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Abstract

In the context of chemistry and cheminformatics, there are di昀昀erent concepts of similarity. Substances can look
similar, they can belong to the same class of compounds, they can be made from the same set of source reagents
or have similar properties. Focusing on cheminformatics, those similarity measures are preferred that are easy
to compute for a computer program. 吀栀ere, three dimensional surfaces, relative positions of functional groups
in two and three dimensions, or the existence of certain substructures are used for similarity calculations.

吀栀e project of this thesis is focused on similarity measures using maximum common substructures (MCS)
which is integrated in two novel application scenarios. 吀栀ese substructures are calculated between a query
and a target molecule. 吀栀erefore, a novel algorithm is introduced which is capable of solving the MCS problem
in a variety of scenarios. 吀栀e algorithm is designed for a lightweight, e昀케cient and simple structure. Its further
properties enable additional control of the computation of connected and disconnected common substructures
and the application of additional constraints. As 昀椀nal point of the initial development, the e昀케ciency of the
method is shown in comparison to other state of the art algorithms.

A昀琀erwards the developed algorithm is used to scale up the MCS similarity concept from single comparisons
on graphs or molecules into combinatorial compound libraries describing several billions of compounds. 吀栀is
requires adaptions to the problem solved and results in an integration of the previously developed algorithm
into a larger work昀氀ow. 吀栀is enables a focused enumeration of the most similar compounds in combinatorial
compound libraries. Using the correspondingly developed computer program, the e昀케ciency of the concept
and algorithm is demonstrated. Furthermore, its application shows the ease of using an MCS similarity search
in commercial make-on-demand compound libraries for drug development endeavors.

Finally the adaptions to the MCS method are used to transform the molecular similarity measure into a sim-
ilarity concept for molecular pa琀琀erns. 吀栀ere are a few concepts for molecular pa琀琀erns in cheminformatics
which all have in common that they represent molecular substructures. 吀栀e introduction of a novel concept
of generic molecular pa琀琀erns enables comparisons of molecular pa琀琀erns independent of their textual repre-
sentation for the 昀椀rst time. 吀栀ese comparisons are based on an MCS calculation and cover determination of
identical pa琀琀erns, subset relations and similarity on those pa琀琀erns in general. 吀栀e applications derived from
the developed algorithm cover single pa琀琀ern comparisons and searching whole pa琀琀ern collections. 吀栀ey are
integrated into an easy to use webserver.
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Kurzfassung

Im Anwendungsgebiet der Chemie und auch in der Chemieinformatik gibt es verschiedene Konzepte von Ähn-
lichkeit. Substanzen können ein ähnliches Aussehen haben, sie können aus den gleichen Ausgangssto昀昀en be-
stehen, zu einer Sto昀昀gruppe gehören oder ähnliche physikalische und sonstige Eigenscha昀琀en aufweisen. Mit
Blick auf die ChemieinformatikwerdenÄhnlichkeitsmaße bevorzugt, die es einemComputerprogrammermög-
lichen, einfach einen Ähnlichkeitswert zu berechnen. In diesem Kontext werden dreidimensionale Strukturen
und Ober昀氀ächen, Anordnungen funktioneller Gruppen im Zwei- und Dreidimensionalen oder das Vorhanden-
sein von Substrukturen für die Ähnlichkeitsberechnung verwendet.

Im Promotionsprojekt dieser Arbeit wird der Fokus auf Ähnlichkeitsmaße gelegt, die sich aus maximalen ge-
meinsamen Teilstrukturen (MCS) zwischen einer Anfrage- und einemZielmolekül errechnen. Es wird ein neuer
Algorithmus vorgestellt, der das Problem generisch und in diversen Anwendungsszenarien lösen kann. Zu-
sätzlich werden zwei neue Anwendungsszenarien für die MCS Methodik erschlossen. Der Fokus liegt dabei
auf einer schlanken und einfachen Struktur, die es zusätzlich ermöglicht, zusammenhängende und nicht zu-
sammenhängende Teilstrukturen gezielt und mit weiteren Einschränkungen zu berechnen. Die initiale Algo-
rithmusentwicklung schließt mit einer Demonstration der E昀케zienz im Vergleich zu anderen Methoden ab.

Darau昀栀in wird der vorgestellte Algorithmus genutzt, um mit dem MCS-Ähnlichkeitsmaß nicht nur einzelne
Vergleiche durchzuführen, sondern kombinatorische Substanzbibliotheken, die mehrere Milliarden Moleküle
repräsentieren, gezielt zu durchsuchen. Dazu wird das Problem an die Struktur der Räume angepasst und der
entwickelteMCS-Algorithmus in einemmehrstu昀椀genAblauf integriert. Das ermöglicht es, ähnlichsteMoleküle
zielgerichtet zu enumerieren. Mit dem zum Algorithmus gehörenden Computerprogramm wird sowohl die
E昀케zienz der Methode gezeigt, als auch die Einfachheit demonstriert, den das Durchsuchen kommerzieller
Fragmenträume für Wirksto昀昀entwicklung hat.

Abschließend werden die methodischen Adaptionen amMCS genutzt, um aus dem Ähnlichkeitsmaß für Mole-
küle ein Ähnlichkeitsmaß auf molekularen Mustern zu entwickeln. In der Chemieinformatik gibt es verschie-
dene Konzepte, molekulare Muster über Substrukturen darzustellen. Über ein neuartiges Konzept allgemeiner
chemischer Muster wird es ermöglicht, mit dem MCS molekulare Muster unabhängig von der textuellen Re-
präsentation zu vergleichen. Diese Vergleiche umfassen das Feststellen von Identität, Teilmengenrelationen
und allgemeiner Ähnlichkeit. Aus dem Algorithmus entstehen mehrere Anwendungen rund um den Vergleich
einzelner Muster und ganzer Sammlungen chemischer Muster. Sie können ohne weiteres Expertenwissen über
einen Webserver benutzt werden.
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1 Einleitung

In der Chemie und auch im Feld der Chemieinformatik gibt es verschiedene Konzepte molekularer Ähnlich-
keit.[Haw07, Rar98, Rog10, She02, Sta05, Wil98, Wol05] Je nachdem in welchem Teilgebiet Anwender arbeiten,
haben sie auch eine andere Intuition von ähnlichen Substanzen. Für Laien ist die am einfachsten zu erfassen-
de Ähnlichkeit eine gleich aussehende Abbildung von Molekülen oder eine identische Summenformel ohne
jegliche Visualisierung. Chemiker hingegen können am Reaktionsverhalten, an physikalischen Eigenscha昀琀en
oder an Sto昀昀gruppenzugehörigkeit als Ähnlichkeitsbegri昀昀 interessiert sein. In der Chemieinformatik kommen
weitere Ähnlichkeitsmaße vor. Dort werden Moleküle in der Regel als (zweidimensionale) Graphen oder als
dreidimensionale Strukturen modelliert. Zweidimensionale Abbildungen, die von Anwendungen wie sie zum
Beispiel Mona[Hil13, Hil15] erzeugt werden, stellen eine abstrakte Form der Ähnlichkeit über die visuelle Dar-
stellung dar. Diese kann weiter unterstützt werden, indem die Darstellung in eine kanonische Form gebracht
wird oder ähnlich zu einer ausgewählten Ankerstruktur erzeugt wird. Visuelle Darstellungen bieten ebenfalls
den Vorteil, abstrakte theoretischere Ähnlichkeitskonzepte darstellen zu können. Das kann zum Beispiel das
Hervorheben gemeinsamer Substrukturen sein. Für dreidimensionale Darstellungen gibt es ebenfalls Ähnlich-
keitsmaße, die einfache Visualisierungen unterstützen. 3D-Ober昀氀ächenapproximationen sind intuitiv visuali-
sierbar und können e昀케zient überlagert werden, so dass ein Ähnlichkeitswert bestimmt werden kann.[Haw07]
Eine ebenfalls dreidimensionale abstraktere Darstellung sind Pharmakophore.[Wol05] Sie stellen Moleküle als
reduzierte Graphen dar, wobei die Knoten nur funktionelle Gruppen und Ringsysteme darstellen, die für Inter-
aktionen wichtig sind. VomMolekülgerüst wird ansonsten vollständig abstrahiert. Die Knoten behalten jedoch
ihre Koordinaten im dreidimensionalen Raum.

Wie an den eingehenden Beispielen gesehen, basieren chemieinformatische Darstellungen und Ähnlichkeits-
maße fast immer auf Graphstrukturen oder werden von ihnen abgeleitet. Dazu gehören insbesondere auch
maximale gemeinsame Teilstrukturen, die sowohl auf Graphen, als auch auf Abstraktionen von den Mole-
külgraphen angewendet werden können. Ein anderes Beispiel ist die Graph-Editierdistanz.[Say20] Diese be-
schreibt die Anzahl von atomaren Änderungsoperationen, um einen Graph in einen anderen zu überführen.
Als letztes Beispiel sollen hier noch diverse Arten von molekularen Fingerabdrücken als Ähnlichkeitsmaße
dienen.[Bel19, Rin13, Rog10, Xue03] Molekulare Fingerabdrücke werden je nach Anwendung als dichte oder
dünne Bitvektoren dargestellt. Die einzelnen Bits stehen jeweils für Eigenscha昀琀en der beschriebenenMoleküle.
Ursprünglich wurden mit den Bits im Vorfeld de昀椀nierte Eigenscha昀琀en, wie z.B. das Vorhandensein von Teil-
strukturen oder funktionellen Gruppen, abgebildet. Durchgesetzt haben sich jedoch Fingerabdrücke, die für
jede im Graph au昀琀retende Substruktur Bits erzeugen. Insbesondere das rasante Wachstum von verfügbaren
Substanzbibliotheken hat dazu beigetragen, dass molekulare Ähnlichkeit in den meisten Anwendungsfällen
über Fingerabdrücke bestimmt wird, da die Ähnlichkeitsberechnung auf gefalteten dichten Bitvektoren mit
de昀椀nierter Länge eine konstante und sehr geringe Laufzeit hat.

Dieser Punkt ist bei graphbasierten Ähnlichkeitssuchen anders. Einerseits gibt es festgelegte Regeln zur Abs-
traktion, so dass ganze Teilstrukturen auf ihre chemische Funktionalität reduziert werden. Andererseits kön-
nen Elemente nach Hauptgruppenzugehörigkeit klassi昀椀ziert werden, wenn diese sich im betrachteten Kontext
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1 Einleitung

ähnlich verhalten. Nach Reduktion des Graphen wird auf diesem eine Ähnlichkeit bestimmt, die je nach An-
wendung und Algorithmus verschiedene Knotengewichte beinhaltet.

Abhängig von derAbstraktion, die dazu führen kann, dassMoleküle grundsätzlich zu Baumstrukturen reduziert
werden, kann die Ähnlichkeit e昀케zient bestimmt werden. Im allgemeinen Fall, für den das nicht gilt, wird die
Ähnlichkeit mit Algorithmen für das maximale gemeinsame Teilstruktur Problem (MCS) bestimmt.

In der Anwendung haben sich Methoden, die auf Fingerabdrücken arbeiten durchgesetzt. Der Geschwindig-
keitsvorteil beim Vergleich vonMolekülen durch Fingerabdrücke gegenüber anderen Verfahren, die die Graph-
struktur ggf. auch abstrahiert berücksichtigen, basiert auf der starken Abstraktion durch die Bits.

1.1 Maximale gemeinsame Teilstrukturen

Das Problem der maximalen gemeinsamen Teilstruktur (MCS) ist seit langen bekannt und zählt seit den
1970er Jahren zu den NP-vollständigen Optimierungsproblemen der theoretischen Informatik.[Bar76] In
der Anfangszeit wurden maximale gemeinsame induzierte Teilstrukturen meist durch Reduktion auf das
Cliquen-Problem[Lev73, Bro73] gelöst. Ab den achtziger Jahren wurde neben dem Problem der induzier-
ten maximalen gemeinsamen Teilstruktur, auch das Problem der maximalen gemeinsamen kantenbasierten
Teilstruktur auf molekularen Graphen betrachtet.[Nic87] Seitdem wurden diverse Ansätze zur Lösung des
allgemeinen Problems als auch Anwendungsfälle für dieses Problem in der Chemieinformatik verö昀昀entlicht.
Die Anwendungsmöglichkeiten für MCS-Algorithmen gehen von allgemeiner Ähnlichkeitssuche auf mo-
lekularen Graphen [Ray02a] über die Pharmakophorsuche[Cha09] bis hin zu Überlagerungen.[Han98] Die
Bandbreite der Anwendungsmöglichkeiten spiegelt sich auch in den bevorzugten Algorithmen zur Lösung
der Probleme wider. Neben der allgemeinen Distinktion einen induzierten (MCIS) oder kantenbasierten
(MCES) maximalen gemeinsamen Teilgraph zu berechnen, kann dieser sowohl zusammenhängend als auch
nicht-zusammenhängend sein. Mit dieser Unterscheidung ergeben sich die vier Varianten des MCS-Problems,
die zusammenhängenden, cMCIS und cMCES und die nicht-zusammenhängenden dMCIS und dMCES. Un-
abhängig vom betrachtetem Problem unterscheiden sich die Algorithmen dadurch, dass diese entweder ein
exaktes Ergebnis liefern oder auf Basis von Heuristiken versuchen, ein exaktes Ergebnis anzunähern.[Ehr11,
Ray02b, Due16]

Die zu lösenden Problemstellungen implizieren in den meisten Fällen auch die zu verwendende Methodik. Bei
kleinen bis mi琀琀elgroßen Molekülen mit bis zu 50 Atomen sind exakte Methoden noch performant. Darüber
hinaus empfehlen sich heuristische Verfahren aufgrund viel besserer Programmlaufzeiten. Bei der Betrachtung
von nicht-zusammenhängenden Teilstrukturen ist der Laufzeitvorteil heuristischer Verfahren bei viel kleineren
Atomzahlen signi昀椀kant. Als Kompromiss gibt es verschiedene Einschränkungen des zu lösenden Problems,
wie zum Beispiel topologische Distanzen,[Kaw11, Mar07, She98] die neben verbesserten Laufzeiten auch die
chemische Relevanz der Ergebnisse verbessern.

1.2 Kombinatorische Fragmenträume

Kombinatorische Fragmenträume beschreiben einen graphentheoretischen Ansatz zur Beschreibung und Er-
zeugung einer Menge von Graphen, ausgehend von Fragmenten und Verbindungsregeln. Die grundlegende
Idee hinter Fragmenträumen ist die, dass es einfacher und e昀케zienter ist, eine Menge von Graphen anhand ei-
ner Menge von Subgraphen zu beschreiben, die gewissen Regeln folgend, zusammengesetzt werden können. In
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1.3 Chemische Muster

der Chemie ist dieses Konzept z.B. durch Markush Strukturen[Det91] anhand von zweidimensionalen Darstel-
lungen bekannt. Markush Strukturen erlauben es, an einer molekularen Struktur Substituenten zu de昀椀nieren.
Sie stellen eine Beschreibung von Molekülmengen dar, die sowohl graphische als auch textuelle Bestandteile
verbindet. So wird in der Regel eine Substruktur eines Moleküls graphisch dargestellt und es werden Restgrup-
pen zur Erweiterung der Substruktur angegeben. Die Reste können explizit gegeben oder textuell beschrieben
sein. Bei Fragmenträumen ist der Ausgangspunkt eine Menge von Molekülen, sogenannten Fragmenten. Die-
se sollen jedoch nicht an beliebigen Atomen miteinander verbunden werden können. Um das zu realisieren,
werden Verbindungsatome, sogenannte Linker, eingeführt. Das Vorhandensein von Linkern macht in diesem
Kontext aus Molekülen Fragmente, da durch die Existenz solcher Platzhalteratome ein Molekül als unvoll-
ständig angesehen werden muss, weil Linker Verbindungsstellen zwischen Fragmenten darstellen. Die Linker
beschreiben nicht nur Ansatzpunkte für die Erweiterung der Moleküle, sie haben auch einen eigenen Link-
typ, der über die Kompatibilität von Fragmenten entscheidet. Zur Verbindung zweier Fragmente werden die
zu den Linkern adjazenten Atome mit der für die kompatiblen Linktypen de昀椀nierten Bindung verbunden und
die beiden Linker jeweils aus dem Molekül entfernt.

1.3 Chemische Muster

Chemische Muster sind ein allgemeines Konzept in der Chemie. Jede Sto昀昀gruppenbezeichnung kann als ein
Art allgemeines chemisches Muster betrachtet werden. Eine relevante Anwendung für chemische Muster ist
zum Beispiel die Beschreibung von Substanzen in Patenten, die in der Regel durch Markush Strukturen er-
folgt.[Det91] Die Kombination textueller und graphischer Elemente erschwert die automatische Suche nach
Markush Strukturen. Für die Chemieinformatik sind rein textuelle maschinenlesbare Beschreibungen von Mo-
lekülen und chemischen Mustern einfacher und e昀케zienter umzusetzen. Zur Beschreibung chemischer Muster
gibt es verschiedene Systeme, die im Wesentlichen über die Beschreibung von Substrukturen funktionieren.
Dazu gehören SLN,[Ash97] eine einzeilige Notation für molekulare Muster, die auch Markush Strukturen
unterstützt oder MQL[Pro07] eine in Java implementierte Anfragesprache für chemische Muster und auch
SMARTS.[Day, Say97] In dieser Dissertation wird der Fokus auf die SMARTS-Sprache gelegt. SMARTS ist eine
für chemische Muster abgeleitete Variante von SMILES,[Wei88, Dav89] einer Beschreibungssprache für Mo-
leküle. Die grundlegenden Elemente von SMILES und SMARTS sind identisch, mit dem Unterschied, dass in
SMILES Atome und Bindungen beschrieben werden, während es in SMARTS Knoten und Kanten sind. Die
Knoten und Kanten in SMARTS beschreiben verschiedene Eigenscha昀琀en von Atomen und Bindungen, auf die
sie abgebildet werden können. Die folgende Beschreibung konzentriert sich auf SMILES.
In SMILES werden Moleküle als lineare Zeichenke琀琀en beschrieben. Atome werden innerhalb von eckigen
Klammern [] beschrieben. Innerhalb der Beschreibung steht das Element, die Anzahl an Wassersto昀昀en und die
Ladung, zum Beispiel [NH4+]. Eigenscha昀琀en, die de昀椀nierten Standardwerten des verwendeten Chemiemodells
entsprechen, können auch ausgelassen werden. Bindungen werden jeweils zwischen benachbarten Atomen be-
schrieben. Für Einfach-, Doppel- und Dreifachbindungen werden die Symbole „-“, „=“ und „#“ verwendet. Die-
se Beschreibung entspricht einem linearen Graphen. Verzweigungen werden in SMILES und SMARTS durch
Klammern () ausgedrückt, so dass auch Baumstrukturen möglich sind. Über eine Beschreibung o昀昀ener Bin-
dungen durch numerische Platzhalter werden letztendlich Ringschlüsse beschrieben, so dass jeder beliebige
Graph dargestellt werden kann.

SMARTS verwendet ebenfalls diese Konzepte und erweitert die Beschreibung in den Knoten und Kanten ei-
nerseits durch zusätzliche Eigenscha昀琀en, als auch durch logische Operatoren, die die Konjunktion oder Dis-
junktion einfacher Eigenscha昀琀en der Knoten und Bindungen ausdrücken. Darüber hinaus ist es in SMARTS
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1 Einleitung

möglich, die Umgebung um einen Knoten rekursiv zu spezi昀椀zieren. Das Besondere an einer solchen rekursi-
ven Beschreibung „$(<SMARTS>)“ eines Knotens ist, dass die sogenannte SMARTS Rekursion unabhängig vom
restlichen Muster das Molekül tre昀昀en muss. Alle Atome, die in einer vollständigen Abbildung des rekursiven
SMARTS Ausdrucks auf dessen ersten Knoten abgebildet werden können, können auch auf den Knoten mit
der SMARTS Rekursion abgebildet werden.

Wenn ein SMARTS in einem Molekül gesucht wird, dann bedeutet dies, dass eine injektive Abbildung der
Knoten und Kanten des SMARTS auf die Atome und Bindungen eines Moleküls gesucht wird, die alle Knoten
und Kanten des SMARTS beinhaltet. Dieser Vorgang wird im Kontext dieser Arbeit auch SMARTS matching
bezeichnet.

1.4 Aufbau der Arbeit

Diese Arbeit bezieht sich auf drei zusammenhängende 吀栀emenkomplexe, die während der Promotion bearbei-
tet wurden. Das allgemeine 吀栀ema dieser Arbeit ist die Berechnung von Ähnlichkeit in verschiedenen Berei-
chen der Chemieinformatik. In den drei betrachteten Fällen wird jeweils eine über die maximale gemeinsame
Teilstruktur (MCS) berechnete Ähnlichkeit verwendet.

Im ersten Kapitel wird ein e昀케zienter exakter Algorithmus für die Lösung des MCS-Problems auf kleinen che-
mischen Graphen entwickelt und evaluiert. Dieser hat den Namen RIMACS (Recursive IncrementalMAximum
Common Substructure). RIMACS zeichnet sich durch seine Anpassungsfähigkeit an unterschiedliche Graph-
typen aus. Er ist nicht auf ein bestimmtes Graphmodell festgelegt, sondern de昀椀niert eine Schni琀琀stelle, über die
auf Knoten, Kanten, Nachbarscha昀琀en und Inzidenzeigenscha昀琀en zugegri昀昀en wird. Die Evaluation des Algo-
rithmus fokussiert sich neben einer allgemeinen Auswertung des Laufzeitverhaltens und einem Vergleich zu
heuristischen Verfahren aus der Literatur, auf das eingeschränkte nicht-zusammenhängende MCS-Problem.

Nach der Entwicklung eines Algorithmus für das MCS-Problem folgen zwei neuartige Anwendungsszenari-
en, die im Kern auf dem MCS basieren, darüber hinaus aber weitere Modellierungen und Einschränkungen
benötigen.

Die erste Anwendung ist die Skalierung der MCS-basierten Ähnlichkeitssuche von kleinen enumerierten Mo-
lekülmengen hin zu kombinatorischen reaktionsbasierten Fragmenträumen, die mehrere Milliarden Molekü-
le beschreiben können. Die Modellierung ermöglicht es, die Fragmentstruktur des kombinatorischen Raums
auszunutzen, so dass MCS-Berechnungen auf den Fragmenten hinreichend sind, um Aussagen über alle Sub-
stanzen im beschriebenen Raum abzuleiten. Die Grundlage für diese erwünschten Implikationen stellt die Ein-
schränkung des MCS auf grundlegende Eigenscha昀琀en von Fragmenträumen dar. Der wichtigste Aspekt ist
der, dass Teile des Anfragemoleküls mehrfach mit allen Fragmenten des Raums verglichen werden und die
Teilergebnisse anschließend zielgerichtet enumeriert werden können. Neben der Entwicklung werden auch
Anwendungsbeispiele für die Teilstruktursuche in Fragmenträumen gegeben und das Potential in Verbindung
mit kommerziellen Räumen evaluiert.

Für die zweite Anwendung wird der Ähnlichkeitsbegri昀昀 von Molekülen zu einem Ähnlichkeitsmaß auf che-
mischen Mustern weiterentwickelt. Chemische Muster können als Verallgemeinerung von Molekülstrukturen
betrachtet werden. Im Vergleich zu Molekülen ist es schwerer, eine einheitliche Darstellung solcher Muster zu
de昀椀nieren, da diese keine reale Grundlage mehr haben. Inspiriert von verschiedenen Sprachen für chemische
Muster wird ein theoretisches Konstrukt eines allgemeinen chemischen Musters eingeführt, das erstmalig die
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1.4 Au昀戀au der Arbeit

Möglichkeit scha昀�, Muster sprachunabhängig zu vergleichen. Dieses Konzept wird innerhalb eines Chemie-
modells für die Mustersprache SMARTS umgesetzt und ausführlich evaluiert.

Final folgt eine Zusammenfassung derwährend der Promotion erbrachten Forschungsleistung und einAusblick
auf mögliche Folgearbeiten und 吀栀emen.
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2 Berechnung maximaler gemeinsamer Teilstrukturen

2.1 Anforderungen und Motivation

Wie in Kapitel 1.1 beschrieben, gibt es viele verschiedene Ansätze zur Lösung des MCS-Problems.[Ehr11,
Ray02b, Due16] In vielen Fällen werden dabei die Algorithmen im Zusammenhang mit einer Anwendung
oder einer chemischen Bibliothek vorgestellt.[Dal13, Eng15, Lar16, Kaw11, Ray02a] Auch wenn der Quellcode
verfügbar ist, ist dieser häu昀椀g an ein gegebenes Chemiemodell angepasst und auf dessen Struktur optimiert.
Insbesondere bietet es sich auch aus Gründen der Laufzeite昀케zienz an, Algorithmus und Modell zu verweben.
Der Nachteil davon ist eindeutig die Wiederverwendbarkeit. Das erste Ziel dieser Dissertation ist nicht nur
der Entwurf und die Implementation eines neuen Algorithmus. Dieser soll zudem mit einer einfachen und ge-
nerischen Schni琀琀stelle versehen werden, so dass unterschiedliche Chemiemodelle und Implementationen von
generischen Graphen unterstützt werden. Letzteres soll eine einfache Adaption an verschiedene Graphen zum
Beispiel innerhalb des NAOMI[Urb11] Chemiemodells erlauben, wo der Algorithmus sowohl für Moleküle als
auch für chemische Muster in der SMARTS Sprache eingesetzt werden soll. Zu den weiteren Anforderungen
des Algorithmus gehören die exakte Berechnung induzierter und nicht-induzierter maximaler gemeinsamer
Teilstrukturen. Da die Variante des nicht-induzierten Problems durch die Nutzung von Liniengraphen in ein
induziertes Problem überführt werden kann,[Nic87, Whi32] besteht die Anforderung, diese e昀케zient und ein-
fach für den Anwender umzusetzen. Die 昀椀nale Anforderung an den zu entwickelnden Algorithmus ist der
zusammenhängende und nicht-zusammenhängende MCS (dMCS). Beide Varianten können von vielen Algo-
rithmen berechnet werden.[Due18, Eng15, Kaw11, Ray02a] Deshalb soll nicht nur der dMCS berechnet werden.
Dieser soll vomNutzer auch sinnvoll beschränkt werden können, so dass das Ergebnis einen guten Kompromiss
aus akzeptabler Laufzeit und gesteigerter chemischer Relevanz der Ergebnisse ermöglicht. Dazu soll die An-
zahl der Zusammenhangskomponenten und deren minimale Größe parametrisierbar sein. Beide Bedingungen
werden von existierenden Algorithmen unterstützt,[Cao08, Har11] wurden aber bisher noch nicht ausführlich
evaluiert. Abschließend soll der Algorithmus für eine optimale Wiederverwendbarkeit der Bibliothek „freie
So昀琀ware“ sein und der Quellcode entsprechend verö昀昀entlicht werden.

Beim Design von Algorithmen müssen neben den Anforderungen weitere richtungsweisende Entscheidungen
getro昀昀en werden. Es gibt verschiedene Ansätze das Problem zu lösen und in jeder Publikation werden die Vor-
teile der eigenen Implementation hervorgehoben. Ohne unabhängige Vergleichsstudien ist es schwer, wirkliche
Vorteile unterschiedlicher Modellierungen zu erkennen. Grundsätzlich besteht bei MCS-Algorithmen immer
die Möglichkeit, das Problem auf das Cliquenproblem zu reduzieren. Im Vergleich zu anderen heuristischen
Verfahren haben sich cliquenbasierte Algorithmen, die eine lokale Iteration benutzen, durchgesetzt.[Due18,
Eng15, Gro08] Bei den exakten Methoden ist die Situation weniger eindeutig. Das größte Problem der Redukti-
on auf das Cliquenproblem beim Vergleich chemischer Molekülgraphen ist die Tatsache, dass Molekülgraphen
dünne Graphen sind, die Anzahl an Kanten also linear von der Knotenzahl abhängt.[Eng15] Daraus folgt, dass
der erzeugte Kompatibilitätsgraph, in dem die Clique gesucht wird, ein dichter Graph ist. Das ist ein Nachteil,
da die Clique im Vergleich zum Graphen immer klein ist. Der Fokus auf chemische Graphen hat im Allge-
meinen den Vorteil, dass alle Kanten und Knoten Element- und Bindungstypen haben, die die Kompatibilität
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2 Berechnung maximaler gemeinsamer Teilstrukturen

einschränken. In der graphentheoretischen Betrachtungwerden diese Typen Farben genannt.[San14] Ein ande-
rer Ansatz, die Entwicklung eines substrukturbasierten Algorithmus[Cao08] hat nicht den genannten Nachteil
der Cliquenmodellierung. Dazu kommt, dass sich substrukturbasierte Algorithmen[Cor04, May19] für die Sub-
struktursuche, ein vermeintlich einfacheres aber auch ein NP-vollständiges Problem, durchgesetzt haben.

2.2 Stand der Forschung

Wie schon in der Motivation bemerkt, ist die Cliquenmodellierung[Caz05, Koc01, Ray02a, Mcc16, She98] vor
allem für heuristische Verfahren interessant.[Eng15, Gro08, Kaw11] Im Allgemeinen sind die Laufzeiten zur
Berechnung eines zusammenhängenden MCS (cMCS) deutlich geringer als die des dMCS.[Due18] Damit ein
cMCS in einer Clique gefunden werden kann, muss die Modellierung angepasst werden.[Caz05, Koc01] An-
sonsten wird eine im Normalfall nicht zusammenhängende Abbildung berechnet. Eine beliebte Methode zur
Beschleunigung des dMCS sind topologische Distanzen.[Kaw11, Mar07, She98] Die Idee dahinter ist es, dass
die einzelnen abgebildeten Zusammenhangskomponenten ähnliche Distanzen zueinander haben und das auch
für die jeweiligen Knotenabbildungspaare gilt. In Bezug auf das Cliquenproblem hat diese Modellierung den
Vorteil, dass der Kompatibilitätsgraph ausgedünnt wird. Zudem steigt die chemische Relevanz der Ergebnisse,
da große Zusammenhangskomponenten nur dann abgebildet werden können, wenn die relative Anordnung
zueinander gleich ist. Diese wird, wie gesehen, nur implizit betrachtet. In einem dMCS kann die relative Anord-
nung aber auch einen Teil der Gewichtung für das Gesamtresultat ausmachen. Stahl et al. [Sta05] berechnen
einen dMCS und bewerten die Anordnung der größten drei Zusammenhangskomponentenmit mindestens vier
Atomen. In Abhängigkeit der Anordnung und der einzelnen Größen der Zusammenhangskomponenten wird
der initial berechnete Ähnlichkeitswert um bis zu 0.3 abgewertet oder 0.1 aufgewertet.

Eine ganz andere Art das Problem zu lösen ist die Substrukturenumeration.[Dal13, Tak87, Var79] Ausgehend
von einer „kleinsten“ Struktur werden Substrukturen enumeriert und in einer Menge von Graphen gesucht.
Diejenige mit maximaler Knotenanzahl entspricht dem cMCS. Diese Art das Problem zu lösen hat vor allem
Vorteile, wenn der MCS zwischen mehr als zwei Graphen gesucht wird. In einem solchen Fall werden die
Substrukturen einfach in einem weiteren Graph gesucht. Die Skalierung bezüglich der Anzahl an Graphen ist
als linear einzuordnen. Alternativ wurde das Problemmit einem Cliquenalgorithmus und der Enumeration von
maximalen gemeinsamen Teilstrukturen gelöst, von denen maximale Schni琀琀e bestimmt wurden.[Har11] Die
Anzahl an MCS Berechnungen wächst hier ebenfalls linear mit der Anzahl an Graphen.

Als letzter häu昀椀g genutzter Ansatz seien substrukturbasierte Algorithmen genannt.[Cao08, Lar16, McG82,
Van13] Diese haben die Eigenscha昀琀, dass die Abbildung zwischen den Graphen direkt modelliert wird. Das
ermöglicht schlanke und einfache Strukturen für e昀케ziente Algorithmen. Im Vergleich zur häu昀椀g verwende-
ten Cliquenmodellierung sind triviale und akkurate Abschätzungen der erreichbaren Ergebnisgüte möglich,
indem z.B. die Anzahl der verbleibenden abbildbaren Knoten verwendet wird. Exakte Algorithmen eignen sich
insbesondere für kleine Moleküle und Graphen[Cao08] und bei großen (biologischen) Netzwerken ist ein heu-
ristischer Ansatz unabdingbar.[Lar16] Dieser ist durch einen „Simulated Annealing“-Ansatz in Verbindung mit
einer lokalen Suche in der Lage, einen heuristischen MCS auf einer Vielzahl von Graphen zu berechnen.
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2.3 Der RIMACS Algorithmus

Dieses Kapitel fasst den RIMACS (Englisch für: Recursive Incremental MAximum Common Substructure)
Algorithmus zusammen, der in [D1] entwickelt wurde. RIMACS ist ein substrukturbasierter generischer MCS-
Algorithmus, der für die in Kapitel 2.1 beschriebenen Anforderungen entwickelt wurde. Die Publikation [D1]
betrachtet nicht nur die Entwicklung und insbesondere interne Heuristiken zur Beschleunigung unter Bewah-
rung der exakten Ergebnisse, sondern auch den Laufzeitvergleich mit anderen Methoden und die Evaluation
des eingeschränkt nicht-zusammenhängenden MCS-Problems. Die RIMACS Methode selbst ist alleinig für den
induzierten MCS (MCIS) entworfen, bei dem eine Knotenabbildung maximiert wird. Der nicht-induzierte MCS
(MCES), bei dem eine Kantenabbildung maximiert wird, wird über die Modellierung als Liniengraph gelöst.
Dabei entspricht die Anzahl an Kanten der Anzahl Knoten im Liniengraphen. Somit gelten Beschreibungen
der folgenden Kapitel für beide Varianten.

2.3.1 Vergleich der Einschränkungen für den Nichtzusammenhang

Der RIMACS Algorithmus ist als e昀케zienter generischer MCS-Algorithmus mit einem Fokus auf kleine und
mi琀琀lere Knotenzahlen von molekularen Graphen ausgelegt. Für eine optimale Nutzung als Ähnlichkeitsmaß
auf Molekülen muss sowohl der cMCS als auch der dMCS berechnet werden können. Da letzterer ohne ein
heuristisches Verfahren in der Regel nicht e昀케zient gelöst werden kann, setzt RIMACS auf aus der Literatur
bekannte Einschränkungen:

1 Kontrolle über die Anzahl der Zusammenhangskomponenten, aus denen die 昀椀nale Abbildung besteht

2 Mindestanzahl an Knoten, beziehungsweise Kanten in einer Zusammenhangskomponente, sofern es
mindestens zwei gibt.

Der Vorteil beider genannter Bedingungen ist, dass sie sich gut in einen Algorithmus integrieren lassen, der
zusammenhängende Zwischenergebnisse bis zum Erreichen eines lokalen Maximum expandiert. Damit lässt
sich der Algorithmus in Phasen der Expansion von Zusammenhangskomponenten unterteilen. Zwischen den
Phasen werden die genannten Einschränkungen geprü昀琀, die sich ebenfalls in interne Datenstrukturen und die
Abschätzung der erreichbaren Ergebnisgüte integrieren lassen.

Die Modellierung topologischer Distanzen bevorzugt Adjazenzmatrizen für die Graphen, da alle paarweisen
Distanzen von Interesse sind. Diese wären eine Voraussetzung für eine e昀케ziente Integration in substruktur-
basierte Algorithmen. Die für eine Cliquenmodellierung üblichen Kompatibilitätsgraphen bieten hingegen ein
Werkzeug, in das sich die Distanzen sinnvoll integrieren lassen. Daher wurden diese genauso wie in [Cao08]
nicht in den Algorithmus integriert.

Die für den nicht-zusammenhängenden MCS interessanten zusätzlichen Bewertung der Anordnung der Zu-
sammenhangskomponenten, wie in [Ray02a] beschrieben, wurde ebenfalls evaluiert und aufgrund sinkender
Laufzeite昀케zienz verworfen. Eine Überprüfung der Topologie der Zusammenhangskomponenten kann immer
nur als ein nachgelagerter Schri琀琀 in einen Algorithmus integriert werden. Bei deren Evaluation kann dann
die Abschätzung der noch erreichbaren Ergebnisgüte dramatisch sinken, was eventuelle Vorteile schnell aus-
gleicht. Aus genannten Gründen wird dieser Anwendungsfall in RIMACS nicht unterstützt.
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2 Berechnung maximaler gemeinsamer Teilstrukturen

2.3.2 Korrektheit

Jeder Algorithmus, der auf ein Problem angewendet wird, sollte dieses auch korrekt lösen. Damit das sicher-
gestellt ist, muss die Korrektheit formal bewiesen werden. Handelt es sich hingegen um einen approximativen
Ansatz ein Problem zu lösen, kann in der Regel nicht bewiesen werden, dass jede Probleminstanz korrekt
gelöst wird. In solchen Fällen hingegen ist eine Evaluation der Ergebnisse und eine Diskussion von Fehlern
und Fehlerquellen notwendig. In der chemieinformatischen Literatur zu MCS Algorithmen gibt es nur wenige
Beweise dafür, dass eine Methode auch korrekt ist. Alle cliquenbasierten Verfahren basieren auf dem Beweis
der Reduktion des MCS Problems auf Instanzen des Cliquenproblems.[Lev73] Instanzen der nicht induzierten
MCS Varianten nutzen die Beweise von Whitney und Nicholsen,[Nic87, Whi32] die besagen, dass ein nicht
induzierter MCS mit wenigen Ausnahmen einem induzierten MCS im Liniengraphen entspricht. Einen zusam-
menhängenden MCS mi琀琀els Cliquen zu berechnen erfordert einige Modi昀椀kationen im Cliquenalgorithmus,
da die bestehende Clique nicht mehr mit allen möglichen benachbarten Knoten erweitert werden darf, da dies
den Zusammenhang des dargestelltenMCS verletzt. Eine solche Anpassung des Problems und der Algorithmen
bedarf eines Beweises, wie von Koch[Koc01] erbracht und von Cazals korrigiert.[Caz05] Die meisten exakten
Algorithmen sind sogenannte Backtracking Algorithmen. Für die Berechnung der Cliquen ist die prinzipielle
Vorgehensweise ähnlich. Die Unterschiede in den Verfahren und insbesondere auch die Vor- und Nachteile im
Laufzeitverhalten folgen aus derMöglichkeit obere und untere Schranken für das bestmögliche Ergebnis, sowie
des aktuell erreichbaren Ergebnis zu berechnen. Daraus ergeben sichMöglichkeiten Bereiche im Zustandsraum
zu ignorieren, die das gesuchte maximale Ergebnis nicht beinhalten. In der Chemieinformatik angewendete
Methoden, wie z.B. der RASCAL Algorithmus[Ray02a] nutzen eine Vielzahl aus der mathematischen Litera-
tur bekannten Optimierungsstrategien. Die Korrektheit der RASCAL Methode im Gesamten wird aber nicht
noch einmal bewiesen. Das MCS Problem lässt sich wie in den bisherigen Kapiteln beschrieben, nicht nur
über die Reduktion auf das Cliquenproblem lösen. Cao[Cao08] entwickelte einen substrukturbasierten Algo-
rithmus, dessen Ideen von Van Berlo[Van13] aufgegri昀昀en und als heuristisches Verfahren beschleunigt wurde.
Ein Korrektheitsbeweis wurde für diesen Ansatz noch nicht erbracht. Die RIMACS Methode[D1] basiert auf
dem von Cao[Cao08] präsentierten Algorithmus und liefert einen Korrektheitsbeweis. Neben der Korrektheit
der grundlegendenMethode werden auch alle verwendeten Approximationen betrachtet, für die jeweils festge-
stellt wird, dass sie keinen Ein昀氀uss auf die Güte der Berechnung haben. Eine gute Evaluation von heuristischen
Verfahren[Eng15] betrachtet neben der Laufzeit auch immer die Güte der erreichbaren Ergebnisse. Das kann
im Vergleich zu anderen Methoden oder zur exakten Lösung erfolgen,[Kaw11] sofern diese mit akzeptablen
Aufwand berechenbar ist.

2.3.3 Die RIMACS Vergleichsstudien

In [D1]wurde RIMACS in zwei verschiedenen Szenarien evaluiert. Einerseits wurde der Ein昀氀uss auf die Laufzeit
und Ergebnisgüte der Beschränkung des dMCS, andererseits die Laufzeiten im Vergleich zu anderen Methoden
bezüglich des cMCS evaluiert. In beiden Fällen wurden publizierte Datensätze von Englert[Eng15] und zwei
neu erstellte verwendet.[D1] Letzterer der beiden, soll eine reproduzierbare zufällige Auswahl an Molekülen
darstellen. Eine zufällige Auswahl von Testfällen ist ein häu昀椀g gewähltes Mi琀琀el in Evaluationsstudien.[Bel20,
Cao08, Due18, Lar16, Les19] Sofern die Datensätze nicht mit verö昀昀entlicht werden, sind die erzielten Ergeb-
nisse aber nicht reproduzierbar. Auch wenn solche Selektionen meistens tatsächlich zufällig ablaufen, ist es
nicht möglich festzustellen, ob ein weiteres (unbekanntes) Kriterium die Auswahl mit beein昀氀usst hat. Im Fall
des NCI-Key genannten Datensatzes in [D1] wurde eine dreistellige Zahl im Su昀케x der automatisiert erstellten
Molekülnamen zum Auswahlkriterium. Der Grund für die Auswahl der beiden Zi昀昀ernfolgen „425“ und „545“
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hängt mit den Zielen zusammen, eine zufällige Auswahl zu simulieren und den Datensatz nicht verö昀昀entlichen
zu müssen. Das NAOMI[Urb11, Urb14] Chemiemodell ist streng und teilweise selektiv beim Einlesen organi-
scher Moleküle, wenn diese Halbmetalle oder Metalle enthalten. Die beiden als Su昀케x gewählten Zi昀昀ernfolgen
entsprechen der Selektion aller Datensätze eines dreistelligen Namenssu昀케x, die vollständig mit NAOMI ein-
lesbar sind. Solche Entscheidungskriterien werden in der Regel nicht mitverö昀昀entlicht. Ebensowenig erfahren
Leser, ob eine zufällige Auswahl von Strukturen wiederholt wurde oder überhaupt nicht zufällig war.

2.3.3.1 Evaluation des eingeschränkten nicht-zusammenhängenden MCS

Der Zugewinn abbildbarer Knoten des dMCS im Vergleich zum cMCS wurde bisher noch nicht evaluiert. In
[D1] wird dies auf zwei verschiedenen Datensätzen ausgewertet. In erster Linie geht es um einen Laufzeitver-
gleich und die farbliche Visualisierung der Skalierung für die einzelnen Kon昀椀gurationen des dMCS. Darüber
hinaus wird für jede der Kon昀椀guration der durchschni琀琀liche Zugewinn an abgebildeten Knoten gegenüber
dem cMCS abgebildet. Diese Analyse ist in den Abbildungen 2.1 und 2.2 für den in [D1] EvalSet genannten
Datensatz durchgeführt. EvalSet wurde aus aktiven und inaktiven Molekülen des DUD-Datensatzes[Mys12]
erstellt. Abbildung 2.1 verdeutlicht die exponentielle Natur hinter dem dMCS und auch, dass das Erzwingen
großer Zusammenhangskomponenten vergleichbare Laufzeiten zum cMCS ermöglicht. Unter Hinzuziehen der
Ergebnisse aus Abbildung 2.2 folgt aber auch, dass große Zusammenhangskomponenten nur selten au昀琀reten
und einen signi昀椀kanten Zugewinn für die Abbildung ermöglichen. In [D1] wird geschlussfolgert, dass drei bis
fünf Zusammenhangskomponentenmit einerMindestgröße von drei bis fünf Atomen einen guten Kompromiss
aus akzeptabler Laufzeit und Ergebnisverbesserung darstellen.

Die Ansätze aus der Literatur wurden vergleichsweise evaluiert. Insbesondere der Fokus auf den Zugewinn an
abbildbaren Knoten oder Kanten wurde bisher nicht explizit erwähnt. Kawabata[Kaw11] hat eine vergleichbare
Studie für die Evaluation topologischer Distanzen durchgeführt. Diese wurde jedoch für den heuristischen
Algorithmus durchgeführt. So wurden sowohl die Laufzeiten und Ergebnisse im Vergleich zu einem exakten
cliquenbasierten Algorithmus betrachtet. In der Studie von Englert und Kovács[Eng15] hingegen wurde kein
exaktes Verfahren zum Vergleich herangezogen, sondern eine obere Schranke der exakten Lösung.
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Durchschnittliche Laufzeit in ms der Evaluation des eingeschränkten MCES
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Abbildung 2.1: Darstellung der durchschni琀琀lichen Laufzeiten aller paarweisen MCES Berechnungen der Moleküle des EvalSet ge-
nannten Datensatzes. Diese Abbildung wurde aus [D1] übernommen und ins Deutsche übersetzt.

Durchschnittlicher Größenzugewinn im Vergleich zum cMCES
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Abbildung 2.2: Darstellung des durchschni琀琀lichen Zugewinns an abgebildeten Atomen aller paarweisen MCES Berechnungen im
Vergleich zum cMCES der Moleküles des EvalSet Datensatzes. Diese Abbildung wurde aus [D1] übernommen und ins
Deutsche übersetzt.
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2.4 Vergleich vom MCS-Algorithmen

Genauso, wie in anderen Teildisziplinen der Chemieinformatik ist es auch für das exakt lösbare MCS Problem
schwer, gute Vergleichsstudien zu 昀椀nden.[Due18, Fri17] Sofern die So昀琀warepakete der Vergleichskandidaten
nicht als Open-Source So昀琀ware zur Verfügung stehen, ist es häu昀椀g schwierig, Lizenzen für die Anwendungen
innerhalb einer Vergleichsstudie zu erhalten. Insbesondere kommerzielle Anbieter haben kein Interesse daran,
in einer Vergleichsstudie schlecht abzuschneiden.[Ope, Sch].

Unabhängig von genannten organisatorischen Schwierigkeiten für ausführliche Vergleichsstudien ist häu昀椀g
das Ziel die Vorstellung und Etablierung einer neuen Methode. Frei verfügbare Datensätze, auf denen das
Laufzeitverhalten der Methoden evaluiert wurden, sind ein Kompromiss, um beide Ziele zu erreichen, der bis-
her aber zu selten für MCS-Algorithmen angewendet wird. Neue Datensätze bieten im Vergleich zur Nutzung
bestehender immer die Möglichkeit, die Stärken des entwickelten Algorithmus besser hervorzuheben, aber die
Schwächen des Ansatzes zu umgehen. Eine gute Evaluation wird sich immer daran messen lassen müssen,
bestehende und gegebenenfalls als schwer zu lösen bekannte Datensätze zu inkludieren. Genau das wurde mit
der Wahl der Datensätze von Englert[Eng15] in [D1] angestrebt.

2.4.1 Vergleichsstudien in der Literatur

Es gibt verschiedeneMotivationen bestehende Algorithmen zu vergleichen. Der Vergleich an sich kann das Ziel
sein, um bei einer Menge konkurrierender Ansätze für ein Teilgebiet, eine Methode der Wahl zu bestimmen.
Anderenfalls ist für Projekte, die auf einer Berechnung au昀戀auen, diese aber nur benutzen, eine Evaluation
ebenfalls wichtig, da die Wahl die später erzielbaren Laufzeiten stark beein昀氀ussen kann. Und abschließend
sollten für jeden neu vorgestellten Algorithmus die Laufzeiten evaluiert und verglichen werden.

So kann in au昀戀auenden Projekten eine kleine Evaluation verschiedener Ansätze durchgeführt werden, wenn
die beste Technologie zur Integration in ein komplexeres Problem gesucht wird. Genau das haben unter an-
derem Stahl et al. durchgeführt.[Sta05] Andererseits haben Englert und Kovács[Eng15] einen externen Algo-
rithmus im Vergleich zu den verschiedenen Varianten ihrer Implementationen betrachtet. Der in [D1] durch-
geführte Vergleich orientiert sich stark an dem von Englert. In beiden mit Beispielen untermalten Fällen liegt
der Fokus des Vergleichs auf dem spezi昀椀schen Anwendungsgebiet der Algorithmen.

Insgesamt erweist sich der Vergleich verschiedener MCS-Algorithmen als schwierig. Auch wenn immer wie-
der neue Algorithmen vorgestellt werden, gibt es in den wenigsten Fällen ausreichend Vergleichsstudien, die
neue Algorithmen von bestehenden sinnvoll abgrenzen und unterscheidbar machen. Das liegt an verschiede-
nen Gründen. Viele Algorithmen werden innerhalb von nicht-ö昀昀entlichen Produkten oder Bibliotheken im-
plementiert, so dass der Quellcode oder eine Vergleichsanwendung nicht zur Verfügung stehen. Für den Fall,
dass die Algorithmen in z.B. einer frei verfügbaren Bibliothek implementiert sind, ergeben sich zwei Möglich-
keiten für einen Vergleich: Eine Anbindung an die eigene Bibliothek, bei der die internen Strukturen angepasst
werden müssen oder der Vergleich über verschiedene Chemiemodelle. Das letzteres schwierig ist, zeigt die
Unterscheidung der RIMACS-Versionen in Tabelle 6 von [D1].

Die genannten und weitere Probleme lassen sich im Vergleich von MCS Algorithmen beobachten, wie von
Duesbury[Due18] durchgeführt. In der Publikation werden 11 verschiedene Algorithmen aus unterschiedli-
chen Quellen miteinander verglichen. Für ein geeignetes Maß an Vergleichbarkeit wurden alle diese Methoden
zudem in Java reimplementiert. Ziel der Reimplementation war es, unabhängig von der Sprache einen besten
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2 Berechnung maximaler gemeinsamer Teilstrukturen

Algorithmus und Ansatz zu 昀椀nden. Dieser löst somit das Problem der Chemiemodelle, bringt aber das Problem
mit sich, dass Laufzeitoptimierungen der Originalimplementationen verloren gehen können.

Zusammenfassend bleibt festzustellen, dass es schwierig ist, einzelne Algorithmen zu vergleichen, die norma-
lerweise in Anwendungen und chemischen Modellen eingebunden sind. Die Implementation dieser, in unter-
schiedlichen Programmiersprachen, ist dabei ein zusätzliches Problem. Wenn ganze Anwendungen und Pro-
grammfolgen verglichen werden können, löst das einige der hiesigen Probleme, bringt aber andere mit sich,
die sich aus den Möglichkeiten der Parametrisierung ergeben.[Fri17]

2.5 Zusammenfassung und Ausblick

Die Entwicklung und der systematische Vergleich des RIMACS Algorithmus haben die Schwierigkeiten bei
der Entwicklung e昀케zienter MCS-Berechnungen aufgezeigt. Auf kleinen Molekülen ist die Berechnung ei-
nes zusammenhängenden exakten MCS vergleichbar zur Laufzeit von zusammenhängenden heuristischen
MCS Ergebnissen. Sofern der Zusammenhang nicht mehr erforderlich ist, sind heuristische Methoden die lo-
gische Wahl. Durch Einschränkungen des betrachteten Problems kann insbesondere die Laufzeit von exak-
ten Methoden verbessert werden, und im Optimalfall verbessern eingeführte Randbedingungen die Relevanz
der Ergebnisse, indem die Intuition von Ähnlichkeit im Anwendungsbereich besser abgebildet wird. Beson-
ders eindrucksvoll lässt sich dieser E昀昀ekt bei der Verwendung topologischer Distanzen in cliquenbasierten
MCS-Algorithmen beobachten. Andere Einschränkungen des MCS-Problems und Einschränkungen auf den zu
durchsuchenden Graphen können ebenfalls das Potenzial bieten, MCS-Berechnungen soweit zu beschleuni-
gen, dass ähnlichste Strukturen in großen Datensätzen gefunden werden können. In Molekülgraphen stehen
die Anzahl an Knoten und Kanten immer in linearen Verhältnissen zueinander. Im Vergleich zu allgemeinen
Graphen lohnt sich auf ihnen die Unterscheidung, ob Knoten und Kanten zyklisch, oder azyklisch sind. Die-
se Beobachtung kann genutzt werden, um das MCS-Problem einzuschränken und die Berechnung auf unter
entsprechenden Randbedingungen erstellten großen Datenmengen soweit zu beschleunigen, dass die lineare
Suche mit bestehenden e昀케zienten Methoden im Vergleich weniger e昀케zient wird.

RIMACS ist einer von vielen publizierten Algorithmen zur Lösung des MCS Problems. Damit er beachtet wird,
sollte er in eine Anwendung integriert werden, die auf der Basis des Algorithmus entstanden ist. Neben der Ef-
昀椀zienz ist die generische Schni琀琀stelle des RIMACS Algorithmus ein zentrales Element, dass es ermöglicht, ihn
in verschiedenen Problemfeldern anzuwenden. RIMACS soll außer für den Vergleich von Molekülen auch für
andere Graphen eingesetzt werden können. Insbesondere molekulare Muster haben die gleiche Graphstruk-
tur wie Moleküle. RIMACS eignet sich exzellent um mi琀琀els eines MCS solche Graphen zu vergleichen und
tiefgreifende Erkenntnisse in einem neuen Feld zu erlangen.

In anderen Zusammenhängen ist es auch möglich, RIMACS in komplexe algorithmische Anwendungsabfol-
gen e昀케zient zu integrieren, um einen MCS in kombinatorischen Graphbibliotheken zu berechnen, der sich
aus mehreren MCS Teilergebnissen berechnet. Für solche Einsatzzwecke bietet RIMACS verschiedene Schni琀琀-
stellen, die dazu genutzt werden können, die Kompatibilität von Knoten über Hinweise an den Algorithmus
einzuschränken oder die Bewertung eines gewichteten Ergebnis nachträglich zu beein昀氀ussen.

Abschließend ermöglicht die Verö昀昀entlichung des RIMACS Quellcodes auf der Pla琀琀form GitHub viele weitere
Einsatzmöglichkeiten und Adaptionen des Algorithmus.
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3 Ähnlichkeitssuche in kombinatorischen Fragmenträumen

3.1 Was sind Fragmenträume?

Wie in Kapitel 1.2 beschrieben sind chemische Fragmenträume ein Konzept zur Repräsentation kombinatori-
scher Räume und im Speziellen auch von Molekülmengen. Sie bestehen aus Fragmenten und dazugehörigen
Verbindungsregeln. Die Räume sind so de昀椀niert, dass Fragmente immer über Baumstrukturen zu den Mole-
külen des Raums verbunden werden. Zur besseren Unterscheidung von anderen Fragmentraumdarstellungen
werden sie im Folgenden klassische Fragmenträume genannt.

Das theoretische Konzept der Fragmente und Linker erlaubt es, dass Fragmente mit jeweils zwei und mehr
Linkern auch zu Zyklen zusammengesetzt werden könnten. Für die Anwendung des MCS in Fragmenträu-
men wird dies allerdings verboten. Insbesondere sind alle Bindungen, die zwei Fragmente eines Moleküls in
klassischen Fragmenträumen verbinden azyklisch. Diese Einschränkung resultiert aus der Entwicklung der
Fragmenträume für die Feature-Tree[Rar98] und FTrees-FS[Rar01] Algorithmen, die auf Baumstrukturen de昀椀-
niert sind. Diese Einschränkung hat sich ebenfalls als bedeutsam erwiesen, um Fragmenträume systematisch zu
enumerieren.[Lau16] In alternativen Darstellungen von Fragmenträumen, wie sie dem SpaceLight[Bel20] Al-
gorithmus zugrunde liegen, werden Ringschlüsse über Fragmentgrenzen hinweg in sogenannten topologischen
Fragmenträumen modelliert.

3.1.1 Erstellung von Fragmenträumen

In der Anfangszeit wurden klassische Fragmenträume anhand von Retrosyntheseregeln, sogenanntem Shred-
ding,[Deg08, Lew98] erstellt. Basierend auf einerMenge vonMolekülenwurden diverse Bindungen geschni琀琀en
und Fragmente gewonnen. An den Schni琀琀stellen wurden Linker angefügt, wobei die Gesamtzahl an Linkty-
pen insgesamt gering ist. Auf diese Art gewonnene Fragmente ha琀琀en häu昀椀g zwei oder mehr Linker. Um ein
Molekül, das sich aus mehr Fragmenten zusammensetzt, zu terminieren, ist es zwingend notwendig, dass es
Fragmente mit genau einem Linker gibt. Diese Eigenscha昀琀 haben sogenannte Terminatoren übernommen, spe-
zielle Fragmente, die an Fragmentkombinationen angebaut werden können, um Linkermit validenmolekularen
Substrukturen zu ersetzen. Terminatoren haben in der Regel ein Minimum an Schwertatomen. Das heißt, dass
Linker mit Einfachbindungen meistens mit einen Wassersto昀昀 terminiert wurden. Doppel- und Dreifachbin-
dungen wurden o昀琀 mit minimalen Alkenen oder Alkinen terminiert.

Die aktuelle Entwicklung von klassischen Fragmenträumen verfolgt eine andere Strategie, seitdem sich ge-
zeigt hat, dass Substanzen aus retrosynthetischen Räumen häu昀椀g chemisch schwer zugänglich sind.[Hof19]
Aktuell erstellte Fragmenträume basieren auf Syntheseregeln, die auf Moleküle vorhandener Datenbanken
angewendet werden. Kommerzielle Anbieter[Ena, OTA, WuX] solcher Fragmenträume versprechen 80% be-
liebiger Moleküle aus ihren kommerziellen Fragmenträumen innerhalb weniger Wochen synthetisieren und
liefern zu können. Tabelle 3.1 gibt eine Übersicht über die Anzahl an Fragmenten, Verbindungsregeln und
Molekülen in kommerziellen und ö昀昀entlichen Fragmenträumen. Für die E昀케zienz von Fragmentraumalgorith-
men ist aber insbesondere die letzte Spalte, der Exponent, der das Verhältnis der Anzahl an Fragmenten zur
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3 Ähnlichkeitssuche in Fragmenträumen

Anzahl der beschriebenen Moleküle beschreibt wichtig. An diesem wird die E昀케zienz im Vergleich zu einer
linearen Prozessierung aller Substanzen gemessen. Die Tatsache, dass die Exponenten kommerzieller Räume
häu昀椀g oberhalb von zwei liegen, wie aus Tabelle 3.1 hervorgeht, spricht für eine e昀케ziente Darstellung und
zeugt davon, dass viele Moleküle aus drei und mehr Fragmenten zusammengesetzt werden.

Tabelle 3.1: Eine Übersicht über die Anzahl an Fragmenten, Verbindungsregeln und dargestellten Moleküle von kommerziellen und
ö昀昀entlichen Fragmenträumen. Darüber hinaus ist der Exponent angegeben, der das Verhältnis der Anzahl Fragmente zur
Anzahl Moleküle beschreibt.

Fragmentraum Anz. Fragmente Anz. Verbindungsregeln Anz. Moleküle Exponent
CHEMriya[OTA21] ∼ 50.000 ∼ 10.000 ∼ 1,1 ⋅ 1010 2,13
GalaXi[WuX20] ∼ 22.000 ∼ 190.000 ∼ 2,1 ⋅ 109 2,15
REAL Space[Ena21] ∼ 890.000 ∼ 8.500.000 ∼ 1,9 ⋅ 1010 1,73
KnowledgeSpace[Det10, Bio19] ∼ 318.000 ∼ 4.800.000 ∼ 2,9 ⋅ 1014 2,63

3.2 Motivation

InWirksto昀昀entwicklungsprojekten werden Substanzbibliotheken nach Struktureigenscha昀琀en und häu昀椀g auch
nach molekularer Ähnlichkeit zu einer vorhandene Leitstruktur durchsucht. Dabei gilt es das Problem zu lö-
sen, den nächsten, besseren Wirksto昀턀andidaten im verfügbaren chemischen Raum zu 昀椀nden. Andererseits
ist es ebenfalls eine Anforderung an die durchsuchten Substanzbibliotheken, dass diese so groß und divers
wie möglich sind. Diese Anforderungen begünstigten letztendlich das Au昀欀ommen von Anbietern chemischer
Substanzen, die diese nicht vorrätig haben, sondern erst bei Bestellung synthetisieren. Die von solchen An-
bietern vertriebenen Substanzen werden nachfolgend als make-on-demand Compounds bezeichnet. Der Erfolg
und die stetig wachsende Verbreitung von kommerziellen und proprietären Fragmenträumen von Pharma昀椀r-
men macht Fragmenträume im Allgemeinen zu einem interessanten und zukun昀琀strächtigen Forschungsgebiet.
Die stetig wachsende Anzahl an make-on-demand Compounds zu enumerieren, wird immer aufwendiger und
erfordert Ressourcen im Wert von mehreren zehntausend bis zu hunder琀琀ausenden Euro.[Irw20] Die Beschrei-
bung solcher Molekülmengen über Fragmenträume ermöglicht es jedoch, diese viel kompakter darzustellen
und verfügbar zu machen. Fragmenträume sind die Antwort auf stetig wachsende virtuelle Substanzbibliothe-
ken von make-on-demand Compounds.

3.2.1 Notwendigkeit einer e昀케zienten Moleküldarstellung

Die Anzahl verfügbarer make-on-demand Compounds hat in den letzten Jahren stetig zugenommen und liegt
mi琀琀lerweile bei über 33 Milliarden.[OTA21, WuX20, Ena21] Große Pharma昀椀rmen verfügen ebenfalls über auf
Reaktionswissen basierende Räume, die diverse Zehnerpotenzen größer sein können als die kommerziellen
Räume.[Hof19] In Abbildung 3.1 werden die Größen verschiedener ö昀昀entlicher, kommerzieller und proprie-
tärer Datenbanken und Fragmenträume verglichen. Dabei fällt auf, dass die proprietären Fragmenträume mit
teilweisemehr als 1020 Molekülenmehr als acht Zehnerpotenzen größer sind als jede Datenbank oder kommer-
zieller Fragmentraum. Allein die Enumeration eines solchen Raumes muss bei heutiger Technik als unmöglich
angesehen werden. Der Hersteller Seagate behauptet in seinem Firmenblog der erste zu sein, der in seiner Fir-
mengeschichte insgesamt drei Ze琀琀abyte[Pau21] (3⋅1021) an Festpla琀琀enkapazität ausgeliefert hat. Im Vergleich
zur Enumeration des größten proprietären Fragmentraums, demGSKXXL (siehe Abbildung 3.1), entspricht das
weit weniger als einem einzigen Bit Speicherplatz, das pro Molekül zur Verfügung steht.
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Abbildung 3.1: Einer Übersicht über die Größe kommerzieller, ö昀昀entlicher und proprietärer Fragmenträume und Datenbanken. Die
Graphik ist eine aktualisierte Version der von Ho昀昀mann und Gastreich[Hof19] publizierten Originalgraphik.

Bis 2012 wurde mit den generierten Datenbanken des chemischen Universums (GDB11,[Fin07] GDB13[Blu09]
und GDB17[Rud12]) der Versuch unternommen, alle Moleküle mit bis zu 17 Schweratomen aufzuzählen. Ins-
besondere letztere, die GDB17 mit über 166 Milliarden Molekülen ist in ihrer Größe in den meisten Anwen-
dungsszenarien unbenutzbar und nicht durchsuchbar und nur durch die Anwendung diverser Filterkriterien
nicht noch mehrere Zehnerpotenzen größer. Die Analyse der enumerierten Moleküle hat zudem verdeutlicht,
dass diese im Vergleich zu bestehenden Substanzbibliotheken viele neuartige Molekülgerüste[Bem96] enthält
und vor allem deutlich mehr kugelförmige Molekülgerüste, die in existierenden Substanzbibliotheken unterre-
präsentiert sind. Diese Aussage wurde mit der Vorstellung der ZINC20[Irw20] nochmals bestätigt. Der direkte
Nutzen der Datenbanken des chemischen Universums für die Wirksto昀昀entwicklung ist jedoch gering, da die
meisten Moleküle nicht chemisch verfügbar sind. Um den Zugewinn an Diversität von Molekülgerüsten der
Datenbanken ausnutzen zu können, wurden Moleküle zunächst zufällig ausgewählt und im folgenden nach
Diversität ge昀椀ltert.[Awa17]

Mit dem Au昀欀ommen des sogenannten „Cloud-Computing“ bei dem kommerzielle Anbieter freie Rechenka-
pazitäten in eigens dafür gescha昀昀enen Rechenzentren, vermieten, begann sich ein neuer Trend abzuzeichnen.
Das stetige Wachstum der Substanzbibliotheken wurde nicht mehr als Problem gesehen. Ansta琀琀 diese auf ei-
genen Rechnern zu durchsuchen, wurden diese in der „Cloud“ oder auf sonstigen Clustern durchsucht.[Gre20,
Lyu19] Insbesondere Lyu et al. [Lyu19] stellen in ihrer Studie fest, dass es wichtig gewesen sei, alle Moleküle
der betrachteten Substanzbibliothek zu testen. Die Auswahl der zu testenden Substanzen wurde sowohl von
Experten als auch automatisch durchgeführt. Darüber hinaus stellen Lyu et al. fest, dass die Wahrscheinlich-
keit eine aktive Substanz zu 昀椀nden in beiden Fällen ähnlich gering ist. Unabhängig davon wird die Möglichkeit,
große Molekülmengen via Docking zu prozessieren, auch kommerziell angeboten.[Gre20] Dabei können allein
die Kosten für das Docken in der Cloud von∼1.5 Milliarden Moleküle 10.000$ und mehr betragen.[McG20] Der
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Trend, größtmögliche Datensätze linear zu durchsuchen, erinnert an das Au昀欀ommen des sogenannten „high-
throughput-screening“.[Cla20] Jedoch meint Clark[Cla20] es wäre eine Stärke der medizinischen Chemie, Kan-
didaten für Medikamente in virtuellen Substanzbibliotheken zu 昀椀nden, die nicht nur nach der Wirksamkeit im
Protein, sondern auch nach den sogenannten ADME-T Kriterien optimiert werden. Der Schri琀琀 dorthin zurück
wäre beim jetzigenWachstum virtuell verfügbarer Substanzen unausweichlich. Unabhängig von aller Euphorie,
dass sich Berechnungen auf die aktuell größten enumerierten Bibliotheken skalieren lassen, sind und bleiben
die Computermethoden, die die Wirksamkeit einer Substanz bewerten die größte Fehlerquelle.[Lyu19, Stu20]

Im Vergleich zu den Docking-Anwendungen ist die auf der Graph-Editierungsdistanz au昀戀auende Ähnlich-
keitssuche, wie sie für die ZINC20[Irw20] angeboten wird die nachhaltigste Technologie, die auf Enumeration
basiert. Diese Suche mit Namen SmallWorld[Irw20, Say20] benutzt eine 42TB große Datenbank von anony-
men Graphen für das Traversieren und das Au昀케nden von ähnlichen Strukturen. Die Ergebnisdarstellung im
Internetbrowser unterstützt die Sortierung nach diversen verschiedenen Fingerabdrücken, gibt aber keine Ga-
rantie auf Vollständigkeit. Im Vergleich zu bestehenden kommerziellen Fragmenträumen mag das noch auf
Jahre hinreichend sein, im Vergleich zu den größten Fragmenträumen der Pharma昀椀rmen ist der Ansatz jedoch
nicht anwendbar, wie Abbildung 3.1 zeigt.

Zusammenfassend lässt sich feststellen, dass ein System benötigt wird, das auf virtueller Synthese erstellter
Substanzbibliotheken ohne Enumeration beschreiben kann. Klassische und topologische Fragmenträume sind
dafür zwei Beispiele.

3.2.2 Anwendungen von Fragmentraumsuchen

Fragmentraumsuchen unter Verwendung der maximalen gemeinsamen Teilstruktur 昀椀nden Anwendung in di-
versen Fragestellungen der medizinischen Chemie. Um die Relevanz zu verdeutlichen kann ein beispielha昀琀es
Anwendungsszenario in die Publikation einer neuen Methode inkludiert werden. Potentielle Anwendungsbei-
spiele können z.B. die Suchen nach ähnlichen Substanzen zu bekannten bioaktiven Molekülen sein. Durch die
Verfügbarkeit virtueller Moleküle bei kommerziellen Anbieter kann noch eine weitere Anwendung beworben
werden. Die Suche nach erwerbbaren make-on-demand Compounds für Anwendungen des computerunter-
stützten Wirksto昀昀entwurfs in kommerziellen Räumen bietet den Vorteil, dass gefundene Wirksto昀턀andidaten
nicht von den Anwendern synthetisiert werden müssen. Diese können ihre 昀椀nanziellen und personellen Res-
sourcen somit auf das Testen fokussieren.

3.3 Bestehende Suchverfahren in kombinatorischen Fragmenträumen

Abseits der Vorteile einermöglichst kompaktenDarstellung großerMolekülmengen haben Fragmenträume den
Nachteil, dass die vorhanden Moleküle nicht trivial zugänglich sind. Wie soeben beschrieben, ist die Enume-
ration und Suche nicht mehr e昀케zient durchführbar. Um dennoch Substanzen oder ähnliche Moleküle zu einer
angefragten Substanz zu 昀椀nden, ist es notwendig, spezielle Suchverfahren anzuwenden, die auf die Struktur
der Fragmenträume optimiert sind. In den folgenden Unterkapiteln werden drei Verfahren aus der Literatur
beschrieben:
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3.3.1 FTrees-FS

Die sogenannten Feature Trees,[Rar98] repräsentieren molekulare Eigenscha昀琀en in einer Baumstruktur, die
einem reduzierten Graphen des Moleküls entspricht. Diese molekularen Eigenscha昀琀sbäume werden im Fol-
genden FTrees genannt. Die einzelnen Knoten in den FTrees stellen Ringsysteme der Moleküle, funktionelle
Gruppen mit Pharmakophoreigenscha昀琀en, wie zum Beispiel Wassersto昀昀brücken Donoren und Akzeptoren,
und Ke琀琀en, dar. FTrees wurden als Deskriptor für die Ähnlichkeitssuche auf Molekülen entwickelt und er-
möglichen es, diese mit ihrem eigenen Ähnlichkeitsmaß zu vergleichen. Sie sind dafür bekannt, dass auch
Moleküle mit unterschiedlichen Gerüsten hohe Ähnlichkeiten erreichen können. Das kann insbesondere bei
ligandbasierten Methoden im Wirksto昀昀entwurf vorteilha昀琀 sein. Die Fähigkeit Moleküle mit unterschiedlichen
Gerüsten in einer Ähnlichkeitssuche zu 昀椀nden wird in der Literatur und im folgenden als Sca昀昀old Hopping
bezeichnet. Die Beschreibung durch reduzierte Graphen abstrahiert stark vom tatsächlichen Gerüst und ist für
die Fähigkeit zum Sca昀昀old Hopping bekannt. Dieser Vorteil ist häu昀椀g auch der größte Nachteil einer Ähnlich-
keitssuche mit FTrees.

Der einzelne Vergleich zweier FTrees ist durch Ausnutzen der Baumstruktur des Deskriptor mit einem Verfah-
ren der dynamischen Programmierung e昀케zient lösbar.

Genau diese Baumstruktur des Deskriptors lässt sich ebenfalls ausnutzen, um die Ähnlichkeit in Fragmenträu-
men zu betrachten. Klassische Fragmenträume sind so aufgebaut, dass Fragmente unter Einhaltung der Ver-
bindungsregeln zu Bäumen zusammengesetzt werden. Diese repräsentieren im Folgenden alle Moleküle des
Fragmentraums. Durch die Darstellung der Fragmente als FTrees ermöglicht ein weiteres Schema dynamischer
Programmierung eine e昀케ziente Ähnlichkeitssuche in Fragmenträumen.[Rar01] Der Algorithmus ist unter dem
Namen FTrees-FS[Rar01] bekannt. Während der Suche wird jeder FTree-Deskriptor der Fragmente eine von
der Anfrage abhängige Anzahl o昀琀 betrachtet. Anfragemoleküle sind in der Regel jedoch klein. Daher kann
dieser Faktor für die Laufzeitabschätzung als konstant angesehen werden. Gleiches gilt für die einzelne Ähn-
lichkeitsberechnung von zwei Deskriptoren. Als nächstes 昀氀ießen die Anzahl der gesuchten Ergebnisse und die
Anzahl an Fragmenten des Raums in die Laufzeitbetrachtung mit ein. Die Anzahl der durch den Fragmentraum
repräsentierten Moleküle hingegen hat keinen Ein昀氀uss. Die wichtigste Eigenscha昀琀 dieser und anderer Frag-
mentraummethoden ist die unabhängige Betrachtung von Teilergebnissen auf anderen Fragmenten. Hier be-
deutet es, dass die Anzahl, wie häu昀椀g ein Deskriptor eines FTrees während einer Suche betrachtet wird, nicht
von der Struktur des durchsuchten Raums abhängt. Genannte Anzahl darf hingegen von der Anfrage abhängen.

3.3.2 SMARTS-Fs

Die SMARTS-Fs[Ehr12, Ehr13] Methode ist ein spezi昀椀scher Algorithmus zur Suche molekularer Muster in
klassischen Fragmenträumen. Die Idee hinter SMARTS-Fs ist die Unterteilung des gesuchten Musters in alle
möglichen Substrukturkombinationen, die die Fragmentau昀琀eilung eines getro昀昀enen Moleküls darstellen kön-
nen. An den geschni琀琀enen Bindungen in der Anfrage werden, vergleichbar zur Generierung von Fragmenten
aus Molekülen, Verbindungsknoten eingefügt. Diese werden im Folgenden SMARTS-Linker genannt. Damit die
Suche erfolgreich sein kann, müssen die SMARTS-Linker auf die Linker in den Fragmenten abgebildet werden.
Die einzelnen Ergebnisse der Tre昀昀er werden über Baumstrukturen repräsentiert. Eine solche Baumstruktur
stellt jeweils eine mögliche Unterteilung der Anfrage in ihre Substrukturen dar. In ihren Knoten enthält die
Baumstruktur jeweils Listen der getro昀昀enen Fragmente. Um SMARTS Rekursion zu unterstützen werden die
Baumstrukturen der getro昀昀enen Moleküle verwendet, um einen abgeleiteten Fragmentraum zu erzeugen. In
diesem abgeleiteten Raumwird nun die Substruktursuche der rekursiven Umgebung fortgesetzt. Das geschieht
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für alle rekursiven SMARTS Teilausdrücke des initialen Musters. Anschließend werden die Ergebnisbäume des
SMARTS Ausdruck ohne Rekursion, mit den Ergebnisbäumen der rekursiven Ausdrucksteilen überlagert und
uni昀椀ziert. Abschließend werden daraus Fragmente eines neuen Ergebnisfragmentraums erzeugt. Dieser kann
bei Bedarf enumeriert werden, um alle Moleküle zu erzeugen, die vom gesuchten SMARTS Ausdruck getrof-
fen werden.

3.3.3 SpaceLight

Der SpaceLight[Bel20] Ansatz ist eine Methode, die 昀椀ngerabdruckbasierte Ähnlichkeitsberechnung in kombi-
natorischen Räumen ermöglicht. Die Methode benötigt allerdings im Vergleich zu FTrees-FS und SMARTS-Fs
eine andere Darstellung der Fragmenträume. Für SpaceLight wurden sogenannte topologische Fragmenträume
eingeführt.[Bel20] Topologische Fragmenträume bestehen aus Fragmenten und einer Vielzahl von Topolo-
gien. Eine Topologie stellt jeweils eine Anordnung dar, wie Fragmente zu Molekülen des topologischen Frag-
mentraums verbunden werden. Um Ringschlüsse zu ermöglichen sind Topologiegraphen Multigraphen, bei
denen zwei Knoten über mehrere Kanten miteinander verbunden werden können. Die Kanten im Topologie-
graphen repräsentieren die Verbindungsregeln klassischer Fragmenträume. Für die Fragmente ist es somit re-
levant, in welchen Topologieknoten sie in diesen vorkommen können. Alle Fragmente eines Topologieknotens
haben dieselbe Anzahl an Linkern und Linktypen, die Verbindungen zu anderen Topologieknoten repräsentie-
ren. Dieser Au昀戀au ermöglicht nicht nur die Abbildung von Ringschlüssen und Ringschlussreaktionen, sondern
generell die Behandlung von Makrozyklen. Beides ist aufgrund der Baumstruktur klassischer Fragmenträume
nicht möglich. Dafür ist in klassischen Fragmenträumen die Anzahl an Fragmenten, aus denen die Moleküle
bestehen, theoretisch unbeschränkt. Beide Arten von Fragmenträumen werden auf Basis von Reaktionswissen
und virtueller Synthese erstellt. In der Praxis ergeben sich dadurch ähnliche Beschränkungen für die Anzahl
an Fragmenten, aus denen die Moleküle der Räume bestehen.

Eine Ähnlichkeitssuche in einem topologischen Fragmentraum basiert auf den folgenden Schri琀琀en:[Bel20]
Das Anfragemolekül wird entsprechend aller möglichen Topologien des topologischen Fragmentraums parti-
tioniert. Dieser Schri琀琀 wird in [Bel20] als eine Unterteilung des Moleküls in eine Menge zusammenhängen-
der disjunkter molekularer Substrukturen beschrieben, deren Vereinigung wiederum das Molekül ergibt. Im
Partitionierungsschri琀琀 werden alle Partitionierungen erzeugt, die in den Atomzahlen der Substrukturen und
deren Verbindungen untereinander kompatibel zu mindestens einer Topologie des Raumes sind. Die Anzahl
der erzeugten Partitionen hängt somit von der Größe des Moleküls als auch von den Topologiegraphen des
topologischen Fragmentraums ab. Insbesondere bei großen Ringsystemen kann die Erzeugung aller Partitio-
nierungen einen großen Laufzeitanteil ausmachen. Im Vergleich zu FTrees-FS und SMARTS-Fs werden bei der
Partitionierung auch Ringbindungen geschni琀琀en. Für den Fingerabdruckvergleich mit den Fragmenten wer-
den die Partitionierungen einzelnen Topologien zugeordnet. Anschließend können die Ergebnisse innerhalb
der Topologien unabhängig voneinander zu den ähnlichsten Molekülen des Raumes kombiniert werden.

Im Vergleich der existierenden Ansätze bleibt festzustellen, dass sie auf die jeweiligen Fragmenträume, auf
denen sie angewendet werden, optimiert sind. Darüber hinaus unterscheiden sich auch die laufzeitintensiven
Schri琀琀e in den Algorithmen. Bei FTrees-FS und SMARTS-FS ist die Berechnung der Ähnlichkeit beziehungs-
weise der Kompatibilität eines Teils der Anfrage mit den Fragmenten relativ gesehen teuer. Das gilt insbe-
sondere im Vergleich zu SpaceLight, wo die Berechnung der Kompatibilität über die Fingerabdruckähnlichkeit
von Partitionen der Anfrage und Fragmenten relativ günstig ist. Dafür wird bei SpaceLight die Anfrage in
deutlich mehr Teile unterteilt, für die eine Ähnlichkeit zu den Fragmenten bestimmt werden muss, als bei
FTrees-FS und SpaceMACS. FTrees-FS und SpaceMACS erzeugen für jede azyklische Bindung maximal zwei
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Anfrageunterteilungen. SpaceLight hingegen berechnet alle möglichen kompatiblen Partitionierungen für al-
le Topologiegraphen des durchsuchten Raums. Die genaue Anzahl an betrachteten Partitionierungen wurde
noch nicht näherliegend untersucht.

3.4 Suche maximaler gemeinsamer Teilstrukturen in Fragmenträumen

Die beschriebenen Methoden zur Suche in Fragmenträumen ermöglichen eine Ähnlichkeitssuche, bei der es
schwierig ist, Struktureigenscha昀琀en der Moleküle in die Ähnlichkeitssuche mit einzubeziehen. SMARTS-Fs
bildet zwar Struktureigenscha昀琀en auf atomarer Ebene ab, ist aber eine Substruktursuche, die keine Ähnlich-
keitssuche im eigentlichen Sinn unterstützt. Die verwendeten Fingerabdrücke der SpaceLight Methode stellen
mit ihren Bits auch Substrukturen dar, allerdings ist die Suche nach speziellen Substrukturen nicht möglich.
Dieses Problem wurde mit der Entwicklung der SpaceMACS Methode erstmals angegangen, so dass eine Ähn-
lichkeitssuche auf Basis zusammenhängender gemeinsamer Teilstrukturen realisiert wird. Dieses Kapitel be-
handelt die Suche nach maximalen gemeinsamen zusammenhängenden induzierten Teilstrukturen, wie sie in
[D2] beschrieben wird.

Fragmenträume zeichnen sich dadurch aus, dass sie große Mengen unterschiedlicher Moleküle anhand ihrer
Fragmentbausteine beschreiben können. Die E昀케zienz der Beschreibung steigt, je mehr Fragmente miteinander
kombiniert werden, um die Produkte zu bauen. Für Algorithmen, die auf Fragmenträumen arbeiten, hat das
jedoch zur Folge, dass die Berechnungen über Fragmentgrenzen unabhängig voneinander sein müssen. Die
Erkennung von Fragmentgrenzen kann dynamisch erfolgen, so dass beim Au昀琀re昀昀en von Linkern während der
Berechnung auf bereits berechnete Ergebnisse zurückgegri昀昀en wird oder statisch durch Unterteilung in die An-
frage modelliert werden. Die FTrees-FS Methode betrachtet Fragmentgrenzen dynamisch. Das wird durch die
Verwendung der dynamischen Programmierung ersichtlich, bei der die Anfrage auf die Feature-Tree Deskrip-
toren der Fragmente abgebildet wird und beim Au昀琀re昀昀en eines Knotens, der einen Linker repräsentiert, auf
die besten nachfolgenden Teilergebnisse zugegri昀昀en wird. SpaceLight und SMARTS-FS hingegen modellieren
die Fragmentgrenzen statisch. Bei SpaceLight kann das aus der Partitionierung der Anfrage und die Bestim-
mung der Passung auf die Topologien des topologischen Fragmentraums gefolgert werden. Im SMARTS-Fs
werden in die Unterteilung der Anfrage explizite SMARTS-Linker eingebaut, die nur zu Linkern der Fragmen-
te kompatibel sind. Hier ist die statische Modellierung der Fragmentgrenzen noch deutlicher zu erkennen als
bei SpaceLight.

Für die Suche maximaler gemeinsamer Teilstrukturen in Fragmenträumen ist ein Ziel, Fragmentgrenzen dyna-
misch zu erkennen, da die einzelne MCS Berechnung als ein laufzeitintensiver und geschwindigkeitsbestim-
mender Schri琀琀 angesehen wird. Um das zu ermöglichen, wird das zu lösende MCS Problem angepasst und auf
die Anwendung in klassischen Fragmenträumen optimiert.
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Abbildung 3.2: Nilutamide[Drua] (Oben) und eines der ähnlichsten Moleküle (Mi琀琀e) aus dem REAL Space[Ena21]. Die gemeinsame
Teilstruktur und die Fragmentgrenzen sind in der mi琀琀leren Struktur grün hervorgehoben. Unten sind die Fragmente
dargestellt, aus denen sich die mi琀琀lere Struktur zusammensetzt. Die Graphik wurde aus [D2] unverändert übernom-
men.

Abbildung 3.2 lässt am Beispiel von Nilutamide[Drua] einige Eigenscha昀琀en der entwickelten MCS Suche er-
kennen. Fragmentgrenzen laufen immer über azyklische Bindungen, weshalb das Problem dahingehend ein-
geschränkt wird, dass azyklische Bindungen nur auf azyklische Bindungen abgebildet werden. Abbildungen
zyklischer Bindungen werden analog dazu eingeschränkt. Diese Einschränkung ist einer der Schlüssel für die
E昀케zienz des Ansatzes. Außerdem ergibt sie sich aus der Zielsetzung einer dynamischen Fragmentgrenzener-
kennung. Eine korrekte Handhabung des uneingeschränkt zusammenhängenden MCS in Fragmenten bedingt
eine statische Detektion von Fragmentgrenzen, sofern eine zyklische Bindung der Anfrage über eine Frag-
mentgrenze verlaufen können soll.

Eine Anfrage an einen Fragmentraum mit dem SpaceMACS Algorithmus besteht aus vier aufeinander folgen-
den Schri琀琀en.

1 Unterteilung der Anfrage in Teilstrukturen und die Berechnung einer Halbordnung als
Prozessierungsreihenfolge.

2 Berechnung aller MCS-Abbildungen zwischen den molekularen Substrukturen und den Fragmenten
des Fragmentraums.

3 Enumeration von Ergebnissen mit den Teilergebnissen aus Schri琀琀 2.

4 Berechnen von MCS-Abbildungen der gesamten Anfrage mit allen Fragmenten, wobei Linker nicht
abgebildet werden.

Die ersten befassen sich damit, Strukturen des Raums zu identi昀椀zieren, bei denen sich die gemeinsame Teil-
struktur über mindestens zwei Fragmente erschließt.
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Der SpaceMACS Algorithmus unterteilt die Anfrage in molekulare Substrukturen, bei der jede azyklische Bin-
dung individuell geschni琀琀en wird. Anschließend werden die Substrukturen gemäß einer Halbordnung auf die
Fragmente des Raumes abgebildet. Die Halbordnung wird benötigt, da Zwischenergebnisse von Substrukturen
auf jene von kleineren Strukturen angewiesen sein können. Zudem ermöglicht die Realisierung als Halbord-
nung einen Begri昀昀 von Unabhängigkeit der die Parallelisierung vereinfacht.

Die gewählteModellierung garantiert, dass imAbbildungsschri琀琀 die Struktur aus dem kombinatorischen Raum
gefundenwerden kann, bei der die gemeinsame Teilstruktur die größte Anzahl anAtomen umfasst. Damit die in
der Praxis relevantere Frage nach den nicht optimalen Ergebnissen so weit wie möglich korrekt vom Algorith-
mus beantwortet werden kann, wird das tatsächlich berechnete MCS Problem auf eine stark ge昀椀lterte Variante
des „alle maximalen gewichteten gemeinsamen Teilstrukturen“ abgeändert. Zur der e昀케zienten Umsetzung die-
ses Problems hil昀琀 die Möglichkeit der nachträglichen Anpassung der Gewichtung von MCS Ergebnissen, wie
es der RIMACS[D1] Algorithmus ermöglicht.

Die Enumeration der Ergebnisse stellt das Herzstück des SpaceMACS Algorithmus dar. Die Teilergebnisse
werden gruppiert, sortiert und enumeriert. Während der Enumeration werden ausgehend von einem „besten“
Kandidaten immer weiter die besten nachfolgenden Ergebnisse in absteigender Sortierung hinzugefügt. Die
Sortierung garantiert dabei, dass kleine Anzahlen von Ergebnissen innerhalb kürzester Zeit berechnet werden
können, die Laufzeit aber durch die Enumeration auch von der Anzahl der Ergebnisse abhängt.

Die abschließende Berechnung der Strukturen bei denen der MCS vollständig in einem Fragment liegt, wird
als Sonderfall nachgelagert betrachtet. Insbesondere gelten hier triviale Schranken der erreichbaren Güte der
Ergebnisse, die sich aus der Atomanzahl des Fragments ableiten lässt.

Ein wichtiger Aspekt derMethode o昀昀enbart sich in den unterstützen Ähnlichkeitsmaßen für denMCS. VomAl-
gorithmus nativ unterstützt ist die Maximierung der MCS Abbildung. Dieses Maß wird im FolgendenMCS-Size
genannt. Da das aber zu als unähnlich empfundenen ähnlichsten Kandidaten führen kann, wird ein weiteres
Ähnlichkeitsmaß mit dem NamenMCS-Similarity unterstützt. Dabei werden auch die Größen der Anfrage und
des Ergebnismoleküls für den Ähnlichkeitswert betrachtet. Das kann auch in der Gegenüberstellung der besten
fünf Ergebnisse aus dem GalaXi[WuX20] in Tabelle 3.2 betrachtet werden. Die gemeinsame Teilstruktur zur
Anfrage Torasemid[Drub] ist jeweils in grün hervorgehoben.
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Tabelle 3.2: Vergleich der ähnlichsten Moleküle zur Anfrage Torasemid[Drub] auf dem GalaXi[WuX20]. Links sind die ähnlichsten
Moleküle nachMCS-Size, bei der die Sortierung nur durch die Anzahl abgebildeter Knoten beein昀氀usst wird. Rechts werden
die Atomzahlen von Anfrage und Resultatmolekül mit einbezogen (MCS-Similarity). Die einzelnen Moleküldarstellungen
sind aus [D2] übernommen und neu arrangiert.

Anfrage:
Rang MCS-Size MCS-Similarity

1

2

3

4

5

Neben der Güte der gefundenen Ergebnisse ist die benötigte Rechenzeit für eine Anfrage ein wichtiges Maß.
Der SpaceMACS Algorithmus skaliert gut bis zu ca. 16 吀栀reads. Das Potenzial des Algorithmus wird in Abbil-
dung 3.3 dargestellt. Dabei wurden 100 von Lessel und Lemmen[Les19] ausgewählte Moleküle als Anfrage auf
dem REAL Space[Ena21] verwendet. Für jeden der drei wichtigen Schri琀琀e des Algorithmus ist die durchschni琀琀-
liche Laufzeit dargestellt. Dabei fällt auf, dass die Laufzeit für die Berechnung der MCS Ergebnisse unabhängig
von der Anzahl der angefragten Ergebnisse ist. Allerdings hat diese Anzahl einen bedeutsamen Ein昀氀uss auf
die Laufzeit der Ergebnisenumeration und der Berechnung der Ergebnisse, bei denen der MCS in einem einzi-
gen Fragment enthalten ist. Im günstigsten Fall sind auf diese Art durchschni琀琀liche Anfragedauern von unter
10s möglich. Um 10.000 Ergebnisse anzufragen, reichen immer noch ca. 17,5s im Durchschni琀琀. Damit liegen
die Laufzeiten im selben Bereich, der für Anfragen auf dem von der ZINC angebotenen SmallWorld[Irw20]
Algorithmus benötigt wird. Für SmallWorld sind die Anforderungen an die Hardware aber signi昀椀kant größer.
Von den Anforderungen vergleichbar ist da der SpaceLight Algorithmus, der bei Verwendung von drei吀栀reads
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auf einer älteren Version des REAL Space weniger als 10s im Durchschni琀琀 benötigt. Die Anzahl berechneter
Ergebnisse ist dabei leider nicht genannt.

Abbildung 3.3: Darstellung der durchschni琀琀lichen Laufzeiten der einzelnen Algorithmusschri琀琀e auf dem REAL Space[Ena21] bei der
Nutzung von 16 吀栀reads. Als Anfragen wurden die 100 von Lessel und Lemmen[Les19] ausgewählten Substanzen
verwendet. Die Abbildung wurde aus [D2] übernommen und ins Deutsche übersetzt.

3.4.1 Validierung von Fragmentraummethoden

Für die Validierung der SpaceMACS Methode wurden drei Experimente durchgeführt, die bestätigen, dass die
gelieferten Ergebnisse in den meisten Fällen mit denen einer exakten Suche übereinstimmen. Dazu wurden je-
weils die ähnlichsten 5000 Moleküle, die aus einem kleinen Fragmentraum stammen, mit den Ergebnisses aus
der enumerierten Molekülmenge verglichen. Weiterhin wurde geprü昀琀, ob alle Substanzen aus den enumerier-
ten Räumen auch gefunden werden können und die Konsistenz der Ergebnisse evaluiert, wenn verschiedene
Anzahlen an Ergebnissen angefragt werden oder Parameter des Algorithmus variieren. Diese Validierung folgt
denen der existierenden Fragmentraummethoden.

Der SpaceLight Ansatz ist die am besten validierte Methode der bestehenden Technologien. Für die Validie-
rung wurden drei kleine Fragmenträume mit bis zu 22.000 dargestellten Molekülen verwendet. Dabei wurde
eine Korrelation der vollständigen Ergebnisreihenfolge bestimmt, wenn alle Moleküle mit der SpaceLight Me-
thode oder einem klassischen Ansatz nach absteigender Fingerabdruckähnlichkeit zu einer Anfrage sortiert
werden. Für diese Analyse wurden jeweils 500 Anfragen verwendet, die aus dem Raum selbst stammen und
500 externe Anfragen.

Die Räume und internen Anfragen an diese liegen der Publikation bei, die externen Anfragen sind nicht ver-
fügbar. Das ist ähnlich zur Validierung von SpaceMACS, bei der die enumerierten Räume und der Knowled-
geSpace[Bio19] verfügbar sind. Die kommerziellen Räume sind intellektuelles Eigentum der make-on-demand
Compound Anbieter und können nicht der Ö昀昀entlichkeit zur Verfügung gestellt werden. Im Vergleich dazu
wurde für SMARTS-FS und FTrees-FS nur gezeigt, dass die Methoden plausible Ergebnisse bei ausgewählten
Anfragen liefern kann ohne eine tiefer greifende Validierungsstrategie zu verfolgen.

FTrees-FS ist die älteste und bislang relevanteste Fragmentraumtechnologie. Das leitet sich daraus ab, dass sie
seit Jahren vermarktet wird.[Bio] SpaceLight und SpaceMACS werden außerhalb von Demonstrationsanwen-
dungen noch nicht vermarktet, sollen aber zusammen mit FTrees kommerziell angeboten werden. Davon weit
entfernt ist der SMARTS-FS Ansatz. Zu den Publikationen wurden Ergebnisse von internen Anwendungen
genannt, die aber nicht mit publiziert wurde, so dass sie nur wenig Beachtung 昀椀nden kann.
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3.5 Vergleich der Fragmentraummethoden

3.5.1 Ergebnisvergleich der Fragmentraummethoden

Der SpaceMACS Algorithmus zeichnet sich dadurch aus, dass dieser atomare Eigenscha昀琀en für die Berech-
nung des MCS berücksichtigt. FTrees-FS und SpaceLight sind komplementäre Verfahren mit entsprechenden
Ähnlichkeitsmaßen. In [D2] wurden jeweils 50.000, insgesamt 150.000, ähnlichste Moleküle zu einer Anfra-
ge aus den drei kommerziellen Fragmenträumen [OTA21, WuX20, Ena21] extrahiert. Die Gemeinsamkeiten
der methodenspezi昀椀schen ähnlichsten Molekülmengen sind in Abbildung 3.4 dargestellt. Sie machen deutlich,
dass jede Methode einen anderen Aspekt molekularer Ähnlichkeit abdeckt und die Räume so groß und divers
sind, dass es nur zu geringfügigen Überschneidungen kommt. Auch in Fragmenträumen wird gelten, dass das
Ähnlichkeitsmaß der Wahl vom Anwendungsszenario abhängt, wie es schon für klassische Ähnlichkeitsmaße
auf Molekülmengen gilt.[She02]

128.366
5103

SpaceLight

1334
127.322

16.241

SpaceMACS Leitstruktur G43

139.5044059
FTrees-FS

Abbildung 3.4: Überschneidung der 150.000 ähnlichsten Moleküle zur Leitstruktur G43[D2, Nij21] in den 3 kommerziellen Frag-
menträumen, die mit den drei Methoden, FTrees-FS, SpaceLight und SpaceMACS extrahiert wurden. Die SpaceMACS
Ergebnisse weisen große identische Atomanordnungen in den Kernregionen zu der Anfrage auf (blau). Die SpaceLight
Ergebnisse sind ebenfalls strukturell ähnlich, können aber auch duplizierte Regionen enthalten (rot). Abschließend
FTrees-FS Resultate können die strukturell größten Abweichungen tragen, da für die eine ähnliche Anordnung der
funktionellen Gruppen wichtig ist (gelb). Diese Abbildung ist aus [D2] übernommen.

Insgesamt verdeutlicht Abbildung 3.4, dass SpaceMACS die Anfragemöglichkeiten an kombinatorische Frag-
menträume erweitert und bisher nicht unterstützte Anfragearten ermöglicht und somit einen Mehrwert zu
dem bisherigen Portfolio an Fragmentraumsuchen bildet.

3.5.2 Methodischer Vergleich der Fragmentraummethoden

Der SpaceMACS Algorithmus hat das Ziel, exakte Ergebnisse zu liefern, die eine lineare Suche auf den gegebe-
nen Fragmenträumen liefern würde. Der kombinatorische Au昀戀au der Fragmenträume und die unterstützten
Ähnlichkeitsmaße lassen genau das nicht immer zu, approximieren das Verhalten jedoch hinreichend.Der Spa-
ceMACSAlgorithmus unterstützt ähnlichkeitsbasierte Resultat昀椀lter innerhalb der Enumeration der Ergebnisse.
Darüber hinaus besteht für den Nutzer aber keine Möglichkeit einen Ähnlichkeitszielwert anzugeben. In Bezug
auf die Exaktheit ist das auch nicht sinnvoll, da der MCS grundsätzlich eine Maximierung erfordert.
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Sollten suboptimale Ergebnisse mit einem Ähnlichkeitszielwert gewünscht sein, bestünde die Gefahr, dass Spa-
ceMACS falsche MCS Ergebnisse liefert, da diese grundsätzlich aus den Teilergebnissen übernommen werden.
Alternative, größere Abbildungen mit den selben Fragmenten, aber einer anderen Au昀琀eilung der Abbildung
könnten oberhalb des Grenzwerts liegen, so dass suboptimale und damit falsche Ergebnisse für Resultatmole-
küle berechnet würden. Deshalb unterstützt SpaceMACS im Vergleich zu FTrees-FS keinen benutzerde昀椀nierten
Ähnlichkeitszielwert. Der von SpaceMACS berechnete MCS ist zusammenhängend, so dass die Ähnlichkeiten
in einzelnen Fragmenten hohe Ähnlichkeitsspannen aufweisen können. FTrees-FS nutzt bei dem Ähnlichkeits-
zielwert die Heuristik,[Rar01] dass die Ähnlichkeit über alle Fragmente innerhalb eines gegebenen Intervalls
der Zielähnlichkeit nächstmöglich sein sollte. Das ist insbesondere für einen zusammenhängenden MCS nicht
anwendbar.

Die Nutzung von Fingerabdrücken auf Partitionierungen des Eingabemoleküls, wie von SpaceLight verwen-
det, ermöglicht ebenfalls eine heuristische Anwendung von Ähnlichkeitszielwerten. Alle drei Verfahren haben
das Problem, dass bei der Berechnung suboptimaler Ergebnisse Moleküle aufgrund ungünstiger Abbildungen
schlechtere, also falsche Ähnlichkeitswerte erhalten können. Die abstrakten Ähnlichkeitsmaße von FTrees-FS
und SpaceLight sind für Anwender in der Regel nicht einfach nachvollziehbar. Ein MCS-Ähnlichkeitswert, der
zudem eine Anzahl gemeinsamer Atome nennt, ist deutlich einfacher als falsch zu erkennen. SpaceMACS ist die
erste ähnlichkeitsbasierte Suchmethode in kombinatorischen Fragmenträumen, die über molekulare Anfragen
hinausgeht. Im Vergleich publizierter Methoden zur Exploration kombinatorischer Fragmenträume weist Spa-
ceMACS die Größten Ähnlichkeiten zum SMARTS-Fs[Ehr12, Ehr13] Algorithmus auf. SMARTS-Fs unterstützt
im Vergleich zu SpaceMACS aber kein Ähnlichkeitsmaß und bietet alleinig eine Substruktursuche an. Diese un-
terstützt auch SMARTS Rekursionen und ist nicht dahingehend beschränkt, dass Bindungen explizit in zyklisch
und azyklisch unterteilt werden müssen. Diese Unterschiede spiegeln sich auch in den verwendeten Ansätzen
und der dynamischen beziehungsweise statischen Erkennung der Fragmentgrenzen wider. In dem Punkt ist
SMARTS-Fs ein algorithmisches Bindeglied von SpaceLight und SpaceMACS. Das Ergebnis einer SMARTS-
Fs Suchanfrage ist ein dedizierter Fragmentraum, in dem jedes Molekül vom angefragten SMARTS getro昀昀en
wird. Aus dem Raum können Moleküle enumeriert werden, oder dieser kann mit weiteren Methoden unter-
sucht werden. Sofern es sich um einmalige Anfragen an die Fragmenträume handelt und die Beschränkung der
Zykleneigenscha昀琀 auf Bindungen und das Verbot von SMARTS Rekursion keine Einschränkung darstellen, ist
es vorteilha昀琀, diese mit SpaceMACS im Substrukturmodus durchzuführen. Unabhängig davon ist kein Pro-
gramm, dass den SMARTS-Fs Algorithmus beinhaltet Teil der NAOMI ChemBioSuite(https://uhh.de/naomi).
SpaceLight und SpaceMACS sind als Anwendung fürWindows, Linux oder MAC innerhalb der NAOMI Chem-
BioSuite verfügbar.

3.6 Zusammenfassung und Ausblick

Die SpaceMACSMethode beschränkt sich darauf, dass die gefundene Substruktur einerseits zusammenhängend
ist und andererseits die Ringeigenscha昀琀 aller Bindungen berücksichtigt. Gegenüber anderen Ähnlichkeitsma-
ßen können diese beiden Restriktionen ein Nachteil sein. Sie sind jedoch notwendig, da diese aus dem Modell
stammen und SpaceMACS die Möglichkeit geben, als exakte Methode angesehen zu werden. In der Validierung
wurden kleinere Probleme mit der Ergebniskonsistenz über verschiedene Parameterwerte gefunden. Diese be-
ziehen sich insbesondere auf dasMCS-Similarity Ähnlichkeitsmaß, das nicht nativ vomModell unterstützt wird
und im geringen Maß auch auf das nativ unterstützte MCS-Size Ähnlichkeitsmaß. Im letzteren Fall basieren die
Fehler auf den durch eine zwischenzeitliche Enumeration von Duplikaten nicht expandierten Teilergebnissen.
Dieser E昀昀ekt kann bei MCS-Similarity noch verstärkt au昀琀reten.
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3 Ähnlichkeitssuche in Fragmenträumen

Perspektivisch kann die strenge Auslegung des Modells innerhalb von SpaceMACS reduziert werden: Azykli-
sche Bindungen der Anfrage könnten zu allen Bindungen der Fragmente kompatibel werden oder es wird nur
von Bindungen zu Linkern gefordert, dass diese auf azyklische Bindungen der Anfrage abgebildet werden. Da-
durchwürde das Ergebnis heuristisch, könnte aber denWünschen vonAnwendern besser entsprechen.Weitere
Möglichkeiten den Algorithmus anzupassen bestehen darin, auch topologisch eingeschränkte nichtzusammen-
hängende MCS-Resultate zu erlauben. Eine topologische Einschränkung ist notwendig, da die Lokalität von
Abbildungen über Fragmentgrenzen hinweg nicht verletzt werden darf. Für die Qualität der Ergebnisse ergibt
sich der Vorteil, dass einzelne Unterschiede an zentralen Stellen übersprungen werden können und sich deut-
lich bessere Ähnlichkeitswerte ergeben können, die sich in den Anforderungen der Anwender widerspiegeln.

Bezüglich der Anwendung bietet es sich an, weitere Filtermöglichkeiten in die Enumeration der Ergebnisse zu
integrieren. Bisher können Ergebnisse anhand simpler Größeneigenscha昀琀en der Abbildung, des Ergebnis und
des Resultatmoleküls ge昀椀ltert werden. Die Betrachtung weiterer additiver molekulare Deskriptoren, wie z.B.
Molekulargewicht oder die Anzahl von Wassersto昀昀brückendonoren und Akzeptoren, ist möglich.

Eine weitere Möglichkeit zukün昀琀iger Änderungen am Algorithmus ist die Fokussierung auf Molekülgerüste.
Die SpaceMACS Suche könnte darauf eingeschränkt werden, dass alle Ergebnisse ein vorgegebenes Murckow-
Gerüst[Bem96] habenmüssen. Eine solche Einschränkung ließe sich auch in die Au昀戀ereitung der Fragmenträu-
me und die Ergebnisenumeration integrieren und wurde in einem Projekt von den Studierenden Christoph
Noack und Katharina Kaufmann demonstriert.

Bezüglich der Anwendung gibt es zwei primäre Ansatzpunkte die E昀케zienz zu verbessern. Es kann sowohl
versucht versucht werden die Parallelisierung des Algorithmus oder den Speicherverbrauch der Moleküldar-
stellung zu optimieren. Ein viel größeres Potenzial zur E昀케zienzsteigerung hat allerdings eine verbesserte Be-
schreibung zuverlässiger Mehrkomponentenreaktionen in Fragmenträumen.

28



4 Vergleich chemischer Muster

4.1 Motivation

Wie in den bisherigen Kapiteln diskutiert, werden in der Chemieinformatik im Allgemeinen und im Spezi-
ellen vor allem im Bereich der Wirksto昀昀entwicklung regelmäßig große Molekülenmengen auf Wirksamkeit
gegen Zielproteine getestet.[Bro09] Für einen Wirksto昀턀andidaten eines oral verfügbaren Medikaments gel-
ten strenge Richtlinien, damit dieser überhaupt zugelassen werden kann. Ein Teil dieser Kriterien wird durch
die ADME-T Kriterien (Aufnahme (A), Verteilung (D), Metabolismus (M), Ausscheidung (E), Toxizität (T)) zu-
sammengefasst. Sie beschreiben den Werdegang eines Medikaments von der Aufnahme in den Körper, zum
Beispiel durch Einnahme der Table琀琀e, bis zur Ausscheidung nach Abbau durch z.B. die Leber. Für Wirksto昀昀-
kandidaten gibt es verschiedene einfach anwendbare Regelwerke, wie z.B. Lipinskis Regel der Fünf,[Lip97] die
das Ziel haben, die große Anzahl an möglichen Molekülen auf sinnvolle und vielversprechende Kandidaten zu
reduzieren. Über Regeln, die auf einfachen Eigenscha昀琀en basieren, gibt es weitere auf Erfahrung basierende
Regelwerke, die unerwünschte Interaktionen eines Wirksto昀턀andidaten vermeiden sollen. Große Popularität
erlangten diese Regelwerke erstmalig unter demNamen PAINS.[Bae10] Zusammenmit der Publikationwurden
über 450 chemische Substrukturmuster verö昀昀entlicht, die Moleküle und funktionelle Gruppen beschreiben, die
in diversen Versuchsreihen unerwünschte Interaktionen oder Wirkungen gezeigt ha琀琀en. Das Spektrum uner-
wünschter Interaktionen in den Regelwerken reicht von falsch angezeigter Aktivität im chemischen Assay über
allgemeine Reaktivität bis hin zu gefährlichen Nebenwirkungen am z.B. hERG-Kaliumkanal im menschlichen
Herzen.[Bae10, Bla05, Bre08b, Bru12, Gau17, Han99, Pea06, Sus12]

Häu昀椀g sind Substruktureigenscha昀琀en für die aufgezählten Wirkungen verantwortlich, die wiederum in Form
von chemischen Mustern einfach angewendet werden können. Dabei hat sich die SMARTS-Sprache[Day] als
Quasi-Standard gegenüber anderen Sprachen, wie SLN[Ash97] oder MQL[Pro07] durchgesetzt. Die Verfügbar-
keit des gesammeltenWissens kommt mit einer Einschränkung: Chemische Assays sind untereinander schwer
zu vergleichen, was insbesondere jene chemischen Muster beein昀氀usst, die eine unspezi昀椀sche Interaktion mit
dem Assay anzeigen sollen. Weitere zentrale Punkte sind die Zielsetzungen, die bei der Erstellung der jewei-
ligen Regelwerke verfolgt wurden und auch die Tatsache, dass einige auf anderen au昀戀auen. Die Komplexität
aller Sprachen für chemische Muster hat zur Folge, dass ein algorithmischer Vergleich und auch eine kanoni-
sche Form bisher nicht vorhanden sind. Für eine abschließende Bewertung der einzelnen Regelwerke und einen
sinnvollen Vergleich der enthaltenden Muster sowie der Intentionen der Autoren ist ein einfach zugänglicher
Vergleich chemischer Muster unabdingbar.

Analog zu Molekülen werden chemische Muster als Graphen dargestellt. Daher ist es naheliegend für den
Vergleich von chemischen Mustern und einer möglichen Ähnlichkeitsbewertung einen Algorithmus zu entwi-
ckeln, der eine maximale gemeinsame Teilstruktur auf den Graphen der internen Repräsentation der Muster
berechnet.
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4 Vergleich chemischer Muster

4.1.1 Chemische Muster in der SMARTS-Sprache

SMARTS ist eine Beschreibungssprache für chemische Muster. Grundsätzlich basiert sie auf SMILES,[Wei88,
Dav89] einer Sprache, die zur Beschreibung von Molekülen eingeführt wurde. SMILES und SMARTS haben
einen ähnlichen Au昀戀au der Sprache. Der primäre Unterschied von SMILES und SMARTS ist neben dem Ein-
satzzweck die Tatsache, dass SMARTS eine Erweiterung der SMILES-Sprache ist und viel mehr Eigenscha昀琀en
an den Knoten und Bindungen erlaubt. Diese können mit logischen Operatoren verknüp昀琀 oder durch allge-
meine Platzhalter ersetzt werden. Darüber hinaus gibt es die Möglichkeit, die Umgebung um einen Knoten
rekursiv zu spezi昀椀zieren. Diese sogenannte SMARTS-Rekursion ist die mächtigste Eigenscha昀琀 der SMARTS
Sprache und erfordert in allen Aspekten besondere Betrachtung, sei es beim Schreiben solcher Muster, als auch
bei deren Verarbeitung. Des Weiteren gab es auch schon Ideen, die zu einer Kanonisierung führen könnten,
aber nicht weiter verfolgt wurden.[Say97]

Generell sind textuelle Beschreibungen von Molekülen und chemischen Mustern für Menschen nur schwer
lesbar und begrei昀戀ar. In Bezug auf Moleküle gibt es seit jeher visuelle zwei und dreidimensionale Reprä-
sentationen. Eine intuitive visuelle Beschreibung, die bekannten zweidimensionalen Molekülvisualisierungen
nachempfunden ist, wurde im Vergleich zu den Beschreibungssprachen der Muster erst viel später einge-
führt.[Sch10] Die Vorteile der Visualisierung sind o昀昀ensichtlich, da sie es auch Laien bezüglich der SMARTS
Syntax erlaubt, einfache strukturelle Fehler in den Mustern zu identi昀椀zieren. Unabhängig davon pro昀椀tieren
auch Experten von der Visualisierung, da die Struktur aus der textuellen Beschreibung generell nurmühsam ab-
geleitet werden kann. Der in den SMARTS.plus Webserver[Cen, D5, Sch10] integrierte SMARTSviewer[Sch10]
folgt bei der Visualisierung der Elemente der SMARTS Sprache so weit wie möglich den IUPAC[Bre08a] Vor-
gaben zur Visualisierung von Molekülen. Die Symbolisierungen der SMARTS Eigenscha昀琀en ermöglichen da-
durch ein intuitives Verständnis von chemischen Mustern.

Au昀戀auend auf der Visualisierung bestehender Muster ist es ein logischer Schri琀琀, auch die Erstellung solcher
mit graphischen Anwendungen zu unterstützen. Der SMARTSeditor[Sch13] löst genau dieses Problem. Dieser
ermöglicht es, einen SMARTS Ausdruck mit einer graphischen Anwendung interaktiv zu erstellen, ohne der
Syntax von SMARTS mächtig sein zu müssen.

Abseits der Visualisierung wurde ein weiterer Algorithmus entwickelt, der die Konzepte der Substrukturenu-
meration benutzt,[Han07] um SMARTSMuster zur Unterscheidung vonMolekülmengen zu generieren.[Bie15]
Dabei wird eine Menge als positiv, die andere als negativ de昀椀niert. Der Algorithmus generiert SMARTS Aus-
drücke, so genannte Kontrastmuster, die Moleküle der positiven Menge von denen der negativen Menge un-
terscheiden.

All diese Probleme gab es für die Molekülbeschreibungen in SMILES[Wei88] nicht. Für Moleküle gab es seit
jeher Visualisierungskonzepte. Zudem ist die Handhabung von Substrukturen und Restgruppen in der Chemie
allgegenwärtig. Nach der Einführung von SMILES[Wei88] war die Uneindeutigkeit, der aus Molekülen gene-
rierten SMILES Ausdrücke, das größte Problem. Die sogenannten USMILES[Dav89] lösen das Problem relativ
zuverlässig. Im Vergleich zum InChI[Hel14] sind die erzeugten USMILES häu昀椀g nur für Anwendungen einer
chemischen Bibliothek eindeutig. Anstrengungen, SMILES auch über solche Bibliotheken und Anwendungen
eindeutig zu gestalten wurden verfolgt[OBo12], haben sich aber nicht durchgesetzt.

Chemische Muster sind bekanntermaßen deutlich komplexer und schwieriger zu handhaben als Moleküle. Die
häu昀椀ge Nutzung von Mustern macht es aber wünschenswert, dass es auch für diese eine kanonische Form
geben sollte. Zur Beschleunigung von Anwendungen wie dem SMARTS matching ist es üblich, selten vorkom-
mende Elemente in SMARTS Mustern im ersten Knoten zu beschreiben. Über solche Empfehlungen für eine
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4.2 Die SMARTScompare Methode

e昀케zientere Nutzung der Sprache hinaus, gibt es aber kein Konzept einer eindeutigen Darstellung von SMARTS.
Es ist nicht einmal möglich, verschiedene SMARTS Ausdrücke unabhängig von ihrer Repräsentation algorith-
misch zu vergleichen. Auf einem Datensatz können selbstverständlich SMARTS im Experiment als spezi昀椀scher
oder als allgemeiner im Vergleich zu anderen klassi昀椀ziert werden. Das ist analog zur Berechnung der Kontrast-
muster immer möglich. Die Gültigkeit solcher Aussagen bezieht sich aber immer nur auf den Datensatz, da
ein zusätzliches Molekül, dass nicht Teil des Experiments war, diese Aussage widerlegen könnte. Zudem muss
so ein Ansatz als rechenaufwendig und ungenau eingestu昀琀 werden. Bevor es möglich ist, chemische Muster
im Allgemeinen und SMARTS im Speziellen zu kanonisieren, ist es notwendig, diese überhaupt vergleichen zu
können. Eine Kanonisierung soll für identische Muster eine identische textuelle Repräsentation erzeugen. Dar-
aus folgt, dass solange keine Möglichkeit existiert, chemische Muster überhaupt auf Identität zu vergleichen,
eine Kanonisierung ebenfalls nicht möglich sein kann. Das folgende Kapitel widmet sich der ersten publizierten
Methodik chemische Muster zu vergleichen die in [D3, D4] und [D5] umgesetzt wurden. Abschließend wird
ein Ausblick gegeben, der die Möglichkeit der Kanonisierung in Folgeprojekten thematisiert.

4.2 Die SMARTScompare Methode

Sprachen chemischerMuster, zu denen auch die SMARTS Sprache gehört, erlauben logische Ausdrücke, mit de-
nen Atome und Bindungen von getro昀昀enen Molekülen beschrieben werden. Durch Äquivalenzumformungen
und Regeln zur Reihenfolge der einzelnen atomaren Aussagen über Atome und Bindungen wäre es prinzipiell
möglich, die Ausdrücke in Knoten und Kanten der Muster zu kanonisieren. Das Problem dabei ist, dass einer-
seits die atomaren Aussagen über Atome nicht unabhängig von einander sind und andererseits diese implizit
durch die Graphstruktur gegeben sein können.

Der Vergleich molekularer Muster basiert auf der Umsetzung eines neuen theoretischen Konzepts allgemeiner
chemischer Muster, dass so angelegt ist, dass es aus einer beliebigen Mustersprache generiert werden kann.
Die Idee hinter allgemeinen chemischen Mustern ist es, in den Knoten und Kanten der Graphstruktur eines
Musters alle Atom-, beziehungsweise Bindungszustände abzubilden, die ein Atom oder eine Bindung, auf die
der Knoten oder die Kante abgebildet wird, annehmen kann und auch annimmt. Der Vorteil daran ist, das da-
durch alle atomaren logischen Aussagen unabhängig voneinander sind. Das erlaubt einen einfachen Vergleich
von Kanten und Knoten unabhängig von der gewählten Repräsentation. Zur Umsetzung des Konzepts werden
auf Basis des NAOMI[Urb11, Urb14] Chemiemodells alle möglichen Atom und Bindungszustände enumeriert
und als Fingerabdrücke an Knoten und Kanten angehängt. Die in die De昀椀nition der allgemeinen chemischen
Muster integrierte Eindeutigkeit der Repräsentation wird mit einer mehrstu昀椀gen Bereinigungsprozedur der
Fingerabdrücke umgesetzt.
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Abbildung 4.1: Symbolisierung von zwei Schri琀琀en der Fingerabdruckzuweisung zu den Knoten eines einfachen SMARTSMusters. Im
oberen Teil ist der Ausdruck und eine Darstellung der im Fingerabdruck gesetzten Eigenscha昀琀en, die den Ausdruck
beschreiben. Im unteren Teil wird ist der zweite Schri琀琀 dargestellt, der die Umgebung des Knotens berücksichtigt und
Bits, die zu Eigenscha昀琀en gehören, die in der Umgebung des Knotens nicht mehr erfüllt sind, aus dem Fingerabdruck
entfernt. Im mi琀琀leren Teil der Abbildung ist jeweils der Atomzustand als Eigenscha昀琀 eines Bits gegeben. Der drei-
Zi昀昀erncode bei Bindungen steht für die Anzahlen an Einfach-, Doppel- und Dreifachbindungen an den Atomen. Diese
Abbildung wurde aus [D3] übernommen und ins Deutsche übersetzt.

Die Prozedur der Fingerabdruckzuweisung ist in Abbildung 4.1 angedeutet. Ausgehend von einer initialen
Zuweisung, bei der alleinig der Knotenausdruck berücksichtigt wird, werden in darau昀昀olgenden Schri琀琀en all
jene Bits aus den Fingerabdrücken wieder entfernt, die zu Atomzuständen gehören, die in der Umgebung des
Knotens nicht möglich sind. Insbesondere eine (relativ) große Anzahl adjazenter Wassersto昀昀atome gehört zu
den Eigenscha昀琀en, die in der Umgebung eines Knotens häu昀椀g nicht möglich sind.

Nach der Zuweisung der Fingerabdrücke wird ein cMCS auf den Graphrepräsentationen der Muster berechnet.
Die Kompatibilität der Kanten und Knoten hängt dabei noch vom gewählten Suchmodus, „identische Mus-
ter“, „Teilmengenrelation der Muster“ oder „Ähnlichkeitssuche“ ab. Die SMARTS-spezi昀椀sche Eigenscha昀琀, dass
Knoten ihre Umgebung rekursiv beschreiben können macht es erforderlich, dass auch bei der Suche nach Teil-
mengenrelationen ein MCS-Algorithmus benutzt werden muss. Sie ist durch eine rekursive Prozedur in die
Berechnung des cMCS integriert.

Eines der größten Probleme für ungeübte Anwender der SMARTS Sprache ist der Zwang zur expliziten Anga-
be von Aromatizität. Innerhalb der SMARTScompare Anwendung wird bei Ringsystemen überprü昀琀, ob diese
in ihrer gegebenen Lokalisierung von Einfach- und Doppelbindungen einem aromatischen System in einem
Molekül entsprechen könnten. In einem solchen Fall werden die Ausdrücke, der zu den als potenziell aroma-
tisch befunden Knoten und Kanten angepasst und die Fingerabdrücke neu zugewiesen. Der Nutzer wird in
einem solchen Fall über die interne Modi昀椀kation seines Musters informiert. Diese Handhabung ist in den zur
Publikation gehörenden Anwendungen standardmäßig aktiviert und kann deaktiviert werden.
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Neben der Berechnung von Teilmengenrelationen vonmolekularenMustern kann SMARTScompare auchÄhn-
lichkeitswerte bestimmen. Für jedes Abbildungspaar von Knoten im Ergebnis des cMCS kann über die Fin-
gerabdrücke ein Ähnlichkeitswert bestimmt werden. Die Aussagekra昀琀 dieser Ähnlichkeitswerte ist allerdings
gering, da die von den Fingerabdruckbits dargestellten Eigenscha昀琀en einer systematischen Enumeration des
Chemiemodells entstammen. Die Aussagekra昀琀 der Fingerabdruckähnlichkeit wird in SMARTScompare durch
eine Gewichtung der einzelnen Bits erhöht. Dazu werden die Vorkommen der Bits auf einem Referenzdatensatz
gezählt und als Gewichte eingesetzt. Die Gewichtung kann vom Nutzer für einen spezi昀椀schen Einsatzzweck
berechnet und angepasst werden.[D4]

4.2.1 Validierung und Anwendungen der SMARTScompare Methode

Da die SMARTScompare Methode die erste ihrer Art ist, kann keine andere externe Anwendung zur Validie-
rung oder zum Vergleich herangezogen werden. Sta琀琀dessen wurden Tre昀昀erpro昀椀le tausender SMARTS Muster
auf einemDatensatz von über 100MillionenMolekülen zu einemReferenzdatensatzmöglicher Teilmengenrela-
tionen zusammengefasst. Beim paarweisen Vergleich der SMARTS dur昀琀e SMARTScompare keine Teilmengen-
relation vorhersagen, die nicht experimentell bestätigt wurde. Die gefundenen Fehler basieren auf Schwächen
des Chemiemodells und einer in den Algorithmus optionalen eingebauten Vereinfachung zur Handhabung der
Aromatizität in SMARTS. Zudem zeigt die Analyse der nicht von SMARTScompare gefundenen möglichen
Teilmengenrelationen der SMARTS Muster die Notwendigkeit einer algorithmischen Methode, die nicht auf
experimentellen Daten basiert. In vielen Fällen sind es seltene Atomzustände, die SMARTScompare eine expe-
rimentelle Teilmengenrelation nicht erkennen lassen. Da diese aber weiterhin theoretisch möglich sind, zeigt
dies die Stärke dieser allgemeinen Lösung.

Für die Validierung des Ähnlichkeitskonzepts wurden Korrelationen zu Tre昀昀ermengen von ausgewählten
SMARTS auf zwei verschiedenen Datensätzen bestimmt. Insgesamt zeigen die Korrelationen akzeptable
Ergebnisse. Beim durchgeführten Vergleich mit der Referenzähnlichkeit besteht für diese das Problem, dass
diese wiederum experimentell bestimmt wurden und dass es kein unabhängiges Konzept zur Bestimmung von
Ähnlichkeit von chemischen Mustern im Allgemeinen gibt.

4.3 Anwendungen auf Sammlungen von SMARTS Mustern

Die SMARTScompare[D4, D3] Anwendungen erlauben sowohl den visuellen Vergleich einzelner SMARTSAus-
drücke als auch den Vergleich ganzer Sammlungen mithilfe einer Kommandozeilenanwendung. Beide Anwen-
dungen, der SMARTScompareViewer für den visuellen Vergleich als auch die Kommandozeilenanwendung
SMARTScompare sind im SMARTS.plus-Webserver https://smarts.plus[Cen] integriert. Der Server bietet die
Möglichkeiten der Visualisierung[Sch10] einzelner Ausdrücke, des Vergleichs zweier benutzerde昀椀nierter Mus-
ter, den Vergleich eines benutzerde昀椀niertenMusters mit neun verschiedenen Sammlungen und der Berechnung
neuer SMARTS, die dazu geeignet sind, eine positive und eine negative Menge von Molekülen zu unterschei-
den.[Bie15]
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Abbildung 4.2: Eine Übersicht über die im SMARTS.plus integrierten Anwendungen an einer beispielha昀琀en Entwicklung neuer
SMARTS Muster. Für zwei hochgeladene Molekülmengen werden Kontrastmuster generiert (Create). Diese gene-
rierten SMARTS können betrachtet werden (View). Darüber hinaus besteht die Möglichkeit nach ähnlichen Mustern
in bestehenden Sammlungen zu suchen (Search). Final können SMARTS auch direkt miteinander verglichen werden
(Compare). Diese Abbildung ist von [D5] unverändert übernommen.

Die Integration der genannten Anwendungen in den SMARTS.plus Webserver wird in Abbildung 4.2 anhand
eines beispielha昀琀en Arbeitsablaufs dargestellt. Um herauszu昀椀nden, ob sich zwei Molekülmengen strukturell
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unterscheiden, ist die Berechnung von Kontrastmustern eine sinnvolle Anwendung. Die Berechnung solcher
Muster ist im SMARTS.plus integriert. Dazu müssen je zwei Moleküldateien auf den Server hochgeladen wer-
den. Sofern eine strukturelle Eigenscha昀琀 durch ein SMARTS Muster beschrieben ist, werden häu昀椀g weitere
sehr ähnliche Muster berechnet, die keine weitere Aussagekra昀琀 bezüglich der Unterscheidung der Mengen
haben. Durch entsprechende Parametrisierung der Eingabe ist es sogar möglich, maximale gemeinsame Teil-
strukturen auf der positiven Molekülmenge zu berechnen.

Die graphische SMARTSeditor Anwendung[Bie15] unterstützt zwei Filtermöglichkeiten nach Abschluss der
Berechnung aller Kontrastmuster. Die Ergebnisansicht kann auf die nach Knotenanzahl kleinsten und größten
SMARTS reduziert werden, die eine bestimmte Trennschärfe erreichen. Auf den SMARTS.plus Webserver ist
erstere Filtermöglichkeit nach den kleinsten SMARTS ebenfalls in der interaktiven Ergebnisdarstellung mög-
lich, ein Filtern nach den größten SMARTS bedingt aber immer eine abgeschlossene Berechnung. Deshalb stellt
die zweite angebotene Filteroption auf dem SMARTS.plus einen Kompromiss zwischen kleinen und großen
SMARTS dar. Weitere Details dazu werden im Kapitel 4.3.1 erläutert.

Nach der Berechnung von Kontrastmustern, wie in Abbildung 4.2, gezeigt folgt die visuelle Analyse der
SMARTS. Das ist interaktiv in der Ergebnistabelle möglich, als auch über den „View“ Modus auf dem Server.
Um herauszu昀椀nden, ob berechnete Muster in bestehenden Sammlungen vorhanden sind oder Ähnlichkeiten
zu solchen SMARTS haben, bietet sich der „Search“ Modus an. Wie in der Abbildung kann nach ähnlichen
SMARTS gesucht werden, vor allem wenn das eigene Muster eine geringe Anzahl an Knoten hat, kann sich
die Suche nach spezi昀椀scheren SMARTS als vorteilha昀琀 erweisen.

Der letzte Schri琀琀 wie in der Abbildung gezeigt, ist der visuelle Vergleich von SMARTS. Die angezeigten Bilder
werden von der graphischen Anwendung SMARTScompareViewer über die Kommandozeile erstellt und vom
Ruby Server angezeigt.

4.3.1 Berechnung der Kontrastmuster auf dem SMARTS.plus

Im Vergleich zur graphischen Anwendung werden auf dem Server maximal 300 Ergebnisse angezeigt und die
Laufzeit der Anwendung wird ebenfalls zeitlich begrenzt. Darüber hinaus soll die Ergebnisauswahl bedeutsam
sein und gleichzeitig einen Fortschri琀琀 mit interaktiver Visualisierung ermöglichen. Aus dem Grund wurde eine
minimale Kommandozeilenanwendung entwickelt, die es ermöglicht, zwei verschiedene Filter in die Enume-
ration zu integrieren. Ersterer ist der Minimalitäts昀椀lter nach Knotenzahl wie im SMARTSeditor. Da in diesem
Fall kleinste SMARTS Ausdrücke von Interesse sind, ist die Enumeration über eine Breitensuche im Zustands-
raum umgesetzt. Diese kleinsten Ausdrücke werden im Folgenden nur dann ausgegeben, wenn sie eine bessere
Trennung der positiven und negativen Menge ermöglichen. Zur Bemessung der Trennschärfe werden die Tref-
fermengen auf der positiven und der negativen Molekülmenge herangezogen. Sofern die Tre昀昀ermenge auf der
positiven Molekülmenge des enumerierten SMARTS eine Teilmenge eines bestehenden Musters ist werden die
Tre昀昀er auf den negativen Molekülen verglichen. Beschreibt die Tre昀昀ermenge des bestehenden Ausdrucks eine
Teilmenge des enumerierten Kandidaten, wird diese als Duplikat bezügliche der Trennschärfe angesehen und
verworfen. Die zweite Filteroption stellt einen Kompromiss zwischen kleinen und großen Mustern, gemessen
an der Knotenanzahl dar. Die Strategie bei diesem Filter ist die Maximierung der Trennschärfe während der
Enumeration. Alle Kandidaten zur weiteren Enumeration werden in einer Prioritätswarteschlange gespeichert
und der Vielversprechendste wird verwendet. Daraus folgt, dass in diesem Fall kleine, aber nicht garantiert
die kleinsten Muster für eine gegebene Trennschärfe berechnet werden. Zudem werden die jeweils größten
Muster für die jeweilige Trennschärfe verwaltet. Nach Abbruch der Enumeration, z.B. durch ein gegebenes
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Zeitkontingent oder die Anzahl der berechneten Ergebnisse, werden alle zum Zeitpunkt des Abbruchs größten
SMARTS ausgegeben.

4.3.2 SMARTS Netzwerkanalyse

Die SMARTScompare Anwendungen bieten die Möglichkeit, große Sammlungen von SMARTS Mustern nach
ähnlichen Mustern zu untersuchen, wie es auch in der Ähnlichkeitsanalyse in [D4] durchgeführt wurde. Wenn
der Fokus hingegen auf die Substruktureigenscha昀琀 gelegt wird, ergeben sich ganz andere Netzwerkeigen-
scha昀琀en, die es sich zu analysieren lohnt. Unter Berechnung aller paarweisen Teilmengenrelationen ist der
SMARTSexplore Webserver[Fen21] entstanden, der vom SMARTS.plus aus verlinkt wird und unter https://
smartsexplore.zbh.uni-hamburg.de erreichbar ist.

Abbildung 4.3: Die Visualisierung auf dem SMARTSexplore von zwei SMARTS Mustern, die Nitrogruppen beschreiben und in einer
Teilmengenbeziehung stehen. Auf der linken Seite sind Optionen zur Darstellung und Auswahl der SMARTS und
Sammlungen. Im Zentrum der Abbildung be昀椀ndet sich die kra昀琀feldbasierte 2D-Visualisierung der Teilmengenrela-
tionen zwischen den einzelnen SMARTS. Im Fenster auf der rechten Seite wird das SMARTS Muster oder die über
Kanten bestehende Teilmengenbeziehung dargestellt. In diesem Fall ist es die Relation vom spezi昀椀scheren SMARTS
„Dye 16(1)“, aus MLSMR, zum allgemeineren „Nitro Group“ aus Dundee.

Der Server selbst bietet nach Berechnung aller Teilmengenbeziehungen erstklassige Analysemöglichkeiten der
Zusammenhänge von SMARTS Mustern aus verschiedenen Sammlungen an, wie in Abbildung 4.3 dargestellt.
Der Server zeigt alle SMARTS der ausgewählten Sammlungen auf der zentralen Fläche als Knoten an. Jeder
Knoten steht für einen SMARTS, dessen Visualisierung betrachtet werden kann. Besteht eine Teilmengenrela-
tion, die im ausgewählten Ähnlichkeitsintervall liegt, so sind zwei Knoten mit einer Kante verbunden. Diese
kann ebenfalls betrachtet werden. Für die Platzierung in der Ebene wird ein Kra昀琀feld verwendet. Zur besseren
Analyse lassen sich die Knoten manuell verschieben.

Komplexe und längere Abhängigkeitske琀琀en verschiedener SMARTS, wie in [D4] durch aufwendige Analyse
der paarweisen Ergebnisse gefunden, lassen sich auf diese Weise interaktiv und ohne Programmierkenntnisse
gewinnen. Das wird mit dem Vergleich der beiden baumartigen Hierarchien aus Abbildung 4.4 deutlich. In
Teil A sind die SMARTS entsprechend der Teilmengenrelation von oben nach unten visualisiert und mit den
jeweiligen Sammlungen, aus denen sie stammen, annotiert. Teil B zeigt, dass diese Hierarchie ohne weiteren
Einsatz der SMARTScompare Anwendungen interaktiv auf dem SMARTSexplore Webserver nachvollzogen
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4.4 Ausblick

werden kann. Jeder Knoten beschreibt einen SMARTS, dessen Informationen jeweils rechts angezeigt wer-
den. Wenn Kanten ausgewählt werden, so wird die SMARTScompare Abbildung der beiden SMARTS-Muster
angezeigt.

*=C=*
MLSMR
OCHEM/ToxAlerts

C=C=C
OCHEM/ToxAlerts

N=C=[N,O,P,S]
Inpharmatica

C=C=O
Dundee
OCHEM/ToxAlerts

N=C=[N,O,S]
BMS

N=C=[S,O]
Glaxo
OCHEM/ToxAlerts

N=C=O
Dundee

N=C=N
Glaxo
OCHEM/ToxAlerts

A B

Abbildung 4.4: In beiden Teilen der Abbildungwird eine in den Sammlungen vorhandeneHierarchie von SMARTS, die allesamtAllene
beschreiben, dargestellt. Die Darstellungen gehen jeweils von generischen Mustern (oben) zu immer spezi昀椀scheren
SMARTS (unten). A wurde manuell aus den Daten des paarweisen Vergleichs aller SMARTS extrahiert, während B
online auf dem SMARTSexplore Webserver interaktiv gesucht und nachvollzogen wurde. Im rechten Teil von B ist
das oberste und unterste Muster der Hierarchie visualisiert. Für die Darstellung wurde das Ähnlichkeitsintervall für
die Kantenselektion auf [0,1] eingestellt. A ist aus [D4] unverändert übernommen.

4.4 Ausblick

Das SMARTScompare Projekt, die daraus entstandenen Anwendungen sowie der Webserver haben erstmalig
die Möglichkeit gescha昀昀en, als unvergleichlich geltende chemische Muster in Teilmengen- und Ähnlichkeits-
beziehungen zu setzen. Die Publikationen [D3] und [D4] beschreiben klar und deutlich den Einsatzbereich
und bekannte Schwächen für zukün昀琀ige Verbesserungen der Methode. In Anbetracht der Ähnlichkeitsanaly-
se kann ein eingeschränkter nicht-zusammenhängender MCS (dMCS) für bessere Ähnlichkeitswerte sorgen.
Ähnlich zu Molekülen könnten über verschieden lange Ke琀琀en für das Muster wichtige funktionelle Gruppen
verbunden sein. Ein dMCS kann diese Tatsachen berücksichtigen.

Für die Praxis relevanter wäre eine Kanonisierung von SMARTS. Kanonisierungen sind in der Chemieinforma-
tik wichtige Bestandteile, wie an der Relevanz von eindeutigen SMILES (USMILES)[Dav89] gegenüber einfa-
chen SMILES[Wei88] ersichtlich ist. Darüber hinaus stellen der InChI[Hel14, Hel15] und InChI-Key die einzigen
Möglichkeiten dar, über verschiedene Chemieinformatiksysteme hinweg eindeutige Molekülrepräsentationen
zu erzeugen. Der gleiche Ansatz wird auch mit dem InChI für Reaktionen (RInChI)[Gre18] umgesetzt, für die es
ebenfalls eine vollständige Beschreibung über mehrere Ebenen als auch einen mit Hashing erzeugten einfach
vergleichbaren Schlüsselwert gibt. Eine mögliche Kanonisierung von SMARTS wurde initial von Tim Kuhrt in
einer Bachelorarbeit[S2] untersucht. Sie verfolgte den Ansatz der Berechnung einer eindeutigen Knotenreihen-
folge innerhalb eines SMARTS Ausdrucks, die der Kanonisierung der USMILES nachempfunden ist. Möglich
wurde das unter anderem durch die eindeutigen Fingerabdrücke in den Knoten und Kanten von SMARTS Aus-
drücken. Die Kanonisierung bietet leider keine Möglichkeit SMARTS-Rekursion über ihren Ein昀氀uss auf den
Fingerabdruck des Knotens, an dem sie spezi昀椀ziert ist, zu berücksichtigen. Für nicht-rekursive SMARTS Aus-
drücke lässt sich an diesem Punkt ein Fingerabdruck erzeugen. Der Ansatz, eine eindeutige menschenlesbare
Repräsentation zu generieren, wurde darüber hinaus noch nicht verfolgt. Ein simpler, aber ine昀케zienter und un-
leserlicher Ansatz wäre die Au昀氀istung aller möglicher Zustände pro Knoten. Um eine Lesbarkeit zu erreichen,
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müsste ein Algorithmus, der so einen Ausdruck schreibt, in der Lage sein, implizit gegebene oder redundante
Eigenscha昀琀sbeschreibungen zu erkennen und zusammenzufassen.

Eine andere und praxisnähere Verwendung der mit SMARTScompare vorgestellten Konzepte ist die Beschleu-
nigung der Suche nach SMARTS Tre昀昀ern in Moleküldatenbanken. Jedes Atom hat einen eindeutigen Erweiter-
ten Atomtyp im Modell das SMARTScompare Algorithmus. Die Frage, ob ein SMARTS Knoten ein Atom tri昀�,
kann folglich darauf reduziert werden, ob der entsprechende Atomtyp im Fingerabdruck des Knoten vorhan-
den ist. Wenn viele SMARTS Muster auf einer unveränderten Molekülmenge gesucht werden, so kann auch
ein für die Molekülmenge spezi昀椀scher Fingerabdruck berechnet werden. Das bietet einerseits Vereinfachung
beim Nachgucken, ob ein bestimmtes Bit gesetzt ist und hat den Vorteil, dass die Ringeigenscha昀琀en nicht mehr
für zu große Zahlenwerte zusammengefasst werden müssen. Den größten Vorteil aus einer solchen Analyse
bieten wahrscheinlich die präzise Beschreibung an getro昀昀enen Atomen für einen beliebigen Knotenausdruck
und die Möglichkeit zur Kompression von Molekülen zu einer Binärdarstellung, die teilweise mit unter zwei
Byte pro Atom auskommt.[May19]
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Die in dieser Dissertation beschriebenen Algorithmen befassen sich allesamt mit dem „Maximale gemeinsame
Teilstruktur“ (MCS) Problem. Im Rahmen des Promotionsprojekts wurde ein adaptiver MCS Algorithmus ent-
wickelt und als Freie So昀琀ware auf der Pla琀琀form GitHub verö昀昀entlicht (https://github.com/rareylab/RIMACS).
Für die anderen beiden Algorithmen wurden Computerprogramme geschrieben, die die Anwendung des MCS
in neuartigen Anwendungsbereichen ermöglichen. Die Entwicklung des RIMACS Algorithmus zur Lösung des
MCS Problems stellt die Grundlage für die E昀케zienz der beiden anderen in der Promotion beschriebenen Pro-
gramme dar. Mit RIMACSwurde eine e昀케ziente exakteMethode vorgestellt, die im Gegensatz zu vielen anderen
MCS-Algorithmen nicht auf der Transformation in das Cliquenproblem basiert. Das ermöglicht eine schlanke
Struktur des Algorithmus und den direkten Au昀戀au der Abbildung zwischen den Molekülen. Darüber hinaus
bietet RIMACS genaue Kontrolle darüber, ob und wie ein nicht-zusammenhängender MCS berechnet werden
soll. Insbesondere lassen sich die Anzahl an Zusammenhangskomponenten im Ergebnis und auch deren mi-
nimale Größe kontrollieren. In der Evaluation wurde besonderer Wert darauf gelegt, die Auswirkungen auf
die Laufzeit und die Größe der gefundenen Teilstruktur des nicht-zusammenhängenden MCS mit dem zusam-
menhängenden zu vergleichen. Anschließend wurde für den zusammenhängenden MCS die RIMACSMethode
mit anderen exakten und heuristischen Methoden aus der Literatur verglichen. Für dieses Problem wurden
vergleichbare Laufzeiten mit den heuristischen Methoden erreicht und die Performance der externen exakten
Methoden bei weitem übertro昀昀en.

Die beschriebene E昀케zienz und Adaptivität der RIMACSMethode ermöglichten es, durch Anwendung der Kon-
zepte der dynamischen Programmierung ein zusammenhängendes induziertes MCS Problem in unenumerier-
ten kombinatorischen Fragmenträumen zu lösen. Der für diesen Zweck entwickelte SpaceMACS Algorithmus
berechnet einen eingeschränkten cMCS. Damit mit der SpaceMACS Methode nicht nur das „beste“ Ergebnis
bezüglich der Anzahl an abgebildeten Knoten berechnet werden kann, musste das MCS Problem, das tatsäch-
lich gelöst wird, weiter angepasst werden. Für die korrekte Behandlung der Linker ist eine Gewichtung des
MCS notwendig und für die Berechenbarkeit suboptimaler Ergebnisse ab Rang zwei muss bei der MCS Berech-
nung auf den Fragmenten eine Art der „Alle maximalen gemeinsamen Teilstrukturen“ Variante des MCS gelöst
werden. Die bis zu diesem Punkt vorgestellte Methode berechnet eine Teilstruktur, die sich über mindestens
zwei Fragmente ausdehnt. Damit die Ergebnisse der Methode nicht auf solche Fälle beschränkt sind, wird in
einem weiteren Schri琀琀 wieder ein normaler zusammenhängender MCS mit den Fragmenten unter Aussparung
der Verbindungsatome berechnet. In der Anwendung erweist sich die SpaceMACS Anwendung als äußerst
e昀케zient und erlaubt es, virtuelle Substanzbibliotheken mit 20 Milliarden oder auch 290 Billionen Molekülen
innerhalb von Minuten nach ähnlichen Molekülen zu einer Anfragestruktur zu durchsuchen. Diese kann als
Molekül vorliegen, aber auch eingeschränkt als molekulares Muster in der SMARTS-Sprache gestellt sein.

Im abschließenden Projekt der Promotion wurde der MCS als Methode der Wahl für den Vergleich von chemi-
schenMustern in der SMARTS Sprache gewählt. Durch eineModellierung über Fingerabdrücke, die den chemi-
schen Raum von Atomen und Bindungen abbilden, können die Kanten und Knoten der internen Graphstruktur
des SMARTS miteinander verglichen werden. Das ermöglichte die Anwendung eines MCS Algorithmus, um
Gemeinsamkeiten festzustellen. Die Besonderheit der SMARTS Sprache, weitere SMARTS Ausdrücke rekursiv
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zu enthalten, führte dazu, dass der MCS in einem rekursiven Algorithmus ausgeführt wurde. Anschließend
mussten die diversen Teilergebnisse wieder durch Enumeration des Zustandsraums zu den tatsächlichen Er-
gebnissen zusammengesetzt werden. Die entwickelten Anwendungen zum Vergleich von SMARTS wurden in
den SMARTS.plusWebserver integriert. Dort unterstützen sie die Visualisierung, den Vergleich einzelner sowie
den interaktiven Vergleich von SMARTS mit denen ganzer Sammlungen. Darüber hinaus wurde ein Verfahren
zur Berechnung von Kontrastmustern in den Server integriert. Die zugrunde liegendeMethode, einer Substruk-
turenumeration, ist die Methode der Wahl zur Lösung des cMCS in mehr als zwei Graphen, dem Multi-MCS
Problems. Insgesamt ermöglicht das Projekt die interaktive visuelle Arbeit mit SMARTS Ausdrücken, die für
ungeübte Anwenderinnen und Anwender nicht möglich wäre und gibt spannende Einblicke in die Struktur
von bestehenden Sammlungen von SMARTS Mustern.

Insgesamt zeigen der Fokus und die in dieser Promotion erzielten Ergebnisse, dass MCS basierte Ähnlichkeits-
maße weiterhin relevant sind und bestehende Anwendungsfelder zurückgewonnen und neuartige erschlossen
werden können. Insbesondere in der molekularen Ähnlichkeitssuche hat sich die Fingerabdruckähnlichkeit als
Standardverfahren der Ähnlichkeitssuche etabliert. Mit der Einführung des SpaceMACS Methode ist es erst-
mals wieder möglich, große kombinatorische Molekülmengen e昀케zient nach gemeinsamen Teilstrukturen zu
durchsuchen.

Die vom SMARTScompare Algorithmus abgeleiteten Anwendungen erweitern die Anwendungsgebiete von
MCS Algorithmen auf chemische Muster. Neben einer neuartigen automatisch generierten Beschreibung der
chemischen Muster sind es vor allem rekursive Eigenscha昀琀en chemischer Mustersprachen, die den Einsatz der
MCS Methodik erzwingen.
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A Benutzungsanleitung der SpaceMACS Anwendung

Im Zusammenhang der Entwicklung der SpaceMACS Methode wurde eine dazugehörige Kommandozeilenan-
wendung entwickelt. Diese ermöglicht es einen Fragmentraum in verschiedenen Formaten zu laden und mit
einer Vielzahl von Anfragen zu durchsuchen. Die SpaceMACS Anwendung kann nach dem folgenden Schema
über die Kommandozeile verwendet werden:
./SpaceMACS [Optionen] Fragmentraumdatei Anfragen...

Alle Anfragen können sowohl Dateien als auch SMILES oder SMARTS Zeichenke琀琀en sein. Argumente, die kei-
ner Kommandozeilenoption zugeordnet sind, werden als Anfrage interpretiert. Insgesamt sind die folgenden
Optionen vorhanden:

-f, --fragment-space Angabe einer Datei, die einen Fragmentraum enthält. Die Formate „*.space“ und „*.fsf“
werden unterstützt. Es können mehrere Räume durch mehrfache Angabe von -f gleichzeitig durchsucht
werden.Wenn nicht explizit als Kommandozeilenoption gegeben, so wird das erste positionale Argument
als Fragmentraum interpretiert.

-c, --continuous Option, ob eine interaktive Sitzung gestartet werden soll. In diesem Fall ist die explizite Angabe
von Anfragen nicht nötig.

-n, --nof-results Angabe der Anzahl an Ergebnissen, die für eine Anfrage ausgegeben werden sollen.

-v, --verbose Angabe über die Art der Meldungen, die vom Programm ausgegeben werden sollen.
Quiet Keine Meldungen.
Error Ausgabe von Fehlermeldungen.
Warning Ausgabe von Warnungen.
Info Ausgabe von Informationsmeldungen.

-m, --mode Angabe des verwendeten Suchmodus.
Size Suche mit dem MCS-Size Ähnlichkeitsmaß.
Similarity Suche mit dem MCS-Similarity Ähnlichkeitsmaß.
Substructure Durchführen einer Substruktursuche.

-s, --skip-single-matches Option, den letzten Schri琀琀 des Algorithmus, die Suche nach Teilstrukturen innerhalb
der Fragmente, auszulassen.

-l, --result-storage-limit Angabe des Parameters, wie viele Zwischenergebnisse während der Enumeration ge-
speichert werden sollen.

-e, --extensions-per-link-type Angabe des Parameters, wie viele Fragmente zur Absä琀琀igung o昀昀ener Linker für
jeden Linktyp gespeichert werden sollen.

-t, --threads Angabe des Parallelismus der Anwendung.

-i, --inner-parallelism Option, die einzelne Suche zu parallelisieren ansta琀琀 verschiedene Anfragen parallel zu
suchen.

-M, --show-mapping-insertion Option die berechnete Abbildung in die SMILES Repräsentation der Ergebnis-
moleküle zu integrieren.
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-C, --config-file Angabe einer Kon昀椀gurationsdatei, die es ermöglicht einen Aufruf unabhängig von der Kom-
mandozeile zu parametrisieren.

-r, --ring-chain-atom-compatibility Option, Ring- und Ke琀琀enatome aufeinander abzubilden.

-o, --output Angabe einer Ausgabedatei. Wenn keine gegeben ist, wird die Standardausgabe verwendet.

--license Angabe und Aktivierung einer Lizenz für die SpaceMACS Anwendung.

-h, --help Alleinige Ausgabe der Hilfeseite und anschließende Termination des Programms.

Die SpaceMACS Anwendung ermöglicht es zusätzlich eine interaktive Sitzung auf der Kommandozeile zu star-
ten. Auf diese Art kann ein Raum mit verschiedenen Anfragen exploriert werden, ohne diesen immer wieder
neu laden zu müssen.

Die interaktive Sitzung ist in Kommandos aufgeteilt, die sich ähnlich zu den Kommandozeilenoptionen verhal-
ten. Kommandos verwenden den Doppelpunkt als Prä昀椀x, gefolgt von einem Buchstaben, der das Kommando
darstellt. Abschließend folgt der Parameter für das Kommando. Angaben, die keinem Kommando entsprechen
werden als Anfragen interpretiert. Anfragen können Moleküldateien, SMILES-Zeichenke琀琀en oder SMARTS-
Zeichenke琀琀en sein. Bei der Angabe von SMARTS gelten die in der Publikation beschriebenen Einschränkun-
gen. Insgesamt werden die folgenden Kommandos akzeptiert:

:h Ausgabe der Hilfe und Übersicht über die akzeptierten Kommandos der interaktiven Sitzung.

:d Ausgabe der aktuellen Kon昀椀guration. Diese Beinhaltet den zu durchsuchenden Fragmentraum und alle ver-
änderlichen Optionen der Sitzung.

:i Überschreiben der „--inner-parallelism“ Kommandozeilenoption.

:l Überschreiben der „--result-storage-limit“ Kommandozeilenoption.

:e Überschreiben der „--extensions-per-link-type“ Kommandozeilenoption.

:m Überschreiben der „--mode“ Kommandozeilenoption.

:M Überschreiben der „--show-mapping-insertion“ Kommandozeilenoption.

:n Überschreiben der „--nof-results“ Kommandozeilenoption.

:r Überschreiben der „--ring-chain-atom-compatibility“ Kommandozeilenoption.

:c Angabe von Größenbeschränkungen für die Ergebnisenumeration. Es werden bis zu vier Zahlenwerte ein-
gelesen. Ausgelassene werden als -1 interpretiert und setzen eine gegeben Einschränkung zurück. Die
angegebenen Zahlen werden wie folgt interpretiert: 1.: Mindestanzahl abgebildeter Atome im MCS, 2.:
Mindestanzahl an Schweratomen eines Ergebnismoleküls, 3.: Maximalanzahl an Schweratomen eines
Ergebnismoleküls, 4.: Mindest-Ähnlichkeitswert eines Ergebnismoleküls.]

:s Überschreiben der „--skip-single-matches“ Kommandozeilenoption.

:t Überschreiben der „--threads“ Kommandozeilenoption.

:v Überschreiben der „--verbose“ Kommandozeilenoption.

:o Überschreiben der „--output“ Kommandozeilenoption. Angegebene Dateien werden direkt geö昀昀net und vor-
heriger Inhalt wird ohne Rückfrage überschrieben. Bei Angabe von „-“ wird die Standardausgabe ver-
wendet.
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:q Beenden der Interaktiven Sitzung und Termination der Anwendung.

Weitere Informationen und Beispiele zur Benutzung von SpaceMACS liegen in der Datei README, die im
entsprechenden SpaceMACS-So昀琀warepaket enthalten ist.
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B Benutzungsanleitung der SMARTScompare
Anwendungen

Im Zusammenhang der Entwicklung der SMARTScompare Methode wurde eine dazugehörige Kommandozei-
lenanwendung entwickelt und eine graphische Anwendung erweitert. Beide ermöglichen einen Vergleich von
SMARTS Mustern. Die Kommandozeilenanwendung ist dazu geeignet, große Sammlungen von SMARTS zu
verarbeiten. Mit der graphischen Anwendung kann der Vergleich und das berechnete Ergebnis im Detail in-
teraktiv nachvollzogen werden. Die SMARTScompare Anwendung kann nach dem folgenden Schema über die
Kommandozeile verwendet werden:
./SMARTScompare [Optionen] SMARTS-Dateien oder SMARTS-Zeichenketten...

Insgesamt werden die folgenden Optionen akzeptiert:

-h, --help Alleinige Ausgabe der Hilfeseite und anschließende Termination des Programms.

-v, --verbose Option mehr Informationen auf der Kommandozeile über den Programmablauf auszugeben.

-m, --mode Legt den Modus für den Vergleich der SMARTS fest.
1 Identitätssuche.
2 Teilmengenrelation ausgehend von ersten SMARTS.
3 Teilmengenrelation ausgehend vom zweiten SMARTS.
4 Ähnlichkeitssuche.

-n, --mapping-normalisation Angabe über die Art, wie aus der Größe derMCS-Abbildung ein Ähnlichkeitswert
berechnet werden soll.
1 Tanimoto-Ähnlichkeit.
2 Maximum der Knotenanzahl beider SMARTS.
3 Durchschni琀琀liche Knotenanzahl beider SMARTS.
4 Minimum der Knotenanzahl beider SMARTS.
5 Knotenanzahl des ersten SMARTS.
6 Knotenanzahl des zweiten SMARTS.

-V, –valence-state-statistics Angabe einer Anwendungsspezi昀椀schen Statistik über die Verteilung der Valenzzu-
stände für eine angepasste Ähnlichkeitsbewertung.

--license Angabe und Aktivierung einer Lizenz für die SMARTScompare Anwendung.

-f, --files Explizite Angabe von Eingabedateien.

-s, --smarts Explizite Angabe von SMARTS Ausdrücken.

-p, --parallel Anzahl der zu benutzenden 吀栀reads für den paarweisen Vergleich.

-t, --thres Filterwert für die Ausgabe von Ergebnissen.

-A, --no-aromatic-ring-bond-detection Option die Aromatizitätserkennung auf Ringsystemen zu unterlassen.
Es werden keine aromatischen Zustände in die SMARTS Muster eingefügt.
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-N, --no-kekule-correction Option die Bereinigung aliphatischer Bindungszustände ein kleinen Ringen, bei de-
nen jedes Knoten alleinig aromatisch ist, zu unterlassen.

--no-statistical-scoring Option die Ähnlichkeitswerte alleinig auf den ungewichteten Zuständen in den Finger-
abdrücken der Knoten zu berechnen.

-u, --use-header Option die Kommandozeilenausgabe mit einer Kopfzeile zu beginnen.

-l, --score-level Angabe, auf welche Art die Fingerabdrücke der Abbildungspaare bewertet werden sollen.
1 Ähnlichkeit der Element昀椀ngerabdrücke.
2 Mit der Valenzzustandsstatistik gewichtete Fingerabdruckähnlichkeit.

-M, --maximum-results Maximale Anzahl an Ergebnissen, die für jeden SMARTS ausgegeben werden.

-S, --single-line-output Option, für jeden SMARTS die Ergebnisse in einer Zeile auszugeben.

-d, --delimiter Trennzeichen zwischen den einzelnen Ergebniseinträgen innerhalb einer Zeile.

-D, --Delimiter Trennzeichen zwischen einem gefundenen SMARTS und der Beschreibung innerhalb eines Er-
gebniseintrags.

Die SMARTScompare Kommandozeilenanwendung betrachtet die Eingabe als eine Liste von Dateien. Sofern
SMARTS-Ausdrücke explizit angegeben werden, stellen diese die erste Datei dar. Grundsätzlich werden alle
SMARTS der ersten Datei mit denen aller anderen verglichen. Sollte SMARTScompare nur eine Datei betrach-
ten, so werden die SMARTS dieser Datei mit allen anderen verglichen. Aus dieser Modellierung leiten sich auch
die Angaben „Teilmengenrelation ausgehend vom ersten/zweiten SMARTS“ ab.

Zuzüglich der Kommandozeilenanwendung wurde die bestehende graphische Anwendung SMARTSviewer
modi昀椀ziert und zum SMARTScompareViewer weiterentwickelt. Diese akzeptiert die folgenden Kommando-
zeilenparameter:

-h, --help Alleinige Ausgabe der Hilfeseite und anschließende Termination des Programms.

-s, --smarts Angabe von SMARTS die visualisiert werden sollen.

-o, --outfile Ausgabedatei, in die die Visualisierung der Eingabe-SMARTS Muster gespeichert werden soll. Als
Dateiformate werden „*.png“ und „*.svg“ unterstützt.

-d, --dimension Angabe der Größe des gespeicherten Bildes, sofern eine png-Datei als Ausgabe vorgesehen ist.

-p, --parameter

-m, --mode Legt den Modus für den Vergleich der SMARTS fest.
1 Identitätssuche.
2 Teilmengenrelation ausgehend von ersten SMARTS.
3 Teilmengenrelation ausgehend vom zweiten SMARTS.
4 Ähnlichkeitssuche.

-A, --no-aromatic-ring-bond-detection Option die Aromatizitätserkennung auf Ringsystemen zu unterlassen.
Es werden keine aromatischen Zustände in die SMARTS Muster eingefügt.

-N, --no-kekule-correction Option die Bereinigung aliphatischer Bindungszustände ein kleinen Ringen, bei de-
nen jedes Knoten alleinig aromatisch ist, zu unterlassen.

--license Angabe und Aktivierung einer Lizenz für die SMARTScompareViewer Anwendung.
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Der SMARTScompareViewer hat zwei verschiedene Einsatzzwecke. Einerseits kann mit der graphischen An-
wendung interaktive ein Vergleich von SMARTS analysiert werden. Andererseits können über die Kommando-
zeile einzelne Vergleiche auch als Bild gespeichert werden. Die Information über den Ähnlichkeitswert erfolgt
in der graphischen Anwendung im Informationsfenster unterhalb der Visualisierung und im Kommandozei-
lenmodus über die Standardausgabe.

Weitere Informationen und Beispiele zur Benutzung von SMARTScompare und dem SMARTScompareViewer
liegen in der Datei README, die im entsprechenden SMARTScompareViewer-So昀琀warepaket enthalten ist. Das
Paket enthält beide Anwendungen und eine weitere, die es ermöglicht Valenzzustandsstatistiken zu erzeugen.
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ABSTRACT: The maximum common substructure (MCS) problem is an important, well-studied problem in cheminformatics. It is
applied in several application scenarios like molecule superimposition and scaffold detection or as a similarity measure in virtual
screening and clustering. In many cases, the connected MCS is preferred since it is faster to calculate and a highly fragmented MCS
is not very meaningful from a chemical point of view. Nevertheless, a disconnected MCS (dMCS) can be very instructive if it
consists of reasonably sized molecular parts connected by variable groups. We present a new algorithm named RIMACS, which is
able to calculate the dMCS under constraints. We can control the maximum number of connected components and their minimal
size using a modified local substructure mapping approach. A formal proof of correctness is provided as well as extended runtime
evaluations on chemical data. The evaluation of RIMACS shows that a small number of connected components helps us to improve
MCS similarity in a meaningful way while keeping the runtime requirements in a reasonable range.

■ INTRODUCTION

The maximum common substructure problem is a well-known
NP-hard problem that has many uses in cases of drug discovery
ranging from similarity searching and diversity clustering to
reaction mapping.1,2 Several approaches have been proposed
and evaluated for specific applications.3−11 Heuristic ap-
proaches5,9 usually have the advantage of much faster
computation times but cannot guarantee to find the optimum
result.
In order to reduce problem complexity and improve

practical performance, exact algorithms for the MCS problem
are often limited to find only connected substructures.8 From
the application point of view, disconnected maximum common
substructures might find several mappings of single atoms or
bonds. Since the relative arrangement of the mapped
components is neglected, the result might not be meaningful
and overestimate compound similarity. On the other hand,
connected maximum common substructures have their
disadvantages as well. Single mismatching atoms within a
structure might result in substantially underestimated
similarity. Therefore, Stahl et al. already suggested heuristic
approaches to overcome the connectivity constraint.9,12 They
computed a dMCES, which they name maximum overlapping

set (MOS). Based on the arrangements of the largest three
components of the dMCES, penalty terms were added to
correct the similarity value.
From the point of algorithms, the MCS problem is

commonly solved using clique-based approaches.1,3,5,8,12−15

The basic idea is to transfer the MCS problem to the
maximum clique problem by a compatibility graph (or
association graph) of the two input graphs. Compatibility
graphs are usually dense and clique-based algorithms try to
cope with this describing them as a bit-graph.15 If the input
graphs are sparse, as in the case of molecule graphs, the
compatibility graph can be implemented as nodes with
complementary adjacency lists (i.e., storing the nodes not
connected rather than those connected) resulting in less
memory consumption.5 Heuristic approaches use, e.g., local
iterations, to efficiently find good approximations.5,16 Exact

Received: June 30, 2020
Published: December 16, 2020

Articlepubs.acs.org/jcim

© 2020 American Chemical Society
167

https://dx.doi.org/10.1021/acs.jcim.0c00741
J. Chem. Inf. Model. 2021, 61, 167−178

D
o

w
n

lo
ad

ed
 v

ia
 U

N
IV

 H
A

M
B

U
R

G
 o

n
 J

an
u

ar
y

 2
7

, 
2

0
2

1
 a

t 
0

7
:4

0
:3

3
 (

U
T

C
).

S
ee

 h
tt

p
s:

//
p

u
b

s.
ac

s.
o

rg
/s

h
ar

in
g

g
u

id
el

in
es

 f
o

r 
o

p
ti

o
n

s 
o

n
 h

o
w

 t
o

 l
eg

it
im

at
el

y
 s

h
ar

e 
p

u
b

li
sh

ed
 a

rt
ic

le
s.

D Publikationen der kumulativen Dissertation

67



approaches are often based on the Bron−Kerbosch17

algorithm,8,13 handling the current clique and sets of nodes
for extension and forbidden nodes. More advanced approaches
use heuristic graph colorings as internal upper bound
estimations1,15 to guide the branch and bound procedure.
One of the more prominent clique-based approaches,
RASCAL,18 uses random partitions into independent sets as
its main efficiency-enhancing trick.14

The disadvantage of these methods is that they require a
large compatibility graph to be calculated and stored. Contrary
to the use of cliques, more structure-focused ap-
proaches4,7,9,19,20 avoid this step, usually resulting in less
memory consumption and shorter runtimes.
To respect intuitive similarity and increase the chemical

feasibility of the results, the disconnected MCS can be
restricted to obey topological distances.9,14 Marialke et al.14

invented this as “embedded subgraph isomorphism” for the
dMCS problem. They were initially implemented in a clique-
based algorithm, increasing performance and chemical
feasibility. Kawabata9 based his build-up algorithm on
topological distances as well. Beyond topological distances, it
is possible to constrain the result with a maximum number of
connected components of a minimum size.4,6 The first
approach mentioned by Cao et al.4 is substructure-based,
and the latter by Hariharan et al.6 is a clique-based method,
also suitable for the multi-MCS problem. They handle the
multi-MCS problem using all maximal cliques of the pairwise
MCS of a pivot molecule to all other compounds.
In this paper, we address the problem of efficiently

calculating the disconnected MCS obeying an upper bound
for the number of connected components with each connected
component following a lower bound for its size. Both types of
constraints are mentioned in the literature but have never been
evaluated in detail before. For better performance, we adapt an
incremental matching approach (see also the work of Cao et
al.4) rather than a clique-based method. We further introduce
simple and efficient upper bound estimations improving the
performance of the backtracking scheme. Finally, our algorithm
RIMACS is exact with a proof of correctness given in the
Supporting Information. With several chemical datasets, we
show the practical performance of the algorithm and evaluate
the influence of the runtime from the maximum number of
components and their minimal size.

■ METHODS

MCS Problem and Its Variants. In the following,
molecules are modeled as labeled, undirected simple graphs
(no parallel edges or loops) G whereas V(G) are the nodes or
atoms and E(G) are the edges between nodes or bonds
between atoms. A graph G′ ⊆ G is called an induced subgraph
of G if there exists an injective function f:V(G′)→V(G) such
that ∀u, v ∈ V(G′):{u, v} ∈ E(G′)⇔{f(u), f(v)} ∈ E(G). A
common induced substructure S of two graphs G1 and G2 is a
subgraph of both graphs, i.e., S ⊆ G1 ∧ S ⊆ G2. The maximum
common induced substructure Smax is defined to be a common
induced substructure of maximum size. A substructure is
maximal if and only if it cannot be extended.
In cheminformatics, the non-induced maximum common

substructure problem is deemed to be more relevant. Non-
induced maximum common substructures are defined with less
restrictions: f:V(G′)→V(G):∀{u, v} ∈ E(G′)⇒{f(u), f(v)} ∈

E(G). Furthermore, in cheminformatics, maximizing the
number of common edges is more relevant in practice,

resulting in the so-called MCES problem. Interestingly, the
MCES problem can be reduced to an induced MCS problem
using a so-called line graph.18,21,22 In this paper, we will
therefore focus on the induced MCS problem. We refer to ref 1
for a detailed discussion on MCS problem variants and their
relationships. Additionally, we describe our efforts to avoid so-
called ΔY exchanges to guarantee valid mappings if the MCES
is computed in the Supporting Information.
With respect to semantics and runtime as well, it is

important to differentiate between the connected and
disconnected MCS. The connected maximum common
substructure problem (cMCS) restricts the common subgraph
to exactly one connected component. The disconnected
problem variant without limitation on the number of
connected components will be called dMCS. The four
common problem instances for the MCS are shown in Figure
1.

To distinguish the two input graphs in a reasonable way, in
the following, the first graph will be called query graph Q since
the backtracking scheme selects its nodes to be mapped next.
Accordingly, the second graph will be called target graph T.
Note that the results do not depend on the assignment which
graph is Q and which one is T. For efficiency reasons, we
assume that Q has the smaller number of nodes of the two
input graphs.

Calculating the MCS by Incremental Matching. The
RIMACS (recursive incremental maximum common sub-
structure) algorithm is inspired by subgraph matching
algorithms like VF2.23 The VF2 algorithm is based on local
extensions building a mapping between the graph nodes using

Figure 1. Four common cases of the MCS problem. The two
examples at the top show the cMCS, whereas the two lower examples
show the dMCS. On the left, the examples represent the MCIS, and
on the right, the MCES. The difference in inducedness concerns
adjacency of atoms in both molecules. The examples in each row
illustrate this difference.
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index pairs. The backtracking scheme is organized as a depth
first search on the graph structure of the query graph.
Especially at the point of the feasibility tests of the VF2
algorithm, RIMACS employs upper-bound estimations since
the MCS problem is more general than the subgraph
isomorphism problem.
In contrast to other substructure-based MCS algorithms

using subgraph enumeration,7 this approach can be easily
adapted to calculate the dMCS. In Figure 2, we present our
pseudo-code that is highly similar to the algorithm presented
by Cao et al.4

The starting point for the algorithm is a backtracking loop
for a connected extension of a mapping of nodes from the
query graph Q to the target graph T. Given the mappingM, the
candidate nodes for extension C ⊆ V(Q), the forbidden nodes
for extension F ⊆ V(Q), and the currently known maximum
mapping MCurrMax, the basic algorithm is organized as follows.
If there are no candidates left, the result MCurrMax is maximized
with the current mapping M. Otherwise, any candidate node
v ∈ C is chosen for extension. Then, the mapping is extended
using all available mapping partners, p ∈ V(T), that are
compatible to v and respect adjacency in Q and T. This results
in the main recursion. Finally, the mapping is extended without
mapping v. v is now a forbidden node.
The support of disconnected mappings requires one minor

modification. If there is no connected extension possible but
there are still nodes that have mapping partners available, then
any of them is selected as a candidate and the backtracking
scheme is continued.
To improve performance of the RIMACS algorithm

calculating a dMCS and increase the chemical feasibility of
the results, we suggest to employ two additional constraints.
MaxComp: An upper bound for the number of connected

components (as mentioned by Cao et al.4).

MinSize: A lower bound for the number of matches in each
connected component (as mentioned by Hariharan et al.6).
Note that all variables and parameters in the pseudo-code

(see Figures 2 and 3) have the same meaning as described
above. The graphs Q and T as well as the component
constraints MaxComp and MinSize are global read-only
variables.
The performance of this backtracking scheme is mostly

influenced by three functions. The UPPERBOUND function
calculates an upper bound on the reachable MCS size. The
tighter this bound is, the more partial solutions can be pruned.
SELECTIONSTRATEGY1 and SELECTIONSTRATEGY2
determine the order in which the matching is extended.
Good selection strategies will result in finding large matchings
and achieving high lower bounds for the result early. Note that
SELECTIONSTRATEGY2 can be precalculated before the
incremental search starts.

Extensions to the Basic Algorithm. The algorithm can be
easily extended to support node weights or result in
arrangement properties like those proposed by Stahl et al.12

Since the mapping components are already known, one can
easily test for their arrangement. This could influence similarity
or restrict the result to enforce the same arrangement of
connected components.
The performance of clique-based algorithms can be

significantly improved using topological distances.9,14 They
can be included into the compatibility graph, thus improving
runtime behavior and increasing the chemical feasibility of the
results. Topological distances can be included into sub-
structure-based algorithms like RIMACS as well, but an
inclusion into the model as it is for clique-based algorithms is
not possible.
The algorithm in the presented form is designed and able to

calculate the maximum MCS. The calculation of all maximal
MCS,8,13 i.e., common substructures, which cannot be
extended further, is possible in some cases. If the MCS is
required to be connected, it is sufficient to differentiate the
forbidden nodes F in unmappable and finished nodes. Nodes
that were selected for extension before have to be considered
as finished. The remainder of F is simply unmappable. A
connected component is maximal if there are no candidates left
and none of the finished nodes adjacent to any mapped node
has mapping partners available.
This can be adapted for the calculation of the dMCS as long

as there is no lower bound constraint on the component size.
In the general case, namely, the calculation of all maximal
dMCS with a non-trivial minimum number of nodes, we are
not able to present an efficient algorithmic solution.

Upper Bounds for the Achievable MCS. This kind of
substructure-based MCS algorithms offers a trivial upper
bound at each stage of the calculation by counting the
unmapped nodes in the query graph.
To improve the upper bound in the case of the constrained

dMCS, we propose tracking the connected components in the
query graph using the existing node mapping M and the
remaining mappable nodes V(Q)\F. By removing the mapped
and forbidden nodes, Q decays into a set of connected
components. Nodes of components adjacent to mapped nodes
are always counted for the upper bound. All remaining
components are sorted decreasingly by the number of nodes.
The nodes of the largest components are counted for the
bound until MaxComp components have been reached or the
node count is below the threshold MinSize. We will refer to

Figure 2. Main algorithm including the setup of parameters for the
mapping M, the next extension candidates C, the forbidden nodes F,
and the maximum mapping MCurrMax including handling of the dMCS.
The graphs Q and T as well as the component constraints are global
variables. The basic loop MCS-INCREMENTAL is optimized for a
connected extension. Combined with the processing of further
components, it results in an algorithm that is also capable of the
dMCS. All remaining functions used are briefly described in Figure 3.
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the resulting value as an upper estimation with component
tracking (CT).
State Space Traversal Strategies. For an exact MCS

algorithm, the whole state space of possible mappings must be
covered. If any part of the state space can be proven to be non-
optimal, the algorithm can still ignore it as part of its branch
and bound procedures. Efficient algorithms therefore try to
avoid most of the state space by identifying promising regions
first such that the lower bound for the optimum is high early
on.
The presented algorithm relies on the following state space

traversal strategies.
Low Variability First (LVF). Start mapping nodes with the

least number of available mappings. This strategy keeps the
“degree” of the state space search tree low in the regions close
to its root.
Maximize Components First (MCF). Extend connected

components as long as possible. Due to the limited number of
components, large common substructures require large
connected components.
Similar Partners First (SPF). Inspired by the paper by

Englert and Kovaćs,5 the algorithm uses node similarities as an
order criterion for node mapping partners. In this approach,
the compatible nodes are sorted by their difference in degree,
the difference of the sum of the degree of all neighbors, and
their atom similarity score. The atom similarity score is the
Tanimoto similarity of the ECFP6-fingerprint bits centered at
the atoms.
Relative Node Positions (RNP). For each node, the

maximum distance in the number of edges to any other
node is calculated. The distances are transformed into ranks
and normalized onto the interval [0.5,1]. These values, named
relative positions, are integrated into the SPF strategy in the
following way: The relative position similarity for two nodes is:

= − _

− _

n n n

n

sim ( , ) 1 abs(relative position( )

relative position( ))

RNP 1 2 1

2

If the RNP strategy and the SPF strategy are applied both,
the similarity values of both strategies are multiplied.
If applying the strategies does not result in a unique order,

the order of input is used to resolve conflicts.

■ CORRECTNESS

A proof of correctness for the basic algorithm and all
extensions is given in the Supporting Information. Here, we
want to give only a brief outline of the strategy. The proof is
organized in the following parts.
First, it is shown that the MCS-INCREMENTAL function

can enumerate any connected mapping Mc with no further
candidates for mapping extension under some constraints. This
includes correct handling of the candidate list C and the
forbidden nodes F.
This ability to enumerateMc is combined with validity of the

upper bound estimation, which is key to prove the correct
calculation of the cMCIS. To prove the correctness for the
dMCIS, it is additionally necessary to show that MCS-
INCREMENTAL can enumerate any mapping M under some
constraints.
The proof of correctness for the MCES is primarily based on

the work of Whitney21 and Nicholson et al.22 We extend their
proofs for graph isomorphism to connected components of a
dMCES.

■ RESULTS

The RIMACS algorithm solely computes an MCS represented
as a list of index pairs representing the mapped nodes of Q to
T. To perform the following benchmarks, we implemented
simple adapters wrapping NAOMI24 molecules. For optimal

Figure 3. Brief descriptions of all helper functions used by the algorithm. The functions take the current mapping M, the candidate nodes
C ⊆ V(Q), forbidden nodes for extension F ⊆ V(Q), or the possible mapping partners P ⊆ V(T) for a node v ∈ V(Q) as a parameter.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00741
J. Chem. Inf. Model. 2021, 61, 167−178

170

D Publikationen der kumulativen Dissertation

70



performance, only heavy atoms are covered by default. If
required, the adapters can support hydrogen atoms as they are
explicitly modeled within NAOMI. For the benchmarks
performed, we used the following datasets.
We compiled a small compound set from the first 25 DUD-

E25 targets. This set contains the first and last active and decoy
from the selected targets. This set is named EvalSet later on. It
should represent similar and dissimilar compounds alike as
they are taken from actives and decoys. Furthermore, we use
the compound sets used by Englert and Kovaćs5 named NCI*
and three sets from Kawabata9 that were used by Englert as
well. Finally, we extracted another set from the NCI-Release of
2012,26 named NCI-Key. For this set, all compounds with IDs
ending in 425 or 545 are taken. This set should present a
reasonable-sized, reproducable, arbitrary selection of com-
pounds of this dataset. Overall, the datasets represent diverse
scenarios from similar to grouped similar to dissimilar
collections as they may occur in real-life applications.
An overview of the properties of the compound sets is

shown in Table 1. The table provides the minimum and
maximum number of heavy atoms as well as several similarity
values to distinguish the compound sets.
Test Setup. All calculation were performed on our in-house

cluster on Intel Xeon E5-4620 2.20GHz CPUs with 32 cores
and 264 GB RAM running a 64 Bit Suse-Linux. Parallelization
was implemented by running independent MCS calculations of
different molecules in several threads whereby each calculation
is single-threaded.
First, we evaluated our upper bound estimation, CT, with

four different combinations for the two constraint types “Max.
Number of Components” and “Min. Component Size”
(MaxComp/MinSize). In the following plots, primarily
algorithm runtimes are used for comparison.
The results are shown in Table 2. For the cMCIS, the mean

runtime improved by a factor of 2. Even the constrained

disconnected MCIS is improved by this estimation. If only a
few components are allowed, the performance can increase
beyond a factor of 5. For the unconstrained dMCS, the
component tracking cannot improve any upper bound
estimation, thus it has no positive impact on the runtimes.
In fact, runtimes increased by 1/3. This indicates that, for the
unconstrained dMCS, CT as an upper-bound estimation
becomes irrelevant.

The Compatible Node Order Strategies. In the
following, we will analyze the impact of mapping similar
partners first, which is similar to the ECFP strategy proposed
by Englert and Kovaćs.5 There are some differences between
the strategies since we only evaluate ECFP-fingerprint bits up
to radius three, while Englert and Kovaćs use an unlimited
radius. Our strategy is implemented such that all similarities
are calculated before backtracking starts.
For RIMACS, the SPF and RNP strategy alone have no

significant influence on the overall runtimes. Applying them
together, however, usually results in performance improve-
ments. Although our SPF strategy and Englert’s ECFP strategy
significantly differ in radius, we want to point out that heuristic
approaches benefit more reliably from using ECFP fingerprint

Table 1. Overview of Compound Sets Used for Benchmarkinga

name EvalSet NCI-Key NCI15 NCI25 NCI35 NCI-S5 NEU9 CAH29 CDK29

N 100 535 32 16 16 39 15 111 154

nmin 2 5 24 37 71 20 20 8 9

nmax 43 76 24 46 78 45 28 28 36

navg 26.6 29.9 24.0 42.5 74.8 30.4 21.7 19.7 24.7

nstd 7.84 8.83 0.00 2.47 2.17 6.50 2.11 4.80 5.40

sCIMin 0.02 0.01 0.14 0.12 0.03 0.13 0.26 0.03 0.03

sCNMin 0.00 0.00 0.14 0.14 0.03 0.13 0.26 0.00 0.00

sCIMax 1.00 0.88 0.92 1.00 0.97 0.96 0.91 1.00 0.97

sCNMax 1.00 1.00 1.00 1.00 0.97 1.00 0.95 1.00 0.97

sCIAvg 0.17 0.18 0.31 0.28 0.25 0.38 0.53 0.29 0.22

sCNAvg 0.18 0.19 0.33 0.31 0.25 0.38 0.56 0.30 0.23

sCIStd 0.07 0.09 0.18 0.20 0.24 0.23 0.17 0.15 0.11

sCNStd 0.07 0.10 0.20 0.19 0.24 0.23 0.17 0.15 0.11

sDIMin 0.02 0.03 0.55 0.35 0.32 0.34 0.40 0.14 0.16

sDNMin 0.00 0.00 0.60 0.45 0.25 0.39 0.40 0.00 0.00

sDIAvg 0.41 0.37 0.69 0.57 0.50 0.65 0.64 0.48 0.46

sDNAvg 0.47 0.47 0.85 0.72 0.58 0.68 0.71 0.48 0.54

sDIStd 0.11 0.12 0.08 0.13 0.14 0.12 0.11 0.12 0.11

sDNStd 0.16 0.17 0.10 0.10 0.18 0.12 0.12 0.16 0.14
aRows give the number of molecules (N) in the set, nmin,max, avg, std rows describe the min., max., and avg. number of heavy atoms per molecule and
their deviation. The s rows describe similarity whereby sC means connected and sD refers to disconnected computations. Furthermore, the MCS is
either induced like sCI or noninduced sCN. Finally, the suffix describes whether it is the min., max., or average similarity or the corresponding

standard deviation. On each compound set, we performed −N N( 1)

2
comparisons. The CAH2 set contains three metallo-organic compounds, and

they were omitted because they are not supported within the NAOMI library.

Table 2. Mean Runtimes in ms of the Induced Pairwise
Comparison of the Compounds from the EvalSeta

constraints mean runtimes in ms

MaxComp/MinSize without CT with CT

connected 7.44 3.63

3/3 2885 447

10/1 29,153 39,862

10/10 21.8 6.9
aThe cMCIS and the constrained dMCIS profit from component
tracking. For the 10/1 dMCS, CT has a worse performance than the
naive variant without CT.
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bits as an order criterion for compatible atoms. Beyond that,
the RIMACS algorithm is an exact MCS approach meaning
that any strategy applied must not influence the result size. In
the evaluation of heuristic approaches by Englert, the applied
strategies influenced the runtime and the result. The
comparison of the results was achieved using an “average
result size ratio”, which is the percentage of the MCES result
size compared to an ab initio upper bound estimation of the
result size.
The average runtimes for the constrained dMCS with at

most three components of minimum size 3 are shown in Table
3. The results show that the gain in performance is significant

on all compound sets. Beyond that, the overall runtimes show
that the focused sets of similar compounds are especially hard
for the exact method. On the other hand, this perfectly
demonstrates the effect of efficient state space traversal. Small
and simple problem instances are solved efficiently even by a
naive algorithm.
Relative Position Evaluation. The key strategy in the

presented algorithm is to favor nodes with the least number of
possible mapping partners (seed LVF strategy). Furthermore,
the algorithm relies on strategies selecting compatible atoms of
the target graph, as evaluated in the previous section. Another
issue is the selection of the atom to start with. Even after
applying the LVF strategy, there might be several atoms of
equal preference. We propose using the relative position of
atoms as a secondary decision criterion for the LVF strategy.
To validate the effect of this approach, we evaluated the

following relative positions 50%, 75%, and 100% as a preferred
mapping start and compared the results to the case in that no
selection strategies at all are applied (No S) and relative
positions are not considered (No R) in the LVF strategy.
Table 4 shows the evaluation of different relative query

molecule starting positions. In principle, the relative starting

position has only a minor influence on the runtimes. For the
MCIS, the relative position of 75% performs best on three of
the five datasets. For the MCES, the relative positions of 100%
also performs best in three of five cases.
Neglecting the applied strategies, the actual graph

representation of the input can have a major influence on
the runtimes as well. To measure the impact of representation
dependency and that our strategies help reduce that influence,
we randomly permuted the atom and bond positions within
the input molecule and performed the same experiment again.
Table 5 shows the results. It is important to compare the

runtimes to those of Table 4. For the cMCIS on the first three
datasets, there is almost no difference. However, for the NCI2
and NCI3 sets, if no selection strategies are applied at all, the
performance significantly improves. For those cases where all
of the strategies are applied, shuffling the atom order has only a
minor influence on the algorithm performance.
For the cMCES, the situation is more complex. Shuffling the

input with no strategies applied results twice in the best and
twice in the worst performance on a dataset. For the remaining
configurations and sets, the mean runtimes are configuration-
independent. For the NCI1 and NCI3 sets the runtimes
improve significantly, whereas the runtimes do not change
much for the first two compound sets.
In order to keep the algorithm consistent for the MCIS and

MCES, we will not rely on input permutation for any of the
cases and continue with the relative positions of 100 for the
MCIS and 75 for the MCES.

Influence of the Compound Sets. In this paper, two
kinds of compound sets are used. There are the more diverse
ones like the EvalSet or the NCI-Key selection and the more
focused NCI1 and NCI2 sets by Englert. The latter show
significantly increased runtimes compared to the diverse sets,
although the average number of atoms per molecule does not
differ that much. However, within the similarity statistics of
Table 1, there are still some differences observable. First, the
average cMCS and dMCS similarities is more than 50% higher.
Another interesting point is the difference between dMCES
and dMCIS average similarities. This difference hints that the
dMCS contains several small connected components that are
adjacent to each other. Compared to the target sets, this seems
to be the major difference. The NCI-Key selection has a
relatively large difference in dMCS similarity as well but with a
much smaller baseline of cMCS similarity. Low cMCS
similarity values are the result of only small common
components, which dramatically reduce state space for the
cMCS.

Influence of Constraining the Number of Connected
Components and Their Size. Defining an upper bound for
the number of connected components and defining a lower

Table 3. Mean Runtimes of the Constrained dMCS
Calculation for Comparing Pairwise on Selected Compound
Setsa

mean runtimes in ms

3/3 dMCIS 3/3 dMCES

set LVS, MCF all strategies LVS, MCF all strategies

NCI1 17,954 6314 1931 829

NCI2 48,392 34,206 113,326 77,744

NCI-Key 2011 1509 986 875

EvalSet 1495 1109 261 257
aThe result is constrained to at most three components of minimum
size 3 applying the LVS and MCF strategies compared to applying the
LVF, MCF, RNP and SPF strategies.

Table 4. cMCS Performance Evaluation on a Selection of the Datasetsa

MCIS mean times (ms) MCES mean times (ms)

set No S No R 50% 75% 100% No S No R 50% 75% 100%

EvalSet 4.90 4.86 4.91 4.94 4.72 3.10 3.34 3.28 3.29 3.21

NCI-Key 3.04 3.10 3.08 3.11 3.06 2.61 2.61 2.65 2.60 2.65

NCI1 129 118 124 130 115 29.30 28.68 27.79 31.17 32.55

NCI2 191 94 108 103 94 819 799 738 633 717

NCI3 12,827 5146 4749 5219 5549 16,356 12,547 12,234 11,796 12,903

aTimes are provided for the cMCIS and cMCES. For “No S”, no strategies are applied at all, and “No R” does not use relative positions to enhance
the LVS strategy. The values between 50% and 100% belong to the preferred relative position of the starting node for the LVS strategy on conflict.
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bound on the number of atoms in each component have a
significant influence on runtimes.
We evaluated the performance for up to 10 connected

components with a minimum atom count of 1 to 10 per
connected component. The results for the dMCES can be seen
in the heatmaps shown in Figures 4 and 5.
Figure 4 shows that, if a connected subgraph is requested

(row 1), the minimum size obviously has no impact. This
changes as soon as disconnected subgraphs are allowed. For up
to two connected components, the mean runtimes are well
below 100 ms in all cases analyzed. The same is true if the
minimum component size is set to at least 6. Computing times
significantly increase if many connected components of small
size are allowed. Fortunately, this is the scenario, which is not
very meaningful in cheminformatics applications. For reason-
able settings with up to three, probably five connected
components with at least three to five atoms, the MCS can
still be computed in a second on average.
To estimate the importance of dMCES, we evaluated the

average number of additionally mapped atoms in comparison
to the cMCES. (see Figure 5). As expected, a large minimum
component size compensates the opportunity to map multiple
connected components (right columns). On average, three to

six more atoms can be mapped if a small number of connected
components with a reasonable size of at least three atoms is
allowed. Although we think that this is a general trend, these
results might vary with different datasets used.
In Figures 4 and 5, the most demanding settings are small

minimum component sizes with a large number of connected
components. Not surprisingly, the algorithm reveals asymptoti-
cally exponential runtime behavior. We can see that mean
runtimes are heavily influenced by a small portion of outliers
(see Figure S1 in the Supporting Information).
Similar to clique-based approaches, the incremental

algorithm presented here is designed for MCIS calculations
and computes the MCES using line graphs. To accomplish for
that, we also measured the algorithm performance for the
MCIS and plotted the results in three heatmaps in Figure S2 in
the Supporting Information. The overall runtime and result
size behavior is the same for the MCES and MCIS, whereas
the MCES has on average faster runtimes on the dataset used.

Constrained MCIS on Similar Compounds. To show the
effect of constraining the number of connected components
and their size on larger, more similar compounds, we iterate
the analysis on the NCI2 dataset with more than 40 heavy
atoms on average. On larger compounds, it is possible to find

Table 5. Similar Experiment as in Table 4, but This Time, the Internal Molecule Representations Are Permuted, Meaning that
the Internal Order of Atoms and Bonds Was Shuffled

MCIS mean times (ms) MCES mean times (ms)

set No S No R 50% 75% 100% No S No R 50% 75% 100%

EvalSet 5.06 4.93 4.99 5.05 4.92 2.99 3.28 3.15 3.24 3.27

NCI-Key 3.43 3.26 3.30 3.27 3.22 2.78 2.75 2.94 2.86 2.83

NCI1 133 115 115 128 108 18.2 21.6 21.1 18.6 24.3

NCI2 122 102 105 97 95 1094 856 771 820 950

NCI3 6199 4630 4841 4677 4898 15,306 11,280 10,182 9760 11,209

Figure 4. Comparison of the mean runtimes for all parameter combinations on the EvalSet.
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multiple connected components with larger minimum sizes.
Figure 6 shows the runtimes and the gain in result size
compared to the cMCIS for up to at least six atoms in each
connected component.
.
The first observation in this experiment is that the cMCIS

has a higher average runtime of approximately 100 ms. For two
connected components, the mean computation time is in the
range of a few seconds and falls below 1 s for a minimum
component size of 7. Interestingly, the runtimes increase for a
minimum size of 10 for all numbers of connected components
evaluated. It seems that the upper bound estimation works
much worse compared to a component size of 9. Regarding the
runtimes for three or more connected components, we observe
that all evaluated configurations except a component size of 9
need more than 1 s per MCIS on average. In our opinion, the
best configuration in this experiment is 3/5 with an average

increase of eight additional mapped atoms compared to the
cMCIS and a mean computation time that is still below 10 s.
For comparison, the unconstrained dMCIS needs more than
an hour on average and achieves an increase of 14 atoms.

Constraint Examples. In order to provide some context
how the constraints work we selected three pairs of
compounds. For each pair, an MCS between the compounds
is shown within a column. Over the different columns, different
configurations are displayed.
Figure 7 shows three differently constrained MCS of two

compounds of the EvalSet. Independent of the required
component size, this pair allows up to three connected
components of the mapping of size six. There is no difference
between MCIS and MCES. In Figure 8, a slightly different
example is shown. Again, the compound pair allows up to three
connected components. The cMCIS and cMCES are still
identical, but the constrained dMCIS and dMCES differ. This

Figure 5. Constrained dMCES result sizes in comparison to the cMCES calculation.

Figure 6. Selected constraint evaluation on the NCI2 dataset.
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is shown in the last two columns. Finally, in Figure 9, an

interesting performance example is shown. Both compounds

are taken from the NCI3 set and differ only in a central

substitution position. This causes the interesting situation in

that the dMCS is computed faster than the cMCS. For

reasonable constraint selections like 3/3, the dMCS is more

than an order of magnitude faster than the cMCS. The bond

Figure 7. Three variants of an MCS between the compounds “C67488378” and “116” of the EvalSet; the columns, the cMCS, on the left and the
constrained dMCS with two respective three components in the middle and on the right. There is no difference in the results for MCIS and MCES.

Figure 8. Another example with three variants of an MCS between the compounds “403120 CHEMBL237830” and “C03844583” of the EvalSet.
In the first column, a cMCS is shown. The second column shows a constrained dMCS with at most 2 components. The last two columns show the
constrained dMCIS and dMCES in the 3/3 configuration.

Figure 9. Example with two compounds of the NCI3 set. On the left, the cMCS is shown, and on the right, the dMCES. Both compounds are
identical except for the ring substitution in the middle. The outgoing bond of this ring is additionally highlighted in red. Here, the dMCES is
computed more than an order of magnitude faster than the cMCS.
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belonging to this difference is additionally highlighted for
better visualization.

■ COMPARISON WITH OTHER METHODS

In a last study, we compare our algorithm to two other cMCS
approaches, computing a cMCES. We used RDKit28 and
Indigo27 as a reference. Both are open source libraries with a
different approach of computing the MCES. In RDKit, the
FMCS7 algorithm is used. It is based on substructure
enumeration and generates a SMARTS string as part of the
MCS result. The FMCS is applicable to the pairwise MCS, but
it is better suited for the multi MCS problem, finding a
common substructure of more than two compounds. In the
Indigo library, an exact clique-based algorithm29 computes the
MCS. Additionally, we compare the performance to a study on
heuristic approaches by Englert and Kovaćs.5 The study is
based on their selection of similar compound sets and three
other compound sets from the literature. The authors compare
their implementation of a clique-based MCES algorithm (MC)
and a so-called build-up algorithm (BU) to the heuristic MCS
algorithm implemented in Indigo as well. We included the
results of the study in Table 6 and extended it with mean
runtimes we measured with our algorithm and the RDKit and
Indigo MCS implementations.
Overall, we observe that an exact cMCES on the diverse and

relatively simple sets is computed efficiently and has similar
mean runtimes as the heuristic approaches. This trend of fast
computation is supported by the comparison on our diverse
sets based on the EvalSet or our NCI-Key selection. In the
comparison of the exact approaches, the substructure-based
algorithm presented here performs best. Comparing the
runtimes on the focused sets of similar compounds with
increasing size, the heuristic approaches have shorter runtimes
as expected. The first two NCI sets with around 20 or 40 heavy
atoms per molecule are at the boundary of acceptable mean
runtimes for exact algorithms. In comparison with the other
two exact approaches RIMACS is reliably the fastest
competitor. Especially on the NCI compounds by Englert,
RIMACS outperforms the other exact approaches by a factor
of at least 3 and often by an order of magnitude. When

analyzed in more detail (see Table S1 in the Supporting
Information), this runtime advantage is based on overall
improvements but especially on more robust runtimes on
outliers. For example, in the third quantile of the comparisons
for the NCI2 compounds, Indigo is approximately 15% slower,
but on the overall set, average runtimes differ by a factor of
∼40. On the more diverse compound sets, the average
runtimes are less influenced by outliers. This is indicated by
the RIMACS average runtimes that are between the second
and third quartile for four of five compound sets.

■ CONCLUSIONS AND OUTLOOK

We presented our RIMACS algorithm for the computation of
exact maximum common substructures with additional
constraints. The algorithm follows an established strategy of
incremental growing substructures. It handles an upper bound
for the number of connected components in combination with
a lower bound on the number of atoms in each component.
These constraints for dMCS are chemically meaningful and
increase the algorithm efficiency substantially without becom-
ing heuristic. We proved correctness of the applied back-
tracking scheme and the implemented strategies for search
space optimization. The algorithm is designed for the induced
maximum common substructure search but is also applicable
for the chemically more relevant non-induced MCES problem
using line graph conversion.
Our evaluation shows the benefit of our applied atom

selection strategies for the connected and constrained
disconnected MCS. We evaluate runtimes and result sizes
compared to the connected MCS. The evaluation shows that
the minimum component size has much more influence on
runtimes than the actual maximum number of connected
components. Constraining the disconnected MCS to at most
three connected components with at least three atoms results
in chemically reasonable maximum common substructures and
can still be computed with high efficiency.
In comparison to heuristic approaches, the focused

compound sets show the limits of the exact MCS computation.
Substructure-based approaches are advantageous for the exact
computation, but the asymptotically exponential runtime

Table 6. Comparison of the cMCES Runtimes to Other Exact Methods and Times of Heuristic Approaches Reported in the
Literature on Similar Hardware.

reported times in ms5 measured times in ms

set MC BU Indigo(H) RIMACS Indigo(E) RIMACS(R) RDKit

EvalSet - - - 2.3 7.8 10.0 17.9

NCI-KEY - - - 2.0 8.1 15.6 38.7

NCI1 16.6 1.3 10.8 69.5 8934 255.9 878.7

NCI2 18.6 2.7 30.7 605.4 22,858 830.5 47,364

NCI3 38.3 12.2 99.6 - - - -

NCI4 125.5 107.0 190.6 - - - -

NCI-S 9.2 1.5 12.9 5.7 127.4 50.2 267.5

CAH2 4.4 0.4 7.3 0.7 2.0 1.4 4.0

CDK2 10.6 0.8 10.6 1.7 5.0 6.1 15.0

NEU 6.5 1.1 9.0 0.9 3.4 2.5 3.4
aEnglert and Kovaćs5 benchmarked heuristic approaches. MC is their proposed best heuristic MCS algorithm. BU is an authoritative
reimplementation of the build-up algorithm by Kawabata,9 and Indigo(H) is the heuristic MCS approach of the Indigo27 toolkit. We measured
times for the exact variant of Indigo named Indigo(E). The RDKit28 uses a weaker bond compatibility criterion than Indigo. For a more fair
comparison, we report two different times for our MCES. The column RIMACS shows the results and mean runtimes for the default cMCES in
RIMACS. The result sizes are comparable with those of the Indigo library. To offer a fair comparison with the RDKit, the RIMACS(R) variant is
part of the comparison. For this cMCES variant, all bonds are assumed compatible. Using this relaxation result, sizes become more comparable.
Times marked with “-” were not calculated.
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behavior leads to infeasibility on large, highly similar and
pseudo-symmetric compounds.
Heuristic algorithms might be a way to go in these scenarios.

This comes, however, with several disadvantages besides the
fact that the results are most likely suboptimal. If the algorithm
is randomized, it is not even guaranteed that the results of two
independent calculations of the same molecules have the same
size.
Finally, the mean runtimes within our evaluation are

dominated by a small number of outliers. Even for higher
quantiles like 75% or 90%, the runtimes per computation are
still affordable. As an alternative to a heuristic algorithm, we
propose to use a reasonable limit on the number of recursive
backtracking steps. If not finished within this bound, the
algorithm might go into a heuristic, avoiding infeasible long
runtimes.
The RIMACS algorithm became part of several of our tools

within the NAOMI ChemBio Suite including SMARTScom-
pare.30,31 Furthermore, it forms an ideal ground for the MCS
calculation and substructure searching in chemical fragment
spaces.32,33
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Proof of Correctness

Let Q, T be molecules (graphs) with their sets of atoms V (Q), V (T ) and bonds E(Q), E(T )

respectively and let M ⊆ V (Q)× V (T ) be an induced mapping. The mapping is built from

pairs of nodes whereby each node of the graphs Q and T occurs at most once. Furthermore

Mmax is the mapping of maximum size.

∀(vq, vt), (uq, ut) ∈ M : {vq, uq} ∈ E(Q) ⇔ {vt, ut} ∈ E(T )
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To address all mapped nodes of a graph we define:

V (M,G) = {u|(u, v) ∈ M ∧ u ∈ V (G)} ∪ {v|(u, v) ∈ M ∧ v ∈ V (G)}

In order to access mapped nodes efficiently we define the mapping partner function:

P (M,u) = v, (u, v) ∈ M

Finally to access adjacent nodes, the neighbor function is defined as follows:

N(u,G) = {v|{u, v} ∈ E(G)}

Theorem 1. Given a connected mapping Mc, a node u ∈ V (Mc, Q) and a sufficiently small

set of forbidden nodes F0 ⊆ V (Q)\V (Mc, Q). If MCS-Incremental is initially called with

a single node candidate list C0 = {u} and not bound by any upper bound estimation, then

there exists a number k such that MCS-Incremental eventually calls itself with Mk = Mc

and Ck = ∅.

Proof. Initially the MCS-Incremental function is called with M0 = ∅, C0 = {u}, F0,MCurrMax,

whereby F0 ∩ V (Mc, Q) = ∅. In this context, MCurrMax will be ignored. Here we use the as-

sumption that the UpperBound function will always return an estimation e > |MCurrMax|.

Consider recursion depth i with Mi ⊆ Mc, Fi∩V (Mc, Q) = ∅. No node of the connected tar-

get mapping Mc is forbidden and the current mapping Mi is a subset of it. This is especially

true for the initial call to MCS-Incremental as mentioned above.

Now the next node v for mapping extension is selected in line 8. In the following,

the mapping is extended with any possible compatible node p. By definition of the Se-

lectCompatibleNodes function, the mapping Mi+1 = Mi ∪ {(v, p)} is a valid mapping.

Furthermore j = P (Mc, v) is part of the set of mapping partners for extension. Thus, even-

tually the forbidden nodes Fi+1 will be calculated using Mi, Fi and (v, j). By definition of
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the UpdateForbiddenNodes function, we know that Fi+1 ∩ V (Mc, Q) = ∅, since Mc is a

valid mapping and Mi ∪ {(v, j)} ⊆ Mc.

This also implies that any neighbor n ∈ N(v,Q) that is not yet mapped but part of Mc

is guaranteed to be in the candidate list Ci+1. Furthermore, if the current candidate list Ci

contained any node w that is mapped in Mc, w ∈ Ci+1. This implies that the candidate

set is not empty if Mc is not enumerated yet. Mi 6= Mc ⇒ Ci+1 ∩ V (Mc, Q) 6= ∅. Now

MCS-Incremental is recursively called with Mi+1, Ci+1, Fi+1,MCurrMax.

Mi+1 ⊆ Mc, Fi+1 ∩ V (Mc, Q) = ∅ and |Mi+1| < |Mc| ⇒ Ci+1 ∩ V (Mc, Q) 6= ∅.

It remains to show that if Mj = Mc then MCS-Incremental is eventually called with

Cj = ∅. In line 8 any node of x ∈ Cj is selected and removed from Cj. In line 17 MCS-

Incremental is called with unchanged Mj+1 = Mj = Mc and MCurrMax but with an

updated Cj+1 = Cj \ {x} and Fj+1 = Fj ∪ {x}. This proves the statement.

Lemma 1. Given a connected mapping Mi with respective candidate list Ci and forbidden

node set Fi occurring during enumeration of the mapping M . Fi is extended only with

candidate nodes and those violating inducedness of an extended mapping.

Proof. Within the MCS-Incremental function, there are two lines where Fi+1 is calculated.

Line 17 The extension where the selected node v is not part of Mi+1 = Mi. This implies

that there are no additional nodes that violate inducedness of an extended mapping.

And Fi+1 = Fi ∪ {v} and Ci+1 = Ci \ {v}.

Line 12 Fi+1 is calculated using Mi, Fi, (v, p), whereas v, p as defined in the pseudocode.

Following the definition of UpdateForbiddenNodes Fi+1 contains v. Furthermore

all nodes for which mapping extensions with all remaining mapping partners would

lead to invalid mappings Mi+1.

Lemma 2. Given a mapping Mi, Fi and the pair for extension (v, p) as used in line 12 of the

MCS-Incremental function with Mi+1 = Mi∪{(v, p)}. For all compatible node pairs (q, t), q ∈
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V (Q) \ Fi, t ∈ V (T ) \ V (Mi+1, T ) for which the extended mapping Mi+2 = Mi+1 ∪ {(q, t)} is

invalid, either q or t is adjacent to any node of Mi+1.

Proof. Assume q is not adjacent to any mapped node ∀u ∈ V (Mi, Q) : {q, u} 6∈ E(Q) and

t is not adjacent to any mapped node as well, then Mi+2 = Mi+1 ∪ {(q, t)} is a mapping.

This follows from the definition of inducedness. v1, v2 ∈ V (M,Q) : {v1, v2} ∈ E(Q) ⇔

{P (v1,M), P (v2,M)} ∈ E(T ). This proves the statement.

Lemma 3. Given a mapping Mi, a nonempty candidate list Ci 6= ∅ disjoint to Fi and an Fi

that is a superset of all nodes whose mapping extension would lead to an invalid mapping.

Then every mapping Mi+1 computed by MCS-Incremental is valid.

Proof. Initially MCS-Incremental is called by MCS-ProceedWithNextComponent

with an empty mapping M0 = ∅, a single node candidate list C = {v} for any node v ∈ V (Q),

an empty set F of forbidden nodes and an empty current maximum mapping MCurrMax.

The initial call fulfills the stated constraints. In line 12 Fi+1 is calculated. Then Ci+1 is

constructed considering Fi+1, correctness following from Lemma 1. Thus, in any subsequent

backtracking step where Mi+1 6= Mi is a parameter, Mi+1, Ci+1 and Fi+1 still fulfill the

requirement.

Finally in line 17, the same holds true if Mi+1 = Mi omitting the current node v for the

mapping. Thus all computed mappings MCurrMax are valid.

Lemma 4. The upper bound estimation is correct for the cMCS.

Proof. The most simple approximation for an upper bound for any state during the algorithm

is the size of the current mapping |Mi| plus the remaining mappable nodes |V (Q) \Fi|. This

follows from Lemma 1. Since the algorithm for the cMCIS is limited to connected expansion

of the mapping, each node has to be reachable following a path of mappable nodes starting

at any mapped node. Assume there is a node d for which no such path exists and a connected

mapping Mj such that d ∈ V (Mj, Q) ∧ Mi ⊂ Mj. Connectedness of Mj implies that each
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mapped node of Mi ⊂ Mj is reachable using a path consisting of mapped nodes of Mj. This

contradicts the assumption.

Theorem 2. The cMCIS of two graphs Q and T is computed correctly by the MCS function.

Proof. Given the maximum connected mapping Mmax that represents the cMCIS of Q and T ,

it is necessary to show that it is eventually enumerated. The MCS function just calls MCS-

ProceedWithNextComponent once and the MaxComp parameter prevents any other

calls of this function later on. It calls MCS-Incremental with a single node candidate

list C0 = {v}, ∀v ∈ V (Q). Afterwards v is added to F . Let v0 be the first node during

enumeration that is part of Mmax. Theorem 1 shows that Mmax can be enumerated. Since the

UpperBound estimation is correct, any time UpperBound is called given Mi ⊆ Mmax, the

estimation is at least |Mmax|. Thus either Mmax is enumerated, or an alternative connected

mapping M ′

max, |M
′

max| ≥ |Mmax| is found. Lemma 3 implies that M ′

max is valid. If |M ′

max| >

|Mmax|, then Mmax is not the cMCIS which contradicts the assumption. Otherwise an

alternative valid cMCIS M ′

max is correctly enumerated.

Lemma 5. Given a mapping M and an independent connected mapping Mc that have no

nodes in common, and none of the nodes of M are adjacent to any node of Mc. Furthermore

let the UpperBound estimation always return a sufficiently high estimation e, such that

no backtrack branch is bound and let the MaxComp parameter be sufficiently high and let

MinSize be sufficiently low. Let the MCS-Incremental initially be called with M0 =

∅, C0 = {q} for any node in V (Q), F0 disjoint to V (Mu, Q) and any MCurrMax. Then the

MCS-Incremental function will eventually enumerate Mu = M ∪Mc and Ci = ∅.

Proof. Let M be connected as well. The MCS-Incremental function will eventually enu-

merate Mk = M whereas Ck = ∅. From Theorem 1 and Lemma 1,2 we know that all nodes

f ∈ Fk are either adjacent to any mapped node in M , part of M or unsuited to construct

any mapping Mk+1.
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Thus no node of Mc is forbidden. Fk∩V (Mc, Q) = ∅. When MCS-Incremental is called

with Mk and an empty candidate list, MCS-ProceedWithNextComponent is called in

line 4 which then continues with MCS-Incremental and a single node candidate list.

Following Theorem 1, we can conclude MCS-Incremental will enumerate the component

Mc as well resulting in the enumeration of Mu and an empty candidate list.

Now let M be a mapping represented by the union of several connected mappings M i
c

fulfilling the property that any two of them have no nodes in common and none of their

nodes are adjacent to any node of the other mapping. Recursively applying the construction

above, M will be eventually enumerated.

Lemma 6. The upper bound estimation is valid for the dMCS.

Proof. The upper bound estimation for the disconnected case is an extension of the upper

bound estimation for the cMCS. The trivial upper bound estimation e = |Mi|+ |V (Q) \ Fi|

remains a valid estimation. If there are no further constraints provided by MaxComp and

MinSize, then this estimation can be considered as tight, especially if there are enough

mapping partners available for all remaining unmapped nodes of Q. MaxComp and MinSize

constrain the problem such that the dMCIS of two graphs Q and T usually contains more

nodes than the constrained dMCIS. Nonetheless the upper bound estimation remains valid.

If MaxComp is provided, then the upper bound considers the connected estimation and

the remaining number of largest connected components of mappable nodes. If MinSize

is provided, the connected estimation plus the number of nodes in connected mappable

components of at least MinSize nodes are considered. If both constraints are provided,

the criteria are applied both. This restriction of the upper bound calculation follows the

restrictions of the constrained dMCIS calculation.

Theorem 3. The dMCIS of two graphs Q and T is computed correctly by the MCS function.

Proof. Let the MaxComp and MinSize parameters be set to reasonable values. Given the

maximum mapping Mmax that represents the dMCIS of Q and T whereby Mmax can contain
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several disjoint connected mappings M i
max.

Similar to the cMCIS of Theorem 2 initially MCS calls MCS-ProceedWithNextComponent.

This function then calls MCS-Incremental with C = {n} for all nodes n ∈ V (Q). Let v be

the first node, that is also mapped in Mmax. Here, F0∩V (Mmax, Q) = ∅. Following Lemma 5

Mmax will be eventually enumerated, if the calculation is not bound by any upper bound es-

timation. During all relevant backtracking steps, the UpperBound estimation will at least

estimate |Mmax|. As long as not other current maximal mapping M ′

max, |M
′

max| ≥ |Mmax| is

found, Mmax will be enumerated. If |M ′

max| = |Mmax|, then an alternative mapping of equal

size was found which is a valid result as well. If |M ′

max| > |Mmax| then Mmax could not have

been a dMCIS, since M ′

max is a mapping.

Lemma 7. The constrained dMCIS is correct.

Proof. The MCS-Incremental function enumerates any mapping M component-wise. If

a new component of M is started, the constraints for the components M i of M are verified

in line 2. The component-wise build-up of the solution allows to test the constraints before

any extension with nodes of a new component. Given the correctness of the UpperBound

function, correctness of the constrained dMCIS follows from correctness of the dMCIS.

Theorem 4. The backtracking scheme is correct for the MCES.

Proof. Based on the proof of WhitneyS1 an edge isomorphism of a graph corresponds to a

node isomorphism with a few exceptions. The most prominent is the triangle triod exchange,

which is commonly named ∆-Y-Exchange. Nicholson et. al.S2 list three more examples

explicitly where the line graph has more symmetry than the graph. This can lead to valid

edge isomorphism that do not correspond to a node isomorphism.

If those listed cases are handled, it remains to proof that the MCES is correct. Based

on the partial edge isomorphism of the mapping, the molecules Q and T can be separated

into disjoint subgraphs Qi and T i with node sets V (Qi) and V (T i) and analogously defined

edges whereas i 6= j ⇒ V (Qi)∩V (Qj) = ∅. The same holds true for E(Qi), V (T i) and E(T i)
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respectively. Now the disconnected MCES of Q and T is reduced to edge isomorphism of Qi

and T i which is proven by Whitney.
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Implementation Notes of the ∆-Y-Exchange Handling

The algorithm is separated into phases of connected extensions of the current mapping

followed by an occasional disconnected extension. After each disconnected extension, the new

component is extended until the next disconnected extension happens. This behavior allows

for a component-wise test for triangle-triod exchanges. Based on NicholsonS2 it is sufficient

to handle a few cases for each connected component to avoid triangle-triod exchanges. Most

prominent, the exchange of a triangle with a triod is detected counting the number of unique

incident nodes for mappings with exactly three edges. The remaining cases can be described

as a triangle with an additional link, a diamond and a tetrahedron. They are handled as

follows.

1. Collection of all unique incident nodes to the mapped edges.

2. Collection of all node mappings that are induced by mappings of incident edges.

3. Test for uniqueness of the mapped nodes in the query and target graph.

There are two early abort criteria: If the number of incident nodes differs or there are more

node mappings than nodes available a triangle triod exchange is detected.

An evaluation of our implementation detecting triangle triod exchanges on the examples

provided by NicholsonS2 revealed that such an exchange leads to several (invalid) node

mappings finally exceeding the number of available nodes. Thus, the final test for uniqueness

of the mapped nodes as not used but will be kept it for safety.
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More Detailed Constrained dMCS Evaluation

Extended Evaluation of the dMCES Constraints on the EvalSet

This evaluation follows on the heatmaps in Figure 4 and 5. In general the MCS can have

an exponential runtime behavior, such that the mean computation time can be heavily

influenced by extreme outliers. We therefore plotted the times of the 90% quantile (see

Figure S1). In comparison to Figure 4 many more dMCS configurations have runtimes well

below one second, e.g. dMCS 3/3 is below 300 ms in 90% of the considered comparisons.

Runtimes of the 90% quantile of the MCES constraints evaluation in ms
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Figure S1: Times of the 90% quantile of the same experiment as shown in Figure 4. This plot

shows that the mean times are heavily influenced by a relatively small number of outliers.
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Evaluation of the dMCIS Constraints on the EvalSet

The influence of the upper and lower bounds of the connected component constraints is not

only significant for the computing times of dMCES. We evaluated the performance of the

dMCIS for up to ten connected components with a minimum atom count of one to five per

connected component. As learned from the dMCES results in Figure 5 the mean increase in

result size compared to the cMCS becomes less relevant beyond a minimum component size

of five. The result of the dMCIS evaluation is shown in the subplots of Figure S2.

Figure S2a shows the mean computation time for all parameter combinations. The com-

puting times follow the same trends as analyzed for Figure 4. If three or more components

are allowed, the mean computing times are approximately twice as high as the times for the

MCES. To estimate importance of the dMCIS it is necessary to evaluate the average number

of additionally mapped atoms in comparison to the cMCIS, see Figure S2b. Similar to the

average increase in result size for the dMCES of Figure 5 highest values are achieved for

small minimum component sizes and many connected components. The comparison shows

that for minimum component sizes up to four atoms the dMCES has a higher increase in

number of mapped atoms. This changes for at least five atoms per components. Similar

to the dMCES three to five more atoms can be mapped on average if a small number of

connected components with a reasonable size of at least three atoms is allowed.

Finally the plot of the 75% quantile showing that except for the cMCIS the average

computation times are above the 75% quantile, see Figure S2c. They are also dominated

by outliers that need much more time. We see that the runtimes for minimum component

sizes of at least four are well below 100ms and the favored configuration of three connected

components with at least three atoms also about 130ms or less in 75% of the comparisons

on the EvalSet.

S-11

D Publikationen der kumulativen Dissertation

89



Mean runtimes of the MCIS

constraints evaluation in ms
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(a) Mean computing times for the pair-
wise comparison on the EvalSet apply-
ing the constrained induced dMCIS.

Mean increased result size compared

to the cMCIS
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(b) Result size comparison over the dif-
ferent constrained dMCIS comparisons
on the EvalSet.

Runtimes of the 75% quantile of the 
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(c) The 75% runtime quantile of the
constrained dMCIS comparison.

Figure S2: Exhaustive performance and result evaluation of the induced MCS on the EvalSet.
The differentiation between mean runtimes and the 75% quantile shows the influence of
outliers for the disconnected computation which is also relatively fast in the median case.
The result size evaluation on the right reveals that significant improvements can be achieved
for constraints that still have affordable runtimes.

S-12

D Publikationen der kumulativen Dissertation

90



Additional Tables for the Comparison of the Exact Algo-

rithms

Table S1: Additional analysis of the average runtimes of Table 6. Here, two variants of
RIMACS and the RDKit and exact cMCES algorithm of Indigo are compared. The RIMACS
column represents RIMACS in its cMCES default configuration, RIMACS(R) uses a weaker
bond compatibility criterion in order to produce results that are comparable in size to those
of the RDKit. For each of the compound sets and algorithms the runtimes of the second and
third quartile are listed.

Measured Times in ms
RIMACS Indigo(E) RIMACS(R) RDKit

Quartile q2 q3 q2 q3 q2 q3 q2 q3
EvalSet 1.31 2.44 4.46 8.86 2.91 7.88 4.53 11.73
NCI-KEY 0.53 1.20 1.41 3.80 1.10 3.46 0.91 3.29
NCI1 7.04 15.00 42.47 69.03 29.00 158.50 38.10 419.75
NCI2 29 55 52 64 440 668 933 10,669
NCI-S 2.23 4.11 17.91 39.20 4.80 14.00 5.80 36.00
CAH2 0.48 0.79 1.17 1.95 0.67 1.37 1.35 3.38
CDK2 1.14 1.84 3.69 6.22 3.38 6.87 5.16 12.65
NEU 0.78 1.23 3.13 3.79 1.50 2.00 2.57 5.09

Table S1 provides additional in depth information for the comparison of RIMACS and

the other exact methods. Most important, the runtime difference between RIMACS and

the external tools is less significant regarding the second and third quartiles. In Table 6,

on average RIMACS is more than one order of magnitude faster than the RDKit or Indigo

toolkit on the NCI1 and NCI2 compounds. On the NCI-S compounds this was also the

case for indigo and RDKit was five times slower than the adapted RIMACS variant. In

Table S1, one can observe that the average runtimes for Indigo and RDKit are more heavily

influenced by extreme outliers than average runtimes for RIMACS. For the EvalSet, CAH2,

CDK2 and NEU compounds, the runtimes of the third quartile of RIMACS are above the

average runtimes indicating that outliers do not have much influence on the average runtime.

For Indigo the same holds true on the EvalSet and the CDK2 and NEU compounds. For

the RDKit solely the runtimes of the third quartile of the NEU compounds are above the

average runtimes. In comparison to Indigo and RDKit RIMACS offers the fastest average and
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quartile runtimes on the compound sets evaluated including an improved outlier behavior.
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ABSTRACT: Commercial make-on-demand compound spaces have
become increasingly popular within the past few years. Since these
libraries are too large for enumeration, they are usually accessed using
combinatorial fragment space technologies like FTrees-FS and SpaceLight.
Although both search types are of high practical impact, they lack the
ability to search for precise structural features on the atomic level. To
address this important use case, we developed SpaceMACS enabling
efficient and precise maximum common induced substructure (MCIS)
similarity and substructure searches within chemical fragment spaces.
SpaceMACS enumerates a user-defined number of compounds in a
multistep procedure. First, substructures of the query are extracted and
matched to all fragments of the space. Then partial results are combined to
actual compounds of the space. In this way, SpaceMACS identifies
common substructures even if they cross fragment borders. We applied SpaceMACS on three commercial fragment spaces searching
for the 150 000 most similar analogs to a glucosyltransferase binder from literature. We were able to find almost all building blocks
used for the synthesis of the 90 listed analogs and a plethora of additional results. SpaceMACS is the missing link to enable rational
drug discovery on make-on-demand combinatorial catalogs. No matter whether initial compound suggestions come from a de novo
design, an AI-based compound generation, or a medicinal chemist’s drawing board, the method gives access to the structurally
closest chemically available analogs in seconds to at most minutes.

■ INTRODUCTION

Applications of the maximum common substructure (MCS)
problem1,2 in chemistry comprise a variety of use cases but are
generally focused on small databases. Most prominently, the
MCS can be used as a chemical similarity measure for
screening compound catalogs for analogs. As special cases, the
more general MCS algorithm enables also compound lookup
and substructure searching. The queries are not necessarily
limited to molecular fragments. Using generic descriptions like
SMARTS,3 also chemical pattern search can be established.
MCS calculations on large compound collections often
introduce heuristics providing upper bounds for MCS-based
similarity. While this can lead to a substantial speedup, it
comes at the expense of loosing precision.4 The generic MCS
problem usually comprises four variants. The common
substructure can be either connected or disconnected, and
further on, it can be induced or noninduced. For the induced
MCS (MCIS) all adjacency relations between matched nodes
must be identical. Regarding approaches solving the MCS
problem, there are a few different types of algorithms
calculating exact4−9 or heuristic10−13 results.
With the ongoing trend of fast increasing compound library

sizes and the rise of combinatorial chemistry, the MCS has lost
its attraction as a similarity measure. Since the exact calculation

is computationally demanding, fingerprints are most often used
instead.14−16

Nowadays screening compound collections with millions or
even billions of compounds is a common use case in drug
development endeavors. Especially large make-on-demand
compound catalogs like REAL Space,17 CHEMriya,18 and
GalaXi19 are highly attractive as a starting point for drug
design. In many applications, these collections are partially
enumerated and screened sequentially for similar compounds,
required substructures, or even with three-dimensional
approaches like molecular docking.20,21 Already in their current
form, make-on-demand compound spaces are too large for
enumeration requiring combinatorial fragment representations
(Fragment Spaces) and custom-made search algorithms.16,22

The FTrees-FS algorithm was the first of its kind enabling the
exact search with a reduced graph similarity measure.22

Recently, SpaceLight16 was introduced as the first combina-
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torial search approach based on connected substructure
fingerprints (CSFPs)16 and Morgan fingerprints highly similar
to the well-established ECFP14 fingerprints.
Regarding future developments in accessible library size, the

enumeration of whole fragment spaces becomes unfeasible and
sublinear scaling methods that mimic existing similarity
measures enabling searching on the atom level are an urgent
need.21 Commercial available compound libraries exceeding 19
billion compounds are already available growing several billion
compounds per year by increasing growth rate.23−26

In comparison to the estimation of accessible chemical
space27 of certainly over 1060 even the largest public and
commercial spaces are several orders of magnitude smaller.28

Nevertheless, hardware requirements and scaling behavior of
the search methods are key factors for future application
scenarios. The impressive computation results for queries on
large collections within seconds as provided by ZINC2021 are
achieved using hardware worth several hundred thousands of
dollars. It is obvious that searching enumerated libraries will
fail taking the growth rates into account; and in fact, they fail
already today on the largest available make-on-demand
catalogs. For comparison, combinatorial approaches like
FTrees-FS22,29,30 widely adopted in pharmaceutical research
achieve results within minutes on affordable standard
computers. The recently introduced SpaceLight approach16

enables topological fingerprint similarity calculations within
seconds as well, using a standard desktop computer. Even
more important, the algorithms have the potential to handle
the compound catalogs of the near future with probably 1014−
1020 make-on-demand molecules.
Recently, machine learning (ML) got a lot of impetus in

early phase drug discovery. Substantial progress has been made
in the development of generative approaches creating
molecules with trained properties. Even if the chances are
high that the resulting molecules are synthetically available, it
remains questionable whether ML-based methods could or
even should produce compounds ready-to-purchase from a
make-on-demand catalog. A more reasonable approach seems
to let ML-based methods focus on physicochemical and
biological compound properties and use fast cheminformatics
search engines as a final step to determine the closest
purchasable analogs. A key technology to link machine
learning to make-on-demand catalogs is therefore a fast,
sublinear-scaling (maximum common) substructure search
algorithm.
Here we present a novel approach named SpaceMACS,

enabling efficient MCS-similarity searches in large combinato-
rial spaces. The basic algorithmic strategy follows a dynamic
programming approach on trees as was applied for FTrees-FS
as well (see ref 22). To increase variability, SpaceMACS allows
many SMARTS features within the query structure. Space-
MACS provides results within minutes on standard computers
with reasonable scaling behavior and has the ability to improve
query computation time on larger multicore machines. The
SpaceMACS algorithm is designed for the connected induced
MCS problem restricting to cyclic/acyclic bond matching.
Beyond that, it is capable of atomic-level molecule compar-
isons including substructure searches in combinatorial frag-
ment spaces.

■ METHODS

Commercial fragment spaces17−19,31,32 as provided e.g. by
BioSolveIT26 for Enamine,23 OTAVAchemicals,24 or WuXi

LabNetwork25 are built from molecular fragments with explicit
linker positions. Typically hundreds of linker types model
reaction chemistry details thus enabling combinatorial search.
For algorithmic and model purposes, fragments are combined
to treelike structures. While ring forming reactions can be
modeled with sophisticated linker substitution strategies, by
design, fragments of those spaces do not form macrocycles.
Within the presented approach, acyclic bonds in the query
molecule are only allowed to match acyclic bonds in the
fragments. Ring bonds are handled accordingly to this
restriction. Beyond that, it is not required for rings to be
matched as a complete unit. The presented approach computes
a connected maximum common induced substructure
(cMCIS) using the RIMACS algorithm.5 RIMACS is a
substructure-based MCS algorithm, directly building up the
actual mapping between compared molecules. It is designed to
be a fast and lightweight algorithm offering simple adoptions to
all sorts of graphs. Within the NAOMI33 framework the
performance is further improved relying on atom similarity
estimations. Within the SpaceMACS approach, RIMACS is
used to calculate a weighted cMCS. In this application, there
are two crucial features of RIMACS. First RIMACS allows
specification an initial mapping improving relevance of the
calculated results and overall performance. Second, after
calculation of a weighted maximal result, it is possible to
update the weight. This feature is exploited to calculate the
actual MCS variant used within SpaceMACS as described in
the Fragment Matching section.
We illustrate the basic concept of substructure search in

combinatorial fragment spaces within the following example
searching for analogs of nilutamide34 in REAL Space17 (see
Figure 1). Regarding the target compound and its decom-
position into fragments, in the bottom of Figure 1, it is obvious
that bonds to linkers are acyclic in any target structure. In
order to guarantee independent calculations on different
fragments, it is necessary to enforce that those bonds to linker

Figure 1. Nilutamide34 as an example query (top) and one of its most
similar analogs in the REAL Space17 (middle) including its
decomposition into fragments (bottom). The linker atoms in the
fragments are labeled R, and bonds in the target molecule connecting
the fragments are highlighted.
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atoms are mapped to acyclic bonds in the query as well.
Keeping the model consistent results in strict distinction
between ring- and chain-bonds. Additional distinctions
between ring- and chain-atoms are applicable to improve
performance, but do not affect the model. The decomposition
yields the key observation resulting in the FTrees-FS and
SpaceMACS algorithms: For a MCS expanding over more than
a fragment, it is sufficient to consider only those partial MCS-
results containing any linker of the fragment.
Besides the preparation of the input data, the MCS search in

fragment spaces is divided into three sequential phases. First,
parts of the molecule are matched to the fragments of the
fragment space. Second, the matches are combined to
construct all possible results. Finally, the results are enriched
by in-fragment MCS-matches where no fragment-linker is
involved. This workflow including the user interaction is
shown in Figure 2.

■ DEFINITIONS

Within the SpaceMACS approach two MCS similarity
measures are supported that are defined as follows. Given a
query molecule Q with qa heavy atoms and a target compound
T from the fragment space with ta heavy atoms and an cMCIS
of size m. MCS-Size is represented by the pair (m, ta) and is
sorted using the following ordering relation:

m ta m ta

m m m m ta ta

( , ) ( , )

( )

1 1 2 2

1 2 1 2 1 2

>

⇔ > ∨ = ∧ <

There is no standard way of defining a similarity value based
on MCS. For the MCS-Similarity measure we decided on a
definition which is close to the Tanimoto score (or Jaccard35

index). For identical molecules sMCS reaches the maximum
value of 1.0. The larger the molecules get with respect to their
MCS, the smaller sMCS is with 0.0 as the minimum. MCS-
Similarity is represented by the pair (sMCS, (m, ta)), the
similarity value and MCS-Size. s

m

qa ta mMCS =
+ −

. MCS-

Similarity is sorted hierarchically by its first and second
member.
In the following, the SpaceMACS approach is illustrated

using the MCS-Size measure which is supported inherently by
the algorithm and structure of the space. Supporting the MCS-
Similarity measure describing a more intuitive chemical
similarity is handled later on in a dedicated section focusing
on the differences in comparison to MCS-Size.
Fragment Space Preparation. Fragments can have

several linker atoms also named linkers representing bonds
to be formed between fragments. Within the approach, some of
the linkers are matched and others are not. When handling
partial results, the algorithm has to know the minimum size of

any target compound containing the given fragment. This
information is generated beforehand for an input fragment
space in the following way.
For each linker type, the minimum number of heavy atoms

added by any fragment having such a linker is collected.
Initially, we consider only fragments with exactly one linker.
Then, all fragments are taken into account and for each of its
linkers, upper bounds estimating the minimum number of
heavy atoms are applied. These calculations are performed for
each linker and repeated on all fragments until convergence.
Finally, this information is used to generate lists of the smallest
compatible fragments, so-called termination suggestion. In this
context, we define the term to saturate a fragment, meaning
that links not matched by the MCS are extended with
fragments from the corresponding list. This way, fragments are
combined to valid molecules forming a target in the fragment
space.

Fragment Matching. In general, an MCS match of a
molecule to a target in a fragment space covers multiple
fragments. The situation that the MCS is fully contained in one
fragment is an almost trivial to handle a special case. These
matches will be calculated later in the overall workflow such
that the size of common substructures spanning over multiple
fragments can be used as a lower bound on the expected result.
The MCS maximizes the number of mapped atoms between

the query and an arbitrary combination of fragments from the
space with no further restrictions. Within a single fragment,
any linker atom is one further atom to match but could
represent several more matched atoms in the final result. To
handle this fact accordingly, we apply a weighted cMCS
approach. Heavy atoms receive a weight of one and linkers are
assigned a weight representing the maximum number of atoms
matched in any molecule of the space respecting the current
mapping location. This definition exploits the restrictions that
acyclic bonds are forced to be matched to acyclic bonds and
implies that linkers are incident to exactly one acyclic bond.
For weighted MCS calculations, the RIMACS algorithm
published earlier can be applied.5

The mentioned considerations lead to the following two-
step procedure:

1. Generation of the bond processing order list: For this
step the assumption that query molecules Q are
connected directed graphs Q = (A, B) with the atoms
A and bond B whereas B ⊆ A × A is used. All edges have
an antiparallel counterpart. As stated above, only those
bonds that are acyclic are of interest.
At first, we define a disjunct bond-based path whereas

bonds are used only in one way:
PB = ((a1, a2), (a2, a3), ..., (an−1, an)), ai ∈ V

For a given bond (a0, a1) ∈ B the set of reachable bonds
is defined as

BR(a0, a1) = {(ai, aj) ∈ B|∃PB = ((a1, a2), ..., (ai, aj))}

BR is the set of reachable directed bonds starting at a1.
Cyclic bonds are not processed later on, but they

might appear on paths. For the sake of simplicity those
bonds are assumed to be processed already. For the
following matching step, a bond (au, av) ∈ B is to be
processed, when all of its reachable bonds BR(au, av) are
processed. This results in a dynamically adapting
processing order starting at bonds pointing to terminal
atoms toward the inner regions of the query molecule.
Note that this order is well suited for parallelization.

Figure 2. Overview of the SpaceMACS algorithm and the user
interaction within the SpaceMACS tool.
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Figure 3 depicts four independent bonds for parallel
processing of nilutamide, and one dependent chain bond

connecting the two rings. This bond is highlighted in the
structure on the right side of Figure 3 and depends on all
four bonds shown on the left.

2. Calculation of partial weighted cMCIS results on all
fragments: For each directed bond (au, av) of the
processing order list, the atom au is mapped to a linker in
the fragment matched and the atom av is mapped onto
the (single) adjacent atom of the linker in the fragment.
Given this initial mapping the cMCIS is computed for
each of the fragment linkers. The initially mapped
weighted cMCIS results calculated by this procedure are
stored under a so-called bond-linktype key = ((ap, aq),
type) defined by the (atom-)pair of the directed bond
and the linker type used for the initial mapping. For each
bond-linktype key, results are sorted in descending order
by the MCS-Size.
The weights for the MCS are calculated as follows:

Any mapping of an atom aq of the query onto any heavy
atom of the fragment receives a weight of 1. Any
mapping of aq onto a linker atom al with linker l is
weighted with the number of mapped atoms of the best
possible extension. The weight calculation relies on the
processing order, requiring that the MCS calculations of
all reachable bonds (ai, aj) ∈ BR(ap, aq) are finished.
Note that ap is unique for each atom aq mappable onto
the linker atom al given the actual initial mapping. First,
the keys of potential follow up results are enumerated
using the acyclic bond (ap, aq), and all compatible linker
types to l. The largest MCS-Size of any follow-up result
defines the weight of the mapping of aq onto al.
In order to store the results, their weight of the

cMCIS calculation is extended to an MCS-Size. The
MCS-Size of this fragment contains the MCS-Size of
extension results and the sizes of all fragments used for
linker saturation for all linkers except the initial one.

Figure 3. Depiction of the bond processing order dependencies for
the chain bond connecting the two rings of nilutamide. The
highlighted bonds in the (partial) depictions of nilutamide on the
left side have to be processed before the highlighted bond in the right
depiction is processed. Highlighting uses green arrows pointing in the
direction of the dependent parts.

Figure 4. Result building procedure for nilutamide on REAL Space. The top row represents selected elements from the processing order defining
the relative location of each result. Below that, top scored results for fragments are selected and used for further result extension until all linkers are
saturated. Selection follows according to descending MCS-Size.
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This procedure allows using the MCS-Size as an additive
measure for partial results.
If the initial acyclic bond (au, av) is not compatible to

the bond in the fragment between linker and its
neighbor, the MCS calculation is skipped. If any MCS
result cannot be extended over the initial linker, then it
represents either an MCS within the fragment which is
calculated later on, or there is another linker that
produces the MCS result.
As an optimization the restriction of acyclic bond

matching can be exploited such that compatible atoms
are required to have the same distance measured in
acyclic bonds to the initially mapped atoms in the query
and the fragments.
Usually also target compounds having an MCS to the

query of suboptimal MCS-Size are of interest. In order
to find these target compounds as well, we modified the
algorithm to solve the following MCS problem variant.
First, we calculate the so-called local weight as the

maximum MCS without any linker atoms mapped. All
maximal weighted MCS results whose weights are
greater or equal to the local weight are clustered by
mapped links of the current fragment {(aq, al), ..., (ap,
ak)}. From each cluster, the maximum result is selected
and stored for the respective bond-linktype key.

In order to remain within reasonable runtime and memory
constraints the number of results stored per bond-linktype key is
limited and depends on user preferences.

■ RESULT BUILDING

For each acyclic bond (a, b) of the query, two lists of
intermediate fragment results with descending MCS-Size have
been computed, one list considering the bond in direction
from a to b, the other in the opposite direction from b to a.
Following link compatibility, the results are grouped in pairs
extending them with the best result of their opposite bond and
any compatible linker type. Those list pairs are then processed
in descending order by the combined MCS-Size. The
enumeration is limited by a user-defined expected number of
results. According to this parameter, the resulting target
molecules are created by an exhaustive recursive enumeration
scheme. Figure 4 depicts the result-building procedure on the
example of nilutamide on the REAL Space.
After the initial combination of two fragments, the

generation handles first the matched and second the
unmatched links of the fragments. Finally, the fragment
combination is canonized and stored. The whole generation
process is implemented as a depth first search backtracking
procedure on the partial results and their result extensions. The
single steps are as follows:
Matched Link Extension. Each matched link is consid-

ered. The result extension considers all compatible fragments
in descending order by MCS-Size. This procedure also
includes link extension for all alternative results with different
link extensions for the same fragment.
Unmatched Link Extension. Each unmatched link is

extended using fragments of the termination suggestion for the
respective linker.
Result Building. If there are no more unprocessed links,

the resulting target compounds are canonized by sorting the
fragments by their internal IDs and internal position of the
linker atoms.

Early Abort Criteria. If any partial result is worse than the
currently last accepted result, the extension is stopped. Since
fragment combinations can in theory result in identical targets,
the result list exceeds the requested number by a factor of 5. In
order to avoid nondeterministic behavior, even more results
are stored as long as the MCS-Size is identical.
Finally, the target compounds are converted and sorted

lexicographically by unique SMILES.36,37 After deduplication,
all final target compounds are sorted by MCS-Size and unique
SMILES as secondary criterion. Deduplication is necessary
since the same target compound might be enumerated with
different MCS-Size values resulting from different fragment
combinations. The specific enumeration of results is explained
in more detail in the Supporting Information chapter 1.

In-Fragment Result Insertion. The initial assumption
that a common substructure extends over at least two
fragments, might not hold true in all cases. To accommodate
for this, the algorithm offers a postprocessing step inserting
single fragment results. All results generated in the following
are limited by the constraint that linkers are not considered as
part of the MCS. Since the achievable MCS-Size is limited by
fragment size, single fragment matching is performed as a
follow-up step using the MCS-Size of already achieved
multifragment results as a lower bound. Before matching a
fragment, a simple element and bond counting heuristic results
in an upper bound of the MCS-Size. The cMCIS is computed
for fragments as long as the estimated MCS-Size is larger or
equal to the last ranked result. For the resulting fragments, all
links are saturated and the final target compounds are inserted.

MCS-Similarity. The presented algorithm is designed to
find the target compounds with maximum MCS-Size as
defined above. In the following, we extend the algorithm to
optimize the more intuitive MCS-Similarity measure. Using
MCS-Similarity does not change the structure of the
SpaceMACS algorithm. Fragment matching is handled
identically for MCS-Size and MCS-Similarity. The enumera-
tion procedure for the result generation requires adjustments
and during single-fragment MCS-Result insertion, MCS-
Similarity is used instead of MCS-Size as the fragment and
result ordering criterion.
The most similar compounds can vary significantly when

searching the top results using MCS-Similarity instead of
MCS-Size. The enumeration employs abort criteria exploiting
the additive nature of MCS-Size. In order to keep promising
combinations of partial results within the enumeration
procedure, an upper bound for MCS-Similarity values based
on the number of mapped atoms and the total number of
heavy atoms is computed. The upper bound approximation
results from the fact that matched linkers occur for which
alternative results with slightly lower number of mapped atoms
and significantly lower number of heavy atoms might exist.

Calculating Upper Bounds for MCS-Similarity. Each partial
result is represented as an (implicitly) single-linked list of
ResultNodes, each storing a fragment with the respective MCS
matching, the previous ResultNode and additional size
information. Most important members of those nodes are
the actual MCS-Size and the MCS-Size after saturation of all
linkers. For the approximation of the MCS-Similarity two
additional sizes, the base estimation and the final estimation
are stored within the ResultNodes. The base estimation is the
sum of the current MCS-Size, local maximum similarity
estimations elink for the matched links and the MCS-Size of the
saturated open links. For a matched link with an extension of
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MCS-Size (ml, tal) and a termination suggestion for the link with
tamin heavy atoms, elink is calculated as follows:

e
m ta ta ta

m ta

( , )

( 1, ) otherwise

l l

l

link

min

min

=

=

−

lmooonooo
For case that tal ≠ tamin, the difference tal − tamin is stored in a
extension delta value list LΔ. The list LΔ is finally used to
calculate the similarity estimation. Initially the similarity
estimation simest is set to the base estimation. Then, for each
delta value d ∈ LΔ in ascending order, the similarity estimation

is maximized: ( )sim max ,
m

t q m

m

t d q mest
1

( 1)
=

+ −

+

+ + − +
.

Beyond the similarity estimation, the remaining parts of the
enumeration procedure are the same as for MCS-Size. Using
the estimation emphasizes that MCS-Similarity depends on the
computation of nonoptimal results during fragment matching.

The parameter results stored per bond-linktype key is crucial
here as well.

Supporting Non-Molecular Queries. In many applica-
tions, a higher level of flexibility than searching with a query
molecule is required. Often, bioisosteric replacements are
applied for heterocycles or functional groups. To optimally
support such queries within SpaceMACS, SMARTS-like
queries are supported. Due to the nature of fragments being
partial molecules SpaceMACS cannot support the full
SMARTS3 language. For example, SMARTS recursion
(”[$(<SMARTS>)]”) and disconnected SMARTS patterns
require knowledge about the molecule structure beyond
fragment borders. These SMARTS features therefore violate
locality of the results when matching fragments. Beyond that,
for SpaceMACS SMARTS expressions have to be rewritten
such that each edge is either explicitly cyclic or acyclic. In order
to come as close as possible to user intensions, Kekule ́ forms

Figure 5. Top five results for MCS-Similarity for the query Q1 on GalaXi19 including the result positions of the results when using MCS-Size. The
result position of the shown molecules using MCS-Size are displayed to the right of the molecule depictions. The number of mapped atoms is
shown in column M, and the number of heavy atoms of the displayed molecules is shown in column TS.
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are detected and the aromaticity of the affected nodes and
edges is adjusted within the SMARTS patterns. To do so,
SpaceMACS relies on the SMARTS inspection abilities of the
SMARTScompare approach.38,39 In conclusion the following
SMARTS features are forbidden within the SpaceMACS
approach:

• SMARTS-recursion

• Disconnected SMARTS

• Chirality

• Specifying explicit hydrogen atoms “[H]” or “[#1]”.
Note that hydrogen counts are allowed, e.g., “[CH3]”

Note that edges within SMARTS patterns are explicitly made
cyclic or acyclic based on the SMARTScompare analysis38 of
the edge environment in the pattern. Any other aspect of the
SMARTS language is supported by the SpaceMACS algorithm.

Although queries are in summary only SMARTS-like, a
substantial degree of flexibility is achieved. For example,
various substitution patterns in heterocycles, different halo-
genation patterns, or carbonyl−sulfinyl exchange can be easily
modeled in individual queries. In order to avoid confusion with
patterns that are valid SMILES and SMARTS, the SpaceMACS
tool accepts “SMILES” and “SMARTS” followed by a space as
prefixes for queries supplied on the command line or during
interactive sessions.
SMARTS-like queries within SpaceMACS are handled

similar to molecular queries, meaning MCS-Size and MCS-
Similarity calculations are supported. In order to fulfill the
notion of matching SMARTS patterns, we introduce an
additional matching mode named substructure. The substruc-
ture mode in general behaves as MCS-Size, but applies the
additional constraint that the query must be fully contained
within the target compound of the fragment space.

Figure 6. Top five results for MCS-Size for the query Q1 on GalaXi19 including the result positions found when using MCS-Similarity. The result
positions of the shown molecules using MCS-Similarity are displayed to the left of the molecule depictions. The number of mapped atoms is shown
in column M, and the number of heavy atoms of the displayed molecules is shown in column TS.
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Online Result Filtering. In many use cases, results are
filtered down by simple properties in postprocessing steps.
Within the algorithm, filters for the minimum number of
mapped atoms, minimum similarity values and minimum and
maximum number of target compound atoms can be applied
during enumeration of the results and in-fragment MCS
mappings.
Result Storage. The overall number of results Space-

MACS produces is user-controlled, requiring knowledge about
the acceptance bound, i.e. the least scoring target molecule still
contained in the result list. Fortunately, MCS-Size and MCS-
Similarity usually have only a limited number of different,
discrete values. Assuming a query size of 30 and target size up
to 50 atoms, there are at most 1500 different values for MCS-
Size and MCS-Similarity. In practice, less than 100 different
score values are expected for almost any query and a
reasonable number of results. This observation allows counting
the number of results per score. By storing the occurring scores
in an ordered container, efficient result position estimations are
possible without the necessity to store all results in an ordered
datastructure.
Parallelization. When implementing the SpaceMACS

algorithm, several steps can be performed in parallel. All
preparation or conversion tasks can be easily parallelized. In
the fragment matching step, all partial results are ordered by
score. To achieve overall low runtimes, it is advantageous to
compute several results without sorting and sort and merge
results at defined synchronization points. Some directed bonds
of the query are independent of each other. They are processed
in parallel without the need of synchronization. A simple
scheduling mechanism suffices since completion of some
directed bonds enables computation of other ones if all their
dependencies BR are met.
The result enumeration using the partial mapping results is

difficult to run in parallel. For small numbers of results, this
step usually takes a few milliseconds. When computing
thousands of results, the enumeration can easily cause more
than 50% of the overall runtime (See Figure S6 in the
Supporting Material). An effective parallelization scheme
performs result enumeration for each pair of partial results in
a single thread. Synchronization happens whenever new results
get stored. Up to this point the result lists are sorted by score
thread-local. Then, the overall list of results get updated.
The final task of single fragment result insertion performs

the prescoring and sorting of the fragments as well as the
enumeration of results in parallel, whereas a thread handles all
results belonging to a specific fragment.

■ RESULTS AND DISCUSSION

Before entering into extensive statistical validation experi-
ments, we want to demonstrate the practical use of MCS-Size
and MCS-Similarity search on chemical fragment spaces with a
first example. The aim is to find molecules structurally similar
to Torasemide (Query Q1) in the commercial make-on-
demand GalaXi space. After about one second on a standard
computer, the molecules as shown in Figures 5 and 6 were
retrieved.
Both figures display the size of the mapping (M), the

number of heavy atoms of the target molecules (TS), and the
respective similarity values. The top 5 results using MCS-
Similarity feature smaller numbers of common heavy atoms
but show greater overall chemical similarity due to overall
smaller numbers of unmatched heavy atoms. MCS-Similarity

has the advantage over MCS-Size that the number of
unmatched heavy atoms also has a substantial influence on
the similarity value. As can be seen in Figure 6, maximizing the
number of mapped atoms alone can result in finding
substructures within much larger target molecules featuring
numerous unmatched side chains. Especially when requesting
small numbers of results, we deem molecules retrieved using
MCS-Similarity more relevant than those retrieved using MCS-
Size. As will be shown later on, MCS-Similarity searches
require more resources. Therefore, if large numbers of
molecules are requested, the maximum number of heavy
atoms in the resulting molecules can be limited. This way
results are fairly similar to MCS-Similarity without the
computation and approximation overhead described in the
Methods sections and shown within the benchmarks.
For validation we consider three different scenarios. First, we

compare the results of the combinatorial SpaceMACS search
to an MCS search in an enumerated variant of the space.
Second, we perform a sequential search to measure the hit list
consistency. Finally, we evaluate the divergence of results with
varying lengths of result lists.

Enumerated Space Result Comparison. For the first
experiment, a fragment space is created which is small enough
to be fully enumerated. We evaluated the best scored N results
when our method is applied on the small fragment space and
compared to the results achieved by searching linearly in the
enumerated list of compounds. We enumerated two
(arbitrarily extracted) subspaces of the KnowledgeSpace,31,32

a public fragment space comprising more than 100 literature
reactions describing hundreds of trillions of virtual compounds.
Then we enumerated all compounds using a customized
version of FSees.40 The extracted spaces as well as their
enumerations are part of the validation_spaces.zip file in the
SI. As queries, we used the 100 query molecules selected by
Lessel and Lemmen41 for a novel fragment space similarity
measure. We compared the 5000 most similar analogs of each
query in the fragment space and the enumerated space. For
each query, space and the three mapping modes we performed
10 independent runs. We compared the results for the ring-
chain-atom compatibility set to “on” and “off” in five different
filter scenarios. For the scenarios, the minimum number of
mapped atoms is abbreviated MinM, the minimum number of
heavy atoms in the target compound is minT and the
maximum number of heavy atoms in the target compound is
maxT.

1. No filter
2. MinM 10 (not for MCS-Similarity); minT 15; min

similarity value 0.25 (only for MCS-Similarity)
3. MinM 12 (not for MCS-Similarity); min similarity value

0.3 (only for MCS-Similarity)
4. MinT 15; maxT 25
5. MinM 15 (not for MCS-Similarity); min similarity value

0.35 (only for MCS-Similarity)

Our default parameter set detected no differences on the 500-
fragment (∼200 000 compound) space. On the 1000-fragment
space (∼400 000 compounds), we observed different results
for query 39 in MCS-Size mode and ring chain atom
compatibility set to “true”. For this query, the best MCS-Size
score is (12, 36), and overall 4494 results have an MCS-Size
greater than or equal to (12, 55). Here 90 suboptimal
compounds below rank 4500 with MCS-Size values of (11,
34), (11, 35), and (11, 36) were not generated. Instead,
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SpaceMACS listed 90 additional results of MCS-Size (11, 37)
meaning that those 90 results got lost during enumeration.
Those missing results occur in the filter settings one and two.
The reason is that the list of temporary results in the algorithm
is limited. In summary, the experiment shows that SpaceMACS
is exact on high ranks, but differences might occur on low
ranks of the result list. The influence of temporary list lengths
will therefore be further analyzed below.
Enumerated Space Validation. To further validate self-

consistency, we queried the 101 most similar compounds of
the space for each compound of the space and validated that
the query itself was best scored and all remaining results are
also part of the enumerated space. This validation was
performed for all three modes on both enumerated spaces
for both settings of ring- and chain-atom compatibility. This
experiment shows that if a compound is part of a fragment
space, then SpaceMACS will find it independently of the mode
parameter.
Result Divergence with Varying List Lengths. While

SpaceMACS produces exact results on high ranks, molecules
on lower ranks might diverge between runs with different
settings with respect to storage limits. We used four fragment
spaces17−19,31,32 and requested 100, 1000, and 10 000 results
for 100 queries storing 1, 10, 100, 1000, and 10 000
intermediate results for matching. As queries, we used the
same 100 queries as for the enumerated space comparison
experiment.
In total, we performed two types of analysis: first,

consistency of the top ranked results within the applied
storage limit and, second, analysis of the smallest rank of
different results between adjacent storage limit settings.
First, we evaluate the results retrieved using MCS-Size.

Table 1 lists the number of queries for which any result

difference was detected applying the listed result-storage-limit
requesting 1000 or 10 000 results. The entry pairs show the
number of queries with different results and additional average
number of different results within the top 1000 ranks
requesting 1000 and 10 000 results. With KnowledgeSpace
and REAL Space, the results are consistent for all queries and
all storage limit values analyzed. On CHEMriya there are five
to seven queries where deviating results are observed. One
could relate this divergence to the structure of the CHEMriya
space that contains approximately twice as many fragments as
the GalaXi space but describes more than five times as many
compounds. This implies that for each fragment of CHEMriya,
there are far more results that could be enumerated than for
GalaXi. On GalaXi there are four and two queries with

deviating results applying storage limits deemed to be too
small.
Table 2 shows the retrieved results using MCS-Similarity.

For the REAL Space, almost a third of the queries have minor

differences. But the total number of different result molecules
is small with less than 10 single-point differences on average for
any of the queries. This shows that the approximation within
the enumeration for MCS-Similarity is more sensitive to
temporary list length limitations than the straight MCS-Size
enumeration. This trend continues on all of the other three
spaces and all the storage limits tested.
Finally Figure 7 points out that the result-storage-limit

parameter should be chosen with care. Figure 7a plots the
average rank of the first difference in the result lists using the
storage limits 100 and 1000 and for the storage limits 1000 and
10 000 requesting 10 000 results. For MCS-Similarity, the first
difference often occurs well before rank 500 for the CHEMriya
space. On the opposite, for the REAL Space on average about
the first ∼2000 ranks are identical. The situation is quite
similar for MCS-Size but with less variance. This plot
emphasizes the need to store a reasonable number of
intermediate results when requesting large numbers of results.
Regarding Figure 7b we observe similar trends between MCS-
Similarity and MCS-Size. For MCS-Similarity, the first
difference occurs on average beyond rank 1000 for all four
spaces, but there are still outliers with much smaller ranks
going even below rank 500. For MCS-Size instead, there are
almost no differences below rank 2000.
Based on our experience, we recommend using a limit fitting

roughly the number of requested results. For MCS-Similarity,
the limit should be slightly higher, e.g. factor 2, and for MCS-
Size it is affordable if the limit is slightly lower than the number
of requested results.
Overall our validation experiments show that the “native”

MCS-Size measure works reliably producing consistent results
on the commercial spaces too large for enumeration and finds
the same results on small enumerated spaces compared to a
linear search. Furthermore even the MCS-Similarity measure
proves to be fairly consistent on the spaces and performed
without any difference on the comparison to the enumerated
spaces. But on the commercial spaces MCS-Similarity starts to
become heuristic in the case that temporary list lengths are
chosen too small. With temporary list lengths close to the
number of retrieved results, deviations occur only on very high
ranks.

External Comparison. Inspired by the enumerated space
comparison validation experiment we performed an experi-
ment comparing SpaceMACS results on the 500 fragments

Table 1. Overview of the Number of Queries with Different
Results within a Selected Storage Limit for the Four Spaces
Using MCS-Size Enumerationsa

limit CHEMriya18 GalaXi19 KnowledgeSpace31,32 REAL Space17

1 5/158.8 − − −

10 7/164.3 4/16.5 − −

100 5/191.0 2/28.5 − −

1000 5/191.0 − − −

10 000 5/191.0 − − −

aEach entry contains the number of queries with any difference and
the average number of different results when requesting 1000 and
10 000 results, or − if no difference was observed.

Table 2. Overview of the Number of Queries with Different
Results within a Selected Storage Limit for the Four Spaces
Using MCS-Similarity Enumerationsa

limit CHEMriya18 GalaXi19 KnowledgeSpace31,32 REAL Space17

1 3/77.7 4/92.3 1/2.0 29/4.3

10 9/43.4 6/21.3 4/9.3 36/7.4

100 12/37.3 6/7.7 7/20.9 35/8.5

1000 8/53.4 4/21.0 8/17.9 31/9.4

10 000 8/59 4/21.0 8/17.8 31/9.6
aEach entry contains the number of queries with any difference and
the average number of different results when requesting 1000 and
10 000 results, or − if no difference was observed.
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space to results retrieved using the RDKit FMCS13,42

algorithm on the ∼200 000 enumerated counterpart of the
fragment space. SpaceMACS mimics an exact approach
calculating a constrained cMCIS, and FMCS calculates a
cMCES represented as SMARTS. Applying the RDKit FMCS
algorithm on all ∼200 000 compounds required more than 750
s of computation time for the queries on average restricting
ring- and chain-bond compatibility. Extracting the best 5000
results using SpaceMACS took 21.9 s on average and 16.5 s
when ring- and chain-atoms are allowed to be matched.
Comparing the result lists there are five queries with identical
result lists between RDKit and SpaceMACS allowing ring- and
chain-atoms to be matched. On average there are 1803
common results between RDKit and SpaceMACS and 2134
when ring- and chain- atoms are allowed to be matched. When
calculating the cMCIS using RIMACS within the NAOMI
library there are on average 2206 common results when ring-
and chain- atoms are allowed to match. A detailed analysis for
selected cases can be found in the Supporting Information (see
Figure S7).
Hardware Requirements and Parallelization. The

SpaceMACS software implementing the algorithm described
above loads a fragment space and then matches a number of
queries. In order to reduce waiting times for loading the
fragment space the tool supports interactive query processing.
Therefore it accepts input from standard input and tries to
parse it as SMILES36 or SMARTS3 or load it as a molecule file.
The interactive mode supports manipulation of all important
parameters as well. To work with spaces like the REAL Space17

the machine should be equipped with at least 32 GB of main
memory. The parallelization benchmarks were performed
using two Intel(R) Xeon(R) Gold 6142 CPU @ 2.60 GHz
processors with 32 cores and 64 threads in total and more than
200 GB of memory running a 64-Bit Suse Linux.
As a demonstration for the scaling abilities of the algorithm,

we performed experiments on all four fragment spaces
provided by BioSolveIT, meaning the commercial CHEM-
riya18 space (∼52 000 frag, 1.1 × 1010 comp), the commercial
GalaXi19 space (∼22 000 frag, 2.1 × 109 comp), the public
KnowledgeSpace31,32 (∼320 000 frag, 2.9 × 1014 comp), and
the commercial REAL Space17 (∼890 000 frag, 1.9 × 1010

comp). Each of the spaces were searched for the most similar
1000 and 10 000 results for the computation modes MCS-

Similarity, MCS-Size, and substructure for the same 100
queries as used for our validation. The results are presented in
Figure 8 whereas we selected one case for each fragment space.
In all selected test cases, SpaceMACS shows a reasonable

scaling behavior using one to eight threads in parallel. Using 16
or even 32 threads does not gain much runtime performance
any more. On small spaces, runtimes are in the area of seconds
for small numbers of results independent of the score being
MCS-Size or MCS-Similarity. Although KnowledgeSpace
contains far more compounds than REAL Space, its fragments
representation is more compact. Requesting 1000 results on
this space provides a measurable distinction between the MCS-
Size and MCS-Similarity measures. Additionally the error bars
show that there are a few outliers and one extreme outlier
requiring about ten times the mean runtime for all numbers of
threads analyzed. The two most significant outliers are shown
in Table 3. Runtimes show that those two queries are not
outliers when using MCS-Size. On other spaces like the REAL
Space, they are no runtime outliers at all. Runtimes of those
outlier cases have in common that the enumeration of the
results takes a significant amount of time, getting even worse
requesting 10 000 results. Most probably, this phenomenon is
related to an overestimation of MCS-Similarity values for
intermediate results.
Finally the commercial REAL Space (Figure 8c) shows the

most desired scaling behavior retrieving 10 000 results with
runtimes going down to almost using 32 threads. Results for
the CHEMriya space are interesting in another point. In
comparison to REAL Space, the number of fragments is more
than an order of magnitude smaller, but the space contains
more than half the number of compounds as REAL Space. On
CHEMriya, we observe a negative scaling behavior selecting
larger numbers of results using more then 16 threads using
MCS-Similarity. For MCS-Size average runtimes of ∼10 s are
reached for 16 and 32 threads. Overall, computation of result
applying the MCS-Similarity measure proofs more complex as
MCS-Size. Beyond the overall scaling behavior, runtime
partitions of the three major steps of the algorithm are
analyzed in Figure 9.
In the first experiment, a single thread is used running the

algorithm in substructure mode. The computing time is
dominated by fragment matching taking only 1−2 s for the
calculation independent of the requested number of results.

Figure 7. Log-scale plots showing the average rank of the first occurrence of different results increasing the result-storage limit from 100 to 1000
(A) and from 1000 to 10 000 (B) when requesting 10 000 results from different fragment spaces using MCS-Similarity and MCS-Size.
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One has to keep in mind though, that several query molecules
are not contained in GalaXi resulting in empty result lists
(Figure 9a). When running in MCS-Size mode, here on
KnowledgeSpace using four threads, we observe that the
computing of fragment matching is nearly constant and
independent from the number of requested results as expected.
The structure of this space leads to increasing runtime portions
for result enumeration when increasing the number of
requested results (Figure 9b). On REAL Space using MCS-
Similarity the distinction of the runtime partitions looks a bit
different. Beyond the near-constant time required for
matching, runtimes required for result enumeration and single
result insertion seem to scale proportionally to each other
(Figure 9c). Finally the plot of the CHEMriya space is focused
on the limits of the scaling abilities of SpaceMACS. In this
case, we requested 50 000 results and plotted runtimes for

different numbers of threads. The plot shows that runtimes are
finally dominated by result enumeration or in this case single
fragment matches. The observed stagnation on runtimes hints
that finally internal synchronization of the results becomes the
bottleneck (Figure 9d). For more information about the
scaling behavior requesting 50 000 results, consider Figures S5
and S6 in the Supporting Information.

Memory Requirements. As another important point, we
measured the amount of memory consumed by SpaceMACS
during benchmarking of the 100 queries. The results are shown
in Table 4. This table shows the minimum required memory
preparing the space and the maximum observed memory
consumption requesting 10 000 results for the 100 queries
used for validation. Due to differences within the enumerations
for MCS-Size and MCS-Similarity, the table summarizes
memory consumption for both modes.

Figure 8. Scaling overview of SpaceMACS requesting 1000 results from commercial GalaXi (A) and public KnowledgeSpace (B) and retrieving
10 000 results from commercial REAL Space (C) and commercial CHEMriya (D) running 1 to 32 threads in parallel. For GalaXi (A) runtime of 1
s is shown for reference. For KnowledgeSpace (B), REAL Space (C) and CHEMriya (D) runtime of 10 s are shown for reference.
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First, we noticed that the amount of memory required for
loading the space clearly shows a dependence on the number
of fragments of the space. The additional amount of memory
used for MCS-Size result enumeration of 10 000 results varies
in between the spaces. For the GalaXi space it achieves its
smallest value and for the CHEMriya space the additional
amount of memory is largest. This is unexpected, because the
REAL Space contains far more fragments and describes a
virtual library which is ∼1.7 times larger. KnowledgeSpace
requires the second largest amount of memory for enumera-
tion of the results. Regarding MCS-Similarity, the amount of
memory required rises about half the additional amount of
memory required for MCS-Size. Interestingly the public
KnowledgeSpace is an outlier in this relation with the smallest
overall increase of required memory.
PAINS Study. PAINS structural alerts43 are frequently used

in medicinal chemistry applications, therefore we were
interested in the ability of SpaceMACS to search with the
respective patterns. To do so, we used the collection of
PAINS43 patterns from Ochem44,45 and performed a
substructure search requesting up to 100 000 results. 438 of
the SMARTS patterns retrieved are written without SMARTS
recursion and are usable as queries for SpaceMACS. As further
parameters we used a result-storage limit of 100 000, and the
number of open-link extensions was set to 100 000 as well. The
latter parameter was chosen based on the observation of
increasing numbers of results on REAL Space. On the
CHEMriya and GalaXi space 10 000 open-link extensions are
sufficient.
The results of the PAINS experiment are summarized in

Table 5. While the majority of PAINS patterns do not match
fragment space compounds, some receive a significant number
of hits.
Beginning with the smallest space, GalaXi, we found 29

patterns matching, only 10 of which with significant numbers.
Going into detail of the six structural alerts flagging at least

100 000 compounds, three of them “Anil_no_alk”, “Catecho-
l_A”, and “Pyrrole_A” have at least 100 000 matches in all four
spaces. The remaining three alerts are significantly represented
in REAL Space and CHEMriya as well. In CHEMriya, 13
structural alerts match at least 100 000 compounds. But below
them, none of the remaining alerts matches more than 10 000
molecules. Interestingly more than half of the alerts match at
most 100 compounds. Regarding the 10 alerts matching
exactly one molecule, nine of them are within the building
blocks of the space. The last of those results, the pattern
Anil_NH_alk_C matches exactly one compound due to
restrictive hydrogen properties.
On REAL Space the situation is similar to the CHEMriya

but with more hits in the intermediate ranges. There are 20
structural alerts matching at least 100 000 molecules and
further 21 alerts match 10 000 to 100 000 compounds. The
most populated bin covers the range of 100 to 10 000 matches
with 41 alerts. Regarding those patterns with exactly 1 hit,
most of them hit building blocks of the space. Finally, on
KnowledgeSpace there are the most alerts matching at least
100 000 molecules. This might relate to the fact that
KnowledgeSpace is by far the largest fragment space analyzed.
Compared to CHEMriya and REAL Space KnowledgeSpace
does not provide dedicated building blocks that could be
matched by any structural alert.
The majority of PAINS structural alerts do not produce any

hits and can be neglected for compounds extracted from the
space. For the remaining ones, it depends on the use case
whether postprocessing is required for extracted molecules.
Given the shear number of molecules represented in the
chemical spaces, PAINS alerts are rather seldom. This study
also shows how SpaceMACS can be used to further optimize
chemical fragment spaces by avoiding specific unwanted
structural elements.

Table 3. Detailed Runtimes of the Two Most Significant Outliers of the Similarity Calculation on KnowledgeSpacea

KnowledgeSpace

no of threads 4 16 4 16

MCS-Size 12.0s/3.3s/0.0s 4.41s/3.18s/0.01s 12.0s/15.0s/0.3s 4.4s/15.0s/0.1s

MCS-Similarity 12s/120s/0s 4s/120s/0s 13s/164s/1s 4s/157s/0s

REAL Space

no of threads 4 16 4 16

MCS-Size 23.0s/1.0s/0.7s 8.10s/0.95s/0.22s 27.0s/2.7s/4.7s 9.3s/2.6s/1.5s

MCS-Similarity 24.0s/1.6s/1.4s 8.1s/1.6s/0.5s 27.0s/8.9s/9.3s 9.2s/8.3s/3.1s
aRuntimes are measured requesting 1000 results. Each runtime block is structured as follows: fragment matching/result building/single fragment
MCS-Results.
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A detailed list of all matching PAINS structural alerts can be
found in the Supporting Information (see SI File PAINS-
Hits.csv).
A SAR-by-Space Application on Glucosyltransferase

(GtfC). A substructure search in fragment spaces of billions of
molecules is a useful tool to evolve fragments (e.g., based on a
crystallographic fragment screening), search for molecules with

bioactive substructures (e.g., to design target focused libraries),
finding close neighbors of a hit molecule (e.g., to perform SAR
studies), finding analogs with improved ADMET properties or
to search for the maximum common substructure match of a
designed compound (e.g., AI-based, denovo designed or a
medicinal chemist’s idea).

Figure 9. Runtime partitions of the three steps of the SpaceMACS algorithm requesting 100 up to 10 000 results (A−C) and 50 000 results (D). In
A, 100, 1000, and 10 000 results are retrived from GalaXi running one thread using substructure mode. Distinction between the algorithm steps is
not available for queries without any result. In B, 100, 1000, and 10 000 results are retrieved from KnowledgeSpace running four threads in parallel
using MCS-Size. In C, 100, 1000, and 10 000 results are retrieved from REAL Space running 16 threads in parallel using MCS-Similarity. In D,
50 000 results are retrieved from CHEMriya running four, eight, and 16 threads in parallel using MCS-Similarity. Additionally allowing ring- and
chain- atom compatibility.

Table 4. Overview of the Memory Used by the SpaceMACS
Tool for Each of the Four Spacesa

occupied memory in GB

space space preparation MCS-Size MCS-Similarity

CHEMriya 0.7 8.5 12.4

GalaXi 0.3 2.5 3.5

KnowledgeSpace 4.3 10.8 11.4

REAL Space 11.1 14.9 16.5
aThe first column displays the amount of memory required loading
and preparing the space. The last to columns show the maximum
observed memory requirements searching for 10 000 results for 100
queries using the specified mode.

Table 5. Overview of the Number of Patterns Matching
Compounds within the Fragment Spacesa

patterns matching no. compounds

space any
≥100
000

[10 000,
100 000)

[100,
10 000)

[2,
100) 1

CHEMriya 61 13 0 4 34 10

GalaXi 29 6 4 13 6 0

KnowledgeSpace 89 52 4 15 18 0

REAL Space 130 20 21 41 29 19
aFor each space, the total number of pattern matching for any
compound is shown. The remaining columns classify the number of
matches in bins covering roughly two orders of magnitude of potential
hits.
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SAR-by-space as introduced by Klingler et al.30 is a method
to screen fragment spaces for close analogs. Structure−activity
relationships can be done as a fast follow-up with commercially
available make-on-demand compounds. Here, we applied
SpaceMACS on a traditional wet lab SAR approach. To
highlight the complementarity of search methods, the so far
available algorithms to screen fragment spaces FTrees-FS22,29

and SpaceLight16 were applied as well.
The chosen application example deals with the inhibition of

glysoyltransferases (GtfBCD) that are responsible for the
formation of cariogenic biofilms in dental caries.46 In a
previous work a virtual screening with a library of 500 000
small molecules from the ZINC database47 on the glucosyl-
transferase GtfC was performed.48 Lead compound G43 (see
Figure 10) underwent extensive SAR studies by the synthesis
and testing of 90 analogs in a follow-up work.46 These
molecules are based on a simple amide formation reaction, for
which ten different carboxylic acid building blocks (A−J) were
coupled with nine aromatic amine-containing fragments (1−9)
(see Figure 10).
We used the compound G43 in SMILES notation as input

for SpaceMACS (similarity mode) and screened commercial
fragment spaces. These spaces comprise a chemical space of 32
billion make-on-demand molecules. A SpaceMACS search
took about 2 min retrieving the first 50 000 from REAL Space
(19bn make-on-demand molecules), GalaXi (2.1bn make-on-
demand molecules), and CHEMriya (11bn make-on-demand
molecules).
Analysis of the occurrence of all 90 compounds synthesized

by Nijampatnam et al.46 in its traditional approach revealed
that 50% of the molecules (45/90) could be found within one
of the commercial fragment spaces, accessible through an
analog amide formation reaction. In addition, we found 90% of
the carboxylic acide building blocks (9/10; only J was not
found) and 100% of the amine building blocks in at least one
of the fragment spaces indicating a plethora of additional
combinations.

In order to select new molecules the data set of 150 000
molecules was filtered for unwanted substructures, PAINS, and
toxic substructures as implemented in BioSolveIT’s Med-
ChemWizard workflow.49 A similarity threshold of 0.64 was
set, and compounds lacking the central amide were filtered out.
The remaining set of 73 847 molecules was clustered by an
atom-based Bermis Murcko scaffold using the RDKit KNIME
nodes (version 4.3.0, KNIME GmbH Zurich, knime.org)
ending up with 1902 clusters. Only seven of these clusters have
been covered by the traditional SAR study.
We aimed to find new molecules in this exhaustive pool of

derivatives (see Table 6). As a guideline we used the
assumption that the ortho amide of the amine building block
is mandatory for binding. Also the disadvantages of the nitro
group has been discussed by the authors. Simple replacements
of the nitro group in lead compound G43 has been found in
CHEMriya (trifluor methyl group) or REAL Space (primary
amine). Both groups were used as replacement of nitro groups
with an increase of activity as summarized on the
swissbioisostere server.50 GalaXi has been found to offer a
vast number of molecules similar to amine building block 9 of
the traditional SAR approach, albeit the exact match of
building block 9 was not found. All three spaces contain
different atom based Bermis Murcko alternatives to the lead
compound. Docking into the binding site of GtfC as
performed by Zhang et al.48 and Nijampatnam et al.46 may
help to filter out the best candidates.
In order to demonstrate the added value of SpaceMACS, the

same query was executed with SpaceLight16 (fcsfp2.5) and
FTrees-FS22,29 (see Figure 11). SpaceLight is a method to find
close analogs with high Tanimoto similarity based on
connected subgraph fingerprints, whereas FTrees-FS matches
feature trees representing a topological pharmacophore profile.
The latter is also known for scaffold hopping and therefore
finds molecules with low Tanimoto similarity. The maximum
overlap was found between the output of SpaceMACS and
SpaceLight (16 241 molecules, 11%), the lowest between

Figure 10. Lead compound G43 used as a query for SpaceMACS (upper left), building blocks R1 and R2 used for the traditional SAR study and
their occurrence in the commercial fragment spaces indicated by green (GalaXi), blue (REAL Space), and red (CHEMriya) spots (bottom)
(Adapted from the work of Nijampatnam et al.46 Copyright 2020 American Chemical Society).
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FTrees-FS and SpaceLight (4059 molecules, 2.7%). The
overall overlap between all methods was 0.9% (1334
molecules). SpaceMACS is therefore enriching the toolbox
to find again different molecules in fragment spaces. Overall,
the three search methods complement each other quite well

spanning a range from precise chemical matching via chemical
to pharmacophore-like similarity. Taking into account a set of
commercial fragment spaces is a good choice. Almost no
overlap between these spaces has been calculated by Lessel and
Lemmen.41 We were able to confirm this estimation with an

Table 6. Example Set of G43 Derivatives Found by SpaceMACS
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overlap between REAL Space, GalaXi, and CHEMriya of five
molecules only (0.01%). The biggest overlap between REAL
Space and CHEMriya of 1415 compounds (2.83%) is also a
chance to find the same compound with possibly other
synthetic routes or prices (see Figure S8).

■ CONCLUSION

In this paper we presented a novel approach to retrieve
valuable compounds from combinatorial chemical spaces too
large for enumeration. Our approach, SpaceMACS, transfers
the well-known MCS methodology into fragment spaces and
virtual make-on-demand accessible compound libraries.
Combined with two similarity measures, MCS-Size and
MCS-Similarity, SpaceMACS addresses three prominent
cheminformatics problems on fragment spaces simultaneously.
Given a query compound, the approach enables identity
search, substructure search and substructure-based similarity
search.
SpaceMACS heavily exploits the fragment-based nature of

those spaces allowing calculation of most similar compounds
within seconds to minutes running on standard desktop
computers. So far, the algorithmic approach comes with two
limitations. First, the combinatorial structure of the fragment
space has to be tree-like. Although ring formation reactions can
be modeled, reactions creating macrocycles from fragments
can be not. Such spaces which sometimes appear in DNA-
encoded libraries can be handled by the SpaceLight algorithm
only. Second, the algorithm remains formally correct only if
ring bonds are not allowed to match on acyclic bonds formed
in the reactions. We have not seen a single application case
were such a matching behavior was required, however this
obviously depends on a users preferences. These limitations
come with an enormous gain in compute performance making
MCS searching in chemical fragment spaces possible for the
first time. The performance of SpaceMACS depends on the
number of compounds retrieved and the internal structure of
the fragment space, but not of the total number of molecules
within such libraries. So with respect to the library size
SpaceMACS is a sublinear scaling method in all aspects
meaning runtimes and memory consumption.
Beyond the algorithm, the outmost potential for perform-

ance gains of SpaceMACS are advances in the creation of
reaction-based fragment spaces. Encoding multicomponent
reactions combining three or more building blocks offers the
largest potential to further improve SpaceMACS performance.

This fact is observable on KnowledgeSpace representing at
least 3 orders of magnitude more compounds than three
commercial spaces together without requiring significantly
more runtime.
The SpaceMACS tool accepts queries from all standard

molecule file formats and SMARTS-like queries extending
query possibilities to specify exit vectors in fragment growing
scenarios or respecting bioisosteric replacements within a
single query. Fragment growing is additionally supported by
the possibility to specify desired minimum and maximum
heavy atom counts for result compounds and minimum
numbers of mapped heavy atoms or minimum similarity
values. Several success stories of fragment-based drug discovery
can be found in the literature.51−53 However, a promising
fragment needs its follow-up strategy. Here, SpaceMACS is the
method of choice to enumerate diverse sets of compounds
from combinatorial libraries, having in common the fragments
substructure only.
Our case study describes the first step of a fast follow-up on

a virtual screening hit. Within seconds and minutes giant
combinatorial libraries could be screened without the need of
high computational effort. A plethora of analogs have been
found that can be synthesized on-demand in a few weeks.
SpaceMACS can be seen as a brick at different stages of the
whole drug discovery process. At a later point it can be used
for bioisosteric replacement or to find analogs that may have
better ADME properties. No matter what design method is
used by medicinal chemists and modelers, SpaceMACS
enables to close the gap to the large make-on-demand
compound catalogs emerged in the last years. With very low
computational resources, the early phase drug design process
can be decoupled from the need of expensive in-house
synthesis of potential leads and follow-up compounds. In this
way, the algorithm has the potential to substantially shorten
the design-make-test cycle of pharmaceutical research.

■ SOFTWARE AND DATA AVAILABILITY

SpaceMACS is available for Linux, MacOS, and Windows as
part of the NAOMI ChemBio Suite at https://uhh.de/naomi
and is free for academic use and evaluation purposes.
Furthermore, SpaceMACS will soon be integrated into
BioSolveIT’s infiniSee platform available at https://www.
biosolveit.de/infiniSee/. KnowledgeSpace is freely available
from BioSolveIT, see https://www.biosolveit.de/infiniSee/
#knowledgespace. Several make-on-demand commercial com-

Figure 11. Overlap of the search results between SpaceMACS (blue; similarity mode), SpaceLight (red; fcsfp2.5), and FTrees-FS (yellow). In total
150 000 molecules were written out of three commercial fragment spaces: GalaXi, REAL Space, and CHEMriya. MCS-based similarity
(SpaceMACS) enforce exact substructure matching of a core region and ignores the rest of the molecule. Fingerprint-based similarity (SpaceLight)
is structure-driven as well but allows variances like repeated patterns. Finally, reduced-graph similarity (FTrees-FS) has the lowest dependency on
structure and finds molecules with a similar arrangement of functional groups.
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pound spaces, including REAL Space, GalaXi, and CHEMriya,
are available to licensed users through BioSolveIT.

■ ASSOCIATED CONTENT

*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00640.

Additional manuscript chapters including the following
chapters: a more detailed description of the result
enumeration procedure, additional plot showing more
details of the scaling behavior, additional plots
describing scaling limitations requesting 50 000 results
from the three commercial fragment spaces, additional
information about the external comparison experiment,
and a more detailed table showing the selected
compounds of our case-study. Zip archive containing
the subspaces of KnowledgeSpace used for validation, as
*.space and as enumerated *.smiles files. The overview
of PAINS-pattern matching any compound in the four
fragment spaces (ZIP)
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1 Detailed Result-Enumeration Scheme

The enumeration of the results follows simple ideas but has to handle various special cases.

The main goal is the correct enumeration of the top scored results. Beyond that, runtime

and the total number of results considered are other targets for optimization.

The result enumeration is not focused on fragments especially, but on the acyclic bonds

in the query and pairs of compatible fragment space linker types resulting in a enumeration

process based on pairs of compatible bond-linktype keys, meaning their linker types are com-

patible and they represent the same bond in opposite directions.

During matching, results are stored based on their bond-linktype key. The results to be
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considered for a bond-linktype key usually comprise several fragments and even several (dif-

ferent) MCS mappings within a single fragment. All of them have in common that they

map a linker with linker type of the bond-linktype key to a distinct atom within the query.

Respecting this, each extension of partial results has to deal with many different branches

in search space.

The enumeration process employs four important datastructures. Those are three types

of nodes, representing the final fragment tree and an result overview handler. All node types

know their parent ResultNode including the linker of the fragment they are extending in

their parent node and the previous node of their kind.

ResultNode ResultNodes represent the actual selection of fragments and the connections

between them building the final target compound. ResultNodes store actual size in-

formation about the current result and the size of the final compound. For the MCS-

Similarity based enumeration, the estimation of the best possible similarity value re-

specting any further extension is also crucial. Finally ResultNodes track a result id

enabling efficient branch and bound procedures during enumeration.

MatchedLinkNode MatchedLink nodes represent future extensions of matched links on

result nodes. Each extension is represented by a bond-linktype key and a delta value

compared to the final MCS-Size of the best result.

OpenLinkNode OpenLinkNodes are used to saturate fragments of the ResultNodes. They

only store the saturated linker.

OverviewHandler The OverviewHandler is responsible for the progress of the branch and

bound procedure. It stores the final size for MCS-Size based enumerations of the

MCS-Similarity estimations for MCS-Similarity based result enumerations for the re-

sults based on their id. The overview handler is initialized with the target number

of results enumerated. During enumeration the handler differentiates between results

enumerated and stored already and results actually in enumeration extending the cur-
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rent bond-linktype key. In total, each result is assigned an absolute rank for the current

state of the enumeration.

The matching process has to consider acyclic bonds in both directions. For correct

enumeration this is no longer necessary, since results are extended over all their linkers. Due

to this, only bond-linktype keys with increasing internal atom positions of the affected atoms

are considered on the outmost result enumeration. Nonetheless all bond-linktype keys are

necessary for correct result extensions.

Result Enumeration for a Distinct bond-linktype key

First of all, the best result is assigned a ResultNode and the list of current results of the

OverviewHandler is cleared. All alternative results within the current fragment, represented

by the ResultNode and all results of other fragments sharing the same bond-linktype key

are enumerated. This results in a list of sibling results. As they represent the initial frag-

ments, their initial link has not been considered for any extension so far. Based on com-

patible linker types of the fragment space, all possible MatchedLinks for the initial link are

enumerated. Then, regular extensions of the matched links for the result including their

alternatives are enumerated. Each combination of results including the initial link is sorted

by descending MCS-Size of the extension. Finally OpenLinkNodes are added saturating the

current ResultNode. This enters the main recursion of the enumeration process handling the

first ResultNode a MatchedLinkNode and an optional OpenLinkNode. If there are several

MatchedLinkNodes or OpenLinkNodes, they are accessible based on the previous relation

within all nodes.

The Main Recursion

Based on the result position of the current ResultNode, the OverviewHandler aborts the

current result extension. As long as there is a MatchedLinkNode to extend the result, it is
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processed.

MatchedLinkNodeExtension:

Extending a matched link adds a new ResultNode with updated current size and final size

values, based on the delta stored in the MatchedLinkNode updating the final size or esti-

mation within the OverviewHandler. The extension determines whether and which result

continues the id of the current ResultNode. Then all sibling results of the new ResultNode

are enumerated and extended with all combinations of further MatchedLinkNodes and final

saturation of OpenLinkNodes. This continues the main recursion. After completion of the

recursion, each MatchedLinkNode is replaced by an OpenLinkNode catching all remaining

fragment extension.

OpenLinkNode extension:

OpenLinkNodes are extended, whenever there is no MatchedLinkNode any more. Based on

the termination suggestion all alternative fragment extensions are enumerated. The first

fragment of the termination suggestion usually continues the id of the current result. The

remaining alternatives of the list create new ResultNodes with updated current and final

size values. The estimation for MCS-Similarity enumeration is updated using the same delta

values as for the final size update. If the fragment, selected for extension has more than one

linker, remaining OpenLinkNodes are added. Each of the enumerated results continues the

main recursion.

Result Building: When there are no other nodes, the (implicit) list of ResultNodes

represents a fragment tree. Nodes are canonized based on internal ids of the fragments and

positions of the links connecting the fragments. Afterwards they are stored.

Updating Final Sizes

Unfortunately final result sizes vary significantly during all stages of the result enumeration.

This is most obvious for the MCS-Similarity enumeration assigning upper bound MCS-

Similarity values to the ResultNodes. More subtle, this might happen during MCS-Size
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enumeration as well. Fortunately this happens only on expansion of MatchedLinkNodes

or during sibling enumeration of ResultNodes such that no actual update of the estimated

score is needed during MCS-Size enumeration. To accommodate for those updates, results

are added to the overview handler as late as possible for MCS-Similarity, whereas results are

added as early as possible for MCS-Size enumerations. This way, almost no result gets lost

due to too optimistic MCS-Similarity or MCS-Size estimations.
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2 Scaling Behavior

As an extension to the selection of runtime plots in Figure 8 we provide the full scaling

behavior of SpaceMACS retrieving 1000 and 10 000 results from the four fragment spaces

analyzed. The analysis is provided in the Figures S1-S4. Each figure is focused on a specific

fragment space. As in Figure 8 performance is measured using the 100 queries from Lessel

and Lemmen.S1

In Figure S1 scaling behavior for CHEMriya is shown. Searching for up to 1000 analogs

of the queries, runtimes are below 10s seconds on average using 4 to 8 threads, depending

on the ring- and chain-atom compatibility parameter. Retrieving 10 000 results, runtimes

for MCS-Size are as low as 10s using 16 threads. On the other hand, enumeration and

synchronization of the results substantially influence the performance. The results show

that using 16 or more threads in parallel does not gain much performance. The relatively

small number of fragments of the space suggest an upper limit of 8 threads for SpaceMACS

searches of the 11 billion compounds represented in CHEMriya.

Figure S2 is focused on GalaXi. On GalaXi, there is almost no difference observable

between the ring- and chain-atom compatibility settings. Enumeration of 1000 results takes

less than 2s on average using 8 threads and might even be as low as 1s. Enumeration on

10 000 results is achieved within 10s using 4 threads. Since the GalaXi space is relatively

small, 4 to 8 threads are a reasonable upper limit to be used on this space.

Figure S3 handles the KnowledgeSpace. As discussed in the manuscript, the standard

deviation for MCS-Similarity is relatively high. The influence of extreme outliers becomes

more serious when requesting 10 000 results. Compared to the commercial spaces, Knowl-

edgeSpace contains far more products containing more than two fragments. But even in-

cluding those outliers, average runtimes are within at most minutes retrieving most similar

compounds from over 290 trillion compounds of the KnowledgeSpace. KnowledgeSpace rep-

resents almost four orders of magnitude more compounds than the tree commercial spaces

combined.
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Finally Figure S4 shows the runtime performance on the REAL Space. Searching for

1000 analogs, runtimes are as small as 10s on average using 32 threads. In contrast to the

other spaces, using 16 threads results in an acceptable scaling. In comparison to the other

spaces, the REAL Space contains by far the most fragments. This seems to be one of the

reasons for the best scaling behavior observed on the fragment spaces analyzed.
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Figure S1: SpaceMACS scaling behavior using up to 32 threads retrieving 1000 and 10 000
results from CHEMriya. Runtime of 10s is marked for reference. In the plots on the left,
ring- and chain-atom mapped onto each other. On the right side, such mappings are allowed
resulting in slightly different runtimes.
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Figure S2: SpaceMACS scaling behavior using up to 32 threads retrieving 1000 and 10 000
results from GalaXi. Runtimes of 1s (top row) and 10s (bottom row) are marked for reference.
In the plots on the left, ring- and chain-atom mapped onto each other. On the right side,
such mappings are allowed resulting in slightly different runtimes.
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Figure S3: SpaceMACS scaling behavior using up to 32 threads retrieving 1000 and 10 000
results from KnowledgeSpace. Runtime of 10s is marked for reference. In the plots on the
left, ring- and chain-atom mapped onto each other. On the right side, such mappings are
allowed resulting in slightly different runtimes.

S-10

D Publikationen der kumulativen Dissertation

121



Figure S4: SpaceMACS scaling behavior using up to 32 threads retrieving 1000 and 10 000
results from REAL Space. Runtime of 10s is marked for reference. In the plots on the left,
ring- and chain-atom mapped onto each other. On the right side, such mappings are allowed
resulting in slightly different runtimes.
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3 Scaling limits

Additional to the runtime partition plots in Figure 9 we provide the full overview about the

scaling behavior requesting 50 000 results on the three commercial spaces. Figure S5 focuses

on MCS-Size, whereas Figure S6 shows the same plots, but for MCS-Similarity. Two of

the three spaces analyzed contain only a relatively small number of fragments, meaning the

CHEMriyaS2,S3 and the GalaXi.S4,S5 On both spaces, runtimes are completely dominated

by result building or in-fragment MCS-result computation. Only for the third space, the

REAL SpaceS6,S7 matching accounts significantly for the overall runtimes. According to

the scaling behavior, on CHEMriya there is no gain in performance using more than eight

threads. On the GalaXi, runtimes slightly decrease using 16 instead of eight threads, but

the gain in performance is far from any linear scaling. Regarding the number of results

requested, the REAL Space shows the best scaling behavior. Here, using 16 instead of four

threads decreases runtimes by a factor of 2 whereas the number of threads is increased by a

factor of 4. Even if this behavior might be acceptable, it clearly shows the scaling limitations

on all available commercial spaces analyzed.
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Figure S5: Runtime partitions and scaling behavior requesting 50 000 results on the three

commercial spaces using MCS-Size. Each subplot shows the runtime partitions using four,

eight and 16 threads in parallel. In the plots on the left, ring- and chain- atoms are not

mapped onto each other. On the right side, such mappings are allowed resulting in slightly

different runtimes.
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Figure S6: Runtime partitions and scaling behavior requesting 50 000 results on the three
commercial spaces using MCS-Similarity. Each subplot shows the runtime partitions using
four, eight and 16 threads in parallel. In the plots on the left, ring- and chain-atoms are not
mapped onto each other. On the right side, such mappings are allowed, resulting in slightly
different runtimes.
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4 External Comparison

Two example queries from the comparison of SpaceMACS on the 500 fragments represen-

tation and RDKit on the enumerated molecules. Query Q81 was chosen because all results

except the topmost 5 are identical and query Q60 was selected for the smallest overlap

measured of four compounds.
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RDKit SpaceMACS RDKitSpaceMACS

Figure S7: The top 5 results for the queries Q81 and Q60 on the 500 fragments space
calculated by SpaceMACS and RDKit. Within each of the results, the calculated MCS is
highlighted in green.
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49 930

1415

GalaXi (2.1bn)

5

48 523

57

REAL Space (19bn)

48 572
8

CHEMriya (11bn)

Figure S8: Overlap of the search results between REAL Space (blue), GalaXi (red) and
CHEMriya (yellow). 50 000 molecules were written out of each of the three commercial
fragment spaces.
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ABSTRACT: Molecular patterns are widely used for
compound filtering in molecular design endeavors. They
describe structural properties that are connected with
unwanted physical or chemical properties like reactivity or
toxicity. With filter sets comprising hundreds of structural
filters, an analytic approach to compare those patterns is
needed. Here we present a novel approach to solve the generic
pattern comparison problem. We introduce chemically
inspired fingerprints for pattern nodes and edges to derive
an easy-to-compare pattern representation. On two annotated
pattern graphs we apply a maximum common subgraph algorithm enabling the calculation of pattern inclusion and similarity.
The resulting algorithm can be used in many different ways. We can automatically derive pattern hierarchies or search in large
pattern collections for more general or more specific patterns. To the best of our knowledge, the presented algorithm is the first
of its kind enabling these types of chemical pattern analytics. Our new tool named SMARTScompare is an implementation of
the approach for the SMARTS language, which is the quasi-standard for structural filters. We demonstrate the capabilities of
SMARTScompare on a large collection of SMARTS patterns from real applications.

■ INTRODUCTION

Chemical patterns are widely used during filtering steps of drug
design endeavors. They are associated with the common task of
substructure searching for filtering and tagging. There are a few
published chemical pattern languages, such as SMARTS,1 SLN,2

and Molecular Query Language.3 All of those languages have in
common that they describe molecular substructures with many
features for atoms and bonds. Several collections comprising
hundreds of patterns have been published for different
languages.4−12 The primary focus of these collections is
compound identification in a high-throughput manner.5,8−12

When using chemical patterns to filter molecules, the focus
lies more on matching the right class of chemistry than
identifying the specific atoms that are matched by pattern nodes.
Patterns are furthermore frequently used to match functional
groups13−15 and identify and classify rotatable bonds16,17 or
single atoms with specific chemical environments.7 In this
context, the set of atoms that are matched by the pattern are of
specific interest. Their environment can be important for the
pattern match, although it is not part of the expected result.
For the SMARTS language, a series of tools have been

developed for visualization18,19 and editing.20 Furthermore,
some existing methods are able to automatically construct
molecular patterns separating two compound sets,21,22 the latter
automatically creating SMARTS expressions. However, beyond
visual inspection, there is no validated algorithmic approach
available to date to compare two SMARTS patterns. To

improve, compare, or extend pattern collections in a meaningful
way, a pattern comparison method is highly desirable.
From a purely semantic point of view, molecular patterns are

similar to regular expressions. Regular expressions are used
extensively for text search in computer science. In theoretical
computer science, inclusion and equality of regular expressions
are computed, transforming them into equivalent deterministic
final automatons (DFAs) and testing whether their accepted
languages are inclusive or identical. However, there might be an
exponential blowup while constructing the DFA.23 For subsets
of regular languages, there are polynomial time DFA
constructions24 and polynomial time comparison approaches
for direct regular expression comparisons.25 However, the
structural differences between regular expressions and chemical
patterns are too large to transfer these findings.
In cheminformatics, the RDKit26 library has some function-

ality implemented to compare two molecular patterns in the
form of SMARTS. Subset relations of simple patterns that are
written as pure conjunctions without any negation can be
determined if no property transfer is needed. For the more
general pattern comparison problem, allowing disjunctions or
negation of simple properties, the results do not guarantee to
find more specific patterns anymore (for more details, see
section SI6 in the Supporting Information).
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To be able to conduct comprehensive analysis of molecular
patterns, we have developed a novel analytic approach. In the
following, we will model the chemical pattern comparison
problem and present an outline of our algorithm. Several
technical details of the method can be found in the Supporting
Information. Finally, we validate the detection of more specific
patterns and conclude with an outline of upcoming applications
for the SMARTScompare approach.27

■ METHODS

The Chemical Pattern Comparison Problem. In this
section, an abstract chemical pattern is defined. This follows the
goal to provide definitions for a generic pattern comparison
algorithm that is applicable to several pattern languages. On the
basis of the concept of abstract chemical patterns, we can define
relevant terms like pattern isomorphism, pattern inclusion, and
pattern similarity. The following definitions focus on the
chemical space of existing molecules (CS) and do not consider
differences introduced by different implementations of pattern
languages or chemistry models.
For simplicity, we decided to focus our theoretical approach

on the problem of identifyingmolecule sets matched by a certain
pattern. Describing the individual atoms matched in a molecule
by a pattern will be considered later when the theory is mapped
to the SMARTS language.
Isomorphic Patterns. A chemical pattern P, such as a

SMARTS expression, can be understood as a subset CS(P) of
the space of all theoretically existing molecules, CS. Some of the
molecules from CS match the pattern and therefore are part of
the subset, while others do not and are not. The subset CS(P) is
infinite in size for many patterns, but nevertheless, it provides a
first glimpse of the notion of pattern equality: we consider two
patterns P1 and P2 to be equal if and only if CS(P1) = CS(P2). It
becomes immediately clear that if CS(P1) = CS(P2), then P1 and
P2 have to match the same set of atoms in each molecule of
CS(P1).
Since two patterns can match different parts of a molecule,

further relationships like mutual exclusion are not particularly
useful if defined this way. To capture the chemical intuition of a
term saying “two patterns have something or nothing in
common”, we have to take the mappings between the nodes of
the patterns and the atoms within the matching molecules into
account. Since a pattern node always matches a single atom in a
molecule, we can associate node n with the subset AS(n) of all
matching atomtypes from awhole atomtype space,AS. As above,
we can define the equality relationship for a pair of pattern nodes
n1 and n2. It should be noted that in contrast to CS, the space AS
is of finite size, such that the node relationships can be computed
easily. Once equality between nodes is defined, many concepts
from graph theory, most importantly isomorphism and subgraph
isomorphism, can be transferred to chemical patterns. For
completeness, we can consider bondtypes analogously. For a
pattern edge e, BS(e) is the subset of all matching bondtypes
from the whole bondtype space, BS. Two pattern edges e1 and e2
are considered equal if and only if BS(e1) = BS(e2).
In summary, we suggest that pattern isomorphism be defined

as follows: Given two chemical patterns P1 = (N1, E1) and P2 =
(N2, E2), where theNi are the sets of nodes and the Ei are the sets
of edges between nodes, P1 and P2 are isomorphic if and only if
there exists a bijective node-mapping function f: N1→ N2 such
that

• ∀ n ∈ N1: AS(n) = AS( f(n))

• ∀ m, n ∈ N1: {m, n} ∈ E1 ⇔ {f(m), f(n)} ∈ E2 ∧

BS({m, n}) = BS({f(m), f(n)})

Furthermore, we need the following restrictions:

1. The atomtype space AS and bondtype space BS cannot
contain any chemically infeasible or redundant states.

2. Some properties (e.g., aromaticity) have a strong
inûuence on the environment of a node or an edge, e.g.,
if a pattern describes exactly two generic atoms that are
part of a generic aromatic ring, then its second aromatic
node does not provide any information to the pattern.
Because of this, a generic chemical pattern must be
nonredundant in several ways:
(a) Each node of a chemical pattern must be relevant

for its representation in the chemical space CS.

(b) Chemical patterns must be nonredundant in the
sense that for each node n, its whole subset of
atomtype space, AS(n), is necessary to describe
CS(P). The same must hold true for all of the
pattern edges e and their subsets of the bondtype
space, BS(e). Otherwise different patterns P1 and P2
(P1 ≠ P2) could describe the same subset of
chemical space, i.e., CS(P1) = CS(P2). This implies
that for each atomtype and bondtype that is
possible for any pattern node or edge, there exists
a molecule m ∈ CS(P) such that m ∉ CS(P′) if a
certain atomtype or bondtype is not present at the
node or edge:

=P N E( , )1 1 (1)

∀ ∈ ∀ ∈ ∃ ∈ ∃ ′

′ = \{ } ∪ { \{ }} ⇒

∉ ′

n N s AS n m CS P P

P N n n s E m

CS P

: ( ): ( ):

: ( , )

( )

a

a

1

1 1

(2)

∀ { } ∈ ∀ ∈ { }

∃ ∈ ∃ ′ ′

= \{{ }} ∪ {{ }\{ }}
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N E m n m n s

m CS P

, : ( , )

: ( ): :

( , , , )

( )

e

e

1

1 1
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The Subpattern Relationship. From the application point of
view, it would be very interesting to detect subset relationships.
In practice, a subset relationship P1⊆ P2means that P2 is a more
generic pattern than P1, that is, P2 matches all molecules that P1
hits and potentially some more (in which case P1 is a true
subset). For a pair of pattern nodes n1 and n2, we define n1⊆ n2 if
and only if AS(n1) ⊆ AS(n2). Following the definition of
subgraph isomorphism, we are able to define the subset
relationship between chemical patterns as follows: We consider
a chemical pattern P1 = (N1, E1) to be a subpattern of P2 =
(N2, E2) if and only if there exists a subsetN1′⊆N1 and a bijective
node-mapping function f: N2→ N1′ such that

• ∀ n ∈ N2: AS( f(n)) ⊆ AS(n)

• ∀ n1, n2 ∈ N2: {n1, n2} ∈ E2 ⇔ {f(n1), f(n2)} ∈ E1 ∧

BS({f(n1), f(n2)}) ⊆ BS({n1, n2})

Every node and edge of themore generic pattern P2 is mapped to
a node of the more specific pattern P1. Each single mapping
follows the subset relation as well. It should be noted that the
intuitive relationship between pattern isomorphism and
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subpattern isomorphism holds, i.e., if P1 ⊆ P2 and P2 ⊆P1, it
follows that P1 = P2.
The Maximum Common Subpattern. Psub = (Nsub, Esub) is

the maximum common subpattern of pattern P1 = (N1, E1) and
pattern P2 = (N2, E2) if and only if there exists a subsetN1′⊆N1, a
subsetN2′⊆N2, and bijective node-mapping functions f1:Nsub→

N1′ and f 2: Nsub→ N2′ such that

• ∀ n ∈ Nsub: AS(n) ⊆ AS( f1(n))
• ∀ n ∈ Nsub: AS(n) ⊆ AS( f 2(n))
• ∀ n1, n2 ∈ Nsub: {n1, n2} ∈ Esub⇔ {f1(n1), f1(n2)} ∈ E1 ∧

BS({n1, n2}) ⊆ BS({f1(n1), f1(n2)})
• ∀ n1, n2 ∈ Nsub: {n1, n2} ∈ Esub⇔ {f 2(n1), f 2(n2)} ∈ E2 ∧

BS({n1, n2}) ⊆ BS({f 2(n1), f 2(n2)})
• Nsub and Esub cannot be extended.

Pattern Similarity. To capture the chemical intuition of
similarity, the definition of pattern similarity needs to include
more aspects than pattern representations in CS. For example,
two patterns might match only different molecules that are,
however, very similar to each other. In other words, chemical
similarity should be reûected in pattern similarity although the
patterns match different molecules.
To mimic the chemical intuition of similar patterns, we

propose a probability model of extended atomtype occurrence.
We therefore define similarity between patterns P1 and P2 such
that the score approximates the coverage of P1 in P2 using the
maximum common subpattern Psub. On the basis of a statistic of
the occurrences of extended atomtypes, context-based similarity
of nodes can be defined. We propose a similarity measure that
approximates weighted coverage of AS(nsub) in AS(n1) for
compatible nodes of two chemical patterns: two nodes n1 and n2
are similar if and only if AS(n1) ∩ AS(n2) ≠ Ø. This definition
supports the intuitive relationship CS(P1) = CS(P2)⇒ Sim(P1,
P2) = 1.

■ COMPARING SMARTS EXPRESSIONS

Over the past decades, the SMARTS language has been
established as the quasi-standard for molecular patterns.
Concepts like logical expressions for atoms and bonds as well
as recursive pattern definition make SMARTS an extremely
powerful language. The SMARTScompare algorithm presented
here will cover most of the language constructs and solve the
various pattern comparison problems defined above.
SMARTScompare is based on the calculation of a maximum

common substructure (MCS) between the two pattern graphs.
In the following, we will use the terms node and edge whenever
we mean the corresponding components of a SMARTS
expression, while atom and bond are used for molecules only.
The overall strategy of SMARTScompare can be summarized

as follows: First, a method is required that allows two single
SMARTS nodes to be compared with each other, and here a
fingerprint representing the SMARTS atomtype space AS is
developed for this purpose. After this concept is extended to
SMARTS edges, an MCS algorithm is applied. By modification
of the node compatibility function, all of the problems specified
above, including the similarity calculation, can be addressed with
a single algorithm. Finally, we extend the algorithm to deal with
recursive SMARTS expressions.
Fingerprint Generation and Pattern Preparation. The

Extended Atomtype. The comparison of SMARTS expressions
is based on a description of chemical space following a standard
chemistry model.28 Atoms receive an atomtype with a
corresponding valence state covering the element, the number

and types of incident bonds, and the charge. The SMARTS
language is able to distinguish atoms in more detail, so the
atomtype is extended with the following SMARTS-specific
properties: number of attached hydrogens (no distinction
between explicit and implicit hydrogens), number of aromatic
bonds, hybridization, number of rings of which the atom is a
part, minimum ring size, and number of ring bonds. While the
original SMARTS ring features are based on the smallest set of
smallest rings (SSSR)29 concept, which is known to be
ambiguous, we employ the unique ring families (URF)
approach.30 Hybridization is not part of the original SMARTS
definition, but it is supported by many implementations and
therefore is included in the extended atomtype states. The
extended atomtypes additionally cover the number of incident
aromatic bonds. This is not part of the SMARTS language but
improves the distinction of atomtypes in aromatic ring systems.
Although technically possible, our current implementation does
not support metals, isotopes, or chirality. Figure 1 gives an

example of extended atomtypes uniquely assigned to atoms of a
molecule. All of the chemically feasible extended atomtypes are
enumerated and stored in a list. Table 1 lists the applied criteria

for chemical feasibility. Properties like connectivity (“X”) that
are covered by the chemistry model’s valence state or atomtype
need no further enumeration and are directly used in the
extended atomtypes. Properties like adjacent hydrogen (“H”
and “h”) that can be limited on the basis of other properties of
the atomtype are enumerated in this explicit range. Finally, for
the ring properties (“R” and “r”) there is no such limitation.

Figure 1. Example of a molecule with the unique annotations of
extended atomtypes at the carbon atoms. The three-digit bond code is
the number of localized single, double, and triple bonds.

Table 1. Criteria for Chemical Feasibility of the Enumerated
Extended Atomtypes

nHydrogen + nAro‑bonds ≤ nBonds
nHydrogen + nRing‑bonds ≤ nBonds

nAro‑bonds ≤ nRing‑bonds
nRing‑bonds/2 ≤ nRing‑mem
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Their enumeration is artificially limited to at most four URFs
(rings) of which an atom is a part and a maximum ring size of 24
atoms. There are additional extended atomtypes for atoms in
more than four URFs and in rings with a minimum size larger
than 24, but they can no longer be distinguished from each
other. Table 2 presents all of the covered SMARTS node

properties and how they are represented in the extended
atomtypes. The enumeration of all feasible feature combinations
results in 20 565 unique extended atomtypes, called the
atomtype space. A more detailed enumeration scheme is given
in the Supporting Information (see SI1).
The atomtype space is the basis of a fingerprint descriptor for

SMARTS nodes consisting of 20 565 bits, in which each bit
corresponds to a specific extended atomtype as depicted in
Figure 2. This descriptor captures any logical expressions the
SMARTS node description might contain.
Basic Fingerprint Generation. The generation of the specific

SMARTS node fingerprints consists of two major parts (see
Figure 3):

1. All bits corresponding to extended atomtypes fulfilling the
SMARTS node expression are set to active.

2. All set bits violating properties of the environment of the
SMARTS node are reset.

Table 3 lists some criteria used for bit reduction in the second
step. They are also part of an extended list given in Table S4 in
the Supporting Information. How these properties are retrieved
from the node environments and postprocessed is also shown in
the Supporting Information (see SI2).
For each edge of a SMARTS expression, a fingerprint of nine

bits representing bond features is created. Edge fingerprint bits
represent single, double, triple, and directed bonds in and
outside of rings and aromatic ring bonds. The first four bits
belong to nonring bonds and the following four bits to ring
bonds in the given order. The ninth bit represents an aromatic
ring bond. The edge fingerprint is depicted in Figure 4.
The resulting edge fingerprint can be further pruned by

examining the neighboring nodes and edges. If any of the
incident nodes does not allow a certain bondtype in its
environment, the corresponding bits in the edge fingerprint
are reset. After that, incident nodes and edges that could be
affected by an update are updated as well until convergence is
reached. The node fingerprint update is based on the
environment criteria listed in Tables 3 and S4. The criteria for
the edge fingerprint updates are listed in Table 4.
We want to highlight that fingerprint pruning is necessary for

subset detection. The pruning strategy does not guarantee that
each bit in all fingerprints is necessary to describe CS(P) as
defined for the generic chemical pattern in eqs 2 and 3. It should
be noted that the pruning strategy is conservative since all
pruned atom- or bondtypes are irrelevant to describe CS(P).
Small rings up to a size of eight nodes can be detected as

aromatic rings. If every node of a ring is aromatic, the edge
fingerprints are pruned to reset all bits representing non-
aromaticity. This feature allows SMARTS expressions like
c1ccccc1 and c:1:c:c:c:c:c:1 to be considered as equal. In
general, there is no possibility to detect a generic edge as
aromatic within the SMARTS context. In macrocycles there can
be aliphatic single bonds between aromatic atoms. Conse-
quently, it is necessary to restrict the supported ring sizes for this
feature. According to the NAOMI chemistry model,28 the limit
is set to a maximum number of eight nodes for those rings. This
feature is enabled by default in SMARTScompare because it is
cumbersome to mark aromaticity explicitly and most often it is

Table 2. SMARTS Node Properties and How They Are
Represented in the Extended Atomtypes

SMARTS node
property symbol represented in extended atom type

Aromaticity a, ... enumerated property

Charge +,− part of the atomtype (chemistry model)

Connectivity X sum over incident bond types (chemistry
model)

Degree D difference of connectivity and hydrogen
property

(Explicit|Implicit)
hydrogen

H, h enumerated property

Hybridization ^ enumerated property

Ring connectivity x enumerated property

Ring size r enumerated property

Ring membership R enumerated property

Atomic number # part of the atomtype (chemistry model)

Valence v weighted sum over incident bond types
(chemistry model)

Figure 2. Depiction of the systematically enumerated 20 565 extended atomtypes. The assigned indices correspond to the implementation list
position. Hybridization is omitted in the depiction.
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implicitly part of SMARTS patterns. As shown in Validation, this
feature can sometimes lead to erroneous subset claims.
SMARTS recursion has an inûuence on fingerprint generation

too. The effects are described brieûy after the matching
algorithm and in detail in the Supporting Information (see SI3).
The Matching Algorithm. The mapping between two

SMARTS patterns is calculated using a clique-based connected
maximum common induced subgraph approach.31−33 In the first
step, a product graph, often called a compatibility graph, is built.

Cliques in this graph represent common subgraphs between the
two SMARTS expressions. For graphs, this is a relatively simple
step since only the labels of nodes and edges are compared. For
SMARTScompare, the compatibility between nodes and edges
depends on the problem to be solved. In all cases, we use the
subset of all matching atomtypes AS(n) for a node n or
bondtypes BS(e) for an edge e. The compatibility criteria are
listed in Table 5
For pattern isomorphism, we expect the MCS to be complete,

i.e., to match all nodes of the first pattern to all nodes of the
second. For subpattern isomorphism, all nodes of the first
pattern (the more generic one) have to be matched. In all other
cases, we search for themaximum connected common subgraph.
By the use of a modified connected MCS algorithm of the
Parasols library,34 all MCSs of maximum size are returned as the
result.

Figure 3.Depiction of the fingerprint generation for the second node (shown at the top) of the pattern [!H][CX4R0,NX4R0][!H]. Below the pattern,
the fingerprint is shown. In the center of the figure there are some extended atomtypes corresponding to the bits set in the fingerprint. The lower
depiction of the fingerprint shows reset bits of the fingerprint belonging to atomtypes that are not compatible to the environment of the node (see the
pattern depiction at the bottom left). Pictures were created with SMARTSviewer.18,19

Table 3. Criteria for Fingerprint Bits That Arise from the
Node Environment

node environment extended atomtype

envBonds ≤ nBonds
envValence ≤ nnBondsalence

envHydrogen ≤ nHydrogen
env!Hydrogen ≤ n!Hydrogen

envDouble‑bond ≤ nDouble‑bond
envTriple‑bond ≤ nTriple‑bond

envValence − envDegree ≤ nValence − nDegree
envAro‑bond ≤ nAro‑bond
envRing‑bond ≤ nRing‑bond
env!Ring‑bond ≤ n!Ring‑bond

Figure 4. Edge fingerprint. The first four bits represent acyclic
bondtypes, and the final five bits represent the cyclic ones. The bits are
annotated with their meaning in SMARTS symbols.

Table 4. Edge Fingerprint Environment Pruning Criteriaa

edge type criterion

Single bond both incident nodes allow single bonds

Double bond both incident nodes allow double bonds

Triple bond both incident nodes allow triple bonds

Directed bond any incident node allows double bonds

Aromatic bond both incident nodes can be aromatic

Ring bond both incident nodes can be in rings
aIf any incident node of an edge does not allow a certain bondtype in
its environment, the corresponding bits in the edge fingerprint are
reset. For example, if the fingerprint of an node incident to an edge
contains no extended atomtype with incident single bonds, the edge
cannot be a single bond.
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An example execution of the algorithm performing a similarity
search between two patterns is summarized in Figure 5. Figure 6

shows a similar example executing a subset search for more
specific patterns. These two examples emphasize the algorithmic
similarity between the available execution modes similarity
search and subset search: there is no difference except for the
compatibility criterion. In both figures, the symbolic annotation
of fingerprints is performed first. Then the compatibility graph,
represented as a compatibility matrix, is created. Finally, the
maximum common subgraph is depicted (blue connection
lines).
Result Compilation.The algorithm computes all maximum

common subgraphs for each comparison with the patterns and
their recursions. On the basis of these MCS results, the final
mapping result is produced. The computed mapping between
two patterns should be independent of pattern-invariant aspects
of the SMARTS string, such as node order, order of logic
operands, etc. This is achieved by enumerating all possible

mappings and scoring them. The fingerprint pairs of all mapped
nodes are scored using a similarity function like the Tanimoto
coeücient. The result yielding the highest score is finally chosen.
In the case of subset search including recursive patterns,

additional constraints have to be applied. They are described in
the Supporting Information (see SI5).
Finally, there are a few more aspects that are handled during

result compilation. The definition of the generic chemical
pattern contains several constraints regarding pattern unique-
ness. By pruning the SMARTS node and edge fingerprints,
SMARTScompare tries to come as close as possible to a generic
pattern representation. This is not always achievable. Explicit
hydrogen nodes ([H] or [#1]) are always included in their
neighbor’s node fingerprints. Thus, they can be considered
redundant. The same holds true for wildcard nodes connected
with exactly one acyclic edge. Since their fingerprints are
completely determined by their environment, they can be
considered redundant as well.

SMARTS Recursion. SMARTS recursion is a node property
that describes the structural environment of the node to which it
is attached. The recursive description, a SMARTS pattern by
itself, is compared against the molecule, keeping the first node
assigned to the atom matched while matching the recursive
description independent from the main pattern (for a detailed
description of SMARTS recursion, see SI3−SI5).
Recursive environment descriptions are frequently used, but

unfortunately, they substantially complicate the comparison of
SMARTS patterns. To handle SMARTS recursion correctly, the
matching procedures are usually recursive by themselves. To
integrate SMARTS recursion into the comparison algorithm,
fingerprints inûuenced by SMARTS recursion have to be
modified, the MCS algorithm has to be implemented in a
recursive fashion, and the logic between recursive expressions
has to be taken into account.

Recursion Fingerprint Handling. Node environments
formulated in SMARTS recursion have an inûuence on
fingerprint generation. Positive environments participate with
their first node, since it has to be fulfilled at the attachment node.
Negated environments have to be considered for fingerprint
generation only if they represent exactly one node; otherwise,
they do not inûuence any node fingerprints.
SMARTS recursion is explicitly considered after the first

fingerprint pruning step for the basic pattern. Handling of
SMARTS recursion is divided into the following steps:

1. Generation of node and edge fingerprints for the recursive
environment pattern.

2. Removal of redundant SMARTS recursion, i.e., recursive
environments that are more generic than the basic
pattern.

3. Evaluation of the logic in the node expression and
restructuring into a disjunctive normal form (DNF). In
this context, alternatives are defined as conjunctions of
SMARTS recursion, and the node expression is a
disjunction of alternatives.

4. Removal of redundant SMARTS recursions within the
formulated alternatives.

5. Removal of redundant alternatives from the generated
DNFs in SMARTS node expressions.

6. Update of node fingerprints using all of the information
on SMARTS recursion grouped into alternatives.

7. Final pruning of all fingerprints using the updated
fingerprints of nodes with SMARTS recursion.

Table 5. Fingerprint Compatibility Criteria for the Different
Problem Types

compatibility criteria

comparison problem for two nodes n1 and n2 for two edges e1 and e2

pattern isomorphism AS(n1) = AS(n2) BS(e1) = BS(e2)

subpattern isomorphism AS(n2) ⊆ AS(n1) BS(e2) ⊆ BS(e1)

similarity search AS(n1) ∩ AS(n2) ≠ Ø BS(e1) ∩ BS(e2) ≠ Ø

Figure 5.Matching procedure for nonrecursive SMARTS patterns. For
each node and edge, a fingerprint is generated, and the compatibility
graph is built. In this figure it is represented by the compatibility matrix
on the left. In a similarity search, two nodes are compatible if their
fingerprints share at least one bit. Partially filled cells of the matrix
indicate the percentage of shared bits. Finally, the MCS algorithm
computes all cliques of maximum size, thus computing the maximum
common subgraph of the two SMARTS patterns.

Figure 6. Same matching procedure as in Figure 5, but for the subset
search. This employs additional constraints, such that each node of
CCC[N,O] must be more specific than compatible nodes of CCN. The
two nodes that are not more specific are crossed out. Beyond that, the
computation stays the same. CCC[N,O] is not a subset of CCN, since
the mapping does not completely cover CCN.
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A detailed description of the SMARTS recursion handling
during atomtype fingerprint generation is given in the
Supporting Information (see SI3).
Recursive Matching. To determine the compatibility of

nodes with recursive environments, the matching algorithm is
recursive by itself. If at least one of the mapped nodes carries a
SMARTS recursion, the compatibility of the nodes is
determined by comparing all required combinations of the
SMARTS recursive environments. A general overview of this
recursive matching can be seen in Figure 7. The first pattern has
two nodes, one of them with SMARTS recursion, and the
second pattern does not have a recursive expression. The
compatibility of the node with SMARTS recursion and a
fingerprint-compatible node is a result of a recursive comparison
of the SMARTS recursion of the first pattern and the second
pattern. This is shown by the two compatibility matrices in
Figure 7.
To handle SMARTS recursion correctly, the procedure has to

solve the following tasks:

1. Matching a SMARTS recursion to the basic pattern.
2. Matching a SMARTS recursion to another SMARTS

recursion.
3. Evaluating the pattern logic to derive constraints for the

subset search.
4. Correcting results with respect to negated SMARTS

recursions.

A detailed description of all mentioned procedures is given in
the Supporting Information (see SI4).
Finally, nodes are compatible if their fingerprints are

compatible and their SMARTS recursions are compatible with

respect to the comparison mode of interest (subset or
similarity).
The presented procedure follows an indirect recursion that

occurs when the compatibility of nodes with SMARTS recursion
is determined. TheMCS algorithm needs to determine the node
compatibility of all nodes, including those with SMARTS
recursion. To determine the compatibility of nodes with
SMARTS recursion, the SMARTScompare algorithm is applied
to the recursive SMARTS pattern.

SMARTS Recursion during Result Compilation. The
matching procedure results in several partial results for the
basic pattern and the recursions. For the final result, an optimal
mapping between these patterns is required. A detailed
description how this mapping is computed is given in the
Supporting Information (see SI5).

Further Features. The algorithm described above was
designed for SMARTS comparisons. However, during its
development we noticed its potential for error detection in
SMARTS expressions:

• The exhaustive atomtype state generation is a powerful
chemical feasibility verification for SMARTS expressions.
This procedure verifies that each node corresponds to at
least one chemical state. This test includes the node’s
recursive environment as well as the node’s logical
expression. In general, SMARTS node expressions
exceeding element-specific valences and impossible
logical constructions are detected. For example, the
algorithm will detect the nitrogen in patterns like
C[$(N(=O)=O)] as a nitrogen with a valence of 5,
which is unsupported by the chemistry model.

Figure 7. Recursive matching procedure for the comparison of N[$(CC(=O)O)] and NCC(=O)O. The patterns are shown at the top. At the bottom
left, the MCS of the structures is shown. In the bottom middle, the compatibility matrix for the structure compatibility and the nested compatibility
matrix for the MCS calculation of the recursion of the first pattern and the structure of the second one are shown. At the bottom right, the MCS of the
recursion and the structure is depicted. Whenever a recursive node’s fingerprint is compatible with another node, the compatibility is finally derived by
performing the matching recursively. This means that nodes are compatible if and only if their environments are compatible.
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• The algorithm is able to detect many types of redundancy
in SMARTS expressions. On the basis of this information,
SMARTS expressions can be optimized with respect to
computational complexity and human readability. This
includes even some kinds of redundancy within the logical
constructions of SMARTS recursion. If a recursion is
more generic than the environment of its attachment
node, it does not specify the pattern and thus could be
omitted, as in [$(CO)]O. If SMARTS recursions in
logical structures are more specific or more generic, they
could be redundant as well. For example, the pattern
[$(CO)$(C*),$(C*)] gives the same description as
[$(C*)]. More details are provided in the Supporting
Information (see SI3).

■ GENERALITY OF THE APPROACH

The above-described algorithm for SMARTS pattern compar-
ison works correctly in most practical applications, but it is not
complete and correct in general. In this section, we summarize
unsupported features and cases where the algorithm fails.
As mentioned before, all kinds of chirality and isotopes are

unsupported to date. Isotopes are easy to include in the
fingerprint approach, but they are unsupported within the
chemistry model of the underlying NAOMI28 cheminformatics
library. Disconnected SMARTS patterns are also unsupported
by the algorithm. Chirality is not considered during fingerprint
generation. The verification of ligand orders, which is required
for chirality handling, is currently unsupported. In order to
extend the algorithm in this direction, it would be necessary to
verify the ligand orders within the MCS algorithm or in the final
result compilation. Currently our implementation denies subset
relations of patterns including those unsupported SMARTS
features.
One core aspect of the SMARTScompare algorithm is

extensive valence counting. With regard to unspecific edges,
the abilities to detect pattern identity are limited. As shown in
Table 4, edge fingerprints are pruned with regard to their
neighboring nodes. This kind of pruning is not chemically aware
of whether a certain bondtype is allowed for a specific edge. It is
only aware of the existence of a specific bondtype within the set
of incident edges of a node.
Saturation of a bondtype is undetected. This might lead to

missed pattern identities, as illustrated in the comparison of the
patterns *=[CX3]∼[CX3] and *=[CX3]-[CX3]. In this
example, the algorithm does not detect that the wildcard bond
has to be a single bond resulting in pattern identity. A similar
example is shown in Figure 8. The two oxygen atoms can only be
connected via a double bond and a single bond. To solve this
issue, it is necessary to detect and break the symmetry. Both
examples can be extended to a general case where
SMARTScompare is unable to detect pattern identities because
some fingerprints still require pruning to fulfill the non-
redundancy requirements described in eqs 2 and 3.
A generic example of patterns of this class exploits the fact that

a certain bond occurs exactly once at all incident bonds to an
atom. Then there have to be at least two incident edges if those
fingerprints allow two different bondtypes. If the pattern is
symmetric, then SMARTScompare is unable to detect pattern
identity with a localized variant. We can compare the patterns
O∼[CX3v4H1]∼O and O=[CX3v4H1]O, which are not
detected as equal by SMARTScompare. Since the pattern with
the wildcard edges is symmetric and there is exactly one double

bond incident to the central carbon node, the two patterns are
actually identical.
Compatibility of logical constructions within environments

can be hard to determine, and the approach might miss subset
relations. There are constructions that are known to be
undetectable, such as [$(C[N,O])] and [$(CN),$(CO)].
These two SMARTS match if there is a CN or a CO
substructure. The subset relation is detected from the pattern
with one recursion to the pattern with two recursions but is
missed for the other way around because of algorithmic
restrictions for node compatibility. Figure 9 depicts the

situation. Our algorithm compares recursive expressions
individually but is not able to combine chemical information
on two recursive expressions into a single one. In general, if there
are two alternatives for recursive SMARTS expressions that
differ in only one node, the algorithm is unable to detect pattern
identity to a pattern where the two recursions are combined into
one recursion with the alternative combined within the node.
Another kind of undetected subset relation is shown in Figure

10. Besides the recursion, the two patterns are identical. Thus, all
nodes of the structure should be compatible. However, the two
nodes of the lower pattern connected by the cyan arrows have
different fingerprints, although they can always match the same
atom. In fact, the fingerprint of the node in the recursion
(’[NH1]’) is more general than its counterpart in the basic
pattern. However, chemical information from neighboring
nodes of the attachment node is not used to prune fingerprints
in recursions and the other way around from neighboring nodes
of recursions’ root nodes. Because of this fingerprint pruning
limitation, c−!@[NH1]C(=O)N is not detected to be equal to

Figure 8. Two SMARTS patterns for formic acid that are not detected
as equal. The upper pattern is written more generically than necessary.
The pattern is symmetric, and the two wildcard bonds can only be a
single bond and a double bond. Thus, neither the edges nor the two
nodes describing oxygen are detected as equal.

Figure 9. One limitation of the approach is that the subset search is
strict and enforces the subset relation for every node. Although the two
patterns shown are equal, the approach detects the subset relation in
only one direction.
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[$(C(=O)([NH1])N)][NH1]-!@c. Another example of a
missed pruning opportunity in the basic pattern is the fact that
[NH2][CH2]N is not detected to be equal to N[$([CH2]-
[NH2])]N. This limitation holds for generic recursion
expressions that do map parts of the environment of their
attachment node. Their fingerprints could be pruned with the
corresponding adjacent nodes of the attachment node only if the
mapping is unique. The other way around with a unique
mapping, fingerprints in the basic pattern could be pruned as
well.
In general, negated SMARTS recursions have no inûuence on

fingerprints of neighboring nodes or incident edges. Consider
the pattern O[C!$(C=C)](N)∼C. The wildcard bond C∼C
could be pruned with the knowledge of the negated SMARTS
recursion !$(C=C) and become C-C. This kind of pruning using
negated SMARTS recursion is not supported.
Negated SMARTS recursion is supported by the algorithm,

but it is only partially considered in similarity searching.
Similarity values do not consider negated SMARTS recursion
except when there is a clear incompatibility. For subset search,
negated SMARTS recursion in the more generic pattern and in
the more specific pattern is supported.
The implementation of negated SMARTS recursion handling

is designed to avoid deniable subset relations. Thus, negated
recursion might lead to undetected subset relations. There are

three criteria that allow subset detection for generic patterns
with negated SMARTS recursion:

1. There is a compatible negated recursion in the more
specific pattern.

2. The alternative of which the negated SMARTS recursion
is part is not needed to detect compatibility.

3. The negated SMARTS recursion root node is incompat-
ible with the mapping partner of its attachment node.

For any negated SMARTS recursion that violates all three
criteria, subset relations are not detected. These criteria might be
too strict to detect all possible subset relations, but they ensure
that there are no false positives. Except for the pruning
possibility, negated SMARTS recursion in the more specific
pattern has no inûuence on the subset detection since it always
specifies a pattern.

■ VALIDATION

Since no comparable algorithmic approach is available, we
decided to approximately validate our approach using a large
compound collection. On the basis of a large data set, one can
determine candidates for subpattern relationships. If two
patterns P1 and P2 both match several compounds of a diverse
compound set and each molecule matched by P2 is also matched
by P1, then P2 is a candidate to be more specific than P1. If there
is any molecule matched by P2 that is not matched by P1, then P2
is not more specific than P1.

Validation of Subset Relationships. The compound set
used contained∼370 million molecules and comprised all of the
ZINC1535 2D compounds that were available on June 8, 2017.
This set is called the validation data set. The collection of
patterns was based on the data used for a systematic benchmark
of subgraph algorithms36 and contained 80 073 patterns in total.
It consisted of SMARTS patterns as well as substructure-like
patterns without any SMARTS properties, and 38 941 of those
patterns matched at least one molecule in the validation data set.
Patterns matching exactly one hydrogen were discarded and not
part of that group of patterns. Of the matching patterns, 3393
used explicit SMARTS properties and the remaining ones were
substructures without SMARTS properties.
This experimental setup is used to provide data for possible

subset relations between SMARTS patterns. We sorted the
entries for patterns by the number of matching molecules in
descending order and extracted pattern pairs with potential
subset relationships. There are 3 432 874 pattern pairs for which
the sets of matched molecules are in a subset relationship.
SMARTScompare determined 1 830 553 pattern pairs. The
confusion matrix is shown in Table 6. In majority of the
comparisons, the experiment and SMARTScompare agree that
patterns are not in a subset relation. This is as expected using a
diverse pattern set. For 53.3% of the experimental subset pairs,
SMARTScompare also computes this relation. There are seven
pattern pairs where the experiment proved SMARTScompare to
be wrong (see Table 7). Six of them have the pattern [S;D3](-

Figure 10. Another limitation of subset detection. For a recursive
pattern which is compared with its nonrecursive structure, one of the
recursions nitrogen nodes (’[NH1]’) should have the same fingerprint
as the corresponding node of the pattern’s structure. Currently
SMARTScompare does not compute recursion to structure mappings
within a pattern to improve fingerprint pruning. This leads to a situation
where the recursion is not mappable to the other pattern, and thus, the
subset relation is missed. For this kind of error, it is necessary for nodes
of the recursion to be described the same as nodes of the nonrecursive
pattern without being redundant.

Table 6. Comparison of the Subset Relations Detected by SMARTScompare and the Reference Dataa

experiment

S N total

SMARTScompare

S 1 830 546 7 1 830 553

N 1 602 328 1 512 968 600 1 514 570 928

total 3 432 874 1 512 968 607 1 516 401 481

a
“S” stands for “subset relation” and “N” for “no subset relation”.
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N)(-[c,C])(-[c,C]) as a subpattern, and four of them contain
positive charges. The disagreement is caused by the underlying
NAOMI chemistry model. Although the model knows sulfur
valence states with four explicit bonds, all of them are annotated
with no neighboring hydrogen atoms. The compound
ZINC000100315425 is out of the description domain of the
chemistry model. In the pattern [S;D3](-N)(-[c,C])(-[c,C]),
the sulfur node is expected to match sulfur with three single
bonds and additional hydrogens. Thus, only positively charged
sulfur atoms with three single bonds are assumed to match the
pattern. Figure 11 shows all of the mentioned patterns and the
ZINC compound. The relevant sulfur is encircled.

The only remaining case in the first run is about a condensed
aromatic pattern. ZINC structure ZINC000000386967 revealed
that there may be small rings whose atoms are all aromatic but
not every bond of this ring is aromatic, as shown in Figure 12. In
this structure, a cycle of size 5 connects two polycyclic aromatic
ring systems. The two bonds highlighted in green are not
aromatic, although all five ring atoms are aromatic. This shows
that the optional feature to detect bonds in rings consisting
exclusively of aromatic atoms automatically as aromatic is not
always right for SMARTS patterns.
A look at the remaining experimental subset pairs reveals

many cases for which the validation data set is insuücient to
detect the subtle differences between patterns. Often, certain

fragments imply a constant reoccurring environment in the
molecules. As long as other environments are theoretically
possible, the experimental subset relationship is wrong.
This can be demonstrated with the generic carbonyl oxygen.

Besides the typical atomtype for carbonyl oxygen with exactly
one double bond, named ’O(010)’, the chemistry model also
contains an atomtype with a positively charged oxygen with a
single and a double bond, named ’O(110)+’. The pyrylium ion
justifies its existence. In the case of the generic carbonyl C=O,
themodel has to assume that the ’O(110)+’ atomtype is possible
even if there is no molecule where it occurs. Thus, patterns like
C=O and C=[OX1] are not considered identical by the model,
although one might expect this behavior.
Another common example is the identification of acyclic parts

of the patterns. If a node or an edge of a pattern is explicitly
acyclic, there are often several subset pattern pairs. For them the
experimental subset relation is valid because there is nomolecule
in the validation data set for which the structure is part of a ring.
Figure 13 shows a pattern pair combining both examples. The
upper pattern describes two carbons, one of which is acyclic. In
the experiment the same holds true for the two chain carbons in
the lower left pattern. For SMARTScompare it is possible that
the whole substructure is still part of a ring. Therefore, the singly
bonded oxygen would be positively charged and have three
bonds, as in oxonium. The modification of the pattern shown at
the lower right enables subset detection by SMARTScompare.
In conclusion, there are several experimentally valid subset
relations that could be denied if there were molecules showing
the pattern difference. This emphasizes the need for a
compound-independent pattern comparison method like
SMARTScompare.

■ CONCLUSION AND OUTLOOK

We have presented a novel solution to the generic chemical
pattern comparison problem. The algorithm employing a
maximum common subgraph (MCS) calculation is applicable
to any substructure-based language for molecular patterns. It is
inspired by a theoretical comparison approach for which
patterns are identical if and only if their representations in
chemical space are identical. A chemistry model is the
foundation on top of which we designed a fingerprint descriptor
for the pattern’s nodes and edges. It is important that the
fingerprint includes all available information on the node or edge
and its environment in the pattern. Furthermore, redundancy in
the pattern hampers correct comparison and has to be removed
beforehand.
We implemented our algorithm for the widely used SMARTS

language. The fingerprints cover most SMARTS features,
including ring properties up to a ring size of 25. As a side effect,
it is possible to detect common pattern errors resulting from
incorrect valences or contradictions as well as redundant
elements in the pattern. SMARTS recursion turns out to be a
major diüculty in comparison of SMARTS patterns. The
recursively defined environments usually describe more than
one node, such that a truly recursive schema is unavoidable for
its handling. As a proof of concept, the algorithm is implemented
into the software tool SMARTScompare.
With SMARTScompare, it is possible to analyze SMARTS

pattern pairs independent of their string representation. The
algorithm is capable of similarity assessments and can detect
subset relations between patterns. We validated the subset
predictions of SMARTScompare using a large pattern collection
applied to more than 370 million compounds. In that

Table 7. List of All False Subset Predictions during the
Validation

pattern supposed subset pattern

[+] [S;D3](−N)(−[c,C])(−[c,C])

[+,++,+++] [S;D3](−N)(−[c,C])(−[c,C])

[O+,o+,S+,s+] [S;D3](−N)(−[c,C])(−[c,C])

[C+,Cl+,I+,P+,S+] [S;D3](−N)(−[c,C])(−[c,C])

*[SX3](*)* [S;D3](−N)(−[c,C])(−[c,C])

[#16v3,#16v5] [S;D3](−N)(−[c,C])(−[c,C])

a1aaa2a(a1)aaa(a2):a [n+]12nc3c4c5c(c3cc1c(nc(c2C)C)C)cccc5ccc4

Figure 11. Six patterns that found [S;D3](−N)(−[c,C])(−[c,C]) as a
subpattern that could not be experimentally validated, as ZINC
structure ZINC000100315425 shows. The encircled sulfur has an
explicit adjacent hydrogen, which is outside the model domain of the
NAOMI chemistry model. There is no extended atom type
representing a sulfur with four bonds and adjacent hydrogen. There
is, however, an extended atom type for a positively charged sulfur with
three bonds. According to the model, the sulfur should be positively
charged and have only three single bonds.
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experiment, SMARTScompare found thousands of experimen-
tally valid pattern subset relations. The few observed issues
merely affect the description domain of the underlying
chemistry model and the handling of aromaticity. They have
no impact on the correctness of the approach.
In a follow-up publication27 we introduce a meaningful

pattern similarity approach and an optional aromaticity
detection method supporting the chemical intuition of
aromaticity, which has to be explicitly modeled in SMARTS.
We then demonstrate a showcase application of SMARTScom-
pare by performing an in-depth similarity analysis of publicly
available SMARTS pattern collections.
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(13) Obrezanova, O.; Csańyi, G.; Gola, J. M. R.; Segall, M. D.
Gaussian processes: A method for automatic QSAR modeling of
ADME properties. J. Chem. Inf. Model. 2007, 47, 1847−1857.
(14) Boström, J.; Falk, N.; Tyrchan, C. Exploiting personalized
information for reagent selection in drug design. Drug Discovery Today
2011, 16, 181−187.
(15) Zhang, L.; Zhu, H.;Mathiowetz, A.; Gao, H. Deep understanding
of structure-solubility relationship for a diverse set of organic
compounds using matched molecular pairs. Bioorg. Med. Chem. 2011,
19, 5763−5770.
(16) Schar̈fer, C.; Schulz-Gasch, T.; Hert, J.; Heinzerling, L.; Schulz,
B.; Inhester, T.; Stahl, M.; Rarey, M. CONFECT: Conformations from
an expert collection of torsion patterns.ChemMedChem 2013, 8, 1690−
1700.
(17) Guba, W.; Meyder, A.; Rarey, M.; Hert, J. Torsion Library
Reloaded: A New Version of Expert-Derived SMARTS Rules for
Assessing Conformations of Small Molecules. J. Chem. Inf. Model. 2016,
56, 1−5.
(18) Schomburg, K.; Ehrlich, H. C.; Stierand, K.; Rarey, M. From
structure diagrams to visual chemical patterns. J. Chem. Inf. Model.
2010, 50, 1529−1535.
(19) Center for Bioinformatics Hamburg. SMARTSviewServer.
https://smartsview.zbh.uni-hamburg.de (accessed Oct 11, 2018).
(20) Schomburg, K. T.; Wetzer, L.; Rarey, M. Interactive design of
generic chemical patterns. Drug Discovery Today 2013, 18, 651−658.
(21) Borgelt, C.; Berthold, M. Mining molecular fragments: finding
relevant substructures of molecules. Proc. IEEE Int. Conf. Data Mining
2002, 51−58.
(22) Bietz, S.; Schomburg, K. T.; Hilbig, M.; Rarey, M. Discriminative
Chemical Patterns: Automatic and Interactive Design. J. Chem. Inf.
Model. 2015, 55, 1535−1546.
(23) Hopcroft, J. E.; Motwani, R.; Ullman, J. D. Introduction to
Automata Theory, Languages, and Computation, 2nd ed.; Addison
Wesley, 2001; Chapter 4, pp 125−168.
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Table S1: Index of used expressions and functions occurring in the context of SMARTS
recursions

Expression Meaning

basic pattern The SMARTS pattern without SMARTS recursion
(local) structure In context of recursion matching: generalization of

’basic pattern’ meaning the pattern of the SMARTS
recursions attachment node

SMARTS recursion part of the SMARTS language
SMARTS alternative (several) SMARTS recursions that are connected via logical

’and’
Similarity of fingerprints Fingerprint similarity is based on common bits, two finger-

prints need at least one bit in common to achieve a similarity
value > 0

Positive variant of negated
SMARTS recursion

The negated SMARTS recursion without the negation. It is
also the SMARTS recursion that is actually matched when
matching negated SMARTS recursions

Root node of a SMARTS re-
cursion

The first specified node of a SMARTS recursion. In regular
SMARTS matching applications, it is matched to the same
atom as its attachment node.

Fingerprint similarity Fingerprints are considered similar, if they have at least one
bit in common.Otherwise they are considered dissimilar.

Environment of a node The incident bonds and adjacent nodes of a node

Function Accessed element of SMARTS pattern

alternative = ALT(<Pattern>,<node>) Access the first SMARTS alternative that is
part of the node

alt = ALT(<Pattern>,<node>,<index>) Access the ith SMARTS alternative that is
part of the node

recursion = ALT(<alternative>,<index>) Access the recursions that are part of the
SMARTS alternative

node = SUB(<recursion>,<index>) Access nodes of SMARTS recursion
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SI1: Enumeration Scheme for Atomtype-Space

The enumeration of atomtype-space starts with the valence states of the NAOMI chemistry

modelS1,S2. The so-called extended atomtype contains a reference to a valence state and

specific values for properties occurring in SMARTS expressions.

For each extended atomtype, the enumeration of the extension starts with the hydrogen

property. The corresponding valence states have an annotation of the maximum number of

attached hydrogens. All values from zero to that limit are enumerated. The second property

enumerated is aromaticity. The SMARTS language only supports the binary predicate of

aromaticity, within a certain pattern aromaticity can be defined on a more specific level. In

ring systems nodes could have two or three incident ring bonds. A non-recursive SMARTS

node expression is not able to distinct atoms with two aromatic bonds out of three incident

ring bonds from those having three aromatic bonds. But the structure of a pattern does

distinct those atoms. For each extended atomtype, the number of incident aromatic bonds is

set to zero. If the corresponding valence state can be aromatic, then the number of incident

aromatic bonds is enumerated starting at two up to the degree minus the number of attached

hydrogens.

The hybridization state is not a regular property in SMARTS, however several SMARTS

parsers have a corresponding extension. The NAOMI chemistry model assigns possible

hybridization states to atomtypes which can then be enumerated as well.

Next, the SMARTS ring properties are enumerated. The SMARTS definition is based

on SSSR ring basesS3 (Smallest set of smallest rings). Since these are not unique, we use

the URFS4 (Unique ring families) model instead. First the number of unique ring families

(URF) an atom is part of is enumerated. For each non-aromatic extended atomtype the

enumeration of possible values of R starts at zero and ends at five. The highest number

five is meant as a catch all state summarizing all values greater or equal five. After that,

the number of incident ring bonds is enumerated. For extended atomtypes that are not part

of a ring, this value is set to zero. For all other nodes, the enumeration starts with the
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number of incident aromatic bonds or two and ends when it reaches twice the number of

ring families. Since hydrogen atoms cannot be part of rings, the number of incident ring

bonds is limited to by the total number of bonds minus the number of attached hydrogen.

Finally, the minimum URF ring size for each atom is added. For extended atomtypes that

are not part of any ring this value is set to zero. For all other states, the enumeration starts

at three. For aromatic extended atomtypes, the enumeration stops at nine, with the nine as

a catch all state. In all other cases, the enumeration stops with a catch all state at a ring

size of 25.

This enumeration results in 20,565 extended atomtypes for the whole NAOMI chemistry

model. Unfortunately metals are so far mostly not covered by the model. Note that the ring

count and ring size enumeration results in the limitation that SMARTS expressions beyond

these limits cannot be distinguished. The reduced fingerprint as used for pattern similarity

is enumerated in the same way. The only difference is that the ring properties are far more

limited. In this case one is the catch all state for the ’R’ property and three is the catch

all state for the ’r’ property. The enumeration applying those limits results in 524 extended

atomtypes.

Extended Atomtype Assignment for Atoms

The extended atomtypes are designed to cover the complete atomtype-space. Therefore it is

possible to assign each atom in a molecule exactly one extended atomtype. For an atom, all

properties covered by the extended atomtype are known, especially the valence state. The

following relevant properties are extracted:

• number of adjacent hydrogen atoms

• number of incident aromatic bonds

• number of incident ring bonds

• number of rings (URF) the atom is part of

S5

D Publikationen der kumulativen Dissertation

149



• hybridization

Note that if the extracted properties are beyond the enumeration limits, they are reset to

the respective catch-all values and a warning is produced. Finally the generated extended

atomtype is searched within the enumerated list to assign a unique atomtype id.
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SI2: A Detailed Overview About Node Fingerprint Prun-

ing

For the purpose of node fingerprint pruning several properties of the node’s environment are

taken into account.

Table S2: All environment properties of a SMARTS node collected prior to fingerprint
pruning.

1. degree

2. valence

3. number of explicit adjacent hydrogen atoms

4. number of possible adjacent hydrogen atoms

5. number of incident single bonds that are not incident to hydrogen atoms

6. number of incident bonds with a minimum valence of two

7. number of incident triple bonds

8. number of incident bonds that can be aromatic bonds

9. number of incident explicit aromatic bonds

10. number of bonds that can be aromatic bonds and can be incident to hydrogen atoms

11. number of explicit ring bonds

12. number of explicit acyclic bonds

13. number of possible single bonds

14. number of possible double bonds

15. number of possible double bonds that are explicitly not aromatic

16. number of possible triple bonds

17. number of incident acyclic bonds that may be incident to hydrogen atoms

18. number of incident non-aromatic bonds to incident aromatic neighbors

19. number of incident non-aromatic bonds to incident aromatic neighbors or hydrogen

atoms
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Table S2 lists all properties that are collected and used for fingerprint pruning. Using

these properties each possible extended atomtype of a node fingerprint is reconsidered. Ta-

ble S3 lists all properties updated if there are less incident bonds that can be aromatic than

expected by the extended atomtype. Finally, all criteria, listed in Table S2 are used to

evaluate the compatibility of the SMARTS node environment and the extended atomtype.

Table S3: Environmental properties that are updated during extended atomtype compati-
bility evaluation if there are less aromatic bonds in the environment that required by the
extended atomtype.

1. The degree is increased by the number of aromatic bonds that are required by the

extended atomtype but not part of the environment.

2. The valence is increased by the number of aromatic bonds that are required by the

extended atomtype but not part of the environment. Note: this is a lower bound

valence estimation.

3. There can be neighbors in the environment that can be hydrogen as well as nodes

connected via an edge that can be aromatic. In such a situation the number of optional

adjacent hydrogen is decreased by the minimum of the number of those neighbors and

the number of missing aromatic bonds.

Table S4: The list of all applied criteria for SMARTS node environment to extended atom-
type compatibility

1. The degree in the environment must not be larger than the number of bonds of the

extended atomtype.

2. The observed minimum valence in the environment must not be larger than the valence

of the extended atomtype.

3. The number of explicit adjacent hydrogen atoms in the environment must not be larger

than in the extended atomtype.
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4. The difference of the valence of the extended atomtype and the environment must not be

smaller than twice the number of double bonds that are part of the extended atomtype

but not in the environment.

5. The difference of the valence of the extended atomtype and the environment must not

be smaller than trice the number of triple bonds that are part of the extended atomtype

but not in the environment.

6. The number of single, double and triple bonds in the environment must not be larger

than those in the extended atomtype.

7. The difference between valence and degree must not be smaller in the extended atomtype

than in the node’s environment.

8. The number of adjacent hydrogens must not be smaller in the extended atomtype than

those in the environment.

9. There must be enough free single bonds in the environment for all adjacent hydrogen

atoms of the extended atomtype.

10. The number of ring bonds must not be smaller in the extended atomtype than those in

the environment.

11. The number of acyclic bonds must not be smaller in the extended atomtype than those

in the environment.

12. The number of double and triple bonds in the extended atomtype must not be smaller

than the number of explicit non single bonds in the environment.

13. The difference in the number of adjacent hydrogen atoms in the extended atomtype and

the environment must not be larger than the difference of the number of bonds of the

extended atomtype and the degree of the environment.

14. The number of incident aromatic bonds must not be smaller in the extended atomtype

than those in the environment.

15. If an extended atomtype has sp2 hybridization because of adjacent aromatic systems,

there must be a free single bond that can be the bond to the aromatic system.
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SI3: Preparation of SMARTS Recursion for Fingerprint

Pruning

This section describes all necessary steps to generate a unique fingerprint for nodes with

SMARTS recursion:

1. Generation of node and edge fingerprints as for the basic pattern

2. Removal of redundant SMARTS recursion that are more generic than their local struc-

ture.

3. Evaluation of the node expression logic and grouping of SMARTS recursion into logical

alternatives (transformation into disjunctive normal form, DNF).

4. Removal of redundant SMARTS recursions within alternatives.

5. Removal of redundant alternatives from the generated DNF in SMARTS node expres-

sions.

6. Update of node fingerprints including all information provided by SMARTS alterna-

tives.

7. Final pruning of all fingerprints using the updated fingerprints of nodes with SMARTS

alternatives.

For each SMARTS recursion, node and edge fingerprints are generated and pruned in

the same way as for the basic pattern. The SMARTS recursion is processed to create a

fingerprint which can be used to prune the fingerprint of the attachment node. The overall

process is iterated until convergence is reached.

Like any other SMARTS property, recursions can be logically combined with ∧ and ∨.

We define a SMARTS query as SMARTS recursion or any non-recursive SMARTS prop-

erty. For nodes with SMARTS recursion, the SMARTS node expression is reformulated into
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[$(C~O)](=O)O

Figure S1: Detection of a redundant SMARTS recursion at its attachment node. C∼O is a
superset its local structure C(=O)O.

disjunctive normal form (DNF). We then define alternatives as logical ∧ connected (conjunc-

tion) SMARTS queries and combining these in turn by logical ∨ (disjunction). The DNF

structure of the SMARTS expression is crucial for the following processing and matching

steps.

Similar to SMARTS nodes in their environment, there can be redundancy in SMARTS re-

cursion. The following pruning procedure detects three kinds of redundancy within SMARTS

recursion. The first kind of redundancy is handled for each SMARTS recursion, the two fol-

lowing kinds of redundancy are related to logical combinations of SMARTS recursion. They

are handled in section .

1. Generic SMARTS recursions that are redundant within the local structure of their

attachment node. They are entirely removed from the matching procedure.

2. Generic SMARTS recursions that are redundant within their alternatives. They are

removed from the alternative.

3. Alternatives of SMARTS recursion that are more specific than others at the same

attachment node. They are removed from the SMARTS node expression.
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The first redundancy test for SMARTS recursion verifies that a SMARTS recursion is not

more generic than the local structure of its attachment node. Such generic recursions yield

no further information for the patterns P representation in chemical space CS(P ). Thus,

they can be removed from the pattern description without loss of specificity. Figure S1 shows

an example of a redundant SMARTS recursion. If a positive SMARTS recursion describes

exactly one node, it is always considered redundant because the first node of any positive

SMARTS recursion is fully exploited during fingerprint generation of the basic pattern.

Negative SMARTS recursions are never removed from the pattern. If they are more generic

than their attachment node’s environment, they indicate an error in their alternative.

Pruning of Recursion Alternatives

The following two redundancy tests are designed to remove any unnecessary SMARTS re-

cursion from the pattern. To do so we have to compare SMARTS recursions to each other

which can be performed with a recursive call of the SMARTScompare algorithm. Note that

SMARTS recursions can contain further SMARTS recursions causing further recursive calls.

The first test removes redundancy within logical and-expressions, i.e. within alternatives,

the last test removes redundancies in logical or-expressions, i.e. between alternatives.

Result[C;$(CO)$(C*),$(C*)] Step 1: In-alternative Pruning

=

<

Subexpression C* is more

general

= >

Step 2: Alternative Pruning

Alternative subexpression CO

is more specific

Figure S2: Two steps of the recursion alternative pruning. The first step detects and removes
redundancies within alternatives, the second step between alternatives. In the first step, the
more general recursion C∗ is removed from $(CO),$(C∗), reducing it to $(CO). In the second
step, the more specific alternative $(CO) is removed. This leaves the final pattern [C;$(C∗)]

To remove redundancy within alternatives, all SMARTS recursions of the alternative are

compared against each other. If any SMARTS recursion is more generic, than any other
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SMARTS recursion of the same alternative, it is considered redundant and removed from

the alternative. Within an alternative, each query has to be fulfilled for compatibility. This

implies that more generic SMARTS recursions yield no information, if more specific SMARTS

recursions are evaluated as well.

Let AP and AQ be two alternatives of SMARTS recursion at the node n. To remove

redundancy between AP and AQ all SMARTS recursions of SPi = SUB(AP , i) and SQj =

SUB(AQ) are compared with each other. AQ is more specific than AP if and only if for

each SMARTS recursion SPi there is a more specific SMARTS recursion SQj. If AQ is more

specific than AP , then AQ is considered redundant and removed from the node’s alternatives.

If any negated SMARTS recursion is more generic than the attachment node’s envi-

ronment, then its alternative will never match which is considered as an error. The same

situation occurs, if any other positive SMARTS recursion in the same alternative is more

specific than the negated one.

After the pruning steps, a fingerprint is assigned to each alternative combining the infor-

mation that is encoded in all of its SMARTS recursions’ root nodes.

The fingerprint can then be pruned further exploiting information from the total number

of unique neighbors and incident nodes of the attachment node. The number of unique

neighbors and incident bonds is calculated mapping compatible nodes and edges onto each

other. For this procedure, nodes and edges are compatible, if they share a chemical state.

Figure S3 shows the computation of a node environment considering alternatives of SMARTS

recursion.

Finally the attachment node’s fingerprint is replaced with the logical disjunction of fin-

gerprints from all its alternatives’.

Since a node’s fingerprint potentially influences the fingerprints of its neighbor nodes,

an iterative update process is required. The pruning criteria already discussed for the basic

pattern as listed in Table 3 and in Table 4 are applied. This time, SMARTS recursion is

included into the update procedure. If the fingerprint of a node with recursion, SMARTS
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C[C$(COO)$(CCN)]O

Figure S3: The computation of a node environment considering alternatives of SMARTS
recursion. Compatible nodes in the environment of the attachment node and the root nodes
of the recursions are combined. They are highlighted in blue. In the given example the
environment consists of two nodes, both are connected to the node via a single bond. Without
the reduction, the environment would consist of four single bonds and four neighboring nodes.

recursion is pruned, the update is propagated into the SMARTS recursion.
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SI4: Explicit Handling of Alternatives While Matching

SMARTS Recursions

This section focuses on the necessary aspects to handle the logic between recursive SMARTS

expressions during comparison. First of all, recursive SMARTS expressions are compared

to the local structure of the other pattern. Then they are compared to each other. Further

constraints for node mapping can be derived for subset search and from the use of negated

recursive expressions. These will be summarized below.

For each node with SMARTS recursion SMARTScompare calculates the compatibility of

alternatives of SMARTS recursions to the local structure and the compatibility to alterna-

tives of SMARTS recursions from the other pattern.

Consider two patterns P and Q and the compatibility computation of the nodes n ∈ P

and m ∈ Q. For both nodes let there be exactly one SMARTS alternative and SMARTS

recursion AP = ALT (P, n), Sn = SUB(AP , 0) specifying n and AQ = ALT (Q,m), Sm =

SUB(AQ, 0) specifying m.

The root nodes of the recursions are Sn0 = SUB(Sn, 0) and Sm0 = SUB(Sm, 0). In this

example, both patterns have exactly one recursion to simplify expressions for the predefined

mappings. To compute the compatibility of a SMARTS alternative AP to either the local

structure or another SMARTS recursion, the root node Sn0 of the recursion has a defined

mapping partner. It is defined by the mapping (n,m). The partner is either m, the mapping

partner of n or Sm0, the root node of the recursion Sm at m. The pre-defined mapping

partners are used as initial mapping for MCS calculations.

The overall method for recursion handling distinguishes two different types, mapping SMARTS

alternatives to the local structure or mapping them to other SMARTS alternatives. Further-

more the two operation modes subset search and similarity search are distinguished.

Before any recursive compatibility computation, the fingerprints of the nodes n and m

are tested for compatibility. Using the current mapping for initialization, the MCS is applied
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as follows:

Matching a SMARTS Alternative AP of Pattern P Against the Local Structure of m

In this example the local structure of m is the basic pattern Q, since there are no

nested SMARTS recursions.

Each alternative whose fingerprint is similar to m’s fingerprint is matched against Q,

using the nodes Sn0 and m as a initial mapping. This is performed for each alternative,

even if a compatible alternative is already found.

This procedure starts a recursive matching of the patterns Sn and Q with an initial

mapping of Sn0 to m. If m also has SMARTS recursions, then for this mapped pair,

Sn0 and m, this method could be applied recursively but this is explicitly handled as

the second case.

Matching of SMARTS Alternatives

To test the compatibility of SMARTS nodes n and m based on their SMARTS al-

ternatives, the corresponding fingerprints have to be similar. Furthermore, for each

SMARTS recursion of an alternative, there must be a compatible SMARTS recursion

of the other alternative.

For nodes with SMARTS alternatives, the matching procedure enforces that all SMARTS

recursions of at least one SMARTS alternative are mappable to the local structure or another

SMARTS recursion of the same alternative.

If this is not the case for any node n with SMARTS alternatives, then n and m are

incompatible. In general, SMARTS are considered compatible, if at least one node can

be mapped. If SMARTS recursions are compared, then there is a fixed mapping of initial

nodes. Thus, at least the two initially mapped nodes have to be compatible. The search for

more specific patterns and the inclusion of negative SMARTS recursion introduce further

constraints for compatibility.
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Constraints for Searching more Specific Patterns

Let AP = ALT (P, n, i) and AQ = ALT (Q,m, j) be the alternatives of SMARTS recursion at

the nodes n and m in the patterns P and Q. Note that alternatives of SMARTS recursion

does not necessarily contain a recursion. For example, in SMARTS node expressions like

[N,$(CN)] there are two alternatives, the first does not contain a recursion.

If patterns Q is tested to be more specific than pattern P , then there are three options

for compatibility of alternatives AP = ALT (P, n, i) at n.

1. The alternative AP is not considered at all. This is allowed since P is tested to be

more generic.

2. The alternative AP is more generic than the local structure of Q at m

3. The alternative AP is more generic than any alternative AQ = ALT (Q,m, j) at m

For compatibility of n and m there has to be at least one alternative at n that is more generic

than either the local structure or an alternative at m.

Matching Alternatives Against the Local Structure

Let AP = ALT (P, n) be an alternative of pattern P . AP is more generic than the local

structure of m ∈ Q if and only if the fingerprints are compatible and each SMARTS

recursion Sn = SUB(AP , i) of AP is more generic than the structure of Q at m. In

the following recursive call alternatives AQ = ALT (Q,m, j) at m, are automatically

assumed to be compatible to Sn0 if existent. Their compatibility to the alternatives

AP = ALT (P, n, i) is individually handled.

If alternative AQ = ALT (Q,m) is mapped onto the structure of P at n, then AQ is

compatible if and only if each of its recursions Sm = SUB(AQ, j) is more specific than

the local structure at n. Since P is tested to be more generic, Sm = SUB(AQ, j) is

already more specific than the local structure at n, if its root node is more specific

than n.
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Matching Alternatives of SMARTS Recursions

Alternative AQ = ALT (Q,m) at m is more specific than AP = ALT (P, n) at n if and

only if for each SMARTS recursion Sn = SUB(AP , i) there is a SMARTS recursion

Sm = SUB(AQ, j) such that Sm is more specific than Sn.

To summarize the compatibility of nodes n,m with SMARTS alternatives if pattern P is

tested to be more generic than pattern Q there are three cases to distinguish.

Node n ∈ P has SMARTS alternatives but m ∈ Q does not

At least one alternative AP = ALT (P, n) has to be more generic than the local structure

at m.

Node m ∈ Q has SMARTS alternatives but n ∈ P does not

Each alternative AQ = ALT (Q,m) has to be more specific than the local structure at

n.

Both Nodes n ∈ P and m ∈ Q have SMARTS Alternatives AP and AQ

Each alternative AQ has to be more specific than the local structure at n or any

alternative AP . The combined fingerprint of the alternatives AP that are more generic

than the local structure at m or any alternative AQ has to be more generic than the

node fingerprint of m.

Constraints for Negative SMARTS recursion

Negated SMARTS recursion needs special treatment during the algorithm. They describe

localized structures that are explicitly excluded from the pattern. If negated SMARTS re-

cursions are compared with the local structure or positive SMARTS recursions, it is tested

whether they are more specific than the positive variant of the negated SMARTS recursion.

Therefore, the comparison mode for the next recursive call is adjusted. The calculation

answers the question, whether the other pattern contains any structures that are explic-

itly excluded from an alternative of a SMARTS node. If the positive variant of a negated
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SMARTS recursion is fully mappable to the local structure or any positive SMARTS recur-

sion, it specifies an incompatible alternative. If negated SMARTS recursions are compared,

the MCS of their positive variants is calculated without any adjustments.

In the following the compatibility of the nodes n ∈ P and m ∈ Q is evaluated. There

is an alternative AP = ALT (P, n) containing a negative SMARTS recursion SnNEG =

SUB(AP , 0). Let AP be relevant for the compatibility of n and m. Then there are two

constraints that have to be fulfilled otherwise n and m are not mappable:

General constraint: SnNEG is not fully mappable to the local structure of Q at m.

m has SMARTS recursion: For each alternative AQ = ALT (Q,m, j) at m ∈ Q that is

compatible to AP , each positive SMARTS recursion Sm = SUB(AQ,m, j) is not fully

mappable to SnNEG.

Figure S4 depicts the two mentioned cases. Once the negated recursion is mappable to the

local structure and once it is mappable to another recursion. In both cases nodes are not

compatible. There are two additional constraints for the subset search. If P is tested to be

more generic than Q one of the following two constraints has to be fulfilled:

1. The fingerprint of SnNEG’s root node is dissimilar AQ’s fingerprint

2. For each alternative AQ = ALT (Q,m, j) that is compatible to AP , there is a negated

SMARTS recursion SmNEG = SUB(AQ, j) which is more specific than SnNEG.

Note: A negated SMARTS recursion SnNEG is more generic than the negated SMARTS

recursion SmNEG, if and only if the positive variant of SnNEG is more specific than

the positive variant of SmNEG.
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[C$(CO)!$(CN)]

[C$(CN)$(CO)] NCO

Figure S4: The two types of negative recursion incompatibility. In the first comparison,
the negative SMARTS recursion is incompatible to a positive SMARTS recursion, thus the
alternatives and nodes are incompatible. In the second comparison, the negative SMARTS
recursion is incompatible to the structure and the nodes are incompatible as well.
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SI5: SMARTS Recursion During Result Compilation

After determining compatibility of the patterns P and Q, the final mapping result is con-

structed. The construction starts with the two basic patterns. For each mapped node pair

(n,m) with SMARTS recursion, the mapping is extended with the localized mapping for

whole alternatives at n and m. The MCS results consist of all mappings of maximum size

between the patterns and all SMARTS recursions. Each independent mapping construction

selects the MCS mapping result that covers the maximum number of nodes. Note that the

pruning of SMARTS recursion alternatives is mandatory to achieve a reasonable mapping

at this step.

Suppose Q is tested to be more specific than P . Consider the SMARTS alternative AP1 =

ALT (P, n, 1) and AP2 = ALT (P, n, 2) and the SMARTS recursions Sn1 = ALT (AP1, 1) and

Sn2 = ALT (AP2, 1) at n. Both SMARTS recursions AP1, AP2 are in different alternatives

and they are mapped onto the structure of Q at m. In this situation, the alternative APi at

n of P is chosen that is covered best and gives the maximum score. Since the alternatives

are mapped to the local structure, it is guaranteed that the subset relation is obeyed.

Now let there be two SMARTS recursions in different alternatives AQ1 = ALT (Q, 1), Sm1 =

SUB(AQ1) and AQ2 = ALT (Q, 2), Sm2 = SUB(AQ2) at m and let there be one SMARTS

recursion AP = ALT (P, 1), Sn = SUB(AP ) at n, which is incompatible to the structure of

Q. A molecule is matched by a pattern with SMARTS recursion, if at least one alternative is

compatible. To consider this fact for SMARTS subset search, the alternative mapping Sn to

Sm1 that covers the minimum number of nodes is selected. The final result of the mapping

calculation is used to determine the covered nodes of both patterns and to calculate the

similarity score and subset relation.

The fact that only one node mapping is calculated may not reflect the intuition of pattern

similarity well. This becomes relevant if there are several alternatives of SMARTS recursion

in both patterns. In such a situation intuitive similarities would consider several mappings
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of the SMARTS alternatives. Computing and averaging them seems inappropriate in terms

of computational complexity. To find a meaningful compromise between averaging all node

mappings and only selecting the best, an additional mapping is calculated. For this mapping

the alternatives of SMARTS recursion are chosen that result in the minimum score. The

final score is the mean of the scores for the highest and lowest similarity SMARTS node

mapping.

Furthermore, for the mapping construction, special constraints for the subset search are

applied. It is tested that each node of the supposed more generic pattern is covered. If

an alternative with a negated SMARTS recursion is mapped, then the negated SMARTS

recursion is not necessarily fully covered. If negated SMARTS recursions are mapped, the

SMARTS recursion with more nodes is likely to be more generic.

The final similarity score is the normalized sum over all mapped node similarities. By

default the sum is normalized with the effective number of nodes from both patterns inspired

by the Tanimoto coefficient. Equation 1 shows the similarity, whereas numNodes is a function

returning the minimum number of nodes of a pattern P considering all SMARTS alternatives

participating in M and those providing in the minimum number of nodes otherwise.

Sim(P,Q,M) =

∑
(n,m)∈M Sim(n,m)

numNodes(P,M) + numNodes(Q,M)− |M |
(1)

Note that this is just one option for normalizing scores. It is easy to envision alternatives,

for example to create asymmetric similarity scores following TverskyS5.
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SI6: Pattern Comparison in RDKit

In RDKitS6, SMARTS and SMILES are both parsed into the same internal Molecule datas-

tructure. In principle there is no difference between patterns and molecules. The SMARTS

matching methods support matching of molecules as well as matching of SMARTS. With

additional initialization of molecular properties, one can interpret a SMARTS pattern as a

molecule and match another SMARTS pattern against it. This way, SMILES properties like

the hydrogen properties, charges and the incident bonds are transferred into the matching.

Other properties like the ring properties are not transferred into the matching. This kind of

matching does not support any disjunction or SMARTS recursion on the matched SMARTS

except for wildcard matchings. The matching result does not necessarily correspond to valid

subset relations. For example, since [#8]=[#6] is matched by [#6X3] but the carbon node

does not necessarily have three edges like in carbon dioxide [#8]=[#6]=[#8]. Using the

specialized method to match queries there is no transfer of properties possible. An example

for a property transfer is a nitrogen in a pattern with four single bonds that is detected

as charged. In principle the query comparison approach is able to handle disjunctions and

negation of properties, but often it fails the explicit subset relations, meaning the matched

pattern is not more specific as it should be. [#6] matches [!#7] and [#6,#7] although the

matched patterns are more generic than the query. Using the query comparison SMARTS

recursion cannot be handled. In conclusion, RDKit is able to detect subset relations of simple

patterns that are written as pure conjunctions without any negation if no property transfer

is needed. The more general pattern comparison problem allowing simple disjunctions or

negation of simple properties, the result does not guarantee finding more specific patterns.
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ABSTRACT: In a recent work, an algorithm to compare
chemical patterns, written for example in SMARTS, was
presented. This algorithm, called SMARTScompare, is able to
assess the identity, subset relation, and similarity of a pair of
patterns. Here we used an implementation of SMARTScom-
pare to analyze SMARTS filter sets that were published in the
context of, for example, high-throughput screening. We found
that the difference in intentions with which the filter sets were
designed is mirrored in the similarity values we calculated. The
analysis revealed which patterns from one filter set are covered
by filters from another set. In one case it became obvious that a filter set is more or less completely covered by another.
Furthermore, we analyzed pattern hierarchies for consistency, and we propose a method to remove redundant patterns.
SMARTScompare together with SMARTScompareView equips users with powerful methods to visualize, compare, and focus
their filter sets.

■ INTRODUCTION

The size of compound databases has been increasing
steadily.1,2 Equally, the need for sophisticated search and filter
methods has been on the rise, too. Most queries are designed
to retrieve or exclude classes of molecules or specific types of
chemistry. Therefore, many queries are designed as molecular
patterns that describe a specific substructure or a group of
substructures. In practice, these molecular patterns are often
encoded in, for example, SMILES3 Arbitrary Target Specifica-
tion (SMARTS)4 or SYBYL Line Notation (SLN).5

Sets of molecular patterns can be used to model unwanted
behavior in many fields of application, e.g., high-throughput
screening (HTS)6 or toxicity.7 Frequently they are used as
filters to exclude molecules with unwanted groups before
expensive experimental screening starts. Compounds that are
matched by any pattern have been shown to express unwanted
behavior and can be ûagged for further observation or removed
right away. Several structural filter sets, mostly in the context of
experimental screening, have been published.2,6−13 With the
arrival of large collections of molecular patterns, a whole new
set of problems emerged as well. Molecular patterns can be
highly complex, and design implications cannot always be
foreseen from the start. Therefore, good tools aiding scientists
in visualization and browsing,14,15 designing,16,17 and compar-
ing molecular patterns are needed.
Considering the importance of SMARTS for the field of

cheminformatics, relatively few approaches to compare two
SMARTS pattern exist to date. The most straightforward
strategy visually inspecting two patternsis extremely
laborious as pattern sets are growing. A more automatable
approach is the comparison of sets of molecules that are

matched by two patterns. This makes the analysis of the set
relation of two patterns possible. Nonetheless, this approach
can only deny subset relation. It cannot prospectively classify
one pattern as a sub- or superset of the other. Besides the large
computational burden, this makes the approach extremely
dependent on the selection of molecules that are used to
analyze the patterns. The third and also most algorithmic
approach is implemented in part in the Rational Design Kit
(RDKit).18 It enables a node-based comparison of two
molecular patterns in the form of SMARTS strings within
the boundaries of some restrictions. Roughly sketched, the
pattern comparison is possible in cases where the semantics of
the SMARTS language are compatible. In cases where the
same chemical state (e.g., an sp3-hybridized carbon) is encoded
differently within the SMARTS pattern, the pattern nodes can
no longer be mapped correctly. Our newly designed algorithm,
called SMARTScompare,19 is independent of the input form
because it maps SMARTS semantics into the general pattern
space. This enables us to determine the chemical state of a
pattern node, making the comparison independent of the
SMARTS string representation. Employing a maximum
common subgraph (MCS) algorithm that includes the
handling of pattern recursion eventually enables the compar-
ison of SMARTS patterns for nearly all practically relevant
scenarios.
For the analysis of structural filters, the possibility to

compare chemical patterns with an algorithmic approach is
highly desirable. Common structures that are part of several
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structural filter sets are more likely to be relevant than patterns
occurring in exactly one. With hundreds of molecular patterns
in a single filter collection, it is challenging to detect patterns
related to the same or similar chemical features. When the
pattern notations for the same kind of chemistry are different,
the analysis of a complete set of patterns becomes an extremely
laborious task. Comparing patterns designed by several
different scientists for the same purpose can give many
insights, sharpen the pattern collection, and help to prevent
errors or gaps in the description of substructures of interest.
Furthermore, analyses like the one conducted by Capuzzi et
al.20 on PAINS8 do not have to rely on the molecules that are
matched by molecular patterns. Instead, they can be performed
directly on the level of molecular patterns, allowing more
precise and reliable results.
To be able to conduct comprehensive analyses of molecular

patterns, we developed a novel analytic approach.19 Schom-
burg et al.14 presented an intuitive visualization concept for
SMARTS patterns. We extended their approach to aid the user
in better understanding chemical patterns and structural filter
sets. The method is customized to SMARTS and handles
nearly all frequently used language elements. With runtimes in
the millisecond range, the algorithm can be used interactively
even on larger filter collections with a few hundred to
thousands of patterns.

■ THEORY

For a detailed discussion and the proper mathematical
formalism, we refer the reader to the companion paper.19

The following section discusses only brieûy the important
theoretical aspects that were presented there. Additionally,
implications for the implementation and application of the
algorithm are discussed. For consistency, the same notation is
used.
Theoretical Aspects of SMARTS Pattern Comparison.

The general assumption is that a chemical pattern describes a
potentially infinite subset of molecules in the chemical space
(CS). Therefore, we can approximate the subset relation of two
patterns P1 and P2 on the basis of how well their subsets of the
chemical space, CS(P1) and CS(P2), overlap. To get an
exhaustive description of the chemical space, we introduce two
new description systems. First, the atomtype space represents
possible states that atoms can take on in chemical molecules.
Second, equivalent to the atomtype space, the bondtype space
describes possible states of bonds in molecules. In a graph
representation of a molecular pattern, nodes are described via a
set of atomtypes and edges via a set of bondtypes. Given that
approach, we conclude that if patterns are identical, their sets
of matched molecules are identical, too. With additional
restrictions applied, the same is valid for the opposite direction.
What has been detailed for subset relations can be easily
extended to allow similarity analysis.
Since we model chemical information as a set of atomtypes,

the similarity of two patterns can be estimated by analyzing the
overlap of atomtypes of computed node mappings. Prior to the
comparison step, SMARTS string expressions are translated
into their graph representations. Each node representation in
the SMARTS string is converted to one graph node.
To be able to compare two SMARTS graph structures, each

node or edge is described by a fingerprint of atomtypes or
bondtypes, respectively. The node and edge fingerprints are of
constant size. Each bit represents exactly one atomtype, and

the overall size of the fingerprint is determined by the number
of atomtypes defined in the chemistry model that is used.
When two SMARTS graphs are compared, first an induced

maximum common connected subgraph is computed. The
compatibility of nodes depends on the comparison mode, e.g.,
similarity or set relation. The similarity score of two SMARTS
expressions is then calculated on the basis of the fingerprint
similarity of compatible nodes. The following sections discuss
relevant aspects that have to be considered when designing an
implementation of the presented algorithm.19 The focus lies on
handling of aromaticity, wildcards, and ring properties and
fine-tuning of similarity calculations.

Implementation-Specific SMARTS Handling.
Wildcards. Wildcards in SMARTS like “*”, “A”, and “a”
match several elements. In NAOMI,21 the SMARTS matching
supports several options to handle hydrogens during SMARTS
matching:

• Hydrogens are not matched at all.
• Wildcards do not match hydrogen atoms.
• The wildcard * matches hydrogen as well.

The second option is enabled by default. Thus, the patterns
[#1] and * are considered dissimilar by default.

Ring Size Property. The SMARTS ring count property “R”
as defined by Daylight Chemical Information Systems, Inc.4

describes the number of smallest set of smallest rings (SSSR)22

rings of which an atom is a part. For the fingerprint approach,
however, it is important that the “R<n>” property is unique.
Unique ring families (URFs) describe exactly the number of
smallest rings of which an atom is a part. Therefore, the
NAOMI library describes R′ as the number of URFs23,24 of
which an atom is a part.
In order to describe all possible states, the number of rings

and the smallest ring size have to be enumerated up to a
constant value. We therefore limit the maximum number of
rings to 4 and the maximum smallest ring size to 25. If the
values are larger, they can be handled but can no longer be
distinguished.
It should be noted that the ring properties increase the size

of the fingerprint substantially. Therefore, special care has to
be taken if fingerprints are converted to similarity values.

Similarity Calculation. The most simple way to express the
similarity of two patterns is to count their matching nodes as
determined by the MCS approach. Although this measure
might be enough for a rough estimate, it does not do justice to
the complexity of the pattern matching problem. A more
meaningful value can be achieved if the similarity between two
nodes in SMARTS patterns is calculated via the atomtype
fingerprints associated with them. Suppose that P1 and P2 are
the pattern graph structures and M is the matching.
Furthermore, suppose that u and v are nodes of graphs,
where u ∈ P1 and v ∈ P2. The similarity of P1 and P2 can then
approximately be calculated as shown in eq 1:

=
∑

∈
S P P M

S u v
( , , )

( , )

normalization term

u v M

1 2
( , )

(1)

Possible normalization modes are listed in Table 1a.
Calculating similarity on fingerprints is a well-established

strategy in cheminformatics. In SMARTScompare one can
select from several comparison modes in order to achieve an
outcome that is most fitting for the problem posed (see Table
1b). Aside from the MCS similarity score, all options work
with the fingerprint that is reduced or weighted upon
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comparison. As the name implies, the elements fingerprint
contains only chemical elements. The reduced fingerprint
comprises extended valence states as described in the
companion paper19 but has a reduced set of ring membership
states that is registered for each node. The extended valence
state fingerprint is the standard version and contains all
possible atomtypes that are part of the NAOMI framework.
The extended valence state weighted fingerprint is the same as
the extended valence state fingerprint but undergoes some
weighting before the similarity score is calculated.
The weighting is based on valence state statistics extracted

from a set of molecules that represents the type of chemical
space in which one seeks to compare patterns. We used a set of
∼370 million molecules comprising all ZINC1525 2D
compounds that were available on June 8, 2017. In the
following we refer to this set as the validation data set. The
weighting of each atomtype in the fingerprint is defined as the
relative frequency of that atomtype in the set of molecules used
to calculate the valence state statistic:

=
∑ '

∑ (
S X Y

w i X Y

w i X Y
( , )

( )( )

( )( )

i i i

i i i
WT

(2)

The standard similarity procedure in SMARTScompare is
based on the weighted fingerprint Tanimoto similarity (SWT in
eq 2) with a Tanimoto normalization by the nodes of the
involved patterns (eq 3):

=
∑

| | + | | − | |

∈
S P P M

S X Y

P P M
( , , )

( , )
X Y M WT

1 2
( , )

1 2 (3)

The weighting factor w(i) represents the frequency of extended
atomtypes as found in the validation data set. This procedure
for node similarity is depicted in Figure 1.
This similarity measure can be adjusted by every user of

SMARTScompare to a specific kind of chemistry. From every
set of molecules, the atomtypes can be extracted with a utility
tool and valence state statistics can be generated and employed
in SMARTScompare.
At present, fingerprints of pattern edges are not explicitly

considered during similarity calculations. Since bondtypes are
usually reûected in the fingerprints of the incident nodes, edge
properties are implicitly incorporated.
Aromaticity Detection. Some implications of the SMARTS-

compare aromaticity handling are detailed in the companion

paper.19 Here we discuss why we deemed it necessary to
include ancillary aromaticity handling. In SMILES, aromatic
systems are detected independently of the specific notation of
the input string. With SMARTS, however, bonds are always
handled explicitly as aromatic single or double bonds.
Aromaticity usually cannot be deduced from SMARTS
patterns. Although confusing from the application point of
view, there are good reasons for this behavior. While SMILES
strings always describe full molecules, SMARTS strings
represent substructures, which might not be suücient for
aromaticity detection (also see section 4.7 in the Daylight
Theory Manual.4). For the SMARTScompare approach, we
implemented two optional features supporting the handling of
aromaticity within SMARTS patterns: SMILES-like aromaticity
detection and Detect aromatic bonds . In SMARTS,
C1=CC=CC=C1 is not equivalent to c1ccccc1 or
c1:c:c:c:c:c1. However, when parsed as molecules, these
three representations are identical. Chemistry toolkits like
NAOMI26 parse a molecule and then determine aromatic ring
systems on the basis of the assigned valence states and the
Hückel rule. In order to support the chemical intuition of
aromaticity (e.g., the π system in a benzene is always aromatic
no matter the notation), the SMARTS preprocessing in
SMARTScompare includes an aromaticity detection step. This
behavior can be enabled with the SMILES-like aromaticity
detection option. Whenever a ring system is encountered during
parsing of a SMARTS pattern, all Kekule ́ localizations of a
SMILES string that are possible with the given ring size and
elements are determined. Information on neighboring nodes of
the ring system is also included. If any localization is classified
as aromatic, the fingerprints of the SMARTS graph are updated
to incorporate aromaticity. To all edges a disjunct aromatic
bondtype is added, and for all nodes all of the aliphatic node
queries are replaced with generic element specifications (e.g.,
the bond “=” becomes “=,:” and “[C]” becomes “[#6]”,
whereas “c” is not modified). Additionally, in the case of small
rings (eight-membered or smaller) in which each node is
exclusively aromatic, the edge fingerprints are updated by
resetting all nonaromatic bits to 0. This last step ensures that
all aromatic systems are recognized as identical, independent of
whether edges are written in implicit or aromatic form. The
Detect aromatic bonds option allows SMARTScompare to

Table 1. Possible Options for the Normalization and
Scoring Level Modes Implemented in SMARTScompare:
Each Section Describes a Type of Option That Can Be
Selected When the Comparison Mode Similarity Is Selected

(a) Normalization Modes

sum of nodesnumber of matched nodes

max. number of nodes in both patterns

mean number of nodes in both patterns

min. number of nodes in both patterns

number of nodes in the first pattern

number of nodes in the second pattern

(b) Scoring Level Modes

MCS

elements fingerprint

reduced fingerprint

extended valence state fingerprint

extended valence state weighted fingerprint

Figure 1. Fingerprints of two nodes. Green squares represent
extended atomtypes that exist in the node the fingerprint describes.
Beneath each atomtype box, the frequency of the particular atomtype
is displayed. It is derived from the validation data set. This value is
used as the weight in the calculation of node similarity in case the
Tanimoto similarity is selected.
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transform bond descriptions into one uniform aromatic
description. This is achieved by removing all bond information
but the aromatic one. Figure 2 showcases this behavior on four
notations for matching benzene that are all valid SMARTS

strings.
It is important to keep in mind that when this feature of

aromaticity handling is used, the underlying model of
SMARTS is no longer consistent with the Daylight model.4

Some internal representations that are needed to detect

aromatic systems correctly can no longer be used to match
molecules. Additionally, with SMILES-like aromaticity detection
enabled, the Kekule ́ form is classified as more generic than its
aromatic counterpart. When the Detect aromatic bonds option is
enabled, nonintuitive behavior is possible in edge cases. An

example, that is also described in the companion paper19 is the
handling of bonds that connect two aromatic systems of
condensed rings. During pruning of the bond fingerprints they
lose the information that they can be single bonds. Only the
aromatic state remains, which would lead to wrong subset

matching and similarity assessments.

■ METHODS

To validate the similarity concept, we first tested the coverage
of enumerated extended atomtypes using the validation data
set by assigning extended atomtypes to all atoms. Second, we
tested whether we could model pattern similarity in a
chemically intuitive manner.

Validation of Atomtypes. It is important to keep in mind
that the NAOMI ChemBio library was designed to handle
chemistry that is common in a medicinal chemistry setting.
Any atomtypes that are currently not covered by our internal
chemical model impair our ability to calculate the similarity
and set relations of patterns. The validation data set has
suücient size and breadth to reliably test all necessary atom
states of our chemistry model.
There are two fingerprint-related limitations that we

deliberately tolerated. The set of extended atomtypes has
limitations related to the maximal ring size and the number of
URFs23,24 to which an atom belongs. In an analysis of the
ZINC molecules, we found that limiting URF membership and
ring size is a good way to balance the coverage of necessary
atomtypes and fingerprint length. Overall, we found 506

Figure 2. The first row shows possible variations of SMARTS patterns that were designed to match benzene. The second row shows the internal
representation of the initial SMARTS pattern in the case where SMILES-like aromaticity detection is active. Patterns in the third row represent the
internal form when Detect aromatic bonds identification is active as well. The logical operators between pattern depictions refer to the compatibility
of node and bond fingerprints of the respective pattern pairs: !=, no relation whatsoever; ∼, some relation in similarity mode; >, subset relation; =,
identity.
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molecules containing atoms with more than four URFs (18
atoms) or in rings larger than 24 atoms (12 896 atoms).
Furthermore, 374 atoms in 353 molecules had more

attached hydrogen atoms than expected by the NAOMI
chemistry model.27 Atoms for which no extended atomtype is
included in NAOMI were aggregated with the atomtype that
has the maximal valid count of hydrogen annotated. These
aggregations occurred mainly for sulfur and phosphorus atoms.
Lists of all molecules that gave an error with a short

description of the type of error (unmodeled hydrogen counts,
exceeding ring size enumeration, exceeding URF count) can be
found in the Supporting Information.
Validation of the Pattern Similarity Concept. Most

applicants of SMARTS consider patterns to be similar if the
substructures matched by them are similar. To evaluate our
similarity measure, we used the following experimental setup.
For a given pattern P1, we analyzed the fragments matched by
P1 in all molecules CS(P1) ⊂ CS. Two patterns P1 and P2 are
considered similar if all of the matched fragments have
corresponding similar fragments in the other set. As a similarity
measure of fragments, the diameter 6 extended-connectivity
fingerprint (ECFP_6)28 was applied. We employed the
following measurement, the substructure similarity, as the
reference similarity for SMARTScompare:

= ⟨ ⊆ | ∈ ⟩P f m P f m CS PFL( ) matches , ( ) (4)
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To validate our similarity approach, we performed two
experiments in which we focused on two types of patterns. The
first experiment was based on substructure-like patterns with
almost no SMARTS-specific features. Patterns that matched at
least 10 000 molecules in the validation data set were selected
from a set of SMARTS patterns published by Ehrlich and
Rarey.29 Similarity of molecules was calculated on the basis of
the Tanimoto similarity of the substructures matched by the
SMARTS pattern. The second experiment was based on
structural filters. Here we used the SMARTS filters taken from
ChEMBL (see Table 2). As set of molecules for this
experiment, we took the set of unique molecules from
ChEMBL22.30 Those patterns are usually smaller and use
more SMARTS features than those in the first experiment.
Figure 3 shows the correlation plots for the two experiments.

The experiments are described and analyzed in more detail in
the Supporting Information (see SI1). The plots show that
substructure-like patterns (Figure 3a) exhibit a good
distribution as well as a good correlation, whereas the
similarity for the structural filters (Figure 3b) is dominated
by similarity scores below 0.2.
Overall our experiments show that pattern similarities

calculated by SMARTScompare correlate with molecule
similarities derived from matching of fragments to a large
reference data set.

SMARTScompareViewer. Even for an expert user,
SMARTS subset relations determined by the SMARTScom-
pare algorithm are sometimes hard to comprehend. To visually
support the interpretation, we have developed the SMARTS-
compareViewer, an intuitive tool that visualizes SMARTS
patterns and shows the calculated node mappings that result
from the SMARTScompare algorithm. The SMARTScompar-
eViewer is based on the SMARTSView concept and the
SMARTSViewer.14,15 Besides showing the actual node
mapping, the SMARTScompareViewer can emphasize the
difference between SMARTS nodes. This helps the user to
understand unexpected results, meaning that there are more or
fewer nodes mapped than expected. SMARTScompareViewer
is also available on the web as part of the SMARTSviewServer
(https://smarts.plus).

The SMARTS Filter Sets. With an implementation of
SMARTScompare, we are able to perform a comprehensive
comparison of publicly available filter sets for the first time.
Filter sets are used by many pharmaceutical companies and
research groups in academia to remove molecules with
unwanted properties such as reactivity, toxicity, or assay
interference. Since these filter sets are mostly handcrafted, it is
interesting to compare different ûavors of patterns aimed at the
same property. Usually, specific substructural features are
responsible for unwanted behavior of compounds. Substruc-
tures can be described via SMARTS patterns, allowing
computationally easy selection of molecules having such
chemical properties.
One of the first pharmaceutical companies to publicly

release such a filter set was GlaxoSmithKline (then Glaxo
Wellcome Research).6 The SMARTS patterns published are
structured into four groups: reactive functional groups,
unsuitable leads, unsuitable natural products, and another
group summarizing all SMARTS filters for acids, bases,
electrophiles, and nucleophiles. The main purpose of the
published filter sets is to avoid pooling of compounds that
react with each other within one batch during HTS.
A second set of SMARTS patterns with a similar focus was

published by Bristol-Myers Squibb.10 The authors were
looking for a consistent way to remove compounds from
HTS screening decks and to ûag compounds that do not
disturb screenings but are helpful in assay evaluation when
ûagged as potentially disruptive. Other filter sets were designed
with a broader focus in mind.
James Blake of Array BioPharma Inc. investigated how to

reduce general attrition during drug development.12 Apart
from the usual suspects drug-likeness, lead-likeness, and

Table 2. Publicly Available Filter Sets As Published in
ChEMBL2 (Excluding SMARTCyp)

name
no. of
patterns publication

Bristol-Myers Squibb 180 Pearce et al.10

SMARTCyp 42 Rydberg et al.11

Dundee 105 Brenk et al.13

Glaxo Wellcome 55 Hann et al.6

Inpharmatica 91 no publication available

MLSMR 116 website oýine/project
discontinued

LINT 57 Blake12

PAINS 481 Baell et al.8

SureChEMBL OCHEM/
ToxAlerts

166 Sushko et al.7,39
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implications of computed properties, the author addressed
functional groups linked to problematic performance during
the drug development process. Blake tied a certain percentage
of the overall attrition to “reactive groups and compounds or
functionalities that have been shown to be mutagenic or
carcinogenic”. Those groups also “tend to give false positives in
high-throughput screens”. Researchers from the University of
Dundee in Scotland published a filter set with a similar focus
but specializing in neglected diseases.13

Baell and Holloway focused solely on pan-assay interference
compounds (PAINS).8 As a result of the increased interest in
HTS at the time of their writing, they wanted to develop
substructure filters that eüciently encode structural informa-

tion on problematic compounds. With such a description at
hand many interfering compounds and their analogues can be
excluded from pending bulk purchases.8 The substructures
were originally published in SLN5 and later translated into
SMARTS patterns.31 The OCHEM project also translated the
SLN notation of the PAINS patterns.7,32 In this case they were
translated by hand. In the Results we discuss the difference in
the two translations.
There are two other projects in the context of HTS

screening, but no oücial information regarding their purpose
could be found as of the release date of this work. The now-
discontinued National Institutes of Health Molecular Libraries
Small Molecule Repository (NIH-MLSMR), which was a part
of the now-retired Molecular Libraries Probe Production
Centers Network (MLPCN), assembled a set of SMARTS
filters that is now managed by Evotec.2,33 The purpose of the
assembled filter sets was to remove “chemically reactive
functional groups that would interfere with HTS, as well as
compounds likely to be promiscuous aggregators”34,35 with a
reference to McGovern et al.36 ChEMBL has another set of
SMARTS filters that were derived by Inpharmatica Ltd.,37 for
which also no oücial publication exists. The filter set was
initially intended to be used on ChEMBL data (when they
were still a commerical product of Inpharmatica Ltd.). The
purpose was to filter groups that are generally undesirable
during drug design.34

The following two filter sets have a focus that diverges from
those already presented. Sushko et al.7,32 assembled a web
server38 for structural alerts for toxic chemicals and
compounds with potential adverse reactions. The OCHEM/
ToxAlerts7 initiative is an ongoing project, and every user is
encouraged to submit new structural alerts. SureChEMBL uses
SMARTS patterns for structural highlights on their website
that are extracted from the OCHEM/ToxAlerts SMARTS set.
These patterns are also part of the ChEMBL releases.2

SMARTCyp by Rydberg et al.11 has a completely different
focus from all other SMARTS sets. SMARTCyp is an in silico
method that predicts reaction sites of drug-like molecules in
cytochrome P450. The idea is to precalculate the reactivity for
certain atoms that are part of a chemical group as the activation
energy for oxidation reactions. For each atom of the chemical
group, a SMARTS pattern is generated and, together with the
corresponding energy, stored in a database. When a query
molecule is given, a score for each atom is extracted from the
precalculated energy values using the fitting SMARTS pattern.
ChEMBL published SMARTS versions of the previously

listed structural filters with their 2017 release.2 A summary of
the SMARTS filter sets can be found in Table 2. All of the
SMARTS patterns used in this work were taken from one of
the SMARTS sets listed in Table 2. Except for SMARTCyp,
which was extracted from the publication, all of the filter sets
were taken from the MySQL ChEMBL release dump.2 All of
the patterns were used unchanged except for seven patterns
from the PAINS filters. These patterns were modified to
reduce the number of explicit hydrogens. The replacement of
explicit hydrogens by implicit ones substantially reduces the
run time of our MCS calculation, which maps all explicit atoms
exhaustively. These modified PAINS patterns are provided in
the Supporting Information.
In the case of PAINS filters, we had the opportunity to

compare two sets of patterns that were both translated from
SLN into SMARTS. One set of PAINS SMARTS patterns
were taken from the ChEMBL release as stated above. The

Figure 3. Correlation plots for pattern and substructure similarity.
Pattern similarity refers to the calculated value of SMARTScompare
for two patterns. The substructure similarity is the Tanimoto
similarity of the substructures that the nodes of the patterns match.
Plot (a) corresponds to the first experiment with substructure-like
patterns, and plot (b) corresponds to the second experiment with
filters that include more SMARTS features.
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other SMARTS set, used in the publication of Schorpp et al.,40

was extracted from the OCHEM website.38

5. RESULTS AND DISCUSSION

In the following paragraphs we will showcase the capabilities of
the algorithm detailed in the companion paper19 and
summarized at the beginning of Theory. The focus of our
analysis lies with the set relations of patterns and their
similarity. One of our central assumptions is that patterns in
filter sets were designed with a specific purpose in mind. We
are estimating the intentions of the authors on the basis of the
labels that patterns were given and the publications with which
they were released, if they exist.
Set Relations and Pattern Redundancy in Filter Sets.

One of the simplest application cases of our algorithm is the
analysis of existing pattern sets with regard to their content.
Often we want to know whether a certain type of chemistry is
already contained in the filter set. For this work, four questions
are of importance in particular:

• Does our algorithm find all of the related patterns?
• Since SMARTS patterns of the respective filter sets were

labeled with the systematic or trivial name, how large is
the unwanted overlap between patterns for different
purposes?

• Do the patterns actually have the desired form (as
specified in the corresponding label)? Sometimes a more
precise or general form of a pattern might meet the
desired criteria better than the presented one.

• Can we reduce the number of patterns by identifying
and removing redundant ones?

To analyze the filter sets regarding their overlap and coverage
of chemical functionality, we employed subpattern calculations
and string search on the pattern labels.
Consistency of Label and Pattern. Our first experiment

focused on patterns that are designed to filter out reactive
compounds containing quinone-like substructures. On the one
hand, we designed two generic patterns (Figure 4) to find as

many quinone patterns as possible. In total, we found 14
patterns, of which 11 match the para variant and three the
ortho variant. Eleven of them have annotations referring to
quinones. The three patterns without a quinone label are
annotated as keto_keto_gamma(5) (PAINS), Dye 1 (1)
(MLSMR), and Dye 4 (MLSMR), as can be seen in Figure
5. For comparison, we conducted a simple string search on the
labels of patterns. Any SMARTS pattern whose label contained

the string “quinone” was selected as a result. Seventeen
patterns were found. Patterns designed to match derivatives of
quinones may still contain the “quinone” substring and are in
the solution set of our query. This naming scheme results from
the systematic nomenclature that is employed in organic
chemistry. One difference in numbers of patterns is
attributable to the class of hydroquinones (Figure 6).

Quinones and their derivatives, when hydrogenated at the
heteroatom, are transformed into their quinol form. These
aromatic forms are not matched by our query patterns as we
have designed them. Hence, they are not in the list of patterns
we find with either of our two query patterns. They could,
however, be easily incorporated. Another difference between
the string search and the pattern query are the two patterns
displayed in Figure 7. The description of the ring and bonds to
the heteroatoms diverge drastically from our notation for
quinones. It is in general debatable whether the two patterns
can still be classified as quinones. Last but not least, simple
notation differences have an impact on substring search too.
“Quinone” can also be written as “chinone”, which in the case
of string matching means we would miss two patterns (77 and
78) from the Dundee filter set.
In general, the pattern labels describe molecules or set of

molecules from the class of quinones well. Aside from the two
examples shown in Figure 7, the labels are very accurate and
descriptive. Depending on the design of the query pattern, all

Figure 4. Two generic SMARTS patterns to find as many quinone
SMARTS strings as possible: (a) ortho version; (b) para version. The
focus here lies on finding all patterns that are labeled as quinones and
then analyzing the bycatch.

Figure 5. Four patterns that are matched by the quinone query
patterns shown in Figure 4 without having a quinone label. Pattern A
is part of the PAINS filter set. Patterns B and C are part of the
MLSMR filter set. Pattern D is a more generic SMARTS pattern that
is part of the MLSMR filter set and renders patterns B and C obsolete
when used together.

Figure 6. Two quinone derivatives that are found in the pattern sets
of BMS and Dundee.
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of the patterns labeled as quinones or their derivatives can be
found. Nonetheless, everything depends on the formulation of
the query pattern. However, we did find patterns containing a
quinone-like subpattern that we would have been unable to
identify without our algorithm. It is important to remember
that a subset relation of patterns is manifested as overlapping
sets of molecules that are matched by each of the patterns. In
our case this would have an impact on the necessity of
patterns. In the case where we would include our query
patterns into the filter set that also contains the dye patterns
(Figure 5), we could remove those and still filter out all
molecules that would have been matched by the dye patterns.
Furthermore, the MLSMR filter set already contains a very
general quinone pattern (Figure 5D). It matches all molecules
that are matched by the dye patterns shown in Figure 5B,C. If
all three patterns are used together, which they usually are in a
filter set, the dye patterns are redundant and may be removed
from the filter set without loss.
All of the quinone patterns, including our query patterns, are

visualized in the Supporting Information.
Pattern Hierarchies and Redundancy. Our second

experiment revolved around the question of which more
specific patterns are rendered redundant when we start with a
very generic pattern. For this experiment, we selected allenes as
example chemical group.
For our search we used the pattern *=C=*, as it is part of

the MLSMR and SureChEMBL OCHEM/ToxAlerts filter set.
We searched for more specific patterns than the generic allene
in all of the filter sets and found 12 matches and eight different
patterns in total. Those patterns that occurred in more than
one filter set were identical, including the annotation.
When visualizing the hierarchy of the resulting patterns, a

specificity tree as shown in Figure 8 can be constructed that
shows the most generic pattern at the top and more specific
patterns on the subsequent levels below. Each pattern below
the top pattern is redundant in the sense that each molecule
that would be matched by one of the lower patterns will in
every case also be matched by the top pattern. This is
especially interesting when we turn our attention toward the
origin of patterns that are part of the hierarchy. Five patterns
are from the same SureChEMBL OCHEM/ToxAlerts toxicity
set, of which four are obsolete and can be removed without
compromising the integrity of toxicity filtering mechanism.
In our third experiment, we focused on a bottom-up

approach by selecting a relatively specific sulfonyl halide
pattern with an anchor wildcard node. Here we were curious
whether there were any more generic patterns that might be of
interest to our fictive task. The search for more generic
patterns found 13 patterns including the query from the

Inpharmatica filter set. The 13 matches can be grouped into
seven partitions of equal patterns. Those equal patterns
differed in the order of the SMARTS nodes. The visualization
of the set relation we found is shown in Figure 9.

Using SMARTScompare, we are able to analyze the degree
to which the intention, derived from the textual label that
comes with the pattern, is translated into the final SMARTS
pattern. Because of the complexity of the SMARTS language,
unforeseen molecules are matched, especially when very
generalized patterns are used. The second interesting point is
the redundancy of patterns in filter sets. Especially when
expressions get more complicated, keeping track of each
function that has been cast into a pattern gets increasingly
more diücult. By analyzing set relations, we are now able to
produce hierarchical schemes that give an easy-to-perceive
overview of the subset relations of patterns. This allows us to
eliminate redundant patterns and sharpen the focus of the filter
set.

Filter Set Similarity Analysis. For generic pattern set
comparison, the explicit search for more specific or generic

Figure 7. Two patterns from the PAINS filter set that we did not find
with the generic quinone patterns (Figure 4). Both are labeled as
quinone patterns but also include heteroatoms, rendering them
unmatchable for our generic query.

Figure 8. Hierarchical scheme of patterns specifying allene-like
chemical groups. The hierarchy starts with the most generic allene
pattern at the top and more specific patterns toward the bottom.
Equal level does not imply equal specificity, but each pattern on a
lower level is more specific than a pattern on the level above.

Figure 9. Hierarchical scheme of more generic patterns than the
sulfonyl halide pattern. The hierarchy starts again with more generic
patterns at the top and gets more specific toward the bottom.
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patterns is not well-suited. The binary form of the result is too
coarse-grained and forbids a subtle analysis of small differences
between patterns. This problem is better addressed with a
similarity-based approach.
In order to calculate the similarity between two filter sets, we

apply the following procedure:

• For each pattern of the query filter set, we compute the
similarity to each pattern in the second filter set.

• For each query pattern, we select the most similar
pattern from the second set.

• The average of the similarity values of the most similar
pattern pairs is calculated between the two sets as an
asymmetric similarity measure of those two sets.

The self-similarity of a SMARTS pattern set is calculated as
described above, with the one difference that the query pattern
was excluded. In this way, we get an idea of the most similar
pairs of patterns in a filter set.
The similarity value of two different sets can be considered

as a degree of coverage of one filter set by the other. Our
analysis of pattern set self-similarity, on the other hand, was
conducted with the assumption that higher dissimilarity covers
a greater variety of chemical functions and the set contains
fewer redundant patterns. Similarity between node fingerprints
of a pattern pair was calculated with the weighted Tanimoto
coeücient shown in eq 2. The weights were derived from the
validation data set as described in Similarity Calculation. In the
following paragraphs we discuss the similarity values between
filter sets and, if the given data allow for it, tentatively analyze
possible reasons.
The Glaxo set constitutes an excellent beginning since it was

the first filter set published and also was designed with a similar
goal as the majority of the other sets. Figure 10 displays the
accumulated values for the Glaxo set’s most similar pairs.
There is one major peak in the histogram with its maximum at
∼0.3 and a local maximum at ∼0.5. Since there are no filter
pairs with similarity 1.0, the filter set does not contain any
duplicates. With a self-similarity mean of 0.34, the Glaxo filter

set lies at the lower end of self-similarity values (see Figure 13
for more values).
When we compare the Glaxo set with all of the other filter

sets, we get the similarity values displayed in Figure 11. The

filter set similarities that draw our attention are the ones with
extreme similarity or dissimilarity values. MLSMR and
SureChEMBL OCHEM/ToxAlerts are the two with the
highest similarity values, while SMARTCyp and PAINS are
most dissimilar to the patterns of the Glaxo filter set. The
similarity value distributions of these four filter sets are
displayed in Figure 12. The similarity between the Glaxo and
MLSMR sets is surprisingly high. The extent of the similarity
indicates that the Glaxo filter set is almost fully contained in
the MLSMR set. However, it does not indicate that most of the
MLSMR patterns are from the Glaxo set. In Figure 13 we can
see that the similarity value from MLSMR to Glaxo is 31%
lower. In contrast, the histograms in Figure 12c,d barely
contain similarity values above 0.5, showing that most of the
Glaxo patterns are not covered by PAINS and SMARTCyp.
Finally, we extended this experiment to a large-scale all-

against-all filter set comparison, as can be seen in Figure 13.
Most of the average similarities fall between 0.4 and 0.6. Also,
SMARTCyp and PAINS are most dissimilar to all of the other
filter sets. The asymmetry of our set similarity measure is
clearly visible for the SMARTCyp set. The average similarity
for any filter set to SMARTCyp is below 0.25, and in most
cases even below 0.2. In the opposite direction, the average
similarity from SMARTCyp to any other filer set is above 0.25
except for PAINS (0.16). The other extremes are Glaxo to
MLSMR with a similarity of 0.95 and Glaxo to SureChEMBL
OCHEM/ToxAlerts with a similarity of 0.83.
There might be many reasons why the Glaxo−MLSMR

similarity value is so high. Since the Glaxo set was the first to
be published and the MLSMR project was a concerted effort of
several institutions only a few years later, it probably was
incorporated into the MLSMR filter set almost unchanged.
When we were analyzing the two filter sets with the
SMARTScompare tool, we found that there are only nine

Figure 10. Counts of the self-similarity values for the Glaxo filter set.
The mean similarity lies at 0.34. The set has no identical patterns. The
density plot has a maximum at ∼0.3 and another local maximum at
∼0.5.

Figure 11. Box plots of the similarity histograms for pattern similarity
for all patterns from the Glaxo Wellcome filter set to their
corresponding most similar patterns in all of the other filter sets.
The Glaxo box plot represents the self-similarity of the Glaxo filter set.
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patterns in the Glaxo set that are not identically included in the
MLSMR set. They are shown in Table 3.
Eight of the nine patterns can be observed as differing values

in the histogram in Figure 12a and the box plot in Figure 11,
where they are classified as outliers by the box plot
visualization. The ninth pattern (R22) differs from its most
similar MLSMR pattern only in the order of the halogens. The
reverse similarity lies at 0.64, which also makes sense when one

considers the slightly different focus of the MLSMR filter set.
They not only tried to avoid pooling of reactive compounds
but also were interested in filtering out promiscuous
aggregators as defined by McGovern et al.,36 leading to a
drop of similarity of 31%. The high similarity between the
Glaxo and SureChEMBL OCHEM/ToxAlerts filter sets makes
sense too if we take into account that many toxic compounds
exhibit toxicity because of their reactive nature. When we have

Figure 12. Histograms of similarity values of the Glaxo Wellcome patterns from searches for the most similar ones in four other filter sets. The four
filter sets were selected on the basis of their high similarity (a, b) or dissimilarity (c, d).
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a look at the similarity of SureChEMBL OCHEM/ToxAlerts
to Glaxo, on the other hand, we see the difference in reactivity
and toxicity ingrained into the similarity value. Toxicity is
caused not only by reactive compounds but also compound
classes that interfere with signaling processes in the body and
compounds that are translated into their toxic form by means
of enzymatic activity. This leads to a drop of 33%.
The dissimilarity of the Glaxo and SMARTCyp filter sets

(0.17) can be explained by the very different focuses of the
filter sets. The Glaxo filter set was specifically designed to
exclude highly reactive compounds from screening libraries.

SMARTCyp was designed to describe very small, often only
one atom in size, chemical groups that act as keys in a
dictionary of density functional theory calculations, which is
orthogonal to the goal of HTS library design.
The dissimilarity of the PAINS and Glaxo filter sets (0.24),

on the other hand, is not explained easily, and formulating a
sophisticated hypothesis would require a more thorough
analysis. One reason about which we are confident is the
substantial difference in pattern size. The PAINS pattern set
includes many patterns describing whole molecules, while the
Glaxo filter set focuses on reactive chemical groups. Figure 14
shows an example of a pattern from the PAINS filter set. The
similarity of PAINS to SMARTSCyp (0.1) constitutes the
global minimum of our similarity analysis. This supports our
hypothesis that large parts of the dissimilarity can be attributed
to size difference: large, very specific SMARTS expressions in
the case of PAINS filters and one-atom expressions in the case
of SMARTCyp.
To deepen our understanding of the filter sets and

SMARTS−SMARTS similarity we analyzed highly similar
pattern pairs. We searched for the most similar pattern for each
of the nine patterns from the Glaxo−MLSMR example that
were not found in both sets (Table 3).
We will discuss the patterns R23 Carbodiimide and R11

Isocyanates & Isothiocyanates exemplarily. Both have the same
most similar pattern within the MLSMR filter set, namely,
*=C=*, annotated as allene (see Figure 15). First, we notice

Figure 13. All-against-all filter set similarity matrix plot. Each cell describes the average similarity for patterns from one filter set and their
corresponding most similar patterns in the other filter set. On the diagonal, the filter set self-similarity is measured. Here the most similar
nonidentical pattern is averaged; diagonal entries of 1 would indicate plenty of pattern duplicates.

Table 3. Patterns from Glaxo That Are Not Identically Part
of the MLSMR Filter Set

annotation pattern

N1 Quinones O=C1[#6]∼[#6]C(=O)[#6]∼[#6]1

R1 Reactive alkyl halides [Br,Cl,I][CX4;CH,CH2]

R3 Carbazides O=CN=[N+]=[N−]

R23 Carbodiimide N=C=N

I1 Aliphatic methylene chains
7 or more long

[CD2;R0][CD2;R0][CD2;R0][CD2;R0]
[CD2;R0][CD2;R0][CD2;R0]

R11 Isocyanates &
Isothiocyanates

N=C=[S,O]

R16 beta carbonyl quaternary
Nitrogen

C(=O)C[N+,n+]

R9 Paranitrophenyl esters C(=O)Oc1ccc(N(=O)∼[OX1])cc1

R22 P/S Halides [P,S][Cl,Br,F,I]
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that the MLSMR pattern is more generic than both of the
Glaxo patterns. Therefore, it will match all molecules matched
by the two Glaxo patterns. When interpreting the SMARTS
patterns, we could say that all cumulated double bonds around
carbon atoms are considered as reactive by the authors of the
MLSMR filter set. The Glaxo patterns, on the other hand,
require heteroatoms to be included in order for cumulated
double bonds to be deemed too reactive. Moreover, visual-
ization of the Glaxo SMARTS patterns makes it very clear that
both patterns could be replaced by a single pattern of
N=C=[S,O,N] without losing any filtering power, i.e., we
would still match the same molecules.
Another example, this time with high similarity (0.64), was

taken from the Inpharmatica to SureChEMBL OCHEM/
ToxAlerts filter set comparison (Figure 16). Upon examination
of the two patterns displayed, the high similarity value is easily
explained chemically. Both patterns describe a carbonyl-like
group between two carbons, one of which is connected to one
of the most abundant atoms in medicinal chemistry, a halogen
(F, Cl, Br, I). Differences are a possible nitrogen at the position
α to the carbonyl carbon and a higher specificity for the bond
to the atom at the α position in the other direction. Because of
the different pattern sizes (one pattern with four nodes and the
other with five nodes), the similarity is capped at 0.8.
Therefore, the similarity value of 0.64 is relatively high

considering the pattern differences. Because of the statistical
weighting of individual bits, atomtypes with low occurrence
like halogens and sulfur substantially increase the similarity.
When the reduced fingerprints without weighting are applied,
the similarity drops to 0.29.
In conclusion, pattern similarity is inûuenced heavily by the

difference in pattern size (the number of nodes) and the
weighting of bits of node fingerprints. This behavior is
intended and reûects, to the best of our knowledge, the
intuitive understanding of pattern similarity. The pure number
of common active bits used for molecular similarity is mostly
irrelevant for chemical pattern similarity since the number of
atomtypes per element varies substantially. The weighting
scheme compensates for this effect. We have observed that
patterns with high similarity mostly differ in one or a few nodes
only. Moreover, most of the time the difference can be
attributed to one node allowing exactly one element while the
other allows a second or third element alternatively. Reasons
for dissimilarity, on the other hand, are so diverse that we do
not feel confident in making a generalizing assertion.

Aromaticity Handling. When handling SMARTS compar-
ison strictly as described in theory,4 patterns that would be
perceived as similar or even identical are not classified as such.
This is due to different notations for aromatic systems and a
lack of techniques to transform them. Earlier in this work we
discussed two modes that we included in the implementation
of the comparison algorithm. Those two modes introduce
aromaticity detection in which patterns with aromaticity are
handled more intuitively during comparison.
To demonstrate this effect, we compare two translations of

PAINS patterns into SMARTS that were originally published
in SLN.8 The one we took from the MySQL ChEMBL dump
was automatically translated with the tool CACTVS.31 The
other set was translated by hand as part of the OCHEM
project.7 Figure 17 shows an example of two translated
SMARTS that stem from the same pattern written in SLN. The
two patterns on the left show the compatibility of the pattern
nodes in similarity mode with both modes for aromaticity
correction switched off. Because of the different notations for
the imidazo[1,2-a]pyridine matching part of the pattern, most
of the pattern nodes are classified as dissimilar. Since
mismatches of nodes have an inûuence on the compatibility

Figure 14. SMARTS pattern taken from the PAINS filter set
(tert_butyl_B(1)) that looks like a molecule was translated into a
SMARTS pattern.

Figure 15. Two patterns from Glaxo with a common most similar
pattern from MLSMR. In the upper part of the picture, the two Glaxo
patterns are shown with their similarity values to the MLSMR pattern,
which is displayed in the lower part of the figure. Although all of the
nodes participate in the mapping, both patterns have similarities
smaller than 0.5. The wildcards in the MLSMR pattern are the reason
for those low similarity scores.

Figure 16. Two patterns from the Inpharmatica and SureChEMBL
OCHEM/ToxAlerts filter sets. They are annotated as Filter64_-
halo_ketone_sulfone and Alpha_Halo_Carbonyl. In contrast to the
previous example (Figure 15), there is no subset relation between
these patterns. Parts of them are vice versa more specific.
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of neighboring nodes, the similarity of other nodes in the
patterns decreases as well. When making use of the aromaticity
correction modes, this incompatibility is overcome by
amending node and bond fingerprints internally.
The main two differences we found during analysis of the

two sets of SMARTS patterns were different notations for
aromaticity and the use of SMARTS language features. While
the ChEMBL patterns describe the aromaticity more explicitly
with aromatic nodes and edges, the OCHEM patterns use the
implicit form of aromaticity. Nodes are written in their
aromatic form, and bonds are given implicitly. In terms of use
of the features the SMARTS language provides, the OCHEM
patterns utilize them way more. Specifications of hydrogens are
given as explicit hydrogens in the ChEMBL patterns, while the
OCHEM patterns make use of hydrogen counts and
declaration of explicit bond counts. A third major difference
we found is the use of generic element notation, #<n>.
CACTVS makes heavy use of this notation, while the hand-
crafted OCHEM SMARTS contain this kind of description
only when no aliphatic/aromatic classification is possible.
Other minor differences exist but add no information necessary
for understanding the conceptual differences.
Aromaticity handling is a complex problem with many

pitfalls. On the side of SMARTS matching, many different
implementations of the original Daylight theory exist. Each
implementation has it is own aromaticity handling that
depends on the chemical model used. To be independent of
the notation that is used to describe potentially aromatic
systems in SMARTS, the two described methods were
introduced. The presented modes cover the theoretically
correct way of handling aromaticity as well as the chemically
intuitive one. Nonetheless, we recommend being very careful
when using these modes, as there might be unexpected side
effects.

■ CONCLUSION

We have presented the application of SMARTScompare, which
allows analysis of chemical patterns in the form of SMARTS
expressions in an unprecedented way. SMARTScompare
makes it possible to compare SMARTS patterns independent
of their string representation and supports most features of the
SMARTS language. It is capable of similarity assessments and
can detect subset relations between patterns. Beyond
SMARTScompare, we developed the SMARTScompare-

Viewer, a tool that provides intuitive depictions of
SMARTScompare pattern mappings.
As a first application study, we used our newly developed

tools to analyze several published filter sets. For most of the
filter sets, publications are available that summarize the
purpose for which they were designed. For those filter sets
without a publication, we at least had the labels that were given
to each pattern contained in the filter sets. This allowed us to
analyze the similarities of filter sets against the background of
their original purpose. The data suggest that the Glaxo filter set
is fully contained within the MLSMR filter set, with only nine
patterns that were adjusted. We also can easily see that the
SMARTCyp set has a totally different focus compared with the
rest of the filter sets. The PAINS filter set consists of many
large patterns that seem like they were directly translated from
SMILES strings for specific molecules. As a consequence,
filters from PAINS are very dissimilar to filters from other sets
used in HTS screening. Last but not least, we are able to see
differences in design intentions ingrained in the similarity
values of the pattern set comparison. Our analysis suggests that
the main difference between the Glaxo and SureChEMBL
OCHEM/ToxAlerts filter sets is the focus on chemical
instability in the first case and the focus on toxicity in the
second case.
From an analysis of the factors that have the greatest

inûuence on pattern similarity, pattern size (the number of
nodes), the number of atomtypes an element has, and the
weighting of bits of node fingerprints emerge as the strongest
factors affecting similarity.
Aromaticity poses a problem, as no standard aromaticity

detection is included in the SMARTS language. We introduced
two optional modes that can be engaged if needed. If in use,
aromaticity is handled in a way that makes the comparison of
two patterns more independent of their notation.
For cheminformaticians interested in designing filter sets,

SMARTScompare offers an easy approach to learn from filter
sets and combine rules with own experiences. For chemists
interested in understanding why compounds are filtered out,
SMARTScompare offers many new opportunities for analysis.
With a pattern of interest from one filter set, similar patterns
from other sets become searchable, making direct comparisons
possible for the first time.

Figure 17. Comparison of two SMARTS patterns that stem from the same pattern written in SLN and were translated by two different sources.7,31

The pattern was originally published as SLN N[1]C(=C(NC:C)N[6]C=CC=CC=@1@6)Any[IS=C(Hev)=CHC:C,C:O:C].8 The two patterns
on the left show the SMARTS comparison with both modes for aromaticity correction switched off. The comparison on the right, on the other
hand, was conducted with both modes switched on. The patterns at the top of the graphic were taken from the set that was automatically translated
by CACTVS31 and is also stored in ChEMBL. The patterns at the bottom of the figure are the ones taken from OCHEM.7
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SI1: Validation Experiments of the Similarity Approach

ZINC Molecules

We first took 100 substructure-like patterns from our validation experiment that have ap-

proximately 10,000 matches on the validation data set. We computed the reference similarity

and compared it with the calculated pattern similarity. The correlation is plotted in Fig-

ure S1. Overall, we observe highly similar correlation results for the three pattern similarity

methods (weighted fingerprint similarity, reduced fingerprint similarity, and fingerprint sim-

ilarity) and the underlying MCS similarity with squared Pearson correlation coefficients of

0.72, 0.71, 0.7, and 0.66, respectively. The substructure like patterns used to evaluate simi-
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larity are equally described by all measures. For all similarity plots we observe that pattern

similarity has a tendency to overestimate the similarity value. We conclude that our simi-

larity measure is applicable to substructure like SMARTS patterns and that the similarity

implementations do not significantly differ.
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Figure S1: Correlation plot of three similarity measures SMARTScompare provides. For this
plot, 100 patterns with 10,000 hits on the validation data set were considered. Each plot
shows the correlation for the implemented similarity measures, statistical pattern similarity,
reduced fingerprint pattern similarity, fingerprint pattern similarity, and the underlying MCS
similarity to the reference substructure similarity. All three measures and the MCS similarity
have a similar squared Pearson correlation coefficients. The histograms on the axes of the
plots show the distribution of similarity values. They emphasize the differences of all three
methods at best. We observe similar distributions to the MCS similarity for the three
measures.
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ChEMBL22 Molecules

We matched all patterns from the filter sets against ≈1.3million molecules from ChEMBL22S1.

To reduce the computational complexity, we limited the maximum number of matches to

50,000. Patterns above this threshold were not considered. To achieve a reasonable refer-

ence similarity, we enforced a minimum of 5,000 hits per pattern to be considered. Also, we

omitted any similarity value that is zero for any of those measures. Since they dominated

the distribution, the analysis becomes more relevant. The similarity correlation is shown in

Figure S2. In this experiment we observe that all our methods underestimate the substruc-

ture similarity. Furthermore, the differences between the methods of weighted atom type

and fingerprint similarity methods are still not significant. Regarding the squared pearson

correlations coefficients of 0.67, 0.65, 0.59, and 0.58, we conclude that our method is also

suited to measure pattern similarity. We performed another experiment considering only

similarity values of comparisons where at least one pattern has an node or edge which is

explicitly marked as acyclic (see Figure S3). Here we observe squared Pearson correlation

coefficients of 0.7, 0.64, and 0.49. Similar to Figure S2 most of the values are smaller then

0.4. This plot shows the differences in between the similarity measures best, since most of

the extended atom types are related to ring properties. The MCS similarity in this experi-

ment is quite interesting with the regression line close to the line of unity. Since the MCS

similarity only depends on the pattern sizes and the size of the mapping, there are only a few

similarity values that are actually achieved. This results in several lines representing a cer-

tain pattern similarity and the corresponding range for substructure similarity. In all plots

the MCS similarity can be understood as upper bound for any other similarity calculated by

SMARTScompare.
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Figure S2: Correlation plot of three similarity measures SMARTScompare provides and the
MCS similarity. For this plot, all patterns from the 9 sets were considered matching 5,000
up to 50,000 molecules on ≈1.3 million molecules from ChEMBL22. Values that are zero for
any measure are omitted. Each plot shows the correlation for a similarity measure to the
reference substructure similarity. In this experiment the MCS similarity shows a different
distribution in comparison to the other three measures.
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Figure S3: Correlation plot of the three similarity measures SMARTScompare provides.
This plot is based on a selection of the data of Figure S2. Only those similarity values were
considered, where at least one pattern has an explicit acyclic node or acyclic bond. In this
experiment we observe different correlation values as well as distinguishable distributions.
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Conclusion

For large substructure like patterns, similarity is dominated by the underlying MCS mapping.

This can change if more SMARTS properties and logical formulations are used. Overall, these

experiments show that the pattern similarity calculated by SMARTScompare approximates

the similarity which can derived from matching fragments to a large reference data set.
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Abstract: The number of publications concerning Pan-Assay

Interference Compounds and related problematic structural

motifs in screening libraries is constantly growing. In

consequence, filter collections are merged, extended but

also critically discussed. Due to the complexity of the

chemical pattern language SMARTS, an easy-to-use toolbox

enabling every chemist to understand, design and modify

chemical patterns is urgently needed. Over the past decade,

we developed a series of software tools for visualizing,

editing, creating, and analysing chemical patterns. Herein,

we highlight how most of these tools can now be easily

used as part of the novel SMARTS.plus web server (https://

smarts.plus/). As a showcase, we demonstrate how re-

searchers can apply the web server tools within minutes to

derive novel SMARTS patterns for the filtering of frequent

hitters from their screening libraries with only a little

experience with the SMARTS language.

Keywords: Chemical Patterns · SMARTS Visualization · SMARTS Comparison · Medicinal Chemistry · Filter Collections

Chemical patterns are one of the workhorses of cheminfor-

matics. By describing a generic structural feature of

molecules, they are of central importance for classifying

and organizing compound collections. In contrast to a

classical substructure, a chemical pattern allows logical

expressions and atom/bond specifications via properties.

Invented in the late 80s by Daylight Information Systems,[1]

today, the SMARTS language is the quasi-standard for the

description of chemical patterns. Although not complete,

SMARTS is very feature-rich allowing chemists to precisely

specify a structural pattern they have in mind. Unfortu-

nately, the SMARTS language is quite complex and many

researchers struggle in formulating their patterns due to

the cryptic nature of SMARTS notations. Furthermore, even

for experienced computational chemists, it is sometimes

hard to spot errors in SMARTS expressions making their

development usually a trial-and-error process.

Over the past decade, we developed a series of software

tools supporting researchers in designing and analysing

chemical patterns using the SMARTS language. Recently,

we developed a web server named SMARTS.plus[2] to

circumvent the software installation hurdle making SMARTS

analytics available to even occasional users and students. In

the following, we will first briefly summarize the function-

ality, how it can be accessed in SMARTS.plus und will round

off with a use case, namely the application of the web

server tools to derive novel patterns for the filtering of pan-

assay interference compounds.

Although systematic names exist in chemistry, the daily

language of chemistry is structure diagrams. Chemical

patterns have a lot in common with structure diagrams;

roughly spoken, they are just a more generic form. The

most important aspect to make chemical patterns compre-

hensible is therefore an adequate visualization. Following

the IUPAC nomenclature for structure diagrams as closely

as possible, we carefully designed the graphical depiction

of molecules to patterns. Figure 1 shows an example of the

resulting SMARTSview image for a complex pattern.[3]

Substructural features and structural variances get ascer-

tainable, immediately showing the great value of this

approach. Once having had a first look at a SMARTSview

image, it becomes evident that a graphical editor is

indispensable. Therefore, we developed a powerful graph-

ical editor, SMARTSeditor, as a standalone tool[4] which is

available for academic use.[5]

Chemical patterns are mostly generated based on

example molecules. There is a class A of molecules having a

certain property that a class B of molecules does not have.

Often, patterns are designed by continuously monitoring

which molecules of class A do not yet match and which of

class B do still match. The question arises how this process

can be best supported algorithmically. In computer science,

several algorithms exist for so-called frequent and contrast

pattern mining on graphs.[6] These methods are also applied

to molecules (see for example[7]); however, they usually do

not end up in SMARTS expressions. Therefore, we devel-

oped SMARTSminer[8] as a one-stop solution from sets of

molecules to a SMARTS pattern. Although SMARTSminer is

not able to make use of all SMARTS features (for example,
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recursion is not supported), it simplifies the design of

patterns enormously. Within seconds to minutes, it proc-

esses sets of hundreds of molecules and creates a SMARTS

pattern to enrich or separate them. SMARTSminer is

integrated into our standalone editor; to give users a kick-

start for pattern design, it is also available on the SMARTS.

plus web server.

Comparing two molecules is an almost daily task in

cheminformatics. More precisely, we either ask for a

substructure relationship (is substructure B contained in

molecule A) or a similarity relationship mostly answered

with topological fingerprints like the Extended-Connectivity

Fingerprints (ECFP).[8] These questions apply to chemical

patterns as well and are critical for the analysis of pattern

collections. The comparison of SMARTS expressions belongs

to the most challenging algorithmic problems in cheminfor-

matics. In 2019, we presented SMARTScompare,[10] an

algorithmic approach to address the substructure search

and the similarity search on chemical patterns. An atom

type fingerprint covering more than 20,000 states is

employed in a complex, recursive comparison algorithm.[9]

For the first time, a method enables the identification of

more specific or generic or just similar chemical patterns in

pattern collections - independent of the way they are

formulated. SMARTScompare is a command line tool that

processes hundreds of pattern comparisons in a few

seconds. Recently, we added SMARTScompare to the

SMARTS.plus web server for pattern comparison including

visualization, as well as for searching public pattern

collections.

SMARTS.plus combines SMARTSview, SMARTS-miner

and SMARTScompare in an easy-to-use web server based

on Rails available at https://smarts.plus. It connects the

standalone tools allowing to visually analyse SMARTS

expressions. It runs in four modes: In the ‘View’ mode, the

user can enter a SMARTS expression and get a visual

representation including a figure legend for less experi-

enced users. In the ‘Compare’ mode, two expressions can

be uploaded and the server calculates substructure relation-

ships and pattern similarity. A graphical depiction of the

node mapping helps to comprehend the pattern relation-

ship. In the ‘Search’ mode, a SMARTS expression is

compared to currently nine public pattern collections

enabling to browse through the most similar ones. To this

end, we used the SMARTS collections as applied for the

annotation by the ChEMBL database.[11] These collections

include the well-known PAINS filters (PAINS),[12] the Sure-

ChEMBL Non-MedChem Friendly SMARTS (SureChEMBL),[13]

the Bristol-Myers Squibb HTS Deck filters (BMS),[9] the NIH

MLSMR Excluded Functionality filters (MLSMR),[14] the Uni-

versity of Dundee NTD Screening Library Filters (Dundee),[15]

filters of unwanted fragments derived by Inpharmatica Ltd.

(Inpharmatica),[5] the Pfizer lint filters (lint),[16] and the Glaxo

Wellcome Hard filters (Glaxo).[17] Finally, in the ‘Create’

mode, two compound sets can be uploaded and SMARTS-

miner is applied to suggest patterns frequently found in the

first set and rarely found in the second. A browser shows

the molecules hit for each of the created patterns.

In the following, we describe a workflow (Figure 2) for

applying the SMARTS.plus tools to derive novel SMARTS

filters for the characterization of frequent hitters or pan-

assay interference compounds, i. e., compounds that are

frequently found to be active in multiple high throughput

screening assays, e.g. due to aggregation or high reactivity.

As an example case study, we selected a set of molecules

which might unselectively modify cysteine residues in

proteins according to the studies of Dahlin et al.[18] The

common structural feature of these compounds is the

benzodiathiazole scaffold (using the link https://smarts.

plus/ you can visualize the corresponding SMARTS pattern:

‘[*,#1]-[#6]-1= [#6]-[#6](-[*,#1])= [#6](-[*,#1])-[#6]-2= [#7]-

[#16]-[#7]= [#6]-1-2’). Whereas six of the analysed com-

pounds were shown to react covalently by monitoring the

presence of compound thiol adducts after addition of CoA,

12 further compounds sharing this scaffold did not lead to

covalent adducts. SMARTSminer was used to derive a

chemical SMARTS pattern that enables differentiation

between the positive support structures (thiol-modifying

compounds) and the negative support structures (no

reaction with free thiols was observed). This can be

achieved in the ‘Create’ mode by uploading both sets to

the web server and defining the minimum percentage of

Figure 1. SMARTSview visualization of a typical SMARTS pattern for

the exclusion of problematic compounds from molecular datasets.

It is extracted from the publication of Pearce and co-workers.[9] The

SMARTS pattern describes molecules with a thiol warhead that

might covalently modify cysteine residues in a protein in an

unselective manner.
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Figure 2. An example workflow utilizing the SMARTS.plus tools in the ‘Create’, ‘View’, ‘Search’, and ‘Compare’ mode. Here, we show how two

molecule sets can be compared creating a SMARTS pattern that enables a good differentiation between both sets. The derived pattern can

be immediately visualized in the ‘View’ mode. Subsequently, multiple filter collections can be searched for similarities to the created pattern.

The differences between the pattern of interest and highly similar patterns can finally be visualized in the ‘Compare’ mode.
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compounds from the positive support structures (90% in

this example) and the maximum percentage of compounds

from the negative support structures (10% in this example)

that should be matched by the generated SMARTS pattern.

The resulting patterns can be visualized with SMARTSview

by one click (’View’ mode). However, our search resulted in

numerous patterns with identical positive and negative

support leading to identical confusion matrices.

To further filter the results, the option ‘Small patterns’

can be selected on the bottom of the results page. In case

of multiple patterns with the same support values, small

patterns are preferred, large ones eliminated. Here, this

leads to a reduction of the results to three SMARTS

patterns. The chosen pattern can subsequently be com-

pared to already available SMARTS filter collections to find

potential patterns already covering the compounds of

interest.

This can be achieved in the ‘Search’ mode where we can

insert the SMARTS pattern of interest and compare it to all

patterns within the previously mentioned SMARTS filter

collections: PAINS, SureChEMBL, BMS, MLSMR, Dundee,

Inpharmatica, lint, and Glaxo. In our example, the maximum

similarity is 0.375; so we might conclude that we found a

novel SMARTS pattern for the characterization of typical

frequent hitters. However, it is often difficult to compare

the most similar patterns by eye. Therefore, we can finally

use the ‘Compare’ mode to get a better understanding of

the basic differences between the newly created and the

most similar pattern. We can click on the most similar

SMARTS string and a graphical representation of the differ-

ences is issued. Now, we can immediately see that the

previously defined pattern of the MLSMR collection is

missing the sulfur atom which is crucial in our newly

designed SMARTS pattern. In consequence, we were able to

derive a novel structural pattern for the filtering of

unselectively reacting compounds in screening datasets

based on experimental data.

The described workflow can be pursued on our SMARTS.

plus web server within minutes. It enables interested

researchers to derive appropriate conclusions based on

their experimental results in a highly intuitive way. We

hope that current efforts to derive new SMARTS patterns

for the description of frequent hitters will benefit from our

freely available web server.
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