden. Um zu untersuchen, ob sich Monomere im TFA anders verhalten als die Mischung aus Mono- und Multimeren, wurde 6xHis-TEV-LT\textsubscript{1-244} nach NiNTA-Aufreinigung in der Gelfiltration in Mono- und Multimere aufgetrennt. Die Monomerfraktionen wurden vereint und im TFA Screen 1 untersucht. Auch hier wurde beobachtet, dass Salzkonzentrationen über 500 mM NaCl das Protein stabilisieren (siehe Anhang, Abbildung 61 und Abbildung 62). Allerdings war die Fluoreszenz bereits bei 5°C so hoch und der Kurvenanstieg zu kurz, als dass ein T\textsubscript{m}-Wert berechnet werden konnte.

Die TFA-Ergebnisse zusammengefasst kann gesagt werden, dass LT\textsubscript{NT} generell bei Salzkonzentrationen über 500 mM stabiler ist und teilweise T\textsubscript{m}-Werte über 45°C erreicht werden. Allerdings ist bei allen Assays die Fluoreszenz bei Temperaturen unter 15°C bereits angestiegen, d.h. die Proteine haben sich teilweise entfaltet, was zu einer Einschränkung der Stabilität der gesamten Proteinlösung bei Raumtemperatur führt. Mit 6xHis-TEV-LT\textsubscript{1-244} wurden auch der Thermofluor Screen 2 (siehe Anhang, Abbildung 58) durchgeführt. In diesem Screen wurde u.a. der Einfluss von Polyolen auf die Stabilität des Proteins getestet und Glycerinkonzentrationen zwischen 5-20\% scheinen sich positiv auf die Stabilität auszuwirken (siehe Anhang, Abbildung 63). Deswegen wurde bei Folgeexperimenten die Aufreinigung ausschließlich im Kühlraum bzw. auf Eis durchgeführt und Puffer mit 50 mM Tris, pH 8, 750 mM NaCl und 5\% Glycerin verwendet, um größtmögliche Stabilität während der Aufreinigung zu gewährleisten.

Optimierte Aufreinigungsbedingungen führen weiterhin zu Multimeren sowie Verunreinigungen, die nicht entfernt werden

Mit den aus dem Thermofluor Assay gewonnenen Erkenntnissen zur Stabilität der His-LT\textsubscript{NT}-Konstrukte wurde die Aufreinigung der Proteine fortgeführt, d.h. alle Puffer enthielten, soweit nicht anders erwähnt, 50 mM Tris, pH 8, 750 mM NaCl und 5\% Glycerin. Eine höhere Glycerinkonzentration konnte aufgrund der daraus resultierenden erhöhten Viskosität nicht eingesetzt werden.

Abbildung 22 und Abbildung 23 zeigen die Ergebnisse einer Aufreinigung von His-LT\textsubscript{NT} mit dem ÄKTAPurifier System mit anschließender Gelfiltration. Dargestellt ist der typische Verlauf der automatisierten NiNTA-Affinitätschromatographie mit den Phasen Beladen der HisTrapFF-Säule, dem ATP-Waschschritt und der Elution mittels des Imidazolgradientens. Der ATP-Waschschritt wurde eingeführt, um mögliche Chaperone, die während der Aufreinigung an His-LT\textsubscript{NT} binden, durch ATP von His-LT\textsubscript{NT} zu lösen und eine höhere Reinheit zu erlangen. Abbildung 22C zeigt, dass in den frühen Fraktionen der Elution weiterhin viele Verunreinigungen vorhanden sind. In den späten Fraktionen der Elution reduzieren sich die Verunreinigungen v.a. im Bereich über 50 kDa. Jedoch wurde weiterhin ein Großteil von His-LT\textsubscript{NT} mit anderen Proteinen eluiert. Um zu überprüfen, ob sich His-LT\textsubscript{NT} weiter aufreinigen...
lässt und in welcher Form das Protein eluiert wird, wurde eine Gelfiltration durchgeführt (Abbildung 23). Hier ist zu erkennen, dass His-LT\textsubscript{NT} weiterhin als Monomer und Multimer eluiert wurde und sich die Verunreinigungen nur geringfügig entfernen ließen. Eine Aufreinigung im \textit{Batch}-Verfahren hat zu einer vergleichbaren Reinheit geführt.

Abbildung 22 6xHis-LT\textsubscript{1-244}-Aufreinigung im ÄKTAPurifier System. (A) Phasen der Aufreinigung: Beladen der HisTrapFF-Säule, Waschschritt mit ATP, gefolgt von der Elution mit ansteigender Konzentration des Elutionspuffers, (B) Elutionsphase, 6xHis-LT\textsubscript{1-244} eluiert bei ~15-30\% Elutionspuffer, (C) im SDS-Gel aufgetrennte, eluierte Fraktionen, Coomassie-gefärbt.
Als nächstes wurde die Ionenaustauschchromatographie (IEX-Chromatographie) als Aufreinigungsmethode eingesetzt. Hierfür wurde mit NiNTA-Affinitätschromatographie aufgereinigtes 6xHis-TEV-LT\textsubscript{1-313} in salzarmen Puffer dialysiert (20 mM Tris, pH 8,0, 50 mM NaCl). Für die IEX-Chromatographie wurde als Elutionspuffer 20 mM Tris, pH 8,0, 1 M NaCl und die UNOTM S6 Säule eingesetzt. Die Salzkonzentration wurde graduell erhöht und 6xHis-TEV-LT\textsubscript{1-313} wurde von Fraktion A12 bis Fraktion B10 eluiert, d.h. bei Salzkonzentrationen zwischen ~450 mM NaCl und 1 M NaCl. Auch hier wurden die Fraktionen in einer SDS-PAGE analysiert (Abbildung 24). Auf dem Gel ist zu sehen, dass auch mit der IEX-Chromatographie das 6xHis-TEV-LT\textsubscript{1-313} nicht sauberer geworden ist. Es gibt Fraktionen mit niedriger Salzkonzentration, die sehr rein sind (Fraktionen A12-A14) jedoch enthält der Großteil der Fraktionen sowohl 6xHis-TEV-LT\textsubscript{1-313} wie auch andere Proteine (Fraktionen A15-B10).
Abbildung 24 Chromatogramm und das entsprechende SDS-Gel einer IEX-Chromatographie zur Aufreinigung von 6xHis-TEV-LT1-313. Es wurde die Säule UNO™ S6 eingesetzt und das Protein mit einem Salzgradienten (grau-gestrichelt) von 50 mM bis 1 M NaCl eluiert. Die Proteine einzelner Fraktionen wurden im SDS-Gel aufgetrennt.

Trotz der Optimierung der Aufreinigungsbedingungen durch TFA und Anwendung verschiedener chromatographischer Methoden konnte kein signifikanter Erfolg bei der Reinheit von His-LT\textsubscript{NT} erzielt werden. Deswegen wurden prominente Proteinbanden, die in einem SDS-Gel nicht His-LT\textsubscript{NT} zuzuordnen waren, massenspektrometrisch untersucht. Es gab bei fast allen Aufreinigungen zwei Proteinbanden bei 60 und 70 kDa (z.B. in Abbildung 22C, Fraktionen A10-B9) die nicht His-LT\textsubscript{NT} zugeordnet werden konnten. In der massenspektrometrischen Analyse wurden in der 60 kDa Bande Glucosamine-Fruktose-6-Phosphat-Aminotransferase und in der 70 kDa Bande das bakterielle Chaperon DnaK von \textit{E. coli} detektiert. Weitere Proteinbanden mit den Größen von ungefähr 20, 28, 32, 38 kDa enthielten vorwiegend LT-Sequenzen. Dies wurde in der Western Blot Analyse einer Fraktion aus einer His-LT\textsubscript{NT}-Gelfiltration bestätigt (Abbildung 25). Es waren mehrere Banden zu erkennen, die mit einem LT spezifischen Antikörper markiert wurden. Im Kontrolllysat wurden keine Banden detektiert. Folglich handelt es sich bei einem Teil der Verunreinigungen um LT-Abbauprodukte.

LT_{NT} Monomere und Multimere befinden sich im konzentrationsabhängigen Gleichgewicht

Um den Anteil an Monomeren zu erhöhen und damit die Wahrscheinlichkeit der Kristallisation von His-LT_{NT} zu erhöhen, wurde getestet, ob die Bildung von Multimeren konzentrationsabhängig ist und damit ein konzentrationsabhängiges Gleichgewicht zwischen Monomeren und Multimeren in Lösung besteht.

Hierfür wurde NiNTA-aufgereinigtes 6xHis-LT₁₋₂₄₄ schrittweise von 1 mg/ml auf 3 mg/ml und 9 mg/ml konzentriert. Alle Proteinlösungen wurden über Nacht bei 4°C stehen gelassen und am nächsten Tag im SMART-System analysiert (Abbildung 26). In allen Analysen befanden sich zwei Maxima mit Monomeren (RV ~0,61 ml) wie auch Multimeren (RV ~0,9 ml). Bei 1 mg/ml und 3 mg/ml war der Anteil der Monomere geringfügig höher, bei 9 mg/ml hingegen ist das Verhältnis ausgewogen und der Anteil an Multimeren hat sich erhöht (Abbildung 26A-C). Demnach verringert sich die Konzentration von Monomeren bzw. steigt die Konzentration von Multimeren mit der Gesamtproteinkonzentration in Lösung.

Weiterhin wurde untersucht, ob sich Monomere konzentrieren lassen und anschließend noch als Monomere vorliegen. Hierfür wurden Monomerfraktionen vereint und mit dem SMART-System oder im DLS analysiert. In Abbildung 26D ist das GF-Chromatogramm von 6xHis-LT₁₋₂₄₄ zu sehen, nachdem GF-Fraktionen, die Monomere enthielten vereint und auf 3 mg/ml konzentriert wurden. Der Großeil der Proteine wurde als Monomer eluiert, allerdings kam ein Teil vor einem Retentionsvolumen von 1,5 ml von der Säule und damit als Multimere.
Ähnliche Daten wurden im DLS erhoben (Abbildung 27). Hier wurden jeweils 10xHis-LT$_{1-244}$ Monomer- bzw. Multimerfraktionen aus Gelfiltrationen vereint und auf 1,8 bzw. 2 mg/ml konzentriert und anschließend im DLS analysiert. Im DLS wurde bei den vereinten Monomeren Partikelradien von 6 und 40 nm gemessen und bei den Multimeren Partikelradien um 35 nm. Ein Radius von 6 nm könnte auf eine monodisperse Verteilung deuten, d.h. das Protein würde als Monomer vorliegen. Die Radien um 35 und 40 nm lassen eindeutig auf eine polydisperse Verteilung und damit auf Multimere schließen. Wie hoch der Anteil von Mono- bzw. Multimeren ist, kann nicht bestimmt werden, da mit dieser DLS-Analyse keine quantitativen Aussagen getroffen werden können.

Abbildung 26 Analytische Gelfiltration von verschiedenen 6xHis-LT$_{1-244}$-Konzentrationen. 6xHis-LT$_{1-244}$ eluiert als Mono- und Multimer (A-C). Aufkonzentrierte Monomere eluieren bei einer Konzentration von 3 mg/ml hauptsächlich als Monomere, mit einem geringen Anteil an Multimeren.

Aus den oben beschriebenen Versuchen lässt sich schließen, dass je höher die Konzentration an His-LT$_{NT}$-Proteinen ist, desto größer wird der Anteil an Multimeren. Außerdem lassen sich Monomere nicht beliebig konzentrieren und verbleiben in dieser...
Konformation, sondern der Anteil an Multimeren nimmt zu. Daraus wurde gefolgert, dass es ein konzentrationsabhängiges Verhältnis von Mono- und Multimeren in Lösung gibt.

Abbildung 27 DLS als Radius Plot. Aufgereinigte K1 Mono- und Multimerfraktionen wurden vereint und konzentriert. Die Konzentration der Monomerfraktionen war ~1.8 mg/ml und die der Multimerfraktionen ~2 mg/ml. Keine der beiden Proteinlösungen war monodispers. Die Proteine waren in 50 mM Tris, 750 mM NaCl, pH 8.0.

5.2.3 Aufreinigung des SV40 LT N-Terminus

Die Expression und anschließende Aufreinigung von 6xHis-SV40 LT₁₁₇ wurde erfolgreich durchgeführt. 6xHis-SV40 LT₁₁₇ konnte mit der NiNTA-Affinitätschromatographie im Batch-Verfahren vom bakteriellen Lysat getrennt (Abbildung 28 links) und in der anschließenden Gelfiltration konnte ein Teil der verbliebenen bakteriellen Proteine entfernt werden. Wie auch bei MCPyV His-LTNT gab es Verunreinigungen, die nicht komplett entfernt werden konnten (Abbildung 28 rechts). Für die Verwendung von 6xHis-SV40 LT₁₁₇ für die Bestimmung der Dissoziationskonstante (Kapitel 5.3) wurde das Protein gegen 50 mM Tris, pH 7,4, 150 mM NaCl dialysiert. Dabei ist ein Teil der Proteine, v.a. bakterielle Proteine präzipitiert und 6xHis-SV40 LT₁₁₇ hatte eine Reinheit erlangt, die für die Durchführung der Microscale Thermophorese (Kapitel 5.3) ausreichend war (Abbildung 29). Für das verwendete 6xHis-SV40 LT₁₁₇-Konstrukt wurde ein theoretisches Molekulargewicht von ~18 kDa berechnet.
Dieses Molekulargewicht wurde auch in den SDS-Gelen und GF-Analysen beobachtet. Im Gegensatz zu MCPyV LT_{NT} wurde das Protein als Monomer von der GF-Säule eluiert.

Abbildung 28 Batch-Aufreinigung von SV40 LT₇₋₁₁₇ mit NiNTA-Agarose (links) und anschließender GF und Elution bei 15,3 ml (rechts). Die gewonnenen GF-Fraktionen, die Protein enthielten wurden in der SDS-PAGE analysiert.

Abbildung 29 Aufgereinigtes SV40 LT₇₋₁₁₇ nach GF und anschließender Dialyse für die Microscale Thermophorese.

5.2.4 Aufreinigung der pRb pocket Domäne

Für die Interaktionsstudien der MCVPyV und SV40 LT N-Termi mit der Pocket Domäne des Retinoblastom-Proteins (pRb_{PD}) wurden zwei pRb_{PD}-Konstrukte verwendet. Beide
Konstrukte haben einen N-terminalen GST-tag und können daher affinitätschromatographisch mit Glutathion Sepharose aufgereinigt werden. Das Konstrukt GST-pRb₃₈₂₋₇₇₁ enthält die gesamte pocket Domäne mit der Box A und Box B, inklusive des Linkers (Abbildung 7, Einleitung). GST-pRb₃₈₂₋₇₇₁ wurde für die Microscale Thermophorese (Kapitel 5.3) und Komplexbildungsexperimente mit MCPyV LT_{NT} (Kapitel 5.4.5) verwendet. Die Aufreinigung von GST-pRb₃₈₂₋₇₇₁ ist in diesem Kapitel aufgeführt. Das andere Konstrukt GST-pRb_{PD} enthält nur die Box A und die Box B der pocket Domäne (aa380-787Δ582-642), der Linker ist in diese Konstrukt deletiert. GST-pRB_{PD} wurde nur für die Ko-Aufreinigung mit 6xHis-LT1-244 verwendet und dieser Versuch ist in Kapitel 4.7.4 beschrieben.

In Abbildung 31 (linker Teil) ist eine Aufreinigung dargestellt bei der, das gebundene GST-pRb₃₈₂₋₇₇₁ nicht eluiert, sondern nach Binden des Fusionsproteins an die Sepharose GST und pRb₃₈₂₋₇₇₁ durch den Verdau mit Thrombin voneinander getrennt wurden. Dadurch bindet GST weiter an die Sepharose und pRb₃₈₂₋₇₇₁ kann eluiert werden. Auch bei diesem Verfahren, wurden unspezifische Proteine im SDS-Gel detektiert. Für die weitere Aufreinigung von pRb₃₈₂₋₇₇₁ wurde die IEX-Chromatographie (Abbildung 31, rechter Teil)
angewandt. Hierfür wurde ein Kationenaustausch vorgenommen und GST-\(pRb_{382-771}\) wurde gegen den salzlosen Puffer 50 mM NaPO\(_4\), pH 7,3 dialysiert und anschließend auf die UnoTM S6 Säule geladen. Die Elution fand gegen einen ansteigenden Salzgradienten statt. GST-\(pRb_{382-771}\) wurde bei einer Salzkonzentration von ~250 mM NaCl von der Säule eluiert. Die IEX-Chromatographie hat zu einer Verbesserung der Reinheit in den meisten Fraktionen in denen \(pRb_{382-771}\) vorkommt geführt (Abbildung 31, rechter Teil). Das saubere \(pRb_{382-771}\) wurde im Anschluss für die MST-Analyse und Komplexbildungsexperimente benutzt (Kapitel 5.3 und 5.4.5).

5.3 Bestimmung der Dissoziationskonstante der MCPyV und SV40 LT N-Termini mit pRb₃₈₂₋₇₇₁

Shuda und Kollegen haben bereits in Ko-Präzipitationsexperimenten mit Zelllysaten gezeigt, dass sowohl MCPyV LT_{NT} wie auch das Volllängen MCPyV LT und das SV40 LT mit dem Rb-Protein interagieren [38]. Auch in unserem Labor wurden diese Interaktionen in Ko-Präzipitationsexperimenten nachgewiesen [21]. Allerdings ist die Affinität dieser Interaktion bisher nicht charakterisiert worden. Um zu überprüfen, ob es sich um eine direkte Interaktion zwischen dem MCPyV LT_{NT} und pRb handelt und wie hoch dessen Affinität ist, wurde die Microscale Thermophorese (MST) eingesetzt. Die MST ist eine neue Technik zur quantitativen Analyse von Proteininteraktionen in Lösung (Kapitel 4.7.12, Methoden). Zum Vergleich wurde auch die Affinität zwischen SV40 LT_{NT} und pRb₃₈₂₋₇₇₁ bestimmt.

Für die Messungen wurden die gereinigten Proteine pRb₃₈₂₋₇₇₁, MCPyV 6xHis-TEV-LT₁₋₂₄₄ und SV40 6xHis-LT₁₋₁₁₇ eingesetzt. pRb₃₈₂₋₇₇₁ wurde für die Messung mit Alexa647 markiert und die titrierten LT-Proteine wurden 1:1 mit pRb₃₈₂₋₇₇₁ gemischt. Die MST-Messungen wurden in Lösung mit zwei verschiedenen Salzkonzentrationen, 150 und 250 mM, und in dreifacher Bestimmung durchgeführt.

In Abbildung 32 sind die Affinitätskurven und Dissoziationskonstanten für eine von drei durchgeführten Messungen mit 150 mM NaCl dargestellt. Die Interaktion von MCPyV 6xHis-TEV-LT₁₋₂₄₄/Rb₃₈₂₋₇₇₁ ist wesentlich intensiver mit einer K_D von 46,7 nM als die Intensität zwischen SV40 6xHis-LT₁₋₁₁₇/pRb₃₈₂₋₇₇₁ mit 1092 nM.

Abbildung 32 Affinitätskurven zur Bestimmung der Dissoziationskonstante K_D zwischen pRb₃₈₂₋₇₇₁ und MCPyV 6xHis-TEV-LT₁₋₂₄₄ (A) bzw. SV40 6xHis-LT₁₋₁₁₇ (B) in 150 mM NaCl.
Die gemittelten K_D-Werte und ihre Standardabweichungen der jeweils drei MST-Messungen mit den jeweiligen Salzkonzentrationen sind in Tabelle 16 zusammengefasst. Bei einer Salzkonzentration von 150 mM NaCl wurde eine durchschnittliche Affinität von 51,3 nM zwischen MCPyV 6xHis-TEV-LT$_{1-244}$ und pRb$_{382-771}$ sowie von 1950 nM zwischen SV40 6xHis-LT$_{1-117}$ und pRb$_{382-771}$ gemessen. Bei einer Salzkonzentration von 250 mM NaCl lag der K_D-Wert bei 121 nM zwischen MCPyV 6xHis-TEV-LT$_{1-244}$/pRb$_{382-771}$. Für die Interaktion SV40 6xHis-LT$_{1-117}$/pRb$_{382-771}$ konnte bei dieser Salzkonzentration keine Dissoziationskonstante ermittelt werden.

Anhand der hier dargestellten Werte ist die Affinität bei 150 mM NaCl zwischen MCPyV 6xHis-TEV-LT$_{1-244}$/pRb$_{382-771}$ um das 40fache stärker als die Affinität zwischen SV40 6xHis-LT$_{1-117}$/pRb$_{382-771}$.

Tabelle 16 Bestimmung der Dissoziationskonstante K_D zwischen pRb$_{382-771}$ und MCPyV 6xHis-TEV-LT$_{1-244}$ bzw. SV40 6xHis-LT$_{1-117}$ bei zwei verschiedenen Salzkonzentrationen. Angegeben sind die durchschnittlichen K_D-Werte von drei unabhängigen Messungen. Die Standardabweichungen sind in Klammern angegeben. Daten aus [21].

<table>
<thead>
<tr>
<th></th>
<th>pRb$_{382-771}$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150 mM NaCl</td>
<td>250 mM NaCl</td>
</tr>
<tr>
<td>MCPyV 6xHis-TEV-LT$_{1-244}$</td>
<td>51,3 nM (38,1)</td>
<td>121 nM (35,2)</td>
</tr>
<tr>
<td>SV40 6xHis-LT$_{1-117}$</td>
<td>1950 nM (367,5)</td>
<td>keine Bindung</td>
</tr>
</tbody>
</table>

5.4 Strukturelle Analyse des MCPyV LT$_{NT}$

5.4.1 Vorhersage einer MCPyV LT$_{NT}$-Sekundärstruktur

Das verkürzt exprimierte MCPyV LT ist neben sT das einzige MCPyV Protein, das in MCC-Gewebe exprimiert wird. Dabei befinden sich die tumorspezifischen Stopmutationen stets hinter dem pRb-Bindemotiv LxCxE. Aufgrund der positiven Selektion und damit dem Erhalt des LxCxE-Motivs, wird dieser Interaktion zwischen LT$_{NT}$ und pRb eine wichtige Rolle in der Transformation und der daraus resultierenden MCC-Tumorgenese zugeschrieben. Ein Ziel dieser Doktorarbeit war es den MCPyV LT$_{NT}$ zu kristallisieren. Mithilfe der Kristallstruktur von MCPyV LT$_{NT}$ sollen Informationen generiert werden, die zur Aufklärung des funktionellen Mechanismus dieses verkürzten Proteins beitragen.

Zu Beginn dieser Doktorarbeit gab es weder strukturelle Informationen über MCPyV LT$_{NT}$ noch über dessen Struktur in Anwesenheit von Interaktionspartnern. Allein bioinformatische Strukturvorhersagen und Modellierungen auf Basis der veröffentlichten Kristallstruktur des

![Aminosäurevergleich der LT N-Termini von MCPyV und SV40](image)

Mit dem Programm FoldIndex© [69] ist es möglich die lokale und generelle Wahrscheinlichkeit anzugeben, ob ein Protein oder Proteinfragment sich faltet. Für die Berechnung wurde ein Fenster von 10 Aminosäuren angegeben, d.h. die Wahrscheinlichkeit der Faltung wurde für jeweils 10 Aminosäuren berechnet.

Die Wahrscheinlichkeit von Sekundärstrukturen im MCPyV LT_{NT} wurde für die ersten 244 Aminosäuren berechnet und für den SV40 LT_{NT} für die ersten 117 Aminosäuren. Beide Sequenzen enthalten u.a. das LxCxE-Motiv. Abbildung 34 zeigt die Wahrscheinlichkeiten von gefalteten (in Grün) und ungefalteten Regionen (in Rot) für beide Proteine als graphische Darstellung wie auch als Aminosäuresequenz. Das MCPyV LT₁₋₂₄₄ wäre v.a. innerhalb der ersten 60 Aminosäuren gefaltet, in dieser Region befindet sich die DnaJ-Domäne. Außerdem würden sich auch Sekundärstrukturen in den Regionen um Aminosäure
100 und Aminosäure 145 befinden. SV40 LT\textsubscript{1-117} würde nach dieser Berechnung wahrscheinlich zwischen den Aminosäuren 8 bis 30 gefaltete Regionen aufweisen. Der Großteil beider Proteine ware wahrscheinlich ungefaltet. Anhand dieser Berechnungen würde sich bei beiden Proteinen nur der äußerste N-Terminus falten und wäre für eine Kristallisation geeignet. Der SV40 LT\textsubscript{NT} wurde bisher nicht als Einzelprotein kristallisiert. Jedoch ist die Struktur im Komplex mit der pRb pocket Domäne (pRb\textsubscript{PD}) erfolgreich aufgelöst. Mit dieser Strukturauflösung wurden innerhalb der ersten 100 Aminosäuren vier α-helikale Regionen bestimmt [61]. Das ist mehr gefaltete Struktur als mit dem FoldIndex© vorhergesagt wurde, wobei zu beachten ist, dass die Struktur im Komplex gelöst wurde und pRb\textsubscript{PD} eine stabilisierende Wirkung auf SV40 LT\textsubscript{NT} haben könnte.

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{figure34}
\caption{Vorhersage wahrscheinlich in sich gefalteter Regionen von SV40 LT\textsubscript{7-117} und MCPyV LT\textsubscript{1-244} mit Hilfe des FoldIndex© (Window 10, Step1). Grün markierte Aminosäuren sind wahrscheinlich Teil einer gefalteten Sekundärstruktur des Proteins und rot markierte Aminosäuren haben wahrscheinlich eine ungefaltete Sekundärstruktur.}
\end{figure}

\section*{5.4.2 Modellierung einer MCPyV LT\textsubscript{NT}-Sekundärstruktur}

Eine weitere Möglichkeit die Struktur eines Proteins vorherzusagen ist die Modellierung anhand von homologen Proteinen. Mithilfe von SWISS-MODEL wurde anhand der Kristallstruktur von SV40 LT\textsubscript{7-117} für MCPyV LT\textsubscript{1-244} ein Model erstellt (Abbildung 35).
Allerdings konnte mit diesem Programm nur die Struktur für die Aminosäuren 7-123 modelliert werden. Für die zweite Hälfte des N-Terminus wurde keine Vorhersage getroffen. Vergleicht man das modellierte MCPyV LT\textsubscript{1-244} mit der SV40 LT\textsubscript{7-117}-Kristallstruktur fällt auf, dass für MCPyV LT\textsubscript{1-244} ähnliche α-helikale Strukturen wie bei SV40 LT\textsubscript{7-117} modelliert wurden. Bei SV40 LT\textsubscript{7-117} befindet sich das LxCxE-Motiv bei Aminosäure 103-107 (in Gelb) und ist Teil einer α-Helix. Über die Struktur von MCPyV LT\textsubscript{1-244} nach Aminosäure 123 kann mithilfe dieses Modells keine Vorhersage getroffen werden, in dieser Region liegt jedoch die MUR mit dem LxCxE-Motiv. Da es bisher keine weitere Struktur eines PyV LT\textsubscript{NT} gibt, kann auch keine weitere Modellierung durchgeführt werden.

Vergleicht man die FoldIndex\texttextsuperscript{©}-Wahrscheinlichkeiten mit der SWISS-Modellierung, so wurde beides Mal gefaltete Strukturen für den äußersten MCPyV LT\textsubscript{NT} bis ungefähr Aminosäure 100 als wahrscheinlich berechnet. Da jedoch der gesamte MCPyV LT\textsubscript{NT} kristallisiert werden soll, inklusive der MUR und dem LxCxE-Motiv, um eine Struktur von der wahrscheinlich transformierenden LT-Region zu erhalten, wurde in den Experimenten zur Kristallisation von MCPyV LT\textsubscript{NT} mit den LT-Sequenzen 1-244 (LT\textsubscript{1-244}) und 1-313 (LT\textsubscript{1-313}) gearbeitet.

5.4.3 Circular Dichroism (CD) Analyse identifiziert α-helikale Strukturen in His-LT\textsubscript{NT}

Die CD-Spektroskopie ist eine optische Methode u.a. für die schnelle Bestimmung der Sekundärstruktur und der Faltung von Proteinen. Sie wird standardmäßig in der Strukturbiologie eingesetzt. Die verschiedenen Sekundärstrukturen von Proteinen
absorbieren polarisiertes Licht auf unterschiedliche Art und Weise, wodurch unterschiedliche Spektren gemessen werden, die charakteristisch für die jeweiligen Sekundärstrukturen sind. Abbildung 36 gibt eine Übersicht über die Spektren verschiedener Sekundärstrukturen.

In der CD-Analyse wurden die Konstrukte 6xHis-TEV-LT_{1-244} und 6xHis-TEV-LT_{1-313} analysiert. Bei beiden Konstrukten wurden sehr ähnliche Spektren gemessen (Abbildung 37), was bedeutet, dass sie eine sehr ähnliche Sekundärstruktur haben. Ab ~190 nm ist ein Abfall der Elliptizität zu beobachten bis zu einem Minimum bei ~205 nm. Danach folgt ein leichter Anstieg bis zu einem Sattelpunkt bei ~220 nm und einem weiteren Anstieg bis ~240 nm mit folgender gleichbleibender Elliptizität bis 280 nm.

Vergleicht man die Spektren mit den charakteristischen Spektren einzelner Sekundärstrukturen (Abbildung 36) dann ähneln sie dem Spektrum der α-Helices am meisten. Der Verlauf der Elliptizität ab 190 nm und das Minimum bei ~210 nm sind gleich. Bei den α-Helices entspricht der Sattelpunkt einem ausgeprägten zweiten Minimum, d.h. bei His-LT$_{NT}$ wird das α-Helix-Spektrum durch ein oder mehrere Spektren anderer Sekundärstrukturen überlagert, so dass sich das Minimum abschwächt. Diese Spektren wurden nicht näher bestimmt, so dass keine definitive Aussage über eine zusätzliche Sekundärstruktur gemacht werden kann. Aufgrund der Abschwächung des Minimums zum Sattelpunkt kann nur vermutet werden, dass es sich dabei um unstrukturierte Regionen und/oder Regionen mit π- oder 3$_{10}$-Helices handelt.

Folglich kann festgehalten werden, dass His-LT$_{NT}$ nach der Aufreinigung ausgeprägte α-helikale Sekundärstrukturen besitzt. Über weitere Sekundärstrukturen kann jedoch keine eindeutige Aussage gemacht werden.

5.4.4 Initiale Kristallisationsscreens mit 10xHis-LT$_{1-244}$ ohne Proteinkristalle

Trotz des Wissens, dass aufgereinigtes His-LT$_{NT}$ in Lösung als Mix aus Monomeren und Multimeren vorliegt, wurden initiale Kristallisationsscreens durchgeführt, mit der Hoffnung, das in der Lösung vorhandene Monomere kristallisieren würden. Dafür wurden Fraktionen aus der NiNTA-Affinitätschromatographie, die besonders reines 10xHis-LT$_{1-244}$ enthielten vereint, gegen 50 mM Tris, pH 7,5 dialysiert und auf 2 mg/ml Protein konzentriert. Für die Kristallisationsscreens wurden folgende Kits eingesetzt: JCSG Suite (Qiagen), Classics Suite

5.4.5 Erfolgreiche Komplexbildung mit aufgereinigtem pRb₃₈₂₋₇₇₁ und 6xHis-LT₁₋₂₄₄

Da es sich schwierig gestaltete LT_{NT} so aufzureinigen und zu konzentrieren, dass das Protein monodispers vorliegt und hoch genug konzentriert für Kristallisationsscreens ist, wurden alternative Ansätze für eine Kristallisation in Betracht gezogen. Ein Ansatz ist die Stabilisierung von LT_{NT} durch einen Interaktionspartner. Die MST-Analysen (Kapitel 5.3) haben gezeigt, dass der His-LT_{NT} und pRb_{PD} eine hochaffine Bindung eingehen, die stärker als die Interaktion zwischen dem SV40 LT_{NT} und pRb_{PD} ist. Die Kristallstruktur dieses Komplex wurde bereits erfolgreich gelöst. Deswegen und weil die Aufreinigung von pRb_{PD} bereits etabliert war, wurde es als Interaktionspartner für eine Ko-Kristallisation ausgesucht.

Für eine Ko-Kristallisation von pRb_{PD} und LT_{NT} war es notwendig herauszufinden, ob 6xHis-LT₁₋₂₄₄ und pRb₃₈₁₋₇₂₂ überhaupt einen stabilen Komplex bilden, der sich aufreinigen lässt und über einen längeren Zeitraum stabil ist. Hierfür wurden beide Proteine separat wie oben beschrieben aufgereinigt (Kapitel 5.2.2 und 5.2.4). Nach der Aufreinigung wurden beide Proteine separat gegen 50 mM Tris, pH 7,5, 200 mM NaCl, 2,5 mM BME dialysiert und einzeln im SMART-System analysiert. In Abbildung 38 sind die Chromatogramme für die Einzelläufe von pRb₃₈₂₋₇₇₁ und 6xHis-LT₁₋₂₄₄ dargestellt. 6xHis-LT₁₋₂₄₄ eluiert wie auch schon vorher beobachtet in zwei Maxima, bei 0,89 als Multimere und bei 1,57 ml als Monomere. pRb₃₈₂₋₇₇₁ hingegen eluiert mit nur einem Maximum bei 1,57 ml als Monomer. Obwohl beide Proteine deutlich unterschiedliche theoretische Molekulargewichte haben, pRb₃₈₂₋₇₇₁ ~45 kDa und 6xHis-LT₁₋₂₄₄ ~28 kDa, zeigen sie in der GF das gleiche Lauverhalten. Die in der SDS-PAGE oder auch Gelfiltration bereits beobachteten Molekulargewichte unterscheiden sich von den berechneten: in der SDS-PAGE läuft pRb₃₈₂₋₇₇₁ bei ~40 kDa und 6xHis-LT₁₋₂₄₄ bei ~35 kDa. Diesen geringen Unterschied im Laufverhalten beider Proteine kann die Superdex 200 PC 3.2/30 Säule nicht auftrennen.
Abbildung 38 Chromatogramm der Proteine pRb\textsubscript{382-771} und 6xHis-LT\textsubscript{1-244}, es wurden 14 µg bzw. 17 µg Protein einzeln auf die Superdex 200 PC 3.2/30 Säule aufgetragen. pRb\textsubscript{382-771} (gestrichelte Linie) eluiert mit einem Maximum bei 1,57 ml und 6xHis-LT\textsubscript{1-244} (grauer Linie) eluiert mit zwei Maxima als Multimer und als Monomer bei 0,89 ml bzw. 1,57 ml.

Für die Komplexbildung wurden verschiedene molare Verhältnisse von pRb\textsubscript{382-771}/6xHis-LT\textsubscript{1-244} (1:1,5 bzw. 1:5) getestet und in der GF auf die Stabilität des möglichen Komplexes analysiert. Nach Vermischen der Proteine wurden die Proben für mindestens 30 min bei Raumtemperatur inkubiert und anschließend in der GF mit der Superdex 200 PC 3.2/30 Säule analysiert. Die Chromatogramme der einzelnen Komplexe sind in Abbildung 39 - Abbildung 41 dargestellt.

Für das Verhältnis 1:1,5 von pRb\textsubscript{382-771}/6xHis-LT\textsubscript{1-244} wurden 27 µg Gesamtprotein in der GF eingesetzt, das entspricht einer Proteinkonzentration von 0,5 µg/µl. Im Chromatogramm ist neben den Maxima der beiden einzelnen Proteine bei 0,88 ml und 1,57 ml ein drittes Maximum bei 1,45 ml zu sehen (Abbildung 40). Dieses Retentionsvolumen entspricht einem Molekulargewicht von ~75 kDa. Dies wäre die Summe der Einzelmolekulargewichte von pRb\textsubscript{382-771} und 6xHis-LT\textsubscript{1-244}. Das Maximum bei 1,45 ml hat im Vergleich zu den anderen Maxima den höchsten Ausschlag, enthält dementsprechend das meiste Protein.

Auch bei einem Verhältnis von 1:5 von pRb\textsubscript{382-771}/6xHis-LT\textsubscript{1-244} und einer Proteinkonzentration von 0,76 µg/µl und 38 µg Gesamtprotein sind drei Maxima bei gleichen Retentionszeiten zu sehen (Abbildung 40). In den Fraktionen des Maximums bei 1,45 ml konnte sowohl 6xHis-LT\textsubscript{1-244} wie auch pRb\textsubscript{382-771} im SDS-Gel detektiert werden. Damit wurde bestätigt, dass beide Proteine hier als Komplex und nicht als Einzelproteine eluieren. Allerdings haben sich im Vergleich zum Verhältnis 1:1,5 die Ausschlagshöhen verändert. So sind die Maxima bei 0,88 ml und 1,57 ml im Vergleich zum Maximum bei 1,44 ml deutlich höher. Da nur 6xHis-LT\textsubscript{1-244} bei 0,88 ml als Multimer eluiert und im SDS-Gel zu sehen ist, hat sich der Gesamtanteil von LT-Multimeren bei diesem Verhältnis erhöht hat. Bei 1,57 ml wurde nur 6xHis-LT\textsubscript{1-244} und kein pRb\textsubscript{382-771} eluiert, d.h auch hier hat sich der Anteil an 6xHis-
LT\textsubscript{1-244} relativ zum Komplex erhöht. Daher ist davon auszugehen, dass das gesamte pRb\textsubscript{382-771} im Komplex gebunden und der Anteil an ungebundenem 6xHis-LT\textsubscript{1-244} höher ist als beim Verhältnis 1:1,5. Deswegen wurde im folgenden Experiment mit dem Verhältnis 1:1,5 gearbeitet.

Abbildung 39 Chromatogramm des Proteinkomplexes pRb\textsubscript{382-771}/6xHis-LT\textsubscript{1-244} mit einem molaren Verhältnis von 1:1,5. Die Proteine wurden vor der GF für 30 min zusammen bei RT inkubiert. Die aufgetragene Gesamtproteimenge betrug ~27 µg und die Proteinkonzentration 0,5 µg/µl. Es gibt zwei Maxima (0,88 ml und 1,45 ml) und ein Schultermaximum bei 1,57 ml. Es wurde die Superdex 200 PC 3.2/30 Säule benutzt.

Beim nächsten Komplexversuch wurde untersucht, ob der 1:1,5 Komplex über einen längeren Zeitraum stabil ist und sich auch aufkonzentrieren lässt. Wie zuvor wurden die Proteine zu einer Proteinkonzentration von ~0,5 µg/µl vermischt, jedoch war die Gesamtproteinmenge mit ~240 µg größer. Der Ansatz wurde über Nacht bei 4°C inkubiert und anschließend auf 3,5 µg/µl konzentriert. Das Ergebnis der GF ist in Abbildung 41 zu sehen. Es wurden wie zuvor Maxima bei 0,88 ml, 1,39 ml und 1,58 ml gemessen. Das Maximum mit dem höchsten Ausschlag ist bei 1,39 ml. Im SDS-Gel ist zu sehen, dass dort der Hauptteil des Proteinkomplexes eluiert wurde. Jedoch wurden beide Proteine auch in den anderen untersuchten Fraktionen detektiert, wenn auch in geringeren Mengen. Die Fraktionen F15, F16 und F17 enthielten insgesamt ~1,1 µg/µl Protein, was ungefähr einem Drittel der eingesetzten Proteinmenge entspricht. Der Verlauf des Chromatogramms, respektive der Maxima ähnelt dem von Abbildung 39 nur sind die Absorptionswerte um ungefähr Faktor 10 höher. Man kann daran sehen, dass sich trotz höherer Proteinkonzentration das Verhältnis nicht grundlegend verändert hat, was auch bedeutet, dass im Vergleich zum Proteinkomplex nicht mehr 6xHis-LT\textsubscript{1-244} Multimere durch die Konzentrierung entstanden sind und pRb\textsubscript{382-771} 6xHis-LT\textsubscript{1-244} im Komplex stabilisiert. Abschließend kann gesagt, werden, dass sich unter den hier angewandten Bedingungen bei einem molaren Verhältnis von 1:1,5 ein stabiler Komplex aus pRb\textsubscript{382-771} und 6xHis-LT\textsubscript{1-244} bildete, der sich in der Gelfiltration aufreinigen ließ und sich für inititale Kristallisationsscreens eignet.
Abbildung 40 Chromatogramm des Proteinkomplexes pRb_{382-771}/6xHis-LT_{1-244} mit einem molaren Verhältnis von 1:5. Die aufgetragene Gesamtproteinmenge betrug 38 µg. Es gibt drei Maxima bei 0,88 ml, 1,44 ml und 1,57 ml. Es wurde die Superdex 200 PC 3.2/30 Säule benutzt.

Abbildung 41 Chromatogramm des Proteinkomplexes pRb_{382-771}/6xHis-LT_{1-244} mit einem molaren Verhältnis von 1:1,5. Die aufgetragene Gesamtproteinmenge betrug 240 µg und die Proteinkonzentration 3,5 µg/µl. Es gibt zwei Maxima (0,88 ml und 1,39 ml) und einen weiteren Höchstwert bei 1,58 ml. Es wurde die Superdex 200 PC 3.2/30 Säule benutzt.
5.4.6 Ko-Aufreinigung von GST-pRb\textsubscript{PD} und 6xHis-LT\textsubscript{1-244}

Eine weitere Möglichkeit für die Initiierung der Komplexbildung ist die gemeinsame Aufreinigung von getrennt exprimierten Proteinen. Hierfür wurden pRb\textsubscript{382-771} und 6xHis-LT\textsubscript{1-244} wie im Methodenteil exprimiert, aber die Pellets zusammen im Batch-Verfahren aufgearbeitet (Kapitel 4.7.4, Methoden). Die eine Hälfte wurde mit Glutathion Sepharose aufgereinigt, die andere mit NiNTA-Agarose.

Abbildung 42 zeigt die Ergebnisse der beiden Verfahren. Betrachtet man das Gesamtlysat (Spur Lys), dann enthält es deutlich mehr exprimiertes 6xHis-LT\textsubscript{1-244} als pRb\textsubscript{382-771}. In den Eluaten ist zu sehen, dass mit beiden Verfahren sowohl pRb\textsubscript{382-771} wie auch 6xHis-LT\textsubscript{1-244} isoliert wurde, wobei in der Aufreinigung mit Glutathion Sepharose weniger Verunreinigungen enthalten sind. Bei beiden Verfahren war die zweite Elution über Nacht am effektivsten und enthält die höchste Konzentration an beiden Proteinen. In allen Eluaten der Glutathion Sepharose Aufreinigung sieht es so aus, als wenn die Proteine in einem Verhältnis von ungefähr 1:1 vorliegen würden. Dies ist bei der Aufreinigung über die NiNTA-Agarose nicht der Fall. Es wurde deutlich mehr 6xHis-LT\textsubscript{1-244} als pRb\textsubscript{382-771} eluiert und es sieht so aus, als wenn ein beträchtlicher Teil der Proteine nach der 3. Elution noch an der Aagarose haften würde. Folglich ist die Aufreinigung beider Proteine mit der Glutathion Sepharose effektiver als mit NiNTA-Agarose.

Um zu überprüfen, ob beide Proteine auch als Komplex vorliegen und nicht nur zufällig eluiert wurden, d.h. eines der beiden Proteine jeweils unspezifisch an die Matrix gebunden hätte, wurde eine analytische GF durchgeführt. Dafür wurden die Eluate aus der Glutathion Sepharose Aufreinigung vereint und aufkonzentriert von 10 ml auf 2 ml mit einer finalen Proteinconcentration von ~6 mg/ml. Während der anschließenden Lagerung über Nacht bei 4°C ist Protein ausgefallen, ein Hinweis, dass der Puffer die Proteine nicht optimal stabilisiert hat. Von der verbliebenen Proteinlösung wurden 50 µl auf die Superdex 200 PC 3.2/30 Säule gegeben. Abbildung 43 zeigt das Chromatogramm mit dem entsprechenden SDS-Gel. Im Chromatogramm sind drei Maxima bei 0,88 ml, 1,41 ml und 1,57 ml zu sehen. Im SDS-Gel ist zu erkennen, dass beide Proteine im ersten Maximum (F4-F6) eluiert wurden, im zweiten Maximum (F14, F16) nur GST-pRb\textsubscript{PD} und im dritten Maximum (F19) nur 6xHis-LT\textsubscript{1-244}. Damit würde der Proteinkomplex mit einem anderen Retentionsvolumen eluieren als der Komplex aus Kapitel 5.4.3. Dabei ist zu beachten, dass in diesem Experiment der GST-Tag nicht entfernt wurde. Eine Aufreinigung und anschließende Gelfiltration, wo der GST-Tag entfernt wird, wurde bisher nicht durchgeführt. Daher kann keine Aussage darüber gemacht werden, ob es sich um den zuvor beobachteten stabilen Komplex beider Proteine handelt, oder ob der GST-Tag die Komplexbildung negativ beeinflusst. Es ist außerdem zu beachten, dass GST Dimere bildet und damit das Laufverhalten von GST-pRb\textsubscript{PD} beeinflusst sein könnte, d.h. die Elution der Dimere und der Dimere im Komplex würde bei einem geringen Retentionsvolumen stattfinden, als bei den Monomeren.

In weiterführenden Experimenten ist zu prüfen, ob nach der Ko-Aufreinigung mit Glutathion Sepharose der Komplex von der Matrix durch einen Trombinverdau eluiert und somit der GST-Tag entfernt werden kann. Die Methode der Ko-Aufreinigung wäre damit die effektivste zur Herstellung des pRb_{382-771/6xHis-LT₁₋₂₄₄}-Komplexes und mit den wenigsten Verlusten durch zusätzliche Reinigungsprozesse verbunden.
Abbildung 43 Chromatogramm und SDS-Gel des Proteinkomplexes GST-pRb\textsubscript{PD}/6xHis-LT\textsubscript{1-244} aus der Aufreinigung mit Glutathion Sepharose. Es wurde die Superdex 200 PC 3.2/30 Säule benutzt.

5.4.7 Generierung von stabilen His-LT\textsubscript{NT} Fragmenten durch partielle Proteolyse für die Kristallisation

Neben der Stabilisierung des zu kristallisierenden Proteins durch einen Interaktionspartner kann versucht werden, einzelne, stabil gefaltete Domänen des Proteins durch partielle Proteolyse zu erhalten. Bei dieser Methode wird davon ausgegangen, dass Proteasen \textit{in situ} nur die ungefalteten, leicht zugänglichen Peptide verdauen und gefaltete Domänen intakt bleiben, welche dann leichter kristallisieren [80]. Diese Methode wurde auch für die Kristallisation von His-LT\textsubscript{NT}-Domänen angewandt.

Für die Versuche wurde mit den Proteasen des JBS Floppy-Choppys Kits (Jena Biosciences) gearbeitet. Es ist essentiell die Bedingungen herauszufinden, bei denen während der \textit{in situ} Proteolyse ein stabiles Produkt entsteht und nicht das gesamte Protein verdaut wird. Deswegen wurden proteolytische Verdaue mit verschiedenen Konzentrationen der Proteasen Subtilisin A, α-Chymotrypsin, Papain und Trypsin mit unterschiedlichen His-LT\textsubscript{NT}-Proteinen angesetzt. Für die Etablierung der Proteolysebedingungen wurde per NiNTA-Affinitätschromatographie und GF aufgereinigtes Protein genommen, welches nicht die
höchste Reinheit hatte. Daher sind Verunreinigungen durch andere Proteine auf den SDS-Gelen zu sehen.

Abbildung 44 zeigt die Proteolyse von je 60 µg 10xHis-LT₁₋₂₄₄ mit unterschiedlichen Proteasen, Proteasemengen und Inkubationszeiträumen. Bei allen Proteasen war die Konzentration von 0,1 ng/60 µg Protein zu gering, um einen Abbau sehen zu können. Die Proteolyse mit Papain in unterschiedlichen Konzentrationen führte entweder zum kompletten Abbau des Proteins oder zu keiner erkennbaren Proteolyse. Bei den anderen drei Proteasen waren nach 4 Tagen partiell verdaute Peptide zu sehen, die bis dahin stabile Produkte bildeten. Die Produkte waren zwischen ~14 und 20 kDa groß.

Bei Subtilisin und α-Chymotrypsin sind jeweils zwei Produkte entstanden von ähnlicher Größe (~14 und ~18 kDa). Bei Trypsin ist ein Produkt mit der Größe von ca. 17 kDa entstanden. Für den Verdau mit Subtilisin wäre eine Proteasekonzentration von 1-10 ng/60 µg 10xHis-LT₁₋₂₄₄ nötig, damit das Ausgangsprotein vollständig in stabile Produkte übergeht. Beim Verdau mit α-Chymotrypsin und Trypsin baut 10 ng/60 µg Protein das Protein soweit ab, dass nichts mehr vom Ausgangsprodukt vorhanden ist, jedoch die Produkte stabil erscheinen.

Abbildung 44 Partielle Proteolyse von jeweils 60 µg 10xHis-LT₁₋₂₄₄ in 100µl 10 mM HEPES, 500 mM NaCl, pH 7,5. Es wurden 10, 1 und 0,1 ng der Proteasen Subtilisin A, α-Chymotrypsin, Papain und Trypsin eingesetzt. Die Ansätze wurden bis zu 4d bei 20°C inkubiert.
5.4.8 Partielle Proteolyse von 6xHis LT\textsubscript{1-244}

Es wurde eine weitere Proteolyse durchgeführt. Dafür wurde 6xHis-LT\textsubscript{1-244} mit allen vier Proteasen verdaut. Dieses Mal wurde ein Tris- anstatt des im Floppy Choppy Kit empfohlenen HEPES-Puffer eingesetzt. Die Proteolyse fand in 25 mM Tris, pH 7,6, 500 mM NaCl statt.

Die Ergebnisse der Proteolyse sind in Abbildung 45 dargestellt. Es wurden pro Protease fünf verschiedene Konzentrationen eingesetzt und der Verdau bis zu drei Tage inkubiert. Das benutzte Protein enthielt Verunreinigungen, vor allem im Bereich über 50 kDa, trotzdem konnten stabile Produkte der Proteolyse identifiziert werden. Vor allem bei den Proteolyseansätzen mit 1 ng Subtilisin pro 100 µg Protein und 10 ng α-Chymotrypsin pro 100 µg Protein entstanden stabile Produkte von 18-20 kDa. Mit Papain und Trypsin wurde mit den eingesetzten Proteasekonzentrationen keine stabilen Fragmente erhalten, zumindest sind in den SDS-Gelen keine erkennbar. Die Lauffront des Gels war ungefähr auf der Höhe der 15 kDa-Bande, daher wären mögliche Fragmente kleiner als 15 kDa Bestandteil der Lauffront und somit nicht identifizierbar.

Abbildung 45 Partielle Proteolyse von jeweils 100 µg 6xHis-LT\textsubscript{1-244} in 100µl 10 mM HEPES, 500 mM NaCl, pH 7,5. Es wurden 10, 1 und 0,1 ng der Proteasen Subtilisin A, α-Chymotrypsin, Papain und Trypsin eingesetzt.
Bei beiden Experimenten zur partiellen Proteolyse wurden Konditionen gefunden, die zu stabilen Fragmenten geführt haben und die reproduzierbar waren. Diese Konditionen sollen bei Kristallisationsscreens eingesetzt werden, um Teile des LT\textsubscript{NT} zu kristallisieren und deren Struktur aufzuklären.

5.4.9 Massenspektrometrische Analyse von 6xHis-TEV-LT\textsubscript{1-244} Abbauprodukten

Ein ähnlicher proteolytischer Versuch wie in Kapitel 5.4.7 und 5.4.8 wurde mit 6xHis-TEV-LT\textsubscript{1-244} und den Proteasen Trypsin, α-Chymotrypsin und Subtilisin durchgeführt. Das Ergebnis ist in Abbildung 46A gezeigt. Die markierten Proteinbanden 1-5 wurden aus dem SDS-Gel ausgeschnitten und im Massenspektrometer analysiert. Die Analyse wurde in der Core Facility für Massenspektrometrische Proteomanalytik des UKE Hamburg-Eppendorf durchgeführt. Zusätzlich wurde auch unverdautes 6xHis-TEV-LT\textsubscript{1-244} als Kontrolle im Massenspektrometer untersucht. Abbildung 46B-D zeigt die Zusammenfassung dieser Analyse. Vom unverdauten 6xHis-TEV-LT\textsubscript{1-244} wurden Peptidsequenzen vom Großteil des Proteins detektiert. Nur die ersten und letzten 40 Aminosäuren wurden nicht detektiert (Abbildung 46B). Bei den Proben aus der Proteolyse waren die identifizierten Peptidsequenzen der Banden 1, 3 und 4 identisch (Abbildung 46C). Bei Bande 5 wurden die gleichen Peptide wie bei 1, 3 und 4 detektiert, sowie weitere Peptide (Abbildung 46D). Bande 2 ging in der Analyse verloren. Trotz der unterschiedlichen Größen der analysierten Proteinbanden waren die Resultate sehr ähnlich und bei Bande 5 wurden trotz des kleinen Fragments Peptide über den größten Proteinbereich detektiert.

Bei allen analysierten proteolytischen Produkten wurden Peptide unter anderem innerhalb und um die DnaJ-Domäne detektiert aber es wurde kein Peptid nach Aminosäure 127 gefunden, was auch den Bereich mit der MUR und dem LxCxE-Motiv einschließt.

Diesen Ergebnissen zufolge besitzt vor allem der Bereich vor Aminosäure 127 stabil gefaltete Sekundärstrukturen.
Abbildung 46 Partielle Proteolyse für Massenspektrometrische (MassSpec) Analyse von 90 ng 6xHis-TEV-LT\textsubscript{1-244} Abbauprodukten. Das Protein war in 10 mM HEPES, 500 mM NaCl, pH 7,5. Die Proteasen wurden mit 10 ng/100 µg Protein eingesetzt. (A) Das SDS-Gel zeigt die Zusammenfassung der Proteolyse mit Trypsin, α-Chymotrypsin und Subtilisin, wie auch die Proteinbanden, die in die MassSpec Analyse gegeben wurden. (B) zeigt die Peptide (in rot), die für unverdautes 6xHis-TEV-LT\textsubscript{1-244} detektiert wurden. (C) zeigt zusammenfassend die detektierten Peptide der Proteinbanden 1, 3 und 4 und (D) die der Bande 5 (in rot).
5.4.10 Kristallisationsscreen mit partieller Proteolyse von 6xHis LT$_{1-244}$

Nachdem vor allem mit den Proteasen Subtilisin und α-Chymotrypsin stabile Fragmente in der partiellen Proteolyse produziert werden konnten (Kapitel 5.4.7, 5.4.8), wurde ein Kristallisationsscreen mit diesen beiden Proteasen angesetzt. Es wurde gereinigtes 6xHis-LT$_{1-244}$ gegen 25 mM Tris, pH 7,6, 500 mM NaCl dialysiert und auf 8,2 mg/ml konzentriert. Subtilisin wurde mit einer Konzentration von 1 ng/100 µg Protein eingesetzt und Chymotrypsin mit 10 ng/100 µg Protein. Die Kristallisationsscreens mit Subtilisin wurden mit den Kits JCSG Suite, TACT Premium Suite und Morpheus Screen angesetzt und die Screens mit α-Chymotrypsin mit den Kits JCSG Suite und Morpheus Screen. Die Kristallisationsansätze wurden bei 20°C gelagert und die Entstehung von Kristallen über einen Zeitraum von 2 Monaten visuell-mikroskopisch überprüft.

In keinem der Kristallisationsansätze sind Proteinkristalle gewachsen. Da dieser experimentelle Ansatz vielversprechend für die Kristallisation von LT$_{NT}$-Teilfragmenten ist, sollte in zukünftigen Experimenten der Verdau über einen längeren Zeitraum als 4 Tagen überwacht und die im Kristallisationsscreen eingesetzten Proteinkonzentrationen variiert werden, um eine Sättigung zu erreichen, damit das Protein kristallisieren kann. Außerdem sollte die Temperatur bei denen die Kristallisationsansätze inkubiert werden auf 4°C reduziert werden, da in den TFA-Experimenten gezeigt wurde, dass sich LT$_{NT}$ schon bei niedrigen Temperaturen entfaltet.

In Abbildung 47 ist Aufgegoreinigtes 6xHis-LT$_{1-244}$ eingesetzt für Kristallisationsscreens mit partieller Proteolyse.

5.4.11 Zusammenfassung

Für die strukturelle und biochemische Analyse des MCPyV LT$_{NT}$ wurde das Protein bakteriell exprimiert und erfolgreich aufgereinigt, genauso wie sein Interaktionspartner pRb und sein SV40 LT$_{NT}$ Analogon.

Während der Aufreinigung von MCPyV LT$_{NT}$ wurde wiederholt festgestellt, dass sich das Protein in Lösung in einem konzentrationsabhängigen Gleichgewicht von Mono- und Multimeren befindet. Aufgrund der Schwierigkeit eine hochkonzentrierte, monodisperse MCPyV LT$_{NT}$ Proteinlösung herzustellen, die für Kristallisationsansätze notwendig ist, sind
die Bedingungen für die Kristallisation dieses Proteins ohne weitere Optimierung ungünstig. Deswegen wurden alternative Ansätze, wie die Komplexbildung mit pRb und die partielle Proteolyse verfolgt. Mit diesen Methoden soll das MCPyV LT\textsubscript{NT} als vollständiges Protein stabilisiert beziehungsweise stabile MCPyV LT\textsubscript{NT} Fragmente generiert werden, die sich kristallisieren lassen. Da Strukturdaten von MCPyV LT\textsubscript{NT} inklusive der MUR und dem LxCxE-Motiv gewonnen werden sollen, ist der Ansatz zur Komplexbildung mit pRb der derzeitig favorisierte. Bei der partiellen Proteolyse konnten keine stabilen Fragmente identifiziert werden, die die MUR enthielten, inklusive LxCxE-Motiv. Letzteres bestätigt die Strukturmodellierungen, in denen Sekundärstrukturen innerhalb der ersten 120 Aminosäuren vorhergesagt wurden. Dass das MCPyV LT\textsubscript{NT} Protein überhaupt Sekundärstrukturen und in diesem Fall α-Helices enthält, konnte mittels CD-Spektroskopie nachgewiesen werden.

Die biochemische Analyse hat ergeben, dass MCPyV LT\textsubscript{NT} eine hochaffine Interaktion mit der pRb pocket Domäne eingeh. Diese Interaktion ist ungefähr 40fach stärker als die Interaktion zwischen pRb\textsubscript{PD} und SV40 LT\textsubscript{NT}. Der Nachweis dieser direkten, hochaffinen Interaktion, sowie weitere Ergebnisse, die in der Arbeitsgruppe von PD Dr. Nicole Fischer generiert wurden, tragen maßgeblich zum Verständnis der MCPyV LT\textsubscript{NT} assoziierten Zelltransformation bei und werden in der Diskussion näher erläutert.
6 Diskussion

6.1 Etablierung eines MCPyV Replikationsassays

Außer für JCPyV und BKPyV gibt es für keines der anderen humanen PyV ein in vitro Replikationssystem, mit dem der Lebenszyklus und die Virus-Wirts-Interaktion studiert werden kann. Und selbst bei diesen beiden Viren findet in vitro Replikation in optimierten Zellkultursystemen statt [84]. In den etablierten Systemen können infektiöse Viren produziert werden, allerdings dauert die Virusproduktion zwischen 7 und bis zu 32 Tagen und die Virustiter sind niedrig [84,91]. Das ist, verglichen mit der SV40-Replikation und massiver SV40-Partikelproduktion nach 4 Tagen [6], eine deutlich längere Zeitspanne.

Für die Erforschung, wie MCPyV an der MCC-Tumorgenese beteiligt ist, sowie um den Lebenszyklus und die Replikation des Virus zu verstehen, wird ein in vitro Replikationssystem benötigt. Zu Beginn dieser Arbeit gab es kein Zellkultursystem, in dem die Biologie von MCPyV hätte studiert werden können.

Für die Etablierung eines solchen Replikationssystems wurden die Experimente mit dem MCPyV-Konsensusplasmid pMCPyV durchgeführt, welches aus den bis Juni 2008 publizierten MCPyV-Sequenzen aus Merkelzellkarzinomen generiert wurde [47]. Diese

Da in den in vitro Replikationssystemen für die hPyV JCPyV und BKPyV die Virusreplikation aufwendig und langwierig ist [84,92-94] wurde parallel zu den MCPyV-Experimenten das etablierte in vitro Replikationsassay für SV40 in CV-1 Zellen als Kontrolle und Referenz für die angewandten Methoden verwendet. Dies ist möglich, da sich Polyomaviren in ihrer Genomstruktur und -größe sehr ähnlich sind und unter der Annahme, dass die Expression homologer Proteine in der gleichen Reihenfolge abläuft. Zumindest SV40, JCPyV und BKPyV durchlaufen die frühe Transkription, DNA-Replikation und späte Transkription in dieser Abfolge [4].

Bei MCC handelt es sich um einen Hautkrebs und eine Hypothese ist, dass MCPyV in Hautzellen repliziert. Deswegen wurden verschiedene Zelllinien benutzt, um ein möglichst breites Spektrum an dermalen und epithelialen Zellen abzudecken. Für das Replikationssystem wurden zehn Zelllinien darauf getestet, ob sie permissiv für die virale DNA-Replikation sind, sowie virale Gene exprimieren und Viruspartikel sich in ihnen bilden können. Das pMCPyV konnte in alle Zelllinien transfiziert werden, jedoch mit unterschiedlichen Transfektionseffizienzen (12-50%). Von diesen elf Zelllinien waren vier, HDF, PFSK-1, HEK293 und H1299, permissiv für die virale DNA-Replikation. Der Großteil der getesteten Zelllinien war für die DNA-Replikation unter den verwendeten Bedingungen nicht permissiv.

In drei dieser Zelllinien, PFSK-1, HEK293 und H1299, konnte exprimiertes LT-Antigen nachgewiesen werden [47]. Abbildung 49 präsentiert die detektierte LT-Expression und die dazugehörige DNA-Replikation. Offensichtlich ist, dass die LT-Expression über den beobachteten Zeitraum abnimmt, was sich dadurch erklären lässt, dass LT in den ersten Tagen nach Transfektion von dem transfizierten pMCPyV transkribiert wurde. In der Southern Blot Analyse wurde transfizierte DNA noch bis mindestens Tag 4 nach Transfektion detektiert.
Dass LT nicht in HDF Zellen nachgewiesen werden konnte, könnte an der limitierten Sensitivität der Western Blot Analyse liegen, denn LT ist essentiell für die Induktion der viralen DNA-Replikation, welche in HDF-Zellen detektiert wurde. Aufgrund unterschiedlicher Transfektionseffizienzen ist ein Vergleich der Mengen replizierter DNA, wie auch exprimierten LTs nur bedingt zulässig und es kann kein Vergleich über die Effektivität der Replikation in den verschiedenen Zelllinien gezogen werden.

Der Großteil der getesteten Zelllinien war für die DNA-Replikation nicht permissiv. Ob das an Zellfaktoren lag, die entweder auf die frühe Transkription oder auf die Replikation inhibierend wirken, konnte nicht geklärt werden.

Um zu überprüfen, ob in transfizierten PFSK-1-, HEK293-, und H1299-Zellen auch die späte Transkription stattfindet, wurde die VP1-Expression per Immunfluoreszenz untersucht. Das Strukturprotein VP1 wurde in PFSK-1 und H1299 Zellen detektiert (Abbildung 50B+C) [47].
Auch hier wurde das SV40-Replikationssystem in Parallelversuchen durchgeführt und VP1 nachgewiesen (Abbildung 50A). In allen drei Zellen lokalisierte VP1 im Zellkern, dem Ort der Kapsidzusammensetzung, in SV40 an der Kernmembran und bei PFSK-1 und H1299 im gesamten Nukleoplasma.

Weiterhin konnte mithilfe der Elektronenmikroskopie von transfizierten Zellen gezeigt werden, dass im Vergleich zum SV40 Replikationssystem wesentlich weniger MCPyV Partikel in Zellen vorlagen, sowie wenige Zellen überhaupt Partikel enthielten [47]. Da es nicht gelungen ist, mit den aus der Dichtegradientenzentrifugation gewonnenen Partikeln Zellen zu infizieren, bleibt die Frage nach der Qualität der Partikel offen, d.h. ob die isolierten Viruspartikel reif waren und die MCPyV-DNA korrekt in die Partikel verpackt war. Außerdem kann es sein, dass die verwendeten Zelllinien nicht die für eine MCPyV-Infektion benötigten Rezeptoren exprimieren.

Abbildung 51 Elektronenmikroskopische Aufnahme von SV40-Virionen in CV-1 Zellen (A, B) und MCPyV-Virionen in PFSK-1 Zellen (C, D). Die Zellen wurden mit pSV40 bzw. pMCPyV transfiziert und 4 d p.t. bzw. 8 d p.t. fixiert und im EM analysiert. (A) Dicht gepackte SV40-Viruspartikel im Zellkern und (B) im interzellularen Raum. (C, D) MCPyV-Viruspartikel wurden in 1 von ~50 Zellkernen beobachtet. Abbildung modifiziert aus [47]

Wie bereits oben erwähnt, sind die Replikationssysteme für JCPyV und BKPyV optimierte Systeme. In einer der permissiven Zelllinien (HEK293TT) werden die T-Antigene von SV40 ko-exprimiert, was zu einer höheren Ausbeute an Viruspartikeln führt [84]. Es wurde bereits gezeigt, dass SV40 LT nicht die DNA-Replikation von MCPyV initiieren kann [38], daher wären SV40 T-Antigene keine MCPyV-Replikationsverstärker. Wir konnten in unseren Experimenten DNA-Replikation in HEK293-Zellen jedoch nicht in HEK293T-Zellen detektieren [47]. Daher ist zu vermuten, dass SV40 LT eher einen inhibierenden Effekt auf

Auch bleibt zu klären, ob die spezifische Lokalisation von VP1 im Zellkern (an der Kernmembran oder diffus im Kern) entscheidend für die Partikelzusammensetzung ist oder ob das wahrscheinlich nicht exprimierte VP3 [20] für eine funktionelle Kapsidzusammensetzung fehlt.

Während in unserem Labor die beschriebenen Experimente zur Etablierung eines MCPyV-Replikationssystems durchgeführt wurden, sind zwei wissenschaftliche Studien veröffentlicht worden, die sich auch mit der Etablierung eines solchen Systems beschäftigen [13,45]. Feng und Kollegen haben einen ähnlichen experimentellen Ansatz wie wir gewählt und haben ein synthethisches MCPyV-Genom generiert, dessen Sequenz Wildtyp-Isolaten (WT-Isolate 17b, 18b, 20b aus [85]) entspricht und mit dem hier verwendeten pMCPyV identisch ist. Sie konnten in ihrem System auch die frühe Transkription, die DNA-Replikation und die späte Transkription von MCPyV detektieren und Partikel isolieren. Jedoch war es auch ihnen nicht möglich, mit den isolierten Partikeln Zellen zu infizieren [45]. Schowalter und Kollegen hingegen haben versucht mit selbst generierten, stabil transfizierten Zelllinien, der 293TT- und der 293-4T-Zelllinie [13,76], ein optimiertes Replikationssystem zu etablieren. Diese Zelllinien kodieren neben dem SV40 LT-Gen noch für eine weitere Kopie von SV40 LT und im Fall von 293-4T zusätzlich noch für MCPyV sT und LT. Die Wissenschaftler haben MCPyV-Partikel in 293TT-Zellen ähnlich wie wir produziert, anschließend aufgereinigt und aufkonzentriert. Mit den Viruspartikeln wurden 293-4T-Zellen infiziert und eine Anreicherung von MCPyV-DNA mithilfe quantitativer PCR in diesen Zellen detektiert, was auf eine erfolgreiche Infektion schließen lässt [13]. Die infizierten Zellen wurden über einen Zeitraum von 25 Tagen 5mal passagiert, wobei bei jeder Passage ungefähr gleich viele virale Genomkopien detektiert wurden, was nicht für eine effiziente aber kontinuierliche Virusvermehrung spricht. Während unsere Arbeitsgruppe sowie Feng und Kollegen mit identischen Klonen, die den WT-Isolaten 17b, 18b, 20b entsprechen gearbeitet haben [45,47], wurde von Schowalter und Kollegen das WT-Isolat R17a benutzt. R17a hat im Vergleich zu 17b, 18b und 20b eine einzige Nukleotiddeletion in der nicht-kodierenden Region. Aus Experimenten mit JCPyV weiß man, dass Klone, die sich in der nicht-kodierenden Region unterscheiden, unterschiedliche Replikationseigenschaften haben.
können. Daher wäre es interessant zu sehen, wie sich das hier verwendete MCPyV Genom (pMCPyV) in 293-4T Zellen verhält.

6.2 Biochemische Analyse von MCPyV LT_{NT} identifiziert hochaffine Bindung mit der pRb pocket Domäne

In MCC-Tumoren befinden sich MCC-spezifische Stopmutationen im MCPyV-Genom, die zur Expression eines verkürzten LT-Antigens führen [21,38]. Bei allen verkürzten LT-Antigenen ist das LxCxE-Motiv erhalten und die Stopmutation befindet sich C-terminal davon (siehe Abbildung 6, Einleitung). Unsere Arbeitsgruppe hat gezeigt, dass es eine statistisch signifikante positive Selektion für den LT N-Terminus mit dem LxCxE-Motiv in der MCC-Tumorgenese gibt, wohingegen das Vorhandensein der Kernlokalisationsssequenz C-terminal vom LxCxE-Motiv statistisch nicht relevant für die MCC-Tumorgenese ist [21]. Weiterhin haben wir gezeigt, dass sowohl das Volllängen-LT wie auch der LT N-Terminus in der Lage sind, die Transformation von primären Babyrattenzellen zu induzieren, wobei die Transformation mit dem LT N-Terminus effizienter ist [21].

Die statistische Relevanz zum Erhalt des LxCxE-Motivs und die Fähigkeit von LT_{NT} Transformation zu induzieren, impliziert, dass die Interaktion mit pRb wichtig für die Transformation und Tumorgenese des Merkelzellkarzinoms ist.

Unsere Arbeitsgruppe sowie Shuda und Kollegen haben in Ko-Präzipitationsexperimenten gezeigt, dass MCPyV LT_{NT} und die pRb miteinander präzipitiert werden [21,38]. Wir konnten außerdem zeigen, dass die in MCC-Geweben exprimierten LT N-Termini mehr pRb präzipitieren als das Volllängenprotein [21]. Aufgrund des konservierten LxCxE-Bindemotivs war anzunehmen, dass es sich um eine direkte Interaktion zwischen beiden Proteinen handelt. In dieser Arbeit sollte die Affinität zwischen MCPyV LT_{NT} und der pRb pocket
Domäne quantifiziert werden. Die hier präsentierten MST-Daten bestätigen nicht nur eine direkte Interaktion. Sie zeigen auch, dass es sich um eine hochaffine Interaktion mit einem \(K_D \)-Wert im unteren nanomolaren Bereich handelt. Parallel wurde auch die Affinität zwischen SV40 LT\textsubscript{T1-117} und pRb\textsubscript{PD} bestimmt. Die \(K_D \)-Werte beider Interaktionen unterscheiden sich ungefähr um Faktor 40 und verdeutlichen, dass MCPyV LT\textsubscript{NT} stärker mit pRb\textsubscript{PD} interagiert. SV40 LT wird natürlicherweise nicht als N-terminales Fragment in Zellen exprimiert, sondern als komplettes Protein. Es kann nicht ausgeschlossen werden, dass der C-Terminus einen Einfluss auf die Affinität zu pRb hat. In dieser Studie konnten die Affinitäten der Volllängen-LTs mit pRb\textsubscript{PD} nicht quantifiziert werden, da beide Proteine nicht ausreichend in Bakterien exprimiert werden.

Allerdings konnten wir in Experimenten, wo die Rb-abhängige E2F-Transkription in Anwesenheit von LT-Konstrukten untersucht wurde, zeigen, dass durch die Interaktion von MCPyV LT\textsubscript{NT} mit Rb eine höhere E2F-abhängige Transkriptionsaktivität gemessen wurde, als in Anwesenheit von SV40 LT\textsubscript{T} [21]. Das bedeutet, dass durch die Anwesenheit von MCPyV LT\textsubscript{NT} mehr Rb gebunden wird und folglich mehr E2F-abhängige Transkription stattfindet, als im Vergleich mit SV40 LT. Dieses Ergebnis impliziert, dass auch das Volllängen SV40 LT eine niedrigere Affinität zu Rb hat als MCPyV LT\textsubscript{NT}. Eine Quantifizierung steht aus oben genannten Gründen noch aus.

Vergleicht man die LxCxE-Motive von MCPyV und Sv40 LT, so unterscheiden sie sich in einer Aminosäure an Position 4, die MCPyV Asparaginsäure (D) ist an der Stelle bei SV40 ein Serin (S) (Abbildung 52A). Aufgrund der negativen Ladung der Asparaginsäure gegenüber dem polarisierten Serin lässt sich der gravierende Affinitätsunterschied noch nicht erklären. Aus der Strukturaufklärung des Komplexes SV40/pRb\textsubscript{PD} ist bekannt, dass noch weitere Aminosäuren des SV40 LT mit der pocket Domäne des pRb interagieren [61] (Abbildung 53). Zwei dieser Aminosäuren befinden sich im Bereich der zweiten \(\alpha \)-Helix sowie weitere Aminosäuren die das LxCxE-Bindemotiv flankieren, welches direkt C-terminal an die vierte \(\alpha \)-Helix anschließt. Das LxCxE-Bindemotiv legt sich an die pRb-Box B in dessen LxCxE-Interaktionsstelle (Abbildung 53, Abbildung 7 Einleitung), wobei die \(\alpha \)-Helices eher von pRb wegzogen und der C-terminale Part an der B-Box liegt und partiell an sie bindet [61] (Abbildung 53). Singh und Kollegen haben eine detaillierte Studie über die LxCxE-Bindemotive verschiedener zellulärer wie auch viraler Proteine durchgeführt, indem sie die entsprechenden Peptidsequenzen synthetisiert und
deren Affinität zu pRb mithilfe der isothermen Titrationskalorimetrie bestimmt haben [95]. Dabei haben sie für das SV40 LT LxCxE-Peptid einen K_D-Wert von 440 nM ± 6 nM bestimmt, was ungefähr der doppelten bis dreifachen Affinität entspricht, die wir gemessen haben, allerdings sind die Werte aufgrund der unterschiedlichen Methoden nur bedingt vergleichbar. Anhand der Ergebnisse dieser Studie wurde außerdem postuliert, dass die das LxCxE-Motiv flankierenden Aminosäuren direkten Einfluss auf die Affinität zu pRb haben. Es wurde die Hypothese aufgestellt, dass bei einer Sequenz von „xLxCxExxx“, wo „x“ keine positiv geladene Seitenkette und „x“ bevorzugt eine hydrophobe Seitenkette haben sollte, es eine starke Affinität mit pRb ergibt. Sowohl die Sequenz des MCPyV LT, wie auch die des SV40 LT entsprechen dieser Hypothese (Abbildung 52B).

Betrachtet man die beiden Peptidsequenzen, so befindet sich jeweils an erster und fünfter Position des MCPyV Peptids eine negativ geladene Asparaginsäure (D) gegenüber ungeladenem polarem Asparagin (N) beziehungsweise Serin (S) bei SV40. Die LxCxE-Interaktionsstelle von pRb ist umgeben von mehreren positiv geladenen Lysinen, daher könnte das die Bindung zum MCPyV LxCxE-Peptid verstärken und die höhere Affinität erklären. Allerdings hat das MCPyV Peptid an Position sieben und neun zwei Serine mit kurzen Seitenketten, die für eine größere Flexibilität sprechen als die Glutaminsäure (E) und das Prolin (P) an den entsprechenden Positionen bei SV40.

Außerdem haben Singh und Kollegen postuliert, dass ein LxCxE-Motiv, das Teil einer Sekundärstruktur ist, in einer strukturellen Konformation vorliegt, die nicht optimal für die Interaktion mit pRb ist [95]. Bei SV40 ist das LxCxE-Motiv in unmittelbarer Nachbarschaft zur vierten α-Helix und könnte dadurch an einer intensiveren Bindung gehindert werden.
Ob die hier aufgezählten Unterschiede dafür verantwortlich und wenn ja allein verantwortlich sind, dass MCPyV LT\textsubscript{NT} stärker an pRb\textsubscript{PD} bindet als SV40, wäre ein Ziel zukünftiger Interaktionsstudien. Da für SV40 gezeigt wurde, dass auch andere Aminsäuren als die das LxCxE-Bindemotiv flankierenden mit pRb interagieren, könnte es bei MCPyV LT\textsubscript{NT} ähnlich sein. Gerade die das LxCxE-Bindemotiv flankierende MUR mit ungefähr 200 Aminosäuren könnte dabei eine entscheidende Rolle spielen. Aber auch das ließe sich nur durch weiterführende Experimente wie Deletionsstudien und der Aufklärung der Komplexstruktur klären.

Da, wie in der Einleitung erwähnt, auch die anderen Proteine der pocket Familie, p107 und p130, an die LT-Antigene von SV40 und JCPyV binden können, sollte dies auch für MCPyV LT getestet werden. Eine solche Interaktion könnte eine wichtige und ergänzende Rolle während der Transformation spielen.

Zusammenfassend wurde mit den hier präsentierten Ergebnisse gezeigt, dass die in Merkelzelltumoren exprimierten verkürzten MCPyV LT-Antigen transformierende Eigenschaften besitzen, die auf die hochaffine Interaktion des Proteins mit dem Retinoblastomprotein zurückzuführen sind. Damit ist die Interaktion zwischen MCPyV LT\textsubscript{NT}...
und dem Retinoblastomaprotein ein vielversprechender Angriffspunkt einer MCPyV-orientierten MCC-Therapie.

6.3 Strukturelle Analyse von MCPyV LT_{NT}

Neben den Verunreinigungen durch die genannten Proteine, wurde ein konzentrationsabhängiges Gleichgewicht zwischen LT_{NT} Mono- und Multimeren beobachtet. Je höher die LT_{NT}-Proteinkonzentration, desto mehr Multimere entstehen. Multidisperse Proteinlösungen sind an sich nicht für die Kristallisation geeignet. Da jedoch mithilfe der CD-Spektroskopie gezeigt wurde, dass in der Proteinlösung α-helikale Sekundärstrukturen vorhanden und demnach die Proteine weiterhin gefaltet waren, unabhängig von der
Konzentration, wurden initiale Kristallisationsscreens bei Raumtemperatur durchgeführt. Da sich bei einer Kristallisation aufgrund von Diffusionsprozessen die Gleichgewichte zwischen der Proteinlösung und dem Pufferreservoir verschieben, hätte es sein können, dass die Monomere die Kristallkeimbildung anstoßen und sich das Gleichgewicht in Richtung Monomere verlagert. In den angesetzten Screens haben sich jedoch keine Proteinkristalle gebildet und es ist wahrscheinlich, dass zum einen die Gesamtproteinnenge zu gering war und die Multimere nicht förderlich für die Keimbildung und damit die Kristallbildung sind.

Mit Ausnahme von wenigen Molekülen formen Proteine keine Kristalle in ihrer natürlichen Umgebung. Die Voraussetzung für eine Kristallisation ist ein in Lösung vorliegendes gefaltetes Protein. Das Protein muss in der übersättigten Phase vorliegen, d.h. so hoch konzentriert sein, dass es nicht ausfällt, aber zur Keimbildung eines Kristalls kommt (Abbildung 54 links). Um eine Keimbildung zu erreichen, werden mit dem konzentrierten Protein initiale Kristallisationsscreens durchgeführt, bei denen Bedingungen identifiziert werden, die zu einer Keimbildung eines Proteinkristalls führen. Von diesen Bedingungen ausgehend, werden einzelne Variablen, wie Puffer, pH, Temperatur etc. optimiert (Abbildung 54 rechts), um einen Proteinkristall zu erhalten, der groß genug und von einer solchen Qualität ist, dass dessen Struktur aufgelöst werden kann.

Über 60% der aufgereinigten Proteine, die für Kristallisationsversuche vorgesehen sind, formen keine Proteinkristalle, 30% bilden Proteinkristalle und von diesen bildet nur die Hälfte Proteinkristalle, mit denen auswertbare Struktordaten gewonnen werden [80,96]. Aufgrund dieser niedrigen Erfolgsrate versuchen Wissenschaftler einzelne Domänen zu kristallisieren, Kristallisationsansätze zu optimieren bzw. die Proteine durch Interaktionspartner zu stabilisieren.

Mit den bis dahin gewonnenen Erkenntnissen zur Aufreinigung und Kristallisation von LT_{NT} ließ sich folgern, dass das Protein in der aufgereinigten Form sowohl als Multimer, wie auch als Monomer vorliegt und sich nicht ohne weiteres auf dem konventionellen Weg kristallisieren lässt, obwohl stabil gefaltete Regionen im Protein vorhanden sind. Folglich musste der Ansatz optimiert oder die Methode verändert werden. In diesem Fall wurde letzteres versucht.

Zum einen sollte durch in situ Proteolyse und teilhelmm Verdu von LT_{NT} stabil gefaltete Domänen des Proteins produziert werden, die sich leichter kristallisieren lassen. Zum anderen wurde versucht LT_{NT} durch den Interaktionspartner pRb_{PD} zu stabilisieren.

Die andere Methode, Struktordaten über den LT_{NT} zu erhalten ist, die Stabilisierung des Proteins durch pRb. Das hätte den entscheidenden Vorteil, dass die MUR inklusive des LxCxE-Motivs erhalten bliebe und Strukturinformationen für den gesamten LT_{NT} generiert würden. Die Experimente zur Komplexbildung haben gezeigt, dass pRb_{PD} den LT N-Terminus stabilisiert und der Komplex auch über einen längeren Zeitraum stabil ist. Zukünftig
müsst en Pufferbedingungen etabliert werden, bei denen sich der Komplex auch aufkonzentrieren lässt, ohne dass Protein ausfällt. Die MST-Experimente haben gezeigt, dass die Affinität bei niedrigen Salzkonzentrationen höher ist, was sicherlich auch für eine erfolgreiche Kristallisation spricht. Ob diese Bedingungen auch günstig für hohe Proteinkonzentrationen sind, muss getestet werden.

Für zukünftige Kristallisationsexperimente ist zu beachten, dass anhand der Ergebnisse aus den TFA Experimenten, bei denen eine Entfaltung von MCPyV LT_{NT} bereits bei Temperaturen unter 15°C beobachtet wurde, Kristallisationsexperimente eher bei 4°C durchgeführt werden sollten, als bei Raumtemperatur.

Abschließend lässt sich festhalten, dass von den hier erwähnten experimentellen Ansätzen die erfolgsversprechendste Methode für die Generierung von LT_{NT}-Strukturdaten die Ko-Kristallisation mit pRb_{PD} ist. Es konnte gezeigt werden, dass der Komplex stabil und die Interaktion, laut der MST-Daten, zwischen beiden Proteinen hochaffin ist. Im Vergleich mit SV40 LT_{NT}, welches bereits mit pRb_{PD} kristallisiert wurde [61], hat MCPyV LT_{NT} eine deutlich höhere Affinität zu pRb_{PD}. Das bedeutet nicht zwangsläufig, dass der Komplex deswegen erfolgreich kristallisier, aber es ist ein starkes Indiz dafür.
7 Literatur

8 Anhang

Kalibrierung der Gelfiltrationssäulen

Pufferbedingungen und Ergebnisse der Thermofluor Assay Screens 1 und 2

Abbildung 57 Beschreibung des EMBL Hamburg Thermofluor Screens 1. Dargestellt sind 96 verschiedene Puffer- und Salzbedingungen.
Abbildung 58 Beschreibung des EMBL Hamburg Thermofluor Screens 2. Dargestellt sind 90 verschiedene Puffer- und Salzbedingungen.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,1 M</td>
<td>0,5 M</td>
<td>1 M</td>
<td>2 M</td>
<td>4 M</td>
<td>8 M</td>
<td>10 M</td>
<td>12 M</td>
<td>14 M</td>
<td>16 M</td>
<td>18 M</td>
</tr>
<tr>
<td>B</td>
<td>100 mM</td>
<td>200 mM</td>
<td>300 mM</td>
<td>400 mM</td>
<td>500 mM</td>
<td>600 mM</td>
<td>700 mM</td>
<td>800 mM</td>
<td>900 mM</td>
<td>1000 mM</td>
<td>1100 mM</td>
</tr>
<tr>
<td>C</td>
<td>100 mM</td>
<td>200 mM</td>
<td>300 mM</td>
<td>400 mM</td>
<td>500 mM</td>
<td>600 mM</td>
<td>700 mM</td>
<td>800 mM</td>
<td>900 mM</td>
<td>1000 mM</td>
<td>1100 mM</td>
</tr>
<tr>
<td>D</td>
<td>10 mM</td>
<td>20 mM</td>
<td>30 mM</td>
<td>40 mM</td>
<td>50 mM</td>
<td>60 mM</td>
<td>70 mM</td>
<td>80 mM</td>
<td>90 mM</td>
<td>100 mM</td>
<td>110 mM</td>
</tr>
<tr>
<td>E</td>
<td>100 mM</td>
<td>200 mM</td>
<td>300 mM</td>
<td>400 mM</td>
<td>500 mM</td>
<td>600 mM</td>
<td>700 mM</td>
<td>800 mM</td>
<td>900 mM</td>
<td>1000 mM</td>
<td>1100 mM</td>
</tr>
<tr>
<td>F</td>
<td>3% (v/v)</td>
<td>6% (v/v)</td>
<td>9% (v/v)</td>
<td>12% (v/v)</td>
<td>15% (v/v)</td>
<td>18% (v/v)</td>
<td>21% (v/v)</td>
<td>24% (v/v)</td>
<td>27% (v/v)</td>
<td>30% (v/v)</td>
<td>33% (v/v)</td>
</tr>
<tr>
<td>G</td>
<td>10 mM</td>
<td>20 mM</td>
<td>30 mM</td>
<td>40 mM</td>
<td>50 mM</td>
<td>60 mM</td>
<td>70 mM</td>
<td>80 mM</td>
<td>90 mM</td>
<td>100 mM</td>
<td>110 mM</td>
</tr>
<tr>
<td>H</td>
<td>2 mM</td>
<td>4 mM</td>
<td>6 mM</td>
<td>8 mM</td>
<td>10 mM</td>
<td>12 mM</td>
<td>14 mM</td>
<td>16 mM</td>
<td>18 mM</td>
<td>20 mM</td>
<td>22 mM</td>
</tr>
</tbody>
</table>

- **Formate/Orthophosphat reactor**
- **Salt**
- **Reductive agent**
- **Protease**
- **Chelating agent**

Abbildung 59 TFA-Schmelzkurven von 6xHis-TEV-LT₁₋₃₁₃ in 50 mM Tris, pH 8,0 mit verschiedenen Salzkonzentrationen von 0 mM bis 1000 mM NaCl.
Abbildung 60 TFA-Schmelzkurven von 6xHis-TEV-LT$_{1-313}$ in 50 mM HEPES, pH 7,5 mit verschiedenen Salzkonzentrationen von 0 mM bis 1000 mM NaCl.

Abbildung 61 TFA-Schmelzkurven von 6xHis-TEV-LT$_{1-244}$ Monomeren in 50 mM Tris, pH 8,0 mit verschiedenen Salzkonzentrationen von 0 mM bis 1000 mM NaCl.
Abbildung 62 TFA-Schmelzkurven von 6xHis-TEV-LT₁₋₂₄₄ Monomeren in 50 mM HEPES, pH 7,5 mit verschiedenen Salzkonzentrationen von 0 mM bis 1000 mM NaCl.

Abbildung 63 TFA-Schmelzkurven von 6xHis-TEV-LT₁₋₂₄₄ mit verschiedenen Polyolen.
Danksagung

Mein erster und spezieller Dank geht an PD Dr. Nicole Fischer für die Bereitstellung dieses Themas und die Gelegenheit, meine Doktorarbeit in ihrer Arbeitsgruppe durchführen zu dürfen. Ich danke ihr für die sehr gute Betreuung und fachliche Unterstützung, die mein wissenschaftliches Arbeiten und Denken sehr geprägt haben, sowie ihre Hilfsbereitschaft und ihr Verständnis in allen möglichen Lebenslagen.

Prof. Dr. Adam Grundhoff danke ich herzlich für die Ko-Betreuung dieser Arbeit, sowie für fruitful discussions und die sehr hilfreichen Ratschläge.

Bei Prof. Dr. Thomas Dobner bedanke ich mich, dass er die Aufgabe des Zweitgutachters übernommen hat.

Ein großes Dankeschön geht an Dr. Markus Perbandt und Dr. Stefan Veltel, für die große Hilfe, wenn es um Fragen zur Proteinaufreinigung und zum Verständnis zur Kristallisation ging.

Ich bedanke mich bei den Mitgliedern der Arbeitsgruppen Fischer, Grundhoff und Ruckdeschel für ihre Hilfsbereitschaft und Unterstützung im Labor, besonders bei Christine Dahlke, Juliane Theiß, Claudia Schmidt, Uwe Tessmer, Friederike Neumann und Manja Czech-Sioli. Christine, ich danke Dir für die Freundschaft und die tolle Zusammenarbeit seit unserem Masterstudium.

Ein weiterer Dank geht an Dr. Marta Kotasinska und Claudia Trasak für die Einweisung in die Geheimnisse der Proteinaufreinigung und das ÄKTA-System, sowie für die Durchführung zahlloser SMART-Läufe.

Ein dickes Dankeschön geht an die Kollegen aus dem Institut für Mikrobiologie, Virologie und Hygiene für die gute Arbeitsatmosphäre. Allen voran danke ich Kerstin Rehm, Linda Panzer, Marie Schnapp, Andreas Rumm und Stefan Veltel für die vielen tollen und unterhaltsamen Stunden innerhalb und außerhalb des Instituts. Es ist immer wieder eine Freude mit Euch.
Meinen Mit-Doktoranden der Hamburger Graduiertenschule „Structure and Dynamics in Infection“ danke ich für die tolle Stimmung und Unterstützung sowie für das ein oder andere erheiternde Getränk.

Ich danke meinen Korrekturlesern Juliane Theiß, Kerstin Rehm und Corey Laverty und für die großartige Hilfe bei der Formatierung dieser Arbeit meinem Mann Damian Senn.

Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Unterschrift