FAQ
© 2015 Staats- und Universitätsbibliothek
Hamburg, Carl von Ossietzky

Öffnungszeiten heute09.00 bis 24.00 Uhr alle Öffnungszeiten

Eingang zum Volltext in OPUS

Hinweis zum Urheberrecht

Dissertation zugänglich unter
URN: urn:nbn:de:gbv:18-73394
URL: http://ediss.sub.uni-hamburg.de/volltexte/2015/7339/


The Finite Volume Particle Method : a Meshfree Method of Second Order for the Numerical Solution of Hyperbolic Conservation Laws

Finite-Volumen-Partikel-Methode : eine gitterfreie Methode zweiter Ordnung zur numerischen Lösung hyperbolischer Erhaltungsgleichungen

Kadrnka, Libor

pdf-Format:
 Dokument 1.pdf (2.217 KB) 


SWD-Schlagwörter: Partikel , Numerische Mathematik
Freie Schlagwörter (Deutsch): gitterfrei , hyperbolische Erhaltungsgleichung , polyharmonische Splines , WENO , ADER
Freie Schlagwörter (Englisch): meshfree , hyperbolic conservation law , polyharmonic splines , WENO , ADER
Basisklassifikation: 31.76 , 31.80
Institut: Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Dissertation
Hauptberichter: Iske, Armin (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 28.01.2015
Erstellungsjahr: 2014
Publikationsdatum: 01.06.2015
Kurzfassung auf Englisch: We study numerical methods for the solution of hyperbolic conservation laws with particular emphasis on meshfree methods. The concept of the Finite Volume Particle Method (FVPM) and properties of the scheme are presented. We contribute to the development of the method with new results concerning stability and order of accuracy. To provide computational stability of a general FVPM we propose algorithms to add and to remove a particle to a given particle distribution. Furthermore, we focus on one-dimensional scalar problems and design and analyse a FVPM of second order of accuracy. To this end, a kernel-based high order spatial reconstruction scheme is combined with the ADER approach for the flux evaluation. Polyharmonic splines are used as kernel functions in the reconstruction step. We analyse the local approximation order of polyharmonic splines for the case of data given by weighted integral means, as needed in FVPM. To suppress oscillations in the reconstruction, we use the WENO technique. We generalize the ADER method and the Toro-Titarev solver in order to apply them on a meshless scheme and provide hereby the solution of a corresponding generalized Riemann problem with initial data given by the WENO approximation by polyharmonic splines. The resulting scheme yields a prototype of highly flexible high order meshfree method. Numerical examples are given to show the second order of convergence and robustness of the method also for non-linear equations as well as for systems of conservation laws.
Kurzfassung auf Deutsch: Wir studieren numerische, insbesondere gitterfreie, Methoden zur Lösung hyperbolischer Erhaltungsgleichungen. Das Konzept der Finite Volumen Partikel Methode (FVPM) und ihre Eigenschaften werden präsentiert. Wir tragen zu der Entwicklung der Methode mit neuen Resultaten bezüglich der Stabilität und Genauigkeitsordnung bei. Um die Stabilität einer allgemeinen FVPM zu gewährleisten, entwerfen wir Algorithmen zum Hinzufügen und Entfernen eines Partikels bezüglich einer gegebenen Partikelverteilung. Darüber hinaus betrachten wir eindimensionale skalare Probleme und befassen uns mit der Konstruktion und Analyse einer FVPM zweiter Ordnung. Zu diesem Zweck kombinieren wir kernbasierte Rekonstruktion höherer Ordnung im Raum mit der ADER-Methode für die Flussauswertung. Als Kern-Funktionen in dem Rekonstruktionsschritt benutzen wir polyharmonische Splines. Für den in FVPM auftretenden Fall der Daten, die durch gewichtete Integraldurschnitte gegeben sind, analysieren wir die lokale Approximationsordnung der polyharmonischen Splines. Mögliche Oszillationen werden mittels des WENO-Verfahrens gedämpft. Wir verallgemeinern die ADER-Methode und den Toro-Titarev-Löser, um sie an gitterfreie Schemata anzuwenden, und lösen hiermit das entsprechende verallgemeinerte Riemann Problem mit Anfangsdaten, welche durch die WENO-Approximation mit polyharmonischen Splines gegeben werden. Das resultierende Schema stellt den Prototyp einer hochflexiblen gitterfreien Methode höherer Ordnung dar. Schließlich werden numerische Beispiele präsentiert, die die Konvergenz zweiter Ordnung und Robustheit des Schemas auch für nicht-lineare Gleichungen sowie für Systeme hyperbolischer Erhaltungsgleichungen zeigen.

Zugriffsstatistik

keine Statistikdaten vorhanden
Legende