Prävalenz und Grad von Dysphagie bei Parkinsonpatienten in verschiedenen klinischen Stadien

Dissertation

zur Erlangung des Grades eines Doktors der Medizin an der Medizinischen Fakultät der Universität Hamburg.

vorgelegt von:

Moritz Simon Bastian Bihler
aus Tübingen

Hamburg 2017
Angenommen von der
Medizinischen Fakultät der Universität Hamburg am: 12.07.2017

Veröffentlicht mit Genehmigung der
Medizinischen Fakultät der Universität Hamburg.

Prüfungsausschuss, der/die Vorsitzende: PD Dr. Carsten Buhmann

Prüfungsausschuss, zweite/r Gutachter/in: Prof. Dr. Christoph Schramm
Inhaltsverzeichnis

1. Arbeitshypothese und Fragestellung ... 1

2. Einleitung ... 2
 2.1 Anatomie und Pathophysiologie ... 2
 2.1.1 Der Schluckvorgang ... 2
 2.1.2 Morbus Parkinson ... 3
 2.2 Technische Untersuchungen des Schluckvorgangs 4
 2.3 Epidemiologie .. 5
 2.4 Klinische Relevanz von Schluckstörungen .. 6
 2.4.1 Aspirationspneumonie ... 6
 2.4.2 Mangelernährung ... 6
 2.4.3 Definition einer klinisch kritischen Dysphagie 7
 2.5 Mögliche Prädiktoren einer Schluckstörung .. 8

3. Material und Methoden .. 10
 3.1 Probanden .. 10
 3.1.1 Ein- und Ausschlusskriterien ... 10
 3.1.2 Patienten .. 10
 3.1.3 Nicht-Teilnehmer ... 11
 3.1.4 Kontrollprobanden ... 11
 3.2 Studienablauf ... 12
 3.3 Selbstauskunft ... 12
 3.3.1 Nicht-motorische Symptome ... 12
 3.3.2 Depression .. 12
 3.3.3 Fragebogen zum Schluckvermögen ... 12
 3.3.4 Visuelle Analogskala (VAS) ... 13
 3.3.5 Zustand zum Untersuchungszeitpunkt ... 13
 3.4 Neurologische Untersuchung ... 13
 3.4.1 Kognitive Funktionen ... 13
 3.4.2 MDS-UPDRS (Unified Parkinson’s Disease Rating Scale) 13
 3.4.3 L-Dopa-Äquivalenzdosis .. 14
 3.5 Phoniatrische Untersuchung .. 14
 3.5.1 Ernährung .. 14
 3.5.2 Sialorrhoe .. 15
3.6 FEES ... 15
 3.6.1 Technische Ausstattung ... 15
 3.6.2 Vorbereitung .. 17
 3.6.3 Morphologie und Funktionsprüfungen ... 17
 3.6.4 Konsistenzprüfungen .. 17
3.7 Statistische Methoden .. 20
 3.7.1 Signifikanz-Tests ... 20
 3.7.2 Korrelation .. 20
 3.7.3 Binäre logistische Regression .. 20
 3.7.4 ROC-Kurve und AUC ... 21
 3.7.5 Statistik-Software .. 21
4. Ergebnisse .. 22
 4.1 Charakteristika der Probanden ... 22
 4.1.1 Patienten und Kontrollprobanden ... 22
 4.1.2 Nicht-Teilnehmer .. 25
 4.2 Subjektive Dysphagie ... 26
 4.2.1 Visuelle Analogskala (VAS) .. 26
 4.2.2 UPDRS Frage 2.3... 26
 4.3 FEES-Befunde ... 27
 4.3.1 Leaking ... 27
 4.3.2 Residuen .. 29
 4.3.3 Penetrations-Aspirations-Skala (PAS) ... 31
 4.3.4 Synopsis der FEES-Befunde .. 35
 4.3.5 Sekretansammlungen ... 35
 4.3.6 Build Up-Phänomen .. 36
 4.3.7 Schluckgeschwindigkeiten ... 38
 4.3.8 Sialorrhoe .. 41
 4.4 Klinische Konsequenzen aus der FEES-Untersuchung ... 44
 4.5 Prädiktoren für eine klinisch kritische Dysphagie .. 44
 4.5.1 Auswahl der Prädiktoren ... 44
 4.5.2 Klassifizierungsergebnisse .. 45
 4.5.3 Vergleich des Regressionsmodells mit anderen Modellen 46
 4.5.4 Falsch-positive Befunde im Regressionsmodell .. 47
5. Diskussion .. 48
 5.1 Subjektive Dysphagie .. 48
 5.1.1 Charakteristika von Patienten mit subjektiver Dysphagie .. 48
 5.1.2 Häufigkeit einer subjektiven Dysphagie .. 49
 5.1.3 Alternative Selbstbeurteilungsskalen .. 49
 5.2 Komplikationen einer Dysphagie und FEES-Befunde ... 50
 5.2.1 Aspirationspneumonie ... 51
 5.2.2 Mangelernährung ... 51
 5.2.3 Sekretansammlungen ... 52
 5.2.4 Build Up-Phänomen ... 52
 5.2.5 Schluckgeschwindigkeiten ... 53
 5.2.6 Sialorrhoe ... 54
 5.3 Prädiktoren für eine klinisch kritische Dysphagie ... 55
 5.3.1 Nicht-signifikante Prädiktoren ... 56
 5.3.2 Kritische Betrachtung des Regressionsmodells ... 58
 5.4 Stärken und Limitationen dieser Studie ... 59
 5.5 Ausblick .. 63
6. Zusammenfassung ... 65
6. Abstract .. 66
7. Literaturverzeichnis .. 67
8. Anhang ... 80
 8.1 Detailbetrachtung der binären logistischen Regression .. 80
 8.1.1 Auswahl der Prädiktoren .. 80
 8.1.2 Bestimmung der signifikanten Prädiktoren .. 81
 8.1.3 Ausreißer ... 83
 8.1.4 Residuenanalyse ... 85
 8.1.5 Regressionsfunktion und Altersgrenzwerte .. 88
 8.2 Abkürzungsverzeichnis ... 90
 8.3 Abbildungsverzeichnis ... 92
 8.4 Tabellenverzeichnis ... 94
9. Danksagung ... 96
10. Lebenslauf ... 97
11. Eidesstattliche Versicherung .. 98
1. Arbeitshypothese und Fragestellung

Mit der flexibel endoskopischen Evaluation des Schluckakts (FEES) steht eine technische Untersuchung zur Verfügung, die eine sichere Detektion einer oropharyngealen Dysphagie erlaubt (Suttrup und Warnecke 2016). Es ist anzunehmen, dass eine Dysphagie bereits vor der Selbstwahrnehmung durch den Patienten festgestellt werden kann. Mit früher einsetzenden therapeutischen Maßnahmen könnten die weitreichenden Komplikationen wie Aspirationspneumonie und Mangelernährung verhindert oder zumindest aufgeschoben werden.

Es erfolgt eine konsekutive Rekrutierung und die Ausschlusskriterien werden minimiert, um die Versorgungsrrealität bestmöglich abzubilden. Es wird eine Teilnahmemquote von mindestens 70% angestrebt. Die erhobenen epidemiologischen Daten sollen dazu beitragen, den Stellenwert einer Dysphagie-Diagnostik zu untermauern. Idealerweise sind die abgeleiteten Prädiktoren einfach und schnell zu erheben, so dass sie breit eingesetzt werden können.
2. Einleitung

2.1 Anatomie und Pathophysiologie

2.1.1 Der Schluckvorgang

Der Schluckvorgang erfordert das Zusammenspiel von mehr als 25 Muskelpaaren in Mundhöhle, Rachen (Pharynx), Kehlkopf (Larynx) und Speiseröhre (Ösophagus). Er lässt sich in vier Phasen einteilen. Während die beiden oralen Phasen (Vorbereitungs- und Transport-Phase) der Bolusformierung dienen und jederzeit unterbrochen werden können, laufen pharyngeale und ösophageale Phase unwillkürlich ab (Jean 2001). Im Laufe eines Tages wiederholt sich dieser komplexe Vorgang etwa 1.000 Mal (Dziewas und Warneck 2013).

1 Zungengrund. 2+4 Valleculae. 3 Epiglottis-Innenseite. 5+7 Sinus piriformes. 6 Trachea. 8 Rachenhinterwand. 9+10 Lateral channels. 11 Postkrikoidregion.

2.1.2 Morbus Parkinson

Die Alpha-Synuclein-Ablagerungen sind nicht auf das zentrale Nervensystem beschränkt. Sie finden sich u.a. auch im peripheren Anteil des Nervus vagus auf Höhe des Larynx (Beach et al. 2010). Ferner werden sie als ursächlich für Atrophien der Schluckmuskulatur angesehen (Mu et al. 2012). Vielmehr könnte der neurodegenerative Prozess seinen Ursprung im enterischen Nervensystem (Toxinaufnahme über den Darm) nehmen und sich entlang des N. vagus in das zentrale Nervensystem ausbreiten (Klingelhoefer und Reichmann 2015, Pan-Montojo et al. 2010).
2.2 Technische Untersuchungen des Schluckvorgangs

Der Barium-Breischluck war eine der ersten technischen Untersuchungen und basiert auf einem Röntgenkontrastmittel. Er ist aufgrund der geringen Bildwiederholfrequenz jedoch ungeeignet, um die oropharyngeale Phase (im Durchschnitt von etwa 0,7 Sekunden Dauer) adäquat abzubilden (Bartolome et al. 2014). Die Weiterentwicklung in Form der Videofluoroskopie des Schluckens (VFSS) wird in Nordamerika als Goldstandard angesehen (Fasano et al. 2015).

Die FEES eignet sich für die späte orale und die pharyngeale Phase. Die VFSS ist darüber hinaus in der Lage die Funktion des oberen Ösophagussphinkters sowie die orale und ösophageale Phase darzustellen. Zur Beurteilung der ösophagealen Phase ist die hochauflösende Manometrie (Druckmessung) eine sinnvolle Ergänzung (Suttrup und Warnecke 2016).

In mehreren Studien hat sich die FEES gegenüber der VFSS als mindestens gleichwertig herausgestellt. Die Vorteile der FEES sind insbesondere, dass sie am Krankenbett durchgeführt werden kann, Verlaufsuntersuchungen auch in engen Zeitabständen möglich sind (keine Strahlenbelastung wie bei der VFSS), der Speichel sich visualisieren lässt und therapeutische Manöver direkt während der Untersuchung beurteilt werden können. Die Untersuchung wird als weniger gefährlich und weniger belastend als die Anlage einer Magensonde eingeschätzt (Dziewas et al. 2016).
2.3 Epidemiologie

2.4 Klinische Relevanz von Schluckstörungen

2.4.1 Aspirationspneumonie

2.4.2 Mangelernährung

Die krankheitsspezifische Mangelernährung (Tabelle 1) wird von der Deutschen Gesellschaft für Ernährungsmedizin e.V. (DGEM) definiert (Valentini et al. 2013).

Tabelle 1: Kriterien der krankheitsspezifischen Mangelernährung

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body-Mass-Index (BMI) <18,5 kg/m²</td>
<td></td>
</tr>
<tr>
<td>oder</td>
<td>Unbeabsichtigter Gewichtsverlust >10% in den letzten 3–6 Monaten</td>
</tr>
<tr>
<td>oder</td>
<td>BMI <20 kg/m² und Gewichtsverlust >5% in den letzten 3–6 Monaten</td>
</tr>
</tbody>
</table>

2.4.3 Definition einer klinisch kritischen Dysphagie

Tabelle 2: Rosenbek-Skala

<table>
<thead>
<tr>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Material dringt nicht in die Atemwege vor.</td>
</tr>
<tr>
<td>2</td>
<td>Material erreicht die Atemwege, verbleibt oberhalb der Glottis und wird ausgestoßen.</td>
</tr>
<tr>
<td>3</td>
<td>Material erreicht die Atemwege, verbleibt oberhalb der Glottis und wird nicht ausgestoßen.</td>
</tr>
<tr>
<td>4</td>
<td>Material erreicht die Atemwege, berührt die Glottis und wird ausgestoßen.</td>
</tr>
<tr>
<td>5</td>
<td>Material erreicht die Atemwege, berührt die Glottis und wird nicht ausgestoßen.</td>
</tr>
<tr>
<td>6</td>
<td>Material erreicht die Atemwege, dringt bis unterhalb der Glottis vor, wird in den Aditus laryngis oder außerhalb der Luftwege ausgestoßen.</td>
</tr>
<tr>
<td>7</td>
<td>Material erreicht die Atemwege, dringt bis unterhalb der Glottis vor und wird nicht aus der Trachea, trotz Bemühungen, ausgestoßen.</td>
</tr>
<tr>
<td>8</td>
<td>Material erreicht die Atemwege, dringt bis unterhalb der Glottis vor und es erfolgt keine Bemühung zum Ausstoßen.</td>
</tr>
</tbody>
</table>
2.5 Mögliche Prädiktoren einer Schluckstörung

Anhand klinischer Überlegungen und früherer Studienergebnisse könnten die folgenden Faktoren zu einer Schluckstörung beitragen bzw. diese begleiten: Alter, Aspirationszeichen, Depression, Erkrankungsdauer, Geschlecht, kognitive Funktionen, Krankheitsschwere sowie das Vorliegen einer subjektiven Dysphagie oder einer tiefen Hirnstimulation.

Alter

Aspirationszeichen

Depression

Manor et al. (2009) stellten fest, dass sich depressive Symptome und eine Schluckstörung mit zunehmendem Krankheitsverlauf jeweils verschlechtern, doch ließ sich ein potentieller kausaler Zusammenhang aufgrund des Studiendesigns nicht klären.

Erkrankungsdauer

Cereda et al. (2014) fanden einen Zusammenhang zwischen einer subjektiven Dysphagie und der Erkrankungsdauer.
Geschlecht

Kognitive Funktionen

Krankheitsschwere

Tiefe Hirnstimulation

Nach einer tiefen Hirnstimulation wurde eine anhaltende Gewichtszunahme beschrieben, was auf einen Rückgang von Dyskinesien, aber auch auf eine Besserung einer Dysphagie zurückzuführen sein könnte (Tuite et al. 2005).
3. Material und Methoden

3.1 Probanden

Dieses Forschungsvorhaben wurde durch die zuständige Ethik-Kommission der Ärztekammer Hamburg (Weidestr. 122b, 22083 Hamburg) ethisch und fachrechtlich beraten und genehmigt (Studienprotokoll PV5089).

3.1.1 Ein- und Ausschlusskriterien

Die Patienten nahmen ihre Parkinson-Medikamente wie gewohnt ein. Um eine unverfälschte Abbildung zu gewährleisten wurde keine Maximaldauer seit der letzten Einnahme festgelegt.

3.1.2 Patienten

3.1.3 Nicht-Teilnehmer

3.1.4 Kontrollprobanden

Als Kontrollprobanden wurden Personen eingeschlossen, die mindestens 50 Jahre alt waren und die folgenden Fragen allesamt verneinten:

- Haben Sie Probleme beim Schlucken von Speichel, Flüssigkeiten oder Speisen?
- Haben Sie das Gefühl, dass Essen im Hals stecken bleibt?
- Müssen Sie beim oder kurz nach dem Schlucken husten oder würgen?
- Leiden oder litten Sie unter einem bösartigen Tumor im Kopf- und Halsbereich?
- Wurden Sie im Halsbereich schon einmal operiert (z.B. wegen einer Tumorerkrankung oder an der Halswirbelsäule, Schilddrüse)?
- Haben Sie ein „Kloßgefühl“ im Hals?

3.2 Studienablauf

Die Daten wurden von zwei Doktoranden in drei Blöcken erhoben:

1. Selbstauskunft
2. Neurologische Untersuchung
3. Phoniatrische Untersuchung mit sich anschließender FEES

3.3 Selbstauskunft

3.3.1 Nicht-motorische Symptome

3.3.2 Depression

3.3.3 Fragebogen zum Schluckvermögen

3.3.4 Visuelle Analogskala (VAS)

Zwar ist die VAS nicht validiert für eine Dysphagie (Evatt et al. 2009), doch ist sie rasch durchführbar und hat sich in anderen Bereichen (insbesondere zur Schmerzerfassung) bewährt. Der Pat. sollte sich auf einer 10 cm langen Linie mit einem senkrechten Strich einordnen von „keine Schluckprobleme“ bis zu „stärkste vorstellbare Schluckstörung“.

3.3.5 Zustand zum Untersuchungszeitpunkt

Da der Zeitpunkt der letzten Medikamenteneinnahme nicht normiert wurde, sollte der Patient zum Untersuchungszeitpunkt seinen aktuellen Zustand hinsichtlich des Parkinsonsyndroms einstufen: „besser als normal“, „normal“ oder „schlechter als normal“.

3.4 Neurologische Untersuchung

3.4.1 Kognitive Funktionen

Zwar ist der Mini-Mental-Status-Test am weitesten verbreitet (Fiorenzato et al. 2016), doch ist der MOCA (Montreal Cognitive Assessment) besser geeignet für das Demenz-Screening bei Parkinsonpatienten (Hoops et al. 2009). Der MOCA wurde bis auf eine Ausnahme von einem der beiden Doktoranden erhoben.

3.4.2 MDS-UPDRS (Unified Parkinson’s Disease Rating Scale)

Der MDS-UPDRS (Goetz et al. 2008) wurde bis auf zwei Ausnahmen von einem der beiden Doktoranden erhoben. Die Skala teilt sich wie folgt auf:

Teil I: Erfahrungen des täglichen Lebens (nicht-motorische Aspekte)
Teil II: Erfahrungen des täglichen Lebens (motorische Aspekte)
Teil III: Motorische Untersuchung
Teil IV: Motorische Komplikationen

Die Teile IB (Fragen 1.7 - 1.13) und II basieren auf einer Selbstauskunft. Die Frage 2.3 aus Teil II erfragt Probleme beim Kauen und Schlucken: „Hatten Sie in der vergangenen Woche regelmäßig Probleme beim Schlucken von Tabletten oder beim Essen Ihrer Mahlzeiten? Müssen Sie Ihre Tabletten teilen oder zerstoßen oder Ihre Mahlzeiten zerkleinern oder zerdrücken, um ein Verschlucken zu vermeiden?“

Tabelle 3: Krankheitsstadien nach Hoehn und Yahr

<table>
<thead>
<tr>
<th>0</th>
<th>Asymptomatisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nur einseitige Beteiligung</td>
</tr>
<tr>
<td>2</td>
<td>Beidseitige Beteiligung ohne Gleichgewichtsstörung</td>
</tr>
<tr>
<td>3</td>
<td>Leichte bis mäßig ausgeprägte beidseitige Beteiligung: gewisse Haltungsinstabilität, jedoch körperlich unabhängig</td>
</tr>
<tr>
<td>4</td>
<td>Starke Behinderung: kann aber noch ohne Hilfe gehen oder stehen</td>
</tr>
<tr>
<td>5</td>
<td>Ohne fremde Hilfe auf den Rollstuhl angewiesen oder bettlägerig</td>
</tr>
</tbody>
</table>

3.4.3 L-Dopa-Äquivalenzdosis

3.5 Phoniatri sche Untersuchung

3.5.1 Ernährung

Tabelle 4: Schluckbeeinträchtigungsskala (SBS)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Keine Einschränkung</td>
</tr>
<tr>
<td>1</td>
<td>Voll-orale Ernährung mit Kompensation, aber ohne Konsistenz Einschränkung</td>
</tr>
<tr>
<td>2</td>
<td>Voll-orale Ernährung ohne Kompensation, aber mit Konsistenz Einschränkung</td>
</tr>
<tr>
<td>3</td>
<td>Voll-orale Ernährung mit Kompensation und mit Konsistenz Einschränkung</td>
</tr>
<tr>
<td>4</td>
<td>Partiell-orale Ernährung</td>
</tr>
<tr>
<td>5</td>
<td>Partiell-orale Ernährung mit Kompensation</td>
</tr>
<tr>
<td>6</td>
<td>Ernährung ausschließlich über Sonde</td>
</tr>
</tbody>
</table>

3.5.2 Sialorrhoe

Tabelle 5: Drooling Severity and Frequency Scale (DSFS)

<table>
<thead>
<tr>
<th>Frequenz</th>
<th>Räumliche Ausdehnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Niemals</td>
<td>1 Niemals</td>
</tr>
<tr>
<td>2 Gelegentlich</td>
<td>2 Nur Lippen</td>
</tr>
<tr>
<td>3 Häufig</td>
<td>3 Lippen und Kinn</td>
</tr>
<tr>
<td>4 Stetig</td>
<td>4 Kleidung</td>
</tr>
<tr>
<td></td>
<td>5 Kleidung, Hände und Gegenstände</td>
</tr>
</tbody>
</table>

3.6 FEES

Die FEES wurde durch fünf in der Dysphagie-Diagnostik sehr erfahrene HNO-Ärzte bzw. Phoniater durchgeführt.

3.6.1 Technische Ausstattung

Abbildung 2: PAS 8 für Wasser. **A** ohne NBI. **B** mit NBI.

Abbildung 3: Residuen einer in Apfelsaft aufgelösten Tablette. **A** ohne NBI. **B** mit NBI.
3.6.2 Vorbereitung

3.6.3 Morphologie und Funktionsprüfungen

Sekretansammlungen wurden anhand der Kurzversion der 4-Punkte-Sekretbeurteilungsskala nach Murray et al. (1996) beurteilt. Diese wurde in der deutschen Fassung validiert und gilt als reliabel und valide (Hey et al. 2015b).

3.6.4 Konsistenzprüfungen

Wenn eine Mundspatelspitze Brei (angedicktes Wasser) aspirationsfrei geschluckt wurde, folgten folgende Konsistenzen:

1. Ein Schluck Flüssigkeit
2. 90ml Flüssigkeit aus einem Becher mit Hilfe eines Strohhalmis
3. Eine halbe, mit Butter bestrichene Scheibe Weizenmischbrot (Abbildung 4)
4. Placebo-Medikamente: drei Tabletten und eine Kapsel (Abbildung 5)
5. Ein Keks (Abbildung 6)

Brei

Als Andickungspulver wurde „Thick&Easy™“ der Diamond Crystal Brands Inc. (Savannah, GA 31405) verwendet. Die Inhaltsstoffe sind modifizierte Maisstärke (E1442) und Maltodextrin.

Flüssigkeit

Die Anfärbung der Flüssigkeit erfolgte mit „Condi Lebensmittelfarbe Farbton hellgrün“ der Schreiber-Essenzen GmbH & Co. KG (Fahrenberg 26-34, 22885 Barsbüttel) mit den beiden Inhaltsstoffen E104 Chinolingelb und E132 Indigotin I.

Brot

Es wurde eine halbe Scheibe Weizenmischbrot (56% Weizenmehl, ca. 28 g) mit weicher Rinde und einer Scheibendicke von ca. 9 mm verwendet. Die Inhaltsstoffe sind: Weizenmehl, Wasser, Natursauerteig, Roggenmehl, Salz, Hefe, Rapsöl, Invertzuckersirup, Mono- und Diglyceride von Speisefettsäuren, Natriumacetate. Das Brot wurde mit 5 g der Süßrahmbutter „Feine Butter“ der Molkerei Meggle (Wasserburg GmbH & Co. KG, Megglestraße 6–12, 83512 Wasserburg) bestrichen.

Abbildung 4: Brot
Placebo-Medikamente

Die runden Placebo-Tabletten hatten einen Durchmesser von etwa 7 mm bzw. 10 mm, stammten von der Winthrop Arzneimittel GmbH (65927 Frankfurt am Main) und beinhalteten Lactose-Monohydrat, Cellulosepulver, Magnesiumstearat sowie im Falle der kleineren Tablette auch mikrokristalline Cellulose. Die längs-ovale Placebo-Tablette hatte eine Länge von etwa 17 mm, stammte von der Fagron GmbH & CO. KG (Von-Bronsart-Straße 12, 22825 Barsbüttel) und beinhaltete Cellulose, Lactose sowie Magnesiumstearat. Die Placebo-Kapsel hatte eine Länge von etwa 22 mm, stammte von der Apotheke des Universitätsklinikums Hamburg-Eppendorf (Martinistraße 52, 20246 Hamburg) und beinhaltete Gelatine.

Keks

Abbildung 6: Keks
3.7 Statistische Methoden

3.7.1 Signifikanz-Tests

Für intervallskalierte Daten wurden die Mittelwerte mit Standardabweichungen verglichen und mit dem t-Test auf Signifikanz getestet. Für nominal- und ordinal-skalierte Daten wurden die Häufigkeiten verglichen und mit dem exakten Test nach Fisher auf Signifikanz getestet. Das Signifikanzniveau wurde auf $\alpha=0.05$ festgelegt. Es wurde zweiseitig getestet.

3.7.2 Korrelation

Tabelle 6: Interpretation des Korrelationskoeffizienten

<table>
<thead>
<tr>
<th>Korrelationskoeffizient</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 – 0.19</td>
<td>Sehr schwach</td>
</tr>
<tr>
<td>0.20 – 0.39</td>
<td>Schwach</td>
</tr>
<tr>
<td>0.40 – 0.59</td>
<td>Mäßig</td>
</tr>
<tr>
<td>0.60 – 0.79</td>
<td>Stark</td>
</tr>
<tr>
<td>0.80 – 1.00</td>
<td>Sehr stark</td>
</tr>
</tbody>
</table>

3.7.3 Binäre logistische Regression

Die binäre logistische Regression bietet sich an, um die Zugehörigkeit zu einer von zwei Gruppen vorherzusagen (Field 2013). Die Funktion hat einen S-förmigen Verlauf (Abbildung 7) von der geringsten Wahrscheinlichkeit (0%) zur höchsten Wahrscheinlichkeit (100%), denen sie sich jeweils asymptotisch annähert. Es wird eine Grenzwahrscheinlichkeit p^* für die Zuordnung zum Zielereignis (z.B. 0=nicht vorhanden und 1=vorhanden) definiert.

Zielereignis = \begin{cases}
0, & \text{wenn } pk \leq p^* \\
1, & \text{wenn } pk > p^*
\end{cases}
Abbildung 7: Beispiel einer binär-logistischen Regressionsfunktion

3.7.4 ROC-Kurve und AUC

In einer ROC-Kurve (Receiver Operating Characteristic) wird für jeden Grenzwert p^* die zugehörige Kombination aus Sensitivität und 1-Spezifität eingetragen. Als Referenz gilt eine Diagonale (von links unten nach rechts oben verlaufend), welche den Gütemerkens einer rein zufälligen Zuordnung (z.B. mittels Münzwurf) entspricht. Die durch die ROC-Kurve eingeschlossene Fläche (AUC: area under curve) dient als Marker für die Prognosegüte des Modells (Backhaus et al. 2016). Werte >0,9 sind extrem selten zu erreichen. Hierfür wäre ein sehr steiler Anstieg der S-förmigen logistischen Regressionsfunktion nötig, was jedoch die korrekte Schätzung der Koeffizienten unmöglich machen würde (Hosmer und Lemeshow 2000).

3.7.5 Statistik-Software

4. Ergebnisse

4.1 Charakteristika der Probanden

Tabelle 7: Aufteilung der Probanden

<table>
<thead>
<tr>
<th></th>
<th>Patienten</th>
<th>Kontrollen</th>
<th>NMS3 Nein</th>
<th>NMS3 Ja</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Alle Parkinsonpatienten (n=119)</td>
<td>Probanden ohne Parkinsonsyndrom sowie ohne offensichtliche Einschränkung des Schluckens (n=32)</td>
<td>Parkinsonpatienten, die Frage 3 (subjektive Dysphagie) des Fragebogens zu nicht-motorischen Symptomen (NMS) mit Nein beantwortet haben (n=87)</td>
<td>Parkinsonpatienten, die Frage 3 (subjektive Dysphagie) des Fragebogens zu nicht-motorischen Symptomen (NMS) mit Ja beantwortet haben (n=32)</td>
</tr>
</tbody>
</table>

4.1.1 Patienten und Kontrollprobanden

Als Aspirationszeichen traten die Symptome mit folgenden Häufigkeiten unter den Patienten auf (Mehrfachnennungen möglich): Husten (n=15), Räuspern (n=9) und Verschlucken (n=8). Sechs Kontrollprobanden gaben ein Räuspern an, wobei in vier Fällen dessen Häufigkeit ohne Nachfrage durch den Untersucher als selten angegeben wurde.

Patienten mit einer subjektiven Dysphagie wiesen im Vergleich zu den restlichen Patienten statistisch signifikant häufiger kognitive Defizite auf. Hinsichtlich einer Depression ergaben sich keine Unterschiede (Tabelle 8).

Alter, Jahre	68,9 +/- 10,1	67,5 +/- 10,3	0,02 a	72,6 +/- 8,9
Manner, n (%)	80 (67%)	56 (64%)	0,38 b	24 (75%)
Aspirationszeichen, n (%)	28 (24%)	10 (11%)	<0,001 b	18 (56%)
BMI	25,5 +/- 4,0	25,7 +/- 4,2	0,28 a	24,8 +/- 3,1
Mangelernahrung, n (%)	5 (4%)	4 (5%)	1,00 b	1 (3%)
DSFS (Sialorrhoe), Median	4	2	n.a.	5
MOCA	21,9 +/- 4,8	22,5 +/- 4,3	0,02 a	20,2 +/- 5,6
BDI-II (Depression)	10,6 +/- 8,9	10,1 +/- 9,3	0,32 a	11,9 +/- 7,7
Kognitive Defizite (<26 P.)	91 (76%)	67 (77%)	0,56 b	24 (75%)
Keine (0-13 P.), n (%)	12 (10%)	7 (8%)	1 (3%)	
Mild (14-19 P.), n (%)	8 (7%)	7 (8%)	2 (6%)	
Moderat (20-28 P.), n (%)	8 (7%)	6 (7%)	2 (6%)	
Erkrankungsdauer, Jahre	9,7 +/- 7,1	9,4 +/- 7,2	0,35 a	10,8 +/- 6,8
HY Stadium 1, n (%)	5 (4%)	3 (3%)	2 (6%)	
HY Stadium 2, n (%)	58 (49%)	49 (41%)	9 (28%)	
HY Stadium 3, n (%)	32 (27%)	23 (19%)	9 (28%)	
HY Stadium 4, n (%)	20 (17%)	11 (9%)	9 (28%)	
HY Stadium 5, n (%)	4 (3%)	1 (1%)	3 (9%)	
UPDRS Total	58,8 +/- 28,4	53,3 +/- 26,4	<0,001 a	73,4 +/- 28,9
UPDRS 3	31,3 +/- 14,4	28,9 +/- 13,0	<0,001 a	37,8 +/- 16,3
NMS, Ja-Antworten	9,8 +/- 5,0	8,8 +/- 5,0	<0,001 a	12,7 +/- 3,7
THS, n (%)	28 (24%)	19 (22%)	0,47 b	9 (28%)

Tabelle 8: Patienten

Tabelle 9: Vergleich Patienten mit Kontrollen

<table>
<thead>
<tr>
<th></th>
<th>Patienten A (n=119)</th>
<th>p-Wert A-B</th>
<th>Kontrollen B (n=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter, Jahre</td>
<td>68,9 +/- 10,1</td>
<td>0.69 a</td>
<td>68,1 +/- 10,7</td>
</tr>
<tr>
<td>Männer, n (%)</td>
<td>80 (67%)</td>
<td>0.10 b</td>
<td>16 (50%)</td>
</tr>
<tr>
<td>Aspirationszeichen, n (%)</td>
<td>28 (24%)</td>
<td>0.65 b</td>
<td>9 (28%)</td>
</tr>
<tr>
<td>- Pneumonie, n (%)</td>
<td>2 (2%)</td>
<td>0.06 b</td>
<td>3 (9%)</td>
</tr>
<tr>
<td>BMI</td>
<td>25,5 +/- 4,0</td>
<td>0.17 a</td>
<td>24,4 +/- 3,6</td>
</tr>
<tr>
<td>Mangelernährung, n (%)</td>
<td>5 (4%)</td>
<td>1.00 b</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>DSFS (Sialorrhoe), Median</td>
<td>4 n.a.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MOCA</td>
<td>21,9 +/- 4,8</td>
<td><0.01 a</td>
<td>25,3 +/- 3,0</td>
</tr>
<tr>
<td>- Kognitive Defizite (<26 P.)</td>
<td>85 (71%)</td>
<td>0.06 b</td>
<td>17 (53%)</td>
</tr>
<tr>
<td>BDI-II (Depression)</td>
<td>10,6 +/- 8,9</td>
<td><0.001 a</td>
<td>6,1 +/- 7,0</td>
</tr>
<tr>
<td>- Keine (0-13 P.), n (%)</td>
<td>91 (76%)</td>
<td>0.56 b</td>
<td>26 (81%)</td>
</tr>
<tr>
<td>- Mild (14-19 P.), n (%)</td>
<td>12 (10%)</td>
<td></td>
<td>4 (13%)</td>
</tr>
<tr>
<td>- Moderat (20-28 P.), n (%)</td>
<td>8 (7%)</td>
<td>2 (6%)</td>
<td></td>
</tr>
<tr>
<td>- Schwer (29-63 P.), n (%)</td>
<td>8 (7%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 10: Vergleich Kontrollen mit Patienten ohne subjektive Dysphagie

<table>
<thead>
<tr>
<th></th>
<th>Kontrollen B (n=32)</th>
<th>p-Wert B-C</th>
<th>NMS3 Nein C (n=87)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter, Jahre</td>
<td>68,1 +/- 10,7</td>
<td>0.81 a</td>
<td>67,5 +/- 10,3</td>
</tr>
<tr>
<td>Männer, n (%)</td>
<td>16 (50%)</td>
<td>0.21 b</td>
<td>56 (64%)</td>
</tr>
<tr>
<td>Aspirationszeichen, n (%)</td>
<td>9 (28%)</td>
<td>0.45 b</td>
<td>10 (11%)</td>
</tr>
<tr>
<td>- Pneumonie, n (%)</td>
<td>3 (9%)</td>
<td>0.12 b</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>BMI</td>
<td>24,4 +/- 3,6</td>
<td>0.12 a</td>
<td>25,7 +/- 4,2</td>
</tr>
<tr>
<td>Mangelernährung, n (%)</td>
<td>1 (3%)</td>
<td>1.00 b</td>
<td>4 (5%)</td>
</tr>
<tr>
<td>DSFS (Sialorrhoe), Median</td>
<td>2 n.a.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MOCA</td>
<td>25,3 +/- 3,0</td>
<td><0.01 a</td>
<td>22,5 +/- 4,3</td>
</tr>
<tr>
<td>- Kognitive Defizite (<26 P.)</td>
<td>17 (53%)</td>
<td>0.29 b</td>
<td>57 (66%)</td>
</tr>
<tr>
<td>BDI-II (Depression)</td>
<td>6,1 +/- 7,0</td>
<td>0.03 a</td>
<td>10,1 +/- 9,3</td>
</tr>
<tr>
<td>- Keine (0-13 P.), n (%)</td>
<td>26 (81%)</td>
<td>0.47 b</td>
<td>67 (77%)</td>
</tr>
<tr>
<td>- Mild (14-19 P.), n (%)</td>
<td>4 (13%)</td>
<td></td>
<td>7 (8%)</td>
</tr>
<tr>
<td>- Moderat (20-28 P.), n (%)</td>
<td>2 (6%)</td>
<td></td>
<td>7 (8%)</td>
</tr>
<tr>
<td>- Schwer (29-63 P.), n (%)</td>
<td>0 (0%)</td>
<td></td>
<td>6 (7%)</td>
</tr>
</tbody>
</table>

Dopaminerge Medikamente

Die L-Dopa-Äquivalenzdosis betrug im Mittel 752 mg (+/- 419 mg). 66 Probanden (56%) erhielten eine Kombinationstherapie aus L-Dopa und einem Dopaminagonisten, 38 (32%) eine L-Dopa-Monotherapie, 12 (10%) eine Dopaminagonisten-Monotherapie und 3 (3%) weder L-Dopa noch einen Dopaminagonisten.

Zustand des Patienten zum Untersuchungszeitpunkt

Gefragt wurde nach dem aktuellen Zustand bezüglich des Parkinsonsyndroms. 93 Patienten (78%) gaben an, sich in ihrem gewohnten Zustand zu befinden. 10 Patienten (8%) nahmen sich besser und 16 Patienten (13%) schlechter als sonst war.

Dyskinesien

Unter den Patienten traten bei 22% Dyskinesien auf. Diese waren überwiegend gering ausgeprägt (Tabelle 11).

Tabelle 11: Dyskinesien

<table>
<thead>
<tr>
<th>UPDRS 4.1+4.2</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl (%)</td>
<td>93 (78%)</td>
<td>9 (8%)</td>
<td>5 (4%)</td>
<td>4 (3%)</td>
<td>4 (3%)</td>
<td>2 (2%)</td>
<td>2 (2%)</td>
</tr>
</tbody>
</table>

Summenscore aus UPDRS 4.1 (Dauer der Dyskinesien) und 4.2 (funktionelle Beeinträchtigung durch Dyskinesien) mit einer möglichen Spannbreite von 0 Punkte (keine Dyskinesien) bis 8 Punkte (maximale Ausprägung). N=119.

4.1.2 Nicht-Teilnehmer

Für den Vergleich wurden die drei nachträglich ausgeschlossenen Patienten als Teilnehmer berücksichtigt, da deren Einverständnis zur Teilnahme vorlag (Tabelle 12). Die Nicht-Teilnehmer waren jünger als die Studienteilnehmer. Hinsichtlich Geschlecht und Erkrankungsdauer ergaben sich hingegen keine signifikanten Unterschiede.

Tabelle 12: Vergleich Studienteilnehmer mit Nicht-Teilnehmern

<table>
<thead>
<tr>
<th></th>
<th>Teilnehmer (n=122)</th>
<th>Nicht-Teilnehmer (n=24)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter, Jahre</td>
<td>68,8 +/- 10,0</td>
<td>62,8 +/- 9,9</td>
<td><0.01 a</td>
</tr>
<tr>
<td>Männliches Geschlecht, n (%)</td>
<td>82 (67%)</td>
<td>11 (46%)</td>
<td>0.06 b</td>
</tr>
<tr>
<td>Erkrankungsdauer, Jahre</td>
<td>9,7 +/- 7,1</td>
<td>8,4 +/- 5,9</td>
<td>0.42 a</td>
</tr>
</tbody>
</table>

4.2 Subjektive Dysphagie

4.2.1 Visuelle Analogskala (VAS)

In Abbildung 8 ist die visuelle Analogskala (VAS) getrennt aufgetragen: nach oben für die Patienten mit subjektiver Dysphagie und nach unten für die Patienten ohne subjektive Dysphagie. Bei einer VAS von 0 wurde eine subjektive Dysphagie stets verneint. Es lässt sich erkennen, dass auch Patienten, die eine Schluckstörung verneinten, hohe Werte auf der VAS angaben (bis zu 6,9/10).

4.2.2 UPDRS Frage 2.3

Es fanden sich Diskrepanzen zwischen den Antworten auf die UPDRS Frage 2.3 und der NMS Frage 3 (Tabelle 13). Wenn die Formulierung „angedeutet vorhanden“ der UPDRS Frage 2.3 bereits als Vorliegen einer Dysphagie gewertet wird, finden sich 26 Fälle mit diskreptanten Angaben (9 NMS positiv und UPDRS negativ sowie 17 NMS negativ und UPDRS positiv). Wird die die Formulierung „angedeutet vorhanden“ noch als Normalbefund gewertet, finden sich ebenso 26 Fälle mit diskreptanten Angaben (22 NMS positiv und UPDRS negativ sowie 4 NMS negativ und UPDRS positiv). Bezogen auf das hierfür auswertbare Kollektiv (n=118) entspricht dies 22% der Fälle mit fehlender Übereinstimmung.
Tabelle 13: UPDRS Frage 2.3 im Vergleich zu NMS Frage 3

<table>
<thead>
<tr>
<th>UPDRS Frage 2.3</th>
<th>NMS Frage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ja</td>
</tr>
<tr>
<td>Normal</td>
<td>9</td>
</tr>
<tr>
<td>Angedeutet vorhanden</td>
<td>13</td>
</tr>
<tr>
<td>Leicht ausgeprägt</td>
<td>3</td>
</tr>
<tr>
<td>Mäßig ausgeprägt</td>
<td>7</td>
</tr>
<tr>
<td>Schwer ausgeprägt</td>
<td>0</td>
</tr>
</tbody>
</table>

N=118.

4.3 FEES-Befunde

4.3.1 Leaking

Tabelle 14: Leaking für Wasser

<table>
<thead>
<tr>
<th>Wasser</th>
<th>Patienten A (n=119)</th>
<th>Kontrollen B (n=32)</th>
<th>NMS3 Nein C (n=87)</th>
<th>NMS3 Ja D (n=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Kein Leaking</td>
<td>90</td>
<td>31</td>
<td>65</td>
<td>25</td>
</tr>
<tr>
<td>1: Zungengrund oder Vallecula</td>
<td>18</td>
<td>0</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>2: Lateral channels oder Epiglottispitze</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3: Sinus piriformis oder tangiert Larynx seitlich/hinten</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4: Larynxeingang (ggf. mit Aspiration vor Schluck)</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>p-Wert (Fisher exakt)</td>
<td>A-B: 0.46</td>
<td>C-D: 1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absolute Häufigkeiten. Der p-Wert bezieht sich auf das Vorliegen eines relevanten Leakings (Grenze ist als dicke Linie dargestellt).
Tabelle 15: Leaking für Brot

<table>
<thead>
<tr>
<th>Brot</th>
<th>Patienten A (n=119)</th>
<th>Kontrollen B (n=32)</th>
<th>NMS3 Nein C (n=87)</th>
<th>NMS3 Ja D (n=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Kein Leaking</td>
<td>60</td>
<td>22</td>
<td>41</td>
<td>19</td>
</tr>
<tr>
<td>1: Zungengrund oder Vallecula</td>
<td>55</td>
<td>10</td>
<td>43</td>
<td>12</td>
</tr>
<tr>
<td>2: Lateral channels oder Epiglottisspitze</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3: Sinus piriformis oder tangiert Larynx seitlich/hinten</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4: Larynxeingang (ggf. mit Aspiration vor Schluck)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p-Wert (Fisher exakt)</td>
<td>A-B: 0.58</td>
<td>C-D: 1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absolute Häufigkeiten. Der p-Wert bezieht sich auf das Vorliegen eines relevanten Leakings (Grenze ist als dicke Linie dargestellt).

Tabelle 16: Leaking für Keks

<table>
<thead>
<tr>
<th>Keks</th>
<th>Patienten A (n=116)</th>
<th>Kontrollen B (n=32)</th>
<th>NMS3 Nein C (n=86)</th>
<th>NMS3 Ja D (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Kein Leaking</td>
<td>50</td>
<td>19</td>
<td>38</td>
<td>12</td>
</tr>
<tr>
<td>1: Zungengrund oder Vallecula</td>
<td>45</td>
<td>12</td>
<td>32</td>
<td>13</td>
</tr>
<tr>
<td>2: Lateral channels oder Epiglottisspitze</td>
<td>14</td>
<td>1</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>3: Sinus piriformis oder tangiert Larynx seitlich/hinten</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4: Larynxeingang (ggf. mit Aspiration vor Schluck)</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>p-Wert (Fisher exakt)</td>
<td>A-B: 0.046</td>
<td>C-D: 1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absolute Häufigkeiten. Der p-Wert bezieht sich auf das Vorliegen eines relevanten Leakings (Grenze ist als dicke Linie dargestellt). Signifikante Unterschiede sind grau unterlegt.
Abbildung 9: Probanden ohne relevantes Leaking über alle 3 Konsistenzen. A Patienten (n=88/116), B Kontrollen (n=30/32), C Patienten ohne subjektive Dysphagie (n=65/86), D Patienten mit subjektiver Dysphagie (n=23/30). * p<0.05. n.s. nicht signifikant.

4.3.2 Residuen

Es wurde jeweils die maximal erreichte Tiefe dokumentiert. Für jede Konsistenz traten Residuen bei den Kontrollprobanden seltener auf als bei den Parkinsonpatienten (Tabelle 17, Tabelle 18, Tabelle 19). Für die Probanden ohne jegliche Residuen fand sich zwischen den Patienten mit und ohne subjektiver Dysphagie kein Unterschied (Abbildung 10).

Tabelle 17: Residuen für Wasser

<table>
<thead>
<tr>
<th>Wasser</th>
<th>Patienten A (n=119)</th>
<th>Kontrollen B (n=32)</th>
<th>NMS3 Nein C (n=87)</th>
<th>NMS3 Ja D (n=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Keine Residuen</td>
<td>52</td>
<td>29</td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td>1: Zungengrund oder Vallecula</td>
<td>13</td>
<td>2</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>2: Sinus piriformis, laterale Pharynxwände oder Postkrikoidregion</td>
<td>20</td>
<td>0</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>3: Larynxeingang</td>
<td>34</td>
<td>1</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>p-Wert (Fisher exakt)</td>
<td>A-B: <0.001</td>
<td>C-D: 0.14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absolute Häufigkeiten. Der p-Wert bezieht sich auf das Vorliegen von Residuen (Grenze ist als dicke Linie dargestellt). Signifikante Unterschiede sind grau unterlegt.
Tabelle 18: Residuen für Brot

<table>
<thead>
<tr>
<th>Brot</th>
<th>Patienten A (n=117)</th>
<th>Kontrollen B (n=32)</th>
<th>NMS3 Nein C (n=86)</th>
<th>NMS3 Ja D (n=31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Keine Residuen</td>
<td>11</td>
<td>15</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>1: Zungengrund oder Vallecula</td>
<td>62</td>
<td>13</td>
<td>49</td>
<td>13</td>
</tr>
<tr>
<td>2: Sinus piriformis, laterale Pharynxwände oder Postkrikoidregion</td>
<td>35</td>
<td>4</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>3: Larynxeingang</td>
<td>9</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

p-Wert (Fisher exakt)

| | A-B: <0.001 | C-D: 0.16 |

Absolute Häufigkeiten. Der p-Wert bezieht sich auf das Vorliegen von Residuen (Grenze ist als dicke Linie dargestellt). Signifikante Unterschiede sind grau unterlegt.

Tabelle 19: Residuen für Keks

<table>
<thead>
<tr>
<th>Keks</th>
<th>Patienten A (n=115)</th>
<th>Kontrollen B (n=32)</th>
<th>NMS3 Nein C (n=85)</th>
<th>NMS3 Ja D (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Keine Residuen</td>
<td>17</td>
<td>15</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>1: Zungengrund oder Vallecula</td>
<td>59</td>
<td>16</td>
<td>44</td>
<td>15</td>
</tr>
<tr>
<td>2: Sinus piriformis, laterale Pharynxwände oder Postkrikoidregion</td>
<td>33</td>
<td>1</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>3: Larynxeingang</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

p-Wert (Fisher exakt)

| | A-B: <0.001 | C-D: 0.77 |

Absolute Häufigkeiten. Der p-Wert bezieht sich auf das Vorliegen von Residuen (Grenze ist als dicke Linie dargestellt). Signifikante Unterschiede sind grau unterlegt.
Abbildung 10: Probanden ohne Residuen über alle 3 Konsistenzen. A Patienten (n=8/115). B Kontrollen (n=12/32). C Patienten ohne subjektive Dysphagie (n=6/85), D Patienten mit subjektiver Dysphagie (n=2/30). *** p<0.001. n.s. nicht signifikant.

4.3.3 Penetrations-Aspirations-Skala (PAS)

Die PAS-Werte fielen vor allem auf die Randbereiche, wohingegen der mittlere Bereich von PAS 3-7 deutlich schwächer besetzt war (Tabelle 20, Tabelle 21, Tabelle 22). Bezogen auf alle Aspirationsereignisse (PAS 6-8) trat eine stille Aspiration (PAS 8) in 83% (n=30/36) auf. Bezogen auf eine klinisch kritische Dysphagie (PAS 7-8) betrug der Anteil der stillen Aspirationen (PAS 8) 88% (n=30/34). Für die Probanden ohne jegliche Penetration oder Aspiration fand sich zwischen den Patienten mit und ohne subjektiver Dysphagie kein Unterschied (Abbildung 11). Mit zunehmendem Krankheitsstadium stieg der relative Anteil an Patienten mit einer klinisch kritischen Dysphagie (Abbildung 12). Bei einer Unterteilung der Patienten nach ihrem maximal erreichten PAS-Wert über alle drei Konsistenzen (Abbildung 13) ergab sich, dass der PAS-Wert für Wasser in 87% (n=104/119) mit diesem übereinstimmte und damit mehr zum maximalen PAS-Wert beitrug als die beiden anderen Konsistenzen Keks (61%, n=71/117) und Brot (60%, n=71/119). Die 15 Patienten, die ihren maximalen PAS-Wert für Keks oder Brot erreichten, hatten einen maximalen PAS-Wert von 2 (n=14) oder 4 (n=1).
Tabelle 20: PAS für Wasser

<table>
<thead>
<tr>
<th>Wasser</th>
<th>Patienten A (n=119)</th>
<th>Kontrollen B (n=32)</th>
<th>NMS3 Nein C (n=87)</th>
<th>NMS3 Ja D (n=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Keine</td>
<td>69</td>
<td>30</td>
<td>55</td>
<td>14</td>
</tr>
<tr>
<td>2: Penetration oberhalb Glottis mit effektiver Reinigung</td>
<td>13</td>
<td>2</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>3-5: Sonstige Penetration</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>6: Aspiration mit effektiver Reinigung</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7: Aspiration mit ineffektiver Reinigung</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8: Stille Aspiration</td>
<td>24</td>
<td>0</td>
<td>13</td>
<td>11</td>
</tr>
</tbody>
</table>

p-Wert (Fisher exakt) | A-B: <0.001 | C-D: 0.06 |

Absolute Häufigkeiten. Der p-Wert bezieht sich auf das Vorliegen von Penetration oder Aspiration (Grenze ist als dicke Linie dargestellt). Signifikante Unterschiede sind grau unterlegt.

Tabelle 21: PAS für Brot

<table>
<thead>
<tr>
<th>Brot</th>
<th>Patienten A (n=119)</th>
<th>Kontrollen B (n=32)</th>
<th>NMS3 Nein C (n=87)</th>
<th>NMS3 Ja D (n=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Keine</td>
<td>95</td>
<td>30</td>
<td>71</td>
<td>24</td>
</tr>
<tr>
<td>2: Penetration oberhalb Glottis mit effektiver Reinigung</td>
<td>17</td>
<td>2</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>3-5: Sonstige Penetration</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6: Aspiration mit effektiver Reinigung</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7: Aspiration mit ineffektiver Reinigung</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8: Stille Aspiration</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

p-Wert (Fisher exakt) | A-B: 0.07 | C-D: 0.45 |

Absolute Häufigkeiten. Der p-Wert bezieht sich auf das Vorliegen von Penetration oder Aspiration (Grenze ist als dicke Linie dargestellt).
Tabelle 22: PAS für Keks

<table>
<thead>
<tr>
<th>Keks</th>
<th>Patienten A (n=117)</th>
<th>Kontrollen B (n=32)</th>
<th>NMS3 Nein C (n=86)</th>
<th>NMS3 Ja D (n=31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Keine</td>
<td>89</td>
<td>30</td>
<td>68</td>
<td>21</td>
</tr>
<tr>
<td>2: Penetration oberhalb Glottis</td>
<td>21</td>
<td>2</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>3-5: Sonstige Penetration</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6: Aspiration mit effektiver</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7: Aspiration mit ineffektiver</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8: Stille Aspiration</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>p-Wert (Fisher exakt)</td>
<td>A-B: 0.03</td>
<td>C-D: 0.23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absolute Häufigkeiten. Der p-Wert bezieht sich auf das Vorliegen von Penetration oder Aspiration (Grenze ist als dicke Linie dargestellt). Signifikante Unterschiede sind grau unterlegt.

Abbildung 11: Probanden ohne Penetration/Aspiration über alle 3 Konsistenzen.

A Patienten (n=54/119), B Kontrollen (n=27/32), C Patienten ohne subjektive Dysphagie (n=43/87), D Patienten mit subjektiver Dysphagie (n=11/32). **p<0.001. n.s. nicht signifikant.**

4.3.4 Synopsis der FEES-Befunde

Werden nun die einzelnen Kategorien Leaking, Residuen sowie Penetration und Aspiration gemäß den oben aufgeführten Grenzen kombiniert betrachtet (Abbildung 14), wiesen 6 Parkinsonpatienten (5%) und 10 Kontrollprobanden (31%) einen gänzlich unauffälligen Befund auf. Zwischen den Patienten mit und ohne subjektiver Dysphagie fand sich kein Unterschied.

4.3.5 Sekretansammlungen

Zwischen den Patienten und den Kontrollprobanden fand sich für das Vorliegen von Sekretansammlungen kein signifikanter Unterschied (Tabelle 23).

Tabelle 23: Sekretansammlungen

<table>
<thead>
<tr>
<th></th>
<th>Patienten A (n=119)</th>
<th>Kontrollen B (n=32)</th>
<th>NMS3 Nein C (n=87)</th>
<th>NMS3 Ja D (n=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Normal</td>
<td>88</td>
<td>28</td>
<td>67</td>
<td>21</td>
</tr>
<tr>
<td>1: Valleculae/Sinus piriformes</td>
<td>25</td>
<td>3</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>2: Transient im Aditus laryngis</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3: Konstant im Aditus laryngis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>p-Wert (Fisher exakt)</td>
<td>A-B: 0.16</td>
<td>C-D: 0.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absolute Häufigkeiten. Der p-Wert bezieht sich auf das Vorliegen von Sekretansammlungen (Grenze ist als dicke Linie dargestellt).

4.3.6 Build Up-Phänomen

Build Up für Brot

Ein Build Up-Phänomen für Brot (Abbildung 16) trat bei 52% der auswertbaren Patienten (n=116) auf. In starker Ausprägung fand es sich bei 23 Probanden (20%).

Abbildung 16: Build Up Brot. A erste Residuen. B 130 Sekunden später
Zwischen dem Build Up für Brot und dem PAS-Wert für Brot (Tabelle 24) fand sich eine schwache Korrelation (Koeffizient 0,27; p=0.002). Mit der laryngealen Sensibilität (p=0.16) und der Zeit zum Essen einer halben Scheibe Brot (p=0.58) fand sich jeweils keine Korrelation.

Tabelle 24: Build Up Brot und Penetrations-Aspirations-Skala (PAS)

<table>
<thead>
<tr>
<th>PAS für Brot</th>
<th>Build Up für Brot (n=116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine (1)</td>
<td>Kein: 56 (n=56)</td>
</tr>
<tr>
<td></td>
<td>Mäßig: 28 (n=37)</td>
</tr>
<tr>
<td></td>
<td>Stark: 14 (n=23)</td>
</tr>
<tr>
<td>Penetration über Glottis mit effektiver Reinigung (2)</td>
<td>6</td>
</tr>
<tr>
<td>Sonstige Penetration (3-5)</td>
<td>0</td>
</tr>
<tr>
<td>Aspiration mit effektiver Reinigung (6)</td>
<td>0</td>
</tr>
<tr>
<td>Aspiration mit ineffektiver Reinigung (7)</td>
<td>0</td>
</tr>
<tr>
<td>Stille Aspiration (8)</td>
<td>0</td>
</tr>
</tbody>
</table>

Build Up für Keks

Ein Build Up-Phänomen für Keks (Abbildung 17) trat bei 21% der auswertbaren Patienten (n=112) auf. In starker Ausprägung fand es sich bei 2 Probanden (2%).

Abbildung 17: Build Up Keks. A erste Residuen. B 68 Sekunden später.

Zwischen dem Build Up für Keks und dem PAS-Wert für Keks (Tabelle 25) fand sich keine Korrelation (p=0.61). Mit der laryngealen Sensibilität (p=0.74) und der Zeit zum Essen eines ganzen Kekses (p=0.45) fand sich jeweils keine Korrelation.
Tabelle 25: Build Up Keks und Penetrations-Aspirations-Skala (PAS)

<table>
<thead>
<tr>
<th>PAS für Keks</th>
<th>Build Up für Keks (n=112)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kein n=89</td>
</tr>
<tr>
<td>Keine (1)</td>
<td>69</td>
</tr>
<tr>
<td>Penetration über Glottis mit effektiver Reinigung (2)</td>
<td>17</td>
</tr>
<tr>
<td>Sonstige Penetration (3-5)</td>
<td>2</td>
</tr>
<tr>
<td>Aspiration mit effektiver Reinigung (6)</td>
<td>0</td>
</tr>
<tr>
<td>Aspiration mit ineffektiver Reinigung (7)</td>
<td>0</td>
</tr>
<tr>
<td>Stille Aspiration (8)</td>
<td>1</td>
</tr>
</tbody>
</table>

4.3.7 Schluckgeschwindigkeiten

Die Zeiten für den ersten Schluck Wasser sowie die ersten Bissen von Keks und Brot waren nicht verwertbar. Im Laufe der Studie stellte sich heraus, dass die vom Probanden selbst gewählte Menge bzw. Größe sehr stark variierte.

Für 4 Patienten konnte keine Zeit für 90ml Wasser bestimmt werden. In 2 Fällen wurde vom Untersucher wegen einer Aspiration vorzeitig abgebrochen.

Für 16 Patienten konnte keine Zeit für die halbe Schreibe Brot bestimmt werden. In 7 Fällen war die Zeit wegen eines nötigen Zwischentrinkens nicht mehr verwertbar.

Für 13 Patienten konnte keine Zeit für den Keks bestimmt werden. In 3 Fällen war die Zeit wegen eines nötigen Zwischentrinkens nicht mehr verwertbar.

Schluckgeschwindigkeiten für Wasser

Für die Schluckgeschwindigkeiten für 90ml Wasser ergaben sich bei den Kontrollprobanden einzelne und bei den Patienten sehr viele Ausreißer (Abbildung 18). Die mediane Schluckgeschwindigkeit war bei den Patienten etwas langsamer (Tabelle 26).

Tabelle 26: Schluckgeschwindigkeiten für 90ml Wasser

<table>
<thead>
<tr>
<th>Wasser</th>
<th>Patienten (n=115)</th>
<th>Kontrollen (n=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>5 s</td>
<td>5 s</td>
</tr>
<tr>
<td>Median</td>
<td>15 s</td>
<td>11 s</td>
</tr>
<tr>
<td>Maximum</td>
<td>190 s</td>
<td>24 s</td>
</tr>
</tbody>
</table>

Schluckgeschwindigkeiten für Brot

Für die Schluckgeschwindigkeiten für eine halbe Scheibe Brot fanden sich bei den Patienten etwas mehr Ausreißer als bei den Kontrollprobanden (Abbildung 19). Die mediane Schluckgeschwindigkeit war bei den Patienten langsamer (Tabelle 27).

Tabelle 27: Schluckgeschwindigkeiten für halbe Scheibe Brot

<table>
<thead>
<tr>
<th>Brot</th>
<th>Patienten (n=103)</th>
<th>Kontrollen (n=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>47 s</td>
<td>90 s</td>
</tr>
<tr>
<td>Median</td>
<td>167 s</td>
<td>146 s</td>
</tr>
<tr>
<td>Maximum</td>
<td>720 s</td>
<td>320 s</td>
</tr>
</tbody>
</table>

Schluckgeschwindigkeiten für Keks

Für die Schluckgeschwindigkeiten für einen Keks fanden sich bei den Patienten einige Ausreißer (Abbildung 20). Die mediane Schluckgeschwindigkeit war für Patienten und Kontrollprobanden identisch (Tabelle 28).

Tabelle 28: Schluckgeschwindigkeiten für einen Keks

<table>
<thead>
<tr>
<th>Keks</th>
<th>Patienten (n=106)</th>
<th>Kontrollen (n=31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>59 s</td>
<td>67 s</td>
</tr>
<tr>
<td>Median</td>
<td>126 s</td>
<td>126 s</td>
</tr>
<tr>
<td>Maximum</td>
<td>467 s</td>
<td>205 s</td>
</tr>
</tbody>
</table>

4.3.8 Sialorrhoe

Eine Sialorrhoe trat bei den Kontrollprobanden (9%) seltener als bei den Parkinsonpatienten (50%) auf (Tabelle 29).

Tabelle 29: Ausmaß der Sialorrhoe

<table>
<thead>
<tr>
<th>DSFS</th>
<th>Patienten A (n=119)</th>
<th>Kontrollen B (n=32)</th>
<th>NMS3 Nein C (n=87)</th>
<th>NMS3 Ja D (n=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (keine)</td>
<td>59</td>
<td>29</td>
<td>48</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>3</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>0</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9 (maximal)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

p-Wert (Fisher exakt) | A-B: <0.001 | C-D: 0.06

Wasser

Im Streudiagramm fand sich für die Patienten kein klarer Zusammenhang zwischen den PAS-Werten für Wasser und den Werten auf der DSFS (Abbildung 21). Es lag eine schwache Korrelation vor (Koeffizient 0.22; p=0.005). Bei 10 von 24 Patienten mit einer stillen Aspiration für Wasser (PAS 8) fand sich keine Sialorrhoe (DSFS 2).

Abbildung 21: Zusammenhang von Sialorrhoe und PAS für Wasser. Patienten (n=119). Der Radius ist proportional zur Fallzahl n für die jeweilige Kombination.

Brot

Im Streudiagramm fand sich für die Patienten kein Zusammenhang zwischen den PAS-Werten für Brot und den Werten auf der DSFS (Abbildung 22). Es ließ sich keine Korrelation nachweisen (p=0.60).
Abbildung 22: Zusammenhang von Sialorrhoe und PAS für Brot. Patienten (n=119). Der Radius ist proportional zur Fallzahl n für die jeweilige Kombination.

Keks

Im Streudiagramm fand sich für die Patienten kein Zusammenhang zwischen den PAS-Werten für Keks und den Werten auf der DSFS (Abbildung 23). Es ließ sich keine Korrelation nachweisen (p=0.35).

Abbildung 23: Zusammenhang von Sialorrhoe und PAS für Keks. Patienten (n=117). Der Radius ist proportional zur Fallzahl n für die jeweilige Kombination.
4.4 Klinische Konsequenzen aus der FEES-Untersuchung

Ab dem Krankheitsstadium 2 nach Hoehn und Yahr fanden sich für einzelne Patienten Verschlechterungen auf der Schluckbeeinträchtigungsskala (SBS). Der Anteil dieser Patienten steigt kontinuierlich von 17% auf bis zu 75% im höchsten Krankheitsstadium 5 an (Tabelle 30). Über alle Patienten betrachtet trat eine Verschlechterung bei 30 Patienten (25%) auf. Eine Verbesserung fand sich bei einem Patienten (1%). Bei 10 Patienten (8,4%) wurde die Anlage einer PEG-Sonde empfohlen. Zum Studienzeitpunkt war keiner der 119 Patienten mit einer PEG-Sonde versorgt.

Tabelle 30: Veränderung auf der Schluckbeeinträchtigungsskala (SBS)

<table>
<thead>
<tr>
<th>Veränderung auf der SBS</th>
<th>Stadium n. Hoehn und Yahr</th>
<th>Alle (n=119)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (n=5)</td>
<td>2 (n=58)</td>
</tr>
<tr>
<td>Besser</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Keine</td>
<td>4</td>
<td>48</td>
</tr>
<tr>
<td>Schlechter</td>
<td>0 (0%)</td>
<td>10 (17%)</td>
</tr>
</tbody>
</table>

Unterteilt nach dem Krankheitsstadium nach Hoehn und Yahr. Absolute Häufigkeiten (Prozent).

4.5 Prädiktoren für eine klinisch kritische Dysphagie

4.5.1 Auswahl der Prädiktoren

Tabelle 31: Ergebnisse der binären logistischen Regression

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><0.001 [L]</td>
<td>2.150 [1.11</td>
<td>3.28]</td>
</tr>
<tr>
<td>Alter (Jahre)</td>
<td>0.002 [L]</td>
<td>0.091 [0.03</td>
<td>0.17]</td>
</tr>
<tr>
<td>Geschlecht (weiblich)</td>
<td>0.043 [L]</td>
<td>-1.169 [-2.48</td>
<td>-0.03]</td>
</tr>
<tr>
<td>Konstante</td>
<td>0.001 [W]</td>
<td>-8.043 [-13.62</td>
<td>-3.61]</td>
</tr>
</tbody>
</table>

4.5.2 Klassifizierungsergebnisse

ROC-Kurve und AUC

Abbildung 24: ROC-Kurve. Im Kreis ist der mutmaßlich beste Kompromiss aus Sensitivität und Spezifität markiert.
Die AUC (area under the curve) betrug 0,83 (95%-Konfidenzintervall 0,74 – 0,92, p<0,001) und ist somit als exzellent einzustufen (Backhaus et al. 2016). In Abbildung 24 ist der Punkt mit dem mutmaßlich besten Kompromiss aus Sensitivität und Spezifität eingezeichnet. Für diesen Grenzwert (p*=0,242, d.h. einer berechneten Wahr- scheinlichkeit von 24,2% entsprechend) ergab sich eine Sensitivität von 86% und eine Spezifität von 79%.

Klassifizierungstabelle

Tabelle 32: Klassifizierungstabelle

<table>
<thead>
<tr>
<th>Tatsächlich</th>
<th>Vorhergesagt</th>
<th>Ja</th>
<th>nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>24</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>Nein</td>
<td>19</td>
<td>72</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>76</td>
<td>119</td>
</tr>
</tbody>
</table>

4.5.3 Vergleich des Regressionsmodells mit anderen Modellen

Subjektive Dysphagie

Mit dem Kriterium einer subjektiven Dysphagie (NMS3 Ja) wurden 14 von 28 Patienten mit einer klinisch kritischen Dysphagie detektiert. 4 der 14 Patienten, die nicht detektiert wurden, konnten auch anhand des Regressionsmodells nicht identifiziert werden (ID 16, 80, 86, 106). Bei 9 der restlichen 10 Patienten fand sich eine Verschlechterung auf der Schluckbeeinträchtigungsskala (SBS).

Überblick

Für den Überblick (Tabelle 33) wird der Münchner Dysphagie Test (MDT) mit eingeschlossen. Dieser kennt zwei Kategorien: Dysphagie jeglicher Form bzw. nur Patienten mit Aspirationsrisiko.
Tabelle 33: Überblick über die verschiedenen Screening-Verfahren

<table>
<thead>
<tr>
<th></th>
<th>Subjektive Dysphagie</th>
<th>Regressionsmodell</th>
<th>MDT Risiko für Aspiration</th>
<th>MDT jegliche Dysphagie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erhebungsdauer</td>
<td><1 min</td>
<td>1 min</td>
<td>5-10 min</td>
<td>5-10 min</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>14/28 (50%)</td>
<td>24/28 (86%)</td>
<td>10/28 (36%)</td>
<td>14/28 (50%)</td>
</tr>
<tr>
<td>Spezifität</td>
<td>73/91 (80%)</td>
<td>72/91 (79%)</td>
<td>69/91 (76%)</td>
<td>52/91 (57%)</td>
</tr>
<tr>
<td>Falsch-positiv</td>
<td>18/32 (56%)</td>
<td>19/43 (44%)</td>
<td>22/32 (69%)</td>
<td>39/53 (74%)</td>
</tr>
<tr>
<td>Zu untersuchen</td>
<td>32/119 (27%)</td>
<td>43/119 (36%)</td>
<td>32/119 (27%)</td>
<td>53/119 (45%)</td>
</tr>
</tbody>
</table>

4.5.4 Falsch-positive Befunde im Regressionsmodell

Durch das Regressionsmodell fand sich bei 19 Patienten mit einem positiven Screening-Ergebnis (Wahrscheinlichkeit über dem Grenzwert von 24,2%) in der FEES keine klinisch kritische Dysphagie (Tabelle 32). Keiner dieser Patienten wies einen komplett unauffälligen FEES-Befund auf. Eine reduzierte laryngeale Sensibilität und/oder ein stark ausgeprägtes Build Up für Brot fanden sich bei 13 der 19 Patienten (68%).
5. Diskussion

5.1 Subjektive Dysphagie

Die dichotome Frage Nr. 3 (ja oder nein) aus dem NMSQuest-Fragebogen scheint sich von den drei angewandten Selbstbeurteilungsskalen noch am besten zu eignen, um eine Dysphagie zu erfragen. 27% der Patienten gaben eine subjektive Dysphagie an, wohingegen Cereda et al. (2014) mit derselben Frage unter 6.462 ambulanten Parkinsonpatienten eine Prävalenz von 11,7% erhoben.

5.1.1 Charakteristika von Patienten mit subjektiver Dysphagie

5.1.2 Häufigkeit einer subjektiven Dysphagie

Von 360 älteren Patienten mit unterschiedlichen Ursachen für eine Dysphagie waren nur 39% davon überzeugt, diesbezüglich behandelt werden zu können (Ekberg et al. 2002). Diese Hoffnungslosigkeit könnte dazu beitragen, dass Patienten selten über ihre Schluckstörung berichten. In unserem Kollektiv waren relevante depressive Symptome selten: bei 87% lag keine bzw. nur eine milde Depression vor. Bei Cereda et al. (2014) wurden depressive Symptome nicht erhoben, so dass ein höherer Anteil an relevanten depressiven Symptomen zu den unterschiedlichen Prävalenzen (11,7% gegenüber 27%) beigetragen haben könnte.

5.1.3 Alternative Selbstbeurteilungsskalen

Visuelle Analogskala (VAS)

Die VAS scheint sich nicht für ein Screening zu eignen, da sich kein geeigneter Grenzwert bestimmen lässt. Trotz Verneinen einer Schluckstörung wurden Werte bis zu 6,9/10 angegeben. Zudem konnte die VAS von einem der 28 Patienten mit einer kritischen Dysphagie nicht ausgefüllt werden und somit wäre dieser Fall für die statistische Auswertung verloren gegangen. Im Gegensatz zu den beiden Alternativen lässt sich die VAS nicht als Fremdanamnese erheben.

Nimmons et al. (2016) führten eine Studie an Nicht-Parkinson-Patienten durch, die im Abstand von 3 Jahren mit dem Fragebogen Sydney Swallow Questionnaire (SSQ) untersucht wurden. Dieser basiert fast ausschließlich auf VAS-skalierten Fragen und war nicht geeignet das Zielereignis Tod durch eine Pneumonie vorherzusagen. Dies unterstützt die eingeschränkte Aussagekraft der VAS bezüglich des Schluckens.
UPDRS Frage 2.3

Die Frage 2.3 aus dem UPDRS wäre bezüglich ihrer ordinalen Skalierung zwar prinzipiell besser geeignet. Doch resultiert aus der Formulierung „angedeutet vorhanden“, dass 26 Patienten (22%) im Vergleich zur Frage Nr. 3 des NMSQuest-Fragebogens abweichend antworteten. Zudem wird nur nach Schluckproblemen bezüglich Tabletten und Essen von Mahlzeiten gefragt, so dass viele Patienten diese Frage nicht mit Flüssigkeiten in Zusammenhang bringen werden. Doch gerade hierfür fanden wir im Hinblick auf die PAS-Werte die meisten Auffälligkeiten. Alle 28 Patienten mit einer klinisch kritischen Dysphagie wiesen diese für Flüssigkeiten auf, jedoch jeweils nur drei Fälle für die Konsistenzen Keks und Brot.

5.2 Komplikationen einer Dysphagie und FEES-Befunde

Obwohl nur 5% der Patienten einen bezüglich Leaking, Residuen sowie Penetration und Aspiration unauffälligen FEES-Befund aufwiesen und eine klinisch kritische Dysphagie sogar bei 24% auftrat, fanden sich eine Pneumonie (innerhalb des letzten Jahres) und eine Mangelernährung nur selten (2% bzw. 4%). Deren Auftreten war jeweils nicht häufiger als bei den Kontrollprobanden.

Zwar nahm mit zunehmendem Krankheitsstadium nach Hoehn und Yahr der relative Anteil an Patienten mit einer klinisch kritischen Dysphagie zu, doch waren die fortgeschrittenen Stadien 4 und 5 (n=24, 20%) aufgrund des Studiendesigns (Einschluss von ambulanten Patienten) vergleichsweise unterrepräsentiert. Bereits im frühen Krankheitsstadium 2 fanden sich Patienten mit einer klinisch kritischen Dysphagie
bzw. einer notwendigen Umstellung der Nahrungsaufnahme. Dies deckt sich mit einer Studie, in der eine Dysphagie bereits im niedrigsten Krankheitsstadium gefunden wurde (Potulska et al. 2003).

Der frühzeitige und breite Einsatz der FEES könnte dazu beitragen, weitreichende Komplikationen zu vermeiden. Da die Untersuchung jedoch zeit- und personalintensiv ist, wird ein effizientes Screening benötigt.

5.2.1 Aspirationspneumonie

5.2.2 Mangelernährung

Das Ausmaß von Dyskinesien zeigt eine mittlere Korrelation mit Unterernährung (Markus et al. 1993). Da nur sehr wenige Patienten deutliche Dyskinesien aufwiesen, könnte dies die geringe Rate an mangelernährten Patienten erklären. Das seltene Auftreten der Dyskinesien könnte durch den relativ hohen Anteil an Patienten mit einer tiefen Hirnstimulation (24%) bedingt sein.
Einschränkend muss festgestellt werden, dass die angewandten Kriterien zur Mangelernährung von der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) sich am BMI und einem Gewichtsverlust orientieren. Ein Nährstoffmangel, der auch bei normal oder gar übergewichtigen Menschen auftreten kann, wird hingegen nicht berücksichtigt. Dies könnte auch erklären, weshalb sich zwischen den Patienten und den Kontrollprobanden kein signifikanter Unterschied fand.

5.2.3 Sekretansammlungen

5.2.4 Build Up-Phänomen

Das Build Up-Phänomen ließ sich für die Konsistenz Keks (21%) deutlich seltener als für Brot nachweisen (52%). Dies könnte damit zusammenhängen, dass der Keks unter dem Einfluss von Speichel rascher an Viskosität verliert, besser gereinigt werden kann und es somit entweder zu gar keinem oder einem weniger stark ausgeprägten Build Up-Phänomen kommt. Dies würde erklären, weshalb der Unterschied für die starke Ausprägung (für Brot bei 20% aller Probanden, für Keks nur bei 2%) deutlicher ist.

Das Build Up-Phänomen für Brot korrelierte schwach mit einem höheren Wert auf der Penetations-Aspirations-Skala (PAS) für Brot. Insgesamt trat eine kritische Dysphagie (PAS 7-8) für Brot nur bei 3 Probanden auf, doch hatten diese alle ein mäßiges oder schweres Build Up Phänomen. Für das Build Up-Phänomen für Keks ließ sich eine solche Korrelation nicht finden.

Es handelt sich um ein häufiges Phänomen, doch bleibt die pathophysiologische Grundlage unklar. Theoretisch wäre eine verminderte Sensibilität oder eine eingeschränkte motorische Reinigungsfunktion oder eine Kombination aus beidem denkbar. Im Rahmen der FEES-Untersuchung prüften wir die laryngeale Sensibilität, womit sich
für beide Konsistenzen keine Korrelation nachweisen ließ. Allerdings lässt sich die erhobene laryngeale Sensibilität nicht direkt auf die Lokalisation des Build Ups (Vallecullae) übertragen, an der keine Sensibilitätsprüfung stattfand. Bezüglich der motorischen Funktion könnte man einen Zusammenhang mit den Schluckgeschwindigkeiten als Surrogat-Parameter vermuten. Allerdings fand sich für beide Konsistenzen keine Korrelation. Da kein direktes Maß für die motorische Funktion erhoben wurde, ist ein solcher Zusammenhang jedoch keineswegs ausgeschlossen.

5.2.5 Schluckgeschwindigkeiten

Zwar wurden für Keks und Brot auch die Schluckgeschwindigkeiten für den ersten Biss erfasst, doch stellte sich heraus, dass sich die selbstgewählte Größe des Bissens stark unterschied. Daher waren die Werte untereinander nicht vergleichbar. Es ist anzunehmen, dass Patienten mit einer Schluckstörung kleinere Bissen nahmen und dadurch eine potentiell längere Schluckdauer verschleiert wird.

Um Schluckgeschwindigkeiten vergleichen zu können, muss zudem eine standardisierte Testung erfolgen. Dies ist für Wasser problemlos möglich. Jedoch werden verschiedene Sorten von Brot und Keks deutlich unterschiedliche Anforderungen an das Schluckvermögen stellen.

5.2.6 Sialorrhoe

In unserem Patientenkollektiv fand sich zwar bei 50% der Patienten eine Sialorrhoe und es lag eine schwache Korrelation mit dem PAS für Wasser vor, doch wiesen 10 Patienten ohne Sialorrhoe eine stille Aspiration für Wasser auf (von insgesamt 24 Patienten mit einer stillen Aspiration). Ferner fand sich mit dem PAS für Brot und dem PAS für Keks keine Korrelation. Insofern sind unsere Daten nicht mit der These verträglich, dass die Sialorrhoe ein Frühsymptom einer Dysphagie ist und den klinisch fassbaren Auffälligkeiten vorausgeht. Die Zusammenhänge zwischen Sialorrhoe und Dysphagie, die in früheren Studien aufgestellt wurden, könnten zu einem Großteil darauf zurückzuführen, dass das Vorliegen einer Dysphagie per Selbsteinschätzung statt mittels technischer Untersuchung definiert wurde. Das Vorliegen einer Sialorrhoe könnte wesentlich dazu beigetragen haben, dass eine Dysphagie wahrgenommen wurde. Diesbezüglich ließ sich in unserem Kollektiv zwar kein signifikanter Unterschied (p=0.06) zwischen den Patienten mit und ohne subjektiver Dysphagie nachweisen, doch war der Median der DSFS bei den Patienten mit subjektiver Dysphagie höher.

Die Häufigkeiten von Sialorrhoe (n=60, 50%) und Sekretansammlungen (n=31, 26%) waren diskreptant, obgleich bei einem Aufstau im Zuge einer Dysphagie zunächst Sekretansammlungen im Pharynx und im nächsten Schritt eine Sialorrhoe zu erwarten wären. Dies könnte damit zusammenhängen, dass die orale Phase (Sialorrhoe) willkürlich abläuft, wohingegen die pharyngeale Phase (Sekretansammlungen) unwillkürlich gesteuert wird. Eventuell begünstigt ein selteneres bewusstes Schlucken mit hieraus resultierend reduzierter Schluckfrequenz das Auftreten einer Sialorrhoe, wohingegen Sekretansammlungen durch ein reflexhaftes (unwillkürliches) Schlucken gereinigt werden.

5.3 Prädiktoren für eine klinisch kritische Dysphagie

5.3.1 Nicht-signifikante Prädiktoren

Krankheitsschwere

Durch den großen Anteil von Patienten mit einer tiefen Hirnstimulation (n=28, 24%) könnte die tatsächliche Krankheitsschwere maskiert worden sein. Postoperativ wird eine durchschnittliche Reduktion der L-Dopa-Äquivalenzdosis um 56% bzw. des
UPDRS 3 um 52% beschrieben (Kleiner-Fisman et al. 2006). Einschränkend muss auch angemerkt werden, dass die Krankheitsschwere nicht im OFF-Stadium untersucht wurde und damit Verzerrungen vorliegen könnten. Im OFF-Stadium wäre diese Studie an ambulanten Parkinsonpatienten jedoch nicht durchführbar gewesen, da ein Großteil der Patienten nicht zu ihrem Termin hätte erscheinen können.

Tiefe Hirnstimulation

Depression

Erkrankungsdauer

Subjektive Dysphagie

5.3.2 Kritische Betrachtung des Regressionsmodells

5.4 Stärken und Limitationen dieser Studie

Die Teilnahmequote von 84% ist im Vergleich zu früheren Studien als hoch einzustufen. Muller et al. (2011) erreichten für ihre prospektive Kohortenstudie beispielsweise 80%.

Die Patienten wurden erst zum Zeitpunkt der Vorstellung zu ihrem Termin auf die Studie angesprochen und eingeschlossen. Dadurch wurde eine Verzerrung insofern verhindert, dass manche Patienten bei einer Vorabinformation bewusst ihren Termin hätten absagen können. Auch durch die Beschränkung auf wenige Ausschlusskriterien bildet diese Studie die Versorgungsrealität bestmöglich ab. Dies schlägt sich insbesondere in der Spannbreite des Alters (40,4 bis 87,5 Jahre) und der Erkrankungsdauer (de novo bis 32,3 Jahre) nieder. Zudem waren alle Krankheitsstadien vertreten.

Es wurden viele Patienten mit einer tiefen Hirnstimulation (n=28, 24%) eingeschlossen, so dass diese Gruppe hinreichend repräsentiert ist. Es ist zu erwarten, dass die THS zukünftig noch häufiger zur Anwendung kommen wird.

Da viele klinische Studien aus dem angloamerikanischen Raum stammen und dort die Videofluoroskopie des Schluckens (VFSS) als technische Untersuchung bevorzugt wird, liegen nur wenige FEES-Studien vor. Die Erkenntnisse sind in Deutschland also nur eingeschränkt anwendbar. Nach unserer Kenntnis weist diese Studie die bislang höchste Anzahl von Parkinsonpatienten auf, die mit der FEES untersucht wurden. 2014 verabschiedeten die Deutsche Gesellschaft für Neurologie (DGN) und die Deutsche Schlaganfall-Gesellschaft (DSG) ein Curriculum zur Ausbildung in der FEES. Bis Juli 2016 wurden mehr als 300 Zertifikate verliehen und im selben Monat schloss sich auch die Deutsche Gesellschaft für Geriatrie (DGG) der Zusammenarbeit an (Deutsche Gesellschaft für Neurologie 2016b). Dies unterstreicht den Stellenwert der

Die meisten Patienten füllten die Fragebögen aus bevor durch den Untersucher die Aspirationszeichen erhoben wurden. Es ist daher vorstellbar, dass die Patienten in der Zwischenzeit - angeregt durch den Fragebogen - ihr Schluckvermögen kritisch reflektierten und bei der mündlichen Abfrage ggf. anders (im Sinne einer erhöhten Positivrate) antworteten. Dies könnte dazu führen, dass sich die Ergebnisse bei Weglassen der Fragebögen nicht reproduzieren ließen. Dies spricht ebenso dafür die Ergebnisse vor einem klinischen Einsatz zunächst an einem Kontrollkollektiv zu replizieren.

Während der FEES konzentrieren sich die Patienten auf den Schluckvorgang. Dies bildet allerdings nicht die Realität ab, in der die Patienten diversen Distraktoren ausgesetzt sind. Es wurde gezeigt, dass die Gangvariabilität bei begleitenden kognitiven Aufgaben (dual-task) deutlich zunimmt und zu einem erhöhten Sturzrisiko führt (Hausdorff et al. 2003). Ein ähnlicher Effekt ist für das Schlucken zu erwarten. Eine

Die Patienten wurden in einer aufrechten Körperposition untersucht, was das Schlucken erleichtert. Es ist davon auszugehen, dass dieses Haltungsmanöver zu Hause nicht immer eingehalten wird. Dies führt zu einer Unterschätzung einer klinisch kritischen Dysphagie.

5.5 Ausblick

Die hohe Teilnahmequote (84%) zeugt davon, dass Parkinsonpatienten ein starkes Interesse an der Abklärung einer potentiellen Schluckstörung haben, selbst wenn diese subjektiv nicht wahrgenommen wird (73%). Dies sollte dazu Anlass geben, entsprechende Screening-Maßnahmen im klinischen Alltag zu implementieren. Diese Studie gibt Anlass zur Hoffnung, dass ein solches Screening mit einfach zu erhebenden Parametern (Alter, Geschlecht und Aspirationszeichen) effizient umsetzbar ist, wenngleich die Ergebnisse in Folgestudien prospektiv validiert werden müssen. Sollte dies gelingen, könnten zudem Altersgrenzwerte berechnet werden, ab denen eine weiterführende Dysphagie-Diagnostik sinnvoll erscheint. In Abhängigkeit vom Geschlecht und dem Vorliegen von Aspirationszeichen würden sich vier Altersgrenzwerte ergeben (siehe Anhang 8.1.5 Regressionsfunktion und Altersgrenzwerte, Tabelle 42 auf S. 89).

Für unser Patientenkollektiv ließ sich mit einer Sensitivität von 86% und einer Spezifität von 79% eine klinisch kritische Dysphagie (PAS 7-8) in der FEES vorhersagen. Auf dieser Grundlage könnte die Indikation für eine weiterführende FEES-Diagnostik gestellt werden. Die drei Prädiktoren Alter, Geschlecht und Aspirationszeichen lassen sich rasch erheben und weisen im Vergleich zu anderen Screening-Verfahren (subjektive Dysphagie und Münchner Dysphagie Test) die mit Abstand höchste Sensitivität auf (86% gegenüber 36-50%). Allerdings ist anzumerken, dass der Zielparameter für die Entwicklung des Münchner Dysphagie Testes nicht mit dem dieser Studie übereinstimmte. Stattdessen wurde ein Kriterien-Summenscore (5-51 Punkte) berechnet, der sich aus der klinischen und technischen Untersuchung ergab (Simons et al. 2014). Insofern sind die beiden Modelle nur eingeschränkt vergleichbar.

Mit einem idealen Screening-Test müssten genau die 28 Patienten (24% des Gesamtkollektivs) untersucht werden, die tatsächlich eine klinisch kritische Dysphagie aufwiesen. Anhand des Regressionsmodells müssten hingegen 43 Patienten (36% des Gesamtkollektivs) untersucht werden, wenngleich dabei 4 der 28 Patienten nicht detektiert wurden (falsch-negative Screening-Befunde). Bei 19 der 43 Patienten (44%) fand sich keine klinisch kritische Dysphagie in der FEES (falsch-positive Screening-Befunde). Doch wies keiner dieser 19 Patienten einen komplett unauffälligen FEES-Befund auf und bei 13 dieser 19 Patienten (68%) fanden sich andere relevante Befunde. Dies waren eine reduzierte laryngeale Sensibilität und/oder ein stark ausgeprägtes Build Up für Brot. Beide erhöhen das Risiko für eine Aspiration durch das fehlende Bemerken von Residuen (und damit ausbleibendem Reinigungsmanöver) bzw. durch ein mögliches direktes Abgleiten in die Atemwege.

Um die Patienten einer Therapie zumuten lassen zu können, muss im ersten Schritt eine Dysphagie überhaupt detektiert werden. Dies ist angesichts der Ergebnisse zur subjektiven Wahrnehmung offensichtlich deutlich schwieriger als für andere Symptome im Rahmen eines Parkinsonsyndroms, wie z.B. der für den Patienten und dessen Angehörige offensichtlicheren Dysarthrophonie. Dies unterstreicht die Wichtigkeit eines effizienten Screenings, zu dessen Entwicklung diese Studie beitragen könnte.
6. Zusammenfassung

Fragenstellung: Eine Dysphagie hat bei Parkinsonpatienten durch Komplikationen wie Mangelernährung und Aspirationspneumonie wesentlichen Anteil an eingeschränkter Lebensqualität und erhöhter Mortalität. Es sollte erhoben werden, ob sich die Selbstwahrnehmung der Patienten mit der technischen Untersuchung deckt und Prädiktoren abgeleitet werden, um gefährdete Patienten frühzeitig zu entdecken.

Ergebnisse: Eine klinisch kritische Dysphagie (Aspiration mit fehlender oder insuffizienter Reinigung) trat bei 28 Patienten (24%) auf, wobei 88% dieser Aspirationsereignisse unbemerkt abließen (PAS 8). Hiervon sowie von einer notwendigen Umstellung der Nahrungsaufnahme (Kostanpassung und/oder Kompensationsmanöver) waren bereits Patienten in frühen Krankheitsstadien (ab Hoehn und Yahr 2) betroffen. Insgesamt musste bei 30 Patienten (25%) eine Umstellung der Nahrungsaufnahme und bei 10 Patienten (8%) sogar die Anlage einer PEG-Sonde empfohlen werden. Eine Mangelenährung lag bei 5 Patienten (4%) und eine Pneumonie innerhalb des letzten Jahres bei 2 Patienten (2%) vor. Die Selbsteinschätzung durch den Patienten erwies sich mit einer Sensitivität von 50% für eine klinisch kritische Dysphagie als ungeeignet. Hingegen erreichte die Kombination der drei Prädiktoren Alter (OR 1.10 in Jahren, 95% Kl 1.03-1.18, p=0.01), Geschlecht (OR 0.31 für Frauen, 95% Kl 0.08-0.97, p=0.04) und Aspirationszeichen (OR 8.59, 95% Kl 3.05-26.52, p<0.001) eine Sensitivität von 86% und eine Spezifität von 79%. Aspirationszeichen umfassten Husten bzw. Räuspern beim oder kurz nach dem Schlucken, Verschlucken oder eine Pneumonie innerhalb des letzten Jahres.

Schlussfolgerung: Durch den konsekutiven Patienteneinschluss und die hohe Teilnahmemquote von 84% wurde die Versorgungsrealität ambulanter Parkinsonpatienten bestmöglich abgebildet. Die drei Prädiktoren lassen sich schnell und einfach erheben. Sollten sich die Klassifizierungsergebnisse in einer Folgestudie prospektiv validieren lassen, ist eine effiziente Zuweisung zu einer Dysphagie-Diagnostik (klinische Schluckuntersuchung und FEES) möglich. Komplikationen einer Dysphagie ließen sich in unserem Patientenkollektiv nur selten beobachten. Das lässt vermuten, dass bei rechtzeitiger Diagnosestellung ein großes Interventionspotential durch logopädische Therapie und ggf. Kostanpassung besteht.
6. Abstract

Objective: Dysphagia in patients with Parkinson’s disease regularly leads to relevant complications like malnutrition and aspiration pneumonia. This results in decreased quality of life and high mortality. We put forward the question whether the patient’s self-perception corresponds with the results of a technical examination. Furthermore, we aimed at specifying predictors to detect patients at risk early.

Methods: 146 consecutive outpatients with Parkinson’s disease showed up over a five-week period. We recruited 122 patients (84%), from which 3 had to be excluded. Thus 119 patients remained for analysis. All disease stages were represented, age ranged from 40 to 88 years and disease duration ranged from 0 to 32 years. The patients rated their swallowing on three different scales and underwent a comprehensive clinical examination and FEES (flexible endoscopic evaluation of swallowing). The FEES results were compared to 32 controls who lacked an obvious swallowing disorder.

Results: Critical dysphagia was defined as aspiration without or with insufficient cleaning and was found in 28 patients (24%). 88% of these aspiration events were not recognized (PAS 8). Accordingly, the patient’s self-perception proved itself ineligible with a sensitivity of 50%. Critical dysphagia and recommendation of diet modifications even affected patients in early disease stages (Hoehn and Yahr 2). In total, diet modifications were recommended to 30 patients (25%) and in 10 cases (8%) a percutaneous endoscopic gastrostomy (PEG) was deemed necessary. Malnutrition was found in 5 patients (4%) and pneumonia within the last year in 2 patients (2%). There were three significant predictors for critical dysphagia: age (OR 1.10 in years, 95% CI 1.03-1.18, p<0.01), sex (OR 0.31 for females, 95% CI 0.08-0.97, p=0.04) and aspiration signs (OR 8.59, 95% CI 3.05-26.52, p<0.001). Aspiration signs comprised the need to cough or harrumph during or shortly after swallowing, choking or pneumonia within the last year. These predictors as a whole reached a sensitivity of 86% and a specificity of 79%.

Conclusion: The high participation rate of 84% and the consecutive recruitment minimised bias. The three predictors can be collected easily and quickly. Provided that they prove valid in a future prospective study, these predictors allow efficient allocation to diagnostics (clinical swallowing examination and FEES). Complications of dysphagia were rarely found, suggesting that there is a high potential for intervention if dysphagia is diagnosed in due time.
7. Literaturverzeichnis

Progression: A Prospective Cohort Comparison With Other Phenotypes. JAMA Neurol. 72(8):863-73.

Stebbins GT, Goetz CG, Burn DJ, Jankovic J, Khoo TK, Tilley BC (2013) How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson's disease rating scale: comparison with the unified Parkinson's disease rating scale. Mov Disord. 28(5):668-70.

78

8. Anhang

8.1 Detailbetrachtung der binären logistischen Regression

8.1.1 Auswahl der Prädiktoren

Im Falle einer Multikollinearität liegt zwischen zwei oder mehreren Variablen eine hohe Korrelation vor. Durch die Überschneidungen ist eine eindeutige Zuordnung des Effektes zu einer der Variablen nicht mehr möglich, wodurch Informationen verloren gehen (Backhaus et al. 2016). Die Toleranz ist ein Maß für Multikollinearität: Werte <0,2 zeigen ein mögliches Problem und Werte <0,1 zeigen ein schweres Problem an. Für die neun potentiellen Prädiktoren sind die Toleranzwerte in Tabelle 34 aufgeführt.

Tabelle 34: Toleranz als Maß für Multikollinearität

<table>
<thead>
<tr>
<th>Prädiktor</th>
<th>Toleranz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirationszeichen</td>
<td>0,68</td>
</tr>
<tr>
<td>Alter</td>
<td>0,72</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>0,86</td>
</tr>
<tr>
<td>UPDRS 3</td>
<td>0,54</td>
</tr>
<tr>
<td>Tiefe Hirnstimulation</td>
<td>0,66</td>
</tr>
<tr>
<td>Erkrankungsdauer</td>
<td>0,57</td>
</tr>
<tr>
<td>Depression (BDI-II)</td>
<td>0,73</td>
</tr>
<tr>
<td>Subjektive Dysphagie (NMS3)</td>
<td>0,71</td>
</tr>
<tr>
<td>Kognitive Funktionen (MOCA)</td>
<td>0,57</td>
</tr>
</tbody>
</table>

Ergänzend sollte eine Kollinearitätsdiagnostik anhand der Eigenwerte eingesetzt werden. Dabei wird für jede Variable ihre Varianz (Streuung) auf die einzelnen Eigenwerte berechnet. Im idealen (rein theoretischen) Fall, dass keinerlei Korrelation zwischen den Variablen besteht, besetzt jede Variable mit jeweils vollem Varianzanteil (100%) einen eigenen Eigenwert. Je niedriger der Eigenwert ist, desto relevanter wird eine Besetzung durch mehrere Variablen (Field 2013). Die Konditionsindizes erleichtern die Auswertung: bei Werten >15 ist von mäßiger und bei Werten >30 von starker Kollinearität auszugehen (Bühner und Ziegler 2012).

Ein Großteil der Varianz von Alter (68%) und kognitive Funktionen (60%) entfiel auf den kleinsten Eigenwert 0,01 (Tabelle 35). Dies drückt sich auch in einem hohen Konditionsindex von 37,6 aus. Aufgrund der starken Kollinearität musste eine Variable ausgeschlossen werden. Da die Erhebung der kognitiven Funktionen (MOCA) mehr Zeit in Anspruch nimmt, wurde Alter beibehalten. Die Kollinearität zwischen Alter und kognitive Funktionen erklärt auch den mäßig hohen Konditionsindex von 16 für den Eigenwert 0,03. Zwar entfallen für Aspirationszeichen und subjektive Dysphagie ebenso jeweils große Varianzanteile (55% bzw. 65%) auf denselben Eigenwert. Doch
ist dieser mit 0,35 deutlich größer, so dass hier keine relevante Kollinearität vorliegt, wie sich auch an dem unauffälligen Konditionsindex von 4,3 erkennen lässt.

Tabelle 35: Multikollinearitätsdiagnostik

<table>
<thead>
<tr>
<th>Dimension</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenwert</td>
<td>6,6</td>
<td>1,0</td>
<td>0,7</td>
<td>0,6</td>
<td>0,4</td>
<td>0,3</td>
<td>0,2</td>
<td>0,1</td>
<td>0,03</td>
<td>0,01</td>
</tr>
<tr>
<td>Konditionsindex</td>
<td>1,0</td>
<td>2,5</td>
<td>2,9</td>
<td>3,3</td>
<td>4,3</td>
<td>4,4</td>
<td>5,7</td>
<td>8,3</td>
<td>16,0</td>
<td>37,6</td>
</tr>
<tr>
<td>Aspirationszeichen</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>13</td>
<td>55</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Alter</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>68</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>63</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>UPDRS 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>62</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>Tiefe Hirnstimulation</td>
<td>0</td>
<td>2</td>
<td>45</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>21</td>
<td>17</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Erkrankungsdauer</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>57</td>
<td>33</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Depression</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>62</td>
<td>10</td>
<td>22</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Subjektive Dysphagie</td>
<td>0</td>
<td>17</td>
<td>12</td>
<td>0</td>
<td>64</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Kognitive Funktionen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>36</td>
<td>60</td>
</tr>
</tbody>
</table>

Angabe der Varianzanteile in Prozent. Die maximalen Varianzanteile für jede einzelne Variable sind jeweils grau unterlegt.

8.1.2 Bestimmung der signifikanten Prädiktoren

Unter Parsimonie wird die Suche nach der sparsamsten Erklärung verstanden. Hierfür wird ein Modell mit möglichst wenigen Variablen gesucht, ohne dabei zu viel an Aussagekraft zu verlieren.

Die Koeffizienten der Variablen werden i.d.R. mit der Wald-Statistik bewertet. Diese tendiert jedoch zu einem Typ II Fehler. Das bedeutet, dass ein Koeffizient fälschlicherweise als nicht-signifikant bewertet wird, obwohl er tatsächlich einen wesentlichen Bei-

Für die binäre logistische Regression verblieben nach der Multikollinearitätsdiagnostik 8 Prädiktoren (Tabelle 36). Im ersten Schritt gingen alle Variablen ein. Für jeden wei teren Schritt wurde die Variable mit dem schlechtesten Signifikanz-Wert (anhand der Likelihood-Ratio) eliminiert (rückwärts gerichtetes Verfahren). Allerdings wurden die ausgeschlossenen Variablen stets weiterhin berücksichtigt und wären bei Unterschrei ten des Signifikanzniveaus von α=0.05 erneut in das Modell aufgenommen worden.

Tabelle 36: Signifikanz der Prädiktoren

<table>
<thead>
<tr>
<th>Schritt</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirationszeichen</td>
<td>0.008</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Alter</td>
<td>0.013</td>
<td>0.010</td>
<td>0.012</td>
<td>0.016</td>
<td>0.021</td>
<td>0.002</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>0.017</td>
<td>0.015</td>
<td>0.020</td>
<td>0.016</td>
<td>0.027</td>
<td>0.043</td>
</tr>
<tr>
<td>UPDRS 3</td>
<td>0.129</td>
<td>0.119</td>
<td>0.046</td>
<td>0.069</td>
<td>0.090</td>
<td>0.091</td>
</tr>
<tr>
<td>Tiefe Hirnstimulation</td>
<td>0.060</td>
<td>0.062</td>
<td>0.049</td>
<td>0.078</td>
<td>0.072</td>
<td>0.095</td>
</tr>
<tr>
<td>Erkrankungsdauer</td>
<td>0.379</td>
<td>0.372</td>
<td>0.377</td>
<td>0.380</td>
<td>0.894</td>
<td>0.603</td>
</tr>
<tr>
<td>Depression</td>
<td>0.493</td>
<td>0.485</td>
<td>0.482</td>
<td>0.490</td>
<td>0.342</td>
<td>0.116</td>
</tr>
<tr>
<td>Subjektive Dysphagie</td>
<td>0.800</td>
<td>0.799</td>
<td>0.773</td>
<td>0.736</td>
<td>0.875</td>
<td>0.679</td>
</tr>
</tbody>
</table>

Signifikanzwerte (p) für Änderung des Modells anhand der Likelihood Ratio (LR). **Weiße Flächen**: eingeschlossene Variablen (p-Wert für den Fall, dass die Variable aus dem Modell genommen wird). **Graue Flächen**: ausgeschlossene Variablen (p-Wert für den Fall, dass die Variable wieder in das Modell aufgenommen wird).

der beiden folgenden Variablen UPDRS 3 und tiefe Hirnstimulation hingegen um absolut weitere 6%. Jedoch unterschritten die beiden Variablen UPDRS 3 und Tiefe Hirnstimulation jeweils nicht das Signifikanzniveau von $\alpha=0.05$, so dass die binäre logistische Regression bis Schritt 6 fortgeführt wurde.

Tabelle 37: -2 Log Likelihood-Verlauf für die einzelnen Schritte

<table>
<thead>
<tr>
<th>Schritt (Variablen)</th>
<th>-2 Log-Likelihood</th>
<th>Nagelkerkes Pseudo-R-Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-Modell (0)</td>
<td>129,85</td>
<td></td>
</tr>
<tr>
<td>1 (8)</td>
<td>90,90</td>
<td>0,42</td>
</tr>
<tr>
<td>2 (7)</td>
<td>90,97</td>
<td>0,42</td>
</tr>
<tr>
<td>3 (6)</td>
<td>91,46</td>
<td>0,42</td>
</tr>
<tr>
<td>4 (5)</td>
<td>92,24</td>
<td>0,41</td>
</tr>
<tr>
<td>5 (4)</td>
<td>95,33</td>
<td>0,38</td>
</tr>
<tr>
<td>6 (3)</td>
<td>98,21</td>
<td>0,35</td>
</tr>
</tbody>
</table>

8.1.3 Ausreißer

In Abbildung 25 sind die Ausreißer (normalisierte Residuen) gegenüber einer Normalverteilungskurve aufgetragen. Diese sollten sich erwartungsgemäß zu 95% im Intervall von $-1,96$ bis $+1,96$, zu 99% im Intervall von $-2,58$ bis $+2,58$ und zu 99,9% im Intervall $-3,29$ bis $+3,29$ befinden (Field 2013). In Tabelle 38 sind die außerhalb des jeweiligen Erwartungsbereichs liegenden Fälle aufgelistet. Bezüglich des 95%-Konfidenzintervalls befanden sich die Ausreißer im erwarteten Bereich. Allerdings war das Ausmaß von vier der fünf Ausreißer so groß, dass der Erwartungsbereich des 99%-Konfidenzintervalls nicht eingehalten wurde. Der Fall ID 80 war sogar ein außergewöhnlich starker Ausreißer, so dass der Erwartungsbereich für das 99,9%-Konfidenzintervall nicht eingehalten wurde.

Tabelle 38: Ausreißer

<table>
<thead>
<tr>
<th>ID</th>
<th>Normalisiertes Residuum</th>
<th>Außerhalb 95%-KI</th>
<th>Außerhalb 99%-KI</th>
<th>Außerhalb 99,9%-KI</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2,94</td>
<td>ja</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>80</td>
<td>5,98</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>86</td>
<td>2,89</td>
<td>ja</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>88</td>
<td>-2,14</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>106</td>
<td>3,14</td>
<td>ja</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Soll</td>
<td>≤5%</td>
<td>≤1%</td>
<td>≤0,1%</td>
</tr>
<tr>
<td></td>
<td>Ist</td>
<td>4,2% (5/119)</td>
<td>3,4% (4/119)</td>
<td>0,8% (1/119)</td>
</tr>
</tbody>
</table>

KI Konfidenzintervall.
Detailbetrachtung der Ausreißer

Der Fall ID 80 als außergewöhnlich starker Ausreißer war mit 48,9 Jahren (Tabelle 39) deutlich jünger als die restlichen Patienten mit einer klinisch kritischen Dysphagie (Abbildung 26).
Tabelle 39: Werte der Ausreißer

<table>
<thead>
<tr>
<th>ID 16</th>
<th>ID 80</th>
<th>ID 86</th>
<th>ID 88</th>
<th>ID 106</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirationszeichen</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td>ja</td>
</tr>
<tr>
<td>Alter (Jahre)</td>
<td>77,2</td>
<td>48,9</td>
<td>77,5</td>
<td>81,1</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>Frau</td>
<td>Mann</td>
<td>Frau</td>
<td>Mann</td>
</tr>
<tr>
<td>Klinisch kritische Dysphagie</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>nein</td>
</tr>
</tbody>
</table>

8.1.4 Residuenanalyse

Die Residuenanalyse dient zur Feststellung, ob Ausreißer einen relevanten Einfluss auf das Modell haben. Dies ist nämlich nicht zwangsläufig der Fall (Stevens 2009).

Einfluss der Ausreißer auf das Gesamtmodell

Die Cook’s Distance ist ein Gesamtmaß für den Einfluss eines Falles auf das Modell (Field 2013). Die Werte für jeden einzelnen Fall sind in Abbildung 27 aufgeführt. Die maximale Cook’s Distance lag bei 0,80 (ID 80). Es ließ sich kein signifikanter Einfluss auf das Gesamtmodell abgrenzen, da kein Wert die Grenze von 1 überschritt (Field 2013).

Abbildung 27: Cook's Distance
Einfluss der Ausreißer auf die Koeffizienten

Mit den DFBeta-Werten lässt sich erkennen, wie stark die einzelnen Koeffizienten durch den jeweiligen Fall beeinflusst werden. Dabei handelt es sich um die Anzahl der Standardfehler, mit denen sich der entsprechende Koeffizient ändert, wenn der Fall dem Modell hinzugefügt wird. Für kleine bis mittlere Fallzahlen (d.h. laut Hosmer und Lemeshow (2000) <400) werden Fälle mit DFBeta-Werten >|1| als einflussreich gewertet (Abell et al. 1999).

Tabelle 40: DFBeta für die Koeffizienten

<table>
<thead>
<tr>
<th>DFBeta</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirationszeichen</td>
<td>-0,20</td>
<td>0,09</td>
</tr>
<tr>
<td>Alter</td>
<td>-0,03</td>
<td>0,01</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>-0,15</td>
<td>0,30</td>
</tr>
</tbody>
</table>

Abbildung 28: DFBeta für Aspirationszeichen
Abbildung 29: DFBeta für Alter

Abbildung 30: DFBeta für Geschlecht
8.1.5 Regressionsfunktion und Altersgrenzwerte

Die Funktion der binären logistischen Regression lautet (Backhaus et al. 2016):

\[p = \frac{1}{1 + e^{-z}} \]

Der Funktionsterm \(z\) ist nach folgender Form aufgebaut:

\[b_0 + b_1 X_{1i} + b_2 X_{2i} + \ldots + b_n X_{ni} \]

wobei gilt:

- \(b_0\) Konstante
- \(b_1\) Koeffizient der ersten Variablen
- \(X_{1i}\) Wert der ersten Variablen von Fall \(i\)
- \(n\) Anzahl der Variablen

Nach Einsetzen der Regressionskoeffizienten (Tabelle 31 auf S. 45) lautet die Funktion:

\[p = \frac{1}{1 + e^{(-8,043 + 2,15 X_1 + 0,091 X_2 - 1,169 X_3)}} \]

\(X_1, X_2, X_3\) stehen für die Werte der drei unabhängigen Variablen (Tabelle 41).

Tabelle 41: Zuordnung der Variablen

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>Aspirationszeichen</th>
<th>0 falls nicht vorhanden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 falls vorhanden</td>
</tr>
<tr>
<td>(X_2)</td>
<td>Alter</td>
<td>in Jahren</td>
</tr>
<tr>
<td>(X_3)</td>
<td>Geschlecht</td>
<td>0 falls männlich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 falls weiblich</td>
</tr>
</tbody>
</table>

Setzt man nun für die Wahrscheinlichkeit \(p\) den anhand der ROC-Kurve (Abbildung 24 auf S. 45) definierten Grenzwert \(p^* = 0,242\) ein, erhält man:

\[0,242 = \frac{1}{1 + e^{(-8,043 + 2,15 X_1 + 0,091 X_2 - 1,169 X_3)}} \]
Da die Variablen X1 und X3 dichotome Variablen sind, sind vier Kombinationen möglich, für die jeweils ein Alters-Grenzwert berechnet werden kann (Tabelle 42). Abbildung 31 stellt exemplarisch zwei der insgesamt vier Funktionskurven dar. Durch die beiden dichotomen Variablen Aspirationszeichen und Geschlecht verschiebt sich die Funktion entlang der x-Achse. Hierdurch erklären sich die unterschiedlichen Alters-Grenzwerte, die sich am Schnittpunkt aus der waagrechten Linie (definierter Grenzwert von p*=0,242) mit der entsprechenden Funktionskurve ablesen lassen.

Tabelle 42: Alters-Grenzwerte in Jahren

<table>
<thead>
<tr>
<th>Alters-Grenzwert (Jahre)</th>
<th>Aspirationszeichen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ja</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>Männlich</td>
</tr>
<tr>
<td></td>
<td>52,0</td>
</tr>
<tr>
<td></td>
<td>75,5</td>
</tr>
</tbody>
</table>

Berechnung basiert auf Regressionskoeffizienten mit sechs Nachkommastellen, um Rundungsfehler zu verringern.

8.2 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>Area Under Curve</td>
</tr>
<tr>
<td>BDI-II</td>
<td>Beck-Depressions-Inventar in der 2. Auflage</td>
</tr>
<tr>
<td>BMI</td>
<td>Body-Mass-Index</td>
</tr>
<tr>
<td>DGEM</td>
<td>Deutsche Gesellschaft für Ernährungsmedizin</td>
</tr>
<tr>
<td>DGG</td>
<td>Deutsche Gesellschaft für Geriatrie</td>
</tr>
<tr>
<td>DGN</td>
<td>Deutsche Gesellschaft für Neurologie</td>
</tr>
<tr>
<td>DGPPN</td>
<td>Deutsche Gesellschaft für Psychiatrie und Psychotherapie und Psychosomatik und Nervenheilkunde</td>
</tr>
<tr>
<td>DSFS</td>
<td>Drooling Severity and Frequency Scale</td>
</tr>
<tr>
<td>DSG</td>
<td>Deutsche Schlaganfall-Gesellschaft</td>
</tr>
<tr>
<td>EMST</td>
<td>Expiratory Muscle Strength Training</td>
</tr>
<tr>
<td>FEES</td>
<td>Flexibendeoskopische Evaluation des Schluckakts</td>
</tr>
<tr>
<td>HY</td>
<td>Hoehn und Yahr (Krankheitsstadium)</td>
</tr>
<tr>
<td>KI</td>
<td>Konfidenzintervall</td>
</tr>
<tr>
<td>MDS</td>
<td>Movement Disorder Society</td>
</tr>
<tr>
<td>MDS-UPDRS</td>
<td>Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale</td>
</tr>
<tr>
<td>MDT-PD</td>
<td>Münchener Dysphagie Test - Parkinson’s disease</td>
</tr>
<tr>
<td>MOCA</td>
<td>Montreal Cognitive Assessment</td>
</tr>
<tr>
<td>N</td>
<td>Anzahl</td>
</tr>
<tr>
<td>N.a.</td>
<td>Nicht anwendbar</td>
</tr>
<tr>
<td>N.s.</td>
<td>Nicht signifikant</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>NBI</td>
<td>Narrow Band Imaging</td>
</tr>
<tr>
<td>NMS</td>
<td>Nicht-motorische Symptome</td>
</tr>
<tr>
<td>NMS3</td>
<td>Frage 3 des Fragebogens zu nicht-motorischen Symptomen</td>
</tr>
<tr>
<td>NMS3 Ja</td>
<td>Patient mit subjektiver Dysphagie (anhand Frage 3 des Fragebogens zu nicht-motorischen Symptomen)</td>
</tr>
<tr>
<td>NMS3 Nein</td>
<td>Patient ohne subjektive Dysphagie (anhand Frage 3 des Fragebogens zu nicht-motorischen Symptomen)</td>
</tr>
<tr>
<td>ON/OFF</td>
<td>Bezogen auf motorische Fluktuationen, wobei ON eine gute und OFF und schlechte Beweglichkeit beschreibt</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>PAS</td>
<td>Penetrations-Aspirations-Skala</td>
</tr>
<tr>
<td>PEG</td>
<td>Perkutane endoskopische Gastrostomie</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristic</td>
</tr>
<tr>
<td>SBS</td>
<td>Schluckbeeinträchtigungsskala</td>
</tr>
<tr>
<td>SDQ</td>
<td>Swallowing Disturbance Questionnaire</td>
</tr>
<tr>
<td>THS</td>
<td>Tiefe Hirnstimulation</td>
</tr>
<tr>
<td>UPDRS</td>
<td>Unified Parkinson's Disease Rating Scale</td>
</tr>
<tr>
<td>UPDRS 3</td>
<td>Teil III (motorische Untersuchung) der UPDRS</td>
</tr>
<tr>
<td>VAS</td>
<td>Visuelle Analogskala</td>
</tr>
<tr>
<td>VAST</td>
<td>Video-assistierte Schlucktherapie</td>
</tr>
<tr>
<td>VFSS</td>
<td>Videofluoroskopie des Schluckens</td>
</tr>
</tbody>
</table>
8.3 Abbildungsverzeichnis

Abbildung 1: Anatomie des Larynx ... 2
Abbildung 2: PAS 8 für Wasser ... 16
Abbildung 3: Residuen einer in Apfelsaft aufgelösten Tablette 16
Abbildung 4: Brot ... 18
Abbildung 5: Form und Größe der Placebo-Medikamente 19
Abbildung 6: Keks ... 19
Abbildung 7: Beispiel einer binär-logistischen Regressionsfunktion 21
Abbildung 8: Visuelle Analogskala (VAS) .. 26
Abbildung 9: Probanden ohne relevantes Leaking über alle 3 Konsistenzen 29
Abbildung 10: Probanden ohne Residuen über alle 3 Konsistenzen 31
Abbildung 11: Probanden ohne Penetration/Aspiration über alle 3 Konsistenzen ... 33
Abbildung 12: PAS in Abhängigkeit vom Krankheitsstadium 34
Abbildung 13: Detailbetrachtung des maximalen PAS-Wertes 34
Abbildung 14: Probanden mit einem gänzlich unauffälligen FEES-Befund 35
Abbildung 15: Probanden ohne Sekretansammlungen 36
Abbildung 16: Build Up Brot ... 36
Abbildung 17: Build Up Keks .. 37
Abbildung 18: Schluckgeschwindigkeiten für 90ml Wasser 39
Abbildung 19: Schluckgeschwindigkeiten für halbe Scheibe Brot 40
Abbildung 20: Schluckgeschwindigkeiten für einen Keks 41
Abbildung 21: Zusammenhang von Sialorrhoe und PAS für Wasser 42
Abbildung 22: Zusammenhang von Sialorrhoe und PAS für Brot 43
Abbildung 23: Zusammenhang von Sialorrhoe und PAS für Keks 43
Abbildung 24: ROC-Kurve ... 45
Abbildung 25: Ausreißer ... 84

92
Abbildung 26: Altersverteilung der Patienten mit kritischer Aspiration (PAS 7-8)....84
Abbildung 27: Cook's Distance ...85
Abbildung 28: DFBeta für Aspirationszeichen..86
Abbildung 29: DFBeta für Alter...87
Abbildung 30: DFBeta für Geschlecht..87
Abbildung 31: Regressionsfunktion...89
8.4 Tabellenverzeichnis

Tabelle 1: Kriterien der krankheitsspezifischen Mangelernährung ... 7
Tabelle 2: Rosenbek-Skala ... 7
Tabelle 3: Krankheitsstadien nach Hoehn und Yahr ... 14
Tabelle 4: Schluckbeeinträchtigungsskala (SBS) ... 15
Tabelle 5: Drooling Severity and Frequency Scale (DSFS) ... 15
Tabelle 6: Interpretation des Korrelationskoeffizienten .. 20
Tabelle 7: Aufteilung der Probanden .. 22
Tabelle 8: Patienten .. 23
Tabelle 9: Vergleich Patienten mit Kontrollen ... 24
Tabelle 10: Vergleich Kontrollen mit Patienten ohne subjektive Dysphagie 24
Tabelle 11: Dyskinesien .. 25
Tabelle 12: Vergleich Studienteilnehmer mit Nicht-Teilnehmern ... 25
Tabelle 13: UPDRS Frage 2.3 im Vergleich zu NMS Frage 3 ... 27
Tabelle 14: Leaking für Wasser ... 27
Tabelle 15: Leaking für Brot ... 28
Tabelle 16: Leaking für Keks .. 28
Tabelle 17: Residuen für Wasser ... 29
Tabelle 18: Residuen für Brot .. 30
Tabelle 19: Residuen für Keks .. 30
Tabelle 20: PAS für Wasser ... 32
Tabelle 21: PAS für Brot .. 32
Tabelle 22: PAS für Keks .. 33
Tabelle 23: Sekretansammlungen ... 35
Tabelle 24: Build Up Brot und Penetrations-Aspirations-Skala (PAS) 37
Tabelle 25: Build Up Keks und Penetrations-Aspirations-Skala (PAS) 38
Tabelle 26: Schluckgeschwindigkeiten für 90ml Wasser .. 38
Tabelle 27: Schluckgeschwindigkeiten für halbe Scheibe Brot 39
Tabelle 28: Schluckgeschwindigkeiten für einen Keks ... 40
Tabelle 29: Ausmaß der Sialorrhoe .. 41
Tabelle 30: Veränderung auf der Schluckbeeinträchtigungsskala (SBS) 44
Tabelle 31: Ergebnisse der binären logistischen Regression .. 45
Tabelle 32: Klassifizierungstabelle .. 46
Tabelle 33: Überblick über die verschiedenen Screening-Verfahren 47
Tabelle 34: Toleranz als Maß für Multikollinearität .. 80
Tabelle 35: Multikollinearitätsdiagnostik ... 81
Tabelle 36: Signifikanz der Prädiktoren .. 82
Tabelle 37: -2 Log Likelihood-Verlauf für die einzelnen Schritte 83
Tabelle 38: Ausreißer .. 83
Tabelle 39: Werte der Ausreißer .. 85
Tabelle 40: DFBeta für die Koeffizienten .. 86
Tabelle 41: Zuordnung der Variablen ... 88
Tabelle 42: Alters-Grenzwerte in Jahren .. 89
9. Danksagung

Ich möchte Frau Dr. Pflug und Herrn PD Dr. Buhmann für das mir entgegen gebrachte Vertrauen danken. Ich kann es nicht hoch genug anrechnen, dass mir das Thema trotz einer Vollzeitanstellung überlassen wurde. Die engmaschige Betreuung ließ keine Wünsche offen.

Erst der große Zusammenhalt in den beiden beteiligten Abteilungen (Ambulanzcentrum Neurologie sowie Klinik und Poliklinik für Hör-, Stimm- und Sprachheilkunde) hat es ermöglicht, neben dem normalen Patientenaufkommen so viele Probanden innerhalb kurzer Zeit zu untersuchen. Mir ist bewusst, dass die Unterstützung durch jeden einzelnen Mitarbeiter keineswegs selbstverständlich war.

Mein besonderer Dank gilt Frau Katharina Emich als zweite Doktorandin für diese Studie. Die Datenerhebung wäre ohne sie unmöglich gewesen.

Frau Dr.rer.nat. Plaetke vom Institut für Medizinische Biometrie und Epidemiologie und meiner Schwester Lilly Bihler danke ich für die Unterstützung bei der statistischen Auswertung.

10. Lebenslauf

Aus Datenschutzrechtlichen Gründen entfernt.
11. Eidesstattliche Versicherung

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.
Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.
Ich erkläre mich einverstanden, dass meine Dissertation vom Dekanat der Medizinischen Fakultät mit einer gängigen Software zur Erkennung von Plagiaten überprüft werden kann.

Unterschrift: ..