© 2018 Staats- und Universitätsbibliothek
Hamburg, Carl von Ossietzky

Öffnungszeiten heute09.00 bis 24.00 Uhr alle Öffnungszeiten

Eingang zum Volltext in OPUS

Hinweis zum Urheberrecht

Dissertation zugänglich unter
URN: urn:nbn:de:gbv:18-90583
URL: http://ediss.sub.uni-hamburg.de/volltexte/2018/9058/

Multiple Imputation for Complex Data Sets

Multiple Imputation für komplexe Datensätze

Salfrán Vaquero, Daniel

 Dokument 1.pdf (2.347 KB) 

Freie Schlagwörter (Englisch): missing data , multiple imputation , gamlss , R
Basisklassifikation: 77.03
Institut: Psychologie
DDC-Sachgruppe: Psychologie
Dokumentart: Dissertation
Hauptberichter: Spieß, Martin (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 05.03.2018
Erstellungsjahr: 2018
Publikationsdatum: 23.03.2018
Kurzfassung auf Englisch: Data analysis, common to all empirical sciences, often requires complete data sets, but real-world data collection will usually result in some values being not observed. Many methods of compensation with varying degrees of complexity have been proposed to perform statistical inference when the data set is incomplete, ranging from simple ad hoc methods to approaches with refined mathematical foundation. Given the variety of techniques, the question in practical research is which one to apply. This dissertation serves to expand on a previous proposal of an imputation method based on Generalized Additive Models for Location, Scale, and Shape. The first chapters of the current contribution will present the basic definitions required to understand the Multiple Imputation field. Then the work discusses the advances and modifications made to the initial work on GAMLSS imputation. A quick guide to a software package that was published to make available the results is also included. An extensive simulation study was designed and executed expanding the scope of the latest published results concerning GAMLSS imputation. The simulation study incorporates a comprehensive comparison of multiple imputation methods.


keine Statistikdaten vorhanden