
Graph Algebraic Grammars
for Semantic Parsing

Dissertation an der Universität Hamburg

Sebastian Beschke

2022

Fakultät für Mathematik, Informatik und Naturwissenschaften,
Fachbereich Informatik

This work is licensed under a Creative Commons Attribution 4.0 International
License.
Supplementary material is available under https://gitlab.com/nats/
gramr-thesis-experiments.

https://gitlab.com/nats/gramr-thesis-experiments
https://gitlab.com/nats/gramr-thesis-experiments

Gutachter:

Prof. Dr.-Ing. Wolfgang Menzel (Universität Hamburg)
Prof. Dr. Alexander Koller (Universität des Saarlandes)
Hamburg, den 7. 11. 2022 (Tag der Disputation)

iii

Acknowledgements

This dissertation project has spanned nine years and leaves me indebted to a lot
of people, academically and otherwise, who all have in some way supported me
during this time. I will try my best to thank as many of them as I can, even if there
are too many to name individually.

I thank my supervisor, Wolfgang Menzel, for giving me the chance to pursue a
project in computational linguistics back when I had little knowledge of the field,
for giving me the room to grow into it, and for sticking with me and supporting me
throughout the project even when I was making little progress.

I am glad to have shared this time with all the friendly people at the University of
Hamburg, from theNATS,WSV and LT groups, and have all the inspiring exchanges
ranging from paper writing advice to lunch banter. It was a pleasure!

The same goes for everyone I met at LangTec. I feel privileged to have been part
of such a talented and inspiring crew. In particular, I thank Patrick McCrae for
guidance and mentorship.

In 2013 I had the unique opportunity to work at Tsinghua University’s Natural
Language Processing lab under the supervision of Prof. Yang Liu and Prof. Maosong
Sun. This was an intense and productive time, and next to the professors, I thank
all lab members, who welcomed me with open arms.

Dissertationwriting is not only demanding of thewriter, and not just intellectually.
Agnes, you bore the emotional load that came with this project and helped me cope.
Without you, I do not believe that I would have seen it through. Thank you for
being with me.

Submitting this thesis feels like a milestone on a journey I have been on for a
long time. Since my childhood, my parents have gone out of their way to put all
possibilities within my reach, and even if my goals must not always have made
sense to them, they trusted me and made sure I could pursue them. For that, and
everything else, I am deeply grateful.

v

Contents

1. Introduction 1
1.1. Research Questions . 2
1.2. Implementation . 4
1.3. Scope and Contributions . 6

2. Abstract Meaning Representation Parsing 9
2.1. Abstract Meaning Representation . 10

2.1.1. Definition . 11
2.1.2. Scope . 12
2.1.3. Visual Representation . 13
2.1.4. AMR Corpora . 13
2.1.5. Evaluation of AMR Parsers 14

2.2. Approaches to AMR Parsing . 15
2.2.1. Positioning of this Thesis . 17

3. Foundations 19
3.1. Combinatory Categorial Grammar 20

3.1.1. Fundamental Concepts . 20
3.1.2. Syntactic Categories . 21
3.1.3. Semantic Categories . 22
3.1.4. Combinators . 23
3.1.5. Derivations . 24
3.1.6. Parsing CCG . 26

3.2. Graph Algebras for Semantic Construction 28
3.2.1. The HR Algebra . 29
3.2.2. Formal Definition . 30
3.2.3. Multiple Source Labels per Node 32

3.3. Linear Models of Linguistic Structures 34
3.3.1. CKY Parsing with Beam-Search 35
3.3.2. The Perceptron Algorithm . 35
3.3.3. Structured Perceptron . 38

vii

Contents

3.3.4. Cost-Sensitive Perceptron . 39
3.3.5. Minibatch Training . 41

3.4. Expectation Maximisation and the Inside-Outside Algorithm 41
3.4.1. PCFG Parameter Estimation 42

3.5. Neural Network Models for Sequence Tagging 45
3.5.1. Long Short-Term Memory . 47
3.5.2. Stacked and Bidirectional LSTM 48
3.5.3. Using an LSTM to Predict Tags 49
3.5.4. Word Vectors . 49

4. Graph Algebraic Combinatory Categorial Grammar 51
4.1. Semantic Construction of AMRs . 51

4.1.1. Placeholder AMRs . 51
4.1.2. GA-CCG s*-Graphs . 52
4.1.3. The Apply Operator . 54
4.1.4. The Modify Operator . 56
4.1.5. The Compose Operator . 57
4.1.6. The Substitute Operator . 58
4.1.7. The Ignore Operator . 59

4.2. Graph Algebraic Combinatory Categorial Grammar 60
4.2.1. Definition of GA-CCG . 60
4.2.2. Directionality of Operators 61
4.2.3. Unary Rules . 62
4.2.4. GA-CCG Rule Sets . 62
4.2.5. Application . 63
4.2.6. Conjunctions . 68
4.2.7. Composition . 68

4.3. Non-Compositional Operations . 72
4.3.1. Coreferences . 72
4.3.2. Nested Conjunctions . 75

4.4. Limitations of GA-CCG . 75
4.4.1. Relativisation and Type Raising 75
4.4.2. Object Control . 78
4.4.3. Argument Cluster Coordination 78
4.4.4. Non-Limitation: Substitution 78
4.4.5. Discussion . 80

viii

Contents

5. Induction of Graph Algebraic CCG Lexica 83
5.1. Algorithms for Lexicon Induction . 84

5.1.1. Syntax-Driven Lexicon Induction 85
5.1.2. Constrained AMR Splitting 87
5.1.3. Alignment Constraints . 90
5.1.4. Coreferences . 92

5.2. Recursive Splitting in Practice . 92
5.2.1. Connectedness of Precursor Graphs 93
5.2.2. Limitation of Lexical Items per Syntax Derivation 93
5.2.3. Limitation of Unaligned Nodes 93
5.2.4. n-Best Parsing and Filtering by Token Coverage 94
5.2.5. Syntactic Arity Checking . 94

5.3. Large-Scale Lexicon Induction . 95
5.3.1. Setup . 95
5.3.2. Key Metrics . 96
5.3.3. Corpus . 97
5.3.4. Comparing Alignment Strategies 97
5.3.5. Comparing Grammars . 100
5.3.6. Measuring the Impact of n-Best Parsing 101
5.3.7. Evaluating the Need for Coreference Nodes 103

5.4. Experiments on Grammar Coverage 104
5.4.1. Corpus . 104
5.4.2. Annotations . 104
5.4.3. Additional Rules for Induction from CCGBank Syntax . . . 105
5.4.4. Error Analysis Methodology 105
5.4.5. Results and Interpretation . 107
5.4.6. Discussion . 114

6. Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging119
6.1. Delexicalisation . 121

6.1.1. Lexeme Patterns . 122
6.1.2. Validation Experiment . 123

6.2. Expectation Maximisation Filtering 125
6.2.1. An EM Algorithm for Scoring Templates and Lexemes . . . 125
6.2.2. Filtering Templates and Lexemes 127
6.2.3. Results . 130

6.3. Supertagging . 132
6.3.1. Architecture . 133

ix

Contents

6.3.2. Training Data Extraction . 133
6.3.3. Masking the Loss Function 135
6.3.4. Decoding . 136
6.3.5. Predicting Tags for Training Data 137
6.3.6. Tuning Experiments . 138

7. Parsing with Graph Algebraic Combinatory Categorial Grammars 143
7.1. Parsing Algorithm . 143

7.1.1. Coreference Resolution . 145
7.2. Training the Parser . 151

7.2.1. Training Loop . 151
7.2.2. Cost-sensitive Perceptron . 154
7.2.3. Scoring Function . 154

7.3. Oracle Parsing . 154
7.3.1. Computing the Oracle Function 155
7.3.2. Bootstrapping the Training Loop 157

7.4. Inference . 157

8. Evaluation of Graph Algebraic CCG Grammars for Semantic Parsing 161
8.1. Parser Tuning . 161

8.1.1. Setup . 162
8.1.2. Feature Set . 163
8.1.3. Baseline Settings . 167
8.1.4. Bootstrapping . 168
8.1.5. Beam Size . 170
8.1.6. Features . 171
8.1.7. Rule Sets . 172
8.1.8. Amount of Training Data . 173

8.2. Final System Evaluation . 175
8.2.1. Quantitative Evaluation . 177
8.2.2. Error Analysis . 178
8.2.3. Conclusion . 182

9. Conclusion 185
9.1. Summary . 185
9.2. Discussion . 187
9.3. Outlook . 189

x

Contents

A. Abstract 191

B. Kurzfassung 193

C. Publications Related to this Thesis 195

D. Software Created for this Thesis 197
D.1. gramr . 197

D.1.1. Package Contents . 197
D.2. s2tagger . 199
D.3. gramr-thesis-experiments . 199

D.3.1. Setup and Running Experiments 200
D.3.2. Included Experiments . 203

List of Figures 205

List of Tables 209

List of Algorithms 213

xi

Chapter 1.

Introduction

In 2021, we rely more than ever on computers to access an increasing wealth of
information. Crucial scientific or business insights may be hidden inside vast data-
bases or large quantities of unstructured text data. Making unstructured information
available to automated processing (also known as natural language understanding)
is therefore of increasing importance, as is the efficient access to large amounts of
structured data.

Semantic parsing is a technology that can help address these challenges by trans-
forming unstructured text into formal representations. Such meaning representa-
tions can then be used to perform downstream tasks, such as querying a database
(effectively providing a natural language database interface) or extracting the facts
expressed in the meaning representations and storing them in a knowledge base. In
both cases, semantic parsers can be part of a toolchain that bridges the gap between
human and computer-based processing of information.

In our approach, English sentences such as The programmer wanted to find seven
bugs. are transformed into graphs that capture some aspects of its meaning, like the
graph in Figure 1.1:

want-01

find-01person

program-01 bug 7

ARG0 ARG1

ARG0

ARG0 ARG1

quant

Figure 1.1.: A graph representing themeaning of the sentence The programmer wanted
to find seven bugs.

1

Chapter 1. Introduction

• The main events of wanting and finding as well as the involved entities, a person
and some bugs, are represented by nodes. The person is the agent (ARG0) of
several events at once.

• Edge labels describe the roles taken by the entities: the programmer finds and
wants, and the bugs are found.

• The number of bugs is expressed through a special role (quant) of the bug
entity.

• The programmer is represented as a person who programs, showing how the
meaning representation employs concepts to abstract away from concrete
words.

This meaning representation is abstract in the sense that it does not refer to the
sentence from which it was derived. The concepts referenced in the meaning rep-
resentation are thought to be more like logical predicates and do not need to match
any words present in the sentence.

Still, the information necessary to construct the meaning representation as shown
above is encoded in the sentence. The relationships expressed in the graph result
from those found in the syntactic structure of the sentence. The process that derives
a meaning representation from a sentence can be encoded in the form of a grammar.

In this thesis, we extend the well-established Combinatory Categorial Grammar
with operations for graph construction. Our semantic parsing system automatically
creates a lexicon of building blocks for meaning representations while keeping
the lexicon small and interpretable. As a result, our system works with limited
computational resources, shows strong performance even with small amounts of
training data, and its output is interpretable with regards to linguistic theory.

1.1. Research Questions

Implementors of semantic parsers face a number of problems that make semantic
parsing a challenging task:

• Large structured output spaces: There is an infinite number of meaning
representation graphs, and an exponential number of syntactic derivations
for a sentence. A semantic parser must be able to find an appropriate output
in this infinite space.

2

1.1. Research Questions

• Working with latent structure: No derivations for meaning representation
graphs are provided in the training data, and thus, such structure must be
inferred by a grammar-based semantic parser.

• Limited training data availability: The manual annotation of meaning repres-
entations is costly because meaning representations are complex and annotat-
ors require training and experience with meaning representation formalisms.
Data sets therefore tend to be considerably smaller than those available for
tasks where data collection is easier.

Our strategy for addressing these challenges is to aim for a system whose core
mechanisms are simple and transparent andwhich is strongly biased towards linguistic
plausibility.

Simple mechanics help address the computational issues raised by exponential
search and output spaces. We therefore design a grammar based on a few simple
graph construction operations in order to reduce ambiguity. This design choice
also leads to transparency by allowing derivations to be represented in a readable,
uncluttered manner.

A linguistic footing allows the system to make the most of the available training
data. We therefore base our grammar on Combinatory Categorial Grammar, which
allows us to use existing tools and biases our system towards plausible interpreta-
tions.

This strategy leads to the following research questions:

1. How can Combinatory Categorial Grammar be adapted to use graph-based
semantic construction operators while achieving good coverage of a natural
language corpus?
a) Which is the smallest set of fundamental grammar rules to achieve good

coverage and strong end-to-end parsing performance?
b) What are the limitations of this approach in relation to the Abstract Mean-

ing Representation corpus and the linguistic properties of Combinatory
Categorial Grammar?

2. How can a semantic lexicon be induced that has broad coverage, but is small
enough to be inspected manually?

3. How can a semantic parser be built that makes use of an induced semantic
lexicon and overcomes the computational challenges of semantic parsing?

3

Chapter 1. Introduction

Preprocessing Lexicon Induction

Delexicalisation

EM Filtering

Supertagger

Parser Training

AMR Corpus
Syntax Parser
Alignment Tools

Filtered Lexicon

Supertagger
Model Parser Model

Figure 1.2.: An overview of the software pipeline developed in this thesis. All solid
boxes are new software components developed for this research. Arrows
indicate the data flow between components. Arrows to the bottom show
the system’s outputs.

a) Howdoes this parser’s performance compare to that of other approaches?

b) What is the parser’s error profile?

c) How does the parser perform when the amount of training data is artifi-
cially limited?

1.2. Implementation

The present work is empirical in nature. Throughout the thesis, our focus is on
broadening the scope of the practically feasible. All concepts discussed in the
following chapters have therefore been implemented as part of a new semantic

4

1.2. Implementation

parsing system which is based on the principles of Graph Algebraic Combinatory
Categorial Grammar and allows us to examine practical issues of their application.

Our implementation consists of a pipeline of several components. Through the
pipeline, information extracted from an annotated corpus is propagated to produce a
functioning semantic parser which is capable of producing meaning representations
for new sentences. The steps of our parser’s training pipeline are visualised in Figure
1.2. Below, we give a summary of each step along with a brief description of its
design considerations.

First, in the preprocessing step, the input corpus, which is annotatedwithAbstract
Meaning Representations (AMRs), is enriched using several external tools. This
includes standard natural language processing techniques such as tokenisation and
lemmatisation, as well as more specific tools for syntactic Combinatory Categorial
Grammar (CCG) parsing and AMR alignment.

The preprocessed training corpus is fed into a lexicon induction algorithm, which
creates a large number of lexical items that can be used to build semantic analyses
for new sentences. However, these lexical items are tied to concrete word forms, and
thus not applicable to words not seen in the training corpus. The delexicalisation
step therefore generates generic templates from the concrete lexical items, each of
which describes the semantic structure associated with a word without its lexical
information.

Both the delexicalisation step and the lexical induction algorithm itself overgener-
ate, which makes a filtering step necessary. Using a probabilistic model of syntactic-
semantic derivations, an expectationmaximisation (EM) algorithm is used to assign
probabilities to the delexicalised lexicon entries and reduce it to the set of items
with the highest explanatory power.

In principle, the resulting filtered, delexicalised lexicon is well-suited for parsing
new sentences. However, in practice a parser struggles to select from the large
number of templates that are still in the lexicon. We therefore train a neural network-
based supertagger to limit the number of templates the parser has to consider.

Finally, a structured learning algorithm is used to train a machine learning model
which can drive a bottom-up parsing algorithm towards plausible analyses. After
training, the resulting model, along with the filtered, delexicalised lexicon and the
supertagging model, can be used to parse new text.

5

Chapter 1. Introduction

1.3. Scope and Contributions

In this thesis we describe a new approach to the semantic parsing of graph meaning
representations. The approach is discussed both on a theoretical level and in the
context of a concrete implementation of a semantic parsing system.

Due to the complexity of the implementation, a large part of this thesis is dedicated
to describing and validating the individual algorithms that are part of the semantic
parsing pipeline. We develop a viable proof-of-concept which covers common
linguistic phenomena at a reasonable level of performance. Throughout the thesis,
we therefore forego some opportunities for algorithmic and linguistic improvements
in favour of presenting a “minimal working configuration”.

The remainder of this thesis is structured as follows:

• Chapter 2: AbstractMeaning Representation Parsing –We introduce the task
of semantic parsing, as well as the Abstract Meaning Representation language.
We also examine the state of the art of Abstract Meaning Representation
parsing and other important related work.

• Chapter 3: Foundations – In this chapter, we explain the most important
concepts upon which this work is based. This includes CCG, graph algebras
for semantic construction, and several machine learning algorithms required
for building the semantic parsing pipeline.

• Chapter 4: Graph Algebraic Combinatory Categorial Grammar – In the
first part of this chapter, a graph algebra is designed whose operations are
tailored towards the construction of Abstract Meaning Representations. Then,
a modification of Combinatory Categorial Grammar is defined which makes
use of this algebra. Finally, some limitations of the grammar are discussed.
Contributions:

– A definition of Graph Algebraic Combinatory Categorial Grammar (GA-
CCG), a novel grammar for semantic parsing

– A theoretical discussion of GA-CCG’s limitations

• Chapter 5: Induction of Graph Algebraic CCG Lexica – In this chapter, we
discuss the automatic induction of GA-CCG lexical items from anAMR corpus.
We introduce an algorithm which recursively splits the annotated meaning
representations to end up with reusable graph fragments. Heuristics that
are necessary to control the computational complexity of the algorithm are

6

1.3. Scope and Contributions

described. We evaluate the coverage of the algorithm using several instances
of GA-CCG grammars.

Contributions:

– An algorithm for GA-CCG lexical induction

– An evaluation of the coverage of GA-CCGs on an AMR corpus

• Chapter 6: Post-Processing the Lexicon: Delexicalisation, Filtering, and
Supertagging – This chapter is dedicated to pipeline steps necessary to make
the induced GA-CCG lexicon usable for a semantic parser. This includes the
steps of delexicalisation (to improve coverage), filtering (to reduce ambiguity),
and supertagging (to reduce the amount of computation required by the
parser).

Contributions:

– An expectation maximisation algorithm over CCG derivations which
estimates the probabilities of lexical entries and which can be used to
filter a highly ambiguous GA-CCG lexicon

– A neural network-based supertagger which predicts lexical templates
from an induced GA-CCG lexicon and is able to deal with gaps in its
training data

• Chapter 7: Parsing with Graph Algebraic Combinatory Categorial Gram-
mars – We describe the algorithms necessary for parsing with an induced
GA-CCG. This includes a cost-sensitive perceptron algorithm for training a
linear model to score parsing hypotheses, as well as a bottom-up parsing
algorithm to decode from the model. To bootstrap the model, we also define
an oracle heuristic.

Contributions:

– An adaptation of a cost-sensitive perceptron algorithm to semantic pars-
ing

– A training schedule for the semantic parser including oracle-based boot-
strapping

• Chapter 8: Evaluation of Graph Algebraic Combinatory Categorial Gram-
mars for Semantic Parsing – In this chapter, we describe end-to-end experi-
ments encompassing the entire semantic parsing pipeline. This includes an

7

Chapter 1. Introduction

analysis of the influence of various hyperparameters, features, and grammar
variants, as well as an error analysis of parser output.
Contributions:

– A comparison of results to other grammar-based semantic parsers
– A qualitative analysis of the semantic parser’s output and error profile

• Chapter 9: Conclusion – We draw conclusions from experimental results and
point out further research directions.

8

Chapter 2.

Abstract Meaning Representation Parsing

A semantic parser is a program that translates natural language into formal meaning
representations. Within the scope of this broad definition, there exist a wide range
of approaches, including both rule-based and learned systems. The field of meaning
representation languages is equally diverse ranging from narrowly-defined, task
specific to generic, broad coverage representations.

The ideas and tools used in today’s semantic parsing systems can be traced back to
their origins in linguistics and human-computer interfaces. Following Evang (2016),
we distinguish narrow-coverage and broad-coverage semantic parsing systems and
give a brief history of both.

One early impulse for research on narrow-coverage semantic parsing has been
the desire for natural language human-computer interfaces, where a system com-
municates with the user in natural language in order to perform some task. An
example is the famous SHRDLU system (Winograd 1971), where the user instructs
a computer to perform actions in a virtual block world. While SHRDLU used a
grammar that was specified manually in a laborious effort, later efforts have moved
towards automatically inducing grammars from examples. This has been enabled by
the creation of corpora such as ATIS (Price 1990) and Geoquery (Zelle and Mooney
1996), which contain natural language queries to information systems on flight
connections and geography, respectively. For instance, Wong and Mooney (2007)
induce a synchronous context-free grammar that builds meaning representations
in parallel to syntactic derivations using λ-calculus.

Broad-coverage semantic parsing has emerged out of efforts in linguistics to
model the mechanisms by which meaning is created in language. In this context,
meaning is often represented in terms of model-theoretic semantics, which identify
the semantics of an utterance with its propositional content. The pioneering work of
Montague (1973) has been very influential and inspired further compositional and
logic-based approaches to semantic derivation. One of them is Discourse Repres-
entation Theory (DRT; Kamp and Reyle 1993), which uses meaning representations

9

Chapter 2. Abstract Meaning Representation Parsing

that are an extension of first-order logic. Another is Combinatory Categorial Gram-
mar (CCG; Steedman 2000), which describes syntax as a process that links natural
language utterances to the semantic structures via a combinatory interface.

Both theoretical frameworks have been combined in the implementation of Boxer
(Bos 2008), which constructs discource representation structures of DRT by applying
a set of hand-written rules to syntactic CCG derivations. This tool has in turn be
used to construct a large-scale broad-coverage corpus annotated with DRT, the
Groningen Meaning Bank (Basile et al. 2012). Based on this corpus, broad-coverage
parsers have been trained which do not rely on hand-written rules (Le and Zuidema
2012, among others). As an alternative to the hierarchical, detailed representations
of DRT, the AMR language has been created to provide an easier target for both
parsers and annotators (Banarescu et al. 2013). As it is the focus of this thesis, we
discuss AMR parsing in more depth in the following section.

While both approaches to semantic parsing may differ in their motivations,
nowadays there is significant technological overlap between both worlds. For in-
stance, CCG-based approaches first matured in narrow-coverage settings (Kwi-
atkowski et al. 2010; L. S. Zettlemoyer and Collins 2005, among others) before being
successfully applied to AMR parsing (Artzi, K. Lee and L. S. Zettlemoyer 2015).

The remainder of this chapter focuses on AMR parsing. In Section 2.1, the AMR
language and its features are introduced. Section 2.2 gives an overview of the most
highly-performing AMR parsers and the variety of approaches that appear in the
recent literature.

2.1. Abstract Meaning Representation

Abstract Meaning Representation (AMR) is a formal language that expresses the
semantics of natural language sentences in the form of rooted, directed graphs
(Banarescu et al. 2019). The nodes in an AMR represent entities, events, or concepts,
and edges define role relationships between the nodes. Edges are labelled with the
role they represent. Nodes are only labelled if they are leaves, in which case they
are assigned a concept. Non-leaf, or variable, nodes (that is, entities and events) are
unlabelled, but always instantiate some concept, which is expressed with a special
instance role. Exactly one node of an AMR is identified as the root of the meaning
representation and specifies the semantic focus of the utterance.

10

2.1. Abstract Meaning Representation

2.1.1. Definition

To capture the formal aspects of this definition and make it available to build upon
in later chapters, we first define semantic graphs. We will extend this definition in
Chapter 4 to define GA-CCG s∗-graphs.

Definition 2.1 (Semantic Graph). Let

• V = Vc ∪ Vv a set of vertices with Vc ∩ Vv = {},

• vroot ∈ V ,

• E ⊆ V × V a set of directed edges,

• L a set of labels,

• l : Vc ∪ E → L a labeling function.

Then G = (V,E, vroot, l) is a directed, labelled, and rooted graph. We call G a
semantic graph with root vroot, constant nodes Vc and variable nodes Vv.

In the definition, the set of nodes V is divided into a set of variable nodes, Vv, and
a set of constant nodes, Vc. Only constant nodes are assigned a label. In an AMR,
every variable node has an outgoing edge labelled instance which connects it to a
constant node and marks the variable as an instantiation of the abstract concept
represented by the constant node. Constant nodes are always leaves. These aspects
of an AMR are captured in the following definition:

Definition 2.2 (Abstract Meaning Representation). Let G = (V,E, vroot, l) a se-
mantic graph with constant nodes Vc and variable nodes Vv.

G is called an Abstract Meaning Representation (AMR) iff all of the following hold:

• l(v) ∈ Lconcepts for v ∈ Vc (all constant nodes are labelled with concepts),

• l(e) ∈ Lrelations for e ∈ E (all edges are labelled with relations),

• For all variable nodes v ∈ Vv, there is exactly one edge e = (v, v′) ∈ E with
v′ ∈ Vc and l(e) = instance (all variable nodes have an outgoing edge labelled
instance which targets a constant node),

• No constant node v ∈ Vc has an outgoing edge.

11

Chapter 2. Abstract Meaning Representation Parsing

Node and edge labels are drawn from separate sets, which we call Lconcepts and
Lrelations, respectively. This distinction is sufficient for our formal definition, but in
AMR, these sets can be further subdivided.

Concepts can be OntoNotes frames (Hovy et al. 2006), lemmas, or constants. An
OntoNotes frame is used whereever the event in question can be represented as
one. In OntoNotes, frames are represented by a verb lemma and a sense tag, such
as want-01. Frames can therefore be looked up in the OntoNotes corpus to obtain
a definition. In cases where no frame is applicable, the concept label is a simple
lemma such as boy. Additionally, there is a number of concepts used in specific
cases, such as quoted literals ("Korea"), numerals (20), and - to indicate negation.
Relations can be subdivided into core and non-core roles. Core roles take the

form ARGn. The available core roles and their semantics are defined by OntoNotes;
this implies that core roles are only available for instances of OntoNotes frames.
There is also an inventory of universal non-core roles such as mod (modification),
polarity (negation), time, location, etc.1 Additional non-core roles can be formed
from prepositions, such as prep-along-with, prep-toward, etc. Finally, relations of the
form opn are used to represent ordered lists, such as lists of conjuncts, or the tokens
making up a named entity.

2.1.2. Scope

In comparison to other broad-coverage meaning representations, such as the Dis-
course Representation Structures used in the Groningen Meaning Bank (Basile et al.
2012), AMR is a simplified meaning representation which excludes some aspects of
semantics. It has been designed this way to improve human readability and ease
automated processing, and to allow large-scale annotation from scratch (Banarescu
et al. 2013).

Possibly the most noticeable omission in AMR when compared to more conven-
tional logic-based representation are scoped quantifiers. Variables in AMR are
implicitly quantified existentially, and a logic-based interpretation of AMR can
accomodate at most one universal quantifier per sentence (Bos 2016). In addition,
grammatical features such as tense, number and aspect are not represented in a
systematic way. AMR annotation is performed on the sentence level with no inform-
ation on coreferences between sentences. The authors of the AMR specification also
point out that the design and vocabulary are biased towards English (Banarescu
et al. 2019), although AMRs for other languages have also been created (Li et al.

1The full list of AMR roles can be found in the AMR specification, Banarescu et al. 2019.

12

2.1. Abstract Meaning Representation

2016).

2.1.3. Visual Representation

According to the definition, all internal (variable) nodes of AMRs are unlabelled,
but always instantiate a concept. For instance, the AMR paper (Banarescu et al.
2013) contains the following AMR graph, representing the sentence The boy wants
to go:

•

want-01
•

boy

•

go-01

in
st

an
ce

in
st

an
ce

instance

ARG0

ARG0

ARG1

While this visualisation explicitly represents all edges and nodes in the AMR, it
is somewhat cluttered. In this thesis, we therefore employ a simplified notation,
where the concept instantiated by a variable node is placed into the variable node
itself. The root node of a graph is underlined, and in cases where constant nodes are
represented explicitly (whenever they are not connected with an instance edge), the
node label is written in monospace font. In our simplified visualisation, the AMR
shown above is represented as follows:

want-01

boy go-01

ARG0 ARG1

ARG0

This simplified visualisation allows for a compact and intuitive representation of
AMRs while still emphasizing their graph nature.

2.1.4. AMR Corpora

Three broad-coverage English corpora with annotated AMRs have been made avail-
able so far. The AMR Annotation Release 1.0 (Knight, Laura Baranescu et al. 2014)

13

Chapter 2. Abstract Meaning Representation Parsing

consists of newswire and discussion forum texts with sentence-wise, manually cre-
ated AMR annotations. In total, the corpus contains 13,051 meaning representations
from various sources including newswire text and discussion forums. Its PROXY
section, containing 8,252 sentences of newswire text, is frequently used on its own
for the evaluation of AMR parsers. The consensus section contains 200 sentences
taken from the Wall Street Journal corpus which is part of the Penn Treebank and
other syntactic corpora such as CCGBank, which allows the various representations
to be compared. Sentences in the AMR 1.0 corpus are separated into a training, dev,
and test set according to a rough 80/10/10 ratio, and the final evaluation of parsers
is performed on the test set.

Two further releases of broad-coverage AMR corpora followed: The AMR An-
notation Release 2.0 (Knight, Bianca Badarau et al. 2017) with a total of 39,260
AMRs, additionally including a large amount of discussion forum texts, and the
AMR Annotation Release 3.0 (Knight, Bianca Badarau et al. 2020), with additional
discussion forum data as well as sentences from other sources, totalling 59,255
AMRs.

A number of other corpora annotated with AMRs also exist, among them an
annotated version of the novel The Little Prince by Antoine de Saint-Exupéry2, as
well as a corpus of cancer-related biomedical research papers3. The Little Prince
corpus has additionally been annotated with AMRs in Chinese (Li et al. 2016) and
Brazilian Portuguese (Sobrevilla Cabezudo and Pardo 2019). Also, Damonte and
Cohen (2018) have created a multilingual corpus of AMRs across parallel corpora
in Italian, Spanish, German, and Chinese.

2.1.5. Evaluation of AMR Parsers

Evaluating the output of an AMR parser is not trivial given the abstract nature
of AMRs. While it is desirable to compare the parser’s output graphs element-by-
element to the gold-standard graph to produce a granular evaluation, it is unclear
which element of one graph corresponds to which element of the other, since the
AMRs’ nodes are not anchored in the sentence or some other common structure.

The establishedmetric for AMR evaluation, Smatch (Cai andKnight 2013), tackles
this problem by including an optimization procedure in the calculation of the metric.
Both AMRs are decomposed into triples of either of two forms:

2Provided at https://amr.isi.edu/download/amr-bank-struct-v3.0.txt without authorship
information. Retrieved 11 November 2021.

3Provided at https://amr.isi.edu/download/2018-01-25/amr-release-bio-v3.0.txt without
authorship information. Retrieved 11 November 2021.

14

https://amr.isi.edu/download/amr-bank-struct-v3.0.txt
https://amr.isi.edu/download/2018-01-25/amr-release-bio-v3.0.txt

2.2. Approaches to AMR Parsing

• relation(variable, concept)

• relation(variable1, variable2)

An additional “triple” root(variable) is included to allow the focus assigned by
the parser to be judged by the evaluation metric.

The Smatch algorithm then computes precision (P), recall (R), and F1 (F) score
on these triples extracted from AMRs Gparsed and Ggold.

P =
|triples(Gparsed) ∩ triples(Ggold)|

|triples(Gparsed)|
(2.1)

R =
|triples(Gparsed) ∩ triples(Ggold)|

|triples(Ggold)|
(2.2)

F = 2
PR

P +R
(2.3)

Since the variables of both AMRs are abstract symbols, they need to be mapped
onto one another so that overlapping triples can be properly identified. The Smatch
F1 score is the highest score achieved by any variable mapping for a given AMR pair.
To obtain this mapping, a software package is provided which runs a hillclimbing
optimisation algorithm 4.

Although this optimisation algorithm is a local search and therefore not guar-
anteed to find the optimal mapping, this issue appears negligible in practice as
multiple restarts can be used to obtain converging scores. Commonly, AMR parsers
are evaluated by running the Smatch algorithm four times, where one iteration
starts from a mapping initialised by a heuristic as described by Cai and Knight
(ibid.) and the remaining iterations start from randomly assigned mappings. We
follow this practice in our experiments.

2.2. Approaches to AMR Parsing

Approaches to semantic parsing of AMRs are so varied that it is difficult to do the
whole field justice in a single section. Instead, this section will highlight some of the
milestones of AMR parsing, following a basic categorisation scheme of approaches.

Although AMR parsers are complex systems with many components and fea-
tures, parsing algorithms can be classified into broad categories. The abstract of

4Accessible at https://github.com/snowblink14/smatch, retrieved 4 July 2021.

15

https://github.com/snowblink14/smatch

Chapter 2. Abstract Meaning Representation Parsing

Koller, Oepen and Sun (2019) distinguishes composition-based, factorisation-based,
transition-based, and translation-based methods. We follow this categorisation in
the following paragraphs

The first published AMR parser, JAMR, falls into the category of factorisation-
based methods (Flanigan et al. 2014). Using a heuristic alignment algorithm, it
decomposes AMR graphs into concepts. During parsing, it then predicts the con-
cepts invoked by a sentence and connects them using a maximum spanning tree
algorithm. Its alignment algorithm is also used by several other systems, includ-
ing this thesis. More recently in the factorisation category, Zhang et al. (2019)
approached AMR parsing using a novel neural architecture, the attention-based
neural transducer.

Translation-based methods, which treat AMRs in a serialized format as the target
language for a neural machine translation system, have also had some successes.
For example, Noord and Bos (2017) showed that using appropriate pre- and post-
processing and synthetic training data, a character-based translation algorithm can
accurately produce AMRs. More recently, Xu et al. (2020) showed the effectiveness
of pre-training a translation-based AMRparser on other sequence-to-sequence tasks,
and achieved state-of-the-art performance.

Transition-based methods, starting with Wang, Xue and Pradhan (2015a), are
another highly productive class of AMR parsing approaches. These systems tackle
AMR parsing by predicting a sequence of actions, such as pulling entries from a
lexicon, or combining two previously created parsing states. Notably, AMR parsing
has served as an early area of application for pioneering deep learning architectures,
such as Stack LSTM (Ballesteros and Al-Onaizan 2017) or Stack Transformer (Y.-S.
Lee et al. 2020).

Composition-based approaches are based on grammarswhich describe howAMR
fragments are put together to describe a sentence’s meaning. As such, they are the
most closely related to the linguistic field of computational semantics. This is most
clearly reflected in CCG-based systems (Artzi, K. Lee and L. S. Zettlemoyer 2015;
Misra and Artzi 2016) which encode AMR construction operations in λ-calculus and
use CCG parsing algorithms to construct syntactic-semantic derivations. Another
line of work uses interpreted regular tree grammars to describe the translation from
sentences to AMRgraphs (Groschwitz, Fowlie et al. 2017; Groschwitz, Lindemann et
al. 2018; Lindemann, Groschwitz and Koller 2019). In this approach, a supertagger
selects graph fragments from a lexicon for each input token. Then, a dependency
parsing algorithm is used to predict graph composition operations which can be
carried out on these fragments to produce the final meaning representation.

At present, there is a gap in performance between the strongest-performing

16

2.2. Approaches to AMR Parsing

composition-based system (Lindemann, Groschwitz and Koller (2019) with 75.3 F1
on the AMR 3.0 corpus) and the overall strongest system (Xu et al. (2020) with 81.4
F1). The added linguistic depth of composition-based analyses therefore does not
currently translate to an advantage in end-to-end performance.

2.2.1. Positioning of this Thesis

The semantic parsing system developed in this thesis follows a composition-based
approach as it is based around an adaptation of CCG. It combines important aspects
of both lines of work introduced above: Like Artzi, K. Lee and L. S. Zettlemoyer
(2015), we use CCG to build syntactic-semantic analyses for AMR, and a CKY-style
bottom-up parsing algorithm to construct them. And like Groschwitz, Lindemann
et al. (2018), we define AMR construction operations in graph algebraic terms, and
employ a neural supertagger to predict graph fragments.

While we draw heavily on these ideas, many aspects of our implementation have
been adapted significantly, and some features have been added. For example, the
graph-algebraic operators used in this thesis are tailored to model the semantic
behaviour of CCG operators, leading to a larger number of rules compared to the
work of Groschwitz, Lindemann et al. (ibid.). Another innovation is the dedicated
lexicon filtering step, which leads to reduced computational requirements compared
to the system of Artzi, K. Lee and L. S. Zettlemoyer (2015).

Apart from keeping the required amount of computation manageable, in this
thesis we emphasize transparency as a fundamental aspect of grammar-based pro-
cessing through the use of a compact lexicon and a simple graph-based construction
mechanism.

17

Chapter 3.

Foundations

Like every scientific work, this thesis builds upon numerous concepts introduced
by previous work. Some are important theoretical models which we use and extend.
Others are algorithms which are needed to implement those ideas in practice. In
this chapter, we introduce the concepts and algorithms upon which the rest of this
thesis relies.

In Section 3.1, we discuss Combinatory Categorial Grammar (CCG), a grammar
formalismwhich treats both syntax and semantics. CCG is the basis for the GA-CCG
grammar developed in Chapter 4.

Section 3.2 introduces some mathematical background and notation on graph
algebras. We use this notation in Chapter 4 to define the semantic construction
mechanism for GA-CCG. The section also includes some straightforward extensions
developed for this thesis.

In Section 3.3, basic algorithms for training linear models with structured output
spaces are discussed. The prediction of structures, such asAMRgraphs, is associated
with certain challenges, which can be addressed with specific algorithms. Such
algorithms are needed to train the GA-CCG parser developed in Chapter 7.

The induction process for GA-CCG, described in Chapter 5, produces a large
amount of lexical items. Expectationmaximisation (EM) is an unsupervisedmethod
for assigning probabilities to the lexical items, allowing useless items to be filtered
out. In Section 3.4, we introduce EM, as well as its application to context-free
grammars, the inside-outside algorithm. The latter algorithm is adapted to GA-
CCG in Chapter 6.

Due to the large number of items in inducedCCG lexicons, it is common to employ
a supertagging step to predict the most likely items in a given context and reduce
the burden of the parsing algorithm. Such supertaggers are often implemented
using recurrent neural network models, which we introduce in Section 3.5. The
supertagger developed for this thesis is described in Chapter 6.

19

Chapter 3. Foundations

3.1. Combinatory Categorial Grammar

Formal grammars are rule systems that describe how sentences of a language are
formed. Through the recursive application of their rules, derivation structures
are created which reflect the syntactic structure of a given sentence, providing an
analysis of the (syntactic) relationships among its words and phrases.

Combinatory Categorial Grammar (CCG) is a type of formal grammar that
models both natural language syntax and semantics. The nodes in its derivation
carry information on both the syntactic type and the semantic content of the word
or phrase represented by the node. The rules of CCG allow for the content of
neighbouring nodes to be combined if their syntactic types allow it.

CCG embodies a computational and strictly compositional view of natural lan-
guage semantics. Additionally, it is well-studied both from a linguistic and a compu-
tational perspective. It is general enough to use it for annotation of a broad-coverage
treebank (Hockenmaier and Steedman 2007), and it can be parsed using reasonably
efficient and well-understood algorithms (see Section 3.1.6 below). Its properties
make CCG an attractive foundation for implementing a grammar-based semantic
parsing system.

In this section, we give a minimal, but workable definition of CCG. A similar
presentation of CCG is given in more detail in Chapter 3 of Steedman (2000). Some
of the examples in this section were also taken from that chapter.

3.1.1. Fundamental Concepts

A CCG is made up of two inventories:

1. A lexicon describing the words included in the language and their syntactic
and semantic properties.

2. A set of combinatory rules which define how derivations can be built from a
list of lexical entries, and how the semantic interpretation of a derivation is
constructed.

CCG is a lexicalised grammar, since the lexicon entries contain most of the inform-
ation about the properties of individual words. In contrast, there are only a few
generic combinatory rules, which act upon the categories drawn from the lexicon.
The choice of lexical entries for every word thus determines a large amount of the
structure of a sentence’s derivation and its semantic representation.

20

3.1. Combinatory Categorial Grammar

Each entry of a CCG lexicon is a triple consisting of a word, a syntactic category,
and a semantic category. The entry assigns syntactic and semantic properties to the
word, but several entries may exist for any given word.

The syntactic category describes how the word interacts with other words on the
syntactic level. It specifies which words can be combined into constituents, and
therefore defines the space of the possible syntactic structures of the sentence. The
semantic category specifies the semantic content of the word. In CCG, every syntactic
operation is mirrored on the semantic level, so that the same computation builds
up the syntactic structure of the sentence, and its meaning representation.

When a sentence is parsed with CCG, a lexical entry must be selected for every
word in the sentence. Combinatory rules can then be applied to a pair of neighbour-
ing words and their categories wherever there is a matching rule. As its output, a
combinatory rule produces another pair of syntactic and semantic categories: this
is a derivation node, which has the original words as its children.

Derivation nodes can in turn be combined with neighbouring words or nodes
by combinatory rules, so that they form a tree structure. Once a derivation node
has been constructed that encompasses the entire sentence, the entire structure
is a derivation of the sentence, and its semantic category is a representation of the
sentence’s meaning.

In the following sections, we briefly define each of these concepts to give a funda-
mental understanding of the mechanics of CCG.

3.1.2. Syntactic Categories

Syntactic categories describe the syntactic type of a word or constituent. They are
constructed as hierarchical structures of atoms and slashes.

Atomic categories do not take any arguments. Examples for atomic syntactic
categories are noun phrases (NP), prepositional phrases (PP), and sentences (S).

Function categories are made up of a result category, a slash, and an argument
category. Slashes exist as forward (/) and backward (\) slashes. The direction of
the slash indicates the position of the expected argument: For example, the syntactic
category S\NP indicates a result type of S and an argument type of NP, where the
argument is expected to the left.

Example 3.1. In the sentence I slept, the syntactic categories can be assigned as
follows:

21

Chapter 3. Foundations

I := NP
slept := S\NP

I can be the argument for slept since it matches the argument type NP and is
located to the left of slept, as required by the backward slash. The resulting syntactic
category is S.

Slash categories can themselves be result and argument types, allowing complex
categories such as (S\NP)/NP to be constructed. This is the category of transitive
verbs, which accept a noun phrase to the right (the object) and one to the left (the
subject). The resulting category is S, since the sequence of subject, verb, and object
forms a full sentence.

3.1.3. Semantic Categories

A semantic category represents the semantic content of a lexical entry or derivation
node. Like syntactic categories, they can be functions which receive the semantic
categories of neighbouring derivation nodes as their arguments.

In the CCG literature, semantic categories are usually given as logical expressions
embedded in a typed λ-calculus. In particular, they are required to have a semantic
type that is compatible with the lexical entry’s syntactic category, in the sense that
any syntactically permissible rule can also be applied to the semantic category.

Example 3.2. The sentence I slept from Example 3.1 can be extended with semantic
categories, as follows:

I := NP : i′

slept := S\NP : λx.sleep′ x

Like the syntactic category S\NP is applied to the argument NP, so the semantic
category λx.sleep′ x is a function taking i′ as an argument. Through β-reduction,
the meaning representation for the whole sentence can be computed:

(λx.sleep′ x)i′

⇒β sleep′ i′

22

3.1. Combinatory Categorial Grammar

3.1.4. Combinators

In CCG, combinators define how categories interact with one another. Combinators
are functions transforming one or several input categories into a result category.
They are defined both over syntactic and over semantic categories, and are always
applied on both levels in parallel. For example, the forward application combinator >
has the following definition:

X/Y : f Y : g ⇒> X : fg (3.1)

Here, the combinator > acts in parallel on two pairs of inputs: The syntactic
categories X/Y and Y , and the semantic categories f and g. In the definition of the
combinatory rule, these categories are all patterns. When a sentence is processed,
these patterns are matched onto the actual categories of neighbouring derivation
nodes to determine the outcome of the rule.

Example 3.3. For example, this rule could be used to analyse the phrase the dog,
given the following lexicon:

the := NP/N : λx.x

dog := N : dog′

Given these lexical entries, the rule can be applied as follows:

NP/N : λx.x N : dog′ ⇒> NP : dog′

The semantic category of the is the identity function: it simply returns its argument,
adding no semantic content of its own. However, the syntactic category of the
specifies that it transforms a noun (N) into a noun phrase (NP). Using the forward
application combinator, we can thus derive the following phrasal item:

the dog := NP : dog′

CCG combinators observe the word order of the sentence. For the forward
application combinator, the word occurring first in the sentence is always its first
argument, and therefore always plays the role of the function. CCG also uses a

23

Chapter 3. Foundations

Lexicon

cat := N : cat
dog := N : dog
saw := (S\NP)/NP : λx.λy. seex y
the := NP/N : λx. x

(a) A set of lexical entries.

the cat saw the dog
NP/N N (S\NP)/NP NP/N N
λx.x cat′ λx.λy.see′ x y λx.x dog′

> >
NP NP
cat′ dog′

>
S\NP

λy.see′ dog′ y
<

S
see′ dog′ cat′

(b) A CCG derivation.

Figure 3.1.: A CCG-based analysis of the sentence The cat saw the dog.

backward application combinator, but some other combinators are only used in one
direction. Table 3.1 shows the definitions for the CCG combinators that are used
in this thesis, which are taken from the grammar of the EasyCCG parser (Lewis
and Steedman 2014) and slightly extended. In Chapter 4, we give examples for the
linguistic constructions associated with each combinator.

3.1.5. Derivations

Given a set of combinators and a lexicon, we can analyse the syntactic structure
and semantic content of sentences. As part of this analysis, each word of a sentence
is assigned a lexical entry, and then combinators are used to recursively combine
the lexical entries’ categories, until a syntactic and semantic category for the entire
sentence have been derived. The resulting structure is called a derivation.

24

3.1. Combinatory Categorial Grammar

Symbol Name Definition

> Forward Application X/Y : f Y : g ⇒ X : fg
< Backward Application Y : g X\Y : f ⇒ X : fg
>B Forward Composition X/Y : f Y /Z : g

⇒ X/Z : λz.f(gz)
<B× Backward Crossed

Composition
Y /Z : g X\Y : f
⇒ X/Z : λz.f(gz)

>B2 Generalised Forward
Composition (2nd
degree)

X/Y : f (Y /Z1)/Z2 : λz1λz2.gz1z2
⇒ (X/Z1)/Z2 : λz1λz2.fz1z2

<B2
× Generalised Backward

Crossed Composition
(2nd degree)

(Y /Z1)/Z2 : λz1λz2.gz1z2 X\Y : f
⇒ (X/Z1)/Z2 : λz1λz2.fz1z2

tc-rel Binary Conversion /
Type Changing

, S[to|adj|pss|ng]\NP
⇒ (NP\NP)

tc-nmod Binary Conversion /
Type Changing

X/X (X/X)\(X/X)
⇒ (X/X)\(X/X)

tr-np2 Type Raising NP⇒ S/(S\NP)
tr-np2 Type Raising NP⇒ (S\NP)\((S\NP)/NP)
tr-pp Type Raising PP⇒ (S\NP)\((S\NP)/PP)

lex-n-np Conversion N⇒ NP
lex-rel-np Conversion S[pss|ng|adj|to]\NP⇒ NP\NP
lex-rel-n Conversion S[to]\NP⇒ N\N
lex-rel-dcl Conversion S[dcl]/NP⇒ NP\NP
lex-mod Conversion S[pss|ng|to]\NP⇒ S/S
lex-dcl-n Conversion S[dcl]/NP⇒ N\N

lex-pp-fn-np Conversion PP⇒ NP\NP
lex-pp-fn-vp Conversion PP⇒ (S\NP)\(S\NP)

Table 3.1.: Definitions of the combinators used in this thesis. Definitions follow
Lewis and Steedman (2014); the semantic definitions are taken from
Steedman (2000). For conversions, we give no semantic definition since
Lewis and Steedman (2014) only define them syntactically. The conver-
sions tc-rel, tc-nmod, lex-dcl-n, lex-pp-fn-np, and lex-pp-fn-vp have been
added for this thesis.

25

Chapter 3. Foundations

Example 3.4. Figure 3.1 shows a derivation of the phrase the cat saw the dog. Lexical
entries such as “the := N : λx. x” are the leaves of the derivation. Their parent
nodes are created by applying a matching combinator to the syntactic and semantic
categories of neighbouring nodes.

We call the elements of a derivation nodes, since the derivation can be viewed as
a tree with the lexical entries at the leaves. Therefore, each node in the derivation
represents a choice: the leaves correspond to the choice of lexical entry to represent a
word, and the nodes above them each represent the choice of a combinator. Likewise,
there are two types of derivation node: leaves and combinatory nodes.

Definition 3.5 (Derivation Node). The set of derivation nodes is made up of leaf nodes
and combinatory nodes, defined as follows:

• Let w be a word, csyn a syntactic category, and csem a semantic category. Then
the tuple (w, csyn, csem) is a leaf node.

• Let C be a combinator, csyn a syntactic category, csem a semantic category,
and n1, . . . , nk a list of derivation nodes, where k is the number of arguments
accepted by C. Then the tuple (C, csyn, csem, (d1, . . . , dk)) is a combinatory node.

For a derivation node d, we define the following accessor functions:

tok(d) =
{︄
w if d is a leaf node
tok(d1) . . . tok(dk) if d is a combinatory node

syn(d) = csyn

sem(d) = csem

The following accessors are only defined for combinatory nodes:

cmb(d) = C

children(d) = d1, . . . , dk

3.1.6. Parsing CCG

In terms of its generative power, CCG is a mildly context-sensitive language, and
thus more expressive than context-free languages (Vijay-Shanker and Weir 1994).

26

3.1. Combinatory Categorial Grammar

Algorithm 3.1 A variant of the CKY algorithm for CCG parsing.
Inputs:

• A sequence of words w1, . . . , wn

• A lexicon L
• A set of combinators C

Output: A parse chart Y containing the derivation nodes

Y [i, j]← {} for 1 ≤ i ≤ j ≤ n
for j ← 1, . . . , n do

for (w, csyn, csem) ∈ L with w = wj do
Y [j, j]← Y [j, j] ∪ {(w, csyn, csem)} ▷ Insert leaf nodes

end for
for i← j − 1, . . . , 1 do ▷ Iterate over start index

for k ← i+ 1, . . . , j do ▷ Iterate over split index
for e1, e2 ∈ Y [i, k − 1]× Y [k, j] do

for C ∈ C do
if C(syn(e1), syn(e2)) is defined then

e← (C,

tok(e1)tok(e2),
C(syn(e1), syn(e2)),
C(sem(e1), sem(e2)),
(e1, e2))

▷ Create derivation node

Y [i, j]← Y [i, j] ∪ e
end if

end for
end for

end for
end for

end for

27

Chapter 3. Foundations

Nevertheless, parsing algorithms designed for context-free grammars are commonly
used to parse CCG, including chart-based bottom-up parsing algorithms derived
from the well-known CKY algorithm (Cocke and Schwartz 1970; Kasami 1965;
Younger 1967).

There is also literature on parsing algorithms which do not map CCG parsing
onto a context-free parsing algorithm, but model the structure of CCG derivations
directly (for an example, see Kuhlmann and Satta (2014)). These algorithms are
however significantly more complex than the other two classes of algorithms and
are rarely used in statistical parsing research.

The experiments performed in this thesis use a CKY-style parsing algorithm.
Algorithm 3.1 shows an adaptation of CKY to CCG. The algorithm constructs a
chart Y to collect derivation nodes. Y is a two-dimensional array that, for every pair
of word indices, contains the set of derivation nodes that can be inferred for the
subsequence of the input sentence indicated by the indices.

The content of the cells that are located on the chart’s diagonal (corresponding
to individual words) is made up of leaf nodes, which are drawn directly from the
lexicon. Other chart cells are filled by applying a combinator to the entries located
in neighbouring chart cells. To iterate over all pairs of adjacent chart cells, three
indices are used: a start index i, a split index k, and an end index j. For every
combination of indices, pairs of derivation nodes from Y [i, k − 1] and Y [k, j] are
drawn from the chart. The syntactic categories of both entries are matched to the
patterns specified by the grammar’s combinatory rules. If an applicable combinator
is found, an inner derivation node is created and written to the chart.

After the algorithm terminates, all possible derivations for the entire sentence
are found in the chart cell Y [1, j]. The algorithm is slightly simplified in that only
binary combinators are considered, but unary combinators such as type raising can
be trivially applied on the level of each cell. It is extended for GA-CCG parsing in
Chapter 7.

3.2. Graph Algebras for Semantic Construction

Semantic construction is to the process of combining meaning fragments to form a
complete meaning representation. On the most abstract level, a calculus or algebra
is required which operates on meaning fragments. The most prominent example
might be the use of λ-calculus to build expressions of first order logic, which goes
back to Montague (1973) and continues to be widely used, including in CCG.
Meaning fragments are represented as functions which take other fragments as

28

3.2. Graph Algebras for Semantic Construction

arguments. Since any computation can be performed using λ-calculus, it is an
extremely powerful construction mechanism.

The power of λ-calculus has been very useful in the study of formal and compu-
tational semantics, allowing complex and creative solutions to linguistic problems.
However, this complexity can be a liability when designing machine learning sys-
tems: A semantic construction mechanism forms part of the problem statement that
a semantic parser is optimised to solve, and the degrees of freedom it permits can
put an additional burden on the learning algorithm. In contrast, a well-designed,
carefully restricted mechanism can impose a useful prior that allows learning to
proceed more efficiently and effectively by limiting the degrees of freedom and thus
the size of the solution space that has to be searched.

The task of semantic construction can be formalised by defining an algebra that
operates on meaning fragments. The operations of such an algebra take meaning
fragments as arguments and produce either new fragments or complete meaning
representations. By repeatedly applying these operations, a set of initial meaning
fragments can thus be combined into a single, complete meaning representation. In
the following section, we examine such an algebra.

3.2.1. The HR Algebra

TheHR algebra is an algebra for the construction of graphs, named for its relationship
with hyperedge replacement grammars1. It has first been applied to the construc-
tion of AMRs by Koller (2015), who employed the HR algebra in the context of
Interpreted Regular Tree Grammars (IRTGs) and showed that phenomena such
as complements and modifiers can be elegantly modeled in this way. The IRTG
approach has been extended to a full statistical AMR parser (Groschwitz, Fowlie
et al. 2017).

The HR algebra defines operations over graphs with sources or s-graphs. s-graphs
are graphs augmented with a labelling function which assigns a source label to some
nodes, marking them as sources. The most important operation of the HR algebra,
parallel composition, combines two s-graphs by merging the nodes of both graphs
that share the same source label. Additional operations permit the renaming and
deletion of source labels. Source labels are drawn from a set A, and each source
label may appear at most once in an s-graph.

In the case of AMR parsing, AMR graphs are augmented with source labels to
represent meaning fragments. Relatively small graphs, representing the meaning

1There is an equivalence between equational sets of the HR algebra and hyperedge replacement
grammars. For more details, see Courcelle and Engelfriet (2012).

29

Chapter 3. Foundations

a b

(a) H

a b

(b) K

a b

(c) L = H //K

b

(d) M = fg{a}(L)

a

(e) ren(b,a)(M)

Figure 3.2.: Examples for basic operations on s-graphs. H and K are merged (c),
then source a is forgotten (d), and finally, source b is renamed to a (e).

of individual words, are drawn from a lexicon and recursively combined into full
AMRs according to the rules of a grammar, such as the GA-CCG described in
Chapter 4.

Example 3.6 (HRAlgebra). The HR algebra’s operations are illustrated in Figure 3.2.
The example starts with the s-graphs H and K. Both graphs contain an a-source
and a b-source. In the next step, both graphs are merged using parallel composition,
which unites the a-source of H with the a-source of K and the b-source of H with
the b-source of K, yielding the new graph L. Then, the a-source is forgotten, and
the b-source renamed to an a-source.

3.2.2. Formal Definition

In this section, the HR algebra is defined in mathematical terms. Our definitions
follow those given by Courcelle and Engelfriet (2012), although some have been
slightly simplified.

Definition 3.7 (s-graph). Let G◦ = (VG◦ , EG◦) be a graph and A a countable set of
labels. The tuple G = (G◦, slabG) is called an s-graph, where slabG : VG◦ → A is a
partial injective function from vertices to labels.

The domain of slabG is called Src(G), the set of sources of G.
For simplicity, we will write VG for VG◦ when referring to an s-graph’s vertices,

and EG instead of EG◦ for its edges.

30

3.2. Graph Algebras for Semantic Construction

Given two s-graphs G,H , we write H ⊆ G if H◦ ⊆ G◦ and slabH = slabG |VH

(that is, slabH agrees with slabG but its domain is limited to the nodes in VH).

Parallel composition is the operation of taking the union of two graphs that share
a set of source nodes. This definitionmay seem counterintuitive, as we are interested
in composing not only graphs that already share some nodes, but arbitrary pairs of s-
graphs. However, we can always substitute an s-graph for an isomorphic one which
fulfils the required sharing property. In the following, we treat equally labelled
sources in separate graphs as if they refer to the same node and assume that such a
substitution to take place implicitly.2

Definition 3.8 (Parallel composition). Let G,H,K be s-graphs. G is the parallel
composition of H and K (written: G = H //K) iff. all of the following hold:

1. H ⊆ G,K ⊆ G,G◦ = H◦ ∪K◦ (G is the union of H and K, and the source
labels of H and K agree with G)

2. VH ∩VK = Src(H)∩Src(K) (H andK share no vertices except for the sources
they have in common)

3. EH ∩ EK = ∅ (H and K share no edges)

4. slabG = slabH ∪ slabK (G contains no sources other than those that are also in
H and K)

The remaining two operations, renaming and forgetting, act on a single s-graph’s
source labels without changing its structure.

Definition 3.9 (Forgetting sources). Let G = (G◦, slabG) be an s-graph, A a set of
source labels, and A ⊆ A. The forget operator fgA is defined as follows:

fgA(G) = (G◦, slab′G) where slab′G(n) = h ◦ slabG
h(l) = l if l /∈ A

The partial function h limits the domain of slabG to the sources outside of A. In
effect, all source labels in A are thus removed from the s-graph. Thus, the a-sources
of G cease to be sources for a ∈ A, but all other sources remain unchanged.

2This substitution is formalised by Courcelle and Engelfriet (2012), who introduce the concept of
abstract s-graphs, each of which represents a class of isomorphic graphs.

31

Chapter 3. Foundations

Definition 3.10 (Renaming sources). Let f : A → A be a permutation of A. The
rename operator renf is defined as follows:

renf (G) = (G◦, slab′G) where slab′G = f ◦ slabG

By applying a permutation f to the output of the source labelling function, renf
allows source labels to be modified, but does not introduce or remove sources.

3.2.3. Multiple Source Labels per Node

Because slab has been defined as a function, every node in an s-graph can be assigned
at most one source label. However, in the context of semantic construction, a node
could play several roles, for example both as the root of ameaning representation and
an argument slot. We therefore extend the HR algebra by relaxing this requirement
and define s∗-graphs, where a node may be assigned any number of source labels.
The source labelling function slab therefore becomes set-valued, and the definitions
require a slightly different notation.

Definition 3.11 (s∗-graph). Let G◦ = (VG◦ , EG◦) be a graph and A a countable set
of labels. The tuple G = (G◦, slabG) is called an s∗-graph, where slabG : VG◦ → P(A)
is a function assigning a set of source labels to every node, fulfilling the property:
|{v|a ∈ slabG(v)}| ≤ 1 for all a ∈ A (every label is assigned to at most one node).

For brevity, we write VG for VG◦ and VH for VH◦ .
The set {v ∈ VG | | slabG(v)| > 0} is called Src(G), the set of sources of G.
Given two s∗-graphs G,H , we write H ⊆ G if H◦ ⊆ G◦ and slabH(v) ⊆ slabG(v)

for all v ∈ VH .

In place of the injectivity constraint that is required for the slab-function of an
s-graph, a constraint is introduced that requires every source label to be assigned to
at most one node in the graph.

Definition 3.12 (Parallel composition of s∗-graphs). Let G,H,K be s∗-graphs. G is
the parallel composition of H and K (written: G = H //K) iff. all of the following
hold:

1. H ⊆ G,K ⊆ G,G◦ = H◦ ∪K◦ (G is the union of H and K, and the source
labels of H and K agree with G)

2. VH ∩VK = Src(H)∩Src(K) (H andK share no vertices except for the sources
they have in common)

32

3.2. Graph Algebras for Semantic Construction

3. EH ∩ EK = ∅ (H and K share no edges)

4. slabG(v) =

⎧⎪⎨⎪⎩
slabH(v) ∪ slabK(v) if v ∈ VH◦ ∩ VK◦

slabH(v) if v ∈ VH◦\VK◦

slabK(v) if v ∈ VK◦\VH◦

(G contains no sources other than those also in H and K)

Definition 3.13 (Forgetting sources of s∗-graphs). Let G = (G◦, slabG) be an s∗-
graph, A a set of source labels, and A ⊆ A. The forget operator fgA is defined as
follows:

fgA(G) = (G◦, slab′G) where slab′G(v) = slabG(v)\A

Definition 3.14 (Renaming sources of s∗-graphs). Let f : A → A be a permutation
of A. The rename operator renf is defined as follows:

renf (G) = (G◦, slab′G) where slab′G(v) = {f(l)|l ∈ slabG(v)}

While not described by Courcelle and Engelfriet (2012), an operator to invent
sources in an s∗-graph can also straightforwardly be defined.

Definition 3.15 (Adding sources to s∗-graphs). Let G = (G◦, slabG) be an s∗-graph
with G◦ = (V ◦G, E

◦
G). Let f : V ◦G → A be a partial injective source labelling function.

The add operator addf is defined as follows:

addf (G) = (G◦, slab′G)

where

slab′G(v) =
{︄
slabG(v) ∪ f(v) if v ∈ Dom(f)

slabG(v) otherwise

s∗-graphs are the fundamental semantic structures used by the semantic parsing
system developed in this thesis. In 4, we describe how they are embedded into a
syntactic-semantic grammar.

33

Chapter 3. Foundations

3.3. Linear Models of Linguistic Structures

Machine learning tasks are commonly categorised into classification tasks, where
labels are drawn from a closed set of classes, and regression tasks, where labels are
real-valued. Many tasks involving natural language, however, deal with structure
prediction, where labels have a complex structure. Structure prediction encompasses
tasks such as sequence tagging, where not just individual labels but sequences
thereof form the output of the model. In addition to sequence tagging, parsing is
another example of structure prediction, where labels take the form of parse trees.
In AMR parsing, sentences are labelled with AMR graphs.

Whereas classification algorithms usually work by assigning every class a score
and then selecting the class with the highest scores, this is not feasible in structure
prediction as there are usually too many labels to enumerate. For instance, the
number of possible parse trees of a sentence may be exponential, and there is an
infinite number of valid AMR graphs.

Instead of predicting a label in an atomic step, in structure prediction the task
of producing an output label is broken down into decisions. For example, a parser
is commonly said to be in a certain state, based on its past decisions. At every
state, there is a number of actions the parser can take, and a binary classification
algorithm can be used to score each action. The parser then performs the most
highly-scored action to advance to the next state according to its parsing algorithm.
Linguistic structure prediction therefore involves two parts: a learning component,
and a decoding component.

For instance, when parsing a sentence with the CKY algorithm for CCG parsing
(see Algorithm 3.1), the first decisions to be made involve selecting a syntactic
category for each token. Further decisions involve whether or not to combine two
neighbouring constituents using a given combinator. Each of these decisions can be
scored, finally producing the parse treewith the highest combined score. To perform
this decoding task efficiently, a beam search algorithm may be used (Section 3.3.1).

As an implementation for the learning algorithm, we describe the structured
perceptron, which we use to score decisions in our GA-CCG parser. We start by intro-
ducing the perceptron algorithm for classification (Section 3.3.2), before describing
its use for structured prediction (Section 3.3.3).

In this section, we introduce the fundamental concepts and algorithms needed
for training a GA-CCG parser, but do not yet unify them into a complete parsing
system. A full implementation of a GA-CCG parser is presented in Chapter 7.

34

3.3. Linear Models of Linguistic Structures

3.3.1. CKY Parsing with Beam-Search

An algorithm for constructing CCG derivations has been introduced in Section 3.1.6
(Algorithm 3.1). This algorithm is complete: it enumerates all derivations of the
input sentence that are possible under the given grammar.

The total number of derivations of a sentence may be too large to enumerate in
practice. At the same time, it is usually desirable to not just enumerate derivations,
but also express a preference among them. Beam search can be applied to perform
inexact search while considering a scoring function of parses. It works by limiting
the number of hypotheses considered at each step of the algorithm (Lowerre 1976).
In CCG parsing, this means that each cell Y [i, j] of the parse chart is pruned to a
maximum of k entries, where k is the beam size. Which entries are kept is determined
by a scoring function, which usually is the output of a machine learning model.

An adaptation of the CKY algorithm for CCG with beam search is shown in
Algorithm 3.2. After all available hypotheses for a given chart cell C[i, j] have been
enumerated, the function maxk is applied, which limits that cell’s contents to those
k entries that are assigned the highest scores by the scoring function.

In the remainder of this section, we examine how the structured perceptron al-
gorithm can be used to train a scoring function which can be used with the beam-
search CKY algorithm.

3.3.2. The Perceptron Algorithm

The perceptron algorithm is a discriminative machine learning algorithm which
searches for a hyperplane separating positive and negative examples. It is one of
the simplest and oldest classification algorithms (Rosenblatt 1958).

In classification as well as structure prediction, predictions y ∈ Yx for examples x
are represented by feature vectors Φ(x, y). The perceptron algorithm trains a weight
vector w of the same dimension as the feature vector, which is used to produce a
score:

Score(x, y) = w⊤Φ(x, y) (3.2)

Themodel makes a prediction for x by choosing y such as tomaximise Score(x, y).
To obtain w, the perceptron algorithm uses an online learning procedure, which

repeatedly iterates over the data set. For every example, a prediction is made. If
the prediction is incorrect, the weights are updated by adding the features for the
annotated label and subtracting the features for the incorrect prediction, as shown

35

Chapter 3. Foundations

Algorithm 3.2 An algorithm for CCG parsing with beam search.
Inputs:

• A sequence of words w1, . . . , wn

• A beam size k
• A lexicon L
• A set of combinators C
• A scoring function for derivation nodes Score

Output: A parse chart Y containing the derivation nodes

Y [i, j]← {} for 1 ≤ i ≤ j ≤ n
for j ← 1, . . . , n do

for (w, csyn, csem) ∈ L with w = wj do
Y [j, j]← Y [j, j] ∪ {(w, csyn, csem)} ▷ Insert leaf nodes

end for
Y [j, j]← maxkScore(x){x ∈ Y [j, j]} ▷ Enforce beam limitation
for i← j − 1, . . . , 1 do ▷ Iterate over start index

for k ← i+ 1, . . . , j do ▷ Iterate over split index
for e1, e2 ∈ Y [i, k − 1]× Y [k, j] do

for C ∈ C do
if C(syn(e1), syn(e2)) is defined then

e← (C,

tok(e1)tok(e2),
C(syn(e1), syn(e2)),
C(sem(e1), sem(e2)),
(e1, e2))

▷ Create derivation node

Y [i, j]← Y [i, j] ∪ e
end if

end for
end for

end for
Y [i, j]← maxkScore(x){x ∈ Y [i, j]} ▷ Enforce beam limitation

end for
end for

36

3.3. Linear Models of Linguistic Structures

in Algorithm 3.3. This pushes the weight vector towards achieving the correct
classification of x.

Algorithm 3.3 The basic perceptron algorithm.
Inputs:

• A data set (x̃1, ỹ1), . . . , (x̃N , ỹN)
• An iteration count T
• An initial weight vector winit

Output: A weight vector wt

1: w0
N ← winit

2: for t← 1 . . . T do
3: wt

0 ← wt−1
N

4: for i← 1 . . . N do
5: y ← argmaxy′∈Ywt

i−1
⊤
Φ(x̃i, y

′)
6: if y ̸= ỹi then
7: wt

i ← wt
i−1 +Φ(x̃i, ỹi)− Φ(x̃i, y)

8: else
9: wt

i ← wt
i−1

10: end if
11: end for
12: end for
13: return wT

N

Since the decision function is a linear function of the feature vectors, the decision
boundary of the perceptron is a hyperplane that separates positive and negative
examples. The perceptron algorithm can be shown to find a separating hyperplane
if the training data are linearly separable, and to make a bounded number of errors
if the training data are not separable (Collins 2002). Its convergence can be further
improved by using an adaptive learning rate.

Adadelta Updates

While the standard perceptron update is theoretically guaranteed to converge, it
may take a long time to do so. One reason is that the parameters for rare features are
updated less frequently, which is not accounted for by the perceptron algorithm and
leads to a low rate of convergence for the corresponding parameters. To present the

37

Chapter 3. Foundations

Adadelta method, we first define the gradient at update step t as follows (compare
Algorithm 3.3 line 7):

gt = Φx̃t, ỹt − Φx̃t, y (3.3)

The Adadelta algorithm speeds up convergence by applying individual, dynamic
learning rates to every parameter (Zeiler 2012). It keeps track of an accumulated,
decaying average of squares of gradients E[g2].

E[g2]t = ρE[g2]t−1 + (1− ρ)g2t (3.4)

In the same manner, all updates ∆x made by the algorithms are accumulated.

E[∆x2]t = ρE[∆x2]t−1 + (1− ρ)∆x2t (3.5)

The update is calculated by scaling the perceptron update by the ratio of these
quantities:

∆xt = −
RMS[∆x]t−1

RMS[g]t
gt (3.6)

where

RMS[g]t =
√︁
E[g2]t + ϵ (3.7)

Since the accumulated gradients and updates are squared, the RMS function
effectively computes a root of mean squares.

The hyperparameter ϵ > 0 should be a small positive value, while 0 < ρ < 1 is
set to 0.95 in Zeiler (ibid.).

3.3.3. Structured Perceptron

The perceptron requires evaluating all possible labels to decide which label to
predict (Algorithm 3.3 line 5). In the case of structured prediction, this is infeasible
since the set of available labels Y(x) depends on x and may be exponential in the
length of x (for instance, for a syntax parser, Y(x) contains the valid syntax trees
for x).

In the structured perceptron, the argmax of Algorithm 3.3 is therefore implemen-
ted as a search in the space of labels, often implemented using dynamic program-
ming algorithms such as the CKY algorithm (see Algorithm 3.1). This is possible if

38

3.3. Linear Models of Linguistic Structures

the feature function Φ can be decomposed over the internal structure of the label
into local feature vectors φi such that Φ(x) =

∑︁n
i=1 φi(x) for some decomposition of

the label into n parts (Collins 2002).3
For example, in syntax parsing, features can be extracted not only from complete

derivations, but also for sub-trees of a derivation corresponding to a part of the sen-
tence. By multiplying these feature vectors with the weight vector, sub-derivations
can be scored and the CKY algorithm can recursively construct a complete derivation
from the highest-scoring parts.

3.3.4. Cost-Sensitive Perceptron

The standard perceptron uses only two outputs to compute an update. The under-
lying assumption is that the correct output is known and the computed update will
therefore improve the model. However, with structured output spaces, the correct
output is not necessarily accessible to the model, for example because no derivation
of the correct output can be found. In cost-sensitive learning, we accept that the model
may not be able to produce a perfect result, and instead update towards the best
available output, as determined by a cost function.

A simple instance of a cost-sensitive perceptron algorithm has been presented
by Singh-Miller and Collins (2007), which is shown in Algorithm 3.4. It enforces a
margin between the best output and all other outputs, where the size of the margin
of each output depends on the cost difference.

At the beginning of each iteration, the algorithm obtains a set of predictions Y(xĩ).
These predictions are separated into a good set G which consists of the predictions
with minimal cost, and a bad set B comprising all others.

The goal of the algorithm is to enforce a margin (a minimum score difference)
between the predictions in G and the predictions in B. The required margin is
defined as λ∆(y) for any prediction y, where ∆(y) is the cost difference between y
and any good state, and λ is a scaling parameter.

Two sets of margin-violating predictions are defined: C is the set of good predic-
tions which are not sufficiently separated from some bad prediction, and E is the
set of bad predictions which violate the margin regarding some good prediction.
To increase the margin for the violating predictions, a positive update is computed
from C and a negative update from E.

Both the positive and negative updates are weighted averages of the respective
predictions’ feature vectors. All predictions in C are weighted equally. In contrast,

3In practice, the decomposition of the feature function need not be perfect, as beam search allows for
a margin of error.

39

Chapter 3. Foundations

Algorithm 3.4 The cost-sensitive perceptron algorithm by Singh-Miller and Collins
(2007).
Inputs:

• A data set (x̃1, ỹ1), . . . , (x̃N , ỹN)
• An iteration count T
• An initial weight vector winit
• A feature extractor Φ(y)
• A cost function cost(y)
• A margin scaling factor λ

Output: A weight vector wt

1: w0
N ← winit

2: for t← 1 . . . T do
3: wt

0 ← wt−1
N

4: for i← 1 . . . N do
5: costmin ← miny∈Y(x̃i) cost(y)
6: ∆(y)← cost(y)− costmin for all y ∈ Y(xĩ)
7: G← {g | g ∈ Y(x̃i),∆(g) = 0}
8: B ← Y(x̃i)\G
9: C ← {c | c ∈ G; ∃z : z ∈ B,wt

i−1(Φ(c)− Φ(z)) < λ∆(z)}
10: E ← {e | e ∈ B;∃y : y ∈ G,wt

i−1(Φ(y)− Φ(e)) < λ∆(e)}
11: τ(e)←

∑︁
c∈C

vc(e)
|C|

∑︁
e′∈E vc(e)

for all e ∈ E

12: where vc(e) =
{︄
1 if wt

i−1(Φ(c)− Φ(e)) < λ∆(e)

0 otherwise
13: wt

i ← wt
i−1 +

∑︁
c∈C

Φ(c)
|C| −

∑︁
e∈E τ(e)Φ(e)

14: end for
15: end for
16: return wT

N

40

3.4. Expectation Maximisation and the Inside-Outside Algorithm

every prediction in E is weighted by the number of C-predictions regarding which
it is in violation. Consequently, the computed update is added to the weight vector.

An important difference to the perceptron approaches discussed so far is that
in the cost-sensitive perceptron, several outputs of the model are considered in a
weighted-average update. In contrast, both the standard perceptron and the early
update perceptron compute the update from a single pair of outputs. Arguably,
this allows the algorithm to more effectively use the information contained within
the prediction list.

3.3.5. Minibatch Training

As an online learning algorithm, the perceptron algorithm processes examples
sequentially. To derive an update for an example, it performs inference – for instance,
using a CKY parsing algorithm, which can require a large amount of computation
time. It is desirable to parallelise these computations to make use of parallel and
distributed computer architectures.

Fortunately, it has been shown that minibatching, a simple method for parallel-
ising the training of online learners, yields good speed-ups while preserving the
convergence behaviour of perceptrons (Zhao and Huang 2013). In minibatching,
updates are collected for several examples at a time and then summed and applied
collectively. Inference for these examples can thus be performed in parallel. While
this method slightly alters the learning behaviour since the same weight vector is
used for all predictions of the same minibatch, this does not harm the algorithm’s
convergence behaviour for moderate batch sizes.

3.4. Expectation Maximisation and the Inside-Outside
Algorithm

Expectation Maximisation (EM) is a class of local optimisation algorithms. The name
is derived from the common structure of these algorithms, which alternate between
two steps. In the estimation step, expected counts of model events are computed
across the data set based on the model parameters. In the maximisation step, the
model parameters are optimised to maximise the probability of the expected model
events. These two steps are alternated until the parameters converge.

EM is usually applied when a hidden process – such as a probabilistic grammar –
is assumed to have generated the data, but the process cannot be observed. One
application for EM is parameter estimation for probabilistic context-free grammars

41

Chapter 3. Foundations

(PCFGs). Given a corpus of text and a context-free grammar (CFG), the task is to
assign each CFG rule a probability such that the probability of the training data is
maximised. The grammar is thus tuned to represent the linguistic structures found
in the training data.

When used for PCFG estimation, the expectation step of the EM algorithm is
implemented using the inside-outside algorithm (Baker 1979; Lari and Young 1990).
It calculates expectations for the number of occurrences of each CFG rule in a given
example.

EM for PCFG estimation can be interpreted as a grammar induction method. In
the beginning, a large number of PCFG rules are added to the grammar. During
the expectation step, rules that are applicable frequently across the corpus are
assigned a high expected count. The maximisation step then assigns these rules a
higher probability, whereas rare rules are assigned low probabilities. If a rule is not
necessary, for instance because it can always be replaced by a more general rule, its
probability converges to zero. The EM algorithm can therefore be used to weed out
unnecessary rules from an overgenerating grammar.

3.4.1. PCFG Parameter Estimation

Context-free grammars (CFGs) are rule systems that produce sequences of sym-
bols according to rewriting rules which translate non-terminals – starting with a
special symbol S – into other non-terminals or terminal symbols. In the application
to natural language grammar, terminal symbols are words and the context-free
production rules define the syntax of the natural language.

Definition 3.16 (Context-FreeGrammar). A context-free grammar is a tuple (N,Σ, R, S)
where N is a set of nonterminals, Σ is a set of terminals, R is a set of rules, and
S ∈ N is a start symbol.

Without loss of generality, we assume that CFGs are in Chomsky normal form,
so that rules take one of the following forms:

• A→ BC where A,B,C ∈ N

• A→ t where t ∈ Σ

As practical context-free grammars for natural languages are ambiguous, parsers
require a mechanism to prefer one parse over the other and thus output the most
plausible parse for a sentence. Probabilistic context-free grammars are an extension
where every rule of a CFG is associated with a probability.

42

3.4. Expectation Maximisation and the Inside-Outside Algorithm

Definition 3.17 (Probabilistic Context-Free Grammar). Let G = (N,Σ, R, S) be
a context-free grammar and q : R → [0, 1] a probability distribution over R with∑︁

r∈R q(r) = 1. The tuple (G, q) is called a probabilistic context-free grammar (PCFG).

To estimate PCFG parameters, the inside-outside algorithm can be used in com-
bination with expectation maximisation. The high-level iterative structure of the
corresponding EM algorithm is shown in Figure 3.5. For a given number of iter-
ations, the algorithm alternates between an expectation and a maximisation step.
In the expectation step, the algorithm collects expected counts for each PCFG rule
across all examples. The expected rule counts express how frequently a rule is
expected to occur in the derivation for an example given the current model para-
meters. In the maximisation step, new model parameters are computed from the
expected counts. Since the model is probabilistic, this step can be implemented by
maximum likelihood estimation, that is, normalising the counts to form a probability
distribution.

The computation of the expected counts is performed by the inside-outside al-
gorithm, which is shown in Figure 3.6. The algorithm computes two types of
probabilities for a sentence x1, . . . , xn:

• The inside probability inside(A, i, j) represents the probability that tokens
xi, . . . , xj are derived from the non-terminal A.

• The outside probability outside(A, i, j) represents the combined probability
of all partial derivations which lead to the non-terminal A spanning tokens
xi, . . . , xj , but do not include the sub-tree of A.

The values of inside probabilities on the token level are known: They correspond
to the parameters of the terminal rules which produce the tokens x1 through xn.
The remaining inside probabilities can be computed bottom-up by considering the
parameters of non-terminal rules which might have produced a given non-terminal.

Outside probabilities are known on the sentence level, since there is no outside
context to be included. Since S is defined as the start symbol, the probability for its
occurrence at the root of the derivation is 1, while it is 0 for all other non-terminals.
Outside probabilities are then propagated downwards by probabilisticallymodelling
the application of binary rules: The outside score of a non-terminal is the sum of the
outside scores of all potential parents, multiplied by the inside scores of all potential
siblings and the scores of the corresponding rules.

To calculate the expected count for each rule, rule probabilities are derived from
the inside and outside scores by summing over all possible rule applications: for

43

Chapter 3. Foundations

Algorithm 3.5 The EM algorithm for estimating PCFG parameters.
Inputs:

• A CFG (N,Σ, R, S)
• A Corpus X = (x1 . . . xn)
• An iteration count T
• An initial probability distribution q0 : R→ [0, 1]

Output: A probability distribution qT : R→ [0, 1]

for k ← 1 . . . T do
for all r ∈ R do ▷ Initialise counts with zero

count(r)← 0
end for
for i← 1 . . . n do ▷ Expectation step: aggregate rule counts

c← Counts(xi, qk−1)
for all r ∈ R do

count(r)← count(r) + c(r)
end for

end for
for all r ∈ R do ▷ Maximisation step: normalise rule counts

qk(r)← count(r)∑︁
r′∈R count(r′)

end for
end for
return qT

44

3.5. Neural Network Models for Sequence Tagging

terminal rules, these are all tokens which match the token produced by the rule,
and for non-terminal rules, they are all sub-sequences of the sentence of length two
or greater. The probability is then scaled by the inverse probability assigned to the
entire sentence to obtain a count.

The EM algorithm iteratively optimises the total probability assigned to the data
set by shifting probability mass towards the rules which are the most useful in the
explanation of the corpus. While Algorithm 3.5 uses a fixed number of iterations, it
can also be stopped when the total probability of the corpus converges.

In chapter 6, we derive an EM algorithm for the filtering of GA-CCG lexica, using
EM with the inside-outside algorithm as a starting point. While the EM algorithm
is almost identical, inside and outside probabilities are computed differently due to
the different generative process underlying GA-CCG derivations. The details of the
algorithm are explained in Section 6.2.

3.5. Neural Network Models for Sequence Tagging

Sequence taggers are tools which assign a label from a closed inventory to each ele-
ment of a sequence. They are a part of many natural language processing pipelines.
For instance, part-of-speech taggers assign labels such as “noun” or “transitive verb”
to tokens from a natural language corpus.

Tags are often used as features by downstream natural language processing
components. For example, feeding tags into a parser allows it to abstract over
concrete tokens and take the more abstract part-of-speech tags into account when
making decisions. This abstraction improves the parser’s ability to generalize.

In lexicalised grammar formalisms such as CCG (Clark and Curran 2004) or lex-
icalised tree-adjoining grammar (Bangalore and Joshi 1999), tagging is employed to
improve efficiency. In such grammars, almost all decisions are shifted to the lexicon,
making the choice of lexicon entries important but also challenging, since lexical
categories are complex and there are many categories to choose from. Since parsing
algorithms such as CKY (see Section 3.1.6) have a high polynomial complexity, this
results in severe computational overhead. Sequence taggers can be used to reduce
the search space at the lexical level by pre-selecting the lexical categories made
available to the parser. Such taggers are called supertaggers.

Concretely, a supertagger for CCG is trained on a corpus such as CCGbank
(Hockenmaier and Steedman 2007) to predict the syntactic category associated
with each token. Its tag set is therefore the set of syntactic categories that were
observed in the corpus, including both atomic categories such as NP and complex

45

Chapter 3. Foundations

Algorithm 3.6 Inside-outside algorithm calculating expected PCFG rule counts.
Inputs:

• A CFG (N,Σ, R, S)
• A sentence x = (t1 . . . tn)
• A probability distribution q : R→ [0, 1]

Output: A mapping count : R→ R+

function Counts(x = (t1, . . . , tn), q)
for i← 1 . . . n do ▷ Initialise inside scores for terminal rules

inside(A, i, i)←

{︄
q(A→ ti) if A→ ti ∈ R

0 otherwise
end for
for j ← 1 . . . n, i← j . . . 1, A ∈ N do ▷ Compute inside scores

inside(A, i, j)←
∑︁

A→BC∈R
∑︁i−1

k=i q(A→ BC) inside(i, k) inside(k + 1, j)
end for

for all A ∈ N do ▷ Initialise outside scores for root of derivation

outside(A, 1, n) =

{︄
1 if A = S

0 otherwise
end for
for j ← n . . . 1, i← 1 . . . j, A ∈ N do ▷ Compute outside scores

outside(A, i, j)←
∑︂

B→CA∈R

i−1∑︂
k=1

q(B → CA) inside(C, k, i− 1) outside(B, k, j)

+
∑︂

B→AC∈R

i−1∑︂
k=1

q(B → AC) inside(C, j + 1, k) outside(B, i, k)

end for

for all A→ BC ∈ R do ▷ Compute counts for non-terminal rules
count(A→ BC)←

∑︁
1≤i<k<j<n

outside(A,i,j)q(A→BC) inside(B,i,k) inside(C,k+1,j)
inside(S,1,n)

end for
for all A→ x ∈ R do ▷ Compute counts for terminal rules

count(A→ t)←
∑︁

i:ti=t
inside(A,i,i) outside(A,i,i)

inside(S,1,n)
end for
return count

end function

46

3.5. Neural Network Models for Sequence Tagging

categories such as (S\NP)/NP. For each token, it outputs a probability distribution
over all tags, the top items of which are forwarded to the parser. Instead of choosing
from the whole space of syntactic categories, the parser can therefore focus on a
limited number of tags per token, greatly improving its ability to search for complete
derivations.

A supertag sequence already contains a large amount of information about a
CCG derivation. This is demonstrated by the fact that the EasyCCG parser is
able to use a purely deterministic parsing component while achieving respectable
accuracy (Lewis and Steedman 2014), relying on a supertagger as the only learned
component.

Semantic parsers also face the problem of lexical selection, albeit in an even more
severe form: they need to choose not just a syntactic category, but also the semantic
content of any given token. For composition-based semantic parsers, supertagging is
therefore an attractive option to limit the parser’s search space (Groschwitz, Fowlie
et al. 2017).

In recent research, Bidirectional LSTM (BiLSTM) models are frequently used for
supertagging (Lewis, K. Lee and L. Zettlemoyer 2016; Vaswani et al. 2016). The
supertagger introduced in Section 6.3 also follows this approach. In the rest of this
section, we therefore discuss the technical foundations for BiLSTM supertagging.

3.5.1. Long Short-Term Memory

The Long Short-Term Memory (LSTM) is a type of neural network commonly
used for sequence processing (Hochreiter and Schmidhuber 1997). It is recurrent,
meaning that information is transferred not just from input to output, but also
along the time dimension, for instance, between the tokens of a sentence. The state of
the LSTM when processing a token depends not just on the token itself, but also
on the previous LSTM state, which allows the network to “remember” contextual
information.

For every input element xj , an LSTM computes two quantities: a memory vector
cj and a hidden state hj .4 Both are vectors of length d, where the dimension d is a
hyperparameter which can be chosen when implementing an LSTM network. The
hidden state hj is also considered the output of the LSTM at time step j.

The distinctive feature of LSTMs are its three gates: the forget gate f , input gate i,
and output gate o. All three depend on the current sequence element xj and the
previous hidden state hj−1 to compute a vector of weights to apply to the elements

4See Goldberg (2017) for a more detailed introduction. In this section, we adopt their notation.

47

Chapter 3. Foundations

of an LSTM state vector:

• The forget gate is applied to the previous cell’s memory vector cj−1, which
allows the LSTM to bring some components close to zero in preparation for
overwriting them.

• The input gate is applied to an update candidate z to control which of its
components are added to the memory vector.

• The output gate is used to control which parts of the memory vector cj are
represented in the hidden state hj .

Each gate is represented by a pair of weight matrices which can be trained to
optimise the LSTM’s operation.

The full calculations performed by an LSTM are as follows:

cj = f ⊙ cj−1 + i⊙ z (3.8)
hj = o⊙ tanh(cj) (3.9)

where

i = σ(xjW
xi + hj−1W

hi) (3.10)
f = σ(xjW

xf + hj−1W
hf) (3.11)

o = σ(xjW
xo + hj−1W

ho) (3.12)
z = tanh(xjW xz + hj−1W

hz) (3.13)

In this description, ⊙ is the element-wise product, xj ∈ Rdx and cj , hj , i, f, o, z ∈
Rd are vectors, and W xi,W xf ,W xo,W xz ∈ Rdx×d as well as W hi,W hf ,W ho,W hz ∈
Rd×d are weight matrices.

3.5.2. Stacked and Bidirectional LSTM

On a high level, an LSTM transforms an input sequence x1, . . . , xn into an output
sequence h1, . . . , hn. It is therefore possible to stack another LSTM on top of the
first one using h1, . . . , hn as the input sequence. This adds additional parameters
and computing steps to the model, enabling it to deal with more complex inputs.

In natural language processing, it is also common to encounter phenomena where
the output generated for a token depends on its right context. LSTMs are therefore

48

3.5. Neural Network Models for Sequence Tagging

commonly used bidirectionally: two LSTMs are instantiated, where the first LSTM
processes the sentence in left-to-right order and the second LSTM in reverse. The
outputs of both LSTMs are concatenated for each token to form the output of the
bidirectional LSTM.

3.5.3. Using an LSTM to Predict Tags

A stacked BiLSTM outputs a sequence of vectors h1, . . . , hn with of dimensionality
2d. To use these vectors for the prediction of tags, they must be mapped onto the
tag inventory. This is achieved by passing the output vectors through an additional
fully connected neural network layer, followed by a softmax activation function
which maps the layer’s output into the output range [0, 1]. The resulting vector
assigns a score to every possible tag, and can be decoded by choosing the single
highest-scored tag. More complex decoding strategies can also be applied, such as
emitting all tags above a certain score threshold.

A fully connected layer is composed of a weight matrix W ∈ Rd×k and a bias
term b ∈ Rk, where k is the output dimensionality, that is, the number of tags. The
output of the tagger is computed as follows:

oj = softmax(hjW + b)

The softmax function applies the exponential function to every element of the
output vector and then normalises the vector so that the elements sum to one.

softmax(z)i =
ezi∑︁k
j=1 e

zj

Here, zi and zj represent individual entries of the k-dimensional vector z.

3.5.4. Word Vectors

Whereas the input of a tagger is a sequence of discrete tokens, the computations of
neural networks are performed upon continuous vectors. Furthermore, since the
size of an LSTM’s weight matrices scales with the dimensionality of the input, it is
not feasible to represent the input using one-hot vectors which are zero except for
the single position indicating the input word, as these vectors can have millions of
entries.

Instead, words are represented as dense vectors of relatively low dimension. The
simplest implementation is to keep a lookup table (also called an embeddingmatrix)

49

Chapter 3. Foundations

which contains a word vector for every word in the vocabulary. Rare words are
represented using a special entry often called UNK (for unknown). Word embeddings
can be obtained by training an embedding matrix on the fly, using a precomputed
embedding, or applying a pre-trained language model to the input:

• To train word embeddings on the fly, the embedding matrix is initialised
randomly and then updated along with the other layers during training. This
allows the word embeddings to represent properties that are relevant to the
training task.

• Pre-trained word embeddings are derived from large corpora using generic
training tasks, such as predicting words from their context (Mikolov et al.
2013), or predicting the co-occurrence probabilities of words (Pennington,
Socher and Manning 2014).
After a word embedding model has been trained, its embedding vectors are
saved to a table and can be re-used to encode the input for a tagger. In this ap-
plication scenario, each input word is replaced by the word embedding vector
taken from the table. This implies that while the words’ context is considered
during training, the resulting word embeddings are applied independent of
context and conflate various forms and senses of words that share the same
surface form.

• Large pre-trained language models are sequence-processing models that, like
word embedding models, are trained on large, broad-coverage corpora. The
difference lies not just in the models’ size, but also in how they are applied:
The tagger’s input sentence is not encoded word-by-word, but the sentence is
passed to the model as a whole, which allows the model to encode the words’
context-dependent semantics in its word representations. Word representa-
tions from large pre-trained language models have been shown to improve
performance on a range of natural language processing tasks (Devlin et al.
2019; Howard and Ruder 2018; Peters et al. 2018).
Pre-trained language models can also be used in a transfer learning setting by
embedding them within another model and thus having them participate in
the training for the specific task.

In practice, more than one embedding method can be used. For instance, the
input for the tagging model can be constructed by concatenating an embedding
trained on the fly with a pre-trained embedding. In Section 6.3, we describe our
supertagger for GA-CCG and experiment with various sources of embeddings.

50

Chapter 4.

Graph Algebraic Combinatory Categorial
Grammar

In this chapter, we introduce Graph Algebraic Combinatory Categorial Grammar
(GA-CCG), a grammar which describes how AMRs can be derived from natural
language sentences. GA-CCG is the theoretic basis for the implementation of a
GA-CCG semantic parsing pipeline that is described in the following chapters.

This chapter is divided into two main sections. In Section 4.1, the the semantic
construction operations used in GA-CCG (Section 4.1) are defined. Section 4.2
describes how they can be integrated with CCG to achieve form a syntactic-semantic
grammar.

4.1. Semantic Construction of AMRs

Semantic construction is the process of composing semantic fragments into a full
meaning representation. In Section 3.2, the HR algebra has been introduced as a
mechanism for the composition of graphs. However, the HR algebra is very general
and allows the construction of all kinds of graphs, whereas we deal only with
AMR graphs. We will therefore define a restricted set of operations which better
captures the composition of AMRs. At the same time, there is no need to define
our operations on all possible s-graphs. We therefore define GA-CCG s∗-graphs,
which are the objects of our algebra and embody specific rules for the assignment
of source labels.

4.1.1. Placeholder AMRs

AMRs are directed graphs. To recapitulate Definition 2.1, an AMR contains two
types of vertices:

51

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

• Constant nodes, which are labelled with a concept.

• Variable nodes, which are unlabelled.

In addition, AMR edges are labelled with a role.
In a complete AMR, every variable node is required to have an outgoing instance

edge, which assigns a concept to the event or entity represented by the variable
node. In a placeholder AMR, this requirement is lifted: variable nodes may be defined
without specifying a concept they instantiate. We call such nodes placeholders.

Definition 4.1 (Placeholder AMR). Let G = (V,E, vroot, l) be a semantic graph1

with variable nodes Vv and constant nodes Vc.
G is called a placeholder AMR iff. all of the following hold:

• l(v) ∈ Lconcepts ∪ Lconstants for v ∈ Vc (all constant nodes are labelled with
concepts)

• l(e) ∈ Lrelations for e ∈ E (all edges are labelled with relations)

In contrast to the definition of AMRs (Definition 2.2), it is not required that
variable nodes have outgoing instance edges. Nodes that are not edges are called
placeholders. Vp = {v ∈ Vv : ¬∃e = (v, v′) ∈ E : l(e) = instance} is the set of
placeholders of G.

The motivation for introducing placeholders is that we wish to represent frag-
ments of AMRs which can be composed into a complete AMR. Placeholders can be
filled by merging them with nodes from another graph.

4.1.2. GA-CCG s*-Graphs

It is straightforward to extend placeholder AMRs with source labels by defining
a function slab as introduced in Section 3.2. Interpreting placeholder AMRs as
s∗-graphs will allow us to define graph-algebraic operations over meaning repres-
entations. These GA-CCG s∗-graphs contain the information necessary to combine
elementary meaning fragments to form full AMRs. In this work, they are used to
express the meanings of lexical entries, phrases, and full sentences.

Source labels used in GA-CCG s∗-graphs take one of the following forms:

• ⟨root⟩marks a node as the root of the graph.
1See Definition 2.1.

52

4.1. Semantic Construction of AMRs

• ⟨i⟩with i ∈ N is used to label placeholders with an index i.

• ⟨s⟩ is used temporarily to label a placeholder-argument pair.

Root source In every non-empty AS s∗-graph, exactly one node is marked as
the root of the graph. The significance of this label is twofold. First, as in AMR, it
serves as an indication of the semantic focus of the expressed meaning. Second, it
defines the node to which semantic operations, such as modification, are usually
applied.

Placeholder sources Every placeholder must be labelled as an ⟨i⟩-source. The
indices i that occur in a GA-CCG s∗-graph are required to be unique and consecutive
starting from 0. Therefore, there exists a total ordering among the placeholders,
and we call the one with the highest index the outermost placeholder pmax.

By indexing placeholders, we allow GA-CCG s∗-graphs to play the role of func-
tions: each placeholder represents an argument position. A placeholder may be
filled bymerging it with a non-placeholder node. The outermost placeholder repres-
ents the function’s first argument and is filled first. While numbering placeholders
from the inside out may seem unusual, it provides the convenience of avoiding
renumbering placeholders after every operation.
Definition 4.2 (GA-CCG s∗-graph). Let the set of GA-CCG source labels S be
defined as follows: S = {⟨root⟩, ⟨s⟩} ∪ {⟨i⟩ : i ∈ N}.

Furthermore, let G = (V,E, vroot, l) be a placeholder AMR with placeholders
Vp ⊆ V , and slab : V → P(S) a source labelling function.

A tuple (V,E, vroot, l, slab) is called a GA-CCG s∗-graph iff. the following hold:

1. ⟨root⟩ ∈ slab(vroot) (the root of the graph is labelled as a root source)

2. |{v : v ∈ V, ⟨s⟩ ∈ slab(v)}| = 0 (there is no s-source2)

3. [∃v ∈ V : ⟨i⟩ ∈ slab(v)] ⇒ [∃v′ ∈ V : ⟨i− 1⟩ ∈ slab(v′)] for all i ≥ 1 (i-sources
are numbered consecutively starting from 0)

4. ⟨i⟩ ∈ slab(v)⇔ v ∈ Vp for all i ∈ N (the i-sources are exactly the placeholders)

The set of all GA-CCG s∗-graphs is denoted G∗.
Definition 4.3 (Outermost Placeholder). Let G be a GA-CCG s∗-graph with place-
holders Vp and |Vp| ≥ 1. The outermost placeholder index pmax(G) is the highest index
of any i-source occurring in the graph:

pmax(G) = max{i : i ∈ N,∃v ∈ Vp : ⟨i⟩ ∈ slab(v)}
2⟨s⟩ is assigned as a source label only temporarily during the processing of a semantic operator.

53

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

We now define a number of operators that combine pairs of GA-CCG s∗-graphs.

4.1.3. The Apply Operator

The apply operatorA is used tomodel basic function application, such as the filling of a
verb’s argument slots. Its first argumentmust therefore have at least one placeholder.
A fills the outermost placeholder and merges the remaining placeholders of the
function graph. Both of these aspects are implemented using the more fundamental
parallel composition operator //, as defined in Section 3.2.3.

Definition 4.4 (apply operator). Let G,H be GA-CCG s∗-graphs where G has the
set of placeholders V G

p and |V G
p | ≥ 1. The apply operator A is defined as follows:

A(G,H) = G′ //H ′

where

G′ = ren{⟨pmax(G)⟩→⟨s⟩}(G)

H ′ = ren{⟨root⟩→⟨s⟩}(H)

Example 4.5. Consider the sentence I slept. Its meaning can be represented by the
following AMR graph:

sleep-01 iARG0

= GI slept

Suppose that the lexicon assigns the following meaning representations to the
two individual words:

I: i = GI

slept: sleep-01 ⟨0⟩ARG0 = Gslept

The A operator can be used to derive the sentence meaning from the lexical
meanings:

GI slept = A(Gslept, GI)

54

4.1. Semantic Construction of AMRs

Example 4.6. This example illustrates how sources are merged by the A operator.
Consider the sentence I want to sleep, represented by the following AMR:

want-01

i sleep-01
ARG0 ARG1

ARG0

= GI want to sleep

In addition to the lexical entries fromExample 4.5, assume thatwant is represented
in the lexicon as follows:

want:
want-01

◦
⟨0⟩

◦
⟨1⟩

ARG0 ARG1 = Gwant

To construct the meaning of the phrase want to sleep, A(Gwant, Gsleep) may be eval-
uated3. Since Gwant and Gsleep both contain a placeholder labelled ⟨0⟩, both place-
holders are merged, creating the triangular control structure that can be observed
in the sentence meaning representation.

A(Gwant, Gsleep) =

want-01

◦
⟨0⟩

sleep-01
ARG0 ARG1

ARG0

The sentence meaning I want to sleep is therefore represented by the following
expression:

GI want to sleep = A(A(Gwant, Gsleep), GI)

Additional examples for the use of A and other semantic operators are provided
in Section 4.2 in the context of GA-CCG derivations for these sentences.

3For simplicity, the semantics of to are ignored here. A more syntactically complete account of this
sentence is given in Section 4.2.

55

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

4.1.4. The Modify Operator

Apart from the filling of verb argument slots, application also models modification.
Modifiers act as functions and are represented by graphs whose only placeholder is
the root. For example, a representation for the phrase new teacher can be constructed
using the A operator as follows:

new: ⟨0⟩ newmod
= Gnew

teacher: person teach-01
ARG0 = Gteacher

new teacher: person teach-01

new

ARG0
mod

= A(Gnew, Gteacher)

As the example shows, the apply operator is suitable for modifications where the
entity being modified is represented by the root of the graph.

In this example, the semantic representation for teacher contains two nodes, where
one node represents an (abstract) event of teaching and the other node the person
who teaches. This interpretation results from the AMR rule stating that OntoNotes
frames are used to represent noun semantics whenever possible4.

A decompositional interpretation of nouns such as teacher enhances the express-
iveness of AMR, as both the person and teaching aspects of teacher can be targeted by
modifiers. However, this behaviour is not supported by the apply operator, which
always targets the root node. We therefore define a modify operator which allows
the targeting of nodes other than the root of the argument.

Definition 4.7 (modify operator). Let G,H be GA-CCG s∗-graphs where G has the
set of placeholders V G

p and |V G
p | ≥ 1.

For all i ∈ N such that | leveli(H)| = 1, the modify operator Mi is defined as follows:

Mi(G,H) = G′ //H ′

where

G′ = ren{⟨pmax(G)⟩→⟨s⟩}(G)

H ′ = add{v→⟨s⟩:v∈leveli(H)}(H)

4 See Banarescu et al. (2019), Part III, Nouns that invoke predicates.

56

4.1. Semantic Construction of AMRs

Example 4.8. In practice, modification at level 1 is sufficient for handling nouns
such as teacher. Such a modification occurs in the phrase school teacher, as shown
below.

school: ⟨0⟩ school
location

= Gschool

teacher: person teach-01
ARG0 = Gteacher

school teacher: person teach-01 school
ARG0 location = M1(Gschool, Gteacher)

4.1.5. The Compose Operator

Sometimes, the need arises to construct meaning representations for unconventional
constituents. In sentences such as I read the paper the scientist wrote5, the phrase the
scientist wrote forms a constituent, although it is missing an object.

Usually, the representations for transitive verbs are constructed such that the
object is represented with the outer placeholder, following the convention that verb
phrases (that is, sentences missing a subject) are considered constituents and thus
the verb is applied first to the object and then to the subject. In the case of extracted
objects, the argument slots need to be filled in the opposite order.

This situation is modelled using the compose operator B, which is defined as follows:

Definition 4.9 (compose operator). Let G,H be GA-CCG s∗-graphs where G has
the set of placeholders V G

p with |V G
p | ≥ 2, and H has the set of placeholders V H

p

|V H
p | = 0. The compose operator B : G∗ × G∗ → G∗ is defined as follows:

B(G,H) = G′ //H ′

where

G′ = ren{⟨pmax(G)− 1⟩→⟨s⟩},⟨pmax(G)⟩→⟨pmax(G)− 1⟩(G)

H ′ = ren{⟨root⟩→⟨s⟩}(H)

To avoid clashes between placeholders, the compose operator is only defined if
the argument has no placeholders. Also, the function graph needs to have at least
two placeholders for the second-to-outermost placeholder to be filled.

5See Figure 4.6 for a CCG analysis of this example.

57

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

Example 4.10. The compose operator allows the constituent the scientist wrote to be
constructed as follows:

the scientist: scientist = Gscientist

wrote: write-01 ⟨0⟩

⟨1⟩

ARG0

ARG1
= Gwrite

the scientist wrote: write-01 scientist

⟨1⟩

ARG0

ARG1
= B(Gwrote, Gscientist)

4.1.6. The Substitute Operator

The substitute operator S is similar to A in that it fills the outermost placeholder of its
first argument. However, it first renames its first argument’s remaining placeholders
so as not to collide with the second argument’s placeholders: it shifts the first argu-
ment’s placeholders outward. That is, while A merges the two graphs’ placeholders,
S keeps them separate.

Definition 4.11 (substitute operator). Let G,H be GA-CCG s∗-graphs where G
has the set of placeholders V G

p and |V G
p | ≥ 1. The substitute operator S is a function

defined as follows:

S(G,H) = G′ //H ′

where

G′ = renf1(G)

H ′ = renf2(H)

f1(s) =

⎧⎪⎨⎪⎩
⟨s⟩ if s = ⟨pmax(G)⟩
⟨i+ pmax(H)⟩ if s = ⟨i⟩, i < pmax(G)

s otherwise

f2(s) =

{︄
⟨s⟩ if s = ⟨root⟩
s otherwise

58

4.1. Semantic Construction of AMRs

Example 4.12. An important use case for the S operator is the modelling of conjunc-
tions. Assume that the conjunction and is represented in the lexicon as follows:

Gand =

and

⟨0⟩ ⟨1⟩

op
1 op2

In the sentence I ate and slept, two intransitive verbs are conjoined. The substitution
operator is necessary to prevent the merging of the conjunction’s argument slot
with the verb’s argument slot.

S(Gand, Gslept) =

and

⟨1⟩ sleep-01

⟨0⟩

op
1 op2

A
RG

0

The op1 placeholder is renamed to ⟨1⟩, which allows both verbs’ argument slots
to merge in a further application step.

A(S(Gand, Gslept), Gate) =

and

eat-01 sleep-01

⟨0⟩

op
1 op2

ARG0 ARG0

4.1.7. The Ignore Operator

The semantic operator Ki does not perform any graph operation at all, but always
returns its second argument unchanged. It is used for dealing with punctuation,
which is assumed here to have no influence on a sentence’s semantic representation.6

6The name Ki originates in combinatory logic, where KI represents the combinator that always
returns its second argument.

59

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

Definition 4.13 (ignore operator). Let G,H be s∗-graphs. The ignore operator Ki is
defined as follows:

Ki(G,H) = H

4.2. Graph Algebraic Combinatory Categorial Grammar

In the previous section, the semantic operatorsA,M1, B, S, andKiwere introduced.
Together, they form an algebra that describes the construction of abstract meaning
representations. However, so far this algebra is not connected to the surface form of
natural language sentences as we have not yet defined a syntax-semantic interface.

In this section, we adapt the syntax-semantics interface of CCG to make use of
graph-algebraic semantic operators. By mapping CCG combinators to semantic
operators, we obtain a family of fully syntactic-semantic grammars which we col-
lectively call Graph Algebraic Combinatory Categorial Grammar (GA-CCG).

In this section, we describe the inventory of rules for GA-CCG and present the
concrete GA-CCG rule sets used for evaluations in the remainder of this thesis.
Following the presentation of each rule, we provide motivating examples from the
AMR corpus.

4.2.1. Definition of GA-CCG

Traditional syntactic-semantic CCG derivations employ combinators that have a
defined effect on both syntactic and semantic categories (see Section 3.1 for details).
By first selecting lexical entries for each word of a sentence and then recursively
applying unary and binary combinators, the tree structure of a CCG derivation is
created, each node of which is annotated with both types of categories.

To adapt this framework to the graph algebraic construction of AMRs, we must
define the effect of each derivation step in terms of GA-CCG s∗-graphs.

Whereas in CCG, the applicability of a combinator depends solely on the syntactic
categories of its argument nodes and the computation represented by the combinator,
we choose to equip GA-CCG rules with additional predicates over the syntactic
context of the derivation node to allow fine-grained control over the context within
which a combinator applies. Specifically, this syntactic context consists of the
following elements

1. the CCG combinator applied at the step,

60

4.2. Graph Algebraic Combinatory Categorial Grammar

2. the syntactic categories of the step’s child nodes.

Furthermore, each rule is associated with a semantic operator. If the rule’s pre-
dicate holds, the semantic operator is applicable at the given step.
Definition 4.14 (GA-CCG). Let clsyn and crsyn be syntactic categories. The tuple
c = (clsyn, c

r
syn) is called a binary rule context.

Let C be a binary CCG combinator, p be a predicate over rule contexts and o a
semantic operator. Then the tuple (C, p, o) is called a binary GA-CCG rule.

A binary rule r = (C, p, o) is applicable to a binary rule context (clsyn, crsyn)
if p(clsyn, crsyn) holds and C is applicable to clsyn and crsyn. In this case, we write
IsApplicable(r, clsyn, crsyn).

LetR2 be a set of binary GA-CCG rules andR1 be a set of unary CCG combinators.
The pair (R1, R2) is called a GA-CCG rule set.

For brevity, we will express the predicates of GA-CCG rules in the form of a
simple pattern matching language. Each of the elementsC, clsyn, and crsyn is matched
according to one of the following expressions:

• ∗: matches anything

• X (for a combinator X): matches exactly this combinator

• X (for a syntactic category X): matches exactly this syntactic category

• ∼X (for a syntactic categoryX): matches anything but this syntactic category

• α: matches any syntactic category, but requires that all instances of the symbol
refer to the same category

A rule is applicable if all three patterns for combinator, left and right syntactic
category match.

4.2.2. Directionality of Operators

In CCG, combinators are directional: Some can be applied in forward or backward
direction, others are only permitted in one direction. This directionality needs to be
reflected on the semantic level. This is achieved by simply reversing the order of
the semantic operator‘s arguments.
Definition 4.15 (Backward Semantic Operators). Let f ∈ {A,M1,B,S,Ki} be a
semantic operator. We define the backward version of f as follows:

f←(G,H) = f(H,G)

61

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

4.2.3. Unary Rules

The grammars defined in the preceding section neglect to define a semantic inter-
pretation for unary rules such as type raising and type changing rules. Particularly
type raising, which adds argument slots to a given semantic representation, is a
challenge in the GA-CCG framework: since edge labels are defined as part of the
GA-CCG s∗-graph, proper relations would have to be invented during type raising.
One possible solution is to leave edge labels underspecified until later in the deriva-
tion process, which has been explored by Blodgett and Schneider (2019). Within
the scope of this dissertation, we leave this gap unfilled and define all unary rules
to return the semantic category unchanged.

4.2.4. GA-CCG Rule Sets

We are now ready to compile sets of GA-CCG rules. Since we employ the EasyCCG
parser (Lewis and Steedman 2014) for syntactic parsing during the lexicon induction
step, the grammars must handle the set of combinators output by the EasyCCG
parser.

We define one full grammar which employs all semantic operators, named all.
This grammar contains specialized rules for specific syntactic contexts, namely type
raising, noun modification, and syntactic expletives. To test the effect of these rules,
we also define the three simplified grammars no-fa-modify, no-ba-ignore, and
no-tr, in which the respective specialised rules are omitted. All of these omissions
are combined in the base grammar, which can be considered a baseline consisting
only of the most broadly applicable rules. Table 4.1 lists the rules for each of the
grammars.

The following is an overview of the basic rules of GA-CCG (examples will be
given in the rest of this section):

• All application and composition combinators are associated with the apply
operator, observing directionality.

• The conj combinator is associated with both the substitute and the apply
operator, as not all syntactic conjunctions are represented as conjunction
nodes in AMR.

• Punctuation combinators including tc-rel are associated with the apply oper-
ator, observing directionality.

The following additional rules cover special syntactic constructions:

62

4.2. Graph Algebraic Combinatory Categorial Grammar

• Modifiers and determiners may attach to a level-1 node with the modify
operator.

• Composition is interpreted by the backward compose operator if the left
constituent is a type-raised noun phrase.

• In backward application and backward crossed composition, the direction
of the apply operator is reversed if the right constituent is a type-raised verb
phrase.

• In application, semantically empty arguments such as the expletive it may be
consumed by the ignore operator.

These rules form a fine-grained and thus restrictive grammar. Hypothetically,
a parser might benefit from being able to apply semantic operators more freely.
To test this hypothesis, we also define the relaxed grammars unrestricted-a and
unrestricted-all. Respectively, they allow the apply operator, or all semantic oper-
ators, to be applied at each derivation step in any direction. These grammars are
defined in Table 4.2.

4.2.5. Application

Application is themost common combinator in CCGderivations, and used in a variety
of situations. In GA-CCG, the semantics of this combinator are modeled using the
A operator with the direction of the operator following that of the combinator.

CCG uses the specialised rp and lp combinators to deal with punctuation. They
absorb punctuation to the right or left of a word, respectively. In the context of
GA-CCG, punctuation can be interpreted as a special case of application: since
punctuation usually does not contribute any semantic content, its lexical meaning is
the identity function, that is, the graph consisting of a single placeholder. Since we
can assume this meaning to be fixed, punctuation combinators can be interpreted
using the Ki operator, which reduces the amount of superfluous lexical items
produced during lexicon induction.

Not all punctuation is semantically empty: in particular, commas can play the
role of conjunctions and are assigned the syntactic category conj. This case is
demonstrated in Example 4.24

The following example contains both simple cases of application and punctuation.
For brevity, sentence-ending punctuation is omitted in all remaining examples.

63

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

Context Interpretation

C clsyn crsyn all no-
modify

no-
ignore no-tr base

> ∗ ∗ A A A A A
α/α ∗ M1 – M1 M1 –
NP/N ∗ M1 – M1 M1 –
∗ NP Ki← Ki← – Ki← –

< ∗ ∼X1 A← A← A← A← A←
∗ X1 A A A A← A←
∗ α\α M←1 – M←1 M←1 –
NP ∗ Ki Ki – Ki –

>B ∼X2 ∗ A A A A A
X2 ∗ B← B← B← A A

<B× ∗ ∼X1 A← A← A← A← A←
∗ X1 A A A A← A←

>B2 ∗ ∗ A A A A A
<B2
× ∗ ∗ A← A← A← A← A←

conj ∗ ∗ S S S S S
∗ ∗ A A A A A

lp ∗ ∗ A A A A A
rp ∗ ∗ A← A← A← A← A←
tc-rel ∗ ∗ A A A A A

Table 4.1.: Rules for the main grammars examined in this thesis. The abbreviated
syntactic categories X1 and X2 are defined as follows:
X1 = (S\NP)/((S\NP)/NP); X2 = S/(S\NP).

Context Interpretation

cmb synl synr unrestricted-a unrestricted-all

∗ ∗ ∗ A, A←
A, A←, B, B←,
M1,M←1, S, S←,
Ki, Ki←

Table 4.2.: Rules for the two unrestricted grammars examined in this thesis.

64

4.2. Graph Algebraic Combinatory Categorial Grammar

He greedily ate an apple .
NP (S\NP)/(S\NP) (S\NP)/NP NP/N N .

he ⟨0⟩ greedymanner
eat-01

⟨0⟩ ⟨1⟩
ARG0 ARG1

⟨0⟩ apple ⟨0⟩
>

NP
apple 1

>
S\NP
eat-01

⟨0⟩ apple
ARG0 ARG1

2

>
S\NP

eat-01

⟨0⟩ apple

greedy
ARG0

ARG1

manner3

<
S

eat-01

he apple

greedy
ARG0

ARG1

manner2

fp 4

S
eat-01

he apple

greedy
ARG0

ARG1

manner

Figure 4.1.: A GA-CCG derivation for the sentenceHe greedily ate an apple. The use of
application is demonstrated in three common contexts: application of a
(semantically empty) determiner 1 , the filling of a verb’s argument slots
2 , and modification by an adverb 3 . The example also demonstrates
how punctuation is absorbed with the forward punctuation combinator
and either the Ki or the A operator 4 .

65

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

Example 4.16 (Application in GA-CCG). Some of the most common uses of applic-
ation in CCG are the filling of argument slots, modification, and the application of
determiners. These three contexts are illustrated in the example given in Figure 4.1.

Punctuation can be viewed as a special case of application, where punctuation
is always assigned identity semantics. However, the directionality is reversed:
The forward punctuation combinator, which consumes punctuation to the right of a
constituent, is associated with backward application. An example for this is also
given in Figure 4.1.

A slightlymore complex use of applications occurs in subject control constructions.
These constructions illustrate why any remaining placeholders must be merged
after filling an argument slot: the merging allows the control verb to take the same
subject as the controlled verb.

Example 4.17 (Subject control). In the sentence She wanted to sleep, the subject is
shared between the verbswant and sleep. On the semantic level, this sharing emerges
naturally from the merging rules of GA-CCG, as is demonstrated in Figure 4.2.

As mentioned in Section 4.1.4, modifiers sometimes need to attach below the root
of the modified graph, so our grammars use a special rule for modifiers of the form
X/X and X\X , as well as for determiners (NP/N).

Example 4.18 (Nounmodification). Nouns are sometimes represented by two-node
graphs. One example is the word teacher, where the lexical meaning is split into
a person node and a teach node. That is, the AMR representation for teacher can
be expressed as a person who teaches. Either of the two nodes can be targeted by a
modifier such as new or school. Figure 4.3 shows a CCG derivation for the phrase
school teacher.

Syntactic arguments can sometimes be semantically empty. This is the case with
syntactic expletives such as it or there: These arguments are required syntactically
but do not appear in the meaning representation. We therefore provide a rule that
allows expletives and other noun phrases to be ignored.

Example 4.19 (Expletives). In phrases that start with it is or there are, the words
it and they are frequently expletive, that is, semantically empty. At the same time,
they assume the syntactic role of a noun phrase. An example is the phrase there are
seven bugs in the code, which is analysed in Figure 4.4: While are requires a noun
phrase argument to the left, this argument contributes no semantic content. The
ignore operator can be applied in such contexts.

66

4.2. Graph Algebraic Combinatory Categorial Grammar

She wanted to sleep
NP (S\NP)/(S\NP) (S\NP)/(S\NP) S\NP

she

want-01

⟨0⟩ ⟨1⟩

AR
G0

ARG1

⟨0⟩

sleep-01

⟨0⟩

A
RG

0

>
S\NP

sleep-01

⟨0⟩

A
RG

0

>
S\NP

want-01

sleep-01⟨0⟩

AR
G0

ARG0

ARG1

1

>
S

want-01

sleep-01she

AR
G0

ARG0

ARG1

Figure 4.2.: A GA-CCG derivation for the sentence She wanted to sleep. The subject
control structure is set up through the merging of the ⟨0⟩ placeholders
during the application of wanted 1 .

67

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

school teacher
N/N N

⟨0⟩ school
location

person teach-01
ARG0

>
N

person teach-01 school
ARG0 location

Figure 4.3.: The GA-CCG derivation for the phrase school teacher shows how the
modification operator is employed as an interpretation for noun modi-
fication. It allows themodifier school to attach to the level-1 node teach-01.

4.2.6. Conjunctions

Conjunctions are extremely frequent, and therefore their proper treatment is import-
ant. For this purpose, the substitute operator S has been introduced in Section 4.1.6.
This operator allows binary conjunctions of function categories with an arbitrary
number of arguments.

Example 4.20 (Conjunction of verbs). Employing the substitute operator for con-
junctions ensures that function categories such as transitive verbs can be properly
conjoined. The argument slots of the conjunction are kept separate from those of
the conjuncts. The derivation in Figure 4.5 shows how this interpretation causes
the correct dependencies to be established.

4.2.7. Composition

The most frequent composition combinators are >B and <B×. In contrast, we
observed no occurrences of the generalised composition combinators in the syntactic
parser output for our training set, and therefore we do not include examples for
these combinators (see Table 5.1).

A canonical use case for forward composition occurs when an extracted object is
type-raised. Type raising reverses the roles of function and argument. The operator
B← is used to assign the correct argument slot to type raised noun phrases.

Example 4.21 (Type raising and forward composition). Forward composition allows
two function types to combine. It typically occurs in combination with type raising
and allows unconventional constituent types such as S/NP to be constructed. In
other words, it allows argument slots to be filled in a nonstandard order. This is

68

4.2. Graph Algebraic Combinatory Categorial Grammar

there are seven bugs in the code
NP (S\NP)/NP NP/N N (NP\NP)/NP NP/N N

empty ⟨0⟩ ⟨0⟩ 7
quantity bug ⟨0⟩ ⟨1⟩location ⟨0⟩ code

> >
NP NP

bug 7
quantity code

>
NP\NP

⟨0⟩ code
location

<
NP

bug
7

code

quantity

location

>
S\NP

bug
7

code

quantity

location

<
S 1

bug
7

code

quantity

location

Figure 4.4.: Derivation of the phrase there are seven bugs in the code. In this phrase, there
is expletive and represented by a dummy AMR. In the final derivation
step, the dummy argument is ignored 1 to fill the syntactic argument
without adding semantic content.

69

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

The coder reproduced and fixed the bug
NP/N N (S\NP)/NP conj (S\NP)/NP NP/N N

NP NP

coder

reproduce-01

⟨0⟩ ⟨1⟩

AR
G0

ARG1

and

⟨0⟩ ⟨1⟩

op
1 op2

fix-02

⟨0⟩ ⟨1⟩

AR
G0

ARG1

bug
conj

((S\NP)/NP)\((S\NP)/NP)

and

⟨2⟩

fix-02

⟨0⟩

⟨1⟩

op1

op2 ARG0

ARG11

<
(S\NP)/NP

and

reproduce-01

fix-02

⟨0⟩

⟨1⟩

ARG0
ARG1op1

op2 ARG0

ARG1

>
S\NP

and

reproduce-01

fix-02

⟨0⟩

bug

ARG0
ARG1op1

op2 ARG0

ARG1

<
S

and

reproduce-01

fix-02

coder

bug

ARG0
ARG1op1

op2
ARG0

ARG1

Figure 4.5.: This example demonstrates a conjunction of two transitive verbs. The
conj combinator invokes the semantic operator S, keeping both argu-
ments of fix free to merge with those of reproduce 1 .

70

4.2. Graph Algebraic Combinatory Categorial Grammar

the paper the scientist wrote
NP/N N NP/N N (S\NP)/NP

⟨0⟩ paper ⟨0⟩ scientist
write-01

⟨0⟩

⟨1⟩

ARG0

ARG1

> >
NP NP

paper scientist
>T

S/(S\NP) 1

scientist
>B

S/NP 2

write-01
scientist

⟨0⟩

ARG0

ARG1

tc
N\N 3

write-01
scientist

⟨0⟩

ARG0

ARG1

<
NP

write-01
scientist

paper

ARG0

ARG1

Figure 4.6.: Since the object is extracted from the relative clause the scientist wrote,
type raising 1 and forward composition 2 are employed to allow the
subject to combine with the verb. A type changing rule from EasyCCG’s
grammar allows the resulting phrase to act as a relative clause. 3

71

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

evident in Figure 4.6, where a missing object in a relative clause means that the
phrase the scientist wrote has to be constructed as a constituent.

Backward crossed composition is necessary to allow verbs to be affected by modi-
fiers placed between the verb and its arguments. This can be the case in modal verb
constructions (such as “What could possibly go wrong?”) and reported speech, as
shown in the following example.

Example 4.22 (Backward crossed composition). In indirect speech, adverbials can
be placed between the verb and the argument (the reported content). The <B×
combinator allows this word order. Figure 4.7 shows an example.

4.3. Non-Compositional Operations

Not all constructions of AMR are easily represented in a strictly compositional
manner, and while this work is focused on compositional phenomena, our im-
plementation of GA-CCG contains two non-compositional additions to the pure
CCG-based derivation process: coreferences and nested conjunctions.

4.3.1. Coreferences

Coreferences occur when an entity is mentioned more than once within a sentence.
In such cases, a single sub-graph in the AMR represents two separate tokens or
constituents. This makes it difficult to correctly establish semantic role relationships
because the semantic representation is unavailable in one of the constituents in
question.

Coreference nodes are a simple non-deterministic solution to this problem. In-
stead of instantiating the referenced concept twice, one of its instantiations creates
a specially labelled coreference node instead. It can later be merged with an appro-
priate node to resolve the coreference.

Example 4.23 (Coreferences). Reflexive pronouns such as themself invoke corefer-
ence nodes since their meaning cannot be represented in such a way that the proper
dependencies are established compositionally, as shown in Figure 4.8. Instead, the
coreference mechanism relies on a statistical model to merge the coreference node
as appropriate after parsing has completed.

72

4.3. Non-Compositional Operations

the coder said yesterday that the bug was fixed
NP (S\NP)/S (S\NP)\(S\NP) S/S S

coder
say-01

⟨0⟩

⟨1⟩

ARG0

ARG1
⟨0⟩ yesterdaytime ⟨0⟩ fix-02 bugARG1

<B× >

(S\NP)/S 1 S

say-01
⟨0⟩

⟨1⟩

yesterday

ARG0

ARG1tim
e

fix-02 bugARG1

>
S\NP

say-01
⟨0⟩

fix bug

yesterday

ARG0

ARG1tim
e

ARG1

<
S

say-01
coder

fix bug

yesterday

ARG0

ARG1tim
e

ARG1

Figure 4.7.: One use case for backward crossed composition is to allow adverbials
on verbs expecting additional arguments. Here, said is modified by
yesterday 1 .

73

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

He liked to hear himself talk
NP (S\NP)/(S\NP) (S\NP)/(S\NP) (S\NP)/S NP S\NP

he

like-01

⟨0⟩ ⟨1⟩

AR
G0

ARG1

⟨0⟩

hear-01

⟨0⟩ ⟨1⟩

AR
G0

ARG1

<coref>

talk-01

⟨0⟩

A
RG

0

<
S

>
S\NP

>
S\NP

>
S\NP

<
S

like-01

hear-01 he

talk-01 <coref>

ARG0

A
RG

1

ARG0

A
RG

1

ARG0

⇒

like-01

hear-01 he

talk-01

ARG0

A
RG

1

ARG0

A
RG

1

ARG0

Figure 4.8.: A coreference node is used to represent the meaning of themself. At the
end of the parsing process, the coreference node is merged with the
appropriate referent.

74

4.4. Limitations of GA-CCG

4.3.2. Nested Conjunctions

Enumerations of more than two elements are represented in CCG derivations
as right-branching trees, which poses a challenge since AMR represents them as
flat lists of conjuncts. We therefore introduce a non-monotonic normalization
rule, which is always applied following the S operator, and merges directly nested
conjunctions.

Example 4.24 (Nested conjunction normalization). Whenever a conjunction node
(such as and) is an operand of another conjunction node of the same type after
the S operator was invoked, both nodes are merged and their argument lists are
combined. This operation rewrites part of the graph structure. It is not combinatory
and therefore does not appear in the GA-CCG derivation. In Figure 4.9, the nested
structure that is created before rewriting is shown for reference.

4.4. Limitations of GA-CCG

GA-CCG marries the unrelated formalisms of CCG and AMR. It also strives to
do so not in a theoretically complete manner, but using simple, transparent rules
and representations. It is therefore clear that there must be compromises in cases
where the two formalisms diverge too far from each other, or where the statistical
significance of an infrequent phenomenon does not warrant the introduction of
additional complexity.

In this section, we discuss the most prominent limitations of GA-CCG from a
linguistic point of view. These are phenomena which CCG handles well, but which
the rules of GA-CCGdo not, and cannot easily deal with. Amore empirical overview
of problems encountered when applying GA-CCG is provided in Section 5.4.

4.4.1. Relativisation and Type Raising

In relative clauses such as the one presented in Figure 4.6 (the paper the scientist wrote),
type raising and composition are used to construct the constituent the scientist wrote,
which correctly assigns scientist the ARG0-role of write. However, relativisation
also expresses a focus shift towards the ARG1-role, which is expressed in the type
changing rule from S/NP to NP\NP that is subsequently applied. It would be more
correct for paper to be the root of the representation for the paper the scientist wrote.
This becomes clear when the phrase is embedded in a sentence, such as the one

75

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

red , yellow and blue
N , N conj N

red

and

⟨0⟩ ⟨1⟩
op

1 op2

yellow

and

⟨0⟩ ⟨1⟩
op

1 op2

blue
conj

N\N
and

⟨0⟩ blue
op

1 op2

<
N
and

yellow blue
op

1 op2

conj
N\N

and

⟨0⟩ and

yellow blue

1

op
1 op2

op
1 op2

⇒
and

⟨0⟩ yellow blue

2

op
1 op2

op3

<
N

and

red yellow blue

op
1 op2

op3

Figure 4.9.: Enumerations of more than two items initially cause conjunction nodes
to be nested due to the binary-branching structure of CCG derivations
1 . The normalization to the AMR-conforming flat structure is carried
out immediately afterwards 2 , without creating a new derivation node.

76

4.4. Limitations of GA-CCG

the journal published the paper the scientist wrote
NP (S\NP)/NP NP

journal
publish-01

⟨0⟩

⟨1⟩

ARG0

ARG1 write-01
scientist

paper

ARG0
ARG1

>
S\NP

publish-01
⟨0⟩

write

ARG0

ARG1

scientist

paper

ARG0

ARG1
<

S

publish-01
journal

write-01

ARG0

ARG1
scientist

paper

ARG0

ARG1

Figure 4.10.: When embedding the phrase from Figure 4.6 in a full sentence, it
becomes clear that while the semantic roles are assigned correctly, the
focus is incorrectly placed on the write node. As the paper is the thing
being published, the ARG1 relation should be between publish and
paper, not between publish and write.

77

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

shown in Figure 4.10, where an erroneous relation is constructed between publish
and write.

While this behaviour could be encoded in the interpretation of the respective
type changing rule, we consider it out of scope for this thesis.

4.4.2. Object Control

The simple and clean handling of control, where arguments are shared between
verbs, has been an important argument put forward in favour of using graph algebras
in semantic parsing (Koller 2015). In Figure 4.2, we have demonstrated how GA-
CCG handles subject control. Unfortunately, object control verbs such as ask or
persuade are not as cleanly modelled. While the subject control structure in Figure
4.2 emerges cleanly from the controlled verb’s standard representation, a special
argument-less representation is required to create an object control configuration,
as Figure 4.11 shows.

4.4.3. Argument Cluster Coordination

CCG allows argument clusters of ditransitive verbs to be constructed as constituents
and coordinated, as in give [a teacher an apple] and [a policeman a flower] (see Figure
4.12)7. Because GA-CCG requires semantic representations to be connected, there
is no way to combine the noun phrases a teacher and an apple into a single semantic
representation without a governing verb. Therefore, this construction cannot be
represented in GA-CCG.

4.4.4. Non-Limitation: Substitution

The substitution combinator is conspicuously absent from the GA-CCG grammars
defined in Section 4.2. The experiments presented in this thesis use the EasyCCG
parser to obtain syntactic derivations. This parser outputs only a limited set of
combinators that does not include substitution, implying that the substitution com-
binator is of limited statistical relevance at least in the CCGBank corpus on which
the parser has been evaluated.

Nevertheless, the substitution combinator allows CCG to treat interesting con-
structions such as parasitic gaps, and is a central feature of the theory. Figure 4.13

7The example has been adapted from Steedman (2000, p. 46).

78

4.4. Limitations of GA-CCG

i told the child to wait
NP ((S\NP)/NP)/PP NP PP/(S\NP) S\NP

i

request-01 ⟨0⟩

⟨1⟩ ⟨2⟩

ARG0

AR
G1

ARG2

ARG1 child ⟨0⟩ wait-01
> >

(S\NP)/NP PP
request-01 ⟨0⟩

⟨1⟩ child

ARG0

AR
G1

ARG2

ARG1 wait-01
>

(S\NP)
request-01 ⟨0⟩

wait-01 child

ARG0

AR
G1

ARG2

ARG1

<
S

request-01 i

wait-01 child

ARG0

AR
G1

ARG2

ARG1

Figure 4.11.: In the sentences I told the child to wait, the object of told is the same as
the subject of wait. Expressing this controlling behaviour requires a)
introducing the ARG1-role of wait into the lexical entry for told, and b)
adding an argument-less lexical entry for wait. This representation is
not ideal because an interdependency between the lexical entries for
both verbs is introduced.

79

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

give a teacher an apple and a policeman a flower
DTV NP NP conj NP NP

<T <T <T <T
TV\DTV VP\TV TV\DTV VP\TV

<B <B
V P\DTV VP\DTV

conj
(VP\DTV)\(VP\DTV)

<
VP\DTV

<
VP

Figure 4.12.: With the backward composition combinator, CCG allows argument
clusters such as a teacher an apple to act as constituents. However, the
corresponding semantic representations cannot be constructed with
GA-CCG: the resulting graph would not be connected as there is no
verb to connect both arguments. For space reasons, the following
abbreviations are used for syntactic categories: VP = S\NP, TV =
(S\NP)/NP, DTV = ((S\NP)/NP)/NP.

shows how the substitution combinator can be interpreted using forward composi-
tion and backward crossed substitution rules.8.

4.4.5. Discussion

The limitations discussed in this section are all caused by the inflexibility of GA-CCG
operators regarding edges. An edge may (and must) occur in exactly one precursor
graph, which, for instance, forces object-controlled verbs to omit their argument
edges (because otherwise they would have to be merged with the controlling verb’s
edge). Blodgett and Schneider (2019) have proposed an alternative graph algebra
for CCG-based AMR parsing, which crucially includes an additional relation-wise
application operator. This operator, together with a special edge label for underspe-
cified relations, permits simple and elegant interpretations for control, type raising,
and by extension, argument clusters. Since there is so far no implementation of
these operators, we do not further discuss them in this work; however, future work
should consider including them.

While we demonstrated in Section 4.2 that GA-CCG permits the analysis of the
bulk of natural language constructions, the examples in this section also show that

8The example has been adapted from Steedman (2000, p. 50).

80

4.4. Limitations of GA-CCG

articles which I will file without reading
N (N\N)/(S/NP) S/VP (VP\VP)/VP (VP\VP)/VP VP/NP

article ⟨0⟩ ⟨1⟩domain
i

file-01
⟨0⟩

⟨1⟩

ARG0

ARG1

and
⟨0⟩

⟨1⟩
-

op1
op2

polarity
read-01

⟨0⟩

⟨1⟩

ARG0

ARG1

>B
(VP\VP)/NP

and
⟨2⟩

read-01
-

⟨0⟩

⟨1⟩

op1
op2 ARG0

ARG1

polarity

<S×
V P/NP

and
file-01

read-01
-

⟨0⟩

⟨1⟩

op1
op2

ARG0
ARG1

ARG0
ARG1

polarity

>
S/NP

>
N\N

<
N

article and
file-01

read-01
-

i
domain

op1
op2

ARG0
ARG1

ARG0

ARG1 polarity

Figure 4.13.: A parasitic gap construction involving the substitution combinator can
be modelled by interpreting the forward composition combinator as
backward substitution, and interpreting the subsequent substitution
as forward application. This interpretation identical to that of conjunc-
tions (see Section 4.2.6). The abbreviated syntactic categories are the
same as in Figure 4.12.

81

Chapter 4. Graph Algebraic Combinatory Categorial Grammar

some notable linguistic phenomena are not covered. In practice, this is not necessar-
ily an issue, as the main goal of this work is not to provide a linguistically complete
grammar, but one with which larger text corpora can be processed effectively. In the
following chapters, we will proceed to examine the actual coverage of the grammar
on the AMR corpus.

82

Chapter 5.

Induction of Graph Algebraic CCG Lexica

The preceding chapter has described the theory of GA-CCG. From this chapter
onwards, we turn to its implementation and investigate algorithms necessary for the
practical application of GA-CCG to semantic parsing. This chapter deals with the
problem of lexicon induction: how to obtain a GA-CCG lexicon from semantically
annotated data. Chapter 6 introduces additional algorithms to clean up induced
lexica and improve their ability to generalise to unseen texts. In this and the follow-
ing chapter, the relevant concepts and algorithms are first described, followed by
experiments to evaluate the performance of each component. Chapter 7 describes
the implementation of a parser, with evaluation deferred to Chapter 8.

Building a CCG derivation starts with picking lexical items from the lexicon. The
lexicon is therefore a required input for CCG parsing. While such a lexicon can be
built by hand and there are projects in computational linguistics that have built size-
able lexica for some grammar formalisms, engineering a wide-coverage grammar
is a daunting task which can consume many person-years.1 In AMR parsing, the
availablity of AMR-annotated corpora allows us to side-step this requirement and
induce a lexicon automatically instead.

An AMR corpus consists of sentences paired with meaning representations,
matching the desired input and output of a semantic parser. In this chapter, we
assume that the corpus does not contain any additional information about the
relationship between them.2

We approach lexicon induction by attempting to construct a GA-CCG derivation
which yields both the sentence and the meaning representation. First, syntactic
CCG derivations are generated by an external syntactic CCG parser. Then, the
nodes of the derivation are annotated with meaning fragments which are obtained

1For instance, the effort for building the English Resource Grammar has been estimated at eleven
person-years (Copestake and Flickinger 2000).

2Newer versions of the AMR corpora do include alignment annotations, which can be included in
our algorithm (Knight, Bianca Badarau et al. 2020).

83

Chapter 5. Induction of Graph Algebraic CCG Lexica

by breaking the full AMR into GA-CCG s∗-graphs according to the rules of GA-CCG.
If this process is successful, the leaves of the derivation are added to the lexicon as
new lexical entries.

In this chapter, an algorithm for constructing GA-CCG derivations of corpus ex-
amples is introduced in Section 5.1. Section 5.2 covers some practical considerations
such as parameters and additional constraints that are important for managing
computational complexity. In Section 5.3, experiments on a large section of the
AMR corpus are presented, which serve to validate the algorithm and find suitable
parameters. Section 5.4 presents experiments on a small corpus section which
examine the coverage achieved by GA-CCG grammars under ideal conditions.

5.1. Algorithms for Lexicon Induction

In this thesis, we consider the scenario that we are providedwith an AMR annotated
corpus and wish to induce a lexicon suitable for parsing similar sentences to those
in the corpus. We also assume that the specific set of GA-CCG rules to be used is
given as an input to the algorithm, as we wish to examine specific rule sets and their
utility for parsing. The problem of GA-CCG lexicon induction can thus be stated as
follows.

Definition 5.1 (GA-CCG Lexicon Induction). Given a set of GA-CCG rules R and
an AMR corpus (s1, g1), . . . , (sn, gn) consisting of sentences si paired with AMRs
gi, construct a set of GA-CCG lexical items L such that for every example (si, gi),
there exists a GA-CCG derivation di with the following properties:

• di uses only lexical items from L and rules from R

• tokens(di) = si (the derivation derives the given sentence)

• sem(di) = gi (the derivation yields the given meaning representation)

It may be difficult or impossible to perfectly solve the lexicon induction problem
as stated above because the rules R might not permit it. In particular, the meaning
representations gi are AMRs that are not in any formal way related to CCG syntax,
and therefore might not be derivable using GA-CCG. Some such phenomena are
discussed in Section 4.4.

Even in examples with derivable AMRs, the space of possible lexical items can be
very large, as an AMR graph may be partitioned into a number of subgraph pairs
that is exponential in the number of its nodes. Although in Section 5.2 we address

84

5.1. Algorithms for Lexicon Induction

ways to reduce the number of candidate lexical items, it is possible for the candidate
space to be too large to enumerate in practice.

Nonetheless, the problem as stated is precise enough to serve as a guideline for
implementations. In Sections 5.3 and 5.4, it will be examined to what extent the
algorithms presented here solve it in practice.

5.1.1. Syntax-Driven Lexicon Induction

We solve the lexicon induction problem by attempting to construct a syntactic-
semantic GA-CCGderivation for every example in the training corpus. Furthermore,
we take advantage of existing syntactic CCG parsers. Given a derivation produced
by a syntactic parser, we are left with the task of annotating the derivation with
GA-CCG graphs so that the derivation produces the gold-standard annotated AMR
according to the rules of GA-CCG. Afterwards, the lexical items that have been
induced can be read off the leaves of the derivation. This means that our lexicon
induction problem is reduced to finding the right lexical meaning representations,
whereas the syntactic part of the lexicon is supplied by the parser.

This annotation process is implemented using a syntax-directed splitting strategy.
A recursive splitting algorithm walks down the derivation tree, starting at the
root with the annotated meaning representation. At every combinatory node, it
splits the meaning representation, producing meaning fragments in the form of
GA-CCG s∗-graphs which are assigned to the constituents—and finally, leaves—of
the derivation.

Design Considerations

Employing an external syntactic parser is a design decision which comes with
advantages and disadvantages. An alternative approach would be to enumerate
possible syntactic and semantic categories at the same time, without relying on ex-
ternal tools (Kwiatkowski et al. 2010). Such an approach has to deal with searching
over the exponential space of syntactic derivations and, without syntactic supervi-
sion, may end up producing linguistically implausible derivations.

On the other hand, if the syntactic structure is fixed, there is the risk ofmismatches
between the syntactic and semantic structure, which can hinder lexical induction.
This can be the case because of errors produced by the syntactic parser, or because
of systematic mismatches. Parser errors can partly be mitigated by using more than
one candidate derivation per sentence, which increases the probability that at least
one derivation is suitable for lexical induction.

85

Chapter 5. Induction of Graph Algebraic CCG Lexica

In summary, assuming an externally provided syntactic derivation allows us to
induce linguistically plausible lexical items with relative computational efficiency,
at the expense of a certain loss of coverage.

Algorithm

The procedure of syntax-directed splitting is described in Algorithm 5.1. The
SplitSyn takes a syntax derivation d as well as a meaning representation graph g as
input. It can thus be called several (or zero) times for any given sentence depending
on how many syntax derivations are available.

The algorithm starts with the derivation’s root node and calls itself recursively for
every child node. For every node in the derivation, it chooses an action according
to the number of child derivation nodes:

• If there are two children, the node corresponds to a binary CCG combinator. In
this case, the meaning representation needs to be split into components which
can be assigned to the two child nodes in the recursive call. The algorithm
thus searches for a rule that is applicable in the current context using the
rule predicate p. For every matching rule, the meaning representation is then
broken up by the SplitSem algorithm which is discussed in Section 5.1.2.

• If there is only one child, the node corresponds to a unary type raising or type
changing rule. As explained in Section 4.4, the meaning representation is left
unchanged and the algorithm continues at the child node.

• If there are no children, the algorithm has arrived at a leaf of the derivation,
which corresponds to an individual token. The algorithm generates a lexical
item from the meaning representation fragment that has been produced by
the preceding recursive steps and adds it to the result set.

In addition to the lexical items read off the derivation’s leaves, Algorithm 5.1 also
creates phrasal lexical items at combinatory nodes if the result set of SplitSem is
empty for all rules. In this case, the algorithm cannot descend to the token level
and multi-token phrasal items are required in order to fully describe the example.
This is especially important when estimating probabilities of lexical entries using
EM (see Section 6.2), since the probability of an example would be zero if part of it
could not be explained using the lexicon.

Algorithm 5.1 describes how all possible lexical items are enumerated from an
entire sentence. In the following section, we examine how meaning representation
fragments may be generated at each node of the syntax derivation.

86

5.1. Algorithms for Lexicon Induction

5.1.2. Constrained AMR Splitting

Through recursive splitting, a constituent is divided into two smaller constituents.
In CCG, each constituent corresponds to an adjacent span of tokens in the sentence,
so that the larger constituent is divided into two adjacent smaller constituents.
Accordingly, we wish to split the constituent’s meaning representation into two
smaller components, each corresponding to one of the child constituents. We call
these components precursor graphs, as they can be used as an input to a semantic
operator which then reconstructs the original graph.

The result of AMR splitting is a pair of two graphs, left and right. In GA-CCG, we
can also think of the graphs playing the role of a function (the left graph for forward
rules, the right graph for backward rules) and an argument.

In preparation for splitting themeaning representation, we assume that a complete
binary node labelling is available which maps every node to one of the sides.

Definition 5.2 (Binary Node Labelling). Let V be a set of vertices and L = {l1, l2} a
set of two labels. A binary node labelling of V is a mapping m : V → L.

For illustration, we will assume in the following that L = {Left,Right}.

In our experimental settings, binary node labellings are obtained from token-to-
node alignments as explained in Section 5.1.3.

Inverse Semantic Operators

Splitting an AMR graph g requires finding precursor graphs g1, g2 so that g can
be constructed from g1 and g2 using some semantic operator. In other words, an
inverse computation for semantic operators is to be defined.

Since semantic operators are not injective, there can be many such pairs of prede-
cessors. In particular, nodes can be merged in the process of applying a semantic
operator, and the information on which nodes were merged is erased from the
resulting graph. The inverse of an operator therefore generates predecessor pairs
for every node that can be unmerged.

Definition 5.3 (Inverse Semantic Operator). Let o be a semantic operator. We define
its inverse o−1 as follows:

(g1, g2) ∈ o−1(g)⇔ o(g1, g2) = g for GA-CCG s∗-graphs g, g1, and g2

In practice, this definition results in too many predecessor pairs to iterate over. In
the context of recursive splitting, every predecessor pair results in an extra recursive
invocation, which may cause the number of lexical items to blow up. The algorithms

87

Chapter 5. Induction of Graph Algebraic CCG Lexica

defined in the following therefore use a constrained form of inverse operators that
take into account a node labelling.

Definition 5.4 (Constrained Inverse Semantic Operator). Let o be a semantic op-
erator, g = (V,E, vroot, l, slab) an GA-CCG s∗-graph, and m : V → {Left,Right} a
binary node labelling.

Let g1 = (V1, E1, v
1
root, l1, slab1) and g2 = (V2, E2, v

2
root, l2, slab2) be GA-CCG s∗-

graphs. The constrained inverse semantic operator o−1m is defined as follows:
(g1, g2) ∈ o−1m (g) iff. the following conditions hold:

1. o(g1, g2) = g

2. ∀v ∈ V : m(v) = Left⇔ v ∈ V1

3. ∀v ∈ V : m(v) = Right⇔ v ∈ V2

The implementation of the inverse semantic operators requires some care because
it is not feasible to simply enumerate all possible precursor graphs. However,
the rules of GA-CCG permit a relatively simple strategy: The only nodes whose
environment needs to be altered are nodes that are labelled Left but are connected
to nodes labelled Right. We call these nodes frontier nodes.

For these frontier nodes, actions are necessary to allow the separation of the
graph into two disconnected components. They are unmerged by duplicating the
node, assigning all Right edges to the copy. Then, one copy can be replaced by a
placeholder or coreference according to the rules of GA-CCG (see Section 5.1.4 for
details on coreference extraction).

Example 5.5. The examples in Figure 5.1 demonstrate how fully labelled graphs
representing various grammatical constructions are split. In subject-predicate-object
constructions such as she wants to sleep, which correspond to semantic application,
the subject is replaced by a placeholder node to make up the function graph. The
same happens, less obviously, in the phrase the cat, where the determiner the plays
the function role but has no semantic content of its own3. It is assigned a graph
consisting solely of a placeholder. Finally, splitting conjunctions such as she ate and
slept involves the renaming of placeholders in the argument graph, but otherwise
works equivalently.

3While in other semantic formalisms, determiners do commonly introduce semantic content such as
quantifiers, AMR does not represent this aspect of semantics.

88

5.1. Algorithms for Lexicon Induction

she wanted to sleep := S

want-01

sleep-01she

ARG0

ARG0

ARG1

Left
Right

⇒

want-01

sleep-01⟨0⟩

ARG0

ARG0

ARG1

wanted to sleep :=

sheshe :=

the cat := NP

cat

Right
⇒

the := NP/N : ⟨0⟩

cat := N : cat

[she ate] and slept := (S\NP)\(S\NP)

and

⟨0⟩ sleep-01

⟨1⟩

op1 op2

A
RG

0

Left

Right ⇒
and := conj :

and

⟨0⟩ ⟨1⟩
op1 op2

slept := S\NP : sleep-01 ⟨0⟩ARG0

Figure 5.1.: Examples for constrained splitting.

89

Chapter 5. Induction of Graph Algebraic CCG Lexica

Node Labelling Completion

Token-to-node alignments that are generated by alignment tools or found in gold-
standard data do not necessarily cover all nodes. However, a complete labelling is
required by the constrained inverse semantic operators as defined in Section 5.1.2.

Without consulting any additional sources of information, we cannot judge the
correctness of one node labelling over another, provided that neither contradicts
the annotated alignments. Our algorithm therefore takes a brute-force approach to
node labelling completion.

Definition 5.6 (Completion of Node Labellings). Let V be a set of vertices, V ′ ⊆ V ,
and m : V ′ → {Left,Right} a binary node labelling of V ′.

A mapping m′ : V → {Left,Right} is a completion of m to V iff. m′(v) = m(v) for
all v ∈ V ′.

In the following, the set of all completions ofm to V is written Completions(m,V).

Constrained Graph Splitting

Given an initial, possibly incomplete node labelling, an AMR graph can be split
by iterating over all completions of the labelling attempting to generate pairs of
precursor graphs for each of them. This procedure is captured in Algorithm 5.2.
Since the set of extensions is exponential in size, the algorithm potentionally gener-
ates an exponential number of precursor graph pairs. In practice, this means that
the algorithm is only feasible if the number of unlabelled nodes does not exceed a
certain threshold.

In the following sections, we discuss in detail how to obtain the inital node
labelling from token-to-node alignments.

5.1.3. Alignment Constraints

The principle of compositionality in the strict form that is assumed by GA-CCG (and
CCG in general) implies that every element of a meaning representation should be
traceable to a lexical item and thus, to a token in the surface form. Even without an
underlying theory, it is possible for many nodes in an AMR to intuitively point out
the token that invoked the corresponding concept.

Based on this intuition, it is possible to create tools that create alignments between
tokens and nodes of the AMR. While some tools also create alignments between
tokens and edges, we disregard edge alignments because the placement of edges is
dictated by GA-CCG rules.

90

5.1. Algorithms for Lexicon Induction

Left Right
want-01

sleep-01she

ARG0

ARG0

ARG1

she wanted to sleep

Figure 5.2.: Illustration for Example 5.8.

A node labelling is easily derived from an alignment: If a node is aligned to a
token belonging to the left constituent, it is marked as Left; if its aligned tokens
belong to the right constituent, the node is marked as Right. A node might also
have alignments to tokens from both constituents, or no alignments at all; in this
case it is left unmarked. This partial labelling is the alignment-based node labelling of
the graph.

Definition 5.7 (Alignment-Based Node Labelling). Let V be a set of vertices and
a : V → P(N) a node alignment which assigns each node a set of token indices.

Given an integer i, two unambiguous subsets of V can be defined. These vertices are
aligned to indices that are all less than or equal to i, or all greater than i, respectively.

VLeft(i) = {v ∈ V : |a(v) ≥ 1| ∧ ∀j ∈ a(v) : j ≤ i}
VRight(i) = {v ∈ V : |a(v) ≥ 1| ∧ ∀j ∈ a(v) : j > i}

For the unambiguous subsets of V , the binary node labelling mi
a : VLeft(i) ∪

VRight(i)→ {Left,Right} can be defined as follows:

mi
a(v) =

{︄
Left if v ∈ VLeft

Right if v ∈ VRight

We call mi
a the alignment-based node labelling of V and a for index i.

91

Chapter 5. Induction of Graph Algebraic CCG Lexica

Example 5.8. As an example, consider that the phrase she wanted to sleep is split after
the word she (see Figure 5.2). In our example, the node she is properly aligned to
the corresponding token, causing it to be assigned the label Left. The node want is
aligned to both wanted and, erroneously, sleep, but since both tokens are in the right
constituent, the node can be labelled right. The node sleep has alignments to both
constituents, and therefore cannot be labelled.

5.1.4. Coreferences

In Section 4.3.1, a mechanism for handling of coreferences introduced. It was
proposed that coreferences be merged with their referent nodes in a post-processing
step after parsing. Mirroring this procedure for lexicon induction by unmerging
arbitrary nodes in the meaning representation is infeasible as it is unknown a priori
which and how many nodes should be turned into coreferences.

Instead, we allow coreferences to be created in every splitting step by unmerging
a frontier node (a node assigned to the function side but with links to the argument
side). This is a straightforward extension of the implementation of inverse semantic
operators sketched in Section 5.1.2.

When more than one frontier node exists, there is an ambiguity as it is not clear
which node should become a placeholder and which a coreference. Our algorithm
always produces all feasible permutations of placeholders and coreferences. In
contrast to placeholders, coreferences can also be unmerged to either side, leaving
the lexical content either on the function or the argument side.

5.2. Recursive Splitting in Practice

Even when syntax and alignment restrictions are taken into account, the lexicon
induction algorithm is still a brute force process which can cause the number of
created lexical items to grow exponentially. Apart from the obvious computational
problems implied by such growth, it also means that a large number of “noisy”
lexical items may be introduced which are not useful for analysing novel sentences.

In this section, we introduce additional heuristics that either limit the number
of lexical items that are induced and thus may reduce the amount of superfluous
items in the lexicon, or that allow the lexicon induction algorithm to cover a larger
part of the corpus.

92

5.2. Recursive Splitting in Practice

5.2.1. Connectedness of Precursor Graphs

Arbitrary partitionings of graphs may result in disconnected subgraphs. While
certain semantic phenomena may best be represented by disconnected graphs,4
they are statistically rare. Intuitively, a constituent meaning should be representable
by a connected graph. We therefore impose the restriction that all precursor graphs
be connected and reject splits where this is not the case.

5.2.2. Limitation of Lexical Items per Syntax Derivation

When the token-node alignments do not sufficiently restrict splitting, this quickly
leads to an exponential increase in the number of induced lexical items. This may
lead to computation and memory issues: it may take an indeterminate amount of
time and/or memory to complete the induction algorithm for any given derivation.

We therefore impose a limit on the number of lexical items that may be induced in
a run of the induction algorithm (that is, per syntax derivation). Once this limit is
hit, the run of the algorithm is aborted and all induced lexical items are discarded.

Apart from ensuring that the induction algorithm completes for every derivation,
this also avoids the issue of tens of thousands of useless lexical items being added
to the lexicon.

Unless otherwise noted, this limit is set to maxLexicalItems=10 000.

5.2.3. Limitation of Unaligned Nodes

The main cause of exponential growth in the number of lexical items is sparse token-
node alignments. When many nodes in a meaning representation are unaligned,
the induction algorithm will branch out over all permutations of their assignments.
Sentences exceeding a certain number of unaligned nodes can therefore be skipped
before induction is even started, so no computation has to be spent at all.

An alternative option for controlling the number of unaligned nodes would be
to define a permitted ratio of unaligned nodes or tokens, based on the sentence’s
length. However, the motivation for this limitation is to manage computational
complexity, which is driven by the number of alignment choices that the induction
algorithm has to iterate over. For short sentences, it may be feasible to iterate over
all alignment options even if a high proportion of nodes are unaligned, and we do
not wish to exclude such sentences.

Unless otherwise noted, this limit is set to ten nodes (maxUnalignedNodes=10).
4See the discussion of argument cluster coordination in Section 4.4.3.

93

Chapter 5. Induction of Graph Algebraic CCG Lexica

5.2.4. n-Best Parsing and Filtering by Token Coverage

Errors produced by a syntactic parser can cause the induction algorithm to abort.
However, parsers such as EasyCCG are able to produce a ranked list of n best parses,
offering an opportunity to improve coverage by selecting one of several possible
derivations. To evaluate these parses, we introduce the measure of token coverage:
the fraction of tokens of a given sentence for which lexical (non-phrasal) items
could be induced.

A parse with a high token coverage is not necessarily more correct. Sometimes,
unusual syntactic constructions canmatch the structure of a meaning representation
more closely than the canonical alternative. Also, in the presence of ambiguities,
there are several equally correct derivations to choose from, only one of whichmight
match the interpretation represented in the semantic annotation.

To reduce the amount of superfluous lexical items, we run the induction algorithm
for the top n derivations output by the parser, but keep only the items produced by
the derivation which achieves the highest token coverage. In the event that there
are several derivations achieving the same token coverage, only the first derivation
is used (according to the ranking assigned by the syntax parser).

In most of the experiments in this chapter, the number of syntactic derivations is
set to derivations=10, while experiments in the following chapters use the setting
derivations=50.

5.2.5. Syntactic Arity Checking

CCG’s syntactic categories are functional types. A word or constituent is inter-
preted as a function taking a certain number of arguments. In traditional CCG,
where meaning representations are expressed in λ-calculus, a direct correspondence
between themeaning representation’s type and the syntactic category of the word or
constituent is established. The arity, that is, the number of expected arguments, must
match between both. Through the mechanics of λ-calculus, this correspondence is
upheld automatically.

In GA-CCG, such a correspondence does not exist because the types of λ-calculus
do not apply to s∗-graphs. However, because every placeholder node represents an
argument slot that may be filled, the number of placeholders can be considered the
graph’s arity. It can be argued that it would be implausible to assign the graph a
syntactic category of lower arity: since every GA-CCG derivation step only fills one
argument slot, placeholders would be left over at the root of the derivation.

Items where the semantic arity exceeds the syntactic arity can be excluded right

94

5.3. Large-Scale Lexicon Induction

at the time of lexicon induction, saving computational effort and reducing lexicon
size. In practice, assigning the proper arity to a syntactic category is not as simple
as it seems on the surface. For example, the category PP (prepositional phrase)
is atomic, but semantic representations of prepositional phrases tend to require
a placeholder for the content modified by the phrase. We therefore employ the
following rules to determine the arity of a syntactic category:

Definition 5.9 (Syntactic Arity). Given a syntactic category X , the syntactic arity
SyntacticArity(X) is defined as followed:

SyntacticArity(X) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

SyntacticArity(Y) + 1 if X = Y /Z for some Z
SyntacticArity(Y) + 1 if X = Y \Z for some Z
2 if X ∈ {conj, ,, ;}
1 if X ∈ {PP} ∪ punct
0 otherwise

(5.1)

where

punct = {LRB,RRB,LQU,RQU, .} (5.2)

By default, arity checking is employed in our experiments (arityCheck=true).

5.3. Large-Scale Lexicon Induction

In the experiments described in this section, we induce a lexicon from a large
section of the AMR corpus as a first sanity check of the lexicon induction algorithm.
The experiments provide a basis for choosing a set of parameters, most notably a
reasonable choice of alignment tools. They also allow us to gain an overview of the
behaviour of the algorithm regarding coverage and computation requirements.

5.3.1. Setup

The data set used in this experiment is the proxy-train section of the AMR 1.0
corpus (see Section 5.3.3 below).

We vary the configuration of the induction algorithm along various dimensions:

• Alignments from several AMR alignment tools are used individually and in
various combinations.

95

Chapter 5. Induction of Graph Algebraic CCG Lexica

• Various sets of grammar rules are employed.

• The number of CCG derivations from which the best derivation is chosen is
varied.

• The maximum number of coreference nodes allowed per derivation step is
varied.

Syntactic derivations are obtained from the EasyCCG parser.
To allow all runs to complete within the available memory on the experimental

system (48 GB of JVM heap size), we set maxUnalignedNodes=10. Computation
times are measured on a compute node with two Intel Xeon E5-2630v3 CPUs of
eight cores each, allowing 32-fold parallelisation.

5.3.2. Key Metrics

We evaluate every condition according to the following metrics:

• Token coverage: Percentage of tokens for which lexical items are induced

• Lexicon size: Total number of unique lexical items induced

• Runtime: Time required to perform lexicon induction on all sentences

Token coverage suffers when the lexicon induction algorithm aborts, as phrasal
items, which are created if the algorithm stops prematurely, are not counted. As
such, it is the most direct measure of the success of lexicon induction.

Ideally, the lexicon should be just as large as necessary. That is, every distinct sense
of a word that occurs in the corpus should receive a lexical entry, but the amount of
“noisy” lexical items which do not accurately represent a word’s semantics should
be limited to a minimum. Since we do not have direct evidence for the minimum
number of lexical items required to represent the corpus, in the evaluation, we
simply assume that a larger lexicon size indicates more noise in the lexicon, and
that therefore a smaller lexicon is preferable if it achieves the same level of token
coverage.

The algorithm’s runtime varies as annotations and grammar rules (which im-
pose constraints upon the induction algorithm) permit a smaller or larger search
space. Considering that lexicon induction is run repeatedly by the EM algorithm
introduced in Chapter 6, runtime can be an important factor for the practicality of
certain configuration settings.

96

5.3. Large-Scale Lexicon Induction

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

Sentence Length

C
ou

nt

Figure 5.3.: The distribution of sentence lengths in the proxy-train data set.

5.3.3. Corpus

The proxy-train section of the AMR 1.0 corpus consists of 6.603 sentences of
newswire text with a median length of 17 tokens. There are a large number of very
short sentences (see Figure 5.3), which is due to the format of the included texts:
Texts always start with an indication of a date, location, and keywords, which are
included in the corpus as individual sentences5.

Table 5.1 shows the occurrences of CCG combinators in the derivations produced
by the EasyCCG parser. Application combinators are by far the most frequent,
followed by punctuation and conjunction. In particular, type raising, type changing,
and composition combinators are very rare and together make up less than 3 % of
occurrences.

5.3.4. Comparing Alignment Strategies

Alignments between tokens and meaning representation nodes are important con-
straints for the lexicon induction algorithm and can influence the outcome to a
large degree: if alignments are too sparse, the search space of lexical items grows
exponentially, while incorrect alignment edges may preclude desirable lexical items
from being found and even cause the algorithm to stop prematurely.

Various algorithms for aligning AMR elements have been introduced in the
literature. Here, we use four tools which employ a range of techniques ranging from
rules and heuristics to unsupervised learning.

• The JAMR system (Flanigan et al. 2014), one of the earliest AMR parsers,
5Although they are not very interesting, we include these sentences in the evaluation to allow

comparisons with other systems.

97

Chapter 5. Induction of Graph Algebraic CCG Lexica

Combinator Frequency

fa 54.36 %
ba 18.32 %
lex 16.43 %
rp 4.80 %
conj 3.56 %
fc 1.31 %
bx 0.87 %
tr 0.24 %
tc-nmod 0.05 %
lp 0.04 %
tc-rel 0.04 %
gfc 0.00 %

Table 5.1.: Relative frequencies of combinators in proxy-train across the top 50
derivations produced by EasyCCG.

includes a rule-based aligner that creates alignment links based on lexical
similarity and knowledge of common AMR patterns. This aligner links token
sequences to AMR sub-graphs.

• The TAMR system (Liu et al. 2018) incorporates an AMR parser and an aligner.
Similarly to the JAMR aligner, the aligner is based on rules. However, while
the former deals with conflicting rules heuristically by prescribing a fixed pre-
cedence, the TAMR aligner runs an AMR parser on every possible alignment,
and then outputs the alignment which leads to the highest-scoring parse,
resulting in a tuned alignment.

• The amr_ud aligner (Szubert, Lopez and Schneider 2018) is a rule-based aligner
which uses syntactic dependency trees and hierarchically aligns sub-trees of
the dependency tree to sub-graphs of the meaning representation. Of these
hierarchical alignments, we use only those at the token level.

• The ISI aligner (Pourdamghani et al. 2014) learns AMR-to-string alignments in
an unsupervised fashion using an Expectation Maximisation (EM) algorithm
based on the IBM machine translation models (Brown et al. 1993). This
training method commonly used in statistical machine translation is extended
by symmetrised EM training.

98

5.3. Large-Scale Lexicon Induction

Aligner Method Sentence Part AMR Element

jamr Rules Token Span Node
tamr Rules + Parser Tuning Token Span Node
amr_ud Rules on Syntax Tree Dependency Sub-Tree Sub-Graph
isi Expectation Maximisation Token Node or Edge

Table 5.2.: An overview of AMR alignment tools.

vote1 vote2 vote3

none n/a – –
jamr 0.5905 – –
tamr 0.6105 – –
amr_ud 0.3584 – –
isi 0.5738 – –
jamr+tamr+amr_ud 0.6534 0.6316 0.3474
jamr+tamr+isi 0.6409 0.6352 0.5598
jamr+amr_ud+isi 0.6446 0.5646 0.3480
tamr+amr_ud+isi 0.6598 0.5785 0.3584
jamr+tamr+amr_ud+isi 0.6623 0.6437 0.5572

Table 5.3.: Token coverages achieved using various combinations of alignment tools.

Table 5.2 provides an overview of the tools’ features.
As these aligners employ a variety of algorithms, they can be expected to have

distinct strengths and weaknesses and it could therefore be beneficial to work with
the combined output of several tools. In the experiments, simple voting combinat-
ors votek are used to select token-to-node alignments from several tools, where k
indicates the number of tools that must agree on an alignment for it to be included
in the output. vote1 includes a token-node pair if it occurs in the output of at least
one tool and is therefore equivalent to forming the union of all alignments, whereas
voten is equivalent to forming the intersection if n is the total number of alignment
tools.

To understand what aligners are best suited for GA-CCG lexical induction and
how they should be combined, we measure the token-level coverage achieved in
the following conditions:

99

Chapter 5. Induction of Graph Algebraic CCG Lexica

• Each aligner individually

• All four aligners combined using vote1 through vote3

• Each combination of three aligners using vote1 through vote3

The resulting token-level coverages for these conditions are compiled in Table
5.3. An additional condition using no alignments at all did not complete within a
six-hour time window and is therefore not included in the results. The same is true
for the condition jamr+tamr+amr_ud+isi with the vote4 combinator.

The results show two clear trends. Firstly, combinations of aligners are better than
individual aligners. As hypothesized, the strengths of the individual aligners com-
plement each other. Secondly, the vote1 combinator, equivalent to a simple union
of all alignments, is superior. While it can be assumed that vote2 and vote3 reduce
the amount of erroneous alignments, they inevitably also increase the sparsity of
alignments and are unable to compensate for the resulting loss in coverage.

When interpreting the effect of the different votek combinators, it is important to
consider that the lexical induction algorithm is fundamentally equipped to deal with
conflicting alignments. As is explained in Section 5.1, when a split is performed and
a node has alignments to tokens on both sides of the split, both edges are deleted.
This mechanism appears to be an effective way of dealing with noisy alignments in
a local manner, in contrast to the global approach of filtering in advance.

Since the coverages for all combinations of three aligners are lower than the all-
aligners condition, we can infer that each of the aligners brings an improvement,
even if it is small. Interestingly, while the amr_ud aligner performs veryweakly on its
own due to the sparsity of its alignments on the token level, it is part of the strongest-
performing combinations, suggesting that the alignments it contributes are of high
quality. Overall, the all-aligner conditions shows the strongest performance and is
thus chosen for all subsequent experiments.

5.3.5. Comparing Grammars

Apart from the full version all of GA-CCG, which has been motivated through
examples in Section 4.2, alternative rule sets have also been defined: the simplified
grammars no-ignore, no-fa-modify, no-tr, and base, as well as the unrestricted
grammars unrestricted-all and unrestricted-a. The simplified grammars omit rules
for certain linguistic phenomena, allowing us to study their statistical impact on
token coverage. The unrestricted grammars do away with the principle of pairing

100

5.3. Large-Scale Lexicon Induction

Condition Token Cov. Lexicon Size Runtime (s)

all 0.6623 538,640 2,082
no-ignore 0.6396 520,232 1,981
no-modify 0.6405 498,578 1,693
no-tr 0.6604 532,824 2,057
base 0.6157 467,504 1,587
unrestricted-all 0.7078 1,261,980 18,301
unrestricted-a 0.6451 640,295 4,677

Table 5.4.: Token coverages achieved using various GA-CCG grammars.

CCG combinators with a specific semantic interpretation and instead allow applying
semantic operators regardless of the syntactic context.

Table 5.4 shows the impact of the various grammars on the token-level coverage,
lexicon size, and runtime. Reassuringly, the all grammar achieves a better token-
level coverage than all of the simplified grammars. This indicates that all specialised
rules do contribute to coverage. While the loss in coverage for each of the simplified
grammars appears small, a comparison with the base grammar (from which all spe-
cialised rules are omitted) shows that the specialised rules cumulatively contribute
almost five percentage points in coverage.

As expected, the coverage achieved by the unrestricted-all grammar surpasses
those of specialised grammars, since the number of rules available at any given step
is larger. The lexicon size suggests, however, that this comes at the cost of a large
increase in ambiguity and noise in the lexicon, as well as an almost tenfold increase
in runtime.

Interestingly, unrestricted-a achieves a similar coverage to all, making it a po-
tential candidate for a simpler alternative to the elaborate all grammar. However,
all is more efficient in terms of lexicon size and runtime. Overall, this is a tenuous
confirmation of the intuition that a linguistically tailored grammar allows greater
efficiency and may be better suited to downstream processing.

5.3.6. Measuring the Impact of n-Best Parsing

Since semantic construction in GA-CCG is tightly linked to syntactic structure, GA-
CCG depends on the shared structure between both types of representation. Apart
from the fundamental question of whether this parallelism is always given, which

101

Chapter 5. Induction of Graph Algebraic CCG Lexica

n Token Cov. Lexicon Size Runtime

1 0.4724 346,550 266
2 0.5383 407,040 458
5 0.6171 479,435 1,076

10 0.6623 538,640 2,088
20 0.6976 583,985 3,973
50 0.7401 664,527 10,488

Table 5.5.: Token coverages, lexical item counts, and runtime achieved by covering
a varying number of n-best syntax derivations.

is explored in Section 5.4, it may also be violated if erroneous syntactic parses are
supplied by the external parser.

As described in Section 5.2, for every sentence, we use the the syntax parser to
generate the n top-scoring derivations and select a single derivation which achieves
the highest token-level coverage. This is the derivation which matches the semantic
structure best. The more derivations are considered, the higher the chance is of
finding such a high-quality derivation; however, since the derivations are ranked
by the score assigned to them by the parser’s model, the chance of each individual
derivation being high-quality decreases along with its rank.

At the same time, n cannot be increased limitlessly because of the computational
cost incurred both due to running lexicon induction n times for each sentence, and
the computational requirements of syntax parsing itself. In practice, we found that
time and memory requirements of the EasyCCG parser made values of n > 50
difficult to handle.

Table 5.5 shows the lexicon induction results obtained with several values of n.
As expected, higher settings of n are associated with higher token-level coverage.
The moderate increase in lexicon size can be attributed to the improved coverage,
while the increase in runtime directly reflects the increased number of derivations
that need to be processed.

It is somewhat surprising that even at n > 20, additional parses still provide a
large improvement to token-level coverage. Apparently, high-quality derivations
seem to exist relatively far from the top of the ranking, suggesting that the rank-
ing of derivations produced by the parser is not very reliable. Considering that
EasyCCG’s model considers only probabilities on the supertag level but does not
directly score dependencies or constituents, we hypothesize that EasyCCG is weak

102

5.3. Large-Scale Lexicon Induction

Max. Coreferences Token Cov. Lexicon Size Runtime

0 0.4976 276,030 549
1 0.6623 538,640 2,071
2 0.6785 671,180 8,326

Table 5.6.: Token coverages, lexical item counts, and runtime achieved by allowing
various numbers of coreferences per splitting step.

in making attachment decisions that are crucial for the induction algorithm to work.
For instance, an incorrectly attached prepositional phrase may prevent the induc-
tion algorithm from generating lexical entries for a large chunk of the sentence,
but EasyCCG’s model does not always contain sufficient information about such
attachment decisions.

While it would be interesting to compare EasyCCG’s behaviour with that of other
CCG parsers with richer models, we view the token-level coverage achieved at
n = 50 as satisfactory. In Chapter 6, we describe how the lexical items produced
in this step can be delexicalised so that the resulting generalised lexicon is able to
cover a much larger section of the corpus.

5.3.7. Evaluating the Need for Coreference Nodes

Many AMRs contain edges between referents that are not directly syntactically
related. For instance, this occurs if a pronoun references another noun in the same
sentence and thus allows the corresponding entity to relate to several verbs at
once. Such phenomena are accounted for by a coreference mechanism which allows
additional nodes to be unmerged during a split (see Section 5.2 for details).

Intuitively, cases where more than one coreference needs to be unmerged in
a single splitting step should be rare. At the same time, coreference extraction
introduces a risk of adding noisy entries to the lexicon, as it may sometimes act as
a “fallback” mechanism which allows induction to continue even in cases where
there is a mismatch between the meaning representation and the syntax derivation
or the alignments. In these situations, it is likely that the resulting lexical items will
not generalise well.

We examine this tradeoff experimentally by running induction with 0, 1, or 2
coreferences allowed per splitting step. The results are presented in Table 5.6
and confirm the above intuition: While allowing a single coreference per step is

103

Chapter 5. Induction of Graph Algebraic CCG Lexica

crucial for achieving a good token-level coverage, a second coreference provides
little additional coverage and is expensive in terms of runtime. At the same time,
the amount of additional lexical items points to a considerable amount of noise
introduced to the lexicon.

5.4. Experiments on Grammar Coverage

While GA-CCG has been motivated on a theoretical level in Chapter 4, and the
experiments in the previous section have given some indication on the coverage of
GA-CCG on a wide-coverage corpus, it is important to understand in more detail
how well the rules of GA-CCG match the meaning representations found in the
AMR corpus, and what effect the additional errors have that are introduced by
the aligners and the syntactic parser. Therefore, in this section, we conduct an
additional experiment on a small subset of AMR data for which higher-quality
annotations are available, and perform error analyses on the derivations generated
by the induction algorithm.

5.4.1. Corpus

Syntactic derivations and token-to-node alignments are a source of noise when they
are generated by external tools. Fortunately, there exists a sub-section of the AMR
1.0 corpus for which gold-standard annotations of both syntax and alignments are
available. These sentences are contained within the consensus-dev and consensus-
test sections of the corpus. In this section, we evaluate lexicon induction on the
100 sentences of the consensus-dev section.

5.4.2. Annotations

In this section, we evaluate the performance of the lexicon induction algorithm
when either gold-standard or tool-derived annotations are used. The following
annotation sources are used in the various experimental conditions.

Gold-Standard Data

The sentences in the consensus-dev corpus are part of the Wall Street Journal
corpus of the Penn Treebank (Marcus, Santorini and Marcinkiewicz 1993) and,
consequently, CCGBank (Hockenmaier and Steedman 2007). Syntactic CCG deriv-
ations can therefore be taken directly from CCGBank.

104

5.4. Experiments on Grammar Coverage

Gold standard token-to-meaning alignments have been made available by Pour-
damghani et al. (2014)6. They have been used for evaluating the ISI aligner presented
in the same paper and contain both token-to-node and token-to-edge alignments.
Our algorithm disregards token-to-edge alignments and uses only the token-to-node
alignments.

Annotation Tools

For tool-derived annotations, we use the settings validated by the large-scale in-
duction experiments in Section 5.3. For syntax derivations, the ten highest-scoring
derivations from the EasyCCG parser are used. Alignments are obtained by com-
bining the outputs from the JAMR, ISI, amr_ud, and TAMR aligners using the vote-1
strategy.

5.4.3. Additional Rules for Induction from CCGBank Syntax

This is the only experiment in this thesis which uses CCGBank annotations for
lexicon induction. All other experiments use syntactic derivations produced by
the statistical parser EasyCCG (Lewis and Steedman 2014). While EasyCCG is
trained on CCGBank, it produces a subset of the combinators contained within
CCGBank derivations. In fact, CCGBank contains a large number of non-standard
combinators which are not contained within usual introductions to CCG such as
Steedman (2000).

For these combinators to be processed by the lexicon induction algorithm, ad-
ditional rules are required. They were assigned a semantic operator according to
their function in the CCGBank derivations. A list of these rules is given in Table 5.7.
As they are only required for this single experiment on a limited corpus, only the
rules required for dealing with the consensus-dev corpus are included.

5.4.4. Error Analysis Methodology

We conduct error analyses on the output of the lexical induction algorithm to
qualitatively assess shortcomings of the proposed grammar and algorithms. Error
analysis is conducted on the basis of induction stoppages: combinatory nodes which
have been assigned one or several meaning representations but whose children
have not. Every such stoppage is assigned an error class as described below.

6The alignments are available for download at https://isi.edu/~damghani/papers/gold_
alignments.zip (retrieved 19 Nov 2021).

105

https://isi.edu/~damghani/papers/gold_alignments.zip
https://isi.edu/~damghani/papers/gold_alignments.zip

Chapter 5. Induction of Graph Algebraic CCG Lexica

Syntactic Rule Semantic Operator

X Y ⇒ Y [conj] (X ∈ {,, ;, :, ., conj}) S, A, Ki
X X ⇒ X A←, S
S\S ,⇒ S/S Ki←
NP ,⇒ S/S A←, Ki←
conj S⇒ NP[conj]) S

Table 5.7.: Additional grammar rules used for processing CCGbank derivations. On
the left are syntactic rules that have been observed in CCGbank deriva-
tions. On the right are possible semantic interpretations of these rules.
In some cases, more than one semantic interpretation can be inferred.

According to this procedure, all sentences with a token coverage of less than 100%
are examined, and more than one error per sentence may be detected.

Error Classes

To simplify interpretation of the error analysis, error classes are organised in a
hierarchy. The first important question we ask of any error is: Is the error the result
of a weakness in the lexical induction system that could in theory be solved (for
instance, by introducing additional rules to cover a specific case)? In this case,
the error is due to a grammar limitation. Or does the phrase in question exhibit a
structural divergence between syntax and semantics, which is at odds with the
strong assumption of compositionality underlying our grammar? Then, the error is
due to a syntax-semantics divergence.

We distinguish the following types of grammar limitation:

• Deep Modification: the function graph attaches to the argument graph at a
level below the root, but the M operator is not applicable according to the
grammar rules. For instance, this is the case if the attachment is two levels
below the root, or if there are multiple nodes on level 1 (see Example 5.7).

• Disconnected Sub-Graph: the argument graph would become disconnected,
which prohibits the split.

106

5.4. Experiments on Grammar Coverage

• Focus Shift: a type-changing operation shifts the focus to a different node,
which is not modelled in the grammar, as explained in Example 4.10.

• Ignore Operator: the argument is semantically empty but the ignore operator
is not applicable according to the grammar rules.

• Overlapping Edges: an edge is shared between the function and argument
graphs, which cannot be analyzed using the inventory of semantic operators
in GA-CCG (see Figure 5.8). However, relation-wise operators could be
introduced to address such phenomena (Blodgett and Schneider 2019).

Furthermore, we identify the following types of syntax-semantics divergence:

• Dependencies: semantic dependencies are established to an entity that is not
the focus of the phrase. For instance, modifiers sometimes refer to the noun
of a phrase instead of the head verb (see Figure 5.6). In other cases, idiomatic
expressions are represented in AMR in a non-compositional way (see Figure
5.5).

• Non-Monotonicity: AMR representations for several linguistic constructions
are inherently non-monotonic as they involve the copying of nodes which are
represented only once in the sentence. Partitives are an example thereof, as
are some instances of quantification (see Figure 5.4).

• Annotation: errors in the annotated CCG derivations, meaning representa-
tions, or alignments can cause stoppages. We assign this error class only in
cases where there clearly is a more correct structure that could be annotated.
In particular, CCGBank contains systematic errors, for example in noun phrase
bracketing (Honnibal, Curran and Bos 2010). See Figure 5.9 for an example.

• Ambiguity: Linguistic ambiguities such as attachment ambiguities may cause
divergence as semantic and syntactic annotations are produced separately
from each other andmay therefore represent different readings of the sentence.

5.4.5. Results and Interpretation

We run lexicon induction with four combinations of annotations:

• gold: CCGBank syntax derivations with gold-standard alignments

107

Chapter 5. Induction of Graph Algebraic CCG Lexica

chef include-91 chef town

hot most

ARG1 ARG2 location

mod
degree

(a) Partitives can cause nodes to be duplicated, such as the chef nodes in this AMR. The
phrase represented in the example is some of the hottest chefs in town. From wsj_0010.17.

and

operation

sell-01

operation

service-01

operation

part

operation

market-01

op1

op
2 op3

op4

mod mod mod mod

(b) Example for the duplication of nodes due to coordination. The phrase is sales, service,
parts and marketing operations. Even though the token operations occurs only once, a
separate operation node is introduced for each operand of the and conjunction. From
wsj_0009.2.

Figure 5.4.: Examples for non-monotonic constructions.

have-03

we

information

useful-
ARG0

ARG1

mod
polarity

We have no useful information
NP (S\NP)/NP NP/N N

>
NP

>
S\NP

<
S

Figure 5.5.: Example for divergent dependencies. The polarity edge of have-03 does
not match the dependency between no and information. Simplified from
wsj_0003.9

108

5.4. Experiments on Grammar Coverage

point-02
person

drive-01

dummy

- […]

ARG0

A
RG

0

domain

polari
ty

ARG1

No dummies , the drivers pointed out […]
NP/N N , NP/N N (S\NP)/S (S\NP)\(S\NP) S

> > <B×
NP NP (S\NP)/S

scomma >
S/S S\NP

<
S

>
S

Figure 5.6.: Example for divergent dependencies. Although point-02 is the focus
of the main clause, the modifier no dummies attaches to the subject.
Simplified from wsj_0010.14

Kent cigarette filters
N/N N/N N

⟨0⟩ name ”Kent”
name op1

>
N

product filter-02

cigarette

ARG0
mod

>
N

product filter-02

cigarette name ”Kent”

ARG0
mod

name op1

Figure 5.7.: Example for a non-unique depth-1 attachment. TheKentmodifier cannot
be attached to cigarette because of the sister node filter-02. Simplified
from wsj_0003.1

109

Chapter 5. Induction of Graph Algebraic CCG Lexica

settle-01

⟨0⟩

capital

name

“Indianapolis”

board

meet-03AR
G0

ARG1

part ARG0

locationname

op1

settled on Indianapolis for its board meeting
(S\NP)/PP PP/NP NP ((S\NP)\(S\NP))/NP NP/N N/N N

> >
PP N

> >
S\NP NP

>
(S\NP)\(S\NP)

<
S\NP

(a) The semantic representation shown above cannot be decomposed into representations
for constituents settled on Indianapolis and for its board meeting because the location edge
is attached to the constituent on the right side.

settle-01

⟨0⟩ <coref>

capital

name

“Indianapolis”

ARG0 ARG1

name

op1

location

settled on Indianapolis

<coref>

⟨0⟩

meet-03

board

part

ARG1

ARG0

for its board meeting

(b) Proposed semantic representations for the sub-constituents of the phrase. The high-
lighted ARG1 edge appears in both representations, creating a link between the location
edge and settle-01.

Figure 5.8.: Illustration of edge overlap. Simplified from wsj_0010.3.

110

5.4. Experiments on Grammar Coverage

executive
and

sell-01 market-01

topic

op
1 op2

sales and marketing executive
N/N conj N/N N

>
N

lcomma
N

>
N

Figure 5.9.: Example for a syntactic annotation error. The semantic annotation
correctly represents the conjunction of the modifiers sales and marketing.
In the syntax, the lcomma combinator is annotated instead, effectively
treating the conjunction as punctuation. As a result, marketing executive
forms a syntactic constituent, but not a contiguous subgraph of the
AMR. From wsj_0009.4.

gold parser aligner

Syntax/Semantics Divergence 30 39 33
Dependencies 16 5 13
Non-Monotonicity 4 2 5
Annotation 8 31 13

semantic 1 1 1
syntactic 7 30 3
alignment 0 0 9

Ambiguity 2 1 2

Grammar Limitations 19 8 15
Deep Modification 11 4 8
Disconnected Sub-Graph 3 2 2
Focus Shift 2 1 2
Ignore Operator 2 1 2
Overlapping Edges 1 0 1

Overall 49 47 48

Table 5.8.: Error counts for grammar coverage experimental conditions.

111

Chapter 5. Induction of Graph Algebraic CCG Lexica

Condition Token Coverage Perfect Sentences

gold 0.7360 55
parser 0.7298 58
aligner 0.6909 58
both 0.6825 60

Table 5.9.: Statistics for grammar coverage experimental conditions. The corpus size
is 100 sentences.

• parser: EasyCCG syntax derivations with gold-standard alignments

• aligner: CCGBank syntax derivations with automatic alignments

• both: EasyCCG syntax derivations with automatic alignments

For the first three conditions, a manual error analysis was performed with the
counts shown in Table 5.8. For all four conditions, the total token coverage and the
number of “perfect” sentences with 100 % token coverage are measured and shown
in Table 5.9. In the remainder of this section, the error analysis is discussed in detail
and an interpretation of the results is given.

Gold Condition

To remove noise generated by external tools, the gold condition is conducted using
gold-standard syntax and alignments. Under these conditions, an average token
coverage of 73.6% is achieved. Only 55 of the 100 sentences have a perfect token
coverage of 100% (see Table 5.9).

This result confirms that the grammar is very sensitive to the various types of
syntax/semantics divergence, which make up 30 of 49 diagnosed errors (Table 5.8).
In particular, the 16 errors in theDependencies class show that semantic and syntactic
dependencies diverge frequently in a way that prevents complete lexical induction.

Annotation errors are also an issue, although it is difficult in some cases to distin-
guish between faulty annotations (in the annotation class) and conscious annotation
decisions (in the dependencies class). In many cases, divergences from the syntactic
dependency structure are clearly motivated; this is illustrated in Figure 5.5, where
the goal of abstracting away from syntactic idiosyncracies mandates that the negation
be applied to the verb instead of the noun information (Banarescu et al. 2013). In
other cases, the annotated AMR could be interpreted using an alternative syntactic

112

5.4. Experiments on Grammar Coverage

derivation, even if such an analysis might be considered unconventional. In such
cases, the dependencies class was always annotated, since it was difficult to judge the
idiomaticity of the various possible syntactic derivations and AMRs.

The non-monotonicity and ambiguity classes represent issues that are fundamentally
challenging for the GA-CCG framework. Non-monotonicities such as those shown
in Figure 5.4 cannot be built using compositional means andwould therefore require
the introduction of additional rules which are challenging to formulate. Ambiguity
errors are an inevitable consequence of using independent sources of syntactic and
semantic annotation and can only be eliminated by creating both representations
in a single process to ensure that the same reading of a sentence is represented
in both syntactic and semantic annotations. Again, there is possible confusion
with the dependencies class, as the examples from that class are distributed across
various levels of acceptability. Again, dependencies was always annotated in favour
of ambiguitywhen there was any doubt about the acceptability of one of the possible
representations.

Among errors related to limitations of the grammar, deep modification is the largest
error class. These errors are mostly due to the fact that single words may invoke
several concepts and can thus be represented by multiple nodes. While there is a
grammar rule which allows modifiers to attach to nodes one level below the root, it
only applies if there is only one such node. Since there are many contexts where
this condition is violated, a more flexible strategy for the attachment of modifiers
might be needed. Since such a modification to the grammar would lead to a large
number of spurious lexical items and place a further burden on a semantic parser
employing the grammar, we do not further pursue this option in this thesis.

The remaining error classes are small, showing that while parser behaviour might
be improved by extending the grammar to deal with the phenomena in question,
this is unlikely to have a big statistical effect on a parser’s performance.

Parser Condition

The biggest shift in the error counts when comparing the gold condition to the
parser condition is a shift of errors to the annotation class from all other classes. This
is expected when comparing the output of a statistical parser to gold-standard data,
and seem to indicate that other errors are masked by syntax errors produced by the
parser.

In fact, the picture is slightly more complex. In fourteen sentences, an error from
the gold condition was masked by the introduction of a syntax error produced by
the parser. On the other hand, the overall error count between both conditions is

113

Chapter 5. Induction of Graph Algebraic CCG Lexica

similar. This shows that the syntax parser introduces new errors, but also fixes
some derivations that are problematic in the CCGbank annotations. This can be
achieved by improving upon erroneous annotations or producing less conventional
syntax derivations which better match the AMR’s structure.

The results of the large-scale lexicon induction experiment in Section 5.3 show
that the selection of the n-best parses has a large influence on the token coverage
that is achieved. Selecting from ten parses causes improvements to nearly cancel out
the additional errors, leading to similar total error counts and token-level coverage.

Aligner Condition

In contrast to CCGBank derivations, we did not detect any errors in the gold-
standard alignments. There is therefore less opportunity in the aligner condition to
improve upon the performance of the gold condition. However, the tool-generated
alignments can be sparser than the gold-standard annotation, which increases the
flexibility of the lexical induction algorithm and may allow additional, possibly
noisy lexical items to be induced. Overspecified alignments can have the same effect,
as they can cause the lexical induction algorithm to ignore certain alignment edges
as explained in Section 5.2. We observed the induction of noisy lexical items due to
the tool-generated alignments in nine sentences7.

As with the parser condition, the total error counts are very similar to those of the
gold condition, which indicates that sentences with improvements cancel out those
with new errors. Still, these improvements have been found to increase the amount
of noisy lexical items, and the diminished token coverage shows that alignment
errors tend to cause problems early in the induction process, preventing lexical
induction for large parts of the sentence.

5.4.6. Discussion

The analysis shows that the proposed grammar fits the corpus rather roughly:
While almost three quarters of tokens are covered under ideal conditions, almost
half of all sentences contain at least one construction that cannot be analysed. The
performance gap between gold-standard and tool-generated annotations is small,
which is encouraging as gold-standard annotations are not available in our large-
scale experimental setting. The achieved token coverage is also comparable to the
results of the large-scale experiment described in Section 5.3.

7Aswe only count errors that lead to an induction stoppage, these are distinct from the nine sentences
in which alignment errors are diagnosed.

114

5.4. Experiments on Grammar Coverage

Perfect coverage is not a requirement for successful lexicon induction. As the
ultimate aim is to utilise the induced lexical items for parsing novel sentences, it
should suffice to achieve a good coverage of high-frequency tokens and categories
across the induction corpus. That is, even if a lexical item for a given token cannot be
derived from a specific sentence in the corpus, there is likely to be another sentence
in the corpus containing that token. In Chapter 6, we also discuss how lexical items
can be delexicalised to generalise across words of the same syntactic category, which
further reduces the dependence of lexicon quality on the coverage of individual
tokens.

Tool-generated annotations have been observed to lead to the creation of noisy
lexical items with little potential for generalisation. While the amount of noise in the
induced lexicon has not been quantified in this experiment, token coverage figures
need to be interpreted with caution. The quality of lexical items, as well as noise
reduction, are addressed in more depth in Chapter 6.

The issues discussed in this chapter also largely apply to parsing: certain construc-
tions found in the AMR corpus cannot be derived using GA-CCG. Again, perfect
treatment of such constructions is not necessarily needed to produce a strongly
performing parser. Since Smatch scores8 are calculated on the edge level, individual
mis-attachments do not impact the Smatch score strongly. In Chapter 7, the impact
of the grammar on parser performance is examined in detail.

8See Section 2.1.5.

115

Chapter 5. Induction of Graph Algebraic CCG Lexica

Algorithm 5.1 Syntax-Driven Splitting Algorithm
Inputs:

• A derivation d
• An AMR graph g
• A GA-CCG rule set (R1, R2)

Output: A set of lexical items

1: function SplitSyn(d, g,R)
2: if |children(d)| = 0 then ▷ At a leaf of the derivation
3: return {(tok(d), syn(d), sem(d))} ▷ Generate a lexical item
4: else if |children(d)| = 1 then ▷ At a unary branching node
5: d′ ← children(d)[0] ▷ Move one level down
6: return SplitSyn(d′, g, R) ▷ Do not split the graph
7: else ▷ At a binary branching node
8: O ← {} ▷ Initialise output set
9: (d′1, d

′
2)← children(d)

10: for all (C, p, o) ∈ R2 do ▷ For every rule
11: if C = cmb(d) ∧ p(syn(d′1), syn(d′2)) then ▷ If the rule is applicable
12: for all (g′1, g′2) ∈ SplitSem(g, o) do ▷ Split the graph
13: O ← O ∪ SplitSyn(d′1, g′1, R) ▷ Move to the child nodes
14: O ← O ∪ SplitSyn(d′2, g′2, R)
15: end for
16: end if
17: end for
18: if O ̸= {} then
19: return O ▷ Return all lexical items
20: else
21: return {(tok(d), syn(d), sem(d))} ▷ Generate phrasal item
22: end if
23: end if
24: end function

116

5.4. Experiments on Grammar Coverage

Algorithm 5.2 Constrained graph splitting algorithm
Inputs:

• GA-CCG s∗-graph g = (V,E, vroot, l, slab)
• Semantic operator o

Output: A set of pairs of GA-CCG s∗-graphs O = {(g11, g12), (g21, g22), . . . }
Description: Generates predecessors for g, assuming that g is the result of ap-
plying o to the predecessors. Thus, for each generated pair gi1, gi2, it holds that
g = o(gi1, g

i
2).

function SplitSem(g, o)
O ← {} ▷ Initialise output set
m← InitialLabelling(g) ▷ Assign colours from alignments
for all m′ ∈ Completions(m,V) do ▷ Colour remaining vertices

O ← O ∪ o−1(g,m′) ▷ Split the graph
end for
return O

end function

117

Chapter 6.

Post-Processing the Lexicon:
Delexicalisation, Filtering, and
Supertagging

In the preceding chapter, algorithms to induce a syntactic-semantic lexicon were
discussed, with the goal of using the induced lexicon to parse novel sentences. It
was shown that this can be achieved with an acceptable coverage and efficiency.
However, the lexicon induced in Chapter 5 suffers from a crucial weakness: Since
lexical entries are tied to surface tokens, words that do not occur in the training data
cannot be interpreted.

For instance, the lexicon does not generalise from the induced meaning of the
transitive verb like to the unseen word love, even though both words share the same
syntactic category and would intuitively be expected to be exchangeable on the
semantic level.

Assume that the induced lexicon contains a lexical entry for the word like as
shown in Figure 6.1a. When a parser is using this lexicon and is presented with the
unseen transitive verb love, we would at least expect it to generate an appropriate
semantic structure, independently of its concrete lexical content. Even if the concrete
concept that corresponds to love has not been learned, the instantiation of a generic

like-01
⟨0⟩

⟨1⟩

ARG0

ARG1

(a) Meaning repres-
entation for like.

unknown
⟨0⟩

⟨1⟩

ARG0

ARG1

(b) Generic template
for transitive verbs.

Figure 6.1.: A lexicalised and a delexicalised lexical entry.

119

Chapter 6. Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging

transitive verb structure, as shown in Figure 6.1b, would help the parser form an
analysis of the sentence. It could even guess that love-01 might be an appropriate
concept to associate with the unknown node.

We call the process by which lexical content is removed from a lexical item
delexicalisation and describe it in detail in Section 6.1. Besides allowing effective
generalisation, delexicalisation also maps each class of structurally identical lexical
items to a single template, which reduces the amount of redundancy in the lexicon
and potentially improves parser training by allowing the model to score lexical
items on a structural level, abstracting away from concrete node labels.

On the other hand, delexicalisation creates a large amount of noise because
incorrect delexicalisations are performed where non-lexical content is erroneously
removed. This adds to the superfluous lexical items that are already present in the
induced lexicon, for instance due to sparse alignments. It would be helpful to have
an indication of which lexical items are plausible and likely to generalise, and which
are likely to be noise.

Expectation Maximisation (EM) is a class of algorithms which estimate a probab-
ility distribution in an unsupervised manner, and in Section 6.2 we derive an EM
algorithm from the well-known Inside-Outside algorithm (see Section 3.4) which
scores lexical items and allows us to filter out those with a low probability.

The result of EM filtering is a greatly reduced lexicon which nonetheless retains
the same token coverage of the training corpus as the original lexicon. As its entries
are delexicalised, its generalisation is improved. However, a downstreamparser now
faces a more difficult problem when selecting lexical items, as every delexicalised
item is available for every token. While the EM algorithm has associated lexical
items with probabilities, these do not take the concrete sentence context into account
and are therefore of limited utility for parsing.

Using EM filtering the number of delexicalised templates can be reduced enough
to permit supertagging – that is, directly predicting the templates to be instantiated
for every token using a BiLSTM neural network (see Section 6.3). This provides the
downstream parser with a ranked list of options for every token, greatly reducing
its search space. The pipeline of delexicalisation, EM filtering, and supertagging
therefore transforms the induced lexicon into input suitable for the CKY-based
parser presented in the following chapter.

120

6.1. Delexicalisation

6.1. Delexicalisation

Lexical entries that are tied to a specific surface form generalise poorly. This causes
problems when they are applied to wide-coverage corpora such as the newswire
texts contained in the AMR corpus. At the same time, many lexical items share an
identical structure that differs only in node labels, as shown in Figure 6.1.

One approach to this issue in CCG parsing is to separate lexical entries into
lexemes and lexical templates (Kwiatkowski et al. 2011). Lexical templates provide
a “delexicalised” abstraction of the semantic content of a word. This abstraction
is achieved by replacing logical constants with special placeholders, so that the
structure of the meaning representation is retained without the lexical content. A
lexeme can be used to instantiate a template for a specific word by re-introducing
the lexical content: the lexeme contains a word and a list of logical constants1, which
are inserted into the delexicalised placeholders of the template. A template and a
lexeme can thus be recombined into a full lexical entry.

We adapt this approach to AMR parsing. Instead of logical constants, our lexemes
contain concepts, constants or relations. In templates, these labels are replaced with
special placeholders. A delexicalised lexicon contains both lexemes and templates.
To simplify the delexicalisation of the lexicon, we furthermore limit lexemes to
contain one token and one label only, and likewise, templates to contain only one
lexicalisation placeholder. To make delexicalisation optional, the original graph is
always added as a template which can be combined with the lexeme (t, ϵ).

Definition 6.1 (Delexicalisation). Let x = (w, csyn, csem) be a CCG lexical entry
where csem = (V,E, vroot, l, slab) is a GA-CCG s∗-graph.

The delexicalised set of x is defined as follows:

Delex(w, csyn, csem) = {((w, ϵ), (csyn, csem))}
∪ {(lex(e), tmpl(e)) : e ∈ V ∪ E}

where

lex(e) = (w, label(e))
tmpl(e) = (csyn, c

′
sem) where c′sem = (V,E, vroot, le→<lex>, slab)

1Like a lexeme in morphology, such a lexeme can represent various different forms of a word, even
if they correspond to different templates – hence the name.

121

Chapter 6. Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging

L T

(join,) join-01
⟨0⟩

⟨1⟩

ARG0

ARG1

(join, join-01) <lex>

⟨0⟩

⟨1⟩

ARG0

ARG1

(join, ARG0) join-01
⟨0⟩

⟨1⟩

<lex>

ARG1

(join, ARG1) join-01
⟨0⟩

⟨1⟩

ARG0

<lex>

Table 6.1.: Delexicalised meaning representations derived from the word join.

Example 6.2 (Delexicalisation). Consider the following lexical entry2:

join := ((S\NP)/PP)/NP : join-01
⟨0⟩

⟨1⟩

ARG0

ARG1

Four lexeme-template pairs can be derived from this entry. They are shown in
Table 6.1.

6.1.1. Lexeme Patterns

Many lexemes take one of several predictable forms. To aid generalisation, these
can in turn be abstracted into a number of patterns. Given a token w, we generate
lexemes on the fly using the following rules:

• (w, lemma(w)): many concepts are lemmas of the token they represent
2Induced from sentence nw.wsj_0001.1.

122

6.1. Delexicalisation

Parameter Value

grammar all
alignments jamr+tamr+amr_ud+isi-vote1
maxCorefs 1
derivations 50
maxUnalignedNodes 13
maxItemCount 10000

Table 6.2.: Parameter settings for the validation run of the delexicalisation algorithm.

• (w, "w"): quoted constants

• (w, f) where f is an OntoNotes frame associated with the lemma of w.

Since the lexeme dictionary contains distinct items, a lexeme is not added if it
matches one of these patterns; this is important to consider when interpreting the
lexeme count resulting from the validation experiment in the following section.

Another common pattern is (t, ϵ). This pattern is excluded because it causes
problems during EM filtering (see Section 6.2), where it occurs so frequently that it
drowns out all other lexemes and forces their probabilities to zero.

6.1.2. Validation Experiment

Given a GA-CCG lexicon, the above definition can easily be implemented as a brute-
force algorithm. For every lexical entry, template-lexeme pairs are generated by
relabelling every node or edge in turn.

To confirm the viability of the proposed algorithm, we conduct a large-scale
induction experiment using the entire proxy-train section of the AMR 1.0 corpus.
The settings are derived from the best-performing large-scale induction experiment
in Section 5.3 and shown in Table 6.2.

Care must be taken when interpreting lexical item counts because they include
phrasal items which span more than one token in cases where the algorithm has
aborted. This is necessary to allow the EM algorithm to allocate probabilities. These
lexical items are however not used for supertagging or parsing.

The resulting lexicon contains 690.527 lexical entries. The brute-force delexical-
isation algorithm creates several templates per lexical entry on average, resulting in
4,844.324 distinct templates, and 511.436 distinct lexemes, of which 36,299 are empty

123

Chapter 6. Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging

S\
N
P

N
/N

(N
\N

)/
N
P N

co
nj

(N
/N

)/
(N

/N
)

N
P

(S
\N

P)
/N

P
(S

\N
P)

/(
S\

N
P) S

((
S\

N
P)

\(
S\

N
P)

)/
N
P

(S
\N

P)
\(

S\
N
P)

(S
\N

P)
/P

P
N
/P

P ,

((
N
/N

)/
(N

/N
))

/(
(N

/N
)/

(N
/N

))
PP

/N
P

((
S\

N
P)

\(
S\

N
P)

)/
(S

\N
P)

N
\N

N
P/

N

0

200,000

400,000

600,000

800,000

Syntactic Category

C
ou

nt

Figure 6.2.: Number of templates per syntactic category after delexicalisation. The
top 20 out of 181 syntactic categories are shown.

lexemes of the form (t, ϵ). These very large counts are a result of the brute-force
delexicalisation, which creates many implausible template-lexeme pairs.

On average, there are 14 lexemes per token (median 12), with a maximum of
917 lexemes for the token “and”. Templates are distributed across 181 syntactic
categories with an average of 26,764 templates per syntactic category (median 178).
Template counts for the most common syntactic categories are visualized in Figure
6.2. These distributions illustrate the difficult task a parser faces when selecting
lexical entries.

Due to the large number of templates and lexemes, the delexicalised lexicon is
not directly suitable for parsing. In the next section, we tackle the task of filtering
out unnecessary or implausible items.

124

6.2. Expectation Maximisation Filtering

6.2. Expectation Maximisation Filtering

Every step of the lexicon induction pipeline so far has added ambiguity. For every
node of a syntax derivation, the lexicon induction algorithmmay have produced one,
several, or no semantic representations. Each of these may have been delexicalised
into a number of template-lexeme pairs.

Some of the templates and lexemes are plausible because they are applicable to a
number of concrete syntactic contexts. For example, the template for like shown in
Figure 6.1b can be applied to other transitive verbs in combination with the proper
lexeme. Other templates and lexemes are erroneously created due to the brute-force
nature of delexicalisation, gappy alignments, or other causes. Lexemes such as
(join,ARG0) from Example 6.2 fall into this category. Such templates and lexemes
are unlikely to be useful in the analysis of novel sentences.

Intuitively, templates and lexemes that occur in the induction results for more
than one sentence are more likely to generalise than those induced only once. One
might therefore count the number of examples supporting a given template or
lexeme to determine its utility. However, induction of superfluous items happens
systematically, especially during delexicalisation; therefore, this simple heuristic
is not sufficient. Instead, a score for generalisation should be computed for every
template and lexeme. Then, for every sentence, only the highest-scoring templates
and lexemes should be kept. If a template or lexeme is not among this set for any
sentence, it can be pruned from the lexicon.

These scores can be computed using an expectationmaximisation (EM) algorithm.
Since EM maximises the overall probability of the dataset, it tends to concentrate
probability mass on a small set of templates and lexemes which can be used many
times over across the data set, and thus automatically identifies the most generalis-
able items. In the remainder of this section, we describe an algorithm derived from
the inside-outside algorithm described in Section 3.4.

6.2.1. An EM Algorithm for Scoring Templates and Lexemes

In order to optimise a given grammar with EM, a generative process needs to be
defined which describes probabilistically how a data set may be generated from the
EM model step by step. For PCFGs, a top-down generative process can be defined
by starting with the start symbol and then choosing production rules according
to their probabilities. For CCG, this process is less obvious since the formalism is
usually described as a bottom-up process, starting with the selection of lexical items.
A top-down process for GA-CCG could be described as follows:

125

Chapter 6. Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging

1. Choose a atomic syntactic category X for the entire sentence, such as S, NP,
or N.

2. Either
a) Choose a syntactic combinator and syntactic categories X1, X2 such that

the combinator can be applied to produce the original category X . Then
repeat step 2 for both X1 and X2.

b) Choose a template t matching the syntactic category X with probability
qT (t), and a lexeme l with probability qL.

This process invokes the probability distributions qT over templates and qL over
lexemes, which are the quantities we are interested in estimating. All other choices
are not parameterised and thus assumed to be made according to a uniform distri-
bution. While this model is simple, it has been shown that the lexical choices in a
CCG derivation capture a large part of its information (Lewis and Steedman 2014).

The model described above can also be viewed as a generalisation of Algorithm
5.1. In fact, the recursive splitting algorithm explores the slice of the generative
process which is conditioned on a concrete example consisting of a sentence, a
meaning representation and a syntactic CCG derivation.

Split charts produced by the recursive splitting algorithm are therefore used in our
modified inside-outside algorithm for GA-CCG (Algorithm 6.1). We assume that,
apart from the lexical entries, Algorithm 5.1 also outputs a structure of split tuples
of the form e → e1, e2, where e, e1, and e2 are lexical or phrasal items (possibly
spanning several tokens). Any time a binary rule is applied (lines 13 and 14), a
split tuple is generated linking the parent lexical item e to its children e1 and e2.

These splits play the same role as rule productions in the PCFG inside-outside
algorithm, Algorithm 3.6. In the PCFG algorithm, inside and outside probabilities
relate to nonterminals occurring in a given position, and are transferred to other
nonterminals by the grammar’s production rules. In the GA-CCG algorithm, inside
and outside probabilities are computed for lexical items, and are transferred along
relationships in the split structure.

To provide access to the split structure, we define the following functions:

• Entries(splits) is the set of all split tuples referenced in any split.

• Entries(splits, i, j) with 1 ≤ i ≤ j < n is the set of all split tuples spanning
tokens i through j.

• Roots(splits) is the set of split tuples spanning the entire sentence.

126

6.2. Expectation Maximisation Filtering

The term for inside scores (Algorithm 6.1 line 9) can be explained as follows:
Either the lexical entry e is drawn directly from the lexicon with probability score(e).
This score is zero if the e is not in the lexicon. Alternatively, e can be generated from
children e1 and e2 if e→ e1, e2 is in the splits table. In this case, the probability is
the product of both children’s inside scores since it requires generating all of their
respective lexical entries.

The term for the outside score of an entry e (line 14) is a sum over all splits in
which e occurs as a left or right child, since each of these splits may have been
responsible for producing e. For any specific split, the outside probability is the
product of the inside probability of its sibling (which after all is generated at the
same time as e) with the outside probability of the parent entry e′.

In the calculation of the counts (line 19f), lexemes and templates are weighted
according to their outside probabilities. The inside probability is not included in
this term because the generative process, as defined above, stops if a lexical entry
is generated. Multi-token phrasal items may be generated, but in this case, no
derivation exists below these items.

The EM algorithm for GA-CCG (Algorithm 6.2) is almost identical to that for
PCFG (Algorithm 3.5). The main difference is that probability distributions for
both lexemes and templates are computed.

6.2.2. Filtering Templates and Lexemes

The EM algorithm for GA-CCG produces probability distributions over templates
and lexemes. These can be used to filter items from the lexicon which are not needed
to explain the corpus. To avoid losing coverage during filtering, we keep all lexical
items belonging to the most likely derivation for every given item, even if their
individual probability is low. The procedure can be summarised as follows:

1. For every example, find the sequence of lexeme-template pairs which (a) can
be derived from a root entry in the split structure of SplitSyn, and (b) has
the highest probability among such sequences. Mark all of its templates and
lexemes.

2. Remove all unmarked templates and lexemes from the lexicon.

The search for an optimal sequence of lexeme-template pairs can be implemented
using a simple dynamic programming algorithm over the split structure. While rare
lexical items might be required to describe some examples, this algorithm favours
the use of frequent lexical items with good generalisation wherever possible.

127

Chapter 6. Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging

Algorithm 6.1 Calculation of template and lexeme counts for a single example.
Inputs:

• Sets of templates T and lexemes L
• An example x of length m
• Probability distributions qT : T → [0, 1], qL : L → [0, 1]

Output: A mapping count : T ∪ L → R+

1: function Counts(x, qT , qL)
2: splits← SplitSyn(x)
3: for all e ∈ Entries(splits) do ▷ Initialisation

4: outside(e)←
{︄
1 if (ei) ∈ Roots(splits)
0 otherwise

5: score(e)←
∑︁

(l,t)∈Delex(e) qT (t)qL(l)
6: end for

7: for j ← 1 . . .m, i← j . . . 1 do ▷ Inside computation
8: for e ∈ Entries(splits, i, j) do
9: inside(e)← score(e) +

∑︁
(e→e1,e2)∈splits inside(e1) inside(e2)

10: end for
11: end for

12: for j ← m. . . 1, i← 1 . . . j do ▷ Outside computation
13: for all e ∈ Entries(splits, i, j) do

14:

outside(e)←
∑︂

(e′→e,e2)∈splits

outside(e′) inside(e2)

+
∑︂

(e′→e1,e)∈splits

outside(e′) inside(e1)

15: end for
16: end for

17: Z ←
∑︁

e∈Roots(splits) inside(e)
18: for all e ∈ Entries(splits), (l, t) ∈ Delex(e) do ▷ Compute counts
19: count(l)← count(l) + score(e) outside(e)

Z

20: count(t)← count(t) + score(e) outside(e)
Z

21: end for
22: end function

128

6.2. Expectation Maximisation Filtering

Algorithm 6.2 The EM algorithm for GA-CCG filtering.
Inputs:

• A set of templates T
• A set of lexemes L
• Corpus X = (x1 . . . xn)
• Iteration count T
• Initial probability distributions q0T : T → [0, 1], q0L : L → [0, 1]

Output: Probability distributions qTT : T → [0, 1], qTL : L → [0, 1]

for k ← 1 . . . T do
for all l ∈ L do ▷ Initialise counts with zero

count(l)← 0
end for
for all t ∈ T do

count(t)← 0
end for
for i← 1 . . . n do ▷ Expectation step: aggregate counts

c← Counts(xi, qk−1)
for all l ∈ L do

count(l)← count(l) + c(l)
end for
for all t ∈ T do

count(t)← count(t) + c(t)
end for

end for
for all l ∈ L do ▷ Maximisation step: normalise counts

qkL(l)←
count(l)∑︁

l′∈L count(l′)
end for
for all t ∈ T do

qkT (t)←
count(t)∑︁

t′∈T count(t′)
end for

end for
return qTL , q

T
T

129

Chapter 6. Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging

0 10 20 30 40 50 60 70 80 90 100
−193,000
−192,500
−192,000
−191,500
−191,000

Iteration

Lo
g
Pr

ob
ab

ili
ty

Figure 6.3.: Convergence of the EM algorithm over 100 iterations. The y axis shows
the logarithm of the probability assigned to the entire training corpus.

6.2.3. Results

The primary goal of EM filtering is to reduce the burden of the large lexicon pro-
duced by delexicalisation. We run 100 EM iterations to filter the lexicon produced
in Section 6.1.2. Figure 6.3 shows that the total probability of the training corpus has
converged by this time. The filtering procedure is effective in reducing the number
of lexical items: the number of templates is reduced from 4,844,324 to 15,498 and
the number of single-token lexemes from 76,533 to 6,389.

An advantage of EM filtering is that it not only reduces the numbers of tem-
plates and lexemes that need to be stored, but also assigns them probabilities. As
EM attempts to maximise the total probability of the corpus, probabilities can be
interpreted to represent each item’s explanatory contribution to the corpus: the
more frequently an item contributes to a highly scored derivation, the higher its
probability is pushed by the algorithm.

By further examining the items with the highest probabilities, which are most
likely to be applicable to novel sentences, we can therefore gain a sense of the content
of the filtered lexicon.

Templates

We manually assign each of the 286 templates with a probability of over 0.0001 to
one of the following classes:

• function: Templates that contain no delexicalisations or lexical content; they
usually represent function words such as prepositions or punctuation.

130

6.2. Expectation Maximisation Filtering

Class Count Examples Interpretation

Total 286

function 63 NP/N : ⟨0⟩ the

(S/S)/NP : ⟨0⟩ ⟨1⟩time in
generic 144 N : <lex> noun

NP : person name <lex>
name op1 person

lex 79 N : person expert-41ARG1 expert

date (of lex) 60 N\N : date-entity <lex>

4

2008

day
monthyear

date

Table 6.3.: Classes of the 286 templates with the highest EM probabilities.

• generic: Templates that contain delexicalisations but no further lexical content.
They can thus represent an entire class of content words by being instantiated
together with a matching lexeme.

• lex: Templates that may or may not contain delexicalisations but that also
contain lexical content. Often, these templates are created because the lexical
content is distributed across several nodes, which is not permitted by the
delexicalisation algorithm. A special case of this behaviour is represented
by the sub-class date: In the corpus, dates often occur in specially formatted
headers in the format YYYY-MM-DD, while the AMR represents year, month
and day separately.

Counts and examples for each class are given in Table 6.3. The results show
that after EM filtering, the large majority of templates are either delexicalised or
are function words without lexical content. The majority of templates with lexical
content are specially formatted dates.

131

Chapter 6. Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging

Class Count Example

Total 6,389

empty 5,772 (90%)
concept 235 (4%) (analysts, analyze-01); (nuclear,nucleus)
role 62 (1%) (but,ARG2)
constant 320 (5%) (indian, “India”)

Table 6.4.: Classes of all 6,389 filtered lexemes.

Lexemes

Lexemes can abstract over concepts, roles, or constants. They can also be empty,
allowing a token to be instantiated with fully lexicalised templates. In fact, empty
lexemes make up 90 % of the filtered lexeme dictionary. The counts for all lexeme
classes are presented in Table 6.4.

The low counts for the non-empty categories are explained by the fact that the
lexeme patterns cover most common cases of lexeme derivation (see Section 6.1.1).
Table 6.4 thus only represents lexemes which do not fit into any of these patterns.

6.3. Supertagging

While EM filtering narrows down the number of templates required to explain the
training corpus, the number of remaining templates (over 15,000) is still too large
to be searched during parsing. The large number of hypotheses at the token level
would lead to even larger numbers of hypotheses at later levels, causing parsing
times to explode.

A supertagger can help reduce the search space that is exposed to the parser.
It achieves this by predicting a distribution of scores over all templates for every
token. This allows the parser to choose from the highest-scored templates instead
of having to consider all templates.

In this section, we describe a supertagger based on the BiLSTM model introduced
in Section 3.5. After running EM filtering on the training corpus, each token in
the training corpus is associated with a single highest-scored template derived
from the respective token. This allows us to train the supertagger on these template
sequences. During testing, the model thus obtained can be used to predict templates
for the parser to choose from.

132

6.3. Supertagging

Besides narrowing down the parser’s search space, a second function of our
supertagger is the completion of the training data. Since the lexicon induction
algorithm is prone to early stopping, lexical items are not induced for every token,
and these tokens are therefore not associated with a template. By using a masked
loss function, which exempts these tokens from the backpropagation update, we
prevent the tagger from predicting the “unknown” tag for these tokens. Using a
jackknifing training scheme, we can then fill the gaps in the training data, allowing
the parser to be trained with complete supertag predictions.

6.3.1. Architecture

Our supertagger follows the BiLSTM architecture introduced in Section 3.5. Fig-
ure 6.4 gives an overview of the tagger’s architecture. It consists of the following
components:

• Embedding matrices for tokens and syntactic categories.

• One or several BiLSTM layers.

• A fully connected layerwhichmaps the BiLSTMoutput states to the dimension
of template IDs.

• A softmax layer which normalises the predictions.

As inputs, indices of tokens and syntactic categories can be provided along with
GloVe (Pennington, Socher and Manning 2014) or ELMo (Peters et al. 2018) em-
beddings. The tagger’s output is a distribution over template IDs for every input
token.

The embeddings are chosen for representing the two important classes of word
representations: GloVe is a typical word-vector representation which is stored as
a table, whereas ELMo is a large pre-trained language model which processes
sentences as a whole and outputs contextualised word representations.

6.3.2. Training Data Extraction

The lexicon induction algorithm produces zero, one, or several lexical items for
every constituent of a sentence which is represented in the CCG derivation used
by the induction algorithm. Delexicalisation derives template and lexeme pairs
from the lexical items, and EM filtering identifies the best templates and lexemes to
explain the sentence.

133

Chapter 6. Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging

Pierre
G
loVe

ELM
o

N
P
/N

P

E
E

w
x
+

b

σ

distribution

V
inken

G
loVe

ELM
o

N
P

E
E

w
x
+
b

σ

distribution

………
n
layers

Inputs

Em
bed

C
oncatenate

BiLSTM

Fully
C
onnected

Softm
ax

O
utput

Figure
6.4.:A

rchitecture
overview

ofthe
BiLSTM

supertagger.

134

6.3. Supertagging

After filtering, each token of the sentence is therefore covered by exactly one
template; however, this template could span several tokens (if the induction al-
gorithm aborted before reaching the token level and created a phrasal item). Since
supertagger predictions are made on the token level, such templates cannot be
predicted.

Intuitively, this is just as well since such abortions arise from configurations
which GA-CCG is not equipped to deal with: either fundamental limitations of the
grammar or problems with the annotations. In either case, it would be preferable
to find alternative interpretations for the tokens in question to allow them to be
processed, even if imperfectly.

Another issue which arises during training data extraction is sparsity. Templates
which occur only once in the training data are unlikely to be predicted accurately
by the supertagger. Such templates are therefore excluded from the training data.

When extracting training data for the supertagger, we therefore proceed as follows:

1. Assign every template a numerical ID, reserving an ID for a special UNK tem-
plate.

2. For every token in the corpus, assign a template ID as follows:
a) If the token is covered by a single-token template:

• If the token occurs more than once in the training data, assign the
template’s ID.

• Otherwise, assign UNK.
b) If the token is covered by a multi-token template, assign UNK.

In addition to template IDs, the tagger uses syntactic categories as input. These
are obtained by using the highest-scored predictions produced by EasyCCG’s su-
pertagger (Lewis and Steedman 2014).

The supertagger can then be trained to predict the annotated template IDs. How-
ever, it is not desirable to train the tagger to predict UNK templates, since these
annotations do not provide any useful information to the parser. Instead, during
prediction, the supertagger should always output plausible template IDs. This can
be achieved by training with a masked loss function.

6.3.3. Masking the Loss Function

When the supertagger is trained using backpropagation, the output of the tagger
is compared to the gold standard annotation using a loss function. The latter

135

Chapter 6. Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging

is represented by a one-hot vector which has a value of 1 at the position of the
annotated template and 0 everywhere else, whereas the prediction is a distribution
over all templates with values summing to one. In such a situation, a categorical
cross-entropy loss is appropriate3:

L(ŷ, y) = −
n∑︂

i=1

yi log ŷi (6.1)

where y = y1 . . . yn is the one-hot vector representing the annotated template ID,
and ŷ = ŷ1 . . . ŷn the distribution predicted by the model.

The loss is then backpropagated through the neural network layers and used to
update the weights in order to shift the output distribution closer towards the label.

To prevent the model from learning to predict the UNK template, the loss function
can be masked. Let yUNK be the one-hot vector representing the UNK label. The
masked loss is then defined as follows:

Lmasked(ŷ, y) =

{︄
0 if y = yUNK

L(ŷ, y) otherwise
(6.2)

For tokens labelled UNK, the masked loss function outputs zero, so that the token
does not contribute to weight updates. This causes it to be effectively exempt from
backpropagation. Since the UNK label is never positively reinforced, it disappears
from the model’s output space.

6.3.4. Decoding

For every input token, the supertagger produces a full distribution over all templates
in the lexicon: each template is assigned a score between 0 and 1, with all scores
summing to 1. That is, the output distribution fulfills the formal properties of a
probability distribution, even if the model that produced it is not probabilistic.

Decoding these output distributions is a matter of selecting a subset of top-scoring
template IDs to pass on to the downstream parser. The simplest decoding strategy
would output the single highest-scoring template for every token, yielding a unique
sequence of template IDs mirroring the tagger’s training data. However, given that
the tagger has no explicit capability for representing the syntactic and semantic
mechanisms which are the domain of the parser’s search, it makes sense to present
several possible templates to the parser so that it can select from representations of

3See Goldberg (2017), page 27.

136

6.3. Supertagging

a token that may have different syntactic or semantic properties. This is especially
important when the tagger fails to identify a clear “winning” template but assigns
similar scores to several candidates.

Our supertagger therefore implements the following filtering parameters which
can be combined to construct a flexible decoding strategy:

• max-predictions: Specifies the maximum number of template IDs that are
included in the output for any token.

• min-confidence: Specifies aminimum score threshold for a predicted template
to be included in the output.

• clip-confidence: Specifies that the output should be clipped after a given
cumulative score has been reached. That is, if the combined confidence of the
top k predictions exceeds this value, no further predictions are output.

In combination, these parameters allow us to efficiently handle both situations
where the supertagger makes a clear prediction (in which case no low-probability
predictions are output), and cases where the output distribution is less defined (in
which case the output is still pruned so as to avoid overloading the parser).

6.3.5. Predicting Tags for Training Data

In Section 6.3.2, we described how tag sequences can be extracted from the filtered
output of the lexicon induction algorithm. However, these sequences contain gaps
in places where no token-level templates were induced. In addition, the trained
supertagger is not guaranteed to exactly reproduce its input distribution on novel
sentences; in fact, it is plausible to assume that it performs somedegree of smoothing,
preferring frequent templates to rare ones.

Since the parser must work with supertagger predictions when processing novel
sentences, it makes sense to also use predictions when training the parser. However,
using the predictions produced by a tagger for its own training data should be
avoided, as the tagger fits its training data much more tightly than it does novel
sentences.
Jackknifing is an algorithm for obtaining predictions on a training data set while

avoiding the issue of overfitting to the training data. By splitting the training corpus
into n parts, the supertagger can in turn be trained on n − 1 parts to predict tag
distributions for the nth part.

The procedure of jackknifing can be described as follows:

137

Chapter 6. Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging

1. Split the training data into n parts train1, . . . , trainn of equal size.

2. For all i = 1, . . . , n:
a) Train a tagger model taggeri on the concatenated training data parts

train1, . . . , traini−1, traini+1, . . . , trainn.
b) Use taggeri to predict tags for the sentences in traini, yielding the output

tagsi.

3. Concatenate tags1, . . . , tagsn.

While we use the jackknifed tagger models to predict labels for the training data,
we use a model trained on the entire training data set to obtain predictions for novel
sentences in the dev and test data sets.

6.3.6. Tuning Experiments

We conduct a series of experiments to validate the supertagger architecture and
determine the best settings for the hyperparameters of the model. We identify the
following dimensions which are likely to impact the model’s performance:

• The representation of input words via GloVe embeddings, ELMo vectors,
and/or trained embeddings.

• The inclusion of syntactic categories as a separate feature.

• The layout of the BiLSTM, varying by the size of the LSTM state vector as well
as by the number of LSTM layers.

Tuning experiments are performed by varying these parameters individually,
starting from a baseline configuration. Table 6.5 gives an overview of the settings
tested in the experiments.

We keep other aspects of the model constant, using sensible defaults:

• For optimization, the Adam algorithm is used (Kingma and Ba 2017). Adam
is a momentum-based algorithm commonly used as a default algorithm for
training neural networks.

• Initialisation is left at the defaults set by the Keras library4: Uniform for trained
embeddings and Glorot Uniform with a zero bias vector for the output layer

4See https://keras.io/ (Retrieved 19 Nov 2021).

138

6.3. Supertagging

Parameter Settings

Embeddings trained20, trained100, GloVe, ELMo, GloVe+trained20,
ELMo+trained20, ELMo+GloVe+trained20

Features none, syncat
LSTM size 50, 100, 200
BiLSTM layers 1, 3, 7

Table 6.5.: The hyperparameter settings for the supertagger which are covered by
our experiments. Settings in bold are used as baseline settings unless
otherwise noted.

(Glorot and Bengio 2010). For the LSTM layers, the kernel matrices W x∗

are initialised using the Glorot Uniform method, while the recurrent kernel
matrices W h∗ are initialised using a random orthogonal matrix.

• A dropout of 0.1 is applied on the embedded inputs. Each LSTM layer uses a
dropout of 0.1 for the recurrent state.

• Syntactic categories are embedded using 20-dimensional trained embeddings.

• During training, 10 % of the training set are kept for validation. Training
continues until the top5 metric on the validation set has not increased for five
iterations, and the weights from the iteration with the highest validation top5
score are stored.

We evaluate by computing the top1 and top5 metrics, representing the percentage
of tokens where the annotated template was the highest scored prediction, or among
the five highest scored, respectively. Tokens labeled UNK are ignored by the metric.
The evaluation is performed using leave-one-out cross validation by averaging the
scores obtained for each jackknifing split.

Embeddings

To examine the influence of embeddings on the supertagger, we experiment with
various combinations of trained embeddings, GloVe, and ELMo embeddings. The
results are shown in Table 6.6.

The baseline configuration with the elmo+trained setting achieves the highest
top1 score, while adding GloVe embeddings slightly increases the top5 score – but

139

Chapter 6. Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging

Condition top1 top5

trained20 0.6856 0.8663
trained100 0.6858 0.8653
glove 0.6367 0.8962
glove+trained20 0.6348 0.8917
elmo 0.7041 0.8967
elmo+trained20 0.7150 0.9009
elmo+glove+trained20 0.6457 0.9027

Table 6.6.: The performance of the supertagger with various embedding methods.

Condition top1 top5

none 0.7101 0.8992
syncat 0.7166 0.9005

Table 6.7.: The performance of the supertagger with and without syntactic category
features.

with a large negative impact on the top1 score5.

This effect is consistent across all GloVe conditions: While GloVe embeddings
perform well in the top5 evaluation, the top1 scores of the respective conditions are
low. This may be a consequence of the overgeneralisation inherent in word vectors.
In the GloVe approach, all words with the same surface form share a representation,
including homonyms as well as grammatically distinct forms of the same root. This
ambiguity could explain how GloVe vectors allow the model to place the correct
prediction near the top, but not necessary in first place.

The contextualised embeddings of ELMo perform much better. Trained embed-
dings also perform surprisingly well on their own. However, they only provide a
small improvement when used together with ELMo vectors.

140

6.3. Supertagging

Condition top1 top5

size=50.layers=1 0.7108 0.8930
size=50.layers=3 0.6740 0.8416
size=50.layers=7 0.6212 0.7888
size=100.layers=1 0.7156 0.9023
size=100.layers=3 0.6843 0.8536
size=100.layers=7 0.6210 0.7916
size=200.layers=1 0.7171 0.9026
size=200.layers=3 0.6850 0.8606
size=200.layers=7 0.6461 0.8128

Table 6.8.: The performance of the supertagger with varied BiLSTM size and layer
count.

Features

Since syntactic categories are a component of templates, syntactic category features
could be a good predictor for templates. Also, the supertagger of EasyCCG is
trained on the sizeable CCGbank corpus, so its model contains linguistic informa-
tion that goes beyond the supertagger’s training corpus. On the other hand, adding
a syntactic category feature puts the burden on the model of judging the correct-
ness of the supplied category. Also, ELMo embeddings already include syntactic
information that could be sufficient to predict syntactic categories.

The experimental results in Table 6.7 confirm that the benefit of adding syntactic
category features is small, but detectable. Since the added computational cost is
also small, there is no harm in using them.

LSTM Architecture

The LSTM architecture is varied along two dimensions: the size of the LSTM state
vector, and the number of BiLSTM layers. The results in Table 6.8 show clear trends
along both axes.

A larger LSTM size is associated with higher model performance. However, the
increase achieved beyond a dimension of 100 is very small.

5The baseline configuration from Table 6.5 appears in the various experimental series with slightly
varying scores. These small variations are due to random initialisation in repeated runs of the
experiments.

141

Chapter 6. Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging

On the other hand, additional BiLSTM layers diminish performance. Presum-
ably, the training data set is too small to allow deeper models to converge without
overfitting.

Summary

The experimental results validate the baseline parameters outlined in Table 6.5.
When interpreting the top1 and top5 accuracy scores, it should be noted that we
do not expect the tagger to predict all tags as annotated, as the annotations them-
selves are not fully trusted. For example, although UNK gaps are excluded from the
evaluation, the templates induced for neighbouring tokens could also be affected
by an induction error and contain erroneous material. In an ideal situation, the
tagger could smooth over such issues by predicting more general templates than
those in the annotations. Nevertheless, the top5 accuracy of 90 % achieved by the
model shows that the supertagger is able to produce high quality predictions on
the sizeable template dictionary.

142

Chapter 7.

Parsing with Graph Algebraic
Combinatory Categorial Grammars

In the preceding chapters, we have described the components required for producing
a compact GA-CCG lexicon. In this chapter, we show how to put this lexicon to use
by applying it to AMR parsing.

The core of our GA-CCG parser is a bottom-up chart parsing algorithm, a version
of the CKY algorithm described in Section 3.1.6. The parser is driven by a linear
model trained using the structured perceptron algorithm introduced in Section 3.3.
This parsing algorithm is described in Section 7.1.

When training the parser, we face an additional obstacle: While we require
the parser to produce GA-CCG derivations, there is no trusted source of such
derivations as they are not contained in the AMR annotations. This means that we
cannot directly train the parser on gold-standard derivations. Training the parser
is therefore an instance of hidden variable learning, and we thus propose an oracle
intended to produce good derivations to use as a training objective. The oracle is
described in Section 7.3, and Section 7.2 covers how to train the parser using the
oracle and a structured perceptron algorithm. In section 7.4, we examine how the
trained model may be used to parse novel sentences.

In contrast to the preceding chapters, this chapter does not include an evaluation.
Instead, Chapter 8 is dedicated to the end-to-end evaluation of the parsing pipeline
described in this thesis.

7.1. Parsing Algorithm

The algorithm used to parse GA-CCG is a simple extension of the beam-search CKY
algorithm (Algorithm 3.2) presented in Section 3.3.1. We extend it with an explicit
representation of unary conversions, as shown in Algorithm 7.1.

143

Chapter 7. Parsing with Graph Algebraic Combinatory Categorial Grammars

Apart from this change, the approach of the algorithm is the same: The algorithm
iterates over spans of the sentence in an order that ensures small spans get processed
before the larger spans encompassing them. On the token level, lexical entries are
entered into the chart. On larger spans, possible combinations of chart entries are
explored. After a given chart cell has been filled, its entries are scored and pruned
according to the beam size. Afterwards, unary conversions of the chart entries are
added and another round of beam pruning is performed.

Algorithm 7.1 is fairly abstract in terms of the grammar it encodes, only assuming
a binary branching structure of derivations. Its connection to GA-CCG is established
by the three generator functions GenLex, GenCmb, andGenUnary, which implement
the lexicon and combinators of GA-CCG.

The GenLex function (Algorithm 7.2) is used to enumerate lexical entries for
a given token. It accesses the template and lexeme dictionaries created through
delexicalisation (see Section 6.1). First, the lexeme dictionary is scanned for lexemes
that match the current token. The algorithm then attempts to use the lexeme to
lexicalise templates. Lexicalisation is carried out using the Delex−1 function. For all
templates for which lexicalisation is successful, the resulting lexical entry is added
to the result set.
Definition 7.1 (Lexicalisation). Lexicalisation is the process of constructing a GA-
CCG derivation node containing a token, a syntactic category, and a semantic
category, from a template-lexeme pair. It is the inverse of the Delex function de-
scribed in Definition 6.1. Let τ be a template and λ be a lexeme. The lexicalisation
of τ and λ is defined as follows:

Delex−1(τ, λ) = {(w, csyn, csem) | (τ, λ) ∈ Delex(t, csyn, csem)} (7.1)
For any template-lexeme pair, there are either one or zero lexicalisations. In

particular, there are zero lexicalisations if the <lex>-slot in τ does not match the
label in λ: for example, if the lexeme contains an edge label, but the template
contains a <lex>-slot for an edge label. If the template and lexeme do match, the
lexicalised meaning representation can be obtained by replacing the <lex>-slot in
the template with the lexeme’s label.

The GenCmb function (Algorithm 7.3) computes the constituents that result
from applying a binary grammar rule. It is called on a pair of adjacent derivation
nodes x1, x2. The algorithm checks every binary grammar rule for applicability by
matching the syntactic categories of x1 and x2 against the rule’s patterns. If the
patterns match, the combinator and semantic operator associated with the rule are
used to compute the syntactic and semantic categories of the resulting constituent.

144

7.1. Parsing Algorithm

As explained in Section 4.2.3, unary rules do not affect the semantic content of a
constituent in our implementation. The job of the GenUnary function (Algorithm
7.4) is therefore to find all applicable unary rules by matching the syntactic category
of a constituent against the rule’s pattern, and then compute a resulting syntactic
category using the rule’s combinator. The semantic category is simply copied to the
output constituent.

7.1.1. Coreference Resolution

GA-CCG includes a mechanism for representing coreferences, which allows the
same entity to be referred to by several nodes (see Section 4.3.1). This mechanism is
required because of the context-free nature of CKY parsing: the parser cannot look
outside the span it is currently processing. For example, if an entity is referred to by a
pronoun such as “it”, the parser has to represent it by a semantically underspecified
node in order to build a connected meaning representation graph.

In GA-CCG, underspecified nodes are labelled <coref>. Coreference nodes are
expected to be merged with another node which represents the fully specified entity
that is being referred to. We implement this requirement by adding coreference
resolution as a post-processing step after parsing. For every AMR graph in the result
set of the parsing algorithm,we applymerge operations to all of its coreference nodes.
For every coreference, we greedily choose the merge operation that maximises the
score assigned to the resulting graph by the parsing model (see Algorithm 7.5).

The algorithm for coreference resolutionmakes use of theMerge operation. Given
a graph G and vertices v1, v2, Merge merges v2 into v1, so that all edges adjacent to
v2 are now adjacent to v1. In detail, this operation can be defined as follows:

Merge(G, v1, v2) = (V ′, E′, v′root, l
′, slab′)

145

Chapter 7. Parsing with Graph Algebraic Combinatory Categorial Grammars

where

G = (V,E, vroot, l, slab)
V ′ = V \{v2}
E′ = V \{(v2, v)|v ∈ V }

\{(v, v2)|v ∈ V }
∪ {(v1, v)|(v2, v) ∈ E}
∪ {(v, v1)|(v, v2) ∈ E}

v′root =

{︄
v1 if vroot = v2

vroot otherwise

l′(e) =

{︄
l(v1) if e = v2

l(e) otherwise

slab′(v) =
{︄
slab(v1) ∪ slab(v2) if v = v2

slab(v) otherwise

The algorithm for coreference resolution is deliberately kept simple as we do
not expect it to have a large impact on Smatch scores. Importantly, it ensures that
well-formed AMR graphs are created.

146

7.1. Parsing Algorithm

Algorithm 7.1 A beam-search CKY algorithm for GA-CCG parsing.
Inputs:

• A token sequence w1, . . . , wn

• A beam size k
• A generator of lexical items GenLex
• A generator of combined chart items GenCmb
• A generator of unary conversions GenUnary
• A scoring function for chart entries Score

Output: A parse chart C containing the derived items

function Parse(w1, . . . , wn)
C[i, j]← {} for 1 ≤ i ≤ j ≤ n
for j ← 1, . . . , n do

for i← j, . . . , 1 do ▷ Iterate over start index
if i = j then

for d ∈ GenLex(wi) do
C[j, j]← C[j, j] ∪ {d} ▷ Insert lexical items

end for
else

for k ← i+ 1, . . . , j do ▷ Iterate over split index
for d1 ∈ C[i, k − 1]; d2 ∈ C[k, j] do

for d ∈ GenCmb(d1, d2) do
C[i, j]← C[i, j] ∪ {d} ▷ Apply combinatory rules

end for
end for

end for
end if
C[i, j]← maxkScore(d){d ∈ C[i, j]} ▷ Enforce beam limitation
for d ∈ C[i, j] do

for d′ ∈ GenUnary(d) do
C[i, j]← C[i, j] ∪ {d′} ▷ Add unary conversions

end for
end for
C[i, j]← maxkScore(d){d ∈ C[i, j]} ▷ Enforce beam limitation

end for
end for

end function

147

Chapter 7. Parsing with Graph Algebraic Combinatory Categorial Grammars

Algorithm 7.2 Lexical generation algorithm for GA-CCG.
Inputs:

• A token w
• A set of templates T
• A set of lexemes L

Output: A set of GA-CCG constituents R

function GenLex(w, T ,L)
R← {} ▷ Initialise result set
for λ = (w′, label) ∈ L do

if w = w′ then ▷ Find lexemes matching the token
for τ ∈ T do ▷ Try applying the available templates

R← R ∪Delex−1(τ, λ) ▷ Combine template and lexeme
end for

end if
end for
return R

end function

148

7.1. Parsing Algorithm

Algorithm 7.3 Combinatory hypothesis generation algorithm for GA-CCG.
Inputs:

• GA-CCG derivation nodes d1, d2
• A set of binary GA-CCG rules R2

Output: A set of GA-CCG derivation nodes R

function GenCmb(d1, d2)
R← {} ▷ Initialise result set
for r = (C, p, o) ∈ R2 do ▷ Iterate over grammar rules

if IsApplicable(r, syn(d1), syn(d2)) then ▷ Check applicability of rule
C ← cmb(r)
c′syn ← C(syn(d1), syn(d2)) ▷ Compute syntactic category
o← sem(r)
c′sem ← o(sem(d1), sem(d2)) ▷ Compute semantic category
R← R ∪ {(C, c′syn, c′sem, d1d2)}

end if
end for
return R

end function

Algorithm 7.4 Unary hypothesis generation algorithm for GA-CCG.
Inputs:

• A GA-CCG derivation node d
• A set of unary CCG combinators R1

Output: A set of GA-CCG derivation nodes R

function GenUnary(d)
R← {} ▷ Initialise result set
for C ∈ R1 do ▷ Iterate over unary rules

if IsApplicable(C, syn(d)) then ▷ Check applicability of rule
c′syn ← C(syn(d)) ▷ Use combinator to obtain syntactic category
R← R ∪ {(C, c′syn, sem(d), d)}

end if
end for
return R

end function

149

Chapter 7. Parsing with Graph Algebraic Combinatory Categorial Grammars

Algorithm 7.5 Algorithm for greedy coreference resolution.
Inputs:

• A GA-CCG s∗-graph G = (V,E, vroot, l, slab)
• Two vertices v1, v2 ∈ V

Output: A GA-CCG s∗-graph G′ which does not contain any coreference nodes

function ResolveCoreferences(G)
G′ ← G
for v ∈ V with l(v) = <coref> do

C ← {} ▷ Initialise candidate set
for v′ ∈ V ′ with l(v) ̸= <coref> do

G′′ ←Merge(G′, v′, v)
C ← C ∪G′′

end for
G′ ← argmaxG′′∈C Score(G′′)

end for
return G′

end function

150

7.2. Training the Parser

7.2. Training the Parser

Algorithm 7.1 describes how to build GA-CCG derivations given a scoring function
Score. The scoring function decides which hypotheses are kept in the beam and
ranks the parser’s potential final outputs. It therefore plays a crucial role in obtaining
high-quality derivations and meaning representations.

In this thesis, we describe two scoring functions: The principal scoring function
is a linear model trained using a perceptron algorithm (see Equation 3.2). It is
described in this section. When training this model, we also make use of an oracle
scoring function which computes a heuristic score based on knowledge of the
annotated AMR. The oracle scoring function is described in Section 7.3.

Our training loop operates on the parse charts produced by Algorithm 7.1. It
computes updates by comparing the k outputs of the parser, where k is the con-
figured beam size. The parser outputs are ranked by the scoring function, but they
can also be evaluated against the gold standard annotations. The training objective
is to push the best-evaluated parses to the top of the parser’s top-k list.

7.2.1. Training Loop

We first introduce the algorithm for training the GA-CCG parser model in a gen-
eral form in Algorithm 7.6. It is an instance of the classic perceptron algorithm
(Algorithm 3.3):

1. First, a set of predictions Y is computed by parsing the example sentence and
performing coreference resolution (lines 5–7).

2. Next, an update vector is computed (line 8). The Update function is imple-
mented by the CostSensitiveUpdate described in this section.

3. Finally, a learning rate vector is applied to the update vector (line 9). The
LearningRate function returns a vector of per-parameter learning rates which
are be computed using the Adadelta algorithm (see Section 3.3.2).

The algorithm iterates over the training data set for a given number of iterations.
In each iteration, the data set is shuffled in order to reduce the dependency of the
model on the order of examples.

151

Chapter 7. Parsing with Graph Algebraic Combinatory Categorial Grammars

Algorithm 7.6 The training loop.
Inputs:

• A data set (x̃1, ỹ1), . . . , (x̃N , ỹN)
• An iteration count T
• An initial weight vector winit

Output: A weight vector wt

1: w0
N ← winit

2: for t← 1 . . . T do
3: wt

0 ← wt−1
N

4: for i← Shuffle(1 . . . N) do
5: C ← Parse(x̃i) ▷ Run parser
6: Y ← C[1, |x̃i|] ▷ Extract output parses
7: Yr ← {ResolveCoreferences(y) | y ∈ Y} ▷ Resolve coreferences
8: u← Update(Yr, ỹi) ▷ Compute update vector
9: r ← LearningRate(u) ▷ Compute learning rate

10: wt
i ← wt

i−1 + r ⊙ u
11: end for
12: end for
13: return wT

N

152

7.2. Training the Parser

Algorithm 7.7 The cost-sensitive perceptron update algorithm.
Inputs:

• A set of output derivations Y
• A gold-standard output ỹ
• A feature extractor Φ(y)
• A cost function cost(y)
• A margin scaling factor λ

Output: An update vector u

1: function CostSensitiveUpdate(Y, ỹ)
2: costmin ← miny∈Y cost(y, ỹ)
3: ∆(y)← cost(y)− costmin for all y ∈ Y(xĩ)
4: G← {g | g ∈ Y,∆(g) = 0}
5: B ← Y\G
6: C ← {c | c ∈ G; ∃z : z ∈ B,wt

i−1(Φ(c)− Φ(z)) < λ∆(z)}
7: E ← {e | e ∈ B;∃y : y ∈ G,wt

i−1(Φ(y)− Φ(e)) < λ∆(e)}
8: τ(e)←

∑︁
c∈C

vc(e)
|C|

∑︁
e′∈E vc(e)

for all e ∈ E

9: where vc(e) =
{︄
1 if wt

i−1(Φ(c)− Φ(e)) < λ∆(e)

0 otherwise
10: return

∑︁
c∈C

Φ(c)
|C| −

∑︁
e∈E τ(e)Φ(e)

11: end function

153

Chapter 7. Parsing with Graph Algebraic Combinatory Categorial Grammars

7.2.2. Cost-sensitive Perceptron

A cost-sensitive perceptron algorithm has been introduced in Section 3.3.4. The up-
date function described in Algorithm 7.7 applies this technique to GA-CCG parsing
with very little modification. The update function can be used as an implementation
for Update in Algorithm 7.6.

The input of the update function is a set of complete parses, each of which is
evaluated. Given an output derivation y which yields the meaning representation
gy, and the annotated meaning representation gỹ, we define the cost function as
follows:

cost(gy, gỹ) = 1− SmatchF1(gy, gỹ) (7.2)

Since Smatch scores range between 0 and 1, likewise does the cost function. Like
Singh-Miller and Collins (2007), we set the margin scaling factor λ to 1.

7.2.3. Scoring Function

The score assigned to a hypothesis is calculated from the final weight vector of the
perceptron.

Score(x, y) = wT
N
⊤
Φ(x, y) (7.3)

7.3. Oracle Parsing

Training a GA-CCG parser is an instance of hidden variable learning, as the parser
needs to reason about derivations which are not observed in the training data. Apart
from the the input of the parser, the sentence x, and the AMR graph y which forms
the label, the parser also needs to concern itself with the GA-CCG derivation z
which transforms x into y.

When making an update, the structured perceptron algorithm requires a pair
of states: an incorrect state whose feature vector is subtracted, and a correct state
whose feature vector is added (see Section 3.3.3). The correct state should stem
from a derivation which produces the correct meaning representation. However,
such a derivation is not trivial to construct. Due to the size of the search space,
an untrained parser is unlikely to find a derivation which produces the annotated
meaning representation.

154

7.3. Oracle Parsing

To solve this bootstrapping problem, we define an oracle which guides the parser
towards the correct label. It scores hypotheses according to correctness and coverage
of the annotated meaning representation. The parser is driven using the oracle as a
scoring function. The best full derivation produced by the parser can then be used
as a positive example for the parser to update towards.

7.3.1. Computing the Oracle Function

Our oracle is derived from the precision and recall measures that are also used for
the Smatch evaluation score (see Section 2.1.5). Indeed, Smatch appears to be a
good starting point for defining an oracle, as it is the score we wish to optimise.
However, Smatch has two properties which make it unsuitable for direct use as an
oracle:

• Smatch is intended to compare two complete meaning representation, while
the oracle needs to be able to evaluate partial hypotheses in the form of GA-
CCG s∗-graphs.

• The computation of a Smatch score involves globally optimising an alignment
between the nodes of both graphs to achieve the best possible score. This
makes Smatch expensive to compute.

To account for these issues, we simplify the computation of the precision and recall
measures. Our measures disregard the global structure of the graph and evaluate
its elements individually. Element-wise precision checks nodes, half-edges, and edges
of the hypothesis graph for presence in the annotated meaning representation.
Alignment coverage encourages hypotheses that instantiate all relevant concepts
using the annotated token-node alignments. Our oracle function is the harmonic
mean of both measures.

Definition 7.2 (Element-Wise Precision). LetGhyp andGgold be GA-CCG s∗-graphs.
The element-wise precision of Ghyp is defined as follows:

P (Ghyp, Ggold) = 1− | elements(Ghyp) \ elements(Ggold)|
| elements(Ghyp)|

(7.4)

where elements(G) with G = (V,E, vroot, l, slab) is the following multiset:

155

Chapter 7. Parsing with Graph Algebraic Combinatory Categorial Grammars

elements(G) = {(l(v)) | v ∈ V ′}
∪ {(l(v1), l(e)) | e = (v1, v2) ∈ E; v1 ∈ V ′)}
∪ {(l(e), l(v2)) | e = (v1, v2) ∈ E; v2 ∈ V ′}
∪ {(l(v1), l(e), l(v2)) | e = (v1, v2) ∈ E; v1, v2 ∈ V ′}

(7.5)

V ′ = {v | v ∈ V ; ⟨i⟩ /∈ slab(v); l(v) ̸= <coref>} (7.6)

When calculating the element-wise precision, we count the number of incorrect
elements in the hypothesis. These are nodes, half-edges, or edges which are not
found in the gold-standard meaning representation. Differently from the Smatch
algorithm, each element is identified only by its labels, not by its links to other
elements. Since the elements are stored as a multiset, element-wise precision takes
element counts into account: for example, if two nodes of a given label are in the
hypothesis, but the label occurs only once in the gold-standard representation, the
second instance is counted as an error.

Definition 7.3 (Alignment Coverage). Let Ghyp = (V hyp, Ehyp, v
hyp
root, l

hyp, slabhyp)
and Ggold = (V gold, Egold, v

gold
root , l

gold, slabgold) be GA-CCG s∗-graphs. Furthermore,
letA ⊂ N×V gold be the set of token-node alignment edges annotated for the sentence
of Ggold, and let i and k be the first and last indices of the tokens represented by
Ghyp.

The alignment coverage of Ghyp is defined as follows:

R(Ghyp, Ggold) =
|Vc|
|Va|

(7.7)

where

Va = {v | v ∈ V gold;∃(j, v) ∈ A : i ≤ j ≤ k} (7.8)
Vc = {v | v ∈ Va;∃v′ ∈ V hyp : lgold(v′) = lhyp(v)} (7.9)

Alignment coverage is the ratio of two sets of nodes: Va is the set of nodes
that are annotated with token-node alignments, limited to the tokens represented
by the current hypothesis. The concepts represented by these nodes are therefore
expected to be present in the hypothesis. For every aligned node in the goldmeaning
representation, we check whether the hypothesis contains a node with a matching

156

7.4. Inference

label, and collect the corresponding nodes in Vc. Alignment coverage can thus be
considered an approximation of the recall of node labels in the hypothesis graph.

Both edge precision and alignment coverage suffer from pathological edge cases.
With edge precision, (almost) empty meaning representations would be rewarded
since they contain few wrong edges. On the other hand, alignment coverage does
not take additional nodes into account and would therefore reward hypotheses
containing more nodes than necessary. Analogous to the F-score metric used in
Smatch (Section 2.1.5), we construct our oracle as the harmonic mean of both
measures.

Definition 7.4 (Oracle Scoring Function). LetGhyp andGgold be GA-CCG s∗-graphs.
We define an oracle scoring function as follows:

ScoreO(Ghyp, Ggold) = 2
P (Ghyp, Ggold)R(Ghyp, Ggold)

P (Ghyp, Ggold) +R(Ghyp, Ggold)
(7.10)

This scoring function can be used as an implementation of the scoring function
Score in the parsing algorithm (Algorithm 7.1). Using the oracle scoring function,
the parser searches for derivations whose yield is as similar as possible to the
annotated meaning representation, without requiring an exact match.

7.3.2. Bootstrapping the Training Loop

As noted above, oracle parsing can help solve the bootstrapping problem of an
untrained parser. With its initial parameters, a parser is unlikely to find any good
parses, and is therefore unable to perform high-quality updates. The extended
training loop in Algorithm 7.8 uses the oracle to provide high-quality parses. In
the first iteration, the parser and coreference resolution are run separately using
the oracle scoring function. The oracle parsing results are made available to update
computation along with the learned parser’s results.

7.4. Inference

The result of training is a weight vector wT
N which represents the information ex-

tracted from the data set by the training algorithm. This weight vector is equally
suitable for parsing novel sentences. No special steps are required: it is sufficient to
perform the same Parse and ResolveCoreferences steps that are used in the training
loop. The predicted derivation is the result with the highest score according to the
weight vector. This procedure is summarised in Algorithm 7.9.

157

Chapter 7. Parsing with Graph Algebraic Combinatory Categorial Grammars

Algorithm 7.8 An extended training loop with oracle bootstrapping in the first
iteration.
Inputs:

• A data set (x̃1, ỹ1), . . . , (x̃N , ỹN)
• An iteration count T
• An initial weight vector winit

Output: A weight vector wt

1: w0
N ← winit

2: for t← 1 . . . T do
3: wt

0 ← wt−1
N

4: for i← Shuffle(1 . . . N) do
5: C ← Parse(x̃i) ▷ Run learned parser
6: Y ← C[1, |x̃i|] ▷ Extract output parses
7: Yr ← {ResolveCoreferences(y) | y ∈ Y} ▷ Resolve coreferences
8: if i = 1 then
9: C ′ ← ParseOracle(x̃i) ▷ Run oracle parser

10: Y ′ ← C ′[1, |x̃i|] ▷ Extract output parses
11: Y ′r ← {ResolveCoreferencesOracle(y) | y ∈ Y ′} ▷ Resolve

coreferences
12: Yr ← Yr ∪ Y ′r ▷ Combine parser outputs
13: end if
14: u← Update(Yr, ỹi) ▷ Compute update vector
15: r ← LearningRate(u) ▷ Compute learning rate
16: wt

i ← wt
i−1 + r ⊙ u

17: end for
18: end for
19: return wT

N

Algorithm 7.9 The inference procedure for parsing novel sentences.
Input: An example w1, . . . , wn

Output: A set of derivations Yr

1: C ← Parse(x̃i) ▷ Run parser
2: Y ← C[1, |x̃i|] ▷ Extract output parses
3: Yr ← {ResolveCoreferences(y) | y ∈ Y} ▷ Resolve coreferences
4: return Yr

158

7.4. Inference

In the following chapter, we describe a series of experiments which examine
the behaviour of the training algorithm and the resulting model. Depending on
the level of detail of the evaluation, we will refer to the various outputs of the
inference procedure: the highest-scoring meaning representation, the derivation
that produces it, or even the complete parse chart.

159

Chapter 8.

Evaluation of Graph Algebraic CCG
Grammars for Semantic Parsing

In the preceding chapters, we have described a complete pipeline for training a GA-
CCG parser, including the augmentation of an AMR corpus with CCG derivations
and token-node alignments, the induction of a GA-CCG lexicon from the corpus,
the creation of delexicalised templates along with a lexeme dictionary, the training
of a supertagger to provide template predictions, to the training of a parsing model
which uses this lexicon to analyse novel sentences.

Throughout the description of this pipeline, validation experiments were per-
formed with the goal of examining the plausibility of each component’s output and
finding good settings for the components’ hyperparameters. However, the suitabil-
ity of the system for the task of AMR parsing is determined by the interplay of all
components, and an end-to-end evaluation is therefore needed to give meaningful
results. This evaluation is the topic of this chapter.

We begin by observing the parser’s performance in relation to a set of hyperpara-
meters, including feature extraction, beam size, bootstrapping, and grammar rules
(Section 8.1).

These experiments lead to the configuration of our final system,which is examined
in detail in Section 8.2. We provide both a quantitative evaluation with a comparison
to other AMR parsers, and an error analysis which gives insights into behaviours
specific to the parser. We find that our parser performs similarly to other CCG-
based approaches, but does not reach the higher benchmarks set by state-of-the-art
systems.

8.1. Parser Tuning

As with any complex system, the GA-CCG parser permits many degrees of config-
uration. We single out a small set of parameters for further evaluation:

161

Chapter 8. Evaluation of Graph Algebraic CCG Grammars for Semantic Parsing

Stage Parameter Value

Lex. Induction Grammar all
Alignments jamr+tamr+amr_ud+isi-vote1
maxItemCount 10,000
maxUnalignedNodes 10
maxCorefs 1
ccgDerivations 50
EM Iterations 100

Supertagging Embeddings ELMo
LSTM layout 1 layer, 100 dimensions
Syntactic Category Feature enabled
Max. predictions per token 20

Table 8.1.: Settings for lexicon induction and supertagging in the parser tuning
experiments.

1. The bootstrapping learning schedule, as this setup is not commonly found in
semantic parsing systems.

2. The beam size setting, as this setting directly influences the parser’s ability to
search for correct parses, while also strongly affecting the required processing
time.

3. The feature set, since features are an important input to a linear learning system
and feature extraction also makes up a significant amount of processing time.

Another important factor that determines the running time of the parser is sen-
tence length. Figure 5.3 shows the sentence length distribution of the training corpus.
To limit computational requirements and allow experimentation with other settings,
we limit the length of training sentences to 25 tokens in the tuning experiments. In
the final evaluation in Section 8.2, this limit is increased to 30 tokens.

8.1.1. Setup

To allow results to be comparable, we use a common baseline setting for the tuning
experiments.

All runs use the same lexicon, which is induced with the settings determined in
Sections 5.3 and 6.3.6, as summarized in Table 8.1.

162

8.1. Parser Tuning

Reported Metrics

In the experiments in this section, we report Smatch F1 scores on the dev set of
the AMR 1.0 proxy corpus. The test set is used only for the final evaluation in
Section 8.2. The reported validation score is computed after training the parser
for ten iterations, or after the last iteration that has been completed within a time
budget of seven days.

Training the parser is a compute-intensive process, and many of the parameters
trade off parser accuracy against the amount of computation required. In some
experiments, we therefore also report the time spent training the algorithm in hours,
measured on the same system as the lexicon induction experiment in Section 5.3: A
two-CPU, 16-core Intel Xeon E5-2630v3 compute node with 64 GB of RAM.

8.1.2. Feature Set

The parser computes a feature vector for every intermediate result in order to
evaluate its score and rank it among other intermediate results (see Section 7.2). So
far, we have not discussed how this feature vector is derived.

We divide the features that are included in our feature vector into several classes.
In Section 8.1.6, the individual contribution of each feature class is evaluated. In all
other experiments, all features are enabled.

We define the following feature classes:
Identity Features: This feature class counts every invocation of templates, lexemes,

and lexical generators. It encompasses the following features:

• lexeme i = 1 for every time lexeme i is instantiated

• template i = 1 for every time template i is instantiated

Path Features: This feature class contains features for all paths of lengths up to 2
in the meaning representation. The intention is to allow the parsing algorithm to
pick up on common, plausible relationships between concepts.

Path features are based on node labels (concepts or constants) and the roles of the
edges connecting the nodes. Both types of labels can be transformed in various ways
to form a concrete feature. We use the following notation to describe the various
path features:

Let n1, n2, . . . be nodes and e1, e2, . . . edges, where each ei = (ni, ni+1). The nodes
can be either constant or variable nodes. Our features use the following derived
properties:

163

Chapter 8. Evaluation of Graph Algebraic CCG Grammars for Semantic Parsing

• li is the label of ni: if ni is a constant node, it is the value of the constant; if
it is a variable node, it is the concept instantiated by the variable. Features
containing li are not triggered if ni is a placeholder or coreference node.

• ci is the class of ni: Node labels can be categorised according to their rough
function, which allows features to generalise across concrete labels. We define
the following classes:

– [quoted] for quoted constants, e.g. "Iran"
– [num] for numeric constants, e.g. 1
– [verbal] for nodes that are linked to an OntoNotes frame, e.g. sleep-01
– [named-entity] for named entity nodes such as country, government-
organization, etc.

– [name] for name nodes (which are part of named-entity constructions)
– [nominal] for other nodes not linked to an OntoNotes frame, e.g. boy

Features containing ci are not triggered if ni is a placeholder or coreference
node.

• rdi is the denumeralised role of ei. Digits are removed from all role labels except
ARGi labels. For example, op1 is transformed to op, but ARG0 is left intact.
This is because ARGi labels actually signify semantic differences whereas in
opi edges, the index is insignificant and depends only on word order.

• Node labels can also be ignored and replaced with *. This allows path features
to also take edges into account that connect to placeholders or coreference
nodes.

For every edge e connecting node n1 to node n2, the following features are
triggered:

• path(l1, rd1, l2) = 1

• path(l1, *, l2) = 1

• path(c1, rd1, l2) = 1

• path(l1, rd1, c2) = 1

• path(*, rd1, l2) = 1

164

8.1. Parser Tuning

• path(l1, rd1, *) = 1

For every path e1, e2 connecting nodes n1, n2, n3, the following features are
triggered:

• path(l1, rd1, l2, rd2, l3) = 1

• path(*, rd1, *, rd2, *) = 1

• path(l1, rd1, *, rd2, *) = 1

Duplication Features: These features are triggered if elements of a meaning
representation are duplicated, as this is usually not desired.
dup-edge features are triggered if two edges (either both incoming or both out-

going) sharing the same role are adjacent to a node.

• dup-edge(l1, r1) = i is triggered for every non-placeholder, non-coreference,
variable node that has more than one outgoing edge labelled r1, where i is
the number of such edges

• dup-edge(*, r1) = i is triggered exactly as above, but does not include the
node label

dup-neighbour features are triggered if two nodes with the same label (either
instantiated concept, or constant value) are adjacent to a node.

• dup-neighbour(l1, l2) = i is triggered for every node n1 which has more
than one neighbour labelled l2, where i is the number of the duplicate neigh-
bours

• dup-neighbour(*, *) = i is triggered exactly as above, but does not include
the node labels

Token Features: We employ various features that relate the semantic content of
a lexical entry to the tokens that it was selected for. This group includes several
types of features: lexeme-lemma, template-lemma, pattern-token, and node-lemma
cooccurences.

These features are triggered on the level of lexical selection, that is, for meaning
representations that are output by GenLex. If an intermediate result is created by
the application of a combinatory rule, it simply accumulates the features from its
preceding lexical selections.

165

Chapter 8. Evaluation of Graph Algebraic CCG Grammars for Semantic Parsing

• cooc(lemma=λ, lexeme=i) = 1 where λ is the lemma of a word for which
lexeme i has been instantiated

• cooc(lemma=λ, template=i) = 1 where λ is the lemma of a word for which
template i has been instantiated

• lex-wm-cooc(λ, l) = 1 where λ is the lemma of a word and l the label of a
node in the meaning representation instantiated for the word.

Syntax Features: This feature class relates the semantic root of a lexical item to
its syntactic category. Like the token features, it is triggered for lexical selections.

• syncat-root(s, l) = 1where s is the syntactic category of a lexical item and
l the label of its root node.

Supertagger Confidence: This feature incorporates the confidence assigned to
each template by the supertagger. While the available templates are already pruned
to the supertagger’s top-n list, the parser may still benefit from taking into account
this confidence. Since feature values are added up across the several lexical se-
lections that contribute to an intermediate result, we take the logarithm of the
confidences to make them additive. The feature is defined as follows:

• supertagger-confidence = log c where c is the confidence assigned by a
supertagger to a template.

CCG Supertagger Confidence: Another source of information about lexical
selection lies in syntactic supervision. For this, we supply the confidence assigned
to each lexical item’s syntactic category to the parser as follows:

• ccg-supertagger-confidence = log c where c is the probability assigned to
the synactic category of a lexical item by the EasyCCG supertagger.

Skeleton: Templates are already delexicalised, but only one label is removed from
them at a time. However, the pure structure of a lexical entry could also contain
some generalisable information. Skeleton features are based on such structures, in
which all node labels are removed from a template. Each such structure is then
mapped to an ID, so that the same structure can be recognised across sentences.

• skeleton(i) = n where i is a skeleton ID and n is the number of templates
instantiated at lexical nodes that are based on this skeleton.

166

8.1. Parser Tuning

Parameter Value

Bootstrapping 1 iteration with oracle
Iterations 10 iterations without oracle
Grammar full
Features all
Beam Size 20
Max. Sentence Length 25

Table 8.2.: Baseline parser settings in the parser tuning experiments.

Run Prec Rec F1

1 0.6912 0.5540 0.6150
2 0.7022 0.5637 0.6254
3 0.6993 0.5562 0.6196

Table 8.3.: Smatch F1 scores on the Proxy dev set across three runs of the baseline
configuration.

8.1.3. Baseline Settings

As a foundation for our experiments regarding parser configuration, we define a set
of baseline settings, outlined in Table 8.2. Throughout this section, our procedure
will be to vary each of the settings in turn and compare the scores achieved by the
parser.

In each experiment, we report the Smatch F1 score achieved on the dev section of
the AMR 1.0 Proxy subcorpus after the final training iteration.

Before turning to tuning experiments, we conduct a first baseline evaluation to
ensure that the parser converges reliably. We train the parser three times using the
baseline settings and evaluate after each iteration. This helps estimate the random
variation caused by the training process.1 Table 8.3 shows a gap of less than 0.01 F1
between the best and worst achieved result.

Figure 8.1 shows the validation F1 scores after each iteration of training across
the three runs. It can be seen that the runs behave similarly, with differences in the
range of up to 0.015 Smatch F1 points. All three systems reach a plateau within

1As we initialise feature weights with zero, random variation in our system is caused by data
shuffling.

167

Chapter 8. Evaluation of Graph Algebraic CCG Grammars for Semantic Parsing

0 1 2 3 4 5 6 7 8 9 10

0.58

0.6

0.62

Iteration

Sm
at
ch

F1

Figure 8.1.: Per-iteration validation scores of three training runs with the baseline
configuration (0 is the bootstrapping iteration).

four to six iterations, which validates our evaluation strategy of using the Smatch
F1 score obtained after the tenth regular training iteration.

8.1.4. Bootstrapping

Many semantic parsing systems rely on forced decoding approaches to solve the
problem that correct derivations are not contained in semantic parsing training data
(see Artzi, K. Lee and L. S. Zettlemoyer (2015), among others). In such an approach,
an oracle is defined which makes use of training-data annotation to produce “good”
derivations (that is, derivations which lead to the correct meaning representation).
This means that a strong oracle is required which produces good parses for most
sentences, as any sentence for which the oracle fails would effectively be excluded
from training.

In the case of GA-CCG, such an oracle is difficult to define due to the fact that
GA-CCG covers only a subset of the constructions found in the AMR corpus. In
Section 5.3.6, it was found that only about 74 % of tokens in the AMR 1.0 Proxy
section’s training set are covered by the induced grammar, implying that many
meaning representations in the corpus cannot be reproduced exactly. This in turn
means that the search for forced derivations cannot rely on hard exclusion criteria
but must be somewhat error-tolerant, exacerbating the associated search problem.

In Section 7.3, we introduced such an oracle, which uses a heuristic scoring
function to drive the CKY parsing algorithm, in place of the learned scoring function
of the linear model. This oracle is weak in the sense that it cannot be expected
to output a derivation of the correct meaning representation for every example.
However, it does attempt to derive a meaning representation that is similar to the
correct one. Importantly, we can expect it to perform better than an untrained

168

8.1. Parser Tuning

Bootstrapping Prec Rec F1

all 0.6853 0.4319 0.5298
bootstrap 0.6956 0.5575 0.6189
none 0.6953 0.5545 0.617

Table 8.4.: Smatch F1 scores on the Proxy dev set achieved using various bootstrap-
ping schedules.

parsing model would.
Since we employ a cost-sensitive learning algorithm which takes the quality of

the generated meaning representations into account in the computation of a parser
update, it is possible to simply add the best oracle-generated derivation to the output
set of the parser. If this derivation is better than all parses produced by the learned
model, it is included in the update computation. In contrast, if the learned parser is
able to produce an output which surpasses the oracle output, that output is selected
instead. This behaviour follows naturally from the definition of the cost-sensitive
learning algorithm in Section 7.2.2.

To determine to what extent the inclusion of an oracle is helpful to the training
process, we experiment with training schedules which include oracle parses in the
set of hypotheses in no, one, or all training iterations. The experimental conditions
are defined as follows:

• all: 11 iterations, all with oracle enabled

• bootstrap: 1 iteration with oracle, 10 iterations without

• none: 11 iterations without oracle

The bootstrap configuration is thus identical to the schedule used in the other
experiments in this section.

The results in Table 8.4 show that the effect of a single bootstrapping iteration
(the bootstrap condition) on final performance is marginal compared to training
without an oracle (none). At the same time, using an oracle in all iterations (all) is
clearly not an effective way to train the parser. Although the oracle achieves an F1
score of 0.77 on the training data, the parser is not able to learn from it effectively.
Apparently, the distribution of derivations preferred by the oracle cannot be fully
represented using a trained parser model.

169

Chapter 8. Evaluation of Graph Algebraic CCG Grammars for Semantic Parsing

In contrast to the system of Artzi, K. Lee and L. S. Zettlemoyer (2015), which
uses forced decoding, and semantic parsers such as the system of Berant and Liang
(2015) which uses an oracle to train an agenda-based parser, our parser therefore
does not require a separate generator of good derivations.

8.1.5. Beam Size

Due to the high asymptotic complexity of CKYparsing, we perform inexact decoding
with beam search. The beam size is thus an important parameter which controls
both the ability to search for the highest-scored full derivation, and the amount
of computational resources needed. The model’s scoring function does not fully
decompose to the level of individual lexical entries, and therefore the optimal
final result might depend on some intermediate result with a relatively low score.
With a small beam size, this result would not be included in the CKY algorithm’s
search space, causing a search error. At the same time, a large beam size requires a
larger amount of intermediate results to be enumerated, increasing the amount of
computation required for graph composition and feature extraction.

In addition, beam search plays an especially important role in the context of
cost-sensitive learning. Our learning algorithm depends on the parser finding high-
quality results even if they are not favoured by the current model, in order to push
those results to the top and thus improve the model parameters. The larger the
beam size, the larger the chance is for the parser to find a high-quality result with a
low model score.

Our goal is therefore to find a “sweet spot” setting for the beam size, which is
large enough to prevent a significant amount of search errors, but which does not
exceed a reasonable computational budget. As in the other experiments in this
chapter, we define this budget as seven days of computation on a 24-core compute
node.

Results

We train the parser using beam sizes in the range from 5 to 30. The results are
shown in Table 8.5. Training is performed for one bootstrapping iteration plus ten
regular iterations. For each beam size setting, we perform a validation run after
every iteration and record the highest achieved Smatch F1 score.

The results show that an increased beam size leads to improved results up to a
setting of 25, while the beam size of 30 brings no further improvement, although it
also does not cause a noticeable deterioration.

170

8.1. Parser Tuning

Beam Size Prec Rec F1 Training Time (h:m)

5 0.7186 0.3170 0.4399 8:13
10 0.6948 0.5025 0.5832 25:47
15 0.6920 0.5457 0.6102 47:42
20 0.6962 0.5565 0.6186 78:11
25 0.6975 0.5636 0.6235 114:37
30 0.6972 0.5670 0.6254 113:16

Table 8.5.: Smatch F1 scores and training times on the Proxy dev set achieved using
various beam sizes.

8.1.6. Features

In Section 8.1.2, we described a diverse set of features that are assigned to groups
based on the information they incorporate. To measure the contribution of each
feature group, we run an experiment starting with a minimal feature set including
only the identities of lexical items and lexical item generators. This feature set
is extended in each condition by activating another feature group, so that every
condition builds on the previous one.

The Smatch scores achieved in the experiment are shown in Table 8.6. For most
feature groups, the results show a clear contribution. The exceptions are duplicate,
ccgtagger and skeleton.

In the case of skeleton features, the effect is easily explained because template
IDs already provide a feature that abstracts away from lexical content – although
in templates, only a single node is delexicalised whereas in skeletons, all lexical
content is removed. Still, the information provided by skeleton features seems to be
subsumed by other feature classes.

That the CCG supertagger does not provide a performance gain could be because
the template supertagger already takes CCG syntactic categories into account when
predicting templates, and since each template is associated with a syntactic category,
it indirectly assigns probabilities to them. There is thus little room left for considering
the predictions of the purely syntactic supertagger.

The small effect of duplicate features is more difficult to explain, but could be
because other features are already effective in controlling cases of duplicate edges
or neighbours, or because such cases are rare enough to have a small effect on the
Smatch score.

171

Chapter 8. Evaluation of Graph Algebraic CCG Grammars for Semantic Parsing

Feature Set Prec Rec F1

identities 0.5814 0.3051 0.4002
+path 0.6161 0.4798 0.5395
+duplicate 0.6165 0.4858 0.5434
+tokens 0.6411 0.5105 0.5684
+syn 0.6686 0.5335 0.5934
+supertagger 0.6982 0.5539 0.6177
+ccgtagger 0.6970 0.5541 0.6174
+skeleton 0.6985 0.5605 0.6219

Table 8.6.: Smatch F1 scores on the Proxy validation set achieved using various
feature sets. In each row, the feature set of the previous row is extended by
a group of features from Section 8.1.2. The reported scores are computed
after 5 iterations of training plus one bootstrapping iteration.

Stage Parameter Value

Lex. Induction ccgDerivations 10
EM Iterations 20

Table 8.7.: Modified settings for lexicon induction and supertagging in the experi-
ment on rule sets.

8.1.7. Rule Sets

The GA-CCG grammar rules are the distinguishing feature of our parsing system
and therefore particularly interesting to examine. In Section 5.3.5, the effect of
the grammar rules on coverage has been examined, justifying the use of the all
grammar.

However, induction coverage does not necessarily translate to better parser per-
formance, since the parser operates under more severe computational constraints
due to the complexity of CKY parsing and the beam size limitation.

To show the effect of various grammars on the parser, we train parsers for each of
the rule sets defined in Tables 4.1 and 4.2.

Due to the need to run lexicon induction, filtering, and supertagging steps for
each configuration, this experiment is configured to reduce its runtime compared to
other experiments in this section. Its results are therefore not directly comparable

172

8.1. Parser Tuning

Grammar Prec Rec F1

all 0.7029 0.5531 0.6191
base 0.6997 0.5552 0.6191
no-ignore 0.7034 0.5570 0.6217
no-modify 0.7023 0.5620 0.6244
no-tr 0.7031 0.5488 0.6165
unrestricted-a 0.6920 0.5521 0.6142
unrestricted-all 0.6778 0.5280 0.5936

Table 8.8.: Best validation score achieved using different GA-CCG grammars.

to the other experiments. The settings modified for this experiment are described
in Table 8.7; all other settings are left as shown in Table 8.1.

Table 8.7 shows the results of the experiment. Interestingly, the all grammar
fails to outperform the base and unrestricted-a grammars, both of which are much
simpler. At first sight, this casts doubt on our strategy of adding rules for specific
linguistic phenomena. If a minimal grammar such as unrestricted-a is able to do
the job, it is unnecessary to bother with complex grammar rules.

However, the results for the three grammars no-modify and no-ignore suggest
that the picture is more complex, as each of them achieves a higher score than
base. This suggests the interpretation that the added rules do have a positive effect
individually, but not in combination. A plausible explanation for this effect is the
increase in search space caused by these grammars: in situations where extra rules
apply, the parser now has more rules to choose from, which increases the likelihood
of search errors. While some additional rules have a positive effect on their own,
this advantage disappears when they are combined.

8.1.8. Amount of Training Data

For all machine learning systems, the amount of available training data is an im-
portant determining factor for the resulting model’s performance. To understand
how our parser behaves in this regard, we train it on reduced training data sets. In
each run, we randomly select a certain percentage of sentences from the training
data set, and use only these for training.

We train parsers for ten percent increments from 10 % to 100 % of the training
data set, but also include 1 % as a very-low-data condition. The results are given in
Table 8.9 and plotted in Figure 8.2.

173

Chapter 8. Evaluation of Graph Algebraic CCG Grammars for Semantic Parsing

Training Data % Prec Rec F1

1 0.4261 0.2487 0.3141
10 0.5921 0.4396 0.5046
20 0.6338 0.4905 0.5530
30 0.6593 0.5025 0.5703
40 0.6483 0.5142 0.5735
50 0.6744 0.5303 0.5937
60 0.6824 0.5333 0.5987
70 0.6946 0.5468 0.6119
80 0.6961 0.5468 0.6125
90 0.694 0.5611 0.6205
100 0.7024 0.5553 0.6202

Table 8.9.: Smatch scores on the Proxy dev set using various amounts of training
data.

0 10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

Training Data %

Sm
at
ch

F1

Figure 8.2.: Smatch F1 scores achieved using a given percentage of the Proxy training
data.

174

8.2. Final System Evaluation

As expected, the achieved Smatch score rises with the amount of training data.
The plot in Figure 8.2 shows that the parser approaches its final score relatively
early: the second 50 % of training data only contribute less than 0.03 F1 score.

Apparently, the learning algorithm is able to make sense out of small data sets,
reaching 0.55 F1 score with just 20 % of the training data (equivalent to around 1,300
sentences). One likely explanation for this effect is the linguistic knowledge supplied
to the parser particularly by the syntactic CCG parser, which is not affected by the
training data restriction in this experiment. Likewise, the GA-CCG grammar rules
themselves also encode linguistic information. However, the training algorithm
does not access the syntactic parser and needs to encode this information in the
parser model’s parameters, which it appears to succeed at.

On the other hand, model performance appears to plateau at 100 % of training
data, suggesting that adding more training data is unlikely to result in a large
improvement in performance.

8.2. Final System Evaluation

In the experiments in the previous section, we have examined the sensitivity of the
parser regarding each individual hyperparameter. Now we create the final parser
configuration by setting each hyperparameter so that parser performance is maxim-
ised. In particular, we raise the beam size to 25 and the maximum training sentence
length to 30. Since the no-modify rule set achieved the strongest performance, we
use it for the final evaluation. We also reduce the number of EM iterations to 20
since EM makes up a substantial part of the computation needed to train the parser,
and no performance drop was noticeable in conditions with this setting. Since the
experiments in the previous section showed good convergence well before the full
training iterations, we train the parser for a full seven days and use the output of
the last completed iteration. In this time, it completes one bootstrapping iteration
and six regular iterations. Table 8.10 summarises the configuration.

We evaluate this system quantitatively and qualitatively: Firstly, for the only time
within the scope of this thesis, we run an evaluation on the test set of the AMR
1.0 Proxy corpus. This allows us to compare the parser’s results to other parsers
evaluated on the same dataset. Secondly, we conduct an error analysis on the output
of the parser, including an attempt at error diagnosis, which allows us to characterise
the parser’s peculiarities and identify areas that need improvement.

In this section, too, our experiments are limited to the Proxy subset of the AMR
1.0 corpus. Our rationale for this limitation is twofold: Firstly, the CCG-based AMR

175

Chapter 8. Evaluation of Graph Algebraic CCG Grammars for Semantic Parsing

Stage Parameter Value

Lex. Induction Grammar all
Alignments jamr+tamr+amr_ud+isi-vote1
maxItemCount 10 000
maxUnalignedNodes 10
maxCorefs 1
ccgDerivations 50
EM Iterations 20

Supertagging Embeddings ELMo
LSTM layout 1 layer, 100 dimensions
Syntactic Category Feature enabled
Max. predictions per token 20

Parser Bootstrapping 1 iteration with oracle
Iterations 6 iterations without oracle
Grammar no-modify
Features all
Beam Size 25
Max. Sentence Length 30

Table 8.10.: Settings for lexicon induction and supertagging in the parser tuning
experiments.

176

8.2. Final System Evaluation

System Precision Recall F1

gramr 0.670 0.625 0.647
Misra and Artzi (2016) 0.681 0.642 0.661
Artzi, K. Lee and L. S. Zettlemoyer (2015) 0.668 0.657 0.663

Liu et al. (2018) – – 0.733
Ballesteros and Al-Onaizan (2017) – – 0.69
Goodman, Vlachos and Naradowsky (2016) 0.68 0.73 0.70
Zhou et al. (2016) 0.73 0.68 0.71
Wang, Xue and Pradhan (2015b) 0.720 0.670 0.700
Flanigan et al. (2014) 0.52 0.66 0.58

Table 8.11.: A comparison of our system (gramr) to other systems evaluated onAMR
1.0 Proxy in terms of Smatch precision, recall, and F1 score. The first
group are CCG-based systems. The second group comprises systems
that follow different approaches, including the best currently reported
score on the dataset.

parsers which are most interesting to compare against are evaluated on this corpus.
Secondly, evaluation on the newer and larger AMR 2.0 and AMR 3.0 datasets would
require substantial additional engineering effort to reduce memory consumption
and computational requirements, while our results already strongly suggest that
our system is not competitive with newer AMR parsers that are evaluated on these
datasets. We therefore focus on the experimental setting which we deem the most
insightful for our system.

8.2.1. Quantitative Evaluation

After one bootstrapping iteration and six iterations of training, the parser achieves a
Smatch F1 score of 0.6295 on the dev set, which aligns with the scores reported for
experiments in the previous section. It fails to exceed the score of 0.6339 achieved
with the no-modify grammar in Section 8.1.7, but is within the range of expected
variation.

To obtain a final score on the test set, we parse all sentences except a single
sentence of length 73: due to the nonlinear runtime complexity of theCKY algorithm,
parsing this sentence takes up a disproportionate amount of computation time. The
excluded sentence is nonetheless included in the final score with zero correct edges.

177

Chapter 8. Evaluation of Graph Algebraic CCG Grammars for Semantic Parsing

The total Smatch F1 score achieved by our parser on the test set is 0.647. Table
8.11 shows the comparison of this result to a number of other semantic parsing
systems with published results on the AMR 1.0 Proxy dataset. Our system is called
gramr, short for “Grammar-based AMR Parser”. The score is close to, but does
not surpass the scores achieved by other CCG-based parsers by Artzi, K. Lee and
L. S. Zettlemoyer (2015) and Misra and Artzi (2016), as shown in Table 8.11. As the
table also shows, more recent systems have reached F1 scores of up to 0.733. The
most recent AMR parsing systems do not report data on the AMR 1.0 corpus and
therefore do not occur in Table 8.11.

Our results therefore reinforce the impression that there is a performance gap
between CCG-based approaches and other approaches to AMR parsing, such as the
Stack-LSTM-driven transition-based parser of Ballesteros and Al-Onaizan (2017)
and Liu et al. (2018), or the maximum spanning tree-based parser of Zhou et al.
(2016).

8.2.2. Error Analysis

To gain a more detailed picture of the operation of the parsing pipeline, we conduct
an in-depth, two-step error analysis on a set of 20 randomly sampled sentences from
the dev set. For each of these sentences, we manually compare the AMR produced
by the parser to the annotated gold-standard AMR, and assign an error class for
each difference between the two representations.

In a second step, we look for errors on the syntactic-semantic level: we examine
the GA-CCG derivation created by the parser, and look for the underlying cause of
each graph-level error. The resulting overview should give us a clearer view of areas
within the parser that need improvement. Both types of errors are summarised in
Table 8.12. For both graph-level and syntactic-semantic errors, we count the number
of sentences that are affected by the error. For graph-level errors, we also count
the total number of occurrences across all graphs. Syntactic-semantic errors are
counted per token.

Error Classes

We define the following graph-level error classes:

• focus: the focus (root) of the graph is assigned to the wrong node.

• label: a node is labelled incorrectly. We define this error class broadly and
apply this error class to both mislabelled constant nodes and to variable nodes

178

8.2. Final System Evaluation

which instantiate the wrong concept.

• missingc: a node or (connected) subgraph from the gold-standard graph is
not represented in the parser output.

• extrac: a node or subgraph is in the parser output but has no representation
in the gold standard graph.

• decomp: an entity should have been represented in a decompositional manner,
but was represented as a single node instead.

• coref: an entity should have been co-referenced, but a separate node repres-
enting the same entity was created instead.

• link: an expected edge was present, but between the wrong nodes (that is,
the node was linked to a wrong node).

• link+: an edge was present in the parsed AMR that was not present in the
gold-standard AMR, and the error cannot be interpreted as link.

• link-: an edge from the gold-standard AMR was missing in the parsed AMR,
and the error cannot be interpreted as link.

• direction: an expected edge was present, but with reversed direction.

• role: an expected edge was present, but assigned the wrong role.

Each of these errors is rooted in a parser decision. In the root-cause analysis,
we attempt to identify a decision that would have to be changed to eliminate the
error. Importantly, we do not evaluate each CCG derivation as a whole, but only
identify those errors that can be attributed to each graph-level error. We identify
the following syntactic-semantic error causes:

• lex: the selected lexical entry is inadequate.

• scope: a conjunction was scoped inappropriately.

• attach: a prepositional phrase was attached to the wrong head.

• compound: a compound was bracketed inappropriately.

• control: a control structure was scoped inappropriately.

179

Chapter 8. Evaluation of Graph Algebraic CCG Grammars for Semantic Parsing

Error Class Count Sentences

focus 1 1
label 28 17
missingc 21 10
extrac 4 4
decomp 6 5
coref 5 4
link 28 12
link+ 1 1
link- 8 6
direction 3 3
role 31 16

lex 88 19
scope 2 2
attach 7 4
compound 1 1
control 1 1
grammar 1 1
anno 1 1

Table 8.12.: Counts for each of the error classes across the 20 sentences included in
the error analysis. The first group are graph-level errors, the second
group comprises syntactic-semantic errors.

• grammar: the correct graph could not be constructed due to an intrinsic
limitation of GA-CCG.

• anno: the gold-standard annotation is incorrect, leading to the observed
graph-level error.

Results

Table 8.12 gives an overview of the errors that were identified in the sample. Count-
ing the errors is not entirely straightforward since errors depend on assumptions
about the correspondence between parts of the annotated and the parsed graphs.
They can also involve several graph elements, and may also be interdependent. The
following fundamental considerations were applied when counting the errors:

180

8.2. Final System Evaluation

• Graph-level errors are counted so as to maximise the overlap between the
gold-standard and the parsed graph, similarly to how Smatch scores are
computed.

• Errors pertaining to more than one node or edge, such as missingc and extrac,
are counted once for every connected subgraph that is affected.

• Syntax-level errors are counted per affected token.

• In the case of scoping or attachment errors, the incorrectly scoped token (such
as a conjunction or preposition) is counted.

Apart from the total error occurrences, Table 8.12 also contains the number of
sentences with at least one occurrence of each error class.

The error analysis reveals several interesting patterns.

• Mislabellings of both nodes (label) and edges (role) are frequent, occurring
in at least 80 % of the examined sentences. AMR knows multiple kinds of
representation for any given concepts (with orwithout sense index, as a quoted
constant, etc.), and the supertagger appears to have difficulties distinguishing
between them. Distinguishing between roles is similarly difficult: core (ARGn)
roles depend on the governing event and therefore require lexical knowledge.
At the same time, prepositions are polysemous and may invoke different non-
core roles such as mod, location, instrument, etc. While the parser contains
features to model preferences for these choices, the supertagger preselects the
lexical items that are available to the parser.

• Incorrect connections (link), where nodes are connected that should not be,
are somewhat less frequent but still occur in the majority of sentences. This
error class is interesting because it indicates that the parser fails to infer the
“who did what to whom” which forms the backbone of the semantic structure.

• The parser is biased towards omitting content, both nodes or subgraphs (miss-
ingc) and individual edges (link-). Only rarely does it invent elements (extrac,
link+). One explanation for this bias is that the parser can easily employ
templates that contribute no content (such as“identity” graphs with a single
placeholder) to fill a syntactic gap in the derivation.

• The selection of lexical items is by far the most important source of errors,
occurring in all but one sentences. This means that even most structural errors
in the graph representations could be avoided by improving lexical selection.

181

Chapter 8. Evaluation of Graph Algebraic CCG Grammars for Semantic Parsing

The error analysis paints a detailed picture of the parser’s error profile, showing
clear potentials for future engineering improvements.

8.2.3. Conclusion

In the preceding chapters, we have described a pipeline of tools to tackle the problem
of Abstract Meaning Representation parsing. This chapter is dedicated to evaluating
the resulting semantic parsing system, which we call gramr.

In Section 8.2.1, the parser’s performance is evaluated quantitatively and com-
pared to other semantic parsing systems, finding that our system is almost on par
with other CCG-based systems in terms of Smatch F1-performance. However, this
class of systems is not representative of the state of the art for AMR parsing overall,
leaving a wide gap of at more than 0.07 Smatch F1 points to the best reported system
on the same dataset.

A possible interpretation for this result is that the structural constraints of GA-
CCG limit AMR parsing. GA-CCG enforces a structure on AMR derivations that is
sometimes at odds with the constructions of AMR, and is unable to represent some
constructions, as has been examined in Chapter 4.

Other CCG-based parsers may however be less affected by this effect, since they
use a different, λ-calculus-based construction mechanism (Artzi, K. Lee and L. S.
Zettlemoyer 2015; Misra and Artzi 2016), even though the authors do not examine
its coverage.

In contrast, transition-based or graph-based parsers canmore easily be engineered
to achieve a high theoretical coverage. They also face fewer formal constraints on
their output. While the rigidity of a formal framework such as CCG may serve
the parser by leading it to higher-quality outputs, this positive effect seems to be
outweighed by the drawbacks.

The error analysis in Section 8.2.2 reveals that the vast majority of errors can be
traced to the selection of lexical entries. Since gramr uses a pipeline of lexicon induc-
tion, supertagging, and parsing, the parser has no chance of producing adequate
parses if the supertagger does not predict appropriate lexical entries. In turn, if
lexicon induction does not produce the appropriate lexical entry for a token, the
supertagger stands no chance of predicting it. The error analysis therefore points to
error propagation as a main weakness of the pipelined architecture of gramr.

Again, this argument is less applicable to the other CCG-based systems, since the
lexicon induction algorithm used by Artzi, K. Lee and L. S. Zettlemoyer (2015) and
Misra and Artzi (2016) is invoked in lockstep with the training of the parser. The
lexicon can thus be amended at any time during training.

182

8.2. Final System Evaluation

An important motivation for the design of the pipelined architecture in gramr
was to reduce computational requirements. The supertagging step is necessary
because of the high complexity of the CKY algorithm, which is not able to cope with
the selection of templates from the full lexicon. A less complex parsing algorithm
might be able to consider more templates for each token and reduce the problem of
error propagation. However, Misra and Artzi (ibid.) fail to achieve an improved
Smatch score with a linear-time shift-reduce parsing algorithm.

In summary, CCG-based parsers are subject to certain constraints that other types
of semantic parsers are less affected by. Although CCG provides a strong basis
for parsing mor logic-based meaning representations, from the research so far it
appears that in the case of AMR parsing, the rigidity of CCG outweighs the benefits
gained from using a formalism geared towards linguistically plausible semantic
construction.

183

Chapter 9.

Conclusion

The preceding chapters describe the design and implementation of a semantic
parsing system, from its theoretical underpinnings to its empirical evaluation. The
approach taken in this thesis is opinionated and somewhat in opposition to recent
developments in the field of natural language processing, in that we have taken
a modular pipelined approach instead of end-to-end large-scale training, and by
emphasizing symbolic over continuous representations.

The motivation behind these design choices was to explore the utility of CCG as a
foundation for parsing an unrelated semantic formalism, and to work towards a se-
mantic parsing pipeline that could leverage the increased transparency provided by
a modular, grammar-based approach. In this context, this thesis can be considered
a proof-of-concept of our approach. It sheds light on the complexity and challenges
remaining to be tackled.

In this chapter, we first recapitulate the main findings of this thesis. Then, we
disscuss these findings in the broader context of semantic parsing research and
applications. Finally, we provide an outlook of possible followup activities, ranging
from engineering challenges to new areas of application.

9.1. Summary

In this thesis, we describe and evaluate an approach to the semantic parsing of
Abstract Meaning Representations (AMRs). The scope of this work includes the
design of a grammar to model the construction of AMRs, the implementation of
algorithms to induce lexica for this grammar and to train a statistical parser which
applies them, and finally a round of evaluations examining the behaviour and
performance of the resulting parser.

Chapter 4 describes Graph Algebraic Combinatory Categorial Grammar (GA-
CCG), a new formalism based on Combinatory Categorial Grammar (CCG), which

185

Chapter 9. Conclusion

is tailored to the construction of AMRs. The chapter starts with the definition of GA-
CCG s∗-graphs, which are the semantic building blocks of the grammar, and graph
algebraic rules which allow the construction of complete meaning representations
from them. Then, GA-CCG is defined by equipping the combinators, which define
the syntactic-semantic operations of CCG, with graph-algebraic interpretations. The
idea of using graph-algebraic operations for AMR construction is not new (Koller
2015), but its application to CCG is.

Since the aim is for GA-CCG to employ a limited set of rules which are easy to
understand and implement, it is focused on supporting linguistic constructions that
are frequent in AMR corpora. Chapter 4 therefore motivates every GA-CCG rule by
demonstrating how it supports common constructions, but also includes examples
of unsupported constructions.

Chapter 5 is concerned with deriving a GA-CCG lexicon from an AMR-annotated
corpus. To this end, it discusses algorithms to recursively break down the sentential
AMRs contained in the corpus into fragments that represent the meanings of indi-
vidual words. As there is no gold-standard data for this association, the algorithm is
essentially a constrained brute-force search: it uses a CCG derivation generated by
an off-the-shelf syntax parser as a backbone and annotates it with graph fragments
that conform to alignments generated by specialised AMR alignment tools. Several
other constraints and heuristics help manage the algorithm’s run time and the size
of the generated lexicon.

The chapter also includes an empirical validation of the algorithms. In particular,
we examine the coverage of the induced lexica. Due to the heuristic nature of the
induction algorithm, as well as limitations posed by the postulated GA-CCG rules,
the induction algorithm cannot generate a lexicon that is capable of reproducing
every observed meaning representation. However, we show that it covers a large
percentage of the overall tokens contained in the AMR corpus.

In Chapter 6, tools for processing the induced lexicon are discussed. Since the
output of the lexicon induction algorithm both contains implausible lexical items
and is tied to the concrete words observed in the corpus, its usefulness for semantic
parsing can be improved by combining lexical generalisation with filtering. This
creates word-independent lexical entries and removes entries that are not required
to describe the corpus. However, lexical generalisation exacerbates the problem of
lexical item selection. To relieve the parsing algorithm of this problem, we employ a
neural network-based supertagger to predict the most likely lexical entries for each
word.

As a key result, the lexical generalisation and filtering procedure is able to reduce
the lexicon from hundreds of thousands to mere thousands of entries without loss

186

9.2. Discussion

of coverage, demonstrating that automatically induced lexica do not have to be
orders of magnitude larger than manually created ones. This allows us to inspect
the lexicon and confirm that the entries contained in it are plausible.

Training results for the supertagger show that despite the relatively large output
space of several thousand lexical entries, and the fact that it has to deal with gaps in
its training data created by the lexical induction algorithm, it is able to predict the
fitting lexical entry with high accuracy.

Chapter 7 describes how a statistical parser for GA-CCG can be constructed and
trained. While the core of the parser is a fairly simple linear model, training it
requires additional tricks: we cover an adapted cost-sensitive perceptron algorithm,
which helps train the parser even if it cannot generate a correct output, as well as
an oracle heuristic to bootstrap the training process.

In Chapter 8, the parser is evaluated in a series of experiments, with some sur-
prising results. The evaluation shows that not all of the GA-CCG rules defined in
Chapter 4 actually improve end-to-end parser performance because even though
they lead to improved grammar coverage, they also increase the number of possibil-
ities the parser has to consider. Also, even though an oracle-based bootstrapping
schedule has been considered during parser development, it does not improve
end-to-end performance.

In the end-to-end evaluation, the parser is shown to perform comparably with
other CCG-based AMR parsers, and thus considerably worse than more current
parsers based on other techniques. An error analysis of the parser’s output, which
includes the syntactic-semantic derivations inferred by the parser, determines that
the parser is biased towards precision in favour of recall, tending to omit elements
of meaning representations. It also reveals that the selection of lexical items is a
crucial bottleneck, contributing to the vast majority of observed errors.

9.2. Discussion

The semantic parsing system described in this thesis serves as a proof-of-concept
implementation for GA-CCG-based semantic parsing. Importantly, we show that
our system achieves a similar end-to-end performance as the other CCG-based
AMR parsers by Artzi, K. Lee and L. S. Zettlemoyer (2015) and Misra and Artzi
(2016), with a gap of less than two Smatch F1 percentage points.

However, although our parser involves a significant amount of engineering, it
fails to improve upon these prior results. Is this indicative of engineering deficits
in our system, or are there fundamental limits for applying CCG to AMR parsing?

187

Chapter 9. Conclusion

Our experiments shed some light on this question and reveal that both aspects play
a certain role.

1. The entire pipeline suffers significantly from error propagation. At each step,
uncertainties in the form of noisy incomplete results are introduced, and
subsequent steps have to deal with this. For instance:

• Gaps or errors in word-to-node alignments produced by external aligners
can lead to erroneous or missing lexical entries.

• Similarly, incongruities between the modelling of certain constructions
in CCG and AMR can lead to failures during lexicon induction, and thus
to missing lexical entries.

• This in turn leads to incomplete training data being available to the
supertagger, limiting the quality of its predictions.

• Suboptimal supertagger predictions limit the parser by making favour-
able derivations unavailable.

In principle, these problems could be reduced through additional engineer-
ing effort. For example, using a faster, linear-time parsing algorithm could
allow the parser to consider more lexical entries for each token, reducing the
significance of the supertagging bottleneck.

2. The connection of the unrelated formalisms of AMR and CCG established in
this thesis is imperfect since there are important grammatical constructions
that cannot be modelled with GA-CCG. GA-CCG operators and rules could be
extended to treat them better, and in particular, Blodgett and Schneider (2019)
have proposed an alternative set of rules to better handle certain phenomena
which could be implemented in our parser. However, as our experiments
showed, modifications to the grammar interact with the computational re-
quirements of the parser. If the search space is increased by adding new
grammar rules, this may lead to the parser not being able to search it as ef-
fectively, and could thus neutralise the expected improvements. Ultimately,
even with improved grammar rules, it seems unlikely that GA-CCG can be
extended in such a way that the entirety of the AMR corpus is covered, given
that AMR sometimes offers several acceptable representations and the an-
notations are not always consistent in this respect, and that AMR relies on
non-compositional representations for some phenomena.

188

9.3. Outlook

3. Some potential engineering improvements are outside the scope of this thesis.
This includes improvements of the parser model, where significant improve-
ments might be expected from using, for example, a neural network-based
model for scoring, and where further experimentation with alternative pars-
ing algorithms, such as shift-reduce algorithms, would be possible. Similarly,
lexicon induction might be improved to reduce reliance on external tools and
eliminate computational difficulties associated with brute force search, for
example by designing an algorithm based on Bayesian statistics. All of these
options have not been explored here due to time constraints and to maintain a
focus on exploring the potential of GA-CCG grammars.

In summary, it appears that the GA-CCG approach adds significant engineer-
ing complexity while contributing little to benchmark end-to-end performance.
While somewhat disappointing, this result is not entirely unexpected as it mirrors
developments in other areas of natural language processing, such as machine trans-
lation, where systems using neural representations and end-to-end training have
displayed better performance than methods relying on linear models, symbolic
representations, and rule systems.

It should be kept in mind that this judgment relates purely to Smatch F1 per-
formance on the standardised AMR 1.0 benchmark. While benchmark tasks are
important to measure raw algorithmic performance, they do not necessarily repres-
ent real-world scenarios. The design and architecture of our system have properties
that can be favourable under certain circumstances, and which could be explored in
a more realistic setting.

9.3. Outlook

While standardised tasks focus on comparing systems under tightly controlled
circumstances, real-world application scenarios are diverse and accompanied by
many practical challenges, in addition to the engineering task itself. Real projects
often encounter a bootstrapping problem, where task-specific training data does
not exist initially and must be created as the project progresses. They may also face
limited availability of personnel and computational resources.

In such an environment, systems that can work with limited amounts of data
and computation are advantageous. As we have shown in Section 8.1.8, the gramr
parser is able to produce useful analyses with a few hundreds of training examples.
Its modular, pipelined architecture also makes it adaptable to the concrete setting

189

Chapter 9. Conclusion

of the application. In particular, the grammar can be edited manually in order to
further speed up the bootstrapping phase where little training data is available. The
parser also produces rich output in the form of GA-CCG derivations, which eases
the debugging of the toolchain.

At the same time, some of gramr’s limitations can potentially be avoided in a con-
crete application scenario. For example, when collecting training data for a concrete
task, AMRs can be limited to structures that GA-CCG can handle, eliminating an
important source of errors.

Taken together, these findings open a perspective for gramr as a construction kit
for lightweight AMR-based semantic parsing applications. Using AMR to encode
application-specific semantics, and building custom AMR parsers, could be one
path towards natural language-based human-computer interfaces that require deep
semantic understanding, such as complex question answering systems, natural
language database interfaces, analytics systems, and similar applications. For future
work, this direction seems well worth investigating.

190

Appendix A.

Abstract

In this dissertation, I develop a new approach to semantic parsing with graph mean-
ing representations. This approach is implemented in the form of a parser that
translates English sentences into Abstract Meaning Representations: graph struc-
tures which capture information on entities and events described in the sentence.
It is differentiated from other approaches by using a simplified form of Combinat-
ory Categorial Grammar equipped with graph-algebraic operators tailored to the
construction of graph meaning representations.

The semantic parsing system described in this thesis consists of a pipeline com-
prising lexicon induction, delexicalisation, filtering, supertagging, and parsing.
Due to the simplified nature of the grammar, the parser works with a compressed,
human-readable lexicon, while producing linguistically interpretable derivations of
sentence meanings. At the same time, it achieves a Smatch performance comparable
to other Combinatory Categorial Grammar-based approaches to Abstract Meaning
Representation parsing.

191

Appendix B.

Kurzfassung

In dieser Dissertationwird ein neuer Ansatz für das semantische Parsing in graphen-
basierte Bedeutungsrepräsentationen entwickelt. Dieser Ansatz wird in Form eines
Parsers implementiert, welcher englische Sätze in Abstract Meaning Representa-
tions übersetzt: Graphenstrukturen, welche Informationen über die in einem Satz
beschriebenen Ereignisse und Entitäten abbilden. Das Verfahren unterscheidet sich
von ähnlichen Ansätzen, indem eine vereinfachte Form der Combinatory Categorial
Grammar verwendet wird und diese mit Graph-algebraischen Operatoren ausgest-
attet wird, die für die Konstruktion graphenbasierter Bedeutungsrepräsentationen
entworfen wurden.

Das in dieser Arbeit beschriebene System folgt einer Pipeline-Architektur und
umfasst Lexikon-Induktion, Delexikalisierung, Filterung, Supertagging und Pars-
ing. Dadurch, dass eine vereinfachte Grammatik verwendet wird, kann der Parser
mit einem komprimierten, menschenlesbaren Lexikon arbeiten und linguistisch
nachvollziehbare Ableitungen der Bedeutungsrepräsentationen produzieren. Dabei
wird ein Smatch-Score erreicht, der mit anderen auf Combinatory Categorial Gram-
mar aufbauenden Parsern vergleichbar ist.

193

Appendix C.

Publications Related to this Thesis

This appendix contains an overview of the peer-reviewed publications that have
resulted from the work described in this thesis. In some cases, the publications
listed below describe preliminary results that are not reflected in the present text,
but which have been important in shaping it.

An overview of each publication’s content is provided below. In cases where
publications have more than one author, I also state the extent of each author’s
contribution.

• Sebastian Beschke. Evaluating Supervised Semantic Parsing Methods on
Application-Independent Data. Pristine Perspectives on Logic, Language,
and Computation. ESSLLI 2012 and ESSLLI 2013 Student Sessions. Selected
Papers vol. 8607 19–25 (2014).
I propose a research methodology for expanding Semantic Parsing to broad-
coverage data sets. At the time of writing, most published results in Semantic
Parsing had been on narrow, application-focused data sets and were achiev-
ing increasingly strong results. To expand the scope of semantic parsing to
more general and larger data sets, I suggest that computational issues need
to be addressed and that the question of the ideal properties of a meaning
representation language is still open. A preliminary experiment described
in the paper showed that a semantic parsing algorithm with strong perform-
ance on application-specific meaning representation performed poorly when
presented with more general and extensive meaning representations.

• Sebastian Beschke, Yang Liu, and Wolfgang Menzel. Large-scale CCG In-
duction from the Groningen Meaning Bank. Proceedings of the ACL 2014
Workshop on Semantic Parsing 12–16 (2014).
We describe a predecessor of the recursive splitting algorithm for the induction
of semantic CCG lexica. The algorithm breaks apart meaning representations
from the Groning Meaning Bank corpus, given in Discourse Representation

195

Appendix C. Publications Related to this Thesis

Theory, using λ-calculus. We describe heuristics needed tomake the algorithm
computationally feasible, and report statistics on the extracted lexical items.
This paper has been written by Sebastian Beschke. The underlying imple-
mentation and experiments are also due to Sebastian Beschke. Yang Liu and
Wolfgang Menzel provided advice and comments both ahead of and during
the work on the paper.

• Sebastian Beschke and Wolfgang Menzel. Graph Algebraic Combinatory
Categorial Grammar. Proceedings of the Seventh Joint Conference on Lexical
and Computational Semantics 54–64 (Association for Computational Linguist-
ics, 2018).
We introduce a predecessor ofGraph-Algebraic CombinatoryCategorial Gram-
mar to induce CCG lexica for Abstract Meaning Representation parsing. The
paper describes a syntax-driven splitting algorithm equipped with alignment
constraints, and reports statistics for lexicon induction on the AMR 1.0 corpus.
It also includes an analysis of mismatches between CCG and AMR.
This paper and the underlying implementation and experiments have been
created by Sebastian Beschke. Wolfgang Menzel provided advice throughout
the work on this topic, as well as comments on early versions of the paper.

• Sebastian Beschke. Exploring Graph-Algebraic CCG Combinators for Syn-
tactic-Semantic AMR Parsing. Proceedings of the International Conference
on Recent Advances in Natural Language Processing (RANLP 2019) 112–121.
I describe a semantic parsing system based on Graph-Algebraic Combinatory
Categorial Grammar, including Expectation Maximisation filtering, a super-
tagger, and an oracle parser. The system strongly resembles the semantic
parser presented in this dissertation; however, the evaluations conducted in
this thesis use different GA-CCG rule sets and a different training algorithm.

196

Appendix D.

Software Created for this Thesis

Throughout this thesis, we report experimental results and outputs of our GA-CCG
semantic parsing pipeline. As a key outcome of this research project, the software
components underlying our results have been published under free software licenses.
In this appendix, we briefly describe the software packages that have been created
in the context of this thesis:

• gramr is a software package implementing the lexicon induction, filtering,
training, and parsing stages of the GA-CCG parsing pipeline.

• s2tagger is a standalone tool implementing supertagger training and prediction.

• gramr-thesis-experiments is a repository to support reproduction of the reported
results, containing all necessary scripts and documentation.

D.1. gramr

Most of the functionality described in this thesis is implemented in the package
gramr, short for Grammar-Based Graph Meaning Representation Parser. The soft-
ware is implemented in the Scala programming language1 and available from
https://gitlab.com/nats/gramr2.

D.1.1. Package Contents

The gramr repository contains two sub-projects, base and experiments. The lat-
ter implements an experimental user interface that uses dedicated script files to

1See https://www.scala-lang.org/ (retrieved 19 July 2021).
2The description of gramr and the experimental results in this thesis are based on Version 306a of

gramr (https://gitlab.com/nats/gramr/-/tree/v306a/).

197

https://gitlab.com/nats/gramr
https://www.scala-lang.org/
https://gitlab.com/nats/gramr/-/tree/v306a/

Appendix D. Software Created for this Thesis

Concept / Algorithm Package or Module

Semantic Operators (Section 4.1) gramr.graph.edit.sgraph
GA-CCG Rules (Section 4.2) gramr.construction.sgraph.SGraphRule3

Syntax-Driven Splitting Algorithm
(Algorithm 5.1)

gramr.split.RecursiveSplitting,
gramr.split.PatternBasedSplitGenerator

Constrained Graph Splitting
Algorithm (Algorithm 5.2)

gramr.split.PatternBasedSplitGenerator,
gramr.split.labelling

Delexicalisation (Section 6.1) gramr.graph.lexemes.delexicalizeLexicon
Lexeme Patterns (Section 6.1.1) gramr.graph.lexemes.WildcardFiller
Calculation of Template and
Lexeme Counts (Algorithm 6.1)

gramr.graph.split.em.Iteration

EM Algorithm for GA-CCG
Filtering (Algorithm 6.2)

gramr.graph.split.em.Estimator

Beam-Search CKY Algorithm for
GA-CCG Parsing (Algorithm 7.1)

gramr.parse.cky.CkyParser

Algorithm for Greedy Coreference
Resolution (Algorithm 7.5)

gramr.parse.postprocess.CorefResolver

Training Loop (Algorithm 7.6) gramr.learn.AdadeltaLearner
Cost-Sensitive Perceptron
(Algorithm 7.7)

gramr.learn.CostSensitiveUpdateStrategy

Element-Wise Precision (Definition
7.2)

gramr.parse.ActionPredicates.\
GraphElementsCorrect.precision

Alignment Coverage (Definition
7.3)

gramr.parse.ActionPredicates.\
AlignmentsFulfilled.accuracy

Feature Extraction (Section 8.1.6) gramr.learn.features

Table D.1.: A list of the key algorithms of this thesis, and the Scala modules which
implement them.

198

D.2. s2tagger

Reference Source File

BiLSTM tagger (Section 3.5.1) tagger.py
Masked loss function (Equation 6.2) masked_loss.py
Jackknifing algorithm (Section 6.3.5) __main__.py

Table D.2.: An overview of the algorithms and concepts implemented in s2tagger,
along with the corresponding source files.

configure the parser components. The former contains implementations of the
algorithms and concepts discussed in this thesis, along with more administrative
tools to handle serialisation and deserialisation of AMR corpora, parser models,
and the like. Table D.1 shows where implementations of the core algorithms can be
found in the gramr package.

D.2. s2tagger

The package s2tagger (short for simple supertagger) implements the supertagging
functionality described in Section 6.3. It is implemented in Python4 using the Keras
interface to the Tensorflow 2 deep learning library5. s2tagger is available from
https://gitlab.com/nats/s2tagger/6.

Table D.2 gives an overview of the functionality implemented in s2tagger that is
relevant to the contents of this thesis, and points to the files where the corresponding
implementations can be found.

D.3. gramr-thesis-experiments

The repository gramr-thesis-experiments contains all scripts and instructions needed
to reproduce the results reported in this thesis. It is published at https://gitlab.
com/nats/gramr-thesis-experiments.

The repository itself contains detailed documentation on running the experiments.
This section, gives a brief overview of the process, and documents how the scripts
in the repository correspond to the reported experiments.

4See https://www.python.org/ (retrieved 23 July 2021).
5See https://www.tensorflow.org/ (retrieved 23 July 2021).
6The experiments in this thesis are based on s2tagger Version 1.2.2 available from https://gitlab.

com/nats/s2tagger/-/tree/v1.2.2.

199

https://gitlab.com/nats/s2tagger/
https://gitlab.com/nats/gramr-thesis-experiments
https://gitlab.com/nats/gramr-thesis-experiments
https://www.python.org/
https://www.tensorflow.org/
https://gitlab.com/nats/s2tagger/-/tree/v1.2.2
https://gitlab.com/nats/s2tagger/-/tree/v1.2.2

Appendix D. Software Created for this Thesis

D.3.1. Setup and Running Experiments

Running the experiments requires the following steps:

1. All software dependencies must be installed.

2. An enriched AMR corpus must be created by running the preprocessing pipeline.

3. Individual experiments can now be run using the corresponding shell scripts.

4. Experimental results can be compiled using the analysis notebooks.

Dependencies

The following software packages are required: git, python3.8, sbt, docker, docker-
compose. Exactly how these are installed varies depending on the operating system
and is thus not described in more detail.

The AMR 1.0 corpus7 and the CCGBank 1.1 corpus8 must be obtained and ex-
tracted into the data subdirectory.

Finally, the software dependencies for running the experiments themselves can
be installed using the provided scripts.

$./install.sh

Preprocessing

Due to the complex requirements of the various tools, the preprocessing step is
implemented using Docker. The following three steps build the required Docker
images and run all preprocessing steps:

$./build.sh
$./preprocess.sh
$./preprocess-ccgbank.sh

7Available at https://catalog.ldc.upenn.edu/LDC2014T12 (retrieved 29 July 2021).
8Available at https://catalog.ldc.upenn.edu/LDC2005T13 (retrieved 29 July 2021).

200

https://catalog.ldc.upenn.edu/LDC2014T12
https://catalog.ldc.upenn.edu/LDC2005T13

D.3. gramr-thesis-experiments

Running Experiments

Scripts for individual experiments are located in the experiments directory. Each
subdirectory contains a separate README.md file describing the experiment and the
steps required to run it.

Most of the experiments contain either a run.sh file which runs the experiment,
or a series of numbered scripts. In the latter case, the scripts should be run in order.
In general, the corresponding README.md files should be consulted to understand
the requirements of each experiment.

As an example, the full parsing pipeline using the no-modify rule set can be run
as follows:

$ cd experiments/parsing/full-no-modify
$./01-induce.sh
$./02-extract-test-sentences.sh
$./03-tag.20.sh
$./04-train.sh
$./val.sh
$./test.sh

Induction and training scripts are set up to be used on machines with at least 64
gigabytes of RAM. On smaller machines, the setting -Xmx48g (or similar) may be
adapted to the available size9.

Compiling Results

Scripts for analysing the output of experiments are collected in the experiments/
analysis directory, mainly in the form of Jupyter notebooks10. In addition, some
experiment directories also contain scripts for extracting results. As an example, the
experiment in experiments/parsing/full-no-modify contains a script eval.sh
which computes Smatch scores on the validation and test sets. Meanwhile, the note-
book experiments/analysis/parsing.ipynb contains graphs and tables extracted
from the outputs of the various parsing experiments.

201

Appendix D. Software Created for this Thesis

Experiment Script Directory

Large Scale Lexicon Induction (Section 5.3)
Alignment Strategies (Section 5.3.4) induce-vary-alignments
Grammars (Section 5.3.5) induce-vary-grammars
n-Best Parsing (Section 5.3.6) induce-vary-ccg-derivation-

count
Coreference Nodes (Section 5.3.7) induce-vary-max-corefs

Grammar Coverage (Section 5.4) grammar-coverage
Delexicalisation (Section 6.1.2) parsing/01-induce.sh
EM Filtering (Section 6.2.3) parsing/01-induce.sh
Supertagging (Section 6.3.6)

Embeddings tagging/vary-embeddings
Features tagging/vary-features
LSTM Architecture tagging/vary-lstm-layout

Parser Tuning (Section 8.1)
Baseline Settings (Section 8.1.3) parsing/baseline
Bootstrapping (Section 8.1.4) parsing/bootstrap
Beam Size (Section 8.1.5) parsing/beam
Features (Section 8.1.6) parsing/features
Rule Sets (Section 8.1.7) parsing/grammar
Amount of Training Data (Section 8.1.8) parsing/training-data

Final System Evaluation (Section 8.2) parsing/full-no-modify

Table D.3.: An overview of the experiments reported in this thesis and the scripts in
the gramr-thesis-experiments repository.

202

D.3. gramr-thesis-experiments

D.3.2. Included Experiments

All experimental results reported in this thesis have been obtained using scripts
contained in the gramr-thesis-experiments repository. Table D.3 shows the corres-
pondence between each experiment and its script files.

9See https://docs.oracle.com/en/java/javase/16/docs/specs/man/java.html#
extra-options-for-java (retrieved 29 July 2021).

10See https://jupyter.org/ (retrieved 29 July 2021).

203

https://docs.oracle.com/en/java/javase/16/docs/specs/man/java.html#extra-options-for-java
https://docs.oracle.com/en/java/javase/16/docs/specs/man/java.html#extra-options-for-java
https://jupyter.org/

List of Figures

1.1. A graph representing the meaning of the sentence The programmer
wanted to find seven bugs. 1

1.2. An overview of the software pipeline developed in this thesis. All
solid boxes are new software components developed for this research.
Arrows indicate the data flow between components. Arrows to the
bottom show the system’s outputs. 4

3.1. A CCG-based analysis of the sentence The cat saw the dog. 24
3.2. Examples for basic operations on s-graphs. H and K are merged (c),

then source a is forgotten (d), and finally, source b is renamed to a (e). 30

4.1. A GA-CCG derivation for the sentence He greedily ate an apple. The
use of application is demonstrated in three common contexts: applic-
ation of a (semantically empty) determiner 1 , the filling of a verb’s
argument slots 2 , and modification by an adverb 3 . The example
also demonstrates how punctuation is absorbed with the forward
punctuation combinator and either the Ki or the A operator 4 65

4.2. A GA-CCG derivation for the sentence She wanted to sleep. The subject
control structure is set up through themerging of the ⟨0⟩ placeholders
during the application of wanted 1 . 67

4.3. The GA-CCG derivation for the phrase school teacher shows how
the modification operator is employed as an interpretation for noun
modification. It allows the modifier school to attach to the level-1
node teach-01. 68

4.4. Derivation of the phrase there are seven bugs in the code. In this phrase,
there is expletive and represented by a dummy AMR. In the final
derivation step, the dummy argument is ignored 1 to fill the syntactic
argument without adding semantic content. 69

4.5. This example demonstrates a conjunction of two transitive verbs.
The conj combinator invokes the semantic operator S, keeping both
arguments of fix free to merge with those of reproduce 1 70

205

List of Figures

4.6. Since the object is extracted from the relative clause the scientist wrote,
type raising 1 and forward composition 2 are employed to allow
the subject to combine with the verb. A type changing rule from
EasyCCG’s grammar allows the resulting phrase to act as a relative
clause. 3 . 71

4.7. One use case for backward crossed composition is to allow adverbials
on verbs expecting additional arguments. Here, said is modified by
yesterday 1 . 73

4.8. A coreference node is used to represent the meaning of themself. At
the end of the parsing process, the coreference node is merged with
the appropriate referent. 74

4.9. Enumerations of more than two items initially cause conjunction
nodes to be nested due to the binary-branching structure of CCG
derivations 1 . The normalization to the AMR-conforming flat struc-
ture is carried out immediately afterwards 2 , without creating a new
derivation node. 76

4.10. When embedding the phrase from Figure 4.6 in a full sentence, it
becomes clear that while the semantic roles are assigned correctly,
the focus is incorrectly placed on the write node. As the paper is the
thing being published, the ARG1 relation should be between publish
and paper, not between publish and write. 77

4.11. In the sentences I told the child to wait, the object of told is the same as
the subject of wait. Expressing this controlling behaviour requires a)
introducing the ARG1-role of wait into the lexical entry for told, and
b) adding an argument-less lexical entry forwait. This representation
is not ideal because an interdependency between the lexical entries
for both verbs is introduced. 79

4.12. With the backward composition combinator, CCG allows argument
clusters such as a teacher an apple to act as constituents. However, the
corresponding semantic representations cannot be constructed with
GA-CCG: the resulting graph would not be connected as there is no
verb to connect both arguments. For space reasons, the following
abbreviations are used for syntactic categories: VP = S\NP, TV =
(S\NP)/NP, DTV = ((S\NP)/NP)/NP. 80

206

List of Figures

4.13. A parasitic gap construction involving the substitution combinator
can bemodelled by interpreting the forward composition combinator
as backward substitution, and interpreting the subsequent substitu-
tion as forward application. This interpretation identical to that of
conjunctions (see Section 4.2.6). The abbreviated syntactic categories
are the same as in Figure 4.12. 81

5.1. Examples for constrained splitting. 89
5.2. Illustration for Example 5.8. 91
5.3. The distribution of sentence lengths in the proxy-train data set. . 97
5.4. Examples for non-monotonic constructions. 108
5.5. Example for divergent dependencies. The polarity edge of have-03

does not match the dependency between no and information. Simpli-
fied from wsj_0003.9 . 108

5.6. Example for divergent dependencies. Although point-02 is the focus
of the main clause, the modifier no dummies attaches to the subject.
Simplified from wsj_0010.14 . 109

5.7. Example for a non-unique depth-1 attachment. The Kent modifier
cannot be attached to cigarette because of the sister node filter-02.
Simplified from wsj_0003.1 . 109

5.8. Illustration of edge overlap. Simplified from wsj_0010.3. 110
5.9. Example for a syntactic annotation error. The semantic annotation

correctly represents the conjunction of the modifiers sales and mar-
keting. In the syntax, the lcomma combinator is annotated instead,
effectively treating the conjunction as punctuation. As a result, mar-
keting executive forms a syntactic constituent, but not a contiguous
subgraph of the AMR. From wsj_0009.4. 111

6.1. A lexicalised and a delexicalised lexical entry. 119
6.2. Number of templates per syntactic category after delexicalisation.

The top 20 out of 181 syntactic categories are shown. 124
6.3. Convergence of the EM algorithm over 100 iterations. The y axis

shows the logarithm of the probability assigned to the entire training
corpus. 130

6.4. Architecture overview of the BiLSTM supertagger. 134

8.1. Per-iteration validation scores of three training runs with the baseline
configuration (0 is the bootstrapping iteration). 168

207

List of Figures

8.2. Smatch F1 scores achieved using a given percentage of the Proxy
training data. 174

208

List of Tables

3.1. Definitions of the combinators used in this thesis. Definitions follow
Lewis and Steedman (2014); the semantic definitions are taken from
Steedman (2000). For conversions, we give no semantic definition
since Lewis and Steedman (2014) only define them syntactically. The
conversions tc-rel, tc-nmod, lex-dcl-n, lex-pp-fn-np, and lex-pp-fn-vp
have been added for this thesis. 25

4.1. Rules for the main grammars examined in this thesis. The abbre-
viated syntactic categories X1 and X2 are defined as follows: X1 =
(S\NP)/((S\NP)/NP); X2 = S/(S\NP). 64

4.2. Rules for the two unrestricted grammars examined in this thesis. . 64

5.1. Relative frequencies of combinators in proxy-train across the top
50 derivations produced by EasyCCG. 98

5.2. An overview of AMR alignment tools. 99
5.3. Token coverages achieved using various combinations of alignment

tools. 99
5.4. Token coverages achieved using various GA-CCG grammars. 101
5.5. Token coverages, lexical item counts, and runtime achieved by cover-

ing a varying number of n-best syntax derivations. 102
5.6. Token coverages, lexical item counts, and runtime achieved by allow-

ing various numbers of coreferences per splitting step. 103
5.7. Additional grammar rules used for processing CCGbank derivations.

On the left are syntactic rules that have been observed in CCGbank
derivations. On the right are possible semantic interpretations of
these rules. In some cases, more than one semantic interpretation
can be inferred. 106

5.8. Error counts for grammar coverage experimental conditions. 111
5.9. Statistics for grammar coverage experimental conditions. The corpus

size is 100 sentences. 112

6.1. Delexicalised meaning representations derived from the word join. 122

209

List of Tables

6.2. Parameter settings for the validation run of the delexicalisation al-
gorithm. 123

6.3. Classes of the 286 templates with the highest EM probabilities. . . . 131
6.4. Classes of all 6,389 filtered lexemes. 132
6.5. The hyperparameter settings for the supertagger which are covered

by our experiments. Settings in bold are used as baseline settings
unless otherwise noted. 139

6.6. The performance of the supertagger with various embedding methods.140
6.7. The performance of the supertagger with and without syntactic cat-

egory features. 140
6.8. The performance of the supertagger with varied BiLSTM size and

layer count. 141

8.1. Settings for lexicon induction and supertagging in the parser tuning
experiments. 162

8.2. Baseline parser settings in the parser tuning experiments. 167
8.3. Smatch F1 scores on the Proxy dev set across three runs of the baseline

configuration. 167
8.4. Smatch F1 scores on the Proxy dev set achieved using various boot-

strapping schedules. 169
8.5. Smatch F1 scores and training times on the Proxy dev set achieved

using various beam sizes. 171
8.6. Smatch F1 scores on the Proxy validation set achieved using various

feature sets. In each row, the feature set of the previous row is exten-
ded by a group of features from Section 8.1.2. The reported scores
are computed after 5 iterations of training plus one bootstrapping
iteration. 172

8.7. Modified settings for lexicon induction and supertagging in the ex-
periment on rule sets. 172

8.8. Best validation score achieved using different GA-CCG grammars. 173
8.9. Smatch scores on the Proxy dev set using various amounts of training

data. 174
8.10. Settings for lexicon induction and supertagging in the parser tuning

experiments. 176

210

List of Tables

8.11. A comparison of our system (gramr) to other systems evaluated on
AMR 1.0 Proxy in terms of Smatch precision, recall, and F1 score.
The first group are CCG-based systems. The second group comprises
systems that follow different approaches, including the best currently
reported score on the dataset. 177

8.12. Counts for each of the error classes across the 20 sentences included in
the error analysis. The first group are graph-level errors, the second
group comprises syntactic-semantic errors. 180

D.1. A list of the key algorithms of this thesis, and the Scala modules
which implement them. 198

D.2. An overviewof the algorithms and concepts implemented in s2tagger,
along with the corresponding source files. 199

D.3. An overview of the experiments reported in this thesis and the scripts
in the gramr-thesis-experiments repository. 202

211

List of Algorithms

3.1. A variant of the CKY algorithm for CCG parsing. 27
3.2. An algorithm for CCG parsing with beam search. 36
3.3. The basic perceptron algorithm. 37
3.4. The cost-sensitive perceptron algorithm by Singh-Miller and Collins

(2007). 40
3.5. The EM algorithm for estimating PCFG parameters. 44
3.6. Inside-outside algorithm calculating expected PCFG rule counts. . 46

5.1. Syntax-Driven Splitting Algorithm 116
5.2. Constrained graph splitting algorithm 117

6.1. Calculation of template and lexeme counts for a single example. . . 128
6.2. The EM algorithm for GA-CCG filtering. 129

7.1. A beam-search CKY algorithm for GA-CCG parsing. 147
7.2. Lexical generation algorithm for GA-CCG. 148
7.3. Combinatory hypothesis generation algorithm for GA-CCG. 149
7.4. Unary hypothesis generation algorithm for GA-CCG. 149
7.5. Algorithm for greedy coreference resolution. 150
7.6. The training loop. 152
7.7. The cost-sensitive perceptron update algorithm. 153
7.8. An extended training loop with oracle bootstrapping in the first

iteration. 158
7.9. The inference procedure for parsing novel sentences. 158

213

Bibliography

Artzi, Yoav, Kenton Lee and Luke S Zettlemoyer (2015). ‘Broad-coverage CCG
Semantic Parsing with AMR’. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Lisbon, Portugal: Association for Com-
putational Linguistics, pp. 1699–1710. url: http://aclweb.org/anthology/D15-
1198.

Baker, James K. (1979). ‘Trainable grammars for speech recognition’. In: Speech
communication papers presented at the 97th meeting of the Acoustical Society of America.
Cambridge, MA: MIT, pp. 547–550.

Ballesteros, Miguel and Yaser Al-Onaizan (2017). ‘AMR Parsing using Stack-LSTMs’.
In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. Copenhagen, Denmark: Association for Computational Linguistics,
pp. 1269–1275. url: https://www.aclweb.org/anthology/D17-1130.

Banarescu, Laura, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer and Nathan Schneider
(2013). ‘Abstract Meaning Representation for Sembanking’. In: Proceedings of
the 7th Linguistic Annotation Workshop and Interoperability with Discourse. Sofia,
Bulgaria: Association for Computational Linguistics, pp. 178–186. url: http:
//www.aclweb.org/anthology/W13-2322.

Banarescu, Laura, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer and Nathan Schneider
(2019). Abstract Meaning Representation (AMR) 1.2.6 Specification. en. url: https:
//github.com/amrisi/amr-guidelines (visited on 28/10/2020).

Bangalore, Srinivas and Aravind K. Joshi (1999). ‘Supertagging: An Approach
to Almost Parsing’. In: Computational Linguistics 25.2, pp. 237–265. url: https:
//aclanthology.org/J99-2004.

Basile, Valerio, Johan Bos, Kilian Evang and Noortje Venhuizen (2012). ‘Developing
a large semantically annotated corpus’. In: Proceedings of the Eighth International
Conference on Language Resources and Evaluation (LREC-2012). Ed. by Nicoletta
Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Mae-
gaard, JosephMariani, Jan Odijk and Stelios Piperidis. Istanbul, Turkey: European
Language Resources Association (ELRA), pp. 3196–3200. isbn: 978-2-9517408-7-7.

215

http://aclweb.org/anthology/D15-1198
http://aclweb.org/anthology/D15-1198
https://www.aclweb.org/anthology/D17-1130
http://www.aclweb.org/anthology/W13-2322
http://www.aclweb.org/anthology/W13-2322
https://github.com/amrisi/amr-guidelines
https://github.com/amrisi/amr-guidelines
https://aclanthology.org/J99-2004
https://aclanthology.org/J99-2004

Bibliography

url: http://www.lrec-conf.org/proceedings/lrec2012/pdf/534_Paper.
pdf.

Berant, Jonathan and Percy Liang (2015). ‘Imitation Learning of Agenda-based
Semantic Parsers’. In: Transactions of the Association for Computational Linguistics 3,
pp. 545–558. url: https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/
article/view/646.

Blodgett, Austin and Nathan Schneider (2019). ‘An Improved Approach for Se-
mantic Graph Composition with CCG’. In: Proceedings of the 13th International
Conference on Computational Semantics - Long Papers. Gothenburg, Sweden: Associ-
ation for Computational Linguistics, pp. 55–70. url: https://www.aclweb.org/
anthology/W19-0405.

Bos, Johan (2008). ‘Wide-Coverage Semantic Analysis with Boxer’. In: Semantics in
Text Processing. STEP 2008 Conference Proceedings. College Publications, pp. 277–
286. url: https://www.aclweb.org/anthology/W08-2222.

Bos, Johan (2016). ‘Squib: Expressive Power of Abstract Meaning Representations’.
In: Computational Linguistics 42.3. Place: Cambridge, MA Publisher: MIT Press,
pp. 527–535. doi: 10.1162/COLI_a_00257. url: https://aclanthology.org/
J16-3006.

Brown, Peter F., Stephen A. Della Pietra, Vincent J. Della Pietra and Robert L. Mercer
(1993). ‘The Mathematics of Statistical Machine Translation: Parameter Estim-
ation’. In: Computational Linguistics 19.2. Place: Cambridge, MA Publisher: MIT
Press, pp. 263–311. url: https://aclanthology.org/J93-2003.

Cai, Shu and Kevin Knight (2013). ‘Smatch: an Evaluation Metric for Semantic
Feature Structures’. In: Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Sofia, Bulgaria: Association
for Computational Linguistics, pp. 748–752. url: http://www.aclweb.org/
anthology/P13-2131.

Clark, Stephen and James R. Curran (2004). ‘The importance of supertagging for
wide-coverage CCG parsing’. en. In: Proceedings of the 20th international conference
on Computational Linguistics - COLING ’04. Geneva, Switzerland: Association
for Computational Linguistics, 282–es. doi: 10.3115/1220355.1220396. url:
http://portal.acm.org/citation.cfm?doid=1220355.1220396 (visited on
22/02/2021).

Cocke, John and Jacob T. Schwartz (1970). Programming languages and their compilers:
Preliminary notes. Technical report. New York, USA: New York University.

Collins, Michael (2002). ‘Discriminative Training Methods for Hidden Markov
Models: Theory and Experiments with Perceptron Algorithms’. In: Proceedings of
the 2002 Conference on Empirical Methods in Natural Language Processing. Association

216

http://www.lrec-conf.org/proceedings/lrec2012/pdf/534_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/534_Paper.pdf
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/646
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/646
https://www.aclweb.org/anthology/W19-0405
https://www.aclweb.org/anthology/W19-0405
https://www.aclweb.org/anthology/W08-2222
https://doi.org/10.1162/COLI_a_00257
https://aclanthology.org/J16-3006
https://aclanthology.org/J16-3006
https://aclanthology.org/J93-2003
http://www.aclweb.org/anthology/P13-2131
http://www.aclweb.org/anthology/P13-2131
https://doi.org/10.3115/1220355.1220396
http://portal.acm.org/citation.cfm?doid=1220355.1220396

Bibliography

for Computational Linguistics, pp. 1–8. doi: 10.3115/1118693.1118694. url:
http://www.aclweb.org/anthology/W02-1001.

Copestake, Ann and Dan Flickinger (2000). ‘An Open Source Grammar Develop-
ment Environment and Broad-coverage English Grammar Using HPSG’. In: Pro-
ceedings of the Second International Conference on Language Resources and Evaluation
(LREC’00). Athens, Greece: European Language Resources Association (ELRA).
url: http://www.lrec-conf.org/proceedings/lrec2000/pdf/371.pdf.

Courcelle, Bruno and Joost Engelfriet (2012). Graph Structure and Monadic Second-
Order Logic: A Language-Theoretic Approach. 1st Edition. New York, NY, USA: Cam-
bridge University Press.

Damonte, Marco and Shay B. Cohen (2018). ‘Cross-Lingual Abstract Meaning
Representation Parsing’. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers). New Orleans, Louisiana: Association for Computational
Linguistics, pp. 1146–1155. doi: 10.18653/v1/N18-1104. url: https://www.
aclweb.org/anthology/N18-1104.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee and Kristina Toutanova (June 2019).
‘BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing’. In: Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computa-
tional Linguistics, pp. 4171–4186. doi: 10.18653/v1/N19-1423. url: https:
//aclanthology.org/N19-1423.

Evang, Kilian (2016). ‘Cross-lingual Semantic Parsing with Categorial Grammars’.
ISBN: 9789036794749 OCLC: 968211067. PhD thesis. University of Groningen.
264 pp. url: https://kilian.evang.name/phdthesis.pdf (visited on 15/12/2021).

Flanigan, Jeffrey, Sam Thomson, Jaime Carbonell, Chris Dyer and Noah A. Smith
(2014). ‘ADiscriminative Graph-Based Parser for theAbstractMeaning Represent-
ation’. In: Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Baltimore,Maryland: Association for Computa-
tional Linguistics, pp. 1426–1436. url: http://www.aclweb.org/anthology/P14-
1134.

Glorot, Xavier and Yoshua Bengio (2010). ‘Understanding the difficulty of training
deep feedforward neural networks’. In: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. Ed. by Yee Whye Teh and Mike
Titterington. Vol. 9. Proceedings of Machine Learning Research. Sardinia, Italy:
PMLR, pp. 249–256. url: http://proceedings.mlr.press/v9/glorot10a.html.

217

https://doi.org/10.3115/1118693.1118694
http://www.aclweb.org/anthology/W02-1001
http://www.lrec-conf.org/proceedings/lrec2000/pdf/371.pdf
https://doi.org/10.18653/v1/N18-1104
https://www.aclweb.org/anthology/N18-1104
https://www.aclweb.org/anthology/N18-1104
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://kilian.evang.name/phdthesis.pdf
http://www.aclweb.org/anthology/P14-1134
http://www.aclweb.org/anthology/P14-1134
http://proceedings.mlr.press/v9/glorot10a.html

Bibliography

Goldberg, Yoav (2017).Neural Network Methods in Natural Language Processing. Ed. by
Graeme Hirst. Morgan & Claypool Publishers. isbn: 1-62705-298-4.

Goodman, James, Andreas Vlachos and Jason Naradowsky (2016). ‘Noise reduc-
tion and targeted exploration in imitation learning for Abstract Meaning Rep-
resentation parsing’. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Associ-
ation for Computational Linguistics, pp. 1–11. doi: 10.18653/v1/P16-1001. url:
https://aclanthology.org/P16-1001.

Groschwitz, Jonas, Meaghan Fowlie, Mark Johnson and Alexander Koller (2017).
‘A constrained graph algebra for semantic parsing with AMRs’. In: Proceedings of
the 12th International Conference on Computational Semantics. Montpellier, France:
Association for Computational Linguistics. url: http : / / www . aclweb . org /
anthology/W17-6810 (visited on 26/02/2018).

Groschwitz, Jonas, Matthias Lindemann, Meaghan Fowlie, Mark Johnson and Alex-
ander Koller (2018). ‘AMR dependency parsing with a typed semantic algebra’.
In: Proceedings of the 56th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Melbourne, Australia: Association for Compu-
tational Linguistics, pp. 1831–1841. doi: 10.18653/v1/P18-1170. url: https:
//www.aclweb.org/anthology/P18-1170.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). ‘Long Short-Term Memory’. In:
Neural Computation 9.8, pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735.

Hockenmaier, Julia and Mark Steedman (2007). ‘CCGbank: A Corpus of CCG
Derivations and Dependency Structures Extracted from the Penn Treebank’. In:
Computational Linguistics 33.3, pp. 355–396. doi: 10.1162/coli.2007.33.3.355.
url: https://aclanthology.org/J07-3004.

Honnibal, Matthew, James R. Curran and Johan Bos (2010). ‘Rebanking CCGbank
for Improved NP Interpretation’. In: Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics. Uppsala, Sweden: Association for Compu-
tational Linguistics, pp. 207–215. url: http://www.aclweb.org/anthology/P10-
1022.

Hovy, Eduard,MitchellMarcus,Martha Palmer, LanceRamshawandRalphWeische-
del (2006). ‘OntoNotes: The 90% Solution’. In: Proceedings of the Human Language
Technology Conference of the NAACL, Companion Volume: Short Papers. New York
City, USA: Association for Computational Linguistics, pp. 57–60. url: https:
//www.aclweb.org/anthology/N06-2015.

Howard, Jeremy and Sebastian Ruder (2018). ‘Universal Language Model Fine-
tuning for Text Classification’. In: Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia:

218

https://doi.org/10.18653/v1/P16-1001
https://aclanthology.org/P16-1001
http://www.aclweb.org/anthology/W17-6810
http://www.aclweb.org/anthology/W17-6810
https://doi.org/10.18653/v1/P18-1170
https://www.aclweb.org/anthology/P18-1170
https://www.aclweb.org/anthology/P18-1170
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/coli.2007.33.3.355
https://aclanthology.org/J07-3004
http://www.aclweb.org/anthology/P10-1022
http://www.aclweb.org/anthology/P10-1022
https://www.aclweb.org/anthology/N06-2015
https://www.aclweb.org/anthology/N06-2015

Bibliography

Association for Computational Linguistics, pp. 328–339. doi: 10.18653/v1/P18-
1031. url: https://www.aclweb.org/anthology/P18-1031.

Kamp, Hans and Uwe Reyle (1993). From Discourse to Logic: Introduction to Model-
theoretic Semantics of Natural Language, Formal Logic and Discourse Representation
Theory. Dordrecht: Kluwer. isbn: 978-0-7923-2403-4.

Kasami, Tadao (1965). An efficient recognition and syntax-analysis algorithm for context-
free languages. Technical Report. Air Force Research Laboratory.

Kingma, Diederik P. and Jimmy Ba (2017).Adam: AMethod for Stochastic Optimization.
arXiv: 1412.6980 [cs.LG].

Knight, Kevin, Bianca Badarau, Laura Baranescu, Claire Bonial, Madalina Bardocz,
Kira Griffitt, Ulf Hermjakob, Daniel Marcu, Martha Palmer, Tim O’Gorman and
Nathan Schneider (2017). Abstract Meaning Representation (AMR) Annotation
Release 2.0. Philadelphia: Linguistic Data Consortium. url: https://catalog.
ldc.upenn.edu/LDC2017T10.

Knight, Kevin, Bianca Badarau, Laura Baranescu, Claire Bonial, Madalina Bardocz,
Kira Griffitt, Ulf Hermjakob, Daniel Marcu, Martha Palmer, Tim O’Gorman and
Nathan Schneider (2020). Abstract Meaning Representation (AMR) Annotation
Release 3.0. Philadelphia: Linguistic Data Consortium. url: https://catalog.
ldc.upenn.edu/LDC2020T02.

Knight, Kevin, Laura Baranescu, Claire Bonial, Madalina Georgescu, Kira Griffitt,
Ulf Hermjakob, Daniel Marcu, Martha Palmer and Nathan Schneider (2014).
Abstract Meaning Representation (AMR) Annotation Release 1.0 LDC2014T12. Phil-
adelphia: Linguistic Data Consortium. url: https://catalog.ldc.upenn.edu/
LDC2014T12.

Koller, Alexander (2015). ‘Semantic construction with graph grammars’. In: Pro-
ceedings of the 11th International Conference on Computational Semantics. London,
UK: Association for Computational Linguistics, pp. 228–238. url: http://www.
aclweb.org/anthology/W15-0127.

Koller, Alexander, Stephan Oepen and Weiwei Sun (2019). ‘Graph-Based Meaning
Representations: Design and Processing’. In: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics: Tutorial Abstracts. Florence, Italy:
Association for Computational Linguistics, pp. 6–11. doi: 10.18653/v1/P19-4002.
url: https://www.aclweb.org/anthology/P19-4002.

Kuhlmann, Marco and Giorgio Satta (2014). ‘A New Parsing Algorithm for Combin-
atory Categorial Grammar’. In: Transactions of the Association for Computational Lin-
guistics 2, pp. 405–418. doi: 10.1162/tacl_a_00192. url: https://aclanthology.
org/Q14-1032.

219

https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://www.aclweb.org/anthology/P18-1031
https://arxiv.org/abs/1412.6980
https://catalog.ldc.upenn.edu/LDC2017T10
https://catalog.ldc.upenn.edu/LDC2017T10
https://catalog.ldc.upenn.edu/LDC2020T02
https://catalog.ldc.upenn.edu/LDC2020T02
https://catalog.ldc.upenn.edu/LDC2014T12
https://catalog.ldc.upenn.edu/LDC2014T12
http://www.aclweb.org/anthology/W15-0127
http://www.aclweb.org/anthology/W15-0127
https://doi.org/10.18653/v1/P19-4002
https://www.aclweb.org/anthology/P19-4002
https://doi.org/10.1162/tacl_a_00192
https://aclanthology.org/Q14-1032
https://aclanthology.org/Q14-1032

Bibliography

Kwiatkowski, Tom, Luke Zettlemoyer, Sharon Goldwater and Mark Steedman
(2010). ‘Inducing Probabilistic CCG Grammars from Logical Form with Higher-
Order Unification’. In: Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing. Cambridge, MA: Association for Computational
Linguistics, pp. 1223–1233. url: http://www.aclweb.org/anthology/D10-1119.

Kwiatkowski, Tom, Luke Zettlemoyer, Sharon Goldwater and Mark Steedman
(2011). ‘Lexical Generalization in CCG Grammar Induction for Semantic Parsing’.
In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing. Edinburgh, Scotland, UK.: Association for Computational Linguistics,
pp. 1512–1523. url: https://aclanthology.org/D11-1140.

Lari, K. and S. J. Young (1990). ‘The estimation of stochastic context-free grammars
using the Inside-Outside algorithm’. In: Computer Speech & Language 4.1, pp. 35–56.
issn: 0885-2308. doi: https://doi.org/10.1016/0885-2308(90)90022-X. url:
https://www.sciencedirect.com/science/article/pii/088523089090022X.

Le, Phong and Willem Zuidema (2012). ‘Learning Compositional Semantics for
Open Domain Semantic Parsing’. In: Proceedings of COLING 2012. Mumbai, India:
The COLING 2012 Organizing Committee, pp. 1535–1552. url: http://www.
aclweb.org/anthology/C12-1094.

Lee, Young-Suk, Ramón FernandezAstudillo, TahiraNaseem, Revanth Gangi Reddy,
Radu Florian and Salim Roukos (2020). ‘Pushing the Limits of AMR Parsing
with Self-Learning’. In: Findings of the Association for Computational Linguistics:
EMNLP 2020. Online: Association for Computational Linguistics, pp. 3208–3214.
doi: 10.18653/v1/2020.findings-emnlp.288. url: https://www.aclweb.org/
anthology/2020.findings-emnlp.288.

Lewis, Mike, Kenton Lee and Luke Zettlemoyer (2016). ‘LSTM CCG Parsing’. In:
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. San Diego, California:
Association for Computational Linguistics, pp. 221–231. doi: 10.18653/v1/N16-
1026. url: https://aclanthology.org/N16-1026.

Lewis, Mike and Mark Steedman (2014). ‘A* CCG Parsing with a Supertag-factored
Model’. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Doha, Qatar: Association for Computational Linguist-
ics, pp. 990–1000. url: http://www.aclweb.org/anthology/D14-1107.

Li, Bin, Yuan Wen, Weiguang Qu, Lijun Bu and Nianwen Xue (2016). ‘Annotating
the Little Prince with Chinese AMRs’. In: Proceedings of the 10th Linguistic Annota-
tion Workshop held in conjunction with ACL 2016 (LAW-X 2016). Berlin, Germany:
Association for Computational Linguistics, pp. 7–15. doi: 10.18653/v1/W16-1702.
url: https://www.aclweb.org/anthology/W16-1702.

220

http://www.aclweb.org/anthology/D10-1119
https://aclanthology.org/D11-1140
https://doi.org/https://doi.org/10.1016/0885-2308(90)90022-X
https://www.sciencedirect.com/science/article/pii/088523089090022X
http://www.aclweb.org/anthology/C12-1094
http://www.aclweb.org/anthology/C12-1094
https://doi.org/10.18653/v1/2020.findings-emnlp.288
https://www.aclweb.org/anthology/2020.findings-emnlp.288
https://www.aclweb.org/anthology/2020.findings-emnlp.288
https://doi.org/10.18653/v1/N16-1026
https://doi.org/10.18653/v1/N16-1026
https://aclanthology.org/N16-1026
http://www.aclweb.org/anthology/D14-1107
https://doi.org/10.18653/v1/W16-1702
https://www.aclweb.org/anthology/W16-1702

Bibliography

Lindemann, Matthias, Jonas Groschwitz and Alexander Koller (2019). ‘Compos-
itional Semantic Parsing across Graphbanks’. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics, pp. 4576–4585. doi: 10.18653/v1/P19-1450. url:
https://www.aclweb.org/anthology/P19-1450.

Liu, Yijia, Wanxiang Che, Bo Zheng, Bing Qin and Ting Liu (2018). ‘An AMR
Aligner Tuned by Transition-based Parser’. In: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. Brussels, Belgium: Association
for Computational Linguistics, pp. 2422–2430. url: https://www.aclweb.org/
anthology/D18-1264.

Lowerre, Bruce T. (1976). ‘The HARPY Speech Recognition System’. PhD thesis.
Pittsburgh, Pennsylvania, USA: Carnegie Mellon University.

Marcus, Mitchell P., Beatrice Santorini and Mary Ann Marcinkiewicz (1993). ‘Build-
ing a Large Annotated Corpus of English: The Penn Treebank’. In: Computational
Linguistics 19.2. Place: Cambridge, MA Publisher: MIT Press, pp. 313–330. url:
https://aclanthology.org/J93-2004.

Mikolov, Tomás, Kai Chen, Greg Corrado and Jeffrey Dean (2013). ‘Efficient Estim-
ation of Word Representations in Vector Space’. In: 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. url: http:
//arxiv.org/abs/1301.3781.

Misra, Kumar Dipendra and Yoav Artzi (2016). ‘Neural Shift-Reduce CCG Semantic
Parsing’. In: Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing. Austin, Texas: Association for Computational Linguistics,
pp. 1775–1786. url: http://aclweb.org/anthology/D16-1183.

Montague, Richard (1973). ‘The Proper Treatment of Quantification in Ordinary
English’. In: Philosophy, Language, and Artificial Intelligence. Ed. by James H. Fetzer,
Jack Kulas, James H. Fetzer and Terry L. Rankin. Vol. 2. Dordrecht: Springer
Netherlands, pp. 141–162. doi: 10.1007/978-94-009-2727-8_7. url: http:
//www.springerlink.com/index/10.1007/978-94-009-2727-8_7.

Noord, Rik van and Johan Bos (2017). ‘Neural Semantic Parsing by Character-based
Translation: Experiments with Abstract Meaning Representations’. In: Compu-
tational Linguistics in the Netherlands Journal 7, pp. 93–108. issn: 2211-4009. url:
http://www.clinjournal.org/sites/clinjournal.org/files/07.neural-
semantic-parsing.pdf.

Pennington, Jeffrey, Richard Socher andChristopherManning (2014). ‘GloVe: Global
Vectors for Word Representation’. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for

221

https://doi.org/10.18653/v1/P19-1450
https://www.aclweb.org/anthology/P19-1450
https://www.aclweb.org/anthology/D18-1264
https://www.aclweb.org/anthology/D18-1264
https://aclanthology.org/J93-2004
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://aclweb.org/anthology/D16-1183
https://doi.org/10.1007/978-94-009-2727-8_7
http://www.springerlink.com/index/10.1007/978-94-009-2727-8_7
http://www.springerlink.com/index/10.1007/978-94-009-2727-8_7
http://www.clinjournal.org/sites/clinjournal.org/files/07.neural-semantic-parsing.pdf
http://www.clinjournal.org/sites/clinjournal.org/files/07.neural-semantic-parsing.pdf

Bibliography

Computational Linguistics, pp. 1532–1543. doi: 10.3115/v1/D14-1162. url:
https://aclanthology.org/D14-1162.

Peters, Matthew, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee and Luke Zettlemoyer (2018). ‘Deep Contextualized Word Repres-
entations’. In: Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers). NewOrleans, Louisiana: Association for Computational Linguistics,
pp. 2227–2237. doi: 10.18653/v1/N18-1202. url: https://www.aclweb.org/
anthology/N18-1202.

Pourdamghani, Nima, YangGao, Ulf Hermjakob andKevin Knight (2014). ‘Aligning
English Strings with Abstract Meaning Representation Graphs’. In: Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, pp. 425–429. url: http:
//www.aclweb.org/anthology/D14-1048.

Price, P. J. (1990). ‘Evaluation of Spoken Language Systems: the ATIS Domain’.
In: Speech and Natural Language: Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27,1990. url: https://www.aclweb.org/anthology/H90-
1020.

Rosenblatt, Frank (1958). ‘The perceptron: a probabilistic model for information
storage and organization in the brain.’ In: Psychological review 65.6. Publisher:
American Psychological Association, p. 386.

Singh-Miller, Natasha and Michael Collins (2007). ‘Trigger-Based Language Mod-
eling using a Loss-Sensitive Perceptron Algorithm’. In: 2007 IEEE International
Conference on Acoustics, Speech and Signal Processing - ICASSP ’07. Vol. 4, pp. IV–
25–IV–28. doi: 10.1109/ICASSP.2007.367154.

Sobrevilla Cabezudo, Marco Antonio and Thiago Pardo (2019). ‘Towards a General
AbstractMeaning Representation Corpus for Brazilian Portuguese’. In: Proceedings
of the 13th Linguistic Annotation Workshop. Florence, Italy: Association for Com-
putational Linguistics, pp. 236–244. doi: 10.18653/v1/W19-4028. url: https:
//www.aclweb.org/anthology/W19-4028.

Steedman, Mark (2000). The Syntactic Process. Cambridge, MA: MIT Press.
Szubert, Ida, Adam Lopez and Nathan Schneider (2018). ‘A Structured Syntax-

Semantics Interface for English-AMR Alignment’. In: Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, pp. 1169–1180. doi: 10.18653/v1/N18-
1106. url: http://aclweb.org/anthology/N18-1106.

222

https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N18-1202
http://www.aclweb.org/anthology/D14-1048
http://www.aclweb.org/anthology/D14-1048
https://www.aclweb.org/anthology/H90-1020
https://www.aclweb.org/anthology/H90-1020
https://doi.org/10.1109/ICASSP.2007.367154
https://doi.org/10.18653/v1/W19-4028
https://www.aclweb.org/anthology/W19-4028
https://www.aclweb.org/anthology/W19-4028
https://doi.org/10.18653/v1/N18-1106
https://doi.org/10.18653/v1/N18-1106
http://aclweb.org/anthology/N18-1106

Bibliography

Vaswani, Ashish, Yonatan Bisk, Kenji Sagae and Ryan Musa (2016). ‘Supertagging
With LSTMs’. en. In: Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies. San
Diego, California: Association for Computational Linguistics, pp. 232–237. doi:
10.18653/v1/N16-1027. url: http://aclweb.org/anthology/N16-1027.

Vijay-Shanker, Krishnamurti and David J. Weir (1994). ‘The equivalence of four
extensions of context-free grammars’. In:Mathematical systems theory 27.6, pp. 511–
546. url: http://link.springer.com/article/10.1007/BF01191624.

Wang, Chuan, Nianwen Xue and Sameer Pradhan (2015a). ‘A Transition-based
Algorithm for AMR Parsing’. In: Proceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Techno-
logies. Denver, Colorado: Association for Computational Linguistics, pp. 366–375.
url: http://www.aclweb.org/anthology/N15-1040.

Wang, Chuan, Nianwen Xue and Sameer Pradhan (2015b). ‘Boosting Transition-
basedAMRParsingwith RefinedActions andAuxiliaryAnalyzers’. In: Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 2: Short
Papers). Beijing, China: Association for Computational Linguistics, pp. 857–862.
doi: 10.3115/v1/P15-2141. url: https://aclanthology.org/P15-2141.

Winograd, Terry (1971). ‘Procedures as a representation for data in a computer
program for understanding natural language’. PhD thesis. Cambridge, Massachu-
setts, USA: Massachusetts Institute of Technology. url: https://dspace.mit.
edu/handle/1721.1/7095.

Wong, YukWah and Raymond J. Mooney (2007). ‘Learning Synchronous Grammars
for Semantic Parsing with Lambda Calculus’. In: Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics. Prague, Czech Republic:
Association for Computational Linguistics, pp. 960–967. url: http://www.aclweb.
org/anthology/P07-1121.

Xu, Dongqin, Junhui Li, Muhua Zhu, Min Zhang and Guodong Zhou (2020). ‘Im-
proving AMR Parsing with Sequence-to-Sequence Pre-training’. In: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Online: Association for Computational Linguistics, pp. 2501–2511. doi: 10.18653/
v1/2020.emnlp-main.196. url: https://www.aclweb.org/anthology/2020.
emnlp-main.196.

Younger, Daniel H. (1967). ‘Recognition and parsing of context-free languages
in time n3’. In: Information and Control 10.2, pp. 189–208. issn: 0019-9958. doi:
https://doi.org/10.1016/S0019-9958(67)80007-X. url: https://www.
sciencedirect.com/science/article/pii/S001999586780007X.

223

https://doi.org/10.18653/v1/N16-1027
http://aclweb.org/anthology/N16-1027
http://link.springer.com/article/10.1007/BF01191624
http://www.aclweb.org/anthology/N15-1040
https://doi.org/10.3115/v1/P15-2141
https://aclanthology.org/P15-2141
https://dspace.mit.edu/handle/1721.1/7095
https://dspace.mit.edu/handle/1721.1/7095
http://www.aclweb.org/anthology/P07-1121
http://www.aclweb.org/anthology/P07-1121
https://doi.org/10.18653/v1/2020.emnlp-main.196
https://doi.org/10.18653/v1/2020.emnlp-main.196
https://www.aclweb.org/anthology/2020.emnlp-main.196
https://www.aclweb.org/anthology/2020.emnlp-main.196
https://doi.org/https://doi.org/10.1016/S0019-9958(67)80007-X
https://www.sciencedirect.com/science/article/pii/S001999586780007X
https://www.sciencedirect.com/science/article/pii/S001999586780007X

Bibliography

Zeiler, Matthew D. (2012). ‘ADADELTA: An Adaptive Learning Rate Method’. In:
CoRR abs/1212.5701. arXiv: 1212.5701. url: http://arxiv.org/abs/1212.5701.

Zelle, John M. and Raymond J. Mooney (1996). ‘Learning to parse database queries
using inductive logic programming’. In: Proceedings of the Thirteenth National
Conference on Artificial Intelligence. Portland, Oregon, USA, pp. 1050–1055. url:
http://www.aaai.org/Papers/AAAI/1996/AAAI96-156.pdf (visited on
25/02/2014).

Zettlemoyer, Luke S and Michael Collins (2005). ‘Learning to Map Sentences to
Logical Form: Structured Classification with Probabilistic Categorial Grammars’.
en. In: Proceedings of the Twenty-First Conference Annual Conference on Uncertainty
in Artificial Intelligence (UAI-05). AUAI Press, pp. 658–666.

Zhang, Sheng, Xutai Ma, Kevin Duh and Benjamin Van Durme (2019). ‘Broad-
Coverage Semantic Parsing as Transduction’. In: Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, pp. 3786–3798. doi: 10.18653/v1/D19-
1392. url: https://www.aclweb.org/anthology/D19-1392.

Zhao, Kai and Liang Huang (2013). ‘Minibatch and Parallelization for Online Large
Margin Structured Learning’. In: Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Atlanta, Georgia: Association for Computational Linguistics, pp. 370–
379. url: https://aclanthology.org/N13-1038.

Zhou, Junsheng, Feiyu Xu, Hans Uszkoreit, Weiguang Qu, Ran Li and Yanhui Gu
(2016). ‘AMR Parsing with an Incremental Joint Model’. In: Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing. Austin, Texas:
Association for Computational Linguistics, pp. 680–689. doi: 10.18653/v1/D16-
1065. url: https://aclanthology.org/D16-1065.

224

https://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://www.aaai.org/Papers/AAAI/1996/AAAI96-156.pdf
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://www.aclweb.org/anthology/D19-1392
https://aclanthology.org/N13-1038
https://doi.org/10.18653/v1/D16-1065
https://doi.org/10.18653/v1/D16-1065
https://aclanthology.org/D16-1065

	Introduction
	Research Questions
	Implementation
	Scope and Contributions

	Abstract Meaning Representation Parsing
	Abstract Meaning Representation
	Definition
	Scope
	Visual Representation
	AMR Corpora
	Evaluation of AMR Parsers

	Approaches to AMR Parsing
	Positioning of this Thesis

	Foundations
	Combinatory Categorial Grammar
	Fundamental Concepts
	Syntactic Categories
	Semantic Categories
	Combinators
	Derivations
	Parsing CCG

	Graph Algebras for Semantic Construction
	The HR Algebra
	Formal Definition
	Multiple Source Labels per Node

	Linear Models of Linguistic Structures
	CKY Parsing with Beam-Search
	The Perceptron Algorithm
	Structured Perceptron
	Cost-Sensitive Perceptron
	Minibatch Training

	Expectation Maximisation and the Inside-Outside Algorithm
	PCFG Parameter Estimation

	Neural Network Models for Sequence Tagging
	Long Short-Term Memory
	Stacked and Bidirectional LSTM
	Using an LSTM to Predict Tags
	Word Vectors

	Graph Algebraic Combinatory Categorial Grammar
	Semantic Construction of AMRs
	Placeholder AMRs
	GA-CCG s*-Graphs
	The Apply Operator
	The Modify Operator
	The Compose Operator
	The Substitute Operator
	The Ignore Operator

	Graph Algebraic Combinatory Categorial Grammar
	Definition of GA-CCG
	Directionality of Operators
	Unary Rules
	GA-CCG Rule Sets
	Application
	Conjunctions
	Composition

	Non-Compositional Operations
	Coreferences
	Nested Conjunctions

	Limitations of GA-CCG
	Relativisation and Type Raising
	Object Control
	Argument Cluster Coordination
	Non-Limitation: Substitution
	Discussion

	Induction of Graph Algebraic CCG Lexica
	Algorithms for Lexicon Induction
	Syntax-Driven Lexicon Induction
	Constrained AMR Splitting
	Alignment Constraints
	Coreferences

	Recursive Splitting in Practice
	Connectedness of Precursor Graphs
	Limitation of Lexical Items per Syntax Derivation
	Limitation of Unaligned Nodes
	n-Best Parsing and Filtering by Token Coverage
	Syntactic Arity Checking

	Large-Scale Lexicon Induction
	Setup
	Key Metrics
	Corpus
	Comparing Alignment Strategies
	Comparing Grammars
	Measuring the Impact of n-Best Parsing
	Evaluating the Need for Coreference Nodes

	Experiments on Grammar Coverage
	Corpus
	Annotations
	Additional Rules for Induction from CCGBank Syntax
	Error Analysis Methodology
	Results and Interpretation
	Discussion

	Post-Processing the Lexicon: Delexicalisation, Filtering, and Supertagging
	Delexicalisation
	Lexeme Patterns
	Validation Experiment

	Expectation Maximisation Filtering
	An EM Algorithm for Scoring Templates and Lexemes
	Filtering Templates and Lexemes
	Results

	Supertagging
	Architecture
	Training Data Extraction
	Masking the Loss Function
	Decoding
	Predicting Tags for Training Data
	Tuning Experiments

	Parsing with Graph Algebraic Combinatory Categorial Grammars
	Parsing Algorithm
	Coreference Resolution

	Training the Parser
	Training Loop
	Cost-sensitive Perceptron
	Scoring Function

	Oracle Parsing
	Computing the Oracle Function
	Bootstrapping the Training Loop

	Inference

	Evaluation of Graph Algebraic CCG Grammars for Semantic Parsing
	Parser Tuning
	Setup
	Feature Set
	Baseline Settings
	Bootstrapping
	Beam Size
	Features
	Rule Sets
	Amount of Training Data

	Final System Evaluation
	Quantitative Evaluation
	Error Analysis
	Conclusion

	Conclusion
	Summary
	Discussion
	Outlook

	Abstract
	Kurzfassung
	Publications Related to this Thesis
	Software Created for this Thesis
	gramr
	Package Contents

	s2tagger
	gramr-thesis-experiments
	Setup and Running Experiments
	Included Experiments

	List of Figures
	List of Tables
	List of Algorithms

