
Topics in Generative Modeling of
Particle Physics Data

Dissertation
zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Physik

der Universität Hamburg

vorgelegt von
Sascha Daniel Diefenbacher

Hamburg
2022

Gutachter/innen der Dissertation: - Prof. Dr. Gregor Kasieczka
- Dr. Frank Gaede

Zusammensetzung der Prüfungskommission: - Prof. Dr. Gregor Kasieczka
- Prof. Dr. Freya Blekman
- Prof. Dr. Marcus Brüggen
- Prof. Dr. Günter H. W. Sigl
- Dr. Frank Gaede

Vorsitzende/r der Prüfungskommission: - Prof. Dr. Günter H. W. Sigl

Datum der Disputation: 11.01.2023

Vorsitzender Fach-Promotionsausschusses PHYSIK: Prof. Dr. Günter H. W. Sigl

Leiter des Fachbereichs PHYSIK: Prof. Dr. Wolfgang J. Parak

Dekan der Fakultät MIN: Prof. Dr.-Ing. Norbert Ritter

Zusammenfassung

Messungen in Teilchenphysik-Experimenten resultieren in gewaltigen Datenmengen. Das Fes-
thalten dieser Daten braucht auf der einen Seite eine enorme Menge an Speicherplatz, und auf
der anderen Seite ist eine ähnlich große Menge an Simulationsdaten nötig, um die Messungen
zu analysieren. Ausreichend Rechenressourcen für diese beiden Anwendungen bereitzustellen,
wird kontinuierlich schwieriger. Diese Arbeit untersucht daher, wie generative Anwendungen
von maschinellem Lernen genutzt werden können, um diesem Problem beizukommen.

Wir demonstrieren zuerst, dass ein generatives Modell tatsächlich in der Lage ist, eine größere
Anzahl neuer Datenpunkte zu generieren, als benutzt wurden, um das Modell zu trainieren.
Dieses Ergebnis stellt den Grundbaustein für die Anwendung von generativen Modellen für
schnelle Simulationen dar. Anschließend daran präsentieren wir, wie drei generativen Modelle –
ein GAN, ein WGAN und ein BIB-AE – für die schnelle Simulation von Photon-Kaskaden in dem
hoch-granularen elektromagnetischen Kalorimeter des geplanten International Large Detectors
verwendet werden können. Des weiten zeigen wir, wie die WGAN und BIB-AE Modelle erweit-
ert werden könne, um die Simulation von Pion-Kaskaden in einem hadronischen Kalorimeter zu
ermöglichen. Sowohl für Photonen, als auch Pionen, zeigen wir, dass die generativen Modelle
die Ergebnisse klassischer Simulationsmethoden gut nachahmen können, und dabei signifikant
weniger Zeit brauchen, um die Kalorimeter Kaskaden zu simulieren. Darüber hinaus präsentieren
wir die Ergebnisse des ersten Trainings eines generativen Modells auf echten Messdaten. Dabei
zeigen wir, dass ein so trainiertes Modell eine ähnliche Präzision erreichen kann wie klassische
Simulationsmethoden und gleichzeitig wesentlich weniger Simulationszeit und Rechenleistung in
Anspruch nimmt. Schlussendlich stellen wir ein online trainiertes generatives Modell vor, welches
in der Lage ist Informationen aus Bereichen zu sammeln, die von momentanen Trigger Systemen
verworfen werden. Somit könnte ein solches Modell benutzt werden, um den Speicherplatzbedarf
moderner Teilchenphysik-Experimente zu reduzieren.

i

Abstract

The large amount of data collected by current and future particle physics experiments requires
both a large amount of space to store the recorded data and a large amount of simulated data to
analyze. This presents a significant strain on the available computational resources. This work
explores the use of generative machine learning models to address these challenges.

We initially demonstrate the ability of a generative model to generate more data points than
it was trained on, thereby showing generative models are a viable approach for fast simulation.
Building on this, we demonstrate the use of three generative networks, a GAN, a WGAN, and
a BIB-AE with Post Processor, for the fast simulation of photon showers in a highly granular
electromagnetic calorimeter, designed for the International Large Detector. We further show
how the WGAN and BIB-AE models can be extended to simulate pion showers in a hadronic
calorimeter with a high degree of accuracy, while significantly reducing the needed per-shower
simulation time. Notably, we also present the first results for a generative model trained on
measurement data in particle physics and show that a BIB-AE model, trained on testbeam data,
can reach a precision similar to classical simulation tools while providing a significant speedup.
Finally, we address the challenge of having limited storage space by presenting a proposal for an
online trained generative model. We show that this model can act as a scouting tool for regions
currently ignored by trigger setups and be used to extract potential new-physics signals from
these regions without requiring additional storage space.

iii

Contents

Preface 1

Introduction 3

I Theory and Methodology 7

1 Particle Physics 9
1.1 The Standard Model of Particle Physics . 9
1.2 Physics Beyond the Standard Model . 13
1.3 Collider Experiments . 15
1.4 Linear Lepton Colliders . 18
1.5 Precision Measurements at Lepton Colliders . 20
1.6 Monte Carlo Simulation . 23

2 Calorimetry 27
2.1 Electromagnetic Showers . 27
2.2 Heavy Charged Particles . 31
2.3 Hadronic Showers . 33
2.4 Calorimeter Types . 34
2.5 Calorimeter and Shower Simulation . 37
2.6 ILD Calorimeters . 39

3 Machine Learning 41
3.1 Gradient Descent . 42
3.2 Optimizers . 43
3.3 Loss Functions . 45
3.4 Challenges of Machine Learning . 46
3.5 Neural Networks . 47
3.6 Activation Functions . 53

4 Generative Models 55
4.1 Challenges of Generative Models . 55
4.2 Generative Adversarial Networks . 57
4.3 Wasserstein GANs . 58
4.4 Autoencoders . 61

v

4.5 Variational Autoencoders . 63
4.6 Adversarial Autoencoders . 68
4.7 The BIB-AE . 69
4.8 Normalizing Flows . 74
4.9 Conditional Generative Models . 79

II Generative Models in Particle Physics 81

5 GANplification 83
5.1 1-Dimensional Data . 84
5.2 2-Dimensional Data . 89
5.3 Multi-Dimensional Data . 91
5.4 Conclusion . 93

6 Photon Shower Generation 95
6.1 Photon Data Set . 95
6.2 GAN and WGAN Models . 97
6.3 BIB-AE Model . 99
6.4 Results . 102
6.5 Conclusion . 111

7 Pion Shower Generation 113
7.1 Pion Data Set . 113
7.2 WGAN Model . 115
7.3 BIB-AE Model . 115
7.4 Results . 121
7.5 Conclusion . 128

8 CALICE Testbeam Data Generation 129
8.1 Testbeam Data Set . 130
8.2 BIB-AE Model . 131
8.3 Results . 132
8.4 Conclusion . 141

9 OnlineFlow 143
9.1 Online Training . 144
9.2 Bumphunt Data Set . 146
9.3 Anomaly Detection Data Set . 152
9.4 Conclusion . 155

10 Summary and Outlook 157

Acknowledgments 161

Bibliography 163

A Neural Network Architectures 179

vi

Preface

The findings presented in this thesis are the result of research conducted in collaboration with
other researchers, in the time between 2019 and 2022 at the Institut für Experimentalphysik of
the Universität Hamburg. The results shown in Chapters 5, 6, 7, and 9 have previously been
published as

[1]: A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman, and T. Plehn 2021 GANplifying
event samples SciPost Phys. 10 139. 10.21468/SciPostPhys.10.6.139

[2]: E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczk, A. Korol, and K. Krüger
2021 Getting high: High fidelity simulation of high granularity calorimeters with
high speed Comput. Softw. Big Sci. 5 13. 10.1007/s41781-021-00056-0

[3]: E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, D. Hundhausen, G. Kasieczka, W. Korcari,
K. Krüger, P. McKeown, and L. Rustige 2022 Hadrons, better, faster, stronger Mach. Learn.
Sci. Tech. 3 025014. 10.1088/2632-2153/ac7848

[4]: A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman, T. Plehn, D. Shih and R. Winter-
halder 2022 Ephemeral Learning — Augmenting Triggers with Online-Trained Nor-
malizing Flows 2202.09375

Additionally the author has been involved in the following publications during this research
period:

[5]: S. Diefenbacher, E. Eren, G. Kasieczka, A. Korol, B. Nachman, and D. Shih 2020 DCTR-
GAN: Improving the Precision of Generative Models with Reweighting JINST 15
P11004. 10.1088/1748-0221/15/11/P11004

[6]: E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol and K. Krüger 2021
Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network
EPJ Web Conf. 251 03003. 10.1051/epjconf/202125103003

[7]: S. Bieringer, A. Butter, S. Diefenbacher, E. Eren, F. Gaede, D. Hundhausen, G. Kasieczka,
B. Nachman, Benjamin. T. Plehn, and M. Trabs 2022 Calomplification – the power of
generative calorimeter models JINST 17 P09028. 10.1088/1748-0221/17/09/P09028

1

https://doi.org/10.21468/SciPostPhys.10.6.139
https://doi.org/10.1007/s41781-021-00056-0
https://doi.org/10.1088/2632-2153/ac7848
https://arxiv.org/abs/2202.09375
https://doi.org/10.1088/1748-0221/15/11/P11004
https://doi.org/10.1051/epjconf/202125103003
https://doi.org/10.1088/1748-0221/17/09/P09028

Introduction

It is the fundamental goal of physics to understand the nature of the universe. The study of
particle physics furthers this goal by investigating elementary particles and the laws that govern
their interactions. The standard model of particle physics [8–11] represents an incredible achieve-
ment in this regard. It manages to describe the electromagnetic, strong, and weak interactions
between particles with unprecedented accuracy and has been confirmed through experimental
results again and again. With the discovery of the Higgs boson [12–14] by the ATLAS and CMS
collaborations in 2012 [15, 16] one of the last missing pieces of the standard model was found,
and the model was made self-consistent.

However, despite its experimental accuracy and theoretical consistency, the standard model is
incomplete. Several observed phenomena, such as the existence of dark matter [17–20], apparent
neutrino masses [21], and indications of flavor anomalies [22, 23] are not accounted for in the
standard model.

Current collider experiments, such as the Large Hadron Collider (LHC) [24] have yet to
discover clear evidence of physics beyond the standard model, indicating that further particle
physics discoveries may require significantly higher energies or improved measurement precision.
Several proposed approaches exist, that aim to provide this increased precision, ranging from
upgrades to current experiments, such as the High-Luminosity LHC [25], to entirely new exper-
iments, such as linear lepton colliders like the International Linear Collider (ILC) [26] or the
Compact Linear Collider (CLIC) [27]. One feature shared by all these approaches is their high
luminosity, giving them the ability to produce vast amounts of measurement data.

In order to analyze the recorded data, it needs to be compared to theoretical predictions.
However, this comparison is highly non-trivial, as the subtle effects that different theoretical
models would have on the measurement data have to be modeled. Such modelings are exceedingly
complex and have to rely on Monte Carlo (MC) simulations. A full particle physics simulation
starts with event generation, where the initial collision, or hard process, is modeled. Then,
hadronization is simulated for all particles resulting from the initial collision, and finally, the
exact response of the detector to all produced particles is modeled. Full computation of this
chain has to be performed for every simulated event and requires significant computational time
and resources.

Most notably, the simulation of calorimeter showers takes up a significant fraction of the
total simulation resources [28]. Calorimeters are large detector volumes, designed to absorb and
measure the energy of particles. When certain particles interact with a calorimeter, they cause
a cascade of further particles in the calorimeter, known as a shower. Classical simulation of
calorimeter showers is performed using Geant4 [29], a state-of-the-art simulation package that
models each individual particle in a shower. This process takes a significant amount of time and
makes classical calorimeter simulation a bottleneck in the simulation chain.

3

For the comparison between MC simulated data and measurement to be sufficiently precise,
one aims to use enough simulated data to at least match, ideally exceed, the amount of recorded
data. A move to higher collider luminosities, therefore, leads to an increased demand for MC
simulated data, which, in turn, requires an increased computational budget. Under current
projections, generating the required MC data to keep up with future collider experiments will
soon require more computational resources than are readily available [30].

Simultaneous with the recent work towards new and more precise colliders, machine learning
(ML) methods have begun to see an increased application in particle physics. The concepts of
ML have existed for several decades. However, only through recent advances in computer science,
most notably in the form of highly sophisticated optimization algorithms, the development of
parallel computing architectures such as graphical processing units (GPUs), and the greater
availability of large data sets, has ML moved into the realm of practical application.

ML applications can be split into three groups, supervised methods that operate on labeled
data, unsupervised methods that work on unlabeled data, and reinforcement learning, which aims
to learn decision making. In particle physics, supervised ML methods have become established for
particle identification and jet flavor tagging tasks [31–33], and several unsupervised applications
are under development, such as using anomaly detection setups for model-independent physics
searches [34].

Generative models are an exciting subset of unsupervised ML methods. These models aim
to learn the underlying distribution of a data set and use this learned distribution to generate
new data. Recently generative models have been in the public spotlight due to the emergence of
generative art engines, capable of producing high-quality artwork based only on a text prompt.

This makes generative models a promising solution to the problem of escalating simulation
costs. Unlike classical simulation tools, generative models do not have to rely on slow methods
like MC integration or individual modeling of shower constituents. Therefore, a generative model
trained to produce MC simulation data can produce this data significantly faster than classical
simulation methods.

There exists a wide range of efforts to use generative models for fast simulation. The most
common method utilizes classical simulation tools to generate a set of data, which is then used
to train a generative model. The trained model is then used to quickly generate large amounts of
simulation data. This method has been applied to event generation [35–41], hadronization [42–
45], and detector simulation [46–57]. A notable alternative approach to having a generative model
perform the complete simulation is the use of ML methods to improve classical fast simulation
methods through reweighting [58–60] or refinement [61].

In addition to providing a significant speedup over classical simulation methods, generative
models also offer new possibilities for particle simulation. Notably, they may allow for simulating
the entire detector in one step, combining both detector simulation and reconstruction into a
single process, or directly training on data in order to achieve an improved accuracy compared
to classical methods.

In this work, we explore the application of generative models for the simulation of particle
showers in the calorimeters of the International Large Detector (ILD) [59]. The ILD is a proposed
detector for the ILC. To enable the high-precision measurements planned for the ILC, the ILD is
designed for high resolution and is expected to record large amounts of data. This makes classical
simulations of the ILD calorimeters costly and presents a strong incentive for the development of
fast ML-based simulation. Most notably we demonstrate the possibility of directly training the

4

generative model on real data, using testbeam data recorded by the CALICE [62] collaboration
with an Analogue Hadronic Calorimeter (AHCAL) [63] prototype.

This work is organized into two parts. In Part I we cover the relevant theoretical basics and
underlying methodology. In Chapter 1 a brief summary of the standard model is given, along-
side an overview of current and proposed particle physics experiments and detectors. Chapter 2
focuses on the operating principles, construction, and simulation of calorimeter systems for par-
ticle detectors. We then present general principles of ML in Chapter 3, before providing a more
detailed discussion of generative models in Chapter 4.

Part II presents the application of these principles for fast simulation and novel analysis
methods in particle physics. A vital question for the application of generative models as fast
simulation is how many points can reasonably be sampled from a generative model. Therefore,
in Chapter 5, we initially explore this question using small-scale toy models. Following this,
we move to utilize the generative models introduced in Part I for the fast simulation of photon
showers in the highly granular electromagnetic sampling calorimeter of the ILD in Chapter 6.
We then extend the generative models to significantly more complex pion showers in a hadronic
calorimeter in Chapter 7. In Chapter 8 we present the first training of a generative model
directly on measurement data in particle physics, using pion testbeam data recorded by the
CALICE collaboration. Chapter 9 explores the use of generative models for applications beyond
fast simulation, and presents an online trained generative model to try and store information
about phase space regions currently discarded by trigger setups. Finally, the obtained results
are summarized and an outlook toward future research is given in Chapter 10.

5

Part I

Theory and Methodology

7

Chapter 1

Particle Physics

The field of particle physics aims to explore the fundamental constituents and underlying forces
that make up and shape the universe we inhabit. This Chapter aims to give a brief introduction
to the current status of particle physics research. In Section 1.1 the standard model of particle
physics is described. Indications for the existence of physics beyond the standard model are
discussed in Section 1.2. Section 1.3 covers colliders as a vital tool for particle physics, using
the example of the LHC. In Section 1.4 we discuss proposals for new linear lepton colliders and
exciting precision measurement opportunities at such linear colliders are outlined in Section 1.5.
Finally, the use of MC methods in particle physics is discussed in Section 1.6.

1.1 The Standard Model of Particle Physics

The standard model of particle physics [8–11] is one of the most successful theories in all of
physics, capable of predicting experimental results with an impressive level of accuracy. The
standard model describes the electromagnetic, strong, and weak interactions between fundamen-
tal particles as quantum field theories (QFT), which are symmetric under the

SU(3)C ⊗ SU(2)L ⊗ SU(1)Y (1.1.1)

gauge symmetry group [64], where each gauge group is related to a fundamental interaction.

Fermionic Content

The particles described by the standard model can be grouped into two categories, matter par-
ticles, known as fermions and characterized by their spin of 1

2 , and particles that mediate in-
teractions, known as bosons, with an integer value spin. The fermionic content of the SM is
shown in the leftmost three columns of Figure 1.1 and can be further broken down into leptons,
which comprise charged leptons (l−) and lepton neutrinos (νl), and quarks, which can again be
categorized into up-type quarks (qu) and down-type quarks (qd). Charged leptons and quarks
carry an electromagnetic charge, with leptons having a charge of −1 and up-type quarks and
down-type quarks having a charge of 2

3 and −1
3 respectively. Further, quarks have a color charge,

the charge associated with the strong interaction. For both leptons and quarks there exist three

9

CHAPTER 1. PARTICLE PHYSICS

generations that differ only by their mass and flavor, but have otherwise identical quantum num-
bers. The particles in these generations are electrons (e), muons (µ), and taus (τ) for charged
leptons and electron-neutrinos (νe), muon-neutrinos (νµ), and tau-neutrinos (ντ) for neutral lep-
tons. The three up-type quarks are known as up (u), charm (c), and top (t) quarks, and the
three down-type quarks are referred to as down (d), strange (s), and bottom (b) quarks.

For each fermionic particle, there exists a corresponding antiparticle, with the opposite charge
and flavor.

Each fermion generation can be decomposed into left- and right-handed components, accord-
ing to

[
νl qu
l− qd

]
=

(
νl
l−

)
L

,

(
qu
qd

)
L

, l−R , qu R, qd R , (1.1.2)

where the left-handed fermions transform as SU(2)L doublets and the right-handed ones as
SU(2)L singlets. As the neutrino is considered massless in the standard model, there is no
right-handed neutrino component νl R. All left-handed particles have a weak iso-spin, the charge
corresponding to the weak interaction.

Fundamental Forces

Each fundamental force in the standard model is mediated by an exchange of bosons. For
the electromagnetic interactions, described by quantum electrodynamics (QED), this exchange
particle is the massless and chargeless photon γ. Photons couple to the electromagnetic charge,
and therefore interact only with charged leptons, quarks, and charged bosons. This also means
that photons cannot interact with other photons.

The weak interaction is mediated by three particles, the neutral Z-boson, and the charged
W+ and W− bosons. These bosons only interact with left-handed fermions, as right-handed
ones lack the necessary iso-spin. An important note is that the weak interaction does not have
to respect the conservation of flavor, such as in cases of a t quark decaying into a b quark and a
W+

The mediators of the strong force, described by quantum chromodynamics (QCD), are mass-
less, electromagnetically neural gluons. Gluons couple to color charge and are themselves color
charged, meaning they interact with quarks and other gluons. This gluon-gluon self-interaction
results in an observed effect known as color confinement [66], which means that no color charged
free particles can exist. Therefore, gluons are always bound in composite states that are, in
total, color neutral. Common color neutral states are either groups of 3 quarks, like protons or
neutrons, known as baryons, or pairs of quarks and antiquarks, known as mesons, like pions or
kaons. Additionally, rare 4 and 5 quarks states, known as tetraquarks [67] and pentaquarks [68]
have been observed. Another effect of confinement is that quarks cannot propagate freely, instead
creating a spray of colorless hadrons, resulting in a so-called particle jet.

Interactions between particles are described by the standard model Lagrangian, in the form
of terms that couple the fields of the corresponding particles involved in the interaction. For
example, the interactions between a fermion-antifermion pair, ψψ̄, and the photon gauge field
Aµ are written as

10

CHAPTER 1. PARTICLE PHYSICS

Figure 1.1: Overview of particles in the standard model, listing the mass, electromagnetic charge,
and spin of the particles. Figure taken from [65].

iqψ̄γµAµψ , (1.1.3)

where q is the electromagnetic charge of ψ, and describes the strength of the coupling. The
likelihood of an interaction occurring is described by its cross section σ. For a two-particle to
two-particle interaction, this cross section can be calculated as

σ =
1

64π2s

pf
pi

∫
|Mfi|2dΩ , (1.1.4)

as described in Reference [66]. In this expression, pf and pi describe the momenta of the final state
and initial state particles in the center-of-mass frame, respectively. The variable s corresponds
to the center-of-mass energy, and Mfi is the matrix element for the transition from the initial
to the final state. Generally speaking, the matrix element depends on the couplings of the
particle interaction involved. The matrix element can have an angular dependency and has to
be integrated over all possible angles Ω in spherical coordinates.

Similarly, one can define the angle-dependent differential cross section as

11

CHAPTER 1. PARTICLE PHYSICS

dσ

dΩ
=

1

64π2s

pf
pi

∫
|Mfi|2 . (1.1.5)

Higgs Mechanism

The masses of gauge bosons cannot simply be included in the standard model Lagrangian, as they
would violate gauge symmetry [66]. Similarly, fermion masses cannot be directly introduced, as
the naive fermion mass term

mψψ̄ = m(ψRψ̄L + ψRψ̄L) , (1.1.6)

for a fermion field ψ would couple right-handed fields, that transform as a singlet under SU(2)L
to left-handed fields, that transform as a doublet, thereby breaking the SU(2)L symmetry.

Both of these problems are addressed by the Higgs mechanism [12–14]. It introduces a
complex scalar field ϕ with a potential V , with the form

V = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 , (1.1.7)

where µ2 and λ are parameters describing the potential. This potential is itself gauge invariant,
however for a negative µ2 value the potential has a minimum at ϕ ̸= 0. Therefore, the potential
has a non-zero vacuum expectation value v. Due to this expectation value, the field spontaneously
breaks local gauge symmetry, giving rise to the boson masses. The resulting masses of the W
and Z bosons are

mW = g
v

2
and mZ =

√
g2 + g′2

v

2
, (1.1.8)

where g2 and g′2 are electroweak coupling constants. Further, the resulting scalar field can, in
the right gauge, be written as

ϕ =
1√
2

(
0
v + h

)
, (1.1.9)

where h can be understood as an excitation of the scalar field, manifesting as a scalar boson
known as the Higgs boson. This scalar field can couple to fermions, as the term

gfψRϕψ̄L + gfψRϕψ̄L , (1.1.10)

is invariant under gauge transformation. Here gf describes the coupling strength, known as the
Yukawa coupling, of a given fermion to the scalar field. This expression can be expanded to

gfv(ψRψ̄L + ψRψ̄L) + gfh(ψRψ̄L + ψRψ̄L) . (1.1.11)

12

CHAPTER 1. PARTICLE PHYSICS

The first term allows the introduction of fermion masses, by setting gf =
mf

v . The second
term describes the interaction of fermions with the Higgs boson, the interaction strength of which
is proportional to the mass of the fermion.

This mechanism had already been postulated in 1964. In 2012, a heavy scalar resonance with
decay properties in line with predictions for the Higgs boson was discovered at the ATLAS and
CMS experiments [15,16]. This discovery, in combination with measurements of the interactions
and decay channels of the particle, widely confirmed the existence of the Higgs mechanism and
presented a major step towards completing the standard model.

1.2 Physics Beyond the Standard Model

While the standard model accurately predicts a vast range of experimental observations and
is itself a consistent theory, there are several phenomena not currently explained by the stan-
dard model. This hints at further physics beyond the standard model (BSM) that is yet to be
discovered.

Several of these phenomena will briefly be covered in this section, however, this is by no
means an exhaustive list.

Dark Matter

There exist several pieces of evidence that suggest the majority of the known universe is not
composed of visible matter, but rather so-called dark matter. One of the earliest indications
was found in the rotational velocities of galaxies [17]. The majority of luminous matter tends
to be concentrated in the central region of a galaxy. Therefore, the outer regions of a galaxy
can largely be approximated as rotating around a central point mass. Under this assumption,
one would expect the angular velocity of a given star to scale with the inverse square root of
its distance from the galactic center. This is in conflict with actual observations which show an
almost flat dependency between angular velocity and distance from the center, thereby implying
the existence of additional, not visible mass in the galaxy, arranged in a halo around the center.

Further evidence of dark matter is given by the bullet cluster collision [18], where the apparent
center of gravity of the collision does not match the center of gravity determined from the visible
matter alone, indicating the existence of further, invisible matter. Additionally, structures found
in the cosmic microwave background measured by the WMAP [19] and Plank [20] experiments
are a strong indication that dark matter was present during the early formation of the universe.

There exists a wide range of models aiming to explain and describe dark matter, generally by
introducing one or more new particles to the standard model. Several constraints can be placed
on any dark matter candidate based on current observations; most importantly the lack of a
dark matter discovery and seeming stability of dark matter put an upper limit on how strongly
a dark matter particle can couple to the visible sector of the standard model.

Searches for dark matter candidates take several forms. In direct searches, one attempts to
record interactions of dark matter particles with standard model particles using large, purpose-
built detectors. In an indirect dark matter search, one looks for cosmic particles that could
originate from the decay of dark matter into standard model particles.

13

CHAPTER 1. PARTICLE PHYSICS

Both these approaches largely aim to experimentally prove the existence of dark matter.
However, probing the precise nature of a potential dark matter particle requires the controlled
environment of a collider.

Neutrino Mass

Within the current standard model, there are no right-handed neutrinos that would allow for a
coupling between the Higgs and the neutrinos. Therefore, neutrinos are assumed to be massless
particles. However, the observation of neutrino oscillation draws this assumption into ques-
tion [21]. Neutrino oscillation describes a process, where the flavor of a neutrino switches to a
different one as it propagates. One clear piece of evidence for this process is measurements of
the flux of solar electron neutrinos. Here, the detected electron-neutrino rate does not line up
with the rate that would be expected based on the fusion reaction occurring within the sun,
indicating that some of the electron neutrinos oscillate into muon- or tau-neutrinos before they
arrive at the earth. More recent measurements of both the total solar neutrino flux and solar
electron-neutrino flux [69] confirm an abundance of non-electron-neutrinos originating from the
sun.

This oscillation has several implications. For one, it indicates that neutrino flavor states
are superpositions of several mass-eigenstates, therefore enabling the neutrinos to change from
one flavor state to a different one. Additionally, the apparent time-dependent nature of the
oscillation suggests that neutrinos do not propagate at light speed, as would be expected from a
truly massless particle. Therefore, the existence of neutrino oscillation indicates that neutrinos
have a small, but non-zero mass.

A popular theory to explain the neutrino masses is seesaw mechanisms [21,70] which introduce
a heavy right-handed neutrino as a Majorana particle, meaning the right-handed neutrino would
be its own antiparticle. In this model, the left-handed standard model neutrinos have a tiny
chance to briefly convert into heavy right-handed neutrinos. This results in an overall small, but
non-zero mass for the standard model neutrinos.

Beyond this, heavy right-handed neutrinos are also promising dark matter candidates. They
can have a large enough mass to explain dark matter observations and have sufficiently small
coupling to the standard model, as they are uncharged, color-neutral, right-handed particles and
therefore do not interact directly via the strong, electromagnetic or weak interaction.

Flavor Anomaly

In the standard model, the three lepton generations differ in their masses and flavor numbers
but have an identical charge and iso-spin. Therefore, it is assumed that the coupling between
gauge bosons and leptons is universal for all generations.

However, measurements performed by the LHCb collaboration [22, 23] point towards a po-
tential violation of the assumed lepton universality. These measurements investigated the decay
of B+-mesons, consisting of one anti-b-quark and one up-quark. One possible decay channel for
B+-mesons is B+ → K+l+l−, where l is either a muon or electron. Assuming lepton universality,
the rate of decay into electrons and decay into muons should only differ by a factor related to the
mass difference between the two leptons. However, measurements of the relative rates showed a
deviation of 2.6σ from the expected ratio. While this is not sufficient for a discovery, it provides
a hint at BSM physics.

14

CHAPTER 1. PARTICLE PHYSICS

Possible standard model extensions that could explain a violation of lepton universality are Z ′

models [71]. In such a model, the standard model is extended by an additional U(1) symmetry
group that gives rise to a new neutral gauge boson, called a Z ′ due to its similarities to the
standard model Z. Depending on the specific construction of the added U(1) symmetry, the
resulting Z ′ may not couple to each lepton generation equally [72].

Beyond lepton universality, Z ′ models are of interest, as they offer a potential portal for
interactions between the standard model and a dark matter candidate.

1.3 Collider Experiments

The likely existence of BSM physics provides a strong incentive to further probe the standard
model. Efforts in pursuit of this can take various forms, such as searches directly looking for new,
previously undiscovered particles, or measurements aiming to precisely determine standard model
parameters in search of deviations from theoretical predictions. However, all these approaches
require highly energetic particles in order to provide the necessary energy for the production
of interesting heavy particles. In other words, they require powerful particle accelerators and
colliders.

The Large Hadron Collider

The most powerful collider currently in operation is the Large Hadron Collider (LHC) [24] at
CERN. The LHC is a circular proton-proton, Pb-Pb, and Pb-proton collider with a maximal
center of mass energy of 14 TeV. The collider has been vital for particle physics ever since it
went into operation, most notably for the discovery of the Higgs boson in 2012.

Modern particle colliders consist of two basic building blocks, radio-frequency cavities that
accelerate a beam of charged particles and multi-pole magnets that focus or bend this beam. In
a circular collider, or Synchrotron, such as the LHC, the magnets and cavities are set up to form
a circular path. This allows the beam to repeatedly pass each cavity, receiving additional energy
every time. However, when charged particles are deflected in a magnetic field, they radiate off
energy in the form of Bremsstrahlung. In a circular collider, this energy loss is specifically known
as synchrotron radiation. The exact amount of energy lost to radiation depends on the velocity
of the particle, the radius of the path, and the mass of the particle. This places an upper limit on
the energy a synchrotron can impart on a particle beam, as the particles will eventually be so fast
that they radiate off as much energy as they receive from the accelerator. There are two ways
to manipulate this limit. For one, larger bend-radius results in lower radiative losses, meaning
larger colliders can reach higher energies. Further, heavier particles can be used to achieve
higher energies in a synchrotron, as they have a lower velocity than a lighter particle with equal
energy, and the cross section of Bremsstrahlung is smaller for particles with higher masses. For
this reason, the LHC accelerates protons or lead ions, allowing it to reach significantly higher
energies than its predecessor, the Large Electron–Positron Collider (LEP), despite using the same
tunnel and therefore, having the same radius.

The LHC features two beam pipes, each containing a beam, circulating in opposite directions.
Each beam is divided into 2808 bunches, where a bunch consists of approximately 1011 particles.
The beams are provided by a staged system of pre-accelerators and are injected into the LHC
with an energy of 450 GeV. At four points around the accelerator, the beams are crossed and

15

CHAPTER 1. PARTICLE PHYSICS

brought to collision. Each interaction point is the site of one of the four large LHC experiments.
Of these experiments, ATLAS [73] and CMS [74] are general-purpose experiments. LHCb [75]
is specifically designed to investigate the physics of b-quarks, and ALICE [76] is an experiment
specialized in heavy ion collisions.

Beyond the center-of-mass energy, a defining characteristic of a collider is the rate at which
particle interactions occur, described by the instantaneous luminosity L of the collider. It can
be calculated using the expression

L =
N2

b kbf

A
HD , (1.3.1)

whereNb is the number of particles per bunch, kb is the total number of bunches in the collider and
f is the bunch crossing rate. The quantity A describes the size of the area in which the bunches
are crossed, and HD is a correction term accounting for the widening of the bunches due to their
own electric field. The original design luminosity of the LHC was L = 1034cm−2s−1, however
the currently ongoing high luminosity LHC upgrade [25] aims to increase this by approximately
a factor of 5 through reduction of the beam crossing area.

Equally relevant as the instantaneous luminosity is the integrated luminosity Lint, defined as

Lint =

∫
L(t)dt , (1.3.2)

with the integral running over a given interval of time. Using the integrated luminosity one can
calculate the expected amount of occurrences of a specific process with a cross section of σproc
as

Nproc = Lintσproc . (1.3.3)

Detectors

In order to detect particles produced in high-energy collisions, modern experiments use highly
sophisticated detector setups. Contemporary general-purpose detectors are subdivided into mul-
tiple sub-detector systems, arranged similarly to the layers of an onion. Each sub-detector is
specialized to measure the properties of a set of particles. Figure 1.2 shows an example of such a
multi-layers setup using the CMS detector. The individual sub-detectors will briefly be covered
in the following.

The tracking system or tracker generally directly surrounds the interaction points. It is
designed to capture the paths of charged particles while providing as little interfering material
as possible for the particles to interact with.

The detector itself is suffused with a strong magnetic field B, with field lines running parallel
to the beam pipe. Charged particles traversing this magnetic field with a velocity vector v
experience the Lorentz force along the direction of v × B. This causes the paths of charged
particles to be bent around the beam direction. The radius R of the bend is given by

p cosλ = 0.3BR , (1.3.4)

16

CHAPTER 1. PARTICLE PHYSICS

Figure 1.2: Schematic view of a slice of a general particle detector, using the CMS detector as
an example. Figure taken from [77].

where B is the strength of the magnetic field, λ is the pitch angle between the path of the particle
and the plane orthogonal to the beam direction, and p is the momentum of the particle [66]. This
allows for the reconstruction of the momentum of a charged particle, based on its path, recorded
by the tracker. However, for high momentum particles, the bend radius can become very large,
resulting in a only slightly bent track. Therefore the momentum resolution of a tracker is lower
for highly energetic particles.

There exists a multitude of tracker designs. One approach is silicon trackers, such as the
one used in CMS. These systems consist of several concentric layers of silicon pixel and strip
detectors. When a charged particle traverses the silicon, it will create electron-hole pairs in the
silicon that can be detected. From all these individual hits, the track of the particle can then
be reconstructed. Another approach is time projection chambers (TPCs). A TPC consists of a
large, cylindrical, gas-filled chamber. As charged particles traverse the chamber they ionize gas
atoms along their path. The electrons freed in the ionizations are drawn by a combined electric-
and magnetic field towards one of the flat ends of the TPC. There the positions of the electrons
in the x, y plane are recorded. Additionally, the time between the interaction and the detection
of the electrons can be used to reconstruct the z position of the ionization. Combining both of
these measurements results in a full description of the path of the traversing particle.

Only electromagnetically charged particles can cause these ionizations in the tracking system,
meaning that a tracker cannot be used to record the paths of electromagnetically uncharged

17

CHAPTER 1. PARTICLE PHYSICS

particles. Therefore, the properties of electromagnetically neutral particles have to be measured
by different means.

Surrounding the tracker is the calorimeter system. These detectors provide large, dense
volumes of material for particles to deposit their energy in. The deposited energy can then be
read out and used to determine the energy of the original particle.

Both neutral and charged particles can deposit their energy in a calorimeter. The energy
resolution of the tracker tends to be better than the resolution of a calorimeter for charged
particles, however, calorimeters present the only way to detect and measure neutral particles in a
collision event. More details on the operation principles and construction methods of calorimeters
are covered in Chapter 2.

The outermost sub-detector is the muon system. Due to their high mass and limited in-
teractions, muons only deposit a small fraction of their energy in the calorimeter and therefore
continue to propagate beyond the calorimeter system. The muon system operates on a similar
principle to the tracker, in that it aims to record the paths of these muons. However, the spatial
resolution of the muon system tends to be lower than that of the tracker, as it has to cover a
significantly larger volume.

The muon system serves two purposes. For one, it allows for the identification of muons, as
any single, highly energetic particle that leaves the calorimeter is likely to be a muon. Beyond
this, the paths recorded by the muon system provide a second point of measurement for the track
bend of a muon, thereby increasing the precision with which muon energies can be determined.

1.4 Linear Lepton Colliders

Hadron colliders like the LHC are capable of providing high center-of-mass energies due to the
high mass of the protons they accelerate. However, the composite nature of the proton can
present a problem. A proton mainly comprises two up quarks and one down quark. In addition
to these so-called valence quarks several further quark-antiquark pairs, known as sea quarks can
be present, as well as gluons mediating the QCD interactions between the quarks.

The total energy of the proton is not bound in any one of its constituents but probabilistically
distributed, according to a parton density function (PDF) [78], between all of them. Figure 1.3
shows proton PDFs for two squared energy scales Q2. The lines give the probabilities, normalized
to the total amount of particles in the proton, of finding a specific particle with a fraction X of
the total proton energy.

During a proton-proton collision, the actual interactions take place between the constituent
particles. This means the energy available in the interaction is only a fraction of the total
proton energy, and the exact value of this energy is probabilistically distributed, rather than
deterministic. This makes precision measurements at a hadron collider difficult.

Using leptons instead of protons would allow for precise tuning of the energy available in each
interaction, as leptons are not composite particles. However circular electron colliders run into the
aforementioned problem of losing a significant fraction of their energy to synchrotron radiation,
and the short lifetime of the muon makes the prospect of a muon collider difficult to implement
in practice. Therefore, there have been recent proposals for linear lepton colliders, which are
not limited by synchrotron radiation losses, and still provide the clean collision environment of
a lepton collider.

18

CHAPTER 1. PARTICLE PHYSICS

Figure 1.3: PDFs for a proton from the MSTW NLO PDF set [78]. PDFs are shown for Q2 =
10GeV 2 (left) and Q2 = 104GeV 2 (right). The filled region corresponds to the 68% confidence
interval. Figure taken from [78].

International Linear Collider

The International Linear Collider (ILC) [26] is one such proposed linear collider. The ILC is
designed to accelerate polarized electron and positron beams in two 11km long linear accelerators
using superconducting RF cavities. The maximal center-of-mass energy of the design is 500
GeV, although a staged approach with an initial energy of 250 GeV is under consideration. The
individual components and the proposed layout of the ILC are shown in Figure 1.4. Combined
limitations of the electron and positron sources, the RF cavities, and the cryogenic system [26]
make it infeasible for the ILC to accelerate a constant beam. Instead the linear accelerators
operate in bunch trains. Every 200ms a group of 1312 bunches is accelerated over the course of
approximately 1ms, followed by a downtime of about 199ms until the next group of bunches is
accelerated.

One of the goals of the ILC is to use its precise control over the center of mass energy to
perform precision measurements of the Higgs boson and its couplings to other particles. Further,
the use of polarized beams allows for the suppression or enhancement of specific processes,
potentially reducing certain backgrounds.

The ILC plans to employ a dual detector setup, where two detectors can be alternatingly
placed at the interaction point. The two proposed detectors are the International Large Detector
(ILD) [59] and the Silicon Detector (SiD) [79]. Both detectors aim to reconstruct every particle
in a collision event using the particle flow approach [80]. This necessitates high tracking and
calorimeter resolution. The ILD aims to realize this with a tracking system that combines a
silicon tracker directly surrounding the beamline with a TPC, as well as with a highly granular

19

CHAPTER 1. PARTICLE PHYSICS

Figure 1.4: Schematic drawing of the ILC components and their layout, component sizes not to
scale. Figure taken from [26].

calorimeter setup. The SiD plans to use an entirely silicon-based tracker, in addition to a
calorimeter system comparable to the ILD. The pulsed nature of the ILC beam offers several
design possibilities for the detectors, such as the use of power-pulsing, where the detectors are
powered off during the downtimes between bunch trains, which significantly reduces the waste
heat produced by the detector, thereby eliminating the need for active cooling.

Compact Linear Collider

The Compact Linear Collider (CLIC) [27, 81] presents another proposal for a linear electron-
positron collider to be constructed at CERN.

The CLIC concept employs a novel two-beam setup, where a secondary, high-current drive
beam runs in parallel to the main linear accelerators. The accelerator systems then extract energy
from this drive beam to power the RF cavities accelerating the main electron and positron beams.
A depiction of this layout can be seen in Figure 1.5. The initial target center-of-mass energy of
the collider is 380 GeV, however, the two-beam setup has been specifically designed to allow for
staged upgrades to center-of-mass energies of 1.5 TeV and 3 TeV.

1.5 Precision Measurements at Lepton Colliders

The current standard model is a self-consistent theory, however several parameters, most notably
particle masses and coupling constants of interactions, are not directly derived from theory and
have to be experimentally measured. The lack of discoveries of new particles indicates that these
particles either exist at energy scales not currently accessible or that their effect on observations is
too subtle to be easily detected. If the latter is the case, it is vital to have a precise understanding
of the standard model, in order to spot even slight deviations between theoretical predictions and

20

CHAPTER 1. PARTICLE PHYSICS

Figure 1.5: Schematic drawing of the CLIC layout. Figure taken from [82].

measured data. This makes exact measurements of standard model parameters an important
effort.

The wide range of collision energies and large QCD-induced backgrounds make precision mea-
surements at a hadron collider difficult, however, a lepton collider, in combination with a detector
capable of reconstructing every particle in a collision event, would enable these measurements.

Higgs Measurements

The Higgs resonance discovered at the LHC offers a clean way of explaining the mass of bosons
and fermions, however, the exact properties of the discovered boson have yet to be measured in
detail.

Noteworthy among the properties of the Higgs boson are the branching ratios of its decay
channels. For a general particle A, its branching ratio BRA→XY describes the probability for
the particle to decay into a specific set of decay products X and Y [66]. The exact value can be
determined using the expression

BRA→XY =
ΓA→XY

ΓA
, (1.5.1)

where ΓA→XY is the partial decay width for the specific process and ΓA is the total decay width
of the particle defined as the sum over the partial width of all possible decay channels. The
partial width ΓA→XY is proportional to the squared coupling of A to X and Y .

For the Higgs boson, its direct couplings to other particles are determined by the masses
of the particles and by the vacuum expectation value, which is known from the Higgs mass.

21

CHAPTER 1. PARTICLE PHYSICS

Figure 1.6: Theoretical predictions of the Higgs branching ratios, for a Higgs boson with a mass
between 100 GeV and 160 GeV. Figure taken from [83].

Therefore, the branching ratios of the Higgs boson can be precisely predicted. Figure 1.6 shows
these predictions for a range of Higgs boson masses. This makes direct measurements of Higgs
decays a promising way to probe the physics of the Higgs sector.

The main decay channel of a 125 GeV Higgs boson is H → bb̄. However, this channel is
exceedingly difficult to measure at a hadron collider, as the large QCD background results in an
abundance of b-quark pairs that need to be separated from those produced by Higgs decays.

In a lepton collider setting the lack of QCD-induced backgrounds allows for significantly more
precise measurement and selection of H → bb̄ decays.

Further, a lepton collider allows for direct measurements of the Higgs boson mass and de-
cay width without having to rely on observation of its decay products. The most likely Higgs
production process in an electron-positron collision with a center of mass energy of 250 GeV is
Higgs Strahlung [83], where a Higgs boson is produced in association with a Z boson. The Z
has a chance to continue on to decay into an electron or muon pair, the momentum of which can
be measured to high precision using the tracking and muon systems. From this, the original Z
momentum can be reconstructed. In a hadron collider, the exact center-of-mass energy of the
interacting partons is random. Additionally, the two interaction partners do not necessarily have
the same momentum, meaning the center of mass of the collision will likely have momentum
along the beam direction. In a lepton collision, however, the center-of-mass energy is precisely
known, and the collision happens effectively at rest. Therefore, the momentum and energy of a
Z produced through Higgs Strahlung in a e+e− collision can be compared to the known collision
parameters in order to determine the energy and momentum of the produced Higgs. This can, in
turn, be used to measure the mass and width of the Higgs boson to high precision. Most notably,
this measurement can be used to detect Higgs events, even if the Higgs boson itself decays into
an invisible final state, making the measurement a promising avenue for dark matter searches.

22

CHAPTER 1. PARTICLE PHYSICS

Precision Electroweak Measurements

Z ′ models present a popular set of standard model extensions, potentially offering explanations
for flavor anomalies and providing a mediator to dark matter. However, searches at the LHC
have shown no direct observations of a heavy Z ′ up to a mass of 3 TeV. Moving to even higher
collision energies presents a daunting challenge, however, there are indirect measurements that
can be used to search for the existence of a Z ′, even at lower energies.

If a heavy Z ′ that couples to fermions f exists, then it may affect the rate of e+e− → ff̄
processes, even at energies too low to produce the Z ′ on-shell [83]. Therefore, measurements of
the e+e− → ff̄ provide a chance to discover BSM physics, however, due to the likely small effect
of a potential Z ′, any such measurement requires high precision.

The large QCD background at the LHC makes such precision measurements difficult. On
the other hand, the measurements performed at LEP demonstrate that a lepton collider is a
particularly well-suited environment for achieving this needed level of precision.

1.6 Monte Carlo Simulation

When particles interact, there exists a multitude of potential processes that can occur. Each
process has a specific likelihood, however, which process actually happens is random. For a pro-
cess with a cross σproc and for an integrated luminosity Lint, the expected number of occurrences
can be determined using Equation 1.3.3. However, in practice, not every instance of a process is
detected. The expected number of observed processes is therefore given by

N̄obs = Lintσprocηdet , (1.6.1)

Where ηdet is the detection efficiency for this process. The actual number n of detected interac-
tions follows Poissonian statistics and is described by the distribution

p(n) =
N̄n

obs
n!

e−N̄obs . (1.6.2)

The variance of this distribution is given by
√
n, and the relative uncertainty of an observation

of n points can be written as

σrel =
n√
n
. (1.6.3)

Therefore in order to reach sufficient precision for the measurements outlined in Section 1.5,
one needs to increase the number of observed points. This can be achieved by improving the
detection efficiency, however, the efficiency is per definition constrained to the range between 0
and 1. To achieve precision beyond this, an increase in luminosity is required. For this reason,
modern collider experiments move to higher and higher luminosities.

An important principle of the scientific method is to define a theory, use this theory to make
a prediction and finally compare the prediction to experimental observation.

23

CHAPTER 1. PARTICLE PHYSICS

Figure 1.7: Fractions of compute times that were used for various activities by the ATLAS
collaboration in 2018. Figure taken from [30].

In particle physics, the step from theory to prediction consists of modifying the standard
model Lagrangian according to the new theory and then modeling how these changes manifest
as observations in the experimental measurement. It is currently not feasible to directly jump
from Lagrangian to measurement. Therefore the simulation process is split into several parts
that make up the full simulation chain.

The first step in the simulation chain is event generation. Here, the hard scattering processes
between the initial state beam particles are modeled. This requires calculating the cross section
of individual possible processes. To this end, the matrix element of each process has to be
determined, potentially including higher-order corrections. Then the differential cross section
has to be integrated over a high dimensional phase space in order to obtain the total cross
section while observing momentum conservation and other constraints. This makes the analytic
calculation of the phase space integrals not feasible. Instead, event generators make use of
numerical integration techniques, most commonly MC integration.

The end result of the event generation consists of a list of particles produced in the initial
interaction, where each particle is described by its particle type and its momentum.

Among the particles produced by the event generation are individual quarks and gluons.
However, these particles cannot propagate freely due to color confinement and instead form a
jet, a collimated spray of color-neutral particles. The simulation of this process is known as

24

CHAPTER 1. PARTICLE PHYSICS

Figure 1.8: Predicted computational resource requirement in MHS06 [84] estimated by the AT-
LAS collaboration for various R&D scenarios described in Reference [30]. Figure taken from [30].

hadronization. Additionally, the decays of particles with lifetimes short enough to decay within
the detector are modeled in this step.

The final step of the simulation chain consists of detector simulation. This step takes the
particles produced by event generation and hadronization and models their interaction with the
individual detector components, as well as modeling the detector signals these interactions result
in. A large number of particles that reach the detector can make this simulation a time-intensive
process.

The end result of this simulation chain are simulated events, often referred to as MC data,
which can be compared to direct experimental observation. This comparison can then be used
to test new particle physics theories. However, the accuracy of this comparison is determined by
both the statistical uncertainty of the measured data and of the MC data. These uncertainties
follow Equation (1.6.3) and thereby scale with the amount of available data. In order to not be
limited by the MC data uncertainty, one, therefore, aims to have a number of simulated samples
that is at least equal to the number of measured events. This leads to an escalating need for MC
data, as colliders move to higher luminosities. This presents a problem, as MC data generation
already occupies a significant portion of the high energy physics (HEP) computing budget. For
example, the ATLAS collaboration dedicated around half of its computational capacities in the
year 2018 to event generation and detector simulation [30], as shown in Figure 1.7.

Therefore, the escalating need for MC data directly translates to an escalating need for
computational resources. Estimates by the ATLAS collaboration, shown in Figure 1.8, predict

25

CHAPTER 1. PARTICLE PHYSICS

that this requirement will exceed the available computing budget by 2028, unless aggressive R&D
measures are taken.

This makes the development of faster, more efficient simulation methods vital for future
precision measurements. One such method, generative ML models, is the main focus of this
work.

26

Chapter 2

Calorimetry

Modern collider experiments aim to probe fundamental interactions between elementary particles
at unprecedented precision. To this end, two beams of highly energetic particles are brought to
collision and the processes that occur during these collisions are investigated. While the inter-
actions themselves cannot be directly observed, their end results, so-called final-state particles,
can be measured.

To perform these measurements, several types of sub-detectors have been developed to record
specific features of final state particles. Some of the most vital observables to capture are the
energies of final state particles. For charged particles, for example electrons and muons, this
energy can be reconstructed based on their bent path through the magnetic field of the detector.
However, for neutral particles like photons or neutral pions, this is not an option, meaning that
their energies have to be measured directly through calorimeters.

Fundamentally, a calorimeter is a larger volume of material, in which a particle deposits
its energy. This deposition takes the form of particle showers, massive cascades of secondary
particles that all deposit energy within the calorimeter. One can differentiate between two types
of showers, electromagnetic showers, and hadronic showers. As the names imply, electromagnetic
showers are caused by stable particles that only interact via electromagnetic interaction, such as
electrons and photons. Conversely, a hadronic shower originates from the interaction of a stable
hadron, such as a proton, neutron, pion, or kaon, with the detector material.

In this chapter, we will initially cover the interactions and processes that contribute to the
formation of electromagnetic showers in Section 2.1. Following this, Section 2.2 describes the
interactions heavy charged particles undergo in a calorimeter. Section 2.3 details the properties
of hadronic calorimeter showers. Current approaches for the simulation of calorimeter showers
are discussed in Section 2.5 and finally, we introduced the calorimeter systems of the ILD in
Section 2.6.

2.1 Electromagnetic Showers

There are several fundamental processes in which photons and electrons interact with matter.
The likelihood for a certain process to occur depends heavily on the energy of the particle.

27

CHAPTER 2. CALORIMETRY

Figure 2.1: Cross sections of various photon-matter interactions. The abbreviation p.e. corre-
sponds to the photoelectric effect, and κnuc and κe describe the cross section of pair production
in the electric field of a nucleus and in the electric field of an electron respectively. Figure taken
from [85].

Photon-Matter Interactions

Photons mainly interact with the atoms of material via the photoelectric effect, Rayleigh scat-
tering, Compton scattering, or pair production. Figure 2.1 shows the cross sections of these
individual processes. Their details will be discussed in the following.

In the photoelectric effect, the photon is absorbed by one of the electrons of the atom and
the absorbed energy causes the electron to be ejected from the atom. The cross section of the
photoelectric effect drops with increasing photon energy, causing the photoelectric effect to be
the most probable process for lower energetic photons. It remains dominant up until around
1 MeV, where it is overtaken by Compton scattering.

Rayleigh scattering and Compton scattering both describe scattering processes of a photon
with an electron. In Rayleigh scattering, this process is an elastic interaction with a bound
electron. This produces a scattered photon with the same energy as the original photon. The
cross section of Rayleigh scattering drops off for large energies, similar to the cross section of

28

CHAPTER 2. CALORIMETRY

Figure 2.2: Energy loss per radiation length in lead for various electron-matter interactions.
Taken from [86].

the photoelectric effect. Compton scattering, on the other hand, is the inelastic interaction with
a free electron in which the scattered photon loses some of its energy to the electron. In order
for Compton scattering to occur with a bound electron, the photon energy needs to be high
enough that the binding energy of the electron becomes negligible. Therefore, the cross section
of Compton scattering is suppressed for low energies, and the process only becomes dominant in
the region between 1 MeV and 10 MeV. Beyond 10 MeV it is superseded by pair production.

In pair production, a photon interacts with the electromagnetic field of an electron or nucleus
to form an electron-positron pair. Pair production can only occur if the photon energy is at least
equal to the rest mass of the electron-positron pair of 2× 511 keV = 1.022 MeV. At energies of
10 MeV pair production is the most probable process and it remains the dominant process for
energies beyond this.

Electron-Matter Interactions

Similar to photons, the interaction of electrons/positrons with matter can be categorized into a
set of processes with energy-dependent cross sections. Figure 2.2 shows the cross sections of these
processes. There are some differences in the exact behavior between electrons and positrons, as
matter contains electrons, but no positrons; however, the overall processes are still similar.

Ionization in this case describes an interaction between the energetic electron and a bound
electron, in which part of the energy is transferred to the bound electron. This causes the bound
electron to effectively be knocked loose, leaving behind an ionized atom. Ionization is by far the
dominant process in the low energetic region up to 1 MeV.

29

CHAPTER 2. CALORIMETRY

Bhabha scattering and Møller scattering are the scatterings of a positron or electron with
an electron of the material, respectively. Overall, both scattering processes have relativity small
cross sections compared to both ionization and Bremsstrahlung

Bremsstrahlung is a process in which an energetic electron interacts with the electromagnetic
field of a nucleus and thereby radiates off a part of its energy. This results in a less energetic
electron and a photon. For energies above 10 MeV Bremsstrahlung becomes the most likely
interaction between electrons and matter.

Showers

One can see that highly energetic photons interacting with matter tend to lose their energy by
creating electrons through pair productions, and highly energetic electrons and positrons tend
to create photons through Bremsstrahlung. This means that if, for example, a photon enters
material, it can undergo pair production. The produced electron and positron will themselves
interact with the material, most likely via Bremsstrahlung, resulting in a photon and electron
(positron) each. The photons can then undergo further pair production, while the electrons and
positrons continue to radiate off more photons via Bremsstrahlung and so on and so forth. The
end result is a cascade of particles that is called a particle shower. Figure 2.3 shows a rendition of
such a cascade caused by repeated Bremsstrahlung and pair production. This cascade continues
to develop until the average electron energy drops below the critical energy Ec, where ionization
and Bremsstrahlung have approximately the same cross section. Below this threshold particles
tend to deposit their remaining energy in the material without further splitting. Both showers
induced by photons and by electrons mainly consist of the same types of particles undergoing the
same types of interactions. This causes electron and photon showers to be similar in appearance.

When building a calorimeter it is important to know the average size of a shower, so it can
be ensured the shower is fully contained within the detector. The characteristic length scale of a
photon shower is defined by its radiation length X0, which describes the average length between
Bremsstrahlung interactions. This length is approximated by the expression [88]

X0 =
716.4A

Z(Z + 1) ln(237√
Z
)

g
cm2

, (2.1.1)

where Z is the atomic number and A is the atomic mass number. However, an EM shower will
consist of a multitude of interactions that all need to be captured. Therefore, an EM calorimeter
typically has a depth of 15-30 X0 [85]. Every pair production and Bremsstrahlung process results
in a pair of particles with approximately half the energy of the original particle, and the overall
depth of an electromagnetic shower scales with the logarithm of the energy of the initiating
particle.

The transversal extent of an electromagnetic shower is described by the Moliere radius Rm,
defined by the radius around the impact of the initiating particle, which, on average, contains
90% of the shower energy. The Moliere radius can be approximated as [85]

Rm = X0
Es

Ec
, (2.1.2)

where Ec is the critical energy and Es is the scale energy defined as

30

CHAPTER 2. CALORIMETRY

Figure 2.3: Schematic depiction of an electromagnetic shower. Figure taken from [87].

Es =

√
4π

α
mec2 ≈ 21.2MeV , (2.1.3)

with the electron mass me and the fine-structure constant α.

2.2 Heavy Charged Particles

Heavy charged particles can undergo the same Ionization, Bhabha scattering, Møller scattering,
and Bremsstrahlung processes as electrons. However, the Bremsstrahlung cross section scales
with 1

m4 , where m is the mass of the particle traversing the material. Therefore, Bremsstrahlung
is no longer the dominant process for heavy charged particles, and highly energetic heavy charged
particles mainly lose energy through ionization instead. The average energy loss per distance is
described by the Bethe-Bloch equation [89],

〈
−dE
dx

〉
= Kz2

Z

A

1

β2

[1
2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]
, (2.2.1)

where A and Z are the atomic weight and number of the material, z is the charge of the particle
and K is a numerical constant. me is the electron mass, β is the velocity, and γ is the Lorentz
factor of the ionizing particle. Further, I describes the excitation of the material, and Wmax is
the maximal kinetic energy transferred in an interaction. Finally, δ(βγ) is a correction factor for

31

CHAPTER 2. CALORIMETRY

Figure 2.4: Energy loss through ionization in various materials for muons, pions, and protons,
as described by the Bethe-Bloch equation. Figure taken from [89].

density effects, that depends on the momentum of the particle. Figure 2.4 shows energy losses
for a range of materials as a function of the momentum of the particles.

From Figure 2.4 we can also see that the energy loss through ionization reaches a minimum
around a particle momentum of βγ ≈ 2− 3, with only a small increase in the energy loss when
moving to higher momenta. A particle with energy in the vicinity of this minimum is known
as a minimum ionizing particle (MIP) and loses only a small amount of energy per ionization.
This leads to the particle energy remaining nearly unchanged throughout many interactions, and
all of these interactions result in energy deposits of similar magnitude. The energy deposition
of a minimum ionizing particle is commonly also referred to as a MIP. As the MIP depositions
are largely independent of the precise energy of the particle, they play an important role in the
calibration of calorimeters. Once the MIP loses enough energy to drop below a momentum of
βγ ≈ 1, the average ionization energy loss increases and the particle quickly deposits its remaining
energy. While only muons are heavy, stable, and non-interactive enough to traverse material while
only losing minimal energy through ionization, every charged particle with momentum around
the minimum of the Bethe-Bloch equation can cause multiple MIP energy depositions. Within a
particle shower, this means that MIP depositions occur more often than other ionization energy
losses.

32

CHAPTER 2. CALORIMETRY

Figure 2.5: Comparison of four electromagnetic showers (left) and two hadronic showers (right).
Note the uniform nature of the electromagnetic showers compared to the varied shape of the
hadronic showers. Figure taken from [3].

2.3 Hadronic Showers

Hadron material interactions can be split into hadronic interactions and electromagnetic interac-
tions. For charged hadrons, electromagnetic interactions behave similarly to the heavy charged
particle case described previously. Neutral hadrons initially do not undergo electromagnetic pro-
cesses, however, the hadronic interactions of neutral hadrons tend to produce charged hadrons,
which can interact electromagnetically.

Hadronic interactions occur between the energetic hadrons and the nuclei of the material.
This can take several forms, such as spallation, where the hadron is inelastically scattered on
the protons and neutrons of the nucleus. This results in the production of several pions and
depending on the energy transferred, even parts of the nucleus can be ejected. The nucleus itself
is left in an excited state, leading it to either undergo fission, where the nucleus splits, releasing
more energy in the process, or leading to nuclear evaporation, where the nucleus radiates off
the excess energy as α, β or γ radiation. The produced pions and ejected nucleus fragments
originating from the spallation can be energetic enough to cause further hadronic interactions,
which again results in more particles being produced. This process continues until the energy
of the resulting particles is insufficient to form new pions, resulting in what is called a hadronic
shower. The remaining energy of particles that can no longer produce pions is lost either through
radiation or by being captured into a nucleus.

Unlike in the rather deterministic outcomes of Bremsstrahlung or pair production, the ex-
act number, and type of particles produced by nuclear interaction varies greatly. This leads to
hadronic showers having significantly more diverse shapes than electromagnetic showers. Ad-
ditionally, the number of interactions that result in secondary particles is significantly smaller
in electromagnetic showers, making the statistical fluctuations in these few processes more im-

33

CHAPTER 2. CALORIMETRY

Figure 2.6: Schematic depiction of a hadronic shower. Note that the shower contains both
hadronic and electromagnetic components. Figure taken from [90].

pactful. Figure 2.5 compares four electromagnetic photon showers (left) with two hadronic pion
showers (right). This both illustrates the uniformity of the photon showers and the variation of
the pion showers.

Further, hadronic showers tend to also have an electromagnetic component. This is caused
by neutral pions and η-mesons decaying into a pair of photons, each of which can initiate an
electromagnetic sub-shower, as indicated in Figure 2.6, leading to further complexity in the
shower profile.

The characteristic length scale of a hadron shower is the average distance traveled by a particle
before undergoing a hadronic interaction. This is known as the nuclear interaction length λi and
can be approximated as [88],

λi = (20A0.4 + 32)
g

cm2
. (2.3.1)

The nuclear interaction length tends to be significantly larger than the radiation length. This
means that the volume to capture a hadronic shower needs to be significantly larger than what
is required for an equally energetic electromagnetic shower.

2.4 Calorimeter Types

The task of a calorimeter is to capture and record particle showers in order to determine the
energy of the particle that caused the shower. Performing this task for both hadronic and elec-
tromagnetic showers simultaneously is exceedingly difficult due to the vastly different sizes of the
two shower types. Therefore, this task is divided up into two types of sub-detectors, the electro-
magnetic calorimeter (ECAL) and the hadronic calorimeter (HCAL). These two calorimeters are
arranged so that a particle originating from the collision point first passes through the ECAL.
The size of the ECAL is designed to be sufficient to capture EM showers, but small enough that
hadrons will pass through largely without interacting. These hadrons then go on to deposit their
energy in the significantly larger HCAL.

There exists a variety of methods for measuring the energy deposited by the showers, such as
scintillators combined with photo multipliers, liquid argon, gas mixtures, or silicon diodes [88].

34

CHAPTER 2. CALORIMETRY

Homogeneous Calorimeter

Incident
Particle

Shower Active Detector Active DetectorPassive Absorber

Sampling Calorimeter

Incident
Particle

Figure 2.7: Comparison of homogeneous and sandwich sampling calorimeter approaches.

All of these approaches rely on recording the free charges caused by ionization processes. This
means that only energy lost via ionization can be directly recorded. However, since the average
ratio between ionization and other interactions is known, one can use the measured ionization
energy to calculate the full shower energy.

Using these methods, there are two design approaches to building a calorimeter. In a homo-
geneous calorimeter, the entire volume is made up of active detector material. Commonly used
are scintillating crystals made of dense materials such as the lead tungstate (PbWO4) used in
the CMS ECAL [91]. A sampling calorimeter uses a combination of active detector material
and dense passive absorber material. A common construction approach for sampling calorime-
ters is sandwich calorimeters, where the passive and active are arranged in alternating layers.
Figure 2.7 illustrates the difference between a homogeneous calorimeter and a sandwich-type
sampling calorimeter. Examples of the sampling design are the CMS High Granularity calorime-
ter (HGCAL), a planned upgrade for the High Luminosity LHC, [92] and the ILD calorimeters
that will be discussed in more detail in a separate section. The biggest difference between the
sampling and homogeneous approach is that in a sampling calorimeter the majority of the energy
is deposited within the absorber, and can therefore not be directly measured. Therefore, one
has to use the fraction of energy that is recorded in the active material to infer the full shower
energy. The fraction between the full energy Efull and the energy in the active sections Eactive is
known as the sampling fraction fsampling, defined as

fsampling =
Eactive

Efull
. (2.4.1)

A small sampling fraction can present a source of uncertainty in the measurement, which
is a downside of a sampling calorimeter. However, sampling calorimeters have several advan-
tages. The passive absorber can be significantly denser than an active material, such as tungsten
(19.3 g

cm3) which has a significantly higher density than lead tungstate (8.2 g
cm3). This allows a

sampling calorimeter to be more compact than a comparable homogeneous calorimeter. Further,
the cost of absorber material tends to be lower than that of active material, making a sampling
calorimeter more cost-effective. For this reason, nearly all HCALs are designed as sampling
calorimeters, as their large volume requirement makes a homogeneous approach too costly, and
the inherent fluctuations of hadronic showers make the fluctuations induced by the sampling

35

CHAPTER 2. CALORIMETRY

approach less impactful. Finally, the sampling setup allows the independent readout of the indi-
vidual layers, thereby giving insight into the spatial structure of a shower in a way not possible
with a homogeneous setup.

A further concept to mention is high granularity calorimeters. These calorimeters employ a
large number of individual readout channels to produce a high-resolution recording of a calorime-
ter shower. The current approach to constructing high granularity calorimeters uses a sampling
calorimeter setup, where each active layer is made up of a multitude of individual pixel detectors.

High granularity sampling calorimeters allow for an even better spatial resolution as the exact
positions of energy depositions can be determined more precisely. A high spatial resolution is
required for the particle flow approach [80]. Under this paradigm, one attempts to fully recon-
struct every single particle in an event. To this end, one needs to be able to separate individual
calorimeter showers in cases where multiple particles hit the detector at similar positions. This
separation is only feasible for a sufficiently granular calorimeter. Additionally, high granularity
calorimeters can be used to pile up rejection.

Since the main task of a calorimeter is to precisely measure the energy of a particle, one of
the most important properties of a calorimeter is its energy resolution. The resolution is defined
as the ratio

resolution =
σE
E

, (2.4.2)

where E is the particle energy and σE is the uncertainty on the measured energy. In practice, σE
can be understood as the standard deviation one expects when repeatedly measuring particles
with the same energy.

Calorimeter resolution can be decomposed into several contributions [93]:

(σE
E

)2
=

(a√
E

)2
+
(b
E

)2
+ c2 . (2.4.3)

The first term a√
E

corresponds to stochastic fluctuations intrinsic to particle showers. Since
the development of a shower is not a deterministic process, the exact processes by which the
shower particles lose energy will vary from shower to shower. In a sampling calorimeter, there
are additional fluctuations, as the energy depositions can either take place in the active or
passive parts of the calorimeter. These fluctuations scale approximately with

√
N , where N is

the number of particles in the shower. Since N is proportional to the total energy of the particle,
this results in an overall scaling of

√
E
E = 1√

E
.

The second contribution, b
E is the so-called noise term. It originates from the intrinsic noise

of the sensors and readout electronics of the calorimeter. This term is constant, regardless of
the energy of the particle that is measured, meaning its relative contribution drops for more
energetic particles.

The final term, c presents a constant contribution to the resolution that does not become less
relevant for higher particle energies. This term stems from imperfections in the detector, such
as inhomogeneities or imperfect calibrations. These effects result in a relative smearing that is
more impactful at higher particle energies, leading to the constant contribution to the ratio σE

E .

36

CHAPTER 2. CALORIMETRY

2.5 Calorimeter and Shower Simulation

Geant4 Full Simulation

The state-of-the-art software for simulating calorimeter showers is the GEometry ANd Tracking
toolkit (Geant4) [29]. Geant4 is a first principle, full simulation setup, meaning it aims to
model the paths and interactions of every particle in a shower using a wide range of interaction
models.

A detector in Geant4 is implemented as a combination of volumes, with each volume con-
sisting of a specific material. Individual particles within the detector are simulated using a
step-based model. At each step, the possible interactions for a particle are considered. These
interactions are characterized using the mean free path length λ. The probability p of interacting
after a traversed distance l is given by the exponential relation

p(l) = e
∫ l
0

1
λ(l)

dl
. (2.5.1)

The integral in the exponent accounts for varying mean free path lengths at different points
along the trajectory of the particle, for example, caused by the particle losing energy along the
way or traversing different materials.

For most interactions, the mean free path length in a section of material can be expressed as

1

λ
= ρ

∑
i

xiσi
mi

, (2.5.2)

where the index i corresponds to various isotopes contained within the material with overall
density ρ. σi is the cross section of the interaction with a specific isotope, mi is the mass of the
isotope, and xi describes the fraction of the material made up of the isotope.

In order to randomly sample path lengths of processes, Equation (2.5.1) can be rewritten as

p(l) = e−nλ , with (2.5.3)

nλ =

∫ l

0

1

λ(l)
dl . (2.5.4)

This allows for the sampling of nλ from a simple exponential distribution, which is achieved
by drawing a sample η from a uniform distribution between 0 and 1 and setting

nλ = − ln η . (2.5.5)

The sampled values for nλ can then be used to calculate the corresponding distance l before
the interaction occurs. This distance is separately determined and sampled for every possible
process. The shortest distance among all possible interactions determines the current step size
and what process the particle undergoes at the end of this step. An additional constraint to the
step size is that a single step is not allowed to cross a boundary between detector volumes. In
detectors that comprise a large number of individual materials and components, such as highly

37

CHAPTER 2. CALORIMETRY

granular sampling calorimeters, this constraint can significantly reduce the average step size,
meaning the overall simulation requires more steps to be taken.

At the next step, the nλ values are modified based on the previous step size, and the algorithm
is applied again to select the next process. This repeats until the energy of the particle drops
below a particle type specific threshold, after which the reaming energy is deposited in the current
volume and the simulation of this particle is terminated.

The exact processes that are considered for each particle are defined by an extensive and
well-refined list of possible interactions implemented in Geant4. Various settings are available
that make use of different underlying theoretical models to simulate the interactions. The exact
choice of settings is highly dependent on the specific application and energy range that one
intends to run simulations.

The development of electromagnetic showers and other electromagnetic interactions are well
described by a standard package of EM processes. Hadronic interactions are more difficult to
cover with a unified list, due to their more complex and varied interactions. Therefore, several
options are available to simulate hadronic showers. The two physics lists used for hadron shower
simulations in this thesis are the QGSP_BERT_HP and FTFP_BERT_HP lists. Both lists
make use of the Bertini cascade model [94] (BERT) for low energies and employ the High Precision
neutron setting (HP). This setting lowers the energy threshold at which neutron simulations are
terminated, resulting in more accurately described interactions of low-energy neutrons.

The two lists differ in how they model the high energy regions, where QGSP_BERT_HP
makes use of the quark-gluon string precompound modeling [95] and FTFP_BERT_HP uses
the Fritiof precompound model [96].

Fast Simulation Approaches

The complete simulation of every particle in a calorimeter shower is both time-intensive and
computationally expensive. Further, the interactions of a given particle are dependent on pre-
vious interactions the particle underwent. Therefore, the simulation has to be done sequentially
and cannot be easily parallelized.

To alleviate the strain shower simulation puts on computation resources in particle physics,
several approaches for less accurate, but significantly faster simulation, known as FastSim, have
been proposed and developed.

Methods based on generative ML models are promising candidates and will be discussed in
more detail in subsequent chapters. However, there also exists a series of FastSim not based on
ML.

Delphes [97] is a software framework capable of quickly simulating entire detectors. Rather
than modeling individual showers, Delphes assigns the energy of particles that arrive in the
calorimeter to a single ECAL and a single HCAL cell at the impact position of the particle. The
choice of the relative fraction between ECAL and HCAL is based on the particle type. For exam-
ple, electrons and photons deposit their entire energy in the ECAL, while stable hadrons deposit
their energy completely in the HCAL. To model the imperfect resolution of a real calorimeter,
the actually deposited energy is smeared by a factor defined using the calorimeter resolution.
This results in an exceedingly fast simulation; however, Delphes requires the energy resolution
of a calorimeter to be known in advance and therefore cannot be used for first-principle simula-

38

CHAPTER 2. CALORIMETRY

tions. Additionally, Delphes only models the total energy, but not the shower shapes, making
it difficult to use in conjunction with particle flow.

Gflash [98,99] is a parameterized approach to shower simulation based on Geant4. It uses
longitudinal and transversal energy profiles derived from showers fully simulated in Geant4
and uses MC methods to place energy depositions in the simulated calorimeter such that these
profiles, as well as additional internal correlations, are accurately reproduced. This approach is
significantly faster than a full simulation of every particle. This parameterized approach can be
used in conjunction with any previously listed Geant4 setting, so long as data simulated using
this setting is used as the basis of the parametrization.

Frozen Showers [100] describes an approach where a library of showers caused by low energetic
particles is simulated beforehand using a full simulation. During the main simulation, the Frozen
Showers approach uses either a FullSim or a parameterized approach to deal with highly energetic
particles. However, once a sub-particle falls below a certain threshold, the simulation of this
particle is terminated and one of the pre-generated showers with appropriate energy, angle, and
position is placed at the position of the particle. Thereby, the Frozen Showers method skips
having to simulate the low energetic particles that make up a majority of shower particles.

A similar approach had already been pioneered by the H1 collaboration [101], which used a
library of pre-simulated showers for fast simulation of complete showers, rather than sub-showers.

2.6 ILD Calorimeters

The ILD [59] is one of the proposed detectors for the ILC. The general features of both the ILD
and ILC have been introduced in Section 1.4. This section specifically focuses on the calorimeter
designs proposed for the ILD. As the ILD is specifically designed and optimized for the particle
flow approach, both its calorimeters require sufficient resolution to allow for the separation of
overlapping showers.

The CAlorimeter for LInear Collider Experiment (CALICE) [62] group works to design, build
and test particle flow optimized calorimeters. Work done by CALICE has also found application
in the CMS high granularity calorimeter upgrade [102].

ILD ECAL

There are two proposed designs for the electromagnetic calorimeter of the ILD. The SiW-
ECAL [103] is a sampling calorimeter with tungsten layers as absorbers and active silicon detec-
tors. The ScW-ECAL [104] design similarly uses tungsten absorber layers but uses scintillators
instead of silicon detectors.

The design used in this thesis is the SiW-ECAL. It consists of a total of 30 active and 30
passive layers, arranged alternatingly. The active silicon layers have a thickness of 0.525 mm
and are made up of individual cells with a size of 5 mm × 5 mm, where each cell is individually
read out. The first 20 passive absorber layers have a thickness of 2.1 mm, while the remaining
10 have a thickness of 4.2 mm. This allows for a high longitudinal resolution in the first parts
of the calorimeter, while still providing enough total material to contain the majority of an
electromagnetic shower. The borders between two sensor cells present possible blind spots.
To alleviate this problem, the individual cells are staggered between layers, thereby preventing
particles from repeatedly passing through the gaps between cells.

39

CHAPTER 2. CALORIMETRY

ILD HCAL

The two design proposals for the hadronic calorimeter design are the Analogue Hadron Calorime-
ter (AHCAL) [63] and the Semi Digital Hadron Calorimeter (SDHCAL). For this work, we focus
on the AHCAL design. Similar to the ECAL, the AHCAL is a highly-granular sampling calorime-
ter. It uses stainless steel layers with a thickness of 17.2 mm as the absorber material and 3 mm
thick scintillators in combination with silicon photomultipliers as the active detector elements.
Each scintillator tile has a size 3cm × 3cm and the design features 48 active layers.

A prototype version of this calorimeter with 38 layers was tested at the Super Proton Syn-
chrotron (SPS) at CERN [105].

ILD Calorimeter Simulation

The construction and planned use case of the ILD calorimeter system put it at an intersection
of several factors that make MC simulations for the calorimeters challenging. On the one hand,
the segmented nature of the highly granular sampling calorimeters forces Geant4 simulations to
operate with reduced step sizes, resulting in extensive per-event simulation times. On the other
hand, the high precision measurements planned at the ILC require a vast amount of measured
events, the analysis of which will, in turn, require a vast amount of MC data.

This combination of lengthy simulation times and large MC data requirements make the ILD
calorimeter system a prime beneficiary of the generative FastSim approaches explored in this
work.

40

Chapter 3

Machine Learning

Machine learning (ML) is a general description of algorithms designed to automatically improve
and adapt through the usage of data. The field covers a wide range, from simple boosted decision
trees to highly complex deep Neural Networks.

The general principles of ML have been under investigation for quite some time, however,
their need for significant computational resources presented a significant hurdle. Recent advances
in computational hardware, specifically the arrival of highly parallel graphical processing units
(GPUs) have enabled the widespread use of ML in both science and industry.

ML can broadly be separated into two subcategories, supervised learning, unsupervised learn-
ing, and Reinforcement learning. Supervised methods work on labeled data, meaning each point
in the data set has a corresponding label that describes some property of the data point. A
set of images with a label designating the image content is an example of such a labeled data
set. The most common supervised learning tasks are classification tasks, where a model aims
to assign an appropriate label to a given data point, and regression tasks where the model tries
to predict a specific value associated with that data point. Unsupervised methods use unla-
beled data. Such methods are largely designed to learn underlying structures within the data
set. Common applications are anomaly detection and generative models, which will be the main
focus of this chapter. Reinforcement learning features an agent that performs decisions based
on a set of circumstances in order to achieve a specific goal. The agent is assigned a score based
on how well it performs at reaching this goal and is trained to maximize the score it receives.
Reinforcement learning is most commonly used in applications with abstract goals that cannot
easily be expressed mathematically. Deep learning is a sub-field of ML concerned with deep
neural networks.

This Chapter covers the underlying methodology of ML, starting with an introduction to
the principle of gradient descent in Section 3.1. Sections 3.2 and 3.2 cover commonly used
ML optimization algorithms and loss functions, respectively. General challenges and potential
problems encountered in ML are discussed in Section 3.4. In Section 3.5 neural networks are
introduced, and several layer types used to construct neural networks are presented. Finally,
Section 3.6 specifically covers activation functions used in neural networks.

41

CHAPTER 3. MACHINE LEARNING

Figure 3.1: Potential risk of too small and too large learning rates. Left: optimizer with small
learning rate converging to a local minimum, right: optimizer with large learning rate leaving
the global minimum.

3.1 Gradient Descent

The underlying concept of both machine and deep learning is to define a model f(x), with f :
RN → RM , and to iteratively modify this model until it describes a given data-set X = {xk}Kk=o,
where K is the total number of data points, and xk ∈ RN . Such a model can be understood as
a nonlinear function mapping from an N -dimensional input space to an M -dimensional output
space. This function is defined by an arbitrary number of parameters ω, which are optimized
to facilitate the iterative improvement of the model [106]. This optimization takes the shape of
minimizing a so-called objective or loss function L. Some specific loss functions will be explained
in more detail in the following section, for now, a loss function can be understood as a function
that measures the performance of the model, such that a small loss corresponds to better perfor-
mance. Therefore, the exact value of the loss will be dependent on the parameters of the model
and the training data.

The most common approach used to minimize a loss function of a model in ML is gradient
descent. To this end, one calculates the gradient of the loss function with respect to the model
parameters,

∇ω,iL(ω,X) =
∂L(ω,X)

∂ωi
, (3.1.1)

where ωi is the i-th parameter in ω. Note that gradient descent requires a differentiable loss
function. This gradient can be seen as the direction in the parameter space, in which the loss
function increases, therefore by modifying each parameter in the opposite direction, the loss will
be reduced. One such gradient descent update step can be written as

42

CHAPTER 3. MACHINE LEARNING

ωt=j+1 = ωt=j − η∇ωt=jL(ω,X). (3.1.2)

Here ωt=j are the model parameters after j gradient descent steps, and η is a parameter that
determines the step size of each update step. η is commonly referred to as the learning rate. The
learning rate has significant effects on how well a gradient descent process is able to find a global
loss minimum. A too large learning rate runs the risk of overshooting and missing the global
minimum, as illustrated by the blue line in Figure 3.1. However, a too small learning rate can
end up stuck in a local minimum, also causing the global minimum to be missed, as illustrated
by the red line in Figure 3.1. Furthermore, a small learning rate means the optimization makes
less progress per step, thereby increasing the time the model takes to converge.

3.2 Optimizers

The potential problems of gradient descent have led to the development of several, more sophis-
ticated optimizing methods derived from gradient descent to help alleviate these problems.

Momentum

One step of standard gradient descent is calculated using the entire data set X = {xk}Kk=o.
This can be problematic for complex models and large data sets, as calculating and storing the
gradients for each model parameter may require more computational resources than are available.
Stochastic gradient descent (SGD) [107] modifies the approach by splitting the data into a set
of disjoint subsets Xj = {xk}bjk=b(j−1) called minibatches, with j ∈ {1, ⌈kj ⌉}. The SGD steps are
then performed independently and consecutively on all batches.

This allows for more complex models, as only a fraction of the full data set needs to be eval-
uated per step. Additionally, the exact composition of the batches is random, which introduces
some statistical fluctuations to the gradients of the different batches. These fluctuations reduce
the risk of the optimizer converging to a local minimum, as a parameter set that corresponds to
a local minimum for one batch will not be a minimum for a different batch, thereby allowing the
SGD algorithm to escape local minima.

Momentum

Both gradient descent and SGD will encounter problems in so-called ravines [107], regions in
gradient space where there is a steep gradient valley in one direction, but only a gentle slope in
another. In such as case the SGD will follow the largest gradients, causing it to bounce back and
forth between the steep valley walls while making little progress along the slope. The left-hand
side of Figure 3.2 illustrates this effect.

One approach to solve this is the addition of a momentum contribution, that adjusts the
current trajectory based on the previous step. If a standard SGD update step is defined as

ωt=j+1 = ωt=j +∆ωt=j with (3.2.1)
∆ωt=j = −η∇ωt=jL(ω,X) , (3.2.2)

43

CHAPTER 3. MACHINE LEARNING

SGD without momentum SGD with momentum

Figure 3.2: Behavior of SGD with and without momentum in a ravine. Black lines indicate
contours in the loss function. Without momentum, the SGD will bounce back and forth, while
the momentum term guides the optimizer down the slope.

then we can expand this to include a momentum term by adding a scaled version of the previous
update vector ∆ωt=j to the current one, resulting in

ωt=j+1 = ωt=j +∆ωt=j with (3.2.3)
∆ωt=j = γ∆ωt=j−1 − η∇ωt=jL(ω,X) , (3.2.4)

where γ is the scaling factor dictating the strength of the momentum.
This helps both to dampen the oscillations and to enhance the optimizer movement along

the gentle but consistent downward slope. Overall, this leads to a fast convergence, as indicated
in the right illustration in Figure 3.2.

ADAM

Adaptive Moment Estimation (ADAM) [108] is the current state-of-the-art optimization algo-
rithm. ADAM is based on SGD but expands it by two running averages over the gradients and
the squared gradients denoted as mt=j and vt=j respectively [107]. These terms are defined by

mt=j = β1mt=j−1 + (1− β1)∇ωt=jL(ω,X) (3.2.5)

vt=j = β2vt=j−1 + (1− β2)[∇ωt=jL(ω,X)]2 . (3.2.6)

Here β1 and β2 are hyperparameters that define how fast the running average decays. The
suggested default values are β1 = 0.9 and β2 = 0.999. The initial values of the two terms are set
to be mt=0 = 0 and vt=0 = 0. Depending on the decay rates both mt=j and vt=j can be biased
toward zero. To account for this one introduces the corrections

m̂t=j =
mt=j

1− β1
(3.2.7)

v̂t=j =
vt=j

1− β2
. (3.2.8)

The gradient update step is then performed using these two parameters,

44

CHAPTER 3. MACHINE LEARNING

ωt=j+1 = ωt=j −
η√

v̂t=j + ϵ
mt=j . (3.2.9)

This means the actual update direction is given by the running average over the past updates.
Similar to a momentum term this allows ADAM to quickly traverse steady slopes in gradient
space. Additionally, the learning rate is scaled by the squared mean over the gradient updates,
which can be understood as their variance. This allows the optimizer to effectively have a small
learning rate in gradient regions with significant fluctuations, while at the same time giving the
optimizer a large learning rate in regions without much variance. The combination of these two
factors allows ADAM to reliably and quickly converge. Additionally, the adaptive scaling of
the learning rate reduces the impact of η as a hyperparameter, thereby enabling stable training
without having to fine-tune the learning rate.

3.3 Loss Functions

A loss function also called cost or objective function is the metric by which a network is op-
timized. In principle, any function can be a loss function, so long as a smaller loss value
corresponds to improved network performance. Furthermore, a loss function needs to be dif-
ferentiable, as the gradient descent approach and its derivatives require the calculation of the
gradient ∇ωt=jL(ω,X).

There exists a vast amount of loss functions, tailored to specific problems and applications,
such that an exhaustive list would be beyond the scope of this work, however the most commonly
used loss functions in classification and regression tasks will briefly be outlined. Loss functions
for generative models will be discussed in more detail in Chapter 4.

Mean Squared Error

In a supervised classification or regression task, one has a set of data X = {xk}Kk=1 and a set of
so-called labels Y = {yk}Kk=1. Each data point xk has a specific label yk associated with it. These
labels can describe any sort of property of the data. A common example for a classification task is
to have a data set containing images of either dogs or cats and a set of labels that indicates which
animal is depicted in the images. Meanwhile, a more physics-specific example of a regression
task could be a data set of calorimeter showers, with labels describing the energy of the incident
particle. The labels are usually encoded into numbers, so an ML model can easily interact with
them. For the cat and dog images, this would for example mean assigning the value 0 to the
“cat” label and the value of 1 to the “dog” label, while in the shower example the labels could be
the particle energy in GeV.

The actual classification or regression task now consists of creating a model f(x), such that
f predicts the correct label for a given data point. In order to optimize the model, one needs a
loss function that measures the accuracy of the model predictions.

A straightforward way of achieving this is a mean squared error loss (MSE) function. This
loss calculates the average squared difference between the network predictions and the true labels
values, given by the expression

45

CHAPTER 3. MACHINE LEARNING

LMSE =
1

K

K∑
k=1

[f(xk)− yk]
2 . (3.3.1)

The output of the MSE becomes smaller, the closer the model predictions are to the true
values, and can easily be differentiated.

Cross Entropy

Cross entropy (CE) is a loss function specific to classification tasks with exactly two classes, such
as the animal images example. CE is defined as

LCE =
1

K

K∑
k=1

(
−yk log f(xk)− (1− yk) log(1− f(xk))

)
. (3.3.2)

It is important to note that CE is only defined for networks with outputs constrained to [0, 1].
To understand Equation (3.3.2) one can break it down into two cases. The first is yk = 0, in

this case the first term becomes 0 and only − log(1−f(xk)) remains. This expression is maximized
as f(xk) approaches 1 and minimized as it approaches 0. Thereby the loss pushes f(xk) toward
the correct label. In the second case where yk = 1 only the first expression − log f(xk) remains
relevant. Similar to the previous case, this pushes f(xk) toward the, in this case correct, label
of 1.

3.4 Challenges of Machine Learning

There are several difficulties one may encounter when training or otherwise optimizing an ML
model. Some of the more common problems will now briefly be covered.

Overfitting

Overfitting [109] describes the case where a model attempts to perfectly fit a given data set, to
the point of modeling statistical fluctuations in the data set. One example would be the model
learning every training point by heart, rather than describing the underlying distribution from
which the data points originate. This case is illustrated in Figure 3.3 where the overfitting model
exactly describes every data point but shows a large deviation from the true distribution.

The biggest problem of an overfitting model is that a model trained on a specific data set will
only accurately describe the points of that training data set. Applying the model to any other
data points from the same distribution will result in significantly worse performance. Overfitting
is often linked to having an overparameterized model, where the model has more available pa-
rameters than are required to perform the task at hand. However, recent research [110] suggests
that this is not universally true, and significantly overparameterized models can be less prone to
overfitting.

There exist several ways to prevent or reduce overfitting. The most common approach is to
split the data into a training and a validation subset. While the model is trained on the training
set, its performance is regularly evaluated in the validation set. If the training loss and validation
loss start to diverge, it is an indication of overfitting and the training can be stopped early.

46

CHAPTER 3. MACHINE LEARNING

Data
True Distribution
Overfitting
Insufficient Expressiveness

Figure 3.3: Illustration of the effects of overfitting (red, solid) and insufficient model expressive-
ness (green, dashed). In both cases, the resulting description differs significantly from the true
distribution (blue, dotted).

Insufficient Model Capability

Having a model with insufficient descriptive capacity, also known as insufficient expressiveness,
can be seen as the opposite of overfitting. While overfitting describes a case where the model
can learn every data point by heart, insufficient expressiveness leads to the model being unable
to fully capture the underlying distribution in its entirety. Figure 3.3 again illustrates this case.

Insufficient model expressiveness often results in unsatisfactory model performance. This
makes it a hard-to-spot problem, as it can be difficult to determine whether the model is not
capable enough or the training procedure is simply sub-optimal.

Vanishing Gradient

Training an ML model through gradient descent requires the model to be differentiable. However,
even differentiable models can still have an effective gradient of 0. In such cases, the optimizer
no longer modifies the model parameters and the training becomes stuck in its current state.

There exist a variety of causes that result in a gradient of 0. Vanishing gradients caused by
local extrema in the loss function are generally easy to resolve through the use of a momentum
term in the optimizer or SGD. However, vanishing gradients caused by the model construction
itself can be more difficult to resolve.

3.5 Neural Networks

Neural networks form the basis of deep learning. In essence, a neural network is a nonlinear
function mapping from an N -dimensional input space to an M -dimensional output space. The
precise nature of this mapping is dependent on the structure of the network, also known as its ar-
chitecture. For practical reasons, neural networks are commonly constructed as the combination

47

CHAPTER 3. MACHINE LEARNING

n=4

x1

y1
+b 1

+b 2

+b 3

y2

y3

2

3

1

2

3

4

x

x

xw()

xw()

wi,j

xw()

xw()
x

m=3

Input
Output

Figure 3.4: Dense neural network layer with a bias term b, 4 input nodes, and 3 output nodes.

of several so-called layers. A network is referred to as deep if it contains multiple layers. These
layers can themselves be understood as functions with variable input and output dimensionality
that, when applied in succession, form the complete network. The first layer in a network is
called the input layer, the last layer is the output layer and any intermediary layers are known
as hidden layers. Several such layers that will be used throughout this thesis will be discussed
in the following.

Dense Layers

The basic building block of a neural network layer is the so-called neuron. Broadly modeled
after its biological counterpart, such a neuron takes a series of inputs and transforms them into a
scalar output. While the specifics of this transformation are arbitrary, dense layer neurons make
use of a specific weighted sum transformation. The output y of this is the dot product of the
input vector x = {x1, ..., xn} and a weight vector ω = {ω1, ..., ωn}

y =

n∑
i

xiωi + b . (3.5.1)

The additional b is a biased term that offers greater flexibility to the transformation. Both
ω and b are variable parameters of the transformation that are adjusted during the training
procedure, also called trainable parameters.

A single neuron only provides a 1-dimensional output. However, several neurons with inde-
pendent weight vectors can be applied to the same input vector, resulting in one output dimension
per neuron. This can be expressed by replacing the output scalar with a vector y = {y1, ..., ym}
and expanding the weight vector and bias term into a matrix ωn×m and vector b = {b1, ..., bm}.
This modifies Equation (3.5.1) into

48

CHAPTER 3. MACHINE LEARNING

Input Kernel

Convolution

Output

Figure 3.5: 2-dimensional convolutional operation with a 3× 3 kernel. 3× 3 regions of the input
are multiplied element-wise with the kernel and summed over to obtain the output value.

yj =

n∑
i

xiωi,j + bj . (3.5.2)

Figure 3.4 visualizes such a combination of three neurons with four inputs to each. Within
this configuration, every input is connected to every output through a weight. For this reason,
such a layer is referred to as a fully-connected layer or dense layer. The total number of trainable
parameters of a dense layer is the sum of the number of elements in the weight matrix and of
the elements in the bias vector, resulting in

Nparams = n×m+m = (n+ 1)×m . (3.5.3)

Convolutional Layers

Convolutional layers are based on convolutional filters used in image processing. The underlying
principle is illustrated in Figure 3.5. The convolution filter is overlaid onto an input region
of the same size as the filter. Now every entry in that region is multiplied with its respective
counterpart in the convolutional filter and the results are summed up, resulting in a scalar
output for this specific region. The filter is then moved along the first dimension of the image
and the multiplication is performed once again at this new position. The distance by which the
filter is moved is known as its stride. This scanning process continues until the whole image
has been covered by the convolutional filter, resulting in a 2-dimensional map of scalar outputs
called a feature map. A stride larger than one results in fewer overall steps in the convolution
and therefore a smaller output size. This type of downsampling behavior can be utilized to
reduce the too-large input sizes to more manageable ranges. Classical convolutional operations

49

CHAPTER 3. MACHINE LEARNING

in image processing make use of specialized kernels to extract specific features, such as horizontal
or vertical edges, circular structures, or gradients. Convolutional neural network layers, on the
other hand, do not have specific filters, but instead, use filters formed from trainable parameters.
This allows the filter to be adjusted during training to extract desired features.

In general, it is not sufficient to extract one single feature from a given input. Therefore
convolutional neural network layers have the capacity to handle multiple convolutional filters in
parallel. Each of these filters is applied to the same input and each results in an independent
output feature map. Further, the inputs to a convolutional layer can themselves have multiple
feature maps. In the case of n input feature maps and m output feature maps, one first applies
a total of m convolutional filters to each of the n input maps, resulting in n ×m total filters.
The outputs of these filters are then summed in a way that ensures every sum has exactly one
contribution from each of the n input maps, leading to the desired total of m outputs.

This enables the stacking of multiple convolutional layers. In such a setup the earlier con-
volutional layers can extract basic features from the input, which is then combined into more
complex features by later layers.

When one applies a convolutional operation with a kernel size larger than one to an image,
the resulting output will have a lower number of pixels compared to the input. This behavior
can be undesirable depending on the application. For such cases, one can use so-called padding.
This involves placing sufficient additional pixels around the input so that the output has the
same number of pixels as the un-padded input. The precise content of the added pixels depends
on the exact type of padding. The most common one, so-called zero-padding, uses zeros for this
purpose.

As convolutions originated from image processing, their native input structure is matrices of
pixels. However, the concept can also be adapted to vector- or higher-order tensor-like structures.
Such convolutional layers are known in ML as 1D- or 3D-convolutions, respectively.

Transpose Convolutional Layers

Transpose convolutions present an inversion of standard convolutional operations. Like convo-
lutions, their standard applications are 2-dimensional images. However, while standard convo-
lutions multiply individual entries of the input with individual kernel parameters and sum over
the result, transpose convolutions multiply every individual input entry with the entire trans-
pose convolutional kernel. Each of these multiplications results in an intermediate output with
a size equal to that of the kernel. These intermediate matrices are then overlaid with a distance
between each matrix equal to the stride of the transpose convolution. Figure 3.6 shows the prin-
ciple of a transpose convolution. Similar to how a large stride can be used for downsampling in
classical convolutions, a large stride in transpose convolutions results in an upsampled output.
Compared to other upsampling approaches, transpose convolutions are not static, as the kernel
is composed of trainable weights, allowing for wider flexibility in the upsampling.

Many other features of classical convolutions, such as multiple feature maps, padding, and
extension to 1-and 3-dimensional data are also present for transpose convolutions.

Dropout

Dropout [111] is an approach used to reduce overfitting and introduce redundancy into a neural
network. This is achieved by giving each input to a layer a chance p to be turned off in any

50

CHAPTER 3. MACHINE LEARNING

Input Kernel

Transpose Convolution

Output
Figure 3.6: 2-dimensional transpose convolutional operation with a 3 × 3 kernel. Individual
inputs are multiplied with the kernel, resulting in a 3× 3 region in the output.

given training step. Therefore the network only has access to a randomly chosen subset of its
intermediate values each time it is evaluated during training. This discourages the network from
placing a too strong emphasis on specific intermediate or input features, as they will not always
be available. Figure 3.7 shows the effect of dropout with p = 0.5 on a fully connected network. In
the left network, approximately half of the nodes are turned off, reducing the number of overall
connections to one quarter.

Dropout is not a full layer, but rather a modification that is applied to other layers. In
practice, the deactivation of nodes is done by masking out certain inputs to a layer and the
outputs of the remaining layers are scaled by a factor of 1

1−p . Generally, it is turned off when
the network is evaluated after training, to ensure deterministic network outputs. The scaling
factor applied during training ensures dropout can be switched off while keeping the intermediate
network inputs consistent.

Batch Normalization Layers

Many ML applications deal with a large range of possible values in their various input features.
Depending on the specific data set certain input features may differ from other features by several
orders of magnitude. Such discrepancies between input features are problematic. Therefore it
is common practice to normalize input features to all lie within the same range, usually by
normalizing their mean to 0 and their standard deviation to 1.

However, this problem is not limited to the network inputs. The inputs to intermediate
layers can also have vastly different orders of magnitude. Batch normalization (or batchnorm)
layers [112] are designed to address this. The input batch x to a batchnorm layer gets transformed
according to the following rule

51

CHAPTER 3. MACHINE LEARNING

Dense Network
No Dropout

Dense Network
p=0.5 Dropout

Figure 3.7: Demonstration of the effects of dropout using a 3 layer dense network. The nodes
that are deactivated are chosen at random with a probability of p = 0.5 for specific node to be
turned off.

batchnorm(x) =
x− meanbatch(x)√

varbatch(x) + ϵ
γ + β , (3.5.4)

where meanbatch(x) and varbatch(x) calculate the mean and variance over a batch, respectively.
Further, γ and β are trainable layer parameters and ϵ is a numerical factor to prevent division
by 0.

By applying a batchnorm layer to the output of every network layer one can ensure that
the inputs to all intermediate layers are also normalized. The exact means and variances are
constantly recalculated using the current batch. During evaluation, this would make the exact
network output for a given data point depend on the makeup of the batch it is in. To prevent such
behavior batchnorm layers keep a running average over the mean and variance during training
and use this average during evaluation.

Layer Normalization Layers

An alternative approach to intra-network normalization is Layer Normalization (layernorm). Its
operating principle is similar to that of batchnorm, however, it uses the transformation

layernorm(x) =
x− meaninput(x)√

varinput(x) + ϵ
γ + β . (3.5.5)

This is identical to the batchnorm transformation except it uses the mean and variance
calculated over parts of the input meaninput(x) and varlayer(x), instead of the mean and variance
over the batch. Therefore layernorm is independent of the batch makeup and does not require
special treatment during evaluation. However, this comes at the cost of normalizing several input
features at once, rather than independently, as is the case in batchnorm.

52

CHAPTER 3. MACHINE LEARNING

f(x)

x

ReLU
1

1-1

f(x)

-1 x

Leaky ReLU
1

1

Figure 3.8: Depiction of ReLU and Leaky ReLU activation functions.

3.6 Activation Functions

The basic neural network layers, such as dense layers or convolutional layers are linear operations,
expressible as matrix multiplications. Therefore any network built as a combination of these
layers is itself again a linear function. However, many of the problems and functions one aims
to describe with a network are inherently nonlinear, and therefore difficult to approximate with
a purely linear function.

Activation functions were introduced to address this problem by adding nonlinearity to the
neural network. These activation functions are nonlinear mappings applied to the output of a
network layer before it is passed to the next layer.

There exists a wide range of activation functions, many of which with very specialized appli-
cations, therefore this section will only focus on those functions relevant to this thesis.

ReLU

One of the simplest, yet most effective activation functions, is the Rectified Linear Unit (ReLU)
[113]. The function is shown in the left panel of Figure 3.8 and corresponds to an identity
mapping for inputs larger than zero, and a mapping to zero for input values below zero. It can
be defined as

fReLU(x) = max(x, 0) . (3.6.1)

ReLU provides a straightforward way of introducing nonlinearity to a model without requiring
any complex computations. This ease of use and fast evaluation has made the function a mainstay
in modern ML, However, ReLU has a notable downside, since its gradient for inputs below zero
is once again zero, leading to the aforementioned vanishing gradient problem.

Leaky-ReLU

Leaky ReLU [114] is a modification of ReLU that aims to address the vanishing gradient problem.
To this end, leaky ReLU introduces a small slope in the negative input range, indicated in the
right panel of Figure 3.8. The leaky ReLU function is given by

53

CHAPTER 3. MACHINE LEARNING

f(x)

x

ELU
4

4-4
-1

f(x)

x

Sigmoid
1

4-4

Figure 3.9: Depiction of ELU and Sigmoid activation functions.

fReLU(x) =

{
x, x ≥ 0
αx, x < 0

, (3.6.2)

where α is a parameter dictating the negative slope. The introduction of this negative slope
means the gradient of fReLU can no longer become zero in the negative region, thereby reducing
the risk of vanishing gradients.

ELU

An Exponential Linear Unit (ELU) [115] can be used in cases where the sharp cutoffs of either
ReLU or leaky ReLU are not desired. The ELU function extends the ReLU function into the
negative input range by an exponential function, defined as

fReLU(x) =

{
x, x ≥ 0
α(exp(x)− 1), x < 0

, (3.6.3)

where α is once again a scalable parameter. This results in a smooth transition from identity
mapping to a constant value, as can be seen on the left panel of Figure 3.9.

Sigmoid

Certain applications, such as classification tasks, require the network outputs to be constrained
between 0 and 1. To map the, in principle, unconstrained network output to this interval one
can use the Sigmoid function, defined as

fSigmoid(x) =
1

1 + exp (−x) . (3.6.4)

The right panel of Figure 3.9 shows this function. One can see the asymptotic behavior of
limx→−∞ fSigmoid(x) = 0 and limx→∞ fSigmoid(x) = 1 that ensures the final output is constrained
to the desired range of [0, 1] while maintaining differentiability.

54

Chapter 4

Generative Models

Generative models describe a subset of ML models designed to learn an underlying distribution
from a given sample of training data and then produce new samples from this distribution. The
underlying principle of all generative models covered in this work is to have a neural network
map an input consisting of random noise onto new samples that lie in the target distribution.
Defining the architecture of this model is largely dependent on the data set one intends to
generate new samples for and optimizing this can be a time-intensive process. The main difficulty
in utilizing generative models however is training them. Unlike in the classification examples
discussed in Section 3.3, defining a training objective for generative models is highly non-trivial.
This objective needs to simultaneously measure how well the samples produced fit the training
distribution, while still being differentiable. The main differences between the models described
in the following relate to how they approach this problem.

In this chapter, we will initially discuss the challenges of building generative models in Sec-
tion 4.1. Following this, individual generative methods will be explored, starting with Gener-
ative Adversarial Networks in Section 4.2 and Wasserstein generative adversarial networks in
Section 4.3. We then move to Autoencoder-based generative models, starting with an introduc-
tion to Autoencoders in Section 4.4. Based on this, Variational and Adversarial Autoencoders
are covered in Sections 4.5 and 4.6, respectively. Section 4.7 introduces the Bounded Information
Bottleneck Autoencoder, an overarching model comprising several other generative approaches.
Normalizing Flow architectures are described in Section 4.8, and Section 4.9 introduces the con-
cept of generative models with conditional input, as well as how to modify the previously covered
generative models into conditional models.

4.1 Challenges of Generative Models

Generative models have their own set of potential failure cases, that are instructive to briefly
highlight before exploring the methodology of building generative approaches. To illustrate the
difficulties, the MNIST handwritten number data set [116] will be used. This set contains
images of written single-digit numbers ranging from 0 to 9 and is often used to benchmark ML
approaches.

55

CHAPTER 4. GENERATIVE MODELS

Training Data

Accurate Generation

Low Sample Quality

Overfitting

Mode Collapse

Composition Mismodel

Figure 4.1: Examples of generative ML model failure cases using the MNIST handwritten data
set as an example. Specific explainations are outlined in the text.

Low Sample Quality

The main goal of a generative model is to produce new samples that lie within the underlying
distribution of the training data. One common failure case is that the samples generated by the
model deviate from that underlying distribution. The extent of this can vary, ranging from the
model producing random noise that is in no way comparable to the training data, to more subtle
differences in the generated data. In terms of the distributions, this means the generated images
are from a, for example, smeared-out distribution.

Low-quality samples are a generally easy-to-spot problem, as can be seen through direct
comparison of the generated and training data.

In the MNIST example shown in Figure 4.1, the low sample quality case is demonstrated by
several images that do not represent handwritten numbers.

Overfitting

Generative overfitting is similar to overfitting in general ML and describes a case where the
model learns the training data by heart. This results in a generative model that produces exact
copies of the training data. This is a significant problem as it means the generative model does
not produce new data points, effectively defeating its purpose.

Overfitting is comparatively rare in generative models, especially for highly complex data
sets, nevertheless, it can be a problem. Spotting overfitting in a generative model often requires
extensive comparisons of generated samples and training data to ensure there are no direct
matches.

56

CHAPTER 4. GENERATIVE MODELS

Mode Collapse

Mode collapse occurs when a generative model trained on a data set with multiple classes fails
to reproduce all the possible classes. For example, a mode collapsed model trained on the
MNIST handwritten numbers may only produce samples showing the number 1, as indicated in
Figure 4.1. In terms of distributions, this can be understood as the generative model learning
only one mode of a multimodal distribution. Importantly mode collapse does not mean the
individual generated samples are of low quality, only that some classes are never reproduced.

Data Composition Mismodeling

In some cases, a generative model may produce individual, high-quality samples, but the overall
distribution of the generated samples does not match that of the training data. In the MNIST
data set this could, for example, correspond to certain numbers being more abundant in the
generated data.

There are several generative applications where the overall data composition is not relevant.
One such example is generative art [117], where great importance is placed on the quality of
individual images, but global distributions of properties of the produced artworks are of no
consequence.

The situation is different when one intends to use generative models for fast simulation in
HEP. Since particle physics almost exclusively operates on the distribution level, it is vitally
important to replicate the overall properties of the data one aims to generate. This presents an
additional challenge when applying generative models in particle physics, which is not present
in many computer science applications.

4.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [118] are a common approach to generative modeling.
The core of a GAN consists of a so-called generator network G with parameters θg. This network
takes random noise variables z, drawn from a distribution pz(z), as its input and maps these
onto the generator dataspace pg, with this mapping expressed as G(z, θg). In order to train this
generator one employs a second classification network, called a discriminator D. This discrimi-
nator is tasked with distinguishing between the fake samples produced by the generator G(z, θg)
and real samples from the training set x. In other words, D is trained to maximize the cross
entropy term,

max
D

log(D(x, θd)) + log(1−D(G(z, θg), θd)) . (4.2.1)

The output of the discriminator is then used to train the generator by having the generator
maximize the confusion of the discriminator

min
G

log(1−D(G(z, θg), θd)) . (4.2.2)

In combination this means the discriminator and generator try to either maximize or minimize
the GAN loss function given by:

min
G

max
D

Ex[log(D(x, θd))] + Ez[log(1−D(G(z, θg), θd))] , (4.2.3)

57

CHAPTER 4. GENERATIVE MODELS

Generator

Discr.

Noise
x x'z

Output

Real

Fake

Real Data

Figure 4.2: Schematic depiction of a GAN setup. The green model shows the generator G, while
the orange model is the discriminator D. For brevity the generator output G(z) is labeled x′.

where Ex and Ez are the expectation values over the data x and the random noise z respec-
tively. This training objective can be understood as a back and forth between the generator and
discriminator, where the discriminator learns to identify errors made by the generator, and the
discriminator output is then used to train the generator to fix these errors. Figure 4.2 shows
the GAN training scheme. The GAN approach solves the aforementioned difficulty of defining a
generative loss function by deputizing the discriminator to act as this loss function. This adver-
sarial training can be shown to minimize the Jensen-Shannon divergence between the training
distribution and the generator distribution [118]. The Jensen-Shannon divergence is a symmetric
measure of the similarities between two distributions. Therefore by minimizing this divergence
between training and generated data, the generator learns to approximate the real data.

In an idealized scenario both the generator and discriminator improve continuously until
they reach a Nash equilibrium, where the discriminator can no longer distinguish between the
generator-produced samples and the training samples. In practice training a GAN to convergence
can be challenging, as the adversarial training has inherent instabilities. Additionally, one runs
the risk of designing either the generator or discriminator to be too powerful. This leads to a
regime where the discriminator cannot provide useful gradients to the generator, causing the
GAN training to stall.

4.3 Wasserstein GANs

The Wasserstein GAN (WGAN) [119] is a modification of the standard GAN that aims to improve
some of the shortcomings of the GAN setup. While a GAN aims to minimize the Jensen-Shannon
divergence between the generator and training distributions, a WGAN attempts to minimize the
Wasserstein distance between the two distributions. The Wasserstein-1 (W-1) distance, also
referred to as the Earth Mover distance originates, from optimal transport theory, and describes
the “work” required to move the mass of one distribution to another. In the WGAN case with
the training distribution px and the generator distribution pg, the W-1 distance can be expressed
as

58

CHAPTER 4. GENERATIVE MODELS

Figure 4.3: Adversarial network outputs for input with a value shown on the x-axis. In this case,
the training and generator density are disjoint. The GAN discriminator output approximating
the Jensen-Shannon divergence can be observed to have a vanishing gradient anywhere except
around 0. The WGAN critic approximating the W-1 distance maintains a clear gradient across
the entire range. Image taken from [119].

W (px, pg) = inf
γ∈Π(px,pg)

E(a,b)∼γ [||a− b||] . (4.3.1)

Here Π(px, pg) can be understood as the space of all transport plans that map from px to pg.
The W-1 distance offers a significant advantage compared to the Jensen-Shannon divergence

in cases where px and pg do not overlap. Figure 4.3 demonstrates an example where px and
pg are disjoint, as will commonly happen close to the start of the training. In this case, the
Jensen-Shannon divergence has a vanishing gradient, potentially causing the GAN training to
get stuck, whereas the W-1 distance has a clear gradient.

One difficulty with using the W-1 distance, however, is that the expression in Equation (4.3.1)
is extremely difficult to compute for higher dimensions. However, one can rewrite the W-1
distance into its dual form using the Kantorovich-Rubinstein duality [120]:

W (px, pg) = sup
||f ||L≤1

Ea∼px [f(a)]− Eb∼pg [f(b)] , (4.3.2)

59

CHAPTER 4. GENERATIVE MODELS

where sup||f ||L≤1
is the supremum over all 1-Lipschitz functions, meaning all functions for which

|f(x1)− f(x2)| < k|x1 − x2| with k = 1 , (4.3.3)

holds true. We can extend Equation (4.3.2) from 1-Lipschitz functions to k-Lipschitz functions
by scaling the distance W (px, pg) by k, resulting in

k W (px, pg) = sup
||f ||L≤k

Ea∼px [f(a)]− Ea∼pg [f(a)] . (4.3.4)

This multiplicative factor can be disregarded when using the W-1 distance as a loss function,
as it has no impact on the direction of the resulting gradients. Therefore we can use a function
expressed by a neural network to estimate the W-1 distance, as long as this function is a k-
Lipschitz function. The condition for a k-Lipschitz function in Equation (4.3.3) is equivalent to
requiring the function to be differentiable almost everywhere and to have a bounded derivative
df
dx < k. The differentiability condition will be inherently fulfilled by a given neural network, as
they are by construction differentiable. Furthermore, any network with weights θ that lie within
a bounded space will have a bounded derivative 1. Therefore one can ensure a network is a k-
Lipschitz function by limiting its weights to an arbitrary maximum value. This approach, known
as weight clipping, was used in the original WGAN implementation [119]. A network constrained
in this manner can then be used to estimate the Wasserstein distance between the generated and
real distributions. For an adversarial network D with parameters θd this estimation is given by

W (px, pg) ≈ Ea∼px [D(a, θd)]− Ea∼pg [D(a, θd)] . (4.3.5)

Using this one can write the discriminator loss function of the WGAN with a generator G
with parameters θg as

Ldisc = Ez∼pz [D(G(z, θg), θd)]− Ea∼px [D(a, θd)] , (4.3.6)

and the generator loss as

Lgen = −Ez∼pz [D(G(z, θg), θd)] (4.3.7)

One notable feature of this loss function compared to Equation (4.2.2) is the lack of cross
entropy-induced logarithms. This means the discriminator network is no longer constrained to an
output between [0, 1]. An intuitive way of understanding this is that the adversarial network in
a WGAN setup does not try to determine whether a given input is either real or fake, but rather
to rate the “realness” of an input using an arbitrary score scale. For this reason, the adversary
in a WGAN is commonly called a critic rather than a discriminator. Figure 4.4 shows a WGAN
setup, note the change to a critic network that returns a score, compared to the discriminator in
the GAN setup.

1Assuming no non-standard activation functions with an inherently unbounded derivative, such as exponential
functions, are used.

60

CHAPTER 4. GENERATIVE MODELS

Generator

Critic

Noise
x x'z

Output

Score

Real Data

Figure 4.4: Schematic depiction of a WGAN setup. The green model shows the generator G, the
orange model is the critic D. For brevity the generator output G(z) is labeled x′.

The weight-clipping approach has, as the original WGAN paper points out, several short-
comings, such as long convergence times if a large clipping maximum is chosen and vanishing
gradients in cases where the maximum is too small.

An improved approach to WGAN training [121] makes use of a gradient penalty term to
enforce the k-Lipschitz constraint. Here, one first defines a new distribution ps, that consists of
points obtained by uniformly interpolating between pairs of points from the real distribution px
and the generator distribution pg. One then calculates the gradient ∇sD(s) of the critic network
D with regard to a sample s drawn from the interpolation distribution ps. This gradient can be
understood to approximate the gradient of D in a region between the real distribution and the
generator distribution. To ensure the k-Lipschitz condition, this gradient needs to be constrained.
This is achieved by taking the squared difference between the absolute of the gradient and 1 so
that the resulting expression is minimal if the gradient of the adversarial network is 1. This then
leads to the full gradient penalty critic WGAN loss of

Ldisc = Ez∼pz [D(G(z, θg), θd)]− Ea∼px [D(a, θd)] + Es∼ps [(|∇sD(s, θd)| − 1)2] . (4.3.8)

For the remainder of this work, the gradient penalty trained WGAN will be assumed as the
default WGAN setup.

4.4 Autoencoders

AutoEncoders (AEs) [106] are most commonly found in unsupervised ML applications such as
data compression [122–124] and anomaly detection [125, 126]. They are not inherently gen-
erative models, however, they form the foundation of a variety of generative models, such as
the Variational Autoencoder, Adversarial Autoencoder, and Bounded Information-Bottleneck
Autoencoder discussed in the subsequent chapters. Therefore, their general principles will be
briefly introduced here.

61

CHAPTER 4. GENERATIVE MODELS

Decoderx x'z

OutputReal Data

Encoder

Latent

MSE

Figure 4.5: Schematic depiction of an AE setup. The green model shows the encoder E, the blue
model is the decoder D, x′ is the output of the decoder.

Fundamentally, AEs consist of two parts, one so-called encoder network E with parameters
θe and one decoder network D with parameters θd. The encoder maps samples x from the
distribution of real data px onto samples z from a lower dimensional latent space pz and the
decoder maps the samples from this latent space back to the data space. A schematic view of
this mapping is shown in Figure 4.5. The latent space can be understood as an n−dimensional
vector, where n is a tunable parameter called the latent space size. The latent space is also often
referred to as a bottleneck, in cases where n is smaller than the input dimensionality.

In order to train an AE one passes the training data sequentially through the encoder and
decoder network with a loss function consisting of the squared element-wise difference between
the input that was given to the encoder and the output of the decoder. This can be expressed as

LAE = Ex∼px [(x−D(E(x, θe), θd)
2] . (4.4.1)

This means the main training objective of an AE is to reconstruct the original input images as
closely as possible. Ideally, an AE would effectively be the identity operation. However, since the
latent space between the encoder and decoder has a lower dimension than the input and output,
a lossless mapping from input to output is often not possible. Therefore, the AE is forced to find
the most efficient representation of the input data, where only the features that are required for
the reconstruction of the input are preserved in the latent space. The compressed representation
will often rely on features specific to the data set that was used to train the AE. In an ideal case,
this leads to the deviation between the original input and the reconstructed output being small
for data similar to the training data, and large for data not present during training. Therefore,
this reconstruction-deviation can be used to identify outliers or anomalous points in a data set.

However, it needs to be noted that this behavior is not universally guaranteed. For exam-
ple, in cases where the anomalous data is less complex than the bulk of the training data the
reconstruction deviation can actually be smaller for the anomalous points [127].

62

CHAPTER 4. GENERATIVE MODELS

4.5 Variational Autoencoders

The AE structure is of interest for generative applications as the decoder part of the AE already
fulfills a role similar to a generative model, in that it maps a low dimensional latent space onto
the data space. Furthermore, the AE setup circumvents the difficulties of defining a generative
loss function by directly comparing individual training data points with individual generated
(reconstructed) points. Therefore, the problem of deciding if the output is realistic is never
raised, as one is only concerned with whether or not the input and output look alike.

Therefore, if one could generate a new sample from the latent space of an AE and then pass
this sample through the decoder, one could use this to generate new data similar to the training
data. However, the latent space is entirely unconstrained. This makes sampling from the latent
space a nearly impossible task.

Variational Autoencoders (VAEs) [128] aim to address this difficulty by regularizing the latent
space. In order to further understand how this regularization works we need to view the VAE
from a probability model perspective. The following derivation follows Reference [129]. From a
probabilistic perspective, the model can be seen to have learned the joint probability

p(x, z) = p(x|z)p(z) , (4.5.1)

where p(z) is the prior distribution of the latent space, and p(x|z) is the probability of generating
a sample x for a given latent sample z. p(x|z) can be understood as the decoder network, mapping
from an arbitrary latent space to the data space. The next goal is now to find the encoder, defined
by p(z|x). Using Bayes Theorem this can be rewritten as

p(z|x) = p(x|z)p(z)
p(x)

. (4.5.2)

The denominator is given by the integral

p(x) =

∫
p(x|z)p(z)dz , (4.5.3)

which is not tractable. However, it can be estimated using variational inference, the namesake of
the VAE. For this purpose, one defines an approximation distribution q(z|x), chosen from a group
of distributions that are inherently tractable, such as Gaussians. Then, one manipulates q(z|x)
in a way that makes it very similar to the target distribution p(z|x), by varying the parameters
to minimize the Kullback–Leibler divergence between the two, KL[q(z|x), p(z|x)]. This can be
expressed as

KL[q(z|x), p(z|x)] = −
∑
z

q(z|x) log
(p(z|x)
q(z|x)

)
. (4.5.4)

We can once again rewrite this using Equation (4.5.2) as

63

CHAPTER 4. GENERATIVE MODELS

KL[q(z|x), p(z|x)] = −
∑
z

q(z|x) log
(p(x|z)p(z)

p(x)

q(z|x)

)
(4.5.5)

KL[q(z|x), p(z|x)] = −
∑
z

q(z|x) log
(p(x|z)p(z)

q(z|x)
1

p(x)

)
(4.5.6)

KL[q(z|x), p(z|x)] = −
∑
z

q(z|x)
[
log

(p(x|z)p(z)
q(z|x)

)
− log(p(x))

]
. (4.5.7)

Using Equation (4.5.1) we can express p(x|z)p(z) as p(x, z)

KL[q(z|x), p(z|x)] = −
∑
z

q(z|x)
[
log

(p(x, z)
q(z|x)

)
− log(p(x))

]
(4.5.8)

KL[q(z|x), p(z|x)] = −
∑
z

q(z|x) log
(p(x, z)
q(z|x)

)
+
∑
z

q(z|x) log(p(x)) (4.5.9)

Since log(p(x)) does not depend on z and the sum over q(z|x) for all z and a given x is 1,
one can write

∑
z q(z|x) log(p(x)) as log(p(x))

KL[q(z|x), p(z|x)] = −
∑
z

q(z|x) log
(p(x, z)
q(z|x)

)
+ log(p(x)) . (4.5.10)

This expression can be reordered as

log(p(x)) = KL[q(z|x), p(z|x)] +
∑
z

q(z|x) log
(p(x, z)
q(z|x)

)
. (4.5.11)

Since we are varying q(z|x), we can assume p(x) to be constant for any given x. Therefore,
minimizing the KL-Divergence KL[q(z|x), p(z|x)] is equivalent to maximizing the last expression
in Equation (4.5.11),

∑
z q(z|x) log

(
p(x,z)
q(z|x)

)
, as both terms always sum up to a constant. This

expression is also known as the Evidence Lower BOund (ELBO), it can be further rewritten as

ELBO =
∑
z

q(z|x) log
(p(x, z)
q(z|x)

)
(4.5.12)

ELBO =
∑
z

q(z|x) log
(p(x|z)p(z)

q(z|x)
)

(4.5.13)

ELBO =
∑
z

q(z|x)
[
log(p(x|z)) + log

(p(z)

q(z|x)
)]

. (4.5.14)

ELBO =
∑
z

q(z|x) log(p(x|z)) +
∑
z

q(z|x) log
(p(z)

q(z|x)
)
. (4.5.15)

64

CHAPTER 4. GENERATIVE MODELS

Decoderx x'z

OutputReal Data

Encoder

Latent

KLD

MSE

Figure 4.6: Schematic depiction of a VAE setup. The green model shows the encoder E, the
blue model is the decoder D, and x′ is the output of the decoder. The latent space sample z is
obtained by sampling from the Gaussian distribution defined by µ and σ.

The first part of this equation can be seen as the expectation of log(p(x|z)) for a given q(z|x).
Furthermore, comparing the second part of this expression with Equation (4.5.4) reveals that
this is equal to the negative KL-Divergence between p(z) and q(z|x), resulting in

ELBO = Eq(z|x) log(p(x|z))− KL[q(z|x), p(z)] . (4.5.16)

This means that, in order to maximize the ELBO, the VAE needs to maximize the expected
logarithm of p(x|z), while minimizing the KL-Divergence between the output of the encoder
q(z|x) and the given latent space p(z). The first objective is generally achieved through the
use of an MSE-like reconstruction loss, similar to the standard AE while calculating the KL-
Divergence will depend on the specific chosen form of p(z) and q(z|x). One requirement is that
q(z|x) needs to be tractable. The common solution [128] to this is to restrict the latent space
q(z|x) to a multidimensional uncorrelated Gaussian distribution. In practice, this is achieved by
having the encoding network output two n-dimensional vectors, where n is the size of the latent
space. This two-vector latent space is shown in the VAE architecture depicted in Figure 4.6.
The first vector is then treated as the means µ of the Gaussians, and the second is treated as the
diagonal variances of the Gaussians σ. The individual latent space samples are then obtained by
sampling from these Gaussian distributions. In practice, this sampling is non-trivial, as one needs
to ensure it is still possible to calculate the network gradients despite the sampling operation, in
order to train the encoder. To this end, one employs the reparametrization trick: first one draws
a sample vector s from an n-dimensional Gaussian N (0, 1) with means 0 and widths 1. Then s
is shifted by µ and scaled by σ,

ŝ = σs + µ . (4.5.17)

65

CHAPTER 4. GENERATIVE MODELS

The resulting ŝ has the same properties as if drawn directly from N (µ, σ), but is directly
linked to µ and σ via addition and multiplication, allowing gradients to propagate through the
sampling operation.

As we want sampling from the target latent space p(z) to be easy, we choose p(z) to be a
multidimensional Gaussian with µ = 0 and σ = 1. This modifies the KL-Divergence term in
Equation (4.5.16) to

KL[q(z|x), p(z)] = KL[N (µ,σ),N (0, 1)] . (4.5.18)

Since both N (µ,σ) and N (0, 1) have diagonal covariance matrices, we can reduce the mul-
tidimensional KL-divergence to a sum over the individual dimensions,

KL[N (µ,σ),N (0, 1)] =

n∑
i=0

KL[N (µi, σi),N (0, 1)] . (4.5.19)

Using the continuous definition of the KL-divergence,

KL[q(x), p(x)] = −
∫
x
q(x) log

(p(x)
q(x)

)
dx , (4.5.20)

the KL-divergence between two Gaussians can be further transformed. For the sake of readability
we define N1(x) = N (µi, σi)(x) and N2(x) = N (0, 1)(x)

KL[N1,N2] = −
∫
x
N1(x) log

(N2(x)

N1(x)

)
dx (4.5.21)

KL[N1,N2] = −
∫
x
N1(x) log(N2(x)) dx+

∫
x
N1(x) log(N1(x)) dx (4.5.22)

The second integral is the negative entropy of a normal distribution and can be solved as∫
x
N1(x) log(N1(x)) dx = −1

2
− 1

2
log(2πσ2i) . (4.5.23)

The first integral is more complex, however we can leverage the fact that N2 is a normal
distribution and insert N2(x) =

1√
2π

exp −x2

2 , resulting in

∫
x
N1(x) log(N2(x)) dx =

∫
x
N1(x) log

(1√
2π

exp
−x2
2

)
(4.5.24)∫

x
N1(x) log(N2(x)) dx = −1

2
log(2π) +

∫
x
N1(x) log

(
exp

−x2
2

)
. (4.5.25)∫

x
N1(x) log(N2(x)) dx = −1

2
log(2π)−

∫
x
N1(x)

x2

2
. (4.5.26)

The integral
∫
xN1(x)

x2

2 is equal to the expectation value of x2, Ex∼N1(x
2). Using the defi-

nition of the variance varx∼N1(x) = Ex∼N1(x
2)− Ex∼N1(x)

2 one can express this as

66

CHAPTER 4. GENERATIVE MODELS

∫
x
N1(x) log(N2(x)) dx = −1

2
log(2π)− 1

2
(Ex∼N1(x

2)) (4.5.27)∫
x
N1(x) log(N2(x)) dx = −1

2
log(2π)− 1

2

(
varx∼N1(x) + Ex∼N1(x)

2
)
. (4.5.28)

Since N1 is a Gaussian with mean µi and width σi, the distributions expectation value and
variance are given by Ex∼N1(x)

2 = µ2i and varx∼N1(x) = σ2i . Therefore the integral becomes

∫
x
N1(x) log(N2(x)) dx = −1

2
log(2π)− 1

2
(σ2i + µ2i) . (4.5.29)

Using this we can write the full KL-divergence as

KL[N1,N2] = −
∫
x
N1(x) log(N2(x)) dx+

∫
x
N1(x) log(N1(x)) dx (4.5.30)

KL[N1,N2] = −
(
−1

2
log(2π)− 1

2
(σ2i + µ2i)

)
+
(
−1

2
− 1

2
log(2πσ2i)

)
(4.5.31)

KL[N1,N2] = −1

2
log(σ2i) +

1

2
(σ2i + µ2i)−

1

2
(4.5.32)

KL[N1,N2] =
1

2
(σ2i + µ2i − 1− log(σ2i)) . (4.5.33)

Now we can write down the full ELBO that the VAE will aim to maximize,

ELBO = −MSE(x, p(x|z))−
n∑

i=0

1

2
(σ2i + µ2i − 1− log(σ2i)) . (4.5.34)

This can now be transformed into a loss function LVAE to be minimized by setting LVAE =
−ELBO, leading to the complete VAE loss,

LVAE = MSE(x, p(x|z)) +
n∑

i=0

1

2
(σ2i + µ2i − 1− log(σ2i)) . (4.5.35)

Intuitively this loss becomes minimal when the reconstructed output exactly matches the
input and when the latent space is made up of Gaussians with µ = 0 and σ = 1. These two goals
are, however, contradictory. If the latent space is perfectly regularized, it will be indistinguishable
from Gaussian noise. Such a latent space would no longer contain any information, making the
reconstruction task impossible. Therefore VAE training involves balancing the regularization
loss with the reconstruction loss.

The end result is a setup that can map the input data onto a nearly Gaussian latent space
and that can map this latent space back to the data space. One can now exploit this to generate
new data points by drawing numbers from a Gaussian with µ = 0, σ = 1, and passing those
through the decoder.

67

CHAPTER 4. GENERATIVE MODELS

Decoderx x'z

OutputReal Data

Encoder

Latent

MSE

Disc.
Real

Fake

Figure 4.7: Schematic view of an AAE setup. The blue model shows the encoder E, the green
model is the decoder D and the orange model is the latent discriminator A. For brevity, the
encoder output D(z) is titled x′.

4.6 Adversarial Autoencoders

The VAE introduced in Section 4.5 demonstrated how the classical AE can be modified into a
generative model through the addition of a latent space regularization. However, by construction,
a VAE is limited to a tractable latent space, such as a multi-dimensional Gaussian. The Adver-
sarial Autoencoder (AAE) [130] setup enables the use of more complex latent space distributions
through the use of a GAN-like adversarial network.

The underlying structure is that of an AE, consisting of an encoder E, a decoder D, and an
MSE-like reconstruction loss. Now let the target latent space be any distribution t(x) that can
be sampled. In order to regularize the latent space produced by the encoder E(x) to be close
to the target distribution, one trains an adversarial network A to distinguish between samples
from the target distribution and samples produced by the encoder using the cross entropy loss
function

−Ex∼tx [log(A(x, θa))]− Ex∼px [log(1−A(D(x, θd), θa))] . (4.6.1)

Much like how the discriminator in a GAN setup can be used to measure the difference
between the distribution of the training data and the one produced by the generator, this ad-
versarial network can be used to gauge how far the latent space is from the target distribution.
Figure 4.7 shows the AAE setup, with the adversarial network used to regularize the latent space.

In order to minimize this distance, one can add the following term to the AE loss

68

CHAPTER 4. GENERATIVE MODELS

Ex∼px [log(1−A(E(x, θd), θa))] . (4.6.2)

This results in the AAE loss for the encoder and decoder,

LAAE = Ex∼px [(x−D(E(x, θe), θd)
2] + Ex∼px [log(1−A(D(x, θd), θa))] . (4.6.3)

Compared to the VAE, the AAE allows for an unrestrained choice of latent space, which
can be advantageous when working with a data set that cannot be easily mapped to a Gaus-
sian distribution for topological reasons. However, it adds significant difficulty to the training
process as the fickle nature of the adversarial network makes balancing the reconstruction and
regularization loss highly non-trivial.

4.7 The BIB-AE

The Bounded Information Bottleneck Autoencoder (BIB-AE) [131] was developed as an over-
arching theoretical model to investigate several generative approaches under the information
bottleneck (IB) principle [132]. This section will first cover the broad theoretical ideas outlined
in the original paper, followed by our implementation of the concept into a model setup. The
derivation of the theoretical principles of the BIB-AE follows Reference [131], while the discussion
of the implementation follows previously published work in Reference [2].

The IB approach argues that every deep learning approach can be seen as a trade-off between
preserving and discarding information [133]. For example, a classification task can be understood
as the classifier network trying to condense as much information as possible into the label pre-
diction, while discarding irrelevant noise. An intuitive generative example is a VAE, where the
bottleneck is explicitly built into the setup.

For such a VAE-like unsupervised IB model, let us assume we have a true distribution px(x),
from which a training set {xm}Nm=1 is drawn. Here N refers to the total number of points in the
training set and every x is an n-dimensional vector with x ∈ Rn. m is a proper index associated
with each x, meaning every x has exactly one m assigned to it.

As discussed in Section 4.5, the goal of the encoder part of the IB model is to map the data to
a latent space z, using the approximate mapping qϕ(z|x), where in this case ϕ are the parameters
of the encoder network. Under the IB principle, this can be formulated as

min
ϕ:I(Z;X)≥Ix

Iϕ(X;Z) , (4.7.1)

where X is a vector of the training set and Z is a vector of the latent space z. In this formulation,
Iϕ(X;Z) describes the mutual information between an input training sample and a latent vector
for a given set of encoder parameters ϕ.

The mutual information between random variables X and Y is defined as the relative entropy
between the joint distribution p(x, y) and the product of the two marginal distributions p(x)p(y)
[134]. This can be expressed using the KL-divergence as

69

CHAPTER 4. GENERATIVE MODELS

I(X;Y) =KL[p(x, y), p(x)p(y)] (4.7.2)

=Ep(x,y)

[
log

(p(X,Y)

p(X)p(Y)

)]
. (4.7.3)

This mutual information is minimized, which corresponds to training the encoder to compress
the inputs into a latent representation by removing some of the information. This minimization
is, however, constrained by the expression I(Z;X) ≥ Ix, where I(Z;X) is once again the mutual
information between an input and a latent vector, and Ix is the amount of information needed
to achieve the given task of reconstructing X. Therefore the Equation (4.7.1) can be understood
as the encoding network maximally compressing the input by minimizing the information in the
latent space while ensuring that the information that does remain in the latent space is sufficient
for the decoder to reconstruct the original input.

This can be formulated as a Lagrangian optimization problem, where one aims to minimize
the term

L(ϕ) = Iϕ(X;Z)− βI(Z;X) , (4.7.4)

where β is a relative scaling between the compression and reconstruction criteria.
Using the definition of the mutual information in Equation 4.7.3, as well as the fact that the

mutual information is symmetric, one can rewrite the first expression in the Lagrangian Iϕ(X;Z)
as

Iϕ(X;Z) =Eqϕ(z,x)

[
log

(qϕ(z, x)

qϕ(z)px(x)

)]
, (4.7.5)

with the marginal distribution of z defined as qϕ(z) = Epx(x)qϕ(z, x). Using Equation (4.5.1)
we can express the joint probability as qϕ(z, x) = qϕ(z|x)px(x). This can be used to modify the
mutual information expression as

Iϕ(X;Z) =Eqϕ(z,x)

[
log

(qϕ(z|x)px(x)
qϕ(z)px(x)

)]
(4.7.6)

=Eqϕ(z,x)

[
log

(qϕ(z|x)
qϕ(z)

)]
. (4.7.7)

Now one can use variational inference to approximate qϕ(z) using a new distribution pθ(z),
this allows the above expression to be rewritten as

Iϕ(X;Z) =Eqϕ(z,x)

[
log

(qϕ(z|x)pθ(z)
qϕ(z)pθ(z)

)]
(4.7.8)

=Eqϕ(z,x)

[
log

(qϕ(z|x)
pθ(z)

)]
− Eqϕ(z,x)

[
log

(qϕ(z)
pθ(z)

)]
. (4.7.9)

70

CHAPTER 4. GENERATIVE MODELS

Making use of qϕ(z, x) = px(x)qϕ(z|x) to rewrite the expectation value in the first expression
as

Eqϕ(z,x)

[
log

(qϕ(z|x)
pθ(z)

)]
= Epx(x)

[
Eqϕ(z|x)

[
log

(qϕ(z|x)
pθ(z)

)]]
. (4.7.10)

The second expectation value in this expression is equal to the KL divergence between qϕ(z|x)
and pθ(z) for X = x,

Eqϕ(z|x)

[
log

(qϕ(z|x)
pθ(z)

)]]
= Eqϕ(z|x)

[
KL(qϕ(z|X = x), pθ(z))

]
. (4.7.11)

Similarly one can use the fact that the second term does not depend on x to express the
expectation value as another KL divergence,

Eqϕ(z,x)

[
log

(qϕ(z)
pθ(z)

)]
= Eqϕ(z)

[
log

(qϕ(z)
pθ(z)

)]
= KL(qϕ(z), pθ(z)) . (4.7.12)

The second mutual information term I(Z;X) can be bounded from below [131] by

I(Z;X) ≥ Iθ,ϕ(Z;X) , (4.7.13)

where θ are the parameters of the decoder network pθ(x|z), that approximates the true mapping
from latent to data space p(x|z) and Iθ,ϕ(Z;X) is defined as

Iθ,ϕ(Z;X) = −Epx(x)

[
log (px(x))

]
+ Epx(x)

[
Eqϕ(z|x)

[
log (pθ(x|z))

]]
. (4.7.14)

Similar to the first mutual information term this can be reformulated as

Iθ,ϕ(Z;X) = Eqϕ(z|x)

[
Epx(x)

[
log

(pθ(x|z)
px(x)

)]]
(4.7.15)

= Eqϕ(z|x)

[
Epx(x)

[
log

(pθ(x|z)pθ(x)
px(x)pθ(x)

)]]
(4.7.16)

= −Epx(x)

[
log (pθ(x))

]
− Epx(x)

[
log

(px(x)
pθ(x)

)]
+ Eqϕ(z|x)

[
Epx(x)

[
log (pθ(x|z))

]]
.

(4.7.17)

Now one can apply a second lower bound, using the fact that −Epx(x)

[
log (pθ(x))

]
is always

greater than or equal to zero. This second lower bound Iθ,ϕ(Z;X)L ≤ Iθ,ϕ(Z;X) is then given
by,

Iθ,ϕ(Z;X)L = −Epx(x)

[
log

(px(x)
pθ(x)

)]
+ Eqϕ(z|x)

[
Epx(x)

[
log (pθ(x|z))

]]
(4.7.18)

71

CHAPTER 4. GENERATIVE MODELS

Similar to Equation (4.7.11) the first term of Iθ,ϕ(Z;X)L can be written as a KL-divergence
between px(x) and pθ(x), resulting in the final form:

Iθ,ϕ(Z;X)L = −KL(px(x), pθ(x)) + Eqϕ(z|x)

[
Epx(x)

[
log (pθ(x|z))

]]
(4.7.19)

Using this one can now define the BIB-AE as an AE setup based on the IB principle. Its
Lagrangian can be summarized as

LBIB-AE = Eqϕ(z|x)

[
KL(qϕ(z|X = x), pθ(z))

]
︸ ︷︷ ︸

A

+KL(qϕ(z), pθ(z))︸ ︷︷ ︸
B

+ Eqϕ(z|x)

[
Epx(x)

[
log (pθ(x|z))

]]
︸ ︷︷ ︸

C

−KL(px(x), pθ(x))︸ ︷︷ ︸
D

.
(4.7.20)

The four terms A, B, C, and D each fulfill their own purpose within the BIB-AE framework.
A and B force the encoder to minimize the information contained in the latent space by pushing
the encoded latent space to match the targeted latent space pθ(z). Here A can be understood
as a direct KL-divergence between the encoded and target latent space, while B is can be seen
as a sample-based comparison method such as an adversarial network or a Maximum Mean
Discrepancy (MMD, also see Section 6.3 for details) [135] term, that approximates the KL-
divergence between the produced latent space qϕ(z) and the target pθ(z). Terms C and D
ensure the information in the latent space is still sufficient to reconstruct data that matches the
training data distribution px(x). This is achieved either through a direct calculation of the log-
likelihood, such as in C, or through another sample-based method to estimate the KL-divergence
in D.

As such, the previously explored generative models can be expressed in these terms. A VAE
can be understood to use a direct calculation of the KL-divergence in the latent space, corre-
sponding to A, and its MSE reconstruction loss corresponds to the log-likelihood in C. An AAE
similarly uses C to facilitate its reconstruction, and its adversarial latent regularization is cap-
tured in B. A standard GAN makes use of the adversarial comparison between decoder/generator
output, which is described by D.

These observations lead to our practical BIB-AE implementation, as they allow us to connect
the information-theoretical terms to components of generative networks:

• A: latent space KL-divergence term

• B: latent space discriminator or MMD term

• C: data space MSE term

• D: data space discriminator

Figure 4.8 shows the full model with all its components. An intuitive way to view our BIB-AE
implementation is as an expanded VAE architecture. At its core, it consists of an encoder-decoder
structure, with a latent space consisting of a set of Gaussian distributions, defined by a vector
of means and a vector of widths. The generation process of the BIB-AE is closely related to a

72

CHAPTER 4. GENERATIVE MODELS

Decoderx x'z

OutputReal Data

Encoder

Latent

Latent
Discr.

Real

Fake

Real

Fake

Real

Fake

Real

Fake
KLD Discr.

MSE
A

B

C

D

Figure 4.8: The full BIB-AE setup, according to our implementation. The encoder and decoder
are depicted in blue and green respectively, and the two adversarial networks are depicted in
orange. The letters A through D indicate which model part corresponds to which mathematical
term.

VAE, in that a noise vector is sampled from a µ = 0, σ = 1 Gaussian, and then passed through
the decoder, in order to generate new data.

During training, the input data is mapped to this latent space by the encoder. The latent
space is regularized to be close to a µ = 0, σ = 1 Gaussian through a KL-divergence, similar
to a VAE, and an adversarial network, similar to an AAE. These two terms act complemen-
tary to one another. The KL-divergence is very well suited to reduce the deviations between
latent space dimensions and the target latent space, however, it only captures the average overall
latent dimensions. This can result in a situation where the majority of latent dimensions are
well regularized, but a small number of dimensions still show large deviations. The informa-
tion encoded in individual latent dimensions is proportional to their deviation from the target
latent distribution. Therefore these few, large-deviation dimensions will contain the bulk of the
information in the latent space. As such they will be the most important decoder inputs for the
reconstruction task. This presents a problem during generation, as the most important inputs to
the decoder will have the most significant deviations compared to what the decoder was trained
to expect. A preferable case would be to have the information evenly distributed across all latent
space dimensions. The adversarial network can be trained to examine individual latent space
distributions. Furthermore, it will inherently put higher penalties on larger deviations, as these
make the classification task into “real” and “fake” latent space samples very simple. Therefore,
the adversarial network can work in conjunction with the KL-divergence to produce a latent
space with a more even information distribution.

The encoded latent samples are then passed into the decoder, which is tasked with recon-
structing the encoder network input. This reconstruction is once again facilitated by two compo-
nents, an MSE comparing input and output directly, and an adversarial discriminator trained to
distinguish between “real” data samples and “fake” reconstructed samples. These two terms once
again complement one another. Generally speaking, the discriminator loss of a GAN will result

73

CHAPTER 4. GENERATIVE MODELS

in higher quality generated data, than the simple MSE of a VAE [136]. This stems from the
fact that a discriminator can learn to look for complex features and correlations in the generated
data, while the MSE can only compare individual pixel deviations. However, a discriminator
takes individual decoder outputs and determines whether they look like a realistic data point.
It does not take into account whether the output looks similar to its specific, corresponding
encoder input. Therefore, if one were to only use a discriminator to evaluate the decoder output
of the BIB-AE, there would be nothing to enforce a similarity between the input and the recon-
struction result. This would remove the requirement for the latent space to contain any relevant
information, contradicting the underlying IB idea. In principle, such a discriminator-only setup
would be equivalent to a GAN, mapping informationless, Gaussian noise to the data space. The
MSE loss however inherently requires the latent space to contain information, as the only way to
completely minimize the MSE loss is for the input and output to match up exactly. Therefore,
the combination of MSE loss and discriminator allows for both the preservation of information
in the latent space, as well as for the generation of high-quality images.

The BIB-AE setup represents the core model used for fast simulation in this work, and
its application for the simulation of photon and pion calorimeter showers will be explored in
subsequent Chapters 6, 7, and 8.

4.8 Normalizing Flows

AE-based generative models solve the problem of defining a generative loss function by having
an encoder map the training data to a well-understood latent distribution, from which a decoder
then maps back to the data space. The decoder is effectively trained to be an approximate
inverse of the encoder and vice versa. However, because encoder and decoder are still two
distinct networks, this relation will always have at least slight imperfections.

An arguably preferable approach would be to have a single, invertible, neural network, that
can act as a mapping from both the latent to data space and back from the data to latent space.
This is the underlying idea of Invertible Neural Networks (INN) or Normalizing Flows.

The discussion of Normalizing Flows in this section follows References [137,138]. The underly-
ing principle of Normalizing Flows is that, if one has a sufficiently well-behaved data distribution
px with samples x ∈ Rd then one can model px by expressing x as a transformation T of z, where
z is a sample from a well understood latent distribution pz(z).

x = T (z) (4.8.1)

If T is a diffeomorphism, i.e. an invertible transformation that is differentiable almost every-
where in both its forward and inverse direction, then px can be expressed using the change of
variables formula [139,140],

px(x) = pz|det JT (z)|−1] or, (4.8.2)
px(x) = pT−1(x)|det JT−1(z)| , (4.8.3)

where JT (x) = ∂T
∂z is the Jacobian of T . This means if one has a sufficiently expressive diffeo-

morphism T , then this transformation can be used to warp the latent distribution in a way that

74

CHAPTER 4. GENERATIVE MODELS

x z

LatentReal Data

Figure 4.9: A flow setup mapping from data to latent space using consecutive invertible trans-
formations T ∗

i , with i running from 1 to the total number of transformations k.

models the desired data distribution. The determinant of the Jacobian measures the volume
change around z caused by T . In practice, defining highly expressive single transformations can
be difficult. However, the product of two diffeomorphisms is once again a diffeomorphism, as
both functions can be separately inverted and differentiated. Therefore, one can construct an
arbitrarily complex transformation T by chaining multiple simple transformations T1,..,k together

T = T1 ◦ T2 ◦ ... ◦ Tk . (4.8.4)

For such a composite transformation the determinant of the Jacobian can be calculated
separately as

det(JT2◦T1)(x) = detJT2(T1(x)) · det(JT1(x)) . (4.8.5)

In a normalizing flow, this property is immensely valuable, as it allows the use of several
individual network layers, each encoding a simple transformation T ∗

1,..,k, which can then be com-
bined to form the full normalizing flow network with parameters θ that models the transformation
T ∗(θ). Such a composite flow model made up of individual transformations is shown in Figure 4.9.

This model can now be trained by modifying θ such that T ∗(θ) approximates the desired
mapping T between data and latent space. If qx(x, θ) is the data distribution given by the
flow, and px(x) is the training distribution, then the model can be optimized by minimizing the
KL-divergence between the two distributions, leading to the flow loss

LFlow = KL(px(x), qx(x, θ)) (4.8.6)

= −Epx(x)

[
log

(qx(x, θ)
px(x)

)]
(4.8.7)

= −Epx(x)[log(qx(x, θ))− px(x)] (4.8.8)

= −Epx(x)[log(qx(x, θ))] + const. . (4.8.9)

75

CHAPTER 4. GENERATIVE MODELS

For the generative models discussed in previous sections, this probability density is not di-
rectly tractable. Therefore, one would not be able to compute this final expression, requiring the
use of workarounds to estimate the divergence, such as the adversarial network of the GAN.

For a Flow model however one can exploit the invertibility of the model to express log qx(x, θ)
through T and the latent distribution

LFlow = −Epx(x)[log(pz(T
∗−1(x, θ)))] + log(|det JT−1(x, θ)|) + const. . (4.8.10)

For a given set of training data with N points xn, n ∈ 1, ..., N the expectation value over
px(x) can be approximated by the expectation value over the sample, assuming the sample is
large enough to be statistically representative. This results in the training loss for the flow

LFlow =
1

N

N∑
n=1

log(pz(T
∗−1(xn, θ))) + log(|det JT−1(xn, θ)|) + const. . (4.8.11)

Calculating this expression only requires the evaluation of the latent prior distribution pz(z).
As the exact latent distribution is arbitrary, one can choose an easily evaluated distribution such
as a univariate Gaussian. Therefore, the normalizing flow approach can directly calculate the
negative log-likelihood, without any workaround. This leads to flows having an especially stable
training behavior compared to other generative approaches such as GANs.

In order to use the trained flow as a generator, one needs to sample from the latent distribution
and pass these samples through the inverse transformation.

The desirable properties of a normalizing flow are contingent on the use of invertible transfor-
mations. Building a neural network to be invertible is a highly non-trivial task, and a multitude
of approaches exist. The two main ones used in this work will be covered here.

Coupling layers

Generally speaking, neural network layers cannot be directly inverted as their corresponding
weight matrices are not necessarily invertible. Coupling layers [141] are specifically designed to
circumvent this problem.

In a coupling layer the d-dimensional input vector x ∈ Rd is split into two vectors xA ∈ RdA

and xB ∈ RdB , with d = dA + dB. One then defines an invertible function f(θ) with the
parameters θ. A common example is the linear affine transformation. It uses two parameter
vectors, θ = s, t, which are used to scale and shift the inputs,

h(x, (s, t)) = x⊗ s+ t , (4.8.12)

where ⊗ is the element-wise multiplication between vectors. The inverse of this function can be
directly calculated with

h(x, (s, t))−1 =
x− t

s
. (4.8.13)

Figure 4.10 indicates how one then uses the second part of the split vectors to define the
parameters to apply the transformation to the first split, resulting in the first layer output uA.

76

CHAPTER 4. GENERATIVE MODELS

Figure 4.10: Schematic depiction of a coupling layer. The transformation applied to xA only
depends on xB, making the layer invertible.

The second output uB is the unchanged input xB. This gives the full input to output mapping
of a coupling layer

uA = h(xA, (s(xB), t(xB))) = xA ⊗ s(xB) + t(xB) (4.8.14)
uB = xB . (4.8.15)

Since xB is equal to uB it is available in both the forward and inverse direction. Therefore,
we can define the inverse of the coupling layer as

xA = h−1(uA, (s(uB), t(uB))) =
uA − t(uB)

s(uB)
(4.8.16)

xB = uB . (4.8.17)

The scaling s(x) and shifts t(x) are generally implemented as fully connected neural networks
with dB input nodes and dA output nodes. The exact splitting of x into xA and xB is arbitrary,
however, the most common approach is to split x into two halves, as an uneven split would place
greater importance on certain input dimensions.

The coupling layer defined in Equation (4.8.15) is sufficient to build a flow network. However,
most implementations add a second transformation to the previously untouched part of the input.
This ensures every variable is modified by the transformation. This is shown in Figure 4.11. Such
an approach can effectively be understood as the combination of two coupling transformations,
meaning this type of coupling block is also invertible.

Autoregressive Layers: Similar to coupling layers, autoregressive layers [142] use transfor-
mations that are independent of their direct input to allow for invertibility. If one defines hi(θ)
as the transformation with parameters θ, applied to the i-th dimension of the input xi, then in
the autoregressive scheme the first transformation is constant

u1 = h1(x1) , (4.8.18)

77

CHAPTER 4. GENERATIVE MODELS

Figure 4.11: A double version of the coupling layer, derived by taking Figure 4.10 and repeating
the transformation principle on xB.

and every subsequent transformation is dependent on the previous input dimensions

ui = hi(xi, (xi−1, ..., x1)), for i ∈ {2, ..., d} . (4.8.19)

This scheme means that the inverse of the first dimension is always known, as its transfor-
mation is constant. The inverse of the second dimension can be constructed using the know first
dimension, which can then in turn be used to invert the third dimension, and so forth.

The exact form of hi is arbitrary, as long as it remains a diffeomorphism - for example the
scale and shift introduced for the coupling layer can be used. The individual transformations are
once again implemented using a neural network.

The forward pass of an autoregressive flow can be implemented using a single network exe-
cution, the inputs of which are masked to ensure the dependence scheme outlined above. This
specific implementation is known as a masked autoregressive layer (MAF) [143]. The masked
approach allows the forward direction of the flow to be calculated quickly, however the inverse di-
rection requires the sequential computation of the individual dimensions, resulting in a significant
slowdown.

Overall, MAF layers have more flexibility compared to coupling layers, as they do not have
the strict separation into two input groups. However, in practical generative applications, the
slower inverse computation results in a significantly slower sampling procedure when using MAF
layers.

Permutation Layers

Several coupling or MAF layers can be combined to form an expressive normalizing flow. How-
ever, a direct stacking of the transformations can have unintended consequences, as certain input
dimensions will be treated differently. For example, a stack of coupling layers would never allow
the dimensions within the same halves to interact with each other and no correlations between
the two halves could be learned.

For this reason, every flow network uses permutation layers to modify the order of the dimen-
sions after every transformation. As these permutations are fixed, they can be easily inverted.

78

CHAPTER 4. GENERATIVE MODELS

The most common permutations are reverse permutations, which flip the order of the dimensions,
or random permutations, that randomly choose a permutation scheme at initialization.

4.9 Conditional Generative Models

So far, all generative approaches that have been discussed aim to generate new data samples
from random noise. For this purpose, the exact nature of the generated points is not relevant,
beyond the requirement that they are in line with the training data distribution. However, in a
practical application of generative models, it is often helpful or even required, to produce data
points with specific properties.

An instructive example can be made with the MNIST handwritten number data set intro-
duced in Section 4.1. Each data point consists of one image x, and one associated class label
c ∈ {0, . . . , 9}. If one trains a standard generative model on this data set, one will end up with
a generator G that maps a latent space sample z ∈ Z to a new sample xgen = G(z). If the
model is well trained this sample should have the appearance of a handwritten digit and have
the same likelihood of depicting the numbers 0 to 9 as the data set. However, from the view of
most practical applications, generating a random handwritten digit is of little use. It would be
preferable to generate a specific digit, as this would for example allow for a given number to be
converted into a handwritten version. Conditional generative models exist to address precisely
this problem. A conditional generator Gcond(z, c) accepts an additional input c that specifies the
class of the object that is to be generated. While the exact appearance of a given sample will
still have some randomness due to the input nose, all samples xc = Gcond(z, c) produced with
a given label c will still be part of that class. In the MNIST example this would mean that a
generator tasked with producing “nines” would produce several different images, however, all of
them would still depict the number “nine”.

All generative models covered in this chapter can be transformed into conditional generative
models. The specific methods of how this can be achieved will be indicated below.

GANs/WGANs: The class label is given as an additional input to both the generator
and discriminator/critic network. During training, the generator is passed a label that is either
taken from the training data or randomly sampled 2. The discriminator/critic is then trained
to classify the combination of training data and their corresponding labels as “real” and the
combination of generated data and the labels used during generation as “fake”. This allows
the discriminator/critic to learn the correlation between features in a given data point and its
corresponding label. Therefore, the discriminator/critic will be able detect instances where the
generated data does not match up with its given label, forcing the generator to learn to produce
samples that fit the labels.

VAEs/AAEs: The class label is added as an input to the encoder and decoder networks.
This means the decoder always has access to the information contained in the label, regardless of
the latent encoding of the encoder. Therefore, the encoder, which aims to minimize the amount of
unimportant information in the latent space is incentivized to not include any label information
in the latent space, as this would be redundant. This, in turn, forces the decoder to learn
to directly make use of the class label, as the label contains information required to correctly
reconstruct the input. It should be noted that this is a less strict conditioning compared to GAN

2In the case of the WGAN labels should always be taken from the current training batch, to ensure the
interpolation between real and generated data performed during gradient penalty is sensible.

79

CHAPTER 4. GENERATIVE MODELS

approaches, as there is no explicit penalty term for producing data that does not match the given
label.

BIB-AE: The conditional BIB-AE setup is like the BIB-AE itself, a combination of the VAE
and GAN conditioning approaches. The label is passed to the encoder, decoder, and adversarial
network. Similarly to the VAE, the decoder is incentivized to make use of the class label for the
reconstruction process. Additionally, the adversarial network will detect and penalize mismatches
between labels and decoder outputs.

Normalizing Flow: During training, the class label is passed as an additional input to the
networks that determine the transformation parameters. If the information contained in the label
is relevant for a given transformation, the associated network will learn to make use of the label
when mapping the data to the latent space. During generation, the label is once again passed
to each network, which guides the mapping from latent to data space such that the resulting
sample corresponds to an instance of the given label.

80

Part II

Generative Models in Particle Physics

81

Chapter 5

GANplification

The work presented in this chapter has been previously published as Reference [1] in collabo-
ration with Anja Butter, Gregor Kasieczka, Benjamin Nachman, and Tilman Plehn. Several
figures presented as well as the text are similar or identical to the content of this article. My
contribution to the publication comprised implementation and optimization of the generative
model, development of the quantile-MSE metric, writing sections of the paper, handling the
peer-review processes, and addressing referee comments.

In HEP, generative models present an exciting method for fast simulation. The most common
approach to this uses a classical simulation method to generate a training set. This is then used to
train a generative model, from which the bulk of the samples is drawn. This approach leverages
the fact that generative models can be evaluated significantly faster than classical simulations,
in order to provide an overall speed up.

There is, however, one question that jeopardizes this approach and needs to be addressed
first: How many samples can be drawn from a generative model before one becomes limited by the
statistics of the original training set? The naive assumption would be as many samples as the
model was trained on. If that were the case, it would severely limit the use of generative models
for simulation, as any analysis that uses the generative samples would be no more accurate than
if it had used the training data instead. However, the answer to the question is not necessarily
that intuitive. Since a generative model does not simply learn individual data points but instead
learns an underlying distribution, this can allow the model to interpolate between the points of
the training data, potentially allowing it to reasonably produce more samples than it was initially
trained on. If this is true, then such models remain viable for fast simulation.

This makes answering this question a high priority for anyone working on fast simulation
with generative models. The concept of taking a limited data set and increasing the available
number of points is often called data amplification [144]. However, little work has been done on
generative models in specific. Therefore, we explore the statistical behavior of generative models
using a set of small-scale toy models.

This chapter is organized as follows. Section 5.1 covers initial explorations using a 1-
dimensional data set. This is extended to two and five dimensions in Sections 5.2 and 5.3.
Section 5.4 presents the conclusions obtained from this exploration.

83

CHAPTER 5. GANPLIFICATION

6 4 2 0 2 4 6
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

p(
x)

10 quantiles

Quant p(x)dx = 1
NQuant

= 0.1

truth

Figure 5.1: The camel back distribution used for the initial generative amplification investigation.
Vertical black lines indicate the edges of the quantile regions.

5.1 1-Dimensional Data

We initially investigate a 1-dimensional distribution. The low dimensionality allows for fast
training times and requires less complex models, allowing us to gain early insight. The training
distribution is a camel back, consisting of two normalized Gaussians located symmetrically around
zero, given by

p(x) =
1

2
N4,1(x) +

1

2
N−4,1(x) . (5.1.1)

This distribution was chosen since its disjoint nature can be challenging to learn for a gener-
ative network, despite being only one-dimensional. This makes the camel back a suitable proof
of concept example. The dashed line in Figure 5.1 visualizes the camel back.

As our training data, we draw 100 points from the camel back distribution. While this
number of training points is small compared to the tens- or hundreds of thousands usually used
in HEP ML, it is still sufficient for a 1-dimensional problem.

The question of how many samples one can draw from a generative model is fundamentally
linked to how well the underlying distribution is described by either the generative model or by
the data used in training. If the model is more accurate at describing this underlying distribution
than the training data alone, then it is reasonable to generate more points than were used for
training.

84

CHAPTER 5. GANPLIFICATION

6 4 2 0 2 4 6
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

p(
x)

10 quantiles
GAN trained on 100 data points

truth
fit
Sample

Figure 5.2: Camel back distribution. The blue histogram shows the 100 points in the training
sample. The green line is the result of the parameter fit. The black vertical lines again indicate
the quantile regions.

In order to estimate the agreement between a given sample of data, such as the training set,
and the true underlying distribution given in Equation (5.1.1) we first divide the true distributions
into Nquant quantiles. These quantiles are defined to each contain 1

Nquant
of the total probability

of the distribution. An example of this with N = 10 is shown by the vertical black lines in
Figure 5.1. The quantile regions defined by the true distribution are then used to divide the
training sample and the fraction of points in the j-th quantile region,

xj =
nj
ntotal

, (5.1.2)

is calculated, where nj are the number of points in the j-th quantile and ntotal the total number
of points. Per definition the expected fraction in each quantile is 1

Nquant
. Therefore we can

compare how well the sample agrees with the true distribution by calculating the mean squared
difference between xj and 1

Nquant
. This leads to what we define as the Quantile Mean Squared

Error (MSE), given by

MSE =
1

Nquant

Nquant∑
j=1

(
xj −

1

Nquant

)2
. (5.1.3)

We initially aim to find an upper benchmark for how well a generative model could ideally
perform. In essence, training a generative model on a data set is comparable to performing a

85

CHAPTER 5. GANPLIFICATION

Figure 5.3: Schematic depiction of the GAN architecture that was used. Φ and F are the
embedding function and aggregation function used in the minibatch discrimination, respectively.
Figure taken from [1].

parametric fit on that data. However, since the generative model is significantly more complex
and universal, it is reasonable to assume that a parameter fit that uses the correct functional
form will perform better than the generative model. Therefore our upper performance benchmark
consists of a fit using the true camel back function with 5 parameters. These parameters are the
means of the Gaussians µ1, µ2, their widths σ1, σ2 and a parameter a0 determining the relative
contribution of the two peaks. The specific function is given by

p(x) = a0 Nµ1,σ1(x) + (1− a0) Nµ2,σ2(x) . (5.1.4)

This fit is performed using the Python packages Iminuit [145] and Probfit [146]. Fig-
ure 5.2 shows the result of this fit in green. Further, the figure also shows a histogram of the
training data in blue.

The generative model used is based on a standard GAN architecture, as described in Sec-
tion 4.2. Several adaptations are made to the model to accommodate the small size of the
training set, however, we aim to keep the model as general as possible, and therefore avoid any
network optimizations specific to the camel back distribution.

The generator network of the GAN is a 7 layer fully connected network (FCN) with 1 output
node, 256 hidden nodes in each layer, and 1000 input nodes. The dense layers are interspersed
with dropout [111] layers with a 50% dropout factor. These layers reduce the tendency of the
model to overfit to the small number of training data. These dropout layers are kept active during
data generation. Further, to aid the model in learning a smooth distribution we employed ELU
[115] activation functions. The generator input consists of 1000 numbers drawn from random
noise. GANs commonly use Gaussian noise as generator input, however, to avoid potentially
biasing our model we chose the input noise to be drawn from a uniform distribution in the range
[−1, 1].

86

CHAPTER 5. GANPLIFICATION

In order to avoid mode collapse, the discriminator network makes use of minibatch discrim-
ination [147]. This means the discriminator not only takes the individual d-dimensional data
points x ∈ Rd into account, but also the entire n-length batch B ∈ Rd,n that contains x. This al-
lows the discriminator to have a direct handle on whether the spread of generated points matches
that of the training data. The discriminator first calculates the pairwise distance between x and
the entire batch. This distance x − B is then passed through a deepset-inspired [148, 149] em-
bedding function Φ. This function maps from Rd to Rm, and is applied independently to each
of the n points contained in x−B. The result lies in the domain Rn,m. The embedding output
is then passed through a permutation-invariant aggregation function F : Rn,m → Rm. This
ensures that the discriminator output will be independent of the ordering of points within the
batch. Our setup implements the embedding Φ using 3 1D convolutional layers with a kernel size
and stride of 1 and 256, 256, and m filters. Several aggregation functions were considered, such
as a mean, a sum, or a standard deviation. All performed similarly well, however a standard
deviation resulted in slightly better results, leading us to use the standard deviation for this and
all subsequent networks.

The result of this combined embedding and aggregation is then combined with the original
data point x and fed into the discriminator network. This network is again an FCN with 7
layers, 1 output node, 256 hidden nodes, and d +m input nodes. Similar to the generator, the
discriminator also features dropout layers with a 50% factor after each hidden layer. The entire
discriminator, including the embedding, uses a LeakyReLU activation function with a leakage
of 0.01, except for the final layer, which uses a Sigmoid activation function. The combined
generator and discriminator structure setup including the minibatch discrimination can be seen
in Figure 5.3.

To further improve the discriminator training, a gradient penalty regularization term [150]
is used in the discriminator loss. This gradient penalty works similarly to the one described
in Section 4.3 and is intended to prevent the generator from becoming stuck due to vanishing
gradients in the discriminator. Additionally, we smear the training data with a uniform noise in
the range [−0.1, 0.1]. This ensures the discriminator cannot simply learn the 100 training points
by heart.

Every network was implemented using PyTorch [151]. The discriminator and generator
were alternatingly trained using the ADAM [108] optimizer with a 5 × 10−5 learning rate and
the parameters β1 = 0.5, β2 = 0.9. This corresponds to a lower momentum contribution than
what ADAM uses by default. A lowered momentum term has been found to reduce the oscil-
lations in GAN trainings [152], as it allows the generator to more quickly change course. The
setup is trained for a fixed duration of 10.000 epochs with no early stopping criterion. During
this training, the learning rate is reduced to 90% of its current value every 1000 epochs. The
training uses a batch size of 10 and the entire data set is shuffled after every epoch to ensure the
composition of the individual batches is not constant.

This GAN is trained using the same training set that was also used in the parameter fit
and subsequently used to generate a varying number of new data points. One example of this
GAN-produced data is shown in the orange histogram in fig. 5.4.

We now use the quantile MSE to compare the agreement of the training data, the fit and the
GAN-produced samples with the true distribution. Figure 5.5 shows the

√
MSE as a function

of the number of samples generated from the GAN. We sample 100 independent versions of the
training set and use each to perform one fit and train one GAN. This allows for an uncertainty

87

CHAPTER 5. GANPLIFICATION

6 4 2 0 2 4 6
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

p(
x)

10 quantiles
GAN trained on 100 data points

truth
fit
Sample
GAN

Figure 5.4: Camel back distribution. The blue and green lines show the training data and
parameter fit, as in the previous plot. The orange histogram depicts data points generated using
the GAN network. The black vertical lines again indicate the quantile regions. Figure adapted
from [1].

estimation by calculating the standard deviation over these 100 experiments. This uncertainty
is indicated by the error envelopes in the plot.

In the plot, we can see that both the training data MSE and fit MSE are flat lines. This is
because the training data and fit are independent of the GAN, and their agreement with the true
camel back, therefore, remains constant regardless of the number of GAN samples. Further, we
can see that the fit has a better agreement than the training data alone. This is reasonable as
the use of the true function in the fit adds additional information, resulting in an overall better
description of the true distribution. The GAN MSE can be seen to initially drop lower the more
point are sampled from the GAN. This lines up with the intuition that more samples result in
a better agreement. However one can also see that this behavior does not continue indefinitely
and the GAN MSE eventually saturates.

This can be understood by viewing the GAN as its own distribution pg(x). The more GAN
samples one draws, the better the GAN distribution is described, explaining the initial improve-
ment in agreement. However, while pg(x) approximates the true distribution p(x), will never
perfectly match it. This difference between the pg(x) and p(x) results in a lower bound on the
MSE that cannot be reduced by further sampling from pg(x). However one can also see that the
point where the GAN MSE levels off corresponds to a better agreement with the true distribution
than what one gets from using the training data alone. This indicates that the GAN distribution
pg(x), taken as a whole, results in a better description than the pure training samples. The

88

CHAPTER 5. GANPLIFICATION

101 102 103 104 105 106

number GANed

0.010

0.020

0.040

0.060
0.080
0.100

qu
an

til
e

M
SE

 GAN
 sample

 fit 200
 300
 500

 1000

10 quantiles
100 data points

101 102 103 104 105 106

number GANed
0.006
0.008
0.010

0.020

0.040

0.060
0.080

qu
an

til
e

M
SE

 GAN
 sample

 fit

 200
 300
 500

 1000

20 quantiles
100 data points

101 102 103 104 105 106

number GANed

0.004

0.006
0.008
0.010

0.020

0.040

qu
an

til
e

M
SE

 GAN

 sample

 fit

 200
 300
 500
 1000

50 quantiles
100 data points

Figure 5.5: Comparison of the quantile MSE between the true camel back distribution and
the training data (blue), the parameter fit (green), and the GAN (orange). Dotted blue lines
correspond to larger data sets with 200, 300, 500, or 1000 points. The three panels from left to
right show the results for 10, 20, and 50 quantiles.

specific improvement can be read off using the additional horizontal blue lines in Figure 5.5.
These lines correspond to the agreement one obtains from a sample containing 200, 300, 500,
or 1000 data points. Using these lines as reference one can estimate that the description of px
provided by the GAN is equivalent in terms of the quantile MSE to that provided by a ∼ 150
point sample in the 10 quantile case. For the 20 and 50 quantiles cases, the GAN is equivalent
to ∼ 280 and ∼ 600 points respectively. This allows us to define an amplification factor as the
ratio between the original size of the training data and the number of points the GAN agreement
is equivalent to. These factors are 1.5, 2.8, and 6 respectively.

The explanation for this amplification behavior of the GAN can be found in the generator
network. Neural networks are designed to be able to approximate a wide range of functions,
and therefore have few constraints on what they can describe. However, since they need to be
differentiable by construction, they tend to have a smooth and continuous output. This means
that when a GAN is trained on a data set, one inherently assumes that the training distribution
p(x) is also smooth and continuous. This presents additional information that allows the GAN
to interpolate between individual data points and thereby arrive at an overall better agreement
with the true distribution than the training data alone.

Splitting the data into more quantiles results in fewer points in each individual quantile,
thereby making the interpolating behavior of the GAN more noticeable for larger quantile counts.
This explains why the observed amplification factor increases as one goes from 10 to 20 or 50
quantiles.

5.2 2-Dimensional Data

Having seen promising results for the one-dimensional toy example, we gradually expand the
complexity of our data set. The first step consists of moving to a two-dimensional problem. To
this end, we expand our camel back distribution to a Gaussian ring. In polar coordinates r and
ϕ, the probability distributions are given by

89

CHAPTER 5. GANPLIFICATION

101 102 103 104 105 106

number GANed

10 2

10 1

ra
di

us
 q

ua
nt

ile

M
SE

 GAN

 sample

 200
 300
 500

10 quantiles
100 data points

101 102 103 104 105 106

number GANed

10 1

 q
ua

nt
ile

M

SE

 GAN

 sample

 200
 300
 500

10 quantiles
100 data points

101 102 103 104 105 106

number GANed

10 2

co
m

bi
ne

d
qu

an
til

e
M

SE

 GAN

 sample

 200
 300
 500

7 × 7 quantile
100 data points

Figure 5.6: Comparison of the quantile MSE between the true Gaussian ring distribution and
the training data (blue) and the GAN (orange). Dotted blue lines correspond to larger data
sets with 200, 300, or 500 points. The three panels from left to right show the results for the r
direction, the ϕ direction, and the combination of both.

p(r) =N4,1(r) +N−4,1(r) for r ≥ 0, (5.2.1)
p(ϕ) =const. for 0 ≤ ϕ < 2π . (5.2.2)

The distribution in r was deliberately chosen to be symmetrical around zero to ensure the
correct normalization of the Gaussian distributions.

While the ring distribution is defined in polar coordinates, the representation used to train
the GAN will be in Cartesian x, y coordinates. Unlike r and ϕ, x and y are not independent and
instead have strong correlations in order to form the ring distribution. Therefore we can use the
Cartesian representation to investigate how well the GAN can handle correlated input variables
and how this affects the amplification behavior.

To create the training set, we again sample 100 points from the Gaussian ring. The GAN
setup remains largely unchanged compared to the one used in the one-dimensional experiment.
The only modifications that were performed were changing the numbers of input and output
nodes to accommodate the two-dimensional data set.

As a parameter fit becomes increasingly complex for larger dimensions we no longer include
the fit comparison in the two-dimensional case and instead focus on the GAN and the training
data.

To compare the agreement between the true distribution and GAN distribution, the data
sampled from the GAN is transformed back to polar coordinates. Then the quantiles of the p(r)
and p(ϕ) distributions are calculated and used to determine the quantiles MSE. The results of
this are shown in the left and middle panels of Figure 5.6. One can see that the GAN does a
remarkable job learning p(r), achieving an amplification factor of ∼ 4. Further, while the GAN
performs less well at modeling the flat p(ϕ) distribution, the model still reaches an amplification
factor of ∼ 1.5, comparable to the 10 quantile result in one dimension.

Further, if one wants to look at the distribution as a whole, it makes sense to consider both
quantile directions at once. To achieve this one can directly combine the quantiles in r and ϕ
direction, since p(r) and p(ϕ) are independent. This results in a spider web-like structure of

90

CHAPTER 5. GANPLIFICATION

-6 -4 -2 0 2 4 6
x

-6

-4

-2

0

2

4

6

y

0.0

0.5

1.0

2.0

3.0
GANed sampled

-6 -4 -2 0 2 4 6
x

-6

-4

-2

0

2

4

6

y
0.0

0.5

1.0

2.0

3.0
100 training points

Figure 5.7: Visualizations of the combined quantile regions in r and ϕ direction. Color in each
region shows the deviation from the expected 1

Nquant
fraction, with deeper reds corresponding to

a larger deviation.

quantiles shown in Figure 5.7. The figure also shows the quantile fractions of one set of 100
training points and one GAN trained on this training set. The color in each quantile region
indicates the deviation from the expected quantile fraction of 1

Nquant
. Colors closer to white

indicate a smaller deviation. Overall one can read off that the GAN achieves a smoother and
more accurate description of the true distribution than the training data. This can further be
quantified by calculating the MSE on this combined set of quantiles. The result of this can
be seen on the right panel of Figure 5.6. Here the GAN once again has a significantly better
agreement than the training data, reaching an amplification factor of ∼ 3.5

5.3 Multi-Dimensional Data

In the final proof of concept example, we further extend the number of dimensions to five. This
results in a five-dimension hypersphere with a Gaussian radius. The distribution along the radius
is again given by

p(r) =N4,1(r) +N−4,1(r) for r ≥ 0 . (5.3.1)

The angle distributions p(ϕ1) to p(ϕ4) are such that the vectors of the sampled points lie
uniformly distributed on the surface of the five-dimensional unit sphere. The lengths of these
vectors are then scaled by the Gaussian radius defined in Equation (5.3.1) to obtain the final
distribution.

The increase in dimensionality also leads to an increase in the sparsity of the data, as the
points are spread out over a larger volume. Therefore we increase the number of points in our

91

CHAPTER 5. GANPLIFICATION

101 102 103 104 105 106 107

number GANed

10 2

10 1

ra
di

us
 q

ua
nt

ile

M
SE

 GAN

 sample
 750
 1000
 1500

10 quantiles
500 data points

101 102 103 104 105 106 107

number GANed

10 2

10 1

1 q
ua

nt
ile

M

SE

 GAN

 sample
 750 1000
 1500

10 quantiles
500 data points

101 102 103 104 105 106 107

number GANed

10 2

10 1

2 q
ua

nt
ile

M

SE

 GAN

 sample
 750
 1000
 1500

10 quantiles
500 data points

101 102 103 104 105 106 107

number GANed

10 2

10 1

3 q
ua

nt
ile

M

SE

 GAN

 sample
 750
 1000
 1500

10 quantiles
500 data points

101 102 103 104 105 106 107

number GANed

10 2

10 1

4 q
ua

nt
ile

M

SE

 GAN

 sample
 750
 1000
 1500

10 quantiles
500 data points

101 102 103 104 105 106 107

number GANed

10 2

co
m

bi
ne

d
qu

an
til

e
M

SE

 GAN

 sample
 750
 1000
 1500
 2000

3×3×3×3×3 quantiles
500 data points

Figure 5.8: Comparison of the quantile MSE between the true five-dimensional Gaussian sphere
and the training data (blue) and the GAN (orange). Dotted blue lines correspond to larger data
sets with 750, 1000, 1500, or 2000 points. The top left panel shows the results for the r direction.
The top center and right, and bottom left and center panels show the four angles ϕ1 to ϕ4. The
bottom right panel depicts the combined quantile MSE in all five directions.

training set from 100 to 500, in order to ensure the training set remains representative of the full
distribution.

The five-dimensional data is then treated similarly to the previous two experiments. The
GAN architecture is adapted to work with 5 input dimensions and then trained on a Cartesian
representation of the data. The generated and training data is then transformed back to spherical
coordinates and the agreement with the true distribution is compared using the quantile MSE.
The results can be seen in Figure 5.8. The first five panels from top left to bottom right show
the quantile MSE along the five directions, r, ϕ1, ϕ2, ϕ3, ϕ4. In each of the directions, we see
a significant amplification, with factors ranging from 1.3 to 2.3. The worst performing direction
is that of ϕ4, the angle that is uniformly distributed. This aligns with the observations in the
two-dimensional Gaussian ring, where the uniform angle was more difficult to model than the
radius.

The bottom right panel shows the MSE for the combined quantiles in all directions. Note,
that the dimensionality of the Gaussian sphere causes the total number of combined quantiles to
scale with the quantiles in each direction to the power of 5. Therefore even the lowest number of
quantiles investigated, 3 in each direction, results in 243 total quantiles. For the combined MSE,

92

CHAPTER 5. GANPLIFICATION

101 102 103 104 105 106 107

number GANed

10 3

10 2

co
m

bi
ne

d
qu

an
til

e
M

SE

 GAN

 sample
 1000
 2000

 5000

4×4×4×4×4 quantiles
500 data points

101 102 103 104 105 106 107

number GANed

10 4

10 3

co
m

bi
ne

d
qu

an
til

e
M

SE

 GAN

 sample
 1000
 2000
 5000
 10000
 20000

6×6×6×6×6 quantiles
500 data points

3 4 5 6 7 8 9 10
quantiles per dimension

0

50

100

150

200

GA
N

am
pl

ifi
ca

tio
n

fa
ct

or

Figure 5.9: Comparison of the quantile MSE between the true five-dimensional Gaussian sphere
and the training data (blue) and the GAN (orange). Dotted blue lines correspond to larger
data sets. The left and center panels show the combined quantile MSE for 4 and 6 quantiles in
each direction. The right panel shows the amplification factor as a function of the number of
quantiles.

we can once again see how the interpolation behavior of the GAN becomes more noticeable in
cases with fewer points per quantile, as GAN reaches an amplification factor of more than 3.

As MC simulations in physics have to deal with a sparsely populated high dimensional space,
the question arises of what happens if the sparsity is further increased by increasing the number of
quantiles. Figure 5.9 shows the effect of an increased sparsity. The first two panels plot the MSE
for 45 = 1024 and 65 = 7776 quantiles, with amplification factors of ∼ 8 and ∼ 30 respectively.
The final panel shows the scaling of the amplification factor as the number of quantiles increases.

5.4 Conclusion

The question this experiment sought to answer was how many samples can be drawn from a
generative model before one becomes limited by the statistics of the original training set.

Using three model distributions we managed to show that a generative model trained on
a set of data can interpolate between the data points and thereby result in an overall better
description of the underlying distribution. This indicates that the model can reasonably be used
to generate more points than were contained in the original training data.

We have so far only demonstrated this behavior for training sets that allow for smooth
interpolation, however, this requirement is fulfilled by the majority of applications in HEP.

Therefore we can confidently say that, from a statistics view, GANs and generative models
as a whole remain a viable approach for speeding up MC simulations. As such this experiment
forms the cornerstone of the thesis, as it addresses one of the bigger criticisms of generative ML
in HEP.

93

Chapter 6

Photon Shower Generation

The work presented in this chapter has been previously published as Reference [2] in collaboration
with Erik Buhmann, Engin Eren, Frank Gaede, Gregor Kasieczka, Anatolii Korol, and Katja
Krüger. Several figures and tables presented as well as the text are similar or identical to the
content of this article. My contribution comprises the development and implementation of the
BIB-AE network, performing the comparison studies, writing sections of the paper, handling the
peer-review processes, and addressing referee comments.

In Chapter 5 we were able to demonstrate that generative models can be used to sample more
points than they were trained on, thereby addressing the primary fundamental concern regarding
generative FastSim. Building on these results we now move to apply generative approaches
to speed up MC simulation. As discussed in Chapters 1 and 2, one of the most significant
bottlenecks in MC simulation chains is calorimeter simulation. We therefore focus our efforts on
the simulation of calorimeter showers in the highly granular calorimeters of the ILD [59]. We
initially use photon showers, as their regular and uniform structure make them a well-understood
test case.

In this chapter, we first introduce the photon shower data set in Section 6.1. Sections 6.2
and 6.3 give a detailed description of the three specific generative approaches that are used to
simulate the photon showers. The performance of the generative models is evaluated by compar-
ing the generated showers to those simulated using Geant4 in Section 6.4, before concluding
with Section 6.5.

6.1 Photon Data Set

The main training data consist of approximately 950k simulated photon showers within the
electromagnetic calorimeter of the ILD, outlined in Section 2.6. The showers are simulated1

using Geant4 [29] version 10.4, with the QGSP_BERT physics list. The detector was modeled
using DD4hep [153] version 1.11 within the ILCsoft [154] framework.

We define two coordinate systems; (x, y, z) for use within a calorimeter block, where z points
orthogonal to the individual calorimeter layers and x and y are parallel to the layer orientation,
and (x′, y′, z′) for use within the detector barrel, where z′ points along the beam direction and
y′ points straight upwards. The simulated photons are shot in the y′ direction and once they

1The simulated data was provided by Engin Eren.

95

CHAPTER 6. PHOTON SHOWER GENERATION

Figure 6.1: Rendering of a 60 GeV photon shower in the ILD detector. The cylindrical structure
represents the ILD tracker. Figure taken from [2].

reach the calorimeter block they traverse the calorimeter along the z direction. All photons in
this data set hit the detector under the same angle and are aimed to hit the center between 4
cells in the x− y plane. For this study, we consider photons with energies uniformly distributed
between 10 and 100 GeV.

The resulting calorimeter hits are projected onto a regular 30× 30× 30 grid. This results in
a tensor x ∈ R30×30×30, where the entries in each position indicate the energy deposited in the
corresponding calorimeter cell. These tensors are what will be referred to as calorimeter images
in the following.

This approach can introduce artifacts into the data, as the detector geometry itself is not
perfectly regular. The most notable such artifact is the staggering of the calorimeter cells. This
causes the core of the shower to appear to fluctuate between the center two cells, as can be seen
in the y direction overlay of several showers shown in the center of Figure 6.2. Furthermore, the
calorimeter models feature regions reserved for infrastructure, such as power supply and readout
cables. Therefore, some pixel rows in the projected grid end up empty. As an artificial structure
like this can be challenging for a generative model to learn, we chose to remove these empty rows
by moving the closest filled rows up to take the place of the empty ones.

A separate test set was simulated in addition to the 950k training showers. This test set
consists of 40k showers with a uniform energy distribution, as well as 4k showers with specific
energies ranging from 20 GeV to 90 GeV in 10 GeV sized steps.

96

CHAPTER 6. PHOTON SHOWER GENERATION

Figure 6.2: Overlays of 2000 showers induced by 50 GeV photons, projected along the (from left
to right) x, y, and z axis. The artificial structure in the y direction originates from the projection
onto a regular grid. Center panel taken from [2].

Electronic noise and other disruptive factors make low energetic hits unreliable. Therefore
hits below the threshold of half the energy deposited by a minimum ionizing particle ionization
(0.5 MIPs) are ignored for analysis. We do not perform this cutoff to the training data, however,
we do apply it to both the test data and the generated showers for the purpose of evaluating the
generative performance of the models.

6.2 GAN and WGAN Models

We use three different generative models to learn and reproduce the photon shower data set. The
first two are a GAN and a WGAN. The principles of the two methods are discussed in detail in
Sections 4.2 and 4.3 respectively, therefore this section will focus on how the two architectures
were specifically applied to the shower data set. A full description of the architectures and
training hyperparameters is given in Appendix A.

GAN

The GAN2 architecture used in this work was broadly inspired by the CaloGAN model [48].
Our implementation uses a generator constructed out of 3D-transpose-convolutional layers and
a discriminator consisting of 3D-convolutional layers, leading into a final set of dense layers.
Both the generator and discriminator make use of batchnorm layers. The generator employs
ReLU activation functions, in order to allow for hard cutoffs in the generated data, while the
discriminator uses Leaky ReLU functions to prevent vanishing gradients in the discriminator
training. The input to the generator comprises a 100-dimensional vector of noise, sampled
uniformly in the range [−1, 1].

The model is conditioned on the energy of the incident photon, so showers corresponding to
a specific particle energy can be generated. To this end, the energy label is fed as an additional
input to the discriminator. The generator conditioning is achieved by multiplying the noise

2The trained GAN model was provided by Anatolii Korol.

97

CHAPTER 6. PHOTON SHOWER GENERATION

Generator

Discr.

Noise
xx

E

'

OutputReal Data

Generator

Critic

Energy
constr.Noise

xx

E

OutputReal Data

'

Figure 6.3: Illustration of the full photon shower GAN (left) and WGAN (right) setups. The
blue lines indicate the energy conditioning. Figure adapted from [2,3].

vector with the energy label in GeV. The blue lines in the left panel of Figure 6.3 show this
energy conditioning setup.

Both networks use an ADAM optimizer [108] with a learning rate of 2 × 10−5 and default
β parameters. The networks are trained in a 1 : 1 ratio, meaning that for every discriminator
update there is one generator update. The total number of parameters in both models is around
3.5M.

WGAN

Our WGAN3 model is similar to the GAN model, and features a generator network built from
3D-transpose-convolutions, layernorm layers, and ReLU activations, as well as a critic consisting
of 3D-convolutions, layernorm layers, and leaky ReLU activation functions. The generator input
is a 100-dimensional noise vector sampled from a Normal distribution.

The model uses a gradient penalty term in order to regularize the critic to a 1-Lipschitz
function.

To facilitate the conditioning on the photon energies, the energy label is fed into both the
generator and discriminator as an additional input. Furthermore, our WGAN uses a constrainer
network a, inspired by similar work [50], to refine this conditioning. This constrainer is trained
in advance to predict the energy of an incident particle based on a given shower image. The
prediction of the constrainer a(x) for given real samples x or fake samples x′ is then used in an
additional loss function for the generator, given by

LGen, Constrainer = κE[
∣∣(a(x′)− E)2 − (a(x)− E)2

∣∣] . (6.2.1)

Where E is the energy label of x and was also used as conditioning in the generation of x′.
This loss can be understood as minimizing the difference between the true photon energy and
the photon energy E predicted by the constrainer for a fake sample a(x′). The additional term
(a(x)−E)2 accounts for cases where the constrainer prediction for a real shower differs from the
true label and effectively softens the effect of the constrainer on the generator loss in such a case.
The full WGAN setup including the energy constrainer is shown in the right half of Figure 6.3.

The generator and critic network use an ADAM optimizer with a learning rate of 10−4. This
learning rate is reduced by a factor of 10 after every 50k gradient update steps.

Both the GAN and WGAN were implemented in Python using the PyTorch [151] package.
3The trained WGAN model was provided by Engin Eren.

98

CHAPTER 6. PHOTON SHOWER GENERATION

Original Reconstruction 1 Reconstruction 2 Reconstruction 3

Figure 6.4: Demonstration of the MSE loss not being able to account for proximity. The MSE
between Original and Reconstruction 1 is identical to the MSE between Original and Reconstruc-
tion 2. Further, the MSE between Original and Reconstruction 3 is lower than for Reconstruction
1 or Reconstruction 2, despite containing no filled pixels.

6.3 BIB-AE Model

The third generative model we investigated was the BIB-AE architecture described in Section 4.7.
While the practical implementation closely follows the principles outlined in that section, some
modifications had to be made to accommodate for the shower data set. A complete description
of details of the architecture and training hyperparameters can be found in Appendix A.

MSE loss on Sparse Data

Section 4.7 describes two losses designed to improve the quality of the generated data. A GAN-
like adversarial network to gauge the quality of individual generated images, and an MSE loss
that enforces similarity between the encoder input and decoder output.

This MSE loss is a reasonable reconstruction loss for data sets such as photographs or artwork,
where every pixel is filled, however on sparse data such as our calorimeter images it leads to
problematic behavior.

To explain this problem, we assume a simplified case where the input data consists of a 2-
dimensional image with one filled pixel at position (x = 0, y = 0), illustrated in the left panel
of Figure 6.4. In an imperfectly reconstructed image, this one pixel can end up moved to a
different position, such as (x = 1, y = 0), or (x = 4, y = 4), labeled reconstruction 1 and 2 in
Figure 6.4. If one calculates the MSE between the original image and the two reconstruction
results, then both result in the same MSE loss value, since the MSE loss has no way to account
for the proximity of individual pixels. Therefore, reconstructions 1 and 2 both achieve the same
MSE loss, despite reconstruction 1 being significantly closer to the original input. A further,
even more problematic effect becomes apparent when one calculates the MSE loss between the
input and an empty image, called reconstruction 3 in Figure 6.4. This MSE loss is lower than
the ones for reconstructions 1 and 2, despite the fact that it is missing the one defining feature
of the input image. Therefore the decoder network is incentivized to either perfectly reconstruct
the pixel position, or to not place a pixel at all if a perfect reconstruction is impossible.

This becomes a problem when applied to the photon shower data set. Here one has a region
around the shower core that features a multitude of scattered hits, as indicated on the left panel
of Figure 6.5. Individually reconstructing every single one of these scattered hits is not feasible

99

CHAPTER 6. PHOTON SHOWER GENERATION

Figure 6.5: Left panel: 2d projection of a photon shower along the z-axis. Right: the same
photon shower reconstructed by an MSE-trained AE.

while still following the IB approach. Therefore an encoder-decoder setup trained with an MSE
loss on the photon showers will be encouraged not to place any hits in these sparse regions, as
this minimizes the MSE loss. The result of this can be seen on the right panel of Figure 6.5.
From a physics perspective, this is the exact opposite of what would be desired. While the exact
position of the scattered hits is not of great relevance, their presence is very much important.

Therefore we chose to use a more adaptable loss function to measure the difference between
input and reconstruction. This loss takes the shape of an additional difference discriminator
network. This network is trained to distinguish between “fake” data, given by the element-wise
difference between input and reconstruction x−D(E(x)), and “real” data given by a vector filled
with zeros. This network forces the encoder-decoder setup to minimize the difference between
input and reconstruction. However, unlike the MSE loss, the network can learn to put an unequal
emphasis on different pixel positions, thereby ensuring the shower core is correctly reconstructed,
while not interfering with the scattered hits around the core.

In the practical implementation, this difference discriminator is integrated into the GAN-like
discriminator, resulting in one large discriminator network. The inputs to this combined network
consist of x and 0 with a “real” label or x′ and x− x′ with a “fake” label.

WGAN-like Critic Networks

Using a classical discriminator with the difference input outlined above would result in an im-
mediate breakdown of the training as the discriminator will learn that any value other than 0 in
the difference input corresponds to a “fake” label. Therefore one needs an approach that mea-
sures the distance between the two distributions. This is achieved by using a gradient penalty
critic network instead of a discriminator. Therefore all the discriminator networks described in
Section 4.7 are implemented using WGAN-like critic networks.

Maximum Mean Discrepancy Loss

One significant difficulty in generating calorimeter showers is reproducing the precise distribution
of individual hit energies in the showers, also called the visible cell energy spectrum. The

100

CHAPTER 6. PHOTON SHOWER GENERATION

training data has a visible peak in this spectrum around the energy of 1 MIP (0.2 MeV for this
calorimeter), which can be seen in the left panel of Figure 6.8. This peak plays an important
role in the calibration of a calorimeter, making its correct modeling a priority. However a purely
adversarial loss appears incapable of correctly replicating this feature, as can be seen from the
GAN and WGAN results in the left panel of Figure 6.8.

This can be addressed through the use of an additional loss term, explicitly enforcing this
feature. One such option is a Maximum Mean Discrepancy Loss (MMD) [135]. The MMD is
a kernel-based method capable of directly comparing two distributions based on samples from
those distributions. An MMD loss between the real cell energy distribution Cr and the generated
distribution Cg is given by:

MMD(Cr, Cf) = E[k(x, x′)] + E[k(y, y′)]− 2E[k(x, y)], (6.3.1)

where x and x′ are samples drawn from Cr, y and y′ are samples drawn from Cf and k is a
positive definite kernel function. This term becomes minimal if Cr and Cf are identical. In
order to evaluate the MMD loss between two sets of samples {xn}Nn=0 and {yn}Nn=0, one needs to
evaluate the three terms pairwise for each of the pairings {xi, xj}, i ̸= j, {yi, yj}, i ̸= j and {xi, yj}
respectively. Therefore the computation time scales quadratically with the number of samples N .
This means simply comparing two calorimeter images, each containing 303 samples from the total
cell energy distributions, would require evaluating Equation (6.3.1) approximately (303)2 times.
This is not feasible even with significant parallelization. However, of the 303 = 27, 000 cells, only
around 2, 000 are above the MIP cutoff and therefore relevant. Additionally, there is little sense
in comparing the highly energetic parts of the cell energy spectrum to the lower regions. This
allows us to speed up the MMD calculation using what we call the Sorted-Kernel-MMD.

Initially, both showers are flattened and their hit energies are sorted. Then, one takes the
2,000 most energetic hits and discards the rest. Finally, the first n hits from both flattened and
sorted showers are compared using Equation (6.3.1). This comparison window is then moved by
m positions and the MMD is computed on the hits in the interval ranging from m to m + n.
The window continues to move until it reaches the end of the 2,000 hits. The final MMD loss
is given by the sum over all intermediate calculations. This process significantly speeds up the
MMD calculation, making it viable for training the BIB-AE model.

For the photon shower BIB-AE, the chosen parameters are n = 100 and m = 50. The chosen
k is a Gaussian kernel function given by

k(x, x′) = e−α(x2+x′2−2xx′), (6.3.2)

where α dictates the scale of structures the MMD loss is sensitive to. α = 200 was found to
suitably resolve the peak around the 1 MIP region.

Adding this MMD loss to the BIB-AE model does in fact improve the modeling of the low
energy region, however, it also introduces unphysical artifacts in the generated showers, such as
superfluous hit clusters around the edges of the image.

Post Processor

Since the inclusion of the MMD loss into the main BIB-AE network results in a worsened gener-
ation performance, we decided to offload the correct modeling of the MIP peak onto a secondary

101

CHAPTER 6. PHOTON SHOWER GENERATION

Post Processor network. This Post Processor consists of a series of 3d-convolutional layers, with
kernel size 1 and stride 1. Therefore the Post Processor can be seen as a nonlinear function
applied independently to each cell. This allows the Post Processor to adjust the values of pix-
els but makes it so the pixels cannot be moved around, thereby preventing the introduction of
unphysical artifacts through the Post Processor.

The Post Processor is only supposed to improve the cell energy spectrum by slightly adjusting
individual pixel values. Therefore we want the network to be as close to the identity mapping as
possible, while still correcting the spectrum. To this end, the Post Processor network is initially
pre-trained with an MSE loss between its input and its output. After one epoch of pre-training,
the MMD loss between the cell energy distribution of the Post Processor output and the real
data is added to the MSE loss. This teaches the Post Processor to correct the mismodeled
MIP peak, while otherwise performing minimal changes. The Post Processor network is trained
in parallel with the main BIB-AE to ensure the Post Processors correlations are tuned to the
BIB-AE network, even as the main BIB-AE changes. Furthermore, we found the Post Processor
training to converge better if the BIB-AE is pre-trained for a number of epochs before the Post
Processor is turned on, as the significant changes to the BIB-AE output during the first few
epochs can confuse the Post Processor.

These modifications lead to the full BIB-AE model depicted in Figure 6.6. The encoder
model is constructed of an initial series of 3d-convolutions, interspersed with layernorm layers,
the output of which is fed into a set of fully connected layers. These map onto a 24-dimensional
Gaussian latent space. The encoded latent space is concatenated with an additional 488 noise
variables drawn from Normal distributions. This is done to increase the number of random
variables the decoder network has access to. The decoder network uses a combination of dense
layers, 3d-transpose-convolutions, 3d-convolutions, and layernorm layers to map the latent space
to a 30×30×30 output. Both the encoder and the decoder use leaky ReLU activation functions.

The combined critic network is built similarly to the encoder using 3d-convolutional layers
and layernorm layers, followed by a series of dense layers. The difference vector input is directly
fed into the dense section of the network. The latent critic consists of a simple fully connected
network. All critic networks employ leaky ReLU activations. In order to assist the latent critic,
an additional MMD term was added to the loss that compares the encoded latent space to the
desired Gaussian latent space.

The BIB-AE is conditioned on the photon energy by passing the energy label to the encoder,
decoder, and critic networks. The final Post Processor network is also conditioned on the energy,
in case the exact correction of the MIP peaks is dependent on the photon energy.

All component networks are trained using an ADAM optimizer with an initial learning rate
of 5× 10−4 for the encoder, decoder, and critic, and 2× 10−3 for the latent critic. All learning
rates are multiplied with a factor of 0.95 after every epoch, resulting in an exponentially decaying
learning rate. The entire BIB-AE model was implemented using PyTorch.

6.4 Results

All three generative models that were introduced in Sections 6.2 and 6.3 are trained using the
training set of 950k photon showers. We now evaluate the performance of the individual models
by comparing their generated showers to the test set. Unless specified otherwise, every com-

102

CHAPTER 6. PHOTON SHOWER GENERATION

Encoder Decoder

Latent
Critic

+MMD

Critic

Latent
Input

x xx

E
KLD

MSE

MMD

Post
Processor
Network

0
-

~

OutputIntermediate

'

Figure 6.6: Illustration of the full photon shower BIB-AE setup with the Post Processor network.
Image adapted from [2,3].

parison in this section is done after applying a 0.5 MIP (0.1 MeV) threshold cut to both the
generated and test data.

Figure 6.7 shows a visual comparison between the individual 50 GeV showers produced by
the generative model and taken from the test data. From this, one can see that the generated
showers look very similar to the ones produced by Geant4, and that no generated shower shows
any obvious unphysical artifacts.

Marginal Distributions

While individual shower comparisons are helpful in identifying any glaring problems the generated
showers may have, they are insufficient for our goals. In order to have a successful fast simulation
approach one needs to ensure that not only the individual images are realistic, but also that the
overall properties of the generated showers match those produced by Geant4. To this end, the
next step consists of comparing the physical observables of several generated showers to the same
observables taken from the test data.

The first observable we consider is the cell energy spectrum. The left plot of Figure 6.8 shows
this spectrum for the three generative models in the three colored lines and Geant4 as the gray,
filled histogram. The hatched region in the plot shows the part of the spectrum that is cut
away by the MIP cutoff, meaning that mismatches in this region do not have an impact on the
shower quality. One can see that the highly energetic hits are modeled well by all three models.
In the low energy region close to the cutoff there is a visible peak in the Geant4 spectrum,
around the energy of 1 MIP. This peak is not modeled by either the GAN or the WGAN. The
BIB-AE, however, manages to accurately model this peak, largely due to the dedicated Post
Processing. This presents a significant success, as it demonstrates how the shortcomings of a
generative model can be addressed with a specialized secondary network.

The right plot of Figure 6.8 compares the total number of pixels with an energy deposit
above the cutoff threshold for photon showers caused by 20, 50, and 80 GeV photons. The GAN
and WGAN can be seen to underestimate the total number of hits, while the BIB-AE model
is nearly spot on. This is directly correlated to the previously discussed modeling of the cell

103

CHAPTER 6. PHOTON SHOWER GENERATION

Figure 6.7: 3D renderings of individual showers generated using Geant4 (top left), the GAN
(top right), the WGAN (bottom left), and the BIB-AE (bottom right). The colors of the indi-
vidual pixels indicate the deposited energy in that pixel. Figure taken from [2].

104

CHAPTER 6. PHOTON SHOWER GENERATION

Figure 6.8: Comparison of the cell energy spectrum (left) and the number of hits in a shower
for 20, 50, and 80 GeV (right). The hatched region in the cell spectrum indicates the region cut
by the MIP threshold. The lines correspond to Geant4 (filled, gray), the GAN (red, dotted),
the WGAN (blue, dashed), and the BIB-AE (green, solid). Figure taken from [2].

energy spectrum. Since the exact number of points that end up above the threshold depends on
the cell energy spectrum around the threshold, correctly modeling this spectrum is essential to
accurately describe the total number of hits. Both GAN setups have trouble reproducing the cell
energy spectrum, and therefore also struggle with the number of hits, while the BIB-AE succeeds.
Beyond this, the number of hits is also an indication of how well the energy conditioning of the
models is performing, as photons with higher energies should produce showers with more hits.
Under this lens, one can see that the models have successfully learned a dependence between the
number of hits and the photon energy.

A further evaluation of the energy conditioning can be seen in the top left panel in Figure 6.8.
This plot shows the distribution of the sum over all hits above the MIP threshold in a shower,
also known as the visible energy sum distribution. This is shown for 20, 50, and 80 GeV photon
showers. The means of the individual peaks are well reproduced by all distributions, however
both GANs show some deviations around the right flank of the distributions, where they seem
to mismodel the asymmetric shape of the Geant4 peaks. The BIB-AE appears more successful
in this regard, closely reproducing both the peak widths and shapes.

Figure 6.8 additionally shows the center of gravity of the showers along the z-direction (top
right), and the longitudinal and radial energy profiles (bottom left and bottom right respectively).
These three observables give insight into how well the average shape of the photon showers is
captured by the generative models. One can see that both energy profiles are well modeled
by both the BIB-AE and the GANs, with only the WGAN showing slight deviations around

105

CHAPTER 6. PHOTON SHOWER GENERATION

the outer layers. Even the comb-like structure in the longitudinal profile, caused by the exact
orientation of the active detector layers, is learned correctly. In the center of gravity comparison,
the BIB-AE can be seen to underestimate the width of the distribution, while both the GAN
and WGAN demonstrate a significantly better agreement with Geant4.

A vital property of a calorimeter is how it responds to different particle energies. In order
to see in detail how well this is reproduced by the generative models, we use them to sample
showers produced by photons with energies between 20 GeV and 90 GeV in 10 GeV steps. The
showers are then compared to the test set containing Geant4 showers for the same energies. To
this end, the showers are summed to obtain the visible energy sum distributions (partially shown
in the top left of Figure 6.9) and then the means and widths of the individual distributions are
calculated. We define the mean of the distributions as the mean of the central 90% interval, also
called the µ90. Similarly, the width is defined as the standard deviation of this interval, called
σ90.

The results of this are plotted in Figure 6.10. On the left one can see how well µ90 is
reproduced. The upper section of the plots shows a high level of agreement between Geant4
and the generative models. The ratio plot in the lower section confirms this, showing deviations
in the range of only 2% for the GAN and BIB-AE. The σ90

µ90
comparison shown on the right

reveals that the relative width4, however, is not as well modeled. Both GANs overestimate the
width by about 25%. The BIB-AE performs significantly better, with its µ90 centered around
the Geant4 value, however, it still has deviations of up to 15%. This is in line with the top left
panel of Figure 6.9, where one could see the BIB-AE more closely describing the visible energy
peaks.

Correlations

The final criteria we apply to judge the quality of the generative shower is whether their internal
correlations are in line with those expected from the Geant4 data. To this end, we calculate the
pair-wise Pearson correlations between a select set of observables, inspired by Reference [155].
These observables are: The first moments along the three directions, labeled m1,x, m1,y, m1,z,
the second moments along the three directions, labeled m2,x, m2,y, m2,z, the visible energy sum
Evis, the incident photon energy Einc, and the number of hits above the cutoff nhit. The final
three observables are ratios between the energy deposited in the first third of the calorimeter
and the total visible energy E1/Evis, the ratio between the second third and the total E2/Evis,
and the ratio between the final third and the total E3/Evis.

The correlation coefficients form a correlation matrix, which is calculated for Geant4 and
the three generative models. Figure 6.11 shows the correlation matrix for Geant4 in the top
left. In order to easily compare the correlation matrices, we calculate the element-wise difference
between the Geant4 matrix and the generative matrices. These difference matrices are shown
in the top right and bottom of Figure 6.11, the closer to zero the differences, the better the
agreement. One can see that the GAN agrees very closely with Geant4, only showing some
small deviations of 0.2 for the second moments. The WGAN performs significantly worse, show-
ing rather large deviations in multiple correlation coefficients. The BIB-AE performance lies
between the performances of the two GANs, having smaller deviations than the WGAN, but still
performing worse than the GAN.

4Note that while this quantity has similar properties to the resolution of the calorimeter, its numerical values
do not represent the resolution

106

CHAPTER 6. PHOTON SHOWER GENERATION

Figure 6.9: Comparison of the total visible shower energy for 20, 50, and 80 GeV (top, left),
the center of gravity in the z-direction (top, right), the longitudinal energy profile (bottom, left),
and the radial energy profile (bottom, right). The lines correspond to Geant4 (filled, gray),
the GAN (red, dotted), the WGAN (blue, dashed), and the BIB-AE (green, solid). Figure taken
from [2].

107

CHAPTER 6. PHOTON SHOWER GENERATION

Figure 6.10: Comparison of µ90 (left) and σ90
µ90

(right) of the visible energy sum distributions
for single photon energies ranging from 20 GeV to 90 GeV. Lower plot sections show the ratios
between Geant4 and the generative models. The lines correspond to Geant4 (filled, solid),
the GAN (red, dotted), the WGAN (blue, dashed), and the BIB-AE (green, solid). Figure taken
from [2].

A more detailed examination of the correlations between the visible energy and the number
of hits is shown in the top row of scatter plots in Figure 6.12. The Geant4 test data shows an
approximately linear correlation, with a slight bend. The GAN manages to replicate this shape
very well, as can be seen in the second panel. The WGAN on the other hand does not learn this
curved shape and instead produces an almost exactly linear correlation. The BIB-AE appears to
correctly learn the overall shape, however, the scatter distribution is significantly sharper, as can
be seen from the higher number of points in the peaks. This is in agreement with the previous
ranking of the three approaches in terms of their produced correlations.

The lower row of Figure 6.12 shows the correlations between the visible energy and the center
of gravity along the z-axis. Here one can see a good agreement between Geant4 and the GANs,
however, the BIB-AE once again displays a distribution of scatter points that is too sharp. A
comparison with the upper right panel of Figure 6.9 shows that the BIB-AE does model the
center of gravity distribution too sharply, explaining this observation in the scatter plot.

Computational Timings

The main goal of using generative models for shower simulation is to speed up simulation times
compared to classical MC simulations. Therefore the speedup factor achieved by the generative

108

CHAPTER 6. PHOTON SHOWER GENERATION

Figure 6.11: Pairwise Pearson correlation coefficients between various observables are outlined
in the text. For Geant4 (top left) the full correlations are shown, for the generative models
we show the difference between the generative and Geant4 correlations. Color scales of the
difference matrices are identical. Figure taken from [2].

109

CHAPTER 6. PHOTON SHOWER GENERATION

Figure 6.12: Scatter plots demonstrating the precise correlations between the visible energy
sum and the number of hits (top) and between the visible energy sum and the first moment (i.e.
the center of gravity) along the z-axis (bottom). Figure taken from [2].

approaches is a vital performance metric. Table 6.1 compares the time to generate individual
photon showers between Geant4, the WGAN, and the BIB-AE5. The GAN was omitted for the
sake of readability, as its generation times are nearly identical to those of the WGAN.

We differentiate between two cases. On the one hand, we look at the simulation of showers
caused by 15 GeV photons, while on the other hand, we simulate showers for photons with
energies ranging from 10 GeV to 100 GeV. Every shower particle is modeled individually in
Geant4, leading to a higher simulation time for particles with high energies. Therefore the
average time per shower for Geant4 is almost three times higher for the energy range than for
the 15 GeV photons. This energy dependence is not present in the generative approaches, as they
always perform the same series of computational operations regardless of the specified particle
energy. As both cases are relevant for different applications we include both in the comparison.

We further split the timing evaluation between timings performed on a standard processor
(CPU) and timings performed in a Graphical Processing Unit (GPU). Running the generative
models on a GPU optimized for ML operations will naturally result in faster generation times
than running the models on a CPU, however as there is no GPU Geant4 version, CPU timings
are needed to allow for a fair comparison. Nevertheless, the GPU times serve as an upper
benchmark, demonstrating the speedup that would be possible if the appropriate hardware is
used.

When run on a CPU the WGAN model offers a speedup factor of 25× compared to Geant4
for 15 GeV showers, and a factor of up to 70× for 10-100 GeV. The BIB-AE displays a speedup
of 3× and 10× for 15 and 10-100 GeV, respectively. This is quite promising, as these factors
can be achieved on the same hardware currently used to run Geant4. Furthermore, it allows

5Generative Model and Geant4 timings were provided by Engin Eren.

110

CHAPTER 6. PHOTON SHOWER GENERATION

t

Table 6.1: Comparison of the per shower simulation time between Geant4, the WGAN, and the
BIB-AE. Timings for the GAN models are omitted as they are nearly identical to the WGAN. All
models were evaluated on a single core of a Intel® Xeon® CPU E5-2640 v4 (CPU). Additionally
the generative models were evaluated on a NVIDIA® V100 with 32 GB of memory (GPU). The
generative models were evaluated using the batch sizes that resulted in the fastest evaluation.
The uncertainties correspond to the standard deviation over 25 runs. Table adapted from [2].

Hardware Simulator 15 GeV [ms] Speed-up 10-100 GeV [ms] Speed-up

CPU Geant4 1445 ± 19 ×1 4082 ± 170 ×1

WGAN 57.99 ± 0.97 ×25 57.99 ± 0.18 ×70
BIB-AE 419.64 ± 0.07 ×3 418.04 ± 0.20 ×10

GPU WGAN 3.24 ± 0.01 ×446 3.25 ± 0.01 ×1256
BIB-AE 1.42 ± 0.01 ×1017 1.42 ± 0.01 ×2874

for a trade-off between speed and precision, with the BIB-AE having better agreements in the
marginal distributions, and the WGAN offering a better speedup factor.

On the GPU the relative ranking switches and the BIB-AE starts to reach a speedup factor of
1000× for 15 GeV showers, and almost 3000× for 10-100 GeV range. The WGAN falls somewhat
behind, achieving speedup factors of around 500× and 1250×. Nonetheless, both models offer
a staggering speedup when run on a GPU. This increase in speed has to, however, be balanced
against the increased procurement cost of GPU compared to CPUs.

6.5 Conclusion

We investigated the use of three different generative models, a GAN, a WGAN, and a novel
BIB-AE, to simulate photon showers in a highly granular calorimeter. In doing so we were able
to show the ability of the GAN, WGAN, and BIB-AE to closely reproduce the shower features
of the classical simulation software Geant4.

Notably, we demonstrated that the BIB-AE setup, in combination with a Post Processor
network, is capable of correctly modeling specific shower features such as the lower part of the
cell energy spectrum or the number of hits. This makes the BIB-AE the first generative setup
to accurately reproduce these features for showers in a highly granular calorimeter. This correct
description of the cell energy spectrum further enables the BIB-AE to more closely reproduce
the per-shower hit multiplicity of Geant4.

All examined generative models provide a significant speedup compared to Geant4 when
evaluated on identical CPU hardware, and can achieve an even greater increase in simulation
speed when used in dedicated ML hardware, such as a GPU.

These results represent an encouraging first step and show that a generative model can
reproduce showers in a highly granular calorimeter, while requiring less computational resources

111

CHAPTER 6. PHOTON SHOWER GENERATION

per shower than classical simulation methods. However, additional research may be required to
further improve the precision of the model before it can be used in a real application.

Further, we were able to show the adaptability of generative networks, as hard-to-model
features can be directly targeted through the use of additional dedicated networks. Such post
processing approaches may also prove useful in other generative applications where high precision
is required.

112

Chapter 7

Pion Shower Generation

The work presented in this chapter has been previously published as Reference [3] in collabo-
ration with Erik Buhmann, Engin Eren, Frank Gaede, Daniel Hundhausen, Gregor Kasieczka,
William Korcari, Katja Krüger, Peter McKeown, and Lennart Rustige. Several figures and tables
presented as well as the text are similar or identical to the content of this article. My contribu-
tion to the publication comprised implementation and optimization of the BIB-AE model and
its improvements, performing the comparison studies, writing sections of the paper, handling the
peer-review processes, and addressing referee comments.

In Chapter 6 we demonstrated the use of generative ML models for photon shower simulation.
However, in order to accelerate calorimeter simulation, it is not sufficient to model only one type
of particle. In fact, all common particles that cause a calorimeter shower, such as photons,
electrons, pions, or kaons, need to be taken into account. It can be argued that electron and
photon showers are similar enough that the results of the photon shower generation can easily
be transferred to electrons. However, as discussed in Chapter 2, hadronic showers produced
by pions or kaons are significantly and structurally different from photon showers. Specifically,
hadronic showers feature fewer overall interactions compared to electromagnetic showers. This
means that, unlike the largely uniform electromagnetic showers, two hadronic showers can have
vastly different shapes. A generative mode aiming to reproduce hadronic showers will have to
learn all of these variations, leading to a significantly more challenging task.

Therefore, it is vital to demonstrate that our fast simulation approach is also capable of
simulating hadronic showers. We place our focus on charged pion showers, as we assume any
result obtained for charged pion showers should be generalizable for all hadronic showers.

In this Chapter, we initially introduce the pion shower data set in Section 7.1. Section 7.2 and
7.3 describe the modification WGAN and BIB-AE used to model the pion showers, respectively.
We present the results obtained from these models in Section 7.4 and conclude in Section 7.5.

7.1 Pion Data Set

To build the pion shower training set, approximately 500k positively charged pion showers were
simulated1 using version 10.4 of Geant4 [29]. The detector model used in the simulation was
the Analogue Hadronic Calorimeter (AHCal) of the ILD, described in more detail in Section 2.6.

1The simulated data was provided by Engin Eren.

113

CHAPTER 7. PION SHOWER GENERATION

Figure 7.1: Overlays of 4000 showers belonging to 50 GeV pions, projected along the x-axis
(left), y-axis (center), and z-axis (right). The slight bend in the shower core position in the
center image is due to the magnetic field of the detector.

Similar to the photon data set, DD4hep version 1.11 and iLCsoft were used as the framework
for the shower simulation.

We use the same two coordinate systems (x, y, z) and (x′, y′, z′) as in Chapter 6, within the
calorimeter block and the detector barrel respectively. The z axis is defined to point along the
depth of the calorimeter layers, and z′ points along the beam direction.

The pions used in the shower simulation are initially placed at (x′ = 3 cm, y′ = 100 cm, z′ =
100 cm and propagate into the detector along the y′ axis. The starting point was chosen such that
the pions hit the AHCAL approximately perpendicularly after being deflected by the magnetic
field of the detector. The ECAL that is normally in place before the AHCAL was removed from
the detector simulation for the generation of the data set. This was done to ensure the pions
do not shower prematurely in the ECAL, as this would dilute the training data. All pions are
simulated with this starting position and direction. The pion energy is uniformly distributed
between 10 and 100 GeV.

The energy deposits in the calorimeter cells are projected into a 25 × 25 × 48 regular grid.
The grid size along the z-direction corresponds to the number of layers in the AHCal. The
x and y sizes were chosen as a compromise between reducing the sparsity of the data set and
containing as much of the shower as possible. The choice of 25 pixels results in an average of
1.3% of pixels being filled and allows for containment of, on average, 96% of the energy of a 40
GeV pion shower. Overlays of the resulting calorimeter images are shown in Figure 7.1.

Similar to the treatment of the ECAL showers, we correct for any artifacts caused by the
projection of the irregular calorimeter cells onto the regular grid. Additionally, there is a subset
of pions that will not induce an actual shower in the calorimeter but will instead simply pass
through, leaving a single ionization trail. These events are trivial to simulate classically, however,
due to their low number of active pixels and drastically different shape compared to the bulk
of the showers they present a significant challenge for a generative model. Therefore we remove
these types of showers from the data set, by requiring all showers in the training set to have at
least 70 hits with energies above the 0.5 MIP threshold, with 1 MIP ≈ 0.5 MeV for the AHCAL.

As the magnetic field of the detector extends into the calorimeter, the overall path of the
pions has a slight bend, as can be seen in the center panel of Figure 7.1. This introduces a slight
asymmetry in the x-y plane of the shower.

114

CHAPTER 7. PION SHOWER GENERATION

In addition to the 500k pion showers in the training set, we generated two test data sets. The
first consists of 49k pion showers with energies uniformly distributed between 10 and 100 GeV.
The second set contains pion showers at fixed energies, running from 20 to 90 GeV in 10 GeV
steps. For each energy step, 8k showers were simulated.

7.2 WGAN Model

The WGAN2 used for the pion shower generation is a direct successor of the WGAN used for
photon shower simulation in Section 6.2. Therefore this description will not cover the complete
model, but instead, focus on the improvements made to the model setup in order to accommodate
the more complex pion showers. Additional details about the pion WGAN architecture and its
hyperparameters can also be found in Appendix A.

ResNet Critic

One major change to the model was switching the purely convolutional structure of the critic to
a residual architecture [156]. The skip connections featured in this architecture reduce the risk
of vanishing gradients in the critic training. This enables the use of a larger critic network with
increased expressiveness.

Fully Connected Constrainer

The second modification concerns the energy constrainer network tasked with predicting the
particle energies of the generated showers. The constrainer used for the photon WGAN used a
convolutional structure. However, projecting the showers from the irregular calorimeter into the
regular grid structure used to train the model introduces patterns into the shower images. These
patterns break the underlying assumption of translational invariance made by convolutional
layers. Therefore the convolutional layers of the constrainer were replaced with a fully connected
network.

7.3 BIB-AE Model

The pion shower BIB-AE maintains the main component of the photon generation version, such as
the encoder-decoder principle, the combined difference critic, and the three latent regularization
terms. However, it also features several upgrades required to improve its performance on the
more challenging data set. The exact architecture of the pion BIB-AE the hyperparameters used
in the training is described in Appendix A.

For the training of the BIB-AE we apply an additional cutoff to the data, reducing every
pixel value below 0.1 MIP to zero.

Complex Latent Space Sampling

The hyperparameters of the BIB-AE setup enable us to tune the amount of information contained
in the BIB-AE latent space. However, the choice between a high-information latent space or a

2The trained WGAN model was provided by Engin Eren.

115

CHAPTER 7. PION SHOWER GENERATION

−4 −2 0 2 4

latent dimension 18

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

no
rm

al
iz

ed

Normal dist.
Latent space
KDE

−4 −2 0 2 4

latent dimension 20

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

no
rm

al
iz

ed

Normal dist.
Latent space
KDE

Figure 7.2: Selected latent space dimensions of the pion shower BIB-AE model. The red his-
togram shows the latent space produced by the encoder. The gray line shows the target latent
space. The blue line shows how the KDE can learn the latent space distribution.

low-information latent space is fundamentally a trade-off. On the one hand, it is easier for the
decoder to map a high-information latent space back to the data, as a large part of the information
required to generate realistic samples is already provided in the latent space. Therefore, a high-
information space is desirable, as it results in high-quality generated samples. On the other
hand, one needs to consider that the more information is contained in the latent space, the larger
its deviations from the target Normal distribution. This is problematic during sampling, as a
decoder trained on a non-Normal latent space will produce worse samples if applied to a Normal
distributed noise vector. The two requirements could be balanced for the relatively uniform
photon showers, however, for the complex hadronic showers, the latent space shows significant
deviations from a Normal distribution. For comparison, select latent space dimensions with
large deviations are shown in Figure 7.2. This results in the generated shower being significantly
different from the Geant4 showers, as demonstrated in Figure 7.5.

One possible solution would be to increase the latent space regularization even further, how-
ever as outlined above this would also result in decreased generation quality. Our solution,
therefore, involves a change to the noise sampling rather than the network itself. While the BIB-
AE latent space deviates strongly from its target, it is still a relatively simple and low-dimensional
distribution. Therefore we can fit a less complex density estimator to the latent space and sam-
ple from this estimator during generation. This principle is similar to the Buffer-VAE setup
introduced in Reference [157] and its applicability to a BIB-AE setup has been demonstrated in
Reference [6].

Due to its ease of use a Kernel Density Estimation (KDE) [158] was chosen to perform the
latent space density estimation. A KDE can be constructed from a set of samples {xn}Nn=1

containing N total points using

116

CHAPTER 7. PION SHOWER GENERATION

fKDE =
1

Nh

N∑
n=0

K
(x− xn

h

)
, (7.3.1)

where K is a kernel function and h is a scalable parameter dictating the smoothness of the
distribution, called the bandwidth. We found a bandwidth of h = 0.1 to yield the best overall
shower generation results. Further, a Gaussian kernel function was chosen, as the BIB-AE latent
space is per definition a combination of Gaussians. Applying the KDE to the latent space
can be understood as placing a Gaussian distribution at every point in the latent space. The
aggregate distribution of these Gaussians is then sampled to generate new points. The blue lines
in Figure 7.2 demonstrate how well the KDE can approximate the latent space.

The complete workflow for the KDE latent sampling consists of training the BIB-AE, then
using the trained encoder to encode 100k showers into latent samples. These latent samples are
then used to generate the KDE, which is in turn used during the shower generation. In order to
build and sample from the KDE, we made use of the KDE implementation in SciPy [159].

One challenge of using the KDE is that the exact latent space shape tends to be correlated
with the incident particle energy label. However, conditioning the KDE on the energy label
is highly non-trivial. Therefore this problem is circumvented by including the energy label in
the KDE, allowing the sampling of latent space and energy labels while keeping the correlations
intact. In order to generate showers for specific incident energies, we employ a rejection sampling
approach, where the KDE is repeatedly sampled until an energy label sufficiently close to the
target is drawn. Due to the fast sampling speed of the KDE approach, this results in a negligible
change to the overall shower generation times.

Minibatch Discrimination

Minibatch discrimination [147] is a modification to adversarial training processes, where the ad-
versarial network receives not only independent information about the individual input points,
but also information about the composition of the entire input batch. This allows the adversarial
network to more easily catch cases where the individual, generated images appear realistic, but
their overall composition differs from the training data. Since the increased variety of shower
shapes in the pion data set is a significant concern, we chose to introduce a minibatch discrimi-
nation setup to the main BIB-AE critic network.

To this end, the critic is modified to calculate the sum and standard deviation of each shower
in an input batch. Then the pairwise difference between the sums and between the standard
deviations is calculated, resulting in a set of difference matrices that describe the fluctuations
within one batch. These matrices are run through an embedding network and finally fed into the
main critic. Since the pixel values of the calorimeter images cover several orders of magnitude,
this operation is performed both directly in the input showers and again on a log-scaled version
of the input.

Additional Resetting Critic Networks

During the critic training, it is vital to provide the critic network with sufficient examples for it
to learn the differences between the training data and generated data. For the pion data set this
is complicated by the fact that the individual showers are exceedingly sparse, resulting in only an

117

CHAPTER 7. PION SHOWER GENERATION

Figure 7.3: Overlays of 4000 showers belonging to 50 GeV pions, projected along the z-axis.
The color scale shows the average energy in a pixel. The left panel shows the standard BIB-AE,
and the right panel shows the BIB-AE with the additional resetting critic, note the artifacts on
the border regions of the standard BIB-AE image are not present in the reset BIB-AE.

average of 1.3% of all 30,000 pixels having values above the MIP threshold. This means that the
critic can only learn about a small number of pixels per iteration. Further, the pixel positions
are not uniformly distributed but instead centered around the core of the shower. Therefore the
critic will have severe difficulty learning the shower regions far away from the shower core. Over
the course of an extended training, this can result in a critic that disregards these outer regions
and instead focuses only on the core. This causes the decoder to place additional hits close to
the border regions without penalty, resulting in artificial structures around the edges. The left
panel of Figure 7.3 shows these artifacts in the outer regions.

While these artifacts are hard to notice by eye, they can have a potentially large impact on
downstream reconstruction or classifier networks. Therefore we introduce an additional critic
network to the BIB-AE. This critic has a structure and training approach identical to the main
critic, save for the fact that it is reset after every epoch. This reset makes it so the additional
critic is not blind to the outer regions due to its training history, and can easily pick up and
correct any artifacts. Figure 7.3 shows the reset approach on the right panel. A comparison to
the standard BIB-AE shows reduced artifacts in the outer regions.

Modified Post Processing

The pion BIB-AE requires a Post Processor network to allow for the correct modeling of the
lower part of the cell energy spectrum. This Post Processor is similar in construction to what
was used in the photon shower simulation, however, the training procedure has been refined.

Three additional loss terms were added to complement the MSE and Maximum Mean Dis-
crepancy (MMD) loss described in Section 6.3.

118

CHAPTER 7. PION SHOWER GENERATION

Figure 7.4: Overlays of 4000 showers belonging to 50 GeV pions, projected along the z-axis.
The color scale shows the average energy in a pixel. The left panel shows the standard Post
Processor and the right panel shows the Post Processor with the additional batch comparison
loss. This addition greatly reduced the number of artifact pixels visible in the right panel.

The first is an additional loss term with a modified kernel resolution. This second resolution
is chosen to be sensitive to a different cell energy spectrum region than the first kernel. The
combination of the two MMD terms can affect a larger region of the spectrum and thereby
reduces the need for fine-tuning of the kernel resolution.

The second term first flattens and sorts the Post Processor output and the real shower used as
the encoder input, and then compares the two sorted vectors using an MSE and a Mean Absolute
Error (MAE) loss. This has an effect similar to the MMD, as it forces the Post Processor to
match the true cell energy spectrum. In addition to this, the MSE and MAE also force the
post-processed shower to have the same total energy as the input, thereby further forcing the
Post Processor to produce showers with the correct visible energy sum.

The third term compares the mean of one batch of post-processed showers with the mean
of one batch of real showers using an MSE loss. It was found that the Post Processor has a
tendency to repeatedly place hits in similar locations. This results in certain pixels around the
border regions that are almost always active. This is difficult to detect in individual showers but
can be clearly seen when several showers are overlaid. The loss term addresses this by comparing
full batches of showers, thereby reducing the artifacts. Figure 7.4 demonstrates the difference
between a Post Processor with (right) and without (left) this batch comparison loss term.

Further, the Post Processor is no longer trained in parallel to the main BIB-AE setup. It is
now trained after the BIB-AE has converged, using a fixed BIB-AE model. This resulted in a
more stable Post Processor training.

119

CHAPTER 7. PION SHOWER GENERATION

Figure 7.5: Demonstration of the effects of the KDE sampling and Post Processing for the BIB-
AE. Shown lines are the default BIB-AE (turquoise, dashed), the BIB-AE with KDE sampling
(red, solid), the BIB-AE with Post Processor (orange, dotted), the BIB-AE with KDE sampling
and Post Processor (blue, dashed), and Geant4 (gray, filled). The comparisons show the cell
energy spectrum (top left), the center of gravity along the y-axis (top right), and the visible
energy and number of hits for 20, 50, and 80 GeV (bottom right, and left, respectively). The
hatched region in the cell spectrum indicates the region cut by the MIP threshold.

120

CHAPTER 7. PION SHOWER GENERATION

Figure 7.6: 3D renderings of individual showers that were generated using Geant4 (left),
the WGAN (center), and the BIB-AE (right). The colors of the individual pixels indicated the
deposited energy in that pixel.

Effects of the Modifications

The direct effects of the BIB-AE Post Processing and KDE sampling can be observed in Fig-
ure 7.5. The four panels show a comparison between four different versions of the BIB-AE: the
default BIB-AE, labeled Base, in turquoise, the BIB-AE with only the added KDE sampling,
labeled KDE, in red, the BIB-AE with only the Post Processor applied, labeled Post, in orange,
and the BIBAE with both KDE sampling Post Processor, labeled KDE+Post, in blue.

The top left panel shows the cell energy distribution. Here the impact of the Post Processor
is clearly visible, as both Post Processor lines accurately model the MIP peak, while the other
two BIB-AE versions smooth out this feature. Further, one can see that the high-energy region
is only correctly modeled by the version that makes use of the KDE sampling.

The center of gravity plot in the top right demonstrates the power of the KDE sampling,
as both the baseline and post-processing-only BIB-AE fail to model this feature, resulting in a
center of gravity distribution that is significantly too sharp. Meanwhile, the KDE approaches
show no difficulties replicating the center of gravity with high precision.

The bottom row shows the visible energy sum and number of hits distributions for fixed ener-
gies of 20, 50, and 80 GeV pion showers. It can be seen that both non-KDE approaches once again
fail to capture these distributions. However, the KDE approach without post-processing also
shows noticeable deviations from the Geant4 distributions. It is only after the Post Processor
is added to the KDE sampling that the model manages to accurately describe both observables.
This illustrates the importance of combining the Post Processor with the KDE sampling.

7.4 Results

The two modified generative models can now be compared against the test data set. As was
done in the photon data set, all comparisons take place after the 0.5 MIP cutoff (0.25 MeV for
the AHCal) is applied to the showers. The comparison will be split into two parts. The first
approach is directly comparable to the evaluation of the photon data and compares the outputs of
the generative models directly to the outputs of Geant4. This method, labeled generator level
comparison, serves to give insight into how well the models can directly reproduce the data they

121

CHAPTER 7. PION SHOWER GENERATION

Figure 7.7: Comparison of the cell energy distribution (top, left), the shower start layer (top,
center) the center of gravity in the z-direction (top, right), the transversal energy profiles in x
and y direction (bottom left and center) and the longitudinal energy profile (bottom, right).
The hatched region in the cell spectrum indicates the region cut by the MIP threshold. The
lines correspond to Geant4 (filled, gray), the WGAN (orange, dotted), and the BIB-AE (blue,
dashed). Figure taken from [3].

were trained on. The second approach is modeled after a more realistic physics use case and first
runs both the generated and test showers through a reconstruction setup. This reconstruction
level comparison is especially important, as matching the reconstructed properties of Geant4
is a key ingredient for bringing generative models from proof of concept to practical application.

Generator Level

In the initial comparison, we directly inspect the shower images produced by the three ap-
proaches. Figure 7.6 shows example showers produced by Geant4 in the left, by the WGAN in
the center, and by the BIB-AE on the right panel, respectively. The BIB-AE shower shows no
clear deviations from the Geant4 example. However, the WGAN shower shows unphysical hits
around the edge regions. While this is not necessarily a disqualifying point, it does indicate that
the WGAN is less successful in capturing the shower structure than the BIB-AE.

122

CHAPTER 7. PION SHOWER GENERATION

Figure 7.8: Comparisons of the visible energy sum (left) and the number of hits (right) for
showers from pions with 20, 50, and 80 GeV. The lines correspond to Geant4 (filled, gray), the
WGAN (orange, dotted), and the BIB-AE (blue, dashed). Figure taken from [3].

Similar observations can be made for the marginal distributions. Figure 7.7 compares per
shower variables between Geant4 in the filled gray histogram, for the WGAN in the dotted
orange line, and for the BIB-AE in the blue dashed line. The cell energy spectrum is shown on
the top left panel. The hatched region shows the parts of the spectrum removed by the MIP
cutoff. Similar to the photon shower result, we can see that the WGAN smooths over the MIP
peak around 0.5 MeV, while the Post Processor allows the BIB-AE to capture this peak. Further
one can see a slight mismatch between the WGAN and Geant4 in the high energy part, which
is not present for the BIB-AE. The top center plot shows the distribution of the starting layer
of the showers [160]. While the start layers of the BIB-AE showers match up nearly perfectly
with Geant4, the WGAN showers show significant deviations, as well as a strange fluctuating
structure. This can likely be traced back to the un-physical hits visible in Figure 7.6, which
confuse the algorithm that determines the shower starting layer. The distribution of the center
of gravity along the z-axis is plotted on the top left panel. The BIB-AE again produces showers
that match the test data. The WGAN exhibits a distribution that is too sharp, somewhat similar
to the result obtained by the BIB-AE without KDE sampling, as can be seen in Figure 7.5. The
bottom three plots show the average energy profiles of the showers along the x, y, and z directions.
Within these profiles, one can directly see the un-physical hits around the edges in the showers
produced by the WGAN. This is in line with what can be seen in the WGAN shower image
in Figure 7.6. The BIB-AE reproduces all three profiles with high accuracy, even managing to
emulate the asymmetry in the x-direction profile caused by charged tracks being bent by the
magnetic field.

123

CHAPTER 7. PION SHOWER GENERATION

Figure 7.9: Comparison of µ90 (left) and σ90
µ90

(right) of the visible energy sum distributions
for single pion energies ranging from 20 to 90 GeV. Lower plot sections show the ratios between
Geant4 and the generative models. The lines correspond to Geant4 (filled, gray), the WGAN
(orange, dotted), and the BIB-AE (blue, dashed). Figure taken from [3].

In order to evaluate the energy conditioning, Figure 7.8 shows the visible energy sum distri-
butions (left) and the number of hits distributions (right) for showers produced by pions with
fixed energies of either 20, 50, or 80 GeV. It can be seen that both the WGAN and BIB-AE de-
scribe the energy distributions well, with the BIB-AE capturing the widths slightly better. The
number of hits distributions of both generative models show deviations from Geant4, however,
the WGAN ends up with larger differences due to the artificial hits.

Similar to the photon showers in Chapter 6, we further test the conditioning by calculating
the mean µ90 and relative width3 σ90

µ90
for energy distributions of 20 GeV–90 GeV pion showers.

The results are shown in Figure 7.9. The µ90 on the left panel is reproduced accurately by both
models, with deviations in the order of 2%, an even closer match than was achieved for the
photon showers. The ratio of width over mean, shown in the right-side plot, is less accurately
modeled. However, the BIB-AE still manages to follow the overall trend decently well and shows
deviations of only around 5% except for the 90 GeV showers. The WGAN similarly manages to
accurately model the central energy values, however, it displays deviations of up to 30% in the
edge regions.

The final generator level comparison examines the correlations between the shower variables.
To this end, we once again calculate the pairwise Pearson correlation coefficients between the

3Note that while this quantity has similar properties to the resolution of the calorimeter, its numerical values
do not represent the resolution

124

CHAPTER 7. PION SHOWER GENERATION

Figure 7.10: Pairwise Pearson correlation coefficients between various observables that are
outlined in the text. For Geant4 (top, left) and the BIB-AE (top, right) the full correlations
are shown, for the generative models we show the difference between the generative and Geant4
correlations. Difference matrices use identical color scales. Figure taken from [3].

125

CHAPTER 7. PION SHOWER GENERATION

Figure 7.11: Comparison the reconstructed of µ90 (left) and σ90
µ90

(right) for single pion energies
ranging from 20 to 90 GeV. Lower plot sections show the ratios between Geant4 and the
generative models. The lines correspond to Geant4 (filled, gray), the WGAN (orange, dotted),
and the BIB-AE (blue, dashed). Figure taken from [3].

variables outlined in Section 6.4. The resulting correlation matrices of Geant4 and the BIB-AE
are shown in the top row of Figure 7.10. The bottom row compares the generative correlations
to Geant4 by calculating the element-wise difference between the matrices. For the BIB-AE
(bottom, left) the majority of correlations agree with Geant4 within ±0.05 and the highest dif-
ference is 0.13. Compared to the photon shower results, this represents a significant improvement
in the ability of the BIB-AE to learn correlations. This improvement is in large part attributable
to the improved KDE sampling. The difference matrix of the WGAN (bottom right) displays
significant deviations compared to Geant4, reaching up to −0.32. This is again indicative of
the difficulty the WGAN has with learning shower shapes.

Reconstruction Level

In order to approximate the conditions of realistic physics analyses, we run a dedicated re-
construction software on the generative showers4. The ILD calorimeters are optimized for the
particle flow [80] principle, meaning that one attempts to reconstruct every particle in a collision
event using the sub-detectors best suited for a given task.

To run a particle flow reconstruction on the shower data it needs to be processed first. To
this end, the hits obtained from either Geant4 or the generative models are first run through a

4The reconstruction results were provided by Engin Eren.

126

CHAPTER 7. PION SHOWER GENERATION

Table 7.1: Comparison of the per shower simulation time between Geant4, the WGAN, and
the BIB-AE. All models were evaluated on a single core of an Intel® Xeon® CPU E5-2640 v4
(CPU). Additionally, the generative models were evaluated on an NVIDIA® A100 with 40 GB
of memory (GPU). The generative models were evaluated using the batch sizes that resulted in
the fastest evaluation. The uncertainties correspond to the standard deviation of the timings.
Table taken from [3].

Hardware Simulator Time / Shower [ms] Speed-up

CPU Geant4 2684 ± 125 ×1

WGAN 47.923± 0.089 ×56
BIB-AE 350.82 ± 0.57 ×8

GPU WGAN 0.264± 0.002 ×10167
BIB-AE 2.051± 0.005 ×1309

digitization step [59] which accounts for hardware effects such as readout noise or varying pixel
detector sensitivities. The digitized showers are then normalized to have hit energies in the unit
of 1 MIP, which is then translated into an energy value in GeV.

The calibrated showers are then passed to PandoraPFA [80], the main particle flow algo-
rithm used by the ILD collaboration. PandoraPFA uses state-of-the-art pattern recognition
algorithms to cluster the hits and reconstruct the clusters into so-called Particle Flow Objects
(PFOs). These PFOs describe the properties of the reconstructed particle that cause the shower.

In order to reconstruct charged pions, PandoraPFA would normally expect tracker infor-
mation in addition to the calorimeter data, because the particle flow approach is designed to
make use of the more accurate tracking measurements. However, this is not an option for the
generated showers, as the generative models only simulate the calorimeter hits. Therefore we
reconstruct the pion showers as neutral hadrons, for which no tracking information is expected.

We perform this full reconstruction chain on both Geant4 and the reconstructed data and
compare the reconstructed shower energies in a way similar to the generator level visible energy
sum comparison. Figure 7.11 shows the resulting µ90 and σ90

µ90
results after reconstruction. On the

left plot, one can see that the means of the energy distributions are reasonably well modeled by
the BIB-AE model, displaying precise agreement for the central energies and deviating only by
around 3% around the high and low energy regions. Likewise, the WGAN accurately describes the
center, however, it shows larger deviations of approximately 5% close to the edges. The relative
width on the right panel is not well described by the BIB-AE, exhibiting a large, systematic shift
to higher widths. The WGAN again struggles to model the high and low energies, however, in
the central energy region it shows impressive agreement with the relative widths of Geant4.

This presents an interesting result considering the relatively poor performance of the WGAN
at the generator level. However, a large fraction of the deviations between the WGAN and
Geant4 are caused by the extraneous outer hits, which are removed by the clustering algorithms

127

CHAPTER 7. PION SHOWER GENERATION

during reconstruction. Therefore it is reasonable that the reconstruction improves the WGAN
results.

Computational Timings

We are again interested in quantifying the speedup factor that can be achieved by the WGAN and
the BIB-AE. To this end, we compare the average simulation time for one shower5 in Table 7.1.
Both models offer a significant speedup compared to Geant4 when evaluated on a CPU. When
the generative showers are instead sampled using a GPU, the speedup factor increases by a
further ∼ 170×. For both hardware types, the WGAN is around 7× faster than the BIB-AE.

7.5 Conclusion

In this section, we demonstrated how we can successfully extend the generative models used
during photon shower generation to the significantly more challenging task of hadron shower
simulation.

We were able to make significant improvements to the generative models, foremost in the
shape of KDE-sampled BIB-AE. Using this setup we were able to replicate Geant4 shower to
a high level of agreement, often showing only percent-level deviations between the distributions
of Geant4 and those of the BIB-AE. The WGAN model exhibits larger deviations than the
BIB-AE, when compared to Geant4, and has visible difficulties modeling the longitudinal and
transversal profiles of the showers. However the WGAN also provides a significantly greater
speedup factor compared to the BIB-AE. This presents an interesting trade-off between shower
accuracy and generation speed, with the WGAN offering the better speedup and the BIB-AE
achieving greater accuracy.

Additional studies were performed, taking into account the effects of a dedicated reconstruc-
tion algorithm in the form of PandoraPFA. We find that the distributions of particle energies
reconstructed from the generative showers and the Geant4 showers show noticeable deviations,
especially the relative widths of the distributions are overestimated by the BIB-AE. However,
the overall means of the reconstructed energy distributions are described well by both generative
models. Notably, the WGAN reaches this respectable reconstruction level performance despite
its inability to accurately reproduce several generator level observables. This indicates that even
imperfect fast simulators may still be sufficiently accurate post reconstruction.

5Timings for the generative models were provided by Lennart Rustige, timings for Geant4 was provided by
Engin Eren.

128

Chapter 8

CALICE Testbeam Data Generation

Generative FastSim approaches almost universally train a generative model on data that was
simulated using classical MC methods. The resulting models can produce samples significantly
faster and, as was shown in Chapter 6 and Chapter 7, produce samples that very closely match
those produced by classical methods. However, while it was demonstrated in Chapter 5 that
it is possible to build a generative model that describes the data distribution more accurately
than the training data alone, actually achieving this on a high-dimensional, complex data set is
a significant challenge.

Small deviations between truth and simulation are not immediately disqualifying factors. In
fact, classical MC simulation will often show slight deviations when compared to real measure-
ment data. However, a generative FastSim model trained on MC will compound these deviations.
This places generative models in a spot where they are faster than classical simulations, but are
also bound to be less accurate when compared to real data. However, there is nothing that
dictates a generative model has to be trained on MC data. Since a generative model can learn
any underlying distribution, it can, in principle, be trained directly on data.

This offers an exciting proposition. A generative model trained directly on measurement
data will have deviations from the true data, however, these deviations can be similar to or
even smaller than the deviations of classical MC simulations. At the same time, the generative
approach will still be significantly faster.

There are inherent problems with simulation trained to exactly reproduce measurement data.
If one intends to use the simulation to compare theoretical predictions with experimental results,
then a simulation that per definition matches the experimental results is pointless. However,
the multiple steps involved in the full HEP MC simulation chain have varying dependencies on
the underlying theoretical model. For example, if one were to introduce a new heavy resonance,
it would result in significant changes to the simulation of the initial hard scattering and to
the decay modeling. However, the simulation of how the final state standard model particles
interact with the detector would be unaffected. Therefore, a well-understood but computationally
expensive simulation step, such as shower simulation, would be an ideal candidate for a data-
trained generative simulation setup. We explore the feasibility of such a setup using testbeam
data recorded with the CALICE AHCAL prototype.

This Chapter begins by briefly presenting the CALICE testbeam data in Section 8.1. Sec-
tion 8.2 outlines the BIB-AE model used to model the testbeam data. In Section 8.3 a comparison

129

CHAPTER 8. CALICE TESTBEAM DATA GENERATION

Figure 8.1: Overlays of 7500 testbeam showers produced by 80 GeV pions, projected along the
x-axis (left), y-axis (center), and z-axis (right).

between the performance of the BIB-AE and Geant4 is shown. Section 8.4 presents the obtained
conclusions.

8.1 Testbeam Data Set

The training data used in this chapter is based on the testbeam measurements performed with
the CALICE AHCAL prototype in June 2018. The tests involved measurements of charged pions
with various fixed energies, provided by the Super Proton Synchrotron at CERN. Details of the
testbeam runs, calibrations, and reconstructions can be found in Reference [161].

The main prototype consists of 3 parts, a pre-shower layer, the main AHCAL, and a tail
catcher. We focus our efforts on the main AHCAL, which uses the same technologies as the
AHCAL foreseen for the ILD described in Section 2.6. The prototype consists of 39 active layers,
38 of which are made up of 24× 24 cells. The second to last layer featured a different resolution
with 1

4 the number of cells, as a test of other geometry options. To prevent this from complicating
the generative training we disregard the last two layers, reducing the overall number of included
layers to 37.

Measurements were performed using multiple pion energies and impact positions. For our
training data, we chose runs with pion energies of 40, 60, 80, 120, and 160 GeV with impact
points at the center of the calorimeter prototype. The energy depositions in the calorimeter cells
were calibrated and converted into a Root [162] file using ILCsoft [154]. Since the individual
calorimeter cells are aligned in a regular grid, we directly converted the calorimeter hits into a
24 × 24 × 37 tensor to be used for training the network. The overlays of the showers projected
along the x, y, and z-direction are shown in Figure 8.1. The energy values in the tensors have
been normalized to the value of 1 MIP, equivalent to 0.0268 GeV for the prototype. Note that
this differs significantly from the MIP energy value used for the photon or pion shower generation
in Chapters 6 and 7. This is because the testbeam data already has a calibration factor applied
that takes into account the sampling fraction of the calorimeter, which was not the case for the
previously used Geant4 data. By default the calibration and conversion script also applies a cut,
removing any hit below 0.5 MIPs. However generative models often struggle to exactly reproduce

130

CHAPTER 8. CALICE TESTBEAM DATA GENERATION

Encoder Decoder

Latent
Critic
+MMD

Critic

Latent
Input

x x
x

KLD
MSE

MMD

Post
Processor
Network

0
-

E
Evis

~

OutputIntermediate

'

Figure 8.2: Illustration of the full testbeam shower BIB-AE setup with the visible energy sum
conditioning indicated in purple. Image adapted from [2,3].

sharp cutoffs. Therefore we lowered the threshold of this cut to 0.2 MIP for the training data1.
The AHCAL prototype has a per-cell auto-trigger threshold of 0.2 MIP, and therefore effectively
contains no hits below energy value. Therefore, by lowering the calibration cutoff to 0.2 MIP
we ensure no existing hits are removed by the calibration. For the evaluation and comparison,
we still apply the standard 0.5 MIP cut. This still leaves a sharp cutoff in the training data,
however, it is in a region that is not relevant for the performance of the model. This makes it
less problematic if the cutoff is mismodeled.

The full training data set consists of 50k showers of each pion energy, resulting in 250k
total showers. An additional test set containing 7500 showers per pion energy was used during
evaluation.

For the purpose of analyzing the testbeam measurements MC simulations were performed
using Geant4 for the exact AHCAL prototype and specific pion energies. Two sets of simulations
were produced, using either the QGSP_BERT_HP or FTFP_BERT_HP physics list described
in Section 2.5. Both sets were run through digitization to simulate detector effects, most notably
electronic noise and the effects of the silicon photomultipliers. More details on the simulation
and digitization can again be found in Reference [161].

We use these Geant4 showers as a benchmark to compare our generative model performance.
To this end, we use the same ILCsoft setup that was used for the testbeam data to convert the
Geant4 simulation into 24 × 24 × 37 tensors. The amount of Geant4 data was chosen to be
7500 showers per pion energy, matching the test set.

8.2 BIB-AE Model

The BIB-AE model used to generate testbeam pion showers is adapted from the previously
introduced pion generation BIB-AE. The convolutional layers of the encoder, decoder, and critics
were adjusted to account for the modified input size of 24× 24× 37 instead of 25× 25× 48. The
minibatch discrimination approach is maintained, as are the dual resetting critic scheme and the

1The calibration setup was provided by Daniel Heuchel

131

CHAPTER 8. CALICE TESTBEAM DATA GENERATION

improved Post Processor model. However, in order to accommodate the differences between the
previous Geant4 training data and the testbeam training data, as well as to try and improve
the overall generation precision, an additional modification was introduced to the BIB-AE setup.
A fill description of the testbeam data BIB-AE architecture and its training parameters is given
in Appendix A.

Visible Energy Sum Conditioning

The CaloFlow [163, 164] approach introduced a novel two-step approach to simulate showers
in a calorimeter. It first uses a dedicated energy flow model to generate the total shower energy
and energy per calorimeter layer for a given incident particle energy. In the second step, the main
shower flow model uses these energies as conditional inputs to produce an appropriate shower.
Finally, the produced shower is re-scaled to match the total and per layer energies produced by
the energy flow.

We incorporate a similar principle into our BIB-AE setup. The main decoder, encoder, and
critics are conditioned on the visible energy sum in a shower, in addition to the energy label
of the true particle. This additional conditioning is indicated in purple in Figure 8.2. During
generation, the decoder receives three inputs; the sampled latent space, the true energy label, and
the desired visible energy sum of the shower. As these three inputs will be highly correlated, we
sample them from a combined KDE. Similar to the pion generation case we again use a rejection
sampling approach to generate latent space samples for specific energies. The produced showers
then have their pixel values scaled such that the sum over all pixels after the MIP cutoff matches
the desired visible energy sum2.

8.3 Results

We now compare the showers generated by the BIB-AE network to the test subset of the testbeam
data set. Additionally, we also compare both the BIB-AE showers and testbeam showers to
showers simulated using Geant4. Different Geant4 physics lists may have better or worse
performance for certain features or pion energies. Therefore we use both physics lists in this
comparison to ensure Geant4 is adequately represented. However, it is not the goal of this
work to compare or interpret the relative performance of the two different physics lists. The lists
are labeled QGSP for the QGSP_BERT_HP list and FTFP for the FTFP_BERT_HP.

All showers used in the comparison originally have energy values in units of MIPs, how-
ever, for the comparison, these energies were translated into GeV, using the calibration factor
1 MIP ≈ 0.0268 GeV. This change does not affect any results, however, it makes the energy
scale of the comparison plots more intuitive to understand. Furthermore, all showers have the
0.5 MIP cutoff applied, with a threshold of 0.0134 GeV.

As the first performance evaluation, we compare individual showers produced by all four
approaches. The exemplary showers for each data set can be seen in Figure 8.3. From this
figure, we can see that both Geant4 and the BIB-AE produce showers without any obvious
unphysical artifacts.

2The methods for rescaling the shower was provided by Claudius Krause.

132

CHAPTER 8. CALICE TESTBEAM DATA GENERATION

Figure 8.3: 3D renderings of individual showers that were generated using the testbeam data
(top left), Geant4 with the QGSP_BERT_HP physics list (top right), Geant4 with the
FTFP_BERT_HP physics list (bottom left), and the BIB-AE (bottom right). The colors of the
individual pixels indicated the deposited energy in that pixel.

133

CHAPTER 8. CALICE TESTBEAM DATA GENERATION

Figure 8.4: Comparisons the cell energy spectrum (top row), the shower start layer (middle
row), and the center of gravity along the y-direction (bottom row). The hatched region in the cell
spectrum indicates the region cut by the MIP threshold. For the shower start layer comparison,
a start layer 38 indicates that no shower start layer was found. The lines correspond to the
testbeam data (filled, gray), Geant4 with the QGSP_BERT_HP physics list (blue, dashed),
Geant4 with the FTFP_BERT_HP physics list (orange, dotted), and the BIB-AE (red, solid).
Comparison plots are shown for 40 GeV showers (left), 80 GeV showers (middle), and 160 GeV
showers (right).

134

CHAPTER 8. CALICE TESTBEAM DATA GENERATION

Figure 8.5: Comparisons of the shower energy profile along the x-direction (top row), the y-
direction (middle row), and z-direction (bottom row). The lines correspond to the testbeam data
(filled, gray), Geant4 with the QGSP_BERT_HP physics list (blue, dashed), Geant4 with
the FTFP_BERT_HP physics list (orange, dotted), and the BIB-AE (red, solid). Comparison
plots are shown for 40 GeV showers (left), 80 GeV showers (middle), and 160 GeV showers (right).

135

CHAPTER 8. CALICE TESTBEAM DATA GENERATION

Figure 8.6: Comparisons of the visible shower energy (top row), the visible shower energy
for showers that start within the first 5 calorimeter layers (middle row), and the number of
hits (bottom row). The lines correspond to the testbeam data (filled, gray), Geant4 with the
QGSP_BERT_HP physics list (blue, dashed), Geant4 with the FTFP_BERT_HP physics list
(orange, dotted), and the BIB-AE (red, solid). Comparison plots are shown for 40 GeV showers
(left), 80 GeV showers (middle), and 160 GeV showers (right).

136

CHAPTER 8. CALICE TESTBEAM DATA GENERATION

Marginal Distributions

In the next step, we compare the marginal distributions of the four sets of showers. As the
testbeam data was recorded using selected beam energies, it only contains showers produced by
pions with discrete energies, and a test set comprising uniformly distributed pion energies is not
available. Therefore we perform separate comparisons for individual energies. Out of the five
energies in the training set, we chose 40 GeV, 80 GeV, and 160 GeV, as this covers both the edge
regions and central regions of the data.

The first point of comparison is the visible cell energy spectrum shown in the top row of
Figure 8.4. One can see that the BIB-AE exhibits slight fluctuations and artificial structures
around 0.1 GeV, especially for 80 and 160 GeV pion showers. Around the MIP threshold, it can
be seen that the BIB-AE spectrum closely follows the testbeam data. The Geant4 data shows
noticeable deviations, as the per-cell trigger threshold of the AHCAL prototype is not modeled
by Geant4. Therefore, the Geant4 spectrum starts to rise again in the low-energy region,
instead of falling off. In the high-energy parts of the spectrum, all simulations achieve a good
description of the testbeam data.

In the calculated shower start layer, shown in the middle row of Figure 8.4, Geant4 achieves
an accurate description for 40 and 80 GeV, while the BIB-AE has more noticeable deviations,
notably around the first layers. For the 160 GeV pion example, the Geant4 data begins to show
deviations comparable to the BIB-AE data. For the bulk of the shower start distribution, all
simulation approaches result in good descriptions.

The bottom row of Figure 8.4 shows the center of gravity along the z-direction. This distribu-
tion is well modeled by both the BIB-AE and Geant4 and neither show significant deviations.
Notably, all models capture the subtle secondary peak around layer 33 in the 160 GeV pion
shower center of gravity distribution.

In Figure 8.5 the shower energy profiles along the x, y, and z directions are shown in the
top, middle and bottom rows respectively. For the x and y-profiles, both the BIB-AE model and
Geant4 show small deviations from the testbeam data around the outer edges. These deviations
are similar in magnitude for all approaches. For 160 GeV Geant4 shows a notable asymmetry
in the x and y-profiles that is not present in the testbeam data. The BIB-AE on the other hand
models this feature significantly more precisely. The profile along the z-direction is well modeled
by both methods, showing no clear mismatches.

Figure 8.6 shows evaluations of the energy conditioning. In the top row, the visible energy
sum is shown. Note that since the AHCAL prototype is a sampling calorimeter, it is possible for
a 40 GeV pion to appear to deposit more than 40 GeV. This can occur when a shower deposits an
above-average fraction of its energy in the active layers, which results in a visible energy higher
than the original particle energy after the calibration is applied. From the distributions, it can
be seen that for 40 GeV pion showers the BIB-AE description of the energy sum is considerably
worse than that of Geant4. For the 80 GeV pion case, both simulation methods show near-
perfect agreement, with the exception of noticeable deviations present in the high energy end
of the Geant4 distribution. which are not present in the BIB-AE distribution. For 160 GeV
pion showers, the Geant4 visible energy distribution exhibits an overall shift towards higher
energies. In contrast to this, the BIB-AE model maintains an accurate description even for high
pion energies. The precise description of the energy sum shown by the BIB-AE can largely be
attributed to the energy sum conditioning and re-scaling.

137

CHAPTER 8. CALICE TESTBEAM DATA GENERATION

A significant part of the low energetic tail in the visible energy sum distribution is caused by
showers that are not fully contained by the calorimeter. This effect, known as leakage, results in
only a fraction of the energy of the particle being deposited within the calorimeter, leading to
a lower visible energy sum. In order to rectify this effect, it is common practice in calorimeter
development to focus on the visible energy distribution of showers that start within the first few
layers of the calorimeter, more specifically in the first 5 layers of the AHCAL prototype. The
center row of Figure 8.6 shows the visible energy with this shower start condition applied. It can
be seen that the relative performance of Geant4 and the BIB-AE remains largely consistent
under the shower start cut, with the BIB-AE struggling with low pion energies and Geant4
overestimating the energy of highly energetic pions.

The bottom row of Figure 8.6 compares how well the simulations describe the number of hits
in the showers. It can be seen that both Geant4 and the BIB-AE display different deviations.
The number of hits simulated by Geant4 is systematically shifted toward larger values, while the
BIB-AE tends to produce too many showers with numbers of hits in the bulk of the distribution,
resulting in a mismodeled distribution width.

To further quantify the energy conditioning we again calculate the mean µ90 and relative
width3 σ90

µ90
of the visible energy distributions using the definitions introduced in Chapter 6. The

results are shown in Figure 8.7. We differentiate between two cases. The first case, which is
shown in the top row, calculates µ90 and σ90

µ90
on all showers, while the second case, shown in

the bottom row, considers only showers that start within the first 5 calorimeter layers. In both
cases, the BIB-AE is capable of reproducing the mean with significantly higher accuracy than
Geant4, most notably at higher pion energies, where Geant4 shows systematic deviation. For
the relative width, the BIB-AE has noticeable difficulties reproducing the correct values for low
pion energies, both with and without the shower start criterion. The relative widths produced
by Geant4 for low energy pions, on the other hand, are significantly closer to the testbeam
data than those produced by the BIB-AE. At higher pion energies the accuracy with which the
BIB-AE models the relative width improves, and its deviations become comparable to those of
Geant4. The results for both µ90 and σ90

µ90
are congruent with the behavior of the BIB-AE and

Geant4 seen in the visible energy sum distribution shown in Figure 8.6.

Correlations

As the final point of comparison, we again consider the correlation coefficients between shower
features. The individual features included in the correlation calculation are identical to those
described in Section 6.4. The only exception is that the incident particle energy was removed,
as only single discrete incident energies are compared. The correlation factors are calculated for
the testbeam data, both Geant4 physics lists and the BIB-AE. The element-wise differences
between testbeam and the simulation methods are used for comparison. Figure 8.8 shows the
correlation and difference matrices for 80 GeV pion showers. One can see that Geant4 results
in an overall good description of the correlation coefficients, with all deviations staying below
0.2. Meanwhile, the BIB-AE exhibits fewer, but larger deviations, reaching up to a difference of
0.28. It is notable that the largest deviations displayed by the BIB-AE model are in correlation

3Note that while this quantity has similar properties to the resolution of the calorimeter, its numerical values
do not represent the resolution

138

CHAPTER 8. CALICE TESTBEAM DATA GENERATION

Figure 8.7: Comparison of µ90 (left column) and σ90
µ90

(right column) of the visible energy sum
distributions for single pion energies ranging from 40 to 160 GeV. The top row shows the results
obtained from all showers, the bottom row shows the results considering only showers that start
within the first 5 calorimeter layers. The lower plot sections show the ratios between Geant4
and the generative models. The lines correspond to the testbeam data (filled, gray), Geant4
with the QGSP_BERT_HP physics list (blue, dashed), Geant4 with the FTFP_BERT_HP
physics list (orange, dotted), and the BIB-AE (red, solid).

139

CHAPTER 8. CALICE TESTBEAM DATA GENERATION

Figure 8.8: Pairwise Pearson correlation coefficients between various shower observables. For
the testbeam data (top left) the full correlations are shown, for the simulation models we show the
difference between the simulation and testbeam correlations. Difference matrices use identical
color scales.

140

CHAPTER 8. CALICE TESTBEAM DATA GENERATION

Table 8.1: Comparison of the per shower simulation time between Geant4 and the BIB-AE. All
models were evaluated on a single core of a Intel® Xeon® CPU E5-2640 v4 (CPU). Additionally,
the BIB-AE was evaluated on an NVIDIA® A100 with 40 GB of memory (GPU). The BIB-AE
was evaluated using the batch sizes that resulted in the fastest evaluation. The uncertainties
correspond to the standard deviation over 10 runs. Table adapted from [2].

Hardware Simulator 40 GeV [ms] Speed-up 160 GeV [ms] Speed-up

CPU Geant4 4475 ± 178 ×1 14 544 ± 479 ×1

BIB-AE 254.41 ± 0.08 ×18 253.82 ± 0.02 ×57

GPU BIB-AE 2.842± 0.003 ×1575 2.732± 0.004 ×5324

coefficients that involve the number of hits per shower. Therefore it can be assumed that these
deviations relate to the mismodeling of the number of hits distribution shown in Figure 8.6.

Computational Timings

In order to compare the simulation times, we rerun a small timing study using the existing
Geant4 simulation setup4 within a controlled environment and evaluate the BIB-AE within the
same environment. Table 8.1 shows the resulting average times per shower for Geant4 and the
BIB-AE. We differentiate between timings for the low-end (40 GeV) and high-end (160 GeV)
of the pion energies contained in the testbeam training set. Similar to what was observed in
Section 6.4, Geant4 exhibits a strong dependency between simulation times and pion energies,
as showers caused by particles with more energy require more interactions to be modeled. The
BIB-AE has no such dependency and achieves a speedup factor ranging from ×18 for 40 GeV
pions, to ×57 for 160 GeV, when evaluated on a CPU. If the BIB-AE is instead run on a GPU,
the speedup factors increase to approximately ×1500 and ×5000.

8.4 Conclusion

We have demonstrated the feasibility of training a generative BIB-AE model with real measure-
ment data, using AHCAL testbeam data taken by the CALICE collaboration. The resulting
generative model exhibits an agreement with the true data that is comparable to the agreement
achieved by Geant4, and in some features, even demonstrates a more precise description than
the classical simulation. The BIB-AE accomplishes this while still providing a factor of ×18 to
×57 speedup compared to Geant4 on identical hardware.

This presents an exciting new possibility. While training a generative model to perfectly
match contemporary MC simulations can be exceedingly difficult, training a model on data in
order to reach an accuracy comparable to that of classical MC simulations is significantly more
feasible.

4The Geant4 simulation setup and the environment was provided by the CALICE collaboration.

141

CHAPTER 8. CALICE TESTBEAM DATA GENERATION

More work is, however, required before this can be brought into practical application. Most
importantly the KDE used for sampling the latent space and shower energy does not allow for
interpolation. More advanced density estimation methods such as normalizing flows may provide
a solution to this problem. Additionally, the interpolation behavior of the BIB-AE model itself
will need to be explored to ensure it can generate showers for energies it has not seen during
training. Should this prove to be difficult, a hybrid training that uses Geant4 data as a baseline
and then refines the model using real data may be a viable option.

In conclusion, this chapter represents one of the first applications of generative models to
real measurement data for the purpose of fast simulation and is an interesting first step in this
direction.

142

Chapter 9

OnlineFlow

The work presented in this chapter has been previously published as Reference [4] in collaboration
with Anja Butter, Gregor Kasieczka, Benjamin Nachman, Tilman Plehn, David Shih, and Ramon
Winterhalder. Several figures presented as well as the text are similar or identical to the content
of this article. My contribution to the publication comprised implementation and optimization
of the generative flow model, development of the online training methods, performing of the
bumphunt and anomaly detection comparison, writing sections of the paper, handling the peer-
review processes, and addressing referee comments.

The explorations of generative applications on particle physics covered in the preceding chap-
ters were almost exclusively focused on their use as fast simulation tools. However, the ability
to accurately learn the underlying distribution of a given data set has the ability to address a
wide range of HEP challenges beyond fast simulation.

One such challenge is the truly staggering rate at which modern collider experiments produce
data. For example, both of the general purpose LHC detector experiments each measure around
40 terabytes worth of data every second [165, 166]. This is significantly more data than can
be stored for a multitude of reasons, ranging from limited available bandwidth, over limited
storage space or write speed to limited computing power. However, only a small fraction of the
recorded collisions contain processes relevant to current HEP research. Therefore every LHC
experiment [167–170] makes use of triggers to select these interesting events for storage and
discard the rest.

These triggers generally work in a two-step approach, the first, so-called L1 trigger operates
on hardware level. This allows the L1 trigger to perform an extremely fast event pre-selection,
however, this also makes it impossible to run any complex reconstruction. The L1 trigger suf-
ficiently reduces the event rate so that the second level trigger, known as the high-level trigger
(HLT), can perform sophisticated software-based reconstruction and select events for final stor-
age based on this reconstruction. If both the L1 trigger and HLT do not reduce the rate of a
given event class enough for all events of that class to be stored, one applies a prescale factor.
This effectively discards enough events at random so the remaining ones can be stored.

Several approaches to enhance trigger systems with ML methods have already been put into
use, such as the use of classification networks on HLT level at CMS [31]. Beyond this, work
is ongoing on using extremely fast field-programmable gate arrays (FPGAs) to bring these ML
methods to the L1 trigger as well [171–177].

143

CHAPTER 9. ONLINEFLOW

One risk that remains in the current trigger paradigm, is that the trigger setup might not
cover every region relevant for the search for new physics and that new discoveries might be
hidden in phase-space sections currently discarded by the triggers. One approach that aims to
address this concern is data scouting [178–181], where a scaled-down reconstruction is performed
at trigger level and only the significantly less storage-intensive reconstruction results are saved,
rather than the full raw data.

In this chapter, we explore the use of a different strategy: instead of saving individual events,
we train a generative model in an online setting to learn the underlying distribution of the events.
This concept is comparable to fitting a function to the measurement data and then refining the
fit as more data is measured. However, by using a generative model instead of a fixed function,
we do not have to constrain ourselves to a specific underlying model, as a sufficiently complex
generative model will be able to approximate any given function. The main selling point of this
online trained generative model is its fixed storage requirement. In the current trigger system
storing more information requires proportionally more storage space, however, the storage size
of the generative model is dictated only by the number of network parameters and therefore
independent from the number of events that are encoded within these weights.

In principle, a sufficiently complex and expressive generative model should be able to accu-
rately capture the entirety of LHC measurement data and thereby allow for saving information
about every measured event. This is, of course, a highly unlikely scenario, for now. Therefore,
we focus on the potential application of such a generative model as a scouting tool on HLT level.

This Chapter is organized as follows. We initially discuss the concept of online ML training
and present the OnlineFlow model in Section 9.1. In Section 9.2 we demonstrate the Online-
Flow model on a 1-dimensional emulated invariant mass spectrum. Section 9.3 evaluates the
performance of the OnlineFlow on the LHCO anomaly detection benchmark data set [34]. We
present our conclusions in Section 9.4.

9.1 Online Training

Online algorithms are a specific subset of computing algorithms that operate on a sequential
input [182], meaning they have to make decisions based on a given data point without knowledge
about subsequent points. For our purpose, an online trained ML mode refers to a model that
does not repeatedly iterate over a specific data set but is instead optimized on each data point
only once. Such an online model will require significantly more data to train, however it can be
trained without needing the entire data set to be stored and readily available. This makes an
online model an ideal candidate to be trained on trigger level, where data is abundantly available,
but the data also cannot be easily stored.

Our proposed scouting method uses such an online model trained on trigger level to extract
information from phase-space regions currently ignored by trigger setups. We initially envision
a model trained on all data points that reach the HLT level, however, should this prove to be
infeasible, an alternative approach would be to train the model on events that pass the HLT,
but whose event classes have such high rates that they require prescale factor.

In either of those two cases, the model would be trained online for a certain time, e.g. one run.
Once this is complete, the trained model is moved into an offline setting and used to generate
events from the underlying distribution it has learned. These events are then analyzed for any
indication of new physics. It might be possible to directly discover new physics in the generated

144

CHAPTER 9. ONLINEFLOW

Measurement

HL Trigger

ONLINEFLOW generate  
synthetic 
events

Analysis

save
few 

 events

Analysis

Update

Online Offline

LVL1 Trigger

Figure 9.1: Proposed workflow of the online generative model. The model is initially trained
online in parallel to the current trigger setup and then analyzed offline for any hints of new
physics, which are then used to update the next run trigger menu. Figure taken from [4].

data, however, we propose a more conservative approach where any indication of an anomaly
is instead used to adjust the trigger menu of the next run to specifically look for this anomaly.
This concept is further illustrated in Figure 9.1.

From a ML point of few, the constraints of online training present a challenge. Pure online
training would involve updating the model using individual points as they come in. This makes it
difficult to utilize GPU parallelization for fast training. We, therefore, propose a hybrid approach
outlined in Figure 9.2. Under this approach, the incoming data is stored in a temporary buffer
with size Nbuffer. Once this buffer is filled, it is passed to the network which begins to iterate
over the buffer Niter times, using batches with size Nbatch. While the model is using the first
buffer to train, a second buffer is filled with data. Once the network finishes iterating over the
first buffer, the first buffer is discarded and the second buffer takes its place. This approach
has two advantages, for one it allows the full utilization of GPU acceleration, and in addition to
this, it allows for the synchronization between the incoming data and the model training through
adaptive adjustment of Niter. This ensures the model has no downtimes during low data rate
segments, as it can be set to perform more iterations per buffer.

Another difficulty of online training is that the model tends to be biased toward the data
point it was most recently optimized on, thereby essentially forgetting past information. To
prevent this behavior we employ stochastic weight averaging [183]. The method keeps a running
average over all network weights during training and these averaged weights make up the final
model parameters, thereby ensuring the information from early data points is preserved in the

145

CHAPTER 9. ONLINEFLOW

Buffer
Events

Data Buffer

Iterate
over

Buffer

Discard
most Events

Offline Storage

ONLINEFLOW

Measurement

Figure 9.2: Depiction of the online training procedure. Incoming measurement data is put into
a buffer. Once the buffer is full, the online network is trained using this buffer. This continues
until the next buffer is filled and the initial buffer is replaces with the new buffer. Figure taken
from [4].

final model. The running average is updated every time the model finishes iterating over a buffer.
Not included in the averaging process are the first initial batches, as the network has not yet
sufficiently converged at that point.

Finally, the online setting also dictates the type of generative model that can be used. The
long intended training times are problematic for any model prone to diverge or stall due to in-
stability in the training. This makes adversarial approaches such a GAN or a BIB-AE unattrac-
tive. Further, the model needs to capture the features of the data set with extreme preci-
sion, thereby making normalizing flows (NFs, also see Section 4.8) a promising candidate, as
they have demonstrated an ability to learn and replicate physics distributions with high accu-
racy [163, 164, 184–192]. While the principles discussed in this chapter are largely applicable to
any kind of generative model we will employ an NF-based approach and therefore call our model
OnlineFlow.

9.2 Bumphunt Data Set

We initially explore the OnlineFlow approach using a 1-dimensional, well-understood data
set. The set is modeled after an invariant mass spectrum, consisting of an exponential falling
background pB and a Gaussian signal peak pS , defined as

pB =
1

b
exp(−bx) (9.2.1)

pS =
1

σ
√
2π
e−

1
2
(x−µ

σ
)2 , (9.2.2)

where b defines the fall-off rate of the background, µ is the position of the peak, and σ is the
peak width. The data set has been split into signal and background by giving each data point

146

CHAPTER 9. ONLINEFLOW

0 1 2 3 4 5

emulated mass [a.u.]

10−2

10−1

100

n
or

m
al

iz
ed

S + B

B

OnlineFlow

0.5 1.0 1.5

0.30

0.40

0.50

Figure 9.3: The 1-dimensional emulated invariant mass spectrum used in the initial test. Figure
taken from [4].

a probability of λ to be drawn from the pS and of 1 − λ to be drawn from pB. This was done
to ensure the number of signal points in any given data set is not fixed. On average the signal
fraction is equal to λ. For this data set the chosen parameters were b = 1, µ = 1, σ = 0.04 and
λ = 0.005. The resulting distribution is shown by the blue line in Figure 9.3.

The OnlineFlow model used for this data set is a Masked Autoregressive Flow [143] (see
also Section 4.8, made up of five Maskedæfor Distribution Estimation (MADE) [193] blocks.
The transformation function in each block is defined by a fully connected network with two
32-node layers. MAF architectures struggle with 1-dimensional data sets, as the invertible trans-
formations that form the basis of the setup are not clearly defined with only one input variable.
Therefore the input dimensionality of the OnlineFlow was quadrupled from one to four, with
the first dimension being the invariant mass and the remaining three consisting of Gaussian
noise. This input size was found to result in stable training. The final network was implemented
in PyTorch [151] and has a total of 7560 trainable parameters.

The sharp edge at x = 0 in the data set presents a further difficulty for the MAF network.
Therefore we apply a logarithmic transformation to the training data to remove the edge. The
OnlineFlow was trained using the ADAM optimizer [108] with a learning rate of 10−5, utilizing
the hybrid online approach outlined previously. The parameters of the online training were
Nbuffer = 10k, Nbatch = 250 and Niter = 100.

The subsequent analysis of the mass spectrum requires uncertainty estimation on the data
generated by the OnlineFlow. To this end, we use an ensemble of 20 flows with identical

147

CHAPTER 9. ONLINEFLOW

architectures, trained on bootstrapped versions of the data set. This effectively encodes the
uncertainty of the data set in the variance of the individual flow predictions. Typically, boot-
strapping would require generating multiple re-sampled versions of the data set and training
each OnlineFlow model with one of these re-sampled sets. This is, however, not feasible as
the online training means the complete data set is never available. Therefore each data point is
given a training weight sampled from a Poisson distribution with mean 1, which is independently
sampled for each OnlineFlow in the ensemble. This has the effect of the OnlineFlows see-
ing some points never (weight of 0) and some points multiple times (weight > 1), emulating the
bootstrapping.

As this is a proof of concept example, we store the state of the SWA after every buffer
and save every data point used during training. Neither of those would be an option in a real
application, however, it allows us to directly evaluate the performance of the network over the
course of the training.

The result of one OnlineFlow training can be seen in Figure 9.3. The zoom-in on the bump
position shows that the flow does not correctly reproduce the signal width, instead producing a
significantly wider abundance. However, the goal of the OnlineFlow is not to directly discover
new physics, but instead to identify potentially interesting phase-space regions to explore in
detail. Therefore, the exact shape of the signal peaks is not a large concern, as long as the peak
is still detectable.

Bumphunt on Training Data

We evaluate how well the signal bump can be detected in the OnlineFlow data compared to
the training data. Here we distinguish between the two proposed application cases. The first
case trains the OnlineFlow on all data that passes the L1 trigger. In this situation, no data
is taken in the regions that the OnlineFlow is trained on, therefore the OnlineFlow can
be considered successful if it can find the signal excess with any reasonable significance. In the
second case the OnlineFlow is applied after the HLT, but before the prescales. It is unlikely
for the OnlineFlow to perform as well as taking data with a prescale factor of 1 (equivalent
to having all data pass the prescale), however for larger factors the OnlineFlow may result in
better sensitivity than classical data taking. Therefore we need to compare the OnlineFlow
significance to the significance obtained for various prescale factors, so the crossover point at
which the OnlineFlow outperforms the classical approach can be determined. Therefore,
we first perform a bump hunt analysis on various fractions of the training data to establish a
benchmark.

The first step consists of fitting a background function to a histogram containing Npre points
of the training data. Npre is the number of training points after the prescale factor fpre is applied,
defined as Npre = Ntrain

fpre
. In this case, the total number of points in the training set Ntrain is 5

million.
The background function used in the fit is a falling exponential function with several higher

order terms, given by

p(x) = α e−βx+γx2+δx3+ϵx4+ζx5
, (9.2.3)

with fit parameters α, β, γ, δ, ϵ and ζ. This fit function leads to a high-quality fit (χ2/dof ≈ 1)
on both the training data and the subsequently discussed OnlineFlow data. We investigated

148

CHAPTER 9. ONLINEFLOW

0 1 2 3 4 5
emulated mass [a.u.]

104

105

co
u

nt
s

background

data

excess region

0 1 2 3 4 5

0
−5

5
10
15

B
u

m
p

H
u

nt
si

g.

Figure 9.4: Output of the BumpHunter on the 1-dimensional training data. The gray dashed
lines depict the edges of the signal region. In the lower panel, the significance internally calculated
by BumpHunter is shown. Figure taken from [4].

a number of possible fit functions, however, our obtained results remained largely consistent
regardless of the chosen function.

The resulting background estimate and data are fed into the BumpHunter [194] algorithm,
which scans the region between emulated mass values 0 to 5 for the largest excess between signal
and background. For the purpose of this scan, the mass range is split into bins with a width of
0.1, and the minimal and maximal sizes of the signal region are set to 2 and 6 bins respectively.
The BumpHunter output in the data with fpre = 1 is shown in Figure 9.4. The region enclosed
by the gray dashed lines in the signal region is in agreement with the true bump position.

The signal region determined by BumpHunter is then used to determine the signal signifi-
cance, defined as

significance =
O −B√

B
≡ S√

B
, (9.2.4)

where O is the number of observed events in the signal region, B is the predicted background in
the signal region and S is the difference between observation and prediction.

149

CHAPTER 9. ONLINEFLOW

OnlineFlow Significance

The ensemble of Nens = 20 OnlineFlow models is trained on the exact data used in the classical
analysis using the bootstrapped online training method previously described. The significance
calculation for the OnlineFlow is performed similarly to the bumphunt on the training data.
We initially use the flows in the ensemble to each generate 10 million samples. These samples
are then combined into one large set, on which the background fit using Equation (9.2.3) is
performed.

This background estimation is then fed into BumpHunter along with the OnlineFlow
data to determine the signal region, which is then used to determine the significance.

As with any ML training, the OnlineFlow has the risk of overfitting to statistical fluctu-
ations in the training data. This can potentially lead to structures in the generated data that
could be mistaken for signal excesses. To reduce the risk of this we split the ensemble into two
parts, each containing Nens

2 = 10 OnlineFlow models. The first set of models is used in Bum-
pHunter to determine the signal region, while the second set is used to determine the signal
significance in that region. This acts as cross-validation and ensures that a significant excess can
only be found if it is present in more than one model.

The significance calculation for the OnlineFlow data is considerably more involved than
for the classical bumphunt. The training data could be assumed to be Poisson distributed,
allowing us to determine the background uncertainty using

√
B, however, this is not applicable

to the OnlineFlow data. Since the OnlineFlow theoretically allows for an infinite number of
samples to be generated, it would be trivial to generate sufficient samples to make

√
B negligible

and obtain an extremely large significance.
Therefore we quantify the OnlineFlow significance using the variation within the second

part of the ensemble. To this end we first determine the observed events Oi and expected
background Bi for each flow independently, where i runs from 1 to Nens

2 . These individual
contributions are then combined into an average number of observed events O and average
expected background B, defined as

O =
2

Nens

Nens
2∑
i

Oi and B =
2

Nens

Nens
2∑
i

Bi . (9.2.5)

The uncertainties δO and δB on these averages are determined via the standard deviation of
the individual contributions, specifically given by

δO =
2

Nens
σ(Oi) and δB =

2

Nens
σ(Bi) . (9.2.6)

With these average values, we can determine the combined signal amount S and its uncer-
tainty δS using

S = O −B and δS =
√
O2 +B2 . (9.2.7)

This finally allows the definition of the OnlineFlow significance as

150

CHAPTER 9. ONLINEFLOW

1.0 2.0 3.0 4.0 5.0

events ×106

0

5

10

15

20

25

30

35

si
gn

ifi
ca

n
ce

0.5% Signal

Data

OnlineFlow

10−210−1100

data fraction

0

5

10

15

20

25

30

35

si
gn

ifi
ca

n
ce

1
4

0.5% Signal

Data

OnlineFlow

Figure 9.5: Significance obtained from the training data (blue) and from the OnlineFlow
data (red) over the course of the online training (left) and as a function of the prescale factor
(right). The shaded regions correspond to the uncertainty obtained from 10 training runs with
independently generated data. The dotted line in the right panel marks the crossover point
between OnlineFlow and training data significance. Figure taken from [4].

significanceOnlineFlow =
S√

δ2S + (
√
B)2

. (9.2.8)

While the large number of generated samples likely makes the
√
B contribution to the un-

certainty negligible, as discussed previously, we still preserve the term for consistency.
Using this significance definition we can now evaluate the performance of the OnlineFlow

over the course of the online training. The left panel of Figure 9.5 shows the training data sig-
nificance in blue and the OnlineFlow significance in red, as functions of the numbers of points
seen during the online training. For the training data a prescale factor of fpre = 1 was used. The
shaded envelopes around the curves show the uncertainty obtained from the standard deviation
over 10 training runs on independent data sets. We can see the training significance continu-
ously increase as more data is added. As would be expected from the significance definition in
Equation (9.2.4), the significance scales approximately with the square root of the number of
data points. The OnlineFlow significance curve is noticeably lower than the training data
curve. This is expected as the information of the training data is not perfectly encoded into the
network weights. Nevertheless, the OnlineFlow significance reaches a respectable significance
and shows a scaling with the number of data points qualitatively similar to the training data
curve.

This is a promising result for the application at HLT level, as it demonstrates that an online
trained model can indeed be used to accurately find excesses in data.

In order to evaluate the performance of the OnlineFlow when applied after the HLT, we
compare the OnlineFlow significance to the training data significance obtained for various

151

CHAPTER 9. ONLINEFLOW

1.0 2.0 3.0 4.0 5.0

events ×106

−2

0

2

4

6

8

10

si
gn

ifi
ca

n
ce

0.0% Signal

OnlineFlow

Data

Figure 9.6: Significance obtained from the training data (blue) and from the OnlineFlow data
(red) over the course of the online training for a data set with no signal present. Figure taken
from [4].

data fractions. This comparison can be seen in the right panel of Figure 9.5. The OnlineFlow
significance for this comparison is constant, as it does not depend on the prescale factor. The
training data curve drops for an increasing prescale factor, as a larger prescale factor corresponds
to less total data. The crossover between OnlineFlow and training data occurs at a data
fraction of 1

4 , which corresponds to a prescale factor of 4.
Therefore, in this 1-dimensional example, one would benefit from the OnlineFlow even

when it is applied after the HLT, as long as the prescale factor is larger than 4.
An important concern for the OnlineFlow approach is its susceptibility to creating fake

accesses through imperfect training. To investigate this we repeat the previous evaluation pro-
cedure for a data set with a signal rate of λ = 0. The results of this test are shown in Figure 9.6.
While the significance of the OnlineFlow fluctuates more than that of the training data, both
average a significance of around 2. This indicates that the OnlineFlow is no more prone to
finding fake bumps than the classical approach.

9.3 Anomaly Detection Data Set

Having demonstrated the concept of the OnlineFlow approach on a low-complexity data set
we move to a more challenging, realistic data set. The LHCO anomaly detection challenge
R&D data set [34] is a well-established and researched set of events. Several anomaly detection
methods have already been benchmarked on this data set, making it a perfect candidate for the
OnlineFlow model.

The data set itself consists of di-jet background events and signal events of a heavy W ′

resonance, with a mass of mW ′ = 3.5 TeV. The W ′ decays into another two heavy particles X
and Y , with masses mX = 500 GeV and mY = 100 GeV. X and Y in turn decay into light
quarks, resulting in the following decay chain,

152

CHAPTER 9. ONLINEFLOW

3.00 3.25 3.50 3.75 4.00
mjj [TeV]

0.0

2.0

4.0

6.0

8.0

co
u

nt
s

×103

Data

OnlineFlow

10x Signal

Signal Region

0.00 0.25 0.50 0.75
m1 [TeV]

0.0

1.0

2.0

3.0

co
u

nt
s

×104

0.0 0.5 1.0
m2 −m1 [TeV]

0.0

1.0

2.0

co
u

nt
s

×104

0.00 0.25 0.50 0.75 1.00

τ
(1)
21

0.0

0.2

0.5

0.8

1.0

co
u

nt
s

×104

0.00 0.25 0.50 0.75 1.00

τ
(2)
21

0.0

2.0

4.0

6.0

8.0

co
u

nt
s

×103

Figure 9.7: Variables used to train the OnlineFlow on the anomaly detection data set. The
blue line corresponds to the signal and background data. The red line shows the events produced
by the OnlineFlow model. The black curve depicts a 10× enhanced version of the signal events.
The signal region used for the CWoLa approach is enclosed by the gray dashed lines in the upper
left panel. Figure taken from [4].

W ′ → X(→ qq)Y (→ qq) . (9.3.1)

The exact composition of signal and background events is not fixed and can be adjusted. For
this study, a signal rate of 1% was chosen.

The original data set was simulated in Pythia8 [195] and used Delphes3.4.1 [97, 196] to
approximate the detector effects. The final state jets were clustered using the anti-kT algo-
rithm [197] with a jet radius of R = 1, implemented in FastJet [198]. A final cut is applied to
all jets, requiring at least one jet with pT > 1.2 TeV.

Training the OnlineFlow on the raw event data would present a significant increase in diffi-
culty compared to the 1-dimensional data set. However, several sophisticated anomaly detection
methods [184, 191, 199] have demonstrated that a small set of selected variables is sufficient to
separate the signal from the background. The five variables used in these methods are the
combined di-jet mass of the two leading jets mjj , the invariant mass of the highest pT jet m1,
the mass difference between the highest and second highest pT jets m1 − m2, as well as the
n-subjettiness [200, 201] ratios τ (1)21 and τ (2)21 . The distributions of these five variables are shown
in Figure 9.7.

The data set contains 300k events in total, which were split into a training set containing 80%,
a validation set containing 10%, and a test set containing the remaining 10%. The evaluation
set was further supplemented with an additional 300k events with a signal rate of ∼ 50%.

153

CHAPTER 9. ONLINEFLOW

This has no direct effect on the performance evaluation but does improve the presentation of
the final results by smoothing out the receiver operating characteristic (ROC) and significance
improvement characteristic (SIC) curves.

The training set is then used to train the OnlineFlow. To counterbalance the relatively
low amount of training data in this example the number of iterations per buffer is increased
to Nbuffer = 1000. As the anomaly detection method used in the evaluation does not require
a direct uncertainty estimation, we no longer require an ensemble of flows and instead use a
single OnlineFlow model. We again make use of five additional noise dimensions in the flow
training, increasing the input dimensionality of the flow to 10, as this was found to improve the
performance. Further, the number of MADE blocks in the OnlineFlow architecture is doubled
from 5 to 10 and the number of nodes in the FCN layers is increased from 32 to 128. Other
training parameters remain identical to what was described in Section 9.2.

Anomaly Detection Performance

We again gauge the performance of the OnlineFlow by how easily the signal can be extracted
from the flow-generated data. To this end, we apply an anomaly detection setup to both the
training and the OnlineFlow data. The OnlineFlow merely compresses the data set and
does not perform any anomaly detection on its own. Therefore it should be compatible with any
anomaly detection method. To avoid introducing further complexity we decided to use classi-
fication without labels (CWoLa)1 [202–204], a simple-to-use and well-tested anomaly detection
method.

In the CWoLa method, the data set is split into two regions containing varying relative
amounts of signal. For the LHCO challenge data set this split is performed using the di-jet mass
spectrum. The dashed gray lines in the top left panel of Figure 9.7 indicate how the spectrum is
split into a signal region (SR) and sidebands (SB). In a realistic search, the SR would be moved
along the di-jet mass to scan for anomalies, however as we are only interested in evaluating the
OnlineFlow performance this step is omitted.

CWoLa then uses a classification network to learn the difference between SR and SB. Since
the only difference between SR and SB are their signal rates, the classifier will learn to distinguish
between signal and background events, even if the training data is not labeled.

The signal-like-ness of a given event can then be defined using the trained classifier as

RCWoLa(x) =
p(x|SR)

p(x|SB)
, (9.3.2)

where p(x|SR) is the classifier prediction that a given event x is from the SR and p(x|SB) the
prediction that the event originates from the SB. Using this variable the most signal-like events
can be selected.

The classifier is constructed following Reference [191] using three fully connected layers with
64 nodes. Due to the arbitrary separation into SR and SB, the two regions contain an unequal
number of points. This imbalance is remedied by reweighting the data points during training.
The model itself is implemented in PyTorch and trained using a cross entropy loss and the
ADAM optimizer with a learning rate of 10−3. The final evaluation of the classifier is performed
on an ensemble of the 10 lowest validation-loss checkpoints.

1The CWoLa setup was provided by Manuel Sommerhalder

154

CHAPTER 9. ONLINEFLOW

0.0 0.2 0.4 0.6 0.8 1.0

Signal Efficiency (True Positive Rate)

100

101

102

103

104

105

R
ej

ec
ti

on
(1

/F
al

se
P

os
it

iv
e

R
at

e)

1% Signal

100% Data

50% Data

20% Data

10% Data

5% Data

OnlineFlow

0.0 0.2 0.4 0.6 0.8 1.0

Signal Efficiency (True Positive Rate)

0

2

4

6

8

10

12

14

16

18

S
ig

n
ifi

ca
n

ce
Im

p
ro

ve
m

en
t

1% Signal

100% Data

50% Data

20% Data

10% Data

5% Data

OnlineFlow

Figure 9.8: CWoLa benchmark results for the online flow (red) and the training data (shades
of blue). The vertical order of the training lines on the legend corresponds to their order in the
plots. Results are shown as a ROC curve (left) and a significance improvement curve (right). For
the ROC and sic curves, a higher rejection and a greater significance improvement corresponds
to a better performance, respectively. Figure taken from [4].

Similar to the 1-dimensional data set we establish a benchmark by applying the CWoLa
approach directly to the training data used in the OnlineFlow training and the validation
set described above. To again emulate the effect of various prescale factors we perform further
trainings using 50%, 20%, 10%, and 5% of the training and validation data, corresponding to
prescale factors of 2, 5, 10, and 20 respectively.

For the OnlineFlow we use the model to generate 500k data points to train the CWoLa
classifier, and an additional 62500 samples to use as a validation set. This corresponds to the
same 8 : 1 train to validation ratio used for the LHCO data. The ROC and significance improve-
ment curve produced by the CWoLa approach are shown in Figure 9.8. From the significance
improvement curve, we can see that the OnlineFlow data can be used to find the signal data
with a significance improvement of up to 8. Further, both curves indicate that the OnlineFlow
performs comparably to 10% of the training data, which is equivalent to a prescale factor of 10.

Therefore the OnlineFlow would be able to assist in finding this signal if applied at the
HLT-level, and would still provide a benefit if applied after the HLT in cases where the prescale
factor is 10 or greater.

9.4 Conclusion

We propose the use of a generative model, trained online on trigger level, to act as a scouting
tool complementary to currently used trigger setups. This OnlineFlow could leverage its fixed
storage requirement to extract and preserve information from phase-space regions with rates too
large for classical data taking.

We initially demonstrated the ability of the OnlineFlow model to capture even low rate
signal on a simple exponential falling mass distribution, where we showed that the OnlineFlow
starts to outperform classical data taking for a prescale factor larger than 4. Further, we showed

155

CHAPTER 9. ONLINEFLOW

the applicability of the OnlineFlow method to more complex and realistic physics data using
the LHCO anomaly detection challenge data set, where the use of the OnlineFlow model leads
to an improved anomaly detection result for prescale factors above 10.

For now, this serves as a promising proof of concept example. The practical implementation
of the OnlineFlow setup in a real experiment will require further work to ensure the model
training is sufficiently fast to keep pace with the trigger rate and can be integrated into the
software and hardware frameworks.

156

Chapter 10

Summary and Outlook

Escalating MC simulation costs present a significant problem for future collider experiments,
with the full simulation of calorimeter showers being the most impactful bottleneck of the sim-
ulation chain. This leads to a desire for new fast and accurate simulation methods. This thesis
demonstrates how generative ML models can provide this precise simulation, as well as how
generative models can be applied beyond the field of fast simulation.

An important question regarding the usage of generative models for simulation is how many
points can reasonably be sampled from a generative model trained on a given data set. This
question is closely linked to how well a generative model can describe the underlying distribution
of the training data set. If the generative model describes the underlying distribution more
accurately than the training data alone, then it can be used to amplify the training data set,
meaning it is reasonable to sample more new points from the model than were contained in the
original training data. Most generative FastSim approaches aim to generate significantly more
data than they were trained on, thereby implicitly relying on such amplification behavior.

In Chapter 5, we, therefore, address this question by examining the statistical properties of
a GAN trained on data sets sampled from a 1-dimensional, 2-dimensional, and 5-dimensional
distribution. For the comparison between the generated data, the training data, and the true
distribution we employ a quantile-based MSE metric. We find that if sufficient data is drawn
from the GAN model, the newly generated data points can result in a better description of the
true distribution than the training data alone. It is our assumption that this behavior can be
traced back to the ability of the GAN to interpolate between individual points, leading to an
overall closer approximation of the true data distribution than what is provided by the discrete
training data.

This result presents an important achievement for the field of generative fast simulation
as a whole, as it provides assurance that the use of generative models for simulation is not
prohibited by the inherent statistical properties of the approach. Further, these results have led
to subsequent work, where the amplification behavior was replicated on a more realistic physics
data set [7].

Having demonstrated the ability of generative models to amplify a data set, we move to apply
them to shower simulation. In Chapter 6 we present the results of using a GAN, a WGAN, and
a novel BIB-AE architecture to model photon showers in the highly granular ILD [59] ECAL.
To this end, we train the models using a set of showers simulated using Geant4. We find that

157

CHAPTER 10. SUMMARY AND OUTLOOK

all three generative models can replicate the showers produced by Geant4 to a high level of
accuracy while providing a significant speedup compared to Geant4 on identical hardware.

Most notably the combination of the BIB-AE model with a dedicated, MMD trained Post
Processor network achieves good agreement with the Geant4 data and represents the first
generative approach capable of accurately modeling the MIP peak in the cell energy spectrum.
Based on this success, the concept of using a secondary network to improve the outputs of a
generative model presents an interesting idea, with a range of potential applications to other
generative projects. Beyond this, this work has resulted in a follow-up publication exploring the
details of the BIB-AE latent space [6].

Building on the success achieved in the simulation of photon showers, we extend our efforts
to the simulation of pion showers in the ILD AHCAL in Chapter 7. Compared to photon
showers, pion showers feature significantly more diverse shower shapes, making this application
a significantly greater challenge. Therefore, we initially demonstrate how the WGAN and BIB-
AE models can be modified to learn the more complex pion data set. Most notably we show how
the addition of a KDE-based latent sampling to the BIB-AE significantly increases the fidelity
of the generated showers.

Comparing the relative performance of the BIB-AE and WGAN, we find that the BIB-AE
produces higher quality showers at a lower generation speedup, while the WGAN struggles to
correctly model the shapes of the showers, but offers a greater generation speedup factor. We
further compare the particle energy reconstructed by the PandoraPFA [80] from the generated
showers. We observe that both generative models show noticeable deviations from Geant4 after
the reconstruction is applied, however, the overall agreement with Geant4 remains reasonable.

On the one hand, these results demonstrate that a trade-off between fidelity and sampling
speed exists for generative models, allowing individual applications to choose which factor to
prioritize. On the other hand, we see that even a less accurate model can still model important
features like the reconstructed particle energy with reasonable precision

In Chapter 8 we present the first training of a generative model on real measurement data
in particle physics. We use a BIB-AE model trained directly on testbeam data recorded with a
prototype of the ILD AHCAL, and compare the agreement between the BIB-AE and the data
and between a Geant4 simulation and the data. This comparison shows that a generative model
trained directly on data can reach an overall comparable agreement to that reached by Geant4,
while providing a speedup of up to a factor of 50 .

With this, we have laid the groundwork for a potential new class of simulators, trained and
optimized directly on measurement data, that could not only lead to an increase in computational
speed, but also to an improvement of the precision of the simulation.

Chapter 9 demonstrates the use of generative models in applications other than fast simu-
lation. In modern collider experiments, the collision rate is too high to record every event, and
instead, triggers are used to select only interesting events for storage. This results in a large
fraction of events being discarded. To address this, we introduce OnlineFlow, a generative
model designed to be trained online at the trigger level. This model can learn information about
events that are discarded under the current trigger scheme, without having to store additional
data. Once the model is trained, the events generated by the models can be analyzed in an
offline setting, in order to search for interesting physics in the otherwise discarded regions.

We demonstrate the ability of the OnlineFlow model to act as such a scouting tool in two
proof-of-concept examples, using an emulated invariant mass spectrum and the LHCO anomaly

158

CHAPTER 10. SUMMARY AND OUTLOOK

detection challenge data set, respectively. Using these two data sets we show that the Online-
Flow can learn a set sufficiently accurate to extract a low-rate signal from the OnlineFlow
generated events.

Generative models present a promising method for dealing with data-related problems in
particle physics, offering new approaches for both data simulation and data storage. We were able
to demonstrate the usability of generative models for the simulation of highly granular calorimeter
showers, however, this presents only a first step toward generative detector simulation. Several
challenges will have to be addressed first. For one, the models presented can only produce showers
of pions that hit the calorimeter at one specific point, and under one specific angle. In order to
allow for practical application in a simulation chain, the models will have to be adapted to allow
for the simulation of multiple impact points and angles. Further, additional work will be required
to integrate the generative models into a simulation chain in a way that does not impede the
performance of the model. The statistical properties of generative models are another largely
unexplored topic. While we have shown that a generative model can amplify a data set, several
questions remain, notably in regard to the uncertainty of the generated data. Work has been done
using Bayesian neural networks to estimate the uncertainties of generative models [41], however,
extending these principles to our high granularity shower simulation is highly non-trivial. A
further point to address will be the training times of the generative models. For now, we have
focused on the time required to simulate individual showers and assumed that the high demand
for MC data will make the training time a negligible overhead. However, this is not guaranteed
to be the case for more complex models and more intricate detector geometries. Should training
times become problematic, advanced training methods such as transfer learning [205] or meta
learning [206] offer a promising avenue to reduce the time required to train new networks. The
idea of online trained generative models as scouting tools shows promise, however, the technical
challenges of training a generative network on trigger level are rather daunting and will require
further research. Finally, the successful training of a generative network on real data presents an
exciting opportunity, the exact limitations, and abilities of which remain to be explored in more
detail.

159

Acknowledgments

The author was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe" – 390833306.
This research was supported in part through the Maxwell computational resources operated at
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

With that out of the way, this thesis represents the culmination of three of the genuinely
most enjoyable years of my life (and that is saying a lot, considering two of those years were
under Covid-included lockdown). None of this would have been possible without the help of a
multitude of amazing people, and while I might not be able to thank all of them, I sure will try.

First of all, I would like to thank Prof. Dr. Gregor Kasieczka and Dr. Frank Gaede, for
the great supervision, the interesting discussion, readily available assistance, truly welcoming
attitude, and ever-welcome challenges they provided me with over the course of my doctoral
studies.

Similarly, I would like to extend my sincerest gratitude to Dr. Freya Blekman, Prof. Dr.
Marcus Brüggen, and Prof. Dr. Günter Sigl for being part of my examination committee.

My deepest thanks go out to Katja Krüger, Karim El Morabit, Louis Moureaux, Ramon
Winterhalder, Peter McKeown, Manuel Sommerhalder, and Sebastian Bieringer for their endless
patience and willingness to take time out of their already packed schedules to proofread this
work.

Further, I would like to thank my former Heidelberg supervisor Tilman Plehn, who not only
guided me through my Bachelor’s and Master’s but also for putting me in the pursuit of ML in
HEP, which ultimately led to this thesis.

I am incredibly thankful to the collaborators I had the pleasure to work with over the
years, Sebastian Bieringer, Erik Buhmann, Anja Butter, Engin Eren, Daniel Hundhausen, Daniel
Heuchel, William Korcari, Anatolii Korol, Katja Krüger, Benjamin Nachman, Peter McKeown,
Tilman Plehn, Lennart Rustige, and Ramon Winterhalder. Your insight and willingness to
discuss was truly invaluable.

Similarly, I would like to thank the students, who I had the honor of supervising – Daniel
Hundhausen, Tore von Schwartz, Imahn Shekhzadeh, and Noah Tettenborn – for ensuring I never
got too complacent.

In the same vein I would like to thank the current and former members of the Kasieczka
UHH CMS group and the FTX SFT group (ordered according to the likely incorrect office plan
in my Head), Karla Peña, Melanie Eich, Jörg Schindler, Lisa Benato, Karim El Morabit, Philipp
Rincke, Nils Gerber, Lukas Judith, Christian Elsässer, Julia Heiken, Louis Moureaux, Tobias
Quadfasel, Manuel Sommerhalder, Sven Bollweg, Lennart Kämmle, Veronika Kinsvater, Parada
Prangchaikul, Nana Marie Werther, Noah Tettenborn, Imahn Shekhzadeh, Daniel Hundhause,

161

CHAPTER 10. SUMMARY AND OUTLOOK

Malte Jacobsen, Moritz Wohlstein, Tore von Schwartz, Sebastian Bieringer, William Korcari,
Erik Buhmann, Lennart Rustige, Engin Eren, Peter McKeown, Thomas Madlener, Anatolii Ko-
rol, Francisca Wolf, Jamal Slim, Finn Johannsen, and Mareike Meyer. I cannot even begin to
describe the amazing ways you make my time in Hamburg worth every second, so I will briefly list
things: Laser Tag, weddings, canoe trips, physics questions, social evenings, Magic: The Gath-
ering, lunches as CFEL, nights out, fondue, lunches at the canteen, cake-related compliments,
and much more.

In a similar vein, a special thanks also to the owners of Trollskull Manor and the crew of
the Wolpertinger Manticore Tisiphone Manticore, who provided a much-needed reprieve from
the stress of work, by replacing it if a whole different kind of stress. You made the dark periods
during the lockdown so much brighter.

Finally, I want to express my deepest gratitude to my parents and family, not just for sup-
porting me during the pursuit of my dream, but, maybe even more importantly, for making sure
I knew just how unconditional this support is.

162

Bibliography

[1] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman and T. Plehn 2021 GAN-
plifying event samples SciPost Phys. 10 139. e-Print: 2008.06545 doi:
10.21468/SciPostPhys.10.6.139

[2] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol and K. Krüger
2021 Getting High: High Fidelity Simulation of High Granularity Calorime-
ters with High Speed Comput. Softw. Big Sci. 5 13. e-Print: 2005.05334 doi:
10.1007/s41781-021-00056-0

[3] E. Buhmann, S. Diefenbacher, D. Hundhausen, G. Kasieczka, W. Korcari, E. Eren,
F. Gaede, K. Krüger, P. McKeown and L. Rustige 2022 Hadrons, better,
faster, stronger Mach. Learn. Sci. Tech. 3 025014. e-Print: 2112.09709 doi:
10.1088/2632-2153/ac7848

[4] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman, T. Plehn, D. Shih and R. Win-
terhalder 2022 Ephemeral Learning – Augmenting Triggers with Online-Trained
Normalizing Flows e-Print: 2202.09375

[5] S. Diefenbacher, E. Eren, G. Kasieczka, A. Korol, B. Nachman and D. Shih 2020 DCTR-
GAN: Improving the Precision of Generative Models with Reweighting JINST
15 P11004. e-Print: 2009.03796 doi: 10.1088/1748-0221/15/11/P11004

[6] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol and
K. Krüger 2021 Decoding Photons: Physics in the Latent Space of a BIB-
AE Generative Network EPJ Web Conf. 251 03003. e-Print: 2102.12491 doi:
10.1051/epjconf/202125103003

[7] S. Bieringer, A. Butter, S. Diefenbacher, E. Eren, F. Gaede, D. Hundhausen, G. Kasieczka,
B. Nachman, T. Plehn and M. Trabs 2022 Calomplification – the power of
generative calorimeter models JINST 17 P09028. e-Print: 2202.07352 doi:
10.1088/1748-0221/17/09/P09028

[8] S. Weinberg 1967 A Model of Leptons Phys. Rev. Lett. 19(21) 1264 doi:
10.1103/PhysRevLett.19.1264

[9] S. L. Glashow 1961 Partial-symmetries of weak interactions Nuclear Physics 22 579
doi: 10.1016/0029-5582(61)90469-2

[10] D. J. Gross and F. Wilczek edited by J. C. Taylor 1973 Ultraviolet Behavior of Non-
abelian Gauge Theories Phys. Rev. Lett. 30 1343 doi: 10.1103/PhysRevLett.30.1343

163

http://arxiv.org/abs/2008.06545
https://doi.org/10.21468/SciPostPhys.10.6.139
http://arxiv.org/abs/2005.05334
https://doi.org/10.1007/s41781-021-00056-0
http://arxiv.org/abs/2112.09709
https://doi.org/10.1088/2632-2153/ac7848
http://arxiv.org/abs/2202.09375
http://arxiv.org/abs/2009.03796
https://doi.org/10.1088/1748-0221/15/11/P11004
http://arxiv.org/abs/2102.12491
https://doi.org/10.1051/epjconf/202125103003
http://arxiv.org/abs/2202.07352
https://doi.org/10.1088/1748-0221/17/09/P09028
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1103/PhysRevLett.30.1343

BIBLIOGRAPHY

[11] H. D. Politzer edited by J. C. Taylor 1973 Reliable Perturbative Results for Strong
Interactions? Phys. Rev. Lett. 30 1346 doi: 10.1103/PhysRevLett.30.1346

[12] F. Englert and R. Brout edited by J. C. Taylor 1964 Broken Symmetry and the Mass
of Gauge Vector Mesons Phys. Rev. Lett. 13 321 doi: 10.1103/PhysRevLett.13.321

[13] P. W. Higgs 1964 Broken symmetries, massless particles and gauge fields Phys.
Lett. 12 132 doi: 10.1016/0031-9163(64)91136-9

[14] P. W. Higgs edited by J. C. Taylor 1964 Broken Symmetries and the Masses of
Gauge Bosons Phys. Rev. Lett. 13 508 doi: 10.1103/PhysRevLett.13.508

[15] The ATLAS collaboration 2012 Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC Phys. Lett.
B 716 1. e-Print: 1207.7214 doi: 10.1016/j.physletb.2012.08.020

[16] The CMS collaboration 2012 Observation of a New Boson at a Mass of 125 GeV
with the CMS Experiment at the LHC Phys. Lett. B 716 30. e-Print: 1207.7235
doi: 10.1016/j.physletb.2012.08.021

[17] E. Corbelli and P. Salucci 2000 The Extended Rotation Curve and the Dark Matter
Halo of M33 Mon. Not. Roy. Astron. Soc. 311 441. e-Print: astro-ph/9909252 doi:
10.1046/j.1365-8711.2000.03075.x

[18] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones and D. Zarit-
sky 2006 A direct empirical proof of the existence of dark matter Astrophys. J.
Lett. 648 L109. e-Print: astro-ph/0608407 doi: 10.1086/508162

[19] G. Hinshaw et al. (WMAP) 2009 Five-Year Wilkinson Microwave Anisotropy Probe
(WMAP) Observations: Data Processing, Sky Maps, and Basic Results Astro-
phys. J. Suppl. 180 225. e-Print: 0803.0732 doi: 10.1088/0067-0049/180/2/225

[20] P. A. R. Ade et al. (Planck) 2016 Planck 2015 results. XIII. Cosmo-
logical parameters Astron. Astrophys. 594 A13. e-Print: 1502.01589 doi:
10.1051/0004-6361/201525830

[21] S. F. King 2004 Neutrino mass models Rept. Prog. Phys. 67 107. e-Print:
hep-ph/0310204 doi: 10.1088/0034-4885/67/2/R01

[22] G. Ciezarek, M. Franco Sevilla, B. Hamilton, R. Kowalewski, T. Kuhr, V. Lüth and Y. Sato
2017 A Challenge to Lepton Universality in B Meson Decays Nature 546 227. e-
Print: 1703.01766 doi: 10.1038/nature22346

[23] The LHCb collaboration 2014 Test of lepton universality using B+ → K+ℓ+ℓ− decays
Phys. Rev. Lett. 113 151601. e-Print: 1406.6482 doi: 10.1103/PhysRevLett.113.151601

[24] L. Evans and P. Bryant 2008 LHC Machine JINST 3 S08001 doi:
10.1088/1748-0221/3/08/S08001

[25] I. Zurbano Fernandez et al. edited by I. Béjar Alonso, O. Brüning, P. Fessia, L. Rossi, L. Ta-
vian and M. Zerlauth 2020 High-Luminosity Large Hadron Collider (HL-LHC):
Technical design report 10/2020 doi: 10.23731/CYRM-2020-0010

164

https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRevLett.13.508
http://arxiv.org/abs/1207.7214
https://doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7235
https://doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/astro-ph/9909252
https://doi.org/10.1046/j.1365-8711.2000.03075.x
http://arxiv.org/abs/astro-ph/0608407
https://doi.org/10.1086/508162
http://arxiv.org/abs/0803.0732
https://doi.org/10.1088/0067-0049/180/2/225
http://arxiv.org/abs/1502.01589
https://doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/hep-ph/0310204
https://doi.org/10.1088/0034-4885/67/2/R01
http://arxiv.org/abs/1703.01766
https://doi.org/10.1038/nature22346
http://arxiv.org/abs/1406.6482
https://doi.org/10.1103/PhysRevLett.113.151601
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.23731/CYRM-2020-0010

BIBLIOGRAPHY

[26] T. Behnke, J. E. Brau, B. Foster, J. Fuster, M. Harrison, J. M. Paterson, M. Peskin,
M. Stanitzki, N. Walker and H. Yamamoto 2013 The International Linear Collider
Technical Design Report - Volume 1: Executive Summary e-Print: 1306.6327
doi: 10.48550/arXiv.1306.6327

[27] T. K. Charles et al. (CLICdp, CLIC) edited by P. N. Burrows, N. Catalan Lasheras,
L. Linssen, M. Petrič, A. Robson, D. Schulte, E. Sicking and S. Stapnes 2018 The Com-
pact Linear Collider (CLIC) - 2018 Summary Report 2/2018. e-Print: 1812.06018
doi: 10.23731/CYRM-2018-002

[28] R. Jansky 2015 The ATLAS Fast Monte Carlo Production Chain Project J. Phys.
Conf. Ser. 664 072024 doi: 10.1088/1742-6596/664/7/072024

[29] S. Agostinelli et al. (GEANT4) 2003 GEANT4–a simulation toolkit Nucl. Instrum.
Meth. A 506 250 doi: 10.1016/S0168-9002(03)01368-8

[30] The ATLAS collaboration 2020 ATLAS HL-LHC Computing Conceptual Design
Report Tech. rep. CERN Geneva URL: https://cds.cern.ch/record/2729668

[31] The CMS collaboration 2018 Identification of heavy-flavour jets with the CMS
detector in pp collisions at 13 TeV JINST 13 P05011. e-Print: 1712.07158 doi:
10.1088/1748-0221/13/05/P05011

[32] D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban and D. Whiteson 2016 Jet Flavor
Classification in High-Energy Physics with Deep Neural Networks Phys. Rev. D
94 112002. e-Print: 1607.08633 doi: 10.1103/PhysRevD.94.112002

[33] A. Butter et al. edited by G. Kasieczka and T. Plehn 2019 The Machine Learn-
ing landscape of top taggers SciPost Phys. 7 014. e-Print: 1902.09914 doi:
10.21468/SciPostPhys.7.1.014

[34] G. Kasieczka et al. 2021 The LHC Olympics 2020 a community challenge for
anomaly detection in high energy physics Rept. Prog. Phys. 84 124201. e-Print:
2101.08320 doi: 10.1088/1361-6633/ac36b9

[35] A. Butter, T. Plehn and R. Winterhalder 2019 How to GAN LHC Events SciPost Phys.
7 075. e-Print: 1907.03764 doi: 10.21468/SciPostPhys.7.6.075

[36] B. Hashemi, N. Amin, K. Datta, D. Olivito and M. Pierini 2019 LHC analysis-specific
datasets with Generative Adversarial Networks e-Print: 1901.05282

[37] R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo 2019 DijetGAN:
A Generative-Adversarial Network Approach for the Simulation of QCD Dijet
Events at the LHC JHEP 08 110. e-Print: 1903.02433 doi: 10.1007/JHEP08(2019)110

[38] J. Arjona Martínez, T. Q. Nguyen, M. Pierini, M. Spiropulu and J.-R. Vlimant 2020
Particle Generative Adversarial Networks for full-event simulation at the LHC
and their application to pileup description J. Phys. Conf. Ser. 1525 012081. e-Print:
1912.02748 doi: 10.1088/1742-6596/1525/1/012081

165

http://arxiv.org/abs/1306.6327
https://doi.org/10.48550/arXiv.1306.6327
http://arxiv.org/abs/1812.06018
https://doi.org/10.23731/CYRM-2018-002
https://doi.org/10.1088/1742-6596/664/7/072024
https://doi.org/10.1016/S0168-9002(03)01368-8
https://cds.cern.ch/record/2729668
http://arxiv.org/abs/1712.07158
https://doi.org/10.1088/1748-0221/13/05/P05011
http://arxiv.org/abs/1607.08633
https://doi.org/10.1103/PhysRevD.94.112002
http://arxiv.org/abs/1902.09914
https://doi.org/10.21468/SciPostPhys.7.1.014
http://arxiv.org/abs/2101.08320
https://doi.org/10.1088/1361-6633/ac36b9
http://arxiv.org/abs/1907.03764
https://doi.org/10.21468/SciPostPhys.7.6.075
http://arxiv.org/abs/1901.05282
http://arxiv.org/abs/1903.02433
https://doi.org/10.1007/JHEP08(2019)110
http://arxiv.org/abs/1912.02748
https://doi.org/10.1088/1742-6596/1525/1/012081

BIBLIOGRAPHY

[39] Y. Alanazi, N. Sato, T. Liu, W. Melnitchouk, P. Ambrozewicz, F. Hauenstein, M. P.
Kuchera, E. Pritchard, M. Robertson, R. Strauss, L. Velasco and Y. Li 2021 Simulation of
Electron-Proton Scattering Events by a Feature-Augmented and Transformed
Generative Adversarial Network (FAT-GAN) Proceedings of the Thirtieth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-21 edited by Z.-H. Zhou (IJCAI)
p 2126. e-Print: 2001.11103 doi: 10.24963/ijcai.2021/293

[40] S. Otten, S. Caron, W. de Swart, M. van Beekveld, L. Hendriks, C. van Leeuwen,
D. Podareanu, R. Ruiz de Austri and R. Verheyen 2021 Event Generation and
Statistical Sampling for Physics with Deep Generative Models and a Den-
sity Information Buffer Nature Commun. 12 2985. e-Print: 1901.00875 doi:
10.1038/s41467-021-22616-z

[41] A. Butter, T. Heimel, S. Hummerich, T. Krebs, T. Plehn, A. Rousselot and S. Vent 2021
Generative Networks for Precision Enthusiasts e-Print: 2110.13632

[42] J. W. Monk 2018 Deep Learning as a Parton Shower JHEP 12 021. e-Print:
1807.03685 doi: 10.1007/JHEP12(2018)021

[43] K. Dohi 2020 Variational Autoencoders for Jet Simulation e-Print: 2009.04842

[44] B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J. Duarte, R. Kansal, J.-R. Vlimant
and D. Gunopulos 2021 Sparse Data Generation for Particle-Based Simulation of
Hadronic Jets in the LHC 38th International Conference on Machine Learning . e-Print:
2109.15197

[45] S. Tsan, R. Kansal, A. Aportela, D. Diaz, J. Duarte, S. Krishna, F. Mokhtar, J.-R. Vlimant
and M. Pierini 2021 Particle Graph Autoencoders and Differentiable, Learned
Energy Mover’s Distance 35th Conference on Neural Information Processing Systems.
e-Print: 2111.12849

[46] M. Paganini, L. de Oliveira and B. Nachman 2018 Accelerating Science with Gen-
erative Adversarial Networks: An Application to 3D Particle Showers in
Multilayer Calorimeters Phys. Rev. Lett. 120 042003. e-Print: 1705.02355 doi:
10.1103/PhysRevLett.120.042003

[47] M. Paganini, L. de Oliveira and B. Nachman 2018 CaloGAN : Simulating 3D high
energy particle showers in multilayer electromagnetic calorimeters with gen-
erative adversarial networks Phys. Rev. D 97 014021. e-Print: 1712.10321 doi:
10.1103/PhysRevD.97.014021

[48] L. de Oliveira, M. Paganini and B. Nachman 2018 Controlling Physical Attributes
in GAN-Accelerated Simulation of Electromagnetic Calorimeters J. Phys. Conf.
Ser. 1085 042017. e-Print: 1711.08813 doi: 10.1088/1742-6596/1085/4/042017

[49] M. Erdmann, L. Geiger, J. Glombitza and D. Schmidt 2018 Generating and re-
fining particle detector simulations using the Wasserstein distance in ad-
versarial networks Comput. Softw. Big Sci. 2 4. e-Print: 1802.03325 doi:
10.1007/s41781-018-0008-x

166

http://arxiv.org/abs/2001.11103
https://doi.org/10.24963/ijcai.2021/293
http://arxiv.org/abs/1901.00875
https://doi.org/10.1038/s41467-021-22616-z
http://arxiv.org/abs/2110.13632
http://arxiv.org/abs/1807.03685
https://doi.org/10.1007/JHEP12(2018)021
http://arxiv.org/abs/2009.04842
http://arxiv.org/abs/2109.15197
http://arxiv.org/abs/2111.12849
http://arxiv.org/abs/1705.02355
https://doi.org/10.1103/PhysRevLett.120.042003
http://arxiv.org/abs/1712.10321
https://doi.org/10.1103/PhysRevD.97.014021
http://arxiv.org/abs/1711.08813
https://doi.org/10.1088/1742-6596/1085/4/042017
http://arxiv.org/abs/1802.03325
https://doi.org/10.1007/s41781-018-0008-x

BIBLIOGRAPHY

[50] M. Erdmann, J. Glombitza and T. Quast 2019 Precise simulation of electromagnetic
calorimeter showers using a Wasserstein Generative Adversarial Network Com-
put. Softw. Big Sci. 3 4. e-Print: 1807.01954 doi: 10.1007/s41781-018-0019-7

[51] S. Vallecorsa 2018 Generative models for fast simulation J. Phys. Conf. Ser. 1085
022005 doi: 10.1088/1742-6596/1085/2/022005

[52] F. Carminati, A. Gheata, G. Khattak, P. Mendez Lorenzo, S. Sharan and S. Vallecorsa
2018 Three dimensional Generative Adversarial Networks for fast simulation J.
Phys. Conf. Ser. 1085 032016 doi: 10.1088/1742-6596/1085/3/032016

[53] K. Deja, T. Trzcinski and L. Graczykowski edited by A. Forti, L. Betev, M. Lit-
maath, O. Smirnova and P. Hristov 2019 Generative models for fast cluster sim-
ulations in the TPC for the ALICE experiment EPJ Web Conf. 214 06003 doi:
10.1051/epjconf/201921406003

[54] P. Musella and F. Pandolfi 2018 Fast and Accurate Simulation of Particle Detec-
tors Using Generative Adversarial Networks Comput. Softw. Big Sci. 2 8. e-Print:
1805.00850 doi: 10.1007/s41781-018-0015-y

[55] A. Hariri, D. Dyachkova and S. Gleyzer 2021 Graph Generative Models for Fast
Detector Simulations in High Energy Physics e-Print: 2104.01725

[56] V. Chekalina, E. Orlova, F. Ratnikov, D. Ulyanov, A. Ustyuzhanin and E. Zakharov edited
by A. Forti, L. Betev, M. Litmaath, O. Smirnova and P. Hristov 2019 Generative Models
for Fast Calorimeter Simulation: the LHCb case EPJ Web Conf. 214 02034. e-Print:
1812.01319 doi: 10.1051/epjconf/201921402034

[57] The ATLAS collaboration 2018 Deep generative models for fast shower simulation
in ATLAS Tech. rep. CERN Geneva URL: http://cds.cern.ch/record/2630433

[58] K. Cranmer, J. Pavez and G. Louppe 2015 Approximating Likelihood Ratios with
Calibrated Discriminative Classifiers e-Print: 1506.02169

[59] The ILD Concept Group edited by T. Behnke et al. 2020 International Large Detector:
Interim Design Report e-Print: 2003.01116

[60] B. Nachman and J. Thaler 2021 Learning from many collider events at once Phys.
Rev. D 103 116013. e-Print: 2101.07263 doi: 10.1103/PhysRevD.103.116013

[61] The CMS collaboration 2022 Denoising Convolutional Networks to Accelerate De-
tector Simulation 20th International Workshop on Advanced Computing and Analysis
Techniques in Physics Research: AI Decoded - Towards Sustainable, Diverse, Performant
and Effective Scientific Computing . e-Print: 2202.05320 doi: 10.2172/1835859

[62] The CALICE collaboration 2022 The CALICE collaboration [Online; ac-
cessed 22-September-2022] URL: https://twiki.cern.ch/twiki/bin/view/CALICE/
CaliceCollaboration

167

http://arxiv.org/abs/1807.01954
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1088/1742-6596/1085/2/022005
https://doi.org/10.1088/1742-6596/1085/3/032016
https://doi.org/10.1051/epjconf/201921406003
http://arxiv.org/abs/1805.00850
https://doi.org/10.1007/s41781-018-0015-y
http://arxiv.org/abs/2104.01725
http://arxiv.org/abs/1812.01319
https://doi.org/10.1051/epjconf/201921402034
http://cds.cern.ch/record/2630433
http://arxiv.org/abs/1506.02169
http://arxiv.org/abs/2003.01116
http://arxiv.org/abs/2101.07263
https://doi.org/10.1103/PhysRevD.103.116013
http://arxiv.org/abs/2202.05320
https://doi.org/10.2172/1835859
https://twiki.cern.ch/twiki/bin/view/CALICE/CaliceCollaboration
https://twiki.cern.ch/twiki/bin/view/CALICE/CaliceCollaboration

BIBLIOGRAPHY

[63] The CALICE collaboration 2010 Construction and Commissioning of the CALICE
Analog Hadron Calorimeter Prototype JINST 5 P05004. e-Print: 1003.2662 doi:
10.1088/1748-0221/5/05/P05004

[64] A. Pich 2012 The Standard Model of Electroweak Interactions 2010 European School
of High Energy Physics p 1. e-Print: 1201.0537

[65] MissMJ, Cush 2019 Standard Model of Elementary Particles [Online; accessed
10-September-2022] URL: https://upload.wikimedia.org/wikipedia/commons/0/00/
Standard_Model_of_Elementary_Particles.svg

[66] M. Thomson 2013 Modern particle physics (New York: Cambridge University Press)
ISBN 978-1-107-03426-6

[67] The LHCb collaboration 2014 Observation of the resonant character of
the Z(4430)− state Phys. Rev. Lett. 112 222002. e-Print: 1404.1903 doi:
10.1103/PhysRevLett.112.222002

[68] The LHCb collaboration 2015 Observation of J/ψp Resonances Consistent with
Pentaquark States in Λ0

b → J/ψK−p Decays Phys. Rev. Lett. 115 072001. e-Print:
1507.03414 doi: 10.1103/PhysRevLett.115.072001

[69] S. N. Ahmed et al. (SNO) 2004 Measurement of the total active B-8 solar
neutrino flux at the Sudbury Neutrino Observatory with enhanced neu-
tral current sensitivity Phys. Rev. Lett. 92 181301. e-Print: nucl-ex/0309004 doi:
10.1103/PhysRevLett.92.181301

[70] M. Gell-Mann, P. Ramond and R. Slansky 1979 Complex Spinors and Unified Theo-
ries Conf. Proc. C 790927 315. e-Print: 1306.4669

[71] P. Langacker 2009 The Physics of Heavy Z ′ Gauge Bosons Rev. Mod. Phys. 81 1199.
e-Print: 0801.1345 doi: 10.1103/RevModPhys.81.1199

[72] M. Bauer, S. Diefenbacher, T. Plehn, M. Russell and D. A. Camargo 2018 Dark Matter
in Anomaly-Free Gauge Extensions SciPost Phys. 5 036. e-Print: 1805.01904 doi:
10.21468/SciPostPhys.5.4.036

[73] The ATLAS collaboration 2008 The ATLAS Experiment at the CERN Large
Hadron Collider JINST 3 S08003 doi: 10.1088/1748-0221/3/08/S08003

[74] The CMS collaboration 2008 The CMS Experiment at the CERN LHC JINST 3
S08004 doi: 10.1088/1748-0221/3/08/S08004

[75] The LHCb collaboration 2008 The LHCb Detector at the LHC JINST 3 S08005 doi:
10.1088/1748-0221/3/08/S08005

[76] The ALICE collaboration 2008 The ALICE experiment at the CERN LHC JINST
3 S08002 doi: 10.1088/1748-0221/3/08/S08002

[77] The CMS collaboration 2017 Particle-flow reconstruction and global event de-
scription with the CMS detector Journal of Instrumentation 12 P10003. e-Print:
1706.04965 doi: 10.1088/1748-0221/12/10/P10003

168

http://arxiv.org/abs/1003.2662
https://doi.org/10.1088/1748-0221/5/05/P05004
http://arxiv.org/abs/1201.0537
https://upload.wikimedia.org/wikipedia/commons/0/00/Standard_Model_of_Elementary_Particles.svg
https://upload.wikimedia.org/wikipedia/commons/0/00/Standard_Model_of_Elementary_Particles.svg
http://arxiv.org/abs/1404.1903
https://doi.org/10.1103/PhysRevLett.112.222002
http://arxiv.org/abs/1507.03414
https://doi.org/10.1103/PhysRevLett.115.072001
http://arxiv.org/abs/nucl-ex/0309004
https://doi.org/10.1103/PhysRevLett.92.181301
http://arxiv.org/abs/1306.4669
http://arxiv.org/abs/0801.1345
https://doi.org/10.1103/RevModPhys.81.1199
http://arxiv.org/abs/1805.01904
https://doi.org/10.21468/SciPostPhys.5.4.036
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1088/1748-0221/3/08/S08002
http://arxiv.org/abs/1706.04965
https://doi.org/10.1088/1748-0221/12/10/P10003

BIBLIOGRAPHY

[78] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt 2009 Parton dis-
tributions for the LHC Eur. Phys. J. C 63 189. e-Print: 0901.0002 doi:
10.1140/epjc/s10052-009-1072-5

[79] H. Abramowicz et al. edited by T. Behnke, J. E. Brau, P. N. Burrows, J. Fuster, M. Peskin,
M. Stanitzki, Y. Sugimoto, S. Yamada and H. Yamamoto 2013 The International Linear
Collider Technical Design Report - Volume 4: Detectors e-Print: 1306.6329

[80] J. S. Marshall and M. A. Thomson 2015 The Pandora software development kit for
pattern recognition The European Physical Journal C 75. e-Print: 1506.05348 doi:
10.1140/epjc/s10052-015-3659-3

[81] M. Aicheler, P. N. Burrows, N. Catalan Lasheras, R. Corsini, M. Draper, J. Osborne,
D. Schulte, S. Stapnes and M. J. Stuart (CLIC accelerator) edited by M. Aicheler, P. N.
Burrows, N. Catalan Lasheras, R. Corsini, M. Draper, J. Osborne, D. Schulte, S. Stapnes
and M. J. Stuart 2018 The Compact Linear Collider (CLIC) - Project Implemen-
tation Plan 4/2018. e-Print: 1903.08655 doi: 10.23731/CYRM-2018-004

[82] S. Stapnes 2019 The Compact Linear Collider Nature Rev. Phys. 1 235 doi:
10.1038/s42254-019-0051-5

[83] H. Baer et al. edited by H. Baer et al. 2013 The International Linear Collider Tech-
nical Design Report - Volume 2: Physics e-Print: 1306.6352

[84] Benchmarking Working Group 2017 HEP-SPEC06 Benchmark [Online; accessed 16-
September-2022] URL: https://w3.hepix.org/benchmarking

[85] K. Hagiwara et al. (Particle Data Group) 2002 Review of Particle Properties Phys.
Rev. D 66(1) 010001 doi: 10.1103/PhysRevD.66.010001

[86] J. Beringer et al. (Particle Data Group) 2012 Review of Particle Physics Phys. Rev. D
86(1) 010001 doi: 10.1103/PhysRevD.86.010001

[87] P. L. Rocca and F. Riggi 2011 The Use of Avalanche Photodiodes in High Energy
Electromagnetic Calorimetry (Rijeka: IntechOpen) chap 12 ISBN 9789533071633 doi:
10.5772/14574

[88] I. C. Brock and T. Schorner-Sadenius 2011 Physics at the terascale (Weinheim: Wiley)
ISBN 9783527634965 doi: 10.1002/9783527634965

[89] R. L. Workman and Others (Particle Data Group) 2022 Review of Particle Physics
PTEP 2022 083C01 doi: 10.1093/ptep/ptac097

[90] S. Lee, M. Livan and R. Wigmans 2018 On the limits of the hadronic energy res-
olution of calorimeters Nucl. Instrum. Meth. A 882 148. e-Print: 1710.10535 doi:
10.1016/j.nima.2017.10.087

[91] The CMS collaboration 2015 The CMS Electromagnetic Calorimeter: overview,
lessons learned during Run 1 and future projections Journal of Physics: Conference
Series 587 012001 doi: 10.1088/1742-6596/587/1/012001

169

http://arxiv.org/abs/0901.0002
https://doi.org/10.1140/epjc/s10052-009-1072-5
http://arxiv.org/abs/1306.6329
http://arxiv.org/abs/1506.05348
https://doi.org/10.1140/epjc/s10052-015-3659-3
http://arxiv.org/abs/1903.08655
https://doi.org/10.23731/CYRM-2018-004
https://doi.org/10.1038/s42254-019-0051-5
http://arxiv.org/abs/1306.6352
https://w3.hepix.org/benchmarking
https://doi.org/10.1103/PhysRevD.66.010001
https://doi.org/10.1103/PhysRevD.86.010001
https://doi.org/10.5772/14574
https://doi.org/10.1002/9783527634965
https://doi.org/10.1093/ptep/ptac097
http://arxiv.org/abs/1710.10535
https://doi.org/10.1016/j.nima.2017.10.087
https://doi.org/10.1088/1742-6596/587/1/012001

BIBLIOGRAPHY

[92] The CMS collaboration 2017 The CMS HGCAL detector for HL-LHC up-
grade 5th Large Hadron Collider Physics Conference. e-Print: 1708.08234 doi:
10.48550/arXiv.1708.08234

[93] C. W. Fabjan and F. Gianotti 2003 Calorimetry for particle physics Rev. Mod. Phys.
75 1243 doi: 10.1103/RevModPhys.75.1243

[94] D. H. Wright and M. H. Kelsey 2015 The Geant4 Bertini Cascade Nucl. Instrum. Meth.
A 804 175 doi: 10.1016/j.nima.2015.09.058

[95] G. Folger and J. P. Wellisch 2003 String parton models in GEANT4 eConf C0303241
MOMT007. e-Print: nucl-th/0306007 doi: 10.48550/arXiv.nucl-th/0306007

[96] B. Andersson, G. Gustafson and B. Nilsson-Almqvist 1987 A Model for Low p(t)
Hadronic Reactions, with Generalizations to Hadron - Nucleus and Nucleus-
Nucleus Collisions Nucl. Phys. B 281 289 doi: 10.1016/0550-3213(87)90257-4

[97] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens and
M. Selvaggi (DELPHES 3) 2014 DELPHES 3, A modular framework for fast sim-
ulation of a generic collider experiment JHEP 02 057. e-Print: 1307.6346 doi:
10.1007/JHEP02(2014)057

[98] G. Grindhammer and S. Peters 1993 The Parameterized simulation of electromag-
netic showers in homogeneous and sampling calorimeters International Confer-
ence on Monte Carlo Simulation in High-Energy and Nuclear Physics - MC 93 . e-Print:
hep-ex/0001020 doi: 10.48550/arXiv.hep-ex/0001020

[99] G. Grindhammer, M. Rudowicz and S. Peters 1990 The Fast Simulation of
Electromagnetic and Hadronic Showers Nucl. Instrum. Meth. A 290 469 doi:
10.1016/0168-9002(90)90566-O

[100] E. Barberio et al. edited by M. Fraternali, G. Gaudio and M. Livan 2009 Fast simulation
of electromagnetic showers in the ATLAS calorimeter: Frozen showers J. Phys.
Conf. Ser. 160 012082 doi: 10.1088/1742-6596/160/1/012082

[101] S. Glazov edited by Y. Wang 2011 Fast simulation of showers in the H1 SpaCal
calorimeter J. Phys. Conf. Ser. 293 012024 doi: 10.1088/1742-6596/293/1/012024

[102] The CMS collaboration 2017 The Phase-2 Upgrade of the CMS Endcap Calorime-
ter Tech. rep. CERN Geneva doi: 10.17181/CERN.IV8M.1JY2 URL: https://cds.cern.
ch/record/2293646

[103] The CALICE collaboration 2008 Design and Electronics Commissioning of
the Physics Prototype of a Si-W Electromagnetic Calorimeter for the
International Linear Collider JINST 3 P08001. e-Print: 0805.4833 doi:
10.1088/1748-0221/3/08/P08001

[104] Y. Niu et al. 2020 Design of Sc-ECAL prototype for CEPC and per-
formance of first two layers JINST 15 C05036. e-Print: 2002.01809 doi:
10.1088/1748-0221/15/05/C05036

170

http://arxiv.org/abs/1708.08234
https://doi.org/10.48550/arXiv.1708.08234
https://doi.org/10.1103/RevModPhys.75.1243
https://doi.org/10.1016/j.nima.2015.09.058
http://arxiv.org/abs/nucl-th/0306007
https://doi.org/10.48550/arXiv.nucl-th/0306007
https://doi.org/10.1016/0550-3213(87)90257-4
http://arxiv.org/abs/1307.6346
https://doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/hep-ex/0001020
https://doi.org/10.48550/arXiv.hep-ex/0001020
https://doi.org/10.1016/0168-9002(90)90566-O
https://doi.org/10.1088/1742-6596/160/1/012082
https://doi.org/10.1088/1742-6596/293/1/012024
https://doi.org/10.17181/CERN.IV8M.1JY2
https://cds.cern.ch/record/2293646
https://cds.cern.ch/record/2293646
http://arxiv.org/abs/0805.4833
https://doi.org/10.1088/1748-0221/3/08/P08001
http://arxiv.org/abs/2002.01809
https://doi.org/10.1088/1748-0221/15/05/C05036

BIBLIOGRAPHY

[105] The CALICE collaboration 2013 Validation of GEANT4 Monte Carlo Models with
a Highly Granular Scintillator-Steel Hadron Calorimeter JINST 8 07005. e-Print:
1306.3037 doi: 10.1088/1748-0221/8/07/P07005

[106] I. Goodfellow, Y. Bengio and A. Courville 2016 Deep Learning (MIT Press) ISBN
9780262035613 URL: http://www.deeplearningbook.org

[107] S. Ruder 2016 An overview of gradient descent optimization algorithms e-Print:
1609.04747 doi: 10.48550/arxiv.1609.04747

[108] D. P. Kingma and J. Ba 2015 Adam: A Method for Stochastic Optimization 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings edited by Y. Bengio and Y. LeCun. e-Print:
1412.6980 doi: 10.48550/arXiv.1412.6980

[109] D. M. Hawkins 2004 The Problem of Overfitting Journal of Chemical Information and
Computer Sciences 44 1 pMID: 14741005 doi: 10.1021/ci0342472

[110] M. Belkin, D. Hsu, S. Ma and S. Mandal 2019 Reconciling modern machine-learning
practice and the classical bias–variance trade-off Proceedings of the National
Academy of Sciences 116 15849. e-Print: 1812.11118 doi: 10.1073/pnas.1903070116

[111] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov 2014 Dropout:
A Simple Way to Prevent Neural Networks from Overfitting Journal of Machine
Learning Research 15 1929

[112] S. Ioffe and C. Szegedy 2015 Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift Proceedings of the 32nd Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research vol 37)
edited by F. Bach and D. Blei (Lille, France: PMLR) p 448. e-Print: 1502.03167 doi:
10.48550/arXiv.1502.03167

[113] A. F. Agarap 2018 Deep Learning using Rectified Linear Units (ReLU) e-Print:
1803.08375 doi: 10.48550/arxiv.1803.08375

[114] A. L. Maas, A. Y. Hannun, A. Y. Ng et al. 2013 Rectifier nonlinearities improve neural
network acoustic models Proc. icml vol 30 (Citeseer) p 3 URL: http://robotics.
stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf

[115] D. Clevert, T. Unterthiner and S. Hochreiter 2016 Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs) 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Confer-
ence Track Proceedings edited by Y. Bengio and Y. LeCun. e-Print: 1511.07289 doi:
10.48550/arXiv.1511.07289

[116] L. Deng 2012 The MNIST Database of Handwritten Digit Images for Machine
Learning Research [Best of the Web] IEEE Signal Processing Magazine 29 141–142
doi: 10.1109/MSP.2012.2211477

171

http://arxiv.org/abs/1306.3037
https://doi.org/10.1088/1748-0221/8/07/P07005
http://www.deeplearningbook.org
http://arxiv.org/abs/1609.04747
https://doi.org/10.48550/arxiv.1609.04747
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1021/ci0342472
http://arxiv.org/abs/1812.11118
https://doi.org/10.1073/pnas.1903070116
http://arxiv.org/abs/1502.03167
https://doi.org/10.48550/arXiv.1502.03167
http://arxiv.org/abs/1803.08375
https://doi.org/10.48550/arxiv.1803.08375
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://arxiv.org/abs/1511.07289
https://doi.org/10.48550/arXiv.1511.07289
https://doi.org/10.1109/MSP.2012.2211477

BIBLIOGRAPHY

[117] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen and
I. Sutskever 2021 Zero-Shot Text-to-Image Generation Proceedings of the 38th In-
ternational Conference on Machine Learning (Proceedings of Machine Learning Research
vol 139) edited by M. Meila and T. Zhang (PMLR) p 8821. e-Print: 2102.12092 doi:
10.48550/arXiv.2102.12092

[118] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville
and Y. Bengio 2020 Generative Adversarial Networks Commun. ACM 63 139. e-Print:
1406.2661 doi: 10.1145/3422622

[119] M. Arjovsky, S. Chintala and L. Bottou 2017 Wasserstein GAN e-Print: 1701.07875
doi: 10.48550/arxiv.1701.07875

[120] C. Villani 2009 The Wasserstein distances (Berlin, Heidelberg: Springer Berlin Heidel-
berg) p 93 ISBN 9783540710509 doi: 10.1007/978-3-540-71050-9_6

[121] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin and A. Courville 2017 Improved
Training of Wasserstein GANs Proceedings of the 31st International Conference on
Neural Information Processing Systems NIPS’17 (Red Hook, NY, USA: Curran Associates
Inc.) p 5769 ISBN 9781510860964. e-Print: 1704.00028

[122] L. Theis, W. Shi, A. Cunningham and F. Huszár 2017 Lossy Image Compression
with Compressive Autoencoders International Conference on Learning Representa-
tions (ICLR 2017) p 253. e-Print: 1703.00395 doi: 10.17863/CAM.51995

[123] Z. Cheng, H. Sun, M. Takeuchi and J. Katto 2018 Deep Convolutional AutoEncoder-
based Lossy Image Compression 2018 Picture Coding Symposium (PCS) p 253. e-
Print: 1804.09535 doi: 10.1109/PCS.2018.8456308

[124] J. Liu, S. Di, K. Zhao, S. Jin, D. Tao, X. Liang, Z. Chen and F. Cappello 2021 Exploring
Autoencoder-based Error-bounded Compression for Scientific Data 2021 IEEE
International Conference on Cluster Computing (CLUSTER) p 294. e-Print: 2105.11730
doi: 10.1109/Cluster48925.2021.00034

[125] T. Heimel, G. Kasieczka, T. Plehn and J. M. Thompson 2019 QCD or What? SciPost
Phys. 6 030. e-Print: 1808.08979 doi: 10.21468/SciPostPhys.6.3.030

[126] T. Finke, M. Krämer, A. Morandini, A. Mück and I. Oleksiyuk 2021 Autoencoders for
unsupervised anomaly detection in high energy physics JHEP 06 161. e-Print:
2104.09051 doi: 10.1007/JHEP06(2021)161

[127] B. M. Dillon, T. Plehn, C. Sauer and P. Sorrenson 2021 Better Latent Spaces
for Better Autoencoders SciPost Phys. 11 061. e-Print: 2104.08291 doi:
10.21468/SciPostPhys.11.3.061

[128] D. P. Kingma and M. Welling 2013 Auto-Encoding Variational Bayes e-Print:
1312.6114 doi: 10.48550/arxiv.1312.6114

[129] J. Altosaar 2016 Tutorial - What is a Variational Autoencoder? Zenodo doi:
10.5281/zenodo.4462916

172

http://arxiv.org/abs/2102.12092
https://doi.org/10.48550/arXiv.2102.12092
http://arxiv.org/abs/1406.2661
https://doi.org/10.1145/3422622
http://arxiv.org/abs/1701.07875
https://doi.org/10.48550/arxiv.1701.07875
https://doi.org/10.1007/978-3-540-71050-9_6
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1703.00395
https://doi.org/10.17863/CAM.51995
http://arxiv.org/abs/1804.09535
https://doi.org/10.1109/PCS.2018.8456308
http://arxiv.org/abs/2105.11730
https://doi.org/10.1109/Cluster48925.2021.00034
http://arxiv.org/abs/1808.08979
https://doi.org/10.21468/SciPostPhys.6.3.030
http://arxiv.org/abs/2104.09051
https://doi.org/10.1007/JHEP06(2021)161
http://arxiv.org/abs/2104.08291
https://doi.org/10.21468/SciPostPhys.11.3.061
http://arxiv.org/abs/1312.6114
https://doi.org/10.48550/arxiv.1312.6114
https://doi.org/10.5281/zenodo.4462916

BIBLIOGRAPHY

[130] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow and B. Frey 2015 Adversarial Autoen-
coders e-Print: 1511.05644 doi: 10.48550/arxiv.1511.05644

[131] S. Voloshynovskiy, M. Kondah, S. Rezaeifar, O. Taran, T. Holotyak and D. J. Rezende
2019 Information bottleneck through variational glasses e-Print: 1912.00830 doi:
10.48550/arxiv.1912.00830

[132] N. Tishby, F. C. Pereira and W. Bialek 2000 The information bottleneck method
e-Print: physics/0004057 doi: 10.48550/arxiv.PHYSICS/0004057

[133] N. Tishby and N. Zaslavsky 2015 Deep learning and the information bottleneck
principle 2015 IEEE Information Theory Workshop (ITW) p 1. e-Print: 1503.02406 doi:
10.1109/ITW.2015.7133169

[134] T. M. Cover and J. A. Thomas 2005 Information Theory and Statistics (John Wiley
& Sons, Ltd) chap 11, p 347 ISBN 9780471748823 doi: 10.1002/047174882X.ch11

[135] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf and A. Smola 2006 A Kernel Method
for the Two-Sample-Problem Advances in Neural Information Processing Systems
vol 19 edited by B. Schölkopf, J. Platt and T. Hoffman (MIT Press). e-Print: 0805.2368
doi: 10.48550/arXiv.0805.2368

[136] S. Bond-Taylor, A. Leach, Y. Long and C. G. Willcocks 2021 Deep Generative Mod-
elling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-
Based and Autoregressive Models IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 1 doi: 10.1109/tpami.2021.3116668

[137] I. Kobyzev, S. J. Prince and M. A. Brubaker 2021 Normalizing Flows: An Introduc-
tion and Review of Current Methods IEEE Transactions on Pattern Analysis and
Machine Intelligence 43 3964. e-Print: 1908.09257 doi: 10.1109/tpami.2020.2992934

[138] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed and B. Lakshminarayanan 2021
Normalizing Flows for Probabilistic Modeling and Inference Journal of Machine
Learning Research 22 1. e-Print: 1912.02762 doi: 10.48550/arxiv.1912.02762

[139] W. Rudin and the Tata McGraw-Hill Publishing Company 1987 Real and Complex
Analysis Higher Mathematics Series (McGraw-Hill Education) ISBN 9780070542341

[140] V. Bogachev 2010 Measure Theory (Springer Berlin Heidelberg) ISBN 9783540824640

[141] L. Dinh, D. Krueger and Y. Bengio 2014 NICE: Non-linear Independent Components
Estimation e-Print: 1410.8516 doi: 10.48550/arxiv.1410.8516

[142] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever and M. Welling 2016
Improved Variational Inference with Inverse Autoregressive Flow Proceedings
of the 30th International Conference on Neural Information Processing Systems NIPS’16
(Red Hook, NY, USA: Curran Associates Inc.) p 4743 ISBN 9781510838819. e-Print:
1606.04934 doi: 10.48550/arXiv.1606.04934

173

http://arxiv.org/abs/1511.05644
https://doi.org/10.48550/arxiv.1511.05644
http://arxiv.org/abs/1912.00830
https://doi.org/10.48550/arxiv.1912.00830
http://arxiv.org/abs/physics/0004057
https://doi.org/10.48550/arxiv.PHYSICS/0004057
http://arxiv.org/abs/1503.02406
https://doi.org/10.1109/ITW.2015.7133169
https://doi.org/10.1002/047174882X.ch11
http://arxiv.org/abs/0805.2368
https://doi.org/10.48550/arXiv.0805.2368
https://doi.org/10.1109/tpami.2021.3116668
http://arxiv.org/abs/1908.09257
https://doi.org/10.1109/tpami.2020.2992934
http://arxiv.org/abs/1912.02762
https://doi.org/10.48550/arxiv.1912.02762
http://arxiv.org/abs/1410.8516
https://doi.org/10.48550/arxiv.1410.8516
http://arxiv.org/abs/1606.04934
https://doi.org/10.48550/arXiv.1606.04934

BIBLIOGRAPHY

[143] G. Papamakarios, T. Pavlakou and I. Murray 2017 Masked Autoregressive Flow for
Density Estimation Advances in Neural Information Processing Systems vol 30 edited by
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Gar-
nett (Curran Associates, Inc.). e-Print: 1705.07057 doi: 10.48550/arxiv.1705.07057

[144] Y. Hao, A. Orlitsky, A. T. Suresh and Y. Wu 2018 Data Amplification: A Unified
and Competitive Approach to Property Estimation Advances in Neural Information
Processing Systems vol 31 edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi and R. Garnett (Curran Associates, Inc.). e-Print: 1904.00070 doi:
10.48550/arxiv.1904.00070

[145] H. Dembinski, P. Ongmongkolkul, C. Deil, D. M. Hurtado, M. Feickert, H. Schreiner,
Andrew, C. Burr, F. Rost, A. Pearce, L. Geiger, B. M. Wiedemann et al. 2020 scikit-
hep/iminuit: v1.4.9 Zenodo doi: 10.5281/zenodo.3951328

[146] P. Ongmongkolkul, C. Deil, C. hsiang Cheng, A. Pearce, E. Rodrigues, H. Schreiner,
M. Marinangeli, L. Geiger and H. Dembinski 2018 scikit-hep/probfit: 1.1.0 Zenodo
doi: 10.5281/zenodo.1477853

[147] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen and X. Chen
2016 Improved Techniques for Training GANs Advances in Neural Information Pro-
cessing Systems vol 29 edited by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon and R. Gar-
nett (Curran Associates, Inc.). e-Print: 1606.03498 doi: 10.48550/arXiv.1606.03498

[148] P. T. Komiske, E. M. Metodiev and J. Thaler 2019 Energy Flow Networks: Deep Sets
for Particle Jets JHEP 01 121. e-Print: 1810.05165 doi: 10.1007/JHEP01(2019)121

[149] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov and A. J. Smola
2017 Deep Sets Advances in Neural Information Processing Systems vol 30 edited by
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Gar-
nett (Curran Associates, Inc.). e-Print: 1703.06114 doi: 10.48550/arXiv.1703.06114

[150] K. Roth, A. Lucchi, S. Nowozin and T. Hofmann 2017 Stabilizing Training of Gen-
erative Adversarial Networks through Regularization Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems NIPS’17 (Red Hook,
NY, USA: Curran Associates Inc.) p 2015 ISBN 9781510860964. e-Print: 1705.09367 doi:
10.48550/arXiv.1705.09367

[151] A. Paszke et al. edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox and R. Garnett 2019 PyTorch: An Imperative Style, High-Performance
Deep Learning Library Advances in Neural Information Processing Systems 32 8024.
e-Print: 1912.01703 doi: 10.48550/arXiv.1912.01703

[152] A. Radford, L. Metz and S. Chintala 2015 Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks e-Print: 1511.06434
doi: 10.48550/arxiv.1511.06434

[153] M. Frank, F. Gaede, C. Grefe and P. Mato 2014 DD4hep: A Detector Description
Toolkit for High Energy Physics Experiments Journal of Physics: Conference Series
513 022010 doi: 10.1088/1742-6596/513/2/022010

174

http://arxiv.org/abs/1705.07057
https://doi.org/10.48550/arxiv.1705.07057
http://arxiv.org/abs/1904.00070
https://doi.org/10.48550/arxiv.1904.00070
https://doi.org/10.5281/zenodo.3951328
https://doi.org/10.5281/zenodo.1477853
http://arxiv.org/abs/1606.03498
https://doi.org/10.48550/arXiv.1606.03498
http://arxiv.org/abs/1810.05165
https://doi.org/10.1007/JHEP01(2019)121
http://arxiv.org/abs/1703.06114
https://doi.org/10.48550/arXiv.1703.06114
http://arxiv.org/abs/1705.09367
https://doi.org/10.48550/arXiv.1705.09367
http://arxiv.org/abs/1912.01703
https://doi.org/10.48550/arXiv.1912.01703
http://arxiv.org/abs/1511.06434
https://doi.org/10.48550/arxiv.1511.06434
https://doi.org/10.1088/1742-6596/513/2/022010

BIBLIOGRAPHY

[154] The iLCSoft Group 2016 iLCSoft Project Page [Online; accessed 10-September-2022]
URL: https://github.com/iLCSoft

[155] G. R. Khattak, S. Vallecorsa, F. Carminati and G. M. Khan 2022 Fast simulation of a
high granularity calorimeter by generative adversarial networks Eur. Phys. J. C
82 386. e-Print: 2109.07388 doi: 10.1140/epjc/s10052-022-10258-4

[156] K. Hara, H. Kataoka and Y. Satoh 2018 Can Spatiotemporal 3D CNNs Retrace the
History of 2D CNNs and ImageNet? 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (Los Alamitos, CA, USA: IEEE Computer Society)
p 6546. e-Print: 1711.09577 doi: 10.1109/CVPR.2018.00685

[157] S. Otten, S. Caron, W. Swart, M. Beekveld, L. Hendriks, C. Leeuwen, D. Podareanu,
R. Austri and R. Verheyen 2021 Event generation and statistical sampling for
physics with deep generative models and a density information buffer Nature
Communications 12 2985. e-Print: 1901.00875 doi: 10.1038/s41467-021-22616-z

[158] E. Parzen 1962 On Estimation of a Probability Density Function and Mode The
Annals of Mathematical Statistics 33 1065

[159] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett et al. 2020
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python Nature
Methods 17 261 doi: 10.1038/s41592-019-0686-2

[160] The CALICE collaboration 2011 Tests of a Particle Flow Algorithm with CAL-
ICE test beam data Journal of Instrumentation 6 P07005. e-Print: 1105.3417 doi:
10.1088/1748-0221/6/07/p07005

[161] D. Heuchel 2022 Particle Flow Studies with Highly Granular Calorimeter Data
doi: 10.11588/heidok.00031794

[162] R. Brun, F. Rademakers, P. Canal, A. Naumann, O. Couet, L. Moneta, V. Vassilev,
S. Linev, D. Piparo, G. GANIS, B. Bellenot, E. Guiraud et al. 2019 root-project/root:
v6.18/02 Zenodo doi: 10.5281/zenodo.3895860

[163] C. Krause and D. Shih 2021 CaloFlow: Fast and Accurate Generation
of Calorimeter Showers with Normalizing Flows e-Print: 2106.05285 doi:
10.48550/arXiv.2106.05285

[164] C. Krause and D. Shih 2021 CaloFlow II: Even Faster and Still Accurate Gener-
ation of Calorimeter Showers with Normalizing Flows e-Print: 2110.11377 doi:
10.48550/arXiv.2110.11377

[165] The ATLAS collaboration 2020 Operation of the ATLAS trigger system in Run 2
JINST 15 P10004. e-Print: 2007.12539 doi: 10.1088/1748-0221/15/10/P10004

[166] The CMS collaboration 2017 The CMS trigger system JINST 12 P01020. e-Print:
1609.02366 doi: 10.1088/1748-0221/12/01/P01020

175

https://github.com/iLCSoft
http://arxiv.org/abs/2109.07388
https://doi.org/10.1140/epjc/s10052-022-10258-4
http://arxiv.org/abs/1711.09577
https://doi.org/10.1109/CVPR.2018.00685
http://arxiv.org/abs/1901.00875
https://doi.org/10.1038/s41467-021-22616-z
https://doi.org/10.1038/s41592-019-0686-2
http://arxiv.org/abs/1105.3417
https://doi.org/10.1088/1748-0221/6/07/p07005
https://doi.org/10.11588/heidok.00031794
https://doi.org/10.5281/zenodo.3895860
http://arxiv.org/abs/2106.05285
https://doi.org/10.48550/arXiv.2106.05285
http://arxiv.org/abs/2110.11377
https://doi.org/10.48550/arXiv.2110.11377
http://arxiv.org/abs/2007.12539
https://doi.org/10.1088/1748-0221/15/10/P10004
http://arxiv.org/abs/1609.02366
https://doi.org/10.1088/1748-0221/12/01/P01020

BIBLIOGRAPHY

[167] The CMS collaboration 2002 CMS The TriDAS Project: Technical Design Report,
Volume 2: Data Acquisition and High-Level Trigger. CMS trigger and data-
acquisition project Technical design report. CMS (Geneva: CERN) URL: http://cds.
cern.ch/record/578006

[168] The ATLAS collaboration 1998 ATLAS level-1 trigger: Technical Design Report
Technical design report. ATLAS (Geneva: CERN) URL: https://cds.cern.ch/record/
381429

[169] The LHCb collaboration 2014 LHCb Trigger and Online Upgrade Technical Design
Report Tech. rep. CERN Geneva URL: https://cds.cern.ch/record/1701361

[170] The ALICE collaboration 2013 Upgrade of the ALICE Readout & Trigger System
Tech. rep. CERN Geneva URL: https://cds.cern.ch/record/1603472

[171] J. Duarte et al. 2018 Fast inference of deep neural networks in FPGAs for particle
physics JINST 13 P07027. e-Print: 1804.06913 doi: 10.1088/1748-0221/13/07/P07027

[172] N. Nottbeck, C. Schmitt and V. Büscher 2019 Implementation of high-performance,
sub-microsecond deep neural networks on FPGAs for trigger applications JINST
14 P09014. e-Print: 1903.10201 doi: 10.1088/1748-0221/14/09/p09014

[173] S. Summers et al. 2020 Fast inference of Boosted Decision Trees in FP-
GAs for particle physics JINST 15 P05026. e-Print: 2002.02534 doi:
10.1088/1748-0221/15/05/P05026

[174] The CMS collaboration 2020 The Phase-2 Upgrade of the CMS Level-1 Trigger
Tech. rep. CERN Geneva final version URL: https://cds.cern.ch/record/2714892

[175] T. M. Hong, B. Carlson, B. Eubanks, S. Racz, S. Roche, J. Stelzer and D. Stumpp
2021 Nanosecond machine learning event classification with boosted decision
trees in FPGA for high energy physics JINST 16 P08016. e-Print: 2104.03408 doi:
10.1088/1748-0221/16/08/P08016

[176] T. Aarrestad et al. 2021 Fast convolutional neural networks on FPGAs with hls4ml
Mach. Learn. Sci. Tech. 2 045015. e-Print: 2101.05108 doi: 10.1088/2632-2153/ac0ea1

[177] A. M. Deiana et al. 2022 Applications and Techniques for Fast Machine
Learning in Science Front. Big Data 5 787421. e-Print: 2110.13041 doi:
10.3389/fdata.2022.787421

[178] R. Aaij et al. 2016 Tesla : an application for real-time data analysis in
High Energy Physics Comput. Phys. Commun. 208 35. e-Print: 1604.05596 doi:
10.1016/j.cpc.2016.07.022

[179] The CMS collaboration 2016 Search for narrow resonances in dijet final states at√
s = 8 TeV with the novel CMS technique of data scouting Phys. Rev. Lett. 117

031802. e-Print: 1604.08907 doi: 10.1103/PhysRevLett.117.031802

176

http://cds.cern.ch/record/578006
http://cds.cern.ch/record/578006
https://cds.cern.ch/record/381429
https://cds.cern.ch/record/381429
https://cds.cern.ch/record/1701361
https://cds.cern.ch/record/1603472
http://arxiv.org/abs/1804.06913
https://doi.org/10.1088/1748-0221/13/07/P07027
http://arxiv.org/abs/1903.10201
https://doi.org/10.1088/1748-0221/14/09/p09014
http://arxiv.org/abs/2002.02534
https://doi.org/10.1088/1748-0221/15/05/P05026
https://cds.cern.ch/record/2714892
http://arxiv.org/abs/2104.03408
https://doi.org/10.1088/1748-0221/16/08/P08016
http://arxiv.org/abs/2101.05108
https://doi.org/10.1088/2632-2153/ac0ea1
http://arxiv.org/abs/2110.13041
https://doi.org/10.3389/fdata.2022.787421
http://arxiv.org/abs/1604.05596
https://doi.org/10.1016/j.cpc.2016.07.022
http://arxiv.org/abs/1604.08907
https://doi.org/10.1103/PhysRevLett.117.031802

BIBLIOGRAPHY

[180] The ATLAS collaboration 2018 Search for low-mass dijet resonances using trigger-
level jets with the ATLAS detector in pp collisions at

√
s = 13 TeV Phys. Rev.

Lett. 121 081801. e-Print: 1804.03496 doi: 10.1103/PhysRevLett.121.081801

[181] R. Aaij et al. 2019 A comprehensive real-time analysis model at the LHCb exper-
iment JINST 14 P04006. e-Print: 1903.01360 doi: 10.1088/1748-0221/14/04/P04006

[182] R. M. Karp 1992 On-Line Algorithms Versus Off-Line Algorithms: How Much is
It Worth to Know the Future? Proceedings of the IFIP 12th World Computer Congress
on Algorithms, Software, Architecture - Information Processing ’92, Volume 1 - Volume I
(NLD: North-Holland Publishing Co.) p 416 ISBN 044489747X

[183] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov and A. G. Wilson 2019 Averaging
Weights Leads to Wider Optima and Better Generalization e-Print: 1803.05407
doi: 10.48550/arXiv.1803.05407

[184] B. Nachman and D. Shih 2020 Anomaly detection with density estimation Phys.
Rev. D 101(7) 075042. e-Print: 2001.04990 doi: 10.1103/PhysRevD.101.075042

[185] E. Bothmann, T. Janßen, M. Knobbe, T. Schmale and S. Schumann 2020 Exploring
phase space with Neural Importance Sampling SciPost Phys. 8 069. e-Print:
2001.05478 doi: 10.21468/SciPostPhys.8.4.069

[186] C. Gao, J. Isaacson and C. Krause 2020 i-flow: High-dimensional Integration and
Sampling with Normalizing Flows Mach. Learn. Sci. Tech. 1 045023. e-Print:
2001.05486 doi: 10.1088/2632-2153/abab62

[187] C. Gao, S. Höche, J. Isaacson, C. Krause and H. Schulz 2020 Event Generation
with Normalizing Flows Phys. Rev. D 101 076002. e-Print: 2001.10028 doi:
10.1103/PhysRevD.101.076002

[188] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, A. Rousselot, R. Winterhalder, L. Ardiz-
zone and U. Köthe 2020 Invertible Networks or Partons to Detector and Back
Again SciPost Phys. 9 074. e-Print: 2006.06685 doi: 10.21468/SciPostPhys.9.5.074

[189] B. Stienen and R. Verheyen 2021 Phase space sampling and inference from weighted
events with autoregressive flows SciPost Phys. 10 038. e-Print: 2011.13445 doi:
10.21468/SciPostPhys.10.2.038

[190] R. Winterhalder, M. Bellagente and B. Nachman 2021 Latent Space Refinement for
Deep Generative Models e-Print: 2106.00792

[191] A. Hallin, J. Isaacson, G. Kasieczka, C. Krause, B. Nachman, T. Quadfasel,
M. Schlaffer, D. Shih and M. Sommerhalder 2022 Classifying anomalies through
outer density estimation Phys. Rev. D 106 055006. e-Print: 2109.00546 doi:
10.1103/PhysRevD.106.055006

[192] R. Winterhalder, V. Magerya, E. Villa, S. P. Jones, M. Kerner, A. Butter, G. Heinrich and
T. Plehn 2022 Targeting multi-loop integrals with neural networks SciPost Phys.
12 129. e-Print: 2112.09145 doi: 10.21468/SciPostPhys.12.4.129

177

http://arxiv.org/abs/1804.03496
https://doi.org/10.1103/PhysRevLett.121.081801
http://arxiv.org/abs/1903.01360
https://doi.org/10.1088/1748-0221/14/04/P04006
http://arxiv.org/abs/1803.05407
https://doi.org/10.48550/arXiv.1803.05407
http://arxiv.org/abs/2001.04990
https://doi.org/10.1103/PhysRevD.101.075042
http://arxiv.org/abs/2001.05478
https://doi.org/10.21468/SciPostPhys.8.4.069
http://arxiv.org/abs/2001.05486
https://doi.org/10.1088/2632-2153/abab62
http://arxiv.org/abs/2001.10028
https://doi.org/10.1103/PhysRevD.101.076002
http://arxiv.org/abs/2006.06685
https://doi.org/10.21468/SciPostPhys.9.5.074
http://arxiv.org/abs/2011.13445
https://doi.org/10.21468/SciPostPhys.10.2.038
http://arxiv.org/abs/2106.00792
http://arxiv.org/abs/2109.00546
https://doi.org/10.1103/PhysRevD.106.055006
http://arxiv.org/abs/2112.09145
https://doi.org/10.21468/SciPostPhys.12.4.129

BIBLIOGRAPHY

[193] M. Germain, K. Gregor, I. Murray and H. Larochelle 2015 MADE: Masked Autoen-
coder for Distribution Estimation e-Print: 1502.03509

[194] G. Choudalakis 2011 On hypothesis testing, trials factor, hypertests and the Bum-
pHunter PHYSTAT 2011 . e-Print: 1101.0390 doi: 10.48550/arXiv.1101.0390

[195] T. Sjostrand, S. Mrenna and P. Z. Skands 2008 A Brief Introduction to PYTHIA 8.1
Comput. Phys. Commun. 178 852. e-Print: 0710.3820 doi: 10.1016/j.cpc.2008.01.036

[196] A. Mertens edited by L. Fiala, M. Lokajicek and N. Tumova 2015 New features in
Delphes 3 J. Phys. Conf. Ser. 608 012045 doi: 10.1088/1742-6596/608/1/012045

[197] M. Cacciari, G. P. Salam and G. Soyez 2008 The anti-kt jet clustering algorithm JHEP
04 063. e-Print: 0802.1189 doi: 10.1088/1126-6708/2008/04/063

[198] M. Cacciari, G. P. Salam and G. Soyez 2012 FastJet User Manual Eur. Phys. J. C 72
1896. e-Print: 1111.6097 doi: 10.1140/epjc/s10052-012-1896-2

[199] A. Andreassen, B. Nachman and D. Shih 2020 Simulation Assisted Likelihood-
free Anomaly Detection Phys. Rev. D 101 095004. e-Print: 2001.05001 doi:
10.1103/PhysRevD.101.095004

[200] J. Thaler and K. Van Tilburg 2012 Maximizing Boosted Top Identifica-
tion by Minimizing N-subjettiness JHEP 02 093. e-Print: 1108.2701 doi:
10.1007/JHEP02(2012)093

[201] J. Thaler and K. Van Tilburg 2011 Identifying Boosted Objects with N-subjettiness
JHEP 03 015. e-Print: 1011.2268 doi: 10.1007/JHEP03(2011)015

[202] E. M. Metodiev, B. Nachman and J. Thaler 2017 Classification without labels: Learn-
ing from mixed samples in high energy physics JHEP 10 174. e-Print: 1708.02949
doi: 10.1007/JHEP10(2017)174

[203] J. H. Collins, K. Howe and B. Nachman 2018 Anomaly Detection for Resonant New
Physics with Machine Learning Phys. Rev. Lett. 121 241803. e-Print: 1805.02664
doi: 10.1103/PhysRevLett.121.241803

[204] J. H. Collins, K. Howe and B. Nachman 2019 Extending the search for new reso-
nances with machine learning Phys. Rev. D 99 014038. e-Print: 1902.02634 doi:
10.1103/PhysRevD.99.014038

[205] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong and Q. He 2021 A
Comprehensive Survey on Transfer Learning Proceedings of the IEEE 109 43 doi:
10.1109/JPROC.2020.3004555

[206] T. Hospedales, A. Antoniou, P. Micaelli and A. Storkey 2022 Meta-Learning in Neural
Networks: A Survey IEEE Transactions on Pattern Analysis and Machine Intelligence
44 5149. e-Print: 2004.05439 doi: 10.1109/TPAMI.2021.3079209

[207] D. Ulyanov, A. Vedaldi and V. Lempitsky 2016 Instance Normalization: The Missing
Ingredient for Fast Stylization e-Print: 1607.08022 doi: 10.48550/arxiv.1607.08022

178

http://arxiv.org/abs/1502.03509
http://arxiv.org/abs/1101.0390
https://doi.org/10.48550/arXiv.1101.0390
http://arxiv.org/abs/0710.3820
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1088/1742-6596/608/1/012045
http://arxiv.org/abs/0802.1189
https://doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/1111.6097
https://doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/2001.05001
https://doi.org/10.1103/PhysRevD.101.095004
http://arxiv.org/abs/1108.2701
https://doi.org/10.1007/JHEP02(2012)093
http://arxiv.org/abs/1011.2268
https://doi.org/10.1007/JHEP03(2011)015
http://arxiv.org/abs/1708.02949
https://doi.org/10.1007/JHEP10(2017)174
http://arxiv.org/abs/1805.02664
https://doi.org/10.1103/PhysRevLett.121.241803
http://arxiv.org/abs/1902.02634
https://doi.org/10.1103/PhysRevD.99.014038
https://doi.org/10.1109/JPROC.2020.3004555
http://arxiv.org/abs/2004.05439
https://doi.org/10.1109/TPAMI.2021.3079209
http://arxiv.org/abs/1607.08022
https://doi.org/10.48550/arxiv.1607.08022

Appendix A

Neural Network Architectures

This appendix gives detailed information about the neural networks used in the photon shower
generation (Chapter 6), pion shower generation (Chapter 7), and testbeam data generation
(Chapter 8). All models were implemented using PyTorch [151], and implementations of
the photon generation GAN, WGAN, and BIB-AE can be found under https://github.com/
FLC-QU-hep/getting_high, while the implementations of the pion generation WGAN and BIB-
AE are available at https://github.com/FLC-QU-hep/neurIPS2021_hadron.

The descriptions of the photon shower models follow Reference [2], and the descriptions of
the pion shower models follow Reference [3]

Photon GAN

The architecture and trained model of the photon GAN were provided by Anatolii Korol. The
photon GAN consists of a generator network and a discriminator network. Both models were
trained with the ADAM optimizer [108] with a learning rate of 2 × 10−5. For every generator
update step, one discriminator update step is performed. The model was trained for 6 epochs.

The architectures of the photon shower generator and discriminator are shown in Figure A.1.

Photon WGAN

The architecture and trained model of the photon WGAN were provided by Engin Eren. The
photon WGAN consists of a generator network, a critic network, and an energy constrainer
network. Both the generator and critic are trained using the ADAM optimizer with an initial
learning rate of 10−4. This learning rate is reduced by a factor of 10 after every 50k update
steps. For every generator update step, five discriminator update steps are performed. In total,
the generator and critic are trained for 20 epochs. The constrainer model is trained in advance,
using SGD with a learning rate of 10−5. The constrainer is trained for a total of 30k iterations.

The architectures of the photon shower generator and the critic are shown in Figure A.2.
The architecture of the energy constrainer is shown in Figure A.3.

179

https://github.com/FLC-QU-hep/getting_high
https://github.com/FLC-QU-hep/getting_high
https://github.com/FLC-QU-hep/neurIPS2021_hadron

APPENDIX A. NEURAL NETWORK ARCHITECTURES

Photon BIB-AE

The photon BIB-AE model consists of an encoder network, a decoder network, a critic network,
a latent critic network, and a Post Processor network. All models are trained using the ADAM
optimizer with a learning rate of 0.5× 10−3, with the exception of the latent critic, which uses a
learning rate of 2× 10−3. After every epoch, all learning rates are multiplied by a factor of 0.95.
For every generator update step, five discriminator update steps are performed. The BIB-AE is
initially trained for 35 epochs without the Post Processor. Following this, the combined BIB-AE
and Post Processor models are trained for an additional 4 epochs.

The loss of the encoder and decoder networks comprises several components that were com-
bined by summing over each contribution, weighted by an individual factor β. The factors for
the loss components were as follows:

• Critic output: β = 1

• Latent critic output: β = 100

• Latent KLD: β = 0.05

• Latent MMD: β = 100

The Post Processor model is initially trained for one epoch using an MSE loss comparing
input and output. After this initial epoch, the Sorted Kernel MMD described in Section 6.3 is
added. The relative weights between the loss terms are:

• Input-output MSE (Post Processor): β = 1

• Sorted Kernel MMD (Post Processor): β = 5

The Kernel size of the MMD is α = 200.
The architectures of the photon shower BIB-AE encoder and decoder are shown in Figure A.4,

the photon shower BIB-AE critic is shown in Figure A.5, and the latent critic and Post Processor
are shown in Figure A.6.

Pion WGAN

The architecture and trained model of the pion WGAN were provided by Engin Eren. The pion
WGAN consists of a generator network, a critic network, and an energy constrainer network. The
generator and critic are trained using the ADAM optimizer with learning rates of 10−4 and 10−5,
respectively. For every generator update step, five discriminator update steps are performed. In
total, the generator and critic are trained for 82 epochs. The constrainer model is trained in
advance, using ADAM with a learning rate of 10−4.

The architectures of the pion shower generator and energy constrainer are shown in Fig-
ure A.7. The architecture of the critic is shown in Figure A.8. The Instancenorm layers used in
the critic are described in more detail in Reference [207].

180

APPENDIX A. NEURAL NETWORK ARCHITECTURES

Pion BIB-AE

The pion BIB-AE model consists of an encoder network, a decoder network, a critic network, a
latent critic network, and a Post Processor network. All models are trained using the ADAM
optimizer with a learning rate of 0.5× 10−4, with the exception of the latent critic, which uses a
learning rate of 2× 10−4. After every epoch, all learning rates are multiplied by a factor of 0.97.
For every generator update step, five discriminator update steps are performed. The BIB-AE is
initially trained for 37 epochs without the Post Processor. Following this, BIB-AE weights are
frozen and the Post Processor model is trained for an additional 105 epochs.

The loss of the encoder and decoder networks comprises several components that were com-
bined by summing over each contribution, weighted by an individual factor β. The factors for
the loss components were as follows:

• Critic output: β = 1

• Latent critic output: β = 100

• Latent KLD: β = 0.01

• Latent MMD: β = 100

The Post Processor model is initially trained for one epoch using an MSE loss comparing
input and output. After this initial epoch, the Post Processor loss terms described in Section 7.3
are added. The relative weights between the loss terms are:

• Input-output MSE (Post Processor): β = 1

• Sorted Kernel MMD 1 (Post Processor): β = 5

• Sorted Kernel MMD 2 (Post Processor): β = 5

• Sorted MSE (Post Processor): β = 10

• Sorted MAE (Post Processor): β = 10

• Batch comparison (Post Processor): β = 0.0001

The Kernel sizes are α1 = 40 and α2 = 4 for MMD 1 and MMD 2 respectively.
The architectures of the pion shower BIB-AE encoder and decoder are shown in Figure A.9,

and the pion shower BIB-AE critic is shown in Figure A.10. The critic makes use of a mini-
batch discrimination block which is separately shown in Figure A.11. The latent critic and Post
Processor are shown in Figure A.12.

Testbeam BIB-AE

Compared to the pion and photon BIB-AEs, the testbeam data BIB-AE model is additionally
conditioned on the targeted visible energy sum in units of GeV. The testbeam BIB-AE consists
of an encoder network, a decoder network, a critic network, a latent critic network, and a Post
Processor network. All models are trained using the ADAM optimizer with a learning rate of

181

APPENDIX A. NEURAL NETWORK ARCHITECTURES

0.5× 10−4, with the exception of the latent critic, which uses a learning rate of 2× 10−4. After
every epoch, all learning rates are multiplied by a factor of 0.97. For every generator update
step, five discriminator update steps are performed. The BIB-AE is initially trained for 82 epochs
without the Post Processor. Following this, BIB-AE weights are frozen and the Post Processor
model is trained for an additional 19 epochs.

The loss of the encoder and decoder networks comprises several components that were com-
bined by summing over each contribution, weighted by an individual factor β. The factors for
the loss components were as follows:

• Critic output: β = 1

• Latent critic output: β = 100

• Latent KLD: β = 0.01

• Latent MMD: β = 100

The Post Processor model is initially trained for one epoch using an MSE loss comparing
input and output. After this initial epoch, the Post Processor loss terms described in Section 7.3
are added. The relative weights between the loss terms are:

• Input-output MSE (Post Processor): β = 1

• Sorted Kernel MMD 1 (Post Processor): β = 5

• Sorted Kernel MMD 2 (Post Processor): β = 5

• Sorted MSE (Post Processor): β = 10

• Sorted MAE (Post Processor): β = 10

• Batch comparison (Post Processor): β = 0.0001

The Kernel sizes are α1 = 1 and α2 = 0.1 for MMD 1 and MMD 2 respectively.
The architectures of the testbeam data BIB-AE encoder and decoder are shown in Fig-

ure A.13, the testbeam data BIB-AE critic is shown in Figure A.14. The critic makes use of
a minibatch discrimination block which is identical to the one used in the pion BIB-AE critic.
This identical minibatch discrimination block is shown in Figure A.11. The latent critic and
Post Processor are shown in Figure A.15.

182

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Transpose Convolutional Layer
C=128, K=(4,4,4), S=(2,2,2), P=(1,1,1)

3D Transpose Convolutional Layer
C=256, K=(4,4,4), S=(1,1,1), P=(0,0,0)

3D Batchnorm Layer (128)

Noise Input
B×100×1×1×1

Multiplication

Energy Label Input
B×1

Output Shower Image
B×1×30×30×30

ReLU

3D Transpose Convolutional Layer
C=64, K=(4,4,4), S=(2,2,2), P=(1,1,1)

3D Batchnorm Layer (64)

ReLU

3D Transpose Convolutional Layer
C=32, K=(4,4,4), S=(2,2,2), P=(1,1,1)

3D Batchnorm Layer (32)

ReLU

3D Transpose Convolutional Layer
C=1, K=(3,3,3), S=(1,1,1), P=(1,1,1)

ReLU

Photon GAN Generator

3D Convolutional Layer
C=32, K=(3,3,3), S=(2,2,2), P=(3,3,3)

3D Convolutional Layer
C=64, K=(3,3,3), S=(2,2,2), P=(1,1,1)

3D Batchnorm Layer (64)

Shower Image Input
B×1×30×30×30

Discriminator Output
B×1

Energy Label Input
B×1

Reshape
→ B×128

LeakyReLU (α=0.2)

3D Convolutional Layer
C=128, K=(3,3,3), S=(2,2,2), P=(1,1,1)

3D Batchnorm Layer (128)

LeakyReLU (α=0.2)

3D Convolutional Layer
C=256, K=(3,3,3), S=(2,2,2), P=(1,1,1)

Dense Layer
In=129, Out=64

Dense Layer
In=64, Out=1

3D Convolutional Layer
C=128, K=(3,3,3), S=(2,2,2), P=(0,0,0)

3D Batchnorm Layer (2566)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

Sigmoid

Photon GAN Discriminator

Concatenate
→ B×129

Figure A.1: Architectures of the generator (left) and discriminator (right) of the photon shower
GAN. The abbreviation B describes the batch size, C is the number of output channels, K is the
kernel size, S is the stride, and P is the padding size of a convolution. The numbers after the
Batchnorm Layer indicate the shape over which the normalization occurs.

183

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Transpose Convolutional Layer
C=128, K=(4,4,4), S=(2,2,2), P=(1,1,1)

3D Transpose
Convolutional Layer
C=128, K=(4,4,4),
S=(1,1,1), P=(0,0,0)

3D Transpose
Convolutional Layer
C=128, K=(4,4,4),
S=(1,1,1), P=(0,0,0)

3D LayerNorm Layer (8,8,8)

Noise Input
B×100×1×1×1

Concatenate
→ B×256×4×4×4

Energy Label Input
B×1×1×1×1

Output Shower Image
B×1×30×30×30

ReLU

3D Transpose Convolutional Layer
C=64, K=(4,4,4), S=(2,2,2), P=(1,1,1)

3D LayerNorm Layer (16,16,16)

ReLU

3D Transpose Convolutional Layer
C=32, K=(4,4,4), S=(2,2,2), P=(1,1,1)

3D LayerNorm Layer (32,32,32)

ReLU

3D Transpose Convolutional Layer
C=1, K=(3,3,3), S=(1,1,1), P=(2,2,2)

ReLU

Photon WGAN Generator

3D Convolutional Layer
C=32, K=(10,2,2), S=(1,2,2), P=(0,1,1)

3D Convolutional Layer
C=64, K=(6,2,2), S=(1,2,2), P=(0,0,0)

3D Layernorm Layer (21,16,16)

Shower Image Input
B×1×30×30×30

Critic Output
B×1

Energy Label Input
B×1

Reshape
→ B×90

LeakyReLU (α=0.2)

Dense Layer
In=91, Out=100

Dense Layer
In=100, Out=200

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

Photon WGAN Critic

3D Convolutional Layer
C=128, K=(4,2,2), S=(1,2,2), P=(0,0,0)

3D Layernorm Layer (16,8,8)

3D Layernorm Layer (13,4,4)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

3D Convolutional Layer
C=128, K=(4,2,2), S=(1,1,1), P=(0,0,0)

Dense Layer
In=200, Out=100

Dense Layer
In=100, Out=75

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

Dense Layer
In=75, Out=1

Concatenate
→ B×91

Figure A.2: Architectures of the generator (left) and critic (right) of the photon shower WGAN.
The abbreviation B describes the batch size, C is the number of output channels, K is the kernel
size, S is the stride, and P is the padding size of a convolution. The numbers after the Layernorm
Layer indicate the shape over which the normalization occurs.

184

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Convolutional Layer
C=16, K=(3,3,3), S=(2,2,2), P=(0,0,0)

3D Convolutional Layer
C=32, K=(3,3,3), S=(2,2,2), P=(0,0,0)

3D Layernorm Layer (6,6,6)

3D Layernorm Layer (14,14,14)

Constrainer Output
B×1

Reshape
B×2000

LeakyReLU (α=0.2)

3D Convolutional Layer
C=16, K=(2,2,2), S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.2)

Dense Layer
In=2000, Out=100

LeakyReLU (α=0.2)

ReLU

Dense Layer
In=100, Out=1

Photon WGAN Constrainer

Shower Image Input
B×1×30×30×30

Figure A.3: Architecture photon shower WGAN energy constrainer. The abbreviation B de-
scribes the batch size, C is the number of output channels, K is the kernel size, S is the stride,
and P is the padding size of a convolution. The numbers after the Layernorm Layer indicate the
shape over which the normalization occurs.

185

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Convolutional Layer
C=8, K=(4,4,4), S=(2,2,2), P=(2,2,2)

Shower Image Input
B×1×30×30×30

Energy Label Input
B×1

Reshape
→ B×8000

Dense Layer
In=8001, Out=4000

Dense Layer
In=32, Out=24

Dense Layer
In=32, Out=24

LeakyReLU (α=0.2)

Photon BIB-AE Encoder

LeakyReLU (α=0.2)

3D Layernorm Layer (16,16,16)

3D Convolutional Layer
C=16, K=(4,4,4), S=(2,2,2), P=(2,2,2)

LeakyReLU (α=0.2)

3D Layernorm Layer (9,9,9)

3D Convolutional Layer
C=32, K=(4,4,4), S=(2,2,2), P=(2,2,2)

LeakyReLU (α=0.2)

3D Layernorm Layer (5,5,5)

3D Convolutional Layer
C=64, K=(3,3,3), S=(1,1,1), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (5,5,5)

Dense Layer
In=4000, Out=32

LeakyReLU (α=0.2)

Latent Output Mean
B×24

Latent Output Width
B×24

Concatenate
→ B×8001

3D Convolutional Layer
C=8, K=(2,2,2), S=(2,2,2), P=(0,0,0)

Energy Label Input
B×1

Encoded Latent
B×24

Random Latent
B×488

Reshape:
→ B×8×10×10×10

Photon BIB-AE Decoder

LeakyReLU (α=0.2)

3D Layernorm Layer (30,30,30)

3D Convolutional Layer
C=16, K=(3,3,3), S=(1,1,1), P=(1,1,1)

3D Convolutional Layer
C=16, K=(3,3,3), S=(1,1,1), P=(1,1,1)

3D Convolutional Layer
C=16, K=(3,3,3), S=(1,1,1), P=(1,1,1)

3D Convolutional Layer
C=32, K=(3,3,3), S=(1,1,1), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (30,30,30)

LeakyReLU (α=0.2)

3D Layernorm Layer (30,30,30)

LeakyReLU (α=0.2)

3D Layernorm Layer (30,30,30)

LeakyReLU (α=0.2)

3D Layernorm Layer (30,30,30)

Dense Layer
In=513, Out=768

LeakyReLU (α=0.2)

Dense Layer
In=768, Out=4000

LeakyReLU (α=0.2)

Dense Layer
In=4000, Out=8000

LeakyReLU (α=0.2)

Concatenate
→ B×513

3D Transpose Convolutional Layer
C=8, K=(3,3,3), S=(3,3,3), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (60,60,60)

3D Transpose Convolutional Layer
C=8, K=(3,3,3), S=(2,2,2), P=(1,1,1)

Output Shower Image
B×1×30×30×30

Figure A.4: Architectures of the encoder (left) and decoder (right) of the photon shower BIB-AE.
The abbreviation B describes the batch size, C is the number of output channels, K is the kernel
size, S is the stride, and P is the padding size of a convolution. The numbers after the Layernorm
Layer indicate the shape over which the normalization occurs.

186

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Convolutional Layer
C=128, K=(3,3,3), S=(2,2,2), P=(0,0,0)

3D Convolutional Layer
C=128, K=(3,3,3), S=(2,2,2), P=(0,0,0)

3D Layernorm Layer (14,14,14)

Reconstructed Shower Image Input
B×1×30×30×30

Transform
log(x+1)

Reshape
→ B×27000

Element-wise Difference

Original Shower Image Input
B×1×30×30×30

Energy Label Input
B×1

Critic Output
B×1

Reshape
→ B×8192

Reshape
→ B×8192

3D Convolutional Layer
C=128, K=(3,3,3), S=(1,1,1), P=(0,0,0)

3D Layernorm Layer (6,6,6)

LeakyReLU (α=0.2)
Dense Layer

In=27000, Out=64

Dense Layer
In=8192, Out=64

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

Photon BIB-AE Critic

3D Convolutional Layer
C=128, K=(3,3,3), S=(2,2,2), P=(0,0,0)

3D Convolutional Layer
C=128, K=(3,3,3), S=(2,2,2), P=(0,0,0)

3D Layernorm Layer (14,14,14)

3D Convolutional Layer
C=128, K=(3,3,3), S=(1,1,1), P=(0,0,0)

3D Layernorm Layer (6,6,6)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

Dense Layer
In=1, Out=64

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

Dense Layer
In=8192, Out=64

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

Dense Layer
In=256, Out=256

Dense Layer
In=256, Out=256

Dense Layer
In=256, Out=256

Dense Layer
In=256, Out=1

Concatenate
→ B×256

Figure A.5: Architecture of the photon shower BIB-AE critic. The abbreviation B describes the
batch size, C is the number of output channels, K is the kernel size, S is the stride, and P is the
padding size of a convolution. The numbers after the Layernorm Layer indicate the shape over
which the normalization occurs.

187

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Convolutional Layer
C=64, K=(1,1,1),
S=(1,1,1), P=(0,0,0)

Photon BIB-AE Post Processor

LeakyReLU (α=0.01)

3D Layernorm Layer
(30,30,30)

3D Convolutional Layer
C=128, K=(1,1,1), S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.01)

3D Layernorm Layer (30,30,30)

3D Convolutional Layer
C=128, K=(1,1,1), S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.01)

3D Layernorm Layer (30,30,30)

3D Convolutional Layer
C=128, K=(1,1,1), S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.01)

3D Layernorm Layer (30,30,30)

3D Convolutional Layer
C=128, K=(1,1,1), S=(1,1,1), P=(0,0,0)

3D Convolutional Layer
C=1, K=(1,1,1), S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.01)

Dense Layer
In=2, Out=64

LeakyReLU (α=0.01)

Dense Layer
In=64, Out=64

LeakyReLU (α=0.01)

Dense Layer
In=64, Out=64

LeakyReLU (α=0.01)

Concatenate
→ B×128×30×30×30

Expand
→ B×64×30×30×30

Shower Image Output
→ B×1×30×30×30

Concatenate
→ B×2

Sum, dims. 2,3,4
→ B×1

Shower Image Input
B×1×30×30×30

Energy Label Input
B×1

Encoded Latent
B×24

Photon BIB-AE Latent Critic

Dense Layer
In=1, Out=50

LeakyReLU (α=0.01)

Dense Layer
In=50, Out=100

LeakyReLU (α=0.01)

Dense Layer
In=100, Out=50

LeakyReLU (α=0.01)

Dense Layer
In=50, Out=1

Reshape
→ B*24×1

Critic Output
B×1

Figure A.6: Architectures of the Post Processor (left) and latent critic (right) of the photon
shower BIB-AE. The abbreviation B describes the batch size, C is the number of output channels,
K is the kernel size, S is the stride, and P is the padding size of a convolution. The numbers
after the Layernorm Layer indicate the shape over which the normalization occurs.

188

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Transpose Convolutional Layer
C=128, K=(4,2,2), S=(2,2,2), P=(1,1,1)

3D Transpose
Convolutional Layer
C=128, K=(4,4,4),
S=(1,1,1), P=(0,0,0)

3D Transpose
Convolutional Layer
C=128, K=(4,4,4),
S=(1,1,1), P=(0,0,0)

3D LayerNorm Layer (8,6,6)

Noise Input
B×100×1×1×1

Concatenate
→ B×256×4×4×4

Energy Label Input
B×1×1×1×1

Output Shower Image
B×1×48×25×25

ReLU

3D Transpose Convolutional Layer
C=64, K=(4,2,2), S=(2,2,2), P=(1,1,1)

3D LayerNorm Layer (16,10,10)

ReLU

3D Transpose Convolutional Layer
C=32, K=(4,4,4), S=(2,1,1), P=(1,1,1)

3D LayerNorm Layer (32,11,11)

ReLU

3D Transpose Convolutional Layer
C=10, K=(10,4,4), S=(1,1,1), P=(1,1,1)

ReLU

Pion WGAN Generator

3D LayerNorm Layer (39,12,12)

ReLU

3D Transpose Convolutional Layer
C=5, K=(8,3,3), S=(1,2,2), P=(1,1,1)

3D LayerNorm Layer (44,23,23)

ReLU

3D Transpose Convolutional Layer
C=1, K=(7,5,5), S=(1,1,1), P=(1,1,1)

1D Batchnorm Layer (5000)

Dropout Layer (p=0.2)

Dropout Layer (p=0.1)

1D Batchnorm Layer (1000)

Reshape
→ B×30000

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

Dense Layer
In=30000, Out=5000

Dense Layer
In=5000, Out=1000

LeakyReLU (α=0.2)

Dense Layer
In=1000, Out=100

ReLU

Dense Layer
In=100, Out=1

Pion WGAN Constrainer

Shower Image Input
B×1×48×25×25

Constrainer Output
B×1

Figure A.7: Architectures of the generator (left) and energy constrainer (right) of the pion shower
WGAN. The abbreviation B describes the batch size, C is the number of output channels, K is
the kernel size, S is the stride, and P is the padding size of a convolution. The numbers after
the Layernorm and Batchnorm Layer indicate the shape over which the normalization occurs.

189

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Convolutional Layer
C=64, K=(4,5,5), S=(1,2,2), P=(0,1,1)

3D Convolutional Layer
C=64, K=(3,3,3), S=(1,1,1), P=(1,1,1)

3D Instancenorm Layer (64)

3D Instancenorm Layer (64)

Shower Image Input
B×1×48×25×25

×3

Energy Label Input
B×1

3D MaxPool
K=(3,3,3), S=(2,2,2), P=(1,1,1)

3D AdaptiveAvgPool
Target Size=(1,1,1)

Reshape
→ B×128

Element-wise Addition

Element-wise Addition

ReLU

Dense Layer
In=129, Out=1

Pion WGAN Critic

ReLU

ReLU

3D Convolutional Layer
C=64, K=(3,3,3), S=(1,1,1), P=(1,1,1)

3D Instancenorm Layer (64)

Concatenate
→ B×129

Concatenate
→ B×91

3D Convolutional Layer
C=128, K=(3,3,3),
S=(2,2,2), P=(1,1,1)

3D Convolutional Layer
C=128, K=(1,1,1),
S=(2,2,2), P=(0,0,0)

3D Instancenorm Layer
(128)

3D Instancenorm Layer
(128)

ReLU

3D Convolutional Layer
C=128, K=(3,3,3),
S=(2,2,2), P=(1,1,1)

3D Instancenorm Layer
(128)

3D Convolutional Layer
C=128, K=(3,3,3), S=(1,1,1), P=(1,1,1)

3D Instancenorm Layer (128)

Element-wise Addition

ReLU

ReLU

3D Convolutional Layer
C=64, K=(3,3,3), S=(1,1,1), P=(1,1,1)

3D Instancenorm Layer (128)

×3

ReLU

Critic Output
B×1

Figure A.8: Architecture of the pion shower WGAN critic. The abbreviation B describes the
batch size, C is the number of output channels, K is the kernel size, S is the stride, and P is
the padding size of a convolution. The numbers after the Instancenorm Layer indicate the shape
over which the normalization occurs.

190

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Convolutional Layer
C=8, K=(2,2,2), S=(2,1,1), P=(0,0,0)

Shower Image Input
B×1×48×25×25

Energy Label Input
B×1

Reshape
→ B×4000

Dense Layer
In=4001, Out=800

Dense Layer
In=512, Out=24

Dense Layer
In=512, Out=24

LeakyReLU (α=0.2)

Pion BIB-AE Encoder

LeakyReLU (α=0.2)

3D Layernorm Layer (24,24,24)

3D Convolutional Layer
C=16, K=(2,2,2), S=(2,2,2), P=(0,0,0)

LeakyReLU (α=0.2)

3D Layernorm Layer (12,12,12)

3D Convolutional Layer
C=32, K=(4,4,4), S=(2,2,2), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (6,6,6)

3D Convolutional Layer
C=32, K=(4,4,4), S=(1,1,1), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (5,5,5)

Dense Layer
In=800, Out=512

LeakyReLU (α=0.2)

Latent Output Mean
B×24

Latent Output Width
B×24

Concatenate
→ B×4001

3D Convolutional Layer
C=8, K=(1,2,2), S=(1,1,1), P=(0,0,0)

Energy Label Input
B×1

Encoded Latent
B×24

Random Latent
B×488

Reshape
→ B×8×12×7×7

Pion BIB-AE Decoder

LeakyReLU (α=0.2)

3D Layernorm Layer (48,27,27)

3D Convolutional Layer
C=8, K=(3,3,3), S=(1,1,1), P=(1,0,0)

3D Convolutional Layer
C=16, K=(3,3,3), S=(1,1,1), P=(1,1,1)

3D Convolutional Layer
C=32, K=(3,3,3), S=(1,1,1), P=(1,1,1)

3D Convolutional Layer
C=8, K=(3,3,3), S=(1,1,1), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (24,12,12)

LeakyReLU (α=0.2)

3D Layernorm Layer (48,25,25)

LeakyReLU (α=0.2)

3D Layernorm Layer (48,25,25)

LeakyReLU (α=0.2)

3D Layernorm Layer (48,25,25)

3D Convolutional Layer
C=16, K=(3,3,3), S=(1,1,1), P=(1,1,1)

3D Convolutional Layer
C=1, K=(3,3,3), S=(1,1,1), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (48,25,25)

LeakyReLU (α=0.2)

ReLU

3D Layernorm Layer (48,25,25)

Dense Layer
In=513, Out=512

LeakyReLU (α=0.2)

Dense Layer
In=512, Out=800

LeakyReLU (α=0.2)

Dense Layer
In=800, Out=4704

LeakyReLU (α=0.2)

Concatenate
→ B×513

3D Transpose Convolutional Layer
C=8, K=(4,4,4), S=(2,2,2), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (48,24,24)

3D Transpose Convolutional Layer
C=8, K=(4,4,4), S=(2,2,2), P=(1,1,1)

Output Shower Image
B×1×48×25×25

Figure A.9: Architectures of the encoder (left) and decoder (right) of the pion shower BIB-AE.
The abbreviation B describes the batch size, C is the number of output channels, K is the kernel
size, S is the stride, and P is the padding size of a convolution. The numbers after the Layernorm
Layer indicate the shape over which the normalization occurs.

191

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Convolutional Layer
C=64, K=(2,2,2),

S=(2,1,1), P=(0,0,0)

3D Layernorm Layer
(24,24,24)

Reconstructed Shower Image Input
B×1×48×25×25

Transform
log(x+e)-55

Reshape:
→ B×30000

Element-wise Difference

Original Shower Image Input
B×1×48×25×25

Energy Label Input
B×1

Critic Output
B×1

Reshape:
→ B×2304

LeakyReLU (α=0.2)

Dense Layer
In=2304, Out=64

LeakyReLU (α=0.2)

Pion BIB-AE Critic

3D Convolutional Layer
C=64, K=(2,2,2),

S=(2,2,2), P=(0,0,0)

3D Layernorm Layer
(12,12,12)

LeakyReLU (α=0.2)

3D Convolutional Layer
C=64, K=(4,4,4),

S=(2,2,2), P=(1,1,1)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

Dense Layer
In=1, Out=64

Dense Layer
In=30000, Out=64

LeakyReLU (α=0.2)

3D Convolutional Layer
C=64, K=(2,2,2),

S=(2,1,1), P=(0,0,0)

3D Layernorm Layer
(24,24,24)

Reshape:
→ B×2304

LeakyReLU (α=0.2)

Dense Layer
In=2304, Out=64

LeakyReLU (α=0.2)

3D Convolutional Layer
C=64, K=(2,2,2),

S=(2,2,2), P=(0,0,0)

3D Layernorm Layer
(12,12,12)

Pion BIB-AE Minibatch DiscriminationLeakyReLU (α=0.2)

3D Convolutional Layer
C=64, K=(4,4,4),

S=(2,2,2), P=(1,1,1)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

Dense Layer
In=448, Out=256

Dense Layer
In=256, Out=256

Dense Layer
In=256, Out=1

Concatenate
→ B×448

Reshape:
→ B×30000

Element-wise Difference

Transform
log(x+e)-55

Transform
log(x+e)-55

LeakyReLU (α=0.2)

Dense Layer
In=30000, Out=64

LeakyReLU (α=0.2)

Dense Layer
In=64, Out=64

LeakyReLU (α=0.2)

Dense Layer
In=64, Out=64

Figure A.10: Architecture of the pion shower BIB-AE critic. The minibatch discrimination block
is shown in detail in Figure A.11. The abbreviation B describes the batch size, C is the number
of output channels, K is the kernel size, S is the stride, and P is the padding size of a convolution.
The numbers after the Layernorm Layer indicate the shape over which the normalization occurs.

192

APPENDIX A. NEURAL NETWORK ARCHITECTURES

1D Convolutional Layer
C=64, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

Reconstructed Shower Image Input
B×1×48×25×25

Transform
log(x+e)-55

Transform
log(x+e)-55

Reshape
→ B×30000

Element-wise Difference

Reshape
→ B×1×1

Reshape
→ 1×B×1

Sum dim. 1
→ B×1

Avg dim. 2
→ B×16

Std dim. 2
→ B×16

Expand dim
→ B×B×1

Expand dim
→ B×B×1

Reshape:
→ B×1×B

Intermediate shape
B×16×B

Original Shower Image Input
B×1×48×25×25

LeakyReLU (α=0.2)

1D Convolutional Layer
C=64, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.2)

1D Convolutional Layer
C=16, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.2)

Concatenate
→ B×64

1D Convolutional Layer
C=64, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

Reshape
→ B×30000

Element-wise Difference

Reshape
→ B×1×1

Reshape
→ 1×B×1

Std dim. 1
→ B×1

Avg dim. 2
→ B×16

Std dim. 2
→ B×16

Expand dim
→ B×B×1

Expand dim
→ B×B×1

Reshape:
→ B×1×B

Intermediate shape
B×16×B

LeakyReLU (α=0.2)

1D Convolutional Layer
C=64, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.2)

1D Convolutional Layer
C=16, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.2)

1D Convolutional Layer
C=64, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

Pion BIB-AE Minibatch Discrimination

Reshape
→ B×30000

Element-wise Difference

Reshape
→ B×1×1

Reshape
→ 1×B×1

Sum dim. 1
→ B×1

Avg dim. 2
→ B×16

Std dim. 2
→ B×16

Expand dim
→ B×B×1

Expand dim
→ B×B×1

Reshape:
→ B×1×B

Intermediate shape
B×16×B

LeakyReLU (α=0.2)

1D Convolutional Layer
C=64, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.2)

1D Convolutional Layer
C=16, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.2)

1D Convolutional Layer
C=64, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

Reshape
→ B×30000

Element-wise Difference

Reshape
→ B×1×1

Reshape
→ 1×B×1

Std dim. 1
→ B×1

Avg dim. 2
→ B×16

Std dim. 2
→ B×16

Expand dim
→ B×B×1

Expand dim
→ B×B×1

Reshape:
→ B×1×B

Intermediate shape
B×16×B

LeakyReLU (α=0.2)

1D Convolutional Layer
C=64, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.2)

1D Convolutional Layer
C=16, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.2)

Concatenate
→ B×64

MBD Output 1
B×64

MBD Output 2
B×64

Figure A.11: Architecture of the pion shower BIB-AE minibatch discrimination block used in the
BIB-AE critic. The abbreviation B describes the batch size, C is the number of output channels,
K is the kernel size, S is the stride, and P is the padding size of a convolution. The numbers
after the Layernorm Layer indicate the shape over which the normalization occurs.

193

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Convolutional Layer
C=128, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

Pion BIB-AE Post Processor

LeakyReLU (α=0.01)

3D Layernorm Layer
(48,25,25)

3D Convolutional Layer
C=128, K=(1,1,1), S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.01)

3D Layernorm Layer (48,25,25)

3D Convolutional Layer
C=128, K=(1,1,1), S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.01)

3D Layernorm Layer (48,25,25)

3D Convolutional Layer
C=128, K=(1,1,1), S=(1,1,1), P=(0,0,0)

3D Convolutional Layer
C=1, K=(1,1,1), S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.01)

Dense Layer
In=2, Out=64

LeakyReLU (α=0.01)

Dense Layer
In=64, Out=64

LeakyReLU (α=0.01)

Dense Layer
In=64, Out=64

LeakyReLU (α=0.01)

Concatenate
→ B×192×48×25×25

Shower Image Output
→ B×1×48×25×25

Concatenate
→ B×2

Sum, dims. 2,3,4
→ B×1

Shower Image Input
B×1×48×25×25

Energy Label Input
B×1

Expand
→ B×64×48×25×25

×6

Encoded Latent
B×24

Pion BIB-AE Latent Critic

Dense Layer
In=1, Out=50

LeakyReLU (α=0.01)

Dense Layer
In=50, Out=100

LeakyReLU (α=0.01)

Dense Layer
In=100, Out=50

LeakyReLU (α=0.01)

Dense Layer
In=50, Out=1

Reshape
→ B*24×1

Critic Output
B×1

Figure A.12: Architectures of the Post Processor (left) and latent critic (right) of the pion shower
BIB-AE. The abbreviation B describes the batch size, C is the number of output channels, K is
the kernel size, S is the stride, and P is the padding size of a convolution. The numbers after
the Layernorm Layer indicate the shape over which the normalization occurs.

194

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Convolutional Layer
C=8, K=(2,2,2), S=(2,1,1), P=(1,0,0)

Shower Image Input
B×1×37×24×24

Energy Label Input
B×1

Target Visible Energy Sum
B×1

Reshape
→ B×3200

Dense Layer
In=3202, Out=800

Dense Layer
In=512, Out=24

Dense Layer
In=512, Out=24

LeakyReLU (α=0.2)

Testbeam BIB-AE Encoder

LeakyReLU (α=0.2)

3D Layernorm Layer (19,23,23)

3D Convolutional Layer
C=16, K=(2,2,2), S=(2,2,2), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (10,12,12)

3D Convolutional Layer
C=32, K=(4,4,4), S=(2,2,2), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (5,6,6)

3D Convolutional Layer
C=32, K=(4,4,4), S=(1,1,1), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (4,5,5)

Dense Layer
In=800, Out=512

LeakyReLU (α=0.2)

Latent Output Mean
B×24

Latent Output Width
B×24

Concatenate
→ B×3202

3D Convolutional Layer
C=8, K=(2,3,3), S=(1,1,1), P=(0,1,1)

Energy Label Input
B×1

Encoded Latent
B×24

Random Latent
B×488

Reshape
→ B×8×10×6×6

Testbeam BIB-AE Decoder

LeakyReLU (α=0.2)

3D Layernorm Layer (39,24,24)

3D Convolutional Layer
C=8, K=(3,3,3), S=(1,1,1), P=(1,1,1)

3D Convolutional Layer
C=16, K=(3,3,3), S=(1,1,1), P=(1,1,1)

3D Convolutional Layer
C=32, K=(3,3,3), S=(1,1,1), P=(1,1,1)

3D Convolutional Layer
C=8, K=(3,3,3), S=(1,1,1), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (20,12,12)

LeakyReLU (α=0.2)

3D Layernorm Layer (39,24,24)

LeakyReLU (α=0.2)

3D Layernorm Layer (39,24,24)

LeakyReLU (α=0.2)

3D Layernorm Layer (39,24,24)

3D Convolutional Layer
C=16, K=(3,3,3), S=(1,1,1), P=(0,1,1)

3D Convolutional Layer
C=1, K=(3,3,3), S=(1,1,1), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (39,24,24)

LeakyReLU (α=0.2)

ReLU

3D Layernorm Layer (37,24,24)

Dense Layer
In=514, Out=512

LeakyReLU (α=0.2)

Dense Layer
In=512, Out=800

LeakyReLU (α=0.2)

Dense Layer
In=800, Out=2880

LeakyReLU (α=0.2)

Concatenate
→ B×514

3D Transpose Convolutional Layer
C=8, K=(4,4,4), S=(2,2,2), P=(1,1,1)

LeakyReLU (α=0.2)

3D Layernorm Layer (40,24,24)

3D Transpose Convolutional Layer
C=8, K=(4,4,4), S=(2,2,2), P=(1,1,1)

Output Shower Image
B×1×37×24×24

Target Visible E. Sum
B×1

Figure A.13: Architectures of the encoder (left) and decoder (right) of the testbeam data BIB-
AE. The abbreviation B describes the batch size, C is the number of output channels, K is the
kernel size, S is the stride, and P is the padding size of a convolution. The numbers after the
Layernorm Layer indicate the shape over which the normalization occurs.

195

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Convolutional Layer
C=64, K=(2,2,2),

S=(2,1,1), P=(1,0,0)

3D Layernorm Layer
(19,23,23)

Reconstructed Shower Image
B×1×37×24×24

Transform
log(x+e)-55

Reshape:
→ B×21312

Element-wise Difference

Original Shower Image
B×1×37×24×24

Energy Label Input
B×1

Target Visible Energy Sum
B×1

Critic Output
B×1

Reshape:
→ B×11520

LeakyReLU (α=0.2)

Dense Layer
In=11520, Out=64

LeakyReLU (α=0.2)

Testbeam BIB-AE Critic

3D Convolutional Layer
C=64, K=(2,2,2),

S=(2,2,2), P=(1,1,1)

3D Layernorm Layer
(10,12,12)

LeakyReLU (α=0.2)

3D Convolutional Layer
C=64, K=(4,4,4),

S=(2,2,2), P=(1,1,1)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

Dense Layer
In=1, Out=64

Dense Layer
In=21312, Out=64

LeakyReLU (α=0.2)

3D Convolutional Layer
C=64, K=(2,2,2),

S=(2,1,1), P=(1,0,0)

3D Layernorm Layer
(19,23,23)

Reshape:
→ B×11520

LeakyReLU (α=0.2)

Dense Layer
In=11520, Out=64

LeakyReLU (α=0.2)

3D Convolutional Layer
C=64, K=(2,2,2),

S=(2,2,2), P=(1,1,1)

3D Layernorm Layer
(10,12,12)

Pion BIB-AE Minibatch DiscriminationLeakyReLU (α=0.2)

3D Convolutional Layer
C=64, K=(4,4,4),

S=(2,2,2), P=(1,1,1)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

LeakyReLU (α=0.2)

Dense Layer
In=448, Out=256

Dense Layer
In=256, Out=256

LeakyReLU (α=0.2)

Dense Layer
In=256, Out=256

Dense Layer
In=256, Out=1

Concatenate
→ B×448

Reshape:
→ B×21312

Element-wise Difference

Transform
log(x+e)-55

Transform
log(x+e)-55

LeakyReLU (α=0.2)

Dense Layer
In=21312, Out=64

LeakyReLU (α=0.2)

Dense Layer
In=64, Out=64

LeakyReLU (α=0.2)

Dense Layer
In=64, Out=64

Figure A.14: Architecture of the testbeam data BIB-AE critic. The Minibatch discrimination
block is shown is identical to the one used in the pion BIB-AE and is shown in detail in Fig-
ure A.11. The abbreviation B describes the batch size, C is the number of output channels, K
is the kernel size, S is the stride, and P is the padding size of a convolution. The numbers after
the Layernorm Layer indicate the shape over which the normalization occurs.

196

APPENDIX A. NEURAL NETWORK ARCHITECTURES

3D Convolutional Layer
C=128, K=(1,1,1),

S=(1,1,1), P=(0,0,0)

Testbeam BIB-AE Post Processor

LeakyReLU (α=0.01)

3D Layernorm Layer
(48,25,25)

3D Convolutional Layer
C=128, K=(1,1,1), S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.01)

3D Layernorm Layer (48,25,25)

3D Convolutional Layer
C=128, K=(1,1,1), S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.01)

3D Layernorm Layer (48,25,25)

3D Convolutional Layer
C=128, K=(1,1,1), S=(1,1,1), P=(0,0,0)

3D Convolutional Layer
C=1, K=(1,1,1), S=(1,1,1), P=(0,0,0)

LeakyReLU (α=0.01)

Dense Layer
In=2, Out=64

LeakyReLU (α=0.01)

Dense Layer
In=64, Out=64

LeakyReLU (α=0.01)

Dense Layer
In=64, Out=64

LeakyReLU (α=0.01)

Concatenate
→ B×192×48×25×25

Shower Image Output
→ B×1×48×25×25

Concatenate
→ B×3

Sum, dims. 2,3,4
→ B×1

Shower Image Input
B×1×48×25×25

Energy Label Input
B×1

Target Visible Energy Sum
B×1

Expand
→ B×64×48×25×25

×6

Encoded Latent
B×24

Testbeam BIB-AE Latent Critic

Dense Layer
In=1, Out=50

LeakyReLU (α=0.01)

Dense Layer
In=50, Out=100

LeakyReLU (α=0.01)

Dense Layer
In=100, Out=50

LeakyReLU (α=0.01)

Dense Layer
In=50, Out=1

Reshape
→ B*24×1

Classifier Output
B×1

Figure A.15: Architectures of the Post Processor (left) and latent critic (right) of the testbeam
data BIB-AE. The abbreviation B describes the batch size, C is the number of output channels,
K is the kernel size, S is the stride, and P is the padding size of a convolution. The numbers
after the Layernorm Layer indicate the shape over which the normalization occurs.

197

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, die vorliegende Dissertationsschrift selbst verfasst und keine
anderen als die angegebenen Hilfsmittel und Quellen benutzt zu haben.

Hamburg, den
————————————————— ———————————————
Ort, Datum Sascha Daniel Diefenbacher

199

18.01.2023

	Preface
	Introduction
	I Theory and Methodology
	Particle Physics
	The Standard Model of Particle Physics
	Physics Beyond the Standard Model
	Collider Experiments
	Linear Lepton Colliders
	Precision Measurements at Lepton Colliders
	Monte Carlo Simulation

	Calorimetry
	Electromagnetic Showers
	Heavy Charged Particles
	Hadronic Showers
	Calorimeter Types
	Calorimeter and Shower Simulation
	ILD Calorimeters

	Machine Learning
	Gradient Descent
	Optimizers
	Loss Functions
	Challenges of Machine Learning
	Neural Networks
	Activation Functions

	Generative Models
	Challenges of Generative Models
	Generative Adversarial Networks
	Wasserstein GANs
	Autoencoders
	Variational Autoencoders
	Adversarial Autoencoders
	The BIB-AE
	Normalizing Flows
	Conditional Generative Models

	II Generative Models in Particle Physics
	GANplification
	1-Dimensional Data
	2-Dimensional Data
	Multi-Dimensional Data
	Conclusion

	Photon Shower Generation
	Photon Data Set
	GAN and WGAN Models
	BIB-AE Model
	Results
	Conclusion

	Pion Shower Generation
	Pion Data Set
	WGAN Model
	BIB-AE Model
	Results
	Conclusion

	CALICE Testbeam Data Generation
	Testbeam Data Set
	BIB-AE Model
	Results
	Conclusion

	OnlineFlow
	Online Training
	Bumphunt Data Set
	Anomaly Detection Data Set
	Conclusion

	Summary and Outlook
	Acknowledgments
	Bibliography
	Neural Network Architectures

