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Zusammenfassung

Kolloidale Kristalle sind geordnete Anordnungen kolloidaler Partikel, die eine Über-
struktur ähnlich der in klassischen Kristallen bilden. In den letzten Jahrzehnten hat
die Forschung an kolloidalen Kristallen aufgrund ihrer faszinierenden strukturbezo-
genen Stoffeigenschaften wie Beugung von Licht im optischen Wellenlängenbereich,
hohe Porosität usw. eine Blüte erlebt. Darüber hinaus finden kolloidale Kristalle häufig
als Modellsystem für klassische Kristalle Verwendung, da ihre größeren Abmessun-
gen eine leichtere Untersuchung von Strukturveränderungen ermöglicht. Mesokristal-
le sind eine spezielle Unterklasse von kolloidalen Kristallen, bei denen die kristalli-
nen Nanopartikel, aus denen der kolloidale Kristall besteht, zueinander ausgerichtet
sind. Solche hoch geordneten Nanokristallüberstrukturen können funktionelle kollek-
tive Stoffeigenschaften aufweisen, die sich von denen herkömmlicher kolloidaler Kri-
stalle und einzelner Nanopartikel unterscheiden. Diese kollektiven Stoffeigenschaften
werden durch die Wechselwirkungen zwischen den Teilchen beeinflusst, die stark von
den strukturellen Besonderheiten der Mesokristalle abhängen. Obwohl kolloidale Kri-
stalle und Mesokristalle bereits viele praktische Anwendungen gefunden haben, sind
die Beziehungen zwischen Struktur und Stoffeigenschaften aufgrund des Mangels an
geeigneten Methoden für Strukturuntersuchungen noch immer wenig verstanden.

Diese kumulative Dissertation basiert auf sechs Publikationen und widmet sich
der Entwicklung von Röntgenmethoden für die Strukturuntersuchung von kolloidalen
Kristallen und Mesokristallen.

In den ersten drei Publikationen wird die Struktur von kolloidalen Kristallen und
Mesokristallen durch die Analyse der gemessenen zweidimensionalen (2D) Streumuster
offengelegt. Die erste Publikation befasst sich mit der strukturellen Entwicklung während
des Abkühlens und Erhitzens eines thermoresponsiven kolloidalen Kristalls, der aus
Gold-Poly(N-Isopropylacrylamid) Kern-Schale-Nanopartikeln besteht. Die Bragg-Peak-
Analyse der in Ultra-Röntgenkleinwinkelstreuung (USAXS) Geometrie gemessenen
Daten ermöglichte einen einzigartigen Einblick in die Kristallisations- und Schmelz-
prozesse solcher kolloidalen Kristalle. Die zweite und dritte Publikation befassen sich
mit Mesokristallen, die aus anorganischen halbleitenden Bleisulfid- oder Bleihalogenid-
Perowskit-Nanopartikeln bestehen, die durch organische Kupfer-Tetraaminophthalo-
cyanin- (Cu4APc) oder Ölsäure-Liganden (OA) stabilisiert werden. Die experimentel-
le Geometrie ermöglichte die gleichzeitige Messung sowohl der Röntgenkleinwinkel-
streuung (SAXS) der Übergitterstruktur als auch der Röntgenweitwinkelstreuung (WAXS)
der Atomgitter der einzelnen Nanopartikel. Die Analyse der Bragg-Peaks, die sowohl
bei kleinen als auch bei großen Winkeln an verschiedenen räumlichen Punkten der
Probe beobachtet wurden, ermöglichte eine räumlich aufgelöste Strukturkartierung
der Mesokristalle. Die extrahierten Parameter der Einheitszelle des Übergitters wur-
den mit der Winkelausrichtung der Nanopartikel innerhalb des Übergitters kombi-
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niert, um die vollständige Struktur des Mesokristalls auf beiden Längenskalen zu er-
halten. Die gefundenen Strukturen wurden dann mit den gemessenen funktionellen
Stoffeigenschaften der Mesokristalle wie Leitfähigkeit und Photolumineszenz korre-
liert.

In den anderen drei Publikationen wird die Strukturinformation durch Anwen-
dung der winkelaufgelösten-Röntgen-Kreuzkorrelationsanalyse (AXCCA) auf die ge-
messenen Intensitätsverteilungen im dreidimensionalen (3D) reziproken Raum extra-
hiert. Die vierte Publikation enthält die Details der Adaption dieser Methode für die
Anwendung auf 3D-Intensitätsverteilungen anstelle der üblichen 2D-Streumuster. In
dieser Arbeit wurde gezeigt, dass AXCCA zur qualitativen Strukturbestimmung in
dicht gepackten kolloidalen Kristallen geeignet ist, und zwar anhand einer Beispiel-
probe, die aus kugelförmigen Siliziumdioxidteilchen bestand. In der fünften und sech-
sten Publikation wurde AXCCA erfolgreich auf die gemessenen 3D-Streuintensitäts-
verteilungen angewandt, um die Struktur von Mesokristallen aus Gold- und Magnetit-
Nanowürfeln aufzuklären.

Die vorgeschlagenen Ansätze für Strukturuntersuchungen an kolloidalen Kristal-
len und Mesokristallen lassen sich auch auf andere Materialien übertragen. Die erziel-
ten Ergebnisse zur Struktur von kolloidalen Kristallen und Mesokristallen und ihre
Korrelation mit den funktionellen Eigenschaften sind neu und für die Materialwissen-
schaft von großem Interesse.
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Abstract

Colloidal crystals are ordered arrays of colloidal particles forming a superlattice
similar to that in conventional crystals. In recent decades, the research on colloidal
crystals has blossomed due to their fascinating structure-related properties such as
diffraction of light at optical wavelengths, high porosity, etc. Moreover, colloidal crys-
tals are often viewed as a model system for conventional crystals since their larger
dimensions allow easier tracing of changes in structure. Mesocrystals are a special sub-
class of colloidal crystals in which the crystalline nanoparticles constituting the crystal
are mutually oriented. Such highly ordered nanocrystal superlattices can display func-
tional collective properties distinct from those of conventional colloidal crystals and in-
dividual nanoparticles. These collective properties are conditioned by the interparticle
interactions which are highly dependent on the structural features of the mesocrystals.
Even though colloidal crystals and mesocrystals have already found many practical
applications, the structure-property relationships are still poorly understood due to
the lack of suitable methods of structural investigations.

This cumulative Thesis is based on six publications and is devoted to the develop-
ment of X-ray methods for the structural study of colloidal crystals and mesocrystals.

In the first three publications, the structure of colloidal crystals and mesocrystals is
revealed by analysis of the measured two-dimensional (2D) scattering patterns. The
first publication addresses the structural evolution of a thermoresponsive colloidal
crystal consisting of gold–poly(N-isopropylacrylamide) core–shell nanoparticles dur-
ing cooling and heating. The Bragg peak analysis of the data obtained in Ultra-Small-
Angle X-ray Scattering (USAXS) experimental geometry provided a unique insight
into the processes of crystallization and melting of such colloidal crystals. The sec-
ond and third publications deal with mesocrystals consisting of inorganic lead sulfide
or lead halide perovskite semiconductive nanoparticles stabilized by organic copper
tetraaminophtalocyanine (Cu4APc) or oleic acid (OA) ligands. The experimental ge-
ometry allowed the simultaneous registration of both Small-Angle X-ray Scattering
(SAXS) from the superlattice structure and Wide-Angle X-ray Scattering (WAXS) from
the atomic lattices of the constituting nanoparticles. Analysis of the Bragg peaks reg-
istered at both small and wide angles at different spatial points of the sample allowed
spatially-resolved structural mapping of the mesocrystals. The extracted superlattice
unit cell parameters were combined with the angular orientation of the nanoparticles
inside the superlattice to obtain the complete structure of the mesocrystal on both
length scales. The revealed structures were then correlated with the measured func-
tional properties of the mesocrystals such as conductivity and photoluminescence.

In the other three publications, the structural information is extracted by appli-
cation of Angular X-ray Cross-Correlation Analysis (AXCCA) to the measured inten-
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sity distributions in three-dimensional (3D) reciprocal space. The fourth publication
contains the details of adapting this method for application to 3D intensity distribu-
tions instead of common 2D scattering patterns. In this work, AXCCA was shown
prospective for qualitative structure determination in close-packed colloidal crystals
using an exemplary sample consisting of spherical silica particles. In the fifth and sixth
publications, AXCCA was successfully applied to the measured 3D scattered intensity
distributions to reveal the structure of mesocrystals composed of gold and magnetite
nanocubes.

The proposed approaches to structural studies of colloidal crystals and mesocrys-
tals can be further extended to other materials. The obtained results on the structure of
colloidal crystals and mesocrystals and their correlations with the functional properties
are highly novel and are of great interest to the materials science community.
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Chapter 1

Introduction

Colloidal suspensions – dispersions of solid particles with sizes in the range of ap-
proximately 1 nm to 1 µm in a liquid solvent – are often viewed as analogs to atomic
systems. Thermal motion makes the behavior of colloidal particles similar to the be-
havior of atoms and allows the formation of thermodynamically stable states. Spheri-
cal colloidal particles were found able to form colloidal crystals similar to conventional
atomic crystals [1, 2]. Despite much weaker interactions between colloidal particles in
comparison to those between atoms, the colloidal crystals became a model system for
studying conventional crystals. They demonstrate a wide range of possible crystalline
structures [3] and structural defects [4, 5] common for atomic crystals. Nonspheri-
cal colloidal particles possess a directionality of interparticle interactions and mimic
atomic systems even better, although they are more difficult to synthesize. But recent
advances in colloidal chemistry made it possible, and many works on colloidal crys-
tals from nonspherical particles were published in the last years [6–8]. The directional
interparticle forces cause the non-spherical particles in such colloidal crystals to align
with each other. If colloidal particles have an internal crystalline structure, the mutual
orientation of the particles makes their atomic lattices coherent over a large distance.
Such structures constitute a separate class of colloidal crystals called mesocrystals [9].
The alignment of the atomic lattices allows quantum coupling of adjacent colloidal
particles that leads to the unique properties of such mesocrystals.

The size of colloidal particles lies in the range of optical wavelengths that makes
the colloidal crystals ideal candidates for applications as photonic crystals [10, 11]. In-
deed, the diffraction of light in the colloidal crystals leads to the formation of photonic
band gaps analogous to those for electrons in conventional crystals [12, 13]. The enor-
mous specific surface area of colloidal crystals makes prospective their application in
catalysis or as sensors [14], electrodes [15], etc. Pores between the particles in colloidal
crystals can be used as a template for synthesis of highly porous materials that can be
used in fuel cells [16]. The quantum coupling between adjacent particles in mesocrys-
tals leads to emergent electronic and optical properties in such materials. They were
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reported to exhibit photoconductivity [17], photoluminescence [18], thermoelectricity
[19], superfluorescence [20], etc. It should be noted that all these properties of colloidal
crystals and mesocrystals depend to a decisive extent on the control over their struc-
ture. Understanding structure-property correlations would greatly contribute to the
wider use of colloidal crystals and mesocrystals in practical applications.

The large sizes of the colloidal particles allow structural investigation of colloidal
systems by optical and electron microscopy. These methods are routinely used for
structural investigation from the very discovery of colloidal crystals to the present day
[1, 5, 21]. Unfortunately, both of these methods are sensitive only to a thin surface
layer of the structures and place strict requirements on the experimental conditions.
This makes impossible assessing the structure of bulk colloidal crystals, whose proper-
ties may differ from those in thin films or on the surface. Moreover, this fact hampers
in situ studies of dynamical processes in colloids, such as self-assembly into crystals,
phase transitions, etc. Another disadvantage of microscopy methods is the inability to
cover simultaneously two scales of order – the colloidal and the atomic – in mesocrys-
tals. X-rays, thanks to their large penetration depth, offer a unique opportunity to
reveal the structure of bulk colloidal crystals and mesocrystals. Different techniques,
such as Small-Angle X-ray Scattering (SAXS) [22, 23], Grazing-Incidence Small-Angle
X-ray Scattering (GISAXS) [24, 25], Coherent Diffraction Imaging (CDI) [26] were used
to characterize the order in colloidal systems. These methods supplemented by Wide-
Angle X-ray Scattering (WAXS) or Grazing-Incidence Wide-Angle X-ray Scattering (GI-
WAXS), sensitive to the atomic structure of the particles, allow full structural charac-
terization of mesocrystals [27, 28]. Besides, the X-ray scattering techniques are suitable
for in situ experiments [24, 25, 29]. This makes X-ray methods indispensable for the
structural characterization of colloidal crystals and mesocrystals.

This cumulative Thesis is focused on the further development of advanced X-ray
scattering methods for the structural investigations of colloidal crystals and mesocrys-
tals. The Thesis is structured as follows. Chapter 2 provides a short overview of the
theoretical basis, methods ans samples used in this work. Section 2.1 introduces the
theory of X-ray scattering and the experimental methods used in this work. Section 2.2
contains the description of modern X-ray sources, such as X-ray tubes, synchrotrons
and X-ray Free-Electron Lasers (XFELs). Section 2.3 summarize the basics of colloidal
systems and mesocrystals, and their properties. Chapter 3 contains author’s publica-
tions on the topic of the Thesis grouped into two sections. Section 3.1 is dedicated
to structural analysis of colloidal crystals and mesocrystals by complementary SAXS
and WAXS techniques. Section 3.2 is devoted to structural analysis of colloidal crys-
tals and mesocrystals by means of Angular X-ray Cross-Correlation Analysis (AXCCA)
adopted for application to 3D scattered intensity distributions. Chapter 4 provides a
comprehensive summary of the results and the conclusion of this Thesis.
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Chapter 2

Overview

2.1 Interaction of X-rays with matter

X-rays are electromagnetic waves with the wavelengths ranging from about 10−8

to 10−12 m. This range of the wavelengths is comparable with the length scale of in-
teratomic distances in matter that defines the interactions of X-rays with matter. The
interaction is quite weak in comparison to the radiation of longer wavelengths (i.e.
visible light or radio waves) that allows deep propagation through media and objects.
On the other hand, such short wavelengths provide excellent resolution suitable for
studying the atomic structure of matter. This makes the X-rays an indispensable tool
for the non-destructive study of the internal structure of bulk samples. In this Section,
the theory of interaction of X-rays with matter is given according to [30–34].

In classical electrodynamics, X-rays, as any electromagnetic field, obey the Maxwell
equations in media with free charge density ρ and free current density j [30, 31]

∇ · D = 4πρ , (2.1a)

∇ · B = 0 , (2.1b)

∇× E = −1
c

∂B
∂t

, (2.1c)

∇× H =
1
c

(
4πj +

∂D
∂t

)
, (2.1d)

where D is the electric induction field, E is the electric field, B is the magnetic induc-
tion field and H is the magnetic field. The electric/magnetic induction fields D/B are
connected to the electric/magnetic fields E/H by the constitutive relations that take
into account the polarization and magnetization of the medium

D = εE , (2.2a)

B = µH , (2.2b)
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where ε and µ are the relative permittivity and the relative permeability, respectively.
In general, the relative permittivity and permeability are tensors, but in the simplest
case of isotropic medium they are scalar.

Applying the curl operator ∇× to Eqs. (2.1c) and (2.1d), taking into account that
∇×∇× a = ∇(∇ · a)− ∆a for any vector a, and using Eqs. (2.1a) and (2.1b), one gets
the following equations

∆E − εµ

c2
∂2E
∂t2 = 4π∇ρ +

4π

c2
∂j
∂t

, (2.3a)

∆H − εµ

c2
∂2H
∂t2 = −4π

c
∇× j , (2.3b)

that are called wave equations and describe an electromagnetic wave propagating with
the phase velocity vp = c/

√
εµ. In non-magnetic materials µ = 1 and, due to weak

interaction with matter, for X-rays ε ≈ 1 that gives the phase velocity equal to the
speed of light in vacuum vp = c.

The right parts of the Eqs. (2.3) describe possible sources of electromagnetic waves:
gradients in charge distribution, alternating current density and curls in current den-
sity. The alternating current density is especially important, because the current den-
sity j corresponds to the movement of charges with the momentum p as j = ρep/me

and hence
∂j
∂t

= − ρe
me

∂p
∂t

, (2.4)

where ρ is the charge density, e is the elementary charge and me is the electron mass.
Thus, charges moving with acceleration emit electromagnetic waves. This fact under-
lies the scattering and generation of X-rays that will be discussed below in this section
and in Section 2.2.

In empty space without free charges and currents (i.e. ρ ≡ 0 and j ≡ 0), the wave
equations (2.3) take the following form

∆E − εµ

c2
∂2E
∂t2 = 0 , (2.5a)

∆H − εµ

c2
∂2H
∂t2 = 0 . (2.5b)

The general solution of these equations is a superposition of plane monochromatic
waves

E(r, t) = E0ei(k·r−ωt+φ0) , (2.6a)

H(r, t) = H0ei(k·r−ωt+φ0) , (2.6b)

where r is a radius-vector of a point in space, k is a wave vector normal to the sur-
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face of constant phase (wavefront) and φ0 is a constant phase that can be put to zero
φ0 = 0 without any loss of generality. Inserting Eq. (2.6) into Eq. (2.5) one gets k =

∥k∥ = ω/c = 2π/λ, i.e. the spatial frequency k is directly dependent on the tempo-
ral frequency ω. Inserting Eq. (2.6) into Eqs. (2.1a) and (2.1b) one gets k · E = 0 and
k · H = 0, respectively. From Eqs. (2.6) and (2.1d) one gets H × k = kE from which
∥E∥ = ∥H∥ and E · H = 0. Thus, the electric E and magnetic H fields are perpendicu-
lar to each other and to the wave vector k as shown in Fig. 2.1, i.e. the electromagnetic
wave is transversal. The direction ϵ = E0/∥E0∥ of the electric field at zero phase is
called a polarization vector. The linearity of Eqs. (2.3) allows expansion of almost any
electromagnetic wave into series of plane monochromatic waves.

Figure 2.1: Electric E and magnetic H fields in a plane vertically polarized electromagnetic
wave with a wavevector k.

Let us multiply Eq. (2.1c) by H, Eq. (2.1d) by E and add them up. Then, the result-
ing equation can be written as follows

1
c

E · ∂E
∂t

+
1
c

H · ∂H
∂t

= −H · (∇× E) + E · (∇× H) (2.7)

or, given ∇ · (a × b) = b · (∇× a)− a · (∇× b) for any vectors a and b,

∂

∂t
∥E∥2 + ∥H∥2

8π
= −∇ ·

( c
4π

E × H
)

. (2.8)

The quantity

w =
∥E∥2 + ∥H∥2

8π
(2.9)

is the electromagnetic energy density and is conserved in an isolated system. Its dissi-
pation is described by the electromagnetic energy flux, or the Poynting vector

S =
c

4π
E × H . (2.10)
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For a plane monochromatic wave from Eq. (2.6), given its temporal periodicity and
that E = H × n, where n = k/∥k∥ is the wavefront propagation direction, the time-
averaged Poynting vector is equal to

S =
c

8π
∥E∥2n =

c
8π

∥H∥2n . (2.11)

Thus, the energy flux is collinear to the wavefront propagation direction.

The electromagnetic energy flux is the quantity that can be relatively easily mea-
sured in an experiment. Although another quantity is typically considered, the inten-
sity I = ∥E∥2, which is linearly proportional to the energy flux.

Modern quantum physics suggests that the electromagnetic energy (2.9) and, there-
fore, the electric E and magnetic H fields are quantized. Any change in the electromag-
netic energy can happen only when a photon with the energy of Eph = h̄ω = hν,
where h̄ = h/(2π) is the Planck constant, is emitted or absorbed. The choice between
the quantum and classical descriptions is to be made based on which approach gives
easier description. The photoelectric effect and related absorption of X-rays, briefly
mentioned below, are typically formulated in terms of quantum mechanics. The scat-
tering of X-rays, that is mostly addressed in this work, is easily described in terms of
classical electrodynamics that we will further follow.

The first observed interaction of the X-rays with the matter was described by W. C.
Röntgen in his original paper dated back to 1895 [35]. Namely, he observed attenuation
of the X-rays by different tissues of a hand that allowed him to obtain a picture of the
skeleton. The attenuation of light was described long before Röntgen’s observation in
1729 by P. Bouguer [36] and can be described by the Beer-Lambert-Bouguer law [37]

dI(z) = −µ(z)I(z)dz , (2.12)

where the light propagates along the z-axis, µ(z) is the attenuation coefficient that for a
media with N attenuating species can be expressed as µ(z) = ∑N

i=1 σini(z), where σi is
the attenuation cross-section of the i-th species and ni(z) is the number concentration of
the i-th attenuating species. For constant attenuation coefficient µ(z) ≡ µ, the solution
of Eq. (2.12) is exponential decay

I(z) = I0e−µz , (2.13)

where I0 is the intensity at z = 0. These equations remains valid for X-ray waves as
well. Distinct attenuation cross-sections of different materials allow a non-destructive
study of the internal structure of the samples. The attenuation contrast is widely used
in X-ray imaging techniques such as projection radiography and Computed Tomogra-
phy (CT) for medical [38], industrial [39] and scientific [40] applications. The attenu-
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ation happens due to two processes: absorption and scattering of the light by atoms
constituting the material.

The first process, absorption, is a result of the photoelectric effect explained by Ein-
stein in 1905 [41]. A photon of incident X-ray beam is absorbed by a core electron of an
atom constituting the sample only if the photon energy is higher that the electron bind-
ing energy as shown in Fig. 2.2(a). The electron binding energies are characteristic for
different chemical elements and are highly sensitive to their chemical states. It makes
possible to reveal the chemical composition of the sample measuring the absorption
spectrum of the sample (the corresponding technique is called X-ray Absorption Spec-
troscopy (XAS)) [42] or the kinetic energies of ejected electrons from the sample surface
(the corresponding method is called X-ray Photoemission Spectroscopy (XPS)) [43]. At
the energies close to the binding energy (so-called absorption edge), the absorption
spectrum is highly sensitive to the local surrounding of the atoms that makes possi-
ble to study the local structure of the sample (the corresponding technique is called
Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy) [44].

Figure 2.2: Schematic energy level diagram of an atom. Only three bottom energy levels are
shown filled with electrons for clarity. (a) The photoelectric absorption process. An X-ray pho-
ton is absorbed and an electron ejected from the atom. The hole created in the inner shell can be
filled by one of two distinct processes: (b) Fluorescent X-ray emission. One of the electrons in
an outer shell fills the hole, creating a photon. In this example the outer electron comes either
from the L shell that is referred as Kα fluorescence. (c) Auger electron emission. One of the
electrons in an outer shell fills the hole, the excess energy is transferred to another electron in
the outer shell, which is ejected from the atom. Adapted from [32].

The absorption of a photon and release of a photoelectron transfer the atom into an
unstable excited state that quite fast relaxes. The created hole is filled with an electron
from one of the outer shells, while the difference in energy is either emitted in form
of a photon as shown in Fig. 2.2(b) or transferred to another electron from outer shell
that is consequently ejected from the atom as shown in Fig. 2.2(c). Both emitted pho-
tons and electrons have energies that reflect the electronic structure of the sample and
are studied in X-ray Fluorescence (XRF) spectroscopy [45] and X-ray induced Auger
Electron Spectroscopy (XAES) [46], respectively.
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All spectroscopic techniques are widely and routinely used nowadays in materials
science, but give a little information about the order of elementary units in the material.
More comprehensive structural information is typically obtained by X-ray scattering
methods that are described below and were mostly used in this work.

2.1.1 Coherence

In the classical electrodynamics, the electromagnetic waves are assumed to be de-
terministic (i.e. have a defined amplitude and phase at each moment of time). In reality,
the wave generation is a stochastic process and a more correct approach to describing
electromagnetic waves lies in terms of statistical optics.

The statistical properties of electromagnetic fields are commonly described in terms
of correlation functions. Typically, for predictions of the results of an interference ex-
periment, the first-order correlation function

Γ(r1, r2, τ) = ⟨E∗(r1, t)E(r2, t + τ)⟩ , (2.14)

and its normalized version

γ(r1, r2, τ) =
Γ(r1, r2, τ)√

Γ(r1, r1, 0)Γ(r2, r2, 0)
, (2.15)

are enough.

The X-ray scattering techniques are mostly based on interference of scattered elec-
tromagnetic waves which makes the coherence one of the most important properties
of the electromagnetic waves for applications. Typically, two types of coherence are
considered. Temporal, or longitudinal, coherence describes the ability of a wave inter-
fere with a delayed copy of itself, while spatial, or transversal, coherence describes the
ability of a wave interfere with a spatially shifted wave.

The visibility of interference fringes is defined by the absolute value of the nor-
malized mutual coherence function (2.15). The dependence on the spatial variables r1

and r2 defines the transverse coherence in the plane normal to the wavevector of an
electromagnetic wave, while the dependence on the time variable τ - the longitudinal
coherence along the wavevector. At the point r1 = r2 and τ = 0 the coherence has the
maximum value of unity, i.e. the wave is always coherent with itself in a single point.
When the distance in space r2 − r1 or in time τ increases, the coherence decreases down
to zero at some distance. For a propagating electromagnetic wave, one can define a co-
herent volume in all three dimensions inside of which the coherence is high enough to
give constructive interference.

From the Wiener-Khinchin theorem [47, 48], the temporal dependence of the mu-
tual coherence function (2.14) is defined by the Fourier transform of the radiation
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power spectrum S(ω)

Γ(r, r, τ) =
1

2π

∫
R

S(ω)eiωτ dω , (2.16)

where ω is the radiation frequency. If the power spectrum has a Gaussian shape with
the full-width-at-half-maximum (FWHM) ∆ω, the corresponding mutual coherence
has a Gaussian temporal dependence with the FWHM τc = 8 ln 2/∆ω, which is called
coherence time. The characteristic longitudinal coherence length along the wavevector
is equal then to

Ll = cτc =
8 ln 2c

∆ω
=

4 ln 2
π

λ2

∆λ
. (2.17)

At modern sources, such as synchrotrons described in Section 2.2, the bandwidth ∆λ/λ

is determined by a monochromator. The typical bandwidth provided by a double crys-
tal Si(111) monochromator is ∆λ/λ = 1 × 10−4 that at the photon energy of 12 keV
(λ ≈ 1.03 Å) gives the longitudinal coherence length of Ll ≈ 900 nm.

From the van Cittert-Zernike theorem [49, 50], the spatial dependence of the mu-
tual coherence function (2.14) in a plane distant from an incoherent source with the
intensity I(η, ν) can be expressed as

Γ(∆x, ∆y, 0) ∼
∫∫
R2

I(η, ν)e−i 2π
λz (∆xη+∆yν) dη dν , (2.18)

where ∆x = x2 − x1 and ∆y = y2 − y1 are the distances along x- and y-axes between
the points r1 and r2 in the observation plane, η and ν are the coordinates in the source
plane, z is the distance between the source and observation planes, and λ is the radia-
tion wavelength. Under assumption of a Gaussian-shaped source with the FWHMs ax

and ay, the corresponding coherence lengths are

Lx/y
t =

4 ln 2
π

λz
ax/y

. (2.19)

For a synchrotron source, the transverse coherence length is defined by the electron
bunch size. For the typical values of the source size of 85 × 15 µm2 (FWHM, horizon-
tally × vertically) [51] at the photon energy of 12 keV (λ ≈ 1.03 Å) and the distance
from the source to the sample of 100 m, the corresponding coherence lengths are about
100 µm and 600 µm, respectively.

The classical description of the X-ray scattering given below is made under as-
sumption that the sample is fully inside the coherence volume given by the longitudi-
nal and transverse coherence lengths. Otherwise, the interference between the X-rays
scattered by distant parts of the sample is suppressed that would lead to lower contrast
in the scattering patterns. For extreme cases, the scattering from different sample parts
should be considered separately with the resulting scattering pattern being a sum of
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the scattered intensities instead of amplitudes.

2.1.2 X-ray scattering at free electrons

2.1.2.1 Scattering at a single electron

The most simple scattering event happens as a consequence of interaction between
the electromagnetic wave and an electron. In the framework of classical electrody-
namics, the scattering happens elastically, that gives coherent scattered waves that can
interfere with each other. Let us consider the simplest possible interaction between a
plane monochromatic wave (2.6) and a free electron. The momentum p of an electron
at spatial point r′ in the incident periodic electric field Ein(r′, t) changes according to
the second Newton’s law:

∂p
∂t

(t) = −eEin(r′, t) . (2.20)

The accelerated electron will emit an outgoing electromagnetic wave with the electric
field Eout(r, t) that is defined by Eqs. (2.3) and (2.4):

∆Eout −
1
c2

∂2Eout

∂t2 = − 4πe
c2me

δ(r − r′)
∂p
∂t

(t) . (2.21)

Without loss of generality, let us put the scattering electron to the origin of coordinates
(i.e. r′ = 0). Under assumptions that the electron speed v is much lower than the speed
of light ∥v∥ ≪ c and that the emitted wave is measured in the point r far away from
the scatterer ∥r∥ ≫ λ, where λ is the wavelength of the wave, the solution of Eq. (2.21)
can be represented as [33]

Eout(r, t) = − r0

er

[
∂p
∂t

(
t − r

c

)
× n

]
× n , (2.22)

where r0 = e2/(mec2) ≈ 2.817× 10−15 m is the classical electron radius and n = r/∥r∥.
The corresponding emitted magnetic field, from Eq. (2.1c), is

Hout(r, t) = − r0

er
∂p
∂t

(
t − r

c

)
× n . (2.23)

The corresponding Poynting vector can be calculated from Eq. (2.10)

S(r, t) =
cr2

0
4πe2r2

∥∥∥∥∂p
∂t

× n
∥∥∥∥2

n , (2.24)

and the corresponding total emitted power is

P(t) =
∫
Ω

S dσ =
2cr2

0
3e2

∥∥∥∥∂p
∂t

∥∥∥∥2

, (2.25)
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where integration is carried out over a closed contour Ω around the emitter (the coor-
dinate origin).

Given Eq. (2.20) for an electron in a plane monochromatic field, the equations
Eqs. (2.22) and (2.23) take the following form

Eout(r, t) =
r0

r

[
Ein

(
t − r

c

)
× n

]
× n , (2.26a)

Hout(r, t) =
r0

r
Ein

(
t − r

c

)
× n . (2.26b)

The wavevector k of such a scattered wave is collinear with the radius-vector of the
registration point k ∥ r and has the absolute value equal to that of the incident wave
∥k∥ = ∥ki∥. The fact that the incident electric field is taken at retarded time t′ = t− r/c
introduce phase difference between electromagnetic waves scattered by electrons at
different spatial points.

The quantity typically measured in a scattering experiment is the differential scat-
tering cross-section dσ/dΩ that is the ratio of the energy scattered to the solid angle
dΩ and the incident energy. The differential scattering cross-section is proportional to
the corresponding Poynting vectors (2.11) and, therefore, to the square of the electric
field

dσ

dΩ
= r2∥Sout∥

∥Sin∥
= r2∥E2

out∥
∥E2

in∥
, (2.27)

that, given Eq. (2.26), takes the following form

dσ

dΩ
= r2

0|ϵi · ϵ|2 , (2.28)

where ϵi = Ein/∥Ein∥ and ϵ = Eout/∥Eout∥ are polarization vectors of the incident and
scattered waves, respectively. The dot product defines the dependence of the scattered
intensity on the scattering angle θ, called polarization factor

P(θ) =

1 scattering plane perpendicular to ϵi

cos2(θ) scattering plane parallel to ϵi

(2.29)

This factor defines the toroidal shape of the radiation pattern of a single electron shown
in Fig. 2.3.

The total scattering cross-section σT can be obtained by integration of Eq. (2.28)
over the unit sphere

σT =
∫
Ω

r2
0|ϵi · ϵ|2 dΩ =

2π∫
0

π/2∫
−π/2

r2
0 cos2(θ) cos(θ)dθ dφ =

=
8π

3
r2

0 ≈ 0.665 × 10−28 m2 .

(2.30)
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Figure 2.3: The classical description of the scattering of X-rays by an electron. The incident
electromagnetic wave with the wavevector ki and the polarization vector ϵi makes the electron
at the coordinate origin to oscillate and emit the scattered wave with the wavevector k and
the polarization vector ϵ. a) Surfaces of constant phases of the scattered electromagnetic wave
show the spherical wavefront. b) Surfaces of constant amplitude of electric field of the scattered
electromagnetic wave show the cos(θ) polarization factor. Adapted from [32].

This result was first obtained by J. J. Thomson [52], and is referred to as the Thomson
cross-section for scattering of electromagnetic waves by a free electron. Noteworthy,
both differential and total scattering cross-sections for a free electron do not depend
on the incident X-ray energy. This is not valid for bounded electron in an atom, espe-
cially when the incident X-ray energy is close to the electron binding energy, as will be
discussed below.

The classical electrodynamics postulate that the electromagnetic wave frequency
can not change upon scattering. However, from the view of quantum physics, the inci-
dent photons can change their energy and momentum when collided with an electron.
The latter process was described by Compton in the early 1920th [53, 54]. This process
significantly contribute to the attenuation of incident X-rays, especially at high ener-
gies, that is used, for example, in medical applications [55, 56]. Due to their nature, the
scattered X-rays in this case are incoherent and, therefore, can not give any construc-
tive interference. Thus, they give diffuse background in scattering patterns that can
not be used to extract the structural information about the sample. On the other hand,
the spectrum of the inelastic-scattered X-rays provide information about the electron
momentum distribution in material that is used in the technique called X-ray Compton
scattering [57].

2.1.2.2 Scattering at several electrons

Let us consider now a continuous electron density distribution ρ(r′), on which a
plane X-ray wave is scattered. From the linearity of Eq. (2.21), the resulting scattered
electric field is a sum of partial fields scattered by different electrons and defined by
Eq. (2.22). For simplicity, let us put the coordinate origin to the center of mass of the
electron distribution, as shown in Fig. 2.4. Then, the electric field Es(r, t) scattered by
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an electron at the spatial point rs can be represented as

Es(r, t) =
r0

r
ϵ∥Ein∥ exp

[
iki · rs − iω

(
t − ∥r − rs∥

c

)]
, (2.31)

where ki and k are wavevectors of the incident and scattered waves, respectively.

Figure 2.4: A scheme of scattering from an electron density distribution. The incident electro-
magnetic wave with the wavevector ki is scattered by an electron at the spatial point rs in the
direction of radius-vector r with the wavevector k. Not in scale, ∥r∥ ≫ ∥rs∥.

Given ∥r∥ ≫ ∥rs∥, one can approximate ∥r − rs∥ ≈ r − r · rs/r and r/r = k/k.
Inserting these to Eq. (2.31), one gets

Es(r, t) =
r0

r
ϵ∥Ein∥ exp

[
i (ki − k) · rs − iω

(
t − r

c

)]
, (2.32)

where the last phase term iω (t − r/c) is the same for any scattering electron and can
be neglected. Typically, one introduces a new vector q = k − ki that is known as
the momentum transfer or scattering vector. For several discrete free electrons, the
resulting electric field will be equal to

E(q) =
r0

r
ϵ∥Ein∥

N

∑
s=1

e−iq·rs , (2.33)

and, for a continuous electron density ρ(r′) – to

E(q) =
r0

r
ϵ∥Ein∥

∫
V

ρ(r′)e−iq·r′ dr′ . (2.34)

From Eq. (2.27), the corresponding differential scattering cross-sections are then

dσ

dΩ
(q) =r2

0|ϵi · ϵ|2
∣∣∣∣∣ N

∑
s=1

e−iq·rs

∣∣∣∣∣
2

, (2.35a)

dσ

dΩ
(q) =r2

0|ϵi · ϵ|2
∣∣∣∣∣∣
∫

R3

ρ(r′)e−iq·r′ dr′

∣∣∣∣∣∣
2

, (2.35b)
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that give more complex angular dependence of the scattered intensity from the sample.

In practice, people measure the quantity that is proportional to those differential
cross-sections – the dimensionless scattered intensity

I(q) =

∣∣∣∣∣∣
∫

R3

ρ(r)e−iq·r dr

∣∣∣∣∣∣
2

∝ |F [ρ(r)]|2 , (2.36)

where F denotes a three-dimensional Fourier transform from real space into so-called
reciprocal space [58]. The direct F and inverse F−1 Fourier transforms for an arbitrary
function are defined as

F [ f (r)] =
1

(2π)3

∫
R3

f (r)e−iq·r dr , (2.37a)

F−1 [g(q)] =
∫

R3

g(q)eiq·r dq . (2.37b)

In the considerations above, we neglected the secondary and subsequent scattering
of already scattered waves due to the low probability of such events. Such approach
is called the kinematic theory of diffraction. In some cases, for example, for thick crys-
talline samples, the secondary scattering plays a significant role in the interaction of
incident wave with the sample, and it cannot be omitted. The full theory taking into
account these effects is called the dynamical theory of diffraction. However, in this
Thesis, we remain within the framework of the kinematic theory of diffraction, which
is sufficient to describe the results of the considered experiments.

2.1.3 X-ray scattering at an atom

The main difference between free electrons and an electron in an atom is the bind-
ing energy in the latter case. The binding energy of the electrons on the most outer
shells is much lower than that of X-rays, but the inner shells (K, L and, sometimes, M)
have the binding energies in the range of X-ray wave energies. When an X-ray wave
illuminates an atom, the electrons on the outer shells behave almost as free ones, while
the scattering on the electrons with the binding energy higher than the incident X-ray
energy is suppressed. In the limit, when the incident X-ray energy is higher than all
binding energies of the atom and all electron behave as free ones, the scattering is fully
described by the so-called atomic form-factor

f 0(q) =
∫

R3

ρ(r)e−iq·r dr , (2.38)
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where ρ(r) is the electron density distribution in the atom. The atomic form-factor at
∥q∥ → 0 approaches f 0(0) → Z, where Z is the number of electrons in the atom. At
large scattering vectors ∥q∥ → ∞ different electrons scatter with random phases and,
thus, f 0(∞) → 0.

To describe scattering at lower X-ray energies, when the inner electrons are bound,
one introduce the dispersion corrections f ′(hν) and f ′′(hν) as follows

f (q, hν) = f 0(q) + f ′(hν) + i f ′′(hν) , (2.39)

where the first additional term describes the suppressed scattering and the second – the
absorption by the atom. Both factors are highly dependent on the incident energy near
the absorption edge of the particular chemical element that is used in some techniques,
for example, in Anomalous X-ray Scattering (AXRS) [59] and spectroscopic methods
described above. In practice, the atomic form-factors of most chemical elements and
important ions are calculated and represented in the form of analytical approximation

f 0(q) =
4

∑
i=1

ai exp
[
−bi

( q
4π

)2
]
+ c , (2.40)

where ai, bi and c are the parameters tabulated in, for example, International Tables for
Crystallography [60]. Examples of the atomic form-factors for different elements are
shown in Fig. 2.5.

Figure 2.5: Atomic form-factor f 0(q) for different elements: lead Pb, caesium Cs, bromine Br
and sulfur S. Plotted according to Eq. (2.40) using the constants from [60].
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2.1.4 X-ray scattering by macroscopic particles

2.1.4.1 Scattering at a single particle

Let us consider scattering of a plane X-ray wave on a macroscopic particle consist-
ing of the same atoms. The electronic density, which defines the resulting scattering
intensity according to Eq. (2.36), can be represented as

ρ(r) = ρel(r) ∗
[
ρat(r)sp(r)

]
, (2.41)

where ρel(r) is the electron density in a single atom, ρat(r) is the density of atoms in
the particle, sp(r) is the shape function of the particle, which is equal to unity inside
the particle and to zero everywhere outside, and f (r) ∗ g(r) denotes the convolution
operator f (r) ∗ g(r) =

∫
f (r′)g(r − r′)dr′. According to the Convolution theorem [58],

F [ f (r) ∗ g(r)] = F [ f (r)]F [g(r)] (2.42)

and vice versa
F [ f (r)g(r)] = F [ f (r)] ∗ F [g(r)] . (2.43)

Then, the scattered intensity corresponding to the electron density (2.41) can be repre-
sented in the following form

I(q) =

∣∣∣∣∣∣
∫

R3

ρel(r)e−iq·r dr

∣∣∣∣∣∣
2 ∣∣∣∣∣∣
∫

R3

ρat(r)e−iq·r dr

 ∗

∫
R3

sp(r)e−iq·r dr

∣∣∣∣∣∣
2

=

= V2
p | f (q)|2

∣∣∣∣∣∣
∫

R3

ρat(r)e−iq·r dr

 ∗ F(q)

∣∣∣∣∣∣
2

,

(2.44)

where f (q) is the atomic form-factor (2.39), Vp is the particle volume and

Fp(q) =
1

Vp

∫
R3

sp(r)e−iq·r dr (2.45)

is the particle form-factor amplitude.

The atomic density in a macroscopic particle has two distinct characteristic length
scales: one on the scale of inter-atomic distance and one on the macroscopic level.
Then, we can decompose the atomic density ρat(r) = ρat + δρat(r) into the mean atomic
density ρat and a deviation δρat(r), which describes the atomic structure of the macro-
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scopic sample. Then, the scattered intensity takes the form

I(q) = V2
p | f (q)|2

∣∣∣∣∣∣ρatFp(q) +

∫
R3

δρat(r)e−iq·r dr

 ∗ Fp(q)

∣∣∣∣∣∣
2

, (2.46)

where the first terms corresponds to the macroscopic structure, while the second – to
the atomic short-range structure of the sample. Due to different lengths scales, these
two terms contribute into the sum at different q-values. The first term contribute into
the scattered intensity at low q-values, while the second – mostly at high q-values.
The scattering from the internal structure will be discussed below, in this section we
consider only the scattering from macroscopic objects and will omit the second term.
The scattering intensity from macroscopic objects is known as SAXS, because low q-
values correspond to small scattering angles. The SAXS intensity is defined then by

ISAXS(q) = ρat
2V2

p | f (q)|2 Pp(q) , (2.47)

where Pp(q) = |Fp(q)|2 is the particle form-factor.

For a particle with arbitrary shape, the form-factor can be calculated only numeri-
cally, but for particles with simple geometrical shapes it can be represented in an ana-
lytical form.

Let us first consider a spherical particle with the radius R, then the form-factor am-
plitude (2.45) is isotropic, depends only on the absolute value of the scattering vector
q = ∥q∥, and can be calculated as

Fp(q) =
1

Vp

R∫
0

π∫
0

2π∫
0

e−iqr cos θr2 sin θ dφdθdr =
4π

V

R∫
0

sin(qr)
qr

r2 dr =

= 3
sin(qR)− qR cos(qR)

(qR)3 = 3j1(qR) ,

(2.48)

where j1(x) is the spherical Bessel function of the first kind.

For a cubic particle with the edge length a = 2R oriented along the coordinate axes,
the form-factor amplitude (2.45) can be calculated as follows

Fp(q) =
1

Vp

R∫
−R

R∫
−R

R∫
−R

e−i(qxx+qyy+qzz) dxdydz =

=
1

2R

R∫
−R

eiqxx dx
1

2R

R∫
−R

eiqyy dy
1

2R

R∫
−R

eiqzz dz =

=
sin(qxR)

qxR
sin(qyR)

qyR
sin(qzR)

qzR
,

(2.49)
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In contrast to the spherical form-factor (2.48), the cubic form-factor is highly anisotropic
that allows determination of the cube angular orientation from two-dimensional (2D)
scattering patterns. For both spherical (2.48) and cubic (2.49) form-factors, their scaling
is inversely proportional to the particle size. Examples of spherical and cubic form-
factors for different sizes of the particles are shown in Fig. 2.6.

Figure 2.6: Cuts qz = 0 through the form-factor Pp(q) = |Fp(q)|2 for (a,b) spheres with the radii
R = 60 nm (a) and R = 200 nm (b), and (c,d) cubes with the edge lengths a = 2R = 120 nm (a)
and a = 2R = 400 nm (b).

2.1.4.2 Scattering at several particles

The intensity scattered by one particle is typically too low to be properly measured.
To obtain enough statistics one measures scattering from a system containing many
identical particles. Then, the electronic density in such a system is defined by modified
Eq. (2.41) as

ρ(r) = ρel(r) ∗
[
ρat(r)sp(r)

]
∗
[
ρp(r)ssmpl(r)

]
, (2.50)

where ρp(r) is the particle density in the sample and ssmpl(r) is the shape function of
the sample (probe). We note, that since the macroscopic particles are classical objects,
at each moment their positions can be described by delta-functions and the particle
density is defined by a Fourier series as in Eq. (2.35a) instead of continuous Fourier
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transform. Then, the corresponding scattered intensity can be represented as

ISAXS(q) = ρat
2V2

p | f (q)|2 Pp(q)

∣∣∣∣∣∣
Np

∑
s=1

eiq·rs ∗
∫

R3

ssmpl(r)eiq·r dr

∣∣∣∣∣∣
2

, (2.51)

where Np is the number of particles in the sample, rs are the coordinates of the particles,
and the integral including the shape function approaches a delta-function

∫
ssmpl(r) exp(iq ·

r)dr → δ(q) when the sample/probe size is big enough. Then, Eq. (2.51) takes the fol-
lowing form

ISAXS(q) = ρat
2V2

p | f (q)|2 Pp(q)S(q) , (2.52)

where S(q) is the structure factor

S(q) =

∣∣∣∣∣
Np

∑
s=1

e−iq·rs

∣∣∣∣∣
2

=
Np

∑
s=1

eiq·rs

Np

∑
s′=1

e−iq·rs′ =
Np

∑
s=1

Np

∑
s′=1

eiq·(rs−rs′ ) (2.53)

that defines the contribution of interference between the X-rays scattered by different
particles in the system into the scattered intensity. It will be discussed in details below
in subsections 2.1.5 and 2.1.6 for the crystalline and short-range orders of the particles.

Let us consider that the distance between the particles is much larger than the char-
acteristic size of the particles themselves and is random for each pair of the particles
(for example, in a very dilute dispersion of the particles). Then, the structure factor
(2.53) can be represented as follows

S(q) =
Np

∑
s=1

Np

∑
s′=1

eiq·(rs−rs′ ) =
Np

∑
s=s′=1

eiq·(rs−rs′ ) +
Np

∑
s=1

∑
s′ ̸=s

eiq·(rs−rs′ ) =

= Np +
Np

∑
s=1

∑
s′ ̸=s

eiq·(rs−rs′ ) → Np

(2.54)

because the interference terms are of high frequency and are all random and, thus, do
not give any constructive interference. Other cases of the structure factor calculations,
when the interference terms can not be omitted, are given below.

Then, the scattered intensity from a dilute dispersion of particles is simply

ISAXS(q) = Npρat
2V2

p | f (q)|2 Pp(q) (2.55)

that gives enhancement in Np times in comparison to the scattering from one parti-
cle that notably improve the statistics. One should note that in diluted samples the
particles are typically angularly disordered and the measured intensity (form-factor)
is averaged over all possible orientations.
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In practice, the synthesized particles are rarely have the same size. Typically, they
are polydisperse and their sizes/shapes can be described by a distribution of some
parameters with the probability density D(p), where p is the vector of parameters p =

(p1, p2, ..., pn). Then, the resulting scattered intensity is averaged over the distribution

ISAXS(q) = Np | f (q)|2
∫

Rn

D(p)ρat(p)2Vp(p)2Pp(q, p)dp , (2.56)

that gives possibility to fit the parameters p to the measured scattered intensities.

Study of SAXS is widely applied in the technique of the same name - SAXS [61] that
is especially useful to study nanoparticles [62] and biological macromolecules [63].

2.1.5 X-ray scattering from a crystal

2.1.5.1 Crystalline structures

Let us consider a crystal – an ordered periodic arrangement of constituents (atoms,
ions, molecules, or macroscopic particles) with long-range order that is characterized
by high anisotropy and symmetries. The basis for the symmetries is the spatial peri-
odicity – the fact that the structure is invariant to translations [64]. This fact can be
formalized if one introduces translation basis ⟨a1, a2, a3⟩ composed of vectors ai that
are possible translations in three different non-coplanar directions. Then, any transla-
tion can be represented as

an1n2n3 = n1a1 + n2a2 + n3a3, n1, n2, n3 ∈ Z . (2.57)

Basically, the number of possible basis is unlimited, as soon as any linear combination
a′ j = ∑3

i=1 αijai can be chosen as a lattice basis as well, but there are some conventions
discussed below.

If one choose one of the lattice constituents (a lattice point) and take all possible
translations from this node, he will get a crystalline lattice. The parallelepiped built
up on the vectors ⟨a1, a2, a3⟩ taken from one of the lattice point is called a unit cell.
The whole crystalline lattice is composed by all possible translations of such paral-
lelepipeds. Typically, the unit cells are described in terms of the unit cell parameters
that are lengths of the edges a = ∥a1∥, b = ∥a2∥, c = ∥a3∥ and angles between the
edges: α between a2 and a3, β between a1 and a3 and γ between a1 and a2 (see Fig. 2.7).

By a convention, there are two fundamental types of unit cells and corresponding
basis. The unit cell with the smallest possible volume is called primitive unit cell.
The unit cell with the smallest possible volume that have the same symmetries as the
whole lattice (including rotational, mirror etc.) is called a conventional unit cell. The
possible rotational and mirror symmetries give 14 types of the unit cells that are called

20



the Bravais lattices that are shown in Fig. 2.7. The primitive unit cells contain only one
lattice point per unit cell, while the non-primitive conventional ones (centered) contain
more than one lattice point per cell. The unit cell parameters corresponding to these
Bravais lattices are summarized in Table 2.1.

Figure 2.7: Sketches of 14 Bravais lattices: triclinic (a); monoclinic primitive (b) and base-
centered (c); orthorhombic primitive (d), base-centered (e), face-centered (f) and body-centered
(g); tetragonal primitive (h) and body-centered (i); hexagonal (j); rhombohedral (k); cubic prim-
itive (l), body-centered (m) and face-centered (n). Adapted from [64].

The full description of possible symmetries of the crystalline lattices is given in
terms of space groups [65]. The Bravais lattices represent only 14 out of 230 space
groups, but usually they are enough to describe quite complex structures, including
those studied in this work.

For atomic crystals the main factor defining the crystal structure is the symmetry
of the chemical bonds of the atoms constituting the crystal. For crystals consisting of
macroscopic particles (so-called colloidal crystals discussed in details in Section 2.3),
the symmetry is mostly defined by the particle shape. One of the important parameters
in this case is the packing density η = NpVp/Vuc, where Np is the number of particles
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Table 2.1: Unit cell parameters corresponding to the Bravais lattices

Lattice Edge lengths Angles

Triclinic a ̸= b ̸= c α ̸= β ̸= γ

Monoclinic a ̸= b ̸= c α = γ = 90◦, β ̸= 90◦

Orthorhombic a ̸= b ̸= c α = β = γ = 90◦

Tetragonal a = b ̸= c α = β = γ = 90◦

Hexagonal a = b ̸= c α = γ = 90◦, γ = 120◦

Rhombohedral a = b = c α = β = γ

Cubic a = b = c α = β = γ = 90◦

per unit cell, Vp is the volume of the particles and Vuc is the volume of the unit cell.
Typically, the particles tend to maximize the packing density and form so-called close-
packed structures.

Let us consider packing of spherical particles with radius R into different lattices.
Obviously, the closest packing for a certain lattice is provided when the nearest-neighbour
distance dNN is equal to 2R. A single simple cubic unit cell contains one sphere and
provides the nearest-neighbour distance equal to the unit cell parameter dNN = a that
gives a packing density of ηsc = (4/3)πR3/(2R)3 = π/6 ≈ 0.52. A single body-
centered cubic (bcc) lattice contains two spheres and provides the nearest-neighbour
distance equal to the half of the cube diagonal dNN = a

√
3/2 that gives a packing den-

sity of ηbcc = 2(4/3)πR3/(4R/
√

3)3 = π
√

3/8 ≈ 0.68. A single face-centered cubic
(fcc) unit cell contains four spheres and provides the nearest-neighbour distance equal
to the half of the square facet diagonal dNN = a

√
2/2 that gives a packing density of

η f cc = 4(4/3)πR3/(2
√

2R)3 = π
√

2/6 ≈ 0.74. The sketches of these structures are
shown in Fig. 2.8(a-c).

The value for the fcc lattice is the highest theoretically possible for spherical parti-
cles [66]. Noteworthy, this is not the only crystalline structure that provides the highest
packing density. Another one is so-called hcp structure providing the same packing
density of ηhcp = π

√
2/6 ≈ 0.74. Both fcc and hcp structures consist of hexagonal

layers, which are the closest possible 2D arrangement of spheres, that are stacked to-
gether, but the stacking sequences are different. Two possible sequences in respect to
the reference layer (denoted as A) are shown in Fig. 2.8(d,e). The ...ABC... sequence
corresponds to the fcc structure, where the hexagonal 2D layer represent (111) planes,
while the ...ABAB... sequence corresponds to the hcp structure, where the hexagonal
2D layers represent (001) planes. The negligible difference in energy between fcc and
hcp stacking motifs [67] makes the close-packed structures prone to irregularities in the
stacking sequence that are called stacking faults and represent a class of plane defects
described below.
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Figure 2.8: (a,b,c) Packing of spheres of equal radius into different cubic unit cells: simple cubic
(a), bcc (b) and fcc (c). (d,e) Close-packed structures for spheres: fcc (a) and hexagonal close-
packed (hcp) (b). The colours of the corresponding 2D layers in panels (c) and (d) are identical.

2.1.5.2 Reciprocal lattice

Let us turn now to scattering from such crystalline structures. The electron density
in the crystalline material can be described as

ρ(r) =

[
∞

∑
n1,n2,n3=−∞

Nuc

∑
s=1

[
ρs(r) ∗ δ(r − an1n2n3 − a′s)

]]
ssmpl(r) , (2.58)

where ρs(r) is the electron density of the constituents in the s-th lattice point, a′s is
the radius-vector of the s-th particle out of Nuc inside each unit cell (the basis), an1n2n3

is a lattice vector (2.57), and ssmpl(r) is the shape function of the whole area (sample)
illuminated with the incident X-ray beam. Then, the scattered intensity according to
Eq. (2.36) and given Eqs. (2.42) and (2.43) takes the following form

I(q) =

∣∣∣∣∣∣
 ∞

∑
n1,n2,n3=−∞

Nuc

∑
s=1

e−iq·(an1n2n3+a′s)
∫

R3

ρs(r)e−iq·r dr

 ∗
∫

R3

ssmpl(r)e−iq·r dr

∣∣∣∣∣∣
2

,

(2.59)
where the first integral is proportional to the form-factor amplitude Fs(q) of the con-
stituent in the s-th lattice point, either atoms (2.38) or particles (2.45), etc., and the
second integral is the form-factor amplitude of the sample itself. For simplicity, let
us assume at this stage that the sample is much bigger than the lattice basis vectors
and the sample form-factor is equal to a delta-function

∫
ssmpl(r) exp(iq · r)dr → δ(q).
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Then, Eq. (2.59) takes the following form

I(q) =

∣∣∣∣∣ ∞

∑
n1,n2,n3=−∞

Nuc

∑
s=1

Fs(q)e−iq·(an1n2n3+a′s)

∣∣∣∣∣
2

=

=

∣∣∣∣∣Nuc

∑
s=1

Fs(q)eiq·a′s

∣∣∣∣∣
2 ∣∣∣∣∣ ∞

∑
n1,n2,n3=−∞

eiq·an1n2n3

∣∣∣∣∣
2

,

(2.60)

where the first sum is called unit cell structure factor, while the second is lattice struc-
ture factor. In the second sum, the terms have the absolute value of unity and equally
distributed phases on the unit circle that give zero after the summation in any case
except of

q · an1n2n3 = 2πm, m ∈ Z , (2.61)

for any n1, n2 and n3, when the sum is infinite.

This condition is called Laue condition and can be represented in the following
form

q = ghkl = hb1 + kb2 + lb3, h, k, l ∈ Z , (2.62)

where ghkl is a vector of a so-called reciprocal lattice built up on the reciprocal basis
vectors

b1 = 2π
a2 × a3

a1 · [a2 × a3]
, b2 = 2π

a3 × a1

a1 · [a2 × a3]
and b3 = 2π

a1 × a2

a1 · [a2 × a3]
. (2.63)

From these explicit definitions of bj it follows that

ai · bj =

2π i = j

0 i ̸= j
(2.64)

i.e. b1 is perpendicular to the plane built up on the vectors a2 and a2 and so on. Exam-
ples of the reciprocal lattices for certain lattices in real space are shown in Fig. 2.9.

In general form, the condition (2.61) together with Eq. (2.62) define a set of parallel
planes

1
2π

ghkl · an1n2n3 = hn1 + kn2 + ln3 = m, h, k, l, m ∈ Z , (2.65)

for every fixed h, k, l and changing m. The numbers h, k and l are typically selected to
be coprime (mutually prime), otherwise both sides of Eq. (2.65) can be divided by the
corresponding common divider and brought to the same form. A set of such numbers
is called Miller indices. Each set of the Miller indices define a set of planes that intersect
the axes along a1, a2 and a3 at ma1/h, ma2/k and ma3/l, respectively. These planes are
normal to ghkl vector. A single plane or a set of planes are typically referred to as (hkl).
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Figure 2.9: Real space lattices: 2D orthorombic (a) and three-dimensional (3D) bcc (b) with
corresponding basis vectors a1, a2 and a3. And corresponding to them reciprocal lattices: 2D
orthorombic (c) and 3D fcc (d) with the corresponding basis vectors b1, b2 and b3. Adapted
from [32].

The distance between two consequent planes from one set is

dhkl =
2π

∥ghkl∥
=

2π

∥hb1 + kb2 + lb3∥
. (2.66)

The reciprocal lattice is a convenient tool for interpretation of the scattering exper-
iments with crystalline samples, as discussed below.

2.1.5.3 Crystalline structure factor

As was discussed, the second sum in Eq. (2.60) is not zero only when the condition
(2.62) is satisfied. In such a case, the sum can be represented as [32]∣∣∣∣∣ ∞

∑
n1,n2,n3=−∞

e−iq·an1n2n3

∣∣∣∣∣
2

= N
(2π)3

Vuc

∞

∑
h,k,l=−∞

δ(q − ghkl) , (2.67)

where N is the number of illuminated unit cells, and Vuc is the unit cell volume.
Though we assume the lattice to be infinite, the number of illuminated unit cells is
limited to N. Otherwise, the scattered intensity in the Bragg peaks tends to infinity.
Then, Eq. (2.60) takes the following form

I(q) = N
(2π)3

Vuc

∞

∑
h,k,l=−∞

|Fhkl|2 δ(q − ghkl) , (2.68)
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where Fhkl is the unit cell structure factor amplitude at ghkl

Fhkl = Fuc(ghkl) =
Nuc

∑
s=1

Fs(ghkl)e−ighkl ·a′s , (2.69)

where the summation is done over the Nuc particles inside a unit cell. The scattered
intensity (2.68) represents narrow intensity spikes at q = ghkl, which are known as
the Bragg peaks. A Bragg peak corresponding to the vector of reciprocal lattice ghkl is
typically referred to as hkl reflection from the (hkl) set of crystallographic planes.

Let us consider two examples of non-primitive unit cells especially relevant for this
work: bcc and fcc ones. The lattice basis vectors for a cubic lattice can be defined as
a1 = [a00],a2 = [0a0],a3 = [00a], where a is the edge length of the cubic unit cell.

The bcc unit cell contains two lattice points with relative coordinates a′1 = 0 and
a′2 = 1

2 a1 +
1
2 a2 +

1
2 a3. If all lattice points are occupied by the same constituents (i.e. the

form-factors Fs(q) are identical), the corresponding unit cell structure factor amplitude
is

Fbcc
hkl = F(ghkl)

[
1 + e−iπ(h+k+l)

]
=

2Fs(ghkl) h + k + l is even

0 otherwise
(2.70)

An fcc unit cell contains four lattice points with relative coordinates a′1 = 0, a′2 =
1
2 a1 +

1
2 a2, a′3 = 1

2 a1 +
1
2 a3 and a′4 = 1

2 a2 +
1
2 a3. The corresponding unit cell structure

factor amplitude is

F f cc
hkl = F(ghkl)

[
1 + e−iπ(h+k) + e−iπ(h+l) + e−iπ(k+l)

]
=

=

4Fs(ghkl) h, k, l are all even or all odd

0 otherwise

(2.71)

As can be seen from Eqs. (2.70) and (2.71), the unit cell structure factor for some indices
hkl is equal to zero. The corresponding Bragg peaks do not appear in the measured
intensities and are called forbidden.

In practice, if one measure the intensities of many Bragg peaks, it is possible to re-
cover the structure of the crystalline lattice calculating the inter-planar distances (2.66)
and recover the unit cell structures from the unit cell structure factor (2.69). This is
the basis of one of the most widely used application of the X-ray scattering – X-ray
crystallography [68, 69].

2.1.5.4 Ewald sphere

A useful way to visualize the Laue conditions (2.62) of the Bragg peak observa-
tion is provided by the Ewald sphere construction. Let us first consider the case of
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monochromatic incident beam. The wavevector ki of the incident beam connects an
arbitrary point A with the origin O of the reciprocal lattice of the sample, as shown in
Fig. 2.10(a). All possible scattered vectors k, if plotted starting at the point A, form a
sphere with the radius k = ∥k∥ = ∥ki∥, called the Ewald sphere. From the definition of
the momentum transfer vector q = k − ki and, therefore, to fulfill the condition (2.62),
a reciprocal lattice point should lay on the circle. This can be achieved by rotation of
the sample that corresponds to rotation of the reciprocal lattice around the origin O.
In Fig. 2.10(a), we show an example, when the Laue condition is fulfilled for the 220
reflection of a simple cubic lattice.

Figure 2.10: Construction of the Ewald sphere. The incident wave with the wavevector ki is
scattered with the wavevector k when a reciprocal lattice point intersects the Ewald sphere of
the radius k = ∥ki∥ = ∥k∥. (a) In the case of monocrystalline diffraction with monochromatic
X-rays. Only a single 220 point of the reciprocal lattice intersects the Ewald sphere and gives a
reflection at the angle of 2θ. (b) In the case of monocrystalline diffraction with a ”white” X-ray
beam. A few reciprocal lattice points intersect the Ewald spheres corresponding to different
X-ray energies (k-values) and give reflections at different angles 2θ. (c) A case of polycrys-
talline diffraction with monochromatic X-rays. Angularly averaged reciprocal lattice points
give spheres in reciprocal space. Intersections of the spheres with the Ewald sphere give Debye-
Scherrer rings corresponding to all allowed reflections at different angles 2θ.

Obviously, at each angular position of the sample, only a few reflections (typi-
cally only one) can be observed simultaneously. There are different possibilities to
measure more reflections to extract the relevant structural information. The first possi-
ble approach is called single-crystal X-ray diffraction and involves collecting scattered
intensities at different angular positions of a single crystalline sample. The second
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approach utilizes a so-called ”white beam” - polychromatic X-rays with energies in a
broad range. One can build up the Ewald sphere for each energy from the range that
are different in their radii as shown in Fig. 2.10(b). Then, the Laue condition will be ful-
filled for reciprocal lattice points that are in the area between the extreme spheres. This
approach allows measuring many reflections from a single crystalline sample simul-
taneously, but complicates the analysis of measured scattered intensities. The third
approach is to measure scattered intensities from a powder sample that consists of
many similar crystallites with different orientations. In this case, the reciprocal lattice,
being angularly averaged, becomes concentric spheres with the radii corresponding
to all allowed reflections, as shown in Fig. 2.10(c). The intersections of these spheres
with the Ewald sphere form the so-called Debye-Scherrer rings that are measured in
powder diffraction.

2.1.5.5 Crystalline defects

In the previous subsections, ideal crystalline structures, which can be described by
strictly periodic electron density distributions, were considered. In practice, crystals
typically possess irregularities of different types that are formed spontaneously or in-
troduced intentionally during the growth process. The most common irregularities can
be classified into a few types.

The first type are point defects that affect the positions of a single atom and a few
neighbours of this atom as shown in Fig. 2.11(a). If a lattice node is not occupied
by an atom/particle, it is called a vacancy. The vacancy can possibly lead to relax-
ation of the nearest neighbours positions towards the empty node that leads to tensile
strain of the lattice. In contrast, an additional atom/particle can be present at the po-
sitions in between the regular lattice nodes. Such atom/particle is called an interstitial
atom/particle and leads to relaxation of the nearest neighbours positions outwards the
empty node that also leads to tensile strain of the lattice. If a lattice contains, among
the nominal atom/particle types, atoms/particles of other types in the regular lattice
nodes, they are called impurities. Due to different radius or shape they also can lead to
tensile strain in the lattice. All these defects lead to change in the structure factor (2.69)
of certain affected unit cells that could lead to appearance of forbidden reflections. The
lattice strain conditioned by the point defect leads to change in the scattered intensity
as discussed in Subsection 2.1.5.7.

The second type of lattice irregularities are line defects that affect the position of
atoms in the vicinity of one column of atoms/particles (the column represent atoms
localized along a crystallographic direction) as shown in Fig. 2.11(b,c). Such defects
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Figure 2.11: Different types of defects in crystals. (a) Point defects: a vacancy, an interstitial
atom and an impurity. (b,c) Line defects: an edge dislocation (b) and a screw dislocation (c).
l is the guide vector of the dislocations line, b is the Burgers vector corresponding to the dis-
location. (d,e,f) Plane defects: a grain boundary in a cubic lattice (a), a twinning boundary in
an fcc lattice(b) and an random hexagonal closed-packed (rhcp) stacking sequence with several
stacking faults (c).

are called dislocations and are typically described by means of the Burgers vector

b = −
∮
Γ

du , (2.72)

where Γ is a closed contour around the dislocation line and du is elementary displace-
ment of the atoms at each point of the contour. An edge dislocation is formed when a
plane of atoms/particles abruptly terminates inside the crystal as shown in Fig. 2.11(b).
The Burgers vector in this case is normal to the dislocation line. A screw dislocation is
formed when a single quadrant of a crystal in respect to a column of atoms/particles
is slipped along the dislocation line by one or a few interplane distances as shown in
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Fig. 2.11(c). In this case, the Burgers vector is collinear with the dislocation line. In
practice, the dislocations have a mixed origin and are characterized by the angle be-
tween the corresponding Burgers vector and the dislocation line. Relaxation of the
positions of atoms/particles around the dislocation line in this case leads to tensile
strain that affect the scattered intensity as discussed in Subsection 2.1.5.7.

The third type of lattice irregularities are plane defects that affect the positions
of atoms in the vicinity of one plane of atoms/particles. A common plane defect in
bulk materials is a grain boundary, when the crystallographic orientation of the crystal
changes across a plane as shown in Fig. 2.11(d). It can be formed during the indepen-
dent growth of two crystalline grains starting from different nucleation centers. The
X-ray scattering from different grains can be considered separately; the resulting scat-
tered intensity will consist of the sets of Bragg peaks originating from all the crystalline
grains inside the sample. The grain boundary itself will contribute to the scattered in-
tensity in form of so-called Crystal Truncation Rods (CTRs) [70] that is the Fourier
transform of the boundary plane as described in Subsection 2.1.5.6. A special case of
the grain boundaries is a twinning boundary, when the crystallographic orientation
of the grains is mirrored across the boundary plane as shown in Fig. 2.11(e). Another
type of plane defects – stacking faults – is typical for close-packed structures (fcc and
hcp). As it was mentioned above, the energy difference between these stacking mo-
tifs of hexagonal 2D planes is very low that makes them prone to irregularities. Any
irregularity in the stacking motive is called a stacking fault. When the stacking of the
hexagonal planes is completely random as shown in Fig. 2.11(f), the structure is called
rhcp [71]. Each of the stacking faults basically represents a grain boundary and pro-
duce a CTR. As soon as all these grain boundaries are parallel to each other, the CTRs
interfere with each other that results in a complex intensity modulation along the CTR
that is typically called a Bragg rod. The intensity modulation depends on the specific
stacking sequence of the sample [4].

2.1.5.6 Effect of finite crystallite size on scattering

Let us consider now the effect of finite crystallite size on scattering from a crystal.
The finite size of the sample can be taken into account by introducing the proper shape
function ssmpl(r) in Eq. (2.59). Then, the scattered intensity (2.68) modifies to

I(q) = Nuc
(2π)3

Vuc

∣∣∣∣∣ ∞

∑
h,k,l=−∞

Fhkl Fsmpl(q − ghkl)

∣∣∣∣∣
2

≈

≈ Nuc
(2π)3

Vuc

∞

∑
h,k,l=−∞

|Fhkl|2
∣∣Fsmpl(q − ghkl)

∣∣2 ,

(2.73)
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where Fsmpl(q) is the sample form-factor amplitude that can be calculated as it was
discussed in Subsection 2.1.4. The most intense central peak of the sample form-factor
can be approximated for most of the shapes with great precision by a Gaussian func-
tion. Here we assume that the sample is isotropic (spherical), then the form-factor can
be approximated as

|Fsmpl(q)|2 ≈ exp
(
−∥q∥2

2σ2

)
, (2.74)

where ws = 2
√

2 ln 2σ is the FWHM of the Bragg peak. A comparison of the spherical
form-factor and its approximation by the Gaussian function is shown in Fig. 2.12.

Figure 2.12: Spherical form-factor for a sphere with the radius R = 60 nm (blue solid line), and
a corresponding best fit with the Gaussian function (2.74) (red dotted line).

Therefore, the Bragg peaks from finite sample are not δ-like anymore, but have
finite size. The dependence of the FWHM ws on the sample size (radius) R is called the
Scherrer equation

ws =
πK
R

, (2.75)

where K is so-called Scherrer constant of the order of unity, which is dimensionless and
depends on the shape of the sample [72].

The equation (2.73) is obtained under assumption that the whole sample is illu-
minated coherently and all parts of the sample scatter coherently. In practice, this as-
sumption is rarely justified. The transverse coherence length of the incident beam can
be smaller than a bulk sample. The sample can consist of domains with different struc-
tures that scatter incoherently. Then, the Scherrer’s equation (2.75) gives an estimation
of the mean size of coherently scattering domains in the sample.
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2.1.5.7 Effect of crystalline lattice distortion on scattering

Now, let us consider how the lattice distortion affects the scattered intensity. One
possible deformation is so-called macrostrain, i.e. the compression/elongation is ho-
mogeneous throughout the whole sample. It would simply lead to change in the lat-
tice parameters and, therefore, in the reciprocal lattice parameters that would imply
changes in the Bragg peak positions. Another, more complicated case is so-called mi-
crostrain, when the lattice point displacement is different in distinct areas of the sam-
ple. Then, the lattice point positions in the lattice sum (2.67) would include a displace-
ment field un1n2n3 , which is usually assumed to be normally distributed with ⟨u⟩ = 0.
Then, the final scattered intensity takes the following form

I(q) = |Fuc(q)|2
∣∣∣∣∣ ∞

∑
n1,n2,n3=−∞

eiq·an1n2n3

∞

∑
n1,n2,n3=−∞

eiq·un1n2n3

∣∣∣∣∣
2

, (2.76)

where Fuc(q) is the unit cell structure factor amplitude (2.69).

An approximation for calculation of this sum can be made if we assume that the
sample has a mosaic structure, i.e. consist of many domains with different lattice pa-
rameters. Let us consider that the interplane distance dhkl in the direction [hkl] is nor-
mally distributed with the probability density function

f (dhkl) =
1√

2πσ2
dhkl

exp

[
−
(
dhkl − d′hkl

)2

2σ2
dhkl

]
, (2.77)

where d′hkl is the mean interplanar distance and σdhkl
is the standard deviation. The dis-

tortion is typically characterized by the fraction εhkl = 2
√

2 ln 2σdhkl
/d′hkl that is called

root-mean-square microstrain in the direction [hkl]. For small strain values εhkl ≪ 1,
the corresponding probability distribution for the momentum transfer vector modulus
∥ghkl∥ = 2π/dhkl is

f (∥ghkl∥) =
√

2π

σ2
dhkl

∥ghkl∥4
exp

−
(

2π
∥ghkl∥

− 2π
∥g′

hkl∥

)2

2σ2
dhkl

 ≈

≈
√

2π

σ2
dhkl

∥g′
hkl∥4

exp

(
−2π2∥∆ghkl∥2

σ2
dhkl

∥g′
hkl∥4

)
,

(2.78)

where ∥g′
hkl∥ = 2π/d′hkl is the mean momentum transfer vector corresponding to the

mean interplane distance d′hkl and ∆ghkl = ghkl − g′
hkl is the deviation of the momentum

transfer vector ghkl in the direction collinear with this vector.

One can assume that areas of the sample with different interplane distances scatter
incoherently. Then, the scattered intensity from such a sample is averaged over this
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distribution and the total scattered intensity is defined by a convolution of Eqs. (2.68)
and (2.78)

I(q) = (2π)3 V
V2

uc

∞

∑
h,k,l=−∞

|Fhkl|2
1√

2πσ2
hkl

exp

[
−
∥q − g′

hkl∥2

2σ2
hkl

]
, (2.79)

where σhkl = σdhkl
∥g′

hkl∥2/ (2π) = εhkl∥g′
hkl∥/

(
2
√

2 ln 2
)

. Thus, the Bragg peaks be-
come broadened with a Gaussian profiles with the FWHM wd that is dependent on the
strain along the crystallographic axis [hkl] corresponding to the certain Bragg peak

wd = εhkl∥ghkl∥ . (2.80)

More correct approach based on the assumption that different areas of the sample
scatter coherently is described by A.R. Stokes and A.J.C. Wilson [73]. The resulting
scattered intensity in this case have the same Gaussian shape (2.79), but the FWHM
(2.80) is 2

√
2π times larger.

2.1.5.8 Williamson-Hall equation

If one take into account both factors of broadening – the finite size of the sample
and microstrains present in the sample, the resulting intensity is the convolution of
two Gaussian profiles from Eqs. (2.74) and (2.78) and the intensity distribution from an
ideal crystal (2.68). The resulting FWHM whkl of the Bragg peak with the indexes hkl is
defined then by the Williamson-Hall equation [74]:

w2
hkl = w2

s + w2
d =

(
πK
R

)2

+ (εhkl∥ghkl∥)2 . (2.81)

Using this equation, it is possible to extract the mean strain value in the sample and
the mean size of coherently-scattering domains, which in special cases is equal to the
mean crystallite size.

2.1.6 X-ray scattering from a fluid

2.1.6.1 Radial distribution function

While crystalline materials are characterized by the long-range order, amorphous
solids and fluids have only short-range local order that is different for every constituent
(particle). The correct description of such systems is possible by means of statistical
physics. The radial distribution function g(r) reflects the mean variation of the particle
density as a function of distance r from a reference particle. If ρ is the mean number
density of particles in the system, and N(r) is the number of particles in a thin spherical
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layer between r and r + dr, then

ρg(r) =
N(r)

4πr2dr
. (2.82)

If the particle density in real space is defined by ρ(r), the radial distribution function
can be expressed as [75]

ρg(r) = 1 +
1
N
⟨δρ(r) ∗ δρ(−r)⟩ − δ(r) , (2.83)

where δρ is the deviation from the mean particle density, N is the total number of
particles in the system and the averaging is performed over the ensemble (different
realizations of the system).

For a perfect crystalline material, the radial distribution function represents a set
of narrow peaks. In contrast, for a fluid or amorphous material, the radial distribution
function represent several broad oscillations that quite fast tend to unity, as r increases,
due to disorder, as shown in Fig. 2.13.

Figure 2.13: Examples of radial distribution functions g(r) for an fcc crystal (a) and fluid (b),
both consisting of hard spheres with radius R.

2.1.6.2 Scattering from a fluid

The electronic density in a fluid/amorphous atomic system can be represented as

ρ(r) = ρel(r) ∗ ρat(r)ssmpl(r) , (2.84)

where ρel(r) is the electron density in atoms constituting the sample, ρat(r) is the den-
sity of the atoms in the sample, and ssmpl(r) is the shape function of the sample/probe.
Then, the scattered intensity according to Eq. (2.36) and given Eqs. (2.42) and (2.43)
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takes the following form

I(q) =

∣∣∣∣∣∣
∫

R3

ρel(r)e−iq·r dr

∣∣∣∣∣∣
2 ∣∣∣∣∣∣
∫

R3

ρat(r)e−iq·r dr ∗
∫

R3

ssmpl(r)e−iq·r dr

∣∣∣∣∣∣
2

, (2.85)

which is almost identical with Eq. (2.44). The first integral is the atomic form-factor am-
plitude f (q) from Eq. (2.38), and the integral including the shape function approaches
a delta-function

∫
ssmpl(r) exp(iq · r)dr → δ(q) when the sample/probe size is big

enough. Then, Eq. (2.85) takes the following form

I(q) = | f (q)|2
∣∣∣∣∣∣
∫

R3

ρat(r)e−iq·r dr

∣∣∣∣∣∣
2

= | f (q)|2
∣∣∣∣∣∣ρatδ(q) +

∫
R3

δρat(r)e−iq·r dr

∣∣∣∣∣∣
2

. (2.86)

The term with the delta-function contributes only to the small-angle scattering and
was discussed in the Subsection 2.1.4. Here, we are interested only in the second term,
which contributes at much higher angles. Then, the scattered intensity can be repre-
sented as

I(q) = | f (q)|2
∫

R3

∫
R3

δρat(r)δρat(r′)e−iq·(r−r′) dr dr′ =

= | f (q)|2
∫

R3

δρat(r) ∗ δρat(−r)e−iq·r dr .
(2.87)

And, using Eq. (2.83), one finally gets

I(q) = Nat | f (q)|2
1 + ρat

∫
R3

[g(r)− 1] e−iq·r dr

 . (2.88)

One can introduce fluid structure factor

S(q) = 1 + ρat

∫
R3

[g(r)− 1] eiq·r dr , (2.89)

which for an isotropic fluids/amorphous can be averaged over the angles. Thus, it
depends only on the absolute value of the transfer vector q:

S(q) = 1 + 4πρat

∫
R3

[g(r)− 1]
sin(qr)

qr
r2 dr . (2.90)

Then, the scattered intensity from an atomic fluid/amorphous sample can be rep-
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resented as
I(q) = Nat | f (q)|2 S(q) , (2.91)

where Nat is the number of atoms constituting the sample, f (q) is the atomic form-
factor (2.38) and S(q) is the fluid structure factor (2.90).

The scattered intensity from a fluid/amorphous sample consisting of macroscopic
particles can be obtained from the SAXS intensity for the particles (2.52) using the fluid
structure factor (2.90) calculated for the particle density ρp(r).

2.1.6.3 Structure factor of hard sphere fluid

The radial distribution function g(r) is defined by the interactions between par-
ticles in the system. A useful approach to take into account these interactions was
proposed by L.S. Ornstein and F. Zernike [76]. The total correlation function h(r) =

g(r)− 1 can be expressed by the Ornstein-Zernike integral equation as

h(|r1 − r2|) = c(|r1 − r2|) + ρp

∫
R3

c(|r1 − r3|)h(|r3 − r2|)dr3 , (2.92)

where c(|r1 − r2|) is the direct correlation function describing correlations between
particles at spatial points r1 and r2, which is defined only by the inter-particle po-
tential, and ρp is the mean particle density in the system. This equation states that the
total correlation function between two particles is the sum of their direct correlations
and indirect correlations propagated via all other particles in the system. The Fourier
transform of this equation gives

H(q) = C(q) + ρpH(q)C(q) , (2.93)

where H(q) = F [h(r)] and C(q) = F [c(r)] are the Fourier transforms of the total and
direct correlations functions, respectively. Then, the fluid structure factor (2.90) can be
represented as

S(q) = 1 + ρpH(q) =
1

1 − ρpC(q)
. (2.94)

A useful approximation for the direct correlation function was proposed by J.K. Per-
cus and G.J. Yevick [77]

c(r) =
[

e−
U(r)
kBT − 1

]
e

U(r)
kBT g(r) , (2.95)

where U(r) is the inter-particle potential, kB is the Boltzmann constant, and T is the
absolute temperature.

One of a few analytical solutions for this equation was obtained by M.S. Wertheim
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for a system of hard spheres [78]. For such a system, the inter-particle potential is

U(r) =

∞ for r < 2R

0 for r ≥ 2R
, (2.96)

where R is the hard sphere radius. This potential formalize the fact that the spheres do
not interact and can not interpenetrate into each other. The direct correlation function
in this case takes the following form

c(r) = −
[

α + β
r

2R
+ γ

( r
2R

)3
]

, (2.97)

where

α =
(1 + 2η)2

(1 − η)4 , β = −3η (2 + η)2

2 (1 − η)4 , γ =
(1 + 2η)2

2 (1 − η)4 , (2.98)

and η = 4πR3ρp/3 is the volume fraction of the particles.

The Fourier transform of this direct correlation function is readily evaluated [79] to
finally give the structure factor

S(q) =
1

1 + 24η
G(2qR)

2qR

, (2.99)

where

G(x) =
α

x2 (sin(x)− x cos(x)) +
β

x3

(
2x sin(x) +

(
2 − x2

)
cos(x)− 2

)
+

+
γ

x5

(
−x4 sin(x) + 4

(
3x2 − 6

)
cos(x) + 4

(
x3 − 6x

)
sin(x) + 24

)
.

(2.100)

This structure factor depends on two parameters: hard sphere radius R and the volume
fraction of the particles η. Examples of the hard sphere structure factor for different
radii R and volume fractions η are shown in Fig. 2.14.

Figure 2.14: Structure-factor of hard sphere fluid in the Percus-Yevick approximation for the
sphere radius R = 60 nm (a) and R = 200 nm (b) with the volume fractions η = 0.2 and 0.5.
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Despite primitiveness of the model, it is widely used to fit the scattering patterns
from systems with complex inter-particle potentials, such as polymers [79], liquid met-
als [80], metal glasses [81], microemulsions [82] etc. Other models, for which analytical
structure factor can be calculated, are sticky hard spheres [83] and screened Coulomb
potential [84].

2.1.7 Angular X-ray cross-correlation analysis

Sometimes, the structural information can not be deduced directly from a scatter-
ing pattern because it is hidden behind different experimental features. One of pos-
sibilities to extract such hidden structural information is AXCCA. To study the cor-
relations between intensities measured at different points on a 2D detector, one can
consider a two-point Cross-Correlation Function (CCF) defined as follows

C(q1, q2, ∆) = ⟨ Ĩ(q1, φ) Ĩ(q2, φ + ∆)⟩φ , (2.101)

where Ĩ(q, φ) is the normalized intensity measured on an arc with the radius q in re-
spect to the direct beam position and φ is an azimuthal coordinate along the arc, ∆ is a
relative angle between two points and ⟨· · · ⟩φ denotes averaging over the angle φ. The
variables used in this definition are shown in Fig. 2.15(a).

Figure 2.15: Definition of a cross-correlation function. Intensities taken at two different points
q1 and q2 separated by the angle ∆ contribute to the CCF at this angle ∆.

The measured intensity I(q, φ) can be normalized to its mean value ⟨I(q, φ)⟩φ in

38



different ways

Ĩ(q, φ) =I(q, φ)− ⟨I(q, φ)⟩φ , (2.102a)

Ĩ(q, φ) =I(q, φ)/⟨I(q, φ)⟩φ , (2.102b)

Ĩ(q, φ) =
[
I(q, φ)− ⟨I(q, φ)⟩φ

]
/⟨I(q, φ)⟩φ . (2.102c)

All three corrections give qualitatively same resulting CCF, although vertically shifted
when the mean intensity value is subtracted as in Eq. (2.102a), and vertically scaled
when divided by the mean intensity value as in Eq. (2.102b). The characteristic features
present in the CCF do not depend on the normalization in an ideal case. In reality, noise
and other experimental features such as detector gaps and bad detector calibration lead
to differences in the CCFs obtained for differently normalized measured intensities
which should be treated with caution [85].

The resulting CCF is a function of one angular variable ∆, while the q-values q1

and q2 are parameters. This function has higher values when the intensities scattered
at a certain relative angle ∆ are correlated and lower – when they are uncorrelated
or anticorrelated. The CCF has many interesting properties that provide additional
structural information about the sample under study.

The averaging over the absolute azimuthal angles in Eq. (2.101) leads to the fact
that the CCF does not depend on the angular orientation of the scattering pattern in
the plane normal to the incident beam. If we consider a system consisting of a few
randomly oriented identical particles, a scattering pattern contains features that can
be attributed solely to different particles and to the interference between them. The
CCF calculated for such a pattern contain two types of correlations: between the fea-
tures that belong to a single particle and between the features that belong to different
particles. As soon as the CCF does not depend on the angular orientation, the posi-
tions of the first type of correlations are constant, while the correlations of the second
type depend on the relative orientation of the particles in the sample, which is ran-
dom. If one average CCFs over many realization of the same system but in different
random orientations, the random inter-particle correlations are eliminated and only
the systematic intra-particle correlations that describe the inner-particle structure are
kept and enhanced. It was mathematically proven in 2D case [86] that an ensemble
averaged CCF converges to a single-particle CCF

⟨C(q1, q2, ∆)⟩M → C1(q1, q2, ∆) as M → ∞ , (2.103)

where C(q1, q2, ∆) is a CCF calculated for a scattering pattern from a system containing
a few randomly oriented identical particles, ⟨· · · ⟩M denotes ensemble averaging over
M diffraction patterns collected from a system of the same particles but in different
random angular orientations, and C1(q1, q2, ∆) is a CCF calculated for a scattering pa-
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tern from a single particle. Such ensemble averaging can be done either spatially (by
collecting scattering patterns from different areas of the sample) or temporary (when
particles in a dispersion are randomized due to thermal motion). Such averaging al-
lows enhancement of the characteristic signal and is often used in applications.

In many applications, it is convenient to analyse the Fourier expansion of the CCF
instead of the CCF itself. Indeed, as soon as the scattered intensities are periodic func-
tions of the azimuthal angle φ with the period of 2π, the CCFs are periodic functions
with the same period. Therefore, they can be expanded into the Fourier series:

Ĩ(q, φ) =
∞

∑
n=−∞

Ĩn(q)einφ , (2.104a)

C(q1, q2, ∆) =
∞

∑
n=−∞

Cn(q1, q2)ein∆ , (2.104b)

where

Ĩn(q) =
1

2π

π∫
−π

Ĩ(q, φ)e−inφ dφ , (2.105a)

Cn(q1, q2) =
1

2π

π∫
−π

C(q1, q2, ∆)e−inφ d∆ , (2.105b)

are the n-th Fourier coefficients of the intensity Ĩ(q, φ) and CCF C(q1, q2, ∆), respec-
tively. From the convolution theorem (2.42), the Fourier coefficients are related as

Cn(q1, q2) = Ĩn∗(q1) Ĩn(q2) , (2.106)

where ∗ denotes the complex conjugation. This relations can be used for both calcu-
lation of the CCF from the experimentally measured intensities and extraction of the
single-particle scattered intensities from an ensemble-averaged CCFs. An n-fold sym-
metry in the diffraction pattern would give all n-fold components in the CCF Fourier
spectrum, when others would be suppressed. This fact can be used to reveal the sym-
metries in disordered or weakly oriented samples.

This approach was first proposed by Z. Kam in his pioneering works [87, 88] for re-
construction of a single-particle scattering pattern from many patterns measured from
a system of disordered identical particles. At that time it did not get further develop-
ment due to a lack of suitable instrumentation. However, since the more recent work
by Wochner et al. [89], AXCCA has experienced somewhat of a renaissance due to
advances in instrumentation and computing power. Novel X-ray sources with their
outstanding properties, namely high brightness and coherence and a possibility of
tight focusing, described in Section 2.2 brought it back into view. The initial idea of
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Figure 2.16: Recovery of a single-particle scattering pattering by AXCCA. (a, b) Scattering pat-
terns (logarithmic scale) simulated for a single pentagonal cluster (a) and an asymmetric clus-
ter (b) (clusters are shown in the insets). (c, d) Scattering patterns from a disordered system
consisting of N = 10 clusters in random position and orientation. (e, f) Scattering patterns
corresponding to a single pentagonal (e) and asymmetric (f) clusters recovered from M = 105

diffraction patterns of the form (c) and (d), respectively. (g, h) Structure of a single cluster re-
constructed by an iterative phase retrieval algorithm using the diffraction patterns shown in
(e) and (f). Adapted from [86].

a single-particle scattering pattern recovery was comprehensively developed in theo-
retical works [86, 90–94]. This single-particle scattering pattern can be further used for
reconstruction of the electron density in the particle by iterative phase retrieval algo-
rithms as was demonstrated for 2D [95, 96] and 3D [97, 98] particles. An example of
such application of AXCCA is shown in Fig. 2.16.

Ability to detect symmetries present in scattering patterns with AXCCA was re-
ported to be used for studying of different disordered or weakly ordered materials.
A. Clark et al. [99] reported on the local structure of a colloidal glass revealed from
the angular correlations in optical laser scattering patterns. P. Wochner et al. [89] used
AXCCA to reveal the local structure of a colloidal glass from X-ray scattering patterns.
The local structure of atomic glasses was revealed from the angular correlations in the
electron scattering patterns [100–102]. It was also used to reveal orientational ordering
in a dispersion of nanorods [103], distortions in oxygen clusters [104]. Time-resolved
AXCCA allowed revealing structural dynamics in photoactive metal complexes upon
laser excitation [105]. Application to the scattering data from liquid crystals was re-
ported to reveal the structural evolution during the hexatic-smectic phase transition
[106, 107], as shown in Fig. 2.17, including reconstruction of the 2D pair-distribution
function [108].

AXCCA was also found useful to study crystalline materials with long-range order.
The analysis of correlations in scattering patterns provide more structural information
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Figure 2.17: Study of the smectic-hexatic transition in a liquid crystal by AXCCA. (a) Scheme
of the experimental setup. A focused X-ray beam is incoming perpendicular to the surface
of a freely suspended liquid crystal film. The diffraction pattern in transmission geometry is
measured by a 2D detector positioned behind the sample. (b–d) Diffraction patterns from a
liquid crystal film in the smectic (b) and hexatic phase (c, d). (e) Temperature dependence
of the square roots of the 6-fold Fourier coefficients

√
C6m of the CCF C(q, q, ∆) calculated for

q = 14.16 nm−1 corresponding to the maximum of the Bragg peaks in (b-d). (f) Temperature
dependence of the total number of visible six-fold FCs M and positional correlation length ξ.
Adapted from [106].

than a conventional radial intensity profile analysis. For example, crystalline struc-
tures and defects in the structure of silver and gold nanoparticles in solution [109, 110]
and free-flying Xenon clusters [111] were revealed by this technique. It also allowed
refining the structure of colloidal crystals [112–115] and mesocrystals [28, 116], includ-
ing the determination of the angular orientation of the nanoparticles constituting the
mesocrystal [28] and the details of attachment of organic ligands to the nanoparticles
[116].
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2.2 Modern sources of X-ray radiation

W. C. Röntgen discovered X-rays [35] while experimenting with the Crookes tube
– an electrical discharge tube invented by W. Crookes in the 1870s [117]. The tube was
the first vacuum tube with the vacuum high enough to allow electrons to travel from
cathode to anode without collision with the residual gas molecules inside the tube.
At that time, there were intensive studies with these tubes on properties of so-called
cathode rays, which were later called electrons [118]. In turn, Röntgen noticed that,
besides cathode rays, there are rays of another nature emitted from the anode. These
rays, which he was unable to attenuate or refract, were called X-rays.

The X-rays in such a tube (that were designed specially for X-ray emission just in
a few months after Röntgen’s discovery) are generated by two main mechanisms. The
first one is breaking radiation (or ”Bremsstrahlung”) due to deceleration of flying elec-
trons inside the anode. The decelerated electrons, as any accelerated charged particles
according to Eqs. (2.3) and (2.4), emit X-rays with continuous spectrum. When the ki-
netic energy of the flying electron is higher than the binding energy of the inner shell
electrons of the atoms in the anode, the atomic electron can be removed from the atom
in a collision with the flying one. The created in such an event hole will be filled by
an electron from one of the outer shells. In the most used materials, a hole in the K-
shell is filled with an electron from the L-shell. The difference in energy between these
shells is compensated by emitting a photon with the energy characteristic for a certain
material of the anode. Due to the fine structure of the electronic levels, the spectrum
of this X-ray fluorescence is represented by two sharp peaks Kα1 and Kα2. For some
material also Kβ peaks are present that correspond to transitions from the M-shell to
the K-shell. An example of resulting spectrum of an X-ray tube is shown in Fig. 2.18.
Typically, only quasi-monochromatic radiation from one of the peaks is used, while
other energies are filtered out.

The main disadvantages of the X-ray tubes are very low coherence and low power
density of the useful emitted X-rays. The last property is crucial for many applica-
tions, because the interaction between the X-rays and matter is weak as was shown in
Section 2.1. This ensures not only deep penetration into the sample, but also a low scat-
tered intensity. Therefore, experiments on small or weakly-scattering samples require
high incident flux.

One of the main characteristics of the X-rays sources is therefore the spectral photon
flux equal to the number of photons emitted per second within the relative bandwidth
of 0.1%:

F(λ) =
photons/s

(0.1% bandwidth)
, (2.107)

where λ is the wavelength of the emitted X-rays. In practice, the X-rays are typically
collimated into narrow beams. In order to take into account the geometry of the beam,
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Figure 2.18: Spectrum of an X-ray tube with a tungsten anode at the accelerating voltage of
120 kV. Adapted from [119].

another measure, called brilliance B(λ), is more widely used:

B(λ) =
F(λ)

4π2εxεy
, (2.108)

were εx/y is called emittance and comprises the size σx/y and divergence σ′
x/y of the

X-ray source in the x/y-directions, respectively: εx/y = σx/yσ′
x/y.

The development of the X-ray tubes during the 20th century increased their bril-
liance by a few orders of magnitude (see Fig. 2.19). The main limiting factor here was
cooling of the anode bombarded by electrons that was overcome by different inven-
tions such as rotating anode, liquid metal anode etc. In the 1960s, an alternative X-ray
generation method – synchrotron radiation – came into scientific use. It gave rise to
dedicated synchrotron light sources and, later, XFELs, described below, which provide
much higher brilliance and better coherence than X-ray tubes. Despite this fact, X-ray
tubes remain the most widely used X-ray sources due to their compactness and com-
mercial availability.

2.2.1 Synchrotron light sources

The first theoretical considerations of the radiation emitted by a relativistic charged
particle moving in a circular path were made by A. Liénard in 1898 [121]. It became of
great interest three decades later, when the first large-scale particle accelerators started
to be built. When the maximum achieved energy of the particle became high enough
(∼100 MeV), the radiation loses of the particles became so high that they could not
be ignored anymore. The corresponding theory of radiation was developed by many
groups at that time [122–124]. This radiation was first observed by H. C. Pollock and
R. V. Langmuir [125] in 1947 at a 70 MeV synchrotron at the General Electric Research

44



Figure 2.19: Historical evolution of the average brightness of X-ray tubes and storage rings
(blue) and peak brightness of XFELs (orange). Adapted from [120].

Laboratory in Schenectady, New York (USA). After that, the radiation was named syn-
chrotron radiation. This finding was followed by comprehensive studies of the syn-
chrotron radiation properties [126–129]. All these studies were conducted at the par-
ticle accelerators dedicated to high-energy physics, and the synchrotron radiation was
considered as a parasitic effect. Such sources belong to the so-called first generation of
synchrotron radiation sources. The first dedicated storage ring based synchrotron ra-
diation facility Tantalus was opened in 1968 at the Synchrotron Radiation Center (SRC)
in Stoughton, Wisconsin (USA). This marked the transition to the second generation of
sources whose main purpose was to produce X-rays.

In the storage rings, electrons accelerated to sub-light speeds (ultra-relativistic)
are kept on a circular trajectory by a special periodic arrangement of magnets called
a magnet lattice. This lattice consists of bending magnets and corrections magnets
(quadrupoles, sextupoles and octupoles) to keep the electron beam in orbit, focus it,
and correct chromatic aberrations. In the bending magnets, the electrons are subjected
to centripetal acceleration and, as any accelerated charged particle, emit electromag-
netic waves according to Eqs. (2.3) and (2.4). The main difference between the syn-
chrotron radiation and the deceleration radiation (Bremsstrahlung) discussed above is
that the latter one is produced when a charged particle is accelerated in the direction
collinear to its velocity, while the former one – when the acceleration is normal to the
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particle velocity.

The equations for dipole radiation in Subsection 2.1.2 were obtained under the
assumption of a non-relativistic electron with the speed v ≪ c and can not be directly
applied to an ultra-relativistic (v ≈ c) electron. On the other hand, one can choose a
coordinate frame where the electron is at rest at a certain moment of time. The results
obtained in this system then can be converted into the laboratory system by the Lorentz
transformation. The details are given elsewhere [31, 130], here only the most important
results are summarized.

Let us consider an electron moving with the ultra-relativistic speed v, which lays
in the horizontal plane, in a constant vertical magnetic field H. It will undergo acceler-
ation by the Lorentz force and, according to the second Newton’s law:

∂p
∂t

(t) = − e
mec

v × H , (2.109)

where p = mev/
√

1 − β2 is the relativistic momentum and β = ∥v∥/c. The electron in
such a field moves along a circular path with the radius R = E/(e∥H∥), where E is the
electron energy which is conserved in a magnetic field.

The total emitted power from Eq. (2.25) combined with Eq. (2.109) and given the
energy E ≈ cp for an ultra-relativistic electron takes the following form:

P =
2
3

r2
0

(
E

mec2

)2

∥H∥2c =
2e2c

3(mec2)4
E4

R2 , (2.110)

The dependence of the radiated energy on the electron energy to the forth power
caused the late discovery of the synchrotron radiation. At the energies lower than
∼100 MeV, the radiation is negligible and could not be detected. On the other hand, at
high energies these energy losses should be compensated by acceleration of the elec-
trons. At energies higher than ∼100 GeV, the losses are so high that their compensation
becomes unfeasible.

From Eq. (2.22) and the fact that the electron acceleration in a bending magnet is in
the horizontal plane (2.109), it follows that the emitted X-rays are horizontally polar-
ized, if observed in the storage ring plane. This fact has to be taken into account when
planning an experiment to make better use of the polarization factor (2.29). If the X-
rays are observed at low angles above or below the storage ring plane, the polarization
becomes circular that can be used in experiments requiring this type of polarization.

The angular distribution of the emitted power in the moving frame is given by
Eq. (2.24) and depends only on the angle θ′ between the radius-vector and the velocity
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vector. After the Lorentz transformation, it takes the following form:

S(r) =
r2

0
4π

(
E

mec2

)2

∥H∥2c
(1 − β2)2

(1 − β cos(θ))3×

×
[

cos(φ)2 + sin(φ)2
(

cos(θ)− β

1 − β cos(θ)

)2
]

r
r

,
(2.111)

where θ is the angle between the radius-vector and the velocity vector and φ is the
angle between the radius-vector and the horizontal plane. In the ultra-relativistic limit,
β ≈ 1, γ2 = 1/(2(1 − β)) and, therefore, 1 − β cos(θ) ≈ (1 − β)(1 + γ2θ2). The main
factor defining the angular dependence of the emitted power in Eq. (2.111) is then

(1 − β2)2

(1 − β cos(θ))3 ≈ 8γ2

(1 + γ2θ2)
3 . (2.112)

that describes a Lorentzian-type shape with the FWHM ∆θ ≈ 1/γ. Thus, due to the
Lorentzian transformation, the emitted radiation from an ultra-
relativistic electron is concentrated in a very narrow cone in the direction of the electron
velocity (tangent to the trajectory) as shown in Fig. 2.20.

Figure 2.20: Constant intensity isosurfaces of the synchrotron radiation from an electron mov-
ing in a vertical magnetic field: in the coordinate system moving with the electron (a) and in
the laboratory coordinate system (b).

Nowadays, the most of synchrotron radiation sources operate at energies of about
3 or 6 GeV (γ ≈ 6 × 103 or 12 × 103, respectively) that gives the beam opening angles
of about ∆θ ≈ 0.17 or 0.08 mrad, respectively. Such tight natural focusing is one of the
keys for the outstanding brightness of the synchrotron radiation sources. Moreover,
in reality the electrons in storage rings travel in bunches that gives summation of the
emitted intensities and provides the intensity scaling as I ∼ Ne, where Ne is the number
of electrons in a bunch. The typical bunch charge is about q ∼ 1 nC that gives the
number of electrons Ne ∼ 1010. On the other hand, the velocity distribution of electrons
in the bunch leads to increased emittance and, therefore, lower brilliance.
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Due to the small beam opening angle, an observer at a certain point outside the
trajectory see the emitted radiation in short pulses when his position is inside the cone.
The length ∆t of the pulse can be estimated from a simple geometric consideration.
The observer see first the radiation when an electron is at angle ψ = −1/γ in respect
to an axis perpendicular to the direction of observation. And the radiation continues
until the electron reaches angle ψ = 1/γ. The length of the radiation pulse is then the
difference in time of flight between the electron and emitted photons:

∆t = te − tγ =
2Rψ

cβ
− 2R sin(ψ)

c
≈ 2R

c

(
1

βγ
− 1

γ
+

1
6γ3

)
≈ 4R

3cγ3 . (2.113)

For a typical bending magnet with R = 50 m installed at 6 GeV storage ring, the pulse
length is ∆t ≈ 0.1 as. But, as was mentioned before, the electrons in storage rings
travel in bunches, therefore the real pulse length is defined by the bunch length and is
typically in the range of a few tens of picoseconds [51].

The spectrum of the synchrotron radiation is given by the Fourier transform of the
short pulses emitted by one electron. The detailed calculations are rather complicated
and can be found elsewhere [130, 131]. The characteristic frequencies (energies) can be
estimated as

ωtyp =
2π

∆t
≈ 3πcγ3

2R
, (2.114)

where ∆t is the pulse length (2.113). The Fourier components with the frequencies
above this value will undergo destructive interference and the emitted intensity will
drop down. More accurate calculation give the critical frequency of ωc = ωtyp/π that
divides the spectrum into two parts of equal power. For a typical bending magnet
with R = 20 m installed at 6 GeV storage ring, the critical energy corresponding to the
critical frequency is Ec ≈ 24 keV. A typical spectrum from a bending magnet is shown
in Fig. 2.21.

The high brilliance, tight natural focusing, and the broad energy spectrum of syn-
chrotron radiation made it of great importance for many applications already in the
1970s. However, further increase of brilliance was almost impossible due to physi-
cal constraints: the limited available magnetic fields, the instability of bunches with
high charge and the high radiation energy losses at higher electron energies. In the
next third generation of synchrotron radiation sources, the radiation was generated by
so-called insertion devices in the straight sections of the storage rings, while the bend-
ing magnets served only to switch the electron bunches from one straight section to
another.

Such insertion devices consist of a number of short magnet poles with alternating
polarity as shown in Fig. 2.22. The magnetic field in the middle of the gap has only the
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Figure 2.21: Examples of the radiation spectrum from a binding magnet (blue) and an undu-
lator (orange). The dotted line for the undulator shows the spectrum for a fixed distance g
between the magnets, the solid lines – the intensities of the 1st, 3rd and 5th harmonics for dif-
ferent distances g. Adapted from [132].

vertical component

Hz =
H0

cosh(πg/λu)
sin(2πx/λu) , (2.115)

where H0 is the nominal magnetic field of the magnets, g is the vertical distance be-
tween the magnets and λu is the period of the magnetic structures.

The trajectory in such a field is defined by the Lorentz force (2.109) that under
assumption of vy ≪ c and vx = βc = const gives

∂2y
∂x2 (s) = − eH0

meγβc cosh(πg/λu)
sin(2πx/λu) , (2.116)

and the corresponding maximal horizontal angle in respect to the orbit is∣∣∣∣∂y
∂x

(
nλu

2

)∣∣∣∣ = λueH0

2πmeγβc cosh(πg/λu)
=

K
γ

, (2.117)

where K = λueH0/(2πmeβc cosh(πg/λu)) is called the undulator parameter. If K ≤ 1,
the maximum angle of the particle trajectory is smaller than the natural opening angle
of the radiation ∆θ = 1/γ and such insertion device is called undulator. If K > 1, the
maximum transverse speed of the electron oscillations is so high that a longitudinal
Lorentz force comes into play and the assumption vx = βc = const, under which
the harmonic movement (2.116) was obtained, is not valid anymore. In this case, the
insertion device is called wiggler.

Let us consider now the spectrum of an undulator. As it was mentioned above, in
an undulator the electron trajectory is described by Eq. (2.116) that implies harmonic
oscillations of the electron with the frequency ωu = 2πβc/λu in the laboratory frame.
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Figure 2.22: Different sources of synchrotron radiation: (a) bending magnet, (b) wiggler, (c)
undulator and (d) free-electron laser. The bending magnet consist of two poles with different
polarity. The insertion devices (wiggler and undulator) and the free-electron laser consist of
periodic magnetic structures with the period λu.

In the frame that moves with the mean electron speed βc, due to the Lorentz transfor-
mation, the electron oscillates with the frequency of γωu and, according to Eq. (2.22),
emits an electromagnetic wave of the same frequency. After transformation back into
the laboratory frame, due to the Lorentz transformation and taking into account the
Doppler shift, the emitted electromagnetic wave has the frequency

ω1 =
ωu

1 − β cos(θ)
≈ 4πγ2c

λu(1 + γ2θ2)
, (2.118)

where θ is the polar angle of the radiation propagation vector in respect to the undula-
tor axis. More accurate calculations, when the longitudinal Lorentz force is taken into
account, gives an additional term in the denominator:

ωn ≈ 4nπγ2c

λu

(
1 + 1

2 K2 + γ2θ2
) , (2.119)
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where n is the number of harmonic. A typical spectrum of the radiation from an un-
dulator is shown in Fig. 2.21.

Since the X-rays are generated in an undulator by the same electron during har-
monic oscillations, the emitted waves in different periods of the undulator are coher-
ent. Therefore, the emitted intensity scales as I ∼ NeN2

u, where Nu is the number of
undulator periods (typically, Nu ∼ 50), and the opening angle of the radiation de-
creases as ∆θ ∼ 1/(γ

√
Nu). In a wiggler, the electron movement is not harmonic and

the emitted waves are not coherent. Therefore, the intensity scales as I ∼ NeNu, and the
opening angle stays the same as for one electron ∆θ ∼ 1/γ. This fact gave the gain in
brilliance of other five orders of magnitude for the third generation of the synchrotron
radiation sources in comparison to the second one as shown in Fig. 2.19.

Nowadays, the third generation of synchrotron radiation sources with the inser-
tion devices de facto became a standard worldwide. The existing facilities include
PETRA III (Hamburg, Germany), SPring-8 (Sayo, Japan), APS (Chicago, Illinois, USA),
NSLS-II (Upton, New York, USA), Diamond (Didcot, Oxfordshire, UK), SLS (Viligen,
Switzerland) etc. The high brilliance of these sources led to a significant reduction in
the time required for measurements and made it possible to study various processes
in situ. It also allowed one to measure weakly scattering samples such as highly dilute
solutions, small crystals, thin films, biomolecules, etc. The relatively high coherence of
modern synchrotron sources has led to the development of coherent X-ray scattering
methods such as CDI [133], X-ray ptychography [134] and X-ray Photon Correlation
Spectroscopy (XPCS) [135, 136], etc. Due to the coherence, it is also possible to tightly
focus the X-ray beam for nanoprobe experiments [137].

Further development of the synchrotron radiation sources aims to decrease the
electron bunch emittance down to that of the photon beam. This would lead to fur-
ther improvement in the brilliance and, especially, in the provided coherent flux. The
sources with such properties are called diffraction-limited sources and are typically at-
tributed to the fourth generation. The reduced emittance in such machines is achieved
by exploiting a more complex magnet lattice called multibend achromat (MBA). The
MBA concept [138] involves increasing the number of bending magnets and reduc-
ing the bending angle of each magnet, and increasing the number of correcting mag-
nets. Examples of the sources using this technology are currently operating ESRF-EBS
(Grenoble, France), MAX IV (Lund, Sweden), Sirius (Campinas, Brazil) and planned
upgrades PETRA IV (Hamburg, Germany), APS-U (Chicago, Illinois, USA), SLS-2
(Viligen, Switzerland), etc.

2.2.2 Free-electron lasers

In the 1960s, novel sources of coherent radiation – masers and, later, lasers – be-
came of a great interest due to the unique properties of the generated radiation such
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as high intensity and coherence [139]. The principle of operation of such devices is to
amplify the radiation by stimulated emission from a gain medium interacting with the
radiation in an optical cavity. The main disadvantage of the mechanism was the fact
that the laser properties were limited by the electronic structure of the gain medium.
The fixed energy of electron transitions in atomic or molecular gain media made im-
possible to easily tune the wavelength of radiation produced by lasers.

In 1971, John M. J. Madey proposed to use electrons passing an undulator as the
gain medium [140]. A practical realization of a maser consisting of an undulator placed
in an optical cavity was demonstrated by his group in 1977 [141]. It was called a Free-
Electron Laser (FEL) due to the fact that the electrons in the undulator were not bound
to any atoms or molecules. In 1980, A. M. Kondratenko and E. L. Saldin demonstrated
that if an undulator is long enough, the initial random field of spontaneous radiation
in the undulator may be amplified and finally become fully coherent interacting with
the electrons (so-called Self-Amplified Spontaneous Emission (SASE)) [142]. A several
realization of the FELs using SASE mechanism producing radiation in visible and Ul-
traviolet (UV) ranges were demonstrated in the early 2000s [143–145]. The absence of
the need for an optical cavity for the operation of such a laser basically removed the
limitation on the minimum wavelength and made it possible to build a FEL producing
X-rays. But the accelerators that time were not able to provide the electron beam sta-
bility required for perfect overlap between the electron beam and the emitted photon
beam inside the undulator, that is required for successful interaction between them.
The progress in accelerators made it possible to first achieve the extreme ultraviolet
radiation with the wavelength of 32 nm at FLASH (Hamburg, Germany) in 2005 [146].
The first FEL operating in the soft and hard X-ray ranges (an XFEL) – Linac Coherent
Light Source (LCLS) – was commissioned at the SLAC National Accelerator Labora-
tory (Stanford, California, USA) in 2010 [147].

The theory of FELs is comprehensively developed and can be found elsewhere
[148]. Here, only the basics of the interaction between an electron in an undulator
and an electromagnetic wave is given. Let us consider an electron moving in two
periodical vertical magnetic fields: one from the undulator poles (2.115) and one from
an electromagnetic wave with the frequency ω1 = 4πγ2c/(1 + K2/2) resonant for the
undulator:

HL,z(t) = HL sin(ω1t + ψ) , (2.120)

The horizontal Lorentz force from the electromagnetic wave is then

Fy(t) = −eβcHL sin(ω1t + ψ) . (2.121)
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Over a period T, this force transfer to the electron the following amount of energy:

∆E =

T∫
0

F(t)dy =

T∫
0

F(t)
∂y
∂t

dt , (2.122)

where ∂y/∂t is the transverse speed of the electron. For the electron in an undulator
magnetic field, the horizontal speed from Eq. (2.116) is equal to ∂y/∂t = βc(K/γ) cos(ω1t),
where K is the undulator parameter of the particular undulator. Then Eq. (2.122) takes
the following form:

∆E = −eβ2c2HL
K
γ

T∫
0

sin(ω1t + ψ) cos(ω1t)dt =

= −eβ2c2HL
K
γ

π

ω1
sin(ψ) ∼ − sin(ψ) .

(2.123)

Due to ultra-relativistic speed, about the same amount of energy is transferred from
the electric field of the electromagnetic wave. Thus, an electron gains the energy of
∆E ∼ − sin(ψ), where ψ is the phase difference between the initial electromagnetic
wave and the wave emitted by this particular electron. Therefore, the electron is either
accelerated or decelerated to bring the waves emitted by this electron in phase with
the initial wave. This leads to formation of so-called microbunches inside each electron
bunch with the distance between them equal to the resonant wavelength λ1 = λu(1 +
K2/2)/(2γ2). The process of the microbunch formation is gradual and during the
process the intensity grows up exponentially as I ∼ I0 exp(x/Lg), where Lg is the
characteristic gain length. After some time the microbunches are fully formed and the
emitted intensity saturates. The process of the bunch formation is shown schematically
in Fig. 2.23. The gain length Lg for X-ray wavelength reaches several tens of meters
that requires long undulators. All electrons from the same microbunch emit waves in
phase, i.e. coherently, that leads to the saturated intensity scaling as I ∼ N2

e N2
u. The

peak brilliance of XFELs is, therefore, about 10 orders of magnitude higher than that
of synchrotrons (see Fig. 2.19). The small length of the microbunches allowed to reach
the X-ray pulse length of a few tens of femtoseconds [146, 147].

The ultimate brilliance, coherence, and extremely short pulses of X-rays generated
by XFELs made them perfect instruments for exciting applications. The extremely in-
tense and short pulses from XFELs opened the way for the so-called diffraction-before-
destruction approach. The intensity of a single pulse is high enough to produce a rea-
sonable scattered signal from a single biomolecule or particle, while the short pulse
length allows this signal to be measured before the sample is destroyed by radiation
damage. This approach found an application in such techniques as Single-Particle
Imaging (SPI) [149] and Serial Femtosecond Crystallography (SFX) [150]. The ultra-
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Figure 2.23: Evolution of the power radiated by an electron bunch passing an undulator. The
macroscopic electron bunch turns into microbunches due to interaction with the radiation. The
distance between the microbunches is equal to the first undulator harmonic wavelength λ1.
Adapted from [32].

short XFEL pulses also find an application in pump-probe experiments, when the sam-
ple is first pumped with a conventional laser and then probed by the X-rays [151]. This
kind of experiment is used to study ultrafast processes on atomic level, such as phase
transitions, ionisation, etc.

However, extreme complexity of the instrumentation and, consequently, high costs
of construction, maintenance and operation limited the spread of XFELs to a few scien-
tific centers around the world. Examples of operating XFELs include LCLS (Stanford,
California, USA), EuXFEL (Schenefeld, Germany), SwissFEL (Villigen, Switzerland),
SACLA (Kouto, Japan), and PAL-XFEL (Pohang, Korea).
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2.3 Colloidal systems: structure and properties

Colloidal systems are disperse systems consisting of insoluble particles with at
least one of the dimensions in the range of 1 nm to 1 µm suspended throughout a con-
tinuous dispersion medium [152, 153]. The particles and the medium should differ
in composition or phase. The three states of matter (gaseous, liquid and solid) give 9
different possible combinations listed in Table 2.2. In this work we are particularly in-
terested in colloidal solutions, or sols, that consist of solid particles dispersed in liquid
solvent. This Section is partially based on Refs. [21, 152, 153].

Table 2.2: Classification of dispersions by the nature of medium/phase

Dispersed phase

Gaseous Liquid Solid

Dispersion
medium

Gaseous Do not exist Liquid aerosol Solid aerosol

Liquid Foam Emulsion Sol

Solid Solid foam Gel Solid sol

The colloidal systems are widely spread in nature. The examples of emulsions in-
clude such vital materials as milk and biological membranes formed by fat molecule
agglomerates (micelles) in aqueous media. The common examples of sols are blood,
inks, paints, mud, etc. The first artificial colloids – namely, colloidal gold – were first
used in the late Roman Empire for ruby glass production [154]. But the mechanism,
which yielded the colour, remained unknown until Michael Faraday did a system-
atic study of colloidal gold in 1857 [155]. The term ”colloid” was introduced later by
Michael Graham in 1861 to describe materials that diffuse slowly through a porous
membrane [156], but later this class expanded to the modern one. Nowadays, the
colloidal particles can be prepared from various materials including metals [157–160],
inorganic [161–164] and organic [165] semiconductors, polymers [166–168] etc. Recent
developments in particle fabrication allow producing colloidal particles of different
shapes such as spheres [163, 166], cubes [160–162, 165, 168], prisms [158], plates [159,
164], dumbbels [167], etc.

The considered size range is rather arbitrary. It has the lower boundary of 1 nm
to distinct the colloids from true solutions of molecules or atoms. Although, some
macromolecules have bigger size and, therefore, solutions of macromolecules (for ex-
ample, polymers) are sometimes considered as colloids. The upper boundary is based
on the kinetics and properties of the particles in such a system. Particles smaller than
1 µm typically have the energy of thermal (Brownian) motion comparable to the po-
tential energy of gravity that prevent their sedimentation. Also, for such particles, the
number of surface atoms is higher or comparable to the number of volume atoms (not
located on the particle surface) that defines their unique properties.
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The high surface energy makes colloidal particles prone to aggregation. To sup-
press such aggregation, there are two main mechanisms: electrostatic stabilization and
steric stabilization. Electrostatic stabilization is based on electrostatic repulsion be-
tween charged particles as shown in Fig. 2.24(a). The charged particle surface inter-
act with the counterions in the solvent forming so-called electrical double layer. The
interactions of such charged particles with the formed electrical double-layer is de-
fined by the so-called ζ-potential. The full description of such interactions are given in
the framework of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [169, 170].
Steric stabilization is based on preventing particles to get close mechanically by cover-
ing them by a layer of molecules (often polymers) as shown in Fig. 2.24(b). Typically,
both mechanisms coexist simultaneously and the stabilization is electrosteric.

Figure 2.24: Stabilization of colloidal solutions: (a) electrostatic and (b) steric.

Colloidal particles are often viewed as large atoms with tailorable size, shape and
interactions. Both colloidal particles and atoms experience strong thermal motions,
which enable them to form thermally equilibrated phases. In contrast, the colloidal
particles are much larger and, therefore, move slower that allow the tracing of their
movement directly by means of microscopy. This makes colloidal systems excellent
model systems to study phase transitions. The phase behaviour of conventional ma-
terials is defined by the temperature, and an analog to the temperature for colloidal
crystals is the volume fraction η that can be tuned in different ways. When the volume
fraction is high enough (the exact value vary dependent on the shape of the colloidal
particles and interactions between them), the colloidal system crystallizes or turns into
an amorphous (glassy) state. The resulting crystalline phase is called colloidal crystal
and has many prospective for applications properties discussed in Subsection 2.3.1.

As already mentioned, the relatively big particles and slow movement of colloids
makes possible studying them by optical [171–174] or electronic [175–178] microscopy.
Unfortunately, these methods have major disadvantages. The optical microscopy have
a limited resolution and, therefore, applicable only for colloids containing large parti-
cles as exemplified in Fig. 2.25(a-f). The electronic microscopy typically works in vac-
uum conditions that makes hard study of colloids in solutions, where the dynamics is
present, although possible in special cells [175, 178] as shown in Fig. 2.25(g-k). More-
over, both methods allow visualizing only thin films or surface of the sample, where
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kinetics can be sufficiently different from the bulk colloids.

Figure 2.25: Examples of phase transitions in colloids studied by microscopy. (a-f) Melting of
a crystallite of 700 nm-radius polystyrene spheres. Images were obtained using an inverted
optical microscope (63× magnification). The purple dots indicate particles identified by the
cluster algorithm. Adapted from [173]. (g-k) Crystallization in a colloid of Pt nanoparticles with
7.3 nm average diameter studied by transmission electron microscopy (TEM) during solvent
evaporation. The red box highlights a forming crystallite. The bar is 100 nm. Adapted from
[176].

A powerful tool to study the dynamics of bulk colloids is Dynamic Light Scattering
(DLS), where changes in temporal correlations of scattered laser light are associated
with the Brownian motion of the colloidal particles in the gravitational potential [179,
180]. The temporal correlations are quantified by the second-order correlation function

g(2)(τ) =
⟨I(t)I(t + τ)⟩

⟨I(t)⟩2 , (2.124)

where I(t) is the measured intensity at time t, τ is the time delay, and ⟨· · · ⟩ denotes
time average. For photon counts obeying Gaussian statistics, the second-order corre-
lation function g(2)(τ) can be easily converted into the first-order correlation function

g(1)(τ) as g(1)(τ) =
√

g(2)(τ)− 1. The time dependence of this function reflects the
diffusion characteristic times and diffusion coefficients that can be interpreted to ex-
tract the particle size distribution as shown in Fig. 2.26(a,b). If the measurements are
done in additional external electric field, the ζ-potential of the colloidal particles can
be extracted [181, 182]. The theoretical basis of the method assume that only single
light scattering events happen in the system under study. Thus, the method is limited
only to very dilute samples, where this assumption is fulfilled. Unfortunately, it makes
impossible to study phase transitions, which typically happen at sufficiently large con-
centrations (volume fractions). The further development of the method is XPCS based
on the same principle, but utilizing X-rays instead of laser light [135, 136]. The smaller
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scattering cross-section and higher penetration depth of X-rays in comparison to the
visible light allowed to study dynamics of colloids including phase-transitions such as
crystallization and glass transition [183–185] as shown in Fig. 2.26(c).

Figure 2.26: (a,b) Example of DLS analysis of spherical polystyrene colloidal particles of av-
erage sizes 50 nm, 200 nm, and their mixture in water: the correlation function g(1)(τ) (a)
and the extracted size distribution (b). Adapted from [182]. (c) Example of XPCS analysis
of 195 nm-radius silica spheres at a volume fraction of ϕ = 0.52 in water-lutadine mixture at
different temperatures bear the glass transition. The correlation function g(1)(τ) is calculated
at q = 0.012 nm−1. Adapted from [184].

An insight on the structure of bulk colloids give the X-ray scattering methods. The
form-factor of the colloidal particles in diluted sols can be extracted by means of SAXS
described in Subsection 2.1.4. It allows determining the shape and size distribution
of colloidal particles [186–190]. The interference between X-rays scattered by differ-
ent colloidal particles in more dense colloids gives rise to the structure factor that,
depending on the structure of the colloid, can be fluid/amorphous as described in
Subsection 2.1.6 or crystalline as described in Subsection 2.1.5. It allows to study the
structural evolution during the phase transitions.

2.3.1 Colloidal crystals

The first natural colloidal crystal was observed by Wendell Stanley in 1935 when
experimenting with dispersions of purified tobacco mosaic virus (TBMV) [191]. The
identity of shape and size of the virus copies made them possible to form a structure
with long-range order. Progress in colloid chemistry at that time led to the possibil-
ity of synthesizing artificial monodisperse particles able to form the long-range order
structures. The first artificial colloidal crystal was observed in the 1950s on an example
of charged spherical latex particles [1, 2].
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2.3.1.1 Structure of colloidal crystals

The crystallization in colloidal systems was also predicted in 1950s theoretically
[192] and by computer simulations [193, 194]. It was shown that a system of uncharged
hard spheres behave as a fluid at low volume fractions η, consist of coexisting fluid
and crystal phases between η f = 0.494 and ηs = 0.545, and is fully crystaline above the
latter [195]. The phase behaviour very similar to the predicted one was shown in 1980s
for a systems of sterically stabilized uncharged spherical silica [196] and poly(methyl
methacrylate) (PMMA) [197] particles. Such hard spherical particles form close-packed
hexagonal 2D layers which further assemble into fcc, hcp or rhcp 3D close-packed
structures [3, 4, 22, 23, 198–202] described in Subsection 2.1.5.

Soft spheres demonstrate a richer phase behaviour including fcc, bcc, simple hexag-
onal, body-centered tetragonal and body-centered orthorombic lattices [203–205]. Such
soft particles can be synthesized by grafting long polymers on the particle surface, re-
ducing the crosslinker density in polymer particles [206], or enhancing the electrostatic
interaction for charged particles [203, 204, 207].

The thermodynamically stable crystalline structure for colloidal hard cubes is a
simple cubic lattice that theoretically allows packing with the highest possible volume
fraction of η = 1 [208]. In practice, the colloidal cubes have not only sharp edges [6],
but more frequently rounded ones [160, 209, 210]. The rounded edged cubes are a
special case of so-called superball shape mathematically described as∣∣∣x

a

∣∣∣m +
∣∣∣y
a

∣∣∣m +
∣∣∣z
a

∣∣∣m ≤ 1 , (2.125)

where the shape parameter m defines the transition from a sphere (m = 2) to a cube
(m → ∞) and a is a half the edge length (a radius) as shown in Fig. 2.27. The phase
behaviour of such superballs for intermediate values of m was predicted theoretically
and by simulations [208, 211, 212].

It was shown that the crystalline lattice changes from an fcc lattice for m = 2 to
a simple cubic lattice for m → ∞. The optimal densest packing for superballs with
2 < m < 2.308 is so-called C0-lattice defined by the lattice vectors

a1 = a
(

21−1/m, 21−1/m, 0
)

,

a2 = a (0, 0, 2) ,

a3 = a
(
−2s, 2s + 21−1/m, 1

)
,

(2.126)

where s is the smallest positive root of the equation (s + 2−1/m)m + sm + 2−m − 1 =

0. The optimal densest packing for superballs with m > 2.308 is so-called C1-lattice

59



Figure 2.27: (a) Shape of superballs with different values of the shape parameter m. (b) Optimal
C1-lattices for superballs with different values of the shape parameter m. Adapted from [21].

defined by the lattice vectors

a1 = a
(

21−1/m, 21−1/m, 0
)

,

a2 = a
(

21−1/m, 0, 21−1/m
)

,

a3 = a
(

2s + 21−1/m, −2s, −2s
)

,

(2.127)

where s is the smallest positive root of the equation (s + 2−1/m)m + 2sm − 1 = 0. These
structures for different values m are shown in Fig. 2.27. Despite the fact that these two
lattices are optimal at different values of m, they both exist for any m > 1. The highest
packing density is provided by tight contact between the corners and facets of adjacent
particles that are all oriented the same way. At lower volume fractions η than ones
corresponding to the close-packed crystals, the particles form slightly deformed C0

and C1 structures. At even lower η, the stable structures for 2 < m < 6 were found to
be plastic fcc crystals, i.e. the cubes lose their isoorientation and can freely rotate at the
lattice nodes. These structures were observed experimentally for palladium nanocubes
in a ligand-rich solution [209], copper nanocubes [160] and silica superballs [213].

The colloidal particles with more complex shapes were shown to form different
crystalline structures by simulations. Truncated tetrahedra were shown to form dia-
mond, β-tin, high-pressure lithium, and bcc structures depending on the truncation
degree [214]. For truncated cubes such structures as distorted simple cubic, body-
centered tetragonal and Minkowski lattice are expected [215]. Some of these structures
were observed experimentally [216, 217]. Colloidal crystals consisting of particles with
more exotic shapes, such as dumbbells [7, 218, 219], octapods [8], rods [220], etc. were
reported.
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2.3.1.2 Crystallization of colloidal crystals

To form a colloidal crystal, the volume fraction η of colloidal particles should ex-
ceed a certain threshold value. In practice, one needs to increase the particle concen-
tration in a sol to obtain a colloidal crystal. There are several ways of colloidal crystal
synthesis, but the most widespread methods are sedimentation by gravity and solvent
evaporation.

The concentration profile in the gravitational field is defined by the Boltzmann
distribution [64]

n(z) = n(0)e−
∆ρVgz

kT , (2.128)

where n(z) is the number concentration at the height z from the solution bottom (z =

0), ∆ρ = ρparticle − ρsolvent is the difference between the particle and solvent densities,
V is the particle volume, g is the gravity acceleration, k is the Boltzmann constant and
T is the absolute temperature. For example, for spherical gold particles in aqueous
solution with ∆ρ ≈ 18 g cm−3 and the radius of ∼100 nm, the characteristic height
is kT/(∆ρVg) ≈ 5 mm. Therefore, the volume fraction at the solution bottom can be
higher than the crystallization threshold. In such a case, the colloidal particles can crys-
tallize at the bottom of the solution [221, 222] as shown in Fig. 2.28(a). In contrast, for
soft spherical polymer particles in organic solvent with ∆ρ ≈ 0.3 g cm−3 and the same
radius of ∼100 nm, the characteristic height is kT/(∆ρVg) ≈ 30 cm. The concentration
in a vessel of a conventional size is almost constant, and the sedimentation in gravity is
impossible. In this case one can consider centrifugation, where the characteristic length
is defined by the effective acceleration g′ = ω2R, where ω is the revolution frequency
and R is the centrifuge radius. The effective acceleration in a centrifuge can reach a
few tens of gravity acceleration g that makes possible to sediment even particles with
low density [223].

The particle concentration in a sol increases naturally with evaporation of the sol-
vent. This mechanism underlies many methods for the preparation of colloidal crys-
tals. The simplest method is drop-casting, when a drop of sol is left undisturbed on a
substrate. After evaporation of the solvent, islands of a colloidal crystal remain on the
substrate. Unfortunately, it is quite hard to obtain crystals of high quality this way. To
improve the crystal quality, different modifications of this method are used, including
spin-coating [224, 225] or vertical deposition [226, 227]. The latter method uses cap-
illary forces and convection in the meniscus of a colloidal suspension on a substrate.
The capillary force brings the particles closer effectively increasing the volume frac-
tion, while convection brings more particles with the solvent flow to the growing front
as shown in Fig. 2.28(b).

Recent advances in colloidal chemistry made possible fabrication of tunable col-
loids, volume fraction η of which can be changed by external stimuli. One of the most
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Figure 2.28: (a) Sketch of the sedimentation of a colloid. The gravity creates a concentration
gradient according to Eq. (2.128) that leads to crystallization at the vessel bottom. (b) Sketch of a
vertical deposition process. The capillary forces create a meniscus with elevated concentration
of colloidal particles that leads to crystallization on the vessel walls. Not in scale. Adapted
from [21].

common example are poly(N-isopropylacrylamide) (PNIPAM) spheres with temperature-
dependent size [228–232]. PNIPAM is a polymer which has a Lower Critical Solu-
tion Temperature (LCST) in water of ∼32 ◦C [228], below which the polymer is water-
soluble and insoluble above. The polymer network below LCST has high water con-
tent, which is released upon heating, leading to the collapse of the polymer network to
about 10 times smaller volume. The phase transition is called Volume Phase Transition
(VPT). At high concentrations of colloidal PNIPAM particles, the volume fraction of
the particles ϕ can be easily tuned by changing the temperature in a narrow range that
allows the direct control of crystallization.

2.3.1.3 Structural investigation of colloidal crystals

The structural evolution during the self-assembly in sedimentation or vertical de-
position processes is hard to study due to unsuitable conditions for the use of mi-
croscopy. The most convenient techniques to trace how the structure evolves in these
conditions are the X-ray methods. A single colloidal crystallite at the beginning of the
crystallization process is too small to give scattering strong enough for detection. A
huge footprint of the incident beam at grazing-incidence angle in GISAXS technique
allows simultaneous illumination of many crystallites on the substrate that sufficiently
enhances the scattered signal. Therefore, GISAXS allows time-resolved measurements
of the self-assembly process starting from a monolayer of colloidal particles [233–236]
to bulk films [24, 25, 237–239] on solid [24, 25, 233–235, 238] as well as liquid [236, 237,
239] substrates. When the thickness of the formed colloidal crystals is large enough,
SAXS experiments in transmission geometry are also possible [29, 240–243] as shown in
Fig. 2.29. Typically, for spherical colloidal particles, close-packed structures are formed
initially, and only the unit cell parameters evolve during the consequent aging [24,
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236, 240]. In some cases, especially for anisotropic colloidal particle, a sequence of a
few intermediate crystalline phases is observed [24, 25, 29, 238, 242].

Figure 2.29: In situ SAXS study of structural evolution of a colloidal crystal consisting of lead
sulfide nanoparticles with the size of about 2 nm during evaporation of heptane solvent. (a)
Averaged time-resolved intensity profiles measured every 2 min. At ∼20 min the first Bragg
peaks attributed to an hcp lattice appear in the scattered intensity. Transition of hcp into bcc
superlattice occurs at ∼80 min. (b) Time dependence of lattice constants for both hcp and bcc
superlattices. (c) Interparticle separation and filling fraction of soft nanocrystals as a function
of time during the observed crystal structure evolution. The gray region depicts the coexistence
of both hcp and bcc phases with the predominant bcc superlattice. Adapted from [29].

The tunable colloids enable the driving a phase transition quasi-statically and cy-
cling through the transition multiple times for better statistics. The PNIPAM itself
has low optical and X-ray scattering contrasts and, therefore, is typically modified by
other molecules or particles. The use of fluorescent dyes makes possible the optical
investigation of phase transitions in PNIPAM-based colloidal crystals [21, 230–232].
To increase the X-ray scattering contrast, one typically uses metal-PNIPAM core-shell
particles [244, 245]. It allowed revealing the phase diagram of PNIPAM colloids [244,
245] and time-resolved investigations of their melting [230–232]. Using a mixture of
the thermo-reponsive PNIPAM particles with non-thermoresponsive particles, it was
shown possible to induce point defects in colloidal crystals [21].

Dried colloidal crystals, either free-standing or on a substrate, allow application
of a wider range of techniques to study their structure. The electron microscopy is
applied routinely from the discovery of artificial colloidal crystals [1, 2]. In addition
to revealing the structure, this method allows investigation of structural defects [5].
An example of microphotos of colloidal crystals obtained by electron microscopy is
shown in Fig. 2.30(a-d). Unfortunately, the electron microscopy is sensitive only to
the sample surface. The X-ray methods allow probing the structure of bulk colloidal
crystals. The coexistence of different stacking motifs in hard sphere colloidal crystals
was confirmed by presence of the Bragg rods in the scattered intensity [4, 23, 199, 200,
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Figure 2.30: (a-d) Scanning electron microphotos of colloidal crystals consisting of polystyrene
spheres with different diameters: 200 nm (a), 280 nm (b), 450 nm (c) and 560 nm (d). Adapted
from [246]. (e-h) Results of Coherent Diffractions Imaging of a colloidal crystal grain consisting
of silica spheres with the diameter of 230 nm. (e) Measured scattered X-ray intensity distri-
bution in 3D reciprocal space. Length of the coordinate arrows correspond to 50 µm−1. (f)
Reconstructed electron density distribution in 3D real space. The red arrow marks the crys-
talline plane shown as a 2D slice in (g). Length of the coordinate arrows correspond to 1 µm.
(g) 2D slice through the horizontal plane indicated in (f). (h) Projection of the reconstructed
electron density on the [100] crystallographic direction of the hexagonal lattice. Each layer is
marked by the letter corresponding to the stacking sequence in an hcp/fcc lattice. The insets
show examples of in-plane defects. Adapted from [26].

202]. By means of X-ray diffraction such structures were found prone to line defects
[22, 201]. Comprehensive information about the particle positions in colloidal crystals
is provided by CDI [26, 247] as shown in Fig. 2.30(e-h). Colloidal crystal domains
of different orientations were revealed by ptychography [248]. In a colloidal crystal
composed of polymer particles, it is possible to study in situ the structural evolution
upon heating, when the polymer particles melt [249–251].

2.3.1.4 Properties and applications of colloidal crystals

The size of colloidal particles is comparable with the wavelength of visible light
that defines their optical properties. The periodic packing of colloidal particles in col-
loidal crystals causes Bragg diffraction of visible light, and thus generates structural
colours and photonic band gaps [13, 252]. Electromagnetic waves with energies within
these band gaps are prohibited from propagating through the colloidal crystals [10, 12].
This makes evident an analogy between a photon in a colloidal crystal and an electron
in a periodical potential of a conventional crystal. Thus, the colloidal crystals demon-
strating such properties are typically called photonic crystals [11, 13]. Thermorespon-
sive colloidal particles allows tuning the structure of colloidal crystals or make them
switchable that makes them interesting for applications as tunable photonic crystals
[253]. The colloidal photonic crystals find applications in photonic crystal lasers, where
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they, combined with a fluorescent compound, serve as the gain medium [254, 255].

Colloidal crystals can be used as templates for synthesis of 3D ordered macrop-
orous materials. Liquid or gaseous precursors can react in the voids of a colloidal crys-
tal forming a solid between the colloidal particles. The templates can subsequently be
removed to acquire the macroporous network, in which the spherical voids are highly
ordered, periodic and interconnected [256, 257]. The obtained macroporous products,
often called inverse opals, do not only have the special 3D porous structure, but also
maintain the optical properties of colloidal crystals. They found applications as pho-
tonic crystals [257], sensors [14], electrodes [15], catalysts [258], etc. [259]

Thanks to the developed surface, many colloidal crystals show superhydrophobic
properties [260, 261], which can be used for antifogging coatings.

2.3.2 Mesocrystals

As discussed above, anisotropic colloidal particles can form crystalline structures,
where all the particles are isooriented. If the particles in such colloidal crystal are
crystalline, it implies long-range order not only at the macroscopic level, but also at
the atomic level of the atomic crystalline lattices. H. Cölfen and M. Antonietti intro-
duced the term ”mesocrystal” to describe such systems with crystallographic order on
two scales: atomic and colloidal [9], as shown in Fig. 2.31. Along with this designa-
tion, the terms ”supercrystal” [262, 263], ”supracrystal” [264, 265] and ”nanocrystal
superlattice” [25, 233, 239] are used. The mutual alignment of the nanocrystals inside
a mesocrystal is not always perfect. To describe the degree of alignment, the term
”mesocrystallinity” is sometimes used by analogy with the term ”crystallinity” [266].
However, it is hard to quantify the ”mesocrystallinity”, and there is no definition as to
which degree of misalignment is still tolerable to call a structure a mesocrystal.

Figure 2.31: Sketch of a mesocrystal consisting of nanocrystals. The atomic lattice (AL) planes of
all nanocrystals are perfectly aligned. Only one family of planes is shown for clarity. Adapted
from [267].

The directional forces between faceted, single crystalline nanoparticles compared
to the isotropic forces of spherical particles result in the alignment of nanoparticles
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with respect to their atomic lattices (ALs). A crucial role for the inter-particle interac-
tions play the organic ligands stabilizing the particles. A thick shell of long molecules
on a particle surface can inhibit the directionality of the inter-particle forces with for-
mation of a colloidal crystal with randomly oriented nanocrystals. Simulations show
a complicated phase behaviour of mesocrystals dependent on the thickness and hard-
ness of the ligand shells [268]. An interesting feature of mesocrystals is possibility
to substitute initial ligands by other ones by so-called ligand exchange procedure [269,
270] that leads to even more complicated phase behaviour. Different superlattice struc-
tures are reported, including simple cubic [271], fcc [262, 272–274], bcc [25, 27, 275, 276]
and bct [25, 28, 277] ones. The nanocrystals can take a single [25, 27, 28, 271, 275–277]
or a few [262, 272, 274] defined mutual orientations aligned with the superlattice crys-
tallographic axes.

Two structural scales of mesocrystals complicate their structural investigations.
Study of the superlattice (SL) and the AL of the nanocrystal requires combination of
different techniques. As discussed above, the electron microscopy is a useful technique
to study the SL structure of colloidal crystals. Recent development of High Resolu-
tion Transmission Electron Microscopy (HRTEM) made possible resolving the atomic
structure of nanocrystals [272]. Unfortunately, the sample thickness and the field of
view in HRTEM are limited to single nanocrystals that makes impossible study of bulk
mesocrystals. Nevertheless, it is possible to probe the ALs of many nanocrystals in a
mesocrystal by electron diffraction complementary to a common electron microscopy.
Therefore, a combination of electron microscopy and electron diffraction is widely used
to assess both structural scales in mesocrystals [271–273, 275] as shown in Fig. 2.32.

Figure 2.32: (a,b) Transmission Electron Microscopy (TEM) images of SLs formed by Si
nanocrystals with cuboctahedral shape. The SLs have fcc structure with various orientations
with (a) (111)SL and (b) (211)SL planes parallel to the substrate. (c,d) Fast Fourier Transforms
of the images in (a,b), respectively. (e,f) Electron diffraction patterns taken from ∼1 µm2 area of
SL shown in (a,b), respectively. The Bragg peaks are from the AL of the nanocrystals. Adapted
from [273].
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In X-ray scattering, simultaneous registration of SAXS from the SL and WAXS from
the ALs is also complicated. A couple of detectors can be used for simultaneous mea-
surement of the scattered intensities at small and wide angles [25]. Or, measurements
of SAXS and WAXS can be done consequently with different distances between a single
detector and the sample and/or at different wavelength [27, 277]. In case of availabil-
ity of a large enough detector, a simultaneous detection of both SAXS and WAXS is
possible [28, 262, 274] as shown in Fig. 2.33. In many cases this complications prevent
complementary study of both levels of order and mesocrystals are treated as conven-
tional colloidal crystals only by means of SAXS [24, 29, 238, 239, 242].

Figure 2.33: (a) Scheme of an X-ray diffraction experiment where both SAXS from the super-
lattice and WAXS from the atomic lattice of the nanoparticles are measured by a single 2D
detector. (b-e) Examples of measured diffraction patterns from a mesocrystal consisting of PbS
nanocrystals. Diffraction patterns measured at different positions of the sample. One can see
SAXS scattering from the SL and WAXS Bragg peaks, corresponding to 111AL and 200AL re-
flections of the PbS AL. The insets display enlarged SAXS regions with the scattering signal
from the SL. (f,g) Spatially resolved maps of angular positions of the diffraction peaks. (f) An-
gular positions of the 111AL Bragg peaks are shown by red arrows, and angular positions of
200AL Bragg peaks – by blue arrows. (g) Angular positions of the SL diffraction peaks shown
with black arrows in (a-d) are shown by green arrows. Domains are indicated by orange lines.
Adapted from [28].

Application of X-ray methods makes possible in situ studies of structure evolu-
tion during solvent evaporation from a mesocrystal. Thus, a transition from fcc to bcc
structure via an intermediate bct stages was detected by in situ GISAXS/GIWAXS [25]
as shown in Fig. 2.34. The phase transition of the SL was accompanied by a change
in the orientation of the nanocrystals. Mesocrystals were found prone to defects that
results in diffuse scattered intensity in SAXS regime [27]. A spatially-resolved com-
bined SAXS/WAXS allowed a comprehensive study of defects and grain boundaries
in a mesocrystal [274]. A structural evolution of a mesocrystal upon ligand exchange
was studied by means of GISAXS/GIWAXS [270]. The SL was found to contract upon
replacement of the ligands by shorter ones, while the nanocrystals became more disor-
dered. Interestingly, the mutual orientation of the nanocrystals in particular mesocrys-
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tals is so fine that interference of the X-rays scattered from the ALs of the adjacent
nanocrystals was reported [267, 278].

Figure 2.34: (a-d) Temporal evolution of GISAXS (square panels) and GIWAXS (vertical pan-
els) patterns during the in situ measurement of PbS nanocrystal self-assembly. The GISAXS
patterns show the transition from a colloidal suspension to an fcc SL to a bcc SL via contrac-
tion of the c axis. The white circles on the left halves of the GISAXS patterns are the predicted
scattering locations for the SL parameters indicated above each image. (e) Temporal evolution
of the c axis length extracted from the GISAXS pattern in (a-d). (f) Temporal evolution of the
[100]SL and [100]AL axes tilt in respect to the substrate. Adapted from [25].

The long-range order of nanocrystals in a mesocrystal leads to electrostatic and
quantum interaction between them. The electronic structure of a mesocrystal suffi-
ciently differs from that of a single nanocrystal. Especially significant are the differ-
ences for semiconductor nanocrystals, where discrete energy levels split into mini-
bands when coupled in a mesocrystal [279, 280]. Such quantum coupling of nanocrys-
tals in a SL were observed for semiconductor [281] and metal [282] nanocrystals. By
changing the size of nanocrystals, interparticle distances, and energy barrier height,
one can engineer the minibands in such mesocrystals and fine-tune electronic and op-
tical properties of such nanostructures, providing exciting possibilities for optimiza-
tion of electronic, photovoltaic, and thermoelectric devices. This explains the interest
in mesocrystals composed from semiconductor nanocrystals. The use of lead sulfide
[262, 269, 270, 272, 274, 277], lead selenide [276, 277], cadmium selenide [17, 18, 281],
caesium lead halide perovskite [20, 267, 271, 278], etc. nanocrystals was reported.

The directional interactions between faceted nanocrystals and possibility of cova-
lent bonding by organic ligands lead to outstanding mechanical properties of mesocrys-
tals. The drastic improvement in hardness and elastic modulus in an ordered mesocrys-
tal in comparison to a conventional colloidal crystals was shown for iron oxide nanopar-
ticles [263, 275]. The mechanisms of deformation in such mesocrystals were found
essentially the same as in atomic crystalline lattices [5].
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Chapter 3

Publications

This Chapter is based on six papers with significant personal contributions from
the Author. All six papers are devoted to the study of colloidal crystals and mesocrys-
tals using novel X-ray methods. However, the papers can be separated into two groups
according to the particular methods used for the structural analysis of the samples.

Section 3.1 includes three papers on studies of colloidal crystals and mesocrystals
by means of Ultra-Small-Angle X-ray Scattering (USAXS), complementary SAXS/WAXS
and AXCCA. The obtained results on the crystallization and melting of colloidal crys-
tals, structures and defects in mesocrystals, and correlations with their electronic prop-
erties are of high interest to the materials science community. The developed experi-
mental X-ray techniques and the proposed approaches for data analysis contribute to
the methodology of further possible structural studies of colloidal crystals and mesocrys-
tals.

Section 3.2 includes three papers on the development of Angular X-ray Cross-
Correlation Analysis in application to the measured scattered X-ray intensities in 3D
reciprocal space. The correlations between the intensities scattered at different angles
provide additional information beyond that extracted from the radial intensity dis-
tribution profile. This technique allows revealing different crystalline structures with
higher precision as well as revealing the defects present in the sample. The developed
technique complements a number of techniques available for investigation of 3D X-
ray scattered intensity distributions. The results of the application of the technique to
colloidal crystals and mesocrystals are of high interest to the materials science commu-
nity.
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3.1 Structural investigation of colloidal crystals and mesocrys-

tals by complementary small- and wide-angle X-ray

scattering techniques

The first paper is focused on the study of structural evolution during crystalliza-
tion and melting of colloidal crystals consisting of gold-PNIPAM core-shell nanopar-
ticles. We performed an in-situ X-ray experiment when the structural evolution dur-
ing cooling and heating was traced by means of USAXS. Analysing the form-factor
of the core-shell particles and the structure factor of the colloid we found that the
crystallization-melting cycle is not fully reversible due to defect formation in the SL
structure.

In this work, I personally participated in the X-ray experiment and took the leading
part in the data analysis, including the core-shell form-factor fitting, the fluid structure
factor fitting with the Perkus-Yevick hard sphere model, and the Bragg peak fitting.
Parts of the data analysis were performed by Nastasia Mukharamova and Svetlana
Dubinina. The main part of the manuscript was written by me after a discussion of the
obtained results with other co-authors and with the contributions of other co-authors.

The Supplementary Materials for this paper can be found at: https://doi.org/
10.1039/d1sm01537k

The second paper is focused on the correlational study of electrical conductivity
and structure of mesocrystalline microchannels consisting of lead sulfide PbS nanocrys-
tals functionalized with copper 4,4’,4”,4”’-tetraaminophtalocyanine (Cu4APc). The
mesocrystalline microchannels were formed on a Kapton substrate with preliminary
deposited gold electrodes that allowed transport measurements. After the transport
measurements, we performed an X-ray scattering experiment to study the structure
of the same microchannels. Analyzing the diffraction patterns we found two distinct
SL structures present: bcc and hcp characterized by different interparticle distance.
Comparing the obtained structure with the measured conductivity values we found a
strong correlation that can be explained by the hopping transport mechanism strongly
dependent on the interparticle distance.

In this work, I personally participated in the X-ray experiment and took the lead-
ing part in the X-ray data analysis, including the Bragg peak fitting and AXCCA of the
intensities measured in SAXS and WAXS regions. Parts of the data analysis were per-
formed by Nastasia Mukharamova. Andre Maier prepared the samples and performed
Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) measure-
ments. The part of the manuscript on the X-ray experiment results was written by me
with the contributions of other co-authors.

The Supplementary Materials for this paper can be found at: https://doi.org/
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The third paper is focused on correlational study of fluorescence and structure
of mesocrystals consisting of lead halide perovskite nanocrystals stabilized with oleic
acid (OA) and oleylamine (OAm). We found that the fluorescence spectra and lifetime
are different at various spatial points within a single mesocrystal. We performed an
X-rays experiment and found that the SL structure also differs from the average one on
the local level. We believe that the changes in the fluorescent properties are conditioned
by the structural defects.

In this work, I personally participated in the X-ray experiment and took the leading
part in the X-ray data analysis, including the Bragg peak fitting in SAXS and WAXS re-
gions. Christopher Kirsch prepared the samples and conducted optical absorption and
fluorescence measurements in solution. Jonas Hiller carried out confocal fluorescence
(-lifetime) measurements. The part of the manuscript on the X-ray experiment results
was written by me with the contributions from other co-authors.

The Supplementary Materials for this paper can be found at: https://doi.org/
10.1038/s41467-022-28486-3
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Depending on the volume fraction and interparticle interactions, colloidal suspensions can form different

phases, ranging from fluids, crystals, and glasses to gels. For soft microgels that are made from

thermoresponsive polymers, the volume fraction can be tuned by temperature, making them excellent

systems to experimentally study phase transitions in dense colloidal suspensions. However,

investigations of phase transitions at high particle concentration and across the volume phase transition

temperature in particular, are challenging due to the deformability and possibility for interpenetration

between microgels. Here, we investigate the dense phases of composite core–shell microgels that have

a small gold core and a thermoresponsive microgel shell. Employing Ultra Small-Angle X-ray Scattering,

we make use of the strong scattering signal from the gold cores with respect to the almost negligible

signal from the shells. By changing the temperature we study the freezing and melting transitions of the

system in situ. Using Bragg peak analysis and the Williamson–Hall method, we characterize the phase

transitions in detail. We show that the system crystallizes into an rhcp structure with different degrees of

in-plane and out-of-plane stacking disorder that increase upon particle swelling. We further find that the

melting process is distinctly different, where the system separates into two different crystal phases with

different melting temperatures and interparticle interactions.

1. Introduction

Microgels feature an internal gel-like structure that can be highly

swollen by solvent rendering them soft and deformable.1,2 With

their typical dimensions in the submicrometer range, microgels

resemble many physical properties of classical colloids, while

also behaviour common for macromolecules and surfactants is

observed.2–4 In addition, the microgel network can be finely

tuned, for instance their softness can be modified through the

degree of chemical cross-linking,5–7 while a response to external

stimuli, such as temperature, pH, or concentration gradients,

can be reached by altering the chemical composition.1,2,8 These

complex interactions and their tunability render microgels as the

ideal model system to study soft colloidal interactions and phase

behaviour. In this role microgels have been used to study

important fundamental phenomena, such as phase transitions,

defect formation, as well as the glass transition or jamming in

dense soft particle systems.9–21 In particular, studies from the

last few years addressed the microgel structure in densely packed

systems, revealing that microgels at sufficiently high particle

densities can experience different phenomena such as

interpenetration22–24 and/or deswelling.22,25–29
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Whenmicrogels are prepared from poly-N-isopropylacrylamide

(PNIPAM), the size and volume fraction of microgels can be

controlled in situ by temperature variations.30 This makes

PNIPAM microgels of particular interest for in situ investigations

of phase transitions, such as crystallization and melting.10,15,17

The temperature behaviour is related to the lower critical solution

temperature (LCST) of PNIPAM in water below which polymer–

solvent interactions are favoured. Above the LCST polymer–

polymer interactions dominate leading to chain collapse into

globules and results in the pronounced volume phase transition

(VPT) behaviour. Below the VPT temperature (VPTT) PNIPAM

microgels are highly swollen by water and thus possess large

volumes. Surpassing the VPTT a strong deswelling is observed due

the expulsion of water and the microgel volume can decrease by

almost 90%.30–32 During shrinkage a transition from soft

repulsive to short-range attractive particle interactions is also

observed for particles with weak to no electrostatic

stabilization.34,35 In contrast, a change from soft repulsive to less

soft, electrostatic interactions is observed for microgels that

possess more ionic groups.30,32

Importantly, the temperature responsive phase behaviour of

PNIPAMmicrogels is still not completely understood. In particular,

this is the case for high particle concentrations close to and above

the VPTT where the exact particle interactions and their internal

degrees of freedom become relevant. In a recent study by Bergman

et al.33 it was highlighted that upon approaching the VPTT the

microgel interaction potential can be best described by a multi-

Hertzian model, taking into account repulsion from the higher

cross-linked cores. One of the main reasons why the temperature

response of PNIPAM microgels is hard to address, is the fact that

upon close contact the microgels start to overlap and cannot be

resolved individually. This explains why most optical (fluorescent)

microscopy studies have focused on dilute systems34 or crystalline

systems in which the periodic order helps to resolve particle

centers10,15,17 and only intensive experimental optimization such

as specific fluorescent labelling and super-resolution methods

provide enough resolution to resolve the microgels in dense

states.22 Also, for scattering methods using e.g. neutrons or

X-rays the microgels possess very little contrast and thus long

measurement times are required. In addition, it has been shown

that the microgel form factor significantly differs from the dilute,

non-interacting state,27 rendering the analysis of the structure

factor of the dense state difficult.

The use of core–shell (CS) particles can circumvent several of

these problems, as the cores can be labelled such that these can

be easily detected, for instance with fluorescent dyes or high

contrast materials, and thereby can provide information on

the particle centre distributions.35–38 Combined with the

development of in situ techniques, their availability opens

up the possibility to perform time-resolved studies during

temperature-induced phase transitions, such as crystallization

and melting, which is still not fully understood.39 For in situ

studies using the great resolution in space and time of small-

angle X-ray scattering (SAXS), CS microgels with high electron

density cores are desired. Ideally suited for this purpose are CS

microgels with small, monodisperse gold nanoparticle cores

that are accessible via seeded precipitation polymerization.40,41

These particles are also of interest for several optical applications

because gold nanoparticles feature localized surface plasmon

resonances (LSPR) while the microgel shells can be used to

control inter-particle spacing and assembled structures.42,43

Periodic 2D lattices of these CS microgels were found to sustain

surface lattice resonances (SLRs) as the result of plasmonic/

diffractive coupling that arises when the inter-particle spacing is

close to the LSPR.44,45 The self-assembly into 3D crystals has

been studied by UV-VIS spectroscopy and small-angle neutron

scattering (SANS),46 but structural changes induced by temperature

were not explored yet.

Here, we investigate the phase behaviour of dilute and dense

suspensions of Au–PNIPAM CS microgels with Ultra-Small

Angle X-ray Scattering (USAXS). The gold core provides high

X-ray scattering contrast while the particle interactions are

governed by the microgel shell which makes this combination

uniquely suited for in situ investigations. We explore the phase

transitions between crystalline and fluid-like states in response to

both cooling and heating with a temperature rate of 0.1 1Cmin�1.

We investigate the exact details of the processes using our recently

developed Bragg peak analysis47 and identify the crystal structure

and structural changes during crystallization and melting. This

allows us to identify the freezing and melting point but also

reveals unexpected interparticle behaviour. In addition, we find

that upon melting the system behaves differently compared to

crystallization, showing the separation into three different crystal-

lites consisting of two phases with distinctly different melting

behaviour. Our results show that the combination of the CS

microgels with USAXS opens up the possibility for detailed

investigations of soft PNIPAM microgel phase behaviour upon

changes in temperature and provides new fundamental insight

into the nature of the phase transitions, also important for their

application as functional materials.

2. Experimental section
2.1. Sample preparation

Temperature-sensitive CS microgels consisting of gold nano-

particle cores and chemically cross-linkedmicrogel shells (PNIPAM)

were synthesized following established protocols.40,45 The

obtained CS particles were found to contain an Au core of the

radius Rcore = 29.1 � 4.2 nm and to have a hydrodynamic radius

Rh, in the swollen state of Rh(20 1C) = 228.9 nm and in

the collapsed state of Rh(50 1C) = 151.1 nm. The VPTT was

determined to be at approximately 32.2 1C (see for details ESI,†

Section S1 and Fig. S1). Two different dispersions of Au–

PNIPAM particles with different concentrations, 0.5 wt% and

12 wt%, were prepared in deionized water (418.2 MO cm at

25 1C) and kept at these conditions by adding B5 mg of ion

exchange resin. The 12 wt% dispersion showed upon visual

inspection optical Bragg reflections at T = 20 1C and their

absence at T = 50 1C indicating a phase transition. The effective

volume fraction feff of the samples at different temperatures

was estimated from the CS particle volume via Rh and the free
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volume based on interparticle spacing in the fully crystalline

state of the 12 wt% sample at T = 38 1C assuming an face-

centered cubic (fcc) packing. We find at T = 20 1C for the 12 wt%

dispersion feff = 0.60 and for the 0.5 wt% dispersion feff =

0.025 (see for details ESI,† Section S2). The dispersions

(B20 mL) were placed into flat capillaries (4 � 0.2 � 50 mm3,

internal dimensions, Vitrocom) by employing a reduced pressure

method. For the 12 wt% sample the dispersion was heated to

T = 50.0 1C prior to filling the capillary to reduce the dispersion

viscosity. To prevent water evaporation during the experiment

the open ends of the capillaries were flame sealed.

2.2. USAXS experiment

Ultra-small angle X-ray scattering was performed at the Coherence

Applications Beamline P10 of the PETRA III synchrotron radiation

facility at DESY, Hamburg. An X-ray beam with the photon energy

E = 8.539 keV (wavelength l = 0.145 nm) was cut down to the size

of B50 � 50 mm2 on the sample by a slits system. A 2D detector

EIGER X 4M (Dectris AG) with 2070 � 2167 pixels and a pixel size

of 75 � 75 mm2 was positioned 21.3 m behind the sample in

USAXS geometry (Fig. 1). To avoid air absorption, an evacuated

flight tube was placed between the sample and detector. The

exposure time was selected to be 0.1 s to minimize radiation

damage during the experiment. The sample capillaries were

mounted in a copper sample holder which provided a uniform

temperature distribution along the capillary. The holder had two

small windows with a diameter of 1 � 4 mm2 to allow X-rays to

pass through the sample (see Fig. S2, ESI†). Heating and cooling

of the sample was performed by a Peltier element and circulating

water bath. The temperature was measured by a thermocouple,

which was in contact with the copper frame. A temperature

controller adjusted the Peltier element to maintain a certain

temperature with 0.001 1C stability. Measurements were per-

formed in the temperature range between 20.0 1C and 50.0 1C.

3. Results
3.1. Core–shell particle and phase characterization

We first investigated the general properties of the CS microgels

in the dilute state with 0.5 wt% and feff(20 1C) = 0.025 between

T = 25.0 1C and T = 50.0 1C. Examples of the 2D USAXS patterns

measured in the fully collapsed state (T = 40.0 1C) and just

slightly above the VPTT (T = 35.0 1C) are shown in Fig. 2a and b.

The scattered intensity I(q) is a product of the form factor Pcs(q)

of the CS particles and the structure factor S(q) of the super-

lattice, I(q) p Pcs(q)S(q). At this low volume fraction inter-

ference between scattering from different particles is negligible

(i.e. S(q) E 1) and the resulting scattering represents solely the

Pcs(q) of the CSmicrogels. The radially averaged intensity profiles

are shown in Fig. 2c (see also ESI,† Fig. S3a and b). First of all, we

note the large difference in scattering contrast between the gold

core and the polymer shell that leads to two distinct features in

the Pcs(q), with a first minimum around q B 30 mm�1 and a

second minimum at q B 160 mm�1, respectively. To extract the

CS characteristics, the profiles were fitted with a core–shell

model in which we accounted for the particle polydispersity by

using a Gaussian size distribution (see ESI,† Section S4 for

details of the fitting). The fitting was performed for each

temperature and the evolution of the extracted parameters is

shown in Fig. S4 (ESI†). The core scattering contrast was fixed at

Drcore = 4326 nm�3 and the core radius was found to be Rcore =

25.8� 4.6 nm for all temperatures. This Au–core size agrees well

with Rcore = 29.1� 4.2 nmmeasured by TEM. In addition, the fits

also confirm the size change of the PNIPAM shell with increasing

temperature. We find that the total shell radius Rshell decreases

from Rshell(25 1C) = 192 � 31 nm to Rshell(50 1C) = 162 � 22 nm,

while the shell scattering contrast Drshell increases from

Drshell(25 1C) = 16 nm�3 up to Drshell(50 1C) = 25 nm�3,

confirming the collapse of the PNIPAM shell. This change in

size agrees well with the observed change in the hydrodynamic

radius Rh from Rh(25 1C) = 220.8 nm to Rh(50 1C) = 151.1 nm. The

discrepancy between Rshell and Rh is typically observed for

microgels and can be explained by a fuzzy-sphere structure with

lower cross-linking density and dangling ends in the outer

region of the shell.9 Here, this detail is ignored in the Pcs(q) fit

where a homogeneous density is assumed leading to a smaller

Rshell.

Next, we investigated the high concentration sample with

feff(20 1C) = 0.60 that showed a crystal to fluid phase transition

between T = 20.0 1C to T = 50.0 1C, as evident from the

appearance of optical Bragg reflections upon cooling. Examples

of the 2D USAXS patterns in the collapsed state at T = 40.0 1C

and close to the VPTT at T = 35.0 1C are shown in Fig. 2d and e,

together with the radial averaged profiles shown in Fig. 2f.

We assume the USAXS signal is dominated by scattering from

the Au cores due to two reasons: the higher scattering contrast

of the Au cores and the decrease in the contrast between the

shells due to the dense packing of the CS microgels at high feff.

Therefore, we attribute the main contribution to I(q), and hence

S(q), to be originating from the Au cores. At T = 40.0 1C, the

2D-USAXS pattern shows broad isotropic rings characteristic for

Fig. 1 Scheme of the USAXS setup at the Coherence Applications

Beamline P10 at PETRA III synchrotron storage ring. The beam was shaped

with 50 � 50 mm2 slits before passing through the sample. The core–shell

microgel dispersions were sealed in the glass capillaries. The scattering

pattern was detected by an EIGER X 4M detector positioned 21.3 m behind

the sample. Diffraction pattern shown in this figure was collected at

T = 35 1C. Families of Bragg peaks are indicated in the caption. For the

crystalline sample this results in distinct Bragg peaks in the 2D USAXS

pattern that are assigned to a random hexagonal close-packed (rhcp)

crystal structure oriented along the [0001] axis. The inset on the bottom

left shows a schematic representation of the swelling/deswelling behaviour

of the PNIPAM shell of the CSmicrogels upon cooling/heating, resulting in a

phase transition from a fluid to a crystal phase and vice versa.
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scattering from a disordered fluid phase. At T = 35.0 1C, the 2D-

USAXS pattern shows six prominent orders of narrow Bragg peaks

originating from the CS microgels that have organized into a

crystal lattice. The six-fold symmetry of the Bragg peaks can be

attributed to a random hexagonal close-packed (rhcp) crystal

lattice as indicated in Fig. 1 and will be discussed in detail below.

3.2. In situ characterization of crystallization

To investigate the crystallization process of the CS microgel

system, the phase transition from fluid to crystalline state was

followed in situ with USAXS by applying continuous cooling

around the temperature where the phase transition was

observed. For this, the sample was first heated to T = 50 1C to

allow the system to equilibrate in a fluid state, followed by a

cooling step to T = 40 1C where the CS microgels already swell

resulting in feff(40 1C) = 0.21 based on the Rh but remain in a

fluid-like state. Next, the system was continuously cooled with a

rate of 0.1 1C min�1 and diffraction patterns were collected

every 30 s from T = 39.0 1C to T = 35.0 1C giving a temperature

resolution of 0.05 1C. At each temperature, radially averaged I(q)

Fig. 2 (a and b) Typical 2D-USAXS patterns of the dilute colloidal samplewith 0.5wt% at T=40.0 1C (a) and T= 35.0 1C (b). (c) The corresponding radially averaged

profiles of the scattered intensity. (d and e) Typical 2D-USAXS patterns of the densely packed colloidal sample with 12 wt% at T = 40.0 1C (d) and T = 35.0 1C (e). (f)

The corresponding radially averaged profiles of the scattered intensity. In (c and f) the profiles of scattered intensity are offset by an order of magnitude for clarity.

Fig. 3 Evolution of crystallization of CS system at feff(20 1C) = 0.60 during cooling. The radially averaged intensity plots for different temperatures are stacked

together in 2Dmaps as a function of scattering vector q and temperature T for (a) full structure factor S(q), (b) fluid structure factor Siso(q) (the intensity between the

Bragg peaks), (c) crystal structure factor Sxtal(q) (containing only the Bragg peaks). The white arrow in (a) indicates the direction of the experiment. (d) Fluid structure

factor Siso(q) at T = 39.0 1C (red line) and the best Percus–Yevick hard sphere structure factor fit (black dotted line). (e) Integrated Siso(q) near the first fluid ring (in

the range of q = 10–23 mm�1 as indicated by the red dashed lines in panel (b)). The vertical red dashed lines indicate the temperature range of active crystallization.
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profiles of the diffraction patterns were extracted. From these

profiles, S(q) can be obtained by dividing the measured inten-

sity I(q) by the fitted form factor Pcs(q) from the dilute sample at

each temperature step as S(q) p I(q)/Pcs(q). The evolution of

S(q) as a function of temperature during the full cooling process

is shown as an intensity map in Fig. 3a. At high temperatures

(T 4 38 1C, top part of Fig. 3a), S(q) contains only broad features

that can be attributed to the scattering from the isotropic fluid.

At T = 38.2 1C the first sharp Bragg peaks start to appear,

indicating the onset of crystallization. The size change of the

PNIPAM shell at this particle concentration (12 wt%) leads to a

significant change in particle volume fraction from feff(40 1C) =

0.21 to feff(35 1C) = 0.30 in between these two temperatures feff

thus exceeds the freezing volume fraction ff, i.e. feff 4 ff, and

results in the crystallization of the CS particles.

To follow the transitions of the fluid and crystalline phases

separately, we extracted the isotropic structure factor Siso(q) by

taking the average intensity on a ring at a q-value between the

Bragg peaks and the crystal structure factor via Sxtal(q) = S(q) �
Siso(q), which contains highly anisotropic features caused by

the Bragg peaks of the crystalline phase. Fig. 3b and c show the

distinctly different evolution of Siso(q) and Sxtal(q) for the full

temperature range, respectively. At high temperatures (T 4

38.2 1C) Siso(q) shows only the fluid features that almost

completely disappear upon crystallization of the sample (T o

37.6 1C). At T o 37 1C the small remaining intensity in Siso(q)

comes only from the tails of the Bragg peaks. In contrast, at

high temperatures (T 4 38.2 1C) Sxtal(q) shows very small traces

of the first maximum of the fluid structure factor, while at T =

38.2 1C the appearance of the first Bragg peaks occurs that are

followed by the appearance of higher order peaks between T =

38.2–38.0 1C which upon further cooling, continue to increase

in intensity. We extracted the exact state of the fluid and the

phase transition temperature from Siso(q). Fig. 3d shows Siso(q)

at T = 39.0 1C where a broad first maximum from the fluid

phase can be seen. We fitted the Siso(q) with the Percus–Yevick

hard sphere model SPY(q) (see ESI,† Section S5 for details of the

fitting).48 The best fit for Siso(q) with a hard sphere radius of

RPY = 216 � 1 nm and a volume fraction of fPY = 0.47 � 0.03 is

also shown in Fig. 3d. The obtained RPY is larger than the CS

size of Rh(39 1C) = 162.7 nm and can be explained by the

charged characteristics of our microgels with a zeta-potential of

z E �30 mV that dominates the particle interactions in the

collapsed state (see for details Fig. S1, ESI†). The surface

charges result in long-range electrostatic repulsion between

the CS particles under the deionized conditions that leads to

a Debye length of k�1
B 100 nm. The high volume fraction

fPY = 0.47 indicates the system is indeed showing signatures of

a fluid close to the hard sphere freezing volume fraction ff-HS =

0.494. From the fluid structure factor intensity Siso(q) the onset

and end of the full crystallization process were determined.

Fig. 3e shows the integrated value of Siso(q) around the first

maximum in the range of 10–23 mm�1 (red dashed lines in

Fig. 3b). The intensity remains constant up to T = 38.2 1C and

then starts to drop significantly, which coincides with the

appearance of the Bragg peaks in Sxtal(q). Clearly, this

temperature is the starting point for crystallization of the

sample and at this point feff = ff = 0.23, as a result of the

small increase of the CS particle size (Rh(38 1C) = 165.8 nm).

The major drop in intensity occurs between T = 38.2–37.6 1C

and indicates the crystallization of the major part of the system

during this small temperature and time window (0.6 1C, 6 min),

which we will refer to as the ‘active crystallization’ regime.

We note that further cooling still leads to a small decrease in

the Siso(q) intensity which can be caused by crystallization of

residual amounts of the fluid phase as well as potential

annealing of crystalline defects that would decrease the inten-

sity of the Bragg peak tails (further discussed below).

To investigate the crystallization process in more detail, we

performed Bragg peak analysis on the peaks visible in the 2D

USAXS patterns.47 There are six prominent orders of Bragg

peaks present in Sxtal(q) at q=q1 ¼ 1;
ffiffiffi

3
p

; 2;
ffiffiffi

7
p

; 3; 2
ffiffiffi

3
p

with

respect to the first order peak at q1 E 15 mm�1. These Bragg

peaks indicate the presence of a single crystal domain with an

rhcp structure aligned with its hexagonal close-packed planes

parallel to the capillary walls and, hence, perpendicular to the

X-ray beam. The rhcp structure is typically found for colloidal

spheres, as the spheres pack into close packed hexagonal

planes while the stacking sequence of the planes is random,

leading to alternating fcc and hexagonal close-packed (hcp)

crystal structures.14,49–52 The Bragg peaks can be identified as

the hexagonal close packed 1%100, 2%1%10, 2%200, 3%2%10, 3%300 and

4%2%20 families, respectively (see Fig. 1). We do note that there are

two additional peaks of lower intensity next to the 1%100 peaks

in the pattern. We believe that these peaks originate from

another crystal grain and were therefore excluded from the

further analysis.

The Bragg peak analysis was done by fitting the peaks with a

2D Gaussian function (see ESI,† Section S6 for details). Each

diffraction pattern was interpolated into a polar (q,j)-coordinate

frame and divided by the corresponding single particle form-factor.

Each Bragg peak was fitted separately with a 2D Gaussian function

in the polar coordinates. The following fitting parameters were

extracted: the peak intensity, the q-position of the center of the

peak, and the full widths at half maximum (FWHMs) in radial and

azimuthal directions. Finally, the obtained values were averaged for

each Bragg peak family with the error bars representing the

standard deviation within each family.

The evolution of the integrated Bragg peak intensities for

each Bragg peak family over the full investigated temperature

range is shown in Fig. 4a. The first peaks to appear are the

brightest 2%1%10 family peaks at T = 38.25 1C, confirming again

that at this temperature the crystallization starts. Upon further

cooling, higher order Bragg peaks appear, with the last set of

peaks belonging to the 3%2%10 family, which also possesses the

lowest intensity, at T = 38.05 1C. The intensity of all peaks rapidly

increases from the moment they appear until the intensity

increase significantly slows down for temperatures approaching

T = 37.6 1C. Further cooling only leads to a minor rise off all

intensities. The appearance and the rise in intensity of the peaks

up to T = 37.6 1C, indicates the growth of a crystal nuclei from the

fluid and the increasing long-range order of the crystal grain.
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The evolution of the peaks position with respect to the initial

q-values, q0, is shown in Fig. 4b. During the initial rapid

crystallization, the peak positions stay quite stable or even

slightly decrease. However, after T = 37.6 1C, when most of

the sample has crystallized, all Bragg peaks start moving

towards higher q-values, indicating that the lattice spacing

decreases. Surprisingly, the increase rate varies for different

Bragg peak families. For the most intense 2 %1%10 peaks, the

q-value increases only by B2% from the start of crystallization

to the final temperature T = 35.0 1C, while that of the 1 %100 peak

increases up to B5%. All other Bragg peaks move with rates

between these two extrema, although 2%200 and 3%2%10 are closer

to the rate of 1%100, and 3%300 and 4%2%20 are closer to 2%1%10.

Interestingly, these two groups of peaks have different origins.

In reciprocal space the stacking disorder of the planes in the

rhcp structure leads to the appearance of stacking-dependent

Bragg rods along the direction normal to the close packed

planes, which in this case is parallel to the X-ray beam. Here,

the 1%100, 2 %200 and 3%2%10 can be identified as stacking-

dependent peaks, while the 2%1%10, 3%300 and 4%2%20 are stacking-

independent peaks. The difference in their q-value evolution

seems to indicate that there are differences in how the crystal

grows and how the defect structure develops in the in- and out-

of-plane direction of the crystal grain.

From the peak positions of all Bragg peaks, we can calculate

the average hcp unit cell parameter a as shown in Fig. 4c.

During the active crystallization a is almost constant, only

increasing slightly from a = 489 � 1 nm to a = 491 � 1 nm.

However, further cooling leads to a decrease to a = 476 � 5 nm.

The interparticle spacing upon crystallization is larger than

2Rh(38 1C) = 331.7 nm and its decrease with further cooling is

contradictory to the swelling of the PNIPAM shells to 2Rh(35 1C) =

362.3 nm (see ESI,† Fig. S1c). Both discrepancies seem to be

caused by the electrostatic interactions between the CS particles

that, as mentioned above, lead to long-range interparticle

interactions and hence an earlier onset of crystallization. It has

been shown for ionic microgels that at a fixed temperature an

increase in number density (and thus feff) results in a decrease in

interparticle spacing.11,53 Moreover, at high enough particle

concentration the overlap of the counterion clouds can even

lead to deswelling of the microgels.25 However, in our case the

situation might be even more complex as we find apparent

microgel charge changes in dependence on the swelling state as

evidenced by the different zeta potentials, i.e. z(38 1C) = �25.6 mV

and z(35 1C) = �18.5 mV (see for details Fig. S1, ESI†). We do note

that these values were obtained in the dilute system and thus

might not reflect the dense system case. Clearly, the decrease in

interparticle spacing upon cooling is the result of a complex

Fig. 4 Evolution of the Bragg peaks and crystal parameters during cooling. In all panels the vertical red dashed lines indicate the temperature range of

active crystallization. (a) Integrated intensity, (b) q-position of the peaks in respect to the first registered q-value of the peak, q0 (plots are offset by 0.05 for

clarity). The error bars are standard deviations between the peaks of the same family. (c) Evolution of the lattice parameter, a, averaged over all observed

Bragg peaks. (d and g) The size of the Bragg peaks (FWHM) in radial (d) and azimuthal (g) directions. The error bars are standard deviations between the

peaks of the same family. (e and h) Examples of the Williamson–Hall plots for FWHMs of the subpeaks in radial (e) and azimuthal (h) directions at T =

36.0 1C. Points are experimental values for the stacking-dependent (blue) and stacking-independent (red) peaks and straight lines are the best fit for each

group. (f and i) Evolution of the radial (f) and angular (i) lattice distortions extracted by the Williamson–Hall method from the stacking-dependent (blue)

and stacking-independent (red) peaks.
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change in interparticle interactions of the microgels, and remains

a topic that is still not fully understood.2,33

We can further extract information about the distortions

caused by strain in the crystal lattice by performing Williamson–

Hall analysis of the Bragg peaks.54 For this we determined the

FWHM of each Bragg peak wq and wj in radial and azimuthal

direction, respectively. Fig. 4d and g show wq and wj averaged

for each Bragg peak family for the full temperature range. While

each family has different absolute values their overall trends of

wq and wj are quite similar. There is, however, a clear difference

between the trends in wq and wj. While wq continuously grows

throughout the whole cooling process indicating continuously

growing strain in the crystal lattice, wj only increases during the

active crystallization between T = 38.2–37.6 1C and then remains

constant showing that after crystallization the strain in this

directions does not evolve. Next, we used the Williamson–Hall

equation55

wq;j
2 qð Þ ¼ gq;j

2q2 þ 2p

Lq;j

� �2

; (1)

where wq,j(q) is the FWHM of a Bragg peak at position q, gq,j the

lattice distortion and Lq,j the size of coherently scattering

domains; subscripts q and j denote radial and azimuthal

directions, respectively. Fig. 4e and h show wq
2 and wj

2 as a

function of q2 for all Bragg peak families at T = 36.0 1C where the

sample has fully crystalized. In contrast to the prediction of the

Williamson–Hall equation, the points of the different Bragg peak

families do not fall on a single straight line but separate again into

stacking-dependent peaks (1%100, 2%200 and 3%2%10) and stacking-

independent ones (2%1%10, 3%300 and 4%2%20). This separation agrees

well with previously observed differences in the FWHMs of

stacking-dependent and stacking-independent Bragg peaks for a

similar colloidal system with rhcp packing.50 The difference in the

FWHMs is caused by the presence of additional in-plane stacking

disorder, which means that the hexagonal planes consist of

islands with different lateral positions with characteristic line

defects in between them leading to a lower degree of order in

these in-plane directions.49 In addition, for soft colloidal crystals

different types of defects consisting of combined in-plane and

out-of-plane stacking disorder, i.e. partial dislocations, have been

observed and would lead to a similar effect.56 Therefore, we fitted

the stacking-dependent and stacking-independent Bragg peaks

separately and extracted the lattice distortions gq and gj over the

full temperature range, as shown in Fig. 4f and i.

We find that in the radial direction, the lattice distortions

for both stacking types are initially the same with gq E 1%,

indicating the initial crystal grain experiences little strain.

As the active crystallization proceeds, the distortions start to

increase with a higher rate for the stacking-dependent peaks

than for the stacking-independent Bragg peaks. Upon further

cooling to T = 35.0 1C, the radial distortions reached values of

gq E 5.5% and gq E 4.5% for stacking-dependent and stacking-

independent peaks, respectively. This larger distortion for the

stacking-dependent peaks is expected since the in-plane

stacking disorder leads to effectively smaller crystal domains.

The continuous character of the increased distortion seems to

be related to the continuous swelling of the CS microgels and

accompanying softer interparticle interactions, similar to the

decrease in interparticle spacing observed from the Bragg peak

positions. The swelling leads to increasing strain in the crystals

and thus will lead to larger distortions within the crystal

planes.56

In the azimuthal direction, the crystallization is characterized

by a fast rise of the angular distortion gj in the active crystal-

lization regime from 1.5% to 4% for stacking-dependent and from

1.5% to 3% for stacking-independent peaks, respectively (see

Fig. 4i). This behaviour can be explained by the misorientation

of the outsides of the growing crystal with respect to the nuclei

orientation during the active crystallization stage. After the active

crystallization, the distortions only increase slightly during further

cooling reaching values of gj E 5% and 4%, respectively. Clearly,

once the full scattering volume has crystallized, the additional

strain from the particle swelling does not lead to strong reorienta-

tion of the crystal planes.

3.3. In situ characterization of melting

After having analysed the crystallization process in detail, we

now turn to the melting process induced by slowly heating the

crystalline sample. We note that after the cooling measurement

the sample was cooled further to T = 20 1C and equilibrated for

5 min. Next, the melting was followed from T = 35.0 1C to T =

43.0 1C with the same rate of 0.1 1C min�1 and at the same

sample position as at the end of cooling. During the heating

process, we observed that the intensity of the 6-fold Bragg peaks

decreased and that the shape of the peaks changed.

Again, we identify the onset of melting by investigating the

structure factors shown in Fig. 5. The evolution of S(q), Siso(q)

and Sxtal(q) is shown in Fig. 5a–c. Fig. 5d shows the Siso(q) of the

fluid state at T = 43.0 1C together with the best fit with the

Percus-Yevick SPY(q) for a fluid with fPY = 0.42 � 0.01 and RPY =

209 � 4 nm. These PY values again agree with a collapsed

PNIPAM shell state but are slightly larger than Rh(43 1C) =

155.5 nm, again attributed to electrostatic repulsions between

the particles. Fig. 5e shows integrated Siso(q) in the range of

q = 10–23 mm�1 as indicated by the red dashed lines in Fig. 5(b).

The transition from a crystal to a liquid can be observed clearly

by the appearance of the fluid peak in Siso(q) and the disap-

pearance of the Bragg peaks in Sxtal(q). In the temperature range

of T = 37.0–38.2 1C a strong rise in the intensity of Siso(q) occurs

that coincides with the most significant drop in the Bragg peak

intensities, indicating the onset and subsequent melting of a

main part of the crystalline phase. The lower T = 37.0 1C for the

start of melting shows that the melting transition occurs at the

higher volume fraction feff = 0.24 than the freezing transition.

With further heating, Siso(q) intensity only increases gradually,

indicating that a large part of the sample still remains crystal-

line. This is also seen in the Sxtal(q) peaks that decrease in

intensity, but remain present up to T E 41.0 1C. Finally, at T =

41.8 1C the Bragg peak intensity decreases and the peaks

completely disappear at T = 42.3 1C while the liquid structure

factor Siso(q) reaches its maximum intensity, indicating the full
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sample has returned to a fluid state. Interestingly, in Sxtal(q) the

Bragg peaks appear much sharper between T = 38.2 1C and T =

41 1C, which is counterintuitive for a ‘‘normal’’ crystal melting.

Typically melting is associated with an increase in lattice

distortion and a decrease in the range of structural order that

would lead to broadening of the Bragg peaks. After a more

careful analysis, we found that the previously single crystal Bragg

peak splits into distinctly different sets of Bragg peaks upon

melting and that these peaks show different behaviour. We note

that for T 4 42 1C suddenly different Bragg peaks appear in

Sxtal(q) which coincides with a drop in Siso(q). We believe this

moment indicates the moment the crystal grain fully breaks up

and rotates or possibly another crystallite drifts into the

X-ray beam.

To get insight into the unexpected behaviour of the sample

during melting, we examined the 2D USAXS patterns in more

detail. Fig. 6a–d shows the patterns at different temperatures

and Fig. 6e–h shows magnified parts around one of the peaks

from the brightest 2%1%10 family. It can be clearly seen that the

Bragg peak splits into three subpeaks already at the start of the

Fig. 5 Evolution of melting of CS system with feff(20 1C) = 0.60 during heating from T = 35 1C to T = 43 1C. The radially averaged intensity plots for

different temperatures are stacked together in 2D maps for (a) full structure factor S(q), (b) fluid structure factor Siso(q) (the intensity between the Bragg

peaks), (c) crystal structure factor Sxtal(q) (containing only the Bragg peaks). The white arrow in (a) indicates the direction of the experiment. Note the

reverse temperature scale compared to Fig. 3. (d) Measured Siso(q) at final temperature T = 43.0 1C (red line) and the best fit by the Percus-Yevick hard

sphere structure factor (black dotted line). (e) Integrated Siso(q) near the first fluid ring (in the range of q = 10–23 mm�1 indicated by the red dashed lines in

panel (b)). The first two vertical red dashed lines indicate the temperature range of active melting and the last the final stage of melting.

Fig. 6 Evolution of the Bragg peaks during heating. (a–d) Examples of the 2D-USAXS patterns collected during heating at different temperatures. (e–h)

Areas of the diffraction patterns showing thee subpeaks of the Bragg peak, indicated in (a–d) by the dashed circle, at different temperatures.
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measurement at T = 35.7 1C. Their appearance implies that

during melting the previously single crystalline structure

separates into three crystallites surrounded by a fluid phase,

which can be explained by the onset of melting at defects and

grain boundaries position.10 The subpeaks corresponding to

these crystallites are denoted ‘‘blue’’, ‘‘red’’ and ‘‘green’’ as

indicated by the circles in Fig. 6e–h. We performed Bragg peak

analysis of these three subpeaks and the evolution of the

average extracted peak intensity, q-position and j-position that

are shown in Fig. 7. From the different parameters, it is clear

that the ‘‘blue’’ crystallite behaves differently compared to the

‘‘green’’ and ‘‘red’’ crystallites. First, the ‘‘blue’’ peak has a

higher intensity than the other two (Fig. 7a). Second, although

heating up to T = 37 1C results in a decrease in the intensities of

all three peaks, further heating results in a rapid decrease and

disappearing at T = 38.2 1C of the ‘‘blue’’ subpeak, while the

‘‘red’’ and ‘‘green’’ subpeaks keep decreasing in intensity and

only fully disappear at T = 41.8 1C. We note that we can exclude

sedimentation of the crystallites at this stage of the heating

process as the effective volume fraction feff 4 ff. Third, the

‘‘green’’ and ‘‘red’’ subpeaks move apart from each other in

azimuthal direction by about four degrees while the blue

subpeaks do not move (Fig. 7b). Finally, during heating the

q-position of the ‘‘blue’’ peak increases significantly while

those of the red and green subpeaks stay relatively constant

(Fig. 7c). From this analysis, it is clear that the ‘‘blue’’ crystallite

comprises the bulk of the system since it shows the reverse

behaviour with full melting at the same temperature as where

bulk crystallization started. Therefore, the behaviour of this

‘‘blue’’ crystallite is driven by the CS particle size change and

corresponding change in the effective volume fraction feff.

For the ‘‘green’’ and ‘‘red’’ crystallites we conclude that these

comprise a small part of the scattering volume and since these

crystallites remain present after melting of the bulk of the

system, it can explain the occurrence of drift and orientational

changes of the crystallites.

Next, we calculated the average unit cell parameter for

the crystallites from the average values of all orders of each

subpeak (Fig. 7d). The subpeaks corresponding to the same

crystallite in each Bragg peak family were identified thanks to

their similar behaviour in radial and azimuthal directions.

The extracted parameters of the separate Bragg peak analysis

are shown in the ESI,† in Fig. S7–S10, where we note that the

3%2%10 family was excluded due to its low intensity. For

the ‘‘blue’’ crystallite we find the lattice parameter value a =

475 � 5 nm at T = 35 1C that decreases to a = 468 � 5 nm just

before melting at T = 37 1C. This initial lattice spacing

corresponds to the end value of the crystallization process

and the decrease in lattice spacing agrees with the collapsing

of the CS size. For the ‘‘green’’ and ‘‘red’’ crystallites we find a =

489 � 3 nm at T = 35 1C, which is 14 nm larger than at the end

of crystallization. In addition, for the ‘‘red’’ crystallite a

continuously decreases to a = 480 � 3 nm at T = 38.2 1C and

then stays constant up to melting, while for the ‘‘green’’ a

decrease occurs to a = 482 � 3 nm at T = 38.2 1C after which it

increases again up to a = 492 � 4 nm, exceeding thus the initial

value. This behaviour of the ‘‘green’’ and ‘‘red’’ crystallite is

surprising as it is not in-line with the expected collapse of the

PNIPAM shell.

Based on the separation into three crystallites and their

distinct differences in behaviour, we conclude that in the CS

system two different states are present during melting. Based on

the USAXS patterns alone it is difficult to determine the exact

location of the crystals but we speculate that the distinction

comes from the bulk crystal and two wall crystallites. Our

reasoning is that since the ‘‘blue’’ crystallite shows the expected

melting behaviour compared to the system upon crystallization,

this crystallite comprises the bulk of the system and the melting

transition is driven by the change in CS size and the corres-

ponding change in feff. The similarities in behaviour of the

‘‘green’’ and ‘‘red’’ crystallites indicate that these crystals might

be two crystalline domains formed on the capillary walls, as

observed in other charged particle systems.57 A temperature

gradient close to the walls induced by the short cooling to T =

20 1C of the sample before the heating measurement will lead to

increased swelling of the CS microgel shell (Rh(20 1C) =

228.9 nm) and could explain the larger lattice spacing in these

crystals close to the wall. In addition, the swelling would lead to

entanglement of the outer chains of the PNIPAM shell, and thus

lead to an early separation into two states, while also explaining

the delayed melting of the crystallites even below ff. However,

real space investigations, such as polarization microscopy,38,57

will be needed to confirm this melting process.

4. Discussion

A schematic representation of the full phase behaviour

observed in the dense CS particle system upon cooling and

Fig. 7 Evolution of the extracted parameters of the subpeaks of the Bragg

peak during melting: (a) integrated intensities, (b) azimuthal positions and

(c) q-values. (d) Evolution of the lattice parameters for each superlattice

crystallite. The lattice parameters are averaged over 5 orders of each

subpeak.
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heating with a temperature ramp of 0.1 1C min�1 is presented

in Fig. 8. At high temperatures T4 39 1C the system is in a fluid

state with the effective volume fraction feff o ff. Upon cooling

the charged CS particles start to swell and at T = 38.2 1C the

effective volume fraction feff increases and becomes higher

than the freezing point, thus feff 4 ff, causing the formation

of a crystal nucleus that subsequently grows from the fluid.

Upon a further decrease in temperature T o 37.8 1C, the

particle swelling increases further, thus increasing feff and

due to their charged and soft nature the inter-particle spacing

decreases. Upon cooling the system to T = 20 1C for 5 min the CS

particles close to the capillary wall swell even more and the

dangling ends in the outer microgel periphery can interpenetrate.

Subsequently, by heating the system again, the microgel collapse

lowering the effective volume fraction. At this stage the system

starts to separate into two distinct crystal states, the bulk crystal

and the wall crystals. Below the melting point, feff o fm, the bulk

of the system starts to melt and form a fluid phase, while the wall

crystals respondmuch slower due to possible entanglement of the

outer polymer chains of the microgels. Finally, only by heating to

T 4 41.5 1C the full system disperses again and a fluid phase is

obtained.

5. Conclusions

We have investigated the in situ crystallization and melting

of CS microgels that contain high contrast Au cores and

thermoresponsive PNIPAM shells using USAXS. The phase

transitions were induced either by cooling or by heating with

rates of 0.1 1C min�1 in a densely packed suspension. We have

found that the Au core contribution dominates the scattered

intensity due to their high electron density and provides sharp

contrast between the CS form factor Pcs(q) and structure factor

S(q), while the temperature response of the PNIPAM shell can

still be monitored. We further found that the behaviour of the

microgel system upon crystallization and melting is quite

different and rather complex. Upon cooling, due to the increase

in CS size, the dense fluid readily crystallizes into a single

crystalline structure. By performing Bragg peak analysis, we

revealed that an rhcp crystal structure is formed and that

in-plane and out-of-plane stacking disorder occurs which

develop differently during crystallization. Upon heating, the

crystalline sample melts but we find that the crystal separates

into different, smaller crystallites that undergo two different

melting processes. We attribute these differences to the

presence of two different crystalline phases after crystallization,

a bulk crystal phase and crystal phases formed close to the

capillary walls.

The combination of CS microgels containing Au cores and

PNIPAM shells with USAXS and Bragg peak analysis employed

in the current study provides a means to investigate the bulk

behaviour of microgel systems upon temperature changes that

have been limited so far due to the low scattering contrast of

pure microgel particles. Our investigations therefore open up

ways to address how the bulk system response ties in with the

local microgel response for different particle concentrations as

well as the influence of different cooling and heating rates.

Such investigations can address fundamental questions regarding

crystallization, melting, jamming and the glass transition, while at

the same time these can provide crucial insights for potential

Fig. 8 Schematic representation of the observed in situ phase transitions from a fluid to a crystal and vice versa in the gold–PNIPAM CS system. Due to

the swelling and collapsing of the PNIPAM shell in response to cooling and heating the CS microgel size and subsequently the effective volume fraction

feff in the system changes driving the phase transitions.
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applications of such microgels as (multi-)functional materials in

various fields.
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and charge transport in NC SLs is still 
pending. Previous experimental research 
on NC SLs has either focused solely on 
the process of self-organization and struc-
tural order[8–13] or, in separate studies, on 
charge transport, and electronic proper-
ties.[14–19] In order to reveal potential trans-
port anisotropy, a correlated investigation 
of charge transport and structural order on 
the same NC SL is required. This allows 
addressing a variety of fundamental ques-
tions. Are the electronic properties of NC 
SLs influenced by the SL type and orienta-
tion? Do polycrystalline and monocrystal-
line SLs differ in conductivity? What is the 
degree of transport anisotropy in NC SLs?

Here, we address these questions by 
a direct correlation of the structural and 
electronic properties of SLs composed of 
electronically coupled lead sulfide (PbS) 

NCs. We perform X-ray nanodiffraction and apply angular X-ray 
cross-correlation analysis (AXCCA)[8,20,21] to characterize the 
structure of the SLs, which are correlated with electric transport 
measurements of the same microdomains. By that, we reveal 
anisotropic charge transport in highly ordered monocrystalline 
hexagonal-close-packed (hcp) PbS NC SLs and find strong evi-
dence for the effect of SL crystallinity on charge transport.

The assembly of colloidal semiconductive nanocrystals into highly ordered 
superlattices predicts novel structure-related properties by design. However, 
those structure–property relationships, such as charge transport depending on 
the structure or even directions of the superlattice, have remained unrevealed 
so far. Here, electric transport measurements and X-ray nanodiffraction 
are performed on self-assembled lead sulfide nanocrystal superlattices to 
investigate direction-dependent charge carrier transport in microscopic 
domains of these materials. By angular X-ray cross-correlation analysis, the 
structure and orientation of individual superlattices is determined, which are 
directly correlated with the electronic properties of the same microdomains. By 
that, strong evidence for the effect of superlattice crystallinity on the electric 
conductivity is found. Further, anisotropic charge transport in highly ordered 
monocrystalline domains is revealed, which is attributed to the dominant 
effect of shortest interparticle distance. This implies that transport anisotropy 
should be a general feature of weakly coupled nanocrystal superlattices.
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Semiconductive nanocrystals (NCs) can be self-assembled 
into ordered superlattices (SLs) to create artificial solids with 
emerging collective properties.[1–3] Computational studies have 
predicted that properties such as electronic coupling or charge 
transport are determined not only by the individual NCs but 
also by the degree of their organization and structure.[4–7] How-
ever, experimental proof for a correlation between structure 
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As a model system we use oleic acid (OA) capped 
PbS NCs with a diameter of 5.8  ±  0.5  nm, which are self-
assembled and functionalized with the organic π-system 
Cu-4,4′,4′′,4′′′-tetraaminophthalocyanine (Cu4APc) at the liquid–air 
interface (details in Figures S1 and S2, Supporting Information).[22] 
This results in long-range ordered and highly conductive SLs, 
since the rigid and relatively long ligands reduce the energy barrier 
for charge transport without deteriorating structural order, as it 
was shown previously.[23,24] Hence, the hybrid system of PbS NCs 
and Cu4APc is an ideal compromise between increased electronic 
coupling and long-range ordered SLs, which was a fundamental 
prerequisite for this study. By means of soft-lithographic micro-
contact printing,[25] we transfer stripes of PbS NC-Cu4APc SLs 
with a width (W) of roughly 4 µm onto trenches of ≈1 µm length 
(L) between two gold contacts on X-ray transparent Kapton and  
Si/SiOx substrates. This defines individually addressable micro-
channels with L ≈ 1 µm, W ≈ 4 µm, and thickness h (Figure 1a–e). 
Since this area is comparable to the typical grain size of 
PbS NC SLs,[21] these microchannels enable transport measure-
ments in single-crystalline PbS SLs.

In Figure 2, we display the charge transport characteristics 
of the microchannels as well as its dependence on the thick-
ness of the SL and the probed area. The conductivity σ is calcu-
lated as σ = (G·L)/(W·h) for all individual microchannels from 
two-point probe conductance (G) measurements (Figures  1e 
and  2a). Within the approximately two hundred individual 
microchannels measured, we observe electric conductivities in 
a wide range of values (10−6–10−3 S m−1) (Figure 2b). This distri-
bution correlates with the thickness of the SL (Figure 2c), which 
also varies by two orders of magnitude over the large number 
of microchannels analyzed here. The correlation is non-linear 
with a maximum in σ for thicknesses from 70 nm to 200 nm. 
Using Si/SiOx as substrate, we performed field-effect transistor 
measurements of the PbS NC-Cu4APc SLs, revealing p-type 
behavior, which agrees with our previous study (Figure S3, 

Supporting Information).[23] The microchannels show hole-
mobilities up to µ ≈ 10−4 cm2 V−1 s−1. Based on these transport 
properties and previous reports on the importance of mid-gap 
states in PbS NC materials, we believe that transport in the pre-
sent material occurs predominantly via hopping through trap 
states close to the valence eigenstate (the 1Sh state).[5,26,27]

We tested the effect of domain boundaries within the SL 
on electric transport on the same substrates measuring the  
geometry-normalized conductance of PbS NC SLs over large 
active channel areas of ≈104 µm2 (Figure S4, Supporting Infor-
mation). As shown in Figure 2d, electric transport in this case is 
approximately two orders of magnitude less efficient than within 
the microchannels of ≈4  µm2, indicating the advantageous  
effect of the near single-crystalline channels present in the 
latter case (see below).

Further investigations of structural properties of the same 
microchannels on Kapton substrates using X-ray nanodiffraction 
in correlation with conductivity measurements are the focus of 
this study (Figure 1e,f, Figure S5, Supporting Information). We 
determined the structural details of all microchannels by X-ray 
nanodiffraction (Experimental Section and Figures S6–S9, Sup-
porting Information). Using a nanofocused X-ray beam, we col-
lected diffraction patterns at different positions in each channel 
(Figure  1f). Two typical small-angle X-ray scattering (SAXS) 
and wide-angle X-ray scattering (WAXS) diffraction patterns 
from representative microchannels, averaged over all positions 
within these channels, are shown in Figure 3a,g,b,h. For some 
of the microchannels we observe several orders of Bragg peaks 
in SAXS attributed to monocrystalline SLs (Figure 3a), whereas 
the rest of the channels demonstrate continuous Debye–
Scherrer rings with low intensity modulations corresponding to 
polycrystalline SLs (Figure 3g). From the angular-averaged pro-
files, shown in Figure 3c,i, we revealed two dominant SL struc-
tures: a monocrystalline, random hexagonal-close-packed (rhcp) 
lattice mainly oriented along the [0001]SL, and a polycrystalline, 

Figure 1. Microchannels of PbS NC SLs for conductivity and X-ray nanodiffraction measurements. a) Optical microscopy image of an orthogonal 
PbS NC stripe connecting adjacent electrodes to form individually addressable microchannels. Scale bar: 40 µm. b) SEM image in sideview (85° from 
normal) of a typical microchannel consisting of a ≈200 nm thick PbS NC SL stripe across two Au electrodes. Scale bar: 300 nm. c) High-resolution 
SEM image showing self-assembled PbS NCs within a microchannel with near-range order, as indicated by the fast Fourier transform (inset). Scale 
bar: 100 nm. d) AFM image of a microchannel on a Kapton substrate. e,f) Schematics of a SL domain on a Kapton device forming a microchannel 
with length L ≈ 1 µm and width W ≈ 4 µm to characterize the electronic properties (e) as well as the structural properties with X-ray nanodiffraction by 
means of SAXS and WAXS (f). Spatial mapping is performed along Δx and Δy directions.
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body-centered-cubic (bcc) lattice primarily oriented along the 
[110]SL (scanning electron microscopy (SEM) images given in 
Figure S13, Supporting Information). From the peak positions 
in SAXS, we estimated the unit cell parameters (archp and abcc) 
for each channel and corresponding nearest-neighbor distances 
(NNDs), which are dNN = arhcp for rhcp and dNN = ( 3/2)·abcc for 
bcc, respectively. The averaged NNDs for all rhcp and bcc chan-
nels are 7.8 ± 0.4 nm and 6.9 ± 0.2 nm, respectively. In WAXS 
(Figure  3b,h), we observe parts of three Debye–Scherrer rings 
corresponding to {111}AL, {200}AL, {220}AL reflections of the PbS 
atomic lattice (AL). From the single WAXS pattern analysis we 
found different degrees of angular disorder of NCs: roughly 
24° for rhcp and 16° for bcc channels (Figure S9, Supporting 
Information).

To study the relative orientation of the NCs inside the SL, we 
applied AXCCA,[20] which is based on the analysis of the cross-
correlation functions (CCFs), to the measured scattering data 
(Figures S10–S12, Supporting Information). We evaluated the 
CCFs for the SL and AL peaks for both rhcp and bcc structures. 
We found that in the rhcp monocrystalline channels (Figure 3d) 
the [111]AL and [110]AL directions of the NCs are collinear to the 
[0001]SL and [2110]SL directions, respectively (Figure  3f). In bcc 
polycrystalline channels (Figure  3j), all corresponding SL and 
AL directions are aligned (e.g., ⟨100⟩SL and ⟨100⟩AL), as shown 
in Figure  3l. The similarity between the experimental CCFs 
and simulated CCFs for these structures confirms the obtained 
angular orientation of the NCs in the SL (Figure  3d,e and 
Figure 3j,k, respectively).

Upon correlating the X-ray with the electric transport 
measurements, we found that microchannels containing 
the polycrystalline bcc SLs exhibit higher conductivity than 
monocrystalline rhcp SLs over the entire range of thick-
nesses (Figure  4a). This can in part be understood in terms 
of the shorter NND which exponentially increases the hop-
ping probability (Figure  4b).[4,15] The microchannels exhibit 
strong characteristic Raman signals for Cu4APc (750  cm−1 
and 1050–1650  cm−1, Figure  4c,d), which vanish for probing 
areas outside the microchannels, verifying the specific func-
tionalization of the NCs with the organic π-system (Figure S14, 
Supporting Information). We used the intensity of the two 
characteristic Raman bands to compare the relative density 
of Cu4APc molecules within different SLs. We found that 
polycrystalline bcc SLs with the smaller NND exhibit gener-
ally stronger Raman signals from Cu4APc than monocrystal-
line rhcp SLs with larger NND (Figure  4c,d and Figure S14, 
Supporting Information). This means that in monocrystalline 
rhcp SLs fewer native OA molecules have been exchanged 
by Cu4APc, resulting in larger interparticle distances, which 
adversely affects conductivity. From Figure  4b one can 
identify several cases of monocrystalline rhcp SLs having 
conductivities as high as those of polycrystalline bcc SLs 
(σ  ≈  10−4–10−3  S m−1), although the NND is much larger. We 
consider this as supporting evidence that the degree of SL 
crystallinity (poly versus mono) has a significant effect on the 
conductivity, which, in the present example, compensates the 
effect of the much larger interparticle distance. The SLs with 

Figure 2. Electrical transport measurements of SL microchannels. a) Typical I–V curve of a PbS NC SL within a microchannel showing Ohmic behavior 
(red). The leak current through the dielectric substrate is negligible (gray). b) Distribution of the electric conductivities of 200 individual microchannels. 
c) Conductivity of the microchannels as a function of PbS NC SL thickness. The error bars represent the standard deviation of conductivity and the 
range of thickness determined by AFM, respectively. d) Distribution of geometry-normalized conductance of conventional large area and microchan-
nels, probing effective areas of ≈104 µm2 (blue) and ≈4 µm2 (red), respectively. Measured conductance values are normalized to the channel geometry 
(L/W). The dark blue color corresponds to the overlap of the distributions.
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smaller interparticle distance exhibit stronger Raman signals 
from Cu4APc compared to larger SLs (Figure S14, Supporting 
Information), corroborating a correlation between interparticle 
distance and ligand exchange. In fact, the smallest lattice para-
meter of ≈6.8 nm in Figure 4b corresponds to an interparticle 
distance of ≈1  nm, which is approximately the length of one 
Cu4APc molecule or the minimal width of a fully exchanged 
ligand sphere. In contrast, residual OA leads to greater inter-
particle distances due to steric interactions of adjacent OA 
shells,[28] explaining the spread of the NNDs (Figure  4b and 
Figure S8, Supporting Information). The occurrence of the 

two SL types (rhcp and bcc) found here may be related to 
the previously observed hcp–bcc transition for OA-capped 
PbS NC SLs upon tailored solvent evaporation.[29] Similarly, 
our polycrystalline bcc SLs are assembled from PbS NCs dis-
persed in hexane, whereas hexane-octane mixtures resulted 
in monocrystalline rhcp SLs. This invokes different solvent 
evaporation rates, which may lead to distinct SL unit cells.[13,28]

From the single WAXS pattern analysis (Figure S9, Sup-
porting Information) we found that NCs are aligned in the super-
lattice with different degrees of angular disorder: roughly 16° for 
bcc channels and 24° for rhcp channels. We believe that the NCs 

Figure 3. Structural investigation of the SL structures. a,b,g,h) Exemplary SAXS (a,g) and WAXS (b,h) patterns averaged over one microchannel for 
two typical cases: a,b) a monocrystalline rhcp SL oriented along [0001]SL and g,h) a polycrystalline bcc SL oriented along [110]SL. c,i) Azimuthally aver-
aged intensity profiles of SAXS (q < 2.5 nm−1) and WAXS (q > 15 nm−1) signals of the two SL types. d,j) Averaged CCFs for the two SLs, calculated for 
the first SAXS peaks ( 1100 SL in the rhcp case (d) and 〈110〉SL in the bcc case (j)) and the 〈111〉AL or 〈200〉AL WAXS peaks. e,k) Simulated CCFs for the 
two models shown in (f,l). f,l) Schematic drawing of the proposed SL structures: f) [0001]SL-oriented rhcp SL of PbS NCs, where the NCs are aligned 
as indicated and l) [110]SL-oriented bcc SL of PbS NCs, where all the corresponding SL and AL directions are aligned. For clarity, ligand spheres are 
omitted. Scale bars in (a,g) and (b,h) correspond to 1 nm−1 and 5 nm−1, respectively.
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are oriented in the superlattice due to facet-specific ligand–ligand 
interactions. The functionalization of NCs with shorter Cu4APc 
ligands leads to the formation of a superlattice with higher sym-
metry, such as bcc, in which the NCs are highly aligned.[30] In 
contrast, a large spherical ligand shell leads to a close-packed 
structure with a lower degree of NCs orientation, such as rhcp.

In view of the non-monotonic correlation between conductivity 
and SL thickness, we note that very thin NC films exhibit holes/
microcracks, which are reduced with increasing thickness.[31] 
In contrast, the conductivity in thick films may be affected by 
a fringing electric field. The electric field is not homogeneous 
along the sample normal, and current flows mainly in the bottom 

layers close to the contacts. However, the conductivity is calcu-
lated over the entire channel where the full height is used.

We now turn to the key novelty of this work, the transport 
anisotropy, that is, the influence of the SL orientation with 
respect to the electric field on the electric conductivity. For this, 
it is mandatory to account for the effect of SL thickness, incom-
plete ligand exchange and crystallinity, and only compare SLs 
which are very similar in this regard. In doing so, we found 
strong evidence for a favored angular direction of charge carrier 
hopping, indicating anisotropic charge transport within the SL. 
Figure 5a,d displays exemplary SAXS patterns averaged over each 
microchannel of two monocrystalline rhcp SLs with identical 

Figure 4. Parameters for structure–transport correlations. a,b) Conductivity of individual microchannels as a function of SL thickness (a) and NND 
(b). The SL type is indicated by the color code. c,d) Typical Raman spectra of a monocrystalline rhcp (c) and a polycrystalline bcc (d) SL, featuring 
characteristic Cu4APc signals at 750 cm−1 and 1050–1650 cm−1 (highlighted regions). The signal at ≈950 cm−1 originates from the Si/SiOx substrate.

Figure 5. Anisotropic charge transport in monocrystalline NC SLs. a,d) Exemplary averaged SAXS diffraction patterns of comparable monocrystalline 
rhcp microchannels, oriented along [0001]SL. The azimuthal orientation is defined by the relative angle α between the electric field vector E and the 
nearest-neighbor direction dNN. SLs with low values of α feature 40–50% higher conductivities than their counterparts with large α. Scale bar: 1 nm−1. 
b,e) Corresponding real-space SEM images of the SL oriented along (0001)SL with α = 0° and 30°. The hexagon indicates the orientation of the SL. 
dNN points along the alignment of the NCs (nearest neighbors). For α = 0°, the vector dNN is parallel to E, resulting in enhanced conductivity. Scale 
bar: 15 nm. c,f) Schematic of the rhcp SL and the favored hopping path for α = 0° (blue arrow) along the dNN direction (red arrow) (c); for an in-plane 
offset (α = 30°), the larger hopping distance or the zig-zag path are detrimental to charge transport (f). Ligand spheres of NCs are omitted for clarity.
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structure, that is, lattice parameter and thickness (Figure S15a,  
Supporting Information). They differ only in terms of the  
azimuthal orientation with respect to the applied electric field. 
We define the azimuthal angle α between the electric field 
vector E (which is oriented vertically due to horizontal elec-
trode edges) and the nearest-neighbor direction dNN (one of 
the 2110 SL directions pointing to the nearest-neighbors). The 
angle α can vary from 0° to 30° for the sixfold in-plane sym-
metry. For α = 0°, the dNN direction is oriented parallel to the 
vector of electric field E, whereas for α = 30°, the angular (in-
plane) offset between the vectors E and dNN is maximized. Our 
key result is that for any two otherwise comparable channels, 
we observe higher conductivity for the respective channels with 
lower angle α. The two extremes (α = 0° and α = 30°) are shown 
in the corresponding real-space SEM images of the (0001)SL 
plane of two rhcp SLs in Figure 5b,e. The difference in conduc-
tivity between two otherwise identical SLs is 40–50%. A statis-
tical investigation of other microchannels with monocrystalline 
rhcp SLs reveals similar α-dependent conductivity differences 
(Figure S15, Supporting Information). This correlation between 
σ and α indicates anisotropic charge transport, for which the 
direction of nearest neighbors is assumed to be the most effi-
cient for transport.

In contrast to atomic crystals with transport anisotropy, 
which exhibit strong electronic coupling and ballistic trans-
port (e.g., black phosphorus), the NC SLs studied here are in 
the weak coupling regime. This implies temperature-activated 
hopping as the predominant charge transport mechanism and 
invokes a strong dependence on the hopping distance.[4,15] Our 
results suggest that charge transport is most efficient if the 
applied electric field is iso-oriented with the nearest-neighbor 
direction dNN in the SL plane, since this leads to the shortest 
hopping distance (Figure 5c). Any other orientation (Figure 5f) 
results either in a larger hopping distance (straight arrow) or 
a deviation from the direction of the electric field together 
with an increased number of required jumps for electrons to 
travel the same distance (zig-zag path), which is detrimental 
to charge transport. This implies that transport anisotropy 
should be a general feature of weakly coupled, monocrystalline 
NC SLs, originating from the dominant effect of the shortest 
interparticle distance. Accordingly, one could predict the 
favored direction of charge transport within different SL types, 
such as simple cubic, face-centered cubic (fcc), or bcc, being 
the ⟨100⟩, ⟨110⟩, or ⟨111⟩ SL directions, respectively. A similar 
charge transport anisotropy was computationally predicted for 
bcc and fcc SLs.[6] Further, we note that the orientational order of  
the NCs observed here might be an additional source for 
anisotropic charge transport as different coupling strengths 
have been predicted along particular AL directions.[5,6] In the 
present case, the most efficient transport occurs if the [110]AL 
direction of all NCs is iso-oriented with the electric field.

A high degree of control provided over the SL type and ori-
entation would enable the exploitation of such transport ani-
sotropy also with more complex NC assemblies (e.g., binary 
NC SLs[32] or honeycomb structures[33]) for application in 
functional electronic devices with tailored transport anisot-
ropy. Furthermore, these results constitute an important step 
toward the understanding of the intrinsic properties and fun-
damental limits of these fascinating new NC-based systems.

Experimental Section
Superlattice Microchannel Fabrication: Oleic-acid-stabilized PbS 

NCs were synthesized according to Weidman et  al.[34] and dispersed 
in hexane/octane (ratio of 4:1 and 1:0, c  =  4  µmol  L−1). Sizing-curves 
to UV–vis absorption spectra and SEM investigation yield a particle 
size of 5.8  ±  0.5  nm (Figure S1, Supporting Information).[35] The NCs 
were self-assembled at the liquid-air interface according to Dong 
et al.[22] and ligand exchanged with the organic π-system Cu-4,4′,4′′,4′′′-
tetraaminophthalocyanine. For microcontact printing, a micropatterned 
PDMS stamp was inked with the SL film and stamped onto devices with 
pre-patterned Au electrodes (Kapton membranes of 125 µm thickness or 
Si/SiOx wafer with 200 nm SiOx). Individual microchannels consisting of 
an electrode pair and a connecting SL stripe were obtained with L ≈ 1 µm 
and W ≈ 4 µm. The preparation was performed in a nitrogen glovebox.

Transport Measurements: All devices were measured at room 
temperature in a nitrogen flushed probe station (Lake Shore, CRX-6.5K). 
Individual electrode pairs were contacted and analyzed by a source-
meter-unit (Keithley, 2636B).

X-Ray Nanodiffraction: Nanodiffraction measurements were 
performed at Coherence beamline P10 of the PETRA  III synchrotron 
source at DESY. An X-ray beam with λ  =  0.898  nm (E  =  13.8  keV) 
was focused down to a spot size of ≈400  ×  400  nm2 (FWHM) at the 
GINIX nanodiffraction endstation.[36] The 2D detector EIGER X4M 
(Dectris) with 2070  ×  2167  pixels and a pixel size of 75  ×  75  µm2 was 
positioned 370 mm downstream from the sample and ≈9 cm off-center 
to allow simultaneous detection of SAXS and WAXS signals. Diffraction 
mapping of individual microchannels was performed, collecting 100–200 
diffraction patterns on a raster grid in Δx and Δy direction with 250 nm 
step size and an acquisition of 0.5 s. From averaged diffraction patterns 
for every channel, the SL structure was deduced and from azimuthally-
averaged radial profiles the SAXS peak positions were extracted. AXCCA 
was applied and two-point cross-correlation functions (CCFs) for all 
channels were calculated, according to Equation (1)

, , , ,SL AL SL AL
 ϕ ϕ( ) ( ) ( )∆ = + ∆

ϕ
C q q I q I q  (1)

where ( , ) ( , ) ( , )SL SL SL
 ϕ ϕ ϕ= − ϕI q I q I q  and I(qSL,ϕ) is an intensity value 

taken at the point (qSL,ϕ) which are polar coordinates in the detector 
plane.[8,20,21] ⟨…⟩ϕ denotes averaging over all azimuthal ϕ angles. qSL 
correspond to SAXS peaks and qAL to WAXS peaks.

Microchannel Characterization: SEM imaging was conducted with a 
HITACHI model SU8030 at 30  kV and atomic force microscopy (AFM) 
investigations with a Bruker MultiMode 8-HR in contact mode and 
Raman spectroscopy with a confocal Raman spectrometer LabRAM 
HR800 (Horiba Jobin-Yvon) at λ = 632.8 nm (He-Ne-laser).

Details on materials, the self-assembly and fabrication processes, 
X-ray nanodiffraction and AXCCA are given in the Supporting 
Information.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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Spatially resolved fluorescence of caesium
lead halide perovskite supercrystals reveals
quasi-atomic behavior of nanocrystals
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Nastasia Mukharamova1, Marcus Scheele 2,4✉, Frank Schreiber 4,5, Michael Sprung1, Jan Wahl2,

Sophia Westendorf2, Ivan A. Zaluzhnyy5 & Ivan A. Vartanyants 1,6✉

We correlate spatially resolved fluorescence (-lifetime) measurements with X-ray nanodif-

fraction to reveal surface defects in supercrystals of self-assembled cesium lead halide

perovskite nanocrystals and study their effect on the fluorescence properties. Upon com-

parison with density functional modeling, we show that a loss in structural coherence, an

increasing atomic misalignment between adjacent nanocrystals, and growing compressive

strain near the surface of the supercrystal are responsible for the observed fluorescence

blueshift and decreased fluorescence lifetimes. Such surface defect-related optical properties

extend the frequently assumed analogy between atoms and nanocrystals as so-called quasi-

atoms. Our results emphasize the importance of minimizing strain during the self-assembly

of perovskite nanocrystals into supercrystals for lighting application such as superfluorescent

emitters.
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Advances in the self-assembly of colloidal nanocrystals
(NCs) from solution into three-dimensional arrays with
long-range order have enabled the design of microscopic

“supercrystals” that approach the structural precision of atomic
single crystals1. The individual NCs, which are the building
blocks of a supercrystal, are often regarded as “artificial atoms”,
and hence analogies between atomic crystals and such super-
crystals have been made2,3. NC supercrystals are susceptible to
doping4, and they can exhibit exceptional mechanical properties5,
quasicrystal formation2, enhanced electronic coupling6, and
engineered phonon modes7. In view of the recent progress in
exploiting the massive structural coherence in NC supercrystals to
generate collective optoelectronic properties8–10, a critical ques-
tion remains whether this artificial atom analogy can be extended
towards the optical properties of NC supercrystals. Due to surface
dangling bonds and surface reconstruction, even the purest and
most carefully prepared atomic crystals are not structurally
perfect11,12. For atomic crystals, such surface defects strongly
affect the fluorescence spectra, lifetime, and quantum yield13–17.
For supercrystals, this is much less understood.
In this work, we show that in close analogy to atomic

crystals18,19, CsPbBr2Cl and CsPbBr3 NC supercrystals exhibit
structural distortions near their surfaces which significantly alter
their fluorescence properties. This finding is of high relevance for
the application of these materials as tunable, bright emitters with
superfluorescent behavior8–10. Superfluorescence is a key prop-
erty for the design of spectrally ultra-pure laser sources20 or
highly efficient light-harvesting systems21. Recent quantum che-
mical simulations have suggested that structural disorder in
CsPbBr3 supercrystals and its effect on the thermal decoherence
plays a pivotal role in the efficiency of the superfluorescence22.
Previous structural investigations of ensembles of CsPbBr3
supercrystals by grazing-incidence small angle X-ray scattering
(SAXS) indicated a primitive unit cell with slight tetragonal
distortion23, and wide-angle X-ray scattering (WAXS) showed a
high degree of structural coherence24. Electron microscopy of
individual supercrystals revealed a frequent occurrence of local
defects in the supercrystals, such as isolated NC vacancies25.
Confocal fluorescence microscopy of individual CsPbBr3 super-
crystals displayed spatial variations in the fluorescence peak
wavelength and intensity, indicating that local structural inho-
mogeneities may substantially affect the fluorescence properties of
the entire supercrystal26. Our approach is based on simultaneous
WAXS and SAXS measurements with a nano-focused beam to
probe the structural defects and crystallographic orientation of
the supercrystal and the constituting NCs on a local level with
dimensions of ~3 µm and 7–9 nm, respectively27–29. By correla-
tion with diffraction-limited confocal fluorescence microscopy
and modeling with density functional theory (DFT) we present
proof that compressive strain, a loss of structural coherence and
an increasing atomic misalignment between adjacent nanocrystals
at the edges of CsPbBr2Cl NC supercrystals are responsible for a
blueshifted emission and decrease of the fluorescence lifetimes.

Results
We study self-assembled CsPbBr2Cl and CsPbBr3 NC super-
crystals on glass substrates (see “Methods” for details on synthesis
and self-assembly of NCs). Spatially resolved photoluminescence
spectra of the NC supercrystals under 405 nm excitation in a
confocal laser scanning microscope with a step size of 250 nm and
100 nm, respectively, are shown in Fig. 1. When approaching an
edge of the supercrystal, we find a continuous blueshift of the
emission peak wavelength. This blueshift is strongest for relatively
small (few µm edge length) and highly faceted supercrystals,
where it reaches up to 20 meV for CsPbBr2Cl. We observe the

same blueshifting behavior for supercrystals composed of
CsPbBr3 NCs, although to a lesser extent (up to 12 meV).

In Fig. 2, we display fluorescence lifetime images of self-
assembled CsPbBr2Cl and CsPbBr3 supercrystals measured on
glass substrates with a lateral resolution of 200 nm under 405 nm
excitation. For both supercrystal compositions, we obtain good
fits of the experimental time-resolved fluorescence by pixel-by-
pixel monoexponential reconvolution using an instrument
response function acquired on a clean glass coverslip (Supple-
mentary Figs. 2, 3). In the case of supercrystals composed of
CsPbBr2Cl NCs, we measure typical fluorescence lifetimes (τ)
around 2.1 ns in the center which decrease by approximately 20%
when scanning from the center of a supercrystal towards its
edges. Supercrystals composed of CsPbBr3 NCs exhibit typical
lifetime values around 1.5 ns in the center, which shorten by
approximately 30% when approaching the edges. We note that
this holds true only for freshly prepared NC supercrystals. After
several days of exposure to air, the trend in the spatially resolved
τ-values is reversed in that such aged supercrystals exhibit longer
lifetimes at the edges. However, the overall blueshift of the
fluorescence peak wavelength towards the edges is preserved.
To correlate the fluorescence data with the structure of the

supercrystals, we carry out X-ray synchrotron measurements by
SAXS and WAXS at PETRA III facility (Hamburg, Germany) (see
Fig. 3a and “Methods” for details). Using a 400 × 400 nm2 X-ray
beam, we perform a spatially resolved scan of a typical CsPbBr2Cl
NC supercrystal on a Kapton substrate. While the results pre-
sented here are for one typical supercrystal, examples of more
supercrystals are provided in the Supplementary information
(Supplementary Note 7). First, all individual patterns are inte-
grated to obtain the average structure. The averaged background-
corrected WAXS and SAXS diffraction patterns are shown in
Fig. 3b, c, correspondingly. The signal in the WAXS region
contains three orders of Bragg peaks from the atomic lattice
(Fig. 3b), and the SAXS region (shown enlarged in Fig. 3c) dis-
plays several orders of Bragg peak from the supercrystal. A real-
space map of the scan based on the integrated SAXS intensity at
q < 2 nm−1 is shown in Fig. 3d. The map represents a square area
of high intensity corresponding to a single supercrystal. For
comparison, we display a scanning electron micrograph of a
similar supercrystal (see the inset in Fig. 3a and Supplementary
Fig. 8) from which we determine an average NC diameter of
7.3 ± 0.4 nm and an interparticle distance of 2.5 ± 0.5 nm. For
strongly faceted supercrystals, the NC diameter is rather uniform
over the whole crystal. For less faceted supercrystals, occasional
ensembles of smaller NCs are found in the vicinity of the edges.
However, the spatial extent of such smaller NC populations is
always limited to ~200 nm (see Supplementary Note 3).
The average diffraction pattern in the WAXS region (see

Fig. 3b) contains four prominent Bragg peaks, originating from
the atomic lattice (AL) of the NCs. Their radial positions at
q= 10.93 nm−1, 15.44 nm−1, and 21.90 nm−1 (see Supplemen-
tary Fig. 10) can be attributed to a cubic AL. We note that
although a cubic phase for CsPbBr2Cl has been reported30,31, the
most stable phase at room temperature is expected to be
orthorhombic. Due to the small NC size and the resulting
broadening of the Bragg peaks, it is impossible to distinguish
between these two very similar structures. Thus, we use a pseu-
docubic notation to index the WAXS peaks: 110 and 002
orthorhombic peaks correspond to 100AL pseudocubic peak, 112
and 200 – to 110AL, and 220, 004 – to 200AL peaks. The present
peaks and their azimuthal positions indicate a primary orientation
of the NCs along the [001]AL axis with respect to the incident beam.
We find the unit cell parameter to be aAL= 0.575 ± 0.003 nm,
which is in good agreement with previously reported values for
CsPbBr2Cl32. From the peak broadening, we extract the NC size
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(d) and lattice distortion (g) using the Williamson–Hall method
with d= 6.8 ± 0.1 nm and g= 2.3 ± 0.1% (see Supplementary
Note 4). The obtained NC size is in good agreement with the
scanning electron microscopy (SEM) results.
The SAXS pattern in Fig. 3c represents the typical 4-fold pat-

tern of a simple cubic lattice oriented along the [001]SC axis with
four visible orders of Bragg peaks that can be attributed to 100SC,
110SC, 200SC, and 210SC reflections of the supercrystal of NCs. We
determine an average unit cell parameter of aSC= 9.9 ± 0.4 nm.
Considering the NC size obtained by SEM, we obtain an inter-
particle distance of 2.6 ± 0.4 nm, which is in good agreement with
the SEM result (2.5 ± 0.5 nm). All crystallographic axes of the
NCs are aligned with the corresponding axes of the supercrystal
(e.g. [100]AL||[100]SC and [010]AL||[010]SC), which is consistent
with ref. 25.

Analyzing individual SAXS patterns from different locations
on the supercrystal, we find substantial local deviations from the
average structure (see Supplementary Fig. 12 for examples of
single diffraction patterns). To illustrate this, from the Bragg peak
positions, we extract the basis vectors a1 and a2, the angle γ
between them, and the average azimuthal position φ, which are
defined in Fig. 4a (see the “Methods” section for details). As
depicted in Fig. 4b, the mean unit cell parameter is largest in the
center of the supercrystal with 10.7 nm and smallest at the edges
with 7.8 nm. Although both unit cell parameters a1 and a2
decrease at the edges (see Supplementary Fig. 16, for separate
maps of a1 and a2 values), we observe that this lattice contraction
is anisotropic. The ratio of the in-plane unit cell parameters a2/a1
differs from unity by ±20% in such a way that the NC spacing in
the directions along the nearest supercrystal boundary is smaller
than normal to it, as shown in Fig. 4c. We note that the mean
value 〈a〉 = 9.4 ± 0.7 nm is slightly smaller than the unit cell

parameters extracted from the average diffraction pattern. We
attribute this to the low intensity of scattering from the super-
crystal edges, which reduces their contribution to the average
pattern. We do not observe a clear trend in the size of the SAXS
Bragg peaks (see Supplementary Fig. 15, for the maps). The
instrumental peak broadening, determined by the incident X-ray
beam size is about 0.015 nm−1 (full width at half max-
imum, FWHM). The observed peak sizes are much larger and
vary in the range from 0.05 nm−1 to 0.2 nm−1 and, as such, they
depend mainly on the superlattice distortion. The characteristic
length scale on which this distortion evolves is, most probably,
smaller than the incident beam. Thus, the areas with different
lattice parameters simultaneously illuminated by the incident
beam lead to the peak broadening.
The angle γ between the [100]SC and [010]SC axes differs from

its average value of 〈γ〉 = 90 ± 6° in a range of 76° to 105° over the
whole supercrystal as shown in Fig. 4d. Specifically, we find
γ > 90° close to the top and bottom corners of the supercrystal
and γ < 90° close to the left and right corners. Thus, the angle
pointing towards the corner of the supercrystal is always obtuse.
We further calculate the azimuthal position φ of the mean line M
between the [100]SC and [010]SC axes. This angle can be inter-
preted as the azimuthal orientation of the unit cell of the
supercrystal. The orientation changes inhomogeneously
throughout the superlattice in the range from 72° to 97° as shown
in Fig. 4e. There is no obvious correlation between the lattice
orientation and the spatial position within the sample. Overall,
these results suggest that the supercrystal is simple cubic on
average, but it exhibits substantial local monoclinic distortions.
We analyze the Bragg peaks in the WAXS region of individual

diffraction patterns at different locations to study the angular
orientation of the NCs inside the superlattice. From the WAXS

Fig. 1 Spatially resolved fluorescence. a Optical micrograph of a CsPbBr2Cl NC supercrystal. Positions of the measured photoluminescence spectra
are indicated. b The corresponding normalized spectra. c Selected normalized spectra, acquired at the edges and the center of the supercrystal.
d–f Corresponding data for a CsPbBr3 supercrystal.
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Bragg peak analysis, we extract the average WAXS intensity 〈IAL〉
and the azimuthal position ψ of the [010]AL axis defined in Fig. 5a
(see “Methods” section and Supplementary Note 6). In contrast to
the intensity of the SAXS Bragg peaks, the WAXS intensity 〈IAL〉
decreases towards the edges, as shown in Fig. 5b, indicating an
out-of-plane rotation of the NCs that shifts the Bragg peaks
slightly out of the Ewald sphere28. We find that ψ changes in a
wide range from 120° to 142° as shown in Fig. 5c. The map of ψ
resembles that of the azimuthal orientation φ of the mean line M,
shown in Fig. 4e. The 45° offset between the [010]AL axis and the
mean line M indicates the alignment of the [110]AL axis with the
mean line M between the [100]SC and [010]SC axes (see Supple-
mentary Fig. 23).
From the azimuthal FWHMs of the WAXS Bragg peaks, we

extract the angular disorder δψ of the individual nanocrystals at
each spatial point by the Williamson–Hall method as shown in
Fig. 5d (see “Methods” for details). The disorder is smallest in the
center of a supercrystal (9.9°) and increases to a maximum
of 24.0° at the edges. The mean value of the angular disorder is
〈δψ〉 = 16.1 ± 2.8°, which is consistent with previously observed
values for similar superstructures25,27–29.

Despite the fact that the atomic lattice parameter aAL is con-
stant within the error bars throughout the whole supercrystal (see
Supplementary Fig. 20, for the map of aAL), we find a difference
in the radial width of the Bragg peaks at different locations. By the
Williamson–Hall method, we extract the lattice distortion gq (the
ratio δaAL/aAL, where δaAL is the FWHM of the unit cell para-
meter distribution around the mean value aAL) at each spatial

point (see “Methods” section for details). We find a clear trend of
increasing atomic lattice distortion towards the edges of the
supercrystal with a maximum of 2% at the edge, while it is about
1% at a distance 3 µm into the center, as shown in Fig. 6. The
trend is even more evident for another supercrystal with parti-
cularly good signal-to-noise ratio of the WAXS intensity (see
Supplementary Fig. 29).
To rationalize the experimental trend of increased fluorescence

energies at the edges of the supercrystal as compared to its center,
we carry out density functional modeling of the system. We
consider three individual contributions in this regard. First, we
recognize that the number of nearest neighbors at the surface of
the supercrystal is lower than that in the center, leading to
stronger exciton confinement and hence increased fluorescence
energies at the edges. Indeed, our DFT calculations confirm this
trend in Fig. 7a, which is consistent with the blueshift of the
fluorescence spectra observed experimentally for the NCs at the
edges. “Nearest neighbors” refers here to adjacent NCs with near-
perfect orientational order, that is, a low value of δψ (Fig. 5d). A
large orientational misalignment (δψ) is likely to have a similar
effect on nearest-neighbor coupling as a reduced number of
nearest neighbors. Second, we anticipate that the shorter inter-
particle spacing (Fig. 4b) should facilitate better electronic cou-
pling between the nanocrystals at the edges and, therefore, a
decrease in the optical gap at the edges is anticipated. While this
expectation is confirmed computationally in Fig. 7b, we note that
it is exactly opposite to what is observed experimentally in Fig. 1b,
e (see Discussion section for details). Third, the supercrystal is

Fig. 2 Spatially resolved fluorescence lifetime imaging. a Fluorescence lifetime τ image of a CsPbBr2Cl NC supercrystal obtained by fitting the
experimental time-resolved fluorescence with a monoexponential decay function. b Fluorescence lifetime values τ obtained at each pixel inside the
supercrystal as a function of the distance to the nearest edge, where the red line shows the mean value, and the dashed lines indicate the confidence
interval of ±σ. c, d Analogous results for a CsPbBr3 NC supercrystal.
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Fig. 3 Spatially resolved X-ray nanodiffraction experiment and average diffraction patterns. a Scheme of the X-ray experiment. EIGER X 4M 2D
detector is positioned downstream from the sample. The arrows show the directions Δx and Δy of spatial scanning. Inset (top right): a SEM micrograph of
the CsPbBr2Cl NC supercrystal. b Average diffraction pattern for a supercrystal. Several orders of WAXS and SAXS Bragg peaks from the atomic and
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Fig. 4 Spatially resolved SAXS. a Definition of the geometrical parameters of a superlattice unit cell: the basis vectors a1 and a2 with the angle γ between
them, and the mean line M between the basis vectors at the angle φ. b Average unit cell parameter 〈a〉 = (a1+a2)/2. c Ratio a2/a1 of the unit cell
parameters along the basis vectors a2 and a1. d Angle γ between the basis vectors a1 and a2. e Azimuthal Position φ of the mean line M between the basis
vectors a1 and a2. The pixel size in (b–e) is 500 nm.
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compressed at the edges, as evident from Fig. 4b. While it is
reasonable to assume that the compressive strain will mostly
manifest in a denser packing of the soft oleylamine/oleic acid
ligand sphere of the NCs, we also consider a partial compression
of the hard-inorganic lattice-core. In Fig. 7c we calculate the effect
of such compression on the HOMO–LUMO gap (Egap) of the NC.
While axial stress applied to the CsCl-terminated surface of the
CsPbBr2Cl particle results in a steady increase of the optical gap
consistent with the experiment, similar stress on the CsBr-
terminated surfaces of both particles are found to both increase or
decrease Egap, depending on the magnitude of the applied stress.
Overall, our computational modeling suggests that the spectral

blueshift of the fluorescence from the edges of the supercrystal
can be caused mainly due to a reduced NC coordination number

at the edges as well as the compressive atomic lattice strain in
some cases, knowing that the third factor—the shorter inter-
particle distance—works in the opposite direction, facilitating
electronic coupling between adjacent nanocrystals and decreasing
the optical gap. However, since the experimentally measured
spectral shift is seemingly a combination of all three effects dis-
cussed above, a fully quantitative prediction would require more
detailed knowledge on their relative contributions as well as the
relative orientation and positions of individual nanocrystals,
which are currently not available.

Discussion
When NCs are self-assembled into supercrystals from colloidal
solution via slow drying, the increasing curvature and surface
tension of the evaporating solvent invokes compressive strain on
the supercrystal33,34. We hold such a strain responsible for the
observed compression of the unit cell parameter by over 20% of
the CsPbBr2Cl NC supercrystals in Fig. 4b. This compression is
possible due to the softness of the oleylamine/oleic acid ligand
shell of the NCs, enabling a large decrease of the interparticle
distance by growing interdigitation of adjacent ligand spheres.
We note that the compression occurs gradually over a length scale
of many lattice planes (>1 µm), meaning that it is not a localized
surface reconstruction as commonly observed in atomic
crystals12. The accompanying loss in the angular correlation of
the constituting NCs with the superlattice fits a scenario where
strain in the supercrystal is partially relieved by forming local
structural defects. The comparison of the average (Fig. 3c) vs. the
local (Fig. 4) structure of the supercrystal shows that such dis-
tortions are indeed frequently present. We note that recent work
on CsPbBr3 NC supercrystals reported perfect structural coher-
ence exclusively in the out-of-plane direction24. Since our
experiment is only sensitive to in-plane structural features, the
findings here are not contradictive to that report.
Our results in Fig. 4c support the view of Kapuscinsky et al.

that strain during the self-assembly is initially isotropic but later
becomes increasingly anisotropic33. In a simple cubic super-
crystal, the preferred direction for anisotropic structural changes
to manifest is the 〈111〉SC, which will result in a shear deforma-
tion of the ligand spheres35. The expected structure of the
supercrystal after this shear deformation is reasonably resembled
by the local structure depicted in Fig. 4.
The compression in the supercrystals is not exclusively limited

to the soft ligand sphere. With an interparticle distance of <1 nm
close to the edges of a supercrystal, the space for the two ligand
spheres of adjacent NCs is so constrained, that the inorganic

Fig. 5 Spatially resolved WAXS. a Definition of the geometrical
parameters of the atomic lattice extracted by fitting of the Bragg peaks.
b Mean intensity of the WAXS Bragg peaks 〈IAL〉. c Azimuthal position ψ of
the 100AL crystallographic axis of the NCs. d FWHM δψ of the angular
disorder of the NCs around the mean azimuthal position ψ extracted from
the azimuthal FWHMs of the Bragg peaks by the Williamson–Hall method.
The pixel size in (b–d) is 500 nm.
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Fig. 6 Spatially resolved atomic lattice distortion. a Atomic lattice distortion gq extracted from the radial FWHMs of the WAXS Bragg peaks by the
Williamson–Hall method. The pixel size is 500 nm. b The same value gq for each pixel plotted against the distance from this pixel to the nearest edge of the
supercrystal. The red line shows the mean value, the dashed lines indicate the confidence interval of ±σ.
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cores of the NCs become compressed as well (Fig. 6). Strain in
lead halide perovskite thin films plays an important role for their
optoelectronic properties and application in photovoltaic
devices36. Our fluorescence and fluorescence lifetime data in
Figs. 1, 2 suggest that this is also the case for lead halide NC
supercrystals. A comparison of Fig. 1 with Fig. 4b reveals a strong
correlation between the gradual blueshift of the fluorescence peak
wavelength and the progressive compression of the supercrystal.
We suggest that the shift by up to 20 meV is the result of three,
partially competing phenomena: (1) a loss in structural coherence
as well as isoorientation of NCs (Fig. 5c, d), (2) a decrease of the
interparticle distance (Fig. 4b), and (3) the distortion of the
atomic lattices of the NCs (Fig. 6). Our DFT calculations in
Fig. 7a suggest that the first effect should be associated with a
significant blueshift of the fluorescence due to reduced coupling,
consistent with a previous report about the importance of
structural coherence for electric transport in supercrystals6. While
the second effect can only lead to a redshift (Fig. 7b), the third
effect is also shown to invoke a blueshift for specific facets or
magnitudes of strain (Fig. 7c).
With reference to several studies on CsPbBr3 NCs which

reported a redshifted fluorescence after assembly into

supercrystals, we note that the resultant peak wavelength may
further be affected by the concomitant changes in the dielectric
environment, aging, miniband formation as well as cooperative
emission8,9,37–39. However, most of these observations were made
under markedly different conditions, such as low temperature,
prolonged exposure to air, or self-assembly at the liquid/gas
interface, which may be the reason that they are not a dominating
factor in our study.
We note a previous report on the spatially resolved fluores-

cence of CsPb(I0.28Br0.72)3 NC supercrystals with a similar
fluorescence blueshift between the center and the edge26. As a
main conclusion, gradual release of I2 gas under intense laser
illumination led to the blueshift since lead bromide perovskites
exhibit a larger bandgap than the corresponding lead iodide
perovskites. The authors argued that the I2 loss commenced from
the edges towards the center, which would explain the spatial
fluorescence variations. In CsPbBr2Cl however, this mechanism is
not easily applicable since the reduction potential of Br– is much
lower than that of I–. In line with this, CsPbBr3 NC supercrystals
without a halide mixture show a similar blueshift, indicating that
a change in the mixed halide composition is not required to
observe the effects reported here.
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The decrease of the fluorescence lifetime in Fig. 2 is also
strongly correlated with the gradual compression of the super-
crystal towards the edges. Moreover, many supercrystals exhibit
particularly decreased lifetime values at the corners, which bears
similarities with the anisotropic changes in the lattice spacings in
Fig. 4c, highlighting again the correlation between structural and
optical properties. We speculate that the increased atomic lattice
distortion and loss of structural coherence near the edges of the
supercrystals result in a reduced stability of the excited state of the
emitting NCs. This view is supported by the decreased radiative
lifetime values from these locations as well as previous reports on
the fluorescence lifetime at grain boundaries of large organic-
inorganic pervoskites40,41. In view of the currently pursued
application of lead halide NC supercrystals as superfluorescent
emitters8,10, this would imply that bright and coherent emission
originates from the center of the supercrystals as long as they are
freshly prepared. Conversely, for aged CsPbBr2Cl NC super-
crystals, the lifetimes are longest at the edges, which points to an
increased stability of the excited state, potentially due to the
formation of a protective oxide shell42.
As an alternative explanation for the spatial differences in the

fluorescence (-lifetime) in the supercrystals, we also consider a
photon propagation effect, that is, multiple emission and (re-)
absorption events, which become more likely with increasing
thickness of the emitter material37. Therefore, reabsorption
should occur predominantly in the center of the supercrystals but
not at the edges. This effect results in an overall redshift of the
fluorescence and an increase of the fluorescence lifetime, which
would be in line with the observations in this work43,44. More-
over, we would expect the absolute fluorescence intensity per
emitter to be lower for an area with frequent reabsorption events
and the time-resolved fluorescence decay to be increasingly
multiexponential due to the non-radiative losses and multi-step
nature of the photon propagation effect. However, we find the
fluorescence decay to be monoexponential (Supplementary
Figs. 2c, 3c) and the fluorescence intensity to be highest in the
center, from where it gradually decreases toward the edges
(Supplementary Figs. 6b, 7b). This decrease extends over a much
larger distance than the flattening of the edges which we occa-
sionally observe on less facetted supercrystals (Supplementary
Fig. 9c), such that the high fluorescence intensity in the center
cannot be a mere thickness effect. We note that we would expect a
negative correlation between the fluorescence intensity with its
corresponding lifetime if reabsorption was dominant in the
supercrystals, but we do not find such a correlation in our data
(Supplementary Figs. 6f, 7f). In summary, given the relatively
high fluorescence quantum yield of lead halide perovskite NCs,
reabsorption is likely to partially contribute to the spatially
varying optical properties of supercrystals thereof45, but our data
is inconsistent with it as the dominant cause.
In conclusion, supercrystals of lead halide perovskite NCs self-

assembled from solution exhibit a loss in structural coherence, an
increasing atomic misalignment between adjacent NCs, and
compressive strain near their surfaces. These structural distor-
tions are strongly correlated with a blueshifted fluorescence and
decreased radiative lifetimes. We note that structural distortion
and surface defects have been shown to strongly affect the
fluorescence properties in atomic crystals, such as transition
metal dichalcogenides13–17. The structure-fluorescence correla-
tions in supercrystals revealed here are thus another example for
the analogy between atoms and NCs as so-called quasi-atoms.

Methods
Chemicals. 1-Octadecene (ODE), technical grade, 90%, Sigma Aldrich; Oleic acid
(OA), 97%, Acros Organics; Oleylamine (OAm), 80–90%, Acros Organics; Cesium

carbonate (Cs2CO3), 99.99% (trace metal basis), Acros Organics; Lead(II)chloride
(PbCl2), 99.999% (trace metal basis), Sigma Aldrich; Lead(II)bromide (PbBr2), ≥98%,
Sigma Aldrich; Toluene, 99.8%, extra dry, AcroSeal, Acros; Tetrachloroethylene (TCE),
≥99%, Acros Organics; Kapton® polyimide membranes (125 μm thickness) were
purchased from DuPont; Si/SiOx wafers (200 nm SiOx thickness) were purchased from
Siegert Wafer GmbH. All chemicals were used as purchased.

Preparation of Cs-oleate. 203.5 mg Cs2CO3 (0.625 mmol) was loaded into a
25 mL three-neck flask along with 10 mL 1-octadecene and 0.625 mL oleic acid,
dried for 1 h at 120 °C and then heated to 150 °C under nitrogen atmosphere until
all Cs2CO3 reacted with oleic acid. The mixture was kept in a glovebox and heated
to 110 °C before injection.

Synthesis of CsPbX3 nanocrystals. CsPbX3 NCs were made by a hot-Injection
synthesis using a modified literature method46. To synthesize 9 nm CsPbBr3 or
7 nm CsPbBr2Cl NCs, 138 mg (0.38 mmol) PbBr2 or 92 mg (0.25 mmol) PbBr2 and
35 mg (0.125 mmol) PbCl2 were degassed in 10 mL ODE in a 25 mL three-neck
flask under reduced pressure at 120 °C for 2 h. Then, 1 mL of dried oleylamine
(OAm) and 0.5 mL of dried oleic acid (OA) were injected at 120 °C under nitrogen
atmosphere with continuous stirring and the reaction mixture was heated to
160 °C. After the solubilization was completed, 0.8 mL of a previously prepared
solution of Cs-oleate in ODE (0.125M) was swiftly injected, and the reaction
mixture was cooled to room temperature using an ice-bath.

Isolation and purification of CsPbX3 nanocrystals. CsPbX3 NCs were collected
by centrifuging the suspension (4650 g, 10 min), decanting the supernatant, and
collecting the precipitate. The precipitate was centrifuged again without addition of
a solvent (4650 g, 5 min), and the resulting supernatant was removed with a syr-
inge, to separate the traces of residual supernatant. The precipitate was dissolved in
2 mL hexane and centrifuged again (590 g, 5 min) to remove aggregates and larger
particles. The resulting supernatant was filtered through a 0.2 µm PTFE syringe
filter and stored as stock solution inside of a glovebox with a typically con-
centration of 16 mM following Maes et al.47.

Self-assembly of NC superlattices. For the growth of supercrystals, different
substrates (Si wafer, Kapton, glass) were used, depending on the desired experi-
ment. The self-assembly experiment was set up in a glass Petri dish (with a 60 mm
diameter), for this purpose three substrates each were placed in such a Petri dish
together with a PTFE-lid filled with 1 mL tetrachloroethylene. To each of these
substrates, 40 µL of a 1–3 mM solution of the perovskites in TCE was added. The
lid of the Petri dish was closed, covered with aluminum foil, and allowed to stand
for 24 h. After that, the lid was opened and left for another 5 h to dry completely.
All self-assembly preparations were performed under inert atmosphere. The more
monodisperse the size distribution of the perovskites, the better the resulting
superlattices

Spatially resolved optical measurements. All spatially resolved optical mea-
surements were performed using a home-built inverted confocal laser scanning
microscope. The measurements were performed on glass substrates utilizing a high
numerical aperture oil immersion objective (NA= 1.4) and a 405 nm pulsed diode
laser (Picoquant LDH P-C-405) with variable repetition rates (Picoquant PDL 800-
D laser driver) as the excitation source. Under these conditions the lateral reso-
lution of the instrument is approximately 200 nm. A single photon avalanche diode
(MPD PDM Series) was used in conjunction with the Picoquant HydraHarp 400 as
a time-correlated single photon counting system to detect time-resolved fluores-
cence. Time-resolved data acquisition and analysis was performed using Pico-
quants SymPhoTime 64 software package. The spectral data was recorded using an
Acton Spectra Pro 2300i spectrometer with a 300 grooves/mm grating. The
detector temperature (Princeton PIXIS CCD) was kept steady at −45 °C.

X-ray diffraction experiment. The nanodiffraction experiment was performed at
the Coherence Applications beamline P10 of the PETRA III synchrotron source at
DESY. An X-ray beam with the wavelength λ= 0.0898 nm (E= 13.8 keV) was
focused down to a spot size of approximately 400 × 400 nm2 (FWHM) with a focal
depth of about 0.5 mm at the GINIX nanodiffraction endstation48. The two-
dimensional detector EIGER X 4M (Dectris) with 2070 × 2167 pixels and a pixel
size of 75 × 75 μm2 was positioned 412 mm downstream from the sample. The
detector was aligned ~6 cm off-center in both directions normal to the incident
beam to allow simultaneous detection of SAXS and WAXS. We performed a
spatially resolved scan of the sample on a Kapton substrate by 25 × 25 spatial
points with 500 nm step size and collected 625 diffraction patterns in transmission
geometry. The exposure time was set to 0.5 s to prevent radiation damage of the
sample. The background scattering pattern from a pure Kapton film was subtracted
from every collected pattern.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28486-3

8 NATURE COMMUNICATIONS |          (2022) 13:892 | https://doi.org/10.1038/s41467-022-28486-3 | www.nature.com/naturecommunications



Bragg peak analysis. Each diffraction pattern was interpolated onto a polar coor-
dinate grid with the origin at the direct beam position. The radial profiles were obtained
by averaging along the azimuthal coordinate. To extract parameters of the WAXS and
SAXS Bragg peaks separately, we fitted each of them by the 2D Gaussian function

I q;φ
� � ¼ I0

2πσqσφ
exp � q� q0

� �2

2σ2q
� φ� φ0

� �2

2σ2φ

" #

;

where I0 is the integrated intensity, q0 and φ0 are the radial and azimuthal central
positions, and σq and σφ are the corresponding root mean square (rms) values. The
FWHMs of the Bragg peaks were evaluated according to relations: wq ¼ 2

ffiffiffiffiffiffiffiffiffi

2ln2
p

σq and

wφ ¼ 2
ffiffiffiffiffiffiffiffiffi

2ln2
p

σφ. The fitting was done in the appropriate region of the polar coordi-
nates with a single isolated Bragg peak.

For the SAXS peaks, the parameters were pairwise averaged for the
corresponding Friedel pairs of the Bragg peaks to improve statistics. The resulting
momentum transfer values and angles were used to calculate the real-space
parameters of the unit cell: the length of the basis vectors a1 and a2, the angle γ
between them and the average azimuthal position φ counted counterclockwise
from an arbitrary horizontal axis (see Supplementary Materials for details).

For the WAXS peaks, we calculated an average Bragg peak intensity IAL and the
azimuthal position ψ of the [010]AL axis. To obtain the average azimuthal position
ψ, we averaged all four azimuthal positions for 010AL, 020AL, 110AL, and �100AL
Bragg peaks, but corrected the last two values by +45° and −45°, respectively. We
used the Williamson–Hall method49 to analyze the size of the WAXS Bragg peaks
at each spatial point of the supercrystal. The FWHM of the Bragg peak is
determined by the NC size and the lattice distortion as follows:

w2
q;φ q
� � ¼ 2πK

L

� �2

þ gq;φq
� �2

; ð1Þ

where wq,φ is the FWHM of the Bragg peak at q in radial or azimuthal direction,
respectively, L is the NC size, gq,φ is the radial or angular lattice distortion of the atomic
lattice, respectively, K is a dimensionless shape parameter that is about 0.86 for cubic
NCs50. The radial lattice distortion gq calculated from the radial FWHM wq is equal to
the ratio δaAL/aAL, where δaAL is the FWHM of the unit cell parameter distribution
around the mean value aAL. The angular lattice distortion gφ calculated from the
azimuthal FWHM wφ is equal to the FWHM δψ of the angular distribution of the NCs
around their average azimuthal position ψ. For the spatially resolved analysis of the
FWHMs, the NC size L was fixed at the value, obtained from the average radial profiles.
For details of the analysis, see Supplementary materials.

Scanning electron and atomic force microscopy. SEM imaging of supercrystals
on Si/SiOx devices was performed with a HITACHI model SU8030 at 30 kV. To
estimate the thickness of micro-crystals, samples were titled by 45° with respect to
the incoming electron beam. AFM investigations were conducted with a Bruker
MultiMode 8 HR in contact mode.

Density functional theory calculations. All computations are performed using
the CP2K 5.1 program suite using the Quickstep module51. The PBE exchange
correlation functional52, a dual basis of localized Gaussians and plane waves
(GPW)53 with a 350 Ry plane-wave cutoff, double-ζ basis-set augmented with
polarization functions (MOLOPT variant)54, and GTH pseudopotentials55 for core
electrons are used for all calculations. The van der Waals (VDW) interaction was
accounted for by employing Grimme’s DFT-D3 method56. SCF convergence cri-
terion was set at 10−6 for all calculations.

Initial geometries of CsPbX3 (X = Cl, Br) nanocrystals were obtained by cutting
small cubes (~2.4 nm) from the bulk, exposing the CsX layer at the surface and
maintaining overall charge neutrality of the particle57. All structures were then
optimized in vacuum using the BFGS optimizer imposing non-periodic boundary
conditions with a wavelet Poisson solver58, setting a maximum force of 5 meV·Å−1

(10–4 hartree/bohr) as convergence criteria. For the obtained cartesian coordinates,
see Supplementary Data 1. For these non-periodic systems, axial strain was
simulated by fixing the length of one side of the cube. If the relaxed cubic
nanocrystal has side length a × b × c, and stress is to be applied along the z-
direction, “c” is fixed at some cʹ by constraining the z coordinates of both the top
and bottom surface-atoms along the z-direction, with all other coordinates of all
atoms relaxed. % Strain is reported as (cʹ − c)/c × 100%. For calculations involving
dimers and tetramers, 2/4 monomers were explicitly considered, but periodic
boundary condition was imposed with at least 10 Å vacuum above the surface of
the nanocluster to avoid spurious interaction with its periodic image.

Data availability
The X-ray and optical data that support the findings of this study are available in
Zenodo.org at https://zenodo.org/record/5607366 59.
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3.2 Angular X-ray cross-correlation analysis applied to the

scattering data in 3D reciprocal space

In the fourth paper, the theoretical generalization of the AXCCA technique for
application to the intensity distribution measured in 3D reciprocal space from a single
crystalline sample is given. The application of the technique is demonstrated on an
example of the intensity distribution measured for a colloidal crystal composed of silica
spheres.

I personally proposed the idea of such generalization, implemented it in practice
and applied it to a dataset measured before. Most of the manuscript was written by
me with the contributions of other co-authors.

The fifth paper is focused on a structural study of a single mesocrystalline grain
consisting of gold nanocubes. The electron density inside the grain was reconstructed
by phase retrieval algorithms from the measured scattered X-ray intensity distribution
in 3D reciprocal space. The average SL structure was revealed by means of AXCCA
that showed the structure to be different from the expected simple cubic. The combi-
nation of these techniques allowed extraction of the strain tensor at different spatial
points of the sample with high resolution. Analysis of the anisotropic form factor of
the nanocubes allowed the determination of the angular orientation of the nanocubes
inside the SL.

I personally analysed the measured intensities in 3D reciprocal space by AXCCA
and interpreted the results. Felizitas Kiener prepared the sample. Jerome Carnis took
part in the X-ray experiment and performed the CDI reconstruction of the measured
dataset. Sebastian Sturm analyzed the strain distribution in the structure revealed by
the CDI reconstruction. The part of the manuscript on the results of AXCCA and the
form factor analysis was written by me with the contributions of other co-authors.

The Supplementary Materials for this paper can be found at: https://doi.org/
10.1039/d1nr01806j

The sixth paper represents a systematic structural study of mesocrystals consisting
of gold nanocubes with different sizes self-assembled from different solvents. A part
of this work included structural investigation of single mesocrystalline grains formed
from different solvents. Using AXCCA, the structure was found to deviate from the
expected face-centered cubic one to varying degrees depending on the type of solvent.

I personally analysed the measured intensities in 3D reciprocal space by AXCCA
and interpreted the results. The part of the manuscript on the results of AXCCA was
written by me with the contributions from other co-authors.

The Supplementary Materials for this paper can be found at: https://doi.org/
10.1021/acs.chemmater.1c01941
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An application of angular X-ray cross-correlation analysis (AXCCA) to the

scattered intensity distribution measured in 3D reciprocal space from a single-

crystalline sample is proposed in this work. Contrary to the conventional

application of AXCCA, when averaging over many 2D diffraction patterns

collected from different randomly oriented samples is required, the proposed

approach provides an insight into the structure of a single specimen. This is

particularly useful in studies of defect-rich samples that are unlikely to have the

same structure. The application of the method is shown on an example of a

qualitative structure determination of a colloidal crystal from simulated as well

as experimentally measured 3D scattered intensity distributions.

1. Introduction

The first approaches to study the structure of materials by

means of angular correlations in the scattered intensities go

back to the late 70s to early 80s (Kam, 1977, 1980; Clark et al.,

1983). It was proposed by Kam (1977) to reveal the structure

of macromolecules by analyzing the angular correlations in

the scattering patterns from randomly oriented molecules in

solution. In other research, correlations of scattered laser

intensities from colloidal glass were found to be related to its

local structure (Clark et al., 1983). At that time, the method

did not undergo further development due to the lack of

suitable instrumentation (Kam et al., 1981). Recently,

however, it has become of great interest after the work of

Wochner et al. (2009), where angular X-ray cross-correlation

analysis (AXCCA) was applied to study the structure of

colloidal glasses by means of X-ray scattering. The renewed

interest to AXCCA was triggered by the development of

modern X-ray sources such as third- and fourth-generation

synchrotrons (Schroer, 2019) and novel X-ray free-electron

lasers (XFELs) (Emma et al., 2010; Ishikawa et al., 2012; Kang

et al., 2017; Decking et al., 2020) that provide an X-ray beam

with outstanding characteristics including high brilliance,

ultimate coherence and femtosecond pulse durations. These

characteristics allow the measure of fluctuations in the scat-

tering patterns containing information about the local struc-

ture that could be revealed by AXCCA. The emergence of

suitable equipment has led, among practical applications, to

the development of the underlying theory (Saldin et al., 2010,Published under a CC BY 4.0 licence



2011; Altarelli et al., 2010; Kirian, 2012; Kurta et al., 2016;

Martin, 2017).

The practical applications of AXCCA are defined by the

investigated sample and geometry of a typical X-ray scattering

experiment. In such experiments, the scattered intensities are

measured by a 2D detector that represents a cut of reciprocal

space by the Ewald sphere. AXCCA applied to such 2D

patterns reveals symmetries of the sample in the plane

orthogonal to the incident beam. This is particularly suitable

in studies of (quasi-)2D samples such as 2D nanostructures

(Kurta et al., 2013, 2012; Pedrini et al., 2013), thin polymer

films (Kurta et al., 2015; Lehmkühler et al., 2018; Schulz et al.,

2020) and liquid crystals (Zaluzhnyy et al., 2015, 2019;

Zaluzhnyy, Kurta, Sulyanova et al., 2017). In some cases, it is

possible to refine the unit-cell parameters of 3D superlattices

of nanocrystals (Zaluzhnyy, Kurta, André et al., 2017;

Mukharamova et al., 2019; Lokteva et al., 2019; Maier et al.,

2020).

To explore the symmetries of a 3D sample, one typically

collects many 2D patterns from randomly oriented identical

samples, for example, injected bioparticles (Kurta et al., 2017;

Pande et al., 2018) or nanocrystals (Mendez et al., 2016; Niozu

et al., 2020; Ayyer et al., 2021) as shown in Fig. 1(a). To achieve

reasonable scattered intensities from a small single sample,

extremely high flux of the incident X-ray beam is required that

can be provided by modern XFELs. The diffraction patterns

collected in such an experiment represent random cuts of

reciprocal space as shown in Fig. 1(b) that can be assembled

into the intensity distribution in 3D reciprocal space. The main

assumption of this approach is the reproducibility of the

measured samples. If the measured samples are different, the

revealed structure is averaged over many realizations.

At modern third-generation synchrotron sources, we can

exploit their high coherence to study the sample structure by

coherent diffraction imaging (CDI). In this technique, the 3D

electron density of the sample in real space is reconstructed by

a phase retrieval algorithm from the scattered intensity

distribution measured in whole reciprocal space (Shabalin et

al., 2016; Carnis et al., 2021). This may be achieved by the

angular scan of the sample with a large unit cell in small-angle

X-ray scattering (SAXS) geometry as shown in Figs. 1(c)–1(e).

Although such a reconstruction provides full information

about the structure, the method is highly demanding in terms

of experimental requirements and data quality. AXCCA is

based on the analysis of angular correlations of scattered

intensities in reciprocal space and can be applied to datasets of

much lower quality, for which the phase retrieval algorithms

fail, to reveal the structural features averaged over the sample

without the need to perform a reconstruction (Schlotheuber

né Brunner et al., 2021).

In this work, we propose employment of AXCCA to study

symmetries of the intensity distribution in 3D reciprocal space

from a single-crystalline sample. We apply this method to

simulated datasets for model colloidal structures and propose

a geometrical model to interpret the results. As an example of

practical application, we employ the dataset collected for a

CDI reconstruction of a colloidal crystal grain (Shabalin et al.,

2016; Meijer et al., 2014). We show that the developed method

provides qualitative information about the real space structure

without performing a complex iterative phase retrieval.

2. Theory

2.1. AXCCA applied to the intensity distribution in 3D
reciprocal space

Here, we consider the scattered intensity distribution

measured by a 2D detector. The conventional AXCCA is

based on the analysis of a two-point cross-correlation function

(CCF) defined as (Niozu et al., 2020)

Cðq1; q2;�Þ ¼ ~II q1ð Þ
~II q2ð Þ�

q1q2

kq1kkq2k
� cos �

� �� �
; ð1Þ

where Ĩ(q1) and Ĩ(q2) are the scattered intensities measured by

the detector at the points corresponding to the momentum

transfer vectors q1 and q2 with the relative angle � between

them. The averaging is performed over all positions corre-

sponding to q1 and q2 with the lengths q1 = ||q1|| and q2 = ||q2||,

respectively. The intensities can be scaled to their mean values,

for example, as

~II qið Þ ¼
I qið Þ � hI qið Þi

hI qið Þi
; i ¼ 1; 2; ð2Þ

where averaging is performed over all measured intensities

corresponding to the momentum transfer vectors qi with a

certain length qi = ||qi||.

When the measurements are performed in the SAXS

geometry corresponding to small momentum transfer vectors,

one can neglect the curvature of the Ewald sphere. Then, the

definition in equation (1) simplifies to
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Figure 1
(a) Scheme of the experimental setup for measuring 2D diffraction
patterns from different randomly oriented samples injected into the
incident X-ray beam. The patterns collected represent random cuts of 3D
reciprocal space as shown in (b). (c) Scheme of the experimental setup for
measuring 2D diffraction patterns from a single sample rotated around an
axis normal to the incident beam. (d) 2D patterns of known orientation
can be further interpolated into 3D intensity distribution (e).



Cðq1; q2;�Þ ¼ ~IIðq1; ’Þ~IIðq2; ’þ�Þ
� �

’
; ð3Þ

where Ĩ(q, ’) is the scattered intensity measured by a detector

at the position q = (q, ’), here q, ’ are the polar coordinates,

and h� � �i’ denotes averaging over all angles of ’. The variables

used in the definition of CCF in equation (3) are shown in

Fig. 2(a).

Typically, the CCFs are averaged over many 2D diffraction

patterns collected from different realizations of the system (at

different positions of the sample, at different times or from

different randomly oriented injected particles). Averaging

over many different system realizations allows suppression of

random correlations in the scattered intensities specific to a

certain realization of the system. The averaged CCFs repre-

sent systematic correlations that correspond specifically to the

internal structure of the samples and not to the certain reali-

zation of the system. Moreover, averaging over many orien-

tations of the samples allows assessment of the correlations in

different cuts of 3D reciprocal space. Thus, the resulting CCFs

represent all correlations in 3D reciprocal space and not only

in certain planes.

In this work, we propose to apply equation (1) to the

scattered intensity distribution in 3D reciprocal space

measured for a single sample. In 3D reciprocal space, both

momentum transfer vectors q1 and q2 can take any angular

position. The averaging in equation (1) is then performed over

spheres in reciprocal space with the radii q1 = ||q1|| and q2 =

||q2||, respectively, as shown in Fig. 2(b). The resulting CCFs in

this case contain all present correlations from a single sample

without a need to perform averaging over many realizations.

We note that a similar result would originate from averaging

over many randomly oriented 2D scattering patterns collected

from the same sample (or identical samples). Indeed, each pair

of momentum transfer vectors taken in 3D reciprocal space

lay in a certain 2D hyperplane that can be thought of as a 2D

diffraction pattern. If the number of the randomly oriented 2D

patterns is big enough, they cover the whole 3D space and the

CCFs averaged over such a set of 2D patterns are identical to

the CCFs calculated for the 3D pattern (Niozu et al., 2020).

The number of randomly oriented 2D scattering patterns

required to obtain the same information as from the 3D

scattered intensity distribution is discussed in Section 3.3.

2.2. CCFs in the case of a crystalline sample

AXCCA was shown to be useful to extract additional

information from the scattering patterns of crystalline samples

(Mendez et al., 2016; Niozu et al., 2020). In this case, the

scattered intensity contains well defined Bragg peaks origi-

nating from the crystallographic planes of the sample. When

the CCF C(q1, q2, �) is calculated at the momentum transfer

values q1 and q2 corresponding to the Bragg peak positions, it

contains correlation peaks at the characteristic relative angles

� between the Bragg peaks, i.e. the reciprocal lattice vectors

g1 and g2 with the lengths q1 = ||g1|| and q2 = ||g2||.

Given a model of a unit cell with the lattice basis vectors a1,

a2 and a3, we can calculate the reciprocal basis vectors b1, b2

and b3 and thus any reciprocal lattice vector (Kittel, 2004). For

a pair of Bragg peaks corresponding to the reciprocal lattice

vectors g1 and g2, the angle between them can be calculated

using the scalar product

g1 � g2 ¼ kg1kkg2k cosð�Þ; ð4Þ

where dot indicates a scalar product between two vectors.

These Bragg peaks would contribute to the CCF calculated for

the momentum transfer values q1 and q2 corresponding to the

norms of the vectors q1 = ||g1|| and q2 = ||g2||, respectively, at the

angle �, as shown in Fig. 3(a). Given the lattice parameters

and symmetry, one can calculate all positions of the correla-

tion peaks. Details of the calculation are given in Appendix A.

Note that, in the case of high lattice symmetry, several pairs of

different reciprocal lattice vectors with the same norms may

contribute to the CCF at the same relative angle �. For

example, for a face-centered cubic (f.c.c.) lattice, the pair of

Bragg peaks 111 and 111 as well as the pair 111 and 111
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Figure 2
Scheme of the CCF calculation in the case of 2D (a) and 3D (b) intensity distributions. The product of intensities at two points q1 and q2 in reciprocal
space, separated by the angle �, contribute into the CCF value at this � value. The final CCF is obtained by averaging over all points on the rings/spheres
of the corresponding radii. The color code exemplarily represents the simulated intensities for a colloidal crystal with an f.c.c. structure: (a) 2D diffraction
pattern from the colloidal crystal oriented along the [001]f.c.c. axis with respect to the incident X-ray beam and (b) intensities at the spheres in 3D
reciprocal space of the colloidal crystal with the radii q1 and q2, corresponding to the 111 and 220 reflections, respectively.



contribute to the CCF at the same angle � = arc cos (1/3) �

70.53�. In such a case, different peaks in the resulting CCFs

can have different degeneracy, which is reflected in their

relative magnitudes.

Considering close-packed structures, different stacking

motifs of hexagonal layers result in different symmetries of the

structures. Two structures of high symmetry are f.c.c. and

hexagonal close-packed (h.c.p.) lattices with the following

stacking sequences: ABCABC for f.c.c. and ABAB for h.c.p.

(Conway & Sloane, 2013). Stacking faults – irregularities in

the stacking sequence – are very common defects in close-

packed structures due to a low energy difference between the

ideal structures (Bolhuis et al., 1997). A single inversion of the

f.c.c. stacking sequence ABCABCBACBA corresponds to a

�3-twinning boundary and results in two twinned f.c.c.

domains. Random stacking of hexagonal layers results in a so-

called ‘random h.c.p.’ (r.h.c.p.) structure containing the motifs

characteristic for both f.c.c. and h.c.p. structures. In reciprocal

space, the stacking faults produce strong diffuse scattering in

the stacking direction connecting the Bragg peaks in the form

of rods known as Bragg rods, as shown in Fig. 3(b). Such Bragg

rods are intensity modulations in reciprocal space along the

straight lines connecting the Bragg peaks with fixed h and k

indexes for which h� k 6¼ 3n; n 2 Z and any index l 2 R (in

h.c.p. notation). The Bragg peaks with indexes

h� k ¼ 3n; n 2 Z and l 2 Z are stacking-independent and are

isolated in reciprocal space (Petukhov et al., 2003). The

intensity profiles along the Bragg rods depend on the parti-

cular stacking sequence as described by Meijer et al. (2014). In

contrast to the isolated Bragg peaks that contribute to the

CCFs at certain q-values, the Bragg rods contribute to the

CFFs in a continuous q-range. Their contribution can be

evaluated using the scalar product and corresponding reci-

procal basis vectors as described in Appendix A.

3. Results

We demonstrate application of the AXCCA technique on

simulated and experimentally measured datasets. The simu-

lated datasets represent scattered intensity distributions in 3D

reciprocal space calculated for colloidal crystal grains of

different structures. The experimentally measured dataset is

the scattered intensity distribution from a similar colloidal

crystal studied previously (Shabalin et al., 2016; Meijer et al.,

2014). Each of the datasets initially consisted of 360 diffraction

patterns obtained by rotation of the sample in the range 0–

180� around the vertical axis with an angular step size of 0.5�.

The simulation parameters selected were similar to those used

in the experiment: X-ray energy E = 8 keV (� = 1.55 Å), a 2D

detector (512 � 512 pixels) with the pixel size 55 � 55 mm2

positioned downstream from the sample at the distance d =

5.1 m. The experimental dataset was collected at the P10

Coherence Application beamline at PETRA III synchrotron

using a MAXIPIX detector. The 2D patterns from each

dataset were interpolated onto a 3D orthogonal grid with a

voxel size of 0.4375 mm�1. We used the flat Ewald sphere

approximation because of small scattering angles (less than

0.25�, the corresponding q-values less than 200 mm�1).

3.1. Application to the simulated data

For simulations, we considered a spherical colloidal crystal

grain with an outer size of 3.6 mm consisting of monodisperse

silica spheres with a diameter of 230 nm. Different close-

packed structures typical for colloidal crystals were simulated:

ideal f.c.c. and h.c.p. lattices, two f.c.c. domains with a �3-

twinning boundary, as well as an r.h.c.p. lattice with the

stacking sequence ABCABCBCBCACBCBABAB matching

the one observed in the CDI reconstruction (Shabalin et al.,

2016) of the experimental data discussed below. The nearest-

neighbour distance for all the structures was equal to the

diameter of the constituting silica spheres (230 nm). The

simulated structures consist of corresponding stacking motifs

of the hexagonal layers, as shown in Figs. 4(a), 4(d), 4(g) and

4( j).

The 2D diffraction patterns from the structures were

simulated using the MOLTRANS software. On the simulated

diffraction patterns (see Fig. 4) one can observe concentric

rings of intensity due to the form factor of the colloidal

spheres and the Bragg peaks that originate from the structure

factor of the colloidal crystal lattice. In the diffraction patterns

for the structures with stacking faults [see Figs. 4(i) and 4(l)],

aside from the isolated Bragg peaks, the Bragg rods along the

qz direction that connect Bragg peaks can be clearly observed.

The azimuthally averaged intensities of the 3D scattered

intensity distributions for these structures are shown in

Fig. 5(a). The intensity profiles for the ideal f.c.c. and h.c.p.

lattices are quite different as they contain the characteristic

Bragg peaks for these structures. In contrast, the profile for

two twinned f.c.c. domains with a �3-boundary between them

is almost identical to the one for the perfect f.c.c. lattice. This is

an expected result because the major contribution to the

scattered intensity originates from the domains with the same

f.c.c. structure, whereas the contribution from the boundary is

negligible. The radial profile for the r.h.c.p. structure is

smoothed and contains mostly the peaks common for the f.c.c.
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Figure 3
Models of 3D reciprocal space for (a) h.c.p. and (b) r.h.c.p. lattices. The
black dot is the origin of reciprocal space, colored dots are the Bragg
peaks. The semitransparent sphere shows the sphere S of the radius q =
||q1|| = ||q2||, at which the CCF is calculated. In (a) the green dots are the
Bragg peaks intersecting the sphere S and, thus, contributing to the
corresponding CCF at the angle �. In (b), the orange rods represent the
Bragg rods. They contribute to the corresponding CCF at the angle � that
is dependent on the radius q of the sphere S.



and h.c.p. structures, making it hard to identify the exact

stacking sequence. It is even harder in the case of the

experimentally measured profile [shown in Fig. 5(a) for

comparison] due to lower contrast.

We calculated the CCFs for the pairs of points with the

same q-value q = ||q1|| = ||q2|| in the simulated 3D intensity

distributions for all four different structures (see Appendix B

for details of the calculation). We considered the CCFs for
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Figure 4
Simulation of 2D diffraction patterns from the structures: (a)–(c) f.c.c., (d)–( f ) h.c.p. (g)–(i) twinned f.c.c. domains and ( j)–(l) r.h.c.p. The first column
contains the simulated structures viewed along [110]f.c.c./[100]h.c.p., the stacking direction [111]f.c.c./[001]h.c.p. is along the z-axis. The red lines denote the
stacking sequence. The second column contains diffraction patterns simulated for an incident beam along the stacking direction [111]f.c.c./[001]h.c.p.. The
third column contains diffraction patterns simulated for an incident beam along the direction [110]f.c.c./[110]h.c.p..



intensities at q = 55 mm�1 that correspond to stacking inde-

pendent reflections present for all structures [see Fig. 5(a)].

This q-value corresponds to the 220 reflections from the f.c.c.

structure and to the 110 reflections from the h.c.p. structure.

Even though these reflections correspond to the same d-

spacing, the angles between the equivalent planes are different

for these structures. Therefore, the peaks in the CCFs appear

at different positions for different structures, as shown in

Fig. 5(b). The peak positions from the geometrical model (see

Appendix A) coincide with the peak positions in the calcu-

lated CCFs for the simulated structures as shown in Fig. 5(b).

The peak positions for an f.c.c. structure are clearly distinct

from those for an h.c.p. structure because of different

symmetry. The CCF for the twinned f.c.c. structure contains

additional peaks that are correlations between the peaks

originating from different domains. The position of additional

peaks is defined by the twinning transformation described in

Appendix A. This approach can be extended to other types of

twinning (e.g. �5 or �9). The CCF for the r.h.c.p. structure is

similar to the one for the twinned f.c.c. domains, but the

relative intensity of the peaks is different. This probably

indicates the presence of both h.c.p. and f.c.c. stacking motifs,

but more general conclusions can be made only analyzing the

CCFs calculated for different q-values as described below.

Additional information can be accessed if we review a set of

CCFs calculated for various q-values. We calculated the CCFs

in the range q = 25–115 mm�1 with a step size of 1 mm�1 (see

Fig. 6). As shown in this figure, the peaks for the simulated

structures have different positions in both radial and angular

directions, since they originate from different sets of equiva-

lent planes defined by the lattice symmetry. The peak positions

for these structures can be calculated from the geometrical

model of the reciprocal lattice as described in Appendix A.

We note that the peak positions were determined for the

structures with the unit-cell parameters corresponding to the

nearest neighbor distance of 230 nm (the size of the silica

spheres). In an arbitrary experiment, the unit-cell parameters

can be used as the fitting parameters to fit the peak positions in

the experimental CCFs (Carnis et al., 2021; Schlotheuber né

Brunner et al., 2021).

For the ideal f.c.c. and h.c.p. structures, the positions of all

brightest peaks in the CCFs coincide with the positions

obtained from the geometrical model [see Figs. 6(a) and 6(b)].

Additionally, there are low-intensity peaks at the q-values

between the bright peaks that are not explained with this

model [see, for example, additional peaks at q = 36 mm�1 in

Fig. 6(a)]. They originate from the correlations between the

Bragg peaks of different orders. Basically, different orders

contribute to the scattered intensities at different q-values, but

due to the broadening of the Bragg peaks and the absence of

noise in the simulated data, their tails contribute to the CCFs.

These are not observed in the experimental data due to noise

and other artifacts, but can also be considered in the simple

geometrical model.

For the twinned f.c.c. structure, the map contains many

additional peaks that reflect correlations between the Bragg

peaks that originate from different domains. As discussed

above, the peak positions are defined by the twinning trans-

formation and can be taken into account as described in

Appendix A. For the r.h.c.p. structure, the map contains peaks

characteristic for both h.c.p. and f.c.c. structures. It is rather an

expected result as soon as the r.h.c.p. structure contains

stacking sequences that can be attributed to both h.c.p. and

f.c.c. structures. Besides the isolated peaks, the CCFs for the

r.h.c.p. and twinned-f.c.c. structures contain also intensity in

the form of ‘arcs’ connecting the peaks. They originate from

the Bragg rods characteristic for stacking disordered struc-

tures with planar defects. Their contribution to the CCFs can

be calculated following the procedure described in Appendix

A and shown in Fig. 6(d).
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Figure 5
(a) Azimuthally averaged values of the 3D intensity distributions simulated for the following structures: (1) f.c.c. (2) h.c.p. (3) twinned f.c.c. domains and
(4) r.h.c.p. and from the experimentally measured sample (5), for comparison. The vertical red dashed line is at q = 55 mm�1 corresponding to 220f.c.c./
110h.c.p. Bragg peaks, for which the CCFs shown in (b) were calculated. (b) CCFs C(q, �) calculated at q = 55 mm�1 for the simulated 3D diffraction
patterns for the following structures: (1) f.c.c. (2) h.c.p. (3) two twinned f.c.c. domains and (4) r.h.c.p., and from the experimentally measured sample (5),
for comparison. The arrows show the peak positions calculated for the corresponding structures by a geometrical model.



Despite similar intensity profiles, different structures result

in different angular distribution of the Bragg peaks. The

AXCCA technique allows us to reveal the angular correla-

tions between the Bragg peaks and to determine qualitatively

the sample structure even when the azimuthally integrated

intensity profiles are almost identical.

3.2. Application to the experimental data

The experimentally measured sample was a colloidal crystal

grain with an outer size of about 2 � 3 � 4 mm3 consisting of

silica spheres with a diameter of about 230 nm prepared as

described by Shabalin et al. (2016) and Meijer et al. (2014). The

collected scattered intensity distribution in 3D reciprocal

space contains several orders of Bragg peaks and Bragg rods

[see Fig. 7(a)]. An in-plane cut through the origin of reciprocal

space [see Fig. 7(b)] reveals the sixfold symmetry character-

istic for hexagonal layers of close-packed nanoparticles. Two

out-of-plane cuts shown in Figs. 7(c) and 7(d) contain the

Bragg rods connecting the Bragg peaks indicating the stacking

disorder of the nanoparticle layers. Note that the experi-

mentally measured diffraction patterns have significantly

lower contrast compared with the simulated ones. This can be

attributed to the polydispersity of the colloidal particles, the

partial coherence of the incident X-rays and other experi-

mental artifacts that are not taken into account in the simu-

lations.

The experimental CCFs calculated in the range q = 25–

115 mm�1 with a step size of 1 mm�1 are shown in Fig. 8(a).

Owing to the lower contrast of the diffraction patterns, these

correlation maps also have lower contrast compared with the

simulated ones. Moreover, the measured intensity in the

locations of form factor minima does not contain any struc-

tural information leading to the absence of peaks in the CCFs

at the corresponding q-values (e.g. at q = 38 mm�1). We

assumed the colloidal crystal has a close-packed structure and

calculated the peak positions in the CCFs according to the

geometrical model for the same structures as for the simulated

data: ideal f.c.c., h.c.p. and twinned f.c.c. Also, we calculated

the positions of the ‘arcs’ corresponding to the correlations

between the Bragg rods. The experimental CCFs with the

indicated peak positions are shown in Figs. 8(b)–8(d).

Most of the peaks present in the experimental CCFs have

the peak positions characteristic for an h.c.p. structure [see

Fig. 8(c)], indicating that this stacking motif is a predominant

one. Several peaks do not match the positions for the h.c.p.

structure, but their positions are characteristic of an f.c.c.

structure [see Fig. 8(b)], suggesting the presence of such
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Figure 6
2D correlation maps C(q, �) calculated in the q-range from 25 to 115 nm�1 for the simulated scattered intensities in 3D from (a) f.c.c. (b) h.c.p. (c)
twinned f.c.c. and (d) r.h.c.p. structures. The CCFs are stacked together along the vertical axis q. The markers in (a)–(c) indicate the peak positions for the
corresponding structures calculated from the geometrical model (see Appendix A). Note that in (c) there are only the peaks corresponding to the inter-
domain correlations between the twin domains. The intra-domain correlations from each domain also produce peaks corresponding to an f.c.c. structure
shown in (a). In (d) the dashed lines indicate the correlations between the Bragg rods. Only correlations within 10l (black lines), 20l (red lines) and 21l
(blue lines) Bragg rod families are shown. Correlations between the Bragg rods from different families as well as for higher order families have been
omitted for clarity.



stacking motif in the sample as well. The peaks characteristic

for twinned f.c.c. domains are not present in the experimental

CCFs [compare with Fig. 6(c)], indicating the absence of such

motifs in the sample. In addition, there are ‘arcs’ characteristic

for correlations between the Bragg rods similar to those for

the simulated r.h.c.p. structure.

Indeed, the stacking sequence revealed in the reconstructed

real space structure is ABCABCBCBCACBCBABAB

(Shabalin et al., 2016). This sequence, in general, can be

described as a random h.c.p. structure with many stacking

faults. However, we can distinguish h.c.p. and f.c.c. motifs in

the sequence that produces the corresponding peaks in the

CCFs.

3.3. Comparison of AXCCA applied to the intensity distribu-
tion in 3D reciprocal space and with the randomly oriented
2D diffraction patterns

As mentioned in Section 2.1, the CCFs calculated for the

intensity distribution in 3D reciprocal space should be similar

to the many averaged 2D diffraction patterns obtained from

different random angular orientations of the same sample.

Such a dataset of 2D diffraction patterns could be collected in

an XFEL experiment performed in the single-particle imaging

(SPI) experiment, if the same crystalline structure was injected

into the X-ray beam many times with random orientations. To

prove the similarity of the CCFs obtained from the 3D

intensity distribution and the averaged 2D diffraction patterns

in random orientations, we simulated 5 � 104 diffraction

patterns from the randomly oriented colloidal crystal with the

f.c.c. structure using the MOLTRANS software as described in

Section 3.1. The angular orientations were uniformly distrib-

uted in 3D. The CCFs were calculated for q-values in the range

q = 25–115 mm�1 using equation (3) for each diffraction

pattern separately and then averaged over all patterns.

The resulting CCFs averaged over all 5 � 104 patterns are

shown in Fig. 9(b) and can be compared to those calculated for

the intensity distribution in 3D reciprocal space as described

in Section 3.1 and shown in Fig. 9(a). As we can see from these

figures, the CCF maps are almost identical and contain peaks
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Figure 7
(a) Isosurface of the measured intensities in 3D reciprocal space. (b) Horizontal cut through the origin of reciprocal space. The Bragg peaks are
attributed to an h.c.p. lattice. The red lines show the cuts in the panels (c) and (d). (c) Vertical cut through the 100 and 100 reflections, and the origin of
reciprocal space. (d) Vertical cut through the 010 and 110 reflections with an offset of 30.5 nm�1 along qy from the origin of reciprocal space. The Bragg
rods connecting the Bragg peaks of the 10l, 20l and 21l families are indicated with red arrows.



at the same positions. Small deviations probably originate

from interpolation of the scattered intensities onto the 3D grid

in the second case.

In contrast, the CCF maps averaged over 5 � 102 2D

patterns, shown in Fig. 9(c), contain only a fraction of the

peaks present in the CCF map calculated for the 3D intensity

distribution. This is because such a small number of patterns

does not fully cover all possible orientations. Indeed, to

contribute to the CCF, a pair of Bragg peaks should be present

in a single 2D diffraction pattern. Thus, it requires a certain

number of randomly oriented diffraction patterns to catch all

possible pairs of the Bragg peaks.

To estimate the number of 2D diffraction patterns in

random orientations required to obtain a CCF map similar to

the one calculated from the 3D scattered intensity distribu-

tion, we calculated the Pearson correlation coefficient

(Kendall & Stuart, 1973) r(N) between the CCF maps aver-

aged over different numbers of 2D patterns and the one from

the 3D intensity distribution defined as

rðNÞ ¼
hC3Dðq;�ÞCNðq;�Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC 2

3Dðq;�Þi
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hC 2
Nðq;�Þi

p ; ð5Þ

where C3D(q, �) are the CCFs calculated for the intensity

distribution in 3D reciprocal space, and CN(q, �) are the CCFs

calculated for the randomly oriented 2D diffraction patterns

and averaged over N patterns. The averaging was performed

over all q-values in the range q = 25–115 mm�1 and angles � =

0–180� for which the CCFs were calculated. We note that the

calculated CCFs have zero mean value with averaging over

angle � at the fixed q-value that allows direct application of

the Pearson correlation coefficient.

The evolution of the correlation coefficient with the number

of diffraction patterns is shown in Fig. 9(d). When the number

of patterns used is below 102, the correlation coefficient is

close to zero, indicating that the CCFs do not contain any

features corresponding to the structural information. With

further increase in the number of patterns used, the correla-

tion coefficient grows indicating the successive appearance of

the structured features in the CCF map. At about 3 � 103

patterns it reaches a plateau, while with further increase in the

number of patterns it grows only a little bit to the value of 0.95

for 5 � 104 patterns. We suggest that all features in the CCF

map appear already at 3 � 103 patterns, while further increase

in the number of patterns leads to only minor changes in the

relative intensities of the correlation peaks.

Thus, the CCFs calculated from the 2D diffraction patterns

obtained for different random orientations of the sample are

similar to the CCFs calculated from the scattered intensity

distribution in 3D reciprocal space measured for the sample,

when the number of 2D patterns is high enough. In the

particular case under consideration, the number of required
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Figure 8
2D correlation maps C(q, �) for the experimentally measured intensity distribution in 3D reciprocal space. (a) Initial correlation map. The markers in
(b)–(c) indicate the peak positions for (b) f.c.c. and (c) h.c.p. structures calculated from the geometrical model. In (d) the dashed lines indicate the
correlations between the Bragg rods simulated for the r.h.c.p. structure. Only correlations within 10l (black lines), 20l (red lines) and 21l (blue lines)
Bragg rod families are shown. Correlations between the Bragg rods from different families as well as for higher order families have been omitted for
clarity.



randomly oriented 2D diffraction patterns is about two orders

of magnitude higher than the number of systematically

measured 2D patterns (e.g. by rotation of the sample) required

for reconstruction of the intensity distribution in 3D reciprocal

space.

Note that the number of randomly oriented 2D diffraction

patterns required to obtain the CCF map similar to the one

calculated from the 3D intensity distribution is individual for

each sample under study. The number of required patterns

depends on the probability to catch at least a pair of the Bragg

peaks into a single 2D pattern that, in turn, depends on the

angular size and separation of the Bragg peaks in 3D reci-

procal space. Therefore, for bulk crystals with many scatterers

and small periodicity, the required number of 2D patterns may

be sufficiently higher.

The important point here is the distribution of the angular

orientations of the sample, for which 2D diffraction patterns

are obtained. Only uniform angular distribution allows us to

obtain CCFs similar to those from the 3D intensity distribu-

tion, because the 2D patterns in this case cover all pairs of the

points in reciprocal space with equal probability. If the angular

distribution is not uniform, some correlations will be enhanced

while others will be weakened.

To show this, we simulated 2D diffraction patterns from a

colloidal crystal with the f.c.c. structure using the

MOLTRANS software. We simulated two datasets, obtained
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Figure 9
2D correlation maps C(q, �) calculated for (a) the simulated scattered intensities in 3D reciprocal space and (b)–(e) 2D diffraction patterns from a
randomly oriented sample averaged over (b) 5 � 104 and (c) 5 � 102 patterns. The scattered intensity distribution in 3D reciprocal space and the 2D
diffraction patterns were simulated for the same colloidal crystal with an f.c.c. structure. (d) Pearson correlation coefficient r(N) between the CCF maps
averaged over different numbers of 2D diffraction patterns and the CCF map calculated for the intensity distribution in 3D reciprocal space for the same
sample. (e)–( f ) 2D correlation maps C(q, �) calculated for 2D diffraction patterns obtained by rotation of the sample with an f.c.c. structure around the
(e) [111]f.c.c. and ( f ) [110]f.c.c. axes.



by rotation of the sample around the [111]f.c.c. and [110]f.c.c.

axes in the range 0–180� with an angular step size of 0.5�. The

CCFs were calculated for the 2D diffraction patterns in the q-

range 25–115 mm�1 with the step size of 1 mm�1 and then

averaged over all angular positions of the sample. The

resulting CCFs calculated for these two datasets are shown in

Figs. 9(e) and 9( f). They are different from each other and

from the CCF map obtained for the 3D intensity distribution

shown in Fig. 9(a). The difference can be explained as follows.

A pair of the Bragg peaks gives rise to a peak in the CCFs only

if both Bragg peaks are present in the same 2D diffraction

pattern. When the diffraction patterns are collected by rota-

tion of the sample around one of its crystallographic axes, each

diffraction pattern contains different pairs of the Bragg peaks.

The exact set of the Bragg peak pairs present in the dataset is

defined by the selected crystallographic axis. Thus, the datasets

collected by rotation around different crystallographic axes

contain different pairs of the Bragg peaks that give rise to the

peaks in the CCF maps. The present peaks in the CCF maps in

this case have higher intensity compared with those in the

CCF maps obtained for the randomly distributed 2D patterns.

This is because, in the latter case, the CCFs are averaged over

many patterns, most of which do not contain any correlations

at a certain q-value. The diffraction patterns obtained by the

rotation around one crystallographic axis are an extreme case,

but any other distribution with a preferred direction would

result in similar deviations.

4. Conclusions

We proposed to apply the AXCCA technique to the scattered

intensity distribution in 3D reciprocal space. Here, we

demonstrated an application of the AXCCA for qualitative

determination of the crystalline structure of a colloidal crystal,

including the present planar defects. AXCCA provides a

complementary view on the structure when CDI reconstruc-

tion does not work (Schlotheuber né Brunner et al., 2021). The

results can be interpreted by means of a simple geometrical

model of the crystalline lattice and defects. Direct sensitivity

to the angles in reciprocal space provides additional infor-

mation about the structure compared with the conventional

radial intensity profile analysis.

The application of AXCCA to the 3D scattered intensity

distribution measured from a single sample by its rotation

made it possible to avoid averaging of the revealed structure

over many realizations with possibly different defects present.

Moreover, the systematic measurement allowed us to signifi-

cantly reduce the number of measurements needed to obtain

orientationally averaged CCFs, compared with measurements

from random orientations. We also showed that averaging

over 2D diffraction patterns measured during rotation around

the fixed axis does not provide the same CCFs as the assembly

of intensity distributions in 3D reciprocal space. We think that

it is an essential part of the proposed method.

The method described here works well for the colloidal

samples with the large unit cell. For such samples, a single

rotation around one axis is sufficient to collect scattered

intensities in whole reciprocal space. The same method can be

applied as well for the crystal grains with the unit cell of a few

Ångstroms. In this case, due to the Ewald sphere curvature,

one will need to apply two rotations around two orthogonal

axes to cover full reciprocal space of the crystal grain. The

described formalism will be applicable also in this case.

This approach was already successfully applied for the

analysis of the averaged structures and defects in single

colloidal grains of gold and magnetite nanocrystals (Carnis et

al., 2021; Schlotheuber né Brunner et al., 2021). We expect that

it will find applications for understanding the structure of

colloidal grains and single crystals in future.

APPENDIX A
Geometrical interpretation of the CCFs

Here, we follow the discussion provided by Niozu et al. (2020)

and apply it to our structures. Any reciprocal lattice vector can

be represented as a linear combination of the basis vectors

ghkl ¼ hb1 þ kb2 þ lb3. Let us denote a family of equivalent

crystallographic directions as Ghkl. Each crystallographic

direction that fulfills the diffraction selection rules for a given

lattice symmetry corresponds to the position of a Bragg peak

in reciprocal space. Using the coordinates of the reciprocal

lattice vectors ghkl and gh0k0l0 we can calculate the angle �
between a certain pair of the Bragg peaks corresponding to

these vectors. This Bragg peaks pair would contribute at the

angle � to the CCF C(q1, q2, �) calculated for q1 = ||ghkl|| and

q2 = ||gh0k0l0||. To evaluate all contributions for a certain fixed q1

and q2, we should consider all Bragg peaks that appear in

reciprocal space at these q-values. Then, all angles � can be

calculated using the scalar product

ghkl � gh0k0l0 ¼ kghklkkgh0k0l0 k cosð�Þ; ð6Þ

if one considers all possible pairs of the vectors ghkl and gh0k0l0

from certain families of equivalent crystallographic directions

Ghkl and Gh0k0l0, respectively, corresponding to the q-values q1

and q2. Note, in some cases, several families Ghikili
may

contribute at the same q-value. Then, an extended set of the

vectors [iGhikili
should be considered.

Several crystalline domains in the sample would result in

two types of correlation: intra-domain correlations between

the Bragg peaks originating from a single domain and inter-

domain correlations between the Bragg peaks originating

from different domains. The intra-domain correlation contri-

bution to the CCFs can be evaluated as described above. To

evaluate the contribution of the inter-domain correlations, one

should consider the relative orientation of the domains. The

orientation can be taken into account by introducing an

orthogonal transformation matrix T that transforms the basis

vectors of one domain into the basis vectors of another. Then,

the inter-domain correlations contribute to the CCF C(q1, q2,

�) at the angles � that can be found using the scalar product

ghkl � Tgh0k0 l0 ¼ kghklkkgh0k0 l0 k cosð�Þ; ð7Þ
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if one considers all possible pairs of the vectors ghkl and gh0k0l0

from certain families of equivalent crystallographic directions

Ghkl and Gh0k0l0 corresponding to the q-values q1 and q2.

For example, for f.c.c. and h.c.p. lattices discussed in this

paper, the reciprocal basis vectors can be defined as follows:

bf:c:c:
1 ¼ 2�

af:c:c:

1ffiffi
2
p ;� 1ffiffi

6
p ; 1ffiffi

3
p

	 


bf:c:c:
2 ¼ 2�

af:c:c:
� 1ffiffi

2
p ;� 1ffiffi

6
p ; 1ffiffi

3
p

	 


bf:c:c:
3 ¼ 2�

af:c:c:
0; 2ffiffi

6
p ; 1ffiffi

3
p

	 


8>>>><
>>>>:

and

bh:c:p:
1 ¼ 2�

ah:c:p:

2ffiffi
3
p ; 0; 0
	 


b
h:c:p:
2 ¼ 2�

ah:c:p:

1ffiffi
3
p ; 1; 0
	 


b
h:c:p:
3 ¼ 2�

ah:c:p:
0; 0;

ffiffi
3
pffiffi

2
p

	 
 ;

8>>>><
>>>>:

ð8Þ

where af:c:c: ¼
ffiffiffi
2
p

d and ah:c:p: ¼ d are the f.c.c. and h.c.p. lattice

parameters corresponding to the same nearest-neighbor

distance d. The orientation of the f.c.c. basis is selected in such

a way that the stacking directions [001]h.c.p./[111]f.c.c. coincide

as well as the angular orientation of the hexagonal planes

(001)h.c.p./(111)f.c.c. (i.e. [100]h.c.p.jj[111]f.c.c.).

For the simplest f.c.c. twinning with a �3-boundary

discussed in this paper, the transformation matrix T corre-

sponds to a reflection of the f.c.c. lattice across the (111)f.c.c.

plane and can be written in the following form:

T ¼

1 0 0

0 1 0

0 0 �1

0
@

1
A: ð9Þ

The Bragg rods originating from the stacking disorder of the

hexagonal layers in close-packed structures are intensity

modulations along the straight lines normal to the hexagonal

layers and along the stacking direction. Their positions are

defined by the reciprocal lattice and, using the h.c.p. reciprocal

basis vectors from equation (8), can be described by

ghkðlÞ ¼ ghk0 þ g?ðlÞ, where ghk0 is a vector from a certain in-

plane Bragg peaks family G
h:c:p:
hk0 and

g?ðlÞ ¼ lbh:c:p:
3 ; l 2 ð�1;1Þ is a vector along the Bragg rod,

normal to the planes. Note the Bragg rods are present only for

stacking-dependent families G
h:c:p:
hk0 for which

h� k 6¼ 3n; n 2 Z (Petukhov et al., 2003).

The parameter l corresponding to a certain q-value can be

easily calculated for any Bragg rod corresponding to a certain

in-plane reciprocal lattice vector ghk0 as

l ¼
q2 � kghk0k

2
� �1=2

kb3k
: ð10Þ

Then, a pair of Bragg rods, corresponding to different in-plane

vectors ghk0 and gh0k00 contributes to the CCF C(q1, q2, �) at

the angle � that can be calculated using the scalar product

ghkðl1Þ � gh0k0 ðl2Þ ¼ kghkðl1Þkkgh0k0 ðl2Þk cosð�Þ; ð11Þ

where ghkðliÞ ¼ ghk0 þ g?ðliÞ, ghk0 is a vector of a certain family

G
h:c:p:
hk0 , g?ðliÞ ¼ lib

h:c:p:
3 and parameter li corresponding to the

q-value qi is defined by equation (10).

APPENDIX B
Definition of the cross-correlation function for the
intensities defined on a grid

Taking into account that the experimental data are typically

defined on a grid in reciprocal space, equation (2) can be

represented as

Cðq1; q2;�Þ ¼

X
q i;q j2G

~IIðqiÞ
~IIðqjÞ

X
q i;q j2G

1
; ð12Þ

where

G¼fjkqik�q1j<"g \ fjkqjk�q2j<"g \ fj�ij ��j<d�g;

qi and qj are the points close to the spheres of the radii q1, q2 in

reciprocal space, respectively; �ij is the relative angle between

these points. Parameters " and d� define the radial and

angular averaging windows, respectively. The sum is calculated

over all pairs of points qi, qj with the corresponding relative

angle �. The average intensity used for the intensity correc-

tion in this case is

hIðqÞi ¼

P
kqik�qj j<" I qið ÞP
kqik�qj j<" 1

: ð13Þ

Given the desired resolution of 1 mm�1, in this work the radial

averaging window " was selected to be 0.5 mm�1. The angular

resolution of � was experimentally set to 0.5� that allows us to

resolve all peaks in the resulting CCFs. The angular averaging

window d� was correspondingly set to 0.25�.
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Neumann, R., Neumann, R., Ngada, N., Noelle, D., Obier, F.,
Okunev, I., Oliver, J. A., Omet, M., Oppelt, A., Ottmar, A.,
Oublaid, M., Pagani, C., Paparella, R., Paramonov, V., Peitzmann,
C., Penning, J., Perus, A., Peters, F., Petersen, B., Petrov, A., Petrov,
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Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystal-

lographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected

by structural heterogeneity. Here, we report the detailed structural characterization of a faceted meso-

crystal grain self-assembled from 60 nm sized gold nanocubes. Using coherent X-ray diffraction imaging,

we determined the structure of the mesocrystal with the resolution sufficient to resolve each gold nano-

particle. The reconstructed electron density of the gold mesocrystal reveals its intrinsic structural hetero-

geneity, including local deviations of lattice parameters, and the presence of internal defects. The strain

distribution shows that the average superlattice obtained by angular X-ray cross-correlation analysis and

the real, “multidomain” structure of a mesocrystal are very close to each other, with a deviation less than

10%. These results will provide an important impact to understanding the fundamental principles of struc-

turing and self-assembly including ensuing properties of mesocrystals.

1. Introduction

Assembling of individual nanocrystals (NCs) in an organized
superstructure offers the possibility of combining the physical
properties of the individual NCs, like surface plasmon reso-

nances or superparamagnetism, with other physical properties
provided by the superstructure, such as mechanical stiffness or
geometric coordination.1,2 NCs can be self-assembled into a
superstructure, which is also known as a mesocrystal, where the
separate NCs share a common crystallographic orientation.3–5

Among suitable building blocks for mesocrystals, gold nano-
particles have attracted special attention due to the prospect of
utilizing their surface plasmon resonance properties. For
example, a cancer-selective amplification of chemoradiation
with plasmonic nanobubbles has been reported for clusters of
gold nanoparticles.6,7 Similarly, gold mesocrystals show high
potential in the detection of traces of chemical species using
surface-enhanced Raman scattering (SERS).8–13

In these applications, both the shape and size of the NCs as
well as their mutual arrangement are highly influential on the
plasmonic properties.14 In particular, the crystallographic struc-
ture of the assemblies (mesocrystals) determines the coupling
strength and coherent superposition of the NCs plasmon polari-
ton modes, which leads to the measured enhancement of the
electromagnetic field13,15 and the emergence of hybridized
plasmon bands.16 Moreover, when anisotropic NCs are arranged
in a mesocrystalline structure, coupling and amplification of
directional physical properties can be expected.4

While the plasmonic properties of individual nanoparticles
or two-dimensional (2D) assemblies can be easily character-

†Electronic supplementary information (ESI) available: Experimental methods
(chemicals and materials, synthesis of gold seeds, synthesis of gold spheres),
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mation), structural analysis of mesocrystal base on reconstructed electron
density (dilatation maps, strain tensor component maps, model of an ideal
crystal strained by the measured superlattice strain). Movies S1–S6. See DOI:
10.1039/d1nr01806j
‡These authors contributed equally to this work.

aDeutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg,

Germany. E-mail: ivan.vartaniants@desy.de
bUniversity of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.

E-mail: elena.sturm@uni-konstanz.de
cLeibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069

Dresden, Germany
dTU Dresden, Bergstraße 66b, 01062 Dresden, Germany
eNational Research Nuclear University MEPhI (Moscow Engineering Physics

Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
fSaint-Petersburg State University, University Embankment 7/9, 199034

St Petersburg, Russia
gNational Research Tomsk Polytechnic University (TPU), pr. Lenina 30, 634050

Tomsk, Russia

This journal is © The Royal Society of Chemistry 2021 Nanoscale, 2021, 13, 10425–10435 | 10425

Pu
bl

is
he

d 
on

 1
8 

M
ay

 2
02

1.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

T
 K

O
N

ST
A

N
Z

 o
n 

6/
23

/2
02

1 
2:

15
:0

5 
PM

. 

View Article Online
View Journal  | View Issue



ized and related to the particle shape and size, the evaluation
of optical responses from three-dimensional (3D) super-
structures is not straight forward and requires exact knowledge
not only of the internal symmetry, translational, and orienta-
tional order of the building blocks within the superlattice, but
also structural heterogeneity (e.g. presence of defects). This
knowledge is also important for the fundamental understand-
ing of the phase behavior of nanocubes during the self-assem-
bly process as well as the stability of superstructures.17–19

Previously, we presented a detailed structural characteriz-
ation of PbS and iron oxide mesocrystalline superstructures
using the combination of different transmission electron
microscopy (TEM) techniques (including imaging, electron
diffraction, high resolution TEM, electron tomography and
electron holography).20–24 TEM is capable to resolve very small
structures, but quickly reaches an application limit for multi-
layered superstructures and larger mesocrystals, in particular
if composed of more than 20 nm sized gold particles due to
their strong electron scattering and absorption. In the few
micrometers thick 2D layers of mesocrystals, the structural
relationship between the atomic lattice and superlattice of
nanocrystals can be studied by X-ray nanodiffraction and
angular X-ray cross-correlation analysis (AXCCA)
techniques.25–29 Also recent developments in application of
synchrotron-based small and wide angle X-ray scattering (SAXS
and WAXS) techniques allow to resolve bulk structure of self-
assembled mesocrystals in terms of symmetry of superlattice
and orientational order of nanoparticles,30–32 as well as track
in real time the self-assembly process.33–35 However, to fully
understand the mesocrystal formation process and to get
insight into the fundamental principles of structure–property
relationship of such complex material, detailed high resolu-
tion characterization of local structure is crucial. To study the
structure of mesocrystals in a non-destructive way and resolve
potential defects, we use here coherent X-ray diffraction
imaging (CXDI).36–38

The CXDI is a lens-less imaging technique that makes use of
the coherence properties of the X-ray beam. When a finite
object is illuminated by a coherent X-ray beam, interferences
between the incoming wavefront and the scattered beams gene-
rate a diffraction pattern, which can be recorded in the far-field
by a 2D detector with proper sampling.39 By stepwise rotating
the sample and recording 2D diffraction patterns, one can
measure a full 3D diffraction pattern and then use iterative
algorithms to determine the 3D electron density of a
sample.40,41 A complex amplitude object is reconstructed,
whose modulus is directly related to the object’s electron
density in the forward scattering geometry.39 To classify the
shape of individual nano-particles composing mesocrystals
experiments at X-ray free-electron lasers (XFEL) may be
performed.42,43 CXDI technique has already been applied suc-
cessfully to a colloidal grain of silica nanospheres (diameter
230 nm), where the accuracy of the determined positions of
each colloidal sphere in the lattice was ∼9 nm.44 Here, we push
forward this approach to solve the structure of a gold mesocrys-
tal grain self-assembled from 60 nm sized gold nanocubes.

2. Results and discussion

The gold NCs stabilized by cetyltrimethylammonium chloride
(CTAC) were synthesized in a three-step seed-mediated method
(Fig. S1–S4†),21 purified by centrifugation and assembled
(Fig. S5†) to faceted mesocrystals (slightly distorted tetragonal
prisms, see Fig. 1 and Fig. S6 in ESI†) using depletion forces
(see Methods and ESI† for details).

To perform a detailed structural characterization of the
superstructure by CXDI, a rectangular cuboid with dimensions
about 1.25 μm × 1.25 μm × 1.5 μm was cut from the central
part of one of the grown mesocrystals using a focused ion
beam (FIB) and was mounted on a tungsten micromanipulator
tip (see Fig. 2).

The CXDI measurements were performed at the Coherence
Applications Beamline P10, at the PETRA III (DESY, Germany)
storage ring. A sketch of the experimental setup is shown in
Fig. 2 (see Methods for details). The stack of 2D diffraction pat-
terns measured in our experiment was interpolated into an
orthonormal frame, resulting in a 3D reciprocal space map of
our grain (see for details ESI, Movie S1†).

An isosurface of this 3D diffraction pattern is shown in
Fig. 3a. One can distinguish streaks with interference fringes
at low scattering angles in Fig. 3b, which is due to interference
of coherent X-rays on the opposite facets of the mesocrystal. In
addition, several orders of superlattice reflections at larger
wave vector transfer values can be observed. Between the Bragg
peaks, we measured a complex speckle pattern, which encodes
the local information about the relative positions of scatterers
in the mesocrystal. The direct beam was masked, corres-
ponding to the white area in the center of diffraction pattern
as shown in Fig. 3b. In Fig. 3c, an angular average of the diffr-
action intensities is shown. Although we are dealing with a
single-domain mesocrystal, Bragg peaks are broadened due to
the highly defective structure of the ensemble. Near qz ∼
±0.1 nm−1, in Fig. 3b, Bragg peaks are split, which suggests the
presence of defects in the superlattice.45 The first evaluation of

Fig. 1 Synthesis of gold nanoparticles and mesocrystals. (a) TEM image 
of gold nanocubes stabilized by CTAC and synthesized using a seed-
mediated approach. (b) SEM image of the self-assembled gold 
mesocrystal prior to FIB preparation for the CXDI measurements.
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the angular averaged X-ray diffraction profile shown in Fig. 3c
suggests a simple cubic symmetry (space group Pm3m) of the
superlattice with a lattice parameter a ∼ 62 nm.

We further analyzed the 3D reciprocal space data by means
of the AXCCA technique,25–29 which can provide more infor-
mation about the superlattice structure. This method was
specifically modified to perform analysis in 3D reciprocal
space (see for details ESI†). We calculated the cross-correlation
functions (CCFs) C(q1,q2,Δ) (see ESI† for definition) between
the most prominent peaks in the reciprocal space radial
profile of Fig. 3c, at momentum transfer values q1 =
0.104 nm−1, q2 = 0.144 nm−1, q3 = 0.172 nm−1, and q4 =
0.208 nm−1. The most representative CCFs are shown in
Fig. 4a–c (see ESI† for the full set of CCFs). The CCFs reflect
angular correlations between the Bragg peaks from the meso-
crystalline lattice. The observed peaks in the CCFs do not per-
fectly fit the initially expected simple cubic lattice model of the
mesocrystalline structure. Simulating peak positions for a
primitive lattice (space group P1) shown in Fig. 4d, we found
the optimal angles between the lattice basis vectors.
Combining these data with the intensity profiles along the
main crystallographic directions ([100], [010] and [001]) we
obtain the following unit cell parameters in real space: a = b =
63.2 ± 0.1 nm, c = 62.2 ± 0.1 nm, α = β = 75 ± 1°, γ = 90 ± 1°.

This average primitive cell can actually be identified to have a
higher symmetry and corresponds to a primitive cell of a
centred monoclinic lattice that has the following parameters
in the conventional setting I2/m: a = 62.2 nm, b = 89.38 nm, c
= 88.25 nm, β = 109.52° (see Fig. S12a in ESI†). For conven-
ience, however, we prefer to use the original primitive setting
(see Fig. 4d) in the whole manuscript.

The anisotropy of the form-factor of the cubic NCs provides
an additional information about the angular orientation of the
NCs inside the superlattice. The form-factor maxima are
located along the normal to the facets of the NCs. Thus, one
can study the angular position of the NCs form-factor maxima
with respect to the Bragg peaks and further determine the NC
orientation with respect to the superlattice crystallographic
axes in real space. The angular position of corresponding
maxima was obtained by correlating the simulated form-factor
for a cubic NC of the size of 59 ± 1 nm with the experimental
intensities at q = 0.477 nm−1 (see ESI† for details). This q value
is the most suitable one to calculate correlations, since it
corresponds to one of the maxima of the form-factor, and does
not contain any structure factor features. As a result, we
obtained an averaged real space model of the entire unit cell
including the oriented NCs that is shown in Fig. 4d. The facets
of the NCs are aligned neither with the (001) plane, which is

Fig. 2 Schematic layout of the experiment. A monochromatic X-ray beam of 8.7 keV from the undulator source is focused by the Compound
Refractive Lenses (CRL) to a spot larger than the mesocrystal grain. The sample was cooled using a liquid nitrogen cryostat. The far field diffraction
patterns were measured by a photon counting EIGER X 4M detector positioned downstream the sample. The 3D diffraction map is obtained by
rotating the sample around the vertical axis. In the inset, an SEM image of the mesocrystal grain is shown. The laboratory frame convention for the
coordinate system is shown in the figure.
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parallel to the substrate surface, nor with the [001] axis, but
are tilted by an angle δ ≈ 7° with respect to this axis. We would
like to note here that reciprocal space analysis provides infor-
mation about the average structure over the whole mesocrystal-
line grain only. Local structural features are resolved only by
employing phase retrieval to reconstruct the electron density
of the whole grain.

The 3D diffraction pattern was inverted to a real space 3D
electron density map using iterative phase retrieval reconstruc-
tion algorithms,40,41 providing a full overview of the internal
structure of the mesocrystal (see for details Methods and ESI
Movie S2†). An isosurface of the reconstructed mesocrystal
together with 2D slices parallel to (100), (010) and (001) planes
of the superlattice is shown in Fig. 5 and ESI Fig. S13 and
Movies S3 and S4.† The first striking observation is that CXDI

can fully resolve individual nanocubes. The voxel size of the
reconstruction is 9.4 nm × 9.4 nm × 9.4 nm, while the resolu-
tion estimated by the phase-retrieval transfer function46 (PRTF)
is ∼21 nm (see ESI and Fig. S7†), which is smaller than the
60 nm size of the individual NCs. The reconstructed structure is
tilted in the vertical direction, in agreement with the unit cell
parameters of the superlattice obtained by the AXCCA.

The 2D slices of the electron density of the mesocrystalline
grain (see Fig. 5b–d) show the presence of several type of
defects including point defects, lattice bending, crack, and
voids. One could argue that the structure was damaged during
sample preparation by the FIB. Indeed, it has been shown that
FIB milling can induce a dislocation network in the outer
layers of gold NCs.47 However, this effect is expected to be
limited to the first few tens of nanometers at the surface of the

Fig. 3 Diffraction patterns measured in the CXDI experiment. (a) Isosurface view (from 54% to 72% level) of the 3D diffraction pattern from the 
mesocrystalline grain shown in SEM image in the inset of Fig. 2. The data has been gridded onto the orthonormal laboratory frame. The length of 
coordinate arrows corresponds to 0.1 nm−1. (b) Slice at the center of the interpolated diffraction pattern in the qxqy plane, showing the low-angle 
scattering region up to the first superlattice Bragg peaks. An enlarged view of the area outlined by a red box is shown in panel (a). (c) Intensity distri-
bution as a function of the momentum transfer value q obtained by angular averaging of the 3D diffraction pattern (red line). The blue dashed line 
corresponds to the median value at momentum transfer q determined from the angular averaged values. The AXCCA was performed on the data 
obtained by subtracting these median values from the 3D diffraction pattern shown in (a). The vertical dotted lines correspond to the momentum 
transfer values used in the AXCCA: q1 = 0.104 nm−1, q2 = 0.144 nm−1, q3 = 0.172 nm−1, and q4 = 0.208 nm−1. Note, that intensities in all panels are 
given in logarithmic scale.
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object, which does not explain the high inhomogeneity of the
mesocrystal structure. Consequently, the defects are likely
formed during the crystal growth or the post-growth defor-
mation processes (including the crystal contraction during the
drying processes and solvent evaporation or by further propa-
gation of existing internal cracks during FIB sample prepa-
ration). Defects of both origins are important since application
of mesocrystals often requires the material in a dry state.

It is also evident from the reconstructed electron density
(see Fig. 5 and Fig. S13 in ESI†), that the packing order of
nanoparticles within (001) planes increases substantially in
the first three layers from the substrate (ESI Movies S3b and
S4b†). We would like to note, that these (001) planes are paral-
lel to the substrate and basal plane of mesocrystals and are
perpendicular to the growth direction. In general, the ordering
within (001) planes is also much higher than within (100) and
(010) planes (see Fig. 5 and Fig. S13e–g in ESI†). These find-
ings are consistent with the layer growth mechanism of meso-
crystals, proceeding by particle-by-particle attachment to the
facet grown parallel to the substrate. In addition, during the
drying process (e.g. solvent evaporation) the nonhomogeneous
contraction of the mesocrystal occurs mainly perpendicular to

the basal plane and additional shear stress induces the for-
mation of additional cracks and voids, which mainly propagate
perpendicular to substrate (see Fig. 5 and Fig. S13 in ESI†).
The most prominent here is a large crack through the entire
mesocrystal, visible on the right side of Fig. 5b and c, following
the (010) plane, where its zigzag nature suggests a post-growth
deformation during the drying process as origin of the crack
formation.

To perform a more detailed analysis of the crystal’s intrinsic
heterogeneity, the 3D reconstructed electron density map was
analyzed with a blob detection algorithm to extract the posi-
tion of the individual NCs within the superlattice (see ESI,
section S5†). The assigned position of individual NCs was
further used to determine the local variations of packing order
with respect to the average superlattice determined by the
AXCCA. To do so, we aligned the averaged superlattice posi-
tions with the particle positions detected by the algorithm at
the middle of the mesocrystal grain. The obtained displace-
ment map clearly visualizes the lattice distortion across the
entire 3D volume of the mesocrystal (Fig. 6a). The shift of
nanoparticle positions from their averaged value within the
superlattice is most significant close to the structural defects

Fig. 4 Angular X-ray cross-correlation functions (CCFs) C(q1,q2,Δ). The CCFs were calculated at the following momentum transfer values (a) q1 =
0.104 nm−1 and q3 = 0.172 nm−1, (b) q3 = 0.172 nm−1, and (c) q4 = 0.208 nm−1. The corresponding peak positions for the optimized unit cell are
shown with red dashed lines. The peak positions for a simple cubic unit cell are shown with black lines. (d) A real space model of the average opti-
mized unit cell, with a = b = 63.2 ± 0.1 nm, c = 62.2 ± 0.1 nm, α = β = 75 ± 1°, γ = 90 ± 1°. The orientation of the nanocubes within the superlattice is
revealed by analysis of the anisotropic form-factor.
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(see Fig. 5, for comparison). For example, the crack is again
clearly visible at the right side of the mesocrystal grain.
Furthermore, one can see that for the first three layers from
the substrate, the whole lattice plane is still significantly dis-
placed in comparison to the average lattice. The upper left part
of the crystal appears to be sheared approximately half a unit
cell in a diagonal direction.

In Fig. 6b, examples of extracted local primitive unit cells
together with corresponding Voronoi–Dirichlet polyhedron
(VDP), also known as the Wigner–Seitz cell for a 3D periodic
lattice, at different positions within the mesocrystal are shown.
The parameters and geometry of VDP constructed around the
“central particle” of each selected cell illustrate the changes of

the local symmetry in the arrangement of nearest neighbours
(e.g. coordination shell) and coordination number (CN) equal to
the number of facets.48,49 The magnitude of the dimensionless
second moment of inertia of the VDP, normalized to its volume
(so-called G3-factor) can be used to estimate the degree of distor-
tion of the coordination shell (e.g. for cubes G3 is equal to 1/12
≈ 0.0833, for cuboctahedra 19/[192(2)1/3] ≈ 0.0785, and for
spheres (1/5)(3/4π)2/3 ≈ 0.0770).48,50 In comparison to cubic VDP
of the simple cubic cell (CN is 6; number of vertices is 8, see
Fig. 6c), the more complex VDP of the averaged unit cell deter-
mined by AXCCA has 12 facets (CN = 12) and 18 vertices with G3

= 0.0810 (Fig. 6c). Interestingly, although the VDPs constructed
for the several selected primitive cells (Fig. 6b) have 14 facets

Fig. 5 Reconstructed 3D electron density of the Au mesocrystal grain. (a) Volume rendering of the reconstructed 3D electron density with the posi-
tion of 2D slices used further to analyze the structure. (b–d) 2D slices parallel to (010) (b), (001) (c) and (100) (d) crystallographic planes through the
center of the reconstructed mesocrystal with highlighted superlattice defects.
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(CN = 14), the G3 parameter varies only from 0.0812 to 0.0831
( just between the values of an ideal simple cubic and experi-
mental cells determined by the AXCCA).

It is worth to note, that the averaged AXCCA lattice can be
seen as a distorted primitive cubic arrangement of the par-
ticles where each particle has 6 nearest neighbours and

Fig. 6 Structure analysis of the Au mesocrystal grain. (a) Displacement map (red arrows) of the 3D superlattice, obtained based on positions of
detected nanoparticles (green dots) with respect to an average superlattice (black dots) with unit cell parameters determined by the AXCCA. The
two lattices were aligned at the center of the grain (b) Selected Voronoi–Dirichlet polyhedrons illustrating the change of local symmetry of the
arrangement and the number of coordinating particles (G3 from left to right: 0.0831, 0.0820, 0.0813). (c) Constructed Voronoi–Dirichlet polyhe-
drons of simple cubic lattice (G3 = 0.0833) and the average superlattice unit cell determined by the AXCCA (G3 = 0.0811). (d) Pair-distribution func-
tions (PDF) obtained for two datasets. First, based on the positions of the detected nanoparticles shown in panel (a) by green dots (green line) and,
second, based on an average superlattice unit cell determined by the AXCCA shown by black dots in panel (a) (black line). In the inset an enlarged
part of the first two peaks of the PDF-function is shown. The first peak of the experimental curve was fitted by a Gaussian function (red line) which
has its maximum position at 62.7 nm and standard deviation 5.9 nm.
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additionally 6 next-nearest neighbours, as evidenced by the
faces of the VDP (see Fig. S12a and b in ESI†). The distortion
can be understood as follows: the square layers of a simple
cubic lattice with the parameters a = b = 62.2 nm, γ = 90° are
sheared against each other (see Fig. S12b in ESI†). The distor-
tions can be attributed both to the smoothed polyhedral shape
of the particles that drives the whole arrangement in the direc-
tion of a close packing, and to the defects of the structure.
Thus, it is not surprising, that the G3 values calculated from
experimental data are very close to the G3 of the VDP in the
simple cubic cell, showing that although the real symmetry of
the superlattice cell is lower, its topology deviates only slightly
from the simple cubic arrangement. This deviation might be
also a result of the tilting of our slightly truncated gold NCs
within the superlattice as indicated by the AXCCA (Fig. 4d). This
allows to achieve a more efficient space-filling arrangement in
accordance with the so-called “bump-to-hollow” packing prin-
ciple known for molecular crystals51 and also reported for other
mesocrystalline self-assembled structures.18,22

In addition, we also calculated the pair distribution func-
tion (PDF) based on the detected positions of individual nano-
crystals within the superlattice (see Fig. 6d). The PDF con-
firmed that the short-range order of the nanoparticles is close
to an arrangement with the average cell, while the long-range
order (at higher distances r) is significantly disturbed due to
the presence of defects and lattice deformations in the real
structure of the mesocrystal. The first peak of the PDF curve
was fitted by a Gaussian function (see Fig. 6d, inset), revealing
that the average distance to the neighbouring particles of the
first coordination shell is around 62.7 nm and that the pre-
cision of the detected particle positions (given by the standard
deviation) is better than 5.9 nm, since the spread includes also
the particle displacements due to lattice deformations.

Although the displacement map already gives a good under-
standing of the large lattice deformation across the whole meso-
crystal volume, we additionally extracted a complete superlattice
strain map. As a tool to describe the deformation of the superlat-
tice, we defined the superlattice strain tensor as the deviation of
the actually observed structure of a mesocrystal compared to the
defect free lattice model (determined by the AXCCA) in analogy
to the linear elasticity theory for atomic lattices52 (see ESI† for
details). This linear model, which neglects higher order deriva-
tives, is of course only valid for small deformations. Although for-
mally analogous to the strain as defined in linear elasticity theory
(Hooke’s law), herein it is merely used as a tool to describe the
deviation of the observed experimental structure from the average
model. Here, we are not aiming to distinguish an elastic and
plastic deformation, nor can we say anything about the stress of
the system. In addition, the superlattice dilatation (that is a sum
of diagonal elements of the strain tensor) can easily be retrieved,
giving a direct visualization of local lattice contractions and
expansions (see Fig. 7 and ESI Fig. S14–S23 and Movie S5†).
Fig. 7a and b illustrates the highly mosaic structure of the meso-
crystal. Even though there are many local fluctuations in the
crystal structure, there certainly seems to be a tendency of positive
dilatation (lattice expansion) in the vicinity of the huge crack.

Fig. 7 Structural heterogeneity of the Au mesocrystal grain. (a) Volume
rendering of a 3D dilatation map of the superlattice. (b) Volume render-
ing of 3D maps of the strain tensor components (εxx − εzz) and rotations
(ωxy − ωyz). The magnitude of strain is illustrated by the color scale in
panel (a). (c) Histograms of the strain tensor components and rotations.
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The individual strain εij and rotation ωij components can be
found in Fig. 7b and Fig. S15–S23 in ESI.† The most obvious
feature is the “bipolar” structure, for example, in εxy and ωyz,
which is consistent with the lattice bending, and can be
observed in the slices in Fig. 5 and Fig. S16, S23 in ESI.† The
calculated strain tensor and rotation components are quanti-
tatively summarized in the histograms (Fig. 7c). The measured
strain in all components is in a reasonable range of ±10%. The
sharpest distribution is shown by the εyy tensor component,
which is closest to the a3 growth direction of the mesocrystal.
In order to verify the fidelity of our calculated superlattice
strain, we reapplied the strain to an ideal crystal lattice (i.e.
averaged superlattice determined by the AXCCA) and were able
to reproduce most structural features of the experimentally
measured mesocrystal (see ESI Fig. S24 and Movie S6†).

3. Conclusions

In conclusion, we have used a combination of the angular
X-ray cross-correlation analysis and coherent X-ray diffractive
imaging, to study the 3D structure of a gold mesocrystal. The
achieved resolution of 21 nm allowed imaging of individual
nanocubes in the mesocrystal grain. Importantly, the precision
of the detected particle positions was better than 6 nm. The
results reveal a strongly defective structure of the mesocrystal
with overall monoclinic symmetry. This technique shows a
strong potential in systems that cannot be studied by classical
optical or electron microscopy methods and contributes to a
better understanding of structural features of self-assembled
mesocrystals and especially intrinsic structural heterogeneity
(including deviation of crystal symmetry, variation of lattice
parameter, distribution of defects and strains). Importantly,
the real mesocrystal structure was analyzed with unpre-
cedented detail, calculating a displacement map and the
entire strain tensor of the whole specimen.

The unexplored deformation behavior and related changes
in structure and functional properties of nanoparticles super-
lattices limit their promising implementation into devices.53

Therefore, the precise determination of their crystal structure
and especially intrinsic structural heterogeneity is crucial for
understanding this complex behavior. The proposed methodo-
logical approach could be used not only to perform such non-
destructive structural characterization of nanostructured
materials, but also to build more adequate structural models
which in turn could serve as a basis for the precise prediction
of the physical properties of nanoparticles self-assemblies
using the computational methods.

4. Experimental Section
4.1. Synthesis of gold nanocubes

The synthesis of gold nanocubes was performed by a three-
step seed-mediated growth method based on a previously
described procedure.21 First, small gold seeds are synthesized

which are grown to spheres in a second step (see section S1 of 
ESI†). These spheres are then processed for the synthesis of 
cubic particles. An aqueous solution of HAuCl4 (1.00 mL, 0.01 
M) and an aqueous solution of hexadecylpyridinium chloride 
(CPC) (50.00 mL, 0.10 M) were mixed in a glass vial (100 mL) 
and tempered to 27 °C. An aqueous solution of ascorbic acid 
(0.75 mL, 0.10 M) was added, followed by a rapid injection of 
400 µL of washed spheres. The solution turned pinkish red 
and was kept at 27 °C for 3 h. The gold nanocubes are col-
lected by centrifugation at 9000 rpm for 5 min and redispersed 
in 0.02 M CPC solution. The cubes were characterized by TEM 
and UV/Vis (Fig. S2†), the single crystalline nature of the par-
ticles was proven using electron diffraction (Fig. S3†).

4.2. Preparation of gold mesocrystals

An aqueous solution having approximately 1011 particles per 
mL and a CPC concentration of 0.02 M was prepared. 400 µL 
of this solution were filled in a 1 mL shell vial with a silicon 
wafer (7 × 5 mm2). The solution was carefully overlayered with 
400 µL of 25 wt% cetyltrimethylammonium chloride (CTAC) in 
H2O. An exemplary setup can be found in Fig. S5.† After 12 h, 
the solution was carefully removed, and the silicon wafer was 
washed with acetone to yield mesocrystals (Fig. S6†).

4.3. X-ray experiment

Monochromatic X-rays of 8.7 keV were focused down to ∼2.4 
(H) × 2.0 (V) μm2 at the sample position completely covering 
the mesocrystal grain. An electron microscopy image of the 
sample mounted on the tip is shown in the inset in Fig. 2. The 
polymer tip was fixed on a rotation stage around the vertical 
axis. At each angular position, the 2D far-field diffraction 
pattern was recorded by the EIGER X 4M detector positioned 
4.95 m downstream from the sample. The sample was rotated 
by steps of 0.5° over a range of 180° and, by that, the full 3D 
diffraction pattern was measured. At each angular position, a 
series of 10 frames of 0.2 s exposure each were measured, 
corresponding to 2 s accumulated exposure to the non-attenu-
ated X-ray beam, giving in total 18 min of measurements per 
sample. The sample was cooled using a liquid nitrogen cryo-
stat, in order to avoid radiation damage of the organic ligands 
stabilizing NCs which could induce the NCs coalescence and 
destroy the superlattice ordering.

4.4. Iterative phasing

Phase retrieval was carried out on the interpolated diffracted 
intensity data using PyNX package,54 imposing at each iter-
ation that the calculated Fourier intensity of the current object 
agrees with the measured 3D data. The metric used to estimate 
the goodness of the fit during phasing was the free log-likeli-
hood,55 available in PyNX. Defective pixels for experimental 
data and gaps in the detector were not used for imposing the 
reciprocal space constraint mentioned above and thus were 
evolving freely during phasing.

The initial support was estimated from the autocorrelation 
function of the 3D diffraction intensity that included only the 
first superlattice Bragg peaks. For larger reciprocal space this
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support was correspondingly rescaled. While the iterative
phase retrieval this support was evolved by application of the
“shrink-wrap algorithm”.56 A series of 3600 relaxed averaged
alternating reflections57 plus 200 Error-Reduction40 (ER) steps,
including “shrink-wrap” algorithm56 every 20 iterations were
used. The phasing process included implementation of the
Lucy–Richardson deconvolution that takes into account partial
coherence effects.58 The resulting point spread function is
shown in Fig. S7a–c of ESI.† To ensure the best reconstruction
possible, we kept only the best 10 reconstructions from 1000
with random phase start and performed the mode decompo-
sition.55 The weight of the most prominent mode which was
considered as a final result was 69%.
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ABSTRACT: Nanoparticle assemblies with long-range packing
order and preferred crystallographic orientation of building blocks,
i.e., mesocrystals, are of high interest not only because of their
unique physical properties but also due to their complex structure
and morphogenesis. In this study, faceted mesocrystals have been
assembled from the dispersion of truncated cubic-shaped iron
oxide nanoparticles stabilized by oleic acid (OA) molecules using
the nonsolvent “gas phase diffusion technique” into an organic
solvent. The effects of synthesis conditions as well as of the
nanoparticle size and shape on the structure and morphogenesis of
mesocrystals were examined. The interactions of OA-capped iron
oxide nanoparticles with solvent molecules were probed by
analytical ultracentrifugation and double difference pair distribu-
tion function analysis. It was shown that the structure of the organic shell significantly depends on the nature and polarity of solvent
molecules. For the nonpolar solvents, the interaction of the aliphatic chains of OA molecules with the solvent molecules is favorable
and the chains extend into the solvent. The solvation shell around the nanoparticles is more extended in nonpolar and more compact
in polar solvents. There is a clear trend for more spherical particles to be assembled into the fcc superlattice, whereas less truncated
cubes form rhombohedral and tetragonal structures. The observed changes in packing symmetry are reminiscent of structural
polymorphism known for “classical” (atomic and molecular) crystals.

■ INTRODUCTION

The synthesis of nanocrystals and their self-assembly into
superstructures is of major importance in current materials
science1−3 because nanocrystals frequently show exceptional
size-dependent properties in comparison to their bulk
material.4−6 The nanoparticle assemblies not only maintain
some of these size-dependent properties but can additionally
benefit from collective properties resulting from the interaction
of nanoparticles.7−12

Ordered assemblies of nanocrystals have been termed
differently in the scientific literature over time, ranging from
colloidal crystals, mosaic crystals, supracrystals, supercrystals,
and superlattices (SL) to mesocrystals.13−18 The latter term is
now commonly accepted and used for the assemblies in which
orientational (crystallographic) ordering of the crystalline
building blocks takes place.19−21 Hence, in the most strict
sense, mesocrystals (so-called type I) are a special class of
colloidal crystals combining a long-range order of particle

packing and their preferable crystallographic orientation (i.e.,
atomic scale ordering).
In the past few years, many research groups have reported

on assembly techniques of micrometer-sized mesocrystals of
platinum, magnetite, lead sulfide, and silver, among other
materials.8,22−30 They have shown remarkable structures of
mesocrystals, which are perfectly regular and feature well-
defined facets, like “classical” crystals. Commonly, nanocrystals
are assembled into mesocrystals either via “drying mediated
assembly methods” or via the “gas phase diffusion
technique”.8,17,26,28,29 Often, the structure of these assemblies
is characterized incompletely, with the main emphasis on the
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study of explicit properties or specific applications of
mesocrystals.10,12,31,32 Nevertheless, investigations with a
combination of small- and wide-angle X-ray scattering
techniques (SAXS and WAXS) as well as advanced microscopy
techniques allow a full structural analysis of self-assembled
superstructures based on nanoparticles of different composi-
tions and shapes.8,18,23,25,27,29,30 The recently developed
angular X-ray cross-correlation analysis (AXCCA) method
allows the determination of the superlattice distortion and
relative orientation of nanoparticles in mesocrystals with high
precision.33−37 Similarly, great effort is put on how these
crystals nucleate and grow and how the kinetics influence the
nonclassical crystallization of mesocrystals.16,29,38−43 Further-
more, there are many interesting results on how growth
conditions can impact the final structure of mesocrystalline
films.44−49 Accordingly, different superlattice structures can be
obtained by solvent evaporation from dispersions with
different dispersion agents as well as from nanoparticles
stabilized by different ligands.3,24 However, an understanding
of the morphogenesis of macroscopic mesocrystals is still
essentially lacking. Specifically, the exact parameters which
influence the crystal structure and morphology, including
packing arrangement and orientational order, remain largely
unexplored. Nevertheless, much progress in the influence of
medium properties on nanoparticle assembly processes was
made by real time tracking of these processes using small-angle
X-ray scattering (SAXS).29 It was shown that the assembly
process of iron oxide nanoparticles is significantly affected by
the evaporation-driven increase of the solvent polarity, particle
concentration, and excess of surfactant.29 Furthermore,
theoretical considerations for nanocrystals with anisotropic
shapes predict the formation of liquid-crystalline and plastic-
crystalline phases with orientational and translational order,
respectively.50 For superparamagnetic iron oxide nanocrystals,
within the size range from 5 to 15 nm the magnitude of the
magnetic dispersion interactions at zero-field was shown to be
negligible in comparison to van der Waals forces between the
nanoparticles.51

In recent years, our work focused on the preparation and
structural characterization of self-assembled mesocrys-
tals8,13,52−54 prepared from highly monodisperse truncated
nanocubes of iron oxide (composed of magnetite with some
inclusion of maghemite (up to ∼20%)).13 Using TEM and
SAXS we analyzed the structure of self-assembled mesocrystal-
line films (formed from toluene dispersion by the drying
mediated technique) and showed that the orientational order
of nanocrystals within an fcc superlattice is in line with the so-
called “bump-to-hollow” packing principle13 known for
molecular crystals (which aims to achieve the most efficient
space filling).55 We also performed the optimization of
crystallization conditions in the gas phase diffusion technique
and showed that the appropriate choices of substrate,
dispersion, destabilizing agents, concentration of additive
(acting as stabilizer and depletion agent), and nanocrystals
(the size and shape distribution could be narrowed by multiple
recrystallization56) allow faceted mesocrystals to grow with
sizes from a few micrometers up to the millimeter range.57

Furthermore, we confirmed that the external magnetic field
could significantly affect the assembly process and change the
morphology of aggregates and orientational order of nano-
particles.52

This paper aims to provide a systematic study of
morphogenetic aspects of mesocrystals and represents an

important step forward compared to our previous
study.13,52,53,56,57 Herein, we took advantage of the iron
oxide nanocrystals stabilized by oleic acid (OA) as building
blocks to create mesocrystalline films and large-scale faceted
mesocrystals using “solvent evaporation” and “gas-phase
diffusion” techniques, respectively. All experiments on nano-
particle assemblies were carried out without external magnetic
field (i.e., in zero-field/the Earth magnetic field is not
considered as external). First, herein we study the effect of
nanoparticle variables (including size, faceting, habit) on the
crystallization process and structuring of mesocrystals. Second,
we show that the assembly process can be further influenced
by the nature of solvent (tetrahydrofuran, toluene, cyclo-
hexane, and heptane), nonsolvent, and excess of surfactant. For
the first time, the formation of the solvation shell around oleic
acid capped iron oxide nanoparticles was probed by advanced
analytical techniques directly in dispersion, namely, analytical
ultracentrifugation (AUC) and double difference pair dis-
tribution function (dd-PDF). The solvation shell formed in
solvents with different polarities significantly influences the
morphogenesis and final structure of the mesocrystals, which is
also confirmed by XRD study in combination with AXCCA. A
detailed structural characterization of faceted mesocrystals (in
terms of packing arrangement and orientational order of
nanoparticles) will be discussed in a follow-up article. Finally,
we show that mesocrystals exhibit several similarities to
“classical” crystals in terms of structural and morphogenetic
aspects. The latter also include polymorphism of mesocrystals
due to different growth conditions.

■ RESULTS AND DISCUSSION

The nanocrystals have been synthesized as described by Disch
et al.22 Six different nanocrystal batches (batches I−VI) are
characterized by different particle sizes and degrees of
truncation of cubic nanocrystals (Table S1, Figures S1−S7).
In addition to HRTEM images, the relative degree of
truncation could be estimated by the ratio between “equivalent
edge length of cube” and “minFeret” size (Figures S2−S7).
The more this value deviates from 1, the higher is the degree of
truncation of the cubic particles: batch I, 0.932, SD = 0.026;
batch II, 0.948, SD = 0.022; batch III, 0.938, SD = 0.021; and
batch IV, 0.901, SD = 0.044. These nanocrystals were
assembled into mesocrystals using either an adapted approach
of the “gas phase diffusion technique” (to form faceted 3D
mesocrystals) or evaporation induced self-assembly (to form
mesocrystalline 2D/3D films).13,52,56,58 The shapes of the
particles from batches V and VI are best described as quasi-
spherical, and they thus assembled into colloidal crystals
without preferred crystallographic orientation of nanoparticles.
Experimental setups of different techniques are presented in
Figure 1. In the case of the gas phase diffusion technique
(Figure 1a), the destabilizing diffusion phase infiltrates the
nanoparticle dispersion via the gas phase. The destabilizing
diffusion phase (so-called nonsolvent or poor solvent) consists
of a mixture of ethanol and solvent (1:1), while tetrahydrofur-
an (THF), toluene, cyclohexane, and heptane were used as
solvents, respectively. The mesocrystals are grown on a single-
crystalline silicon substrate by destabilization of a nanoparticle
dispersion containing an excess of surfactant. In the case of the
solvent evaporation technique (Figure 1b), mesocrystals were
grown directly on a TEM grid by evaporation of the dispersion
agent from the nanocrystal dispersion.
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By means of electron microscopy (imaging and electron
diffraction) and X-ray diffraction (SAXS and WAXS), it was
proved that ordered nanoparticle assemblies from batches I−
IV could be classified as mesocrystals type I (Supporting
Information, Section S2).
Effect of Nanoparticle Shape on the Mesocrystal

Morphology. Mesocrystals formed under the same medium
conditions but from different nanocrystal batches (batches I−
IV) reveal that the habit (i.e., degree of the cube truncation) of
the individual building blocks significantly influences the
packing symmetry of nanoparticles and mesocrystal morphol-
ogy. The effect of nanoparticle size (within the investigated
range) is less pronounced and mainly depends on the ratio
between inorganic core radius and thickness of the organic
shell. Figure 2 illustrates faceted mesocrystals prepared by the
“gas phase diffusion technique” from a toluene dispersion of
magnetite nanocrystals using oleic acid as the surfactant and
ethanol as the nonsolvent agent. The building blocks of the
mesocrystals from all prepared nanocrystal batches were
analyzed using Cs-corrected HRTEM and analytical ultra-
centrifugation (Table S1 and Figures 2 , 3, and S1−S3). All
nanoparticle batches show narrow size distributions, with
nanocrystals from batch IV being significantly bigger on
average than in other batches. While the truncated nanocubes
from batches I−IV have an uniform crystal faceting, they differ
in their crystal habit. For example, nanocrystals from batch II
show the lowest degree of truncation and those from batches I
and IV the highest. The shape of the particles from batches V
and VI is best described as “quasi-spherical”. Detailed results of
TEM investigations of mesocrystalline films prepared from
nanocrystals of all six batches by means of the solvent
evaporation technique are shown in Figure S5. In case of 3D
faceted mesocrystals (batches I−IV) prepared by the “gas
phase diffusion technique”, the morphology and the symmetry
of the superlattice (i.e., translational order of nanoparticles)
clearly changes when changing the crystal habit of the
nanocrystals (Figure 2b,e,h,k). Starting with the smallest and
highly truncated nanocubes,13 these building blocks lead to
octahedral mesocrystals consistent with the fcc superlattice
(Figure 2a−c). The octahedral (111) face shows the p6mm
symmetry of nanoparticles packing within the surface layer.
Nanocrystal batch II presents the least truncated building

blocks, their sizes being slightly bigger than those of the
nanocrystals of batch I (Figure S3). Under the given
conditions, these slightly truncated nanocrystals form meso-
crystals with a morphology of tetragonal prisms (Figure 2d−f,
bct superlattice). The surface layer of the (001) basal face
shows a square arrangement with p4mm symmetry. The
truncation of nanocrystal batch III (Figure S4) is in between
those of nanocrystal batches I and II. These nanocrystals self-
assemble to mesocrystals with a rhombohedral morphology
(Figure 2h). The symmetry of the surface layer of the basal
rhombohedral face is c2mm (Figure 2i, FFT). Nanocrystal
batch IV at the same time contains the biggest and the most
highly trucated cubic building blocks (Figure S5). The
morphology of the mesocrystals resulting from these nano-
crystals can be described as tetragonal truncated pyramids
(Figure 2j). The SEM images of the surface layers of these self-
assembled magnetite mesocrystals exhibit the p4mm symmetry.
Remarkably, this data (Figure 2) reveals that the

morphology of mesocrystals and the related packing symmetry
of the nanoparticles (e.g., translational order of nanoparticles
within the mesocrystals) changes drastically with an increasing
degree of truncation of the cubic building blocks. In the case of
self-assembly from toluene dispersionupon the increase of
nanocubes truncation (for particles with similar size)the
symmetry of the superlattice changes from rhombohedral and

Figure 1. Schematic illustration of experimental setup. (a)
Mesocrystal formation by the gas phase diffusion: a glass tube with
nanoparticle dispersion (1) with a vertically positioned silicon snippet
(2) stored in a glass vial containing the destabilizing diffusion phase
(3). The large overall glass vial is sealed. (b) Mesocrystal formation by
solvent evaporation: a substrate (2, TEM grid) is placed within the
nanocrystal dispersion (1). The dispersion agent then evaporates (3).

Figure 2. Illustration of mesocrystals crystallized from the toluene
dispersion of different nanoparticle batches (I−IV). (a, d, g, j) Cs-
corrected HRTEM images (insets, scale bars = 5 nm) of the four
nanoparticle batches together with models along [114]. (b, e, h, k)
Mesocrystals crystallized under similar conditions in toluene and OA
as surfactant. Different morphologies are visualized: (b) An octahedral
mesocrystal ( fcc superlattice; insets, scale bar = 500 nm). (e) A
tetragonal prism (bct superlattice; inset scale bar = 5 μm). (h) A
rhombohedral mesocrystal (inset, scale bar = 10 μm). (k) A truncated
tetragonal pyramid (bct superlattice; inset, scale bar = 10 μm). (c, f, i,
l) HRSEM images and corresponding FFT of the projected
mesocrystals faces showing the packing of the nanocubes. (c) For
mesocrystals of batch I, a {111} face exhibing the p6mm plane
symmetry, (i) the rhombohedral mesocrystals exhibit on its (001)
face a c2mm planar symmetry, and (f, k) that obtained from batches II
and IV have a p4mm planar symmetry on its (001) basal face.
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bct eventually to fcc. The orientational order of the nanocryst-
als within the mesocrystalline arrays, however, is similar
throughout nanocrystal batches I−IV (at least for mesocrystal-
line films), due to the same faceting of the nanocrystals (Figure
S10).
Effect of Dispersion Agent on the Morphology of 3D

Colloidal Crystals. Further investigations of nanocrystal
batches II−VI show that the morphology of assemblies
(namely, mesocrystals for batches II−IV) and translational
order of nanoparticles are also significantly affected by the
nature of the dispersion agent. SEM and light microscope
(LM) images nicely illustrate different morphologies of the
aggregates (Figure 3 and Figures S11−S13) crystallized from
different media. The self-assembly of the nanoparticles from
polar solvents such as THF and toluene (for our purposes
solvent polarity is characterized by its dielectric constant and
compared to oleic acid, Table S2) can lead to a variety of
different morphologies, such as tetragonal prisms (batch II),
rhombohedra (batch III), tetragonal truncated pyramids
(batch IV), and trigonal truncated pyramids (i.e., could be
described as octahedra sliced parallel to (111) basal plane) and
octahedra (Figure 3 A1, A2, B1, B2, C1, C2, D1, D2, E1, E2).
In addition to these representative “single-like” crystal
morphologies, we also observed nearly in all experiments
multiply twinned and defective crystals.

The symmetry of the surface layer of the (001) basal face of
the mesocrystals from nanocrystal batches II and IV is p4mm,
while the symmetry of the (001) face for the rhombohedral
mesocrystal of nanocrystal batch III is c2mm and those for the
octahedral faces of batches V and VI are p6mm (Figure S11d−
i, S12g−l, S13g−l). In contrast, the morphology of the
colloidal crystals is always a trigonal truncated pyramid (with
fcc symmetry of the superlattice), when the nanocrystals are
aggregating from nonpolar dispersion agents such as cyclo-
hexane and heptane (Figure 3 A3, B3, B4, C3, C4, D3, E3). All
these mesocrystals show p6mm plane symmetry of the (111)
basal face (Figures S11a−c, S12a−f, and S13a−f). Further-
more, the assembly process of the nanocrystals from nonpolar
solvents is slower than for polar solvents.57 As an example, with
THF as the dispersion agent, the complete self-assembly
process occurred within 4 days, but it took 8 days in the case of
toluene (keeping all other conditions the same; see the
Experimental Section). The complete crystallization time from
cyclohexane and heptane solutions may even take up to a
month or more. The difference of the morphology and the
symmetry of the superlattice (e.g., polymorphism) cannot be
exclusively explained by modified kinetics of the self-assembly
process. Rather, we need to take into account the specific
interaction of iron oxide nanocrystals stabilized by oleic acid
molecules with the surrounding medium to explain the
observed phenomena.59 Similar observations (of solvent

Figure 3. Mesocrystals prepared from nanocrystals dispersed in different solvents (batches II, III, IV, V, VI). Illustration of the changes of
morphology of the mesocrystals by changing the solvent (from polar to nonpolar solvents). HRTEM images along [100] of the three nanocrystal
batches and its approximated model (along [114]) are given (nanoparticles from batches V and VI show quasi-spherical morphology). The size of
the building blocks is presented in Table S1. (A1 and A2) Batch II shows mesocrystals with a morphology of a tetragonal prisms when crystallized
from toluene and THF. (A3) The morphology changes to truncated trigonal pyramids when crystallized from cyclohexane. (B1 and B2) Dispersed
nanocrystals of batch III in THF and toluene lead to rhombohedral morphologies. (B3 and B4) When crystallized from cyclohexane and heptane,
the morphology changes to trigonal truncated pyramids. (C1 and C2) Mesocrystals from nanocrystal batch IV show tetragonal truncated pyramids
when crystallized from THF and toluene. (C3 and C4) Trigonal truncated pyramids appear from nanocrystal batch IV when crystallized from
cyclohexane and heptane. (D1−E3) Batches V and VI show mesocrystals with a morphology of truncated trigonal pyramids and octahedra
crystallized from THF, toluene, and cyclohexane.
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impact onto the mesocrystal shapes and structures) were also
reported for several other nanoparticle self-assemblies.29,45,60

Furthermore, molecular crystals can also be prepared with
different morphologies and crystal structures (i.e., polymorphs)
by crystallization from different solvents.58 It was suggested
that the polarity and related the dielectric constant of the
solvents are crucial for this behavior of molecular and colloidal
crystals.29 We suggest that the different morphologies of self-
assembled magnetite mesocrystals obtained from different
dispersion agents can be correlated to the polarity of the
dispersion agents and to the nature of the surfactant stabilizing
the nanoparticle (i.e., the organic shell) (Table S2). Here, the
interaction between the dispersion agent and the organic shell
of the nanocrystals seems to be the most important parameter

influencing the final morphology of the mesocrystals and the
symmetry of the superlattice (while we used an excess of
surfactant, which is also crucial for the successful formation of
the mesocrystals13,29). Cyclohexane and heptane have a
significantly lower dielectric constant than toluene and THF.
In the case of mesocrystals from batches I−IV with
morphologies of tetragonal prisms, rhombohedra, and
tetragonal truncated pyramids, the dielectric constant of the
solvents is similar to or higher than that of oleic acid and the
crystallization time is faster. While for the same batches, the
mesocrystals with a shape of a trigonal truncated pyramid
crystallize from the less polar solvents (e.g., cyclohexane and
heptane). Based on this observation, we can also suggest that
the effective shape of the nanoparticles is significantly affected

Figure 4. Superlattice structure revealed by AXCCA. (a, b) Angular averaged radial profiles of the scattered intensity from the samples assembled
from THF (a) and heptane (b). The dashed vertical lines show the peak positions for the structure with optimized unit cell parameters. (c, d)
Cross-correlation functions C(q1, q2, Δ) calculated for the intensities taken at the momentum transfer q1 corresponding to the 101 Bragg peaks and
q2 corresponding to all peaks shown in panels (a) and (b), respectively. The graphs are offset for clarity. The black vertical lines show the peak
position for the structure with optimized unit cell parameters. (e, f) Models of mesocrystals grown from THF and heptane dispersion, illustrating
the geometry of the Voronoi polyhedra and interparticle distance. Thin lines outline the bct unit cells.
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by the interaction of stabilizing molecules (oleic acid) with the
surrounding dispersion agent. It can be hypothesized that in
nonpolar solvents the solvation shell changes the effective
shape of the nanocrystals toward the spherical shape by
smoothing off the edges and vertices of the truncated
nanocubes. This smoothing significantly affects the assembly
process and the symmetry of the resulting superlattices. These
observations are also consistent with the fact that, under the
investigated conditions, the colloidal crystals formed from
batches V and VI always have the fcc structure and the
morphology of trigonal truncated pyramids and/or octahedra
independent from the dispersion agent.
Effect of Dispersion Agent on the Symmetry of the

Superlattice and Interparticle Distance in Mesocrystals.
The mesocrystals grown from dispersions of nanoparticles
(batch IV) in heptane and THF were studied by XRD.
Intensity distributions in 3D reciprocal space were collected
from single grain samples (Figure S14) that allowed the unit
cell parameters to be determined not only from the standard
radial profile refinement but also from the more precise
AXCCA (for details, see Experimental Section and Supporting

Information, Section S5). Both samples could be refined to
have bct superlattice (Figure 4). The unit cell parameters are a
= 15.2 ± 0.1 nm and c = 23.4 ± 0.3 nm for the sample grown
from THF and a = 16.0 ± 0.2 nm and c = 23.5 ± 0.6 nm for
the sample grown from heptane (Figure 4a−d). The
uncertainties refer to the determination of diffraction maxima;
therefore, more realistic error estimation could be gained from
the broadness of peak profiles (Figure 4a,b) and corresponds
to approximately 0.4 and 1 nm (for a and c) for the THF
sample and 1.2 and 2 nm (for a and c) for the heptane one.
Thus, the former sample has clearly tetragonal symmetry (c/a
= 1.54), while the latter (c/a = 1.47) can be characterized as
slightly distorted fcc structure (cf. c/a = √2 ≈ 1.41). The
difference becomes even better visible from the metric in the
unit cell parameter space (see Figure S18) and the geometry of
the Voronoi polyhedra61 (Figure 4e,f). Interestingly, the
comparison of lattice parameters of both mesocrystals shows
that parameter a is higher for the heptane sample, while c stays
nearly the same. This observation might give an impression of
anisotropic expansion, if one would consider the same growth
scenario of both mesocrystals. However, the SEM images

Figure 5. Comparison of solvation shell formed around iron oxide nanocrystals stabilized by oleic acid (Batch VI) in THF (a) and cyclohexane (b)
solutions. (Right insets) Schematic illustration of solvation shell around nanoparticles in different solvents and relations between the measured
thickness values obtained by dd-PDF and AUC and oleic acid molecules. Fitting of PDF curves shows that, for THF (a), the exponentially decaying
sine wave describes the data from 1.8 to 20.2 Å (solid line), while beyond a line function suffices (dashed line; no restructuring beyond 20.2 Å); for
cyclohexane (b), the exponentially decaying sine wave extends out to 27.8 Å (solid line). In the insets the side views of the simulated electron
density distributions of THF (a) and, respectively, cyclohexane (b) are depicted in green color. Evaluation of AUC data using 2DSA-MC analysis
shows that, for THF, the calculated thickness of a dense shell (with f/f 0 = 1.0) corresponds to 10.5 Å, while the dynamic one (with f/f 0 > 1.0) is 19
Å (close to the value obtained by dd-PDF); for cyclohexane (b), the calculated thickness of the dense shell (with f/f 0 = 1.0) corresponds to 22.5 Å,
while the dynamic one (with f/f 0 > 1.0) is 24 Å (close to the value obtained by dd-PDF).
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(Figure 3C1, C4) clearly show that the growth scenarios are
indeed different. The layer-by-layer growth of mesocrystals
takes place by stacking square nets ({001} planes in bct
structure) in THF (Figure 3C1) and hexagonal nets ({011}
planes in bct = {111} planes in fcc structure) in heptane
(Figure 3C4). Thus, Figure 4e,f shows that heptane molecules
lead to an isotropic increase of interparticle distances by ca.
0.8−1.5 nm. Taking into account the size of cubic nano-
particles (“MinFeret” = 14.4 nm, SD = 0.7 nm), the thickness
of the organic stabilizer between the particles extends from ca.
0.8 nm in THF to ca. 1.6 nm in heptane. Furthermore, XRD
data indicate higher disorder in mesocrystals grown in heptane,
by giving broader Bragg peaks in reciprocal space.
Effect of Dispersion Agent on Nanoparticle Solvation

Shells. To investigate the interactions of nanoparticles with
solvent molecules directly in liquid dispersion, we employed
advanced double difference pair distribution function (dd-
PDF) analysis of X-ray total scattering data and analytical
ultracentrifugation (AUC). The dd-PDF analysis of nano-
particle dispersions allows the restructuring of solvent
molecules to be detected at the nanoparticle interface within
the solvation shell.62 Due to broken symmetry and additional
interactions with the nanoparticle surface, solvent molecules
reorganize at interfaces. With increasing distance from the
nanoparticles’ surface, the bulk order is regained and the
solvation shell signal vanishes. To study the solvation shells
around iron oxide nanoparticles capped by oleic acid
molecules, high energy X-ray scattering data was collected
for nanocube dispersions, as well as for the bulk dispersion
media and dried nanopowders as backgrounds. For this dd-
PDF analysis, we investigated batches V and VI in cyclohexane
and in THF, with and without excess of oleic acid (3 μL/mL).
The PDF is obtained by Fourier transformation of the total
scattering data after background correction and normalization.
In general, the PDF is a histogram of all interatomic distances
within a sample. In the case of bulk solvents, both
intramolecular distances and intermolecular distance correla-
tions can be detected. The solvation shell signals in the dd-
PDFs herein were extracted according to Thoma ̈ et al.63 Upon
subtraction of the signal from the bulk solvent (pure THF or
cyclohexane), all intramolecular distances of the solvent
molecules get subtracted as the solvent molecules in the
solvation shell do not dissociate or change compared to the
bulk. However, their intermolecular arrangement changes, and
thus, the medium-range molecular arrangement is affected,
which becomes detectable as an electronic density oscillation
in the PDF over ca. 30 Å (Figure S20). For all samples, the
extracted solvation shell signal contains broad oscillations. The
collected signals for THF and cyclohexane were distinctly
different. The size of the nanoparticles and the addition of
extra oleic acid (in the concentration 3 μL/mL used for the
self-assembly process) did not strongly affect the signal from
the solvation shells (Figure S21). The derived solvation shell
signals for THF and cyclohexane around nanoparticles from
batch VI were exemplarily modeled with exponentially
decaying sine waves according to Zobel et al.62 and Thoma ̈
et al.63 (Figure 5a,b). At the distance where the visible
oscillation was decayed, a linear function was chosen for
modeling (for more detailed information, see Figure S22).
From the sinusoidal fit, we can readily obtain the extent of the
restructuring and the overall number of restructured solvent
layers (i.e., number of fitted oscillations) as well as the layer
spacing (i.e., wavelength of the fitted oscillation). For the

solvation shell formed around nanoparticles in THF, four
restructured solvent layers were identified, while it is five layers
in cyclohexane. Hence, in cyclohexane, one layer more is
affected than in THF. Further, layer spacings of 4.4 and 5.0 Å
were obtained for THF and cyclohexane, respectively. These
values are in good agreement with the linear sizes of THF and
cyclohexane molecules estimated from van der Waals radii,
which correlate well with electron density distributions, as
known from literature (see insets Figure 5a,b).64 Moreover, it
can be stated that the extent of restructuring (solvation shell
signal before decay) around the investigated iron oxide
nanoparticles found with PDF analysis is ca. 8 Å larger for
cyclohexane than for THF. Thus, the solvation shell formed
around the nanoparticles in cyclohexane could significantly
modify the effective shape of the cubic nanoparticles toward
the sphere (Figure 5b).
In order to correlate these data with other physicochemical

parameters of nanoparticles in different solvents including the
effective size, density, and sedimentation behavior, AUC
analysis was used. Figures S23 and S24 show the particle
size distributions in different solvents as obtained with two
different evaluation algorithms. While g(s) yields a distribu-
tion, which is not corrected for the diffusion broadening of the
sedimenting boundary, the 2 DSA-MC method corrects for
this broadening so that individual components in the
distribution can be seen and the distribution for each
component is much narrower (Figures S23 and S24, left
column). In addition, 2 DSA-MC allows for plotting the
distribution of the frictional coefficients f/f 0 versus the
sedimentation coefficient distribution, while the PCSA-MC
method can calculate the partial specific volume of each species
in the sedimentation coefficient distribution (Figures S23 and
S24, middle and right columns). It is obvious that several
populations of nanoparticles exist for most of the samples, but
the differences between the most abundant species are small.
The hydrodynamic diameter can then be calculated using the

particle density (inverse vbar) using the formula =
η

ρ ρ−
dH

s18 f
f

p s

0

(where dH is the hydrodynamic nanoparticle diameter, s is
sedimentation coefficient, η is the solvent viscosity, and ρp and
ρs are particle and solvent densities, f/f 0 the frictional
coefficient respectively). These values are collected in Table
S3. With the known diameter of the inorganic core of the
nanoparticles obtained from TEM images, the thickness of the
solvated organic shell can be calculated. It can be seen that
significant differences exist for different solvents. In THF, the
shell thickness is always the smallest, while it is largest for
cyclohexane. There are differences between g(s) and 2 DSA-
MC, but the general trend is independent of the AUC
evaluation method. If compared to the persistence length of an
oleic acid molecule (18.9 Å), the oleic acid molecules could
fold backward because the interaction of the nonpolar chains
with themselves is favored over the interaction with the solvent
THF, and they do not have extended solvation shells
(evidenced by the PDF analysis). Nevertheless, the molecules
still provide steric stabilization. For the nonpolar solvent
toluene and to a higher extent cyclohexane, the interaction of
the nonpolar chains of oleic acid molecules with the nonpolar
solvent is favorable and the chains significantly extend into the
solvent. This value varies a bit depending on the batch, but in
general the stabilization shell extension in cyclohexane ranges
from 17 Å up to 23.5 Å and is close to the values obtained
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from dd-PDF analysis. These values further agree well with the
persistence length of a stretched oleic acid molecule in an
extended solvation shell.
We can now obtain further information looking at the

frictional ratios f/f 0 (Table S3). From TEM data, it is known
that nanoparticles from both batches V and VI are spherical
and therefore have a Perrin friction factor P = 1. It is obvious
that for particle populations with f/f 0 = 1 we can speak of a
dense stabilization shell. But there are cases in each sample
where f/f 0 can be higher as 1, which indicates a significant
amount of “mobile” solvent molecules associated with the
particle shell. These are also the cases where a high thickness of
the organic shell is observed compared to populations with f/f 0
= 1. We can, therefore, treat the solvation shell as dynamic in
such a case where the oleic molecules extend into the solvent
and also have a significant amount of solvent attached to them
due to their favorable interaction. The extension of such a shell
is in good agreement with the values obtained by PDF analysis
(Figure 5a,b). Upon sedimentation of the particle, the solvent
can flow through such a shell, causing increased friction, and
also, the oleic acid molecules have more degrees of freedom for
movement due to their extension into the solution as those
that are folded back on themselves in the dense shell with f/f 0
= 1. With the exception of toluene for batch VI, the majority of
species in the distribution has f/f 0 > 1 for toluene and
cyclohexane, while it is 1 for THF, meaning that the shell is
dynamic in toluene and cyclohexane, while it is dense in THF.
Based on these findings, we can finally verify the previously

proposed hypothesis concerning the effect of solvent on the
effective shape of the nanoparticles and changing the
structuring and morphogenetic processes of colloidal crystals
(incl. mesocrystals). Furthermore, our new findings could be
essential for further development of theories describing the
aggregation behavior of nanoparticles in solution and
potentially could explain the nonadditivity of electrostatic,
van der Waals, and other interactions at the nanoscale (and
deviations from the classical DLVO theory).59

■ CONCLUSIONS
In summary, we successfully applied different crystallization
methods to prepare 3D magnetite mesocrystals (type I) and
analyzed the crystallization conditions in detail. The nanocube
building blocks were self-assembled either by the solvent
evaporation technique or gas phase diffusion technique. We
have systematically investigated the effect of different nano-
particle and media parameters on the self-assembly process,
morphology, and symmetry of the superlattice of crystallizing
mesocrystals. It was shown that the faceting and habit of the
nanocrystals is a crucial parameter affecting the symmetry of
the superlattice and final morphology of the mesocrystals.
However, the translational order of nanocrystals within
mesocrystals may be altered by changing the dispersion
agent (e.g., THF, toluene, cyclohexane, heptane). As an
example, by decreasing the solvent polarity, the shape of the
mesocrystals assembled from slightly truncated cubic magnet-
ite nanocrystals can change from tetragonal prisms and
rhombohedra to trigonal truncated pyramids and octahedra,
reflecting the changes of the superlattice symmetry (tetragonal,
rhombohedral, and cubic, respectively). Such changes of
nanoparticle packing symmetry are reminiscent of poly-
morphism known for “classical” crystals. Furthermore, by
using dd-PDF and AUC analysis of nanoparticle dispersions, it
was shown that extension and density of the solvation shell of

nanoparticles depend on the solvent polarity. For the nonpolar
solvents like cyclohexane, the interaction of the nonpolar
chains of oleic acid molecules with the solvent molecules is
favorable and the chains significantly extend into the solvent.
Furthermore, within the solvation shell around the nano-
particle, the extent of restructuring of solvent molecules is by
ca. 8 Å larger for cyclohexane than for THF, which significantly
modifies the effective shape of the nanoparticles. Thus, in
nonpolar solvents, the thick and dynamic solvation shell
significantly affects the effective shape of the nanoparticles
toward spheres and leads to the formation of colloidal crystals
with an fcc superlattice and the morphology of octahedra and/
or truncated trigonal pyramids. This effect is responsible for
the increase of the interparticle distances in mesocrystals
grown from polar (e.g., THF) vs nonpolar solvents (e.g.,
heptane). These findings are consistent with our previously
proposed phenomenological model,8,21 suggesting that the
type of particle packing depends on the effective softness of
building blocks, which in turn (along with the nature of a
solvent) has impact on the shape of the mesocrystals.
Finally, this fundamental research contributes to the

understanding of the basic principles of morphogenesis of
self-assembled faceted mesocrystals built up from cubic
magnetite nanoparticles with different degrees of truncation.
These basic principles can be readily transferred to other
nanocrystal systems. They will serve as a proxy system for the
optimization of synthesis conditions and synthesis of
mesocrystals with defined structure and morphology.

■ EXPERIMENTAL SECTION
Synthesis of the Nanocubes. The heating-up method was used

for the preparation of the iron oxide nanocubes with different sizes
and degrees of truncation according to the literature.13,65,66

Synthesis of the Mesocrystals: Evaporation Induced Self-
Assembly. The evaporation induced self-assembly was performed
according to the literature.13 A nanocrystal dispersion (5 mg/mL)
containing oleic acid (1 μL/mL) is dried slowly on top of a carbon-
foiled TEM grid.

Synthesis of the Mesocrystals: Gas Phase Diffusion
Technique. In a glass vial containing a silicon snippet (orientation
(100), CrysTec Kristalltechnologie), 400−500 μL of the nanoparticle
dispersion of a given nanoparticle and surfactant (oleic acid)
concentration was injected. A typical experiment is performed with
5 mg/mL nanocrystal concentration and 3 μL/mL surfactant
concentration. This glass vial was put into another glass vial
containing the diffusion phase (1.5−2.5 mL). It was then stored
until the nanoparticles were destabilized. Finally, the silicon snippet
was removed and investigated.

Scanning Electron Microscopy. For the SEM images, a Zeiss
CrossBeam 1540XB was used, reaching a resolution of up to 1.1 nm.
It is equipped with an InLens detector and SE2 detector.

Transmission Electron Microscopy. The TEM images were
recorded using two different microscopes. The Zeiss Libra 120 can
reach a point resolution of 0.34 nm with a 120 kV lanthanum
hexaboride emitter and a Koehler illumination system. The high
resolution TEM imaging of the nanoparticles was performed at 300
kV acceleration voltage using a probe and image aberration corrected
FEI TITAN3 transmission electron microscope. TEM images were
analyzed with DigitalMicrograph Gatan Microscopy Suite 3 software
(Gatan Inc., ver. 3.41.2938.1). To calculate the core diameter of the
nanocrystal batches, TEM images were processed using Fiji software.
The histograms were fitted using a Gaussian function.

Single-Crystal Small-Angle X-ray Scattering. The SAXS
measurements of the selected mesocrystals were performed by
means of a Bruker AXS Nanostar diffractometer using Cu Kα
radiation. The analysis of the SAXS pattern was performed using
JEMS software.
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Single-Crystal Wide-Angle X-ray Diffraction. A single
mesocrystal was mounted on a MicroLoop holder. The XRD images
were collected by use of a Rigaku AFC7 diffractometer equipped with
Mercury CCD Detector (Mo Kα radiation, λ = 0.71073 Å).
Analytical Ultracentrifugation. The AUC measurements were

performed on an Optima XL-A (Beckman Coulter, Palo Alto, CA,
United States) using absorbance optics at 7000 rpm at 20 °C. The 12
mm double sector titanium centerpieces (Nanolytics, Potsdam,
Germany) were used for all experiments. Sedfit (version 16.1c by
Peter Schuck67) was used for performing the g(s) distributions with
the ls-g*(s) model and Tikhonov-Phillips regularization.68 Ultra-
Scan369 (Version 4.0, revision 2783) was used for performing the
two-dimensional spectrum analysis (2DSA),70 Custom Grid (CG),71

and parametrically constrained spectrum analysis (PCSA)71 on the
Jewels Supercomputer. The 2DSA-, CG-, and PCSA-Monte Carlo
(MC) analyses were performed with 50 iterations. The final fitted
densities from PCSA-MC analyses were used for the calculations of
the hydrodynamic diameter (dH) of nanoparticles. In order to evaluate
the sole effect of interaction of oleic acid capped nanoparticles with
solution molecules and the formation of the solvation shell by
excluding the effect of nanocrystal shape anisotropy and faceting
(since a friction coefficient significantly affected by particle shape), the
quasi-spherical nanoparticles of batches V and VI were used. In
another dH order, the real density of magnetite nanoparticles
stabilized by oleic acid was estimated by taking into account that
the oleic acid content was around 20 wt % (based on the results of
chemical analysis).13

X-ray Scattering Experiment on the Single Grains. The X-ray
experiment was performed on the cuboidal grains with all dimensions
of about 1 μm cut from the mesocrystals of batch IV (with the largest
nanoparticles, Figure S5) grown from THF and heptane dispersions
by focused ion beam (see Supporting Information S4 for details). The
scattered intensity in full 3D reciprocal space of the colloidal crystal
grains was measured the same way as described in ref 37. The
experiment was performed at P10 Coherence Applications beamline
at PETRA III storage ring (DESY, Germany). Monochromatic X-rays
of 10.235 keV were focused down to ∼2.5 × 2.0 μm2 at the sample
position completely covering a slightly smaller colloidal crystal grain.
The colloidal crystal grain was fixed on a tungsten tip mounted on a
rotation stage and rotated around the vertical axis. At each angular
position, the 2D far-field diffraction patterns were recorded by the
EIGER X 4 M detector positioned 4.95 m downstream from the
sample. The sample was rotated by steps of 0.33° over a range of 180°
and, by that, the full 3D diffraction pattern was measured. At each
angular position, a series of three frames of 1 s exposure each were
measured, corresponding to 3 s accumulated exposure to the
nonattenuated X-ray beam. The sample was cooled using a liquid
nitrogen cryostat, in order to avoid radiation damage of the organic
ligands (stabilizing nanocrystals) which could induce the coalescence
of nanoparticles and destroy the superlattice ordering.
Angular X-ray Cross-Correlation Analysis. AXCCA was

performed as described in ref 37. Cross-correlation functions were
calculated between the intensities taken at the brightest first peak
momentum transfer (q ≈ 0.5 nm−1) and at other momentum transfers
in the range of q = 0.4−1.3 nm−1 with the step of 0.005 nm−1. The
resulting cross-correlation map was represented in (q, Δ)-coordinates.
The expected peak positions for the selected superlattice model in
these coordinates were calculated, and the cross-correlation intensities
in these positions were calculated by interpolation of the experimental
map. The optimal unit cell parameters of the superlattice were found
by maximization of the total intensities at the expected peak positions
(see Supporting Information for details).
PDF Data Acquisition and Processing. In order to correlate

results of AUC and dd-PDF, particles of batches V and VI were
studied. XRD measurements of dispersions of iron oxide nanocubes
and pure solvents were carried out at 68 keV (0.1823 Å) at the
European Synchrotron Radiation Facility (ESRF) at beamline ID15-A
using a PILATUS3 X CdTe 2 M detector (253.7 × 288.8 mm2

sensitive area, 172 × 172 μm2 pixel size). XRD data of a
corresponding dry iron oxide nanopowder was acquired at beamline

I15-1 (XPDF) at 65.4 keV (0.18957 Å) at Diamond Light Source
equipped with a PerkinElmer detector XRD 4343 CT (432 × 432
mm2 active area, 150 × 150 μm2 pixel size). Each data set at ESRF
was collected for a total of 3 min and at Diamond Light Source for 6
min. Thereby, 20 data collections of 9 s (ESRF) and 12 data
collections of 30 s (Diamond) each were performed and then
averaged. All samples were measured in 1 mm Kapton capillaries.
NIST chromium(III) oxide standards (ESRF) and NIST silicon
standards (Diamond) were used for distance calibration and
instrumental resolution determination. For data processing of ESRF
data, the following software packages were used: for masking Fit2D;
for calibration pyFAI-calib2; and for radial integration xpdtools. For
data from Diamond Light Source calibration, radial integration,
masking, and normalization of the data were done in the DAWN
software package.72 PDF processing was carried out with xPDFsuite73

and fitting in IgorPro by WaveMetrics. All data was treated in the
same way during data analysis. The powder PDF of the iron oxide
nanopowder was scaled to the experimental d-PDFs each with an
individual scale factor y1 in the distance range >20 Å. The iron oxide
nanopowder data was collected on nanoparticles of batch IV, while
the dispersions measured contained nanoparticles of batches V and
VI, as no powder of the latter cubes was available. The difference
between the PDFs of 8−100 and 150 Å cubes, in particular over the
interesting distance range of 30 Å, is negligible as the shape functions
of the cubes are pretty similar in this range. Moreover, the shape
functions are constantly decaying over r, while the solvent
restructuring features a sinusoidal structural fingerprint. Therefore,
for means of this data analysis, where the PDFs are subtracted in real
space, any errors which are of importance to the interpretations drawn
due to the subtraction of the PDF of a slightly offset iron oxide
powder size can be ruled out. According to Thoma ̈ et al.63 the dd-
PDFs of the different dispersions can be compared by mutual scaling
of the powder PDF contribution to the overall PDF. For this, we again
use the scale factor y2 and in this case the intensity of the IONP PDF
peak at 28.52 Å. All samples were scaled to an intensity of 0.3 at this
point, since this value was the average value for all samples. The
description of the solvation layers is based on an exponentially
decaying sine wave according to Thoma ̈ et al.63 The high frequency
ripples visible in the dd-PDFs are high-frequency noise due to the low
concentration of the dispersions and do not contain any structural
signal.
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the Jülich Supercomputing Center (JSC), which was used to
receive the models in ULRASCAN for AUC data. E.V.S.
thanks the Zukunftskolleg at the University of Konstanz and
“Konstanzia Transition” programme of equal opportunity
council for financial support. Last but not least, we thank the
Bio Imaging Center Constance and Stefan Helfrich to help us
to evaluate light microscope images, quantitatively.

■ REFERENCES
(1) Talapin, D. V. Nanocrystal solids: A modular approach to
materials design. MRS Bull. 2012, 37 (1), 63−71.
(2) Talapin, D. V.; Lee, J. S.; Kovalenko, M.; Shevchenko, E.
Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic
Applications. Chem. Rev. 2010, 110, 389−458.
(3) Reichhelm, A.; Haubold, D.; Eychmüller, A. Ligand Versatility in
Supercrystal Formation. Adv. Funct. Mater. 2017, 27 (39), 1700361.
(4) Polarz, S. Shape Matters: Anisotropy of the Morphology of
Inorganic Colloidal Particles − Synthesis and Function. Adv. Funct.
Mater. 2011, 21 (17), 3214−3230.
(5) Talapin, D. V.; Shevchenko, E. V. Introduction: Nanoparticle
Chemistry. Chem. Rev. 2016, 116 (18), 10343−10345.
(6) Trepka, B.; Erler, P.; Selzer, S.; Kollek, T.; Boldt, K.; Fonin, M.;
Nowak, U.; Wolf, D.; Lubk, A.; Polarz, S., Nanomorphology Effects in
Semiconductors with Native Ferromagnetism: Hierarchical Europium
(II) Oxide Tubes Prepared via a Topotactic Nanostructure
Transition. Adv. Mater. 2018, 30 (1).1703612
(7) Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V., Building
devices from colloidal quantum dots. Science 2016, 353
(6302).aac5523
(8) Simon, P.; Rosseeva, E.; Baburin, I. A.; Liebscher, L.; Hickey, S.
G.; Cardoso-Gil, R.; Eychmüller, A.; Kniep, R.; Carrillo-Cabrera, W.
PbS-organic mesocrystals: the relationship between nanocrystal
orientation and superlattice array. Angew. Chem., Int. Ed. 2012, 51
(43), 10776−81.
(9) Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V. The surface
science of nanocrystals. Nat. Mater. 2016, 15 (2), 141−53.
(10) Dreyer, A.; Feld, A.; Kornowski, A.; Yilmaz, E. D.; Noei, H.;
Meyer, A.; Krekeler, T.; Jiao, C.; Stierle, A.; Abetz, V.; Weller, H.;
Schneider, G. A. Organically linked iron oxide nanoparticle super-
crystals with exceptional isotropic mechanical properties. Nat. Mater.
2016, 15 (5), 522−528.
(11) Abécassis, B. Three-Dimensional Self Assembly of Semi-
conducting Colloidal Nanocrystals: From Fundamental Forces to

Chemistry of Materials pubs.acs.org/cm Article

https://doi.org/10.1021/acs.chemmater.1c01941
Chem. Mater. 2021, 33, 9119−9130

9128



Collective Optical Properties. ChemPhysChem 2016, 17 (5), 618−
631.
(12) Boles, M. A.; Engel, M.; Talapin, D. V. Self-Assembly of
Colloidal Nanocrystals: From Intricate Structures to Functional
Materials. Chem. Rev. 2016, 116 (18), 11220−11289.
(13) Brunner, J.; Baburin, I. A.; Sturm, S.; Kvashnina, K.; Rossberg,
A.; Pietsch, T.; Andreev, S.; Sturm née Rosseeva, E.; Cölfen, H. Self-
Assembled Magnetite Mesocrystalline Films: Toward Structural
Evolution from 2D to 3D Superlattices. Adv. Mater. Interfaces 2017,
4 (1), 1600431.
(14) Quan, Z. W.; Fang, J. Y. Superlattices with non-spherical
building blocks. Nano Today 2010, 5 (5), 390−411.
(15) Imai, H.; Tochimoto, N.; Nishino, Y.; Takezawa, Y.; Oaki, Y.
Oriented Nanocrystal Mosaic in Monodispersed CaCO3Micro-
spheres with Functional Organic Molecules. Cryst. Growth Des.
2012, 12 (2), 876−882.
(16) Haubold, D.; Reichhelm, A.; Weiz, A.; Borchardt, L.; Ziegler,
C.; Bahrig, L.; Kaskel, S.; Ruck, M.; Eychmüller, A. The Formation
and Morphology of Nanoparticle Supracrystals. Adv. Funct. Mater.
2016, 26 (27), 4890−4895.
(17) Bergström, L.; Sturm née Rosseeva, E. V.; Salazar-Alvarez, G.;
Cölfen, H. Mesocrystals in Biominerals and Colloidal Arrays. Acc.
Chem. Res. 2015, 48 (5), 1391−402.
(18) Zhang, J.; Zhu, J.; Li, R.; Fang, J.; Wang, Z. Entropy-Driven
Pt3Co Nanocube Assembles and Thermally Mediated Electrical
Conductivity with Anisotropic Variation of the Rhombohedral
Superlattice. Nano Lett. 2017, 17 (1), 362−367.
(19) Cölfen, H.; Antonietti, M. Mesocrystals and Nonclassical
Crystallization. John Wiley & Sons: Chichester, 2008.
(20) De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.;
Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J. D.;
Navrotsky, A.; Banfield, J. F.; Wallace, A. F.; Michel, F. M.; Meldrum,
F. C.; Cölfen, H.; Dove, P. M. Crystallization by particle attachment
in synthetic, biogenic, and geologic environments. Science 2015, 349
(6247), aaa6760.
(21) Sturm née Rosseeva, E. V.; Cölfen, H. Mesocrystals: structural
and morphogenetic aspects. Chem. Soc. Rev. 2016, 45 (21), 5821−
5833.
(22) Disch, S.; Wetterskog, E.; Hermann, R. P.; Salazar-Alvarez, G.;
Busch, P.; Bruckel, T.; Bergström, L.; Kamali, S. Shape induced
symmetry in self-assembled mesocrystals of iron oxide nanocubes.
Nano Lett. 2011, 11 (4), 1651−6.
(23) Li, R.; Bian, K.; Wang, Y.; Xu, H.; Hollingsworth, J. A.;
Hanrath, T.; Fang, J.; Wang, Z. An Obtuse Rhombohedral
Superlattice Assembled by Pt Nanocubes. Nano Lett. 2015, 15 (9),
6254−60.
(24) Wei, J.; Schaeffer, N.; Pileni, M.-P. Solvent-Mediated
Crystallization of Nanocrystal 3D Assemblies of Silver Nanocrystals:
Unexpected Superlattice Ripening. Chem. Mater. 2016, 28 (1), 293−
302.
(25) Bian, K.; Li, R.; Fan, H. Controlled Self-Assembly and Tuning
of Large PbS Nanoparticle Supercrystals. Chem. Mater. 2018, 30 (19),
6788−6793.
(26) Hanske, C.; Hill, E. H.; Vila-Liarte, D.; González-Rubio, G.;
Matricardi, C.; Mihi, A.; Liz-Marzán, L. M. Solvent-Assisted Self-
Assembly of Gold Nanorods into Hierarchically Organized Plasmonic
Mesostructures. ACS Appl. Mater. Interfaces 2019, 11 (12), 11763−
11771.
(27) Huang, X.; Wang, Z. Supercrystallography-Based Decoding of
Structure and Driving Force of Nanocrystal Assembly. Materials 2019,
12 (22), 3771−3771.
(28) Imai, H.; Matsumoto, R.; Takasaki, M.; Tsukiyama, K.; Sawano,
K.; Nakagawa, Y. Evaporation-driven manipulation of nanoscale
brickwork structures for the design of 1D, 2D, and 3D microarrays of
rectangular building blocks. CrystEngComm 2019, 21 (45), 6905−
6914.
(29) Lv, Z.-P.; Kapuscinski, M.; Bergström, L. Tunable assembly of
truncated nanocubes by evaporation-driven poor-solvent enrichment.
Nat. Commun. 2019, 10 (1), 4228.

(30) Zhu, H.; Fan, Z.; Yu, L.; Wilson, M. A.; Nagaoka, Y.; Eggert,
D.; Cao, C.; Liu, Y.; Wei, Z.; Wang, X.; He, J.; Zhao, J.; Li, R.; Wang,
Z.; Grünwald, M.; Chen, O. Controlling Nanoparticle Orientations in
the Self-Assembly of Patchy Quantum Dot-Gold Heterostructural
Nanocrystals. J. Am. Chem. Soc. 2019, 141 (14), 6013−6021.
(31) Andre, A.; Zherebetskyy, D.; Hanifi, D.; He, B.; Samadi
Khoshkhoo, M.; Jankowski, M.; Chasse, T.; Wang, L.-W.; Schreiber,
F.; Salleo, A.; Liu, Y.; Scheele, M. Toward Conductive Mesocrystal-
line Assemblies: PbS Nanocrystals Cross-Linked with Tetrathiafulva-
lene Dicarboxylate. Chem. Mater. 2015, 27 (23), 8105−8115.
(32) Tebbe, M.; Lentz, S.; Guerrini, L.; Fery, A.; Alvarez-Puebla, R.
A.; Pazos-Perez, N. Fabrication and optical enhancing properties of
discrete supercrystals. Nanoscale 2016, 8 (25), 12702−12709.
(33) Mukharamova, N.; Lapkin, D.; Zaluzhnyy, I. A.; André, A.;
Lazarev, S.; Kim, Y. Y.; Sprung, M.; Kurta, R. P.; Schreiber, F.;
Vartanyants, I. A.; Scheele, M. Revealing Grain Boundaries and Defect
Formation in Nanocrystal Superlattices by Nanodiffraction. Small
2019, 15 (50), 1904954.
(34) Zaluzhnyy, I. A.; Kurta, R. P.; André, A.; Gorobtsov, O. Y.;
Rose, M.; Skopintsev, P.; Besedin, I.; Zozulya, A. V.; Sprung, M.;
Schreiber, F.; Vartanyants, I. A.; Scheele, M. Quantifying Angular
Correlations between the Atomic Lattice and the Superlattice of
Nanocrystals Assembled with Directional Linking. Nano Lett. 2017,
17 (6), 3511−3517.
(35) Zaluzhnyy, I. A.; Kurta, R. P.; Scheele, M.; Schreiber, F.;
Ostrovskii, B. I.; Vartanyants, I. A. Angular X-ray Cross-Correlation
Analysis (AXCCA): Basic Concepts and Recent Applications to Soft
Matter and Nanomaterials. Materials 2019, 12 (21), 3464.
(36) Kurta, R. P.; Altarelli, M.; Vartanyants, I. A., Structural analysis
by x-ray intensity angular cross correlations. In Advances in Chemical
Physics, Rice, S. A.; Dinner, A. R., Eds. John Wiley & Sons, Inc.,
Hoboken: New Jersey, 2016; Vol. 161, pp 1−39.
(37) Carnis, J.; Kirner, F.; Lapkin, D.; Sturm, S.; Kim, Y. Y.; Baburin,
I. A.; Khubbutdinov, R.; Ignatenko, A.; Iashina, E.; Mistonov, A.;
Steegemans, T.; Wieck, T.; Gemming, T.; Lubk, A.; Lazarev, S.;
Sprung, M.; Vartanyants, I. A.; Sturm, E. V. Exploring the 3D
structure and defects of a self-assembled gold mesocrystal by coherent
X-ray diffraction imaging. Nanoscale 2021, 13 (23), 10425−10435.
(38) de Nijs, B.; Dussi, S.; Smallenburg, F.; Meeldijk, J. D.;
Groenendijk, D. J.; Filion, L.; Imhof, A.; van Blaaderen, A.; Dijkstra,
M. Entropy-driven formation of large icosahedral colloidal clusters by
spherical confinement. Nat. Mater. 2015, 14 (1), 56−60.
(39) Agthe, M.; Plivelic, T. S.; Labrador, A.; Bergström, L.; Salazar-
Alvarez, G. Following in Real Time the Two-Step Assembly of
Nanoparticles into Mesocrystals in Levitating Drops. Nano Lett. 2016,
16 (11), 6838−6843.
(40) Agthe, M.; Hoydalsvik, K.; Mayence, A.; Karvinen, P.; Liebi,
M.; Bergström, L.; Nygard, K. Controlling Orientational and
Translational Order of Iron Oxide Nanocubes by Assembly in
Nanofluidic Containers. Langmuir 2015, 31 (45), 12537−43.
(41) Guillaussier, A.; Yu, Y.; Voggu, V. R.; Aigner, W.; Cabezas, C.
S.; Houck, D. W.; Shah, T.; Smilgies, D.-M.; Pereira, R. N.;
Stutzmann, M.; Korgel, B. A. Silicon Nanocrystal Superlattice
Nucleation and Growth. Langmuir 2017, 33 (45), 13068−13076.
(42) Zanaga, D.; Bleichrodt, F.; Altantzis, T.; Winckelmans, N.;
Palenstijn, W. J.; Sijbers, J.; de Nijs, B.; van Huis, M. A.; Sánchez-
Iglesias, A.; Liz-Marzán, L. M.; van Blaaderen, A.; Joost Batenburg, K.;
Bals, S.; Van Tendeloo, G. Quantitative 3D analysis of huge
nanoparticle assemblies. Nanoscale 2016, 8 (1), 292−299.
(43) Born, P.; Munoz, A.; Cavelius, C.; Kraus, T. Crystallization
Mechanisms in Convective Particle Assembly. Langmuir 2012, 28
(22), 8300−8308.
(44) Choi, J. J.; Bealing, C. R.; Bian, K.; Hughes, K. J.; Zhang, W.;
Smilgies, D. M.; Hennig, R. G.; Engstrom, J. R.; Hanrath, T.
Controlling nanocrystal superlattice symmetry and shape-anisotropic
interactions through variable ligand surface coverage. J. Am. Chem.
Soc. 2011, 133 (9), 3131−8.
(45) Quan, Z.; Xu, H.; Wang, C.; Wen, X.; Wang, Y.; Zhu, J.; Li, R.;
Sheehan, C. J.; Wang, Z.; Smilgies, D. M.; Luo, Z.; Fang, J. Solvent-

Chemistry of Materials pubs.acs.org/cm Article

https://doi.org/10.1021/acs.chemmater.1c01941
Chem. Mater. 2021, 33, 9119−9130

9129



mediated self-assembly of nanocube superlattices. J. Am. Chem. Soc.
2014, 136 (4), 1352−9.
(46) Wetterskog, E.; Klapper, A.; Disch, S.; Josten, E.; Hermann, R.
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Chapter 4

Summary

This work deals with structural studies of colloidal crystals and mesocrystals by
novel X-rays methods. The work consists of two major parts.

In the first part, the structures were revealed by analysis of 2D scattering patterns
with the form factor fitting, Bragg peak fitting, and AXCCA.

Firstly, a colloid consisting of thermoresponsive gold-PNIPAM core-shell nanopar-
ticles was studied during cooling and heating. 2D scattering patterns were measured
in USAXS geometry. I analysed the core-shell form factor measured for a diluted sam-
ple at different temperatures, extracted the geometrical parameters of the core-shell
particles, and found the signs of a volume phase transition when the polymer shell
collapses. I analysed the structure factors measured for a concentrated sample at dif-
ferent temperatures and found the phase transition from a fluid state to a crystalline
phase. The fluid structure factor was fitted by the Perkus-Yevick hard sphere model
that gave the sphere radius and volume fraction. The parameters of the Bragg peaks of
the crystalline structure factor were extracted by the separate fitting of each Bragg peak
with the Gaussian function. The Bragg peaks were attributed to an rhcp lattice, and the
lattice parameters were found to evolve during the crystallization and melting. More-
over, during the melting, a splitting of the Bragg peaks was observed which implies
the cracking of a crystallite into several smaller crystallites. The extracted FWHMs of
the Bragg peaks were converted into the strain values by the Williamson-Hall method,
and the strain was found to grow during both crystallization and melting. Signs of in-
plane as well as out-of-plane plane defects (stacking faults) were found by analysis of
the FWHMs. These findings shed light on the structural features of crystallization and
melting of thermoresponsive colloidal crystals that are believed to be fully reversible
and repeatable.

Secondly, mesocrystalline microchannels consisting of lead sulfide PbS nanoparti-
cles functionalized with Cu4APc self-assembled on a Kapton substrate with prelimi-
nary deposited gold contacts were investigated. 2D scattering patterns were measured

139



in complementary SAXS/WAXS geometry that allowed registration of the Bragg peaks
from both SL and ALs of the nanoparticles. I extracted the unit cell parameters of both
SL and AL by fitting the Bragg peaks with the Gaussian functions. The microchan-
nels were found to be characterized by two different structures (bcc and hcp) with
different distances between the adjacent nanocrystals. I exploited AXCCA to deter-
mine the angular orientation of the nanocrystals inside the SL. The results of the struc-
tural investigations were compared with the results of transport measurements of the
same channels performed before the X-ray experiment. There was found a correla-
tion between the structure and the distance between the adjacent nanocrystals inside
the mesocrystalline microchannels. Moreover, signs of transport anisotropy were re-
vealed by correlating the angular orientation of the SL inside the microchannels and
their conductivity.

Thirdly, mesocrystals consisting of cesium lead halide nanoparticles stabilized with
OA and OAm were investigated. 2D scattering patterns were measured in the same
complementary SAXS/WAXS geometry as in the previous case at different points with
high spatial resolution. I analysed the Bragg peaks from both SL and AL of the nanocrys-
tals by fitting them with the Gaussian functions. Extracted unit cell parameters indi-
cated that the local structure of the SL is different from the average one and tends to
distort on the mesocrystal boundaries. The nanocrystals were found to be angularly
disordered and closer to the adjacent ones on the mesocrystal edges. These results
were compared with the results of fluorescence spectroscopy and lifetime measure-
ments. The optical properties on the edges were found to differ from the bulk prop-
erties as well. A similar characteristic length from the mesocrystal edge on which the
deviations in structure and optical properties happen suggested that the structural het-
erogeneity is one of the reasons for the differences in optical properties.

In the second part, the structures were revealed by analysis of the intensity distri-
bution measured in 3D reciprocal space with AXCCA.

Firstly, I revised the theoretical background of AXCCA for application to 3D scat-
tered intensity distributions instead of 2D scattering patterns. I proposed a geometrical
model for interpretation of the AXCCA results from the scattered intensities measured
for single crystalline grains. I successfully demonstrated the application of the devel-
oped technique on an exemplifying dataset. For a colloidal crystal consisting of silica
spheres, it allowed to quantitatively reveal the stacking sequence in a close-packed
structure and indicated the presence of plane defects in the sample.

Secondly, for a mesocrystalline grain consisting of gold nanocubes, I exploited AX-
CCA to reveal the average SL structure that was found to be triclinic. This result was
used in combination with the electron density reconstruction by the phase retrieval
methods to extract the strain tensor. I analysed the anisotropic form factor features
of the nanocubes to extract the angular orientation of the nanocubes inside the SL.
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Together, the obtained results allowed the full structural characterization of a gold
mesocrystalline grain.

Thirdly, for mesocrystalline grains consisting of gold nanocubes self-assembled
from different solvents (tetrahydrofuran and heptane), I exploited AXCCA to reveal
the average SL structure. It was found to be body-center tetragonal in both cases with
the tetragonal distortion close to that characteristic for an fcc lattice. The degree of
difference from the fcc structure was found to be depended on the solvent used. This
fact shed light on the fundamental question of the mesocrystal self-assembly from a
solvent.

To summarize, this work contributes to the development of novel X-ray methods
available for structural investigations of colloidal crystals and mesocrystals. The re-
sults obtained by the developed techniques on colloidal and mesocrystalline samples
are of high interest to the materials science community and potentially lead to im-
provement in the application of the studied materials.
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Lapkin, R. Rosenberg, S. Sturm, D. Assalauova, J. Carnis, Y. Y. Kim, Z. Ren, F.
Westermeier, S. Theiss, H. Borrmann, S. Polarz, A. Eychmüller, A. Lubk, I. A.
Vartanyants, H. Cölfen, M. Zobel, and E. V. Sturm. Morphogenesis of magnetite
mesocrystals: Interplay between nanoparticle morphology and solvation shell.
Chem. Mater. 33, 9119 (2021).

6. A. Maier, D. Lapkin, N. Mukharamova, P. Frech, D. Assalauova, A. Ignatenko, R.
Khubbutdinov, S. Lazarev, M. Sprung, F. Laible, R. Löffler, N. Previdi, A. Bräuer,
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135G. Grübel and F. Zontone, “Correlation spectroscopy with coherent X-rays”, J. Alloy.
Compd. 362, 3–11 (2004).

136O. G. Shpyrko, “X-ray photon correlation spectroscopy”, J. Synchrotron Radiat. 21,
1057–1064 (2014).
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158J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal
gold and silver triangular nanoprisms”, Small 5, 646–664 (2009).

159I. Pastoriza-Santos and L. M. Liz-Marzán, “Colloidal silver nanoplates. State of the
art and future challenges”, J. Mater. Chem. 18, 1724–1737 (2008).

160H.-J. Yang, S.-Y. He, H.-L. Chen, and H.-Y. Tuan, “Monodisperse copper nanocubes:
synthesis, self-assembly, and large-area dense-packed films”, Chem. Mater. 26, 1785–
1793 (2014).
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