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Abstract
Ultracold atoms in higher lattice orbitals give new impetus to the established field of
quantum simulation of solids by extending the class of lattice Hamiltonians that can be
modeled. At the same time, they offer unique possibilities to realize and study exotic
quantum many-body states that have no analogue in conventional condensed matter
systems and that originate from the interplay of orbital degrees of freedom, atom-atom
interactions, and lattice geometry.

This thesis reports on the investigation and creation of Bose-Einstein condensates
in higher Bloch bands of a two-dimensional optical boron-nitride lattice. A central re-
sult is the realization of an unconventional condensate in the second band that breaks
time-reversal symmetry and provides evidence for the emergence of a chiral superfluid
order. In particular, experiments presented here make use of rapid quenches of the
sublattice energy offset to accomplish a Landau-Zener type transfer of an initially inco-
herent bosonic ensemble from the lowest band to a higher target band. For appropriate
quench parameters, the subsequent relaxation dynamics exhibits a fast build-up of co-
herence and long-range order in the second and fourth band, signaling the system’s
evolution to a transient orbital condensate. Specifically, condensation in the second
band occurs at the two degenerate Dirac points, where corresponding Bloch orbitals
feature rectified phase vortices that support a globally finite angular momentum with
opposite orientation. For the case of a single-mode condensate, numerical calculations
show that the mean-field interaction energy is minimized by condensation in a single
Dirac point. Hence, the formation of chiral condensates should be favored. Initial ev-
idence of a corresponding symmetry breaking in the momentum distribution has been
experimentally observed. Several aspects of condensate formation and dissolution in
higher bands are discussed, including relevant processes for intraband and interband
relaxation. The results make essential contributions to quantum engineering of uncon-
ventional condensates and superfluid states in higher Bloch bands.

Furthermore, this thesis reports on time-resolved measurements of the anomalous
velocity for condensates in an accelerated optical lattice. The value of the Berry cur-
vature along the forced trajectory in reciprocal space can be precisely inferred from the
observed Hall response in momentum space. For condensates in the second band, geo-
metric pumping and a bosonic counterpart of the valley Hall effect have been realized.
The findings provide essential insights into semiclassical wave-packet dynamics beyond
Bloch oscillations and elucidate the coherent interference mechanism that underlies the
anomalous velocity.





Zusammenfassung
Ultrakalte Atome in höheren Gitterorbitalen geben neue Anstöße im etablierten Feld
der Quantensimulation von Festkörpern, indem sie die Klasse modellierbarer Hamilton-
Operatoren beträchtlich erweitern. Gleichzeitig bieten sie einzigartige Möglichkeiten zur
Realisierung exotischer Quanten-Vielteilchen-Zustände, für die es keine Entsprechung in
konventionellen Systemen kondensierter Materie gibt. Solche Zustände entstehen durch
das Zusammenspiel orbitaler Freiheitsgrade, zwischenatomarer Wechselwirkung und der
Gittergeometrie.

Diese Arbeit widmet sich der Untersuchung und experimentellen Erzeugung von
Bose-Einstein Kondensaten in höheren Blochbändern eines zweidimensionalen hexa-
gonalen optischen Gitters. Ein zentrales Ergebnis ist die Realisierung eines exotischen
Kondensats im zweiten Band, das die Zeitumkehrinvarianz bricht und auf das Vorlie-
gen eines chiralen Ordnungsparameters hindeutet. Die hier vorgestellten Experimente
beruhen auf der gezielten Anregung eines anfänglich inkohärenten Quantengases von
Bosonen in höhere Blochbänder durch eine schnelle Transformation an beiden Untergit-
tern. Bei geeigneter Wahl der Transformationsparameter zeigt das System im zweiten
und vierten Blochband eine schnelle Ausbildung von Kohärenz und beschreibt eine
Entwicklung zu einem metastabilen orbitalen Kondensat. Im zweiten Band findet die
Kondensation insbesondere an den zwei entarteten Dirac-Punkten statt. Die Phase der
zugehörigen Blochorbitale weist hier spezifische Vortexstrukturen auf, die einen global
nicht verschwindenden Drehimpuls mit jeweils entgegengesetzter Orientierung hervor-
rufen. Numerische Berechnungen zeigen, dass für einen nicht fragmentierten Zustand
die Wechselwirkungsenergie durch Kondensation in einem einzelnen Dirac-Punkt mi-
nimiert und folglich die Ausbildung eines chiralen Kondensats bevorzugt wird. Eine
entsprechende Symmetriebrechung in der Impulsverteilung konnte experimentell beob-
achtet werden. Unterschiedliche Aspekte der Kondensation und des Zerfalls von Kon-
densaten in höheren Blochbändern, einschließlich relevanter Intraband- und Interband-
Relaxationsprozesse, werden eingehend untersucht. Die Ergebnisse dieser Arbeit leisten
einen wesentlichen Beitrag zum Verständnis und zur Erforschung exotischer Kondensate
und suprafluider Phasen in höheren Blochbändern.

Darüber hinaus wurden im Rahmen dieser Arbeit zeitaufgelöste Messungen der an-
omalen Geschwindigkeit für Kondensate in einem beschleunigten optischen Gitter vor-
genommen. Die Messungen erlauben eine präzise Bestimmung der Berry-Krümmung
entlang der zurückgelegten Trajektorie im reziproken Raum. Für Kondensate im zwei-
ten Band konnte ein geometrisches Pumpen sowie das bosonische Gegenstück zum
Valley-Hall-Effekt realisiert werden. Die Ergebnisse liefern, über gewöhnliche Bloch-
Oszillationen hinaus, wesentliche Einsichten in die semiklassische Dynamik von Wellen-
paketen bei Anwesenheit einer nicht verschwindenden Berry-Krümmung und verdeut-
lichen auf eindrückliche Weise den der anomalen Geschwindigkeit zugrundeliegenden
kohärenten Interferenzmechanismus.
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1 Introduction

During the past 25 years, sparked by the first experimental realizations of Bose-Einstein
condensates (BEC) [1–3] and quantum degenerate Fermi gases [4], experimental plat-
forms of ultracold atoms have evolved into fantastic playgrounds for exploring intriguing
phenomena in the field of quantum many-body physics. Seminal experiments com-
prise the observation and investigation of such paradigmatic and diverse concepts as
the BEC-BCS (Bardeen-Cooper-Schrieffer) crossover [5–7], Efimov states [8–11], the
Berezinskii–Kosterlitz–Thouless transition [12–16], quantum thermalization in isolated
systems [17–20], and many-body localization [21–23], only to name a few. Results like
these became possible only thanks to groundbreaking technological advancements in
cooling, trapping, manipulating, and detecting neutral atoms, all of which are now
subsumed under quantum engineering.

Today’s state of the art quantum gas experiments offer an extraordinary degree of
control and tunability of basically all system parameters. These encompass the number
and type of atoms – be it bosons, fermions, or mixtures thereof – the energy landscape
for the atomic internal and external degrees of freedom, and the sign and strength of in-
teratomic interactions, which can be tuned via optical or magnetic Feshbach resonances
[24]. In addition, advanced diagnostic tools in combination with a variety of spectro-
scopic probes [25] give access to a precise state and system characterization, even down
to the single-atom level, as enabled by quantum gas microscopes [26] or more recently
developed ion microscopes [27, 28]. Generally speaking, these attributes make ultracold
atoms ideal model systems for implementing a large class of different Hamiltonians and
for investigating the emergent phenomena and properties that come along with them.
As such, ultracold atom systems are ideally suited for quantum simulation, much as
initially envisioned by Feynman [29].

Typically, quantum simulation seeks to provide insights into some complex target
quantum systems St, say an actual piece of solid-state material, by implementing and
studying a particular model Hamiltonian Ĥmod through a well controllable artificial
quantum system Sa, where Ĥmod is supposed to capture the essential physics of St [30,
31]. In a broader sense, however, quantum simulation can be understood as exploring
the physics of an artificial quantum system under some general model Hamiltonian
of interest, which must not necessarily represent an abstraction of a Hamiltonian of
another real system. From this viewpoint, quantum simulation with cold atoms provides
unique opportunities to realize and explore truly novel quantum states of matter and
phenomena unattainable in other settings. Investigating such novel quantum states of
matter is a hallmark of modern physics and a central element of this work.

An important and well-established class of quantum simulators are atoms in optical
lattices, i.e. atoms loaded into artificial crystals of light created from the interference
of laser beams. These systems are particularly suited to mimic phenomena from con-
densed matter physics [32–34], where the atom replaces the role of the electron. Indeed,
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atoms in optical lattices yield almost perfect implementations of the famous bosonic
or fermionic Hubbard model, originally devised to study magnetism and electrical con-
duction in solids. In this context, an early success of quantum simulation was the
first observation of a quantum phase transition from a superfluid to a Mott insulating
state for bosons in a three-dimensional cubic lattice, following the seminal proposal by
Jaksch et al. [35]. Meanwhile, such quantum phase transitions have been observed in a
variety of lattice geometries and dimensions [36–39], even with fermionic atoms [40, 41]
and molecules [42]. Other notable examples of quantum simulation along these lines
are the observation of long-range antiferromagnetic ordering [43] or incommensurate
magnetism [44] in doped Fermi-Hubbard systems. Such experiments directly probe the
rich phase diagram of the fermionic Hubbard model and may help unravel the origins
of high-temperature superconductivity [45, 46].

A major limitation in the analogy between atoms in optical lattices and electrons
in solids is that atoms are charge neutral and thus do not couple to electromagnetic
fields as prescribed by minimal coupling. Consequently, many fascinating phenomena,
especially those that rely on the electron coupling to magnetic fields via the Lorentz
force – like the quantum Hall effect – cannot be directly simulated with optical lattices.
In recent years, the concept of Floquet engineering [47] has significantly advanced the
field of quantum simulation in this direction by enabling the creation of artificial gauge
fields [48, 49], which can mimic the presence of magnetic fields and give rise to complex
tunneling matrix elements. This in turn has set the stage, for example, for quantum
simulation of frustrated magnetism [50, 51], the Hofstadter model [52–55], and the
Haldane model [56]. Floquet engineering has also allowed exploring new exotic states
of matter, such as anomalous Floquet topological states [57] or dissipative Floquet time
crystals [58, 59]. Furthermore, by incorporating synthetic dimensions [60] encoded
through the atomic internal degrees of freedom, Floquet engineering bears exciting
possibilities for realizing and studying topological physics in higher dimensions, such
as a four-dimensional quantum Hall effect [61, 62]. On top of that, optical flux lattices
[63] promise to reach the regime of strongly correlated topological phases in the form
of fractional Chern insulators [64], which are closely related to the fractional quantum
Hall states.

Similar to Floquet engineering, atoms in higher bands add exciting new aspects to
quantum simulation with optical lattices by providing access to orbital degrees of free-
dom, which are relevant to many phenomena in condensed matter systems [65]. In
particular, as we detail further below, the presence of orbital degrees of freedom can
result in a plethora of yet unobserved quantum states of matter [66]. Following the
general spirit of quantum simulation, this work focuses on the experimental realization
of unconventional superfluid states in higher Bloch bands and the investigation of geo-
metric phase effects. Our findings rely on experiments with a bosonic quantum gas in
an optical boron-nitride lattice. A central concept is the time-dependent manipulation
of the energy landscape for the atomic external degrees of freedom, either by quenching
the sublattice energy offset or by accelerating the lattice, both of which drive the quan-
tum system out of equilibrium. In the following, we briefly introduce the main topics
and results covered in this thesis.
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Orbital condensates
The lowest energy eigenstates in higher Bloch bands are often degenerate and feature
complex phase profiles or intricate nodal structures. These eigenstates define what is
often subsumed under the general term of orbital degrees of freedom. As a result of
orbital degrees of freedom, atoms loaded into higher Bloch bands can provide natural
realizations of various types of extended Hubbard models [67], thereby significantly
expanding the scope for quantum simulation of solid-state phenomena. In addition,
they offer unique opportunities to realize and study exotic quantum many-body states
that have no analogue in other systems.

For bosonic ensembles, orbital degrees of freedom can result in a plethora of un-
conventional superfluid states realized in the form of orbital condensates that exhibit
spontaneous time-reversal symmetry breaking and are characterized by a complex order
parameter beyond Feynman’s no-node theorem [68]. Moreover, due to the rich interplay
between orbital degrees of freedom and interactions, these complex order parameters
can manifest in a variety of ways that may involve new exotic properties, such as quan-
tum stripe ordering [69], antiferromagnetic orbital angular momentum ordering [70,
71], or intertwined superfluidity and density wave order [72]. Moreover, the associated
superfluid states can host different kinds of topological excitations [73–75].

While there is already quite a large body of theoretical work devoted to exploring
novel quantum states of matter in higher lattice orbitals [76], experimental research
in this direction has so far mainly focused on weakly interacting bosonic ensembles in
higher bands of a bipartite square lattice, leading to the seminal observation of long-
lived chiral condensates that exhibit staggered orbital angular momentum ordering [77–
79]. Recently, also quantum degenerate fermionic atoms have been successfully loaded
into higher bands of a bipartite square lattice [80].

Within the scope of this thesis, we have realized and studied condensates in higher
Bloch bands of an optical boron-nitride lattice, i.e. orbital condensates in a lattice with
hexagonal symmetry. Here, a new kind of interaction-induced chiral superfluid is ex-
pected in the second band, exhibiting rectified phase currents that give rise to a finite
global orbital angular momentum (see Figure 1.1). The realization of such an uncon-
ventional state of matter was one of the central goals of this thesis. To this end, we have
established and characterized an efficient method for populating higher Bloch bands of
a boron-nitride lattice that features a spin-dependency resulting from a non-vanishing
vector light shift. A quench of the sublattice energy offset through a fast rotation of the
external quantization field allows for a controlled Landau-Zener type transfer of atoms
from the lowest into higher bands. The nonequilibrium states initialized in this way
exhibit fascinating relaxation dynamics. For certain quench parameters, we observe the
interaction-driven, transient evolution to an orbital condensate in the second and fourth
band. More specifically, condensation in the second band occurs at the two degenerate
Dirac points. Furthermore, this unconventional condensate shows clear signatures of
time-reversal symmetry breaking, indicating the emergence of a chiral order. Our ob-
servations are consistent with the presence of a chiral single-mode condensate, which
minimizes its mean-field interaction energy by condensing in a single Dirac point. In
comparison, condensation in the fourth band occurs at zero quasimomentum, analogous
to conventional superfluid states.

3
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a b c

Fig. 1.1: Illustration of superfluid states in a boron-nitride lattice, where the sublattice energy
offset can be tuned by a rotation of the quantization field B. Different colors represent the phase
of the order parameter. a Ground state superfluid with real-valued order parameter. b Chiral
superfluid in the second band with complex order parameter exhibiting phase windings around
each lattice plaquette (circular arrows). c Chiral superfluid in the second band with complex
order parameter exhibiting onsite phase vortices, leading to a finite onsite angular momentum.

At present, the lifetime of the chiral condensate is insufficient to establish pronounced
chirality and impedes adiabatic transport to a regime where the formation of a macro-
scopically large orbital angular momentum can occur. Quite generally, the realization of
long-lived orbital condensates is challenging since they correspond to metastable states
that are prone to decay into the lowest Bloch band. In this thesis, we therefore discuss
several fundamental aspects of condensate formation and dissolution in higher bands.
By including relevant processes for intraband and interband relaxation, we identify cen-
tral ingredients for creating long-lived orbital condensates. For chiral condensates in the
second band of a bipartite square lattice, it has been shown [81] that the relaxation into
the lowest band is inhibited by the destructive many-body interference of two principal
decay channels, which leads to significantly increased lifetimes. We find evidence that
a similar mechanism might be at work also for condensates in the second and fourth
band of the boron-nitride lattice.

At the start of this project, to the best of our knowledge, no systematic experimen-
tal investigation of orbital condensates in a hexagonal boron-nitride lattice had been
pursued. Meanwhile, two groups have reported on the realization of such condensates
in a similar lattice geometry. Jin et al. [82] claim the observation of a Potts-nematic
quantum phase in the second band, whose emergence is explained by renormalization
effects. These results are not compatible with ours. In contrast, the recent observation
of a chiral superfluid in the second band by Wang et al. [83] is in excellent agreement
with our findings.

Anomalous velocity

In his famous paper from 1984 [84], Michael Berry considered the quantum mechanical
evolution of an energy eigenstate in response to an adiabatic change of a generic external
system parameter that follows a closed path in parameter space. He showed that, in
addition to the usual dynamical phase, the eigenstate acquires a gauge-invariant phase,
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Fig. 1.2: Anomalous velocity induced by forcing in a hexagonal lattice. a Exemplary forcing
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(red) with anomalous velocity (blue). The latter results from a non-vanishing Berry curvature at
the Dirac points. c Evolution of the mean velocity in momentum space. d Associated real-space
orbit. Time is in units of the period T of the induced motion.

today known as the Berry phase or adiabatic geometric phase, that does not depend
upon the time it takes to complete the path but only on its geometry. Moreover,
he showed that this phase can be written as the integral of another gauge-invariant
quantity, the Berry curvature, over the surface bounded by the closed path. Just like
magnetic fields, the Berry phase and Berry curvature have fundamental implications for
the quantum mechanical motion of particles. In fact, as pointed out by Berry himself,
the Berry phase is closely related to the celebrated Aharonov-Bohm phase for a charged
particle that moves around a solenoid producing a magnetic field.

Owing to their generality, Berry’s results attracted much attention across all areas
of quantum physics and triggered an enormous amount of theoretical and experimental
research on geometric phase effects in different systems. Thouless [85], for instance,
gave an early demonstration of Berry phase effects in solids in his thought experiment
of a slowly varying lattice potential, resulting in quantized particle transport for a one-
dimensional band insulator. This so-called Thouless topological charge pump has now
found its realization in experiments with ultracold bosonic and fermionic atoms [86,
87]. Another prime example of Berry phase effects in crystalline solids is the anomalous
velocity or anomalous Hall response, which lies at the heart of various non-quantized
and quantized Hall effects [88].

The anomalous velocity is best illustrated in the framework of semiclassical wave-
packet dynamics for a particle that is localized in reciprocal space and whose quasimo-
mentum is changed by an external force (see Figure 1.2). Here, the resulting, time-
dependent quasimomentum takes the role of the external system parameter in Berry’s
original formulation, and the Brillouin zone of the crystal lattice naturally defines the
parameter space, forming a closed manifold that can exhibit regions of non-vanishing
Berry curvature. Subtle considerations of the semiclassical equations of motion unveil
that the particle acquires a velocity component transverse to the direction of the exter-
nal force whenever the quasimomentum visits regions of nonzero Berry curvature [89,
90]. This anomalous velocity is an explicit manifestation of the geometric properties of
Bloch states and can be directly related to the topological Chern number formulation
of the quantum Hall effect [91].

Measuring the anomalous velocity in real solid-state materials is challenging as a di-

5
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rect observation of electron wave-packet dynamics is usually impeded by scattering off
lattice defects or blurred by other extrinsic, interfering effects. Ultracold atoms in opti-
cal lattices instead provide ideal platforms to investigate this phenomenon and related
effects in the general spirit of quantum simulation. For example, measurements of in
situ Hall deflections resulting from the anomalous velocity have successfully revealed
the topological character of various engineered quantum states [54, 56, 57, 92]. How-
ever, while also the Berry phase [93], the Berry curvature [94], and extended concepts
such as Wilson lines [95] have been precisely measured with atoms in optical lattices,
no quantitative measurements of the anomalous velocity itself have been presented so
far.

In the scope of this thesis, we have performed time-resolved measurements of the
anomalous velocity for condensates in an accelerated optical boron-nitride lattice. In
particular, for condensates prepared in a given band, we consider forcing along differ-
ent trajectories in reciprocal space and examine the resulting momentum distributions
obtained from conventional time-of-flight images. In the adiabatic limit, the Berry
curvature along the forced trajectory can be precisely inferred from the observed Hall
response, even though the corresponding real-space Hall deflections may amount to
only a few nanometers. When adiabaticity breaks down, the anomalous Hall response
becomes more intriguing and requires a generalization to a multiband setting. Using an
orbital condensate in the second band, we have also realized a bosonic counterpart of
the valley Hall effect [96, 97], where atoms in different valleys of the band experience a
net anomalous transport into opposite directions. Our results provide essential insights
into the coherent interference mechanism that underlies the anomalous velocity.

Structure of the thesis
For this thesis, we have adopted the following structure. For readers convenience, the
corresponding abstracts are repeated at the beginning of each chapter.

• Chapter 2 gives an overview of the experimental apparatus and the main exper-
imental techniques used throughout this work to create, manipulate, and detect
Rubidium-87 Bose-Einstein condensates. The order of presentation complies with
the steps of the experimental sequence, starting with the state preparation that in-
volves several lasers and magnetic fields for loading, cooling, and trapping atoms,
through to state manipulation and detection of individual spin states. The focus is
mainly on concrete experimental implementations of specific methods rather than
the physical concepts behind them. The only exception we make in this regard
is the detailed discussion of the interaction of neutral atoms with a non-resonant
monochromatic light field, which is particularly relevant to this thesis.

• Chapter 3 is dedicated to the formal description of ultracold bosonic atoms
in optical lattices and its application to central experimental techniques. For
this reason, I briefly review the Bloch formalism, established for the description
of non-interacting particles in periodic potentials, and present exact numerical
calculations of the eigenspace and eigenspectrum for our spin-dependent optical
boron-nitride lattice. Particular emphasis is put on an accurate characterization

6



of higher Bloch orbitals and their physical properties, such as the intrinsic or-
bital angular momentum. Furthermore, we elaborate on the central experimental
observables and probing methods used throughout this work. Based on this, I
demonstrate how amplitude-modulation spectroscopy and Kapitza-Dirac diffrac-
tion can be used to calibrate the lattice depth and in situ orientation of the
external quantization field, respectively.

• Chapter 4 reports on the realization of condensates in higher Bloch orbitals
of an optical boron-nitride lattice. We start with a general overview of the field
of ultracold bosonic atoms in higher lattice orbitals and elucidate the primary
goals and prospects of studying these systems. Following this, we examine the
main method used in this work for transferring atoms into higher Bloch bands
via quenches of the sublattice energy offset. Next, we present measurements that
provide compelling evidence for the emergence of unconventional orbital conden-
sates in the second and fourth band of the boron-nitride lattice. Specifically, for
condensates in the second band, we analyze signatures of time-reversal symmetry
breaking and find evidence for a chiral superfluid order. Next, by examining the
condensation and relaxation dynamics, we identify relevant processes that lead to
an eventual dissolution of orbital condensates in higher bands. Finally, additional
transfer methods into higher Bloch bands are explored.

• Chapter 5 reports on measurements of the anomalous velocity for bosonic atoms
in an accelerated optical boron-nitride lattice. We start with a brief introduction
to the Berry calculus and provide results of a numerical calculation of the Berry
curvature. Based on this, we discuss the semiclassical equations of motion for
Bloch states subject to a uniform force field and illustrate the resulting trajecto-
ries in momentum and real space for different types of forcing. Next, the experi-
mental approach for inertial forcing via lattice acceleration is presented, and the
transformation into the comoving frame is reviewed. Following this, we examine
the coherent evolution of Bloch states in a moving lattice to first order in adia-
batic perturbation theory and establish an explicit connection to experimentally
observed momentum distributions after time-of-flight. Finally, we present mea-
surements of the anomalous velocity for different forcing protocols and compare
the results to numerical calculations.
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2 Overview of the experimental setup
This chapter gives an overview of the experimental apparatus and the main
experimental techniques used throughout this work to create, manipulate,
and detect Rubidium-87 Bose-Einstein condensates. The order of presenta-
tion complies with the steps of the experimental sequence, starting with the
state preparation that involves several lasers and magnetic fields for loading,
cooling, and trapping atoms, through to state manipulation and detection of
individual spin states. The focus is mainly on concrete experimental im-
plementations of specific methods rather than the physical concepts behind
them. The only exception we make in this regard is the detailed discussion
of the interaction of neutral atoms with a non-resonant monochromatic light
field, which is particularly relevant to this thesis.

Within the scope of this work, experiments were conducted at the Spinor project at
the Institut of Laser Physics in the group of Klaus Sengstock. The experimental appa-
ratus is a quantum gas machine that produces Rubidium-87 Bose-Einstein condensates
(BECs) at a cycle time of 30 s to 40 s. Since the first creation of a Rubidium-87 BEC
at the Spinor experiment by H. Schmaljohann [98] and M. Erhard [99], the experimen-
tal setup has undergone extensive modifications with numerous enhancements by the
works of J. Kronjäger, C. Becker, P. Soltan-Panahi, J. Struck, M. Weinberg, and C.
Ölschläger [100–105]. Recent technical developments have been advanced by J. Seeger
[106] and T. Klafka [107], including the design and implementation of an active mag-
netic field stabilization and a new system for intensity and phase control of the lattice
laser beams. Given the long timeline of Spinor history, we provide a detailed account of
the current experimental sequence to produce, manipulate, and detect a Rubidium-87
BEC. Before doing so, however, I will quickly summarize the latest technical upgrades
achieved in the course of this thesis.

2.1 Latest upgrades
Large parts of the latest experimental upgrades have been realized through teamwork
by J. Seeger, T. Klafka, and the author under supervision of Juliette Simonet. Here, we
provide a summary of those that are most relevant to this thesis. An in-depth discussion
of specific technical aspects can be found in the PhD theses of J. Seeger [106] and T.
Klafka [107].

At the beginning of this project, we replaced our depleted set of Rubidium-87 dis-
pensers by a new set of two Rubidium-87 and two Potassium-39 dispensers. Regarding
the close similarity of the optical properties between 87Rb and 39K, the upgrade towards
Potassium is natural in the way that the existing setup is easily extended to support
the generation of 39K BECs without the need for an excessive redesign of the main
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experimental unit and a large number of additional new laser sources. In principle,
a single new laser source will suffice. The design and implementation of this system,
however, is not part of this work and will be treated elsewhere. We merely conclude
by noting that the accessibility of multiple magnetic Feshbach resonances for 39K [108]
with a resonance width of several gauss is a great benefit. Compared to the mostly
narrow magnetic Feshbach resonances in 87Rb [109], this allows for a very precise and
flexible control of the interatomic scattering length over a wide range of parameters.
The inclusion of this additional degree of freedom into existing experimental protocols
will be the goal of future experiments. Apart form the replacement of the dispensers,
which was the most invasive surgery, there were further upgrades that are notable as
well.

T. Klafka and I have completely revised the laboratory computer infrastructure for
the experimental control. The old set of laboratory computers that were still running
on Microsoft Windows 7 have been replaced by a single high-performance Windows
10 computer. Simultaneously, the ancient LabVIEW virtual instrument (VI) for pro-
gramming the experimental sequence was abandoned in favor of the latest VI group
development from the Femto experiment. We have supplemented this VI with addi-
tional functionalities, such as the so-called protocol generator introduced by D. Vogel
[110]. This now allows to run sequences with arbitrarily complex variations of parame-
ters. On this occasion, we emphasize that the actual orchestration of the various digital
and analog outputs for the experimental control is still accomplished by an ADwin Pro
system1 that offers a time step resolution of 10 µs. As part of the modernization we
have also replaced our old detection camera pco.pixelfly qe by a pco.pixelfly USB that
offers overall improved performance in terms of bit depth, readout noise, and readout
speed. Correspondingly, a new VI for the camera control and image acquisition has
been designed and implemented by the author into the experimental control environ-
ment. In the same way, the existing VI for our second detection camera Andor iKon-M
934 has been completely revised.

Further improvements include the reconstruction of the optical pathway taken by
the detection beam for the exposure of the Andor camera. Originally, due to several
constraints in the optical access to the science cell, a flipping mirror was used to pro-
mote the detection beam for absorption imaging, which caused apparent shot-to-shot
fluctuations in the center of mass position of the BEC. Although these fluctuations,
originating from the pointing instability of the detection beam, can be removed in prin-
ciple via post-processing algorithms (cf. e.g. [111]), the latter do not always produce
reliable results and it is generally advised to avoid their application in the first place.
By reorganizing parts of the magneto-optical trap (MOT) setup, we were able to cir-
cumvent the flipping mirror for the detection beam, thus significantly improving the
pointing stability and thereby obviating any needs for post-processing image data.

J. Seeger and T. Klafka made huge efforts in developing from scratch and implement-
ing a new intensity and phase control system for our lattice beams, involving commercial
high-speed servo controllers2, digital drivers for the acousto-optic modulators (dAOM)
[110, 112], newly developed fast photodiode buffers and voltage-controlled RF attenu-

1Jäger Messtechnik, processor module T10.
2New Focus LB1005.
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Fig. 2.1: Schematic overview of the main experimental unit consisting of an upper glass cell
and a lower glass cell (science cell), hold together by a vacuum chamber with several connections
and ports for gauges and pumps, which are omitted for clarity. a Side view corresponding to
the detection field of view of the PCO camera, with wave vector k1D for the 1D retro-reflected
lattice. b Side view corresponding to the detection field of view of the Andor camera, with the
three wave vectors k1, k2, k3 for the 2D running-wave three-beam lattice.

ators (VVA) [106], and a new design for a phase detector [106]. These developments
contributed to a significant improvement in intensity and phase noise suppression for
our running-wave three-beam lattice. An important aspect in this regard was also the
elimination of parasitic etalons in the optical paths for the intensity control, which
caused spurious amplitude fluctuations among the different lattice beams.

Last but not least, T. Klafka and I have implemented a grey molasses cooling for
Rubidium-87. The implementation will be discussed in more detail in the next section.
We simply mention that, as a main result, we were able to reduce the cycle time of the
experimental sequence by almost 10 s without loss in performance, corresponding to a
speedup of nearly 25% as compared to former experimental protocols based on bright
molasses cooling.

2.2 State preparation
For the experimental studies presented in this thesis we have worked with Rubidium-
87 Bose-Einstein condensates. The preparation of the BEC takes place in the main
experimental unit that is made of two glass cells joined by a vacuum chamber and
coupled via a differential pumping stage [98, 99]. Figure 2.1 gives a rough schematic of
this unit. To begin with, we create an atomic cloud of Rubidium-87 that is supplied
from dispensers in the upper glass cell, maintaining a constant background pressure of
10−9 mbar. A small fraction of the cloud is captured and precooled by a two-dimensional
magneto-optical trap (2D-MOT) that serves as a particle reservoir for loading the 3D-
MOT in the lower glass cell (science cell) at a pressure of 10−11 mbar. The loading

11



2 Overview of the experimental setup

procedure lasts about 10 s to 15 s and is accomplished by means of a near-resonant
pushing beam that transfers the atoms from the 2D-MOT into the 3D-MOT. Once the
3D-MOT is loaded, subsequent cooling is provided by a grey molasses for a duration
of 6 ms. Afterwards, the atoms are optically pumped from the {|F = 2,mF 〉} to the
{|F = 1,mF 〉} hyperfine manifold and transferred to a magnetic trap that is based on a
hybrid cloverleaf/4-dee coil configuration [113]. Next, we perform RF-forced evaporative
cooling for 10 s until the thermal atomic cloud reaches a temperature and density that
is close to quantum degeneracy. For the last cooling step we employ a crossed optical
dipole trap in which the final evaporation to a BEC is performed by linearly lowering
the intensities of the corresponding laser beams. Eventually, we end up with a BEC
that consists of typically 3 × 105 atoms.

2.2.1 Grey molasses cooling

In the course of this thesis, T. Klafka and I have implemented a grey molasses cooling
for Rubidium-87 in our experimental cycle. The scheme is based on a Λ-enhanced grey
molasses on the D2 line, as reported by Rosi et al. [114]. However, instead of realizing
the grey molasses via a cooler(repumper) on the open transition F = 2(1) → F ′ = 2
between the ground state hyperfine level F and the excited state hyperfine level F ′, we
employ for technical reasons the open transition F = 2(1) → F ′ = 1.

The cooler light for the grey molasses in our case is derived from the same laser
source that is used for cooling in the MOT, and the required phase-coherent repumper
is generated from a sideband by means of a resonant electro-optic phase modulator3

(PM). An additional acousto-optic modulator4 (AOM) serves to shift the frequency of
the cooler from being red-detuned with respect to F ′ = 3 during the MOT to being
blue-detuned with respect to F ′ = 1 for the grey molasses. We stress that the AOM
is placed in series to the PM and operated in a double-pass configuration such that
we effectively end up using the same optical branch for the MOT-cooler and the grey
molasses. A selective switching is then realized simply by simultaneously turning on or
off the AOM and PM. As a technical detail, we remark that the 0th diffraction order
from the AOM should be shuttered during the grey molasses to prevent the presence of
undesired frequency components.

Using this scheme, we have achieved sub-Doppler cooling for 87Rb with temperatures
as low as 5.3(4) µK [115]. What is more, the phase-space density increased by a factor of
ten compared to the previous bright molasses. With that, we could afford to reduce the
MOT loading time as well as the subsequent evaporation time in the magnetic trap to
a minimum, leading to cycle times that are shorter by 10 s while maintaining the same
temperature and atom number in the final BEC. For an exhaustive discussion of the
parameter optimization for the grey molasses and further aspects of the experimental
implementation we refer to the theses of R. Conrad, P. Groß, and T. Klafka [107, 115,
116]. An excellent recent treatment of the principles and simulations of Λ-enhanced
grey molasses cooling can be found in the publications of Grier et al. [117] and Sievers
et al. [118]. For an original perspective on grey molasses cooling we encourage the reader

3QUBIG PM-Rb_6.8.
4Crystal Technology AOMO 3200-121.
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to consult the pioneering works by Dalibard and Cohen-Tannoudji [119], Grynberg and
Courtois [120], Weidemüller et al. [121], Boiron et al. [122], and Esslinger et al. [123].

2.2.2 Magnetic fields and magnetic traps

All magnetic fields that are used for trapping and manipulating a BEC in our experiment
are generated by the so-called magnetic trap coils and compensation coils. As it stands,
in the current setup they have been implemented by C. Ölschläger during his PhD thesis
[105].

Magnetic trap coils The magnetic trap coils are made of two independent sets of
winding patterns, referred to as Helmholtz coils (HC) and gradient coils (GC), that are
arranged in a hybrid cloverleaf/4-dee configuration with the principal symmetry axis
along the z-direction, as implied in Figure 2.2. The implemented design is attributed
to R. Dinter [113] but goes back to the original works by M. Kottke [124]. Since the
magnetic trap is operated at large currents, the coils are located in a sealed epoxy resin
housing equipped with separate water circulation for cooling.

The HC coils in this setup are multipurpose coils that can work in two distinct modes
to create either the anti-Helmholtz field required for the 3D-MOT or a Helmholtz field
that is necessary for setting the offset bias field in the magnetic trap. In anti-Helmholtz
mode (1) the resulting field at the center exhibits a radial gradient of ∂ρBHC,1

ρ /I =
0.5 G cm−1 A−1 [125]. Complementary, in Helmholtz mode (2) they produce a field
along the axial direction ez with a strength of BHC,2

0 /I = 7.67 G A−1. Typically, the
HC coils are operated at currents between 0 A to 40 A and are also frequently used to
generate magnetic fields for a strong quantization axis along the z-direction.

The GC coils, on the other hand, are used for realizing a tight radial confinement
in the magnetic trap and for Stern-Gerlach separation of the various Zeeman substates
of a given hyperfine manifold {|F,mF 〉}. They are operated at a current of 110 A and
produce a magnetic field configuration at the trap center with a radial gradient of
approximately ∂ρBGC

ρ ≡ B′
ρ = 168 G cm−1 and an axial curvature of ∂2

z BGC
z ≡ B′′

z =
77 G cm−2. In combination with the offset bias B0 = B0ez from the HC coils, this results
in an Ioffe-Pritchard like trap potential [126] for which the geometry is controlled by
varying the field magnitude B0. Figure 2.2 illustrates the magnetic field lines in the
center of our magnetic trap for two different trap geometries at a field magnitude of
B0 = 192 G and B0 = 0.5 G, respectively. For a strong offset bias, the field strength
distribution is clearly isotropic over a large volume, allowing for an efficient transfer
from the 3D-MOT into the magnetic trap. By contrast, for a weak offset bias the field
configuration becomes highly anisotropic with a tight radial confinement, leading to
high collision rates that are crucial for efficient RF-forced evaporative cooling in the
magnetic trap.

Given the multipole expansion of the Ioffe-Pritchard field [127], one easily verifies
that for a non-vanishing B0 the total field strength |B| at the center of the trap can be

13



2 Overview of the experimental setup

0.6 21.9
b

-100 0 100
-100

0

100

0.5 2.4192.1 193.2

a b c

Fig. 2.2: Magnetic field configurations close to the center (origin) of the magnetic trap for a
strong a and weak b offset bias B0, as used in our experiment for the transfer from the MOT
to the magnetic trap and RF-forced evaporative cooling, respectively. a For an offset bias of
B0 = 192 G, the field lines emerging in the xy-plane (radial plane) at z = 0 in the vicinity of
the trap center are nearly parallel to the z-axis (axial direction) and the field magnitude (color
code) increases isotropically away from the center. b For an offset bias of B0 = 0.5 G, the field
configuration becomes highly anisotropic, with field lines strongly bending inwards the radial
plane for increasing values of ρ =

√
x2 + y2. Only in a close neighborhood to ρ = 0, field lines

remain parallel to the z-axis over a macroscopic range, defining a unique quantization axis for
a BEC. The field magnitude increases strongly along the radial coordinate, whereas it remains
almost constant (on this scale) along the axial direction. c Field distribution over a microscopic
region in the radial plane for z = 0 as shown in b, emphasizing the axial symmetry and parabolic
confinement. White arrows represent the projection of the local magnetic field vector onto the
radial plane, with the length being proportional to its magnitude.
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written as

|B(ρ, ϕ, z = 0)| = |B0| + 1
2

B′′
ρρ

2 + O(ρ3), (2.1a)

|B(ρ = 0, ϕ, z)| = |B0| + 1
2

B′′
zsgn(B0)z2 + O(z3) , (2.1b)

where the effective radial curvature is defined as

B′′
ρ ≡

B′
ρ

2

|B0|
− B′′

z

2
sgn(B0) , (2.2)

with values for B′
ρ and B′′

z as stated above. We stress that only for sgn(B0) = +1 it is
possible to achieve a single extremum in the center of the trap, which is the configuration
that we always work with. According to Wing [128], this necessarily corresponds to a
local minimum in the field strength of the magnetic field. Assuming an adiabatic spin
motion for a single Zeeman substate |F,mF 〉, the trapping potential resulting from the
Zeeman energy EM = −µ̂F B ≡ µBgFmF |B| is thus parabolic close to the center, with
trap frequencies along radial and axial directions given by

ωρ =
(
µBgFmF

m
B′′

ρ

)1/2
, (2.3a)

ωz =
(
µBgFmF

m
B′′

z

)1/2
, (2.3b)

respectively, where µB is the Bohr magneton, gF is the hyperfine Landé g-factor, mF

denotes the magnetic quantum number of the total angular momentum F of the atom,
and m is the mass of the atom. Note that for atoms in the Zeeman substate |F,mF 〉,
the potential has a stable point at the origin for sgn(gF ) sgn(mF ) = +1 and an unstable
point for sgn(gF ) sgn(mF ) = −1. In other words, only the low-field seeking states can
be confined in the magnetic trap.

In a typical experimental cycle, precooled Rubidium-87 atoms derived from the
MOT and the grey molasses are optically pumped to the hyperfine structure mani-
fold {|F = 1,mF 〉} of the ground state and immediately transferred into the magnetic
trap by a sudden switch-on of the GC coils at a bias field of B0 = 192 G. The bias field
is then gradually reduced within 1.5 s to a final value of B0 ≈ 0.5 G, where RF-forced
evaporative cooling is initiated by driving an RF signal through an antenna located in
the vicinity of the science cell. Specifically, the evaporation is accomplished by expo-
nentially sweeping the frequency of the output signal of an RF source5 from 12 MHz to
1 MHz within 10 s. Eventually, we obtain a fully polarized and nearly degenerate cloud
of cold atoms in the Zeeman substate |F = 1,mF = −1〉 at the center of the trap. The
radial and axial magnetic trap frequencies at this stage amount to ωρ = 2π · 214 Hz
and ωρ = 2π · 8 Hz, respectively, and the cloud is sufficiently cold and dense for an
efficient transfer into an optical dipole trap in which the final evaporation to a BEC is
performed by lowering the intensities of the corresponding laser beams. Details of the
transfer procedure are described in the next subsection 2.2.3. For further details on our

5Photonics Technologies Versatile Frequency Generator VFG-150.
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magnetic trap design we refer to the theses of R. Dinter [113] and C. Ospelkaus [129].
A brief overview about magnetic traps in the context of cold atoms is readily provided
in reference [130].

Compensation coils As illustrated in Figure 2.1, the magnetic trap is surrounded by
three additional pairs of coils with their principal symmetry axis oriented along the x-,
y-, and z-direction, respectively. These coils are universal coils that are typically used for
compensating external magnetic stray fields and for setting a well-defined quantization
axis Q along an arbitrary direction in configuration space once the magnetic trap is
turned off. The coils and the corresponding mounting cages were designed by A. Bick
[125] during his PhD studies at the Nano project. Each pair of coils consists of three
independent subcoils with different winding numbers that produce highly homogenous
field distributions close to the geometric center when operated in Helmholtz mode. An
overview of the respective field strengths is provided in reference [105].

In this work, we focus on two particular subsets {Qx,Qy,Qz} and {Cx,Cy,Cz} of
coils that are used to generate a well-defined quantization axis and to cancel external
magnetic stray fields, respectively. Note that in this convention we identify each pair of
coils by the corresponding magnetic field distribution, e.g. Qx = Qxex, that is created
in Helmholtz mode. The individual pairs have the following characteristics:

Qx/I = 0.546 G A−1, Qy/I = 0.21 G A−1, Qz/I = 0.66 G A−1 (2.4)

for the quantization axis coils, and

Cx/I = 0.26 G A−1, Cy/I = 0.63 G A−1, Cz/I = 0.33 G A−1 (2.5)

for the compensation coils.
We stress that setting a well-defined quantization axis with an exactly known field

magnitude and direction requires an accurate cancelation of all in situ magnetic stray
fields from laboratory equipment, the earth’s magnetic field, and other external sources.
Generally, stray fields can be classified into static and time-dependent ones. The com-
pensation of static stray fields by an appropriate choice of {Cx,Cy,Cz} is straight
forward in principle but requires a meticulous procedure. Active compensation of time-
dependent magnetic fields, on the other hand, is more involved and necessitates real-
time monitoring of AC magnetic field components with external field sensors. A thor-
ough treatment of active magnetic field compensation for our experiment is provided,
for example, by T. Klafka [107]. All experiments conducted in this work were performed
without an active magnetic field compensation.

Finally, let us remark that it is possible to realize not only static quantization axes
Q = Qiei along arbitrary directions, but also complex time-dependent versions Q(t) =
Qi(t)ei by driving the currents in the individual coils according to some prescribed
protocol. For instance, a simple uniform rotation of the quantization axis within the
xz-plane is accomplished by

Q(t) = Q0 cos(ωt+ ϕ)ex + Q0 sin(ωt+ ϕ)ez, (2.6)

where Q0 = Ix(Qx/I) = Iy(Qy/I) is the desired field magnitude, ω is the angular
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Fig. 2.3: Setup of the crossed optical dipole trap (XDT) generated by the interference of two
elliptical Gaussian laser beams with identical beam power and a horizontal (vertical) waist size
wh ≈ 245 µm (wv ≈ 82 µm). a The XDT intensity profile I in units of the peak intensity I0
of a single beam is visualized in the horizontal xz-plane for y = 0 . b The gravitational sag
ysag along the vertical direction is plotted as a function of the individual beam power Pi. The
minimum value ysag,min = wv/2 ≈ 41 µm is reached for the least holding power Pi,min ≈ 0.72 W.
c Horizontal and vertical trap frequencies νh,xz and νv,y (solid lines) as functions of Pi, with
corresponding bare frequencies that neglect the influence of gravitation (dashed lines). The
minimal horizontal trap frequency at Pi = Pi,min is given by νh,min ≈ 18 Hz.

frequency, and ϕ is an arbitrary phase constant. This kind of uniform rotation of the
quantization axis is central to the preparation of ultracold bosonic ensembles in higher
Bloch bands of our spin-dependent optical lattice, as further discussed in chapter 4 of
this thesis.

2.2.3 Crossed optical dipole trap

As already mentioned in the previous subsection, the final evaporative cooling towards
a BEC in our experiment is performed in an optical dipole trap after the transfer from
the magnetic trap. Working in an optical dipole trap has the main advantage that
it provides a trapping potential not only for the low-field seeking states, but also for
arbitrary mixtures of Zeeman substates of the full ground state hyperfine manifold
{|F,mF 〉}. In our experiment we employ a crossed optical dipole trap (XDT) that is
generated by the combined intensity distribution of two elliptical Gaussian laser beams
propagating along the x- and z-direction, respectively, and intersecting in the horizontal
plane at their corresponding waists under an angle of approximately 90◦. The situation
is illustrated in Figure 2.3a. The original design and implementation of the trap is due
to J. Struck [103]. The beams have a wavelength of λXDT = 1064 nm and an elliptical
profile with principal waist radii wv ≈ 82 µm and wh ≈ 245 µm along the vertical and
horizontal direction, respectively. To avoid interference terms in the time-averaged
intensity distribution, the frequencies of the two beams are shifted against each other
by at least 100 MHz. Thus, the total intensity distribution of the XDT can be written
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as the incoherent sum of the two Gaussian beams:

IXDT(r) = I1(ρ1, z1) + I2(ρ2, z2) ≡ I1(ρ1, z) + I2(ρ2, x)

= 2P1
πwh(z)wv(z)

exp
(

−2x2

wh(z)2 + −2y2

wv(z)2

)

+ 2P2
πwh(x)wv(x)

exp
(

−2z2

wh(x)2 + −2y2

wv(x)2

)
, (2.7)

where Pi denotes the power of the i-th beam. The waist sizes wh,v(zi) for the hori-
zontal and vertical direction are functions of the local axial coordinates zi ∈ {z, x},
with wh,v(zi) ≡ wh,v(1 + z2

i /z
2
Rh,v

)−1/2 and the Rayleigh range zRh,v ≡ πw2
h,v/λ for the

respective plane of symmetry. As we will discuss in more detail in section 2.3, the
resulting XDT trapping potential VXDT for Rubidium-87 atoms is to very good ap-
proximation given by the simple relation VXDT(r) = u(ω)IXDT(r). Here, u(ω) is a
frequency-dependent conversion factor that is defined in terms of the conventional dy-
namical scalar polarizability αs(ω) as u(ω) ≡ −αs(ω)/(2ε0c), with the electric constant
ε and the speed of light in vacuum c. For Rubidium-87 in the ground state (52S1/2) and
λXDT = 1064 nm, this evaluates to u(ωXDT) = −2.1 × 10−36 m2 s. With that, one may
easily calculate the expected trap frequencies in the center of the XDT as a function of
the beam parameters. By neglecting the individual contributions from the axial con-
finements of the corresponding beams, one can find the following analytical results for
the trap frequencies Ωh,xz and Ωv,y along the horizontal and vertical principal directions
[131]:

Ω2
h,x = Ω2

h,x exp
(
−2y2

sag/w
2
v

)
, Ω2

h,z = Ω2
h,z exp

(
−2y2

sag/w
2
v

)
, (2.8a)

Ω2
v,y = Ω2

v,y exp
(
−2y2

sag/w
2
v

) (
1 − 4y2

sag/w
2
v

)
. (2.8b)

The expressions for Ωh,xz and Ωv,y include the effects from the local gravitational accel-
eration g along the −y-direction, whereas the quantities Ω refer to the corresponding
bare frequencies in the absence of gravitation. Obviously, both are connected by a sim-
ple factor that incorporates the gravitational sag ysag. In our case, the bare frequencies
can be expressed as

Ω2
h,x = − 4A1

mw2
h
, Ω2

h,z = − 4A2
mw2

h
, Ω2

v,y = − 4A
mw2

v
, (2.9)

where m is the mass of the atom and we employ the definitions Ai ≡ 2Pi
πwvwh

u(ω),
A ≡ A1 + A2. The gravitational sag, on the other hand, is obtained from

ysag = −wv
2

√
−W0 (C), C ≡ −

[
mgwv

2A

]2
, (2.10)

with W0 denoting the first principal branch of the Lambert W-function. W0 supports
real solutions only if the argument is greater or equal to −1/e, which gives a condition
on the minimal holding power Pmin such that for P = P1 + P2 < Pmin the XDT
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cannot sustain a trapping configuration against gravity and thus the atoms get lost
from the trap. By assuming that the individual beams have equal power, we find that
Pi,min = mge1/2πw2

vwh/(8|u(ω)|) ≈ 0.72 W, which agrees well with our experimental
findings. The gravitational sag and the vertical and horizontal trap frequencies for our
XDT potential are shown in Figure 2.3 as functions of the beam power Pi. It is easy
to verify that the lower bound on the horizontal trap frequencies is given by

Ωh,min =
(
−sgn (u(ω)) gwv/w

2
h

)1/2
. (2.11)

This shows that an elliptical dipole trap with its minor axis oriented along the vertical
direction allows for lower trap frequencies than a circular trap with the same minimal
holding power. In this sense, elliptical beam profiles can compensate for the effects of
gravitation.

In our experiment, the two laser beams that create the XDT are derived from a com-
mercial master oscillator power amplifier6 that provides a laser power of up to 3 W per
beam. After the RF-forced evaporation in the magnetic trap, the transfer into the XDT
is realized by first ramping up the individual beam powers linearly from 0 W to 3 W in
350 ms. The magnetic confinement is then gradually reduced at a constant beam power
by increasing the bias field B0 from 0.5 G to around 50 G in 300 ms. Subsequently, the
GC coils are switched off abruptly with an insulated-gate bipolar transistor (IGBT) cir-
cuit and the magnetic trap is released. This completes the transfer procedure into the
XDT and we proceed with the final evaporation to a BEC in the XDT by lowering the
individual beam powers within 7 s to roughly 0.75 W. We emphasize that a finite bias
field B0 remains from the HC coils during this ramp to preserve the original spin polar-
ization from the magnetic trap. As a result, we obtain a BEC in the Zeeman substate
|F = 1,mF = −1〉 of the ground state hyperfine level F = 1 with no discernible ther-
mal fraction and with a typical particle number of 3 × 105 atoms. The trap frequencies
in the final configuration amount to ΩXDT = (Ωh,x,Ωv,y,Ωh,z) ≈ 2π · (20, 50, 20) Hz,
which results in approximate Thomas-Fermi radii RTF ≈ (18, 7, 18) µm. In general,
this configuration is our starting point for all further experimental methods to prepare
and to manipulate the internal and external degrees of freedom of an ultracold bosonic
ensemble of Rubidium-87.

2.2.4 Optical lattice implementations

At the Spinor experiment we have two sets of distinct optical lattices created by the
interference of various lattice beams. A highly versatile two-dimensional (2D) optical
lattice in the vertical xy-plane that features a hexagonal symmetry, and an additional
one-dimensional (1D) optical lattice along the orthogonal z-direction. The setup has
been designed and implemented by C. Becker [101]. Many of the first pioneering results
of ultracold bosons in hexagonal optical lattices have been achieved in the context of
his PhD thesis. The following paragraphs will provide a short overview of the basic
characteristics of the corresponding setups and describe the standard configurations
that are used in this work. Special emphasis is put on the global macroscopic confine-

6Coherent Mephisto MOPA.
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2 Overview of the experimental setup

ment induced by the lattice beams. For further details on the optical setup, including
experimental schemes for the lattice beam alignment and polarization adjustment, we
refer to the PhD thesis of C. Becker [101]. A thorough treatment of the laser system
and our experimental techniques for intensity stabilization and phase noise cancelation
of the lattice beams is provided by J. Seeger [106] and T. Klafka [107].

2D running-wave three-beam lattice The 2D optical lattice is generated by the in-
terference of three Gaussian laser beams {Gi} whose waists intersect in the vertical
xy-plane under a mutual angle of 120◦. The beams with wavelength λL = 830 nm
and circular waist w0 = 115 µm are derived from a commercial Ti:sapphire laser7 that
provides a typical maximum output power of 1 W per lattice beam. In terms of the
cartesian basis (ei), the individual wave vectors ki of the three lattice beams are given
by

k1 = kLey, k2 = kL
2

(√
3ex − ey

)
, k3 = −kL

2

(√
3ex + ey

)
, (2.12)

with the wavenumber kL = 2π/λL. The beams in our setup are linearly polarized and
the polarization vectors ϵi can be set independently by means of corresponding half-
wave plates. Moreover, the individual beam intensities Ii can be set independently.
For all experiments presented in this thesis, the default configuration amounts to an
in-plane polarization for each lattice beam, that is to say ϵi = (ki × ez) /kL, and bal-
anced beam intensities Ii = I0. We will frequently refer to this configuration as the
ideal p-polarization configuration. Then, since the lattice beams are set to have equal
frequencies ωL, the time-averaged intensity distribution IL(r) of the lattice is given by
the coherent superposition of the three Gaussian beams. The resulting spatially varying
periodic intensity profile in the region of intersection is illustrated in Figure 2.4a, where
the local maxima of IL(r) form a graphene-like bipartite lattice in the xy-plane, known
as the two-dimensional honeycomb lattice. This periodic structure features a hexagonal
symmetry and a lattice constant a = 2λL/3. In addition, in Figure 2.4b we show a cor-
responding isosurface representation that exemplifies the three-dimensional character
of the system as a 2D periodic array of tubes arranged on a honeycomb lattice. Note
that the tubes are expanded along the transverse direction to the lattice plane, which
illustrates the weak confinement from the Gaussian beam profiles along the z-direction.
By turning off selectively one of the three lattice beams, we can also realize three equiv-
alent 1D running-wave lattices with different orientations of the principal axis. For
instance, the combination of lattice beams G2 and G3 crates a 1D lattice with the prin-
cipal lattice axis along the horizontal x-direction and a lattice spacing a1D =

√
3a/2,

as depicted in Figure 2.4c. Similar to the 2D lattice, the isosurface representation in
Figure 2.4d exemplifies the three-dimensional character of the system as a 1D periodic
array of pancakes arranged along the horizontal x-axis. This time, the large expansion
along the transverse directions signifies the weak confinement from the Gaussian beam
profiles along the y- and z-directions. At this point, let me emphasize that the actual
lattice potentials arising from the light distributions as described above are central to
this work. I therefore devote a separate section 2.3 for a detailed discussion. For the

7Coherent MBR 110 pumped by Verdi V18.
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Fig. 2.4: The running-wave three-beam 2D (1D) lattice setup generated by the interference of
three (two) Gaussian laser beams with wavelengths λL = 830 nm, identical beam power, circular
waists w0 = 115 µm, and in-plane polarization {Ei} for all beams. a The 2D lattice intensity
profile I in units of the peak intensity I0 of a single beam is visualized in the vertical xy-plane for
z = 0. The coordinates are given in units of the fundamental lattice constant a = 2λL/3 and the
cascade of close-ups emphasizes the intensity profile at different length scales. For illustration,
the plots were generated for a waist size of w0/10. b The isosurface representation of the 2D
lattice intensity distribution exemplifies the three-dimensional character of the system as a 2D
periodic array of lattice tubes with hexagonal symmetry and lattice constant a. c Similar to a
but for the running-wave 1D lattice produced by lattice beams G2 and G3. The principal axis
is oriented along the horizontal x-direction and the lattice spacing is given by a1D =

√
3a/2.

d The isosurface representation of the 1D lattice intensity distribution exemplifies the three-
dimensional character of the system as a 1D periodic array of lattice pancakes separated by the
distance a1D.
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2 Overview of the experimental setup

time being, we mainly focus on a few specific aspects related to the trap frequencies
induced by the global macroscopic confinement of the XDT plus lattice potential of the
ideal p-polarization configuration.

In general, our lattice potential VL(r) for Rubidium-87 in its ground state, as opposed
to the XDT potential, cannot be expressed only in terms of the intensity distribution
IL(r). The reason is that for λL = 830 nm the so-called dynamical vector polarizability
αv(ωL) will typically result in a non-negligible contribution to the total light shift, as
explained in section 2.3. Although the inclusion of the corresponding vector light shift is
straightforward in principle, we may avoid this complication for now by assuming that
the vector term is identical zero, which can be justified for Zeeman substates |F,mF = 0〉
of the ground state hyperfine levels in the presence of a strong external magnetic field.
In this case, like for the XDT potential, we may simply write VL(r) = u(ωL)IL(r),
now with u(ωL) = −9.4 × 10−36 m2 s. This allows for a direct calculation of the total
trap frequencies induced by the global confinement of the XDT plus lattice potential of
the ideal p-polarization configuration. For all other states |F,mF 6= 0〉, the reasoning
applied here can be adopted by including the light shift from the vector polarizability,
which yields a small correction to the trap frequencies presented below.

We note that the lattice potential in our experiment is in general superimposed on
the XDT by ramping up exponentially the beam intensities to some final target value,
thereby loading the BEC into the optical lattice. We make sure to adjust the lattice
beams such that the geometric center of the lattice is aligned with the position of the
BEC in the XDT. In other words, the global minimum of the lattice potential and the
global minimum of the XDT potential plus gravity mostly coincide. In this case, the
bare trap frequencies Ωµ of the lattice confinement along the cartesian axes µ ∈ {x, y, z}
simply add quadratically to the XDT frequencies in equation (2.8). For Ωµ one should
actually distinguish between the local ωi and global Ω trap frequencies induced by the
lattice confinement, where the former refers to the trap frequencies of a single lattice
tube or pancake at space point ri, while the latter accounts for the global macroscopic
confinement defined in terms of the intensity envelope Ī at the center of the trap.
For the 2D lattice configuration presented in Figure 2.4a we then find the following
expressions for the trap frequencies

2D: Ω2
x = − 9A

mw2
0
, Ω2

y = − 9A
mw2

0
, ω2

0z = − 18A
mw2

0
, (2.13)

with A ≡ 2P0u(ωL)/(πw2
0), where we assume that all lattice beams have equal power

Pi = P0. Here, ω0z denotes the trap frequency of the central lattice tube along the
weakly confined axial z-direction, i.e. orthogonal to the lattice plane. Correspondingly,
for the 1D lattice configuration in Figure 2.4c we obtain

1D: Ω2
x = − 3A

mw2
0
, ω2

0y = − 9A
mw2

0
, ω2

0z = − 12A
mw2

0
, (2.14)

where ω0y and ω0z are now the trap frequencies of the central lattice pancake along the
two weakly confined radial principal directions, i.e. orthogonal to the lattice axis. We
note that the different factors in front of A have a simple geometric origin and are a
consequence of the relative alignment and interference of the three (two) lattice beams.
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Fig. 2.5: Trap frequencies resulting from the global macroscopic confinement of the 2D and 1D
lattice configuration with in-plane polarization. a The cross section (blue) I = I(x, 0, 0) of the
2D lattice intensity distribution is plotted against the x-coordinate together with the intensity
envelope Ī (yellow) and corresponding Taylor approximation to second order (red dashed).
Intensities are specified in units of the peak intensity I0 of a single beam. The x-coordinate is
in units of the lattice constant a = 2λL/3. For illustration, the plot was generated for a waist
size of w0/10. b Similar to a but for the 1D lattice intensity distribution. c The in-plane trap
frequencies ν̄x = Ωx/(2π) and ν̄y = Ωy/(2π) of the 2D lattice intensity envelope Ī and the axial
trap frequency ν0z = ω0z/(2π) of the central lattice tube are shown as functions of the individual
lattice beam power Pi. d Same as in c but for the 1D lattice, with envelope trap frequency
ν̄x = Ωx/(2π) along the lattice axis and principal radial trap frequencies ν0y = ω0y/(2π) and
ν0z = ω0z/(2π) of the central pancake.

In Figure 2.5, we plot the resulting lattice trap frequencies as functions of the individual
lattice beam power Pi for the two relevant configurations discussed above. Obviously,
for powers of the lattice beams exceeding 100 mW, the resulting trap frequencies are
larger than the final XDT frequencies and will quickly dominate the global macroscopic
confinement. In particular, the trap frequency along the initially weakly confined z-
direction is strongly affected by the presence of the 2D lattice, as indicated by the
strong increase of ν0z in Figure 2.5c. These aspects relating to the global macroscopic
confinement induced by the lattice beams should be kept in mind when examining the
physics of neutral atoms in optical lattices. Besides, the trap frequencies discussed here
should be contrasted with another class of local trap frequencies ωi‖ that naturally
appear in the context of optical lattices, and which are related to the microscopic
confinement exerted by a single lattice tube or pancake along the directions of periodic
intensity modulation, i.e. parallel to the principal lattice axes. A detailed analysis of
these microscopic trap frequencies for our lattice setup is given by T. Klafka [107].
Here, I have focused on the macroscopic counterparts because these are the ones that
are frequently swept under the rug.
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2 Overview of the experimental setup

1D retro-reflected lattice The 1D lattice along the z-direction, i.e. perpendicular to
the 2D lattice plane, is realized as an ordinary standing wave lattice by retro-reflecting
a Gaussian laser beam with wave vector k⊥ = k⊥ez = (2π/λ⊥)ez. As a laser source
we use a commercial Nd:YAG laser at a wavelength λ⊥ = 1064 nm, yielding a maximal
output power of 1 W. The prograde and retrograde lattice beams have a circular waist
profile with a minimal spot size w⊥ = 150 µm located near the center of the running-
wave 2D lattice. Analogous to the running-wave 1D lattice, the time-averaged intensity
distribution of the standing light wave creates a periodic array of pancakes with lattice
spacing a⊥ = λ⊥/2 = 532 nm. The trap frequency Ωρ of the central pancake along the
radial coordinate ρ2 = x2 + y2 is given by

Ω2
ρ = − 16A

mw2
⊥
. (2.15)

Since the 1D retro-reflected lattice is oriented perpendicular to the running-wave 2D lat-
tice, we will refer to it as the transverse 1D lattice. Finally, we note that the transverse
1D lattice can be used in combination with the 2D lattice to create three-dimensional
optical lattices that are separable along the z-direction plus xy-plane.

2.3 Optical lattices with scalar and vector light shifts
This section gives a detailed and general account of the lattice potentials for arbitrary
configurations of our 2D optical lattice. We shall mainly focus on the local microscopic
properties of the periodic potentials rather than on the global confinement from the
finite extent, which we touched on in the previous section. The 2D optical lattice is at
the heart of the Spinor setup and it has been the starting point for many pioneering
experiments covered in the PhD theses of P. Soltan-Panahi, J. Struck, M. Weinberg
and C. Ölschläger [102–105]. To all of those experiments and experiments presented in
this work, it is of utmost significance that the interaction between atoms and light in
the off-resonant semiclassical regime gives rise to nearly conservative optical potentials
for the atomic center of mass motion. For this reason, I will start with a short review
of the main aspects of optical potentials and present a systematic and general analysis
of the AC Stark shift experienced by an atom under the influence of a non-resonant
monochromatic electric field. The treatment of this subject will rely on a tensor operator
formalism and the notion of the reduction into irreducible tensor components, which
will provide a clear understanding of the different underlying physical effects, known as
the scalar, vector, and tensor light shifts. Next, we will apply our findings to the case
of our 2D optical lattice to derive a general and basis-independent representation of the
resulting lattice potentials for Rubidium-87 atoms in the ground state hyperfine levels
F = 1, 2. We will put special emphasis on the role of the external quantization field and
the emergence of an effective lattice potential in the limit of strong external magnetic
fields. Finally, we discuss the specific case of the ideal p-polarization configuration that
corresponds, to a good approximation, to the actual 2D optical lattice configuration
used for experiments presented in this work.

There are multiple literature sources that cover the broad field of atom-light inter-
action in full generality. Here, we will focus on a few selected aspects relevant to our
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2.3 Optical lattices with scalar and vector light shifts

discussion of atoms in optical lattices. For a general and extensive survey of atoms
in laser fields, we can recommend, for instance, the seminal report by Manakov et al.
[132]. An original perspective on the tensor operator formalism for the semiclassical
description of atom-light interaction is provided by Happer and Mathur [133]. Its ap-
plication to the calculation of light shifts in Rubidium-87 is treated by the same authors
in reference [134]. For the systematic analysis of the AC Stark shift as presented below,
we closely follow the work by Le Kien et al. [135] and Deutsch and Jessen [136].

2.3.1 AC Stark shift and dynamical polarizability
In general, provided that the integrity of the atom remains unaffected by ionization
or other disruptive processes, the action of a light field on a neutral atom gives rise
to a radiative force that may be split into dissipative and reactive parts [137]. The
dissipative part, known as the radiation pressure or spontaneous force, is related to the
resonant absorption and subsequent spontaneous emission of photons from the light
field and can be used for optical cooling techniques, such as the grey molasses cooling
presented in subsection 2.2.1. The reactive part, on the other hand, originates from
non-resonant coherent absorption and stimulated emission of photons through virtual
excitations and is usually referred to as the dipole force. It corresponds to a conservative
force because it derives from a potential that coincides with the interaction energy of
an induced electric dipole moment in the external field. This interaction energy, also
known as the AC Stark shift or light shift, will be the focus of our following discussion
as it forms the basis for optical traps, including our XDT and optical lattices.

The main aspects of the AC Stark shift can be understood in terms of a semiclassi-
cal description where an electric field E(r, t) couples to the atomic dipole operator d̂
according to

V̂ (r, t) = −d̂ E(r, t) . (2.16)

Equation (2.16) characterizes the interaction energy between an atom and a light field
in the famous dipole approximation. Specifically, consider the case of a non-resonant
monochromatic wave

E(r, t) = E+(r)e−iωt + E−(r)e+iωt ≡ 2Re
(
E+(r)e−iωt

)
, (2.17)

with frequency ω and complex electric strength vector E+(r), coupling to an atom in an
eigenstate |a〉 of the bare atomic Hamiltonian at a fixed position r. Then, in response
to this coupling, the associated eigenenergy Ea = ℏωa will shift by an amount ∆Ea. To
second order perturbation theory one finds that [132, 135, 138]

∆Ea(r) = −E−
i (r)E+

j (r)αa
ij(ω)

≡ −E−
i (r)E+

j (r)1
ℏ
∑

b

Re
(

〈a|d̂i|b〉 〈b|d̂j |a〉
ωb − ωa − ω − iγba/2

+ 〈a|d̂j |b〉 〈b|d̂i|a〉
ωb − ωa + ω + iγba/2

)
. (2.18)

Equation (2.18) is known as the second order AC Stark shift or light shift of a nonde-
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2 Overview of the experimental setup

generate energy level Ea for an atom in an oscillating electric field. The sum in the last
line is over all unperturbed eigenstates |b〉 with energies Eb = ℏωb, and γba ≡ γa + γb

denotes the transition linewidth between states |a〉 and |b〉 with spontaneous decay rates
γa and γb, respectively. The indices i and j refer to the cartesian coordinates and we
employ the convention of summation over repeated indices. Moreover, we have defined
the dynamical linear polarizability tensor αa

ij(ω) for an atom in the state |a〉. We point
out that the AC Stark shift ∆Ea(r) is the origin of the dipole potential from which the
dipole force derives in the usual way according to Fdip = −∇ (∆Ea(r)) [139].

In the following, we will be interested in examining the AC Stark shift for an atom in
the manifold of a single hyperfine structure (hfs) state |a〉 ≡ |nJF 〉. Our basic assump-
tion will be that the AC Stark shift is a small perturbation to the hfs splitting. Thus,
no mixing is induced among different hfs states, and the total angular momentum F
remains a good quantum number. In other words, we require that the full Hamiltonian
of atom plus atom-light interaction remains nearly block diagonal in the quantum num-
bers F so that restricting the analysis of the AC Stark shift to the subspace of a single
hfs state is well justified. This condition is always fulfilled for the electric field strengths
and detunings employed in our experiment. For the moment, we will also assume that
there is no external quantization field that breaks the degeneracy among the different
Zeeman substates |(nJF )mF 〉 of the relevant hyperfine manifold. Modifications that
result from the inclusion of the Zeeman interaction with a finite external magnetic field
will be treated later in this section. To proceed, we note that with AiBj = (A ⊗ B)ij

for any vectors A and B, where (A ⊗ B)ij are the components with respect to the
cartesian tensor basis {ei ⊗ ej}, one can rewrite equation (2.18) in the form

∆Ea(r) = − 〈a|
(
E−(r) ⊗ E+(r)

)
ij

(α̂a(ω))ij |a〉 , (2.19)

where we have introduced the rank-2 polarizability tensor operator

α̂a(ω) ≡ d̂ ⊗
(
R̂a

+(ω)d̂
)

+ d̂ ⊗
(
R̂a

−(ω)d̂
)
, (2.20)

with the following abbreviations

R̂a
±(ω) ≡ 1

ℏ
∑

b

Re
( 1
Eb − Ea ∓ ω ∓ iγba/2

)
|b〉〈b| . (2.21)

We now define the AC Stark operator V̂AC for the a-th energy level as

V̂AC(r) ≡ −P̂a 〈E−(r) ⊗ E+(r), α̂a(ω)〉F P̂a . (2.22)

Here, P̂a ≡ |a〉〈a| is the projector onto the a-th energy level, and 〈· , ·〉F refers to the
Frobenius inner product of the two dyadics

(
E−(r) ⊗ E+(r)

)
and α̂a. We note that

∆Ea(r) is just the expectation value 〈a|V̂AC|a〉 and that the Frobenius inner product
can be evaluated with respect to any tensor basis. As in reference [135], we will now
assume that the AC Stark operator V̂AC not only correctly describes the AC Stark shift
of a non-degenerate energy level but also the mixing between degenerate states in case
that the bare atomic eigenenergy Ea has a g-fold degeneracy, i.e. P̂a =

∑g
i=1 |ai〉〈ai|.
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2.3 Optical lattices with scalar and vector light shifts

To analyze the effect of the Stark operator onto the given hyperfine manifold, we must
thus diagonalize V̂AC in the subspace of Zeeman states |(nJF )mF 〉 to the fixed quantum
numbers (nJF ), where for the sake of brevity we will suppress the numbers n and J
hereafter. For the evaluation of the corresponding matrix elements 〈FmF |V̂AC|Fm′

F 〉,
it is instructive to expand the two operands in equation (2.22) in a tensor basis that
provides a decomposition into irreducible components and allows to identify the distinct
physical effects that underlie the AC Stark shift. To this end, let us first introduce the
spherical basis {eq} with q ∈ {−1, 0,+1}, which is defined in terms of the cartesian
basis as

e−1 ≡ 1√
2

(ex − iey) , e0 ≡ ez, e+1 ≡ − 1√
2

(ex + iey) . (2.23)

Note that any complex vector A can be expanded in the spherical basis as A = Aqeq =
〈A, eq〉 eq, where Aq denotes the contravariant spherical component and 〈· , ·〉 is the
standard scalar product on C3. Similarly, any rank-2 tensor T can be expanded in the
spherical tensor basis {eq ⊗ eq′} according to T = T qq′(eq ⊗ eq′). To proceed, we will
now define the coupled spherical tensor basis {eKm} as

eKm ≡
∑
qq′

CKm
1q,1q′

(
eq ⊗ eq′

)
, (2.24)

with K ∈ S ≡ {0, 1, 2} and m ∈ SK ≡ {−K,−K + 1, . . . ,+K}, which provides a
natural decomposition of any rank-2 tensor into a sum of its irreducible scalar (K = 0),
vector (K = 1), and tensor (K = 2) components. Here, the coefficients CKm

1q,1q′ are the
Clebsch-Gordan coefficients in the notation

Cjm
j1m1,j2m2

= (−1)j1−j2+m
√

2j + 1
(
j1 j2 j
m1 m2 −m

)
≡ (−1)j1−j2+m

√
2j + 1W j1,j2,j

m1,m2,−m ,

(2.25)

with the definition W j1,j2,j
m1,m2,−m for the Wigner 3-j symbol. The expansion of T in the

coupled spherical tensor basis reads

T =
∑

K∈S

∑
m∈SK

TKmeKm , TKm =
∑
qq′

T qq′
CKm

1q,1q′ . (2.26)

By expanding the dyadic
(
E−(r) ⊗ E+(r)

)
and α̂a in the same way, and taking the

Zeeman basis |FmF 〉 as the standard angular momentum basis that complies with the
definition of the spherical basis in equation (2.23), one can derive the following result
for the matrix elements of the AC Stark operator [135]

〈FmF | V̂AC(r) |Fm′
F 〉 =

∑
K∈S

∑
mK∈SK

(
E−(r) ⊗ E+(r)

)KmK

× (−1)(F −mF )
(

F K F
−mF −mK m′

F

)
α

(K)
F (ω) . (2.27)
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Here, the coefficients α(K)
F (ω) are known as the reduced dynamical scalar (K = 0),

vector (K = 1), and tensor (K = 2) polarizabilities defined by

α
(K)
F (ω) ≡ (−1)(K+F +1)(2F + 1)

√
2K + 1

∑
n′J ′

∣∣〈n′J ′‖d‖nJ〉
∣∣2

×
∑
F ′

(−1)F ′(2F ′ + 1)
{

1 K 1
F F ′ F

}{
F 1 F ′

J ′ I J

}2

∆(K)
n′J ′F ′,nJF (ω) , (2.28)

with the following abbreviations

∆(K)
n′J ′F ′,nJF (ω) = 1

ℏ
Re
(

1
ωn′J ′F ′ − ωnJF − ω − iγn′J ′F ′,nJF /2

+ (−1)K

ωn′J ′F ′ − ωnJF + ω + iγn′J ′F ′,nJF /2

)
. (2.29)

The sum in equation (2.28) is over all atomic quantum numbers (n′J ′F ′) and the curly
brackets denote the Wigner 6-j symbols. The term |〈n′J ′‖d‖nJ〉| refers to the absolute
value of the reduced matrix element of the rank-1 dipole operator in the following
convention:

〈n′J ′m′|d̂q|nJm〉 = (−1)J ′−m′
(
J ′ 1 J

−m′ q m

)
〈n′J ′‖d‖nJ〉 . (2.30)

For practical purposes one should note that the reduced matrix elements may be inferred
from the spontaneous transition rates Γ according to [140]8

∣∣〈n′J ′‖d‖nJ〉
∣∣2 = ω3

0
3πε0ℏc3 ·

{
(2J ′+ 1)Γn′J ′→ nJ , for ωn′J ′ > ωnJ

(2J + 1)ΓnJ→ n′J ′ , for ωnJ > ωn′J ′
, (2.31)

with ω0 ≡ |ωn′J ′ − ωnJ |.
We point out that the right hand side of equation (2.27) seemingly differs from the

result in reference [135] by a factor (−1)K+mK inside the sum. Yet, both results agree
for we use the contravariant instead of the covariant components of

(
E−(r) ⊗ E+(r)

)
.

Indeed, it is easy to show that both components with respect to the coupled spherical
tensor basis are simply related by TKm = (−1)K+mTKm for any rank-2 tensor T.

Equation (2.27) can be used to calculate the matrix elements 〈FmF | V̂AC(r) |Fm′
F 〉

of any atom in a given hyperfine level F and for arbitrary monochromatic light fields.
Specifically, the amplitude and polarization of E+(r) can be any function of the position
variable r. The only constraint we want to impose is that the variations in space remain
small compared to the size of the atom to be consistent with the dipole approximation.
This condition is certainly fulfilled for all light fields employed in our experiment. Thus,
we will use equation (2.27) in the following subsection 2.3.2 to derive the general form
of our 2D optical lattice potential for Rubidium-87 atoms in the ground state (52S1/2)

8See also [140] for a discussion of different conventions for the normalization of reduced matrix ele-
ments.
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2.3 Optical lattices with scalar and vector light shifts

hyperfine levels F = 1, 2.

Let us now focus on the physical meaning behind the different terms K = 1, 2, 3 in
equation (2.27). In fact, the decomposition into irreducible tensor components corre-
sponds to a partition of the AC Stark operator into a sum V̂AC = V̂ s + V̂ v + V̂ t of scalar,
vector, and tensor light-shift operators, which reflect the separate transformation be-
havior under simultaneous rotations of the position space basis {eKm} and the Hilbert
space Zeeman basis {|F,mF 〉}. From this, one can deduce, for example, that the scalar
light shift must be independent of the magnetization 〈F̂ 〉, i.e. independent of the mag-
netic quantum numbers mF . Hence, it cannot depend on the polarization of the light
field but only on the total light intensity I(r) = 2ε0c 〈E+(r),E+(r)〉 = 2ε0c|E+(r)|2. In
contrast, the vector light shift depends on both of them. These insights are most evident
in a basis-independent representation of V̂AC, which can be derived from equation (2.27)
[135, 136]:

V̂AC(r) = −αs
F

∣∣E+(r)
∣∣2 idF + αv

F

i
[
E−(r) × E+(r)

]
F̂

2F

− αt
F

3
(
E−(r)F̂

) (
E+(r)F̂

)
+ 3

(
E+(r)F̂

) (
E−(r)F̂

)
− 2

∣∣E+(r)
∣∣2 F̂

2

2F (2F − 1)
, (2.32)

where idF is the identity map and ℏF̂ = F̂ is the standard angular momentum operator
or spin operator acting on the given hyperfine manifold F . The factors αs

F , αv
F , αt

F are
the conventional dynamical scalar, vector, and tensor polarizabilities defined in terms
of the reduced polarizabilities (equation (2.28)) as

αs
F (ω) =

√
1

3(2F + 1)
α

(0)
F (ω) , αv

F (ω) = −
√

2F
(F + 1)(2F + 1)

α
(1)
F (ω) ,

αt
F (ω) = −

√
2F (2F − 1)

3(F + 1)(2F + 1)(2F + 3)
α

(2)
F (ω) .

(2.33)

By inspecting equation (2.32), one can see that the vector light shift corresponds to a
Zeeman interaction V̂Z = −µ̂F Bfict ≡ µBgF F̂ Bfict with a fictitious magnetic field [133,
135, 136]

Bfict(r) ≡ αv
F (ω)

2µBgFF
i
(
E−(r) × E+(r)

)
, (2.34)

first experimentally observed by Cohen-Tannoudji and Dupont-Roc [141]. It should
therefore come as no surprise that the AC Stark operator V̂AC, depending on the orien-
tation of Bfict, will generally be non-diagonal in the standard Zeeman basis. Note that
Bfict, however, depends on the polarization and frequency of the light field and vanishes
for a linear polarization. We emphasize that the fictitious magnetic field has been used
successfully for coherent spin manipulation of Zeeman sublevels in the near-resonant
[142, 143] and far-off-resonance [144] regime. Moreover, it has great significance to
the field of optical lattice clocks and precision measurements with neutral atoms [145,
146]. In view of our 2D optical lattice, it would be particularly interesting to explore
the possibility to use the fictitious magnetic field for the creation of a two-dimensional
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2 Overview of the experimental setup

spin-orbit coupling. As regards the tensor light shift, which corresponds to the last term
in equation (2.32), there is no simple analogy and interpretation as for the vector light
shift. The general observation is that it describes a nonlinear light shift that induces
spin dynamics in the hyperfine manifold, going beyond simple SU(2) rotations [136].

It is important to note that the structure of equation (2.28) implies a natural ordering
|αt

F /α
v
F | < |αv

F /α
s
F | < 1 of the relative strengths of the conventional dynamical scalar,

vector, and tensor polarizabilities in the limit of large detunings, i.e. when the light
frequency ω stays far off resonance to any atomic transition line. In particular, these
ratios decrease as the detuning increases. Loosely speaking, the vector polarizability
αv

F (ω) and thus the vector light shift might become appreciable only if the detuning
to a predominant transition line (n′) in equation (2.28) is of the same order as the
fine structure splitting of this level. Similarly, the tensor polarizability αt

F (ω) and thus
the tensor light shift might become relevant only if the detuning to a predominant
transition line (n′J ′) is of the same order as the hyperfine structure splitting of this
level. For instance, for Rubidium-87 in the ground state hfs level F = 1 we find in case
of our 2D optical lattice (λL = 830 nm) that |αv/αs| ≈ 0.13 and |αt/αv| ≈ 1.3 × 10−5,
while for the XDT (λXDT = 1064 nm) we have |αv/αs| ≈ 0.02 and |αt/αv| ≈ 9 × 10−6.
In any case, the tensor light shifts may be safely ignored. Furthermore, since our
XDT has linear polarization, the fictitious magnetic field is identical zero and the only
relevant contribution to the dipole potential comes from the scalar part. On the other
hand, as we will outline in subsection 2.3.3, our 2D optical lattice in the p-polarization
configuration involves circular components in the polarization of the total electric field,
leading to a non-vanishing fictitious magnetic field and a substantial contribution of
the vector light shift.

In Figure 2.6, we show the calculated ground state scalar and vector polarizabilities of
Rubidium-87 as a function of the wavelength λ = 2πc/ω in the vicinity of the D1 and D2
transition lines. The domain comprises large detunings near the limits of the horizontal
axis and small detunings close to the transitions, marked by vertical red lines. We stress
that the tensor polarizabilities are not resolved on this scale because they manifest only
within of a few GHz around the D1 and D2 lines [147]. For the calculations according to
equations (2.28) and (2.33), we have considered only the dominant coupling of the light
field to the hyperfine levels of the excited states 52P1/2 and 52P3/2, and legitimately
ignored the coupling to all distant higher energy levels. For completeness, we also show
similar plots in the lower panel of Figure 2.6 for the other species available in our
experiment, Potassium-39. It is worth noting that the scalar polarizabilities vanish at
points between the D1 and D2 lines, whereas the vector polarizabilities remain finite.
In case of our 2D optical lattice, this could be used in principle to create pure vector
light-shift periodic potentials with fictitious magnetic field strengths as large as a few
gauss, where the relevant wavelengths are easily accessed by the wide tuning range of the
Ti:sapphire laser source. However, one should keep in mind that in this regime of small
detunings, the spontaneous force due to photon scattering may become significant and
constitute a serious source of heating, promoting decoherence, and limiting the atom’s
lifetime in the optical lattice. As far as we are concerned with the default wavelength
λL = 830 nm for our 2D optical lattice, we can practically assume to operate in the
far-off-resonance regime and generally neglect the effects from the spontaneous force.
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Fig. 2.6: Calculated dynamical ground state scalar and vector polarizabilities αs,v(λ) for
Rubidium-87 and Potassium-39 as a function of the laser wavelength λ near the corresponding
D1 and D2 transition lines. a For the ground state hyperfine structure (hfs) level F = 1 and
b for the ground state hfs level F = 2. Note that the scalar polarizabilities vanish at points in
between the D1 and D2 lines, whereas the vector polarizabilities remain finite. Also note the
different sign of vector polarizabilities for F = 1 in a compared to F = 2 in b. We stress that
the tensor polarizabilities αt(λ) are not resolved on the wavelength scale as presented here.

2.3.2 Scalar and vector light-shift periodic potentials
We will now apply the findings from the previous subsection 2.3.1 to derive a general
and basis-independent representation of the lattice potential for arbitrary configurations
of our 2D optical lattice. To be precise, by lattice potential we shall always mean the
position-dependent AC Stark shift experienced by Rubidium-87 atoms in the ground
state hyperfine levels F = 1, 2 inside the light field distribution of the 2D optical lattice.
As outlined before, for λL = 830 nm we are dealing with the situation where the tensor
light shift can be neglected so that we will focus only on the contributions from the scalar
and vector terms. Our results are more general than those obtained in previous works9,
especially insofar as we do not require the presence of a uniform external magnetic
field Bext that dominates over the fictitious field Bfict(r) from equation (2.34). As a
consequence, Bfict(r) can induce a position-dependent mixing of the various Zeeman
substates, which results in qualitatively new effects. In fact, for lattice configurations
that involve a non-vanishing fictitious field, the periodicity of the lattice implies a
periodic structure of Bfict(r) reminiscent of magnetic lattices.10

Recall now that our 2D optical lattice (paragraph 2.2.4) is generated by the inter-
ference of three linearly polarized Gaussian laser beams with distinct wave vectors

9See, for example, P. Soltan-Panahi [102] and M. Weinberg [104].
10Though C. Becker [101] has emphasized the possibility to generate effective magnetic landscapes with

the 2D optical lattice, a detailed consideration has remained unexplored so far.
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2 Overview of the experimental setup

k1,k2,k3 of equal norm kL. In the vicinity of the lattice center we can approximate
the electric field of a single lattice beam by a plane wave

Ei(r, t) = Ei cos(kir + ϕi − ωLt) ≡ E+
i (r)e−iωLt + E−

i (r)e+iωLt , (2.35)

where ϕi are arbitrary phases and we have defined the complex electric strength vectors
E±

i (r) ≡ Ei exp(±i(kir + ϕi))/2. Thus, the total electric field distribution at the lattice
center is given by

EL(r, t) =
∑

i

E+
i (r)e−iωLt + c.c. ≡ E+

L (r)e−iωLt + c.c. (2.36)

By inserting this into equation (2.32) and ignoring the tensor light shift, we obtain the
following basis-independent representation of the lattice potential operator

V̂L(r) = V̂ s
L (r) + V̂ v

L (r) = −αs
F (ωL)

4
∑
ijk

(
E2

i + ϵ2ijkEiEj cos(bkr + ∆k)
)

idF

+ αv
F (ωL)
8F

∑
ijk

ϵijk (Ei × Ej) sin(bkr + ∆k) · F̂ . (2.37)

Here, V̂ s
L and V̂ v

L are the lattice scalar and vector light-shift operators, respectively.
Furthermore, ϵijk denotes the Levi-Civita symbol and we have defined the primitive re-
ciprocal lattice vectors bk ≡ ϵijk(ki−kj)/2 and the relative phases ∆k ≡ ϵijk(ϕi−ϕj)/2,
where summation is implied over indices that appear twice. Following the definition
in equation (2.34), we see that the fictitious magnetic field for the lattice potential is
given by

Bfict
L (r) = αv

F (ωL)
8µBgFF

∑
ijk

ϵijk (Ei × Ej) sin(bkr + ∆k) . (2.38)

We note that any pair (bi,bj)i 6=j from the set of primitive vectors {b1,b2,b3} – only
two of which are linearly independent – forms a basis of the two-dimensional subspace,
known as the reciprocal space, that defines the lattice plane. In particular, any pair
(bi,bj)i 6=j spans the two-dimensional reciprocal Bravais lattice

GB = {G = n1bi + n2bj | n1, n2 ∈ Z ∧ i 6= j} , (2.39)

which denotes the set of all possible reciprocal lattice vectors G. As usual, the associated
two-dimensional real-space Bravais lattice is obtained from the dual basis (ai,aj)i 6=j ,
with the defining relation aibj = 2πδij , according to

RB = {R = n1ai + n2aj | n1, n2 ∈ Z ∧ i 6= j} . (2.40)

Evidently, the lattice scalar and vector light shift V̂ s
L (r) and V̂ v

L (r) in equation (2.37) are
invariant with respect to discrete translations TR : r 7→ (r + R) by an arbitrary lattice
vector R ∈ RB. Hence, the total lattice potential V̂L(r) is periodic in accordance with
the notion of optical lattices, and the primitive real-space lattice vectors are given by the
duals ai. Obviously, the fictitious magnetic field Bfict

L (r) in equation (2.38) corresponds
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2.3 Optical lattices with scalar and vector light shifts

to a periodic vector field with the same periodicity. All in all, the lattice potential V̂L(r)
constitutes a scalar plus vector light-shift periodic potential. Also note that variations
of the relative phases ∆k in equation (2.37) correspond to translations of the lattice
potential. In particular, as is thoroughly discussed in section 5.2, by modulating the
frequencies of the individual lattice beams according to some prescribed protocol, it is
possible to move the lattice potential V̂L(r) along arbitrary time-dependent trajectories
R0(t) within the lattice plane. However, for the moment we will assume that the relative
phases ∆k have a fixed but arbitrary value.

So far, we have made no explicit reference to the three wave vectors ki as defined in
equation (2.12) of subsection 2.2.4. As it stands, equation (2.37) and the subsequent
results are completely general in the sense that the orientation of the three wave vectors
{ki} with common wavenumber kL can be arbitrary provided that they correspond to
the three edges of a generalized tetrahedron that meet at one vertex. Then, the result-
ing primitive reciprocal lattice vectors {bk} literally form the three remaining edges of a
triangle base. Moreover, the amplitudes Ei, linear polarizations ϵi = Ei/Ei, and phases
ϕi of the individual lattice beams in equation (2.37) can be set arbitrarily, which enables
the investigation of a large variety of distinct lattice potentials for all possible configu-
rations of our 2D optical lattice. For the same reason, equation (2.37) is useful to deal
with experimental imperfections related to deviations from ideal lattice configurations.
This means that one can easily incorporate the effects of geometric misalignments of
the wave vectors ki, polarization maladjustments, and intensity imbalances among the
individual lattice beams.11 For the rest of our discussion, we will therefore proceed in
this general spirit of arbitrary lattice configurations. Only in the next subsection 2.3.3
will we focus on the specific case of the ideal p-polarization configuration and provide
a reduced expression for the corresponding lattice potential.

Role of the external quantization axis Let us now inspect the influence of a static and
uniform external magnetic field Bext that gives rise to an additional Zeeman interaction
V̂Z = µBgF F̂ Bext. We will allow Bext to point into an arbitrary direction, but we shall
assume that the field magnitude is not exceedingly large so that we stay in the regime
of the linear Zeeman effect with respect to the magnetic quantum numbers mF . This
condition is always satisfied for the typical experimental scenarios with field values up
to a maximum of a few gauss. Then, if there is no strict hierarchy in the magnitudes of
the fictitious and the external magnetic field, we have to treat Bfict

L (r) and Bext on an
equal footing. In other words, to obtain the new internal eigenstates and eigenvalues
in the presence of the Zeeman interaction with the external field, we must diagonalize
the total potential V̂ (r) = V̂L(r) + V̂Z.

Following the recipe from the previous subsection 2.3.1, we expand the fields in the
spherical basis according to Bfict

L (r) = Bq
L(r)eq, and Bext = Bq

exteq. Similarly, the
spin operator can be expanded in the dual basis as F̂ = F̂qeq. With this, the matrix

11This will be crucial in our study of the anomalous velocity presented in chapter 5.
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elements of V̂ (r) with respect to the standard Zeeman basis |FmF 〉 evaluate to

〈FmF | V̂L(r) |Fm′
F 〉 = V s

L (r)δmF m′
F

+ µBgF (−1)F −mF

√
F (2F + 1)(F + 1)

∑
q

Bq
L(r)

(
F 1 F

−mF q m′
F

)
(2.41)

for the lattice potential V̂L(r), and

〈FmF | V̂Z |Fm′
F 〉 = µBgF (−1)F −mF

√
F (2F + 1)(F + 1)

×
∑

q

Bq
ext

(
F 1 F

−mF q m′
F

) (2.42)

for the Zeeman interaction part V̂Z with the external field. In equation (2.41), we have
defined V s

L (r) simply as V̂ s
L (r) with the identity operator idF stripped off. We stress

that the spherical components Bq
L(r) are obtained from the scalar products 〈Bfict

L , eq〉,
with the fictitious field as defined in equation (2.38). Besides, one easily verifies that
equation (2.41) is completely consistent with equation (2.27) by examining the relations
in equation (2.26). As a whole, equations (2.41) and (2.42) can be used to diagonalize
the total potential V̂ (r) for arbitrary lattice configurations and external magnetic fields.

Experimentally, we will most often deal with a situation where the external magnetic
field Bext dominates over the fictitious field Bfict

L (r). For instance, the typical peak
magnitudes of the fictitious field in the setting of our ideal p-polarization configuration
amount only to a few milligauss such that external fields on the order of a few gauss
are already sufficient. In this case, it is customary to apply a basis transformation and
to consider the basis {ēq}, which results from a proper rotation of the spherical basis
that maps e0 onto the direction of Bext. Let us denote by {|F, m̄F 〉} the accordingly
rotated Zeeman basis. In this representation, the matrix elements of the total potential
V̂ (r) are then given by

〈Fm̄F | V̂ (r) |Fm̄′
F 〉 = V s

L (r)δm̄F m̄′
F

+ µBgF (−1)F −m̄F

√
F (2F + 1)(F + 1)

∑
q

B̄q
L(r)

(
F 1 F

−m̄F q m̄′
F

)
+ µBgF m̄F B̄

0
extδm̄F m̄′

F
. (2.43)

Here, we use the notation Āq for the contravariant components of a vector A = Āqēq

with respect to the rotated spherical basis, and by m̄F we denote the magnetic quantum
numbers of the correspondingly rotated Zeeman basis. Since by assumption |B̄0

ext| �
|B̄q

L(r)|, the Zeeman states {|F, m̄F 〉} are asymptotic eigenstates to V̂ (r). Thus, one
can usually neglect the mixing among different Zeeman substates by discarding the off-
diagonal elements from the fictitious field. In other words, in the presence of a strong
external magnetic field that defines the quantization axis, the spin mixing is freezed out
effectively. By considering only the diagonal elements, we then arrive at the following
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effective lattice potential for an atom in a Zeeman substate |F, m̄F 〉:

VF,m̄F
(r) ≡ V s

L (r) + µBgF m̄F

(
B̄0

L(r) + B̄0
ext

)
. (2.44)

It is evident that the term µBgF m̄F B̄
0
L(r) describes a spin-dependent or mF -dependent

part of the effective lattice potential that is determined by the projection of the fictitious
field Bfict

L (r) onto the direction of the external field Bext, i.e.

B̄0
L(r) ≡ 〈Bfict

L (r), ē0〉 = |Bfict
L (r)| cos(θB(r)) , (2.45)

where θB(r) denotes the local angle between the fictitious and external magnetic field.
Hence, in the limit |Bext| � |Bfict

L (r)|, the spin-dependent part of the effective lattice
potential, if it is non-vanishing, can be dynamically tuned by changing the orientation
of the external magnetic field. This aspect will be discussed further in subsection 2.3.3
for the specific case of the ideal p-polarization configuration that gives rise to a tunable
spin-dependent boron-nitride lattice.

Although the above line of reasoning concerning the derivation of an effective lattice
potential in the limit of a dominating external magnetic field might seem appropriate,
we give a fair warning that it is not entirely correct in general. The reason is that the
energy spectrum associated with the external (center of mass) degrees of freedom of
the individual Zeeman substates in an optical lattice consists of distinct energy bands,
which can be tuned into resonance by the external magnetic field Bext. As a result,
even in the case where the external field is dominant, the off-diagonal elements from
the fictitious field Bfict

L (r) can play a crucial role by inducing hybridization, i.e. mixing
of m̄F levels that belong to different bands. Obviously, for a correct description one
must then resort to equation (2.43). In future experiments, one may closely inspect
these so-called interband spin-mixing processes. For the time being, we shall assume
that they are not relevant.

For completeness, we point out that the effective lattice potential (equation (2.44))
can be rewritten in terms of the local polarization intensities Iq(r) ≡ 2ε0c |〈E+

L (r), ēq〉|2
of the lattice electric field.12 By noting that the total light intensity IL(r) is given by

IL(r) =
∑

q

Iq(r) = ε0c

2
∑
ijk

E2
i + ϵ2ijkEiEj cos(bkr + ∆k) , (2.46)

and the differential polarization IP(r) ≡ I+1(r) − I−1(r) is given by

IP(r) ≡ I+1(r) − I−1(r) = − 4ε0cF

αv
F (ωL)

µBgF B̄
0
L(r)

= −ε0c

2
∑
ijk

ϵijk (Ei × Ej) sin(bkr + ∆k) · ē0 ,
(2.47)

12The conventional notation of the polarization intensities is given by the identification (−1, 0, +1) '
(σ−, π, σ+).
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the effective lattice potential reads

VF,m̄F
(r) = −αs

F (ωL)
2ε0c

IL(r) − αv
F (ωL)

4ε0cF
m̄F IP(r) + µBgF m̄F B̄

0
ext . (2.48)

Naturally, IP(r) depends on the orientation of the external magnetic field in the same
way as B̄0

L(r). Equation (2.48) can be simplified further by noting that the ground
state scalar and vector polarizabilities of Rubidium-87 for the wavelength λL = 830 nm
are approximately given by

αs
F (ωL) ≈ πε0c

3 (D1 + 2D2) , αv
F (ωL) ≈ −2πε0c

3gFF (D1 − D2) , (2.49)

where
Di ≡ Γi

ω3
Di

( 1
ωDi − ωL

+ 1
ωDi + ωL

)
(2.50)

denote the coupling strengths to the D1 and D2 transition lines, with natural linewidths
Γ1,2 and transition frequencies ωD1,2 . The approximations in equation (2.49) are easily
derived from equations (2.28) and (2.33) by taking into account only the predominant
coupling to the D1 and D2 transition lines and neglecting the hyperfine structure split-
tings in the transition frequencies, which gives accurate results as long as the detuning
stays large compared to the ground and excited state hyperfine structure splittings.
With this, equation (2.48) reduces to the same form – aside from a constant Zeeman
energy – as presented in earlier works [102–105].

2.3.3 Tunable spin-dependent boron-nitride lattice

Up to now, our considerations regarding lattice potentials have remained general and
valid for arbitrary configurations of the 2D optical lattice. For clarity, we now focus
on the ideal p-polarization configuration (subsection 2.2.4), which defines the standard
configuration for experiments presented in this work. Moreover, we shall assume the
presence of a uniform external magnetic field that dominates over the fictitious field.
This corresponds to a typical experimental situation where the external quantization
axis is generated and controlled by means of our compensation coils (subsection 2.2.2),
which provide magnetic field strengths on the order of a few gauss. Hence, we will limit
our discussion to effective lattice potentials as introduced in the previous subsection.

Recall now that the ideal p-polarization configuration is characterized by wave vectors
ki as defined in equation (2.12), linear in-plane polarizations ϵi = (ki × ez) /kL for each
lattice beam, and balanced electric field amplitudes Ei = E0. It then follows that the
primitive reciprocal lattice vectors bk are given by

b1 = bex, b2 = − b

2

(
ex +

√
3ey

)
, b3 = − b

2

(
ex −

√
3ey

)
, (2.51)

with b ≡
√

3kL. The associated primitive real-space lattice vectors ai read

a1 = a

2

(√
3ex − ey

)
, a2 = −aey, a ≡ 2λL/3 (2.52)
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Fig. 2.7: Optical boron-nitride lattice. a Total intensity profile IL and differential polarization
IP in units of the peak intensity I0 of a single lattice beam, visualized in the vertical xy-plane
for z = 0. The coordinates are given in units of the fundamental lattice constant a = 2λL/3
and the quantization axis for IP was set to ē0 ≡ ez. The local maxima of IL reproduce a
two-dimensional bipartite hexagonal lattice with a shallow channel structure around the steep
minima of IL. Local maxima and minima of IP alternate from A to B sublattice site, indicated
by a small square and a triangle. b Hexagonal Bravais lattice spanned by the primitive lattice
vectors a1 and a2, with sublattice sites A and B. The grey rhombus represents the primitive
unit cell, and the surrounding hexagons correspond to Wigner-Seitz cells. c Reciprocal lattice
vectors bi and wave vectors ki arranged inside the Brillouin zone (grey hexagon), with selected
high-symmetry points denoted by Γ, M, K, K′.

if we define (b1,b2) as the standard basis of the two-dimensional reciprocal space. In
Figure 2.7b, we show the lattice vectors a1 and a2, spanning the primitive unit cell (grey
rhombus) of the real-space Bravais lattice. In addition, Figure 2.7c depicts the three
wave vectors ki and their relation to the reciprocal lattice vectors bk arranged inside the
hexagonal Brillouin zone (grey hexagon). It is evident that the Bravais lattice obtained
from equations (2.39) and (2.40) is a two-dimensional hexagonal lattice, characterized
by the point group D6 of sixfold rotations and reflections.

According to equation (2.48), the effective lattice potential for an atom in a Zeeman
substate |F, m̄F 〉 is determined by the total light intensity IL(r) and the differential
polarization IP(r), which evaluate to

IL(r) = ϵ0cE
2
0

2
∑

k

3 − cos(bkr + ∆k) , (2.53)

IP(r) = ϵ0c
√

3E2
0

4
〈ez, ē0〉

∑
k

sin(bkr + ∆k) . (2.54)

Here, 〈ez, ē0〉 = cos(θB) defines the angle θB between the z-axis and the external quan-
tization axis, which, by definition, corresponds to the direction of the external magnetic
field Bext. Note that the expression for IP(r) follows from the fact that the fictitious
magnetic field Bfict

L (r) for the ideal p-polarization configuration is given by

Bfict
L (r) = − αv

F (ωL)
8µBgFF

√
3E2

0
2

∑
k

sin(bkr + ∆k)ez . (2.55)

Figure 2.7a shows a profile of the total light intensity IL(r) in the vertical xy-plane at
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z = 0, together with a corresponding profile of the differential polarization IP(r) for a
quantization axis ē0 ≡ ez, i.e. θB = 0◦. Clearly, the local maxima of IL(r) trace out
hexagons that are arranged around the respective local minima. In particular, they form
a two-dimensional graphene-like lattice with hexagonal symmetry and lattice constant
a = 2λL/3. As evident from Figure 2.7b, the lattice structure of IL(r) is equivalent
to the honeycomb or symmetric boron-nitride lattice, described as a hexagonal Bravais
lattice with two sublattice sites A and B per unit cell. The latter are located at the
vertices of the Wigner-Seitz cell and represent a symmetric twofold atomic basis. When
the symmetry of the twofold basis is broken, the lattice corresponds to a proper boron-
nitride lattice. Note that both honeycomb and boron-nitride lattices are bipartite, i.e.
they can be divided into disjoint sublattices A and B such that all nearest-neighbor
lattice sites to any A ∈ A lie in B and vice versa.

Regarding the differential polarization IP(r) in Figure 2.7a, the local maxima and
minima of the corresponding profile alternate from A to B. In particular, for the choice
θB = 0◦ it is evident that the light field is completely σ+(σ−)-polarized on the sublattice
site A(B). Obviously, atoms in Zeeman substates |F, m̄F 〉 with m̄F 6= 0 will therefore
experience different light shifts on A and B. As a result, the lattice potential given
by equation (2.48) will correspond to a pure honeycomb lattice for m̄F = 0, while for
m̄F 6= 0 and θB = 0◦ it will exhibit a broken inversion symmetry with a non-vanishing
energy offset ∆AB between sublattice sites A and B, and thus resemble a hexagonal
boron-nitride lattice. Specifically, from equations (2.53) and (2.54) it follows that the
effective lattice potential of the ideal p-polarization configuration is given by

VF,m̄F
(r) = −V0(ωL)

8
∑

k

(
6 − 2 cos(bkr + ∆k)

+
√

3 m̄F cos(θB)η(ωL;F ) sin(bkr + ∆k)
)
. (2.56)

Equation (2.56) will be referred to as the spin-dependent boron-nitride lattice. Note
that we have excluded the constant Zeeman energy from the interaction with the ex-
ternal magnetic field. Moreover, we have employed the definitions

V0(ωL) ≡ αs
F (ωL)E2

0 , η(ωL;F ) ≡ αv
F (ωL)

Fαs
F (ωL)

. (2.57)

The factor V0(ωL)/8 ≡ V2D in equation (2.56) is conveniently defined as the lattice
depth, which is typically expressed in units of the recoil energy Erec = ℏ2k2

L/(2m) for an
atom of mass m. The frequency-dependent and F -dependent numerical factor η(ωL;F )
describes the relative contribution of the vector light shift. Note that the lattice depth
V2D defined in this way refers to the modulation depth along adjacent sublattice sites
A and B in case of a symmetric boron-nitride lattice, and thus accounts for the shallow
channel structure in the intensity profile of IL. The overall potential depth is obviously
much larger, which is clear from Figure 2.7a and the fact that the intensity modulation
along adjacent minima is large compared to the modulation along adjacent maxima.

From equation (2.56), one can easily deduce that the amplitude of the spin-dependent
term, which is responsible for the symmetry breaking discussed above, can be continu-
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ously tuned by rotating the external quantization field, i.e. by changing the angle θB.
This implies, for instance, that for Zeeman substates with m̄F 6= 0 the energy offset ∆AB
is maximized or minimized at θB = 0◦, vanishes at θB = 90◦, i.e. when the quantization
axis lies within the lattice plane, and becomes maximally inverted at θB = 180◦. In
particular, from equation (2.56) it follows that the energy offset between two sublattice
sites A and B is given by

∆AB ≡ VF,m̄F
(rB) − VF,m̄F

(rA) = 9V2Dm̄F cos(θB)η(ωL;F ) , (2.58)

where rA and rB denote their corresponding locations. For example, rA ≡ (a1 + a2)/3
and rB ≡ 2(a1 + a2)/3. As will be discussed in chapter 4, the controlled rotation of
the external quantization field and the accompanied dynamical change of the energy
offset ∆AB constitute the central experimental technique in our setup for the coherent
transfer of Rubidium-87 atoms into the higher Bloch bands of an optical boron-nitride
lattice.

Finally, two aspects concerning our lattice potentials should be noted. First, the
actual lattice configuration of the 2D optical lattice inevitably exhibits deviations from
the ideal p-polarization configuration as examined here. Although these deviations are
small and usually have no profound influence on the physical properties of bosons in
the lowest band of an optical lattice13, for some settings that we are going to investi-
gate in the following chapters they prove to be crucial. In that case, we will revert to
the general expression of the lattice potential as presented in subsection 2.3.2. Second,
apart from the ideal p-polarization configuration, there exist additional ideal configu-
rations that yield further lattice potentials, including a triangular lattice or a purely
spin-dependent polarization lattice. A thorough treatment, albeit one that ignores the
possibility of vector light-shift-induced spin mixing, is provided, for example, in the
works of P. Soltan-Panahi [102] and M. Weinberg [104]. We note that the inclusion of
light-shift-induced spin mixing can be accomplished with the general formulas presented
in subsection 2.3.2.

2.4 State detection and manipulation
In this final section of chapter 2, we briefly review the methods that are relevant to this
thesis for the state detection and state manipulation of a Rubidium-87 quantum gas.
We start with a rough sketch of our implementations for absorption imaging along two
orthogonal directions, and then comment on the spin-state manipulation by means of
RF pulses and RF sweeps.

2.4.1 Absorption imaging after time-of-flight

The standard method for state detection of a cloud of Rubidium-87 atoms at the Spinor
experiment is based on conventional resonant absorption imaging after a variable time-
of-flight (TOF) [148]. Following the main experimental cycle, we switch off all trapping
potentials and let the atomic cloud freely expand under the influence of gravity. After
13See, for instance, Ölschläger [105].

39



2 Overview of the experimental setup

a time tTOF, the cloud is illuminated by a resonant laser beam on the cycling transition
F = 2 → F ′ = 3 of the D2 line for a duration of 50 µs, and the resulting absorption
profile Iabs(r⊥), i.e. the intensity distribution of the detection beam behind the cloud, is
imaged with a CCD camera.14 Here, r⊥ denotes the position vector in the image plane.
Naturally, the atomic cloud is destroyed in the process of imaging. A subsequent image
recorded at the same parameters without atoms provides the genuine intensity profile
Iref(r⊥) of the detection beam, serving as a reference. Typically, an additional pair
of successive dark images is recorded in absence of the detection beam to account for
diffuse background light that falls onto the CCD. Eventually, the intensity distributions
on the absorption and reference image can be related via the Beer-Lambert law to yield
the optical density OD of the atomic cloud [149–151]

OD(r⊥) = σeffn2D(r⊥) = − ln
(
η(r⊥)Iabs(r⊥)

Iref(r⊥)

)
. (2.59)

Here, η(r⊥) ≡ exp (−∆(r⊥)/Isat) ∈ (0, 1], with ∆ ≡ Iref(r⊥)−Iabs(r⊥), describes a cor-
rection factor due to saturation effects. For all experiments presented within this work,
the optical density constitutes the central observable. According to equation (2.59), it
is proportional to n2D(r⊥), the atomic density distribution integrated along the imag-
ing direction, with a proportionality constant given by the effective cross section σeff
of the detection transition. Importantly, depending on how the trapping potentials are
switched off in time, the optical density can contain different information about the
system. We will discuss this in more detail in section 3.2 for the particular case of an
atomic cloud released from an optical lattice.

The Spinor experiment provides two orthogonal detection directions oriented along
the -x-axis (PCO) and -z-axis (Andor), respectively. They conform to the fields of
view as presented Figure 2.1. The corresponding imaging systems have magnifications
M ≈ 3.1 (PCO) and M ≈ 2.7 (Andor), and provide a maximum optical resolution in
the image plane that is greater than or equal to 10 µm. At present, the PCO axis is
operated with a pco.pixelfly USB compact CCD camera that offers a dynamic range
of 14 bit, a pixel size of [6.45 µm × 6.45 µm], and a quantum efficiency of 15 % at the
detection wavelength λdet = 780 nm. As a unique feature, it allows for an extremely
short interframing time between absorption and reference image down to 1 µs. Although
such small values are not required in general, an interframing time on the order of 1 ms
is desired to reduce the appearance of fringe patterns on the OD that result from
mechanical vibrations, causing shifts in the optical path lengths.

On the other hand, the Andor axis is operated with an Andor iKon-M 934 low noise
CCD camera that offers a dynamic range of 16 bit, a pixel size of [13 µm×13 µm], and a
high quantum efficiency of 95 % at the wavelength λdet = 780 nm. By means of a special
double-shutter acquisition mode, the Andor camera enables a minimum interframing
time of 3 ms.

14To detect atoms in the hyperfine level F = 1, the cloud is simultaneously illuminated by a repumper
on the open transition F = 1 → F ′ = 2.
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2.4.2 Spin-state manipulation

A central feature of our setup is the ability to prepare Rubidium-87 atoms in a variety of
different well-defined spin states of the ground state hyperfine manifold F = 1, 2. The
necessary experimental techniques have been implemented and pioneered in previous
works [98–101]. Usually, the starting point is a spin-polarized BEC in the Zeeman
substate |F = 1,mF = −1〉 for some fixed quantization field Bext. To change the spin
state, we induce magnetic dipole transitions15 by coupling to an oscillating magnetic
field

Brf(t) = Brf cos (ϕ(t)) . (2.60)

Here, Brf is a uniform real-valued magnetic strength vector and ϕ(t) denotes a time-
dependent phase. In general, the oscillating magnetic field is generated by an RF or
microwave (MW) source that drives an appropriate signal through an RF antenna or
waveguide located in the vicinity of the science cell, respectively. For the controlled
spin-state manipulation we work in the regime |Bext| � |Brf |, where we distinguish
between the two following techniques:

RF pulses By choosing a monochromatic drive with a frequency ϕ̇(t) ≡ ωrf that
matches the Zeeman splitting in the external field, we induce multilevel Rabi cycles in
the spin space of a given hyperfine level F . In particular, for a quantization field on
the order of a few gauss, the quadratic Zeeman effect can be neglected and the Zeeman
splitting ∆EZ = ℏωZ ≡ |µBgFBext| between adjacent sublevels is equidistant, where
ωZ denotes the corresponding Larmor frequency. In this case, it turns out that the
Hamiltonian that characterizes the spin dynamics in the rotating wave approximation
is of the form

ĤF = ℏΩ(u · F̂ ) , (2.61)

with a unit vector u and a generalized Rabi frequency Ω =
(
∆2 + Ω2

rf
) 1

2 . For the
latter, we have defined the detuning ∆ ≡ ωZ − ωrf and the normal Rabi frequency
Ωrf ≡ µBgFB

⊥
rf /(2ℏ), where B⊥

rf is the norm of the field component B⊥
rf that is perpen-

dicular to Bext. As before, by the operator ℏF̂ = F̂ we denote the standard angular
momentum or spin operator acting in the given hyperfine manifold F . The unit vector
u in equation (2.61) is defined by

u ≡ ∆
Ω

Bext
Bext

+ Ωrf
Ω

B⊥
rf

B⊥
rf
. (2.62)

Assume now that Brf(t) is turned on at some time t0. Then, since the Hamiltonian ĤF

is time-independent, the time-evolution operator for times t ≥ t0 reads

Û(t) = exp
(

− i
ℏ
ĤF (t− t0)

)
= exp

(
−iΩ(t− t0)(u · F̂ )

)
, (2.63)

which describes a spin rotation around the axis u at an angular velocity Ω. Specifically,
if the driving frequency ωrf is in resonance with the Larmor frequency ωZ, the axis of
15See, for example, Sobel’Man [152].
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rotation will be perpendicular to Bext.
A common use case for spin rotations in our experiment is a π-pulse, where a resonant

field Brf(t) is turned on for a duration τ ≡ t − t0 such that Ωτ = π. For instance,
given the initial state |1,−1〉, this will cause a complete transfer (spin flip) to the
state |1,+1〉. We stress that by choosing different pulse lengths or detunings, it is
also possible to realize superpositions of different Zeeman substates |F, m̄F 〉 with well-
defined relative phases. Within this thesis, RF pulses for spin-state manipulation are
usually employed at moderate quantization fields on the order of 1 G to 3 G. We note
that the different Zeeman substates can be detected individually by a conventional
Stern-Gerlach separation and subsequent absorption imaging after TOF.

RF and MW sweeps Another approach for controlled spin-state manipulation is based
on the adiabatic passage through an avoided crossing [153]. Here, one may induce a
complete population transfer between two spin states adhering to ∆mF = 0,±1 and
∆F = 0,±1 by sweeping the frequency of the driving field Brf(t) across the relevant
transition line ω. In practice, the sweep is accomplished from an initial frequency value
ϕ̇(t0) = ω− |δ| to an end value ϕ̇(te) = ω+ |δ| via a constant sweep slope ϕ̈(t) = c > 0,
where 2|δ| is the sweep range, which must be chosen appropriately. If the sweep is
sufficiently slow, the initial state will adiabatically follow its instantaneous eigenstate,
thus giving rise to an adiabatic passage. We emphasize that the driving signal is turned
off at the end of the sweep at time te, similar to the pulse technique from the previous
paragraph. This type of sweep signal is hence identical to what is known as a chirped
pulse.

To selectively address transitions ∆mF = ±1 for the case ∆F = 0, i.e. within a given
hyperfine manifold F , the external quantization field Bext should lift the degeneracy in
the splittings of adjacent sublevels. In fact, this is a crucial requirement to avoid the
follow-up population of consecutive Zeeman substates during the sweep. We typically
choose |Bext| = 30 G, which induces a quadratic Zeeman shift that results in a frequency
difference on the order of 2π · 100 kHz among neighboring transitions. An example for
an adiabatic passage in this case is provided by a complete transfer |1,−1〉 → |1, 0〉 via
a frequency sweep from 2π · 20.6 MHz to 2π · 21.6 MHz in 20 ms. The corresponding RF
sweep signal or chirped pulse is generated by a versatile frequency generator.16

In a similar way, it is possible to realize hyperfine level changing transitions ∆F = ±1.
Here, a strong external field Bext is not required to address the individual transitions
∆mF = 0,±1, since the corresponding manifolds are separated by the ground state
hyperfine splitting ωhfs ≈ 2π · 6.835 GHz. For this reason, it is sufficient to stay in the
linear Zeeman regime, say with |Bext| on the order of 1 G, to lift the degeneracies of
the transition lines. In practice, to bridge the hyperfine splitting, the RF sweep signal
is combined with a suitable frequency offset from a microwave generator. The mixed
signal gives a MW sweep that is used, for example, to perform a complete adiabatic
transfer |1,−1〉 → |2,−2〉.

We note that, in comparison to RF pulses, RF and MW sweeps are generally less
sensitive to fluctuations in the external magnetic field strength and driving field ampli-
tude, thus enabling accurate and faultless spin-state manipulation with a high fidelity.
16Photonics Technologies Versatile Frequency Generator VFG-150.
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It is also possible to combine RF and MW sweeps with RF pulses in multiple sequences
to prepare a multitude of different spin states. Moreover, non-adiabatic sweeps can
be performed that yield Landau-Zener type transitions and allow for the creation of
fine-tuned spin mixtures. For further details regarding these aspects, we refer to the
theses of H. Schmaljohann, M. Erhard, J. Kronjäger, and C. Becker [98–101].

43





3 Ultracold atoms in a tunable
spin-dependent boron-nitride lattice

This chapter is dedicated to the formal description of ultracold bosonic atoms
in optical lattices and its application to central experimental techniques. For
this reason, I briefly review the Bloch formalism, established for the descrip-
tion of non-interacting particles in periodic potentials, and present exact
numerical calculations of the eigenspace and eigenspectrum for our spin-
dependent optical boron-nitride lattice. Particular emphasis is put on an ac-
curate characterization of higher Bloch orbitals and their physical properties,
such as the intrinsic orbital angular momentum. Furthermore, we elaborate
on the central experimental observables and probing methods used through-
out this work. Based on this, I demonstrate how amplitude-modulation spec-
troscopy and Kapitza-Dirac diffraction can be used to calibrate the lattice
depth and in situ orientation of the external quantization field, respectively.

The main objective in the study of atoms in optical lattices is to understand the dynam-
ical evolution as well as the stationary equilibrium properties of a system of N particles
(atoms) subject to a variety of different external conditions in the presence of a peri-
odic potential. Formally, this requires to solve the many-body Schrödinger equation
for elements |Ψ〉 of the N -particle Hilbert space HN , which, however, is a formidable
and usually intractable task for systems with large particle numbers and interactions
among the individual constituents. The main difficulty can be traced back to the fact
that the size of HN grows exponentially with N . Therefore, one has to rely on ade-
quate approximations that reduce the complexity of the problem while preserving the
key aspects and ingredients that provide insights into important physical observables.

In the case of ultracold bosonic atoms in optical lattices, being the focus of our
discussion here, a natural starting point for approximation schemes as well as exact
numerical and analytical methods is provided by the Bose-Hubbard model (BHM) and
its various extensions. Indeed, bosonic atoms in optical lattices constitute nearly perfect
realizations of the BHM, allowing for a strong interconnection between experiment and
theory. Most prominently, the BHM has been successful in predicting a quantum phase
transition from a superfluid to a Mott insulating state [154], which was experimentally
verified in optical lattices [155] soon after a proposal by Jaksch et al. [35]. In principle,
the BHM captures most of the physics of bosonic atoms in optical lattices, but explicit
calculations within this model are typically quite involved.1

When interactions are small and correlations among the atoms can be ignored, a con-
ceptually and technically more simple approach is suitable. Commonly, this is provided

1An excellent review of the BHM and related methods in the context of optical lattices is provided by
Lewenstein et al. [32].
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by the famous Gross-Pitaevskii equation (GPE).2 The GPE yields an effective descrip-
tion of a weakly interacting bosonic ensemble in terms of a non-linear field equation
for the order parameter ψ related to the macroscopic occupation of a single 1-particle
state, i.e. the occurrence of a BEC. It has proved successful in the study of BECs in
various trap configurations, including optical lattices. Essentially, the GPE builds on a
self-consistent mean-field ansatz with the central premise that the system is present as a
pure BEC. For this reason, strictly speaking, it cannot account for situations where this
condition fails; for instance, at temperatures above zero where the presence of an addi-
tional thermal component must be included. Similarly, the GPE fails for systems with
strong interactions or when correlations between atoms become important. Neverthe-
less, as long as the thermal and quantum depletion from the condensate remain small,
the GPE is a valuable tool for the study of weakly interacting bosonic atoms in optical
lattices, providing reasonable results in the superfluid low-temperature limit. Further-
more, the GPE can be refined and generalized to incorporate effects from coupling to
a non-vanishing thermal component at finite temperatures [158, 159]. Based on the
Hartree-Fock-Bogoliubov-Popov (HFBP) approximation [160], it is then possible to de-
rive an effective finite-temperature theory of superfluid bosons in optical lattices [161],
which allows for an accurate treatment under a large number of realistic experimental
conditions.

By far the most simplistic approach to the N -particle problem is given by a free-
particle (independent-particle) description, i.e. where the interaction among particles is
completely ignored. The corresponding single-particle problem is always solvable and
offers a well-established and transparent framework for understanding different fun-
damental concepts, such as band structures, the geometric phase, or non-interacting
symmetry-protected topological (SPT) orders, including topological insulators and su-
perconductors. Though the ambition and scope of this thesis is less generic or funda-
mental, in the majority of cases, for reasons of clarity and simplicity, we will mainly
focus on single-particle calculations for comparison with experimental data. In fact, as
we will see in this chapter and in the following ones, for our experimental settings in
the weakly interacting superfluid regime, single-particle calculations are usually in good
agreement with experimental observations. This can be understood from the point of
view that we shall often be interested merely in the coarse-grained distribution of the
high-momentum components of a BEC in an optical lattice, which is determined pri-
marily by the microscopic periodic structure of the lattice potential itself. Interactions,
on the other hand, mainly affect the details of the momentum distribution on a smaller
scale, which can be frequently ignored. By the same reason, it is often justified to ne-
glect the additional external harmonic confinement from the overall trapping potential.
Yet, it is clear that other observables, in general, might be more susceptible to interac-
tions and the external harmonic confinement. In that case, single-particle calculations
are inadequate but may still provide a qualitative agreement and form the basis for
more sophisticated approaches like those discussed above, which include effects from
interactions at different levels of approximation.

2For an extensive discussion of the GPE and its application, we refer to the standard monographs by
Pitaevskii and Stringari [156] and Pethick and Smith [157].
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3.1 Non-interacting atoms in a spin-dependent boron-nitride
lattice

In this section, I introduce some of the basic notations and formal relations that will
guide our studies in subsequent chapters. We shall start our discussion with a prepara-
tory note on the adiabatic approximation for the quantum mechanical motion of atoms
in an optical lattice. Based on this, we review the physics of non-interacting atoms in
periodic potentials by providing a brief survey of the Bloch formalism, which is an in-
dispensable tool for understanding condensates in optical lattices. The concise notation
that we follow is largely self-contained. Finally, I present exact numerical calculations
of Bloch bands and Bloch states for our spin-dependent boron-nitride lattice and elab-
orate on important physical properties, such as the mean momentum and mean orbital
angular momentum of Bloch states.

3.1.1 Adiabatic approximation

The total single-particle Hilbert space of an atom is usually defined as the tensor product
Hatom = Hint ⊗ Hext of the Hilbert space Hint of internal electronic states and the
Hilbert space Hext of external motional states that represent the atomic center of mass
motion in configuration space. So far, in our discussion of the AC Stark shift and the
optical lattice potentials in chapter 2, we have ignored the dynamical evolution of the
atomic external degrees of freedom and treated the coordinate r as a fixed parameter
of configuration space. In the following, we will promote it to a dynamical variable,
i.e. we will replace r by the position operator r̂ that acts on Hext, and ask for the
full quantum mechanical motion of atoms under the action of the augmented AC Stark
operator V̂AC(r) → V̂AC(r̂) ≡ V̂AC. In what follows, operators in calligraphic letters
will denote operators that act on the total space Hatom.

First, consider a general local interaction operator V̂ on Hatom. Let {|a〉} and {|r〉}
denote a complete orthonormal basis of Hint and Hext, respectively. Then, {|a〉 ⊗ |r〉}
provides a corresponding tensor basis of Hatom such that V̂ can be expanded as

V̂ =
∑
ab

∫
dr dr′ Vab(r, r′) |a〉〈b| ⊗ |r〉〈r′| =

∑
ab

∫
dr Vab(r) |a〉〈b| ⊗ |r〉〈r| . (3.1)

Here, Vab(r, r′) are the defining matrix elements of V̂ in the tensor basis {|a〉⊗|r〉}, and
we require that they are diagonal in r, i.e. Vab(r, r′) = Vab(r) δ(r − r′). Accordingly,
V̂ is called a local operator. For clarity, we will now assume that the elements |a〉
represent the atomic bare internal states, that is the eigenstates of the atomic internal
Hamiltonian Ĥint in the absence of atom-light interaction. In the latter case, the total
atomic Hamiltonian has a simple form:

Ĥ0 = Ĥint ⊗ idext + idint ⊗ T̂ , (3.2)

where id denotes the identity operator on the respective space, and T̂ = p̂2/(2µ) is
the kinetic energy operator on Hext for an atom of mass µ. Note that the structure
of the Hamiltonian Ĥ0 allows to treat the atomic internal and external degrees of
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freedom separately. By contrast, in the presence of the interaction V̂, the total atomic
Hamiltonian

Ĥ = Ĥ0 + V̂ (3.3)

induces a mixing between both spaces if Vab(r) is not a constant function of r, and
hence obstructs a simple decomposition of the equations of motion. In general, ob-
taining solutions of the Schrödinger equation for a Hamiltonian Ĥ with arbitrary local
interactions V̂ is a challenging task. A major simplification is achieved if it is possible to
restrict considerations onto a subspace H F

int ⊂ Hint that is spanned by a finite number
of bare internal states. At the simplest level, this amounts to solving the Schrödinger
equation for the effective Hamiltonian

Ĥeff ≡ (P̂F ⊗ idext) Ĥ (P̂F ⊗ idext) , (3.4)

where P̂F is the projector onto the relevant internal subspace H F
int. Note that this leads

to an effective interaction

V̂eff =
∑

ab∈H F
int

∫
dr Vab(r) |a〉〈b| ⊗ |r〉〈r| . (3.5)

In view of the AC Stark shift discussed in section 2.3, the expression for the effective
Hamiltonian becomes

V̂eff = V̂AC =
M∑

mm′

∫
dr Vmm′(r) |m〉〈m′| ⊗ |r〉〈r| , (3.6)

where H F
int is identified with the M -dimensional hyperfine manifold spanned by the set

of M = 2F + 1 Zeeman substates {|a〉 ≡ |(nJF )mF 〉} to some fixed quantum numbers
(nJF ). We stress that the matrix elements Vmm′(r) ≡ 〈m|V̂AC(r)|m′〉 in equation (3.6)
are directly obtained from equation (2.27) and that indices (nJF ) have been suppressed
for clarity. We now argue that the restriction onto the subspace of a single hyperfine
manifold is justified in the case of the AC Stark shift for two reasons: First, we assume
that it is a non-resonant and small perturbation at every point r, in the sense that
(nJF ) remain good quantum numbers to a very good approximation. In other words,
the AC Stark shift only weakly couples bare internal states |a〉 ≡ |(nJF )mF 〉 with
different (nJF ). Apart from that, however, it may induce a strong coupling among
Zeeman substates of the same hyperfine manifold, i.e. within the relevant subspace
H F

int. Second, we assume that the atoms move sufficiently slowly through configuration
space such that motional coupling to internal states outside H F

int can be neglected.
Of course, a general requirement is that H F

int is well separated in energy from the
remaining states compared to the atomic kinetic energy. For the atomic levels that are
relevant to our discussion here, this is certainly fulfilled under all realistic experimental
scenarios. Taken together, an atom prepared in H F

int shall remain in that subspace
throughout the dynamical evolution in configuration space. We note that this is similar
to the adiabatic or Born-Oppenheimer approximation in molecular physics [162]. But,
instead of an adiabatic following regarding a single dressed internal state, we consider
here an adiabatic following with respect to a bare internal subspace. If no further
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3.1 Non-interacting atoms in a spin-dependent boron-nitride lattice

simplification is applicable or justified, we shall diagonalize the effective Hamiltonian
Ĥeff = Ĥ0

eff + V̂AC in the restricted total subspace H F
int ⊗Hext. In the context of optical

lattice potentials, where all elements Vmm′(r) in equation (3.6) are periodic functions
of r, this is readily achieved in a momentum-spin basis {|m〉 ⊗ |G〉}.3 We also note
that if an additional external magnetic field is present, V̂AC should be supplemented by
a corresponding Zeeman interaction V̂AC → V̂AC + V̂Z. For instance, for our 2D optical
lattice the matrix elements Vmm′(r) in that case are explicitly given by equations (2.41)
to (2.42).

Most often, we shall deal with a situation where an additional adiabatic decoupling
within the subspace H F

int is appropriate. In particular, as we examine below, under the
premise of an adiabatic evolution of internal states in H F

int, one can derive a reduced
Hamiltonian for the respective atomic center of mass motion. To this end, let us define
|ηm(r)〉 ⊗ |r〉 as an eigenstate to the operator V̂eff ≡ V̂AC + V̂Z that includes a Zeeman
interaction with a uniform external magnetic field. This implies that the internal state
|ηm(r)〉 is an eigenstate to V̂ (r) ≡ V̂AC(r) + V̂Z, specifically [48, 49]

V̂ (r) |ηm(r)〉 = vm(r) |ηm(r)〉 . (3.7)

Here, vm(r) denotes the corresponding eigenvalue. The different eigenstates |ηm(r)〉 are
related to the bare internal states |m〉 by an r-dependent unitary basis transformation

|ηm(r)〉 = Û(r) |m〉 ≡
M∑
m′

Um′m(r) |m′〉 . (3.8)

Note, however, that since the eigenstates |ηm(r)〉 are only unique up to a phase factor
exp(iϕm(r)), with arbitrary real-valued functions ϕm(r), the transformation Û(r) is not
uniquely defined as a function of r. In the following, we will assume a phase gauge where
all matrix elements Um′m(r) in equation (3.8) are smooth functions on the configuration
space.4 The set {|ηm(r)〉} will be called an eigenbasis of local dressed internal states
[48, 49]. For each value of r, it constitutes a complete orthonormal basis of H F

int. Thus,
any state |Ψ〉 ∈ H F

int ⊗ Hext can be expanded as

|Ψ〉 =
M∑
m

∫
dr ψm(r) |ηm(r)〉 ⊗ |r〉 , (3.9)

where ψm(r) is readily interpreted as the probability amplitude to find an atom in the
m-th dressed internal state at point r. To proceed, we will now invoke the adiabatic
approximation, this time by assuming that the dressed eigenvalues vm(r) for all values
of r are well-separated relative to the kinetic energy. In practice, this is accomplished
by a suitable and sufficiently strong fictitious or external magnetic field that breaks the
degeneracy among the Zeeman substates and provides the desired level of separation.

3The states |G〉 ∈ Hext refer to discrete momentum states of the reciprocal lattice, as discussed in
subsection 3.1.2.

4In general, the smoothness condition is incompatible with Um′m(r) being single-valued functions on
the whole configuration space. Such peculiarities are related to the theory of complex vector bundles
on a manifold M (see, for example, [163, 164]). For M = R3, as tacitly assumed here, there is no
problem to it.
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3 Ultracold atoms in a tunable spin-dependent boron-nitride lattice

Thus, an atom prepared in a local dressed internal state shall remain in the correspond-
ing manifold of adiabatically connected eigenstates. Under this adiabatic ansatz, one
can now derive (see also [49]) a reduced Hamiltonian Ĥm

ext ≡ 〈m|Ĥ′
eff |m〉 solely for the

center of mass motion of the m-th dressed internal state by tracing out the bare internal
state |m〉 in the transformed Hamiltonian Ĥ′

eff ≡ Û†(Ĥ0
eff + V̂eff) Û , where

Û ≡
∫

dr Û(r) ⊗ |r〉〈r| =
M∑

mm′

∫
drUmm′(r) |m〉〈m′| ⊗ |r〉〈r| . (3.10)

By construction, this transformation brings V̂eff into a diagonal form with respect to
the bare internal states, i.e.

Û†V̂eff Û =
M∑
m

∫
dr vm(r) |m〉〈m| ⊗ |r〉〈r| . (3.11)

After a lengthy but straightforward calculation, it is verified that the reduced Hamil-
tonian Ĥm

ext can be written as (compare [48, 49, 165–167])

Ĥm
ext ≡ 〈m|Ĥ′

eff |m〉 = (p̂ − Am(r̂))2

2µ
+ vm(r̂) + wm(r̂) + EF . (3.12)

Here, EF refers to the bare atomic energy of the hyperfine manifold. The operators p̂
and r̂ denote the vector-valued momentum and position operator on Hext, respectively.
Moreover, we have employed the definitions

Am(r) = Amm(r) ≡ iℏ 〈ηm(r)|∇ηm(r)〉 = iℏ
M∑
n

U∗
nm(r) ∇Unm(r) , (3.13a)

wm(r) ≡ 1
2µ

M∑
n 6=m

Anm(r) · Amn(r) = ℏ2

2µ

M∑
n6=m

|〈ηn(r)|∇ηm(r)〉|2

= ℏ2

2µ

M∑
n6=m

M∑
ij

U∗
in(r)Ujn(r)

[
(∇Uim(r)) · (∇U∗

jm(r))
]
.

(3.13b)

We emphasize that if |ψm〉 ∈ Hext defines an external eigenstate to Ĥm
ext, the product

state |Ψ′
m〉 ≡ |m〉 ⊗ |ψm〉 yields the corresponding adiabatic solution |Ψm〉 with respect

to the untransformed Hamiltonian Ĥeff via

|Ψm〉 ≡ Û |Ψ′
m〉 =

∫
dr ψm(r) |ηm(r)〉 ⊗ |r〉 , (3.14)

with ψm(r) ≡ 〈r|ψm〉.

It is interesting to observe that the Hamiltonian in equation (3.12), although we are
dealing with charge neutral atoms, has a structure reminiscent of the minimal coupling
for charged particles in the gauge theory of electrodynamics. In fact, expressions Am(r)
and wm(r) in equation (3.13) are frequently referred to as artificial gauge fields, which
have attracted much attention over the recent years in the endeavor of simulating elec-
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3.1 Non-interacting atoms in a spin-dependent boron-nitride lattice

tronic solid-state phenomena by means of neutral atoms [48, 49, 167]. Obviously, here
they result from the spatial dependence of the dressed internal states |ηm(r)〉. In more
general terms, Am(r) and wm(r) are also known as the geometric vector and scalar
potential for the external motion of the m-th dressed internal state. The geometric
potentials are intimately related to the famous (adiabatic) geometric phase, which has
plenty of observable effects throughout different areas of physics and was first derived,
alongside with the corresponding vector potential, by Mead and Truhlar [168] in the
context of molecular physics. However, it was not until Berry [84], who considered
generic quantum system under adiabatic cyclic evolutions, that a general notion of the
geometric phase and the associated gauge potentials was established.

As we do not intend to go into further detail about the geometric scalar and vector
potentials – a general and comprehensive presentation can be found, for instance, in
the book by Bohm et al. [163] – we merely emphasize their significance in the adiabatic
approximation in case where the dressed internal states within the given hyperfine man-
ifold have a non-vanishing spatial dependence. For instance, for our 2D optical lattice
this is generally expected when the fictitious magnetic field exhibits a non-collinear spa-
tial profile while its magnitude is comparable to or larger than the external magnetic
field. A detailed analysis of the artificial gauge fields that can be realized by tailoring
the fictitious magnetic field is left for the future. It should be stressed that the above
approach is not the only way to realize artificial gauge fields. To take a single example,
Floquet engineering [47, 169, 170] via lattice shaking [171–174] has proved success-
ful in the creation of artificial gauge fields that are associated to staggered magnetic
fluxes [51, 56]. Further methods for the creation of artificial gauge fields, including
non-abelian generalization, are presented in the exhaustive reviews by Dalibard et al.
[48] and Goldman et al. [49].

In view of equations (3.12) and (3.13), a particularly simple situation arises in the
limit of a dominating uniform external magnetic field, where the spatial dependence of
the dressed internal states vanishes to very good approximation and thus the geometric
vector and scalar potentials can be neglected. Specifically, for our 2D optical lattice we
then have |ηm(r)〉 ≈ |F, m̄F 〉, with approximate dressed eigenenergies vm(r) ≈ VF,m̄F

(r)
given by equation (2.44).5 As a consequence, the reduced Hamiltonian for the center
of mass motion of atoms in our 2D optical lattice becomes

Ĥm
ext ≈ p̂2

2µ
+ VF,m̄F

(r̂). (3.15)

Although this might look like a trivial result, it is in fact not: it relies on the validity
of the sequence of adiabatic approximations applied. Equation (3.15) will correspond
to the typical situation studied within this thesis, and it will be the focus of the next
subsection. Nevertheless, one should keep in mind that when the dressed internal states
become increasingly close in energy, the adiabatic approximation is doomed to fail and
the internal and external degrees of freedom must be treated on an equal footing. In
other words, one should always revert in that case to the effective Hamiltonian Ĥeff on
the tensor product H F

int ⊗ Hext.

5See also the discussion in subsection 2.3.2.
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3 Ultracold atoms in a tunable spin-dependent boron-nitride lattice

a b
xy

Fig. 3.1: Visualization of the Born-von-Karman periodic boundary conditions for a symmetric
two-dimensional boron-nitride lattice (honeycomb lattice). a Quotient space of the boron-nitride
lattice potential made of N1(N2) unit cells arranged along the lattice vector a1(a2). Red and
green arrows identify equivalent points at the boundary of the parallelogram, resulting in a
torus T2. Gluing opposite sides of the parallelogram in the orientation of the arrows yields an
embedding b of the torus in R3, described by toroidal coordinates θ and φ. In fact, an embedding
that respects the periodic boundary conditions corresponds to a uniformly twisted torus (right),
where θ revolves by an additional angle ∆θ = (N1/N2 mod 2)π for a single revolution around
the coordinate φ.

3.1.2 Bloch formalism

In considering non-interacting atoms in optical lattices, we typically wish to solve the
stationary Schrödinger equation

Ĥ |ψ〉 ≡
[

p̂2

2m
+ V (r̂)

]
|ψ〉 = E |ψ〉 (3.16)

for a single atom of mass m in a static periodic potential V (r). Here, p̂ is the momentum
operator and r̂ is the position operator, which act on elements |ψ〉 of the external
single-particle Hilbert space Hext. For the moment, we will ignore any reference to
the internal state of the atom and assume that it remains in a fixed and well-defined
local dressed internal state for all times. In addition, we will assume that the spatial
dependence of the dressed internal states is negligible. Hence, we shall exclusively focus
on the dynamics of the external degrees of freedom in configuration space in the limit
of vanishing contributions from geometric scalar and vector potentials, as implied by
equation (3.15) from the previous subsection.

In the following, the periodic potential V (r) can correspond to lattices of arbitrary
dimension d, but for clarity one may assume d = 2. Besides, to make the problem well-
posed, it is necessary to enforce specific boundary conditions on V (r). As usual, we will
employ the Born-von-Karman periodic boundary conditions [175], resulting in a torus
topology as exemplified in Figure 3.1 for our two-dimensional boron-nitride lattice.
We emphasize that the torus topology rules out the emergence of edge or boundary
states as encountered, for example, in real systems of topological insulators [176–179]
with open boundaries. Although it is possible to generalize the Bloch formalism for
arbitrary boundary conditions [180], which provides deep insights into the connection
between bulk and boundary properties, we shall not complicate matters at this point
and exclusively stick to periodic boundary conditions.

Translational invariance of the optical lattice implies that V (r̂) = V (r̂ + R) for any
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3.1 Non-interacting atoms in a spin-dependent boron-nitride lattice

Bravais lattice vector R ∈ RB. Therefore, it follows that the Hamiltonian Ĥ and the
group of discrete translations {T̂R} form a set of commuting observables. According to
Bloch’s theorem, their common eigenbasis {|ψn〉} can be classified by vector quantum
numbers k, known as crystal momenta or quasimomenta, that are uniquely defined
within the first Brillouin zone (BZ1) of the reciprocal Bravais lattice [181, 182]. The
associated Bloch states |ψnk〉 ≡ |nk〉 describe a complete set of common eigenstates

Ĥ |nk〉 = ϵn(k) |nk〉 , T̂R |nk〉 = e−ikR |nk〉 , (3.17)

where the eigenvalues ϵn(k) represent energy bands or Bloch bands as functions of k
that collectively form the band structure. For explicit calculations, it is helpful to
rewrite the eigenvalue equation for Ĥ by exploiting the translational symmetries of the
Bloch states |nk〉. To this end, one typically establishes the ansatz |nk〉 = eikr̂ |unk〉,
which implies that the so-called Bloch modes |unk〉 are invariant under the group of
discrete translations {T̂R}. With this, the left-hand side of equation (3.17) can be
written in the form

e−ikr̂Ĥeikr̂ |unk〉 ≡ ĥ(k) |unk〉 = ϵn(k) |unk〉 . (3.18)

Here, we have introduced the so-called Bloch Hamiltonian

ĥ(k) ≡ (p̂ + ℏk)2

2m
+ V (r̂) . (3.19)

Thus, the Bloch modes |unk〉 are eigenstates to the Bloch Hamiltonian, with eigenen-
ergy ϵn(k). Note that for each k the corresponding eigenvalue problem has infinitely
many countable solutions that are labeled by the additional band index n. Then, since
the Bloch modes |unk〉 are invariant under discrete translations T̂R, i.e. periodic over
primitive unit cells of the real-space Bravais lattice, we may expand them in the dis-
crete Fourier basis {|G〉} of momentum states to the reciprocal lattice GB (compare
equation (2.39)):

|unk〉 =
∑

G∈GB

cnk(G) |G〉 . (3.20)

In other words, we are provided with a suitable and complete set of orthogonal basis
states that can be systematically truncated at |G| < M to arrive at an approximate
solution for |unk〉. From now on, we shall suppress the reference to GB in the sum over
reciprocal lattice vectors G. For clarity, we stress that the momentum state |G〉 in our
notation, by definition, is an eigenstate to the vector operator p̂ with eigenvalue ℏG.
In position space representation, equation (3.20) therefore takes the familiar form6

unk(r) = 1√
V

∑
G
cnk(G)eiGr . (3.21)

The unknown expansion coefficients cnk(G) uniquely determine each Bloch mode and

6We use that unk(r) ≡ 〈r|un(k)〉 and 〈r|G〉 ≡ eiGr/
√

V . The factor 1/
√

V accounts for the correct
normalization by the system volume V = Nv, where N is the total number of unit cells contained
in the lattice and v is the volume of a primitive unit cell.
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3 Ultracold atoms in a tunable spin-dependent boron-nitride lattice

Bloch state for fixed quantum numbers n and k. They are easily obtained to leading
order by solving the eigenvalue equation that results from the expansion of the Bloch
Hamiltonian ĥ(k) in a finite but sufficiently large Fourier basis {|G〉}M :

M∑
G′

〈G| ĥ(k) |G′〉 cnk(G′) = ϵn(k)cnk(G) :⇐⇒ H(k)cnk = ϵn(k)cnk . (3.22)

By noting that V (r̂) =
∑

G VGe
iGr̂, the components of the matrix H(k) read

HGG′(k) ≡ 〈G| ĥ(k) |G′〉 = ℏ2

2m
(G + k)2δGG′ + VG−G′ , (3.23)

and the reciprocal lattice vectors G can be ordered and numbered such that the sub-
scripts refer to the corresponding numbers. The matrix elements in equation (3.23) are
conveniently expressed in units of the recoil energy Erec = ℏ2k2

L/(2m).
To obtain the full band structure and all Bloch modes or Bloch states of the particular

problem at hand, it remains to diagonalize the matrix HGG′(k) for all unique values
of k that are allowed by the periodic boundary conditions. In general, given that V (r)
defines a finite d-dimensional lattice made of Ni unit cells along the primitive lattice
vectors ai, the number of unique quasimomenta k is given by the total number of
primitive unit cells N =

∏d
i Ni. Usually, we are only interested in the limit of large

Ni. In that case, the allowed quasimomenta are densely distributed within the first
Brillouin zone, i.e. they vary quasi-continuously on a coarse-grained scale, and we must
not bother with their precise values but tacitly assume that any k ∈ BZ1 is compatible
with the boundary conditions.

3.1.3 Band structure calculations
Based on the previous subsection, we now provide a brief account of the band structure
of our spin-dependent boron-nitride lattice. The most striking feature, perhaps, is that
it exhibits so-called Dirac cones in the limit of a vanishing sublattice energy offset.
Dirac cones, first encountered by Wallace [183] in his studies of graphite, are conical
intersections between two bands that are characterized by a linear dispersion relation
and zero effective mass in the vicinity of the band touching points. As a consequence,
particles near Dirac cones behave like ultra-relativistic particles that can be described
by the massless Dirac equation, hence the name. Dirac cones are ubiquitous in the
study of fermionic and bosonic Dirac matter and are associated with several remarkable
transport properties. For example, the low-energy excitations in graphene, owing to
the presence of Dirac cones, are massless chiral Dirac fermions that give rise to exotic
phenomena such as Klein tunneling or the anomalous integer quantum Hall effect [184].
In close analogy to the two-dimensional honeycomb lattice of graphene, our tunable
boron-nitride optical lattice can be considered a realization of artificial graphene with
a tunable band gap.

In the following, we focus on the two extremal configurations θB = 0◦, 90◦ for our
lattice potential, where θB denotes the angle between the z-axis and the external quan-
tization field (see subsection 2.3.3). We assume a lattice depth of V2D = 1Erec and
atoms in the Zeeman substate |2,−2〉. The corresponding lattice potentials as well as
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Fig. 3.2: Tunable spin-dependent boron-nitride lattice a for atoms in the Zeeman substate
|2,−2〉 at a lattice depth V2D = 1Erec, and for varying angles θB = 0◦, 90◦, 180◦ of the external
quantization field (left to right). b Sketch of the hexagonal lattice structure, with the definitions
of the two triangular sublattices A and B, and corresponding representative sublattice sites A
and B.

the associated triangular sublattices A and B are shown in Figure 3.2. Recall that the
configuration θB = 0◦, i.e. a quantization field that points normal to the lattice plane,
yields a maximum energy offset ∆AB between the two sublattices. On the other hand,
θB = 90◦ gives a vanishing energy offset ∆AB = 0 such that the boron-nitride lattice
is transformed into a honeycomb lattice. For completeness, in Figure 3.2a we have in-
cluded the case θB = 180◦ for which the energy offset is inverted compared to θB = 0◦.
Note that the lattice potentials for θB = 0◦ and θB = 180◦ are linked by inversion. It is
straightforward to show that potentials related by inversion have necessarily identical
band structures. Thus, the case θB = 180◦ must not be considered separately.

The Bloch bands {ϵn(k)} for the two relevant lattice potentials at hand are obtained
by exact numerical diagonalization of the Bloch matrix HGG′(k) from equation (3.23)
for different k ∈ BZ1. The necessary matrix elements VG−G′ can be directly inferred
from equation (2.56). In Figure 3.3, we show the resulting band structures: For θB = 0◦,
the finite value of ∆AB breaks the inversion symmetry of the lattice potential, which
manifests most prominently through a finite energy gap between the first and second
Bloch band, as shown in Figure 3.3a. For θB = 90◦, on the other hand, the inversion
symmetry is restored, leading to a honeycomb lattice featuring two conical intersections
or Dirac cones between the first and second band. The corresponding band structure
up to the fifth band is displayed in Figure 3.3b. Note that the Dirac cones are located
at the two distinct vertices K and K′ of the hexagonal Brillouin zone, and that similar
Dirac cones also appear between the fourth and fifth band. For clarity, all Dirac cones
at K have been marked by red circles. We stress that for each individual band, the
quasimomenta K and K′ always share the same energy due to time-reversal symmetry
(see subsection 3.1.5). This holds regardless of the precise lattice configuration.

In Figure 3.3c, we provide further insights into the differences between the band
structures of the two configurations θB = 0◦ and θB = 90◦ by inspecting cross sec-
tions along high-symmetry lines of the Brillouin zone. Most notably, apart from the
degeneracies at K, which are lifted for θB 6= 90◦, there are additional degeneracies or
band touching points at Γ between the third and fourth and between the fifth and
sixth band. These are unaffected by modifications of the energy offset ∆AB through
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Fig. 3.3: Band structures of the spin-dependent boron-nitride lattice (equation (2.56)) for
atoms in the Zeeman substate |2,−2〉. a For a lattice depth of V2D = 1Erec and a quantization
axis angle θB = 0◦, and b for V2D = 1Erec and θB = 90◦. The first five bands for the two
configurations are plotted in units of Erec over the Brillouin zone (grey hexagon in the kxky-
plane). Coordinates of the quasimomentum space are given in units of the reciprocal lattice
constant |b1| = b. c Sections of the band structures along a closed path in the Brillouin zone
connecting points of high symmetry M → Γ → K → M. The path length s is parametrized
in units of |b1|. The degeneracies at K for the bands (1, 2) and (4, 5) are emphasized by red
circles. They are lifted for θB 6= 90◦. Other degeneracies remain intact, such as (3, 4) and (5, 6)
at Γ, marked by black circles. Dashed lines in c additionally show the 6th and 7th band, which
have been omitted in a and b for clarity.

variations of θB. Besides, for θB = 90◦, another linear band touching point between
the sixth and seventh band is encountered along the straight path Γ → K and K → M.
As with the Dirac cones, those degeneracies are absent for the case θB = 0◦. Clearly,
it is possible to continuously tune between both band structures simply by rotating
the quantization axis, i.e. by scanning the angle θB. This kind of manipulation of the
band structure is central to this thesis and it will be extensively employed in chapter 4
for a Landau-Zener type transfer of atoms into higher Bloch bands. In particular, it
enables to open and close the Dirac cones in a controlled manner, which has been used
in previous experiments to study their influence on the lifetime of atoms in the second
Bloch band [185].

Before we proceed with a discussion of Bloch orbitals in the next subsection, we note
that Dirac cones are in general no static objects: their locations in the Brillouin zone can
be manipulated by changing the lattice anisotropy. In fact, Dirac cones can be moved
and even merged along different paths of the Brillouin zone [186–189]. Experimentally,
this has been demonstrated in an optical honeycomb lattice by Tarruell et al. [190].
Based on a similar approach in our setup, the locations of Dirac cones can be easily
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3.1 Non-interacting atoms in a spin-dependent boron-nitride lattice

controlled by changing the intensities of the individual lattice beams, thereby introduc-
ing an intensity imbalance and asymmetry in the lattice potential. In view of this, it
is illuminating to study the general requirements and conditions for the existence and
stability of Dirac cones. While there has been a number of works devoted to it in the
context of a minimal two-band model [191–194], we note that rigorous mathematical
considerations in case of the full Bloch Hamiltonian (equation (3.19)) are rather rare.7

3.1.4 Bloch orbitals
We now turn our attention to Bloch states: The many-body ground state of an ideal
BEC in an optical lattice is characterized by a macroscopic occupation of the lowest
energy Bloch state |n,k〉 = |1,Γ〉. This situation constitutes the natural starting point
for an ultracold bosonic ensemble loaded into a shallow optical lattice. On the other
hand, the primary aim of this thesis was to achieve an unconventional BEC in higher
Bloch states (n > 1) to some nonzero quasimomentum k (see chapter 4). Naturally, the
properties of such an unconventional BEC will depend in a crucial way on the properties
of the Bloch states that are occupied. Therefore, in preparation for the next chapter,
we will provide a brief insight into some relevant Bloch states of our spin-dependent
boron-nitride lattice. As an example, we consider the lattice potential for a quantization
axis angle θB = 0◦, a lattice depth V2D = 4Erec, and atoms in the Zeeman substate
|2,−2〉. In this case, A defines the deeper sublattice (compare Figure 3.2) and the offset
to B amounts to ∆AB ≈ 9.2Erec. In the following, we shall visualize the Bloch states
in terms of their wave functions ψnk(r) ≡ 〈r|nk〉 over the configuration space, which
will be termed Bloch orbitals.

In Figure 3.4, we plot the first four Bloch orbitals (n = 1, . . . , 4) to the quasimo-
menta of high symmetry Γ,K,M. We note that the Fourier coefficients {cnk(G)} to
the Bloch states have been obtained by exact numerical diagonalization of the Bloch
matrix HGG′(k) from equation (3.23). As would be expected, the Bloch orbital of the
ground state |n,k〉 = |1,Γ〉 is localized essentially on the deeper sublattice A. It has a
trivial phase profile of constant value. On the other hand, higher Bloch orbitals are not
necessarily localized on the deeper sublattice and possess more intriguing phase pat-
terns. Note that the depicted orbitals (2,Γ) and (3,Γ) break the three-fold rotational
symmetry, which is otherwise intact for Bloch orbitals at Γ. However, this symmetry
breaking is just an artefact of their degeneracy, and it is perfectly possible to construct
corresponding three-fold symmetric orbitals by appropriate superpositions of (2,Γ) and
(3,Γ).

We stress that the phase profiles of higher Bloch orbitals to the quasimomenta Γ and
M are characterized by domain-like structures, where domain walls correspond to node
lines across which the phase makes a discontinuous jump by ∆ϕ = π. It is therefore clear
that Bloch orbitals at Γ and M can always be chosen to be real-valued, in accordance
with time-reversal symmetry (compare subsection 3.1.5). In contrast, Bloch orbitals
at the quasimomentum K are genuinely complex. Most remarkably, the higher Bloch
orbitals at K exhibit rectified phase windings on sublattices with a non-vanishing orbital

7Fefferman and Weinstein [195], for example, give a detailed proof that any periodic potential with
ideal honeycomb symmetry features Bloch bands with conical intersections at each vertex of the
Brillouin zone.
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Fig. 3.4: First four Bloch orbitals of the spin-dependent boron-nitride lattice for parameters
θB = 0◦, V2D = 4Erec, atoms in the Zeeman substate |2,−2〉, and selected quasimomenta. The
plots are arranged into four rows that label the band indices n = 1, . . . , 4, and three double-
columns that refer to the quasimomenta Γ,K,M, as indicated on the top. Each double-column
depicts the modulus squared A (on the left) and the phase ϕ (on the right) of Bloch orbitals
over the real space lattice. The orbital (1,Γ) represents the ground state, which is localized
on deep lattice sites A of the underlying lattice potential and exhibits a constant phase profile.
Higher Bloch orbitals possess nodes and more complex phase distributions. For instance, (2,K)
exhibits a clockwise phase winding on each lattice site A with a non-vanishing orbital weight
that results in a finite onsite orbital angular momentum (OAM). The corresponding phase
windings are emphasized by circular arrows. Note that the depicted orbitals (2,Γ) and (3,Γ)
break the three-fold rotational symmetry, which is otherwise intact for orbitals at Γ. This is
the result of the degeneracy between (2,Γ) and (3,Γ). It is possible, however, to construct new
eigenfunctions that restore the symmetry. For convenience, all orbitals have been normalized
such that integration of A over a primitive unit cell gives the volume v of that cell. Moreover, the
global phase of each Bloch orbital has been gauged such that the zero-momentum component
cnk(G0) is real-valued.
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3.1 Non-interacting atoms in a spin-dependent boron-nitride lattice

weight, which is associated with a finite onsite orbital angular momentum (OAM). For
example, the Bloch orbital (2,K) has a clockwise phase winding on each sublattice
site A with a finite orbital weight. As a consequence, a BEC in such a Bloch state is
characterized by a macroscopic OAM. We will examine the orbital angular momentum
of Bloch states in more detail in the following subsection 3.1.5.

3.1.5 Fundamental properties of Bloch states

For completeness, we now provide several fundamental properties of Bloch states that
are relevant to this thesis.

Equivalence classes Once a solution for a particular Bloch mode |unk〉 is at hand, the
associated Bloch state |nk〉 is obtained via

|nk〉 ≡ eikr̂ |unk〉 = eikr̂
∑
G
cnk(G) |G〉 =

∑
G
cnk(G) |G + k〉 . (3.24)

We stress that two Bloch modes |unk′〉 and |unk〉 related by k′ = k + G, with arbitrary
G ∈ GB, are in general not parallel, i.e. they correspond to distinct states in the Hilbert
space Hext. However, these states are equivalent in the sense that they yield the same
Bloch state |nk′〉 = eiϕ |nk〉 up to an irrelevant global phase factor.

Indeed, it is easy to verify that the Bloch mode |unk′〉 = e−iGr̂ |unk〉 is an eigenstate
to the Bloch Hamiltonian ĥ(k′) ≡ ĥ(k + G) with the same eigenvalue ϵn(k′) = ϵn(k)
as |unk〉. The equality of Bloch states then follows immediately from the defining
equation (3.24). Bloch states are thus class invariant under the equivalence relation
defined by k′ ∼ k :⇐⇒ k′ = k + G | G ∈ GB, which justifies the restriction of the
quasimomentum onto the unique set of class representatives from the first Brillouin
zone.

Time-reversal symmetry Besides, it is illuminating to inspect the consequences of
time-reversal symmetry (TRS) onto Bloch modes and Bloch states. To this end, let
us first define the time-reversal operator Θ̂ acting in Hext. For physical reasons, we
will require that Θ̂ is an anti-unitary operator [196] that leaves the position states |r〉
invariant up to a local gauge transformation, that means it will be uniquely defined by
the following action:

Θ̂ (α |r1〉 + β |r2〉) = α∗Θ̂ |r1〉 + β∗Θ̂ |r2〉 ≡ α∗eiϑ(r1) |r1〉 + β∗eiϑ(r2) |r2〉 , (3.25)

for arbitrary r1, r2, and α, β ∈ C, where we assume that ϑ(r) is a smooth, real-valued
function. It is easy to verify that equation (3.25) implies that the position and canonical
momentum operator transform according to

Θ̂ r̂ Θ̂−1 = r̂, Θ̂ p̂ Θ̂−1 = −p̂ + ∇ϑ(r̂) , (3.26)
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3 Ultracold atoms in a tunable spin-dependent boron-nitride lattice

where ∇ϑ(r̂) is to be understood as an operator-valued function. We also note that
Θ̂−1 = Θ̂, and we have the following useful identity:

Θ̂ |G〉 = eiϑ(r̂) |−G〉 . (3.27)

Equation (3.27) simply tells that Θ̂ sends the momentum state |G〉 to its opposite if
ϑ(r) = 0 for all values of r.

Now, a general Hamilton Ĥ is said to be time-reversal invariant or symmetric if
there exists an anti-unitary operator Θ̂ such that Θ̂ĤΘ̂−1 = Ĥ. It is obvious that
the lattice Hamiltonian in equation (3.16) is time-reversal symmetric under the trivial
choice ϑ = 0. This implies for the Bloch Hamiltonian in equation (3.19) that

ĥ(k) = Θ̂ ĥ(−k) Θ̂−1, ∀k ∈ BZ1 . (3.28)

Conversely, equation (3.28) can be taken as a definition for the time-reversal symmetry
of a Bloch Hamiltonian ĥ(k). An immediate consequence of equation (3.28) is that
Bloch modes |unk〉 and |un,−k〉, which are eigenstates to ĥ(k) and ĥ(−k) with eigenen-
ergies ϵn(k) and ϵn(−k), respectively, are linked by Θ̂ according to

|un,−k〉 = Θ̂ |unk〉 , ϵn(−k) = ϵn(k) , (3.29)

being valid for all k. Therefore, a time-reversal symmetric Bloch Hamiltonian has an
inversion symmetric band structure with respect to the quasimomentum k. A pair
of Bloch modes for which equation (3.29) holds is called a time-reversal symmetric
(TRS) pair. From equations (3.20) and (3.27) it then directly follows that the Fourier
coefficients of a TRS pair are related by

cn,−k(G) = [cnk(−G)]∗ , ∀G . (3.30)

Thus, the position space representations or wave functions unk(r) ≡ 〈r|unk〉 of TRS
pairs are related by complex conjugation: un,−k(r) = [unk(r)]∗. It is straightforward to
show that the same holds for the respective Bloch wave functions ψnk(r) ≡ 〈r|nk〉. In
particular, equation (3.30) implies that the wave functions to the time-reversal invariant
quasimomenta k ∈ {Γ,M,M′,M′′} can be chosen to be real-valued.

Bloch state momentum For atoms in optical lattices, the momentum distribution
f(q) provides a physical quantity that is directly accessible in absorption images after
time-of-flight. Here, q = p/ℏ ∈ Rd is related to the kinetic momentum p by the De
Broglie relation and is not to be confused with the quasimomentum k ∈ BZ1. From
equation (3.24), it immediately follows that the momentum distribution of a Bloch state
is given by

fnk(q) ≡ |〈q|nk〉|2 =
∑
G

|cnk(G)|2 δq,G+k . (3.31)

We can now define the corresponding density distribution f ′
nk(q) according to

f ′
nk(q) ≡

∑
G

|cnk(G)|2 δ (q − (G + k)) , (3.32)
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Fig. 3.5: Momentum-density distributions fn(q) of uniformly filled bands n = 1, . . . , 5 for
different configurations of the two-dimensional boron-nitride lattice, with atoms in the Zeeman
substate |2,−2〉. a For a lattice depth V2D = 8Erec and quantization axis angle θB = 106◦. b For
V2D = 1Erec and θB = 90◦. c For V2D = 0.1Erec and θB = 90◦. Distributions fn(q) are plotted
over the reciprocal space, with coordinates in units of the reciprocal lattice constant |b1| = b.
For convenience, the color-coded densities have been normalized such that the integration of
fn(q) over the entire reciprocal space gives the volume of the Brillouin zone. With increasing
lattice depths, the respective distributions become broader. Note that in the limit V2D → 0,
the momentum-density distribution of the n-th band approaches the characteristic function of
the n-th Brillouin zone.

where δ(q) denotes the Dirac delta function on the reciprocal space. Based on this, it is
straightforward to show that a normalized quasimomentum density distribution Bn(k)
in the n-th band gives rise to the following momentum distribution:

Fn(q) ≡
∫

BZ1

dk Bn(k)fnk(q) = B̃n(q)fn(q) , (3.33)

where B̃n(q) denotes the periodic extension of Bn(k) over the full reciprocal space, and
we employed the definition

fn(q) ≡
∫

BZ1

dk f ′
nk(q) . (3.34)

Up to normalization, fn(q) corresponds to the momentum distribution of a uniformly
filled band, described by Fn(q) for the case Bn(k) = 1/VBZ, where VBZ is the volume of
the Brillouin zone. In Figure 3.5, we depict the distributions fn(q) for the first five bands
to three different configurations of the boron-nitride lattice. The functions fn(q) are
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3 Ultracold atoms in a tunable spin-dependent boron-nitride lattice

readily obtained from numerical diagonalization of the Bloch Hamiltonian over the first
Brillouin zone and are also known as Wannier envelopes. In that context, they are often
denoted by |wn(q)|2, where wn(q) is the Fourier transform of the n-th Wannier function
wn(r) [197]. It is insightful to note that the density distributions fn(q) exhibit the
hexagonal symmetry of the underlying lattice and approach the characteristic functions
of the n-th Brillouin zone (BZn), respectively, for vanishing lattice depths V2D → 0. We
note that the functions fn(q) can serve as reliable model functions for data fitting in
TOF images to obtain accurate estimates of the quasimomentum distribution of thermal
atoms in each band. As the main advantage, this could be used directly in connection
with TOF images acquired after sudden release from the specified lattice potential,
i.e. without the need to invoke the band mapping technique, which inherently suffers
from non-adiabatic transfer and momentum redistribution during the lattice ramp [198].
However, since the individual supports of fn(q) tend to overlap for large lattice depths,
we admit that the fits can become increasingly complex in situations where multiple
bands are occupied.

Often, we will be interested in the mean kinetic momentum 〈p̂〉nk ≡ 〈nk|p̂|nk〉 of a
Bloch state, which we call the Bloch state momentum. According to equation (3.24),
it is given by

〈p̂〉nk = ℏ
∑
G

|cnk(G)|2 (G + k) . (3.35)

We stress that Bloch states |nk〉 are in general no eigenstates to the momentum operator
p̂ and that TRS pairs obey the relation 〈p̂〉n,−k = − 〈p̂〉nk, as intuitively expected.

Bloch state orbital angular momentum It addition to the mean kinetic momentum,
it is tempting to consider the mean angular momentum 〈L̂〉nk ≡ 〈nk|L̂|nk〉 of a Bloch
state, where L̂ = r̂ × p̂ denotes the conventional angular momentum operator in three-
dimensional Euclidean space. For clarity, we will focus on a two-dimensional (d = 2)
lattice system in the xy-plane, with the relevant scalar operator ℓ̂z ≡ x̂p̂y − ŷp̂x. In this
case, a naive application of ℓ̂z to the Bloch states yields

〈ℓ̂z〉nk = ℏ
∑

G,G′

c∗
nk(G)cnk(G′)

[(
G′

y + ky

)
〈G|x̂|G′〉 −

(
G′

x + kx
)

〈G|ŷ|G′〉
]
. (3.36)

The terms 〈G|x̂|G′〉 and 〈G|ŷ|G′〉 in equation (3.36) must be evaluated with respect to
the torus topology imposed by the periodic boundary conditions. However, this cannot
be accomplished in a unique way. In fact, although the operator ℓ̂z is well-defined locally
on each open patch of the configuration space torus T2, it is not obvious how a global
extension over the full manifold should look like.8 At this point, we shall depart from
mathematical rigor and attempt to make sense of equation (3.36) anyhow by evaluating
〈G|µ̂|G′〉 with µ = x, y over an unfolding U ⊆ R2 of the torus that exactly corresponds
to the one shown in Figure 3.1a, i.e. we define

〈G|µ̂|G′〉 ≡ 1
V

∫
U
µei(G′−G)r dxdy . (3.37)

8Problems of this kind are related to difficulties in formulating a consistent quantum theory in multiply-
connected spaces. A general treatment of this subject can be found, for instance, in Dürr et al. [199].
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3.1 Non-interacting atoms in a spin-dependent boron-nitride lattice

Then, by partitioning U into primitive unit cells UR that are located at lattice points
R and using the periodicity of the Fourier basis we can write

〈G|r̂|G′〉 ≡
N∑
R

〈G|r̂|G′〉UR
=

N∑
R

〈G|r̂R + R|G′〉U0

= N 〈G|r̂|G′〉U0
+ 1
N

N∑
R

R δGG′ ,

(3.38)

where 〈G|µ̂|G′〉U0
shall denote the integral on the right-hand side of equation (3.37),

restricted to the region of the first primitive unit cell U0. With this, and by splitting
equation (3.36) into off-diagonal and diagonal parts, we finally arrive at

〈ℓ̂z〉nk =
(
rs × 〈p̂〉nk

)
z

+Nℏ
G 6=G′∑
G,G′

c∗
nk(G)cnk(G′)

×
[(
G′

y + ky

)
〈G|x̂|G′〉U0

−
(
G′

x + kx
)

〈G|ŷ|G′〉U0

]
. (3.39)

Clearly, the first term is just related to the contribution of the mean momentum to the
angular momentum, where rs is defined as the geometric center of the integration region
U . It is always possible to make this term vanish by an appropriate transformation of the
origin (reference point) in R2. Note that this transformation does not affect the second
term in equation (3.39), which is off-diagonal in the momentum basis. Accordingly, we
shall identify the second term with an intrinsic orbital angular momentum (OAM)

〈ŝz〉nk ≡ Nℏ
G6=G′∑
G,G′

c∗
nk(G)cnk(G′)

×
[(
G′

y + ky

)
〈G|x̂|G′〉U0

−
(
G′

x + kx
)

〈G|ŷ|G′〉U0

]
. (3.40)

It can be calculated numerically for any Bloch state once the expansion coefficients
cnk(G) are at hand. Yet, we stress that the value of the intrinsic orbital angular mo-
mentum is not unique. It depends on the choice of unfolding U or, to put it differently,
on the chart that we choose to cover the torus. Indeed, there is a one-to-one correspon-
dence in the ambiguity of 〈ŝz〉nk and the measure of the distance between points on
the torus. We will not go into further details but simply mention that, from a physical
point of view, the ambiguity is rooted in the fact that Bloch states, in general, do not
only possess local phase windings (phase vortices) but also global phase patterns that
wrap around the configuration space torus. The latter are responsible for the non-
uniqueness of 〈ŝz〉nk. Despite that, equation (3.40) can still be used to quantify the
amount of nontrivial phase windings that inhere in Bloch states like those discussed in
the previous subsection 3.1.4.

In Figure 3.6, as an example, we plot the calculated values of 〈ŝz〉nk for different
Bloch states of the boron-nitride lattice as functions of the quantization axis angle θB,
which controls the energy offset between the two sublattice sites A and B according to
equation (2.58). In particular, we focus on the first few Bloch states n = 1, . . . , 5 to the
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Fig. 3.6: Calculated intrinsic orbital angular momenta 〈ŝz〉nk (OAM) for Bloch states n =
1, . . . , 5 of the boron-nitride lattice at the quasimomentum k = K. The OAM are plotted as
functions of the quantization axis angle θB for different lattice depths V2D = (1, 4, 10)Erec,
assuming atoms in the Zeeman substate |2,−2〉. Note that the curves are symmetric under
point reflection through θB = 90◦, where the boron-nitride lattice corresponds to a honeycomb
lattice and Bloch orbitals change their character. OAM for the high symmetry quasimomenta Γ
and M evaluate to zero and have been omitted for clarity. In contrast, OAM at K′ are opposite
to those at K. The corresponding curves can be obtained from the displayed data by reflection
through the horizontal axis.

quasimomentum k = K. As depicted in Figure 3.4, the corresponding Bloch orbitals
are characterized by nontrivial phase patterns that should result in a non-vanishing
OAM. Indeed, we find that 〈ŝz〉nK is generally finite on the order of 1ℏ per atom. In
contrast, the OAM of Bloch orbitals to the quasimomenta Γ and M evaluates to zero,
in agreement with the absence of phase windings.

Note that 〈ŝz〉nK in the middle panel of Figure 3.6 for the value θB = 0◦ originates
from the Bloch orbitals (n,K) shown in Figure 3.4. For n = 2, for example, the OAM
increases monotonically from a negative to a positive value as θB grows, with a zero-
crossing at θB = 90◦. This behavior is easily understood from the following point of
view: The Bloch orbital (2,K) for θB = 0◦ is mainly localized on the sublattice sites
A that host clockwise phase vortices, resulting in a maximum negative OAM. As θB
is increased, the sublattice energy offset ∆AB gets smaller and the Bloch orbital (2,K)
gradually spreads towards the shallower sublattice sites B, leading to a reduced orbital
weight on the phase vortices and thus a smaller absolute value of the OAM. Once
θB = 90◦ is passed, the roles reverse and the B sublattice sites become the deeper
ones. At the same time, the Bloch orbital (2,K) changes its character by acquiring an
anti-clockwise phase winding on the sublattice sites B, leading to a positive value of the
OAM. The latter grows until the maximum localization on B is reached for θB = 180◦.

A similar line of reasoning may be carried out to explain the OAM curves in Fig-
ure 3.6 for the remaining Bloch orbitals at different lattice depths. In this respect, it is
illuminating to note that the OAM asymptotically approaches integral multiples of ℏ in
the limit of large lattice depths. Specifically, the OAM of the Bloch orbital (2,K) for
θB = 0◦ converges to −1ℏ. Bloch orbitals become in this sense analogous to the wave
functions of the two-dimensional harmonic oscillator. In general, however, Bloch states
are no eigenstates to the angular momentum operator. Finally, note that the OAM
of Bloch states to the quasimomentum K′ is opposite to the OAM of Bloch states to
K, as expected from the fact that |n,K〉 and |n,K′〉 are TRS partner. In other words,
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the corresponding Bloch orbitals (n,K) and (n,K′) are related by complex conjugation,
which simply inverts the orientation of phase windings.

3.2 Revealing momentum distributions

Given our discussion of various properties and aspects of atoms in optical lattices, it is
natural to ask how these systems can be probed to obtain useful information about their
state vector |ψ〉. In this section, we describe the corresponding standard techniques used
in this work.

Recall that our central experimental observable is given by the optical density.9 It is
acquired through resonant absorption imaging of the atomic cloud after switching off
all trapping potentials and allowing for a free expansion during a variable time-of-flight.
Depending on how the trapping potentials are switched off in time, the corresponding
TOF images can carry different information about the atomic ensemble. In what follows,
we discuss the two important scenarios of sudden and adiabatic release from an optical
lattice, which give access to the momentum and quasimomentum distribution of atoms
in the lattice, respectively.

3.2.1 Sudden release

In the case of a sudden release, all trapping potentials are switched off abruptly. If
interactions can be ignored, atoms will ballistically expand under the influence of gravity
according to their initial in-trap momentum distribution. We may formalize this by

Û0 (t0 + tTOF, t0) |ψtr(t0)〉 = |ψTOF〉 , (3.41)

where Û0 denotes the time-evolution operator that describes the ballistic evolution of
the in-trap state |ψtr(t0)〉 for a variable time-of-flight tTOF ≥ 0 after switching off all
trap potentials at time t0. One can now show that the density distribution after time-
of-flight 〈n̂(r)〉TOF, for sufficiently large times tTOF, is linked to the in-trap momentum
space density distribution 〈n̂(q)〉tr via [148]

〈n̂(r)〉TOF ≈
(

m

ℏtTOF

)3
〈n̂(qr)〉tr (t0) . (3.42)

Here, qr ≡ m(r − R0 − gt2TOF/2)/(ℏtTOF) reflects the ballistic condition, where R0 is
the coordinate of the center of the trap and g refers to the gravitational acceleration.
As 〈n̂(r)〉TOF is directly probed by absorption imaging, we conclude that TOF images,
in the limit where equation (3.42) holds, reveal the momentum distribution of atoms
realized at the instant of the trap release. In particular, for N trapped atoms in a Bloch
state |nk〉, the momentum density distribution is given by (compare equation (3.32))

〈n̂(q)〉nk = Nf ′
nk(q) = N

∑
G

|cnk(G)|2 δ (q − (G + k)) . (3.43)

9See subsection 2.4.1.
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The resulting distribution 〈n̂(r)〉TOF for large time-of-flight will thus exhibit pronounced
peaks, known as Bragg peaks, at points that fulfill qr = k (mod G). In other words,
for a Bloch state, we expect to see a regular peak pattern with the periodicity of the
reciprocal lattice. Note that each individual peak is weighted by a corresponding Fourier
coefficient |cnk(G)|2.

Now, the characteristic time scale where equation (3.42) can be considered accurate
is given by the far field limit tTOF > tFF, with [197]

tFF = mlcRtr
ℏ

. (3.44)

Here, lc is the coherence length of the in-trap state and Rtr denotes the characteristic
in situ extension of the atomic cloud. In our case, for a BEC with lc ≈ Rtr ≈ 13 µm,
we may thus estimate tFF ≈ 230 ms. Expansion times on this order, however, are out
of reach with our current setup, where a typical time-of-flight amounts to 30 ms to
45 ms. Nevertheless, these values still suffice to obtain useful information about the
approximate momentum distribution of atoms in the optical lattice, specifically about
the relative weights of Bragg peaks: As a result of the limited time-of-flight, Bragg
peaks simply become broadened as compared to the ideal case of a Dirac delta.

In Figure 3.7, we present an exemplary time-of-flight measurement after sudden re-
lease from the boron-nitride lattice. Here, a BEC had been loaded into the ground state
of the optical lattice by adiabatically ramping up the lattice depth to V2D = 2.7Erec
in 100 ms. After holding for another 100 ms, all trapping potentials were switched off
abruptly and the atomic density distribution was recorded through resonant absorption
imaging after tTOF = 36 ms. Zeroth and first order Bragg peaks are clearly visible, and
numerical analysis of the momentum distribution of the Bloch state |1,Γ〉 for the same
lattice parameters provides excellent agreement with the experimental results. This
indicates that atoms indeed form a BEC in the lowest energy Bloch state of the optical.

Experimentally, a high visibility of Bragg peaks is often regarded as a clear signal
of a BEC in an optical lattice, that is the presence of a large condensate or superfluid
fraction [197]. To be precise, visibility is commonly defined as

V ≡ Np −Nh
Np +Nh

, (3.45)

where Np denotes the measured atom number in circular regions centered around the
first order Bragg peaks, whereas Nh is the corresponding number for circular regions
placed centrally in between them. The visibility can be considered a heuristic measure
for the degree of long-range phase coherence of a bosonic many-body state in an optical
lattice. This means that it will monotonically increase with the condensate fraction and
reach V = 1 for a pure condensate. We emphasize, however, that the mere appearance
of Bragg peaks and a non-vanishing visibility in TOF images is no unequivocal signature
of a finite BEC fraction in an optical lattice. In fact, even a pure thermal or normal fluid
state in a lattice can exhibit analogous sharp features in the momentum distribution
[200–203]. Therefore, to infer the presence of a finite condensate fraction from TOF
images, it is usually required to identify more subtle characteristics. A widely accepted
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Fig. 3.7: Time-of-flight images for atoms in the Zeeman substate |1,−1〉 after sudden release
from the boron-nitride lattice, with lattice depth V2D = 2.7Erec and a quantization axis angle
θB = 0◦. a Single-shot absorption image measured for tTOF = 36 ms. Due to the finite time-of-
flight and harmonic confinement, individual momentum peaks show a finite width. The black
hexagon depicts the Brillouin zone for reference. b The momentum distribution of the lowest
energy Bloch state |1,Γ〉 for the same lattice potential provides reasonable agreement with the
measurement. Results were obtained from equation (3.43) by replacing the Dirac delta function
with a Gaussian of a fixed width. c For comparison: momentum distribution of the Bloch state
|2,Γ〉. All densities have been normalized individually to the same peak amplitude.

one is a bimodal structure within Bragg peaks, which allows for an accurate estimate of
the condensate fraction in the presence of a thermal or incoherent component (see, for
example, [204]). A more rigorous but costly approach to assess the realized quantum
many-body state through inspections of TOF images is given by a direct comparison
to ab initio quantum Monte Carlo simulations as realized, for example, in [205].

In summary, TOF images after sudden release generally provide a good proxy for the
momentum distribution of an atomic ensemble in an optical lattice. This in turn gives
an essential characterization of the underlying many-body state. TOF imaging after
sudden release is the central probing technique for experiments conducted in this work.

3.2.2 Band mapping

Another important type of release from an optical lattice is the so-called adiabatic band
mapping (BM). Here, the lattice depth is slowly reduced in a way that a Bloch state
|nk〉 can follow its adiabatically connected eigenstate to the lattice potential V (t) during
the lattice ramp. In particular, the pair of quantum numbers (nk) remains conserved.
As a matter of fact, in the limit V (t) → 0, the respective asymptotic Bloch sate |nk〉0 is
composed only of momentum components {|G + k〉} that lie exclusively within the n-th
Brillouin zone (see Figure 3.5). BM therefore directly allows to identify the occupied
band and quasimomentum of the initial Bloch state prior to the lattice ramp by imaging
the momentum distribution after TOF, as in the case of sudden release. We stress that
this identification is unique except for points that lie on the boundary of the Brillouin
zone, which correspond to band touching points in the asymptotic band structure ϵ0n(k).
Note that the latter is simply the free-particle dispersion relation folded back into the
first Brillouin zone.

Experimentally, achieving true adiabaticity during BM is often challenging, if not
impossible, for it usually conflicts with other constraints. For instance, performing
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BM in the presence of gravity requires to maintain a residual trap potential that keeps
atoms in the lattice during the ramp, in our case the XDT. To avoid excessive trap
dynamics during BM, ramp times should be fast compared to the typical trap period.
On the other hand, adiabaticity necessitates ramp times as large as possible. Even if the
external trap can be circumvented, large ramp times may be in conflict with interaction-
induced redistribution of the quasimomentum [198]. In our case, an adequate trade-off is
achieved by an exponential ramp-down of the lattice within 2 ms to 3 ms, depending on
the initial lattice depth. After completing the ramp, the XDT is switched off abruptly
and the momentum distribution is imaged after TOF. The band mapping technique
will be used extensively in chapter 4 to resolve and to quantify atom populations in
higher Bloch bands of the boron-nitride lattice.

3.3 Lattice calibration techniques
A central experimental parameter for atoms in optical lattices is the lattice depth V0.
Specifying its exact value with high accuracy is crucial, for it has profound influence
on almost all properties of the system. However, since the in situ intensities of lattice
beams that determine the lattice depth generally cannot be measured directly, the
lattice depth is usually not known a priori. On the other hand, experimentally, laser
beam intensities can be controlled precisely, say in terms of some control parameter us.
Typically, the control parameter is designed to scale linearly with the intensities and
thus the lattice depth. This sets the stage for lattice depth calibration, whose aim is to
provide a conversion factor between those two quantities, i.e. between the actual lattice
depth V0 and the set value for us.

In this section, we establish amplitude-modulation spectroscopy as our standard tech-
nique for lattice depth calibration of the spin-dependent boron-nitride lattice, as first
discussed in [102]. In addition, we present Kapitza-Dirac diffraction as a useful method
to calibrate and validate the in situ orientation of the quantization axis, which directly
affects the sublattice energy offset for atoms with mF 6= 0.

3.3.1 Amplitude-modulation spectroscopy
A variety of different techniques can be used to calibrate the lattice depth of an optical
lattice. Often they rely on Landau-Zener tunneling [206, 207], Kapitza-Dirac diffraction
[208–210], Stückelberg interferometry [211, 212], lattice phase shifts [213], or amplitude-
modulation spectroscopy [214, 215]. All methods have in common that they probe, in
one way or the other, the single-particle excitation spectrum. When the form of the
lattice potential is completely specified, the single-particle spectrum for a given atomic
species is uniquely determined by the lattice depth alone and provides, in principle, an
injective mapping. By recording spectra at different set values us and comparing them
to expectations from band structure calculations, one may thus arrive at the unknown
lattice depths.

In our case, we directly probe the band gaps at quasimomentum Γ between the first
and higher Bloch bands of our two-dimensional boron-nitride lattice through amplitude-
modulation spectroscopy. The starting point is a BEC loaded into the ground state of
the lattice for some fixed value us. We then apply a weak periodic intensity modulation
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Fig. 3.8: Lattice depth calibration by amplitude-modulation spectroscopy: for a spin-dependent
boron-nitride lattice, with θB = 0◦ and atoms in the Zeeman substate |1,−1〉. a The measured
visibility spectrum of first order Bragg peaks as a function of the modulation frequency for two
different lattice depths encoded by the set voltages us = 1 V, 2 V. Vertical lines indicate the
resonance location (minima) extracted from a spline fit to the data. Numbers on the top denote
band indices of the involved transitions. b By fitting the band gaps ∆1,n(Γ) of all contributing
transitions (black lines) simultaneously to the measured resonances, we obtain a conversion
factor c0 between the set voltage and lattice depth V2D: here, c0 = 1.34(03)ErecV−1. For data
fitting with the multi-valued model function ∆1,n(Γ;us), where us = V2D/c, we assume an ideal
boron-nitride lattice and take c as the only free parameter. Dashed lines in b denote transition
frequencies to further bands.

of frequency νm and modulation depth δIm to all three lattice beams simultaneously.
Modulation depths amount to typically 1 % to 10 % with respect to the individual beam
intensities. We scan the modulation frequency νm and record a band gap spectrum by
evaluating the visibility of the first order Bragg peaks after TOF. Ideally, this is repeated
for different set values us. Whenever the modulation frequency matches the transition
∆1,n(Γ) into higher bands, the visibility in TOF images is strongly reduced as a result
of parametric heating [214, 216].

In Figure 3.8, we show a corresponding visibility spectrum for atoms in the Zeeman
substate |1,−1〉 and for a quantization axis angle θB = 0◦. For this measurement,
the lattice was ramped up exponentially within 100 ms to its final amplitude. After a
hold time of 40 ms, the modulation was turned on for Tm = 40 ms, followed by sudden
release and imaging after TOF. The resonance locations can be extracted from a fit and
provide the observed band gap frequencies at Γ. By fitting the measured transitions
with a multi-valued model function ∆1,n(Γ;us), where us = V2D/c and c is the only
free parameter, we obtain a best-fitting conversion factor c0. We note that ∆1,n(Γ) is
obtained from exact numerical diagonalization of the Bloch Hamiltonian for an ideal
boron-nitride lattice (equation (2.56)). The corresponding bands (3, 4) and (5, 6) are
therefore degenerate at the Γ point. Remarkably, the model function fits well to all
resonances except for the bands (5, 6) at the largest set value us, which cannot be
explained by lattice misalignment or small deviations from the quantization axis angle
θB = 0◦.

It is fair to ask whether assuming an ideal boron-nitride lattice for the fit is justified;
after all, the actual lattice implementation will inevitably deviate from the ideal p-
polarization configuration, which can have considerable impact on the band structure.
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For example, even a small difference in the pairwise beam angles ∠(ki,kj)i 6=j within
the lattice plane will cause a strong deformation of the lattice potential, resulting in
a splitting of the degeneracy among Bloch bands (3, 4) and (5, 6), respectively. Before
lattice depth calibration, however, we make sure to minimize these effects by carefully
adjusting all lattice beam degrees of freedom. In particular, remaining with a slight
lattice asymmetry, we imbalance the relative beam intensities so that the location of the
minima in the second Bloch band coincide with the vertices of the Brillouin zone. This
guarantees that the realized lattice potential matches the ideal boron-nitride lattice as
close as possible and justifies working with the latter, though the final lattice beam
parameters might in effect deviate strongly from the ideal p-polarization configuration.
The fact that the model function ∆1,n(Γ) fits well to all resonances, with one exception,
can indeed be regarded as a confirmation for this. We leave a more elaborate discussion
of this subject to Appendix A.

Finally, we note that lattice depth calibration should be performed preferably in
the shallow lattice regime, with relatively small atom numbers: this reduces resonance
shifts induced by mean-field interactions and avoids systematic errors in the conversion
factor.

3.3.2 Kapitza-Dirac diffraction
We now turn our attention to the in situ orientation of the quantization axis. Knowing
and controlling its precise alignment in terms of the angle θB is important, for it directly
affects the sublattice energy offset of the spin-dependent boron-nitride lattice. Recall
that θB was defined for the ideal p-polarization configuration as the angle between the
z-axis, being collinear with the fictitious magnetic field, and the external magnetic field
Bext that determines the quantization axis. Typically, the external field is created by
the subset {Qx,Qz} of compensation coils (see subsection 2.2.2), which allow to align
Bext along an arbitrary direction in the xz-plane. In particular, based on the known
characteristics of the coils, the angle θ′

B ≡ ∠(Qz,Bext) can be set precisely. We note,
however, that Qz is slightly tilted with respect to the z-axis. For this reason, one might
anticipate that θB = θ′

B + ∆θset
B , with some nonzero offset ∆θset

B .
A simple but time-consuming procedure to verify that θB is well-controlled and indeed

follows the above prescription is to probe the excitation spectrum as in subsection 3.3.1
for varying angles θ′

B. For example, this has been conducted in the work of T. Klafka
[107]. Here, we present a different and more convenient method that is based on an
analysis of Kapitza-Dirac diffraction patterns. The idea is to examine a triangular
contrast C among first order Bragg peaks as a function of θ′

B for otherwise fixed lattice
parameters and interaction times τKD. Specifically, we define

C ≡ N+ −N−
N+ +N−

, (3.46)

whereN± is the atomic population in the first order Bragg peaks associated to reciprocal
lattice vectors ±b1, ±b2, and ±b3. Now, by comparing the measured contrast with
the expected functional form of C(θB), one may infer the offset ∆θset

B and validate that
the direction of the quantization axis is well-controlled and can be precisely aligned to
any desired value of θB. Thus, the offset ∆AB is known with high accuracy.
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Fig. 3.9: Validating the alignment of the quantization axis through Kapitza-Dirac diffraction.
a Exemplary Kapitza-Dirac diffraction pattern for atoms in |1,−1〉 in the boron-nitride lattice,
with θB = 63◦ and interaction time τKD ≈ 50 µs. Left panel: measured single-shot absorption
image after TOF. Right panel: Numerical calculation based on a coherent Bloch state expansion
for the same lattice parameters. Circular regions around first order Bragg peaks are used to
define a triangular contrast, as shown in the inset of subfigure b. The contrast as a function of
θB is in excellent agreement with the numerical calculation (dashed line) for an interaction time
τKD = 45.7 µs. The only free parameter is a uniform horizontal shift to account for an offset
in the experimental set angle of the quantization axis: here, ∆θset

B = +3◦. The red data point
marks the realization in a.

In Figure 3.9, we depict an exemplary measurement of the triangular contrast. Here,
a spin-polarized BEC was initially prepared in the XDT for some fixed value θ′

B. Sub-
sequently, the lattice potential was turned on abruptly for a duration τKD ≈ 50 µs at
a constant lattice depth V2D = 10Erec, followed by sudden release and imaging after
TOF. This protocol was repeated for different set values of θ′

B. Note that a numerical
calculation of C(θB) for an interaction time τKD = 45.7 µs is in excellent agreement with
the experimental data. The slightly smaller value for τKD is readily explained by an
observed delay of roughly 5 µs to reach the specified lattice depth. We stress that the
numerical analysis of C(θB) is based on a coherent Bloch state expansion, assuming an
ideal boron-nitride lattice potential with the same parameters as used in the experi-
ment. Apart from an overall offset ∆θset

B = +3◦ that accounts for the misalignment of
the compensation coils, there were no further free parameters. Also note that the sim-
ulated TOF image in Figure 3.9a, where higher order Bragg peaks are clearly visibly, is
in excellent agreement with a corresponding experimental single-shot absorption image.
All of this shows that the realized lattice potential is close to the ideal boron-nitride
lattice and that the experimental rotation of the quantization axis provides reasonable
and accurate control over the sublattice energy offset. This aspect will be essential in
the following chapter 4.

3.4 Conclusion & Outlook

In this chapter, we have discussed several aspects of the physics of non-interacting atoms
in a spin-dependent optical boron-nitride lattice. First, starting from the adiabatic ap-
proximation, we derived a reduced Hamiltonian for the center of mass motion of the
atoms’s m-th dressed internal state |ηm(r)〉. The latter is an element of the hyperfine
subspace H F

int and exhibits, in general, a spatial dependence that results in the pres-
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ence of artificial gauge fields, i.e. geometric scalar and vector potentials. These gauge
fields can become significant for the spin-dependent lattice since the vector light shift
combined with the external magnetic field allows for creating spatially varying, periodic
magnetic landscapes. Future studies may focus on a detailed experimental and theoret-
ical characterization of gauge fields that can be realized in this way. We point out that
when the adiabatic approximation in the subspace H F

int breaks down, further exciting
situations may arise that open new prospects for realizing two-dimensional spin-orbit
coupling, which is ubiquitous in many phenomena of solid-state physics. Specifically,
in the momentum-spin basis, the matrix elements of our lattice potential’s vector light-
shift are given by

〈mG| V̂v
L |m′G′〉 =

∑
i

µBgF 〈m| F̂i |m′〉Bi
L(G − G′) , (3.47)

where the Bi
L(J) denote the Fourier expansion coefficients of the fictitious magnetic

field. Evidently, there is a non-vanishing coupling between spin and momentum, which
can lead to band structures with non-trivial spin textures. We emphasize that a similar
situation has been studied for the case F = 1/2, where the possibility of observing a
spin Hall effect was predicted [217].

In the limit of a dominating uniform external magnetic field, the reduced Hamiltonian
becomes a conventional Hamiltonian with a separate, tunable boron-nitride potential
for each Zeeman substate. We have introduced the Bloch formalism and presented exact
numerical calculations of band structures and Bloch states for different potential con-
figurations. Particular emphasis was put on a detailed characterization of higher Bloch
states in terms of their real-space representations, which reveal intricate phase patterns.
Moreover, we have elaborated on the fundamental physical properties of Bloch states,
including the momentum distribution and the intrinsic orbital angular momentum. For
both quantities, we have presented explicit numerical calculations. In particular, it was
shown that higher Bloch states in a boron-nitride lattice generally possess non-vanishing
intrinsic orbital angular momentum, which can be tuned by changing the orientation
of the external quantization field.

Furthermore, we have discussed sudden and adiabatic release from an optical lattice
as probes for the momentum and quasimomentum distribution, which constitute our
central experimental observables. Finally, we have introduced amplitude-modulation
spectroscopy as our standard method for lattice depth calibration and elucidated how
Kapitza-Dirac diffraction can be used to validate and calibrate the precise in situ ori-
entation of the quantization axis. All notions and concepts established in this chapter
will guide our studies in subsequent ones.
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4 Bosonic superfluids in higher Bloch
orbitals
In this chapter, I report on the realization of condensates in higher Bloch
orbitals of an optical boron-nitride lattice. We start with a general overview
of the field of ultracold bosonic atoms in higher lattice orbitals and elucidate
the primary goals and prospects of studying these systems. Following this,
we examine the main method used in this work for transferring atoms into
higher Bloch bands via quenches of the sublattice energy offset. Next, we
present measurements that provide compelling evidence for the emergence
of unconventional orbital condensates in the second and fourth band of the
boron-nitride lattice. Specifically, for condensates in the second band, we
analyze signatures of time-reversal symmetry breaking and find evidence for a
chiral superfluid order. Next, by examining the condensation and relaxation
dynamics, we identify relevant processes that lead to an eventual dissolution
of orbital condensates in higher bands. Finally, additional transfer methods
into higher Bloch bands are explored.

Ultracold atoms in higher Bloch orbitals offer unique possibilities for realizing exotic
quantum many-body states with no analogue in traditional condensed matter systems.
The first pioneering theoretical works heading in this direction were largely concerned
with weakly interacting superfluid bosons loaded into the second band of a monopartite
square or cubic lattice. Perhaps one of the central insights in the study of these so-
called p-band bosons was that a BEC with intrinsic angular momentum ordering can
emerge that spontaneously breaks the time-reversal symmetry and is characterized by a
complex order parameter [70, 71, 218]. In particular, the ground state of p-band bosons
with weak repulsive interactions in a two-dimensional square lattice was predicted to
feature staggered angular momentum ordering that can be understood in terms of a
bosonic analogue of Hund’s rule, as first elucidated by Liu and Wu [70]. Subsequent
theoretical studies soon also focused on systems with strong interactions and on lattice
geometries that exhibit geometrical frustration, predicting, for example, a quantum
stripe ordering in a triangular lattice [69], Wigner crystallization in a honeycomb lattice
[219], or exotic bond-algebraic liquid phases in the strongly correlated insulating regime
of a square lattice [220]. Meanwhile, the phase diagram of p-band bosons has been
extensively studied by mean-field and Gutzwiller theory [221] and complemented by
quantum Monte Carlo simulations [222], showing that angular momentum ordering
can extend into the Mott insulating phase. Similar analyses have been carried out in
the context of p-band fermions in optical lattices [223–225]. Moreover, following the
general trends in the solid state community, there has been increasing interest in all
sorts of unique topological properties in higher lattice orbitals, as demonstrated by the
ever-growing number of related publications [73–75, 226–229].
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Besides facilitating the investigation of yet undiscovered phases of matter, ultracold
atoms in higher lattice orbitals also give new impetus to the established field of quantum
simulation of crystalline solids, owing to the orbital degrees of freedom that are inherent
in both systems. As a matter of fact, orbital physics of electrons is ubiquitous in the
study of condensed matter, including strongly correlated materials. For example, in
transition metal oxides the electronic orbital degrees of freedom can be crucial for such
diverse phenomena as high-temperature superconductivity, colossal magnetoresistance,
or metal-insulator transitions [65, 230]. In view of this, atoms in higher lattice orbitals
constitute ideal platforms to simulate and to investigate the role of orbital effects in
solids [67]. Moreover, in the strongly interacting insulating regime, orbital degrees of
freedom can be mapped to various paradigmatic spin models of quantum magnetism,
such as the quantum Heisenberg model [231] or the J1-J2 model [232]. Arguably, our
above considerations give only a brief overview of the fascinating physics of ultracold
atoms in higher lattice orbitals: for comprehensive reviews we refer to [66, 68, 76].

On the experimental side, ultracold atoms in higher Bloch bands are still largely un-
explored. In particular, experimental research on bosonic superfluids in higher bands
has been confined almost exclusively to the bipartite square lattice geometry. In this
chapter, we report on the experimental realization of unconventional bosonic superflu-
ids or condensates in higher Bloch bands of a hexagonal boron-nitride optical lattice.
At the beginning of this project, to the best of our knowledge, no systematic investiga-
tion of such condensates had been pursued. Only recently, two groups have reported on
realizations of orbital condensates in a similar lattice geometry [82, 83]. Experimental
data presented in this chapter has been acquired in collaboration with T. Klafka, J.
Seeger, and P. Groß, with significant contributions from the author. Data analysis and
theory calculations presented in this chapter have been performed by the author. A col-
laboration with G. Koutentakis, S. Mistakidis, and P. Schmelcher has been established
to work on the theoretical description of the condensation process.

4.1 Condensates in higher Bloch bands
In this section, we give a brief introduction to the general notion of condensates in higher
Bloch bands, which will be referred to as orbital condensates, and explain the role of
orbital degrees of freedom. In addition, we have a glance on previous experimental
efforts to realize orbital condensates and sketch the main difference between an orbital
condensate in the second Bloch band of a bipartite square lattice and its counterpart
in a hexagonal boron-nitride lattice.

4.1.1 General notions about orbital condensates
To a large extent, the intriguing physics encountered in the study of bosons in higher
lattice orbitals can be attributed to orbital degeneracy. In fact, orbital degeneracy
and the associated orbital degrees of freedom are a key feature of bosons in higher
Bloch bands. For illustration, consider the many-body ground state of an ideal BEC in
the usual setting of an optical lattice: Under fairly general conditions of time-reversal
symmetry, it will be characterized by a macroscopic occupation of the lowest energy
Bloch state |1,Γ〉 of the first band. The situation, however, may drastically change
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if the BEC is excited into higher bands, where the respective lowest energy Bloch
states are frequently degenerate. Let us assume that there are d such degenerate states
{|ψi〉}i=1,...,d to a given target band, with d > 1. These states span a d-dimensional
manifold Md, which defines what we call the orbital degrees of freedom. We shall
now be interested in the emerging many-body “ground” state of bosons in higher bands
under the constraint that the only accessible single-particle states lie exclusively in Md.1
Although this constraint gives a considerable simplification with respect to the total
band space, it is still not a priori evident what the new emerging many-body ground
state should look like. For instance, one might imagine a fragmented BEC in which
multiple states |ψi〉 are macroscopically occupied. Another possibility is a single BEC
with macroscopic occupation of a single state |ϕ〉, where |ϕ〉 is given by a superposition
of Bloch states |ψi〉 with a definite relative phase. All of this is primarily related to
fundamental questions about condensates in degenerate manifolds (see, for example,
[233–235]). In any case, it is obvious that interactions, no matter how weak, become
determinant for selecting the minimal energy state. Given that interactions usually
play a minor role for the ground state wave function of a superfluid bosonic ensemble,
this is probably the most appealing aspect about condensates in higher Bloch bands.

Another important aspect of orbital physics in higher Bloch bands is the nontrivial
character of higher Bloch states |ψi〉. In contrast to the wave function of the absolute
ground state |1,Γ〉, which is necessarily positive definite, higher Bloch orbitals usually
come along with complex phase patterns such as phase windings or intricate nodal
structures (see subsection 3.1.4). Moreover, higher Bloch orbitals often have more com-
plicated geometries with lower spatial symmetries than the underlying lattice potential
and may thus induce anisotropy. All in all, the important ingredients of orbital physics
may be summarized as follows: First, orbital degeneracy that puts interactions into
a dominant position. Second, nontrivial Bloch orbitals with complex geometries and
phase structures. While degeneracy defines the number of orbital degrees of freedom,
the associated Bloch orbitals literally determine in what shape, so to say, these orbital
degrees of freedom manifest. Naturally, both aspects will crucially depend on the par-
ticular band and lattice geometry at hand. Eventually, the interplay between orbital
degrees of freedom, interaction, and lattice geometry gives rise to a variety of exotic
superfluid states beyond the no-node theorem [68] and is responsible for a plethora of
new physical phenomena.

4.1.2 State of experimental advances
So far, only a small number of groups has engaged in the experimental study of ultra-
cold bosonic atoms in higher lattice orbitals. In part, this might be attributed to the
experimental and conceptual challenges in creating and preparing long-lived states in
higher Bloch bands. Bosons in higher bands can indeed, at best, only be metastable
and will eventually decay into lower-lying states if not prevented by some ingenious
mechanism.

First promising attempts to realize orbital condensates were made in a deep and
highly anisotropic three-dimensional cubic lattice by Müller et al. [236]. The experi-

1This constraint is reasonable for a superfluid state with weak interactions as it can only be stable or
at least metastable in the local minima of a given Bloch band.
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mentalists used a stimulated two-photon Raman process to excite bosonic atoms from
the Mott insulating ground state into the second Bloch band. Although they found
evidence of coherence build-up along a single lattice dimension, the overall lifetimes
of atoms in the second band remained rather small and no decisive cross-dimensional
phase coherence could be observed.

The first true long-lived orbital condensates were achieved in a seminal experiment by
Wirth et al. [77] in the Hamburg group of A. Hemmerich: The essential ingredient was a
two-dimensional bipartite square lattice that allowed for a fast and controlled change of
the sublattice energy offset. By rapidly tuning this offset, atoms could be excited into
the second Bloch band. Subsequent thermalization revealed a coherent macroscopic
occupation of degenerate quasimomenta X and X′ associated with the minimal energy
Bloch states |2,X〉 and |2,X′〉, respectively. Theory suggested that the system should
favor a single condensate in one of the two superposition states

|ψ±〉 ≡ cos(θ̄) |2,X〉 + exp (iϕ±) sin(θ̄) |2,X′〉 , (4.1)

where θ̄ ≡ π/4 and ϕ± ≡ ±π/2. In this nomenclature, the angle θ ∈ [0, π/2) determines
the weight of the two Bloch components and ϕ ∈ [−π, π) defines their relative phase.
At that time, the true value of the relative phase remained experimentally unresolved.
Subsequent interference experiments [237] managed to show that it indeed takes only
one of two possible values in each experimental realization. This provided conclusive
evidence for a chiral superfluid state compatible with equation (4.1), though the mea-
surement setup did not allow to quantify those values exactly. A comprehensive review
of these early studies as well as newer ones can be found in [79]. We stress that, among
all possible values of θ and ϕ, the choices θ̄ and ϕ± minimize the interaction energy in
case of repulsive atoms. The states |ψ±〉 are characterized by spontaneous time-reversal
symmetry breaking and exhibit staggered angular momentum ordering along adjacent
lattice sites, as illustrated in Figure 4.1 by the alternating orientation of phases vortices
in the respective wave functions 〈r|ψ±〉. Note the larger spatial extent of these wave
functions as compared to the Bloch orbitals, leading to a reduced interaction energy.
Note also that 〈r|ψ±〉 give rise to a maximization of the local onsite angular momentum,
reminiscent of Hund’s rule. However, the total net orbital angular momentum remains
zeros.

Until the start of this project, to the best of our knowledge, no orbital condensates
had been realized in lattice geometries different from a bipartite square lattice. It has
therefore been a central goal of our studies to advance research into this direction for
the case of a hexagonal boron-nitride lattice; all the more because orbital condensates
in a hexagonal boron-nitride lattice are expected to be of a different kind than those in
a bipartite square lattice. For example, consider the minimal energy Bloch states |2,K〉
and |2,K′〉 in the second band of our boron-nitride lattice, where K and K′ denote the
two distinct vertices of the Brillouin zone. Both states are visualized in Figure 4.2 for
a common set of lattice parameters. In sharp contrast to |2,X〉 and |2,X′〉 (compare
Figure 4.1), the states |2,K〉 and |2,K′〉 possess a genuinely complex phase profile,
respectively. To be more precise, |2,K〉 (|2,K′〉) features anti-clockwise (clockwise)
phase vortices on the deeper sublattice sites which gives rise to a rectified angular
momentum ordering. We stress that this ordering is associated with a finite macroscopic

76



4.1 Condensates in higher Bloch bands

b

y
(a

) -1

0

1

0

10

-1

1

x (a)
-1 0 1

-1

0

1

-1 0 1 -1 0 1 -1 0 1

a

Fig. 4.1: Higher orbital states in a bipartite square lattice. a Top: Sketch of a bipartite square
lattice with primitive lattice vectors a1, a2 that span the primitive unit cell (grey square). Blue
sublattice sites denote shallow wells, red sublattice sites denote deep wells. Bottom: Associated
Brillouin zone with reciprocal lattice vectors b1, b2. Quasimomenta X and X′ correspond to
the typical location of the minima in the second band. b Wave functions to the states |2,X〉,
|2,X′〉, |ψ±〉 for a square lattice potential as defined in [79], with a lattice depth V0 = 6Erec
and sublattice energy offset ∆AB ≈ 14Erec. Amplitudes (phases) of wave functions are depicted
in the upper (lower) panel. Circular arrows indicate orientations of the phase windings. For
convenience, wave functions have been normalized such that integration of A over a primitive
unit cell gives the volume v of that cell. The global phase of Bloch orbitals has been gauged
such that the zero-momentum component cnk(G0) is real-valued.

value of the total angular momentum when the corresponding phase vortices have a
non-vanishing orbital weight (see also subsection 3.1.5). Now, as before, a general
single-particle state in the degenerate manifold spanned by |2,K〉 and |2,K′〉 may be
written as

|ψ〉 = cos(θ) |2,K〉 + exp (iϕ) sin(θ) |2,K′〉 . (4.2)

One may ask for the states |ψ〉 that minimize the interaction energy among repulsive
atoms. According to Figure 4.2, superpositions of Bloch states |2,K〉 and |2,K′〉 give
rise to a density wave, which is usually energetically disfavored. In fact, as we show
in Appendix B, the interaction energy for |ψ〉 is independent of the relative phase ϕ
and takes a minimum value for θ = 0, π/2. In other words, the system should favor
condensation in one of the two Bloch states instead of a superposition of Bloch states.
Of course, this line of reasoning builds on the assumption of a single condensate, i.e.
the absence of fragmentation, and is only valid, strictly speaking, for a homogenous
system within a simple mean-field treatment. Nevertheless, it gives a good estimate
for an unconventional many-body state that might be approximately realized in the
experiment within the weakly interacting superfluid regime. We emphasize that, since
|2,K〉 and |2,K′〉 are TRS partner (see subsection 3.1.5), spontaneous condensation in
one of the Bloch states necessitates spontaneous breaking of time-reversal symmetry.

In the rest of this chapter, we investigate and present the experimental realization
of orbital condensates in the second and fourth band of our boron-nitride lattice. The
observed orbital condensate in the second band is compatible with a macroscopic occu-
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Fig. 4.2: Higher orbital states in a boron-nitride lattice. a Top: Sketch of a boron-nitride lattice
with primitive lattice vectors a1, a2, which define the Wigner-Seitz cell (grey hexagon). Blue
sublattice sites denote shallow wells, red sublattice sites denote deep wells. Bottom: Associated
Brillouin zone with reciprocal lattice vectors b1, b2. Quasimomenta K and K′ correspond to the
typical location of the minima in the second band. b Wave functions to the states |2,K〉, |2,K′〉,
|ψ1,2〉 for the spin-dependent boron-nitride potential with θB = 180◦, V2D = 6Erec, and atoms
in Zeeman substate |2,−2〉. Sublattice energy offset amounts to ∆AB ≈ −14Erec. Amplitudes
(phases) of wave functions are depicted in the upper (lower) panel. Circular arrows indicate
orientations of the phase windings. For convenience, wave functions have been normalized such
that the integration of A over a primitive unit cell gives the volume v of that cell. The global
phase of Bloch orbitals has been gauged such that the zero-momentum component cnk(G0) is
real-valued. Superposition states |ψ1,2〉 are defined according equation (4.2), with θ = π/4 and
a relative phase ϕ1,2 = π/3, π. Normal arrows in the top panel show the principal axis of the
resulting onsite orbitals, revealing density waves with doubled periodicity.

pation of a single-particle state according to Equation 4.2 and shows a clear indication of
symmetry breaking. Meanwhile, we note that two more groups have recently reported
on orbital condensates in a similar lattice geometry: Jin et al. [82] claim the observation
of a so-called Potts-nematic quantum phase for an ultracold bosonic ensemble in the
second band of a hexagonal optical lattice. However, the results are controversial since
the emergence of this order cannot be explained in terms of simple mean-field theory
but relies on intricate renormalization effects. In contrast, the recent experimental ob-
servation of a chiral superfluid order in the second band of a boron-nitride lattice by
Wang et al. [83] is in strong agreement with our findings.

4.2 Controlled transfer into higher Bloch bands
A selective and substantial population of higher Bloch bands is an essential prerequisite
for the creation of an orbital condensate. In this section, we examine our standard
method for preparing atoms in higher Bloch bands of a spin-dependent boron-nitride
lattice. The method is based on a Landau-Zener type transfer induced by a quench of
the sublattice energy offset through a rapid rotation of the external quantization axis.
We emphasize that it is not the only efficient way to prepare atoms in higher Bloch
bands of our optical lattice: a detailed survey and investigation of additional techniques
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can be found in the PhD theses of T. Klafka [107] and J. Seeger [106].

4.2.1 Rapid quenches of the sublattice energy offset

Rapid quenches of the sublattice energy offset ∆AB in a bipartite lattice provide a
simple and direct means to prepare atoms in higher bands. One central reason for
this is that the single-particle energy spectrum in a bipartite lattice generically exhibits
several band crossings or avoided crossings as a function of ∆AB. A band crossing is
a point Pε in the parameter space of ∆AB where two or more bands approach close to
each other such that there is at least one quasimomentum at which the bands touch.
Analogous to the famous Landau-Zener tunneling, atoms prepared in a band that has
a band crossing can undergo diabatic transitions into adjacent bands by a fast quench
of ∆AB across a point Pε. To achieve a large transfer fraction, the rate of change of
the frequency separation among the relevant energy bands must be large compared to
the square of the minimal band gap frequency.2 In our spin-dependent boron-nitride
lattice the sublattice energy offset is given by

∆AB = 9V2Dm̄F cos(θB)η(ωL;F ) , (4.3)

which can be tuned by changing the quantization axis angle θB, i.e. by rotating the
direction of external magnetic field Bext. For clarity, we shall assume atoms in the Zee-
man substate |2,−2〉, which is the typical internal state that we work with. Figure 4.3a
displays the associated energy spectrum of the first five bands as a function of θB for a
lattice depth V2D = 8Erec. Note that the third band is not resolved as its bandwidth
is too small.

A typical experimental sequence starts with a spin-polarized BEC loaded into the
lowest band of the optical lattice at an initial angle θi

B = 0◦. This corresponds to
a maximum offset ∆i

AB > 0 at a given lattice depth for the internal state |2,−2〉.
The starting point is illustrated by inset 1 of Figure 4.3a for the weakly interacting
superfluid regime, where atoms occupy the lowest band only at quasimomentum Γ. By
rapidly rotating the quantization axis towards a final angle θf

B > 90◦, which results in
a negative offset ∆f

AB < 0, the band crossing at θB = 90◦ (middle inset) is traversed
and atoms can be elevated into the second band, as indicated by inset 2 for a final
angle θf

B = 106◦. Note that a fast rotation of the quantization axis and the associated
quench of ∆AB does not affect the quasimomentum. Hence, immediately after reaching
the final angle, atoms in the second band will still be localized at Γ. We also note that
a rapid quench to a final angle that involves further successive band crossings can lead
to subsequent transitions into even higher bands. For instance, a final angle θf

B = 135◦

for the parameters in Figure 4.3 would result in a population transfer to the fourth
band.

Before we proceed with some experimental details concerning the rotation of the
quantization axis, we note that the number and location of band crossings Pε generally
depends on the lattice depth and other details of the lattice potential. Usually, addi-
tional band crossings between ever higher bands will emerge at the boundary values

2Compare also the more rigorous conditions in Morsch and Oberthaler [207] and Holthaus [238] in the
context of accelerated optical lattices.
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Fig. 4.3: Landau-Zener type transfer scheme into higher Bloch bands of the spin-dependent
optical boron-nitride lattice. a Energy spectrum of the first five Bloch bands as a function of the
quantization axis angle θB for a lattice depth V2D = 8Erec and atoms in the Zeeman substate
|2,−2〉. Multiple band crossings are visible. The third band is not resolved on this scale as its
bandwidth is too small. 1 Starting point at the initial angle θi

B = 0◦ with atoms localized at
quasimomentum Γ of the lowest band. 2 A rapid quench to a final angle θf

B = 106◦ across the
first band crossing (central inset) transfers atoms diabatically into the second band, leaving the
initial quasimomentum unaltered. Since Γ is an unstable point (local maximum), interactions
will lead to a redistribution of the quasimomentum with a possible accumulation in the local,
degenerate minima at K and K′. Note that the spectrum is symmetric around θB = 90◦ because
lattice potentials on both sides are linked by inversion. b Related bandwidths of the first seven
bands as a function of θB. Dashed lines correspond to bands that are not visible in a. Note the
very small bandwidth of the third band, which stays below 60 Hz. Evidently, band crossings
are signaled by pronounced cusps in the bandwidths.

θB = 0◦, 180◦ for increasing lattice depths. For example, in Figure 4.3a an emerging
band crossing between the fourth and fifth band becomes apparent. Meanwhile, the
locations of already existing band crossings tend to shift towards the high symmetry
point θB = 90◦. It is insightful to note that band crossings are signaled by cusps in the
corresponding bandwidths, as visualized in Figure 4.3b. We stress that band crossings
can be classified into accidental and essential degeneracies. The latter are relatively
robust to changes of the lattice depth or the orientation of the quantization axis.

Experimental details The external magnetic field Bext that defines the quantization
axis for our spin-dependent boron-nitride lattice is created by the subset {Qx,Qy,Qz}
of compensation coils described in subsection 2.2.2. Initially, we take Bext = Bextez to
point along the z-direction, with a typical field magnitude Bext = 2.2 G. We perform a
rotation of Bext in the xz-plane by driving appropriate time-dependent currents through
the coils Qx and Qz, respectively. In particular, a uniform rotation starting at time
t0 and ending at tf = t0 + τ , with τ > 0, is achieved by setting currents according
to Ix(t) = Ix sin (ωr(t− t0)) and Iz(t) = Iz cos (ωr(t− t0)), t ∈ [t0, tf ]. This gives a
time-dependent quantization field Bext(t) = cxIx(t)ex + czIz(t)ez, where the constants
cx,z denote the conversion factors from equation (2.4). The amplitudes Ix,z are chosen
such that the magnitude of Bext(t) remains unaltered. Usually, the angular frequency
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4.2 Controlled transfer into higher Bloch bands

ωr is set such that the rotation to the final angle θf
B ≡ arccos (〈ez,Bext(tf)〉)/Bext is

accomplished within τ = 0.5 ms. This results in a maximum angular rotation frequency
ωmax

r = 2π · 2 kHz in case of a full revolution of the quantization axis.
Generally, in view of a large population transfer into higher bands, rotation frequen-

cies ωr as high as possible are desired, for they increase the Landau-Zener transition
probabilities. Experimentally, the highest achievable rotation frequency is limited by
the switching times of the coils including driving sources, which together effectively
form an RLC circuit. Based on the characteristics of the coils and sources, the minimal
switching time can be estimated to τmin = 0.2 ms [107]. Despite such technical limi-
tations that prevent the increase of the rotation frequency ad infinitum, a theoretical
bound is set by the Larmor frequency ωZ ≡ |µBgFBext|/ℏ ≈ 2π · 1.5 MHz, which defines
the time scale for an adiabatic following of the internal spin degree of freedom with re-
spect to the instantaneous direction of Bext(t). In fact, adiabatic following of the spin
is a necessary requirement for a successful transfer into higher bands, since our concept
relies on the fact that the sublattice energy offset of the spin-dependent potential is
well-defined at any instant of time and given by ∆AB(θB(t)). Therefore, the condition
ωZ � ωr should be fulfilled; clearly, this is the case for our typical parameters. Specifi-
cally, the condition guarantees that the bosonic ensemble remains spin-polarized during
the rotation of the quantization axis and no spin flips occur, which would otherwise
obstruct the transfer into higher bands.

Finally, we note that the experimental alignment of Bext, i.e. the actual value of θB
can be examined and calibrated through different methods (see section 3.3).

4.2.2 Maps of the transfer fraction

So far, we have merely considered the concepts as well as the experimental implemen-
tation of our transfer method. In the following, we have a close look at its central char-
acteristic: the transfer fraction, i.e. the actual fraction of atoms that can be transferred
into specific higher target bands. To this end, we present systematic measurements of
the transfer fraction as a function of both lattice depth V2D and final angle θf

B, which
constitute two basic variable parameters of the quench protocol described above. The
results are compared to calculations of the overlap between Bloch states of the initial
and respective final potential configuration.

In principle, an accurate theoretical treatment of the transfer process requires the
solution of the full time-dependent Schrödinger equation. However, an upper bound for
the transfer fraction into specific target bands can be obtained from the simple limiting
case of a sudden potential quench V (θi

B) → V (θf
B) for non-interacting atoms at fixed

lattice depths V2D. Consider some initial single-particle state |ψi〉 prior to the quench.
Let us denote by {|nk; f〉} the set of Bloch states to the final potential configuration.
Since they form a complete basis, we may expand the initial state according to

|ψi〉 =
∑

n

∫
dkCn(k) |nk; f〉 , (4.4)

where Cn(k) = 〈nk; f |ψi〉 denote the expansion coefficients. Note that the sum in
equation (4.4) is over all bands n, and integration should be restricted to quasimomenta
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a b

Fig. 4.4: Sudden quench V (θi
B) → V (θf

B) ⇐⇒ ∆i
AB → ∆f

AB of the boron-nitride lattice for
parameters as in Figure 4.3. a In the initial potential configuration, sublattice sites A coincide
with the deep wells (red), where Bloch states |1,Γ; i〉 and |2,Γ; i〉 are localized, as illustrated by
the cross sections of their modulus squared. b In the final configuration, A coincides with the
shallow wells (blue), where the Bloch state |2,Γ; f〉 is localized. Evidently, |1,Γ; i〉 and |2,Γ; f〉
have a large overlap, yielding efficient transfer into the second band after the quench if atoms
initially occupy the ground state |1,Γ; i〉.

k of the first Brillouin zone. Assuming a sudden quench from the initial to the final
potential configuration at time t0 = 0, the general solution |ψ(t)〉 for t ≥ t0, with the
initial condition |ψ(t0)〉 = |ψi〉, may therefore be directly written as

|ψ(t)〉 =
∑

n

∫
dkCn(k) exp

(
− i
ℏ
ϵfn(k)t

)
|nk; f〉 . (4.5)

Here, ϵfn(k) are the Bloch energies to the states |nk; f〉. For clarity, we now consider
an initial state that equals the atomic ground state in a lattice potential for an initial
quantization axis angle θi

B = 0◦, i.e. |ψi〉 = |1,Γ; i〉. Note that its expansion according
to equation (4.4) yields non-vanishing coefficients Cn(k) only for k = Γ, which is clear
from the fact that the quench does not affect the periodicity of the lattice potential.
Starting from this particular initial state, a significant transfer into higher bands of the
final potential is possible if there exists a set of lattice parameters {V2D, θ

f
B} such that

|Cn(Γ)|2 ∼ 1 for some n 6= 1. In other words, the overlap between the occupied Bloch
state of the initial potential and higher Bloch states of the final potential should be one
the order of one. For a bipartite lattice with a tunable sublattice energy offset, it turns
out that there are indeed large regions of the parameter space where this is the case.

In Figure 4.4, we provide a simple visualization of a sudden quench that corresponds
to the situation of the Landau-Zener transfer 1 → 2 displayed in Figure 4.3. Evi-
dently, the initial and final Bloch states – |1,Γ; i〉 and |2,Γ; f〉 – have a large overlap,
resulting in a substantial population of the second band after quenching to the final
configuration. Note that the sudden quench paradigm provides a complementary and
intuitive perspective on the transfer process: As the wave function cannot adapt to
the fast change of the sublattice offset, atoms suddenly find themselves in a higher
orbital state with respect to the new potential landscape. In this sense, the transfer
via a quench of the sublattice offset is truly different from other methods that aim
to evolve the initial state into higher orbital states with respect to the original poten-
tial by coupling to external perturbations, such as amplitude modulations or Raman
excitations.

In Figure 4.5, we systematically analyze the overlap Sn ≡ |Cn(Γ)|2 = |〈n,Γ; f|1,Γ; i〉|2
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Fig. 4.5: Expected transfer fractions into higher Bloch bands n ∈ {2, 4, 5, 7} of the boron-
nitride lattice for a sudden quench of the sublattice energy offset, assuming atoms in the Zeeman
substate |2,−2〉. Each plot depicts the corresponding overlap Sn ≡ |Cn(Γ)|2 = |〈n,Γ; f|1,Γ; i〉|2
to the n-th target band as a function of lattice depth V2D and final quench angle θf

B. White
vertical lines mark the high symmetry angle θf

B = 90◦, where the two sublattices of the boron-
nitride lattice become degenerate. The circle in the first plot highlights the quench parameters
V2D = 8Erec, θf

B = 106◦ from Figure 4.3, which are typically used to prepare a condensate in
the second Bloch band with atoms in the internal state |2,−2〉.

into higher bands n ∈ {2, 4, 5, 7} as a function of both lattice depth V2D and final angle
θf

B. Note that the overlaps into bands with n ∈ {3, 6} are always zero and hence have
been omitted. The circle in the first plot marks the parameters from Figure 4.3 and
Figure 4.4. Based on these results, an almost complete transfer into higher bands can
be achieved for realistic lattice depths over large portions of the parameter space. What
is more, the individual bands can be addressed selectively as the respective supports of
Sn are nearly disjoint.

Experimentally, we have characterized the maximum achievable transfer fraction over
large regions of the relevant parameter space. The measurement sequence starts with
a spin-polarized BEC in the internal state |2,−2〉 confined by an XDT (see chapter 2),
where we choose θi

B = 0◦ for the initial orientation of the external quantization field.
Next, the BEC is loaded into the lowest band of our two-dimensional boron-nitride
lattice for variable final lattice depths V2D. The loading procedure is accomplished
by an exponential ramp of the lattice depth to some desired value between 1Erec and
16Erec in a fixed ramp time TR,2D = 100 ms. We then wait for T0 = 2 ms before the
quantization axis angle is quenched to a variable final value θf

B between 80◦ and 180◦

within τ = 0.5 ms. After another hold time TH = 0.5 ms, we perform band mapping by
exponentially reducing the lattice depth to zero value in TBM = 2 ms. Subsequently, all
trapping potentials are switched off and absorption images are recorded after a time-of-
flight tTOF = 36 ms. We stress that the quantization axis is adiabatically rotated back
to is initial configuration during the ballistic expansion in TOF.

The results for the above measurement series are summarized in Figure 4.6. We de-
termine a lower bound for the transfer fraction into higher bands from band mapping
images by evaluating the relative atom number in corresponding Brillouin zone masks.
Note that the Brillouin zones have been slightly modified to account for the finite exper-
imental resolution of the imaging system and a redistribution of the quasimomentum
during the band mapping ramp. The resulting transfer map in Figure 4.6b reveals dis-
tinct regions in the parameter space of V2D and θf

B, similar to those in Figure 4.5, where
a targeted transfer into specific higher bands can be accomplished. Each data point has
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Fig. 4.6: Measured transfer fractions into higher bands of the boron-nitride lattice for atoms
in the Zeeman substate |2,−2〉. After a quench from θi

B = 0◦ to a variable final angle θf
B at a

fixed lattice depth V2D, the atomic momentum distribution is recorded with the band mapping
technique. a Exemplary single-shot absorption images show a population transfer into higher
bands, as indicated by an increased optical density (OD) in the corresponding Brillouin zone
masks. Left: the black polygon depicts the boundary of the mask that is used for evaluating
the atom number N2 in the second Brillouin zone BZ2. Grey polygons correspond to higher
Brillouin zones. Center: analogous mask for the union BZ3∪BZ4. The dashed contour shows the
boundary between both zones. Right: BZ5 mask. b Extracting the relative atom numbers Ni/N
in each mask yields an estimated transfer fraction into respective higher bands as a function
of the lattice depth V2D and final angle θf

B . Left: measured transfer fractions into the second
band. Center: transfer fractions into the third and fourth band. Right: transfer fractions into
fifth and higher bands.

been averaged over three to four realizations. Note that the sudden quench model gives
an adequate qualitative agreement, though the observed overall transfer fractions are
clearly smaller. For example, for the second band we find a maximum transfer fraction
of nmax

2 ≈ 67 %, while for the fourth band we obtain nmax
4 ≈ 50 %. These smaller values

can be readily attributed to the finite quench time τ = 0.5 ms as well as mean-field
effects at large lattice depths, which typically result in a reduced overlap of the initial
and finial Bloch states. We emphasize that we added atom numbers of the third and
fourth Brillouin zone to determine the transfer fractions into the fourth band. This may
be justified as follows: On the one hand, one does not expect transfer into the third
band due to a vanishing overlap between the involved Bloch states. On the other hand,
during the band mapping ramp, the fourth band encounters a touching point with the
third band at quasimomentum Γ, where the fourth band has a minimum. In general,
this may lead to an interaction-induced redistribution of atoms from the fourth to the
third band and thus result in a false assignment of the initially populated band, which
we effectively avoid.
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The measured transfer fractions in Figure 4.6 provide a fundamental characterization
of the transfer method and allow to assess quench parameters that are suitable for
realizing orbital condensates in higher Bloch bands of the boron-nitride lattice, which
is the subject of the following sections.

4.3 Emergence of an orbital condensate in the second band
We now show that we can create a metastable orbital condensate in the second band
of the boron-nitride lattice by using the transfer method from the previous section. We
analyze the dynamics of condensate formation and subsequent decay into the lowest
band. Moreover, we investigate the manifestation of time-reversal symmetry breaking
and discuss different possibilities for related many-body states.

4.3.1 Evidence for an orbital condensate
Initializing a bosonic ensemble of atoms in the second Bloch band via a quench |1,Γ; i〉 →
|2,Γ; f〉 gives rise to a highly nonequilibrium state: First, the system is prone to decay
into the lowest Bloch band, seeking for a global and total equilibration. Second, since
Γ is a maximum point of the second band, the system will tend to relax towards the
band minima at K and K′. The latter might be seen as the tendency to establish a kind
of “local” equilibrium within the state manifold of the second band. Here, we directly
investigate the dynamical evolution of the ensemble by probing the momentum and
quasimomentum distribution for different hold times TH after the quench. As a main
result, we observe a transient macroscopic occupation of Bloch states |2,K〉 and |2,K′〉,
which provides compelling evidence for the emergence of an orbital condensate in the
second band.

The experimental sequence starts with a spin-polarized BEC in the Zeeman substate
|2,−2〉 confined by the XDT, where θi

B = 0◦ is set for the initial orientation of the quan-
tization axis. The BEC is then loaded into the ground state of the boron-nitride lattice
by exponentially ramping up the lattice depth to V2D ≈ 8Erec within 100 ms. This gives
an initial sublattice energy offset ∆i

AB ≈ 18Erec, resulting in a small bandwidth on the
order of 1 Hz for the lowest band. Hence, tunneling between the individual lattice sites
is largely suppressed and the initial state shows no long-range phase coherence but ex-
hibits a broad and fairly featureless momentum distribution. After a lattice hold time
T0 between 2 ms and 20 ms, we induce a quench of the sublattice offset to ∆f

AB ≈ −5Erec
by rotating the quantization axis towards θf

B = 106◦ within τ = 0.5 ms. This promotes
the bosonic ensemble into the second band. We vary the hold time TH after the quench
and probe the momentum and quasimomentum distribution through sudden switch-off
and band mapping technique, respectively. The results are summarized in Figure 4.7
for hold times TH ranging up to 50 ms.

Initially, immediately after the quench, the system does not exhibit long-range phase
coherence. However, as depicted in Figure 4.7a, we observe a fast build-up of cross-
dimensional phase coherence within 7 ms after the quench, signaled by the appearance of
sharp Bragg peaks in the momentum distribution. Most notably, two distinct classes of
Bragg peaks appear that are associated with the quasimomenta K and K′, respectively,
indicating the emergence of an unconventional BEC in the minimal energy Bloch states
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Fig. 4.7: Emergence of an orbital condensate in the second band of a boron-nitride lattice for
atoms in the internal state |2,−2〉, after a quench to θf

B = 106◦ at a lattice depth V2D = 7.8Erec.
a The visibility of zeroth order Bragg peaks associated with quasimomenta K and K′ is probed
in TOF images as a function of the hold time after the quench. Single-shot absorption images on
the top depict individual realizations for the data points highlighted in red. Higher order Bragg
peaks are clearly visible at 7 ms, signaling long-range phase coherence and the emergence of an
unconventional transient BEC. b. Complementary BM images reveal atoms in the second band
(BZ2), with strong occupation near K and K′. The time evolution of the condensate fraction
in the second band follows the visibility, whereas the evolution of the thermal fraction in the
second band relates inversely to it. Fractions, that is relative populations, are specified with
respect to the total number of atoms distributed over all Brillouin zones and were extracted
as detailed in Appendix C. Each data point is an average of 2-4 individual realizations, where
error bars denote the corresponding standard deviations.

|2,K〉 and |2,K′〉 of the second band. We will refer to the corresponding period as stage
I. Subsequently, during a second stage II, the visibility of Bragg peaks gradually fades
within 40 ms and eventually vanishes. Complementary to these measurements, band
mapping images presented in Figure 4.7b reveal a thermal, incoherent population of the
second band at the beginning of stage I. From this thermal background, atoms condense
near the quasimomenta K and K′, i.e. at the vertices of the Brillouin zone, reaching a
maximum condensate fraction of roughly nmax

c ≈ 0.1 within 7 ms. Then, following the
behavior of the visibility, the fraction of condensed atoms gradually diminishes during
stage II, while the thermal fraction in the second band shows a nearly opposite increase.
Taken together, the TOF images of the momentum and quasimomentum distribution
provide evidence for the emergence of a transient orbital condensate in the second band.

Before we move on with a more elaborate discussion of the dynamical evolution, we
emphasize that condensate fractions stated here were extracted from band mapping
images using a ring-mask method as detailed in Appendix C. In a nutshell, we count
thermal atoms in a ring-shaped neighborhood centered on the vertices of the Brillouin
zone and then extrapolate their number into the inner condensation region at K and
K′. By subtracting this number from the total population at K and K′, we arrive at an
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estimate for the number of condensed atoms.
We have checked that condensate fractions obtained in this way are consistent with

those determined by more elaborate methods. For example, fitting Bragg peaks in
the momentum distribution via two-dimensional, multimodal Gaussian mixture models
usually gives similar results for the peak condensate fraction. However, a drawback
is that the underlying empirical model functions require a large number of free pa-
rameters and therefore tend to give unreliable or unstable results in the sense that
small variations of the initial estimates for fit parameters can lead to large deviations
of the determined condensate fractions. In a way, this problem can be amplified by
experimental fluctuations of the Bragg peak positions or widths, and generally makes
two-dimensional fits of the momentum distribution badly conditioned. For this reason,
we typically do not rely on this approach. Another method we have tried, which effec-
tively avoids the former difficulties, was to mask off the Bragg peaks and to perform
a two-dimensional fit or extrapolation only on the broad diffuse background. The dif-
ference to the original momentum distribution then directly yields an estimate of the
condensate fraction, again resulting in similar peak values on the order of 10 %.

Finally, note that about 50 % of the atoms remain in the lowest band due to the
finite transfer efficiency. Thus, specifying the relative number of condensed atoms with
respect to the total population in the second band gives a peak condensate fraction of
almost 20 %.

4.3.2 Condensation and band dynamics
We now have a closer look at the details of the condensation and band dynamics.
As mentioned above, the observed dynamical evolution in the second band naturally
splits into two stages of different time scales: A fast condensation and build-up of
coherence, followed by a slower dissolution. In fact, for hold times TH > 50 ms another
dynamical stage III can be identified that is characterized by the onset and presence of
a pronounced band decay. Moreover, on rather short time scales, intriguing oscillations
between the first and second band can be observed.

Band decay In Figure 4.8, we analyze the dynamical evolution for hold times TH up to
200 ms. Evidently, just before the condensate fraction has completely vanished, mostly
by transitioning into thermal atoms of the second band, the thermal fraction reaches a
maximum and starts to continuously decrease (see Figure 4.8a), giving rise to stage III.
By evaluating the total populations within individual Brillouin zones, i.e. the respective
total band populations, we find that a decay occurs into the first band, as evidenced in
Figure 4.8b. Note that the relative population in BZ2 is just the sum of the condensed
and thermal fraction in the second band, since by counting total populations we do
not discriminate between atoms of the condensate and thermal ones. As a matter of
fact, band populations of the first (BZ1) and second band (BZ2) remain nearly constant
during stage I and II, and the onset of band decay into the lowest band, marked by the
vertical dashed line, basically coincides with the vanishing of the condensate fraction.

Remarkably, the sum of band populations in the first and second band is not constant
over time but shows a visible decrease during stage III: this means that less atoms are
accumulating in the first band than are leaving the second one. Moreover, even the
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Fig. 4.8: Condensation and band dynamics for an experimental sequence as in Figure 4.7,
stemming from an independent measurement series with hold times up to 200 ms. a Time
evolution of the condensed and thermal fraction in the second band. During stage I, thermal
atoms rapidly condense within the second band, leading to a maximum overall condensate
fraction nmax

c ≈ 0.1. During stage II, condensed atoms gradually transition into the thermal
fraction of the second band. At the beginning of stage III, no condensed atoms are left and a
strong band decay sets in. In fact, band decay sets in slightly earlier as marked by the vertical
dashed line. b Time evolution of relative band populations in BZ1, BZ2, BZ1 ∪ BZ2, and in
the total union of zones up to BZ5. Populations were extracted from band mapping images
as described in Appendix C. Each data point is an average of 7-10 individual experimental
realizations, where error bars denote the corresponding standard deviations.

cumulated band population up to the fifth band gradually diminishes, albeit with a
smaller slope. Possibly, this indicates processes where two atoms from the second band
collide such that one is transferred into the lowest band, while the other gets excited
into higher bands to account for energy conservation. A more elaborate discussion of
this subject will be given in section 4.6. Another explanation, which cannot be ruled
out entirely, could be extrinsic heating induced by technical noise in the lattice setup as
discussed, for example, by T. Klafka [107]. In any case, the population increase of the
first band predominantly accounts for the decrease in the second band, which means
that direct transitions from the second to the first band dominate.

In summary, we have identified three stages of the dynamical evolution after the
quench, which are characterized by distinct physical processes and time scales. Specifi-
cally, during stage III, no condensed atoms are left in the second band, and a pronounced
decay is observed over several hundred milliseconds. We note that similar results were
found in the context of orbital condensates in a bipartite square lattice. Here, a detailed
analysis along the lines of three dynamical stages has been conducted by Nuske et al.
[81]. Our findings reveal excellent qualitative agreement with this study.

Band oscillations Investigating the band dynamics during the first and second stages
at high time resolution is illuminating. Here, one generally finds damped oscillations
in the population of the first and second Brillouin zone, as shown in Figure 4.9a. In
particular, the oscillations in BZ2 and BZ1 are complementary, indicating a periodic
particle exchange between the second and first band right after the quench. Also note
that a slight overall population decay from BZ2 into BZ1 occurs already at this point,
which can be viewed as a precursor to the pronounced band decay during stage III. We
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Fig. 4.9: Band dynamics during stages I and II for the same measurement as in Figure 4.7.
a Evolution of the relative population in the first (BZ1) and second Brillouin zone (BZ2) as a
function of the hold time after the quench, showing damped and complementary oscillations
with opposite sign. b Fast Fourier transform of data points to BZ1 reveals a dominant frequency
component at 140 Hz. c Difference images of averaged consecutive BM images for the first six
time steps. Red (blue) color corresponds to population increase (decrease) as compared to the
density distribution at time tn−1. All images are normalized to a common scale.

stress that each data point has been averaged over two to three experimental realiza-
tions. By performing a fast Fourier transform of the corresponding signals, we find a
dominant frequency component at about 140 Hz for the quench parameters employed
here. Our general observation is that the frequency increases for increasing sublattice
energy offsets.

To further analyze the oscillations, we have examined difference images of consecutive
quasimomentum distributions. More explicitly, each BM image was first normalized to
the same fictitious particle number. Next, the normalized BM images were averaged for
each time step tn of the hold time TH, yielding an image sequence (Im(tn))n. Finally,
we consider the difference ∆Im(tn) ≡ Im(tn) − Im(tn−1). The results are depicted in
Figure 4.9c for the first six time steps after the quench and visualize the averaged flow
of particles. Evidently, the first three time steps reveal a particle influx to BZ1 (red
densities), whereas the last three time steps show an outgoing flux from this region,
i.e. predominant blue densities, in agreement with Figure 4.9a. Regarding the second
Brillouin zone BZ2, the particle flow exhibits a much richer and complex behavior due
to the intriguing condensation dynamics that takes place during stage I. For example,
∆Im(t1) nicely confirms that atoms accumulating near K and K′ originate from the
broad thermal distribution in the second band. The interpretation of subsequent images,
however, is less straightforward, and it is difficult to assess whether there are specific
points from which atoms preferably oscillate into the lowest band, or whether this
happens in terms of a uniform background oscillation.
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4 Bosonic superfluids in higher Bloch orbitals

Taken as a whole, the origin of the observed oscillations is currently unclear, but we
note that similar ones have been reported by Müller et al. [236], leading to specula-
tions about an oscillating superfluid order parameter [239–241]. The situation studied
by Tuchman et al. [241] is, in fact, closely related to ours: the initial state before the
quench resembles a number-squeezed state, since tunneling between individual lattice
sites is largely suppressed owing to the small bandwidth of the lowest band below 1 Hz.
As atoms are promoted into the second band, they suddenly experience a bandwidth of
about 270 Hz. This reestablishes tunneling and therefore effectively realizes a quench
into a superfluid state, as evidenced experimentally by the appearance of Bragg peaks.
For such a quench, it has been shown that phase coherence oscillates at a frequency
proportional to the generalized Josephson frequency [241]. In fact, we observe reminis-
cent oscillatory features in the visibility and condensate fraction of the second band,
which become apparent from a close inspection of Figure 4.7. What is more, these
features have a similar period as the band oscillations, suggesting that both phenom-
ena are intimately linked. In view of this, it is an open question whether the observed
band oscillations are genuine oscillations of particles between bands or rather an arte-
fact from the band mapping technique, given the presence of an oscillating superfluid
fraction. For instance, at the start of band mapping, an increased condensate fraction
at the Dirac points could lead to an enhanced decay during the lattice ramp, resulting
in a seemingly larger initial population of the lowest band. In this context, one should
keep in mind that BM is generally performed in our case with ramp times TBM = 2 ms
during which significant redistribution of quasimomenta can occur, especially for hold
times TH within stage I.

4.3.3 Evidence for a chiral superfluid

Following our presentation and analysis of the emergence and dynamical evolution of
an orbital condensate in the second band of a boron-nitride lattice, we now focus on
possible realizations of the underlying (approximate) many-body state vector |Ψ〉. For
our theoretical description, we will neglect the thermal fraction and posit that the
system has reached some kind of quasi-stationary equilibrium such that any reference
to time can be ignored. In particular, following our preliminary discussion in section 4.1,
we shall assume that the relevant single-particle Hilbert space H c

1 for the condensate
is spanned by the basis set of degenerate Bloch states |2,K〉 and |2,K′〉. Recall that the
basis states are TRS partner and degeneracy is guaranteed for a time-reversal symmetric
Bloch Hamiltonian (see subsection 3.1.5). Now, given that a general state in H c

1 may
be written as

|ψ〉 = cos(θ) |2,K〉 + exp (iϕ) sin(θ) |2,K′〉 , (4.6)

the central question is: What values of the mixing angles θ ∈ [0, π/2) and ϕ ∈ [−π, π) are
realized in the experiment? Or, to put it differently: What type of orbital condensate do
we actually have? For instance, condensation in a single basis state necessarily involves
breaking of the time-reversal symmetry and gives rise to a chiral superfluid that can
exhibit rectified angular momentum ordering.

To address these questions experimentally and, especially, to investigate possible
manifestations of time-reversal symmetry breaking, we have measured and analyzed
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Fig. 4.10: Probing chiral symmetry breaking in the momentum distribution. a Top: Exemplary
single-shot TOF images of orbital condensates with finite chirality χ. The latter is defined as
the difference in the relative occupation of quasimomenta K and K′ (see inset below). TOF
images were obtained for a hold time TH = 7 ms after a quench to θf

B = 106◦; with a lattice
depth V2D = 8.1Erec and atoms in the Zeeman substate |2,−2〉. Bottom: Histogram of observed
chirality for a measurement series with 1900 runs at constant parameters as stated above. The
continuous line shows a fit of a Gaussian model distribution, yielding a standard deviation σ =
0.13, Akaike information criterion AIC = −967, and Bayes information criterion BIC = −957. b
Top: Numerical calculation of TOF images for three different states, labeled on top, and lattice
parameters as used in a. Bottom: Interaction parameter U of a two-component superposition
state |ψi〉 as defined in equation (4.6), with components {|2,K〉 , |2,K′〉}, {|1,Γ〉 , |2,Γ〉}, and
{|2,Γ〉 , |3,Γ〉}, respectively. Left panel: U as a function of the relative weight cos2(θ) for ϕ = 0.
Right panel: U as a function of the relative phase ϕ for θ = π/4.

the chirality
χ ≡ NK −NK′

NK +NK′
, (4.7)

which defines the difference in the relative occupation of the two basis states. In Fig-
ure 4.10a, we present results of a corresponding measurement series that comprises 1900
runs at fixed parameters of the quench protocol. We stress that the experimental se-
quence we used is identical to the one described in subsection 4.3.1. Here, however, we
probe the momentum distribution after TOF only for a fixed hold time TH = 7 ms, i.e.
when the condensate fraction has reached a maximum. By evaluating the number of
condensed atoms in the respective zeroth order Bragg peaks, one directly arrives at χ.
Most notably, we observe values as large as χ ∼ ±0.35, corresponding to a maximum
relative occupation at K and K′ of nearly 70 %, respectively. In other words, single
realizations of the orbital condensate reveal a strongly symmetry-broken momentum
distribution. Nevertheless, the overall symmetry breaking in the system remains rather
weak in the sense that the observed probability distribution for χ is well-described by
a single Gaussian with mean µ = −0.0005 and standard deviation σ = 0.132, where
respective 95 % confidence intervals are Cµ = [−0.01, 0.01] and Cσ = [0.126, 0.139]. In
contrast, for strong symmetry breaking, one expects to see a bimodal distribution, which
is evidently not manifested in our case: More precisely, in terms of Akaike and Bayes
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4 Bosonic superfluids in higher Bloch orbitals

information criteria, which provide an estimate for the relative quality of a statistical
model, a bimodal Gaussian fit to the observed distribution of χ is rejected.

For a single condensate in the mode |ψ〉 as defined in equation (4.6), a simple mean-
field analysis suggest that the system should favor condensation in one of the two basis
states: Explicitly, let us consider the interaction parameter

U(θ, ϕ) ≡ g

∫
dr |〈r|ψ〉|4 , with g = 4πℏ2as/m , (4.8)

where g characterizes the contact interaction strength that depends on the s-wave scat-
tering length as. In Figure 4.10b, we show the results of a numerical calculation of U as
a function of the mixing angles θ and ϕ (blue lines) for identical lattice parameters as
used in the experiment. For comparison, we also plot analogous interaction parameters
for two-component superposition states that are defined in terms of another basis set
of Bloch states. Details of the calculation are provided in Appendix B. Evidently, for
the state |ψ〉, it turns out that U is independent of the relative phase ϕ and takes a
minimum value for θ = 0, π/2. Thus, for positive interaction energies (g > 0), as in
our case for Rubidium-87, the system should favor condensation in either the Bloch
state |2,K〉 or |2,K′〉, as compared to a superposition. For clarity, the expected mo-
mentum distribution of a condensate in |2,K〉 and |2,K〉 is visualized in the top panel
of Figure 4.10b. Note the close similarity to the experimental TOF images on the left.

Now, although we do not observe strong symmetry breaking in the momentum dis-
tribution, our data still indicates an increased tendency towards condensation in one of
the basis states, which in turn provides evidence for a weak chiral superfluid. In fact,
the observed distribution of chirality is incompatible with a time-reversal symmetric
single-mode BEC, as I will show in the following: To this end, we first define the Fock
basis {|N1, N2〉F} of the associated N -body Hilbert space H c

N as the occupation num-
ber basis for states |2,K〉 and |2,K′〉. In this notation, we have N1 = NK and N2 = NK′

with the constraint N1 +N2 = N , where N is the total number of condensed atoms. To
proceed, we note that a general single-mode N -body state that corresponds to a BEC
in the mode |ψ〉 is given by

|Ψ〉 = 1√
N !

(
cos(θ)b̂†

K + exp(iϕ) sin(θ)b̂†
K′

)N
|0〉 . (4.9)

Here, b̂†
k denotes the bosonic creation operator for a Bloch state |2,k〉 in the second

band with quasimomentum k, and |0〉 refers to the vacuum state. Next, to establish
connection with the observable χ, it is illuminating to rewrite |Ψ〉 in the following form:

|Ψ〉 =
[
α |2,K〉 + β |2,K′〉

]⊗N =
N∑

m=0

(
N

m

)1/2

αN−mβm |N −m,m〉F , (4.10)

where we employed the abbreviations α ≡ cos(θ), β ≡ exp(iϕ) sin(θ) for compactness.
From equation (4.10), one directly infers that the occupation number of individual
Bloch states |2,K〉 and |2,K′〉 follows a binomial distribution. It is straightforward to
show that the expectation value µχ and variance σ2

χ of the chirality for the state |Ψ〉 is
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4.4 Condensates in the fourth band

given by

µχ = 1 − 2|β|2, σ2
χ = 4|α|2|β|2

N
. (4.11)

While the experimental value for the mean is consistent with a time-reversal symmetric
condensate, which requires |α|2 = |β|2 = 1/2, the observed variance is more than
two orders of magnitude larger than would be expected. The latter follows from the
fact that the total number of condensed atoms for the data presented here amounts
to roughly N ≈ 2.0(2) × 104. We may thus conclude that a time-reversal symmetric
state vector |Ψ〉 is generally not realized. Instead, individual realizations of the orbital
condensate exhibit broken time-reversal symmetry, which means |α|2 6= |β|2. Whether
the symmetry is broken spontaneously or induced by an external perturbation cannot
be answered adequately. We note, however, that we were able to produce strong chiral
superfluids in a single basis state |2,K〉 (|2,K′〉) by explicitly breaking TRS via clockwise
(anti-clockwise) circular lattice shaking.

The single-mode BEC we considered above should be contrasted with more general
states that are, in principle, also possible. For example, a state |F〉 ≡ |N1, N2〉F where
N1 ∼ N2 are both macroscopically large would correspond to a fragmented state, i.e. a
state that consists of two separate BECs in different modes. Another interesting case
is the so-called cat state, which is a macroscopic superposition of two distinct BECs of
the form |cat〉 ≡ cos(θ) |N, 0〉F + sin(θ) |0, N〉F.

Finally, we note that Wang et al. [83] have recently observed strong symmetry break-
ing in a similar system. Specifically, the chirality in their case exhibits a clear bi-
modal distribution. This becomes manifest, however, only for hold times on the order
TH > 100 ms, which is much larger than the current lifetime of our orbital condensate.
In view of this, it will be exciting to explore and pinpoint the relevant parameters that
facilitate the formation of a long-lived chiral superfluid.

4.4 Condensates in the fourth band

In addition to orbital condensates in the second band, we have realized condensates in
the fourth band of the boron-nitride lattice. Though they are, technically speaking,
condensates in higher Bloch orbitals, here they do not comply with orbital condensates
in the strict sense: Namely, they do not possess orbital degeneracies, since the fourth
band has generally only a single global minimum at the quasimomentum Γ. As a
result, no genuine orbital features can be observed at this point. Still, the investigation
of condensates in the fourth band provides important insights into the dynamics of the
condensation process in higher bands. Furthermore, it gives a good starting point for
realizing genuine orbital condensates that are distinct from those in the second Bloch
band: For example, by tuning the lattice parameters appropriately, one can reach a
regime where the third and fourth band become degenerate at the Γ point over a large
region of the parameter space.

To create condensates in the fourth Bloch band, we essentially proceed in a similar
way as for the second band (see subsection 4.3.1). For the lattice quench, however, we
typically choose lattice depths on the order of V2D ≈ 15Erec and final angles θf

B = 122◦.
These parameters guarantee that two successive band crossings are encountered during
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Fig. 4.11: Emergence of a condensate in the fourth band of a boron-nitride lattice for atoms
in the internal state |2,−2〉, after a quench to θf

B = 122◦ at a lattice depth V2D = 14.7Erec. a
The visibility of first order Bragg peaks associated with the quasimomentum Γ is probed as a
function of the hold time after the quench (blue data points). Single-shot absorption images
on the top depict individual realizations for data points highlighted in red. Higher order Bragg
peaks are clearly visible after 2 ms, signaling long-range phase coherence and the emergence
of a BEC. For comparison, grey data points show the time-evolution of the visibility for the
orbital condensate in the second band (see Figure 4.7). b. Complementary BM images from an
independent measurement series at V2D = 15Erec reveal atoms in the fourth band (BZ4), with
strong occupation at six points that are equivalent to Γ. The time evolution of the condensate
fraction in the fourth band follows the visibility, whereas the evolution of the thermal fraction
in the fourth band relates inversely. Fractions, that is relative populations, are specified with
respect to the total number of atoms distributed over all Brillouin zones and were extracted as
detailed in Appendix C. Each data point is an average of 4-6 experimental realizations, where
error bars denote the corresponding standard deviations.

the quench, which promotes atoms into the fourth band. We note that the final lattice
parameters correspond to a final sublattice offset ∆f

AB ≈ −18Erec and result in a band-
width of about 230 Hz for the fourth band. We have analyzed the dynamical evolution
of the system after the quench by probing the momentum and quasimomentum distri-
bution as explained in subsection 4.3.1. The results are summarized in Figure 4.11 and
Figure 4.12. In close analogy to the second band, three distinct stages can be identified,
which are discussed in the following.

Initially, right after the quench, the system does not exhibit any long-range phase
coherence, as evidenced by the first TOF image in Figure 4.11a. However, we observe
a fast build-up of cross-dimensional coherence within 2 ms after the quench, signaled
by the appearance of sharp Bragg peaks in the momentum distribution (stage I). The
Bragg peaks are associated with the quasimomentum Γ, as expected for a condensate in
the minimal energy Bloch state |4,Γ〉 of the fourth band. During the subsequent stage
II, the visibility of Bragg peaks forms a plateau for about 3 ms and then gradually fades
until it vanishes for a hold time of about 15 ms to 20 ms. For comparison, in Figure 4.11a,
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Fig. 4.12: Condensation and band dynamics for the experimental sequence in Figure 4.11b,
with hold times TH up to 100 ms. a Time evolution of the condensed and thermal fraction
in the fourth band. During stage I, thermal atoms rapidly condense within the fourth band,
leading to a maximum overall condensate fraction nmax

c ≈ 0.05. During stage II, condensed
atoms gradually transition into the thermal fraction of the fourth band. At the beginning of
stage III, the condensate has vanished and a pronounced decay of thermal atoms from the
fourth band sets in. b Time evolution of the relative band populations in different Brillouin
zones, including their total sum, during all three stages. Populations were extracted from band
mapping images as described in Appendix C. Each data point is an average of six individual
experimental realizations, where error bars denote the corresponding standard deviations.

we also plot the time evolution of the visibility for the orbital condensate in the second
band. Clearly, for the fourth band, the rise and subsequent loss of coherence happens
on a notably shorter time scale. The faster increase of visibility may well be attributed
to the fact that atoms in the fourth band do not need to redistribute quasimomenta in
order to reach the lowest energy Bloch state. We note that the bandwidths of the two
different target bands are nearly identical.

Regarding the quasimomentum distribution in Figure 4.11b, we make the following
observation: During stage I, thermal atoms of the fourth band rapidly condense within
the fourth band by accumulating near the Γ point. Note that there are six equiva-
lent ones for the Brillouin zone of the fourth band. The maximal overall condensate
fraction is reached at the crossover to stage II and amounts to roughly nmax

c ≈ 0.05.
Next, during stage II, the number of condensed atoms gradually diminishes, evidently
by transitioning back into the thermal fraction of the fourth band, which shows a com-
plementary increase until the condensate has vanished. Finally, this gives rise to the
last stage III that is characterized by the onset and presence of a pronounced band
decay, as analyzed in Figure 4.12 for hold times TH up to 100 ms.

We point out that the total population of the fourth band remains nearly constant
during stages I and II (see Figure 4.12b). However, note the locked oscillations for
the first (BZ1) and fourth band (BZ4), reminiscent of those observed for a quench into
the second Bloch band (compare subsection 4.3.2). All in all, the band dynamics here
are somewhat more complicated than in the latter case, owing to considerable initial
populations in more than just two bands. For example, the finite experimental transfer
efficiency results in an unwanted thermal population of the second band, which rapidly
decays into the lowest band during stage I and II. Certainly, this will cause intrinsic
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4 Bosonic superfluids in higher Bloch orbitals

heating and eventually limit the lifetime of condensed atoms in the fourth band. In fact,
it might be an important reason why the observed coherence time is notably shorter
than in the case of orbital condensates in the second band (see Figure 4.11). It should
be emphasized that the cumulated band population up to the fifth band shows a visible
decrease during all three stages, which slows down by the end of stage III. As before,
this could indicate band-changing collisions where atoms are excited into even higher
bands.

Finally, we like to point out that the condensate fractions stated above were extracted
from band mapping images, as explained in Appendix C. Here, these fractions should
be considered as a lower bound estimate, for we presume that there is significant loss
of condensed atoms during the band mapping ramp, which lasts 2 ms. As compared to
the orbital condensate in the second band, this loss should be more severe, since a band
crossing with the flat third band is encountered at the Γ point at an early stage of the
band mapping ramp. Indeed, estimating the condensate fraction from the momentum
distribution (after sudden release), as discussed in subsection 4.3.1, yields larger values
on the order of ñmax

c ≈ 0.2. While this clarifies that the actual condensate fraction in
the fourth band might be larger than provided by Figure 4.11b, it has no consequence
for our discussion of the temporal evolution itself.

4.5 Exploring the parameter space: Islands of coherence

In the previous sections, we have studied the emergence of orbital condensates in the
second and fourth band of a boron-nitride lattice for a specific set of quench parameters.
In fact, those parameters have turned out to be optimal: they yield maximal condensate
fractions and longest lifetimes, respectively. In the following, we shall present related
measurements over a large region of the relevant parameter space. We find characteristic
parameter “islands” where condensation in higher bands is possible.

The experimental sequence follows the usual protocol described earlier. We vary the
lattice depth V2D and final quench angle θf

B of the quantization axis and observe the
momentum distribution for a fixed hold time TH = 7 ms after the quench. By evalu-
ating the visibility of Bragg peaks, we obtain a density map as shown in Figure 4.13a.
Specifically, the visibility here is defined as the sum of visibilities for the second and
fourth band: V = V2 +V4, which is a useful quantity as V2,4 derive from two disjoint sets
of masks. Clearly, the map reveals two separated islands of high visibility or coherence,
which correspond to parameter regions that are suitable for metastable condensates in
the second and fourth band, respectively.

Modeling the exact forms of the observed islands is quite challenging: On the one
hand, a simple theoretical approach for tracing the full nonequilibrium dynamics of
a quantum many-body system with particle numbers as large as N ≈ 3 × 105 is not
available. On the other hand, besides obvious variables such as bandwidths or band
gaps, there are additional, more intricate ones that will certainly affect the visibility
and that depend on V2D or θf

B. For example, the (quasi-)momentum distribution of the
initial state before the quench, the finite transfer fraction into the target band, the final
longitudinal confinement, and so on. In general, these variables will have an influence
on thermalization and decay rates and must therefore be characterized beforehand.
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Fig. 4.13: Islands of visibility for condensates in higher bands. a Measured Bragg peak visibility
V in the second and fourth band as a function of the quench parameters θf

B and V2D, revealing
separated regions (islands) where condensation in higher bands is possible. Measurements were
performed for a fixed hold time TH = 7 ms and atoms in the Zeeman substate |2,−2〉. b
Bandwidth of the second band over the same parameter space. Dashed black and red lines
highlight contours where the bandwidth equals 100 Hz and 1000 Hz, respectively. c Similar plot
for the bandwidth of the fourth band. Note that certain lobe-like regions bounded by contours
in b and c are in good agreement with islands in a.

Despite this, basic insights can be gained by examining the bandwidths.

In Figure 4.13b-c, we plot the results of a numerical calculation of the bandwidths
for the second and fourth band, respectively. In addition, we show the contour lines
that correspond to a bandwidth of 100 Hz (black line) and 1000 Hz (red line). The
most simplistic argument that one can make now is the following: If the bandwidth of
the target band becomes too large, the excess energy that must be deposited to reach
the corresponding lowest energy Bloch states will exceed a certain threshold, above
which condensation cannot be accomplished. In other words, after thermalization in
the target band, the finite temperature will eventually exceed the critical temperature
for condensation in the given manifold. Thus, no visibility will be observed. In contrast,
if the bandwidth becomes too small, the excess energy will be low but tunneling will be
strongly suppressed, such that phase coherence cannot be established on an adequate
time scale: Again, no visibility will be observed. Of course, these arguments ignore
the true complexity of the condensation process with all its genuine nonequilibrium
dynamical features and will necessarily fail to reproduce details of the visibility map.
But still, they may serve as a simple guideline or a starting point for more refined
considerations. For example, T. Klafka has verified that the ridge line for a given island
almost perfectly coincides with the line of minimal ratio (∆n/δn)2, where ∆n denotes
the bandwidth of the n-th target band and δn is its band gap to the next subjacent band
[107]. We note that this relation was motivated by a recent study of recondensation
dynamics in a one-dimensional bipartite optical lattice [242]. To understand whether
this is indeed the relevant figure of merit for our system, however, requires further
theoretical investigation. At the same time, it leads us to the important question:
What are the basic and general requirements for long-lived metastable condensates in
higher bands? We will try to give an adequate answer in the next section.

97



4 Bosonic superfluids in higher Bloch orbitals

4.6 Basic aspects of condensate formation and dissolution
Certainly, an indispensable prerequisite for the emergence of metastable condensates in
higher bands is a separation of time scales for intraband relaxation and interband decay,
which relates to the concept of prethermalization [243, 244]. While intraband relaxation
seeks to establish a local equilibrium within the state manifold of a give target band,
interband decay constantly promotes equilibration towards a global thermal state. Un-
der realistic experimental scenarios, thermalization within the target band will always
compete with decay into lower bands, and it is not a priori clear whether and under
what specific conditions separation of the relevant time scales can exist. Addressing
these questions requires to invoke the full machinery of quantum many-body systems
out of equilibrium, which is way beyond the scope of this thesis. Meanwhile, the sheer
existence of separated time scales will not guarantee that an eventual prethermalized
state is compatible with a macroscopic occupation of a particular minimal energy Bloch
state. In general, additional requirements must be satisfied for condensation in a given
target band.

In this section, we examine such additional requirements, assuming a system with
separated time scales, as manifested in the experiment. More precisely, we give a brief
summary of basic and general aspects of condensate formation and dissolution in higher
bands, aiming to develop a simple understanding of processes that enable, facilitate,
or obstruct the realization of long-lived metastable condensates. For clarity, we mainly
focus on the case of condensation in the second Bloch band of our boron-nitride lattice.
The considerations, however, can be generalized to arbitrary bands and different settings
as well.

4.6.1 Excess energy and lattice dimensionality
Consider a bosonic ensemble initialized in the Bloch state |2,Γ; f〉 after a corresponding
quench of the lattice potential. As Γ corresponds to a maximum of the second band,
interactions will generally induce a redistribution of quasimomenta towards the minimal
energy Bloch states |2,K〉 and |2,K′〉, which is the essence of intraband relaxation.
Obviously, relaxation from a band maximum to a minimum involves a certain amount
of excess energy ∆ϵexc. For an isolated system, this energy must be redistributed
across spatial degrees of freedom other than the lattice plane to decrease the overall
band energy and enable the formation of a condensate.3 This is where the longitudinal
(axial) confinement along the lattice tubes, i.e. the confinement orthogonal to the lattice
plane, comes into play: It literally acts as an entropy or energy reservoir, where the
excess energy can be deposited.

Commonly, the orthogonal confinement is realized through a harmonic trap potential,
which is uniquely characterized by its trap frequency ωz. Based on this, a necessary
condition for condensation should be that ωz is not larger than the bandwidth of the
target band. Otherwise, intraband relaxation will be frozen out effectively, since no
longitudinal modes with energy El ≡ ℏωz(l+ 1/2) can be excited. For the same reason,
it appears that condensation in higher bands is generally not feasible in case of a three-

3For closed and open systems, ∆ϵexc may also dissipate into another subsystem. This leads to exciting
additional possibilities, as we touch on by the end of this section.
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4.6 Basic aspects of condensate formation and dissolution

dimensional optical lattices, at least not for an isolated system as considered here: The
lowest energy Bloch state in a target band simply cannot be reached in any obvious way.
In accordance with that, condensation in higher Bloch bands could not be observed as
soon as the orthogonal lattice (compare subsection 2.2.4) was ramped up in addition
to the boron-nitride lattice, which illustrates the importance of lattice dimensionality:
Condensates in higher Bloch bands of an optical lattice can perhaps only be realized
for one- or two-dimensional lattice geometries.

In our case, the longitudinal trap frequencies at sublattice sites A and B in the center
of the lattice are given by

Ωz(A,B) =
(
Ω2

h,z + ω2
z(A,B)

)1/2
. (4.12)

Here, Ωh,z denotes the contribution from the XDT as defined in equation (2.8), whereas
ωz(A,B) refers to the longitudinal trap frequency of the boron-nitride lattice. In terms
of the lattice parameters V2D and θB, it is explicitly given by

ω2
z(A,B) = 18

mw2
0
V2D [2 ± m̄F cos(θB)η(ωL;F )] , (4.13)

where the plus (minus) sign refers to the A (B) sublattice site, and w0 = 115 µm is the
lattice beam waist, with remaining variables as usual. We stress that, with increasing
lattice depth, the longitudinal trap frequency is quickly dominated by the contribution
of the lattice potential due to the relatively small lattice beam waists. For example,
we have ωz(A) ≈ 2π · 90 Hz for quench parameters as in Figure 4.7, whereas the XDT
is generally set to Ωh,z ≈ 2π · 20 Hz. Equation (4.12) has some important implications:
Following our previous arguments we do not expect to observe condensation in the
second Bloch band for final lattice parameters that yield bandwidths below approxi-
mately 100 Hz. This value is roughly where the longitudinal trap frequencies will begin
to exceed the bandwidth of the second band. Note that the 100 Hz contour for the
bandwidth of the second band has been plotted in Figure 4.13b. Indeed, rather little
visibility is observed above this line. The observed finite visibility may be explained
by additional relaxation channels that are realized through interactions with remaining
atoms in the lowest band.

In the following, we shall sketch how to formalize the above considerations to arrive
at reasonable quantitative predictions on condensate fractions in higher bands. For
simplicity, we will assume that all atoms occupy a single target band and that decay into
lower bands can be ignored. Based on a local thermal equilibrium for an isolated band, a
sufficient condition for condensation would be that the final temperature T f associated
with ∆ϵexc after equilibration in the target band is compatible with a macroscopic
occupation of the respective lowest energy Bloch states. In other words, it should not
exceed the critical temperature Tc in the energy landscape of the target band.

Let us denote by ϵn(k, l) ≡ ϵn(k) + ℏωz(l + 1/2) the total band space energy of the
n-th band, where l describes the harmonic oscillator quanta into longitudinal direction.
Assume some initial, normalized distribution gi

1(k, l) for the quantum numbers in the
lowest band prior to the lattice quench. For example, it could be a thermal distribu-
tion. During the lattice quench, the distribution of quantum numbers k and l remains
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4 Bosonic superfluids in higher Bloch orbitals

approximately unaltered, while atoms become elevated into a higher target band, where
gi

1(k, l), in general, does not correspond to any thermal distribution. In particular, it
will be associated with the following excess energy within the target band:

∆ϵexc
n ≡ − min(ϵn) +

∑
l

∫
dk gi

1(k, l)ϵn(k, l) . (4.14)

After intraband relaxation, the final distribution gf
n(k, l) of quasimomenta and oscillator

quanta shall correspond to a local thermal equilibrium that is described by the Bose-
Einstein distribution Bn(ϵn(k, l), µ, T f) for a given band index n and final temperature
T f , where µ = µ(N,T f) is the chemical potential that fixes the number of total atoms
N . Since we assume an isolated band, the excess energy ∆ϵexc

n must be conserved such
that T f is uniquely determined by∑

l

∫
dk gf

n(k, l)ϵn(k, l) = min(ϵn) + ∆ϵexc
n , (4.15)

where we explicitly set gf
n(k, l) ≡ Bn(ϵn(k, l), µ, T f). If it happens that T f < Tn

c , the
excess energy will allow for a finite condensate fraction in the target band to the zero
mode l = 0. Here, the critical temperature Tn

c in the n-th band is determined as
usual by requiring that the thermal fraction is saturated, i.e. 〈Nth(Tn

c , µ = 0)〉 = N .
The equations (4.14) and (4.15) highlight several important aspects: Condensation
depends crucially on the excess energy ∆ϵexc

n , which should be small to give low final
temperatures T f . As ∆ϵexc

n can be reduced by decreasing the bandwidth of the target
band, small bandwidths should facilitate condensation and therefore be preferred. On
the other hand, the critical temperature will typically likewise decrease with decreasing
bandwidth and oscillator frequency ωz, counteracting the lowering of T f . Eventually,
there is a trade-off that leads to a maximum finite condensate fraction at a certain
bandwidth. Besides, since ∆ϵexc

n additionally depends on the initial distribution gi
1(k, l),

the optimal bandwidth will also be affected by the latter. Finally, we note that the total
particle number N or, equivalently, the total density in the target band should generally
be as large as possible, for it increases the critical temperature.

We emphasize that the above formulas are only valid for an isolated target band.
They may, however, be refined in the sense of a closed system to include energy trans-
fer with atoms remaining in the lowest band. This is particularly important in view of
finite experimental transfer fractions into higher bands. Explicit calculations with such
a model have been performed by G. Koutentakis within our theory collaboration. The
results show excellent agreement with experimentally observed values of the conden-
sate fraction. Most strikingly, they indicate that atoms remaining in the lowest band
can support condensation in higher bands by acting as an efficient heat sink, i.e. an
additional energy reservoir. Our joint work will be published later this year.

4.6.2 Interband relaxation and band decay
Once the atoms have reached a prethermalized state with a finite condensate fraction
in a higher target band, the lifetime of the condensate will ultimately be limited by
collision-mediated band decay. For example, two atoms can undergo an elastic collision
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Fig. 4.14: Energy landscape for relaxation and decay in the second band of a boron-nitride
lattice for atoms in |2,−2〉. a The bandwidth ∆2 ≡ ϵ2(Γ) − ϵ2(K) of the second Bloch band
as a function of lattice depth V2D and quantization axis angle θB. White regions correspond
to small excess energy for relaxation into the local minima K and K′ of the second band.
Here, condensation should be facilitated. The dashed black line marks the boundary where the
bandwidth equals the minimal energy separation to the 3rd band. To the left of it, relaxation
cannot induce transitions into higher bands. To the right of it, transitions into the 3rd band are
energetically possible. Similarly, excitations into the 4th band are energetically possible within
the region that is bounded by the red contour. Outside of it, the 4th and higher bands cannot
be reached by relaxation alone. b The energy difference δ4 ≡ 2ϵ2(K) − ϵ1(Γ) − ϵmin

4 provides an
necessary condition for open decay channels. If δ4 < 0, band-changing transition 22 → 14 from
K or K′ are not possible. If δ4 ≥ 0, they are energetically allowed. The different contour lines
for δn = 0 correspond to transitions 22 → 1n. Inside the regions bounded by the contours the
respective transitions are energetically possible. The circles highlight experimental parameters
in Figure 4.7.

whereby one is transferred into a lower band, while the other gets excited into even
higher bands. Similarly, atoms in higher bands may collide and both decay into a lower
band, with the excess energy being released into the direction orthogonal to the lattice
plane. Of course, all such processes are subject to energy and momentum conservation,
which can be used to engineer band structures that effectively limit the number of
allowed decay channels. In particular, specific types of band-changing collisions can be
strongly suppressed by choosing appropriate lattice parameters.

In Figure 4.14, we plot the energy landscape for band-changing transitions of the
form 22 → 2n and 22 → 1n, assuming n > 2, as a function of lattice depth V2D and
quantization axis angle θB, where the circle highlights our optimal parameters for con-
densation in the second band. Here, transitions 22 → 2n correspond to band relaxation
in the second band, involving excitations of atoms into higher bands. As apparent from
Figure 4.14a, relaxation in the second band cannot induce band-changing transitions
at typical parameters, meaning it is literally intraband relaxation. This is readily un-
derstood from the fact that the band gap to the next higher band is larger than the
bandwidth of the second band.4 In contrast, for decay processes of the form 22 → 1n,
excitations into higher bands n > 2 are usually energetically allowed. Specifically, Fig-
ure 4.14b clarifies that decay processes involving excitations up to the fourth band may
occur at our optimal parameters. This is consistent with our experimental observation

4Incidentally, this justifies the restriction to a single band space n in our consideration of the local
equilibrium for condensation as discussed in the previous subsection.
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Fig. 4.15: Energy redistribution into lattice tube direction (longitudinal z-direction) after a
quench into the second band for θf

B = 106◦, V2D = 8Erec, and atoms in |2,−2〉. a Bottom: PCO
single-shot TOF images for different hold times TH after the quench. Top: corresponding row
sum profiles yield the longitudinal momentum distribution and associated standard deviation
σz, defined by the square root of the second central moment. b The time evolution of σz after
the quench is depicted by blue data points. Data points highlighted in red refer to TOF images
in a. For comparison, grey data points show σz for a measurement at identical parameters θf

B
and V2D, where the lattice hold time before the quench was varied and TH was fixed to 7 ms.
For both curves, the time axis corresponds to equal total hold times in the lattice. Each data
point is an average of 6-8 measurements, where error bars denote the corresponding standard
deviations.

that less atoms aggregate in the lowest band than are decaying from the second band
during stage III of the dynamical evolution (see subsection 4.3.2). Note that for slightly
smaller angles θB these transitions can be tuned out of resonance.

Though fine-tuning of lattice parameters can inhibit certain decay paths, transitions
such as 22 → 12(11) and 21 → 11, implying excitations orthogonal to the lattice plane,
most likely cannot be avoided, at least not for the thermal fraction. These transitions
are particularly problematic because they do not only decrease the number of atoms in
the second band but, which is much more severe, they impart a lot of kinetic energy
to the system. This in turn will cause strong heating and thus deplete the condensate.
At our optimal parameters, for example, we have a large band gap on the order of
∆12 ≈ 4Erec. For this reason, even a small number of decaying atoms will suffice to
rapidly increase the temperature of the bosonic ensemble and to destroy the condensate.

Experimentally, we have evidenced the decay-induced increase of energy along the
lattice tubes by observing the longitudinal momentum distribution for varying hold
times TH after the lattice quench. In Figure 4.15, we present results of a corresponding
measurement. Here, the momentum distribution is imaged from the transverse direc-
tion (-x-axis) by means of the PCO camera (compare section 2.4). For TOF images
that are displayed in Figure 4.15a, the lattice plane is oriented vertically, whereas the
horizontal axis corresponds to the tube direction. By analyzing the horizontal profiles,
we extract the second central moment σ2

z of the longitudinal momentum distribution.
In Figure 4.15b, we plot the time evolution of σz for hold times up to 100 ms (blue data
points). Obviously, there is a substantial and rapid increase of the momentum width
during stages I and II. Meanwhile, it slows down during stage III, where the condensate
has vanished. We stress that it is unclear whether the increase of σz during stage I can
be uniquely attributed to the excess energy of the condensation process or is merely
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4.6 Basic aspects of condensate formation and dissolution

a consequence of an early decay from the second band. Most probably, it stems from
both. For comparison, we also show a reference curve (grey data points) for the time
evolution of the momentum width, where the hold time before the quench was varied
and we had chosen TH = 7 ms at otherwise identical quench parameters. Here, the
increase of the momentum width is considerably slower, which proves that the rapid in-
crease in the former case is indeed a result of intra- and interband relaxation dynamics
and cannot be explained, for example, by intrinsic lattice heating. Besides, it directly
visualizes the role of the transverse confinement as an energy and entropy reservoir.

We note that decay rates for all transitions as discussed above can be, in principle,
estimated from Fermi’s golden rule. Based on this, extensive analyses of intraband
relaxation and band kinetics have been performed by Paul and Tiesinga [245] in the
context of a two-dimensional bipartite square lattice, as well as by Sharma et al. [242]
for a one-dimensional double-well lattice. In addition to it, general stability properties
of condensates in higher bands have been studied for similar one- and two-dimensional
lattice systems in the conventional framework of order parameters, showing that life-
times in higher bands can be affected by the presence of dynamical instabilities [246,
247]. We emphasize that similar work for two-dimensional hexagonal lattices, as in
our case, is currently lacking. Anyway, as valuable as such studies might be, they will
usually miss an important ingredient that is notoriously hard to keep track of, namely
coherences and interferences among various decay channels, which can be crucial to
explain the stability of orbital condensates.

For condensed atoms in a chiral state of a bipartite square lattice, it has been shown
that decay is inhibited by destructive inference of two principal decay channels [81].
Here, the condensate gives rise to an effective many-body dark state with respect to
internal de-excitation into the lowest band, while its observed depletion happens only
via successive rethermalization with the decaying thermal background. A similar mech-
anism might be at work in our case, which is, however, yet an open question. Never-
theless, we emphasize that the observed time evolution of the thermal and condensed
fraction in the second band of the boron-nitride lattice is perfectly amenable to the
same physical interpretation as provided by the authors. In fact, our data is almost in
one-to-one correspondence with the simulated data presented in that work. Following
the same narrative, the condensed fraction is protected from decay, whereas thermal
atoms continuously relax into the lowest band. The latter leads to heating and causes
condensed atoms to transition into the thermal fraction of the second band, which can
overcompensate the decay and cause an increasing thermal fraction during the dynam-
ical stage II, as clearly evidenced in our case in Figure 4.8. In view of this, it seems
that a general strategy for engineering long lifetimes of orbital condensates should be
to avoid thermal atoms in higher bands in the first place. Giving the intriguing con-
densation process in higher bands, this is of course only possible to a limited extent.
Alternatively, one could use the large longitudinal momentum transfer to achieve a
spatial separation between decaying thermal atoms and the condensate before thermal-
ization can set in. For example, additional laser beams at the periphery might serve as
a trap for hots atoms that are able to surpass a certain potential hill, allowing for their
selective isolation. In any case, there are many exciting possibilities yet to be explored.
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Fig. 4.16: Expected transfer fractions into higher Bloch bands n ∈ {2, 4, 5, 7} of the boron-
nitride lattice for a sudden quench via a spin flip |1,−1〉 → |1,+1〉. Each plot depicts the
corresponding overlap Sn ≡ |〈n,Γ;mF = +1|1,Γ;mF = −1〉|2 to the n-th target band as a
function of lattice depth V2D and quantization axis angle θB. During the quench, θB is held
constant. For experimentally accessible lattice depths, spin flips allow only for a transfer into
the second and fourth band but not into higher ones. The circle in the first plot highlights the
parameters from Figure 4.17.

4.7 Condensation via spin flip

In addition to a fast rotation of the quantization axis, we have investigated spin flips
|F, m̄F 〉 → |F,−m̄F 〉 in the boron-nitride lattice as an alternative method to induce
quenches of the sublattice energy offset and to create orbital condensates in the second
band. Here, spin flips are accomplished by applying a π-pulse as explained in sub-
section 2.4.2. Similar to a rotation, for certain lattice depths V2D and quantization
axis angles θB, there is a finite overlap between the initial ground state and higher
Bloch states of the final potential configuration, allowing for a targeted transfer into
higher bands. In fact, for a given angle θB, a spin flip is equivalent to a rotation
θB → θf

B = 180◦ −θB. Spin flips, however, can often be accomplished on a much shorter
time scale than the rotation of the quantization field, thus promising larger transfer
fractions.

In Figure 4.16, we plot the expected transfer fractions into higher bands as a func-
tion of V2D and θB for a sudden lattice quench based on a spin flip |1,−1〉 → |1,+1〉.
Clearly, a targeted population transfer into the second and fourth band is possible for
realistic lattice depths over large regions of the parameter space. However, a system-
atic experimental investigation is more involved than in the case of a rotation of the
quantization field. The reason is twofold: First, light shifts and mean-field interactions
in the lattice may shift the resonance position for a spin flip to a new, a priori unknown
frequency νr(V2D, θB) as compared to the value ν0 in the absence of the lattice. Second,
the Rabi frequency Ω for the spin rotation depends on the driving field component B⊥

rf
that is perpendicular to the external quantization field Bext(θB). Therefore, each time
V2D and θB is varied, new parameters of the π-pulse, namely driving frequency νRF and
pulse duration τ , must be found to yield a proper spin flip. In particular, for certain
θB, the component B⊥

rf can be so small that spin flips become impossible for short pulse
durations τ , say below 200 µs. Keeping short pulse durations would require rotating the
RF antenna in order to change its polarization, which is not practicable in our setup.
Despite all this, it is possible to find reasonable parameters that allow the realization
of an orbital condensate in the second band, as we demonstrate in the following.

104



4.7 Condensation via spin flip

0 10 20
V2D (Erec)

0

0.5

1

F
C

ov
er

la
p

a

c

b

0

0.3

-14 -12 -10 -8 -6 -4
frequency di,erence (kHz)

0

0.1

0.2

0.3

v
is
ib

il
it
y

Fig. 4.17: Spin-flip-induced condensation in the second band for an initial potential configura-
tion with θB = 54◦, V2D = 9.4Erec, and atoms in |1,−1〉. a Top panel: Single-shot absorption
images after sudden release and Stern-Gerlach separation for different frequencies νRF of the
RF driving field. Images were obtained for a fixed hold time TH = 7 ms after the RF pulse.
Lower panel: Visibility in the second band as a function of νRF − ν0, where ν0 denotes the
resonance frequency for a π-pulse in the absence of the lattice. Each data point is an average of
2-3 measurements, where error bars denote the corresponding standard deviations. b Schematic
energy diagram for RF coupling in the manifold F = 1 in presence of the boron-nitride lattice.
A cross section of the lattice potential and individual Bloch orbitals (1,Γ; m̄F ) and (2,Γ; m̄F ) is
visualized for each m̄F substate. The large overlap between ψi = (1,Γ; −1) and ψf = (2,Γ; +1)
leads to efficient transfer into the second band in case of a spin flip |1,−1〉 → |1,+1〉. c Frank-
Condon (FC) overlaps between initial and different final Bloch states (n,Γ; m̄F ) as a function
of the lattice depth V2D. The vertical dashed line marks the experimental value in a.

Figure 4.17 presents a measurement where the frequency νRF was varied across the
resonance for a spin flip |1,−1〉 → |1,+1〉 in a lattice with V2D = 9.4Erec and θB = 54◦.
These parameters provide a final sublattice energy offset as in the case of the field
rotation in section 4.3. The experimental data has been obtained by the following
sequence: First, we create a spin-polarized BEC in the XDT in the Zeeman substate
|1,−1〉. Next, the external quantization axis is adiabatically rotated to an angle θB =
54◦ at a field magnitude Bext ≈ 2.17 G, corresponding to a Larmor frequency ν0 =
1.519 MHz. Subsequently, the lattice is ramped up exponentially within 100 ms to its
final lattice depth. After a wait time of 2 ms, a π-pulse with a variable frequency νRF
is applied for the duration τ = 145 µs. We then wait for another 7 ms to allow for
recondensation and eventually observe the momentum distribution after TOF, where
we use Stern-Gerlach separation to distinguish between different m̄F components. We
stress that the value of the pulse duration τ is determined beforehand by verifying that
it gives a pure spin flip for θB = 54◦ in the absence of the lattice.

In the top panel of Figure 4.17a, we show exemplary single-shot absorption images
for different set values of νRF. Note that the initial component m̄F = −1 exhibits no
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long-range phase coherence due the very small bandwidth in the lowest band, which
amounts to roughly 5 Hz. As we scan from left to right, we clearly encounter a resonance
where atoms are transferred to the new spin state m̄F = +1 and establish long-range
phase coherence in the second band. This shows that condensates in the second band
can be realized also via spin flips. By evaluating the visibility of Bragg peaks in the
component m̄F = +1 at quasimomenta K and K′, we obtain the plot in the lower
panel of Figure 4.17a. Note that the visibility is plotted as a function of the frequency
difference νRF − ν0. Specifically, one observes that the resonance frequency for a spin
flip in the given lattice potential is shifted by nearly δν ≈ −10 kHz. We note that level
shifts, as sketched in Figure 4.17b, yield a contribution δνL ≈ −17 kHz. We suppose
that the remaining difference to the observed value is explained by an additional positive
shift from mean-field interactions.

Strikingly, by scanning the drive frequency one also observes a regime with an ap-
parent finite long-range phase coherence in the component m̄F = 0, which is associated
with the occupation of the Bloch state |1,Γ〉 and can be explained as follows: For an
off-resonant RF pulse, the time evolution of the spin state (equation (2.63)) will gener-
ally lead to a non-vanishing population in the Zeeman substate m̄F = 0. A necessary
condition, of course, is that there is a finite Frank-Condon overlap for the respective
external orbitals, which is indeed the case for the given lattice parameters, as we clarify
in Figure 4.17c. Besides, the bandwidth of the lowest band for m̄F = 0 amounts to
approximately 60 Hz as the sublattice energy offset vanishes, thus allowing for efficient
tunneling and the manifestation of phase coherence.

In summary, we have examined spin flips as a method to create condensates in the
second Bloch band of the boron-nitride lattice and verified that appropriate parameters
exist to accomplish this goal. Future studies may focus on systematic investigations of
attainable transfer fractions and resulting lifetimes of the metastable states, including
condensates in the fourth band.

4.8 Conclusion & Outlook

In this chapter, we have demonstrated the successful realization of unconventional con-
densates in the second and fourth band of a spin-dependent optical boron-nitride lattice.
As the main result of our studies, we observed evidence for a chiral superfluid order in
the second band, i.e. an orbital condensate that breaks the time-reversal symmetry. At
present, however, the lifetime of this metastable state does not suffice to reveal strong
and unequivocal symmetry breaking in the momentum distribution.

Starting with an introduction to several fundamental aspects of orbital condensates,
we have conducted detailed analyses of lattice quenches induced by rapid rotations of
the external quantization field. In general, such quenches for the spin-dependent lattice
provide efficient means for a population transfer from the lowest into specific higher
target bands. The transfer is conveniently pictured as a Landau-Zener transition, where
the finite rotation speed and the finite overlaps between initial and final Bloch states
limit the transfer probability. The experimental transfer fractions have been mapped
over the full accessible parameter space, demonstrating that targeted transfer can be
achieved up to the fifth band and beyond.
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Fig. 4.18: Expected transfer fractions into higher Bloch bands n ∈ {2, 4, 5, 7} of the boron-
nitride lattice for a sudden quench via a lattice translation ∆R = −(a1 + a2)/3, with atoms in
the Zeeman substate |2,−2〉. Each plot depicts the corresponding overlap Sn ≡ |〈n,Γ; f|1,Γ; i〉|2
to the n-th target band as a function of the lattice depth V2D and quantization axis angle θB.
Labels i and f refer to the Bloch states of the initial and final potential configuration, respectively,
i.e. before and after the lattice shift. During the shift, θB is held constant. White vertical lines
mark the high symmetry angle θB = 90◦, where the two sublattices of the boron-nitride lattice
become degenerate.

Using this method, we have studied the nonequilibrium dynamics induced by a quench
into the second and fourth Bloch band, respectively, and identified three distinct stages
with separated time scales: During stage I, atoms quickly condense in a transient
metastable state of the target band. During stage II, the number of condensed atoms
gradually diminishes by transitioning into thermal atoms of the target band. Finally,
during stage III, no condensed atoms are left and a pronounced decay of thermal atoms,
mainly into the lowest band, sets in. Our findings are in excellent agreement with a
related study [81] in the context of a bipartite square lattice, which indicates that
destructive many-body interference may play a crucial role in the hexagonal lattice for
stabilizing orbital condensates against decay.

Furthermore, coherence in higher bands was analyzed over large regions of the pa-
rameter space, revealing characteristic islands where condensation is possible. Based on
this, we have discussed several basic aspects of condensate formation and dissolution in
higher bands and elaborated on relevant intraband and interband relaxation processes.
In particular, we clarified the importance of the longitudinal confinement as an energy
and entropy reservoir: The energy redistribution along the lattice tubes was directly
evidenced for all three dynamical stages. While band structures can be engineered
that allow to suppress decay channels involving excitations into higher bands, certain
processes implying excitations orthogonal to the lattice plane likely cannot be avoided,
at least not for thermal atoms. At the same time, it is these processes that introduce
strong heating and thus constitute a major limitation for the lifetimes of the realized
orbital condensates.

Finally, we have demonstrated that condensation in higher bands of a spin-dependent
optical boron-nitride lattice is also possible via RF-induced spin flips. Here, further
systematic investigations need to be conducted. Another promising route towards large
transfer fractions into higher bands – and perhaps smaller thermal fractions – that
we have not yet considered is provided by abrupt lattice shifts. The main advantage
compared to the rotation of the quantization axis is that lattice shifts can be readily
accomplished on a much shorter time scale of a few microseconds only. In Figure 4.18,
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we plot the expected transfer fractions for an exemplary lattice shift of the boron-nitride
lattice that allows direct population transfer up to the seventh band, in contrast to the
spin flip. Moreover, lattice shifts could also be used to excite atoms into higher bands of
lattice potentials that have a vanishing vector light shift, such as the triangular lattice
that is realized for an out-of-plane polarization of the lattice beams. The triangular
lattice opens up new exciting possibilities for creating orbital condensates in a threefold
degenerate manifold. For example, for atoms in the second band of a triangular lattice,
a quantum stripe ordering [69] as well as intertwined superfluidity and density wave
order [72] have been predicted. In this regard, it would be particularly illuminating to
apply new probing techniques, such as the recently presented quantum gas magnifier
[248], for resolving these states directly in real space.
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5 Time-resolved measurements of the
anomalous Hall velocity
In this chapter, I report on measurements of the anomalous velocity for
bosonic atoms in an accelerated optical boron-nitride lattice. We start with
a brief introduction to the Berry calculus and provide results of a numerical
calculation of the Berry curvature. Based on this, we discuss the semiclas-
sical equations of motion for Bloch states subject to a uniform force field
and illustrate the resulting trajectories in momentum and real space for dif-
ferent types of forcing. Next, the experimental approach for inertial forcing
via lattice acceleration is presented, and the transformation into the comov-
ing frame is reviewed. Following this, we examine the coherent evolution of
Bloch states in a moving lattice to first order in adiabatic perturbation theory
and establish an explicit connection to experimentally observed momentum
distributions after time-of-flight. Finally, we present measurements of the
anomalous velocity for different forcing protocols and compare the results to
numerical calculations.

The response of Bloch electrons to external forces is one of the oldest problems in the
physics of crystalline solids. A rather late insight was that the geometric structure
of Bloch bundles over the Brillouin zone can have fundamental implications for the
induced dynamics of electrons. Specifically, in the realm of semiclassical wave-packet
dynamics, the geometry of Bloch bundles enters the equations of motion via the Berry
curvature, which acts similar to a magnetic field: Upon external forcing, in the presence
of a non-vanishing Berry curvature, Bloch states will acquire a velocity component that
is perpendicular to the instantaneous direction of the force. This so-called anomalous
velocity is a purely intrinsic effect that lies at the heart of the anomalous Hall response
and gives rise to many fascinating transport phenomena, including the anomalous Hall
effect (AHE) [249], the spin Hall effect (SHE) [250], as well as their quantized versions,
the QAHE and QSHE [88, 251–253]. The latter two, for example, manifest in what
has become known as Chern insulators and topological insulators, respectively [176,
254–256].

In real crystal solids, observing induced electron wave-packet dynamics is notoriously
hard, mostly due to inherent short times for scattering off lattice defects. Though cer-
tain semiconductor nanostructures may provide a remedy, measured Hall response data
is in general influenced by the presence of additional extrinsic effects, whose strength
may not be known a priori. In practice, it therefore proves difficult to disentangle in-
dividual contributions and to unequivocally identify the intrinsic one associated with
the anomalous velocity.1 In this chapter, we report on the direct observation of the

1See, for example, a recent measurement by Schmidt et al. [257].
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anomalous velocity for ultracold bosonic atoms in an accelerated optical boron-nitride
lattice, where the measured time-resolved Hall response reveals the local Berry curva-
ture along the forced trajectory in reciprocal space. In addition, by forcing condensed
atoms in the second band, we demonstrate geometric “charge” pumping reminiscent of
the valley Hall effect [96, 97].

Probing the anomalous Hall response in ultracold atom systems is not new. In fact,
Hall drift measurements have been employed successfully in a number of experiments
to reveal the topological character of engineered quantum states [54, 56, 57]. So far,
existing probe schemes, however, have exclusively focused on detecting the real-space
in situ deflection of atomic clouds and did not provide quantitative measurements of
the anomalous velocity itself. At typical experimental parameters, real-space Hall de-
flections are rather small, amounting to only a few lattice sites per forcing cycle, which
can be demanding to resolve. In contrast, here we study the dynamical response in mo-
mentum space, which is readily accessible from conventional time-of-flight images. In
particular, we trace the coherent evolution of Bloch states under an adiabatic perturba-
tion. This approach has basically two advantages: First, even when the real-space Hall
deflections are too small to be resolved, the momentum distribution can still yield accu-
rate results for the instantaneous anomalous velocity. Second, observing the momentum
distribution naturally provides insights into the coherent interference mechanism that
underlies the anomalous velocity: Though, at its core, it builds on a purely geometrical
property encoded in the Berry curvature, the physical manifestation as a dynamical
effect invokes the coherent admixture of higher Bloch states, making it a genuine inter-
ference transport phenomenon. This aspect usually does not become apparent from in
situ observations.

Experimental data presented in this chapter has been acquired by the author in the
team of J. Simonet and T. Klafka. The measurements have been conceived and pro-
posed by the author. Data analysis and numerical calculations have been performed
by the author. Theoretical work related to our considerations can be found in [258,
259]. In what follows, we assume that the reader is familiar with some basic aspects
of topological band theory and the quantum geometric phase. A general and compre-
hensive presentation is given by Bohm et al. [163]. For topological band theory in the
context of cold atoms we encourage to consult the recent review by Cooper et al. [92].
An excellent review on semiclassical wave-packet dynamics is provided by Xiao et al.
[88] and references therein.

The structure of this chapter is the following: In the first section 5.1, we give a brief
review on the Berry calculus and present exact numerical calculations of the Berry cur-
vature for our tunable boron-nitride lattice. Based on this, we discuss the semiclassical
motion of Bloch states subject to a uniform force and illustrate exemplary trajectories in
the momentum and real space. In section 5.2, we elucidate our experimental approach
for inertial forcing and review transformations into the comoving frame. Following
this, in section 5.3, we examine the coherent evolution of Bloch states in the comoving
frame to first order in adiabatic perturbation theory and establish explicit connection
to the observed momentum distribution after time-of-flight. Finally, in section 5.4,
we present direct measurements of the anomalous velocity and compare the results to
numerical calculations. We conclude and give a brief outlook on further experiments in
this direction in section 5.5.

110



5.1 Berry calculus

5.1 Berry calculus

In this section, we briefly review the Berry calculus and present exact numerical cal-
culations of the Berry curvature tensor for our tunable boron-nitride lattice. Based on
this, we discuss the effects of a non-vanishing Berry curvature on the motion of forced
atoms prepared in a non-degenerate band at a quasimomentum k.

5.1.1 Berry curvature calculation

Consider a Bloch Hamiltonian ĥ(k) with associated Bloch modes {|unk〉} and eigenen-
ergies {ϵn(k)}, as introduced in subsection 3.1.2. In what follows, we define the Berry
curvature 2-form of the n-th Bloch band at quasimomentum k as

Ωn(k) ≡ i
∑

m 6=n

〈unk| [dĥ(k)] |umk〉 ∧ 〈umk| [dĥ(k)] |unk〉
[ϵn(k) − ϵm(k)]2

= 1
2

Ωn
µν(k) dkµ ∧ dkν , (5.1)

where summation over repeated indices is implied. Here, d is the exterior derivative
and ∧ denotes the wedge product. Besides, we define the Berry curvature tensor

Ωn
µν(k) ≡ i

∑
m 6=n

〈unk| ∂µĥ(k) |umk〉 〈umk| ∂ν ĥ(k) |unk〉 − (ν ↔ µ)
[ϵn(k) − ϵm(k)]2

, (5.2)

with the abbreviation ∂µ ≡ ∂/∂kµ. We stress that the individual contra- and covariant
components labeled by Greek indices µ, ν can refer to any basis for the local coordinate
representation of Ωn(k), but will usually imply cartesian coordinates. For compactness,
let us now introduce the expression

Snm
µ (k) ≡ 〈unk| ∂µĥ(k) |umk〉 . (5.3)

Since the Bloch Hamiltonian is Hermitian, it follows that Snm
µ = [Smn

µ ]∗. With this, we
may write the Berry curvature tensor in the compact notation

Ωn
µν(k) = −2

∑
m 6=n

Im
(
Snm

µ (k)Smn
ν (k)

)
[ϵn(k) − ϵm(k)]2

. (5.4)

By expanding the Bloch modes according to equation (3.20) and noting that ∂µĥ(k) =
ℏ(p̂µ + ℏkµ)/ma, where ma denotes the atomic mass, we obtain

Snm
µ (k) = ℏ2

ma

(
kµδnm +

∑
G
c∗

nk(G)cmk(G)Gµ

)
. (5.5)

Once the expansion coefficients {cnk(G)} and {cmk(G)} are determined from a numer-
ical diagonalization of the Bloch Hamiltonian, equation (5.5) is easily evaluated for all
m < M , where M denotes an upper bound for summation over band indices. Using
equation (5.4), we then directly arrive at an approximation for the Berry curvature. It is
worth noting that the Berry curvature tensor, by definition, is an antisymmetric tensor:
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Fig. 5.1: Berry curvature tensor components Ωn
xy(k) for the first (n = 1) and second (n = 2)

band of the boron-nitride lattice, plotted over a primitive reciprocal unit cell (grey rhombus).
For the lattice potential, we assume atoms in the Zeeman substate |1,−1〉 and a quantization
axis angle θB = 0◦. a-d For lattice depths V2D = (1, 2, 2.5, 3)Erec, respectively. In general, there
is a concentration of Berry curvature at the vertices of the Brillouin zone, i.e. at quasimomenta
K and K′. Note that Ωn

xy(K) = −Ωn
xy(K′), as expected for a time-reversal symmetric Bloch

Hamiltonian. With increasing lattice depth, the Berry curvature in the second band acquires a
non-trivial texture due to the increased relative proximity of higher bands. e-f Exemplary band
structures for the lattice depths V2D = 1Erec and 2.5Erec.

Ωn
µν(k) = −Ωn

νµ(k). Moreover, it is real-valued and gauge invariant. For time-reversal
symmetric Bloch Hamiltonians, it obeys the symmetry relation Ωn

µν(k) = −Ωn
µν(−k).

In Figure 5.1, we plot the tensor component Ωn
xy(k) for an exemplary configuration

of our spin-dependent boron-nitride lattice. Specifically, we consider the potential for
atoms in the Zeeman substate |1,−1〉 with the parameter θB = 0◦, leading to broken
inversion symmetry with a maximal sublattice energy offset and opened Dirac cones
between the two lowest Bloch bands. Clearly, for shallow lattices, the Berry curvature
of the first and second band is well-localized around the vertices of the Brillouin zone,
i.e. at the quasimomenta K and K′, as expected from the minimal band gap at these
points. In this regime, the Berry curvature distribution features opposite signs for the
first and second Bloch band. For increasing lattice depths, the respective distributions
get broader and can acquire more complicated structures due to the enhanced relative
proximity of higher bands: For example, the Berry curvature of the second band may
vanish at K and K′ and even undergo a sign change, as evident from Figure 5.1c-d. We
note that Berry curvature distributions as shown here can be mapped out directly via
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5.1 Berry calculus

special tomographic techniques, as demonstrated by Fläschner et al. [94].
For completeness, we mention that a Bloch state in the n-th band picks up, in addition

to a dynamical phase factor, a geometric phase factor exp(iγn) upon adiabatic transport
along a closed path C in reciprocal space [84]. Here, the phase

γn(C) ≡ i
∮

C
dk 〈unk| ∇k |unk〉 = 1

2

∫
S

Ωn
µν(k) dkµ ∧ dkν (5.6)

is known as the adiabatic Berry phase to the n-th band, which depends only on the
Berry curvature flux through the surface element S bounded by the closed path C ≡ ∂S.
In particular, for the first band, this phase is in general nonzero for a path enclosing a
single Dirac point. We note that the associated geometric phase becomes a topological
one in the limit θB → 90◦, i.e. when the Dirac cones of the first and second Bloch band
intersect. In fact, the Berry curvature in this case approaches zero everywhere except at
the Dirac points, where it diverges such that γ1(C∗) → ±π for any path C∗ that encloses
a Dirac point exactly once.2 We emphasize that the geometric and topological phase
around such degeneracy points has been successfully measured and studied in cold atom
experiments by means of interferometric techniques in momentum space [93].

For gapped two-dimensional periodic systems, it is well-known that Bloch bands can
be classified by a topological invariant known as the first Chern number [164], which is
an integer. It is defined for the n-th Bloch band via

Cn
1 ≡ 1

2π

∫
T̃2

Ωn = 1
4π

∫
BZ

Ωn
xy(k) dkxdky , (5.7)

where integration has to be performed over the Brillouin zone torus T̃2, i.e. over the
entire first Brillouin zone. It immediately follows from our above symmetry consider-
ations that the first Chern number of any Bloch band must vanish for time-reversal
symmetric Bloch Hamiltonians. This is in perfect agreement with results obtained by
numerical integration of the calculated Berry curvatures.

5.1.2 Semiclassical equations of motion

We now focus on the effects of a non-vanishing Berry curvature on the motion of atoms
subject to a uniform force F(t) in a periodic potential, where the force can be time-
dependent in general. We will assume atoms prepared in a single band n at some initial
quasimomentum k0. When the force remains sufficiently weak such that transitions into
other bands can be neglected on a relevant time scale, an adequate description of the
semiclassical wave-packet dynamics is provided by the following single-band equations
of motion, stated for a three-dimensional lattice system [88–90]:

k̇(t) = F(t)/ℏ , (5.8a)
vn(t) = ℏ−1∇ϵn(k(t)) − k̇(t) × Ωn(k(t)). (5.8b)

2The sign depends on the Dirac point and the limiting procedure, i.e. whether θB = 90◦ is approached
from above or below.
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5 Time-resolved measurements of the anomalous Hall velocity

In this notation, k(t) denotes the time-dependent gauge-invariant quasimomentum, and
vn(t) is the mean velocity of the time-evolved Bloch state. Here, Ωn(k) is the so-called
pseudovector form of the Berry curvature: Its components are given by [88]

(Ωn(k))ρ ≡ 1
2

Ωn
µν(k)εµνρ , (5.9)

where εµνρ is the Levi-Civita tensor and summation over repeated indices is implied.
The first term on the right-hand side of equation (5.8b) is known as the group velocity
vn

g (k(t)), whereas the second term is the anomalous velocity vn
a (k(t)). Evidently, the

anomalous velocity is proportional to the Berry curvature and forcing strength. More-
over, it points perpendicular to the force F(t). In other words, whenever k(t) passes
regions with non-vanishing Berry curvature in a given band n, one acquires a velocity
component transverse to the time derivative of k(t).

Since we are dealing with a uniform force F(t), which does not depend on the position
coordinate r, equation (5.8) decouples and is particularly easy to solve: For the sake
of clarity, assume that the force is turned on at t0 = 0. The solution for k(t) is then
simply given by

k(t) = k0 + 1
ℏ

∫ t

0
dτ F(τ) , t > 0. (5.10)

Then, by plugging this into the right-hand side of equation (5.8b), one directly obtains
the time evolution of the mean velocity vn(t) = vn

g (k(t))+vn
a (k(t)). We emphasize that

equation (3.35) can be used to calculate the group velocity without invoking derivates of
the band structure, which is advantageous for numerical calculations. In the following,
let us focus on a two-dimensional lattice with a uniform force that lies within the lattice
plane. We denote by {ex, ey, ez} an orthonormal basis, where ex, ey are vectors in the
lattice plane. With the convention that Ωn

µν = 0 if µ or ν is equal to z, the anomalous
term can be recast as

vn
a (t) = −

[
k̇y(t)ex − k̇x(t)ey

]
Ωn

xy(k(t)) . (5.11)

To gain insights into solutions of the semiclassical equations of motion for our boron-
nitride lattice, we consider constant forcing in the lowest Bloch band along three distinct
orbits in reciprocal space, as illustrated in Figure 5.2a: In all cases, the quasimomentum
follows a straight path or geodesic. The corresponding time evolution of the mean
velocity is depicted in Figure 5.2b-c. For convenience, we introduce the gauge-invariant
quantity κn(t) ≡ maℏ−1vn(t), which has same units as the quasimomentum and will be
called mean momentum for short. It is illuminating to decompose κn(t) into longitudinal
and transverse components according to

κn
l,t(t) ≡ ma

ℏ
〈vn(t), el,t〉 , (5.12)

where (el, et) denotes a local right-handed orthonormal basis in which el points in the
direction of the force. Obviously, when the group velocity has vanishing contribution
to κn

t , the transverse component is a direct measure of the anomalous velocity and thus
the Berry curvature, i.e. one has κn

t et = maℏ−1vn
a . For example, this is the case for
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Fig. 5.2: Semiclassical dynamics of Bloch states under uniform forcing in a hexagonal boron-
nitride lattice. a Sketch of three different forcing orbits in the reciprocal space: 1 From Γ → Γ
across the vertices K′, K of the Brillouin zone, 2 from Γ → Γ across the M point, and 3
from K′ → K′ parallel to the previous direction. b Resulting time evolution of the respective
longitudinal (red) and transverse (blue) momenta ℏκl,t(t) ≡ ma 〈v(t), el,t〉 of the first band for
an exemplary configuration of the boron-nitride lattice: atoms in the Zeeman substate |1,−1〉,
lattice depth V2D = 1Erec, and quantization axis angle θB = 60◦. Here, (el, et) denotes a
local right-handed orthonormal basis, where el points into the direction of the external force.
The time on the horizontal axis is specified in units of the corresponding Bloch period T . We
consider a forcing strength F/ℏ = 2.31 |b1| ms−1 in all three cases, which gives T1 ≈ 0.75 ms,
T2,3 ≈ 0.43 ms. c Associated time evolution of the total momentum κ in reciprocal space, where
time is encoded by the colormap. d Similarly, related trajectories in real space, where 1 and
2 yield closed periodic orbits, while 3 results in a net transverse Hall drift.

protocols 1 and 2 in Figure 5.2, where forcing is performed along high-symmetry lines
of the Brillouin zone. Specifically, in 1 , the traversed path in reciprocal space visits
the K′ and K points, where atoms encounter a strong Berry curvature that causes large
transverse deflections in opposite directions, respectively. If there was no transverse
component due to the anomalous velocity, atoms would just perform ordinary Bloch
oscillations as described by the longitudinal component κn

l . This is indeed the case for
the protocol 2 as the Berry curvature always vanishes along the corresponding path
(compare Figure 5.1). Meanwhile, the situation is more complicated for 3 , where the
orbit k(t) periodically visits regions of one and the same sign of the Berry curvature,
leading to a nonzero net anomalous Hall drift after each cycle. The resulting trajectory
in real space is depicted in the lowest panel of Figure 5.2d. In fact, this constitutes
an example of geometric pumping in which periodic particle transport into transverse
direction of the force can be achieved by exploiting the non-vanishing local character
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5 Time-resolved measurements of the anomalous Hall velocity

of the Berry curvature. It should be stressed, however, that the transverse component
κn

t in 3 has contributions from both the group and anomalous velocity, as evidenced
from the nonzero value in between the two equivalent K′ points. The same is true for
a general forcing orbit starting at the quasimomentum k0 = Γ. As we will further
see in the section 5.4, where we present time-resolved measurements of the transverse
mean momentum for the above forcing schemes, the anomalous contribution may still
be uniquely identified by applying a time-reversed protocol. Before we come to that, we
review our experimental approach for generating uniform forcing in the lattice frame of
reference.

5.2 Lattice forcing: experimental approach
For the Hall measurements we are going to present, we do not apply a direct force to
atoms within the laboratory frame of reference. Instead, we use lattice acceleration
via frequency modulation to create inertial forces in the comoving frame. Here, we
elucidate our experimental approach and establish formulas and transformations that
are relevant for further analysis.

5.2.1 Lattice orbits
Recall that our 2D lattice potential VL(r) in the limit of strong external quantization
fields takes the general form

VL(r) =
3∑
k

αk cos(bkr + ∆k) +
3∑
k

βk sin(bkr + ∆k) + const. , (5.13)

where αk and βk denote some constants that may depend on the internal state of the
atom, and {b1,b2,b3} is the set of reciprocal lattice vectors. The latter span a two-
dimensional subspace that defines the lattice plane. So far, we have ignored the relative
phases ∆k ≡ ϵijk(ϕi − ϕj)/2. As we show below, they can be used to move the lattice
along an arbitrary orbit in the lattice plane.

As before, let us denote by {ex, ey} an orthonormal basis within the lattice plane.
In this subspace, we now define the origin R0 = Rxex + Ryey of our optical lattice as
the solution to the following linear equation:(

b2,x b2,y

b3,x b3,y

)
·
(
Rx

Ry

)
+
(

∆2
∆3

)
= 0 . (5.14)

The solution is easily obtained by inverting the matrix, giving

R0 = (b2,y∆3 − b3,y∆2)
ξ

ex + (b3,x∆2 − b2,x∆3)
ξ

ey . (5.15)

Here, we have defined ξ ≡ b2,xb3,y − b2,yb3,x. Without loss of generality, we will assume
that ϕ1 = 0, such that ∆2 = ϕ3 and ∆3 = −ϕ2. Ideally, in the static case, the phases of
the individual lattice beams are constant over time, i.e. ϕi(t) = ϕi. If their frequencies,
however, undergo a small time-dependent variation δωi(t), the beams will pick up an
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additional phase. Assuming that the variation starts at t0 = 0, with the initial condition
ϕi(t ≤ t0) = 0, the total time-dependent phases become

ϕi(t) = −
∫ t

0
dt′ δωi(t′) , t ≥ 0. (5.16)

Hence, if only the frequencies ω2 and ω3 get modulated, the origin of the lattice potential
will exert a motion along the following orbit:

R0(t) = −b2,yϕ2(t) + b3,yϕ3(t)
ξ

ex + b2,xϕ2(t) + b3,xϕ3(t)
ξ

ey , (5.17)

with the corresponding velocity vector

Ṙ0(t) = b2,yδω2(t) + b3,yδω3(t)
ξ

ex − b2,xδω2(t) + b3,xδω3(t)
ξ

ey . (5.18)

Frequently, the inverted equation is more useful. In other words, one considers some
carefully designed velocity orbit Ṙ0(t) that one likes to implement experimentally by
appropriately setting the frequency modulations, i.e. according to

δω2(t) = −b3Ṙ0(t), δω3(t) = b2Ṙ0(t) . (5.19)

Evidently, the individual frequency modulations must increase or decrease at constant
rates to realize constant lattice accelerations.

As an example for a typical lattice orbit, consider the case where only δω3(t) is
nonzero. It then follows that both Ṙ0(t) and R̈0(t) are perpendicular to b3. For an
ideal hexagonal lattice, this also implies that they are parallel to k3, which is the wave
vector of the lattice beam that is modulated. In other words, lattice motion or forcing is
exerted along high-symmetry lines of the underlying Brillouin zone. We note, however,
that this does not hold universally: In the presence of lattice asymmetries, modulating
the frequency of a single lattice beam will in general not result in a lattice motion that
is exactly oriented along the corresponding directions of high symmetry.

5.2.2 Inertial forces in the comoving frame

Clearly, for a moving lattice, the single particle Hamiltonian for atoms in the laboratory
frame takes the form

Ĥ(t) = p̂2

2ma
+ VL(r̂ − R0(t)) . (5.20)

It is insightful to transform the Hamiltonian into the comoving frame, i.e. into the
lattice frame of reference. Specifically, this is achieved by applying the following time-
dependent unitary transformation [174] Û(t) = Û3(t)Û2(t)Û1(t), with the position shift
operator

Û1(t) ≡ exp
( i
ℏ

R0(t)p̂
)
, (5.21)
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the time-dependent energy shift

Û2(t) ≡ exp
(

− i
ℏ
ma
2

∫ t

t0
dτ
[
Ṙ0(τ)

]2)
, (5.22)

and the momentum shift operator

Û3(t) ≡ exp
(

− i
ℏ
maṘ0(t)r̂

)
. (5.23)

The transformed Hamiltonian Ĥcm(t) ≡ Û(t)Ĥ(t)Û † − iℏÛ(t)∂tÛ
†(t) reads

Ĥcm(t) = p̂2

2ma
+ VL(r̂) − F(t)r̂ , with F(t) ≡ −maR̈0(t) , (5.24)

where F(t) denotes the fictitious force felt by atoms as seen from the non-inertial lattice
frame of reference. We have thus shown that lattice acceleration can be used to create
a uniform force field, leading to a bilinear term −F(t)r̂ in the Hamiltonian Ĥcm(t) of
the comoving frame. The semiclassical equation (5.8) refers exactly to a Hamiltonian
of this form.

For static force fields F(t) = F, the Hamiltonian Ĥcm is known as the Wannier-
Stark Hamiltonian. Finding its eigenstates and eigenenergies constitutes the so-called
Wannier-Stark problem, which we shall not delve into.3 In fact, for our purpose it will be
sufficient to consider only the approximate adiabatic state evolution under the action of
Ĥcm(t) for short durations τ , assuming a system initialized in a Bloch state. This is the
focus of the next section 5.3: As a main result, it will provide clear understanding of the
momentum distributions after time-of-flight as observed in the laboratory frame, and,
most importantly, clarify the coherent interference nature that underlies the anomalous
velocity in the semiclassical equations.

5.3 State evolution in adiabatic perturbation theory
Obviously, a nonzero force F(t) breaks the translational invariance of the Hamiltonian
Ĥcm(t) in the comoving frame. As a consequence, Bloch states are no longer eigen-
states to it. Translational invariance, however, can be reestablished by switching to an
intermediate gauge in which the state evolution of Bloch states is studied in the most
transparent manner. For this, we revert the last unitary transformation from Û3(t),
yielding the intermediate-gauge Hamiltonian

ĤI(t) = (p̂ − ℏK0(t))2

2ma
+ VL(r̂) , with K0(t) ≡ ℏ−1maṘ0(t). (5.25)

The price one must pay, so to speak, is that ĤI(t) becomes explicitly time-dependent
even when the force in the comoving frame is static, i.e. Ĥcm is time-independent. If
the introduced comoving quasimomentum K0(t) describes a periodic orbit in reciprocal
space, in the sense that K0(t) = K0(t+ T ) (mod G) for some reciprocal lattice vector

3For a rigorous treatment see, for example, Glück [260].
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5.3 State evolution in adiabatic perturbation theory

G and a fixed period T , then a natural strategy to solve the Schrödinger equation
for ĤI(t) is provided by the Floquet formalism, giving rise to spatio-temporal Bloch
states [261]. Here, we shall not assume such a K0(t) and instead follow a perturbative
approach.

To proceed, we consider the instantaneous eigenstates of ĤI(t) for some fixed time
t = τ . Since ĤI(τ) is translationally invariant, the instantaneous eigenstates are given
by conventional Bloch states

|nkI(τ)〉 ≡ eikr̂ |uI
nk(τ)〉 , (5.26)

which we label with an additional index for clarity. Here, the Bloch modes |uI
nk(τ)〉 are

eigenstates to the associated Bloch Hamiltonian

ĥI(k; τ) ≡ (p̂ − ℏK0(τ) + ℏk)2

2ma
+ VL(r̂) , (5.27)

with corresponding eigenvalues ϵn(k; τ). Note that equation (5.27) has the same form
as the standard Bloch Hamiltonian in equation (3.19) if we introduce a new parameter
q(τ) ≡ k − K0(τ), such that ĥI(k, τ) = ĥ(q(τ)) and ϵn(k; τ) = ϵn(q(τ)). Eventually, it
follows that the Bloch modes can be expanded in the conventional Fourier basis as

|uI
nk(τ)〉 ≡ |unq(τ)〉 =

∑
G
cn(k−K0(τ))(G) |G〉 =

∑
G
cnq(τ)(G) |G〉 . (5.28)

Note that the parametric time-dependence of the Bloch modes is incorporated in the
expansion coefficients {cnq(τ)(G)} via the dependence on the quasimomentum q.

Now, if the external parameter K0(t) and thus q(t) upon real dynamical evolution
varies sufficiently slowly, the adiabatic theorem will hold: Hence, a system prepared
in an instantaneous eigenstate |nkI(t0)〉 at time t0 will remain in the corresponding
manifold of adiabatically connected eigenstates. Specifically, for times t ≥ t0, the state
will evolve to zeroth order according to [84, 163]

|ψI(t)〉(0) = e−iαn(t) |nkI(t)〉 , (5.29)

where the phase angle αn(t) = αdyn
n (t) + αgeo

n (t) is conveniently split into a dynamical

αdyn
n (t) ≡ 1

ℏ

∫ t

t0
dτ ϵn(q(τ)) , (5.30)

and geometric contribution

αgeo
n (t) ≡ −i

∫ t

t0
dτ 〈uI

nk(τ)| ∂τ |uI
nk(τ)〉 = −i

∫
C

dq 〈unq| ∇q |unq〉 . (5.31)

In the last term, C is the path traced out by q with starting point q(t0) and endpoint
q(t). Note that, in the case of a closed path C, the geometric phase defined here is
just the negative of the adiabatic Berry phase γn(t) (equation (5.6)). Here, we assume
a smooth gauge for the phase of the Bloch mode |unq〉 along C. We do not, however,
require that it is necessarily single-valued. For example, by choosing a parallel transport
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5 Time-resolved measurements of the anomalous Hall velocity

gauge, the phase αgeo
n (t) would vanish while being incorporated directly in the Bloch

mode |unq〉.

The zeroth-order adiabatic expansion in equation (5.29) cannot account for the
anomalous velocity. It is merely responsible for the group velocity via equation (3.35).
To explain the anomalous response, one must include admixtures from adjacent bands
due to higher order corrections: To first order in adiabatic perturbation theory one
finds [262]

|ψI(t)〉(1) = e−iαn(t)

|nkI(t)〉 − iℏ
∑

m6=n

bm(t) |mkI(t)〉

 , (5.32)

where the coefficients bm(t), with m 6= n, are given by

bm(t) ≡ 〈mkI(t)| ∂t |nkI(t)〉
ϵn(k; t) − ϵm(k; t)

=
〈umq(t)|

[
d
dt ĥ(q(t))

]
|unq(t)〉

[ϵn(q(t)) − ϵm(q(t))]2

=
∑

µ

q̇µ(t)Smn
µ (q(t))

[ϵn(q(t)) − ϵm(q(t))]2
. (5.33)

Here, Smn
µ (q) is defined as in equation (5.5), such that the different bm(t) are readily

obtained from the numerical calculation of the Berry curvature. We like to stress
the following point: Without loss of generality, we may choose a gauge such that the
expansion coefficients {cnq(G)} of Bloch modes admit the relation

cn,q+J(G) = cnq(G + J) (5.34)

for arbitrary quantum numbers n, q, and reciprocal lattice vectors J, G. Then, if the
orbit described by q(t) is periodic in the sense that q(t) = q(t+T ) (mod J), it follows
that all coefficients bm(t) are also periodic, with the same period T .

Momentum distribution in the intermediate gauge To understand the momentum
distribution of |ψI(t)〉(1), consider the expansion in the Fourier basis:

|ψI(t)〉(1) = e−iαn(t)∑
G

(
cnq(t)(G) − iℏ

∑
m6=n

bm(t)cmq(t)(G)
)

|G + k〉

≡ e−iαn(t)∑
G

(
cnq(t)(G) + dnq(t)(G)

)
|G + k〉

≡ e−iαn(t)∑
G
Cnq(t)(G) |G + k〉 .

(5.35)

From this, we see that the Bragg peaks represented by {|G + k〉} remain stationary,
while their weights {Cnq(t)(G)} “move” along q(t) through reciprocal space. Specifi-
cally, for a periodic orbit in the above sense, the momentum distribution recurs after
time T , being just translated by a corresponding reciprocal lattice vector −J.
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5.3 State evolution in adiabatic perturbation theory

Momentum distribution in the comoving frame Complementary, consider the time-
evolved Bloch state |ψI(t)〉(1) transformed into the original comoving frame:

|ψcm(t)〉(1) ≡ Û3(t) |ψI(t)〉(1) = e−iK0(t)r̂ |ψI(t)〉(1) (5.36)
= e−iαn(t)∑

G
Cnq(t)(G) |G + q(t)〉 . (5.37)

Here, we see that both the Bragg peaks as well as their weights move along q(t).
Obviously, for periodic orbits q(t), this describes a cyclic state with a periodically
recurring momentum distribution, i.e. |ψcm(t+ T )〉(1) ∼ |ψcm(t)〉(1), meaning equality
up to a phase factor. In fact, without the first-order adiabatic correction dnq(t)(G) in
Cnq(t)(G), this would just describe ordinary Bloch oscillations. The connection to the
semiclassical equations becomes immediately apparent by noting that the mean velocity
of the time-evolved Bloch state in the comoving frame is given by

vn(t) ≡ 〈ψcm(t)|(1) m−1
a p̂ |ψcm(t)〉(1) = ℏ

ma

∑
G

|cnq(t)(G)|2 [G + q(t)]

+ ℏ
ma

∑
G

2Re
(
c∗

nq(t)(G) · dnq(t)(G)
)
[G + q(t)] + O

(
dnq(t) · d∗

nq(t)
)
. (5.38)

The first term on the right-hand side is equal to the group velocity vn
g (t), whereas the

second term gives rise to the anomalous velocity vn
a (t). Indeed, using equations (5.4)

and (5.33) it is straightforward to verify that

ℏ
ma

∑
G

2Re
(
c∗

nq(t)(G) · dnq(t)(G)
)
[G + q(t)] =

∑
µν

q̇µ(t)Ωn
µν(q(t))eν , (5.39)

which is equal to the anomalous velocity defined in equation (5.11).

Momentum distribution in the laboratory frame Finally, let us consider the time-
evolved Bloch state in the laboratory frame:

|ψ(t)〉(1) ≡ U †
1(t)U †

2(t)U †
3(t) |ψcm(t)〉(1)

= e−iαn(t)e−iθ(t)∑
G
e−iχ(t,G,k)Cnq(t)(G) |G + k〉 , (5.40)

where we defined the following phase factors:

θ(t) ≡ ma
2ℏ

∫ t

t0
dτ
[
Ṙ0(τ)

]2
, χ(t,G,k) ≡ R0(t)[G + k]. (5.41)

Hence, in the laboratory frame, similar to the intermediate gauge, Bragg peaks remain
stationary, while the associated weights Cnq(t)(G) evolve through reciprocal space. Note
that the individual phase factors in equation (5.40) are unimportant for the observed
momentum distribution: While e−iαn(t) and e−iθ(t) correspond to global phase factors,
the local phase factors e−iχ(t,G,k) do not affect the Bragg peak weights.
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5 Time-resolved measurements of the anomalous Hall velocity

5.4 Measurements of the anomalous velocity
We now present systematic measurements of the coherent evolution of Bloch states in
an accelerated optical boron-nitride lattice. Knowing the precise lattice geometry, we
can readily infer the full time evolution of the anomalous velocity, which gives access
to the local Berry curvature along the forced trajectory in reciprocal space. In the
following, we focus on the three quasimomentum orbits 1 , 2 , and 3 as introduced in
subsection 5.1.2.

The experimental sequence starts with the creation of a spin-polarized BEC in a
crossed optical dipole trap (see chapter 2). For a predefined quantization axis angle θB,
the condensate is then adiabatically loaded into the ground state |1,Γ〉 of the optical
boron-nitride lattice by exponentially ramping up the lattice depth V2D to a desired
value in TR = 100 ms. Following a hold time TH = 50 ms, we apply inertial forcing by
sweeping the lattice beam frequencies ω2,3(t) according to a prescribed protocol. After
a variable forcing time τF , all confining potentials are switched off abruptly, and we
observe the momentum distribution after 36 ms time-of-flight.

Type-1 orbit According to equation (5.18), forcing along the orbit 1 , i.e. along the
high-symmetry line Γ → K′ → K → Γ or vice versa, is readily achieved by setting all
frequency modulations to zero except for δω3(t). In particular, here we consider ω̇3(t) =
±2π ·40 MHz s−1. This leads to an inertial force of magnitude F/ℏ = 2.41 |b1| ms−1 with
a positive and negative sign, respectively. To be precise, we mention that due to the
presence of a small breaking of the hexagonal lattice symmetry (compare Appendix A),
the resulting orbits q±(t) for our modulation scheme do not exactly trace out high-
symmetry lines of the Brillouin zone. In general, they are not even closed. Though one
may compensate for this by introducing an appropriate ω̇2(t) 6= 0, the deviations from
the ideal orbit 1 in our case remain small, and we do not invoke this complication.

In Figure 5.3, we show exemplary TOF images of the momentum distribution probed
for different times τF and for a positive and negative inertial force, respectively. We
compare the experimental results to theoretical predictions based on equation (5.40).
For the calculations, we neglect effects from the external harmonic confinement and
assume atoms localized at a single quasimomentum k(t). Evidently, the calculated
TOF images show excellent agreement with the observed momentum distributions. We
note that the momentum space origin in the laboratory frame has been chosen such
that it corresponds to the “center of mass” of the momentum distribution when no
forcing is applied.

As explained in the previous section 5.3, Bragg peaks in the laboratory frame re-
main stationary during lattice acceleration, while the peak weight or Wannier envelope
follows the comoving quasimomentum K0(t) ≡ ℏ−1maṘ0(t). Recall that the latter is
uniquely determined by equation (5.18) once the reciprocal lattice vectors and frequency
modulations are specified. Here, we directly derive the reciprocal lattice vectors from
the observed locations of Bragg peaks, which provide a calibration of the momentum
scale. The corresponding K0(t) at times τF are visualized in Figure 5.3 by blacked filled
circles. For completeness, we also plot the associated comoving Brillouin zones, depicted
by black hexagons. Note that, with K0(t), also the inertial force F(t) ≡ ℏK̇0(t) as well
as the local coordinate basis (el, et) is now uniquely specified so that the longitudinal
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Fig. 5.3: Comparison between measured and calculated momentum distributions of Bloch
states in the lowest band subject to forcing 1 along Γ → K′ → K → Γ as shown in Figure 5.2:
For atoms in the Zeeman substate |1,−1〉, in a boron-nitride lattice with V2D = 1.3Erec and
θB = 180◦. Momentum distributions were probed for a positive (+F ) and time-reversed negative
(−F ) force at increasing times τF (top to bottom) after switching on a frequency sweep ω̇3(t) =
±2π · 40 MHz s−1, respectively. Times are indicated by numbers in the middle column, in units
of millisecond. Simulated TOF images were obtained from numerical analysis of equation (5.40)
for lattice and forcing parameters as used in the experiment, with Bragg peaks represented by
Gaussians of a common fixed width without additional free parameters. We also account for
the actual lattice geometry (compare Appendix A), determined from the observed locations of
Bragg peaks, which provide a common length scale |b1|. Small axes in the first row indicate
the local coordinate basis (el, et), where el points in the direction of the resulting inertial force.
Black hexagons depict Brillouin zones of the comoving lattice frame, traveling in the opposite
direction. The anomalous velocity becomes manifest as an imbalance or transverse symmetry
breaking between Bragg peaks on opposite sides of the Brillouin zone, as highlighted in the
third and fourth row for quasimomenta close to K′ and K. All images have been normalized
individually to the same colormap. Experimental images depict typical single-shot absorption
images recorded after 36 ms time-of-flight.
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5 Time-resolved measurements of the anomalous Hall velocity

and transverse mean momentum components κl,t(t) can be directly deduced: For this,
we first extract the central moment κ(t) of the TOF distribution with respect to K0(t),
yielding the mean momentum as measured from the comoving frame, and then project
it onto the local basis vectors. The results are summarized in Figure 5.4b,e,h. We like
to point out that the anomalous velocity, since it is aligned into either the positive or
negative transverse direction, must manifest as an imbalance in the occupation of Bragg
peaks on opposite sides of the line that is spanned by el. In Figure 5.3, such an imbal-
ance becomes clearly evident for TOF images in the third and fourth row, where the
relevant Bragg peaks are highlighted by red circles. Note that the imbalance undergoes
a sign change when passing from the quasimomentum K′ to K and vice versa, as one
would anticipate from the alternating sign of the Berry curvature. For forcing along
the orbit 1 , where the group velocity has a vanishing or at least negligible contribution
to the transverse momentum, this is indeed an unequivocal signature of the anomalous
Hall response.

To give a more quantitative analysis of the anomalous velocity, we now have a closer
look at the time evolution of the longitudinal and transverse momentum components
κl,t(±F, t) for the two forcing orientations ±F . Let us first write the mean momentum
as a sum of group and anomalous momentum: κ(±F, t) = κg(±F, t)+κa(±F, t). In gen-
eral, κg(±F, t) can have a non-vanishing contribution κg,t(±F, t) ≡ 〈κg(±F, t), et(±F )〉
to the transverse momentum. To disentangle the anomalous part, one should note that
the initial state is localized at a time-reversal invariant quasimomentum q(0) = Γ. It
then follows that κg(±F, t) = −κg(∓F, t) and hence κg,t(±F, t) = κg,t(∓F, t). Conse-
quently, the anomalous contribution κa(±F, t) can be directly obtained by

κa(±F, t) = κt(±F, t) − κt(∓F, t)
2

. (5.42)

We stress that this implies κa(+F, t) = −κa(−F, t), such that we may focus only on the
component κa(+F, t) in the following.

Figure 5.4 depicts the extracted time evolution of the various momenta κt,l,a(t) for
the above measurement (Figure 5.3). In addition, we present results for two further lat-
tice configurations characterized by larger and smaller band gaps to the second band,
respectively. For all measurements, we used the same forcing protocol 1 , and each
data point is an average of two to three experimental realizations. The individual plots
are arranged in decreasing order of the band gaps (from left to right): For the largest
band gap (Figure 5.4a,d,g), we find an excellent agreement with predictions of the semi-
classical equations. Bloch oscillations are clearly resolved in the measured longitudinal
momentum. Moreover, the measured transverse momentum reveals a nonzero anoma-
lous Hall response κa(+F, t) that reaches a positive maximum near the Dirac point at
K′ and a negative minimum near the second Dirac point at K, exhibiting a character-
istic sign change in between. For a reduced band gap (Figure 5.4b,e,h), the individual
momentum components exhibit similar oscillatory features but with a larger amplitude,
as expected from the increased magnitude of the Berry curvature and band width. In
this regime, the semiclassical single-band equations still provide a reasonable descrip-
tion, though deviations to the measured data become more noticeable. Most strikingly,
the maximum in the measured anomalous momentum κa(+F, t) is reached at signifi-
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Fig. 5.4: Time evolution of the mean velocity of Bloch states in the lowest band in response
to forcing 1 along Γ → K → K′ → Γ and the opposite direction, realized by frequency
sweeps ω̇3(t) = ±2π · 40 MHz s−1, respectively: For atoms in the Zeeman substate |1,−1〉 and
varying lattice configurations (left to right). The sweeps result in corresponding forces (±F )
with a magnitude F/ℏ = 2.41 |b1| ms−1. a-c Dark (light) blue data points depict the measured
transverse momentum κt(±F, t) for a positive (negative) force. Solid (dashed) lines show the
results of the semiclassical equation (5.8). d-f Corresponding longitudinal momenta κl(±F, t).
One expects κl(+F, t) = κl(−F, t) from time-reversal symmetry. g-i Time evolution of the
anomalous momentum κa(+F, t) as obtained from κa(+F, t) ≡ [κt(+F, t) − κt(−F, t)]/2. In all
plots, vertical dashed lines indicate the Bloch period for atoms in a lattice with ideal hexagonal
symmetry, forced with the same strength. Plots in the central column show the results of the
measurement in Figure 5.3. Each data point is an average of 2-3 measurements, and error bars
denote the standard deviations. All theory curves have been obtained for lattice and forcing
parameters as used in the experiment, incorporating measured lattice asymmetries (compare
Appendix A).
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5 Time-resolved measurements of the anomalous Hall velocity

cantly later times. We attribute this behavior to the growing influence of non-adiabatic
transitions into higher bands. Finally, for the smallest band gap (Figure 5.4c,f,i), we
still observe a nonzero Hall response but with a completely different trace that remains
positive over the observed time span. The increasing deviation from the semiclassical
description indicates the breakdown of the first-order adiabatic approximation. Within
the calculations, this is likewise signaled by the diverging anomalous response.

The possible inadequacy of the first-order adiabatic approximation can be checked by
evaluating the sum of the squared amplitudes of the expansion coefficients bm(t) from
equation (5.33). Naturally, a necessary condition for adiabaticity to hold is that

Bn(t) ≡
∑

m6=n

|bn(t)|2 � 1 , (5.43)

up to all relevant times t. Specifically, for the three lattice configurations in Figure 5.4,
we obtain max(B1(t)) ≈ 0.007, 0.22, 84, respectively. We thus conclude that data points
in Figure 5.4g constitute a direct measure of the Berry curvature along the traversed
orbit 1 in reciprocal space, i.e. we have

Ωxy(q(t)) = ℏ
ma

κa(t) [q̇x(t) 〈ey, et〉 − q̇y(t) 〈ex, et〉]−1 . (5.44)

Type-2 orbit The preceding forcing orbit was designed to visit the K and K′ points in
the lowest band, where the Berry curvature is localized, and thus a large Hall response
was measured. For comparison, we now focus on forcing along the orbit 2 , i.e. along
a high-symmetry line Γ → M → Γ (see Figure 5.2) for which no such response should
occur. This time, we choose ω̇3(t) = ∓ω̇2(t) = ±2π · 23.094 MHz s−1, which leads to the
required inertial force, with a similar magnitude F/ℏ = 2.42 |b1| ms−1 as before. We
note that in our convention, the sign of the inertial force (±F ) is identified with the
sign of ω̇3(t).

In Figure 5.5, we show exemplary TOF images of the resulting momentum distri-
butions probed for different times τF and for a positive and negative inertial force,
respectively. As in the previous paragraph, we compare the experimental results to the-
oretical predictions based on equation (5.40). Once again, the calculated TOF images
are in excellent agreement with measured momentum distributions. Most strikingly,
no apparent transverse symmetry breaking in the momentum distributions becomes
manifest. This is further confirmed by evaluating the respective longitudinal and trans-
verse momentum components κt,l(±F, t), which is summarized in Figure 5.6 for the
same set of lattice configurations as in Figure 5.4: Across all configurations, no signif-
icant transverse momentum is observable. The slight modulations that are noticeable
in Figure 5.6b-c are largely attributable to contributions from the group velocity, as
a result of lattice asymmetries and forcing that is not exactly along a high-symmetry
line. Most importantly, the resulting anomalous momentum curves κa(+F, t) are con-
sistently zero within the error bounds. In other words, no anomalous Hall response is
discernible, in agreement with a vanishing Berry curvature along the given forcing orbit
2 . Hence, the system essentially performs ordinary Bloch oscillations, as evidenced
by the time evolution of the longitudinal momentum κl(±F, t). Note that we resolve
nearly two Bloch periods for the observed time span, since the path length is reduced
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Fig. 5.5: Comparison between measured and calculated momentum distributions of Bloch
states in the lowest band subject to forcing 2 along Γ → M → Γ as illustrated in Figure 5.2:
For atoms in the Zeeman substate |1,−1〉, in a boron-nitride lattice with V2D = 2.6Erec and
θB = 180◦. Momentum distributions were probed for a positive (+F ) and time-reversed negative
(−F ) force at increasing times τF (top to bottom) after switching on frequency sweeps ω̇3(t) =
∓ω̇2(t) = ±2π · 23.094 MHz s−1, respectively. Times are indicated by numbers in the middle
column, in units of millisecond, and span a full Bloch period. As before, simulated TOF images
were obtained by numerical analysis of equation (5.40) for lattice and forcing parameters as used
in the experiment. Small axes in the first row indicate the local coordinate basis (el, et), where
el points in the direction of the resulting inertial force. Black hexagons depict Brillouin zones
of the comoving lattice frame, traveling in the opposite direction. In contrast to Figure 5.3, no
transverse symmetry breaking in the momentum distribution is discernible, which indicates the
absence of an anomalous Hall response. All images have been normalized individually to the
same colormap. Experimental images depict typical single-shot absorption images after 36 ms
time-of-flight.
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Fig. 5.6: Time evolution of the mean velocity of Bloch states in the lowest band in response
to forcing 2 along Γ → M → Γ: For sweep slopes ω̇3(t) = ∓ω̇2(t) = ±2π · 23.094 MHz s−1,
atoms in the Zeeman substate |1,−1〉, and varying lattice configurations (left to right) as in
Figure 5.4. Sweep slopes were chosen to yield a similar forcing strength F/ℏ = 2.42 |b1| ms−1 as
for measurements in Figure 5.4. a-c Dark (light) blue data points depict the measured transverse
momentum κt(±F, t) for a positive (negative) force. Solid (dashed) lines show the results of
the semiclassical equation (5.8). d-f Corresponding longitudinal momenta κl(±F, t). g-i Time
evolution of the anomalous momentum κa(+F, t) as obtained from κa(+F, t) ≡ [κt(+F, t) −
κt(−F, t)]/2. In all plots, vertical dashed lines indicate the Bloch period for atoms in a lattice
with ideal hexagonal symmetry, forced with the same strength. Plots in the left column depict
the results of the measurement in Figure 5.5. Each data point is an average of 2-3 measurements,
where error bars denote the standard deviations. All theory curves have been obtained for lattice
and forcing parameters as used in the experiment, incorporating measured lattice asymmetries
(compare Appendix A).
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compared to 1 while the forcing strength remains constant. Specifically, data points
for the largest band gap (Figure 5.6a,d,g) are in excellent agreement with results of
the semiclassical equation (5.8). With decreasing band gap, deviations become more
pronounced and reflect the influence of non-adiabatic transitions into higher bands. In
this context, we stress that the maximum value of B1(t) along the orbit 2 amounts to
max(B1(t)) ≈ 0.009, 0.15, 0.65 for the three lattice configurations, respectively.

Type-3 orbit The orbits 1 and 2 considered so far have in common that they pass
through a time-reversal symmetric point, namely Γ. For a closed orbit, this implies
that the integrated anomalous Hall response is always zero. In other words, though
a non-vanishing anomalous velocity may occur, as for the orbit 1 , no net transport
into transverse direction will arise. As outlined in subsection 5.1.2, the situation can be
different for orbits that do not conform to this restriction, such as the orbit 3 , which
we explore in the following.

The experimental sequence we employ is essentially identical to the previous ones.
Instead of atoms in the ground state, however, here we initialize atoms in the Bloch
states |2,K〉 and |2,K′〉 of the second band, as presented in chapter 4. Forcing is applied
for a duration τF by setting ω̇3(t) = ∓ω̇2(t) = ±2π · 80 MHz s−1. This produces the
desired orbits K → K and K′ → K′, which get traversed in positive and negative orien-
tation (±F ) with a strength F/ℏ = 8.39 |b1| ms−1. For the two independent Bloch state
components we, then separately analyze the individual Hall response in the momentum
distribution.

For the sake of clarity, in Figure 5.7, we present the resulting TOF images probed for
different times τF and a positive and negative inertial force, respectively. Note that the
simulated TOF images included for comparison match well, although we do not account
for the thermal incoherent background. The associated time evolution of the transverse
and anomalous momentum for components K and K′ are displayed in Figure 5.8. We
stress that the anomalous momentum can be obtained by generalizing equation (5.42)
for time-reversal symmetric partner q1,2:

κa(±F, t,q1,2) = κt(±F, t,q1,2) − κt(∓F, t,q2,1)
2

, (5.45)

from which κa(±F, t,q1,2) = −κa(∓F, t,q2,1) follows. Consider now κa(+F, t,K) as
shown in Figure 5.8c. Evidently, it reaches a negative minimum upon each visit of K,
where a negative Berry curvature is encountered. In between, κa(+F, t,K) also acquires
a small positive value, which stems from the Berry curvature distribution of K′ slightly
extending into the corresponding orbit 3 . Nevertheless, the total integrated anomalous
Hall response over one forcing cycle, i.e. for one orbit revolution, is nonzero and hence
realizes geometric pumping with a net transverse current of atoms in |2,K〉. For the
observed time span, we find a total Hall drift ra(K) ≈ −1.9(3)×10−8 m. The reasoning
is similar for the Bloch state |2,K′〉 and its anomalous momentum κa(+F, t,K′) shown
in Figure 5.8d. Due to the reversed sign of the Berry curvature, however, the total
Hall drift points in the opposite direction. Here, it amounts to ra(K′) ≈ 1.6(3) ×
10−8 m. We emphasize that larger Hall drifts can be achieved by decreasing the lattice
depth or rotating the quantization axis towards the degeneracy point θB = 90◦, thereby
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Fig. 5.7: Comparison between measured and calculated momentum distributions of Bloch states
in the second band subject to forcing 3 along K → K (K′ → K′) as illustrated in Figure 5.2:
For atoms in the Zeeman substate |2,−2〉, in a boron-nitride lattice with V2D = 7.5Erec and
θB = 74◦. Momentum distributions were probed for a positive (+F ) and time-reversed negative
(−F ) force at increasing times τF (top to bottom) after switching on frequency sweeps ω̇3(t) =
∓ω̇2(t) = ±2π ·80 MHz s−1, respectively. Times are indicated by numbers in the middle column,
in units of millisecond, and span a full Bloch period. As before, simulated TOF images were
obtained by numerical analysis of equation (5.40) for lattice and forcing parameters as used in
the experiment. Small axes in the first row indicate the local coordinate basis (el, et), where
el points in the direction of the resulting inertial force. Black hexagons depict Brillouin zones
of the comoving lattice frame, traveling in the opposite direction. The anomalous velocity for
each individual valley K and K′ manifests as a slight, almost imperceptive transverse imbalance
among zeroth order Bragg peaks, as highlighted in the last row for a positive force. All images
have been normalized individually to the same colormap. Experimental images depict typical
single-shot absorption images after 36 ms time-of-flight.
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Fig. 5.8: Geometric pumping and valley Hall effect for measurements in Figure 5.7. a Trans-
verse momentum κt(±F, t,K) of the Bloch state |2,K〉 for a positive and time-reversed negative
force. Black lines show respective momenta obtained by numerical analysis of the semiclassical
equation (5.8). b As before, but for the Bloch state |2,K′〉. c Time evolution of the anomalous
momentum κa(+F, t,K) for atoms at valley K. The red line shows the expected Hall drift in
real space, indicating net anomalous Hall transport after each cycle. Integration of data points
yields an estimated Hall drift ra(K) ≈ −1.9(3) × 10−8 m. d As before, but for atoms at valley
K′, with a Hall drift ra(K′) ≈ 1.6(3) × 10−8 m in the opposite direction. All theory curves
have been obtained for lattice and forcing parameters as used in the experiment, incorporating
measured lattice asymmetries. Vertical dashed lines indicate the Bloch period for atoms in a
lattice with ideal hexagonal symmetry, forced with the same strength F/ℏ = 8.39 |b1| ms−1.
Each data point is an average of 2-3 measurements, where error bars denote the corresponding
standard deviations.
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5 Time-resolved measurements of the anomalous Hall velocity

increasing the magnitude of the Berry curvature.
The observed dynamics is reminiscent of the valley Hall effect [88, 96, 97], where

electrons in different valleys K or K′ experience Hall drifts in opposite directions. In
particular, by introducing a population imbalance between valleys, a finite transverse
net current can be realized. The same is true in our case: Perfect imbalance could be
achieved, for example, by a two-step forcing protocol starting with atoms in the ground
state |1,Γ〉 that get forced to K and then along an orbit 3 as above.

5.5 Conclusion & Outlook

In this chapter, we have investigated the anomalous Hall response of ultracold bosonic
atoms in an accelerated optical boron-nitride lattice. The essential insight is that the
anomalous velocity can be accurately and easily accessed from conventional time-of-
flight images. In particular, we have measured the time-dependent anomalous velocity
along various orbits in reciprocal space. When the force is sufficiently weak such that
first-order adiabatic perturbation theory applies, the semiclassical single-band equa-
tions of motion adequately describe the observed wave-packet dynamics. In that case,
it is possible to infer the value of the local Berry curvature along the forced trajectory
directly from the measured Hall response. For instance, for the first and second Bloch
band, we could explicitly show the localization of the Berry curvature at the K and
K′ points, where it reveals equal magnitudes but opposite signs. In addition, we have
demonstrated the realization of geometric pumping with bosons. In conclusion, inertial
forcing combined with time-of-flight imaging is a valuable and sensitive tool for inves-
tigating the geometric properties of Bloch bands and their influence on wave-packet
dynamics.

When the exerted force on atoms becomes so strong that transitions into nearby bands
cannot be ignored, the semiclassical single-band equations naturally fail to reproduce
the observed dynamics, as evidenced for lattice parameters that result in small band
gaps. However, it is possible to generalize the equations of motion to multiple Bloch
bands, entailing the appearance of non-Abelian gauge structures [263, 264]. Future
experimental studies may focus on probing the associated non-Abelian wave-packet
dynamics, especially in regimes that differ from the infinite-force degenerate band limit
considered in the case of Wilson lines [95].

Our approach to examining the anomalous response in momentum space is entirely
general and can be applied to any type of optical lattice and species, including fermionic
systems. Furthermore, integrating Stern-Gerlach separation during time-of-flight allows
probing spin-dependent Hall drifts, which is essential for studying systems exhibiting
spin Hall phyiscs. Apart from the dynamical response to external force fields, one may
likewise probe the effects of time-dependent Bloch bands, leading to geometric scalar
potentials that mimic intrinsic electric fields [265]. The observed dynamics can provide
complementary information about the geometry of Bloch states.

A central goal of future experimental and theoretical studies will be to understand
how interactions in quantum many-body systems modify or even give rise to geometric
and topological features. In fact, for interacting systems, especially strongly correlated
ones, the very notion of topological characteristics and how they manifest, for example,
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5.5 Conclusion & Outlook

in the dynamical properties of quasiparticles or collective modes is far from being fully
understood. While theoretical research has flourished, experimental studies in this field
are still in their infancy. There is little doubt that many connections between topology
and the physics of quantum many-body systems are yet to be uncovered.
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A Lattice imperfections

Naturally, our experimental implementation of the boron-nitride lattice exhibits certain
deviations from the ideal p-polarization configuration discussed in subsection 2.2.4.
This in turn gives rise to so-called lattice imperfections, i.e. deviations from the ideal
potential in equation (2.56). In particular, as a consequence of the in-plane polarization,
even small differences in the mutual lattice beam angles ∆ϕij ≡ ∠(ki,kj) 6= 120◦ can
result in strong distortions of the potential, accompanied by a deformation of the unit
cell. Other sources for lattice imperfections include polarization maladjustment and
intensity imbalance among the individual lattice beams.

Often, lattice imperfections will cause undesired splittings of degeneracies in the
band structure, which may impede the observation of certain physical effects. Besides,
lattice imperfections that remain unrecognized as such can lead to serious errors in the
calibration of the lattice depth. Here, we elucidate how a potential deformation that
stems from a geometrical misalignment of the lattice beams is cured by introducing an
appropriate intensity imbalance. Most importantly, the band structure can be restored
almost perfectly with a minimal and minor splitting of degeneracies. Our experimental
approach for “restoration” makes sure that the realized lattice potential approaches the
ideal boron-nitride lattice as close as possible.

First, we characterize the experimental lattice geometry, that is the angles between
the lattice beams: By analyzing Kapitza-Dirac diffraction patterns we determine the
set of primitive reciprocal lattice vectors {b1,b2,b3}. Next, assuming that all lattice
beams lie within the imaging plane, one obtains a system of linear equations that is
easily solved to yield the individual wave vectors ki. Specifically, we obtain for the
corresponding polar angles ϕi with respect to the experimental x-axis:

ϕ1 = 91.1(3)◦, ϕ2 = 327.7(7)◦, ϕ3 = 212.2(3)◦ . (A.1)

Though the assumption that the lattice beams lie in the image plane is not completely
justified, the error introduced by neglecting a small out-of-plane tilting is insignificant
and will have no profound influence on what follows.

In Figure A.1, we compare potentials for the ideal and actual lattice beam configura-
tions. Evidently, if the individual beam intensities remain balanced, the experimental
angles from equation (A.1) will result in a strong lattice anisotropy. By imbalancing the
beam intensities as detailed in Figure A.1c, the lattice anisotropy can be cured, leaving
behind only a small deformation of the unit cell (white hexagon). We stress that the
unit cell itself cannot be restored in this way, since it is a pure geometrical property that
depends only on the polar angles ϕi. Despite this, the potential form is reestablished
and the band structure likewise becomes restored, as evidenced by the band gap spec-
trum in Figure A.1d, where the dashed black and beige lines almost perfectly coincide
over the entire range of lattice depths. When this situation is reached, it is well-justified
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Fig. A.1: Boron-nitride potentials for different lattice beam configurations and atoms in the
Zeeman substate |1,−1〉, with θB = 0◦. a The ideal boron-nitride potential is realized for
relative beam angles ∆ϕij = 120◦ and balanced beam strengths Ei = E0. For the sake of
clarity, we set V2D = αs

FE
2
0 = 8Erec. b For ∆ϕij 6= 120◦ but still balanced beam strengths,

the potential is strongly deformed. Here, we assume individual polar angles as realized in the
experiment: ϕ1 = 91.1◦, ϕ2 = 327.7◦, ϕ3 = 212.2◦. The white hexagon indicates the unit
cell from a, revealing a slight deviation from the ideal hexagonal symmetry. c By imbalancing
the lattice beams according to E1/E3 = 0.78, E2/E3 = 0.94, the form of the potential can be
reestablished almost perfectly. However, the unit cell remains as in b. All potentials have been
scaled to the same depth V by setting E3 = 0.998E0 in b, and E3 = 1.10E0 in c. d For each
case, we plot the band gaps between the first and higher bands at the quasimomentum Γ as a
function of the lattice depth V2D = αs

FE
2
0 . Note that band gaps for a and c almost perfectly

coincide. Although degeneracies in a cannot be fully restored in c, the associated bands remain
sufficiently close. In contrast, band gaps in b are strongly altered as compared to the ideal case.

to assume the validity and applicability of the ideal potential in equation (2.56) instead
of reverting to the general form in equation (2.48).

Experimentally, in order to precisely set the required relative beam intensities for
optimal lattice restoration, we use the fact that the locations of minima in the second
Bloch band are extremely sensitive to lattice anisotropy. First, we excite a cold bosonic
ensemble into the second band as explained in section 4.2. Next, we wait for a certain
time to allow for condensation in the minima. The locations of observed Bragg peaks in
the momentum distribution after TOF then directly reflects the locations of the minima
in the second band. In particular, the observed pattern of the first order Bragg peaks
will conform to the respective density distributions in Figure A.2, where we visualize
the locations of minima in the second Bloch band for different exemplary lattice beam
configurations. By iteratively adjusting the individual lattice beam intensities, we sym-
metrize the observed momentum distribution to yield an optimal hexagonal symmetry
as in Figure A.2f. This approach guarantees that the realized potential resembles the
one in Figure A.1c. In other words, the boron-nitride lattice becomes almost perfectly
restored. We emphasize that the locations of minima in the second Bloch band will in
general slightly depend on the quantization axis angle θB, as evidenced in Figure A.2c.
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Fig. A.2: Energy spectrum ϵ2(k) − min(ϵ2) of the second Bloch band for different lattice beam
configurations of the boron-nitride potential. For the sake of clarity, we assume atoms in the
Zeeman substate |1,−1〉 with lattice parameters V2D = αs

FE
2
0 = 8Erec and θB = 0◦. a Band

minima (Dirac points) are located at the vertices of the hexagonal Brillouin zone for the ideal
potential: ∆ϕij = 120◦, Ei = E0. b For a distorted lattice with angles ∆ϕij 6= 120◦ as defined
in Figure A.1b, the two-fold degeneracy of band minima is removed. They become localized at
a single M point. c By imbalancing the lattice beams, the minima are moved back towards the
vertices and the two-fold degeneracy is restored. Here: E1/E3 = 0.78 and E2/E3 = 0.94, as in
Figure A.1c. We set E3 = 0.998E0 in b and E3 = 1.10E0 in c to arrive at the same depths as
for the ideal potential. d For comparison, ideal potential as in a but for E1/E0 = 0.95. f As in
c but for θB = 126◦, revealing fully restored locations of the Dirac points.

We also note that the remaining deformation of the unit cell involves a corresponding
deformation of the Brillouin zone, which is almost imperceptible here but can still be rel-
evant for designing and engineering precise forcing protocols (compare subsection 5.2.1).
Finally, we remark that we have focused on compensating the effects from a geometrical
misalignment of the lattice beams. However, the same line of reasoning applies also in
the presence of other lattice imperfections, such as maladjusted polarizations.
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B Interaction integrals for Bloch state
superpositions

Consider a general two-component Bloch state superposition |ψ〉 of the form

|ψ〉 = cos(θ) |nk〉 + exp(iϕ) sin(θ) |ml〉 , (B.1)

where |nk〉, |ml〉 denote two arbitrary Bloch states of the underlying lattice potential,
with band indices m,n and quasimomenta k, l. Specifically, θ ∈ [0, π/2) determines
their relative weight, while ϕ ∈ [−π, π) defines their relative phase. We are interested
in the related interaction parameter

U(θ, ϕ) ≡ gV

∫
dr |〈r|ψ〉|4 , with g = 4πℏ2as/m. (B.2)

Here, V denotes the system volume and g characterizes the contact interaction strength,
which depends on the s-wave scattering length as. The integral in equation (B.2) should
be evaluated with respect to the torus topology imposed by the periodic boundary
conditions as discussed in subsection 3.1.2. For convenience, we treat the case of equal
quasimomenta (l = k) and distinct quasimomenta (l 6= k) separately.

Case 1: l = k By expanding the Bloch states according to

|nk〉 = eikr̂ |unk〉 = eikr̂
∑
G
cnk(G) |G〉 =

∑
G
cnk(G) |G + k〉 , (B.3)

where the sum is over all reciprocal lattice vectors G, it immediately follows that an
equal-quasimomentum superposition state can be written as

|ψ1〉 =
∑
G
sk(G) |G + k〉 , (B.4)

where we employ the definition

sk(G) ≡ cos(θ)cnk(G) + exp(iϕ) sin(θ)cmk(G) . (B.5)

For the related interaction parameter U1, we then obtain

U1(θ, ϕ) = gV

∫
dr |〈r|ψ1〉|4 = g

∑
J
S(J)S∗(J),

S(J) ≡
∑
G
sk(G + J)s∗

k(G). (B.6)



B Interaction integrals for Bloch state superpositions

Here, the sum is over all reciprocal lattice vectors G and J. Given the expansion
coefficients {cnk(G)} and {cml(G)} for the two Bloch states, we can easily evaluate these
expressions numerically for different mixing angles θ and ϕ, as done for Figure 4.10b.

Case 2: l 6= k We now focus on Bloch states that have distinct quasimomenta. In
this case, the associated superposition state |ψ2〉 cannot be written as in equation (B.4).
To proceed, we note that the related interaction parameter U2 naturally splits into six
terms:

U2(θ, ϕ) = gV

∫
dr |〈r|ψ2〉|4 = g

6∑
i=1

Mi , (B.7)

where we use the following abbreviations:

M1 = cos4(θ)V
∫

dr [u∗
nk(r)unk(r)]2 , (B.8)

M2 = sin4(θ)V
∫

dr [u∗
ml(r)uml(r)]2 , (B.9)

M3 = 4 cos2(θ) sin2(θ)V
∫

dr u∗
nk(r)unk(r)u∗

ml(r)uml(r), (B.10)

M4 = 4 cos3(θ) sin(θ)V
∫

dr u∗
nk(r)unk(r)Re

(
eiϕu∗

nk(r)uml(r)ei(l−k)r
)
, (B.11)

M5 = 4 sin3(θ) cos(θ)V
∫

dr u∗
ml(r)uml(r) Re

(
eiϕu∗

nk(r)uml(r)ei(l−k)r
)
, (B.12)

M6 = 2 cos2(θ) sin2(θ)V
∫

dr Re
(
e2iϕu∗

nk(r)u∗
nk(r)uml(r)uml(r)e2i(l−k)r

)
. (B.13)

Here, the functions unk(r) denote the lattice-periodic Bloch mode functions

unk(r) = 〈r|unk〉 = 1√
V

∑
G
cnk(G)eiGr . (B.14)

Note that the integrals Mi are all unitless. After a few lines of algebra, one obtains the
following expressions for M1, M2, and M3:

M1 = cos4(θ)
∑

J
Cnk(J)C∗

nk(J), M2 = sin4(θ)
∑

J
Cml(J)C∗

ml(J),

M3 = 4 cos2(θ) sin2(θ)
∑

J
Cnk(J)C∗

ml(J) ,
(B.15)

with the short notation

Cnk(J) ≡
∑
G
cnk(G + J)c∗

nk(G). (B.16)

We stress that M1, M2, and M3 are all independent of the relative phase ϕ. As regards
the integrals M4 and M5, one may show that they always vanish, as a result of the
periodicity of Bloch mode functions and the periodic boundary conditions, unless (l−k)
is equal to some reciprocal lattice vector P ∈ GB. The latter would imply, however,
that (l − k) ∼ Γ, which contradicts our assumption that l and k are distinct. Thus, we

140



b ca
2.7 10.8

0 50 100 150

1.9 12.4

0 50 100 150
3B (/)

0 50 100 150

5

10

15
V

2
D

(E
re

c
)

1.9 15.4

Fig. B.1: Interaction parameters U in the boron-nitride lattice as a function of the lattice depth
V2D and quantization axis angle θB. a For the lowest energy Bloch state |1,Γ〉, corresponding
to the superfluid ground state in an optical lattice. b For the state |2,K〉, equivalent to a chiral
condensate in the second band. c For the Bloch state |4,Γ〉, corresponding to a condensate in
the fourth band.

have
M4 = M5 = 0 . (B.17)

Meanwhile, a similar argument applies to the last integral M6, which will vanish
if 2(l − k) 6= P ∈ GB. For example, this is the case for a superposition of Bloch
states with quasimomenta k = K and l = K′, as examined in chapter 4. Clearly,
2(K′ −K) = K′ ≁ Γ. We stress, however, that non-trivial solutions to 2(l−k) = P ∈ GB
exist, which are characterized by l ≁ k. Up to a reciprocal lattice vector, these are given
by (l − k) ∈ {b1/2,b2/2, (b1 + b2)/2}, where the bi denote the reciprocal (primitive)
basis vectors. In any case, if 2(l − k) = P ∈ GB, we find

M6 = cos2(θ) sin2(θ)e2iϕ∑
J
D∗

nk(J)Fml(J; P) + c.c. , (B.18)

where we make use of the following definitions:

Dnk(J) ≡
∑
G
cnk(J + G)cnk(−G), Fml(J; P) ≡

∑
G
cml(J + G − P)cml(−G). (B.19)

As before, given the expansion coefficients {cnk(G)} and {cml(G)} for the two Bloch
states, we can easily evaluate expressions M1, M2, M3, and M6 numerically for different
mixing angles θ and ϕ. For illustration, in Figure B.1, we show exemplary plots of the
interaction parameter U in the boron-nitride lattice as a function of the lattice depth
V2D and quantization axis angle θB for three different Bloch states.

The term U(θ, ϕ) is also often denoted as geff
1D in the context of two-dimensional

lattices. Besides, for a homogenous system with uniform extension L along the direction
perpendicular to the lattice plane, one may define a Hubbard-like interaction energy
UH according to

UH ≡ U(θ, ϕ)
vL

. (B.20)

Here, v denotes the surface volume of a primitive unit cell. For example, for the Bloch
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B Interaction integrals for Bloch state superpositions

state |1,Γ〉 of our boron-nitride lattice in case of a lattice depth V2D = 8Erec, atoms in
the Zeeman substate |2,−2〉, and an estimated longitudinal extension Lz ≈ 2 × 20 µm,
we obtain UH ≈ 8.5 Hz for the choice θB = 0◦. In contrast, we have UH ≈ 3.1 Hz for
the choice θB = 90◦. For comparison, the corresponding bandwidths of the lowest band
amount to ∆1 ≈ 0.3 Hz and ∆1 ≈ 750 Hz, respectively, indicating that Bragg peak
visibility should vanish in the former case, whereas it should still be finite for θB = 90◦.
Experimentally, this is indeed confirmed.
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C Extracting condensate fractions
We obtain estimates for the condensate fractions in the second and fourth band from
band mapping images via a ring-mask method as explained in the following.

Given the respective masks for the n-th Brillouin zone (BZn), inner circles (ic), and
outer circles (oc) as defined in Figure C.1, we first construct the ring mask according
to R ≡ oc \ ic. We note that the size of the inner circles is chosen such that they
fully comprise the support region of the condensate. Next, we define individual ring
segments Rn ≡ R ∩ BZn and inner circle segments icn ≡ ic ∩ BZn. By construction, Rn

is populated only by thermal atoms of the n-th Brillouin zone. We directly count this
population and obtain the number N(Rn). We now estimate the number of thermal
atoms that belong to BZn and lie in the inner circles via

Nth(icn) = N(Rn)
|Rn|

|icn| . (C.1)

Here, the vertical bars refer to the size of the corresponding masks. The number of
condensed atoms Nc is then simply defined as the total number of atoms in the inner
circles minus the number of thermal atoms in the inner circles:

Nc ≡ N(ic) −
∑

n

Nth(icn) . (C.2)

Moreover, we determine the number of thermal atoms in the n-th Brillouin zone ac-
cording to

Nth(BZn) = N(BZn \ ic) +Nth(icn) . (C.3)

Finally, condensate fractions and respective thermal fractions are obtained through
division by the total number of atoms N in the entire band mapping image.

a b

Fig. C.1: Masks for estimating condensate fractions from band mapping (BM) images. a For a
condensate in the second band, where inner circle (ic) and outer circle (oc) masks are centered
at the zeroth order K and K′ points. b For a condensate in the fourth band, where ic and oc
masks are centered at the six first order Γ points.
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