UH

iti
L2 Universitit Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Analyzing Convergence Opportunities of
HPC and Cloud for Data Intensive Science

Dissertation
zur Erlangung des akademischen Grades
Dr. rer. nat.

an der Fakultat fur Mathematik, Informatik und Naturwissenschaften
der Universitdt Hamburg

eingereicht beim Fachbereich Informatik von

Frank GADBAN

Dezember 22, 2022

https://www.inf.uni-hamburg.de
https://www.uni-hamburg.de
https://www.inf.uni-hamburg.de
https://gadban.de

ii

Gutachter:
Prof. Dr. Thomas Ludwig
Jun.-Prof. Dr. Michael Kuhn

Datum der Disputation: Dezember 05, 2022

iii

Abstract

With the advent of the exascale era, the exponential growth in data volumes,
and the rapid development of networking/cloud technologies, the cloud and HPC
convergence is the subject of many conversations within the scientific community.
In particular, HPC and cloud storage come from different assumptions that led to
different underlying storage architectures and optimization techniques, which seem
to be incompatible with one another from an abstract perspective. However, it is
mandatory to overcome these differences and converge on the architectures so that
scientific workflows do not need to differentiate between HPC and cloud storage
but can benefit from the advantages of both.

This thesis investigates the HPC-Cloud convergence in the broader sense and fo-
cuses on the usage of cloud storage infrastructure for HPC workloads to optimize
the scalability, performance, and cost-efficiency of the underlying infrastructure and
improve the productivity of scientists running complex compute workflows.

In this work, the following research questions are addressed:

Can we use HPC and cloud storage technologies concurrently? What workflows
will benefit from such settings, and which I/O interfaces are suitable? How can
we achieve optimal data sharing between HPC and cloud resources? Is moving
resource-demanding applications from on-premise to the public cloud a cost-effective
solution compared to a hybrid alternative?

For this purpose, the term convergence is precisely defined, and a full-featured con-
vergence assessment model is introduced and used to compare possible convergence
scenarios. The comparison shows that using cloud storage inside HPC is one of
the most promising approaches to leveraging HPC Cloud convergence. The perfor-
mance of this scenario depends on the overhead introduced by using REST as a stor-
age protocol in an HPC environment. A performance model for the relevant HTTP
operations based on hardware counters is presented and experimentally validated.
The obtained results reveal that an accurately configured REST implementation can
provide high performance and match the HPC-specific implementation of MPI in
terms of throughput for most file sizes and in terms of latency for file sizes exceed-
ing one MB. Furthermore, the performance of the S3 interface offered by different
object storage implementations on HPC and in the cloud is thoroughly investigated.
The results indicate that the tested S3 implementations are not yet ready to serve
HPC workloads directly, mainly because of the drastic performance loss and the
lack of scalability. The approach to identifying the cause of the performance loss
— by systematically replacing parts of the S3 stack — leads to introducing a new S3
access library, S3embedded, which proves to be highly scalable and capable of lever-
aging the shared cluster file systems of HPC infrastructure to accommodate several
S3 client applications.

Using SBEmbedded as a lightweight drop-in replacement for LibS3 is an enabling
factor for Cloud-HPC agnostic applications that can be seamlessly executed in the
public cloud or HPC and a massive step towards achieving HPC Cloud convergence.

iv

Kurzfassung

Mit dem Aufkommen der Exascale-Ara, dem exponentiellen Wachstum der Daten-
mengen und der rasanten Entwicklung von Netzwerktechnologien ist die HPC-
Cloud-Konvergenz Gegenstand wissenschaftlicher Diskussionen geworden.

HPC und Cloud-Storage gehen von unterschiedlichen Voraussetzungen aus, die zu
verschiedenen zugrundeliegenden Speicherarchitekturen fiithren. Diese wiederum
fithren zu unterschiedlichen Optimierungstechniken, die aus einer abstrakten Per-
spektive nicht miteinander kompatibel zu sein scheinen. Es ist jedoch erforderlich,
diese Unterschiede zu iiberwinden und die Architekturen einander anzundhern.
Auf diese Weise miissen wissenschaftliche Arbeitsabldufe nicht zwischen HPC und
Cloud Storage unterscheiden, sondern kénnen von den Vorteilen beider Technolo-
gien profitieren.

Die vorliegende Arbeit untersucht die HPC-Cloud-Konvergenz im weiteren Sinne.
Der Fokus liegt hierbei auf die Nutzung des Cloudspeichers fiir HPC-Workloads.
Diese ist von Bedeutung, um die Skalierbarkeit, Leistung und Kosteneffizienz der
zugrundeliegenden Infrastruktur zu optimieren. Dartiiber hinaus kann die Produk-
tivitit von Wissenschaftler:innen, die komplexe Computing-Workflows ausfiihren,
verbessert werden.

In der vorliegenden Arbeit werden folgende Forschungsfragen geklart:

Konnen wir HPC- und Cloud-Speichertechnologien gleichzeitig nutzen? Welche Ar-
beitsabldufe profitieren von solchen Einstellungen und welche I/O-Schnittstellen
sind geeignet? Wie kann eine optimale Datenteilung zwischen HPC- und Cloud-
Ressourcen erreicht werden? Ist die Verlagerung von ressourcenintensiven Anwen-
dungen in die Public Cloud eine kostengiinstige Losung im Vergleich zu einer hy-
briden Alternative?

Um ein einheitliches Verstdndnis zu schaffen, wird der Begriff Konvergenz zunéchst
genau definiert und ein umfassendes Konvergenzbewertungsmodell eingefiihrt. Dies
wird zum Vergleich moglicher Konvergenzszenarien verwendet. Der Vergleich zeigt,
dass die Verwendung von Cloudspeicher innerhalb HPC einer der vielversprechend-
sten Ansatze ist. Die Leistung dieses Szenarios hdngt von dem Overhead ab, der
durch die Verwendung von REST als Speicherprotokoll in einer HPC-Umgebung
entsteht. Es wird ein Leistungsmodell fiir die entsprechende HTTP Operationen auf
der Grundlage von Hardware-Zahlern vorgestellt und experimentell validiert. Die
erzielten Ergebnisse zeigen, dass eine genau konfigurierte REST-Implementierung
eine hohe Leistung bieten und mit der HPC-spezifischen MPI-Implementierung —
fiir einige Dateigrofien — mithalten kann. Dariiber hinaus wird die Leistung der
S3-Schnittstelle griindlich untersucht. Die Ergebnisse zeigen, dass die getesteten
S3-Implementierungen noch nicht bereit sind, HPC-Workloads direkt zu bedienen.
Grund hierfiir sind insbesondere die drastischen Leistungseinbufien und die man-
gelnde Skalierbarkeit. Die Hauptursachen fiir den Leistungsverlust konnten durch
das systematische Ersetzen von Komponenten des S3 Stacks identifiziert werden.
Dieser Ansatz wiederum fiithrt zur Einfiihrung einer neuen S3-Zugriffsbibliothek —
S3embedded — die sich als hoch skalierbar erweist. Sie ist in der Lage, die gemein-
sam genutzten Cluster-Dateisysteme der HPC-Infrastruktur zu nutzen, um mehrere
S3-Client-Anwendungen unterzubringen.

Die Verwendung von S3Embedded als leichtgewichtiger Ersatz fiir LibS3 ist ein
treibender und ermoglichender Faktor fiir Cloud-HPC-agnostische Anwendungen,
die reibungslos in der 6ffentlichen Cloud oder im HPC ausgefiihrt werden kdnnen.
Diese ist ein grofier Schritt in Richtung HPC-Cloud-Konvergenz.

Acknowledgements

Throughout the writing of this dissertation, I have received a great deal of sup-
port and assistance.

Firstly, I would like to express my special thanks to my supervisor, Prof. Dr.
Thomas Ludwig, for his support and guidance throughout my research. His exper-
tise and insightful feedback pushed me to sharpen my thinking and bring my work
to a higher level.

I would particularly like to single out Prof. Dr. Julian Kunkel: Thank you for
the patient support, guidance, encouragement, and advice you gave me during my
research. You also provided me with the insights and tools to choose the right direc-
tion and successfully complete my dissertation.

My heartfelt gratitude goes to my parents for their constant support and wise
counsel.

I am especially thankful to my lovely wife and children for their understanding
and ongoing support.

I would also like to extend my thanks to everyone at DKRZ who helped by pro-
viding the information or the resources needed for my research.

Lastly, I would like to thank all those who supported me directly or indirectly
throughout this project.

Vi

“Denkst Du, das ist Luft, die Du gerade atmest?”

Morpheus

Contents
Acknowledgements
1 Introduction
1.1 HPC. . . e e
1.2 Cloud e e
121 HPCCloud e
1.3 Motivation e e
131 Goals e
14 OutlineofthisThesis
2 Background: Related Work & State of the Art
2.1 Parallel Processing and Supercomputing
22 CloudComputing e
221 CloudTypeso it
222 Cost Comparison: On-premisesvs Cloud
23 StoragelInterfaces L o oo
231 POSIX-IO e e
POSIX HPCI/Oextensions v v v v v v v v v v e v u o
POSIX-IOmodels e
232 MPIHIO e
2.4 Storage Access Technologies
241 ParallelFileSystem
Lustre e
BeeGFS e
242 ObjectStorage e
Ceph e
MinIO e
SWIft . . e e e
243 DAOS . . .
244 Comparison Matrix-Storage Solution
25 HTTP Evolution i
251 HTTP2 e e
252 HTTIP3 e
2.6 PerformanceTesting
2.7 Convergence SCeNarios it
271 CloudBursting
272 HPCCloud
HPC in the Cloud using 100% cloud-native solutions
HPC Cloud using HPC technologies
273 HPCGrid e
274 Cloud Technology inside HPC
Containersin HPC

Cloud Storage for HPC Workloads

vii

viii

28 Summary 32
Research Methodology and Design 33
3.1 ResearchMethodology 33
3.2 Convergence Assessment Model 35
3.3 Performance Feasibility 35
3.3.1 HPC Cloud using 100% Cloud-native Solutions 38
332 CloudBursting 39
3.3.3 HPC Cloud using HPC Technology 39
334 HPCGrid 40
335 ContainersinHPC 41
33.6 Cloud StorageinHPC 41
3.4 Administrative Efforto oo oo 42
3.41 HPC Cloud using 100% Cloud-native Solutions 47
342 CloudBursting 48
3.43 HPC Cloud using HPC Technology 48
344 HPCGrid 48
345 ContainersinHPC 49
3.4.6 CloudStorageinHPC 49
35 CostEfficiency 50
351 CostOn-premises. 50
352 CostCloud 52
353 CostofDelay 54
3.5.4 Cost Analysis for Different Convergence Solutions 54
HPC Cloud using 100% Cloud-native Solutions 54
CloudBursting 55
HPC Cloud using HPC Technology 55
HPCGrid 55
Containersin HPC 55
Cloud Storagein HPC 55
3.5.5 Real World Evaluation: Mistral Case Study 58
Computing Cost Comparison between Mistral and HPC Cloud
Solution L 58
Cost Comparison between Tape Archive and an On-demand
ObjectStorage 60
Cost Comparison between Parallel Filesystem and On-demand
ObjectStore L 61
36 Conclusion L 63
37 Summary e 64
Overhead of REST on HPC Systems 65
41 Forword e 65
42 Methodology 66
421 PerformanceModel 0. 67
43 Evaluation L 69
431 TestEnvironments 69
43.2 Benchmark and AnalysisTools 69
433 Latency. 70
434 Throughput 0 .. 72
43.5 Resource Usage Measurements 73

436 RESTvs. MPI 76

4.3.7 HTTP Size Overhead .

4.4 Evaluation of the Performance Model
441 Comparison: HTTP1.1 vs HTTP2 vs HTTP3

45 Summary............

5 S3 Performance Analysis for HPC Workloads

51 Foreword
52 Methodology
521 Benchmarks

5.2.2 Modifications of benchmarks

5.2.3 Measurement protocol
53 Experiments
531 TestSystem

5.3.2 MinlO Benchmarksin HPC

MinlO Deployment . .
Single Client
Parallel I/O

MinlO overhead in GatewayMode
MinlOvs RESTvs TCP/IP
5.3.3 Test against S3 compatible systems

In-house Tests

Comparison with ScalityRing
Test against Cloud Systems
Test against Huawei OceanStor Pacific9950

534 Latency Analysis . . .
54 Summary............

6 S3Embedded
6.1 Performance Insights
6.2 S3Embedded
6.3 S3 Compatibility Tests
6.4 S3Embedded HPC Tests . . .

6.4.1 S3embedded vs MinlO vs RESTvs TCP/IP
6.42 S3EmbeddedIORResults
6.4.3 S3EmbeddedIO500Results
6.5 S3Embedded Possible Optimization
6.5.1 S3Embedded over HTTP2 or HTTP3
6.5.2 S3Embedded over RDMA
6.6 Convergence Scenarios using SSEmbedded

6.7 Summary

7 Conclusion and Future Work
7.1 Achieved Status

7.1.1 Contributionsand Novelty

7.2 Discussion and Future Work .
7.2.1 Future Considerations

A Appendix A

B Glossary

iX

79
80
81
84

85
85
86
87
88
90
90
90
90
90
91
92
95
96
97
97
97
98
99
101
103

105
105
107
109
110
110
111
112
114
114
117
118
119

121
121
126
126
128

131

137

C List of Publications resulting from this Dissertation
C.1 Publications with peer review process

Bibliography

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211
2.12

2.13

3.1
3.2
3.3
34
3.5

3.6
3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14

3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

A typical HPC infrastructure

POSIX DataBlocks
Blocking IO
Non-BlockingIO
IOMultiplexing o
AsynchronousIO L o oo
Lustre Architecture (Braam,2019)
Ceph Architecture (Weil etal.,2006)
Swift Architecture (OpenStack-Foundation,n.d.)
HTTP1 Vs HTTP2 e e e e e e e
HTTP Protocol Evolution
Moab Cloud Bursting
HPC Cloud using cloud-native technologies - as offered by Microsoft

Azureo e
HPC Cloud using HPC technologies

The different converged solutions with their positioning
HPC Cloud Convergence Assessment Model
Performance Feasibility Model
Color Palette used to display the overhead
Performance Feasibility Model of the HPC Cloud using 100% Cloud-
nativeSolutions L L L Lo
Performance Feasibility Model of Cloud Bursting
Performance Feasibility Model of the HPC Cloud using HPC Technol-
OBY « o e e e
Performance Feasibility Model of the HPC Grid
Performance Feasibility Model of the use of Containers in HPC
Performance Feasibility Model of the use of Cloud Storage inside HPC
Administrative Effort visualized Model
Cloud Learning Curve
Shared responsibility in the cloud, as defined by Microsoft
Administrative Effort of the HPC Cloud using 100% Cloud-native So-
lutions
Administrative Effort of Cloud Bursting
Administrative Effort of the HPC Cloud using HPC Technology
Administrative Effort of the HPC Grid
Administrative Effort concerning the use of Containers in HPC
Administrative Effort concerning the use of Cloud Storage inside HPC
Maincostfactors o
Mistral nodes load for the year 2020 (Coym, 2021)
AWS Paid Service Categories, as found on https://aws.amazon. com/
Pricing o o o e e e e

xi

https://aws.amazon.com/pricing
https://aws.amazon.com/pricing

Xii

3.23
3.24
3.25
3.26
3.27

4.1
4.2
4.3

44
4.5
4.6

4.7
4.8

49

4.10
4.11
4.12
4.13
4.14

4.15
4.16

4.17
4.18
4.19
4.20

51
52
53
54
55
5.6
57
5.8
59
5.10
511
5.12
5.13
5.14

6.1
6.2

Different Scenarios for the Storage Usage Evolution 56
Linear Storage Evolution with initial Data 57
Archive system monthly storage evolution 61
Parallel filesystem monthly storage evolution 62
HPC Cloud Convergence Assessment Model 63
A simplified overview of the Benchmark Setup 69

Latency variation in relation to open connections for a file of size 100 KB 70
Latency variation in relation to open connections for a file of size

1000KB . . . oo 70
Latency Variation in relation to file size for 24 open connections 71
Latency Variation in relation to file size for 500 open connections . .. 71
Throughput related to object size for different combinations of Open

Connections/Threads. 73
Simplified View of the Benchmark Setup using Likwid 74
CPU usage for the client and server related to size, for different Open

Connections/Threads combinations 75
L3 evicted volume for the client and server related to size for different

Open Connections/Threads combinations 75
Visualisation of the OSU Latency Benchmark (Wittman, 2014) 76
Visualisation of the OSU Throughput Benchmark (Wittman, 2014) . . . 77
Latency results for the different protocols related to the file size 77

Throughput results for the different protocols related to the file size . . 78
CPU Unhalted Cycles per request, on the server and client, for each

protocol 78
L3 evicted per request, on the server and client, for each protocol . .. 79
Simplified View of the Benchmark used to test the different versions

of HTTP 82
Latency results for the different protocols on the WR Cluster 82
Throughput results for the different protocols on the WR Cluster . . . 83
Performance Comparison for the different protocols on Mistral 83
Resource Usage Comparison for the different protocols on Mistral . . . 84

High Level Overview of the S3 Performance Analysis Methodology . . 87

Different MinIOModes 91
Read Throughput for MinIO modes for 1 nodeand 1 PPN! 92
Write throughput for MinIO modes for 1 nodeand 1PPN. 92
Read throughput for N taskson4nodes 93
Read Operations/s for N taskson4nodes 93
Write throughput for N taskson4nodes 94
Write Operations/s for N taskson4nodes 94
Benchmark against the local gateway 95
REST Benchmark using the Nginx web server. 96
Read throughput Minio vs REST using IN-4PPN 97
Throughput of Scality Ring and MinlOon3nodes. 98
Test environment provided by Huawei 100
Latency density for the different systems 102
AWS S3 architecture presented during an AWSevent 106
Request Signing using the Signature V4 106

IProcess per Node

6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3

7.4

LibS3e Overview
LibS3r Overview e
Read throughput S3Embedded vs Minio vs REST using IN-4PPN . . .
Read throughput of SSEmbedded vs Lustre vs MinlO for 5N-20PPN

10500 results of different runs using 5SN-20PPN
LibS3rover UDP
LibS3rover RDMA e

Data sharing in a converged system
Data sharing in a converged system
HPC Ecosystem vs Big-Data Ecosystem, as depicted by (Reed and

Dongarra,2015)
HPC Cloud coveted converged system

XV

List of Tables

2.1 Comparison matrix of the different filesystems 20
3.1 Cost of an AWS M5N EC2 instance as published by ec2instances.info 58
3.2 Mistralcostfactors L. 59
3.3 Jobs distribution on Mistral as collected by (Coym, 2021) during one

VAL © v v ot e e e e e e e e e e 59
3.4 Comparison of the different scenarios using the assessment model . . 63
4.1 Model coefficients for the different protocols 81
5.1 Performance of MinlO Gateway on 4 nodes with20 PPN 96
5.2 10500 results comparing S3 cloud providers 99
5.3 10500 results against Huawei OceanStor 9950 using 2N-40PPN 100
6.1 Mapping from a sample S3 calls to Posixcalls 107
6.2 10500 results for S3Embedded and S3Remote compared to MinlO-

local-gw and lustre using 2N-5PPN 112
6.3 10500 results for S3Embedded and S3Remote compared to MinlO-

local-gw and lustre using 5SN-20PPN 112
6.4 10500 results for Lustre vs SSEmbedded using 10N-1PPN 113
6.5 10500 results for Lustre vs SSEmbedded using 50N-1PPN 113
A.1 Predictive model error rate for the REST Results 132
A.2 Predictive model error rate for the MPIOTCP Results 133

A.3 Predictive model error rate for the MPIoORDMA Results 134

ec2instances.info

Chapter 1

Introduction

At the time of writing, Exascale computing has become a reality', enabling breakthroughs in
multiple scientific disciplines; Frontier is the first> system to hit the mark of one exaFlop. The
possibility of using cloud technologies within such systems will definitely enhance the End-
user experience and simplify complex and distributed workflows by expedicting the access to
a wide range of resources. A seamless integration of supercomputing and cloud technologies
is vital to allow organisations handle these unprecedented data growth rates. Although a
subset of HPC® services are nowadays offered by public cloud providers, petascale data and
computing capabilities and beyond are primarily provisioned within HPC data centers uti-
lizing traditional, bare-metal resources to ensure performance, scalibility, and cost efficiency.
Furthermore, on-demand and interactive provisioning of resources, which are common in
cloud environments, continue to be difficult to achieve for most supercomputing ecosystems.
This chapter gives an overview of HPC and Cloud concerning both computing and storage
aspects. In Section 1.2.1 the benefits and drawbacks of HPC Cloud are exposed. HPC and
Cloud convergence is currently an area of interest for both HPC and Cloud communities,
fuelled to some extent by the conflict of interest between them; however, one of the main
components of supercomputing, namely the highly performant storage 1/O, seems to be over-
looked. This aspect is reflected in Section 1.3, which represents the motivation behind this
thesis. In addition, the goals of this work are shown in section 1.3.1. Finally, an outline of
this thesis is laid out in section 1.4.

1.1 HPC

High-Performance Computing (HPC) utilizes clusters of powerful and fast intercon-
nected computers to efficiently handle complex and data-intensive computational
problems. These systems are managed by batch schedulers (Ma, Zhang, and Li,
2004) where user jobs are queued to be completed, based on resource usage and
availability and without any visibility or concerns regarding the costs of running
those jobs.

Applications that can efficiently be performed in parallel on different and highly
interconnected nodes are considered typical HPC applications. They consist of par-
allel workloads or tightly coupled workloads.

¢ Parallel workloads are computational problems divided into small, simple,
and independent tasks that can be run simultaneously, usually with little or
no communication among them. Risk simulations, medical assessments, and
logistics simulations are common examples.

Ihttps://top500. org
Zhttps://spectrum.ieee.org/exascale-supercomputing
3High Performance Computing

https://top500.org
https://spectrum.ieee.org/exascale-supercomputing

2 Chapter 1. Introduction

V7
T

A

7

- /

Y7
T

Login Interconnected Storage

Users Nodes Modes System

FIGURE 1.1: A typical HPC infrastructure

¢ Tightly coupled workloads typically take a considerable shared workload and
break it into smaller tasks that interact continuously. As such, the cluster nodes
communicate with one another as they perform their processing. These in-
clude weather forecasting, analyzing seismic waves, oil and gas exploration,
quantum mechanics, fluid dynamics, simulating autonomous driving models,
and product design.

These applications benefit from scale-up and scale-out performance: "scaling up"
in the sense of using more powerful nodes/resources to process the workload or
"scaling out" by just adding more nodes/resources to handle the workload, which
is actually limited by the size of the HPC Cluster. The major HPC components are
shown in fig. 1.1: compute, network and storage are typically "leading-edge tech-
nology" formed together to achieve high performance, high availability, and great
speed of execution.

HPC storage usually consists of physical devices to manage, store and save the
data and filesystem servers committed to running the file system interfacing with
the application running on the HPC cluster. While the compute (CPU, GPU) and
interconnect components are evolving at a high rate, the storage is still lagging *.
The HPC Storage ecosystem will be explored in detail in chapter 2.

1.2 Cloud

The National Institute of Standards and Technology (NIST) definition (Mell, Grance,
etal., 2011) seems to be the most prevailing within the academic community. It states
that “cloud computing is a model for enabling convenient, on-demand network ac-
cess to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction”.

Cloud computing includes both the applications provided as services over the
Internet and the hardware resources and software stack needed to provide those
services.

The main offerings of cloud computing can be summarized as follows:

¢ The impression of infinite computing resources available on-demand, as such,
cloud computing users do not have to plan far ahead for provisioning;

“https://top500. org

https://top500.org

1.2. Cloud 3

* An up-front commitment is not required from cloud users, thereby companies
are able to start small and increase hardware resources based on their needs;
and

¢ The possibility to pay for using computing resources only when required and
release them once finished, without any long-time commitment.

The profitability of a pay-per-use solution depends on many factors like the unit
cost of cloud services in comparison to the dedicated, owned capacity, and the de-
gree of usage of resources. Generally speaking, for most real-world workloads,
leveraging a mix of on-premises and cloud-based capacity is likely to reduce cost
vs. an on-premises-only approach.

Cloud storage is just one of the services offered by a cloud provider. It enables the
central storage of data on a virtual hard disk on the Internet. One of the main benefits
of cloud storage is its scalability. The required storage space can be expanded or
reduced as needed.

A significant advantage of cloud storage is the exchange of data between sci-
entists, as the cloud provides the ability to access files with any Internet-enabled
device from any location. In this context, access rights, encryption authentication,
and search mechanism should be guaranteed. The impact of the cloud model (pri-
vate, public, hybrid) on security and costs should also be considered. A possible use
case here is an internet accessible archive (for example, the Earth System Grid Feder-
ation, ESGF (Cinquini et al., 2014)) where users can download data to external sites
or potentially process the data directly on-premises or in the cloud by deploying
their analysis environments on a cloud platform that has direct access to the data.

As such, more and more scientists are using cloud storage mainly to share the
obtained results as well as for archiving purposes. Direct processing of the data is
also possible using services like HSDS (HDF-Group, n.d.).

On the other hand, the storage I/0O is still considered a bottleneck in cloud envi-
ronments (Yamato, 2016). While other researchers tackled the network performance
(Persico, Montieri, and Pescape, 2016) of a cloud file system like Amazon S3 or evalu-
ated the HPC applications on a cloud platform (Salaria et al., 2017) (Zhao et al., 2014),
a relative few number (Kimpe and Ross, 2014; Matri et al., 2017) of researchers an-
alyzed the performance of Intensive Data-driven applications on an HPC platform
using cloud storage solutions.

In recent years, many cloud providers like (AWS, n.d.[a]) and (IBM, n.d.) started
to offer HPC cloud services and regularly expanded them. Faced with tight budgets
and non-sustainable projects, many research institutes and commercial HPC users
take advantage of this cloud offering. Section 1.2.1 will thoroughly examine this
new trend.

1.2.1 HPC Cloud

The popularity of cloud computing and the ease of resource allocation led to its
adoption by several scientists. This, in turn, paved the way to the emergence of
HPC Cloud - a.k.a. HPC in the Cloud - where cloud providers offer high-end hard-
ware platforms and software environments to run HPC applications. Although this
approach offers the advantages mentioned in Section 1.2 like immediate scalability,
either horizontally or vertically, and the infinite cloud storage space for storing the
results, it faces however many drawbacks, which can be summarized as follow:

¢ Performance problems: cloud providers tend to throttle network and storage
I/0O to allow, in the first place, a better sharing of the common resources and,

4 Chapter 1. Introduction

in the second place, to enable granular billing of each IO Operation, this is
without mentioning the virtualization overhead and the latency introduced by
the network which is generally less performant that then one found in HPC

¢ Security Concerns: although cloud environments are nowadays encapsulated
in a virtual private networking environment, and the connection to on-premises
resources is protected with a VPN, running workloads in the Cloud faces many
challenges like software vulnerability or zero-day attacks.

¢ Hidden costs: like the time spent finding the right cloud provider, the choice
of high-end hardware to use, without mentioning traffic or just unseen costs,
for example, when forgetting to delete unused virtual machine disks.

¢ Storage limitation: moving data between cloud and the on-premises data cen-
ter is a costly and time-consuming process, due mainly to the large amount of
data processed by typical HPC jobs.

What is needed here is a change in the way of thinking. The best solution is
not to move the HPC workload to an HPC simulated environment in the cloud, but
rather to think in both directions and find a way to move jobs seamlessly between
HPC and cloud. This is not to be confused with cloud bursting, where workloads
are dynamically offloaded to the cloud, based on specific criteria like the saturation
of internal resources. To achieve this Hybrid HPC environment, a standard storage
interface that can be used in HPC as well in the cloud is needed, and this is precisely
what we will be exploring in this work.

1.3 Motivation

With the advent of the exascale era, the exponential growth in data volumes, and
the rapid development of Networking/Cloud technologies, the convergence of HPC
and cloud is the subject of many conversations within the scientific community. Nev-
ertheless, an exact definition of the term convergence is needed since it seems to be
understood differently. Furthermore, by adopting cloud computing, many compa-
nies seem to gain from cost-effective and flexible services to perform their data center
workloads; however, whether cloud concepts or services are economically meaning-
ful in an HPC environment still needs to be proven.

Most of the work addressing HPC and Cloud convergence focused on mov-
ing some processing tasks to the cloud or offering cloud-bursting (Lafayette, 2018),
which means a data center may execute applications on the cloud when the waiting
time for job execution in the data center exceeds a certain threshold due to high user
demand. However, the most critical aspect to address is the storage aspect, respon-
sible for the data access, transfer, and manipulation in a converged HPC Cloud
environment, since it significantly affects the performance, cost, and security:

¢ Performance: The performance of using cloud storage inside HPC still needs
to be evaluated. Many prerequisites must be fulfilled to consider cloud storage
as an alternative to classic HPC storage, where low-latency, high throughput,
high availability, highly parallel I/O, and high-scalability (Devresse and Fu-
rano, 2014) are expected. On the other hand, despite the considerable advance-
ment in the networking capabilities, moving data between the cloud and the
on-premises data center, or even between different regions/zones within the
same cloud provider, is still a relatively slow process. This should be carefully

1.3. Motivation 5

evaluated, knowing that typical HPC workloads produce enormous amounts
of data, as seen in chapter 2. Climate, weather, bioinformatics, and astronomy
applications are a few examples of these workloads.

¢ Cost: As already noticed in section 1.2.1, running workloads in the cloud in-
troduces the need to carefully assess which instance type to use, where to run
these workloads, and most importantly, what storage type to use. Most cloud
providers nowadays offer a limited SSD ephemeral storage coupled to each
instance; the price of this "local" storage is included within the cost of run-
ning/leasing the instance. However, the cost of shared storage is relatively
highly priced since it’s IO-bound, in the sense that if more IO performance
is required, the higher the price is. This can lead to exploding costs when
running HPC workloads which usually require highly parallel I/O capabil-
ities. The cost of moving the data should also be carefully examined: most
cloud providers offer free ingress data transfer, i.e., when moving the data to
the cloud, but charge for egress data transfer, i.e., when moving data outside
the cloud to an on-premises data center or to another provider. This should
be thoroughly evaluated, knowing that typical HPC Workloads generate vast
amounts of data.

* Security: Security of data saved in the public cloud plays a significant role.
Many issues must be addressed like access control, management of the en-
cryption keys, breach notification, users” data privacy regulation, data lifecy-
cle management, alongside the resiliency of the encryption system. This high
level of security requires extra resources and negatively impacts performance.

As such, this thesis investigates the convergence between HPC and Cloud in the
broader sense while focusing on the storage aspect in order to foster the usage of
cloud storage infrastructure for HPC computing while optimizing scalability, per-
formance, cost-efficiency, and productivity of scientists running complex compute
workflows.

1.3.1 Goals
Our goal is to answer several high-level questions for research, for example:
* What defines a converged system and how to assess the level of convergence?

¢ Can we use HPC and cloud storage technologies concurrently? What work-
flow will benefit from such settings, which I/O interfaces are suitable?

* How can we achieve optimal data sharing between HPC and cloud resources?

¢ Is moving I/O demanding applications from on-premises to the public cloud
a cost-effective solution compared to a hybrid alternative.

¢ To what extent can we use cloud storage in an HPC environment, what over-
head to expect and how can we minimize this overhead?

Therefore, this work aims not only to measure performance but also to inves-
tigate new methods that allow the harnessing of the capabilities of both HPC and
Cloud technologies. This will lead to an ultimate HPC Cloud convergence where
scientific workflows do not need to differentiate between HPC and cloud storage
but benefit from the advantages of both. These research topics are methodically

6 Chapter 1. Introduction

investigated, and solutions are proposed and explored for relevant real-world scien-
tific experiments. Appropriate scenarios are defined to address the issues of laten-
cy/bandwidth and to ensure technical feasibility; in this context, data interfaces and
architectures are proposed, and several applications such as the concurrent use of
heterogeneous storage systems are explored.

1.4 Outline of this Thesis

This chapter provided a brief overview of HPC, Cloud, and HPC Cloud concepts.
The motivation behind this work and the aspired goals were also presented. In chap-
ter 2, many terms and technologies relevant to this work are shown, like the different
storage technologies and interfaces; a comparison matrix between those technolo-
gies is also provided; crefChapter2 also outlines the HTTP protocol evolution and
describes the various convergence scenarios. In chapter 3, an assessment model is
proposed to evaluate the different convergence solutions and conclude which sce-
nario is the most promising. The assessment model also includes an economic deci-
sion model to help assess cost changes when bursting or moving entire workflows
into the cloud. A real-world example is also illustrated.

In chapter 4, based on the results obtained in chapter 3, a comprehensive investi-
gation of the overhead of the REST® protocol when using cloud services for HPC
storage is presented, in particular, HTTP® is compared with an HPC native protocol,
MPI”. The evaluation shows that REST can be a viable, performant, and resource-
efficient solution, particularly for accessing large files. In chapter 5, the performance
of the popular S3° cloud storage API” is assessed using specific HPC benchmarking
tools in an HPC environment. Based on chapter 5 findings, chapter 6 introduces
an alternative S3 library, S3Embedded, to leverage commonly shared file systems
within HPC and accommodate S3 compatible client applications. It also assesses
several improvements of the S3Embedded library by using the latest enhancements
in the field of HTTP communication and suggests possible scenarios relevant for the
climate and weather applications involving the simultaneous use of cloud and HPC
storage systems. Finally, chapter 7 summarizes this thesis and outlines future work.

SREpresentational State Transfer
®Hypertext Transfer Protocol
"Message Passing Interface

8Simple Storage Service

9 Application Programming Interface

Chapter 2

Background: Related Work & State
of the Art

In this chapter, relevant terms and concepts for the following chapters and a detailed overview
of the storage landscape in HPC and the cloud are provided. In section 2.3 the HPC relevant
storage interfaces are illustrated, and the reasons causing the HPC community to relax the
POSIX semantics are outlined.Section 2.5 summarises the evolution of the HI'TP proto-
col. The relevant storage technologies used in HPC and cloud are discussed, and a detailed
comparison is provided. Finally section 2.7 describes the different HPC Cloud convergence
scenarios

2.1 Parallel Processing and Supercomputing

Parallel processing is the processing of a program with more than one execution unit.
This term is multifaceted because parallel processing occurs at many levels of a par-
allel computer. Today’s processors allow multiple execution units to execute more
than one instruction in one clock cycle. There is support for quasi-parallel execution
of multiple threads sharing the diversity of execution units in multithreaded pro-
cessors such as the Intel Pentium Hyper-Threading. In a multicore processor, there
are several cores in a processor chip, whereby each of these cores can, in turn, be a
superscalar multithreaded processor, i.e., a processor that can execute more than one
instruction within a clock cycle by simultaneously sending multiple instructions to
distinct execution units on the processor (Farber, 2011). It is also possible to have dif-
ferent multicore processors on one motherboard. These boards or multiprocessors
are interconnected to form a cluster. Numerous clusters can work together to create
a cluster grid where parallel programs are executed.

High-performance computing or HPC, already described in chapter 1, uses high-
end computers and parallel processing techniques to solve complex computational
problems and promptly handle vast amounts of data.

2.2 Cloud Computing

The terms cloud and cloud computing were defined in chapter 1; in the following
section, we introduce the different cloud types.

221 Cloud Types

Depending on where they are located, we can differentiate between three types of
clouds:

8 Chapter 2. Background: Related Work & State of the Art

¢ Public cloud: represents the large commercial cloud providers, such as Ama-
zon Web Services (AWS), Google or Microsoft Cloud, which provide several
services such as TaaS!, PaaS?, and SaaS® for many customers. Clients will be
sharing in a “virtually” isolated way the computing, storage, and networking
resources.

¢ Private cloud: usually found on-premises, i.e. within the organization’s physi-
cal location and used to provide computing services and resources to the com-
pany’s employees or its partners. It uses similar technologies as the ones used
in the public cloud and is sized to meet the specific organization’s needs. Since
the total number of resources is limited in this case, the use of smart scheduling
is essential to efficiently allocate the private cloud resources to the applications
that need them while respecting the deadline set for those applications. An
HPC datacenter can, to some extent, be compared to a private cloud providing
needed resources to students and researchers from the universities and entities
who contributed to set up the data center.

¢ Hybrid cloud: In this case, the cloud infrastructure consists of different cloud
infrastructures put together to form a hybrid cloud environment. Although
these clouds are kept separate but can be consolidated to accommodate partic-
ular applications at defined times. A typical use case is when the private cloud
requires extra capacity, it would “burst” some workloads to a different cloud.
This will be discussed further in section 2.7.1. Usually caused by approaching
deadlines for resource-intensive applications, the ability to seamlessly extend
HPC applications” computing resources by bursting to the public cloud is an
essential consideration, notably as more organizations set up cloud-computing
environments (Linthicum, 2016).

2.2.2 Cost Comparison: On-premises vs Cloud

The cost comparison between running workloads on-premise or in the cloud has
been the main subject of many research papers (Smith et al., 2019; McGough et al.,
2014; Emeras et al., 2016); the majority of them concluded that, despite the marketing
done by the major cloud providers, the cost for running scientific workloads on-
premises is cheaper than running them in the cloud.

On the other hand, in (Weinman, 2011), the author concluded that “a pay-per-use
solution makes sense if the unit cost of cloud services is lower than dedicated, owned capacity.
Clients can save money by substituting fixed infrastructure with clouds when workloads are
spiky, specifically when the peak-to-average ratio is greater than the ratio of the cloud vs. fixed
resources on a unit cost basis”. He concluded that leveraging a mix of on-premises and
cloud-based capacity for most real-world workloads is likely to reduce cost versus
an on-premises-only approach.

He noted that sharing with other tenants can save on common costs, like the staff
cost to take care of the whole infrastructure, expertise, and security that is hard to
find within small organizations. However, as seen in section 3.4, the move to the
cloud requires another set of skills that might be even harder to find nowadays since
those types of skills are highly demanded. (McGough et al., 2014) mentioned as well
that once a critical mass of the HPC platform is reached, the total cost of running
scientific workloads is mainly in favor of the on-premises cluster.

lnfrastructure as a Service
2Platform as a Service
3Software as a Service

2.3. Storage Interfaces 9

In chapter 3, the main factors involved in the cost calculation for both scenarios
are thoroughly examined; furthermore, a real-world example is provided.

2.3 Storage Interfaces

Storage interfaces provide the communication point between the application and
the file and storage system. They should be suitable and easily usable, allowing the
developers to focus on the applications’ functionality instead of handling the I/O
interface. In the HPC context, they must deliver high performance while supporting
parallel access. Furthermore, the ability to exchange and share data efficiently is one
of the most significant points to address in research environments. The following
sections will describe standard storage interfaces found in the HPC world.

23.1 POSIX-IO

Initially, the name “POSIX” referred to the IEEE Std 1003.1-1988, released in 1988
to resolve portability issues. The latest version, at the time of writing, is IEEE Std
1003.1-2017.

POSIX does not define the operating system; it only describes the interface be-
tween an application and an operating system. Its purpose is to enhance portability
by setting a set of standards to follow. The full POSIX standard is 4000-plus pages
with more than 1350 interfaces.

The POSIX 1/0O standard offers a model for file system organization by grouping
the files into directories. As seen in (Todd, 2017), it defines numerous functions to
manipulate the data:

¢ mount, umount the file system

* open, close file descriptor

* write, read to/from file descriptor

¢ mkdir, rmdir, creat, unlink, link, symlink
e fentl (byte range locks, etc.)

e stat, utimes, chmod, chown, chgrp

Several strict consistency semantics are defined, ensuring that all accesses are atomic
operations. For example, writing to a file must appear as one atomic operation to any
readers accessing the file during the write.

(Todd, 2017) states also that "POSIX file systems are treated as a sequence of bytes.
However, internally the data content of a file is stored as logical sequence of file system blocks:
Each block is a fixed number of bytes. The last block might not be full. Within a block, all
the bytes are sequential. However, within a file, the blocks might not reside sequentially on
the disk. Underlying storage systems are usually organized as blocks, and ideally, file system
blocks are aligned with the storage system’s blocks. File system refers to the info about the
data as metadata; an inode is defined for each file or directory to provide the locations of the
data blocks for the file and the file attributes, like “time last accessed” or “owner of the file”.
The location of each inode is found in the inode table”.

The POSIX-IO API also defines how the data and metadata of files are cached,
reducing the cost of precisely tracking access, update times, and the file size. It is
worth noting that POSIX was developed with a single system approach in mind, at

10 Chapter 2. Background: Related Work & State of the Art

Inode Table
owner group mode
cime | miime aliy/
poimters /
to blocks]
INODE File Blocks

FIGURE 2.1: POSIX Data Blocks

a time where a single computer operating system managed its local file system, and
concurrent access were only restricted to the processes running on that operating
system. In this case, all file operations we accomplished on a single device, and the
atomic access to files was achieved using locks. However, in a highly distributed
or parallel file storage environment, shared between multiple clients and processes,
the act of maintaining those semantics proved to be a complex and communication-
intensive process.

For example, when fetching a list of files in some directory, as seen in listing 2.1,
the readdir function retrieves only the file names, although, to get more informa-
tion, like the file size, a stat request needs to be made for each file found, resulting
in a network call for each of those files. On the other hand, caching is no longer
straightforward since remote invalidation is needed to keep cache contents consis-
tent. As such, the cost of presenting a single global, uniform view of a subset of the
file system becomes prohibitive.

LISTING 2.1: List Files
/*
* to display the names and sizes of all files in the current directory.

*/

#include <dirent.h>
#include <stdio.h>
#include <sys/stat.h>

int main(void)

{
DIR =d;
struct dirent =dir;
d = opendir(".");

struct stat stats;

if (d == NULL)

{
printf ("Could_not_open_current _directory");
return O;

)
while ((dir = readdir(d)) != NULL)

2.3. Storage Interfaces 11

printf ("\nFile NAME%s" , dir->d_name);

if (stat(dir—->d_name, &stats) == 0)
{

// File size

printf ("\nFile_size: _%li", stats.st_size);
}

else

{
printf ("Unable_to_get_file_attributes.\n");
}
}
closedir(d);
return (0);

)

"The most common approach to implementing these semantics is to utilize a locking
subsystem to control access to files, typically found in numerous systems that enforce the
POSIX semantics like GFS, GPFS, and Lustre” (Sterling, 2002).

A process that needs to write to a file section must first obtain the lock associ-
ated with that section. After writing, it releases the lock. Advanced lock caching
alleviates the locking subsystem’s overhead in systems presenting a high level of
simultaneous access.

Filesystems may implement locks at the block, file, or extent granularity. File-
based locks associate a single lock with a file. This approach is considered the least
performant due to the competition for locks during simultaneous access. Block-
based locks is commonly used in systems that require block-based access when com-
municating between clients and the underlying storage. Although this type of lock
is much finer-grained than file-based locks, it might however lead to the creation of
many locks, especially for large files. A workaround would be to increase the size of
blocks, although this might result in false block sharing.

Extent-based locks presents also a flexible locking method. “This method might
result in fewer used locks since large ranges are described as a single extent. However, this
benefit is lost if accesses are interleaved at a fine granularity. When associated with non-
contiguous access, this procedure can also lead to a significant number of locks in the system.
Despite these two disadvantages, this is the best locking approach for concurrent access under
POSIX used by parallel file systems” (Sterling, 2002).

Scientific access patterns are notably regular. However, none of this information
is retained in any of the cited locking approaches, making them somewhat ineffi-
cient, either in the number of locks or in competition for a small number of locks.
It is worth noting here that the POSIX semantics are known to be a problem in the
community (Zadok et al., 2017). This problem is similar to the ones encountered in
distributed shared memory (DSM) systems, where hardware and software construct
globally accessible memory regions.

POSIX HPC 1I/0O extensions

As seen above, the cost of preserving the POSIX consistency increases considerably
with the massive parallel access. It generates a metadata access bottleneck when
creating or updating files concurrently or synchronously.

12 Chapter 2. Background: Related Work & State of the Art

Distributed HPC processes typically produce concurrent and similar operations
on many files. For example, suppose that many nodes need to open the same file.
Despite that POSIX file handles are only valid on the local node, each node needs
to cross the directory hierarchy to find the requested file, producing a large number
of metadata requests and as such a high overhead on the remote file system. "The
POSIX HPC extensions attempt to decrease this load by allowing a single node to open the
file and then export some representation of the resulting file handle (for example, a direct
pointer to the enclosing directory) to other nodes (openg function), which then convert the
exported handle directly to a file handle (sutoc function) without having to perform a full
open call” as described in (Kimpe and Ross, 2014).

The main goal of the HPC I/O extensions is to create a standard way to provide
high performance and good semantics. The primary approach is either to relax se-
mantics considered expensive or to provide more information to inform the storage
system about access patterns.

For example, the lazy I/O data integrity concept already found in NFS can be
implemented by specifying O_LAZY in flags argument to open(), allowing the net-
work filesystem to relax data coherency requirements to improve the performance
of shared-write access. Other client processes are unaware of writes until one of the
following calls is issued: lazyio_propagate(), fsync(), or close(). On the other hand,
the system can cache the accessed data till lazyio_synchronize() is requested.

The filesystem does not ensure synchronization across processes or nodes; the
application should use external synchronization methods (e.g., pthreads, XSI mes-
sage queues, MPI) to achieve the required consistency.

Although the POSIX HPC I/0O extensions aim to address some of POSIX’s limi-
tations, however, none of the extensions are integrated into any major file system.

POSIX-IO models

In network programming, a socket is used to transmit and receive information through
a network; it is a particular file that can be compared to a pipe. It has two ends; usu-
ally, a server and a client that might reside on the same or two different machines.
Writing data to a regular file is only possible as long as the container (file system - or

- quotas) allows it. Data goes into a buffer, and then that buffer is transported over
the network. We will distinguish here between four common POSIX I/O models:

¢ Synchronous blocking I/O (Synchronous, blocking 1/0)

¢ Synchronous non-blocking I/O (Synchronous, non-blocking 1/0)
¢ /0O Multiplexing (I/O Multiplexing)

¢ Asynchronous I/O (Asynchronous I/0O)

Blocking I/O

The simplest model is the blocking I/O model. As seen in fig. 2.2 The client
issues a recvfrom() system call to read the data from the remote system. Meanwhile,
the caller process is blocked until the kernel receives the data and copies it to the
process before returning. After encapsulation, the network card will pass the data
message to the protocol stack and copy it to the kernel buffer. Once the data is ready
and arrives in the kernel buffer, the kernel will copy the data to the user memory
space and return the result, freeing the buffer. At this time, the caller process will
unblock and resume execution. Blocking I/O does not waste CPU time slices but
can only handle one connection at a time.

2.3. Storage Interfaces

13

—

I recvfrom

Process is blocked~

A 4

data received
—J

copy data

A 4

process data| <€

copy finished

Q .

emts data |
remote data

e I —

—waiting

]

Data Provider

3

—copying data to user memory

— -

FIGURE 2.2: Blocking IO

Non-blocking I/O

application Kemel

10

N
> request
recvirom
< EAGAIN remote data
II > l >h Waiﬁng
< EAGAIN Data Provider

[l
—/

By

recvirom

A

Process continues
executing while polling

EAGAIN

copy data

t-copying data to user memory
A 4

copy finished

(- -

FIGURE 2.3: Non-Blocking IO

process data | [€

Unlike blocking I/0, non-blocking I/O means that when reading data using
recvfrom(), and so long the data is not ready, an error is returned immediately with-
out that calling process gets blocked, allowing it to continue executing other oper-
ations. To read the data, it will continuously call the recvfrom() polling operation.
Once the data is ready, the kernel will copy the data to the user memory space and
return the result of successful reading. The disadvantage of this model is that polling
operations will take up time slices and waste CPU resources.

10 Multiplexing

I/0O multiplexing is the capability to perform simultaneous I/O operations on
multiple file descriptors. The select() system call is used to perform multiplexing;
it returns the number of ready descriptors. A call to select() blocks the calling pro-
cess until the given file descriptors are ready or until an error or timeout occurs.
The process can do I/O on these file descriptors before the next iteration of the I/O
multiplexing.

Figure 2.4 shows that this is quite similar to blocking I/O, with both phases
blocking. But an essential difference is that it can wait for multiple file descriptors to
be ready, i.e., it can handle multiple connections.

14 Chapter 2. Background: Related Work & State of the Art

e —

Process is blocked~ i waiting

Data Provider
< Data available II
o _
> N
copy data

Process is blocked~ p—copying data to user memory
Y

process data | < copy finished
_J

FIGURE 2.4: 10 Multiplexing

hlg
I
1]

recvirom

r
!

This model can be extended to use multithreading with blocking I/O: rather than
using select to block on different file descriptors, the program uses various threads,
one for each file descriptor, and each thread can call recvfromy().

Note that the Linux OS introduced epoll() to overcome the shortcomings of se-
lect() like the low-level polling mechanism, which increases the overhead and the
limited number of file descriptors.

Asynchronous 10

The semantics of the read operation is different from the above models. The
read operation "aio_read" here will notify the kernel to perform the read operation,
copy the data to the process, and inform the process after the completion of the
entire operation, hence binding a callback function to process the data. The reading
operation will return immediately, and the program can perform other operations.
After completion, the process is notified, and the process calls the bound callback
function to process the data.

application <Asynchronous IO> Kernel
~ '

request

: >
aio_read "1 | remote data [N —

retum — waiting

Data Provider
o]
Process continues—< :\/
copy data

A 4

I < Data ready signal copy finished

(- J

B

—copying data to user memory

FIGURE 2.5: Asynchronous 10

Asynchronous 1/0 is rarely used in network programming but may be used in
FileI/0O.

2.4. Storage Access Technologies 15

2.3.2 MPI-IO

The Message Passing Interface (MPI) is a message-passing standard used to pro-
gram process communication running on parallel computing architectures. Version

2 (Forum, n.d.) of this interface introduced in 1997 the support for file I/O (MPI-10).
MPI-1O offers a file view to the MPI processes, representing wherein the file a pro-
cess will be writing. As such, the act of writing data to a file is similar to sending a
message to that file.

This can be seen in listing 2.2. Subsequently, reading and writing of non-contiguous

slices of more complex data layouts, like large multi-dimensional arrays usually
found in scientific computing, is very similar.

LISTING 2.2: MPI-IO Example

#include <mpi.h>

MPI_Status status;

MPI_File fh; MPI_0Offset offset;

MPI_File_open(MPI_CUMM_WORLD, "/pfs/datafile", MPI_MODE_RDONLY,
MPI_INFO_NULL, &fh)

nints = FILESIZE / (nprocs*INTSIZE);

offset = rank * nints * INTSIZE;

MPI_File_read_at (fh, offset, buf, nints, MPI_INT, &status);

MPI_Get_count (&status, MPI_INT, &count);

printf ("process%dyread,dyints\n", rank, count);

MPI_File_close (&fh) ;

(Gropp, 2016)

The MPI-IO specification permits an application to write into separate files or
into the same file from different MPI processes. It uses MPI datatypes to specify
both the file and the process data. It supports collective 10O, thus offering a high level
of abstraction, allowing the smooth implementation of regular parallel operations
like each process writing to its part of a file or collectively with its other processes.

In contrast to the instant visibility of changes for all involved processes as re-
quired by POSIX, the default semantics in MPI-IO ensure that the changes written by
a certain process will be immediately visible to that process, although not to the other
processes, they should first synchronize their view of the file using MPI_File_sync
and MPI_Barrier (Corbett et al., 1996). The semantics are more relaxed as in POSIX
I/0O; nevertheless, since MPI-IO is commonly built on top of POSIX I/O functional-
ity, it cannot deliver this flexible data consistency in every implementation.

2.4 Storage Access Technologies

2.4.1 Parallel File System

Within a parallel file system, data blocks are striped across multiple storage devices
on numerous storage servers utilizing the resources of these devices in parallel. In-
creasing the available servers and storage devices generally improves the through-
put, given that the underlying network bandwidth can support it. In this case, each
sequential block I/O request can potentially go to a completely different server or
storage device. Parallel file systems are a subset of clustered file system, since they
can be shared or simultaneously mounted to multiple nodes. In the upcoming sub-
sections we will briefly outline Lustre and BeeGFS, which power most of the systems

16 Chapter 2. Background: Related Work & State of the Art

submitted to the I0500*, which is an I/O benchmark that measures HPC storage sys-
tem performance, releasing an updated 10500 list twice a year. Other examples in-
clude the Spectrum Scale / General Parallel File System (GPFS) (Barkes et al., 1998),
WekaFS ° or GekkoFS°. other products that provide this sort of clustered parallel ac-
cess to data. These products offer performance and capacity scalability as described
below:

Lustre

Lustre (Braam, 2019) is one of the most used parallel distributed file systems on su-
percomputers. It is licensed under the GNU General Public License (GPLv2) and
can, as such, be altered and enhanced. Lustre’s architecture seen in fig. 2.6 differen-
tiates between clients and servers.

"Clients use RPC messages to interact with the servers, which perform the actual 1/O
operations. While all clients are identical, the servers have different roles: Object Storage
Servers (OSS) manage the file system’s data represented in the form of objects; clients can
access byte ranges within the objects. Metadata Servers (MDS) manage the file system’s
metadata; clients can contact the appropriate OSSs independently after retrieving the meta-
data. Each server is connected to possibly numerous targets (OSTs/MDTs) that store the
actual file data or metadata, respectively. Lustre runs in kernel space, where most of its
functionality has been implemented in kernel modules” (Liittgau et al., 2018).

By using the kernel’s virtual file system (VFS), Lustre is able to offer a POSIX-
compliant file system. However, each file system operation leads to a system call
and eventuel overhead when addressing high-performance network and storage de-
vices.

BeeGFS

BeeGFS (Heichler, 2014) is a software-defined parallel clustered file system devel-
oped with a strong focus on performance and intended for straightforward instal-
lation and ease of management. It started as an in-house program at the Fraun-
hofer Center for HPC in 2005 and was initially perceived as the Fraunhofer filesys-
tem. BeeGFS is built on highly efficient and scalable multithreaded core components
with native RDMA” support. Like the Lustre file system, BeeGFS separates data
services from metadata services; however, a significant improvement is the capa-
bility to thread the metadata request service using a built-in queue and define how
many threads to spawn on each metadata server as needed. After the client obtains
the metadata information from the metadata servers, it can immediately access the
data. BeeGFS offers a straightforward approach; however, it does not natively sup-
port any kind of data protection such as erasure coding or distributed RAID. At the
time of writing, this is possible when using 3rd party solutions, like NVMesh NVMe
devices. BeeGFS claims to be suitable for I/O intensive workloads because of its
parallelism. A BeeGFS based storage system is currently (2021) ranked 14 on the
10500.

nttps://i0500.0rg/list/isc21/i0500
Sweka.io
https://storage.bsc.es/gitlab/hpc/gekkofs
"Remote Direct Memory Access

https://io500.org/list/isc21/io500
weka.io
https://storage.bsc.es/gitlab/hpc/gekkofs

2.4. Storage Access Technologies 17

Management Metadata Object Storage
Target (MGT) Target (MDT) Targets (OSTs)

-— — _— =

> >

Management | Metadata and Object Storage
Network Management Servers
Servers

High Performance Data Network
(Omni-Path, InfiniBand, 10/40/100GbE)

FIGURE 2.6: Lustre Architecture (Braam, 2019)

2.4.2 Object Storage

Object storage is a storage architecture that arranges information into containers of
adjustable sizes, referred to as objects. Each object holds the data itself as well as
its related metadata and has a unique identifier that is used to locate it, rather than
a file name and path. Organizing these unique identifiers into a flat address space
mitigates the complexity and scalability challenges of a hierarchical file system using
file paths. An object can be found using this unique key independently of its phys-
ical location on a distributed system. Therefore, object storage is highly scalable by
design and is essentially different from conventional block or file storage systems.

Cloud storage is a subset of object storage where objects are accessed directly
from the client application, using a RESTful API (Richardson and Ruby, 2008).

In the world of HPC, computational performance has long exceeded the per-
formance of the traditional file-centric storage systems since the POSIX file system
interface was hardly suitable for data management on supercomputers (Zadok et
al., 2017). Many workarounds were proposed to address this issue; some of them
tried to introduce evolved I/0O algorithms in MP], like Data aggregation/sieving in
ROMIO, (Thakur, Gropp, and Lusk, 1999) or to implement different data organiza-
tions on the back-end storage, like PLFS (Bent et al., 2009) or to introduce richer data
formats, for example, HDF5 (Folk et al., 2011), NetCDF (Rew and Davis, 1990a).

Eventually, and although a file represents a convenient way to store the data, the
ideal concept for scientific computing/HPC would be rather the use of a data object
model (Liu et al., 2018) where all levels of metadata are encapsulated. This evolu-
tionary path to Object Storage Access (Goodell et al., 2012) may lead ultimately to
seamless integration with a cloud infrastructure. As we see nowadays, file systems

18 Chapter 2. Background: Related Work & State of the Art

like QuoByte and Ceph (Weil et al., 2006) export various file system APIs, including
S3 (AWS, 2020). There are cases in which low-latency is particularly emphasized in
the design of the HPC storage protocol, as in DAOS (Lofstead et al., 2016), for exam-
ple. A provoking question for the future is, if, in the long run, a cloud API like S3
becomes similarly efficient, then why should we retain HPC-specific options? Will
these remain important or just become a niche?

An object store holds the objects in a flat data environment without using folders,
directories, or complex hierarchies as in a file-based system. Each object is a simple,
self-contained container containing the data as well as its metadata; a unique ID
is utilized to locate and access the object instead of a file name and path. High
scalability is guaranteed by aggregating object storage devices into more extensive
storage pools spread across different locations, gaining data resiliency and disaster
recovery.

While some distributed file systems, like Lustre, mentioned earlier in section 2.4.1,
use an object-based architecture, where file metadata is held on metadata servers, file
data is stored on object storage servers, and the filesystem abstracts them to present
a POSIX compliant filesystem view to users and applications, they do not provide
direct access to the data files/objects using a predefined REST API ®.

To avoid any ambiguity, and for the rest of this work, we will only use the term
object storage for the systems capable of offering a REST API to access the objects/-
files, i.e., for cloud storage.

Cloud Storage, like Amazon Web Services 537, Microsoft Azure Blob Storage, or
Google Cloud Storage, are typical examples of object storage. The number of objects
hosted by those systems depicts the vast scalability achieved by object storage; for
example, Azure claimed in 2014 to host more than 30 trillion storage objects '

The following subsections outline some of the most common object storage sys-
tems.

Ceph

Ceph (Weil et al., 2006) is an open-source software capable of running on commod-
ity hardware to offer a highly scalable object-, block- and file-based storage system.
Ceph introduces the CRUSH (Controlled Replication Under Scalable Hashing) al-
gorithm to ensure that the data is uniformly spread across the cluster and easily re-
trieved by all cluster nodes. As shown in fig. 2.7, Ceph object storage can be accessed
using the OpenStack Swift or the Amazon Simple Storage Service (S3) APIs along-
side a native API which can be used for direct integration with supported software
applications. The CBD or Ceph Block Device is a virtual disk that can be attached to
virtual machines or bare-metal Linux-based servers. The Ceph Reliable Autonomic
Distributed Object Store (RADOS) ensures Block storage capabilities like snapshots
and replication. RADOS can be used as a backend for the OpenStack Block Storage.
Ceph file system (CephFS) is a POSIX-compliant filesystem.

MinlO

MinIO (MinlO-Inc., n.d.) is an open-source object storage server which gained a cer-
tain popularity in recent years since it offers an Amazon S3 compatible API. It is

8REST API for the Lustre Integrated Manager https://github.com/whamcloud/Online-Help/
blob/master/docs/api/rest_API.md
9Simple Storage Service
Ohttps://www.neowin.net/news/microsoft-azure-by-the-numbers/

https://github.com/whamcloud/Online-Help/blob/master/docs/api/rest_API.md
https://github.com/whamcloud/Online-Help/blob/master/docs/api/rest_API.md
https://www.neowin.net/news/microsoft-azure-by-the-numbers/

2.4. Storage Access Technologies

19

APP

Y

APP

Y

HOST/VM

CLIENT

Y

LIBRADOS

A library allowing
apps to directly
access RADOS,

RADOSGW

A bucket-based
REST gateway,
compatible with S3
and Swift

RBD

A reliable and fully-
distributed block
device, with a Linux
kernel client and a

CEPH FS

A POSIX-compliant
distributed file
system, with a
Linux kernel client

with support for
C, C++, Java,
Python, Ruby,
and PHP

QEMU/KVM driver and support for

FUSE

RADOS

A reliable, autonomous, distributed object store comprised of self-healing, self-managing,
intelligent storage nodes

FIGURE 2.7: Ceph Architecture (Weil et al., 2006)

conceived for storing unstructured data like pictures, videos, log files or data back-
ups. Similar to Amazon S3, the maximum size of an object is 5 TB. AWS Lambda
notification is also provided and its data protection abilities can endure a failure of
up to half the number of servers and drives in use with its erasure code and bit rot
detection that are able to detect corrupted data in container deployments.

A detailed overview of the different MinlO modes is covered in chapter 5.

Swift

The OpenStack Object Storage Swift (OpenStack-Foundation, n.d.) is an open-source
software used to handle the storage of considerable amounts of data cost-effectively
by using clusters of standard server hardware.

OpenStack Swift deposits the data as binary objects on the server operating sys-
tem’s underlying file system, with each object having its related metadata. Data and
metadata are stored together and copied as a single unit.

The OpenStack Swift architecture shown in fig. 2.8 presents a proxy server and
multiple storage nodes. The Swift REST-based API runs on the proxy server to com-
municate read and write HTTP requests between clients and the storage servers
."The proxy server locates the objects by their hashtags and metadata, whereas usual HTTP
methods like PUT and GET are used to store and retrieve these objects and their associated
metadata from the Swift cluster. It also ensures the completion of writes to drives on the
storage nodes. Replication and erasure coding are also offered across the storage nodes in
the server cluster. It also introduces the concept of region and zone by placing each object
in locations as unique as possible. If a server or hard drive fails, the Object Storage system
replicates its content from running nodes to other locations in the cluster.” !

Hhttps://www.techtarget.com/searchstorage/definition/OpenStack-Swift/

https://www.techtarget.com/searchstorage/definition/OpenStack-Swift/

20 Chapter 2. Background: Related Work & State of the Art

FIGURE 2.8: Swift Architecture (OpenStack-Foundation, n.d.)

lustre BeeGFS minio cephfs swift DAOS
License GPLv2 GPLv2 AGPLv3 LGPLv3 Apache License 2.0 BSD-2
S3 support no no yes yes yes no
Scalability high high low medium medium high
Replication yes yes yes yes yes yes
Data Protection yes not native. yes yes yes yes
High Availability yes yes yes yes yes yes
POSIX Compliance high high low acceptable relaxed relaxed
File storage support yes yes no yes no no
Block storage support no no no yes no no
Central metadata servers required required notneeded required notneeded not needed

TABLE 2.1: Comparison matrix of the different filesystems

24.3 DAOS

DAOS (Lofstead et al., 2016) Distributed Application Object Storage is Intel’s open-
source and parallel file system for high-performance file system operations. It is
optimized for memory interface Optane DIMMs and NVMe-accessed Optane and
NAND SSDs. As such, no traditional magnetic hard-disks are found in a DAOS
system. DAOS places metadata and stages small IO operations into Optane Persis-
tent Memory on the same node as the block storage (NVMe drives) before writing
entire blocks to the SSDs. The metadata in the DCPMM represents the data struc-
tures maintained by each DAOS server to reach the application data saved in DAOS
containers and objects on the SSDs. As such, DAOS does not require any dedicated
metadata servers or head nodes.

2.4.4 Comparison Matrix-Storage Solution

In section 2.4.4 several factors are used to compare the filesystems mentioned above,
referring mainly to the published documentation for each of them.

2.5. HTTP Evolution 21

e License: the licensing model can hint at the cost of licensing and using the
product. It goes without a doubt that GPL and free software licenses are the
most common.

e File storage support: where files are named, tagged with metadata consisting
of the file name, file type, and its creation and update time, and organized in
folders

* Block storage support: where a file is divided into equally-sized chunks of
data called blocks stored separately under a unique address. A server operat-
ing system uses this individual address to pull the blocks together, assembling
them into a file. These blocks can be stored anywhere in the system for max-
imum efficiency, sparing the time to navigate through a folder hierarchy to
access the data blocks.

¢ 53 support: since AWS S3 (AWS, 2020) evolved to be the de-facto standard
interface for accessing cloud storage, it is worth considering if the system offers
an S3 interface.

¢ Scalability: Possibility to increase the data cluster when needed; without that,
the performance suffers. To quantify the scalability, we consider the frequency
of the occurrence of the respective filesystem on the 10500 '* list and the most
extensive implementation of the system.

e High availability: where data is automatically replicated from one storage
node to multiple other nodes. If a given data set in a given node gets compro-
mised or deleted unexpectedly, the data can be copied back from the additional
copies found in the same system.

¢ POSIX Compliance: To assess the POSIX compliance, we found that most file
system implementations do not rigorously adhere to the POSIX spec; for in-
stance, most filesystems relax the atomicity requirements for reads due to per-
formance reasons. We found that the "Lustre code is not completely POSIX
compliant” ' and that "CephFS diverges from strict POSIX semantics" and it
"relaxes more than local Linux kernel file systems (e.g., writes spanning object
boundaries may be torn)."!*. The authors of DAOS clearly state that they are
shifting away from block-based, POSIX-compliant file systems towards more
scalable, transactional object stores.

2.5 HTTP Evolution

HTTP stands for Hypertext Transfer Protocol and refers to a stateless protocol used
to transfer data in an IP network. It was conceived to transfer web pages and data
between a web server and a web browser. HTTP is also used by WebDAV, the file
transfer protocol, and REST (rest). In the OSI layered model, the protocol is assigned
to the application layer (Layer 7). The protocol was developed in 1989, and the
HTTP/1.0 version was specified in RFC 1945 in 1996. HTTP/1.1 followed in 1999
(RFC 2616) and HTTP/2 in 2015 (RFC 7540).

Phttps://i0500.0rg
Bhttps://wiki.lustre.org/POSIX_Compliance_Testing
M4https://docs.ceph.com/en/latest/cephfs/posix/

https://io500.org
https://wiki.lustre.org/POSIX_Compliance_Testing
https://docs.ceph.com/en/latest/cephfs/posix/

22 Chapter 2. Background: Related Work & State of the Art

HTTP transmits information unencrypted in plain text, and HTTPS (Hypertext
Transfer Protocol Secure) enables secure connections with authentication and end-
to-end encryption. As a rule, the web servers authenticate themselves to the web
browser with a certificate. The port used is port 443 instead of port 80.

HTTP also offers the option of user authentication. A web server sends the status
code 401 and a WWW-Authenticate header field to inform the client that an authen-
tication is required. The simplest form of authentication is basic authentication; the
client sends an HTTP request containing an Authorization header containing the
base64 encoded username and password joined by a single colon. If the credentials
are correct, the server delivers the requested file.

HTTP also offers compression to reduce the amount of data transferred; the
server can compress its responses. Client and server negotiate the compression
method to be used beforehand. Especially with text-based data such as HTML, CSS,
or JavaScript, compression can save a lot of bandwidth. For already compressed
data, such as images, videos, or audio files, on the other hand, recompression makes
less sense.

HTTP 1.1 defined in rfc2616 the methods used by HTTP, like GET to retrieve
information from the server and POST to deliver the requested information.

2,51 HTTP2

HTTP1.1 clients use various connections to improve concurrency and decrease la-
tency; HTTP/1.x does not compress request and response headers, generating re-
dundant network traffic. Many techniques are used to overcome those limitations,
like HTTP Pipelining or domain sharding, which introduced their own complexity
level and increased network resources usage.

"HTTP?2 enables a more efficient use of network resources and a reduced perception of la-
tency by introducing header field compression and allowing multiple concurrent exchanges
on the same connection. .. Specifically, it allows interleaving of request and response mes-
sages on the same connection and uses an efficient coding for HTTP header fields. It also
allows prioritization of requests, letting more important requests complete more quickly, fur-
ther improving performance.”

"The resulting protocol is more friendly to the network, because fewer TCP connections
can be used in comparison to HTTP1.x. This means less competition with other flows, and
longer-lived connections, which in turn leads to better utilization of available network capac-
ity. Finally, HTTP2 also enables more efficient processing of messages through use of binary
message framing.” (Hypertext Transfer Protocol version 2, Draft 17)

HTTP2 focuses on three qualities seldom associated with a single transport pro-
tocol without any additional network technologies: Simplicity, High Performance,
and Robustness. Techniques such as compression, multiplexing, request prioritiza-
tion, or server push enable HTTP2 lower the latency of processing the HTTP requests
while maintaining interoperability and compatibility with HTTP 1.1.

e Multiplexing: As seen in fig. 2.9, several requests are sent over the same TCP
connection, whereas responses can be received in random order without the
need to wait for a slow response, that’s blocking others in a way similar to
out-of-order instruction execution in modern CPUs.

¢ Compression: HTTP header size is drastically reduced, minimizing the over-
head.

2.5. HTTP Evolution 23

HTTP/1.1 Baseline HTTP/1.1 Pipelining HTTP/2 Multiplexing

o = o = o =3
é <— Open Connection —» é <— Open Connection —» é <— Open Connection —»

Time Time

T st les. cs
Ger Css
Stes o
ss
\ \

SPONE ResPONSE

RE
|+

o © cientRenders Page © cientRenders Page
° Connection Remains Open Connection Remains Open
Response order should be the same as The response order can differ from
Client Renders Page the request order the request order
<— Connection Closed —

FIGURE 2.9: HTTP1 Vs HTTP2

* Server push: The server can send more content than initially requested by
clients, diminishing the need for users to continually request information needed
to fully load the web page in the web browser. As such, the server push ca-
pability with HTTP /2 permits the servers to respond with the full content of a
page that is not already in the browser’s cache.

2.5.2 HTTP3

Like its predecessor, HTTP/2 relies on the Transmission Control Protocol (TCP). In
simple terms, the protocol ensures that data sent in a particular order also arrives at
the receiving device in the same way. However, if a packet from this sequence is lost,
the entire TCP connection is interrupted until the missing link arrives. Suppose the
connection medium exhibits a high loss rate. In that case, this can lead to HTTP1.1
ending up being faster than its successor - because HTTP1.1 establishes up to six TCP
connections, over which the lost packets would then be distributed. The individual
connections are then less affected than the one TCP connection for HTTP/2, over
which multiple data streams are transmitted.

Google has therefore been working on an alternative under the name QUIC since
2012. The technology was officially introduced a year later and was initially used for
internal communication between Google servers and later also used by Facebook.
QUIC no longer relies on the connection-oriented TCP but on the connectionless
User Datagram Protocol (UDP). UDP does not require explicit connections to be es-
tablished during data transport and does not require acknowledgment of incoming
data. Any error corrections that may be necessary are carried out at the QUIC level,
and, in the end, the number of packets is reduced, resulting in a significant accel-
eration. The Internet Engineering Taskforce (IETF), responsible for standardizing
Internet transmission protocols, later agreed to use QUIC as the basis for HTTP/3.
Individual data streams are handled separately in HTTP/3. Therefore, if a packet
is lost en route, this no longer affects all data streams, as with a TCP transmission.

24 Chapter 2. Background: Related Work & State of the Art

HTTP1.0 HTTP1.1
-

)

HTTP1.1 Semantics

S

HTTP1.0 HTTP1.1 Syntax

TLS (Optional) TLS (Optional)]

o) |
= .
)

1996 1999 stilla Draftat2021
>

P

UDP Based

Methods Binary streams Stream multiplexing

Introduced RESpZnserT:es '\HA#E Is x|r:jg single TCP cnx Stream & connection-level flow control
Features cader 7 1es caders compression Low-latency cnx establishment
Reuse of TCP cnx Sener Push Yy

Connection migration

FIGURE 2.10: HTTP Protocol Evolution

Instead, with HTTP/3, only the stream that is actually affected has to wait until the
missing packet is delivered. HTTP/3 also reduces the packet roundtrip time, and
this is the time it takes for a data packet to arrive at its destination in addition to the
time it would take to acknowledge receipt of the data.

In chapter 4, a benchmark is performed to test the different HTTP protocols, and
a comparison of their performance is presented.

2.6 Performance Testing

The purpose of Performance testing is to evaluate the system or software in terms of
different factors such as performance, responsiveness, scalability, stability, reliability,
speed, or resource utilization. Effectively, the system is tested under various loads
and network conditions while accurately recording and evaluating its response time.

Various test scenarios are used for different attributes of the system and summa-
rized as a report. The main thing to remember here is that some factors are interde-
pendent. Further tests must therefore not be considered individually in performance
testing, as it is ultimately a question of the system’s overall performance for the end
customer.

Ultimately, the correct evaluation of the results also requires that the tester knows
what the clients finally expect from the system. There are some key performance in-
dicators to be considered when evaluating various tests. They provide important
indicators of how the system is performing and enable the comparison to other sys-
tems.

These key performance indicators include the number of virtual users, calls, er-
rors per second, response time, resource utilizations, waiting times, execution de-
mands (for CPU cycles or seconds) and throughput. By evaluating this data and
its correlations, we can better identify errors and bottlenecks that limit the system’s
performance. The system’s scalability is determined by assessing the variation in
response time/resources as the load on the system changes.

Performance testing is generally divided into two subtypes, load and stress test-
ing. Load testing increases the load volume, so this performance test shows how a

2.7. Convergence Scenarios 25

system behaves under a large number of regular, expected requests. Load testing
helps us determine the system’s reliability by assessing the key performance indi-
cators mentioned above under prolonged periods of high load. In contrast, stress
testing is performed to find out how software behaves under maximum demands.
Load Testing tests the extent while Stress Testing tests the peak of the requirements.
Stress Testing is essential to test the system’s performance, response time, stability,
and recovery and close eventual security gaps.

2.7 Convergence Scenarios

In recent years, we have heard a lot about the convergence of Cloud and HPC. It has
been advertised as the next potential trend in the HPC industry and the inevitable
way to achieve more affordable and faster HPC systems. However, many aspects
seem to fall under the broad term "Cloud and HPC Convergence," so before div-
ing into the different types of convergence, let’s define the term convergence. The
best-found definition related to our context is brought by (Wikipedia contributors,
2021), stating that the “technological convergence is the tendency for technologies that were
originally unrelated to become more closely integrated and even unified as they develop and
advance”.

From this definition, we can see that the primary purpose of convergence is the
possibility for different technological systems to emerge toward performing similar
tasks. The resulting converged system can seamlessly accomplish any types of tasks
that were previously completed on only one of the past non-converged systems.

The following scenarios claim a certain extent of HPC Cloud convergence.

271 Cloud Bursting

Cloud bursting refers to the ability to dynamically move workloads from an HPC
Data Center to the cloud to meet peak demands or free up local resources, thus
maintaining on-premises workloads at targeted levels (Sabin et al., 2016).

Some Industry trends claim that hybrid environments can offer the best results
where heavy or sensitive workloads can operate on on-premise resources, and peak
demand can be moved to remote resources following a pay-as-you-go model.

An example of cloud bursting is the solution offered by the company Adaptive
Computing '° for clients running its Moab job scheduler. This approach binds Moab
with the NODUS Platform in order to operate compute nodes in the cloud and offers
HPC users the capability to seamlessly manage and configure cloud-based nodes
that will handle the extra workload and incorporate those nodes into the customer’s
on-premises infrastructure.

One of the advantages of this approach is the possibility to burst to different
cloud providers like AWS!®, Google, Azure, etc. Cloud resources are automatically
de-provisioned from the cloud provider after usage.

Cloud Bursting might seem like an ideal approach to achieve huge savings while
offering endless resources to the local HPC users; however, several aspects should
be carefully evaluated to avoid any pitfalls:

¢ Data Synchronization:
The amount of data handled by the HPC workload decides whether it can

15https ://adaptivecomputing.com/adaptive-computing-makes-hpc-cloud-strategies-more-accessible-with-the-moa
16 Amazon Web Services

https://adaptivecomputing.com/adaptive-computing-makes-hpc-cloud-strategies-more-accessible-with-the-moab-nodus-cloud-bursting-1-1-0-release/

26 Chapter 2. Background: Related Work & State of the Art

ON PREMISE
h Single API Key
Moab
- Violation
Workload of SLA’s . R Image
Queue :| Elastic ALV\I\\a Stack services Management
Trigger Cloud

= 0s
Bursting /S

Request Si%

s

/
+ -
Deploy J Destroy
/

/

7
s
/

I—l Cloud

H
[L L T B R T o T |

H
i Cloud Bursting

I O B O
Nodes j local nodes. oood oood ooo0 oo

FIGURE 2.11: Moab Cloud Bursting

burst into the cloud. Simulations jobs, for example, require a small amount
of data to start but may produce terra or even petabytes of data. Other jobs
like weather prediction require hundreds of gigabytes of data before they can
begin. Using the best internet connection might not suffice to synchronize this
amount of data between the data center and the public cloud.

¢ Traffic Costs:
As already discussed in chapter 1, we should not neglect the cost of the cloud
egress traffic. Let’s assume we can overcome the data synchronization chal-
lenge and send data and receive results seamlessly; however, if the applica-
tions produce lots of data that we should pull back to the data center, then the
bill will likely increase drastically.

¢ Possible Code Change:
To take full advantage of the cloud, it might be necessary to change the ap-
plication code to interact with the new infrastructure. The complexity of this
code change increases based on the constraints set by the cloud provider and
the extent to which the offered services diverge from standards. The applica-
tion should also be aware of the runtime environment, whether on-premises
or in the cloud, and operate accordingly.

¢ Workflow Dependencies:
This might happen when some of the on-premises workflows have specific
software or hardware dependencies that are hidden or just are not available in
the cloud. This is designated by the complexity of the application and its de-
pendency and integration with other applications, components, and systems
internal to the data center.

Cloud bursting can offer great flexibility, scalability, and elasticity; nevertheless, it
is mainly suitable for stateless, non-critical applications that handle non-sensitive

2.7. Convergence Scenarios 27

o 8lob Swrage\

Compute pool

. -2 =

Azure Pipelines
Azure Batch e Virtual Network

)

Azure Monitor

e

FIGURE 2.12: HPC Cloud using cloud-native technologies - as offered
by Microsoft Azure

information. Since this only covers a minimal subset of HPC workloads, let’s see
what other convergence scenarios offer.

2.7.2 HPC Cloud

The term HPC Cloud - a.k.a. HPC in the Cloud or HPC as a Service - was introduced
in chapter 1, it refers to the high-end hardware platforms and software environments
offered by some Cloud providers to run HPC applications.

The key concept is the use of cloud resources to run HPC applications (Netto
etal., 2018).

In recent years, several scientific applications and business analytics services
have been executed on HPC Clouds. As such, current research efforts seek to under-
stand the cost-benefit of moving resource-intensive applications from on-premise
environments to public cloud platforms.

We can achieve the simplest type of HPC Cloud by just spinning up a couple of
virtuals servers in the Cloud then installing and configuring an MPI(Message Pass-
ing Interface) library like, for example, OpenMPI (Graham, Woodall, and Squyres,
2005) in cluster mode.

The major cloud providers offer more realistic examples. We can differentiate
between two types of HPC Cloud offerings:

HPC in the Cloud using 100% cloud-native solutions

A direct example is the HPC solution built on the Azure managed service!”: Azure
Batch and started by an Azure Pipelines job.
The solution shown in fig. 2.12 involves the following steps:

¢ An Azure Pipeline is launched to compile the project’s code an generate an
executable stored in Azure Storage

* The pipeline job loads processing data to the storage.

7https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/
hpc-cluster

https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/hpc-cluster
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/hpc-cluster

28 Chapter 2. Background: Related Work & State of the Art

e

—
e
O

< ; - —
e 0 '
User : i Cluster Controller |
HPC Controller Sf:rver : Node - - -
: L Ny Ny
VMs

" on Deman E:lr»] odes
Storage System

« Lustre

* BeeGFS

« Storage Optimized VMs
« Blob Storage ...

FIGURE 2.13: HPC Cloud using HPC technologies

¢ Azure Pipelines triggers the Azure Batch service to initiate its processing job.

¢ The Azure Batch copies the program executables and the input data from stor-
age and attribute it to a compute nodes pool.

¢ The Batch service performs the job while managing the pool by retrying or
reassigning tasks as nodes complete their work.

¢ The pool performance metrics (CPU, Memory, Disk I/0O) and log files are col-
lected by the Azure Monitor service.

* Once the compute nodes complete the tasks, the program data is delivered
back to the Azure Storage.

HPC Cloud using HPC technologies

In this case, the cloud provider offers HPC Technologies like parallel filesystems,
RDMA over Infiniband, and VMs running on hosts equipped with special hard-
ware, i.e., GPU support. A typical use case is the Computational Fluid Dynamics
(CFD) simulation which requires notable compute time and specific hardware. This
increase in cluster usage can eventually lead to problems with spare capacity and
prolonged queue times. Since adding physical hardware might be expensive or may
not arrive within the given deadline, some clients consider using this type of HPC
Cloud to conduct their research.

As seen in fig. 2.13, the cloud provider offers the hardware to run the CFD
jobs on both GPU and CPU virtual machines. RDMA (Remote Direct Memory Ac-
cess) enabled VM sizes with FDR InfiniBand-based networking allows low latency

2.7. Convergence Scenarios 29

MPI transfer. An enterprise-scale clustered file system is offered to ensure the best
throughput for I/O operations.

The cloud provider might also offer specific tools to provision clusters and or-
chestrate data in both hybrid and cloud scenarios, in order to streamline the creation,
administration, and optimization of HPC clusters. It is also possible to automatically
launch on-demand compute nodes by monitoring the number of pending jobs.

It is inevitable to use provisioning tools to set up the significant number of nodes
constituting a typical HPC system. Many tools (Scott, 2001; Bruno et al., 2004; Schulz
etal., 2016) have been developed to accomplish this. The OpenHPC project '¢, for ex-
ample, seeks to aggregate several components needed to deploy and operate Linux
HPC clusters, including resource management, provisioning tools, I/O clients, de-
velopment tools, and a mixture of scientific libraries.

We can also use most of these tools to seamlessly provision VMs in the cloud
(Trangoni and Cabral, 2012); furthermore, there is an abundance of tutorials ex-
plaining how to set up an HPC Cloud. Since many clients do not have the time
or qualified human resources to endeavor in the cloud, several small companies are
now addressing this market segment by offering their expertise in setting up HPC
Cloud environments.

2.7.3 HPC Grid

Grid Computing is defined as a network of uniform or different computers working
together over a long distance to accomplish a task that would rather be challenging
for an individual machine. Grid computing is suitable for a subset of HPC appli-
cations called high-throughput computing (HTC); these applications are generally
loosely coupled, where communication between processors is limited or even non-
existent. As such, HTC applications demand large amounts of computing, while a
high-speed interconnect isn’t crucial. Typical case studies include protein folding,
financial modeling, and earthquake simulation.

A grid computing software needs to be installed on each node to enable grid
participation. The Berkley Open Infrastructure for Network Computing (BOINC)
(Anderson, 2004) is an open-source grid middleware used extensively in scientific
research to create and control the grid and manage processes and communication
across the nodes.

Such open-source middlewares leverage “Volunteer Computing”, which is the
"use of consumer digital devices for high-throughput scientific computing" (Ander-
son, 2020), and enable them to support high-performance workloads; for example,
the folding@home project (Pande et al., 2010) managed to achieve 1.1 exaFLOPS in
March 2020. The main challenges facing HPC Grid were addressed by (Tanaka et al.,
2013) and can be summarised as follows:

* Data retrieval and sharing over the internet.
* Network virtualization.
* Resources management and load balancing.

¢ Security.

18http: //www.openhpc . community

http://www.openhpc.community

30 Chapter 2. Background: Related Work & State of the Art

2.7.4 Cloud Technology inside HPC

To extract the top performance from the underlying platform, and to face increasing
demands for greater software flexibility, while achieving the correct pricing and con-
tractual models, many efforts are spent on adopting cloud-native technologies like
containers and object storage inside HPC data centers, which in turn will help to
reach harmony between the two worlds. The benefits can be summarised as follow:

¢ Portability: Containers encapsulate software dependencies to move the appli-
cation between machines/clouds (Docker, Kubernetes, etc.) without worrying
about the re-installation or the interoperability of the required libraries. On the
other hand, object storage is more flexible than traditional POSIX filesystems
because it can be accessed from any client that supports HTTP (S3, Ceph ..)

¢ Scalability: Containers decompose large, monolithic HPC applications into
more scalable microservices, not tied to a particular infrastructure. On the
other hand, the sheer number of Object or Cloud storage providers claim In-
finite scalability '°, which literally means there is no restriction on how large
the system and the data size could grow. This claim will be quantified and
analyzed in chapter 5.

* Performance: The containerization overhead is negligible. (Torrez, Priedhorsky;,
and Randles, 2020) found no meaningful performance differences when run-
ning a set of benchmark container solutions in comparison to running them
directly on bare-metal; they only noticed a possible exception of modest vari-
ation in memory usage. They also point out that HPC users should feel free
to containerize their applications without being worried about performance
degradation, regardless of the container technology used. The overhead of
cloud storage is explored in-depth in chapter 4 and chapter 5.

Containers in HPC

The most notable containerization solution explicitly tailored for HPC environments
are:

¢ Singularity: This solution provides isolation of the different workloads while
preventing privilege escalation. Singularity (Kurtzer, Sochat, and Bauer, 2017)
offers native support for MPI, Infiniband, and GPUs. It supports storing im-
ages and running containers in HPC standard file systems due to its ability
to distribute container images as a single SquashFS? file. Singularity focuses
on security by encrypting the root file system and cryptographically signing
the containers” images. Furthermore, the started containers are read-only by
default, and all the write operations are only allowed using bind-mounted di-
rectories.

¢ Charliecloud: Another HPC-focused containerization solution is Charliecloud
(Priedhorsky and Randles, 2017), which also natively supports MPI. Char-
liecloud differs from Singularity by focusing on the simplicity of architecture to
run standard Docker containers without any privileged operations. It mainly
aims to encapsulate dependencies with minimal overhead. It uses Docker,
among others, as an image builder tool and then extracts all the contents of

Phttps://www.netapp.com/data- storage/storagegrid/what-is-object-storage/
https://wuw.kernel.org/doc/html/latest/filesystems/squashfs.html

https://www.netapp.com/data-storage/storagegrid/what-is-object-storage/
https://www.kernel.org/doc/html/latest/filesystems/squashfs.html

2.7. Convergence Scenarios 31

that image into an unpacked file tree format. As such, the images are stored as
a file tree, in contrast to Docker, which uses compressed layers, or Singularity,
which uses a single file.

Other cloud technologies have also found their way into HPC, like, for example,
Hadoop?! the Big Data analysis platform, used to enable users execute data analy-
sis applications handling vast amounts of distributed data. Hadoop uses an open-
source version of MapReduce that minimizes overhead in task spawning and data
communication. Tools like Spark (Zaharia et al., 2010) have gained popularity within
the Hadoop ecosystem by addressing typical data processing and analytics needs
used in sciences, like for example, DNA sequencing and Bio-molecular simulations
(Massie et al., 2013). These applications generate immense amounts of data that need
to be analyzed to choose the next best set of simulation configurations. The results
obtained in (Reyes-Ortiz, Oneto, and Anguita, 2015) from experiments with a parti-
cle physics data set show than native HPC protocols like MPI/OpenMP outperforms
Spark in terms of processing speed and presents a more consistent performance.
However, Spark offers better data management and data security, by addressing as-
pects like node failure and data replication. On the other hand, several frameworks
emerged to accomplish interoperability and integration between Hadoop and HPC,
MyHadoop (Krishnan, Tatineni, and Baru, 2011), JUMMP (Moody et al., 2013), Mag-
Pie ? are just a few examples. SAGA-Hadoop? is also a tool used for the deploy-
ment of Hadoop and Spark on HPC resources. It allows executing an application
written for YARN (e. g.MapReduce) or Spark (e.g., PySpark, DataFrame, and MLIib
applications) on HPC resources. SAGA-Hadoop uses SAGA (Merzky, Weidner, and
Jha, 2015) to spawn and manage Hadoop clusters within an environment controlled
by an HPC scheduler, such as SLURM?.

Cloud Storage for HPC Workloads

As seen earlier, a certain overhead is associated with the interoperability between
Big Data and HPC; data must to be transmitted which leads to persisting files and
re-reading them into Spark.

While many cloud vendors offer to move complete HPC workloads into the Cloud,
this is limited by the massive demand of computing power alongside storage re-
sources typically required by I/O intensive HPC applications. Eventually, the cost of
storing and managing data produced by those applications determines where work-
loads should run. It is widely believed that HPC hardware and software protocols
like MPI yield superior performance and lower resource consumption compared to
the HTTP transfer protocol used by RESTful Web Services that are prominent in
Cloud execution and Cloud storage. With the advent of enhanced versions of HTTP,
it is time to reevaluate the effective usage of cloud-based storage in HPC and its abil-
ity to cope with various types of data-intensive workloads.

The need for a common storage interface is crucial to achieving a seamless conver-
gence between HPC and Cloud. Cloud storage offers lower overhead and better
performance by disregarding primarily unused features like file hierarchies. The
usage of cloud storage instead of distributed file systems for big data analytics or
within storage abstractions approaches like key-value stores, is gaining more con-
sideration. (Matri et al., 2017) points out that “cloud storage is a strong candidate for

2lpttps://hadoop.apache. org/
2https://github.com/LLNL/magpie
Bhttps://pypi.org/project/SAGA-Hadoop/
Xhttps://slurm. schedmd. com/overview.html

https://hadoop.apache.org/
https://github.com/LLNL/magpie
https://pypi.org/project/SAGA-Hadoop/
https://slurm.schedmd.com/overview.html

32 Chapter 2. Background: Related Work & State of the Art

replacing traditional storage for both HPC and Big Data by demonstrating that the majority
of the storage calls made by HPC or Big Data applications can be seamlessly mapped to cloud
storage operations.”

Another example of the use of Cloud storage is HSDS %, is the Object Store-
Based Data Service for Earth System Science: Due to the massive increase in the vol-
ume of data in the Earth Observing System Data and Information System (EOSDIS)
archive, NASA decided to move it to the cloud. This move fosters the management
and accessibility of NASA Earth observation data by bringing this massive of data
“close to compute” in an efficient, simple, and scalable way. Researchers are now
able to access considerable amounts of data using the same applications they use on
their own machines without bothering about storage or computing constraints. The
resulting Highly Scalable Data Service (HSDS) (HDF-Group, n.d.) is a REST-based
service used for reading and writing HDF5 data. It supplies all the functionality that
the HDF5 library usually offers but in a way that can use cloud-based storage (e.g.,
AWS S3).

2.8 Summary

In this chapter, the background work for the following chapters was laid down. The
significant terms and notions were introduced, and the HPC relevant access tech-
nologies were presented and successfully compared. A brief history of the HTTP
protocol and its evolution was given. The HPC and Cloud convergence scenarios
were also revealed and explained. In the next chapter, we will explore in-depth
these convergence scenarios by introducing a modeling approach to compare them.

Phttps://earthdata.nasa. gov/esds/competitive-programs/access/hsds

https://earthdata.nasa.gov/esds/competitive-programs/access/hsds

33

Chapter 3

Research Methodology and Design

This chapter lays the groundwork for the upcoming chapters by introducing the methodology
needed to address the HPC and Cloud convergence in-depth. One of the main goals of this
work, defined in chapter 1, is to quantify the level of HPC and Cloud convergence. Hence, we
introduce a model-based development technique to quantify the level of convergence reached
by each solution. The need for such a model was outlined in chapter 1; in this chapter,
we compare the different solutions already presented in chapter 2 by offering abstract and
domain-specific concepts to represent each implementation.

Section 3.1 outlines the research methodology for the rest of this work, section 3.2 introduces
our assessment model consisting of three distinct components: section 3.3 starts by assessing
the performance feasibility, then section 3.4 illustrates the second component which is
the administrative overhead, section 3.5 concentrates on the third component to estimate
which is the cost efficiency. Using the assessment metrics defined for each component, we
evaluate the various convergence scenarios and evaluate the achievable level of convergence.
A real-world scenario is also presented in section 3.5.5, where the cost of running workloads
and storing their results on-premises and in the cloud is carefully examined. Finally, in
section 3.6 the findings are discussed and analyzed, and a complete comparison of the various
convergence models is provided.

3.1 Research Methodology

As per the definition seen in the previous chapter, the primary purpose of conver-
gence is the possibility for different technological systems to emerge toward per-
forming similar tasks. The resulting converged system can seamlessly and effi-
ciently execute any types of workloads previously conducted on only one of the
non-converged systems, i.e., in our case, both HPC and Cloud workloads.

The solutions presented in chapter 2 claim to achieve a certain amount of conver-
gence between HPC and cloud; each solution is located and uses the infrastructure
of one of the two platforms, sometimes both and even it may extend to use the com-
pute power provided by volunteer computers as in the case of HPC Grid.

34 Chapter 3. Research Methodology and Design

Containers inside HPC Cloud Bursting

Cloud storage HPC

HPC Cloud-HPC HPC Cloud native

FIGURE 3.1: The different converged solutions with their positioning

Figure 3.1 summarizes the various scenarios presented in chapter 2 alongside
their respective emplacement.

As stated in section 1.3.1 there is a need for an assessment model to quantify the
level of HPC and Cloud convergence. This assessment model will help us answer
some of the high-level questions posed in section 1.3.1 like the one related to the cost-
efficiency of moving applications from on-premises to the public cloud. It will also
help us examine the different solutions already presented in chapter 2 and compare
them to each other.

A direct result of this comparison is the ability to determine the most promising
solution, which we will cover in-depth in the upcoming chapters. Once identified,
we need to determine the performance bottlenecks and scalability problems in this
system for both HPC and cloud applications. For this purpose, we use well-known
and established HPC and Cloud benchmarks. Furthermore, to answer the question
posed in section 1.3.1, regarding the simultaneous use of HPC and cloud storage
technologies and what workflows will benefit from such settings, we need to extend
the benchmarks mentioned above to handle both types of workloads; hence the same
benchmark should be able to reproduce HPC and Cloud workloads by simulating
various types of I/O intensive applications using the access interfaces typical found
in each world, i.e., POSIX or MPI-IO for HPC, and Cloud Storage like S3 for the
cloud.

Another high-level question from section 1.3.1, regarding the overhead to expect
when using cloud storage in an HPC environment, can be addressed just by using
the extended benchmark inside HPC and comparing the results obtained of the runs
against HPC and Cloud I/0O interfaces.

After defining the possible causes of the overhead of using cloud storage inside
HPC , it will be possible to propose different workarounds to overcome these sig-
nificant bottlenecks and scalability issues. Implementing these workarounds and
re-running the same benchmarks will help us determine the efficiency of the opti-
mized solution.

3.2. Convergence Assessment Model 35

3.2 Convergence Assessment Model

One of the main goals of this work, already seen in section 1.3.1, is assessing the
level of convergence between HPC and Cloud. To accomplish this, we introduce an
assessment methodology to measure the extent of this convergence achieved by a
converged system.

fo

Performance Feasibility

j®)

Cost Efficiency

FIGURE 3.2: HPC Cloud Convergence Assessment Model

Figure 3.2 represents a high-level overview of our assessment model, which we

will elaborate on in the upcoming sections.
Our model comprises three related but distinct components: It starts by assessing
the performance feasibility of the converged model to determine if it can meet the
performance and scalability constraints imposed by typical HPC and Cloud appli-
cations.

The second component is the administrative overhead which includes the hu-
man resources used to manage and maintain a converged environment.

The third component to estimate is the cost efficiency, which is a significant
cause affecting the choice between running workloads on-premises or on the cloud,
alongside the type and the hardware and software requirements of the application.
We also check to what extent investing in on-premises resources is meaningful.

3.3 Performance Feasibility

As seen in section 2.7, an HPC Cloud converged system is capable of seamlessly
running any types of workloads that were previously completed on only one of the
non-converged systems, i.e., both HPC and Cloud workloads.

Figure 3.3 shows the different aspects that might generate an inevitable over-
head, limiting the overall performance and the performance feasibility of a con-
verged environment. Our primary interest, in this case, is not just the technical
feasibility of a particular solution but also the performance that each element of this
solution can achieve. This coarse-grained model also depicts how the components
relate to each other:

Chapter 3. Research Methodology and Design

Compute E

CPU Cycles Overhead
Scalability Restraint
(Compute Performance Limitation

A
10 E

Data Access Interface
10 Performance Limitation
Scalability Restraint

LV

A 4

Network E Hardware Support E
Achievable Throughput Special Hardware Support
Latency Overhead < >
Scalability Constraint
RDMA Support

FIGURE 3.3: Performance Feasibility Model

¢ Compute: The computing overhead refers simply to the CPU cycle overhead
added by the infrastructure itself. For example, running an application on vir-
tual machines implies a particular overhead compared to running the appli-
cation directly on bare-metal due to the hypervisor emulating the underlying
hardware. Containers can be quite helpful since they offer some measure of
isolation without the performance overhead usually associated with virtual-
ization. They are smaller than a VM and require much less time to start, allow-
ing more containers to run on the same host. However, both virtualization and
containerization need a specific management software which also brings some
compute overhead to operate and control the virtualized or the containerized
platform (Felter et al., 2015). The total compute overhead can be quantified
by the number of CPU cycles used to run the emulated environment. We will
use the performance metric "CPU_CLK_UNHALTED.CORE" to represent core
cycles when the core is not halted or just CUC! for short. The overhead ratio
can be expressed using Equation (3.1) :

CUConver ged_system

3.1
Cucbare_metal ()

Compute_Overhead_Ratio =

Furthermore, a scalable system should be able to use a notable amount of re-
sources while still serving its purpose, as such scalability plays a tremendous
role here: supposing the application is highly scalable on bare-metal and can
be run on x nodes simultaneously; however, if in the converged environment,
the maximum nodes count is limited to y < x, which might be due to sev-
eral limitations introduced by the infrastructure management platform such as
Kubernetes?, the application itself (Abraham et al., 2015) or the hardware re-
sources (Chen et al., 2020). The application performance, in this case, is limited
to a maximum valued estimated by ¥ in comparison to running on bare-metal.

Another point to consider here is the compute performance achieved by the
converged platform, expressed using a standard rate indicating the number

ICPU_CLK_UNHALTED_CORE
Zhttps://kubernetes.io/docs/setup/best-practices/cluster- large/

https://kubernetes.io/docs/setup/best-practices/cluster-large/

3.3. Performance Feasibility 37

of floating-point arithmetic calculations systems can perform on a per-second
basis or for short FLOPS.
We will use the term %’LTIW < 1 to represent the ratio of compute perfor-

mance achieved when moving the workloads to the converged system.

¢ Network/communication: The achievable throughput and the latency are the
metrics to consider in order to estimate the network overhead. For example,
a scientific application, usually executed inside an HPC data center equipped
with a high-end InfiniBand network, will suffer performance loss if run on a
cloud environment, with limited bandwidth due to the networking technology
in use or the usage of some throttling, auditing, or accounting mechanism to
charge the users or achieve a large and secure multitenancy. Scalability also
plays a role here, and it can be quantified by the capacity of the routing and
switching backplane in every platform. RDMA (Remote Direct Memory Ac-
cess) support is also considered: The zero-copy networking enables the net-
work adapter to transfer data directly from one application memory to an-
other, without copying data between application memory and the data buffers
of the operating system. Furthermore, if parts of the converged system are
geographically dispersed with relatively slow interconnect, it will lead to a no-
ticeable network overhead for tightly coupled HPC applications.

To quantify the change in the network throughput, we can calculate the through-
put ratio between the converged system and an optimally highly networked
environment, presumably HPC, using Equation (3.2) :

Thm“g hP u tconverged_system
Throughputpc

Throughput_Ratio = (3.2)

* Hardware support: Cloud and HPC applications have different hardware re-
quirements: many HPC applications nowadays require the use of high-end
hardware, the support for this special hardware should be available in the con-
verged system. For example, GPU support plays a meaningful role: According
to the latest HPC User Site Census data, out of the 50 most popular application
packages considered by HPC users, 34 offer GPU support’. Furthermore, the
use of the architecture’s highly parallel features should not be reduced when
using the converged environment.

¢ I/O: The I/O overhead addresses the component involved in the data trans-
mission and transformation. We consider the following;:

— Data Access Interface: The various workloads can use different I/O in-
terfaces, like POSIX, MPI-IO, or a specific high-level I/O library for the
direct object store access. We should carefully evaluate the overhead of
the data access technology used in each case for each of these interfaces.

— I/O Performance Variation: includes different metrics like throughput
and latency; it can be estimated using a benchmark capable of running
HPC and Cloud workloads on the converged environment using the dif-
ferent I/O interfaces mentioned above.

— Scalability Constraints: refers to the capacity of the storage system to ac-
commodate several clients concurrently without leading to degradation
in the performance or a higher error rate. Depending on the supported

Shttps://www.nvidia.de/content/intersect-360-HPC-application-support.pdf

https://www.nvidia.de/content/intersect-360-HPC-application-support.pdf

38 Chapter 3. Research Methodology and Design

number of nodes, we can distinguish between a low scalable system,
only capable of supporting up to five nodes without suffering any per-
formance or resilience loss; if the number of supported nodes is between
5 and 100, the storage system is moderately scalable. If it supports more
than 100 nodes, we refer to it as a scalable system, and if more than 1000
nodes are supported, we can safely declare it a highly scalable system.

Note that any network overhead due to shared storage is ignored for this ele-
ment since it is examined in the network aspect.

To implement a converged system, we need to identify the overhead associated
with each component of the defined model. We will use the heatmap technique to
better visualize this overhead: the magnitude of the overhead introduced by each
aspect will be encoded, where red represents the highest overhead and green is the
lowest. For this purpose, we will use the color palette illustrated in fig. 3.4.

We will now apply this model to the different convergence scenarios described
in the previous chapter.

e

LOW

FIGURE 3.4: Color Palette used to display the overhead

3.3.1 HPC Cloud using 100% Cloud-native Solutions

As discussed in section 2.7.2, this scenario involves the use of cloud technologies
inside a cloud environment to accommodate both Cloud and HPC workloads.

The compute overhead is the one introduced by virtualization; the VMs need to be
provisioned and require a specific time to start compared to the bare-metal nodes
usually provided in HPC.

Scalability should not be an issue, and, theoretically, it is only limited by the appli-
cation itself.

When using the standard network of the cloud provider (Ethernet), the common
HPC networking advantages are not available in this situation. (Expésito et al., 2013)
assessed the performance of communications on the Amazon EC2 CC platform and
found that the communication start-up latency is relatively high compared to bare-
metal, i.e., around 5x, and the throughput is around half the expected value indicat-
ing a poor network virtualization support. Another research (Persico et al., 2016) on
this subject found that the traffic management policies enforced by AWS and Azure
may severely impact both the performance perceived by the customers and the mea-
surement results.

Moreover, cloud storage is used extensively in this scenario; although most cloud
storage solutions presented by the major cloud providers promise a high degree of
scalability, the high-end library used to access this storage should be carefully eval-
uated since HPC applications do not usually support cloud storage access, requiring
as such to emulate or to develop a new access interface.

3.3. Performance Feasibility 39

Compute E
J >

10 = | 1
N _]<£ | !

Network E -y Hardware Support {I

FIGURE 3.5: Performance Feasibility Model of the HPC Cloud using
100% Cloud-native Solutions

Therefore, fig. 3.5 depicts the low overhead for the compute and hardware sup-
port elements, whereas the network and the I/O parts suffer a higher overhead.

3.3.2 Cloud Bursting

COTmegj
1 |

Network $:| N Hardware Support $:|

FIGURE 3.6: Performance Feasibility Model of Cloud Bursting

Cloud bursting refers to the ability to dynamically move workloads from an HPC
Data Center to the Cloud to meet high demands or free up local resources, thus
maintaining on-premises workloads at targeted levels.

Most issues of Cloud bursting were outlined in section 2.7.1, the different over-
head points are now visualized in fig. 3.6, we can see that the compute overhead is
acceptable, to a certain extent, it includes the virtualization overhead with the time
needed to provision and start the virtual machines. However, the network and I/O
components suffer at most. Even with the best internet connection available, this
network channel will induce significant data-out charges and add latency to the ap-
plication. Furthermore, data synchronization will strain the network and storage
resources both on-premises and in the Cloud. Hardware support should also be
provided in both environments if the application needs it.

3.3.3 HPC Cloud using HPC Technology

A more feasible and potentially convergent solution is the HPC Cloud using HPC
technologies described in section 2.7.2. In this case, the cloud provider offers HPC
Technologies like parallel filesystems, RDMA over Infiniband, and VMs running
on hosts equipped with special hardware, for example, GPU support. Bare-metal
cloud, consisting of fully dedicated servers within a cloud environment, also falls
within this category.

40 Chapter 3. Research Methodology and Design

Compute {I
4

»i

0 3P 1
— | |

Network E k—— Hardware Support {I

FIGURE 3.7: Performance Feasibility Model of the HPC Cloud using
HPC Technology

Scientific workloads can be seamlessly run in this environment without any code
transformation since the cloud provider offers an identical HPC environment. As
such, hardware and network support should also be similar to what the HPC users
know. One potential overhead can be the storage since parallel filesystems are emu-
lated on top of a virtualized environment to provide the I/O storage interface. For
example, running a SAS Grid Manager cluster on AWS with Intel Cloud edition for
Lustre?, the throughput obtained is still significantly lower than on-premises Lustre
cluster.

Furthermore, Intel points out in the mentioned report that Lustre is ideal for run-
ning I/O-demanding workloads during the compute stage and not recommended
for long-term storing data. They propose using the Cloud provider storage service,
such as S3 on Amazon, for long-term data retention.

On the other hand, supporting InfiniBand in the cloud requires the use of par-
ticular types of virtual machines; for example, in AWS, the EC2 VM should have an
Elastic Fabric Adapter (EFA). The team behind OpenFOAM?, a software for compu-
tational fluid dynamics (CFD), found in their EFA benchmarks®, that the scalability
is to some extent low.

3.3.4 HPC Grid

As outlined in section 2.7.3, Grid Computing represents a network of uniform or
different computers working together over a long distance to accomplish a task that
would rather be challenging for an individual machine.

It is only suitable for a minimal subset of scientific applications, (Parashar et al., 2013)
list the most common ones. The nodes exchange little or no data since most of them
have limited network connectivity. The application code should ensure redundancy
and robust failure recovery since it’s highly likely that many compute nodes will
disconnect or fail, increasing the compute overhead. Network and I/O performance
are far from what is expected inside HPC due to the geographical dispersion of the
nodes.

‘https: //insidebigdata.com/2017/01/26/hpc-storage-performance-in-the-cloud/
Shttps://openfoam.org/
®https://cfd.direct/cloud/openfoam-hpc-aws-efa/

https://insidebigdata.com/2017/01/26/hpc-storage-performance-in-the-cloud/
https://openfoam.org/
https://cfd.direct/cloud/openfoam-hpc-aws-efa/

3.3. Performance Feasibility 41

FIGURE 3.8: Performance Feasibility Model of the HPC Grid

3.3.5 Containers in HPC

The use of containers in HPC, as shown in section 2.7.4, brings many benefits like
encapsulation, portability, and reproducibility. Security and prevention of root esca-
lation privileges have also been addressed, and it is available in many HPC-specific
container solutions or using a container orchestration solution like Kubernetes. By
just importing a container and running it on the target platform, the development
time elapses on the developer computer and not directly on supercomputers. As
such, the cluster resources are preserved for production workloads and not for test-

ing.

{ > Compute E

© &k 1
—)

Network E 3 Hardware Support E

FIGURE 3.9: Performance Feasibility Model of the use of Containers
in HPC

Although (Torrez, Priedhorsky, and Randles, 2020) - all members of the Char-
liecloud team - found no meaningful performance differences when running a set
of benchmarks container solutions in comparison to running them directly on bare-
metal, (Abraham et al., 2020) found a slight overhead when comparing different
HPC container solutions. The evaluation done by (Abraham et al., 2020) shows a
particular startup time overhead for Docker and Podman, as well as network over-
head at startup time for Singularity and Charliecloud. The I/O evaluations show
that Charliecloud incurs a significant overhead on Lustre’s MDS and OSS with in-
creasing parallelism.

Furthermore, integrating the containers with other HPC tools like schedulers
and shared filesystem should be carefully addressed, inducing a particular over-
head. Container images are built to use the commonly available network stack, i.e.,
TCP/IP; HPC typical interconnects like Infiniband and RDMA are not supported
out of the box.

3.3.6 Cloud Storage in HPC

As seen in section 2.7.4, using a simple adapter for logging storage calls of HPC and
Big-Data applications, (Matri et al., 2017) observed that HPC applications running
MPI-IO do not perform any call other than file operations, with file reads and writes
constituting the majority of them. On the other hand, 98% of the storage calls made

42 Chapter 3. Research Methodology and Design

by Big-Data applications are file operations. As such, the vast majority of the storage
calls made by HPC or Big-Data applications can be directly mapped to cloud storage
operations.

Compute E

10 2 |k -
———))
Network E

FIGURE 3.10: Performance Feasibility Model of the use of Cloud Stor-
age inside HPC

<
v

Y

Hardware Support E

Figure 3.10 shows the different components of our model. The color choice, in
this case, is not definitive due to the lack of literature covering the use of cloud
storage inside HPC. The compute overhead of using cloud storage boils down to
analyzing the overhead of the communication protocol used by cloud storage, i.e.,
investigating the overhead of the REST protocol to reveal the potential for using
cloud services for HPC storage.

Chapter 4 elaborates on this point, and chapter 5 focuses on the I/O overhead intro-
duced by the use of such storage type.

3.4 Administrative Effort

A converged platform capable of running HPC and Cloud/BigData applications re-
quires a competent IT staff who have a profound knowledge of both environments,
a good understanding of the Pay-as-you-go model, and the ability to align IT and
business strategies while keeping the environment securely and reliably running
without incurring high costs.

Integration E

Required Skills
Platform Know-How
Application Mapping

Management & Organization {I End-User Experience {I

Provider Selection Usability

Handling of System Impairments A Cost Consideration

Billing Alarms
Finding Qualified Personnel
LMMA E Security E

Y

Logging ey o] External Threats
Metrics ST Supply Chain Threats
Monitoring Internal Threats
Alerting Misconfiguration

FIGURE 3.11: Administrative Effort visualized Model

The different aspects to consider are visualized in fig. 3.11 and can be summa-
rized as follows:

3.4. Administrative Effort 43

¢ Integration Overhead
The IT team should possess several required skills in order to get the appli-
cations running successfully. Here is a non-exhaustive list of the need-to-have
skills:

- Distributed computing

— Virtualization

- Containerization and experience in migrating legacy systems into cloud
environments.

— Web/REST API and Services
— Design and implementation of Service-oriented architecture
- Dealing with HPC and Cloud management tools

- Solid understanding of the economics behind different HPC and cloud
models.

— Complete mapping of the applications and their dependencies

— Full view of the existing integration options that the providers offer.

Depending on the type of the converged solution, the learning curve can vary
to acquire proficiency in those skills and achieve the needed platform know-
how. For example, fig. 3.12 represents our vision of a cloud learning curve,
figuring the milestones that should be reached to achieve a high level of pro-
ficiency and cloud platform know-how needed to operate and maintain cloud

environments.
A
Cost&
Demand
Management
Governence
Fy &
E Compliance,
o
j
o Security
Automatic
Capacity & Build Test
Server Performance & Deploy
vpc ConsolidationManagement
Virualisation SDN "~ o

\4

Time

FIGURE 3.12: Cloud Learning Curve

Figure 3.12 displays the transition from general infrastructure knowledge to
cloud platform mastery. This chart illustrates the challenges to expect when
pursuing cloud capabilities from virtualization to software-defined networks
(SDN) through Virtual Private Cloud (VPC), autoscaling, and automatic de-
ployment.

Different software stacks are available on both cloud and HPC. Each environ-
ment has its own job scheduler, software dependencies, hardware drivers, and
I/0O interfaces; this is without mentioning the different software engineering
workflows used by cloud and scientific developers, a.k a. the "software chasm"

44

Chapter 3. Research Methodology and Design

(Kelly, 2007). Furthermore, the life cycle of supercomputers is five to seven
times shorter than the life cycle of scientific applications that run on them (4
years versus 20 to 30 years) (Palyart et al., 2012). A scientific software stack
usually outlives the hardware it was initially developed to work on.

The process of identifying and determining the interactions and interdepen-
dencies between application components and their underlying hardware in-
frastructure is expressed as application mapping. To ensure that the applica-
tions perform optimally in a converged environment, it’s essential to discover
and map the underlying dependencies.

A converged system should run both types of workload with minimal "code
transformation," i.e., the application code should undergo a minimal or ideally
no modification to run on the converged system.

Management and Organization Overhead

The management of a converged solution requires technological skills and the
ability to design, deploy and administer the infrastructure in a way to align
with business strategies. The tasks of the management team include the fol-
lowing:

— The choice of the right provider, by specifying the institution’s specific
needs and aligning the cloud provider’s platform and technologies with
the organization’s cloud objectives.

- Avoiding any vendor lock-in, which might happen when the company
adapts its processes or application code to accommodate certain vendor
services or products, leading to a situation where the cost and complexity
of switching to another vendor with better offers but is extremely high.

— Depending on the type and complexity of the platform to operate and
maintain and the number and kind of needed skills to achieve a seamless
integration as described in the previous section, the management team
should expect a particular overhead towards finding the qualified per-
sonnel.

— Monitoring the incurred expenses and setting the respective billing alarms
to avoid any cost trap and uncover hidden costs.

- Implementing security measures to ensure high availability, backup, and
abiding by regulatory conditions like data privacy and residency.

— Defining and implementing the required procedures for avoiding and
eventually handling system impairments, data loss, or even operator dis-
continuity.

¢ End-user Experience

For the end-user, the usage of the system should be transparent; researchers
should focus on their scientific work without being distracted by the setup
and the security of the underlying infrastructure or having to use different
configuration files for different environments. Most importantly, the cost fac-
tor should not be a significant concern that researchers should evaluate when
running their workloads; for example, running an application in the cloud re-
quires extra consideration to avoid massive expenses due to the hidden costs
already described in section 1.2.1

3.4. Administrative Effort 45

* Logging, Metrics, Monitoring, and Alerting (LMMA)

The LMMA? stack is a combination of tools used to ensure the availability of
the running infrastructure. It should provide insight into how the applications
and infrastructure are performing and help point out issues in load, network-
ing, and other resources before it becomes a failure point. Metrics and Logs
constitute the raw data needed by the Monitoring component to keep track of
the system’s performance, health, and availability. Alerting is triggered when
performance or usage anomalies are detected. It is vital to define clear alert
conditions that notify the qualified team or individual and have sufficient con-
textual information to help them decide how urgent an alert is.

¢ Security
Security plays a critical role for every system, independent of its convergence
level. The greater the number of services accessible from the internet, the
higher is the risk of being compromised. The common source of risks are:

— External Threats

This is where the software vulnerabilities are exploited from a remote lo-
cation to gain access to the system. Software vulnerabilities can stay hid-
den for a long time and might be exploited secretly before being made
public, for example, Shellshock 8 found in the GNU Bash through 4.3, ini-
tially released on 08 June 1989, was only disclosed on 24 September 2014.
Shellshock could allow an attacker to make Bash execute arbitrary com-
mands and get unauthorized access to Internet-facing services, including
web servers, that use Bash. Log4shell9 is another example.

— Supply Chain Threats

Supply chain risk is when a software dependency or an element that
makes up the system is compromised, including product components,
services, or personnel that help supply the end product, third-party soft-
ware, and vendors who implemented the system.

A most recent example is the SolarWinds Hack in early 2020, where hack-
ers secretly broke into Texas-based SolarWind’s systems and added mali-
cious code into the company’s software management system. The hacked
code was sent out as an update to the company’s 33,000 customers'’. The
code created a backdoor to customers’ information technology systems,
which hackers then used to spy on them.

— Internal Threats
These describe staff members or users that abuse their access privileges.
In a multitenant environment, special constraints should be applied to
mitigate privilege escalation and audit user access.

— Misconfiguration
This happens, for example, when a specific staff member mistakenly ex-
poses some service to the internet with a weak or no authentication at all,
allowing a remote attacker to abuse this service easily.

Whether on-premises or in the cloud, the organization being the application
owner, is responsible for protecting the applications, operating systems, and

"Logging, Metrics, Monitoring, and Alerting

8https://cve.mitre.org/cgi-bin/cvename. cgi?name=CVE-2014-6271

‘nttps://en.wikipedia.org/wiki/Log4Shell

10https ://www.businessinsider.com/solarwinds-hack-explained-government-agencies-cyber-security-2020-12

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://en.wikipedia.org/wiki/Log4Shell
https://www.businessinsider.com/solarwinds-hack-explained-government-agencies-cyber-security-2020-12

46 Chapter 3. Research Methodology and Design

other assets running in either platform. This is well known when the organi-
zation manages its own infrastructure; however, it is less known that all the
public cloud vendors point out that security in the cloud is a shared respon-
sibility and that the client should secure the above-mentioned components, as
outlined by fig. 3.13, courtesy of Microsoft!! 1.

Responsibility laaS

Information and data

Responsibility always

retained by the customer DS (A el 1R

Accounts and identities

Identity and directory infrastructure

Responsibility Applications
varies by type Network controls
Operating system

Physical hosts

Responsibility transfers

to cloud provider Physical network

Physical datacenter

N [[
L INNN [[
FEfFAEEEEEn

ENEEEEEEEN::

[Microsoft . Customer ‘Shared

FIGURE 3.13: Shared responsibility in the cloud, as defined by Mi-
crosoft

The effort, time, and resources employed by the organization to mitigate against
these risks represent the security overhead that this component model seeks to
quantify. Depending on the level of the infrastructure exposure, the risks miti-
gation can be accomplished using the following procedures:

— Scanning of all software components for vulnerabilities or misconfigura-
tions.

— Running workloads with least possible privileges.

- Network separation to limit the impact of a compromise, if it happens.

- Using firewalls to prohibit unneeded network connectivity and encrypt
the traffic to enssure confidentiality.

- Using strong authentication and authorization mechanisms to restrict user
and administrator access while narrowing the attack surface.

- Using log auditing which enables security administrators to monitor ac-
tivity and defining alert rules to be informed of potentially malicious ac-
tivity.

— Periodically reviewing the system settings and using vulnerability scans
to discover potential risks and apply security patches where needed.

We will now see how our model applies to the different convergence scenarios
described in the chapter 2; as seen earlier, the heatmap colors express the magnitude

Hhttps://docs.microsoft.com/en-us/azure/security/fundamentals/
shared-responsibility
125 A AS: Software as a Service

https://docs.microsoft.com/en-us/azure/security/fundamentals/shared-responsibility
https://docs.microsoft.com/en-us/azure/security/fundamentals/shared-responsibility

3.4. Administrative Effort 47

of the overhead introduced by each of the aspects, where red represents the highest
overhead, green is the lowest.

3.4.1 HPC Cloud using 100% Cloud-native Solutions

I I Integration ﬂﬁ

Management & Organization {” > End-User Experience gl

e f R N
i E] e Securty 5]

FIGURE 3.14: Administrative Effort of the HPC Cloud using 100%
Cloud-native Solutions

This scenario is modeled in fig. 3.14.

The integration aspect is colored in red since this scenario requires a deep knowl-
edge of the cloud environment and specific experience within the cloud toolset. Fur-
thermore, the tools offered by the major cloud providers might seem similar; how-
ever, some time should be spent gaining familiarity with the available tools to use
them efficiently. Other skills like Cloud Computing integration skills, cloud archi-
tecture knowledge, cloud management skills are also needed. A certain amount of
overhead is required to make the application compatible with the cloud-native in-
frastructure. The complexity of this code change depends on the constraints set by
the cloud provider and the extent to which the offered services diverge from stan-
dards; other considerations should also be made to checkpoint the workers’ status
to some type of cloud storage.

Achieving the proficiency and know-how in the cloud environment will help
with management and organization and align IT and business strategies. This ele-
ment is similarly colored in red.

The End-user experience also depends on this proficiency; a researcher should
also be skilled in cloud tooling and cannot just move from an HPC platform to work
with cloud-native tools without undergoing hard training in using the specific plat-
form.

Most major cloud providers offer, for the right price, a mature LMMA stack.
This is why this element is colored green. As with any cloud-based solution, mon-
itoring the costs of resources consumed by the workloads should be carefully eval-
uated, and the client should implement prediction models to avoid any exploding
expenses.

They also offer cloud security configuration tools; nevertheless, it is still the re-
sponsibility of the IT team to configure the services according to their security re-
quirements. Security is the primary concern when running workloads in the cloud,
and as such, it is colored in red in our model. Organizational administrators are
usually responsible for application-level security configuration, such as necessary
access controls for data authorization.

Using a public cloud extends the trust boundary beyond the organization. New
risks are introduced by the use of the cloud, like insider threats and the lack of con-
trol over security operations'®. Protecting sensitive data requires encrypting data in

Bhttps://www.nsa.gov/portals/75/documents/what-we-do/cybersecurity/
professional-resources/csi-cloud-security-basics.pdf

https://www.nsa.gov/portals/75/documents/what-we-do/cybersecurity/professional-resources/csi-cloud-security-basics.pdf
https://www.nsa.gov/portals/75/documents/what-we-do/cybersecurity/professional-resources/csi-cloud-security-basics.pdf

48 Chapter 3. Research Methodology and Design

transit and when stored at rest. The Management Team must define a robust policy
to recognize the data to be encrypted and the proper processes to do it.

3.4.2 Cloud Bursting

N End-User Experience ﬂ

T >

{ | —
GaE] oo e]

FIGURE 3.15: Administrative Effort of Cloud Bursting

The cloud bursting scenario is modelled in fig. 3.15: a high level of integration skills
is still needed to implement the bursting solution effectively. The management and
organization overhead is also needed to ensure a secure and cost-effective bursting
to the cloud when the resources on-premises are exhausted. The code transforma-
tion is also a major pitfall in this scenario. It requires identical virtual machines
templates to be used in both environments, a complete mapping of the applications
and their dependencies, and a comprehensive view into the providers’ existing inte-
gration options. This might be doable in the case of enterprise computing; however,
in the case of HPC, it is not practically feasible. The end-user experience should
be theoretically average since the cloud bursting is usually transparent to the end-
users, who will usually launch their job using the standard HPC tools. The LMMA
stack is crucial to recognize capacity shortage and burst to the cloud accordingly.
Since the solution involves the usage of a public cloud platform, the same consider-
ations apply here; hence, it is colored similarly to what we have seen in the previous
section.

3.4.3 HPC Cloud using HPC Technology

In this case, and since we are using the public cloud infrastructure, the same con-
siderations and eventually the same colors apply for the Management, LMMA, and
Security aspects. HPC and cloud applications should run with minimal customiza-
tion, and ease of use is guaranteed because the researcher can use the same exact
toolset used in traditional HPC. As such, both elements are colored green as seen in

fig. 3.16.
J I Integration %

‘ Management & Organization g DN ;I End-User Experience ﬂ
— N
| LMMA @735\4_4 Security gl

FIGURE 3.16: Administrative Effort of the HPC Cloud using HPC
Technology

3.4.4 HPC Grid

Figure 3.17 represents the administrative-effort model of a Grid environment.

3.4. Administrative Effort 49

The dynamic nature of Grid environments causes challenging administrative
overhead. The integration skills are needed to set up the environment. Manage-
ment issues include Jobs scheduling and the choice of the right LMMA stack. Trust
management is also difficult to accommodate since nodes and users are constantly
joining and leaving the system. To achieve an acceptable End-user experience, the
system should be user-friendly by hiding technological complexity from the end-
user. Security is a significant overhead in this case; many aspects like information
security, data protection, authorization, and service level security should be consid-
ered. Grid systems require resource-specific and system-specific permissions. In a
distributed computing project like Folding@home !4, the internal threats are to be
carefully evaluated and mitigated.

I Integration %

x > End-User Experience ﬂ

o=

FIGURE 3.17: Administrative Effort of the HPC Grid

3.4.5 Containers in HPC

Using containers in HPC requires a deep understanding of container packaging and
orchestration. The choice of the right containerization and orchestration solution
plays a critical role, and the management and monitoring of the system will be af-
fected by this choice. Security also plays an important role; supply chain risks and
internal threats should be thoroughly considered.

(I Integration E

Management & Organization E' xl End-User Experience gl

% [T (—’
Bwin &]| sen Securly

FIGURE 3.18: Administrative Effort concerning the use of Containers
in HPC

3.4.6 Cloud Storage in HPC

In this case, the only noticeable overhead is the one introduced by the integration,
a certain knowledge of cloud storage is needed; however, we suppose the soft-
ware vendor has already implemented the interface to communicate with the cloud
storage as outlined in section 3.3.6. Furthermore, the code transformation over-
head should fade with time, mainly due to the effort towards standardization and
the emergence of high-level libraries like the Highly Scalable Data Service (HSDS)
(HDE-Group, n.d.), that can use cloud-based storage (e.g., AWS S3) to provide a
REST-based service for reading and writing HDF5 data.

4https://foldingathome.org/

https://foldingathome.org/

50 Chapter 3. Research Methodology and Design

Integration
‘ £]

Management & Organization E T
LMMA E SIEM—> Security {”

FIGURE 3.19: Administrative Effort concerning the use of Cloud Stor-
age inside HPC

Y

End-User Experience {I |

3.5 Cost Efficiency

As seen in section 2.7, a converged system can be on-premises, in the cloud, or a mix
of both.

The cost of running workloads on-premises and/or in the cloud must be care-
fully assessed.

This section presents an economic decision model to quantify the cost efficiency
of the converged system; it also helps assess cost changes when bursting or moving
entire workflows into the cloud.

To fit both HPC and Cloud, the metric used to estimate the cost is the Total Cost
of Ownership (TCO) on a yearly basis. As such, the financial cost model can be easily
defined using eq. (3.3)

COStconvergedfsystem = COSton—premises + COStcloud + CoD (33)
Where Cost oy premises 1S the cost of the on-premises part of the system, if applica-
ble; Cost o4 is the cloud part cost, if applicable, and CoD is the cost of delay.
Each of these factors is comprehensively explained in the following sections.

3.5.1 Cost On-premises

Figure 3.20 represents the major cost factors in HPC.

CAPEX OPEX
e Seners * Personel
o Network e Energy
o Storage e Support
e Licences e Recurring Licenses
e Facility e Space Rental

FIGURE 3.20: Main cost factors

A capital expenditure (CapEXx) is the money used to purchase, upgrade, or extend
the life of an asset. Capital expenditures are long-term investments, meaning the
assets purchased have a useful life of more than one year. The CapEx expenses
include the following:

¢ Physical servers costs

3.5. Cost Efficiency 51

* Licenses like the one-time fee for the Operating Systems licenses, Application
Software, and management Software licenses.

e Network Cost includes switches, cables, Network Interface Cards (NICs)
¢ Storage cost includes the expenses for the initial setup of the storage system.

OpEx represents the operating costs, including subscriptions or services needed
to put the data center into business use.

* Energy Cost refers to the total power consumption cost, including cooling

* The Facility cost relates to the different equipment needed for operating the
data center, like Racks and PDU and the cooling infrastructure.

* Personel Costs represent the cost of salaries paid to employees of the data cen-
ter and other costs that fall into this category. The recurring license costs in-
clude any software license that needs to be renewed, usually on a monthly or
yearly basis.

It is quite possible that the investment costs could already include the expenses
for the support throughout the system’s lifetime — a common practice for procure-
ments done by public data centers. Other cost factors are usually combined into one
of these factors; for example, cooling costs are integrated into the energy costs and
the cooling infrastructure in the facility costs. Many of the listed costs can be simply
divided across the various components of the system. For example, the investment
costs for a system are the sum of the costs for the different parts. However, in some
cases, the distribution of the expenses across subcomponents is not trivial: For exam-
ple, when hosting multiple systems into one building, the facility expenses are to be
distributed based on the percentage of occupied floor space in order to fairly divide
the operational costs like facility and staff costs across IT equipment. Furthermore,
the system might experience idle periods. Thus, as these times also incur costs but
cannot be assigned to a workload, they must be set to actual workloads. The utiliza-
tion of a component can be defined as the fraction in its lifetime it is doing valuable
work. Since the final utilization is not known apriori, we can use an empiric estimate
to adjust for unused resources; the costs for a job can be multiplied with the inverse
of the estimated utilization of the component to account for these costs to the job.
Supercomputers are usually scheduling production jobs in more than 90% of their
lifetime, as seen in fig. 3.21; as such, the usage factor of the compute nodes is, for
example, close to one.

FIGURE 3.21: Mistral nodes load for the year 2020 (Coym, 2021)

52 Chapter 3. Research Methodology and Design

Supposing an HPC is usually used to 90 percent and has an economic life of n
years, where n is generally around five years. In this period, the system returns
more value to the operators than the operation and maintenance costs; after that, the
system is deprecated and superseded by new technology in the market.

CostscapEx

COStonfpremises = + Cos tSOpEx—yearly (3-4)

3.5.2 Cost Cloud

Nowadays, the major cloud providers do have some kind of pricing calculator to
estimate the cost of running workloads in the cloud. This covers all of the offerings
provided by the cloud provider and related consumed resources like traffic and I/O.

Services Pricing

(8] 2 &
(=]
Compute Storage Database Migration & Transfer Networking & Content
Delivery
K B
Developer Tools Management and Media Services Security, Identity & Analytics
‘Governance Compliance
& [3

Machine Learning Mobile Services AR & VR Application Integration Customer Engagement

il w 9

Business Applications End User Computing Internet of Things Game Development Blockchain

&

Robetics

FIGURE 3.22: AWS Paid Service Categories, as found on https://
aws.amazon.com/pricing

Figure 3.22 displays the different service categories offered by AWS. Each ser-
vice is charged differently; for example, for AWS Codestar, the client pays for the
used AWS resources (e.g., Amazon EC2 instances, AWS Lambda executions, Ama-
zon Elastic Block Store volumes, or Amazon S3 buckets), in the case of AWS Web
Application Firewall, the client is charged based on the number of created web ac-
cess control lists. Table 3.1 — seen later in section 3.5.5 — outlines a subset of the
pricing for the Elastic Compute instances, EC2, offered by AWS.

All cloud providers promise transparency and even offer to lower the bill by
using On-Demand, Reserved, or a mix of both pricing models. The provided pric-
ing tools, like https://calculator.aws or https://cloud.google.com/products/
calculator/ are reliable and can provide a reasonable estimation of the workload’s
cost when running in the cloud. However, the user should know precisely the re-
sources used by the application, not only the compute requirements but also the
network traffic and I/O requirements which can be extremely expensive.

Hidden costs include the time spent finding the right cloud provider, choosing
high-end hardware to use, the design and implementation of the cloud infrastruc-
ture without mentioning traffic costs, I/O costs, or just unseen costs, for example,
when forgetting to delete unused virtual machine disks.

Some common pitfalls when considering a pure cloud solution are:

https://aws.amazon.com/pricing
https://aws.amazon.com/pricing
https://calculator.aws
https://cloud.google.com/products/calculator/
https://cloud.google.com/products/calculator/

3.5. Cost Efficiency 53

¢ Traffic Costs: As already discussed in chapter 1, we should not neglect the
cost of the cloud egress traffic. Let’s assume we can overcome the data syn-
chronization challenge and send data and receive results seamlessly; however,
if the applications produce lots of data that we should pull back to the data
center on-premises, the bill will likely increase drastically.

¢ I/O Costs: Cloud providers tend to implement limitations on the I/O for each
GB; customers are encouraged to overprovision to gain more I/O for their I/O-
intensive application or just buy a certain baseline of dedicated I/O. For ex-
ample, the cloud cost model presented in (McGough et al., 2014) does not take
into consideration the I/O requirement of the application, although dedicated
I/0 is expensive and is one of the significant bottlenecks when running I/0O
intensive operations in the cloud.

¢ Administrative Costs: A common misconception is that staffing costs needed
to maintain and operate the on-premises infrastructure will fall off when mov-
ing to the cloud. This is simply not true; due to the skills needed to manage
and maintain the cloud infrastructure, which were covered in section 3.4, and
which are at the time of writing extremely on-demand, the staffing costs will
likely increase when moving to the cloud.

On the other hand, other factors can lower the cloud usage bill, like the use of
spot or preemptible instances, which are instances that use spare compute capacity
for less than the On-Demand price, but without any guarantee of continuity, i.e.,
without interruption. Furthermore, the use of a cloud broker'® can induce some
savings on the cloud bill. A cloud broker acts as a mediator between the organiza-
tion desiring to purchase the cloud computing service and the cloud vendor. Using
his expertise and market knowledge, a cloud broker points to the suitable providers
that cover the organization’s exact needs and can also help during the negotiation
process.

Most cloud providers have a monthly billing period for the used services, com-
monly referred to as a pay-as-you-go model: eq. (3.5) represents a generalized cost
model to calculate the monthly cost of the consumed resources in the cloud, where:

e r represents the consumed resource that can have different types i generally
referred to as SKU(Stock Keeping Unit) levels'.

* R represents the number of all consumed resources during the month m.
e U; is the unit price for this type i.
¢ lis the number of the various consumed types or levels for a certain resource r

* 1,; is the number of units consumed from resource r from type i. For example,
in the case of compute nodes, 1,; represents the number of hours where the in-
stance of type i was in use; in the case of traffic or storage usage, n,; represents
the GB/GiB used during the billing period.

R I
Costeloud—reactive = Z(ani ’ uz) (35)
r=1 i=1

Bhttps://csrc.nist.gov/glossary/term/cloud_broker
https://cloud.google.com/skus/?currency=USD&filter=000B-47CC-2924

https://csrc.nist.gov/glossary/term/cloud_broker
https://cloud.google.com/skus/?currency=USD&filter=000B-47CC-2924

54 Chapter 3. Research Methodology and Design

As noted, eq. (3.5) can be used to calculate cloud usage costs in the case of a
reactive resource allocation based on a pay-as-you-go usage. When considering a
proactive resource allocation where a certain usage commitment for a particular re-
source r is paid in advance- usually on a yearly basis- the cost of the consumed ca-
pacity exceeding the usage commitment is considered in the equation alongside the
commitment price. The yearly cost of the committed use can be represented using

eq. (3.6)

R
COStcloudfproactive = Z Commitmentsyearly (36)
r=1
Although (Koch, Assuncao, and Netto, 2012) found that a proactive approach is the
best way for meeting QoS for a minimum cost, the usage of all the resources cannot
be known in advance; as such, the resulting yearly Cost ;s can be expressed using

eq. (3.7)

12

COStcloud—yeurly = 2 COStcloud—reuctive(m) + COStcloud—proactive (37)
m=1

Where m is the month number, Cost joud—reactive a0d COStjoud — proactive as defined above.

3.5.3 Cost of Delay

Another factor to consider is the "Cost of Delay"”. It refers to the financial impact
that a project’s delay will have on the institution if not started at a specific date.

The increased interest in the investment for the duration of the delay can signif-
icantly affect net profits. The cost increases with the course of the investment; the
longer the investment is delayed, the greater the cost is.

One of the easiest ways to calculate the CoD is to multiply the expected daily
profit of the project by the number of delayed days. This calculation can get more
complex if we include factors like losing clients or reputation, missing the chance to
deliver state-of-the-art and prominent research results, and eventually higher labor
costs.

3.5.4 Cost Analysis for Different Convergence Solutions

We will now see how our model applies to the different convergence scenarios de-
scribed in the chapter 2

HPC Cloud using 100% Cloud-native Solutions

In this case, only Cost,,4 and CoD are considered. One might argue that there is
no delay to start running workloads in the cloud; however, we should consider the
software transformation that should take place to adapt the scientific workflows to
the cloud tooling. This transformation includes the change of the scheduler and the
adoption of cloud storage and concepts. As such, CoD should be considered and
quantified to obtain a realistic assessment of the final costs.

As noted previously, most research papers (Smith et al., 2019; McGough et al.,
2014; Emeras et al., 2016) on this subject concluded that running scientific workloads
on-premises is more economical than running them in the cloud.

7https://en.wikipedia. org/wiki/Cost_of_delay

https://en.wikipedia.org/wiki/Cost_of_delay

3.5. Cost Efficiency 55

We will also address a real-world example in section 3.5.5, particularly by sub-
stituting the compute and storage parts of an on-premises cluster with cloud alter-
natives and inspecting the cost evolution.

Cloud Bursting

One of the main cost concerns, in this case, is the traffic generated by the cloud
instances, which need - after a certain runtime - to checkpoint their results to the
on-premises storage.

Furthermore, the increased OpEXx costs, due to the need for highly qualified per-
sonnel in both HPC and Cloud alongside the maintenance and support of two envi-
ronments instead of just one, highly reduce the cost-effectiveness of this solution.

HPC Cloud using HPC Technology

In this case, Costconverged—system 18 sSimply equal to Cost o,y since the CoD can be ne-
glected; the provisioning in the cloud for a reasonably sized cluster should hap-
pen without any delays, and the scientific application usually does not require any
changes to run in this environment. The same scheduler used in HPC can also be
seamlessly used in the HPC Cloud; for example, using the slurm cloud integration,
it is possible to launch an auto-scaled Slurm cluster in the cloud. The cluster auto-
scales according to job requirements and queue depth, providing the end-users with
a set of elastic resources without any waiting time.

HPC Grid

This is one of the most cost-effective solutions since the participating public donates
a significant part of computing costs.

The CoD can be significant depending on the type of project, and since most projects
using HPC Grids depend on compute resource donation, a delay is expected and
can be coped with.

Moreover, the OpEXx costs are also kept minimal by using Open Source software and
benefiting from the work offered by the enthusiastic contributors.

Containers in HPC

CapEx and OpEx costs remain unchanged. CoD should include the time needed
to containerize the application. Furthermore, using containers in HPC requires a
qualified staff with a deep understanding of container packaging and orchestration.
This fact leads to an increase in personnel costs and might introduce new licensing
expenses, especially if the containerization solution decides to monetize the use of
the software.

Cloud Storage in HPC

Using some type of object storage inside HPC can leverage BigData applications run-
ning in HPC. On the other hand, most scientific applications need to be altered to be
able to communicate with the object-store. Taking into consideration the feasibility
options found in section 3.3.6, we should consider two cases:

Usage of on-demand object storage
Mainly provided by a cloud provider but can also be some provider who places their
storage system on-premises and only charge for the used capacity. Supposing an

56 Chapter 3. Research Methodology and Design

A A A
Ct Cs Cr
Used
Used Used
Storage Storage Storage
- > > >
Time L Time L Time L
(A) Linear Evolution (B) Convex Evolution (¢) Concave Evolution

FIGURE 3.23: Different Scenarios for the Storage Usage Evolution

on-demand pricing schema, we need to know the monthly evolution of the storage
during the system lifetime; we can generally differentiate between three types of
evolution:

* An increasing linear distribution, as seen in fig. 3.23a, starting with a newly
installed, unused system, until reaching the month "L" representing the max-
imum lifetime of the system, which corresponds to the final maximal used
capacity "Cy".

¢ An increasing convex distribution as seen in fig. 3.23b, which fosters an on-
demand approach to provide the needed storage, since the storage usage for
most of the system lifetime is below the baseline and as such a substantial
initial investment is not justified.

¢ An increasing concave distribution as seen in fig. 3.23c, which encourages an
on-premises approach and an initial investment in provisioning the whole sys-
tem, since it will be heavily occupied within the first usage period of the sys-
tem. Other edge cases, like the presence of some peaks higher than "C;" for a
time "t" lower than L, are practically very close to C ¥ and would not contradict
the recommendation mentioned above.

For the sake of fairness on one hand and simplicity on the other, we will consider
a linear distribution to calculate the cost of the on-demand system for the whole
lifetime of the system, thus, as depicted by fig. 3.23a. Supposing that the monthly
storage unit price U, for a month m is kept invariable, the final cost of the system
is the sum of the used capacity at the end of each month multiplied by this monthly
fee.

L
COStstomgefonfdemand = Z -

Cr u, (3.8)

=7 Un

As shown in eq. (3.8), the final cost of the on-demand storage will increase lin-
early with the Lifetime "L", the final used capacity "C;" or the monthly storage unit
price Uy,.

The slope of the linear function is represented by:

3.5. Cost Efficiency 57

Cr
S=-2L 3.9
i (3.9)

Taking this calculation one step further, we can consider the case of a system
initially filled with a certain amount of Data, represented by C;, which might be
the result of a migration of an old decommissioned storage system. Figure 3.23a

illustrates this scenario.

Cs

Used
Storage

Ci

\ 4

Time L
FIGURE 3.24: Linear Storage Evolution with initial Data

Equation (3.10) represents the generalized form from eq. (3.8).

L (Ci—C) L
COStstoragefonfdemand = Z f Uy + Z C - u,
m=1 m=1
Cr—(C;
_ L+ . >.(I Doy sr.cou, 10
(L) =G

> Uy +L-C-Upy
In section 3.5.5, eq. (3.10) will help us to assess a real-world example and provide
us with a better insight regarding the use of on-demand object storage versus on-
premises provisioned storage.
In this case, the slope of the linear function is represented by:

(Cr—Ci)

S= I

(3.11)
Implementing an object storage solution on-premises The second scenario is
the use of object storage on-premises, here we have also two choices:

¢ Setup an object storage system on-site: One can choose between the different
providers who specialize in this domain or can implement the system using
commodity hardware; most object stores like Ceph and Swift do not require
expensive and top performance servers to operate, prooving to be cost-efficient
endeavor, the performance of such implementation will be discussed in the
coming chapters.

58 Chapter 3. Research Methodology and Design

¢ Use of already available hardware to provide an Object Storage Interface:
Without a doubt, this is the most cost-effective solution since it simply does
not incur any extra costs. An initial personnel investment is to be expected;
however, it can be neglected since many open sources solutions like Minlo
(MinIO-Inc., n.d.) and Ceph (Weil et al., 2006) offer easy-to-implement tutorials
to setup such environments. We will elaborate on the performance of such
implementation in the upcoming chapters.

3.5.5 Real World Evaluation: Mistral Case Study

We will now consider a real-world scenario by examining possible convergence sce-
narios in or around Mistral. To accomplish this evaluation, we use the values related
to the cost factors already published in (Liittgau and Kunkel, 2018) and (Bunde-
sanzeiger, 2020).

Computing Cost Comparison between Mistral and HPC Cloud Solution

A trivial approach for estimating the cost of the computing cost of Mistral'® in the
cloud is to find comparable cloud nodes and perceive how much it would cost to
reserve the system for around five to six years, which is the expected lifetime of the
computing system and finally compare the results to what the computing part of
mistral costs.

At the time of writing, Mistral has around 3300 Nodes, each having two proces-
sors from 2 types of processors, Intel Xeon E5-2680 v3 12-core and Intel Xeon CPU
E5-2695 v4. Due to active Hyper-Threading, the operating system recognizes two
logical CPUs per physical core. As such, around half of the nodes have 48 logical
CPUs, and the other half 72.

Due to their alleged competitive pricing schema, we will compare the cost of
the above nodes to EC2 instances provided by Amazon. AWS does not offer in-
stances with physical cores but with vCPUs, which are logical CPU cores, with
Hyper-Threading enabled, which will ease our comparison. Taking into consider-
ation the network bandwidth and the memory size, we find a comparable instance
labeled m5n.12xlarge as seen in table 3.1

Name Memory vCPUs | Instance Storage | Network Performance | Linux On Demand cost | Linux Reserved cost
t4g.nano 0.5 GiB 2 EBS only Up to 5 Gigabit $0.004200 hourly $0.002600 hourly
mb5n.12xlarge 192.0 GiB 48 EBS only 50 Gigabit $2.856 hourly $1.799 hourly
u-12tb1.112xlarge | 12288.0 GiB | 448 EBS only 100 Gigabit $109.200000 hourly $67.305420 hourly

TABLE 3.1: Cost of an AWS M5N EC2 instance as published by

ec2instances.info

We suppose that we can reserve the system for 6 years, and for a usage of around
90%, as seen in fig. 3.21 ,the computation cost can be calculated as follow:
Costeompute = 0,9 -6 - Commitments,o_yearty = 0,9-1,79-24-365 -6 - 3300 = 279.424.728
or $279M.

Let’s assume we obtain a significant discount of 50 % for this long-term agree-
ment, we end up with $140M, and this is just for the compute costs without men-
tioning I/O Costs, storage, and traffic costs.

Bhttps://www.dkrz.de/up/systems/mistral/configuration

ec2instances.info
https://www.dkrz.de/up/systems/mistral/configuration

3.5. Cost Efficiency 59

Investement | Power Consumption

Compute | 15.75 M 1350 kW
Network | 525M 50 kW
Storage | 7.5M 250 kW
Archive | 5M 25 kW

Facility 5M

TABLE 3.2: Mistral cost factors

The Mistral compute costs for the same time period are:

COStcompute = COStcompute_invest + COStnet_invest + COStpower + COStfacility + COStstaff + Costyent
= 15.75M + 5.25 41400 - 24 - 365 - 6 - 0.25 + 5M + 750K + 250k - 6
=21M+184M+5M+225M
= €46,66M
= $60M which is much cheaper than the cloud costs.

Note that our calculation is biased to the cloud solution since we neglected the
historical price evolution factor; the ec2 pricing at the time of writing is cheaper
than in 2015 when Mistral was provisioned; a more detailed study might consider
the historical price change of ec2 machines compared to the CPU historical price
change, which will definitely increase the cloud costs. Nevertheless, the costs of this
heavily used on-premises cluster are much cheaper than a cloud-only solution.

Another factor to consider is the distribution of the jobs on Mistral and the num-
ber of nodes used by each job. Table 3.3 shows the job distribution on the different
nodes collected during one year. The number of nodes used by each job and the time
— in hours — are recorded for each job. Node-hours represent the time multiplied
by the number of nodes.

Nodes 1 2 3-8 9-16 17-32 33-99 100-499 | 500+
Jobs 3,784,716 | 2,622,661 | 378,963 363,198 201,669 84,474 26,297 380
Percent 56.32% 39.03% 5.64% 5.40% 3.00% 1.26% 0.39% 0.01%

Node-hours | 716,480 165,220 1,491,662 | 2,768,859 | 3,753,182 | 6,282,016 | 9,320,025 | 380,350
Utilization | 2.88% 0.66% 6.00% 11.13% 15.09% 25.25% 37.46% 1.53%

TABLE 3.3: Jobs distribution on Mistral as collected by (Coym, 2021)
during one year

We notice that more than 50% of the jobs use only one node, and for those types
of jobs, it may be economical to use an HPC Cloud solution; however, since the
node-hour usage of those single-node jobs is under 3%, this should not affect the
final cost of the whole system.

As such, two main factors should be evaluated when considering the use of cloud
infrastructure instead of the on-premises one. The first one is the total use of the
system, and the second is the distribution of the jobs on the different nodes, mainly
how many of them require single or less than five nodes. The use of a cloud solution
is advantageous if the usage of the system is low — referring to the calculation done
above, this should be less than 20% — or if the percentage of node-hour consumed
by jobs, using a single or a limited number of nodes, is higher.

60 Chapter 3. Research Methodology and Design

Cost Comparison between Tape Archive and an On-demand Object Storage

The DKRZ!' uses seven StorageTek SL8500 systems with on-premises library units
and an additional unit as an offsite backup in Garching. The tape technology is
supposed to remain usable for around two to three generations of supercomputers,
and this might be due to two main reasons:

¢ The current configuration does not consume all the available drive slots.

¢ As tape media increases in capacity with each new generation of tape media,
there is the potential to reclaim a significant number of tape slots.

Each SL8500 module, equipped with about 20 drives, costs slightly under €1M, thus
€7M for the whole system, but since we can use it for three generations, we can re-
duce the investment costs to €2.3M for the lifetime of one supercomputer. Adding
the costs of the license for HPSS, the storage cache, and the support for the library
and the software, we obtain a total investment of €7.5M for the system’s lifetime.
Maintenance and support of the system require three specialists, and since the an-
nual operational budget for DKRZ is about €3M , we assume the three staff are 5% of
that total leading to a yearly cost of €150k or €750k for five years. Furthermore, the
floor space to hold the system is equivalent to €70k per year or €350k in five years.
The above yields around €8.6M for the lifetime of the system. The total system offers
67,000 tape slots; each tape medium has 2.5 TByte of raw capacity, costs around 20€,
and can be used for five years leading to a total cost of 134 K€. By adding the above
values, we find that the cost of the tape archive for the system’s lifetime is €8,7M or
around $10,5M 2° with a total used capacity of 167,5 PB.

To calculate the cost of an alternative on-demand storage archive system for the
lifetime of Mistral,i.e., Coststorage—on—demand, We use eq. (3.10), for this purpose, we
need to determine the initial amount of data available on the archive system when
Mistral was put in service in mid-2015, we refer to this value as C;=28.5 PB.

The values of C; cannot be easily predicted in advance and we must rely on the
historical data to obtain it.

Having L=60 and Cy around 101 PB, and supposing the archive was filled lineary
similar to fig. 3.24, we still need to determine U,,.

Since U,, depends on the cloud storage provider, we try to find some providers
who do not charge for traffic cost, for example, wasabi 2! displays a price tag of 5.99
Dollar/TB/Month without any Egress costs, while offering hot on-demand storage
where the client has instant access to the data whenever needed regardless of its use
case, i.e., backup, disaster recovery, or long-term archiving. We neglect the price of
the internet connectivity for two reasons:

* Most HPC data centers nowadays have an excellent internet connection to a
highly peered backbone, like most cloud providers.

* The possibility of using an on-site on-demand system as stated above can also
be considered.

For L=60, C;=28.5, Cy=101.6 and U, =5.99 §, eq. (3.10) yields to:
COStstomgefonfdemand = $23.45M

9Deutsches Klimarechenzentrum: German Climate Computing Center

2xe.com
21

wasabi.com

xe.com
wasabi.com

3.5. Cost Efficiency 61

This is around two times the cost of the in-house system. Even with the expected
discount of 20% usually obtainable in the cloud world, the cost of the on-demand
system is still higher than the on-premises implemented solution.

Monthly Storage Evolution - Archive Storage

120.00 approximated

real
100.00 regression

80.00

60.00

Usage PB

40.00
20.00

0.00
135709 111315171921232527[%/?3%}%335373941434547495153555759
on

FIGURE 3.25: Archive system monthly storage evolution

Since the usage of the DKRZ archive system is recorded for auditing purposes,
the monthly usage was obtained and used to plot Figure 3.25 for the lifetime of
Mistral; we notice the following;:

¢ The first month is July 2015, when Mistral was put in service.

¢ The approximated values are obtained when supposing that the filesystem was
occupied linearly similar to fig. 3.24. We already know the values from L, C
and C; from the above calculation; we can use them to calculate the slope S
using eq. (3.11). From the historical data to obtain them, we have: C; = 28.5PB
and Cy = 101.6PB, we get S ~ 1.22 and use it to draw the approximated linear
evolution.

* Using Excel or some other statistical tool, we conduct a linear regression analy-
sis to discover the relation between the storage usage as output values and the
month number as input values, and to demonstrate the validity of the linear
approximation described above. The signification F value obtained is equal
to 6.77895E-44 and is extremely lower than the threshold value of 0.05, which
means that our approximation approach is precise. The values obtained from
this regression are plotted, and we can see that, after a short time, they con-
verge with the approximated values.

* The exact value of Costssorage—on—demana 1S found equal to $21.11M; we can cal-
culate the error rate of our estimation accordingly, and we find it is around
9%.

Cost Comparison between Parallel Filesystem and On-demand Object Store

The initial investment in the Lustre parallel filesystem was €7.5M, with a total ca-
pacity of 54 PB. The power consumption is around 250 kWh and the cost of 1kWh

62 Chapter 3. Research Methodology and Design

is 0,25 € leading to 250 - 0,25 - 24 - 360 - 5 = 2.7M for 5 years. Similar to section 3.5.5
the staff costs around €0.75M in five years. We suppose that the maintenance and
support costs are included in the initial investment; the costs of the systems sum up
to around €11M or about $13.2M.

The exact PFS?? usage of the Mistral is also obtained and used to plot fig. 3.26;
we notice the following:

¢ The approximated values are obtained when supposing that the filesystem was
occupied linearly; this should compromise for the usage peeks during the sys-
tems lifetime and the fact that, due to performance reasons, the used storage
capacity should not exceed 90% of the total achievable capacity. We already
know that L=60, we sill need Cy to calculate the slope S using eq. (3.9). As men-
tioned above, since the 90% threshold should never be exceeded, we can de-
termine the value of C; apriori in relation to the total capacity C;: Cf = 0.9 - C;
As such, Cr=48.6 and S ~ 0.82

¢ Using Excel or any other statistical tool, we run a linear regression analysis
to discover the relation between the storage usage as output values and the
month number as input values, and to demonstrate the validity of the linear
approximation described above. The signification F value obtained is equal
to 5.21153E-28 and is extremely lower than the threshold value of 0.05, which
means that our approximation approach is accurate. The values obtained from
this regression are plotted, and we can see that they are very close to the ap-
proximated values.

Monthly Storage Evolution - PFS Storage

60.00 approximated

— o3|

50.00 regression

40.00 IA\/
V

o
a
& 30.00
©
(%]
- |

20.00 ,

10.00

0.00

1 3 5 7 9111315171921 23 2527 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Month

FIGURE 3.26: Parallel filesystem monthly storage evolution

Having L=60, U;=5.95 and Cy and using eq. (3.8), we find that the estimated
Coststorage—on—demand 18 around $9M, the exact value is $10.09M, leading to an error
rate of around 10%. Both values are cheaper than the on-premises implemented
solution.

22Parallel File System

3.6. Conclusion 63

3.6 Conclusion

All the components of our assessment model from fig. 3.2 have been thoroughly
examined.
Figure 3.27 summarizes the full picture of our model.

Performance Feasibility 9

[10 " Compute]

anagement & Organizatio!

End-User Experience

[Network " Hardware Support]

o<

Security

j&

Cost Efficiency

Cost conyerged-system = COSt on—premises + C0St cjoud + Col

FIGURE 3.27: HPC Cloud Convergence Assessment Model

Table 3.4 illustrates the comparison between the different scenarios using the
full-scaled assessment model; the negative signs depict a negative evolution in the
sense of high overhead or high costs, the positive signs depict a positive evolution
in the sense of a low overhead or low costs.

Scenario Performance Feasibility Administrative Effort Cost Efficiency ‘
1/O | Comp [Net [Hardw Sup. || Integ. | Mgmt | End-User Exp [LMMA | Sec || Cost_onprem | Cost_cloud | CoD

HPC Cloud native | - ++ - ++ - - - ++ - NA - +

Cloud Bursting -- o+ - - - -- + ++ - + - -

HPC Cloud-HPC - ++ ++ ++ ++ - ++ ++ - NA -- +

HPC Grid -+ - - -- -- + - JER | T

Containers in HPC || + +++ ++ + - + ++ + - ++ NA

Cloud storage HPC || + R S e A + ++ ++ ++ ++ || ++ + +

TABLE 3.4: Comparison of the different scenarios using the assess-
ment model

We notice that some solutions like Cloud Bursting are technically feasible but
might be less I/O performant, and can introduce a considerable administrative ef-
fort while producing high costs, as seen in section 3.5.4. Other solutions like HPC
Grid have a better feasibility possibility and are highly cost-effective but produce a
substantial administrative effort without any guarantee for performance stability.

Convergence approaches like HPC Cloud using 100% Cloud-native Solutions
are generally feasible but require a deep knowledge of the Cloud environment and
introduce new security risks leading to a high administrative effort. The cost is also
extremely high for dense HPC jobs requiring a vast number of first-class nodes, as
seen in the real-world evaluation in section 3.5.5. A more feasible solution is the HPC
Cloud using HPC Technology where scientific workloads can be run seamlessly
without any delay or any code transformation. Scientific and Big Data workflows
are guaranteed to work in this environment while presenting a known toolset for the

64 Chapter 3. Research Methodology and Design

end-user launching those applications. However, similar to the previous approach,
the cost for heavy HPC jobs requiring a large number of well-fitted nodes is surely to
be a costly endeavor, even if huge discounts are provided as outlined in section 3.5.5.

The performance feasibility of Containers in HPC is mainly positive, and al-
though a certain administrative effort is expected, the setup cost and maintenance
of this solution are also acceptable.

One of the most promising solutions is the use of Cloud Storage in HPC. The
administrative effort is kept moderate once the application’s compatibility with the
cloud storage is provided. From the cost aspect, it can be even cheaper than avail-
able HPC filesystems as seen in section 3.5.5. The performance feasibility is still to
be thoroughly investigated; this is why we focus in the upcoming chapters on the
performance of object storage inside HPC:

Since cloud storage uses the HTTP protocol for the communication between the
client and the storage server, we start by carefully investigating its performance in-
side HPC in chapter 4. In chapter 4, we also compare the performance of the different
and relatively new versions of HTTP protocols.

Chapter 5 presents our approach to quantify the performance of the S3 API by
extending commonly used HPC I/O benchmarks and launching them against on-
premises S3 implementations inside an HPC Cluster, Mistral, and against different
S3 Cloud providers as well. We also try to overcome the performance and scal-
ability bottlenecks by systematically replacing parts of a popular S3 client library
with lightweight replacements of lower stack components. Launching the extended
benchmarks against the introduced S3Embedded library should prove its high scal-
ability and performance and demonstrate the possibility of integrating applications
with both cloud and traditional POSIX filesystems.

3.7 Summary

This chapter presented the research methodology used in the rest of this work. An
assessment model was also introduced to assess the degree of HPC and Cloud con-
vergence. Using this model, we compared the different solutions presented in chap-
ter 2 and came to the conclusion that using object storage inside HPC is one of the
most promising approaches to thrive the HPC Cloud convergence. We also exam-
ined the cost of running workloads and storing their results on-premises and in the
cloud in section 3.5.5. In the next chapter, we will address the performance over-
head introduced by using cloud storage inside HPC by thoroughly analyzing the
overhead of REST inside HPC.

65

Chapter 4

Overhead of REST on HPC
Systems

In chapter 3, we found that the use of cloud storage in HPC scored well in the assessment
model. This solution can also be cost-effective, as we saw in section 3.5.5. Since cloud storage
uses REST/HTTP as a communication protocol (Fielding, 2008), this chapter examines its
performance by investigating the REST/HTTP protocol’s overhead compared to the HPC-
native communication protocol MPI when storing and retrieving objects. The structure
of this chapter is a follows: After a short introduction in section 4.1, section 4.2 presents
the approach used for modeling the impact of data transfer using measurable performance
metrics; it also describes the test scenarios and defines the relevant metrics addressed using
our benchmarks. Section 4.3 outlines the experimental procedure, the used systems, and the
methodology of the evaluation conducted in this work. Section 4.4 presents the analysis of
the obtained results and the model validation by comparing the results obtained for REST
and MPI, on two different cluster systems, with the model predictions. A comparison of the
performance of the different HTTP protocols on HPC is also provided in section 4.4.1. The
last section 4.5 summarizes our findings.

Most of the content of this chapter has been published under (Gadban, Kunkel, and Lud-
wig, 2020)

4.1 Forword

An overview of object-storage was provided in section 2.4.2: It organizes informa-
tion into containers of flexible sizes, referred to as objects. Each object holds the data
itself as well as its related metadata and has a unique identifier used to locate it,
rather than a file name and path. Thus, object storage is highly scalable by design
and is basically different from traditional block or file storage systems.

Cloud storage implements an object storage architecture and enables the client
applications to directly access the objects using a RESTful API (Richardson and
Ruby, 2008). Therefore, any comprehensive performance study of cloud storage
within HPC should consider the overhead introduced by the REST system, where
the communication takes place over the HTTP protocol (Fielding, 2008).

Many studies (Chen et al., 2017; Zhang et al., 2016) point out the factors behind
the latency like the actual hardware used, the request parsing mechanism, and the
way communication is performed, e.g., using system calls and supportive libraries
Epoll, libevent, or user-space communication.

Many researchers tried to solve data transfer issues through HTTP: Some (Ko et
al., 2012) proposed encapsulating TCP data in UDP payloads, others (Devresse and
Furano, 2014) proposed a dynamic connection pool implemented by using the HTTP
Keep-Alive feature to maximize the usage of open TCP connections and minimize

66 Chapter 4. Overhead of REST on HPC Systems

the effect of the TCP slow start. Intel®is marketing DAOS (Lofstead et al., 2016) as
the ultimate Open Source Object Store, nonetheless with a high vendor Lock-in po-
tential since the promised performance can only be achieved on its own proprietary
Optane (Wu, Arpaci-Dusseau, and Arpaci-Dusseau, 2019) storage Hardware. On
the other hand, (Borzemski and Starczewski, 2009) researched the performance of
HTTP between geographically dispersed nodes.

Few researchers tried to assess the performance of a REST service on HPC, i.e.,
within a high-performance network: Since Infiniband (Association, 2020) is one of
the most commonly used interconnects in HPC, the performance of IP over Infini-
band (Grant, Balaji, and Afsahi, 2010; Bortolotti et al., 2011; Yang et al., 2019; Zhang
et al., 2021) has been thoroughly studied; however, the performance of HTTP over
IP over IB did not get much attention. Hence, the following section explains our
approach to model and assess the performance of HTTP on HPC and analyze the
viability of HTTP over Infiniband using hardware performance counters' and net-
work metrics.

4.2 Methodology

Assuming that typical HPC applications require maximum throughput and mini-
mum latency, we address in this chapter many questions revolving around the suit-
ability of a RESTful service in HPC and the main factors affecting its performance
and its resource consumption.

The two major efficiency indicators addressed in our study are latency and through-
put.

The hardware components, their interconnection, and the software stack avail-
able to HPC applications are usually trimmed for performance compared to those
serving typical web applications.

Therefore we introduce in section 4.2.1 a modeling approach, based on perfor-
mance counters, to evaluate the overhead introduced by HTTP when used to pro-
vide the communication between two entities consisting of a content server and a
client application consuming the content.

The tools and the accomplished tests are described in section 4.3.2. In section 4.3.3
and section 4.3.4, we analyze the variation of latency and throughput, respectively,
when changing factors like the number of requests or the file size.

Our benchmark for storage access emulates a best-case scenario (HTTP GET Op-
eration / Read Only Scenario from a "remote" Storage Server) because we only want
to test the viability and base performance of REST/HTTP as an enabling technology
for an object-store. The introduced model can nevertheless be extended to assess
and measure the resource consumption of different object storage implementations.
In this chapter, we only focus on the performance of the HTTP protocol inside an
HPC environment; the performance of different object storage implementations are
addressed in chapter 5.

Comparing the REST protocol to the Message Passing Interface MPI (The MPI
Forum, 1993), which is an established data transfer approach in the HPC world, is
accomplished in section 4.3.6. To identify the major factors impacting the perfor-
mance, we vary the underlying hardware and the connection mechanism (Ethernet,
Infiniband, RDMA) between the server and the client.

ISet of special-purpose registers built into modern microprocessors to gather statistics about per-
formance properties of code execution and data transfer.

4.2. Methodology 67

The results obtained from these experiments are then used to validate our de-
fined model by comparing them to the predicted ones.

We also compare the different HTTP protocols on HPC in section 4.4.1, before
wrapping up this chapter.

4.2.1 Performance Model

To define our performance model, we consider different metrics, which depict the
used hardware (CPU, Bandwidth ...), the software stack, and the network protocol in
use. Alongside the standard network metrics, we focus on hardware counters of the
CPU, namely the number of required CPU cycles to identify the processing cost of a
data transfer and the L3 evicted memory to quantify the memory transfer overhead
and check the memory efficiency of the different implementations.

In a first step, we consider TCP as a transport protocol; nevertheless, the model
is later extended in section 4.4 to cover MPI over different implementations.

The metrics involved can be summarized as follows.

Fixed system parameters:

R: CPU clock rate in Hz; Rs and Rc correspond to the server and client, respec-
tively.

e rtt: round trip time or RTT?.
e mtu: maximum transfer unit.

* mss: maximum segment size or MSS®, transmission protocol-dependent (see
eq. (4.4))

e mem_tp: the memory throughput, i.e., the speed of data eviction from L3 to
the main memory; influenced by the speed of the different caches

* eBW (Chang and Thomas, 1995): is the effective bandwidth between client
and server, which is the minimum bandwidth of all the hardware components
between them (memory throughput, PCI Bus, network interfaces...)

Experiment-specific configurations:

Obj_size: file size transferred from the server to be read by the client.

Nreq: number of requests achieved in 60 sec.

* Ncon: number of connections kept open.

Nthr: number of CPU threads executing the benchmark on the client.
Observable metrics (e.g., using Likwid):

¢ CUC: to express the performance metric CPU_CLK_UNHALTED_CORE, which
represents the number of core cycles when the core is not halted, CUCs, and
CUCc correspond to the server and client, respectively.

e L3EV: the amount of data volume loaded and evicted from/to L3 from the
perspective of CPU cores, i.e., the data flowing through L3 (Gruber, 2020; Intel,
2020), L3EVs and L3EVc correspond to the server and client respectively.

2Round Trip Time
$Maximum Segment Size

68 Chapter 4. Overhead of REST on HPC Systems

* PLR: the packet loss rate, which is theoretically proportional to the number of
parallel connections. In fact, the more parallel connections we have, the higher
the packet loss rate will be.

In our preliminary model t(request) is the time elapsed between sending the first
byte of the request and when the complete response is received; it can be calculated
as follows:

t(request) = t(client) + t(network) + t(server) 4.1)

where t(client), t(network), t(server) are the time fractions needed by the client, net-
work and server respectively to accomplish the request:

t(client) = t(compute) + t(memory) + t(cpu_client_busy) 4.2)

t(server) = t(compute) + t(memory) + t(cpu_server_busy) + t(pending) (4.3)

As a rough estimation of the maximal network throughput when using the TCP
protocol, referred to as net_tp, and based on the Mathis et al. formula (He, Dovrolis,
and Ammar, 2007), while presuming that the TCP window is optimally configured,
we can safely assume that:

mss - C
——— ¢BW
RTT -/PLR '

where C=1 and mss = mtu-40 in case of Ethernet. From this we can calculate t(network):

net_tp = min{ (4.4)

t(network) = Obj_size/net_tp + t_queuing (4.5)

Where t_queuing is the time that the packets spend waiting in a specific buffer for
processing at the router or the network interface level. For the sake of simplicity, we
suppose that the routing devices between the nodes do not add any latency, and as
such, we can neglect t_queuing.

The execution time t(compute) can be defined as:

t(compute) = CUC/R (4.6)

t(memory) is the time to traverse the different memory caches, usually narrowed
down to:
t(memory) = L3EV /mem_tp (4.7)

Putting it all together, and in the case of intra-node communication, we can safely
assume that:

CUCs = L3EVs CUCc = L3EVc Obj_size
+ + +

Hrequest) = Rs mem_tp Rce mem_tp net_tp (4.8)
Generalizing a bit further, we end up with :
CUCs L3EVs CUCc L3EVc Obj_size
t(request) = a-rtt+ By - ®s T B2 mem_tp ths ¢ + By mem_tp +Bs- nel_tp
(4.9)

Where « is a weighting factor (0 < a < 1) (IETF, 2011), B; are platform and
protocol dependent factors to be evaluated in a later section.

4.3. Evaluation 69

Hence, many factors can influence the above, starting from the application de-
livering the content, which affects server CPU and memory usage; those metrics are
also affected by the type of client consuming the data and the networking protocol
in use, and the path traversed by the data.

In the following sections, we validate this model while comparing the perfor-
mance of HTTP over different types of hardware and connection protocols.

4.3 Evaluation

The tests are performed on two different hardware platforms: the first one is the
WR Cluster, a small test system available at the University of Hamburg, the second
one is the Mistral supercomputer (DKRZ, 2020), the HPC system for earth-system
research found at the German Climate Computing Center (DKRZ).

4.3.1 Test Environments

The nodes of the WR Cluster are equipped with two Intel Xeon 5650 processors,
each offering six cores. Those processors operate at a nominal frequency of 2.66GHz
and utilize three memory channels. Hyper-threading is enabled on this cluster, and,
thus, 24 logical processors are visible in Linux.

The supercomputer Mistral (DKRZ, 2020) provides 3000 compute nodes, each
equipped with an FDR Infiniband interconnect and a Lustre storage system with 54
PByte capacity distributed across two File systems. The nodes used for the testing
are equipped with two Intel Broadwell processors (E5-2680 @2.5 GHz).

4.3.2 Benchmark and Analysis Tools

The RESTful APl s the typical way to realize access to cloud storage, and as such, the
tools used in this article were preliminary developed to assess HTTP performance.

The first experiment checks the latency introduced by a simple web server serv-
ing static files; the setup, shown in fig. 4.1, consists of the Lighttpd web server
(Kneschke, 2020) running on one node and hosting files of different sizes. These
files are initially placed in the in-memory (tmpfs) file system to minimize storage-
related overhead such as disk drive access time. The tests are conducted on another
node using the wrk2 tool (Tene, 2020) which is a standard HTTP load testing tool.
wrk?2 pretends to deliver accurate latency measurements by avoiding Coordinated
Omission (Tene, 2020), in the sense that it measures response latency from the time
the transmission should have occurred - according to the constant throughput con-
figured for the run- to the moment it was received.

10KB combinations of
100KB Threads/Open HTTP
1000KB Connections

W Different file Sizes Wrk2 with different

Lighttpd Web ServerJ

FIGURE 4.1: A simplified overview of the Benchmark Setup

In the analysis, we vary the number of threads, and the number of HTTP con-
nections kept open while trying to keep a steady rate of 2000 requests/second for 60
seconds for each file size.

70 Chapter 4. Overhead of REST on HPC Systems

4.3.3 Latency

The diagrams in figs. 4.2 and 4.3 show the obtained latency distributions when vary-
ing the number of open connections while keeping a fixed file size: As depicted by
the chart legend, the first number representing the number of open connections is
varying, while the second number denoting the file size is kept stable.

— 1000100 —— 400-100
—— 100-100 —— 500-100
— 24100 — 50-100

Latency Percentiles

50000
1000-100
min = 182.53 ms
median = 15638.53 ms
40000 max = 47906.82 ms
100-100
min 1.64 ms
—_ median = 10092.54 ms
3 max = 17088.51 ms
S 30000
o 24-100
[
- I (U SR A
= min = 1.59ms
£ median = 6250.49 ms
‘; max = 11337.73 ms
' 20000
S 400-100
2 | A) -
— min = 2236.41 ms -
median = 15769.60 ms
max =/33308.67 ms
10000 500-100
min =-1948.67 ms
median = 15974.40 ms
max = 38600.70 ms
0 “50-100
min 25% 3058 ms 90% 99% 99.9% 99.99% 99.999% 99.9999%
median = 7118.85 ms Percentile
max = 12124.16 ms
FIGURE 4.2: Latency variation in relation to open connections for a
file of size 100 KB
—— 1000-1000 —_— 400'1’000
100-1000 —— 500-1000
e Latency Percentiles
60000
(1000-1000
min = 10371.07 ms
median = 33308.67 ms
max = 58720.25 ms
50000
100-1000
min = 9568.25 ms
—_ median = 33128.45 ms
3 max = 56950.78/ ms
S 40000
9] 24-1000
S I S S S
= min = 9437.18 ms
IS median = 33030.14 ms
; max = 56590.33 ms
© 30000
S 400-1000
4{—6 __________________
— min = 9666.56 ms
median/= 33488.89 ms
max = 57049.09 ms
20000
500<1000
/min = 9601.62 ms
median = 33456.13 ms
max = 57704.45 ms
1oo00 50-1000 |
min25%= 934707 ms 90% 99% 99.9% 99.99% 99.999% 99.9999%
median = 33013.76 ms Percentile

FIGURE 4.3: Latency variation in relation to open connections for a
file of size 1000 KB

4.3. Evaluation 71

The diagrams in figs. 4.4 and 4.5 show the obtained latency distributions, when
varying the file size while keeping a fixed number of open connections. This time
and as represented by the chart legend, the first number illustrating the number of
open connections is preserved stable, while the second number denoting the file size
varies.

— 241000 — 2410
—— 24-100

Latency Percentiles

(24-1000
min = 9437.18 ms
50000 median = 33030.14 ms
max = 56590.33 ms
24-100
min = 1.59 ms
A40000 median = 6250.49/ms
5 max = 11337.73 ms
c
S 24-10
Y I P S { S
= 30000 min = 0.55 ms
IS median = /1.48 ms
‘; max =/ 3.02 ms
)
o
[
s 20000
-
10000 —
0
25% 50% 90% 99% 99.9% 99.99% 99.999% 99.9999%
Percentile
FIGURE 4.4: Latency Variation in relation to file size for 24 open con-
nections
—— 500-1000 —— 500-10
— Latency Percentiles
60000
500-1000
min = 9601.02 ms
median = 33456.13 ms
50000 max = 57704.45 ms
500-100
min = 1948.67 ms
. 40000 median = 15974.40 ms
3 max = 38600.70 ms
C
S 500-10
S N O S
= 30000 min = 0.56 ms
IS median = 455.94 ms
‘; max =,/8343.55 ms
1)
g L
i
< 20000 ///////
)
10000
0
25% 50% 90% 99% 99.9% 99.99% 99.999% 99.9999%

Percentile

FIGURE 4.5: Latency Variation in relation to file size for 500 open
connections

Observations and interpretation:

72 Chapter 4. Overhead of REST on HPC Systems

¢ Latency does not depend on the duration of the experiment; moreover, it lin-
early increases with the number of open connections (see fig. 4.2). The higher
the number of connections kept open, the higher the chance of packet loss
leading to the activation of the TCP flow control mechanism and eventual data
retransmission, which causes the increase in latency. This is especially true
for small file sizes; however, when the file size grows above a specific limit,
the number of connections will become irrelevant to the introduced latency, as
seen in fig. 4.3.

¢ As shown in fig. 4.4, for small file sizes, we observe a latency divergence in
particular in the 99 percentile area. For bigger file size, we notice that, in the
case of the 100 KB, the desired request rate of 2000 req/s is not met due to the
limitation of the underlying network infrastructure, which offers a bandwidth
of 1Gb/s, i.e. around 125 MB/s.

¢ It is interesting to note that, in relation to the file size and as shown in fig. 4.4),
larger files lead to higher memory and network latencies in a way that they can
saturate the server’s network bandwidth, lowering throughput (see fig. 4.3).
Therefore, high network bandwidth is more important than compute resources
for serving large files. On the other hand, increasing the number of open con-
nections, as seen in fig. 4.5 will trigger TCP’s congestion mechanism, leading
to a state where the different connections compete for the same bandwidth—
increasing the file size as well will cause the open connections to lose packets
and get stuck waiting for retransmissions.

A similar latency distribution is also observed when conducting the tests on the
same machine, thus using the optimized (Dumazet, 2012) loopback interface, where
theoretically the network stack overhead is kept at its minimum, and the mtu is
explicitly set to 64K to allow TCP stack to build larger frames. However, although
tests using iperf (NLANR/DAST, 2020) yielded a throughput of around 20 Gbps,
the maximal throughput achieved using our benchmark is only 500MB/s or 4 Gbps;
this is mainly due to the fact that the server and the client were competing on the
same resource pool since wrk2 is started with 24 threads (the max for each node).

From these experiments, we learn that to optimize the throughput; the web re-
quests should not be using different open connections but instead use one or a rel-
atively small number of open connections and label the web requests accordingly,
a technique commonly known as HTTP multiplexing (Gettys, 1998),already illus-
trated by fig. 2.9: By using the same TCP connection, multiple HTTP requests are
divided into frames, assigned a unique ID called stream ID and then sent asyn-
chronously, the server receives the frames and arranges them according to their
stream ID and also responds asynchronously; same arrangement process happens
at the client-side allowing to achieve maximum parallelism.

4.3.4 Throughput

The network throughput of our system is proportional to the number of requests. It
is calculated as follow:

Nreq - Obj_size

Throughput = pr-

In our tests, the benchmark ran for a time of 60 seconds. Hence, comparing the
achievable throughput for the different connections/threads combinations is the
same as comparing the achieved number of requests.

4.3. Evaluation 73

Figure 4.6 shows that, in the case of inter-node communication, an increase in
the number of open connections will increase the throughput; on the other side, an
increase in the number of threads yields the same effect. However, for file sizes
above 1 MB, the influence becomes negligible, and the increase in the number of
threads/open connections raises the congestion/loss rate, causing the benchmark to
return different errors.

®

-
o
=}
<

¢
M
4

Open Connections/Number of Threads:
1/1 10/1 240/1 240/24
¢ A []

S
ES

Throughput in Bytes per Sec.

100M

100K

10K

Size in Bytes

FIGURE 4.6: Throughput related to object size for different combina-
tions of Open Connections/Threads.

4.3.5 Resource Usage Measurements

In addition to the latency diagrams and the findings acquired from them, another
point to consider is the efficiency of the I/O itself; For this reason, we measure the
memory and CPU usage needed to achieve a certain throughput. To accomplish
this, the likwid-perfctr (Treibig, Hager, and Wellein, 2010) tool is used. It uses the
Linux ‘msr” module to access model-specific registers stored in /dev/cpu/*/msr
(which contain hardware performance counters) and calculates performance met-
rics, FLOPS, bandwidth, etc., based on the event counts collected over the runtime
of the application process.

The conducted experiment uses a setup similar to the one depicted by fig. 4.1;
however, this time, we use a slightly different benchmarking tool, wrk (Glozer,
2020), since we want to stress test the system and hence there is no need to spec-
ify a maximum req/s rate. Figure 4.7 represents the modified setup.

74 Chapter 4. Overhead of REST on HPC Systems

)) (wrk benchmark using
Differentfile Sizes | different combinations
10X Bytes ’thhreads/Open HTTP

Lighttpd Web ServerJ

Connections

L J
T

[Likwid collecting CPU and Memory metrics]

FIGURE 4.7: Simplified View of the Benchmark Setup using Likwid

Different files having a size of 10* Bytes are created using random characters on
the server side, then the benchmark is launched on the client side to request each
of these files. Each iteration lasts one minute, and during this period, Likwid is
recording the CPU performance counters, which are relevant in this scenario. The
server application is pinned to one core using Likwid; the same is done on the client-
side. To ensure that the process is run on the first physical core and not migrated
between cores and avoid any overhead, the wrk tests are performed using only one
thread.

CPU consumption is recorded, CPU_CLK_UNHALTED_CORE is the metric pro-
vided by Likwid that represents the number of clock ticks needed by the CPU to do
some reasonable work. The instructions required to accomplish one request - by the
server as well as by the client - seem to be constant for files having a size smaller than
one KB and increase rapidly after this, as shown in fig. 4.8. Note that the server ap-
pears to be consuming more CPU cycles than the client to deliver a request, which
might be because we use the Lighttpd web server without modifying the default
configuration. Note also that over a specific file size limit and for a higher number
of open connections, the number of timeouts and socket errors increase since we
are approaching the maximum throughput that the system can achieve, causing the
benchmark not to deliver any metrics for those values®.

4The results of all the benchmarks conducted on the Mistral and WR Cluster, and the scripts needed
to reproduce those benchmarks were published alongside the Paper entitled: Investigating the Over-
head of the REST Protocol when Using Cloud Services for HPC Storage and are found online at
https://github.com/http-3/rest-overhead-paper

https://doi.org/10.1007/978-3-030-59851-8_10
https://doi.org/10.1007/978-3-030-59851-8_10
https://github.com/http-3/rest-overhead-paper

4.3. Evaluation 75

AN
10M £ ‘.)(

Open Conn/Number of Threads 1/1 10/1 240/1 240/24
5M

client ® @)

Server x X X

CPU_CLK_UNHALTED_CORE

10 1000 100000 10000000
Size in Bytes

FIGURE 4.8: CPU usage for the client and server related to size, for
different Open Connections/Threads combinations

10M
Open Conn/Number of Threads 1/1 10/1 240/1 240/24

Clent @ @ [)

Server x hod x

L3EV

10 1k Size in Bytes 100k 10M

FIGURE 4.9: L3 evicted volume for the client and server related to
size for different Open Connections/Threads combinations

Regarding memory utilization: Basically, when reading a file (represented by
HTTP response), the client needs to store the data received in memory. If the file size
exceeds the CPU cache size, we expect that data is evicted to main memory, which
is measured in L3 cache evictions. This metric is recorded using Likwid and shown
in fig. 4.9. Even for 100 MB files, we can see that only 10 MB of data is evicted on
the client. There is no eviction on the server because it sends the data directly to
the client. This is an indication that zero-copy (Tianhua et al., 2008) is in use on the
client, and the network interface card offloads the processing of TCP/IP. This allows
the network card to store the data directly into the target memory location. Typically,
with zero-copy, the application requests the kernel to copy the data directly from a
file descriptor to the socket bypassing the copy in user mode buffer and, therefore,
reducing the number of context switches between kernel and user mode.

Furthermore, when data does not fit in the processor L3 caches (12 MB), the
evicted data, i.e., the data passed to memory, increases significantly, causing a per-
formance drop, curiously the rate of increase (slope) of the client evicted memory

76 Chapter 4. Overhead of REST on HPC Systems

is more significant than the one on the server, leading us to another interesting con-
clusion, namely that while most studies focused on optimizing the server-side, it
might be the client-side that needs to be addressed.

4.3.6 REST vs. MPI

As found in the previous tests, the available bandwidth plays an essential role in de-
termining the achieved latency and throughput. The following tests are conducted
on Mistral where Infiniband (Association, 2020) is available.

Our next step is to compare the REST protocol with an established data transfer
approach in the HPC world, namely the Message Passing Interface MPI (The MPI
Forum, 1993). Although the MPI programming interface has been standardized,
different library implementations exist; we will be only considering and using the
Open MPI implementation (Graham, Woodall, and Squyres, 2005) for the rest of this
work.

To achieve this, we launch the same tools used above (likwid+lighttpd) on one
node and (likwid+wrk) on another node while varying the file size in a power of
2 and recording the different metrics; the transfer uses the TCP protocol and takes
place over the Infiniband interface.

Then we launch the OSU Micro Benchmark (Liu et al., 2004) alongside with lik-
wid on two nodes using the same file sizes and record the same metrics. The OSU
tests are executed over Infiniband, the first time using RDMA (Remote Direct Mem-
ory Access), and the second time utilizing TCP.

The OSU Benchmark offers two types of tests:

¢ osu_get_latency - Latency test, where the latency represents the time taken to
transfer a message of a specific size from one MPI rank to another. Separate
buffers are used for sending and receiving but stay the same during each iter-
ation. The equation used to calculate the throughput is illustrated in fig. 4.10.

Rank 0 Rank 1

tsta rt

RECV (receive buffer) size [bytes]
——p» RECV (receive buffer)
| 1 < loop |
SEND (send buffer)
L1
tend latency = (t.ng — tgan) X 1€6 /(2 x loop)

FIGURE 4.10: Visualisation of the OSU Latency Benchmark (Wittman,
2014)

¢ osu_get_bw - Throughput test, used to test the unidirectional throughput from
one MPI Rank to another: several MPI_Isends are initiated, followed by an
MPI_Waitall. The receiving side uses matching MPI_Irecvs with MPI_Waitall,
and one iteration ends when the sending side receives all messages acknowl-
edged. The window_size represents the number of started MPI_Isends. The
equation used to calculate the throughput is illustrated in fig. 4.11. The col-
lected metrics for this test are obtained using Likwid and are compared to
those obtained from the REST benchmark.

4.3. Evaluation 77

Rank 0 Rank 1

tstart

§ ISEND (send buffer) size [bytes]
gl . —pn [IRECV (receive buffer)
S| ¢ _ : :
g ISEND (send buffer) .
——p |[RECV (receive buffer)
WAITALL
WAITALL
i < loop |
SEND
RECV /
|
tend bw = (size / 1e06 x loop x window_size) / (teng — tstan)

FIGURE 4.11: Visualisation of the OSU Throughput Benchmark
(Wittman, 2014)

The obtained results are used to plot fig. 4.12 and fig. 4.13. Figure 4.12 illustrates
the latency results for the REST benchmark over TCP over InfiniBand and for the
osu_get_latency MPI benchmark over TCP over InfiniBand, and over RDMA over
InfiniBand. Figure 4.13 displays the throughput results for the REST benchmark
over TCP over InfiniBand and for the osu_get_bw MPI benchmark over TCP over
InfiniBand, and over RDMA over InfiniBand as well.

& Latency REST @ Latency MPIoRDMA LatencyMPIloTCP

5000,0 //

1000,0
500,0

seconds

100,0
50,0

Latency in micro

10 1ooo0 100000 10000000
Obj_size in Bytes

FIGURE 4.12: Latency results for the different protocols related to the
file size

Chapter 4. Overhead of REST on HPC Systems

ooo,o

A TPREST @ TP MPI TP MPIoTCP

“/\\/'"ﬂ""’f!:ﬂ

1000

Throughput MB/s.

10,0
1,0

10 1000 100000 10000000
Obj_size in Bytes

FIGURE 4.13: Throughput results for the different protocols related
to the file size

Our observations and interpretations are as follows:

¢ For small object sizes, the latency of Rest is obviously higher than the one of
MPI. As already mentioned in our latency tests, this is due to the HTTP over-
head.

The throughput achieved using MPI is better than the one using REST; how-
ever, when comparing MPI and REST both over TCP, we notice that this is not
the case especially for very small and for large files as well, which leads to the
conclusion that the overhead due to the TCP stack is the main factor slowing
down REST and thus an object storage implementation.

The performance dip seen in the red line for a file size of above 1 KB is due
to the MPI implementation that uses a combination of protocols for the same
MPI routine (Denis and Trahay, 2016), namely the use of the eager protocol for
small messages, and rendezvous protocol for larger messages.

@ CUCs Rest
@ CUCcREST
1000000
ﬁ CUCs MFPIloR
gl 500000 A ClUCcMPloR
@ # CUCs MPloTCP
%' & CUCc MPloTCP
= 100000
=
X 50000
9
o
o
]
10000
10 1000 100000 10000000
obj_size

FIGURE 4.14: CPU Unhalted Cycles per request, on the server and
client, for each protocol

4.3. Evaluation 79

5000000 @ L3eVcREST
eV's MPloR

L3eVc MPIoR
_ # L3eVs MPIoTCP
1000000

@ L3eVc MPIOTCP
L3eVs REST

SO0000
auuuod

100000
100000

SO000
2U0ul

L3 evicted data volume in Bytes

10000
10000

r 1000 100000 10000000
10 1000 100000 10000000

obj_size

FIGURE 4.15: L3 evicted per request, on the server and client, for each
protocol

* Another particular finding depicted by fig. 4.14 is that the number of CPU
cycles needed for the sender to push the data when using MPI is higher than
when using REST; this becomes more visible for file sizes above 100 KB.

* Figure 4.15 shows that, as expected, the evicted data volume stays constant in
the case of MPI over RDMAOIB because of the direct data transfer from the
server main-memory to the client main-memory. Furthermore, the L3-evicted
memory for both REST and MPI over TCPolB is constant for files smaller than
100 KB. Still, it increases exponentially afterwards, presumably, because parts
of the protocol such as network packets re/assembly are controlled by the ker-
nel and not the network interface.

4.3.7 HTTP Size Overhead

In addition to the protocol overhead and packet fragmentation introduced by the
communication protocol in use, TCP in our case, we are also interested in the over-
head due to the use of HTTP.

To calculate the overhead per request, in this case for HTTP 1.1, we have the
amount of bytes_read by the HTTP parser in wrk, and since we know the number
of requests achieved, we can assume that:

bytes_read

h =
ttp_overhead_per_request Nreq

— objsize

The overhead is about 233 bytes for every request, mainly due to the uncom-
pressed, literally redundant HTTP response headers, which can constitute a signifi-
cant portion of the HTTP traffic, specifically for large numbers of HTTP requests for
files sizes smaller than 1 KB.

80 Chapter 4. Overhead of REST on HPC Systems

4.4 Evaluation of the Performance Model

To validate the predictive model defined in eq. (4.9), we use the values reported
by the REST latency Benchmark on Mistral in section 4.3.6; the hardware-specific
parameters are calculated as follows:

Data between sockets and memory is shipped via a 9.6 GT /s QPI interface (Intel,
2014). According to the Intel QPI specification (Intel, 2009), 16 bits of data are trans-
ferred per cycle; thus, the uni-directional speed is 19,6 GB/s. The communication
protocol has an overhead of roughly 11% ,therefore, mem_tp = 17 MB/s.

The compute nodes of Mistral are integrated into one FDR InfiniBand fabric; the
measured bandwidth between two arbitrary compute nodes is 5.9 GByte/s, as such
net_tp = 5,9 GByte/s, rtt measured using the tool qperf’ and found = 0.06ms and
mtu = 656520 Bytes.

We only need to get the values of the coefficients ; in eq. (4.9). This is done by
using a regression analysis tool, in this case, the one provided by Excel: the obtained
R square and F values are examined, for each iteration, to check the fitness and the
statistical significance of our model, respectively. Finally, we calculate the predicted
values and compare them to the ones obtained in the benchmark by determining the
error rate using eq. (4.10).

error% = (t_req — t_req_calcul) - 100/t_req (4.10)
In case of RESToTCPolIB, we find that:
x=1
Pr=Ps=ps~1

[32=6andﬁ5 =3/2
The results are shown in appendix A within table A.1, the deviation (error rate) be-
tween the estimated value and the benchmark results is primarily below 10 percent,
and indeed in the range of 1 percent for small and large file sizes. Equation (4.9)
yields:

Obj_size
net_tp

CUCs L3EVs CUCc L3EVc¢
+6 + +

. 411
mem_tp Re mem_tp (411)

3
t(request) = rtt + 5
In case of MPIoTCP, we obtain:
a=0.1

Br=P2=P3=Ps~1and B5=2.7

As shown in appendix A in table A.2, the deviation (error rate) between the es-
timated value and the calculated one is primarily below 20 percent, and less than 5
percent for small and large file sizes. Equation (4.9) yields :

CUCs L3EVs CUCc L3EVc Obj_size
+ - + 27. =20

t t) =0.1-rtt .
(request) riE Rs mem_tp Re mem_tp net_tp

(4.12)

In case of MPIoORDMA, we obtain:
a=0
,81=,83=1/2and,82=[34=,85~1

Shttps://linux.die.net/man/1/qperf

https://linux.die.net/man/1/qperf

4.4. Evaluation of the Performance Model 81

As shown in appendix A in table A.3, the deviation (error rate) between the es-
timated value and the calculated one is primarily below 10 percent, and less than 8
percent for small and large file sizes. Equation (4.9) yields :

CUCs = L3EVs 1 CUCc L3EVc Obj_size
+ + +

1
_— _— 4.1
2 Rs mem_tp = 2 Re mem_tp net_tp (4.13)

t(request) =

Section 4.4 summarizes the obtained model coefficients for the different proto-
cols.

Protocol « [B1 | B2| B3 | Bal|PBs
RESToTCPoIB |1 |1 6 |1 1]3/2
MPIoTCPoIB 0111 1 |1 1 |27
MPIoRDMAoIB |0 | 1/2 |1 |[1/2 |1 |1

TABLE 4.1: Model coefficients for the different protocols

We can infer some general behavior by investigating the model terms and thus
verify our expectations. The latency for MPIoRDMA is expected to be lower than
the other transfer methods, and this is why « is close to 0 for this model. If B5 is
above 1, itis an indicator that we cannot achieve full network throughput. REST and
MPIoTCP show otherwise similar performance characteristics. At the same time, the
MPIoRDMA model uses approximately half the CUC, which actually means it needs
twice as many CPU Cycles compared to the TCP models - which may be due to busy
waiting. These assumptions can be verified by looking at fig. 4.14 and fig. 4.15.

We conclude that while TCP proved itself for end-to-end communications over
long distances, it is less suitable for data center networking, mainly because of its
processing overhead (CPU and memory resources consumption), hence degrading
the aspired performance. On the other side, CPU and memory consumption for the
REST over TCP Model remains adequate compared to MPI over TCP and MPI over
RDMA.

44.1 Comparison: HTTP1.1 vs HTTP2 vs HTTP3

In this section, we compare the performance of the different versions of the HTTP
protocol.

Figure 4.16 shows the benchmark used to achieve this purpose. It is similar to
fig. 4.1, however, in this case, the webserver should be able to deliver the three dif-
ferent protocols, and the benchmark client should be able to communicate using the
various HTTP protocols. Therefore, openlitespeed (OpenLiteSpeed, 2020) is used as
a webserver alongside the suitable benchmark tool, which is h2load (h2load, 2020).

82 Chapter 4. Overhead of REST on HPC Systems

W Different File Sizes
OpenLiteSpeed Web 2X Bytes -
Server Different HTTP Versions” | H2load Benchmark
HTTP1.1 HTTP2 HTTP3
L J
T

[Likwid collecting CPU and Memory metrics]

FIGURE 4.16: Simplified View of the Benchmark used to test the dif-
ferent versions of HTTP

To note that we test here the ngtcp2 (ngtcp2, 2020) implementation of HTTP3
because it is TLS library independent, not like other HTTP3 implementations, for
example, quiche (Cloudflare, 2020) which requires the boringssl library explicitly.
Since, at the time of writing, the official OpenSSL Team does not support QUIC
(OpenSSL, 2020) we use a patched version of OpenSSL provided by the ngtcp2 team.

Since HTTP3 did not achieve the maturity phase yet, we are using the protocols
as they are defined in the 27th Draft by the IETF QUIC Working group (IETF, 2020).

The latency and throughput results of the tests on the WR cluster are shown in
tig. 4.17 and fig. 4.18 respectively:

LATENCY COMPARISON

—&—LAT-h1l == LAT-h2 LAT-h3

1000000
100000
10000
1000

100

LATENCY MICROSECONDS

10

1 8 64 512 4096 32768 262144 2097152
OBJ_SIZE

FIGURE 4.17: Latency results for the different protocols on the WR
Cluster

4.4. Evaluation of the Performance Model 83

RPS comparison
—@—RPS-hl —@—RPS-h2 RPS-h3
3500
3000
2500
2000
1500

1000

Requests Per Second

500

1 8 64 512 4096 32768 262144 2097152
Obj_size

FIGURE 4.18: Throughput results for the different protocols on the
WR Cluster

As seen, the latency and throughput results for both HTTP1.1 and HTTP2.2 are
very identical in contrast to HTTP3, which appears to be performing poorly. The
same tests were also conducted on Mistral over InfiniBand, and similar results were
obtained, as illustrated in fig. 4.19a and fig. 4.19b

LATENCY COMPARISON RPS comparison

——LAT-h1 —@=LAT-h2 LAT-h3 RPS-h1 RPS-h2 RPS-h3

100000000
10000

10000000 9000
8000
7000
6000
10000 5000

4000

3000

1000 o y . '
100 2000

10 1000

1000000

100000

LATENCY MICROSECONDS
Requests Per Second

1 1 8 64 512 4096 32768 262144 2097152
1 8 64 512 4096 32768 262144 2097152
Obj_size

OBJ_SIZE

(A) Latency Results (B) Throughput Results

FIGURE 4.19: Performance Comparison for the different protocols on
Mistral

Although we expect HTTP2 and HTTP3 to perform better than HTTP 1.1, this is
not the case. A closer look at the evolution of the parameters defined in our model
reveals the cause:

e Figure 4.20a exhibits a ten-fold increase in CPU Cycles on the client-side when
using the HTTP3 protocol in comparison to HTTP1.1 and HTTP2.

¢ Figure 4.20b also indicates a ten-fold growth in the L3 eviction rate, hence an
increase in main memory usage, on the client-side when utilizing the HTTP3
protocol in comparison to HTTP1.1 and HTTP2.

84 Chapter 4. Overhead of REST on HPC Systems

CUC COMPARISON L3EV COMPARISON

—4—CUC-hl ——CUC-h2 CUC-h3 —4—[3EV-h1 —M=—L3EV-h2 LLOD-h3

1E+09 100000000

100000000 10000000

10000000 1000000

1000000 100000
o 100000

> 10000
o 10000
1000

100 100

10 10

1 1
1 8 64 512 4096 32768 262144 2097152 1 8 64 512 4096 32768 262144 2097152

L3EV

1000

OBJ_SIZE OBJ_SIZE

(A) Client CPU Cycles Usage (B) L3 Eviction Rate

FIGURE 4.20: Resource Usage Comparison for the different protocols
on Mistral

Despite the apparent traffic saving of HTTP2, its memory and CPU consumption
are relatively equivalent to HTTP1.1, thus based on our model from section 4.2.1, the
latency from both protocols is similar, as we can see in fig. 4.19a . On the other hand,
the chosen HTTP3 implementation is circa ten times CPU and memory-consuming
compared to the earlier versions, which indicates an implementation issue.

4.5 Summary

This chapter provides a first assessment of using REST as a storage protocol in an
HPC environment.

A performance model for the relevant HTTP Get/Put operation based on hard-
ware counters is provided and experimentally validated. Our results demonstrate
that a correctly configured REST implementation can provide high performance and
match HPC-specific implementation of MPI in terms of throughput for most file
sizes and in terms of latency for file sizes above 1 MB.

By considering the CPU and memory cost introduced by the data movement,
the developed model covered well the general behavior of the different protocols
and confirmed the expected behavior.

The new techniques introduced in the more recent versions of HTTP (the use of
a small number of connections, multiplexing the HTTP datagram, compressing the
header, and allowing the server to "push" data pro-actively to the client while even-
tually using UDP to accomplish these) bear the potential to improve performance
and, thus, provide a perspective for using cloud storage within HPC environments.
However, in this evaluation, they could not show their benefit.

The study presented in this chapter paves the way for chapter 5, where we assess
in more detail the performance of different object storage implementations on HPC
and in the cloud. These implementations have one thing in common, they all offer
an S3 compatible API, allowing us to use the same benchmark to provide a fair
and comprehensive comparison. This will eventually help us achieve one of our
research goals, i.e., examining if an object storage implementation on top of REST
is a performant and efficient alternative to common HPC storage in an actual HPC
scenario.

85

Chapter 5

S3 Performance Analysis for HPC
Workloads

In chapter 4, we found that the performance overhead due to the mere use of REST/HTTP
is to some extent comparable to the one introduced by HPC native protocols like MPI. This
chapter goes a step further by assessing the performance of different cloud storage implemen-
tations. The Simple Storage Service S3 has emerged as the de-facto storage API for object
storage in the cloud and represents, as such, a standard interface to access these implementa-
tions. We seek to check if the S3 APl is already a viable alternative for HPC access patterns in
terms of performance or if further performance advancements are necessary. For this purpose,
we extend two typical HPC 1/O benchmarks — the 10500 and MD-Workbench — to quan-
tify the performance of the S3 API. We perform the analysis on the Mistral supercomputer
by launching the enhanced benchmarks against different S3 implementations: on-premises
(Swift, MinlO) and in the cloud (Google, IBM...). Section 5.2 describes the test scenarios
and defines the relevant metrics that will be addressed using our benchmarks. Section 5.3
describes the experimental procedure, the used systems, and the methodology of the evalua-
tion conducted in this work. Section 5.3.4 analyzes the obtained latency results. Section 5.4
summarises our findings.

Most of the content of this chapter has been published under (Gadban and Kunkel, 2021)

5.1 Foreword

With the increased prevalence of cloud computing and the increased use of the In-
frastructure as a Service (IaaS), various APIs are provided to access storage. The
Amazon Simple Storage Service (S3) (AWS, 2020) managed to be the most widely
adopted cloud storage API in the cloud, and it is being increasingly used for HPC
workloads (Greguska, 2018; Gutierrez and Jesus, 2020). Many cloud storage providers,
like IBM, Google, and Wasabi, offer S3 compatible storage, and a large number of
Scale-Out-File Systems like Ceph (Weil et al., 2006), OpenStack Swift (OpenStack-
Foundation, n.d.) and Minio (MinlIO-Inc., n.d.) offer a REST gateway, largely com-
patible with the S3 interface. HPC applications often use a higher-level I/O library
such as NetCDF (Rew and Davis, 1990b) or ADIOS (Lofstead et al., 2008) or still the
low-level POSIX API. Under the hood, for the interaction with the storage system,
MPI-IO and POSIX are still widely used, while other object storage APIs such as the
native DAOS (Lofstead et al., 2016) API" are still emerging.

As mentioned in chapter 2, if the performance characteristics of S3 are promis-
ing, it could be used as an alternative backend for HPC applications. This interop-
erability would foster convergence between HPC and cloud and eventually lead to

Ihttps://docs.daos.io/v2.0/overview/architecture

https://docs.daos.io/v2.0/overview/architecture

86 Chapter 5. S3 Performance Analysis for HPC Workloads

consistent data access and exchange between HPC applications across data centers
and the cloud.

After the release of the Amazon S3 service in 2006, many works were published
to assess the performance of this offering. Some of them (Garfinkel, 2007; Palankar
et al., 2008) focused only on the download performance of Amazon S3, most of them
(Garfinkel, 2007; Palankar et al., 2008; Bessani et al., 2013; Arsuaga-Rios et al., 2015;
Sadooghi et al., 2015) never published or described the used benchmarks, others
(Garfinkel, 2007; Palankar et al., 2008; Inc, n.d.) are not able to assess S3 compati-
ble storage. The Perfkit benchmarker from Google was used in (Bjornson, 2015) to
compare the download performance of AWS S3 in comparison with Google Cloud
Storage (GCS?) and Microsoft Azure Storage. However, since the tests were accom-
plished in the cloud, the obtained results depend heavily on the VM machine type in
use, hence, on the network limitation enforced by the cloud provider; Adding to the
confusion, and in contrast, (Sadooghi et al., 2015) found in their tests, which were
also run in the AWS cloud on different EC2 machines against the Amazon S3 im-
plementation, that “there is not much difference between the maximum read/write
throughput across instances.”

As such, the lack of published tools that cover HPC workloads pushed us to
enhance two benchmarks already used for HPC procurements, namely I10500° and
MD-Workbench (Kunkel and Markomanolis, 2018), by developing a module capable
of assessing the performance of S3 compatible storage. We will explore our approach
in more depth in the upcoming section.

5.2 Methodology

We aim to analyze the performance of the S3 interface of different vendors in an HPC
environment and eventually assess the performance potential of the S3 API for HPC
workloads. To achieve our purpose, a five steps procedure is implemented by:

¢ Identifying suitable benchmarks.
* Modifying the benchmark to support S3.

* Running the enhanced benchmarks against the S3 interface presented by vari-
ous on-premises and in-cloud object storage implementations.

* Determining a measurement protocol that allows identifying the main factors
affecting the performance of S3 for HPC workloads.

¢ Providing alternative implementations for S3 to estimate the best performance.

Figure 5.1 represents a high-level overview of this approach, depicting the differ-
ent object storage stacks being considered the various factors of comparison along-
side the different benchmarks in use.

2Google Cloud Storage
Shttps://i0500.org

https://io500.org

5.2. Methodology 87

Y

Hardware
N——

Mistral

Y

Storage m ‘ l
N——
Y

Object Storage @ wasabl ’ ()
IBM Cloud
—_— SGWILFT Google Cloud
MinlO
Jg
Benchmarks
MD-Workbench 10500

e . . .

¢ Most performant S3 implementation?
* Scalabilityissues?
* What are the main issues affecting the performance?
* How can we minimize the overhead?

Conclusions

FIGURE 5.1: High Level Overview of the S3 Performance Analysis
Methodology

5.2.1 Benchmarks

Two HPC benchmarks, the I0O500 and MD-Workbench, are extended in order to ana-
lyze the potential peak performance of the S3 API on top of the existing HPC storage
infrastructure.

¢ The 10500 benchmark consists of multiple subcomponents: bandwidth sub-
components, metadata subcomponents, and namespace searching subcompo-
nents. The bandwidth subcomponents and metadata components use the IOR
and mdtest benchmarks, respectively. These benchmarks simulate a variety
of typical HPC workloads, including the bulk creation of output files from a
parallel application, intensive I/O operations on a single file, and the post-
processing of a subset of files. The IO500 uses the IOR/MDTest benchmark
under the hood, which comes with a legacy backend for S3 using the outdated
aws4c library (Korolev, n.d.) that stores all data in a single bucket; as such,
a file is one object which is assembled during write in the parallel job using
multipart messages — most S3 implementations do not support this.

88 Chapter 5. S3 Performance Analysis for HPC Workloads

The 10500 (Kunkel, Lofstead, and Bent, 2017) uses IOR and MDTest in an
“easy” and “hard” setup, hence performs various workloads and delivers a
single score for comparison; the different access patterns are covered in differ-
ent phases:

- IOEasy simulates applications with well-optimized I/O patterns.

— IOHard simulates applications that utilize segmented input to a shared
file.

- MDEasy simulates metadata access patterns on small objects.

- MDHard simulates accessing small files (3901 bytes) in a shared bucket.

We justify the suitability of these phases as follows: B. Welch and G. Noer
(Welch and Noer, 2013) found that, inside HPC, between 25% and 90% of all
files are 64 KBytes or less in size, as such a typical study of the performance
of object storage inside HPC should also address this range, rather than only
focusing on large sizes, which are expected to deliver better performance and
only be limited by the network bandwidth (Bjornson, 2015; Gadban, Kunkel,
and Ludwig, 2020).

This is why, using the IOR benchmark, we highlight this range as shown in
fig. 5.3 and display the performance for size up to 128 MiB in section 5.3.2
and section 5.3.3. Large file sizes are also addressed since the performed IO500
benchmarks operate on 2 MiB accesses, creating large aggregated file sizes dur-
ing 300 seconds run.

¢ The MD-Workbench (Kunkel and Markomanolis, 2018) is used to explore in-
teractive operations on files: it simulates concurrent access to typically small
objects and reports throughput and latency statistics, including the timing of
individual I/O operations. The obtained latency results are used to plot a den-
sity graph of the individually timed operations and help us identify whichI/O
operations are the least performant.

The benchmark executes three phases: pre-creation, benchmark, and cleanup.

— The pre-creation phase setups the working set while the cleanup phase
removes it.

— A pre-created environment that is not cleaned can be reused for subse-
quent benchmarks to speed up regression testing, i.e., constant monitor-
ing of performance on a production system.

— The working set is kept constant during the benchmark run: in each iter-
ation, a process produces one new object and then consumes a previously
created object in FIFO order.

5.2.2 Modifications of benchmarks

For 10500, an optimistic S3 interface backend using the 1ibS3 client library is imple-
mented for IOR in the sense that it stores each fragment as one independent object.
As such, it is expected to generate the best performance for many workloads.

For identifying bottlenecks, it supports two modes:

5.2. Methodology 89

¢ single bucket mode: created files and directories results in one empty dummy
object (indicating that a file exists), every read/write access happens with ex-
actly one object (filename contains the object name + size/offset tuple); dele-
tion traverse the prefix and removes all the objects with the same prefix recur-
sively.

¢ one bucket per file mode: for each file, a bucket is created. Every read/write
access happens with exactly one object (object name contains the filename +
size/offset tuple); deletion removes the bucket with all contained objects.

Consequently, the libs3 implementation gives us the flexibility to test some opti-
mistic performance numbers. The S3 interface does not support the “find” phase of
10500, which we, therefore, exclude from the results.

MD-Workbench recognizes datasets and objects and also offers two modes:

* one bucket, the D datasets are prefixed by the process rank.
* one bucket per dataset.

In both modes, objects are atomically accessed, fitting the S3 API directly.

The 1ibS3 used in 10500 is the latest one which only supports AWS signatures v4
(bji, n.d.) while the current release* of MD-Workbench supports an older version of
libs3, which uses the AWS signature v2. As such, it is ideal for the benchmarking of
some S3 compatible systems that only support the v2 signature, like the one found
at DKRZ>.

Listing 5.1 presents the different arguments used by the introduced IOR S3 inter-
face.

LISTING 5.1: The different arguments for the introduced IOR S3 in-

terface
Module S3-1ibs3
Flags
--53-1ibs3 .bucket-per—file Use one bucket to map one

file/directory , otherwise one bucket is used to store
all dirs/files.

—-S53-1ibs3 .dont-suffix -bucket By default a hash will be
added to the bucket name to increase uniqueness, this
disables the option.

—-S3-1ibs3 .s3-compatible to be selected when using S3
compatible storage
——-S3-1ibs3 .use-ssl used to specify that SSL is

needed for the connection

Optional arguments
—-S3-1ibs3 .bucket—name-prefix=iorThe prefix of the bucket(s
).
—-S53-1ibs3 . host=STRING The host optionally followed
by:port.
--53-1ibs3 .secret ~key=STRING The secret key.
——-S3-1ibs3 . access —key=STRING The access key.

4https://github.com/JulianKunkel/md-workbench/tree/0a26b061fae43fa0b72ac6d6b7ca2aed621c54c9
5The German Climate Computing Center

https://github.com/JulianKunkel/md-workbench/tree/0a26b061fae43fa0b72ac6d6b7ca2ae4621c54c9

90 Chapter 5. S3 Performance Analysis for HPC Workloads

--53-1ibs3 . region=STRING The region used for the
authorization signature.

—-S3-1ibs3 . location=STRING The bucket geographic
location.

5.2.3 Measurement protocol

We measure the performance on a single node and then on multiple nodes while
varying the size of the object and the number of processes/threads per node. To
assess the performance of the different modes, we establish performance baselines
by measuring performance for the network, REST, and the Lustre file system. Then
the throughput is computed (in terms of MiB/s and Operations/s) and compared to
the available network bandwidth of the nodes.

5.3 Experiments

5.3.1 Test System

The tests are performed on the supercomputer Mistral (DKRZ, 2020), the HPC sys-
tem for earth-system research operated at the German Climate Computing Center
(DKRZ). It offers 3000 compute nodes, each equipped with an FDR Infiniband inter-
connect and a Lustre storage system with 54 PByte capacity distributed across two
file systems. The system provides two 10 GBit/s Internet uplinks to the German
research network (DFN); however only accessible on a subset of nodes.

5.3.2 MinlO Benchmarks in HPC

To create a reference number for the performance of S3 and explore the possible ways
to optimize performance, we first use the MinlO server (release: 2020-08-18T19-41)
to accomplish our tests using the modified benchmarks inside our HPC environ-
ment.

MinIO Deployment
MinlO supports the following modes of operation:

¢ Standalone (sa): runs one MinlO server on one node with a single storage de-
vice. We test configurations from tmpfs (in-memory fs/shm) and the local ext4
file system.

¢ Distributed servers (srv): runs on multiple nodes, object data and parity are
striped across all disks in all nodes. The data is protected using object-level
erasure coding and bitrot. Objects are accessible from any minio server node.
In our setup, each server uses the local ext4 file system.

Figure 5.2a illustrates the deployment.
¢ Gateway (gw): adds S3 compatibility to an existing shared storage. On Mistral,

we use the Lustre distributed file system as the backend file system as seen in
Figure 5.2b

5.3. Experiments 91

Alongside these three modes, we introduce two modes by inserting the Nginx
(Sysoev, n.d.) (v1.18.0) load balancer in front of the distributed and gateway config-
urations, and we refer to these setups as srv-Ib and gw-Ib respectively. Both variants
can utilize a cache on the Nginx load balancer (-cache).

S3 API

= = = e

-

—

-

ode (B) Gateway mode

—

(A) Distributed Servers

=t

FIGURE 5.2: Different MinIO Modes

Single Client

The first tests are performed using IOR (LLNL, n.d.) directly. Figure 5.3 and Fig-
ure 5.4 show the performance on 1 node for a variable object size for the different
MinIO modes. We can notice that the standalone mode shows the best performance.
Gateway mode is effective for reads but slow for writes. Write performance is 1/3rd
of the read performance. Compared to the Infiniband network throughput (about
6 GiB/s), only 7.5% and 2.5% of this performance can be obtained for reading and
writing, respectively. Adding a load balancer has minimal influences on throughput
in this setting, except when activating the caching mechanism, which significantly
impacts the read throughput.

92 Chapter 5. S3 Performance Analysis for HPC Workloads

=g 53-shm == sa-loc SV aw i SPV-ID gw-lb

©
2]
=
£
=
3
o
£
2
o
£
= ot
0.01 v ¥ o IE=—g—
10B 100 B 1KB 10KB 100KB 100KB 1MB 10MB 100MB
Object size
FIGURE 5.3: Read Throughput for MinlO modes for 1 node and 1
PPN
10 180
—#— sa-shm —il— sa-loc STV | —M—EW srv-lb EW-b —p gw-Ib-cache
1
£
=
2
£
5
(=%
£L=
[T:]
=
Q
£
= 01
0.01 1 0 =8 .
10B 100 B 1KE 10KB 100KE 100KB i1MB 10MB 100MB
Object size
FIGURE 5.4: Write throughput for MinIO modes for 1 node and 1
PPN
Parallel I/O

We investigate to what extent parallel I/O can exploit the available network band-
width by varying the number of clients accessing the object-store. Assuming anideal
scenario, we start MinlO in standalone mode with RAM as backend (sa-shm) on one
node, while launching IOR on another set of four nodes.

Figure 5.5 and fig. 5.7 show the aggregated throughput across another four client
nodes, demonstrating the scale-out throughput achieved across many tasks running
on various nodes.

5.3. Experiments

7000

6000

5000

4000

3000

Throughput in MiB/s

2000

1000

0 =
108 1008 1KB 10KB 100KB 1vMB 1omB 100mB

——4T —e—8T —0—12T —e—16T —e—20T —0—24T

—e—287 —e—32T —e—36T —e—A40T —A— 1207 ——160T

FIGURE 5.5: Read throughput for N tasks on 4 nodes

7000
6000
5000

4000

Ops/s

3000

2000

1000

0 o
10B 1008 1KB 10KB 100KB imMB 10MB 100mMB

——A4T —e—8T —0—12T —e—16T —@—20T —m—24T

—o— 28T —8—32T —e—36T —e—40T —A— 1207 —8—160T

FIGURE 5.6: Read Operations/s for N tasks on 4 nodes

94

Chapter 5. S3 Performance Analysis for HPC Workloads

Throughput in MiB/s

Operations per Second

3000

2500

2000

1500

1000

500

0 3 :
108B 100B 1KB 10KB 100KB imMB 10msB 100mMB

—@—4T —@—8T @ 12T —e—16T —@—20T —@ 24T

—0— 28T —@—32T —e—36T —e—40T —A— 1207 —#—160T

FIGURE 5.7: Write throughput for N tasks on 4 nodes

300

250

200
0 J ’. 6/5‘? A-/'A\"’
« R R

e

VAR
A

108 100B 1KB 10KB 100KB 1MB 10MB 100MB
Obiject Size in Bytes

50

——4T —e—8T —0—12T —e—16T —@—20T —@—24T

—0— 287 —8—32T —e—36T —e—A40T —&—120T ——160T

FIGURE 5.8: Write Operations/s for N tasks on 4 nodes

We notice that we achieve the best throughput when increasing the number of
tasks per node (about 6000 MiB/s). The performance per client node is 1.5 GiB/s.
For the single server, it is close to the available network bandwidth.

5.3. Experiments 95

The I/O path is limited by latency. While with four threads (PPN=1), about
1000 Ops/s are achieved, with 160 threads, about 6000 Ops/s can be reached. Write
achieves about 2500 MiB/s (40% efficiency) and 250 Ops/s, indicating some limita-
tions in the overall I/O path. This also fosters splitting data larger than 1 MiB into
multiple objects and using multipart (AWS, n.d.[b]) upload/download.

MinlO overhead in Gateway Mode

A more realistic scenario inside HPC is MinlO running in Gateway mode in front of
Lustre.

First, we launch the benchmark on four client nodes, and we start MinIO in gate-
way mode on another set of nodes. We call this setup the disjoint mode.

However, this setup does not scale out efficiently. This leads us to introduce
another concept, which we dub the local gateway (local-gw) mode, where MinlO is
started on the N client nodes in gateway mode and uses the Lustre file system as the
backend file system.

s N N N A

:r({} a{{} ﬁ({} Q{& e

¢

00
i e

Lustre

S3 API

Minio gateway mode

-—>H(—>/—\
.

FIGURE 5.9: Benchmark against the local gateway

As depicted by fig. 5.9, we launch the benchmarks against the localhost on each
node and notice that when increasing the number of tasks per node, we are achiev-
ing relatively better performance, compared to the disjoint mode, as shown in Ta-
ble 5.1. However, we only achieve around 2% of Lustre’s performance for various
benchmarks.

96 Chapter 5. S3 Performance Analysis for HPC Workloads

Lustre MinlO local-gw

Benchmark Metric Unit disjoint-gw | local-gw || % of Lustre
md-workbench rate 10PS 18337 37 425 2.3%
throughput MiBps | 34.100 0.100 0.800 2.3%

ior-easy-write GiB/s | 18.671 0.153 0.286 1.5%
mdtest-easy-write | kIOPS 5.892 0.088 0.132 2.2%

ior-hard-write GiB/s 0.014 0.003 0.006 45.7%
mdtest-hard-write | kKIOPS 5.071 0.036 0.076 1.5%

10500 ior-easy-read GiB/s | 11.475 0.693 2.071 18.1%
mdtest-easy-stat KkIOPS | 24.954 1.198 4.092 16.4%

ior-hard-read GiB/s 0.452 0.029 0.094 20.7%
mdtest-hard-stat kIOPS | 18.296 1.281 3.968 21.7%
mdtest-easy-delete | kKIOPS | 9.316 0.025 0.023 0.3%
mdtest-hard-read KIOPS | 6.950 0.449 1.636 23.5%
mdtest-hard-delete | kKIOPS | 4.863 0.029 0.025 0.5%

TABLE 5.1: Performance of MinlO Gateway on 4 nodes with 20 PPN

Nevertheless, we notice that increasing the number of clients and the tasks per
client leads to an increase in the number of “Operation timed out” errors, which
denotes a scalability issue. An issue that we address in Chapter 6.

MinlIO vs REST vs TCP/IP

In chapter 4, the base performance of REST/HTTP is analyzed by emulating a best-
case client/server scenario (HTTP GET Operation/Read Only Scenario from a Stor-
age Server).

A similar setup is used here, illustrated by fig. 5.10, with nginx version 1.18.0 as a
web server and wrk running 4 threads as the benchmark tool.

Different File Sizes (
2 Bytes >L wrk Benchmark

Nginx Web Server J

FIGURE 5.10: REST Benchmark using the Nginx web server

We conduct the same experiment on Mistral, using 1Node-4PPN and tmpfs as
backend. Since the tests are accomplished against localhost, we compare the ob-
tained results with the MinlO results running in standalone mode serving from
RAM (sa-shm).

As a reference, we also include the TCP/IP performance results obtained using
iperf3, where the server is started with four parallel client streams on the same
node. The iperf3 server uses the same file sizes above the source rather than just
generating random data. This feature is used for finding whether or not the storage
subsystem is the bottleneck for file transfers. The number of bytes received by the
client is kept equal to the file size and fits in the read buffer to best simulate the above
scenario. As noted by iperf3’s authors, this tool is single-threaded, and it should
not be regarded as a file transfer tool; hence the values are provided for reference
purpose only.

Figure 5.11 shows that for objects with size greater than 1 KB, MinlO perfor-
mance — even in this ideal setup - is significantly lower than the others and that
there is still room for improvement, which we address in chapter 6.

5.3. Experiments 97

—m—Read REST

——iperf

Minio-sa-shm

8000.00 POSIX shm

Throughout in MiBps

ﬂﬂﬂﬂﬂﬂ

108 100 B 1KB 10KB 100KB 1MB 10MB 100MB 1000MB
Object Size in Bytes

FIGURE 5.11: Read throughput Minio vs REST using 1N-4PPN

5.3.3 Test against S3 compatible systems

The next benchmarks are accomplished against different S3 compatible systems us-
ing both 10500 and MD-Workbench.

In-house Tests

The following tests are conducted against the OpenStack Swift (OpenStack-Foundation,
n.d.) system already available in DKRZ, Swift version 2.19.2 is used, and the S3 in-
terface is implemented using Swift3 version 1.12.1, which is now merged into swift
middleware as the s3api; this is why only AWS signature v2 is available and as such
the tests were only conducted using MD-Workbench.

On four client-nodes and with 20 PPN, a rate of 269.5 IOPs and a 0.5 MiB/s
throughput are observed during the benchmark phase von MD-Workbench.

Table 5.1 also shows the 10500 results for the different systems tested inside
DKRZ.

Comparison with Scality Ring

Next, we compare the performance of the MinlO obtained results in Section 5.3.2 to
the results of another S3 compatible storage called Scality Ring published in (Wals-
dorf, n.d.).

Scality Ring is a cloud-scale, distributed software storage solution that offers a
comprehensive AWS S3 REST API implementation. We are aware that this is not
a fair comparison, but it gives us a qualitative comparison that validates that our
results are reasonable.

In the setup described in (Walsdorf, n.d.), RING is deployed on Cisco Network-
ing equipment much similar to the HPC network environment provided by Mistral.
For the sake of simplicity, the server CPU capabilities are considered equivalent (In-
tel Xeon Silver 4110 vs. Intel Xeon E5-2680 v3). The published cosbench (Zheng

98 Chapter 5. S3 Performance Analysis for HPC Workloads

et al., 2012) results in (Walsdorf, n.d.), from the benchmarks launched on 3 nodes
with 300 threads, are compared to the MinlO Parallel I/O results described in Sec-
tion 5.3.2, which are also started on 3 nodes with a total of 144 threads (no Hyper-
threading). The comparison is shown in Figure 5.12.

We can see that although the write throughput is relatively similar for files hav-
ing a size below 32 MB, the read throughput of MinlO is better. Scality may have an
advantage for writes below 16 MiB because nearly 2x the number of threads is used.
Based on these measurements, we presume that Scality does not yield a significant
performance benefit over MinlO.

100 6500
e MinIO-Read-144T 6000
. . 5500
e PAINIO-Write-144T
5000
10 . . -
e Sality-Write- 300 4500
Eg el Scaliy-Read-300T 4000
g
= 3500
1
E 3000
2
3 2500
=
2000
01 1500
1000
500
0.01 0

10B - 100 B 1KB 10KB 100KB 100KB 1MB 10MB 100MEB
Object Size in Bytes

FIGURE 5.12: Throughput of Scality Ring and MinIO on 3 nodes.

Test against Cloud Systems

Different S3 vendors were contacted, which either offered a testing account or explic-
itly allowed us to execute the IO500 benchmark against their endpoints. We follow
the guidelines depicted by the performance design patterns for Amazon S3 (AWS,
n.d.[c]), especially regarding the request parallelization and horizontal scaling to
help distribute the load over multiple network paths.

Since all the providers offer multi-region storage, we choose the closest storage
location to Mistral (located in the EU) to ensure the lowest latency. Due to the limited
number of nodes with Internet connectivity on Mistral, the benchmarks are launched
on only two nodes with PPN=1. The results are summarized in Table 5.2; we scaled
down the units by 1000 to better visualize the differences. The results of MinlO
launched in local-gw mode — with the same number of nodes and tasks per node —
are displayed in the last column.

5.3. Experiments 99

Benchmark/System ‘ Unit ‘ Wasabi ‘ IBM ‘ Google ‘ MinlIO-local-gw

Score Bandwidth MiB/s 0,007 | 1,642 0,46 12,62
ior-easy-write MiB/s 235 | 35.00 13.35 46.39
mdtest-easy-write I0OPS 13.04 | 81.72 21.79 27.96
ior-rnd-write MiB/s 0.01 0.23 0.07 1.231
mdworkbench-bench | IOPS 575 | 47.23 12.83 15.25
ior-easy-read MiB/s 120 | 45.37 7.81 73.86
mdtest-easy-stat IOPS 20.92 | 145.09 51.10 260.97
ior-hard-read MiB/s 0.05 5.59 1.38 6.01
mdtest-hard-stat IOPS 20.74 | 149.64 49.48 297.62
mdtest-easy-delete IOPS 10.35 | 35.02 9.37 81.06
mdtest-hard-read I0OPS 8.54 | 70.06 18.90 130.36
mdtest-hard-delete I0OPS 10.28 | 35.25 9.48 94.32

TABLE 5.2: 10500 results comparing S3 cloud providers

The IBM cloud storage provided the best performance in our tests; however, this
is far from the performance expected in HPC. Although MinlO in gateway mode
provides better performance, this is also below our HPC experience since the net-
work latency, in this case, is minimal compared to the other scenarios. A better
solution is needed to leverage existing file systems found either inside or outside
the HPC environment, as to be seen in chapter 6. Note that some of the mentioned
providers might provide better performance when using their native interface in-
stead of S3; however, this is outside the scope of this work. Also, the network inter-
connection between DKRZ and the cloud provider bears additional challenges.

Test against Huawei OceanStor Pacific 9950

Several tests were also conducted against the OceanStor Pacific 9950° storage system,
a 5U chassis that supports up to 8 storage nodes and 80 NVMe SSDs, which provides
different storage access methods, including S3 compatible access.
Within a workshop done in collaboration between Huawei and GWDG’, the chance
was given to conduct some tests against the OceanStor Pacific 9950 system within a
test environment provided by Huawei and illustrated in fig. 5.13.

®https://e.huawei.com/en/products/storage/distributed-storage/
oceanstor-pacific-series/oceanstor-pacific-9950
7Gesellschaft fiir Wissenschaftliche Datenverarbeitung mbH Géottingen

https://e.huawei.com/en/products/storage/distributed-storage/oceanstor-pacific-series/oceanstor-pacific-9950
https://e.huawei.com/en/products/storage/distributed-storage/oceanstor-pacific-series/oceanstor-pacific-9950

Chapter 5. S3 Performance Analysis for HPC Workloads

QceanStor Pacific i

—— GE Management Network
— 100GE Storage network

100GE Service network

FIGURE 5.13: Test environment provided by Huawei

A round-robin load balancing between three S3 endpoints is achieved at the
name resolution level of the S3 endpoint, which is done by setting a small TTL®
of five seconds for the DNS record.

Tests were conducted against one S3 endpoint — by directly providing one IP
address — and then against the endpoint name.

Since the Huawei OceanStor also provides a parallel filesystem that can be ac-
cessed using a DPC? mount, this was also tested using I0500. The results are de-

picted by table 5.3.
Benchmark | Unit | S3-Single Endpoint | S3-Round Robin DNS | DPC
ior-easy-write GiB/s | 0.70695 1.44374 4.118378
mdtest-easy-write | kIOPS | 10.088596 23.343315 13.106489
ior-hard-write GiB/s | 0.161295 0.259109 -
mdtest-hard-write | kIOPS | 5.574865 9.820914 1.281831
ior-easy-read GiB/s | 0.850466 1.708233 4.573681
mdtest-easy-stat KIOPS | 20.297058 36.543428 15.789467
ior-hard-read GiB/s | 0.156017 0.253328 -
mdtest-hard-stat kIOPS | 19.950588 34.737915 13.345194
mdtest-easy-delete | kIOPS | 1.691461 1.65386 35.523597
mdtest-hard-read | kIOPS | 8.776169 12.667338 9.576383
mdtest-hard-delete | kIOPS | 1.674306 1.685916 1.114147

TABLE 5.3: 10500 results against Huawei OceanStor 9950 using 2N-

40PPN

As seen, distributing the load between several S3 endpoints improves the sys-

tem’s overall performance.

8Time to Live
9IDistributed Parallel Client

5.3. Experiments 101

More tests are planned to be conducted against this storage system and will be
posted to the gitrepohttps://github.com/frankgad/s3-performance-analysis-paper,
where the full results of all experiments conducted in this chapter are already pub-
lished.

5.3.4 Latency Analysis

MD-Workbench does not only report the throughput but also the latency statistics
for each I/O operation. The density of the individually timed operations is plotted
as shown in fig. 5.14. A density graph can be considered a smoothed histogram
where the x-axis shows the observed runtime and the y-axis represents the number
of occurrences.

The Lustre density figure shows roughly a Gaussian distribution for individual
operations, where create is the slowest operation.

Using MinlO, the creation phase takes substantially longer. The local-gw mode,
as already seen from the IO500 results, yields the best performance among the tested
S3 implementations; however, far from the Lustre performance, which has a latency
of around 10 ms and is extremely slow compared to the network base latency of
approximately 10 ps. The SwiftS3 system changes the overall behavior significantly,
leading to less predictable times.

We conclude that the involved processes behind the S3 implementation are the
leading cause of latency.

https://github.com/frankgad/s3-performance-analysis-paper

102 Chapter 5. S3 Performance Analysis for HPC Workloads

type D create ‘:\ read ‘:‘ delete D stat

4
34
=
3
]
B o2-
14
0-
1e03 1e o1 Te+01
runtime
(A) Lustre
2
2
2
3
1
ol
1e%03 1eo1 1et01
runtime
(B) MinlO local-gw
2]
2z
2
3
2
0-
1el03 1elo1 1et01
runtime
(€) MinlO disjoint
type | | create | | read [| cetete | | stat
20-

density

o. A

1e03 1e 01 1e401
runtime

(D) SwiftS3

FIGURE 5.14: Latency density for the different systems

5.4. Summary 103

5.4 Summary

The S3 API is the de-facto standard for accessing cloud storage; this is why it is
the component of choice when building cloud-agnostic applications. By amending
10500 to benchmark the S3 interface, we broaden the scope of the IO500 usage and
enable the community to track the performance growth of S3 over the years and an-
alyze changes in the S3 storage landscape, which will encourage the sharing of best
practices for performance optimization. Unfortunately, the results indicate that S3
implementations such as MinlO are not yet ready to serve HPC workloads directly
because of the drastic performance loss and the lack of scalability.

We found that the remote access to S3 is mainly responsible for the performance
loss and should be addressed. Using a load balancer in front of the S3 server nodes
not only represents a single point of failure but is also a bottleneck for the data trans-
fer. We used the already existing parallel shared filesystem to leverage an S3 capable
application by introducing the local gateway mode. With the advent of filesystem
capable of using the node-local storage (ramdisk, SSD, NVRAM) such as GekkofsVef
et al., 2020, the local-gw mode can also be extended to accommodate such underly-
ing fs.

We conclude that S3 with any gateway mode is not yet suitable for HPC deploy-
ment as additional data transfer without RDMA support is pricey.

The next chapter will further disassemble the S3 stack to identify and overcome
performance issues; thus, it introduces S3embeded, an embedded library capable of
converting existing S3 application storage calls to its HPC storage equivalents.

105

Chapter 6

S3Embedded

In the previous chapter, we were able to pinpoint the main bottlenecks of S3. This chapter and
specifically section 6.1 outlines our approach to identify the cause of the performance loss by
systematically replacing parts of the popular S3 client library with lightweight replacements
of lower stack components. This leads to introducing a new S3 access library, S3embedded,
which proves to be highly scalable and capable of leveraging the shared cluster file systems
of HPC infrastructure to accommodate several S3 client applications. Section 6.4 depicts the
tests that were accomplished on Mistral and the results obtained in comparison to previous
S3 implementations and Lustre. Further improvements to the S3Embedded library stack are
outlined in section 6.5, taking into advantage the new evolution of the HTTP protocol or
the use of MPI over RDMA'.Section 6.7 summarises our findings and illustrates possible
convergence scenarios using S3Embedded.

6.1 Performance Insights

In chapter 5, major performance issues were encountered, which can be interpreted
as follows:

¢ A passive load balancer, i.e., without read-caches, does not offer any perfor-
mance advantage; moreover, it represents a bottleneck problem reducing the
scalability of the entire S3 storage system.

¢ The local-gw MinlO approach, depicted by section 5.3.2, produces the best
results but requires the existence of a shared and commonly accessible filesys-
tem, whereas the distributed server mode delivered the worst performance,
mainly to the overhead needed to synchronize and ensure the protection of
the data distributed on the different local node disks.

¢ The create I/O operation seems to be the most costly compared to the other
I/0O operations, primarily when the transfer is conducted over HTTDP, i.e., dis-
joint mode.

The S3 stack consists of different components; fig. 6.1 shows the typical setup
used by AWS.

IRemote Direct Memory Access

106 Chapter 6. S3Embedded

Amazon S3 Architecture

End Elg Load

User DELETE Balancers

AN

relnvent

FIGURE 6.1: AWS S3 architecture presented during an AWS event

We try to disassemble it by testing different combinations where stack compo-
nents are replaced or removed to optimize the performance.

¢ Removing the authentication part :

The signature version 4 2 used to sign the request and construct the authoriza-
tion header containing the signature for the request is a process represented by
four distinct steps exhibited by fig. 6.2

@ ® ®

GET

Create canonical request Create string to sign Calculate signature Add signature to request

FIGURE 6.2: Request Signing using the Signature V4

However, inside an HPC environment, the authorization and authentication
are supposedly accomplished at another layer; thus, we can delegate this re-
quirement to other systems and safely remove this mechanism.

¢ Removing the REST/HTTP Transfer: Considering the case of a shared filesys-
tem, directly accessible from each node, we can eliminate the transfer part over
REST by directly translating the S3 Calls to another I/O middleware library
like POSIX or MPI-IO or even to a high-level API like the native DAOS API 3

¢ Substituting the REST/HTTP transfer with a binary transfer by translating the
I/0O S3 calls as described above, the transfer, in this case, can take place over
TCP, UDP, or even RDMA.

¢ Substituting HTTP1.1 with newer versions of the HTTP Protocol

A flexible S3 library is needed, offering the possibility to adjust, replace or re-
move the components mentioned above from the software stack. For this purpose,

*https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
Shttps://docs.daos.io/latest/overview/architecture

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.daos.io/latest/overview/architecture

6.2. S3Embedded

107

the S3Embedded* library is conceptualized and implemented in the following sec-

tion.

6.2 S3Embedded

Since the modified benchmarks from chapter 4 use the LibS3° C library, a new I/O
dynamic shared library called S3Embedded is introduced as a drop-in replacement
of the LibS3 library; it can be used without any modification of the existing applica-

tion.

Assuming the availability of a globally accessible shared file system, SSEmbedded
provides the following libraries:

¢ libS3e.so: This is an embedded library wrapper that converts LibS3 calls to
POSIX calls inside the application address space. Any call made to the S3 in-
terface will be directly issued to the directly attached shared storage, eliminat-
ing the need to establish a connection to a remote server; thus, the overhead
due to the use of the networking protocol TCP or the transfer protocol HTTP is
eliminated. The authentication and authorization are delegated to the shared
filesystem and are not implemented.

23
RN,
- .

Application

Locally Mounted
POSIX Filesystem

S3 Interface

FIGURE 6.3: LibS3e Overview

At the time of writing, all the major S3 calls found in LibS3 are implemented in
S3Embedded. Table 6.1 represents a mapping from a sample of some S3 calls
to the corresponding Posix calls.

S3 Call

Posix Call

Description

S3 create_bucket

mkdir(path, S_LIRWXU | S_IRWXG)

make directory

S3_get_object

fread(buffer, 1, byteCount, fd)

read data from the file stream into buffer

S3_delete_bucket

rmdir(path)

remove directory

S3_put_object

fwrite(buffer, 1, size, fd);

write chunks of generic data to file stream

TABLE 6.1: Mapping from a sample S3 calls to Posix calls

Some calls/functions are still not implemented because they are either del-
egated to the shared storage system, like those related to the security (per-
taining to access control lists, ACL®, for example, S3_get_acl’) or irrelevant to
our purpose like those related to the data lifecycle management, for instance,
S3_get_lifecycle®.

‘https: //github.com/juliankunkel/S3embeddedlib
Shttps://github.com/bji/1libs3

6 Access Control List

7Gets the Acess Control List for the given bucket or object
8Gets the lifecycle for the given bucket

https://github.com/juliankunkel/S3embeddedlib
https://github.com/bji/libs3

108 Chapter 6. S3Embedded

¢ libS3r.so: This library converts the LibS3 calls via a binary conversion to TCP
calls which are sent through the network loopback interface to be received
and handled by a local 1ibS3-gw server application that then executes these
POSIX calls, bypassing the HTTP protocol. The loopback interface is chosen
to avoid any network overhead or discrepancy introduced by network com-
ponents like switches and routers and to ease the comparison to the MinlO
local gateway mode results obtained earlier. The libs3gw server has been de-
signed with multi-threading for parallel processing, where a thread function
named handle_connection is called to handle each connection. Whenever a re-
quest comes to the server, its main thread will create a new thread and pass the
client request to that thread with its ID. Another way to implement the paral-
lel processing is to use a non-blocking I/O approach to eliminate the overhead
incurred by context switching; however, this was not implemented at the time
of writing. Similar to LibS3e, authentication and authorization are disregarded
since they are delegated to the shared filesystem.

rl t\
& e Remote POSIX
- Filesystem

Application S3 Interface

FIGURE 6.4: LibS3r Overview

By easily linking the S3Embedded library at compile time or at runtime to a 1ibS3
compatible client application, it is possible to use the full capabilities of this library.

After compiling the library, the simplest way to use it is to add the path where
it resides to the UNIX/Linux System environment variable LD_LIBRARY_PATH,
therefore to tell the dynamic link loader’ where to look for the replacement of LibS3,
i.e., S3Embedded, with which the application was linked.

A typical workflow to switch between LibS3 and S3Embedded is depicted by
listing 6.1.

LISTING 6.1: Commands used to use SBEmbedded and switch be-
tween the multiple combinations

export LD_LIBRARY PATH=$LD_LIBRARY PATH:/home/foo/ur—git/S3EmbeddedLib

In -sf $PWD/1ibS3e.so libs3.so0.4 # use S3Embedded local

.$PWD/1ibS3gw /dev/shm/ & # start the gateway with shm as attached
storage

In —sf $PWD/1ibS3r.so libs3.so.4 # use S3Embedded gateway

In —-sf $LIBS3_PATH/libs3.s0.4 libs3.so.4 # use the libs3 library

& hH P

AS2ARS

In practice, this can be achieved in an HPC environment by providing both LibS3
or the different implementations of S3Embedded as software modules that the data
center end-users can easily use to switch between the libraries.

Due to time constraints, some functions are not fully implemented at the time
of writing as in the original LibS3, like S3_initiate_multipart'’ needed to initiate

9small program that initiates all the applications

19This operation initiates a multipart upload and returns an upload ID. This upload ID is used to
associate all the parts in the specific multipart upload. You specify this upload ID in each of your
subsequent upload part requests

6.3. S3 Compeatibility Tests 109

a MPU!!, and S3_copy_object_range 2, which should bring a good performance
boost. Nevertheless, S3Embedded is fully S3 compatible in the sense of a drop-in
library. In the following section, we use commonly available S3 compatibility tools
to prove its S3 compatibility and ease of use.

6.3 S3 Compatibility Tests

Several tools are available to test the correctness and compatibility of an S3 APL; two
of the most commonly used tools are:

e The s3-tests'® from the providers of Ceph, a set of unofficial Amazon AWS S3
compatibility tests, that might be helpful to people implementing software ex-
posing an S3-like API. The tests utilize the Boto2 and Boto3 Python libraries.
To test the SSEmbedded library, which is written in the C language, we need
to use the ctypes module from the Python standard library; ctypes is a foreign
function library for Python that provides C-compatible data types and allows
calling functions in DLLs or shared libraries by wrapping these libraries in
pure Python. However, this can be time-consuming since special attention
should be given to provide the expected typed parameters when calling a spe-
cific C function; this is without considering the performance limitations '*.

e Mint" from MinlO is a testing framework that was initially written to test the
functionality of the Minio object server. It runs correctness, benchmarking, and
stress tests using several SDK's and tools. Itis mainly written in Go; however,
it also provides a set of tests that use the awscli'’, specifically the aws s3 com-
mand, which is the command-line interface provided by AWS to interact with
the AWS S3 storage. The tests were adjusted to use the "s3" command, which
is the command-line executable provided by the LibS3, and by using the link-
ing method described above, the "s3" tool can be linked to the S3Embedded
library, in order to be used in the S3verify script.

LISTING 6.2: S3 Compatibilty Tests against a MinlO public test server
and against SSEmbedded

Against MinlO Test Endpoint using the original LibS3
$ export S3 HOSINAME="play.minio.io:9000"

$./s3verify.sh

$ cat outs3.log

{"name": "s3", "duration": "1612", "function": "test_make_bucket", "
status": "PASS"}

{"name": "s3", "duration": "189", "function": "test_make_bucket_error
", "status": "PASS"}

{"name": "s3", "duration": "22012", "function": "test_put_object", "
status": "PASS"}

{"name": "s3", "duration": "394", "function": "test_put_object_error"

, "status": "PASS"}

1183 MultiPart Upload

12Copies portion of an object from one location to another. The object may be copied back to itself,
which helps replace metadata without changing the object. Required when doing greater than 5GB
object copies

Bhttps: //github.com/ceph/s3-tests

Mhttp: //tungwaiyip.info/blog/2009/07/16/ctype_performance_benchmark

Bhttps://github.com/minio/mint

16Software Development Kit

https://aws.amazon.com/cli/

https://github.com/ceph/s3-tests
http://tungwaiyip.info/blog/2009/07/16/ctype_performance_benchmark
https://github.com/minio/mint
https://aws.amazon.com/cli/

110 Chapter 6. S3Embedded

{"name": "s3", "duration": "185532", "function": "
test_put_object_multipart", "status": "PASS"}

{"name": "s3", "duration": "26369", "function": "test_get_object", "
status": "PASS"}

"name": "s3", "duration": "327153", "function": "
test_get_object_multipart", "status": "PASS"}

{"name": "s3", "duration": "226442", "function": "
test_sync_list_objects", "status": "PASS"}

Against S3Embedded with tmpfs as Storage Backend
$ In —-sf $PWD/1ibS3e.so libs3.so0.4

$ export S3 HOSINAME="/dev/shm/"

$./s3verify.sh

$ cat outs3.log

"name": "s3", "duration": "145", "function": "test_make_bucket", "
status": "PASS"}
{"name": "s3", "duration": "40", "function": "test_make_bucket_error"
, "status": "PASS"}
{"name": "s3", "duration": "83", "function": "test_put_object", "
status": "PASS"}
"name": "s3", "duration": "46", "function": "test_put_object_error",
"status": "PASS"}
{"name": "s3", "duration": "551", "function": "
test_put_object_multipart", "status": "PASS"}
{"name": "s3", "duration": "309", "function": "test_get_object", "
status": "PASS"}
{"name": "s3", "duration": "753", "function": "
test_get_object_multipart”, "status": "PASS"}
{"name": "s3", "duration": "1466", "function": "
test_sync_list_objects", "status": "PASS"}

The tests are split into two parts:

— The first part of listing 6.2 illustrates the compatibility tests against an S3
test endpoint, provided by the MinlO project, and using the LibS3 library,
i.e., using the "s3" executable found within the LibS3 library.

— The second part shows that, after switching the "s3" executable to use
S3Embedded, the same tests are accomplished successfully against the
local tmpfs filesystem /dev/shm. As expected, we can see that the duration
of each test is obviously smaller.

6.4 S3Embedded HPC Tests

6.4.1 S3embedded vs MinlO vs REST vs TCP/IP

Building on the results obtained in section 5.3.2, we conduct the same experience
using S3Embedded for both local and remote implementation.

The tests are also conducted on Mistral, using 1Node-4PPN and tmpfs as back-
end. The TCP/IP performance results obtained using iperf3 are also included for
reference purposes.

Figure 6.5 shows that the performance of S3Embedded is the best among the S3
implementation, and it is the closest to the direct filesystem access, represented by
"POSIX shm", however, the remote implementation or LibS3r, which is presumed to
be comparable to the REST performance, seems not to perform very well.

6.4. S3Embedded HPC Tests 111

12000 —¢- Read REST
—a— iperf
10000 S3Emb

—8— S3Emb Remote
—a&— Minio-sa-shm
POSIX shm

Throughout in MiBps

KB
Object Size in Bytes

iMB 10MB 100MB 1000MB

FIGURE 6.5: Read throughput S3Embedded vs Minio vs REST using
1N-4PPN

6.4.2 S3Embedded IOR Results

In Figure 6.6, we display the results of the IOR Benchmark while using the libraries
mentioned above, in comparison with direct Lustre access and MinlO operating
in the local-gw mode already described in Section 5.3. Note that some values are
missing in the MinlO-local-gw results, although we repeated the benchmark several
times. This is because this setup does not scale well with the number of clients, as
noted in Section 5.3.

®—S3Emb —@—S3Emb Remote —&—Minio-local-gw lustre
100 2000
K/ 1800 d
o
1600
10
. 1400
$ 1200
‘E“ 1 1000 4
£ 800
600
0,1
400
2 200
0,01 gl —
10B 100B 1KB 10KB 100KB 1MB 1MB 10MB 100ME

Object Size in Bytes

FIGURE 6.6: Read throughput of SSEmbedded vs Lustre vs MinlO for
5N-20PPN

112 Chapter 6. S3Embedded

Using SBEmbedded helped us to pinpoint a performance problem in the IOR S3
plugin: we noticed that the delete process in IO500 is time-consuming since when
trying to delete a bucket, our developed IOR S3 plugin tries to list the content of the
entire bucket — calling S3_list_bucket () — for each file to be deleted to clean the
fragments; however, since, in case of S3Embedded, all files are actually placed in a
single directory, this ought to be very time-consuming. One workaround is to use
the option bucket-per-file, which effectively creates a directory per file. However,
since this workaround does not cover all test workloads in the I0500, an environ-
ment variable called "S3LIB_DELETE_HEURISTICS", specific to the IOR S3-plugin,
is introduced. It defines the file size threshold of the initial fragment above which
the list_bucket operation is to be executed; otherwise, a simple S3_delete_object is
performed. While this optimization is not suitable for a production environment, it
allows us to determine the best-case performance for using S3 with the I0500 bench-
mark.

The results delivered by S3Embedded are very close to the ones obtained for the
Lustre direct access — mainly for files larger than 32 MB — and also far superior to
those supplied by MinlO local-gw; they are also free from timeout errors.

6.4.3 S3Embedded I0500 Results

The results of the IO500 benchmark, displayed in table 6.2, reflect the performance
improvement delivered by S3Embedded /S3Remote and reveal the full potential of
using such wrapper libraries.

System | Unit | MinIO-local-gw | Lustre | S3Embedded | S3Remote |
ior-easy-write GiB/s 0.14 5.47 0.61 0.69
mdtest-easy-write | KIOPS 0.09 7.97 2.42 3.13
ior-easy-read GiB/s 0.32 2.78 0.48 0.42
mdtest-easy-stat | KIOPS 0.85 | 13.82 8.02 6.94
ior-hard-read GiB/s 0.019 | 0.139 0.046 0.042
mdtest-hard-stat | kIOPS 0.86 5.10 7.25 6.65

TABLE 6.2: 10500 results for S3Embedded and S3Remote compared
to MinlO-local-gw and lustre using 2N-5PPN

Benchmark/System | Unit | MinlO-local-gw | Lustre | S3Embedded | S3Remote

ior-easy-write GiB/s 0.75 | 23.49 3.40 1.99
mdtest-easy-write | kIOPS 039 | 17.11 7.52 1.19
ior-hard-write GiB/s 0.01 0.04 0.30 0.05
mdtest-hard-write | kIOPS 0.10 7.25 3.41 0.55
ior-easy-read GiB/s 246 | 15.87 2.40 1.36
mdtest-easy-stat KIOPS 5.09 | 4259 28.53 0.62
ior-hard-read GiB/s 0.11 0.38 0.11 0.02
mdtest-hard-stat KIOPS 437 | 3149 26.66 0.60
mdtest-easy-delete | kIOPS - 9.15 598 0.41
mdtest-hard-read kIOPS - 6.34 3.82 0.29
mdtest-hard-delete | kIOPS - 6.27 5.04 0.41

TABLE 6.3: 10500 results for S3SEmbedded and S3Remote compared
to MinlO-local-gw and lustre using 5SN-20PPN

6.4. SBEmbedded HPC Tests 113

We notice that Lustre’s POSIX performance is often more than 10x faster than
the MinlIO-local-gw mode, which exhibits a scalability problem since the error rate
increases along with the number of Nodes/PPN. In fact, the scalability of MinlO-
local-gw hits its limit with the combination of 5 Nodes and 20 PPN. Even at this
point, the results contain many errors, and many iterations are conducted to just fill
the values in the table.

In contrast, the SSEmbedded wrappers deliver much better performance, which
is closer to Lustre’s native performance. They are more resilient to the number of
clients, as shown in table 6.3, i.e., much more scalable than the MinIO-local-gw
setup.

Benchmark/System \ Unit \ Lustre \ S3Embedded \ S3Remote ‘
ior-easy-write GiB/s | 3.202073 0.990504 0.827451
mdtest-easy-write KIOPS | 13.548102 11.819631 0.240857
ior-hard-write GiB/s | 0.015462 0.215551 0.010041
mdtest-hard-write kIOPS | 5.615789 2.226332 0.111696
ior-easy-read GiB/s | 7.483045 0.375538 0.311502
mdtest-easy-stat KIOPS | 21.884679 20.489986 0.123976
ior-hard-read GiB/s 0.095884 0.022462 0.005101
mdtest-hard-stat kIOPS | 17.428926 6.90457 0.125178
mdtest-easy-delete | kIOPS | 8.995095 7.77739 0.10289
mdtest-hard-read kIOPS | 0.184843 1.287055 0.249273
mdtest-hard-delete | kIOPS | 8.108844 6.711771 0.249282

TABLE 6.4: 10500 results for Lustre vs S3Embedded using 10N-1PPN

Even with 10 or 50 Nodes, as shown in table 6.4 and table 6.5 respectively, the
S3embedded library can handle the extra load and yields a performance closer to
Lustre, although a performance gap remains.

Benchmark/System \ Unit \ Lustre \ S3Embedded \ S3Remote ‘
ior-easy-write GiB/s | 16.262279 5.363676 1.516302
mdtest-easy-write KIOPS | 18.104786 15.952838 1.111315
ior-hard-write GiB/s | 0.030967 0.375326 0.032984
mdtest-hard-write kIOPS | 13.705966 4.337179 0.361589
ior-easy-read GiB/s | 43.390676 2.817122 1.309052
mdtest-easy-stat KIOPS | 46.662299 45.878814 0.620202
ior-hard-read GiB/s 0.218977 0.128423 0.025549
mdtest-hard-stat KIOPS | 43.834921 44.443974 0.62586
mdtest-easy-delete | kIOPS | 9.322632 9.262801 0.585572
mdtest-hard-read KIOPS | 4.079555 6.673985 1.246393
mdtest-hard-delete | kIOPS | 8.457431 6.377992 1.246105

TABLE 6.5: 10500 results for Lustre vs S3Embedded using 50N-1PPN

We notice that the results of some metadata tests show a slightly better per-
formance in the case of S3Embedded than Lustre, although for both Lustre and
S3Embedded, the stat () call is used. This might be due to the way S3Embedded
implements S3_test_bucket () 18 where the size and rights for the directory and not

18Tests the existence of an S3 bucket, additionally returning the bucket’s location if it exists and is
accessible

114 Chapter 6. S3Embedded

of the actual file are captured, which seems to be faster.

lustre-1 @ lustre-2 @ lustre-3
o s3emb-1 & s3emb-2 @ s3emb-3
L g s3embr-1 @ s3embr-2 s3embr-3

100000
ior-hard-write

ior-easy-write

mdtest-hard-delete

mdtest-hafd-read jor-easy-read

ior-hard-read
mdtest-hard-stat

mdtest-easy-write
mdtest-hard-write

mdtest-easy-delete mdtest-easy-stat

FIGURE 6.7: 10500 results of different runs using SN-20PPN

The radar chart in fig. 6.7 shows the relative performance of S3embedded and
S3remote in % for three independent runs of all benchmarks. Note that the three
Lustre runs are so similar that they overlap in the figure. The graph clearly shows
the performance gaps between the two implementations of the SSEmbedded library.
To ease and clarify the comparison, the relevant performance numbers for the run
entitled s3embr-3 are displayed. By comparing the Lustre results with the ones from
LibS3r, we notice that only for the ior-hard-write test, the performance ratio is close
to 100% while it usually achieves around 5 to 10% of Lustre performance. On the
other hand, the LibS3e library delivers much better results, however, it also lacks
performance for some benchmarks.

6.5 S3Embedded Possible Optimization

After establishing the performance feasibility of the SSEmbedded library and re-
vealing its ease of use leading to a low administrative overhead, we focus in the fol-
lowing sections on the possible optimization of this library by further substituting
some components of the S3 stack with presumably more performant alternatives.

6.5.1 S3Embedded over HTTP2 or HTTP3

The new techniques introduced in the more recent versions of the HTTP protocol like
the use of a small number of connections, multiplexing the HTTP datagram, com-
pressing the header, or allowing the server to "push" data pro-actively to the client
while eventually using UDP' to accomplish these, bear the potential to improve the
performance of S3Embedded.

19User Datagram Protocol

6.5. S3Embedded Possible Optimization 115

Although a full implementation of the remote SSEmbedded library using HTTP2
or HTTP3 is possible, it is outside the scope of this thesis. A more feasible implemen-
tation, inspired by the HTTP3 protocol, consists of replacing the TCP transfer with a
connectionless alternative which is UDD, as illustrated in fig. 6.8.

Implementing the remote connection over UDP introduces many obstacles that
need to be addressed.

¢ UDP is a connectionless and unreliable transfer protocol; the packets are sent
without any guarantee of delivery and any info to help the client find out the
correct order.

* The size of the packet also depends on the MTU? of the network, which repre-
sents the size of the largest datagram — UDP packets are also called datagrams
— that can be sent over the network.

Since the communication between the S3embedded client library and the gate-
way should be reliable, two UDP streams are opened to allow the communication
between both sides, and a first approach to handle datagram fragmentation is also
implemented?!. Other features found in TCP and implemented in HTTP3 like re-
transmissions of lost packets, congestion control, ordering, and connection ids were
not implemented at the time of writing.

TENNK

\; Remote POSIX
L Filesystem

Application S3 Interface
FIGURE 6.8: LibS3r over UDP
IOR is used to test the performance introduced by using UDP instead of TCP; a
sample run is depicted by listing 6.3

LISTING 6.3: IOR tests againt the UDP implementation of
S3Embedded in comparison with the other implementations

Tests against S3embedded Remote over UDP

$./build/bin/ior -a=S3-1ibs3 —--5S3-1ibs3.access—-key="1" —-S3-1ibs3 .secret-
key="1" —-S3-1ibs3 .host=/dev/shm/test —-i 3 -b 4096 -t 4096

IOR-3.4.0+dev: MPI Coordinated Test of Parallel I/0

Output omitted

Results:

access bw(MiB/s) IOPS Latency(s) block(KiB) xfer(KiB) open(s)
wr/rd (s) close(s) total(s) iter

write 2.63 1245.34 0.000803 4.00 4.00 0.000669
0.000803 0.000004 0.001483 0

read 2.72 1297.34 0.000771 4.00 4.00 0.000657
0.000771 0.000003 0.001438 0

write 2.35 1116.10 0.000896 4.00 4.00 0.000756

0.000896 0.000003 0.001661 1

2OMaximum Transmission Unit
2IPlease refer to the github Repo https://github.com/juliankunkel/S3embeddedlib for details
regarding the source code

https://github.com/juliankunkel/S3embeddedlib

116 Chapter 6. S3Embedded

read 2.99 1650.00 0.000606 4.00 4.00 0.000686
0.000606 0.000005 0.001305 1

write 2.24 954.99 0.001047 4.00 4.00 0.000687
0.001047 0.000003 0.001743 2

read 3.12 1628.86 0.000614 4.00 4.00 0.000631
0.000614 0.000003 0.001254 2

Tests against SEmbedded Remote over TCP

$./build/bin/ior —-a=S3-1ibs3 —--S3-1ibs3 .access—-key="1" —-S3-1ibs3 .secret—-
key="1" —-S3-1ibs3 .host=/dev/shm/test —i 3 -b 4096 -t 4096

IOR-3.4.0+dev: MPI Coordinated Test of Parallel I/O

Output omitted

Results:

access bw(MiB/s) IOPS Latency(s) block(KiB) xfer (KiB) open(s)
wr/rd(s) close(s) total (s) iter

write 2.83 1154.82 0.000866 4.00 4.00 0.000507
0.000866 0.000004 0.001382 0

read 4.27 2082.57 0.000480 4.00 4.00 0.000426
0.000480 0.000003 0.000914 0

write 3.66 2109.81 0.000474 4.00 4.00 0.000587
0.000474 0.000002 0.001068 1

read 3.57 1612.57 0.000620 4.00 4.00 0.000467
0.000620 0.000003 0.001094 1

write 3.30 1655.86 0.000604 4.00 4.00 0.000571
0.000604 0.000003 0.001182 2

read 3.99 2114.06 0.000473 4.00 4.00 0.000497
0.000473 0.000003 0.000978 2

Tests against SEmbedded

$./build/bin/ior -a=S3-1libs3 --53-1libs3.access-key="1" —-53-1ibs3.secret-
key="1" —--S3-1ibs3 .host=/dev/shm/test —i 3 -b 4096 -t 4096

IOR-3.4.0+dev: MPI Coordinated Test of Parallel I/O

Output omitted

Results:

access bw(MiB/s) IOPS Latency(s) block(KiB) xfer(KiB) open(s)
wr/rd(s) close(s) total (s) iter

write 8.84 7463 0.000134 4.00 4.00 0.000301
0.000134 0.000002 0.000442 0

read 50.10 18157 0.000055 4.00 4.00 0.000018
0.000055 0.000002 0.000078 0

write 21.82 10866 0.000092 4.00 4.00 0.000080
0.000092 0.000002 0.000179 1

read 44.89 16913 0.000059 4.00 4.00 0.000021
0.000059 0.000003 0.000087 1

write 17.36 8339 0.000120 4.00 4.00 0.000098
0.000120 0.000003 0.000225 2

read 52.68 21183 0.000047 4.00 4.00 0.000020
0.000047 0.000003 0.000074 2

Tests conducted with other file sizes also bring us to the same conclusion: The
use of UDP did not convey any performance benefit in our use case.

In the case of HTTP3, the use of UDP was mainly introduced to overcome the
TCP head of line blocking issue found in error-prone networks with a relatively high
packet loss (Perna et al., 2022); however, implementing the reliability stack on top
of it is not just a CPU and memory consuming measure, as seen in section 4.4.1, but

6.5. S3Embedded Possible Optimization 117

also adds a complexity that increases the integration and administrative overhead
without providing any advantage since typical HPC network are highly performant
and reliable.

6.5.2 S3Embedded over RDMA

As seen in chapter 4, the transfer over TCP/IP exhibits a higher CPU overhead
mainly due to the packet handling packets at the Operating system kernel level;
it also shows a higher message transfer latency in comparison to the data transfer
over RDMA?2.

The RDMA transfer is achieved by performing direct memory access from one
node to another without involving the operating system on the destination node. Its
benefits over TCP/IP can be resumed as follows:

¢ The data is transferred from the sending application directly to the receiving
application memory area without involving the operating system of the desti-
nation node or its network interface stack.

¢ Avoiding memory copies on both sender and receiver, providing the applica-
tion with the most negligible round trip latency and lowest CPU overhead.

¢ RDMA transmits data as messages, while TCP sockets transfer data as a stream
of bytes. RDMA does not require any extra headers like the one employed in
the TCP stream that consumes additional network bandwidth and processing.

¢ RDMA protocol is inherently asynchronous; i.e., no blocking is required dur-
ing a message transfer.

The use of RDMA instead of TCP for the transfer part of the remote implementa-
tion of the S3Embedded library, as shown in fig. 6.9, can eventually lead to a lower
CPU overhead and lower network message latency.

rl {\
'S 4 Remote POSIX
R Filesystem

Application S3 Interface

FIGURE 6.9: LibS3r over RDMA

We can use several frameworks to achieve this purpose, for example:

e libfabric?®, which is part of Open Fabrics Interfaces (OFI) and implements
RDMA communications through verbs interfaces.

 The Unified Communication X (UCX)** framework exposes a set of abstract
communication primitives utilizing the most appropriate hardware resources
and offloads. RDMA (InfiniBand and RoCE), TCP, GPUs are some examples.

22Remote Direct Memory Access
Bhttps://github.com/ofiwg/libfabric
Xhttps://openucx.readthedocs.io/en/master/index . html

https://github.com/ofiwg/libfabric
https://openucx.readthedocs.io/en/master/index.html

118 Chapter 6. S3Embedded

6.6 Convergence Scenarios using S3Embedded

Based on the convergence assessment model illustrated in chapter 3, the use of cloud
storage inside an HPC environment is one of the most promising approaches to fos-
ter HPC and Cloud convergence.

Developing a storage API is nevertheless a challenging endeavor. Many criteria
should be filled to ease the adoption and avoid issues during the implementation.
Good documentation, solid design, security, scalability, and flexibility are just a few
aspects to consider.

The S3 API has a huge user base and market share, it is well documented, and
it is easy to find different implementations in various programming languages. It is
also a mature API offering many optimizations, for example:

¢ Multipart upload allows uploading a single object as a set of parts. This leads
to an increase in the transfer throughput by smartly allocating the available
bandwidth.

¢ S3 Select allows the use of SQL?° statements to filter the contents of an S3 object
and retrieve just the subset of required data, and as such, reducing the amount
of transferred data and decreasing the cost and latency to retrieve the data.

So instead of re-inventing the wheel, it is reasonable to use the S3 interface for any
application intended to be used in an HPC Cloud converged system.

S3Embedded or similar wrapper libraries allow any application equipped with
an S3 interface to be executed in an HPC environment without any code modification
and even without the setup of a cloud storage solution on-premises. The application
can seamlessly use the existing shared storage system found in the HPC environ-
ment without any performance loss. Moreover, the application will benefit from a
performance gain due to the better I/O performance from S3Embedded in compar-
ison to the cloud solution, as seen in section 6.4.3, not to mention the compute and
network advantage gained from using an HPC environment.

The use of the S3 interface is standard for cloud applications and particularly for
Big-Data applications running in the cloud, for example, Amazon Elastic MapRe-
duce ?°, used for running Big-Data frameworks, such as Apache Hadoop 27 and
Apache Spark 2%, recommends the use of S3 interface as part of the user workflow.

With a suitable S3 wrapper implementation similar to S3Embedded, it is possi-
ble to make cloud applications and cloud big-data frameworks highly portable and
allow them to benefit from the converged HPC platform; these benefits can be sum-
marised as follows:

¢ Applications portability and platform independence.
¢ Avoiding any vendor lock-in.
¢ HPC network optimization, by eliminating long network paths and hops.

¢ Minimal administrative overhead due to the dynamic linking of the suitable
library, and as such providing a basis for agile services development and lever-
aging services provisioning.

2Simple Structured Query Language
2https://docs.aws . amazon . com/emr
2’https://hadoop.apache.org
28https://spark.apache. org

https://docs.aws.amazon.com/emr
https://hadoop.apache.org
https://spark.apache.org

6.7. Summary 119

¢ Simultaneous use of cloud and HPC storage systems, in a sense that some
results can be copied into a public provider S3 compatible storage to ease the
sharing of results in a secure manner.

* A wrapper library can be easily extended to deliver performance metrics; in the
case of S3BEmbedded, the duration of each S3 call can be recorded and saved
to a time-series database in order to gain helpful performance insights into the
underlying storage system.

Another use case for an S3Embedded python implementation is to leverage the
Highly Scalable Data Service (HSDS) (HDF-Group, n.d.) introduced in chapter 2,
which is is the Object Store-Based Data Service for Earth System Science, providing
all the functionality that the HDF5 library traditionally offers however using cloud-
based storage (e.g., AWS S3).

6.7 Summary

By introducing S3Embedded, a new lightweight drop-in replacement for LibS3, we
investigated the cause of the performance issues encountered in the previous chapter
while providing a roadmap toward Cloud-HPC agnostic applications that can be
seamlessly executed in the public cloud or HPC.

The analysis also proves that there can be a performance convergence — at the
storage level — between Cloud & HPC over time by using a high-performance S3
library like SSEmbedded.

The provided compatibility tests described in section 6.3 not only help us demon-
strate the validity of the S3Embedded implementation but are also of great help to
the community for optimizing S3Embedded and porting it to other programming
languages or even creating similar wrapper libraries.

The results obtained when comparing S3embedded to Lustre and MinlO prove
its performance feasibility. On the other hand, its ease of use leads to a low admin-
istrative overhead, and the possibility to use existing storage without any additional
hardware investments demonstrates its cost-efficiency.

In fact, one of the benefits of utilizing wrapper libraries like S3Embedded is its
versatility; no special hardware or software is required to use it fully. This helps
avoid vendor lock-in, which is, unfortunately, one of the most common problems in
HPC and Cloud landscapes. Hence, S3embedded is a vendor-agnostic abstraction
layer located between the application and the available storage in the converged
ecosystem, and by offering the S3 cloud API standard, it enables highly portable
applications that can be seamlessly run in the cloud and in HPC, overcoming as
such the problem of Data Locality”’ faced when the data is not portable due to its
massive size, time or cost constraints.

Furthermore, standards take a long time and much effort to develop, so instead
of introducing new standards, the use of already established and mature standards
is the best and most cost-effective way to bring forward the scientific community
and achieve the business goals of any enterprise.

As such, the use of wrapper libraries fits perfectly with the convergence assess-
ment model defined in chapter 3.

YMoving computation to the node where that data resides. https://www.thoughtworks.com/
insights/decoder/d/data-locality

https://www.thoughtworks.com/insights/decoder/d/data-locality
https://www.thoughtworks.com/insights/decoder/d/data-locality

121

Chapter 7

Conclusion and Future Work

This chapter summarizes the work conducted in this thesis. The most significant results
obtained are recapped, and the novelty of this work is outlined. Future work and possible
improvements are also proposed.

7.1 Achieved Status

This thesis focuses on the convergence between HPC and Cloud. After laying the
ground for this work in chapter 1, chapter 2 presents the terms and technologies
related to this work and provides a comparison matrix between the relevant storage
technologies. One of the high-level questions raised in section 1.3.1 is also answered
in this chapter:

0 What defines a converged system?

B The term HPC and Cloud Convergence seems to be subjectively interpreted: for a
cloud provider or cloud service broker, it just means HPC Cloud, i.e., running
HPC Workloads in the cloud, from the point of view of an HPC data center
supplier or vendor, it is the other way around. This work objectively defines
the term convergence: the primary purpose of convergence is the possibility
for different technological systems to emerge toward performing similar tasks.
The resulting converged system can seamlessly accomplish any types of tasks
that were previously completed on only one of the past non-converged sys-
tems. Hence, a converged HPC and Cloud system can seamlessly run both
HPC and Cloud applications.

Chapter 2 also outlines the HTTP protocol evolution and describes the various
HPC and Cloud convergence scenarios, based on the definition mentioned above.

Chapter 3 explains the research methodology used in this work, and by introduc-
ing a full-featured convergence assessment model, it helps us answer other ques-
tions posed in section 1.3.1:

U How to assess the level of HPC and Cloud convergence?

B Section 3.2 outlines the assessment methodology needed to measure the extent
of the convergence achieved by a converged system. This model consists of
different components, namely the performance feasibility, the administrative
overhead and the cost efficiency, which are explored in depth. This model
is used to compare the different solutions presented in chapter 2. Table 3.4
illustrates the results for each scenario side-by-side and shows that using object
storage inside HPC is one of the most promising approaches to leverage the
HPC Cloud convergence.

122

Chapter 7. Conclusion and Future Work

O

Can we use HPC and cloud storage technologies concurrently? Which work-
flows will benefit from such settings, which I/O interfaces are suitable?

The response to these questions spans over different chapters, from table 3.4
we find that when using Cloud Storage in HPC, the administrative overhead
is kept moderate once the application’s compatibility with the cloud storage is
ensured.

Section 3.5.5 examines the cost of running workloads and storing their results
on-premises and in the cloud, and we found that when the cluster is heavily
used, the cost of computing power in the cloud is prohibitive, this is without
considering other expenses like traffic and storage.

When considering the storage technologies, and from a pure cost point of view,
the cost of using cloud storage for long term archiving of vast amounts of HPC
data, as demonstrated by eq. (3.8) leads to an increase in the total storage cost,
which makes it unsuitable for applications that produce large amounts of re-
sults data, for example, climate modeling. Furthermore, since simulation re-
sults are evaluated over many years, long-term storability is a fundamental
prerequisite that will be very expensive when using an on-demand storage
model. Other applications like HTC ! applications, which load the input data
from internet archives and require large amounts of computing, or applications
that just do not need massive input data and do not produce lots of data, can
cost-effectively use a cloud storage archive; examples include protein folding,
financial modeling, and earthquake simulation.

On the other hand, section 3.5.5 shows that substituting the shared parallel
file system with a cloud on-demand filesystem is a cost-effective endeavor.
The performance feasibility of such a solution is thoroughly investigated in
chapter 4 and chapter 5.

To answer the rest of the question which I/O interfaces are suitable?, we need to
compare HPC-specific interfaces like MPI or other POSIX compliant interfaces
to an object storage interface like S3 using REST/HTTP as a transport protocol.

Thus, in chapter 4, a first assessment of using REST as a storage protocol in an
HPC environment is provided.

A performance model for the relevant HTTP Get/Put operation based on hard-
ware counters is presented and experimentally validated. The obtained re-
sults reveal that an accurately configured REST implementation can provide
high performance and match HPC-specific implementation of MPI in terms of
throughput for most file sizes and in terms of latency for file sizes exceeding
one MB.

By considering the CPU and Memory cost introduced by the data movement,
the developed model reasonably covered the different protocols” general be-
havior and confirmed the expected behavior.

The new techniques introduced in the more recent versions of HTTP (using a
small number of connections, multiplexing the HTTP datagram, compressing
the header, and allowing the server to "push" data pro-actively to the client
while eventually using UDP to accomplish these) carry the potential of im-
proving performance and, thus, providing a perspective for using cloud stor-
age within HPC environments.

High-Throughput Computing

7.1. Achieved Status 123

In chapter 5, the performance of the S3 interface offered by different object
storage implementations on HPC and in the cloud is thoroughly investigated.

The results indicate that S3 implementations such as MinlO are not yet ready
to serve HPC workloads directly, mainly because of the drastic performance
loss and the lack of scalability.

Is moving I/O demanding applications from on-premises to the public cloud
a cost-effective solution compared to a hybrid alternative?

In section 3.5 the cost efficiency of moving applications from on-premises to
the cloud and vice-versa is thoroughly investigated, the equations needed to
assess the cost of resources, whether on-premises or in the cloud, are provided.
Equation (3.7) depicts all the factors that should be considered when running
workloads in the cloud and proves that long-running compute-intensive work-
loads can generate considerable costs in the cloud; the case study found in
section 3.5.5 also confirms this statement.

I/0O intensive applications also incur high costs in the cloud since providing a
certain baseline of provisioned IOPS? is another cost factor that should be con-
sidered in eq. (3.7); on the other hand, a hybrid scenario where vast amounts
of data are transferred between HPC and Cloud can also be time-consuming
and costly due to the traffic costs that should be added to the equation.

Other questions from section 1.3.1 are also addressed:

O

To what extent can we use cloud storage in an HPC environment, what over-
head to expect and how can we minimize this overhead?

Chapter 5 addresses this question and provides the benchmark results when
comparing different S3 implementations to Lustre, one of the most commonly
used parallel filesystems within an HPC environment.

The results indicate that S3 implementations such as MinlO are not yet ready
to serve HPC workloads directly, mainly because of the drastic performance
loss and the lack of scalability.

We found that the remote access to S3 is mainly responsible for the perfor-
mance loss and should be addressed. Using a load balancer in front of the S3
server nodes not only represents a single point of failure but is also a bottleneck
for the data transfer. We used the already existing parallel shared filesystem
to leverage an S3 capable application by introducing the local gateway mode.
With the advent of filesystem capable of using the node-local storage (ramdisk,
SSD, NVRAM) such as GekkofsVef et al., 2020, the local-gw mode can also be
extended to accommodate such underlying filesystems.

How can we achieve optimal data sharing between HPC and cloud resources?

This question implies that the data is being shared between on-premises and
in the cloud resources, which denotes the use of a hybrid solution, for exam-
ple, a cloud-bursting solution. As seen in section 2.7.1 or fig. 3.6, even though
this solution shows an acceptable compute overhead, the network and I/O
components present a considerable overhead since the network channels will
cause significant data-out charges and add latency to the application. Further-
more, data synchronization will strain the network and storage resources both

Zhttps://aws.amazon. com/ebs/pricing/

https://aws.amazon.com/ebs/pricing/

124

Chapter 7. Conclusion and Future Work

L

on-premises and in the cloud. Not to mention the considerable administrative
effort and the traffic costs introduced by this approach.

Eventually, this overhead depends on the size of the data to be shared. Still,
since HPC and Big Data applications typically handle or produce large amounts
of data, we should thoroughly investigate the reasons behind sharing such
massive data.

Supposing that the data produced by a particular HPC application is to be
analyzed by a Big-Data application running in the cloud, the trivial approach
illustrated in fig. 7.1 is to move the results data to some cloud storage and then
launch the big-data application against this dataset. A connector is needed
to interact with the cloud storage; we can achieve this by using some type of
cloud storage like the S3A® client, which offers high-performance I/O against
Amazon S3 object store and compatible implementations and is actively main-
tained by the Hadoop project itself.

o

>

S3 compatible storage

HPC storage J L J
g T
HPC on-premises Cloud

FIGURE 7.1: Data sharing in a converged system

However, this approach contradicts the principle of data locality, which con-
sists of moving the computation close to where the actual data resides instead
of moving large data to computation to minimize network congestion and in-
crease the overall throughput of the system®.

Building upon this principle, the optimal solution is using an HPC Cloud con-
verged system capable of running both types of workload with minimal "code
transformation," in the sense that the application code should undergo a min-
imal or ideally no modification to run on the converged system.

The HPC application generating the data can still run on HPC on-premises
or even in an HPC Cloud environment, if applicable, and the data analytics

Shttps://hadoop.apache. org/docs/r3.0.3/hadoop-aws/tools/hadoop-aws/index.html
“https://techvidvan.com/tutorials/data-locality-in-hadoop-mapreduce

https://hadoop.apache.org/docs/r3.0.3/hadoop-aws/tools/hadoop-aws/index.html
https://techvidvan.com/tutorials/data-locality-in-hadoop-mapreduce

7.1. Achieved Status 125

application can use a wrapper library, similar to SSEmbedded, to communicate
seamlessly and efficiently with the same storage, as depicted by fig. 7.2.

S3Embedded

Posix

HPC storage

+
HPC on-premises/Cloud

FIGURE 7.2: Data sharing in a converged system

In fig. 7.2 SBEmbedded can refer to any embedded library capable of convert-
ing existing S3 application storage calls to their HPC storage equivalents.

The S3Embedded library presented in chapter 6 is considered as a proof of con-
cept, developed using the C language and thoroughly tested for performance
and scalability using the IO500 benchmark: it can seamlessly convert S3 calls to
POSIX calls and can be dynamically linked to any application using the LibS3
library to interact with S3 compatible storage.

As explained in chapter 6, it would be beneficial for S3Embedded to use the
native API provided by a performant object store to avoid the overhead of a
tull-featured POSIX file system. In this case, the underlying file system does
not have to perform redundant procedures such as path lookup and permis-
sion checking.

S3Embedded is a vendor-agnostic abstraction layer that can be carefully placed
between the available storage in the converged ecosystem, and the S3 capable
application accessing the storage clustre. It leverages an storage abstraction
layer for multiple platforms and enables the portability of different applica-
tons even if the data itself is not as portable due to either size or cost. Our
performance results show that this layer imposes a small overhead for typical
data-object operations and a reasonable overhead for metadata-intensive op-
erations. S3Embedded allows an application to be moved with almost no code
changes and presents a foundation for platform-agnostic applications which,
due to their mobility, can be run on any converged system while optimizing
on cost and performance.

It is also possible to implement SBEmbedded using other programming lan-
guages to act as a drop-in replacement for other commonly used S3 client li-
braries; some sample implementations might be as follows:

- In python as a wrapper for the boto3 library.
- Innode,js as a wrapper for the Knox library.

- In PHP for the amazon-s3-php-class® library.

Shttps://github.com/Automattic/knox
®https: //github.com/tpyo/amazon-s3-php-class

https://github.com/Automattic/knox
https://github.com/tpyo/amazon-s3-php-class

126

Chapter 7. Conclusion and Future Work

7.1.1 Contributions and Novelty

The contributions and novelty of this work can be summarized as follows:

7.2

Giving a subjective non-biased definition of HPC and Cloud Convergence.

Providing a fully-fledged assessment model to measure the degree of HPC and
Cloud convergence of current and future systems.

Providing a comprehensive cost study that applies to both HPC and Cloud
systems and will help decision-makers choose the best cost-effective solutions
when considering moving on-premises workloads into the cloud, or from cloud
to on-premises, or even a mix of both solutions.

Investigating the performance overhead introduced by using cloud storage in-
side HPC by thoroughly analyzing the performance of REST/HTTP in com-
parison to HPC specific protocols

Introducing a performance model based on hardware counters that covers the
general behavior of the different protocols.

Analysing the performance of the S3 interface in HPC and Cloud.

Amending 10500 to benchmark the S3 interface and broadening the scope of
the IO500 usage to enable the community to track the performance growth of
S3 over the years and analyze changes in the S3 storage landscape, which will
encourage the sharing of best practices for performance optimization.

Introducing the S3Embedded library to overcome some S3 design problems
and performance issues and make it suitable for HPC usage. Its use as a drop-
in replacement for LibS3 enables the seamless portability of S3 enabled appli-
cations while leveraging HPC standard storage.

Discussion and Future Work

HPC and Big-Data/Cloud workflows derive from different assumptions that led
to different underlying storage architectures and, as such, to various optimization
techniques, which seem to be incompatible with one another from an abstract per-
spective.

7.2. Discussion and Future Work 127

: : lications and Community Codes |
Application Level I Mahout, R and Applications | I Aop ty

1
1
|
N] — I
oy
[| ny || Hive || Pig || Saoop Flume 1 ‘ FORTRAN, C, C++ and IDEs |
1 L I
‘ E 3 ‘ Map-Reduce H Storm | : [Domain-specific Libraries | Perf&
:gl g z Debug
&l 8 3l | MPI-OpenMP eg.
21 |8 it N ! ’c DA/opencL ” NALibs | PAP)
Middleware & S 5 (key-value store) | UDA/Open
Mpnegsmeet Eg E § : PFS Batch System
o I HDFS (Hadoop File System) | | LegLustre) || Scheduler || Monitoring
@i L]
- 1
\
| [—— o[1
@ 1

System Software

Ethernet Local Node Commodity ‘ IB+Enet || SAN+Local || x86+GPUsor
Cluster Hardware Switches Storage X86 Racks Switches Storage Accelerators
Data Analytics Ecosystem " Computational Science Ecosystem

FIGURE 7.3: HPC Ecosystem vs Big-Data Ecosystem, as depicted by
(Reed and Dongarra, 2015)

Typical HPC applications are generally associated with modeling and simula-
tion, while Big-Data focuses on the analytics aspect. As seen in fig. 7.3, the dif-
ference spans between diverse dimensions starting from the underlying hardware
infrastructure to the resource management and job scheduling and including the
programming languages used.

However, in recent times, we are increasingly noticing many trends:

* The use of Machine Learning is increasing, not just to interpret results from
massive data outputs but also to optimally manage and control computations
resources usage, including storage.

* The vast amount of generated data is growing exponentially; it is typical to
have petabytes of data generated from just one experiment. As such, data
movement is no longer a viable or cost and time-effective option, and the
need for real-time data analytics, requiring large-scale computations to be per-
formed closer to the data and data infrastructures, based on the principle of
data locality and to adapt to HPC-like modes of operation.

¢ Data generation is no longer considered the research bottleneck; data manage-
ment and analysis are now considered the main congestion points.

¢ Containers and container orchestration platforms like Kubernetes are becom-
ing the one-key solution for all cloud-based software requirements. They have
proven to be cost-effective and highly portable for hosting and managing Big
Data applications. Kubernetes is substituting other mature Big Data platforms
like Hadoop because of its unique features as a flexible and scalable microservice-
based architecture.

* Edge computing is also gaining momentum; it refers to the decentralized data
processing at the edge of the network, i.e., near the data source. Instead of
sending large amounts of data for central processing, only a relevant subset is
collected and transmitted, saving bandwidth and storage space.

Hence, it is necessary to overcome these differences and converge on the archi-
tectures so that scientific workflows do not need to differentiate between the two
ecosystems but benefit from the advantages of both.

128 Chapter 7. Conclusion and Future Work

This work focuses on the convergence at the storage level and presents the possi-
bility to integrate enormous and diverse workloads on current HPC systems cost-
effectively: A highly desired HPC Cloud converged system consists of an HPC
System offering a cloud storage interface, with the use of a wrapper library like
S3embedded it is possible to leverage existing shared filesystem and even local nodes
storage to accommodate both Cloud and HPC applications, without modification.

The need for tools and benchmarks to understand the common issues across
HPC simulations, big data, and ML applications is crucial; full-featured I/O bench-
marks like the IO500 with the extended S3 interface presented in chapter 5 contribute
to fulfilling this need.

Moving forward, the use of specific HPC-oriented containerization technologies
like Charliecloud is a good prospect for supporting the portability and deployability
of software stacks on different HPC clusters with no significant impact on perfor-
mance. The proposed converged system can be extended to include this as illus-
trated in fig. 7.4.

HPC Storage

S3Embedded

Posix

S3Embedded

api

Native object store API

HPC on-premises/Cloud

FIGURE 7.4: HPC Cloud coveted converged system

7.2.1 Future Considerations

The computing ecosystems of tomorrow are most likely to be different from the cur-
rent ones. Future computing will likely include edge, cloud, and high-performance
computing combinations.

The hardware heterogeneity, i.e., the use of specialized processors such as GPU’s
and FPGA®s, will more likely increase in future systems as the performance im-
provements provided by integrated circuit scaling starts to disappear(Dayan et al.,
2021).

New programming paradigms and operating and runtime systems will be needed
to provide new abstractions and services to make this a seamless ecosystem. Systems
will need to be flexible and have low latency at all levels to support new use cases
effectively.

This would be favored by more collaboration between the HPC, BD, and ML
communities for rapid and efficient progress toward a converged ecosystem that
effectively serves all three communities.

Furthermore, standards take a long time and much effort to develop, so instead
of introducing new standards, the use of already established and mature standards

7Graphics Processing Units
8Field Programmable Gate Array

7.2. Discussion and Future Work 129

is the best and most cost-effective way to bring forward the scientific community
and achieve the business goals of any enterprise.

From a storage perspective, standards like S3 should be fostered to accomplish a
seamless and effortless integration.

One of the benefits of utilizing wrapper libraries like S3Embedded is its versa-
tility; no special hardware or software is required to use it fully. This helps avoid
vendor lock-in, which is, unfortunately, one of the most common problems in HPC
and Cloud landscapes.

Wherever the computing evolution journey may lead, this work provides a full-
featured assessment model capable of assessing the convergence level of the future
systems and provides the methodology needed to test and benchmark those systems
effectively.

131

Appendix A

Appendix A

Here you will find the tables mentioned in chapter 4:

Appendix A. Appendix A

132

£0 800'1SLES LTVVVL9Y | PSI'BTEE | 80+HLS'9 | T10°6C8 | 80+HFI'T | 1SEF89¢ 10£'T00T 60+H9.°C | 6¥0C 059289¢ 60+d¥Z || 80TT 0°0CT¥S || INSCL
v'e 6851949 ¥1TT0¥ET | 859°0TST | S0+HO6'G | 90T°€Ty | 80+HS'T | S8S TS 96691 60+HTI8'C | STOT 88G°/4T¢ET 60+HC’L || S81C 0'0¢¥' LT | INF9
g8 99//0S1€TL LOU'TELTT | 90999 | 80+H68’S | 1SE06T | 80+HSY'T | €88°67L ¥€9°09¢ 60+d1C’c | €19 0ST'687 60+409 || GV6¥ 00Tl || INCE
99 8L9°G¥L9 €95°G68S | 94£'88% | 80+HTC'S | FPFOL | SO+HIL'T | S8T'LSE L6L'ETT 60+H06'C | LST 88¥°¢ccT 60+HSS || 6076 00e€9 || W91
9% L06'1THE LLLLL6T | 88L°9%C | S0+HI08 | TETIS 80+H99'T | 6LE°€61 69€°99 60+H00°€ | 6C1 110°22t 60+H4S || P9I8T | 0°0£T°€ || N8
i 169°TH81 888°S8IST | ¥04'86T | 60+HSOT | €£8°4C | S80+HASY'T | 018°0CL 1687 60+HZEE | 99 616'GL 60+H9°S || T996C | 0°066'T || ¥
A 04¥'156 Yy '68L £T706 80+HST'S | 0C0'FL £0+4S08 | 05529 991°8¢C 60+HST’T | €€ ¥8¢€6¢ 60+HCE || €€TCE | 00I8'T || INT
€8 70625 LYY 7998 80+HST'S | 99€°£ L0+AVL9 | SHEEY 44! 60+HSY'T | LT 121'%¢ 60+ATE || ISTIS | 0OTT'T || NI
618 Tw9'L0E 19€°T¥e 10£°0€ 80+H99F | L90F £0+3919 | 190°0€ 78671 60+H91°C | 6 6L0°S1 60+dC’C || T8L¥8 | 0079 P 48]
r'6v 6€5€61T 181°161 80871 80+H9S°E | 918°C £0+4d4L9 | 816'TC €eLTL 60+44T7 | S G816 60+HTE || GESFEL | ¥'08€ M9s¢
(47 845LET 065°G0T €709 80+H40°C | LLT'T LO+ATSL | ¥SEST 65411 60+H29°G | € 9659 60+dC’C || €06161 | §'G¥C 8¢t
oy 89,011 G6.LC8 ¥86'C 80+HLT'T | LL9'T £0+40T°L | €€9°91 980°TT 60+H€99 | T YAz 60+HEE || 8420%C | 8781 P9
79 00€20T 86€£TL 9%9C 80+HOV'T | L9€'T L0+ASTL | G8STL 0826 60+HETL | T G08Y 60+H9C || 8T696T | L'SET P 143
€91 26076 6699 1€C°C 80+H9E'T | €8T'T L0+dTTL | 9¢€TL 8/8'6 60+H0¥7'8 | T LSV 60+H8°E || €LST¥E | ¥'CI1 91T
r'6 026'88 67829 70T 80+HLET | FFO'T £0+d90°Z | G09°€L G0E6 60+H44'8 | T 66CY 60+HTY || LTF8LE | 826 8
87 126'S8 GT¥'19 L18°T 80+HIET | LT60 £0+4999 | 60¥°€L ¥8¢’6 60+H6€°6 | T ¥y 60+H0F || 12020V | 706 14
20 090°S8 TIL'09 8T 80+H6€ET | 8760 £0+4489 | G6T'EL 956 60+H596 | T 8¢8c 60+H0F || €SCVIV | T'C8)14
(44 67’78 98£'09 108°T 80+H9E'T | ¢88°0 £0+4899 | 116°€L €156 0T+300°T | T 866€ 60+HCY || S8TLECY | L'T8 AT
9C Y978 84109 8081 80+HLET | €880 £0+d899 | €VFEL 96£6 60+368°6 | T Y0y 60+dEY || TI6CCh | 128 [48)
r'e T65°€8 680°09 6881 80+HSYT | 0€8°0 L0+3S€E9 | 60€°CT 127’6 OI+300T | T 888°¢ 60+d1Y || €TC8Ty | 118 99t
8¢ 12v'es G009 G881 80+HSY'T | LZ8°0 £0+4dS€9 | GeTel GS¥'6 OT+AT0T | T 04L'€ 60+30F || €£56CF | 708 8¢l
v'e €LTY8 20’09 74 80+HEET | TI60 £0+d€6'9 | T8EET ¥.7'6 60+H286 | T 80T'Y 60+HET || 6£0SCY | G'18 79
0’1 6/£°€8 110°09 9981 80+HCY'T | €180 £0+4d81°9 | 1/£°€T 0c¥'6 60+Hd86'6 | T 176°¢ 60+HCY || 8£0S¢Y | G'C8 49
1’0 VT8 90009 961 80+HSET | 1680 £0+d699 | 0¢¥EL S'6 60+H68°6 | T ¥86°¢ 60+HCY || TIE0CY | 1’98 91
g'e TST'P8 €00°09 ¥8'l 80+H6€ET | L68°0 £0+d289 | ¥SEEl GLT'6 60+H¢8°6 | T 607 60+HEY || Tesey | €18 8
¥'e oT'e8 100°09 9181 80+HT¥'T | S€8°0 L0+4L¥9 | 166°CL ¥/T'6 60+H06'6 | T L18°¢ 60+HATY || 609€EY | 08 4
(44 G96C8 100°09 T6L'1 80+HSET | 0080 £0+991°9 | PLTEL Gee'6 0T+300°T | T 678°€ 60+aTY || 10L0€Y | T'18 4
! LvS'e8 00009 87L1 80+HZET | 1480 £0+4d859 | ¥80°€L 0806 60+HSS°6 | T €007 60+HCY || 08¥CTy | €8 1
9%40449 | TNd[ed bar) | 19Uy swaw } | SQOT1 | dwaw) | 5qOT11 | amdwodTy | sTamdwod™y | sDND syaed | o amdwoo™) | >DND N bar) azis
uoTIPAI] SONJEA JIeWDUag uoneAIasqQ

Predictive model error rate for the REST Results

TABLE A.1

133

Appendix A. Appendix A

791 829'CIEL 908’9019 | 0659C LLVL86LY | LS6°0E L¥6898SS | SLT'SYIL 84¥0ce COVOLETHSS | L18°£T6 0€T8C9EEECET || 9'STL8)
8G1 0£6'899¢ €0¥°950¢ | STV'EL 68TSITT | 99%°ST GOTTL6LT | €F9°€LS SLTIT 048L¥V¥018T | 168'T9% 94866091911 || T'Z¥EY N8
8c1 LVV'8781 10T1€ST | STT'L LLL6EOET | LVS'L 8T0TITVL | €41°20€ 8€9'C9 8/EE6CSLST | GES'6EC 6V.650¥209 £¥61C 414
(A% 14766 109°89Z | 8S6'C 88ICVIL | EVET 9LTLESL | 04E°T91 88/'LE 90%€TE0S6 | T8S VLT I89TTTECTE 6’2011 JA4
€81 0TS csy 00€'£8¢ | ¥9€C €8699CY | LTST £LE09S% | 8TE06 0€T'€ GG8861IY8S | 660°£9 V06974891 €068 NI
0ce 04E7SC 089961 | 0291 veoevsie | ¥E9'T 6816V6C | S9SFS 89941 6S6VL0VPY | 806'9¢€ €80¢618¢6 goce TS
9'6¢C 816°6€1 GZe10T | €10°T G/98T8T | 980T FPL0961 | ¥60°9€ 888°¢c1 20€S9T6VE | 90T'CC 99484844 1’861 A96¢
Ay 966'C8 €99°¢cS LL8°0 £1928S1 1680 6129¢ST | S09°4T 69911 ¥¥e9v606C | 9€0°91 ¥8996C€07 g'eel A8CL
08y 10099 1€8°6¢C €€8°0 6C8€0ST | €220 90¥¥0ET | ¥19'F7C SYI'TL L16T4E08C | S9V'EL G6£6€98¢¢C £'L01 A79
98¢ [AVA47 916’41 818°0 SYSSL¥T | $0L0 £€669CT | SLT'ET ¥8C'TT 61898798C | 168'T1 886¢5066¢ 669 e
r'ee 1LEVE 849611 1£9°0 €/801¢1 | ¥29°0 6069CI1 | 8IT'TC ¥20°01 ¥20€80¢SC | S60°TT 67102064¢ LYY 91
r'6l 780°e¢ 668 7820 9L1TI¥L | €99°0 6C99611 | LS9'%C CizAan! 667C€8C8T | TIVEL €V089¢CLEC v'er I8
L0t €V6'CE 68¥'L LvL'0 04T8VEL | 899°0 1994811 | 8¥0'¥C 0STCL 9TL8YSS0E | 668'T1 ¢6ETYC66¢ STy AV
99 09562 SvL'9 £02°0 118941 | ¥€9°0 989FVIL | VLV 1T ¥04°01 €1896169C | 04401 1S18¥804¢ 9'1¢ p 14
(44 7¥81E TLE9 VAYA TT66CEL | TE90 9190¥11 | TOT'FT G6SEl 8872061¥€ | L0S'01 6928€TY9C 1€ AT
9’9 §64'8C 9819 S1£°0 ¥€806CL | ¥£9°0 SPIEVIT | 090°TC 88901 ¥€169299C | ¢L¥01 €Y009€€9¢ 9'0€ 41
'y 691°6C €609 2040 9€/9921 | 829°0 TLEECTT | 9WL'TT £ST0T ¥4109645C | SST'TL 91£1¢688¢ voc 9¢¢
v'e GTY'1E V09 899°0 00£98TT | 099°0 ¥WOT6IT | 190'FC 0L¥'T1 LTSTSY88T | 68Tl Y1979991¢ vo¢ 8¢l
01 148°0¢ €209 2990 SV/9LT1 | 999°0 £STE8TIT | OFS'ET 69601 T08TS8SLT | TLSTL C9V19191¢ 9'0¢ 79
87 6GL'6C 2109 V90 1864911 | 8590 0964811 | 8€¥'CC V0’1l 86991LLLT | S6E°TL 049652998¢ 1€ [4%
LT 09€'TE 9009 0890 9¢8T/LIL | ¥99°0 ¥1L08TT | 1S0'FC IP'IT €TTL6V8L8T | S09°CL 9LL6691¢ 8°0¢ 91
91 yag’se €009 €99°0 £E88LIT | SS90 TTST8IL | €VT8T V1Tl L1TLLES0E | 001°9T 676968707 g0 8
01 691°0€ 1009 V90 TTE/ITT | 0990 OTFTLIT | 148°CT 906'0T 806¥8CVLT | 796'T1 80506800¢ goe 14
r's £S6°1€ 1009 9790 G0€991T | T99°0 G8/SL1T | 899'%C 6€9'11L ¥86%04c6C | 020°€1 |VARRS) 7445 ¥'0€ 4
L0 904°0¢ 0009 6990 T€690CL | 189°0 9veccl | 9S€'eT G8a'1lL SY0ESeET6oT | TLLTL ¥¥¥8¢096¢ §'0€ L
040442 | d[ed bary | Jou) suW 3} | SQOT1 >uwW } | 0)dOT1 amdwoo7} | sTondwod73 | sHND >"adwod7} | DD bax 9ZIS
uondIpPaI] SoNJeA NIewyousy | UOnReAIdSqO

TABLE A.2: Predictive model error rate for the MPIoTCP Results

Appendix A. Appendix A

134

80 €L6'GLSYS LCVIVL9Y ¥81'81€c 80+HZG9 T10°6¢8 80+HY9'T 16€'%89¢ 1041001 60+H92°C 6¥0C 099C89C 60+H¥'ZL SCIISTFS 80LT 0°0CI'¥S 8TLLITEL
60 99°0814C ¥1CC0¥eC 899°01ST 80+HO06'S 90T'€Cy 80+HG9'T G8G¥I8L 966'91S 60+HI8'C 6ot 889°/CET 60+tHTL ¥56'65¥4C G8IZ (00€¥'ZC #9880149
00t L0V LECET ZOT'TELTT 990'999 80+H68'S 19€°061 80+H89'L £88'674 ¥€9°09¢ 60+HICTE €1s 05C68% 60+H0'9 89¥'¢E1ICL S¥6y 0°0CI'Cl TEFPesee
8 £50°9¥89 €99°G68G 9/4°88% 80+HCC'8 €¥FYOL 80+HIL'L G8CT°LSE 26421 60+H06'C £5¢ 887'€CC 60+HS'S €48'9/€9 6076 0°0€€9 91244491
19 9L0°69%€ LLL°/46C 884°9%C 80+HIO8 CET'IS 80+HI9'L 6L£°€61 69¢99 60+400°¢ 6cl L104TL 60+H4'S Z€T€0LE ¥II8L 004T°€ 80988¢8
29 9429981 888'8IGT ¥04'861 60+HSO'T ~ €/8'4C 80+HSY'L 018°0¢t 168 %7 60+HCEE 99 616'SZ4 60+H9'S 064°TIOC T996C 070661 F0ev61Y
6'9% 1¥C'196 ¥ 684 4006 80+HS8T'S ~ 0C0¥FL Z0+HSO'8 085°29 991'8¢ 60+dSC'C €€ ¥8C6E 60+HTE 6€CLI81 €€ITE 00181 ¢51460C
12s 990°¢es LYY €999 80+H81'S 99¢’Z L0+AVL9 SYeey 6l 60+HSYC A" 12I¥C 60+HTE OI€TZIT I8TIS 00IT'T 9458701
0cs 061°20€ 19€°¢ve 1020 80+HS9¥ £90% £0+H91°9 190°0€ 867l 60+H9T°C 6 6/0°GT 60+HC°€ 269404 T8LY8 0'0%9 88C¥CS
6'6v e 061 181°TST 808FL 80+H95'C 918'C L0+HZL9 816'1¢ €ELCL 60+HLCY g G816 60+HI'E€ 186'G¥Y GEGFEL ¥'08¢ ¥¥129¢
9% G9ceel 065°901 €709 80+H20°C LLTT L0+H18Z ¥ae8l 694’11 60+d29'S € 9659 60+HT'E 8G9CIE ¢c06l6l §'ave C¢/01ET
LEy 650701 G64°C8 ¥66'C 80+HLTT 49T L0+H0TZ €€991 98011 60+HE9'9 4 L¥yS'S 60+HEE 114'6¥C 8420¥C 8'%81 9€4999
1ae 966'68 86¢'14 9v9'C 80+HO¥'T £9€°1T L0+HSTZ G8GY1 0826 60+HETZ 1 G08% 60+H9°€ 690°C0C 8¢696C £'8€1 89/¢C¢
8'a¢e 6vi'es 669°99 1€CC 80+H9¢'T €811 Z0+dTCL 9eevl 8/8'6 60+d0%'8 1 L5V'Y 60+H8'E 8G9'GLT €/ST¥E 441" ¥8€91
2481 12564 67829 <20 80+H/E'T P01 Z0+H90°Z S09°€l G0€'6 60+dLL'8 1 66CY 60+tH1Y 166°8GT ZT¥8LE 826 <618
(154" 845°LL Ser'19 18T 80+HIEL £26'0 £0+H999 607°€l ¥8€6 60+H6E6 1 Y20y 60+H0F 9¥cevl 120c0¥ 06 960%
0ot 20492 1209 ¢/8'T 80+H6E'T 8¢6'0 £0+H/89 Selel 96€'6 60+tH59'6 1 8€8'¢ 60+HO'Y 6E8FVL €STVIY (4] 8¥0¢C
VL 16592 95€09 108'T 80+H9ET 7880 £0+H89'9 TIG€T €196 0I+H00°T 1 866'¢ 60+HCY Y091V 8ILECY £C8 ¥201
|4 €194 841°09 808'T 80+H/E'T €880 Z0+d89'9 v el 96€6 60+H68'6 1 L¥0¥ 60+HEF ¥/81¥1 116CCy 128 [45
19 81192 680°09 6881 80+HSH'T 0€8'0 Z0+HS9€9 60€°€l 127’6 01+H00°T 1 888'°¢ 60+HI'Y LIT0¥L €128¢F 1’18 94¢
g'q 86'GL S¥0°09 G881 80+HSH'T 4780 Z0+HSE9 Geeel Gs¥v'6 OI+dI0'T 1 02£¢ 60+d0'¥ V29'6€T €456¢Y 708 8¢l
L9 §90'94 22009 8741 80+HEC'T 16’0 Z0+HE6'9 8c€El V426 60+tHT8'6 1 80L'% 60+HEY 0STI¥L 6£0SC¥ S8 ¥9
8L 29092 110°09 998'1 80+dch'L €18'0 Z0+d81'9 1LE€T 0€v'6 60+H86'6 1 176’ 60+HCY 1ST'TPL 8405y §'e8 43
¥'6 €¢192 90009 9641 80+HSE'T 168°0 £0+H69°9 0ev'el Svr'6 60+H68'6 1 ¥86'€ 60+tHCY 164°¢y1 11€0¢v 178 91
S9 £L0°9Z €00°09 ¥¢8'1 80+H6E'L £68'0 Z0+HT89 yaeel SLC6 60+dC8'6 1 60% _ 60+dEY 0Z0°'T¥L TCescy €18 8
09 Y9962 100°09 918'T 80+HI¥'T GE8'0 Z0+HLY9 166°CL V416 60+tH06'6 1 £18'€ 60+HTY ¥2E'8CT 609€CT §'08 ¥
L9 994°GL 100°09 64T 80+H8C'T 0080 Z0+H91'9 FLIEL GZe'6 01+H00°T 1 6¥8'¢ 60+HI'Y 80€6C€T 1040€¥ 18 4
08 ¥04'GL 00009 8V/'1 80+HCE'T 1/8°0 £0+H859 ¥80°€l 080'6 60+HSS'6 1 €00% 60+dCY 610°C¥L 08¥CCy €78 1
9, I0LId [nded bar} PU) swaw } sgOT1 dwew 3 20711 2mdwod} s amdwod) sDND 9ded > andwody HDND N/S09 N bar azis

Predictive model error rate for the MPIoORDMA Results

TABLE A.3

Appendix A. Appendix A 135

The results of all the benchmarks conducted on the Mistral and WR Cluster, and
the scripts needed to reproduce those benchmarks were published alongside the
Paper entitled: Investigating the Overhead of the REST Protocol when Using Cloud
Services for HPC Storage ! and are found online at https://github.com/http-3/
rest-overhead-paper

1https ://doi.org/10.1007/978-3-030-59851-8_10

https://github.com/http-3/rest-overhead-paper
https://github.com/http-3/rest-overhead-paper
https://doi.org/10.1007/978-3-030-59851-8_10

Appendix B

Glossary

ACL Access Control List

API Application Programming Interface

AWS Amazon Web Services
CUC CPU_CLK _UNHALTED CORE

DKRZ Deutsches Klimarechenzentrum: German Climate Computing Center

DPC Distributed Parallel Client
FPGA Field Programmable Gate Array
GCS Google Cloud Storage

GPU Graphics Processing Units

GWDG Gesellschaft fiir Wissenschaftliche Datenverarbeitung mbH Gottingen

HPC High Performance Computing
HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

LMMA Logging, Metrics, Monitoring, and Alerting

MPI Message Passing Interface

MPU S3 MultiPart Upload

MSS Maximum Segment Size

MTU Maximum Transfer Unit

MTU Maximum Transmission Unit
PaaS Platform as a Service

PFS Parallel File System

PPN Process per Node

RDMA Remote Direct Memory Access
REST REpresentational State Transfer

RTT Round Trip Time

137

138

Appendix B. Glossary

S3 Simple Storage Service

SaaS Software as a Service

SDK Software Development Kit

SQL Simple Structured Query Language
TTL Time to Live

UDP User Datagram Protocol

139

Appendix C

List of Publications resulting from
this Dissertation

C.1 Publications with peer review process

¢ Gadban, Frank and Julian Kunkel (2021). “Analyzing the Performance of the
S3 Object Storage API for HPC Workloads”. In: Applied Sciences 11.18, p.
8540. URL:https://doi.org/10.3390/app11188540

Author Contributions

Conceptualization, EG. and J.K.; methodology, F.G. and J.K.; software, F.G.
and J.K,; validation, F.G. and].K; formal analysis, EG. and J.K.; investigation,
E.G.; resources, F.G.; data curation, FG. and].K.; writing—original draft prepa-
ration, EG.; writing—review and editing, F.G. and].K; visualization, F.G. and
J.K.; supervision,] K.; project administration, J.K.

¢ Gadban, Frank, Julian Kunkel, and Thomas Ludwig (2020). “Investigating the
Overhead of the REST Protocol When Using Cloud Services for HPC Storage”.
In: International Conference on High Performance Computing. Springer, pp.
161-176. URL:https://doi.org/10.1007/978-3-030-59851-8_10

Author Contributions

Conceptualization, EG. and].K.; methodology, FG. and J.K.; software, EG;
validation, EG. and J.K.; formal analysis, FG. and]J.K,; investigation, EG.;
resources, F.G. and T.L.; data curation, F.G. and J.K.; writing—original draft
preparation, EG.; writing—review and editing, FEG. and].K.; visualization,
EG. and J.K,; supervision, T.L. and J.K.; project administration, J.K.

https://doi.org/10.3390/app11188540
https://doi.org/10.1007/978-3-030-59851-8_10

141

Bibliography

Abraham, Erika et al. (2015). “Preparing HPC applications for exascale: Challenges
and recommendations”. In: 2015 18th International Conference on Network-Based
Information Systems. IEEE, pp. 401-406.

Abraham, Subil et al. (2020). “On the use of containers in high performance comput-
ing environments”. In: 2020 IEEE 13th International Conference on Cloud Computing
(CLOUD). IEEE, pp. 284-293.

Anderson, David P (2004). “Boinc: A system for public-resource computing and stor-
age”. In: Fifth IEEE/ACM international workshop on grid computing. IEEE, pp. 4-10.

— (2020). “BOINC: a platform for volunteer computing”. In: Journal of Grid Comput-
ing 18.1, pp. 99-122.

Arsuaga-Rios, Maria et al. (2015). “Using S3 cloud storage with ROOT and CvmFS”.
In: Journal of Physics: Conference Series. Vol. 664. 2. IOP Publishing, p. 022001.
Association, Infiniband Trade (2020). About Infiniband. https://www.infinibandta.

org/about-infiniband/. [Online; accessed 29-July-2019].

AWS (n.d.[a]). AWS. https ://aws . amazon . com/hpc/. [Online; accessed 19-July-
2019].

— (n.d.[b]). Multipart upload overview. https://docs.aws.amazon.com/AmazonS3/
latest/dev/mpuoverview.html. [Online; accessed 19-July-2020].

— (n.d.[c]). Performance Design Patterns for Amazon S3. https://docs.aws.amazon.
com/AmazonS3/latest/dev/optimizing-performance-design-patterns.html.
[Online; accessed 19-sep-2020].

— (2020). AWS S3. https://aws.amazon. com/de/s3/. [Online; accessed 19-July-
2020].

Barkes, Jason et al. (1998). “GPFS: a parallel file system”. In: IBM International Tech-
nical Support Organization.

Bent, John et al. (2009). “PLFS: a checkpoint filesystem for parallel applications”. In:
Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis. ACM, p. 21.

Bessani, Alysson et al. (2013). “DepSky: dependable and secure storage in a cloud-
of-clouds”. In: Acm transactions on storage (tos) 9.4, pp. 1-33.

bji (n.d.). libs3 removes support for signature V2. https://github.com/bji/1ibs3/
pull/50. [Online; accessed 19-Aug-2020].

Bjornson, Zach (2015). Cloud Storage Performance. https : / /blog . zachbjornson .
com/2015/12/29/cloud-storage-performance.html. [Online; accessed 19-July-
2020].

Bortolotti, Daniela et al. (2011). “Comparison of UDP Transmission Performance Be-
tween IP-Over-InfiniBand and 10-Gigabit Ethernet”. In: IEEE Transactions on Nu-
clear Science 58.4, pp. 1606-1612.

Borzemski, Leszek and Gabriel Starczewski (2009). “Application of transfer regres-
sion to TCP throughput prediction”. In: 2009 First Asian Conference on Intelligent
Information and Database Systems. IEEE, pp. 28-33.

Braam, Peter (2019). “The Lustre storage architecture”. In: arXiv preprint arXiv:1903.01955.

https://www.infinibandta.org/about-infiniband/
https://www.infinibandta.org/about-infiniband/
https://aws.amazon.com/hpc/
https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-performance-design-patterns.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-performance-design-patterns.html
https://aws.amazon.com/de/s3/
https://github.com/bji/libs3/pull/50
https://github.com/bji/libs3/pull/50
https://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html
https://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html

142 Bibliography

Bruno, Greg et al. (2004). “Rolls: Modifying a standard system installer to support
user-customizable cluster frontend appliances”. In: 2004 IEEE International Con-
ference on Cluster Computing (IEEE Cat. No. 04EX935). IEEE, pp. 421-430.

Bundesanzeiger (2020). DKRZ Jahresabschluss. https : / /www . bundesanzeiger . de.
[Online; accessed 19-July-2021].

Chang, Chen-Shang and Joy A. Thomas (1995). “Effective bandwidth in high-speed
digital networks”. In: IEEE Journal on Selected areas in Communications 13.6, pp. 1091-
1100.

Chen, Donglin et al. (2020). “Characterizing scalability of sparse matrix—vector mul-
tiplications on phytium ft-2000+". In: International Journal of Parallel Programming
48.1, pp. 80-97.

Chen, Shuang et al. (2017). “Workload characterization of interactive cloud services
on big and small server platforms”. In: Workload Characterization (IISWC), 2017
IEEE International Symposium on. IEEE, pp. 125-134.

Cinquini, Luca et al. (2014). “The Earth System Grid Federation: An open infras-
tructure for access to distributed geospatial data”. In: Future Generation Computer
Systems 36, pp. 400-417.

Cloudflare (2020). Implementation of the QUIC protocol. https://github.com/cloudflare/
quiche. [Online; accessed 01-April-2020].

Corbett, Peter et al. (1996). “Overview of the MPI-IO parallel I/O interface”. In: In-
put/Output in Parallel and Distributed Computer Systems. Springer, pp. 127-146.
Coym, Johannes (2021). “Analysis of Elastic Cloud Solutions in an HPC Environ-

ment”. In.

Dayan, Niv et al. (2021). “The end of Moore’s law and the rise of the data processor”.
In: Proceedings of the VLDB Endowment 14.12, pp. 2932-2944.

Denis, Alexandre and Frangois Trahay (2016). “MPI overlap: Benchmark and anal-
ysis”. In: 2016 45th International Conference on Parallel Processing (ICPP). IEEE,
pp. 258-267.

Devresse, Adrien and Fabrizio Furano (2014). “Efficient HTTP based I/O on very
large datasets for high performance computing with the libdavix library”. In:
Workshop on Big Data Benchmarks, Performance Optimization, and Emerging Hard-
ware. Springer, pp. 194-205.

DKRZ (2020). Mistral. https://www.dkrz.de/up/systems/mistral/configuration.
[Online; accessed 19-July-2020].

Dumazet, Eric (2012). Increase loopback mtu. https://git .kernel . org/pub/scm/
linux/kernel/git/torvalds/linux.git/commit/?id=0cf833aefaa85bbfce3ff70485¢5534e0925
[Online; accessed 24-Feb-2020].

Emeras, Joseph et al. (2016). “HPC or the Cloud: a cost study over an XDEM Simula-
tion”. In: Proc. of the 7th International Supercomputing Conference in Mexico (ISUM
2016). Puebla, México.

Expésito, Roberto R et al. (2013). “Performance analysis of HPC applications in the
cloud”. In: Future Generation Computer Systems 29.1, pp. 218-229.

Farber, Rob (2011). CUDA application design and development. Elsevier.

Felter, Wes et al. (2015). “An updated performance comparison of virtual machines
and linux containers”. In: 2015 IEEE international symposium on performance anal-
ysis of systems and software (ISPASS). IEEE, pp. 171-172.

Fielding, Roy T (2008). “REST APIs must be hypertext-driven”. In: Untangled musings
of Roy T. Fielding, p. 24.

Folk, Mike et al. (2011). “An overview of the HDF5 technology suite and its applica-
tions”. In: Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases. ACM,
pp- 36-47.

https://www.bundesanzeiger.de
https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
https://www.dkrz.de/up/systems/mistral/configuration
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0cf833aefaa85bbfce3ff70485e5534e09254773
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0cf833aefaa85bbfce3ff70485e5534e09254773

Bibliography 143

Forum, MPI (n.d.). MPI2 Report. https://www .mpi-forum.org/docs/mpi-2.0/
mpi2-report.pdf. [Online; accessed 29-July-2021].

Gadban, Frank and Julian Kunkel (2021). “Analyzing the Performance of the S3 Ob-
ject Storage API for HPC Workloads”. In: Applied Sciences 11.18, p. 8540. URL:
https://doi.org/10.3390/app11188540.

Gadban, Frank, Julian Kunkel, and Thomas Ludwig (2020). “Investigating the Over-
head of the REST Protocol When Using Cloud Services for HPC Storage”. In: In-
ternational Conference on High Performance Computing. Springer, pp. 161-176. URL:
https://doi.org/10.1007/978-3-030-59851-8_10.

Garfinkel, Simson (2007). “An evaluation of Amazon’s grid computing services: EC2,
S3, and SQS”. In.

Gettys, Jim (1998). SMUX Protocol Specification. https://www.w3.org/TR/1998/WD-
mux-19980710. [Online; accessed 19-July-2019].

Glozer, Will (2020). wrk - a HITTP benchmarking tool. https://github. com/wg/wrk.
[Online; accessed 19-July-2020].

Goodell, David et al. (2012). “An evolutionary path to object storage access”. In:
2012 SC Companion: High Performance Computing, Networking Storage and Analysis.
IEEE, pp. 36-41.

Graham, Richard L, Timothy S Woodall, and Jeffrey M Squyres (2005). “Open MPIL: A
flexible high performance MPI1”. In: International Conference on Parallel Processing
and Applied Mathematics. Springer, pp. 228-239.

Grant, Ryan E, Pavan Balaji, and Ahmad Afsahi (2010). “A study of hardware as-
sisted IP over InfiniBand and its impact on enterprise data center performance”.
In: 2010 IEEE International Symposium on Performance Analysis of Systems & Soft-
ware (ISPASS). IEEE, pp. 144-153.

Greguska, Frank (2018). “Using S3 in Apache Science Data Analytics Platform”. In.

Gropp, William (2016). Introduction to MPI I/O. http://wgropp.cs.illinois.edu/
courses/csb98-s16/lectures/lecture32.pdf. [Online].

Gruber, Thomas (2020). Likwid:about L3 evict. https : / / github . com/RRZE - HPC /
likwid/issues/213. [Online; accessed 13-July-2020].

Gutierrez, Careres and Franco Jesus (2020). Towards an S3-based, DataNode-lessimplementation
of HDFS.

h2load (2020). benchmarking tool for HTTP/2 server. https://nghttp2.org/documentation/
h2load.1.html. [Online; accessed 19-October-2020].

HDEF-Group (n.d.). HSDS REST-based service for HDF5 data. https://github. com/
HDFGroup/hsds. [Online; accessed 19-July-2020].

He, Qi, Constantinos Dovrolis, and Mostafa Ammar (2007). “On the predictability of
large transfer TCP throughput”. In: Computer Networks 51.14, pp. 3959-3977.

Heichler, Jan (2014). An introduction to BeeGFS.

IBM (n.d.). IBM Cloud. https://www.ibm.com/cloud/hpc. [Online; accessed 19-July-
2019].

IETF (2011). Request for Comments: 6298. https://tools.ietf.org/html/rfc6298.
[Online; accessed 19-January-2020].

— (2020). QUIC Working Group. https://quicwg.org/. [Online; accessed 01-April-
2020].

Inc, Google (n.d.). PerfKit Benchmarker. https://github.com/GoogleCloudPlatform/
PerfKitBenchmarker. [Online; accessed 19-July-2020].

Intel (2009). An Introduction to the Intel® QuickPath Interconnect. https://www.intel.
com/technology/quickpath/introduction.pdf.[Online; accessed 15-September-
2019].

https://www.mpi-forum.org/docs/mpi-2.0/mpi2-report.pdf
https://www.mpi-forum.org/docs/mpi-2.0/mpi2-report.pdf
https://doi.org/10.3390/app11188540
https://doi.org/10.1007/978-3-030-59851-8_10
https://www.w3.org/TR/1998/WD-mux-19980710
https://www.w3.org/TR/1998/WD-mux-19980710
https://github.com/wg/wrk
http://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture32.pdf
http://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture32.pdf
https://github.com/RRZE-HPC/likwid/issues/213
https://github.com/RRZE-HPC/likwid/issues/213
https://nghttp2.org/documentation/h2load.1.html
https://nghttp2.org/documentation/h2load.1.html
https://github.com/HDFGroup/hsds
https://github.com/HDFGroup/hsds
https://www.ibm.com/cloud/hpc
https://tools.ietf.org/html/rfc6298
https://quicwg.org/
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://www.intel.com/technology/quickpath/introduction.pdf
https://www.intel.com/technology/quickpath/introduction.pdf

144 Bibliography

Intel (2014). Intel® Xeon® Processor E5-2680. https://ark.intel.com/content/www/
us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-
2-50-ghz.html. [Online; accessed 15-September-2019].

— (2020). Adress Translation on Intel X56xx. https://software.intel.com/en-us/
forums/software-tuning-performance-optimization-platform-monitoring/
topic/277182. [Online; accessed 15-September-2020].

Kelly, Diane F (2007). “A software chasm: Software engineering and scientific com-
puting”. In: IEEE software 24.6, pp. 120-119.

Kimpe, Dries and Robert Ross (2014). “Storage models: Past, present, and future”.
In: High Performance Parallel 1/O, pp. 335-345.

Kneschke, Jan (2020). lighttpd. https://www.lighttpd.net/. [Online; accessed 29-
July-2020].

Ko, Ryan KL et al. (2012). “Overcoming large data transfer bottlenecks in restful
service orchestrations”. In: 2012 IEEE 19th International Conference on Web Services.
IEEE, pp. 654-656.

Koch, Fernando, Marcos D Assuncao, and Marco AS Netto (2012). “A cost analysis
of cloud computing for education”. In: International Conference on Grid Economics
and Business Models. Springer, pp. 182-196.

Korolev, Vlad (n.d.). AWS4C - A C Ibrary to interface with Amazon Web Services. https:
//github.com/vladistan/aws4c. [Online; accessed 19-Aug-2020].

Krishnan, Sriram, Mahidhar Tatineni, and Chaitanya Baru (2011). “myHadoop-Hadoop-
on-Demand on traditional HPC resources”. In: San Diego Supercomputer Center
Technical Report TR-2011-2, University of California, San Diego, p. 9.

Kunkel, Julian, Gerald Fredrick Lofstead, and John Bent (2017). The Virtual Institute
for 1/O and the 10-500. Tech. rep. Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States).

Kunkel, Julian Martin and George S Markomanolis (2018). “Understanding meta-
data latency with MDWorkbench”. In: International Conference on High Perfor-
mance Computing. Springer, pp. 75-88.

Kurtzer, Gregory M, Vanessa Sochat, and Michael W Bauer (2017). “Singularity: Sci-
entific containers for mobility of compute”. In: PloS one 12.5, e0177459.

Lafayette, Lev (2018). “Exploring Issues in Event-Based HPC Cloudbursting”. In.

Linthicum, David S (2016). “Emerging hybrid cloud patterns”. In: IEEE Cloud Com-
puting 3.1, pp. 88-91.

Liu, Jialin et al. (2018). “Evaluation of HPC application I/O on object storage sys-
tems”. In: 2018 IEEE/ACM 3rd International Workshop on Parallel Data Storage &
Data Intensive Scalable Computing Systems (PDSW-DISCS). IEEE, pp. 24-34.

Liu, Jiuxing et al. (2004). “Microbenchmark performance comparison of high-speed
cluster interconnects”. In: leee Micro 24.1, pp. 42-51.

LLNL (n.d.). IOR parallel I/O benchmarks. https://github. com/hpc/ior. [Online;
accessed 19-sep-2020].

Lofstead, Jay et al. (2016). “DAOS and friends: a proposal for an exascale storage
system”. In: SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, pp. 585-596.

Lofstead, Jay F et al. (2008). “Flexible IO and integration for scientific codes through
the adaptable IO system (ADIOS)”. In: Proceedings of the 6th international workshop
on Challenges of large applications in distributed environments, pp. 15-24.

Liittgau, Jakob and Julian Kunkel (2018). “Cost and performance modeling for Earth
system data management and beyond”. In: International Conference on High Per-
formance Computing. Springer, pp. 23-35.

https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.html
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/277182
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/277182
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/277182
https://www.lighttpd.net/
https://github.com/vladistan/aws4c
https://github.com/vladistan/aws4c
https://github.com/hpc/ior

Bibliography 145

Liittgau, Jakob et al. (2018). “Survey of storage systems for high-performance com-
puting”. In: Supercomputing Frontiers and Innovations 5.1.

Ma, Dan, Wei Zhang, and Qinghua Li (2004). “Dynamic scheduling algorithm for
parallel real-time jobs in heterogeneous system”. In: Computer and Information
Technology, 2004. CIT'04. The Fourth International Conference on. IEEE, pp. 462—-466.

Massie, Matt et al. (2013). “Adam: Genomics formats and processing patterns for
cloud scale computing”. In: University of California, Berkeley Technical Report, No.
UCB/EECS-2013 207, p. 2013.

Matri, Pierre et al. (2017). “Could blobs fuel storage-based convergence between
HPC and big data?” In: 2017 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, pp. 81-86.

McGough, A Stephen et al. (2014). “Comparison of a cost-effective virtual cloud clus-
ter with an existing campus cluster”. In: Future Generation Computer Systems 41,
pp. 65-78.

Mell, Peter, Tim Grance, et al. (2011). “The NIST definition of cloud computing”. In.

Merzky, Andre, Ole Weidner, and Shantenu Jha (2015). “SAGA: A standardized ac-
cess layer to heterogeneous distributed computing infrastructure”. In: SoftwareX
1, pp. 3-8.

MinlIO-Inc. (n.d.). Kubernetes Native,High Performance Object Storage. https://min.io.
[Online; accessed 19-sep-2020].

Moody, William Clay et al. (2013). “Jummp: Job uninterrupted maneuverable mapre-
duce platform”. In: 2013 IEEE International Conference on Cluster Computing (CLUS-
TER). IEEE, pp. 1-8.

Netto, Marco AS et al. (2018). “HPC cloud for scientific and business applications:
taxonomy, vision, and research challenges”. In: ACM Computing Surveys (CSUR)
51.1, pp. 1-29.

ngtcp2 (2020). Effort to implement IETF QUIC protocol. https://github.com/ngtcp2/
ngtcp2. [Online; accessed 01-April-2020].

NLANR/DAST (2020). Iperf. https://github.com/esnet/iperf. [Online; accessed
11-July-2019].

OpenlLiteSpeed (2020). OpenLiteSpeed Web Server. https : //openlitespeed . org/.
[Online; accessed 19-December-2020].

OpenSSL (2020). QUIC and OpenSSL. https://www.openssl.org/blog/blog/2020/
02/17/QUIC-and-0penSSL/. [Online; accessed 01-April-2020].

OpenStack-Foundation (n.d.). OpenStack Swift. https: //github . com/openstack/
swift. [Online; accessed 19-sep-2020].

Palankar, Mayur R et al. (2008). “Amazon S3 for science grids: a viable solution?” In:
Proceedings of the 2008 international workshop on Data-aware distributed computing,
pp- 55-64.

Palyart, Marc et al. (2012). “HPCML: a modeling language dedicated to high-performance
scientific computing”. In: Proceedings of the 1st International Workshop on Model-
Driven Engineering for High Performance and CLoud computing, pp. 1-6.

Pande, Vijay et al. (2010). “Folding@ home”. In: Distributed Computing.

Parashar, Manish et al. (2013). “Cloud paradigms and practices for computational
and data-enabled science and engineering”. In: Computing in Science & Engineer-
ing 15.4, pp. 10-18.

Perna, Gianluca et al. (2022). “A first look at HTTP/3 adoption and performance”.
In: Computer Communications 187, pp. 115-124.

Persico, Valerio, Antonio Montieri, and Antonio Pescape (2016). “On the network
performance of amazon s3 cloud-storage service”. In: 2016 5th IEEE International
Conference on Cloud Networking (Cloudnet). IEEE, pp. 113-118.

https://min.io
https://github.com/ngtcp2/ngtcp2
https://github.com/ngtcp2/ngtcp2
https://github.com/esnet/iperf
https://openlitespeed.org/
https://www.openssl.org/blog/blog/2020/02/17/QUIC-and-OpenSSL/
https://www.openssl.org/blog/blog/2020/02/17/QUIC-and-OpenSSL/
https://github.com/openstack/swift
https://github.com/openstack/swift

146 Bibliography

Persico, Valerio et al. (2016). “A first look at public-cloud inter-datacenter network
performance”. In: 2016 IEEE Global Communications Conference (GLOBECOM).
IEEE, pp. 1-7.

Priedhorsky, Reid and Tim Randles (2017). “Charliecloud: Unprivileged containers
for user-defined software stacks in hpc”. In: Proceedings of the international confer-
ence for high performance computing, networking, storage and analysis, pp. 1-10.

Reed, Daniel A and Jack Dongarra (2015). “Exascale computing and big data”. In:
Communications of the ACM 58.7, pp. 56—68.

Rew, Russ and Glenn Davis (1990a). “NetCDF: an interface for scientific data access”.
In: IEEE computer graphics and applications 10.4, pp. 76-82.

— (1990b). “NetCDF: an interface for scientific data access”. In: IEEE computer graph-
ics and applications 10.4, pp. 76-82.

Reyes-Ortiz, Jorge L, Luca Oneto, and Davide Anguita (2015). “Big data analytics in
the cloud: Spark on hadoop vs mpi/openmp on beowulf”. In: Procedia Computer
Science 53, pp. 121-130.

Richardson, Leonard and Sam Ruby (2008). RESTful web services. " O’Reilly Media,
Inc."

Sabin, Jason Allen et al. (2016). Techniques for cloud bursting. US Patent 9,454,406.

Sadooghi, Iman et al. (2015). “Understanding the performance and potential of cloud
computing for scientific applications”. In: IEEE Transactions on Cloud Computing
5.2, pp. 358-371.

Salaria, Shweta et al. (2017). “Evaluation of HPC-Big Data applications using cloud
platforms”. In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). IEEE, pp. 1053-1061.

Schulz, Karl W et al. (2016). “Cluster computing with OpenHPC”. In.

Scott, Stephen L (2001). “OSCAR and the Beowulf arms race for the" cluster stan-
dard"”. In: Proceedings 2001 IEEE International Conference on Cluster Computing.
IEEE, pp. 137-137.

Smith, Preston et al. (2019). “Community Clusters or the Cloud: Continuing cost
assessment of on-premises and cloud HPC in Higher Education”. In: Proceedings
of the Practice and Experience in Advanced Research Computing on Rise of the Machines
(learning), pp. 1-4.

Sterling, Thomas Lawrence (2002). Beowulf cluster computing with Linux, Second Edi-
tion. MIT press.

Sysoev, Igor (n.d.). Nginx. https://nginx.org. [Online; accessed 19-July-2020].

Tanaka, Yoshio et al. (2013). “Building secure and transparent inter-cloud infrastruc-
ture for scientific applications”. In: Cloud Computing and Big Data 23, p. 35.

Tene, Gil (2020). A constant throughput, correct latency recording variant of wrk. https:
//github.com/giltene/wrk2. [Online; accessed 11-July-2020].

Thakur, Rajeev, William Gropp, and Ewing Lusk (1999). “Data sieving and collective
I/0 in ROMIO”. In: Proceedings. Frontiers” 99. Seventh Symposium on the Frontiers
of Massively Parallel Computation. IEEE, pp. 182-189.

The MPI Forum, CORPORATE (1993). “MPI: A Message Passing Interface”. In: Pro-
ceedings of the 1993 ACM/IEEE Conference on Supercomputing. Supercomputing '93.
Portland, Oregon, USA: ACM, pp. 878-883. ISBN: 0-8186-4340-4. DOI: 10.1145/
169627.169855. URL: http://doi.acm.org/10.1145/169627.169855.

Tianhua, Liu et al. (2008). “The design and implementation of zero-copy for linux”.
In: 2008 Eighth International Conference on Intelligent Systems Design and Applica-
tions. Vol. 1. IEEE, pp. 121-126.

Todd, Lindsay (2017). POSIX file system basics. https : / / parallelstorage . com/
2017/12/29/posix-file-system-basics/. [Online].

https://nginx.org
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://doi.org/10.1145/169627.169855
https://doi.org/10.1145/169627.169855
http://doi.acm.org/10.1145/169627.169855
https://parallelstorage.com/2017/12/29/posix-file-system-basics/
https://parallelstorage.com/2017/12/29/posix-file-system-basics/

Bibliography 147

Torrez, Alfred, Reid Priedhorsky, and Timothy Randles (2020). “HPC container run-
time performance overhead: At first order, there is none”. In.

Trangoni, Mario and Matias Cabral (2012). “A comparison of provisioning systems
for beowulf clusters”. In: XVIII Congreso Argentino de Ciencias de la Computacion.

Treibig, Jan, Georg Hager, and Gerhard Wellein (2010). “Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments”. In: 2010 39th International
Conference on Parallel Processing Workshops. IEEE, pp. 207-216.

Vef, Marc-André et al. (2020). “GekkoFS—A temporary burst buffer file system for
HPC applications”. In: Journal of Computer Science and Technology 35.1, pp. 72-91.

Walsdorf, Oliver (n.d.). Cisco UCS C240 M5 with Scality Ring. https://www.cisco.
com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_c240_m5_
scalityring.html. [Online; accessed 19-sep-2020].

Weil, Sage A et al. (2006). “Ceph: A scalable, high-performance distributed file sys-
tem”. In: Proceedings of the 7th symposium on Operating systems design and imple-
mentation, pp. 307-320.

Weinman, Joe (2011). “Mathematical proof of the inevitability of cloud computing”.
In: JoeWeinman. com.

Welch, Brent and Geoffrey Noer (2013). “Optimizing a hybrid SSD/HDD HPC stor-
age system based on file size distributions”. In: 2013 IEEE 29th Symposium on
Mass Storage Systems and Technologies (MSST). IEEE, pp. 1-12.

Wikipedia contributors (2021). Technological Convergence — Wikipedia, The Free Ency-
clopedia. [Online; accessed 29-September-2021]. URL: https://en . wikipedia.
org/wiki/Technological_convergence.

Wittman, Markus (2014). OSU Micro-Benchmarks. https://blogs.fau.de/wittmann/
2014/09/osu-micro-benchmarks/. [Online; accessed 19-July-2020].

Wu, Kan, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau (2019). “Towards an
Unwritten Contract of Intel Optane SSD”. In: 11th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 19). USENIX Association, Renton, WA.

Yamato, Yoji (2016). “Cloud storage application area of HDD-SSD hybrid storage,
distributed storage, and HDD storage”. In: IEE] Transactions on Electrical and Elec-
tronic Engineering 11.5, pp. 674-675.

Yang, Seokwoo et al. (2019). “Performance improvement of apache storm using In-
finiBand RDMA”. In: The Journal of Supercomputing 75.10, pp. 6804—6830.

Zadok, Erez et al. (2017). “{POSIX} is Dead! Long Live... errr... What Exactly?” In:
9th {USENIX} Workshop on Hot Topics in Storage and File Systems (HotStorage 17).

Zaharia, Matei et al. (2010). “Spark: Cluster computing with working sets.” In: Hot-
Cloud 10.10-10, p. 95.

Zhang, Yunqi et al. (2016). “Treadmill: Attributing the source of tail latency through
precise load testing and statistical inference”. In: ACM SIGARCH Computer Ar-
chitecture News. Vol. 44. 3. IEEE Press, pp. 456—468.

Zhang, Ziyu et al. (2021). “RDMA-based apache storm for high-performance stream
data processing”. In: International Journal of Parallel Programming 49.5, pp. 671-
684.

Zhao, Yong et al. (2014). “A service framework for scientific workflow management
in the cloud”. In: IEEE Transactions on Services Computing 8.6, pp. 930-944.

Zheng, Qing et al. (2012). “Cosbench: A benchmark tool for cloud object storage
services”. In: 2012 IEEE Fifth International Conference on Cloud Computing. IEEE,
pp- 998-999.

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_c240_m5_scalityring.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_c240_m5_scalityring.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_c240_m5_scalityring.html
https://en.wikipedia.org/wiki/Technological_convergence
https://en.wikipedia.org/wiki/Technological_convergence
https://blogs.fau.de/wittmann/2014/09/osu-micro-benchmarks/
https://blogs.fau.de/wittmann/2014/09/osu-micro-benchmarks/

Bibliography 149

Eidesstattliche Versicherung

Hiermit erkldre ich an Fides statt, dass ich die vorliegende Dissertation-
sschrift selbst verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe.

Unterschrift:

Ort, Datum:

	Acknowledgements
	Introduction
	HPC
	Cloud
	HPC Cloud

	Motivation
	Goals

	Outline of this Thesis

	Background: Related Work & State of the Art
	Parallel Processing and Supercomputing
	Cloud Computing
	Cloud Types
	Cost Comparison: On-premises vs Cloud

	Storage Interfaces
	POSIX-IO
	POSIX HPC I/O extensions
	POSIX-IO models

	MPI-IO

	Storage Access Technologies
	Parallel File System
	Lustre
	BeeGFS

	Object Storage
	Ceph
	MinIO
	Swift

	DAOS
	Comparison Matrix-Storage Solution

	HTTP Evolution
	HTTP2
	HTTP3

	Performance Testing
	Convergence Scenarios
	Cloud Bursting
	HPC Cloud
	HPC in the Cloud using 100% cloud-native solutions
	HPC Cloud using HPC technologies

	HPC Grid
	Cloud Technology inside HPC
	Containers in HPC
	Cloud Storage for HPC Workloads

	Summary

	Research Methodology and Design
	Research Methodology
	Convergence Assessment Model
	Performance Feasibility
	HPC Cloud using 100% Cloud-native Solutions
	Cloud Bursting
	HPC Cloud using HPC Technology
	HPC Grid
	Containers in HPC
	Cloud Storage in HPC

	Administrative Effort
	HPC Cloud using 100% Cloud-native Solutions
	Cloud Bursting
	HPC Cloud using HPC Technology
	HPC Grid
	Containers in HPC
	Cloud Storage in HPC

	Cost Efficiency
	Cost On-premises
	Cost Cloud
	Cost of Delay
	Cost Analysis for Different Convergence Solutions
	HPC Cloud using 100% Cloud-native Solutions
	Cloud Bursting
	HPC Cloud using HPC Technology
	HPC Grid
	Containers in HPC
	Cloud Storage in HPC

	Real World Evaluation: Mistral Case Study
	Computing Cost Comparison between Mistral and HPC Cloud Solution
	Cost Comparison between Tape Archive and an On-demand Object Storage
	Cost Comparison between Parallel Filesystem and On-demand Object Store

	Conclusion
	Summary

	Overhead of REST on HPC Systems
	Forword
	Methodology
	Performance Model

	Evaluation
	Test Environments
	Benchmark and Analysis Tools
	Latency
	Throughput
	Resource Usage Measurements
	REST vs. MPI
	HTTP Size Overhead

	Evaluation of the Performance Model
	Comparison: HTTP1.1 vs HTTP2 vs HTTP3

	Summary

	S3 Performance Analysis for HPC Workloads
	Foreword
	Methodology
	Benchmarks
	Modifications of benchmarks
	Measurement protocol

	Experiments
	Test System
	MinIO Benchmarks in HPC
	MinIO Deployment
	Single Client
	Parallel I/O
	MinIO overhead in Gateway Mode
	MinIO vs REST vs TCP/IP

	Test against S3 compatible systems
	In-house Tests
	Comparison with Scality Ring
	Test against Cloud Systems
	Test against Huawei OceanStor Pacific 9950

	Latency Analysis

	Summary

	S3Embedded
	Performance Insights
	S3Embedded
	S3 Compatibility Tests
	S3Embedded HPC Tests
	S3embedded vs MinIO vs REST vs TCP/IP
	S3Embedded IOR Results
	S3Embedded IO500 Results

	S3Embedded Possible Optimization
	S3Embedded over HTTP2 or HTTP3
	S3Embedded over RDMA

	Convergence Scenarios using S3Embedded
	Summary

	Conclusion and Future Work
	Achieved Status
	Contributions and Novelty

	Discussion and Future Work
	Future Considerations

	Appendix A
	Glossary
	List of Publications resulting from this Dissertation
	Publications with peer review process

	Bibliography

