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Abstract

In the present thesis we consider dynamical systems which arise from the energy-
based modelling of physical systems, namely, so-called port-Hamiltonian systems.
Different approaches for this abstraction process exist, resulting in slightly different
port-Hamiltonian formulations. In the case of the linear finite-dimensional model-
ling, we identify two main branches: the geometric approach pioneered by van der
Schaft and Maschke [vdSM18] and the linear algebraic approach promoted by
Mehl, Mehrmann and Wojtylak [MMW18].

Inspired by these frameworks, we present another view by using the theory of linear
relations. We show that this allows to elaborate the differences and mutualities of
the geometric and linear algebraic views, and we introduce a class of dynamical sys-
tems which comprises these two approaches. There is a natural way to associated
differential-algebraic equations (DAEs) to these systems, and we study the properties
of their matrix pencils.

Moreover, we give sufficient conditions guaranteeing stability of the different port-
Hamiltonian formulations by means of generalized Lyapunov inequality for DAEs. We
also use the solution of such inequalities to rewrite stable DAEs as port-Hamiltonian
systems on the subspace where the solutions evolve. Further, for stabilizable DAEs
we construct solutions of generalized algebraic Bernoulli equations which can then be
used to rewrite these systems as port-Hamiltonian systems by introducing a suitable
output.

For the illustration of this energy-based modelling approach, we consider nonlinear
electrical circuits, for which a systematic approach of port-Hamiltonian modelling is
established. Each circuit component is modelled as an individual port-Hamiltonian
system. The overall circuit model is then derived by considering a port-Hamiltonian
interconnection of the components. We further compare this modelling approach with
standard formulations of nonlinear electrical circuits. The nonlinearities encompassed
in this port-Hamiltonian modelling may produce implicit equations in the dynamics
describing the electrical circuit. We briefly discuss the resolution of such implicit
equations using a result on the existence of global implicit functions we develop.

Besides implicit equations, we also study different types of algebraic constraints arising
in the port-Hamiltonian formalism based on linear relations. We show how to convert
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these types of constraints to one another. This conversion process is then applied to
link port-Hamiltonian systems to recently established pencils whose coefficients have
positive semidefinite Hermitian part.
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Zusammenfassung

In der vorliegenden Dissertation betrachten wir dynamische Systeme, die aus der
energiebasierten Modellierung physikalischer Systeme entstehen, sogenannte port-
Hamiltonsche Systeme. Es existieren verschiedene Ansätze für diesen Abstraktions-
prozess, was zu leicht unterschiedlichen port-Hamiltonischen Formulierungen führt.
Im Fall der linearen endlichdimensionalen Modellierung identifizieren wir zwei Haupt-
zweige: den geometrischen Ansatz, den von van der Schaft und Maschke [vdSM18]
entwickelt wurde, und der von Mehl, Mehrmann und Wojtylak [MMW18] unter-
suchten linear-algebraischen Ansatz.

Von diesen Rahmenwerken inspiriert präsentieren wir eine weitere Sichtweise, indem
wir die Theorie der linearen Relationen verwenden. Wir zeigen, dass dies erlaubt, die
Unterschiede und Gemeinsamkeiten der geometrischen und der linear-algebraischen
Sichtweise herauszuarbeiten, und wir führen eine Klasse dynamischer Systeme ein,
die diese beiden Ansätze umfasst. Es gibt einen natürlichen Weg, diesen Systemen
differential-algebraische Gleichungen (DAEs) zuzuordnen, und wir untersuchen die
Eigenschaften ihrer Matrixbüschel.

Darüber hinaus geben wir hinreichende Bedingungen an, die die Stabilität der ver-
schiedenen port-Hamiltonschen Formulierungen mittels verallgemeinerter Lyapunov-
Ungleichung für DAEs garantieren. Wir verwenden die Lösung solcher Ungleichungen
auch, um stabile DAEs als port-Hamiltonsche Systeme auf dem Unterraum umzu-
schreiben, in dem sich die Lösungen entwickeln. Weiterhin konstruieren wir für stabi-
lisierbare DAEs Lösungen von verallgemeinerten algebraischen Bernoulli-Gleichungen,
die anschließend verwendet werden können, um diese Systeme als port-Hamiltonsche
Systeme umzuschreiben, indem wir einen geeigneten Ausgang einführen.

Zur Veranschaulichung dieses energiebasierten Modellierungsansatzes betrachten wir
nichtlineare elektrische Schaltungen, für die sich ein systematischer Ansatz der port-
Hamiltonschen Modellierung etabliert hat. Jede Schaltungskomponente wird als indi-
viduelles port-Hamiltonisches System modelliert. Das Gesamtschaltungsmodell wird
dann unter Berücksichtigung einer port-Hamiltonischen Verbindung der Komponen-
ten hergeleitet. Wir vergleichen diesen Modellierungsansatz weiter mit Standardfor-
mulierungen nichtlinearer elektrischer Schaltungen. Die in dieser port-Hamiltonischen
Modellierung enthaltenen Nichtlinearitäten können implizite Gleichungen in der Dy-
namik erzeugen, welche die elektrische Schaltung beschreibt. Wir diskutieren kurz die
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Auflösung solcher impliziter Gleichungen unter Verwendung eines Ergebnisses über
die Existenz globaler impliziter Funktionen, welches wir herleiten.

Neben impliziten Gleichungen untersuchen wir auch verschiedene Arten von algebrai-
schen Nebenbedingungen in dem auf linearen Relationen basierenden port-Hamilton-
schen Formalismus. Wir zeigen, wie diese Arten von Nebenbedingungen ineinander
überführt werden können. Dieser Konvertierungsprozess wird dann dazu verwendet,
port-Hamiltonsche Systeme mit den kürzlich etablierten Büscheln mit Koeffizienten,
die einen positiv semidefiniten Hermiteschen Anteil besitzen, zu verknüpfen.
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Résumé

Dans la présente thèse, nous considérons des systèmes dynamiques issus de la modéli-
sation énergétique des systèmes physiques, à savoir les systèmes dits hamiltoniens
à ports. Différentes approches pour ce processus d’abstraction existent, résultant
en des formulations hamiltoniennes à ports légèrement différentes. Dans le cas de
la modélisation linéaire en dimension finie, nous identifions deux branches princi-
pales : l’approche géométrique initiée par van der Schaft et Maschke [vdSM18] et
l’approche algébrique linéaire promue par Mehl, Mehrmann et Wojtylak
[MMW18].

Inspirés par ces cadres, nous présentons un autre angle d’approche en utilisant la
théorie des relations linéaires. Nous montrons que cela permet d’élaborer les différences
et mutualités des approches géométriques et algébriques linéaires, et nous introdui-
sons une classe de systèmes dynamiques qui comprend ces deux approches. Il existe
une manière naturelle d’associer des équations différentielles-algébriques (EDA) à ces
systèmes, et nous étudions les propriétés de leurs faisceaux matriciels.

De plus, nous donnons des conditions suffisantes garantissant la stabilité des différentes
formulations hamiltoniennes à ports au moyen de l’inégalité de Lyapunov généralisée
pour les EDA. Nous utilisons également la solution de telles inégalités pour réécrire
des EDA stables en tant que systèmes hamiltoniens à ports sur le sous-espace où les
solutions évoluent. En outre, pour les EDA stabilisables, nous construisons des solu-
tions d’équations de Bernoulli algébriques généralisées. Ces solutions peuvent ensuite
être utilisées pour réécrire ces systèmes en tant que systèmes hamiltoniens à ports en
introduisant une sortie appropriée.

Pour illustrer cette approche de modélisation énergétique, nous considérons des cir-
cuits électriques non linéaires pour lesquels une approche systématique de modélisation
hamiltonienne à ports est établie. Chaque composant de circuit est modélisé comme un
système hamiltonien à port individuel. Le modèle de circuit global est ensuite dérivé en
considérant une interconnexion hamiltonienne à ports des composants. En outre, nous
comparons cette approche de modélisation avec des formulations standard de circuits
électriques non linéaires. Les non-linéarités englobées dans cette modélisation port-
hamiltonienne peuvent produire des équations implicites dans la dynamique décrivant
le circuit électrique. Nous discutons brièvement de la résolution de telles équations
implicites en utilisant un résultat sur l’existence de fonctions implicites globales que
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nous développons.

Un autre aspect de cette thèse concerne l’étude de différentes contraintes algébriques
issues du formalisme port-hamiltonien basé sur les relations linéaires. Nous mon-
trons comment convertir ces types de contraintes les uns aux autres. Ce processus de
conversion est ensuite utilisé pour relier les systèmes port-hamiltoniens aux récemment
étudiés faisceaux aux coefficients à part hermitienne semi-définie positive.
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INTRODUCTION 1

Introduction

When Hamilton elaborated what is today known as the Hamiltonian formalism in
his seminal paper [Ham35], he considered physical systems ‘not disturbed by any
foreign force’. This gave rise to the famous equations [Ham35, Eq. A] reading

d
dt η = ∂H

∂ϖ
,

d
dt ϖ = −∂H

∂η
,

where H is known as the Hamiltonian typically representing the energy of the con-
sidered system [Arn89]. Such a foreign force can be a control exerted on the system,
and it is only a few decades later with the work [Max68] of Maxwell that topics
related to control were rigorously investigated, giving birth to the field of control
theory, see [Kan16] and the references therein. Besides a designed control, a foreign
force can simply result from the interaction with the environment, that is, due to a
different physical system. Nowadays, it is essential to consider both types of foreign
forces in applications, such as, for instance, mechanical and electrical systems, where
a myriad of subsystems are interconnected and controlled. The port-Hamiltonian
modelling philosophy [Bre09] arose as an answer to the increasing complexity found
in these applications. Identifying the energy as common denominator of all physical
systems and taking the Hamiltonian formalism with its Hamiltonian H representing
the energy as a basis, port-Hamiltonian modelling provides a framework allowing for
a systematic port-based network modelling of complex systems from various physical
domains, where not only the interconnections are based on energy considerations, but
controls too [OvdSM+01].
The dynamical systems resulting from the port-Hamiltonian modelling approach are
accordingly called port-Hamiltonian systems and port-Hamiltonian system models en-
compass a very large class of nonlinear physical systems [vdSJ14; vdSch17]. On the



2 INTRODUCTION

flip side, since only a certain modelling philosophy is prescribed, there exist different
port-Hamiltonian systems frameworks. In the past decades, this modelling approach
has gained particularly increased attention from different communities, such as geo-
metric mechanics and mathematical systems theory, from which different definitions
of port-Hamiltonian systems emerged, see [JZ12; vdSJ14; vdSch13; BMX+18] for an
overview. Surprisingly, little effort has been made so far to thoroughly compare the
different resulting dynamical systems.

Content overview

The aim of this thesis can be resumed in the following three points:

• Comparing the linear algebraic port-Hamiltonian approach by Mehl, Mehr-
mann and Wojtylak [MMW18] with the geometric approach of van der
Schaft and Maschke [vdSM18].

• Analyzing the differential-algebraic equations and their corresponding matrix
pencil arising from linear port-Hamiltonian modelling approaches.

• Illustrating different aspects of the port-Hamiltonian modelling philosophy.

In Chap. 1, we lay the mathematical foundations for attaining the three above-
mentioned goals. Afterwards in Chap. 2, we directly introduce the different port-
Hamiltonian formulations we aim to compare. In order to compare the aforementioned
geometric and linear algebraic approaches, we introduce a third approach based on lin-
ear relations, a concept which has been treated in several textbooks [BHdS20; Cro98].
The comparison of the introduced formulations is first performed indirectly. More
precisely, we show how each formulation extends Hamilton’s original equations and
give interpretations of the energy of the corresponding system models. Further, we
describe the power-conserving interconnection of two systems of a given formulation.
We continue by a side-by-side comparison of the different approaches under the as-
sumption that all systems are linear. To enable an even finer comparison between the
different port-Hamiltonian frameworks, we restrict us to the case where the systems
are ‘not disturbed by any foreign force’ and show that linear relations formulation of
port-Hamiltonian systems can be regarded as the least common multiple of the linear
algebraic port-Hamiltonian approach by Mehl, Mehrmann and Wojtylak with
the geometric approach of van der Schaft and Maschke. In particular, we make
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use of three facts:

(i) the geometric concept of a Dirac structure translates to the
notion of a skew-adjoint linear relation in the language of
linear relations,

(ii) Lagrangian subspaces correspond to self-adjoint linear rela-
tions, and

(iii) dissipative matrices can be generalized to dissipative linear
relations.

With this insight, Chap. 3 is devoted to the analysis of the matrix pencils associated
to the differential-algebraic equations arising from the linear relations approach. We
are particularly interested in their regularity and the shape of their Kronecker canon-
ical form. This analysis is deepened in Chap. 4, where we examine stability properties
of the differential-algebraic equations resulting form the different port-Hamiltonian
formulations. The stability analysis relies on Lyapunov inequalities developed in
App. A. We also link stable and stabilizable differential-algebraic equations to port-
Hamiltonian systems using the aforementioned Lyapunov inequalities and generalized
algebraic Bernoulli equations. Chap. 5 is concerned with the same systems studied in
Chap. 3 and analyzes algebraic equations arising in these systems. We present certain
methods of conversion of these algebraic equations, which enable us to link the linear
relations port-Hamiltonian systems to differential-algebraic equations whose pencils
have positive semidefinite Hermitian part coefficients [MMW22].
Port-Hamiltonian modelling can be seen as an object-oriented approach. We illustrate
this fact with Chap. 6 by presenting a systematic method for the lumped parameter
modelling of nonlinear electrical circuits. We compare the resulting dynamical sys-
tem with well-known formulations of nonlinear electrical circuits like the (charge/flux-
oriented) modified nodal analysis and the modified loop analysis. The nonlinearities
we incorporate in this modelling induce implicit equations we discuss by means of a
result on global implicit function we develop in App. B.
In the conclusion, we recapitulate our findings and give directions for further research.
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Parts of the present thesis have already been published or submitted for publication
as indicated in the following table.
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Chap. 1 [GH21; GHR21; GHR+21] with minor additions.
Chap. 2 new in this form but builds on well-established

port-Hamiltonian concepts that were also
presented in [GH21; GHR21; GHR+21]

Chap. 3 [GHR21]
Chap. 4 [GH21]
Chap. 5 new
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App. A the author’s bachelor’s thesis at the Universität

Hamburg under the supervision of Timo Reis
and Thomas Berger

App. B [BH22]
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Chapter 1

Mathematical toolbox

In this chapter we present all the mathematical tools required to follow the argu-
mentation in the subsequent chapters. The general notation we employ, which is
summarized in the List of notations, is presented first. Next, we provide insights
on matrix pencils and their corresponding differential-algebraic equations. Addition-
ally, we introduce basic definitions and results from the fields of linear relations and
differential geometry. Together, they form the framework for the formulation of the
port-Hamiltonian systems studied in this thesis.

1.1 Notational preliminaries

General sets

By N0 we denote the set of natural numbers, while N = N0 \ {0} denotes the set
of natural numbers excluding zero and K denotes either the set of real or complex
numbers R, C. For the open left complex half-plane we use the notation C− while
C+ denotes the open right-half complex plane. For a complex number z ∈ C we write
Re z for its real part, Im z for its imaginary part, z for its complex conjugate and
|z| for its absolute value with ı designing the imaginary unit. The closure of a subset
S of a topological space is denoted by S. A ring which is often used in this thesis is
the ring of polynomials over K, K[s] with its quotient field K(s). For a family of sets
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{Si}i∈I we write ∏
i∈I

Si =
{
f : I →

⋃
i∈I

Si

∣∣∣∣∣ ∀i ∈ I : f(i) ∈ Si

}
for their Cartesian product. In particular, given sets S1, . . . , Sn, we write∏

n
i=1Si = S1 × . . .× Sn.

For finitely many vector spaces V1, . . . , Vn the exterior direct sum is also written as
n⊕
i=1

Vi = V1 ⊕ . . .⊕ Vn = V1 × . . .× Vn,

with Kn =
⊕n

i=1 K. For an inner direct sum we write V1⊕̂ . . . ⊕̂Vn. If the latter sum
is additionally orthogonal we write V1 k . . .k Vn. If we refer to a componentwise sum
of finitely many subsets S1, . . . , Sn of a vector space S we write

S1+̂ . . . +̂Sn =
{
x1 + . . .+ xn

∣∣∣∣∣ {xi}i=1,...n ∈
n∏
i=1

Si

}
.

If V,W ⊂ Kn fulfill V ⊆ W , the orthogonal minus is given by W ⊖̂V := W ∩ V ⊥.

Linear maps

Given a ring R and n,m ∈ N, the set of m×n matrices with entries in R is denoted by
Rm×n. For vector spaces V1, . . . , Vk,W , the set of multilinear maps f : V1 ×. . .×Vk →
W is denotes by L(V1, . . . , Vk;W ) and we identify Km×n = L(Kn;Km) = {L : Kn →
Km|L is a homomorphism}. Note that we allow for m,n to be zero. In this case, we
find matrices which are elements of K0×q = {L : Kq → K0|L is a homomorphism} or
Kq×0 = {L : K0 → Kq|L is a homomorphism} for some q ∈ N0. K0×q and Kq×0 have
only one element for which we respectively write 00×q and 0q×0. It is clear that 00×q

and 0q×0 do not have a matrix representation, as K0 is generated by the empty set,
i.e., it has the empty set as basis. The zero elements in Kn×n and Km×n are denoted
by 0n and 0m,n, respectively and the symbol for the n× n identity matrix is In.
Let V1, . . . Vk, W1, . . .Wl be vector spaces and set V =

⊕n
i=1 Vi and W =

⊕m
i=1 Wi.

For Aij ∈ L(Vj ;Wi) with i = 1, . . . , n and j = 1, . . . ,m, we introduce the correspond-
ing block operator A ∈ L(V ;W ) as

A :=


A11 · · · A1k
...

. . .
...

Al1 · · · Alk

 : V →W



1.1. NOTATIONAL PRELIMINARIES 7

(x1, . . . xk) 7→

(
k∑
i=1

A1ixi, . . . ,

k∑
i=1

Alixi

)
.

For Mi ∈ Kri×si , ri, si ∈ N0, i = 1, . . . l, the block diagonal operator is

diag (M1, ...,Ml) : Ks1 × . . .× Ksl → Kr1 × . . .× Krl ,

(v1, ..., vl) 7→ (M1v1, ...,Mlvl).

If si, ri ̸= 0 for all i = 1, . . . l, then

diag (M1, . . . ,Ml) =


M1

. . .

Ml

 .
In the case that ri or si is 0 for some i ∈ {1, . . . , l} we can find a matrix representation
through

diag (00×1, 00×q) = 00×(q+1), diag (01×0, 0q×0) = 0(q+1)×0,

diag (00×q,M) =
[
0r,q M

]
, diag (M, 00×q) =

[
M 0r,q

]
,

diag (0q×0,M) =
[

0q,s
M

]
, diag (M, 0q×0) =

[
M

0q,s

]
,

diag (0q×0, 00×q) = 0q, diag (00×q, 0q×0) = 0q,

for a matrix M ∈ Kr×s with r, s ∈ N and q ∈ N0.
For A ∈ Km×n, A⊤ denotes its transpose, A∗ = A⊤ its Hermitian, A† its Moore–
Penrose inverse [Pen55], and A−1 its inverse for the case that n = m. Further, we
write im A = ran A for the image/range of A. The set of invertible n × n matrices
over K is abbreviated by Gln(K). For the set of eigenvalues of a matrix A ∈ Kn×n,
i.e., its spectrum, we write σ(A) ⊂ C. When writing ∥A∥ without specifying the
norm, we always mean the operator norm, i.e.,

∥A∥ = sup
x∈Kn

∥x∥≤1

∥Ax∥,

and for a vector x ∈ Kn, ∥x∥ as in the formula above will always denote the Euclidean
norm when not specified otherwise. Throughout this thesis, we assume that Kn is
equipped with the standard scalar product ⟨·, ·⟩ : (x, y) 7→ y∗x. For square matrices
M,N ∈ Kn×n, we write M > N if M −N is positive definite and M ≥ N if M −N
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is positive semi-definite. If M +M∗ ≤ 0 we say that M is dissipative. Further, given
a subspace L ⊆ Kn and assuming that M and N are symmetric, we write

M ≥L M :⇔ xTMx ≥ xTNx ∀ x ∈ L,

M >L N :⇔ xTMx > xTNx ∀ x ∈ L \ {0},

which corresponds to the notation of [RV19]. Now, if we are given matrices M,N ∈
Km×n and a subspace L ⊆ Kn we write

M =L N :⇔ Mx = Nx ∀ x ∈ L.

Note that this notation significantly differs from the one used in [RV19] since we do
not check x∗Mx = x∗Nx for all x ∈ L nor do we impose symmetry on M and N .
Moreover, these conditions might also make no sense since the matrices do not need
to be square. If not specified otherwise, PX denotes the orthogonal projector onto
a given subspace X ⊂ Kn. For spaces Y1, Y2, Y3 ⊂ Kn with Y1 ⊂ Y2 and a linear
operator M : Y2 → Y3, M↾Y1 denotes the restriction of M to the space Y1 and we
write M(Y1) for the range of M↾Y1 .

Function spaces

Given any two functions f : A → B, g : A → C for arbitrary sets A,B,C, we identify
the function h : A → B × C defined by x 7→ (f(x), g(x)) with the pair (f, g). For
open subsets U ⊂ Kn, V ⊂ Km and k ∈ N0 ∪ {∞} we introduce

Ck(U, V ) = { f : U → V | f is k-times continuously differentiable }

and
C(X,Y ) = { f : X → Y | f is continuous }

for arbitrary metric spaces X,Y . Next, for p ∈ [1,∞), some interval I ⊂ R and a
subspace V ⊂ Kn we introduce the Lebesgue spaces

Lp(I,V) =
{
f : I → V

∣∣∣∣ f is measurable and
∫
I

∥f(τ)∥p dτ < ∞
}
,

Lploc (I,V) =
{
f : I → V

∣∣∣∣ f is measurable and
∫
K

∥f(τ)∥p dτ < ∞

for all compact K ⊂ I
}
,
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and denoting by O the set of all measurable functions f : I → V such that f(t) = 0
for almost all t ∈ I with respect to the Lebesgue measure, we introduce the quotient
spaces

Lp(I,V) =
{

{f}+̂O
∣∣ f ∈ Lp(I,V)

}
,

Lploc (I,V) =
{

{f}+̂O
∣∣ f ∈ Lploc (I,V)

}
.

With the (well-defined) p-norm ∥ · ∥Lp(I,V) for p ∈ [1,∞) or simply ∥·∥p for p ∈ [1,∞)
defined as

∥{f}+̂O∥Lp(I,V) =
(∫

I
∥f(τ)∥p dτ

) 1
p

Lp(I,V) becomes a Banach space [AF03]. The Sobolev spaces are given by

W k,p(I,V) =
{
f ∈ Lp(I,V)

∣∣∣ f (l) ∈ Lp(I,V) exists for all l ≤ k
}
,

W k,p
loc (I,V) =

{
f ∈ Lploc (I,V)

∣∣∣ f (l) ∈ Lploc (I,V) exists for all l ≤ k
}
,

for k ∈ N0 and p ∈ [1,∞) where f (l) denotes the lth weak derivative of f .

1.2 System theoretic prerequisites

This thesis is mainly concerned with questions originating from the field of math-
ematical systems theory. For an introduction and an overview of this vast field, we
refer the reader to [HP05; Sim17]. The following two sections present certain types
of dynamical systems arising in this theory, namely so-called differential-algebraic
equations, as well as some tools to study them.

1.2.1 Matrix pencils

The analysis of differential-algebraic equations leads to the study of matrix pencils,
which are first order matrix polynomials sE −A ∈ K[s]m×n with coefficient matrices
E,A ∈ Km×n. The following notations allow us to introduce canonical forms for
matrix pencils. For k ∈ N let e[k]

i ∈ Kk (or simply ei if clear from the context) be the
ith canonical unit vector and let Nk ∈ Kk×k, Kk, Lk ∈ K(k−1)×k be defined by

Nk =

 0

1
. . .
. . .

. . .
1 0

 , Kk =
[ 1 0

. . .
. . .
1 0

]
, Lk =

[ 0 1
. . .

. . .
0 1

]
.
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Further, for some multi-index α = (α1, ..., αl) ∈ Nl with |α| = α1 + . . . + αl, we
introduce

Nα = diag (Nα1 , . . . , Nαl
) ∈ K|α|×|α|,

Kα = diag (Kα1 , . . . ,Kαl
) ∈ K(|α|−l)×|α|,

Lα = diag (Lα1 , . . . , Lαl
) ∈ K(|α|−l)×|α|,

A Jordan block of size k ∈ N at λ ∈ C corresponds to the matrix

Jk(λ) =

 λ 1
. . .

. . .

. . . 1
λ

 ∈ Kk×k.

Definition 1.2.1 (Kronecker form, Weierstraß form).
Let sE −A ∈ K[s]m×n. We say that sE −A is in Kronecker form if

E = diag (Il, Nα,Kβ ,K
⊤
γ ) and A = diag (J, I|α|, Lβ , L

⊤
γ ),

i.e.,

sE −A =


sIl − J 0 0 0

0 sNα − I|α| 0 0
0 0 sKβ − Lβ 0
0 0 0 sK⊤

γ − L⊤
γ

 (1.1)

for some multi-indices α ∈ Nℓα , β ∈ Nℓβ , γ ∈ Nℓγ with l, ℓα, ℓβ , ℓγ ∈ N0 and J ∈ Kl×l

is in Jordan canonical form over K (see, e.g., [HJ13, Secs. 3.1 & 3.4]). Further, we
say that sE −A is in Weierstraß form if ℓβ = ℓγ = 0, i.e.,

sE −A =
[
sIl − J 0

0 sNα − I|α|

]
. (1.2)

In this context, the numbers αi for i = 1, . . . , ℓα are referred to as sizes of the Jordan
blocks at ∞, whereas for i = 1, . . . , ℓβ , j = 1, . . . , ℓγ , the numbers βi − 1 and γj − 1
are, respectively, called column and row minimal indices.

Theorem 1.2.2 (Kronecker canonical form [Gan59, Chap. XII], [Ber14, Chap. 2]).
Let sE − A ∈ K[s]m×n. Then there exist unique S ∈ Glm(K), T ∈ Gln(K) such that
sSET − SAT is in Kronecker form (1.1).
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By the above result, the following concept is well-defined.

Definition 1.2.3 (Index of a pencil). Let sE − A ∈ K[s]m×n and S ∈ Glm(K), T ∈
Gln(K) such that sSET − SAT is in Kronecker form (1.1). Then the (Kronecker)
index ν of sE −A is defined as

ν = max{α1, . . . , αℓα
, γ1, . . . , γℓγ

, 0}, (1.3)

where α ∈ Nℓα and γ ∈ Nℓγ are as in Def. 1.2.1.

Definition 1.2.4 (Eigenvalue of a pencil). A number λ ∈ C is said to be an eigenvalue
of a pencil sE −A ∈ K[s]m×n if rk C(λE −A) < rk K(s)(sE −A), and we write

σ(E,A) := { λ ∈ C | λ is an eigenvalue of sE −A }

Lemma 1.2.5. Let sEi − Ai ∈ K[s]mi×ni for i = 1, 2 and define sE − A :=
sdiag (E1, E2) − diag (A1, A2) ∈ K[s]m×n := K[s](m1+m2)×(n1+n2). Further, let S ∈
Glm(K) and T ∈ Gln(K). Then

σ(SET, SAT ) = σ(E,A) = σ(E1, A1) ∪ σ(E2, A2).

Further, if S, T are such that sSET − SAT is in Kronecker form (1.1), then with J

as in Def. 1.2.1
σ(E,A) = σ(J).

Proof. We only prove the last statement, i.e., σ(E,A) = σ(J), since the others can
directly be deduced from Def. 1.2.4. First note that for all k ∈ N and λ ∈ C

rk C(λKk − Lk) = rk K(s)(sKk − Lk) = k − 1,

rk C(λNk − Ik) = rk K(s)(sNk − Ik) = k,

i.e., (1.1) σ(sKk − Ll) = σ(Nk − Ik) = ∅. Invoking the other two statements of this
lemma, we have in the Kronecker form (1.1)

σ(E,A) =σ(Il, J) ∪
ℓα⋃
i=1

σ(Nαi
, Iαi

) ∪
ℓβ⋃
i=1

σ(Kβi
, Lβi

) ∪
ℓγ⋃
i=1

σ(K⊤
αi
, L⊤

αi
)

=σ(Il, J) = σ(J).
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As for matrices, one can define the concept of semi-simplicity for eigenvalues. Namely,
we say that an eigenvalue λ ∈ σ(E,A) is semi-simple if J in the Kronecker form (1.1)
of sE −A has no Jordan blocks of size greater or equal to two at λ. Note that semi-
simplicity is well-defined. It is also possible, as for matrices, to introduce it by means
of algebraic and geometric multiplicity for regular pencils (see, e.g., [GT16; GT17]),
which are defined as follows.

Definition 1.2.6 (Regular pencil). A pencil sE − A ∈ K[s]m×n is called regular if
m = n and det(sE −A) ̸= 0 ∈ K[s].

Regularity is equivalent to the property that sE−A has no row and column minimal
indices in its Kronecker form (1.1), as the following theorem shows.

Theorem 1.2.7 (Weierstraß canonical form [Wei68], [Ber14, Chap. 2]). A pencil
sE − A ∈ Kn×n is regular if and only if there exist unique S, T ∈ Gln(K) such that
sSET − SAT is in Weierstraß form (1.2).

For regular matrix pencils the set of eigenvalues fulfils

σ(E,A) = { λ ∈ C | det(λE −A) = 0 } .

Note that regularity implies that sE−A is invertible as a matrix with entries in K(s).
In this case, σ(E,A) coincides with the set of poles of the entries of (sE − A)−1 ∈
K(s)n×n.
We state another elementary lemma which can be derived directly from the Weierstraß
canonical form for regular matrix pencils. We will characterize the index by means
of the growth of the resolvent (sE −A)−1 on a real half-axis.

Lemma 1.2.8. Let the pencil sE−A ∈ K[s]n×n be regular. Then the index of sE−A
is equal to the smallest number k for which there exists some M > 0 and ω ∈ R, such
that

∀λ > ω : ∥(λE −A)−1∥ ≤ M |λ|k−1.

Moreover, the size of the largest Jordan block at an eigenvalue λ of sE − A is equal
to the order (see [Rud87, p. 210]) of λ as a pole of (sE −A)−1 ∈ K(s)n×n.

Definition 1.2.9. A rational matrix G(s) ∈ K(s)n×n is called positive real, if

(a) G(s) has no poles in the open right complex half-plane.
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(b) G(λ) +G(λ)∗ ≥ 0 for all λ ∈ C with Re λ > 0.

It can directly be deduced that a matrix pencil sE − A ∈ K[s]n×n is positive real if
and only if E = E∗ ≥ 0 and A + A∗ ≤ 0. We recall some properties of positive real
matrix pencils, which result from a combination of [BR14b, Lem. 2.6] and [BR14a,
Cor. 2.3].

Lemma 1.2.10. Let sE −A ∈ K[s]n×n be a positive real pencil. Then the following
holds.

(a) sE −A is regular if and only if kerE ∩ kerA = {0}.

(b) The row and column minimal indices are at most zero (if there are any) and
their numbers coincide.

(c) The eigenvalues of the pencil are contained in the closed left half-plane C− and
the eigenvalues on the imaginary axis are semi-simple.

(d) The index of sE −A is at most two.

1.2.2 Differential-algebraic equations

In this thesis we focus on the linear and time-invariant control systems of differential-
algebraic equations (DAEs)

d
dt Ex(t) =Ax(t) +Bu(t),

y(t) =Cx(t) +Du(t),
(1.4)

for some E,A ∈ Km×n, B ∈ Km×k, C ∈ Kl×n, D ∈ Kl×k, and k, l,m, n ∈ N0.
Here, x denotes the state, u the input and y the output of the system. We write
[E,A,B,C,D] ∈ Σn,m,k,l for such systems. Some special cases deserve their own
shortened notation, namely,

• l = k:
[E,A,B,C,D] ∈ Σn,m,k;

• l = k, n = m:
[E,A,B,C,D] ∈ Σn,k;

• l = k, n = m, D = 0:
[E,A,B,C] ∈ Σn,k;

• l = 0: [E,A,B] ∈ Σn,m,k;

• l = 0 and n = m:
[E,A,B] ∈ Σn,k;

• l = k = 0 and n = m:
[E,A] ∈ Σn;

• l = k = 0: [E,A] ∈ Σn,m.
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Of course, we have to specify what properties the functions in (1.4) have to fulfil.
However, depending on the concrete application, different solution concepts are of in-
terest. For example, when considering optimal control problems with quadratic costs,
the function space L2 is a natural candidate, see [Ger15]. Following the behavioral
approach from [PW97] and the rather general solution concept found in [BR13], we
give the following definition for the solution set of (1.4).

Definition 1.2.11 (Behavior). The behavior of a system [E,A,B,C,D] ∈ Σn,m,k,l
is given by

B[E,A,B,C,D] =
{

(x, u, y) ∈ L1
loc (R,Kn × Kk × Kl)

∣∣∣∣
Ex ∈ W 1,1

loc (R,Kn), d
dt Ex = Ax+Bu, y = Cx+Du

}
and for x0 ∈ Kn we specify

B[E,A,B,C,D](x0) =
{

(x, u, y) ∈ B[E,A,B,C,D]
∣∣ (Ex)(0) = Ex0

}
.

Further notions of solution and behavior are discussed and used in, e.g., [Tre13;
OSS20]. The next concept is intimately linked to the behavior. It describes the
smallest subspace in which all solutions evolve.

Definition 1.2.12 (System space). The system space of [E,A,B,C,D] ∈ Σn,m,k,l is
defined as

V [E,A,B,C,D]
sys =

⋂
V⊂Kn+k+l subspace

B[E,A,B,C,D]⊂L1
loc (R,V)

V.

Further, we have B[E,A,B,C,D] ⊂ L1
loc

(
R,V [E,A,B,C,D]

sys

)
.

The system space is well-defined by arguments similar to those used for the proof of
[RV19, Prop. 3.2], the difference being that we also consider output systems and allow
for complex values. See also [BR13; Ber14] for characterizations of the system space.
We further introduce another vector space related to the system space.

Definition 1.2.13 (Space of consistent initial differential variables).
For a system [E,A,B,C,D] ∈ Σn,m,k,l its space of consistent initial differential vari-
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ables is defined as

V [E,A,B,C,D]
diff =

{
x0 ∈ Kn

∣∣ B[E,A,B,C,D](x0) ̸= ∅
}
.

Remark 1.2.14. Note that for systems [E,A,B] ∈ Σn,m,k the concepts of system
space and space of consistent initial values are linked by the relation

V [E,A,B,C,D]
diff = PV [E,A,B,C,D]

sys +̂ kerE,

where P : Kn+k+l → Kn denotes the projection on the first n components, cf. [BR13].

In order to give some intuition on the concepts we just introduced, we present the
following proposition recapitulating the findings of [Ber14, Sec. 2.4.2].

Proposition 1.2.15 (Prototypical DAEs). Let k, l ∈ N, A ∈ Kk×k, B ∈ Kk×l, B′ ∈
K(k−1)×l, and x0 ∈ Kk, x′

0 ∈ Kk−1. Then

(i) V [Ik,A,B]
sys = Kk+l and V [Ik,A,B]

diff = Kk with

B[Ik,A,B](x0) =
{

(x, u)
∣∣∣∣ u ∈ L1

loc (R,Kl),

x = eA·x0 +
∫ ·

0
eA(·−τ)Bu(τ) dτ

}
.

(ii) it holds

V [Nk,Ik,B]
sys = ran

[
B NkB ··· Nk−1

k
B

I 0 ··· 0

]
,

V [Nk,Ik,B]
diff = ran [N0

kB ··· Nk−1
k

B Ik−N⊤
k Nk ] ,

B[Nk,Ik,B](x0) =
{

(x, u)
∣∣∣∣ u ∈ L1

loc (R,Kl),

x = −
k−1∑
j=0

( d
dt Nk

)j
Bu, −

k−2∑
j=0

(
Nk
( d

dt Nk
)j
Bu
)

(0) = Nkx0,

and
(
Nk
( d

dt Nk
)j−1

Bu
)
j=1,...,k

∈ W 1,1
loc (R,Kk)

}
.

(iii) V [Kk,Lk,B
′]

sys = Kk+l and V [Kk,Lk,B
′]

diff = Kk with

B[Kk,Lk,B′](x0) =
{

((x̃, xk), u)
∣∣∣∣ (xk, u) ∈ L1

loc (R,K1+l),

(x̃, xk, u) ∈ B[Ik−1,Nk−1,[ ek−1 B
′ ]](Kkx0)

}
.
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(iv) it holds

V [K⊤
k ,L

⊤
k ,B]

sys =
(

gr [ Ik−1 0 ] [N0
kB ··· Nk−1

k
B ]

∩ ker e⊤
k [N0

kB ··· Nk−1
k

B ] × Kk−1)−1
,

V [K⊤
k ,L

⊤
k ,B]

diff = [ Ik−1 0 ] [N0
kB ··· Nk−1

k
B ] ker e⊤

k [N0
kB ··· Nk−1

k
B ] ,

B[K⊤
k
,L⊤

k
,B](x′

0) =
{

(x, u)
∣∣ ((x, 0), u) ∈ B[Nk,Ik,B](K⊤

k x
′
0)
}
.

In particular,

(i’) B[Ik,A] =
{
t 7→ eAtx0

∣∣ x0 ∈ Kk
}

⊂ L1
loc (R,Kk) and V [Ik,A]

sys = Kk;

(ii’) B[Nk,Ik] = {0} ⊂ L1
loc (R,Kk) and V [Nk,Ik]

sys = {0} ⊂ Kk;

(iii’) B[Kk,Lk] =
{ (( d

dt
)k−i

f
)
i=1,...,k

∣∣∣∣f ∈ W k−1,1
loc (R,K)

}
⊂ L1

loc (R,Kk)

and V [Kk,Lk]
sys = Kk;

(iv’) B[K⊤
k
,L⊤

k
] = {0} ⊂ L1

loc (R,Kk−1) and V [K⊤
k ,L

⊤
k ]

sys = {0} ⊂ Kk−1.

The proof techniques of [BR13, Sec. 3.1] can be directly transposed to our slightly
more general setting, in which values are taken in K instead of solely R, yielding the
following result.

Proposition 1.2.16 (Solutions under system equivalence).
Let [E,A,B] ∈ Σn,m,k, S ∈ Glm(K) and T ∈ Gln(K) and x0 ∈ Kn. Then

(i) B[E,A,B](Tx0) = TB[SET,SAT,SB](x0);

(ii) B[E,A,B] = TB[SET,SAT,SB];

(iii) V [E,A,B]
sys = [ T I ]V [SET,SAT,SB]

sys ;

(iv) V [E,A,B]
diff = TV [SET,SAT,SB]

diff .

The following additional properties are readily seen.

Proposition 1.2.17 (Solutions of block diagonal pencils). Let [E1, A1] ∈ Σn1,m1 ,
[E2, A2] ∈ Σn2,m2 and [E,A] := [diag (E1, E2),diag (A1, A2)]. Then

(i) B[E,A] = B[E1,A1] × B[E2,A2];

(ii) V [E,A]
sys = V [E1,A1]

sys × V [E2,A2]
sys ;
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(iii) V [E,A]
diff = V [E1,A1]

diff × V [E2,A2]
diff .

Now, Props. 1.2.15–1.2.17 directly yield the following result.

Corollary 1.2.18 (System space in terms of Kronecker form). Let [E,A] ∈ Σn,m
with S ∈ Glm(K) and T ∈ Gln(K) such that S(sE−A)T is in Kronecker form (1.1).
Then

V [E,A]
sys = T (Rn0 × {0}|α| × R|β| × {0}|γ|−ℓγ ). (1.5)

To close the section, let us introduce stability concepts concerning systems of the form

d
dt Ex(t) = Ax(t) +Bu(t),

and we put special emphasis on the case B = 0, that is, a system without input.

Definition 1.2.19 (Stability concepts). We say that [E,A] ∈ Σn,m

• is stable if
∀x ∈ B[E,A] ∃M ≥ 0 : ess supt≥0 ∥x(t)∥ ≤ M

for some M > 0.

• is asymptotically stable if

∀x ∈ B[E,A] : lim
t→∞

ess supτ≥t ∥x(τ)∥ = 0.

• has stable differential variables if

∀x ∈ B[E,A] ∃M ≥ 0 : sup
t≥0

∥Ex(t)∥ ≤ M.

• has asymptotically stable differential variables if

∀x ∈ B[E,A] : lim
t→∞

sup
τ>t

∥Ex(τ)∥ = 0.

Further, [E,A,B] ∈ Σn,m,k

• is behaviorally stabilizable if

∀x0 ∈ V [E,A,B]
diff ∃(x, u) ∈ B[E,A,B](x0) ∃M ≥ 0 : ess supt≥0 ∥x(t)∥ ≤ M.
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• is behaviorally asymptotically stabilizable if

∀x0 ∈ V [E,A,B]
diff ∃(x, u) ∈ B[E,A,B](x0) : lim

t→∞
ess supτ≥t ∥x(τ)∥ = 0.

• has behaviorally stablizable differential variables if

∀x0 ∈ V [E,A,B]
diff ∃(x, u) ∈ B[E,A,B](x0) ∃M ≥ 0 : sup

t≥0
∥Ex(t)∥ ≤ M.

• has behaviorally asymptotically stablizable differential variables if

∀x0 ∈ V [E,A,B]
diff ∃(x, u) ∈ B[E,A,B](x0) : lim

t→∞
sup
τ≥t

∥Ex(τ)∥ = 0.

1.3 Linear relations foundations

We introduce the notion of linear relation on Kn as the subspaces of Kn × Kn ∼=
K2n. An introduction to linear relations can be found, e.g., in [BHdS20; Cro98]. An
important special case of a linear relation is the graph of a square matrix M ∈ Kn×n,
i.e.,

gr M := {(x,Mx) |x ∈ Kn}.

This motivates to define the following concepts for linear relations.

Definition 1.3.1 (Concepts and operations on linear relations). Let n ∈ N, and
L,M ⊂ K2n be linear relations in Kn. The domain, kernel, range and multi-valued
part of a relation M in Kn are

domM = {x ∈ Kn | (x, y) ∈ M}, kerM = {x ∈ Kn | (x, 0) ∈ M},

ranM = {y ∈ Kn | (x, y) ∈ M}, mulM = {y ∈ Kn | (0, y) ∈ M},

and scalar multiplication with α ∈ K, operator-like sum, product, inverse and adjoint
are defined by

αM := {(x, αy) ∈ K2n | (x, y) ∈ M},

M + L := {(x, y1 + y2) ∈ K2n | (x, y1) ∈ L, (x, y2) ∈ M},

ML := {(x, z) ∈ K2n | ∃y ∈ Kn s.t. (x, y) ∈ L, (y, z) ∈ M},

M−1 := {(y, x) ∈ K2n | (x, y) ∈ M},

M∗ := {(x, y) ∈ K2n | ⟨w, x⟩ = ⟨v, y⟩ ∀ (v, w) ∈ M}.
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A linear relation with M ⊆ M∗ is called symmetric, whereas M is self-adjoint, if
M = M∗. Likewise, M with M ⊆ −M∗ is called skew-symmetric, and M is skew-
adjoint, if it has the property M = −M∗.

We underline that by writing (x, y) ∈ M, where M ⊂ K2n, we particularly mean that
x, y ∈ Kn. If K = C then a linear relation M is symmetric (self-adjoint) if and only
if ıM is skew-symmetric (skew-adjoint).
Note that the operator-like sum of two linear relations L,M ⊂ K2n is not the com-
ponentwise sum, which was introduced as

L+̂M =
{

(x1 + x2, y1 + y2) ∈ K2n ∣∣ (x1, y1) ∈ L, (x2, y2) ∈ M
}
.

Similarly, with another linear relation N ⊂ K2m we define the sorted Cartesian
product as

L×̂N =
{

(x1, x2, y1, y2) ∈ K2(n+m)
∣∣∣ (x1, y1) ∈ M, (x2, y2) ∈ N

}
.

We oftentimes use the identity

(−M∗)−1 = M⊥, (1.6)

where M⊥ is the orthogonal complement of M ⊆ K2n. In particular, we can conclude
that

2n = dimM + dimM⊥ = dimM + dim(M∗)−1 = dimM + dimM∗,

which gives
dimM∗ = 2n− dimM. (1.7)

Other well-known identities are

kerM∗ = (ran M)⊥, (dom M)⊥ = mul M∗. (1.8)

We will also use the fact that a linear relation M in Kn can be written as M =
ker[K,L] or M = ran [ FG ] with matrices F,G ∈ Kn×l and K,L ∈ Kl×n which we
will refer to as kernel and image (or range) representations. For K = C, these
representations always exist for each choice of l ∈ N such that l ≥ dimM, see, e.g.,
[BTW16, Thm. 3.3]. The proof of the existence of the range representation for K = R
can also be derived from the proof of [BTW16, Thm. 3.3]. Moreover, the link between
two different representations is readily seen.
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Proposition 1.3.2. Let M be a linear relation in Kn for which we have two kernel
and image representations, i.e.,

M = ran
[
F1
G1

]
= ran

[
F2
G2

]
= ker [K1 L1 ] = ker [K2 L2 ]

for some matrices F1, G1,K
∗
1 , L

∗
1 ∈ Kn×l1 and F2, G2,K

∗
2 , L

∗
2 ∈ Kn×l2 for some

l1, l2 ≥ dimM. Then there exist T1, T
∗
2 , S

∗
1 , S2 ∈ Kl1×l2 with rk T1 = rk T2 = rk S1 =

rk S2 = dimM such that[
F1
G1

]
T1 =

[
F2
G2

]
,
[
F2
G2

]
T2 =

[
F1
G1

]
and

S1 [K1 L1 ] = [K2 L2 ] , S2 [K2 L2 ] = [K1 L1 ] .

Together with (1.6) we have for M = ran [ FG ] = ker[K,L] that

M∗ = ker[G∗,−F ∗] = ran
[
L∗

−K∗
]
. (1.9)

In the following result, we characterize symmetry and self-adjointness of a linear
relation by means of certain properties of the matrices in the range and kernel repres-
entations. The result is well-known, see, e.g., [BHdS20, Cor. 1.10.8] and [vdSM18].

Lemma 1.3.3. Let M ⊂ K2n be a linear relation. Then M is symmetric if and only
if M = ran [ FG ] for some F,G ∈ Kn×l with G∗F = F ∗G. Moreover, the following
statements are equivalent, see also [vdSM18],

(a) M is self-adjoint,

(b) M is symmetric and dimM = n,

(c) M = ker[K,L] for some K,L ∈ Kn×n with KL∗ = LK∗ and
rk [K,L] = n.

Proof. To prove the first equivalence, assume that M ⊂ K2n is symmetric and let
F,G ∈ Kn×l such that M = ran [ FG ]. The symmetry of M together with (1.9) now
implies that

∀ z ∈ Kn : 0 = [G∗,−F ∗] [ FG ] z︸ ︷︷ ︸
∈M⊂M∗

= (G∗F − F ∗G)z,

whence G∗F = F ∗G.
Conversely, assume that M = ran [ FG ] for some F,G ∈ Kn×l with G∗F = F ∗G. Let
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(x1, y1), (x2, y2) ∈ M. Then there exists some z1, z2 ∈ Kn with x1 = Fz1, y = Gz1,
x2 = Fz2 and y2 = Gz2. We deduce

⟨y2, x1⟩ = ⟨Gz2, F z1⟩ = ⟨z2, G
∗Fz1⟩ = ⟨z2, F

∗Gz1⟩ = ⟨Fz2, Gz1⟩ = ⟨x2, y1⟩,

i.e., M is symmetric. We now show the equivalences (a)-(c).
“(a)⇒(b)”: If M ⊂ K2n is self-adjoint, then, by (1.7),

dimM = dimM∗ = 2n− dimM,

which gives dimM = n.
“(b)⇒(c)”: Assume that M ⊂ K2n is symmetric and dimM = n. By the first
equivalence, there exist F,G ∈ Kn×n such that M = ran [ FG ] and G∗F = F ∗G.
Since M = M∗, the choices of K = G∗ and L = −F ∗ together with (1.9) lead to
M = ker[K,L] with KL∗ = LK∗. Further, we have

n = dimM = rk [ FG ] = rk [K,L].

“(c)⇒(a)”: Assume that M = ker[K,L] for K,L ∈ Kn×n with rk [K,L] = n and
KL∗ = LK∗. Then, by (1.9), M∗ = ran

[
L∗

−K∗
]
. Assume that (x, y) ∈ M∗. Then

there exists some z ∈ Kn with x = L∗z and y = −K∗z. This yields

[K,L] ( xy ) = Kx+ Ly = KL∗z − LK∗z = 0.

Altogether we obtain that M∗ ⊂ M. On the other hand, we obtain from rk [K,L] = n

that dimM = dim ker[K,L] = n and dimM∗ = rk
[
L∗

−K∗
]

= n, which, together with
M∗ ⊂ M leads to M∗ = M.

Remark 1.3.4. Note that Lem. 1.3.3 can be further modified to characterize skew-
adjointness of a linear relation M. In particular, it is analogous to prove the equival-
ence of the statements, see [vdSM18],

(a) M is skew-adjoint,

(b) M is skew-symmetric and dimM = n,

(c) M = ker[K,L] for some K,L ∈ Kn×n with KL∗ = −LK∗ and rk [K,L] = n,

as well as the equivalence of the statements

(d) M is skew-symmetric,
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(e) M = ran [ FG ] for some F,G ∈ Kn×l with G∗F = −F ∗G.

Moreover, the equivalence of the statement

(f) Re ⟨x, y⟩ = 0 for all (x, y) ∈ M,

to (d) and (e) follows from considering

Re ⟨x, y⟩ = 1
2 (⟨x, y⟩ + ⟨y, x⟩) = z∗(F ∗G+G∗F )z,

for (x, y) = (Fz,Gz) ∈ M with z ∈ Kl given by the range representation M =
ran [ FG ].

Definition 1.3.5 (dissipative, nonnegative). Let M ⊂ K2n be a linear relation. Then
M is called

(a) dissipative, if

Re ⟨x, y⟩ ≤ 0, for all (x, y) ∈ M.

(b) nonnegative, denoted by M ≥ 0, if M is symmetric with

⟨x, y⟩ ≥ 0, for all (x, y) ∈ M

and nonpositive, denoted by M ≤ 0, if −M is nonnegative.

(c) maximally dissipative, if it dissipative, and it is not a proper subspace of any
dissipative linear relation in K2n.

(d) maximally nonnegative, if it is nonnegative, and it is not a proper subspace of
any nonnegative linear relation in K2n.

We would like to remark that other definitions of dissipative linear relations exists
in the literature. For example, in [BHdS20, Def. 1.6.1] a linear relation M ⊆ C2n is
called dissipative if Im⟨x, y⟩ ≥ 0 for all (x, y) ∈ M. However, if M is dissipative in
the sense of Def. 1.3.5 then −ıM is dissipative in the aforementioned sense and vice
versa.
In the context of port-Hamiltonian systems, see e.g. [vdSM18], a different terminology
is custom, and we put a special emphasis on it by giving the following definition.

Definition 1.3.6 (Dirac and Lagrangian subspace). A Dirac structure or Dirac sub-
space D of Kn × Kn is a skew-adjoint linear relation in Kn and a Lagrange structure
or Lagrangian subspace of L of Kn × Kn is a self-adjoint linear relation in Kn.
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Figure 1.1: An overview of the structural assumptions on the subspace M in range
representation with F,G ∈ Kn×n.

In particular, Dirac subspaces are maximally dissipative linear relations, and Lag-
rangian subspaces are maximally nonnegative linear relations, but the converse is not
true in general, see Fig. 1.1.
We now collect some basic results on linear relations. As a consequence of Lem. 1.3.3
and Remark 1.3.4, we can characterize nonnegativity and dissipativity as follows.

Lemma 1.3.7. Let M = ran [ FG ] with F,G ∈ Kn×l be a linear relation. Then
M is nonnegative if and only if G∗F = F ∗G ≥ 0 and dissipative if and only if
G∗F + F ∗G ≤ 0. Moreover, the following statements are equivalent.

(a) M is maximally nonnegative.
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(b) M is nonnegative and dimM = n.

(c) M is nonnegative and self-adjoint.

Further, M is maximally dissipative if and only if dimM = n and
G∗F + F ∗G ≤ 0.

Proof. For the first two equivalences, observe that the range representation yields

⟨x, y⟩ ≥ 0, for all (x, y) ∈ M ⇐⇒ z∗F ∗Gz ≥ 0, for all z ∈ Kn

and

Re ⟨x, y⟩ ≤ 0, for all (x, y) ∈ M ⇐⇒ z∗(F ∗G+G∗F )z ≤ 0, for all z ∈ Kn.

The statements then follows directly from Lem. 1.3.3. We now show the equivalences
(a)-(c).
“(a)=⇒(b)”: Assume that M is maximally nonnegative. Then it follows from the
definition of nonnegativity that M∗ is nonnegative as well. By the symmetry of M,
we further have M ⊂ M∗, and maximality leads to M = M∗. Thus by Lem. 1.3.3,
dimM = n.
“(b)=⇒(a)”: Let M be nonnegative with dimM = n. Then in particular, M is
symmetric with dimM = n, whence, by Lem. 1.3.3, it is not a proper subspace of
a symmetric relation. In particular, it is not a proper subspace of a nonnegative
relation. That is, M is maximally nonnegative.
“(b)⇐⇒(c)”: This equivalence is a direct consequence of the equivalence of the state-
ments (a) and (b) of Lem. 1.3.3.
It remains to prove the last equivalence for dissipative relations. Assume that M =
ran [ FG ] is dissipative. First note that

F ∗G+G∗F = [ FG ]∗
[ 0 In

In 0
]

[ FG ] ≤ 0

and that
[ 0 In

In 0
]

has n positive and n negative eigenvalues. If dimM > n, then
Sylvester’s inertia theorem [HJ13, Thm. 4.5.8] yields that F ∗G + G∗F has to have
at least one positive eigenvalue. Consequently, any n-dimensional dissipative relation
is maximal. On the other hand, if M is dissipative with dimM < n, we can, again
by employing Sylvester’s inertia theorem, infer that M can be further extended to
a linear relation which is still dissipative.
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Lemma 1.3.8. Let M = ran [ FG ] with F,G ∈ Kn×l be a dissipative (symmetric)
linear relation. Then dom M ⊆ (mul M)⊥ and ran M ⊆ (kerM)⊥. Furthermore,
the following three statements are equivalent.

(i) M is maximally dissipative (self-adjoint).

(ii) M is dissipative (symmetric) and dom M = (mul M)⊥.

(iii) M is dissipative (symmetric) and ran M = (kerM)⊥.

Proof. The statement dom M ⊆ (mul M)⊥ as well as the implication “(i)=⇒(ii)”
have been proven in [ADW13, Lem. 2.1] for the dissipative case, and they follow
from (1.8) for the symmetric case. Further, if M is dissipative (symmetric), so is
M−1 by Lem 1.3.3. Hence, kerM = mul (M−1) ⊆ dom (M−1)⊥ = (ran M)⊥.
“(ii)=⇒(i)”: Let M be dissipative or symmetric and, additionally, assume that
dom M = (mul M)⊥. For k := dim dom M, let (x1, . . . , xk) be a basis of dom M.
Then there exist y1, . . . , yk ∈ Kn such that (xi, yi) ∈ M for i = 1, . . . , k. Con-
sequently,

span {(x1, yk), . . . , (xk, yk)} ∩ ({0} × mul M) = {0}.

Since, further, {0} × mul M ⊆ M, we obtain that

span {(x1, yk), . . . , (xk, yk)} ∩ ({0} × mul M) ⊂ M,

and thus

dimM ≥ dim dom M + dim mul M = dim(mul M)⊥ + dim mul M = n.

Then Lem. 1.3.7 (resp. Lem. 1.3.3) implies that M is maximally dissipative (self-
adjoint).
“(ii)⇐⇒(iii)”: This follows by the already proven equivalence between (i) and (ii),
together with dom M = ran M−1, mul M = kerM−1, and the fact that M is
dissipative (maximally dissipative, symmetric, self-adjoint) if and only if the inverse
M−1 has the respective property.

Proposition 1.3.9. Let M = ran [ FG ] with F,G ∈ Kn×l be a linear relation with
dimM = n. Then M = gr M for some M ∈ Kn×n if and only if rk F = n.
In this case, M is self-adjoint (skew-adjoint, maximally nonnegative, maximally dis-
sipative) if and only if M is Hermitian (skew-Hermitian, positive semi-definite, dis-
sipative).



26 CHAPTER 1. MATHEMATICAL TOOLBOX

Proof. Let M = ran [ FG ] with dimM = n. If M = gr M for some M ∈ Kn×n

then ran F = dom M = Kn which implies rk F = n. Conversely, let F ∈ Kn×l be
given with rk F = n. Then dom M = ran F = Kn. Consider the canonical basis
(e1, . . . , en) of Kn. Then there exist x1, . . . , xn with Fxi = ei for i = 1, . . . , n. Define

M = [Gx1, . . . , Gxn] ∈ Kn×n.

Then, by [ FG ]xi =
(
Fxi

Gxi

)
=
( ei

Mei

)
=
[
In

M

]
ei, we obtain

ran
[
In

M

]
⊂ ran [ FG ] .

However, since the dimensions of both spaces coincide, we even have equality.
The second part of the result follows from Lem. 1.3.8 and Lem. 1.3.7.

The following result (cf. [ABJ+09]) enables us to derive classic representations of Dirac
and Lagrangian subspaces that can be found in, e.g., [vdSJ14, Sec. 5.2], [DvdS98],
and [Cou90, Prop. 1.1.4].

Proposition 1.3.10. Let M ⊂ K2m be a dissipative (symmetric, skew-symmetric,
nonnegative) linear relation. Then dom M ⊂ (mul M)⊥ and the operator

M : dom M → (mul M)⊥, Mx := P(mul M)⊥y, if (x, y) ∈ M, (1.10)

is well-defined, dissipative (Hermitian, skew-Hermitian, positive semi-
definite) and

M = ran
[

Pdom M

MPdom M + Pmul M

]
. (1.11)

Further, if M is maximally dissipative (self-adjoint, skew-adjoint), then ran M ⊂
dom M.

Proof. Step 1: We show that the operator M as given by (1.10) is well-defined. To
this end, let (x, y), (x, z) ∈ M. Then (0, y−z) ∈ M and consequently y−z ∈ mul M,
which is equivalent to P(mul M)⊥(y− z) = 0, i.e., P(mul M)⊥y = Mx = P(mul M)⊥z, as
desired.
Step 2: We show that M is dissipative (Hermitian, skew-Hermitian, positive semi-
definite) if M is dissipative (symmetric, skew-symmetric, nonnegative). To this end,
let (x, y) ∈ M. Then the trivial decomposition y = P(mul M)⊥y + Pmul My, together
with the range representations of Lem. 1.3.3 and Remark 1.3.4, as well as dom M ⊂
(mul M)⊥ due to Lem. 1.3.8 yield

0 ≥ Re⟨x, y⟩ = Re⟨x, P(mul M)⊥y + Pmul My⟩
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= Re⟨x, P(mul M)⊥y⟩ = Re⟨x,Mx⟩

if M is dissipative,

0 = Re⟨x, y⟩ = Re⟨x, P(mul M)⊥y + Pmul My⟩

= Re⟨x, P(mul M)⊥y⟩ = Re⟨x,Mx⟩

if M is skew-symmetric,

⟨x,Mx⟩ = ⟨x, P(mul M)⊥y⟩ =⟨x, P(mul M)⊥y + Pmul My⟩

=⟨x, y⟩ = ⟨y, x⟩ = ⟨Mx, x⟩

if M is symmetric, and additionally

0 ≤ ⟨x, y⟩ = ⟨x,Mx⟩

if M is nonegative.
Step 3: We prove the range representation (1.11). By dom M ⊂ (mul M)⊥ the
readily verified decomposition

M = { (x,Mx) | x ∈ dom M } ⊕̂({0} × mul M) (1.12)

is orthogonal. Let x ∈ Km. Then (1.12) yields

(Pdom Mx,MPdomMx+ Pmul Mx)

= (Pdom Mx,MPdom Mx+ (0, Pmul Mx) ∈ M.

this proves the backward inclusion “⊃” of (1.11). If (x, y) ∈ M, then (x, y) =
(x,Mx + z) for some z ∈ mul M. Therefore, there exists some ẑ ∈ Km such that
Pdom Mẑ = x and P(dom M)⊥ ẑ = z. Combining all of the above, we find

(x, y) =(x,Mx+ z) = (x,Mx+ Pmul Mz)

=(Pdom Mẑ,MPdom Mẑ + Pmul MP(dom M)⊥ ẑ)

=(Pdom MMPdom Mẑ + Pmul Mẑ).

This proves the forward inclusion “⊂” of (1.11) and thus (1.11) holds.
Step 4: We prove the last statement of the proposition. If M is maximally dissipative
(self-adjoint, skew-adjoint), then by (1.10), Lem. 1.3.3, and Remark 1.3.4 we have
ran M ⊂ (mul M)⊥ = dom M.
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The following result is well-know for Dirac and Lagrange structures, see [vdSM18]
and [vdSJ14, Sec. 5.2]. We are also interested in the maximal dissipative case and
give the proof for the sake of completeness.

Corollary 1.3.11. Let M be a maximally dissipative or self-adjoint linear relation
in Kn. Let dim kerM = k and dim mul M = m. Then there exist K,M ∈ Kn×n,
B ∈ Kn×k, and C ∈ Kn×m such that

kerK = kerM = mul M⊕̂ kerM,

ran K ⊂ ran M, ran M ⊂ dom M,

ran B = kerM, ran C = mul M,

(1.13)

and

M =
{

(f, e) ∈ Kn × Kn
∣∣ ∃λ ∈ Kk : f = Ke+Bλ ∧B∗e = 0

}
= { (f, e) ∈ Kn × Kn | ∃λ ∈ Km : e = Mf + Cλ ∧ C∗f = 0 } .

(1.14)

Further, if M is maximally dissipative (skew-adjoint), then K,M are dissipative
(skew-Hermitian), whereas if M is maximally nonnegative (self-adjoint), then K,M

are positive semi-definite (symmetric).
Conversely, any linear relation M with such a representation is a maximally dissip-
ative (skew-adjoint, self-adjoint, maximally nonnegative) relation.

Proof. Step 1 : We construct M and C. Let O : dom M → (mul M)⊥ = dom M
be the operator given by (1.10). Let M ∈ Kn×n be the matrix representation of
OPdom M with respect to the canonical basis. For x ∈ Kn it holds

Mx = 0 ⇐⇒OPdom Mx = 0

⇐⇒
(
x ∈ (dom M)⊥) ∨ (∃y ∈ mul M : (Pdom Mx, y) ∈ M)

⇐⇒(x ∈ mul M) ∨ (Pdom Mx ∈ kerM)

⇐⇒x ∈ mul M⊕̂ kerM,

and it also follows from Prop. 1.3.10 that ran M ⊂ dom M. Let C ∈ Kn×m be
a matrix whose columns form a basis of mul M. Then trivially ran C = mul M.
Invoking (1.11)

M = ran
[

Pdom M

OPdom M + Pmul M

]
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= { (f, e) ∈ Kn × Kn | ∃z ∈ Kn : f = Pdom Mz,

e = OPdom Mz + Pmul Mcz }

= { (f, e) ∈ Kn × Kn | ∃z1 ∈ dom M, z2 ∈ (dom M)⊥ :

f = Pdom M(z1 + z2), e = OPdom M(z1 + z2) + Pmul M(z1 + z2) }

= { (f, e) ∈ Kn × Kn | ∃z1 ∈ dom M, z2 ∈ mul M :

f = z1, e = Oz1 + z2 }

= { (f, e) ∈ Kn × Kn | ∃λ ∈ Km : C∗f = 0 ∧ e = Mf + Cλ } .

Step 2 : We show the properties of M inherited by M. By Prop. 1.3.10, O is dissipat-
ive (Hermitian, skew-Hermitian, positive semi-definite) if M is maximally dissipative
(skew-adjoint, self-adjoint, maximally nonnegative). M being the matrix representa-
tion of O with respect to the canonical basis, it inherits these properties.
Step 3 : We construct K and B and show their properties. If M is maximally dissipat-
ive (skew-adjoint, self-adjoint, maximally nonnegative), then so is M−1. Hence, it suf-
fices to apply Steps 1 & 2 to M−1 since mul M−1 = kerM and dom M−1 = ran M.
Step 3 : We show the reverse statement. Let M satisfy (1.14) with matrices fulfilling
(1.13). Then for all (f, e) ∈ M there exist some λk ∈ Kk and λm ∈ Km such that

⟨f, e⟩ = ⟨Ke+Bλk, e⟩ = ⟨Ke, e⟩ and ⟨f, e⟩ = ⟨f,Mf + Cλm⟩ = ⟨f,Mf⟩.

From this we directly see the properties of dissiptivity, nonnegativity, symmetry, and
skew-symmetry of M inherited by K and M , and we deduce dom M ⊂ (mul M)⊥

and ran M ⊂ (kerM)⊥ by Lem. 1.3.8. Note that

M = [K B
I 0 ]

(
(kerM)⊥ × Kk

)
= [ I 0

M C ]
(
(mul M)⊥ × Km

)
,

with ker [K B
I 0 ] ∩

(
(kerM)⊥ × Kk

)
= {0} and ker [ I 0

M C ] ∩
(
(mul M)⊥ × Km

)
= {0}

since dom M ⊂ (mul M)⊥ and ran M ⊂ (kerM)⊥. Hence, dimM = (n− k) + k =
(n−m) +m = n, i.e., M is maximal.

Besides multiplication, there exists another way to combine two linear relations.

Definition 1.3.12. Let M,L be two relations in Kn1+n2 and Kn2+n3 , respectively,
for some n1, n2, n3 ∈ N0. We define the interconnection of M and L with respect to



30 CHAPTER 1. MATHEMATICAL TOOLBOX

Kn2 as

M ◦ L :=
{

(f1, f3, e1, e3) ∈ Kn1+n3 × Kn1+n3 | ∃(f2, e2) ∈ K2n2 :

(f1, f2, e1, e2) ∈ M ∧ (−f2, f3, e2, e3) ∈ L
}
.

Note that this interconnection uses the same notation as the composition in [vdSJ14]
between a nonpositive relation and a skew-adjoint relation. However, it defines a
different object while being conceptually similar. Our notion of interconnection cor-
responds to the interconnection of two skew-adjoint subspaces, as found in, e.g.,
[CvdSB07]. In the context of Def. 1.3.12, the sorted Cartesian product M×̂L can be
interpreted as a special case of an interconnection, namely, an interconnection where
one interconnects with respect to Kn2 with n2 = 0.
The following result shows that any dissipative relation can be understood as the
interconnection of a skew-adjoint relation and a nonpositive relation.

Lemma 1.3.13. Let M be a dissipative relation in Kn. Then there exist a skew-
adjoint relation D in K2n and a nonpositive relation R in Kn such that interconnecting
with respect to Kn we have

M = D ◦ R.

Moreover, if M is maximal, then R can be chosen maximal too. In particular, there
exist matrices J = −J∗ ∈ Kn×n, 0 ≤ R ∈ Kn×n, and C ∈ Kn×m with dimM = m

such that

D = gr
[
J −In
In 0

]
,

R = { (fR, eR) ∈ Kn × Kn | ∃λ ∈ Km : fR = −ReR + Cλ ∧ C∗eR = 0 } .

Proof. By Prop. 1.3.10 there exists a dissipative operator M : dom M → (mul M)⊥

such that

M = ran
[

Pdom M

MPdom M + Pmul M

]
.

Extend D (possibly trivially) to a dissipative operator M̄ : Kn → Kn, identify M̄

with its matrix representation with respect to the canonical basis and decompose it
as M̄ = J −R with J = −J∗ ∈ Kn×n and 0 ≤ R ∈ Kn×n. Then

M = ran
[

Pdom M

(J −R)Pdom M + Pmul M

]
.
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Defining

D = gr
[
J −In
In 0

]
, R = ran

[
−RPdom M + Pmul M

Pdom M

]
,

we find

D ◦ R = { (f, e) ∈ Kn × Kn | ∃fR, eR ∈ Kn : (f, fR, e, eR) ∈ D ∧ (−fR, eR) ∈ R }

=
{

(f, e) ∈ Kn × Kn
∣∣∣∣ ∃fR, eR, z ∈ Kn :

(
e

eR

)
=
[
J −In
In 0

](
f

fR

)
∧(

−fR
eR

)
=
[

−RPdom M + Pmul M

Pdom M

]
z

}

=
{

(f, e) ∈ Kn × Kn
∣∣∣∣∣ ∃z ∈ Rn :

(
f

e

)
=
[

Pdom M

(J −R)Pdom M + Pmul M

]
z

}
= M.

Further, D is clearly a skew-adjoint and R a nonpositive relation. It remains to show
that R can be chosen maximally nonpositive if M is maximally dissipative. In this
case, we can perform a similar construction with Cor. 1.3.11 instead of Prop. 1.3.10.
Namely, we know that there exist a dissipative matrix D ∈ Kn×n and a matrix
C ∈ Kn×m where m = dim mul M such that

M = { (f, e) ∈ Kn × Kn | ∃λ ∈ Km : e = Mf + Cλ ∧ C∗f = 0 } .

Now decomposing D = J −R with J = −J∗ ∈ Kn×n and 0 ≤ R ∈ Kn×n and defining

D = gr
[
J −In
In 0

]
,

R = { (fR, eR) ∈ Kn × Kn | ∃λ ∈ Km : fR = −ReR + Cλ ∧ C∗eR = 0 } ,

we obtain

D ◦ R = { (f, e) ∈ Kn × Kn | ∃fR, eR ∈ Kn : (f, fR, e, eR) ∈ D ∧ (−fR, eR) ∈ R }

=
{

(f, e) ∈ Kn × Kn
∣∣∣∣ ∃fR, eR ∈ Kn :

(
e

eR

)
=
[
J −In
In 0

](
f

fR

)

∧ ∃λ ∈ Km : fR = ReR − Cλ ∧ C∗eR = 0
}

= { (f, e) ∈ Kn × Kn | ∃λ ∈ Km : e = (J −R)f + Cλ ∧ C∗f = 0 }
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= M.

Moreover, D is again readily a skew-adjoint and −R is maximally nonnegative by
Cor. 1.3.11, i.e., R is maximally nonpositive.

Next, we show how to obtain the range representation of an interconnection of two
linear relations. A similar result to the subsequent proposition was already formulated
and proven for skew-adjoint relations in [CvdSB07, Thm. 4]. However, we present the
proof for the sake of completeness.

Proposition 1.3.14. Let M = ran [ F∗
1 F∗

21 G
∗
1 G∗

21 ]∗, L = ran [ F∗
22 F

∗
3 G∗

22 G
∗
3 ]∗ be two

relations in Kn1+n2 and Kn2+n3 , respectively, for some F1, G1 ∈ Kn1×m, F21, G21 ∈
Kn2×m, F22, G22 ∈ Kn2×l and F3, G3 ∈ Kn3×l with n1, n2, n3,m, l ∈ N0. Let M ∈
Km×k, L ∈ Kl×k with ran [ML ] = ker

[
F21 F22
G21 −G22

]
for some k ∈ N0. Then

M ◦ L = ran


F1M

F3L

G1M

G3L

 .

Further, the following table shows properties inherited by M ◦ L from M and L.

M
L

skew-symmetric dissipative nonpositive symmetric

skew-symmetric skew-symmetric dissipative dissipative –
dissipative dissipative dissipative dissipative –
nonpositive dissipative dissipative nonpositive symmetric
symmetric – – symmetric symmetric

Furthermore, if M ⊂ M∗ and L ⊂ L∗ (M ⊂ −M∗ and L ⊂ −L∗), then M ◦ L ⊂
(M ◦ L)∗ (M ◦ L ⊂ −(M ◦ L)∗).

Proof. The first statement follows by observing

(f1, f3, e1, e3) ∈ M ◦ L

⇐⇒ ∃(f2, e2) ∈ K2n2 : (f1, f2, e1, e2) ∈ M ∧ (−f2, f3, e2, e3) ∈ L
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⇐⇒ ∃λ ∈ Km∃µ ∈ Kl :
(
f1
f2
e1
e2

)
=
[
F1
F21
G1
G21

]
λ ∧

(−f2
f3
e2
e3

)
=
[
F22
F3
G22
G3

]
µ

⇐⇒ ∃λ ∈ Km∃µ ∈ Kl :
(
f1
e1

)
=
[
F1
G1

]
λ ∧

(
f3
e3

)
=
[
F3
G3

]
µ ∧

(
λ
µ

)
∈ ker

[
F21 F22
G21 −G22

]
⇐⇒ ∃ν ∈ Kk :

(
f1
e1

)
=
[
F1
G1

]
λ ∧

(
f3
e3

)
=
[
F3
G3

]
µ ∧

(
λ
µ

)
= [ML ] ν

⇐⇒ ∃ν ∈ Kk :
(
f1
f3
e1
e3

)
=
[
F1M
F3L
G1M
G3L

]
ν

⇐⇒ (f1, f3, e1, e3) ∈ ran
[
F1M
F3L
G1M
G3L

]
.

Define

F =
[
F1M

F3L

]
, FM =

[
F1

F21

]
, FL =

[
F22

F3

]
,

and

G =
[
G1M

G3L

]
, GM =

[
G1

G21

]
, GL =

[
G22

G3

]
.

It follows from [
F21 F22

G21 −G22

][
M

L

]
= 0

that
M∗G∗

21F21M + L∗G∗
22F22L = 0,

Hence, we have

G∗F =
[
G1M

G3L

]∗ [
F1M

F3L

]
= M∗G∗

1F1M + L∗G∗
3F3L

= M∗(G∗
1F1 +G∗

21F21)M + L∗(G22F22 +G∗
3F3)L

= M∗G∗
MFMM + L∗G∗

LFLL.

From the latter one easily derives the following table, which is equivalent to the table
in the theorem by Lem. 1.3.7.

M
L

G∗
LFL = −F ∗

LGL G∗
LFL + F ∗

LGL ≤ 0 G∗
LFL ≤ 0 G∗

LFL = F ∗
LGL

G∗
MFM = −F ∗

MGM G∗F = −F ∗G G∗F + F ∗G ≤ 0 G∗F + F ∗G ≤ 0 –
G∗

MFM + F ∗
MGM ≤ 0 G∗F + F ∗G ≤ 0 G∗F + F ∗G ≤ 0 G∗F + F ∗G ≤ 0 –

G∗
MFM ≤ 0 G∗F + F ∗G ≤ 0 G∗F + F ∗G ≤ 0 G∗F ≤ 0 G∗F = F ∗G

G∗
MFM = F ∗

MGM – – G∗F = F ∗G G∗F = F ∗G
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For the last statement, that is the inheritance of the maximality, we first consider the
case M = ±M∗ and L = ±L∗ with the same sign, i.e., M and L are both maximally
nonpositive/symmetric/skew-symmetric. Then

ker [M∗ L∗ ] = (ran [ML ])⊥ =
(
ker
[
F21 F22
G21 −G22

])⊥ = ran
[
F∗

21 G∗
21

F∗
22 −G22

]
.

Further invoking (1.9) we deduce

(f1, f3, e1, e3) ∈ M ◦ L

⇐⇒ (f1, f3, e1, e3) ∈ ran
[
F1M
F3L
G1M
G3L

]

⇐⇒ ∃(f2, e2) ∈ K2n2 : (f1, f2, e1, e2) ∈ ran
[
F1
F21
G1
G21

]
∧ (−f2, f3, e2, e3) ∈ ran

[
F22
F3
G22
G3

]
⇐⇒ ∃(f2, e2) ∈ K2n2 : (f1, f2, e1, e2) ∈ ker [G∗

1 G∗
21 ±F∗

1 ±F∗
21 ]

∧ (−f2, f3, e2, e3) ∈ ker [G∗
22 G3 ±F∗

22 ±F∗
3 ]

⇐⇒ ∃(f2, e2) ∈ K2n2 :
[
G∗

1 G∗
21 0 ±F∗

1 ±F∗
21 0

0 −G∗
22 G

∗
3 0 ±F∗

22 ±F∗
3

] f1
f2
f3
e1
e2
e3

 = 0

⇐⇒ ∃(f2, e2) ∈ K2n2 :
[
G∗

1 0 ±F∗
1 0

0 G∗
3 0 ±F∗

3

]( f1
f3
e1
e3

)
=
[
F∗

21 G∗
21

F∗
22 −G22

] (−f2
−e2

)
⇐⇒ (f1, f3, e1, e3) ∈ ker [M∗ L∗ ]

[
G∗

1 0 ±F∗
1 0

0 G∗
3 0 ±F∗

3

]
⇐⇒ (f1, f3, e1, e3) ∈ ker [M∗G∗

1 L∗G∗
3 ±M∗F∗

1 ±L∗G∗
3 ]

⇐⇒ (f1, f3, e1, e3) ∈ ±(M ◦ L)∗.

In particular, Prop.1.3.14 states that the interconnection of two maximal linear rela-
tions that both are either symmetric or nonpositive is again maximal with the same
property. However, the converse is not true as the following example shows, that is
two nonmaximal relation can interconnect to a maximal one.

Example 1.3.15. Let n1, n2, n3 ∈ N0 and define

M = Kn1 × {0}n2 × {0}n1 × {0}n2 , L = {0}n2 × {0}n3 × {0}n2 × Kn3 .

Then M and L are both dissipative and symmetric but not maximal by Lem. 1.3.7 and
Lem. 1.3.8. By these results we also deduce that their interconnection with respect
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to Kn2 ,

M ◦ L = Kn1 × {0}n3 × {0}n1 × Kn3 ,

is both maximally dissipative and maximally symmetric.

Observing the results of Prop. 1.3.14 and Ex. 1.3.15 leads to the following conjecture.

Conjecture 1.3.16. Let M and L be maximally dissipative relations in Kn1+n2 and
Kn2+n3 , respectively, for some n1, n2, n3 ∈ N0. Then M◦L is a maximally dissipative
relation in Kn1+n3 .

We saw with Lem. 1.3.13 that a maximally dissipative relation can be written as
the interconnection of a skew-adjoint relation and a maximally nonpositive relation.
Conversely, the question if the interconnection of a skew-adjoint relation and a max-
imally nonpositive relation yields a maximally dissipative relation is subject to the
next conjecture.

Conjecture 1.3.17. Let D be a skew-adjoint relation in Kn+m and R a maximally
nonpositive relation in Km for some n,m ∈ N0. Then D◦R is a maximally dissipative
relation in Kn.

Proposition 1.3.18. The statements of Con. 1.3.16 and Con. 1.3.17 are equivalent.

Proof. Clearly, Con. 1.3.17 is a special case of Con. 1.3.16. Conversely, if we are given
maximally dissipative relations M and L in Kn1+n2 and Kn2+n3 , respectively, for
some n1, n2, n3 ∈ N0, then Lem. 1.3.13 shows that there exist skew-adjoint relations
D1 and D2 in K2(n1+n2) and K2(n2+n3), respectively, as well as maximally nonpositive
relations R1 and R2 in Kn1+n2 and K2n2+n3 , respectively, such that

M = D1 ◦ R1, L = D2 ◦ R2.

It is straightforward to deduce

M ◦ L = (D1 ◦ R1) ◦ (D2 ◦ R2) = (D1 ◦ D2) ◦ (R1×̂R2).

By Prop. 1.3.14, D1 ◦ D2 and R1×̂R2 are skew-adjoint and maximally nonpositive,
respectiely. Now the statement of Con. 1.3.16 implies that (D1 ◦ D2) ◦ (R1×̂R2) =
M ◦ L is maximally dissipative, i.e., the statement of Con. 1.3.17.
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1.4 Differential geometric notions

For the definition of basic topological concepts used throughout this section, we refer
the reader to [Mun00]. When talking about manifolds, most authors implicitly assume
a certain degree of smoothness and the term smooth is coined differently depending
on the mathematical background, cf. [Hir76; Lee12]. Roughly speaking, we will not
need the existence of infinitely many derivatives for the scope of this thesis. This
motivates the following definition.

Definition 1.4.1 (Manifold). Let M be a topological space, r ∈ N0 ∪ {∞} and
n ∈ N0. Then (M, {ϕi, Ui}i∈I) (or simply M) is called a Cr manifold (of dimension
n) if M is Hausdorff, second-countable and {ϕi, Ui}i∈I is a maximal Cr atlas of M
with compatible Cr charts {ϕi}i∈I , i.e.,

• {Ui}i∈I is an open covering of M,

• ϕi : Ui → Rn is a homeomorphism for all i ∈ I,

• ϕi ◦ ϕ−1
j ∈ Cr(ϕj(Ui ∩ Uj), ϕi(Ui ∩ Uj)) for all i, j ∈ I,

• {ϕi, Ui}i∈I is maximal w.r.t. the previous properties under inclusion.

We continue by introducing some notations and recalling some facts, for which we refer
the reader to [Hir76; Lee12; KM06] for detailed illustration of the involved concepts.
Let (M,Φ) and (N ,Ψ) be m- and n-dimensional Cr manifolds, respectively, with
r ∈ N0 ∪ {∞}. For 0 ≤ s ≤ r, f : M → N is a Cs map if for every p ∈ M
there exist charts (ϕ,U) ∈ Φ and (ψ, V ) ∈ Ψ such that p ∈ U , f(U) ⊂ V and
ψ ◦ f ◦ ϕ−1 ∈ Cs(ϕ(U), ψ(V )) and we write Cs(M,N ) for the set of these maps.
A (vector) bundle (of rank k) over M is a pair (E, π) consisting of a topological
space E together with a surjective continuous map π : E → M such that for all
p ∈ M the fiber Ep = π−1(p) is a k-dimensional (real) vector space and there exists
a neighborhood U of p and a homeomorphism φ : π−1(U) → U × Rk called local
trivialization satisfying πU ◦ φ = π with π : U × Rk → U being the projection on U

and for all q ∈ U , φ↾Eq
: Eq → {q} × Rk is a vector space isomorphism. If U can

be chosen as M for one (and hence all) p ∈ M, then E is called a trivial bundle. If
M and E both are Cr manifolds and the local trivializations φ can be chosen such
that φ,φ−1 are Cr maps, then E is called a Cr bundle. By (E∗, π∗) we denote the
dual bundle of (E, π), i.e., the bundle whose fibers are the dual spaces of the fibers of
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(E, π). A subbundle of (E, π) is a bundle (Ẽ, π̃) with Ẽ being a topological subspace
of E and π̃ = π↾Ẽ . A section σ of (E, π) is a continuous map σ : M → E with the
property π ◦ σ = idM and we write Γs(E) for the set of sections σ of E satisfying
σ ∈ Cs(M, E). If the bundle projection π is clear from the context, we simply write E
for the bundle instead of (E, π). Given two bundles E1, E2 over M we write E1 ⊕ E2

for their Whitney sum, see [Lee12, Ex. 10.7] for more details, and we often identify
(E1 ⊕ E2)∗ = E∗

1 ⊕ E∗
2 . Let us now introduce some relevant bundles.

For r ≥ 1 denote by TpM, T ∗
pM the m-dimensional tangent and cotangent space of

M at p ∈ M, respectively, while the 2m-dimensional Cr−1 manifolds

TM =
∐

p∈MTpM, T ∗M =
∐
p∈M

T ∗
pM

denote its tangent and cotangent bundle, respectively. For a C1 map f : M → N

df : TM → TN df∗ : T ∗N → T ∗M

(p, v) 7→ (f(p), dfpv) (f(p), v) 7→ (p, df∗
p v)

denotes the differential of f and the cotangent map of f , respectively, with dfp :
TpM → Tf(p)N being the differential of f at p ∈ M and df∗

p : Tf(p)N → TpM the
pullback of f at p ∈ M. N is called an (embedded) Cr submanifold of M if there
exists an embedding ι ∈ Cr(N ,M) satisfying rk dιp = n for r ≥ 1 and all p ∈ N . A
subbundle (Ẽ, π̃) of a bundle (E, π) is a called Cr subbundle if it is both a Cr bundle
and a Cr submanifold of E. Next, for a real vector space V the set of contravariant
tensors on V of rank k is given as

T k(V ) :=
⊗

k
i=1V = V ⊗ . . .⊗ V ∼= L(V ∗, . . . , V ∗︸ ︷︷ ︸

k times

;R)

with T k(V ∗) being the set of covariant tensors on V of rank k. A tensor α ∈ T k(V )
or T k(V ∗) is called alternating if for all families (vi)i=1,...,k in V or V ∗, respectively,
and all i ̸= j it holds

α(v1, . . . , vi, . . . , vj , . . . , vk) = −α(v1, . . . , vj , . . . , vi, . . . , vk).

The set of alternating contravariant and covariant tensors on V of rank k are denoted
by Λk(V ) and Λk(V ∗), respectively. This enables the introduction of the bundle of
covariant k-tensors on M

T kT ∗M =
∐
p∈M

T k(T ∗
pM)
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and the bundle of alternating covariant k-tensors on M

ΛkT ∗M =
∐
p∈M

Λk(T ∗
pM).

A section of ΛkT ∗M is called a differential k-form and the set of Cs differential
k-forms is denoted by

Ωks(M) = Γs
(
ΛkT ∗M

)
.

A symplectic manifold is a pair (M, ω) consisting of a C1 manifold of even dimension
together with a symplectic form ω, i.e., an element ω ∈ Γ1

(
Λ2T ∗M

)
which is closed

(dω = 0) and nondegenerate (∀p ∈ M ∀v ∈ TpM : (∀w ∈ TpM : ωp(v, w) = 0) ⇒
(v = 0)). For example, the standard symplectic form on R2n is the 2-form ω given
by ω(v1, v2) = v⊤

1
[ 0 In

−In 0
]
v2 for v1, v2 ∈ R2n. Similarly, for an n-dimensional C2

manifold Q, its cotangent bundle T ∗Q becomes a symplectic manifold with the so-
called canonical symplectic form [Lee12, p.570].

Definition 1.4.2 (Lagrangian submanifold). Let (M, ω) be a symplectic manifold
of dimension 2n. A Lagrangian submanifold of M is an n-dimensional submanifold L
of M such that TpL is a Lagrangian subspace of TpM with respect to ωp ∈ Λ2T ∗

pM
for all p ∈ L.

Let (M1, ω1), (M2, ω2) be two m-dimensional symplectic manifolds. Then a diffeo-
morphism F : M1 → M2 is a symplectomorphism if F ∗ω2 = ω1 with F ∗ω2 being the
pullback of ω2 by F , i.e.,

(F ∗ω2)p(v1, . . . vm) = (ω2)F (p)(dFp(v1), . . . , dFp(vm))

for all p ∈ M, (v1, . . . vm) ∈ TpM1. In the following, we show that gradient fields
induce Lagrangian submanifolds.

Proposition 1.4.3. Let Q : Rn → Rn be continuously differentiable. Then the
submanifold consisting of the graph of Q, i.e.,

LQ := {(x,Q(x)) ∈ Rn × Rn | x ∈ Rn}

is a Lagrangian submanifold of R2n equipped with the standard symplectic form if and
only if Q is a gradient field. In other words, there exists some twice continuously
differentiable function H : Rn → R such that ∇H = Q.
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Proof. Using that Rn is simply connected, the case of smooth Q follows from [Lee12,
Prop. 22.12]. The general case follows by a straightforward modification of the proof
of [Lee12, Prop. 22.12].

The case where a Lagrangian submanifold is a subspace deserves special attention.

Proposition 1.4.4 ([vdSM18, Prop. 5.2]). A subspace L ⊂ Rn ×Rn is a Lagrangian
submanifold if and only if

L =
{

(f, e) ∈ Rn × Rn | S⊤f = P⊤e
}

for some matrices S, P ∈ Rn×n with S⊤P = P⊤S and rk [S⊤ P⊤] = n.

From this proposition, we see that the Lagrangian subspaces are a special case of
Lagrangian submanifolds. Likewise, the concept of Dirac subspaces can be extended
to the realm of manifolds [Cou90, Def. 2.2.1].

Definition 1.4.5 (Dirac manifold/bundle). Let M be a manifold. A subbundle D
of TM ⊕ T ∗M is called a Dirac bundle or Dirac manifold if D(x) := Dx is a Dirac
subspace of TxM × T ∗

xM for all x ∈ M.

Often, only Dirac bundles fulfilling additional properties, like being a Cr subbundle
for some r ∈ N or some integrability condition [vdSch06], are of interest. Such as-
sumptions allow for useful representations of Dirac bundles, like generalizations of
Cor. 1.3.11, see [DvdS98].
We close this section with yet another concept needed for port-Hamiltonian systems.

Definition 1.4.6 (Resistive relation). A relation R ⊂ Rn × Rn is called resistive, if

∀ (f, e) ∈ R : e⊤f ≤ 0.

The resistive relations in Rn that are linear, correspond exactly to the dissipative
relations in Rn. If a linear resistive relation in Rn is symmetric, then it is nonpositive.
A trivial example for a linear resistive relation that is dissipative but not nonpositive
is gr −J2(1). Indeed,

〈
( xy ) ,

[−1 −1
0 −1

]
( xy )
〉

= −x2 − xy − y2 ≤ − max{x2, y2} ≤ 0.
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Chapter 2

Port-Hamiltonian
formulations

As alluded to in the introduction, it is a peculiarity of port-Hamiltonian modelling
that different concepts emerged bearing the same or at least very similar names,
without having been thoroughly compared. Each one of these concepts emerged
from a common ancestor, which was successively enhanced by different mathematical
communities. We propose yet another port-Hamiltonian formulation, but with the
intention of using it to build bridges between two well-established formulations. In
this chapter, we start by showing where the different port-Hamiltonian formulations
originated from and then continue by presenting the current major formulations, for
which we elucidate some of their similarities and differences.

2.1 The common ancestor

As the name hints at, taking the equations of Hamilton [Ham35] and extending
them by inputs and outputs, one obtains what can be regarded as the original port-
Hamiltonian formulation. To be more precise, we consider the port-Hamiltonian or-
dinary differential equations (pH-ODE) system consisting of the equations

d
dt x(t) = (J −R)Qx(t) + (G−K)u(t),

y(t) = (G+K)∗Qx(t) + (S +N)u(t),
(2.1a)



42 CHAPTER 2. PORT-HAMILTONIAN FORMULATIONS

with J,Q,R ∈ Kn×n, G,K ∈ Kn×k and S,N ∈ Kk×k satisfying

Q∗ = Q, V :=
[
J G

−G∗ N

]
= −V ∗, W :=

[
R K

K∗ S

]
≥ 0, (2.1b)

for some n, k ∈ N and all t ∈ R. Defining the Hamiltonian function H(x) = 1
2x

∗Qx

as the energy function of the system and omitting the dependence on the time t we
derive the following power balance

d
dt H(x) = 1

2 (ẋ∗Qx+ x∗Qẋ)

= Re (x∗Q(J −R)Qx+ x∗Q(G−K)u)

= Re (−x∗QRQx+ y∗u− 2x∗QKu− u∗(S +N)u)

= Re (y∗u) − (Qxu )∗
W (Qxu )

≤ Re (y∗u),

(2.2)

with the interpretation that the increase in energy amounts at most to what is supplied
to it. The need to extend this formulation arises when one wishes to interconnect two
pH-ODE systems in a certain power-conserving manner. It turns out that this class is
not closed under such interconnection, that is, the resulting system is in general not
a pH-ODE system any more. A simple example consists of the two scalar pH-ODE
systems

d
dt x1(t) = − x1(t) + u1(t),

y1(t) = − x1(t),

d
dt x2(t) = − x2(t) + u2(t),

y2(t) = − x2(t),

where we impose
u1(t) = u2(t), y1(t) = −y2(t).

This interconnection is expressing power-conservation because one considers the pro-
duct of the respective input and outputs to represent, depending on the power flow
convention [dJon72], the power going in or leaving the system. Consequently, u1y1 =
−u2y2 which implies that the power going out of one system equals the power going
into the other. Now the interconnected system reads

d
dt x1(t) − d

dt x2(t) = − x1(t) + x2(t),

0 =x1(t) + x2(t),

which contains an algebraic equation not covered by (2.1a).
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Storage DissipationRouting

Figure 2.1: Visual representation of a pH-NG system.

2.2 The geometric formulation

The first port-Hamiltonian formulation that is closed under certain power-conserving
interconnections we present makes use of the notions introduced in Sec. 1.4. This
approach can be traced back [vdSJ14] to Arnol’d and the school of analytical mech-
anics.

2.2.1 The general nonlinear case

The following definition of a port-Hamiltonian system follows the lines of [vdSM20;
BCG+18; BCG+19].

Definition 2.2.1 (Nonlinear geometric port-Hamiltonian system). Let nS , nR, nP ∈
N0, X ⊂ RnS a C1 submanifold and BR,BP bundles over X of dimension nR and
nP , respectively. Further, let DTX⊕BR⊕BP

be a Dirac manifold, i.e., D(x) ⊂ (TxX ×
(BR)x × (BP )x) × (T ∗

xX × (BR)∗
x × (BP )∗

x) is a Dirac structure for all x ∈ X . Further-
more, let L ⊂ T ∗X be a Lagrangian submanifold equipped with a symplectic form
ω. Finally, let R ⊂ BR ⊕ B∗

R be a resistive bundle, i.e., R(x) ⊂ (BR)x × (BR)∗
x is

a resistive structure for all x ∈ X . Then the triple (D,L,R) is called a (nonlinear
geometric) port-Hamiltonian system (pH-NG system). Its dynamics are given by the
differential inclusion

(− d
dt x(t), fR(t), fP (t), eS(t), eR(t), eP (t)) ∈ D(x(t)),

(x(t), eS(t)) ∈ L, (fR(t), eR(t)) ∈ R(x(t)).
(2.3)

When the bundle TX ⊕ BR ⊕ BP is trivial and D(x) is identical for all x ∈ X , we
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say that the Dirac manifold is constant, and it is custom in that case to drop the
argument x(t) of D(x(t)) when introducing the dynamics (2.3). This special case is
exactly what we employ to model electrical circuits in Chap. 6. Note that the letter
f in fR, fP stands for flow and the letter e in eS , eR, eP for effort, while S stands
for storage, R for resistive, and P for (external) ports representing the interaction
with the environment. In the port-Hamiltonian terminology, a port is always to be
understood as a pair of corresponding flow and efforts, e.g., (fS , eS), (fR, fP ), (fP , eP )
as well as any combination and/or subdivision of these pairs. The spaces TxX , (BR)x,
(BP )x are understood to be flow spaces, T ∗

xX , (BR)x, (BP )x effort spaces and their
elements flows and efforts, respectively.
A key property of pH-NG systems is that this class is closed under power-conserving
interconnection. Different methods of how to design such interconnections are, for
example, elucidated in [BCG+18; CvdSB07; vdSJ14; VvdS10b]. The interconnection
we use for the electrical circuits in Chap. 6 follows the ideas presented in [vdSJ14].
Interconnection is based on the assumption that each system has two kinds of external
flows and efforts, namely specific and to-be-linked ones, where the latter ones belong
to the same space for each Dirac structure.

Definition 2.2.2 (Interconnection of pH-NG systems).
For i = 1, 2, let (Di,Li,Ri) be two pH-NG systems with

Di ⊂ (TXi ⊕ BRi ⊕ BPi ⊕ Blinki) ⊕ (TXi ⊕ BRi ⊕ BPi ⊕ Blinki)∗
,

where Blinki = Xi×Flink and B∗
linki = Xi×Elink are trivial bundles. Here, the external

ports are subdivided into a specific external part, and a to-be-linked part. Further,
consider the bundles BR, BP over X1 × X2 given by

(BR)(x1,x2) = (BR1)x1 × (BR2)x2 , (BP )(x1,x2) = (BP1)x1 × (BP2)x2

for (x1, x2) ∈ X1 × X2. The interconnection of (D1,L1,R1) and (D2,L2,R2),

(D1,L1,R1) ◦ (D2,L2,R2) := (D,L,R),

with respect to (Flink, Elink) is defined as the pH-NG system (D,L,R) consisting of
the Dirac manifold D ⊂ (T (X1 × X2) ⊕ BR ⊕ BP ) ⊕ (T (X1 × X2) ⊕ BR ⊕ BP )∗, the
Lagrange submanifold L ⊂ T ∗(X1 ×X2), and the resistive structure R ⊂ (BR)×(BR)∗
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Figure 2.2: Composition of two Dirac
structures.

Figure 2.3: Interconnection of two pH-
NG systems.

given by

D(x1, x2) :=
{

((fS1, fS2), (fR1, fR2), (fP1, fP2), (eS1, eS2), (eR1, eR2), (eP1, eP2)) |

∃(flink, elink) ∈ Flink × Elink :

(fS1, fR1, fP1, flink, eS1, eR1, eP1, elink) ∈ D1(x1)

∧ (fS2, fR2, fP2,−flink, eS2, eR2, eP2, elink) ∈ D2(x2)
}
,

L := { (fS1, fS2, eS1, eS2) ∈ T ∗(X1 × X2) | (fS1, eS1) ∈ L1 ∧ (fS2, eS2) ∈ L2 } ,

R(x1, x2) := { (fR1, fR2, eR1, eR2) | (fR1, eR1) ∈ R1(x1) ∧ (fR2, eR2) ∈ R2(x2) } ,

for (x1, x2) ∈ X1 × X2.

The above constructed set D is indeed a Dirac structure [vdSJ14, Chap. 6], [DvdS98].
It is readily seen that L is a Lagrange submanifold and R is a resistive relation.
Hence, the interconnection of pH-NG systems results in a pH-NG system.
Next, we introduce the (sorted Cartesian) product of pH-NG systems, which simply
means that several coexisting pH-NG systems are united to one pH-NG system.

Definition 2.2.3 (Product of pH-NG systems). Let (Di,Li,Ri)i=1,...,n be a finite
family of pH-NG systems with Di ⊂ (TXi ⊕ BRi ⊕ BPi) ⊕ (TXi ⊕ BRi ⊕ BPi)∗ for
i = 1, . . . , n. If n ≥ 2, consider the bundles BR, BP over X1 × X2 given by

(BR)(x1,x2) = (BR1)x1 × (BR2)x2 , (BP )(x1,x2) = (BP1)x1 × (BP2)x2

for (x1, x2) ∈ X1 × X2. Then the product of (D1,L1,R1) and (D2,L2,R2),

(D1,L1,R1) × (D2,L2,R2) := (D,L,R),

is defined as the pH-NG system (D,L,R) consisting of the Dirac manifold D ⊂
(T (X1 × X2) ⊕ BR ⊕ BP ) ⊕ (T (X1 × X2) ⊕ BR ⊕ BP )∗, the Lagrange submanifold
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Figure 2.4: Visualization of the sorting of the flow and effort variables arising in the
Defs. 2.2.2 & 2.2.3, cf. Figs. 2.1–2.3

L ⊂ T ∗(X1 × X2), and the resistive structure R ⊂ (BR) × (BR)∗ given by

D(x1, x2) :=
{

((fS1, fS2), (fR1, fR2), (fP1, fP2), (eS1, eS2), (eR1, eR2), (eP1, eP2)) |

(fS1, fR1, fP1, eS1, eR1, eP1) ∈ D1(x1)

∧ (fS2, fR2, fP2, eS2, eR2, eP2) ∈ D2(x2)
}
,

L := { (fS1, fS2, eS1, eS2) ∈ T ∗(X1 × X2) | (fS1, eS1) ∈ L1 ∧ (fS2, eS2) ∈ L2 } ,

R(x1, x2) := { (fR1, fR2, eR1, eR2) | (fR1, eR1) ∈ R1(x1) ∧ (fR2, eR2) ∈ R2(x2) } ,

for (x1, x2) ∈ X1 × X2. We further inductively define

n
ą

i=1
(Di,Li,Ri) :=

(
n−1
ą

i=1
(Di,Li,Ri)

)
× (Dn,Ln,Rn) (2.4a)

for n ≥ 2 with
1

ą

i=1
(Di,Li,Ri) := (D1,L1,R1). (2.4b)

Remark 2.2.4. Note that the product of two pH-NG systems is well-defined by
the same arguments as for the interconnection of two pH-NG systems. In fact, the
product of two systems can be seen as an interconnection of two systems. In terms of
Def. 2.2.2, it means that several pH-NG systems are interconnected with trivial linking
ports. That is, for pH-NG systems (D1,L1,R1) and (D2,L2,R2) we add artificial and
trivial linking ports Flink = Elink = {0} (which do not affect the dynamic behavior),
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i.e., BPi gets replaced by Bi⊕Blinki = BPi⊕(Xi×{0}) for i = 1, 2, and we interconnect
these systems with respect to this trivial port (FPlink, EPlink). This link between the
two concepts is illustrated by Fig. 2.4, where the possibly trivial interconnection is
represented in red.

As for port-Hamiltonian ODEs (2.1), we can establish a power balance by defining
an energy function or Hamiltonian for a pH-NG system (D,L,R). However, in con-
trast to the power balance (2.2) for port-Hamiltonian ODEs, we present only a local
power balance. To be more precise, combining the results of [Lee12, Thm. 22.13] and
[LM87, App. 7 Cor. 1.16] (see also [BCG+19; Fav20; vdSM20]) we know that for each
(x0, e0) ∈ L there exist a neighborhood U of x0 in X , a neighborhood V of 0 in Rk

for some k ∈ N0 together with a C1 map F : U × V → R, (x, λ) 7→ F (x, λ) with
D ∂F (x,λ)

∂λ ∈ R(n+k)×k having rank k on (∂F∂λ )−1(0) such that{ (
x, ∂F (x,λ)

∂x

) ∣∣∣ (x, λ) ∈ U × V ∧ ∂F
∂λ (x, λ) = 0

}
is a neighborhood of (x0, e0) in L. Hence, given τ ∈ R and curves satisfying (2.3),
there exist some ϵ > 0 and λ ∈ C1((τ − ϵ, τ + ϵ),Rk) such that with the previous
considerations we can write

d
dt F (x(t), λ(t)) =∂F (x(t),λ(t))

∂x
d
dt x(t) + ∂F (x(t),λ(t))

∂λ
d
dt λ(t)

=eS(t)⊤ d
dt x(t)

=eR(t)⊤fR(t) + eP (t)⊤fP (t)

≤eP (t)⊤fP (t)

(2.5)

for t ∈ (τ − ϵ, τ + ϵ), i.e., in a neighborhood of (x(τ), eS(τ)).

2.2.2 Linear simplifications

When in Def. 2.2.1 the state manifold is a linear space, the Lagrange manifold becomes
a linear space, the Dirac manifold becomes constant, and the resulting dynamics are
described by linear DAEs. We put an emphasis on the linear case since it will be
compared to other port-Hamiltonian formulations. For this reason, we present the
following shortened definition.

Definition 2.2.5 (Linear geometric port-Hamiltonian system). Let nS , nR, nP ∈ N0,
X = RnS , FR = RnR , FP = RnP with ER = F∗

R and EP = F∗
P . A triple (D,L,R)

consisting of a Dirac structure D ⊂ (X × FR × FP ) × (X ∗ × ER × EP ), a Lagrange



48 CHAPTER 2. PORT-HAMILTONIAN FORMULATIONS

structure L ⊂ X × X ∗ and a linear resistive relation R ⊂ FR × ER is called a (linear
geometric) port-Hamiltonian system (pH-LG system). Its dynamics are given by the
differential inclusion

(− d
dt x(t), fR(t), fP (t), eS(t), eR(t), eP (t)) ∈ D,

(x(t), eS(t)) ∈ L, (fR(t), eR(t)) ∈ R.
(2.6)

Remark 2.2.6. For pH-LG systems, the power balance (2.5) can be formulated
globally. Given a pH-LG system (D,L,R), by Cor. 1.3.11 we can write L as

L =
{

(x, e) ∈ Rn × Rn
∣∣ ∃λ ∈ Rk : e = Qx+Gλ ∧G∗x = 0

}
for some real symmetric matrix Q and suitable real matrix G. Further, set F (x, λ) =
1
2x

⊤Qx + x⊤Gλ. Then for all functions x satisfying (2.6) for suitable functions
fR, fP , eS , eR, eP there exists some function λ such that

d
dt F (x(t), λ(t)) = d

dt ( 1
2x(t)⊤Qx(t) + x(t)⊤Gλ)

= ẋ(t)⊤(Qx(t) +Gλ) + x(t)⊤Gλ̇(t)

= eS(t)⊤ d
dt x(t)

= eR(t)⊤fR(t) + eP (t)⊤fP (t)

≤ eP (t)⊤fP (t).

(2.7)

Since complete vector spaces are closed under differentiation it holds ẋGλ = x⊤Gλ̇ =
0 and we see that we could have defined the ‘Hamiltonian’ F as a function purely
depending on x, namely F (x) = 1

2x
⊤Qx. Now, if L is given in image representation

L = ran
[
Ẽ
Q̃

]
, for functions x, eS such that (x(t), eS(t)) ∈ L there exists a function z

such that x = Ẽz and eS = Q̃z. Then the Hamiltonian can be reformulated in terms
of the variable z as 1

2z
⊤Ẽ⊤Q̃z since

1
2z(t)

⊤Ẽ⊤Q̃z(t) = 1
2x(t)⊤e(t) = 1

2x(t)⊤(Qx(t) +Gλ(t)) = F (x(t)).

Let us now show how port-Hamiltonian ODEs are encompassed by pH-LG systems
when K = R. With the notation from (2.1), let

D =

gr


−J In 0 −G
−In 0 0 0

0 0 0 −Ik
G∗ 0 Ik N




−1

, L = gr Q, R = gr −

[
R K

K∗ S

]
. (2.8)
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Clearly, (D,L,R) defines a pH-LG system and its dynamics

(− d
dt x(t), fR1(t), fR2(t), y(t), eS(t), eR1(t), eR2(t), u(t)) ∈ D,

(x(t), eS(t)) ∈ L, (fR1(t), fR2(t), eR1(t), eR2(t)) ∈ R

imply that, omitting the time-dependency,

− ẋ = −JeS + eR1 −Gu, eR1 = −RfR1 −KfR2, fR1 = −eS ,

y = GeS + eR2 +Nu, eR2 = −K∗fR1 − SfR2, fR2 = −u, eS = Qx,

from which (2.1a) readily follows. Here, we interpreted the output y as an external
port flow and the input u as an external port effort, but this is not the only way
to interpret a port-Hamiltonian ODE as a pH-LG system. Not only is the opposite
possible, cf. [VvdS10b], the external port flows and efforts can also be defined as
a combination of y and u. Such a combination is achieved by interconnecting the
pH-LG system we just presented with a pH-LG system of the form (D′, {0}, {0}).

Remark 2.2.7. The inclusion equation in the dynamics (2.6) of a pH-LG system can
be described by DAEs. To obtain such a DAE note that with the help of a kernel
representation for D, see Rem. 1.3.4, we can writeK1 K2 K3

K4 K5 K6

K7 K8 K9


− d

dt x

fR

fP

+

L1 L2 L3

L4 L5 L6

L7 L8 L9


eSeR
eP

 = 0

for suitable matrices. Invoking the existence of a range representation for L and R,
see [BTW16, Thm. 3.3] and Sec. 1.3, we obtainK1 K2 K3

K4 K5 K6

K7 K8 K9


− d

dt PLz1

PRz2

fP

+

L1 L2 L3

L4 L5 L6

L7 L8 L9


PLz1

SRz2

eP

 = 0,

for suitable matrices and functions with x = PLz1, eS = PL fR = PR, and eR = SRz2.
The latter implies

d
dt

K1PL 0 0 0
K4PL 0 0 0
K7PL 0 0 0



z1

z2

fP

eP

 =

L1PL (L2 +K2)PR K3 L3

L4PL (L5 +K5)PR K6 L6

L7PL (L8 +K8)PR K9 L9



z1

z2

fP

eP

 , (2.9)
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which is a DAE. The difference between the formulation (2.9) and (2.6) is that the
DAE may impose less smoothness on x = PLz1. In order to obtain a system as de-
picted in (1.4), one intuitively would want to introduce input and output functions
u, y by a combination of fP , eP since they represent the interaction with the environ-
ment. Moreover, it seems quite unnatural to interpret fP and eP as states. However,
without special knowledge of the matrices involved in the kernel representation of D
it is a priori not clear how to achieve this formulation with inputs and outputs.

With these considerations, we can develop a solution theory for pH-LG systems by
introducing the notion of behavior.

Definition 2.2.8 (Behavior of pH-LG systems). Let (D,L,R) be a pH-LG system
and

D = ker [K L ] , L = ran
[
PL
SL

]
, R = ran

[
PR
SR

]
,

for some matrices K, L ∈ RmD×(nS+nR+nP ), PL, SL ∈ RnS×mS and PR, SR ∈
RnR×mR . The behavior of (D,L,R) is defined as

BD,L,R = {(PLz1, PRz2, fP , SLz1, SRz2, eP ) |

(z1, z2, fP , eP ) ∈ B[E,A] ∧ PLz1 ∈ W 1,1
loc (R,RnS )

}
,

(2.10)

with E,A ∈ RmD×(mS+mR+2nP ) given by

E =
[
K

[
InS

0nR+nP

]
0(nS +nR+nP )×nP

] [ PL
PR

I2nP

]
,

A =
(

[ L 0(nS +nR+nP )×nP ]
[
InS +nR

InP

InP

]
+
[
K

[
0nS

InR+nP

]
0
])[ PL

PR
I2nP

]
.

(2.11)

In order to obtain the most concise DAE representing the dynamics of a pH-LG
system, it is beneficial to choose mD = dimD = nS + nR + nP , mS = dimL = nS

and mR = dimR. In that way, one obtains as few equations and unknowns as
possible describing its dynamics, see (2.9). Further, invoking Rem. 2.2.7 shows that
(x, fR, fP , eS , eR, eP ) ∈ BD,L,R fulfills the dynamics (2.6) for almost all t ∈ R.

Proposition 2.2.9. The behavior BD,L,R of a pH-LG system (D,L,R) is well-
defined.

Proof. First note that the kernel and image representaions of D, L and R in Def. 2.2.8
always exist as discussed in Sec. 1.3. Next, we show that the behavior BD,L,R is
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invariant under the particular choice of representations. To this end, let

D = ker [K1 L1 ] = ker [K2 L2 ] ,

L = ran
[
PL1
SL1

]
= ran

[
PL2
SL2

]
,

R = ran
[
PR1
SR1

]
= ran

[
PR2
SR2

]
for some matrices K1, L1 ∈ RmD×(nS+nR+nP ), PL1, SL1 ∈ RnS×mS , PR1, SR1 ∈
RnR×mR and K2, L2 ∈ Rm′

D×(nS+nR+nP ), PL2, SL2 ∈ RnS×m′
S , PR2, SR2 ∈ RnR×m′

R .
Assume for a moment that mD = m′

D = dimD (= nS + nR + nP ), mS = m′
S =

dimL (= nS) and mR = m′
R = dimR. Then by Prop. 1.3.2 there exist invertible

matrices SD ∈ Gldim D(R), TL ∈ Gldim R(R) and TR ∈ Gldim R(R) such that

SD [K1 L1 ] = [K2 L2 ] ,
[
PL1
SL1

]
SL =

[
PL2
SL2

]
,
[
PR1
SR1

]
SR =

[
PR2
SR2

]
.

Then with
E1, A1 ∈ R(nS+nR+nP )×(nS+dim R+2nP ),

E2, A2 ∈ R(nS+nR+nP )×(nS+dim R+2nP )

as defined by (2.11) for their respective representations and with

T̄ = diag (TL, TR, I2nP
)

we have
SD(sE1 −A)T̄ = sE2 −A2.

By Prop. 1.2.16 and invertibility of TL, TR we get that{
(PL2z1, PR2z2, fP , SL2z1, SR2z2, eP )

∣∣∣
(z1, z2, fP , eP ) ∈ B[E2,A2] ∧ PL2z1 ∈ W 1,1

loc (R,RnS )
}

=
{

(PL1TLz1, PR1TRz2, fP , SLz1, SRz2, eP )
∣∣∣

(TLz1, TRz2, fP , eP ) ∈ B[E1,A1] ∧ PL1TLz1 ∈ W 1,1
loc (R,RnS )

}
=
{

(PL1z̃1, PR1z̃2, fP , SL1z̃1, SR1z̃2, eP )
∣∣∣

(z̃1, z̃2, fP , eP ) ∈ B[E1,A1] ∧ PL1z̃1 ∈ W 1,1
loc (R,RnS )

}
,

proving the desired statement. Now, if we drop the assumption of mD = m′
D = dimD,

mS = m′
S = dimL and mR = m′

R = dimR, then we still get matrices TL, TR of rank
dimL and dimR, respectively, for which a similar reasoning to that of the proof of
Prop. 1.2.16 yields the same result.
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The behavior of a pH-LG system can also be defined though the dynamics of the
system.

Proposition 2.2.10. Let (D,L,R) be a pH-LG system with D ⊂ R2(nS+nR+nP ),
L ⊂ R2nS and R ⊂ R2nR . Then

BD,L,R =
{

(x, fR, fP , eS , eR, eP ) ∈ W 1,1
loc (R,RnS ) × L1

loc (R,R2nR+2nP +nS )
∣∣∣

F.a.a. t ∈ R : (− d
dt x(t), fR(t), fP (t), eS(t), eR(t), eP (t)) ∈ D,

(x(t), eS(t)) ∈ L, (fR(t), eR(t)) ∈ R
}
.

Proof. Let D = ker [K L ] , L = ran
[
PL
SL

]
, R = ran

[
PR
SR

]
for some matrices K,L ∈

RmD×(nS+nR+nP ), PL, SL ∈ RnS×mS , PR, SR ∈ RnR×mR and note that the matrices
on the l.h.s and r.h.s of (2.9) are exactly the matrices E,A in (2.11), respectively.
Step 1 : We prove the forward inclusion “⊆”. To this end let (z1, z2, fP , eP ) ∈ B[E,A]

with PLz1 ∈ W 1,1
loc (R,RnS ) and E,A as defined by (2.11), i.e.,

(PLz1, PRz2, fP , SLz1, SRz2, eP ) ∈ BD,L,R.

On the one hand, this directly shows

(PLz1(t), SLz1(t)) ∈ ran
[
PL
SL

]
= L, (PRz2(t), SRz2(t)) ∈ ran

[
PR
SR

]
= R,

for almost all t ∈ R. On the other hand, the procedure of Rem. 2.2.7 shows that

(− d
dt PLz1(t), PRz2(t), fP (t), SLz1(t), SRz2(t), eP (t)) ∈ ker [K L ] = D,

for almost all t ∈ R.
Step 2 : We prove the backward inclusion “⊇”. To this end, let (x, fR, fP , eS , eR, eP ) ∈
W 1,1

loc (R,RnS ) × L1
loc (R,R2nR+2nP +nS ) such that

(− d
dt x(t), fR(t), fP (t), eS(t), eR(t), eP (t)) ∈ D, (x(t), eS(t)) ∈ L, (fR(t), eR(t)) ∈ R,

for almost all t ∈ R. In particular, (x(t), eS(t)) ∈ ran
[
PL
SL

]
for almost all t ∈ R

implying the existence of a function z1(·) : R → RmS such that x = PLz1 and
eS = PLz1. Without loss of generality we may assume z1 ∈ L1

loc (R,RmS ). Otherwise
consider z̃1 =

[
PL
SL

]† ( x
eS

) since

( x
eS

) =
[
PL
SL

]
z1 =

[
PL
SL

] [
PL
SL

]† [ PL
SL

]
z1 =

[
PL
SL

] [
PL
SL

]† ( x
eS

) =
[
PL
SL

]
z̃1.

Analogously, we find some function z2 ∈ L1
loc (R,RmR) such that fR = PRz2 and

eR = PRz2. Repeating the steps of Rem. 2.2.7 shows that (z1, z2, fP , eP ) ∈ B[E,A].
Overall, (x, fR, fP , eS , eR, eP ) ∈ BD,L,R.
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Figure 2.5: Visual representation of the port-
Hamiltonian system described in Ex. 2.2.11.

Figure 2.6: The pendulum
described in Ex. 2.2.12.

2.2.3 Some illustrative examples

What we have presented so far is a modelling approach, but we have not presented a
single example of how a physical system fits into this framework. We start by giving
an academic example of a dynamical system on a circle.

Example 2.2.11 (Simple dynamics on a circle). Consider as the state space X the
unit circle S1 in R2. Then the tangent space of X at x = (x1, x2) is given by

TxS
1 =

{
(−αx2, αx1) ∈ R2 ∣∣ α ∈ R

}
and its cotangent space at x is given by

T ∗
xS

1 =
{

(αv, αw) ∈ R2 ∣∣ vx2 = wx1, α ∈ R
}

=
{
αx ∈ R2 ∣∣ α ∈ R

}
.

Note that with J :=
[ 0 1

−1 0
]

we can write T ∗
xX = JTxX . We now define a Dirac

bundle D ⊂ TX ⊕ T ∗X through

D(x) = { (fS , eS) ∈ TxX × T ∗
xX | eS ∈ TxX ∧ fS = JeS } ,

i.e.,
D =

{
(x1, x2, αx2,−αx1, αx1, αx2)

∣∣ (x1, x2) ∈ S1 } .
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As should already be clear by the definition of D, we choose R = ∅ and do not
consider any external ports. Next equip T ∗X with its canonical symplectic form, i.e.,
for x ∈ S1 and v, w ∈ TxS

1 ωx = v⊤Jw. With H : R2 → R, x 7→ 1
2 ∥x∥2, we define

the Lagrange submanifold L ⊂ T ∗X as

L =
{

(x,∇H(x)) ∈ T ∗S1 ∣∣ x ∈ S1 } =
{

(x, x) ∈ R4 ∣∣ x ∈ S1 } .
Now the dynamics which are illustrated by Fig. 2.5 read

(−ẋ(t), eS(t)) ∈ D(x(t)), (x(t), eS(t)) ∈ L

⇔ d
dt

(
x1(t)
x2(t)

)
=
(

−e2(t)
e1(t)

)
=
(

−x2(t)
x1(t)

)
∈ S1.

and we deduce x1(t) = a cos(t) − b sin(t) and x2(t) = a sin(t) + b cos(t) for some
a, b ∈ R such that a2 + b2 = 1, that is, we walk on the circle in the positive direction
with velocity 1 starting at (a, b) at time t = 0.

There is no unique way in modelling physical systems in a port-Hamiltonian fashion.
In Ex. 2.2.11 we could have encoded the condition that the solution evolves on the
circle in the Lagrangian submanifold instead of the state space. Similarly, a different
choice of coordinates is possible.

Example 2.2.12 (Port-Hamiltonian pendulum). We consider a simple pendulum of
mass m and length l without friction with m, l > 0 as depicted in Fig. 2.6: (x, y)
describes the position of the pendulum, (v, w) its velocity, φ the angle of the string
relative to (0,−1) and λ the tension force. Let us first describe this system in general-
ized coordinates with respect to the Cartesian coordinates. To this end, we introduce

• the state q := (x, y) ∈ R2 \ {0},

• the mass matrix M ∈ C(R2 \ {0},R2×2) with M(q) > 0 as M ≡ mI2,

• the generalized momenta p = M(q)q̇ = (mv,mw),

• the kinetic energy K(q, p) := 1
2p

⊤M(q)−1p = p2
1+p2

2
2m = m v2+w2

2 ,

• the potential energy U(q) := mgq2 = mgy,

• the Hamiltonian H(q, p) = 1
2p

⊤M(q)−1p+ U(q),

• the holonomic/kinematic constraints matrix A(q) := 2q.
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Omitting the time-dependency, the system can now be described as

q̇ =∂H
∂p (q, p),

ṗ = − ∂H
∂q (q, p) +A(q)λ,

0 =A⊤(q)∂H∂p (q, p).

One can easily write down (cf. [vdSJ14, Sec. 3.1], [vdSM18, Ex. 2.7]) a pH-NG
system whose dynamics are governed by these equations. Namely the pH-NG system
(D,L,R) where

D(q, p) =
{

(fq, fp, eq, ep) ∈ T(q,p)T (R2 \ {0}) × T ∗
(q,p)T (R2 \ {0})

∣∣∣
∃λ ∈ R2 : 0 = A⊤(q)

( eq
ep

)
, −

(
fq

fp

)
=
[ 0 In

−In 0
] ( eq

ep

)
+
[ 0
A(q)

]
λ
}

for all (q, p) ∈ T (R2 \ {0}) =: X ,

L = {((q, p),∇H(q, p)) ∈ T ∗X} ,

and R = {0}. By Cor. 1.3.11 and Prop. 1.4.3, this indeed defines a pH-NG system.
What if we wanted to use polar coordinates for the description of the pendulum’s
dynamics? That is, we consider the state q̃ = (φ, l) ∈ (R/2πZ) ×R+. How do we find
a pH-NG system describing the dynamics of the pendulum in polar coordinates, given
a pH-NG system for the Cartesian coordinates? Consider the change of variables

ψ : R2 \ {0} → (R/2πZ) × R+

(x, y) 7→ (φ, l) :=


(tan−1(−x

y ), ∥(x, y)∥), x ̸= 0

(−π
2 , ∥(x, y)∥), y = 0 ∧ x < 0

(π2 , ∥(x, y)∥), y = 0 ∧ x > 0

and identify dψ = Dψ, dψ∗ = (Dψ)⊤ with Dψ being the Jacobian matrix of ψ. Note
that dψq = Dψ(q) : TqR2 \ {0} → Tψ(q)(R/2πZ) ×R+ is invertible for all q ∈ R2 \ {0}
as a matrix in R2×2. That is with X̃ = T ((R/2πZ) × R+),

Ψ : X → X̃,

(q, p) 7→ (ψ(q), Dψ(q)−1p),

is a diffeomorphism. Consider

• the state q̃ := (φ, l),
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• the mass matrix M̃ : (R/2πZ) × R+ → R2×2 with M̃(q̃) > 0 as

M̃(q̃) := Dψ(ψ−1(q̃))−⊤M(ψ−1(q̃))Dψ(ψ−1(q̃))−1 =
(
mq̃2

2 0
0 m

)
,

• the generalized momenta p̃ = M̃(q̃) d
dt q̃ = (mq̃2

2
d
dt q̃1,m

d
dt q̃2),

• the kinetic energy K̃(q̃, p̃) := 1
2 p̃

⊤M̃(q̃)−1p̃ = p̃2
1+(q̃2p̃2)2

2mq̃2
2

,

• the potential energy

Ũ(q̃) := U(ψ−1q̃) = U(q̃2 sin(q̃1),−q̃2 cos(q̃1)) = −mgq̃2 cos(q̃1),

• the Hamiltonian

H̃(q̃, p̃) = 1
2 p̃

⊤M(q̃)−1p̃+ Ũ(q̃) = H(ψ−1(q̃), Dψ(ψ−1(q̃))p̃),

• the holonomic/kinematic constraints matrix

Ã(q̃) := Dψ(ψ−1(q̃))−⊤A(ψ−1(q)) = e
[2]
2 .

Note that by this choice we have conservation of potential and kinetic energy, i.e.,
K(q, p) = K̃(q̃, p̃) and U(q) = Ũ(q̃). Further, defining

D̃(q̃, p̃) =
{

(fq̃, fp̃, eq̃, ep̃) ∈ T(q̃,p̃)X̃ × T ∗
(q,p)X̃

∣∣∣
∃λ ∈ R2 : 0 = Ã⊤(q̃)

( eq̃
ep̃

)
, −

(
fq̃

fp̃

)
=
[ 0 In

−In 0
] ( eq̃

ep̃

)
+
[

0
Ã(q̃)

]
λ
}

for all (q̃, p̃) ∈ X̃ ,
L =

{
((q̃, p̃),∇H̃(q̃, p̃)) ∈ T ∗X

}
,

and R̃ = {0} we find that(
− d

dt ( qp ) ,
( eq
ep

))
∈ D ∧

(
( qp ) ,

( eq
ep

))
∈ L

⇐⇒
(
− d

dt
( q̃
p̃

)
,
( eq̃
ep̃

))
∈ D̃ ∧

(( q̃
p̃

)
,
( eq̃
ep̃

))
∈ L̃.

The procedure of change of coordinates in Ex. 2.2.12 can be formalized for all pH-NG
systems.

Proposition 2.2.13. Let (D,L,R) be a port-Hamiltonian system with D ⊂ (TX ⊕
BR ⊕ BP ) ⊕ (TX ⊕ BR ⊕ BP )∗ and L a Lagrange submanifold of (T ∗X , ω). For
a diffeomorphism Ψ : X → X̃ consider the bundles B̃R, B̃P , and D̃ ⊂ (T X̃ ⊕ B̃R ⊕
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L ⊂ T ∗X X TX

L̃ ⊂ T ∗X̃ X̃ T X̃

dΨ−∗

p∗
X

Ψ dΨ

pX

dΨ∗

p∗
X̃

Ψ−1 dΨ−1

pX̃

Figure 2.7: Commutative diagram for the change of coordinates in the proof of
Prop. 2.2.13.

B̃P )⊕(T X̃ ⊕B̃R⊕B̃P )∗ over X̃ defined by (B̃R)x̃ := (BR)Ψ−1(x̃), (B̃P )x̃ := (BP )Ψ−1(x̃),
and

D̃(x̃) :=
{

(dΨΨ−1(x̃)fS , fR, fP , dΨ−∗
Ψ−1(x̃)eS , eR, eP )

∣∣∣
(fS , fR, fP , eS , eR, eP ) ∈ D(Ψ−1(x̃))

}
,

for all x̃ ∈ X̃ , as well as the subbundle

L̃ := dΨ−∗(L) =
{

(Ψ(x), dΨ−∗
x v)

∣∣ (x, v) ∈ L
}

of (T X̃ , ω̃) where ω̃ is the pullback of ω under dΨ∗, dΨ∗∗ω. Further, let R̃ = R.
Then (D̃, L̃, R̃) is a pH-NG system and

(− d
dt x(t), fR(t), fP (t), eS(t), eR(t), eP (t)) ∈ D(x(t)),

(x(t), eS(t)) ∈ L, (fR(t), eR(t)) ∈ R(x(t))

if and only if

(− d
dt Ψ(x(t)), fR(t), fP (t), dΨ−∗

x(t)eS(t), eR(t), eP (t)) ∈ D̃(Ψ(x(t))),

(Ψ(x(t)), dΨ−∗
x(t)eS(t)) ∈ L̃, (fR(t), eR(t)) ∈ R̃(Ψ(x(t))).

Proof. With the notation introduced in the proposition, we first check that (D̃, L̃, R̃)
is a well-defined pH-NG system. Note that D̃ pointwisely defines a Dirac subspace
since for x̃ ∈ X̃ and (f̃S , f̃R, f̃P , ẽS , ẽR, ẽP ) ∈ D̃(x̃) it holds

(dΨx(t)fS , f̃R, f̃P , dΨ−∗
x(t)eS , ẽR, ẽP ) ∈ D(Ψ−1(x̃))

and hence

f̃⊤
S ẽS + f̃⊤

R ẽR + f̃⊤
P ẽP =

(
dΨx(t)fS

)⊤
(
dΨ−∗

x(t)eS

)
+ f̃⊤

R ẽR + f̃⊤
P ẽP



58 CHAPTER 2. PORT-HAMILTONIAN FORMULATIONS

=e⊤
S

(
dΨ−1

Ψ(x(t))dΨx(t)fS

)
+ f̃⊤

R ẽR + f̃⊤
P ẽP

=e⊤
S

(
(dΨ(x(t)))−1dΨx(t)fS

)
+ f̃⊤

R ẽR + f̃⊤
P ẽP

=e⊤
S fS + f̃⊤

R ẽR + f̃⊤
P ẽP = 0.

It thus defines pointwisely a skew-symmetric subspace that is maximal with this
property by pointwise invertibility of dψ and dψ−∗. Due to Ψ : X → X̃ being a C2

diffeomorphism, both dΨ : TX → T X̃ and dΨ∗ : T ∗X̃ → T ∗X are C1 diffeomorph-
isms. The commutative diagram displayed in Fig. 2.7 recapitulates the setting. Since
d(dΨ∗) vanishes nowhere, dΨ∗∗ω defines a symplectic form on T ∗X̃ . Therefore, we
can now check that L̃ defines a Lagrangian submanifold of (T ∗X̃ , ω̃). Since it is clear
that dim L̃ = 1

2 dimT ∗X̃ , it suffices to show that ω̃↾L̃ = 0 by Def. 1.4.2 and [Lee12,
Prop. 22.5]. Let ι̃ : L̃ → T ∗X̃ , ι : L → T ∗X denote the inclusions. Then

ι∗ω =
(
dΨ∗ ◦ ι̃ ◦ dΨ−∗)ω = dΨ−∗∗ι̃∗dΨ∗∗ω = dΨ−∗∗ι̃∗ω̃ = 0 ⇔ ι̃∗ω̃ = 0,

i.e., L is a Lagrangian submanifold if and only if L̃ is a Lagrangian submanifold. Note
that R̃ is obviously a resistive structure. Overall, (D̃, L̃, R̃) is a pH-NG system. The
last statement of the proposition follows directly from the construction and the chain
rule.

Remark 2.2.14. By the choice of ω̃ in Prop. 2.2.13, dΨ∗ becomes a symplectomorph-
ism and as can be observed in Ex. 2.2.12, if ω is the standard symplectic form, then
so is ω̃, see [LM87, Prop. 3.5].

2.3 The linear-algebraic formulation

In this section, we introduce two port-Hamiltonian formulations. The first formulation
we present was proposed by the systems theory community and can be found in
[BMX+18; MMW18]. The second formulation is a relaxation of the first, where we
essentially replace the state space Rn by a subspace of Rn. This restriction conserves
all the relevant properties that make port-Hamiltonian formulations so appealing.

The classic definition

The following definition generalizes the pH-ODE systems (2.1) in a straight-forward
manner, namely by applying a possibly indefinite matrix E before differentiating the
state x in (2.1a) and requiring symmetry of E∗Q instead of Q in (2.1b).
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Definition 2.3.1 (Linear-algebraic port-Hamiltonian system).
A system [E,A,B,C,D] ∈ Σn,m,k is called a linear algebraic port-Hamiltonian system
(pH-LA system) if there exist matrices Q ∈ Km×n, J, R ∈ Km×m, G,K ∈ Km×k and
S,N ∈ Kk×k satisfying

Q∗E = E∗Q, V :=
[
J G

−G∗ N

]
= −V ∗, W :=

[
R K

K∗ S

]
≥ 0, (2.12)

such that

A = (J −R)Q, B = G−K, C = (G+K)∗Q, D = S +N,

i.e., the system is described by the equations
d
dt Ex(t) =(J −R)Qx(t) + (G−K)u(t),

y(t) =(G+K)∗Qx(t) + (S +N)u(t).
(2.13)

Clearly, the systems (2.1) are comprised in this definition and a power balance is
achieved in the same manner defining the Hamiltonian H(x) = 1

2x
∗Q∗Ex. Namely

for (x, u, y) ∈ B[E,A,B,C,D],

d
dt H(x) = 1

2
d
dt Re (x∗Q∗Ex)

= 1
2

d
dt Re

(
x∗Q∗EE†Ex

)
= 1

2
d
dt Re

(
x∗E∗QE†Ex

)
= 1

2 Re
( d

dt (Ex)∗QE†Ex+ x∗E∗QE† d
dt (Ex)

)
= 1

2 Re
(
x∗(E∗E†∗Q∗EE† +Q∗EE†) d

dt (Ex)
)

= 1
2 Re

(
x∗(E∗E†∗E∗QE† +Q∗EE†) d

dt (Ex)
)

= 1
2 Re

(
x∗(E∗QE† +Q∗EE†) d

dt (Ex)
)

(2.14)

= 1
2 Re

(
x∗(Q∗EE† +Q∗EE†) d

dt (Ex)
)

= Re
(
x∗Q∗ d

dt (Ex)
)

= Re (x∗Q∗(J −R)Qx+ x∗Q∗(G−K)u)

= Re (−x∗Q∗RQx+ y∗u− 2x∗Q∗Ku− u∗(S +N)u)

= Re (y∗u) − (Qxu )∗
W (Qxu )

≤ Re (y∗u).

Paying close attention to (2.14), we only need the equalities and inequality in (2.12)
to be true on the system space Vsys and [ In 0 ]Vsys, respectively. When considering
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DAEs, properties or characterizations are commonly formulated on subspaces such as
the system space, the space of consistent differential variables or some related space,
see, e.g., App. A or [RV19]. This approach is justified since outside these spaces, no
dynamics take place. This motivates the relaxation of Def. 2.3.1 in the subsequent
section.

Linear algebraic port-Hamiltonian systems on a subspace

Definition 2.3.2 (Relaxed linear-algebraic port-Hamiltonian system).
A system [E,A,B,C,D] ∈ Σn,m,k is called a relaxed linear algebraic port-Hamiltonian
system on V ⊂ Kn+k (pH-LAR system) if there exist matrices Q ∈ Km×n, J, R ∈
Km×m, G,K ∈ Km×k and S,N ∈ Kk×k satisfying

Q∗E =[ In 0 ]V E
∗Q,

V :=
[
J G

−G∗ N

]
=[E 0

0 Ik

]
V −V ∗, (2.15)

W :=
[
R K

K∗ S

]
≥[E 0

0 Ik

]
V 0,

such that[
A B

]
=V

[
(J −R)Q G−K

]
,
[
C D

]
=V

[
(G+K)∗Q S +N

]
.

Now for a pH-LAR system [E,A,B,C,D] on some subspace V and given some
(x, u, y) ∈ B[E,A,B,C,D], if x(t) ∈ [ In 0 ]V for almost all t ∈ R, then d

dt Ex ∈ [ In 0 ]V
for almost all t ∈ R. Analogously to (2.14) with H(x) = x∗Q∗Ex as Hamiltonian, we
obtain the power balance

d
dt H(x) = 1

2
d
dt Re (x∗Q∗Ex)

= 1
2

d
dt Re

(
x∗Q∗EE†Ex

)
= 1

2
d
dt Re

(
x∗E∗QE†Ex

)
= 1

2 Re
( d

dt (Ex)∗QE†Ex+ x∗E∗QE† d
dt (Ex)

)
= 1

2 Re
(
x∗(E∗E†∗Q∗EE† +Q∗EE†) d

dt (Ex)
)

= 1
2 Re

(
x∗(E∗E†∗E∗QE† +Q∗EE†) d

dt (Ex)
)

= 1
2 Re

(
x∗(E∗QE† +Q∗EE†) d

dt (Ex)
)

= 1
2 Re

(
x∗(Q∗EE† +Q∗EE†) d

dt (Ex)
)

(2.16)
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= Re
(
x∗Q d

dt (Ex)
)

= Re (x∗Q∗(Ax+Bu))

= Re (x∗Q∗(J −R)Qx+ x∗Q∗(G−K)u)

= Re (−x∗Q∗RQx+ y∗u− 2x∗Q∗Ku− u∗(S +N)u)

= Re ((Cx+Du)∗u)

= Re (y∗u) − (Qxu )∗
W (Qxu )

≤ Re (y∗u).

A canonical candidate for V is of course the system space Vsys. However, a smaller
subspace can also be of interest, see Sec. 4.2.

2.4 The linear relations formulation

Even if the linear algebraic and the geometric port-Hamiltonian formulations we
presented have been studied for decades, they never really have been compared to
each other up to now, if not indirectly by showing that both extend (2.1). The
next formulation we present arose from the effort to compare the two preceding port-
Hamiltonian formulations. We will see in Sec. 2.5 that the following definition can be
regarded as a unifying concept.

Definition 2.4.1 (Linear relations port-Hamiltonian system). Let n, k ∈ N0, D be
a dissipative and L a symmetric relation in Kn+k. Then the product DL defines a
linear relations port-Hamiltonian system (pH-LR system) whose dynamics are given
by the differential inclusion

(x(t), eP (t), ẋ(t), fP (t)) ∈ DL. (2.17)

In order to show that pH-ODEs are encompassed by pH-LR systems, we make use
of the approach for pH-LG systems. With the notation from (2.1) and (2.8), −D is
readily skew-adjoint and hence dissipative. It follows by Prop. 1.3.14 that (−D) ◦ R
is a dissipative relation. Further, L×̂ gr Ik is readily a symmetric relation. In this
case, for functions x, u, y there holds

(x(t), u(t), ẋ(t),−y(t)) ∈ ((−D) ◦ R)−1(L × gr Ik)
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if and only if there exist functions eR1, eR2, fR1, fR2 such that

(− d
dt x(t), fR1(t), fR2(t), y(t), eS(t), eR1(t), eR2(t), u(t)) ∈ D,

(x(t), eS(t)) ∈ L, (fR1(t), fR2(t), eR1(t), eR2(t)) ∈ R,

that is, if and only if x, u, y solve (2.1a). When for a pH-LR system the symmetric
linear relation can be written as a certain product, it is also possible to formulate
a certain power balance and explain interconnections similarly to (2.7). To be more
precise, we establish a power balance for pH-LR systems of the form D(L×̂ gr Ik)
where L is a symmetric relation in Kn and k the dimension of the external ports.
Let M be the operator defined by Prop. 1.3.10 for L and let ι : (mul L)⊥ ↪→ Kn be
the inclusion map. Define F : Kn → R as F (x) = 1

2 Re(x∗ιMPdom Lx). Then for
(x, eP , d

dt x, fP ) satisfying

(x(t), eP (t), d
dt x(t), fP (t)) ∈ D(L × gr Ik)

there exists some function eS such that

(x(t), eP (t), eS(t), eP (t)) ∈ L × gr Ik, (eS(t), eP (t), d
dt x(t), fP (t)) ∈ D,

and we have eS = Mx+ λ for some λ ∈ mul L. Thus,

d
dt F (x(t)) = d

dt
1
2 Re(x(t)∗ιMPdom Lx(t))

= Re(ẋ(t)∗ιMx(t))

= Re(ẋ(t)∗(ιMx(t) + λ(t)))

= Re(ẋ(t)∗eS(t))

≤ Re(fP (t)∗eP (t)).

As for pH-LG systems, if we have a range representation L = ran
[
E
Q

]
, then we

can reformulate the ‘Hamiltonian’ F with respect to other variables. Namely, with
(x(t), eS(t)) ∈ L we know that there exists some function z such that x = Ez and
eS = Qz. Consequently,

1
2 Re(z(t)∗E∗Qz(t)) = 1

2 Re(x(t)∗eS(t)) = 1
2 Re(x(t)∗Mx(t) + x(t)∗λ(t))

= 1
2 Re(x(t)∗ιMPdom Lx(t)) = F (x(t)).

We introduce the notion of behavior for pH-LR systems, which describes our solution
concept for them.
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Definition 2.4.2 (Behavior of pH-LR system). Let DL be a pH-LR system with
dissipative and symmetric relations D,L ⊂ Kn+k, respectively, for some n, k ∈ N0.
Further, let a range representation

ran
[
E1
E2
A1
A2

]
= DL

be given for some m ∈ N0 and E1, A1 ∈ Kn×m, and E2, A2 ∈ Kk×m. We define the
behavior of DL as

BDL =
{

(E1z, E2z,A2z)
∣∣ z ∈ B[E1,A2]

}
.

Note that by definition, (x, eP , fP ) ∈ BDL fulfills the dynamics (2.17) for almost all
t ∈ R.

Proposition 2.4.3. The behavior BDL of a pH-LR system DL is well-defined.

Proof. Let two range representations

ran
[
E1
E2
A1
A2

]
= DL = ran

 Ẽ1
Ẽ2
Ã1
Ã2


be given for some m, m̃ ∈ N0 and E1, A1 ∈ Kn×m, E2, A2 ∈ Kk×m, Ẽ1, Ã1 ∈ Kn×m̃,
and Ẽ2, Ã2 ∈ Kk×m̃ such that

BDL =
{

(E1z, E2z,A2z)
∣∣ z ∈ B[E1,A2]

}
,

and introduce
B̃DL =

{
(Ẽ1z̃, Ẽ2z̃, Ã2z̃)

∣∣∣ z̃ ∈ B[Ẽ1,Ã2]

}
.

By Prop. 1.3.2 there exist matrices T, T̃ ∗ ∈ Km×m̃ such that[
E1
E2
A1
A2

]
T =

 Ẽ1
Ẽ2
Ã1
Ã2

 ,
 Ẽ1
Ẽ2
Ã1
Ã2

 T̃ =
[
E1
E2
A1
A2

]
.

We show BDL = B̃DL. To this end, let (E1z, E2z,A2z) ∈ BDL for some z ∈
B[E1,A2] = B[Ẽ1T̃ ,Ã2T̃ ]. Then T̃ z ∈ B̃[E1,A2] and (E1z, E2z,A2z) = (Ẽ1z̃, Ẽ2z̃, Ã2z̃) ∈
B̃DL. The reverse inclusion is shown analogously by inverting the roles.

The behavior can also be defined through the dynamics of the system.



64 CHAPTER 2. PORT-HAMILTONIAN FORMULATIONS

Proposition 2.4.4. Let DL be a pH-LR system with linear relation D,L in Kn+k.
Then

BDL =
{

(x, eP , fP ) ∈ W 1,1
loc (R,Kn) × L1

loc (R,K2k)
∣∣∣

(x(t), eP (t), ẋ(t), fP (t)) ∈ DL f.a.a. t ∈ R
}
.

Proof. Consider any range representation

ran
[
E1
E2
A1
A2

]
= DL

with E1, A1 ∈ Kn×m, E2, A2 ∈ Kk×m for some m ∈ N0 and recall that

BDL =
{

(E1z, E2z,A2z)
∣∣ z ∈ B[E1,A2]

}
.

Step 1 : We prove the forward inclusion “⊆”. To this end, let x ∈ BDL. Then there
exists some z ∈ B[E1,A1] such that x = E1z ∈ W 1,1

loc (R,Kn) and eP = E2z, fP =
A2z ∈ L1

loc (R,Kk). Hence,

(x(t), eP (t), ẋ(t), fP (t)) ∈ DL, f.a.a. t ∈ R.

This proves the forward inclusion.
Step 2 : We prove the backward inclusion “⊇”. To this end, let

(x, eP , fP ) ∈ W 1,1
loc (R,Kn) × L1

loc (R,K2k)

such that

(x(t), eP (t), ẋ(t), fP (t)) ∈ DL = ran
[
E1
E2
A1
A2

]
, f.a.a. t ∈ R.

We deduce the existence of a function z(·) : R → Km such that

x(t) = E1z(t), eP (t) = E2z(t), ẋ(t) = A1z(t), fP (t) = A2z(t), f.a.a. t ∈ R.

Let S ∈ Gln(K), T ∈ Glm(K) be such that sSE1T − SA1T is in Kronecker form
(1.1). Then with x̃ := Sx and z̃ := T−1z we have

L1
loc (R,Kn) ∋ x̃ =


Il 0 0 0
0 Nα 0 0
0 0 Kβ 0
0 0 0 K⊤

γ

 z̃, (2.18)
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L1
loc (R,Kn) ∋ d

dt x̃ =


J 0 0 0
0 I|α| 0 0
0 0 Lβ 0
0 0 0 L⊤

γ

 z̃. (2.19)

From (2.18) we obtain that the entries of z̃ corresponding to the first block in the
Kronecker form (1.1) are in L1

loc (R,Kl). We deduce the same from (2.19) for the
entries of z̃ corresponding to the second and last blocks in the Kronecker form (1.1).
For the entries corresponding to the third we proceed the same way but rely on
both (2.18) and (2.19). Overall, z̃ ∈ L1

loc (R,Km) and therefore z too. This gives
z ∈ B[E1,A2] and overall (x, eP , fP ) ∈ BDL.

To close this section, we describe how to interconnect pH-LR systems.

Definition 2.4.5 (Interconnection of pH-LR systems). Let D1(L1×̂ gr Ik1+k2) and
D2(L2×̂ gr Ik2+k3) be two pH-LR systems with L1 ⊂ K2n1 and L2 ⊂ K2n2 . Then the
interconnection of D1(L1×̂ gr Ik1+k2) and D2(L2×̂ gr Ik2+k3) with respect to Kk2 is
defined as the pH-LR system DL where

D := (D−1
1 ◦ D−1

2 )−1, L := L1×̂L1×̂ gr Ik1+k3 .

By Prop. 1.3.14, the above constructed set D is indeed a dissipative relation and L is
readily a symmetric relation.

Remark 2.4.6. In the context of Def. 2.4.5 for suitable functions x1, x2, eP1, eP2, eP3,

fP1, fP2, fP3 and omitting the dependency on the time, it holds almost everywhere

(x1, eP1, eP2, ẋ1, fP1, fP2) ∈ D1(L1×̂ gr Ik1+k2)

∧ (x2, eP2, eP3, ẋ2,−fP2, fP3) ∈ D2(L2×̂ gr Ik2+k3)

⇐⇒ ∃(eS1, eS2) : (eS1, eP1, eP2,
d
dt x1, fP1, fP2) ∈ D1

∧ (eS2, eP2, eP3,
d
dt x2,−fP2, fP3) ∈ D2

∧ (x1, eP1, eP2, eS1, eP1, eP2) ∈ L1×̂ gr Ik1+k2

∧ (x2, eP2, eP3, eS2, eP2, eP3) ∈ L2×̂ gr Ik2+k3

⇐⇒ ∃(eS1, eS2) : ( d
dt x1, fP1, fP2, eS1, eP1, eP2) ∈ D−1

1

∧ ( d
dt x2,−fP2, fP3, eS2, eP2, eP3) ∈ D−1

2

∧ (x1, eP1, eS1, eP1) ∈ L1×̂ gr Ik1

∧ (x2, eP3, eS2, eP3) ∈ L2×̂ gr Ik3
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⇐⇒ ∃(eS1, eS2) : ( d
dt x1,

d
dt x2, fP1, fP3, eS1, eS2, eP1, eP3) ∈ D−1

1 ◦ D−1
2

∧ (x1, x2, eP1, eP3, eS1, eS2, eP1, eP3) ∈ L1×̂L2×̂ gr Ik1+k3

⇐⇒ (x1, x2, eP1, eP3,
d
dt x1,

d
dt x2, fP1, fP3) ∈ (D−1

1 ◦ D−1
2 )−1(L1×̂L2×̂ gr Ik1+k3).

Loosely speaking, this means

(x1, x2, eP1, eP3, fP1, fP3) ∈ B(D−1
1 ◦D−1

2 )−1(L1×̂L2×̂ gr Ik1+k3 )

⇐⇒ (x1, eP1, eP2, fP1, fP2) ∈ BD1(L1×̂ gr Ik1+k2 )

∧ (x2, eP2, eP3,−fP2, fP3) ∈ BD2(L2×̂ gr Ik2+k3 ).

Since the way we showed that pH-ODEs are encompassed by pH-LR systems relied on
pH-LG systems, this interconnection should be compatible with the interconnection
defined by Def. 2.2.2. We will answer this question in the next section, where we will
compare different port-Hamiltonian formulations.

2.5 A comparison of the port-Hamiltonian formu-
lations

For now, we only hinted at similitudes between the different port-Hamiltonian for-
mulations by showing, for example, how they generalize the port-Hamiltonian ODEs
or how a power-balance can be realized. In this section, we will take a closer look at
how the pH-LG, pH-LA, and pH-LR formulations relate to one another and make use
of the intuition on port-Hamiltonian systems we have gathered to this point.

2.5.1 Simple translations between port-Hamiltonian formula-
tions

Here, we present criteria, which allow us the rewriting of either a pH-LA, pH-LG, or
pH-LR system as a system of the other types, that is, we give only sufficient conditions
enabling the translation from one port-Hamiltonian formulation to another.

From the pH-LA to the pH-LR formulation

Given a pH-LA system (2.12), it is straight-forward to see that

D1 := gr
[

J −R G−K

−(G+K)∗ −(S +N)

]
, L1 := ran

[
E

Q

]
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define a dissipative and symmetric relation, respectively, i.e.,

D1L1 = ran
[

E 0
0 I

(J−R)Q G−K
−(G+K)∗Q −(S+N)

]
is a pH-LR system. Further, for (x, u, y) ∈ B[E,(J−R)Q,G−K,(G+K)∗Q,S+N ],

d
dt Ex(t) =(J −R)Qx(t) + (G−K)u(t),

y(t) =(G+K)∗Qx(t) + (S +N)u(t),

⇐⇒

(
Ex
u

d
dt Ex

−y

)
=
[

E 0
0 I

(J−R)Q G−K
−(G+K)∗Q −(S+N)

]
( xu ) , (2.20)

and hence (Ex, u, d
dt Ex,−y) ∈ D1L1. Conversely, for (x, eP , d

dt x, fP ) ∈ D1L1 there
exists some Kn-valued function z such that( x

eP

d
dt x
fP

)
=
[

E 0
0 I

(J−R)Q G−K
−(G+K)∗Q −(S+N)

]
( z
eP

) ,

which implies

d
dt Ez =(J −R)Qz + (G−K)eP ,

−fP =(G+K)∗Qz + (S +N)eP .

Overall we showed that every pH-LA system can be regarded as a pH-LR system.

From the pH-LG to the pH-LR formulation

Similarly, every pH-LG system (D2,L2,R2) where R2 is not only a resistive linear
relation but also a nonnegative linear relation can be written down as a pH-LR system.
Namely, as D3L3 where

D3 := (−D ◦ R)−1, L3 := { (x, eP , eS , e′
P ) | eP = e′

P , (x, e) ∈ L2 } .

Indeed by Prop. 1.3.14, D3 is a dissipative relation and L3 readily is a symmetric
relation. Further, it is immediate that (x, eP , d

dt x,−fP ) ∈ D3L3 if and only if there
exists some (fR, eR) ∈ R2 such that (− d

dt x, fP , x, eP ) ∈ D2 and (x, e) ∈ L2.

From the pH-LA to the pH-LG formualtion

With the additional assumption on a real (K = R) pH-LA system (2.12) that ran
[
E
Q

]
defines a Lagrangian subspace, that is dim ran

[
E
Q

]
= n, we can also translate this
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system to the linear geometric language, cf. [MM19, Thm. 2], by introducing the
respectively skew-adjoint, symmetric, and resistive linear relations

D4 :=

gr


−J In 0 −G
−In 0 0 0

0 0 0 −Ik
G∗ 0 Ik N




−1

, L4 := ran
[
E

Q

]
, R4 := gr −

[
R K

K∗ S

]
.

(2.21)
Then (D4,L4,R4) defines a pH-LG system and for

(x, u, y) ∈ B[E,(J−R)Q,G−K,(G+K)∗Q,S+N ]

holds

(− d
dt Ex(t),−Qx(t),−u(t), y(t), Qx(t),

RQx(t) +Ku(t),K∗Qx(t) + Su(t), u(t)) ∈ D4,

(Ex(t), Qx(t)) ∈ L4,

(−Qx(t),−u(t), RQx(t) +Ku(t),K∗Qx(t) + Su(t)) ∈ R4.

Conversely, if

(− d
dt x(t), fR1(t), fR2(t), fP (t), eS(t), eR1(t), eR2(t), eP (t)) ∈ D4,

(x(t), eS(t)) ∈ L4, (fR1(t), fR2(t), eR1(t), eR2(t)) ∈ R4,

then there exists some Kn-valued function z(·) such that Ex = z and

d
dt Ez =(J −R)Qz + (G−K)(−eP ),

fP =(G+K)∗Qz + (S +N)(−eP ).

From the pH-LG to the pH-LA formulation

There is an additional assumption enabling us to view a pH-LG system as a pH-
LA system. Namely, for a pH-LG system (D5,L5,R5) assume not only that R2 is a
nonnegative linear relation but also that −D5◦R5, which is a dissipative linear relation
by Prop. 1.3.14, can be written as the graph of a matrix, i.e., −D5 ◦ R5 = gr D for
some dissipative matrix D. The latter can be checked with Prop. 1.3.9. Next, we
decompose D as D = V − W with V = −V ∗ and W ≥ 0. Further, we partition the
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matrices V,W with respect to the state and external ports dimensions as

V =
[
J G

−G∗ N

]
, W =

[
R K

K∗ S

]
.

Choosing any range representation L5 = gr
[
E
Q

]
, we obtain the pH-LA system

[E, (J −R)Q,G−K, (G+K)∗Q,S +N ].

Then for any functions x, fP , ep there exist functions fR, eR such that

(− d
dt x(t), fR(t), fP (t), eS(t), eR(t), eP (t)) ∈ D5,

(x(t), eS(t)) ∈ L5, (fR(t), eR(t)) ∈ R5,

if and only if there exists some function z such that x = Ez and

d
dt Ez =(J −R)Qz + (G−K)(−eP ),

fP =(G+K)∗Qz + (S +N)(−eP ).

From the pH-LR to the pH-LA formulation

The same technique as for the translation from a pH-LG to a pH-LA system can
be used to translate a pH-LR system D6L6 to the pH-LA setting. Here we can
directly check whether D6 is the graph of a dissipative matrix and proceed as before
to translate all such pH-LR systems into pH-LA systems.

From the pH-LR to the pH-LG formulation

A possibility to write a real (K = R) pH-LR system D6L6 as pH-LG system is the
following. First, we check whether L6 = L7×̂ gr InP

for a self-adjoint relation L7 in
RnS . If this condition is fulfilled, we invoke Lem. 1.3.13 and find a Dirac structure
D7 and a resistive structure R7 such that D6 = D7 ◦ R7. Then (−D−1

7 ,L7,R7) is a
pH-LG system. Further, (x, eP , d

dt x,−fP ) ∈ D6L6 if and only if there exists some
(fR, eR) ∈ R7 such that (− d

dt x, fP , fR, x, eP , eR) ∈ D7, (x, e) ∈ L7, (fR, eR) ∈ R7.
Here, compared to Def. 2.2.5, the order in which the external and resistive ports
appear in the inclusion with D7 is inverted. This does however not pose a loss of
generality.

Remark 2.5.1 (On the interconnection of port-Hamiltonian systems).
Now that we have seen how pH-LG systems can be interpreted as pH-LR systems,
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we check that the interconnection introduced for pH-LR systems is compatible with
interconnection defined by Def. 2.2.2. To this end, for i = 1, 2 let (Di,Li,Ri) be a
pH-LG system with Di a skew-adjoint relation in RnSi+nRi+nP i+nI , Li a self-adjoint
relation in RnSi , and Ri a nonpositive relation in RnRi . Consider their interconnection
with respect to RnI

(D3,L3,R3) := (D1,L1,R1) ◦ (D2,L2,R2),

where in particular,

D3 = D1 ◦ D2, L3 = L1×̂L2, R3 = R1×̂R2.

We arrive at the pH-LR system

(−D3 ◦ R3)−1(L3×̂ gr InP 1+nP 2).

Further, consider the pH-LR systems

(−Di ◦ Ri)−1(Li×̂ gr InP i+nI
),

i = 1, 2, as well as their interconnection D4L4 given by

D4 =
(
((−D1 ◦ R1)−1)−1 ◦ ((−D2 ◦ R2)−1)−1)−1 = ((−D1 ◦ R1) ◦ (−D2 ◦ R2))−1

,

L4 = L1×̂L2×̂ gr InP 1+nP 2 = L3×̂ gr InP 1+nP 2 .

Our goal is to compare the pH-LR systems (−D3◦R3)−1(L3×̂ gr InP 1+nP 2) and D4L4.
To this end, note the following equivalences.

(−D3 ◦ R3)−1 = D4

⇐⇒ − D3 ◦ R3 = (−D1 ◦ R1) ◦ (−D2 ◦ R2)

⇐⇒ − (D1 ◦ D2) ◦ (R1×̂R2) = (−D1 ◦ R1) ◦ (−D2 ◦ R2).

To assert the latter, consider

(f1, f2, fP1, fP2, e1, e2, eP1, eP2) ∈ −(D1 ◦ D2) ◦ (R1×̂R2)

⇐⇒ ∃(fR1, fR2, eR1, eR2) ∈ R1×̂R2 :

(f1, f2,−fR1,−fR2, fP1, fP2, e1, e2, eR1, eR2, eP1, eP2) ∈ −(D1 ◦ D2)

⇐⇒ ∃(fR1, eR1) ∈ R1, (fR2, eR2) ∈ R2 :

(f1, f2,−fR1,−fR2, fP1, fP2,−e1,−e2,−eR1,−eR2,−eP1,−eP2) ∈ D1 ◦ D2
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⇐⇒ ∃(fR1, eR1) ∈ R1, (fR2, eR2) ∈ R2, (fI , eI) ∈ R2nI :

(−f1, fR1,−fP1, fI , e1, eR1, eP1, eI) ∈ D1

∧ (−f2, fR2,−fP2,−fI , e2, eR2, eP2, eI) ∈ D2

⇐⇒ ∃(fI , eI) ∈ R2nI : (f1, fP1,−fI , e1, eP1, eI) ∈ −D1 ◦ R1

∧ ∈ (f2, fP2, fI , e2, eP2, eI) − D2 ◦ R2

⇐⇒ (f1, f2, fP1, fP2, e1, e2, eP1, eP2) ∈ (−D1 ◦ R1) ◦ (−D2 ◦ R2).

In particular with D4 = L3×̂ gr InP 1+nP 2 , we deduce

(−D3 ◦ R3)−1(L3×̂ gr InP 1+nP 2) = D4L4,

i.e., interconnecting two pH-LG systems and converting the interconnection to a pH-
LR system leads to the same result as converting the pH-LG systems to pH-LR
systems first and then interconnecting them.
Closing the remark on interconnections, recall that we did not define the concept of
interconnection for pH-LA or pH-LAR systems. The reasons are twofold. For one,
we saw that pH-LR systems can always be interpreted as pH-LA systems, for which
we defined the concept. This is exactly how interconnections for pH-LA systems are
often introduced, see, e.g., [BMX+18] and [VvdS10a] for the pH-ODE case. Secondly,
no real alternatives are discussed. Of course, for two pH-LA systems one could allow
as interconnection any linear relation between their inputs and outputs such that
one can prove a power-balance and such that the resulting system is again pH-LA
[MM19]. However, the author is not aware of any characterization of such a concept
and in [MM19] one resorts to the interconnection induced by Dirac subspaces, which
is comprised in this abstract concept. From this one basic geometric interconnection
one can build others and in fact all interconnections of practical relevance [DvdS98;
VvdS10b].

We can also relate the behavior of a pH-LG systems to that of a pH-LR system.

Proposition 2.5.2. Let (D,L,R) be a pH-LG system with D ⊂ R(nS+nR+nP ) ×
R(nS+nR+nP ), L ⊂ RnS × RnS and R ⊂ RnR × RnR . If (x, fR, fP , eS , eR, eP ) ∈
BD,L,R, then it holds (x, eP , fP ) ∈ B(−D◦R)−1(L×̂ gr InP

). Conversely, if (x, eP , fP ) ∈
B(−D◦R)−1(L×̂ gr InP

), then there exist fR, eR ∈ L1
loc (R,RnR) and eS ∈ L1

loc (R,RnS )
such that (x, fR, fP , eS , eR, eP ) ∈ BD,L,R. That is loosely speaking,

(x, fR, fP , eS , eR, eP ) ∈ BD,L,R ⇐⇒ (x, eP ,−fP ) ∈ B(−D◦R)−1(L×̂ gr InP
).
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Proof. First note that (−D ◦R)−1(L×̂ gr InP
) is a well-defined pH-LR system by the

previous results of this section. Now let (x, fR, fP , eS , eR, eP ) ∈ BD,L,R. Invoking
Props. 2.2.10 & 2.4.4 we have

(x, fR, fP , eS , eR, eP ) ∈ BD,L,R

⇐⇒ (−ẋ(t), fR(t), fP (t), eS(t), eR(t), eP (t)) ∈ D

∧ (x(t), eS(t)) ∈ L ∧ (fR(t), eR(t)) ∈ R, f.a.a. t ∈ R

=⇒ (eS(t), eP (t), ẋ(t),−fP (t)) ∈ (−D ◦ R)−1

∧ (x(t), eP (t), eS(t), eP (t)) ∈ L×̂ gr InP
, f.a.a. t ∈ R

=⇒ (x(t), eP (t), ẋ(t),−fP (t)) ∈ (−D ◦ R)−1(L×̂ gr InP
), f.a.a. t ∈ R

⇐⇒ (x, eP ,−fP ) ∈ B(−D◦R)−1(L×̂ gr InP
).

Conversely, let (x(t), eP (t), ẋ(t),−fP (t)) ∈ (−D ◦ R)−1(L×̂ gr InP
) for almost all

t ∈ R. That is for any range representations ran [ F∗
1 F∗

2 F∗
3 F∗

4 ]∗ ∈ K2(nS+nR)×m1 of
(−D ◦R)−1 and ran [G∗

1 G∗
2 G∗

3 G∗
4 ]∗ ∈ K2(nS+nR)×m2 of L×̂ gr InP

, we find a function
(z1, z2) : R → Rm1 × Rm2 such that x

eP
0
0
ẋ

−fP

 =


F1 0
F2 0
F3 −G1
F4 −G2
0 G3
0 G4

 ( z1
z2 ) .

Without loss of generality (z1, z2) ∈ L1
loc (R,Rm1+m2). Otherwise, choose

(
z̃1
z̃2

)
=


F1 0
F2 0
F3 −G1
F4 −G2
0 G3
0 G4


† x

eP
0
0
ẋ

−fP

 .

With eS := F3z1 = G1z2 ∈ L1
loc (R,Rns) we have

(eS(t), eP (t), ẋ(t),−fP (t)) ∈ (−D ◦ R)−1

∧ (x(t), eP (t), eS(t), eP (t)) ∈ L×̂ gr InP
, f.a.a. t ∈ R.

Similarly for any range representations [ F̃∗
1 F̃∗

2 F̃∗
3 F̃∗

4 F̃∗
5 F̃∗

6 ]∗ ∈ R2(nS+nR+nP )×m̃1 of
−D and [ G̃∗

1 G̃∗
2 ]∗ ∈ K2nR×m̃2 of R we now find a function (z̃1, z̃2) ∈ L1

loc (R,Rm̃1 ×
Rm̃2) such that  ẋ

0
−fP
eS
0
eP

 =


F1 0
F2 G1
F3 0
F4 0
F5 −G2
F6 0

( z̃1
z̃2

)
,
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and in turn function fR, eR ∈ L1
loc (R,RnR) such that

(−ẋ(t), fR(t), fP (t), eS(t), eR(t), eP (t)) ∈ D ∧ (x(t), eS(t)) ∈ L ∧ (fR(t), eR(t)) ∈ R,

for almost all t ∈ R, completing the proof.

Remark 2.5.3. In this section we did not compare pH-LAR systems with the other
types of port-Hamiltonian systems as it is beyond the scope of this thesis. However,
we point out how a comparison could be achieved. Just as the pH-LAR formulation
was obtained by restricting the constitutive equations of the pH-LA formulation on
subspaces, it is possible to formulate pH-LR systems where the linear relations are only
defined on a subspace of Kn. In fact, most of the literature on linear relations, see, e.g.,
[BHdS20, Chap. 1], considers linear relations as subspaces of ‘abstract’ vector spaces
and we could have formulated Sec. 1.3 completely on finite vector spaces without
specifying Kn for some n ∈ N0, enabling a comparison with the pH-LAR formulation.

2.5.2 Dissipative-Hamiltonian pencil

In Sec. 2.5.1 we saw how pH-LR systems encompass pH-LA and pH-LG systems. To
enable a finer comparison between the presented linear port-Hamiltonian formula-
tions, we will focus on the case where no external ports are present, i.e., there is no
interaction with the environment. Recall that in this case, the dynamics of a pH-LR
system DL with D,L ⊂ Kn × Kn are given by (x, ẋ) ∈ DL. Defining the set-valued
map F ⇒ Kn, x 7→ { y ∈ Kn | (x, y) ∈ DL }, we can rewrite the dynamics as the
standard differential inclusion

ẋ(t) ∈ F (x(t)), t ∈ R.

Although solution theories for solving such differential-inclusions exist, see, e.g.,
[AF90], we saw with Def. 2.4.2 and Prop.2.4.4 how the problem of solving this differen-
tial inclusion can be reduced to solving a DAE. In fact, there exist different approaches
to convert this differential inclusion to a DAE, of which four are presented in Fig. 2.8.
Let us briefly motivate these cases. A base observation is that (x, ẋ) ∈ DL is point-
wisely equivalent to the existence of some e ∈ Kn such that (x, e) ∈ L and (e, ẋ) ∈ D.
Now if

(i) L = ker [K1 L1 ] and D = ker [K2 L2 ], then K1x + L1e = 0 and K2e + L2ẋ =
0. With invertible matrices U, V such that U(sK1 − L1) =

[
sK11−L11
sK12

]
and
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V (sK2 − L2) =
[

sL21
sK22−L22

]
for some full column rank matrices L11,K22 we

obtain

K1x+ L1e = 0 ⇐⇒
[
K11
K12

]
x = −

[
L11

0
]
e ⇐⇒ (L†

11K11x = −e ∧ K12x = 0),

and

K2e+ L2ẋ = 0 ⇐⇒
[ 0
K22

]
e = −

[
L21
L22

]
ẋ ⇐⇒ (K†

22L22ẋ = −e ∧ L21ẋ = 0).

Combining these equivalences yields,[
K†

22L22
L21

0

]
ẋ =

[
L†

11K11
0
K12

]
x.

(ii) L = ker [K1 L1 ] and D = ran
[
F2
G2

]
, then K1x+ L1e = 0 and there exists some

z ∈ dom F2 = dom G2 such that ( eẋ ) =
[
F2
G2

]
z. Integrating ẋ = G2z, we write

x =
∫
G2z. Consequently, L1F2z = −K1

∫
G2z, i.e.,

d
dt L1F2z = −K1G2z.

(iii) L = ran
[
F1
G1

]
and D = ker [K2 L2 ], then there exists some z ∈ dom F1 =

dom G1 such that ( xe ) =
[
F1
G1

]
z and K2e+ L2ẋ = 0. Combining both yields

L2
d
dt F1z = −K2G1z.

(iv) L = ran
[
F1
G1

]
and D = ran

[
F2
G2

]
, then there exist z1 ∈ dom F1 = dom G1

and z2 ∈ dom F2 = dom G2 such that ( xe ) =
[
F1
G1

]
z1 and ( eẋ ) =

[
F2
G2

]
z2. In

particular, G1z1 = e = F2z2, i.e., ( z1
z2 ) ∈ ker [G1 −F2 ]. Taking inspiration from

the proof of Prop. 1.3.14 we find that DL = ran
[
F1X
G2Y

]
where X,Y are matrices

fulfilling ran [XY ] = ker [G1 −F2 ]. From this observation we derive the existence
of some z ∈ dom F1X = dom G2Y such that ( xẋ ) =

(
F1X
G2Y

)
z, that is

d
dt G2Y z = F1Xz.

In the following, we will focus on the case (iv), that is both D and L are given in range
representations. Note that this case corresponds to the statement of Prop. 2.4.4, while
the bottom-left case in Fig. 2.8 follows the lines of Prop. 2.2.10. Two main reasons
motivate this choice.

1. We will see in Chap. 3 that Prop. 1.3.10 enables us to derive properties of the
underlying pencil of the DAE when D and L are given in range representations.
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(x, ẋ) ∈ DL ⇐⇒ D = ker [K2 L2 ] D = ran
[
F2
G2

]

L = ker [K1 L1 ]

[
K†

22L22
L21

0

]
ẋ =

[
L†

11K11
0
K12

]
x,

where

U(sK1 − L1) =
[
sK11−L11
sK12

]
,

V (sK2 − L2) =
[

sL21
sK22−L22

]
with invertible U, V and

full column rank

matrices L11,K22

ẋ = G2z,

d
dt L1F2z = −K1G2z

L = ran
[
F1
G1

] x =F1z,

L2
d
dt F1z = −K2G1z

x = F1Xz,

d
dt F1Xz = G2Y z,

where

ran [XY ] = ker [G1 −F2 ]

Figure 2.8: How to solve the differential inclusion (x, ẋ) ∈ DL by means of DAEs.

2. In the author’s opinion, the derivation is performed at the right place when
comparing the four resulting DAEs displayed in Fig. 2.8. While this is also
true for the case where D is in range and L is in kernel representation, one
can relate initial values of the differential inclusion to the consistent initial
differential variables of the resulting DAE when both D and L are given in
range representations.

Now back in the context of (iv), let L = ran
[
F1
G1

]
and D = ran

[
F2
G2

]
with F1, F2,

G1, G2 ∈ Kn×n and DL = ran
[
F1X
G2Y

]
where X,Y ∈ Kn×m are matrices fulfilling

ran [XY ] = ker [G1 −F2 ]. Then denoting E = F1X and A = G2Y , the dynamics read

∀ t ∈ R :
(
x(t)
ẋ(t)

)
∈ DL = ran [EA ] .

This leads to the existence of some function z(·) : R → Km with(
x(t)
ẋ(t)

)
= [EA ] z(t),

and thus
∀ t ∈ R : d

dtEz(t) = ẋ(t) = Az(t).
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Conversely assuming that a Km-valued function z(·) solves the DAE d
dtEz(t) = Az(t)

on R, we obtain that x(·) := Ez(·) fulfills

∀ t ∈ R :
(
x(t)
ẋ(t)

)
=
(

Ez(t)
d
dtEz(t)

)
=
(
Ez(t)
Az(t)

)
= [EA ] z(t) ∈ ran [EA ] = DL.

Similarly, one can relate the dynamics of a pH-LG system without external flows and
efforts to a DAE induced by a matrix pencil. This evidently remains a true statement
if we consider a pH-LA system without input and output. These considerations lead
to the following definition.

Definition 2.5.4 (Dissipative-Hamiltonian matrix pencil).
We call a matrix pencil sE −A ∈ K[s]n×m

(i) ordinary dissipative-Hamiltonian (dH-ODE), if

ran [EA ] = DL

holds for some linear relation D = gr D ⊂ K2n with dissipative matrix D ∈
Kn×n and some linear relation L = gr Q ⊂ K2n with symmetric matrix Q ∈
Kn×n.

(ii) linear algebraic dissipative-Hamiltonian (dH-LA), if

ran [EA ] = DL

holds for some linear relation D = gr D ⊂ K2n with dissipative matrix D ∈
Kn×n and some symmetric linear relation L ⊂ K2n.

(iii) linear geometric dissipative-Hamiltonian (dH-LG), if

ran [EA ] = DL

holds for some skew-adjoint linear relation D ⊂ K2n and some self-adjoint linear
relation L ⊂ K2n.

(iv) linear relations dissipative-Hamiltonian (dH-LR), if

ran [EA ] = DL

holds for some dissipative linear relation D ⊂ K2n and some symmetric linear
relation L ⊂ K2n.
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For dH-LA pencils, there exists an equivalent definition linking them in a more direct
way to the previously used terminology.

Proposition 2.5.5. A pencil sE −A ∈ K[s]n×m is dH-LA if and only if the system

d
dt Ex(t) = Ax(t)

is pH-LA.

Proof. Assume that d
dt Ex(t) = Ax(t) is pH-LA. Then there exists a dissipative matrix

D ∈ Kn×n together with a matrix Q ∈ Kn×m such that E∗Q = Q∗E and A = DQ.
Then L := ran

[
E
Q

]
is a symmetric linear relation and with D := gr D we obtain

DL = {(x1, x2) ∈ K2n | ∃y ∈ Kn s.t. (x1, y) ∈ L ∧ (y, z2) ∈ D}

= {(x1, x2) ∈ K2n | ∃z, y ∈ Kn s.t. (x1, y) = (Ez,Qz) ∈ L ∧ x2 = Dy}

= {(x1, x2) ∈ K2n | ∃z ∈ Kn s.t. x1 = Ez ∧ x2 = DQz}

= ran
[
E
DQ

]
,

i.e., sE −A is dH-LA.
Now, assume that sE−A is dH-LA. Then ran [EA ] = DL for some relations D,L in Kn

which are respectively dissipative and symmetric with D = gr D for some dissipative
matrix D ∈ Kn×n. Let ran

[
Ê
Q̂

]
be any range representation of L with Ê, Q̂ ∈ Kn×m̂.

Then
ran [EA ] = DL = ran [ ID ] ran

[
Ê
Q̂

]
= ran

[
Ê
DQ̂

]
.

Consequently by Prop. 1.3.2, there exists some Q̃ ∈ Kn×m such that

ran [EA ] = ran
[
Ê
DQ̂

]
= ran

[
E
DQ̃

]
. (2.22)

Let (vi)i=1,...k be a basis of ker(A − DQ̃)⊥. Then by (2.22) there exists a family
(wi)i=1,...k in Km such that for i = 1, . . . , k

Avi = DQ̃wi ∧ Evi = Ewi.

Now let T ∈ Kn×n be the matrix linearly extending the mapping rule

x 7→

vi, x = wi,

x, x ∈ ker(A−DQ̃).

Note that by construction T is well-defined and A = DQ̃T as well as ET = T .
Defining Q := Q̃T we obtain A = DQ and E∗Q = T ∗E∗Q̃T = T ∗Q̃∗ET = Q∗E, i.e.,
d
dt Ex(t) = Ax(t) is pH-LA.
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Remark 2.5.6. The following justifies the terminology given in Def. 2.5.4.

(i) Similarly to the statement in Prop. 2.5.5, the dH-ODE pencils correspond ex-
actly to the pH-ODE systems where the size of the input and output vectors is
zero since with the notation of (2.1a) and identifying J = D−D∗

2 , R = D+D∗

2
we see

(x, ẋ) ∈ (gr D)(gr Q) ⇔ (x, ẋ) ∈ ran
[
I
DQ

]
⇔ d

dt x = (J −R)Qx.

(ii) Properties of pencils associated to dissipative Hamiltonian descriptor system of
the form

Eẋ = DQx,

where D is dissipative and E∗Q = Q∗E, were rigorously investigated in
[MMW18]. In the context of Prop. 2.5.5, it is only suitable to call such pencils
sE −DQ (linear algebraic) dissipative-Hamiltonian.

(iii) Any real (K = R) dH-LG pencil sE − A corresponds to some pH-LG system
without external ports, namely to (−D−1,L, {0}). This is due to the fact that
in Sec. 2.5.1 we saw

(− d
dt x, eS) ∈ −D−1 ∧ (eS , x) ∈ L ⇐⇒ (x, d

dt x) ∈ DL,

from which we deduce the existence of some function z with x = Ez and d
dt Ez =

Az. Note that the reverse is not true. That is, a pH-LG system without external
ports does not always correspond to a dH-LG in the discussed sense. This is
precisely the case when R ̸= {0} since it leads to considering the interconnection
−D◦R, which is not skew-adjoint anymore. We exclude this case on purpose as
one can extend resistive relations to the complex case K = C in two ways. In the
context of Def. 1.4.6, the condition e⊤f ≤ 0 can be replaced by either ⟨f, e⟩ ≤ 0
or Re⟨f, e⟩ ≤ 0. In the first case, the extended definition would fall between
Def.1.3.5 (a)&(b) since no symmetry is assumed. In the latter case the extended
definition would correspond exactly to Def. 1.3.5 (a), i.e., to dissipative linear
relations and the classes of dH-LG and dH-LR pencils would match since the
interconnection of a Dirac structure and a dissipative relation yields a dissipative
relation. More importantly for our choice, for pH-LG systems (D,L,R) without
external flow and effort variables, the case R = {0} describes a significant class
in the literature, namely the so-called generalized pH DAE systems introduced in
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[vdSM18], which we also extend to the complex case K = C with Def. 2.5.4. We
also point out that in [vdSM18] a different terminology was preferred. Namely,
D,L were assumed to be a Dirac and a Lagrangian subspace, respectively, which
in the language of linear relations means that D is skew-adjoint and L is self-
adjoint, see Fig. 1.1.

From Def. 2.5.4 we can already deduce that the dH-LA and the dH-LG pencils are
special cases of dH-LR pencils, of which we will analyze properties such as regularity
and the shape of their Kronecker form. Before we start with such investigations, we
discuss the relationship between the different concepts presented in Def. 2.5.4.
The difference between dH-LG and dH-LR pencils is that instead of skew-adjoint
and self-adjoint linear relations, we allow for dissipative D, whereas L is allowed to
be only symmetric. This is a generalization in two respects: First, the relations D
and L may have a dimension less than n and, second, we allow for relations D with
Re ⟨x, y⟩ ≤ 0 instead of Re ⟨x, y⟩ = 0 for all (x, y) ∈ D. When comparing the dH-LA
with the dH-LG pencils the dissipativity of D ∈ Kn×n leads, via Lem. 1.3.7, to the
maximal dissipativity of D, whereas, by Lem. 1.3.3, L is symmetric but not necessarily
self-adjoint. Summarizing from the previous findings, the differences between dH-LA
and dH-LG pencils, which by Rem. 2.5.6 correspond exactly to the approaches to
pH-DAEs in [MMW18] and [vdSM18], respectively, are recapitulated in Fig. 2.9.
The question arises if these different definitions actually generate different classes of
pencils. We will elucidate the relationship between the different port-Hamiltonian
pencils and start with presenting a system in which (i) in Fig. 2.9 effectively prevents
a dH-LA pencil from being dH-LG.

Example 2.5.7. Let E = Q = [ 1
0 ], A = [ 0

1 ] and D =
[ 0 −1

1 0
]
. Then A = DQ and

Q∗E = 1 = E∗Q, i.e., the pencil sE −A is dH-LA.
Next we show that it is not dH-LG. Seeking for a contradiction, assume that D,L ⊆ K4

be skew-adjoint and self-adjoint subspaces such that

ran
[
E

A

]
= span

{(
1
0
0
1

)}
= DL. (2.23)

Then we see that mul DL = kerDL = {0}, which gives mul D = kerL = {0}.
This together with Lem. 1.3.8 yields, by invoking ran L = dom L−1, that dom D =
ran L = K2, and we infer from Prop. 1.3.9 that D = gr D̂ and L = (gr E)−1 for some
skew-Hermitian D̂ ∈ K2×2 and some Hermitian E ∈ K2×2. Hence, we can rewrite
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(i) ran
[
Q
E

]
needs to be n-dimensional for dH-LG pencils,

whereas for dH-LA pencils, it might have a smaller dimen-
sion.

(ii) the relation D needs to be a graph of a matrix for dH-LA
pencils, whereas for dH-LG pencils, D might have a multi-
valued part.

(iii) the relation D is skew-adjoint for dH-LG pencils, whereas
for pH-LA pencils, D might be dissipative.

Figure 2.9: Differences between the port-Hamiltonian approaches in [vdSM18] and
[MMW18]

(2.23) as

span
{(

1
0
0
1

)}
= ran

[
E

D̂

]
, (2.24)

from which we deduce

ran E = span
{
e

[2]
1

}
, ran (D̂∗) = ran D̂ = span

{
e

[2]
2

}
.

Since the space on the left-hand side in (2.24) is one-dimensional, we obtain kerE ∩
ker D̂ ̸= {0}. On the other hand, (2.24), E = E∗ and D̂ = −D̂∗ leads to

kerE = (ran E∗)⊥ = span
{
e

[2]
2

}
, ker D̂ = (ran D̂∗)⊥ = span

{
e

[2]
1

}
.

This implies kerE ∩ ker D̂ = {0}, which is a contradiction to the already proven fact
that kerE ∩ ker D̂ is a non-trivial space. Consequently, the pencil sE −A cannot be
dH-LG.

Based on (ii) in Fig. 2.9, our second example presents a dH-LG pencil which is not a
dH-LA pencil.
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Example 2.5.8. Consider

D = ran
[

1 0
0 0
0 0
0 1

]
⊆ K4, L = ran

[
1 0
0 1
1 0
0 0

]
⊆ K4.

Then, by using Lem. 1.3.3 and Rem. 1.3.4, we see that D is skew-adjoint and L is
self-adjoint. It can be seen that both mul D and kerL are spanned by the second
canonical unit vector, and

DL = ran
[

1 0 0
0 1 0
0 0 0
0 0 1

]
.

Assume that DL = (gr D̂)L̂ with D̂ ∈ K2×2 and some symmetric L̂ ⊂ K4. The
symmetry of L̂ yields

3 = dimDL = dim(gr D̂)L̂ ≤ dim L̂ ≤ 2,

which is a contradiction. Hence, factorizing DL = (gr D̂)L̂ is not possible, whence
sE −A with E = [ 1 0 0

0 1 0 ] and A = [ 0 0 0
0 0 1 ] is dH-LG but not dH-LA.

Combining the previous two (probably minimal in terms of dimension) counter-
examples, we present a dH-LR system that is neither dH-LA nor dH-LG.

Example 2.5.9. Given

D = ran


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ⊆ K8, L = ran


1 0 0
0 0 0
0 1 0
0 0 1
1 0 0
0 0 0
0 0 0
0 0 0

 ⊆ K8,

E =
[

1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0

]
, A =

[
0 0 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

]
,

one deduces

DL =


1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 = ran
[
E

A

]
.

Invoking Lem. 1.3.3 and Rem. 1.3.4 we obtain that D is a dissipative and L a sym-
metric relation, i.e., sE − A is dH-LR. Assume that there exist a dissipative matrix
D̂ ∈ K4×4 and a symmetric relation L̂ in K4 such that DL = (gr D̂)L̂. The symmetry
of L̂ yields

5 = dimDL = dim(gr D̂)L̂ ≤ dim L̂ ≤ 4;

a contradiction, and we conclude that sE − A is not dH-LA. Now assume that
DL = D̃L̃ for some skew-adjoint relation D̃ and some self-adjoint L̃. Observing that
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mul D̃L̃ = ker D̃L̃ = span
{
e

[4]
3 , e

[4]
4

}
we deduce mul D̃ = mul L̃ = span

{
e

[4]
3 , e

[4]
4

}
.

This together with Lem. 1.3.8 yields, by invoking ran L̃ = dom L̃−1, that dom D̃ =
ran L̃ = span

{
e

[4]
1 , e

[4]
2

}
. Regarding Prop. 1.3.10, let

L̃ : ran L̃ = K2 × {0}2 → (ker L̃)⊥ = K2 × {0}2,

D̃ : dom D̃ = K2 × {0}2 → (mul D̃)⊥ = K2 × {0}2

be the operators given by (1.10) for L̃−1 and D̃, respectively. Now with (1.11) we can
write

D̃L̃ = ran
[
L̃

D̃

]
⊕ (ker L̃ × {0}4) ⊕ ({0}4 × mul D̃)

from which follows that

span




1
0
0
0
0
1
0
0


 = ran

[
L̃

D̃

]
, (2.25)

with ran L̃ = span
{
e

[4]
1

}
and ran D̃ = span

{
e

[4]
2

}
. Since the space on the left-hand

side in (2.25) is one-dimensional, we obtain ker L̃ ∩ ker D̃ ̸= {0}. On the other hand,
(2.25), L̃ = L̃∗ and D̃ = −D̃∗ lead to

ker L̃ = (ran L̃∗)⊥ = span
{
e

[4]
2

}
, ker D̃ = (ran D̃∗)⊥ = span

{
e

[4]
1

}
,

with orthogonal complements taken in K2 × {0}2. This implies ker L̃ ∩ ker D̃ = {0},
contradicting the already proven fact kerE ∩ ker D̂ ̸= {0}. Consequently, the pencil
sE −A cannot be dH-LG.

The next example shows that there are nontrivial pencils which are dH-LA as well as
dH-LG but not dH-ODE.

Example 2.5.10. With E = [ 1 0
0 0 ], A =

[ 0 −1
1 0

]
, D = gr A, and L = (gr E)−1 we see

[EA ] = DL. It is further readily seen that sE−A satisfies the condition in (ii) and (iii)
of Def. 2.5.4, i.e., sE−A is both dH-LA and dH-LG. However, dom DL = span {e[2]

1 }
and as we saw in Rem.2.5.6, dom DL needs to equal R2 in order for sE − A to be a
dH-ODE pencil.

The examples presented so far justify the Euler diagram of Fig. 2.10 in which each
region is nonempty.
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Figure 2.10: A visual representation of the relationship between the different
dissipative-Hamiltonian pencil classes presented in Def. 2.5.4.

Our last example aims to illustrate that the missing incorporation of dissipation in
the formulation of dH-LG systems, as pointed out in (iii) of Fig. 2.9, effectively lets
the intersection of the classes of dH-LG and dH-LA systems shrink.

Example 2.5.11. Let E = Q = −D = −A = 1 ∈ R1×1. Then, clearly, A = DQ and
Q∗E = 1 = E∗Q, i.e., sE −A is port-Hamiltonian in the sense of [MMW18], and

ran [EA ] = span
{( 1

−1
)}
. (2.26)

Now assume that ran [EA ] = DL holds for some skew-symmetric linear relation D ⊂ R2

and symmetric L ⊂ R2. As D ⊂ R2 is skew-symmetric, we immediately obtain that it
is either trivial, or it is spanned by the first or second canonical unit vector in R2. In
the first two cases D = {0} and D = span {( 1

0 )}, we have y = 0 for all (x, y) ∈ DL,
which contradicts (2.26). On the other hand, if D = span {( 0

1 )}, we have ( 0
1 ) ∈ DL,

which is again a contradiction to (2.26).

Remark 2.5.12. We briefly characterize the pencils generated by pH-LG systems
(D,L,R) without external ports when R ̸= {0}. Since a linear resistive relation is a
dissipative relation, −D ◦R is a dissipative relation too and any range representation
ran [EA ] of (−D ◦R)−1L, cf. Sec. 2.5.1, defines a dH-LR pencil sE−A. For example,
the dH-LA pencil of Ex. 2.5.11 is induced this way by choosing D = {0}, L = gr I1

and R = − gr I1.
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sE − A is dH-LG sE − A is dH-LA

sE − A is dH-LR

\\Ex. 2.5.7&2.5.11

\\Ex. 2.5.8

mul D = {0}

dimL = n, D+D∗ = 0

\\

Ex. 2.5.9
\\

Ex. 2.5.9

Figure 2.11: Relations between the port-Hamiltonian concepts from Def. 2.5.4, with
matrices E,A ∈ Kn×m, D ∈ Kn×n and subspaces D,L ⊂ K2n.

Until this point we highlighted the differences between dH-LG and dH-LG pencils,
i.e., the approaches of [vdSM18] and [MMW18], we now analyse their mutualities.
That is, we give sufficient conditions on a matrix pencil which is dH-LG to be dH-LA,
and vice-versa.

Proposition 2.5.13. Assume that sE − A ∈ K[s]n×m is dH-LA. Let A = DQ for
some dissipative D ∈ Kn×n and Q ∈ Kn×m, which exist according to Prop. 2.5.5.
If, additionally D + D∗ = 0 and dim ran

[
E
Q

]
= n, then sE − A is pH-LG and, in

particular, ran [EA ] = DL holds for the self-adjoint relation L := ran
[
E
Q

]
and the

skew-adjoint relation D := gr D.

Proof. Assume that E,A,Q ∈ Kn×m fulfil A = DQ, D + D∗ = 0, E∗Q = Q∗E and
dim ran

[
E
Q

]
= n. Then, by Re ⟨x,Dx⟩ = 0 for all x ∈ Kn, we have that D := gr D

is skew-symmetric. Further, since dim gr D = n, Lem. 1.3.7 implies that D is even
skew-adjoint. Moreover, by using Lem. 1.3.3, dim ran

[
E
Q

]
= n and E∗Q = Q∗E

imply that L := ran
[
E
Q

]
is self-adjoint. Then, the result follows since for A = DQ it

holds
ran [EA ] = ran

[
E
DQ

]
= ran [ ID ] ran

[
E
Q

]
= DL.
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Proposition 2.5.14. Assume that sE −A ∈ K[s]n×m is dH-LG, i.e., ran [EA ] = DL
holds for some skew-adjoint D ⊂ K2n and some self-adjoint L ⊂ K2n. If additionally
mul D = {0}, then sE − A is dH-LA. Namely, there exist some Q ∈ Kn×m and
some skew-Hermitian D ∈ Kn×n such that A = DQ and E∗Q = Q∗E. Hence,
ran [EA ] = gr D

[
E
Q

]
. Further, these matrices fulfil D = gr D and L ⊇ ran

[
E
Q

]
.

Proof. Assume that sE − A ∈ K[s]n×m fulfills ran [EA ] = DL for some skew-adjoint
D ⊂ K2n with mul D = {0}, and some L ⊂ K2n. Then, by Rem. 1.3.4, dimD = n,
whence there exist F,G ∈ Kn×n, such that D = ran [ FG ]. The property mul D = {0}
further leads to kerF = {0}, whence, by Prop. 1.3.9, D = gr D for some skew-
Hermitian D ∈ Kn×n. Further, the self-adjointness of L leads, by using Lem. 1.3.3,
to the existence of some E1, Q1 ∈ Kn×n with E∗

1Q1 = Q∗
1E1 and L = ran

[
E1
Q1

]
. The

latter matrix has moreover full column rank since self-adjointness of L implies, by
Lem. 1.3.3, that dimL = n. Now we obtain

ran [EA ] = DL = gr D ran
[
E1
Q1

]
= ran

[
E1
DQ1

]
.

Consequently, there exists some T ∈ Kn×m with

[EA ] =
[
E1
DQ1

]
T =

[
E1T
DQ1T

]
,

which implies that A = DQ for Q = Q1T , and

L = ran
[
E1
Q1

]
⊇ ran

[
E1
Q1

]
T = ran

[
E
Q

]
.

Invoking E = E1T , we obtain that

E∗Q = T ∗E∗
1Q1T = T ∗Q∗

1E1T = Q∗E

and the desired statement follows.

Before analyzing the properties of dissipative-Hamiltonian pencils in the next chapter,
we point out that the observations made in this section concerning the relationship
of the different pencil classes are concisely recapitulated in Figs. 2.9–2.11.
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Chapter 3

Properties of
dissipative-Hamiltonian
pencils

Having now introduced the different classes of dissipative-Hamiltonian pencils, we now
turn our attention to their properties. We first ask when port-Hamiltonian pencils are
regular and then investigate how the Kronecker form (1.1) of possibly singular pencils
looks like. Having already shown in Sec. 2.5.2 that dH-LR pencils encompass the dH-
LA and dH-LG pencils, that is the approaches of [MMW18] and [vdSM18], we focus
on this formulation for our analysis. Namely, we consider pencils sE − A ∈ K[s]n×m

for which there exist a dissipative relation D ⊂ K2n and a symmetric relation L ⊂ K2n

such that
ran [EA ] = DL.

We put a special emphasis on the case where L is a nonnegative relation. In this case,
for an image representation ran [ FG ] of L we have

G∗F ≥ 0

and the Hamiltonian defined by 1
2 Re(z∗G∗Fz) = 1

2z
∗G∗Fz, see Sec. 2.4, is positive

semi-definite and can be regarded as an energy function for the system. Since proper-
ties of special cases of dH-LR pencils, namely dH-LA and dH-LG pencils, have been
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studied in [MMW18] and [vdSM18], we will successively compare their results with
ours.

3.1 Regularity of dissipative-Hamiltonian pencils

In this section, we study regularity of square dH-LR pencils sE − A ∈ K[s]n×n. The
following technical result presents a certain range representation of such a product
of relations, of which we show properties under additional assumptions reflecting the
conditions found in Def. 2.5.4.

Lemma 3.1.1. Let D ⊆ K2n be a dissipative and L ⊆ K2n be a symmetric linear
relation, and assume that kerL ∩ mul D = {0}. Let n1 = dim(ran L ∩ dom D) and
n2 = n−n1. Then there exists some unitary matrix U ∈ Kn×n, such that the product
of D and L has a representation

DL = ran diag (U,U)
[
L11 0
L21 L22
D11 0
D21 D22

]
(3.1)

for some matrices Lij , Dij ∈ Kni×nj with

L11 =L∗
11, D11 +D∗

11 ≤ 0, (3.2)

L22 =L2
22 = L∗

22, −D22 = D2
22 = −D∗

22, ran L22 ∩ ran D22 = {0}. (3.3)

Moreover, the following holds:

(i) If L is nonnegative then L11 is positive semi-definite. If, additionally, L is
maximal then kerL11 ⊂ kerL21.

(ii) If D is skew-symmetric then D11 is skew-Hermitian.

(iii) kerL22 ∩ kerD22 = {0} if and only if

mul D⊕̂ kerL = (ran L)⊥+̂(dom D)⊥.

(iv) If, additionally, D = gr D for some dissipative D ∈ Kn×n and L is self-adjoint,
then L21 = D22 = 0 and L22 = In2 . Furthermore, we have

kerL11 × {0} =U∗ mul L,

kerD11 × {0} =U∗ {x ∈ ran L | Dx ∈ kerL} .
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(v) If, additionally, D is maximally dissipative and L = (gr L)−1 for some L ∈
Kn×n, then L is Hermitian, and D22 = −In2 , D21 = L22 = 0. Furthermore, we
have

kerL11 × {0} =U∗ {x ∈ dom D | Lx ∈ mul D} ,

kerD11 × {0} =U∗ kerD.

Proof. Step 1: We show that there exist orthogonal decompositions, see also
[ABJ+09],

D = {(x,Dx)} k ({0} × mul D), L = {(Lx, x)} k (kerL × {0}) (3.4)

for some linear operators D : dom D → (mul D)⊥ and L : ran L → (kerL)⊥. We
obtain such a decomposition by applying Prop. 1.3.10 on D and L−1.
Step 2: We show that

DL =
([

L

D

]
(dom D ∩ ran L)

)
k (kerL × {0}) k ({0} × mul D) . (3.5)

To prove “⊆”, let (x, z) ∈ DL. Then there exists some y ∈ Kn such that (x, y) ∈ L and
(y, z) ∈ D. Therefore, y ∈ ran L ∩ dom D. This implies with (3.4) that x = Ly + vL

and z = Dy + vD for some vL ∈ kerL and vD ∈ mul D. Hence,

(x, z) ∈

([
L

D

]
(dom D ∩ ran L)

)
k (kerL × {0}) k ({0} × mul D) .

To prove “⊇”, let (Ly + vL, Dy + vD) ∈ K2n with y ∈ ran L ∩ dom D, vL ∈ kerL,
and vD ∈ mul D. This implies (Ly, y) ∈ L, (y,Dy) ∈ D and hence (Ly,Dy) ∈
DL. Then (0, 0) ∈ D and (0, 0) ∈ L further lead to (vL, 0), (0, vD) ∈ DL, and thus
(Ly + vL, Dy + vD) ∈ DL.
Step 3: Consider the orthogonal decomposition Kn = X1 kX2 with

X1 := ran L ∩ dom D, X2 := (ran L ∩ dom D)⊥ = (ran L)⊥+̂(dom D)⊥. (3.6)

Our next objective is to show

(kerL × {0}) k ({0} × mul D) =
[
Pker L

−Pmul D

]
(kerL⊕̂ mul D). (3.7)

The inclusion “⊇” in (3.7) is immediate. To prove “⊆”, it suffices to show that both
spaces kerL× {0} and {0} × mul D are contained in the set on the right-hand side of
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(3.7). Consider the space X3 := kerL⊕̂ mul D. Then by Lem. 1.3.8 we have kerL ⊆
(ran L)⊥ and mul D ⊆ (dom D)⊥, whence X3 ⊆ X2. Since X3⊖̂ mul D ⊂ kerL, we
have (kerL)⊥ ∩ (X3⊖̂ mul D) = {0}, we have that Pker L|

X3⊖̂ mul D is injective. This
together with dim(X3⊖̂ mul D) = dim kerL gives kerL = Pker L(X3⊖̂ mul D). Hence,
for each (vL, 0) ∈ kerL × {0} there exists x ∈ X3⊖̂ mul D with Pker Lx = vL and
Pmul Dx = 0 and therefore (vL, 0) ∈

[
Pmul L

−Pmul D

]
(X3). Analogously, we can show that

{0} × mul D ⊆
[
Pmul L

−Pmul D

]
(X3), which altogether shows (3.7).

Step 4: Based on the space decomposition Kn = X1 kX2 as in (3.6), we define

L̂11 := PX1L|X1 , L̂21 := PX2L|X1 , L̂22 := Pker L : X2 → X2 (3.8)

and
D̂11 := PX1D|X1 , D̂21 := PX2D|X1 , D̂22 := −Pmul D : X2 → X2.

Let ni := dimXi, i = 1, 2, and

U1 := [u1, . . . , un1 ] ∈ Kn×n1 , U2 := [un1+1, . . . , un] ∈ Kn×n2 ,

where the columns are an orthonormal basis of X1 and X2, respectively. Then U =
[U1, U2] ∈ Kn×n is unitary and

Lij := U∗
i L̂ijUj , Dij := U∗

i D̂ijUj , i, j = 1, 2. (3.9)

Combining (3.5) and (3.7), we obtain

DL = ([ LD ] (X1)) k (kerL × {0}) k ({0} × mul D)

=

 L̂11
L̂21
D̂11
D̂21

 (X1) k

[ 0
L̂22

0
D̂22

]
(X2)

= diag (U,U)

[ L11 0
L21 0
D11 0
D21 0

]
(U∗X1)︸ ︷︷ ︸

=Kn1 ×{0}

k

[ 0 0
0 L22
0 0
0 D22

]
(U∗X2)︸ ︷︷ ︸

={0}×Kn2


= diag (U,U) ran

[
L11 0
L21 L22
D11 0
D21 D22

]
.

This completes the proof of (3.1).
Step 5: We show that (3.2) and (3.3) hold. Let (y, x) ∈ L. Then y = Lx + vL for
some vL ∈ kerL ⊆ (ran L)⊥ and some x ∈ X1. Consequently,

⟨L̂11x, x⟩ = ⟨PX1Lx, x⟩ = ⟨Lx, x⟩ = ⟨Lx+ vL, x⟩ = ⟨y, x⟩ = ⟨x, y⟩ = ⟨x, L̂11x⟩,
(3.10)
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where in the second last equation the symmetry of L was used and the last equa-
tion follows from a repetition of the first steps in the second component of the inner
product. This implies that L̂11 is Hermitian. Consequently, L11 = U∗

1 L̂11U1 is Her-
mitian. Similarly, one can show that if D is dissipative then D11 is dissipative, whence
(3.2) holds. Since L22 = U∗

2 L̂22U2 and D22 = U∗
2 D̂22U2 with orthogonal projectors

L̂22 = Pker L and −D̂22 = Pmul D we have

L22 = U∗
2 L̂22U2 = U∗

2 L̂
2
22U2 = U∗

2 L̂22U2U
∗
2 L̂22U2 = L2

22 = L∗
22,

−D22 = U∗
2 D̂22U2 = U∗

2 D̂
2
22U2 = U∗

2 D̂22U2U
∗
2 D̂22U2 = D2

22 = −D∗
22.

Furthermore,

ran D22 ∩ ran L22 = U∗
2 (ran Pmul D ∩ ran Pker L) = U∗

2 (mul D ∩ kerL) = {0},

which implies mul D ∩ kerL = {0} and hence (3.3).
Step 6: We prove (i)-(iii). If L is nonnegative, then ⟨y, x⟩ ≥ 0 for all (x, y) ∈ L which
implies, by using (3.10), that ⟨L̂11x, x⟩ ≥ 0 for all x ∈ X1 and thus L11 = U∗

1 L̂11U1

is positive semi-definite. Next we show that kerL11 ⊂ kerL21, if L is maximal. From
the maximality we have (kerL)⊥ = ran L and thus the operator L : ran L → ran L
from Step 1 can be decomposed as

L =
[
L̂11 L̃∗

21

L̃21 L̃22

]
, ran L = (dom D ∩ ran L) k (ran L⊖̂(dom D ∩ ran L)),

and L is nonnegative, i.e., ⟨Lx, x⟩ ≥ 0 for all x ∈ ran L. We show that ker L̂11 ⊂
ker L̃21. Assume that there exists some x ∈ ker L̂11 with z := −L̃21x ̸= 0. Since L ≥ 0
we have for all α ∈ R

0 ≤

〈
L

(
αx

z

)
,

(
αx

z

)〉
=
〈[

L̂11 L̃∗
21

L̃21 L̃22

](
αx

z

)
,

(
αx

z

)〉
= −2α∥z∥2 + ∥L̃22z∥2.

Choosing α sufficiently large, we obtain a contradiction. Hence ker L̂11 ⊂ ker L̃21.
Further, decompose X2 = (X2 ∩ ran L) k (X2 ∩ (ran L)⊥) and, without restriction,
assume that the vectors un1+1, . . . , un1+k̂ for some k̂ ≥ 1 are an orthonormal basis of
X2 ∩ ran L. Then

L̂21 = PX2L|X1 = PX2∩ran LL|X1 + PX2∩(ran L)⊥L|X1 = PX2∩ran LL|X1 = L̃21

and this implies
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kerL11 = kerU∗
1 L̂11U1 = U∗

1 ker L̂11 ⊂ U∗
1 ker L̃21

= kerU∗
1 L̂21 = kerU∗

2 L̂21U1 = kerL21.

The assertion (ii) can be proven analogously to (i). To show (iii), first assume that
kerL22 ∩ kerD22 = {0}. Then

ker L̂22 ∩ ker D̂22 = U2(kerL22 ∩ kerD22) = {0} (3.11)

and taking orthogonal complements in X2, we obtain

X2 = (ker L̂22 ∩ ker D̂22)⊥ = ran L̂22 + ran D̂22 = kerL⊕̂ mul D.

Conversely, assume that X2 = kerL⊕̂ mul D. Then, again by taking orthogonal
complements in X2,

ker L̂22 ∩ ker D̂22 = (kerL⊕̂ mul D)⊥ = X⊥
2 = {0}.

Now invoking (3.11) and the injectivity of U2, we obtain kerL22 ∩ kerD22 = {0}.
Step 7: We prove (iv). Assume that L is self-adjoint and D = gr D for some dissipative
D ∈ Kn×n. Then we have that mul D = {0} = (dom D)⊥ and kerL = (ran L)⊥.
Hence, X1 = ran L = X⊥

2 . This implies that L̂21 = D̂22 = 0 and thus L21 = D22 = 0.
Invoking (iii), we have kerL22 = kerL22 ∩ kerD22 = {0} which implies L22 = In2 .
Furthermore, mul L = ker L̂11 = U(kerL11×{0}) and together with (ran L)⊥ = kerL
we obtain{
x ∈ ran L

∣∣ Dx ∈ (ran L)⊥ }
= ker(Pran LD|ran L) = ker D̂11 = U(kerD11 × {0}).

The proof of (v) is analogous to the proof of (iv) and is therefore omitted.

Remark 3.1.2. In the context of Lem. 3.1.1 if kerL∩mul D ̸= {0}, still a certain form
similar to (3.1) can be achieved, see Thm. 3.2.7 which contains two additional block
columns representing all column minimal indices equal to two. As a consequence,
the matrix pencil sE − A given by ran [EA ] = DL turns out to be singular which is
discussed in Sec. 3.1.
Furthermore, a converse result to Lem. 3.1.1 holds. If a linear relation is given by the
right-hand side of (3.1) then we can define D and L satisfying (3.1) as follows:

L = {
(
U
(

L11x1
L21x1+L22x2

)
, U ( x1

x2 )
)

: xi ∈ Kni , i = 1, 2},

D = {
(
U ( x1

x2 ) , U
(

D11x1
D21x1+D22x2

))
: xi ∈ Kni , i = 1, 2}.

From (3.2) and (3.3) it is straightforward to show that L and D are symmetric and
dissipative, respectively.
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Under the assumptions of Lem. 3.1.1, that is the multi-valued part of D and the kernel
of L intersect trivially, we present a first characterization of regularity.

Proposition 3.1.3. Let sE −A ∈ K[s]n×n be a dH-LR pencil, i.e.,

ran [EA ] = DL

for some dissipative relation D ⊂ K2n and some symmetric relation L ⊂ K2n. If
mul D ∩ kerL = {0}, then there exists a unitary matrix U ∈ Kn×n and an invertible
matrix T ∈ Kn×n, such that, for some n1, n2 ∈ N0 with n1 + n2 = n,

U∗(sE −A)T =
[
sL11 −D11 0
sL21 −D21 sL22 −D22

]
(3.12)

with Lij , Dij ∈ Kni×nj , i, j = 1, 2, satisfying

L11 =L∗
11, D11 +D∗

11 ≤ 0, (3.13)

L22 =L2
22 = L∗

22, −D22 = D2
22 = −D∗

22, ran L22 ∩ ran D22 = {0}. (3.14)

Moreover, sE −A is regular if and only if the following two conditions hold.

(i) sL11 −D11 is regular, and

(ii) sL22 −D22 is regular.

Furthermore, (ii) is equivalent to kerL+̂ mul D = (ran L)⊥+̂(dom D)⊥.

Proof. By Lem. 3.1.1, there exists a unitary matrix U ∈ Kn×n, such that

ran
[
E

A

]
= DL = ran diag (U,U)

[
L11 0
L21 L22
D11 0
D21 D22

]

with Lij , Dij ∈ Kni×nj satisfying (3.13) & (3.14). Hence there exists some invertible
T ∈ Kn×n, such that [

E

A

]
T = diag (U,U)

[
L11 0
L21 L22
D11 0
D21 D22

]
,

which shows (3.12). For the proof of the remaining statement, we make use of the
identity

det(sE −A) = det(T )−1 det(U) det(sL11 −D11) det(sL22 −D22). (3.15)
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Hence the regularity of sE−A is equivalent to (i) and (ii). Using L22 = L2
22 = L∗

22 and
−D22 = D2

22 = −D∗
22, the pencil sL22−D22 is positive real. Therefore, by Lem. 1.2.10,

condition (ii) is equivalent to kerL22 ∩ kerD22 = {0} and invoking Lem. 3.1.1 (iii)
proves the claim.

Note that the assumption mul D∩kerL = {0} in Prop. 3.1.3 is required to ensure the
regularity of the pencil since a nontrivial element of this intersection implies a column
minimal index equal to one.

Corollary 3.1.4. Let sE−A ∈ K[s]n×n such that there exist dissipative and nonneg-
ative relations D = ran

[
D1
D2

]
and L = ran

[
L1
L2

]
, respectively, with L1, L2, D1, D2 ∈

Kn×n such that
ran [EA ] = DL.

Then with X := ran D1 ∩ ran L2, sE − A is regular if and only if the following
conditions are fulfilled.

(i) kerL ∩ mul D = {0};

(ii) kerL⊕̂ mul D = (ran L)⊥+̂(dom D)⊥;

(iii) kerPXL1↾X ∩ kerPXD2↾X = {0}.

Proof. We first assume that sE −A is regular. Let x ∈ mul D ∩ kerL, i.e., (0, x) ∈ D
and (x, 0) ∈ L. Then also (0, x), (x, 0) ∈ DL = ran [EA ]. By [BTW16, Thm. 4.5],
sE − A has a column minimal index equal to one if x ̸= 0 in the case K = C. The
case K = R is proven analogously, see also [BTW16, Ex. 4.4 (iii)]. By regularity of
sE − A we deduce x = 0, i.e., mul D ∩ kerL = {0} and we can apply Lem. 3.1.1
and Prop. 3.1.3. Employing their notation, we obtain U, T ∈ Gln(K) such that (3.12)
holds with its upper left entry being a positive real pencil by nonnegativity of L and
by the choices of (3.8) & (3.9), (ii) & (iii) are equivalent to Prop. 3.1.3 (i) & (ii),
respectively. Hence, (ii) & (iii) hold by regularity of sE −A.
Assume now that (i)–(iii) hold. We can then apply Prop. 3.1.3 and since (ii) & (iii)
are equivalent to Prop. 3.1.3 (i) & (ii), sE −A is regular.

Further, we can conclude from Rem. 3.1.2 that a certain converse to Prop. 3.1.3 is also
true: each pencil sE−A given by (3.12) is pH in our sense with mul D∩ kerL = {0}.
Let us elaborate this fact with the following proposition.
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Proposition 3.1.5. Let n1, n2 ∈ N0 with Lij , Dij ∈ Kni×nj , i, j = 1, 2, satisfying

L11 =L∗
11, D11 +D∗

11 ≤ 0,

L22 =L2
22 = L∗

22, −D22 = D2
22 = −D∗

22, ran L22 ∩ ran D22 = {0}.

Then

D = ran


In1 0
0 0
D11 0
D21 D22

 , L = ran


L11 0
L21 L22

In1 0
0 0


are dissipative and symmetric relations, respectively, and kerL ∩ mul D = {0}. Fur-
ther,

DL = ran


L11 0
L21 L22

D11 0
D21 D22

 .
Proof. The symmetry of L and the dissipativity of D follow from Lem. 1.3.3 and
Lem. 1.3.7, respectively, noting that[

In1 0
0 0

]∗ [ L11 0
L21 L22

]
=
[
L11 0

0 0
]

=
[
L∗

11 0
0 0

]
=
[
L11 0
L21 L22

]∗ [ In1 0
0 0

]
and [

In1 0
0 0

]∗ [D11 0
D21 D22

]
+
[
D11 0
D21 D22

]∗ [ In1 0
0 0

]
=
[
D∗

11+D11 0
0 0

]
≤ 0.

It is readily seen that

DL = { (L11x1, L21x1 + L22x21, D11x1, D21x1 +D22x22) |

x1 ∈ Kn1 , x21, x22 ∈ Kn2 } ⊇ ran
[
L11 0
L21 L22
D11 0
D21 D22

]
.

To prove the reverse inclusion, let (L11x1, L21x1 +L22x21, D11x1, D21x1 +D22x22) ∈
DL with x1 ∈ Kn1 , x21, x22 ∈ Kn2 . Then defining x2 = L22x21 +D22x22 and decom-
posing

L22x21 = L22x211︸ ︷︷ ︸
∈ran D22

+ L22x212︸ ︷︷ ︸
∈(ran D22)⊥

, D22x22 = D22x221︸ ︷︷ ︸
∈ran L22

+ D22x222︸ ︷︷ ︸
∈(ran L22)⊥

,

we derive L22x211 = 0 and D22x221 = 0 since ran L22 ∩ ran D22 = {0}. Further,(
L22x2
D22x2

)
=
(
L2

22x21

D2
22x22

)
+
(
L22D22x222
D22L22x212

)
=
(
L22x21
D22x22

)
+
(
L∗

22D22x222
D∗

22L22x212

)
=
(
L22x21
D22x22

)
,
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by virtue of L22 and −D22 being self-adjoint orthogonal projections. To complete the
proof, note that mul D = {0}n1 × ran D22 and kerL = {0}n1 × ran L22 and therefore
kerL ∩ mul D = {0}.

We apply Prop. 3.1.3 to the special case that D = gr D from some dissipative D ∈
Kn×n.

Corollary 3.1.6. Let E,D,Q ∈ Kn×n with Q∗E = E∗Q and D+D∗ ≤ 0. Consider
the following three statements.

(i) sE −DQ is a regular pencil;

(ii) sE −Q is a regular pencil;

(iii) For L = ran
[
E
Q

]
, it holds dimL = n, i.e., L is a self-adjoint linear relation.

Then
(i) =⇒ (ii) ⇐⇒ (iii).

If additionally, Q∗E ≥ 0 and

kerE ∩ ker(Q∗DQ) = {0}, (3.16)

then (ii) =⇒ (i).

Proof. Note that for A = DQ, D = gr D and L = ran
[
E
Q

]
we have

ran [EA ] = ran
[
E
DQ

]
= ran [ ID ] ran

[
E
Q

]
= gr D ran

[
E
Q

]
= DL

with dissipative D and symmetric L by Rem. 1.3.4 and Lem. 1.3.3.
“(i) ⇒ (iii)”: Assume that sE −DQ is regular. The multi-valued part of D = gr D is
trivial, whence mul D ∩ kerL = {0}. Thus we can apply Prop. 3.1.3 (ii), which gives

kerL = kerL⊕̂ mul D = (kerL)⊥+̂(dom D)⊥ = (kerL)⊥.

Then Lem. 1.3.3 yields that L is self-adjoint.
“(iii) ⇒ (ii)”: Let L be self-adjoint. Then Lem. 3.1.1 (iv) with D = − gr In implies
that there exist unitary matrix U and a Hermitian matrix L11 with

ran
[
E
Q

]
= L = ran diag (U,U)

[
L11 0

0 In−n1
D11 0
D21 0

]
(3.17)
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for some Hermitian D11, L11 ∈ Kn1×n1 and D21 ∈ Kn2×n1 with D11 + D∗
11 ≤ 0.

Moreover, by Lem. 3.1.1 (iv), we further have

kerD11 × {0} = {x ∈ ran L | Dx ∈ kerL} .

Since, by Lem. 1.3.8, ran L = (kerL)⊥, we obtain that the latter space is trivial.
Therefore, D11 is invertible. Further, by using (3.17), we obtain that there exists
some invertible T ∈ Kn×n with

[
E
Q

]
T = diag (U,U)

[
L11 0

0 In−n1
D11 0
D21 0

]
.

This gives det(sE − Q) = det(UT−1) det(sL11 − D11) · sn−n1 . The polynomial
det(sL11 − D11) is nonzero, since the invertibility of D11 yields that it does not
vanish at the origin. Therefore, det(sE − Q) is a product of nonzero polynomials,
whence the pencil sE −Q is regular.
“(ii) ⇒ (iii)”: If sE−Q is regular, then kerE∩kerQ = {0}, and the dimension formula
gives

dimL = dim
[
E
Q

]
= n.

It remains to prove that “(ii) ⇒ (i)” holds under the additional assumptions Q∗E ≥ 0
and (3.16). As we have already shown that (ii) implies (iii), we can further use that
L is self-adjoint. By using D = gr D, we can apply Lem. 3.1.1 (iv) to see that there
exists a unitary matrix U ∈ Kn×n, such that

ran [EA ] = DL = ran diag (U,U)
[
L11 0

0 In2
D11 0
D21 0

]

with n1 = dim ran L = rk Q, n2 = n − n1, and matrices Lij , Dij ∈ Kni×nj with
L11 = L∗

11 and D11 +D∗
11 ≤ 0. Invoking (3.16), Lem. 3.1.1 (iv) further yields

(kerL11 ∩ kerD11) × {0} = (kerL11 × {0}) ∩ (kerD11 × {0})

= U∗ ((Q kerE) ∩ {x ∈ ran Q | Dx ∈ (ran Q)⊥}
)
. (3.18)

Since (ran Q)⊥ = kerQ∗ we obtain from (3.16) that

(Q kerE) ∩ {x ∈ ran Q | Dx ∈ kerQ∗} = {0}. (3.19)

Indeed, let x be an element of (3.19) then x = Qy, Dx ∈ kerQ∗ and y ∈ kerE. This
implies y ∈ kerE ∩ ker(Q∗DQ) and hence y = 0. Thus, (3.19) holds and combined
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(3.18) this results in kerL11 ∩ kerD11 = {0}. On the other hand, the assumption
Q∗E ≥ 0 implies, by using Lem. 1.3.7, that L is nonnegative. Then Lem. 3.1.1 (i)
implies that L11 ≥ 0. Thus, sL11 − D11 is positive real, and Lem. 1.2.10 together
with the already proven identity kerL11 ∩ kerD11 = {0} yields that sL11 − D11

is regular. Further, by Lem 1.3.8 together with the self-adjointness of L, we have
kerL = (ran L)⊥. Additionally, invoking dom D = Kn and mul D = {0}, we see that
kerL+̂ mul D = (ran L)⊥+̂(dom D)⊥. This means that (i) and (ii) in Prop. 3.1.3
hold, implying that sE −A is regular.

Note that the statement “(i) ⇒ (ii)” has already been obtained in [MMW18, Prop. 4.1].
The implication “(ii)⇒(i)” does not hold in general, see [MMW18, Ex. 4.7].
For convenience, we discuss how the lower-triangular form (3.12) can be obtained from
the port-Hamiltonian formulations from [MMW18] and [vdSM18], i.e., for dH-LA and
dH-LG pencils, respectively. Invoking Prop. 2.5.5, let sE − DQ ∈ K[s]n×n be a dH-
LA pencil with E,D,Q ∈ Kn×n satisfying Q∗E = E∗Q and D + D∗ ≤ 0. Then we
consider L = ran

[
E
Q

]
and D = gr D, see Sec. 2.5. This implies mul D ∩ kerL = {0}

and since L is symmetric and hence E kerQ = kerL ⊆ ran L⊥ = kerQ∗. If we choose
Ci ∈ Kn×di , di ∈ N, i = 1, 2, 3, as matrices whose columns consist of an orthonormal
basis of ran Q, kerQ∗ and E kerQ, respectively, then U = [C1, C2] is unitary and the
matrices in (3.12) are given by

L11 = C∗
1EC1, L21 = C∗

2EC1 = 0, L22 = C∗
3C2,

D11 = C∗
1DC1, D21 = C∗

2DC1, D22 = 0.

The additional assumption E kerQ = kerQ∗ = {0} implies that the second block
row and columns in (3.12) vanish implying that the pH pencil is then equivalent to a
positive real-pencil.
Let now a dH-LG pencil sE−A be given with ran [EA ] = DL for some skew-adjoint D
and self-adjoint L. Here the important assumption mul D ∩ kerL = {0} to guarantee
regularity is not trivially fulfilled, but it is not hard to see that mul D ∩ kerL ̸= {0}
is equivalent to the existence of a non-vanishing function x(·) such that

∀t ≥ 0 : (0, d
dtx(t)) ∈ D, (x(t), 0) ∈ L, e(t) = 0. (3.20)

With this assumption we consider the range representations D = ran
[
D1
D2

]
and

L = ran
[
L1
L2

]
and matrices C1, C2, C3, C4 ∈ Kn×di whose columns are orthonor-

mal bases of ran D1 ∩ ran L2, kerD∗
1+̂ kerL∗

2, D2 kerD1, and L1 kerL2. Then the
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lower-triangular form (3.12) is given by

L11 = C∗
1L1C1, L21 = C∗

2L1C1, L22 = C4C
∗
4 , (3.21)

D11 = C∗
1D2C1, D21 = C∗

2D2C1, D22 = C3C
∗
3 . (3.22)

Furthermore, the maximality of D and L implies kerD∗
1 = ran D⊥

1 = mul D =
D2 kerD1 and kerL∗

2 = L1 kerL2. Hence the regularity of the pencil sL22 −D22 is by
Prop. 3.1.3 automatically fulfilled.
The following example highlights that regularity can fail arbitrarily badly in terms
of size of the row and column minimal indices even if we consider a pencil sE −DQ

that is both dH-LA and dH-LG.

Example 3.1.7. Let k ∈ N, Q = I2k+1 and let E,D ∈ K2(k+1)×2(k+1) be defined by

sE −DQ = sE −D =
[

0 sK⊤
k+1 − L⊤

k+1

sKk+1 + Lk+1 0

]
∈ K[s](2k+1)×(2k+1).

Then sE − DQ is readily singular and we immediately see that D = gr D defines a
skew-adjoint and L = (gr E)−1 a self-adjoint subspace. In particular, the pencil is
both dH-LA and dH-LG, and has one row and one column minimal index which are
both equal to k.

3.2 Kronecker form of dissipative-Hamiltonian pen-
cils

Our goal in this section is to describe the Kronecker form of dissipative-Hamiltonian
pencils. We first stick to our previous restriction of square pencils. As Ex. 3.1.7
suggests, even with this restriction this task fails without the right assumptions.
From the lower triangular form (3.12), we derive some structural properties of regular
dH-LR pencils sE−A. Besides an index analysis, we will further present some results
on the location of the eigenvalues of sE − A. We show that sE − A does not have
eigenvalues with positive real part and, except for a possible eigenvalue at the origin
of higher order, and the purely imaginary eigenvalues are proven to be semi-simple.
An overview of the results of this section can be found in Fig. 3.1.

Proposition 3.2.1. Let E,A ∈ Kn×n such that ran [EA ] = DL for some dissipative
relation D ⊂ K2n and a nonnegative relation L ⊂ K2n. If sE −A is regular, then the
following holds:
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(a) σ(E,A) ⊆ C− and the non-zero eigenvalues on the imaginary axis are semi-
simple. The size of the Jordan blocks at 0 is at most two.

(b) The size of the Jordan blocks at ∞, i.e., the index, is at most three.

(c) If additionally D is maximally dissipative and L = (gr L)−1 for some positive
definite L ∈ Kn×n, then sE −A has index at most one and the eigenvalue zero
is semi-simple.

Proof. Since sE − A is regular, Prop. 3.1.3 yields that there exist invertible S, T ∈
Kn×n, such that

S(sE −A)T =
[
sL11 −D11 0
sL21 −D21 sL22 −D22

]
∈ K[s]n×n (3.23)

with Lij , Dij ∈ Kni×nj for some n1, n2 ∈ N with n1 +n2 = n and, using Lem. 3.1.1 (i),
we have

L11 = L∗
11 ≥ 0, D11 +D∗

11 ≤ 0, L22 = L2
22 = L∗

22, −D22 = D2
22 = −D∗

22,

(3.24)

and ran L22 ∩ ran D22 = {0}. It follows from [RS11, Thm. 4.1] that

σ(L22, D22) ⊆ {0}, (3.25)

and, moreover, the possible eigenvalue zero is semi-simple and the index of sL22 −D22

is at most one.
Further, since L11 ≥ 0 and D11 + D∗

11 ≤ 0 implies that sL11 − D11 is positive real,
we have by Lem. 1.2.10, (3.25) and (3.23) that

σ(E,A) = σ(L11, D11) ∪ σ(L22, D22) ⊆ C−.

Next we prove (a): As we have already shown that each eigenvalue of sE − A has a
nonpositive real part, it remains to prove the statements on the sizes of the Jordan
blocks of sE − A at λ ∈ σ(E,A) ∩ ıR. Let λ ∈ σ(E,A) ∩ ıR. By Lem. 1.2.8 we have
to show that the order of λ as a pole of (sE − A)−1 is equal to one, if λ ̸= 0, and at
most two if λ = 0. We have from (3.23) that

(sE −A)−1 =T
[
sL11 −D11 0
sL21 −D21 sL22 −D22

]−1

S
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=T
[

(sL11 −D11)−1 0
−(sL22 −D22)−1(sL21 −D21)(sL11 −D11)−1 (sL22 −D22)−1

]
S,

(3.26)

implying that the order of λ as a pole of (sE−A)−1 is equal to the maximal order of
λ as a pole of the block entries

(sLii −Dii)−1, i = 1, 2, and (sL22 −D22)−1(sL21 −D21)(sL11 −D11)−1.

(3.27)

Since sL11 −D11 is positive real, the order of λ as a pole of (sL11 −D11)−1 is at most
one by Lem. 1.2.10. Moreover, by (3.25), the only possible pole of (sL22 − D22)−1

might be at λ = 0 and this pole is of order one. In summary, this shows that the pole
order of (3.27) and thus of (3.26) at λ = 0 is at most two and the pole order of (3.26)
at λ ∈ ıR \ {0} is at most one. This completes the proof of (a).
We prove (b). Since sL11 − D11 is positive real, its index is at most two and hence,
by Lem. 1.2.8 there exist some M1, ω1 > 0 such that

∀λ > ω1 : ∥(λL11 −D11)−1∥ ≤ M1λ. (3.28)

As we have previously shown, the index of sL22 −D22 is at most one, i.e., there exist
some M2, ω2 > 0 such that

∀λ > ω2 : ∥(λL22 −D22)−1∥ ≤ M2. (3.29)

A combination of (3.28) and (3.29) yields for all λ > max{ω1, ω2}

∥(λL22 −D22)−1(λL21 −D21)(λL11 −D11)−1∥

≤ ∥(λL22 −D22)−1∥∥(λL21 −D21)∥∥(λL11 −D11)−1∥ (3.30)

≤ M1M2(∥L21∥ + ∥D21∥)λ2.

Let M := ∥S−1∥∥T−1∥M1M2(∥L21∥ + ∥D21∥)| and ω := max{ω1, ω2}, then (3.30)
implies with (3.26) that

∀λ > ω : ∥(λE −A)−1∥ ≤ Mλk−1, (3.31)

with k = 3 and thus, by Lem. 1.2.8, the index of sE −A is at most three.
It remains to prove (c). To this end, assume that D is maximally dissipative and that
L = (gr L)−1 for some positive definite L ∈ Kn×n. To show that sE −A has at most
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index one, we have to verify (3.31) with k = 1. Since L is positive definite, Lem. 3.1.1
(i) & (v) gives L11 ≥ 0 and kerL11 = {0}. That is, L11 is positive definite as well.
Hence, we can use [RS11, Thm. 4.1] to infer that there exists some M3 > 0 with

∀λ > 0 : ∥(λL11 −D11)−1∥ ≤ M3

λ
. (3.32)

Using (3.32), there exists someM4 := M2M3(∥L21∥+∥D21∥) and ω4 := max{0, ω3, ω2}
such that for all λ > ω4 it holds

∥(λL22 −D22)−1(λL21 −D21)(λL11 −D11)−1∥

≤ ∥(λL22 −D22)−1∥∥(λL21 −D21)∥∥(λL11 −D11)−1∥

≤ M2M3(∥L21∥ + ∥D21∥)

= M4.

Thus, by Lem. 1.2.8, sE −A has index at most one. To conclude that zero is a semi-
simple eigenvalue, recall from Lem. 3.1.1 (v) that D22 = −In2 , L22 = 0. Consequently,
the pole order of (3.27) and whence of (3.26) at λ = 0 is at most one. As a result of
Lem. 1.2.8, the eigenvalue λ = 0 is semi-simple.

Note that Prop. 3.2.1 (c) was conjected in [vdSM18, Rem. 2.6] for skew-adjoint D.
The following example shows that without maximality assumptions on the subspaces
D and L an index of sE −A equal to three is possible.

Example 3.2.2. Using the canonical unit vectors e1, e2, e3 ∈ R3 we consider the
relations

D = ran
[
ED

AD

]
= ran

[
e1 e2 0

−e2 e1 e3

]
, L = ran

[
EL

AL

]
= ran

[
e1 e3

e1 e2

]
.

Since

0 = A∗
DED + E∗

DAD ≤ 0, A∗
LEL =

[
1 0
0 0

]
≥ 0,

we have that D is dissipative, and L is nonnegative. It can be further seen that the
product of D and L reads

DL = span {(0, e3), (e3, e1), (e1,−e2)} ,

and we obtain the range representation DL = ran [EA ] with

E :=
[

0 0 1
0 0 0
0 1 0

]
, A :=

[ 0 1 0
0 0 −1
1 0 0

]
.
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Since A−1E is nilpotent with (A−1E)2 ̸= 0, we have that the Kronecker form of
sE −A is consisting of exactly one Jordan block at ∞ with size 3. In particular, the
index of sE −A is equal to three.

Next we show that for a square the pencil sE−A induced by DL is already regular with
index one under the assumption of Prop. 3.2.1 (c). This result was previously obtained
in [vdSch13, Prop. 4.1] for the special case where D is a skew-adjoint subspace.

Corollary 3.2.3. Let sE−A be a matrix pencil with E,A ∈ Kn×n and ran [EA ] = DL
and let D ⊆ K2n be maximally dissipative and L = (gr Q)−1 for some positive definite
Q ∈ Kn×n. Then sE −A is regular and has index at most one.

Proof. Since L = (gr Q)−1 = gr (Q−1) we have mul D ∩ kerL = mul D ∩ {0} = {0}
and by Lem. 3.1.1 (v) there exist unitary U,X ∈ Kn×n such that

U∗(sE −A)X =
[
sL11−D11 0
sL21 In

]
, (3.33)

with sL11 − D11 positive real and kerL11 × {0} = U∗ {x ∈ dom D | Qx ∈ mul D}.
Hence, if x ∈ kerL11×{0}, then x ∈ dom D with Qx ∈ mul D. In virtue of Lem. 1.3.8,
we have mul D = (dom D)⊥ and hence ⟨Qx, x⟩ = 0, and the positive definiteness of
Q leads to x = 0. Consequently, the kernel of L11 is trivial, and we obtain kerL11 ∩
kerD11 = {0} ∩ kerD11 = {0}. Now invoking Lem. 1.2.10 (a), we obtain that sL11 −
D11 is regular and thus, by (3.33), sE − A is regular, too. Moreover, the index is at
most one by Prop. 3.2.1 (c).

We have seen in Ex. 3.1.7 that square dH-LR pencils may have arbitrarily large row
and column indices. Moreover, the following two examples show that the index and
the size of the Jordan blocks on the imaginary axis may be arbitrarily large as well.
Note that these examples present dH-LR pencils which are both dH-LA and dH-LG,
i.e., they fall within the scope of both [MMW18] and [vdSM18].

Example 3.2.4. For k ∈ N, consider the pencil

sL−D =


−1

. .
.
s

−1 . .
.

1 s

. .
.
. .
.

1 s

 ∈ K[s]2k×2k.

Then L ∈ K2k×2k is Hermitian and D ∈ K2k×2k is skew-Hermitian. Hence, the
relation D = gr D is skew-adjoint (in particular dissipative), and L = (gr L)−1 is
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self-adjoint. Then for E = L and A = D, DL = [EA ]. It can be seen that E−1A is
nilpotent with (E−1A)2k−1 ̸= 0. Consequently, the Kronecker form (1.1) of sE−A is
consisting of exactly one Jordan block at the eigenvalue ∞ with size 2k. Therefore,
the index of sE −A reads 2k.

Example 3.2.5. For k ∈ N, consider the pencil

sL−D =


s

. .
.

−1
. .
.
. .
.

s −1
. .
.

1
. .
.
. .
.

s 1

 ∈ K[s](2k+1)×(2k+1),

which is consisting of the Hermitian matrix L ∈ K(2k+1)×(2k+1) and the skew-
Hermitian matrix D ∈ K(2k+1)×(2k+1). As in the previous example, the choices
D = gr D, L = (gr L)−1 lead to the pH pencil sE − A := sL − D. It can be
seen that A−1E is nilpotent with (A−1E)2k ̸= 0. Consequently, the Kronecker form
(1.1) of sE−A is consisting of exactly one Jordan block at the eigenvalue 0 with size
2k + 1.

The preceding examples show that additional assumptions on D and L are required
for a further specification of the Kronecker form of pH pencils. We first present a
decompostion which will be advantageous to prove such statements and turn our
attention to possibly singular square pencils which do not need to be square anymore.

Proposition 3.2.6. Let D ⊆ K2n be maximally dissipative and L ⊆ K2n be maximally
nonnegative. Further, let E,A ∈ Kn×m be such that ran [EA ] = DL. Then there exist
some invertible S ∈ Kn×n, T ∈ Km×m and ni ∈ N, i = 1, 2, 3, 4, such that

S(sE −A)T =


sL11 −D11 0 0 0 0 0

D21 sIn2 0 0 0 0
sL21 0 In3 0 0 0

0 0 0 sIn4 −In4 0
0 0 0 0 0 0

 , (3.34)

where sL11 −D11 ∈ K[s]n1×n1 is regular and positive real, and kerL11 ⊂ kerL21.

Proof. The proof consists of two steps. In the first step we derive a certain range
representation for DL. In second step, (3.34) is obtained from the resulting range
representation.
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Step 1: We show that there exists some m̂ ∈ N and an invertible matrix S ∈ Kn×n

and some n1, n2, n3, n4 ∈ N, such that

DL = diag (S, S) ran [ LD ] , sL−D =

 sL11−D11 0 0 0 0 0
D21 sIn2 0 0 0 0
sL21 0 In3 0 0 0

0 0 0 sIn4 −In4 0
0 0 0 0 0 0

 ∈ K[s]n×m̂

(3.35)
for some positive real and regular pencil sL11 − D11 ∈ K[s]n1×n1 , D21 ∈ Kn2×n1 ,
L21 ∈ Kn3×n1 .
Consider the space X := mul D ∩ kerL, and the relations

D̂ := D⊖̂({0} ×X), L̂ := L⊖̂(X × {0}).

Then we obtain an orthogonal decomposition

DL = D̂L̂ k ({0} ×X) k (X × {0}) (3.36)

and

mul D̂ = mul D⊖̂X, ker L̂ = kerL⊖̂X.

This implies mul D̂ ∩ ker L̂ = {0}. It can be further seen that D̂ is dissipative and L̂
is nonnegative. Further, define

V := K2n⊖̂({0} ×X)⊖̂(X × {0}) = ({0} ×X)⊥ ∩ (X × {0})⊥.

The previous considerations show that both D̂ and L̂ are subsets of V. Moreover,
set kX := dimX and let ι : V → K2(n−kX ) = Kdim V be a vector space isometry. It
follows that

D̃ := ι(D̂), L̃ := ι(L̂) (3.37)

are maximally dissipative and maximally nonnegative linear relations in K2(n−kX ),
respectively, satisfying mul D̃ ∩ ker L̃ = {0} and note that

D̃L̃ = ι(D̂L̂). (3.38)

Then Lem. 3.1.1 implies the existence of some unitary Ũ ∈ K(n−kX )×(n−kX ), such
that, with k1 := dim(ran L̃ ∩ dom D̃), k2 := n− kX − k1,

D̃L̃ = ran diag (Ũ , Ũ)

 L̃11 0
L̃21 L̃22
D̃11 0
D̃21 D̃22

 (3.39)
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for some matrices L̃ij , D̃ij ∈ Kki×kj with L̃11 ≥ 0, ker L̃11 ⊆ ker L̃21, D̃11 + D̃∗
11 ≤ 0

and

D̃2
22 = −D̃22 = −D̃∗

22, L̃2
22 = L̃22 = L̃∗

22, ker D̃22⊕̂ ker L̃22 = Kk2 . (3.40)

Invoking (3.36)–(3.39) and

V k ({0} ×X) k (X × {0}) ∼= K2(n−kX ) × KkX × KkX

yields the existence of a unitary matrix Û ∈ Kn×n such that

DL = diag (Û , Û) ran


L̃11 0 0 0
L̃21 L̃22 0 0

0 0 IkX
0

D̃11 0 0 0
D̃21 D̃22 0 0

0 0 0 IkX

 .
Lem. 1.2.10 (b) implies that sL̃11 − D̃11 has only column and row minimal indices
equal to zero and their number coincides. Hence there exist invertible S1, T1 ∈ Kk1×k1

and some n1 ∈ N, such that

S1(sL̃11 − D̃11)T1 =
[
sL11 −D11 0

0 0

]

for some positive real and regular pencil sL11−D11 ∈ K[s]n1×n1 . Since L̃ is maximally
nonnegative, Lem. 3.1.1 (i) yields

kerL11 ×Kk1−n1 = ker
[
L11 0

0 0
]

= ker L̃11T1 = T−1
1 ker L̃11 ⊂ T−1

1 ker L̃21 = ker L̃21T1.

Consequently, for some L(1)
21 ∈ Kk2×n1

L̃21T1 =
[
L

(1)
21 , 0k2×(k1−n1)

]
and kerL11 ⊆ kerL(1)

21 .

Further, by using [D(1)
21 , D

(2)
21 ] := D̃21T1, D(1)

21 ∈ Kk2×n1 , D(2)
21 ∈ Kk2×(k1−n1), we find

[
S1 0 0 0
0 Ik2+kX

0 0
0 0 S1 0
0 0 0 Ik2+kX

]
ran


L̃11 0 0 0
L̃21 L̃22 0 0

0 0 IkX
0

D̃11 0 0 0
D̃21 D̃22 0 0

0 0 0 IkX



= ran


S1L̃11T1 0 0 0
L̃21T1 L̃22 0 0

0 0 IkX
0

S1D̃11T1 0 0 0
D̃21T1 D̃22 0 0

0 0 0 IkX

 = ran


L11 0 0 0 0

0 0 0 0 0
L

(1)
21 0 L̃22 0 0
0 0 0 IkX

0
D11 0 0 0 0

0 0 0 0 0
D

(1)
21 D

(2)
21 D̃22 0 0

0 0 0 0 IkX

 .
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Denoting k3 := dim ker D̃22, n3 := dim ker L̃22, (3.40) implies that k2 = k3 + n3.
Let S̃ ∈ Kk2×k2 be a matrix whose first k3 columns form a basis of D̃22 and whose
last n3 columns form a basis of L̃22. Then S̃∗(sL̃22 − D̃22)S̃ = diag (sL̂22, D̂22) for
some L̂22 ∈ Kk3×k3 , D̂22 ∈ Kn3×n3 , which are positive definite by (3.40). Then, by
taking a suitable block congruence transformation, we obtain that there exists some
invertible S2 ∈ Kk2×k2 such that the Weierstraß form is given by

S2(sL̃22 − D̃22)S∗
2 =

[
sIk3 0

0 In3

]
.

Hence, with
[
L

(1,1)
21
L21

]
:= S2L

(1)
21 for some L(1,1)

21 ∈ Kn3×n1 and L21 ∈ Kn3×n1 which
implies

kerL11 ⊆ kerL(1)
21 = kerS2L

(1)
21 ⊆ kerL21.

Further, decomposing

[S2D
(1)
21 , S2D

(2)
21 ] =

[
D

(1,1)
21 D

(2,1)
21

D
(1,2)
21 D

(2,2)
21

]
∈ K(k3+n3)×(n1+(k1−n1))

leads to


Ik1 0 0 0 0 0
0 S2 0 0 0 0
0 0 IkX

0 0 0
0 0 0 Ik1 0 0
0 0 0 0 S2 0
0 0 0 0 0 IkX

 ran


L11 0 0 0 0

0 0 0 0 0
L

(1)
21 0 L̃22 0 0
0 0 0 IkX

0
D11 0 0 0 0

0 0 0 0 0
D

(1)
21 D

(2)
21 D̃22 0 0

0 0 0 0 IkX



= ran


L11 0 0 0 0

0 0 0 0 0
S2L

(1)
21 0 S2L̃22T2 0 0

0 0 0 IkX
0

D11 0 0 0 0
0 0 0 0 0

S2D
(1)
21 S2D

(2)
21 S2D̃22T2 0 0

0 0 0 0 IkX

 = ran



L11 0 0 0 0 0
0 0 0 0 0 0
0 0 Ik3 0 0 0
L21 0 0 0 0 0

0 0 0 0 IkX
0

D11 0 0 0 0 0
0 0 0 0 0 0

D
(1,1)
21 D

(2,1)
21 0 0 0 0

0 0 0 −In3 0 0
0 0 0 0 0 IkX


.

(3.41)

Now let S3 ∈ Kk3×k3 , T3 ∈ K(k1−n1)×(k1−n1) be invertible with S3D
(2,1)
21 T3 =

[
Ik5 0
0 0

]
.

Then setting n2 := k3 − k5 and using[
D

(1,1,1)
21

−D21

]
:= S3D

(1,1)
21 , D

(1,1,1)
21 ∈ Kk5×n1 , D21 ∈ Kn2×n1 ,

we find for the lower five block rows in (3.41)
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
In1 0 0 0 0

0 In1−k1 0 0 0
0 0 S3 0 0
0 0 0 In3 0
0 0 0 0 IkX

 ran


D11 0 0 0 0 0

0 0 0 0 0 0
D

(1,1)
21 D

(2,1)
21 0 0 0 0

0 0 0 −In3 0 0
0 0 0 0 0 IkX



= ran


D11 0 0 0 0 0 0

0 0 0 0 0 0 0
D

(1,1,1)
21 Ik5 0 0 0 0 0

D
(1,1,2)
21 0 0 0 0 0 0

0 0 0 0 −In3 0 0
0 0 0 0 0 0 IkX

 = ran


D11 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 Ik5 0 0 0 0 0 0

−D21 0 0 0 0 0 0 0
0 0 0 0 0 −In3 0 0
0 0 0 0 0 0 0 IkX

 (3.42)

and for the upper five block rows in (3.41)
In1 0 0 0 0

0 In1−k1 0 0 0
0 0 S3 0 0
0 0 0 Ik4 0
0 0 0 0 IkX

 ran

 L11 0 0 0 0 0
0 0 0 0 0 0
0 0 Ik3 0 0 0
L21 0 0 0 0 0

0 0 0 0 IkX
0

 (3.43)

= ran

 L11 0 0 0 0 0
0 0 0 0 0 0
0 0 Ik3 0 0 0
L21 0 0 0 0 0

0 0 0 0 IkX
0

 = ran


L11 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 Ik5 0 0 0 0
0 0 0 0 In2 0 0 0
L21 0 0 0 0 0 0 0

0 0 0 0 0 0 IkX
0

 .
Then the form (3.35) is achieved by setting n4 := k5 + kX , m̂ := n + 2kX , and
performing a joint permutation of block rows of the form 2 → 6 → 5 → 3 → 4 → 2
and block columns (3 → 8 → 7 → 5 → 2 → 6 → 3) of the matrices on the right-hand
side in (3.42) and (3.43). Combining all of the so far transformations leads to an
invertible S ∈ Kn×n with (3.35).
Step 2: Let E,A ∈ Kn×m be such that ran [EA ] = DL for some maximally dissipative
relation D ⊆ K2n and some maximally nonnegative relation L ⊆ K2n. Then the result
from Step 1 gives

ran [EA ] = DL = diag (S−1, S−1) ran [ LD ] (3.44)

with matrices L,D ∈ Kn×m̂ as in (3.35). If m ≥ m̂ then there exists some invertible
T ∈ Km×m such that

[ SESA ]T = [ L 0
D 0 ] .

Hence (3.34) follows from (3.35). If m < m̂ then the block structure in (3.35) implies
that d := dimDL = dim ran [ LD ] = n1 +n2 +n3 + 2n4 and that the first d columns in
[ LD ] are linearly independent. Since m ≥ d, we can remove m̂−m zero columns from
L and D which leads to matrices L̂, D̂ ∈ Kn×m which are still of the form (3.35).
Observe that (3.44) still holds after replacing L with L̂ and D with D̂. Hence, there
exists some invertible T ∈ Km×m such that S(sE − A)T = sL̂ − D̂ which implies
(3.34).
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The main result on the Kronecker form of dissipative-Hamiltonian DAEs is given
below. Here, we additionally assume the maximality of the underlying subspaces.
This can be viewed as a refinement or extension of the lower-triangular form which
is given for regular pencils in Prop. 3.1.3. The main difference is that the invertible
left transformation can no longer be chosen to be unitary.

Theorem 3.2.7. Let E,A ∈ Kn×m such that ran [EA ] = DL for some maximally
dissipative relation D ⊆ K2n and a maximally nonnegative relation L ⊆ K2n. Then
the Kronecker form of sE −A has the following properties:

(a) The column minimal indices are at most one (if there are any).

(b) The row minimal indices are zero (if there are any).

(c) We have σ(E,A) ⊆ C−. Furthermore, the non-zero eigenvalues on the imagin-
ary axis are semi-simple. The Jordan blocks at ∞ and at zero have size at most
two, i.e., the index is at most two.

Proof. Invoking Prop. 3.2.6, we assume without loss of generality that sE − A is in
the block diagonal decomposition (3.34) with positive real sL̃11 − D̃11 ∈ K[s]n1×n1

and ker L̃11 ⊂ ker L̃21. First observe that the block lower-triangular pencil

sEr −Ar :=

sL̃11 − D̃11 0 0
D̃21 sIn2 0
sL̃21 0 In3

 (3.45)

obtained from (3.34) is regular. Since, moreover, a simple column permutation yields
that the Kronecker form of [sIn4 ,−In4 ] is given by diag (sK2 − L2, . . . , sK2 − L2) ∈
K[s]n4×2n4 , we obtain that the column minimal indices of sE − A are one (if there
are any) and the row minimal indices of sE − A are at most zero (if there are any).
This proves (a) & (b).
We continue with the proof of (c). Considering (3.34), (3.45) and invoking Lem. 1.2.10
(c) yields

σ(E,A) = σ(Er, Ar) ⊆ σ(L̃11, D̃11) ∪ {0} ⊆ C−.

It remains to show the statements on the index and the sizes of the Jordan blocks to
eigenvalues on the imaginary axis. Here we proceed as in the proof of Prop. 3.2.1 by
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using the resolvent of (3.45) which is given bysL̃11 − D̃11 0 0
D̃21 sIn2 0
sL̃21 0 In3


−1

=

 (sL̃11 − D̃11)−1 0 0
−s−1D̃21(sL̃11 − D̃11)−1 s−1In2 0

−sL̃21(sL̃11 − D̃11)−1 0 In3

 . (3.46)

Regarding Lem. 1.2.8, the pole order of (3.46) at λ ∈ σ(E,A) is equal to the size of
the largest Jordan block of (3.45) at λ. Since sL̃11 − D̃11 is positive real, the pole
order of (3.46) at the non-zero eigenvalues on the imaginary axis is at most one and
hence these eigenvalues are semi-simple. The pole order of (sEr − Ar)−1 at λ = 0 is
at most two and hence the size of the Jordan blocks at 0 in the Kronecker form of
sE −A is at most two, by Lem. 1.2.8.
We finally show that the index of sE −A as in (1.3) is at most two. Since the index
is invariant under pencil equivalence of sEr −Ar, we can assume without restriction
that sL̃11 − D̃11 is already given in Weierstraß canonical form. Further, sL̃11 − D̃11

is positive real and hence its the index is by Lem. 1.2.10 (d) at most two. Altogether,
we obtain for some k1, k2 ∈ N and J̃ ∈ Kk2×k2 in Jordan canonical form that

sL̃11 − D̃11 = diag
([−1 s

0 −1
]
, . . . ,

[−1 s
0 −1

]
,−Ik1 , sIk2 − J̃

)
. (3.47)

Consequently, there exist M1, ω1 > 0 such that

∀λ > ω1 : ∥(λL̃11 − D̃11)−1∥ ≤ M1λ. (3.48)

Looking at the block entries of (3.46), we continue to show the existence of some
M2, ω2 > 0 satisfying

∀λ > ω2 : ∥λL̃21(λL̃11 − D̃11)−1∥ ≤ M2λ. (3.49)

Invoking the block diagonality of sL̃11 − D̃11 and the structure of the blocks in (3.47)
it suffices to show that (3.49) holds for sL̃11 − D̃11 =

[−1 s
0 −1

]
. Prop. 3.2.6 yields

ker L̃11 ⊂ ker L̃21, which implies with ker L̃11 = {αe1 |α ∈ K} for x = ( x1
x2 ) ∈ K2 and

for all λ > 0 and M2 := ∥L̃21e1∥ that

∥λL̃21(λL̃11 − D̃11)−1x∥ =
∥∥∥∥∥λL̃21

[
−1 −λ
0 −1

](
x1

x2

)∥∥∥∥∥
=
∥∥∥∥∥λL̃21

(
−x1 − λx2

−x2

)∥∥∥∥∥
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= ∥ − λL̃21e2x2∥

≤ M2λ∥x∥.

This proves (3.49). Further, one can directly conclude from (3.48) that there exist
M3, ω3 > 0 such that

∀λ > ω3 : ∥ − λ−1D̃21(λL̃11 − D̃11)−1∥ ≤ M3λ, (3.50)

and trivially
∀λ > 1 : ∥λ−1In2∥, ∥In3∥ ≤ 1. (3.51)

Overall, we see with (3.46) and (3.48)-(3.51) that there exist some M,ω > 0 with

∀λ > ω : ∥(λEr −Ar)−1∥ ≤ Mλ. (3.52)

This means by Lem. 1.2.8 that αi ≤ 2 for all i = 1, . . . , ℓα. Furthermore, the block
structure in (3.34) implies γi ≤ 1 for all i = 1, . . . , ℓγ and hence the index of sE − A

as in (1.3) is at most two.

The following example from [MMW18] shows that without the maximality assumption
on L, arbitrarily large row minimal indices might occur.

Example 3.2.8. For some n ∈ N, let D = gr D with D = Jn(0) − Jn(0)∗ and
L = ran

[
E
Q

]
for E = Q = [In−1 , 0(n−1)×1]∗. Then D is skew-adjoint and L is

nonnegative but not maximal. Hence for A = DQ, ran [EA ] = DL, and it is shown in
[MMW18] that the pencil sE −A has one row minimal index equal to n− 1.

Previously, the Kronecker form was described in [MMW18] for dH-LA pencils where
L is nonegative with the usual physical interpretation in terms of energy functionals.
We give a brief comparison of Thm. 3.2.7 with [MMW18, Thm. 4.3].

Remark 3.2.9.

(i) As [MMW18, Thm. 4.3] treats dH-LA pencils, it employs the assumption that
mul D = {0}.

(ii) [MMW18, Thm. 4.3] shows that dH-LA pencils have the property that all its
eigenvalues have nonpositive real part. Further, the nonzero imaginary eigenval-
ues are semi-simple. A statement on the sizes of the Jordan blocks corresponding
to the eigenvalue zero is not contained.
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Figure 3.1: Properties of matrix pencils arising in port-Hamiltonian formulations.

(iii) Instead of our assumption of maximality of the nonnegative relation L =
ran

[
E
Q

]
, the weaker assumption that all row minimal indices of sE − Q are

zero has been used in [MMW18, Thm. 4.3] to describe the Kronecker form of
dH-LA pencils.

We present an example of a pencil which is subject of Thm. 3.2.7 but it cannot be
represented as a pencil which is subject of [MMW18, Thm. 4.3].

Example 3.2.10. Let E = [ 1 0
1 0 ], A =

[−1 0
0 −1

]
and consider

D = ran
[ 1 0

0 0
−1 0
0 1

]
, L = (gr [ 1 1

1 1 ])−1
.

Then D is maximally dissipative, L is maximally nonnegative, and ran [EA ] = DL.
Therefore, the pencil sE −A meets the assumptions of Thm. 3.2.7.
We show in the following that it is not possible to rewrite DL = (gr D)L̂ for some
dissipative matrix D ∈ K2×2 and a nonnegative relation L̂ ⊂ K4. To this end, let
L̂ = ran

[
Ê
Q̂

]
with Q̂∗Ê ≥ 0. Then

ran [EA ] = (gr D) ran
[
Ê
Q̂

]
= ran

[
Ê
DQ̂

]
and hence there exists some invertible T ∈ K2×2 with ÊT = E and DQ̂T = A.
Thus, DQ̂T = −I2 and hence Q̂T = −D−1. With Q̂T = [ q1 q2

q3 q4 ] we have T ∗Q̂∗E =[ q1+q3 0
q2+q4 0

]
≥ 0 and hence q1 + q3 ≥ 0 and q2 + q4 = 0. Since D is dissipative, Q̂T is
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also dissipative and therefore

0 ≥ ⟨( 1
1 ) , (D +D∗) ( 1

1 )⟩ = 2 Re ⟨( 1
1 ) , D ( 1

1 )⟩ = Re (q1 + q2 + q3 + q4) = q1 + q3 ≥ 0.

This implies q1 + q3 = 0 and hence ( 1
1 ) ∈ ker(Q̂T )∗ = ker Q̂∗, which contradicts the

invertibility of Q̂.
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Chapter 4

Stability and
port-Hamiltonian systems

Under the light of Prop. A.0.3, Prop. 3.2.1 and Thm. 3.2.7 gave first results towards
stability properties of DAEs with dissipative-Hamiltonian pencils. In this chapter, we
first continue our analysis of dissipative-Hamiltonian pencils in that regard, exploit-
ing results and proof techniques of Chap. 3 under the assumption that the symmetric
linear relation is nonnegative. In the process, we will discover a second crucial as-
sumption for stability, namely the triviality of the kernel of the symmetric relation
in Def. 2.5.4. Afterwards, we explore how stable and stabilizable DAEs can be inter-
preted as relaxed linear-algebraic port-Hamiltonian systems.

4.1 Stability of dissipative-Hamiltonian pencils

To ensure stability of [E,A] ∈ Σn given by a dissipative-Hamiltonian pencil sE − A

with
ran [EA ] = DL

for a dissipative relation D and a symmetric relation L, we need the additional as-
sumption that L =

[
L1
L2

]
is nonnegative, i.e., L⊤

1 L2 ≥ 0. In the case that L is
self-adjoint, one can use a suitable CS-decomposition, see [MMW18, Prop. 3.1], so
that L1 and L2 can be chosen in such a way that L1 ≥ 0. Similarly, for maximally
dissipative subspaces D = ran

[
D1
D2

]
one can choose D1, D2 such that D2 +D⊤

2 ≤ 0.
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As a main result of this section we provide sufficient conditions for the stability of
DAEs induced by square dissipative-Hamiltonian pencils. This result of the results
and proof techniques of Chap. 3.

Proposition 4.1.1 (Stability of square dH-LR pencils). Let sE −A ∈ K[s]n×n such
that there exist a maximally dissipative D = ran

[
D1
D2

]
and a maximally nonegative

L = ran
[
L1
L2

]
with ran [EA ] = DL and L1, L2, D1, D2 ∈ Kn×n. Then with X :=

ran D1 ∩ ran L2, [E,A] is stable if the following hold.

(i) kerPXL1↾X ∩ kerPXD2↾X = {0};

(ii) kerL = {0}.

Proof. Since both D and L are maximal by Lem. 1.3.8 we have mul D = (dom D)⊥,
kerL = (ran L)⊥ and with kerL = {0} we deduce

mul D ⊕̂ kerL = (ran L)⊥⊕̂(dom D)⊥

and trivially
kerL ∩ mul D = {0}.

Additionally, with (i) and the nonnegativity of L, Cor. 3.1.4 implies that sE − A is
regular. Now, invoking Prop. 3.2.1 yields that σ(E,A) ⊆ C− with semi-simple non-
zero eigenvalues on ıR. By Cor. A.0.4, it remains to show that also the (possible)
eigenvalue 0 is semi-simple to deduce stability of [E,A]. To this end, we revisit the
proof of Prop. 3.2.1. In this context, recall that the order of λ as a pole of (sE−A)−1

is equal to the maximal order of λ as a pole of (3.27). Since kerL = {0} we deduce
L22 = 0 and D22 = −I. Moreover, sL11 − D11 is positive real by nonnegativity of
L and hence by [RS11, Thm. 4.1] the order of 0 as a pole of (3.27) and therefore
(sE −A)−1 is at most 1. Invoking Lem. 1.2.8 completes the proof.

This result is directly applicable to dH-LG pencils, i.e., to the framework of [vdSM18].

Corollary 4.1.2. Let sE − A ∈ Kn×n be a dH-LG pencil, i.e., there exist a Dirac
subspace D and a Lagrangian subspace L such that

ran [EA ] = DL.

Then [E,A] is stable if the following conditions are satisfied

(i) L is nonnegative;
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(ii) kerL = {0};

(iii) sE −A is regular.

Proof. In contrast to Prop. 4.1.1, except reorganizing the statement, Prop. 4.1.1 (i)
has been replaced by condition (iii), which is justified by Cor. 3.1.4.

Note that in the context of Cor. 4.1.2, the conditions (i) and (iii) alone are not
sufficient to guarantee stability, as the following example underlines.

Example 4.1.3. Let E = I2, D =
[ 0 1

−1 0
]
, and Q = [ 0 0

0 1 ]. Define A = DQ = J2(0).
Then sE −A is a dH-LR pencil with D = gr D and L = gr Q. In particular, sE −A

is a dH-ODE pencil and therefore regular. Further, note that D and L are dissipative
and nonnegative relations, respectively, which are maximal in this respect by virtue
of being the graph of a matrix. Overall, we find that conditions (i) and (iii) of
Cor.4.1.2 are satisfied. However, the eigenvalue 0 of A is readily not semi-simple. By
Prop. A.0.3, [E,A] is not stable.

We are also able to formulate a result for dH-LA pencils, i.e., for the framework of
[MMW18]. To this end, let us first highlight the following fact.

Lemma 4.1.4. Let J,R ∈ Kn×n with J = −J∗ and R ≥ 0. Then ker(J − R) =
ker J ∩ kerR.

Proof. If x ∈ ker(J − R) then x∗(J − R)x = 0 and this implies 0 = x∗(J∗ − R)x =
−x∗(J + R)x. Adding both trivial expression yields 0 = −2x∗Rx. By positive semi-
definiteness of R, we have x ∈ kerR [TW09, Lem. 12.3.1]. Therefore, 0 = (J −R)x =
Jx, i.e., x ∈ ker J . The reverse inclusion is trivial.

Corollary 4.1.5. Let E, J,R,Q ∈ Kn×n such that Q∗E ≥ 0, J = −J∗, and R ≥ 0,
i.e., sE − (J − R)Q is a dH-LA pencil with D = gr (J − R) and L =

[
E
Q

]
. Then

sE− (J −R)Q ∈ K[s]n×n is regular if and only if kerE∩ker(Q⊤JQ)∩ker(Q⊤RQ) =
{0}. Furthermore, [E, (J −R)Q] is stable if additionally kerQ ⊆ kerE.

Proof. Assume first that sE − (J − R)Q is regular. Then by Cor. 3.1.6 sE − Q

is regular and since regularity is invariant under pencil equivalence we can infer by
[MMW18, Prop. 3.1] that Q = Q∗ = Q2, E = E∗ = E2, and E + Q = In without
loss of generality. Moreover by regularity of sE − Q kerE ∩ kerQ = {0}, which
implies rk

[
E
Q

]
= n, i.e., L = ran

[
E
Q

]
is Lagrangian. By Prop. 3.1.4 (iii) with
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X = ran In ∩ ran Q = (kerQ∗)⊥ the regularity of sE − (J −R)Q implies

{0} = kerPran QE↾ran Q ∩ kerPran Q(J −R)↾ran Q

= { Qx | Q∗EQx = Q∗(J −R)Qx = 0 }

= Q(kerQ∗EQ ∩ kerQ∗(J −RQ)). (4.1)

Note that QEQ = QQE = QE = EQ and therefore kerQ⊕̂ kerE ⊆ kerQEQ. On
the other hand, if QEx = EQx = 0, then Ex ∈ kerQ and Qx ∈ kerE. Hence,
x = Ex+Qx ∈ kerQ⊕̂ kerE. Overall,

kerQ⊕̂ kerE = kerQEQ.

We can use this equality to infer that (4.1) is equivalent to

Q(kerQEQ ∩ kerQ(J −R)Q) = {0}

⇐⇒ (kerQ⊕̂ kerE) ∩ kerQ(J −R)Q ⊆ kerQ

⇐⇒ kerE ∩ kerQ(J −R)Q = {0}.

Furthermore, Lem. 4.1.4 implies

kerQ(J −R)Q = ker(QJQ−QRQ) = ker(QJQ) ∩ ker(QRQ),

which proves kerE ∩ kerQ∗JQ ∩ kerQ∗RQ = {0}. Conversely, if this intersection is
trivial then in particular kerE ∩ kerQ = {0} and hence dimL = n as before. Now
invoking by Cor. 3.1.6 yields the regularity of sE − A. To prove stability we apply
Prop. 4.1.1 by recalling that Prop. 4.1.1 (i) is satisfied by our previous considerations
and observing that Prop. 4.1.1 (ii) is equivalent to kerQ ⊆ kerE.

The above characterization of regularity was also obtained recently in [SPF+21]. How-
ever, Prop. 4.1.1 characterizes the regularity and the stability for a larger class of
DAEs.
The results presented so far indicate that two properties are key to guarantee stability
of a system induced by a dissipative-Hamiltonian pencil. The first is the nonnegat-
ivity of the symmetric relation, which was already highlighted in Chap. 3 with its
interpretation of existence of an energy function. The second one is that the kernel of
the symmetric relation is trivial. To highlight this property in turn, let us consider a
dH-LA pencil sE − (J −R)Q subject to Cor. 4.1.5. Then with L = ran

[
E
Q

]
we have

kerL = {0} ⇐⇒ kerQ ⊆ kerE.
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Now let z(·) satisfy d
dt Ez(t) = (J − R)Qz(t) for t ∈ R. Then with x = Ez, e = Qz,

and D = gr (J −R) we have

d
dt Ez = (J −R)Qx ⇐⇒

(
Ez
Qz

)
∈ L ∧

( Qz
d
dt Ez

)
∈ D

⇐⇒ ( xe ) ∈ L ∧ ( eẋ ) ∈ D ⇐⇒ (x, ẋ) ∈ DL.

If kerQ ⊆ kerE, then e = Qz = 0 implies x = Ez = 0. Conversely, Let a function
x(·) be given such that (x, ẋ) ∈ DL. Then there exists a function e(·) such that
(x, e) ∈ L and (e, ẋ) ∈ D. The range representation of L guarantees the existence of
a function z(·) such that x = Ez and e = Qz. Additionally, the range representation
of D gives ẋ = (J −R)e. Overall, d

dt Ez = (J −R)Qz. And if e = 0, then kerL = {0}
again yields Ez = 0. Recapitulating, in the terminology of Chap. 1 & 2 this means
that differential variables Ez having vanishing effort e are trivial. Next, we present
another result for dH-LA pencils where the symmetric relation is nonnegative and
has trivial kernel.

Proposition 4.1.6. Let E, J,R,Q ∈ Kn×n such that Q∗E ≥ 0, J = −J∗, and R ≥ 0,
i.e., sE − (J − R)Q is a dH-LA pencil with D = gr (J − R) and L =

[
E
Q

]
. Further

assume kerQ ⊆ kerE. Then the following hold.

(a) If sE −Q is regular then Q is invertible.

(b) Let Q be invertible. Then [E, (J − R)Q] is stable if and only if ker J ∩ kerR ∩
(Q kerE) = {0}.

Proof. If sE−Q is regular then kerE∩kerQ = {0}. This together with kerQ ⊆ kerE
implies kerQ = {0} and hence Q is invertible. This proves (a).
Next, observe that by Lem. 4.1.4 ker(J − R) = kerJ ∩ kerR. To characterize the
stability of [E, (J − R)Q], we use Cor. A.0.4. If [E, (J − R)Q] is stable then sE −
(J −R)Q is regular. Hence, using the invertibility of Q and kerQ ⊆ kerE we find

{0} = kerE ∩ ker(J −R)Q = (Q kerE) ∩ ker J ∩ kerR. (4.2)

Conversely, assume that (4.2) holds. Then

{0} = (Q kerE) ∩ ker J ∩ kerR = kerE ∩ ker(J −R)Q

= kerE ∩ ker(Q⊤JQ) ∩ ker(Q⊤RQ).

By Cor. 4.1.5 [E, (J −R)Q] is stable.
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If Q is invertible then the conditions in Prop. 4.1.1 and Prop. 4.1.6 (b) coincide.
The following example from [MMW18] shows that not every DAE given by a dH-LA
pencil is stable.

Example 4.1.7. Consider

sE − JQ = [ s 1
0 s ] , J :=

[ 0 −1
1 0

]
, Q := [ 0 0

0 1 ] ,

which is a dH-LA pencil with Jordan block of size 2 at zero. It is therefore unstable.
The above example is an ordinary differential equation and x 7→ x⊤Q⊤Ex = x⊤Qx

is not a Lyapunov function.

For now, the dissipative-Hamiltonian pencils we considered were square and therefore
regular if the corresponding DAE was stable. How to formulate similar results con-
cerning the stability of DAEs induced by nonsquare dissipative-Hamiltonian pencils
is discussed in the following remark.

Remark 4.1.8 (Stability of nonsquare dH-LR pencils). In order to derive a similar
result to Prop. 4.1.1 for nonsquare pencils, the obvious approach is to imitate the
proof technique using Prop. 3.2.6 instead of Prop. 3.1.3. However, this technique
allows to deduce a similar statement to that of Prop. 4.1.1 for nonsquare pencils
sE − A ∈ Kn×m only if n = m. If n < m, it is readily seen that a nontrivial column
minimal index must exist in its Kronecker form (1.1) and hence by Prop. A.0.3 it is
unstable. Further, the case n > m leads to a contradiction under the assumptions of
Prop. 4.1.1, for which we sketch how to obtain it. Inspecting how (3.34) was obtained
in the proof of Prop. 3.2.6 we see that in this context the assumptions successively
lead to kX = 0, k2 = n − k1, n1 = k1, k2 = n3, k3 = 0, n2 = 0, k5 = 0, n4 = 0, and
m̂ = n, that is for some S ∈ Gln(K) we have

diag (S, S) ran [EA ] = ran
[
L11 0
L21 0
D11 0

0 −In3

]
. (4.3)

However, see also (3.45), the pencil s
[
L11 0
L21 0

]
−
[
D11 0

0 −In3

]
is regular. A dimension

count shows that (4.3) leads to a contradiction if n > m.
One can of course refine the conditions (i) and (ii) of Prop. 4.1.1 by only demanding
that certain block matrices arising in the proof of Prop. 3.2.6 and causing a nonsemi-
simple eigenvalue 0 or a column minimal index are trivial. However, such conditions
do not possess obvious algebraic or geometric interpretations.
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Remark 4.1.9 (Stability in terms of the geometric behavior).
Given a dH-LR pencil sE − A with ran [EA ] = DL, we know that BDL = EB[E,A].
Therefore, asking about the boundedness of the trajectories x ∈ BDL is equival-
ent to asking about the boundedness of the differential variables Ez for all solutions
z ∈ B[E,A]. Results on the stability of the differential variables of [E,A] can be de-
rived analogously to the results for the stability of [E,A] presented in this section. To
be more precise, one invokes the statements of Prop. A.0.3 involving the Lyapunov
inequality A.3 instead of A.1. Similarly, if we are interested in the asymptotic beha-
vior of solutions, one invokes the statements of Prop. A.0.3 involving the Lyapunov
inequalities (A.2) and (A.4).

4.2 Stable and stabilizable DAEs as pH-LAR sys-
tems

The aim of this section is to show that stable DAEs [E,A] ∈ Σn,m and stabilizable
DAEs [E,A,B] ∈ Σn,m,k can be rewritten as a pH-LAR systems on a suitable sub-
space. The following result shows that, in the case of stable DAEs, one can choose
the system space as this subspace.

Proposition 4.2.1. Let [E,A] ∈ Σn,m be stable and let X ∈ Km×m with X >
EV[E,A]

sys

0 be a solution of (A.1) given by Prop. A.0.3. Then with the choice of Q := XE and

J := 1
2 (AQ† − (AQ†)∗), R := − 1

2 (AQ† + (AQ†)∗),

[E,A] becomes a pH-LAR system on V [E,A]
sys with

J =
EV[E,A]

sys
−J∗,

A =V[E,A]
sys

(J −R)Q,

R ≥
EV[E,A]

sys
0,

Q∗E >V[E,A]
sys

0.

Further, V [E,A]
sys ⊆ V [E,(J−R)Q]

sys .

Proof. Let X >
EV[E,A]

sys
0 be a solution of (A.1) given by Prop. A.0.3. Since ℓβ = 0 by

Prop. A.0.3, considering (1.5) we deduce XEV [E,A]
sys = EV [E,A]

sys = V [E,A]
sys . Then

Q†Q =V[E,A]
sys

E†E =V[E,A]
sys

In,
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and thus (J − R)Q = AQ†Q =V[E,A]
sys

A. Since X >
EV[E,A]

sys
0, we have for all x ∈

V [E,A]
sys \ {0}

x∗Q∗Ex = x∗E∗XEx > 0.

With EV [E,A]
sys = QV [E,A]

sys we find that R ≥
EV[E,A]

sys
0 is equivalent to

0 ≤V[E,A]
sys

Q∗RQ = −Q∗(AQ† + (Q†)∗A∗)Q

= −Q∗A−A∗Q

=V[E,A]
sys

−E∗XA−A∗XE,

which holds by virtue of X. Moreover, J =
EV[E,A]

sys
J∗ holds trivially. Now let x ∈

B[E,A]. Since x evolves in V [E,A]
sys

Ex(t) = Ax(t) = (J −R)Qx(t),

i.e., x ∈ B[E,(J−R)Q] from which V [E,A]
sys ⊆ V [E,(J−R)Q]

sys follows.

In the following remark, we investigate some properties of the approach to rewriting
a stable DAE as port-Hamiltonian system.

Remark 4.2.2.

1. In the context of Prop. 4.2.1, we saw that V [E,A]
sys ⊆ V [E,(J−R)Q]

sys . The question
arises when the reverse inclusion holds true as well. For the construction we
presented, this can be answered. It turns out that equality holds if in addition
to being stable there are no Jordan blocks at ∞ in the Kronecker form (1.1),
i.e., ℓα = 0. We sketch how to show this by considering the case where sE −A

is already in Kronecker canonical form (1.1). Note that by Rem. A.0.5 we are
free in extending the solution X to (A.1) given by Prop. A.0.3 on (V [E,A]

sys )⊥.
For the reverse inclusion, we need to show AQ†Q = A on (V [E,A]

sys )⊥. To this
end, it is beneficial to extend X as the identity on the orthogonal complement
of the system space since this equation boils down to A = AE†E on (V [E,A]

sys )⊥.
The overdetermined blocks are preserved since L⊤

k (K⊤
k )†K⊤

k = L⊤
kKkK

⊤
k =

L⊤
k Ik−1 = L⊤

k for k ∈ N. Unfortunately, the same cannot be said of the blocks
at infinity since IkN†

kNk = N⊤
k Nk = diag (Ik−1, 0), i.e., a block sNk − Ik gets

replaced by diag (sK⊤
k −L⊤

k , sK1 −L1), resulting in an unstable DAE with (the
same) stable differential variables.
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2. If [E,A] ∈ Σn,m is stable with index at most one then we can redefine Q in
Prop. 4.2.1 in such a way that the relations therein hold on Kn instead of
V [E,A]

sys . Here we assume for simplicity again that E and A are already given in
Kronecker form (1.1), i.e.,

sE −A =
[
sIn0 −A0 0 0

0 I|α| 0
0 0 sK⊤

γ −L⊤
γ

]
.

Let X0 > 0 satisfy A∗
0X0 + X0A0 ≤ 0 by virtue of the spectrum of A0. Then

defining

Q̂ :=
[
X0 0
0 I|α| 0
0 0 K⊤

γ

]
and J := 1

2 (AQ̂† − (AQ̂†)∗), R := − 1
2 (AQ̂† + (AQ̂†)∗) leads to

Q̂∗E =
[
X0 0 0
0 0 0
0 0 Iγ−ℓγ

]
≥ 0

and A = (J −R)Q̂. For comparison, the approach of Prop. 4.2.1 would yield

Q =
[
X0 0 0
0 0 0
0 0 K⊤

γ

]
when extending a solution X to (A.1) as the identity on the orthogonal com-
plement of the system space. If sE − A has index greater than one then this
extension of Q is still possible but leads to a nonsymmetric Q̂∗E.

Similar considerations can be done for systems which are stable backwards in time, i.e.,
[−E,A] is stable. Note that the Kronecker form (1.1) of sE−A and s(−E) −A differ
only in the sign of the matrix in Jordan normal form. This motivates the following
result.

Corollary 4.2.3. Let [E,A] ∈ Σn,m. If sE − A neither has nonsemi-simple ei-
genvalues on the imaginary axis nor column minimal index in its Kronecker form,
then [E,A] is a pH-LAR system on its system space. To be more precise, there exist
matrices Q ∈ Km×n, J, R ∈ Km×m such that

J =
EV[E,A]

sys
−J∗,

A =V[E,A]
sys

(J −R)Q,

R ≥
EV[E,A]

sys
0,

Q∗E = E∗Q.

Further, V [E,A]
sys ⊆ V [E,(J−R)Q]

sys and Q∗E↾V[E,A]
sys

is invertible.
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Proof. By virtue of the properties of sE−A there exist invertible S ∈ Km×m and T ∈
Kn×n such that S(sE−A)T = diag (sE1−A1,−sE2−A2) with σ(E1, A1), σ(E2, A2) ⊆
C− both with semi-simple eigenvalues on ıR. By Prop. A.0.3 and Prop. 4.2.1 there
exist matrices J1, J2, R1, R2, Q1, Q2 of appropriate size such that

J1 =
E1V

[E1,A1]
sys

−J∗
1 ,

A1 =V[E1,A1]
sys

(J1 −R1)Q1,

R1 ≥
E1V

[E1,A1]
sys

0,

Q∗
1E1 >V[E1,A1]

sys
0,

J2 =
E2V

[E2,A2]
sys

−J∗
2 ,

A2 =V[E2,A2]
sys

(J2 −R2)Q2,

R2 ≥
E2V

[E2,A2]
sys

0,

Q∗
2E2 >V[E2,A2]

sys
0.

Further, V [E1,A1]
sys ⊆ V [E1,(J1−R1)Q1]

sys and V [E2,A2]
sys ⊆ V [E2,(J2−R2)Q2]

sys . Invoking Props.
1.2.16 & 1.2.17 and V [E2,A2]

sys = V [−E2,A2]
sys , the statement of the corollary follows by

setting
J :=S−1 diag (J1, J2)S−∗,

R :=S−1 diag (R1, R2)S−∗,

Q :=S∗ diag (Q1,−Q2)T−1.

Note that in comparison to Prop. 4.2.1 we lose the definiteness of Q∗E on V [E,A]
sys but

keep the invertibility on this space.

A similar approach allows to rewrite certain behaviorally stabilizable systems
[E,A,B] ∈ Σn,k, i.e.,

d
dt Ex(t) = Ax(t) +Bu(t),

as a pH-LAR system after introducing a suitable output. To be more precise, we
consider the class Σsn,k consisting of behaviorally stabilizable systems [E,A,B] ∈ Σn,k
for which sE − A is regular and only has semi-simple eigenvalues on the imaginary
axis.
If [E,A,B] ∈ Σsn,k, then by applying a Jordan decomposition on the first block entry
in the Weierstraß form (1.2) we see that there exists some invertible S, T ∈ Kn×n,
n1, n2 ∈ N with n1 + n2 = n0 such that

S(sE −A)T =
[
sIn1 −A1 0 0

0 sIn2 −A2 0
0 0 sNα−I|α|

]
, x =

(
x1
x2
x3

)
,

SB =
[
B1
B2
Bα

]
, σ(A1) ⊆ C+, [In2 , A2] is stable.

(4.4)

Furthermore, [In1 , A1, B1] is controllable.
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Lemma 4.2.4. If [E,A,B] ∈ Σsn,k fulfills (4.4) with S = T = In, then a stabilizing
feedback is given by u(t) = −B∗

1P1x1(t) with P1 > 0 being the unique solution of

A∗
1P1 + P1A1 = P1B1B

∗
1P1, (4.5)

in the sense that for all x0 ∈ V [E,A,B]
diff there exist (x, u) ∈ B[E,A,B](x0) and M ≥ 0

such that ess supt≥0 ∥x(t)∥ ≤ M and (x, u) = (x1, x2, xα,−B∗
1P1x1).

Proof. Clearly, (4.5) has a unique positive definite solution if and only if

(−A∗
1)∗P−1

1 + P−1
1 (−A∗

1) = −B1B
∗
1

has a unique positive definite solution. Since [In1 , A1, B1] is controllable and
σ(−A∗

1) ⊂ C− such a solution exists by [TSH01, Thm. 3.28] (if K = R, the case
K = C being shown analogously). It remains to show that u(t) = −B∗

1P1x1(t) is a
stabilizing feedback. Note that [In1 , A1 − B1B

T
1 P1, B1] is also controllable and that

(4.5) is also equivalent to

(A∗
1 − P ∗

1B1B
∗
1)∗P−1

1 + P−1
1 (A∗

1 − P ∗
1B1B

∗
1) = −B1B

∗
1 .

Now invoking [TSH01, Thm. 3.28] again shows σ(A1 − B1B
∗
1P1) ⊆ C−. Moreover,

with
x1(t) = e(A1−B1B

∗
1P1)tx1(0), ∀t ≥ 0,

there exist M,β > 0 such that for all k ≥ 0 which are smaller than the index of [E,A]

∥x(k)
1 (t)∥ ≤ Me−βt, ∀t ≥ 0.

Therefore, we have for some M̂ > 0 such that for all k ≥ 0 which are smaller then
the index of [E,A]

∥u(k)(t)∥ ≤ M̂e−βt, ∀t ≥ 0. (4.6)

Since [In2 , A2] is stable, the variation of constants formula implies that the solution x2

of ẋ2 = A2x2(t) + B2u(t) are bounded. Next, we only consider the first block-entry
(if any) of sNα − I|α|, sNα1 − Iα1 , since the others are treated analogously. With
Bα =

[
B⊤

α1 ··· B⊤
αℓ(α)

]⊤ the solution xα1(t) = (xα1,1(t), . . . , xα1,α1(t))⊤ of [Nα1 , Iα1 ]
fulfills  ẋα1,2

...
ẋα1,α1

0

 = d
dt Nα1

 xα1,1
...

xα1,α1−1
xα1,nα1

 =

 xα1,1
...

xα1,α1−1
xα1,nα1

+Bα1u,
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and inspecting the last row leads to

∥xα1,α1(t)∥ = ∥α1u(t)∥ ≤ ∥Bα1∥M̂e−βt,

which tends to zero as t → ∞. Similarly, the penultimate row leads to

xα1,α1−1(t) = ẋα1,α1(t) − e⊤
α1−1Bα1u(t) = Bα1 u̇(t) − e⊤

α1−1Bα1u(t),

which is again exponentially bounded by (4.6). Repeating the last step with the
remaining rows starting with the α1 − 2th row shows that ∥xα1(t)∥ → 0 as t → ∞
which completes the proof that u stabilizes the solution of [E,A,B].

Below, we exploit the behavioral stabilizability to obtain solutions to certain matrix
equalities on the system space which allows us to reformulate the system in a port-
Hamiltonian way. Similar equations for stabilization of DAEs have been studied under
the name generalized algebraic Bernoulli equation in [BBQ07].

Lemma 4.2.5. Let [E,A,B] ∈ Σsn,k. Then there exist some X1, X2 ≥
EV[E,A]

sys
0 such

that the following holds.

A∗X1E + E∗X1A =V[E,A]
sys

E∗X1BB
∗X1E, (4.7)

A∗X2E + E∗X2A ≤V[E,A]
sys

0, (4.8)

with (X2 ±X1)EV [E,A]
sys = EV [E,A]

sys and X1 +X2 >EV[E,A]
sys

0.

Proof. All conditions are invariant under transformations of the form [E,A,B] →
[SET, SAT, SB] for all invertible S, T ∈ Kn×n. Hence we can assume without re-
striction that [E,A,B] is already given in the block diagonal form on the right-hand
side of (4.4). Introduce Ẽ = diag (In2 , Nα), Ã = diag (A2, I|α|) and then we set
X1 := diag (P1, 0n2+|α|), where P1 > 0 is a solution of (4.5) given by Lem. 4.2.4
and X2 := diag (0n1 , P

−1
2 , 0|α|) where P2 > 0 is a solution of the Lyapunov in-

equality A∗
2P2 + P2A2 ≤ 0. Clearly, X1, X2 ≥

EV[E,A]
sys

0 and they satisfy (4.7) and

(4.8), respectively. Furthermore, EV [E,A]
sys = Kn1+n2 × {0}|α| and hence X2 ± X1 =

diag (±P1, P
−1
2 , 0|α|) map EV [E,A]

sys into itself with X1 +X2 >EV[E,A]
sys

0.

Based on this result, we show how to interpret a stabilizable system as a pH-LAR
system, which can be viewed as an analogue to Prop. 4.2.1.
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Proposition 4.2.6. Let [E,A,B] ∈ Σsn,k. Then there exist X1, X2 ≥
EV[E,A]

sys
0 such

that with the choices of
Q := (X2 −X1)E,

J := 1
2 (AQ† − (AQ†)∗),

R := − 1
2 (AQ† + (AQ†)∗),

(4.9)

the system [E,A,B,C,D] with C = B∗Q and D = Ik, i.e.,

d
dtEx(t) = Ax(t) +Bu(t),

y(t) = B∗Qx(t) + u(t),
(4.10)

is a pH-LAR system on on V [E,A]
sys × Kk. To be more precise,[

J B
−B∗ 0

]
=
EV[E,A]

sys ×Kk −
[

J B
−B∗ 0

]∗
,

A =V[E,A]
sys

(J −R)Q,

[R 0
0 I ] ≥

EV[E,A]
sys ×Kk 0,

E⊤Q =V[E,A]
sys

Q∗E.
(4.11)

Proof. The proof is completely analogous to the proof of Prop. 4.2.1 except that we use
(4.7) and (4.8) instead of (A.1) to prove the inequality in (4.11). To be more precise,
let X1, X2 be the solutions of (4.7) and (4.8), respectively, given by Lem. 4.2.5. Then
with (X1 −X2)EV [E,A]

sys = EV [E,A]
sys = V [E,A]

sys we have

R ≥
EV[E,A]

sys
0 ⇔ 2Q∗RQ ≥V[E,A]

sys
0

and

2Q∗RQ =V[E,A]
sys

−Q∗A−A∗Q

= −E∗(X2 −X1)A−A∗(X2 −X1)E

≥V[E,A]
sys

E∗X1BB
∗X1E ≥V[E,A]

sys
0.

Remark 4.2.7. In the context of Prop. 4.2.6, one can show that the solutions (x, u) of
[E,A−BB∗(X2 −X1)E] correspond to the solutions (x, u, y) of (4.10) when imposing
y = 0. This restriction corresponds to an interconnection with respect to a Dirac
structure of the form ran [ 0

I ]. Furthermore, if sE − A has index one then N = 0
in (4.4) and EV [E,A]

sys × Kk coincides with
[
E 0
0 Ik

]
V [E,A,B]

sys . If E is invertible then
V [E,A,B]

sys = Kn+k, EV [E,A]
sys = Kn and Q = X1 +X2 > 0.
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Remark 4.2.8. In Prop. 4.2.6 we defined a suitable output to obtain a pH system.
More generally, in [GS18, Thm. 3.6] it was shown that descriptor systems [E,A,B]
with output y(t) = Cx(t) + Du(t) can be rewritten as a pH-LA system if there
exists an invertible solution X of a linear matrix inequality (typically referred to as
Kalman–Yakubovich–Popov inequality (KYP)). Moreover, one would have X = Q

in the context of (2.12). Such invertible solutions can be obtained by restricting the
system (4.10) to the space V [E,A]

sys ×Kk. In this case Q in (4.9) can be replaced by the
invertible Q̂ := (X2 −X1)E↾V[E,A]

sys
.
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Chapter 5

Dirac and Lagrange
constraints in
dissipative-Hamiltonian
pencils

As we saw in Sec. 2.5.2, there exist dH-LG pencils, that is pencils corresponding to the
framework of [vdSM18], that are not dH-LA, i.e., they do not fit in the framework
of [MMW18]. Nevertheless, in this chapter we show how the behavior of a DAE
induced by a dH-LG pencil can be associated to the behavior of a DAE induced by
a dH-LA pencil. The approach we present originates from [vdSM18] and was called
‘From Dirac to Lagrange constraints, and back’. We extend this technique to the
case where the maximally dissipative relation is not Dirac, i.e., dissipation is actually
present in the system, as well as to two other types of constraints. The extension to
other constraints enables us to link dissipative-Hamiltonian pencils with nonnegative
symmetric relation to a certain type of pencils recently discussed in [MMW22].
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5.1 Constraints in dissipative-Hamiltonian pencils

Consider a dH-LR pencil sE − A with respectively maximally dissipative and max-
imally symmetric relations D and L with

ran [EA ] = DL.

We are interested in constraints affecting trajectories in the ‘geometric’ behavior of
the pencil, that is

x ∈ BDL.

Following the terminology of [vdSM18], DL is said to have Lagrange constraints if
mul L ̸= {0} and Dirac constraints if mul D ̸= {0}. To understand this terminology,
let functions x(·), e(·) be given with (x, e) ∈ L and (e, ẋ) ∈ D, i.e., (x, ẋ) ∈ DL. By
maximality of D and L we have dom D = (mul D)⊥ ̸= Kn and dom L = (mul L)⊥ ̸=
Kn. Then Dirac and Lagrange algebraic constraints respectively arise as

e ∈ dom D, x ∈ dom L.

Analogously, one can formulate the constraints

e ∈ ran L, ẋ ∈ ran D,

which arise if kerL ̸= {0} and kerD ̸= {0}, respectively. In the terminology of
[vdSJ14; DvdS98] the (inclusion) constraint ẋ ∈ ran D is associated to so-called
conserved quantity rather than algebraic constraints. Namely, if x ∈ W 1,1

loc (R,Kn),
then one can choose x1 ∈ W 1,1

loc (R, ran D) and x2 ∈ W 1,1
loc (R, (ran D)⊥) such that x =

x1 +x2. In particular, x, x1, x2 are differentiable almost everywhere. Since ran D and
(ran D)⊥ are closed under classical differentiation, ẋ1 ∈ ran D and ẋ2 ∈ (ran D)⊥.
Then also ẋ2 = ẋ− ẋ1 ∈ ran D. Hence,

ẋ2 = 0.

In this case, the conserved quantity is x2. Similarly, combining two constraints we
derive

ẋ ∈ dom L ∩ ran D.

Definition 5.1.1. Let D and L be dissipative and symmetric relations with

ran [EA ] = DL.
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We say that the dH-LR pencil sE −A has constraints of type

(D1) if mul D ̸= {0}; (D2) if kerD ̸= {0};

(L1) if mul L ̸= {0}; (L2) if kerL ̸= {0}.

Such constraints can cause practical problems. It was stated in [vdSM18, Rem. 2.6]
that Lagrange algebraic constraints typically have index 2 or higher. This fact is
underlined in Ex. 3.2.4, where for arbitrary large k ∈ N0 we have mul L = K×{0}2k−1,
and the index of the pencil reads 2k. Hence, being able to rewrite the system without
certain constraints can be desirable.
Note that the Dirac constraints are not present in dH-LA pencils, which correspond
to the framework of [MMW18]. Being able to eliminate Dirac constraints for a dH-LG
system given by a Dirac structure D and a Lagrange structure L, that is a system
in the framework of [vdSM18], would link both frameworks. More generally, one can
ask when a product DL with D dissipative and L symmetric can be rewritten as
DL = (gr D)L or even as DL = (gr D)L̂ with a different symmetric linear relation
L̂. However, this fails in general by Ex. 2.5.8, which shows that there exist dH-LG
pencils that are not dH-LA pencils.

5.2 Extension of dissipative-Hamiltonian pencils

Instead of rewriting the product DL directly with different ‘factors’, we will present
procedures such that one finds a different pH-LR system D̃L̃ where one type of con-
straints presented in Def. 5.1.1 is not present anymore and for which a one-to-one
correspondence between its behavior and the behavior of the original system can be
established in the following sense.

Definition 5.2.1. Let D1, D2 be two dissipative relations in Kn1 , Kn2 , respectively,
and L1, L2 be two symmetric relations in Kn1 , Kn2 , respectively, with n1 < n2. We
say that the pH-LR system given by D1L1 extends the pH-LR system given by D2L2

if

(i) x ∈ BD1L1 =⇒ ∃ Λ : R → Kn2−n1 s.t. (x,Λ) ∈ BD2L2 ;

(ii) (x,Λ) ∈ BD2L2 =⇒ x ∈ BD1L1 .

We achieve such extensions of the behavior by extending the linear relations of the
system as follows.
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Definition 5.2.2. Let N be a linear relation in Kn. We say that N extends to the
linear relation M in Kn+k with k ∈ N if

(i) ∀(x, y) ∈ N ∃!v ∈ Kk : (x, v, y, 0) ∈ M;

(ii) (x, v, y, 0) ∈ M =⇒ (x, y) ∈ N .

Then next result describes how we extend maximally dissipative and maximally rela-
tions to graphs and inverses of graphs.

Lemma 5.2.3. Let M be a maximally dissipative or self-adjoint linear relation in
Kn. Let dim kerM = k and dim mul M = m. Further let K,M ∈ Kn×n, B ∈ Kn×k,
and C ∈ Kn×m given by Cor. 1.3.11 such that

M =
{

(Ke+Bλ, e)
∣∣ λ ∈ Kk ∧B∗e = 0

}
= { (x,Mx+ Cλ) | λ ∈ Km ∧ C∗x = 0 } .

Then with

Kd
ext :=

[
K B

−B∗ 0

]
, Md

ext :=
[
M C

−C∗ 0

]
,

Ks
ext :=

[
K B

B∗ 0

]
, Ms

ext :=
[
M C

C∗ 0

]
,

M extends to both gr Md
ext and gr Ms

ext, and M−1 extends to both (gr Kd
ext)−1 and

(gr Ks
ext)−1. Further, if M is maximally dissipative (skew-adjoint), then (gr Kd

ext)−1

and gr Md
ext are maximally dissipative (skew-adjoint), whereas if M is maximally

nonnegative, then (gr −Kd
ext)−1 and gr −Md

ext are maximally dissipative.

Proof. Step 1 : We show that M extends to gr
[
M C

±C∗ 0
]
. Let (x, y) ∈ M. Then there

exists some λ ∈ Km such that y = Mx+Cλ. Note that λ is unique since by Cor. 1.3.11
the columns of C form a basis of mul M and ran M ⊂ dom M = (mul M)⊥. Further,
±C∗x = 0. Overall, (

Mx+ Cλ

0

)
=
[
M C

±C∗ 0

](
x

λ

)
, (5.1)

i.e., (x, λ, y, 0) ∈ gr Md
ext ∩ gr Ms

ext. Conversely, let (x, v, y, 0) ∈ gr
[
M C

±C∗ 0
]

or equi-
valently (x, v, y, 0) ∈ gr Md

ext ∪ gr Ms
ext. Then with (5.1) we directly see (x, y) ∈ M.

Step 2 : We show the properties of gr Md
ext, gr Ms

ext that are inherited by M. On the
one hand, if M is maximally dissipative (skew-adjoint), then by Cor. 1.3.11 M is
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dissipative (skew-Hermitian) and by construction Md
ext too. Consequently, gr Md

ext

is maximally dissipative (skew-adjoint). On the other hand, if M is maximally non-
negative (self-adjoint), then by Cor. 1.3.11 M is positive semi-definite (Hermitian),
i.e., −M dissipative and by construction −Md

ext is dissipative too. Consequently,
gr −Ms

ext is maximally nonnegative (self-adjoint).
Step 3 : We prove the statements concerning (gr Kd

ext)−1 and (gr Ks
ext)−1. If M is

maximally dissipative (skew-adjoint, self-adjoint, maximally nonnegative), then so is
M−1. Hence, it suffices to apply Steps 1 & 2 to M−1, since mul M−1 = kerM and
dom M−1 = ran M.

5.3 Conversion of constraints in dH-pencils

With the four matrices constructed in Lem. 5.2.3, we can extend a pH-LR system DL
to four different systems, each with one type of constraint removed, provided that the
relation corresponding to the type of constraint is maximal. The first result of this
kind we present enables us in particular to associate the behavior of a pH-LR system
induced by a dH-LR pencil to the behavior of a pH-LA system induced by a dH-LA
pencil, despite Ex. 2.5.8.

Proposition 5.3.1 (From (D1) to (L1) constraints). Let D be a maximally dissipative
relation in Kn with dim mul D = m and L a symmetric relation in Kn. Let Md

ext ∈
K(n+m)×(n+m) be the matrix given by Prop. 5.2.3 such that D extends to gr Md

ext.
Then

BDL × {0} = B(gr Md
ext)(L×̂(gr 0m)−1).

In particular, DL extends to (gr Md
ext)(L×̂(gr 0m)−1).

Proof. Step 1 : We show that (x, y) ∈ DL ⇐⇒ (x, 0, y, 0) ∈ (gr Md
ext)(L×̂(gr 0m)−1).

To this end, let (x, y) ∈ DL. Then there exists some e ∈ Kn such that (x, e) ∈ L and
(e, y) ∈ D. By Prop. 5.2.3 there exits a unique λ ∈ Km such that (e, λ, y, 0) ∈ gr Md

ext.
Moreover, (x, 0, e, λ) ∈ L×̂(gr 0m)−1. Hence, (x, 0, y, 0) ∈ (gr Md

ext)(L×̂(gr 0m)−1).
Conversely, let now (x, 0, y, 0) ∈ (gr Md

ext)(L×̂(gr 0m)−1) be given. Then there exists
(e, λ) ∈ Kn+m such that (x, 0, e, λ) ∈ (L×̂(gr 0m)−1) and (e, λ, y, 0) ∈ gr Md

ext. We
directly deduce (x, e) ∈ L and since D extends to gr Md

ext also (e, y) ∈ D. Combining
both we obtain (x, y) ∈ DL.
Step 2 : We show the forward inclusion “⊆”. To this end let x ∈ BDL. Then by
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Prop. 2.4.4,
(x(t), ẋ(t)) ∈ DL,

for almost all t ∈ R. Setting Λ ≡ 0 we obtain with Step 1

(x(t),Λ(t), ẋ(t), Λ̇(t)) ∈ (gr Md
ext)(L×̂(gr 0m)−1).

Invoking Prop. 2.4.4 yields (x,Λ) ∈ B(gr Md
ext)(L×̂(gr 0m)−1).

Step 3 : We show the backward inclusion “⊇”. Let (x,Λ) ∈ Bgr Md
ext(L×̂(gr 0m)−1) be

given. Then there exist functions eS(·) : R → Kn, em(·) : R → Km such that

(x(t),Λ(t), eS(t), em(t)) ∈ L×̂(gr 0m)−1 and (eS(t), em(t), ẋ(t), Λ̇(t)) ∈ gr Md
ext,

for almost all t ∈ R. From the latter we deduce Λ(t) = 0 and hence Λ̇(t) = 0 for
almost all t ∈ R. From Step 1 we know

(x(t), ẋ(t)) ∈ DL,

i.e., x ∈ BDL by Prop. 2.4.4, completing this step.

Proposition 5.3.2 (From (D2) to (L2) constraints). Let D be a maximally dissipative
relation in Kn with dim kerD = k and L a symmetric relation in Kn. Let Kd

ext ∈
K(n+k)×(n+k) be the matrix given by Prop. 5.2.3 such that D−1 extends to gr Kd

ext.
Then DL extends to (gr Kd

ext)−1(L×̂ gr 0k).

Proof. Step 1 : We show that for all (x, y) ∈ DL the exists a unique λ ∈ Kk such that
there exists a µ ∈ Kk with (x, µ, y, λ) ∈ (gr Kd

ext)−1(L×̂ gr 0k). Further, (x, µ′, y, λ) ∈
(gr Kd

ext)−1(L×̂ gr 0k) for all µ ∈ Kk. In order to show this, let (x, y) ∈ DL. Then
there exists some e ∈ Kn such that (x, e) ∈ L and (e, y) ∈ D. Since D−1 extends to
gr Kd

ext, there exists a unique λ ∈ Kk such that (e, 0, y, λ) and it is readily seen that
(x, µ, e, 0) ∈ L×̂ gr 0k for all µ ∈ Kk. Hence, (x, µ, y, λ) ∈ (gr Kd

ext)−1(L×̂ gr 0k),
showing the desired statements of this step.
Step 2 : We show that for all (x, µ, y, λ) ∈ (gr Kd

ext)−1(L×̂ gr 0k) holds (x, y) ∈ DL.
Given (x, µ, y, λ) ∈ (x,Λk) ∈ (gr Kd

ext)−1(L×̂ gr 0k), there exists (e1, e2) ∈ Kn+k such
that

(e1, e2, y, λ) ∈ (x,Λk) ∈ (gr Kd
ext)−1 and (x, µ, e1, e2) ∈ L×̂ gr 0k.

We directly deduce e2 = 0 with (x, e1) ∈ L and since D−1 extends to gr Kd
ext, (e1, y) ∈

D. Combining both we obtain (x, y) ∈ DL.
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Step 3 : We show the forward implication “=⇒” of the statement. To this end, let
x ∈ BDL. By Prop. 2.4.4

(x(t), ẋ(t)) ∈ DL,

for almost all t ∈ R. Let range representations

L = ran
[
L1

L2

]
and D = ran

[
D1

L1

]
.

be given. Then stetting

( z1
z2 ) :=

[
L1 0
L2 −D1
0 D2

]† (
x
0
ẋ

)
and eS := L2z1 = D1z2 ∈ L1

loc (R,Kn), we obtain

(x(t), eS(t)) ∈ L and (eS(t), ẋ(t)) ∈ D,

for almost all t ∈ R. Since D−1 extends to gr Kd
ext, there exists a unique function

λ(·) : R → Kk such that

(eS(t), 0, y(t), λ(t)) ∈ (gr Kd
ext)−1,

from which follows that λ ∈ L1
loc (R,Kk). Hence defining Λk : R → Kk by t 7→∫ t

0 λ(τ) dτ gives Λk ∈ W 1,1
loc (R,Kk). Step 1 enables us to write

(x(t),Λk(t), eS(t), 0) ∈ L×̂ gr 0k and (eS(t), 0, ẋ(t), Λ̇k(t)) ∈ (gr Kd
ext)−1,

i.e.,
(x(t),Λk(t), ẋ(t), Λ̇k(t)) ∈ (gr Kd

ext)−1(L×̂ gr 0k)

for almost all t ∈ R. Now Prop. 2.4.4 implies (x,Λk) ∈ B(gr Kd
ext)−1(L×̂ gr 0k).

Step 4 : We show the backward implication “⇐=” of the statement. To this end let
(x,Λk) ∈ B(gr Kd

ext)−1(L×̂ gr 0k). Then

(x(t),Λk(t), ẋ(t), Λ̇k(t)) ∈ (gr Kd
ext)−1(L×̂ gr 0k),

for almost all t ∈ R and hence

(x(t), ẋ(t)) = DL,

for almost t ∈ R by Step 2. Invoking Prop. 2.4.4 shows x ∈ BDL, completing the
proof.
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Proposition 5.3.3 (From (L1) to (D1) constraints). Let D be a dissipative rela-
tion in Kn and L a self-adjoint relation in Kn with dim mul L = m. Let Ms

ext ∈
K(n+m)×(n+m) be the matrix given by Prop. 5.2.3 such that L extends to gr Ms

ext.
Then DL extends to (D×̂(gr 0k)−1)(gr Ms

ext).

Proof. The proof is completely analogous to the proof of Prop. 5.3.2.

Proposition 5.3.4 (From (L2) to (D2) constraints). Let D be a dissipative relation in
Kn and L a self-adjoint relation in Kn with ker mul D = k. Let Ks

ext ∈ K(n+m)×(n+m)

be the matrix given by Prop. 5.2.3 such that L−1 extends to gr Ks
ext. Then

BDL × {0} = B(D×̂ gr 0k)(gr Ks
ext)−1 .

In particular, DL extends to (D×̂ gr 0k)(gr Ks
ext)−1.

Proof. The proof is completely analogous to the proof of Prop. 5.3.1.

The titles of Props. 5.3.1–5.3.4 are fitting. If we call DL the original system and D̃L̃
the resulting system of these propositions, then in Prop. 5.3.1 dim mul D̃ = 0 and
dim mul L̃ = dim mul L + dim mul D, in Prop. 5.3.2 dim ker D̃ = 0 and dim ker L̃ =
dim kerL + dim kerD, in Prop. 5.3.3 dim mul L̃ = 0 and dim mul D̃ = dim mul D +
dim mul L, and in Prop. 5.3.1 dim ker L̃ = 0 and dim ker D̃ = dim kerD + dim kerL.

Remark 5.3.5. Although Props. 5.3.1 & 5.3.3 are obtained similarly to the results
found in [vdSM18, Sec. 3.1], there is a notable difference. In [vdSM18] the state
variable of the original was extended by the ‘Lagrange multiplier’ λ, which represents
the multivalued part of either D or L depending on what type of constaints is being
replaced. By doing so, λ is formally differentiated in the formulation of the system’s
dynamics, which a priori may impose additional constraints to the solutions of the
original system.
In Prop. 5.3.1, we do not make use of this Lagrange multiplier in order to extend the
state of the original system, although we extend the state of the original system by
the same length as λ. However, this variable is always trivial in the dynamics of the
augmented system, which is not the case of λ.
In Prop. 5.3.3, we make use of this Lagrange multiplier in order to extend the system
variable, but differently. As can be taken from the proof of Prop. 5.3.3, instead of
directly taking λ as additional state variable, we integrate it and extend the state of
the original system by this primitive Λ.
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It is clear from the definition of our notion of an extension (Def. 5.2.1) that no
trajectory of the original system is lost and no additional obtained in the augmented
system.

Note that while gr Md
ext and (gr Kd

ext)−1 become skew-adjoint if D is skew-adjoint in
the context of Lem. 5.2.3, gr Ms

ext and (gr Ks
ext)−1 do not become nonnegative if L

is nonnegative as Ms
ext and Ks

ext are indefinite. This leads to the observation that
gr −Md

ext and (gr −Kd
ext)−1 are dissipative if L is nonnegative. Hence, extending

L with gr −Md
ext and (gr −Kd

ext)−1 instead of gr Ms
ext and (gr Ks

ext)−1 does not
yield a dissipative-Hamiltonian system in this case. In turns out that gr Ms

ext and
(gr Ks

ext)−1 and using this particular extension, we can link dissipative-Hamiltonian
pencils to certain pencils recently discussed in [MMW22].

Definition 5.3.6. A pencil sE − A ∈ Kn×n is said to have positive semidefinite
Hermitian part coefficients (posH pencil) if −E and A are dissipative.

Corollary 5.3.7 (From a dH-LR pencil to a posH pencil).
Let sE −A be a dH-LR pencil with

ran [EA ] = DL

for some maximally dissipative and maximally nonnegative relations D and L, re-
spectively. Further, let dim mul D = m and dim kerL = k and let K,M ∈ Kn×n,
B ∈ Kn×k, and C ∈ Kn×m given by Cor. 1.3.11 such that

L =
{

(Ke+Bλ, e)
∣∣ λ ∈ Kk ∧B∗e = 0

}
,

D = { (x,Mx+ Cλ) | λ ∈ Km ∧ C∗x = 0 } .

Define the pair (L,D) ∈ K(n+m+k)×(n+m+k) × K(n+m+k)×(n+m+k) as either
 K 0 B

0 0 0
−B∗ 0 0

 ,
 M C 0

−C∗ 0 0
0 0 0


 or


 K B 0

−B∗ 0 0
0 0 0

 ,
 M 0 C

0 0 0
−C∗ 0 0


 .

Then sL−D is a posH pencil and

BDL × {0}m+k = LB[L,D].

In particular for x ∈ BDL we have

(x, 0, 0, ẋ, 0, 0) ∈ (gr D)(gr L)−1 = ran
[
L

D

]
.
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Further, if D is skew-adjoint, then gr D is skew-adjoint too.

Proof. With the notation of the statement, let

L̃ =

K 0 B

0 0 0
B∗ 0 0

 , L =

 K 0 B

0 0 0
−B∗ 0 0

 , D =

 M C 0
−C∗ 0 0

0 0 0

 .
Step 1 : We extend DL with Prop. 5.3.1. To this end, let Md

ext ∈ K(n+m)×(n+m) be
the matrix given by Lem. 5.2.3 such that D extends to gr Md

ext. Then by Prop. 5.3.1

BDL × {0} = B(gr Md
ext)(L×̂(gr 0m)−1).

In particular, DL extends to (gr Md
ext)(L×̂(gr 0m)−1).

Step 2 : We extend (gr Md
ext)(L×̂(gr 0m)−1) with Prop. 5.3.4. To this end, note that

dim kerL = dim kerL×̂ gr 0m = k with

L×̂ gr 0m =
{

([K 0
0 0 ] ( ex ) + [B0 ]λ, ( ex ))

∣∣ λ ∈ Kk ∧ [B∗ 0 ] ( ex ) = 0
}
.

Further, gr Md
ext×̂ gr 0k = gr D. Now Prop. 5.3.4 shows that

B(gr Md
ext)(L×̂(gr 0m)−1) × {0} = B(gr D)(gr L̃)−1 .

In particular, (gr Md
ext)(L×̂(gr 0m)−1) extends to (gr D)(gr L̃)−1.

Step 3 : We derive BDL × {0}n+k = LB[L,D]. The two previous steps show that
BDL × {0}n+k = L̃B[L̃,D]. It therefore suffices to show L̃B[L̃,D] = LB[L,D]. Consider

d
dt

 K 0 B

0 0 0
±B∗ 0 0

 z =

 M C 0
−C∗ 0 0

0 0 0

 z,
i.e., the constitutive equations of [L̃,D] and [L,D], depending on the sign, and it
is readily seen that B[L̃,D] = B[L,D]. Moreover, we see that for z ∈ B[L,D] holds[

0n+m

Ik

]
z = 0. Combining both, we obtain

BDL × {0}n+k = L̃B[L̃,D] =
[
In+m 0

0 −Ik

]
LB[L,D] = LB[L,D].

Now for x ∈ B[DL] there exists some z ∈ B[L,D] such that(
x
0
0

)
= Lz and hence

(
ẋ
0
0

)
= Dz,
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i.e.,

(x, 0, 0, ẋ, 0, 0) ∈ (gr D)(gr L)−1 = ran
[
L

D

]
.

Step 4 : We show the properties of L and D. Cor. 1.3.11 shows that K is positive
semi-definite if L̃ is maximally nonnegative and M dissipative (skew-Hermitian) if
D is maximally dissipative (skew-adjoint). Hence by construction, −L and D are
dissipative. Further, if D is skew-adjoint then D is skew-Hermitian and gr D is skew-
adjoint.
Step 5 : The statement is proven for the choices of

L̃ =

K B 0
B∗ 0 0
0 0 0

 , L =

 K B 0
−B∗ 0 0

0 0 0

 , D =

 M 0 C

0 0 0
−C∗ 0 0

 .
It suffices to reproduce the steps 1–4 but inverting the order in which Props. 5.3.1
& 5.3.4 are invoked.

Remark 5.3.8. The proof technique of Cor. 5.3.7 shows that if D and L are max-
imally dissipative and maximally symmetric relations, respectively, then DL can be
extended to a system D̃L̃ with neither (D1) nor (L2) constraints and to a system D̂L̂
with neither (D2) nor (L1) constraints.
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Chapter 6

Electrical circuits and
port-Hamiltonian systems

Tremendous progress has been recently made in port-Hamiltonian modelling of con-
strained dynamical systems, which leads to differential-algebraic equations [BMX+18;
MMW18; vdSM18; vdSM20; vdSch13]. This enables to apply the framework to
modelling of multibody systems with holonomic and non-holonomic constraints as
well as electrical circuits. Examples of the latter class has been considered from
a port-Hamiltonian point of view in [vdSch10; vdSJ14; vdSch13; VvdS10a]. How-
ever, an approach to electrical circuits has been only made for the case where the
circuit contains only capacitances and inductances [BMvdS95]. The recent progress
in port-Hamiltonian differential-algebraic equations however allows to treat a by far
wider class of electrical circuits, see also [NPS22]. This is exactly the purpose of
this chapter, where we consider a variety of electrical components, such as resist-
ances, capacitances, inductances, diodes, transformers, transistors, current sources
and voltage sources from a port-Hamiltonian perspective. To be more precise, we
present pH-NG systems describing physical models for these electrical components
governed by nonlinear equations. Thereafter, we introduce a pH-NG system repres-
enting the circuit interconnection structure by utilizing the underlying graph of the
given electrical circuit. This gives rise to a port-Hamiltonian model, which only in-
corporates the Kirchhoff laws. Finally, the port-Hamiltonian model of the electrical
circuit is obtained by an interconnection with the individual port-Hamiltonian sys-
tems representing the components. The resulting system will be compared to other
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classical formulations of electrical circuits.

6.1 Port-Hamiltonian systems on graphs

We present some basic graph theoretical notions from [Die17] required to formulate
port-Hamiltonian systems on graphs [MvdS13].

Definition 6.1.1 (Graphs and subgraphs). A directed graph is a quadruple G =
(V,E, init, ter) consisting of a vertex set V , an edge set E and two maps init , ter :
E → V assigning to each edge e an initial vertex init(e) and a terminal vertex ter(e).
The edge e is said to be directed from init(e) to ter(e). G is said to be loop-free, if
init(e) ̸= ter(e) for all e ∈ E. Let V ′ ⊂ V and E′ ⊂ E with

E′ ⊂ E↾V ′ := {e ∈ E : init(e) ∈ V ′ ∧ ter(e) ∈ V ′}.

Then the triple (V ′, E′, init ↾E′ , ter ↾E′) is called a subgraph of G. If E′ = E↾′
V , then

the subgraph is called the induced subgraph on V ′. If V ′ = V , then the subgraph is
called spanning. Additionally, a proper subgraph is one where E′ ̸= E. G is called
finitegraph!finite, if V and E are finite.

The notion of a path in a directed graph G = (V,E, init, ter) is quite descriptive.
However, since a path may also go through an edge in reverse direction, we define for
each e ∈ E an additional edge −e ̸∈ E with init(−e) = ter(e) and ter(−e) = init(e).

Definition 6.1.2 (Paths, connectivity, cycles, forests and trees).
Let G = (V,E, init, ter) be a directed loop-free finite graph. For r ∈ N, an r-tuple e =
(e1, . . . , er) ∈ Er is called a path from v to w, if there exists an r-tuple (n1, . . . , nr) ∈
{0, 1}r such that∣∣∣∣∣

r⋃
i=1

{init(ei), ter(ei)}
∣∣∣∣∣ = r + 1,

ter((−1)niei) = init((−1)ni+1ei+1) ∀i ∈ {1, . . . , r − 1},

init((−1)n1e1) = v ∧ ter((−1)nrer) = w.

For r ≥ 2, an r − tuple (e1, . . . , er) is a cycle if (e1, . . . , er−1) is a path from v to w
and er is a path from w to v for some v, w ∈ V . Two vertices v, w are connected, if
there is a path from v to w. This gives an equivalence relation on the vertex set. The
induced subgraph on an equivalence class of connected vertices gives a component of
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the graph. A graph is called connected, if there is only one component. A subgraph
K = (V,E′, init ↾E′ , ter ↾E′) of a directed graph G = (V,E, init, ter) is called a spanning
forest in G, if K does not contain any cycles and is maximal with this property, that
is, K is not a proper subgraph of a subgraph of G which does not contain any cycles.
A subgraph K is called tree, if it does not contain any cycles and is connected.

In the context of electrical circuits, finite and loop-free directed graphs are of major
importance and associate a special matrix to these graphs [And91, Sec. 3.2].

Definition 6.1.3 (Incidence matrix). Let G = (V,E, init, ter) be a finite and loop-
free directed graph. Let E = {e1, . . . , em} and V = {v1, . . . , vn}. Then the incidence
matrix is A0 ∈ Rn×m of G is defined entry-wise through

ajk =


1 init(ek) = vj ,

−1 ter(ek) = vj ,

0 otherwise.

G has k ∈ N components if and only if rk A0 = n − k [And91, p. 140]. This allows
to remove up to k rows from A0 such that a matrix with same rank is obtained. The
choice of these to-be-deleted rows has to be done in a special way: One has to choose
a row set, which corresponds to a vertex set S that contains at most one vertex per
component of G. This deletion plays a crucial role in the definition of the notions of
Kirchhoff-Dirac structure and Kirchhoff-Lagrange structure. Later we will show that
interconnections with these structures correspond to the Kirchhoff laws in electrical
circuits.

Definition 6.1.4 (Kirchhoff-Dirac structure, Kirchhoff-Lagrange structure).
Assume that G = (V,E, init, ter) is a finite and loop-free directed graph with incidence
matrix A0 ∈ Rn×m. Let G1, . . . ,Gk be the components of G and let V1, . . . , Vk ⊂ V

be the corresponding vertex sets. Let S ⊂ V such that S contains at most one vertex
from each component, that is

∀ v, v′ ∈ S, i ≤ k : (v, v′ ∈ Vi) =⇒ (v = v′). (6.1)

Let A ∈ R(n−k)×m be constructed from A0 ∈ Rn×m by deleting the rows correspond-
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ing to the vertices from S. The Kirchhoff-Dirac structure of G is

DS
K(G) :=

{
(j, i, ϕ, u) ∈ Rn−|S| × Rm × Rn−|S| × Rm

∣∣∣∣[
I A

0 0

](
j

i

)
+
[

0 0
A⊤ −I

](
ϕ

u

)
= 0
}
.

(6.2)

Assume that S = {v1, ..., v|S|} (which is - by a reordering of the vertices - no loss of
generality). Then the Kirchhoff-Lagrange structure of G with respect to S is

LSK(G) := {0} × Rn−|S| ⊂ Rn−|S| × Rn−|S|. (6.3)

Remark 6.1.5. By Rem. 1.3.4, DS
K(G) in (6.2) is a Dirac structure, whereas Prop.

1.4.4 implies that LSK(G) in (6.3) is a Lagrangian submanifold of Rn−|S| × Rn−|S|.
The concepts of Def. 6.1.4 allow to introduce the pH-NG system (DS

K(G),LSK(G), {0})
with dynamics

(− d
dt q(t), i(t), ϕ(t), u(t)) ∈ DS

K(G), (q(t), ϕ(t)) ∈ LSK(G). (6.4)

Then, by the equivalence of (q(t), ϕ(t)) ∈ LSK(G) to q(t) = 0 and ϕ(t) ∈ Rn−|S|, we
see that (6.4) holds if and only if

q(t) = 0 ∧ Ai(t) = 0 ∧ A⊤ϕ2(t) = −u(t).

In particular, i(t) ∈ kerA and u(t) ∈ im A⊤. In the context of electrical circuits,
this will indeed represent Kirchhoff’s current and voltage law [Rei14, Thm. 4.5 &
Thm. 4.6]. The choice of S can be interpreted as the set of grounded vertices. The
quantities q, i, ϕ and u can respectively be thought as the vertex charges, the edge
currents, the vertex potentials, and the edge voltages.
Note that (6.4) is indeed a pH-NG system. However, this system is of rather patholo-
gical nature, since it does not contain any ‘true dynamics’, as the differential variable
q is nulled by the Lagrangian submanifold. Note that these ‘true dynamics’ come into
play later on, when we interconnect with dynamic circuit elements like capacitances
and inductances.
In the terminology of [MvdS13], DS

K(G) corresponds to the Kirchhoff-Dirac structure
of a graph when |S| = ∅. Moreover, a Dirac structure similar to (6.2) has been used
in [vdSch10], with the main difference being that in our present case all nodes are
considered to be ‘boundary nodes’ in the nomenclature of [vdSch10].
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We briefly present an alternative (slightly less straight-forward) construction of pH-
NG systems on graphs, namely by means of cycles instead to vertices. For a given
spanning forest T of a loop-free directed graph G with n edges, m vertices and k

connected components, the minimality property yields that the incorporation of any
edge of G not belonging to T (called chord) results in a subgraph with exactly one
cycle. Consequently, the set of edges in the complement of T in G leads to a set
C = {C1, . . . , Cm−n+k} of cycles, the so-called fundamental cycles (see [And91, p. 148]
& [Die17, p. 26]). We equip each fundamental cycle with the orientation of its corres-
ponding chord [And91, p. 148] and consider the associated fundamental cycle matrix
B ∈ R(m−n+k)×m which is defined entrywise by (cf. [And91, Sec. 3.3])

bjl =


1 el ∈ Cj and the orientations agree,

−1 el ∈ Cj and the orientations do not agree,

0 otherwise.

This enables us to introduce the following Dirac structure and Lagrangian submanifold

D′
K(G) :=

{
(φ, u, ι, i) ∈ Rm−n+k × Rm × Rm−n+k × Rm

∣∣∣∣[
I B

0 0

](
φ

u

)
+
[

0 0
B⊤ −I

](
ι

i

)
= 0
}
,

L′
K(G) := {0} × Rn−m+k,

(6.5)

which form the pH-NG system (D′
K(G),L′

K(G), {0}) with dynamics

(− d
dt ψ(t), i(t), ι(t), u(t)) ∈ D′

K(G), (ψ(t), ι(t)) ∈ L′
K(G), (6.6)

from which, analogous to Rem. 6.1.5, one can derive that (6.6) is equivalent to ψ(t) =
0, Bu(t) = 0 and i(t) = B⊤ι. Since im B = kerA⊤ [Rei14, Thm. 4.4], the relations
u(t) ∈ kerB = 0 and i(t) ∈ im B⊤ respectively represent Kirchhoff’s voltage and
current law. The quantities ψ, u, ι and i can respectively be thought as the cycle
fluxes, the edge voltages, the cycle currents and the edge currents.

6.2 Electrical circuits as port-Hamiltonian systems

Our essential idea to port-Hamiltonian modelling of electrical circuits is to extend
the tuple of voltages across and currents through the edges - in the case where we
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Figure 6.1: Obtaining the underlying graph of the electrical circuit.

consider a vertex-based formulation of the Kirchhoff laws - by vertex charges and po-
tentials, and - in the case where we consider a loop-based formulation of the Kirchhoff
laws - by cycle fluxes and cycle currents, along with an accordant modelling of the
graph interconnection structure by means of the approach in the preceding section.
The electrical components are modelled by separate pH-NG systems, and thereafter
coupled with the one representing the interconnection structure.
The circuits may be composed of two-terminal and multi-terminal components. We
will speak of ℓt-terminal components, with ℓt ∈ N denoting the number of termin-
als [Wil10]. Each ℓt-terminal component connects ℓt vertices of the electrical circuit
through its terminals. For instance, a resistance has two terminals, whereas a tran-
sistor has three terminals, and a transformer has four terminals. To regard an elec-
trical circuit as a graph (see Fig. 6.1), we need to replace the ℓt-terminal components
by ℓp edges between the vertices they connect, for some ℓp ∈ N, which we call the
number of ports. Such a device is also called a ℓp-port component. This replacement is
displayed in Fig. 6.1. The direction assigned to each edge is not a physical restriction
but rather a definition of the positive direction of the corresponding voltage and cur-
rent [Rei14]. The physical properties of the electrical components will be reflected by
port-Hamiltonian dynamics on these edges. The replacement of an ℓt-terminal com-
ponent by ℓp edges between vertices, i.e., by a graph, is subject to physical modelling.
For further details on terminals, ports and their relation, we refer to [Wil10].
To be more precise, for ℓp, ℓt ∈ N, an ℓt-terminal component on ℓp edges will be
regarded as a pH-NG system (D,L,R), where D ⊂ RnS+nR+ℓp × RnS+nR+ℓp , with
ℓp = nS + nR for some nS , nR ∈ N0. We associate to D a graph G = (V,E, init, ter)
with |V | = ℓt and |E| = ℓp (cf. Fig. 6.3). The external flow and effort variables will
always represent the current through [Rei14, Def. 3.2] and the voltage along [Rei14,
Def. 3.6] the corresponding edges, respectively.
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Figure 6.2: Visual representation of the Dirac structure D resulting from the inter-
connection (6.7).

6.2.1 Electrical circuits as interconnections of port-Hamil-
tonian systems

Let an electrical circuit consisting of N electrical components (Di,Li,Ri)i∈{1,...,N},
each with ℓp,i ports, be given, with N ∈ N and let

(Gi)i∈{1,...,N} = (Vi, Ei, initi, teri)i∈{1,...,N}

be the respective graphs resulting from the physical modelling of the ℓp,i-port com-
ponents (see Fig. 6.3), where we assume that the edge sets E1, . . . , EN are disjoint.
We define the underlying graph of the circuit G (see Fig. 6.1) as

G = (V,E, init, ter) :=
(

N⋃
i=1

Vi,

N⋃
i=1

Ei, init, ter
)
,

with init(e) = initi(e) and ter(e) = teri(e) if e ∈ Ei for some i ∈ {1, ..., N} and let
V = {v1, . . . , vn}, E = {e1, . . . , em} for some n,m ∈ N. Further, let A0 ∈ Rn×m be
the incidence matrix associated to G and let S ⊂ V with property (6.1) represent the
vertices grounded in the circuit. We model the dynamics of the electrical circuits as
the dynamics of the pH-NG system

(D,L,R) := (DS
K(G),LSK(G), {0}) ◦

(
N

ą

i=1
(Di,Li,Ri)

)
, (6.7)
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Figure 6.3: Replacing an ℓt-terminal
component by a graph with ℓp edges.

Figure 6.4: Deriving the underlying
graph of a capacitance, conductance,
ideal diode, PN-junction diode, in-
ductance, resistance, or sources.

where the interconnection is performed with respect to the flow and effort spaces

(Flink, Elink) =
(

N∏
i=1

RmPi ,

N∏
i=1

RmPi

)
= (Rm,Rm)

corresponding to the port variables associated to the currents and voltages of the
ℓp-port components.

6.2.2 Physical modelling of circuit components as port-Hamil-
tonian systems

We present a couple of ‘prominent’ electrical components from a port-Hamiltonian
viewpoint; among them are capacitances, inductances, resistances, diodes, trans-
formers, transistors and sources. Note that this list is by no means complete. In
principle, our approach also allows to incorporate components which are modelled
by partial differential equations, such as transmission lines and refined models of
semiconductor devices. This involves a further generalization of pH-NG systems on
infinite-dimensional spaces and particularly leads to the notion of Stokes-Dirac struc-
ture, see [BKv+10; Mv04a; Mv04b; Rei21].
Throughout this section, i will denote currents and u will denote voltages. An often-
times used Dirac structure will be, for ℓp ∈ N,

Dℓp =
{(−i

i
u
u

)
∈ R4ℓp

∣∣∣∣ i, u ∈ Rℓp

}
. (6.8)

It can easily verified that this is indeed a Dirac structure. The variable i stands for
the vector of currents, whereas u is the vector of voltages in the component. Note
that a copy of the voltage and negative of the current vector is required, since it is
later on eliminated by the interconnection according to Def. 2.2.2.
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C

uC

iC

Figure 6.5: Capacitance: circuit sym-
bol.

J J

uJ J

iJ J

Figure 6.6: Josephson junction: cir-
cuit symbol.

Capacitances

Let HC ∈ C1(Rℓp ,R). A capacitance with ℓp ports is modelled as a pH-NG system
(DC ,LC ,RC ), where DC = Dℓp with Dℓp as in (6.8), RC = {0}, and

LC =
{

(uC , qC ) ∈ R2ℓp | qC = ∇HC (uC )
}
.

The dynamics consequently read

(− d
dt qC (t), iC (t), uC (t), uC (t)) ∈ DC , (qC (t), uC (t)) ∈ LC .

Here, qC represents the charge of the capacitance and the Hamiltonian HC represents
the energy storage function of the system. From this pH-NG system, one can derive

iC (t) = d
dt qC (t), uC (t) = ∇HC (qC (t)).

If the capacitance has two terminals, then we obtain a conventional capacitance with
one port as in Fig. 6.4.

Inductances

Let HL ∈ C1(Rℓp ,R). An inductance with ℓp ports is modelled as a pH-NG system
(DL ,LL ,RL) with

DL =
{(−uL

iL
iL
uL

)
∈ R4ℓp

∣∣∣∣ uL , iL ∈ Rℓp

}

and
LL =

{
(ψL , iL) ∈ R2ℓp | iL = ∇HL(ψL)

}
, RL = {0}.

The dynamics are now given by

(− d
dt ψL(t), iL(t), iL(t), uL(t)) ∈ DL , (ψL(t), iL(t)) ∈ LL .
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L

uL

iL

Figure 6.7: Inductance: circuit sym-
bol.

R

uR

iR

Figure 6.8: Resistance/conductance:
circuit symbol.

Here, ψL represents the magnetic flux of the inductance and the Hamiltonian HL ∈
C1(Rℓp ,R) represents the energy storage function of the system. From this pH-NG
system, one can derive

uL(t) = d
dt ψL(t), iL(t) = ∇HL(ψL(t)).

If the inductance has two terminals, we obtain a conventional inductance with one
port as in Fig. 6.4. A prominent example of a nonlinear inductance is the Josephson
junction Fig. 6.6 for which the Hamiltonian reads HJ J (ψJ J ) = a(1 − cos(bψJ J )) for
some constants a, b [FN19, p. 709].

Conductances and resistances

Let RR ⊂ Rℓp × Rℓp be a resistive relation. Consider the pH-NG system
(DR ,LR ,RR ), where DR = Dℓp with Dℓp as in (6.8), LR = {0}. The dynamics
are specified by

(−iR (t), iR (t), uR (t), uR (t)) ∈ DR , (−iR (t), uR (t)) ∈ RR . (6.9)

If, for some accretive function g : Rℓp → Rℓp (that is, ϕ⊤
R g(ϕR ) ≥ 0 for all ϕR ∈ Rℓp),

RR reads
RR =

{
(−iR , uR ) ∈ R2ℓp |iR = g(uR )

}
,

then (6.9) leads to iR (t) = g(uR (t)). That is, (DR ,LR ,RR ) describes a conductance
with ℓp ports. On the other hand, if for some accretive function r : Rℓp → Rℓp ,

RR =
{

(−iR , uR ) ∈ R2ℓp |uR = r(iR )
}
,

then (6.9) leads to uR (t) = r(iR (t)), i.e., (DR ,LR ,RR ) models a resistance with ℓp

ports.
If the conductance/resistance has two terminals, then we obtain a conventional con-
ductance/resistance with one port as in Fig. 6.8.
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uD

iD

Figure 6.9: Circuit symbol of a diode.

Remark 6.2.1. Resistances form a pathological case of a pH-NG system, since the
underlying Lagrangian submanifold is trivial (cf. Rem. 6.1.5). Therefore, the ‘dynam-
ics’ of the pH-NG system are actually ‘statics’. The same holds for the models diodes,
transformers and transistors which are discussed in the following.

Ideal and PN-junction diodes

An ideal diode is modelled as a two-terminal component (DD ,LD ,RD) with one port
(see Fig. 6.4), and dynamics

(−iD(t), iD(t), uD(t), uD(t)) ∈ DD , (jD(t), ϕD(t)) ∈ RD ,

where DD = D1 with D1 as defined in (6.8), LD = {0} and

RD =
{

(−iD , uD) ∈ R2 | iDuD = 0 ∧ iD ≤ 0 ∧ uD ≤ 0
}
.

From this pH-NG system, one can derive that

(iD(t), uD(t)) ∈ ({0} × R≤0) ∪ (R≥0 × {0}) .

A PN-junction diode is modelled as a one-port component (DD ,LD ,RD) with DD and
LD as for the ideal diode, and the resistive relation is, for some constants a, b > 0,
given by

RD =
{

(−iD , uD) ∈ R2 | iD = a
(
e

uD
b − 1

)}
.

From the dynamics of this pH-NG system, one can derive the characteristic equation
[MR17, Eq. (39.46)]

iD(t) = a

(
e

uD (t)
b − 1

)
.

The PN-junction diode serves as an approximation for an ideal diode. In a certain
sense, the behavior of a PN-junction diode indeed tends to that of the ideal diode, if
b → 0.
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v1

v2

v4

v3

Figure 6.10: Circuit symbol of a trans-
former.

Figure 6.11: Deriving the underlying
graph of a transformer.

Transformers

A transformer is modelled as a four-terminal component with two ports, see Fig. 6.11.
It is described by the pH-NG system (DT ,LT ,RT ), where we use the Dirac structure
DT = D2 with D2 as defined in (6.8) and trivial Lagrangian submanifold LT = {0}.
The dynamics are given by

(−iT 1(t),−iT 2(t), iT 1(t), iT 2(t), uT 1(t), uT 2(t), uT 1(t), uT 2(t)) ∈ DT ,

(−iT 1(t),−iT 2(t), uT 1(t), uT 2(t)) ∈ RT ,

with, for some T ∈ R,

RT =
{

(−iT 1,−iT 2, uT 1, uT 2) ∈ R4 | TiT 1 = −iT 2, uT 1 = TuT 2
}
.

From this pH-NG system, one can derive TiT 1(t) = −iT 2(t) and uT 1(t) = TuT 2(t),
which means that a transformer is a power-conserving component.

NPN transistors

A transistor is a component with three terminals, which are called emitter, basis and
collector. We replace this by a graph with two edges, which are respectively located
are between basis and collector, and basis and emitter, see Fig. 6.13. The behavior of a
transistor of type NPN is often modelled by the Ebers-Moll model [SS04, Eqs. (5.26) &
(5.27)], which can, in a certain voltage and current range around zero, be summarized
by the equations

iC(t) = iS

(
e
uBE(t)
VT − 1

)
− iS

αR

(
e
uBC(t)
VT − 1

)
,

iE(t) = iS
αF

(
e
uBE(t)
VT − 1

)
− iS

(
e
uBC(t)
VT − 1

)
,

(6.10)
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B

C

E

iB

iC

iE

uBC

uBE

Figure 6.12: Circuit symbol of a
NPN transistor.

Figure 6.13: Deriving the underlying graph
of an NPN transistor.

for some constants αF ∈
[ 50

51 ,
1000
1001

]
, αR ∈

[ 1
100 ,

1
2
]
, iS ∈ [10−15, 10−12], VT ≈ 1

40 [SS04,
pp. 382-394]. Hereby, iC(t), iE(t), uBE(t), uBC(t) respectively denote the collector
current, emitter current, basis-emitter voltage and basis collector voltage. Note that,
by the Kirchhoff laws, the basis current fulfills iB(t) = iE(t) − iC(t) and the collector
emitter voltage is given by uCE(t) = uBE(t) − uBC(t). We model an NPN transistor
as a ‘resistive’ two-port component (DN ,LN ,RN ) on two edges, where DN = D2

with D2 as defined in (6.8), LN = {0} and

RN =

(iC ,−iE , uBC , uBE) ∈ R4

∣∣∣∣∣ iC = iS

(
e
uBE

VT − 1
)

− iS
αR

(
e
uBC

VT − 1
)
,

iE = iS
αF

(
e
uBE

VT − 1
)

− iS

(
e
uBC

VT − 1
)
∩U0,

where U0 ⊂ R4 is a neighborhood of the origin. The dynamics of the system read

(iC(t),−iE(t),−iC(t), iE(t), uBC(t), uBE(t), uBC(t), uBE(t)) ∈ DN ,

(iC(t),−iE(t), uBC(t), uBE(t)) ∈ RN ,

which implies (6.10), at least as long as (iC(t),−iE(t), uBC(t), uBE(t)) ∈ U0. Note
that we have provided the collector current iC(t) with another sign, since it is — in
contrast to the emitter current and the basis-emitter current — directed contrarily
to the basis-collector current.
Note that, if we choose U0 = R4, then the relation RN is not resistive, since there may
exist quadruples (iC ,−iE , uBC , uBE) ∈ RN for which it holds iCuBC − iEuBE > 0.
However, we can show that RN is resistive for a suitable neighborhood U0 ⊂ R4 of
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uI (t)

iI (t)

Figure 6.14: Circuit symbol of a cur-
rent source.

uV (t)

iV (t)

Figure 6.15: Circuit symbol of a
voltage source.

the origin. This can be seen as follows: Since for (uBC , uBE) ∈ (R \ {0})2 holds

(
uBC

uBE

)⊤
− iS

αR

(
e
uBC

VT − 1
)

+ iS

(
e
uBE

VT − 1
)

iS

(
e
uBC

VT − 1
)

− iS
αF

(
e
uBE

VT − 1
)


=
(
uBC

uBE

)⊤
− iS

αRuBC

(
e
uBC

VT − 1
)

iS
uBE

(
e
uBE

VT − 1
)

iS
uBC

(
e
uBC

VT − 1
)

− iS
αFuBE

(
e
uBE

VT − 1
)


︸ ︷︷ ︸
=:A(uBC ,uBE)

(
uBC

uBE

)
.

Namely, by using that A(·, ·) has a continuous extension to R2 with

A(0, 0) = iS
VT

·

[
− 1
αR

1
1 − 1

αF

]
.

By αF ∈
[ 50

51 ,
1000
1001

]
, αR ∈

[ 1
100 ,

1
2
]
, we have αF · αR < 1, which leads to negative

definiteness of A(0, 0) = 1
2 (A(0, 0) + A(0, 0)⊤). The continuity of (uBC , uBE) 7→

1
2 (A(uBC , uBE) +A(uBC , uBE)⊤) implies that there exists some neighborhood U0 ⊂
R4 such that this function takes values in the cone of negative definite matrices on U0.
This consequences that, by taking this neighborhood U0, RN is a resistive relation.

Current and voltage sources

The sources of the electrical circuit represent the ports of the system, i.e., points
at which physical interaction of the electrical circuit with the environment happens.
We may distinguish two types of sources: current sources and voltage sources, see
Fig. 6.14 and Fig. 6.15. The name indicates which physical variable is controlled or
influenced by the environment. This variable is also denoted as input, while the other
is denoted as output. However, this distinction is not relevant for the geometrical
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Figure 6.16: AC/DC converter
circuit.

Figure 6.17: Obtaining the underlying graph of
the AC/DC converter.

formulation of pH-NG systems (cf. [MMW18]). We unite both classes under the term
sources. These have two terminals, and, consequently, one port (see Fig. 6.4). Sources
are modelled as a pH-NG system (DS ,LS ,RS ), where the Dirac structure is DS = D1

with D1 as defined in (6.8), and the Lagrangian submanifold and resistive relation
are trivial, i.e., LS = RS = {0}. The dynamics are

(−iS (t), iS (t), uS (t), uS (t)) ∈ DS .

Example 6.2.2 (AC/DC converter). We illustrate our methodology by considering
an AC/DC converter, which we model by the electrical circuit shown in Fig. 6.16.
The AC/DC converter consists of a source S = (DS ,LS ,RS ), a transformer T =
(DT ,LT ,RT ), four PN-junction diodes Ji = (DJ i

,LJ i
,RJ i

) for i ∈ {1, ..., 4}, a ca-
pacitor C = (DC ,LC ,RC ), and a ‘sink’ O = (DO ,LO ,RO) (modelled like a source),
which are connected by the vertices v1, ..., v6 as shown in Fig. 6.17. The circuit graph
G = (V,E, init, ter) with V = {v1, ..., v6} and E = {e1, ..., e9} has two components,
and we ground the nodes below the voltage source and the capacitance, i.e., we choose
S = {v2, v3}. Let A ∈ R4×9 be obtained from the incidence matrix of G by delet-
ing the rows corresponding to the grounded nodes. We arrive at a pH-NG system
(D,L,R) as in (6.7), whose dynamics read


d
dt


−q1

−q4

−q5

−q6

−qC

 ,



−iT 1

−iT 2

−iD1

−iD2

−iD3

−iD4


,

(
−iV
−iO

)
,


ϕ1

ϕ4

ϕ5

ϕ6

uC

 ,



uT 1

uT 2

uD1

uD2

uD3

uD4


,

(
uV
uO

)


∈ D,
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


−q1

−q4

−q5

−q6

−qC

 ,


ϕ1

ϕ4

ϕ5

ϕ6

uC



 ∈ L,





−iT 1

−iT 2

−iD1

−iD2

−iD3

−iD4


,



uT 1

uT 2

uD1

uD2

uD3

uD4




∈ R.

6.3 Comparison with other formulations of electri-
cal circuits

With the attention electrical circuits attracted over the past decades, quite a bunch of
‘standard formulations’ of the dynamics have emerged, see, e.g., [Rei01]. An overview
of popular models in the context of DAEs is found in [Ria13]. We compare for certain
electrical circuits the dynamics of our port-Hamiltonian modelling (6.7) with other
equations used in the modelling of electrical circuits.

6.3.1 The (charge/flux-oriented) modified nodal analysis

Let an electrical circuit consisting of conductances, inductances, capacitances and
sources be given. Let

(DR i
,LR i

,RR i
)i∈{1,...,lR }, (DLi

,LLi
,RLi

)i∈{1,...,lL },

(DC i
,LC i

,RC i
)i∈{1,...,lC }, (DS i

,LS i
,RS i

)i∈{1,...,lS }.

be the pH-NG systems modelling the components as derived in Section 6.2.1. Let
ℓp,R i be the number of ports of the component modelled by (DR i

,LR i
,RR i

), and let
ℓp,Li and ℓp,C i be analogously defined. Moreover, let

mR =
lR∑
i=1

ℓp,R i, mL =
lR∑
i=1

ℓp,Li, mC =
lC∑
i=1

ℓp,R i, mS = lS ,

and introduce

iR =


iR 1
...

iRmR

 , iL =


iL1
...

iLmL

 , iC =


iC1
...

iCmC

 , iS =


iS1
...

iSmS

 , i =


iR

iL

iC

iS

 ,
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and analogous notations for uR , uL , uC , uS , u, as well as

qC =


qC1
...

qCmC

 , ψL =


ψL1
...

ψLmL

 , g(uR ) =


g1(uR 1)

...

gmR (uRmR )

 ,

HC (qC ) =
mC∑
i=1

HC i(qC i), HL(ψL) =
mL∑
i=1

HLi(ψLi).

Further, let G = (V,E, init, ter) be the graph induced by the electrical circuit with
|V | = n and |E| = m. Let S be the set of grounded vertices (cf. Def. 6.1.4), and
let A ∈ R(n−|S|)×m be obtained from the incidence matrix of G by deleting the rows
corresponding to the vertices in S. By a suitable reordering, we may sort into edges
to the specific components, i.e.,

A =
[
AR AL AC AS

]
,

where the columns of AR ∈ R(n−|S|)×mR , AL ∈ R(n−|S|)×mL , AC ∈ R(n−|S|)×mC and
AS ∈ R(n−|S|)×mS respectively represent the edges corresponding to conductances,
inductances, capacitances and sources. For the representation of the port-Hamiltonian
dynamics of the electrical circuit, first note that the Dirac structure of the pH-NG
system
mR
ą

i=1
(DR i

,LR i
,RR i

) ×
mL
ą

i=1
(DLi

,LLi
,RLi

) ×
mC
ą

i=1
(DC i

,LC i
,RC i

) ×
mS
ą

i=1
(DS i

,LS i
,RS i

)

is given by

Dprod =
{(

−iL ,−iC ,−iR , iR , iL , iC ,−iS , iS , iL , uC , uR , uR , uL , uC , uS , uS

)
∈

R2m × R2m
∣∣∣∣ iL , uL ∈ RmL , iC , uC ∈ RmC , iR , uR ∈ RmR , iS , uS ∈ RmS

}
and

DS
K(G) =

{(
j, iR , iL , iC , iS , ϕ, uR , uL , uC , uS

)
∈ Rn−|S| × Rm × Rn−|S| × Rm

∣∣∣∣
I AR AL AC AS

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




j

iR

iL

iC

iS

+


0 0 0 0 0

−A⊤
R I 0 0 0

−A⊤
L 0 I 0 0

−A⊤
C 0 0 I 0

−A⊤
S 0 0 0 I




ϕ

uR

uL

uC

uS

 = 0


.
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It follows that the Dirac structure of

(DS
K(G),LSK(G), {0}) ◦

(
N

ą

i=1
(Di,Li,Ri)

)

is given by

D =
{(

j,−uL ,−iC ,−iR ,−iS , ϕ, iL , uC , uR , uS

)
∈ Rn−|S| × Rm × Rn−|S| × Rm

∣∣∣∣
I 0 AC AR AS

0 0 0 0 0
0 −I 0 0 0
0 0 0 0 0
0 0 0 0 0




j

−uL

−iC
−iR
−iS

+


0 −AL 0 0 0

−A⊤
R 0 0 I 0

−A⊤
L 0 0 0 0

−A⊤
C 0 I 0 0

−A⊤
S 0 0 0 I




ϕ

iL

uC

uR

uS

 = 0


,

(6.11a)
whereas the Lagrangian submanifold and resistive relation read

L =
{(

q, ψL , qC , ϕ, iL , uC

)
∈ Rn−|S| × RmL × RmC × Rn−|S| × RmL × RmC

∣∣∣
q = 0 ∧ iL = ∇HL(ψL) ∧ uC = ∇HC (qC )

}
, (6.11b)

R =
{

(−iR , uR ) ∈ RmR × RmR | iR = g(uR )
}
. (6.11c)

The triple (D,L,R) with D, L and R as in (6.11) is the port-Hamiltonian repres-
entation of a circuit with conductances, inductances, capacitances and sources in a
compact form. The dynamics of (D,L,R) read

(− d
dt q(t),−

d
dt ψL(t),− d

dt qC (t),−iR (t),−iS (t), ϕ(t), iL(t), uC (t), uR (t), uS (t)) ∈ D,

(q(t), ψL(t), qC (t), ϕ(t), iL(t), uC (t)) ∈ L, (−iR (t), eR (t)) ∈ R,

which is equivalent to
I 0 AC AR AS

0 0 0 0 0
0 −I 0 0 0
0 0 0 0 0
0 0 0 0 0




− d

dt q(t)
− d

dt ψL(t)
− d

dt qC (t)
−iR (t)
−iS (t)

+


0 −AL 0 0 0

−A⊤
R 0 0 I 0

−A⊤
L 0 0 0 0

−A⊤
C 0 I 0 0

−A⊤
S 0 0 0 I




ϕ(t)
iL(t)
uC (t)
uR (t)
uS (t)

 = 0,

q(t) = 0, iL(t) = ∇HL(ψL(t)), uC (t) = ∇HC (qC (t)), iR (t) = g(uR (t)).
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Plugging in the latter relations, we obtain

AC
d
dt qC (t) +AR g(A⊤

R ϕ(t)) +AL iL(t) +AS iS (t) = 0,

−A⊤
L ϕ(t) + d

dt ψL(t) = 0,

−A⊤
S ϕ(t) + uS (t) = 0,

A⊤
C ϕ(t) − ∇HC (qC (t)) = 0,

iL(t) − ∇HL(ψ(t)) = 0.

(6.12)

If we additionally assume that ∇HC ∈ C1(RmC ,RmC ), ∇HL ∈ C1(RmL ,RmL )
are homeomorphisms, we can introduce the inverse functions QC := (∇HC )−1 ∈
C(RmC ,RmC ), ΨL := (∇HL)−1 ∈ C(RmL ,RmL ). Then (6.12) leads to qC (t) =
QC (uC (t)) and ψL(t) = ΨL(iL(t)). Further, decomposing

AS =
[
AI AV

]
, uS =

(
uI

uV

)
, iS =

(
iI

iV

)

into edges, voltages and currents to current and voltage sources, we see that (6.12)
leads to the so-called charge/flux-oriented modified nodal analysis [Bäc07, Eq. (3.21)]

AC
d
dt qC (t) +AR g(uR (t)) +AL iL(t) +AI iI (t) +AV iV (t) = 0,

−A⊤
L ϕ(t) + d

dt ψL(t) = 0,

−A⊤
V ϕ(t) + uV (t) = 0,

qC (t) −QC (A⊤
C ϕ(t)) = 0,

ψL(t) − ΨL(iL(t)) = 0.

(MNA c/f)

If we additionally assume that QC ∈ C(RmC ,RmC ) and ΨL ∈ C1(RmL ,RmL ), then
we can, by denoting the Jacobians by C (uC ) = d

duC
QC (uC ) and L(iL) = d

diL
ΨL(iL),

reformulate (MNA c/f) to obtain the modified nodal analysis [Rei14, Eq. (52)]

AC C (A⊤
C ϕ(t))A⊤

C
d
dt ϕ(t) +AR g(A⊤

R ϕ(t)) +AL iL(t) +AI iI (t) +AV iV (t) = 0,

−A⊤
L ϕ(t) + L(iL(t)) d

dt iL(t) = 0,

−A⊤
V ϕ(t) + uV (t) = 0.

(MNA)
Note that, if HC ∈ C2(RmC ,R), HL ∈ C2(RmL ,R), then C (uC ) and L(iL) are,
respectively, the inverses of the Hessians of HC and HL at QC (uC ) and ΨL(iL).
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6.3.2 The (charge/flux-oriented) modified loop analysis

We present an alternative modelling involving the pH-NG system (D′
K(G),L′

K(G), {0})
with D′

K(G) and L′
K(G) as in (6.5). That is, the loops in the underlying graph struc-

ture are now taken to model the Kirchhoff laws. First note that the external flows and
efforts variables in the pH-NG system (DS

K(G),LSK(G), {0}) in Rem. 6.1.5 are, respect-
ively, the current and the voltage of the components, while the external flow and effort
variables in (D′

K(G),L′
K(G), {0}) are, respectively, the voltage and the current of the

components. This means that in order to obtain a pH-NG system (D′,L′,R′) describ-
ing the circuit dynamics by performing an interconnection of (D′

K(G),L′
K(G), {0})

with N ∈ N electrical components (Di,Li,Ri)i∈{1,...,N}, i.e.,

(D′,L′,R′) := (D′
K(G),L′

K(G), {0}) ◦

(
N

ą

i=1
(Di,Li,Ri)

)
,

we have to adjust the definition of the components by interchanging the role of the
effort and flow variables, which is possible by an argument similar to one in Rem. 6.1.5.
Given an electrical circuit consisting of resistances, inductances, capacitances and
sources, it can, completely analogous to Section 6.3.1, be shown that the dynamics of
(D′,L′,R′) lead, under certain additional invertibility and smoothness assumptions on
the functions representing capacitances and inductances, to the modified loop analysis
[Rei14, Eq. (53)]

BLL(B⊤
L ι(t))B⊤

L
d
dt ι(t) +BR r(B⊤

R ι(t)) +BCuC (t) +BIuI (t) +BV uV (t) = 0,

−B⊤
C ι(t) + C (uC (t)) d

dt uC (t) = 0,

−B⊤
I ι(t) + iI (t) = 0.

6.4 Implicit equations in port-Hamiltonian systems

When we introduced the different port-Hamiltonian formulations in Chap. 2 we were
only focussed on developping a solution theory for the port-Hamiltonian systems indu-
cing linear equations. This focus comes naturally from the fact that we only compared
linear port-Hamiltonian theories with each other but also because nonlinear implicit
differential equations are inherently more difficult to solve. A powerful tool classically
used to solve nonlinear implicit differential equations is the implicit function theorem,
see, e.g., the classical textbook on DAEs [KM06]. The authors of [vdSM20] show how
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to locally resolve algebraic constraints for nonlinear port-Hamiltonian systems. How-
ever, it is not always possible to do this globally, as the following example shows.

Example 6.4.1 (Port-Hamiltonian system on the circle).
Let X = S1 =

{
(x, y) ∈ R2

∣∣ x2 + y2 = 1
}

and let D ⊂ TX ⊕ T ∗X be defined
through

D(x) =
{

(f, g) ∈ TxX ⊕ T ∗
xX

∣∣ f =
[ 0 −1

1 0
]
g
}

⊂ R2 × R2

for x ∈ X . Further, define L ⊂ T ∗X as

L = { (x, y) | x ∈ (−1, 1), y = ∇H(x) } =
{

(x, x)
∣∣ x ∈ S1 }

with H : S1 → R, x 7→ ∥x∥2

2 . Clearly, D is a Dirac structure and L is a Lagrangian
submanifold of T ∗X and hence (D,L, {0}) is a port-Hamiltonian system whose dy-
namics read

(− d
dt x(t), e(t)) ∈ D(x(t)), (x(t), e(t)) ∈ L

⇐⇒ d
dt

(
x1(t)
x2(t)

)
= −

[
0 −1
1 0

](
e1(t)
e2(t)

)
=
[

0 1
−1 0

](
x1(t)
x2(t)

)
=
(
x2(t)

−x1(t)

)
.

These dynamics are explicit in the sense that one can write them as

ẋ = g(x).

However, one could formulate this setting differently. Let X̃ = R2, D̃ =
(
gr
[ 0 −1

1 0
])−1,

L̃ =
{

(x, x) ∈ R2 × R2
∣∣ ∥x∥2 = 1

}
. Then D̃ is a Dirac structure, L̃ a Lagrangian

submanifold of R2×R2 and (D̃, L̃, {0}) defines again a port-Hamiltonian system whose
dynamics read

(− d
dt x̃(t), ẽ(t)) ∈ D̃(x(t)), (x̃(t), ẽ(t)) ∈ L̃

⇔ d
dt

(
x̃1(t)
x̃2(t)

)
=
(
x̃2(t)

−x̃1(t)

)
∧ x̃1(t)2 + x̃1(t)2 = 1.

Thus we see that the dynamics of (D,L, {0}) and (D̃, L̃, {0}) admit exactly the same
solutions. However, the equations describing the dynamics of (D̃, L̃, {0}) can be
rendered explicit, at least not globally. For (D,L, {0}) the information x2

1 + x2
2 was

directly encoded in the state manifold, i.e., in the possible initial values, while it was
incorporated as Lagrange algebraic constraints (cf. Chap. 5 and see [vdSM20]) for
(D̃, L̃, {0}).
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When modelling physical systems in a port-Hamiltonian fashion it might a priori not
be clear how to proceed in order to obtain simpler equations. Note that in both
cases we have R = {0}. Even more complex implicit equations can be introduced by
resistive structures since the assumptions on them are quite minimal. Nevertheless,
one can ask when implicit equations generated by a port-Hamiltonian system can
globally be rewritten as explicit equations. Such questions led to the formulation of
Thm. B.1.1 for which we provide the following practical example occurring in the
port-Hamiltonian modelling of electrical circuits.

Example 6.4.2. Consider two PN-junction diodes (DD1,LD1,RD1), (DD2,LD2,RD2)
with

RD1 =
{

(−iD1, uD1) ∈ R2 | iD1 = a1

(
e

uD1
b1 − 1

)
∧ uD1 ∈ (umin

1 , umax
1 )

}
,

RD2 =
{

(−iD2, uD2) ∈ R2 | iD2 = a2

(
e

uD2
b2 − 1

)
∧ uD2 ∈ (umin

2 , umax
2 )

}
,

(6.13)

for some constants a1, a2, b1, b2 > 0 and umin
1 < umax

1 , umin
2 < umax

2 ∈ R. In comparison
to the diodes presented in Sec. 6.2.2, the additional restrictions

uD1 ∈ (umin
1 , umax

1 ) =: Y1, uD2 ∈ (umin
2 , umax

2 ) =: Y2, (6.14)

reflect physical properties, e.g., the regions of operation of the corresponding devices
that is being modelled. Note that RD1,RD2 still define resistive structures. From
(6.13) and (6.14) we can also derive restrictions

iD1 ∈ (imin
1 , imax

1 ) =: X1, iD2 ∈ (imin
2 , imax

2 ) =: X2. (6.15)

Next, consider a current source (DS ,LS ,RS ). We consider a parallel connection of
the two diodes and the current source with current iS and voltage uS as depicted in
Fig. 6.18. Choosing S = {w} we have,

DS
K(G) =


 jv

iD1
iD2
iS

 ,

(
ϕv
uD1
uD2
uS

) ∈ R8

∣∣∣∣∣∣ jv + iD1 + iD2 − iS = 0,

ϕv = −uD1 = −uD2 = uS

 ,

LSK(G) = {0} × R.

Applying the procedure from Sec. 6.2.1, we arrive at the port-Hamiltonian system
(D,L,R) as in (6.7) modelling the circuit depicted in Fig. 6.18. From its dynamics
we derive

iD1(t) + iD2(t) = iS (t),

uD1(t) = uD2(t) = −uS (t), for t ∈ R.
(6.16)
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uS

iS

v

uD1

iD1

wuD2

iD2

Figure 6.18: Circuit containing two diodes and a current source.

From the constitutive relations (6.13) and (6.16), it is clear that we can describe
iD1, iD2 and hence iS as a function of uS . Since we have a current source, one might
to want to establish the converse. However, it is not evident how uS is given in terms
of the current iS . Invoking (6.13) and (6.16), iS and uS satisfy the relation

iS = a1

(
e

−uS
b1 − 1

)
+ a2

(
e

−uS
b2 − 1

)
=: f(uS ).

Further, by (6.14) and (6.16), uS has to satisfy uS ∈ −Y1 ∩ −Y2 =: Y , whereas iS
has to satisfy uS ∈ X1 + X2 = (imin

1 + imin
2 , imax

1 + imax
2 ) =: X by (6.15) and (6.16).

Note that both X and Y are open intervals, and we exclude the trivial case that Y is
empty. Recapitulating, with F : X × Y → R, (iS , uS ) 7→ iS − f(uS ) and

Z := { (iS , uS ) ∈ X × Y | F (iS , uS ) = 0 } ,

we seek the existence of a function g ∈ C(π1(Z), Y ) such that

{ (iS , g(iS )) | iS ∈ π1(Z) } = Z.

The existence of such a function is obviously equivalent to the invertibility of f on
π2(Z) ⊆ Y , which holds true since its derivative is strictly negative. Nevertheless, we
check the assumptions (i)-(iii) of Thm.B.1.1 in order to illustrate it. Since Z is the
zero set of a continuous function, it is relatively closed in X × Y , i.e., (i) holds. For
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(ii), note that

DuSF (iS , uS ) = −f ′(uS ) = a1
b1

exp
(−uS

b1

)
+ a2

b2
exp

(−uS
b2

)
> 0.

It remains to find diffeomorphisms ϕ : π1(Z) → R, ψ : π2(Z) → R and a continuous
weight ω : [0,∞) → (0,∞) such that the growth bound in (iii) is satisfied. Choose
any diffeomorphism ϕ : π1(Z) → R, which exists since π1(Z) = X is an open interval.
Define ψ := ϕ ◦ f , which is a diffeomorphism since f is invertible on π2(Z). Then
ψ′ = (ϕ′ ◦ f) · f ′. Further, let ω(t) = t + 1 for t ∈ [0,∞) and note that S(iS , uS ) =(
DuSF (iS , uS )

)−1 =
(

− f ′(uS )
)−1 for (iS , uS ) ∈ Z. Recalling that iS = f(uS ) for all

(iS , uS ) ∈ Z we find

∥Dψ(uS ) · S(iS , uS )∥ ·
∥∥∥DiSF (iS , uS ) ·

(
Dϕ(iS )

)−1
∥∥∥

=
∣∣∣ϕ′(iS ) · f ′(uS ) ·

(
− f ′(uS )

)−1
∣∣∣ ·
∣∣ϕ′(iS )−1∣∣ = |ϕ′(iS )|

|ϕ′(iS )| = 1

≤ |ψ(uS )| + 1 = ω(∥ψ(uS )∥),

for all (iS , uS ) ∈ Z, proving (iii).
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Conclusions

At the beginning of this thesis, we had set three main objectives. The first objective,
namely, comparing the linear algebraic port-Hamiltonian approach by Mehl, Mehr-
mann and Wojtylak [MMW18] with the geometric approach of van der Schaft
and Maschke [vdSM18] was successfully achieved by providing a framework for port-
Hamiltonian DAEs in Chap. 2 based on linear relations, which comprise both of the
previous approaches by [vdSM18] and [MMW18]. This setting is more general than
[vdSM18] since it does not assume maximality of the involved linear relations, and it
is more general than [MMW18], since D could possibly be multi-valued. A detailed
comparison of both approaches is shown in Figs. 2.9–2.11, where one can see that in
general none of the approaches from [vdSM18; MMW18] implies the other. One of
the reasons is that after considering [MMW18] in the language of linear relations, the
symmetric subspaces L are not required to be maximal.

In particular, we have introduced DAEs by means of a product of dissipative linear
relation D and symmetric linear relation L. For our second objective of analyzing
the DAEs and their corresponding matrix pencil arising from linear port-Hamiltonian
modelling approaches, we have analyzed the Kronecker canonical of these matrix pen-
cils in Chap. 3. Special emphasis has been placed on the case where the relation L is
nonnegative. In particular, we have given statements of the eigenvalue locations and
bounds on the index and minimal indices in Thm. 3.2.7. This condition played also
a central role in the analysis conducted in Chap. 4 of stability properties of the cor-
responding DAEs. We saw that additionally assuming regularity and a trivial kernel
of L are key to guarantee the stability of these DAEs. Furthermore, we showed in
Prop. 4.2.1 that stable DAEs can always be reformulated as port-Hamiltonian sys-
tems if we restrict the coefficients of the underlying equations to the system space.
This restriction is not necessary if we consider index one DAEs, see Rem. 4.2.2, a
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corresponding symmetric relation L can be obtained from a solution of a general-
ized Lyapunov inequality presented in App. A. Similarly, we showed in Prop. 4.2.6
that stabilizable systems can be reformulated as port-Hamiltonian systems using the
solutions of generalized algebraic Bernoulli equations (4.7) and (4.8). The analysis of
port-Hamiltonian pencils was concluded in Chap. 5, where constraints arising in the
dynamics of port-Hamiltonian systems were investigated and a link to pencils with
positive semidefinite Hermitian part was established.

The previous described results naturally also contributed to the last goal of illustrat-
ing different aspects of the port-Hamiltonian modelling philosophy. Additionally, we
gave academic examples in Secs. 2.2.3 & 6.4 illustrating certain phenomena but also
presented an application of the port-Hamiltonian modelling approach in Chap. 6,
where we modelled nonlinear electrical circuits in a port-Hamiltonian fashion and
showed that one can derive well-established formulations of electrical circuits from
the resulting model.

Open questions and future works

An open question that arose early on in this thesis is whether the interconnection
of two maximally dissipative relations yields a maximally dissipative relation, see
Con. 1.3.16. If it fails, under the light of Con. 1.3.17 and Prop. 1.3.18, intuition
tells us a counterexample should exist when the nonpositive relation is the graph
of a negative definite matrix, since a maximal nonpositive relation that is purely
multivalued or consists only of a kernel is in particular a Dirac structure and inter-
connecting it with a Dirac structure again gives a Dirac structure. Note that the
interconnection D ◦ ıR for a Dirac structure D and a maximally nonpositive relation
R is a Dirac structure since ıR becomes a Dirac structure. On the other hand, sev-
eral routes to investigate this problem are available. The ansatz corresponding to
the proof methodology for the corresponding statement in Prop. 1.3.14 would be to
verify mul (D ◦ R)⊥ ⊂ dom D ◦ R. Another possibility of proving Con. 1.3.16 would
be to show that M1 ◦ M2 admits a representation as shown in Cor. 1.3.11 for two
maximally dissipative relations M1,M2. Here, one can start with the representation
given by Lem. 1.3.13 and proceed as in the proof of Prop. 1.3.18. The main challenge
is to derive the correct matrix C in the context of Cor. 1.3.11.
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Given a dissipative Hamiltonian pencil sE − A, there exist different suitable linear
relations such that DL = ran [EA ], e.g., (α−1D)(αL) = DL for α > 0. Different
linear relations might exhibit different properties, potentially inhibiting us to derive
structural properties of the pencil based on our results. A detailed analysis could
help determine more precisely when our findings can be applied. Further, we saw in
Chap. 2 that the energy of the system can be interpreted in terms of the symmetric
relation. This leads to the question of what can be considered to be the correct energy
of a system modelled by a DAE with a dissipative-Hamiltonian pencil, since different
representations exist. It seems to be advisable to start with the linear relations first
when modelling a physical system and to only derive the underlying DAE later on
through a range representation of their product. Speaking of the energy of a port-
Hamiltonian system, Ex. 4.1.3 shows that a gap between the state having finite energy
and the state being bounded exists, which might be worthwhile characterizing.

Coming back to the underlying DAE of a port-Hamiltonian system, recall that for
given dissipative and symmetric linear relations D, L, there exist different methods
of associating a DAE to the dynamics of the corresponding port-Hamiltonian system,
as depicted in Fig. 2.8. For such a system, the different pencils exhibit in general
different properties. Take for example the dissipative-Hamiltonian pencil derived in
Ex. 3.2.2 where both D and L were given in range representation. This pencil is reg-
ular. However, if D was given in range representation, then the corresponding pencil
sE − A in Fig. 2.8 would be singular. This comes from the fact that L in Ex. 3.2.2
is not maximal, i.e., the matrices involved in its range representation have a com-
mon kernel. This implies that E and A have a common kernel according to Fig. 2.8,
making sE −A singular. This opens the door for further research of the other DAEs
derived in Fig. 2.8, as the different methods might suite different applications better
depending on their properties.

There is the possibility to extend the techniques applied in Chap. 4 to stable and sta-
bilizable systems also to systems where solutions to the so-called Kalman–Yakubovich–
Popov inequality exist. This has already been done for certain systems in [BMvD19;
GS18]. However, these results do not rely on the KYP presented in [RRV15; RV16],
which is closely related to our setting as the inequalities therein are considered on a
subspace. The main difficulty here is to determine when and where the solutions to
these relaxed inequalities are invertible.
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One can also think of a possible extension of Chap. 5 in the realm of nonlinear port-
Hamiltonian systems. This has already been achieved for two of the four constraints
studied in Chap. 5 in [vdSM20], namely, for the Dirac and Lagrange constraints in-
troduced in [vdSM18]. It remains to be determined if the other two constraints we
introduced can be transposed to the nonlinear case and possibly determine a nonlin-
ear version of systems corresponding to posH pencils.

Recently, [NPS22] presented a port-Hamiltonian formulation of electrical circuits with
desirable index properties. An interesting task would be to compare it with the model-
ling presented in this thesis and examine its index properties. Since we can derive the
MNA and MLA equations from it under certain assumptions, the procedure should
rely on techniques from the proof of [Rei14, Thm. 6.6]. The results presented in this
thesis are not expected to yield better index characterizations than [Rei14] in the
case of linear MNA equations, since [Rei14] additionally incorporates several struc-
tural properties of the electrical circuits for the index analysis.

As we saw in Chap. 6, Josephson junctions are incorporated in our modelling frame-
work. Hence, after quantizing our electrical circuit model [FN19, Sec. 17.2], we should
be able to model qubits [FN19, Sec. 17.3]. It would be interesting to see how this fits
into the port-Hamiltonian modelling of quantum circuits proposed by [Mox20].

Finally, we want to point out that the comparison between ‘geometric’ and ‘linear-
algebraic’ approaches as done here for lumped parameter linear systems can also be
performed for distributed parameter systems based on the same port-Hamiltonian
modelling philosophy, e.g., [Rei21; Siu11; JZ12; RCvdS+20].
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Appendix A

Lyapunov inequalities for
differential-algebraic
equations

In mathematical systems theory, key properties of linear systems can be characterised
by means of algebraic criteria. For ordinary differential equations classical results such
as the Kalman rank conditions for controllability and observability [Son98, pp. 89, 271]
come to mind, which have been generalized in a rather straight-forward manner for
differential-algebraic equations [BR13, Rem. 4.6], [BR17, Rem. 6.5]. In contrast to the
results for ordinary-differential equations, other criteria like the Kalman–Yakubovich–
Popov inequality [RRV15] and the corresponding Lur’e equation [RV19] were gener-
alized in a special way: these criteria are restricted to certain relevant subspaces.
In the case of stability properties, generalizations of the classical Lyapunov equation,
see [Son98, Thm. 5.7.18], for differential-algebraic equations were previously given,
e.g., in [TMK94; IT02; Sty02] and recently in [AAM21, Thm. 4]. The aim of this
appendix is to present matrix inequalities restricted to subspaces linked to stability
properties of differential-algebraic equations. Results going in a similar direction are
presented in [LT12, Thm. 2.7] for switched systems and [Ber10, Thm. 3.6.2] for time-
varying systems. Here, we characterise stability properties of systems [E,A] ∈ Σn,m
by means of certain solutions of the Lyapunov inequalities

A∗XE + E∗XA ≤V[E,A]
sys

0, XEV [E,A]
sys = EV [E,A]

sys , (A.1)
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A∗XE + E∗XA <V[E,A]
sys

0, XEV [E,A]
sys = EV [E,A]

sys , (A.2)

A∗XE + E∗XA ≤
E†EV[E,A]

sys
0, XEV [E,A]

sys = EV [E,A]
sys , (A.3)

A∗XE + E∗XA <
E†EV[E,A]

sys
0, XEV [E,A]

sys = EV [E,A]
sys . (A.4)

To be more precise, we say that for [E,A] there exists a solution to either (A.1)–
(A.4) if there exists some X ∈ Km×m with X >

EV[E,A]
sys

0 for which the corresponding
Lyapunov inequality holds.

Proposition A.0.1. Let k ∈ N and A ∈ Kk×k. Then the following statements hold.

[Ik, A] [Nk, Ik] [Kk, Lk] [K⊤
k , L

⊤
k ]

there exists a solution
X >EVsys 0 to (A.1)

⇔ σ(Al) ⊂ C− with semi-
simple eigenvalues on ıR

✓ ✗ ✓

there exists a solution
X >EVsys 0 to (A.2)

⇔ σ(Al) ⊂ C− ✓ ✗ ✓

there exists a solution
X >EVsys 0 to (A.3)

⇔ σ(Al) ⊂ C− with semi-
simple eigenvalues on ıR

✓ ⇔ k = 1 ✓

there exists a solution
X >EVsys 0 to (A.4)

⇔ σ(Al) ⊂ C− ✓ ⇔ k = 1 ✓

stable
⇔ σ(Al) ⊂ C− with semi-
simple eigenvalues on ıR

✓ ✗ ✓

asymptotically stable ⇔ σ(Al) ⊂ C− ✓ ✗ ✓

stable differential
variables

⇔ σ(Al) ⊂ C− with semi-
simple eigenvalues on ıR

✓ ⇔ k = 1 ✓

asymptotically stable
differential variables

⇔ σ(Al) ⊂ C− ✓ ⇔ k = 1 ✓

Proof. We discuss each prototipical DAE separately.
Step 1: First consider [Ik, A] and note that the concepts of stability and stable differ-
ential variables as well as asymptotic stability and asymptotically stable differential
variables coincide for this system. The proof of the statements contained in the table
are standard and can be found in, e.g., [HP05, Thm. 3.3.20, Thm. 3.3.49], [Wal98,
Chap. VII] and [Lya48, Chap. II].
Step 2: Now consider [Nk, Ik]. Since 0 is the only solution to the corresponding equa-
tion and V [Nk,Ik]

sys = {0} by Prop. 1.2.15, the statements trivially hold true and one
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may always choose X = Ik.
Step 3: Next, we turn our attention to [Kk, Lk]. Let X = X∗ ∈ Km×m. Then

L∗
kXKk +K∗

kXLk =
[ 01
X

]
+
[

X
01

]
= [ ∗ ∗

∗ 01 ] ∈ K(k−1)×(k−1),

and with V [Kk,Lk]
sys = Kk by Prop. 1.2.15 one has

K†
kKkV [Kk,Lk]

sys =
[
Ik−1

01

]
Kk = Kk−1 × {0}.

From these equations one easily deduces the statements concerning the Lyapunov
equations and may chooseX = 1 when k = 1. Moreover, by Prop. 1.2.15, x ∈ B[Kk,Lk]

if and only if there exists some f ∈ W k−1,1
loc (R,K) such that x =

(( d
dt
)k−i

f
)
i=1,...,k

.

Consequently, Kkx =
(( d

dt
)k−i

f
)
i=1,...,k−1

, from which the remaining statements of
this case follow.
Step 4: Finally, the argumentation for [K⊤

k , L
⊤
k ] is the same as for [Nk, Ik] and one

may always choose X = Ik−1, i.e., X = 00×0 when k = 1.

Proposition A.0.2. Let [E1, A1] ∈ Σn1,m1 , [E2, A2] ∈ Σn2,m2 and define

[E,A] := [diag (E1, E2),diag (A1, A2)] ∈ Σn,m := Σn1+n2,m1+m2 .

Further, let S ∈ Glm(K) and T ∈ Gln(K). Then the following statements hold.

[E,A] has the property that if and only if if and only if

there exists a solution
X >

EV[E,A]
sys

0 to (A.1)
there exist solutions Xi >EV[Ei,Ai]

sys
0

to (A.1) for [Ei, Ai] with i = 1, 2.
there exists a solution

X̃ >
SETV[SET,SAT ]

sys
0 to (A.1)

there exists a solution
X >

EV[E,A]
sys

0 to (A.2)
there exist solutions Xi >EV[Ei,Ai]

sys
0

to (A.2) for [Ei, Ai] with i = 1, 2.
there exists a solution

X̃ >
SETV[SET,SAT ]

sys
0 to (A.2)

there exists a solution
X >

EV[E,A]
sys

0 to (A.3)
there exist solutions Xi >EV[Ei,Ai]

sys
0

to (A.3) for [Ei, Ai] with i = 1, 2.
there exists a solution

X̃ >
SETV[SET,SAT ]

sys
0 to (A.3)

there exists a solution
X >

EV[E,A]
sys

0 to (A.4)
there exist solutions Xi >EV[Ei,Ai]

sys
0

to (A.4) for [Ei, Ai] with i = 1, 2.
there exists a solution

X̃ >
SETV[SET,SAT ]

sys
0 to (A.4)

it is stable both [E1, A1] and [E2, A2] are stable [SET, SAT ] is stable

it is asymptotically stable
both [E1, A1] and [E2, A2]
are asymptotically stable

[SET, SAT ] is asymptotically stable

it has stable
differential variables

both [E1, A1] and [E2, A2] have
stable differential variables

[SET, SAT ] has stable
differential variables

it has asymptotically stable
differential variables

both [E1, A1] and [E2, A2] have asymptotically
stable differential variables

[SET, SAT ] has asymptotically
stable differential variables
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Proof. Step 1: The eight statements contained in the bottom half of the table follow
directly from Props. 1.2.16 & 1.2.17 and Def. 1.2.19.
Step 2: For the four statements in the upper left quarter of the table, we first show
that if X :=

[
X1 X3
X∗

3 X2

]
is a solution for [E,A] to either (A.1)–(A.4) with Xi ∈ Kmi×mi

and i = 1, 2, 3, then diag (X1, X2) is a solution too. It is readily seen that the
inequality containing the term A∗ diag (X1, X2)E+E∗ diag (X1, X2)A is satisfied with
diag (X1, X2) >

EV[E,A]
sys

0. For the condition diag (X1, X2)EV [E,A]
sys = EV [E,A]

sys , let

vi ∈ EV [Ei,Ai]
sys for i = 1, 2. Then (v1, 0), (0, v2) ∈ EV [E,A]

sys . Hence,[
X1 X3
X∗

3 X2

]
( v1

0 ) =
(
X1v1
X∗

3 v1

)
∈ EV [E,A]

sys and
[
X1 X3
X∗

3 X2

] ( 0
v2

)
=
(
X3v2
X∗

2 v2

)
∈ EV [E,A]

sys .

Consequently, Xivi ∈ V [Ei,Ai]
sys for i = 1, 2 and since in particular Xi >EV[Ei,Ai]

sys
0 we

deduce XiEiV [Ei,Ai]
sys = EiV [Ei,Ai]

sys .
Conversely, if for i = 1, 2 Xi are given as solutions for [Ei, Ai] to either (A.1)–
(A.4), respectively, then it is evident that diag (X1, X2) is a solution for [E,A] to the
corresponding Lyapunov equation.
Step 3: For the four statements in the upper right quarter of the table, note that
X >

EV[E,A]
sys

0 is a solution for [E,A] to either (A.1)–(A.4) if and only

S−∗XS−1 >
SETV[SET,SAT ]

sys
0

is a solution to the corresponding Lyapunov equation for [SET, SAT ] by virtue of
Prop. 1.2.16.

Proposition A.0.3. Let [E,A] ∈ Σn,m. Then the following statements hold.

[E,A] if and only if if and only if

is stable
there exists a solution
X >

EV[E,A]
sys

0 to (A.1)

σ(E,A) ⊂ C− with semisimple
eigenvalues on ıR and ℓ(β) = 0

in the Kronecker form (1.1)

is asymptotically stable
there exists a solution
X >

EV[E,A]
sys

0 to (A.2)
σ(E,A) ⊂ C− and ℓ(β) = 0
in the Kronecker form (1.1)

has stable
differential variables

there exists a solution
X >

EV[E,A]
sys

0 to (A.3)

σ(E,A) ⊂ C− with semisimple
eigenvalues on ıR and ℓ(β) = |β|

in the Kronecker form (1.1)
has asymptotically

stable differential variables
there exists a solution
X >

EV[E,A]
sys

0 to (A.4)
σ(E,A) ⊂ C− and ℓ(β) = |β|
in the Kronecker form (1.1)
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Proof. This result is a combination of Lem. 1.2.5, Thm. 1.2.2, and Props. A.0.1
& A.0.2.

Corollary A.0.4. Let [E,A] ∈ Σn. Then it is asymptotically stable (stable) if and
only if sE−A is regular and σ(E,A) ⊆ C− (C− with semisimple eigenvalues on ıR).

Proof. This follows directly from Prop. A.0.3 noticing that ℓ(β) = 0 implies ℓ(γ) = 0
for square pencils in the Kronecker form (1.1) of [E,A], that is sE − A is regular by
Thm. 1.2.7.

Remark A.0.5. Note that the solutions to the Lyapunov inequalities (A.1)–(A.4) are
not unique. This is already the case for an ODE [I, A] with, e.g., A = −I and A = 0.
Further, one can freely choose to linearly extend the solution on the complement of the
system space. Further, it is strictly speaking not necessary to include the condition
XEV [E,A]

sys = V [E,A]
sys in (A.1)–(A.4) to derive the results presented in this section.

Conversely, if solutions exist, then there exist solutions satisfying XEV [E,A]
sys = V [E,A]

sys .
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Appendix B

An implicit function theorem

When dealing with nonlinear dynamical systems with constraints, i.e., implicit differ-
ential equations of the form

F
(
x(t), ẋ(t)

)
= 0,

where the number of equations does not match the number of variables, it is often ne-
cessary to solve this equation for ẋ(t), preferably globally in the form ẋ(t) = g

(
x(t)

)
.

This means to find a global implicit function of the equation F (x, y) = 0. Numer-
ous results on global implicit function theorems exist, and we mention the relevant
literature. However, most results involve conditions which are not easy to check in
practice. In this second appendix, we provide a novel extension of the global implicit
function theorem under conditions which can easily be verified.
In the following, we summarize some results on global implicit functions, tailored to
be applicable in our framework. We consider equations of the form F (x, y) = 0 for
which we want to find a unique maximal solution y(x). There are several approaches
available in the literature which provide a solution to this problem, see, e.g., [Rhe69]
for an early result. Most works concentrate on the case that the partial derivative
∂F
∂y (x, y) is invertible for all (x, y), i.e., F (x, y) = 0 is locally solvable for y(x) in a
neighborhood of every point (a, b) such that F (a, b) = 0. We discuss some important
work:

• For F : X × Y → Rl, where X ⊆ Rm and Y ⊆ Rn are open and X is convex,
Sandberg [San81] provides necessary and sufficient conditions for the existence
of a unique g ∈ C(X,Y ) such that F−1(0) = { (x, g(x)) | x ∈ X }. However,
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the conditions are not easy to check; in particular, it needs to be guaranteed
that

for some x0 ∈ X there exists exactly one

y0 ∈ Y such that F (x0, y0) = 0.
(B.1)

Furthermore, the result of Sandberg is not applicable in the case that the
maximal solution g is not defined on all of X.

• Using the theory of covering maps, Ichiraku [Ich85] improves the characteriz-
ation of Sandberg. Nevertheless, the condition (B.1) is still present and the
results are only applicable in the case of globally defined g. However, in [Ich85,
Thm. 5] it is shown that in the case X = Rm, Y = Rn and l = m for the
existence of a unique solution g ∈ C(Rm,Rn) it is sufficient that ∂F

∂y (x, y) is
invertible for all (x, y) ∈ Rm × Rn, condition (B.1) holds and

∀ (x, y) ∈ F−1(0) :
∥∥∥∥∥
(
∂F

∂y
(x, y)

)−1
∥∥∥∥∥ ·
∥∥∥∥∂F∂x (x, y)

∥∥∥∥ ≤ M (B.2)

for some M ≥ 0.

• The above result of Ichiraku has in turn been improved by Gutú and Jara-
millo [GJ07, Cor. 5.3], who showed that the condition (B.1) can be replaced
by the intuitive condition “F−1(0) is connected” and in the condition (B.2) the
constant M can be replaced by the term ω(∥y∥), where ω : [0,∞) → (0,∞) is a
continuous weight, which means that ω is nondecreasing and∫ ∞

0

dt
ω(t) = ∞.

These conditions are indeed easy to check. The only drawback is that F needs
to be defined on all of Rm × Rn and the solution g is defined on all of Rm.

• A result which is similar to that of Gutú and Jaramillo, but holds for some
X ⊆ Rm which is open, connected and starlike with respect to some a ∈ X such
that F (a, b) = 0 for some b ∈ Y = Rn, has been derived by Cristea [Cri07].
The assumption of connectedness of F−1(0) is not needed. However, a version
of assumption (B.2) (with M = ω(∥y∥)) is required to hold on all of X × Rn.

• Yet another approach has been pursued by Zhang and Ge [ZG06] who show
that for existence of a unique solution g ∈ C(Rm,Rn) it is sufficient that the
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element-wise absolute value of ∂F
∂y is uniformly strictly diagonally dominant in

the sense that there exists d > 0 such that∣∣∣∣(∂F∂y (x, y)
)
ii

∣∣∣∣−
∑
j ̸=i

∣∣∣∣∣
(
∂F

∂y
(x, y)

)
ij

∣∣∣∣∣ ≥ d

for all (x, y) ∈ Rm × Rn and all i = 1, . . . , n. While this condition is easy
to check, it is very restrictive as it already excludes a lot of linear equations
Ax+By = 0 where B is not strictly diagonally dominant, but invertible.

As discussed above, typical limitations of the approaches are that F needs to be
defined on all of Rm×Rn or the solution g is required to be globally defined. In [Blo91]
these limitations are resolved as X and Y are assumed to be open and X is connected,
and maximal solutions of F (x, y) = 0 are considered in every connected component
of F−1(0). Assuming that Z := F−1(0) is connected we may then find a solution
g ∈ C(π1(Z), Y ), where π1 : X × Y → X, (x, y) 7→ x is the projection onto the
first component, provided that π1(Z) is open and simply connected and π1 : Z →
π1(Z) “lifts lines” (for a precise definition see [Pla74, Def. 1.1]). This result can be
extended in a straightforward way to the case where l ≥ m and rk ∂F

∂y (x, y) = n for all
(x, y) ∈ X ×Y since it is only necessary to show that π1 is locally a homeomorphism,
which replaces the condition that F (x, y) = 0 is locally solvable for y(x) as in [Blo91,
Thm. 4]; then [Blo91, Lem. 1] can still be applied to π1 : Z→π1(Z). The drawback
of this result is that the condition “π1 : Z→π1(Z) lifts lines” is not easy to check.
In the present paper, we provide a generalization of [GJ07, Cor. 5.3] to the case of
functions defined only on open subsets and where the partial derivative ∂F

∂y is only
required to have a left inverse instead of being invertible. The crucial assumption
is that the projections πi(Z) on the ith component, i = 1, 2, are diffeomorphic to
some Banach spaces and the transformation of the equation F (x, y) = 0 satisfies a
generalized version of (B.2). We stress that this assumption in particular implies
that πi(Z) must be open and simply connected. The main result is presented in
Sec. B.1 and a discussion together with some illustrative examples is given in Sec. B.2.

B.1 Main result

In this section we state and prove the following main result of this appendix.
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Theorem B.1.1. Let X ⊆ U , Y ⊆ V be open sets, U ,V,Z be Banach spaces, F ∈
C1(X × Y,Z) and

Z ⊆ { (x, y) ∈ X × Y | F (x, y) = 0 }

be such that

1. Z is path-connected and closed in X × Y ;

2. ∀ (x, y) ∈ Z ∃S(x, y) ∈ L(Z,V) : S(x, y)DyF (x, y) = idV ;1

3. for the projections πi(p1, p2) = pi with i ∈ {1, 2}, (p1, p2) ∈ U × V, there exist
diffeomorphisms ϕ : π1(Z) →X , ψ : π2(Z) →Y for some Banach spaces X ,Y,
and a continuous weight ω : [0,∞) → (0,∞) such that for all (x, y) ∈ Z we
have

∥Dψ(y) · S(x, y)∥L(Z,Y) ·
∥∥∥DxF (x, y) ·

(
Dϕ(x)

)−1
∥∥∥
L(X ,Z)

≤ ω(∥ψ(y)∥Y).

Then there exists a unique g ∈ C(π1(Z), Y ) such that

{ (x, g(x)) | x ∈ π1(Z) } = Z,

and g is Fréchet-differentiable at every x ∈ π1(Z).

The proof of Thm.B.1.1 requires us to recall the following concepts, which can be
found in [GJ07, pp. 77–80].

Definition B.1.2. Let Z be a metric space, and let P be a family of continuous
paths in Z. We say that Z is P-connected, if the following conditions hold:

(1) If the path p : [a, b] → Z belongs to P, then the reverse path p, defined by
p(t) = p(a− t+ b), also belongs to P;

(2) Every two points in Z can be joined by a path in P.

We say that Z is locally P-contractible if every point z0 ∈ Z has an open neighborhood
U which is P-contractible, in the sense that there exists a homotopy H : U×[0, 1] → U

between the constant function U ∋ z 7→ z0 and the identity idU , which satisfies
1Here L(Z,V) denotes the Banach space of all bounded linear operators A : Z → V and idV :

V → V, v 7→ v is the identity operator on V.
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(a) H(z0, t) = z0, for all t ∈ [0, 1],

(b) for every z ∈ U , the path pz := H(z, t) belongs to P.

Further, let Z ′ also be a metric space and p : [0, 1] → Z ′ be a path in Z ′. We say that
a continuous map f : Z → Z ′ has the continuation property for p, if for every b ∈ (0, 1]
and every path q ∈ C([0, b), Z) such that f ◦q = p↾[0,b), there exists a sequence {tn} in
[0, b) convergent to b and such that {q(tn)} converges in Z. Furthermore, a continuous
map f : Z → Z ′ is called a covering map, if every z′ ∈ Z ′ has an open neighborhood
U such that f−1(U) is the disjoint union of open subsets of Z each of which is mapped
homeomorphically into U by f .

Proof of Theorem B.1.1. We proceed in several steps.
Step 1 : We first reduce the original problem to a simpler case. By the existence of ϕ, ψ
in assumption (iii) it follows that, for i ∈ {1, 2}, πi(Z) are open sets in U ,V, resp., and
since Z ⊆ π1(Z)×π2(Z), it is no loss of generality to assume X×Y = π1(Z)×π2(Z).
That is, we search for an implicit function for the restriction F : π1(Z) × π2(Z) → Z
instead of F : X × Y → Z. Next, we argue that it suffices to prove the theorem
for cases in which (i)–(iii) are satisfied with ϕ = idX and ψ = idY . Note that these
assumptions imply U = X = π1(Z) = X and V = Y = π2(Z) = Y since X and Y are
open subspaces of U and V, respectively. Having proved this case, we can conclude
the general case by considering the function F̃ = F ◦ (ϕ−1, ψ−1) with F̃ : X ×Y→Z.
Next we translate the conditions (i)–(iii) on F to conditions on F̃ for Z̃ := (ϕ, ψ)(Z).

(i)’ We have that Z̃ is path-connected and closed in X × Y if, and only if, Z is
path-connected and closed in X × Y .

(ii)’ Define

S̃ : Z̃ → Y, (x̃, ỹ) 7→
(
D(ψ−1)(ỹ)

)−1 · S(ϕ−1(x̃), ψ−1(ỹ)).

With the identification (x, y) = (ϕ−1(x̃), ψ−1(ỹ)) we obtain for all (x, y) ∈ Z

that

DyF (x, y) = Dy

(
F̃ (ϕ(x), ψ(y))

)
= (DỹF̃ )(ϕ(x), ψ(y)) ·Dψ(y)

= DỹF̃ (x̃, ỹ)
(
D(ψ−1)(ỹ)

)−1
,
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where the latter equality is a consequence of the inverse function theorem. Using
this we find that

S(x, y)DyF (x, y) = idV

⇐⇒ S
(
ϕ−1(x̃), ψ−1(ỹ)

)
·
(
DỹF̃

)(
x̃, ỹ
)

·
(
D(ψ−1)(ỹ)

)−1 = idV

⇐⇒
(
D(ψ−1)(ỹ)

)−1 · S
(
ϕ−1(x̃), ψ−1(ỹ)

)︸ ︷︷ ︸
=S̃(x̃,ỹ)

·DỹF̃ (x̃, ỹ) = idY .

(iii)’ Similar to the computations above we obtain that, for (x, y) ∈ Z,

Dx̃F̃ (x̃, ỹ) = DxF (x, y) ·
(
Dϕ(x)

)−1
.

Therefore, we have for all continuous weights ω : [0,∞) → (0,∞) and all (x, y) ∈
Z that, omitting the spaces in the subscripts of the norms,

∥Dψ(y) · S(x, y)∥ ·
∥∥∥DxF (x, y) ·

(
Dϕ(x)

)−1
∥∥∥ ≤ ω(∥ψ(y)∥)

⇐⇒
∥∥S̃(x̃, ỹ)

∥∥ ·
∥∥Dx̃F̃ (x̃, ỹ)

∥∥ ≤ ω(∥ỹ∥).

Now, define the projections π̃i(p1, p2) = pi with i ∈ {1, 2}, (p1, p2) ∈ X × Y. We
recapitulate the situation with the following commuting diagram:

X × Y ⊇ Z

X = π1(Z)

Y = π2(Z)

π̃1(Z̃) ⊆ X

π̃2(Z̃) ⊆ Y

Z̃ ⊆ X × Y

π1

π2

(ϕ, ψ)

ϕ

ψ

π̃1

π̃2

For the conclusion, consider g̃ := ψ ◦ g ◦ ϕ−1 together with the equality π1(Z) =
ϕ−1(π̃1(Z̃)).
Step 2 : By Step 1, in the following we assume that X = π1(Z) and Y = π2(Z) as well
as ϕ = idX and ψ = idY . We show that π1 : Z → π1(Z) is a local homeomorphism
between connected metric spaces. Clearly, Z and π1(Z) are metric spaces and since
Z is path-connected, π1(Z) is path-connected as well. To show that π1 : Z→π1(Z)
is a local homeomorphism, let (a, b) ∈ Z, i.e., F (a, b) = 0. Applying the implicit
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function theorem, see, e.g., [Die69, Thm. 10.2.1], yields open neighborhoods U ⊆ X

of a, V ⊆ Y of b, and g ∈ C1(U, V ) such that

{ (x, g(x)) | x ∈ U } = { (x, y) ∈ U × V | S(a, b)F (x, y) = 0 } .

Consider the restriction π̂1 : Z ∩ (U × V ) → π1
(
Z ∩ (U × V )

)
. Then π̂1 is injective

since π̂1(x1, y1) = π̂1(x2, y2) for some (x1, y1), (x2, y2) ∈ Z ∩ (U × V ) gives x1 = x2

and S(a, b)F (x1, y1) = S(a, b)F (x2, y2), thus y1 = g(x1) = g(x2) = y2. Therefore, π̂1

is bijective and continuous. Furthermore, it is easy to see that π̂1 is an open map,
and hence it is a homeomorphism.
Step 3 : Let

P := C1([0, 1], π1(Z)
)

and observe that π1(Z) is P-connected and locally P-contractible since it is open. We
show that π1 has the continuation property for every path in P, that is, for all q1 ∈ P,
all b ∈ (0, 1] and all q2 ∈ C([0, b), Y ) such that (q1(t), q2(t)) ∈ Z for all t ∈ [0, b) there
exists a sequence (tn)n∈N ⊆ [0, b) with limn→∞ tn = b such that

(
q2(tn)

)
n∈N converges

and
lim
n→∞

(q1(tn), q2(tn)) ∈ Z.

First note that q2 is differentiable at any t ∈ [0, b), since there exists a local implicit
function as in Step 2, so that q2(s) = g(q1(s)) for all s in a neighborhood of t. Since g
and q1 are differentiable we obtain q̇2(t) = Dg(q1(t))q̇1(t). Moreover, it can be seen
that the derivative is continuous at each point in [0, b). Then, using property (iii),
it can be proved by only a slight modification of the proof of [GJ07, Cor. 5.3] that
for any sequence (tn)n∈N ⊆ [0, b) with limn→∞ tn = b the sequence

(
q2(tn)

)
n∈N is a

Cauchy sequence and hence converges in Y = V. Since Z is closed in X × Y = U ×V
by (i) we thus obtain limn→∞(q1(tn), q2(tn)) ∈ Z.
Step 4 : We show that π1 : Z→π1(Z) is a homeomorphism. By [GJ07, Thm. 2.6] and
Step 3 we may infer that π1 is a covering map. Since π1(Z) = ϕ−1(X ) is in particular
simply connected by (iii) it follows from [Lee12, Prop. A.79] that π1 : Z→π1(Z) is
a homeomorphism.
Step 5 : By Step 4 we have

(
x 7→ (x, g(x)) = π−1

1 (x)
)

∈ C(π1(Z), Z) which uniquely
defines the desired function g ∈ C(π1(Z), Y ). Since π1(Z) is in particular open by
condition (iii), for all x ∈ π1(Z) we have that g coincides with any solution provided
by the implicit function theorem as in Step 1 in a neighborhood of x. The implicit
function theorem provides Fréchet-differentiability of the local solution, thus g is
Fréchet-differentiable at x.
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We like to emphasize that Z in Theorem B.1.1 may only be a subset of the zero
set F−1(0). This allows to exclude points (x, y) in F−1(0) at which DyF (x, y) has
no left inverse, or, actually, to exclude open sets containing such points so that Z
is closed (alternatively, one may restrict the sets X and Y ). Then a global implicit
function may still exist in each connected component of Z, provided the growth bound
in (iii) is satisfied.

Remark B.1.3. An important question that arises is whether the growth bound in
condition (iii) in Theorem B.1.1 is independent of the choice of the diffeomorphisms ϕ
and ψ. Use the notation from Theorem B.1.1, assume that conditions (i)–(iii) are sat-
isfied and let ϕ̂ : π1(Z) → X̂ and ψ̂ : π2(Z) → Ŷ be diffeomorphisms for some Banach
spaces X̂ , Ŷ. Then, omitting the subscripts indicating the spaces corresponding to
the norms, we have the estimate∥∥∥Dψ̂(y) · S(x, y)

∥∥∥ ·
∥∥∥DxF (x, y) ·

(
Dϕ̂(x)

)−1
∥∥∥

≤ ∥Dψ(y) · S(x, y)∥ ·
∥∥∥Dψ̂(y) · (Dψ(y)

)−1
∥∥∥

·
∥∥∥DxF (x, y) ·

(
Dϕ(x)

)−1
∥∥∥ ·
∥∥∥Dϕ(x) · (Dϕ̂(x)

)−1
∥∥∥

≤ ω(∥ψ(y)∥Y) ·
∥∥∥Dψ̂(y) · (Dψ(y)

)−1
∥∥∥ ·
∥∥∥Dϕ(x) · (Dϕ̂(x)

)−1
∥∥∥

for all (x, y) ∈ Z. If the last term satisfies

ω(∥ψ(y)∥Y) ·
∥∥∥Dψ̂(y) · (Dψ(y)

)−1
∥∥∥ ·

∥∥∥Dϕ(x) · (Dϕ̂(x)
)−1
∥∥∥ ≤ ω̂(∥ψ̂(y)∥Ŷ)

for all (x, y) ∈ Z and some continuous weight ω̂, then the growth bound in condi-
tion (iii) would indeed be independent of ϕ and ψ. However, it is still an open problem
whether this is true (or a counterexample exists) and remains for future research.

B.2 Illustrative examples

In this section we discuss the assumptions in Theorem B.1.1 and provide some illus-
trative examples.
We like to highlight that none of the assumptions (i)–(iii) in Theorem B.1.1 can be
omitted in general. It is clear that connectedness of Z in (i) and local solvability
guaranteed by (ii) are indispensable. Counterexamples in finite dimension are con-
structed for (iii) in the following examples. Condition (iii) basically consists of two
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parts. The first one is to check whether πi(Z), i = 1, 2, are diffeomorphic to some
Banach spaces. The second part is the growth bound involving the diffeomorphisms,
the partial derivative DxF and the left inverse of DyF .
First, we like to discuss why we chose the projections of Z as the domains of the
diffeomorphisms in Theorem B.1.1, whereas intuitively one could consider the open
sets X and Y as the domains.

Remark B.2.1. In a possible different formulation of Theorem B.1.1 one could choose
diffeomorphisms ϕ̃ : X→X and ψ̃ : Y →Y and then consider, mutatis mutandis, the
corresponding growth bound in condition (iii). This would relax the assumptions on
the projections πi(Z), which would then not necessarily need to be open and simply
connected. However, for the proof technique to be feasible we need to additionally
require that π1(Z) is simply connected. Indeed, the proof is analogous, but the
modified theorem does not cover basic examples.
For F : R × (−1, 1) → R, (x, y) 7→ x − y and Z := F−1(0) it is easy to check that
conditions (i) and (ii) are satisfied. The growth bound in condition (iii) reads

∀ (x, y) ∈ Z : |ψ̃′(y)| · |ϕ̃′(x)−1| ≤ ω(|ψ̃(y)|)

⇐⇒ ∀ y ∈ (−1, 1) : |ϕ̃′(y)| ≥ |ψ̃′(y)|
ω(|ψ̃(y)|)

for some continuous weight ω. Note that ϕ̃′((−1, 1)) is bounded and ϕ̃(y) ̸= 0 for all
y ∈ R, hence ∫ 1

−1
|ϕ̃′(y)|dy =

∣∣∣∣∫ 1

−1
ϕ̃′(y)dy

∣∣∣∣ < ∞.

Then the change of variables theorem with the substitution t = ψ̃(y) together with
the inverse function theorem yields that

∞ >

∫ 1

−1
|ϕ̃′(y)|dy ≥

∫ 1

−1

|ψ̃′(y)|
ω(|ψ̃(y)|)

dy =∫ ∞

−∞

∣∣ψ̃′(ψ̃−1(t)
)∣∣

ω(|t|)
∣∣(ψ̃−1)′(t)

∣∣ dt = 2
∫ ∞

0

1
ω(t)dt = ∞,

a contradiction.
Nevertheless, a global implicit function obviously exists. The assumptions of The-
orem B.1.1 are satisfied since π1(Z) = π2(Z) = (−1, 1) and we may choose ϕ = ψ,
with which the growth bound holds true.
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We continue by presenting an example where in assumption (iii) it is not possible to
find suitable diffeomorphisms and, at the same time, a global implicit function does
not exist.

Example B.2.2. Consider

F : R2 × R → R2, (x1, x2, y) 7→

(
x1 − cos y
x2 − sin y

)
, Z := F−1(0).

Then assumptions (i) and (ii) in Theorem B.1.1 are satisfied. Since π1(Z) = S1, the
unit circle in R2, there is no Banach space X such that π1(Z) is diffeomorphic to X .
Indeed, no global implicit function can exist, since y 7→ (cos y, sin y) is not injective
on R.

In the next example the growth bound in condition (iii) is not satisfied for any suitable
choice of diffeomorphisms and, at the same time, a global implicit function does not
exist.

Example B.2.3. We choose F : X×Y →R2 = Z as a function of the type F (x, y) =
x−F̃ (y) and Z := F−1(0). This means that the existence of a global implicit function
is equivalent to F̃ being injective. We further set X×Y = R2×(0, 1)2 and construct F̃
by successively defining its restrictions F̃ ↾(0,δ)×(0,1) = F̃1 and F̃ ↾(δ,1)×(0,1) = F̃2 for
some 0 < δ ≤ 1

2 . Choose ε, α > 0, and consider the non-injective function

F̃1 : (0, δ) × (0, 1)→R2, (y1, y2) 7→

(
(α+ y2) sin

( 2π
δ (1 + ε)y1

)
(α+ y2) cos

( 2π
δ (1 + ε)y1

)) .
Observe that im F̃1 = Bα+1(0) \ Bα(0), where Bα(z) denotes the open ball with
radius α around z ∈ R2, i.e., the image of F̃1 is an annulus. Next, define F̃2 similarly
to F̃1 using elementary functions such that the hole of the annulus is filled as displayed
in Fig. B.1, i.e., Bα(0) ⊂ im F̃2 ⊂ Bα+1(0). Note that F̃2 can be chosen such that the
resulting composition F̃ is differentiable everywhere. Overall, we have constructed a
non-injective function F̃ .
Observe that im F̃ = π1(Z) = Bα+1(0) and π2(Z) = (0, 1)2. Then the three condi-
tions on F translate to F̃ as follows:

(i’) the graph of F̃ is connected;

(ii’) ∀ y ∈ (0, 1)2 : rk DF̃ (y) = 2 ;
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Figure B.1: Illustration of the construction of F̃ .

(iii’) there exist diffeomorphisms ϕ : Bα+1(0) → X , ψ : (0, 1)2 → Y for some Banach
spaces (X , ∥ · ∥X ), (Y, ∥ · ∥Y), and a continuous weight ω : [0,∞) → (0,∞) such
that for all y ∈ (0, 1)2 we have∥∥Dψ(y) ·DF̃1(y)−1∥∥

L(Z,Y) ·
∥∥∥(Dϕ(F̃1(y))

)−1
∥∥∥
L(X ,Y)

≤ ω(∥ψ(y)∥Y).

Note that (i’) is guaranteed by our choice of Y = (0, 1)2 and the continuity of F̃ ,
which holds by construction. For (ii’) note that

DF̃1(y1, y2) =
[

(α+ y2) 2π
δ (1 + ε) cos

( 2π
δ (1 + ε)y1

)
sin
( 2π
δ (1 + ε)y1

)
−(α+ y2) 2π

δ (1 + ε) sin
( 2π
δ (1 + ε)y1

)
cos
( 2π
δ (1 + ε)y1

)] ,
and det

(
F̃1(y1, y2)

)
= (α + y2) 2π

δ (1 + ε) ̸= 0. Further, the use of the constant
α (large enough) guarantees that rk DF̃ (y) = 2 when filling Bα(0) as displayed in
Fig B.1. Hence, (ii’) is satisfied. Next, we show that (iii’) is not satisfied, although,
obviously, both π1(Z) = Bα+1(0) and π2(Z) = (0, 1)2 are diffeomorphic to some
Banach spaces X and Y. Without loss of generality, we may assume that X = Y = R2.
We show that condition (iii’) is not satisfied for any diffeomorphisms ϕ : Bα+1(0)→R2

and ψ : (0, 1)2 →R2 by considering two cases. Let (ŷ1, ŷ2) := ψ−1(0, 0) ∈ (0, 1)2.
Case 1 : Assume that ŷ1 ≤ δ. We show that the growth bound fails for F̃1. Seeking
a contradiction, assume that we have∥∥Dψ(y) ·DF̃1(y)−1∥∥

L(Z,Y) ·
∥∥∥(Dϕ(F̃1(y))

)−1
∥∥∥
L(X ,Y)

≤ ω(∥ψ(y)∥Y)
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for all y ∈ (0, δ) × (0, 1) and some weight ω. Although we did not specify the norms
on X ,Y,Z, using the weight property and the equivalence of all norms on Rn2

,Rn,
respectively, guarantees the existence of positive constants c1, c2 such that

c1
∥∥Dψ(y) ·DF̃1(y)−1∥∥

F
·
∥∥∥(Dϕ(F̃1(y))

)−1
∥∥∥
L(X ,Y)

≤
∥∥Dψ(y) ·DF̃1(y)−1∥∥

L(Z,Y) ·
∥∥∥(Dϕ(F̃1(y))

)−1
∥∥∥
L(X ,Y)

≤ ω(∥ψ(y)∥Y) ≤ ω(c2∥ψ(y)∥2),

where ∥ · ∥F is the Frobenius norm. Observing that ω̃(·) := c−1
1 ω(c2 ·) again defines a

weight, we obtain∥∥Dψ(y) ·DF̃1(y)−1∥∥
F

·
∥∥∥(Dϕ(F̃1(y))

)−1
∥∥∥
L(X ,Y)

≤ ω̃(∥ψ(y)∥2)

for all y ∈ (0, δ) × (0, 1). In order to simplify the computations, choose δ = 1
2 and

α = ε = 1. Since F̃1
(
(0, 1

2 ) × {ŷ2}
)

= (1 + ŷ2)S1 is a compact subset of B2(0) and
B2(0) ∋ z 7→ ∥Dϕ(z)∥ is a continuous mapping we have

∃ γ > 0 ∀ y ∈ (0, 1
2 ) × {ŷ2} :

∥∥Dϕ(F̃1(y))
∥∥
L(X ,Y) ≤ γ.

This gives
∥∥∥(Dϕ(F̃1(y))

)−1
∥∥∥
L(X ,Y)

≥ γ−1 for all y ∈ (0, 1
2 ) × {ŷ2}. Accordingly, we

may calculate that for all y1 ∈ (0, 1
2 ) we have

DF̃1(y1, ŷ2)−1 =
[

1
8π(1+ŷ2) cos (8πy1) − 1

8π(1+ŷ2) sin (8πy1)
sin (8πy1) cos (8πy1)

]

and hence

∥∥Dψ(y1, ŷ2) ·DF̃1(y1, ŷ2)−1∥∥
F

=
√

1
64π2(1+ŷ2)2

(
∂ψ1
∂y1

2 + ∂ψ2
∂y1

2)+ ∂ψ1
∂y2

2 + ∂ψ2
∂y2

2

≥ 1
8π(1+ŷ2)

∥∥∥ ∂ψ∂y1
(y1, ŷ2)

∥∥∥
2
.

Note that for all y1 ∈ (0, ŷ1) we have that ∥ψ(y1, ŷ2)∥2 > 0 and, because

lim
y1→0

∥ψ(y1, ŷ2)∥2 = ∞,

the set
S :=

{
y1 ∈ (0, ŷ1)

∣∣∣ ∂
∂y1

∥ψ(y1, ŷ2)∥2
2 < 0

}
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has compact complement (0, ŷ1) \ S. Furthermore, for all y1 ∈ (0, ŷ1) we have that

1
2

∣∣∣ ∂∂y1
∥ψ(y1, ŷ2)∥2

2

∣∣∣ =
∣∣∣ψ(y1, ŷ2)⊤ ∂ψ

∂y1
(y1, ŷ2)

∣∣∣
≤ ∥ψ(y1, ŷ2)∥2∥ ∂ψ

∂y1
(y1, ŷ2)∥2

≤ 8π(1 + ŷ2)∥ψ(y1, ŷ2)∥2
∥∥Dψ(y1, ŷ2) ·DF̃1(y1, ŷ2)−1∥∥

F

≤ 8π(1 + ŷ2)γ∥ψ(y1, ŷ2)∥2 ω̃(∥ψ(y1, ŷ2)∥2).

With
ξ :=

∫
(0,ŷ1)\S

∂
∂y1

∥ψ(y1,ŷ2)∥2
2

∥ψ(y1,ŷ2)∥2 ω̃(∥ψ(y1,ŷ2)∥2) dy1 < ∞

and the substitutions t = ∥ψ(y1, ŷ2)∥2
2 and u =

√
t we may then derive

16πγŷ1 ≥
∫ ŷ1

0

∣∣∣ ∂∂y1
∥ψ(y1,ŷ2)∥2

2

∣∣∣
∥ψ(y1,ŷ2)∥2 ω̃(∥ψ(y1,ŷ2)∥2) dy1

≥
∫
S

∣∣∣ ∂∂y1
∥ψ(y1,ŷ2)∥2

2

∣∣∣
∥ψ(y1,ŷ2)∥2 ω̃(∥ψ(y1,ŷ2)∥2) dy1

=
∫
S

− ∂
∂y1

∥ψ(y1,ŷ2)∥2
2

∥ψ(y1,ŷ2)∥2 ω̃(∥ψ(y1,ŷ2)∥2) dy1 − ξ + ξ

=
∫ ŷ1

0

− ∂
∂y1

∥ψ(y1,ŷ2)∥2
2

∥ψ(y1,ŷ2)∥2 ω̃(∥ψ(y1,ŷ2)∥2) dy1 + ξ

=
∫ ∞

∥ψ(ŷ1,ŷ2)∥2
2

1√
tω̃(

√
t) dt+ ξ

= 2
∫ ∞

0

1
ω̃(u) du+ ξ

= ∞,

a contradiction.
Case 2 : Assume that ŷ1 > δ. We show that the growth bound fails for F̃2, which is
similar to Case 1. To this end, we render the definition of F̃2 more precisely. First
define the curve

γ1 : (0, δ) → R2, t 7→

(
(α+ 1

2 ) sin
( 2π
δ (1 + ε)t

)
(α+ 1

2 ) cos
( 2π
δ (1 + ε)t

))

and the (rotation) matrix R :=
[

0 −1
1 0

]
. Then F̃1 can alternatively be written as

F̃1(y1, y2) = γ1(y1) + (y2 − 1
2 )Rγ̇1(y1)
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for all (y1, y2) ∈ (0, δ) × (0, 1). In view of this, we may choose a curve γ2 : (δ, 1) → R2

as depicted in Fig. B.1 such that

F̃2(y1, y2) = γ2(y1) + (y2 − 1
2 )Rγ̇2(y1)

for all (y1, y2) ∈ (δ, 1) × (0, 1) and, as mentioned before, Bα(0) ⊂ im F̃2 ⊂ Bα+1(0)
and DF̃2(y1, y2) is invertible for all (y1, y2) ∈ (δ, 1) × (0, 1). Omitting the details, the
same arguments as in Case 1 may now be applied to arrive at a contradiction. In
particular, fixing y2 = ŷ2 leads to a curve γ̃2(y1) = γ2(y1) + (ŷ2 − 1

2 )Rγ̇2(y1) along
which the growth bound is violated.

Remarks B.2.4. Finally, we like to point out that, while Theorem B.1.1 is already
quite general, still it does not cover all relevant cases. Consider

F : R2 × R2 → R3, (x1, x2, y1, y2) 7→

 x1 − y1

x2 − y2

x2
1 + x2

2 − 1

 ,

then

Z := F−1(0) =
{

(x1, x2, y1, y2) ∈ R4 ∣∣ x2
1 + x2

2 = 1, y1 = x1, y2 = x2
}

and π1(Z), π2(Z) are both the unit circle in R2, i.e., closed subsets which are not
simply connected, for which it is not possible to satisfy condition (iii). However,
a global implicit function obviously exists. Further research is necessary to cover
examples of this type.
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ber 17 in Annals of Mathematical Studies. Princeton University Press,
Princeton, 1948.

[Max68] J. C. Maxwell. On Governors. Proc. R. Soc. London, 16:270–283, 1868.

[MM19] V. Mehrmann and R. Morandin. Structure-preserving discretization
for port-Hamiltonian descriptor systems. In 2019 IEEE 58th Confer-
ence on Decision and Control (CDC), pages 6863–6868, 2019.

[MMW18] C. Mehl, V. Mehrmann and M. Wojtylak. Linear Algebra Properties
of Dissipative Hamiltonian Descriptor Systems. SIAM J. Matrix Anal.
Appl., 39(3):1489–1519, 2018.

[MMW22] C. Mehl, V. Mehrmann and M. Wojtylak. Matrix pencils with coeffi-
cients that have positive semidefinite Hermitian part. SIAM J. Matrix
Anal. Appl., 43(3):1186–1212, 2022.

[Mox20] F. Moxley. Quantum Port-Hamiltonian Network Theory, 2020. hal-
02554914.
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List of notations

Acronyms

DAE differential-algebraic equation – p. 13
dH-LA linear algebraic dissipative-Hamiltonian – p. 76
dH-LG linear geometric dissipative-Hamiltonian – p. 76
dH-LR linear relations dissipative-Hamiltonian – p. 76
dH-ODE ordinary dissipative-Hamiltonian – p. 76

KYP Kalman–Yakubovich–Popov inequality – p. 128

MNA modified nodal analysis – p. 159
MNA c/f charge/flux-oriented modified nodal analysis –

p. 159

pH-LA linear algebraic port-Hamiltonian – p. 59
pH-LAR relaxed linear algebraic port-Hamiltonian – p. 60
pH-LG linear geometric port-Hamiltonian – p. 48
pH-LR linear relations port-Hamiltonian – p. 61
pH-NG nonlinear geometric port-Hamiltonian – p. 43
pH-ODE port-Hamiltonian ordinary differential-equation –

p. 41
posH positive semidefinite Hermitian part coefficients –

p. 137
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General numbers, sets and spaces

C set of complex numbers – p. 5
C− open left complex half-plane – p. 5
C+ open right complex half-plane – p. 5

df∗ cotangent map of f ∈ C1(M,N ) – p. 37
df differential of a map f ∈ C1(M,N ) – p. 37
Dψ Jacobian matrix of ψ also indentified with its

Fréchet derivative – p. 55
DxF (x, y) partial Fréchet-derivative with respect to x of a

function F : X × Y → Z with X ⊆ X , Y ⊆ Y,
and X ,Y,Z Banach spaces – p. 180

DyF (x, y) partial Fréchet-derivative with respect to y of a
function F : X × Y → Z with X ⊆ X , Y ⊆ Y,
and X ,Y,Z Banach spaces – p. 180

∂F
∂x (x, y) partial derivative with respect to x of a function

F : X × Y → Rl with X ⊆ Rn and Y ⊆ Rm –
p. 178

∂F
∂y (x, y) partial derivative with respect to y of a function

F : X × Y → Rl with X ⊆ Rn and Y ⊆ Rm –
p. 177

dfp differential of a map f ∈ C1(M,N ) at p ∈ M –
p. 37

df∗
p pullback of a map f ∈ C1(M,N ) at p ∈ M – p. 37

(D1,L1,R1) ◦ (D2,L2,R2) interconnection of two pH-NG systems (Di,Li,Ri),
i = 1, 2 – p. 44

(D1,L1,R1) × (D2,L2,R2) product of two pH-NG systems (Di,Li,Ri), i = 1, 2
– p. 45

E1 ⊕ E2 Whitney sum of two bundle E1, E2 – p. 37
[E,A,B,C,D] ∈ Σn,m,k,l special class of DAEs – p. 13
[E,A,B,C,D] ∈ Σn,m,k special class of DAEs – p. 13
[E,A,B,C,D] ∈ Σn,k special class of DAEs – p. 13
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[E,A,B,C] ∈ Σn,k special class of DAEs – p. 13
[E,A,B] ∈ Σn,m,k special class of DAEs – p. 13
[E,A,B] ∈ Σn,k special class of DAEs – p. 13
[E,A,B] ∈ Σsn,k special class of DAEs – p. 124
[E,A] ∈ Σn,m special class of DAEs – p. 13
[E,A] ∈ Σn special class of DAEs – p. 13

f (l) lth weak derivative of f – p. 9

ı imaginary unit – p. 5
Im z imaginary part of z ∈ C – p. 5
init initial vertex map – p. 142

K either R or C – p. 5
Kn space of n-dimensional vectors over K – p. 6
K[s] ring of polynomials over K – p. 5
K(s) quotient field of K[s] – p. 5

N set of natural numbers excluding 0 – p. 5
N0 set of natural numbers – p. 5
∥ · ∥Lp(I,V) or simply ∥ · ∥p, p-norm for p ∈ [1,∞) – p. 9

∐
symbol for disjoint unions – p. 37⊗
symbol for tensor products – p. 37∏
symbol for Cartesian products – p. 6

S1 × . . .× Sn Cartesian product of a finite family of sets
{Si}i=1,...n – p. 6

↾ symbol for the restriction of a function to a subset
of its domain – p. 8

R set of real numbers – p. 5
Re z real part of z ∈ C – p. 5
Rm×n space of m × n-matrices with entries in a ring R –

p. 6
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S closure of a subset S of a topological space – p. 5
⟨·, ·⟩ denotes the standard scalar product in Kn – p. 7⊕n

i=1 Vi exterior direct sum of finitely many vector spaces
V1, . . . Vn – p. 6

S1+̂ . . . +̂Sn componentwise sum of finitely many subsets
S1, . . . , Sn of a vector space S – p. 6

V1 ⊕ . . .⊕ Vn exterior direct sum of finitely many vector spaces
V1, . . . Vn – p. 6

V1⊕̂ . . . ⊕̂Vn inner direct sum of finitely many vector spaces
V1, . . . Vn – p. 6

W ⊖̂V orthogonal minus with V ⊆ W ⊆ Kn – p. 6
V1 k . . .k Vn orthogonal inner direct sum of finitely many vector

spaces V1, . . . Vn – p. 6

ter terminal vertex map – p. 142
TM tangent bundle of a manifold M – p. 37
T ∗M cotangent bundle of a manifold M – p. 37
TpM tangent space of a manifold M at p ∈ M – p. 37
T ∗
pM cotangent space of a manifold M at p ∈ M – p. 37

V [E,A,B,C,D]
diff space of consistent initial differential variables of a

system [E,A,B,C,D] – p. 15
V [E,A,B,C,D]

sys system space of a system [E,A,B,C,D] – p. 14

∥x∥ usually denotes the Euclidean norm of x ∈ Kn –
p. 7

Śn
i=1(Di,Li,Ri) product of n pH-NG systems (Di,Li,Ri), i =

1, . . . , n – p. 46

|z| absolute value of z ∈ C – p. 5
z complex conjugate of z ∈ C – p. 5
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Function sets and spaces

BDL behavior of pH-LR system DL – p. 63
BD,L,R behavior of pH-LG system (D,L,R) – p. 50
B[E,A,B,C,D] behavior of a system [E,A,B,C,D] – p. 14
B[E,A,B,C,D](x0) behavior of a system [E,A,B,C,D] with initial

value x0 – p. 14

C1(X × Y,Z) set of Fréchet-differentiable functions f : X × Y →
Z with X ⊆ X , Y ⊆ Y, and Banach spaces X ,Y,Z
– p. 180

Ck(U, V ) set of k-times continuously differentiable functions
f : U → V with open subsets U ⊂ Kn, V ⊂ Km

and k ∈ N0 ∪ {∞} – p. 8
Cs(M,N ) set of Cs maps f : M → N with Cs manifolds M,

N – p. 36
C(X,Y ) set of continuous functions f : X → Y with metric

spaces X,Y – p. 8

Γs(E) set of Cs sections of a bundle E – p. 37

idV identity map on a set V – p. 180

L(V1, . . . , Vk;W ) set of multilinear maps f : V1 × . . . × Vk → W for
vector spaces V1, . . . , Vk,W – p. 6

ΛkT ∗M bundle of alternating covariant k-tensors on M –
p. 38

Λk(V ∗) subset of T k(V ∗) consisting of all alternating
tensors – p. 37

Λk(V ) subset of T k(V ) consisting of all alternating tensors
– p. 37
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Lp(I,V) space of measurable functions f : I → V for which
the pth power of its norm is integrable over the
interval I ⊂ R with p ∈ [1,∞) and a subspace
V ⊂ Kn – p. 8

Lploc (I,V) set of functions that are locally in Lp(I,V) – p. 8
Lp(I,V) quotient space of Lp(I,V) – p. 9
Lploc (I,V) quotient space of Lploc (I,V) – p. 9
L(Z,V) Banach space of all bounded linear operators A :

Z → V with V,Z Banach spaces – p. 180

Ωks(M) set of Cs differential k−forms on M – p. 38

T kT ∗M bundle of covariant k-tensors on M – p. 37
T k(V ∗) set of covariant tensors on V of rank k – p. 37
T k(V ) set of contravariant tensors on V of rank k – p. 37

W k,p(I,V) set of functions in Lp(I,V) for which f (l) ∈
Lp(I,V) exists for all l ≤ k with k ∈ N0 – p. 9

W k,p
loc (I,V) set of functions in Lploc (I,V) for which f (l) ∈

Lploc (I,V) exists for all l ≤ k with k ∈ N0 – p. 9

Matrices

00×q zero element of K0×q, q ∈ N0 – p. 6
0m,n zero element of Kn×n, m,n > 0 – p. 6
0n zero element of Kn×n, n > 0 – p. 6
0q×0 zero element of Kq×0, q ∈ N0 – p. 6

A† Moore-Penrose inverse of a matrix A ∈ Km×n – p. 7
A−1 inverse of a matrix A ∈ Gln(K) – p. 7
A∗ Hermitian of a matrix A ∈ Km×n – p. 7
A⊤ transpose of a matrix A ∈ Km×n – p. 7
∥A∥ usually denotes the operator norm of A ∈ Km×n –

p. 7
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diag block diagonal operator – p. 7

e
[k]
i ith canonical unit vector in Kn – p. 9
ei ith canonical unit vector – p. 9

Gln(K) set of invertible matrices in Kn×n – p. 7

In n× n identity matrix – p. 6

Jk(λ) Jordan block of size k ∈ N at λ ∈ C – p. 10

Kα special matrix for a multi-index α – p. 10
Kk special matrix for k ∈ N – p. 9

Lα special matrix for a multi-index α – p. 10
Lk special matrix for k ∈ N – p. 9

M(Y1) range of M↾Y1 for a linear operator M : Y2 → Y3

with Y1 ⊂ Y2 – p. 8
M > N M−N is positive definite for square matrices M,N

– p. 7
M ≥ N M −N is positive semi-definite for square matrices

M,N – p. 7
M >L N M−N is positive definite on a subspace L for square

matrices M,N – p. 8
M ≥L M M −N is positive semi-definite on a subspace L for

square matrices M,N – p. 8
M =L N M equals N on a subspace L for square matrices

M,N – p. 8

Nα special matrix for a multi-index α – p. 10
Nk special matrix for k ∈ N – p. 9
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PX usually denotes the orthogonal projector onto a sub-
space X – p. 8

sE −A first order polynomial in K[s]m×n – p. 9
σ(E,A) spectrum of a square matrix pencil sE −A – p. 11
σ(A) spectrum of a square matrix A – p. 7

Linear relations

αM scalar multiplication of a linear relation M wth α ∈
K – p. 18

D′
K(G) special Dirac structure induced by a graph G –

p. 145
domM domain of a linear relation M – p. 18
DS
K(G) Kirchhoff-Dirac structure of a graph G with set of

grounded vertices S – p. 144

kerM kernel of a linear relation M – p. 18

L′
K(G) special Lagrange structure induced by a graph G –

p. 145
L×̂N sorted Cartesian product of two linear relation L

and N – p. 19
LSK(G) Kirchhoff-Lagrange structure of a graph G with set

of grounded vertices S – p. 144

M−1 inverse of a linear relation M – p. 18
M ◦ L interconnection of two linear relation L and N –

p. 30
ML product of two linear relation M and L – p. 18
M + L operator-like sum of two linear relation M and L –

p. 18
M∗ adjoint of a linear relation M – p. 18
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mulM multi-valued part of a linear relation M – p. 18

ranM range of a linear relation M – p. 18
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Index

Cs map, 36
P-connected, 180
P-contractibe, 180

locally, 180

atlas, 36

behavior
of a DAE, 14
of a pH-LG system, 50
of a pH-LR system, 63

bundle, 36
Cr, 36
cotangent, 37
dual, 36
sub-, 37
Cr, 37

tangent, 37
trivial, 36

capacitance, 149
charge, 149

chart, 36
component

ℓp-port, 146
ℓt-terminal, 146

electrical, 146
conductance, 150
conserved quantities, 130
constraint, 131

algebraic, 130
continuation property, 181
cotangent map, 37
covering map, 181
current, 146
cycle

flux, 145
fundamental, 145
voltage, 145

differential
of a C1 map, 37

differential variables
asymptotically stable, 17
behaviorally asymptotically

stabilizable, 18
behaviorally stabilizable, 18
stable, 17

differential-algebraic equation, 13
diode

ideal, 151
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PN-junction, 151
Dirac

bundle, 39
constraint, 130
manifold, 39

constant, 44
structure, 22
subspace, 22

dissipative Hamiltonian descriptor
system, 78

dissipative matrix, 8
dissipative-Hamiltonian

linear algebraic, 76
linear geometric, 76
linear relations, 76
ordinary, 76

dynamics, 43, 48, 61

edge, 142
current, 144, 145
directed, 142
voltage, 144, 145

effort, 44
space, 44

extension
of a linear relation, 132
of a pH-LR system, 131

fiber, 36
flow, 44
form

closed, 38
differerntial k-, 38
nondegenerate, 38
symplectic, 38

canonical, 38

standard, 38
fundamental cycle matrix, 145

generalized algebraic Bernoulli
equation, 126

generalized pH DAE systems, 78
graph

component, 142
connected, 143
directed, 142
loop-free, 142
sub-, 142

induced, 142
proper, 142
spanning, 142

underlying, of a circuit, 147

Hamiltonian, 1, 42, 47, 59, 60, 62,
149, 150

Hermitian, 7

incidence matrix, 143
inductance, 149

magnetic flux, 150
input, 13
interconnection

of linear relations, 29
of port-Hamiltonian systems, 44,

65

Jacobian matrix, 55
Jordan block, 10

at ∞, 10
Jordan form, 10
Josephson junction, 150

Kalman–Yakubovich–Popov
inequality, 128, 171
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Kirchhoff laws, 144, 145
Kirchhoff-Dirac structure, 144
Kirchhoff-Lagrange structure, 144
Kronecker form, 10

Lagrange
constraint, 130
structure, 22

Lagrangian
submanifold, 38
subspace, 22

linear relation, 18
inverse, 18
product, 18
scalar multiplication, 18
adjoint, 18
composition, 30
dissipative, 22

maximally, 22
domain, 18
interconnection, 29
kernel, 18
multi-valued part, 18
nonnegative, 22

maximally, 22
nonpositive, 22
range, 18
self-adjoint, 19
skew-adjoint, 19
skew-symmetric, 19
sorted Cartesian product, 19
symmetric, 19

Lyapunov
equation, 171
function, 120

inequalites, 171

manifold
Cr, 36
Cr sub-, 37
symplectic, 38

minimal index
column, 10
row, 10

modified loop analysis, 160
modified nodal analysis, 159

charge/flux-oriented, 159

orthogonal minus, 6
output, 13

path, 142
pencil, 9

eigenvalue, 11
index, 11
positive semidefinite Hermitian

part coefficients, 137
regular, 12

port, 44
external, 44

port-Hamiltonian system
interconnection, 44
linear algebraic, 59

relaxed, 60
linear geometric, 48
linear relations, 61
nonlinear geometric, 43
ordinary differential equations, 41
product, 45

positive real, 12
power balance, 42, 47, 59, 60, 62
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pullback, 37, 38

relation
resistive, 39

representation
image, 19
kernel, 19
range, 19

resistance, 150
resistive, 44
resolvent, 12

section, 37
semi-simple, 12
smooth, 36
source, 155

current, 154
spanning forest, 143
spectrum, 7
stabilizable

asymptotically stabilizable, 18
behaviorally, 17

stable, 17
asymptotically, 17

state, 13
storage, 44
sum

componentwise, 6
direct

exterior, 6
inner, 6

operator-like, 18
orthogonal, 6
Whitney, 37

symplectomorphism, 38
system space, 14

tensor
k-, 37
alternating, 37
contravariant, 37
covariant, 37

transformer, 152
transistor, 152
tree, 143
trivialization, 36

vertex, 142
charge, 144
connected, 142
gounded, 144
initial, 142
potential, 144
terminal, 142

voltage, 146

Weierstraß form, 10
weight, 178
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