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Zusammenfassung

Fragmentbasierte Medikamentenentwicklung ist ein einflussreiches Paradigma, das viele

experimentelle und methodologische Ansätze revolutioniert hat. Computerunterstützte

Ansätze in fragmentbasierter Entwicklung bestehen meist aus Software, die für vollständige

Moleküle geschrieben wurde. Solche Programme gehen nicht auf den Unterschied zwis-

chen Molekülen und Fragmenten ein. Sie sind auch oft nicht ausführlich statistisch

validiert. In diesem Projekt haben wir ein neues Programm für strukturbasierte Frag-

menterweiterung entwickelt, das auf diese Probleme eingeht.

Begonnen wurde auf der Ebene von Torsionswinkelbestimmung und dabei auf einem

bestehenden System aufgebaut. Die Datenbasis der bestehenden Torsionswinkelstatistik

wurde erneuert und signifikante Teile der Infrastruktur wurden umgeschrieben. Im Zuge

dessen, konnte, durch die Integration von kürzlich entwickelter SMARTS Technologie,

das System methodologisch signifikant verbessert werden.

Auf dieser Basis wurde ein geometrischer Algorithmus entwickelt, der besonders die

gerichtete Natur der Fragmenterweiterung nutzt. Für die Bindetaschen und Fragmente

wurden komplementäre geometrische Deskriptoren konzipiert, die schnell verglichen wer-

den konnten. Die Qualität der Ergebnisse wurde durch, aus öffentlichen Strukturdaten

extrahierte, Fragmenterweiterungen statistisch bestimmt.

Aus dem Algorithmus wurde durch den Zusatz mehrerer Komponenten ein produk-

tives Programm für Fragmenterweiterung gebaut. Dazu war zum Beispiel eine Geometrie

Optimierung der Ergebnisse notwendig. Es wurde auch ein einfaches Pharmakophor-

Suchsystem integriert, um dem Nutzer tiefere Kontrolle über die Suche zu erlauben.

Zuletzt wurde ein Ensemble-Flexibilitätsansatz implementiert, der Bindetaschen in mehreren

Konformationen abbilden konnte. Das Programm wurde mit einem etablierten struk-

turbasierten System verglichen und die praktische Anwendung des Programms wurde

anhand einer Fallstudie demonstriert. Die Entwicklung der Software fand in konstan-

tem Austausch mit Industriepartnern statt und das Programm selbst wird bereits in

mehreren Organisationen aktiv angewendet.
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Abstract

Fragment-based drug design is an influential paradigm in pharmaceutical development.

It has revolutionized experimental approaches and methodological concepts. However,

computational support of fragment-based drug design often consists of software made

for full-sized ligands. This generalization fails to address the differences between ligands

and fragments. Furthermore, the validation of these methods is often not performed

with statistically significant sample sizes. In this project, we developed a new tool for

structure-based fragment growing that addresses these issues.

The tool was developed from the ground up by starting with the fundamental question

of torsion angle preferences in small molecules. A long-standing torsion library system

was regenerated with new data and large parts of the infrastructure reworked. In the

course of this work, significant methodological improvements were made to the system

using recently developed SMARTS technology, which led to chemically meaningful im-

provements in the torsion angle statistics.

On top of this we built the core of our tool, which is a novel shape-based algorithm that

exploits the directionality of fragment growing. Shape descriptors could be generated

symmetrically for pockets and fragments, and could be compared at high speeds. The

quality of the results was measured using a set of fragment growing steps which were

extracted from public crystal structure information.

A full-fledged modeling tool was built around the shape-based algorithm. This re-

quired a number of other components, such as geometry optimization. The workflow

also included a pharmacophoric constraints system to search for fragments that gen-

erate specific interactions and an ensemble flexibility implementation to handle mul-

tiple conformations of a binding site. The tool itself was compared to an established

structure-based method. Furthermore, the tool was applied in a case study to demon-

strate a practical application. Our efforts have continually been close to active drug

development projects and the tool is now in use at several organizations.
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1. Introduction

A number of paradigms have defined the last 30 years of drug design. These have in gen-

eral been driven by various technologies. High-throughput screening (HTS) was driven

by assay miniaturization and automated detection[1]. A general speed-up in biological

methods using high-throughput instruments led to an explosion of biological data that

has spawned the field of omics data integration[2]. Improved accuracy in Isothermal

Titration Calorimetry (ITC) enabled very precise experiments about protein-ligand in-

teractions and an interest in thermodynamic lead finding and optimization[3], [4]. Inter-

preting ligand binding thermodynamics is a very complicated process[5], but it continues

to deliver important insights to this day[6]. As these technologies spawned paradigms,

the paradigms drove improvements in technology. One particularly influential paradigm

is Fragment-based Drug Design.

1.1. Fragment-based Drug Design

The ”SAR by NMR” paper published by Shuker et al. is widely credited as the starting

point for FBDD[7]. As one of the defining papers for the paradigm, it demonstrates

many aspects typical of FBDD. The authors initially screen several building-blocks or

fragments that they intend to combine to form ligands. These fragments have micromo-

lar or even low millimolar affinities and would therefore not be appropriate ligands in a

drug design context in and of themselves. In this paper the authors generate a ligand by

connecting two fragments with low affinities together with a linker to form a compound

with nanomolar activity. To facilitate this linking process they require an experimental

method that detects where fragments bind in relation to one another. In summary, the

authors screen for low-affinity fragments that they elaborate with structure-based design

into high-affinity ligands[7]. Although the ”SAR by NMR” paper describes a nuclear

magnetic resonance (NMR) focused technique, a lot of FBDD uses X-ray crystallography
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1. Introduction

as its source for structural information. X-ray crystallography provides the most com-

plete picture of the fragment binding process and is by now a high-throughput method[8],

[9]. Whether fragments can be tested by an experimental method also depends on the

fragments themselves.

Designing fragment libraries is an important part of FBDD. Fragments are intended to

be elaborated and must therefore be smaller than full-sized ligands. They are also often

low-affinity binders, which means they must have sufficient solubility so that they can

be screened at high concentrations[8]. These considerations have led to rule sets such

as the ”Rule of Three”[10] for fragments, which is an analogy to the ”Rule of Five”[11]

for ligands. Other considerations can be about the chemical diversity of the fragments

in a set[12], their applicability to specific experimental methods[13], or even the shape

diversity[14].

Fragments can be screened using several methods. The most popular methods are

using biochemical assays, NMR methods, thermal shift assays, and X-ray crystallog-

raphy[15]. Fragment screening with biochemical assays can use technology from HTS

and generalize it to low-affinity binders[16]. Theoretical simulations show that NMR is

very sensitive at detecting fragment binders that other methods may miss[17]. Thermal

shift assays are a very simple method, but they may not be appropriate for all targets

and often result in false positives[18]. Although X-ray crystallography may lag behind

other methods in speed, it too is used as a high-throughput screening method[9]. These

methods are rarely used in isolation and the identification, validation, and elaboration

of fragment hits usually combine the information of multiple methods[17].

Having found fragment hits, there are several ways to combine them. The three main

methodologies are fragment linking, fragment merging, and fragment growing[19]. Frag-

ment linking means finding two fragment hits that bind to close positions on the target

and using a chemical linker to make them into one ligand[7]. Fragment merging involves

finding two fragments that bind overlapping positions and combining the important

chemical features of both into one ligand[20]. In fragment growing, new functionalities

are attached to a fragment based on the surrounding target environment to thereby grow

a full-sized ligand. Fragment growing is by far the most common operation, but all three

methods are in regular use[19].

2



1.2. Structure Data Quality

1.1.1. Software in FBDD

The decision-making process that fragment elaboration goes through, and the design

considerations preceding it, is often underreported in publications. Many modifications

are simply ”eye-balled”[21]. In silico methods sometimes guide or sanity check these

design decisions. Most of the in silico methods used for fragment growing involve some

kind of molecular docking engine[21]. In the simplest case, this may mean designing

molecules based on fragment binding information and docking them into a binding site.

Molecules designed this way may undergo several iterations based on feedback from the

people involved in the project. Designers may also prioritize designs by criteria that

cannot or are not coded into the scoring functions used in docking.

Because of the many repetitive steps involved, developers of computational FBDD

methods have attempted to automate this process of iterative design using, for ex-

ample, molecular docking engines and genetic algorithms as a metaheuristic sampling

method[22]. Many different attempts have been made to abstract chemist-driven de-

sign processes. Such workflows focus on different aspects like statistical methods[23] or

synthesizability[24].

Other methods that deserve mention are deconstruction-reconstruction approaches

and binding site mapping with fragments. Deconstruction-reconstruction approaches

deconstruct known ligands of a target, fragment them, and construct new potential

ligands from these fragments. Fragment-based binding site mapping methods do not

necessarily suggest new fragment hits or ligands but map the physico-chemical properties

of a binding site using a set of previously defined fragments. An exhaustive discussion of

the many different computational FBDD methods can be found in dedicated reviews[25].

Many of these methods are structure-based and therefore heavily dependent on the

quality of the structure data presented to them.

1.2. Structure Data Quality

Structure elucidation of small molecules and macromolecules, whether for FBDD or oth-

erwise, continues to present a challenge. Even disregarding experimental problems such

as crystal formation, soaking failures, insufficient signal, and too much noise, converting

an electron density derived from a clean X-ray experiment into a structure model is

3



1. Introduction

not without ambiguity. How much ambiguity, what kind of ambiguity, and how this

ambiguity is resolved are all measures of the eventual structure quality.

1.2.1. Quality Measures

A few structure quality measures were used throughout this project and will be intro-

duced here. The most common measure of structure quality in drug design is resolution.

The resolution of a structure is chosen by the crystallographer and is supposed to repre-

sent the range of Bragg spacings for which useful data has been collected[26]. Although

there are valid criticisms to be made about the subjectivity of resolution, using it to

filter structures is commonplace. There is some variation as to where to draw the line to

acceptable structures, but many authors agree that ”Once the resolution becomes worse

than 2Å, [...] some published protein models appear to have been determined more by

some crystallographer’s imagination than by any experimental data”[26].

The R-factor or R-value is a measure of agreement between a measured diffraction

pattern, for which an atomic model was built, and a diffraction pattern calculated for

the atomic model[26]. The R-factor is used to refine atomic models and so to prevent

overfitting a sibling parameter the R-free was introduced. The R-free is calculated by

omitting a part of the data during refinement and then calculating the fit of the model

to the data that was omitted. A large difference between the R-factor and the R-free is

indicative of an overfitted model. R-factor and R-free are both very traditional measures

of the quality of a structure model[26].

Occasionally it becomes necessary to determine the quality of fit for individual atoms.

EDIA is a method developed specifically for that purpose and in the context of molecular

design[27]. EDIA calculates whether single atoms are supported by surrounding electron

density, while considering interference from neighbors and whether there is electron

density further away that cannot be accounted for. This makes it a useful metric in the

design of data sets of a statistical sample size[28], [29].

1.2.2. Structure Data Sources

The definitive source for structures of macromolecules is the Protein Data Bank (PDB).

Established in 1971, it has since grown to over 190 000 structures at time of writing. PDB

entries are of very heterogeneous quality and there are initiatives that try to standardize

4



1.3. Torsions

them[30]. In practice, this means that for most applications PDB entries must be filtered

by quality using criteria that are important to the problem at hand. Because the PDB is

such an important source of bioactive conformations and protein-ligand complexes quite

a few such data sets exist.

The PDBbind refined set[31] is one such quality filtered subset of the PDB. It is itself

a subset of the larger PDBbind, which is a data set of PDB entries associated with

binding affinity data[31]. The PDBbind and its subsets, the refined set and the core

set, which makes up the CASF benchmark[32], are curated for the express purpose of

scoring function development. This leads to a few decisions being made during curation,

which may not be generally applicable in drug design, such as the exclusion of all covalent

binders[31]. In using such a data set one must therefore be very aware of its intentions.

The Cambridge Structural Database (CSD) prides itself on containing ”[...] all pub-

lished organic and metal-organic small-molecule crystal structures”[33]. It is the defini-

tive source for small-molecule crystal structures of very high quality. Filtering the CSD

by quality is less important in drug design than filtering it by applicability domain, be-

cause it contains, for example, metal-organic structures, which are commonly avoided as

drug candidates. The high quality of CSD structures does uniquely position it among

structure data sources, especially because many insights derived from it seem to general-

ize to macromolecules, such as molecular interactions[34] or torsion angle preferences.

1.3. Torsions

Molecular conformations are defined by bond lengths, bond angles, and torsion angles.

Bond lengths are defined as the distance between two atoms bound covalently or other-

wise. Bond angles or valence angles are defined as the angles between two bonds, i.e. the

angle between two atoms both bound to a third. Torsion angles are the dihedral angles

between four atoms in a chain. Bond lengths and bond angles have very sharp energy

optima that tolerate comparatively little change at room temperature. In drug design

applications they are often either modeled as sharp harmonic potentials or explicitly set

to idealized values. The energy landscapes of torsion angles are very heterogeneous and

often contain multiple local energy minima that are likely to be populated at room tem-

perature. It is largely torsions that facilitate molecular movement under physiological

conditions.
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1. Introduction

Molecular movement is essential in many physiological processes. For example, Protein-

receptors in cell membranes change their conformations to integrate an extracellular

signal[35] and small molecule ligands adopt certain conformations to bind to their tar-

get[36]. There is some discussion as to how much conformational strain interactions with

the target can compensate for. Nonetheless, the consensus is that most torsion angles in

a molecule should be energetically favorable[37], [38]. To describe small molecule binding

poses it is therefore imperative to be able to predict the likelihood of certain torsions.

1.3.1. Torsion Data

Torsion data is derived from databases of crystal structures, such as the PDB[39] and

the CSD[33]. These represent experimental ground truths as far as their structure qual-

ity allows it. The PDB contains macromolecular structures and is therefore a valuable

source of bioactive conformations[39]. Bioactive conformations are the eventual target

of any conformer generation in drug design and should therefore be the subject of any

validation. These can be used to validate generated conformations but must be pre-

processed to ensure their quality[40]. The CSD is focused on crystals of organic and

metal-organic small molecules[33]. Although these are not necessarily of bioactive con-

formations, CSD structures are generally of very high quality. It has been shown that

geometric information learned from the CSD transfers well to the prediction of bioactive

conformations[41]–[43].

Torsion angles are dependent on their chemical environment. The steric and electronic

effects of torsions can be so impactful as to blur the line between the conformation and

the configuration of a molecule[44]. Any kind of torsion angle statistic must therefore be

associated with descriptions of the chemical environment in which the were generated.

Some authors use custom keys made up of properties of the torsion substructure and its

atoms to describe the chemical environment. Mogul, a molecular geometry searching ap-

plication developed by the organization behind the CSD, uses the valences, atomic num-

bers, ring membership, etc. of the atoms involved in the torsion. These keys can then be

arranged in a tree-like structure and matched against query structures[45], [46]. A more

standardized and common choice is the molecular pattern language SMARTS[42], [47]–

[49]. SMARTS are an extension of the ubiquitous SMILES language[50] that can be used

to specifically describe almost arbitrarily complex substructures. Complex SMARTS

may, however, become hard to interpret[51].
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1.3.2. Evaluating Torsions

The likelihood of torsion angles can be used to evaluate conformations as well as gener-

ate them. A collection of quantum chemical (QC) methods represent the highest level

of rigor and precision when it comes to evaluating torsions[52]. QC methods are com-

putationally very expensive and thus suited to every task. Recently, a group at Pfizer

has been precalculating torsion data with QC methods at scale using cloud comput-

ing and reinforcement learning[53], [54]. For QC calculations to converge in reasonable

time frames, the torsions are usually considered as molecular fragments. When gener-

ating these fragments it also pays to keep delocalized effects in mind that may affect a

torsion[55].

In terms of accuracy, QC methods are typically followed by force-field-based methods.

Force-field-based methods attempt to calculate an energy for a given conformer using

Newtonian approximations of atomic interactions. This energy is usually significantly

less precise than a QC derived energy[52], [56]. Many conformer generators and docking

procedures include some kind of force field in their workflow[56]. They are often seen as

a reasonable compromise between speed and accuracy[40].

Knowledge-based methods are the fastest of the three methods but often settle for flag-

ging likely and unlikely torsion angles[49]. Knowledge-based methods generate torsion

angle likelihood statistics such as histograms, from crystal structure databases. These

statistics are matched to chemical environments and used to evaluate torsions. Some

methods try to approximate these statistics as smooth potentials to integrate them into

large-scale virtual screening projects[57]. The speed of a method can still be a very

defining factor in its popularity, like in the methods described below.

1.4. Molecular Shape

The shape of a molecule is defined by its conformation and its atomic volumes. A

typical way of modeling atomic volumes is the hard-sphere model, in which every atom

is considered to be a sphere of, for example, the van der Waals radius for the element

of the atom. This leads to a collection of overlapping spheres in space that can be

conceptually fused into one shape.

The shape of a molecule can influence many different properties of the molecule, such

as its solubility. In fact, there are shape-based definitions of whether a polypeptide is a

7



1. Introduction

protein that state a protein must have residues completely buried in its interior[58]. In

drug design it has been shown that similarly shaped ligands may have similar activity,

thereby extending the similarity principle into 3D space[59]. Furthermore, a binding

process is predicated on the shape-complementarity of a ligand and a binding site[60].

The following introduces shape-based methods by example, but a representative fraction

of shape-based methods can be found in dedicated reviews[34].

1.4.1. Shape-based Methods by Example

Rapid Overlay of Chemical Structures (ROCS) is the most widely recognized shape-based

method. ROCS describes atom volumes with Gaussian functions instead of spheres,

which has several advantages. Gaussian functions can be parameterized to produce very

similar molecular volumes to hard-sphere models at high speeds[61]. Furthermore, Gaus-

sian functions are smooth, continuous, and their overlap can be easily calculated. This

means that two shapes defined by Gaussians can be optimized by gradient descent toward

a local maximum of overlap, leading to rapid overlays of chemical structures[62].

ROCS demonstrates several traits typical of shape-based methods. Since the original

publications on ROCS[63], a GPU implementation can now achieve over 1 000 000

overlays per second[64]. Shape-based methods, and ROCS in particular, tend to be

very fast. Another shape-based method worth mentioning in this context is Ultrafast

Shape Recognition, which achieved 5 000 000 comparisons per second on a CPU in the

original publication from 2007[65]. The algebraic and comparatively simple methodology

facilitates quick and accurate results.

Shape-based methods are very accurate considering their methodology. They often

perform competitively in comparisons with more sampling intensive methods, such as

molecular docking[42]. One of the strongest terms in a docking scoring function, and

therefore one of the largest driving factors in pose generation, is interatomic clash[66].

Conceptually, shape complementarity can be seen as the reciprocal of interatomic clash.

By optimizing shape complementarity shape-based methods extract one of the driving

forces from molecular docking.

The third trait common to many shape-based methods is that they are intuitively

visualizable. Although ROCS Gaussians are infinite functions, it is very simple to place

hard-sphere shells at the origins of the functions that make up a molecular shape for

the overlay of two structures. Intuitive visualization enables a user not just to discover
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that some solution is better than another, but to trace why some solutions are better by

visualizing the solutions and the steps taken toward them.

1.4.2. Diversity in Shape-based Methods

Not all problems can be solved by overlaying Gaussians. ROCS is fundamentally a

method of overlaying small molecule structures and does not necessarily generalize,

for example, to a structure-based context. Although methods exist that attempt to

use Gaussian overlay and ROCS for this task, they run into several fundamental prob-

lems[67]. Placing target points in a binding site is not as straightforward as placing these

target points on the atoms of another small molecule. Parameterizing the Gaussians at

these target points also drifts away from a definition of molecular volume[67].

Successful structure-based applications have made use of shape-based methods such as

surface comparison[68], [69]. Shape-based methods also explore different mathematical

concepts[70]. Some authors even argue for using the diversity of shapes in a set of known

ligands as a description of the receptor’s flexibility[71]. Diversity in shape-based methods

is therefore necessary to address specific problems and also develop new methodologies.

1.5. Validation in Computational Fragment-based Drug Design

Validation is an essential part of the process of developing new methodologies for drug

design. Without validation, it is hard to prioritize the features of a method or even

prove that they add any real value. Validation with statistical sample sizes is important

to ensure that a methodology generalizes to more than just a handful of cases. In drug

design the most definite validation is prospective, but justifying the process until then

usually requires significant retrospective validation.

In Computer-Aided Drug Design (CADD) a large part of computational FBDD can

be considered a subset of de novo drug design. De novo drug design can be defined

as computationally building new molecules as opposed to virtually screening known

molecules[72]. Virtual screening validation is typically performed on curated data sets

of labeled molecules to describe whether a method can pick out molecules labeled active

for a particular target rather than molecules labeled inactive[73]. Because de novo design

can create never before seen molecules, validation has to be performed differently.
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An intuitive way to perform validation of de novo design is by actually synthesizing

and testing the molecules generated prospectively. This has the advantage of exactly

replicating the intended use case and producing a ground truth as exact as the exper-

iment allows. A handful of successful compounds can make a very compelling case to

the right audience and so this method of validation is quite popular[24], [74], [75]. Its

disadvantages are low sample sizes and heavy user bias. Experimental testing is resource

intensive and so all examples cited included some kind of selection process performed

by a user. This introduces a hard to quantify bias into the validation, which can easily

overshadow the method’s inherent performance. The cost of experimental validation also

often leads to very few compounds being selected[24], further diminishing the statistical

power of such validation.

A retrospective way to validate a de novo workflow is to try and generate molecules

similar to known actives. Many de novo workflows use probabilistic sampling. This

means that even if known active compounds are contained in the sampling space, a

probabilistic approach may not always find them or even encounter them in particu-

larly large spaces. To circumvent this problem, authors present the most similar com-

pounds generated by their workflows as evidence that the workflow can generate realistic

molecules[72], [76], [77]. Sometimes the similarity of these compounds is described by

recognizable similarity metrics. These metrics vary from publication to publication.

Sommer et al. with their de novo design tool NAOMInext are some of the few au-

thors that attempt to exactly replicate a statistical sample size of known molecules[78].

NAOMInext was developed in the context of fragment growing and so the validation

consists of fragment growing steps from literature which are made up of a smaller input

fragment in a binding site and a target ligand pose that the workflow tries to achieve.

The data set in question was published by Malhotra et al.[79] but not necessarily for

this purpose. Malhotra et al. attempt to evaluate how many fragment hits change their

binding pose upon being elaborated into a full-sized ligand[79]. This results in very

extreme examples of fragment growing steps, such as a trifluoromethyl as the input frag-

ment and a steroid scaffold with a trifluoromethyl substituent as the ligand. In this case

the steroid scaffold, which is many times bigger than the trifluoromethyl, would be the

extension a fragment growing tool has to predict. This is not necessarily representative

of fragment growing in practice.

In summary, validation in computational FBDD is performed very heterogeneously

and each of the methods presented has advantages and disadvantages. This should not
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distract from the fact that new methods should attempt the most precise validation

available to establish themselves in the larger context of the field.

1.6. Thesis Content

In this work, we developed a structure-based fragment growing workflow called Fast-

Grow using a shape-based algorithm for interactive use and rapid iteration. Although

a significant amount of infrastructure was already present in the NAOMI C++ library

used to implement it[80], we developed our algorithm from the ground up, starting at

torsion angle preferences and conformations of druglike molecules, and moving on to

the topics of molecular shape, intermolecular interactions, and geometry optimization.

All parts of the workflow were validated extensively using a data set of automatically

extracted growing steps from public crystal structure data that represented realistic

fragment growing scenarios.

The following chapter will consider the torsion angle preferences of druglike molecules.

It will build on previous works of the Torsion Library[49], [81]. Advances in SMARTS

technology have the potential to significantly impact the Torsion Library’s correctness.

Integrating these advances into the tooling of the Torsion Library and improving the

curated data will be the main focus of this chapter[D2].

Chapter 3 will discuss the creation of an automatic pipeline to mine fragment grow-

ing steps from crystal structure data. Besides consideration of structure quality, the

fragment growing steps will also be chosen such that they reflect realistic and specific

scenarios.

Chapter 4 will outline the methodology and validation of the shape-based algorithm

at the core of FastGrow, as well as the custom conformer generation necessary. The

advantages and disadvantages of the design will be discussed in some detail. Besides

performance validation, we will also present robustness experiments and runtime analy-

ses[D1].

Chapter 5 will combine the shape-based algorithm with intuitive pharmacophoric con-

straints to model intermolecular interactions, an ensemble flexibility approach, as well

as geometry optimization for the generated fragment poses. We will explore how these

features impact the performance and demonstrate use cases such as growing with water

replacement and growing a micromolar fragment hit into a nanomolar ligand[D3].
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Chapter 6 will draw a few overarching conclusions resulting from the project as a

whole. These will discuss integrating torsion angle preferences from several perspec-

tives. Furthermore, the conclusions will discuss the applicability of shape algorithms to

the fragment growing context and the importance of facilitating user interaction with

computational FBDD software.

Chapter 7 will envision improvements that could be built based on the current project.

These will range from improving primitive growing operations, prioritizing new sugges-

tions by FBDD specific criteria to optimizing the sampling process.
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A correct description of torsion angle preferences is important to most three-dimensional

drug design operations. For our project, we had to be able to retrieve torsion informa-

tion very rapidly, which led to our choice of a knowledge-based method. We chose the

Torsion Library which was developed in cooperation between the Universität Hamburg

and Roche[49]. In the course of the project, some inconsistencies in the Torsion Library

structure came to light, in large part due to the advancement of SMARTS comparison

technology. This led us to generate a new version of the Torsion Library, which addressed

these issues.

2.1. The Torsion Library

The 2013 Torsion Library as conceived by Schäerfer et al.[49] is itself based on a legacy of

previous work by Klebe et al.[43] and further work on what was then called MIMUMBA

by Sadowski et al.[48]. This latter version was developed with the conformer generator

OMEGA in mind[42], as was the original 2013 Schäerfer Torsion Library. The last major

update of the Torsion Library before our work was in 2016 by Guba et al.[81]. Guba et

al. were motivated by occasions where torsions that seemed reasonable to modelers were

marked as unlikely by the statistics in the Torsion Library. This mislabeling of torsions

could be described as a larger statistical trend, which helped identify problematic pat-

terns. Our work largely addressed inconsistencies in the hierarchical SMARTS structure

and their consequences.

2.1.1. Torsion Library SMARTS

The Torsion Library uses SMARTS to describe the chemical environments of torsion

angles. The four atoms of the torsion angle are marked with the SMARTS labels :1 -

:4. The torsion angle stays the same whether it is measured from label :1 - :4 or :4 -
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:1. The labels are mostly used to identify which molecular substructures match which

parts of the SMARTS expression. Labels are not necessarily consistent in patterns

describing the same or variations on the same substructure. The labels :2 and :3 are of

particular importance because they match the atoms of the actual rotatable bond and

must be present in every SMARTS pattern in the Torsion Library. The labels :1 and :4

are present in all torsion rules except for those where the 1st or 4th torsion element is

replaced by an electron lone pair.

The Torsion Library makes two types of additions to the basic SMARTS syntax[47]:

hybridization states and the nitrogen lone pair primitive. Hybridization states can be

specified with ˆ1, ˆ2, or ˆ3 to mean sp, sp2, or sp3 hybridization, respectively[49]. This

SMARTS extension is also found in other systems such as Open Babel[82]. Hybridization

specifiers are effectively valence specifiers with geometry checks and cannot be considered

an actual expression of the underlying atom orbitals. Nitrogens with lone pairs can be

specified with N lp[49]. This primitive requires a trivalent nitrogen to retain its lone

pair, which is detected by a geometry check. Non-planar nitrogens pass this geometry

check. If a torsion pattern contains only 3 labeled atoms, the Torsion Library will try

to match a calculated lone pair position as the fourth point. The lone pair position is

calculated using idealized VSEPR molecule geometry[83]. It is important to note that

both SMARTS extensions are geometry dependent and so should only be used when

matching 3D conformations.

Torsion Library SMARTS are arranged in a multi-level hierarchy[49]. At the top are 7

hierarchy classes that only encode the elements of the atoms forming the rotatable bond

to match. One of the hierarchy classes is a catch-all class that accepts any rotatable

bond, regardless of the elements of the two atoms. Below the hierarchy classes are the

torsion subclasses. These must always be more specific than their parent class. Torsion

subclasses may also be nested in other torsion subclasses. They often have names that

label them as expressing a particular substructure relevant to drug design. Furthermore,

torsion subclasses that are on the same level must be sorted from specific to generic.

Below them in the hierarchy are torsion rules. They contain the actual angle preference

histograms. Torsion rules must also be more specific than their parent class and torsion

rules that are on the same level are also sorted from specific to generic. Torsion rules that

are on the same level as torsion subclasses are matched first, except for in the generic

hierarchy class where the single torsion subclass is matched first[49].
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2.1.2. Torsion Library Data and Statistics

Small-molecule conformations to compute torsion angle preferences for torsion rules are

taken from two data sources: the CSD[33] and the PDB[39]. The CSD is a database of

high-quality small-molecule crystal structures. The structures are nonetheless filtered

by quality according to criteria originally defined in Schärfer et al.[49] and translated for

use with the CSD Python API by Penner et al.[D2]. The PDB is a database for struc-

tures of macromolecules that optionally contain small-molecule ligands. These ligands

are extracted from their macromolecule receptors and filtered for quality in a workflow

defined by Penner et al.[D2].

There are two different matching behaviors in the Torsion Library[49]: selective match-

ing and unselective matching as shown in Figure 2.1. Selective matching takes a rotatable

bond and its structural context as input and tries to match the most specific torsion rule

in the Torsion Library. It does this by finding the appropriate hierarchy class, always

entering the first torsion subclass it matches, and reporting the first torsion rule that

it matches. If the procedure follows these rules and the Torsion Library structure is as

described above, then the first torsion rule a selective matching finds will be the most

specific. Selective matching is used to classify torsion angles into the categories: relaxed,

tolerable, and strained. Unselective matching is used to populate torsion angle prefer-

ence histograms of torsion rules. Unselective matching does not necessarily match any

hierarchy classes or torsion subclasses before matching the torsion rules inside of them.

When populating torsion rules with statistics, all torsion rules try to match all rotatable

bonds in the conformations used as a data source. The torsion angles of all rotatable

bonds that match are included in the histogram for a particular torsion rule[49].

Histograms in the Torsion Library have 36 bins that are 10◦ wide[49]. Each torsion

rule has a set of two histograms per data source. One histogram has bins that begin and

end at multiples of 10◦, for example: [−170◦, −160◦). The other has its bins centered

on multiples of 10◦. The latter ”shifted” histograms are preferred for visualization[49].

Peaks can be detected using a peak detection as described in Schärfer[49] but are in any

case set manually. Both the simplicity of the peak detection as well as the nature of

the data require an expert in the loop. Peaks are further parameterized by 2 tolerances,

which correspond to the traffic light classification scheme. Torsion angles found within

the first tolerance are considered relaxed (i.e. green). Torsion angles within the second

tolerance are considered tolerable (i.e. yellow). Torsion angles outside of all tolerances

are considered strained (i.e. red)[49].
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Figure 2.1.: Matching behavior of a torsion in the Torsion Library. The molecule is
8-anilino-1-naphthalene sulfonate (2AN) from PDB file: 2ANS. All match-
ing procedures pass through the SMARTS hierarchy. Selective matching
terminates at the first matching torsion rule, whereas unselective matching
continues. Subclasses are subsets of the torsion class or subclass above them
in the hierarchy. Torsion subclasses and torsion rules that are on the same
level are sorted from specific to generic. All 3D molecule images were made
with the NGL viewer[84]. Reprinted with permission from [D2]. Copyright
2022 American Chemical Society.

16



2.2. SMARTScompare

2.2. SMARTScompare

SMARTScompare is an algorithm that compares SMARTS expressions by enumerating

the atom and bond types the individual SMARTS nodes can match[85]. With this

information in hand, SMARTScompare can, for example, calculate similarity metrics or

detect if one SMARTS is more specific than another. A more specific SMARTS is in

this case defined as one that matches only a subset of the chemical space defined by

another SMARTS. These SMARTS can be said to be in a subset relationship, where the

more specific SMARTS defines a subset of the chemical space[85]. SMARTScompare

has applications other than in the Torsion Library[51] and must be extended slightly to

compare Torsion Library SMARTS patterns.

2.3. Semiautomated Improvement of Torsion Rules with

SMARTScompare

2.3.1. SMARTS Hierarchy Improvements

To correctly match Torsion Library SMARTS patterns, SMARTScompare needed to be

made aware of the labels in the Torsion Library patterns. Otherwise, SMARTScom-

pare could have compared patterns after shifting the position of the rotatable bond or

unrelated nodes in the environment. All labels available during a comparison of two

patterns were mapped to their counterparts and occasionally flipped if the pattern was

symmetrical[D2].

Two properties of the Torsion Library hierarchy could be checked with SMARTScom-

pare[D2]. The first was whether the SMARTS of torsion subclasses and torsion rules

were always more specific than (i.e. in a subset relationship with) those of their par-

ent class. This was done by traversing the Torsion Library and recursively checking all

members of a torsion subclass or hierarchy class. The nature of these errors in the hi-

erarchy meant that they could not be corrected automatically so SMARTScompare was

only used to detect them. The second was whether torsion rules that are on the same

level or torsion subclasses that are on the same level were always sorted from specific

to generic. These errors could be corrected automatically by implementing a sorting al-

gorithm that placed more specific elements before more generic elements. All problems

detected and corrected by SMARTScompare were also considered manually. Especially
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the corrections of patterns that were not more specific than their parent classes had to

be performed with their chemical meaning and intention in mind.

2.3.2. Data Sources

The torsion angle preferences that were present in the Torsion Library since the publi-

cation by Guba et al.[81] were generated from CSD and PDB conformations extracted

in the original publication in 2013[49]. A new subset of high-quality CSD ligands was

generated with the CSD Python API according to filter criteria that can be found in

Penner et al.[D2]. The PDB data used in Schärfer et al. was a proprietary subset of

the PDB[49]. We used an automated workflow to extract high-quality ligands from the

PDB and annotate them with EDIA values[D2]. Annotating the ligands with EDIA

values instead of filtering by EDIAm values meant that single well-resolved torsions of

molecules that had less resolved parts could still be evaluated.

2.3.3. Torsion Tools

In the course of this work, the tools of the Torsion Library were reworked extensively.

An overview of the Torsion Library ecosystem is shown in Figure 2.2. The new version of

the TorsionPatternMiner was used for all hierarchy checks using SMARTScompare and

to generate new torsion angle statistics based on the new data sets. The TorsionAnalyzer

was reworked to be useful both as a command line tool as well as a GUI application. The

original Qt application created in Schärfer et al.[49] had been difficult to maintain for

a while, which meant that it was often unreasonably difficult to classify torsion angles

of input molecules. The TorsionAnalyzer was therefore rewritten as a command-line

application. This command-line application was then wrapped in a web application to

create a web-based GUI.

2.3.4. Evaluation

The changes we made in Penner et al.[D2] were largely to the SMARTS hierarchy. A full

accounting and explanation of all steps performed can be found in the Supporting In-

formation of Penner et al.[D2]. Some of these changes corrected trivial syntactic errors,

but quite a few of them were impactful semantic errors. One example was an incomplete

Benzamidine pattern. The error in the pattern led to unselective matching behavior
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Figure 2.2.: Overview of the Torsion Library ecosystem. All inputs, the crystallographic
databases, the symbolic expert, as well as a molecule to classify, are in blue.
The two tools that interact with the Torsion Library are in gray. The Tor-
sionPatternMiner is used to process the crystallographic data, as well as
to check the consistency of the SMARTS hierarchy. The TorsionAnalyzer
is the application-oriented tool which uses the Torsion Library to classify
molecules. A part of the Torsion Library XML demonstrating the file con-
tents has been placed in the center. Reprinted with permission from [D2].
Copyright 2022 American Chemical Society.
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that completely overshadowed the torsional preferences of a bis-ortho substituted Ben-

zamidine with less specific matches. Fixing the pattern led to a complete inversion of

the peaks for that particular torsion rule.

Another example was an incorrect sorting of patterns involving bonds between ni-

trogen and sulfur. A generic pattern that accepted any kind of nitrogen and any kind

of aliphatic sulfur had been placed before a collection of patterns defining very specific

valence states of the nitrogen and the sulfur. Only the generic pattern was ever matched

by a selective matching procedure, which meant that many molecules were classified ac-

cording to a more generic description of sulfur-nitrogen bonds rather than the intended

specific ones. By correctly sorting the generic pattern after the more specific ones all

patterns could be matched in selective matching. This led to a more precise description

of the chemical environments of torsions.

The Torsion Library as a whole remained quite stable according to the parameters

defined by Guba et al.[81]. Figure 2.3 shows that a few more patterns that produce

more than 40% strained alerts have appeared. These 6 patterns selectively matched

fewer than 9 torsions in the CSD data set and could not be considered a statistically

significant problem. The change of matching behavior measured by this metric was thus

much smaller than the change from Schärfer et al.[49] to Guba et al.[81].

2.4. Further Quality Considerations

A derived criterion to keep in mind when working on the Torsion Library is the conse-

quences for conformer generation. Conformer generation is not a particularly sensitive

evaluation of a torsion library[42]. This is probably because no conformer generator com-

pletely samples the torsional space. Figure 2.4 shows benchmark runs of the platinum

diverse set[40] using the Conformator[41] and different version of the Torsion Library.

All versions produce very correlated results. The correlation between the 2016 version

and the 2022 version is a little stronger (r2 = 0.90) than the correlation between the

2013 version and the 2016 version (r2 = 0.79). This suggests that the change from 2013

to 2016 was larger than from 2016 to 2022.

Improving the quality of Torsion Library matching behavior by minimizing strained

alerts can have the unintended effect of making the tolerances of peaks too wide to

handle torsions that were falsely classified as strained. It is somewhat difficult to assess
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Figure 2.3.: Percentage of rotatable bonds marked as strained with respect to the num-
ber of total matches for all patterns of the current Torsion Library after
all hierarchy checks, sorting, and manual corrections. The point at 100%
strained matches and 100(1) hits is overplotted and actually represents three
patterns. Reprinted with permission from [D2]. Copyright 2022 American
Chemical Society.

Figure 2.4.: Benchmark runs of the platinum diverse set[40] using the Conformator[41]
and different version of the Torsion Library. Every point is one small-
molecule. The x and y axes are the RMSD of the best conformer generated
for a molecule to its bioactive conformation using the respective Torsion
Library version.
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Figure 2.5.: Histogram of the torsion angles from unselective CSD matches for the pat-
tern ”[cH1:1][c:2]([cH1])!@[CX3:3]=[NX2:4]”. Bars colored in blue represent
peak positions. Bars colored in green and yellow represent the extent of the
first and second tolerances, respectively. The three colored horizontal lines
represent the minimum population necessary for a bin to be a peak/in the
first tolerance/in the second tolerance according to the rules in the peak
detection algorithm.

which torsions are falsely classified as relaxed or tolerable due to too wide peaks. One

approximation is to use the population percentages that are defined for the peak detec-

tion algorithm to see whether tolerances are justifiable. In theory, a bin denoting a peak

has to be filled with at least 4% of the total population of all bins in the histogram.

Similarly, all bins within the first tolerance should contain 2.5% and all bins within the

second tolerance should contain 1.5% of the total population of the histogram[49]. Bins

not meeting these criteria may result in a false classification of torsion angles into relaxed

or tolerable.

Figure 2.5 shows a histogram generated for the pattern

”[cH1:1][c:2]([cH1])!@[CX3:3]=[NX2:4]” in an unselective matching of the CSD. All bins

of the histogram are within the second tolerance of either the peek at 0◦ or 180◦. 22 bins

in this histogram do not have enough population to justify their inclusion in either the

first or second tolerance. Almost 15% of the selective matches using the CSD, meaning

those that represent torsion angle classifications, hit one of the 22 bins with insufficient

population. This may be intentional and justifiable but deserves a second look.
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2.5. Outlook

The Torsion Library and the ecosystem surrounding it have become quite complex. It

may be reasonable to scale down some of the complexity for maintainability reasons.

There are a few instances of complexity that may not be necessary. For example, in the

generic hierarchy class, the single torsion subclass is matched before the torsion rules

instead of the other way around as in all other hierarchy classes. This could be solved

by placing all torsion rules that are on the same level as that torsion subclass into a

different subclass and making sure the current subclass is matched first. Furthermore,

57 patterns receive fewer than 100 matches in an unselective matching of the CSD and

4 patterns are never matched at all. It is very questionable if these patterns can be

supported by a knowledge-based approach if not enough data is present.

Protomers and tautomers have continually been an issue in the Torsion Library. Al-

though NAOMI[80] has tautomer canonicalization, it cannot handle all issues automat-

ically. For example, several substructures are modeled differently in the CSD and the

PDB. The CSD tends to model Guanidine substructures with a charge. Ligands ex-

tracted from the PDB by NAOMI do not have charged Guanidines. The charge itself is

not present in relevant patterns, but it changes what protonation states are reasonable

for a molecule. It is difficult to enumerate these problematic substructures because the

only way this phenomenon manifests is by fewer matches coming from one of the data

sources. Nonetheless, it would improve the quality of Torsion Library matches to find a

consistent way to handle as many of these substructures as possible.

Although SMARTScompare can detect many inconsistencies in the SMARTS struc-

ture, we could also demonstrate an inconsistency in the semantic meaning of a SMARTS

pattern that could not be syntactically detected[D2]. It would therefore be very beneficial

to establish a consistent rule set for writing SMARTS in a unique and human-readable

way. Consistent human-readable SMARTS would make semantic errors far easier to

detect.

Unpublished work on a torsional potential using the statistical distributions of torsion

angles in torsion rule histograms has been ongoing for a while. Having the license to

publish the exact bin counts of the histograms means that torsional potentials could be

generated far more precisely than before. There is a need for a continuous description

of torsion angle preferences[66], which could now be much more precise.
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2. Torsion Angle Preferences

There is still much to do when it comes to the feature set and consistency of the

Torsion Library. It has stood as a robust pillar of torsion angle preference information

for quite some time now. Maintaining this robustness must, however, be an intentional

effort.
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3. Fragment Growing Validation

Validation in FBDD is performed very heterogeneously. Developing a new fragment

growing workflow, however, requires constant validation to ensure the usefulness of the

method. Ideally, this validation is performed with statistically meaningful data sets.

In contrast to Sommer et al.[78], we did not use the data set by Malhotra et al.[79]

due to its occasionally unreasonable fragment growing steps and decided to extract

a fragment growing data set from public crystal structure data, which we called the

Fragment Growing Validation Data set (FGVD). An overview of all its subsets can be

seen in Table 3.1.

Name Size (test cases) Purpose

Self-growing Set 3967 Sanity checking and parameterization
Cross-growing Set 425 Performance measurement and comparison
Interactions Set 252 Validate pharmacophoric constraints
Water Replacement Set 162 Validate water replacement
Ensemble Growing Set 246 Validate ensemble flexibility approach

Table 3.1.: Overview of all data sets in the FGVD, their size, and their purpose. One
test case involves one full growing procedure.

3.1. Structure Data

The first consideration we made before creating the data set was the data source. The

data source chosen was the PDBbind and specifically the PDBbind refined set[31] so

that some confidence could be placed in the crystal structure models. Throughout the

project, we generated validation sets on the 2018, the 2019, and the 2020 versions of the

PDBbind refined set. We found that, because the PDBbind is hand-curated, the refined

set implicitly prioritized structures relevant to drug design.
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3. Fragment Growing Validation

3.2. Self-growing

The first validation set we generated in this project was the self-growing set. The

concept behind the self-growing set is analogous to self-docking[31]. In self-docking, the

validation task docks a ligand back into its own binding site after removing it. In self-

growing, the validation task is reattaching a previously removed fragment to its ligand

in that ligand’s binding site[D1].

An overview of the self-growing set generation workflow is shown in Figure 3.1. Self-

growing test cases were generated based on the ligands of the PDBbind refined set[31].

All ligands were randomly cut at single bonds and the two resulting structures were eval-

uated. The larger structure was considered the ligand core and the smaller the putative

fragment. The fragments had to fulfill properties, both structural and physico-chemical,

such as not being completely solvent exposed and ”Rule of Three”[10] compliant[D1].

Only one fragment was extracted for each ligand in the PDBbind refined set[31]. If the

current cut produced a duplicate fragment, the iteration continued to the next random

single bond. Fragments extracted this way were stripped of their 3D information and

saved as SMILES[50] strings. The input for a self-growing test case is therefore the

ligand core, its binding site, and the fragment as a SMILES string. The SMILES strings

were usually processed into a fragment screening database, which was the actual source

of fragment information.

The success criterion was to reattach the fragment provided as a SMILES in a pose

with less than 2 Å root-mean-square deviation (RMSD) to the fragment’s atoms in

the crystal structure. Only the atoms of the fragment were included in the RMSD

calculation. The percentage of successfully regenerated poses was reported. In the latter

FastGrow publication[D3], 95% confidence intervals were calculated on the percentage

of successfully generated poses. This could be done by assuming that the binomial

distribution of a less than 2 Å criterion approached a normal distribution at larger

sample sizes, as was the case in all data sets of the FGVD[86].

The self-growing set had 3299 test cases and 1189 unique fragments at the time of

the RVM publication[D1] and based on the PDBbind refined set v.2019. It grew to

3967 test cases and 1637 unique fragments at the time of the FastGrow publication[D3]

based on the PDBbind refined set v.2020. The self-growing set was not featured in

the FastGrow publication[D3], but it was regenerated as part of the whole FGVD. Self-

growing was used for two purposes throughout the project. The first was sanity checking.
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3.2. Self-growing

Figure 3.1.: Overview of the self-growing validation. A bond is chosen, according to filter
criteria, shown in the top left image as a blue arrow. Ligands are cut at this
bond in their pockets and used as queries to see if they can be reconstructed.
The fragments cut off of the ligands are extracted and inserted into the
fragment database to be queried. ”Lk1” represents the linker resulting from
the cutting procedure. Reprinted with permission from [D1]. Copyright
2020 American Chemical Society.
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3. Fragment Growing Validation

Failing test cases in the self-growing set are the easiest to correlate with methodology

because they are simpler than the other test cases described below. The second purpose

was parameterization. Although we cannot call the self-growing set a true training

set because of its overlap with the data sets described below, all parameterization was

done on this data set. While self-growing was therefore of less importance in describing

performance, it was very important in method development.

3.3. Cross-growing

The cross-growing set was the main data set for measuring performance. Cross-growing

is in this context analogous to cross-docking[31]. In cross-docking, a ligand from one

structure is docked into a different structure of the same binding site. In cross-growing,

we wanted to find pairs of ligands in different structures of the same binding site with

a common core that only differed by one fragment attached to the core by a single

bond. If we then used the core and binding site from the first structure and attached

the fragment from the second structure to that core, we would grow the ligand of the

second structure. By making sure we only used 3D information from the first structure

we could use the second structure purely as a reference structure and see if we could

generate the ligand from the second structure in a reasonable pose. This is closer to a

real application than self-growing because we use the first structure, which represents a

known structure to grow from, to extrapolate to the second structure, which represents

the unknown structure that would result from experimentally validating the proposed

growing.

An overview of the cross-growing set generation workflow is shown in Figure 3.2.

Cross-growing test cases were made by first generating sequence identical and aligned

ensembles of binding sites in the PDBbind refined set. A maximum common substructure

(MCS) search was performed on every pair of ligands in the same binding site[85]. Each

MCS was checked if it fulfilled the properties of a common core and if the fragments

that would result from that common core fulfilled certain properties. The properties in

detail can be found in the RVM publication[D1]. The input was therefore very similar

to self-growing: the common core and the binding site from the first structure, as well

as the fragment as a SMILES from the second structure. The success criterion in cross-

growing was growing the fragment atoms into a pose with less than 2 Å RMSD to the

second structure[D1]. Once again only the fragment atoms were used to calculate the

RMSD.
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3.3. Cross-growing

Figure 3.2.: Generation of the cross-growing set. Functionally equivalent pockets from
the PDBBind Refined Set are aligned to binding site ensembles. These en-
sembles pass through structural checks to ensure the ligands have a common
core and the binding mode of that core has not changed significantly. The
variable parts attached to the common core are extracted as fragments and
the common core, as well as the pocket, can be used as a query to find them
again. The examples are from the PDB codes 1bju and 3gy2. Reprinted
with permission from [D1]. Copyright 2020 American Chemical Society.

29



3. Fragment Growing Validation

The cross-growing set had 326 test cases and 155 unique fragments at the time of the

RVM publication[D1] and based on the PDBbind refined set v.2019. It grew to 425 test

cases and 176 unique fragments at the time of the FastGrow publication[D3] based on

the PDBbind refined set v.2020. The cross-growing test cases were used for performance

measurement in the RVM publication[D1] and as the basis of performance comparison

with established methods in the FastGrow publication[D3]. The data set was generic

enough to generalize to different methods without significant effort.

3.4. Specialized Validation Sets

Several specialized validation sets were created to validate specific features of a fragment

growing workflow. All were derived from the cross-growing set. The least invasive

modification was generating protein-ligand interactions for test cases of the cross-growing

set to validate their inclusion in fragment growing.

3.4.1. Interactions

Protein-ligand interactions for cross-growing test cases were generated according to in-

teraction models based on crystal structure statistics[87] and the JAMDA scoring func-

tion[66]. Only interactions that were stable across both structures in a cross-growing

test case were used. The 252 cross-growing test cases that had stable interactions ac-

cording to the interaction models were run separately and added the interactions to

the input. The validation task was extended to not only calculate and RMSD to the

reference structure but also to see whether the input interactions were conserved in the

growing process[D3]. By checking whether interactions were stable across both struc-

tures, the choice of interactions was biased slightly. This could have influenced the pose

reprediction performance. For that reason, the focus of analyses using the interactions

set was placed on the conservation of interactions rather than improvements in pose

generation.

3.4.2. Water Replacement

Replacing water molecules with grown fragments became an interesting use case during

development. It was validated as a special case of conserving interactions, where the
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3.5. Validating Performance w.r.t. Binding Affinity

pharmacophoric constraints were positioned on waters in the binding site to be replaced.

A validation data set for this was generated by finding waters in the cross-growing set

that would be displaced upon performing the growing step. If the fragment displacing

the water was able to generate a similar interaction to the one the water had with the

binding site, this interaction was used in displacing that water. The 162 cross-growing

test cases that displaced waters with interactions were run separately and the water

displacing interactions were added to the input. The success criterion stayed the same,

growing a pose of the fragment atoms with less than 2 Å RMSD, as in the unmodified

cross-growing set.

3.4.3. Ensemble Growing

Proteins may change their conformation upon ligand binding and this change in confor-

mation may be specific to the ligand[88]. This can lead to situations where a binding

site structure crystallized with one ligand may not be geometrically compatible with

another known ligand. One way some methods deal with this is by accepting multiple

binding site structures that as an ensemble describe the flexibility of the system. To

validate such a feature we created the ensemble growing set. Ensembles were generated

using SIENA[89] and test cases of the cross-growing set. Sequence identical and RMSD

clustered structures of binding sites were extracted for each test case. A minimum of

two binding sites, excluding the reference binding site, had to be found for a test case

to be included in the ensemble growing set. A maximum of 5 structures were chosen by

SIENA for every test case. 246 such test cases could be generated. The success criterion

for this validation task was the same as the cross-growing set: generating a pose for the

fragment atoms with less than 2 Å RMSD.

3.5. Validating Performance w.r.t. Binding Affinity

The PDBbind was initially also chosen as a data source because of its binding affinity

information. The idea was that chemical series that only varied one fragment could be

extracted and the affinities of these transformations compared. The filtering procedure

had to be more strict than in the cross-growing set to ensure that one perfectly equal

common core was present across the whole chemical series. After having built this

workflow, it became apparent that there were simply too few such chemical series in
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the PDBbind to make meaningful statistical statements. The chemical series that were

found were usually biased toward particular targets such as the Carbonic Anhydrase.

Another attempt was made by abandoning the requirement for structural data and

mining affinity data from the binding affinity database ChEMBL[90]. Although the

ChEMBL contained a wealth of data, using this data was not straightforward. Even

after applying standard ChEMBL quality filtering[91], the data set still had undesirable

properties. Many ”chemical series” that could be extracted from the ChEMBL only

had 2 entries. However, some systems had massive chemical series and would therefore

skew the resulting statistic considerably. All of this led to a situation where none of the

methods that were run to validate fragment growing could achieve more than random

performance and it was questionable whether it was the method’s fault or the data set’s

fault.

There was no shortcut available to a well-curated data set. Curation of such a data

set, however, would have gone significantly beyond the scope of this work. Data sets for

similar tasks in virtual screening are built over decades and are still far from perfect[73],

[92], [93]. Creating such a data set will take a significant dedicated effort, which should

address not only the usual issues of data source and quality but also how this specifically

relates to molecule fragments instead of ligands.

3.6. Outlook

The Fragment Growing Validation Data set was generated using a pipeline of software

based on the NAOMI framework[80] and the PDBbind refined set[31]. It was updated

twice in the course of this work, from PDBbind refined set v.2018 to v.2019 and then to

v.2020, and can be continually updated. Both of the updates performed led to significant

growth of the data set. In the latter case, for example by a 30% increase in the size of the

cross-growing set. This resulted in more statistically significant results. Furthermore,

methods that achieve a stable performance across multiple versions of the FGVD could

be considered more stable overall. Maintaining and continually updating this data set

has already shown promise and may continue to do so.

The FGVD’s impact could be further increased by applying more methods to it and

publishing the results. Two methods were benchmarked using the FGVD in this work,

but a broader application could serve to standardize performance benchmarks in the
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3.6. Outlook

context of structure-based fragment growing. The FGVD is focused on the primitive

operation of attaching fragments in correct positions and so may not be ideal for proba-

bilistic enumeration workflows. Regardless even these workflows need robust single-step

fragment attachment which could be validated with the FGVD. Although the FGVD

was generated specifically to validate FastGrow, it generalizes well to other software

and could provide a standard to the otherwise heterogeneous validation in computation

FBDD.
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4. Molecular Shape for Fragment Growing

A shape-based algorithm for fragment growing needed to fulfill a few criteria. Going

for a structure-based approach meant distancing the method from mainstream methods,

such as the aforementioned ROCS. The algorithm had to describe both the shape of

fragments as well as the shape of binding sites. These shape descriptions had to be easily

comparable so that their shape-complementarity was readily measurable. Furthermore,

the intrinsic directionality of a fragment growing was a unique feature of the scenario

that could be taken advantage of.

In parallel to our development of what we will call the Ray Volume Matrix (RVM), a

group at Allergan and Vitae Pharmaceuticals Liu et al.[75] had a very similar idea to our

descriptor. The resulting publication described a larger workflow in which the shape-

based descriptor was included as a pre-filter for possible directions to extend a molecule.

The descriptor generation procedure is similar to the ”first intersection” method we will

characterize below. The authors validated their workflow prospectively by generating

and testing inhibitors for 11β-Hydroxysteroid Dehydrogenase Type 1. To their credit the

authors tested and published 37 hits generated by their workflow. Although the methods

have a lot of similarities, our descriptor includes several methodological improvements

and a more detailed characterization of the descriptor itself, isolated from a workflow.

4.1. The Ray Volume Matrix

The first step toward a shape-based workflow is describing the shape of the components

involved. For a fragment growing scenario, the components are the following: a binding

site, i.e. a subset of a proteins amino acids within a certain distance to a ligand, a ligand

in that binding site, an exit vector that defines what part of the ligand fragment will

be attached to, and a collection of fragments that could be attached to a ligand with a

defined attachment point themselves.
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4.1.1. Descriptor Generation

Figure 4.1 gives an overview of descriptor generation for a neuraminidase structure. The

exit vector, which was usually a cut bond, defined the directionality of a growing. This

direction was the central axis of our descriptor, the Ray Volume Matrix (RVM). The

exit vector could be extended as far into the pocket as necessary to describe its depth.

Usually, this depth was set to a fixed 10 Å. The next step was to sample the pocket

shape at intervals along the depth axis. At every such interval, a defined number of rays

at regular angle intervals to each other were shot out into the pocket perpendicular to

the central axis. These rays intersected with the pocket atoms and thereby described

the pocket shape. The fixed depth of the descriptor, the number of rays generated along

the central axis, and the bin size of the width ranges were all parameters fitted to the

self-growing set introduced in Section 3.2.

A similar procedure was performed for fragments. The exit vector was replaced with

the bond to the attachment point of the fragment, the depth was usually the same fixed

size as the pocket, and the rays sample the fragment atoms. One difference between

pocket descriptor generation and fragment descriptor generation was that fragments

needed 3D conformations before a descriptor could be generated for them. Conformer

generation for fragments was limited to sampling within the cylinder of space defined by

the descriptor. The algorithm was adapted from the Conformator[41]. In parameteriza-

tion, it also became clear that the maximum number of conformations for each fragment

could be set to lower than one would conventionally choose for full-sized ligands[D1]. A

maximum of 10 conformations were generated per fragment throughout this project.

Two different methods of using ray and atom intersection information were explored.

One method used the first intersection point of a ray and a pocket atom to decide that

after this point no more space was available in the direction of the ray. The corresponding

intersection point for a fragment was the last intersection point of a ray and the fragment

atoms. The other method used all intersections of a ray and pocket atoms up to a fixed

distance from the central axis to calculate ranges in which the ray was not intersecting

with a pocket atom. The second method, which was termed ”width ranges”, could

detect side pockets that were hidden by pocket atoms which the first method, called

”first intersection”, could not. The two methods were also different in how they saved

intersection information. First intersection saved only the perpendicular distance of the

first intersection point to the central axis. Width ranges were saved as long bitstrings,
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4.1. The Ray Volume Matrix

Figure 4.1.: Descriptor generation for a part of a neuraminidase inhibitor in its binding
pocket (2qwd). The full inhibitor is shown in (a). The acetylamide frag-
ment that the blue arrow is pointing at is cut off and a query is generated
for the remaining part of the inhibitor. The green arrow in (b) represents
the descriptor depth. The green cylinders shown in (c) start at the first
intersection point between a sampling ray and a pocket atom. The points
of first intersection are complementary to a protein surface created by NGL
Viewer[84] as shown in (d). Reprinted with permission from [D1]. Copyright
2020 American Chemical Society.
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which discretized intersections to bins that corresponded to bits and set these bits to

one or zero if they were intersecting an atom or not.

4.1.2. Descriptor Comparison

The descriptors for pockets and fragments using the two different methods also had to be

compared in different ways. First intersection descriptors would go along corresponding

rays in the pocket and the fragment to see if the last intersection point of a fragment

was further away than the first intersection point of a pocket. This would imply that the

fragment is trying to fill space in the pocket that is not available and would be counted

as clash.

Width range descriptors were compared by AND-ing the bitstring that was the pocket

descriptor and the bitstring that was the fragment descriptor together. Bits at the same

position in both descriptors corresponded to the same point in space. If both of these

bits were set to one, this meant both the pocket and the fragment filled this space. This

would lead to clash if the fragment was placed in the pocket. All bits that were set in

both descriptors were counted as instances of clash.

Measuring clash is the simplest way that the RVM was used to determine whether a

fragment fits into a pocket. Two other parameters could also be easily calculated using

the RVM, close contacts, and filled volume. Together clash, close contacts, and filled

volume were used to create a pose scoring function. Thus the descriptor was not just a

clash filter but could also be used to prioritize some fragment poses over others. The pose

scoring function was a weighted sum of either the range sizes (i.e. 1.5 Å of clash along one

ray) or the bin counts of the descriptors. The weights of these sums were determined by

optimizing the pose scoring function for the self-growing set. The subsequent validation

by the self-growing set was therefore influenced by the fitting procedure.

4.2. Validation

Validation of the method was performed on the self-growing and cross-growing data sets.

In preparation for running fragment growings, the unique fragments of each data set were

made into a screening database. This began with generating up to 10 conformations for

each unique fragment. A descriptor was then calculated for every single conformation

and stored in a screening database with the conformations themselves. Generation of
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the descriptors for the pockets was performed in the course of the fragment growing and

included in the runtime. These pocket descriptors were then rotated to simulate rotation

around the exit vector of a fragment and used to query the screening database. The

runtime was measured up to the end of the comparison of all rotated pocket descriptors

with all the fragment descriptors in the screening database. The actual attachment of

the fragments was not included in the runtime analysis, which in this case was focused

on the descriptor comparison itself.

4.2.1. Self-growing

Self-growing was introduced in Section 3.2 and involved replacing previously cut-off

fragments back into their native binding site. Most of the fragments could be replaced

into their own binding site with less than 2 Å of clash by all methods. First intersection

lagged behind two different parameterizations of width ranges by only being able to

replace 96% of fragments into their own binding site. This suggested that maybe first

intersection was not able to find all necessary sub pockets to place the fragments. The

differences between the pose quality, the percentage of pose with an RMSD of less than

2 Å, of the two methods in self-growing were minor.

4.2.2. Cross-growing

The trend of first intersection not being able to replace all fragments continued in the

cross-growing validation. Whereas width ranges were able to generate poses with less

than 2 Å of clash in 95-99% of the test cases, first intersection only managed 90%. The

differences in pose quality were once again minor.

4.2.3. Runtime

Both variants of the RVM were very fast. First intersection screened around 70 000

conformations per second and the faster width ranges variant screened around 30 000

conformations per second. Although it was slower than first intersection, our further

work focused on the faster width ranges variant because it was able to find occluded

subpockets and its speed would not be the bottleneck of a fragment growing workflow.

Width ranges were therefore a good compromise between speed and performance.
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4.3. Discretization Considerations

A few other effects were discovered in the course of analyzing the RVM. The RVM can

be seen as a cylindrical grid. Its cylindrical nature makes it easy to rotate, which is used

in the screening process, but it also leads to a few unique discretization considerations

beyond those of cubic grids.

Any kind of discretization to a grid necessarily involves rounding to the nearest grid

point and potentially incurring rounding errors proportional to the granularity of the

discretization. The severity of these rounding errors was investigated in a series of

robustness experiments that involved translating and rotating the ligand that was grown

from inside its binding site. The pose quality seemed to drop significantly faster than the

percentage of fragments that could still be placed in the binding site, which suggested

that the RVM-based growing could compensate for some amount of transformation.

Significant drops in performance could be seen at 1.5Å of translation and at any amount

of rotation.

There is also a difference in how extensively the RVM can sample clash with respect to

the clashes orientation in spaces. Clash oriented perpendicular to the growing direction,

i.e. in the direction of the sampling rays, can be perceived as larger by the RVM than

clash oriented in the growing direction as shown in Figure 4.2. Another thing to consider

is that the absolute distance between two sampling rays increases as the distance from

the central axis increases. This should be considered when parameterizing the number

of rays to ensure that rays do not miss whole pocket atoms at the outer edges of their

sampling.

4.4. Coloring the RVM

Although the RVM was very successful at generating good poses for fragments, several

examples could be found in which these poses egregiously disregarded protein-ligand

interactions[D1]. One method to integrate interaction awareness directly into the shape

descriptor is by ”coloring the shape”. This is a typical next step for shape-based algo-

rithms[94].

Besides generating the usual RVM descriptors, fragments and pockets would also gen-

erate RVMs that contained polarity information instead of shape information. Fragment
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4.4. Coloring the RVM

Figure 4.2.: Differences in how clash is sampled by rays depending on whether the clash’s
principal component is in the growing direction or perpendicular to it. The
light blue rectangles represent the sampling rays of the fragment or building-
block descriptor. The two areas of clash between the pocket and the frag-
ment or building-block are similar, but the sampling rays perceive the clash
very differently. The clash perpendicular to the growing direction is per-
ceived as far more severe than the the clash in growing direction. Reprinted
with permission from [D1]. Copyright 2020 American Chemical Society.
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and pocket atoms would set polar grid points in their respective descriptors and a cut-

off distance between polar grid points could be parameterized to see if polar groups in

the fragment could be oriented toward polar groups in the pocket. This term could be

integrated into the pose scoring function of the RVM workflow in the same way as the

close contacts term but would instead describe polar contacts.

These attempts were discontinued for three reasons. The first reason was that even

after parameterization the performance gain was minimal. The parameterization of

the pose scoring function resulted in a very noisy optimization surface[D1] and the

improvement of pose generation achieved by coloring the shape was well within that

noise. The second reason was that to achieve this negligible increase in pose generation

performance both the memory requirements and the comparison times were doubled.

The close contact term in the pose scoring function of the RVM is the most expensive to

calculate because it involves more than a direct comparison of bits with the same index

in the bit strings of the width ranges. The polarity term was calculated in the same way

as it required the same kind of distance-based implementation, in this case a distance

between polar groups. This led to an almost doubling of the comparison time. The

doubling of the memory requirements came from having to calculate a second bitstring

that contained polarity information instead of shape information. The third reason was

intuitive usability. A cylindrical grid is a difficult geometric entity to intuitively reason

about. Although areas of complementary polarity are an intuitive concept, depending

on where they are in a descriptor similarly sized complementary areas on a bitwise level

would be weighted differently due to the discretization considerations above. For these

reasons alternative methods of integrating interactions into the workflow were pursued

in the following.

4.5. Outlook

An aspect of shape screening not pursued further in this work was the application of

RVM-based workflows as prefilters for more complex methods. Clash detection in RVM

descriptor comparison is the fastest part of an already very fast process and could save

the time it takes a more complex method to perform a similar clash analysis. To validate

RVM comparison for this purpose, one would simply have to prove a correlation to a

more complex method’s clash detection.
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A fully-fledged molecular modeling tool needs to be made up of more than just a shape

search for the purposes of computational FBDD. The inability of a shape-based algorithm

such as the RVM to perceive interactions is particularly problematic in the context of

FBDD. Section 1.1.1 and Section 1.5 discuss a number of other computational FBDD

tools and their validation. These methods tend to have one central algorithm and build

upon it to pursue certain strategies or to address common needs[23], [72], [95]. For these

reasons we built a workflow around the RVM shape search we called FastGrow.

5.1. FastGrow Workflow

Although the RVM pose generation was producing many high-quality poses, the sampling

was still bound to the discretization of the RVM. This led to poses that were often slightly

outside the optimum. To fix this FastGrow required geometry optimization. FBDD

is a very protein-ligand interaction focused paradigm, which is reflected in FastGrow

through a system of pharmacophoric constraints. In cross-growing validation, we noticed

that some test cases could not be completed successfully because of changes in protein

conformation between the first and second structure. We needed some form of flexibility

description to address this. However in adding all these features we still wanted the

software to remain interactive and be conducive to iterative approaches, which meant

tightly controlling runtime.

5.1.1. Shape-based Search

Having analyzed the performance of RVM shape searches, we chose the following setup.

We decided to pursue the ”width ranges” version of the RVM as a compromise between

speed and performance. Discretization and parameterization of the RVM descriptors

were taken from the ”coarse width ranges” configuration of the RVM publication[D1].

43



5. FastGrow

We also continued to generate a maximum of 10 conformations per fragment, which had

proven to work well in parameterization and validation.

5.1.2. Geometry Optimization

The role of geometry optimization was filled by JAMDA[66]. JAMDA is a docking

scoring function that follows in the footsteps of other well-known scoring functions, such

as ChemScore[96] or PLANTS[97]. Its novelty lies in its particularly stable limited step

length optimization algorithm[66]. JAMDA scoring was slightly modified for use with

FastGrow. Because JAMDA was used to optimize poses after fragment growing, we

added penalty terms to the movement of input atoms. Atoms that are part of the input

core or ligand are usually assumed to already be in the correct position and moving them

would go against this assumption. It has been shown that this assumption holds true

for the majority of fragment growing cases analyzed by Malhotra et al.[79]. The atoms

of the attached fragment were optimized without restraint.

5.1.3. Interactions

We implemented a simple set of pharmacophoric constraints to model interactions. Phar-

macophoric constraints were made up of a point, a tolerance radius, and a type. The

three most prominent types were ”Hydrogen Bond Donor”, ”Hydrogen Bond Acceptor”,

and ”Hydrophobic”. Pharmacophoric constraints were usually generated from interac-

tions, such as those in the interactions validation set.

When screening with pharmacophoric constraints, every fragment considered as a hit

had to at first have at least enough pharmacophore features to match the number and

type of the constraints. In the next step, the position of these pharmacophore features

was compared to the pharmacophoric constraints in space to see whether they fell within

the tolerance radius.

5.1.4. Ensemble Flexibility

Having seen cases in the cross-growing set that required a flexible description of the

binding site, we implemented an ensemble flexibility approach. In ensemble flexibility,

the flexibility of a binding site is described by a collection of conformers of that binding
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site. These can be from a variety of sources such as molecular dynamics trajectories[98].

In most of our application, these were derived from crystal structure information ex-

tracted by SIENA[89]. These structural ensembles could be passed to FastGrow and

were screened at the same time. Separate scores were calculated for every member of

the ensemble and the best score was taken as the representative one. The best score

was chosen to reflect the use case ensemble that flexibility was supposed to handle in

FastGrow, which is a case where one particular change in conformation strongly in-

fluenced a growing. This highly influential conformational change should conceptually

lead to a very different score. An alternative would have been to combine the scores in

some way, possibly as a weighted sum. This would have weakened the signal of a large

conformational change and was therefore not pursued.

5.2. Validation

Validation of FastGrow began by establishing a base line. The self-growing and cross-

growing validation sets were updated for the FastGrow publication[D3]. The feature-

specific validation sets (interactions, water replacement, and ensemble growing) were first

generated for the FastGrow publication[D3]. The changes in performance caused by the

update of the data set were generally minor and within the 95% confidence intervals

that could be calculated for runs before and after the data set update. This baseline

was used as a comparison in feature specific validation and later in the comparison of

FastGrow to docking.

5.2.1. Interaction Modeling Validation

Interaction modeling was validated using the interaction data set of the FGVD. This data

set included stable interactions for 252 cross-growing test cases that could be used as

pharmacophoric constraints. Using such pharmacophoric constraints to screen generally

improved the performance of pose generation[D3]. This result was expected because

some information from the reference structure must be used to analyze the stability

of interactions across structures as described in Section 3.4.1. This information will

implicitly bias such an analysis.

The more interesting analysis in this context was therefore whether the modeled phar-

macophoric constraints led to the interactions being maintained in the output poses. Of
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the three prominent pharmacophore types ”Hydrogen Bond Acceptor”, ”Hydrogen Bond

Donor”, and ”Hydrophobic”, recreating hydrophobic interactions was the easiest task

for the shape-search without pharmacophoric constraints. The hydrophobic types as

defined by ChemScore[96], which is also the definition used by JAMDA[66], seemed to

correlate most with the shape-complementarity of RVM comparisons. Hydrogen bonds

were not maintained well with just an interaction unaware shape-search, which we had

observed qualitatively in the RVM publication[D1] but had now measured quantitatively.

Hydrogen bonds could be maintained far better with pharmacophoric constraints. Es-

pecially hydrogen bond donors’ geometries improved with geometry optimization after

using pharmacophoric constraints. It is largely here that the geometry optimization

proves measurably beneficial[D3].

5.2.2. Water Replacement

The scenario of replacing water in a fragment growing came up in conversation with users

of FastGrow. This could be achieved with the pharmacophoric constraints implementa-

tion as it was. By placing pharmacophoric constraints at the position of a water molecule,

a fragment could be coerced into replacing the water with the specified interaction type.

This was validated with the water replacement validation set. Although comparing the

pose generation quality of the water replacement cases with their corresponding test

cases in a purely shape-based growing did not show a very significant improvement,

there were clear improvements in single cases, suggesting that water replacement is a

useful but situational feature[D3]. The size of the water replacement validation, which

is less than half the size of the cross-growing set, may have also contributed to problems

in detecting a statistically significant improvement.

5.2.3. Ensemble Flexibility

Ensemble flexibility was validated using the ensemble growing validation set. Pose gen-

eration quality did not improve significantly as a result of screening against more struc-

tures. In absolute numbers, there were more ensemble growing test cases that improved

than performed worse. It is a known phenomenon that using an ensemble to perform

molecular docking can reduce the performance of the docking. The additional struc-

tural information and the tolerance it provides may lead to false positive results[98].

Nonetheless, a few test cases did noticeably improve using ensemble growing and some
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Figure 5.1.: Water replacement test cases that were extracted from the cross-growing
set. The replaced waters are shown with the interactions that were used
in the query to replace them. Yellow spheres are hydrophobic interactions
and green cylinders hydrogen bond interactions. Binding site residues are
light blue. The ligands are non-native to the binding site. The darker blue
part of a ligand will be grown in a water replacement test case. (a) the
ligand of 5ULT in 3GI6 (Gag-Pol polyprotein). (b) the ligand of 4AGO
in 4AGM (Cellular tumor antigen p53). (c) the ligand of 6MA4 in 6MA5
(O-GlcNAc transferase). (d) the ligand of 6PGA in 6PG4 (WD repeat-
containing protein 5). All 3D molecule images were made with the NGL
viewer[84]. Material from: [D3].
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of these could be demonstrated to be due to protein flexibility previously described in

literature[D3]. This feature, too, seemed to be useful in particular situations rather than

in the general case.

5.3. Comparison to Docking

To establish FastGrow in the larger context of structure-based tools available for frag-

ment growing, it was compared to a well-known molecular docking system. We chose

DOCK[99], an open source and high-profile[100] docking engine that had been used in

similar validation scenarios[99][101]. DOCK was used in two configurations: Full flexible

docking, which will be referred to as cross-docking or re-docking depending on the task,

and anchored docking, which takes an input anchor that stays mostly fixed during the

docking process. Full flexible docking is often done when performing fragment growing

in practice, although often unnecessary and prone to error. Anchored docking in con-

trast will ideally only sample the atoms of the fragment instead of the whole molecule

and is therefore a direct analogy to FastGrow but using a docking engine.

A statistical comparison of DOCK and FastGrow was performed on the cross-growing

set. DOCK was run in both cross-docking and anchored docking configurations. Fast-

Grow was run with and without geometry optimization. Cross-docking with DOCK was

outperformed by every other method. This was an expected result because all other

configurations used more information, but it does highlight that using all information

available can significantly improve pose generation performance. FastGrow also out-

performed anchored docking in pose generation performance. This was a somewhat

unexpected result. In the RVM publication[D1] we made the prediction that the more

granular sampling a docking engine performs would lead to higher performance. The dif-

ference between the system may come from a different perception of clash. RVM shape

search has a high clash tolerance in comparison to a typical docking engine. DOCK

is usually validated on minimized structures, i.e. a validation scenario with less clash.

The cross-growing set needs a certain amount of clash tolerance to complete because the

validation task consists of growing fragments into non-native and not minimized binding

sites.
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5.3.1. Runtime

FastGrow significantly outperforms docking in runtime. Cross-docking can perform ap-

proximately one cross-docking/fragment growing per minute, which is in line with typical

docking runtimes. Anchored docking outperforms that by being able to do around 5 frag-

ment growings per minute, due to the fewer degrees of freedom a fixed anchor affords.

In both configurations, with or without geometry optimization, FastGrow outperforms

this by several orders of magnitude. Geometry optimization is quite fast at around

100 ms a fragment but is a comparatively high runtime investment. The evaluation

and optimization of a scoring function overshadows all other runtime considerations in

FastGrow.

Runtime [h] Fragments Runtime per Fragment [ms]

Growing 0:31 425 x 176 24
Optimized Growing 3:17 425 x 176 158
DOCK anchored growing 1:37 425 13 640
DOCK cross-docking 8:20 425 70 464

Table 5.1.: Runtime for FastGrow and DOCK on the cross-growing set. FastGrow always
screens the full database of 176 unique fragments. For runtime reasons,
DOCK is only given the correct fragment to dock.

5.4. DYRK1A Case Study

DOCK and FastGrow were also compared in a case study. Some of the differences seen in

the statistical comparison could be demonstrated in an applied example. The case study

system was Dual Specificity Tyrosine-phosphorylation-regulated Kinase 1A (DYRK1A),

a kinase involved in Down’s Syndrome, neurodegenerative disease, and cancer[102]–[104].

This was facilitated by a pair of recent publications that disclosed novel chemotypes

binding to DYRK1A[105], [106]. The first part of the case study involved growing

a micromolar fragment into a nanomolar ligand. The second part of the case study

analysed how well FastGrow and DOCK could pick out active fragments from a collection

of generic fragments in an enrichment validation.
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Figure 5.2.: Fragment 1 and compound 34 in a structure of DYRK1A. The structure and
fragment 1 coordinates in gray are from PDB code: 7A4R and compound
34 in orange comes from PDB code: 7A5N and is aligned to the binding
site using SIENA[89]. The cartoon for the residues GLU160 to ASP178 was
removed for clarity as it is in Walmsley et al.[106]. All 3D molecule images
were made with the NGL viewer[84]. Material from: [D3].

5.4.1. Growing a Ligand from a Fragment

Walmsley et al. started with a fragment screening and found fragment 1 as a micromolar

hit. Subsequent optimization led to compound 34, a nanomolar ligand with favorable

properties[106]. Both compounds can be seen in Figure 5.2. Fragment 1 and compound

34 both share a common core and three modifications to fragment 1 are necessary to

turn it into compound 34. These 3 modifications are exchanging an amine with a methyl

group, growing into the salt-bridge region of the kinase binding site, and growing toward

the glycine loop. All three modifications were performed with DOCK and FastGrow.

None of the methods had particular problems exchanging an amine with methyl, but

cross-docking with DOCK incurred an unnecessary amount of coordinate drift, which

strained some of the interactions between the common core and the hinge region of the

kinase. This could be avoided with anchored docking and using the common core as

an anchor or by passing the common core as input for FastGrow. Anchored docking

encountered an issue when growing into the salt-bridge region and the generated pose

was optimized out of the pocket. Cross-docking did manage to generate an acceptable

pose, suggesting anchored docking encountered some instability. The JAMDA scoring

function integrated into FastGrow and its limited step length optimization is specifically

designed to avoid such instability issues[66]. DOCK and FastGrow both flipped an amine

at a ring away from an interaction it usually made in most crystal structures. External
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information from these other crystal structures could be integrated into the growing to

ensure this interaction was made. All methods agreed on the growing toward the glycine

loop.

The growing case study could by example demonstrate three aspects of structure-

based fragment-growing. First of all, naive docking may perform unnecessarily poorly

even in trivial growing. We could show statistically that one should make assumptions

about the binding pose when possible and could demonstrate it once again in this case

study. Secondly, we could demonstrate the advantage of limited step length optimization

as implemented by JAMDA[66] compared to DOCK, which ran into a stability issue and

optimized a ligand out of a pocket despite attempts at anchoring the docking. Lastly, we

could show how integrating external information can improve a grown pose in practice.

5.4.2. Enrichment

A number of ligands published by Weber et al.[105] and Walmsley et al.[106] had a di-

aminopyridine moiety in common. A set of highly active fragments could be generated by

cutting the variable parts off the diaminopyridine in ligands with low nanomolar activity.

These fragments could be used in an enrichment scenario where, after generating a pose,

a fragment growing method had to score the fragments such that it highly ranked the

highly active fragments within a set of generic fragments. The generic fragments came

from a set of fragments generated by the BioSolveIT[107] and were property matched to

the highly active fragments[D3]. DOCK and FastGrow were both used to generate poses

and score them. The ranking success was determined by the area under the curve of a

receiver operating characteristic. 95% confidence intervals were calculated by bootstrap

re-sampling similar to Stein et al.[73].

DOCK and FastGrow both performed very well on this data set[D3]. To investigate

this we also performed the enrichment screening with just the RVM pose scoring function,

which was parameterized for a different purpose. This too performed very well even if

all other terms except for clash were set to zero. It seemed the clash term that all

scoring functions had in common was very discriminative in this case study. There

was, however, still a very clear difference in the runtime of the methods[D3]. Although

anchored docking was significantly faster on the comparatively less complex growing

steps in the enrichment screening, it was still outperformed by FastGrow with geometry

optimization by a factor of 5. The RVM pose scoring function performed comparably in

the ranking, but it outperformed both methods by several orders of magnitude in speed.
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This highlights the question of how complex a scoring function should be to be useful

for computational FBDD.

5.5. Outlook

Integrating the features above into one tool makes FastGrow a fully-fledged modeling

tool capable of sophisticated workflows such as water replacement. What the preceding

is missing is a prospective application that could not be disclosed in the context of the

project. Prospective application not only highlights usability issues but also implicit

biases in the retrospective validation. It would be invaluable to apply and evaluate

FastGrow in prospective drug design.

An ever-present question in FBDD is what fragments to work with. In an experimental

context, fragments are usually constrained by physico-chemical properties. Computa-

tional FBDD approaches are not initially constrained in the same way. How one designs

fragment sets for computational fragment growing is therefore very open. Some design

philosophies, for example, try to optimize for shape diversity[14]. Synthetic accessibility

is often considered a constraint in de novo design. One way to achieve this is to only

allow the combination of fragments according to synthetic rules[78], [108]. These syn-

thetic rules can be explicit[108], [109] or implicitly encoded in a combinatorial fragment

space[110]. By whatever method or philosophy, it would be helpful to provide users of

FastGrow with a standard set of fragments to try out.
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A set overarching conclusions can be drawn across all the individual topics of this project

that manifest themselves precisely because they were combined. Torsion angle prefer-

ences were used both from a low-level perspective of extracting statistics and from a

high-level perspective by using conformations derived from these statistics. Shape-based

search was not only analyzed in an isolated evaluation of the algorithm but also in

meaningful drug design scenarios. Furthermore, the tool FastGrow was applied in such

a context as well and experiences were gained.

6.1. Reliability of Torsion Angle Preferences

Torsion angle preferences as produced in the context of the Torsion Library were some-

what opaque at the beginning of this project. The tool landscape was confusing and

the exact behavior of the two matching procedures was nebulous, especially in the prior

implementation. The Torsion Library is a long-lived system and a lot of its complexity

is warranted. Its main point of differentiation from other systems is its hand-curated na-

ture. That, however, is the most labor intensive and complex part. Expert but nonethe-

less human curation introduces human error that is very difficult to detect automatically.

We saw significant progress on that front with the introduction of the SMARTScompare

algorithm into Torsion Library workflows. However, errors in SMARTS that cannot be

detected by subset relation detection, must still be found manually. In light of this it is

especially important to minimize inconsistencies on all other fronts.

The Torsion Library has seen several different tools since its initial publication in

Schäerfer et al.[49]. Changes in the tool landscape have happened in between every

publication[49], [81], [D2]. Every tool change confuses not just the users of the Torsion

Library but also the experts. Care should be taken to keep at least the function of

tools consistent if not the implementation. This is one of the reasons we proposed two

tools in [D2]: one tool for expert analysis and one tool for torsion angle classification.
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Although the underlying workflow is similar, the two concerns are intuitively separate in

practice. A user trying to filter a set of compounds should not be overwhelmed with the

differences in matching behavior that are necessary to generate and validate the torsion

angle preferences.

It also became clear how important it is to keep the whole process of generating

torsion angle preferences and classifying torsion angles transparent. This pre-supposes

a completely deterministic process where every single data point in the torsion angle

preferences is quickly traceable. Furthermore, it is of utmost importance that the imple-

mentation associated with the publications exactly mirrors the rule set defined by these

publications. This is easy to take for granted but requires strict discipline in implemen-

tation and high legibility of the code. If this is not given, then it is very hard to argue

for or against the inclusion of various edge cases, such as those that have arisen multiple

times in the course of this project.

Because the Torsion Library is such a long-lived system most core applications have

been validated extensively either through formal publications or informal experience.

These large-scale evaluations of core functionality have the potential to dwarf more fo-

cused efforts. Focused efforts need focused validation because specific improvements

may be overwhelmed by more generalized validation. This was largely the case in the

improvement of the Torsion Library with SMARTScompare. Although the changes intro-

duced in that effort were chemically meaningful, the generalized performance was largely

unchanged[D2], especially if this performance was measured by the heuristic sampling

of conformer generation. However, the end-user, the structural biologist or medicinal

chemist, is very focused on particular subdivisions of torsional and chemical space. In

this space, the user is acutely aware of any inconsistency the Torsion Library may pro-

duce. Finding and addressing these specific concerns represents a more realistic and

impactful way forward for the Torsion Library than expecting large shifts in generalized

performance.

6.2. The Pragmatism of Shape-based Fragment Growing

Shape-based approaches are known for their intuitive visualizations, their speed, and

their surprisingly high accuracy. Their accuracy derives from the fact that shape-

complementarity is to a degree a hard prerequisite for any small-molecule binding pro-

cess. A ligand may be smaller than a binding site, though it would probably incur
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proportional entropic penalties. It cannot be bigger than a binding site, which would

incur exponentially higher energetic penalties. The compromise between these proper-

ties is a measure of shape-complementarity of the ligand and the binding site, which in

itself is a fairly simple geometric criterion.

The problem of shape-based fragment growing is even simpler than a similar problem

in ligand-sized molecules, simply because the molecules are smaller and have generally

fewer degrees of freedom in most considered dimensions. This can be leveraged to achieve

significantly faster and accurate workflows, only if one does not transfer functionality

created for ligands directly into a fragment workflow. Our project demonstrated the

measurable difference it can make to consider the nature of fragments instead of simply

scaling down a workflow for ligands.

Throughout the project, we exploited the nature of fragments in several ways. We

only ever generated a maximum of 10 conformations per fragment, which is relatively

few compared to other structure-based applications. The lower rotational complexity

of fragments makes this viable as our validation demonstrated. The lower complexity

of fragment growing also manifested itself in the parameterization of the RVM shape

descriptors[D1]. The design of the descriptor itself already exploits the directionality of

a growing process and thereby reduces the degrees of freedom.

There is something particularly pragmatic to be found in shape-based fragment grow-

ing when one combines the advantages of shape methodology with the properties of

fragments. Both elements synergize to reduce runtime through simple geometric opera-

tions on molecules with fewer degrees of freedom and maintain the competitive accuracy

and speed of shape methods. The primary difficulty in forging a complete computational

FBDD workflow was in integrating a scoring function and geometry optimization, which

completely overshadowed all other components in runtime and complexity. It is espe-

cially this last part that requires further work to continue the theme of pragmatism.

6.3. User Interaction

The interaction of the user with FastGrow has been a major focus of this project since

its inception. A measurable aspect of this is the runtime. Being able to screen more

fragments in the same time as established approaches is an advantage in itself. However,

screening larger fragment sets leads to more than just larger hit lists, because it can
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change a user’s perspective from finding single hits to observing trends in the screening.

These trends would be invisible in slower systems due to the resources necessary to find

them.

Observing these trends can lead to a deeper understanding of a system. For example, a

preference for particular functional groups can highlight a geometry necessary to address

subpockets of the binding site. As a consequence, a user can screen a more focused set

of fragments with this geometry. By exploring a system in this way, a user will quickly

build up a branching tree of hypotheses to iteratively test. Drug design is an intrinsically

iterative process. Tools built for drug design should therefore support rapid iteration.

Another aspect of interacting with a user is integrating their expert input. Using com-

paratively simple features such as pharmacophoric constraints a user can quickly bring

in their expertise to create complex workflows. An alternative to a model of pharma-

cophoric constraints would have been to ”color” the RVM shape descriptor by a variety

of properties. There is precedent to extend shape descriptors in this way[94]. After

less than promising initial results when applying coloring to the RVM descriptor, we

chose to implement pharmacophoric constraints, which are more intuitive to users than

coloring regions of a cylindrical grid. Such constraint models are ubiquitous throughout

computational drug design and easy to implement. Pharmacophore models are also a

very general description of spatial molecular properties that allow a user to bring their

expert knowledge into the searching workflow.

Reliability, pragmatism, and an interactive integration into drug design workflows

have defined the course of this project. Continual validation and a focus on intuitive

simplicity instead of methodological sophistication have largely been the results of these

factors. Further work should be informed by these principles.
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7.1. Data Enables Specific Features

A few features validated in the project suffered from data set sizes that were too small

to show statistically significant differences. For example, there seemed to be a difference

in performance in the water replacement validation, but the amount of statistical error,

which is tied to the sample size, called this into question. Water replacement is a very

specific scenario and the corresponding validation data set had the fewest number of

entries. More data will result in more statistically significant validation and would make

more specific features statistically viable. The automated pipeline of data set generation

created in this project meant that the FGVD could be updated with new PDBbind data

within a day. This pipeline could be adapted to other larger data sets. However the

adaption to other data sets should maintain similar data set quality.

7.2. Advanced Growing Operations

Another feature set that could not be pursued due to a lack of validation data was a

variety of different advanced growing operations. FastGrow is currently only validated

on single bond fragment growing steps. Not enough growing steps could be generated

using the PDBbind refined set to make any statistical statements about other bond

types. Even the permissive self-growing found only 112 test cases for double bonded

growing. Although as a tool FastGrow supports double bonded growing, no general

statement can be made about its performance.

Other advanced growing operations that were considered during development were the

growing of small rings and macrocyclization. This was largely not pursued due to time

constraints. Additionally, generating a validation data set would probably also have

presented a challenge. The thing these operations have in common is that they both
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present a user interface challenge. Specifying one exit bond may be enough to grow small

rings if one implicitly matches certain functional groups as small-ring-forming reaction

vectors, but this would be very restricted by reaction modeling and a more general two

exit vector growing should be pursued. Macrocyclization would require the definition of

two exit vectors and possibly a complete reassessment of fragment properties to include

linker-like structures. Furthermore, these two features would require a rewrite of the

FastGrow fragment attachment code to include a more general geometry handling and

significantly more geometry corrections, due to valence state changes and cyclization.

7.3. Multi-parameter Optimization

Drug design is a multi-parameter optimization problem[111]. Virtual screening is typ-

ically concentrated on the fit of the ligand in the binding site, or in this case the fit

of the fragment in the binding site. Often users want to consider properties beyond

that. A variety of filters could be explored and integrated into the FastGrow workflow.

Hard filters could be incorporated earlier in the workflow and may even result in faster

runtimes. Softer filters could be integrated later in the workflow and cut large hit lists

down to a manageable size.

When users specify soft filters they may have intuitions about which properties their

system may be more or less tolerant to. Creating fitness metrics that express user

intuition could be an interesting challenge that would transcend fragment growing. The

simplest metric would probably be a combination of normalized absolute differences.

This could be extended by allowing fixed ranges of tolerance. A quite complex approach

could be to transform absolute differences with a variety of function kernels such as

a Gaussian function which would lead to a Gaussian smoothed distance that could be

parameterized to a user’s intuition. This is both a modeling and a user interface challenge

because communicating what differences parameters, kernels, and tolerances make would

be essential to the interplay between the model and the user’s intuition.

7.4. Automated Metaheuristic Driven Growing

Many fragment growing workflows, and more generally de novo drug design workflows,

use established structure-based drug design workflows as their core and focus on guid-

ing a fragment sampling process by various metrics and algorithms[22]. Evolutionary
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algorithms are the prototypical example of this[112]. Metaheuristic sampling is a vast

field of its own that is constantly growing and may still hold methods worth exploring

for fragment growing.

An interesting variation in sampling would be trying to sample fragments for a par-

ticular target independently of another. Independently sampled fragments could be

combined and prioritized to find particularly optimal products in combinatorial space

without having to assess all of its members. This is significantly more difficult in a

structure-based context because one has to partition the target space to sample frag-

ments independently. Nonetheless, these efforts could mirror paradigm shifts achieved

in combinatorial similarity searches[113] and are therefore worth investing into.

7.5. Fragment Specific Scoring and Affinity Validation

Affinity in FBDD has a somewhat different position than in other forms of drug design.

Although it is still the main optimization criterion, it is often considered relative to

other parameters such as heavy atom count[114]. This is because the expectation in

FBDD is that a fragment can be optimized into a significantly more active ligand even

from a comparatively inactive starting point. This leads to differences in how FBDD is

performed on an experimental level and should lead to differences in how fragments are

treated computationally as well.

After several decades of virtual screening, computational scoring approaches are geared

toward full-sized ligands and differentiating between decoys and actives in enrichment

focused screening[73]. The perturbation caused by exchanging or growing a single frag-

ment of a molecule may be outside of the focus of scoring functions validated for full-sized

ligands.

This, however, can only be measured with a properly curated data set of affinity

annotated fragment modifications. Other projects have shown how difficult such an

endeavor can be[73], [92], [93]. Without such a data set no general statistical statements

about the performance of the scoring function for computational FBDD can be made.

Even with a retrospective data set in hand, validating the extrapolatory power of scoring

functions must happen in prospective validation.

The paradigm of Fragment-based Drug Design has done much to shape the way we

practice and think about drug design. Drug design paradigms are driven by and drive
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technology, which leads to constant iteration and improvement. It is by approaching

a paradigm in some depth that methods can profit from this cycle. Isolating unique

aspects of a paradigm and placing them into a methodological context results in a synergy

unparalleled by unfocused generalization. It is in focused efforts that iteration leads to

incremental improvement.
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CADD Computer-Aided Drug Design.

CSD Cambridge Structural Database.

DYRK1A Dual Specificity Tyrosine-phosphorylation-regulated Kinase 1A.

FBDD Fragment-based Drug Design.

FGVD Fragment Growing Validation Data set.

GPU graphics processing unit.

GUI graphical user interface.

HTS High-throughput screening.

ITC Isothermal Titration Calorimetry.

MCS maximum common substructure.

MVC Model-View-Controller.

NMR nuclear magnetic resonance.

PDB Protein Data Bank.

QC quantum chemical.

RMSD root-mean-square deviation.
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ROCS Rapid Overlay of Chemical Structures.

RVM Ray Volume Matrix.
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and J. C. Smith, “Ensemble docking in drug discovery,” Biophys. J., vol. 114,

pp. 2271–2278, 10 2018, issn: 1542-0086. doi: 10.1016/j.bpj.2018.02.038.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0006349518303242.

[99] W. J. Allen, T. E. Balius, S. Mukherjee, S. R. Brozell, D. T. Moustakas, P. T.

Lang, D. A. Case, I. D. Kuntz, and R. C. Rizzo, “Dock 6: Impact of new features

and current docking performance,” J. Comput. Chem., vol. 36, no. 15, pp. 1132–

1156, 15 2015. doi: 10.1002/jcc.23905. eprint: https://onlinelibrary.

wiley.com/doi/pdf/10.1002/jcc.23905.

[100] J. Lyu, S. Wang, T. E. Balius, I. Singh, A. Levit, Y. S. Moroz, M. J. O’Meara, T.

Che, E. Algaa, K. Tolmachova, A. A. Tolmachev, B. K. Shoichet, B. L. Roth, and

J. J. Irwin, “Ultra-large library docking for discovering new chemotypes,” Nature,

vol. 566, no. 7743, pp. 224–229, 2019, issn: 1476-4687. doi: 10.1038/s41586-

019-0917-9.

[101] W. J. Allen, B. C. Fochtman, T. E. Balius, and R. C. Rizzo, “Customizable de

novo design strategies for dock: Application to hivgp41 and other therapeutic

targets,” J Comput Chem, vol. 38, pp. 2641–2663, 30 2017. doi: https://doi.

org/10.1002/jcc.25052. [Online]. Available: https://onlinelibrary.wiley.

com/doi/abs/10.1002/jcc.25052.

76

https://doi.org/10.1021/jm0603365
https://doi.org/10.1021/jm0603365
https://doi.org/10.3389/fchem.2020.00142
https://www.frontiersin.org/article/10.3389/fchem.2020.00142
https://www.frontiersin.org/article/10.3389/fchem.2020.00142
https://doi.org/10.1023/A:1007996124545
https://doi.org/10.1023/A:1007996124545
https://doi.org/10.1021/ci800298z
https://doi.org/10.1016/j.bpj.2018.02.038
http://www.sciencedirect.com/science/article/pii/S0006349518303242
http://www.sciencedirect.com/science/article/pii/S0006349518303242
https://doi.org/10.1002/jcc.23905
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.23905
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.23905
https://doi.org/10.1038/s41586-019-0917-9
https://doi.org/10.1038/s41586-019-0917-9
https://doi.org/https://doi.org/10.1002/jcc.25052
https://doi.org/https://doi.org/10.1002/jcc.25052
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.25052
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.25052


Bibliography of External Sources

[102] F. K. Wiseman, K. A. Alford, V. L. J. Tybulewicz, and E. M. C. Fisher, “Down

syndrome—recent progress and future prospects,” Hum. Mol. Genet., vol. 18,

no. R1, R75–R83, Apr. 2009, issn: 0964-6906. doi: 10.1093/hmg/ddp010. eprint:

https://academic.oup.com/hmg/article-pdf/18/R1/R75/9460787/ddp010.

pdf. [Online]. Available: https://doi.org/10.1093/hmg/ddp010.

[103] J. Wegiel, C.-X. Gong, and Y.-W. Hwang, “The role of dyrk1a in neurodegen-

erative diseases,” FEBS J., vol. 278, no. 2, pp. 236–245, 2011. doi: https :

//doi.org/10.1111/j.1742-4658.2010.07955.x. eprint: https://febs.

onlinelibrary.wiley.com/doi/pdf/10.1111/j.1742-4658.2010.07955.x.

[Online]. Available: https://febs.onlinelibrary.wiley.com/doi/abs/10.

1111/j.1742-4658.2010.07955.x.

[104] P. Fernández-Mart́ınez, C. Zahonero, and P. Sánchez-Gómez, “Dyrk1a: The double-
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B. Software Architecture and Usage

B.1. Software Architecture

At the beginning of the project, discussions about the software architecture quickly

veered toward setting a client-server architecture as the eventual goal. From an orga-

nizational perspective, there are several advantages to a client-server architecture. A

server is a centrally managed instance and centralization facilitates maintenance. The

workload is also centralized to corporate infrastructure. Central server infrastructure can

be upscaled and downscaled at will. This may be more efficient than ensuring every user

is issued a machine powerful enough to handle their requirements. If the client is a web

browser, as it will be in this case, then the organization profits from the virtualization a

web browser provides.

An academic software developer can also profit from a client-server model. Setting

out to create a client-server architecture in a project separates the development of the

scientific application into stages. A client-server model requires at least two components

and the core scientific functionality will probably also be a separate component. This

leads to 3 stages of development that to some degree mirror the maturity of a scientific

application. The starting point is the core functionality, which is then extended by a

standardized interface (the backend), and lastly made accessible to non-expert users (the

frontend). In this project, the architecture was composed of standalone command-line

applications, web server backends, and web server frontends.

B.1.1. Command-line Applications

All scientific models throughout this project were implemented in standalone C++

command-line applications. C++ was chosen as a programming language to ensure

high performance, unambiguous control of the data, and because of prior foundations
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laid down by the NAOMI C++ library[80]. Besides the scientifically necessary foun-

dations, another core dependency of all software in this project was Qt[115]. Qt is a

cross-platform development framework that is typically used to create GUI applications.

Qt’s capabilities go significantly beyond that of a pure GUI framework. In this project,

we primarily used Qt’s cross-platform capabilities for file handling, database manage-

ment, and multithreading. As a widely used framework, Qt continues to be a pragmatic

choice to develop cross-platform applications in C++.

Database management was a core technological challenge in this project. The number

of compounds to screen in drug design is typically expected to exceed the amount of RAM

available, which makes a database necessary. The speed of any screening functionality is

therefore predicated on the structure of the database it is screening in. All command-line

applications in this project that require a database have support for SQLite[116]. This

is usually sufficient for any command-line application expected to run locally. FastGrow

also has support for PostgreSQL[117]. FastGrow is expected to screen large fragment

libraries that may be deployed as an organization-wide database. PostgreSQL is a com-

mon choice for organization-wide deployment. It is important to note how this may affect

performance. A local SQLite database will always be faster than an equivalent network

mounted PostgreSQL database simply because it does not incur network latency.

There was an expectation in this project that one of the project partners, the Bio-

SolveIT[107], would integrate the developed software into their tool suite and maintain

it for continued use. For that reason, another layer of separation between the core

functionality and the application code was very useful. The core shape-based algorithm

was implemented in a separate library that the BioSolveIT could isolate and modify

to fit into their code base. An alternative would have been to integrate the complete

command-line-tool, which would have, however, meant that all communication with the

core algorithm would have required a call over the command-line. This could have been

both a performance concern and security concern, as will be discussed in the web server

backend section.

B.1.2. Web Server Backend

The initial web server backends implemented for this project were in Ruby on Rails[118].

Ruby is a multi-paradigm language[119] that is very commonly written in the Rails

web framework. Rails provides much of the infrastructure a modern web application

needs but tends to be very opinionated in how it is supposed to be used, citing its
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”Convention over Configuration” principle. Fully featured implementations of Rails web

server backends were generated in this project but eventually abandoned for Django

implementations[120]. Django is written in the Python programming language[121],

which is more popular than Ruby[122]. The switch to Django was done largely for

maintainability reasons. Django and Rails are largely comparable on a technological

level, but the pool of Python developers in a scientific setting is deeper than the pool

of Ruby developers. It was the author’s experience that Django was less restrictive and

opinionated as a framework than Rails, possibly making it more appropriate for scientific

applications.

Deployment of web servers in the course of this project was envisioned to use container-

ization. Two technologies were used to achieve this: Singularity[123] and Docker[124].

Singularity is a containerization system devised for high-performance computing clus-

ters. It is fundamentally different from Docker in that a container may not grow in size

after it has been built, which means every write process has to be redirected to a file

system mounted into the container from the outside. Docker is more popular as a tech-

nology[125] and tends to be the container of choice for scalable web systems. Another

fundamental difference between Docker and Singularity is that a Docker user is root in

their container. This becomes a relevant security concern in containers that manage to

break out into the host system. For this reason, many system administrators still regard

Docker with suspicion and do not deploy it to their users. This was also the case in

this project, which lead to an impasse of either using Singularity for something it wasn’t

made for and didn’t necessarily support or trying to convince the system administrators

in question to make exceptions for this project.

In the end, deployment went in several different directions. One of the problems we

encountered was that the testers almost exclusively used network-mounted file systems.

This introduced system breaking latencies into the backend, components of which quite

literally time out. More centralized servers with local hard drives were also not available

for our research efforts. The workaround was deploying the frontend described below to

the testers without a backend and having the frontend write out queries that could be

processed by the command-line tool. This was a far from optimal deployment but the

best compromise available to us. We could deploy the full software stack on university

servers for the public to use. However, because this was hosted on a university server and

not the internal servers of our cooperation partners, they could not use this deployment

because company policy forbids communication of confidential work to external servers.

Deployment was thus marred by organizational problems.
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B.1.3. Web Server Frontend

Web server frontends were developed as single-page Javascript applications. All of our

functionality required the visualization of molecules. The NGL viewer[84], a WebGL[126]

based molecular viewer, was used to achieve this. There was a significant amount of state

the molecular viewer had to persist throughout the intended workflows, which is why

they were written as single-page applications. The web GUI of the TorsionAnalyzer was

less complicated and was implemented in plain Javascript. The complexity of the Fast-

Grow web GUI was significantly more complicated and required a Javascript frontend

framework to implement in a clean and structured way. We used Vue.js[127]. Vue.js also

served to standardize the structure of the project so that maintainers may recognize it

if they are familiar with the framework.

The general design paradigm in all frontends was typically a variation on the Model-

View-Controller (MVC) design pattern and a web component structure. The examples

will be for the more complex Vue.js structure. Vue.js is loosely inspired by the Model-

View-Viewmodel pattern, but it has a very concrete implementation of a web component

structure. The preferred method of building parts of a Vue.js application is through

single file components that consist of an HTML template, scoped CSS styles, and the

actual Vue.js component definition in Javascript that implements various functions, such

as a life cycle function equivalent to a constructor. Outside of the scope of a framework,

this can be generalized to a Javascript class that is mounted at a particular point in the

DOM, generates its HTML, and communicates with other components. The fundamental

departure from other forms of web development here is that Javascript owns the HTML

(and in the Vue.js case even the CSS).

The complexity of the FastGrow web GUI required a full implementation of a Model-

View-Controller variation. An overview of the architecture can be seen in Figure B.1.

In this system, the central Vue.js app that initializes all Vue.js components was used as

the controller. The components that represented the views communicated with the app

using the usual system of props and events[128]. The app would map all events to model

functions, thus acting as a controller. The models were implemented as plain Javascript

classes that would receive access to a certain namespace in the data of the central app

to store their state and would transform all data passed to them by the central app from

the components to generate that state. The state stored in the central app could then

be passed back to the components using props.
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Figure B.1.: Schema of the MVC pattern implemented on top of Vue.js using a generic
upload example. The two parts of the model are in yellow. The controller,
which is the central Vue.js app, is in green. The view, which is a view
component, is in blue.

There are several advantages and disadvantages to such a structure. The immediately

obvious disadvantage is the complexity. Components are supported by Vue.js, but the

MVC pattern is only present to some degree. Using components as views and the central

app as the controller is reasonably intuitive, but splitting the model by having its state

owned by the central app and implementing its behavior in a separate plain Javascript

class is confusing. This is necessary for implementation reasons. Props are the canonical

way to communicate data downstream to components and are implemented as an opaque

system of data watchers and listeners. It is the author’s opinion that splitting the model

is cleaner than trying to hack the framework. The main advantage is that the complexity

necessary to implement such an application is structured. Placing all model code in the

central app would significantly increase its size and therefore be a detriment to legibility.

Separating model code by concerns makes it a lot easier to find functionality and also

to test it.

A few principles should be applied when implementing such a structure. First of

all: ”Fat models, lean controllers”. This principle, commonly held in MVC frameworks

such as Rails[118], states that as much functionality as possible should be moved into

the models and out of the controllers. The controller in this case is the central Vue.js

app which quickly grows if this principle isn’t applied. Secondly, components should

be seen purely as views and should only have functionality that fits in that category.

For example, if a component is used to enter data, the component should at most

perform basic validation and then send that data to the controller without transforming

it significantly. The view is only supposed to render the user interface. Third, all
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components should be tested individually. Entirely testing one Model-View-Controller

cascade is in the scope of end-to-end testing. However, end-to-end testing is by its nature

often very broad and unspecific. Components and especially model classes should be

individually unit tested to handle specific edge cases. It is also beneficial to make as

many model classes independent from server calls so that they can be unit tested instead

of end-to-end tested. Testing the central Vue.js app is often cumbersome, which also

supports the principle of moving as much functionality as possible into models.

B.2. Usage

Usability, especially in a scientific context, is often more dependent on the user’s use case

and their context than on a conventional understanding of user-friendliness. This was

very apparent in our project due to infrastructure restrictions that led to the command-

line tools being the most used deployment. The following is a description of the various

tools built during the project and the FGVD pipeline.

B.2.1. TorsionPatternMiner

The command line interface of the TorsionPatternMiner is the following:

$>./TorsionPatternMiner --help

Basic Arguments:

-h [ --help ] Show help and usage

-m [ --mols ] arg input molecule to add to the statistic

-d [ --database ] arg database of molecules to add to the

statistic

-o [ --outdir ] arg output directory containing analysis

files

-t [ --torlib ] arg torsion library to use as basis for

recalculating statistics (default:

internal torlib)

--analysis Only analyze the torsion library, do

not update statistics
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--curves Write out torsion score curves for

every pattern

--checkhierarchy Check that the pattern hierarchy is

correct

--sortpatterns Check that the pattern hierarchy is

correct

--datasource arg (=0) data source the molecule data is from:

0 (default: CSD), 1 (PDB)

-u [ --userinfo ] arg (=1) set user info level: quiet (0),

warnings (1, default), workflow (2)

-l [ --license ] arg provide a new license for the

torsionanalyzer

Matching Arguments:

--selectivity arg (=0) selectivity of the torsion matching:

single most selective (2), all most

selective (1), all (0, default)

--terminalatoms score torsions containing terminal

heavy atoms

--fixconjugated do not score torsions of conjugated

bonds

--terminaldonors do not score torsion of terminal

hydrogen bond donors

--edia only score bonds with a sufficient edia

score in the molecule file or database

--ediacutoff arg (=0.8) minimum edia score to consider an atom

well resolved

--minhits arg (=0) only consider matches with at least

minhits entries in their statistic

Processing Arguments:

--threads arg (=1) number of threads to run analysis with

(0 (auto), 1 (default), x (no.

threads)

--chunksize arg (=100) number of molecules in a chunk

processed by a single thread (default:
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100)

The input can consist of either a set of molecules as an SD file or an already generated

database of molecules from a previous run. The output is written into a specified di-

rectory and consist of at least 3 files: not matched patterns.txt, path discrepancies.tsv,

and results.tsv. The results.tsv contains all matching results against all molecules. The

path discrepancies.tsv file describes the phenomenon that molecules may match torsion

rules in different torsion classes. It is expected that a torsion may match a rule in a

specific torsion class and in the generic torsion class because the generic torsion class

contains many catch-all patterns. Any path discrepancies left after filtering out the

generic torsion class matches may be an indication of poorly structured hierarchies. The

not matched patterns.txt file contains a list of patterns that were not matched by the

input. There are two optional outputs: a torsion library file updated with the input

molecules and a curves.tsv that contains 360 point values for a von Mises based torsion

potential derived from the peaks. The torsion library output was used to generate new

Torsion Library versions. The von Mises based torsion potential has been used in several

tools[41], [66] but has never been evaluated individually, so its future is unclear.

Besides the input and the output option all other flags are optional and have set

defaults. A few of the options deserve some more discussion. The check hierarchy

and sort patterns options activate the SMARTScompare based hierarchy checks and

the pattern sorting. The selectivity option decides on the matching procedure to be

used. The default ”single most selective” is selective matching. The setting ”all” is the

unselective matching. ”all most selective” refers to a Phenomenon where a rotatable

bond may match the same torsion rule with different :1 and :4 atoms. The torsion rule

will be the same as in selective matching, but the :1 and :4 atoms will be different,

which may lead to different torsion angles and maybe even to different classifications. ”–

terminalatoms”, ”–fixconjugated”, and ”–terminaldonors” augment what is considered

a rotatable bond to include bonds to terminal atoms in torsion rules, to exclude bonds

in conjugated substructures or to include bonds to terminal hydrogen bond donors such

as amines and hydroxy groups.

Evaluation Scripts

A collection of python evaluation scripts were written or re-written in the course of this

project. These can be found in the NAOMI reproducibility folder. The following is an
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overview:

• bin coverage.py: generate statistics about false positives (defined in Section 2.4)

• match diffs.py: generate match differences between torsion libraries

• mols for pattern.py: extract molecules that match a pattern

• multimatches.py: find equivalent matches with quality differences

• plot torsionlib patterns.py: plot the histograms of all patterns

• torsionlib alerts.py: generate and plot strained statistics (such as Figure 2.3)

B.2.2. TorsionAnalyzer

The command line interface of the TorsionAnalyzer is the following:

$>./TorsionAnalyzer --help

TorsionAnalyzer analyzes the rotatable bonds of a molecule conformation and

categorizes them into relaxed, tolerable, and strained. These labels are

defined by occurrence frequencies derived from small-molecule crystal

structures. These occurrence frequencies are taken either from the integrated

or a user defined torsion library.

Usage example:

./TorsionAnalyzer -i mols.sdf -o analysis.tsv -u 2

Arguments:

-h [ --help ] Show usage

-i [ --input ] arg input molecule(s) to score

-o [ --output ] arg output TSV containing scores for every rotatable

bond of the input

-t [ --torlib ] arg torsion library to use as basis for quality

assesment (default: integrated torlib)

--selectivity arg (=2) selectivity of the torsion matching: single most
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selective (2, default), all most selective (1),

all (0)

--terminalatoms score torsions containing terminal heavy atoms

--fixconjugated do not score torsions of conjugated bonds

--terminaldonors score torsions of terminal hydrogen bond donors

--minhits arg (=0) only consider matches with at least minhits

entries in their statistic

-u [ --userinfo ] arg (=1) set user info level: quiet (0), warnings (1,

default), workflow (2)

-l [ --license ] arg provide a new license for the torsionanalyzer

The interface of the TorsionAnalyzer is intentionally similar to the interface of the

TorsionPatternMiner. It also intentionally has fewer options. The input for a Tor-

sionAnalyzer run is a molecule file and the output is a file containing the matching

information for those molecules. One notable difference is that the default of the se-

lectivity option is different. The TorsionAnalyzer is used to classify molecules, not to

generate new Torsion Library versions. The selectivity is set to the selective matching

equivalent by default. All other options are comparable to the TorsionPatternMiner.

The TorsionAnalyzer can also be deployed as a web application. Detailed information

about how to set up the web application can be found in the README files of the

backend and frontend repositories. The web application also comes with a built-in help

page.

B.2.3. FastGrow

FastGrow can be built in two different command-line packages. One contains just a

DatabaseBuilder and a FastGrow executable. The other also contains a Clipper, a Pre-

processor, and an InteractionGenerator executable. The first two binaries are intended

for end users. The other three binaries are used in the backend server.

The first step to using FastGrow on the command-line is to generate fragment databases

to screen. The following is the command-line interface for the DatabaseBuilder:

$> ./DatabaseBuilder --help all

The DatabaseBuilder creates shape-based screening databases for the supplied

fragments. Conformations can be generated for the fragments using the
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"--conformations" option and passing the maximum number of

conformations to generate. If "--conformations 0" is passed the input

conformations will be used. The shape descriptors are generated according to the

parameters defined using the options in the "Descriptor arguments" section.

The default parameters are those of the coarse width ranges descriptor variant.

Usage example:

./DatabaseBuilder --database screening_database.db --fragments fragments.smi

A fragment space file (FSF) can be used to generate a screening database of

fragments that follow the compatibility rules defined in the FSF. The names of

the linker types will be exactly as they appear in the FSF. These linker types

can then be used to screen for compatible fragments with FastGrow.

Usage example:

./DatabaseBuilder --database screening_database.db --fsfile fragspace.fsf

All arguments:

Basic arguments:

-h [ --help ] arg produce help message, use --help all for all

arguments

-d [ --database ] arg name and/or file path of the database

-f [ --fragments ] arg fragment file to be converted to database (.sdf,

.smi)

--fsfile arg fsfile to read fragments and linker compatibility

from

--conformations arg number of conformations to generate (default: 10,

pass 0 to use input conformations)

--stereoisomers arg enumerate stereoisomers 0 (none), 1 (for unassigned

stereo centers), 2 (all, default)

--interactions arg generate interactions for the fragments in the

database (default: true)

-o [ --overwrite ] overwrite existing database
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-u [ --userinfo ] arg userinfo level: 0 (quiet), 1 (warnings, default), 2

(workflow)

--license arg license to activate FastGrow

Descriptor arguments:

--depth arg depth of the descriptor cylinder (default: 10Å)

--width arg width of the descriptor cylinder (default: 10Å)

--height arg how far the cylinder reaches back behind the anchor

atom (default: 2Å)

--raysperdepth arg rays per depth of descriptor (default: 18)

--depthinterval arg distance interval between depth points (default:

1.5Å)

--binsize arg size of bins along a ray (default: 0.75Å)

--rvmtype arg ray volume matrix type (WidthRanges(default): 1,

FirstIntersection: 2, IntegerRanges: 3)

Database arguments:

--databasetype arg postgres: 0 or sqlite(default): 1

--username arg user to access database

--port arg port to access database (default: 5432)

--host arg host to access database (default: localhost)

--password arg password to access database

Fragments can be in SMILES or SDF format. These fragments must already have

attached linkers. In SMILES these linkers should be written as ”[?R?]”, which is the

NAOMI convention for linker SMILES. In SDFs the linkers should be written as ”RGP”

records according to the SDF format specification[129]. Fragment databases can also be

generated from some versions of FS files such as those by Degen et al.[109].

The user can decide what they want to do about conformations, stereoisomers, and

interactions or simply take the defaults. The descriptor arguments are best described by

the RVM paper[D1]. These should be consistent between the database building and the

growing process. The database arguments interact with the database management sys-

tem. This can either be SQLite or Postgres. Instead of passing any database passwords

on the command-line, a user can alternatively set the ”PGPASSWORD” environment

variable, which is a little more secure.
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Once a fragment database is built, it can be screened using the FastGrow executable,

which has the following command-line interface:

FastGrow performs a screening of a database using a query consisting of a ligand

and a pocket. This ligand can already have an attached linker atom (defined by an

RGP record in an SDF) or a linker atom can be defined using the atoms’ position

in an SDF. The shape descriptor type, parameterization, and weights can be found

in the "Descriptor Arguments" and "Scoring Arguments" sections of the

--help all output.

Usage example:

./FastGrow --pocket pocket.pdb --ligand ligand.sdf --database screening_database.db\

--results results.sdf

For compatibility with other software silicon atoms are considered linker atoms.

If there is no linker atom in the molecule you can define an exit bond using the

position of two atoms in the file. To define a bond to be cut and a linker

placed both the --anchorposition and the --linkposition need to be defined. The

part of the molecule connected to the anchor anchor will be kept.

Usage example:

./FastGrow --pocket pocket.pdb --ligand ligand.sdf --database screening_database.db\

--results results.sdf --anchorposition 5 --linkposition 6\

# implies a bond between atom 5 and 6 in the SDF

To use the chemical compatibility rules of a fragment space in a screening

database you can define the --linktype of the linker atom in the input molecule.

Make sure the linker type is one that is present in your database. By default

all fragments in the database will be screened.

Usage example:

./FastGrow --pocket pocket.pdb --ligand ligand.sdf --database screening_database.db\

--linktype R3 --results results.sdf # implies that R3 and linkers compatible to R3\
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are present in the database

Arguments:

Basic arguments:

-h [ --help ] arg produce help message, use --help all for all

arguments

-d [ --database ] arg name and/or file path of the database

-p [ --pocket ] arg path to the PDB file of the pocket

-e [ --ensemble ] arg directory containing an ensemble of proteins or a

list of protein files to screen

-l [ --ligand ] arg path to the SDF file of the ligand/core to grow

from

-i [ --interactions ] arg use interactions in file as interaction

constraints

-w [ --widthtol ] arg width (clash) tolerance for rvm comparison

(default: 2.0Å)

-r [ --results ] arg output file to write results

--maxresults arg maxmimum number of results to write (default:

1000)

-u [ --userinfo ] arg userinfo level: 0 (quiet), 1 (default: warnings),

2 (workflow), 3 (debug)

--license arg license to activate FastGrow

Linker arguments:

-t [ --linktype ] arg linkertype to screen with (default: "R")

--anchorposition arg in file ID of the anchor

--linkposition arg in file ID of the linker

Descriptor arguments:

--depth arg depth of the descriptor cylinder (default: 10Å)

--width arg width of the descriptor cylinder (default: 10Å)

--height arg how far the cylinder reaches back behind the

anchor atom (default: 2Å)

--raysperdepth arg rays per depth of descriptor (default: 18)

--depthinterval arg distance interval between depth points (default:
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1.5Å)

--binsize arg size of bins along a ray (default: 0.75Å)

--rvmtype arg ray volume matrix type (WidthRanges(default): 1,

FirstIntersection: 2, IntegerRanges: 3)

Database arguments:

--databasetype arg postgres: 0 or sqlite(default): 1

--username arg user to access database

--port arg port to access database (default: 5432)

--host arg host to access database (default: localhost)

--password arg password to access database

Pose Scoring arguments:

--fillvolumescore arg weight for filled volume (default: 1)

--closecontactscore arg weight for close contacts (default: 5)

--clashscore arg weight for clash (default: -20)

--closecontactcutoff arg distance cut off for close contacts (default:

5.0Å)

Interaction arguments:

--distancecutoff arg absolute cutoff distance for interactions

--anglecutoff arg absolute angle deviation cutoff for directed

interactions

--maxrmsd arg absolute RMSD to allow to the input interactions

--greedy only perform greedy interaction matches

--protoss run protoss during scoring

Postprocessing arguments:

--torsioncheck arg perform torsion check on hits (default: false)

--uniquecheck arg perform uniqueness check on hits (default: true)

--optimization arg perform optimization of hits (no: 0 (default),

restrained: 1, full: 2)

--resttol arg distanve tolerance before atom is restrained

--noranking do not perform hit ranking, only pose scoring

Output arguments:
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--writemode arg write mode: multi threaded (0, default), chunked

(1), linear (2)

--chunksize arg number of mols in a chunk when writing chunked

output (default: 100)

--poses arg maximum number of poses to generate for each hit

(default: 1)

--threads arg number of threads to use (default: all cpu cores -

1)

The input to a growing is the ligand to grow from, the pocket to grow in, and the

fragment database. The pocket is a protein structure and is usually in the PDB format.

The fragment database should be generated by the DatabaseBuilder. The ligand to grow

from may already contain a linker. Alternatively, a bond to cut can be specified on the

command-line using the ”anchorposition” and ”linkposition” options. The type of the

linker can also be changed on the command-line with the ”linktype” option. The results

are written in the SDF format.

The query can be augmented using several options. The ”interactions” option accepts

a path to a JSON file that contains pharmacophoric constraints. The format of these

constraints is demonstrated in unit tests, validation, and the web server. The ”width-

tol” option sets the clash tolerance of the shape comparison. Pose scoring arguments,

interaction arguments, and postprocessing arguments influence various parts of the Fast-

Grow workflow. The output arguments may be relevant for validation and web server

deployment. Results can be written out in a multi-threaded, chunked, and linear way.

The default multi-threaded approach is for end users and will produce output sorted by

score. Linear output writes out all poses as soon as they are scored, thereby minimizing

memory usage but not producing a sorted output file. Chunked write-out is used in

the web server deployment to quickly transfer chunks of hits to the end user of the web

application.

The three other binaries all fulfill specific roles in the web application. The Preproces-

sor executable normalizes molecule input uploaded to the web application. The Clipper

executable cuts bonds in a molecule to produce cores to grow from. The Interaction-

Generator executable generates protein-ligand interactions to use in the growing.

The web application wraps all functionality of the command-line tools. Detailed in-

formation about how to set up the web application can be found in the README files
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of the backend and frontend repositories. The architecture of the FastGrow web appli-

cation is more complicated than that of the TorsionAnalyzer but follows the concept

described in Section B.1.

FGVD Generation

The FGVD generation pipeline is located in the NAOMI reproducibility folder. It con-

sists of a collection of scripts that orchestrate the generation of every data set. Each data

set described in Chapter 3 usually has a script named after it that generates this data set.

From that script onward the generation splits into various small tools and other scripts.

FGVD generation was developed for use with the PDBbind refined set[31] and implicitly

assumes its structure. Most of these assumptions are made in the orchestrating shell

scripts. Occasionally a tool may also assume certain paths exist.

The first script in the pipeline is the preprocessing script. Preprocessing is necessary

because some of the valence states of the SDF ligands in the PDBbind refined set are not

localized. The easiest way to solve this is by converting the MOL2 ligand files, which are

usually localized, to SDF. Preprocessing also substitutes the original PDB structures for

the ones in the PDBbind distribution to achieve maximum consistency in the following

steps. Lastly, it generates PDB files with empty binding sites, specifically empty binding

sites defined around the PDBbind ligand for a system.

The self-growing script uses a C++ tool to cut random single-bonds in all ligands. This

has to happen in one process to avoid any more duplicates in the ligand cutting process

than necessary. The tool iterates over all ligands in the PDBbind refined set, reads the

corresponding structure files in the course of the checks performed on the fragments,

and outputs the performed cuts as well as a list of unique fragments as SMILES.

The cross-growing script first performs an all-against-all SIENA alignment of the mem-

bers of the PDBbind refined set. SIENA is run with the parameters informally associated

with the ”Docking” configuration. An exhaustive description of the parameters can be

found in the RVM paper[D1]. After the SIENA alignment, a C++ tool is iteratively

called on the ensembles generated for every member of the PDBbind refined set. This

tool searches for a common core in the ligands of the ensemble and performs all fragment

checks. The growing steps are output in a directory next to the SIENA ensembles and

gathered into a separate directory at the end.
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B. Software Architecture and Usage

All other data sets depend on the cross-growing set. Relevant interactions for a cross-

growing test case are generated when the cross-growing test case is generated. Water

replacements are generated by a C++ tool that is called on all cross-growing test cases.

Ensemble growing test cases are generated by first iterating over all members of the

PDBbind refined set and performing a clustered all-against-all SIENA alignment with a

maximum cluster size of five. The configuration is otherwise the same as in cross-growing

generation. Cross-growing test cases for which clustered alignments of at least two PDBs

excluding the reference could be generated then use these ensembles in ensemble growing

validation.

All data sets are intended to be generated in the same directory that also contains the

PDBbind refined set and all necessary tools. All interpretation of chemical information

is done in C++ and specifically the NAOMI library[80] to ensure the chemical model

stays consistent. Workflow handling is done in Bash and a few slightly more complicated

tasks are performed in Python. The actual repository also contains a few scripts to run

and evaluate validations. These are, however, very specific to the cluster setup at time

of writing and will probably require modification. They are provided as inspiration.
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ABSTRACT: The Torsion Library is a collection of torsion motifs
associated with angle distributions, derived from crystallographic
databases. It is used in strain assessment, conformer generation,
and geometry optimization. A hierarchical structure of expert
curated SMARTS defines the chemical environments of rotatable
bonds and associates these with preferred angles. SMARTS can be
very complex and full of implications, which make them difficult to
maintain manually. Recent developments in automatically
comparing SMARTS patterns can be applied to the Torsion
Library to ensure its correctness. We specifically discuss the
implementation and the limits of such a procedure in the context
of torsion motifs and show several examples of how the Torsion
Library benefits from this. All automated changes are validated
manually and then shown to have an effect on the angle distributions by correcting matching behavior. The corrected Torsion
Library itself is available including both PDB as well as CSD histograms in the Supporting Information and can be used to evaluate
rotatable bonds at https://torsions.zbh.uni-hamburg.de.

■ INTRODUCTION

Molecular geometry is described internally by bond lengths,
bond angles, and torsion angles. Although bond lengths and
bond angles can be parametrized precisely enough for
medicinal chemistry applications,1,2 the extra complexity
added by 4-point dihedral angles, resulting in multiple local
minima, remains challenging. Conformational strain, which is
usually introduced by torsion angles, is vitally important to
drug design and may be a decisive factor in bioactivity. Some
conformational strain can be compensated by strong
intermolecular interactions between a protein and a potential
ligand, but in general strain should be avoided.3

Conformational strain can be measured ab initio using high
level quantum chemical methods, but due to their runtime
various empirical methods such as DFT, force-fields, or
knowledge-based workflows are used more frequently in
practice. Methods closer to ab initio in their level of theory,
such as DFT, have the advantage that they specifically consider
the molecule at hand. Furthermore, they are able to compare
the importance of strain at different torsions in the molecule.
Knowledge-based workflows that preprocess large crystallo-
graphic databases have the advantage of being very fast at
detecting strained torsion angles and comparisons to ab initio
methods have shown them to be reliable.4−6 The speed of
these workflows is absolutely necessary in applications such as
high-throughput conformer generation7,8 and various forms of
scoring.9,10 The precision of knowledge-based workflows is,

however, highly dependent on the quality of the data used to
build them.
The Torsion Library is a knowledge base created by a

workflow that uses databases of crystal conformations to
generate torsion angles statistics for chemical environments
encoded as SMARTS.11 The basic idea of extracting torsion
statistics from the crystal structure database can be dated back
to Klebe and Mietzner in 1994, where it was introduced in the
context of the conformer generator MIMUMBA.12 In 2013,
Schar̈fer et al. created the Torsion Library based on this idea
and a SMARTS hierarchy to describe progressively more
specific torsion motifs.13 The last major update of the Torsion
Library was in 2016, which focused on improving the torsion
angle statistics.14

In this work, we will perform a general update of the Torsion
Library with a focus on improving the SMARTS hierarchy
using the SMARTScompare algorithm.15,16 This is intended as
a conservative effort to improve the Torsion Library patterns,
without obscuring their chemical environment, and with
respect to their statistical impact on torsion angle frequencies.
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To that end, both the PDB and the CSD data set have been
updated with new data released since the original publication
in 2013.13 All automated changes have been manually
evaluated to ensure both the correctness of the method, as
well as the correctness of the Torsion Library itself. In an effort
to make the Torsion Library more accessible, we have
collected all infrastructure functionality in a tool called the
TorsionPatternMiner and rewritten the application oriented
TorsionAnalyzer, which is now also available as an easy-to-use
web service.

■ METHODS
The Torsion Library. The Torsion Library13,14 consists of

a hierarchical structure of SMARTS patterns11 that encode the
torsion motifs or torsion rules. Figure 1 illustrates a molecule’s

path through this hierarchy. At the top of the hierarchy are six
torsion classes, which only define the elements of the two
atoms incident to a rotatable bond. In Figure 1 we see the
input torsion being assigned to the “Carbon−Nitrogen”
torsion class because the two elements that make up the
rotatable bond are a carbon and a nitrogen. Below these are the
first torsion rules and torsion subclasses, which encode
recognizable substructures important to medicinal chemistry.
In Figure 1 the “Carbon−Nitrogen” torsion class does not
contain any torsion rules and so the torsion traverses into the
“Anilines” subclass. Torsion rules on the same hierarchical
level, for example just below the “Carbon−Nitrogen” torsion
class, would be matched before any of the torsion subclasses.
Torsion subclasses may contain even more specific subclasses
and further torsion rules. Both subclasses and torsion rules on
the same level are sorted from specific to generic chemical
environments.
In Figure 1 we can see three torsion rules in the “Anilines”

subclass. The SMARTS pattern of a torsion rule matches the
chemical environment of a torsion and also labels the four
torsion atoms. Labels are assigned using SMARTS syntax by
labeling the atoms 1 to 4 of a torsion as :1 to :4. These atoms
are used to measure the dihedral angle. Each torsion rule has a

list of preferred angles, as well as a histogram of how frequently
the matching of a torsion rule against a database of crystal
structures led to a specific dihedral angle from −180° to 180°
sorted into 10° bins. Visualizations of the histograms will be
generated such that each 10° bin has its center at the angle it is
labeled with and a range of ±5°, for example 30° ± 5°. The
entry at 180° will be mirrored for −180°. Preferred angles are
manually fitted according to the histogram. The angle is set to
a discernible peak in the histogram and two tolerances are
defined based on the shape of the peak.13 Using the preferred
angles of a torsion rule, an input torsion can be classified
according to a traffic light scheme to show strained torsions as
red, tolerable torsions as yellow, and relaxed torsions as green.
Torsion angles are labeled as relaxed if they correspond to or
are within the first tolerance of a preferred angle. Torsion
angles that fall into the second tolerance of a preferred angle
are marked as tolerable. If an angle does not fall into any
tolerance of any preferred angle, then it is labeled as strained.
It is important to note a difference in how the histograms are

filled and how rotatable bonds are classified. The torsion angle
of a rotatable bond is classified by traversing down the
hierarchy to the most specific torsion rule. In Figure 1 the
input torsion passes into the “Carbon−Nitrogen” torsion class
and then into the “Anilines” subclass. By ensuring that the
subclasses are always in a subset relationship with each other
and that the torsion rules are sorted from specific to generic,
we know that the first torsion rule SMARTS pattern which a
rotatable bond matches is the most specific torsion rule it can
match in the entire Torsion Library. This torsion rule can then
most specifically describe the likelihood of a dihedral angle for
the chemical environment of that rotatable bond. In Figure 1
the first torsion rule SMARTS pattern of the “Anilines”
subclass cannot match the input torsion. The second torsion
rule does match and so the search procedure terminates. This
is the matching behavior most important to a user or
compound designer who wishes to classify the quality of the
torsion angles in a molecule and will be referred to as selective
matching.
When the histograms of the Torsion library are filled, all

patterns regardless of their position in the hierarchy are
matched against all rotatable bonds of the input structures.
This will be referred to as unselective matching. In Figure 1 the
red unselective matching hits the third and very generic torsion
rule in the “Anilines” subclass, as well as the second one. It
would then continue matching other torsion rules in all other
torsion classes and subclasses. Unselective matching is used to
fill the histograms so that as many statistically significant
torsion angle distributions as possible can be generated, which
are then analyzed by an expert.13

Both the SMARTS hierarchy and the preferred angle lists are
manually generated. Figure 2 gives an overview over how
different parts of the Torsion Library ecosystem interact. At
the top are the different sources of input in blue, one of these
inputs being the expert curation. The Torsion Library is an
expert-driven and computationally supported system, which is
one of the aspects that distinguishes it from other collections of
torsion angle statistics. Every SMARTS pattern is written with
a meaningful chemical environment in mind. The preferred
angles are based on the histograms of dihedral angle
frequencies and written according to expert knowledge as
well as careful consideration of confounding factors the statistic
may be subject to.

Figure 1. Matching behavior of a torsion in the Torsion Library. The
molecule is 8-anilino-1-naphthalenesulfonate (2AN) from the PDB
file: 2ANS. All matching procedures pass through the SMARTS
hierarchy. Selective matching terminates at the first matching torsion
rule, whereas unselective matching continues. Subclasses are subsets
of the torsion class or subclass above them in the hierarchy. Torsion
subclasses and torsion rules on the same level are sorted from specific
to generic. All 3D molecular images were made with the NGL
viewer.17
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Manually written SMARTS, however, come with their own
challenges. SMARTS can be difficult to read and even experts
struggle to fully grasp all of their implications. Maintaining the
subset relationships between torsion classes and sorting torsion
rules by specificity is therefore far from trivial. It is at this point
that the SMARTScompare algorithm15,16 comes into play.
SMARTScompare can automatically detect whether SMARTS
are in a subset relationship by enumerating what chemical
states these SMARTS can match. If the set of chemical states
one SMARTS can match is a subset of the set of chemical
states the other SMARTS can match, then the SMARTS can
be considered to be in a subset relationship. The detection of
these relationships can be extended to work in the Torsion
Library.
Extensions to SMARTScompare. The Torsion Library

Hierarchy is built such that each SMARTS pattern of a torsion
rule or subclass is in a subset relationship with all subclasses
and the torsion class above it. Furthermore, all elements on the
same hierarchy level have to be ordered from specific to
generic, which can also be modeled as a subset relationship. All
of these subset relationships can be tested with SMARTS-
compare.15,16

Torsion Library patterns use the SMARTS labels :1 to :4 to
define which matched atoms will be used to measure the
torsion angle. When comparing these labeled SMARTS, it is
therefore very important to ensure nodes with the same label
are compared to each other. Otherwise patterns with similar
chemistry but describing very different torsion angles may
incorrectly be considered as in a subset relationship or even
equal. To prevent this, all labeled atoms are mapped before the
actual maximum common substructure search performed by
SMARTScompare. This had not been implemented as of the
original publications15,16 and was added in the course of this
work.

Not all Torsion Library SMARTS patterns contain all labels.
The top-level torsion classes that only describe the elements of
the two atoms making up the rotatable bond can only contain
the labels :2 and :3. The torsion subclasses may contain all
labels, but many do not. This is often due to the fact that the :1
and :4 nodes can describe very different chemistry connected
to the core chemical substructure of the subclass pattern, such
as sulfonamides bound to either rings or aliphatic substituents.
In these cases, all labels that are present in both patterns are
mapped and all others ignored. Torsion angles are the same
when measured from atoms :1 to :4 or from :4 to :1, and
several patterns have been written in one way or the other.
Therefore, labels are also mapped and matched both ways.

Checking the Hierarchy. SMARTS hierarchy checks were
performed by recursively traversing the entire Torsion Library
and checking that all SMARTS of torsion rules or subclasses
below the current class or subclass SMARTS are in a subset
relationship with that SMARTS. Labeled subset relationships
can be calculated with our extension of the SMARTScompare
algorithm and any inconsistencies in the hierarchy are returned
as warnings. Corrections can then be performed by the expert,
who understands the chemical environment the pattern is
supposed to encode.
Following this, torsion rules were compared to subclasses on

the same level to find subset relationships. If a torsion rule was
a subset of a subclass, then this implied that the torsion rule
encoded a more specific version of the subclass’ pattern and
should be in this subclass. Torsion rules could then be moved
after careful consideration.
Torsion rules and subclasses on the same level are sorted

from most specific to most generic. This relationship can also
be described as a subset relationship and so all patterns were
sorted accordingly. If a pattern was in a subset relationship
with another pattern, then it was sorted before that superset
pattern in the Torsion Library. All of these sorting operations

Figure 2. Overview of the Torsion Library ecosystem. All inputs, the crystallographic databases, the symbolic expert, as well as a molecule to
classify, are in blue. The two tools that interact with the Torsion Library are in gray. The TorsionPatternMiner is used to process the
crystallographic data, as well as check the consistency of the SMARTS hierarchy. The TorsionAnalyzer is the application oriented tool, which uses
the Torsion Library to classify molecules. A part of the Torsion Library XML demonstrating the file contents has been placed in the center.
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were subsequently verified manually to ensure the algorithm
worked as intended.
CSD and PDB Data. New crystallographic data sets were

constructed using slightly modified protocols taken from the
original Torsion Library publication.13 One significant change
was moving away from a proprietary subset of the PDB18 in
favor of automatically extracting high-quality ligands directly
from the PDB.19 The StructureProfiler20 was used to perform
common PDB structure quality filtering and the EDIA tool21

employed to estimate the electron density fit of torsion atoms.
CSD molecules were extracted using the CSD Python API22

and closely following the rules defined by the original
publication.13 Detailed parameters and filters can be found in
Section S2 of the Supporting Information (SI).
Torsion Tools. Torsion angle statistics were mined from

the structure data using the new TorsionPatternMiner. The
TorsionPatternMiner is a commandline application that
performs all statistical and hierarchical analysis, including the
application of the SMARTScompare algorithm, to create a
revised Torsion Library. It is intended as an expert tool for
individuals seeking to modify the Torsion Library with their
own patterns or data. Its sibling tool, the TorsionAnalyzer, is
the application-oriented tool to classify torsion angles of input
conformations. The TorsionAnalyzer was reimplemented as a
standalone commandline application. Both tools are mainly
implemented using the Naomi C++ library.23

The TorsionAnalyzer Web server and local GUI (Graphical
User Interface) application are both wrappers around the

TorsionAnalyzer commandline application. An overview of the
interface can be seen in Figure 3. The web version is based on
the PVP (Python, Vanilla Javascript, Postgres) stack. The local
GUI application is based on Electron.js,24 which allows a
developer to deploy a web-based frontend as a desktop
application, with a Node.js environment emulating a backend
server. The local application is therefore completely
independent from the Web server and the Internet in general.

■ RESULTS
CSD and PDB Data. In general, updating the CSD and

PDB data led to more data support of the existing patterns.
The angle distributions have remained very stable, despite the
fact that the new CSD data set is more than double the size of
the original one created in 2013. This is discussed in more
detail in Section S3 of the SI. The original data set contained
around 140 000 molecules, whereas the new data set contains
around 360 000, which represents almost a decade of growth of
the CSD.13 The new PDB data set is, however, smaller than the
previous one. The previous data set was reported to contain
77 065 ligands.18 The current PDB data set contains a little
under 20 000 ligands. In part, this may be due to an overly
strict filtering of the StructureProfiler. It may however also be
due to a more permissive manual screening procedure that
produced the original data set. It is in the spirit of this
publication that we have replaced a manual, repetitive, and
possibly error prone procedure with an automated one. It has
remained problematic to base torsion statistics on the PDB

Figure 3. Screenshot of the Torsion Analyzer web application. The molecule loaded is 2AN from PDB code: 2ANS. The left-hand side shows the
molecule and its rotatable bonds, which are colored according to the traffic light scheme. Purple spheres mark the :1 and :4 atoms. The right-hand
side provides information about the matched torsion rule, such as its torsion angle distribution in the CSD.
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alone, due to the comparatively few highly resolved and
electron density supported ligands in the PDB.13 The main
data set therefore continues to be the CSD data set.
Checking the Hierarchy. As of the 2016 publication,14 the

Torsion Library contained 552 SMARTS patterns. Automati-
cally checking the Torsion Library hierarchy revealed 291
patterns that were not in a subset relationship with the pattern
immediately above them in the hierarchy. The most common,
as well as the most trivial, incongruency between parent and
child patterns was a missing “!@” (nonring bond) specifier in
various subclass patterns. All patterns in the Torsion library are
supposed to describe acyclic bonds, so “!@” was added
everywhere it was missing.13 This never had a functional
impact, seeing as all torsion rules did include the “!@” specifier.
A more impactful example of a hierarchy incongruency can

be found in Figure 4. A torsion rule in the benzamidine

subclass was missing the part underlaid in blue, leaving an
incomplete amidine. The difference in matching is visualized
with two molecules in Figure 5, one of which does not contain
a benzamidine substructure. The unselective matching, which
does not match the subclass pattern beforehand, therefore
produced a severely distorted angle distribution. Figure 6
shows two histograms of CSD torsion angles unselectively
matching this benzamidine torsion rule before and after fully
writing out the amidine part. Before the benzamidine
correction, this pattern would match any double bond to a
nitrogen one carbon away from the specified aromatic
structure, such as a hydrazine or simply a nitrogen in a
conjugated chain. The far rarer benzamidine angles were thus
overshadowed. This gave the expert a very distorted image for

this pattern and led to incorrect preferred angles, which in turn
influenced the actual classification of molecular torsions.
Specifically, the pattern in question is of an amidine bound

to a bis-ortho substituted aromatic ring. The bis-ortho
substitution is encoded implicitly by forbidding hydrogens at
the ortho positions relative to the amidine. The bis-ortho
substitution intuitively supports the torsion angle distribution
after the correction in Figure 6, because the substituents force
the amidine into a torsion angle around ±90°.
It is important to note that the benzamidine correction also

led to far fewer matches, which amplified the noise. The
spurious peaks at −30° and 150° in the angle distribution after
the benzamidine correction are mostly made up of one series
of dithiadiazole compounds. Nonetheless, the histogram after
benzamidine correction in Figure 6 is clearly more
representative of bis-ortho substituted benzamidines.
A few similar cases were encountered and corrected

throughout the Torsion Library, the benzamidine example
being one of the more human readable ones. In general,
pattern corrections were kept as conservative as possible. As
the benzamidine example demonstrates, small changes to a
torsion pattern can lead to significant differences in the torsion
angle distribution. Checking the hierarchy takes 1.6 s on a
single core (machine specifications can be found in Table S1 of
the SI), so the hierarchy was checked regularly in this process.
All changes can be found in Section S5 of the SI, which gives
an overview of how and where specific changes are recorded.

Sorting Torsion Rules into Subclasses. After having
corrected the hierarchical relationships, 21 of the 514 total
torsion rules were sorted into a lower subclass. Three

Figure 4. Pattern of the benzamidine subclass and the pattern of a
torsion rule in it. The parts of the torsion rule pattern underlaid in
blue were missing before hierarchy checking. This violated the subset
relationship of subclass and torsion rule, which was detected by a
hierarchy check. The pattern was subsequently corrected. A full
legend for all pattern visualizations can be found in Figure S1 of the
SI.

Figure 5. Matching behavior of the benzamidine pattern before and
after correction on two molecules. The top molecule is 7EG from
PDB code: 5TLG. The bottom molecule is N3H from PDB code:
3CDE. Atoms matched by each pattern are underlaid in the
corresponding color.
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subclasses were involved in this step: “aro-aro”, “Aliphatic
Amides”, and “[CX3][CX4]”. Subclass “aro-aro” is in the
generic top-level torsion class and describes acyclic bonds
between two aromatic systems. “Aliphatic Amides” deals with
bonds between carbons and an amide nitrogen. Figure 7 is an
example of a pattern sorted into “[CX3][CX4]”, which is a
subclass that handles bonds between aliphatic sp2 hybridized
carbons and sp3 carbons.
The torsion rule found in Figure 7 can be sorted into the

subclass, because the :3 node, although not explicitly set to
“X4” (four valences), implicitly has four bonding partners: two
hydrogens, a bond to the :2 node and a bond to the :4 node.
Because this is an implicit condition, it can be easily
overlooked. In fact, 11 of the 21 torsion rules sorted into
subclasses were such cases. Figure 8 visualizes the matching of
both the subclass and the torsion rule. The :3 node is in both
cases satisfied by a carbon with two bonds to hydrogens and
two bonds to other carbons.
The SMARTScompare subset matching is capable of

detecting implicit subset conditions, but does have limitations.
Schmidt et al. discuss these limitations in some depth.15 Some
examples of problematic patterns are generically defined
tautomeric structures and complex recursive SMARTS.
Especially tautomerism is still a challenge in the Torsion
Library.
In the case of Figure 7 SMARTScompare significantly

corrects the Torsion Library’s matching behavior. Patterns on
the same level as a subclass that they can be sorted into, are
matched before that subclass. This means a pattern may stop
the selective matching process from recursing into a subclass
and prevent any torsion rules in it from being matched.
Selective matching behavior directly influences how well the
Torsion Library classifies a users’ input molecules. Correct
sorting of a pattern into a subclass is also a prerequisite for
sorting patterns by specificity within subclasses. All of this is
now handled by an automated and fast check instead of
painstaking manual SMARTS comparisons.
Sorting Torsion Rules by Specificity. Sorting torsion

rules by specificity yielded 17 position changes of 14 torsion

rules and 3 subclasses. The sorting algorithm had to perform a
few thousand SMARTS comparisons and did so in 2.1 s on a
single core (machine specifications can be found in Table S1 of
the SI).
Figure 9 shows an example of two patterns being sorted

against each other. The top pattern is more specific than the
lower pattern, or in other words follows a subset relationship,
due to the elements underlaid in blue. It specifies more parts of

Figure 6. Distribution of torsion angles of molecules in the CSD for the torsion rule pattern in Figure 4 before and after it was corrected. “Hits”
refers to how many torsion angles hit a specific bin. The torsion angle bin around 180° is duplicated for −180°. The histogram contained 3088 hits
before correction and 256 hits after correction.

Figure 7. A torsion rule that can be sorted into a subclass. The green
lines connect the nodes that are equivalent or more specific to their
subclass pattern counterparts. Although the node labeled :3 in the
torsion rule is not explicitly set to “X4” (four valences), the “H2” (two
bonds to hydrogens) as well as its other bonds implicitly make it more
specific than the “[CX4:3]” node in the subclass pattern. A full legend
for all pattern visualizations can be found in Figure S1 of the SI.
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the chemical environment and is therefore more specific.
Figure 10 visualizes both patterns matching a molecule. The
more specific pattern matches a larger and more specific
substructure of the molecule. In this case the SMARTS
expressions are comparatively simple. Other sorting operations
are performed on significantly longer and more complex
patterns.
Figure 11 gives an example of three patterns being sorted

before the pattern a highlighted in blue. Table 1 shows the

number of selective matches of CSD molecules these patterns
received before and after sorting. Selective matching terminates
at the first pattern it matches and is the main method to report
the quality of torsion angles in a molecule to a user. In the case
of the four patterns in Figure 11 selective matching would
always terminate at pattern a for any torsion that could have
hit patterns b, c, or d, because pattern a is a superset of all these
patterns. All patterns a to d deal with a torsion between
nitrogen and sulfur. Patterns b, c, and d specify how many
bonds the sulfur has to other atoms, thereby distinguishing
between sulfones, sulfoxides, and sulfides, respectively. Pattern
a makes no distinction and will match all aliphatic sulfur
oxidation states. For this reason, patterns b, c, and d had no
matches before sorting in Table 1. Sorting these patterns by
subset relationships leads to a distribution of the selective
matches onto all of the patterns. This means instead of all
torsions matching the more generic pattern a, many are now
distributed to the more specific patterns b, c, and d.
Making subset relationships the only measure of specificity is

limiting. A pure subset check results in a lot of patterns being
in neither a subset nor a superset relationship to any other
pattern, which is why only a handful of sorting operations were
performed. Some relationships between SMARTS patterns not
detected by SMARTScompare can however have an important
effect.
Figure 12 gives an example of two SMARTS matching either

substituted or unsubstituted positions ortho to the rotatable
bond. “[cH0]” forbids hydrogen at an aromatic carbon, which

Figure 8. Visualized matching of a subclass and a torsion rule that can
be sorted into that subclass. The molecule is DES from PDB code:
1S9P. Atoms matched by each pattern are underlaid in the
corresponding color. The torsion rule matches the same atoms as
the subclass pattern as well as a larger and more specific substructure.
Although the :3 node is written differently both patterns match their
:3 node to a carbon with two bonds to hydrogens and two bonds to
other carbons.

Figure 9. Comparison of two patterns performed during pattern
sorting. Both patterns match amide nitrogens bound to aromatic
structures. The top pattern also specifies that this aromatic structure is
bis-ortho substituted to the amide. The SMARTS pattern elements,
and their corresponding visualizations, that make the top pattern
more specific than the bottom pattern are underlaid in blue. The top
pattern will be sorted before the bottom pattern. A full legend for all
pattern visualizations can be found in Figure S1 of the SI.

Figure 10. Visualization of two patterns to be sorted matching a
molecule. The molecule is HJW from PDB code: 6Q6M. Atoms
matched by each pattern are underlaid in the corresponding color.
The more specific pattern matches a larger and more specific
substructure of the molecule and must therefore be sorted before the
less specific pattern.

Figure 11. Pattern a is a superset of patterns b, c, and d. Patterns b, c,
and d are therefore never matched. Sorting by subset relationships
moves patterns b, c, and d from their incorrect positions in red to a
correct position in green, before pattern a in blue. Table 1 shows the
change in the number of selective matches these patterns received
before and after sorting.
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implies substitution. “[cH1]” requires one hydrogen at an
aromatic carbon, which implicitly forbids substitution. The
patterns are not in a subset relationship because the number of
hydrogens is mutually exclusive (not at least zero/one
hydrogen, but exactly zero/one hydrogen). If we place the
pattern without substitution before the other pattern in a
selective matching, then any torsion with a single ortho
substitution, such as the one in Figure 12, will match with its
unsubstituted ortho position first and terminate the matching
process. Ortho substitution can have a large impact on a
torsions preferred angles and can be seen as the more specific
chemistry. This means that by writing substitution in this way,
more specific chemistry cannot be detected by a subset
relationship and the patterns cannot be automatically sorted by
specificity, leading to a poor description of the chemical
environment of a rotatable bond. The Torsion Library solves
this issue by specifying both ortho positions, thus explicitly
forcing the matching in the substituted or unsubstituted
direction. This approach does work but highlights the need for
a consistent set of rules to write patterns that are both optimal
for SMARTScompare as well as human readable.

■ CONCLUSIONS
The Torsion Library is a computationally supported but
expert-driven system. Most manual processes execute their
intention inconsistently. In fact, most computational processes
tend to inconsistently execute a programmer’s intention as
well. By utilizing both we can immediately spot inconsistencies
and so improve the correctness of the Torsion Library’s
hierarchy, as well as its matching behavior. The manual
validation of automated hierarchy checking and pattern sorting
has furthermore validated the process itself.
The Torsion Library is not the most accessible topic due to

the inherent complexity of SMARTS patterns and the heavy
focus on detail. To alleviate this, we have reworked large parts
of the Torsion Library ecosystem. Statistical and hierarchical

analysis is now performed by the TorsionPatternMiner, which
is a purpose-built tool for experts to create and maintain the
Torsion Library. The automation of SMARTS checking and
sorting was able to correct several issues that would have been
difficult to spot manually. User facing functionality, such as
detecting strained bonds, is now handled in a significantly
simplified TorsionAnalyzer, available as a command line tool, a
local GUI application and a web application. With this we
hope to lower the barriers to entry into the Torsion Library
ecosystem.
Clearly, there are still limitations to both the SMARTS-

compare algorithm15 and the Torsion Library. Pattern sorting
can only follow a subset relationship as defined by
SMARTScompare. This leads to many incomparable patterns
that may nonetheless be in a subset relationship when
considered on a semantic level. Semantic problems, such as
the ortho substitution problem above, are the most difficult to
detect due to the challenges of making SMARTS human
readable. A canonical way to write the most human readable
torsion SMARTS patterns could possibly avoid both the
limitations of the SMARTScompare implementation, as well as
shed light on semantic errors that may be overshadowed by the
SMARTS syntax.
In some of the authors’ work on scoring9 the most

problematic limitation of the Torsion Library was the fact
that the relative energetic effect of one torsion rule compared
to another is very difficult to elucidate. This is a general
limitation of database derived statistical distributions of torsion
angles, but some initial work has been done to facilitate such
comparisons.10 Drawing physical conclusions from torsion
angle distributions is subject to many very complex biases
arising from the nature of the data set as well as the patterns
used to generate statistics. For example, crystal structures
undersample high-energy conformations compared to room-
temperature, gas-phase Boltzmann populations.25 Any attempt
to calculate Boltzmann distributions, and thereby relative
energies, using crystal structure data will be skewed by this
effect. Such complex phenomena require that an expert
remains in the loop.
Database derived torsion libraries continue to be a pillar to

most 3D operations in drug design. Their reliability and speed
ensures this will continue to be the case for years to come. It is
therefore imperative that they be of the highest quality
possible.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00043.

Legend for all SMARTS visualizations, discussion of
more detail oriented topics, explanation of the files in the
collection of changes (PDF)

Table 1. Number of Selective Matches Four Patterns Received before and after Sorting by Subset Relationships in the CSD
Dataseta

pattern matches before sorting matches after sorting

a. [*:1]∼[N,n:2]!@[S:3]∼[*:4] 2253 983
b. [*:1]∼[NX2:2]!@[SX4:3]∼[*:4] 0 1004
c. [*:1]∼[NX2:2]!@[SX3:3]∼[*:4] 0 135
d. [*:1]∼[NX2:2]!@[SX2:3]∼[*:4] 0 131

aPattern a gets all possible matches before sorting. Patterns b, c, and d are sorted in front of pattern a and can then be matched. Pattern a is still
matched, but now every pattern can address the specific chemical environment it encodes.

Figure 12. Two patterns including a position ortho to the torsion that
cannot be correctly sorted. The pattern requiring ortho substitution
can be seen as more impactful and specific for the rotatable bond. If
substitution is written by forbidding hydrogens then patterns with or
without substitution are mutually exclusive and cannot be detected as
a subset relationship, which makes correct sorting impossible. All 3D
molecule images were made with the NGL viewer17
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Zipped version of the corrected Torsion Library XML
file including both PDB and CSD histograms (ZIP)

Collection of files detailing exactly the changes to the
Torsion Library and their effects on matching behavior
(ZIP)
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ABSTRACT: Structure-based fragment growing is one of the key
techniques in fragment-based drug design. Fragment growing is
commonly practiced based on structural and biophysical data.
Computational workflows are employed to predict which fragment
elaborations could lead to high-affinity binders. Several such
workflows exist but many are designed to be long running
noninteractive systems. Shape-based descriptors have been proven
to be fast and perform well at virtual-screening tasks. They could,
therefore, be applied to the fragment-growing problem to enable
an interactive fragment-growing workflow. In this work, we
describe and analyze the use of specific shape-based directional
descriptors for the task of fragment growing. The performance of
these descriptors that we call ray volume matrices (RVMs) is
evaluated on two data sets containing protein−ligand complexes. While the first set focuses on self-growing, the second measures
practical performance in a cross-growing scenario. The runtime of screenings using RVMs as well as their robustness to three
dimensional perturbations is also investigated. Overall, it can be shown that RVMs are useful to prefilter fragment candidates. For up
to 84% of the 3299 generated self-growing cases and for up to 66% of the 326 generated cross-growing cases, RVMs could create
poses with less than 2 Å root-mean-square deviation to the crystal structure with average query speeds of around 30,000
conformations per second. This opens the door for fast explorative screenings of fragment libraries.

■ INTRODUCTION

Fragment-based drug design (FBDD) is by now an established
practice in drug design.1 Beginning in the early 1990s, it has
since been applied in several successful projects and even led to
approved drugs. FBDD’s advantages are reported to be a more
efficient exploration of chemical space in comparison to high-
throughput screening (HTS) campaigns and high complemen-
tarity to the hits of HTS.2 An approach using fragments is said to
sample chemical space more efficiently because fewer molecules
are required to describe the respective chemical space.3 If
desirable chemical functionalities are discovered in smaller
fragments, these can be combined to create larger molecules,
without having to sample the larger chemical space of lead-like
molecules. Fragment screening hits, although less potent, have
lower false positive rates thanHTS hits. This can be attributed to
fragment solubility, less risk of aggregation, and more robust
detection methods.4 Fragment screening is closely linked to
biophysical detection methods and structure-based design
(SBD). It is these methods that contribute most to the difficult
task of achieving the potency necessary to convert a fragment hit
into a viable lead. Specifically, computational methods of SBD
can be used to reduce the dependence on costly experimental
methods.2

Computational methods that use fragments as building blocks
or chemical probes actually predate the experimental methods.5

These methods were applied to various tasks such as probing for
possible interactions in a crystal structure6 but also the task of
designing ligands de novo.7 Many modern systems work toward
extending fragments into potent leads. Some systems are purely
ligand based. These usually work by sampling the chemical space
around a given active compound or set of active compounds,
generating ligands de novo as opposed to performing a similarity
search in large databases of existing or accessible compounds.
Structure-based systems emulate established FBDD practices
and are often categorized into fragment linking, fragment
merging, and fragment growing.5 Yet, the methodologies that
implement these ideas can be very different.
Computational fragment elaboration methods utilize several

more or less established schools of thought. Many methods

Received: August 10, 2020
Published: November 16, 2020

Articlepubs.acs.org/jcim

© 2020 American Chemical Society
6269

https://dx.doi.org/10.1021/acs.jcim.0c00920
J. Chem. Inf. Model. 2020, 60, 6269−6281

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 H

A
M

B
U

R
G

 o
n 

Ju
ne

 2
0,

 2
02

2 
at

 1
2:

04
:1

0 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.



build on the wealth of experience found in the development of
ligand-docking software by either applying ligand-docking
software in FBDD scenarios8 or developing docking software
with fragments explicitly considered.9−11 Some workflows apply
concepts used in docking but create fragment-specific
algorithms.12 Genetic algorithms are also a mainstay of
fragment-growing workflows,13,14 but sampling combinations
of fragments can also be driven by other probabilistic
approaches.15 Reacting to the fact that many de novo workflows
produce unsynthesizable ligands, some workflows focus on
synthesis rules in their development.16−18 These use reaction
rules to determine whether fragments can be attached to others.
A popular computational paradigm is the concept of shape
complementarity. Shape-based methods have been shown to be
very fast and to perform well in virtual-screening tasks.19 Shape
complementarity has also found its way into computational
FBDD workflows.20 Shape-based methods can profit from the
limitations a fragment-binding pose imposes on the fragment
extension. The directionality of the modifiable bonds of a
fragment and the binding pocket naturally limit the directions a
fragment can be extended into. Leveraging this directional
information, as well as the shape defined by the pocket, can
improve a fragment-growing workflow.
Liu et al. use a directional shape-based descriptor in their

larger fragment elaboration workflow as an initial prefilter for
fragment candidates.21 A probe of polyacetylene is used to
define the depth of a binding site. This probe extends up to a
maximum of 10 Å in the growth direction. For each carbon
atom, 24 sampling lines, or more specifically rays with the carbon
atom as their origin, are generated at 15° angles to each other.
Rays generated this way are used to describe the shape of the
pocket. The efficiency and accuracy of this step is not separately
described in their work. The larger workflow is characterized in
the context of a search for inhibitors of 11β-hydroxysteroid
dehydrogenase type 1, which highlights the fact that measuring
the performance of fragment-growing workflows can be difficult.
Validation of fragment-growing workflows is often done on a

phenomenological basis. Either a selection of ligands coming out
of a workflow is synthesized and tested against an assay8,14,18,21

or a similarity metric is computed between the output ligands
and known actives.12,17 A few attempts have been made to
leverage known structural information in statistically significant
samples for the development and validation of structural
fragment growing16,22 or fragment docking.11,23 However, an
established gold standard does not exist. An aspect that is
sometimes neglected in validation is the runtime. Although
some developers do report runtimes,8,12,13,16,21 the systems
themselves are often designed to be long running noninteractive
systems, which is not conducive to the iterative nature of drug
design projects and prone to reduce the scientist’s control over
the process.
This work will investigate the usefulness of directional shape-

based descriptors called ray volume matrices (RVMs) as a
prefilter in structural fragment-growing applications. The
runtime of the descriptor will receive special attention, seeing
as it is an important aspect of a responsive workflow. A data set of
protein−ligand complexes will be created for validation
purposes. The data set will consist of self-growing scenarios in
which the descriptor will be used to reconstruct a ligand in its
cocrystallized pocket. The major aim of this data set is to
characterize the shape-based descriptions’ correctness, robust-
ness, and runtime. Another data set will be created to simulate a
growing scenario closer to real scenarios in hit-to-lead

optimization. This data set, which we call the cross-growing
set, will contain a number of growing pairs that are made up of
functionally equivalent pockets and ligands with a common core,
so that ligands can be grown into pockets they are not
cocrystallized in, mimicking a cross-docking scenario.

■ METHODS
Descriptor Generation. The starting point for descriptor

generation will be a fragment bound in its target, a quite
common scenario in fragment-based lead generation.5 The
shape-based description illustrated below assumes that the
binding mode of the fragment does not change significantly as a
result of extending it. Although this is a common assumption, it
is not always correct.22

The first choice to bemade before extending the fragment is at
which bond the extension is to take place. This bond will be
referred to as the exit bond. The exit bond can be chosen based
on possible reaction centers,16 using heuristics,21 or be left up to
the user’s discernment. Assuming such an exit bond has been
chosen, the bond’s direction defines the direction of growth.
This growing direction can be used to limit the volume a
descriptor needs to describe.
A cylindrical shape descriptor’s volume is defined by two

parameters: the cylinder’s depth and the cylinder’s radius (see
Figure 1). The cylinder’s depth begins at the atom of the chosen

exit bond that will be kept when a building-block is attached.
This will be referred to as the anchor atom. In our
implementation, the depth and radius of the cylinder are set
to a value that depends on the use case. In later sections, we will
set the depth and radius to 10 Å, similar to the depth set by Liu et
al. The RVM is also extended behind the anchor atom to more
accurately describe clash between an attached building-block
and the fragment already bound in the pocket. The volume is
sampled in regular distance increments along the cylinder axis,
which corresponds to the growing direction. At each such
distance increment, rays at regular angle intervals to each other
are created in a circular fashion perpendicular to the growing
direction. Analogous to the implementation by Liu et al.21 these
rays are used to describe the position of atoms in the pocket.

First Intersection Widths. The sampling rays are
intersected with the van der Waals spheres of the pocket
atoms to find the first point of intersection between the sampling
ray and the pocket. The resulting intersection segments are
shown in Figure 2. The distance between the first point of

Figure 1. Volume described by the descriptor is shown as a green
cylinder in a structure of the neuraminidase (2QWD). The cylinder is
shown from the side in (a) and with its axis pointing toward the viewer
in (b). The cylinder’s depth is longer than its radius because of the
cylinder being extended behind the anchor atom so that the descriptor
can detect clashes with the fragment bound in the pocket.
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intersection and the axis of the cylinder will be referred to as the
first intersection width. All atoms of the pocket and the bound
fragment are used in the intersection, excluding polar hydrogens,
which may be involved in hydrogen bonds and thus closer to
atoms than the sum of their respective van der Waals radii.24

Apolar hydrogens are included to maintain the pockets’
selectivity. Furthermore, atoms of the bound fragment that
clash with the linker or anchor atom are not considered. These
are atoms either directly bound to the anchor atom, which
means their van derWaals spheres are not representative of their
interaction, or only a few bonds apart from the anchor atom. The
widths at every depth and every sampling ray are saved in the
RVM. The rows in this matrix represent a descriptor depth and
the columns in this matrix represent the angle of the sampling
ray. An RVM generated this way represents the geometrical
query that will be used to search for building-blocks to extend
the bound fragment at the anchor atom.
A very similar descriptor can be generated for the building-

blocks to be used in a fragment elaboration. In this case, the
RVM’s cylindrical volume must encapsulate the building-block.
The growing direction will point at the building-block, the same
way the growing direction pointed at the empty pocket that the
building-block should fill before. The depth of the cylinder is the
distance between the building-blocks’ linker atom and the
building-blocks’ furthest atom from the linker atom in the
growing direction. The sampling rays are generated analogously
to the pocket descriptor. To describe the width of the fragment,
the sampling rays are intersected with the van der Waals spheres
of all atoms of the building-block, excluding polar hydrogens and
the linker atom. The distance of the furthest intersection point
from the cylinder axis is the width of the fragment at that point

and represents an intersection of a sampling ray with the
outermost atom (Figure 3). These widths form the RVM of the

building block. Note that measuring from the cylinder axis to the
first intersection point for pockets or the outermost intersection
for fragments can misrepresent the shapes of these objects in
some cases. For example, a fragment may deviate from the
central cylinder axis and point toward a corner of the cylinder,
leaving the central axis free of steric hindrance.

Width Ranges. To improve the correctness of the
descriptor, the first intersection widths can be converted into
width ranges. Saving first intersection widths in a matrix results
in a two-dimensional matrix. The distance from the cylinder axis
to the first intersection is saved as a number resulting in a
number for each ray without the need for a third dimension in

Figure 2. Descriptor generation for a part of a neuraminidase inhibitor in its binding pocket (2QWD). The full inhibitor is shown in (a). The
acetylamide fragment that the blue arrow is pointing at is cut off and a query is generated for the remaining part of the inhibitor. The green arrow in (b)
represents the descriptor depth. The green cylinders shown in (c) start at the first intersection point between a sampling ray and a pocket atom. The
points of first intersection are complementary to a protein surface created by NGL Viewer25 as shown in (d).

Figure 3. Descriptor for an acetylamide building-block with the linker
at the nitrogen. The blue arrow in (a) represents the growing direction
when the building-block is placed into the pocket. The linker atom is
the only atom behind the arrow. The blue cylinders in (b) represent the
first intersection widths. The cylinders start at the cylinder axis and
continue to the outermost intersection point between a sampling ray
and an atom.
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the matrix. Width ranges use bins instead of scalar values,
making the resulting matrix three-dimensional (3D). A width
range consists of a number of regular-sized bins that add up to
the length of the cylinder radius. The bin values are generated by
moving along the sampling ray up to the cylinder radius and
checking whether the bin at this point clashes with an atom. If
any part of the bin clashes with the van der Waals radius of the
atom at all, the bin is set to occupied (one). If it does not, the bin
is set to empty (zero). Bins are able to describe ranges along the
sampling ray that intersect with pocket atoms without having to
stop at the first intersection point. Width ranges were
implemented to deal with irregular pocket shapes and
building-blocks that deviate from the cylinder axis. Figure 4

gives examples of how irregular pocket shapes may influence the
descriptor. A poor description of building-blocks and pocket
shapes may result in false negatives that are difficult to correct.
Database Generation. Seeing as the RVM descriptor relies

on 3D coordinates, conformational sampling has to be
performed beforehand. An unbiased conformational sampling
would yield several conformations that cannot fit into the
volume covered by the descriptor. To ensure more useable
conformations, a cylindrical constraint is imposed upon
candidate conformations of a building-block. The cylinder is

placed along the exit bond as in the Descriptor Generation. The
van derWaals spheres of all building-block atomsmust be within
the cylinder for the conformation to be accepted. The
conformation generation procedure was adapted from the
Conformator26 workflow.
A screening database of RVMs is created by conformationally

sampling the building-blocks and generating a descriptor for
each of these conformations. The database is screened using a
descriptor generated for a pocket as the query.

Descriptor Comparison. The building-block is eventually
attached to the fragment by superimposing the linker atom of
the building-block with the anchor atom of the bound fragment.
These two atoms are the origin of the two cylindrical descriptors,
thus no alignment is required for descriptor comparison. For
efficiency reasons, the descriptor parameters such as depth,
radius, and bin sizes are assumed to be set equally for pocket and
building block descriptors.
Two descriptors using first intersection widths are compared

by iterating over all the widths of the pocket and the fragment
descriptor and calculating the difference of these widths. If the
pocket width is substantially larger than the fragment width, the
fragment does not fill out the pocket. If the fragment width is
larger than the pocket width, the fragment clashes with the
pocket at this point. Width ranges are compared on a bitwise
level. A bitwise AND is performed on the bitstrings making up
the descriptor and the building-block widths. The resulting
bitstring contains all the bins both widths have in common, in
other words all the bins of the building-block that clash with the
pocket.
The cylindrical nature of the descriptor has an important

advantage that can be exploited during comparison. As remarked
by Liu et al.21 shifting the columns of a descriptor implicitly
rotates the shape the descriptor represents. If the building-block
descriptor is shifted relative to the pocket descriptor, the
building-block’s shape is effectively rotated inside the shape of
the pocket without the need for any geometrical transformation
(Figure 5). In our implementation, the pocket descriptor is
rotated once into every possible orientation before the building-
blocks are queried. Every building-block descriptor is then
compared to every possible rotation of the pocket descriptor.

Clash Filtering. All comparisons using RVMs are performed
with a clash tolerance. This clash tolerance is defined by the user

Figure 4. Some pockets cannot be completely sampled using first
intersection widths. The light green rays represent the sampling rays of
the pocket descriptor. A part of the pocket is hidden by steric bulk.
Without this part of the pocket present in the pocket descriptor, the
fragment or building-block that is supposed to bind in that subpocket
will be considered as clashing in that area.

Figure 5. Rotating a descriptor by shifting columns. The rays in the images are 10° apart from each other. Each ray also corresponds to a column in the
matrix. Shifting the matrix to the left by three columns results in a 30° counterclockwise rotation after projecting the descriptor back into 3D space.
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and limits the largest possible clash a descriptor pose can
generate without being discarded. In the latter sections, we will
define the clash tolerance to be 2 Å. First intersection widths use
this clash limit directly by checking whether a fragment ray that
goes beyond the first intersection of the pocket (thus generating
clash) extends beyond the first intersection point by more than
the defined clash tolerance. In other words and using our 2 Å
example, if a fragment ray is longer than the pocket ray it is being
compared to by more than 2 Å, the descriptor containing that
fragment ray is not considered further. Width ranges convert the
clash tolerance into bins to use them. Using our example: if we
have 0.5 Å bins, have defined the clash tolerance to be 2 Å, and
more than four consecutive bins that are occupied (set to one) in
the fragment ray are also occupied (set to one) in the pocket ray,
then that descriptor is filtered out. The four consecutive bins
along their respective rays add up to a length of 2 Å and any clash
beyond that would violate the clash tolerance. Because of the
nature of width ranges consecutively clashing bins can be
interrupted, as shown in Figure 6. Only consecutively clashing

bins can exceed the clash tolerance, as interrupted clashes
suggest the clash is superficial. Further discussion of clash
perception can be found in the Supporting Information.
Pose Scoring. A simple shape-based scoring scheme was

implemented to compare generated poses to each other. Scoring
is based on the assumptions that filling the volume of the pocket
is good, that having close contacts with the pocket surface is
better, and that clash should be avoided. Four parameters, which
are filled volume, close contacts, clash, as well as a cutoff distance
for close contacts, are needed to formulate this heuristic into a
scoring function. All four scoring components are visualized in
Figure 6. The weights are parameterized based on the validation
following this section.
Using width ranges, all bins that are set to full in both the

pocket and the building-block descriptor are counted as clashes.
All bins that are within the close contact distance rounded up to
the nearest bin are counted as close contacts. All other bins are
counted as filled volume.
Using first intersection widths, the difference of the fragment

width and the pocket width is considered the clash range.
Subtracting the close contact distance from the pocket width
yields the close contact distance cutoff. The difference between
the fragment width and the close contact distance cutoff is the
close contact range. The rest of the fragment width is considered
the filled volume range.

In theory, each fragment can generate as many poses as it has
conformations multiplied by the number of sampling rays used.
Only the best pose of each fragment is included in the hit list.
The simple scoring heuristic is used to perform this pose-scoring
step efficiently.

Self-Growing Validation. Two data sets were generated
based on the PDBbind refined set v.201927 to validate the
performance of both the RVMusing first intersection widths and
the RVM using width ranges. The first data set performs self-
growing validation, that is, it measures to what extent the shape
descriptor is able to replace parts of a crystallized ligand in its
own pocket. In docking terms, this is similar to self-docking and
it will be referred to as self-growing in the following.
An overview of the generation procedure is given in Figure 7.

All ligands in the PDBbind refined set were cut at random single

bonds to produce fragments. These fragments were then filtered
using the “Rule of Three”.28 Fragments also had to have at least
three heavy atoms, not counting the linker atom, to be
considered as such. Furthermore, fragments were filtered
according to structural criteria found in the Supporting
Information to ensure that they were, for example, not
completely solvent-exposed.
If a fragment had been extracted before from another ligand,

the iteration continued until a new unique fragment was found.
If no unique fragments could be extracted, the last extracted
duplicate fragment was used. The crystal conformations of the
fragments were saved for later comparisons. The screening
databases for validation were created using SMILES of the
fragments according to the procedure outlined in the RVM
generation, making the conformer sampling and subsequent
descriptor generation independent of the initial crystal structure
coordinates.
The self-growing validation is run by using the descriptor

comparison procedure outlined in the Descriptor Generation
section. A screening is performed and the best scored pose of
every fragment that generated less clash than a given tolerance is
written to a hit list. For all sets based on the PDBbind refined set,
the clash tolerance is 2 Å, which is derived from the fact that only
complexes with less than 2 Å of clash are accepted into the

Figure 6.Comparison of a fragment descriptor with a pocket. The light
blue cylinders are the sampling rays of the descriptor. All three elements
used for scoring (clash, close contact, and filled volume) are shown
along sampling rays. The dashed line represents the distance that is
considered close enough for something to be a close contact.

Figure 7. Overview of the self-growing validation. A bond is chosen,
according to filter criteria, shown in the top left image as a blue arrow.
Ligands are cut at this bond in their pockets and used as queries to see if
they can be reconstructed. The fragments cut off of the ligands are
extracted and inserted into the fragment database to be queried. “Lk1”
represents the linker resulting from the cutting procedure.
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refined set.27 Furthermore, the depth and radius of the
descriptor cylinder were fixed at 10 Å.
The screening hit list is evaluated in the following ways. The

hit list is scanned for the fragment initially extracted from the
query complex to determine whether the ligand could be
reconstructed using the shape descriptor. If the reconstructed
ligand is found in the hit list, the pose of the reconstructed part is
compared to the crystal conformation. A pose is considered
acceptable if the root-mean-square deviation (RMSD) to the
crystal conformation is less than 2 Å. In the absence of a
convention specific to fragment growing, the 2 Å RMSD
threshold is taken from ligand docking.29 It is important to note
that all RMSDs are calculated only for the atoms that are actually
grown and not for the whole ligand. The self-growing set can also
be used to measure the runtime of queries using the shape
descriptor. To this end, the time it takes to process each query is
recorded.
Parameterization. Several components of the shape

description require parameterization, first and foremost the
discretization of the cylindrical descriptor itself. The RVM has at
least two parameters, besides the depth and radius of the
cylinder, that determine its shape: the depth interval between
the generation of sampling rays and the number of sampling rays
generated at each depth interval. Width ranges are also
influenced by the size of their bins. Parameterization was
performed using a grid search across the parameter space. The
grid search was performed on the self-growing set. The
parameters can be found in Table 1.
The discretization is parameterized independently of the

scoring and the optimum was determined by how many
acceptable poses were generated. One discretization that is not
an optimum will be chosen to highlight the effect that finer and
coarser discretizations have on runtime. For the sake of better
comparison, it will be a combination of optimal discretization
parameters from both descriptor variants. Not all discretizations
react equally to different parametrizations, which is briefly
discussed in the Supporting Information. The scoring heuristic
is left at an initial guess during parametrization of the
discretization. The weights for the initial guess were 1 for filled
volume, 2 for close contacts, and −4 for clashes and a close
contact distance of 2.0 Å.
The scoring heuristic also requires proper parameterization of

its three scoring weights for filled volume, close contacts, and
clashes as well as the close contact distance cutoff. The numeric
values of the scoring weights are not necessarily meaningful but
their relation to each other is, which is why mainly the relation is
explored. The self-growing set was used in a grid search of
parameters. The filled volume weight was used as a baseline
parameter and it was assigned to be 1. The rest of the parameters
were sampled starting from a value and proceeding toward an
end value in regular step sizes. The grid parameters are given in
Table 2.
Robustness. Structural data are always subject to exper-

imental error,30 which is why robustness experiments were

performed to measure the capacity of the RVM to compensate
for perturbations in the 3D coordinates of the query. The self-
growing set was used to create perturbed queries by translating
or rotating the ligand core relative to its pocket. The axes of
rotation and translation were defined by setting the x axis to the
exit bond, the y axis to an arbitrary orthogonal of the exit bond,
and the z axis to the cross product of the previous two axes.
Poses were generated by rotating and translating ligand cores
along and around these axes, starting at a minimum perturbation
up to a maximum perturbation in regular step sizes. All
perturbations were applied in a negative and a positive direction
along or around the axes. The transformation parameters are
given in Table 3.

Figure 8 shows an example of a ligand core translated by 0 or
0.5 Å along the three axes as well as that same ligand core rotated
along these 3 axes by 0 or 30°. Some poses of the ligand core
generated with the sampling parameters above already

Table 1. Grid Search Parameters for the Discretization of Descriptorsa

parameter

depth interval 0.5 Å 1.0 Å 1.5 Å 2.0 Å
rays per depth 72(5°) 36(10°) 24(15°) 18(20°) 12(30°) 6(60°)
bin size 0.25 Å 0.5 Å 0.75 Å 1.0 Å 1.25 Å 1.5 Å

aAll combinations of all parameters were used. The values given in the round brackets denote the angle between the rays if the number before the
brackets is used as the number of rays per depth.

Table 2. Grid-Search Parameters for the Simple Scoring
Heuristica

parameter start end step size

clash weight −1 −50 −5
close contact weight 1 10 1
close contact cutoff distance 1.0 Å 3.0 Å 0.5 Å

aAll combinations of all parameters were used. The clash weight
started at −1 but continued in multiples of −5, so the first three
parameters were −1, −5, and −10.

Table 3. Transformations for the Robustness Validationa

transformation start end step size

translation 0.5 Å 3.0 Å 0.5 Å
rotation 15° 60° 15°

aTranslations and rotations were performed separate of one another.

Figure 8. Translational and rotational sampling of a ligand core. Both
transformations are based around three axes where the x axis is the
direction of the exit bond, the y axis is an arbitrary orthogonal to x, and
the z axis is the cross product of x and y. The translational parameters
are either 0 or 0.5 Å for each axis. The rotational parameters are either 0
or 30° for each axis.
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contained a substantial amount of clash with the pocket. If an
atom pair of a pocket atom and an atom of the transformed
ligand core caused more than 2 Å of clash, the pose in question
was discarded, which mimics the quality criteria of the PDBbind
refined set.27

Cross-Growing Validation. The cross-growing set was
created to simulate a growing scenario closer to real hit-to-lead
optimization workflows than the self-growing set described
previously. The idea of the data set was to mine pairs of ligands
bound to the same pocket but in different PDB structures that
could conceptually be grown from one another by extending or
modifying one part of one of the ligands.
A data set by Malhotra and Karanicolas that used shape

overlap as a measure of conserved binding mode was previously
used in the validation of fragment growing.22 Measuring
conserved binding mode by shape overlap does not take into
account changes in growing direction and is generally very
permissive of geometrical drift. For this reason, we have chosen
to create our own data set.
The tool SIENA31 was used to determine functionally

equivalent ensembles of pockets within the PDBbind refined
set v.2019. Detailed parameters for SIENA can be found in
Table S1 of the Supporting Information. The ligands of all
aligned pockets were compared to each other in a pairwise
maximum common substructure search to find a common core.
The bond connecting the variable parts to the common core was
used as the exit bond. The variable parts, in other words the
potential fragments, were filtered according to the same rules as
in the self-growing set. Furthermore, to ensure the bindingmode
of the two ligands was equivalent, the position and direction of
the exit bonds were compared. An overview of the procedure is
shown in Figure 9.

■ RESULTS AND DISCUSSION

Self-Growing Set Generation. The splitting and filtering
procedure was run on all 4852 ligands of the PDBbind refined
set v.2019. The filtering resulted in 3299 test cases and 1189
unique fragments. Table 4 contains a summary of the size of
both datasets. Over 1600 ligands did not generate any fragments
that were compatible with the “Rule of Three” and the structural

filters. Visual inspection reveals a few of the reasons for this at a
glance. One reason is that many of these ligands consist of a
scaffold with very little decoration. An example of this is the
ligand of 187L, which is a para-xylene. A methyl fragment has
fewer than three heavy atoms and is, therefore, not extracted as a
growing fragment. Other examples of sparsely decorated
scaffolds and thus few chances at extracting suitable fragments
include steroidal ligands and various annealed heteroaromatic
ring scaffolds. A significant number of fragments are extracted
multiple times, which results in the difference between the
number of test cases and unique fragments. The property space
of the fragments and how it is affected by duplicates can be found
in the Supporting Information.

Parameterization. Optima for the discretization and
scoring parameter grid-search were those that maximized the
number of acceptable poses generated. The optima for first
intersection and width ranges variants of the RVM can be found
in Table 5. An alternative discretization was chosen for the width

ranges variant to illustrate the influence of discretization on
runtime. The “coarse width ranges” discretization was chosen as
a combination of the coarser optimal first intersection
discretization and the optimal width range discretization. The
depth interval and rays per depth parameter were taken from the
optimal first intersection discretization and the bin size
parameter from the optimal width range discretization, which
resulted in a coarser width range discretizationmore comparable

Figure 9. Generation of the cross-growing set. Functionally equivalent pockets from the PDBbind refined set are aligned to binding site ensembles.
These ensembles pass through structural checks to ensure the ligands have a common core and the binding mode of that core has not changed
significantly. The variable parts attached to the common core are extracted as fragments and the common core as well as the pocket can be used as a
query to find them again. The examples are from the PDB codes 1BJU and 3GY2.

Table 4. Size of Both Validation Data Sets in Test Cases and
Unique Fragments

test cases unique fragments

self-growing set 3299 1189
cross-growing set 326 155

Table 5. Final Discretizations for All Three RVM Variants

descriptor variant depth interval (Å) rays per depth bin size (Å)

first intersection widths 1.5 18
coarse width ranges 1.5 18 0.75
width ranges 0.5 72 0.75
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to the optimal first intersection discretization. Scoring
parameters were determined for all three of these discretizations
(Table 6) and although the absolute values of the parameters

vary, the relation of the scoring parameters, especially clash and
close contact, stay similar. The close contact distance for coarse
width ranges is somewhat of an outlier and highlights that the
close contact distance also fulfills the role of keeping the
fragment in the pocket and not only describing shape
complementarity.
In general, the optimization surfaces of both parameter-

izations were very flat. All grid points of the first intersection
discretization grid search were within 10% of their optimum.
Only 3.8% of the grid points in the scoring grid-search for the
first intersection variant were further than 10% away from their
optimum. Only at the extremes, the granularity of the
discretization can conceptually be associated with functional
differences of the descriptor. An example of this is the increase of
RMSD to crystal structure observed when the number of rays is
decreased (Figure S6). Lowering the number of rays decreases
the number of rotational comparisons performed and thus the
resolution at which rotational poses are sampled.
Performance on the Self-Growing Set. All three

descriptor variants were run against the self-growing set. The
results can be found in Figure 10a. 96% (3158) of the ligands in
the self-growing set could be reconstructed in any pose. 82%
(2716) of the ligands could be reconstructed in an acceptable
pose (i.e., with less than 2 Å RMSD to the crystal structure). 99%
(3287) of the ligands could be reconstructed in any pose using
width ranges and 86% (2822) of the ligands were reconstructed
with a pose with less than 2 ÅRMSD to the crystal structure. The
coarse width range discretization managed to reconstruct 99%

(3292) as well and 85% (2793) of the ligands were
reconstructed in an acceptable pose.
First intersection widths fail to reconstruct a little over 4%

(141) of the test cases in the self-growing set. Width ranges and
coarse width ranges fail to reconstruct a little under 1% (12) of
the test cases. The test cases that fail using width ranges are
almost a subset of the test cases that fail using first intersection
widths. The coarse width range discretization performs slightly
better at reconstructing ligands than the optimal width range
discretization and is only unable to reconstruct seven ligands.
This is probably because of its more unspecific discretization. It
suffers for that slightly when it comes to the number of
acceptable poses. In general, both width range variants are better
at generating acceptable poses. All results only consider the top
pose as scored by the pose scoring heuristic. Considering more
poses does increase the quality of the results as shown in Figure
S13 of the Supporting Information but becomes untenable in a
scenario where thousands of fragments are to be grown into a
binding site.
First intersection widths and width ranges both fail to

reconstruct 5T9W. Figure 11 illustrates this. Although the

attached fragment and the ligand core are only clashing
superficially, the clash is sampled in a way that makes it seem

Table 6. Final Scoring Parameters for Both Descriptor
Variants

descriptor variant clash close contact close contact distance (Å)

first intersection widths −30 5 3.0
coarse width ranges −20 5 5.0
width ranges −50 10 3.0

Figure 10. Results of performing the self-growing (a) and cross-growing (b) validation. The size of the bars represent which percentage of the ligands
of the test cases could be reconstructed. The color of the stacked bars denote the RMSD of the poses according to the provided legend. The RMSD is
always measured only between the atoms actually grown and the crystal structure or aligned structure.

Figure 11. Overestimation of clash in the 5T9W test case. The blue
arrow denotes the exit bond and the growing direction. The ligand core
and the fragment needed to reconstruct the 5T9W ligand clash
superficially but because of the way the clash is sampled, it is estimated
to be more severe than it is. The fragment is in the closest pose to the
crystal structure that the descriptor using width ranges can generate.
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far more severe. It is refound using coarse width ranges at a clash
tolerance of 2 Å because of the difference in discretization
between the descriptor variants. The first intersection widths
severely oversample the clash because of everything after the first
point of clash, up to the width of the fragment descriptor, being
considered as clash, without taking any interruptions of the clash
into account. This is one example of the functional difference
between width ranges and first intersection widths.
The test case generated from 1B1H is a better example

demonstrating the functional difference between width ranges
and first intersection widths. Figure 12 shows that the ligand

reconstructed in the 1B1H test case requires a subpocket to be
sampled that will not be sampled using first intersection widths.
The growing direction in the 1B1H test case enters leucine 401.
For intersection widths, this results in a completely closed
pocket beyond that point. The point of first intersection with the
pocket will be the origin of the sampling rays because the rays
originate in an atom. Width ranges also generate filled bins for
the leucine, as seen in Figure 12, where some hydrogen clash is
generated between the leucine and the fragment, but enough of
the subpocket is sampled so that the phenyl ring can enter and
generate a pose with a low RMSD to its crystal structure.
Width ranges perform better at the task of reconstructing a

ligand in its own pocket, or self-growing, than first intersection
widths. The main advantage of first intersection widths is their
runtime. Runtimes for all 3 RVM variations can be found in
Table 7. A query in the self-growing set takes on average 6 s using
width ranges and querying a database that contains all fragments
of the self-growing set. In terms of conformations screened,
width ranges screen 1445 conformations per second. First
intersection widths on the other hand take on average 119ms for
a query in the self-growing set. In terms of conformations
screened that means first intersection widths screen 77,221
conformations per second. This difference in runtime is heavily
dependent on the discretization of the descriptor. The coarse
width range discretization, which is much closer in discretization
to first intersection widths than width ranges, takes on average
283 ms for a query in the self-growing set, meaning 32,366

conformations per second. Machine specifications for the
benchmarking run are given in Table S3 of the Supporting
Information.
On a technical level, any difference in speed independent of

discretization is a difference in the comparison of fragment
sampling rays and pocket sampling rays. As mentioned in the
Descriptor Generation subsection of Methods, first intersection
widths employ comparisons of numbers to each other, whereas
width ranges perform multiple bitwise operations and are,
therefore, more complex. The first intersection width compar-
ison only involves subtracting fragment and pocket widths from
one another. Both of these operations, bytewise AND followed
by bit tests, as well as subtracting numerical types, are quite low
level and it makes sense that they perform comparably, meaning
their runtimes are within 1 order of magnitude of each other.

Robustness. Test cases for the robustness experiment were
generated as outlined in the Robustness section in Methods. A
little over half of all translational poses and a little over 80% of all
rotational poses were filtered out because of clash the
transformation introduced between the ligand core and its
pocket. It appeared that rotation within the pocket was more
restrained than translation.
Figures S8 and S9 show the results of running the robustness

experiment with the fully parameterized variants of the RVM. At
2 Å of translational perturbation, there is a clear difference of
about 10% between width ranges and first intersection widths of
whether the ligand could be reconstructed. At 45° of rotational
perturbation, the difference between the descriptors is similar.
Width ranges and first intersection widths seem to diverge in
how much performance they lose with respect to 3D
perturbations. To a degree, this is visible in the RMSDs of
ligand poses to the crystal structures as well. The number of
poses with an RMSD of below 2 Å drops a lot faster with respect
to perturbation than the number of ligands reconstructed. At the
extremes of the translational and rotational perturbations, all
RVM variants converge to a similar amount of ligands
reconstructed with acceptable poses.
The robustness advantage of the width ranges RVM may be

because of its better description of a pocket. First intersection
widths may be more sensitive to 3D perturbations that occlude
subpockets because of unfavorable angles of the descriptor to
the pocket. These occlusions can change the first intersection
widths so drastically that a ligand cannot be reconstructed in its
own pocket. Width range descriptors will also change but are not
dependent on the first intersection of a sampling ray with the
pocket and, therefore, not as sensitive to occlusions.

Cross-Growing Set Generation. The cross-growing set
procedure outlined in Methods was run on all 4852 structures in
the PDBbind refined set v.2019. For 4572 of these structures,
SIENA was able to find at least one functionally equivalent
pocket. The aligned ligands were checked for a common core

Figure 12. 1B1H test case demonstrates the difference between width
ranges and first intersection widths. The blue arrow denotes the exit
bond and the growing direction. Both descriptors clash with leucine 401
shown at the bottom in licorice. Only width ranges sample the pocket
occupied by the fragment necessary to reconstruct the ligand of 1B1H.
First intersection widths cannot sample the occupied subpocket.

Table 7. Runtimes of the Three Descriptor Variants on the
Self-Growing Seta

descriptor variant
average query runtime

(ms)
conformations per

second

first intersection widths 119 77,221
coarse width ranges 283 32,366
width ranges 6355 1445
aThe screening databases are made up of 9188 conformations except
for the screening database for width ranges, which is made up of 9185
conformations.
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with a conserved binding mode and 3714 such cases were found.
After filtering by the “Rule of Three” and the structural filters,
326 cross-growing cases using 155 unique fragments were left.
This is an order of magnitude fewer test cases than in the self-
growing set as can be seen in Table 4. An account of what filters
were most aggressive in reducing the data set size be found in the
Supporting Information.
In theory, a cross-growing case could be seen as symmetrical:

both ligands are bound to the same functionally equivalent
pocket and so it should be possible to grow both ligands into
both pockets. In practice, over half of the complementary
fragments that could be generated for each symmetric
application of a cross-growing test cases are filtered out by
molecular properties or structural filters. Many of these
fragments have fewer than three heavy atoms or, in the case of
a pure growing without substituent replacement, consist only of
a hydrogen.
Performance on the Cross-Growing Set. The results

showing the performance of the cross-growing data set can be
found in Figure 10b. 90% of the ligands could be reconstructed
using first intersections widths. Width ranges and coarse width
ranges could reconstruct 95 and 99% of the ligands, respectively.
As discussed in Methods, the RMSD was calculated with respect
to the pose of the aligned ligand generated by SIENA. The
percentage of ligands reconstructed with acceptable poses
(meaning an RMSD below 2 Å) was around 63−66% for all
descriptor variants with the coarse width ranges discretization at
the upper bound.
Figure 13 shows a few example results of the cross-growing set

taken from the run using coarse width ranges. Figure 13a shows
an isopropylamine being replaced by an isobutyl in a lipophilic
side chain replacement (4O07 grown in 4O05, HSP90). Figure

13b features a very constrained growing in which a narrow grove
separates two subpockets. In this case, an Iodine at an aromatic
ring is substituted for an alkyne with a terminal hydroxy group
(4AGN grown in 4AGM, p53). In Figure 13c, two binding sites
of a phosphodiesterase are aligned with a visible translational
error between the ligands. Nonetheless, the growing manages to
recreate the conformation of the larger ligand, and achieve an
acceptable RMSD (5C2A grown in 5C28, PDE10A). The
alignment error does not affect the growing directly, seeing as
the reference structure is only used for comparison and explicitly
excluded from the growing workflow, but this is an example of an
alignment error contributing to the RMSD. Minodronate is
grown from zoledronate in Figure 13d (2E92 grown in 2E91,
geranyl−geranyl pyrophosphate synthase).
Because of protein flexibility, the fragments that are grown

into the pockets of the cross-growing set may not always fit into
the amino acid side chain conformations of their complementary
pocket. An example of this is the test case generated for 2AX9
and 3B67 (androgen receptor) shown in Figure 14. Because of
the change in the position of the tryptophan, the ligand of 3B67
cannot be grown into the pocket of 2AX9 by any of the
descriptor variants. A few such cases are present in the cross-
growing set. Simply increasing the clash tolerance in these cases
would result in an unnecessarily high false positive rate. A better
solution would be to address this problem with a description of
protein flexibility.
A problem that is exacerbated in the cross-growing set is the

fact that a purely shape-based method has significant problems
recreating directed interactions between the protein and the
ligand. In the self-growing set, each fragment had a more or less
fitting subpocket that pushed the fragment into its correct
orientation, thereby conserving directed interactions. In the

Figure 13.Collection of the results from the cross-growing validation. The gray structures are the ligands of the crystal structure that was grown in. The
orange structures represent the ligands that were aligned to this binding site and that the cross-growing validation attempts to grow. The blue structures
are the parts actually grown.
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cross-growing set, coordinates of the residues in the binding site
drift somewhat between the pair of aligned structures. This can
result in poses shown in Figure 15. The descriptor using first

intersection widths has flipped the metal coordinating
sulfodiimine of the ligand away from its interaction partner.
The RVM only sees the sterical limitations of the subpocket it is
growing into and cannot properly differentiate between the
orientations of the methyl sulfodiimine functional group. The
coarse width range discretization does find a discriminating
pattern in the sterics of the subpocket but it, too, cannot properly
grasp the electrostatics of the situation; this would require a
direct description of protein−ligand interactions.

■ CONCLUSIONS
It is encouraging to see such a simplistic descriptor perform well
on statistical sample sizes of real data. Both the simpler first
intersection width approaches, as well as the only slightly more
complex width range approach, show very reasonable perform-
ances of around 80% of test cases reconstructed at an RMSD of
less than 2 Å in self-growing evaluations and around 60% of test

cases in cross-growing evaluations. While a comparison can be
drawn between self-docking and self-growing, as well as cross-
docking and cross-growing, both growing problems are easier
than their corresponding docking problems. This is because of
the fragments being smaller and less complex, thus not
necessarily requiring an overly complex docking workflow, but
also because of the constraint of directionality imposed on the
system through the exit bond of the ligand core. By leveraging
these circumstances of the fragment-growing scenario, it is
possible to create very fast descriptors that can screen over
10,000 conformations per second, with good accuracy.
There is still significant room for improvement of the

runtimes of both comparison algorithms. A few optimizations
have already been applied, such as using integers instead of floats
to store the first intersection widths. All optimizations have been
high level to ensure cross-platform compatibility and with
maintainability as well as flexibility of the workflow in mind. The
method as described above leaves a lot of creative freedom for
implementation specific optimization on a molecular, descriptor
or database level. At the moment, the method already runs very
quickly even on weaker laptops and user machines.
In general, a full docking workflow will perform better than

this simplistic shape-descriptor, mainly because of its more
complex description of the protein and the ligand. A few
limitations of the shape-based descriptor have been discussed,
which will need to be addressed to elevate it from a coarse and
fast prefilter to a full fragment-growing tool. First and foremost,
we have seen that the descriptor lacks a comprehensive
description of protein−ligand interactions. Other authors have
seen marked improvements in the performance of shape-based
descriptors after adding interaction descriptions.32 In the cross-
growing set, we encountered expected problems related to
protein flexibility, whereby subpockets would be blocked by side
chain movements. If the binding site was given as an ensemble of
representative side chain orientations, a query could be
generated for each orientation and the result of all queries
combined when generating the eventual hit list. Similar
approaches are used in docking.33 A significant difference
between our workflow and a docking workflow is that a bond is
formed. To ensure this bond obeys the rules of structural
chemistry, a few considerations have to be made about bond
lengths and angles. A further improvement of that could be a
filtering step based on torsion angle likelihood, so that the
generated poses are not subject to torsional strain. A method
that complements the speed of searches using the shape-based
descriptor, is a lookup using SMARTS and pregenerated
knowledge-based torsional statistics.34

The performance of docking workflows can be split into
several categories. Two of these categories are pose prediction,
which is the ability of a docking workflow to correctly identify
the native ligand pose, and ranking, which is the ability of a
docking workflow to correctly rank known ligands of a target
according to their binding affinities.29 If we apply these
categories to our workflow, then this work has been exclusively
dealing with the pose prediction problem of correctly identifying
the native fragment pose. A correct ranking of fragments relative
to each other is necessary for our workflow to be useful in real
fragment-growing scenarios. Previous work exists where classical
docking workflows, and therefore their scoring functions and
optimization schemes, were applied to the problem of fragment
elaboration.8

In summary, we have described and analyzed variants of
shape-based directional descriptors for the purpose of fragment

Figure 14. Test case generated for 2AX9 and 3B67. Tryptophan 741
changes its position, which opens up a part of the pocket in 3B67. This
is not the case in 2AX9 and means that the ligand of 3B67 cannot be
grown into the binding site of 2AX9 without significant clash.

Figure 15. Test case generated for 1CBX and 1CPS (carboxypeptidase
A) and two poses of the reconstructed ligand generated by first
intersection widths and coarse width ranges. Carbons of the fragment
are colored red and blue for coarse width ranges and first intersection
widths, respectively. The blue pose generated by first intersection
widths flips the metal coordinating sulfodiimine of the ligand away from
its interaction partner, the zinc atom.
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growing. These have proven to performwell on statistical sample
sizes of real world data. Their simplicity results in fast runtimes
that permit interactive screenings of large fragment collections.
The width range variation performed slightly better on most
tasks at the cost of a more complex implementation. The first
intersection width implementation was generally faster but had a
few functional problems associated with it that were of minor
statistical importance. In general, shape-based descriptors are
suited as coarse and fast prefilters in fragment growing but
require some more sophisticated components, such as a
comprehensive protein−ligand interaction description, to
achieve a higher performance. These more sophisticated and
computationally intensive components would only have to be
run on a subset of the input fragments leading to an efficient
fragment-growing workflow to add to the toolset of computa-
tional FBDD.
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Abstract
Fragment-based drug design is an established routine approach in both experimental and computational spheres. Grow-
ing fragment hits into viable ligands has increasingly shifted into the spotlight. FastGrow is an application based on a 
shape search algorithm that addresses this challenge at high speeds of a few milliseconds per fragment. It further features 
a pharmacophoric interaction description, ensemble flexibility, as well as geometry optimization to become a fully fledged 
structure-based modeling tool. All features were evaluated in detail on a previously reported collection of fragment grow-
ing scenarios extracted from crystallographic data. FastGrow was also shown to perform competitively versus established 
docking software. A case study on the DYRK1A kinase, using recently reported new chemotypes, illustrates FastGrow’s 
features in practice and its ability to identify active fragments. FastGrow is freely available to the public as a web server at 
https://​fastg​row.​plus/ and is part of the SeeSAR 3D software package.

Keywords  Fragment-based drug design · Molecular shape · Fragment growing · Fragment evolution · Structure-based drug 
design · Molecular docking

Introduction

Fragment-based drug design or discovery (FBDD) has 
become a mature paradigm in both the hit generation, as 
well as the lead optimization parts of early phase pharma-
ceutical research [1]. Three distinct pillars underpin FBDD 
techniques: fragment library design, fragment screening, and 
optimizing fragments into lead compounds, typically using 
linking, merging, and growing [2]. Computational methods 
have emerged to support each of these three areas specifi-
cally [3–6]. There is a special focus on the optimization of 
fragments to leads [7, 8], due to its methodological overlap 
with the general hit-to-lead optimization problem. A more 

general overview of FBDD and computational methods sup-
porting FBDD can be found in dedicated reviews [2, 9, 10].

FBDD is frequently, if not almost exclusively, a struc-
ture-driven approach, meaning it relies on experimentally 
resolved or modeled structures of fragments that are bound 
to the target of interest. One popular method to progress 
from a low affinity fragment hit to a more traditional hit or 
lead is fragment growing [2, 11]. In fragment growing a 
molecule bound to a target is extended by attaching a suit-
able additional fragment. This is a common scenario in drug 
design that has inspired both academic developers as well 
as software suppliers to create specialized fragment growing 
software [12–15].

Structure-based fragment growing software is often based 
on docking methodology [8, 10, 13], which was initially 
developed with full-sized ligands in mind. Furthermore, 
there is very little consensus on how fragment growing 
should be validated. A few attempts have been made to 
standardize the validation of docking fragments into empty 
pockets [16, 17], but fragment growing validation is per-
formed heterogeneously. This leads to a situation where it 
is unclear how appropriate and successful individual meth-
odologies used for fragment growing actually are.
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In this work we will describe our fragment growing work-
flow FastGrow based on the Ray Volume Matrix (RVM) 
shape descriptor [18], a pharmacophoric interaction descrip-
tion, and JAMDA geometry optimization [19]. Its features 
will be statistically evaluated on a previously reported data 
set of fragment growing steps extracted from crystallo-
graphic data [18] and compared to DOCK, a well-known, 
open source docking suite [20].

Furthermore, we will demonstrate FastGrow’s capa-
bilities in the context of an FBDD campaign on the target 
DYRK1A (Dual Specificity Tyrosine-phosphorylation-reg-
ulated Kinase 1A). DYRK1A is a kinase implicated in vari-
ous forms of cancer, neurodegenerative disease, and Down’s 
Syndrome. We will focus on the publications by Walmsley 
et al. [21] and Weber et al. [22].

Methods

FastGrow workflow

The FastGrow workflow is a combination of several recog-
nizable or previously described features that in combina-
tion facilitate efficient structure-based fragment growing. 
Beginning at pose generation and scoring those poses with 
an empirical scoring function, FastGrow is also capable of 
searching with interaction constraints and built-in ensemble 
flexibility.

Ray volume matrix pose generation

FastGrow is primarily based on the Ray Volume Matrix 
(RVM) shape descriptor [18]. RVM shape screening is a 
fast way to generate accurate poses for thousands of frag-
ments in a few seconds. In short, it uses a shape description 
symmetric to both pockets and fragments, to perform rapid 
comparisons and orient fragment conformations in a binding 
site. The input is a pre-calculated fragment database and a 
fragment bound to its target. The RVM is very fast and gen-
erates accurate poses, but it is limited to shape comparison.

JAMDA scoring and optimization

A remedy to this limitation is the inclusion of an interaction 
aware scoring function. Here we chose the JAMDA scoring 
function [19], an empirical scoring function that is modeled 
after well-known scoring functions such as PLANTS [23], 
ChemScore [24], and the original Böhm scoring function 
[25]. Thus, the JAMDA scoring function contains many 
similar score contribution terms. Its main novelty is its lim-
ited step length gradient-based optimization, which results 
in stable and consistent geometry optimizations.

In FastGrow JAMDA can perform the role of rank-
ing fragments in the final output hit list and optimizing 
the poses that the RVM search produces, especially with 
respect to intermolecular interactions. JAMDA has sev-
eral common interaction terms and can compensate for 
minor orientation errors in interacting groups with geom-
etry optimization. FastGrow mostly performs restrained 
JAMDA geometry optimization. A restrained JAMDA 
geometry optimization tries to keep the position of the 
input core more or less the same as it optimizes the exten-
sions. This is achieved with a quadratic penalty term that 
is applied if a core moves more than 0.5Å away from its 
input position.

Interaction constraints

A set of optional interaction constraints, which are modeled 
after generic pharmacophore features, can be used to guide 
the pose generation and filter fragments that cannot fulfill 
all interactions. The pharmacophore features can encode a 
number of types, most prominent of which are hydrogen 
bond donors, hydrogen bond acceptors, and hydrophobic 
points. Hydrophobic points refer to geometric points that 
abstract hydrophobic complementarity in a pharmacophoric 
way. Interaction constraints are represented by a point with 
a type and a tolerance radius. They will be referred to as 
search points. This is one of the most effective ways through 
which the user can directly interact with the workflow.

In the FastGrow web application, hydrogen bond acceptor 
and donor search points are generated according to inter-
action geometries defined by Nittinger et al. [26]. Hydro-
phobic search points are generated based on the definition 
in JAMDA [19], which is itself based on the ChemScore 
definition [24]. Search points are built from the predicted 
protein-ligand interactions and are placed on the ligand side 
of the interaction.

Ensemble flexibility

An input fragment can be positioned in multiple aligned 
binding sites so that it can be simultaneously screened 
against a database of fragments. This means multiple con-
formations of amino acid side chains and even backbone 
movements can be mimicked when generating the growing 
hits. When a fragment is scored against an ensemble only 
the best score of a fragment with respect to a member of the 
ensemble is used to position it on the hit list. This means that 
if a fragment conformation clashes with an amino acid side 
chain in three out of four conformations of the binding site, 
then the score of the fourth non-clashing, and by implication 
highest scoring, binding site will be used.
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Feature validation

All statistical validation was done on either the cross-grow-
ing data set that was established in the previous paper on 
the RVM [18] or subsets of this data set selected for specific 
properties of the protein-ligand complexes.

The test cases of the cross-growing set simulate grow-
ing one ligand in a PDB structure using only the structural 
information of another, related PDB structure and its ligand. 
Both of these ligands are crystallized in the same binding 
sites, measured by sequence identity, and have a common 
core structure. The difference between them is one substitu-
ent/fragment with one single bond to the common core. 
The PDB structure of one ligand is used to create the test 
ligand by cutting it down to the common core and attach-
ing the necessary fragment. The pose of the test ligand can 
then be compared to the reference crystal structure of that 
ligand, which has remained unused until this point. Around 
300 such cases were generated for the PDBbind refined set 
v.2019 in the original publication, which contains more 
detail about the generation procedure [18].

The main evaluation metric used was the atom RMSD 
and whether it was above or below the conventional thresh-
old of 2Å. Only the RMSD of the fragment atoms was meas-
ured. Confidence intervals were estimated by exploiting the 
binomial nature of a binary less than 2Å RMSD classifier, 
which can be approximated by a normal distribution. Further 
information on statistical methods can be found in Sect. 2 of 
the Supplementary Information. All feature specific valida-
tion test cases were compared to corresponding test cases in 
the cross-growing set.

Maintaining interactions

The real-world use case that was simulated by the interac-
tion test cases is that a FastGrow user aims to maintain an 
important interaction when replacing or extending a sub-
stituent due to previous experience or external information. 
To this end, interactions were generated using the model 
discussed in the Interaction Constraints Sect. [19, 26] for the 
test cases of the cross-growing set. These were used as input 
and then regenerated later for the resulting pose. Interactions 
generated for the reference structure and the resulting pose 
were compared to see whether the input interactions could 
be maintained.

To ensure these interactions were stable across both bind-
ing site structures included in the cross-growing, search 
points were generated from interactions in the growing 
binding site and the reference binding site. The JAMDA/
ChemScore [19, 24] definition of hydrophobic interactions is 
quite permissive and may lead to many hydrophobic search 
points. In validation we only consider fully hydrophobic 
rings and terminal hydrophobic groups. A search point that 

was generated in one binding site structure was considered 
stable if a search point of the same type could be gener-
ated in the other structure within 2Å of it. The generated 
search points were then available as an input to FastGrow. 
A comparison was then performed of growings of FastGrow 
without search point information, with search point infor-
mation, and with additional restrained optimization. The 
resulting poses were compared with respect to how well 
they maintained the interactions by also generating search 
points for the grown poses. If the grown poses regenerated 
the search point within 2Å of the input search point, they had 
succeeded in maintaining the interaction.

Water replacement

In the second case that was used to validate interaction 
constraints, a user utilizes water molecules visible in crys-
tallographic structures to either create new hydrogen bond 
interactions or to simply “push” a water out of a binding 
site. A subset of cross-growing test cases was extracted by 
checking whether a water was replaced in the course of the 
growing. This was detected by calculating van der Waals 
(vdW) radii overlaps between waters in the binding site 
that was used for growing and the ligand to be grown. If 
the ligand to be grown and a water exceeded a 60% vdW 
overlap threshold, the water was considered to have been 
replaced by the ligand to be grown. Search points were gen-
erated for replaced waters and the ligand. If a search point 
that was generated by a water molecule was within 2Å of a 
search point of the same type being generated by the ligand, 
then the search point of the water was used as a query for 
the water replacement growing. For the purposes of steric/
hydrophobic water replacement, waters generated dummy 
hydrophobic interactions, in addition to the more physical 
hydrogen donor and acceptor interactions. The input for a 
water replacement was therefore the typical cross-growing 
input of a core in a binding site, as well as the search points 
generated by the replaced waters.

Handling binding site flexibility

To evaluate FastGrow’s ensemble flexibility implementa-
tion, we simulated a scenario where a user generates a set 
of representative binding site conformations and uses these 
to perform a growing. RMSD clustered ensembles of bind-
ing sites from the PDB were generated for all test cases of 
the cross-growing set using SIENA [27]. SIENA was run in 
the “docking” configuration, which implies, for example, 
binding site sequence identity. SIENA output was limited to 
five binding site conformations using the built-in all-atom 
clustering. The SIENA query binding site was the input 
binding site of the cross-growing test case in question, not 
the reference binding site. A minimum of two binding site 
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conformations was necessary for a test case to be included 
in the ensemble flexibility subset. Note that the reference 
binding site containing the ligand to be grown is excluded 
from the binding site ensemble.

Comparison to docking

To establish FastGrow in the larger context of structure-
based tools, it was compared to the well-known docking pro-
gram DOCK [20]. DOCK is a high-profile [28] open-source 
suite of tools that has been validated in similar scenarios [20, 
29]. The pose re-prediction capabilities of DOCK version 
6.9 were compared to FastGrow using the cross-growing 
set in two configurations: a full flexible cross/re-docking 
of the ligand to be grown and a fixed anchor docking that 
receives the common core of the two ligands as an input, just 
as FastGrow does.

The protein-ligand complexes for docking were prepared 
in the same way as in the internal FastGrow workflow, which 
involves removing all crystal waters as well as molecules that 
clash with the input core from the binding site. Binding sites 
were re-protonated using protoss [30], which replaces the 
protonation scheme that is used by the PDBbind refined set. 
The active site for docking was defined as all atoms within 
15Å of the native ligand. The binding site was chosen to be 
rather large so as to avoid any stability issues at its edges 
for the sphere generation. Spheres were generated by either 
the sphgen version included in the source code distribution 
or sphgen_cpp [31] when necessary. Those spheres within 
10Å of the native ligand were selected for docking. Docking 
grids were generated using the GRID implementation that 
was provided with DOCK. Unless otherwise specified, all 
parameters were set to defaults originating either from the 
software package, DOCK publications [20, 29], and/or the 
DOCK fans mailing list [32]. The scripts that were used to 
automate this process are available at https://​github.​com/​
rarey​lab/​dock_​scrip​ts. Only the actual call to DOCK after all 
input data had been pre-calculated was included in runtime 
measurements.

Anchored docking as implemented in DOCK handles 
input coordinates differently than FastGrow. FastGrow either 
freezes input coordinates or allows a minimal amount of 
movement in restrained JAMDA optimization. DOCK finds 
the largest rigid structure that is connected to a specified 
atom in the anchor. Unfortunately, as of DOCK 6.9 [33], it 
is not possible to rigidify structures manually, which means 
that in the worst case DOCK will still sample degrees of 
freedom in the input core. The atom specifying the anchor in 
our validation scenarios with anchored docking was always 
chosen to be the atom neighboring the linker atom. This was 
done to ensure the degrees of freedom of the growth vector 
were as comparable as possible to FastGrow. In the fragment 
growing enrichment case study the complete anchor was 

rigid, which meant that DOCK was not expected to sample 
any more degrees of freedom than FastGrow, and runtime 
comparison could be performed fairly.

DYRK1A case study

The first part of the DYRK1A case study simulated a frag-
ment hit optimization from a micromolar fragment (PDB 
code: 7A4R) to a nanomolar ligand (PDB code: 7A5N). 
Three fragment growings were performed that roughly cor-
responded to three areas of optimization in the publication 
by Walmsley et al. [21]. The three fragment growings were 
performed with FastGrow and with DOCK by full re-dock-
ing, as well as anchored docking. The generated poses were 
compared and discussed.

The second part of the DYRK1A case study described 
screening libraries of fragments with FastGrow. The idea of 
this enrichment study was to measure how well FastGrow 
could pick out fragments known to be very active from a col-
lection of generic fragments. Multiple high affinity ligands 
produced by collaborators at Vernalis and Servier contain 
a 2,6-diaminopyridine moiety. The diaminopyridine frag-
ment from PDB code: 7AJW was extended by a collection 
of known active fragments generated from Servier/Vernalis 
ligands, as well as a collection of property matched generic 
fragments created by BioSolveIT [34].

Three workflows were used for growing: FastGrow’s 
pose scoring, FastGrow with restrained JAMDA optimiza-
tion, and anchored docking with DOCK. All methods had 
to generate a pose for all fragments before these poses could 
then be scored. The workflow was designed to measure both 
the quality of the pose generation, as well as the screening 
power. Only fragments for which all methods could generate 
a pose were included in the statistics. After all fragments had 
been scored, the enrichment of all workflows was first com-
pared to the enrichment achievable by sorting with “Rule of 
Three” properties [35], which served as the baseline, and 
then to each other. Confidence intervals were calculated 
using bootstrap re-sampling similar to the procedure pre-
sented in Stein et al. [36]. Further information on statisti-
cal methods can be found in Sect. 2 of the Supplementary 
Information.

Results

The cross-growing set was regenerated on the PDBbind 
refined set v.2020 [37]. The procedure was the same as pre-
viously described [18], but resulted in more test cases due to 
the growth of the PDBbind. The previous cross-growing set 
contained 326 test cases and 155 unique fragments, whereas 
the new cross-growing set contained 425 test cases and 176 
unique fragments.



Journal of Computer-Aided Molecular Design	

1 3

The shape-based growing has improved slightly since the 
original publication [18] and recreated 66.8 ± 4.5% (95% 
confidence interval) of ligand poses at an RMSD less than 
2Å. Restrained JAMDA optimization at 70.8 ± 4.3% showed 
minor improvements in RMSD (Fig. S1). As shown in the 
section below, the changes it performed seemed to be more 
beneficial to individual interaction geometries than to the 
pose as a whole.

The small position changes a restrained JAMDA opti-
mization performed at the core atoms occasionally led to 
slightly higher RMSD. JAMDA was used in a restrained 
configuration that applied a quadratic penalty term to move-
ment of the core atom. These are assumed to already be 
in the correct position, but a certain amount of movement 
was necessary for correct optimization. A full run of the 
cross-growing set took around half an hour without JAMDA 
optimization and three and a half hours with optimization, 
as can be seen in Table 1.

Maintaining interactions

Search points were generated for all 425 test cases of the 
cross-growing set. 252 of these test cases generated at least 
one interaction that was stable across both binding site con-
formations. 85 acceptor search points and 21 donor search 
points were found in the cross-growing set. There were 
almost five times as many hydrophobic search points (a total 
of 532), than there were donor and acceptor search points, 
even though only terminal hydrophobic groups and “fully 
hydrophobic” rings were included. This was largely due to 
the very permissive definition according to ChemScore [24] 
in comparison to the geometrically constrained hydrogen 
bonds. The largest contributors to the number of hydropho-
bic search points were hydrophobic ring systems.

In general, the pose generation performance of grow-
ings with search points was better than for those without 
( 77.0 ± 5.2% vs. 64.3 ± 5.9% , see Sect. 4 of the Supplemen-
tary Information). It is, however, more meaningful to evalu-
ate the interaction geometries themselves that growings with 

search points produce. Figure 1 shows what percentage of 
interactions could be maintained by the grown poses. The 
purely shape-based growing conserved 62.4 ± 12.0% of the 
hydrophobic interactions, but had significant difficulties 
maintaining hydrogen bond acceptor and donor interactions 
at 30.6 ± 9.8% and 28.6 ± 19.4% , respectively. Shape-based 
growing had no way of telling where to place hydrogen bond 
interactions because it did not receive any search point infor-
mation and the RVM descriptor does not contain any elec-
trostatic information [18].

FastGrow using search points and FastGrow using 
restrained JAMDA optimization as well as search points 
both outperformed purely shape-based growing in conserv-
ing acceptors. FastGrow using search points had a success 
rate of 55.3 ± 10.6% and FastGrow using search points with 
optimization had a success rate of 68.2 ± 9.9% . Furthermore, 
hydrogen bond donor functionalities, as the most geometri-
cally constrained interactions in this set, seemed to profit the 
most from restrained JAMDA optimization after a search 
point query with 76.2 ± 18.2% of them being conserved. The 
upper bound to maintaining any interactions was the perfor-
mance of the pose generation. Search points with JAMDA 
optimization showed a very similar ability to maintain inter-
actions as the pose generation performance.

Water replacement

Water replacement test cases could be extracted for 162 
cross-growing test cases. 81 cases generated one search 
point for the water replacement query. 58 cases generated 

Table 1   Overview of the performance and runtime of FastGrow on 
the cross-growing set

FastGrow screens every unique fragment in the cross-growing set 
against every test case, which means the runtime per fragment is the 
full runtime first divided by 425 test cases and second divided by 176 
unique fragments. Machine specifications can be found in Sect. 1 of 
the Supplementary Information

Success rate Runtime [h] Runtime per 
fragment 
[ms]

Growing 66.8 ± 4.5% 0:31 24
Optimized growing 70.8 ± 4.3% 3:16 158

Fig. 1   Percentage of stable interactions that could be maintained in 
the cross-growing set by different methods. “Growing” represents 
purely shape-based growing. “Search Points” and “Optimized Search 
Points” represent growing with search points with or without subse-
quent restrained JAMDA optimization. The y-axis denotes what per-
centage of input interactions could be maintained during growing. 
The three most prominent interaction types are color coded according 
to the legend. The error bars are 95% confidence intervals
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two search points, which implied that in these test cases two 
waters were replaced by the ligand to be grown. The highest 
number of waters replaced by a ligand was four. Figure 2 
shows a few examples of the ligand to be grown overlapped 
with water in the binding site used for growing. While some 
of these waters were replaced by hydrophobic substructures, 
some were in positions that the ligand subsequently occu-
pied to make directed interactions with the binding site.

Although there was a difference in pose generation 
between purely shape-based growing with a 64.2 ± 7.4% 
success rate and water replacement with subsequent optimi-
zation at 72.8 ± 6.8% , it was not significant. The somewhat 
small effect may in part be a symptom of the comparatively 
few test cases. Water replacement does not seem to confer a 
significant general advantage and may be more useful in spe-
cific systems. Figure 3 shows a side chain of a quinolinone-
6-sulfonamide derivative crystallized in PDB code: 6MA4 

being grown into 6MA5. The purely shape-based growing 
without water replacement did not know about any of the 
interactions the carboxylic acid could make with the back-
bone and turned it away. Using the waters in the binding site 
led to the side chain fully stretching out and interacting with 
the backbone.

Ensemble flexibility

Ensemble test cases with at least two binding site confor-
mations, not including the reference PDB, could be gener-
ated for 246 cross-growing test cases. Almost half of the 
ensemble test cases (120) contained five binding site con-
formations. 29 ensemble cases had only two binding site 
conformations. Except for five test cases, the average all 
atom RMSD of the ensemble binding sites to the SIENA 

Fig. 2   Water replacement test 
cases that were extracted from 
the cross-growing set. The 
replaced waters are shown with 
the interactions that were used 
in the query to replace them. 
Yellow spheres are hydrophobic 
interactions and green cylinders 
hydrogen bond interactions. 
Binding site residues are light 
blue. The ligands are non-native 
to the binding site. The darker 
blue part of a ligand will be 
grown in a water replacement 
test case. a The ligand of 5ULT 
in 3GI6 (Gag-Pol polyprotein). 
b The ligand of 4AGO in 
4AGM (Cellular tumor antigen 
p53). c The ligand of 6MA4 in 
6MA5 (O-GlcNAc transferase). 
d The ligand of 6PGA in 6PG4 
(WD repeat-containing protein 
5). All 3D molecule images 
were made with the NGL 
viewer[38]

Fig. 3   Growing with and 
without water replacement. The 
purely shape-based growing 
is to the left and the one using 
water replacement is to the 
right. The binding site is from 
PDB code: 6MA5. The ligand 
of 6MA4 in gray is aligned to 
the binding site and used as a 
reference for RMSD calcula-
tion. The grown ligands are in a 
darker blue



Journal of Computer-Aided Molecular Design	

1 3

query was between 0 and 1.5 Å distributed around a mean 
RMSD of 0.74 Å.

Automatically generated binding site ensembles did not 
show a strong statistical improvement of the pose genera-
tion performance ( 69.3 ± 5.7% vs. 75.2 ± 5.4% , see Sect. 6 
of the Supplementary Information). It is well-known that 
ensembles tend to cause false positive hits in docking [39] 
and while many systems profited from ensembles, a similar 
amount generated poses with higher RMSDs.

When used appropriately, ensemble flexibility can make a 
significant difference [40]. Conformational changes of bind-
ing site residues may obstruct growing of a ligand bound 
in a different structure of that binding site. Figure 4 shows 
a shikimate precursor mimicking ligand from PDB code: 
3N76 that was grown into 3N7A and an ensemble of 4B6O 
and 4KIU. FastGrow could not grow the phenolic substitu-
ent of 3N76 into the groove that was defined by 3N7A. It 
needed information about the flexibility of the loop and the 
movement of a conserved Tyrosine to calculate a successful 
pose with less than 2 Å RMSD.

Docking comparison

The pose re-prediction performance of FastGrow was com-
pared to DOCK [20] on the cross-growing set. Only test 
cases where both methods could generate at least one pose 
were included in the statistics and only the top poses com-
pared. Anchored docking could not generate poses for 12 test 
cases and FastGrow could not generate poses for 5 test cases. 
One of these test cases overlapped, so 16 (4%) of the 425 test 
cases were excluded. A discussion of why molecules failed 
can be found in Sect. 7 of the Supplementary Information.

Figure 5 shows the performance of DOCK cross-dock-
ing and anchored docking versus FastGrow growing and 
growing with subsequent restrained JAMDA optimiza-
tion. Anchored docking with a success rate of 54.3 ± 4.8% 

outperformed cross-docking at 33.3 ± 4.6% , which is to be 
expected. Anchored docking received more input informa-
tion, i.e., the core of the cross-growing test case, which sig-
nificantly reduced the degrees of freedom in the system and 
therefore the potential for error. It is nonetheless an impor-
tant point to make that using all the input information avail-
able can significantly impact the correctness of a prediction.

Both growing at 67.5 ± 4.5% and growing with optimi-
zation at 71.4 ± 4.4% significantly outperformed anchored 
docking. It was unexpected to see FastGrow outperforming 
anchored docking. Both systems received the same input 
information and had been validated for this task. The dif-
ference probably arose in how sensitive both systems were 
to steric clashes with the binding site. FastGrow has a com-
paratively high clash tolerance in the initial pose generation, 
which produced many poses a typical docking workflow 

Fig. 4   Growing in a binding site with a highly flexible loop [41]. 
To the left in purple is PDB code: 3N7A. To the right are 4KIU in 
orange and 4B6O in blue. All are structures of the 3-dehydroquinate 
dehydratase. The conserved TYR24 is in light blue. The ligand atoms 

in darker blue were grown by FastGrow in the 4KIU/4B6O ensemble, 
which was not possible in 3N7A alone. The reference ligand from 
3N76 is in gray

Fig. 5   Performance comparison of DOCK in a “Cross Docking” and 
an “Anchored Docking” to FastGrow with or without subsequent 
restrained JAMDA optimization. The error bars are 95% confidence 
intervals
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would have rejected [18]. Restrained JAMDA optimization 
then resolved these clashes with minor geometry adjust-
ments. The permissiveness of the pose generation may have 
been able to sample the sometimes uncomfortable fit of a 
non-native ligand better than a more clash sensitive system.

DYRK1A case study

DYRK1A is one member of the Dual Specificity Tyrosine-
phosphorylation-regulated Kinases. Its expression pattern 
suggests a role in the central nervous system [42], which 
supports its implication in neurodegenerative disease [43] 
and Down’s Syndrome [44]. Furthermore, DYRK1A is sus-
pected to be involved in some of the pathways that lead to an 
increased cancer risk for individuals with Down’s Syndrome 
[45]. Servier and Vernalis recently published a collection of 
novel and highly active inhibitors for DYRK1A that were 

produced in a collaborative FBDD campaign in Walmsley 
et al. [21] and Weber et al. [22].

Growing a ligand from a fragment

Walmsley et al. discovered fragment 1 (PDB code: 7A4R) 
as one of their micromolar hits (DYRK1A cKi 1.5 � M) 
from a fragment screening that was performed on DYRK1A 
using the Vernalis fragment library [21, 46, 47]. Toward 
the end of the publication they focused on compound 34 
(PDB code: 7A5N), a nanomolar ligand (DYRK1A IC

50
 7 

nM) that they described as “[...] a potent, in vivo-tolerated, 
selective inhibitor of DYRK1A kinase” [21]. Both fragment 
1 and compound 34 can be seen in Fig. 6. Both fragment 1 
and compound 34 exhibited canonical hinge binding [48] 
and compound 34 retained the central ring core of fragment 
1. Compound 34 could therefore be grown from fragment 
1 by exchanging the amine close to the hinge to a methyl, 
growing into the salt-bridge region, and using the vector 
defined by the carbonyl at the ring of fragment 1 to address 
the glycine loop. These three steps were performed with 
FastGrow and DOCK.

Exchanging the amine of fragment 1 to a methyl was an 
important step towards the selectivity of compound 34. The 
uncommon position of the LEU241 carbonyl opened up 
space near the hinge, which was specific to DYRK1A [21]. 
Computationally, the switch from amine to methyl should 
be trivial. Figure 7 shows the poses that were generated by 
DOCK and FastGrow. Both the anchored docking approach 
using DOCK and FastGrow generated a realistic pose for 
fragment 1 with a methyl. Cross-docking with DOCK, which 
was not constrained by the position of the core atoms, gener-
ated a pose that drifted out of the pocket. Clearly, not using 
the available information of the core atoms led to a poorer 
quality pose. Although the change in RMSD is minor, sev-
eral interaction geometries shifted into the unphysical range.

A hydrogen position at the pyrrole substructure of the 
pyrrolopyrimidine could be used to grow into the salt-bridge 

Fig. 6   Fragment 1 and compound 34 in a structure of DYRK1A. The 
structure and fragment 1 coordinates in gray are from PDB code: 
7A4R and compound 34 in orange comes from PDB code: 7A5N 
and is aligned to the binding site using SIENA [27]. The cartoon for 
the residues GLU160 to ASP178 was removed for clarity as it is in 
Walmsley et  al. [21]. All 3D molecule images were made with the 
NGL viewer [38]

Fig. 7   Amine to methyl exchange of fragment 1. Fragment 1 from PDB code: 7A4R is in grey. To the left are poses that were generated by 
DOCK cross-docking in light green and anchored docking in yellow. To the right is the pose that was generated by FastGrow in a darker blue
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region. The pyridine nitrogen of the aminopyridine to be 
placed there was expected to interact with LYS188, while 
the amine was expected to interact with GLU203. Figure 8 
shows the poses generated by the three methods. Using an 
anchored docking or a cross-docking configuration led to 
significantly different poses in this case. The cross-docking 
generated a pose very close to the eventual orientation the 
aminopyridine has in compound 34 (i.e., PDB code: 7A5N). 
Despite receiving the coordinates of the full methylated frag-
ment 1 as an input, the anchored docking optimized its pose 
out of the pocket. This could have been an overreaction of 
the underlying scoring function and optimization to minor 
clashes. Cross-docking did find a good pose, proving that 
both the scoring function and optimization could support 
one, however some strong effect perceived by the optimiza-
tion led to a poorer pose for anchored docking.

All methods initially placed the amine of the aminopyri-
dine away from GLU203. There are structures that support 
this as at least a reasonable position. Weber et al. modeled 
the ligand of PDB code: 7AJ2 with multiple conformations 
one of which has an aminopyridine that points away from 
GLU203. Most structures reported by Walmsley et al. and 
Weber et al., however, were modeled so that the aminopyri-
dine pointed toward GLU203. We could achieve a pose more 
consistent with the other structures by using the position of 
the water HOH603 to estimate a reasonable position for the 
amine to interact with GLU203. HOH603 was then removed 
as usual in the growing process. We could also use the posi-
tion of the amine in a different structure to achieve the same 
result. A search point with the correct type at that position 
guided FastGrow to place the amine near GLU203.

The last growing step involved replacing the carbonyl in 
the now modified fragment 1 with a difluoro-benzylamine, 
which interacts with the glycine loop. Figure 9 shows that all 
methods agreed on this step. The anchored docking, cross-
docking, and FastGrow all reproduced the conformation of 
the difluoro-benzylamine of compound 34 in 7A5N.

Each of the three growing vectors considered above 
resulted in at least one series of compounds in the publica-
tion by Walmsley et al. [21]. While this case study was there-
fore reductive, it demonstrated the three methods: DOCK 
cross-docking and anchored docking, as well as FastGrow, in 
a practical application. Cross-docking generated good poses 
for the two larger modifications but exhibited unnecessary 
pose drift in the methylation. Anchored docking incorpo-
rated template information but seemed to have stability 
issues when confronted with clashes. FastGrow generated 
realistic poses for all three parts of the incremental growing. 
In one case the pose generation could be improved by using 
a crystallized water or external information to place a search 
point as guidance.

Fragment growing enrichment

A number of ligands from Walmsley et al. [21] and Weber 
et al. [22] had common cores that could be used to grow 

Fig. 8   Growing the aminopyridine into the salt-bridge region. The 
core of methylated fragment 1 that was used as an input to FastGrow 
and anchored docking is in grey. To the left are the poses that were 
generated by DOCK cross-docking in green and anchored docking in 

yellow. To the right are two poses produced by FastGrow in darker 
blue. The pose with the amine towards GLU203 was guided by plac-
ing a search point at the position of HOH603

Fig. 9   Poses of compound 34 that were grown from fragment 1 in 
PDB code: 7A4R. In green and yellow are the DOCK cross-docking 
and anchored docking poses, respectively. The FastGrow pose is in a 
darker blue. The compound 34 reference structure aligned to 7A4R is 
in orange
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other ligands. The diaminopyridine moiety of the ligand in 
PDB code: 7AJW was used as the growing seed or core 
for the enrichment case study. Figure 10 shows the ligand 
of 7AJW with the diaminopyridine highlighted in green. 
Any fragment growing from this core would initially point 
directly to the hinge region.

Many ligands of DYRK1A, especially those from Weber 
et al. had a conserved diaminopyridine moiety. Filtering all 
diaminopyridine-containing ligands down to only the ones 
with affinities of less than 10 nM resulted in 77 ligands. 
These 77 ligands were fragmented at the bond to the diami-
nopyridine. The Rule of Three [35] properties of these frag-
ments were inspected to detect outliers far outside of the 
property distribution. Nine fragments were discarded as out-
liers. There was a large group of fragments with exactly the 
same TPSA, which had to be downsampled to avoid biasing 
the screening. This lead to a collection of 40 highly active 
fragments. A comparison of properties before and after the 
filtering can be found in the Supplementary Information, 
Sect. 8.

The set of 40 known highly active single-digit nanomolar 
fragments was combined with a set of generic fragments 
assumed to be not as active. 2653 property-matched generic 
fragments were generated using the BioSolveIT fragment 
set [34]. The fragments were property matched using “Rule 
of Three” properties [35]. After property matching, sorting 
by molecular weight was chosen as a comparison baseline. 
Molecular weight retained some residual discriminative 
power despite property matching and was therefore cho-
sen as a comparison baseline instead of an idealized null 
baseline. This is discussed further in Sect. 8 of the Supple-
mentary Information. For evaluation we used the receiver 

operating characteristic (ROC) and the area under the curve 
(AUC). The ROC curves and AUCs of the three methods 
(FastGrow’s pose scoring, FastGrow with restrained JAMDA 
optimization and anchored docking with DOCK) can be seen 
in Fig. 11.

All methods outperform the molecular weight baseline. 
The methods themselves all performed similarly and very 
well. Most surprising is that the FastGrow pose scoring 
function, which was never parametrized or evaluated for 
this purpose, performed almost on par with the other more 
sophisticated scoring functions. The FastGrow pose scoring 
function is made up of three terms: filled volume, number 
of close contacts, and clash [18]. Clash is the only term it 
shares in common with the other two scoring functions and 
therefore must be the driving force behind the general high 
performance. To substantiate this we repeated the experi-
ment with all terms of the pose scoring function set to zero 
except for clash. Figure S7 shows that the pose scoring 
function with just clash performed comparably to the other 
scoring functions. 3D clash, and by extension shape com-
plementarity, seemed to be a very discriminative property in 
this particular system, which leads to the high performance 
of all three of these methods.

Table 2 shows the time it takes for each of the three meth-
ods to generate poses for all fragments in the enrichment 
screening and score them. There was a factor five difference 
in speed between DOCK anchored docking and FastGrow 
with restrained JAMDA optimization. There was a factor 

Fig. 10   The fragment screening enrichment core generated from PDB 
code: 7AJW. The diaminopyridine many of the ligands in the data set 
have in common is in light green. The bond between the gray and the 
green substructures is cut and the green structure used for growing. 
The growing direction will therefore be towards the hinge region

Fig. 11   ROC curves and AUCs of DOCK anchored docking, Fast-
Grow with JAMDA, the FastGrow pose scoring function and sorting 
by descending molecular weight. The annotated errors on the AUCs 
describe a 95% confidence interval
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500 difference in speed between anchored docking and using 
FastGrow’s pose scoring function. Of the 2 s FastGrow and 
its pose scoring function spent screening, half was spent 
in the input-output operations of extracting 2693 fragments 
from the screening database and writing the hits. The hun-
dred-fold increase in runtime between the simple FastGrow 
pose scoring function, which performed competitively in this 
case study, and the more sophisticated scoring functions was 
disproportional to the apparent gain in performance.

Conclusions

FastGrow is a novel and very fast approach for structure-
based fragment growing. It achieved competitive pose re-
prediction performance and enrichment compared to other 
well-known docking workflows but significantly outper-
formed these in speed. FastGrow can be used not only to 
screen larger collections of fragments, but also to reveal 
trends in fragment types and poses that are not visible in 
shorter hit lists. Besides the purely shape-based growing, 
FastGrow has been equipped with optional pharmacophore-
like constraints, which can also be used to displace water 
molecules. Moreover, it may read in and work with an 
ensemble of protein structures to describe the flexibility of 
a target.

Our validation showed that we could maintain impor-
tant interactions during growing. Success varied depend-
ing on the type of interaction, but modeling interactions 
as pharmacophore-like search points generally led to an 
improvement in pose re-prediction. Especially the more 
geometrically constrained interactions profited from 
restrained JAMDA optimization. We validated displacing 
waters by using those visible in crystal structures as hints 
for potential interactions, which improved pose generation 
in some scenarios. The ubiquitous tendency towards false 
positives in ensemble flexibility approaches meant that 
we could not find a pronounced statistical improvement 
when using ensemble flexibility. However, it was shown 

that some systems profited from or even required multiple 
structures to describe binding properly.

A growing case study on a DYRK1A FBDD campaign 
demonstrated the advantages and shortcomings of both 
DOCK and FastGrow in iterative growing. Using the posi-
tion of a fixed fragment as input had clear advantages in 
both the statistical evaluation on the cross-growing set, 
as well as the case study. Anchored docking with DOCK 
encountered stability issues in the case study, which could 
not happen with FastGrow, due to its restrained optimi-
zation and the inherent stability of the JAMDA scoring 
function [19]. We could also demonstrate FastGrow’s pose 
generation being guided by including external interaction 
information in the query.

The enrichment case study on DYRK1A demonstrated 
a scenario that could largely be solved by clash or in 
other words shape complementarity. A general statisti-
cal evaluation should however also include examples that 
require electrostatic complementarity in addition to shape 
complementarity. Building up a balanced dataset of such 
cases without biasing it by the methods to be evaluated is 
a significant challenge and beyond the scope of this work. 
A more general analysis will be necessary to address the 
lingering questions of how to incorporate shape and inter-
actions into a scoring function of appropriate complexity.

As is often the case, the inclusion of external and 
inferred information is generally more successful than 
building a generalized model that encodes this informa-
tion. It is for this reason we have focused on interactive, 
intuitive and quickly iterable approaches in FastGrow. Its 
ability to generate new ligands is comparable to estab-
lished approaches and it would be interesting to see its 
sampling improved and compared to newer machine learn-
ing based generative models. FastGrow is already in use 
for current projects at Servier, as well as other organiza-
tions, and we hope it will enable further interesting results 
in the near future.
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Table 2   Runtimes of fragment growing enrichment for the three 
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Screening time denotes a full screening with all 2693 fragments in 
seconds. Runtime per fragment is the arithmetic mean over all frag-
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in Sect. 1 of the Supplementary Information

Method Screening time 
[s]

Runtime per 
fragment 
[ms]

FastGrow + Pose scoring 2 0.70
FastGrow + JAMDA 226 84.04
Anchored docking 1179 437.75
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DOCK execution are available at https://​github.​com/​rarey​lab/​dock_​
scrip​ts. The core functionality is a part of the fragment-based “Inspira-
tor Mode” in BioSolveIT’s SeeSAR modeling package [49].
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