Trafficking and surface exposure of the metalloprotease MT1-MMP in macrophages

Dissertation zur Erlangung des Doktorgrades
an der Fakultät für Mathematik Informatik, und Naturwissenschaften
Fachbereich Biologie
der Universität Hamburg

vorgelegt von
Karim EL AZZOUZI
aus Taza (Marokko)

Hamburg, 2016
Die vorliegende Arbeit wurde von März 2010 bis September 2016 unter Anleitung von Prof. Dr. Stefan Linder am Institut für Medizinische Mikrobiologie, Virologie und Hygiene am Universitätsklinikum Hamburg-Eppendorf durchgeführt.

Die vorliegende kumulative Dissertation umfasst Arbeiten aus den folgenden zwei Publikationen:

Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence.
El Azzouzi K, Wiesner C, Linder S.

A specific subset of RabGTPases controls cell surface exposure of MT1-MMP, extracellular matrix degradation and three-dimensional invasion of macrophages.
Wiesner C, El Azzouzi K, Linder S.

Dissertation zur Erlangung des Doktorgrades
Im Fachbereich Biologie
der Universität Hamburg
vorgelegt von
Karim EL AZZOUZI (M.Sc.)
aus Taza (Marokko)

Dissertationsgutachter: Prof. Dr. Stefan Linder
Prof. Dr. Wolfgang Streit

Disputationsgutachter: Prof. Dr. Stefan Linder
Prof. Dr. Wolfgang Streit
PD Dr. Andreas Pommerening-Röser

Tag der Disputation: 21 Dezember 2016
Table of contents

I. ABSTRACT .. 4

II. INTRODUCTION .. 5

1. Macrophages .. 5
 1.1 Tissue resident macrophages ... 5
 1.2 Tumor associated macrophages (TAMS) ... 5
 1.3 M1 macrophages ... 6
 1.4 M2 macrophages ... 6

2. Podosomes .. 7
 2.1 Podosome regulation ... 9

3. Matrix Metalloproteases (MMPs) ... 9
 3.1 Soluble MMPs and MMP activation .. 11
 3.2 Membrane anchored MMPs ... 12

4. Membrane Type 1-Matrix Metalloprotease (MT1-MMP) 13
 4.1 MT1-MMP functions ... 13
 4.2 MT1-MMP domains ... 14

5. RabGTPases ... 16
 5.1 Mechanism of RabGTPases .. 16
 5.2 Functions of RabGTPases .. 18

III. AIMS OF THE STUDY ... 19

1. Novel localization and function of MT1-MMP at podosomes 19
2. RabGTPases regulating MT1-MMP trafficking ... 19
IV. PUBLICATIONS

Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence

A specific subset of RabGTPases controls cell surface exposure of MT1-MMP, extracellular matrix degradation and three-dimensional invasion of macrophages

The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes

V. DISCUSSION

1. Surface-exposed MT1-MMP localizes at podosomes and forms islets after podosome dissolution

2. Islet formation depends on the cytoplasmic tail of MT1-MMP, and its actin binding activity

3. Control of cell surface exposure of MT1-MMP, ECM degradation and invasion by RabGTPases

4. ECM degradation and 3D invasion are regulated by Rab5a, Rab8a, and Rab14

VI. REFERENCES

VII. LIST OF FIGURES

VIII. LIST OF ABBREVIATIONS

IX. DECLARATION ON OATH
I. ABSTRACT

Macrophages are immune cells capable of migration and invasion through tissues. They can also associate with metastatic cancer cells and provide support through their matrix remodeling capacities and creation of migration tracks. In both scenarios, localized proteolytic degradation of the extracellular matrix is crucial.

The major topic of my PhD thesis was the investigation of trafficking and regulation of the metalloproteinase MT1-MMP, a central regulator of matrix degradation in macrophages. This thesis shows for the first time that MT1-MMP is localized at podosomes, actin-rich matrix-degrading organelles in macrophages. Moreover, podosome dissolution induced formation of MT1-MMP dot-like structures embedded in the plasma membrane called “islets”. They are free of typical podosome-components and persist beyond podosome lifetime. Also, islets constitute a preferential site for reemergence of podosomes, revealing a new function of MT1-MMP as memory device for the reformation of podosomes. This mechanism is completely independent of the proteolytic activity of MT1-MMP. I also showed that the cytoplasmic tail of MT1-MMP and precisely the small peptide LLY573 is responsible for its localization at podosomes. The LLY573 motif ensures this localization thanks to its capacity to bind subcortical actin cytoskeleton.

In a second project, I also helped to investigate members of the RabGTPases family controlling cell surface exposure of MT1-MMP, extracellular matrix degradation and invasion of macrophages. We identified Rab5a, Rab8a and Rab14, as crucial regulators of MT1-MMP trafficking and function in human macrophages. Depletion of these RabGTPases as well as overexpression of dominant negative and positive mutants showed that Rab5a, Rab8a and Rab14 do regulate cell surface exposure of MT1-MMP, contact of MT1-MMP-positive vesicles with podosomes, matrix degradation in 2D and also 3D proteolytic cell invasion. These results provide a detailed understanding of MT1-MMP trafficking and of the molecular mechanisms regulating podosome-mediated matrix degradation and proteolytic cell invasion.
II. INTRODUCTION

1. Macrophages

Macrophages are professional phagocytic cells\(^1\) of the immune system due to their efficiency in phagocytosis. They are derived from primary monocytes circulating in the blood stream. They are responsible for the phagocytosis of pathogens and apoptotic cells\(^2\). Macrophage precursors (monocytes) are recruited to tissues after infection and/or tissue damage in order to differentiate into macrophages\(^1\). Primary human macrophages are capable of exposing multiple receptors on their surfaces to signal tissue damages\(^3\). Tissue injuries induce an inflammatory response leading to the recruitment of macrophages.

The ability of cells to invade tissues is a key feature in both physiological and pathological conditions where macrophages play the role of the immune sentinel in the human body. Based on their functional phenotype and anatomical localization in the organism, macrophages can be divided into multiple subpopulations.

1.1 Tissue resident macrophages

Macrophages are present in several tissues under normal physiological conditions, in contrast to those recruited during inflammation or infection. They are found in the brain (microglia)\(^4\), in the skin (Langerhans cells)\(^5\), in the lung (alveolar macrophages) and in the liver (Kupffer cells)\(^6\). By clearing cell debris of erythrocytes and apoptotic bodies, macrophages play also an important homeostatic function beside their tissue remodeling function. They can degrade up to 3 kg of iron and haemoglobin per year\(^7\), which is reused by the organism through catabolic pathways. They also have the capacity of recruiting additional macrophages originating from the blood stream by secreting chemo-attractant molecules\(^8\).

1.2 Tumor associated macrophages (TAMs)

Macrophages can associate with cancer cells to form TAMs, they are generally derived from circulating monocytes\(^9\). They can be recruited by a gradient of chemokines such as macrophage-colony stimulating factor (M-CSF)\(^10\), promoting proliferation and cell survival.
TAMs have the capacity to kill tumor cells *in vitro* when stimulated. However, *in vivo*, the increase in macrophages infiltrating tumors is highly correlated with high vessel density and tumor progression\(^\text{11}\). Polarized and activated macrophages can be divided into 2 subgroups: M1 and M2 macrophages. This classification illustrates the plasticity of the innate immune system, and its capacity to adapt to changes in the environment and stimuli. They secrete different sets of cytokines and express different receptors, as mentioned below. TAMs are poor producers of nitric oxide (NO) and reactive oxygen intermediates ROIs\(^\text{12}\), which is a very similar pattern to M2 macrophages.

1.3 M1 macrophages

The first response to infection or tissue injury is mediated by macrophages through a pro-inflammatory response. Upon activation, these macrophages can mediate defense of the host. This response is induced by factors such as interferon-γ and Lipopolysaccharide (LPS). They intervene in the early phases of tissue repair. They initially secrete pro-inflammatory factors such as (tumor necrosis factor-α (TNF-α)), interleukins: IL-1, IL-6, and IL-23\(^\text{13}\) and increase the concentration of oxygen and nitrogen species responsible for the M1 microbicidal activity in the innate immune response. This leads to the phagocytosis and killing of invading pathogens.

If the activation of M1 macrophages is not well regulated, this can lead to pathologies such as autoimmune diseases and chronic inflammation\(^\text{13}\).

1.4 M2 macrophages

M2 macrophages are defined as anti-inflammatory macrophages; they tune inflammatory responses and T helper cell type 1 (Th1) immunity. M2 macrophages can be induced by interleukins (IL-13\(^\text{14}\) and IL-4\(^\text{15}\). They secrete anti-inflammatory cytokines (IL-10, transforming growth factor β (TGF-β), and IL-1 receptor antagonist (IL-1Ra))\(^\text{16}\). This is antagonizing the role of M1 macrophages. Indeed, M2 macrophages scavenge debris, promote tissue remodeling and angiogenesis of the damaged tissues.

M2 macrophages form a heterogeneous group that can be subdivided into M2a, M2b, and M2c\(^\text{17}\) macrophages based on their phenotype and functional properties. M2a macrophages can be activated by exposure to IL-4 or IL-13 and possess tissue repair and immunoregulating features. M2b are stimulated by immune complexes,
Toll-like receptor (TLR), or the IL-1 receptor antagonist (IL-1ra). M2c macrophages are stimulated by IL-10 or glucocorticoids (Figure 1).

Figure 1. Model for M1/M2 macrophages differentiation. Mantovani and colleagues proposed a model in which exposure of M1 Macrophages to IFN-γ and LPS drives M1 polarization, whereas M2 macrophages are in general more prone to immunoregulatory and protumoral activities. M2a macrophages (induced by exposure to IL-4 and IL-13) and M2b (induced by combined exposure to immune complexes and TLR or IL-1R agonists) exert immunoregulatory functions, whereas M2c macrophages (induced by IL-10) are more related to suppression of immune responses and tissue remodeling.

2. Podosomes

Macrophages are able to adhere and migrate in tissues thanks to actin rich structures called podosomes. Initially described in Rous sarcoma virus transformed fibroblasts in 1985, podosomes have been intensley investigated since. Podosomes share similar chemical and structural characteristics with focal adhesions. Podosomes and invadopodia form the group of invadosomes. Podosomes can be found in macrophages, dendritic cells and osteoclasts. Upon cytokine stimulation such as transforming growth factor beta (TGF-β), podosomes can also be formed in endothelial cells.
Podosomes show a dot like pattern on the ventral side of the cell, with a diameter of 1 µm. Individual podosomes are composed of three distinct parts, an actin rich core enriched in actin-related protein2/3 (Arp2/3) complexes and F-actin associated proteins27, a ring protein complex surrounding the core and containing the so called adhesion plaque proteins (talin, vinculin, paxillin)28 and β2 and β3 integrins29,22, and finally a cap on top of the F-actin core with the presence of the formin FMNL130 and supervillin31 as described in Figure 232.

![Figure 2: Detailed model of podosome substructures](image)

Figure 2. Detailed model of podosome substructures. The core contains branched F-actin (red) surrounded by possibly unbranched actin filaments (orange) bundled by myosin II (purple), a cap structure on top of the actin core (green), and the surrounding ring structure (blue). Contact to the extracellular matrix (ECM) is established by integrins and CD44 (teal). A surrounding cloud of G- and F-actin is located above the podosome32.

Podosomes are multifunctional organelles that combine several key functions of invasive cells, including adhesion, sensing of rigidity and topology of the substratum, as well as matrix degradation33,32. Podosomes are capable of degrading the underlying matrix. The presence of podosomes at the leading edge of macrophages highlights their potential involvement in the directional migration of macrophages.
2.1 Podosome regulation

Podosomes are highly dynamic organelles with a life time of 2-12 minutes24 and they undergo constant rearrangement, including \textit{de novo} formation, fusion and fission with the neighbouring podosomes, growth and dissolution34. Podosome dynamics and functions are regulated by a complex network of proteins. This necessitates spatiotemporal coordination of actin nucleation at podosome cores, growth of the actin network as well as its modulation by bundling and crosslinking proteins, and also severing of actin filaments to induce podosome turnover32. Moreover, even under steady state conditions, podosomes also show internal dynamics, as 1) actin in the podosome core is turned over ca. 3 times within the life span of a single podosome24, and 2) podosomes undergo internal cycles of stiffness, which is probably based on actin bundling and myosin contractility35. Rigidity of the substrate can also affect podosome lifetime and density, for example, substrate rigidity positively correlates with the lifetime and stability of individual podosomes and podosome rosettes in 3T3 fibroblasts36.

In order to degrade the matrix, cells in general and macrophages in particular need proteases capable of cleaving collagen fibers to allow free movement of the cell. To achieve this purpose, macrophages secrete matrix metalloproteases (MMPs). These enzymes are capable of cleaving a large variety of substrates including collagen, fibronectin and laminin which are present in tissues and basal membrane.

3. Matrix Metalloproteases (MMPs)

MMPs form a family of zinc-dependent endopeptidases with 23 human proteases37(Figure 3). MMPs can be divided, according to their localization, into soluble versus membrane bound MMPs. Membrane MMPs or MT-MMPs form a subgroup of 6 proteases. Another distinction can be made according to their substrate specificity.

They share a broad spectrum of substrates and are thus collectively capable of degrading the basement membrane and all components of the ECM38, but not every MMP is capable of cleaving each of the ECM substrates. MMPs can degrade collagen, laminin, elastin, fibronectin and aggregan. Among MMPs, we find specific collagenases, gelatinases (MMP-2 and MMP-9), matrilysin and elastases. ECM components are not the only substrates of MMPs. In fact, MMPs can process cellular
receptors and transmembrane proteins such as E-cadherin, integrins and cytokines involved in cell signaling pathways, angiogenesis and adherence.

MMPs play a crucial role in physiological and pathological conditions including arthritis, tumor growth and metastasis, which make them a perfect target for drug development, but the use of broad spectrum inhibitors of MMPs catalytic activity failed in clinical trials. In fact, several MMPs can play a paradoxical role when it comes to tumor progression highlighting the necessity of a clearer understanding of the proteases’ pathway.

Figure 3. Human MMPs: Schematic representation of the structure of the 24 human matrix metalloproteases (MMPs), which are classified into four different groups on the basis of domain organization. Archetypal MMPs contain a signal peptide (necessary for secretion), propeptide, a catalytic domain that binds zinc (Zn2+) and a hemopexin carboxy (C)-terminal domain. Matrilysins contain the minimal domain organization that is required for secretion, latency and catalytic activity. Gelatinases contain fibronectin type II modules that improve collagen and gelatin degradation efficiency. Convertase-activatable MMPs contain a basic insert in the propeptide that is targeted by furin-like proteases (convertase cleavage site). MMPs that belong to this group can be secreted enzymes, or membrane-anchored via GPI (glycosylphosphatidylinositol), type I or type II transmembrane (TM) segments. MMP-23A and MMP-23B contain unique cysteine array (CA) and immunoglobulin(Ig)-like domains in their C-terminal region.
3.1 Soluble MMPs and MMP activation

Secreted MMPs form the majority of MMPs with 17 members. They share the conserved zinc-binding motif in their catalytic active site. They are expressed as pro-proteins, which are the latent form of MMPs called zymogen. The zymogen is cleaved to form active MMPs as shown in Figure 4. In the proximity of the C-terminus of the catalytic site, the pro-protein harbours a conserved cysteine switch sequence. This cysteine switch sequence can interact with the zinc ion present in the active site inducing a change in the conformation of the protease.

This conformation change can be initiated by three mechanisms: 1) removal of the pro-domain by direct cleavage of another endoproteinase; 2) allosteric reconformation of the pro-domain; and 3) chemical modification of the free cysteine by reactive oxygen species or non physiological agents. To ensure a balanced matrix turnover, cells produce tissue inhibitors of metalloproteases (TIMPs) that bind to MMPs and negatively regulate MMPs activity. The inhibition of MMP activity is operated by the chelation of the catalytic zinc atom in a molar ratio of 1:1.
Figure 4. Schematic structure of MMPs. a/ Matrix metalloproteases (MMPs) are expressed as pro-proteins. A conserved Cys residue in the pro-domain coordinates the zinc ion, which would otherwise be used for catalysis. The pro-domain is removed by a combination of a cleavage in the domain and a cleavage between the pro-domain and the catalytic domain. b/ Most MMPs share a conserved domain structure of pro-domain, catalytic domain, hinge region and hemopexin domain (1). All MMPs are synthesized with a signal peptide, which is cleaved during transport through the secretory pathway. MMP2 and MMP9 have three fibronectin type II repeats in their catalytic domains (2). Minimal MMPs lack the hinge and hemopexin domains (4)\(^4\).

3.2 Membrane anchored MMPs

Depending on the type of linker to the plasma membrane, this group can be subdivided into transmembrane tethered enzymes which are MT1-MMP, MT2-MMP, MT3-MMP, and MT5-MMP. MT4-MMP and MT6-MMP form the second group which is anchored to the membrane via a glycoposphatidylinositol (GPI) anchor. Beside their usual ECM substrates, MT-MMPs are capable of cleaving secreted MMPs and other soluble factors. For example cleavage of proMMP-2 by MT2-MMP\(^4\), leading to an active form MMP-2.
4. Membrane Type 1-Matrix Metalloprotease (MT1-MMP)

4.1 MT1-MMP functions

MT1-MMP is a transmembrane protease, it was identified as the first membrane tethered MMP46. MT1-MMP was reported to be expressed in several cell types including macrophages, fibroblasts, osteoclasts47 and endothelial cells48. Collagen forms the most abundant extracellular matrix in the human body and is mainly secreted by fibroblasts. Through its fibrillar form, collagen forms a scaffold that shapes the form of the ECM.

To achieve migration through the highly dense matrix and connective tissue, cleavage of collagen fibers is a necessary initial step for macrophages, to protrude and migrate toward their target. MT1-MMP create a path for cell migration by cleaving collagen I, II, III, fibronectin, and laminin49.

MMP-1 (collagenase I), MMP-8 (collagenase 2), MMP-13 (collagenase 3), MMP-2 (gelatinase A), and MT1-MMP are the five major human collagenases50.

MT1-MMP is involved in the processing of the triple helical collagen type I, modulation of transmembrane receptors such as cluster of differentiation 44 (CD44), and other ECM components51. MT1-MMP is also capable of activation of the collagenase MMP-252 and MMP-1353, which means that three out of the five major MMP collagenases are regulated by MT1-MMP, showing its capacity to trigger multiple proteinase cascades and pericellular proteolysis through its surface exposure.

The suggested model explaining the activation of proMMP-2 starts initially by the formation of a MT1-MMP homodimer. Once the homodimer is formed, MT1-MMP interacts with TIMP-2, which plays a role of a linker between MT1-MMP and proMMP-2. In fact TIMP-2 brings proMMP-2 in close contact to MT1-MMP to form a tertiary complex. Once the complex is formed, MT1-MMP processes proMMP-2, leading to the liberation of an active MMP-2 and the dissolution of the complex54.

Unlike several individual MMPs knockout mice strains (MMP-2, MMP-3, MMP-7, MMP-9 and MMP-12) which have little effect on impairment of development and reproduction55, MT1-MMP depletion seem to affect a wide variety of functions. MT1-MMP deficient mice suffer from craniofacial dysmorphism, arthritis, osteopenia,
dwarfism, and fibrosis of soft tissues55 with defective angiogenesis leading to a premature death after 7 to 12 weeks40. This phenotype is due to the lack of MT1-MMP collagenolytic activity, which ensures the modeling of skeletal and extraskeletal connective tissues in the wildtype. These results highlight the importance of this protease during angiogenesis and embryogenesis. MT1-MMP was localized in human invasive breast carcinomas which have a tendency to form spontaneous metastasis56. MT1-MMP overexpression is associated in many tumor cell lines with aggressive and invasive malignancies57.

Among the unconventional substrates of MT1-MMP is pericentrin, a centrosomal protein essential to the normal functioning of centrosomes in the mitotic spindle formation. In the pericentrosomal compartment, a fraction of cellular MT1-MMP accumulates and degrades pericentrin. MT1-MMP proteolysis of pericentrin causes chromosome instability, which is an early predictor of carcinogenesis58. MT1-MMP is thus not simply a protease responsible of the cleavage of collagen or other ECM components, it can be also involved in chromosome stability, neovessel formation in a collagen-based matrix59 and can be used as a landmark for podosome reformation as it is shown in this work.

MT1-MMP is finely regulated at several levels. It is regulated at the transcriptional level, posttranscriptional level through activation by furins and inhibition by TIMPs, and also via traffic regulation where MT1-MMP vesicles can be fused, internalized and recycled depending on the type of motor proteins and Rab GTPases.

4.2 MT1-MMP domains
MT1-MMP contains a cytoplasmic tail, a single transmembrane domain and an extracellular domain containing the hemopexin (Hpx) and the catalytic domain connected by a hinge region also called linker L1. The catalytic domain contains a Glu-240 residue involved in the collagenolytic activity (Figure 5). Migration of epithelial cells60 and fibroblasts61 was reported to be severely impaired when MT1-MMP catalytic activity was inhibited.
Prior to its plasma membrane insertion, MT1-MMP is initially cleaved by furins, serine proteinases of the trans-Golgi network in order to activate MT1-MMP62 and remove the N-terminal propeptide domain. The proprotein convertases (PCs) recognize the motif PRKR present between the pro and the catalytic domain (Figure 5). The hemopexin domain is involved in the formation of MT1-MMP homodimers and the interaction with CD44, a widely expressed hyaluronan receptor, especially in invasive tumor cells. CD44 is a crucial player in cell migration63, and MT1-MMP is capable of shedding CD44 ectodomain which leads to a modification of the cell adhesion pathway mediated by this receptor64.

MT1-MMP is known to form oligomers. The formation of such homodimeric complexes is mediated mainly by the transmembrane domain, the hemopexin domain65,27 and a disulfide bridge involving the Cys-574 of the enzyme’s cytoplasmic tail that covalently links MT1-MMP monomers66.

Figure 5. Domain features of MT1-MMP. MT1-MMP is synthesized with a signal peptide (Signal), a prodomain (Pro) for latency, a catalytic domain (Catalytic) with catalytic zinc atom (Zn) for proteolytic activity, a linker-1 (L1), a hemopexin domain (Hpx), a linker-2 (L2), a transmembrane domain (TM), and a cytoplasmic tail (CP). The L1 connects Catalytic and Hpx domains. It has four O-glycosylation (O-Gly) sites which appear to be important for proMMP-2 activation. The Hpx domain has one disulfide bond connecting its N- and C-terminal Cysteines (C-C). The L2 connects Hpx and TM domains. The CP contains three defined sequences responsible for interaction with adaptor protein 2, which is important for clathrin-mediated internalization (LLY573), palmitoylation (Cys574), and recycling (DKV583)67.
1. RabGTPases

Eukaryotic cells present a very dense cytoplasm rich in microtubules, and actin filaments network. In order to achieve accurate delivery of cargos in cells, and ensure proper communication between different cell compartments, cells need a group of proteins called RabGTPases (Ras-related proteins in brain). RabGTPases are described as the largest family of small GTPases, they play the role of a router of vesicles and membrane trafficking in the cell. They ensure delivery of cargoes to their correct destination in a very stringent way, despite the complexity of the interconnecting pathways.

5.1 Mechanism of RabGTPases

RabGTPases form a family of small GTPases/GTP-binding-proteins monomers. Mechanistically speaking, they ensure their functions by a conformational change. This conformational change occurs when GTP is hydrolyzed to GDP. RabGTPases activity is regulated by guanine nucleotide exchange factors (GEFs). GEFs act as a catalyzer for the exchange of GDP with GTP. The GTP hydrolysis activity is crucial for the correct routing of vesicles. Mutations affecting the GTPase activity by modifying GTP binding or hydrolysis lead to an accumulation of vesicles as it was shown when dominant negative constructs were overexpressed for example in human macrophages.

RabGTPases are present on all compartments of the endomembrane system (endoplasmic reticulum (ER), Golgi, endosomes, lysosomes). They can be also found in the nucleus, mitochondria and the plasma membrane.

Among the 70 members of the RabGTPase family, each one seems to control a specific membrane transport pathway as shown in Figure 6. The majority of RabGTPases is localized toward a specific compartment/route. The rest of RabGTPases is present in the cytosol bound to the guanine dissociation inhibitor (GDI). The majority of RabGTPases are ubiquitously expressed in the human body, with exceptions like Rab27a, which is preferentially expressed in hematopoietic cells.
Figure 6. Localization and function of RabGTPases. An epithelial cell with its vesicle transport pathways and the localizations of selected RabGTPases. RAB1, located at ER exit sites and the pre-Golgi intermediate compartment (IC), mediates ER–Golgi trafficking. RAB2, located at the IC, might also regulate Golgi–ER trafficking. The Golgi-localized RAB6, RAB33 and RAB40 mediate intra-Golgi trafficking. RAB33, together with RAB24, also regulates the formation of autophagosomes. RAB8 mediates constitutive biosynthetic trafficking from the trans-Golgi network (TGN) to the plasma membrane and also participates in GLUT4 vesicle translocation (with RAB10 and RAB14) and ciliogenesis (with RAB17 and RAB23). RAB3, RAB26, RAB27 and RAB37 mediate various types of regulated exocytic events and RAB27 also mediates the translocation of melanosomes to the cell periphery. RAB32 and RAB38 are involved in the biogenesis of melanosomes and RAB32 also controls mitochondrial fission. RAB13 regulates the assembly of tight junctions between epithelial cells. RAB18 controls the formation of lipid droplets. RAB22 mediates trafficking between the TGN and early endosomes (EE) and vice versa. RAB5, which is localized to early endosomes, phagosomes, caveosomes and the plasma membrane, mediates endocytosis and endosome fusion of clathrin-coated vesicles (CCVs), micropinocytosis (with RAB34) and maturation of early phagosomes (with RAB14 and RAB22). RAB21 mediates integrin endocytosis. RAB11 and RAB35 mediate slow endocytic recycling through recycling endosomes, whereas RAB4 mediates fast endocytic recycling directly from early endosomes. RAB15 is involved in the trafficking from early endosomes to recycling endosomes and in the trafficking from apical recycling endosomes to the basolateral plasma membrane. RAB17 and RAB25 control trafficking through the apical recycling endosomes to the apical plasma membrane. The late endosome-associated RAB7 mediates maturation of late endosomes and phagosomes, and their fusion with lysosomes. Another late endosomal GTPase, RAB9, mediates trafficking from late endosomes to the TGN.
5.2 Functions of RabGTPases

RabGTPases regulate membrane trafficking, nuclear transport and regulation of the actin cytoskeleton. They are also involved in cell division75, control of cell proliferation and differentiation. The role of RabGTPases in endocytosis and exocytosis is well studied. They ensure proper vesicle formation, vesicle delivery, and vesicle tethering and budding with its final destination. The specificity of targeting/routing of vesicles is achieved thanks to a post-translational addition of two C-20 geranylgeranyl groups, and to the steady state distribution of each RabGTPase within a single type of intracellular membrane76. The specific cellular localization of each RabGTPase ensures the correct routing of the cargo. In addition, the specificity is enhanced by the fact that even the RabGTPases that are sharing the same compartment, do localize at distinct microdomains specific for each RabGTPase called Rab domains77,78.

The interaction between RabGTPases proteins and a set of effectors allows the regulation of a specific pathway. In general, the effectors have a higher affinity with the GTP-binding form of the RabGTPases79. For each step of vesicle formation, movement, tethering and fusion event, there is a different set of effectors involved in this pathway.
III. AIMS OF THE STUDY

1. Novel localization and function of MT1-MMP at podosomes.

On the ventral cell surface of macrophages, degradation of ECM appears primarily underneath podosomes. MT1-MMP, a surface-anchored “master switch” protease, has been previously reported to be associated with podosomes. However, its precise localization at podosomes was never demonstrated. Moreover the link between the degradative structure podosome and the collagenolytic activity of MT1-MMP needed to be clarified.

2. RabGTPases regulating MT1-MMP trafficking

This part of the study aimed to identify specific RabGTPases and their contribution to the regulation of MT1-MMP trafficking, extracellular matrix degradation and 3D invasion of macrophages. So far, Rab8a was reported to induce MT1-MMP exocytic traffic, collagen degradation and invasion in breast cancer cells. However the implication of others RabGTPases remained unclear. Therefore, RabGTPases potentially regulating MT1-MMP cell surface exposure should be screened, and their impact on proteolytic activity and matrix degradation assessed.
IV. PUBLICATIONS

Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence.
El Azzouzi K, Wiesner C, Linder S.

p.21

A specific subset of RabGTPases controls cell surface exposure of MT1-MMP, extracellular matrix degradation and three-dimensional invasion of macrophages.
Wiesner C, El Azzouzi K, Linder S.

p.49

The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes.

p.79
Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence

Karim El Azzouzi, Christiane Wiesner, and Stefan Linder

Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany

Podosomes are dynamic cell adhesions that are also sites of extracellular matrix degradation, through recruitment of matrix-lytic enzymes, particularly of matrix metalloproteinases. Using total internal reflection fluorescence microscopy, we show that the membrane-bound metalloproteinase MT1-MMP is enriched not only at podosomes but also at distinct “islets” embedded in the plasma membrane of primary human macrophages. MT1-MMP islets become apparent upon podosome dissolution and persist beyond podosome lifetime. Importantly, the majority of MT1-MMP islets are reused as sites of podosome reemergence. siRNA-mediated knockdown and recombination analyses show that islet formation is based on the cytoplasmic tail of MT1-MMP and its ability to bind the subcortical actin cytoskeleton. Collectively, our data reveal a previously unrecognized phase in the podosome life cycle and identify a structural function of MT1-MMP that is independent of its proteolytic activity. MT1-MMP islets thus act as cellular memory devices that enable efficient and localized reformation of podosomes, ensuring coordinated matrix degradation and invasion.

Introduction

Podosomes are dynamic, actin-rich adhesion structures in a variety of cell types, including macrophages (Linder et al., 1999), dendritic cells (Burns et al., 2001), osteoclasts (Destaiing et al., 2003), endothelial cells (Osiak et al., 2005; Moreau et al., 2006), smooth muscle cells (Burgstaller and Gimona, 2005), and neural crest cells (Murphy et al., 2011). Together with the related invadopodia, they comprise the invadosome type of cell–matrix contacts (Linder et al., 2011; Murphy and Courtneidge, 2011).

Podosome-enabled cell invasion is thought to be involved in such diverse functions as immune cell surveillance (Wiesner et al., 2014), endothelial tubulogenesis (Obika et al., 2014), angiogenic sprouting (Rottiers et al., 2009; Seano et al., 2014), and cellular patterning during embryogenesis (Murphy et al., 2011). Accordingly, absence or impaired formation of podosomes has been implicated in a variety of diseases based on defects in cell migration and invasion such as Wiskott–Aldrich syndrome (Linder et al., 1999; Thrasher et al., 2000; Buschman et al., 2009), Frank-ter Haar syndrome (Iqbal et al., 2010), and Papa (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome (Cortesio et al., 2010; Starnes et al., 2014).

Podosomes display a bipartite architecture, with a core structure consisting of Arp2/3 complex–nucleated F-actin (Linder et al., 2000a) and actin-associated proteins (Linder and Aeppelbacher, 2003) and a ring structure containing adhesion plaque proteins such as vinculin, talin, and paxillin (Linder and Aeppelbacher, 2003). Podosomes are anchored to the substratum by cell–matrix adhesion proteins such as integrins (Zambonin-Zallone et al., 1989; Chellaia, 2006; Luxenberg et al., 2012) and CD44 (Chabadel et al., 2007). Moreover, individual podosomes are connected by contractile actomyosin cables (Bhawan et al., 2012; van den Dries et al., 2013a), reflecting the fact that podosomes are organized into higher-ordered groups. Podosomes are highly dynamic organelles with a lifetime of 2–12 min (Destaiing et al., 2003). They can be formed de novo, through Arp2/3-dependent actin nucleation (Linder et al., 2000a), or by fission of preexisting podosomes (Evans et al., 2003; Kopp et al., 2006). Moreover, even in steady state, podosomal actin is being turned over approximately three times (Destaiing et al., 2003), and the whole structure undergoes cycles of internal stiffness, based on actin turnover and actomyosin contractility (Labernadie et al., 2010).

Degradation of the ECM is a key function of podosomes. Accordingly, podosomes have been shown to recruit matrix-degrading enzymes such as matrix metalloproteinases and ADAMS (a disintegrin and metalloproteinase; Linder et al., 2011; Murphy and Courtneidge, 2011). In particular, the membrane-bound metalloproteinase MT1-MMP has emerged as a critical regulator of matrix degradation of both podosomes and invadopodia (Poincloux et al., 2009). Transport of MT1-MMP–positive vesicles along microtubules to podosomes has been demonstrated, and regulators of this transport, such as the motor proteins kinesin-1 and -2 (Wiesner et al., 2010) or the Rab5 and Rab14 (Wiesner et al., 2013), have been identified. However, in contrast to invadopodia, actual enrichment of MT1-MMP at bona fide
podosomes, including its exposure on the ventral cell surface, has not been demonstrated yet.

Using total internal reflection fluorescence (TIRF) live-cell imaging of primary human macrophages, we now detect surface-exposed MT1-MMP at podosomes and also at dot-like “islets” that are embedded in the ventral plasma membrane. MT1-MMP islets become apparent upon podosome dissolution and are also preferred sites for podosome reemergence. Islet formation is based on the C-terminal cytoplasmic tail of MT1-MMP and its binding to the subcortical actin cytoskeleton. We propose that MT1-MMP islets constitute cellular memory devices that facilitate formation of new podosomes that are well integrated into the regular pattern of podosome groups, ensuring efficient and localized podosome formation and matrix degradation. These findings constitute a further extension of the functional repertoire of podosomes and their components. At the same time, the demonstration of a nonproteolytic function of MT1-MMP in the turnover of podosomes should also provide a new aspect for the study of other adhesion and invasion structures, most notably invadopodia, and their contribution to cell invasion and cancer progression.

Results

Cell surface-exposed MT1-MMP is present at podosomes and at podosome-free islets

To localize cell surface-exposed MT1-MMP in primary human macrophages, we used a pH-sensitive construct (MT1-MMP-pHluorin; Monteiro et al., 2013), which is fluorescent only at an extracellular pH of 7.4 (Miesenböck, 2012). (pHluorin was inserted N terminally of the transmembrane domain and is thus extracellular on the surface-exposed protease.) For visualization of total cellular MT1-MMP, cells were cotransfected with MT1-MMP-mCherry. Confocal imaging of the ventral cell side showed MT1-MMP-mCherry at a central accumulation, corresponding to the Golgi, and in vesicles (Fig. 1 B), consistent with previous results (Wiesner et al., 2010). MT1-MMP-pHluorin was detected at the ventral plasma membrane and at the cell periphery (Fig. 1 A). However, both proteins showed no localization reminiscent of podosome core or ring structures (Fig. 1, A–C). Strikingly, TIRF analysis of the same cells showed a dot-like localization of MT1-MMP-pHluorin at the substrate-attached cell side, reminiscent of podosome cores (Fig. 1, D–F; compare to Fig. 1, A–C). Indeed, MT1-MMP signals colocalized with F-actin-rich podosome cores (Fig. 1, D–F, insets). Moreover, visualization of endogenous MT1-MMP in TIRF revealed a similar dot-like staining, which mostly colocalized with F-actin–rich podosome cores (Fig. 1, G–I and M). Further analyses showed that surface-associated MT1-MMP-pHluorin is present beneath the podosome core structure and surrounded by podosome ring components such as talin (Fig. 1, J–L and N). A colocalization analysis of MT1-MMP-pHluorin and F-actin–rich podosomes (Fig. S1, A–E; n = 1,100 podosomes) showed a colocalization index of 0.57 (Fig. S1 F), with a negative correlation (r = −0.389) between MT1-MMP-pHluorin enrichment at podosomes and podosome core size (Fig. S1 G). This indicates that larger podosomes, such as the peripherally located subpopulation of precursor podosomes that also shows high turnover.
Metalloproteinase islets as podosome memory sites • El Azzouzi et al.

(Bhuwania et al., 2012), are less likely to accumulate the proteinase than smaller, and generally longer-lived, podosomes.

TIRF live-cell imaging of cells coexpressing MT1-MMP-pHluorin and mCherry-Talin-1C confirmed that podosome-localized MT1-MMP-pHluorin often shows dynamic codistribution with podosomes (Fig. S1, H–J; and Video 1). However, in many cells (∼35%), we also observed MT1-MMP–positive spots at the ventral surface that did not co-localize with podosome core or ring components such as F-actin or talin (Fig. 2, A–C; and Video 2). This second group of structures, termed “MT1-MMP islets,” was especially evident in motile or polarized cells with pronounced trailing edges, with 60–70% of polarized cells showing islets. In these cells, podosomes were recruited to protruding areas of the cell (Burns et al., 2001; Linder et al., 2011), whereas MT1-MMP islets were mostly localized toward the trailing edge (Fig. 2, A–C).

To analyze the dynamics of podosome-associated MT1-MMP and MT1-MMP islets, TIRF live-cell videos of cells coexpressing MT1-MMP-pHluorin and mCherry-Talin-1C were acquired and color-coded using ImageJ. For both channels, each frame was colored progressively along the spectrum, with subsequent merge into a single image (Fig. 2, D and E). Color-coded analysis of cell shown in A–C for visualization of motile versus static structures. For both fluorescence channels (MT1-MMP-pHluorin [D] and mCherry-Talin-1C [E]), each frame was colored along the spectrum, with subsequent merge into a single image. White boxes indicate detail regions also shown enlarged below. mCherry-Talin-1C presents in varying colors, indicating regular podosome ring dynamics (E'), whereas podosome-free areas show only diffuse background [E'']. Podosome-associated MT1-MMP-pHluorin also presents in varying colors, indicative of podosome core dynamics (D'). However, MT1-MMP islets present mostly in white (D''), indicating restricted lateral mobility. Dotted line indicates cell circumference. Bars: 10 µm; (insets) 1 µm.

merge presented in varying colors, indicating regular podosome ring dynamics (Fig. 2 E'), whereas podosome-free areas showed diffuse background (Fig. 2 E''). Podosome-associated MT1-MMP-pHluorin was also depicted in varying colors, indicative of podosome core dynamics (Fig. 2 D'). However, MT1-MMP islets were mostly white (Fig. 2 D''). This indicates that MT1-MMP at podosomes shows a dynamic codistribution with these structures, whereas MT1-MMP at islets displays reduced lateral dynamics.

We next performed a color-coded analysis of TIRF live-cell videos from macrophages coexpressing Lifeact-RFP and MT1-MMP-pHluorin. This analysis showed that podosome cores display variations in length and orientation of respective tracks (Fig. 3, A–A''). In contrast, podosome-associated MT1-MMP-pHluorin showed less variation (Fig. 3, B–B''), with lower lateral mobility (2.9 ± 0.6 µm during 60 min), compared with that of podosomal F-actin (4.2 ± 0.8 µm; Fig. 3 C). Also, duration of continuous tracks of Lifeact-RFP and MT1-MMP-pHluorin from podosome cores was calculated for all podosomes of five cells (n = 1,411; Fig. 4, A and B). Track duration for Lifeact-RFP signals, indicative of podosome core lifetime, was 668.4 ± 25.7 s, in agreement with earlier results (Destain et al., 2003). In contrast, track duration for MT1-MMP-pHluorin was significantly higher at 809.6 ± 39.3 s.
Interestingly, subgroups of both signals persisted throughout the whole recording period (Fig. 4 C), with 18.4 ± 10.5% of podosome cores and 49.9 ± 6.5% of MT1-MMP-pHluorin patches persisting for >50 min (Fig. 4 D).

MT-MMP islets are formed by podosome dissolution

Several lines of evidence indicated that MT1-MMP islets and podosomes could be related: (1) The mean diameter of MT1-MMP-pHluorin islets was determined as 0.83 ± 0.06 µm, and their density as 23.98 ± 1.54/100 µm². These values are similar to size (0.86 ± 0.06 µm) and density (24.52 ± 1.90/100 µm²) of podosome cores (Fig. S1, K and L). (2) MT1-MMP at podosomes persists longer than the podosome structure itself (Fig. 4). (3) MT1-MMP islets are localized toward the trailing edge (Fig. 2, A–C), a preferential site of podosome dissolution (Bhuwania et al., 2012). Therefore, we next explored the potential relationship between podosomes and MT1-MMP islets and, specifically, whether MT1-MMP islets appear as a result of podosome dissolution.

To induce synchronized dissolution of a large number of podosomes, cells coexpressing MT1-MMP-pHluorin and Lifeact-RFP were treated with 100 µM of the Arp2/3 complex inhibitor CK-666 and analyzed by TIRF live-cell imaging. Podosome formation and upkeep is critically based on Arp2/3 complex–dependent actin nucleation (Linder et al., 2000a). Consequently, addition of CK-666 led to disruption of podosomes, indicated by the disappearance of the Lifeact-RFP signal from its podosomal localization. This was sometimes also accompanied by unspecific accumulation of F-actin in the cell center (Fig. 5, A–F; and Video 3). Complete disruption of the podosome structure was confirmed in parallel by dislocalization of other key components of the core, such as Arp2 and α-actinin, or of the ring structure, such as talin, vinculin, or paxillin (Table S1). In contrast, most of the dot-like, previously podosome-associated MT1-MMP-pHluorin signals persisted at their location (Fig. 5, A and D), which was especially visible in kymographs of CK-666–treated cells (Fig. 5, G–I). FRAP analysis of CK-666–induced islets (Fig. 5 J) further showed that MT1-MMP-pHluorin shows only moderate turnover in these structures, with a mobile fraction of 21.8% and a half-time of recovery of 5.2 s (Fig. 5 K).

These data indicated that MT1-MMP islets are derived from podosome-localized MT1-MMP upon podosome disruption, either induced by CK-666 addition to adherent, podosome-containing cells or during regular podosome turnover. To test whether MT1-MMP islets can also develop independently of podosomes, nonadherent macrophages were seeded under conditions that inhibit podosome formation. These included addition of the integrin-binding peptide RGD, inhibiting integrin-based adhesion (Ruoslahti, 1996), or addition of CK-666 inhibiting Arp2/3-dependent actin nucleation (Nolen et al., 2009).

![Figure 3. Podosome-associated MT1-MMP shows reduced lateral mobility compared with podosomal F-actin. (A and B) TIRF micrographs of macrophage expressing Lifeact-RFP to detect F-actin-rich podosome cores (A) and MT1-MMP-pHluorin (B). Images show color-coded merges of time-lapse videos with successive coloration of individual frames along the spectrum, as indicated. White boxes indicate areas of detail images shown below each panel (A' and B'). (A' and B') Shown are tracks of the center of mass in yellow. Note high variability of track orientation and length of podosomes cores, whereas tracks of MT1-MMP-pHluorin are more uniform and short. Dotted line indicates cell circumference. Bar, 10 µm. Drift of the microscope stage was corrected by use of fluorescent beads, indicated by arrows in B. (C) Statistical analysis of lateral displacement of podosomal F-actin and podosomal MT1-MMP-pHluorin. Each dot represents lateral displacement of the respective center of mass of a single podosome-associated signal. Collectively, 1,411 podosomes were evaluated. Red bar indicates mean ± SEM. ****, P < 0.0001.](image-url)
and thus formation of (integrin-based) podosomes, before seeding of cells. Macrophages coexpressing Lifeact-RFP and MT1-MMP-pHluorin seeded in the presence of 10 µM RGD did not attach firmly to the substratum. They also did not develop podosomes, and only a few irregularly sized accumulations of Lifeact-RFP were discernible (Fig. S2, A–C). MT1-MMP-pHluorin was mostly localized to irregularly sized patches (diameter: 2.0–3.5 µm) on the ventral cell side and also to the edges of polarized cells. Colocalization of MT1-MMP-pHluorin with Lifeact-RFP patches was only observed on few occasions. Similar results were obtained using cells treated with CK-666 before seeding (unpublished data). Collectively, these data indicate that podosome formation is a prerequisite for the genesis of MT1-MMP islets and that the appearance of islets is a result of podosome dissolution.

Molecular characterization of MT1-MMP islets

To characterize MT1-MMP islets on the molecular level, a variety of potential components were tested. Macrophages expressing respective overexpression constructs were treated with CK-666 to induce islets, fixed, stained with labeled phalloidin to ensure podosome disruption, and visualized by confocal TIRF microscopy. For detection of endogenous proteins, respective antibodies were used. Tested proteins included components of podosome core or ring structures such as Arp2 (Linder et al., 2000a), α-actinin (Gimona et al., 2003), Tks5 (Burger et al., 2011), or vinculin (Zambonin-Zallone et al., 1989), talin (Zambonin-Zallone et al., 1989), paxillin (Pfaff and Jurdic, 2001), and transmembrane proteins that link podosomes to the underlying matrix, such as β1 (Marchisio et al., 1988), and β3 (Zambonin-Zallone et al., 1989) integrins, CD44 (Chabadel et al., 2007), and integrin-associated proteins such as integrin-linked kinase (ILK; Grier et al., 2014) or kindlin-3 (Ussar et al., 2006; Table S1). All of these components localized to podosomes but were absent from islets. In case of integrins and CD44, unspecific accumulations of irregular size were observed at the ventral plasma membrane, which did not colocalize with islets. We next tested proteins associated with membrane curvature at invadosomes, such as CIP4 (Linder et al., 2000b) and FBP17 (Tsuboi et al., 2009), and vesicle regulatory proteins such as flotillin-1 and 2 that influence podosomal matrix degradation (Cornfine et al., 2011). Interestingly, CIP4 and FBP17 were absent from both podosomes and islets, whereas flotillin-2 was present at podosomes, but not at islets. Moreover, c-Src also showed no distinct localization at podosomes or islets, consistent with previous results (Linder and Aepfelbacher, 2003), and inhibition of Src activity by addition of 10 µM PP2 did not lead to discernible alterations in islet appearance.

As invadosomes are privileged membrane sites (Oikawa et al., 2008; Yu et al., 2013), we next tested a variety of membrane lipids. Indeed, comparable to invadopodia (Caldieri et al., 2009), we could show that cholesterol, stained by filipin (Gimpl and Gehrig-Burger, 2011), is also present at macrophage podosomes (Fig. S2, D–F). However, cholesterol was not detectable at MT1-MMP islets (Fig. S2, G–I). Apolipoprotein E, a regulator of cholesterol transport (Vance et al., 2006), localized to intracellular vesicles (Fig. S2, J–L) but was absent from both podosomes and islets. Interestingly, from all other probes used for the detection of lipids (Table S1), the phosphatidylinositol 4-phosphate (PI(4)P) sensor OSH2-2xPH-GFP (Ball et al., 2008) gave the clearest signal at podosomes that MT-MMP signals at podosomes persist longer than podosomal F-actin. (A and B) TIRF micrographs of macrophage expressing LifeactRFP to detect F-actin-rich podosome cores (A) and MT1-MMP-pHluorin (B). The center of mass of each podosome-associated signal was tracked, and tracks were colored according to their duration, as indicated. (C and D) Statistical analyses of track duration of podosomal F-actin and podosome-associated MT1-MMP. Each dot in C represents track duration of a single podosomal signal. Red bar indicates mean ± SEM. Note higher mean of MT1-MMP-pHluorin signals and also higher amounts of respective signals persisting for >50 min, which is plotted in D as the mean ± SEM percentage of total tracks. **, P < 0.01.
However, we could not detect enrichment of PI(4)P, or of any other tested lipid, at islets (Fig. S2, P–R). Collectively, these experiments pointed to MT1-MMP as the major component of islets.

The presence of MT1-MMP at islets raised the question whether these structures are able to degrade matrix. We thus performed matrix-degradation experiments in the presence of CK-666. MT1-MMP-pHluorin–expressing cells were seeded on rhodamine-labeled gelatin for 4.5 h, to allow adhesion and podosome formation, but before the onset of widespread matrix degradation, as determined by a time-course analysis (for presence of islets in untreated cells on gelatin, see Fig. S2, S–V). CK-666 was added at 4.5 h (Fig. S2 W), and cells remained on the matrix for an additional 2 h before fixation and quantification of matrix degradation (Fig. S2 X), with absence of podosomes in CK-666–treated cells being checked by staining of F-actin (Fig. S2 Y). Importantly, matrix degradation did not increase during the 2-h time period in CK-666–treated cells, when only islets were present, in contrast to control cells that contained podosomes (Fig. S2 X). We conclude from these data that islets are not degradative on gelatin matrix.

MT1-MMP islets are sites of podosome reemergence

Podosomes are often formed at sites of previous podosome localization. We therefore hypothesized that MT1-MMP islets could be sites of renewed podosome emergence. To test this, macrophages expressing MT1-MMP-pHluorin and Lifeact-RFP were imaged using TIRF live-cell microscopy and treated with CK-666 to disrupt podosomes, and thus also induce islets, with subsequent washout to allow podosome reformation. Strikingly, many of the MT1-MMP islets acquired Lifeact-RFP, indicative of podosome reformation (Fig. 6, A–C; and Video 4). Reformation of complete podosomes was confirmed in parallel by staining of markers for podosome ring (vinculin: Fig. S3, A–C; paxillin: Fig. S3, D–F) and core structures (Arp2: Fig. S2, G–I; F-actin: Fig. S2, J–L). To determine the extent of MT1-MMP islet reuse for podosome formation, we also acquired time-lapse videos during CK-666 treatment and washout. Starting with the time point of washout, all frames of the Lifeact-RFP channel were merged into one image, which was submitted to colocalization analysis with the first frame of the MT1-MMP-pHluorin channel, thus reporting renewed podosomal F-actin accumulation at islets. Quantification showed that 67.3 ± 1.1% of MT1-MMP islets were sites of renewed podosome formation within 10 min after CK-666 washout (n = 15 cells, from three donors).

Interestingly, islet formation under inhibition of MT-MMP activity by addition of 100 µM of the inhibitor NSC405020 (Remacle et al., 2012) led to similar values of islet reuse (62.1 ± 3.5%), indicating that the proteolytic activity of the protease is not necessary for podosome reemergence (see also catalytically inactive MT1-MMP-E240A in Fig. 8, D and E).

Treatment of cells with CK-666 was used to generate sufficient numbers of islets for statistical analysis but is an artificial process. We thus asked whether reemergence of podosomes at islets could also be detected during regular podosome turnover. For this, cells expressing Lifeact-RFP and MT1-MMP-pHluorin were analyzed by TIRF live-cell imaging. Indeed, we found that 25–30% of MT1-MMP islets coincide with sites of
renewed podosome reformation. Comparable to podosomes formed upon CK-666 treatment, reformation was based on actin nucleation, as indicated by increasing accumulation of Lifeact-RFP over time. In addition to de novo formation, new podosomes can also be formed by fission from preexisting podosomes and in particular from the subpopulation of precursor podosomes (Evans et al., 2003; Kopp et al., 2006). Strikingly, we observed that ~30% of the podosomes generated by fission are recruited to nearby MT1-MMP islets (Fig. 6, D–I; and Video 5), indicating that islets can also function as anchoring points for preformed podosome cores.

The impact of other cytoskeletal components such as microtubules or dynamin on podosome reformation was determined by use of respective inhibitors, such as nocodazole and dynasore, and analysis by TIRF live imaging (Fig. S3, M–O and V–X). Addition of 1 µM nocodazole led to disruption of podosomes, as reported previously (Linder et al., 2000a), but not of islets (Fig. S3, P–R). Similar observations were made upon addition of dynasore (10 µM; Fig. S3, Y, Z, and A1). Strikingly, upon washout of nocodazole, podosomes reformed mostly between islets (Fig. S3, S–U), in contrast to washout of dynasore, with podosomes reforming mostly at islets (Fig. S3, B1, C1,
and D1), indicating a differential impact of these cytoskeletal elements on the memory effect of islets.

Collectively, these data show that MT1-MMP islets can serve as sites of podosome reformation. This can be achieved by de novo Arp2/3-dependent actin nucleation or by recruiting material generated through podosome fission. This memory effect is preserved upon previous inhibition of dynamin, but not under previous disruption of microtubules.

MT1-MMP facilitates podosome reformation

As MT1-MMP islets form sites for podosome reemergence, we next investigated the consequences of MT1-MMP depletion for podosome formation. Cells treated with MT1-MMP-specific siRNA (Wiesner et al., 2013) or control siRNA were processed in a podosome reformation assay. This assay is based on disruption of podosomes by addition of the Src tyrosine kinase inhibitor PP2, with subsequent reformation of podosomes upon washout of the drug (Linder et al., 2000b), followed by semiautomated software analysis (Cervero et al., 2013). (PP2 was used for podosome dissolution as the semi-automated podosome reformation assay has been established for this inhibitor.) As expected, most (>90%) podosomes were disrupted upon PP2 treatment, in both MT1-MMP knockdown and control cells (Fig. 7, A and B). 90 min after washout of the drug, both cell populations had also recovered regular podosome numbers (Fig. 7, A and B). However, MT1-MMP-depleted cells had formed significantly fewer podosomes at time points 30 and 60 min, corresponding to relative decreases of 24% and 13%. Moreover, in control cells, the area of podosome formation was significantly decreased at these 30- and 60-min time points (Fig. 7, C and D). This probably reflects the fact that MT1-MMP islets, which are preferentially used for podosome reformation, show a restricted localization in cells (see Fig. 2). In contrast, MT1-MMP-depleted cells formed new podosomes over a larger area (Fig. 7, C and D). Podosome density, the ratio of podosome number and podosome-covered area, thus showed highly significant decreases of 34% at 30 min and of 19% at 60 min for MT1-MMP-depleted cells (Fig. 7, E and F). These results indicate that the presence of MT1-MMP is not strictly required for podosome reformation. However, MT1-MMP facilitates the generation of new podosomes, leading to faster recovery of regular podosome numbers and densities.

Figure 7. Podosome reformation proceeds less efficiently in cells depleted for MT1-MMP.

Statistical evaluations of podosome numbers (A and B), area covered by podosome groups ("clusters"; C and D), or podosome density (podosomes/100 µm²; E and F) during a podosome reformation assay. Parameters were evaluated in cells before disruption of podosomes ("PP2") or after treatment with podosome-disrupting PP2 and washout of the drug for the indicated periods, in cells treated with control siRNA (black triangles) or cells treated with MT1-MMP-specific siRNA (open circles). Each dot in A–C represents a single cell, with n = 3 × 30, for cells from three different donors. Diagrams in B, D, and F show data as respective line diagrams. Podosomes are mostly absent at 0 min of the washout (A); podosome-covered area (B) and podosome density (C) were not evaluated for this time point. Note that podosome density of MT1-MMP-depleted cells is significantly different from controls at 30- and 60-min time points (C). Values are given as means ± SD. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. For specific values, see Table S2.
Islet formation depends on the LLY motif within the MT1-MMP cytoplasmic tail

We next asked which features of MT1-MMP might enable its localization to podosomes or islets and generated a series of pHluorin-tagged mutants that are (a) deficient in either proteolytic activity (E240A; Rozanov et al., 2001) or (b) oligomerization (DTY/KAF; D385K, T412A, and Y436F; Tochowicz et al., 2011), (c) lack all extracellular domains and are thus defective in ECM binding (ΔNterm), or (d) lack the cytoplasmic tail (ΔCterm). In all cases, the transmembrane domain was included to ensure membrane embedding. (Fig. 8 A). Constructs were coexpressed with Lifeact-RFP in macrophages to assess their subcellular localization by TIRF. The E240A, DTY/KAF and ΔNterm constructs showed localization to podosomes (Fig. 8, D–I) and islets (see below; Fig. S4), comparable to the wild type (WT; Fig. 8, B and C), whereas the ΔCterm construct mostly did not localize to podosomes or islets but showed a diffuse distribution over the ventral cell surface (Fig. 8, J and K). Importantly, in all cases, the number of podosomes per cell (~350) was not significantly altered (Fig. 8 L). Collectively, these experiments indicated that the C-terminal cytoplasmic tail of MT1-MMP is necessary and sufficient to ensure localization of the protease at podosomes and islets. Indeed, podosome reformation experiments using CK-666 in cells expressing an siRNA-insensitive ΔNterm construct showed podosome reformation at respective islets comparable to WT MT1-MMP (Fig. S3, E1, F1, G1, H1, I1, J1, K1, L1, and M1), whereas an siRNA-insensitive ΔCterm construct failed to form islets (Fig. S3, N1, O1, and P1).

Several scenarios could be envisioned for the mode of action of the C-terminal domain: it could be involved in (a) localizing MT1-MMP to vesicles, (b) regulating the surface exposure of MT1-MMP, or (c) restricting the mobility of the surface-exposed protease. To distinguish between these possibilities, we generated mCherry-fused versions of the ΔCterm construct, and also of the E240A construct, for comparison. (1) Localization at vesicles was tested by coexpression of GFP-fused Rab14 Q70L (Junutula et al., 2004) or Rab22a (Weigert et al., 2004).
Comparable to MT1-MMP WT (Wiesner et al., 2013), both ΔCterm and E240A constructs showed prominent localization to Rab14 vesicles (Fig. S4, A–C) or Rab22a vesicles (Fig. S4, D–F). (2) The amount of surface-exposed material was determined by staining of unpermeabilized macrophages using an anti-mCherry antibody and a secondary, Alexa Fluor 647-labeled antibody. The respective surface-associated fluorescence intensity was measured and analyzed (Fig. S4, G–J). This value was not reduced in case of both the ΔCterm and E240A constructs, compared with WT, and was even slightly elevated in case of ΔCterm (Fig. S4 J). These experiments show that absence of the C-terminal domain of MT1-MMP does not influence the ability of the protease to localize to vesicles or to be exposed at the surface of macrophages.

We therefore reasoned that the localization-relevant function of the MT1-MMP C terminus could be to restrict the lateral mobility of the surface-exposed protease, possibly by anchoring it to the cortical cytoskeleton. Treatment of cells with the Arp2/3 inhibitor CK-666 leads to disruption of branched actin networks, including podosome cores, but leaving unbranched actin filaments of the cortex unaffected. We thus disrupted F-actin globally by treatment with both cytochalasin D, to inhibit actin filament elongation and latrunculin A, to sequester actin monomers. First, islets were induced by addition of CK-666 for 30 min to MT1-MMP-pHluorin–expressing cells. Next, 50 μM cytochalasin D and 10 μm latrunculin A were added, and cells were incubated for another 30 min. Strikingly, this led to complete dissolution of MT1-MMP islets, with MT1-MMP-pHluorin being distributed over the plasma membrane (Fig. 9, A–C), indicating that anchoring to the cortical unbranched actin cytoskeleton is important for MT1-MMP localization in islets.

Indeed, MT1-MMP has been reported to bind to F-actin by its C-terminal region and to thus prevent its diffusion out of invadopodia (Uekita et al., 2001; Yu et al., 2012). To test this, we generated a pHluorin-based, full-length construct of MT1-MMP, in which the three residues critical for F-actin binding were mutated to alanine (LLY/AAA; L571A, L572A, and L573A; Uekita et al., 2001; Yu et al., 2012). MT1-MMP-LLY/AAA-pHluorin was localized to podosomes (Fig. 9, D–F), and its expression did not change the number of podosomes per cell (Fig. 8 L). Subsequent to CK-666 treatment, MT1-MMP-LLY/AAA-pHluorin was also present at islets (Fig. 9, G–I). However, these experiments were performed in cells containing endogenous MT1-MMP, which might provide stabilization through oligomerization. We therefore generated a siRNA-insensitive MT1-MMP-LLY/AAA mutant, expressed it in macrophages depleted for endogenous MT1-MMP, and examined cells by TIRF microscopy. Strikingly, the LLY/AAA mutant construct failed to localize to podosomes in most cells and was diffusely localized over the ventral surface (Fig. 9, M–O), recapitulating the phenotype of the cytochalasin D-latrunculin A treatment.

Next, siRNA-insensitive MT1-MMP-pHluorin mutants were expressed in cells depleted for MT1-MMP and their localization to islets was quantified. This analysis showed that the E240A (Fig. S4, N–P) and DTY/KAF mutants (Fig. S4, Q–S) exhibit a capacity to localize to islets comparable to WT (Fig. 8 M and Fig. S4, K–M), whereas ΔCterm and LLY/AAA mutants showed strongly reduced numbers of cells with islets (Fig. 8 M). The ΔNterm mutant (Fig. S4, T–V) showed intermediate levels of islet formation (Fig. 8 M), indicating a potential influence of the MT1-MMP N terminus.

Finally, we tested the capacity of the MT1-MMP C terminus and its LLY motif to restore regular podosome reformation. For this, cells treated with control siRNA or MT1-MMP-specific siRNA were treated with PP2 to disrupt podosomes. In addition, two subsets of MT1-MMP siRNA-treated cells also expressed a pHluorin-fused construct of the MT1-MMP C terminus, including the transmembrane domain (not targeted by the siRNA; “MT1-MMPΔNterm”; Fig. 8 A), or of full-length MT1-MMP mutated in the LLY motif (“MT1-MMP-LLY/AAA insens”; Fig. 8 A) and rendered siRNA insensitive. Remarkably, expression of MT1-MMPΔNterm was sufficient to restore regular podosome numbers, podosome-covered areas (Fig. S5), and podosome densities (Fig. 10) during reformation. In contrast, full-length MT1-MMP-LLY/AAA insens was not able to
restore these parameters to control values. Instead, the recovery curves closely followed those of cells depleted for MT1-MMP (Figs. 10 and S5). Collectively, these results indicate that the cytoplasmic region of MT1-MMP is crucial for its localization to podosomes. Moreover, the LLY motif within this region is able to stabilize MT1-MMP at podosome-free islets by anchoring the protease to the unbranched cortical actin network. Through this motif, MT1-MMP is able to exert its memory function and to facilitate efficient reformation of podosomes.

Discussion

The matrix metalloproteinase MT1-MMP is crucial for the ability of podosomes and invadopodia to degrade ECM (Steffen et al., 2008; Poincloux et al., 2009; Linder et al., 2011; Wiesner et al., 2014) and enables invadopodia-forming cells to invade into surrounding tissues. In contrast to invadopodia, which are highly enriched in MT1-MMP (Chen and Wang, 1999; Poincloux et al., 2009), detection of MT1-MMP at bona fide podosomes has proven to be challenging. Previous work demonstrated contact of MT1-MMP–positive vesicles with podosomes (Wiesner et al., 2010), whereas siRNA-mediated knockdown of MT1-MMP in human macrophages (Wiesner et al., 2010) and endothelial cells (Varon et al., 2006) inhibited podosomal matrix degradation. However, in contrast to general assumption, detection of MT1-MMP at the ventral surface of podosomes, as well as its exact localization at podosome core or ring structures, has not been shown. Using a pH-sensitive construct of MT1-MMP in combination with TIRF microscopy, we now demonstrate enrichment of MT1-MMP at the ventral surface of primary macrophages, underneath the core structure of podosomes.

Importantly, we also describe a previously unrecognized localization of MT1-MMP at podosome-free islets that are embedded in the ventral plasma membrane of macrophages. These islets become apparent upon podosome dissolution, as shown by live-cell imaging of podosome turnover, and also by drug-induced disruption of podosomes. Podosomes can thus be viewed as organelles that imprint MT1-MMP islets in the plasma membrane, which persist beyond the lifetime of the actual podosome structure. Indeed, several lines of evidence pointed at a potential link between podosomes and islets: (a) both structures show similar sizes and spacing patterns; (b) MT1-MMP islets tend to be localized toward the trailing edge, a preferential site of podosome dissolution; (c) inhibition of podosome formation during adhesion of cells also led to absence of islets; and (d) podosome-associated MT1-MMP-pHluorin has a longer lifetime than the podosome itself.

During the course of regular podosome turnover, 49.98% of podosome-associated MT1-MMP persisted for >50 min, whereas only 18.49% of podosomes showed a comparable lifetime. Similar values were gained by measuring MT1-MMP-pHluorin fluorescence at islets formed by podosome disruption. Here, MT1-MMP islets persisted for at least 60 min. It is also noteworthy that MT1-MMP at invadopodia of breast cancer cells has previously been shown to persist for >40 min (Monteiro et al., 2013). Considering that invadopodia have a lifetime of more than 1 h, whereas podosomes are turned over within minutes (Linder, 2007), these similar values probably reflect the general ability of MT1-MMP to persist for an extended time at the plasma membrane, rather than being podosome or invadopodia specific.

Lateral movement of podosome core structures is highly variable in the micrometer range. In contrast, podosome-localized MT1-MMP-pHluorin patches showed a more restricted mobility, which probably reflects embedding of the protease in the plasma membrane. This restricted lateral mobility of MT1-MMP was even more evident for MT-MMP islets. In this case, only the net movement of the membrane might provide the driving force for MT1-MMP islets. This could be compared with the well-known sliding of focal adhesions (Ballèstrem et al., 2001), the major difference being that focal adhesions are coupled to the ECM via integrins (Wehrle-Haller and Imhof, 2003), whereas this is not a prerequisite for MT1-MMP islets, as discussed below.

An obvious question concerns the molecular composition of MT1-MMP islets. Testing both overexpressed and endogenous proteins, also at high laser power, we could not detect any of the typical podosome core or ring components at MT1-MMP islets, which argues for a complete disruption of the podosome structure. However, recruitment of MT1-MMP to invadosomes has been proposed to involve binding of MT1-MMP to other transmembrane proteins such as integrins and CD44, both of which have been shown to bind MT1-MMP in breast cancer or carcinoma cells (Deryugina et al., 2001; Marrero-Díaz et al., 2009). Therefore, we focused especially on transmembrane cell-matrix adaptors such as CD44, β1, β2, and β3 integrins, as well as integrin interactors such as talin-1 and kindlin-3. Importantly, none of the tested proteins localized to islets. This finding also indicates that the persistence of MT1-MMP at islets after podosome dissolution is not a result of its nature as a transmembrane...
protein, but must be based on another specific property. We also explored the possibility that islets could be sites of altered membrane curvature, as dendritic cell podosomes can act as sensors of membrane topology (van den Dries et al., 2013b), and podosomes have been shown to contain membrane curvature–associated proteins such as CIP4 (Linder et al., 2000b) and FBP17 (Tsuboi et al., 2009). However, neither protein was detectable at islets. In conclusion, MT1-MMP islets present as domains at the ventral plasma membrane that are devoid of typical podosome proteins and contain MT1-MMP as a major proteinaceous component. Their exact composition should be analyzed in future experiments.

We next explored the possibility that MT1-MMP islets could be enriched in specific lipids. Indeed, the podosome-related invadopodia have been identified as specialized membrane domains enriched in cholesterol (Caldieri and Buccione, 2010; Albrechtsen et al., 2011). Moreover, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and PI(3,4,5)P3 (Yu et al., 2013) and PI(3,4)P2 (Oikawa et al., 2008) have been implicated in invadose formation in untransformed (Yu et al., 2013) orSrc-transformed (Oikawa et al., 2008) fibroblasts. Strikingly, of all lipids tested (Table S1), only cholesterol and PI(4)P showed a clear and previously unreported enrichment at podosomes. Still, no respective accumulations were found in MT1-MMP islets, reinforcing the notion that the protease itself constitutes a major component of islets.

Surprisingly, a matrix degradation assay showed that islets are not degradative on gelatin matrix. There are several possible explanations for this: (a) MT1-MMP at islets does not cleave gelatin directly and might serve only as an activator of the gelatinase MMP-2, which needs intact podosomes as docking sites for respective vesicles. However, this is unlikely, as MT1-MMP has been identified as a bona fide gelatinase. In fact, gelatin zymography is routinely used as an assay to determine MT1-MMP activity (Evans and Ilot, 2007). (b) MT1-MMP is not active at islets. This is also unlikely, as degradative podosomes are acutely disrupted by CK-666. Islets should thus contain active MT1-MMP. Also, as shown by FRAP, there is no major exchange of MT1-MMP at islets, so MT1-MMP that is active at the time of islet appearance is expected to reside for a certain time at islets. (c) MT1-MMP at islets is potentially active but does not come into contact with matrix material. Considering that islets do not contain integrins or CD44 that are expected to leave the unbranched actin cytoskeleton intact. Therefore, the MT1-MMP C terminus had no discernible effect on localization of the protease to vesicles and its exposure on the cell surface, whereas the number of podosomes per cell was also unaffected.

Importantly, the MT1-MMP C terminus has been shown to contain F-actin binding ability (Uekita et al., 2001), which also prevents diffusion of MT1-MMP out of invadopodia (Yu et al., 2012). The ability of MT1-MMP and actin to interact directly in biochemical experiments (Yu et al., 2012), however, does not rule out a more indirect mode of interaction in cells. It is also noteworthy that podosome cores contain mostly Arp2/3 complex–generated and thus branched actin networks (Linder et al., 2011), and both podosome dissolution during regular turnover or through CK666-induced inhibition of Arp2/3 complex are expected to leave the unbranched actin cytoskeleton intact. We therefore explored the possibility that the C-terminal region of MT1-MMP could anchor the protease to the unbranched subcortical actin cytoskeleton. This idea was substantiated by global inhibition of branched and unbranched F-actin using both cytochalasin D and latrunculin A, which resulted in dissolution of islets. Moreover, upon depletion of endogenous MT1-MMP, a construct of full-length MT1-MMP deficient in F-actin binding (LLY/AAA) failed to form islets. Collectively, these experiments showed that the F-actin binding ability of MT1-MMP is critical for localization of the protease to both podosomes and islets. Additional interactions with podosome components such as cortactin (Artym et al., 2006) or p130Cas (Pan et al., 2011) may support MT1-MMP localization at podosomes. However, upon podosome dissolution, MT1-MMP islets are strictly dependent for stabilization on binding of the MT1-MMP C terminus to the cortical actin cytoskeleton. In addition, oligomerization of MT1-MMP, both by N- (Tochowicz et al.,
and C-terminal parts (Rozanov et al., 2001) of the molecule may support the coherence of islets.

F-actin binding could also explain the observed role of MT1-MMP islets in recruiting core material generated through podosome fission. F-actin binding of individual MT1-MMP C termini within islets is most likely dynamic, and a subset of binding sites are thus expected to be unoccupied at a given time point. These free binding sites could act as anchoring points for F-actin cores generated by fission. Fission-independent reformation of podosomes may be based on a similar mechanism, as MT1-MMP C termini in islets could bind short cytoplasmic actin filamentis, which could act as local concentration points for Arp2/3 complex and actin-associated adaptor proteins such as Tks5 (Seals et al., 2005; Oikawa et al., 2008) or cortactin (Artyun et al., 2006), thus facilitating local nucleation of branched actin networks and recruitment of further components. In addition, the MT1-MMP C terminus is also a substrate for Src kinase (Nyalendo et al., 2007) and could thus directly concentrate one of the most important upstream regulators of podosomes (Linder and Aepfelbacher, 2003; Oikawa et al., 2008). Ultimately, all of these potential mechanisms could contribute to MT1-MMP–based reformation of podosomes.

Our data thus reveal a novel function for MT1-MMP at podosomes that is independent of its proteolytic activity. MT1-MMP therefore plays crucial roles not only at the endpoint of podosome assembly, by enabling degradation of ECM material, but also by functioning as a subcellular signpost that facilitates formation or anchoring of nascent podosomes at sites of previously disassembled structures.

In conclusion, we report a previously unrecognized localization of MT1-MMP at podosome-free islets at the ventral plasma membrane of primary human macrophages. MT1-MMP islets become apparent upon dissolution of podosomes, and the existence of podosomes is a prerequisite for islet formation. Importantly, MT1-MMP islets serve as sites for podosome re-assembly, either by de novo actin nucleation or by recruiting material generated through podosome fission. MT1-MMP islets facilitate efficient reformation of podosomes as well as upkeep of the typical equidistant pattern within podosome groups. MT1-MMP islets thus function as cellular memory devices that facilitate the continuous and coordinated ability of macrophages to locally degrade and invade the ECM.

Materials and methods

Cell isolation, cell culture, and transfection

Human peripheral blood monocytes were isolated from buffy coats (provided by F. Bentzien, University Medical Center Hamburg-Eppendorf, Hamburg, Germany) and differentiated into macrophages as described previously (Linder et al., 1999). Cells were cultured in RPMI containing 20% autologous serum at 37°C, 5% CO₂, and 90% humidity.

Antibodies, constructs and reagents

Antibodies were purchased from the following companies: mouse monoclonal anti-MT1-MMP and anti-β-actin from EMD Millipore, rabbit polyclonal anti-Tks5, mouse anti-β3 integrin and mouse anti-α-actinin from Santa Cruz Biotechnology, Inc., mouse anti-β1 integrin from Transduction Labs, mouse anti-vinculin from Sigma-Aldrich, mouse anti-CD44 from Cell Signaling Technology, and mouse anti-Arp2 from Abcam. Rabbit polyclonal anti-Src antibody was purchased from Proteintech. Rabbit polyclonal anti-CIP-4 antibody and pEGFP-C14 were gifts from P. Aspenström (Karolinska Institute, Sweden). pLifeact-TagFP2 and pLifeact-TagRFP2 were purchased from Ibidi. mCherry-floptinin-1 and -2 constructs were gifts from C. Gauthier-Rouvière (Centre de Recherche de Biochimie Macromoléculaire, Montpellier, France); Akt-PH-GFP, PLCG1-PH-GFP, and TAPP1-PH-GFP were provided by T. Balla (National Institutes of Health, Bethesda, MD); mCherry-Talin1C was provided by W. Ziegler (Hannover Medical School, hannover, Germany); mTagRFP-T-C-Src-7 was purchased from Addgene (plasmid #58006; deposited by M. Davidson, Florida State University, Tallahassee, FL); Tks5-GFP was a gift from S. Courtine (Oregon Health and Science University, Portland, OR); GFP-Rab22aQ64L was provided by J. Donaldson (National Institutes of Health, Bethesda, MD); ILK-GFP, β3 integrin-RFP, and GFP–kindlin-3 were gifts from R. Fässler (Max Planck Institute Martinsried, Munich, Germany); GFP-Rab14 Q70L was a gift from R.H. Scheller (Genentech, San Francisco, CA); ApoE-GFP was a gift from M. Kockx (University of Sydney, Sydney, Australia); and GFP–α-actinin was a gift from M. Gimona (Paracelsus University, Salzburg, Austria). MT1-MMP-mCherry and MT1-MMP-pHluorin, both based on the human MT1-MMP sequence, were provided by P. Chavrier (Institute Curie, Paris, France). Respective mutants were created by interposing point mutations (QuikChange Site-Directed Mutagenesis kit; Stratagene) with the following primers for MT1-MMP-pHluorin E240A: (forward [F]): 5′-TTGCGTATGCTGCTGCTGGTCCGCTGCTGGCGCAACAGCCAGAGAAAGCAAGGTTTGGTGTGGTA-3′, reverse [R]: 5′-GGCCTGCGTGGTGGTCGCCCGTGGGGTACAGGCTTCGCAAGAGAGA-3′. MT1-MMP-pHluorin DTY/KAF was generated by introducing three successive point mutations using the following primers: F: 5′-ATTCGCTTCTCTTCAAGGAAAAGAGATGGTGTGTTTGGAT-3′, R: 5′-ATCAAAACCACTGATCTTCTCCCTTTGAAAGAGCAAF3′-3′, F: 5′-TGGCCGAGGGCTGTGCGCGACAAAGATTGATGCTGCTTC-3′, R: 5′-AGAGGAGCCATACCTGTTCGCGAGGAGCCCTGGCCCA-3′; and F: 5′-CTTCGCGTGAAACAAATCTTTTTTCAACGAGGGTGCT-3′, R: 5′-GACCTCTCTCTGTGAAAGGAGTCTTACGTTCTGACCCAGAG-3′. MT1-MMP ΔCterm-pHluorin was generated by the addition of a stop codon after the pHluorin tag using F: 5′-CCTTGCGATCTCTTTCTTTGCGGACTGCTGCTGGCCTCCG-3′, R: 5′-CCTGGGAGTCCGAGGCCGACCGCCAGCAGTTCCG-3′, R: 5′-CAGGAAACGCTGACGGGGCGCCGCCTGCGCTAGGCTCCG-3′, and MT1-MMP LYY/AA-pHluorin was generated using F: 5′-TGGAGACCCAGGGCCCGCCGCTGCGAGTTCCGCTTCCG-3′, R: 5′-CAGGAAACGCTGACGGGGCGCCGCCTGCGCTAGGCTCCG-3′, and MT1-MMP ΔNterm-pHluorin was generated by the insertion of a HindIII restriction site before the pHluorin tag using F: 5′-ATATATAAATATAGCTCTTCTCATGAGAAGGAAAAGAGA-3′, R: 5′-TAGATAGGGCCCTCTATGACCCCTTGCCTCC-3′; the amplified fragment was digested with HindIII and XbaI and inserted into pcdNA 3.1. NCS 405020 was purchased from APEXBio, RGD peptide was purchased from Sigma-Aldrich, and cytochalasin D and latrunculin A were purchased from EMD Millipore.

siRNA, siRNA-insensitive constructs, and podosome reformation assay

MT1-MMP-specific siRNA was 5′-AACAGGCAGGCAGGTTGTCAGAGA-3′, with control siRNA 5′-AGGTAGGTGATAACGCCCTTGGT-3′ targeting firefly luciferase (Wiesner et al., 2010, 2013). siRNA-insensitive MT1-MMP ΔCterm-pHluorin and MT1-MMP LYY/AA-pHluorin were generated by introducing two successive mutations, first with F: 5′-CTTGCAAGTAACCGGAAAACTGCT-3′, R: 5′-CAGCTTTTCG...
Podosome reformation assay
Podosome reformation was performed 72 h after siRNA transfection (Cervero et al., 2013). For live-cell imaging, siRNA transfected cells were retransfected after 48 h with both siRNA and Lifeact-GFP and seeded on glass-bottom live-cell dishes for 24 h before imaging. Podosome reformation was analyzed in the live-cell videos. Numbers were processed in Excel 2013 (Microsoft) and GraphPad Prism 6.

Immunostaining
Macrophages were seeded at a density of 10⁵ cells per glass coverslip (12-mm diameter) and fixed for 10 min in 3.7% formaldehyde, washed three times in PBS, and permeabilized for 10 min in 0.5% Triton X-100. After three washes with PBS, the cells were incubated for 30 min in blocking solution (1% NHS and NGS in PBS), washed briefly in PBS, and incubated for 60 min in the primary antibody solution. Cells were washed three times in PBS and then incubated for 30 min in secondary antibody solution, supplemented with fluorescence-labeled phalloidin when indicated. After three washes in PBS, the coverslips were kept in PBS for imaging.

Microscopy
Images of fixed samples were acquired with a confocal laser-scanning microscope (DMI 6000 with a TCS SP5 AOBS confocal point scanner; Leica) equipped with a oil-immersion HCX PL APO 63× NA 1.4–0.6 objective.

Live-cell imaging
Cells were imaged in RPMI 1640 medium at 37°C. Images were acquired with a spinning disk confocal system (spinning disc CSU22) fitted on an eclipse Ti microscope (Nikon) with oil immersion Plan-Apo 63× NA 1.4 objective and a charge coupled device camera (EM-CCD C-9100-2). Acquisition and processing of images was performed with Velocity Software (Improvision). Cells were seeded on glass-bottomed dishes (35 mm; Ibidi) at a density of 2 × 10⁵ and incubated for 20 h before the start of the experiment. TIRF imaging was performed with an iLAS TIRF unit from Visitron Systems fitted on an eclipse Ti microscope (Nikon) with oil immersion Plan-Apo 63× NA 1.45 and Plan-Apo 100× NA 1.49. To correct for drift of the microscope stage, TetraSpec Microspheres (0.1 μm, fluorescent blue/green/orange/dark red; Thermo Fisher Scientific) were used.

FRAP
Cells were transfected with MT1-MMP-pHluorin and Lifeact-RFP to visualize islets, and 20 h after transfection, single images of cells were taken every 1 s. FRAP was preceded by acquisition of 10 prebleach images; 10 circular regions of interest with individual podosomes were bleached using 20% of a 405-nm laser. Recovery images were taken for additional 120 s. FRAP analysis was performed with Velocity Software (Improvision). Data were processed with Excel 2013 and GraphPad Prism 6. Fluorescence recovery was measured for 10 individual podosomes at each time point for three cells from three donors.

Quantification of MT1-MMP surface exposure
Macrophages were seeded on glass coverslips (12-mm diameter) at a density of 10⁵ and fixed with 3.7% formaldehyde solution (10 min), but not permeabilized. Surface MT1-MMP-mCherry was stained with anti-mCherry antibody followed by an Alexa Fluor 647–conjugated secondary antibody (Wiesner et al., 2010). Quantification of Alexa Fluor 647–based fluorescence intensity was performed using ImageJ. Values of control cells were set to 100%. For comparability, laser intensity was not changed between measurements. For each value, 3 × 30 cells were evaluated. Statistical analysis was performed with Microsoft Excel and GraphPad Prism. Differences between mean values were analyzed using the Student’s t test.

Quantification of F-actin/MT1-MMP-pHluorin colocalization
Macrophages overexpressing MT1-MMP-pHluorin were fixed and stained with phallolidin/Alexa Fluor 647. Overlap images (actin/actin or actin/MT1-MMP-pHluorin) were generated using ImageJ (colocalization plugin), with a threshold ratio of 50%. Generated images (colocalized points 8-bit) were quantified by measuring the number of pixels per area of single podosomes with ImageJ. The colocalization index was defined as the ratio of pixels per area (actin/MT1-MMP-pHluorin) and pixels per area (actin/actin) for each podosome. In total, 1,110 podosomes from four independent cells were analyzed. Statistical analysis was performed with Microsoft Excel and GraphPad Prism software. For a correlation analysis, each podosome was measured by size (diameter of core, labeled by phallolidin/Alexa Fluor 647) using ImageJ. For each podosome, correlation between size and the respective colocalization index was calculated as described in the Statistical analysis and podosome and islet tracking section.

Matrix degradation assay
Analysis of gelatin matrix degradation was performed as described previously (Wiesner et al., 2010).

Statistical analysis and podosome and islet tracking
Podosome and islet measurements and tracking were performed using Fiji (Trackmate macro) and ImageJ version 1.49. Student’s t test was performed using Microsoft Excel and GraphPad Prism software. Statistically significant differences are indicated by single/multiple asterisks (****, P < 0.0001; ***, P < 0.001; **, P < 0.01; and *, P < 0.05). Correlation analysis was calculated and plotted using a correlation plot and linear regression line to visualize the degree of correlation. Pearson correlation coefficient (r) and its square (r²), slope, and significance (P) are shown on the plots.

Online supplemental material
Fig. S1 shows that acquisition of MT1-MMP-pHluorin correlates negatively with podosome size, that surface-exposed MT1-MMP codistributes dynamically with podosomes, and that podosomes and MT1-MMP islets show similar sizes and densities. Fig. S2 shows that the membrane lipids cholesterol and P(4)P localize to podosomes, but not to MT1-MMP islets, that ApoE-GFP does not localize to podosomes or islets, and that MT1-MMP islets are not degradative on gelatin matrix. Fig. S3 shows the composition of reformed podosomes, the impact of microtubule disruption or dynamin inhibition on islets, and the localization of MT1-MMP mutants to islets. Fig. S4 shows that absence of the cytoplasmic region or catalytic inactivity does not influence MT1-MMP localization to vesicles or cell-surface exposure, and it shows the ability of MT1-MMP mutants to form islets. Fig. S5 shows that the LLY motif in the MT1-MMP C terminus is crucial for the recovery of regular podosome number, area, and density during podosome reformation. Video 1 shows dynamics of MT1-MMP-pHluorin and mCherry-talin-1C. Video 2 shows that MT1-MMP is present at podosomes and at podosome-free islets. Video 3 shows that podosomal MT1-MMP persists beyond disruption of the podosome structure itself. Video 4 shows that MT1-MMP islets are sites of podosome reemergence. Video 5 shows MT1-MMP islets can recruit material generated by podosome fission. Table S1 lists tested potential components of islets. Table S2 provides values for podosome reformation assays and MT1-MMP constructs.
Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.201510043.DC1. Additional data are available in the JCB DataViewer at http://dx.doi.org/10.1083/jcb.201510043.dv.

Acknowledgments

We thank P. Aspenström for pEGFP-C1-CIP4 and anti-CIP4 antibody; T. Balta for Aks-PhGF, PLCγ1-PhGF, TAPP1-PhGF, and OSH2-2sPhGF; F. Bentzien for buoyant coffs; P. Chavrier for MT1-MMP-phluorin; S. Cejudo-Martin, F. Wen, I. Pass, and S. Linder. 2011. Dynamic interactions of contractin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res. 66:3034–3043. http://dx.doi.org/10.1158/0008-5472.CAN-05-2177

doi.org/10.1016/j.tcb.2007.01.002

tcb.2003.09.002

jcb.201005016

Figure S1. Acquisition of MT1-MMP-pHluorin correlates negatively with podosome size, surface-exposed MT1-MMP codistributes dynamically with podosomes, and podosomes and MT1-MMP islets show similar sizes and densities. (A–G) Correlation of MT1-MMP-pHluorin and F-actin at podosomes. (A–C) TIRF micrographs of macrophage expressing MT1-MMP-pHluorin (A, green) and stained for F-actin using phalloidin/Alexa Fluor 647 (B, blue), with merge (C). Bar, 10 µm. (D and E) Micrographs showing colocalizing pixels between actin/actin and actin/MT1-MMP-pHluorin, used for determination of the colocalization index. Yellow box in A indicates detail region shown in (A′–E′). Bars, 1 µm. (F) Colocalization index (0.57), as determined for 1,100 podosomes from four different cells; (G) correlation between colocalization index and podosome size. Correlation coefficient r: −0.389; r²: 0.152, with a slope of 0.222, and P < 0.0001. (H–J) TIRF micrographs of macrophage expressing MT1-MMP-pHluorin (H, red) and mCherry-Talin-1C (I, white), to visualize podosome rings, with merge in J. Still images taken from Video 1. White boxes indicate detail regions shown in H′–J′. Time since start of the experiment is indicated in minutes and seconds. Bars: (H–J) 10 µm; (H′–J′) 2 µm. (K and L) Statistical evaluation of sizes of single podosomes and MT1-MMP islets (K) and densities (L) of podosomes and islets in macrophages. Each dot represents the respective value from a single cell. For each analysis, 3 × 15 cells from three different donors were evaluated. Red bar indicates mean ± SEM. ns, not significant.
Figure S2. The membrane lipids cholesterol and PI(4)P localize to podosomes, but not to MT1-MMP islets; ApoE-GFP does not localize to podosomes or islets; and MT1-MMP islets are not degradative on gelatin matrix. (A–C) Immunofluorescence micrograph of macrophage expressing MT1-MMP-pHluorin (A, green) and Lifeact-RFP (B, red), seeded in the presence of integrin-binding RGD peptide (10 µM). (D–I) Immunofluorescence micrographs of macrophages expressing Lifeact-RFP (E, red) or MT1-MMP-pHluorin (H), and stained with filipin (405 nm excitation), to detect cholesterol (D and G, green). The macrophage in G–I was treated with CK-666. Note enrichment of cholesterol at F-actin–rich podosomes (F), but no enrichment at MT1-MMP islets (I). (J–L) Immunofluorescence micrographs of macrophages expressing ApoE-GFP (J, green) and Lifeact-RFP (K, red), with merge (L). Note the absence of ApoE-GFP from podosomes. (M–R) Immunofluorescence micrographs of macrophage expressing PI(4)P sensor OSH2-2xPH-GFP (M and P, green) and Lifeact-RFP (N and Q, red). Macrophage in P–R was treated with CK-666 to disrupt podosomes and induce MT1-MMP islet formation. Note enrichment of PI(4)P at podosomes, followed by dispersal after CK-666 treatment. Bars: 10 µm; (insets) 1 µm. (S–V) TIRF micrographs of macrophage expressing MT1-MMP-pHluorin (S, green), seeded on rhodamine-labeled gelatin (U, red) and stained for F-actin with phalloidin/Alexa Fluor 647 (T, blue) with merge (V). (W) Timeline of experiment for analysis of matrix degradation. Time points after seeding of cells on labeled matrix are indicated. Colored bars indicate presence of podosomes and/or islets in cell populations treated with indicated drugs. (X) Statistical evaluation of matrix degradation at 4.5- and 6.5-h time points after seeding of cells on gelatin matrix. Maximum of matrix degradation in control cells at 6.5 h was set to 100%. (Y) Representative images of matrix degradation at time points 4.5 h (left) and 6.5 h in cells treated for 2 h with DMSO as control (middle) or CK-666 (right). Insets show F-actin staining in blue. Bars: 10 µm; (insets) 1 µm.
Figure S3. Composition of reformed podosomes, impact of microtubule disruption or dynamin inhibition on islets, and localization of MT1-MMP mutants to islets. (A–L) Composition of podosomes reformed after CK-666 washout. TIRF micrographs of macrophages expressing MT1-MMP-pHluorin (A, D, G, and J) and stained for vinculin (B), paxillin (E), and Arp2 (H) using respective antibodies or coexpressing Lifeact-RFP (K), with merges. (M–D1) Impact of microtubule disruption by nocodazole (M–U) or dynamin inhibition by dynasore (V–D1) on islet stability and podosome reformation. Stills from TIRF live-cell videos of macrophages expressing MT1-MMP-pHluorin (M, P, S, V, Y, and B1) and Lifeact-RFP (N, Q, T, W, and C1), with merges (O, R, U, X, A1, and D1) and treated with 1 µM nocodazole (P–R) or 10 µM dynasore (Y–A1), with subsequent washout (S–U and B1–D1). Note disruption of podosomes in both cases (Q and Z) but reformation of podosomes mostly between islets in the nocodazole washout (U) and mostly at islets in the dynasore washout (D1). (E1–P1) Localization of MT1-MMPΔNterm and ΔCterm siRNA mutants in cells depleted of endogenous MT1-MMP by siRNA. Note that MT1-MMPΔNterm is naturally resistant to the used MT1-MMP siRNA, whereas the ΔCterm mutant was rendered insensitive by respective point mutations. Stills from TIRF live-cell videos of macrophages depleted for endogenous MT1-MMP and expressing indicated mutants. Note that MT1-MMPΔNterm localizes to islets (E1–G1), also upon disruption of podosomes by CK-666 (H1–J1), with reformation of podosomes at islets upon washout of CK-666 (K1–M1). In contrast, MT1-MMPΔCterm insensitive (insens.) does not localize to podosomes or islets (N1–P1). Bars, 10 µm.
Figure S4. Absence of the cytoplasmic region or catalytic inactivity does not influence MT1-MMP localization to vesicles or cell-surface exposure and ability of MT1-MMP mutants to form islets. (A–F) Confocal micrographs of macrophages expressing mCherry-tagged (red) MT1-MMP WT (A and D), ΔCterm (B and E), or catalytically inactive E240A mutant (C and F), and coexpressing GFP-Rab14 Q70L (A–C) or GFP-Rab22a (D–F) to visualize vesicles. White boxes indicate areas of detail images below, with merge and each channel shown separately. Note pronounced colocalization of all three constructs to GFP-Rab14 and also to Rab22a vesicles. Dashed lines indicate cell circumference. Bars, 10 µm. (G–I). Confocal micrographs of macrophages expressing mCherry-tagged MT1-MMP WT (G), ΔCterm (H), and E240A (I) constructs. Cells were not permeabilized and stained for surface-localized MT1-MMP-mCherry using an anti-mCherry antibody (white). Insets show total cellular MT1-MMP-mCherry signals. Bars: 10 µm; (insets) 1 µm. (J). Statistical evaluation of surface-localized MT1-MMP-mCherry, based on Alexa Fluor 647 fluorescence intensity in cells expressing indicated constructs. Note that values of surface-localized ΔCterm and E240A constructs are at least as high as that of WT MT1-MMP. Bars represent mean ± SEM. *, P < 0.05. For specific values, see Table S2. (K–V) Localization of MT1-MMP-pHluorin constructs that were rendered siRNA insensitive and expressed in macrophages depleted for endogenous MT1-MMP and stained for F-actin. White boxes indicate detail regions shown as insets. Note localization of all constructs to F-actin/podosome-free islets.
Figure S5. **The LLY motif in the MT1-MMP C terminus is crucial for the recovery of regular podosome number, area, and density during podosome reformation.** Statistical evaluations of podosome numbers (A), area covered by podosome groups (*"clusters"; B), or podosome density (podosomes/100 µm²; C) during a podosome reformation assay. Parameters were evaluated in cells before disruption of podosomes (*"PP2"*) or after treatment with podosome-disrupting PP2 and washout of the drug for the indicated periods, in cells treated with control siRNA (black triangles) or with MT1-MMP-specific siRNA (open circles). In addition, subsets of MT1-MMP–depleted cells were also expressing a construct of the MT1-MMP C terminus that is not targeted by the siRNA (ΔNterm; filled circle) or of a full-length MT1-MMP construct mutated in the LLY motif, which was rendered siRNA insensitive (LLY/AAA insens.; line). Each dot in A–C represents a single cell, with \(n = 3 \times 30 \), for cells from three different donors. Note that podosomes are mostly absent at 0 min of the washout (A); podosome-covered area (B) and podosome density (C) were thus not evaluated for this time point. Values are given as means ± SD. *, \(P < 0.05 \); **, \(P < 0.01 \); ****, \(P < 0.0001 \). For specific values, see Table S2.
Video 1. **Dynamics of MT1-MMP-pHluorin and mCherry-talin-1C (from Fig. S1).** TIRF time-lapse video of a primary human macrophage expressing MT1-MMP-pHluorin (red; exposure time at 488 nm, 10 ms) and mCherry-Talin-1C (gray; exposure time at 568 nm, 50 ms). Acquisition rate: 20 time points/min; frame rate: 10 fps; sequence: 5 min and 21 s. Bars, 10 µm. Note that MT1-MMP-pHluorin signals are mostly surrounded by mCherry-Talin-1C, indicative of their podosomal localization.

Video 2. **MT1-MMP is present at podosomes and at podosome-free islets (from Fig. 2, A–C).** TIRF time-lapse video of a primary human macrophage expressing MT1-MMP-pHluorin (red; exposure time at 488 nm, 200 ms) and mCherry-Talin-1C (gray; exposure time at 568 nm, 200 ms). Acquisition rate: 2 time points/min; frame rate: 30 fps; sequence: 2 h. Bar, 10 µm. Note the presence of MT1-MMP at podosomes and at podosome-free regions termed “islets.”

Video 3. **Podosomal MT1-MMP persists beyond disruption of the podosome structure itself (from Fig. 5, A–F).** TIRF time-lapse video of a primary human macrophage expressing MT1-MMP-pHluorin (green; exposure time at 488 nm, 600 ms) and Lifeact-RFP (red; exposure time at 568 nm, 50 ms). Acquisition rate: two time points/min; frame rate: 10 fps; sequence: 25 min and 6 s. Bar, 10 µm. Note the persistence of MT1-MMP signals even after CK-666–induced disruption of podosomes, indicated by absence of the F-actin reporter Lifeact-RFP.

Video 4. **MT1-MMP islets are sites of podosome reemergence (from Fig. 6, A’–C’).** TIRF time-lapse video of a primary human macrophage expressing MT1-MMP-pHluorin (green; exposure time at 488 nm, 300 ms) and Lifeact-RFP (red; exposure time at 568 nm, 300 ms). Acquisition rate: six time points/min; frame rate: 10 fps; sequence: 46 min and 40 s. Bar, 10 µm. Note the successive appearance of new podosomes, indicated by Lifeact-RFP, at MT1-MMP islets.

Video 5. **MT1-MMP islets can recruit material generated by podosome fission (from Fig. S4, A’–C’).** TIRF time-lapse video of a primary human macrophage expressing MT1-MMP-pHluorin (green; exposure time at 488 nm, 300 ms) and Lifeact-RFP (red; exposure time at 568 nm, 300 ms). Acquisition rate: six time points/min; frame rate: 10 fps; sequence: 1 h. Bar, 10 µm. Note fission of podosome, resulting in the generation of a new podosome core, which is subsequently recruited to a MT1-MMP islet.
Table S1. Tested potential islet components

<table>
<thead>
<tr>
<th>Component</th>
<th>Characteristic</th>
<th>Antibody, probe, or construct</th>
<th>Podosomes</th>
<th>Islets</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-actina</td>
<td>Podosome core component</td>
<td>Phalloidin +</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Arp2a</td>
<td>Arp2/3 complex subunit</td>
<td>Antibody +</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>α-Actinina</td>
<td>Actin-binding protein</td>
<td>Antibody +</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Tks5a</td>
<td>Adaptor protein</td>
<td>Antibody +/−</td>
<td>+/−</td>
<td>−</td>
</tr>
<tr>
<td>Vinculin</td>
<td>Adhesion plaque protein</td>
<td>Antibody +</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Talina</td>
<td>Adhesion plaque protein</td>
<td>Antibody +</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Paxillin</td>
<td>Adhesion plaque protein</td>
<td>Antibody +</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>kindlin-3a</td>
<td>Integrin-interacting protein</td>
<td>Antibody +</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>c-Src</td>
<td>Tyrosine kinase</td>
<td>Antibody (−)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>ILKb</td>
<td>Cell-matrix contact protein</td>
<td>ILK-GFP +</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>β1 integrin</td>
<td>Integrin-interacting protein</td>
<td>Antibody +</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>β2 integrin</td>
<td>Cell-matrix contact protein</td>
<td>Antibody +</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>β3 integrin</td>
<td>Cell-matrix contact protein</td>
<td>Antibody +</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>CD44c</td>
<td>Cell-matrix contact protein</td>
<td>Antibody +/−</td>
<td>+/−</td>
<td>−</td>
</tr>
<tr>
<td>MT1-MMPb</td>
<td>Metalloproteinase</td>
<td>Antibody +</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Flotillin-1c</td>
<td>Vesicle regulatory proteins</td>
<td>mCherry-flotillin1 (−)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Flotillin-2c</td>
<td></td>
<td>mCherry-flotillin2 (−)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>CIP4b</td>
<td>Membrane curvature protein</td>
<td>EGFP-CIP4 (−)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>FBP17b</td>
<td>Membrane curvature protein</td>
<td>Antibody (−)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Apolipoprotein E</td>
<td>Cholesterin vesicle protein</td>
<td>ApoE-GFP (−)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>cholesterolb</td>
<td>Membrane lipid</td>
<td>Filipin (−)</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>PtdIns[3,4,5]P3b and PtdIns[3,4]P2b</td>
<td>Membrane lipid</td>
<td>Akt-PH (−)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PtdIns[4,5]P2b</td>
<td>Membrane lipid</td>
<td>PLCγ1-PH (−)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PtdIns[4]P2b</td>
<td>Membrane lipid</td>
<td>TAPP1-PH (−)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PtdIns[4]P2c</td>
<td>Membrane lipid</td>
<td>OSH2-2xPH-GFP (−)</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>

Shown are tested proteins or lipid components, their characteristic function, the use of antibodies or probes to detect the endogenous form, or the use of overexpression constructs. + and − indicate respective presence at or absence from podosomes or MT1-MMP islets in primary human macrophages.

*aTested component was previously localized to macrophage podosomes.

*bTested component was previously localized to invadosomes of other cells.

*cTested component was not known to localize to invadosomes.
Table S2. Values for podosome reformation assay and MT1-MMP constructs

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of values</th>
<th>Podosome number</th>
<th>(Mean ± SD)</th>
<th>Non-specific siRNA</th>
<th>MT1-MMP Kd</th>
</tr>
</thead>
<tbody>
<tr>
<td>-PP2</td>
<td>90</td>
<td></td>
<td></td>
<td>323.3 ± 108.6</td>
<td>340.5 ± 113.9</td>
</tr>
<tr>
<td>0 min</td>
<td>90</td>
<td></td>
<td></td>
<td>35.57 ± 11.73</td>
<td>35.25 ± 9.33</td>
</tr>
<tr>
<td>30 min</td>
<td>90</td>
<td></td>
<td></td>
<td>180.2 ± 66.04</td>
<td>136.1 ± 79.04</td>
</tr>
<tr>
<td>60 min</td>
<td>90</td>
<td></td>
<td></td>
<td>243.3 ± 118.1</td>
<td>212.8 ± 80.86</td>
</tr>
<tr>
<td>90 min</td>
<td>90</td>
<td></td>
<td></td>
<td>281.0 ± 87.22</td>
<td>287.9 ± 78.62</td>
</tr>
<tr>
<td>120 min</td>
<td>90</td>
<td></td>
<td></td>
<td>314.1 ± 95.48</td>
<td>307.8 ± 76.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of values</th>
<th>Podosome area (µm²)</th>
<th>(Mean ± SD)</th>
<th>Non-specific siRNA</th>
<th>MT1-MMP Kd</th>
</tr>
</thead>
<tbody>
<tr>
<td>-PP2</td>
<td>90</td>
<td>1054.23 ± 462.3</td>
<td>1101.54 ± 324.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 min</td>
<td>90</td>
<td>835.12 ± 381.1</td>
<td>1029.35 ± 280.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 min</td>
<td>90</td>
<td>922.14 ± 349.2</td>
<td>1100.94 ± 442.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 min</td>
<td>90</td>
<td>1010.64 ± 356.4</td>
<td>1073.82 ± 295.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 min</td>
<td>90</td>
<td>1051.78 ± 381.2</td>
<td>1107.36 ± 298.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of values</th>
<th>Density (podosome/100 µm²)</th>
<th>(Mean ± SD)</th>
<th>Non-specific siRNA</th>
<th>MT1-MMP Kd</th>
</tr>
</thead>
<tbody>
<tr>
<td>-PP2</td>
<td>90</td>
<td>30.84 ± 5.76</td>
<td>31.87 ± 5.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 min</td>
<td>90</td>
<td>20.15 ± 3.13</td>
<td>13.24 ± 4.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 min</td>
<td>90</td>
<td>27.16 ± 5.02</td>
<td>22.12 ± 4.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 min</td>
<td>90</td>
<td>28.26 ± 4.74</td>
<td>28.58 ± 4.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 min</td>
<td>90</td>
<td>30.16 ± 4.74</td>
<td>28.58 ± 4.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Number of values</th>
<th>Podosomes per cell</th>
<th>Podosome number (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHluorin</td>
<td>15</td>
<td></td>
<td>296.80 ± 79.64</td>
</tr>
<tr>
<td>MT1-MMP</td>
<td>15</td>
<td></td>
<td>327.7 ± 146.1</td>
</tr>
<tr>
<td>E240A</td>
<td>15</td>
<td></td>
<td>334.9 ± 126.0</td>
</tr>
<tr>
<td>DTY/KAF</td>
<td>15</td>
<td></td>
<td>291.5 ± 118.6</td>
</tr>
<tr>
<td>ΔN-term</td>
<td>15</td>
<td></td>
<td>372.6 ± 161.1</td>
</tr>
<tr>
<td>ΔC-term</td>
<td>15</td>
<td></td>
<td>301.5 ± 111.8</td>
</tr>
<tr>
<td>LLY/AAA</td>
<td>15</td>
<td></td>
<td>331.6 ± 56.54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MT1-MMP surface exposure (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
</tr>
<tr>
<td>Construct</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>MT1-MMP</td>
</tr>
<tr>
<td>ΔC-term</td>
</tr>
<tr>
<td>E240A</td>
</tr>
</tbody>
</table>

Podosome number

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of values</th>
<th>Non-specific siRNA</th>
<th>MT1-MMP Kd</th>
<th>MT1-MMP Kd + ΔN-term</th>
<th>MT1-MMP LLY/AAA insens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-PP2</td>
<td>90</td>
<td>312.5 ± 91.62</td>
<td>305.1 ± 82.31</td>
<td>325.7 ± 125.5</td>
<td>330.4 ± 91.49</td>
</tr>
<tr>
<td>0 min</td>
<td>90</td>
<td>312.3 ± 106.5</td>
<td>338.3 ± 111.7</td>
<td>338.6 ± 100.4</td>
<td>328.2 ± 94.65</td>
</tr>
<tr>
<td>30 min</td>
<td>90</td>
<td>35.22 ± 10.12</td>
<td>34.15 ± 9.88</td>
<td>20.4 ± 8.51</td>
<td>22.21 ± 10.43</td>
</tr>
<tr>
<td>60 min</td>
<td>90</td>
<td>178.5 ± 64.76</td>
<td>131.5 ± 79.54</td>
<td>166.2 ± 71.6</td>
<td>134.4 ± 41.45</td>
</tr>
<tr>
<td>90 min</td>
<td>90</td>
<td>242.7 ± 121.9</td>
<td>211.6 ± 83.77</td>
<td>262.9 ± 64.64</td>
<td>219.9 ± 88.25</td>
</tr>
<tr>
<td>120 min</td>
<td>90</td>
<td>282 ± 84.84</td>
<td>288.4 ± 80.21</td>
<td>283.6 ± 108.2</td>
<td>273.6 ± 62.22</td>
</tr>
</tbody>
</table>

Podosome area (µm²)

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of values</th>
<th>Non-specific siRNA</th>
<th>MT1-MMP Kd</th>
<th>MT1-MMP Kd + ΔN-term</th>
<th>MT1-MMP LLY/AAA insens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-PP2</td>
<td>90</td>
<td>1055 ± 384.6</td>
<td>1110 ± 312.1</td>
<td>1043 ± 294.2</td>
<td>1106 ± 293.8</td>
</tr>
<tr>
<td>0 min</td>
<td>90</td>
<td>836.4 ± 387.6</td>
<td>1028 ± 284.8</td>
<td>854.6 ± 331.1</td>
<td>1093 ± 230.8</td>
</tr>
<tr>
<td>30 min</td>
<td>90</td>
<td>927.5 ± 344.2</td>
<td>1096 ± 440.7</td>
<td>897.5 ± 268.8</td>
<td>1098 ± 166.9</td>
</tr>
<tr>
<td>60 min</td>
<td>90</td>
<td>1011 ± 354.6</td>
<td>1065 ± 290.9</td>
<td>1027 ± 262.4</td>
<td>1033 ± 354.3</td>
</tr>
<tr>
<td>90 min</td>
<td>90</td>
<td>1053 ± 384.6</td>
<td>1110 ± 312.1</td>
<td>1043 ± 294.2</td>
<td>1106 ± 293.8</td>
</tr>
<tr>
<td>120 min</td>
<td>90</td>
<td>129.6 ± 4.73</td>
<td>28.18 ± 5.29</td>
<td>27.53 ± 10.31</td>
<td>28.13 ± 8.55</td>
</tr>
</tbody>
</table>

Density (podosome/100 µm²)

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of values</th>
<th>Non-specific siRNA</th>
<th>MT1-MMP Kd</th>
<th>MT1-MMP Kd + ΔN-term</th>
<th>MT1-MMP LLY/AAA insens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-PP2</td>
<td>90</td>
<td>30.74 ± 5.66</td>
<td>30.61 ± 5.49</td>
<td>28.95 ± 8.91</td>
<td>28.62 ± 9.32</td>
</tr>
<tr>
<td>0 min</td>
<td>90</td>
<td>19.24 ± 3.24</td>
<td>12.55 ± 4.35</td>
<td>18.21 ± 9.61</td>
<td>12.9 ± 5.29</td>
</tr>
<tr>
<td>30 min</td>
<td>90</td>
<td>26.89 ± 5.07</td>
<td>21.97 ± 4.25</td>
<td>25.58 ± 7.71</td>
<td>20.61 ± 8.96</td>
</tr>
<tr>
<td>60 min</td>
<td>90</td>
<td>27.89 ± 4.66</td>
<td>27.07 ± 4.54</td>
<td>25.61 ± 9.12</td>
<td>25.45 ± 7.95</td>
</tr>
<tr>
<td>90 min</td>
<td>90</td>
<td>29.63 ± 4.78</td>
<td>28.18 ± 5.29</td>
<td>27.53 ± 10.31</td>
<td>28.13 ± 8.55</td>
</tr>
<tr>
<td>120 min</td>
<td>90</td>
<td>30.74 ± 5.66</td>
<td>30.61 ± 5.49</td>
<td>28.95 ± 8.91</td>
<td>28.62 ± 9.32</td>
</tr>
</tbody>
</table>
Rhodamine-gelatin degradation

<table>
<thead>
<tr>
<th>Time point</th>
<th>Number of values</th>
<th>(Mean ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Before drug addition</td>
</tr>
<tr>
<td>4.5 h</td>
<td>3 × 30</td>
<td>40.71% ± 15.48%</td>
</tr>
<tr>
<td>6.5h</td>
<td>3 × 30</td>
<td>/</td>
</tr>
</tbody>
</table>

Percentage of cells with islets

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Number of values</th>
<th>Podosome number (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHluorin</td>
<td>90</td>
<td>2.22 ± 1.92</td>
</tr>
<tr>
<td>MT1-MMP</td>
<td>90</td>
<td>54.44 ± 6.94</td>
</tr>
<tr>
<td>E240A</td>
<td>90</td>
<td>50.00 ± 8.82</td>
</tr>
<tr>
<td>DTY/KAF</td>
<td>90</td>
<td>47.78 ± 13.88</td>
</tr>
<tr>
<td>ΔN-term</td>
<td>90</td>
<td>35.56 ± 6.94</td>
</tr>
<tr>
<td>ΔC-term</td>
<td>90</td>
<td>16.67 ± 6.67</td>
</tr>
<tr>
<td>LLY/AAA</td>
<td>90</td>
<td>23.33 ± 3.33</td>
</tr>
</tbody>
</table>
Declaration:

Karim El azzouzi contributed to the publication:

Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence.

El Azzouzi K, Wiesner C, Linder S.

by:

- Performing and analysing all experiments mentioned in the publication, which
 are not listed in the “contributed by coauthors” section below.
- Preparing figures and movies for the publication.

Published material contributed by coauthors:

- Experiment demonstrated in Figure S1 A-G
- Experiment demonstrated in Figure S2 W-X
- Experiment demonstrated in Figure S4 G-J

The experiments were designed by Karim El azzouzi and Stefan Linder.
The manuscript was written by Stefan Linder.

Hamburg, 03.11.2016

Stefan Linder
A specific subset of RabGTPases controls cell surface exposure of MT1-MMP, extracellular matrix degradation and three-dimensional invasion of macrophages

Christiane Wiesner, Karim El Azzouzi and Stefan Linder*

Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätssklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany

*Author for correspondence (s.linder@uke.de)

Accepted 4 April 2013

Summary

The matrix metalloproteinase MT1-MMP has a major impact on invasive cell migration in both physiological and pathological settings such as immune cell extravasation or metastasis of cancer cells. Surface-associated MT1-MMP is able to cleave components of the extracellular matrix, which is a prerequisite for proteolytic invasive migration. However, current knowledge on the molecular mechanisms that regulate MT1-MMP trafficking to and from the cell surface is limited. We have identified three members of the RabGTPase family, Rab5a, Rab8a and Rab14, as crucial regulators of MT1-MMP trafficking and function in primary human macrophages. Both overexpressed and endogenous forms show prominent colocalisation with MT1-MMP-positive vesicles, whereas expression of mutant constructs, as well as siRNA-induced knockdown, reveal that these RabGTPases are crucial in the regulation of MT1-MMP surface exposure, contact of MT1-MMP-positive vesicles with podosomes, extracellular matrix degradation in two and three dimensions, as well as three-dimensional proteolytic invasion of macrophages. Collectively, our results identify Rab5a, Rab8a and Rab14 as major regulators of MT1-MMP trafficking and invasive migration of primary human macrophages, which could be promising potential targets for manipulation of immune cell invasion.

Key words: Cell invasion, Extracellular matrix, MT1-MMP, Podosomes, RabGTPases

Introduction

Invasive migration is a key ability of cells in both physiological and pathological scenarios, including migration of immune cells to sites of infection (Ley et al., 2007) and dissemination of cancer cells during metastasis (Friedl and Wolf, 2003; Bravo-Cordero et al., 2012). To invade, cells employ two different strategies, depending on the density of the extracellular matrix (ECM): (1) amoeboid migration, a non-proteolytic form of locomotion, with cells squeezing through the gaps between matrix fibres, and (2) mesenchymal migration, which includes degradation of matrix material (Wolf and Friedl, 2011). Both forms are not mutually exclusive, and cells can switch their behaviour according to the local ECM meshwork density (Lämmermann and Sixt, 2009; Guiet et al., 2011). The fact that in vivo, multiple crosslinks exist between ECM fibres, however, seems to favour the mesenchymal mode of invasion (Sabeh et al., 2009).

Particularly the matrix metalloproteinase MT1-MMP has emerged as a central regulator of proteolytic cell invasion in a variety of settings, including monocyte diapedesis (Matías-Román et al., 2005; Sithu et al., 2007), T-cell homing (Itoh and Seiki, 2004) and cancer cell metastasis (Wolf et al., 2007; Friedl and Wolf, 2008). MT1-MMP cleaves multiple matrix components, including collagen (I–III), fibronectin and fibrin (Itoh and Seiki, 2004), and also matrix receptors such as CD44, osteopontin and syndecan-1 (Kajita et al., 2001; Endo et al., 2003). Moreover, it also proteolytically activates other MMPs such as MMP-2, MMP-8 and MMP-13 (Barbolina and Stack, 2008).

Considering the plethora of MT1-MMP functions, both the surface-associated pool of this protease and also its localised activity have to be exquisitely fine tuned. Regulatory mechanisms include: (1) adjustment of surface-associated activity by activation of pro-MT1-MMP through the convertase furin prior to its insertion into the plasma membrane (Sato et al., 1996) or inhibition by tissue inhibitors of metalloproteinases (TIMPs) or testican (Nakada et al., 2003); (2) degradation of MT1-MMP, which can be induced by autolysis (Lehti et al., 1998) or MMP-2 (Stanton et al., 1998); and (3) vesicle-mediated regulation of the surface-associated MT1-MMP pool, which is influenced by furin-induced uptake (Remacle et al., 2006), by PKC-dependent phosphorylation of Thr567, leading to enhanced internalisation (Williams and Coppolino, 2011), or by active Rab8, which leads to enhanced exocytosis (Bravo-Cordero et al., 2007).

In consequence, vesicle-mediated transport of MT1-MMP plays a key role in the regulation of surface-localised MT1-MMP activity, both through exocytic delivery of the proteinase and also by endocytic internalisation (Frittioli et al., 2011). Regulators of vesicle formation, transport and fusion are thus expected to have a major impact on MT1-MMP trafficking and, ultimately, on
protein invasion. Several components of the respective molecular machineries have already been described: in primary macrophages, MT1-MMP-positive vesicles travel bidirectionally along microtubules, in a process driven by kinesin-1 and -2 motors, as well as by cytoplasmic dynein, which regulates cell surface exposure of MT1-MMP (Wiesner et al., 2010). In MDA-MB-231 breast cancer cells, trafficking of MT1-MMP to matrix-degrading invadopodia is regulated by the SNARE protein VAMP-7. Consequently, siRNA-mediated knockdown of VAMP-7 resulted in decreased invasive capacity of these cells (Steffen et al., 2008; Poincloux et al., 2009), a phenomenon that has also been observed in HeLa cells (Williams and Coppolino, 2011).

RabGTPases are central regulators of both endocytosis and exocytosis of vesicles (Schwartz et al., 2007; Stenmark, 2009; Hutagalung and Novick, 2011). Depending on their nucleotide-bound state, RabGTPases act as molecular switches (Stenmark et al., 1994) that mediate specific tethering of vesicles to target organelles, thus ensuring correct compartmentalisation of cargo proteins (Zerial and McBride, 2001). Currently, more than 70 mammalian Rab proteins are known (Hutagalung and Novick, 2011). However, despite their pivotal importance for multiple aspects of intracellular transport (Stenmark, 2009; Hutagalung and Novick, 2011), knowledge of the impact of RabGTPases on the trafficking of MT1-MMP is limited. The only well-documented cases concern, (1) MDA-MB-231 breast carcinoma cells, where MT1-MMP localised to Rab8-positive vesicles, and siRNA-mediated knockdown of Rab8 inhibited collagen degradation and invasion (Bravo-Cordero et al., 2007), and (2) HT1080 fibrosarcoma cells, where MT1-MMP localised to Rab5- and Rab7-positive compartments, and overexpression of dominant negative Rab7 led to a reduction of surface-associated MT1-MMP and also of cell invasion (Williams and Coppolino, 2011).

Here, we present novel data on the impact of several specific RabGTPases on MT1-MMP trafficking and function in primary human macrophages. We show that overexpression of mutants as well as siRNA-induced knockdown of Rab5a, Rab8a and Rab14 critically regulates cell surface exposure of MT1-MMP, contact of MT1-MMP-positive vesicles with podosomes, as well as podosome-localised ECM degradation in two and three dimensions, and also three-dimensional (3D) proteolytic invasion. Our results thus identify three RabGTPases with a major impact on MT1-MMP trafficking and proteolytic invasion of macrophages, which could be promising targets for therapeutic modulation of macrophage invasion.

Results
MT1-MMP vesicles are positive for Rab5a, Rab8a, Rab14, Rab21 and Rab22a

To identify RabGTPases involved in MT1-MMP trafficking in primary human macrophages, we first performed co-expression experiments with a variety of GFP-fused Rab constructs together with MT1-MMP-mCherry. In fixed cells, pronounced localisation at MT1-MMP-mCherry-positive vesicles was found for GFP–Rab5a, GFP–Rab8a, GFP–Rab14, GFP–Rab21 and GFP–Rab22a (Fig. 1). In case of GFP–Rab5a, GFP–Rab14, GFP–Rab21 and GFP–Rab22a overexpression, we also observed the formation of giant vesicles (Fig. 1A–C,G–O), as previously reported for a variety of cell types (Stenmark et al., 1994; Olkkonen et al., 1993; Junutula et al., 2004; Pellinen et al., 2006). This phenomenon also revealed that MT1-MMP and RabGTPases show distinct, although partially overlapping, localisations at these vesicles (Fig. 1A–C,G–O). (Note that localisation of RabGTPases and MT1-MMP at the same vesicles does not necessarily imply colocalisation of the respective signals, as they mostly segregate to different domains on these vesicles.)

Live cell imaging experiments in cells transfected with respective constructs confirmed that the identified RabGTPases localise to dynamic vesicles that are also positive for MT1-MMP-mCherry (supplementary material Fig. S1; Movies 1, 2). Moreover, colocalisation studies of endogenous proteins in cells stained with specific primary antibodies against MT1-MMP and RabGTPase isoforms (supplementary material Fig. S2) confirmed the results of the overexpression screen and demonstrated that Rab5, Rab8a, Rab14, Rab21 and Rab22a show substantial colocalisation with MT1-MMP vesicles. The identified RabGTPases are thus potential candidates for the regulation of MT1-MMP trafficking in primary human macrophages.

![Fig. 1. MT1-MMP–mCherry vesicles partially colocalise with Rab5a, Rab8a, Rab14, Rab21 and Rab22a wild-type constructs.](image-url)
several other tested RabGTPases, including Rab4, Rab6a, Rab9 and Rab11, showed no colocalisation at MT1-MMP vesicles (see supplementary material Fig. S3) and were thus mostly not investigated further. (See supplementary material Fig. S9 for proof-of-principle experiments showing that the non-colocalising isoform Rab6a does not influence surface exposure of endogenous MT1-MMP, 3D collagen degradation or 3D matrix invasion.)

Cell surface exposure of MT1-MMP is regulated by Rab5a, Rab8a, Rab14 and Rab22a

In a next step, we overexpressed dominant active (DA) and negative (DN) mutants of the identified RabGTPases and analysed their potential effects on the cell surface exposure of MT1-MMP-mCherry. Non-permeabilised cells overexpressing the respective constructs were labelled with an anti-mCherry antibody, detecting the intramolecular mCherry tag of MT1-MMP-mCherry, which had been subcloned N-terminally of the MT1-MMP transmembrane domain, and is thus extracellularly accessible on the surface-exposed protein (Wiesner et al., 2010; Sakurai-Yageta et al., 2008). Fluorescence intensities were measured and the ratio of cell surface associated versus total cellular MT1-MMP–mCherry was used as a parameter for the cell surface exposure of MT1-MMP. Cells expressing respective GFP-fused wild-type constructs were used as controls. In all cases, RabGTPase expression levels, as judged by GFP-based fluorescence levels (supplementary material Fig. S4), were found to be comparable.

 Pronounced deviations of the surface/total MT1-MMP–mCherry ratio were found upon expression of DN mutants of Rab5a, Rab8a, Rab14 and Rab22a. Dominant negative Rab21 and all respective DA mutants showed no or only minor effects (for specific values, see supplementary material Table S1). Interestingly, expression of GFP–Rab5aDN led to an increase of surface-associated MT1-MMP–mCherry (199.9±83.2%; Fig. 2D), whereas a decrease was measured for GFP–Rab8aDN (40.7±18.6%; Fig. 2H), GFP–Rab14DN (53.4±16.8%; Fig. 2L) and GFP–Rab22aDN (27.5±12.0%; Fig. 2T).

We next measured the impact of these RabGTPase mutants on the cell surface exposure of endogenous MT1-MMP. Cells expressing respective RabGTPase constructs were fixed, but not permeabilised, and stained for surface-associated MT1-MMP using a specific primary antibody (note that this antibody is directed against an epitope in the catalytic domain and thus recognises only unshed, but not cleaved, MT1-MMP on the cell surface). Comparable to the results gained for MT1-MMP–mCherry, we found a pronounced increase of surface-associated endogenous MT1-MMP upon expression of GFP–Rab5aDN (173.5±80.3%; supplementary material Fig. S5D), and pronounced decreases upon expression of GFP–Rab8aDN (76.8±25.0%; supplementary material Fig. S5H), GFP–Rab14DN (68.2±22.7%; supplementary material Fig. S5L) and GFP–Rab22aDN (43.9±24.9%; supplementary material Fig. S5T). Expression levels of the respective RabGTPase constructs were comparable (supplementary material Fig. S5U–Y).

To address the role of the identified Rab proteins in MT1-MMP surface exposure directly, we established respective siRNA-mediated knockdowns. For each identified RabGTPase,
two independent siRNAs were generated (three in case of Rab5a), and the respective decrease in protein levels was shown on Western blots of macrophage lysates. Knockdown efficiencies ranged from 42% to 96%, with at least one of the two independent siRNAs leading to a knockdown of ca. 80% (supplementary material Fig. S6). Importantly, knockdown of these RabGTPase isoforms did not change the overall levels of cellular MT1-MMP (supplementary material Fig. S6). Cells treated with the respective siRNAs were fixed, but not permeabilised, and stained for surface-exposed endogenous MT1-MMP, with cells treated with luciferase- or MT1-MMP-specific siRNA (Wiesner et al., 2010) used as negative or positive controls (Fig. 3; for specific values, see supplementary material Table S1), respectively. Comparable to the expression of DN mutants, knockdown of Rab5a led to a significant increase of cell surface-exposed MT1-MMP (163.1±70.1% and 212.7±127.2%), whereas pronounced decreases were observed upon knockdown of Rab8a (35.3±24.3% and 41.3±29.5%), Rab14 (33.9±17.0% and 34.1±13.3%) and Rab22a (34.6±20.3% and 42.7±19.4%; Fig. 3M). A less pronounced but still significant effect was observed upon knockdown of Rab21 (78.6±31.0% and 72.1±22.8%). We conclude from these experiments that especially Rab5a, Rab8a, Rab14 and Rab22a are important regulators of cell surface exposure for both endogenous and overexpressed MT1-MMP in primary macrophages.

Podosome contact of MT1-MMP vesicles and podosomal matrix degradation are regulated by Rab5a, Rab8a, Rab14 and Rab22a

A major surface-associated function of MT1-MMP is degradation of the extracellular matrix (van Hinsbergh et al., 2006; Wolf and Friedl, 2009). In monocytes, this is achieved by MT1-MMP-dependent, localised proteolysis of ECM material at podosomes, the major degradative organelles of macrophages and other invasive cell types (Linder et al., 2011; Murphy and Courtenedge, 2011). Delivery of MT1-MMP to podosomes is mediated by trafficking of MT1-MMP-positive vesicles along microtubules (Wiesner et al., 2010). To test the potential influence of the identified RabGTPases on this process, we evaluated contact events of MT1-MMP-positive vesicles with podosomes upon knockdown of Rab5a, Rab8a, Rab14, Rab21 and Rab22a. Three days after transfection with respective siRNAs, cells were transfected with MT1-MMP-mCherry, cultured for an additional day, fixed and stained with Alexa-Fluor-488–phalloidin to detect F-actin-rich podosome cores. The number of podosomes that were in direct contact with MT1-MMP–mCherry-positive vesicles (Fig. 4A) was counted, and set in relation to the total number of podosomes within a cell (usually >100; ratio of contacted podosomes: 25.3±8.1%). Strikingly, knockdown of Rab5a led to a higher ratio of podosomes contacted by MT1-MMP-mCherry vesicles (39.1±13.0% and 46.4±20.0%), whereas the ratios of contacted podosomes were significantly decreased upon knockdown of Rab8a (15.2±11.0% and 12.3±7.6%), Rab14 (9.1±4.4% and 11.1±7.3%) and Rab22a (11.1±5.3% and 10.4±4.1%), but not of Rab21 (21.8±7.8% and 23.6±7.3%; Fig. 4B). Importantly, overall cellular expression of MT1-MMP–mCherry as well as overall podosome number in cells were unchanged upon knockdown of the mentioned RabGTPases (supplementary material Fig. S7 and not shown).

To explore potential functional consequences, we next assessed podosome-associated matrix degradation under knockdown of specific RabGTPases. Cells were treated with respective siRNAs for 3 days re-seeded on Rhodamine-labelled gelatine matrix for 6 h, fixed and stained for F-actin to label podosome cores, and podosome-dependent ECM degradation was assessed by associated loss of the Rhodamine matrix label (Fig. 4C). Cells treated with luciferase- or MT1-MMP specific siRNAs were used as negative or positive controls, respectively, with values for luciferase-treated cells set to 100%. Knockdown of endogenous MT1-MMP led to significantly decreased levels of gelatine matrix degradation (67.9±35.5%), comparable to earlier results in macrophages (Wiesner et al., 2010). Consistent with the results gained for podosome contact of MT1-MMP vesicles, knockdown of Rab5a led to significantly enhanced levels of matrix degradation (111.9±18.7% and 125.6±59.5%), whereas pronounced decreases in matrix degradation were measured upon knockdown of Rab8a (82.9±30.6% and 86.4±38.0%), Rab14 (77.7±28.2% and 71.8±31.8%) and Rab22a (83.1±37.2% and 72.8±37.5%), but not of Rab21 (108.3±37.4% and 100.0±36.5%; Fig. 4D). Collectively, these results indicate that Rab5a acts as negative regulator of MT1-MMP vesicle contact.
with podosomes, and also of podosomal matrix degradation, while Rab8a, Rab14 and Rab22a are positive regulators of these processes.

Matrix degradation in 3D is localised at podosome equivalents and is regulated by Rab5a, Rab8a, Rab14 and Rab22a

Within tissues, cells are surrounded by a 3D environment. This most likely affects both regulatory pathways involved in matrix degradation as well as the matrix-degrading organelles themselves, compared to 2D situations. To date, the formation of matrix-degrading podosome equivalents in 3D is very likely (Linder et al., 2011; Van Goethem et al., 2010), although unproven. To explore the possible formation of podosome-like structures in macrophages also in a 3D context, we embedded cells expressing MT1-MMP-mCherry and LifeAct-GFP (for visualisation of F-actin) in 3D collagen I and assessed the localisation of these constructs (Fig. 5A). Consistent with previous reports (Van Goethem et al., 2010; Vérollet et al., 2011), we found formation of elongated protrusions, which showed F-actin enrichment at their tips. Strikingly, the tips were also enriched in MT1-MMP–mCherry, pointing to a potential degradative capacity of these structures (Fig. 5A). We assessed the possibility by co-staining of endogenous, surface-exposed MT1-MMP and of cleaved collagen I, using an antibody that detects a neoepitope in degraded collagen I (Wolf and Friedl, 2005). These stainings demonstrated that many of the MT1-MMP enriched protrusions are also sites of cleavage of the extracellular matrix (Fig. 5B).

We proceeded to quantify matrix degradation by macrophages in a 3D context, using a collagen dequenching assay, to evaluate the potential influence of the identified RabGTPases on this process. Macrophages were treated with RabGTPase isofrom-specific siRNAs, luciferase as negative control, or MT1-MMP as positive control, and seeded on Rhodamine-labelled gelatine matrix. Matrix degradation is visible as dark areas by concomitant loss of the fluorescent label. Insets show respective F-actin staining by Alexa-Fluor-647-labelled phalloidin. Scale bar: 10 μm. (D) Statistical evaluation of matrix degradation in cells treated with various siRNAs. The degree of matrix degradation was analysed by fluorescence measurements of 30 cells from three different donors each for each value. Red bars indicate mean values, black dots show single values; Mean value of matrix degradation in control was set as 100%. Asterisks indicate values significantly different from control value: **P<0.003, ***P<0.0009, ****P<0.0001. For specific values, see supplementary material Table S1.
CB5a, and positively regulated by Rab8a, Rab14 and Rab22a.

In contrast, knockdown of Rab5a resulted in an increase of matrix degradation (879.3 ± 66.5 a.u. and 762.7 ± 78.5 a.u. at 36 h). We conclude that macrophages form F-actin rich podosome equivalents in 3D, which are enriched in MT1-MMP and are able to locally degrade ECM material. Comparable to the situation in 2D, matrix degradation in 3D is negatively regulated by Rab5a, and positively regulated by Rab8a, Rab14 and Rab22a.

3D invasion of macrophages is regulated by Rab5a, Rab8a and Rab14

Proteolytic matrix degradation is a prerequisite, but not the only determinant, for successful mesenchymal invasion (Wolf and Friedl, 2011; Petrie et al., 2012). We thus assessed the potential influence of the identified RabGTPases on this complex cellular behaviour in 3D. For this, we established a 3D invasion assay, in which cells are embedded in a plug of dense collagen I, which is surrounded by a shell of less dense collagen I. M-CSF in the outer shell acts as a chemoattractant, promoting invasion (Fig. 6A; supplementary material Fig. S10). Time lapse videomicroscopy showed that primary macrophages successfully invade the outer shell along the whole length of the plug, leading to invasive migration in several optical planes (Fig. 6B; supplementary material Movie 3). Moreover, invading macrophages developed a mesenchymal morphology, with numerous protrusions formed at the cell front and an elongated trailing edge (Fig. 6B), comparable to our earlier observations with fixed cells (Fig. 5A).

To assess the influence of RabGTPases in this assay, cells were treated with RabGTPase isoform-specific siRNAs or with luciferase- or MT1-MMP-specific siRNA as controls, cultured for 3 days, and embedded in the collagen plug. After 4 additional days, invading cells were detected by light microscopy (Fig. 6C). Invasive cells present in the outer shell were counted, with control values for luciferase siRNA-treated cells set to 100% (Fig. 6D). Cells treated with MT1-MMP-specific siRNA showed a pronounced reduction in their invasive capacity (20.4 ± 9.4%), consistent with the importance of this protease for mesenchymal invasion (Poincloux et al., 2009). Pronounced reductions of ca. 50% in the number of invasive cells were observed upon knockdown of Rab8a (55.5 ± 19.0% and 51.6 ± 25.3%) and Rab14.
(45.7±13.3% and 46.4±10.1%). By contrast, the levels of invasive cells were unchanged upon knockdown of Rab21 (94.4±20.4% and 99.2±31.1%) and Rab22a (97.1±50.1% and 96.8±26.0%). Strikingly, knockdown of Rab5a resulted in an increased number of invaded cells (144.6±49.7% and 154.7±49.7%), and this effect could not be rescued by knockdown of Rab5a (29.4±25.5% and 24.7±12.9%; Fig. 6C,D), showing that Rab5a exerts its function in invasion mainly through regulation of MT1-MMP.

To further exclude MT1-MMP-independent effects of RabGTPase knockdown, we tested the viability and ECM binding by performing survival and adhesion assays of cells treated with siRNAs specific for Rab5a, Rab8a and Rab14 (supplementary material Table S8). However, considering that all alterations in cell invasion upon knockdown of these Rab proteins are pronounced (≥50%; Fig. 6D), the minor, and sometimes even opposing, effects on cell viability or cell adhesion can not explain these effects. The increased invasion in case of Rab5a knockdown and the decreased invasion for Rab8a or Rab14 knockdown cells are thus most likely due to MT1-MMP-associated matrix degradation, and not, or only to a lesser degree, to changes in cell viability or matrix adhesion. We conclude from these results that Rab5a, Rab8a and Rab14 are important regulators of protease-driven mesenchymal invasion in a three-dimensional setting.

Finally, to test how the three identified RabGTPases might work together in MT1-MMP regulation, we measured surface exposure of endogenous MT1-MMP, collagen dequenching in 3D, and invasion into collagen gels, each time under double knockdown of Rab5a and Rab14 or Rab8a and Rab14. Apart from a ca. 10% increase in matrix adhesion for Rab5a/Rab14 double knockdown cells (supplementary material Fig. S2, with values given in supplementary material Table S1), no major alterations were apparent in cells depleted for the specific RabGTPases, ensuring that cell viability and matrix adhesion upon (combined) knockdown of Rab proteins were unchanged. Combined knockdown of Rab5a and Rab14 led to intermediate values in surface exposure of MT1-MMP (57.7±35.3%; Fig. 7A), in 3D collagen dequenching (1213.1±102.6 a.u. at
36 h; Fig. 7B) and collagen gel invasion (60.3±41.9%; Fig. 7C). Double knockdown of Rab8a and Rab14 led to values similar to those observed for single knockdown of Rab8a in MT1-MMP surface exposure (36.3±26.9%; Fig. 7A) and in 3D collagen dequenching (635.0±91.0 a.u. at 36 h; Fig. 7B), and to even lower values, compared to single knockdowns of either Rab8a or Rab14, in 3D invasion of macrophages (26.7±20.9%; Fig. 7C).

We conclude that Rab5a, as a negative regulator of MT1-MMP trafficking, counteracts the effects of Rab14. In contrast, Rab8a and Rab14 are both positive regulators of MT1-MMP trafficking. Moreover, based on their non-additive effects on MT1-MMP cell surface exposure and collagen degradation, Rab8 and Rab14 are likely to regulate common aspects of MT1-MMP trafficking. This is in contrast to their additive effects in the plug invasion assay, suggesting that both Rab proteins regulate separate aspects of cell invasion.

Discussion

A key feature of mesenchymal cell invasion is the ability to proteolytically process extracellular matrix material, which allows cells to transmigrate through a variety of barriers including the endothelial basement membrane (Nourshargh et al., 2010) or interstitial collagen networks (Poincloux et al., 2009). The membrane-bound matrix metalloproteinase MT1-MMP plays a central role in these processes (Poincloux et al., 2009; Wolf and Friedl, 2009; Hotary et al., 2003). Consequently, therapeutic intervention on the level of MT1-MMP activity presents as an attractive option for the potential treatment of invasion-based dysfunctions such as chronic inflammation or metastasis. In order to manipulate MT1-MMP activity in a targeted manner, however, it is vital to understand the molecular mechanisms regulating MT1-MMP activity at the cell surface, which includes trafficking of MT1-MMP vesicles.

RabGTPases are major regulators of intracellular trafficking that act as molecular switches (Stenmark, 2009; Hutagalung and Novick, 2011), with their on/off regulatory function considered to be restricted to the membrane compartments where they are located (Zerial and McBride, 2001). This formed the rationale of our colocalisation screen to identify Rab proteins relevant for MT1-MMP trafficking in macrophages. We found prominent colocalisation of both GFP-fused constructs and endogenous forms of Rab5a, Rab8a, Rab14, Rab21 and Rab22a with
MT1-MMP-positive vesicles. No substantial colocalisation was found for Rab4, Rab6a, Rab9 and Rab11. Our results are consistent with a previous report showing localisation of Rab8, but not Rab11, on MT1-MMP vesicles in MDA-MB-231 adenocarcinoma cells (Bravo-Cordero et al., 2007). At the same time, these data do not exclude the possibility that other members of the extensive Rab family might also colocalise with MT1-MMP and regulate MT1-MMP functions in macrophages. Still, control experiments using dominant active/negative constructs and siRNA-mediated knockdown (supplementary material Fig. S6D) for Rab6a show that, at least for this isoform, absence of localisation to MT1-MMP vesicles is coupled to absence of a regulatory influence on MT1-MMP-dependent parameters such as surface exposure, 3D matrix degradation and 3D invasion (supplementary material Fig. S9).

Besides colocalisation with MT1-MMP vesicles, we also observed the formation of enlarged vesicles or tubules upon overexpression of Rab5a, Rab14, Rab21 and Rab22a wt constructs. Similar observations of ‘giant vesicles’ have been reported upon overexpression of DA Rab5 in BHK and HeLa cells (Stenmark et al., 1994), for both wt and DA Rab14 in NRK rat kidney cells (Junutula et al., 2004), of wt Rab21 in MDA-MB-231 breast cancer cells (Pellinen et al., 2006) and of wt Rab22 in BHK cells (Olkkonen et al., 1993). While this phenomenon represents an artefact of enhanced RabGTPase activity, the enlarged surface of these structures revealed that RabGTPases and MT1-MMP-mCherry often localised to distinct domains at the membrane. The common localisation to a vesicle subpopulation does, therefore, not imply colocalisation or even interaction of these proteins. These findings are also consistent with reports that RabGTPases are not randomly distributed on organelles, but are clustered in functional domains (Zerial and McBride, 2001; Sönntighsen et al., 2000).

In order to assess the relevance of the identified RabGTPases for MT1-MMP trafficking, we next determined their impact on their regulation of MT1-MMP pools at the cell surface. Out of five RabGTPases (Rab5a, Rab8a, Rab14, Rab21, Rab22a) showing prominent colocalisation with MT1-MMP-positive vesicles, four isoforms (Rab5a, Rab8a, Rab14, Rab22a) had a significant impact on the cell surface exposure of MT1-MMP, with Rab5a emerging as a negative regulator, and Rab8a, Rab14 and Rab22a as positive regulators of MT1-MMP cell surface exposure. This is in line with the key role of Rab5 during membrane fusion in endocytosis (Stenmark, 2009; Stenmark et al., 1994), and also of the Rab5 effector EEA-1 in the early endosome tethering and docking (Christoforidis et al., 1999). Rab8a has already been identified as a regulator of MT1-MMP exocytosis in MDA-MB-231 cells (Bravo-Cordero et al., 2007), and our results confirm this role for primary human macrophages, pointing to a probably general role of Rab8 in MT1-MMP exocytosis. The detected role for Rab14 in MT1-MMP surface exposure appears to consistent with the localisation of Rab14 on early endosomes and the observed defects in transferrin recycling upon depletion of Rab14 (Yamamoto et al., 2010). Rab21 activity is clearly not required for MT1-MMP trafficking in macrophages. However, localisation of Rab21 at early endosomes, which are also positive for Rab5a (Simpson et al., 2004) may explain its localisation at MT1-MMP vesicles in this study. Rab22 also shows localisation at early endosomes (Kauppi et al., 2002) and has been implicated in the recycling of membrane proteins that are internalised independently of clathrin (Chen et al., 1994). This seems to be consistent with the finding that surface-localised MT1-MMP can be internalised by both clathrin-dependent and -independent pathways (Remacle et al., 2003). Moreover, Rab4 and Rab11, which both regulate recycling of clathrin-dependent cargo (Schlief et al., 2000; van der Sluijs et al., 2001), did not colocalise with MT1-MMP in the screen. This suggests that uptake of MT1-MMP from the cell surface proceeds mostly via clathrin-independent pathways in primary macrophages.

Collectively, these data point to the following possible scenario of Rab-dependent trafficking of MT1-MMP in macrophages (Fig. 8): surface-associated MT1-MMP is taken up by endocytosis, which is controlled by Rab5a. Substantial parts of this pool are recycled back to the cell surface, through processes controlled by Rab14 and Rab22a, which probably reflects their respective roles in the slow and fast recycling routes for re-internalised surface proteins (Sönntighsen et al., 2000; Yudowski et al., 2009). Rab8a impacts on MT1-MMP trafficking by regulating the biosynthetic pathway from the Golgi, which can proceed via exocytic vesicles or recycling endosomes (Henry and Sheff, 2008; Grant and Donaldson, 2009). In addition, eventual degradation by lysosomes is expected to occur, to balance synthesis of new material. This model is further substantiated by our experiments using double knockdown cells. Combined knockdown of Rab5a and Rab14 led to intermediate values in surface exposure of MT1-MMP, in 3D collagen dequenching and collagen gel invasion, arguing for opposing roles of these RabGTPases in MT1-MMP trafficking, which would be

Fig. 8. Model of MT1-MMP trafficking in macrophages. Surface-associated MT1-MMP is taken up by endocytosis, which is controlled by Rab5a. Parts of this pool are recycled back to the cell surface, either by fast recycling controlled by Rab14 or by slow recycling through recycling endosomes controlled by Rab22a. Trafficking of newly synthesized MT1-MMP to the cell surface is controlled by Rab8a and may occur by exocytic vesicles or recycling endosomes. RabGTPase isoforms colocalising with MT1-MMP in macrophages are indicated at their respective compartments. RabGTPases that are major regulators of MT1-MMP-dependent cell invasion in 3D are highlighted in deep red (Rab21, colocalising with MT1-MMP vesicles, but without major impact on MT1-MMP trafficking, in light red; other major RabGTPases, including tested isoforms without impact on recycling or biosynthetic trafficking of MT1-MMP in grey). EE, early endosomes; LE, late endosomes; RE, recycling; PRE, perinuclear recycling endosomes; TGN, trans-Golgi network. The plasma membrane is indicated as a double line.
consistent with roles for Rab5a in endocytosis and for Rab14 in exocytosis of MT1-MMP. Moreover, combined knockdown of Rab8a and Rab14 led to values similar to those observed for single knockdown of Rab14 in MT1-MMP surface exposure and in 3D collagen dequenching. This non-additive effect suggests that both Rab proteins address aspects of the same pathway that regulates MT1-MMP trafficking and proteolytic activity. The additive effect of their combined knockdown in 3D collagen invasion further suggests that Rab8 and Rab14 have only partially overlapping functions in cell invasion. This might reflect regulation not only of MT1-MMP trafficking during proteolytic invasion, but also of other aspects such as adhesion or de-adhesion.

To test the significance of the identified Rab proteins for MT1-MMP-dependent functions, we also analysed their impact on matrix degradation by primary macrophages in both 2D and 3D settings. Podosomes are actin-rich cell-matrix contacts, that have emerged as central structures mediating matrix degradation and cell invasion (Murphy and Courtneidge, 2011; Linder, 2007), especially by monocytic cells including macrophages (Linder et al., 1999), dendritic cells (Burns et al., 2001) and osteoclasts (Destain et al., 2003). Podosomes are able to degrade matrix material by localised release of ECM-lytic factors, including proteinases of the matrix metalloproteinase family (Wiesner et al., 2010; Delaisé et al., 2003; Tatin et al., 2006), and especially MT1-MMP has been shown to be crucial for podosome-localised ECM degradation (Linder, 2007). Indeed, microtubule plus ends have been shown to contact podosomes (Kopp et al., 2006), which is consistent with microtubule-dependent trafficking of MT1-MMP to these structures (Wiesner et al., 2010).

We now find that knockdown of Rab5a leads to enhanced contact events of MT1-MMP–mCherry vesicles with podosomes, while knockdown of Rab8a, Rab14 and Rab22a results in a reduction of contact events. These results correlate well with respective changes upon RabGTPase knockdown in the matrix degradation assay and point to Rab5a, Rab8a, Rab14 and Rab22a as important regulators of matrix degradation in macrophages, most probably by mediating the vesicular delivery of the key proteinase MT1-MMP to the main degradative structures of these cells. Direct involvement of RabGTPases in MT1-MMP-mediated ECM degrading processes has so far only been reported for Rab8, which has been shown to regulate collagen degradation by MDA-MB-231 cells (Bravo-Cordero et al., 2007). Our results confirm this role now also for gelatin degradation by primary macrophages. The only other Rab isoforms implicated in matrix degradation is Rab4a, which is involved in procathepsin L secretion in human melanoma cells (Barbarin and Frade, 2011). However, MT1-MMP does not localise to Rab4-positive vesicles in human macrophages.

It is important to consider that cell culture on 2D matrices creates a polarisation of the cell, resulting in basal and apical surfaces. This is useful for the experimental study of different outputs such as apical surface exposure of MT1-MMP or matrix degradation at the basal cell side. Moreover, it is most probably also a relevant process in vivo, as invasive cells do encounter two-dimensional barriers, including contact of monocytic cells with the endothelium or attachment of osteoclasts to bone surfaces (Linder et al., 2011). Within tissues, however, cells are surrounded by a three-dimensional environment, which is expected to influence both regulatory pathways involved in matrix degradation as well as the matrix-degrading organelles themselves. Indeed, primary human macrophages in gelled collagen I matrix have been shown to form long, dynamic protrusions that enriched are at their tips in podosome components such as F-actin, cortactin, talin, vinculin and CD44 (Van Goethem et al., 2010; Vérollet et al., 2011). Colocalisation of these structures with matrix defects and also with fluorescence signals in the collagen dequenching assay support the idea that these structures exhibit degradative capacity (Van Goethem et al., 2010). This is further underlined by our finding that these tip structures are also enriched in MT1-MMP. Collectively, these structures, (1) possess the typical composition of podosomes, if arranged in a different architecture, (2) recruit the major matrix-degrading protease MT1-MMP, and (3) colocalise with sites of matrix degradation, which qualifies them as bone fide 3D equivalents of 2D podosomes.

Of note, 3D invasion is a complex multi-step process involving adhesion to matrix, proteolytic cleavage of matrix components, as well as de-adhesion and pulling of the cell body (Friedl and Wolf, 2009). The impact of the identified Rab proteins on this process may thus not only reflect MT1-MMP dependent matrix degradation, but may also involve other MT1-MMP functions such as integrin processing at the cell surface (Barbolina and Stack, 2008) or cleavage of matrix receptors such as syndecan-1.

Table 1. Overview for MT1-MMP distribution after various treatments

<table>
<thead>
<tr>
<th>Assay</th>
<th>Alteration of MT1-MMP distribution*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rab4</td>
</tr>
<tr>
<td>Colocalisation with MT-MMP</td>
<td>–</td>
</tr>
<tr>
<td>Surface exposure</td>
<td>n.a.</td>
</tr>
<tr>
<td>Recruitment to podosomes</td>
<td>n.a.</td>
</tr>
<tr>
<td>Matrix degradation on 2D gelatin</td>
<td>n.a.</td>
</tr>
<tr>
<td>Matrix degradation on 3D collagen</td>
<td>n.a.</td>
</tr>
<tr>
<td>Invasion into 3D collagen I</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

*Compared with adequate control cells.
–, negative.
+, positive.
(↑), (pronounced) increase.
(↓), (pronounced) decrease.
⇔, no significant change.
n.a., not analysed.
different functions of surface-associated MT1-MMP may be differentially influenced by the recycling route the protease takes within cells, which could offer an explanation why Rab22a, which is involved in regulating the surface pool of MT1-MMP, has no apparent impact on 3D invasion of macrophages, in contrast to Rab8a and Rab14. Indeed, the potential association of different pools of MT1-MMP with distinct intracellular trafficking routes has been speculated upon earlier (Schlierf et al., 2000). Of course, this does not exclude that Rab-dependent trafficking of other cargo molecules, for example integrins or other metalloproteinases such as ADAMs, impact on 3D invasion of macrophages. However, we consistently found, (1) strong functional correlation between inhibition of specific Rab isoforms and knockdown of MT1-MMP, (2) Rab14, which regulates ADAM10 trafficking in epithelial cells (Linford et al., 2012), does not colocalise with MT1-MMP vesicles in macrophages, and (3) Rab4, Rab11 and Rab21, major regulatory Rabs for integrin trafficking (Pellinen et al., 2006; Caswell et al., 2009), showed no pronounced influence on MT1-MMP trafficking or function in this study.

Collectively, our data identify three specific RabGTPases, Rab5a, Rab8a and Rab14, as major regulators of MT1-MMP trafficking and function in primary human macrophages. We show that these RabGTPases control the pericellular activity of MT1-MMP by regulating the cell surface exposure of MT1-MMP, modulating contact of MT1-MMP-positive vesicles with podosomes and thus impact on extracellular matrix degradation and ultimately on proteolytic invasion of macrophages. At the same time, our results show that the relevance of potential MT1-MMP regulators should be tested in a variety of experimental set-ups, and that neither colocalisation nor influence on matrix degradation in 2D alone is sufficient to correctly predict an influence on proteolytic cell invasion in 3D. This appears to be consistent with recent findings in breast cancer cells that many parameters of 2D migration have only limited prognostic value on MT1-MMP invasion-promoting effect of Rab5a knockdown and decreased it to control levels (Fig. 6D), demonstrating that Rab5a exerts its function in macrophage invasion mainly through MT1-MMP.

Different functions of surface-associated MT1-MMP may be differentially influenced by the recycling route the protease takes within cells, which could offer an explanation why Rab22a, which is involved in regulating the surface pool of MT1-MMP, has no apparent impact on 3D invasion of macrophages, in contrast to Rab8a and Rab14. Indeed, the potential association of different pools of MT1-MMP with distinct intracellular trafficking routes has been speculated upon earlier (Schlierf et al., 2000). Of course, this does not exclude that Rab-dependent trafficking of other cargo molecules, for example integrins or other metalloproteinases such as ADAMs, impact on 3D invasion of macrophages. However, we consistently found, (1) strong functional correlation between inhibition of specific Rab isoforms and knockdown of MT1-MMP, (2) Rab14, which regulates ADAM10 trafficking in epithelial cells (Linford et al., 2012), does not colocalise with MT1-MMP vesicles in macrophages, and (3) Rab4, Rab11 and Rab21, major regulatory Rabs for integrin trafficking (Pellinen et al., 2006; Caswell et al., 2009), showed no pronounced influence on MT1-MMP trafficking or function in this study.

Collectively, our data identify three specific RabGTPases, Rab5a, Rab8a and Rab14, as major regulators of MT1-MMP trafficking and function in primary human macrophages. We show that these RabGTPases control the pericellular activity of MT1-MMP by regulating the cell surface exposure of MT1-MMP, modulating contact of MT1-MMP-positive vesicles with podosomes and thus impact on extracellular matrix degradation and ultimately on proteolytic invasion of macrophages. At the same time, our results show that the relevance of potential MT1-MMP regulators should be tested in a variety of experimental set-ups, and that neither colocalisation nor influence on matrix degradation in 2D alone is sufficient to correctly predict an influence on proteolytic cell invasion in 3D. This appears to be consistent with recent findings in breast cancer cells that many parameters of 2D migration have only limited prognostic value on MT1-MMP invasion-promoting effect of Rab5a knockdown and decreased it to control levels (Fig. 6D), demonstrating that Rab5a exerts its function in macrophage invasion mainly through MT1-MMP.

Different functions of surface-associated MT1-MMP may be differentially influenced by the recycling route the protease takes within cells, which could offer an explanation why Rab22a, which is involved in regulating the surface pool of MT1-MMP, has no apparent impact on 3D invasion of macrophages, in contrast to Rab8a and Rab14. Indeed, the potential association of different pools of MT1-MMP with distinct intracellular trafficking routes has been speculated upon earlier (Schlierf et al., 2000). Of course, this does not exclude that Rab-dependent trafficking of other cargo molecules, for example integrins or other metalloproteinases such as ADAMs, impact on 3D invasion of macrophages. However, we consistently found, (1) strong functional correlation between inhibition of specific Rab isoforms and knockdown of MT1-MMP, (2) Rab14, which regulates ADAM10 trafficking in epithelial cells (Linford et al., 2012), does not colocalise with MT1-MMP vesicles in macrophages, and (3) Rab4, Rab11 and Rab21, major regulatory Rabs for integrin trafficking (Pellinen et al., 2006; Caswell et al., 2009), showed no pronounced influence on MT1-MMP trafficking or function in this study.

Collectively, our data identify three specific RabGTPases, Rab5a, Rab8a and Rab14, as major regulators of MT1-MMP trafficking and function in primary human macrophages. We show that these RabGTPases control the pericellular activity of MT1-MMP by regulating the cell surface exposure of MT1-MMP, modulating contact of MT1-MMP-positive vesicles with podosomes and thus impact on extracellular matrix degradation and ultimately on proteolytic invasion of macrophages. At the same time, our results show that the relevance of potential MT1-MMP regulators should be tested in a variety of experimental set-ups, and that neither colocalisation nor influence on matrix degradation in 2D alone is sufficient to correctly predict an influence on proteolytic cell invasion in 3D. This appears to be consistent with recent findings in breast cancer cells that many parameters of 2D migration have only limited prognostic value on MT1-MMP invasion-promoting effect of Rab5a knockdown and decreased it to control levels (Fig. 6D), demonstrating that Rab5a exerts its function in macrophage invasion mainly through MT1-MMP.

Different functions of surface-associated MT1-MMP may be differentially influenced by the recycling route the protease takes within cells, which could offer an explanation why Rab22a, which is involved in regulating the surface pool of MT1-MMP, has no apparent impact on 3D invasion of macrophages, in contrast to Rab8a and Rab14. Indeed, the potential association of different pools of MT1-MMP with distinct intracellular trafficking routes has been speculated upon earlier (Schlierf et al., 2000). Of course, this does not exclude that Rab-dependent trafficking of other cargo molecules, for example integrins or other metalloproteinases such as ADAMs, impact on 3D invasion of macrophages. However, we consistently found, (1) strong functional correlation between inhibition of specific Rab isoforms and knockdown of MT1-MMP, (2) Rab14, which regulates ADAM10 trafficking in epithelial cells (Linford et al., 2012), does not colocalise with MT1-MMP vesicles in macrophages, and (3) Rab4, Rab11 and Rab21, major regulatory Rabs for integrin trafficking (Pellinen et al., 2006; Caswell et al., 2009), showed no pronounced influence on MT1-MMP trafficking or function in this study.

Collectively, our data identify three specific RabGTPases, Rab5a, Rab8a and Rab14, as major regulators of MT1-MMP trafficking and function in primary human macrophages. We show that these RabGTPases control the pericellular activity of MT1-MMP by regulating the cell surface exposure of MT1-MMP, modulating contact of MT1-MMP-positive vesicles with podosomes and thus impact on extracellular matrix degradation and ultimately on proteolytic invasion of macrophages. At the same time, our results show that the relevance of potential MT1-MMP regulators should be tested in a variety of experimental set-ups, and that neither colocalisation nor influence on matrix degradation in 2D alone is sufficient to correctly predict an influence on proteolytic cell invasion in 3D. This appears to be consistent with recent findings in breast cancer cells that many parameters of 2D migration have only limited prognostic value on MT1-MMP invasion-promoting effect of Rab5a knockdown and decreased it to control levels (Fig. 6D), demonstrating that Rab5a exerts its function in macrophage invasion mainly through MT1-MMP.
RabGTPases in MT1-MMP trafficking

3D collagen I invasion assay
To measure invasive capacity of cells into a 3D collagen I matrix, primary human macrophages were copolymerised with rat tail collagen (2.5 mg/ml; Becton Dickinson) and embedded in rat tail collagen 1 (2 mg/ml) containing 10 ng/ml Macrophage-Colony Stimulating Factor (M-CSF, Relia Tech, Wollnaben, Germany). When indicated, MT1-MMP inhibitor (NSC405020, 1 mM, Millipore) was added to the collagen I prior to polymerisation. The lower concentration of collagen I in the outer gel (2 mg/ml) was chosen to facilitate invasion outwards from the inner plug. This was based on initial testing of several different combinations of collagen concentrations for inner and outer gels. The one presented here is the one that allowed invasion in principal but hindered it under knockdown of MT1-MMP. M-CSF was chosen as a known chemotaxant for macrophages (Pixley, 2012). We found that addition of M-CSF to the outer gel enhances the number of outwardly invading cells approximately twofold (supplementary material Fig. S10A,B), without influencing cell viability (supplementary material Fig. S10C) and thus provides a clearer readout of cell invasion. The number of cells that invaded the surrounding matrix was counted after 4 days of invasion, using Imaged cell counter. Four wells per donor and three donors in total were analysed (n=16). Statistical analysis was performed with GraphPad Prism software. When indicated, differences between mean values of measurement were analysed using the Student’s t-test.

Acknowledgements
We thank Frank Bentzien (UKE transfusion medicine) for buffy coats; Philippe Chavrier for MT1-MMP-mCherry; Julie Donaldson for GFP-Rab22a, Jan Faix for anti-mCherry antibody, J. A. Fransen for anti-Rab21 antibody, Peter Friedl for collagen ¼ antibody, Joachim Kremerskothen for GFP-Rab6a constructs, Craig Roy for GFP-Rab5a constructs, R.H. Scheller for GFP-Rab14, J.C. Simpson for GFP-Rab21, Michael Sixt and Roland Wedlich-Söldner for LifeAct-GFP, Boris Hinz for technical discussions, the UKE Microscope Imaging Facility (UMIF) for technical support, Jens Cornils and Andrea Mordhorst for expert technical assistance, and Martin Aepfelbacher for continuous support.

Author Contributions
C.W. designed and performed experiments as part of the doctoral thesis, K.A. performed experiments, and S.L. designed experiments and wrote the manuscript.

Funding
This work was supported by Wilhelm Sander Stiftung [grant number 2007.020.02 to S.L.]; the Deutsche Forschungsgemeinschaft [grant number LI925/3-1, LI925/2-2 to S.L.]; and the European Union Seventh Framework Programme (FP7/2007–2013) [grant agreement number FP7-237946 (T3Net) to S.L.].

Supplementary material available online at http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.122358/-/DC1

References

Rammel, A., Murphy, G. and Roghi, C. (2003). Membrane type 1-matrix metalloproteinase (MT1-MMP) is internalised by two different pathways and is recycled to the cell surface. *J. Biol. Chem.* 278, 3360-3368.

Fig. S1. RabGTPase constructs colocalising with MT-MMP-mCherry on vesicles in living macrophages. Confocal micrographs of macrophages expressing MT1-MMP-mCherry (red) and GFP-Rab5a (A), GFP-Rab8a (B), GFP-Rab14 (C), GFP-Rab21 (D), or GFP-Rab22a (E). White bars indicate 10 μm. White boxes indicate regions of interest shown enlarged on right. Time since start of experiment is indicated in seconds. White arrowheads point to stationary vesicles showing colocalisation of MT1-MMP and respective RabGTPase constructs. White arrows point to moving vesicles showing colocalisation of MT1-MMP and respective RabGTPase construct. Note that, due to delays in acquisition, red and green signals do not show perfect merge for fast-moving vesicles. Exemplary films are shown in supplementary material Movies 1 and 2.
Fig. S2. Endogenous MT1-MMP at vesicles partially colocalises with endogenous Rab5, Rab8a, Rab14, Rab21, and Rab22a. Confocal micrographs of macrophages stained for endogenous MT1-MMP using specific primary and Alexa 568-labeled secondary antibody, and co-stained with specific primary and Alexa 488-labelled secondary antibody for Rab5 (A-C), Rab8a (D-F), Rab14 (G-I), Rab21 (J-L), or Rab22a (M-O). Merged images are shown in (A, G, J, M), with single channel images of MT1-MMP shown in (B, E, H, K, N; red) and of RabGTPases in (C, F, I, L, O; green). White boxes in (A, D, G, J, M) indicate detail images shown on the right. White bars indicate 10 μm.
Fig. S3. MT1-MMP-mCherry does not colocalise with endogenous Rab4, Rab6a, Rab9 or Rab11. Confocal micrographs of macrophages expressing MT1-MMP-mCherry, stained with specific primary and Alexa 488-labeled secondary antibody for Rab4 (A-C), Rab6a (D-F), Rab9 (G-I), Rab11 (J-L). Merged images are shown in (A, D, G, J), with single channel images of MT1-MMP-mCherry shown in (B, E, H, K; red) and of RabGTPases in (C, F, I, L; green). White boxes in (A, D, G, J) indicate detail images shown on the right. White bars indicate 10 μm.
Fig. S4. Evaluation of the fluorescence intensities of expression constructs, based on GFP fluorescence. Controls for experiments shown in Fig. 2. Fluorescence intensities are indicated as arbitrary units (a.u.). Graphs show means ± s.d. Note that mean expression levels are not significantly different between respective wild type, DA and DN constructs, except for GFP-Rab14 DN and GFP-Rab22a DA. Graph shows means ± s.d. **P<0.004. For all values, 3×30 cells were evaluated. For specific values, see supplementary material Table S1.
Fig. S5. Influence of dominant active or negative mutants of Rab5a, Rab8a, Rab14, Rab21 and Rab22a on cell surface exposure of endogenous MT1-MMP. (A-C, E-G, I-K, M-O, Q-S) Confocal micrographs of macrophages transfected with wild-type (A, E, I, M, Q; green) or mutant constructs (B-C, F-G, J-K, N-O, R-S; green) of RabGTPases; dominant active constructs (DA; B, F, J, N, R) deficient in GTP hydrolysis, dominant negative constructs (DN; C, G, K, O, S) deficient in GTP binding. Cells were fixed, but not permeabilised, and stained with primary anti-MT1-MMP antibody and secondary Alexa 568-conjugated antibody to label cell-surface associated MT1-MMP (white). GFP signals of expression constructs (green) are shown as small micrographs underneath respective MT1-MMP images. Note pronounced reduction of MT1-MMP at the cell surface upon overexpression of Rab8a, Rab14 and Rab22a DN mutants, which is less pronounced in case of the Rab21 DN mutant. Also note increased cell surface exposure of MT1-MMP upon GFP-Rab5a DN overexpression. White bar indicates 10 μm for all images of the same row. (D, H, L, P, T) Evaluation of the fluorescence intensities of surface-localised MT1-MMP, based on Alexa 568 fluorescence. Fluorescence intensity for wild-type constructs was set each time to 100%. Graphs show means + s.d.; Asterisks indicate values significantly different from wild-type constructs. **P<0.006, ****P<0.0001. For all values, 3×30 cells were evaluated. For specific values, see supplementary material Table S1. (U-Y) Evaluation of fluorescence intensities of expression constructs, based on GFP fluorescence. Fluorescence intensities are indicated as arbitrary units (a.u.). Graphs show means ± s.d. Note that mean expression levels are not significantly different between respective wild-type, DA and DN constructs, except for GFP-Rab22a DA. **P<0.002. For all values, 3×30 cells were evaluated. For specific values, see supplementary material Table S1.
Fig. S6. Knockdown control of RabGTPases in macrophages. Western blots of whole cell lysates of primary human macrophages treated with siRNA specific for (A) Rab5a, (B) Rab8a, (C) Rab14, (D) Rab21, (E) Rab22a or (F) Rab6a. Cells were each transfected twice for 3 days in total and compared to cells transfected twice with control siRNA specific for luciferase. Comparable protein amounts were used, indicated by detection of β-actin. Note that the MT1-MMP expression is unchanged upon silencing of indicated RabGTPases. Knockdown efficiencies were calculated by measuring the band intensities using ImageJ and are indicated below respective lanes.
Fig. S7. Evaluation of the fluorescence intensities of total MT1-MMP-mCherry expression level, based on mCherry fluorescence. Controls for experiments shown in Fig. 4B. Fluorescence intensities were set as 100% for control cells treated with luciferase-specific siRNA. Graph shows means ± s.d. Note that mean expression levels of are not significantly different to control in cells treated with indicated siRNAs. For all values, 3×30 cells were evaluated. For specific values, see supplementary material Table S1.

Fig. S8. Cell survival and adhesion under RabGTPase knockdown. Macrophages treated with siRNA against MT1-MMP or RabGTPases, as indicated, were seeded on culture plates coated with collagen I (A) or uncoated (B), and the number of cells surviving after 7 days post transfection (A) or cells adhering to matrix 20 min post-seeding (B) was evaluated by fluorescence measurement of Crystal Violet staining. Values for control cells treated with luciferase siRNA were set to 100%. Graph shows means ± s.d.; *P<0.0226, **P<0.0084, ***P<0.0004. For all values, 3×27 values were evaluated. For specific values, see supplementary material Table S1.
Fig. S9. Rab6a does not influence surface exposure of M1-MMP, 3D collagen dequenching or 3D invasion of macrophages. (A-E) Rab6a GFP-fused constructs do not influence surface exposure of endogenous MT1-MMP. (A-C) Confocal micrographs of macrophages stained for MT1-MMP (white) and GFP-fused RabGTPase constructs (green): wild-type (A), dominant active (DA) construct deficient in GTP hydrolysis (B), or dominant negative constructs (DN) deficient in GTP binding (C). Cells were fixed, but not permeabilised, and stained with primary anti-MT1-MMP antibody and secondary Alexa 568-conjugated antibody to label surface-associated MT1-MMP (A-C, white). White bars: 10 μm. (D) Evaluation of fluorescence intensities of surface-localised MT1-MMP based on Alexa 568 fluorescence. Values for wild-type constructs were set each time to 100%. For all values, 3×30 cells were evaluated. Graph shows means ± s.d. For specific values, see supplementary material Table S1. (E) Evaluation of fluorescence intensities of Rab6a constructs, based on GFP fluorescence. Values are given in a.u.. For all values, 3×30 cells were evaluated. Graph shows means ± s.d. For specific values, see supplementary material Table S1. Note that in all cases, values for surface MT1-MMP or GFP-Rab6a constructs are not statistically different from wt controls. (F-I) Knockdown of Rab6a does not influence surface exposure of endogenous MT1-MMP. (F-H) Confocal micrographs of macrophages treated with siRNA specific for luciferase as control (F), first (G) or second (H) siRNA specific for Rab6a. Cells were fixed, but not permeabilised, and stained with primary anti-MT1-MMP and secondary Alexa 568-conjugated antibody to label endogenous MT1-MMP on the cell surface. White bars: 10 μm. For demonstration of siRNA-mediated knockdown of Rab6a, see supplementary material Fig. S6F. (I) Fluorescence intensities of surface-localised endogenous MT1-MMP, based on Alexa 568 fluorescence. Fluorescence intensities for control siRNA were each set to 100%. Asterisks indicate values significantly different from control values. For all values, 3×30 cells were evaluated. Graph shows means ± s.d.; ****p<0.0001. For specific values, see supplementary material Table S1. (J,K) Quantification of dequenched collagen I fluorescence in cells treated with indicated siRNAs specific for Rab6a (blue and red graphs), and control cells treated with luciferase siRNA (black graphs). Fluorescence intensities are given in arbitrary units (a.u.). Graphs show means ± s.e.m. Time after start of experiment is indicated. Note that values for Rab6a knockdown cells are not significantly different from control values For all values, 3×48 measurements were evaluated. For specific values, see supplementary material Table S1. (L-O) Rab6a does not influence 3D collagen invasion. (L-N) Brightfield micrographs of invading cells. Dashed white lines indicates border between collagen matrix with embedded macrophages and collagen matrix with invaded cells, visible as dark dots. Cells were treated with siRNAs specific for luciferase as negative control (L), or two individual siRNAs specific for Rab6a (M,N) (O) Quantification of cells invading collagen matrix, at day 4 after seeding. Values for control siRNA were set to 100%. Note that values for Rab6a siRNA-treated cells are not significantly different from those of controls. For all values, 3×16 pictures were evaluated. For specific values, see supplementary material Table S1.
Fig. S10. Characterisation of the 3D collagen invasion assay. (A,B) Invasion of macrophages into collagen I matrix in the absence (A, upper panel) or presence (A, lower panel) of the chemoattractant M-CSF. M-CSF was added to a final concentration of 1 mg/ml to the outer gel of the 3D invasion assay, as indicated. Brightfield micrographs of invading cells. Dashed white lines indicates border between collagen matrix with embedded macrophages and collagen matrix with invaded cells, visible as dark dots. Black bar: 200 μm. (B) Quantification of cells invading into collagen matrix in the absence or presence of M-CSF, at day 4 after seeding. Values for cell invasion w/o M-CSF were set to 100% (100.0±22.1% for cells w/o M-CSF; 184.4±30.1% for cells with M-CSF). Asterisks indicate values significantly different from values of control cells. Bars show means + s.d.; ****P<0.0001. Note that addition of M-CSF to the assay leads to ca. twofold numbers of invading cells. For all values, 3×16 pictures were evaluated. (C) Survival rates of macrophages cultured in the absence or presence of M-CSF. Values for cell survival w/o M-CSF were set to 100% (100.0±10.3% for cells w/o M-CSF; 95.4±11.4% for cells with M-CSF). Note that difference between the two values is not statistically significant. Bars show mean + s.d.; For all values, 3×27 values were evaluated.

Movie 1. Colocalisation of MT1-MMP-mCherry and GFP-Rab5a in living cells. Confocal time-lapse video of a primary human macrophage expressing MT1-MMP-mCherry (red; exposure time at 568 nm: 556 ms) and GFP-Rab5a (green; exposure time at 488 nm: 330 ms). Acquisition rate: 1 image/2.5 s; frame rate: 10 f/s; sequence: 152 s. White line scales 6.5 μm; white box shows simultaneously detailed time lapse, marked within the cell. Note colocalisation of MT1-MMP-mCherry with GFP-Rab5a-positive vesicles.
Movie 2. Colocalisation of MT1-MMP-mCherry and GFP-Rab22a in living cells. Confocal time-lapse video of a primary human macrophage expressing MT1-MMP-mCherry (red; exposure time at 568 nm: 556 ms) and GFP-Rab22a (green; exposure time at 488 nm: 232 ms). Acquisition rate: 1 image/2 s; frame rate: 10 fps; sequence: 87 s. White bar scales 12 μm; white boxes show simultaneously detailed time lapse, marked within the cell. Note colocalisation of MT1-MMP-mCherry with GFP-Rab22a positive (small or giant) vesicles.

Movie 3. Invasion of primary human macrophages into collagen I. Time lapse video of primary human macrophages embedded in dense collagen I (2.5 mg/ml; dark area on the left), invading into less dense collagen I (2 mg/ml; lighter area on the right), which contains M-CSF as a chemoattractant. Video starts 9 h after cell seeding. Acquisition rate: 1 image/15 min; frame rate: 10 fps; sequence: 32 h 15 min. Note mesenchymal morphology of invading cells characterised by numerous elongated protrusions.
Table S1. Values for MT1-MMP(-mCherry) distribution after various treatments

<table>
<thead>
<tr>
<th>Overexpression of</th>
<th>Number of values</th>
<th>Fluorescence intensity surface/total MT1-MMP ratio (Mean ± SD)</th>
<th>Fluorescence intensity GFP-RabGTPase [arbitrary units] (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFP-Rab5a wt</td>
<td>90</td>
<td>100.00 % ± 47.54 %</td>
<td>68670 ± 40189</td>
</tr>
<tr>
<td>GFP-Rab5a (Q79L) DA</td>
<td>90</td>
<td>96.21 % ± 69.11 %</td>
<td>62956 ± 30125</td>
</tr>
<tr>
<td>GFP-Rab5a (S34N) DN</td>
<td>90</td>
<td>199.90 % ± 83.16 %</td>
<td>60935 ± 31131</td>
</tr>
<tr>
<td>GFP-Rab8a wt</td>
<td>90</td>
<td>100.00 % ± 26.33 %</td>
<td>70732 ± 19860</td>
</tr>
<tr>
<td>GFP-Rab8a (Q67L) DA</td>
<td>90</td>
<td>107.4 % ± 32.29 %</td>
<td>83685 ± 23221</td>
</tr>
<tr>
<td>GFP-Rab8a (T22N) DN</td>
<td>90</td>
<td>40.65 % ± 18.60 %</td>
<td>78946 ± 19152</td>
</tr>
<tr>
<td>GFP-Rab14 wt</td>
<td>90</td>
<td>100.00 % ± 29.61 %</td>
<td>77998 ± 17975</td>
</tr>
<tr>
<td>GFP-Rab14 (Q70L) DA</td>
<td>90</td>
<td>97.36 % ± 29.78 %</td>
<td>82572 ± 17361</td>
</tr>
<tr>
<td>GFP-Rab14 (S25N) DN</td>
<td>90</td>
<td>53.40 % ± 16.84 %</td>
<td>87122 ± 21709</td>
</tr>
<tr>
<td>GFP-Rab21 wt</td>
<td>90</td>
<td>100.00 % ± 21.28 %</td>
<td>96874 ± 15775</td>
</tr>
<tr>
<td>GFP-Rab21 (Q78L) DA</td>
<td>90</td>
<td>94.76 % ± 21.00 %</td>
<td>94931 ± 15513</td>
</tr>
<tr>
<td>GFP-Rab21 (T33N) DN</td>
<td>90</td>
<td>84.44 % ± 21.41 %</td>
<td>102185 ± 20296</td>
</tr>
<tr>
<td>GFP-Rab22a wt</td>
<td>90</td>
<td>100.00 % ± 29.58 %</td>
<td>72902 ± 25022</td>
</tr>
<tr>
<td>GFP-Rab22a (Q64L) DA</td>
<td>90</td>
<td>87.53 % ± 22.99 %</td>
<td>83393 ± 16309</td>
</tr>
<tr>
<td>GFP-Rab22a (S19N) DN</td>
<td>90</td>
<td>27.46 % ± 12.04 %</td>
<td>79249 ± 17926</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overexpression of</th>
<th>Number of values</th>
<th>Fluorescence intensity endogenous surface MT1-MMP (Mean ± SD)</th>
<th>Fluorescence intensity GFP-RabGTPase [arbitrary units] (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFP-Rab5a wt</td>
<td>90</td>
<td>100.00 % ± 46.80 %</td>
<td>40630 ± 12020</td>
</tr>
<tr>
<td>GFP-Rab5a (Q79L) DA</td>
<td>90</td>
<td>89.42 % ± 53.89 %</td>
<td>36922 ± 13942</td>
</tr>
<tr>
<td>GFP-Rab5a (S34N) DN</td>
<td>90</td>
<td>173.50 % ± 80.29 %</td>
<td>37637 ± 12503</td>
</tr>
<tr>
<td>GFP-Rab6a wt</td>
<td>90</td>
<td>100.00 % ± 37.45 %</td>
<td>57880 ± 20582</td>
</tr>
<tr>
<td>GFP-Rab6a (Q72L) DA</td>
<td>90</td>
<td>88.95 % ± 39.41%</td>
<td>63321 ± 18259</td>
</tr>
<tr>
<td>GFP-Rab6a (T27N) DN</td>
<td>90</td>
<td>90.74 % ± 36.64 %</td>
<td>65109 ± 16759</td>
</tr>
<tr>
<td>GFP-Rab8a wt</td>
<td>90</td>
<td>100.00 % ± 34.98 %</td>
<td>95767 ± 41590</td>
</tr>
<tr>
<td>GFP-Rab8a (Q67L) DA</td>
<td>90</td>
<td>116.80 % ± 43.51 %</td>
<td>106503 ± 38115</td>
</tr>
<tr>
<td>GFP-Rab8a (T22N) DN</td>
<td>90</td>
<td>76.76 % ± 25.01 %</td>
<td>98714 ± 41169</td>
</tr>
<tr>
<td>GFP-Rab14 wt</td>
<td>90</td>
<td>100.00 % ± 35.27 %</td>
<td>62315 ± 34612</td>
</tr>
<tr>
<td>target of siRNA</td>
<td>Number of values</td>
<td>Fluorescence intensity endogenous surface MT1-MMP (Mean ± SD)</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>non-specific control</td>
<td>90</td>
<td>100.00 % ± 36.07 %</td>
<td></td>
</tr>
<tr>
<td>MT1-MMP</td>
<td>90</td>
<td>23.83 % ± 12.35 %</td>
<td></td>
</tr>
<tr>
<td>Rab5a-1</td>
<td>90</td>
<td>163.11 % ± 70.07 %</td>
<td></td>
</tr>
<tr>
<td>Rab5a-2+3</td>
<td>90</td>
<td>212.72 % ± 127.20 %</td>
<td></td>
</tr>
<tr>
<td>Rab6a-1</td>
<td>90</td>
<td>98.85 % ± 55.81 %</td>
<td></td>
</tr>
<tr>
<td>Rab6a-2</td>
<td>90</td>
<td>105.70 % ± 64.50 %</td>
<td></td>
</tr>
<tr>
<td>Rab8a-1</td>
<td>90</td>
<td>35.26 % ± 24.25 %</td>
<td></td>
</tr>
<tr>
<td>Rab8a-2</td>
<td>90</td>
<td>41.28 % ± 29.51 %</td>
<td></td>
</tr>
<tr>
<td>Rab14-1</td>
<td>90</td>
<td>33.93 % ± 17.04 %</td>
<td></td>
</tr>
<tr>
<td>Rab14-2</td>
<td>90</td>
<td>34.12 % ± 13.33 %</td>
<td></td>
</tr>
<tr>
<td>Rab21-1</td>
<td>90</td>
<td>78.55 % ± 31.04 %</td>
<td></td>
</tr>
<tr>
<td>Rab21-2</td>
<td>90</td>
<td>72.07 % ± 22.79 %</td>
<td></td>
</tr>
<tr>
<td>Rab22a-1</td>
<td>90</td>
<td>34.58 % ± 20.25 %</td>
<td></td>
</tr>
<tr>
<td>Rab22a-2</td>
<td>90</td>
<td>42.65 % ± 19.38 %</td>
<td></td>
</tr>
<tr>
<td>non-specific control</td>
<td>90</td>
<td>100.00 % ± 54.57 %</td>
<td></td>
</tr>
<tr>
<td>Rab5a-1 + Rab14-1</td>
<td>90</td>
<td>57.66 % ± 35.26 %</td>
<td></td>
</tr>
<tr>
<td>Rab8a-1 + Rab14-1</td>
<td>90</td>
<td>36.25 % ± 26.90 %</td>
<td></td>
</tr>
</tbody>
</table>

MT1-MMP-mCherry vesicles contacting podosomes

<table>
<thead>
<tr>
<th>target of siRNA</th>
<th>Number of values</th>
<th>Number of podosomes [%] contacted by MT1-MMP-mCherry (Mean ± SD)</th>
<th>Fluorescence intensity total MT1-MMP-mCherry (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-specific control</td>
<td>12</td>
<td>25.33 % ± 8.13 %</td>
<td>100.00 % ± 32.80 %</td>
</tr>
<tr>
<td>Rab5a-1</td>
<td>12</td>
<td>39.08 % ± 13.01 %</td>
<td>113.18 % ± 34.91 %</td>
</tr>
<tr>
<td>Rab5a-2+3</td>
<td>12</td>
<td>46.42 % ± 19.96 %</td>
<td>123.10 % ± 36.17 %</td>
</tr>
<tr>
<td>Rab8a-1</td>
<td>12</td>
<td>15.17 % ± 11.04 %</td>
<td>90.49 % ± 37.12 %</td>
</tr>
<tr>
<td>target of siRNA</td>
<td>Number of values</td>
<td>Degradation (Mean ± SD)</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>non-specific control</td>
<td>90</td>
<td>100.00 % ± 18.86 %</td>
<td></td>
</tr>
<tr>
<td>Rab5a-1</td>
<td>90</td>
<td>111.86 % ± 18.69 %</td>
<td></td>
</tr>
<tr>
<td>Rab5a-2+3</td>
<td>90</td>
<td>125.57 % ± 59.50 %</td>
<td></td>
</tr>
<tr>
<td>Rab8a-1</td>
<td>90</td>
<td>82.94 % ± 30.64 %</td>
<td></td>
</tr>
<tr>
<td>Rab8a-2</td>
<td>90</td>
<td>86.42 % ± 37.96 %</td>
<td></td>
</tr>
<tr>
<td>Rab14-1</td>
<td>90</td>
<td>77.66 % ± 28.18 %</td>
<td></td>
</tr>
<tr>
<td>Rab14-2</td>
<td>90</td>
<td>71.79 % ± 31.76 %</td>
<td></td>
</tr>
<tr>
<td>non-specific control</td>
<td>90</td>
<td>100.00 % ± 29.47 %</td>
<td></td>
</tr>
<tr>
<td>Rab21-1</td>
<td>90</td>
<td>108.25 % ± 37.35 %</td>
<td></td>
</tr>
<tr>
<td>Rab21-2</td>
<td>90</td>
<td>99.99 % ± 36.54 %</td>
<td></td>
</tr>
<tr>
<td>Rab22a-1</td>
<td>90</td>
<td>83.14 % ± 37.16 %</td>
<td></td>
</tr>
<tr>
<td>Rab22a-2</td>
<td>90</td>
<td>72.79 % ± 37.54 %</td>
<td></td>
</tr>
<tr>
<td>MT1-MMP</td>
<td>90</td>
<td>67.90 % ± 35.52 %</td>
<td></td>
</tr>
</tbody>
</table>

Degradation of 3D Collagen I matrix after siRNA treatment

<table>
<thead>
<tr>
<th>target of siRNA</th>
<th>Number of values</th>
<th>Flourescence intensity [arbitrary units] (Mean ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-specific control</td>
<td>144</td>
<td>275.33 ± 74.83</td>
</tr>
<tr>
<td>Rab5a-1</td>
<td>144</td>
<td>313.89 ± 65.87</td>
</tr>
<tr>
<td>Rab5a-2+3</td>
<td>144</td>
<td>288.33 ± 79.34</td>
</tr>
<tr>
<td>non-specific control</td>
<td>144</td>
<td>476.00 ± 68.64</td>
</tr>
<tr>
<td>Rab6a-1</td>
<td>144</td>
<td>336.33 ± 47.15</td>
</tr>
<tr>
<td>Rab6a-2</td>
<td>144</td>
<td>386.45 ± 32.15</td>
</tr>
<tr>
<td>non-specific control</td>
<td>144</td>
<td>380.88 ± 25.43</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>target of siRNA</td>
<td>Number of values</td>
<td>percentage of specific siRNA treated cells relative to control cells (Mean ± SD)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>non-specific control</td>
<td>27</td>
<td>100.81 % ± 0.68 %</td>
</tr>
<tr>
<td>MT1-MMP</td>
<td>27</td>
<td>102.09 % ± 0.74 %</td>
</tr>
<tr>
<td>Rab5a</td>
<td>27</td>
<td>109.31 % ± 2.94 %</td>
</tr>
<tr>
<td>Rab8a</td>
<td>27</td>
<td>113.53 % ± 2.31 %</td>
</tr>
<tr>
<td>Rab14</td>
<td>27</td>
<td>127.20 % ± 9.76 %</td>
</tr>
<tr>
<td>Rab21</td>
<td>27</td>
<td>90.32 % ± 5.12 %</td>
</tr>
<tr>
<td>Rab22a</td>
<td>27</td>
<td>91.07 % ± 2.59 %</td>
</tr>
<tr>
<td>Rab5a-1 + Rab14-1</td>
<td>27</td>
<td>99.86 % ± 9.85 %</td>
</tr>
<tr>
<td>Rab8a-1 + Rab14-1</td>
<td>27</td>
<td>101.84 % ± 2.25 %</td>
</tr>
</tbody>
</table>

Adhesion to collagen of macrophages after siRNA treatment

<table>
<thead>
<tr>
<th>target of siRNA</th>
<th>Number of values</th>
<th>percentage of specific siRNA treated cells relative to control cells (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-specific control</td>
<td>27</td>
<td>97.74 % ± 1.57 %</td>
</tr>
<tr>
<td>MT1-MMP</td>
<td>27</td>
<td>100.27 % ± 0.76 %</td>
</tr>
<tr>
<td>Rab5a</td>
<td>27</td>
<td>102.42 % ± 3.07 %</td>
</tr>
<tr>
<td>Rab8a</td>
<td>27</td>
<td>99.8 % ± 3.17 %</td>
</tr>
<tr>
<td>Rab14</td>
<td>27</td>
<td>119.11 % ± 5.29 %</td>
</tr>
<tr>
<td>Rab21</td>
<td>27</td>
<td>98.31 % ± 4.29 %</td>
</tr>
<tr>
<td>Rab22a</td>
<td>27</td>
<td>108.01 % ± 1.54 %</td>
</tr>
<tr>
<td>Rab5a-1 + Rab14-1</td>
<td>27</td>
<td>111.14 % ± 5.39 %</td>
</tr>
<tr>
<td>Rab8a-1 + Rab14-1</td>
<td>27</td>
<td>95.41 % ± 3.87 %</td>
</tr>
</tbody>
</table>
Declaration:

Karim El azzouzi contributed to the publication:

A specific subset of RabGTPases controls cell surface exposure of MT1-MMP, extracellular matrix degradation and three-dimensional invasion of macrophages.

Wiesner C, El Azzouzi K, Linder S.

by:

- Performing and analyzing experiments demonstrated in Figure S3 A-L.
- Performing and analyzing experiments demonstrated in Figure S8 A-B.
- Preparing figures for the publication.

The experiments were designed by Christiane Wiesner and Stefan Linder.

The manuscript was written by Stefan Linder.

Hamburg, 03.11.2016

Stefan Linder
The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes

Susanne Cornfinea, Mirko Himmela,*, Petra Koppb,*, Karim el Azzouzia, Christiane Wiesnera, Marcus Krügera, Thomas Ruded, and Stefan Lindera,b1

1Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany; 2Institute for Cardiovascular Diseases, 80336 München, Germany; 3Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; 4Biocenter, University of Würzburg, 97074 Würzburg, Germany

\textbf{ABSTRACT} Podosomes are actin-based matrix contacts in a variety of cell types, most notably monocytic cells, and are characterized by their ability to lyse extracellular matrix material. Besides their dependence on actin regulation, podosomes are also influenced by microtubules and microtubule-dependent transport processes. Here we describe a novel role for KIF9, a previously little-characterized member of the kinesin motor family, in the regulation of podosomes in primary human macrophages. We find that small interfering RNA (siRNA)/short-hairpin RNA–induced knockdown of KIF9 significantly affects both numbers and matrix degradation of podosomes. Overexpression and microinjection experiments reveal that the unique C-terminal region of KIF9 is crucial for these effects, presumably through binding of specific interactors. Indeed, we further identify reggie-1/flotillin-2, a signaling mediator between intracellular vesicles and the cell periphery, as an interactor of the KIF9 C-terminus. Regg-1 dynamically colocalizes with KIF9 in living cells, and, consistent with KIF9-mediated effects, siRNA-induced knockdown of reggies/flottlinns significantly impairs matrix degradation by podosomes. In sum, we identify the kinesin KIF9 and reggie/flotillin proteins as novel regulators of macrophage podosomes and show that their interaction is critical for the matrix-degrading ability of these structures.

\textbf{INTRODUCTION} Cells use two strategies for invasion: amoeboid, nonlytic migration through gaps in the extracellular matrix meshwork and mesenchymal, protease-dependent migration involving the cleavage of matrix components (reviewed in Friedl and Wolf, 2003). Podosomes and invadodopodes, collectively called “invadosomes,” are matrix contacts with the ability to lyse matrix components and are thus considered as potential key structures of proteolytic cell invasion (reviewed in Gimona et al., 2008; Buccone et al., 2009; Linder, 2009). Podosomes are constitutively formed in cells that have to cross tissue boundaries, most notably monocyctic cells such as monocytes, macrophages, dendritic cells, and osteoclasts (reviewed in Linder and Aepfelbacher, 2003). Comparable to focal adhesions (reviewed in Zamir and Geiger, 2001), podosomes have emerged as highly complex organelles that comprise a large variety of components ranging from matrix contact proteins such as integrins (reviewed in Gimona et al., 2008) or CD44 (Chabadel et al., 2007), to adhesion plaque proteins such as talin (Zambonin-Zallone et al., 1989) and Paxillin (Pfaff and Jurdic, 2001), to actin regulators such as Arp2/3 complex (Linder et al., 2000a) or cortactin (Webb et al., 2006). Podosomes are highly dynamic structures with lifetimes of 2–12 min and show an even higher internal actin turnover (Destang et al., 2003).

Besides their dependence on actin regulation, podosomes are also influenced by microtubules and microtubule-dependent transport processes (Linder et al., 2000b; Cougoule et al., 2005). In this...
context, microtubules function as regulators of podosome dynamics (Kopp et al., 2006; reviewed in Linder, 2009) and their subcellular positioning (Destain et al., 2005; Ory et al., 2008; McMichael et al., 2010). Moreover, microtubules also influence the matrix lytic ability of both podosomes and invadopodia (reviewed in Linder, 2007; Poincloux et al., 2009), which is probably based on the transport of signaling molecules and proteases to sites of degradation (Sakurai-Yageta et al., 2008; Steffen et al., 2008; Wiesner et al., 2010).

As podosomes are contacted by the plus ends of microtubules (Kopp et al., 2006), transport of material to podosomes is likely to involve plus end–directed motors of the kinesin family. Previously, we could show that kinesin-like family 1C (KIF1C), a kinesin-3 member, is involved in the regulation of podosome dynamics in primary human macrophages (Kopp et al., 2006). We have now expanded our screen for kinesins involved in podosome regulation and identified the little-characterized kinesin KIF9, a member of the kinesin-9 family (Lawrence et al., 2004).

KIF9 was discovered through interaction with the GTP-binding protein Gem (Piddini et al., 2001) and reported to associate with microtubules in primary glial cells (Piddini et al., 2001). So far KIF9 has not been characterized further, and no cellular function has been described for this motor. Here we demonstrate a function for KIF9 as a regulator of podosomes and of podosomal matrix degradation in primary human macrophages. Furthermore, we show that its C-terminal region interacts with reggie-1/flotillin-2.

Reggie/flotillin proteins were discovered as neuronal proteins involved in axon regeneration (Schulte et al., 1997; reviewed in Stuermer, 2010) and are now thought to act as ubiquitous signaling mediators between intracellular vesicles and the plasma membrane (reviewed in Langhorst et al., 2008; Stuermer, 2010). To date, two isoforms have been described, reggie-1 and -2 (flotillin-2 and -1), which can form hetero-oligomers through interaction of their C-terminal regions (reviewed in Glebov et al., 2006; Babuke and Tikkanen, 2007). Reggio proteins have been found both at the plasma membrane and at intracellular pools ranging from Golgi-derived vesicles and late endosomes/lysosomes to multivesicular bodies and lipid bodies (reviewed in Stuermer, 2010).

We now show that reggie-1 interacts with the C-terminal region of KIF9, that both proteins cross-precipitate from macrophage lysates, and that they dynamically colocalize in living cells. Consistent with the observed effects of KIF9 knockdown, knockdown of reggie impairs matrix degradation by podosomes. These experiments reveal both KIF9 and reggie proteins as novel regulators of matrix degradation by podosomes. (Note: The term “regulation” is used here in the broad sense of having a direct or indirect influence on the formation and/or functionality of podosomes.)

RESULTS
KIF9 regulates podosome numbers and matrix degradation in macrophages

To identify novel kinesin isoforms involved in podosome regulation, we used a small interfering RNA (siRNA)–based knockdown approach in primary human macrophages. These cells constitutively form numerous podosomes and are thus amenable to statistical evaluation of podosome formation. Among others, an siRNA specific for KIF9 was validated in HeLa cells and found to be highly effective (>85% knockdown; see Materials and Methods). Primary macrophages were transfected with the respective siRNA, and the number of cells containing podosomes (i.e., ≥10 podosomes/cell) was evaluated 24 and 48 h after transfection. Compared with control cells transfected with plasmid enhanced green fluorescent protein (E-GFP), KIF9 knockdown led to a significant decrease in podosome numbers (Fig. 1, A–E, Table 1). The effect of KIF9 knockdown was, however, cell type dependent and required a functional C-terminal region of KIF9 (Table S1).

FIGURE 1: KIF9 influences podosome numbers. (A) Evaluation of podosome formation in macrophages transfected with EGFP-C1, luciferase-specific siRNA, and KIF9-specific siRNA. Influence of siRNA was analyzed 24 h (left) and 48 h (right) after transfection. For each value, 3 × 30 cells were evaluated. Cells containing less than 10 podosomes at a given time point were scored as “containing no podosomes.” Values are given as mean percentage ± SD of total counts in Table 1. For differences between control values and values gained with KIF9 siRNA, a P value < 0.05 was considered significant (indicated by asterisk). (B, C) Fluorescence micrographs of primary human macrophages expressing scrambled shRNA (B) or KIF9-specific shRNA (C) 72 h after transfection. F-actin stained with rhodamine-labeled phalloidin. Inserts show respective GFP signals. White bar indicates 10 μm. (D, E) Evaluation of podosome formation in primary human macrophages transfected with psiSTRIKE vector bicistronically end encoding EGFP and scrambled shRNA, (D) or KIF9-specific shRNA (E). Influence of each shRNA was evaluated 24, 48, and 72 h after transfection. For each value, 3 × 30 cells were evaluated. Values are given as mean percentage ± SD of total counts in Table 1. For differences between control values and values gained with kinesin shRNAs, a P value < 0.05 was considered significant (indicated by asterisk).
Effect on podosome numbers

<table>
<thead>
<tr>
<th>Expression of</th>
<th>24 h</th>
<th>48 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFP-N1</td>
<td>78.0% ± 7.0%</td>
<td>80.0% ± 7.0%</td>
</tr>
<tr>
<td>Luciferase</td>
<td>74.0% ± 4.0%</td>
<td>68.0% ± 17.0%</td>
</tr>
<tr>
<td>KIF9-specific siRNA</td>
<td>61.1% ± 18.4%</td>
<td>32.2% ± 1.9%</td>
</tr>
</tbody>
</table>

Effect of KIF9-specific shRNA on podosome numbers

<table>
<thead>
<tr>
<th>Podosomes/cell</th>
<th>24 h</th>
<th>48 h</th>
<th>72 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10</td>
<td>7.4% ± 4.9%</td>
<td>40.0% ± 3.3%</td>
<td>48.2% ± 18.3%</td>
</tr>
<tr>
<td>11–50</td>
<td>42.6% ± 6.7%</td>
<td>36.7% ± 11.5%</td>
<td>21.8% ± 6.9%</td>
</tr>
<tr>
<td>>50</td>
<td>50.0% ± 4.9%</td>
<td>22.2% ± 1.9%</td>
<td>30.0% ± 21.0%</td>
</tr>
</tbody>
</table>

Effect of scrambled shRNA on podosome numbers

<table>
<thead>
<tr>
<th>Podosomes/cell</th>
<th>24 h</th>
<th>48 h</th>
<th>72 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10</td>
<td>0.0% ± 0.0%</td>
<td>1.1% ± 1.9%</td>
<td>1.3% ± 2.2%</td>
</tr>
<tr>
<td>11–50</td>
<td>7.1% ± 3.5%</td>
<td>8.1% ± 5.3%</td>
<td>0.0% ± 0.0%</td>
</tr>
<tr>
<td>>50</td>
<td>92.9% ± 8.9%</td>
<td>90.8% ± 1.9%</td>
<td>98.8% ± 20.7%</td>
</tr>
</tbody>
</table>

Degradation of gelatin matrix after siRNA treatment

<table>
<thead>
<tr>
<th>Target of siRNA</th>
<th>0–40%</th>
<th>41–100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luciferase</td>
<td>31.1% ± 10.7%</td>
<td>68.9% ± 17.1%</td>
</tr>
<tr>
<td>KIF9</td>
<td>88.9% ± 5.1%</td>
<td>11.1% ± 5.1%</td>
</tr>
</tbody>
</table>

Microinjection of GST-KIF9-CT81

<table>
<thead>
<tr>
<th>Microinjection of</th>
<th>0 h</th>
<th>1 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST</td>
<td>6.7% ± 3.3%</td>
<td>72.2% ± 8.4%</td>
</tr>
<tr>
<td>GST-KIF9-CT81</td>
<td>7.8% ± 1.9%</td>
<td>32.2% ± 1.9%</td>
</tr>
</tbody>
</table>

Effect on podosome numbers

<table>
<thead>
<tr>
<th>Target of siRNA</th>
<th>Podosomes/cell</th>
<th>72 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luciferase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–10</td>
<td>0.0% ± 0.0%</td>
<td></td>
</tr>
<tr>
<td>11–50</td>
<td>1.1% ± 1.9%</td>
<td></td>
</tr>
<tr>
<td>>50</td>
<td>95.6% ± 5.1%</td>
<td></td>
</tr>
<tr>
<td>Reggie-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–10</td>
<td>1.1% ± 1.9%</td>
<td></td>
</tr>
<tr>
<td>11–50</td>
<td>3.3% ± 3.3%</td>
<td></td>
</tr>
<tr>
<td>>50</td>
<td>95.6% ± 1.9%</td>
<td></td>
</tr>
<tr>
<td>Reggie-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–10</td>
<td>0.0% ± 0.0%</td>
<td></td>
</tr>
<tr>
<td>11–50</td>
<td>1.1% ± 1.9%</td>
<td></td>
</tr>
<tr>
<td>>50</td>
<td>98.9% ± 1.9%</td>
<td></td>
</tr>
<tr>
<td>Reggie-1 + reggie-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–10</td>
<td>0.0% ± 0.0%</td>
<td></td>
</tr>
<tr>
<td>11–50</td>
<td>0.0% ± 0.0%</td>
<td></td>
</tr>
<tr>
<td>>50</td>
<td>100.0% ± 0.0%</td>
<td></td>
</tr>
</tbody>
</table>

Degradation of gelatin matrix after siRNA treatment

<table>
<thead>
<tr>
<th>Target of siRNA</th>
<th>0–40%</th>
<th>41–100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luciferase</td>
<td>14.6% ± 7.6%</td>
<td>85.3% ± 7.6%</td>
</tr>
<tr>
<td>Reggie-1</td>
<td>37.3% ± 16.6%</td>
<td>62.7% ± 16.6%</td>
</tr>
<tr>
<td>Reggie-2</td>
<td>50.6% ± 26.6%</td>
<td>49.4% ± 26.6%</td>
</tr>
<tr>
<td>Reggie-1 + reggie-2</td>
<td>60.0% ± 15.0%</td>
<td>40.0% ± 15.0%</td>
</tr>
</tbody>
</table>

Degradation of gelatin matrix after overexpression

<table>
<thead>
<tr>
<th>Construct</th>
<th>0–40%</th>
<th>41–100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIF9-CT402-GFP</td>
<td>24.3% ± 7.0%</td>
<td>75.7% ± 7.0%</td>
</tr>
<tr>
<td>KIF9-N709-GFP</td>
<td>11.0% ± 5.0%</td>
<td>89.0% ± 5.0%</td>
</tr>
</tbody>
</table>

TABLE 1. Values for podosome formation or matrix degradation following various treatments. Statistical evaluation of podosome numbers or matrix degradation in macrophages transfected with siRNA or shRNA or microinjected with proteins. For each value, each time at least 30 randomly chosen cells from three independent experiments were evaluated. Values are given as mean percentage ± SD of total counts.

protein (pEGFP)-N1 or an siRNA specific for firefly luciferase, the number of podosome-forming cells in KIF9 siRNA-transfected macrophages was reduced to approximately 40% of controls (Figure 1A; see also Table 1). To get detailed confirmation of this effect, we next generated a KIF9-specific short-hairpin RNA (shRNA) construct, which allows bicistronic expression of EGFP. Primary macrophages transfected with this construct showed a clear reduction of podosome levels (Figure 1, B and C). A detailed evaluation of podosome
numbers in KIF9-shRNA–expressing cells at 24, 48, and 72 h post-transfection showed that the number of cells containing numerous (>50) podosomes was reduced, while the number of cells containing few (0–10) podosomes was increased, compared with cells expressing a scrambled control sequence (Figure 1, D and E; Table 1). Combined, these findings indicate that knockdown of KIF9 leads to decreased podosome numbers in primary macrophages.

To further investigate potential additional roles of KIF9, 7-d-old macrophages were transfected with siRNA specific for KIF9 or for firefly luciferase as a control. After 3 d, cells were reseeded on fluorescently labeled gelatin matrix, and their matrix-degrading ability was assessed after 5 h. Matrix degradation was evaluated only in cells containing numerous (>50) podosomes, to distinguish the potential effects of KIF9 in matrix degradation from its role in regulation of the podosome structure itself. Matrix degradation was analyzed by measuring the rhodamine-based fluorescence of the podosome-covered area, and cells were scored into groups according to the degree of matrix degradation (0–40% and 41–100%; Figure 2, A–C). Importantly, the number of cells showing low (0–40%) matrix degradation was significantly enhanced in cells transfected with siRNA specific for KIF9, compared with the control (Figure 2C; Table 1). Combined, these results indicate that KIF9 regulates not only the podosome structure itself but also the ability of podosomes to degrade matrix material.

FIGURE 2: Knockdown of KIF9 influences matrix degradation. Confocal laser scanning micrographs of primary human macrophages transfected with siRNA-firefly luciferase (A) or siRNA-KIF9 (B), seeded on rhodamine-labeled gelatin matrix (red). Matrix degradation is visible as dark areas; insets show relevant F-actin staining by Cy5-labeled phalloidin (white). Bar, 10 μm. (C) Evaluation of matrix degradation in cells treated with siRNAs. The degree of matrix degradation was analyzed by fluorescence measurements of 3 × 30 cells each time. Complete absence of labeled matrix beneath cells was set at 100% degradation. Cells were scored into groups according to matrix degradation (0–40% and 41–100%). For differences between control values and values gained with KIF9 siRNA, a P value < 0.01 was considered highly significant (indicated by asterisks).

KIF9-GFP vesicles associate with microtubules and contact podosomes

So that KIF9 localization and dynamics in macrophages could be visualized, both GFP- and mCherry-fusion constructs (KIF9-GFP and KIF9-mCherry) were generated and transfected into macrophages. KIF9-GFP was found to be present in vesicle-like accumulations, which were often closely associated with microtubules (Figure 3A). Live cell imaging of cells coexpressing KIF9-mCherry and GFP-α-tubulin revealed that KIF9-GFP vesicles move along microtubules (Figure 3B and Supplemental Video 1), comparable to other kinesins such as KIF1C (Kopp et al., 2006).

To analyze potential interactions between KIF9-positive vesicles and podosomes, macrophages were cotransfected with KIF9-GFP and mRFP-β-actin constructs, the latter for labeling actin-rich podosome cores, and analyzed by time-lapse confocal video microscopy. KIF9-GFP-positive vesicles were found to localize at the podosome-containing ventral cell side (Figure 3C), where they dynamically and repeatedly contacted podosomes (Figure 3C and Supplemental Video 2). Interestingly, KIF9-GFP vesicles contacted mostly podosomes at the inner region of the ventral cell side, and not the larger podosome precursors at the cell periphery, which are contacted preferentially by the KIF1C kinesin (Kopp et al., 2006).

KIF9 is expressed in primary macrophages and forms oligomers

To get direct proof that KIF9 is expressed in primary macrophages, reverse transcriptase PCR was performed using mRNA prepared from 7-d cultured primary human macrophages and primers specific for the KIF9 sequence comprising nucleotides 1125–1579. A band of the respective size (454 base pairs) was detected on agarose gels (Figure 4A), indicating the presence of the KIF9 transcript. To detect the KIF9 protein, a polyclonal antibody was raised against the unique C-terminal region of KIF9 comprising amino acid (aa) residues 710–790 (“CT81”; see Materials and Methods) as part of a GST fusion protein (GST-KIF9-CT81; see also Figure 5A) and subsequently affinity purified using the CT81 polypeptide of thrombin-cleaved GST-KIF9-CT81. On Western blots, this antibody recognized the respective KIF9 sequence both as part of the GST-KIF9-CT81 fusion protein (Figure 4B, left lane) and as the thrombin-cleaved polypeptide of the appropriate size (9 kDa; Figure 4B, right lane). Using this antibody on Western blots of macrophage lysates, we could not detect a band corresponding to endogenous KIF9 (∼87 kDa), possibly owing to the relatively low abundance of kinesins in whole cell lysates, comparable to KIF1C (Kopp et al., 2006).

As kinesins are present mostly as dimers (reviewed in Woehlke and Schliwa, 2000), and the KIF9 sequence contains coiled-coil sequences predicted to be involved in dimerization (Piddini et al., 2001), we next tried to concentrate endogenous KIF9 protein by coprecipitation with overexpressed KIF9-GFP. Immunoprecipitations from lysates of macrophages expressing KIF9-GFP or GFP alone were performed with anti-GFP specific antibody coupled to magnetic beads. Western blots of respective fractions probed with anti-GFP antibody showed successful precipitation of both KIF9-GFP and the GFP control (Figure 4C, left blot). Comparable Western blots developed with anti-KIF9 antibody showed a band corresponding to the KIF9-GFP fusion construct, and in addition two bands in the 85–90-kDa range. Both of these bands are likely to correspond to endogenous KIF9 and may represent either splice or phosphorylation variants. These results indicate that endogenous KIF9 can be coprecipitated...
The KIF9 C-terminus induces podosome disruption and Golgi dispersal

We next set out to identify domains responsible for the observed effects of KIF9 on podosomes. KIF9 shows an N-terminal motor domain with a P-loop sequence, which is involved in ATP hydrolysis of kinesins (Sack et al., 1999); a stalk domain containing predicted coiled-coil sequences; and a unique tail comprising the C-terminal 81 aa residues (Figure 5A; Piddini et al., 2001). We thus generated deletion constructs comprising the stalk and tail regions (KIF9-CT402-GFP; aa residues 389–790; see also Supplemental Figure 1) or the tail region (GFP-KIF9-CT81; aa residues 710–790; Figure 5A) and, vice versa, a construct lacking the tail region (KIF9-NT709-GFP). Upon expression in macrophages, KIF9-CT402-GFP localized to vesicular structures (Figure 5, E–G), comparable to full-length (fl) KIF9-GFP (Figure 5, B–D). Time-lapse videos of cells expressing KIF9-CT402-GFP together with fl KIF9-mCherry showed that this construct localizes to the same vesicle population as the full-length construct (unpublished data). Accordingly, extensive vesicle movement and contact of podosomes were observed in cells showing moderate overexpression of KIF9-CT402-GFP (Supplemental Figure 1 and Supplemental Videos 3 and 4). Upon higher overexpression, less KIF9-CT402-GFP-positive vesicles appeared to be motile, which probably reflects competitive binding of this motorless, non-processive construct with the endogenous and processive fl KIF9. Consistently, cells overexpressing KIF9-CT402-GFP showed reduced matrix-degrading ability, compared with controls (Supplemental Figure 2).

The vesicular localization of both deletion constructs may be based on the ability for dimerization with endogenous KIF9 (discussed previously), which is probably conferred by the stalk domain (Figure 5A; Piddini et al., 2001). We also observed no detrimental effects on cell viability or podosome physiology upon expression of these constructs, comparable to fl KIF9-GFP.

FIGURE 3: KIF9-GFP contacts microtubules and podosomes. (A) Confocal laser scanning micrographs of primary human macrophage expressing KIF9-GFP (green), labeled for α-tubulin (red). White boxes in overview image are enlarged on the right. White bar, 10 μm. (B) Image from confocal time-lapse video of a primary human macrophage expressing KIF9-GFP (green) and α-tubulin-mCherry, labeling microtubules (see Supplemental Video 1). White frame indicates detail images on the right (left panel: overlay; middle panel: α-tubulin-mCherry signal, right panel: KIF9-GFP signal). White bar, 5 μm. Elapsed time since start of the experiment is given in seconds on the right. (C) Image from confocal time-lapse video of a primary human macrophage expressing KIF9-GFP (green) and mRFP-β-actin (red), labeling podosomes (see Supplemental Video 2). Cell circumference is depicted by the dashed white line. (C) White frame indicates area of detail images on the right, elapsed time since start of the experiment is given in seconds in lower left corners. Note dynamic contact (white arrows) of KIF9-GFP particles with podosomes in the central area but not in the cell periphery.
To characterize the localization and effects of the KIF9 C-terminus in more detail, we immunostained cells expressing GFP-KIF9-CT81 for a variety of vesicular and cytoskeletal markers. We observed partial colocalization of GFP-KIF9-CT81 with Golgi proteins, such as the trans-Golgi marker TGN46 (Figure 7, A–F). Strikingly, cells (unpublished data). By contrast, overexpressed GFP-KIF9-CT81 did not localize to vesicles and was found mostly in a perinuclear accumulation (Figure 5, K–M). Moreover, cells expressing this construct detached from coverslips 6–8 h after transfection, indicating a profound effect of GFP-KIF9-CT81 on macrophage viability.

Cells overexpressing GFP-KIF9-CT81 often showed a loss of podosomes; however, this phenomenon was inconsistent and could also have been due to a general detachment of cells. To assess potentially specific effects of the KIF9 C-terminus on podosomes, we thus generated a GST-fused version of KIF9-CT81 (GST-KIF9-CT81; Figure 5A) and used it in a microinjection-based podosome reformation assay (Linder et al., 1999; Hufner et al., 2001). This procedure takes advantage of a microinjection artifact, as injection of macrophages leads to initial loss of podosomes, with subsequent reformation within 1 h (Linder et al., 2000b). Assessing podosome reformation after microinjection, we found that control cells injected with GST initially lost most of their podosomes, but mostly reformed them within 1 h, whereas cells injected with GST-KIF9-CT81 showed a clear reduction in podosome reformation (Figure 6, A and B; Table 1). Within the observed time period, microinjected cells showed normal spreading and no obvious loss of viability, arguing for a specific effect of GST-KIF9-CT81 on podosomes. We conclude from these experiments that the C-terminal region of KIF9 is important for the de novo formation of macrophage podosomes.

To characterize the localization and effects of the KIF9 C-terminus in more detail, we immunostained cells expressing GFP-KIF9-CT81 for a variety of vesicular and cytoskeletal markers. We observed partial colocalization of GFP-KIF9-CT81 with Golgi proteins, such as the trans-Golgi marker TGN46 (Figure 7, A–F). Strikingly, cells
exhibiting GFP-KIF9-CT81 also showed a dispersed localization of the Golgi (Figure 7, A–F), compared with control cells (93.3% ± 2.6% for cells expressing GFP-KIF9-CT81; 13.3% ± 8.8% for cells expressing GFP; Figure 7G). These results indicate that the KIF9 C-terminus partially colocalizes with Golgi proteins and that overexpression of GFP-KIF9-CT81 leads to Golgi dispersal, which may contribute to the observed loss of cell viability. Interestingly, siRNA-induced knockdown of KIF9 did not lead to significant alterations in Golgi architecture (Supplemental Figure 4), indicating that KIF9 per se is not involved in regulating Golgi integrity.

KIF9 interacts and colocalizes with reggie-1/flotillin-2

We next investigated potential interaction partners of the KIF9 C-terminus by overexpressing GFP-KIF9-CT81 in macrophages with subsequent anti-GFP immunoprecipitation. Silver staining of respective polyacrylamide (PAAM) gels showed that additional bands coprecipitated with GFP-KIF9-CT81, compared with the GFP control (Figure 8A). Subsequent mass spectrometry (MS) and Western blot analyses revealed a prominent band at ~45 kDa (Figure 8A) corresponding to reggie-1 and -2 (also named flotillin-2 and -1; reviewed in Stuermer, 2010).

Reggies/flotillins are known for their strong tendency toward hetero-oligomerization (Langhorst et al., 2008; reviewed in Stuermer, 2010). We thus focused initially on reggie-1/flotillin-2 to verify a potential interaction of KIF9 with reggie proteins. As available antibodies against reggie-1 and KIF9 are not suitable for immunoprecipitation, we expressed GFP-tagged versions of these proteins and performed anti-GFP immunoprecipitations from macrophage lysates. Indeed, endogenous reggie-1 coprecipitated with KIF9-GFP (Figure 8B), and, vice versa, endogenous KIF9 coprecipitated with reggie-1-GFP (Figure 8C), indicating a close interaction between both proteins. Still, the construct lacking the C-terminal domain of KIF9 (KIF9-NT709-GFP) showed residual binding of reggie-1, indicating that the C-terminal 81 aa residues constitute not the only or not the complete binding site for reggie-1 in KIF9 (Figure 8C). Alternatively, this may reflect binding of reggie-1 by endogenous KIF9, which can form homodi-
now expanded our screen for podosome-associated kinesins and report a critical role for KIF9 in the regulation of podosomal matrix degradation in macrophages.

KIF9 is a little-characterized member of the kinesin-9 family. So far, expression of KIF9 mRNA has been reported only for brain and kidney (Piddini et al., 2001). We now add to these findings and show, on both mRNA and protein levels, that KIF9 is also expressed in primary human macrophages. Importantly, anti-GFP immunoprecipitation of GFP-fused KIF9 resulted in coprecipitation of endogenous KIF9. This indicates an ability of KIF9 for oligomerization, presumably as a dimer, as is typical for kinesins (reviewed in Woehlke and Schlwa, 2000). Dimer formation is likely to involve the coiled-coil regions of KIF9 (Piddini et al., 2001), comparable to the general mode of kinesin dimerization (Wade and Kozielski, 2000). This is also supported by the observations that a construct lacking the motor domain (KIF9-CT402) or a construct lacking the tail region (KIF9-NT709), but in both cases containing the coiled-coil regions, localizes to vesicles, presumably through interaction with the endogenous motor. By contrast, a shorter construct lacking the coiled-coil regions (KIF9-CT81) localizes more diffusely.

Interestingly, GFP-KIF9 coprecipitates two proteins that react with the newly developed anti-KIF9 antibody and that migrate within the expected size range for KIF9 (85–90 kDa) on PAA gels. Apart from potential unspecific cross-reaction of the antibody, this indicates an ability of KIF9 for oligomerization, presumably as a dimer, as is typical for kinesins (reviewed in Woehlke and Schlwa, 2001), comparable to the general mode of kinesin dimerization (Wade and Kozielski, 2000). This is also supported by the observation that a construct lacking the motor domain (KIF9-CT402) or a construct lacking the tail region (KIF9-NT709), but in both cases containing the coiled-coil regions, localizes to vesicles, presumably through interaction with the endogenous motor. By contrast, a shorter construct lacking the coiled-coil regions (KIF9-CT81) localizes more diffusely.

 Knockdown of KIF9, using two independent siRNA/shRNAs, resulted in a pronounced loss of podosome numbers, indicating a role for KIF9 in the formation and/or turnover of these structures, comparable to the effect previously described for KIF1C (Kopp et al., 2006). Moreover, in KIF9 siRNA-treated cells that still form numerous podosomes, gelatin matrix degradation was almost completely blocked, pointing to an additional role of KIF9 in the regulation of podosomal matrix degradation. These effects may be independent but could also be linked through previously reported feedback loops connecting podosome formation and podosomal matrix degradation (reviewed in Linder, 2007).

Comparable to other kinesin motors, KIF9 contains an N-terminal motor domain (Piddini et al., 2001), which is expected to bind to the microtubule lattice. Indeed, KIF9 has been reported to associate with the microtubule cytoskeleton in primary glial cells and to coidem with taxol-stabilized microtubules (Piddini et al., 2001). Here we show that KIF9-GFP-positive vesicles associate with microtubules and repeatedly contact podosomes, revealing a direct
connection between KIF9-mediated, microtubule-based transport and actin-rich podosomes, which are regulated by KIF9.

Interestingly, KIF1C regulates the dynamics of podosome precursors in the cell periphery (Kopp et al., 2006) and is not involved in the regulation of matrix degradation by podosomes (Wiesner et al., 2010). By contrast, KIF9 contacts podosomes mostly in the inner region of the ventral cell surface, which are more efficient in matrix degradation (Wiesner et al., unpublished observations), and has a profound effect on the matrix-degrading ability of these structures.

These findings indicate that specific kinesins exert differential effects on podosomes. The molecular/structural basis of this fine-tuned regulation will be an important point to address in future studies. It may be mediated by trafficking of specific kinesins on differentially modified microtubule subsets, as shown previously for movement of kinesin-1 along acetylated (Reed et al., 2006), or of KIF5c along detyrosinated, microtubules (Dunn et al., 2008, reviewed in Verhey and Hammond, 2009). Furthermore, it is likely to involve differential transport of specific cargo molecules of various kinesin isoforms to podosomes.

In this context, the C-terminal regions of kinesins are of particular interest, as they are thought to function as cargo binding sites of adaptors or regulators (reviewed in Woehlke and Schliwa, 2000). Indeed, the C-terminal 81 aa residues of KIF9 comprise a unique sequence (Piddini et al., 2001) that could potentially act as a hub for specific interaction partners. In a first step to investigate this, we generated a respective GFP-fused construct (GFP-KIF9-CT81). However, overexpression of GFP-KIF9-CT81 for more than 6 h resulted in cell detachment. To circumvent this problem, we microinjected a GST-fused version into macrophages, which allows for manifestation of potential effects within 1 h. This resulted in a pronounced defect of cells to reform podosomes, indicating that the C-terminal region of KIF9 is involved in podosome regulation, presumably by binding to specific interaction partners.

Immunoprecipitation of GFP-KIF9-CT81 from macrophage lysates and subsequent MS analysis revealed the presence of reggie-1 and -2 in the precipitates, indicating a potential interaction of reggie proteins with the KIF9 C-terminus. Indeed, GFP-fused full-length constructs of either KIF9 or reggie-1 were able to cross-precipitate the respective endogenous proteins, arguing for a close interaction of both proteins within cells. Interestingly, only one band of endogenous KIF9 was coprecipitated by GFP-reggie-1, indicating that reggie may interact with only one (splice or phospho) variant of the motor. Moreover, a construct lacking the unique C-terminal region of KIF9 (KIF9-NT709-GFP) still showed binding to endogenous reggie-1, although at a diminished degree. 1) This could indicate that both proteins interact through the KIF9 C-terminal region, but this region may constitute only a part or not the single reggie-1 binding site in KIF9, or 2) it may reflect recruitment of reggie-1 by endogenous KIF9, which can form dimers with KIF9-NT709-GFP. Both scenarios would be consistent with the observation that overexpression of KIF9-NT709-GFP did not reduce gelatin degradation in the matrix-degradation assay.
Consistent with the biochemical analysis, we observed partial colocalization of GFP-KIF9-CT81 with reggie-1 at the above-mentioned dispersed Golgi localization and colocalization of mCherry with GFP-fused reggie-1 at vesicular structures in fixed cells. Both localizations are in line with earlier observations showing the presence of reggie proteins at the Golgi or at cytoplasmic vesicles (Langhorst et al., 2008; Stuermer, 2010). Interestingly, live cell imaging of macrophages coexpressing reggie-1–GFP and KIF9–mCherry revealed that, although a clear overlap between reggie-1– or KIF9–positive vesicles was observed, contact between both populations is mostly transient and more reminiscent of a kiss-and-run scenario. The extensive colocalization observed in fixed specimens thus probably represents a fixation artifact.

The dispersed Golgi morphology upon overexpression of GFP-KIF9-CT81 may be due to the KIF9 polypeptide interacting with...
reggie and other Golgi-localized proteins. As siRNA-induced knockdown of reggie-1 did not result in Golgi dispersal, it is unlikely that KIF9 per se is involved in the regulation of Golgi architecture. In a physiological scenario, fl KIF9, containing the motor domain, would be able to transport this cargo along microtubules. The isolated C-terminus, however, is unable to bind to and move processively along microtubules, and its overexpression may thus lead to sequestering of Golgi-derived proteins. This may result in the aberrant Golgi morphology and, ultimately, in cell detachment.

A central issue concerns the question of how the KIF9/reggie interaction affects podosomes and their function. Interestingly, siRNA-induced knockdown of reggie proteins did not influence podosome numbers and matrix degradation, and indicates that the KIF9 C-terminus probably binds to other regulatory factors, apart from reggie-1.

Furthermore, as reggie-1 and -2 have a pronounced tendency to form hetero-oligomers (Langhorst et al., 2008), both reggie-1 and -2 are likely to form a complex together with KIF9. Consistently, knockdown of either reggie-1 or -2 had comparable effects on matrix degradation, while a combined knockdown did not show a significant enhancement over single isoform down-regulation. This indicates that 1) reggie-1 and -2 cannot compensate for each other and 2) only the reggie hetero-oligomer is functional in this regard. Interestingly, reggie proteins are not found in purified podosome fractions (our own unpublished observations), which may indicate that reggie proteins are only in transient contact with podosomes and that they are not actual components of these structures.

Reggie proteins function in the targeted delivery of membrane and membrane proteins from internal vesicle pools to privileged sites at the plasma membrane, including cell–cell contacts or growth cones (Stuemer, 2010). In this context, it is tempting to speculate that reggie proteins may be involved in the delivery of membrane material to podosomes. Involvement of membrane delivery to the related invadospora Polidiomyces phaffii has been demonstrated (reviewed in Caldeiro and Buccione, 2010), and this mechanism may be involved in the protrusive growth of these structures. However, it is currently unclear whether podosomes are also protrusive (Gimona et al., 2005; Zhao et al., 2008). Alternatively, a potential reggie-dependent membrane influx at podosomes may be involved in the delivery or recycling of lytic enzymes, for example, through vesicles containing matrix metalloproteinases (MMPs), which are important for the lytic ability of podosomes (Linder, 2007). However, colocalization studies performed by staining several important MMP isoforms such as MMP-2, MMP-7, MMP-8, MMP-9, MMP-12, MT1-MMP, and MT4-MMP in reggie-1-GFP-expressing macrophages revealed no significant degree of colocalization (Supplemental Figure 6), which makes this scenario unlikely.

Reggie proteins cluster in complexes that also comprise Src family kinases and Rho GTPases (Kawase et al., 2006). Interestingly, Src family members such as Src (Sounni et al., 2004), Fyn (Redondo-Muñoz et al., 2010), or Lyn (Zha et al., 2006) and Rho GTPase signaling (Deroanne et al., 2005; Guegan et al., 2008) have been shown to be involved in MMP-dependent signaling in various cell systems. The potential involvement of reggie proteins in the indirect regulation of MMPs is thus an important direction for future studies.

In sum, we show here a novel role for the kinesin KIF9 in the regulation of both numbers and matrix-degradation ability of human macrophage podosomes and demonstrate that the unique C-terminal region of KIF9 is central for these effects. KIF9 is only the second kinesin to be identified as a regulator of podosomes, while, in turn, podosome regulation is the first reported cellular function for this motor. We further show a specific interaction of the KIF9 C-terminus with reggie-1/flotillin-2. Consistently, reggie proteins also have a significant role in the regulation of podosomal matrix degradation. KIF9 thus appears to mediate several activities through interaction with distinct cargo molecules. A future challenge is thus to identify further interactors of KIF9 and to elucidate their effects on specific aspects of podosome regulation.

MATERIALS AND METHODS

Cell isolation and cell culture

Human peripheral blood monocytes were isolated from buffy coats (kindly provided by Frank Bentzen, University Medical Center Hamburg-Eppendorf, Germany) and differentiated into macrophages as described previously (Linder et al., 1999).

Microinjection of proteins

Cells for microinjection experiments were cultured for 5–8 d. Proteins were expressed in *Escherichia coli* as described in Linder et al. (2000). For microinjection, proteins were dialyzed against microinjection buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM MgCl₂), concentrated in Vivaspin filters (Sartorius, Göttingen, Germany), shock frozen, and stored at ~80°C. Microinjection was performed using the Eppendorf Transjector 5246 and a Compc Inject microinjection pump (Cell Biology Trading, Hamburg, Germany). GST-KIF9-CT81 was injected into the cytoplasm at 2 μm/μl. Control experiments were performed with comparable concentrations of GST. Injected cells were identified by labeling coinjected rat immunoglobulin G (IgG) (5 mg/ml; Dianova, Hamburg, Germany) with fluorescein isothiocyanate transferrin (FITC)–labeled goat anti–rat IgG antibody (Dianova). Cells containing less than 10 podosomes at a given time point were scored as "containing no podosomes."

Transfection of cells

Cells were transiently transfected using the Microporator (Peqlab, Erlangen, Germany). For transfection of primary human macrophages, the following parameters were used: 1000 V, 40 ms, 2 pulses, and 0.5 μg DNA per 1 × 10⁵ cells.

Expression vectors

For cloning of GST-KIF9-CT81, part of the coding sequence of KIF9 was amplified using the following primers: (CT81 forward) 5′-CTGGTACAATAGATCTTTTGTACCTCCGTC-3′ and (CT81 reverse) 3′-ATCTGGTGATCGATCCCTTGTGCT-5′, generating 5′ BamHI and 3′ BglII restriction sites, and cloned into pGEX-4T2, resulting in a construct coding for aa residues 712–793. For cloning and expression of KIF9-CT81-GFP, the same coding sequence of KIF9 was amplified using primer (CT81 forward) and primer 3′-GGCACATAGAGGATCCTCGTGA-5′, generating 5′ BamHI and 3′ BglII restriction sites, and cloned into pEGFP-C1 (Clontech, Saint-Germain-en-Laye, France). For cloning and expression of wild-type GFP-KIF9, the KIF9 coding sequence was amplified from pBlueScript-KIF9 using the primers (KIF9-GFP forward) 5′-TGGCTG-GCTGTTGAAGCTTTAGTAC-3′ and (KIF9-GFP reverse) 3′-GACTGGCGATGACGGGTTTTTTTCTATGTCGC-5′, generating 5′ HindIII and 3′ AgeI restriction sites. The PCR product was cleaved by using the internal KpnI restriction site, and the resulting two regions were cloned successively into vector pEGFP-N1 (Clontech, Palo Alto, CA). For cloning and expression of KIF9-CT402-GFP, the fl KIF9-GFP construct was digested by AgeI and Kpnl, and the region coding for aa 388–790 was cloned into pEGFP-N1. For cloning of the KIF9-N709 tailless construct, part of the coding
sequence of KIF9 was amplified using the following primers: (KIF9-GFP NT1 forward) 5′-ATAATGATTTAATACGAGATGGTAC-TAGGA-3′ and (KIF9-GFP NT709 reverse) 3′-CTGGTACAAT-GAGTCCCGGGCCTAAATT-5′, generating 5′ Xhol and 3′ Apal restriction sites, and cloned into pEGFP-N1, resulting in a construct coding for aa residues 1–709. For cloning of KIF9-mCherry, GFP and mCherry sequences of KIF9-GFP and mCherry-N1 (Clontech, Mountain View, CA) were exchanged by digestion with AgeI and NotI, with subsequent ligation of the mCherry sequence into the KIF9 vector backbone. For cloning of KIF9-pTagRFP, GFP and pTagRFP sequences of KIF9-GFP and pTagRFP-N (Evrogen, Moscow, Russia) were exchanged by digestion with AgeI and NotI, with subsequent ligation of the pTagRFP sequence into the KIF9 vector backbone. Generation of mRFP-β-actin has been described in Osiak et al. (2005). Vector-based shRNAs for KIF9 and scrambled control sequences were generated using siSTRIKE U6 Hairpin Cloning System (Human)-hMGFP (Promega, Madison, WI) according to the manufacturer’s instructions. The sequence for KIF9-shRNA was 5′-GAGAGGAGGTGTCAAAA-3′, targeting nucleotides 126 to 143. The sequence for scrambled control was 5′-GTACCTAAATCCAAAGAA-3′.

Immunoblotting

Immunolabeling was performed by standard procedure, using the following primary antibodies: mouse monoclonal reggie-1 was from BD Biosciences (Franklin Lakes, NJ), mouse monoclonal HA was from Cell Signaling (Danvers, MA), and mouse polyclonal GFP was a kind gift of J. Faix (Medical University Hannover, Hannover, Germany). For generating the KIF9 antibody, GST-KIF9-CT81 was thrombin cleaved, and the KIF9-CT81 peptide was separated by PAA gel electrophoresis, purified from gels, and injected into New Zealand White rabbits. Rabbit serum was affinity purified with GST-KIF9-CT81 spotted on nitrocellulose membrane. Secondary antibodies were horseradish peroxidase–coupled anti–mouse or anti–rabbit IgG (Dianova). Protein bands were visualized by using a SuperSignal kit (Pierce, Rockford, IL) and X-Omat AR film (Kodak, Stuttgart, Germany).

Quantitative real-time PCR

SiRNAs were validated by quantitative real-time PCR (qPCR) using lysates of transfected HeLa cells, as previously described (Machuy et al., 2005). Briefly, 0.1–0.25 μg siRNA (final concentration 80–200 nM) directed against KIF9 or luciferase as control and 2 μl TransMessenger reagent (Qiagen, Hilden, Germany) were added to 10 × 10⁴ cells seeded in 96-well plates. RNA was isolated 48 h later using the RNeasy 96 BioRobot 8000 system (Qiagen). The relative amount of target mRNA was determined by qPCR using Quantitect SYBR Green RT-PCR Kit following the manufacturer’s instructions (Qiagen). The sequence of the KIF9-specific siRNA was 5′-CAGGACTTGGTTTATGAGACA-3′, targeting nucleotides 196 to 216. SiRNA for firefly luciferase, used as a control, was generated as described in Kopp et al. (2006). siRNAs for Reggie-1 and reggie-2 were generated (MWG, Ebersberg, Germany) according to Solis et al. (2007). Primary human macrophages were transfected with siRNA (650 ng) twice at 0 and 72 h and evaluated after a further incubation period of 5 h.

Reverse transcriptase reaction

A total of 6 × 10⁴ cells were cultured for 7 d, and mRNA was isolated using 1 ml Trizol Reagent (Invitrogen, Carlsbad, CA). DNA was removed by DNase digestion (Novagen, Madison, WI). For cDNA synthesis, 1 μg random primer (Promega) was annealed to 2 μg RNA for 5 min at 70°C, and first-strand synthesis was performed using Moloney murine leukemia virus reverse transcriptase (Promega). Second-strand synthesis was performed using an oligonucleotide primer pair corresponding to nucleotides 1125–1150 and 1531–1579 of the KIF9 coding sequence (accession number BC030657), respectively. As a control for quantitative removal of residual DNA, oligonucleotide primers specific for an exon in the human β-actin gene were used, corresponding to nucleotides 1161–1142 and 716–735, respectively.

Immunoprecipitation

Immunoprecipitations of GFP-fused proteins were performed using the μMACS GFP Tagged Protein Isolation Kit (Miltenyi Biotec, Bergisch-Gladbach, Germany) according to the manufacturer’s instructions. For lysis, preparation of columns, and washing, the following buffers were used: lysis buffer (150 mM NaCl, 1% Igepal

Amelioration of mouse models

Immunosuppressed mouse models were generated as described (e.g., Figure 1D: containing 0–10, 11–50, and >50 podosomes). To be scored as a contact between podosomes (labeled with mRFP-actin) and KIF9-GFP vesicles, the respective mRFP and GFP signals had to be directly adjacent or overlapping for at least two pixels, without intermediate black pixels.
Mass spectrometry

After SDS-PAGE and silver staining of proteins, gel bands were excised from the gel and subjected to in-gel digest as described in Shevchenko et al. (2006). Extracted peptides were desalted and concentrated with “STAGE” t. Reverse-phase liquid chromatography–tandem MS (LC-MS/MS) was done by using an Agilent 1200 Nano-flow LC system (Agilent Technologies, Böblingen, Germany). The LC system was online coupled to an LTQ-Orbitrap (Thermo Scientific, Waltham, MA) equipped with a nanoelectrospray source (Proxeon, Odense, Denmark). Chromatographic separation of peptides was performed with a custom-made capillary needle packed with reverse-phase ReproSil-Pur C18 resin (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany). The tryptic peptide mixtures were concentrated with “STAGE” t. Reverse-phase liquid chromatography–tandem MS (LC-MS/MS) was done by using an Agilent 1200 Nano-flow LC system (Agilent Technologies, Böblingen, Germany). The LC system was online coupled to an LTQ-Orbitrap (Thermo Scientific, Waltham, MA) equipped with a nanoelectrospray source (Proxeon, Odense, Denmark). Chromatographic separation of peptides was performed with a custom-made capillary needle packed with reverse-phase ReproSil-Pur C18 resin (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany). The tryptic peptide mixtures were auto sampled at a flow rate of 0.5 μl/min and then eluted with a linear gradient at a flow rate of 0.25 μl/min. The mass spectrometers were operated in the data-dependent mode to automatically measure MS and MS/MS (Krüger et al., 2008). Full-scan MS spectra were acquired with a resolution r = 60,000 at m/z 400. Raw MS spectra were processed using the MaxQuant software, which performed peak list generation and false discovery rate calculation based on search engine results (Cox and Mann, 2008). The derived peak list was searched with the Mascot search engine (Matrix Science, Boston, MA) against a concatenated database (IPI 3.54 human) (Elias and Gygi, 2007).

Matrix labeling and degradation

Gelatin (from swine; Roth, Karlsruhe, Germany) was fluorescently labeled with normal human serum (NHS–rhodamine (Thermo Scientific, Rockford, IL) according to Chen (1996). Coverslips were coated with labeled gelatin solution, fixed in 0.5% glutaraldehyde (Roth), and washed with 70% ethanol and medium. Cells were seeded on coated coverslips with a density of 8 x 10⁵ cells/coverslip and incubated for a further 5 h, followed by fixation and staining.

Statistics

ImageJ software was used to analyze Cy5-labeled F-actin fluorescence intensity. Values of matrix degradation were determined by loss of fluorescence intensity, with intensity of undegraded areas set to 100%. For comparability, laser intensity was not changed between measurements. For each value, 3 x 30 cells were evaluated. Statistical analysis was performed with Excel software. When indicated, differences between mean values were analyzed using the Student’s t test. P < 0.05 was considered as statistically significant and P < 0.01 as statistically highly significant.

For vesicle tracking, the ImageJ software (plug-in “manual tracking”) was used to analyze vesicle movement of KIF9-GFP–transfected cells. Each vesicle was tracked manually throughout the video. In selected time-lapse movies, line intensity profiles were determined at time points indicated using Velocity 5.3 for Mac imaging software. The resulting intensity values (gray levels of the acquired 14-bit image) of EGFP and mRFP fluorescence were offset corrected and plotted over the length of the line drawn using GraphPad Prism 5.0c for Mac.

ACKNOWLEDGMENTS

We thank Jan Faix for the anti-GFP antibody, Ritva Tikkanen for GFP-reggie-1, Jens Cornils and Barbara Böhlig for expert technical assistance, and Martin Aepfelbacher and Peter C. Weber for continuous support. This work is part of the doctoral thesis of SC. Work in the SL lab is supported by Deutsche Forschungsgemeinschaft (LI925/2-1, LI925/3-1), Wilhelm Sander-Stiftung (2007.020.02), and the European FP7 program (Marie Curie Actions, T3Net).

REFERENCES

SUPPLEMENTARY MATERIAL

Figure S1. KIF9-CT402-GFP contacts podosomes. (A) Images from confocal time lapse movie of a primary human macrophage expressing KIF9-CT402-EGFP (green) and mRFP-Lifeact (red), labelling podosomes (see marked region of interest in suppl. videos 3+4). A KIF9-CT402-GFP decorated vesicle (arrowhead) contacting several podosomes (arrow) was monitored over time. Scale bar: 2 µm. (B) Intensity profile along a line (highlighted in yellow) across a KIF9-CT402-GFP decorated vesicle, which is in close contact to a podosome; observed at time point T9. Intensity values of GFP and mRFP fluorescence were plotted over of the length of the line drawn. (C) Intensity profile along a line (highlighted in yellow) across a KIF9-CT402-EGFP decorated vesicle, which is in very close contact to a podosome; observed at time point T84. Intensity values of GFP and mRFP fluorescence were plotted over of the length of the line drawn.

Figure S2. Effects of KIF9 expression constructs on podosomal matrix degradation. Confocal laser scanning micrographs of primary human macrophages expressing EGFP (A), KIF9-CT402-GFP(B), or KIF9 NT709-GFP (C) seeded on rhodamine-labeled gelatin matrix (red). Matrix degradation is visible as dark areas, upper insets show respective F-actin stainings by Cy5-labeled phalloidin (white), lower insets show respective GFP signals (green). White bar, 10 µm. (D) Evaluation of matrix degradation in cells treated with eGFP expression constructs. The degree of matrix degradation was analyzed by fluorescence measurements of each time 5 x 30 cells. Complete absence of labeled matrix beneath cells was set as 100% degradation. Cells were scored into groups according to matrix degradation (0-40%; 41-100%). For differences between control values and values gained with eGFP constructs, a p-value < 0.05 was considered significant. Values are given as mean percentage ± SD of total counts in Table 1.
Figure S3. Subcellular localization of KIF9-NT709-GFP. (A, B, C) Images from confocal time lapse movie of a primary human macrophage expressing KIF9-NT709-GFP (green) and KIF9-mCherry (red). KIF9-NT709-GFP (A) and KIF9-mCherry (B) colocalize at vesicles in living cells (C). Scale bar: 5 µm. (D, D’) Images from confocal time lapse movie of a primary human macrophage expressing KIF9-NT709-GFP (green) and mRFP-Lifeact (red), labelling podosomes. In the subcellular region indicated by white box, KIF9-NT709-GFP decorated vesicles (arrowhead) contacting several podosomes (arrow) were monitored over time (see suppl. video 5). Note repeated, non-random contact of KIF9 NT709-GFP-decorated vesicles with podosomes. Scale bar: 1 µm.

Figure S4. Reggie-1 knockdown does not affect Golgi integrity. Evaluation of Golgi architecture in primary human macrophages transfected with luciferase-specific siRNA, or siRNA specific for reggie-1, siRNA. Influence of each siRNA was evaluated 72 h after transfection. For each value, 3 x 30 cells were evaluated. Values are given as mean percentage ± SD of total counts (luciferase siRNA: 85.6 % ± 1.9 % for compact Golgi, 14.4 % ± 1.9 % for dispersed Golgi; reggie-1 siRNA: 84.4 % ± 3.9 % for compact Golgi, 15.6 % ± 3.9 % for dispersed Golgi).

Figure S5. Knock down of reggie proteins does not influence podosome numbers. Evaluation of podosome formation in primary human macrophages transfected with luciferase-specific siRNA, siRNA specific for reggie-1, siRNA specific for reggie-2 or a combination of both. Influence of each siRNA was evaluated 72 h after transfection. For each value, 3 x 30 cells were evaluated. Values are given as mean percentage ± SD of total counts in Table 1.
Figure S6. Reggie1-GFP does not colocalize with matrix metalloproteinases. Confocal micrographs of macrophages overexpressing reggie1-GFP and stained for endogenous MMP-2 (A-C), MMP-7 (D-F), MMP-8 (G-I), MMP-9 (J-L), MMP-12 (M-O), MT1-MMP (P-R), or MT4-MMP (S-U) using specific primary antibodies and Alexa 568-labeled secondary antibody. Merged images are shown in (A,D,G,J,M,P,S), with single channel images of reggie1-GFP shown in (B,E,H,K,N,Q,T; green) and of respective MMPs in (C,F,I,L,O,R,U; red). White boxes in (A,D,G,J,M,P,S) indicate detail images in (Ai-Ci,Di-Fi,Gi-Ii,Ji-Li,Mi-Oi,Pi-Ri,Si-Ui). White bars indicate 10 µm.

Figure S7. Immunoprecipitations of different KIF9 constructs. Lysates of primary human macrophages immunoprecipitated with anti-GFP antibody coupled to magnetic beads. Silver-stained PAA gel, left lane: cells transfected with full length KIF9-GFP; right lane: cells transfected with GFP-KIF9-CT81 construct. Arrow indicates band subsequently identified by mass spectrometry as reggie-1/-2. Arrowheads indicate bands corresponding to KIF9-GFP (left lane) and GFP-KIF9-CT81 (right lane), as judged by their mobility on PAA gels. Molecular mass in kilodaltons is indicated on the left.

Video 1. video 1.mov

KIF9-GFP vesicles move along microtubules. Primary human macrophage expressing KIF9-GFP (green) and α-tubulin-mCherry (red), labeling microtubules. Confocal time lapse series of detail region indicated in Fig. 3B. (exposure time: 350 ms for green (491 nm), 350 ms for red (561 nm), frame rate: 4 f/s; sequence: 231 s).

Video 2. video 2.mov

KIF9-GFP contacts podosomes. Primary human macrophage expressing KIF9-GFP (green) and β-actin-mRFP (red), labelling podosomes. Confocal time lapse series of substrate
attached part of the cell (exposure time 1000 ms for green (491 nm), 4000 ms for red (561 nm), frame rate: 10 f/s; sequence: 1225 s).

Video 3. video 3.mov

KIF9-CT402-GFP positive vesicles contact podosomes. Primary human macrophage co-expressing KIF9-CT402-GFP (green) and mRFP-Lifeact (red). Note repeated, non-random contact of KIF9 construct-decorated vesicles with podosomes (labeled by mRFP-Lifeact). A dual channel confocal time lapse movie was acquired using an asynchronous mode as follows: exposure time 250ms for green (491nm) and 350ms for red (561nm), acquisition frame rate of 20 time points per minute for the green and 5 time points per minute for the red channel. Movie replay frame rate: 6 f/s; sequence length: 300 s.

Video 4. video 4.mov

Video of detail region shown in video-3.avi.

Video 5. video 5.mov

KIF9-NT709-GFP positive vesicles contact podosomes. Primary human macrophage co-expressing KIF9-NT709-GFP (green) and mRFP-Lifeact (red). Note repeated, non-random contact of KIF9 construct-decorated vesicles with podosomes (labeled by mRFP-Lifeact). A dual channel confocal time lapse movie was acquired using an asynchronous mode as follows: exposure time 300ms for green (491nm) and 250ms for red (561nm), acquisition frame rate of 20 time points per minute for the green and 5 time points per minute for the red channel. Movie replay frame rate: 4 f/s; sequence length: 111 s.

Video 6. video 6.mov
Reggie1-GFP and KIF9-mCherry vesicles contact each other. Primary human macrophage expressing reggie1-GFP and KIF9-mCherry. Confocal time lapse series of detail region (G’) indicated in Fig. 9G (exposure time: 500 ms for green (491nm), 1 s for red (561nm), frame rate: 6 f/s; sequence length: 10 min).

Video 7. video 7.mov

Reggie1-GFP and KIF9-mCherry vesicles contact each other. Primary human macrophage expressing reggie1-GFP and KIF9-mCherry. Confocal time lapse series of detail region (H’) indicated in Fig. 9H (exposure time: 250ms for green (491nm), 750ms for red (561nm), frame rate: 6 f/s; sequence length: 5 min).

Video 8. video 1.mov

Reggie1-GFP and KIF9-mCherry vesicles contact each other. Primary human macrophage expressing reggie1-GFP and KIF9-mCherry. Confocal time lapse series of detail region (H’’) indicated in Fig. 9H (exposure time: 250 ms for green (491nm), 750 ms for red (561nm), frame rate: 6 f/s; sequence length: 5 min).
Suppl. Fig. 1

A

KIF9-CT402-GFP mRFP-Lifeact overlay

T1

T9

T10

T17

T67

T84

T97

B

Line Intensity Profile T9

C

Line Intensity Profile T84
Suppl. Fig. 2

Panel A: GFP-KIF9-CT402-GFP

Panel B: GFP-KIF9-NT709-GFP

Panel C: GFP-KIF9

Panel D: Level of gelatin degradation

Graph showing the percentage of cells scored in different degradation levels: 0-40%, 41-100%.

*P > 0.05
n = 3 x 30
Suppl. Fig. 3

KIF9 NT709-GFP

KIF9-mCherry

overlay

D' →

mRFP-Lifeact

KIF9 NT709-GFP

Overlay

00:30,112

00:18,637

00:03,272

00:30,112

00:51,112

00:18,637

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112

00:30,112
Suppl. Fig. 4

![Graph showing Golgi morphology for Luc siRNA and KIF9 siRNA](image-url)
Suppl. Fig.5

![Graph showing the percentage of cells scored in different categories for Luc, reggie-1, reggie-2, and reggie-1 + reggie-2. The x-axis represents the number of podosomes per cell, and the y-axis represents the percentage of cells scored in each group.](image-url)
Suppl. Fig. 7

KIF9wt-GFP
GFP-KIF9-CT81

kD

35 40 55 70 100 170

120
100
70
55
40
35
Movie S01 - KIF9-GFP vesicles move along microtubules. Primary human macrophage expressing KIF9-GFP (green) and β-tubulin-mCherry (red), labeling microtubules. Confocal time lapse series of detail region indicated in Fig. 3B. (exposure time: 350 ms for green (491 nm), 350 ms for red (561 nm), frame rate: 4 f/s; sequence: 231 s)

Movie S02 - KIF9-GFP contacts podosomes. Primary human macrophage expressing KIF9-GFP (green) and β-actin-mRFP (red), labelling podosomes. Confocal time lapse series of substrate attached part of the cell (exposure time 1000 ms for green (491 nm), 4000 ms for red (561 nm), frame rate: 10 f/s; sequence: 1225 s)

Movie S03 - KIF9-CT402-GFP positive vesicles contact podosomes. Primary human macrophage coexpressing KIF9-CT402-GFP (green) and mRFP-Lifeact (red). Note repeated, non-random contact of Kif9 construct-decorated vesicles with podosomes (labeled by mRFP-Lifeact). A dual channel confocal time lapse movie was acquired using an asynchronous mode as follows: exposure time 250ms for green (491nm) and 350ms for red (561nm), acquisition frame rate of 20 time points per minute for the green and 5 time points per minute for the red channel. Movie replay frame rate: 6 f/s; sequence length: 300 s.

Movie S04 - Video of detail region shown in video-3.avi
Movie S05 - KIF9-NT709-GFP positive vesicles contact podosomes. Primary human macrophage coexpressing KIF9-NT709-GFP (green) and mRFP-Lifeact (red). Note repeated, non-random contact of KIF9 construct-decorated vesicles with podosomes (labeled by mRFP-Lifeact). A dual channel confocal time lapse movie was acquired using an asynchronous mode as follows: exposure time 300ms for green (491nm) and 250ms for red (561nm), acquisition frame rate of 20 time points per minute for the green and 5 time points per minute for the red channel. Movie replay frame rate: 4 f/s; sequence length: 111 s

Movie S06 - Reggie1-GFP and KIF9-mCherry vesicles contact each other. Primary human macrophage expressing reggie1-GFP and KIF9-mCherry. Confocal time lapse series of detail region (G) indicated in Fig. 9G (exposure time: 500 ms for green (491nm), 1 s for red (561nm), frame rate: 6 f/s; sequence length: 10 min)

Movie S07 - Reggie1-GFP and KIF9-mCherry vesicles contact each other. Primary human macrophage expressing reggie1-GFP and KIF9-mCherry. Confocal time lapse series of detail region (H) indicated in Fig. 9H (exposure time: 250ms for green (491nm), 750ms for red (561nm), frame rate: 6 f/s; sequence length: 5 min)

Movie S08 - Reggie1-GFP and KIF9-mCherry vesicles contact each other. Primary human macrophage expressing reggie1-GFP and KIF9-mCherry. Confocal time lapse series of detail region (H) indicated in Fig. 9H (exposure time: 250 ms for green (491nm), 750 ms for red (561nm), frame rate: 6 f/s; sequence length: 5 min).
Declaration:

Karim El azzouzi contributed to the publication:

The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes.

by:

- Performing and analyzing experiments demonstrated in Figure 3 A-B.
- Performing and analyzing experiments demonstrated in Figure 5 A, E-G.
- Performing and analyzing experiments demonstrated in Movie S1.
- Preparing figures for the publication.

The experiments were designed by Susanne Cornfine and Stefan Linder.
The manuscript was written by Stefan Linder.

Hamburg, 03.11.2016

Stefan Linder
V. DISCUSSION

1. Surface-exposed MT1-MMP localizes at podosomes and forms islets after podosome dissolution

My initial project was focusing on the study of traffic and regulation of the Matrix Metalloprotease MT1-MMP in macrophages. During the last years, podosomes, described as an actin-rich structures found on the ventral surface of the plasma membrane, have emerged as the major adhesion and invasion-relevant structures of macrophages and other monocytic cells such as dendritic cells. Moreover, podosomes constitute multifunctional organelles that combine several key functions of invasive cells, including adhesion, sensing of rigidity and topology of the substratum, as well as matrix degradation. MMPs in general, including MMP-2, MMP-9 and MT1-MMP, have been described previously to be enriched in invadosomes and particularly in invadopodia, which are specialized actin-based membrane protrusions present in invasive tumor cells. The presence of these enzymes explains how ECM degradation is achieved by podosomes and invadopodia. Despite being the “master switch” protease and the major collagenase responsible of the remodeling of the ECM, MT1-MMP traffic and regulation still need to be clarified. In fact, following MT1-MMP traffic from its synthesis in the Golgi to its delivery to the ventral surface of macrophages seems to be challenging. It was reported that MT1-MMP vesicles require an intact microtubule system for the long distance range transport. The anterograde transport of this protease is powered by kinesin family-5B (KIF5B) and kinesin family-3A/3B (KIF3A/KIF3B) kinesins, ensuring an enrichment of MT1-MMP at podosomes at the ventral surface of the cell. Although MT1-MMP vesicles are able to dynamically contact podosomes with a speed deceleration in the vicinity of the podosomes ring, the precise localization of MT1-MMP at the plasma membrane at the level of the ventral surface was never shown.

Using total internal reflection fluorescence (TIRF) live-cell imaging of primary human macrophages and a green fluorescent protein (GFP) variant fluorophore called “pHluorin” characterized by its sensitivity to pH variation, I could show for the first time that surface-exposed MT1-MMP is present at podosomes. This observation
resolves the missing spatial connection between podosomes as a matrix degradative structure and the enzyme MT1-MMP as the actual ECM degrading machinery. Furthermore, podosome formation and upkeep depend on actin nucleation by Arp2/3 complex87, so I treated macrophages with CK-666 to inhibit Arp2/3 complex. Addition of CK-666 led to disruption of podosomes and showed another novel localization of surface-exposed MT1-MMP, where it localizes at dot-like “islets” that are embedded in the ventral plasma membrane, and are free of podosome components. These islets can form either naturally during dynamic formation/dissolution of podosomes or by chemical disruption of podosomes, using drugs inhibiting actin nucleation and targeting the Arp2/3 complex. The apparition of MT1-MMP islets upon podosome dissolution clearly illustrates the capacity of podosomes to imprint MT1-MMP in the plasma membrane, especially because these islets persist beyond the regular lifetime of a podosome. To assess the relation between islets and podosomes, I seeded nonadherent macrophages under conditions inhibiting podosome formation. It was reported that β1, β2 and β3 integrins were necessary to form podosomes in osteoclasts88 also, murine dendritic cells lacking β2 integrin failed to form podosomes89. Cells seeded in the presence of the integrin-binding peptide RGD, inhibiting integrin-based adhesion90, thus inhibiting formation of integrin-based podosomes, did not attach properly to the glass surface and failed to form podosomes and islets. We can conclude that podosomes are a prerequisite for islets formation, which appear as a result of podosome disruption after CK-666 treatment.

In addition, preliminary tracking of podosomes, podosome-associated MT1-MMP and MT1-MMP islets showed that podosomes and podosome-associated MT1-MMP display a dynamic co-distribution, whereas MT1-MMP islets have a more static distribution. Further advanced tracking experiments showed that podosome cores display a high variability of track orientation and length, in contrast to podosome-associated MT1-MMPs, which are displaying a more uniform distribution with extremely short tracks. The fact that podosome cores and podosome-associated MT1-MMP share the same localization, raises the question of a possible connection between these two structures. The analysis of lifetime of F-actin podosome cores and podosome-associated MT1-MMP highlight, the long lifetime of the podosome-associated MT1-MMP where approximately half of them persisted for more than 50 minutes. In contrast, only 18.49% of podosome cores persisted for such a long
period. I also observed that MT1-MMP islets can persist for over than 1 hour in comparison to the relative short lifetime of podosomes (2-12 minutes)24. In terms of movement, I showed that podosome-associated MT1-MMP has a restricted lateral movement of 2.9 ± 0.6 µm in comparison to podosomes (4.2 ± 0.8 µm) during 1 hour of observation, this observation was even more pronounced for MT1-MMP islets, where the small observed lateral movement is most likely driven by the global mobility of the membrane.

A model of invadopodia, another actin-rich protrusion structure associated with degradation of the ECM and cancer invasion33, suggests that MT1-MMP affects invadopodia dynamics in the formation and stability phases. MT1-MMP knockdown (KD) leads to a decrease in the median lifetime of invadopodia from 45.5 to 35.5 minutes91 in breast cancer cells. This result suggests a positive feedback of MT1-MMP at invadopodia. The invadopodia model places MT1-MMP downstream of adhesion ring components at a later stage of invadopodia formation (Figure 7), because the inhibition of adhesion signaling decreases the recruitment of MT1-MMP at invadopodia, where MT1-MMP knockdown did not reduce the number of adhesion-ringed invadopodia91.

\textbf{Figure 7. Model of invadopodium maturation.} Initial actin puncta appearance is followed by adhesion ring structure formation including integrins (α, β), ILK, paxillin (Pax) and vinculin (Vinc). Ring formation leads to enhanced MT1-MMP recruitment and ECM degradation by invadopodia91.
Despite the complete different dynamics of invadopodia and podosomes, MT1-MMP persists for a long time in both structures, which could indicate, that MT1-MMP dynamic is not specific to invadopodia or podosomes. It is still unclear if it is regulated by exocytosis, recycling endocytosis or membrane diffusion.

I showed that islets do not contain F-actin, raising the question about the existence of other podosome core or ring components at islets. Among a long list of proteins, I found neither typical core components such as Arp2, tyrosine kinase substrate 5 (Tks5) nor ring components (vinculin, talin and paxillin) in islets. However, since MT1-MMP is a transmembrane endopeptidase, I did expect the presence of transmembrane receptors and proteins that mediate cell-matrix interaction. As mentioned above, integrins can dock MT1-MMP in invadopodia and in endothelial cells, a hypothesis explaining the enhancement of invadopodia lifetime could be based on the capacity of MT1-MMP to interact with integrins via direct docking92,93. Also, MT1-MMP can be found associated with integrin αvβ3 in cellular microdomains called caveolae94 characterized by enriched cholesterol plasma membrane invaginations. We looked therefore for the presence of integrins at islets. We could not detect β1, β2 and β3 integrins at these structures. Kindlin-3 and talin-1, which are integrin activators were also absent from islets. In addition, the hyaluronan receptor CD44, also a transmembrane protein, was also not colocalising with the islets, despite the fact that CD44 is important for adhesion and cell matrix interactions63, and despite its capacity to bind MT1-MMP.

MT1-MMP is also known for its association with caveolin-1 in lipid membrane rafts in human endothelial cells95. Based on these observations, I investigated whether the islets present some specificities in term of membrane topography or lipid composition. It is known that lipid rafts are enriched in cholesterol, and it was also established that phosphatidylinositol 4-phosphate PI(4)P can induce curvature in biological membrane96. Although we found an enrichment of cholesterol and PI(4)P at podosomes, this enrichment was completely lost when podosomes were disrupted to form islets. MT1-MMP islets from this first glance seem to contain only the protease MT1-MMP. However, an extensive characterization of islets components needs to be done, to elucidate the presence of potential markers at islets using mass spectrometry.
Once I characterized the MT1-MMP islet composition, I focused on their potential function and biological significance. I observed during normal live cell imaging that podosomes tend to re-form at islets. Indeed, we and many other labs observed over the years that podosomes had a tendency to reappear at sites of previous podosome formation. However, an explanation or a molecular mechanism for this phenomenon was missing. In order to quantify this phenomenon, I artificially induced podosome disruption by inhibiting F-actin nucleation by blocking Arp2/3 complex activity using the chemical inhibitor CK-66697. After a 10 minutes washout of the Arp2/3 inhibitor, I found that more than 60% of islets are reused to form podosomes. This occurs by recruitment of new material (\textit{de novo} actin nucleation) or by recruitment of actin from neighbouring pre-existing podosomes (fission). I could thus show a new mechanism of podosome reformation, where MT1-MMP functions as a landmark for podosome reformation.

I suggest a novel mechanism where MT1-MMP plays the role of a memory device capable of generating new podosomes as explained in Figure 8. We demonstrated that MT1-MMP is recruited after podosome formation, and we think that MT1-MMP recruitment to podosomes occurs in a similar way to invadopodia. Once the podosomes are disrupted, podosome-associated MT1-MMP becomes apparent as islets, and can then be used as a memory device for podosomes reemergence by either two mechanisms: \textit{de novo} actin nucleation, or recruitment of fission-generated material.
Figure 8. Suggested model for formation of podosome-associated MT1-MMP and MT1-MMP islets during formation of podosomes.
1. Cells start the initial steps of adhesion by forming the first podosomes.
2. Podosomes are formed, and subsequently enriched in MT1-MMP.
3. Podosome dissolution results in MT1-MMP islet formation.
4. MT1-MMP act as a memory device for the reformation of podosomes, either by de novo actin nucleation, or recruitment of fission generated material.

2. Islet formation depends on the cytoplasmic tail of MT1-MMP, and its actin binding activity

In order to clarify which domains of MT1-MMP are responsible for its specific localization at islets, I generated multiple deletions and mutated MT1-MMP constructs. It was clear that islets are formed by enrichment of MT1-MMP at dot like pattern, suggesting the possibility of formation of oligomers at these domains. In fact, MT1-MMP forms homodimers, which are important mainly for two functions: 1) ensuring the activation of proMMP2 through a tertiary complex (MT1-MMP, TIMP-2, and MMP-2) essential for the cleavage of type IV collagen which is a component of the basal membrane and a substrate of MT1-MMP, 2) degradation of collagen by
MT1-MMP100. **Figure 9** shows how the dimerization among other positive regulators induces activation of MMP-2 and MMP-13, processing of ECM, shedding of CD44 in order to enhance cell migration and invasion.

Figure 9. Biological activities of MT1-MMP and their regulation. MT1-MMP enhances cell migration and invasion by direct ECM degradation, activation of proMMP-2 and proMMP-13, CD44 and syndecan-1 shedding. These activities are positively and negatively regulated by a variety of processes. Disturbing one of the positive regulation processes may be enough to inhibit MT1-MMP-dependent cell migration67.

First, the analysis of mutation constructs revealed that only the cytoplasmic tail of MT1-MMP is crucial for its localization at podosomes and islets. Although oligomerization seem to be important for the activation of MT1-MMP as mentioned above, cells transfected with the mutated hemopexin domain of MT1-MMP (DTY/KAF)101 did form podosomes and islets. The same result was obtained when macrophages were transfected with the catalytic mutated domain construct (E240A)102.

The relevance of the hemopexin domain and collagenase activity on controlling islets formation was also assessed using chemical inhibition under NSC405020 treatment, a noncatalytic inhibitor of MT1-MMP. NSC405020 affects homodimerization by interacting directly with the hemopexin domain of MT1-MMP, which leads to an inhibition of its collagenase activity. The islets were formed normally after treatment with NSC405020, ruling out the implication of the hemopexin involved in the
oligomerization and the catalytic domain on islet formation and confirming the results obtained with the mutation constructs.

Second, the analysis of deletion mutation constructs revealed the role of the MT1-MMP C-terminus in proper localization of the protease at podosome and islets. The deletion of the C-terminus leads to a loss of the islet pattern and a diffuse localization in the plasma membrane. However, the deletion of the N-terminus, which constitutes the major part of this protease, did not perturb the localization of MT1-MMP at podosomes and islets.

The C-terminal domain is intracellular and contains only 20 amino acids. Despite its small size, the C-terminus is involved in multiple functions. It is involved in the internalization of MT1-MMP through its di-leucine (Leu⁵⁷¹⁻⁵⁷² and Leu⁵⁷⁸⁻⁵⁷⁹) and tyrosine⁵⁷³ residues¹⁰³. The LLY⁵⁷³ motif in particular binds adaptor protein 2 (AP-2), a component of clathrin coated pits¹⁰³. This motif plays also a role in the activation of MT1-MMP by furins through the interaction with the peripheral Golgi matrix protein Golgi reassembly stacking protein 55 (GRASP55). Moreover LLY⁵⁷³ interacts¹⁰⁴ in invadopodia. It’s also noteworthy that MT1-MMP cytoplasmic tail can be phosphorylated at Thr⁵⁶⁷, leading to an enhanced invasion in 3D type I collagen¹⁰⁵, making the cytoplasmic tail of MT1-MMP a target of choice for further investigations.

I previously described that podosomes, actin-rich structures do colocalize with MT1-MMP organized dot like pattern, but once podosomes are disrupted during normal podosomes turnover or chemical inhibition of actin branching (Arp2/3 complex inhibition), MT1-MMP persists in the form of islets although the podosome cores disappeared, which raises the question of the possible persistence of an interaction between MT1-MMP and the other forms of cortical F-actin. Podosome disruption was induced by the Arp2/3 inhibitor CK-666, affecting only branched actin. This leaves unbranched actin at the cell cortex as a potential interactor for the LLY motif. This hypothetic interaction might anchor the protease in the specific local dot like pattern and explain the persistence of islets independently of the presence of the F-actin podosomes cores.
Before exploring the impact of the motif LLY573 on islets formation, I chemically inhibited all forms of cellular actin, both branched and unbranched, by combining cytochalasin D and latrunculin A treatments. This treatment induced a total dissolution of islets, highlighting the potential involvement of the interaction of F-actin and MT-MMP in islet persistence.

I generated MT1-MMP LLY/AAA mutant, which was rendered small interfering ribonucleic acid (siRNA) insensitive. This construct has a very low actin binding activity105. This construct was not able to form islets when the endogenous MT1-MMP was depleted. These combined two results, highlight the crucial role of the actin binding activity of MT1-MMP in ensuring proper formation and persistence of islets, thanks to its LLY573 motif within its cytoplasmic tail. It seems that the actin binding activity of this motif can be divided hypothetically in two steps during islets formation. The initial step would occur during podosome-associated MT1-MMP recruitment to podosomes, where LLY573 binds the branched F-actin present in podosome cores. The second step would occur during podosome core dissolution, where this time LLY573 binds the cortical actin to stabilize MT1-MMP islets.

I observed reformation of podosomes at islets by a fission mechanism, where the newly formed daughter podosome originates from a preexisting podosome. Considering the well-organized spatial architecture of podosomes, thanks to the high turnover of cytoplasmic actin, presence of radiating actin fibers (unbranched filaments)106,107 and interconnecting podosomes, we can suggest that the LLY573 motif binds F-actin filaments originating from free floating actin bundles from the vicinity of podosomes. Those filaments could potentially be used as a basic structure for actin nucleation and for the recruitment of fission material to form podosomes.

In invadopodia, the actin-associated scaffold protein palladin plays the role of a linker between the actin cytoskeleton and MT1-MMP’s protease activity108. Palladin is required for organization of regular actin cytoskeleton and potentially influences polymerization and assembly of both filamentous and monomeric actin109, it can also be phosphorylated by the proto-oncogene tyrosine-protein kinase (Src)110. Since palladin binds specifically the MT1-MMP cytoplasmic tail, we can imagine that a similar mechanism is occurring in podosomes to explain reformation of fission independent podosomes. A fraction of MT1-MMP islets is interacting through the cytoplasmic tail with cortical actin, the other free fraction of MT1-MMP islets can
easily bind palladin and start the formation of podosome cores by recruiting Src and inducing filamentous actin formation. This mechanism could be an explanation for the formation of daughter podosomes at islets originating from pre-existing podosomes by fission.

Collectively, I provide here, for the first time, the exact localization of MT1-MMP at podosomes at the ventral cell surface in primary human macrophages. Podosomes imprint the transmembrane protease MT1-MMP to form podosome-associated MT1-MMP islets in the plasma membrane. MT1-MMP become apparent especially upon podosome dissolution, and it seem to be mainly composed of MT1-MMP itself. The islets have a similar pattern to podosomes in terms of density and size, reflecting their podosome origin. Moreover, they are reused to form podosomes, either by de novo formation through formation of a new pool of F-actin, or capturing of daughter podosomes that are generated by fission from pre-existing podosomes. I describe here a new function of MT1-MMP, where islets play the role of a memory device that constantly ensures the formation of new podosomes at precise locations with an equidistant pattern. This newly discovered function is independent of the proteolytic activity of MT1-MMP and describes for the first time a structural role of this protein.

3. Control of cell surface exposure of MT1-MMP, ECM degradation and invasion by RabGTPases

I showed that MT1-MMP is localized at podosomes, where matrix degradation is taking place. Previously, it was also shown by our lab that transport of MT1-MMP vesicles is driven by the kinesins KIF5B and KIF3A/KIF3B via the microtubule system toward podosomes. However, fine tuning of the intracellular traffic of MT1-MMP in macrophages still needed to be clarified. In this part of my thesis, I helped to investigate the role of the RabGTPases, which ensure regulation of biosynthesis, endocytosis, recycling and exocytosis of MT1-MMP vesicles.

We aimed initially to identify effectors involved in MT1-MMP trafficking in primary human macrophages. Co-expression of MT1-MMP and RabGTPases showed that MT1-MMP vesicles are positive for a subset of effectors, which are Rab5a, Rab8a, Rab14, Rab21 and Rab22a. Overexpression of RabGTPases leads in some cases to
the formation of artificial giant vesicles and tubules. This artefact allowed the observation of different microdomains that RabGTPases could potentially occupy in the same MT1-MMP vesicle, without necessarily perfectly colocalizing with MT1-MMP. This distribution of RabGTPases seems to be consistent with the specific routing role of each effector. In fact, despite the large number of the RabGTPases family (more than 70), delivery of cargoes to their correct destination is ensured in a very stringent way thanks to the specific localization of each RabGTPase, but also to the presence of microdomains called rab domains especially for RabGTPases sharing the same compartment or routing path.

We also confirmed that endogenous Rab5a, Rab8a, Rab14, Rab21 and Rab22a vesicles are positive for MT1-MMP to exclude that colocalization is simply an overexpression artefact. In M.D. Anderson - Metastatic Breast-231 (MDA-MB-231) cells, recruitment of MMP14 to the invasive front of these adenocarcinoma cells at invadopodia, requires Rab8, which mobilizes MT1-MMP from the intracellular storage compartment, is consistent with the results obtained in macrophages. The specificity of the identified RabGTPases for MT1-MMP transport was underlined by the fact that other tested RabGTPases such as Rab4, Rab6a, Rab9 and Rab11 did not show localization to MT1-MMP vesicles.

Once we identified the RabGTPases present in the MT1-MMP vesicles, we focused on the regulation of the MT1-MMP pool at the cell surface, as MT1-MMP can be re-endocytosed, and then either be recycled or degraded. The outcome of the overexpression of the dominant active and negative isoforms of RabGTPases showed that cell surface exposure of MT1-MMP is mainly regulated by Rab5a, Rab8a, Rab14, and Rab22a. This subset of RabGTPases can be divided in positive regulators Rab8a, Rab14, and Rab22a and a negative regulator Rab5a, which appears to be consistent with their described roles in the regulation of the biosynthetic, recycling and endocytic trafficking routes, respectively. Similar results were obtained when these four RabGTPases were silenced by siRNA.

As mentioned before, matrix degradation appears underneath podosomes where MT1-MMP is localized at podosomes. Prior to podosome enrichment in MT1-MMP, the protease needs to be delivered to the ventral surface of macrophages. It was described that MT1-MMP vesicles contact podosomes, so we decided to assess
contact events between MT1-MMP vesicles and podosomes after depletion of Rab5a, Rab8a, Rab14, Rab21, and Rab22a using siRNAs. As expected, the knockdown of the positive regulators Rab8a, Rab14, and Rab22a of MT1-MMP, induced a drastic reduction of MT1-MMP-podosome contact events. Rab8a mobilizes MT-MMP from a storage compartment to reach the cell surface, explaining the reduction of contact events at podosomes after Rab8a depletion. Rab14 on the other hand localizes to an intermediate compartment prior to Rab11 and after Rab5 and Rab4 for the transferrin-recycling pathway. Depletion of Rab14 induces a reduction of cell surface exposure of a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), another zinc-proteases of the ADAM family. Instead, ADAM10 accumulates in a transferrin-positive endocytic compartment, which is clearly similar to what occurs to MT1-MMP vesicles in macrophages. Rab22a interacts with Early Endosome Antigen 1 (EEA1), which localizes to early endosomes (EE). However the knockdown of Rab5a, which is a negative regulator of MT1-MMP, increased the number of vesicles contacting podosomes. It was also shown that Rab5a depletion significantly increased basal glucose transporter type 4 (GLUT4), another transmembrane protein, on the cell surface of adipocytes, supporting the role of Rab5a as a negative regulator of surface exposure of transmembrane proteins.

Combining all these results, we proposed a preliminary map of RabGTPases controlling MT1-MMP trafficking (Figure 10). The first RabGTPase to intervene during endocytosis is Rab5a at the stage of early endosomes formation, if the vesicle is intended to be directed toward late endosomes (LE), Rab5a will ensure recruitment of Rab7a to deliver MT1-MMP toward this compartment where vesicles follow a maturation process to form lysosomes at the end, where vesicle content is degraded. On the other hand, Rab14 by its localization to EE will drive fast recycling of MT1-MMP toward the cell surface. In case MT1-MMP vesicles are directed toward slow recycling, Rab22a will direct EE to recycling endosomes (RE), and then Rab8a will ensure the surface delivery of MT1-MMP. Rab8a is also responsible of MT1-MMP delivery to the cell surface and may control the traffic of newly synthetized MT1-MMP in the biosynthetic pathway, but also from the RE compartment or from exocytotic vesicles.
A recent article reported that Rab2a, a RabGTPase essential for ER to Golgi transport controls specifically transport of post-endocytotic MT1-MMP vesicles originating from the plasma membrane. Rab2a promotes 3D invasion in breast cancer cells in a proteolytic-dependant manner. Surprisingly, depletion of Rab2a does not affect surface exposure of MT1-MMP, but impairs its endosomal recycling with an accumulation of MT1-MMP vesicles around the nucleus impairing motility of MT1-MMP-positive late endosomes.

Figure 10. Proposed model of RabGTPases regulating MT1-MMP traffic. Surface-associated MT1-MMP is uptaken by endocytosis, which is controlled by Rab5a. Parts of this pool are recycled back to the cell surface, either via fast recycling controlled by Rab14 or via slow recycling through recycling endosomes controlled by Rab22a. Trafficking of newly synthesized MT1-MMP to the cell surface is controlled by Rab8a and may occur by exocytotic vesicles or recycling endosomes. RabGTPase isoforms colocalising with MT1-MMP in macrophages are indicated at their respective compartments. In blue are represented RabGTPases that do affect either surface exposure of MT1-MMP, migration or invasion. In grey, other major RabGTPases with less impact on MT1-MMP biosynthesis and recycling pathway. MT1-MMP is represented in green. EE: early endosomes, LE: late endosomes, RE: recycling endosome, TGN: trans Golgi network, PM: plasma membrane.
4. ECM degradation and 3D invasion are regulated by Rab5a, Rab8a, and Rab14

We identified the positive regulators Rab8a, Rab14, and Rab22a and a negative regulator Rab5a of cell surface exposure of MT1-MMP. We next wondered if the perturbation of MT1-MMP traffic and recycling by RabGTPase depletion, impacts on matrix degradation and cell invasion. On 2D gelatin and 3D collagen assays, we found a significant decrease of matrix degradation for individual knockdown of Rab8a, Rab14, and Rab22a, which is in line with the results of cell surface exposure. Rab5a was also confirmed as negative regulator since its depletion led to an increase of matrix degradation. Moreover, knockdown of Rab5a to a strong increase of invasion. This is inhibited by adding the MT1-MMP inhibitor NSC405020, thus showing that Rab5a mainly works through MT1-MMP in invasion. Interestingly, combinatory knockdown of Rab5a and Rab14 did not decrease 3D collagen dequenching. This result showed the antagonistic effect of Rab5a and agonistic effect of Rab14 with degradation levels similar to those observed in the control. On the other hand the combinatory knockdown of Rab8a and Rab14 showed a clear synergetic effect on cell invasion. However, combinatory knockdown of Rab8a and Rab14 did not show this synergy at the level of surface exposure or collagen dequenching. This could be explained by the fact that both Rab8a and Rab14 are in the same pathway regulating the traffic of MT1-MMP. It was described that proteolytic invasion involves five steps\(^{116}\), including formation of leading edge protrusion, anterior formation of integrin-mediated focal interactions to the matrix, ECM breakdown, actomyosin mediated cell contraction and rear-end retraction and forward sliding of cell body\(^{116}\). The synergetic effect observed during invasion is not necessarily related to MT1-MMP traffic regulation, and could be explained by the non redundant function of Rab8a and Rab14 at one of the five described steps of proteolytic invasion. For example, in polarized HT1080 cells, large macropinosomes were reported to contain Rab8 and β1 integrins at the leading edge\(^{117}\). Also, only Rab5a\(^{108}\), Rab21\(^{118}\) and Rab25\(^{79}\) were reported to associate with integrins, in contrast to Rab14.
We identified three effectors, Rab5a, Rab8a, and Rab14 as key players in MT1-MMP traffic. They ensure control of cell surface exposure and modulation of contact events between MT1-MMP vesicles and podosomes. Rab8a and Rab14 were identified as positive regulators of MT1-MMP traffic, while Rab5a ensures negative regulation. They are also regulating ECM degradation in 2D conditions similar to those found in barriers in physiological conditions and in 3D collagen where invasion is taking place.

For the past decade, cancer research faced disillusion with broad spectrum inhibitors blocking the proteolytic activity of MMPs. The recent findings of novel functions of MMPs, their complex interconnectivity, and the lack of understanding of their regulation, are all possible explanations for such a failure. For example, marimastat, an inhibitor targeting the catalytic zinc activity was used for treatment of metastatic breast cancer and failed because of its musculoskeletal toxicity119. The reason of musculoskeletal pain was the off-targeting of non-MMP metalloproteinases, such as ADAM and ADAMTS family members120.

In this thesis, I reveal part of the RabGTPase networks regulating MT1-MMP traffic in macrophages. I also show how a small peptide present in the cytoplasmic tail of MT1-MMP is governing MT1-MMP localization at podosomes. Novel strategies could be explored to target MT1-MMP-dependent dysfunction. Due to its plethoric physiological functions, MT1-MMP needs to be targeted wisely by combining novel approaches targeting for example exocytosis, with Rab8a, Rab14, and the cytoplasmic tail of MT1-MMP as potential molecular targets.
VI. REFERENCES

19. Martinez, F. O., Sica, A., Mantovani, A. & Locati, M. Macrophage activation

37. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix Metalloproteinases: Regulators of

56. Ohkawara, H., Ikeda, K., Ogawa, K. & Takeishi, Y. MEMBRANE TYPE 1-MATRIX METALLOPROTEINASE (MT1-MMP) IDENTIFIED AS A
MULTIFUNCTIONAL REGULATOR OF VASCULAR RESPONSES.

75. Militello, R. & Colombo, M. I. Small GTPases as regulators of cell division.
93. Gálvez, B. G., Matías-Román, S., Yáñez-Mó, M., Sánchez-Madrid, F. & Arroyo, A. G. ECM regulates MT1-MMP localization with β1 or αvβ3 integrins at distinct cell compartments modulating its internalization and activity on human...

111. Bravo-Cordero, J. J. *et al.* MT1-MMP proinvasive activity is regulated by a

VII. LIST OF FIGURES

Figure 1. Model for M1/M2 macrophages differentiation..........................7
Figure 2. Detailed model of podosome substructures.................................8
Figure 3. Human MMPs...10
Figure 4. Schematic structure of MMPs..12
Figure 5. Domain features of MT1-MMP...15
Figure 6. Localization and function of Rab GTPases.................................17
Figure 7. Model of invadopodium maturation..110
Figure 8. Suggested model for formation of podosome-associated MT1-MMP and MT1-MMP islets during formation of podosomes.................113
Figure 9. Biological activities of MT1-MMP and their regulation..................114
Figure 10. Proposed model of RabGTPases regulating MT1-MMP traffic......120
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAM10</td>
<td>A disintegrin and metalloproteinase domain-containing protein 10</td>
</tr>
<tr>
<td>AP-2</td>
<td>Adaptor protein 2</td>
</tr>
<tr>
<td>Arp2/3</td>
<td>Actin-Related Protein2/3</td>
</tr>
<tr>
<td>CD44</td>
<td>Cluster of differentiation 44</td>
</tr>
<tr>
<td>CK-666</td>
<td>2-Fluoro-N-[2-(2-methyl-1H-indol-3-yl)ethyl]-benzamide</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>EE</td>
<td>Early endosomes</td>
</tr>
<tr>
<td>EEA1</td>
<td>Early Endosome Antigen 1</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>GDI</td>
<td>Guanine dissociation inhibitor</td>
</tr>
<tr>
<td>GEFs</td>
<td>Guanine nucleotide exchange factors</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GLUT4</td>
<td>Glucose transporter type 4</td>
</tr>
<tr>
<td>GRASP55</td>
<td>Golgi matrix protein Golgi reassembly stacking protein 55</td>
</tr>
<tr>
<td>GTPases</td>
<td>Guanine tyrosine phosphatases</td>
</tr>
<tr>
<td>Hpx</td>
<td>Hemopexin</td>
</tr>
<tr>
<td>IL-1</td>
<td>Interleukin 1</td>
</tr>
<tr>
<td>IL-10</td>
<td>Interleukin 10</td>
</tr>
<tr>
<td>IL-13</td>
<td>Interleukin 13</td>
</tr>
<tr>
<td>IL-1ra</td>
<td>IL-1 receptor antagonist</td>
</tr>
<tr>
<td>IL-23</td>
<td>Interleukin 23</td>
</tr>
<tr>
<td>IL-4</td>
<td>Interleukin 4</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin 6</td>
</tr>
<tr>
<td>KD</td>
<td>Knock down</td>
</tr>
<tr>
<td>KIF3A/KIF3B</td>
<td>Kinesin family-3A/3B</td>
</tr>
<tr>
<td>KIF5B</td>
<td>Kinesin family-5B</td>
</tr>
<tr>
<td>LE</td>
<td>Late endosomes</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>M2a</td>
<td>Macrophages 2a</td>
</tr>
<tr>
<td>M2b</td>
<td>Macrophages 2b</td>
</tr>
<tr>
<td>M2c</td>
<td>Macrophages 2c</td>
</tr>
<tr>
<td>M-CSF</td>
<td>Macrophage colony stimulating factor</td>
</tr>
<tr>
<td>MDA-MB-231</td>
<td>M.D. Anderson - metastatic breast-231</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NSC405020</td>
<td>3,4-dichloro-N-pentan-2-ylbenzamide</td>
</tr>
<tr>
<td>PCs</td>
<td>Proprotein convertases</td>
</tr>
<tr>
<td>PI(4)P</td>
<td>Phosphatidylinositol 4-phosphate</td>
</tr>
<tr>
<td>Rab</td>
<td>Ras-related proteins in brain</td>
</tr>
<tr>
<td>RE</td>
<td>Recycling endosomes</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ROIs</td>
<td>Reactive oxygen intermediates</td>
</tr>
<tr>
<td>siRNA</td>
<td>Small interfering ribonucleic acid</td>
</tr>
<tr>
<td>Src</td>
<td>Proto-oncogene tyrosine-protein kinase</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor β</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor beta</td>
</tr>
<tr>
<td>TIMPs</td>
<td>Tissue inhibitor of metalloproteinases</td>
</tr>
<tr>
<td>TIRF</td>
<td>Total internal reflection fluorescence</td>
</tr>
<tr>
<td>Tks5</td>
<td>Tyrosine kinase substrate 5</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor necrosis factor α</td>
</tr>
</tbody>
</table>
I hereby declare, on oath, that I have written the present dissertation on my own and have not used other than the acknowledged resources and aids.

Hamburg, 03.11.2016

Karim EL AZZOUZI