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Abstract

The particle physics community is currently discussing the next large-scale electron-
positron collider experiment, with a major interest in the Higgs production threshold
around 250GeV. Multiple proposals have emerged for such a machine, differing in ma-
chine and detector designs, as well as energy stages and luminosities. Striving for a ma-
chine with the best possible precisions requires both an optimization of each proposal
as well a careful examination of the differences between them.

The optimization of the individual proposals needs dedicated studies based on de-
tailed simulation of the experiment. Such studies can point out the most critical aspects
in the precision, such as e.g. specific steps in the event reconstruction.

For understanding the differences between the proposals, a generic approach can be
insightful. By neglecting some details and focusing on specific differences, the trade-
offs of a choice of one specific collider become clearer. This is especially relevant for the
250GeV energy stage, which is common to most proposals and central to the physics
program.

This work contains two studies, corresponding to the two tasks above.
The first is a full-simulation study of vector boson scattering (VBS) in the hadronic

final state at the 1TeV stage of the International Linear Collider. This study focuses
on the different reconstruction aspects in hadronic final states, which have the highest
cross-sections of all 𝑊/𝑍 decay modes.

A second, more extensive study performs electroweak fits using a generic 250GeV
𝑒+𝑒− collider with varying beam polarisation and luminosity scenarios. The trade-off
between luminosity and availability of beampolarisation is one of the key differences be-
tween the proposed colliders. This study investigates how these choices impact the pre-
cision on physical and systematic parameters - including the polarisations themselves -
and the correlations between physical parameters and systematic effects. It further di-
rectly includes a detector systematic to see whether beam polarisation leads to a smaller
impact of chirality-independent systematic effects.

The body of this thesis gives an overview of the current theory and future collider
landscapes, and describes both studies in full detail, including the datasets, methods,
and findings.

The VBS study finds that the clustering of hadronic final states, the removal of back-
groundparticles in forward jets, and semi-leptonic decayswithin jets all significantly de-
grade the resolution. High level reconstruction remains a limiting factor of electroweak
precision, and future studies can look into improving the above named reconstruction
aspects to improve the precision in hadronic events.

The study of electroweak fits finds that beam polarisation gives access to chiral ob-
servables, which allows assumption-free measurement of fermion pair production pa-
rameters, and adds significant sensitivity to the measurement of triple gauge couplings.
In this context, higher luminosities can only make up for a lack of beam polarisation
when introducing a strong set of assumptions. The measurement of beam polarisation
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in parallel to electroweak parameters with only one polarised beam leads to strong cor-
relations of polarisations with physical parameters, which disappear when both beams
are polarised. Finally, the explicitly included detector systematic does not affect any chi-
ral observables, and the fit can extract the exact shape of the systematic effect with high
precision. These results show that a careful examination of the impact of beam polarisa-
tion is necessary in order to understand the qualitative and quantitative impacts on the
achievable precision. Especially the impact on systematic uncertainties will require fur-
ther studies. For the discussion among different collider proposals, beam polarisation
will play a key role and will shape the future of electroweak precision measurements.
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Zusammenfassung

In der Teilchenphysik wird derzeit über das nächste große Elektron-Positron-Collider-
Experiment diskutiert. Dabei steht die Higgs-Produktionsschwelle bei 250GeV im Mit-
telpunkt. Es gibt mehrere Vorschläge für eine solche Anlage. Diese Vorschläge unter-
scheiden sich in Design der Maschine und des Detektors, sowie in den Energiestufen
undLuminositäten. Das Strebennach einerMaschinemit der bestmöglichenGenauigkeit
erfordert sowohl eine Optimierung der einzelnen Vorschläge als auch eine sorgfältige
Untersuchung der Unterschiede zwischen ihnen.

Die Optimierung der einzelnenMaschinen erfordert spezielle Studien auf der Grund-
lage detaillierter Simulationen der Experimente. Solche Studien können die kritischsten
Aspekte bei der Genauigkeit aufzeigen, wie z.B. bestimmte Schritte bei der Rekonstruk-
tion von Kollisionsereignissen.

Um die Unterschiede zwischen den Vorschlägen zu verstehen, ist ein allgemeiner
Ansatz aufschlussreich. Wenn man einige Details vernachlässigt und sich auf spezifis-
cheUnterschiede konzentriert, werden dieKompromisse bei derWahl eines bestimmten
Kolliders deutlicher. Dies ist besonders für die 250GeV-Energiestufe relevant, die den
meisten Vorschlägen gemein ist und im Mittelpunkt des Physikprogramms steht.

Diese Doktorarbeit umfasst zwei Studien, die den beiden oben genannten Aufgaben
entsprechen.

Die erste ist eine Studiemit vollständigerDetektorsimulation fürVektorbosonenstreu-
ung (VBS) im hadronischen Endzustand bei 1TeV des International Linear Collider.
Diese Studie konzentriert sich auf die verschiedenen Rekonstruktionsaspekte in hadro-
nischen Endzuständen, die die höchsten Wirkungsquerschnitte aller 𝑊/𝑍-Zerfallsarten
aufweisen.

In einer zweiten, umfassenderen Studie werden elektroschwache Fits an einem gener-
ischen 250GeV 𝑒+𝑒− Collider mit unterschiedlichen Strahlpolarisationen und Luminosi-
tätsszenarien durchgeführt. Der Kompromiss zwischen Luminosität und Verfügbarkeit
der Strahlpolarisation ist einer der Hauptunterschiede zwischen den vorgeschlagenen
Collidern. In dieser Studie wird untersucht, wie sich diese Entscheidungen auf die
Präzision der physikalischen und systematischen Parameter - einschließlich der Polar-
isationen selbst - und die Korrelationen zwischen physikalischen Parametern und sys-
tematischen Effekten auswirken. Darüber hinaus wird eine Detektorsystematik direkt
einbezogen, um festzustellen, ob die Strahlpolarisation zu einer geringerenAuswirkung
von chiralitätsunabhängigen systematischen Effekten führt.

Der Hauptteil dieser Arbeit gibt einen Überblick über die aktuelle Theorie und eine
Einführung in zukünftige Collider, und beschreibt beide Studien in allen Einzelheiten,
einschließlich der Datensätze, Methoden und Ergebnisse.

Die VBS-Studie zeigt, dass das Clustern von hadronischen Endzuständen, das Entfer-
nen von Hintergrundteilchen in Vorwärtsjets und semi-leptonische Zerfälle in Jets die
Auflösung erheblich verschlechtern. Die High-Level Rekonstruktion bleibt ein begren-
zender Faktor der elektroschwachen Präzision, und zukünftige Studien können sichmit
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der Verbesserung der oben genannten Rekonstruktionsaspekte befassen, um die Präzi-
sion bei hadronischen Ereignissen zu verbessern.

Die Untersuchung der elektroschwachen Fits zeigt, dass die Strahlpolarisation Zu-
gang zu chiralen Observablen bietet, was eine annahmefreie Messung von Parametern
der Fermionenpaarproduktion ermöglicht und die Messung von Dreifach-Eichkopp-
lungen deutlich empfindlicher macht. In diesem Zusammenhang können höhere Lu-
minositäten das Fehlen der Strahlpolarisation nur dann ausgleichen, wenn eine Reihe
strenger Annahmen getroffen wird. Die Messung der Strahlpolarisation parallel zu
elektroschwachen Parametern mit nur einem polarisierten Strahl führt zu starken Kor-
relationen der Polarisationen mit physikalischen Parametern, die verschwinden, wenn
beide Strahlen polarisiert sind. Die explizit berücksichtigte Detektorsystematik wirkt
sich nicht auf chiraleMessgrößen aus, und die Fits können die genaue Form des system-
atischen Effekts mit hoher Genauigkeit bestimmen. Diese Ergebnisse zeigen, dass eine
sorgfältige Untersuchung des Einflusses der Strahlpolarisation notwendig ist, um die
qualitativen und quantitativen Auswirkungen auf die erreichbare Genauigkeit zu ver-
stehen. Insbesondere die Auswirkungen auf die systematischenUnsicherheitenmüssen
weiter untersucht werden. In der Diskussion zwischen verschiedenen Collider-Vor-
schlägen wird die Strahlpolarisation eine Schlüsselrolle spielen und die Zukunft der
elektroschwachen Präzisionsmessungen bestimmen.
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1. Introduction

The field of high-energy particle physics finds itself in an extraordinary situation. It
has managed to come up with a Standard Model (SM) which explains the vast major-
ity of experimental observations. And at the same time, the SM has inherent flaws -
e.g. lacking a clear motivation for its structure and parameters, and failing to explain
cosmological observations.

The particle physics community is currently undergoing an extensive discussion on
how to address these issue with the next large-scale experiment [1]. A consensus is that
the way forward is through high-precision tests with a high-energy electron-positron
collider. Multiple proposals for such a machine are under consideration, differing in
bothmachine and detector technologies, as well as in the details of the physics program.
Knowledge about how these choices impact the final precisions is an important input
for the discussion.

One of the targets of the proposed 𝑒+𝑒− machines is the electroweak sector of the SM,
which contains the weak and electromagnetic forces, and is tightly connected to the
only recently experimentally observed Higgs sector. Electron-positron colliders pro-
vide a well-known initial state of elementary particles and a low-background detector
environment, which together allow for electroweak measurements of high precisions.
The LEP and SLC experiments in the 1990s are powerful examples of this capability [2,
3]: to this day, the results of these two 𝑒+𝑒− colliders are some of the highest-precision
measurements in the electroweak sector.

LEP and SLC also illustrate some of the trade-offs that come with the choice of a spe-
cific 𝑒+𝑒− collider design. LEP was a circular collider, which enabled measurements
with high luminosities at and above the 𝑍-pole. SLC on the other hand was a linear
collider, with a design that only allowed a moderate luminosity on the 𝑍-pole, and that
instead provided the opportunity of a spin-polarised 𝑒− beam. This polarisation gave
SLC direct access to the chiral structure of the SM, which is a fundamental part of the
electroweak sector. With around 25 times less luminosity, SLC was able to measure the
electroweak mixing angle sin2 𝜃𝑤 with approximately the same precision as LEP. The
advantages of beam polarisation are now again one of the active points of discussion for
a future 𝑒+𝑒− collider.

This thesis means to contribute to the ongoing discussions by addressing the chal-
lenges which electroweak measurements face. It starts (chapter 2) with a summary of
the current status of the SM, and how a generic effective theory approach can help in
the search for new physics. Following this is an overview of the proposed future 𝑒+𝑒−

colliders (chapter 3), with a special focus on the International Linear Collider (ILC) and
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1. Introduction

one of its detector. Preceding the new work in this thesis, there is an additional short
review (chapter 4) of previous studies that addressed similar questions as those of this
thesis, and a summary of the datasets which are the basis of the studies here (chapter 5).

The work performed for this thesis has two parts. In the first part (chapter 6), a study
of vector boson scattering at a 1TeV ILC serves to investigate the challenges that come
with the reconstruction of hadronic final states. The second, more extensive part (chap-
ter 7) uses an electroweak fit to two- and four-fermion final states to investigate how the
choice of luminosity and polarisation influence the electroweak precision at a 250GeV
𝑒+𝑒− collider.
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2. Theory

Particle physics tries to uncover the fundamental laws that govern the universe. These
laws take the shape of theoretical mathematical models, which provide predictions for
experiments to test. The general philosophy and hope is that the most fundamental un-
derlying theory is the results of very few, well-motivated assumptions, which then give
rise to all the known behaviour of the fundamental particles and forces of our universe.

This chapter reviews the model that currently best describes the experimental parti-
cles physics results - the StandardModel (section 2.1) -, and shows how the view of that
theory as a low-energy effective theory can guide the search for yet unknown physics
(section 2.2).

2.1. The current Standard Model of particle physics

Through the last century, the particle physics community has converged on a theory
that manages to describe the existence and behaviour of all known particles and forces
(with the notable exception of gravity). This theory is called the Standard Model (SM)
of particle physics.

The SM is a quantum field theory, basing itself on the principles of quantummechan-
ics and describing “matter particles” and “force particles” through fields. Underlying
this theory is the stationary-action principle with an action

𝑆 = ∫ 𝑑𝑥ℒ (2.1)

which is the integral of the lagrangian density ℒ over the space-time coordinates 𝑥. The
lagrangian ℒ, containing terms describing the fields and their interactions, fully de-
scribes the theory. By applying the stationary-action principle

𝜕𝑆
𝜕𝜙𝑖

= 0 , (2.2)

the lagrangian supplies equations for the dynamics of the fields.
The all-determining question is how the terms of the SM lagrangian look. To answer

this question, the SMpostulates additional principles that give rise to the different fields
and interactions. These principles are

• Lorentz-invariance, which respects the principles of general relativity,

3
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Fermions
𝑞𝑢

𝑞𝑑

𝑙±

𝜈𝑙

Symmetries

𝑆𝑈(3)C

𝑆𝑈(2)L ⊗ 𝑈(1)Y

𝑈(1)QED

EWSB

Bosons

{𝐺𝑎}

{𝑊𝑖, 𝐵} → {𝑊±, 𝑍⏟, 𝛾}

𝛾

𝐻

affects implies

causes gi
ve

s m
as
s

?

gives mass

Figure 2.1.: The Standard Model of particle physics revolves around gauge symme-
tries which have different effects on the different fermions (“matter particles”) and
require the existing of gauge bosons (“force particles”). In addition, theHiggsmecha-
nism introduces a Higgs boson and leads to electroweak symmetry breaking (EWSB),
giving rise to fermion and boson masses.

Table 2.1.: The SM contains four types of fermion: up-type quarks (𝑞𝑢), down-type
quarks (𝑞𝑑), charged leptons (𝑙−) and neutrinos (𝜈𝑙). Each fermion type has three
generations of fermions, given herewith their respectivemasses or experimentalmass
limits [4], and all generations of each type have the same quantum numbers (𝐼(3)

𝑊
of 𝑆𝑈(2)L, Y of 𝑈(1)Y, 𝑄 of 𝑈(1)QED and 𝐶 of 𝑆𝑈(3)C). The quantum numbers of
𝑆𝑈(2)L ⊗ 𝑈(1)Y differ between fermions of left-handed (L) and right-handed (R)
chirality.

Generation Gauge symmetry charges
1. 2. 3. 𝐈(𝟑)

𝐖 : L / R Y: L / R 𝐐 𝐂

𝐪𝐮 : 𝑢
2.2MeV

𝑐
1.27GeV

𝑡
173GeV

+1
2 / 0 −1

3 / +4
3 +2

3

𝐪𝐝 : 𝑑
4.7MeV

𝑠
93MeV

𝑏
4.18GeV

−1
2 / 0 +1

3 / +2
3 −1

3

𝐥− : 𝑒−

511keV
𝜇−

106MeV
𝜏−

1.78GeV
−1

2 / - −1 / −2 −1 0

𝝂𝐥 :
𝜈𝑒

< 1.1 eV
𝜈𝜇

< 0.19MeV
𝜈𝜏

< 18.2MeV
+1

2 / - −1 / 0 0 0
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2.1. The current Standard Model of particle physics

• Invariance under the 𝑈(1)Y ⊗ 𝑆𝑈(2)L ⊗ 𝑆𝑈(3)C gauge groups [5–8], which de-
termine the interactions of the fields, and

• The breaking of 𝑈(1)Y ⊗ 𝑆𝑈(2)L to 𝑈(1)QED through electroweak symmetry
breaking, which gives mass to the particles. [9–13]

Applying these principles leads to the SM lagrangian (given here in a summarized
form) [4]

ℒSM = −
1
4𝐹𝛼

𝜇𝜈𝐹𝛼,𝜇𝜈
⏟⏟⏟⏟⏟

Boson kin. terms
& gauge couplings

+ 𝑖 ̄Ψ𝑘 /𝐷Ψ𝑘⏟
Fermion kin. terms

& fermion-boson couplings

+ (𝑖Ψ̄𝑘
𝐿𝑦𝑘𝑛𝜙Ψ𝑛

𝑅 + h.c.)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Fermion-Higgs

couplings

+ ∣𝐷𝜇𝜙∣
2

⏟
Higgs kin. term

& fermion-boson couplings

− 𝑉 (𝜙)⏟
Higgs potential

(2.3)

containing the spin-1/2 fermion fields Ψ (“matter fields”), the spin-1 gauge bosons
(“force particles”) in the field strength tensors 𝐹 and in the covariant derivative /𝐷 =
𝛾𝜇𝐷𝜇, and the spin-0 Higgs boson 𝜙.

There are four types of fermions in the SMwith differing quantumnumbers, and each
type contains three generations differing in mass (table 2.1). Each symmetry and the
corresponding force is only relevant to a fermion if that fermion has a non-zero charge
of that symmetry (fig. 2.1).

The following explains and explores how the different sectors of the SM lagrangian
which are of relevance to this work.

2.1.1. Introducing and breaking the symmetries of electroweak interactions

The construction of the SM starts out with the lagrangian1for a set of simple massless
Dirac spinors Ψ𝑘 [14].

ℒ = 𝑖Ψ̄𝑘𝛾𝜇𝜕𝜇Ψ𝑘 ≡ 𝑖Ψ̄𝑘 /𝜕Ψ𝑘 (2.4)

Forces find their way into the lagrangian through the requirement of local gauge
symmetries. These local gauge symmetries mathematically mean that a coordinate-
dependent change of the complex phase of the fields cannot make a difference for the
behaviour of the field. The simplest possible local gauge symmetry is 𝑈(1), where the
lagrangian is invariant under a scalar change of the phase

Ψ𝑘 → Ψ′
𝑘 = 𝑒𝑖�̂�𝜑(𝑥)Ψ𝑘 , (2.5)

where �̂� is the𝑈(1)-charge operator (�̂�Ψ𝑘 = 𝑄𝑘Ψ𝑘) and𝜑(𝑥) is the coordinate-dependent
scalar phase shift.

1The langragians here include an implicit summation over the index 𝑘 of these spinors.
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2. Theory

For charge-zero fields with �̂�Ψ𝑘 = 0, the corresponding parts of the lagrangian are
automatically invariant under that gauge symmetry. For the remaining fields, the shift
(eq. (2.5)) introduce also a shift in the lagrangian.

ℒ → ℒ ′ = ℒ + Ψ̄𝑘𝑖�̂�(/𝜕𝜑)Ψ𝑘 (2.6)

This means that the simple massless Dirac lagrangian is not invariant under 𝑈(1).
To recover the invariance, the theory needs to introduce a new spin-1 vector-field 𝐴𝜇

into the lagrangian that interacts with the spinors

ℒ𝑈(1) = 𝑖Ψ̄𝑘 /𝜕Ψ𝑘 + Ψ̄𝑖𝑔𝑈(1)�̂� /𝐴Ψ𝑘 = 𝑖Ψ̄𝑘 /𝐷Ψ𝑘 (2.7)

with a corresponding coupling 𝑔𝑈(1) and the covariant derivative

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝑈(1)�̂�𝐴𝜇 . (2.8)

The transformation of 𝐴 under 𝑈(1) then can take exactly the necessary form

𝐴𝜇 → 𝐴′
𝜇 = 𝐴𝜇 −

1
𝑔𝑈(1)

𝜕𝜇𝜑 (2.9)

that leaves the new lagrangian (eq. (2.7)) invariant under 𝑈(1).
In order for the new field 𝐴𝜇 to be physically meaningful, it needs an additional term

in the lagrangian that describes the kinematics of the field. Relativity dictates the shape
of that term for the vector field

ℒ𝑈(1),Kin = −
1
4𝐹𝜇𝜈𝐹𝜇𝜈 , (2.10)

where the field strength tensor

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 + 𝑖𝑔𝑈(1) [𝐴𝜇, 𝐴𝜈] = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 (2.11)

generally contains the field commutator [𝐴𝜇, 𝐴𝜈] which ensures gauge invariance, and
which vanishes for 𝑈(1). This field strength tensor 𝐹𝜇𝜈 is identical to the field strength
tensor of electromagnetism, so that the full 𝑈(1) lagrangian described here

ℒ𝑈(1) = −
1
4𝐹𝜇𝜈𝐹𝜇𝜈 + 𝑖Ψ̄𝑘 /𝐷Ψ𝑘 (2.12)

represents quantum electrodynamics (QED) for massless fermions.

The electroweak lagrangian

The simple 𝑈(1) gauge symmetry requirement leads to the introduction of the electro-
magnetic force. For the weak force, responsible e.g. for the decay of neutrons, that same
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2.1. The current Standard Model of particle physics

gauge group does not manage to capture the experimentally established behaviour.
Specifically, the 𝑈(1) lagrangian does not violate parity invariance.

Parity invariance means that the theory is the same when flipping the sign of all
space-time coordinates (𝑥 → −𝑥). Weak decays violate parity invariance, which shows
up in different interactions with the different chiral states of the fermions. For highly-
relativistic particles (𝐸 ≫ 𝑚), those chiral states correspond to the spin direction ei-
ther with (right-handed / R) or against (left-handed / L) the flight direction. Experi-
ments show that only left-handed fermions and right-handed anti-fermions take part in
charged current interactions [15, 16].

The simplest gauge group that includes parity violation is 𝑆𝑈(2), in which fields with
a non-zero 𝑆𝑈(2)-charge (𝐼(3)

𝑊 ) are doublets. To fit the structure of the weak decays, the
participating left-handed fermions must form pairs of either a charged lepton and a
neutrino or an up-type quark and a down-type quark

(𝜈𝑒
𝑒 )

𝐿
, … , (𝑢

𝑑)
𝐿

, … (2.13)

and the right-handed fermions are singlets

𝑒𝑅, … , 𝑢𝑅, … , 𝑑𝑅, … . (2.14)

with an 𝑆𝑈(2)-charge of zero.

Only the left-handed fields change under this 𝑆𝑈(2)L gauge symmetry

Ψ𝐿 → Ψ′
𝐿 = 𝑒𝑖 ∑3

𝑗=1
𝜎𝑗
2 𝛼𝑗(𝑥)Ψ𝐿 , (2.15)

where 𝜎𝑗 are the Pauli matrices, and 𝛼𝑗 are the phase shifts. Right-handed fields stay
invariant.

Ψ𝑅 → Ψ′
𝑅 = Ψ𝑅 (2.16)

Like for the 𝑈(1) case (eq. (2.6)), the lagrangian is not invariant under this trans-
formation. To regain invariance, the lagrangian requires the introduction of three new
fields 𝑊1, 𝑊2, and 𝑊3, which transform under 𝑆𝑈(2)L to exactly cancel out the terms
arising from transformation of the fermions.

In the SM, this 𝑆𝑈(2)L gauge symmetry, together with a 𝑈(1)Y gauge symmetry with
a charge Y and a field 𝐵, form the electroweak lagrangian

ℒ𝑈(1)Y⊗𝑆𝑈(2)L = 𝑖Ψ̄𝑘 /𝐷Ψ𝑘 −
1
4𝐵𝜇𝜈𝐵𝜇𝜈 −

1
4𝑊𝜇𝜈

𝑖 𝑊𝑖
𝜇𝜈 (2.17)

where 𝐵𝜇𝜈 and 𝑊𝜇𝜈
𝑖 are the field strength tensors of the 𝐵 and 𝑊 fields and 𝐷𝜇 is the
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2. Theory

new covariant derivative

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔′Ŷ𝐵𝜇 + 𝑖𝑔
𝜎𝑖
2 𝑊𝑖

𝜇 . (2.18)

with the couplings 𝑔′ and 𝑔 of the 𝑆𝑈(2)L and 𝑈(1)Y, respectively.
The fields observed in charged and neutral current interactions are linear combina-

tions of the 𝑊 and 𝐵 fields

𝑊±
𝜇 =

1
√2

(𝑊1
𝜇 ∓ 𝑖𝑊2

𝜇) (2.19)

⎛⎜
⎝

𝑍𝜇
𝐴𝜇

⎞⎟
⎠

= (cos 𝜃𝑤 − sin 𝜃𝑤
sin 𝜃𝑤 cos 𝜃𝑤

) ⎛⎜
⎝

𝑊3
𝜇

𝐵𝜇
⎞⎟
⎠

(2.20)

where 𝑊± and 𝑍 are the charged and neutral bosons of the weak interaction, 𝐴 the
photon of QED, and 𝜃𝑤 is the electroweak mixing angle (“Weinberg angle”) with the
relation

tan 𝜃𝑤 =
𝑔′

𝑔 . (2.21)

Electroweak symmetry breaking

In the discussion so far, all fermions and bosons are massless. To describe reality, the
SM needs to introduce mass terms into the lagrangian both for the fermions and for the
𝑊± and 𝑍 bosons. Here, the theory runs into a problem, because Dirac mass terms like
𝑚Ψ̄Ψ are not invariant under 𝑆𝑈(2)L. The SM solves this by introducing a mechanism
called electroweak symmetry breaking (EWSB) [9–13].

This mechanism first introduces a new scalar 𝑆𝑈(2)L-doublet 𝜙 - the “Higgs field” -
into the lagrangian together with an 𝑆𝑈(2)L-invariant potential

𝐿𝜙 = (𝐷𝜇𝜙)† 𝐷𝜇𝜙 − 𝜇2𝜙†𝜙 − 𝜆 (𝜙†𝜙)2 (2.22)

where 𝜇2 and 𝜆 are free parameters of the potential.
If 𝜇2 is negative, then the potential has a minimum at a non-zero value 𝜙0

|𝜙0| =
𝜗

√2
= √−

𝜇2

2𝜆 (2.23)

where 𝜗 is the vacuum expectation value (VEV). This means that at low energies the
Higgs field assumes a fixed non-zero minimum, which locally breaks the 𝑆𝑈(2)L gauge
symmetry.

The masses of the gauge bosons and the fermions then arise through coupling terms
to the Higgs field 𝜙 in the lagrangian. At low energies, the Higgs field in those coupling
terms assumes the VEV, and the coupling terms transform intomass terms. Thismecha-
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2.1. The current Standard Model of particle physics

𝑍/𝛾

𝑊+

𝑊−

(a) Triple gauge coupling

𝑊+

𝑊−

𝑊+

𝑊−

𝑊+

𝑊−

𝑍/𝛾

𝑍/𝛾

(b) Quartic gauge couplings

Figure 2.2.: The gauge structure of the 𝑆𝑈(2)L ⊗ 𝑈(1)Y group predicts the existence
of (a) triple and (b) quartic gauge boson self-couplings.

nism spontaneously breaks the symmetry at low energies, leaving only invariance under
𝑈(1)QED, and leaves the overall theory invariant under 𝑈(1)Y ⊗ 𝑆𝑈(2)L.

The mechanism also predicts a Higgs boson 𝐻, representing the perturbative devi-
ations from the VEV, which is massive and interacts with all massive fermions and
bosons. In 2012, the ATLAS and CMS experiments at the LHC discovered a candidate
for such aHiggs bosonwith amass of around 125GeV [17, 18], and subsequent analyses
so far show that all observed couplings behave like the SM predicts [19, 20].

Gauge boson self-interactions

The field strength tensor of 𝑈(1) (eq. (2.11)) contained a vanishing commutator term
[𝐴𝜇, 𝐴𝜈]. For the fields 𝑊𝑖

𝜇 of 𝑆𝑈(2)L, those commutators do not vanish and lead to an
additional term in the field strength tensor.

𝑊𝜇𝜈
𝑖 = 𝜕𝜇𝑊𝜈

𝑖 − 𝜕𝜈𝑊𝜇
𝑖 − 𝑔𝜖𝑖𝑗𝑘𝑊𝜇

𝑗 𝑊𝜈
𝑘 (2.24)

This 𝑊𝜇
𝑗 𝑊𝜈

𝑘 term in the field strengths predicts the existence of gauge boson self inter-
actions (fig. 2.2) involving either three boson (triple gauge couplings) or four bosons
(quartic gauge couplings). The existence of these couplings is a prediction of the fun-
damental gauge structure of the SM. For this reason, experimental explorations of the
nature of the SM often target these gauge boson self-interactions.

In addition, the quartic gauge boson interaction has a crucial interplaywith theHiggs.
The massive modes of the weak boson introduce a divergence into that interaction,
which leads to an interaction probability that increases linearly with the center-of-mass
energy. At an energy around 1.2TeV, this would violate unitarity. The interference with
interactions like 𝑊+𝑊− → 𝐻 → 𝑊+𝑊− cancels that divergence if the Higgs has a mass
below 1TeV. Any changes in the behaviour of the Higgs compared to the SM can lead
to strong changes in this sensitive cancellation. This puts additional emphasis on the
experimental exploration of quartic gauge couplings.
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2. Theory

2.1.2. The strong interaction of Quantum Chromo-Dynamics

The third interaction in the SM is the strong force, gaining its name from the strong
attraction of the protons and neutrons in nuclei. In the SM, this interaction corresponds
to the 𝑆𝑈(3)C gauge symmetry of quantum chromo-dynamics (QCD) [8, 21, 22].

The corresponding charge 𝐶 of 𝑆𝑈(3)C is called the color charge, and only the quarks
have a non-zero color charge. Like the doublets for 𝑆𝑈(2), each quark forms a triplet
under 𝑆𝑈(3)C, where the three triplet-components correspond to the three color-states.
The transformation of the quark fields under 𝑆𝑈(3)C

Ψ → Ψ′ = 𝑒∑8
𝑎=1 𝑖 𝜆𝑎

2 𝜃𝑎(𝑥)Ψ (2.25)

introduces eight coordinate-dependent phase shifts 𝜃𝑎. These shifts again lead to new
terms in the lagrangian, and require the introduction of eight new gauge fields 𝐺𝑎 - the
gluons - to restore the gauge invariance.

Analogous to the other gauge symmetries, the 𝑆𝑈(3)C lagrangian

𝐿𝑆𝑈(3)C = 𝑖Ψ̄𝑘 /𝜕Ψ𝑘 − 𝑔𝑆𝐺𝜇
𝑎 ∑

𝑞
Ψ̄𝑞𝛾𝜇

𝜆𝑎
2 Ψ𝑞 −

1
4𝐺𝜇𝜈

𝑎 𝐺𝑎
𝜇𝜈 (2.26)

contains a gluon-fermion interaction term with the strong coupling 𝑔𝑆, and the field
strength tensor

𝐺𝜇𝜈
𝑎 = 𝜕𝜇𝐺𝜈

𝑎 − 𝜕𝜈𝐺𝜇
𝑎 − 𝑔𝑆𝑓𝑎𝑏𝑐𝐺

𝜇
𝑏 𝐺𝜈

𝑐 . (2.27)

Similar to the 𝑆𝑈(2) case, the 𝑆𝑈(3)C field strength tensor contains a gluon self-coupling
term.

Hadronic jet formation

TheQCD interactions have someuniqueproperties that do not appear in the electroweak
interactions, and that pose unique challenges to the detection of final states that include
quarks or gluons (“hadronic final states”).

One is what is called “color confinement”, which means that only states of total color-
charge zero (“color neutrals”) can appear as free particles in nature [24]. As a conse-
quence, experiments can only detect combinations of quarks known as hadrons, and
can never directly detect individual quarks or gluons.

Another unique property of QCD is the shape of potential between a bound quark
anti-quark pair [25]

𝑉𝑞 ̄𝑞 = −
4
3 ⋅

𝛼𝑆
𝑟 + 𝑘 ⋅ 𝑟 (2.28)

where 𝑟 is the distance between the pair and 𝛼𝑆 = 𝑔2
𝑆/4𝜋 is the strong coupling constant.

At small distances, or equivalently at collision energies, the potential becomes negli-
gible and the quarks are quasi-free. This effect is called asymptotic freedom [26, 27].
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2.1. The current Standard Model of particle physics

Figure 2.3.: Quarks in the final state form jets through the radiation of gluons and
quark-antiquark pair production, followed by the hadronizationwhere all quarks and
antiquarks combine to color-neutral hadrons. The graph shows this process on the
example of 𝑞 ̄𝑞 production from an 𝑒+𝑒− collision. Copied from [23].

At large distances, the potential increases linearly. This means that at some distance
the potential energy surpasses the combinedmass of an additional quark-antiquark pair.
At that distance, the original pair will radiate a gluon that creates a new pair. For a
high-energy quark-antiquark pair, this process keeps repeating itself and leads to a par-
ton shower of gluons, quarks and anti-quarks. In addition, color confinement means
that these partons must form color-neutral hadrons in a process called hadronisation.
This means that the individual quarks and gluons in the final state of a collision are not
directly visible in experiments, and instead produce a shower of hadrons (fig. 2.3). Ex-
periments can only reconstruct such showers of hadrons, which are referred to as “jets”
[28, 29].

Jet clustering for experiments

Since experiments can only reconstruct jets, and not directly the quarks and gluons of
the final state, they require a procedure to assign the particles in the detector to jets. For
this, the experiments use jet clustering algorithms.

The underlying idea of jet clustering algorithms is that the particles originating from
the same origin are in someway “close to each other” in the detector (fig. 2.4). A simple
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Figure 2.4.: Hadronic final states form jets of particles in the detector, seen here in an
𝑒+𝑒− → 𝑞 ̄𝑞 candidate event at ALEPH. Copied from [30].

way to define this close-ness is the angle between particles. Modern algorithms often
use distance measures that combine angular and momentum information [31–33].

Once a distance measure is set, the jet clustering algorithms perform an iterative clus-
tering. In each step, the algorithm finds the two objects with the smallest distance and
replaces them by a merged object with the summed four-momentum. This combining
continues until it reaches a given stopping criterium. Such a criterium can either be a
minimum number of objects (jets) or a maximal distance above which objects are no
longer combined.

Two such iterative jet clustering algorithms play a role in this work; the exclusive 𝑘𝑇
algorithm [34], and the Durham or 𝑒𝑒-𝑘𝑇 algorithm [35].

In the exclusive 𝑘𝑇 algorithm, the distance parameter

𝑑𝑖𝑗 = min (𝑝2
𝑇,𝑖, 𝑝2

𝑇,𝑗) ⋅
Δ𝑅2

𝑖𝑗

𝑅2 (2.29)

uses the transversemomenta 𝑝𝑇 and the angular distancesΔ𝑅 = √(𝑦𝑖 − 𝑦𝑗)
2

+ (𝜑𝑖 − 𝜑𝑗)
2

between particle 𝑖 and 𝑗, with the pseudorapidity 𝑦 and the azimuthal angle 𝜑, and the
jet-radius parameter 𝑅. Additionally, this algorithm defines a distance to the beam

𝑑𝑖𝐵 = 𝑝2
𝑇,𝑖 . (2.30)

of particle 𝑖. If at any iteration step that 𝑑𝑖𝐵 of a particle 𝑖 is the smallest distance, then
the algorithm discards that particle. The underlying assumption is that beam-induced
backgrounds mainly produce particles with low 𝑝𝑇.
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𝑒−

𝑒+

ISR

ISR

FSR

FSR

𝑓

̄𝑓𝑍/𝛾

Figure 2.5.: General Feynman diagram for SM fermion pair production in 𝑒+𝑒− colli-
sion, including initial state radiation (ISR) and final state radiation (FSR).

In Durham jet clustering, the distance parameter

𝑑𝑖𝑗 = 2min (𝐸2
𝑖 , 𝐸2

𝑗 ) ⋅ (1 − cos 𝜃𝑖𝑗) (2.31)

uses the energies 𝐸 of the two particles and the angle 𝜃𝑖𝑗 between their directions at the
interaction point. The original version of this algorithm used the normalised distance
parameter 𝑦𝑖𝑗 = 𝑑𝑖𝑗/√𝑠.

Both of the algorithms contain free parameters. In both cases, this includes the defi-
nition of a stopping criterium. In the exclusive 𝑘𝑇 algorithm this additionally includes
a radius parameter 𝑅. For a given analysis, the expected signal final state and the dom-
inant backgrounds determine the choice of these parameters.

2.1.3. Calculating fermion pair production

The previous sections introduced the different terms and aspects of the SM lagrangian
through the introduction of gauge symmetries. With this mathematical theory at hand,
the task becomes to predict what will happen in the experiments. For example, the
theory can predict the expected number of events with a given initial and final state.
This event number

𝑁 = 𝐿 ⋅ 𝜎 (2.32)

divides into the luminosity 𝐿 and the interaction cross-section 𝜎. The properties of the
colliding beams (e.g. particle density) determine the luminosity, and the interaction
cross-section encodes the probability of a given scattering process of two beamparticles.

The following paragraphs give an overview of the calculation of the cross-section and
how experiments use the results, using the specific example fermion pair production in
𝑒+𝑒− collision (fig. 2.5) which is of special interest to this study.

For a 2 → 2 scattering process with negligible incoming and outgoing particle masses
(𝐸 ≫ 𝑚), the differential cross-section in the center-of-mass frame has the general form
[36]

𝑑𝜎
𝑑Ω∗ =

1
64𝜋2𝑠

∣ℳ∣2 , (2.33)

where Ω∗ is the angular phase-space element for the final state particles, ℳ is the matrix
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𝑒−

𝑒+

𝑓

̄𝑓
𝑍

(a)

𝑒− (𝑝𝑒−) 𝑒+ (𝑝𝑒+)

̄𝑓 (𝑝 ̄𝑓)

𝑓 (𝑝𝑓)

𝜃

(b)

Figure 2.6.: For simplicity, the calculation here focuses only on s-channel 𝑍 exchange
(a). Given a collision energy, the scattering angle 𝜃 fully determines the kinematics
of that process in the center-of-mass frame (b).

element of the scattering process, and

𝑠 = (𝑝𝑖1 + 𝑝𝑖2)2 = (𝐸𝑖1 + 𝐸𝑖2)2 − ( ⃗𝑝𝑖1 + ⃗𝑝𝑖2)2 (2.34)

is the squared center-of-mass energy calculated from the four-momenta of the two in-
coming particles.

The matrix element ℳ encodes all the potential intermediate processes for the given
scattering. It is here where the model of the fundamental particle interactions enters.
The calculation of such matrix elements uses the Feynman rules for each possible inter-
mediate state [37].

Calculation on the 𝑍-pole

The calculation of the matrix element ℳ for a given process needs to sum up all pos-
sible intermediate states. For fermion pair production (excluding the 𝑒+𝑒− final state)
in leading order perturbation theory, two intermediate s-channel processes are possi-
ble: 𝛾-exchange or 𝑍-exchange. In collisions with √𝑠 ≈ 𝑚𝑍, the 𝛾-contribution becomes
negligible and only relevant process is 𝑍-exchange (fig. 2.6a).

The couplings of the 𝑍 to fermions differ for the different chiralities of incoming and
outgoing particles. In the SM, the only non-zero 𝑍 → 𝑓 ̄𝑓 vertices are those where the
fermion and the anti-fermion have opposite chiralities. This leaves four possible pro-
cesses

𝑒−
𝐿 𝑒+

𝑅 → 𝑓𝐿 ̄𝑓𝑅 (short: 𝐿𝑙),
𝑒−
𝐿 𝑒+

𝑅 → 𝑓𝑅 ̄𝑓𝐿 (short: 𝐿𝑟),
𝑒−
𝑅𝑒+

𝐿 → 𝑓𝐿 ̄𝑓𝑅 (short: 𝑅𝑙),
𝑒−
𝑅𝑒+

𝐿 → 𝑓𝑅 ̄𝑓𝐿 (short: 𝑅𝑟).

(2.35)
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2.1. The current Standard Model of particle physics

The shortened notation uses capital letters tomark the initial electron chirality and lower
case letters to mark the final state fermion chirality. Since the initial or final states have
different quantum numbers, these four processes do not interfere with each other and
have separate matrix elements.

Using the Feynman rules for this process [36], the shape of the matrix element e.g.
for 𝑒−

𝐿 𝑒+
𝑅 → 𝑓𝐿 ̄𝑓𝑅

ℳ𝐿𝑙 = [ ̄𝑣 (𝑝𝑒+)⏟
incoming

𝑒+

(−𝑖𝑐𝑒
𝐿𝑔𝑍𝛾𝜇𝑃𝐿)⏟⏟⏟⏟⏟⏟⏟

𝑒𝑒𝑍 vertex

𝑢 (𝑝𝑒−)⏟
incoming

𝑒−

]
−𝑖𝑔𝜇𝜈

(𝑠 − 𝑚2
𝑍 + 𝑖𝑚𝑍Γ𝑍)⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑍 propagator

[ ̄𝑢 (𝑝𝑓)⏟
outgoing

𝑓

(−𝑖𝑐𝑓
𝐿𝑔𝑍𝛾𝜈𝑃𝐿)⏟⏟⏟⏟⏟⏟⏟

𝑓 𝑓 𝑍 vertex

𝑣 (𝑝 ̄𝑓)⏟
outgoing

̄𝑓

]

(2.36)
reflects the different parts of the Feynman diagram (fig. 2.6a). Therein, 𝑢 and 𝑣 are the
particle and antiparticle spinors, respectively, 𝑃𝐿 is the projector for the left-handed chi-
rality, 𝑚𝑍 and Γ𝑍 are the mass and decay width of the 𝑍, 𝑐𝑓

𝐿/𝑅 are the fermion couplings
to the 𝑍

𝑐𝑓
𝐿 = 𝐼(3)

𝑊 − 𝑄𝑓 sin2 𝜃𝑤 , 𝑐𝑓
𝑅 = −𝑄𝑓 sin2 𝜃𝑤 , (2.37)

and 𝑔𝑍 is the coupling constant of the 𝑍

𝑔𝑍 =
√4𝜋𝛼

sin 𝜃𝑤 cos 𝜃𝑤
. (2.38)

The calculation of the square of this matrix element (details in [36]) ends up with a
simple form

∣ℳ𝐿𝑙∣
2 = 𝑔4

𝑍 (𝑐𝑒
𝐿)2 (𝑐𝑓

𝐿)
2 ∣∣∣∣

1
(𝑠 − 𝑚2

𝑍 + 𝑖𝑚𝑍Γ𝑍)
∣∣∣∣

2
∣[ ̄𝑣 (𝑝𝑒+) 𝛾𝜇𝑃𝐿𝑢 (𝑝𝑒−)] 𝑔𝜇𝜈 [ ̄𝑢 (𝑝𝑓) 𝛾𝜈𝑃𝐿𝑣 (𝑝 ̄𝑓)]∣

2

= 𝑔4
𝑍 (𝑐𝑒

𝐿)2 (𝑐𝑓
𝐿)

2
∣𝜒(𝑠)∣2 (1 + cos 𝜃)2

(2.39)

that only includes the couplings, the only free final state coordinate 𝜃 corresponding
to the direction of the final-state fermion wrt. the electron direction (fig. 2.6b), and the
center-of-mass energy in the term

𝜒(𝑠) =
𝑠

𝑠 − 𝑚2
𝑍 + 𝑖𝑚𝑍Γ𝑍

. (2.40)
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2. Theory

Finally, the squaredmatrix element directly yields the differential cross-section (eq. (2.33))

𝑑𝜎 𝑓
𝐿𝑙

𝑑 cos 𝜃 =
𝑁𝑓

𝐶𝑔4
𝑍

32𝜋𝑠 ∣𝜒(𝑠)∣2 (𝑐𝑒
𝐿)2 (𝑐𝑓

𝐿)
2

(1 + cos 𝜃)2 (2.41)

𝑑𝜎 𝑓
𝐿𝑟

𝑑 cos 𝜃 =
𝑁𝑓

𝐶𝑔4
𝑍

32𝜋𝑠 ∣𝜒(𝑠)∣2 (𝑐𝑒
𝐿)2 (𝑐𝑓

𝑅)
2

(1 − cos 𝜃)2 (2.42)

𝑑𝜎 𝑓
𝑅𝑙

𝑑 cos 𝜃 =
𝑁𝑓

𝐶𝑔4
𝑍

32𝜋𝑠 ∣𝜒(𝑠)∣2 (𝑐𝑒
𝑅)2 (𝑐𝑓

𝐿)
2

(1 − cos 𝜃)2 (2.43)

𝑑𝜎 𝑓
𝑅𝑟

𝑑 cos 𝜃 =
𝑁𝑓

𝐶𝑔4
𝑍

32𝜋𝑠 ∣𝜒(𝑠)∣2 (𝑐𝑒
𝑅)2 (𝑐𝑓

𝑅)
2

(1 + cos 𝜃)2 (2.44)

where the azimuthal angle is already integrated out, and the calculation of the other
chirality combinations follows the same steps as for 𝐿𝑙. This now also includes the num-
ber of colored states 𝑁𝑓

𝐶, which is one for leptons and three for quarks. All chirality
combinations show a (1 ± cos 𝜃)2 shape.

Asymmetry observables on the 𝑍-pole

The differential cross-sections contain the fermion couplings 𝑐𝑓
𝐿/𝑅, which themselves

contain the electroweak mixing angle in the form sin2 𝜃𝑤 (eq. (2.37)). This angle is
experimentally interesting due to its sensitivity to higher-order corrections [2].

One way to access this parameter is through the fermion chiral asymmetry [2]

𝐴𝑓 =
(𝑐𝑓

𝐿)
2

− (𝑐𝑓
𝑅)

2

(𝑐𝑓
𝐿)

2
+ (𝑐𝑓

𝑅)
2 =

2 (1 − 4 ∣𝑄𝑓∣ sin2 𝜃𝑤)

1 + (1 − 4 ∣𝑄𝑓∣ sin2 𝜃𝑤)
2 . (2.45)

Thismethod alsominimizes the impact of common systematic uncertainties, which can-
cel out in the ratio. For charged leptons with ∣𝑄𝑓∣ = 1, the asymmetry takes the simple
form

𝐴𝑙±
sin2 𝜃𝑤≈1/4

≈ 8 (
1
4 − sin2 𝜃𝑤) . (2.46)

Colliders running on the 𝑍-pole (where eq. (2.41) is valid) can access the chiral asym-
metries directly through the asymmetry observables

𝐴𝐿𝑅 =
𝜎𝐿𝑅 − 𝜎𝑅𝐿
𝜎𝐿𝑅 − 𝜎𝑅𝐿

= 𝐴𝑒 , (2.47)

𝐴𝑓
𝐿𝑅,𝐹𝐵 =

(𝜎 𝑓
𝐿𝑅,𝐹 − 𝜎 𝑓

𝑅𝐿,𝐹) − (𝜎 𝑓
𝐿𝑅,𝐵 − 𝜎 𝑓

𝑅𝐿,𝐵)

𝜎 𝑓
𝐿𝑅,𝐹 + 𝜎 𝑓

𝑅𝐿,𝐹 + 𝜎 𝑓
𝐿𝑅,𝐵 + 𝜎 𝑓

𝑅𝐿,𝐵

=
3
4𝐴𝑓 , (2.48)

where 𝐴𝐿𝑅 is the final-state independent left-right asymmetry and 𝐴𝑓
𝐿𝑅,𝐹𝐵 is the final-
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2.1. The current Standard Model of particle physics

state dependent left-right forward-backward asymmetry, and

𝜎 𝑓
𝐿𝑅/𝑅𝐿,𝐹 = ∫

1

0

𝑑𝜎 𝑓
𝐿𝑅/𝑅𝐿

𝑑 cos 𝜃 𝑑 cos 𝜃 , 𝜎 𝑓
𝐿𝑅/𝑅𝐿,𝐵 = ∫

0

−1

𝑑𝜎 𝑓
𝐿𝑅/𝑅𝐿

𝑑 cos 𝜃 𝑑 cos 𝜃 (2.49)

are the integrated chiral cross-sections in the forward and backward parts of the detec-
tor. This notation uses “LR” to refer to the 𝑒−

𝐿 𝑒+
𝑅 initial state and “RL” to refer to the 𝑒−

𝑅𝑒+
𝐿

initial state.
These formulas for the asymmetry observables assume independent cross-section

measurements of the two initial-states. In reality, the experiments require polarised
beams (section 3.1.3) to measure both of the initial-states, and the degree of polarisa-
tion enters into the experimental formulas for these asymmetry observables [38].

If a collider does not have access to polarised beams, it can still measure the unpo-
larised forward-backward asymmetry

𝐴𝑓
𝐹𝐵 =

𝜎 𝑓
𝐹 − 𝜎 𝑓

𝐵

𝜎 𝑓
𝐹 + 𝜎 𝑓

𝐵

=
3
4𝐴𝑒𝐴𝑓 (2.50)

where
𝜎 𝑓

𝐹/𝐵 = 𝜎 𝑓
𝐿𝑅,𝐹/𝐵 + 𝜎 𝑓

𝑅𝐿,𝐹/𝐵 . (2.51)

This unpolarised asymmetry only grants access to the combined asymmetry product
𝐴𝑒𝐴𝑓.

Including photon-exchange

The formulas above focus on the case of √𝑠 ≈ 𝑚𝑍, where the pure s-channel 𝑍 contribu-
tion dominates. At different center-of-mass energies, the contribution from 𝛾 exchange
and the interference between 𝑍 and 𝛾 contribution are in general not negligible.

Without derivation here, the general formula for that case is [39]

𝑠

𝜋𝛼2𝑁𝑓
𝐶

𝑑𝜎 𝑓
𝐿𝑅/𝑅𝐿

𝑑 cos 𝜃 = 𝑄2
𝑓 (1 + cos2 𝜃)⏟⏟⏟⏟⏟⏟⏟

𝛾 exchange

− 2𝑄𝑓 [(𝑣𝑒 ± 𝑎𝑒) 𝑣𝑓 (1 + cos2 𝜃) + 2 (𝑣𝑒 ∓ 𝑎𝑒) 𝑎𝑓 cos 𝜃]Re𝜒(𝑠)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑍/𝛾-interference

+ [(𝑣𝑒 ± 𝑎𝑒)
2 (𝑣2

𝑓 + 𝑎2
𝑓 ) (1 + cos2 𝜃) ± 4 (𝑣𝑒 ± 𝑎𝑒)

2 𝑣𝑓𝑎𝑓 cos 𝜃] ∣𝜒(𝑠)∣2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑍 exchange

(2.52)
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𝑒−

𝑒+

𝑓

̄𝑓𝑍∗

𝑞2=𝑠𝑒+𝑒−

“return-to-𝑍 ”−−−−−−−−−→

𝑒−

𝑒+ 𝛾

𝑓

̄𝑓𝑍
𝑞2 ≈ 𝑚2

𝑍

Figure 2.7.: In the return-to-𝑍 process at center-of-mass energies √𝑠 above the 𝑍 mass,
an incoming particle radiates an ISR photon that returns the 𝑍 to its on-shell mass. A
realistic treatment of this process goes beyond the tree-level discussion here.

where

𝑣𝑓 = 𝑐𝑓
𝐿 + 𝑐𝑓

𝑅 = 𝐼(3)
𝑊 − 2𝑄𝑓 sin2 𝜃𝑤 ,

𝑎𝑓 = 𝑐𝑓
𝐿 − 𝑐𝑓

𝑅 = 𝐼(3)
𝑊

(2.53)

are the vector (𝑣𝑓) and axial-vector (𝑎𝑓) couplings of fermion 𝑓.
This formula shows that the value of 𝜒 determines the strength of each contribution.

While the 𝛾 contribution is always of order 1, the interference term is proportional to
Re𝜒 and the 𝑍 contribution proportional to ∣𝜒∣2. Taking for example the values at the
𝑍-pole and for 250GeV collisions

Re𝜒 (𝑚2
𝑍) = 0 , ∣𝜒 (𝑚2

𝑍)∣2 ≈ 1336

Re𝜒 ((250GeV)2) ≈ 1.15 , ∣𝜒 ((250GeV)2)∣
2

≈ 1.33
(2.54)

shows that the 𝑍 contribution is by far dominant on the 𝑍-pole, and that at high energies
all contribution have the same order-of-magnitude.

Radiative return to the 𝑍-pole

Beyond the tree-level diagram for 𝑍-exchange, one of the incoming particles can radiate
an initial-state radiation (ISR) photon. This process requires an additional 𝑒𝑒𝛾 vertex,
and therefore sees a suppression by a factor 𝛼 = 𝑒2/(4𝜋). At the same time, this addi-
tional radiation can reduce the effective energy of the 𝑒+𝑒− back to the 𝑍 mass resonance
(fig. 2.7), significantly increasing the cross-section (eq. (2.54)). That process is called a
radiative return to the 𝑍.

An estimate of the cross-section for this process at a 250GeV 𝑒+𝑒− machine yields that
the return-to-𝑍 cross-section is in the order of tens of picobarn [40]2. Future colliders
with luminosities in the several ab−1 range can expect tens of millions of such return-
to-𝑍 resonance events. This can provide away tomeasure 𝑍 resonance parameterswith-
out directly running on the 𝑍-pole, as a later part of this study will show (section 7.6).

2The estimate uses eq. 4 in the reference together with known 𝑍 resonance parameters.
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2.2. The Standard Model as an effective field theory

2.1.4. What the SM (probably) cannot explain

The Standard Model describes the data from particle physics experiments to a remark-
able precision overmany orders of magnitude, and has correctly predicted particles and
their properties before their experimental observation [41]. At the same time, a grow-
ing set of experimental observations eludes the expectations of the SM. Some of the
perhaps most notable shortcomings of the SM include the absence of explanations for
the gravitational force, for the matter-antimatter asymmetry [42], and for dark matter.

Dark matter (DM) is an elusive matter that only very weakly if at all interacts within
the three forces of the SM, and has so far only shown itself through its gravitational im-
pact [43, 44]. The evidence for thismatter permeates all through the fields of astronomy
and cosmology, ranging from the velocity distributions in galaxies [45], to gravitational
lensing observations [46–48] and cluster formation in the early universe [49] (to name
just a few). These observations also set requirements on the nature of dark matter [43]:
it must have been non-relativistic (“cold”) in the structure formation stage of the uni-
verse, and it can only have very weak interactions with itself and with ordinary matter.
One candidate for suchmatter areweakly-interactingmassive particles (WIMPs), which
can potentially also solve other open questions in particle physics [50].

WIMPs are a generic group of potential new particles with masses in the GeV to TeV
range [51]. Thismeans these candidates are in the reach of the current or next generation
of colliders. Given the weak interactions and potentially large mass, there is no guaran-
tee that any collider will be able to directly observe the resonance that corresponds to
new DM particles. Colliders therefore need to search both for resonances and for po-
tentially small deviations in cross-sections that hint at new particles beyond the energy
reach of the collider.

2.2. The Standard Model as an effective field theory

Current and future particle physics experiments try to find clues that help explain the
well-known shortcoming of the SM. The search for such beyond the SM (BSM) physics
requires a description of what the new physics could look like in the experiments.

Unfortunately, the evidence for BSM physics like dark matter so far does not point
towards a very specific type of new physics. A description of potential BSM effects at
current and future experiments therefore needs to be generic, with the hope that the ex-
periments gradually or suddenly limit the space of potential BSM candidates. Effective
field theory (EFT) offers such a generic BSM parametrisation for physics that is out-
side the direct energy reach of current experiments (section 2.2.1). The measurement
of the EFT couplings allows an exploration of the nature of these potential BSM effects
in the data (section 2.2.2). This will be of special importance for one part of this study
(chapter 7), which uses the EFT approach to describe anomalous triple gauge couplings
(section 2.2.3).
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2. Theory

2.2.1. The SM as low-energy effective theory

The underlying idea of effective theories is very general; not everythingmatters at every
scale. At a given (energy, size, ...) scale, there will be effects that are far off in either di-
rection. An effective theory can treat such effects either with a simplified approximation
or by ignoring them completely, as appropriate. To this day there is no universal theory
of everything, so that every theory in use today is in some way an effective theory.

The description so far defines effective theories in a “top-down”way, assuming know-
ledge and existing of a more detailed theory. Reality also often works in the reverse
‘bottom-up‘ way; we know that our theory works very well at one scale, and that it
breaks at some other scale. In that case, the effective theory mindset offers a path to
supplement the current theory in a generic way that can point us in the direction of the
underlying detailed theory. That path builds on two assumptions. First, that the scale
difference of the previously ignored effects to the current theory suppresses the impact
of those new effects. Second, that the new effects do not break the current theory at the
scale where we already know that the current theory works. These two assumptions
provide the instructions for a generic way to describe new effects: add potential new
effects to the theory that respect all rules of the theory at the current scale, and suppress
those effects by the new scale. Experiments can then look for these suppressed new
effects at the current scale. The results will restrict the options for a new, more detailed
theory by specifying what needs to happen in the limit of going to the current scale.

This also applies to the SM, which in its current form ignores dark matter and grav-
ity. And the SM describes the current collider results well. One reason for this can be
that the current colliders do not reach the necessary collision energy to see high-mass
BSM effects. This is the assumption behind the Standard Model effective field theory
(SMEFT) approach [52].

SMEFT assumes that the high energy scale Λ of the new physics suppresses the new
effects, and that all symmetry assumptions of the SM are valid at the current scale. The
effective theory expresses itself through an effective lagrangian ℒeff. This lagrangian
consists of the SM lagrangian ℒSM and operators 𝒪(𝑑)

𝑖 of higher orders 𝑑 [53, 54].

ℒeff = ℒSM + ∑
𝑑>4,𝑖

𝑐(𝑑)
𝑖

Λ𝑑−4 𝒪(𝑑)
𝑖

= ℒSM +
1

Λ2 ∑
𝑖

𝑐(6)
𝑖 𝒪(6)

𝑖 +
1

Λ4 ∑
𝑖

𝑐(8)
𝑖 𝒪(8)

𝑖 + …
(2.55)

The new energy scale Λ normalises the new operator terms to the mass-dimension of
ℒSM and suppresses their effect, and the Wilson coefficients 𝑐(𝑑)

𝑖 describe the coupling
strength of each operator. All operators respect Lorentz invariance and the 𝑆𝑈(3)C ⊗
𝑆𝑈(2)L⊗𝑈(1)Y gauge invariance, and baryon and lepton number conservation prohibits
operators of odd dimension [55]. With increasing dimension 𝑑, the operators contain
vertices with more and more fields or momentum terms.
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Figure 4: Total cross section with unpolarised beams as a function of the c.m. energy
in the SM and for one anomalous coupling differing from zero. Some curves coincide
as explained in the text.

by the propagator factor (1+β2− 2β cosΘ)−1. Altogether, these gauge cancellations
preserve the unitarity of the SM. We also plot in Fig. 4 the total cross section for
one anomalous coupling differing from zero. At high energies each coupling mainly
contributes via the W helicity amplitude where it occurs with the highest power
of γ, i.e. either linearly or quadratically according to Table 1. At sufficiently high
energy, the square of an anomalous term dominates over its interference term with
the SM amplitude. In the limit β → 1 the couplings g1, g4, g5 and κ̃ enter with
a factor γ, whereas κ, λ, λ̃ enter with a factor γ2, which explains their different
behaviour in Fig. 4. Some couplings have equal coefficients in this limit, which leads
to a degeneracy of the curves. We also remark that even if more than one anomalous
coupling differs from zero, anomalous amplitudes belonging to couplings of different
C or P eigenvalue do not interfere in the total cross section with unpolarised beams
(cf. Sect. 3.3).

11

Figure 2.8.: The effect of EFT operators increases with energy, as seen here for vari-
ations of the individual triple gauge couplings (see section 2.2.3) on the total unpo-
larised cross-section of 𝑒+𝑒− → 𝑊+𝑊−. Copied from [57].

Since Λ is large compared to the energy scale of the current measurements, it is pos-
sible to treat ℒeff as a perturbative expansion, and to break the sum of new operators at
some power of 1/Λ. This is necessary for the experiments, since the number of free cou-
plings is infinite in the full series. Stopping the expansion at lowest order - at 1/Λ2 and
operator dimension 6 -, the SMEFT lagrangian contains 59 additional operators [56].

2.2.2. Experimental insight using the EFT approach

Experiments look for the impact that the new EFT operators leave on the measured
differential or inclusive cross-sections. The factor 𝑐(𝑑)

𝑖 /Λ𝑑−4, composed of the Wilson
coefficient 𝑐(𝑑)

𝑖 and the new energy scale Λ, determines the magnitude of the contribu-
tion of the 𝑖-th (relevant) EFT operator. A measurement is therefore only sensitive to
the combined factor

𝐹𝑖 =
𝑐(𝑑)
𝑖

Λ𝑑−4 . (2.56)

These combined factors 𝐹𝑖 have a mass dimension of GeV4−𝑑. For convenience, the mea-
surements often multiply those factors by a relevant physics scale (e.g. the 𝑊 mass)
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to measure a dimensionless coupling. This is the case for example for the triple gauge
couplings described below (section 2.2.3).

The center-of-mass energy of a collider crucially determines the sensitivity to the EFT
operators. In general, the impact of the EFT operators increases with energy (fig. 2.8),
and more so if the operator contains momentum-terms. For that reason, the precision
on the factors 𝐹𝑖 generally increases with the center-of-mass energy of the collider, as-
suming a constant luminosity.

Another important aspect of an EFT measurement is the subset of operators that the
measurement uses. One criterion is the restriction to only those operators that play
a role in the production of the investigated processes. In addition, the measurement
must define an order in the inverse of the new physics scale Λ at which it stops the EFT
expansion [58]. The lowest possible order (for electroweak processes) is beyond the
pure SM is 1/Λ2, corresponding to dimension-six operators.

By default, experiments resort to breaking the EFT expansion at dimension-six, since
it provides the simplest setup to look for any deviations from the SM. There are two
reasons why EFT measurements would go beyond dimension-six. The first reason is
that dimension-six operators are relatively generic with each operator affecting a large
set of processes. This can be an issue if one is interested in parametrising potential
deviations in a specific process, and measurements in other processes already strongly
restrict all the relevant operators. One example for this is the parametrisation of quartic
gauge couplings, where only the dimension-8 expansion includes operators specific to
that coupling [59].

A second reason to employ higher dimensional operators is if the EFT measurement
itself indicates that they are relevant. For a measurement with the dimension-six opera-
tors, the EFToperatorsmodify the SMcross-section by an interference termproportional
to 1/Λ2 and a pure dim.-6 EFT term proportional to 1/Λ4.

𝜎meas
𝜎SM

= 1 + ∑
𝑖

𝐹𝑖𝛼𝑖 + ∑
𝑖,𝑗

𝐹𝑖𝐹𝑗𝛽𝑖𝑗 = 1 + ∑
𝑖

𝑐(6)
𝑖
Λ2 𝛼𝑖 + ∑

𝑖,𝑗

𝑐(6)
𝑖 𝑐(6)

𝑗

Λ4 𝛽𝑖𝑗 (2.57)

Here, there 𝛼 and 𝛽 generically describe the impact of the operators in the cross-section.
To test the relevance of higher-order operators, the measurement can perform an extrac-
tion of the 𝐹𝑖 with andwithout the 1/Λ4 term. The interference-terms of the dimension-8
operators have the same 1/Λ4-prefactor. If the inclusion of the 1/Λ4 term makes a sig-
nificant difference in the measured values of the 𝐹𝑖 at dimension-six, then stopping of
the EFT-expansion before dimension-8 operators is not valid.

Previous studies have shown that stopping at dimension-6 does not significantly change
the results on simulated SM events [60]. This study therefore uses only a small subset
dimension-six operators relevant to triple gauge couplings (section 2.2.3), and does not
need to worry about the appearance of effects of higher-order operators.
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2.2.3. Anomalous Triple Gauge Couplings

Gauge boson self-interactions are a special target since they encode the fundamental
gauge structure of the interactions (section 2.1.1). Part of this study focuses on one
such process: the triple gauge boson interactions with the corresponding triple gauge
couplings (TGC).

The Standard Model at tree-level only contains so-called charged triple-gauge boson
interactions with the vertices 𝑊𝑊𝑍 and 𝑊𝑊𝛾, often generalized as 𝑊𝑊𝑉 (𝑉 = 𝑍/𝛾).
In a first very general step, the phenomenological effective lagrangian for these vertices
includes all operators up to dimension-six which conform with the Lorentz structure of
the bosons [61, 62].

𝑖
𝑔𝑊𝑊𝑉

ℒ𝑊𝑊𝑉
eff = 𝑔𝑉

1 𝑉𝜇 (𝑊−
𝜇𝜈𝑊+𝜈 − 𝑊+

𝜇𝜈𝑊−𝜈) + 𝜅𝑉𝑊+
𝜇 𝑊−

𝜈 𝑉𝜇𝜈

+
𝜆𝑉
𝑚2

𝑊
𝑉𝜇𝜈𝑊+𝜌

𝜈 𝑊−
𝜌𝜇 + 𝑖𝑔𝑉

5 𝜀𝜇𝜈𝜌𝜎 [(𝜕𝜌𝑊−𝜇) 𝑊+𝜈 − 𝑊−𝜇 (𝜕𝜌𝑊+𝜈)] 𝑉𝜎

+ 𝑖𝑔𝑉
4 𝑊−

𝜇 𝑊+
𝜈 (𝜕𝜇𝑉𝜈 + 𝜕𝜈𝑉𝜇) −

̃𝜅𝑉
2 𝑊−

𝜇 𝑊+
𝜈 𝜀𝜇𝜈𝜌𝜎𝑉𝜌𝜎

−
�̃�𝑉

2𝑚2
𝑊

𝑊−
𝜌𝜇𝑊+𝜇

𝜈𝜀𝜈𝜌𝛼𝛽𝑉𝛼𝛽

(2.58)
This general Lagrangian contains two overall couplings of the two vertices

𝑔𝑊𝑊𝛾 = 𝑒 , 𝑔𝑊𝑊𝑍 = 𝑒 cot 𝜃𝑤 , (2.59)

and 14 additional complex couplings (𝑔𝑉
1 , 𝑔𝑉

4 , 𝑔𝑉
5 , 𝜅𝑉, ̃𝜅𝑉, 𝜆𝑉, �̃�𝑉; 𝑉 = 𝑍/𝛾), correspond-

ing to 28 free real-numbered variables. In the pure SM the four couplings 𝑔𝑍
1 , 𝑔𝛾

1 , 𝜅𝑍 and
𝜅𝛾 are one, all others are zero.

The LEP parametrisation

The LEP experiments were the first ones to achieve a precision good enough to mea-
sure the triple gauge boson interaction [3, 58]. Since the precision was not good enough
to measure all possible 28 parameters, the experiments introduced a “LEP parametri-
sation” that employs additional assumptions and constraints to reduce the number of
parameters [54, 58, 61, 63]. The study here uses that same parametrisation, with the
assumptions described in the following.

First is the restriction to C- and P-conserving parameters. This step brings the largest
reduction in the number of parameters, leaving only 6 free parameters: 𝑔𝛾

1 , 𝑔𝑍
1 , 𝜅𝛾, 𝜅𝑍,

𝜆𝛾, and 𝜆𝑍. At LEP, the motivation for this harsh restriction was a lack of sensitivity and
statistics [58]. Introducing electromagnetic gauge invariance further fixes 𝑔𝛾

1 = 1. The
last assumption is the invariance under 𝑆𝑈(2)L ⊗ 𝑈(1)Y, which requires two additional
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conditions.
Δ𝜅𝑍 = −Δ𝜅𝛾 tan2 𝜃𝑤 + Δ𝑔𝑍

1 , 𝜆𝛾 = 𝜆𝑍 (2.60)

This imposition of the gauge invariances also means that the remaining operators are
SMEFT operators.

Only three free couplings remain in the LEP parametrisation of the TGCs: 𝑔𝑍
1 , 𝜅𝛾, 𝜆𝛾.

Their SM values are 𝑔𝑍
1 = 𝜅𝛾 = 1 and 𝜆𝛾 = 0, and the study here uses the deviations

from these values: Δ𝑔𝑍
1 , Δ𝜅𝛾, and Δ𝜆𝛾.

BSM physics can introduce non-zero values in these three deviation parameters. For
example, MSSM models predict deviations in the 10−4 to 10−2 range [64, 65], and new
vector-like leptons typically introduce deviations from a below a few 10−4 to maximally
a few 10−3 [66]. A precision at the 10−4 will be necessary to ultimately confirm or ex-
clude such models.

The future of TGCs

Limited sensitivity and statistics required the reduction of the parameter set at LEP. Fu-
ture 𝑒+𝑒− likely will have sufficient precision to perform a global fit of all dimension-six
SMEFT operators [57, 67]. A full SMEFT operator set minimizes the set of assumptions,
and takes potential correlations between different effects into account (e.g. TGCs and
𝑍𝑓 𝑓 couplings). While the study here still uses the LEP parametrisation - both for tech-
nical reasons and simplicity -, future studies can andwill use the available tools to move
towards a full set of SMEFT operators.
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3. Future 𝑒+𝑒− collider proposals

The field of particle physics is currently focusing on high precisionmeasurements. Open
questions like the nature of electroweak symmetry breaking and dark matter require
searches for very rare processes. In high-energy physics, a future collider can shed light
on these questions if it reaches the required precisions.

An 𝑒+𝑒− collider will be the ideal environment for these kinds of precision studies, as
previously demonstrated by LEP and SLD [2, 3]. The use of 𝑒± beams has the advan-
tage of colliding elementary particles with no known substructure, leading to collisions
with a well-defined energy and few backgrounds in the central detector. In addition,
the detector occupancy is low compared to for example 𝑝𝑝 colliders, which allows for
detector optimisation that targets high-precision event reconstruction.

This chapter first presents a general overview of the physics motivation and com-
mon aspects of different 𝑒+𝑒− collider proposals (section 3.1). It then zooms in on a
particular example; the International Linear Collider (section 3.2) and its ILD detector
(section 3.3). This collider both bares direct relevance for the work presented here and
serves as a concrete example of what such a machine looks like.

3.1. Overview and common aspects

Recent discussions on the future of high-energy particle physics include several propos-
als for future 𝑒+𝑒− colliders [68]. These proposals contain a lot of commonalities, and
subtle differences, both on the side of the physics goals as well on the technologies. This
section explains the physical motivation for these proposals and the corresponding run
plans, and gives an overview of some important commonalities and differences between
possible future machines.

3.1.1. Physics at future 𝑒+𝑒− colliders

Thephysics programof the proposed 𝑒+𝑒− colliders provides insight intowhich collision
energies are essential for such a future collider.

The primary target of the currently proposed machines is a thorough measurement
of the Higgs sector, in order to understand electroweak symmetry breaking and to look
for unexpected effects in this unique part of the SM. A great effort is already underway
at the LHC to explore this sector [70], and the current results indicate agreement with
the SM Higgs with around or above 10% precision in the most precise channels. Future
high luminosity-LHC (HL-LHC)measurements will provide precision of a few percent
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Figure 3.1.: The production cross-sections of different final states in 𝑒+𝑒− collisions
varies with collision energy, so that the different stages of 𝑒+𝑒− colliders can focus on
different processes. Copied from [69].
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Figure 3.2.: TheHiggsstahlung process is the lowest energyHiggs production process
accessible at 𝑒+𝑒− colliders.

or worse, depending on the final state [71]. A large set of BSM models causes devia-
tions at the percent level or below, escaping even the HL-LHC sensitivity [72]. For this
reason, future 𝑒+𝑒− colliders aim at precision at or below the percent level in the Higgs
couplings [73, 74]. In addition to the Higgs, the top quark plays a special role as the
heaviest known elementary particle. Like for the Higgs, only hadron colliders have so
far measured the top directly, and 𝑒+𝑒− colliders will provide complementary precise
measurement of its properties [75]. More generally, 𝑒+𝑒− colliders can explore the pre-
dominantly electroweak interactions for any newphysics, and perform focused searches
for any kind of unexpected signature [76].

The energy-dependent cross-sections of those target processes (fig. 3.1) set the nec-
essary collision energy range of the colliders. Any measurement of the Higgs sector in
𝑒+𝑒− collisions requires a minimum energy of around 240 − 250GeV, where the Hig-
gsstrahlung process (fig. 3.2) peaks as the first significant Higgs production process.
Higher collision energies up to the multi-TeV range grant access to additional Higgs
production channels, and to measurements of the Higgs self-coupling. Measurements
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Table 3.1.: Running plans for future 𝑒+𝑒− colliders consider energies from the 𝑍-pole
to multi-TeV stages [77], including optional (*) ILC stages. Only the linear collider
proposals use longitudinal beam polarisation.

√𝑠 𝐿 [ab−1] |𝒫𝑒− | / |𝒫𝑒+ |

ILC (*) 𝑚𝑍 0.1 80% / 30%
(*) 2𝑚𝑊 0.5 80% / 30%
250GeV 2.0 80% / 30%
350GeV 0.2 80% / 30%
500GeV 4.0 80% / 30%
(*) 1TeV 8.0 80% / 20%

CLIC 380GeV 1.0 80% / 0
1.5TeV 2.5 80% / 0
3TeV 5.0 80% / 0

FCC-ee 𝑚𝑍 150 0 / 0
2𝑚𝑊 10 0 / 0
240GeV 5 0 / 0
365GeV 1.5 0 / 0

CEPC 𝑚𝑍 16 0 / 0
2𝑚𝑊 2.6 0 / 0
240GeV 5.6 0 / 0

of the top quark show a similar situation, requiring at least 350GeV for 𝑡 ̄𝑡 production,
and with additional channels available at higher energies.

Electroweak processes like 𝑍/𝛾 and 𝑊𝑊 production have the highest cross-sections
at all planned energies. At low energies down to the 𝑍 pole, the high cross-sections
allow exceptionally high statistics studies of the 𝑊 and 𝑍 bosons. Meanwhile, higher
energy collisions will have a higher sensitivity to high-mass BSM effects. Any energy
stage of a future 𝑒+𝑒− collider can therefore contribute to the program of EW precision
measurements. It is an active field of discussion whether the best gain will come from
high-statistics low-energy stages or lower-statistics high-energy stages.

3.1.2. Advanced 𝑒+𝑒− proposals

In the last decades, the high-energy physics community has proposedmultiple concepts
for high-energy 𝑒+𝑒− colliders. Now, the discussions focus on four of these proposals,
differing in shape and running parameters like energy range and luminosity. These col-
liders are two linear colliders (ILC [78–83] andCLIC [84–86]) and two circular colliders
(FCC-ee [87, 88] and CEPC [89, 90]). All of these proposals include energy stages at
or close to the Higgsstrahlung peak around 250GeV, demonstrating the focus of these
machines on precise Higgs measurements. For this reason, these machines are often
referred to as “Higgs factories”. Besides those stages, the proposed energy stages run
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Figure 3.3.: Integrated luminosities of the current running plans for future 𝑒+𝑒− collid-
ers [77], including optional ILC stages. Circular colliders (FCC-ee, CEPC) focus on
lower energy stages, while linear colliders (ILC, CLIC) can access TeV-range energies.

from the 𝑍-pole around 91GeV to multi-TeV energies, depending on the collider design
(fig. 3.3).

The circular colliders focus on the lower energy stages from the 𝑍-pole up to the 𝑡 ̄𝑡
threshold. A circular design has the principal advantage that it can collide each bunch
many times after accelerating it once to the collision energy. This allows a high collision
frequency for a lowper-collision power input. For high-energy 𝑒± beams, the beam loses
significant energy due to synchrotron radiation in the bendingmagnets, whichweakens
this advantage. This energy loss increases quartically with the gamma factor or energy
of the beam, and decreases only linearly with the collider radius [91].

Δ𝐸synchrotron ∼
𝛾4

𝑅 =
1
𝑅 (

𝐸
𝑚𝑒

)
4

(3.1)

If a colliderwith a fixed power increases the collision energy, then the beam intensity de-
creases rapidly - and with that the luminosity. To remedy this, the collider can increase
the input power or radius like 𝐸4. Since this exponentially increases the cost, current
circular collider proposals do not go beyond the 𝑡 ̄𝑡 threshold.

Linear colliders provide an alternative that does not suffer from that radiation loss
[92], at the trade-off of only using each bunch once in collision. The length and gradi-
ent of the linear accelerator determine the maximal beam energy. This means that the
cost of such linear colliders increases linearly with collision energy, compared to the ex-
ponential increase for circular colliders. For collisions around 200GeV the cost of both
machines is roughly the same [93], and above that the linear collider becomes more
economic. This is why linear colliders generally can focus on higher energy stages up to
3TeV. Runs below the 𝑍𝐻 peak are in principle also possible with linear colliders with
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Table 3.2.: The four possible chirality combinations of 𝑒+𝑒− collisions, corresponding
(for 𝑚𝑒 ≈ 0) to the spin-direction in the colliding beams. The beam polarisations
𝒫𝑒± in a dataset determine how much each combination contributes to the measured
cross-section (see eq. (3.3)). Adapted from [94].

Spin: weighted contribution to
𝑒− Flight: 𝑒+ polarised cross-section

R R 1+𝒫𝑒−

2 ⋅ 1+𝒫𝑒+

2 ⋅ 𝜎𝑅𝑅

L L 1−𝒫𝑒−

2 ⋅ 1−𝒫𝑒+

2 ⋅ 𝜎𝐿𝐿

L R 1−𝒫𝑒−

2 ⋅ 1+𝒫𝑒+

2 ⋅ 𝜎𝐿𝑅

R L 1+𝒫𝑒−

2 ⋅ 1−𝒫𝑒+

2 ⋅ 𝜎𝑅𝐿

a lower luminosity than circular colliders.
In addition to the energy range, the collider proposals differ in the availability of lon-

gitudinal beam polarisation. While the circular proposals do not use longitudinally po-
larised beams, the linear proposals polarise one or both of the beams.

3.1.3. Beam polarisation

One of the key differences between the collider proposals is the availability of beam
polarisation. This beam property grants direct access to the chirality-dependence of
particle interactions, and is key to the work presented here. The following paragraphs
will introduce the concept and its basic advantages.

Beam polarisation is an ensemble property of the beam. It describes to which extent
the spins of beam particles align along a certain direction. When the alignment is along
the particle flight direction it is called longitudinal polarisation, perpendicular to the
flight direction it is called transversal. The explanations here limit themselves to longi-
tudinal polarisation.

The alignment of a particle spin along its flight direction corresponds to the particles
helicity. For particles with momenta much higher than their rest mass - e.g. electrons at
high energy colliders - the helicity corresponds to the chirality of the particle (table 3.2).
Right-handed chirality (“R”) corresponds to the spin pointing in the flight direction,
and left-handed chirality (“L”) to spin pointing against flight direction. The value of
the polarisation describes the asymmetry between the number of right- and left-handed
particles in the particle bunch.

𝒫𝑒± =
𝑁±

𝑅 − 𝑁±
𝐿

𝑁±
𝑅 + 𝑁±

𝐿
(3.2)

Its sign determines whether right-handed (𝒫 > 0) or left-handed (𝒫 < 0) particles
predominate, and the absolute value is a measure of that dominance.
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The polarisation is an important input to any 𝑒+𝑒− collidermeasurement because elec-
troweak interactions depend on the chirality (section 2.1.1). Anymeasured cross-section
is a combination of the different chiral cross-sections, i.e. the cross-sections for each of
the four possible chiral combinations (LR,RL,LL,RR; table 3.2). For beams with fixed
polarisations, the fraction of each chirality in the beams determines the contribution of
that chirality.

𝑁±
𝑅

𝑁±
𝐿 + 𝑁±

𝑅
=

1 + 𝒫𝑒±

2 ,
𝑁±

𝐿
𝑁±

𝐿 + 𝑁±
𝑅

=
1 − 𝒫𝑒±

2 (3.3)

The measured polarised cross-section (differential or integrated) is a weighted combi-
nation of the chiral cross-sections [95].

𝜎pol (𝒫𝑒−, 𝒫𝑒+) =
1 + 𝒫𝑒−

2 ⋅
1 + 𝒫𝑒+

2 ⋅ 𝜎𝑅𝑅 +
1 − 𝒫𝑒−

2 ⋅
1 − 𝒫𝑒+

2 ⋅ 𝜎𝐿𝐿+

1 − 𝒫𝑒−

2 ⋅
1 + 𝒫𝑒+

2 ⋅ 𝜎𝐿𝑅 +
1 + 𝒫𝑒−

2 ⋅
1 − 𝒫𝑒+

2 ⋅ 𝜎𝑅𝐿

(3.4)

A precise knowledge of the polarisation is therefore a necessity for any cross-section
measurement. Colliders use dedicated polarimeter setups for such measurements (e.g.
section 3.2.3).

When a collider has access to a polarised beam, it can generally also “flip” the spins
in the beam to change the sign of the polarisation. This is possible either directly at
the source or in dedicated magnet setups [80]. The result is that a polarised collider
can divide its total luminosity amongst multiple datasets with different beam polarisa-
tion combinations. Each of these polarised datasets has a different dominant chirality
combination.

If the switch between the different polarisation signs of a beam is possible on a short
enough timescale (e.g. train-to-train), then a majority of systematic effects will corre-
late amongst the datasets. This is referred to as “fast spin flip” or “fast helicity reversal”.
The SLC already implemented such a method for a polarised electron beam [96]. While
the availability for fast spin flipping does not affect the physics in the collisions, it plays
an important role in reducing systematic effects in polarised measurements [60], as de-
scribed later in this section.

Methods to polarise a beam

In order to make use of polarisation at the interaction point (IP), colliders need to po-
larise the beam at some point before the collision.

Linear colliders opt to produce polarised beams directly with a polarised source, and
then use a set of spin-turningmagnets to deliver that polarisation to the IP. The SLC, the
only previous linear collider, used this technique for the 𝑒− beam [98]. At the basis of
the polarised source is a circularly polarised photon beam, for example a laser. When
hitting a target, the polarisation of the photons transmits itself to a longitudinal polari-
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Figure 3.4.: SLC produced polarised 𝑒− bunches by circularly polarising a laser which
then hit a GaAs target. Copied from [96].
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Figure 3.5.: HERA polarimeter data shows the 1 − exp(−𝑡/𝜏) transverse polarisation
build-up in a circular storage rings. Copied from [97].

sation of the emitted particles [99]. The SLC used a polarised laser hitting a GaAs target
(fig. 3.4), and achieved up to almost 80% polarisation [100]. Future colliders can em-
ploy essentially the same scheme for the 𝑒− beam. The creation of a polarised 𝑒+ beam
can follow a similar principle of a polarised laser beam, and requires additional effort
due to the lack of positrons in nature (see section 3.2.2).

Circular colliders can rely on another effect that naturally arises in storage rings; the
Sokolov-Ternov effect [101]. When traversing a magnetic field, the spins in a particle
beam slowly align themselves with the preferred direction opposite to the magnetic
field. In a storage ring, the bunches align their spins along the dipole magnetic fields
over time, leading to a transverse polarisation of the beam. The collision can either use
this transverse polarisation directly, or use spin rotator magnets to turn the polarisation
into the longitudinal direction at the IP. Many storage rings have used this method, in-
cluding PETRAwith transverse polarisation [102], andHERAwith both transverse and
longitudinal polarisation [103]. At LEP, it was instead more advantageous to energy-
dependent depolarising resonances for a precise energy calibration [104].

The rise-time of the Sokolov-Ternov polarisation build-up can limit the use in the ex-
periments. The polarisation builds up exponentially in time like 1−exp(−𝑡/𝜏) (fig. 3.5)
with a characteristic build-up time 𝜏 that is a function of the magnetic field and the par-
ticle energy. For storage rings, the build-up time behaves roughly like 𝑅3/𝐸5, where 𝑅
is the ring radius and 𝐸 the beam energy [105]. At the same time, radiation damping
limits the energy of a storage ring, and the corresponding energy loss per circulation
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(a) (b)

Figure 3.6.: (a) The effective polarisation 𝒫eff gains from both electron and positron
beam polarisation. (b) Polarising the positron beam in addition to the electron beam
significantly reduces the relative uncertainty on 𝒫eff, which is the primary systematic
uncertainty on 𝐴𝑒. Copied from [94].

behaves like 𝐸4/𝑅 [91]. Assuming that storage rings will adjust the radius to the energy
like 𝑅 ∼ 𝐸4, higher energy storage rings will have polarisation rise-times which sharply
increase with 𝐸7.

For future circular colliders like the FCC-ee, the rise-times until a usable polarisation
(> 5%) will be multiple hours [106]. At the same time, such machines rely on top-
up injection modes to achieve high-luminosities and stable beam qualities, because the
beam-beam interaction leads to lifetimes of less than an hour [88]. Colliding bunches
therefore cannot build up sufficient polarisation for longitudinally polarised runs, so
that the use of transversal polarisation is limited to the high-precision LEP-like energy
measurement with dedicated non-colliding bunches [107]. Very small residual longi-
tudinal polarisation could still be present in the colliding bunches. This requires a mea-
surement either with polarimeter or from the collision data, so that the interpretation of
electroweak precision observables can properly take that into account [108]. For these
reasons, only linear colliders consider longitudinal polarisation runs and all colliders
need precise longitudinal polarisation measurements.

Basic advantages of beam polarisation

The discussion on the production of polarised beam at future 𝑒+𝑒− colliders shows that
the availability of beam polarisation is a question of machine design and effort. Current
proposals include all possible options; zero, one, or both beams polarised. This makes
the potential advantages of beam polarisation an important point in the comparison of
these proposals. There are three basic types of advantages from beampolarisation [109–
111]; datasets with increased signal purity, direct access to the chiral behaviour of inter-
actions, and a reduced impact of systematic uncertainties. At the core of these benefits
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is the chirality-dependence of the SM and potential BSM interactions (section 2.1.1).
Adirect consequence of this chirality-dependence is that the different polariseddatasets

of a polarised collider, differing in the sign of the polarisations, will have different dom-
inant processes. For given analysis there is always at least one dataset with a more
favorable signal-to-background ratio than an unpolarised dataset. For example, 𝑊 bo-
son only couple to left-handed 𝑒− and right-handed 𝑒+, and the prominence of those
specific chiralities will determine the amount of 𝑊 production [109]. At the same time,
the other datasets will act as control regions for the backgrounds of that analysis. This
increases the sensitivity of the collider. In practice, datasets with opposite-sign polarisa-
tions give the highest sensitivity to s-channel processes that produce a spin-one particle
(e.g. 𝑍,𝛾), while same-sign datasets are unique opportunities to search for BSM physics
in relatively background-free environment [110].

The chirality-dependence is itself of interest for collider experiments. Beam polarisa-
tion provides access to the chiral behaviour of any visible SM or BSM physics [109–111].
At SLC, electron polarisation gave direct sensitivity to the chiral asymmetry of 𝑍 pro-
duction at the 𝑍 pole [112]. This allowed the most sensitive individual measurement
of the Weinberg angle [113]. The precision was similar to the combination of the un-
polarised LEP measurements which had a factor 25 more events [2]. For a polarised
collider, this sensitivity to the chiral asymmetry depends on the effective polarisation

𝒫eff =
𝒫𝑒+ − 𝒫𝑒−

1 + 𝒫𝑒+𝒫𝑒−
, (3.5)

which is also the most important systematic uncertainty. Future colliders can increase
𝒫eff by a larger 𝑒− polarisation and also polarising the 𝑒+ beam (fig. 3.6a), increasing
the sensitivity to 𝐴𝑒. Polarised 𝑒+ beams have the additional advantage of reducing the
relative uncertainty on 𝒫eff (fig. 3.6b).

As seen already for 𝒫eff, the chirality-dependence of interactions also has a general
consequence for systematic uncertainties, . Systematic effects are largely independent
of the polarisation setting. If the collider provides fast spin flipping, then the systematic
effects will fully correlate between the polarised datasets [114]. This in principle allows
a decoupling from the physical effects, and even a measurement of the exact shape of
the systematic effect [115]. Not much work has been done to test this hypothesis (sec-
tion 4.1), and part of the work presented here will address this issue (section 7.4).

3.1.4. Beam-induced backgrounds

A common issue for all collider experiments is that backgrounds can occupy the detec-
tors simultaneously to the particles originating from the hard scatterings. The type and
severity of such backgrounds depends on the colliding particle types and the machine
parameters. In 𝑒+𝑒− colliders, the most severe of such backgrounds are beam-induced
backgrounds and photon-photon collisions [117].
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Figure 3.7.: Beam-induced backgrounds in 𝑒+𝑒− collisions mainly originate from
beamstrahlung at the IP, which can lead to fermion pair production from 𝛾𝛾 colli-
sions. Copied from [116].

Beam-induced backgrounds originate either from beam-beam interactions at the IP
or from interactions of the beams with the machine close to the IP. When the two beams
get close to each other, they start seeing each others electromagnetic field, which causes
the bunches to focus onto each other and radiate beamstrahlung photons (fig. 3.7). The
beamstrahlung photons in that strong field can create 𝑒+𝑒− pairs which then deflect in
the field and fly into the detector.

In addition to these beamstrahlung-produced 𝑒+𝑒− pairs, the beam particles can ra-
diate virtual photons that collide to produce fermion pairs. This is the dominant back-
ground at 𝑒+𝑒− colliders [118]. The results are again low-angle 𝑒+𝑒− pairs, as well as
low-angle quark pairs. While 𝑒+𝑒− pairs fly at very low angles and are mainly relevant
for the very forward calorimeters, low-angle quark pairs can hadronize to jets that oc-
cupy a larger angular range of the forward-region. For this reason, low-𝑝𝑇 hadrons are
a challenge to jet clustering in low-angle jets (chapter 6).

Additional beam-induced backgrounds originate before the beams arrive at the IP
[117]. These include synchrotron radiation from when the beams pass through the fo-
cusing magnets, and muons from collisions of the beam halo with the collimators. Re-
construction algorithms can reliably identify such backgrounds by their direction and
where they hit the detector. These backgrounds therefore play a minor role compared
to originating from 𝛾𝛾 collisions.

3.2. The International Linear Collider

The International Linear Collider (ILC, fig. 3.8) is currently themost advanced proposal
for a high-energy 𝑒+𝑒− collider [78–83, 119]. It is a linear collider with two polarised
beams and possible center-of-mass energies ranging from the 𝑍-pole (91GeV) up to
1TeV.

The core part of this machine are its main linear accelerators (“linacs”), composed
of superconducting radio-frequency accelerating cavities. These cavities have an accel-
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Figure 3.8.:The International Linear Collider - shown here for its 250GeV and 500GeV
(in brackets) baseline - is a linear 𝑒+𝑒− colliderwith twopolarised beams. Copied from
[119].

Figure 3.9.: The ILC beams consist of “bunch-trains” with a frequency of 5Hz
(upgradable to 10Hz), where each train is 727 𝜇s long and contains 1312 bunches
(upgradable to 2625 bunches) [81]. Copied from [120].

erating gradient of around 31.5 − 35MV/m [121], so that each GeV of beam energy
requires around 30m of acceleration for that beam. More generally the accelerator also
determines the structure and timing of the particle bunches and with that the luminos-
ity [81]. The ILC beam consists of bunches which further group into “bunch trains”
(fig. 3.9). In the first stage, the repetition rate of each train is 5Hz, and each train con-
sists of 1312 bunches. A luminosity upgrade can increase the number of bunches per
train to 2625. This allows to collect multiple attobarns of luminosity on the timescale of
5 − 10 years, depending on the energy stage.

The running scenario (fig. 3.10) reflects the baseline physics program of the collider
[73]. It starts with a run at 250GeV close to the 𝑍𝐻 threshold. After this initial run,
an energy upgrade will allow runs at the 𝑡 ̄𝑡 threshold at 350GeV and at 500GeV where
the main Higgs production mode becomes vector boson fusion. The design of the ma-
chine also allows runs directly on the 𝑍-pole around 91GeV and - with an extension
of the linacs - at 1TeV [122]. This large energy range, together with the polarisation of
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Figure 3.10.: The baseline running scenario of the ILC foresees a first stage at 250GeV,
followed by an extension of the machine that allows runs at 350GeV and 500GeV.
Copied from [73].

Figure 3.11.: The ILC has one interaction point, at which two detectors can switch
places using a push-pull method. Copied from [82].
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𝑒−

𝑒−

𝑒+

𝑒+

𝛾
𝜃

𝜃

Figure 3.12.: Feynman diagram of t-channel Bhabha scattering. QED-dominated low-
angle Bhabha scattering serves as a “standard candle” for the luminosity measure-
ment.

Figure 3.13.: The very-forward region of the detectors at the IP includes an electro-
magnetic calorimeter for the luminosity measurement via low-angle BhaBha events
(“LumiCal”). Copied from [125].

both beams, guarantees a diverse physics program and flexibility for the case that new
physics appears anywhere within this range.

Essential for the physics program are also the detectors at the interaction point (IP)
that measure the results of the collisions. The ILC has one IP for collisions, and foresees
a push-pull method that allows two detectors to share the luminosity 50-50. While one
is measuring, the other is “parked” (fig. 3.11). The two proposed detectors concepts are
the International LargeDetector (ILD) [82, 123] and the SiliconDetector (SiD) [82, 124].
Both of these are high-precisionmultipurpose detectors with full angular coverage. The
complementarity of those two detectors will provide precise and reliable measurements
along the whole center-of-mass energy range.

The following presents some detailed aspects which are relevant to this work.

3.2.1. Luminosity measurement

The luminosity is an inevitable input to every cross-section measurement at a collider.
The ILC will require a precision of around Δ𝐿/𝐿 = 1 ⋅ 10−3 for its physics program [82].

For an accurate determination, colliders usuallymeasure the luminosity directly from
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collision data. This requires a process that can serve as a reference, with an already pre-
cisely known cross-section. For 𝑒+𝑒− colliders, the standard choice is low-angle Bhabha
scattering 𝑒+𝑒− → 𝑒+𝑒−. At low scattering angles, the pure QED process of t-channel
photon exchange dominates this scattering (fig. 3.12) [126]. A precise calculation of
this QED process is possible [127], allowing a determination of the luminosity from the
measured number of low-angle Bhabha events.

𝐿 = 𝑁Bhabha/ ∫ 𝜎Bhabha𝑑Ωdetector (3.6)

The detectors at the ILC interaction point foresee a dedicated low-angle electromag-
netic calorimeter (“LumiCal”, fig. 3.13)whichwillmeasure the low-angle Bhabha events
[125]. Each of the two detectors places the LumiCal at a slightly different position, lead-
ing to angular coverages of 𝜃 ∈ [31 − 77]mrad for ILD and 𝜃 ∈ [40 − 90]mrad for SiD
[82].

A dedicated study with the ILD LumiCal at center-of-mass energies of 500GeV and
1TeV found that systematic uncertainties dominate the luminosity precision [125]. The
effects that cause the largest uncertainties include the deflection of the scattered parti-
cles in the electromagnetic fields of the bunches, background events and beam back-
grounds, and the LumiCal energy scale. Taking these and more effects into account,
the study finds relative uncertainties of Δ𝐿/𝐿 = 2.6 ⋅ 10−3 at 500GeV and 1.6 ⋅ 10−3

at 1TeV. Such precisions do not meet the ILC luminosity precision goals yet, further
studies are necessary to further reduce the systematic uncertainties. In the presented
work, the introduced precisions serve as a conservative estimate of the ILC luminosity
measurement.

3.2.2. Polarisation implementation

The ILC aims to polarise both of its beams, which is of key importance to the ILC physics
program [94]. For the physics program it is best to have the highest possible degree of
polarisation. To also gain a better control of systematic effects, it is important that the
machine can perform a fast flip of the spin directions before the IP. This ensures that the
systematic effects correlate between the different polarisation directions of the beam.

The SLC already used a polarised electron source with fast spin flipping capabilities
[96, 100], and the ILC source relies on the same principles [80]. A highly polarised laser
hits a target cathode in a high-voltage DC gun. The freed electrons from this process
have a high degree of polarisation, with a minimum of 80% assumed for the ILC.

In contrast to electrons, positrons do not appear in abundance in nature. The chal-
lenge for the positron source is to produce and polarise them at the same time. While
no previous collider has used such a source, a concept for such a source first emerged
in the ’80s [129, 130]. This concept proposes to send an electron beam through a heli-
cal undulator to produce circularly polarised high-energy photons. When the polarised
photons subsequently hit a target they produce polarised electron-positron pairs. The
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(a)

(b)

Figure 3.14.: (a) Schematic of the ILC polarised positron source which uses polarised
photons from a helical undulator in the electron main linac. (b) Schematic of the spin
flipper which sets the direction of the positron polarisation. (a) copied from [128],
(b) from [80].

ILC design has adapted this concept (fig. 3.14a) and includes a helical undulator in the
main electron linac [131]. This promises a positron polarisation of at least 30%.

One drawback of this technology is that the magnetic field orientation of the undu-
lator fixes the polarisation direction of the positrons. A fast spin flip is not an intrinsic
part of this design. The ILC introduces an additional system in the beamline after the
positron source that orients the polarisation (fig. 3.14b) [132]. This system consists of
two parallel beam lines that each rotate the polarisation in one of the two longitudinal
directions, and a fast magnet that sends the bunch into one of the two beam lines. In
this way, the ILC can also perform fast spin flipping on the positron beam.

Non-baseline options

The longitudinally polarised beam sources described above are the baseline design for
the ILC. In addition to those options, the ILC community has been and is evaluating
alternatives to further solidify the case for the ILC. Two such alternative ideas are of
particular interest to the work here; an unpolarised “conventional” positron source, and
runs with beams that are not longitudinally polarised.

The option of an unpolarised 𝑒−-driven positron source is a back-up solution for the
ILC [133, 134]. It consists of an additional linac that accelerates electrons to 3GeV before
colliding it with a target wire to produce electron-positron pairs (fig. 3.15). Compared
to the undulator-based source, this 𝑒−-driven source has the advantage that it is a his-
torically well-tested design. Most notably, the SLC employed a very similar concept for
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Figure 3.15.: Schematic of the conventional electron-driven source of unpolarised
positrons, which is an alternative to the undulator-based polarised source in the ILC
baseline design. Copied from [133].

Figure 3.16.: Polarisation measurements at ILC use both up- and downstream po-
larimeters (1) which require spin-tracking to the IP (2), and direct polarisation mea-
surements from the collision data at the IP (3). Copied from [60].

positron production [135–137]. Part of the work here considers the impact that the ab-
sence of positron polarisationwill have on themeasurement (section 4.1 and chapter 7).
For the ILC, the cost of the two positron source designs is comparable [134].

Another non-baseline option is to flip the beam polarisation to a transversal direction
before the collisions, or to add depolarised beam settings. These two options serve two
different purposes, and require only a different setting of the spin rotators. Transver-
sally polarised beams offer a unique opportunity to directlymeasureCP-violating effects
[111] and EFT-parameters [138], under the condition that both beams are transversally
polarised. Unpolarised beams settings do not offer an immediate physical advantage.
Their purpose would be an improved control of systematic effects [139]. Transversally
polarised settings can offer the same advantages if again they are included in the fast
spin flip. In both cases, the additional beam settings will compete with the longitudi-
nal settings for the corresponding fractions of the total luminosity. The work presented
here only considers the unpolarised setting directly (chapter 7), which one can consider
a conservative estimate for the transversally polarised case.

3.2.3. Polarisation measurement

The exact values of the beam polarisations at the IP determine the composition of chiral
interactions. A precise interpretation of these interactions in the collisions requires a
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(a) (b)

Figure 3.17.: The ILC polarimeters are combination of (a) a magnetic chicane, where
the bunches collide with polarised laser beams, and (b) a set of Cherenkov detectors
that measures the scattered electron energy spectrum. Copied from [140].

precise knowledge of the polarisation values. The collider must performmeasurements
of the beam polarisation, short “polarimetry”, to avoid introducing polarisation-related
systematic uncertainties. Studies for the ILC show that the necessary level of relative
precision is at or below the permille level [141].

The ILC polarimetry is a combination of a direct polarisation measurement from col-
lision data at the IP and polarimeters up- and downstream of the IP (fig. 3.16) [122, 142,
143]. These two methods contribute in different ways to the polarisation measurement.

A direct measurement from the collision data at the IP is possible when at least one
beam is polarized [139]. This measurement is sensitive to the luminosity-weighted av-
erage polarisation at the IP

⟨𝒫⟩𝐿 =
∫ 𝒫(𝑡)𝐿(𝑡)d𝑡

∫ 𝐿(𝑡)d𝑡
(3.7)

with the time-dependent polarisation 𝒫(𝑡) and luminosity 𝐿(𝑡). It cannot measure the
time-dependence of the polarisation. The method requires fast spin flipping so that
the different polarised datasets are taken simultaneously, which is part of the ILC base-
line. This fast spin flip correlates the other time-dependent systematics from detector
and accelerator across the data sets. The correlation allows a polarisation measurement
through a comparison of the different polarised datasets. Studies of this method at the
ILC show that it can provide the necessary permille or even sub-permille precision on
the average polarisation [60, 144, 145] (more details in section 4.1).

The polarimeters (fig. 3.17) provide complementary information to that of the colli-
sion data measurement [146]. They measure the individual beam polarisation of each
polarised bunch train 1650m before and 150m after the collision (fig. 3.16), and extrap-
olate that measurement to the polarisation at the IP. This extrapolation is a dominant
source of systematic uncertainty [147], and needs to take into account the spin transport
between IP and polarimeters as well as the depolarising effects in the collision. While
the precision on the single train polarisation is only 0.25% at the ILC [141, 148], the po-
larimeter measurements provide complementary information to the collision data mea-
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(a) (b)

Figure 3.18.: (a) 3D rendering and (b) cross section of the ILD, a general-purpose 4𝜋
detector. It uses a TPC tracker and highly granular calorimeters within the magnetic
coil to allow optimal Particle Flow reconstruction. (a) copied from [82], (b) from
[123].

surement [146]. The advantage of the polarimeters lies in a high-statistics measurement
of the polarisation of each bunch train, so that only systematic effects limit the precision
[147]. Since those systematic effects largely correlate from train to train, the polarimeters
can contribute precise measurements of relative polarisation differences in each beam.
This includes the time-dependence of the individual beam polarisations, which com-
plements the luminosity-averaged measurement from collision data. It also includes
precise comparisons of the different polarisation settings of a beam, which again re-
quires fast spin flipping to correlate time-dependent systematic effects between those
polarisation settings.

With the combination of the collision data measurement and the polarimeters, the
ILC can precisely measure each aspect of the beam polarisations. This is the basis for
precise measurements of the chiral structure of interactions at the ILC.

3.3. The International Large Detector

The International Large Detector (ILD, fig. 3.18) is one of the two proposed detectors for
the ILC interaction region [82]. This section introduces the relevant basics of the ILD
concept, including the design, event reconstruction, performance and limitations.

3.3.1. Detector design

The target of the design of the ILD is a precise event reconstruction using particle flow
(PF) techniques [123]. PF reconstruction tries to match up all the signals that each
particle leaves in all sub-detector components. It then only uses the most precise sub-
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(a)

(b) (c)

Figure 3.19.: (a) Traditional energy reconstruction ignores tracker information and
sums up the energy in the calorimeter systems. (b) Particle Flow calorimetry uses
only themost precise sub-detectormeasurement for each particle. Using PandoraPFA,
ILD can disentangle the jet particles even in compact 100GeV jets (c). (a,b) copied
from [149], (c) from [150].

detector measurement for each particle. Based on those precise measurements, it ac-
curately discards the other sub-detector measurements. In practice, it means that the
track of charged particles yields a precise momentum measurement. The algorithm
marks which hit clusters in the calorimeter originate from those charged particle, and
only uses the remaining clusters for the formation of neutral particles. This stands in
contrast to the traditional calorimetry in event reconstruction, which ignores tracker in-
formation in the energy reconstruction (left in fig. 3.19). As a consequence of this PF
technique, the final reconstruction event is a collection of reconstructed particles, where
each particle consists of all the assigned sub-detector hits, and only the most accurate
sub-detector measurements contribute to the assigned four momentum (fig. 3.19c).

A detector optimization for PF reconstruction implies a focus on the imaging capa-
bility of the detector. The reconstruction must be able to precisely separate the contri-
butions of the different particles in each sub-detector and to combine the different com-
ponents to a reconstructed particle. Such imaging tasks become easier with a higher
granularity. The PF-optimization of ILD is most visible in three properties/components
of the ILD;

• A time projection chamber (TPC) provides up to 220 position points along the
particle trajectory, which together with the 3.5 𝑇 magnetic field yields precise track
recognition, with aminimal impact on the particle due to the lowmaterial budget,
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(a) (b)

Figure 3.20.: (a) The ILD JER shows that the intrinsic calorimeter resolution domi-
nates at low energies, while confusion effects dominate at high energies. (b) Confu-
sion effects can lead tomissed or double-counted particles. (a) copied from [150], (b)
from [151].

• Highly granular sampling calorimeters, with cell sizes down to 5 × 5mm2 for
the ECAL and down to 3 × 3 cm2 for the HCAL, allow a sharp resolution of the
individual calorimeter showers, and

• The containment of tracker and main calorimeters within the magnetic coil
makes sure that the TPC track and calorimeter clusters are easy to match, and
that little energy gets lost before the particle reaches the calorimeter.

Additional detector components ensure a precise momentum measurement (SET), a
full angular coverage of the detector (FTD, LumiCal, LHCAL, BeamCAL), precise ver-
tex reconstruction (Vertex detector, SIT), and the detection of muons and calorimeter
leakage (muon chambers in return yoke).

Limitations of PF calorimetry in ILD

Even in a highly granular detector using particle flow reconstruction, a number of ef-
fects limit the measurement and lead to non-zero resolutions. The most difficult objects
for reconstruction are jets due to their diverse particle content and the small angular
distance between the particles. Two effects drive the jet energy resolution (JER) of the
ILD: the intrinsic calorimeter energy resolution and confusion effects (fig. 3.20). Both
of these affect the reconstruction of neutral particles in the calorimeter.

The intrinsic energy resolution of the ILD calorimeters is the result of statistical fluc-
tuations in the shower and in the sampling, noise, and calibration uncertainties. At low
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(a) (b)

Figure 3.21.: Cross sections comparisons in (a) the 𝑥𝑦-plane and (b) the 𝑦𝑧-plane of
the two ILDmodels (left halves: largemodel, right halves: revised smallmodel) show
how the small model reduces the TPC radial depth while keeping all other depths
constant. Copied from [123].

energies, the 1/√𝐸-dependent statistical term becomes large due to the smaller number
of particles in the shower. For ILD, this is the dominant limitation for low energy jets
with 𝐸jet ≲ 100GeV. At these lower energies, the jet has a lower boost and the particles
arrive well-separated at the detector.

When the jet energy increases above 100GeV, the jet becomes more boosted and the
particles arrive even closer to each other in the calorimeters. This leads to an increase
overlap of the showers that each particle produces in the calorimeters. The PF recon-
struction tries to disentangle these overlapping clusters. Sometimes, it cannot do this
assignment of calorimeter hits to particles perfectly, which leads to confusion effects
[150, 151]. Such confusion effects can lead to both an increase or a decrease of the mea-
sured neutral particle energy, and even to the false detection of fake neutral particles
(fig. 3.20b). The increased particle density of higher energy jets increases this confu-
sion, so that it becomes the limiting factor for the JER of high energy jets.

3.3.2. Recent optimization efforts

The original proposal of the ILD detector (“IDR-L”) used physical performance as the
primary target [152]. Since then, the scientific community has put forward amajor effort
to realize the ILC project. These efforts put newweight on the project cost, and lead to a
revision of the cost drivers of the ILD model and the consideration of a revised smaller
ILD model (“IDR-S”) [123].

The most costly parts of the original ILD model are the calorimeters, the coil and
the yoke. All of these have depths which are necessary for physical performance; the
calorimeter depth ensures that the calorimeter captures all showers, and the magnetic
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field dictates the coil and yoke depths. A reduction of all their volumes remains possible;
it requires reducing the volume contained by the calorimeters. The revised smaller ILD
model achieves this by reducing the radial depth of the TPC (fig. 3.21). This change to
the tracking volume will in principle impact the tracking performance, since it reduces
the length of themeasured tracks before the calorimeters. The small ILDmodel counters
this by increasing the magnetic field, leading to stronger curving tracks and increasing
the track length [153]. By reducing the overall volume, and especially the calorimeter
volume, the revised small ILD model reduces the detector cost by around 13% (table
9.6 in [123]).

The cost optimization process parameterized the impact of this change on the per-
formance and ultimately chose a revision that will minimally affect that parameterized
performance. It was limited to a subset of relevant reconstruction performances and
physical results, and used fast detector simulation studies with the SGV tool [154]. A
large set of follow-up studies that used full simulations of both models verified that the
impact on the high-level analysis performance is minimal [123]. This includes a study
which is part of the work presented here (chapter 6).

3.3.3. Relevant performance aspects

The unique particle flow driven design of the ILD detector allows a precise event recon-
struction. This includes for example a momentum reconstruction which is an order-of-
magnitude more precise than current LHC experiments, as well as precise calorimetry
and vertex measurements [123]. Whether these precisions are important is a question
of the exact physics analysis, and most importantly the considered final state.

Jet energy resolution

Part of the study presented here focuses on the reconstruction of jets from hadronic
decays of 𝑊s and 𝑍s. The most relevant reconstruction aspect for such decays is the jet
energy resolution (JER) Δ𝐸jet/𝐸jet. With the precise particle flow reconstruction of all jet
components, ILD can achieve a JER of 3% for jets with 𝐸jet ≳ 100GeV (fig. 3.22). This
is around a factor 2 better than the current JER of the ATLAS and CMS experiments for
similar 𝐸jet [155, 156].

As described above (section 3.3.1), the JER in a particle flow detector first improves
with energyuntil confusion effects becomedominant and the JER increases again (fig. 3.22)
[157, 158]. It also increases when the jet flies more in the forward direction because an
increasing percentage of the jet particles cannot traverse the precise tracking detector or
are lost in the beam pipe. The two jet observables that determine the JER are therefore
angle and energy.
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(a) (b)

Figure 3.22.: The ILD jet resolution improves with jet energy and is better in (a) the
barrel than (b) the forward region. A smaller ILD model will worsen the resolution
especially for high-energy jets. Copied from [123].

JER of the cost-optimized ILD model

The JER is a composite of the resolution for charged particles, originating from the track-
ing resolution, and the resolution for neutral particles, originating from the calorimeter
resolution and confusion effects. The cost optimized ILD model reduces the tracking
detector radial depth, and correspondingly moves the calorimeters closer into the de-
tector while conserving their depths. A relevant consequence of these changes is an
increase in calorimeter cluster overlaps due to the shorter IP-calorimeter distance. Such
overlaps can lead to increased confusion in the clustering steps of Particle Flow (sec-
tion 3.3.1). This affects jets which fly into the central part of the detector, and more so
if the jet is more collimated, i.e. has higher energy. The strongest increase in the JER
when moving from large to small detector model is around 0.3% in the barrel region
(fig. 3.22a). For a given physics analysis, the jet angular and energy distributions will
ultimately determine the impact of the choice of detector model.

Track reconstruction

Another detector aspect relevant to this study is the track acceptance. The track ac-
ceptance describes, which parts of the detector are able to reconstruct charged particle
tracks. For ILD, track reconstruction has a reconstruction efficiency of over 99.8% for
particles that have a momentum of at least 1GeV and that fly at a polar angle below
around 18deg [82]. For particles at lower angles, the efficiency starts to drop and stays
above 90% until it reaches around 7deg. At the lowest angles down to around 7deg
the Forward Tracking Disk (FTD, fig. 3.18b), consisting of five layers on each side of
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the IP, can still measure enough hits to reconstruct a track. Below those 7deg, a track
reconstruction is not possible.
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This study investigates the limitations of electroweak precision at future 𝑒+𝑒− collid-
ers, and how to push those limitations to a minimum. In this context, two topics will
play a dominant role; the measurement of beam polarisation, and the measurement of
electroweak gauge couplings. This chapter provides on overview of previous work on
these two topics, presents the open questions on them, and describes the corresponding
purpose of this study.

4.1. The Impact of beam polarisation at 𝑒+𝑒− colliders

Recent discussion of different future 𝑒+𝑒− collider proposals have re-opened the discus-
sion on the importance of beam polarisation [1]. This also includes a discussion within
the ILC design studies on the importance of positron polarisation [131, 133]. The para-
graphs below outline the role that previous study contribute to beam polarisation at
future 𝑒+𝑒− colliders.

The SLC powerfully demonstrated how beam polarisation grants direct access to the
chiral structure of electroweak interactions [112, 159]. With around a factor 25 fewer
events, the SLD experiment achieved the same precision on the electroweak mixing an-
gles as the combination of the LEP experiments [2]. The situation for future colliders
will be similar. Both at and beyond the𝑍-pole, beampolarisation probes the chiral struc-
ture to which detectors are otherwise largely insensitive [160, 161]. This can become es-
pecially important when the collider discovers unknown particles or interactions with
unknown chiral structures [94, 110].

Whether or not a collider runs with polarised beams, the knowledge of the polari-
sation of the beam is important. An undetected deviation of the polarisation can lead
to false discovery claims and distort the measurement of SM parameters. The neces-
sary precision on the polarisations is a question of the exact measurement. For fermion
pair productionmeasurements with polarised beams, the relative polarisation precision
must be at or below the level of the statistical uncertainty of 1/√𝑁𝑍 [139]. Studies for
the ILC confirm this and set the corresponding requirement at the level of a few 10−4

[122].
A large range of studies have investigated the achievable precision at previous and

future 𝑒+𝑒− colliders. The basic methods are the same as outlined for the ILC (sec-
tion 3.2.3); the usage of polarimeters on the individual beams, and measurements of
the polarisation from collision data.
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The Compton polarimeter at SLD measured the polarisation of every seventh bunch
[162], and when averaged by luminosity over the last two years of running achieved a
relative precision of around 0.5%. Systematic uncertainties fully determined this pre-
cision on the luminosity-weighted average polarisation (eq. (3.7)). Studies for future
collider conclude an improvement in the single-train polarisation precision of a factor
2 [141]. This will fall short of the necessary few 10−4 precision by almost an order
of magnitude, and the role of polarimeters mainly becomes the tracking of the time-
dependence.

Polarised colliders can use the polarisation measurement in collision data to make up
for this deficit. The original proposal for a method based on fermion pair production
polarised cross-sections, named Blondel method, considered the LEP 𝑍-pole run with a
fixed polarisation direction [139]. It pointed out that the method requires polarisation
of both beams. A later study adapted the method to colliders at higher energies with
the ability to reverse the polarisation direction [109]. That study found that the method
gets close to the few 10−4 precision. It also introduced a new method using the differ-
ential cross-section measurements of 𝑊 pair production, which works also when only a
single beam is polarised. With both of those methods combined, the study concludes a
negligible systematic uncertainty from polarisation when both beams are polarised.

Since then, studies have tested a combination of polarimeters, Blondel scheme and
differential fits for future colliders, and most prominently the ILC. Some notable con-
clusions amongst these studies include that the differential measurement with 𝑊𝑊 and
single-𝑊 events outperforms the Blondel method [60, 144, 145], that positron polarisa-
tion is essential for the control of polarimeter biases [60, 111], and that a collider with
two polarised beams can easily simultaneously measure beam polarisations and elec-
troweak parameters in collision data [60, 157]. They also show that the necessary few
10−4 polarisation precision is possible for all stages of the ILC.

Open questions

As outlined above, previous studies have started to directly test the simultaneous extrac-
tion of beam polarisation and electroweak observables from collision data. These stud-
ies had limited themselves to testing Triple Gauge Couplings in 𝑊 pair and single-𝑊
production, and the left-right asymmetry in fermion pair production. This is a rather
limited set of physical effects on the relevant final states. One direction to expand these
studies is to include a larger set of physical observables which can interfere with the
polarisation measurement.

Another open question revolves around the impact of beam polarisation on experi-
mental systematic uncertainties. The experience at SLD has shown that systematic un-
certainties only minimally affect chiral observables like the left-right asymmetry [112].
Behind this is a rather simple logic; experimental systematics are independent of the
chirality of the initial state, which is a clear contrast against chiral observables. A col-
lider with beam polarisation produces multiple datasets with different chirality com-
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binations. Chiral observables have notably different impacts on the different datasets.
Experimental systematics on the other hand affect datasets in the exact sameway if they
are taken in the samemacroscopic time period. If the collider can perform fast (and ran-
dom) helicity reversal, the experimental effects will have the same effect on all polarised
datasets. This fundamentally decouples chiral observables from systematic uncertain-
ties. Such a decoupling will come into play whenever the main constraint on a physical
effect comes from such chiral observables. This can impact the predictions of a large set
of electroweak measurements, including the measurement of chirality-dependent EFT
operators.

In the context of beam polarisation measurements, previous studies largely focused
on a specific collider with a given polarisation setup. This approach can provide reli-
able predictions for that specific setup. When it comes to the impact of the availability of
beam polarisation on the polarisation measurements, it will be more instructive to per-
form tests on different collider scenarios within one framework. This entails a trade-off
in which the exact predictions for any given scenario will be less realistic, with the gain
of clearer messages on the impact of beam polarisation. Such an approach also provides
a basis for testing the open questions mentioned here.

4.2. Gauge boson self-coupling in 𝑒+𝑒− collisions

The interaction of SM electroweak gauge bosons with each other is a direct consequence
of the SMgauge symmetry structure (section 2.1.1). Turning this around,measurements
of the gauge couplings of these interactions are direct tests of the SM gauge symmetry
structure and serve as a way to search for deviations from the SM prediction.

Such precise tests of the SM electroweak sector are a main research interest of future
𝑒+𝑒− colliders.

4.2.1. Triple Gauge Couplings

Triple gauge couplings (TGCs) are the most accessible way to directly test the gauge
symmetry structure of the SM (section 2.1.1). Measurements of the production of mul-
tiple bosons can probe the three TGCs 𝑔𝑍

1 , 𝜅𝛾 and 𝜆𝛾 (section 2.2.3). When these mea-
surements reach precisions of a few 10−3 they start probing at the level of radiative cor-
rections [163]. This would mark a precision test of the SM gauge symmetry structure.

The most precise TGC measurements to date come from 𝑒+𝑒− collisions at LEP and
𝑝𝑝 collisions at LHC [164]. Almost all of those measurements use single-parameter fits,
which test each parameter individually while keeping all others fixed to their SM value.
The LEP single-parameter measurements reached precision of 2 − 4 ⋅ 10−2 [3]. One of
the LEP experiments, ALEPH, also tested a simultaneous fit and found that it worsened
the TGC precision by less than a factor 1.5 [165]. The ATLAS and CMS experiments
at LHC have also measured the TGCs in single-parameter fit, reaching precisions of
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6 − 7 ⋅ 10−3 for 𝑔𝑍
1 [166] and 𝜆𝛾 [167], and 5 ⋅ 10−2 for 𝜅𝛾 [168]. Predictions for future

measurements with the HL-LHC show that these precisions can increase 2 − 5 ⋅ 10−3

for all three parameters [169]. These measurements are starting to reach the level of
radiative corrections.

Future 𝑒+𝑒− colliders will perform TGCs measurements which will out-pass the 10−3

level. This precision is possible due to the clean and well-known collision environment
and precise final state reconstruction, as LEP demonstrated. The two principle advan-
tages of future 𝑒+𝑒− colliders are the higher luminosity and energy, as the TGC sensitiv-
ity scales with √𝐿 ⋅ 𝑠 [163].

Dedicated studies for different future 𝑒+𝑒− collider proposals have investigated the
achievable precision. All of these studies employ a simultaneous extraction of the three
TGCs. The unpolarised circular FCC-ee collider can reach precisions of 3−6⋅10−4 with a
limited energy range up to the top pair production threshold, assuming negligible sys-
tematic uncertainties [87]. For linear colliders, the most extensive studies - including
systematic uncertainties - have looked into measurements at the different energy stages
of the ILC with two polarised beams. Studies in full ILD detector simulation have con-
sidered TGC measurements in semileptonic 𝑊 pair production with the 500GeV and
1TeV energy stages. The 500GeV study predicted precision of 6 − 7 ⋅ 10−4 [157]. At
1TeV, the ILC benefits from the high energy and can achieve 1 − 3 ⋅ 10−4 precisions
[170]. An extrapolation of those two studies to the 250GeV stage yields precisions of
7 − 10 ⋅ 10−4 [60]. All of these ILC studies also confirm that a simultaneous measure-
ment of the polarisation and the TGCs does not disturb either ones precision. The CLIC
studies use the ILC predictions as a basis to extrapolate to their higher energy stages
[85, 171]. Their extrapolations predict precisions of 5 ⋅ 10−5 − 1 ⋅ 10−4 for the 1 − 3TeV
stages with 𝑒− polarisation.

An earlier set of studies for the TESLA and CLIC colliders took a more explicit look
at the role of longitudinal beam polarisation for the TGC precision [57, 138, 172]. Those
studies tested measurement scenarios at 500GeV and 800GeV. They found that, com-
pared to unpolarised scenarios, an 𝑒− polarisation of 80% improved the precision by a
factor 2, and an additional positron polarisation of 60% brought another factor 1.5−2.5.
In addition, they tested a transverse polarisation scenario, and found that the precision
is only slightly worse thanwhen both beams are longitudinally polarised. Those studies
were an important input to the polarisation choice of the ILC [94].

Generally, precisions reachable with future 𝑒+𝑒− colliders probe an order of magni-
tude past the level of radiative corrections. This will be a direct precision test of SM
gauge symmetry structure.

Open questions

The studies of TGCs measurements for the ILC at the 250GeV are so far relying on ex-
trapolations. This is a remarkable gap insofar as the ILC in recent years has changed its
baseline scenario to start with exactly that stage [121]. A recent study addressed this
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issue [60]. Unfortunately, follow-up checks in the context of this study here concluded
that the TGC treatment of that previous study was inconsistent. This motivates the fo-
cus of this study here on the 250GeV stage of a future 𝑒+𝑒− collider, including the TGC
measurement in 𝑊 pair production (section 7.7).

On a broader level, the different studies for the current collider proposals have in-
vestigated the TGC measurement with the specific energy stages of their collider. This
makes it difficult to single out the effect of beam polarisation on the TGCmeasurement.
The studies that did focus on the impact of beam polarisation used high energy stages,
which are not part of every proposed collider. Part of this study here will address this
point by testing the TGCmeasurementwith different polarisation setups at the common
250GeV energy stage (section 7.7.4).

A direct comparison of different polarisation scenarios can address also another open
question. So far no study has looked into the interplay of TGC and beam polarisation
measurements for a collider with only electron polarisation. The answer to this question
will naturally arise in the test of different polarisation scenarios.

4.2.2. Quartic Gauge Couplings and Vector Boson Scattering

The process of electroweak vector boson scattering 𝑊𝑊 → 𝑉𝑉 (𝑉 = 𝑊/𝑍) is tightly
connected to the Higgs sector of the SM and can contain hints to any new physics [173].
Such potential portals to BSM physics are of high interest in the absence of direct ob-
servations of BSM particles at high-energy colliders. Within an EFT-framework (sec-
tion 2.2), BSM physics in the VBS process can appear as anomalous quartic gauge cou-
plings (aQGCs).

The CMS experiment at the LHC delivered the first observation of electroweak pro-
duction of same-sign 𝑊 pairs [174], and both ATLAS and CMS have delivered limits
on aQGCs in vector boson scattering (VBS) [174, 175]. These results partially use dif-
fering parametrisations. For comparability, a rough conversion between these frame-
works is possible (section 1.3.1.4 in [176]), so that results here always reference the
EFT-parameters1 𝛼4 and 𝛼5. CMS has set the most stringent limits on these parame-
ters to date, with around 10−2 precision [177]. Studies for the high luminosity run of
the LHC (HL-LHC) predict precisions in the few 10−3 range [169].

Linear 𝑒+𝑒− collider studies have looked into the possibility of measuring aQGCs at
the highest energy stages. The main focus of these studies was on 𝑒+𝑒− → 𝜈 ̄𝜈𝑉𝑉(𝑉 =
𝑊/𝑍) channel. Studies for center-of-mass energies around 1TeV predict a precision
around 10−2 in 𝛼4/5. [59, 152, 178], comparable to current LHC results. If the 𝑒+𝑒−

collider includes a CLIC-like 3TeV, the precision can improve to around 2⋅10−3, slightly
better than current HL-LHC predictions.

In light of the current LHC measurements and the HL-LHC predictions, the aQGC
measurements at 𝑒+𝑒− colliderswill not lead to significantly improvedbounds on anoma-

1The details of the aQGC EFT Lagrangian do not bare direct relevance to this work and are ommitted
here. For details e.g. [176].
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lous couplings. Instead, 𝑒+𝑒− colliders can deliver a complementary check of the 𝑝𝑝 col-
lider results. Part of this complementarity comes from the possibility tomeasure all final
states of the VBS process with precision. Opposite-sign 𝑊 pair production, for example,
suffers from large backgrounds in 𝑝𝑝, whereas 𝑒+𝑒− collider use it as the prime channel
for aQGC measurements. This full set of final states also allows 𝑒+𝑒− colliders to per-
form global EFT fits with a minimal set of assumptions. In addition, the validity of an
EFT approach is less problematic with the comparatively low energy reach of an 𝑒+𝑒−

collider. An 𝑒+𝑒− aQGC measurement will be an important and unique cross-check of
the HL-LHC results.

Open questions

The studies on VBS at high-energy linear 𝑒+𝑒− are now almost two decades old [178,
179]. They relied on the detector models at that point in time, and used parameterized
detector simulations.

Recently the ILD Collaboration has performed a large set of studies looking into up-
dates of its detector design [123]. This requires an updated study that uses the current
design in full simulation and checks the impact of potential changes to the detector. A
recent study has started looking into this [180], and the study presented here continues
that effort (section 6.4).

That same recent study investigated what limits the VBS analysis [180]. It found that
high-level reconstruction is a significant challenge for fully hadronic final states. Part of
the work presented later further focuses on these limitations (section 6.3), and aims to
identify the individual causes of the limitations to inform the direction of future studies.

4.3. Purpose of this work

This study here contains two parts which address different aspects of electroweak pre-
cision measurements.

In the first part (chapter 6), as a continuation of a previous study [180], this study
addresses the reconstruction challenges at future 𝑒+𝑒− colliders in the context of a vec-
tor boson scattering measurement. This part aims to provide insight into the different
experimental effects that can limit precision measurements, and to guide future studies
that want to improve the event reconstruction.

The second part (chapter 7) moves away from the experimental environment of the
detector, and addresses the impact of beam polarisation on electroweak precision. A
simultaneous fit of physical and systematic effects for various polarisation scenarios of
250GeV 𝑒+𝑒− forms the basis of that part. The goal is to understand the benefits for
each effect separately and on the interplay between them. A consistent treatment of the
effects between the scenarios at a common energy allows a precise look at the gains from
polarised beams.
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Studying the precision of proposed 𝑒+𝑒− colliders requires a prediction of what the ex-
periments will see. One way to provide such predictions is throughMonte-Carlo events
which emulate the conditions at these colliders. SuchMonte-Carlo datasets are the basis
the analyses in this study.

All the event datasets in this study are part of a large-scale Monte-Carlo production
of the Linear Collider Collaboration and the ILD collaboration (section 5.1). The first
part of the study uses fully-reconstructed 6-fermion events at 1TeV (section 5.2), and
the second part uses two- and four-fermion generator-level events for a 250GeV collider
(section 5.3).

5.1. The ILC/ILD Monte-Carlo production

This study aims to test the electroweak precision from measurements at future 𝑒+𝑒−

colliders. Many such studies are being and have been performed, all of which require
Monte-Carlo datasets for the collisions at such machines. The paragraphs below de-
scribe the central large-scale production of such events for the ILC, and how the ILD
collaboration uses these collisions to test the ILD in simulation. Work presented in later
chapters uses these Monte-Carlo datasets.

5.1.1. Event generation for the ILC

Studies for measurements for any future collider require large datasets of Monte-Carlo
collision events for all relevant final states. For the ILC, the generator group (LCGG) of
the linear collider collaboration (LCC) performs this large-scale endeavor [181].

The central tool of the LCGG event generation is the WHIZARD event generator [182],
at the base of which is the OMegamatrix element calculator [183]. Except for initial state
radiation, the LCGG-production uses the tree-level calculations in WHIZARD. Instructed
by steering files, this event generator can calculate the cross-section and generateMonte-
Carlo events for a large variety of initial and final states with given chiralities. It also
includes features and plugins that handle beam properties and final state evolution.
The large-scale LCGG-production stores the Monte-Carlo events in the stdhep and the
LCIO format [184].

The various settings and plugins in WHIZARD allow the steering of the details of the
collision and the occurring processes. Events from the LCGG-production contain many
such details which will be present in measured collision data. First, calculations with
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GUINEA-PIG [185] together with the Circe2 tool [186, 187] in WHIZARD provide realistic
ILC-like beam spectra at the interaction region. Before the hard scattering, the leptons
radiate initial state radiation, which WHIZARD parametrises internally. After the interac-
tion, the final state needs to handle 𝜏 decays and the evolution of hadronic final states.
The Tauola tool handles the 𝜏 decays [188, 189]. Parton shower and hadronization use
Pythia6.4 [190], with a tuning to LEP-II results [191].

One part of the study here uses the 250GeV generator level dataset for the comparison
of different collider options (chapter 7). This raises the question whether the datasets
are valid for colliders other than the ILC. Of the included details in the simulation, only
the beam energy spectra and beam sizes are specific to the ILC. This means that strictly
speaking the events from the LCGG-production are only fully valid for studies of the
ILC. The study here does not further address this point. Future studies can make use of
the dedicated datasets of other linear and circular collider groups.

Beam-induced backgrounds

In addition to the hard scattering, the colliding bunches produce backgrounds that over-
lap with the particles from the hard scatter (section 3.1.4). The LCGG also simulates
these backgrounds. One such background are 𝑒+𝑒− pairs from pair production in the
strong fields of the bunches, which the GUINEA-PIG tool can estimate. A second back-
ground is low-𝑝𝑇 hadron pair from photon-photon collisions, for which the LCGG em-
ploys either Pythia or a custom tool.

Since those backgrounds are independent of the hard scattering, the simulation of the
backgrounds can happen apart from the simulation of the hard scattering process. For
the same reason, the generator-level datasets (e.g. the 250GeV dataset in section 5.3) do
not include such backgrounds. Instead, the LCGG supplies a separate dataset of these
backgrounds, and the detector collaborations can merge these backgrounds with the
hard scattering after applying the detector simulation.

5.1.2. The ILD detector simulation and event reconstruction chain

The LCGG-generated collision events, are the base to test measurements with any de-
tector proposed for the ILC. As one such proposal, the ILD collaboration makes use of
these generator level events and runs them through a chain of detector simulation of
event reconstruction [192]. Such fully simulated and reconstructed events allow realis-
tic predictions for the measurements at the ILC.

The basis of both the simulation and the reconstruction is the iLCSoft software pack-
age. It contains a modular framework called Marlin which can chain together the dif-
ferent steps of the production [193]. An implementation of the two ILD models (sec-
tion 3.3) into the production is possible with the DD4hep generic detector description
framework [194, 195]. For the simulation of particle propagation through the detector
and the detector response, the production uses the Geant4 toolkit [196]. This includes
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the digitization of the hits, which transforms the deposited energy into a realistic signal
of the detector component. The final step before the reconstruction is the overlay of the
background events.

One of the most important aspects of the proposed detector models is their realism.
The ILD models in the production contain realistic detector dimensions, including e.g.
inactive materials. Beam test data determines the resolutions of the components [123].
This makes the simulated detector response a reliable prediction for a future detector.

After the detector simulation, the production chain uses the signals from the detec-
tor to reconstruct the event. The main steps of the event reconstruction are the track
reconstruction, using the ILD tracking software [197], and a particle flow event recon-
struction, using the PandoraPFA toolkit [150, 198]. PandoraPFA assembles reconstructed
particles with their measured four-momenta and uses the various reconstructed com-
ponents of the particles to classify them as 𝑒±, 𝜇±, 𝜋±, neutral hadron, or 𝛾. A last step in
the production chain uses the output of the initial reconstruction and performs a high-
level analysis. This high-level analysis includes steps like vertex finding with LCFIPlus

[199], and additional particle identification techniques. After all reconstruction steps,
the production stores simulated and reconstructed events in the LCIO format [184].

The first part of this study (chapter 6) uses the fully simulated events and relies on
the particle flow reconstructed particles.

5.1.3. Truth-level information in the production chain

Since the whole production uses only simulated data, the software can track the causal
connections from generator level particles to detector hits to reconstructed objects. This
opens up the possibility to analyse the detector response and reconstructionmistakes on
the final stored event data. One tool that makes use of this information is TrueJet [200].
It tracks the jet formation and measurement, and links reconstructed objects back to the
generator level final state particles . Later in this study, this tool provides the necessary
information to test the impact of steps like jet clustering (section 6.3).

5.2. Datasets at 1 TeV

A first part of this study (chapter 6) considers vector boson scattering (VBS) at a 1TeV
ILC. It only considers the high cross-section hadronic final state 𝜈𝑒𝜈𝑒𝑞𝑞𝑞𝑞 originating
from 𝑊+𝑊− → 𝑉𝑉 (𝑉 = 𝑊/𝑍). The events of this dataset are part of the ILD MC
production (section 5.1), which used WHIZARD1.95, iLCSoft v02-00-02 and ILDConfig

v02-00-02, and include simulations for both the large (ILD_l5_o1_v02/IDR-L) and the
small (ILD_s5_o1_v02/IDR-S) ILD model (section 3.3.2).

Datasets produced in the ILDMCproduction consider all possible tree-level Feynman
diagrams in the production of a final state. The study of specifically the VBS process
requires a definition of the signal within the 𝑒+𝑒− → 𝜈𝑒𝜈𝑒𝑞𝑞𝑞𝑞 process (fig. 5.1). A set
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Table 5.1.: Cross sections of the signal processes (after signal definition cuts) for the
two kinematic regions of the diboson mass 𝑚𝑉𝑉, and the available MC statistics in
terms of luminosity for a polarisation of (𝒫𝑒−, 𝒫𝑒+) = (−80%, +30%). 𝑞𝑢 and 𝑞𝑑 are
up- and down-type quarks respectively (not including 𝑡). The uncertainties are com-
posed of the uncertainty from the phase-space integration of thematrix element (𝑀𝐸)
and of the uncertainty from the fraction of MC events (𝑀𝐶) (details: section A.1).

kinematic region signal 𝜎 [fb] 𝐿(−80,+30)
MC [ab−1]

𝑚𝑉𝑉 > 500GeV 𝜈𝜈𝑞𝑢𝑞𝑑𝑞𝑑𝑞𝑢 (𝑊𝑊) 1.37 ± 0.05𝑀𝐸 ± 0.02𝑀𝐶 6
𝜈𝜈𝑞𝑢𝑞𝑑𝑞𝑑𝑞𝑢 (𝑍𝑍) 0.0054 ± 0.0002𝑀𝐸 ± 0.0012𝑀𝐶 6
𝜈𝜈𝑞𝑢𝑞𝑢𝑞𝑢𝑞𝑢 (𝑍𝑍) 0.142 ± 0.020𝑀𝐸 ± 0.001𝑀𝐶 200
𝜈𝜈𝑞𝑑𝑞𝑑𝑞𝑑𝑞𝑑 (𝑍𝑍) 0.386 ± 0.004𝑀𝐸 ± 0.001𝑀𝐶 130

𝑚𝑉𝑉 < 500GeV 𝜈𝜈𝑞𝑢𝑞𝑑𝑞𝑑𝑞𝑢 (𝑊𝑊) 20.29 ± 0.03𝑀𝐸 ± 0.11𝑀𝐶 1.7
𝜈𝜈𝑞𝑢𝑞𝑑𝑞𝑑𝑞𝑢 (𝑍𝑍) 4.21 ± 0.01𝑀𝐸 ± 0.06𝑀𝐶 1.7
𝜈𝜈𝑞𝑢𝑞𝑢𝑞𝑢𝑞𝑢 (𝑍𝑍) 1.085 ± 0.002𝑀𝐸 ± 0.008𝑀𝐶 10
𝜈𝜈𝑞𝑑𝑞𝑑𝑞𝑑𝑞𝑑 (𝑍𝑍) 3.96 ± 0.007𝑀𝐸 ± 0.024𝑀𝐶 3.2
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Figure 5.1.: 𝜈𝑒𝜈𝑒𝑞𝑞𝑞𝑞 production can happen (a) through Vector Boson Scattering and
(b) through other irreducible background processes. (The shown backgrounds are a
subset of the irreducible backgrounds, see [59])

of cuts on the particle flavors and kinematics at generator level defines the signal in
this study, consistent with previous studies [179]. The following describes the steps
of this definition. In order to radiate a 𝑊 from both incoming particles, the incoming
𝑒− must be left-handed and the incoming 𝑒+ must be right-handed. The four quark
flavours determine whether an event is a possible 𝑊𝑊 or 𝑍𝑍 candidate. Mass cuts on
the quark pair masses ensure that the event is double-resonant. In order to count as
a 𝑍𝑍 candidate, a (𝑞1 ̄𝑞2)(𝑞3 ̄𝑞4) double-pair must have invariant masses in the range of
171GeV < 𝑚1,2

𝑖𝑛𝑣 +𝑚3,4
𝑖𝑛𝑣 < 195GeV and their differencemust not exceed 20GeV < |𝑚1,2

𝑖𝑛𝑣 −
𝑚3,4

𝑖𝑛𝑣|. Almost same criteria apply for the pair to count as 𝑊𝑊 candidate, only with
a different invariant mass range of (147, 171)GeV. The final candidate is the double-
pair with the smallest mass difference. Finally, a cut on the neutrino invariant mass
100GeV > 𝑚𝜈 ̄𝜈 removes triple-resonant 𝑊𝑊𝑍 production.

The vector boson scattering process is sensitive to low-energy effects of particles with
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5.3. Datasets at 250GeV

Table 5.2.: Total chiral cross-sections of the processes in the electroweak fit study
at 250GeV, and the available MC statistics in terms of luminosity for a polarisation
of (𝒫𝑒−, 𝒫𝑒+) = (0, 0). The uncertainties are composed of the uncertainty from the
phase-space integration of the matrix element (𝑀𝐸) and of the uncertainty from the
fraction of MC events (𝑀𝐶) (details: section A.1).

final state initial state 𝜎 [fb] 𝐿(0,0)
MC [ab−1]

𝜇−𝜈𝑞𝑞 𝑒−
𝐿 𝑒+

𝑅 4699.8 ± 2.5𝑀𝐸 ± 0.9𝑀𝐶 16
𝑒−
𝑅𝑒+

𝐿 43.50 ± 0.02𝑀𝐸 ± 0.10𝑀𝐶 14

𝜇+𝜈𝑞𝑞 𝑒−
𝐿 𝑒+

𝑅 4699.1 ± 2.5𝑀𝐸 ± 0.9𝑀𝐶 16
𝑒−
𝑅𝑒+

𝐿 43.43 ± 0.02𝑀𝐸 ± 0.10𝑀𝐶 14

𝜇𝜇 (𝑚𝜇𝜇 > 180GeV) 𝑒−
𝐿 𝑒+

𝑅 4032.9 ± 2.3𝑀𝐸 ± 0.8𝑀𝐶 20
𝑒−
𝑅𝑒+

𝐿 3217.1 ± 1.7𝑀𝐸 ± 0.7𝑀𝐶 20

𝜇𝜇 (𝑚𝜇𝜇 ∈ [81, 101]GeV, 𝑝𝜇𝜇
𝑍 > 0) 𝑒−

𝐿 𝑒+
𝑅 2009.2 ± 1.2𝑀𝐸 ± 0.6𝑀𝐶 20

𝑒−
𝑅𝑒+

𝐿 1301.6 ± 0.7𝑀𝐸 ± 0.5𝑀𝐶 20

𝜇𝜇 (𝑚𝜇𝜇 ∈ [81, 101]GeV, 𝑝𝜇𝜇
𝑍 < 0) 𝑒−

𝐿 𝑒+
𝑅 2008.7 ± 1.2𝑀𝐸 ± 0.6𝑀𝐶 20

𝑒−
𝑅𝑒+

𝐿 1301.9 ± 0.7𝑀𝐸 ± 0.5𝑀𝐶 20

masses beyond the collider energy. Sensitivity to such effects lies mainly in events
with high momentum exchanges, marked in VBS through a high invariant mass 𝑚𝑉𝑉.
Low-𝑚𝑉𝑉 events on the other hand will be the target of resonance searches. This study
splits the 𝜈𝑒𝜈𝑒𝑞𝑞𝑞𝑞 signal into twokinematic regions; 𝑚𝑉𝑉 > 500GeVand𝑚𝑉𝑉 < 500GeV.
The high-𝑚𝑉𝑉 region has a much lower cross-section (table 5.1). By request for this
study, the LCGG produced a dedicated high-statistics dataset for this high-mass region.

The part of this study that uses the 1TeV dataset (chapter 6) assumes a luminosity
of 1 ab−1 for a polarisation of (𝒫𝑒−, 𝒫𝑒+) = (−80%, +30%). While this does not reflect
a realistic 1TeV running scenario of the ILC, this choice is consistent with the studies
in the ILC Letter of Intent [152]. For both datasets, the available MC statistics exceed
this luminosity (table 5.1). In the case of the low-𝑚𝑉𝑉 events, the available MC statistics
for the 𝑊𝑊 events is only a factor 1.7 higher than the expected number of events for
1 ab−1. For the 𝑊𝑊 events of the dedicated high-𝑚𝑉𝑉 dataset, that factor is around six.
In both cases, the statistics for the 𝑍𝑍 events are less problematic than for the 𝑊𝑊. This
availability of MC statistics which exceed the expected events in a dataset is necessary
in order to not suffer from fluctuations in the MC distributions.

5.3. Datasets at 250 GeV

The second part of this study (chapter 7) performs an electroweak fit on generator level
distributions for a 250GeV 𝑒+𝑒− collider. Events for the datasets of that study are part of
the 250GeV ILC Monte-Carlo production [181], which used WHIZARD2.8.5. The study
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5. Datasets
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Figure 5.2.: 𝑒+𝑒− collisions can create 𝑊 pairs through (a) s-channel and (b) t-channel
production.
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Figure 5.3.: This study splits the 𝑒−𝑒+ → 𝜇−𝜇+ process (left: 𝑒−
𝐿𝑒+

𝑅, right: 𝑒−
𝑅𝑒+

𝐿) into dif-
ferent categories. First, a 𝑚𝜇𝜇 cut creates return-to-𝑍 and high-√𝑠∗ categories (a), and
then a detector-frame 𝑝𝜇𝜇

𝑍 cut split return-to-𝑍 events into forward- and backward-
boosted events (b).
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5.3. Datasets at 250GeV

considers two final states: semileptonic 𝑊 pair production with a 𝜇 in the final state
(𝜇𝜈𝑞𝑞) and 𝜇 pair production (𝜇+𝜇−).

The electroweak fit study uses all 𝜇𝜈𝑞𝑞 events without any further signal definition
cut. Such events at tree level are the result of s- or t-channel 𝑊 pair production (fig. 5.2),
where the s-channel contains a triple gauge boson interaction. The events form two
datasets according to the charge of the 𝜇 (table 5.2). This 𝜇-charge split avoids a loss of
information in the differential distributions.

Fermion pair production at tree level only happens through s-channel production
(section 2.1.3). The parameters of that process are energy-dependent, and exactly this
energy-dependence is a target in precision electroweakmeasurements. Ignoring𝛾-exchange
dominated events with low 𝑚𝜇𝜇, a 250GeV collider sees two peaks in the total cross-
section of 𝜇 pair production (fig. 5.3a). One peak corresponds to events with an ef-
fective center-of-mass energy √𝑠∗ = 𝑚𝜇𝜇 around the center-of-mass energy of the col-
lider. A second peak sits around the 𝑍-pole 𝑚𝜇𝜇 ≈ 𝑚𝑍, and arises from strong ISR
radiation which allows a return of the effective center-of-mass energy to the 𝑍 reso-
nance. This study splits 𝜇 pair production into two datasets corresponding to these
two peaks; a high-√𝑠∗ dataset with 𝑚𝜇𝜇 > 180GeV and a return-to-𝑍 dataset with
𝑚𝜇𝜇 ∈ [81, 101]GeV. A cross-section comparison shows that for an 𝑒−

𝐿 𝑒+
𝑅 initial state

high-√𝑠∗ events are about as common as return-to-𝑍 events, while for the 𝑒−
𝑅𝑒+

𝐿 initial
state the high-√𝑠∗ events are about a factor 1.2 more abundant (table 5.2). For techni-
cal reasons related to the 𝜇-acceptance (section 7.4.3), the study further splits return-
to-𝑍 events by the total 𝑧-momentum of the 𝜇 pair system into forward- and backward
boosted events (fig. 5.3b). The 𝜇 pair production parameters in these sub-categories
of the return-to-𝑍 dataset are the same since the effective center-of-mass energy is the
same. All together, this makes three 𝜇 pair production datasets, each with the two al-
lowed initial states 𝑒−

𝐿 𝑒+
𝑅 and 𝑒−

𝑅𝑒+
𝐿 (table 5.2).

Both mass ranges, 𝑚𝜇𝜇 ∈ [81, 101]GeV and 𝑚𝜇𝜇 > 180GeV, do not use a further
binning in 𝑚𝜇𝜇. This means that the datasets integrate all physical parameters over the
correspondingmass range, weighted by the 𝑚𝜇𝜇-dependent cross-section. Such an inte-
gration can be a challenge in the interpretation of themeasurement when the integrated
parameters are also 𝑚𝜇𝜇-dependent.

The part of this study that uses the 250GeV dataset (chapter 7) tests various luminos-
ity and polarisation scenarios (section 7.2). Of all the tested scenarios, the one with the
highest number of expected events is an unpolarised run with 10 ab−1 of luminosity.
The available MC statistics for all categories in the 250GeV exceed this luminosity by
at least a factor 1.4 (table 5.2). This again ensures that the study does not suffer from
fluctuations in the MC distributions.
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6. Separating hadronic decays of boson pairs

High-energy vector boson scattering (VBS) is a sensitive probe to new physics in the
electroweak and Higgs sectors [201, 202]. In the SM, the amplitude of the VBS process
converges only with the help of the electroweak symmetry breaking mechanism [203,
204]. Changes in that mechanism will therefore strongly perturb the amplitude. As-
suming those changes to arise from yet undiscovered new physics at high energies, the
disruption will increase with energy towards that new physics.

The low-background environment in the detector at an 𝑒+𝑒− collider enables the mea-
surement of the fully hadronic decay of the two scattered bosons. Such fully hadronic
final states have the highest branching fractions and are as such of high interest for a
BSM analysis. The 𝑒+𝑒− → 𝜈𝜈𝑞𝑞𝑞𝑞 process is one such fully hadronic process which
contains 𝑊+𝑊− → 𝑉𝑉 vertices, and this is the target final state here.

This study is a continuation of a previous work [180], and has been part of the bench-
marking studies for the ILD Interim Design Report (IDR) [123, 205, 206]. The primary
goals of this study are to provide results with update-to-date detector model and to
understand the limitations of such a VBS measurement (section 4.2.2).

For this, the focus of this study is one of the benchmarks of the analysis of the fully
hadronic final state: the kinematic separation of the𝑊𝑊 and𝑍𝑍final states (section 6.1).
Through a quantification of this separation (section 6.2) and with the use of generator
level information, it is possible to compare how each step of the event reconstruction and
high level analysis impact that separation (section 6.3). In turn, this provides guidance
for future studies by identifying the most pressing challenges.

One of the limiting factors of this separation is the resolution of the detector. A change
to the detectormodel, as investigated in the ILD-IDR (section 3.3.2) [123], can also affect
this separation. An explicit comparison to a model of reduced size shows that the exact
model plays a minor role for this benchmark (section 6.4).

This study generally uses the large ILD model (IDR-L), specifically l5_o1_v02, un-
less specified otherwise. A previous chapter gives a full description of the dataset (sec-
tions 5.1 and 5.2), which uses the expected collisions produced at the ILC anddetected in
the ILD. For consistency with previous studies [152], this study considers the expected
events in a single dataset with a polarisation of (𝒫𝑒−, 𝒫𝑒−) = (−80%, +30%) and with
1 ab−1 of luminosity. That luminosity corresponds to around a third of what a potential
1TeV run of the ILC foresees for this polarised dataset [207].
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6. Separating hadronic decays of boson pairs
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Figure 6.1.: The reconstructed mass distributions of true 𝑊𝑊 (blue) and 𝑍𝑍 (red)
events are the basis of the kinematic separation. While the 2Ddistribution distribution
(a) contains the full mass information, a 1D projection (b) allows a simple cut which
is the basis of this study. The examples here use the 𝑚𝑉𝑉 > 500GeV events. Lines
represent the true 𝑊 and 𝑍 mass values in the MC events. (Distributions for other
idealization steps in appendix: figs. B.1 and B.2)

6.1. Reconstructing the hadronic di-boson decay

A separation of 𝑊𝑊 and 𝑍𝑍 events in their hadronic final states requires the recon-
struction of the boson kinematics. The high-level reconstruction applies three steps:
the cleaning of background particles in the event, the jet clustering, and the subsequent
combination to boson candidates. Using the FastJet library [208], an exclusive 𝑘𝑡 jet
clustering algorithm [34] cleans low-𝑝𝑇 hadronic backgrounds from 𝛾𝛾 collisions (sec-
tion 3.1.4) by clustering the reconstructed particles into four jets with a cone parameter
of 1.3. An additional 𝑒𝑒 − 𝑘𝑡 jet clustering [208, 209] combines all particles that are in-
cluded in the previous jets into four new jets. Each combination of the four jets into
two pairs of jets is a possible candidate for the di-boson final state. As the two bosons
will have approximately the same mass, the pairing that leads to the smallest difference
of masses between the two jet pairs |𝑚𝑗𝑗,1 − 𝑚𝑗𝑗,2| yields the two boson candidates. The
sum of the four-momenta of the two jets in the boson candidate gives the boson four-
momentum. These boson four-momenta yield the reconstructed bosonmasses 𝑚𝑉1 and
𝑚𝑉2 (fig. 6.1), which are the basis the kinematic separation of 𝑊𝑊 and 𝑍𝑍 events.
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6.2. Quantification of di-boson separation

6.2. Quantification of di-boson separation

A simple cut in the (𝑚𝑉1 + 𝑚𝑉2)/2 mass projection (fig. 6.1b) allows a kinematic sepa-
ration of 𝑊𝑊 and 𝑍𝑍 events. For a given cut value, the kinematic separation labels all
events above that value as 𝑍𝑍, and all below it as 𝑊𝑊. This study uses two complemen-
tary methods to quantify the separation of the 𝑊𝑊 and 𝑍𝑍 events.

Thefirstmethodbuilds on afit to themass projection in the range of 50GeV to 110GeV.
A simple Gaussian fit is not possible because the mass projections (𝑚𝑉1 + 𝑚𝑉2)/2 do
not have Gaussian shapes. It turns out that a sum of two Gaussians describes the indi-
vidual mass projections well - one describing the peak region and another the tail (e.g.
fig. 6.2). The modification yields the combined statistical parameters of the peak and
tail Gaussians.

𝜇 = 𝑓𝑝𝑒𝑎𝑘 ∗ 𝜇𝑝𝑒𝑎𝑘 + (1.0 − 𝑓𝑝𝑒𝑎𝑘) ∗ 𝜇𝑡𝑎𝑖𝑙 (6.1)

𝜎2 = 𝑓𝑝𝑒𝑎𝑘 ∗ 𝜎2
𝑝𝑒𝑎𝑘 + (1.0 − 𝑓𝑝𝑒𝑎𝑘) ∗ 𝜎2

𝑡𝑎𝑖𝑙 + 𝑓𝑝𝑒𝑎𝑘 ∗ (1.0 − 𝑓𝑝𝑒𝑎𝑘) ∗ (𝜇𝑝𝑒𝑎𝑘 − 𝜇𝑡𝑎𝑖𝑙)
2

(6.2)

Here, 𝑓𝑝𝑒𝑎𝑘 is the amplitude fraction of the peak Gaussian, and 𝜇𝑝𝑒𝑎𝑘/𝑡𝑎𝑖𝑙 and 𝜎𝑝𝑒𝑎𝑘/𝑡𝑎𝑖𝑙
are the mean and width of the peak and tail Gaussians, respectively. Using the fits
to the distributions of the true 𝑊𝑊 and true 𝑍𝑍 events and the resulting parameters
𝜇𝑊𝑊/𝑍𝑍 and 𝜎𝑊𝑊/𝑍𝑍, a quantification of the kinematic separation is possible in form
of the Gaussian separation.

Separation =
∣𝜇𝑊𝑊 − 𝜇𝑍𝑍∣

√𝜎2
𝑊𝑊 + 𝜎2

𝑍𝑍

(6.3)

The resulting Gaussian-like separation value gives an intuitive insight into how far the
𝑊𝑊 and 𝑍𝑍 distributions are separated in terms of standard deviations.

The second method aims at scanning the whole range of possible separation-cut val-
ues that a full analysis can use. Receiver operating characteristic (ROC) curves are
a tool to visualize the trade-off of such binary classifiers. Here, these curves are the
results of scanning the separation-cut values in the one-dimensional mass projection
(𝑚𝑉1 + 𝑚𝑉2)/2 in the range between 30GeV and 250GeV in 4400 steps. Each cut value
yields two efficiencies, one for correctly identifying the true 𝑊𝑊 boson pair in a true
𝑊𝑊 event, and a corresponding one for true 𝑍𝑍 events. The collection of the points
of those two efficiencies forms the ROC-curve (fig. 6.3). The area under the resulting
curve summarizes the separation of the two mass event types for the whole scanned
mass range. Such an area-under-the-curve (AUC) value reaches a maximum of 1 if the
kinematic separation is perfect, and a value of 0.5 if the mass distributions do not allow
any separation. A value of one, and a full separation of the boson pairs, only appears
here on generator level, where the ROC curve forms a square with unit length.

Both estimators are arbitrary choices for quantifying this specific aspect of the analysis
of the 𝜈𝜈𝑞𝑞𝑞𝑞 final state. While the Gaussian separation has a more visual and intuitive
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Figure 6.2.: A fit of the sum of two Gaussians yields the statistical moments of the (a)
𝑊𝑊 and (b) 𝑍𝑍 distributions. The examples here use the fully reconstructed distri-
butions of the 𝑚𝑉𝑉 > 500GeV events (full set of fits in the appendix: section B.2).

interpretation, the AUC uses the efficiencies that are of direct relevance to the analysis.
In addition, the Gaussian separation will indicate changes also when there is no signif-
icant overlap of the two distributions. The AUC of the ROC method on the other hand
shows sensitivity to changes in the mass distributions only when those changes actually
affect the relevant separation efficiency. Together, the twomethods allow an assessment
of the severity of the change with the Gaussian method and of the relevance for the
physical performance with the AUC.

6.3. Identifying reconstruction challenges

The reconstructed boson mass and the quantifiers introduced in the previous section
are the basis to investigate which aspects of the reconstruction are most limiting to this
analysis. This section focuses on the comparison of the two phase space regions with
different physical motivations and different jet kinematics (section 5.3). All results in
this section use the large ILD model (IDR-L).

6.3.1. Understanding the kinematics

This study splits the signal events into two kinematic regions: 𝑚𝑉𝑉 < 500GeV and
𝑚𝑉𝑉 > 500GeV. The region differ in the distribution of the bosons and jets (fig. 6.4),
and this crucially determines which reconstruction effects will be most important. For
both kinematic regions, the reconstruction does not significantly change the shape of
the one-dimensional distributions.

An EFT analysis will focus on the kinematic region that tests the highest possible en-
ergy scales (section 2.2.2). This motivates the first kinematic region of 𝑚𝑉𝑉 > 500GeV,
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Figure 6.3.: Varying a 1D-cut in the di-boson mass projection yields a ROC-curve,
and the area under such curves quantifies the separation of the distributions. The
example here use the fully reconstructed mass distribution in the large ILD model for
the 𝑚𝑉𝑉 > 500GeV events (fig. 6.1b). A full set of all ROC-curves produced during
this study is in the appendix (fig. B.8).

where 𝑚𝑉𝑉 is the invariant mass between the two produced electroweak bosons (𝑉 =
𝑊, 𝑍). The bosons in the final state of this kinematic region mainly fly in the forward
regions of the detector (fig. 6.4b) with each boson carrying around a third of the center-
of-mass energy (fig. 6.4a). In their decay the bosons produce two highly boosted jets.
While the boson decay produces back-to-back jets in the boson rest-frame, the strong
boost along the boson flight direction leads to a jet angular distribution very similar to
that of the boson (fig. 6.4d). The bosons tend to decay with one of the quarks along the
bosons flight direction and the other quark against it in the boson rest frame. As a result,
the energy is not split evenly between the jets and the jet energy spectrum spreads from
very low-energy to energies close to the boson momentum (fig. 6.4c).

The cross-section of the low-mass kinematic region with 𝑚𝑉𝑉 < 500GeV is more
than an order of magnitude larger than that of the high-𝑚𝑉𝑉 (table 5.1). Measurements
which focus on this region can achieve higher statistical precision and perform searches
for new low-mass effects with small couplings. A higher energy contribution to neutri-
nos or to the initial state radiation (ISR) causes the lower diboson invariant mass. As a
result, both of the initial bosons have less energy (fig. 6.4a). The increased energy in the
neutrinos or ISR likely affects only one such particle, so that it takes momentum from
the di-boson system either in the very-forward or in the very-backward direction. This
means that the boson produced in that direction is likely to be more central (fig. 6.4b).
For this reason, this kinematic region does not have the same forward-peaking jet dis-
tributions as the high-𝑚𝑉𝑉 events (fig. 6.4d).
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Figure 6.4.: The distribution of the reconstructable objects in the detector determines
which effects are most important. Differences between the truth-level distributions
and reconstructed distribution turn out small. Each distribution is normalized to
unity. Reconstruction-level distributions use the large detector model.
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Table 6.1.: Overview of the different idealization steps and the corresponding recon-
struction steps. The idealization steps are cumulative from top to bottom.

Idealization step Explanation Corresp. reco. step

“Full rec”” Full reconstruction −

“+ Cheated overlay” Removing background particles
with truth-level information Exclusive 𝑘𝑇 clustering

“+ Cheated jets” Clustering particles to jets
with truth-level information Inclusive 𝑒𝑒 − 𝑘𝑇 clustering

“+ Cheated bosons” Clustering jets to bosons
with truth-level information

Pair finding by minimal
mass difference criterion

“+ no SL-dec”” Ignoring events with truth-level
semileptonic 𝐵 and 𝐶 decays

− (no 𝜈 reconstr.
attempted)

“Generator level” Directly using truth-level
final state quarks

Detector resolution
and acceptance

6.3.2. Deciphering steps of the reconstruction

The contrasting final state kinematics of the jets in these two 𝑚𝑉𝑉 regions make it an
interesting target to study the reconstruction of hadronic final states. Beside the detector
resolution and acceptance, potentially limiting effects in the reconstruction of hadronic
boson decays are the removal of background particles, the clustering into individual jets
and then into bosons, and the invisiblemomentumcomponent of the jets. A step-by-step
idealization of these effects identifies the most relevant ones. Truth-level information
retained in the Monte Carlo dataset allows the idealization of the individual steps. This
information includes for example links between reconstructed particles and the true
particles that contributed to them (section 5.1.3).

This study tests six steps (overview: table 6.1), eachwith consecutivelymore idealized
reconstruction. Any idealization from a previous step is also carried out in the next one.
The full analysis on reconstructed particles without any idealizations is the baseline.

Starting from there, a first step removes any reconstructed particles that on truth-
level do not originate from the hard 𝑒+𝑒− scattering, so that they do not form parts of
the jets. The removed particles mainly originate from 𝛾𝛾 collisions to low-𝑝𝑇 hadrons
(section 3.1.4), and their appearance simultaneous to the hard scattering earns them the
name “overlay”.

In the second step, the jet clustering uses the links of reconstructed particles with
their truth-level origins together with the TrueJet algorithm [200]. This idealizes the
assignment of the reconstructed particles to jets.

The third step employs the same tools to partner the jets into boson candidate pairs
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Figure 6.5.: The comparison of the mass distributions for step that idealizes all high-
level reconstruction and ignores events with semi-leptonic decays with those of the
generator-level boson candidates reveals the impact of the detector resolutions and
acceptances. This significantly degrades the resolution of the mass distributions for
both (a) low-𝑚𝑉𝑉 and (b) high-𝑚𝑉𝑉 events, and introduces a slight bias in high-𝑚𝑉𝑉
events. Plots here use the large ILD model, and each distribution is normalized to
unity.

based on truth-level information.
To test the impact of missing momentum in jets, the fourth step only uses events in

with no semi-leptonic 𝐶- or 𝐵-meson decays on truth-level. Such decays produce neu-
trinos that the detector cannot directly measure.

The last step again uses all signal events and looks directly at the pure truth-level
information of the boson.

6.3.3. Identifying the most relevant effects

Each of these idealization steps yields its ownmass distributions (figs. 6.5 and 6.6), and
with that values for both of the two separation measures described above (section 6.2):
theGaussian separation (fig. 6.7a) and the area-under-the-curve (AUC) of the 𝑊𝑊/𝑍𝑍-
separation efficiencies (fig. 6.7b). Each idealization step artificially improves the sepa-
ration. The improvements are not always identical for the two quantifiers; the Gaussian
separation is sensitive to changes in the mean and width of each distribution, and the
AUC is sensitive only to changes that affect the 𝑊𝑊/𝑍𝑍 separation efficiency.

The two kinematic regions see differences in the influence of each reconstruction step.
For the interpretation of these differences it is useful to read the idealization steps in
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Figure 6.6.: Step-by-step idealizations (table 6.1) of the high-level event reconstruc-
tion process show which steps have the largest impact on the reconstructed mass for
𝑊𝑊 (top) and 𝑍𝑍 (bottom) events, for both kinematic ranges (left: low-𝑚𝑉𝑉, right:
high-𝑚𝑉𝑉). Plots here use the large model, plots for the small model are in the ap-
pendix (fig. B.7).
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Figure 6.7.: Step-by-step idealizations (table 6.1) of the event reconstruction process
show which steps have the largest impact on the two measures for the separation of
𝑊𝑊 and 𝑍𝑍 events (section 6.2); the Gaussian separation (left) and the area-under-
the-curve of the cut scan (right).

reverse (reading figs. 6.7a and 6.7b from right to left), i.e. reading them starting from
generator level as the impact that each reconstruction step (table 6.1) has when it is not
idealized.

Considering first the Gaussian separation, the detector resolutions and acceptances
cause a large change for both kinematic regions, almost halving the separation. At the
same time, the separation is still large enough that the 𝑊𝑊/𝑍𝑍 separation efficiency
remains almost unaffected, changing the AUC by less than 3%1.

Semileptonic decays also affect both kinematic regions similarly, decreasing the Gaus-
sian separation by close to 30%. Now the overlap of the distributions also becomes rel-
evant enough to affect the AUC more significantly, decreasing it by 5%. These decays
mainly affect the 𝑍𝑍 events (compare figs. 6.6a and 6.6b with figs. 6.6c and 6.6d) since
𝐶 and especially 𝐵 mesons are much more common in 𝑍 decays compared to 𝑊 decays
[4].

The impact of the two clustering steps - particles to jets and jets to bosons - differs be-
tween the two kinematic regions due different boost and angles of the bosons. Cluster-
ing the particles to their originating bosons is difficult if the jets have a low boost and are
correspondingly spread out and overlapping, as can be the case in the 𝑚𝑉𝑉 < 500GeV
events. In this kinematic region, both clustering steps have a similar impact on the gaus-
sian separation, and together decrease it by around 65%. The jet clustering turns out to

1Percentages in this section are relative.
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be more detrimental to the separation efficiency, decreasing the AUC by 12% compared
to 6% from the clustering of jets to bosons. For the high-𝑚𝑉𝑉 events, the two bosons
each have a strong boost and are at a larger angle to each other, and both clustering
steps show no significant impact on the Gaussian separation while decreasing the AUC
in total by only around 5%.

Similarly, the kinematics of the bosons also determine the impact of background parti-
cles in the detector on the resolution. These backgroundparticlesmainly low-𝑝𝑇 hadrons
in the very forward regions of the detector. Since bosons aremore forward in the high-𝑚𝑉𝑉
events (fig. 6.4b), the effect on the resolution is stronger on those events. This is visible
both in theGaussian separation and theAUC. For the low-𝑚𝑉𝑉 events, theGaussian sep-
aration decreases by 20% due to background particles in the jets, and for the high-𝑚𝑉𝑉
region it is more than double the impact with around 50%. In both cases, the impact of
these backgrounds is significant.

6.3.4. Guiding improvements in the event reconstruction

The step-wise idealization identifies two general critical areas of high-level reconstruc-
tion: the reconstruction of semileptonic 𝑏 and 𝑐 decays in jets and the correct assignment
of reconstructed particles to bosons. While this study here itself does not attempt to
improve these reconstruction aspects, it can and has guided other studies to look into
potential improvements.

Previous studies already started to look into the impact of a potential correction of
semileptonic decays in jets at the ILD [180, 205, 210]. These studies either used a generic
correction depending on the lepton energy in the jet, or used truth-level information
to identify the decays particle. The study here motivated a new set of recent studies
that look into the identification and reconstruction of the meson decay vertices in the
jets at the ILD, and the corresponding extraction of the neutrino four-momentum [211,
212]. As the above discussion shows, these methods have the potential to improve the
𝑊𝑊/𝑍𝑍 separation by up to 30%.

A correct assignment of particles to bosons requires the removal of background par-
ticles, the assignment to jets and then to bosons. The current standard for these meth-
ods use iterative jet clustering algorithms and a mass criterion for the assignment to
bosons (section 6.1). In addition, some studies employ kinematic fits that make use
of knowledge of the event like energy and momentum conservation to correct the jet
measurement [212, 213]. Recently, the results and challenges of the LHC have moti-
vated a new look into the reconstruction of jets and hadronically decaying bosons in
high-background environments with the help of machine learning techniques [214–
217]. These techniques can in some cases surpass the resolution of traditional iterative
clustering algorithms [216]. Since the assignment of particles to bosons is responsible
for at least a 50% degradation of the 𝑊𝑊/𝑍𝑍 separation, future studies both for the
inclusion of kinematic fits and for the use of machine learning techniques promise a
significant improvement of the separation of 𝑊𝑊 and 𝑍𝑍 events.
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6. Separating hadronic decays of boson pairs

6.4. Comparing detector models

Recent cost optimisation efforts for the ILC have lead to the proposal of a smaller ver-
sion of the ILD concept (section 3.3). The smaller model reduces the tracking system
radius and applies a stronger magnetic field to recover the tracking performance of the
larger model. This section investigates the influence of a change to this smaller detector
version.

The most relevant performance difference to this analysis is the change in jet energy
resolution (JER). A deterioration of the JER occurs when switching to the smaller detec-
tor model. It rises at most by around 0.3% in absolute, which is a relative rise of about
10%.

The distributions for the two detector models show no significant difference for any
reconstruction stage and for either dataset (figs. 6.7 and 6.8).

One can expect the strongest difference in the fully idealized case. Only detector res-
olution effects and additional neutrinos not coming from semi-leptonic decays play a
role at that stage. A small difference in the distributions shows up for the high-𝑚𝑉𝑉
dataset. This difference is not significant enough to change the diboson separation. In
the low-𝑚𝑉𝑉 case, the boson mass distributions for the two detector models essentially
overlap.

Additional clustering effects and semi-leptonic decays do not change this picture. The
resulting smearing dominates the width of the distributions and the detector models
show the same results within statistical fluctuations. A switch to the smaller ILDmodel
will not influence the result of the analysis in its current stage.

6.5. Conclusion

A precise measurement of quartic gauge couplings at high center-of-mass energies re-
quires an analysis in the high-statistic hadronic final state. Jets from 𝑊 and 𝑍 bosons
need to be distinguished to analyse the 𝑊 pair and 𝑍 pair final states independently.

This study uses the average mass of the two bosons in the final state to investigate
the kinematic separation of 𝑊𝑊 and 𝑍𝑍 final states. A variety of detector and recon-
struction effects in the reconstruction determines how well an analysis can reconstruct
a hadronically decaying boson.

The relevance of any reconstruction effect depends on the kinematic regime of the
boson and its decay jets. A split of the dataset into a high-𝑚𝑉𝑉 and a low-𝑚𝑉𝑉 region
allows studying these effects in two different kinematic regimes. Jet in the high-𝑚𝑉𝑉
region are more forward and have higher energies.

Beam-induced backgrounds are forward-oriented and can be misclustered into for-
ward jets. This effect is significant at this high center-of-mass energy and will need
removal strategies beyond the standard exclusive jet clustering.

Highly energetic jets are collimated and easy to cluster. The correct clustering of single
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Figure 6.8.: A comparison of a larger (IDR-L) and smaller (IDR-S) model of ILD for
both low-𝑚𝑉𝑉 (top) and high-𝑚𝑉𝑉 (bottom) events shows no significant difference in
the performance of both detectormodels. This holds true bothwhen only considering
detector acceptance and resolution (left), and when considering the full analysis of
the reconstructed particles (right).
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particles becomes more difficult with decreasing boson and jet energy. It starts to limit
the reconstruction and will require new approaches to jet clustering, such as recently
emerging methods that make use of machine learning techniques.

Semileptonic 𝑏 and 𝑐 decays within jets complicate the accurate reconstruction of
bosons at any energy. Using the precise final state reconstruction at future 𝑒+𝑒− col-
liders, the identification and reconstruction of these decays can in principle allow a re-
construction of the neutrino momentum. The work from this study here motivated a
new set of studies to look into the feasibility of such methods at ILD [211, 212].

A comparison of the two variations of ILD design shows no significant influence on
the separation in any of the reconstruction steps.

The composition and distribution of the jet constituents in the detector dictate the
difficulty of reconstruction. A precise reconstruction of hadronic final states at future
colliders is challenging and essential for to the physics program. Progress in different
aspects of the jet reconstruction will benefit a large range of measurements, and is wor-
thy more attention.
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7. Impact of beam polarisation on
electroweak fits

Many studies investigated the importance of beam polarisation for 𝑒+𝑒− colliders at and
beyond the 𝑍-pole (section 4.1). Recent discussions of the high-energy physics commu-
nity have once again opened this question, with multiple future 𝑒+𝑒− collider proposals
with varying energy, luminosity, and polarisation ranges [1, 68]. Studies for different
colliders come to in part contradictory conclusions on the matter [60, 106]. A consis-
tent message on the importance of beam polarisation requires a framework that uses a
common and consistent basis of measurements and parameters, onwhich it can test and
compare different collider scenarios.

This study uses a specialized fit framework that can perform simultaneous fit of phys-
ical and systematic effects for different polarisation and luminosity options (section 7.1).
Such fits extract both process-dependent physical parameters, e.g. Triple Gauge Cou-
plings (TGCs) and fermion pair production parameters, and systematic parameters like
the luminosity and beam polarisations (section 7.3). Special attention goes towards
including the 𝜇 acceptance as a detector systematic effect with free parameters (sec-
tion 7.4), which previous studies had not considered [60, 157, 170]. Future linear and
circular colliders guide the choice of 250GeV collider scenarios with different polarisa-
tions and luminosities (section 7.2).

This study tests both fits to individual final states and simultaneous fit of final states
for the different collider scenarios (section 7.5). Results of the fit to 𝜇 pair production
demonstrate how beam polarisation disentangles parameters of both physical and sys-
tematic nature, and how it is crucial to access chiral observables (section 7.6). Fits to
semileptonic 𝑊 pair production further underline these findings, and show that a col-
lider with polarised beams can precisely measure the beam polarisations (section 7.7).
A simultaneous fit of these two-fermion and four-fermion final states leads to significant
improved measurement of the common systematic effects (section 7.8).

7.1. Assembling electroweak fits

This study aims to compare different scenarios for future 𝑒+𝑒− colliders by the achievable
electroweak precision. Theoretical calculations of sensitivity and statistical precision
provide a first indicator of the achievable precisions. Such a purely analytical approach
rapidly increases in complexity when the number of parameters of interest increases.
A complementary approach - used in this study - is to perform fits to the predicted

77



7. Impact of beam polarisation on electroweak fits

datasets, and use appropriate statistical methods that extract the uncertainties on the
fitted parameters. This study includes a large set of physical and systematic parameters,
leading to the choice of fits to differential distribution as the way of determining the
parameter precision.

The goal is to compare the impact of polarisation on various physical and systematic
parameters, which all need to be part of the fit. This study uses an especially devel-
oped fit framework that can simultaneously fit luminosity, polarisations, systematic and
physical effects, and include parameter constraints. At the core of the framework is a
likelihood minimization that uses the minimizers of the ROOT package Minuit2 [218].

7.1.1. Explanation of the fit on a single polarised dataset

The framework sets up amodified version of the generator-level distributions for the dif-
ferent chiral initial states, by including parameterized physical and systematic effects. It
then combines the distributions for the chiral initial states to get the polarised distribu-
tions for the different polarisation settings of the beams. Focusing for now on a single
polarised dataset, the framework weights the modified chiral distributions according
to the polarisation. Finally, it applies global modifications like the luminosity to the
polarised distribution to yield the predicted distribution of events.

𝑁bin (𝒫𝑒−, 𝒫𝑒+) = 𝐿 × ∑
𝜒∈{𝐿𝑅,𝐿𝐿,

𝑅𝐿,𝑅𝑅}

⎡⎢
⎣
𝑤pol,𝜒 (𝒫𝑒−, 𝒫𝑒+) × ⎛⎜⎜

⎝
∏

𝑗
𝑓𝜒,𝑗

⎞⎟⎟
⎠

× 𝜎𝜒,bin
⎤⎥
⎦

(7.1)

𝑤pol,𝜒 (𝒫𝑒−, 𝒫𝑒+) =
1
4 ×

⎧{{{{
⎨{{{{⎩

(1 − 𝒫𝑒−) (1 + 𝒫𝑒+) for 𝜒 = 𝐿𝑅 (𝑒−
𝐿 𝑒+

𝑅)
(1 − 𝒫𝑒−) (1 − 𝒫𝑒+) for 𝜒 = 𝐿𝐿 (𝑒−

𝐿 𝑒+
𝐿 )

(1 + 𝒫𝑒−) (1 − 𝒫𝑒+) for 𝜒 = 𝑅𝐿 (𝑒−
𝑅𝑒+

𝐿 )
(1 + 𝒫𝑒−) (1 + 𝒫𝑒+) for 𝜒 = 𝑅𝑅 (𝑒−

𝑅𝑒+
𝑅)

(7.2)

Here, 𝒫𝑒− and 𝒫𝑒+ are the electron and positron polarisations respectively, the 𝑓𝜒,𝑗 are
functions that parameterize the physical and systematic effects (indexed over 𝑗) that act
on the respective chiral distributionwith chirality 𝜒, and 𝑤pol,𝜒 is the polarisationweight
of the chiral distribution.

The framework provides two ways to implement physical parameters. One way is
to apply a parameter-dependent function 𝑓𝜒,𝑗 to the generator-level distribution. The
second way is to completely replace the Monte-Carlo generator-level distribution by a
functional description of the differential cross-section. This study makes use of both of
these techniques (section 7.3).

Once the framework has assembled the polarised prediction, it can Poisson-fluctuate
each bin of the prediction to mimic a measured distribution. A log-likelihood fit of
the predicted distribution to such measurement-like distributions yields a prediction
of the uncertainties and correlations of the parameters. The fits use a Poissonian log-
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likelihood.

𝐿Poisson ({𝑁𝑚𝑒𝑎𝑠
𝑏 } | {𝑝}) = −2 ln 𝑙Poisson ({𝑁𝑚𝑒𝑎𝑠

𝑏 } | {𝑝})

= −2 ∑
bins 𝑏

[− ln (𝑁𝑚𝑒𝑎𝑠
𝑏 !) − 𝑁𝑝𝑟𝑒𝑑

𝑏 ({𝑝}) + 𝑁𝑚𝑒𝑎𝑠
𝑏 ln(𝑁𝑝𝑟𝑒𝑑

𝑏 ({𝑝}))]

(7.3)

A simpler 𝜒2 minimization would lead to an underestimation of uncertainties when
the distributions have bins with expected event numbers close to zero, which e.g. hap-
pens in the differential distribution of semileptonic 𝑊 pair production. In contrast to
a 𝜒2 minimization, there is no general a-priory expectation for which values the log-
likelihood 𝐿Poisson will take. This means that the log-likelihood approach does not pro-
vide a straightforward goodness-of-fit test. If such a test is required e.g. for real mea-
sured data, then generator level tests like those performed in this study can provide the
expected distribution of 𝐿Poisson values. Here, such goodness-of-fit tests are not neces-
sary because the fitted and measured distributions are by design identical within Pois-
son fluctuations.

Once the fit found the minimum, it numerically determines the Hessian matrix 𝐻𝑖𝑗 =
𝜕2𝐿/𝜕𝑝𝑖𝜕𝑝𝑗 and estimates the covariance matrix as the inverse of the Hessian matrix.
The covariance matrix yields the estimates of the uncertainties and correlations of the
parameters. Any uncertainties and correlations in this study are averaged results of 300
fitswith fluctuateddistributions. For eachfit, the TMinuit2 framework outputs flags that
warn about potential issues in the fit convergence or in the calculation of the Hessian
matrix. All results within this study have well-converging fits and show no issues in the
calculation of the Hessian matrix.

One notable feature of the log-likelihood formula (eq. (7.3)) is the absence of a co-
variance matrix that describes common systematic uncertainties of the measured distri-
bution {𝑁𝑚𝑒𝑎𝑠

𝑏 }. Any systematic effect that affects multiple bins needs an explicit imple-
mentation in the fit with a corresponding set of free parameters.

7.1.2. Fits using multiple polarised datasets

One of the goals of the framework is comparing different scenarios of polarisation and
luminosity. When a collider has polarised beams, it can flip the sign of each polarised
beam, or even depolarise that beam again. This means that once a collider has a po-
larised beam, it can run that beam in up to three longitudinal polarisation settings
(+,−,0). A unpolarised beam on the other hand always only has one setting (0). Each
combination of the options of the two beams is a potential dataset, for which the collider
can decide to assign a fraction of its luminosity.

The formula for the per-bin prediction for a single polariseddataset (eqs. (7.1) and (7.2))
provides a simple extension to implement a polarised scenario with multiple datasets.
Each polarised dataset has its own measured distribution. A given bin shares the same
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chiral prediction (∏𝑗 𝑓𝜒,𝑗) × 𝜎𝜒,bin amongst the different polarised datasets. Only the
polarisation-dependent weights 𝑤pol,𝜒 and the luminosity vary between the predictions
for the datasets.

All fits in this study build on the assumption that every polarised beam has fast he-
licity reversal capabilities (sections 3.1.3 and 3.2.2). As a consequence, any given sys-
tematic effect uses the same parameters for all polarised datasets. The luminosity stays
a single global parameter, and each polarised dataset receives a factor according to the
luminosity fraction that the collider provides to that polarisation combination. Each
signed polarisation enters as a single parameter in all datasets that use that polarisation
setting. For example, if a collider only has one polarised beam and two correspond-
ing datasets, the unpolarised beam will have the same polarisation parameter in both
datasets. If the collider would not have fast helicity reversal, then each polarised dataset
would need its own systematic parameters set, including separate luminosity and po-
larisation parameters.

7.1.3. External constraints

In addition to the Poissonian log-likelihood, the fit can include Gaussian constraints on
the fit parameters. These constraints can represent measurements of systematic effects
in other detectors, measurements from other final states, results from previous experi-
ments, or uncertainties of theory predictions. Like for the differential distribution, the
framework fluctuates the measured values of such constraints for each fit around the
true values within their uncertainties.

𝑒+𝑒− colliders typically provide measurements of luminosity and polarisation which
are independent of the relevant collision data [2] (sections 3.2.1 and 3.2.3). The fits can
include such direct input about the parameters in the form of Gaussian constraints.

7.1.4. Nature of the framework

The framework described above is generic in its approach. It is not specific to the pro-
cess or the dimensionality of the distributions, can implement arbitrary physical and
systematic effects, and can test any given polarisation and luminosity scenario. The fits
can include multiple processes with separate or overlapping sets of parameters. All
electroweak fits of this study use this framework [219–226].

7.2. Choosing collider scenarios

The fit framework can test different collider scenarios and compare the resulting preci-
sions. A collider scenario consists of the center-of-mass energy of the collider, the total
luminosity, the choice of beam polarisation with the corresponding sharing of luminos-
ity between polarised datasets, and constraints on polarisation and luminosity. This
section describes the motivation and choice of collider scenarios for this study.
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Table 7.1.: The polarisation scenarios differ in whether a given beam is polarised, and
with that in the amount of dataset which get a share of the luminosity. Collider sce-
narios with two polarised beams use a luminosity spliting that enhances the fraction
of 𝑒−

𝐿𝑒+
𝑅 and 𝑒+

𝑅𝑒−
𝐿 collisions. This is visible in the increased scenario-specific polarisa-

tion weights 𝑤𝐿𝑅/𝑅𝐿 (eq. (7.4)).
Scenario (80, 30)w/ 0-pol. (80, 30) (80, 0) (0, 0)

Absolute 𝒫𝑒− [%] 80 / 0 80 80 0
Absolute 𝒫𝑒+ [%] 30 / 0 30 0 0

Datasets (+, −) : 36 (+, −) : 45 (+, 0) : 50 (0, 0) : 100
(sgn(𝒫𝑒−), sgn(𝒫𝑒+)) : (−, +) : 36 (−, +) : 45 (−, 0) : 50
Lumi. sharing [%] (+, +) : 4 (+, +) : 5

(−, −) : 4 (−, −) : 5
(+, 0) : 4
(−, 0) : 4
(0, +) : 4
(0, −) : 4
(0, 0) : 4

Pol. weights 𝑤𝐿𝑅/𝑅𝐿 1.154 ⋅ 1/4 1.192 ⋅ 1/4 1/4 1/4
1/√4 ⋅ 𝑤𝐿𝑅/𝑅𝐿 0.931 0.916 1 1

7.2.1. Scenarios inspired by proposed colliders

The comparison of such collider scenarios with different polarisation options exposes
the impact of beam polarisation. Such a comparison requires a choice of concrete col-
lider scenarios. Proposed future 𝑒+𝑒− colliders (section 3.1) guide this choice in this
study.

The four most advanced proposed colliders all have an option to run near the 𝑍𝐻
threshold around 250GeV [88, 89, 207, 227]. All fits within this study use distributions
for runs at this energy (section 5.3).

The availability of longitudinal beampolarisation varies amongst the proposed collid-
ers. Circular colliders typically do not use longitudinally polarised beams, while linear
colliders produce one or both beamswith longitudinal polarisation. This landscapemo-
tivates the polarisation scenarios in this study (table 7.1). Three options cover the basic
scenarios; both beams are unpolarised (“(0/0)”), only the electron beam is polarised
with a polarisation of 80% (“(80, 0)”), or both beams are polarised with 80% and 30%
polarisations for electron and positron beams respectively (“(80, 30)”).

A collider with longitudinal polarisation can also depolarise a fraction of the bunches,
or can use spin rotators to have fraction of the beam with transversal polarisation [228,
229]. This can improve the control of systematic effects and - in case of transversal polar-
isation - lead to additional observables. An additional polarisation scenario represents
this case, building on the scenario with two polarised beams and allowing both beams
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to run a fraction of the time in unpolarised mode (“(80/0, 30/0)”).
The proposed collider concepts also inspire the luminosity sharing for the scenarios.

A CLIC-like 50-50 sharing is the default for the scenario for with one polarised beam.
When both beams are polarised, the fits use an ILC-like sharing which gives a larger
45% share to each of two opposite-sign polarised datasets and a 5% share to each of
the two same-sign datasets. This sharing is also the basis for the extended (80/0, 30/0)
scenario, which assumes that the collider runs all possible combinations of signed and
unpolarised beams. The luminosity-sharing keeps the 45-to-5 ratio of the opposite-sign
to same-sign datasets, and assigns the same fraction to any dataset with unpolarised
beams as to the same-sign datasets. As a result, each of the two opposite-sign datasets
use 36% of the luminosity, and all other datasets use 4% each.

Each signed polarisation setting of a beam has its own free polarisation parameter in
the fit. This emulates an imperfect helicity reversal which can lead to different absolute
polarisation values for the different polarisation settings of a beam. The number of po-
larisation parameters per beam ranges from one for the unpolarised scenario to three
for the scenario with two polarised beam that also employs unpolarised beam settings.

All scenarios include independent Gaussian constraints on each polarisation param-
eter. ILC-studies motivate a relative uncertainty of 0.25% for polarised beams with a
polarisation of at least 20% [141, 148]. For the unpolarised beam settings, this study
assumes an absolute uncertainty of 0.25%. These constraints neglect any correlation
between the measurement of different-sign polarisation settings of the same beam. Fu-
ture studies can investigate if any such correlations are significant. In addition, the spin
transport between polarimeters and IP, as well as depolarising effects at the IP, can lead
to biases of the polarimeters compared to the polarisation in the collision. Future studies
can look into how well a fit can single out such biases and separate them from physical
effects.

Circular colliders have another way to control the polarisation. They can use the
transversal field of the bending magnets to ensure unpolarised beams to high preci-
sion. A study for the 𝑍 threshold scan at LEP arrived at an estimate of the potential
residual longitudinal polarisation of around 0.5%, and concluded a negligible impact
on electroweak measurements [230]. This study assumes a factor 2 improvement on
this uncertainty by applying a polarimeter constraint of 0.25% to unpolarised beams.
Future studies can revise this assumption.

The ILC operating scenario motivates the default luminosity of 2 ab−1 for all scenar-
ios. Only the unpolarised scenario tests an additional higher-luminosity case of 10 ab−1,
corresponding to circular collider scenarios with two interaction points. In each case,
a relative Gaussian constraint on the luminosity of 0.3% represents a luminosity mea-
surement in Bhabha events. This constraint is inspired by ILC studies and likely a con-
servative estimate [125].

The scenarios described above are the basis of this study. Several of the included as-
sumptions may be too conservative, which will affect the different scenarios in unequal
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ways. Future studies can choose an updated set of references to revise the assumptions.

7.2.2. Impact of luminosity sharing on event numbers

The choice of luminosity sharing between polarised datasets has one very straightfor-
ward impact on the precision. Polarised datasets increase or decrease the total number
of observed events for a given chiral initial state. This changes the statistical uncertainty
for the chiral states. The corresponding change in statistical uncertainty is relevantwhen
comparing colliders. Here, the focus is on the initial states 𝑒−

𝐿 𝑒+
𝑅 (𝐿𝑅) and 𝑒−

𝑅𝑒+
𝐿 (𝑅𝐿). The

equation for the total number of events for the initial states explains the change in the
statistical uncertainty.

𝑁𝐿𝑅 = 𝐿 ⎡⎢
⎣

∑
Datasets D

𝑓𝐷
1 − 𝒫𝐷

𝑒−

2
1 + 𝒫𝐷

𝑒+

2
⎤⎥
⎦

𝜎𝐿𝑅 ≡ 𝐿 𝑤𝐿𝑅 𝜎𝐿𝑅

𝑁𝑅𝐿 = 𝐿 ⎡⎢
⎣

∑
Datasets D

𝑓𝐷
1 + 𝒫𝐷

𝑒−

2
1 − 𝒫𝐷

𝑒+

2
⎤⎥
⎦

𝜎𝑅𝐿 ≡ 𝐿 𝑤𝑅𝐿 𝜎𝑅𝐿

(7.4)

Here, 𝑓𝐷 is the luminosity fraction for dataset 𝐷, and 𝑤𝐿𝑅/𝑅𝐿 define a pair of scenario-
specific polarisation weights1.

The luminosity sharing in all scenarios is symmetric with respect to a simultaneous
sign-change of both beams, leading to equal weights 𝑤𝐿𝑅 = 𝑤𝑅𝐿 (table 7.1). A compar-
ison of the polarisation weights shows that only the scenarios with polarisation of both
beams have a statistical advantage over the unpolarised scenario. The scenario with
only one polarised beam does not see any statistical advantage. This is because polari-
sation in both beams is required to favor opposite-sign chiral states over same-sign chiral
states. In scenarios with two polarised beams, the number of events increases by 15.4%
(19.2%) when unpolarised beam settings are (are not) included2. This corresponds to
a relative decrease in the statistical uncertainty of 6.9% (8.4%). While small, this differ-
ence does appear in the results of this study, and is a separate effect of beam polarisation
that comes in addition to access to chiral observables.

7.3. Choosing processes, parameters and effects

The basis of the fits is a set of differential distributions, together with a set of parame-
ters describing physical and systematic effects. Both the processes and the parameters
need to serve the purposes of the study. This section introduces the two- and four-
fermion processes and the corresponding observables for the differential distributions

1The collider scenario specific polarisation weight 𝑤𝐿𝑅/𝑅𝐿 differs from the chiral polarisation weight
𝑤pol,𝜒 (eq. (7.2)). While the𝑤pol,𝜒 describes the pure polarisation factor for one dataset, the𝑤𝐿𝑅/𝑅𝐿 describe
the average factor of all datasets.

2This increased event number is sometimes rephrased as an increased “effective” luminosity [94].
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Table 7.2.: Short overview of the processes in this study and which included effects
impact them.

Luminosity & polarisation TGCs 𝑓 ̄𝑓 parameters 𝜇 acceptance

𝑒+𝑒− → 𝜇+𝜇− × × ×
𝑒+𝑒− → 𝜇𝜈𝑞𝑞 × × ×

Table 7.3.: The binning of the differential distributions is the same as in previous stud-
ies [60].

Process 𝑒+𝑒− → 𝜇+𝜇− 𝜇𝜈𝑞𝑞

Observables cos 𝜃∗
𝜇 cos 𝜃𝑊− × cos 𝜃∗

𝜇 × 𝜙∗
𝜇

Binning 𝑛𝑏𝑖𝑛𝑠(𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) 20 (−1, +1) 20 (−1, +1) × 10 (−1, +1) × 10 (−𝜋, +𝜋)

in this study (section 7.3.1), and the physical (sections 7.3.2 to 7.3.4) and systematic
(section 7.3.5) effects that the fits considers (Overview: table 7.2).

7.3.1. Processes and their differential distributions

The goals of this study set some requirements on the processes that the fits include.
Tests of the polarisation measurement require processes with a significant chirality-
dependence. For the interplay of that measurement with physical effects, the fit needs
to include physical effects that have a well-known dependence of polarisation. And the
interplay with a systematic effect is richest when the systematic effect impacts as many
included processes as possible.

Taking inspiration from previous studies [60], fermion and 𝑊 pair production ful-
fill the requirements of high chirality-dependence and of polarisation-dependent ob-
servables (sections 2.1.1 and 2.1.3). This study further restricts itself to also fulfill the
criterion of a common systematic effect. One way to guarantee overlapping systematic
effects is by using processes with common final state particles. Here, the choice falls
on having a 𝜇 in the final state. This leads a subset of processes for this study, which
consists of 𝜇 pair production and semileptonic 𝑊 pair production with a 𝜇 in the final
state (𝜇𝜈𝑞𝑞).

With the choice of processes set, the fit needs differential distributions that describe
these processes. An optimal choice of observables for these distributions is one that
fully describes the kinematics of the respective process.

A single angle fully describes the 2 → 2 process of 𝜇 pair production for fixed ISR
momentum. That angle is the 𝜇− production angle cos 𝜃∗

𝜇 in the 𝜇+𝜇− rest frame. Fits
in this study use a one-dimensional distribution of that angle for each category of that
process (fig. 7.1). The categories are the result of a split into high effective center ofmass
energy events and return-to-𝑍 events, and an additional split of return-to-𝑍 events into
forward- and backward boosted events (section 5.3). This results in a total of three
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Figure 7.1.: 1D differential distributions of the 𝜇 production angle in 𝜇 pair production
demonstrate the energy- and chirality-dependence of the distribution ((a): √𝑠∗ ≈ 𝑚𝑍,
(b): √𝑠∗ ≈ 250GeV; left: 𝑒−

𝐿𝑒+
𝑅, right: 𝑒−

𝑅𝑒+
𝐿).

categories, each one with its own differential distribution.

The semileptonic 𝑊 pair production process is a 2 → 4 process and requires five an-
gles for a full kinematic description. Two of those angles are the decay angles of the
hadronically decaying 𝑊. A measurement of the initial quark charge, while possible
[231, 232], is not straightforward, which affects the measurement of the quark angle.
This study avoids this issue by restricting itself to a differential distribution in the three
remaining angles (fig. 7.2): the 𝑊− production angle cos 𝜃𝑊−, and the polar and az-
imuthal 𝜇 angles cos 𝜃∗

𝜇 and 𝜙∗
𝜇 in the corresponding 𝑊 rest frame. The fits split the

process into 𝜇+𝜈𝑞𝑞 and 𝜇−𝜈𝑞𝑞 categories, each with its own distribution, to use the full
sensitivity of the angular distribution.

In total, the fits uses three one-dimension 𝜇 pair production distributions and two
three-dimensional 𝑊 pair production distributions (table 7.3). This minimal set of dis-
tributions fulfills the initial requirements to achieve the goals of this study. A clear step
for future studies is to add other processes and observables, and add corresponding
effects and parameters. The following sections lay out the current set of effects and pa-
rameters that the fits in this study apply to the distributions described here.
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Figure 7.2.: 2D (left) and 1D (right) projections of the 3D differential distributions
of chiral states of 𝑊 pair production reflect that the t-channel dominated 𝑒−

𝐿𝑒+
𝑅 initial

state (top) is forward-peaked and that the 𝑒−
𝑅𝑒+

𝐿 initial state (bottom), which contains
only s-channel, has a comparatively flat center-peaked shape.

7.3.2. Parameterising fermion pair production

The primary target of 𝑒+𝑒− → 𝑓 ̄𝑓 measurements is the extraction of physical parameters
such as the 𝑓 𝑓 𝑍 couplings. A study of the interplay between systematic and physical
effects requires a parametrisation of the relevant physics.

The paragraphs below introduce a new parametrisation that takes into account a cor-
rection due to ISR, and note some special considerations in the implementation of that
new parametrisation in the fits.

How ISR distorts the distribution

Fermion pair production (not including Bhabha scattering) is on tree-level a simple s-
channel 𝑍/𝛾 exchange process (section 2.1.3). The tree-level formula for fermion pair
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Figure 7.3.:Afit of the tree-level form for fermion pair production (eq. (7.5)) does not
describe the used differential distributions for 𝜇 pair production in return-to-𝑍 events
(“no ISR cor.” & “Fit no cor.”). The reason is a distortion due to ISR; the tree-level
formworks well when correcting for the true ISR (“w/ ISR cor.” & “Fit w/ cor.”). This
is true for both initial states ((a): 𝑒−

𝐿𝑒+
𝑅, (a): 𝑒−

𝑅𝑒+
𝐿).

production contains four terms, describing the combinations of the two allowed initial
and final states (eqs. (2.41) and (2.52)).

𝑑𝜎 𝑓
𝐿𝑅

𝑑 cos 𝜃 = Σ𝐿𝑙 (1 + cos 𝜃)2 + Σ𝐿𝑟 (1 − cos 𝜃)2

𝑑𝜎 𝑓
𝑅𝐿

𝑑 cos 𝜃 = Σ𝑅𝑟 (1 + cos 𝜃)2 + Σ𝑅𝑙 (1 − cos 𝜃)2

(7.5)

The relevant angle 𝜃 is the angle of the fermion wrt. the incoming 𝑒+ in the 𝑓 ̄𝑓 rest frame.

While this simple formula describes the high-√𝑠∗ dataset well, it does not capture
the shape of the differential distribution of the return-to-𝑍 events of 𝜇 pair production
(fig. 7.3). The only higher-order effect in the MC events is initial-state radiation (sec-
tion 5.1.1), and the predominance of the mismatch in return-to-𝑍 events hints to a link
to the strong ISR in these events.

ISR can cause a non-zero momentum of the combined 𝑒+𝑒− system. This momentum
causes a change of the 𝑒+ direction in the 𝑓 ̄𝑓 rest frame compared to the 𝑒+ direction in
the detector frame. A full correction of this will only be possible in the rare case when
the detector measures and identifies the ISR. Otherwise, the unknown change of the 𝑒+

direction leads to a miscalculation of the angle 𝜃 and distorts the distribution. A simple
generator-level test confirms this: the tree-level formula works well on the angle when
using the true 𝑒+ direction after ISR (fig. 7.3).

A simple correction term is sufficient to allow an accurate description of the data even
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𝑧 < 0).

Figure 7.4.: Fit tests to the two allowed chiral initial states (left: 𝑒−
𝐿𝑒+

𝑅, right: 𝑒−
𝐿𝑒+

𝑅) of 𝜇
pair production show that the pure helicitiy amplitude approach (eq. (7.5), “PureHel.
Ampl.”) works will for high-√𝑠∗ events (a) and that return-to-𝑍 events (b) require an
approach with correction terms (eq. (7.6), “+ corr. term”).

with this distortion of the 𝑒+ direction.

𝑑𝜎 𝑓
𝐿𝑅

𝑑 cos 𝜃 = Σ𝐿𝑙 (1 + cos 𝜃)2 + Σ𝐿𝑟 (1 − cos 𝜃)2 + 𝐾𝐿 (1 − 3 cos2 𝜃)

𝑑𝜎 𝑓
𝑅𝐿

𝑑 cos 𝜃 = Σ𝑅𝑟 (1 + cos 𝜃)2 + Σ𝑅𝑙 (1 − cos 𝜃)2 + 𝐾𝑅 (1 − 3 cos2 𝜃)

(7.6)

Each chiral initial state gets individual correction terms with corresponding parameters
𝐾𝐿 and 𝐾𝑅. The correction term frees the otherwise fixed ratio of constant and quadratic
cos 𝜃 terms, without affecting the total cross-section. This more generalized shape ac-
curately describes the shape of 𝜇+𝜇− production in the MC events at both 𝑚𝜇𝜇 ranges
(fig. 7.4).
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Restoring known parameters through reparametrisation

The tree-level formula with the correction terms (eq. (7.6)) accurately describes the
𝜇+𝜇− distributions. From an experimental point of view, the parameters of that ap-
proach turn out to be rather inconvenient. All parameters correlate with normalisation
shifts (e.g. luminosity biases) and there is no distinction between chirality-dependent
and chirality-independent effects. A reparametrisation resolves these issues and also
restores a parameter set similar to that the one used at LEP and SLD [38].

𝜎 𝑓
0 =

8
3 (Σ𝐿𝑙 + Σ𝐿𝑟 + Σ𝑅𝑟 + Σ𝑅𝑙) (7.7a)

𝐴𝑒 =
(Σ𝐿𝑙 + Σ𝐿𝑟) − (Σ𝑅𝑟 + Σ𝑅𝑙)

Σ𝐿𝑙 + Σ𝐿𝑟 + Σ𝑅𝑟 + Σ𝑅𝑙
(7.7b)

𝐴𝑓 =
1
2 (

Σ𝐿𝑙 − Σ𝐿𝑟
Σ𝐿𝑙 + Σ𝐿𝑟

−
Σ𝑅𝑟 − Σ𝑅𝑙
Σ𝑅𝑟 + Σ𝑅𝑙

) (7.7c)

𝜖𝑓 =
Σ𝐿𝑙 − Σ𝐿𝑟
Σ𝐿𝑙 + Σ𝐿𝑟

+
Σ𝑅𝑟 − Σ𝑅𝑙
Σ𝑅𝑟 + Σ𝑅𝑙

(7.7d)

𝑘0 =
𝐾𝐿

Σ𝐿𝑙 + Σ𝐿𝑟
+

𝐾𝑅
Σ𝑅𝑟 + Σ𝑅𝑙

(7.7e)

Δ𝑘 =
𝐾𝐿

Σ𝐿𝑙 + Σ𝐿𝑟
−

𝐾𝑅
Σ𝑅𝑟 + Σ𝑅𝑙

(7.7f)

This new parametrisation uses the total cross-section 𝜎 𝑓
0, the electron asymmetry 𝐴𝑒,

the final state asymmetry 𝐴𝑓, a new parameter 𝜖𝑓, and the now normalised chirality-
symmetric and -asymmetric correction terms 𝑘0 and Δ𝑘.

After this reparametrisation, the differential cross-section takes a form that is easy to
handle by the fit (detailed derivation: section C.1).

𝑑𝜎 𝑓
𝐿𝑅

𝑑 cos 𝜃 =
3
8𝜎 𝑓

0
1 + 𝐴𝑒

2 [(1 +
𝑘0 + Δ𝑘

2 ) + (𝜖𝑓 + 2𝐴𝑓) cos 𝜃 + (1 − 3
𝑘0 + Δ𝑘

2 ) cos2 𝜃]

𝑑𝜎 𝑓
𝑅𝐿

𝑑 cos 𝜃 =
3
8𝜎 𝑓

0
1 − 𝐴𝑒

2 [(1 +
𝑘0 − Δ𝑘

2 ) + (𝜖𝑓 − 2𝐴𝑓) cos 𝜃 + (1 − 3
𝑘0 − Δ𝑘

2 ) cos2 𝜃]

(7.8)

Interpretation of the new parameters

The definition of the newparameters encodes their physicalmeaning. For the correction
parameters 𝑘0 and Δ𝑘, their motivation already defines them as corrections for ISR or
more general higher-order effects. For the remaining parameters, it is instructive to look
at the pure 𝑍-pole case, where the photon contribution to 𝑒+𝑒− → 𝑓 ̄𝑓 becomes small
compared to the 𝑍-contribution.
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7. Impact of beam polarisation on electroweak fits

Table 7.4.: Fits to the chiral distributions of the Monte-Carlo datasets yield specific
values of the generalized difermion parameters (eq. (7.8)) for the two mass ranges of
𝜇 pair production. Uncertainties arise from the available MC statistics.
*The 250GeV upper bound also includes few events with higher masses, caused by
the beam spectrum of the dataset.

𝑚𝜇𝜇 range [GeV]
Parameters [81, 101] [180, 250∗]

𝜎𝜇
0 [fb−1] 6621.4 ± 1.2 7250.0 ± 1.2

𝐴𝑒 0.2136 ± 0.0002 0.11251 ± 0.00016
𝐴𝜇 0.2028 ± 0.0005 0.03213 ± 0.00017
𝜖𝜇 0.0156 ± 0.0005 1.4259 ± 0.0003
𝑘0 0.0747 ± 0.0006 0.0002 ± 0.0005
Δ𝑘 0.0007 ± 0.0007 0.0002 ± 0.0005

𝐴𝜇
𝐹𝐵 0.03833 ± 0.00016 0.53742 ± 0.00012

Ignoring all photon contributions, the helicity amplitudes assume a simple structure
that only depends on a common normalisation 𝑆 and the chirality-dependent couplings
𝑐𝑓
𝐿/𝑅 of the fermions to the 𝑍 [36].

Σ𝐿𝑙|𝑆𝑀 = 𝑆 ∗ (𝑐𝑒
𝐿)2 ∗ (𝑐𝑓

𝐿)
2

, Σ𝐿𝑟|𝑆𝑀 = 𝑆 ∗ (𝑐𝑒
𝐿)2 ∗ (𝑐𝑓

𝑅)
2

Σ𝑅𝑟|𝑆𝑀 = 𝑆 ∗ (𝑐𝑒
𝑅)2 ∗ (𝑐𝑓

𝑅)
2

, Σ𝑅𝑙|𝑆𝑀 = 𝑆 ∗ (𝑐𝑒
𝑅)2 ∗ (𝑐𝑓

𝐿)
2 (7.9)

These 𝑍-pole amplitudes enter into the definitions of the generalised parametrisation
(eq. (7.7)), and exactly recover the LEP/SLD-definitions [2, 38].
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𝜎 𝑓
0 =

8
3𝑆 ((𝑐𝑒

𝐿)2 + (𝑐𝑒
𝑅)2) ((𝑐𝑓

𝐿)
2

+ (𝑐𝑓
𝑅)

2
) (7.10a)

𝐴𝑒 =
[(𝑐𝑒

𝐿)2 − (𝑐𝑒
𝑅)2] [(𝑐𝑓

𝐿)
2

+ (𝑐𝑓
𝑅)

2
]

[(𝑐𝑒
𝐿)2 + (𝑐𝑒

𝑅)2] [(𝑐𝑓
𝐿)

2
+ (𝑐𝑓

𝑅)
2
]

=
(𝑐𝑒

𝐿)2 − (𝑐𝑒
𝑅)2

(𝑐𝑒
𝐿)2 + (𝑐𝑒

𝑅)2 (7.10b)

𝐴𝑓 =
1
2

⎧{{
⎨{{⎩

(𝑐𝑒
𝐿)2 [(𝑐𝑓

𝐿)
2

− (𝑐𝑓
𝑅)

2
]

(𝑐𝑒
𝐿)2 [(𝑐𝑓

𝐿)
2

+ (𝑐𝑓
𝑅)

2
]

−
(𝑐𝑒

𝑅)2 [(𝑐𝑓
𝑅)

2
− (𝑐𝑓

𝐿)
2
]

(𝑐𝑒
𝑅)2 [(𝑐𝑓

𝑅)
2

+ (𝑐𝑓
𝐿)

2
]

⎫}}
⎬}}⎭

=
(𝑐𝑓

𝐿)
2

− (𝑐𝑓
𝑅)

2

(𝑐𝑓
𝐿)

2
+ (𝑐𝑓

𝑅)
2 (7.10c)

𝜖𝑓 =
(𝑐𝑒

𝐿)2 [(𝑐𝑓
𝐿)

2
− (𝑐𝑓

𝑅)
2
]

(𝑐𝑒
𝐿)2 [(𝑐𝑓

𝐿)
2

+ (𝑐𝑓
𝑅)

2
]

+
(𝑐𝑒

𝑅)2 [(𝑐𝑓
𝑅)

2
− (𝑐𝑓

𝐿)
2
]

(𝑐𝑒
𝑅)2 [(𝑐𝑓

𝑅)
2

+ (𝑐𝑓
𝐿)

2
]

= 0 (7.10d)

(7.10e)

The total cross-section contains both the common normalisation 𝑆 and the normalisa-
tion of the couplings. The initial and final fermion asymmetries 𝐴𝑒 and 𝐴𝑓 quantify the
chirality-dependence of the 𝑒𝑒𝑍 and 𝑓 𝑓 𝑍 couplings respectively. And the new parameter
𝜖𝑓 disappears on the 𝑍 pole.

Additional insight comes from the parameter values on the𝜇pair productiondatasets.
A fit of the new parametrisation (eq. (7.8)) to the chiral distributions of the datasets
yields those parameter values (table 7.4). The values confirm that 𝜖𝜇 is small for return-
to-𝑍 events, and show that this parameter takes large values for events for away from
the 𝑍-pole. This suggests that this parameter describes the influence of 𝛾-exchange in
the differential cross-section. For this reason, this study will refer to this parameter as
the 𝑍/𝛾-interference parameter.

The 𝜇 pair production parameter values also reiterate that an unpolarised correction
term 𝑘0 is only necessary on the return-to-𝑍 dataset, where the ISR energy is large. At
both energy ranges, the chirality-asymmetric correction term Δ𝑘 turns out to be neg-
ligible, reflecting the chirality-independence of ISR. The fits of this study still use this
parameter, as it can represent any additional chirality-dependent effect in real data that
are not present in the Monte Carlo datasets.

The parameter values in this study also come with a caveat. Both 𝜇 pair produc-
tion datasets integrate large mass-ranges of several tens of GeV. Since the parameters
are energy-dependent, this integration over energy also means that the parameter val-
ues in this study are not values at a fixed energy point. Rather, they are folded with
the energy-dependent 𝜇 pair production cross-section in the integrated energy range.
This complicates a direct comparison of the values here with those from LEP/SLD. Fu-
ture studies can consider binning the distribution in 𝑚𝜇𝜇, which will require that the
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7. Impact of beam polarisation on electroweak fits

parametrisation directly considers the energy-dependence of the parameters.

Unpolarised parametrisation

The fits will also test fermion pair production for collider scenarios without beam polar-
isation. In that scenario, the collider only provides one dataset. That single unpolarised
dataset can only measure a single second order polynomial (details: section C.1).

𝑑𝜎 𝑓
unpol

𝑑 cos 𝜃 =
1
4

3
8𝜎 𝑓

0 [(1 +
1
2𝑘0) +

8
3𝐴𝑓

𝐹𝐵 cos 𝜃 + (1 −
3
2𝑘0) cos2 𝜃] (7.11)

This single polynomial contains the polarisation factor 1/4, and still uses the total
cross-section 𝜎 𝑓

0 and the chirality-independent correction parameter 𝑘0. In addition, it
introduces the forward-backward asymmetry 𝐴𝑓

𝐹𝐵.
A comparison of this unpolarised parametrisation with the polarisation-weighted

combination of the general chiral parametrisation gives meaning to these unpolarised
parameters (eq. (C.12)). The use of 𝜎 𝑓

0 and 𝑘0 is consistent with the general parametri-
sation up to quadratic corrections in the parameters {𝒫𝑒±, 𝐴𝑒, Δ𝑘}. This study assumes
such corrections to be negligible or easy to correct, and uses the same parameters 𝜎 𝑓

0 and
𝑘0 for the polarised and unpolarised cases.

The forward-backward asymmetry takes a form that is consistent with the LEP/SLD
definition of that parameter [2], and that includes the effective polarisation𝒫eff (eq. (3.5)).

𝐴𝑓
𝐹𝐵 =

3
8 (𝜖𝑓 + 2𝐴𝑓

𝒫eff + 𝐴𝑒
1 + 𝒫eff𝐴𝑒

)
𝒫eff≈0

≈
3
8 (𝜖𝑓 + 2 (𝒫eff + 𝐴𝑒) 𝐴𝑓) (7.12)

An interpretation of an 𝐴𝑓
𝐹𝐵 measurement in terms of the chiral parameters requires

additional input. From themachine side, the interpretation requires precise polarisation
knowledge. A precise calculation of 𝑍/𝛾-interference parameter 𝜖𝑓 reduces 𝐴𝑓

𝐹𝐵 to the
term 4/3 ⋅ 𝐴𝑒𝐴𝑓. This likely will not pose a problem near the 𝑍-pole where the relative
𝜖𝜇 contribution for the 𝜇𝜇 final state makes up only around 15% of 𝐴𝜇

𝐹𝐵 (table 7.4). The
situation is notably different above the 𝑍-pole, where the 𝑍/𝛾-interference is strongwith
e.g. 𝜖𝜇 ≈ 1.4 at 250GeV. In that case, the 4/3 ⋅ 𝐴𝑒𝐴𝜇 term makes a contribution to 𝐴𝜇

𝐹𝐵
that is below the percent level. While polarised colliders can measure 𝜖𝑓 directly in 𝑓 ̄𝑓
production, unpolarised colliders rely on precise input. Similarly, polarised collider can
measure 𝐴𝑒 and 𝐴𝜇 directly, while unpolarised colliders require the additional input of
𝐴𝑒 from a 𝜏 polarisation measurement [2].

Implementation in the fits

The fit framework is designed to apply different effects - physical or systematic - as
factors to the chiral cross-section distributions to obtain the full predicted distribution
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(eq. (7.1)). Due to technical complications, this approachwas not possible for the fermion
pair production parameters at the time of implementation. That same technical reasons
did not allow shared physical parameters between two- and four-fermion distributions
such as 𝑓 𝑓 𝑍 couplings.

An alternative is that the parametrisation (eq. (7.8)) fully replaces the chiral distri-
bution from Monte-Carlo in the fit. The general parametrisation accurately describes
the MC distribution (fig. 7.4), and the parametrisation can replace the MC distribution
without loss of information.

Unpolarised colliders are a special case, since they have no sensitivity to polarisation
values. Fits that consider fermion pair production for unpolarised scenarios include
the polarisation exclusively through the polarimeter constraints. The exact value of the
polarisations only comes into play in the interpretation of the unpolarised observables.

7.3.3. WW parametrisation

𝑊 pair production plays a key role in the beam polarisation measurement [60]. As part
of this study, the fits aim to test how the polarisationmeasurement interplays with mea-
surements of physical effects. Here, the choice of physical effects falls on the primary
goals of 𝑊 pair production measurements at LEP: the total unpolarised cross-section
and the charged triple gauge couplings [233]. In addition, the fits can include the left-
right asymmetry to test its impact on the measurement. This study does not consider
anomalous couplings of the 𝑊 to fermions and non-SM propagators like additional 𝑍-
like bosons. The following paragraphs describe the parameters in this study and their
implementation in the fit.

Chiral cross-section parameters

The total chiral cross-sections 𝜎𝐿𝑅 and 𝜎𝑅𝐿 contain information about the chiral depen-
dence and the total number of expected events. Both of these can be individually rel-
evant for different physical or systematic effects. A transformation into the total cross-
section 𝜎0 and left-right asymmetry𝐴𝐿𝑅 separates the chirality-dependent and indepen-
dent parts, the same way that the fermion pair production uses 𝜎 𝑓

0 and 𝐴𝑒 (eq. (7.7)).

𝜎0 = 𝜎𝐿𝑅 + 𝜎𝑅𝐿 , 𝐴𝐿𝑅 =
𝜎𝐿𝑅 − 𝜎𝑅𝐿
𝜎𝐿𝑅 + 𝜎𝑅𝐿

(7.13)

The fits in this study do not directly use these parameters, and instead use the relative
change in 𝜎0 and the absolute deviation of 𝐴𝐿𝑅 (details: section C.2).

The measurement of the total cross-section allows a comparison with precise calcula-
tions of the integrated SM cross-section. Due to this role as an observable, 𝜎0 is generally
a free parameter in the fits of this study. A fixing of the cross-section here only serves to
understand how other observables depend on normalisation information.
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7. Impact of beam polarisation on electroweak fits

The fully asymmetric t-channel diagram dominates the left-right asymmetry 𝐴𝐿𝑅.
𝐴𝐿𝑅 also encodes the 𝑒𝑒𝑍 coupling in the s-channel diagram at the effective center-of-
mass energy √𝑠∗ = 𝑚𝑊𝑊. Fermion pair production will have to measure this coupling
with high precision at high energies. Tests of the relevance of left-right asymmetry pa-
rameter can demonstrate how important 𝑒𝑒𝑍 knowledge is for the triple gauge coupling
and polarisation measurements [169].

Triple Gauge Couplings (TGCs)

The fits here build on previous studies (section 4.1) and use the three anomalous cou-
plings of the LEP parametrisation 𝑔𝑍

1 , 𝜅𝛾, 𝜆𝛾 (section 2.2.3) to parametrise changes in
the chiral differential distributions of 𝑊 pair production. For this, the fits need a bin-
dependent parametrisation of how TGC deviations change the cross-section in each bin.
A two-step processmakes this possible by first extracting the event-wise impact of TGCs
and then transformation it into a bin-wise parametrisation [157].

Starting with the second step, the fit requires a choice of how to parametrise the TGC
impact on the cross-section in the bin. TGCs can appear at most quadratically in the
differential cross-section (section 2.2.2). A second order polynomial in the three TGC
deviations (Δ𝑔𝑍

1 , Δ𝜅𝛾, Δ𝜆𝛾) therefore accurately describes the change of differential chi-
ral cross-section3.

𝑑𝜎𝐿𝑅/𝑅𝐿 (Δ𝑔𝑍
1 , Δ𝜅𝛾, Δ𝜆𝛾)

𝜎𝑆𝑀
𝐿𝑅/𝑅𝐿

= 1 + ∑
𝑐∈{𝑔𝑍

1 ,𝜅𝛾,𝜆𝛾}
(𝑇𝑐Δ𝑐 + 𝑇𝑐2Δ𝑐2) + ∑

𝑐1,𝑐2,𝑐1≠𝑐2

𝑇𝑐1𝑐2
Δ𝑐1Δ𝑐2

(7.14)
The coefficients 𝑇 of the polynomial are bin- and chirality-dependent. Determining all
coefficients of the polynomial is possible if the histogram is available for at least nine
(well-chosen) points in the {Δ𝑔𝑍

1 , Δ𝜅𝛾, Δ𝜆𝛾} space. This requires the first step - the
determination of the event-wise TGC impact.

The WHIZARD event generator contains a “reweighting” procedure for exactly this pur-
pose [182, 183]. This procedure reads in the kinematics of an event, and then calculates
the squared matrix element for that event both with SM parameter values |ℳSM|2 and
with a given set of non-SM parameter values |ℳ𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠|2. By calculating the ratio of
the non-SM to the SM squared matrix element

𝑤𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 =
|ℳ𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠|2

|ℳSM|2
(7.15)

the procedure provides event weights 𝑤𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 that quantify the increase or decrease
of the probability of that event.

The determination of the polynomial coefficients employs this reweighting procedure

3A previous study has shown that a restriction to only linear terms does not influence the results on
250GeV ILC data [60], justifying the limitation to dimension-six EFT operators.
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Figure 7.5.: Changes in the Triple Gauge Coupling values change (a) the total unpo-
larised cross-section 𝜎0 and (b) the left-right asymmetry 𝐴𝐿𝑅 of semileptonic 𝑊 pair
production.

for a set of 18 non-SM TGC points in the three parameter space with a common scale
𝛿 = 5⋅10−4 (details: section C.3). This scale value plays a minor role since the quadratic
polynomial is an exact description of the TGC impact on the differential cross-section.
Each of the 18 points yields a histogram with weighted entries, according to the TGC
values of that point. The calculation of the nine coefficients of each bin consists of a fit
to the bin values at the 18 TGC points.

The electroweak fit applies the polynomial (eq. (7.14)) with the bin-dependent coef-
ficients as factor to the chiral cross-section in each bin. Correlations between the TGCs
can in part arise through the bi-linear coefficients 𝑇𝑐1𝑐2

. More generally, correlations
will arise if the measurement of two effects relies on the same information, be it shape,
asymmetry, or normalisation. Negligible 𝑇𝑐1𝑐2

are not a sufficient criterion to exclude
correlations between the TGCs.

7.3.4. TGC sensitivity of 𝑊 pair production

Changes in the TGC values affect the shape and chiral cross-sections of 𝑊 pair produc-
tion (figs. 7.5 and 7.7 and section C.4). Knowledge of the impact of the TGCs is the
basis for understanding their behaviour in the fit, especially their dependence on beam
polarisation.

Beam polarisation aids in the separation of the chiral initial states, beyond the sep-
aration from the measured shape. In a polarised measurement each initial state has a
dataset where that specific initial state is enhanced and the others reduced. Two advan-
tages arise: the precision of the left-right asymmetry measurement increases, and so
does the precision on the shapes of each initial state. This can affect the parameter pre-
cision if a parameter is sensitive to the asymmetry or if the sensitivity to the differential
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Figure 7.6.: 𝜒2 checks (eq. (7.16)) of TGC-sensitivity from the overall shape and nor-
malisation (a) show that the most important information is shape in the 𝑒−

𝐿𝑒+
𝑅 initial

state and normalisation in 𝑒−
𝑅𝑒+

𝐿 . A closer look at the shape sensitivity (b) shows that
the 𝑊− production angle is the most important observable. Results shown are for
𝜇+𝜈𝑞𝑞, results for 𝜇− are the same.

shape depends on the separation of initial states.
An assessment of the sensitivity of 𝑊 pair production to the TGCs requires a quantifi-

cation. Deviations of the TGCs introduce a luminosity-dependent 𝜒2 on the differential
distribution of single chiral initial state with respect to the pure SM distribution.

𝜒2
𝐿𝑅/𝑅𝐿 (𝑔𝑍

1 , 𝜅𝛾, 𝜆𝛾; 𝐿) =
1
𝐿 ∑

bins

⎛⎜⎜⎜⎜
⎝

𝜎𝐿𝑅/𝑅𝐿 (𝑔𝑍
1 , 𝜅𝛾, 𝜆𝛾) − 𝜎𝑆𝑀

𝐿𝑅/𝑅𝐿

√𝜎𝐿𝑅/𝑅𝐿 (𝑔𝑍
1 , 𝜅𝛾, 𝜆𝛾)

∣∣∣∣∣bin

⎞⎟⎟⎟⎟
⎠

2

(7.16)

This converts into a measure of the sensitivity to the normalisation of that initial state
when the whole differential distribution is a single bin. The difference between the 𝜒2

of the fully 3D-binned differential distribution and the 𝜒2 of the normalisation yields
the sensitivity to the pure normalisation-independent shape. These quantifiers show
whether the sensitivity to a given TGC arises primarily from changes it introduces to
the chiral cross-section or to those it introduces in the arbitrarily normalised chiral dif-
ferential distribution (fig. 7.6a).

When the shape turns out to be more relevant, the question arises which observable
plays the biggest role. The previous 𝜒2 quantifiers cannot answer which coordinate is
most important for the shape sensitivity. To address this point, the difference between
the 𝜒2 from the 3D distribution and the 𝜒2 from the 2D projection without a given ob-
servable gives that observables importance (fig. 7.6a).

𝑔𝑍
1 and 𝜆𝛾 both draw significant sensitivity from themeasurement of 𝑒−

𝑅𝑒+
𝐿 chiral cross-

96



7.3. Choosing processes, parameters and effects

0.075

0.050

0.025

0.000

0.025

0.050

#w
ei

gh
te

d
#S

M
#S

M
[%

]

1.0 0.5 0.0 0.5 1.0
cos W

0.00

0.05

0.10

0.15

0.20

0.25

|#
w

ei
gh

te
d

#S
M

|
#w

ei
gh

te
d

eL e+
R qq, = 0.0005, L = 1.0ab 1

gZ
1 = +

gZ
1 =

= +
=

= +
=

Figure 7.7.: Deviations in the TGC values change the differential distributions of the
𝜇−𝜈𝑞𝑞 final state (top). The significance of that change (bottom) is large for central
events with large changes and for forward events with high statistics. For 𝑊 pair
production, the most relevant changes happen on the cos 𝜃𝑊− distribution of the 𝑒−

𝐿𝑒+
𝑅

initial state. The changes are identical for 𝜇+ ̄𝜈𝑞𝑞. (Other coordinates and initial states:
section C.4)

section. The 𝑒−
𝐿 𝑒+

𝑅 cross-section measurement adds only a subdominant contribution in
the 𝜆𝛾 sensitivity. In terms of chiral parameters, the asymmetry measurement 𝐴𝐿𝑅 de-
termines the uncertainty on the 𝑒−

𝑅𝑒+
𝐿 chiral cross-section, while the normalisation un-

certainty plays negligible role.

Δ𝜎𝑅𝐿
𝜎𝑅𝐿

= √(
1

1 − 𝐴𝐿𝑅
Δ𝐴𝐿𝑅)

2
+ (

Δ𝜎0
𝜎0

)
2

≈ √(54
Δ𝐴𝐿𝑅
𝐴𝐿𝑅

)
2

+ (
Δ𝜎0
𝜎0

)
2

(7.17)

In order to play any significant role, the relative uncertainty of 𝜎0 has to be 50 times
larger than the relative 𝐴𝐿𝑅 uncertainty.

Significant shape sensitivity in 𝜅𝛾 and 𝜆𝛾 comes from the 𝑒−
𝐿 𝑒+

𝑅 initial state. This sensi-
tivity relies in both couplingsmostly on the cos 𝜃𝑊− observable (fig. 7.7). Anymixing of
the 𝑒−

𝑅𝑒+
𝐿 initial state into the 𝑒−

𝐿 𝑒+
𝑅 distribution is unlikely to disturb that shape measure-

ment because the 𝑒−
𝐿 𝑒+

𝑅 cross-section factor is a factor 100 higher. The chiral separation
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7. Impact of beam polarisation on electroweak fits

from beam polarisation will therefore not help in the separation of TGC shape effects.
𝑔𝑍

1 draws sensitivity from the left-right asymmetry measurement. Beam polarisation
increases the 𝐴𝐿𝑅 precision, which will benefit 𝑔𝑍

1 precision. The 𝜅𝛾 sensitivity lies al-
most exclusively in 𝑒−

𝐿 𝑒+
𝑅 shape changes. Therefore, as discussed above, beam polarisa-

tion does not show an immediate advantage for the pure 𝜅𝛾 measurement. Sensitivity
to 𝜆𝛾 arises from both the shape and the asymmetry measurements. Beam polarisation
will benefit 𝜆𝛾 precision only if asymmetry information gives the stronger constraint.

The above discussion only considers single TGC sensitivities. It also shows that the
sensitivity to the three couplings arises mainly from two types of information in 𝑊 pair
production measurement: the left-right asymmetry and 𝑒−

𝐿 𝑒+
𝑅 cos 𝜃𝑊− shape. All three

TGCs cause very similar changes to that 𝑒−
𝐿 𝑒+

𝑅 cos 𝜃𝑊− shape (fig. 7.7). A combined fit
of all three TGCs will find less constrained directions in the TGC space (section 7.7.4),
where the combined asymmetry and cos 𝜃𝑊− shape changes of the TGCs are small. Such
behaviour can cause correlations amongst the TGCs.

7.3.5. Including systematic effects

In addition to the fermion pair production parameters and the 𝑊𝑊 cross-section and
TGC parameters, the fit also includes systematic effects.

Luminosity and beam polarisations are the most basic and important systematic ef-
fects that enter practically anymeasurement at future 𝑒+𝑒− colliders (eqs. (7.1) and (7.2)).
The fit framework foresees these by default as free parameters, and can include Gaus-
sian constraints on them (section 7.1). Values of the luminosity and polarisations and
their constraints define the collider scenario (section 7.2). The polarisation values of
polarised beams are 80% and 30% for electron and positron beam respectively, and the
fits test luminosities of 2 ab−1 and 10 ab−1.

Previous studies have sometimes assumed that the absolute polarisation of a beam is
the same for both longitudinal polarisation directions [157, 170]. This study completely
drops this assumption, and uses separate polarisation parameters for each polarisation
setting of a beam, each with an independent Gaussian constraint (section 7.2). A previ-
ous study has shown that dropping this assumption does not pose any issue for colliders
with two polarised beams [60].

In addition to these, the fit also considers the 𝜇 acceptance as an experimental system-
atic effect. Because the inclusion of this effect is not straightforward, a separate section
will describe the implementation in detail (section 7.4).

7.4. Including the muon acceptance

Oneof the targets of this study is to understandhowbeampolarisation affects systematic
uncertainties (section 4.1). The chirality-independent nature of systematic effectsmeans
that a polarised collider can in principle separate them from the chirality-dependent
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(a)

-1 xlow 0 xup 1
cos

0

1

(b)

Figure 7.8.: The 𝜇 acceptance at future detectors such as SiD promises a high central
efficiency and a sharp edge in the forward region (a, copied from [82]). A box-like
model (b) serves as a easy-to-implement first approximation to that acceptance.

physical effects simply on the basis of how they affect the different polarised datasets.
Tests of this hypothesis require the direct implementation of a specific systematic un-
certainty into the fit.

The choice here falls on the 𝜇 acceptance. This effect is relevant both for fermion pair
production - in the 𝜇 pair production final state - and for 𝑊 pair production - in the
semileptonic 𝜇𝜈𝑞𝑞 final state. LEP measurements of 𝜇 pair production quoted the 𝜇
acceptance as an important systematic uncertainty [234–236]. Here, a simple box-like
model approximates the 𝜇 acceptance.

This specific choice serves as a prototype test for including systematic effects directly
in the fit. Future studies can use the same approach with other systematic effects and
on more final states.

This section motivates and introduces the model (section 7.4.1) and describes the im-
pact on the fitted distributions (section 7.4.2). Symmetries in the 𝜇 pair production dis-
tribution turn out to be a challenge for this model (section 7.4.3). An implementation
into the fit requires a translation of the geometrical model into a model on the differ-
ential cross-section (section 7.4.3), a step that also requires verification (sections 7.4.5
and 7.4.6). As a result, the fit can directly extract the 𝜇 acceptance from the collision
data (section 7.4.7).

7.4.1. A simple muon acceptance model

An implementation of the 𝜇 acceptance into the fit first requires a model of that accep-
tance with corresponding model parameters.

Full simulation studies for possible detectors at future 𝑒+𝑒− colliders predict a sharp
drop of the 𝜇 acceptance in the forward region (fig. 7.8a) [82]. A simple “box model“
serves as a first approximation to this full-simulation acceptance (fig. 7.8b). The model
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Figure 7.9.: The angular distribution of the 𝜇 in the detector frame for semi-leptonic 𝑊
pair production shows that the majority of 𝜇’s fly in the very-forward (𝜇−, a) or very-
backward (𝜇+, b) regions of the detector. Contributions from the 𝑒−

𝑅𝑒+
𝐿 initial state are

negligible due to the small cross-section.

assumes that the experiment can reconstruct every 𝜇 within the two edges (forward and
backward), and that any 𝜇 outside that range goes undetected. Future detectors such
as ILD will place these edges as low as 7° (section 3.3.3).

The values of the two edges fully describe the model. A transformation can separate
symmetric and asymmetric behaviour of the box into a width parameter 𝑤 and a center
parameter 𝑐, respectively.

𝑐 =
𝑥up + 𝑥low

2 , 𝑤 = 𝑥up − 𝑥low (7.18)

Default values of these parameters are those for both edges at 7°. This study uses the
deviations Δ𝑐 and Δ𝑤 from the those default values as free parameters.

Δ𝑐 = 𝑐 − 𝑐7° , Δ𝑤 = 𝑤 − 𝑤7° (7.19)

The approach of fitting the systematic effect fundamentally requires that the given
systematic effect has a rather simple shape parametrisation with a reasonable number
of parameters. Given the precision discussed in this study, there is no guarantee for that.
Future studies can use full simulation to motivate more realistic models, likely with a
larger parameter set.

7.4.2. Impact of the muon acceptance on generator-level distributions

The acceptance influences the shape of the fitted differential distributions. Those shape
effects and their changeswith the parameters determine the behaviour of the acceptance
in the fit, and are correspondingly important to understand. A direct application of the
model to the MC events gives a first indication of the impact.
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Figure 7.10.: Angular distributions of 𝜇’s in the detector frame show that 𝜇 pair pro-
duction yields either (a,b) two fairly close-by forward or backward muons in return-
to-𝑍 events or (c) two back-to-back muons for high-√𝑠∗ events (right).
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Figure 7.11.: A 𝜇 acceptance cut of 7° changes the differential distribution of 𝜇 pair
production (top) and semileptonic 𝑊 pair production (bottom, 1D projections of 3D
distributions). The impact is non-trivial because the 𝜇 angle in the detector frame is
not a direct observable of the distributions. Only for high-√𝑠∗ 𝜇 pair production is
the detector frame 𝜇 angle almost exactly the angle in the 𝜇𝜇 frame. (Distribution for
other initial/final states and coordinates in Appendix: figs. C.3 to C.5)

The angle of the 𝜇’s in the detector frame determines the impact of the 𝜇 acceptance.
All included processes have forward or backward-peaking 𝜇 distributions in the detec-
tor frame (figs. 7.9 and 7.10). This means that the acceptance will affect a significant
number of events in those processes. The 𝜇 angle in the detector frame is itself not a
direct observable in any of the distributions, so that the impact of the acceptance on the
distributions depends on the relation between the observables and the 𝜇 angle in the
detector frame.

The impact of the acceptance is straightforward on high-√𝑠∗ 𝜇 pair production events.
In these events, the rest frame of the 𝜇 pairs corresponds roughly to the detector frame.
A very-forward 𝜇 acceptance therefore affects only the two bins at the edges of the distri-
bution (fig. 7.11b). For the simple box model, this is a unique signature that is unlikely

102



7.4. Including the muon acceptance

to be confused with any physical effect.
Other distributions - return-to-𝑍 𝜇 pair production, and 𝑊 pair production - do not

directly contain the detector frame 𝜇 angle in the fitted distributions. The impact on
the differential distributions is more complex and affects more bins (figs. 7.11a, 7.11c
and 7.11d). Return-to-𝑍 𝜇 pair production sees the strongest impact due to the strong
forward (or backward) boost of the di-muon system.

For all processes, more complicated acceptancesmodels will lead to an increased con-
fusion of this systematic effect with physical effects. This can increase the correlations
in the corresponding fits.

7.4.3. Implementation challenges in muon pair production

𝜇 pair production exhibits challenges in the direct implementation of the 𝜇 acceptance
as a fit object. Each of the twomass ranges comeswith its own challenge, and both affect
the center shift parameter.

For return-to-𝑍 events, the asymmetric behaviour of forward- and backward-boosted
events causes a problem. If the center moves to one side, more events on that side will
be within the acceptance, while accordingly more events on the other side are outside
the acceptance (compare left and right plot in fig. 7.12a). The differential distribution
of cos 𝜃∗

𝜇 is boosted out of the detector frame and into the di-muon frame, making it in-
sensitive to the direction of the di-muon system. Acceptance changes from a shift of the
center parameter cancel out on the cos 𝜃∗

𝜇 distribution between forward- and backward-
events.

The challenge in high-√𝑠∗ events has a different cause. Such events have back-to-back
𝜇’s in the detector rest frame. A successful event reconstruction requires both of these
𝜇’s to be inside the acceptance. Shifts of the center parameter to either side lead to a
decreased acceptance on the other side. Any shifts of the center parameter decreases
the number of accepted events (fig. 7.12b). High-√𝑠∗ events are therefore insensitive to
the sign of these shifts, which causes a failure in the covariance matrix estimation.

The problem in the return-to-𝑍 events only appears when the fitted distribution does
not distinguish forward-produced and backward-produced events. Fits here avoid this
by splitting return-to-𝑍 events into the two respective distributions of forward and back-
ward events. The physical parameters of those two split categories remain identical,
only systematic effects can affect them in different ways.

In contrast, the sign ambiguity in high-√𝑠∗ events is inherent to the back-to-back pro-
duction in each event. A simple splitting of events can not resolve this issue. Fits here
do not attempt to resolve this issue, and instead only use high-√𝑠∗ distributions in com-
bination with return-to-𝑍 distributions.
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Figure 7.12.: Changes in the center parameter of the 𝜇 acceptance lead to changes
of the number of events in each bin, divided here by the statistical uncertainty in
the bin to yield the significance, and shown here for (a) the return-to-𝑍 events and
(b) the high-√𝑠∗ events of 𝜇 pair production. The return-to-𝑍 events observe ex-
actly asymmetric-behaviour between forward- and backward-boosted events (com-
pare same markers in left and right of (a)), canceling each other out when not sep-
arated. High-√𝑠∗ events are insensitive to the sign of the change (compare opposite
sign markers in (b)).
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7.4. Including the muon acceptance

7.4.4. Fit-Parametrisation of the muon acceptance

An implementation of the model in the fit requires a fast and simple parametrisation of
the impact that the model parameters have on the distribution.

Taking the same general approach as the TGC parametrisation (eq. (7.14)), a bin-
dependent second order polynomial in the model parameters Δ𝑐 and Δ𝑤 parametrises
the acceptance.

𝑑𝜎bin
𝜎bin

(Δ𝑐, Δ𝑤) = 𝐴0 + 𝐴𝑐 ⋅ Δ𝑐 + 𝐴𝑤 ⋅ Δ𝑤 + 𝐴𝑐2 ⋅ (Δ𝑐)2 + 𝐴𝑤2 ⋅ (Δ𝑤)2 + 𝐴𝑐𝑤 ⋅ Δ𝑐Δ𝑤 (7.20)

The fit framework applies this polynomial as factor to each bin of the chiral distributions
with the corresponding bin-dependent coefficients 𝐴. It further ensures reasonable be-
haviour by restricting the values of that factor to the range between 0 and 1.

In each bin, the polynomial needs to represent the effect of the cut of the MC events.
The coefficients are the elements that connect the behaviour of this effect of MC events
with the behaviour in the fit. A two-step process determines these coefficients. The first
step applies the acceptance model on the MC events with varying values of the model
parameters (Δ𝑐, Δ𝑤). Each of the tested points leads to a corresponding cross-section
value in each bin. The second step fits the coefficients to these points. A selection of
eight such tested points with a common scale 𝛿 = 2 ⋅ 10−4 gives an initial guess of
the coefficients by solving the corresponding eight linear equations. Thereafter, a fit to
a larger set of points {(Δ𝑐, Δ𝑤)|Δ𝑐, Δ𝑤 ∈ {−4, −2, −1, −0.5, 0, 0.5, 1, 2, 4} ∗ 𝛿} accurately
determines the coefficients for each bin. All coefficient-fits yield reasonable 𝜒2 values
within the statistical uncertainty of the MC events.

7.4.5. Validating the parametrisation

There is no inherent guarantee that a second order polynomial is a good approximation
of the changes in 𝜇 acceptance in a given bin. An application of this technique in the
fit requires a validation that the polynomial is a good approximation - i.e. that it differs
only negligibly from varying the cut on MC events.

The validation here defines two parameters to assess the relevance of potential mis-
modeling. One is the 𝜒2 of the actual deviation that the parameter shift introduces over
all bins.

𝜒2
𝑠ℎ𝑖𝑓 𝑡 = ∑

bins

⎛⎜⎜⎜
⎝

𝑁(Δ𝑐,Δ𝑤)
𝑐𝑢𝑡 − 𝑁0

𝑐𝑢𝑡

√𝑁0
𝑐𝑢𝑡

⎞⎟⎟⎟
⎠

2

(7.21)

Here, 𝑁(Δ𝑐,Δ𝑤)
𝑐𝑢𝑡 is the number of Monte-Carlo events after a cut with shifted edges, and

𝑁0
𝑐𝑢𝑡 the corresponding number of events with the fixed 7° cut. The other validation pa-

rameter is the 𝜒2 of howwrong the parametrisation gets that deviation (in other words,
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Figure 7.13.: 𝜒2 tests for (a,b) 𝜇 pair production and (c) semileptonic 𝑊 pair pro-
duction show that the potential mismodeling by the polynomial parametrisation
(𝜒2

𝑚𝑖𝑠𝑚𝑜𝑑𝑒𝑙, eq. (7.22)) of the muon acceptance is negligible compared to the actual
impact of changing the acceptance parameters (𝜒2

𝑠ℎ𝑖𝑓 𝑡, eq. (7.21)). Points in or close
to the red shaded area signal a mismodeling that is significant compared to the actual
impact of the parameter shift on MC events. The appendix contains the full set of
plots for all initial states and processes (figs. C.6 to C.8).
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Figure 7.14.: The linear coefficient (𝑦) of the 𝜇 acceptance polynomial shows only
minimal changes for non-SM TGC values (a), and the linear coefficient of the TCG
polynomial shows only minimal changes for varied values of the 𝜇 acceptance (b).
This confirms that these two effects are largely independent, and that a factorisation
is valid.

𝜒2 of the artificial bias due to parametrisation), again over all bins.

𝜒2
𝑚𝑖𝑠𝑚𝑜𝑑𝑒𝑙 = ∑

bins

⎛⎜⎜⎜
⎝

𝑁(Δ𝑐,Δ𝑤)
𝑝𝑎𝑟 − 𝑁(Δ𝑐,Δ𝑤)

𝑐𝑢𝑡

√𝑁(Δ𝑐,Δ𝑤)
𝑐𝑢𝑡

⎞⎟⎟⎟
⎠

2

(7.22)

Here, 𝑁(Δ𝑐,Δ𝑤)
𝑝𝑎𝑟 is the number of events that the polynomial parametrisation predicts

for a given cut. The parametrisation is valid if the 𝜒2 of artificial bias 𝜒2
𝑚𝑖𝑠𝑚𝑜𝑑𝑒𝑙 is small

compared to 𝜒2 of actual deviation 𝜒2
𝑠ℎ𝑖𝑓 𝑡. Tests of many (Δ𝑐, Δ𝑤) points show that the

polynomial approach leads to negligible 𝜒2
𝑚𝑖𝑠𝑚𝑜𝑑𝑒𝑙 (fig. 7.13). This validates that the fit

bin-dependent polynomial is an accurate representation of the 𝜇 acceptance model.

7.4.6. Validating the physics-systematics factorisation

The high-statistics very forward region of 𝑊 pair production shows a strong sensitivity
to the TGCs (fig. 7.7). This is also where the 𝜇 acceptance takes the strongest effect. The
current approach for the 𝜇 acceptance implicitly assumes that a change in this accep-
tance does not significantly change the dependence on the physics for each bin of the
differential distribution, and vice versa. Such an assumption of a factorisation of these
two effects requires some validation.

A factorisation is valid if the coefficients of the two corresponding polynomials are
independent of the parameter values of the respective other effect. Tests of the linear
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Figure 7.15.: A comparison of the significance of the bias due to factorisation of TGC
and 𝜇 acceptance (𝜒2

𝑓 𝑎𝑐𝑡. 𝑒𝑟𝑟𝑜𝑟, eq. (7.25)) with the significance of the combined shift in
both effects (𝜒2

𝑠ℎ𝑖𝑓 𝑡, eq. (7.24)) shows that the assumption of factorisation causes only
negligible biases. Only 𝑒−

𝐿𝑒+
𝑅 is important in this context, since 𝑒−

𝑅𝑒+
𝐿 does not have

significant very-forward statistics. ((a): 𝜇− in the final state, (b): 𝜇+)

coefficients 𝐴𝑙𝑖𝑛,𝑥 for each parameter 𝑥 in each given bin

𝐴𝑙𝑖𝑛,𝑥 =
1

𝜎bin
d𝜎bin

d𝑥 (7.23)

show that these coefficients change only slightly when the parameter values of the re-
spective other effect vary (fig. 7.14). When one effect deviates, it introduces changes in
the linear coefficients of the other effect. The impact on the linear coefficients is small
compared to the typical scale of the coefficients, in all cases at or below the percent level.

This can impact the fits when both effects vary at the same time. Similar to the mis-
modeling tests (eqs. (7.21) and (7.22)), appropriately designed 𝜒2’s can quantify the
significance of this issue. The first of these 𝜒2’s assesses the significance of the param-
eter shift itself over all bins by applying the 𝜇 acceptance cut and the TGC weighting
directly on the MC events to gain the number of events 𝑁𝑛𝑜𝑡 𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑑.

𝜒2
𝑠ℎ𝑖𝑓 𝑡 = ∑

bins

⎛⎜⎜⎜
⎝

𝑁𝑛𝑜𝑡 𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑑 (Δ𝑐, Δ𝑤, Δ𝑔𝑍
1 , Δ𝜅𝛾, Δ𝜆𝛾) − 𝑁𝑛𝑜𝑡 𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑑 (0)

√𝑁𝑛𝑜𝑡 𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑑 (0)
⎞⎟⎟⎟
⎠

2

(7.24)

A second 𝜒2 quantifies the significance of the bias due to factorisation over all bins by
comparing the unfactorised number of events 𝑁𝑛𝑜𝑡 𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑑 in the bins to the event num-
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7.4. Including the muon acceptance

Table 7.5.: Simple tests that fit only the 𝜇 acceptance on unpolarised distributions
(𝐿 = 2 ab−1) show a high precision in the two parameters and negligible correlations.

Δ𝑐 [10−5] Δ𝑤 [10−5] cor(𝑐, 𝑤)

𝑒+𝑒− → 𝜇𝜇
- return-to-𝑍 2.1 4.0 < 10−2 (abs.)
- return-to-𝑍 and high-√𝑠∗ 2.1 3.9 < 10−2 (abs.)

𝑒+𝑒− → 𝜇±𝜈𝑞𝑞 (charge-separated) 5.4 10.7 −4 ⋅ 10−2

bers 𝑁𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑑 from the factorized polynomials.

𝜒2
𝑓 𝑎𝑐𝑡. 𝑒𝑟𝑟𝑜𝑟 = ∑

bins

⎛⎜⎜⎜
⎝

𝑁𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑑 (Δ𝑐, Δ𝑤, Δ𝑔𝑍
1 , Δ𝜅𝛾, Δ𝜆𝛾) − 𝑁𝑛𝑜𝑡 𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑑 (Δ𝑐, Δ𝑤, Δ𝑔𝑍

1 , Δ𝜅𝛾, Δ𝜆𝛾)

√𝑁𝑛𝑜𝑡 𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑑 (Δ𝑐, Δ𝑤, Δ𝑔𝑍
1 , Δ𝜅𝛾, Δ𝜆𝛾)

⎞⎟⎟⎟
⎠

2

(7.25)
A comparison of these two 𝜒2’s for many different combined shifts of the 𝜇 acceptance
and the TGCs shows that the bias due from the factorisation assumption is negligible
(fig. 7.15). This validates the factorised approach in this study.

Future studies may seek to avoid the necessity of such factorization checks, which be-
come increasingly more effort with every new effect. A straightforward way that fully
avoids that assumption is to fit one common highly-dimensional second order poly-
nomial that encompasses all physical and systematic parameters. Such an approach
will increase the computational time effort since the number of terms in a second order
polynomial grows like 𝑛2 + 3𝑛 with the number of parameters 𝑛. This affects both the
calculation of the coefficients and the application of the polynomial in the fit. At the
same time, the implementation effort does not significantly increase, which makes this
approach potentially feasible.

7.4.7. Simple demonstration of a fitted systematic effect

The final step of the inclusion of the 𝜇 acceptance in the fit is the implementation into the
fitting framework and the test of fits on actual distributions. Since this study is testing
the direct inclusion of such a systematic effect for the first time in the context of such
fits, this final step serves primarily as a final validation of the approach. In addition,
this step provides insight into the interplay of the two acceptance parameters on the
distribution of the different processes. For this purpose, the step performs a minimal fit
on unpolarised distributions with 𝐿 = 2 ab−1 while fixing all other parameters.

The implementation of acceptance parameters into the fit works on both the 𝜇 pair
production and the semileptonic 𝑊 pair production events individually. The only re-
striction is that high-√𝑠∗ 𝜇 pair production events cannot extract parameters in individ-
ual fits due to the symmetry issue described above (section 7.4.3).
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7. Impact of beam polarisation on electroweak fits

Table 7.6.: Overview of the different fit setups and which final states and parameter
sets they use. The study tests fit setups first with the individual final states (“Two-
fermion” and “Four-fermion”) and with both simultaneously (“Combined”).

Two-fermion Four-fermion Combined

Final states 𝜇+𝜇− (return-to-𝑍 ) x x
𝜇+𝜇− (high-√𝑠∗) x x
𝜇𝜈𝑞𝑞 x x

Parameters Luminosity [1]∗ x x x
[# parameters] Polarisations [2-6]∗ x x x
(∗: w/ constraint) 𝜇 acceptance [2] x x x

𝑓 ̄𝑓 parameters [12] x x
TGCs [3] x x
𝑊𝑊 cross-sections [2-4] x x

The very-forward return-to-𝑍 𝜇 pair production events provide the highest precision
of the 𝜇 acceptance parameters (table 7.5). Adding high-√𝑠∗ events does not improve
the precision. Semileptonic 𝑊 pair production yields uncertainties that are around a
factor 2.5 larger than with 𝜇 pair production.

All tested scenarios yield negligible correlations between the two parameters. The fit
extracts both detector edges equally well due to symmetry of W pair production and
return-to-𝑍 𝜇 pair production events (figs. 7.9 and 7.10).

In isolation, the fit can extract the acceptance parameters with high precision and neg-
ligible correlation. The interplay of acceptance changes and other physical or systematic
effects can change this picture. Addressing this question requires a combined fit with
other effects.

7.5. Fits in this study

The previous sections outlined the different building blocks of the fits in this study,
including the fit framework itself (section 7.1), the polarisation and luminosity scenarios
(section 7.2), the differential distributions (section 7.3.1) and the physical (sections 7.3.2
to 7.3.4) and systematic (sections 7.3.5 and 7.4) effects. These building blocks assemble
into different fit setups (table 7.6), which this section presents as an introduction to the
results in the following sections.

A fit setup here is a set of final state distributions and fitted parameters. This study
first tests two fit setups corresponding to the two final states in this study: 𝜇+𝜇− and
𝜇𝜈𝑞𝑞. These individual final state fits are the basis for the study of the third fit setup,
which then uses both final states at the same time. Each fit setup tests all the different
collider scenarios (section 7.2). All three setups include the general systematic effects:
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the luminosity, the polarisation, and the 𝜇 acceptance. The setups that include the 𝜇+𝜇−

final state always use both the return-to-𝑍 and the high-√𝑠∗ distributions, and use the
corresponding set of 𝜇 pair production parameters. Setups with the 𝜇𝜈𝑞𝑞 include the
TGC and 𝑊𝑊 cross-section parameters.

A basic understanding of the fits to the individual final states is necessary to fully
understand the combined fit. For this purpose, both individual fit setups investigate
how beam polarisation affects the measurement of the systematic and relevant physical
parameters. In the 𝜇+𝜇− setup (section 7.6), this includes a focus on the issue of trans-
lating an unpolarisedmeasurement to constraints on polarised parameters. For the 𝜇𝜈𝑞𝑞
setup (section 7.7), the impact of beam polarisation on the polarisation measurement
itself comes into a stronger focus, and special attention goes to how and why the TGC
precision changes with beam polarisation. Both setups also for the first time include
the 𝜇 acceptance as a parameterised detector effect, and the setups can investigate the
impact of this effect on the other parameters in the different collider scenarios. Finally,
the combined setup (section 7.8) tests which advantage arise from a simultaneous fit
for both systematic and physical parameters. This provides a baseline and guidance for
future studies to further broaden these fits, and crucially builds on the conclusions from
the individual fits.

7.6. Two-fermion fits: Chiral disentangling with beam polarisation

SLD experience has shown the great impact of beam polarisation on fermion pair pro-
duction measurements [2]. This makes fermion pair production a prime candidate to
study the impact of beam polarisation at future 𝑒+𝑒− colliders. Here, the fits use only the
𝜇 pair production channel in order to focus on 𝜇-related experimental systematics. The
fits include the cos 𝜃∗

𝜇 distributions of both the return-to-𝑍 and the high-√𝑠∗ datasets
(sections 5.3 and 7.3.1), and extracts the fermion pair production parameters for both
mass ranges (section 7.3.2) as well as the systematic effects of luminosity and polarisa-
tion (section 7.3.5) and the 𝜇 acceptance (section 7.4). Primary outputs of the fits are
the uncertainties (fig. 7.16) and correlations (fig. 7.17) for the different collider scenar-
ios (section 7.2). Besides the default setting with all parameters (bars in fig. 7.16), the
fits also test scenarios that fix the parameters of one of the systematic effects (markers
in fig. 7.27) to test the influence of the corresponding systematic uncertainties.

The fit results reflect the advantages of access to chiral observables with beam polar-
isation (section 7.6.1) and the additional effort that unpolarised colliders must make to
extract chiral asymmetries (section 7.6.2), and demonstrate that unpolarised colliders
need a high experimental and theoretical precision to keep up with polarised results
(section 7.6.3). A comparison of the chiral asymmetry precision from the fits to those
of dedicated 𝑍-pole run studies reiterate the increased sensitvity with polarised beams,
and show that studies of return-to-𝑍 events provide significant improvements over cur-
rent precisions (section 7.6.4). Finally, the conclusions on the interplay of beam polari-
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Figure 7.16.: Uncertainties of two-fermion production parameter at (a) √𝑠∗ ≈ 𝑚𝑍

and (b) √𝑠∗ ≈ 250GeV, and (c) systematic parameters for the fit to 𝜇 pair produc-
tion in different collider scenarios (section 7.2). Uncertainties on physical parameters
are absolute, those on systematic parameters are relative unless specified otherwise.
Only polarised colliders can measure all physical parameters. (Tables with uncer-
tainty numbers in appendix: tables C.2 to C.5)
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Figure 7.16.: (cont.)
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Figure 7.17.: Visualisation of the correlation matrices of the (a) (0, 0), (b) (80, 0), (c)
(80, 30), and (d) (80/0, 30/0) default scenarios (section 7.2) with 𝐿 = 2 ab−1 for the
fit to 𝜇 pair production. Significant correlations of physical effects with systematic
ones happen through the electron asymmetry, total cross-sections and the unpolarised
correction parameter 𝑘0. (Duplicates with numbers in appendix: fig. C.9)
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Figure 7.17.: (cont.)
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sation and experimental systematics turn out rather weak due to the only small impact
of the 𝜇 acceptance on the parameter precisions (section 7.6.5).

7.6.1. Access to chiral information with beam polarisation

Colliders with longitudinally polarised beams can get direct access to the chiral be-
haviour of collisions taking data with reversed polarisation directions. The exact con-
sequences of polarizing one or both beams depend on the physical process in question.
Here, uncertainties and correlations for the different scenarios show the benefits of po-
larised beams in the 𝜇 pair production channel (bars in fig. 7.16, and fig. 7.17).

A collider without beam polarisation can only access unpolarised observables (sec-
tion 7.3.2). Precisions on these observables are in the range of 10−4 to 10−3 ((0, 0) sce-
narios in figs. 7.16a and 7.16b). The luminosity uncertainty fully determines the unpo-
larised cross-section precision (circles compared to bars in figs. 7.16a and 7.16b). Con-
straints of chiral parameters will require additional assumptions (eq. (7.12) and sec-
tion 7.6.2). An increased luminosity only increases the precision on the two unpolarised
shape parameters and does not facilitate access to the chiral structure of the interaction.

Electron polarisation enables access to all chiral parameters. A collider with one po-
larised beam can set constraints on all chiral parameterswith an uncertainty in the range
of 10−3 ((80, 0) scenario in figs. 7.16a and 7.16b). The luminosity uncertainty still lim-
its the precision on the unpolarised cross-section, as both have identical effects on a
given process. This single beam polarisation scenario sees a remaining ambiguity of
the electron asymmetry 𝐴𝑒 and polarisations (𝐴𝑒-𝒫0

𝑒+ correlation in fig. 7.17b). As a
consequence, the polarimeter precision determines 𝐴𝑒 precision (crosses compared to
bars in figs. 7.16a and 7.16b) and polarisation biases directly translate to 𝐴𝑒 biases. A
measurement of the polarisation in other final states like 𝑊 pair production is neces-
sary to increase the polarisation precision and help detect biases. This is only possible
for runs above the 𝑊 production threshold, e.g. at 250GeV. Due to that same ambi-
guity, collision data from 𝜇 pair production in this scenario does not set constraints on
polarisations beyond the polarimeter precision ((80, 0) scenario in fig. 7.16c).

An additional non-zero positron polarisation removes the ambiguitywith 𝐴𝑒 ((80, 30)
scenario in figs. 7.16a and 7.16b, and fig. 7.17c). All chiral parameters benefit from the
polarisation of the second beam, beyond the increase in statistics (see section 7.2.2).
Each beam polarisation affects multiple datasets, which allows the collision data to con-
strain all beam polarisations ((80, 30) scenario in fig. 7.16c).

Such a scenariowith both beams polarised can include also unpolarised beam settings
((80/0, 30/0) scenario in fig. 7.16). The polarisation precision remains stable in that
case despite each of the individual beam polarisations having now a smaller share of
the luminosity. Collision data can even constrain the polarisation of the unpolarised
beam settings, which is not possible in any other tested scenario with unpolarised beam
settings (fig. 7.16c). Of the physical observables, only the correction parameterΔ𝑘 shows
a small negative impact beyond lower event numbers.
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Figure 7.18.: Comparisons of relative {𝐴𝑒, 𝐴𝜇} limits from (a) return-to-𝑍 events and
(b) high-√𝑠∗ events for different collider scenarios demonstrate the benefit of access to
chiral observables with beam polarisation. Unpolarised scenarios use 𝐴𝐹𝐵 and need
to make assumptions on a subset of parameters to set limits.

The discussion above shows how each added polarisation setting benefits the collider.
Measurements with electron beam polarisation have direct chiral access and do not rely
on assumptions for the underlying chiral parameters. Positron polarisation further re-
moves ambiguities and reduces correlations, allowing also a measurement of the polar-
isations in collision data. The effort of polarizing the beams shows clear advantages for
this process.

7.6.2. Translating unpolarised measurements to chiral parameters

The asymmetry parameters 𝐴𝑒 and 𝐴𝜇 of 𝜇 pair production are sensitive to the effective
Weinberg angle (eq. (2.45)). Constraints in the {𝐴𝑒, 𝐴𝜇} plane are a precision tests of
the SM predictions, and deviations can hint at new BSM physics.

Polarised colliders directly constrain all directions in this plane. The scenario with
two polarised beams again shows the significant advantage that 𝐴𝑒 decouples from the
polarisations ((80, 30) and (80/0, 30/0) in fig. 7.18), whereas for a collider with only one
polarised beam the polarimeter precision dictates the𝐴𝑒 uncertainty ((80, 0) in fig. 7.18).
A comparison with the unpolarised scenarios ((0, 0) in fig. 7.18) is not straightforward
because the unpolarised case is not directly sensitive to the individual 𝐴𝑒 and 𝐴𝜇.

An unpolarised collider constrains only a direction in this plane with the use of the
unpolarised asymmetry 𝐴𝐹𝐵. The definition of 𝐴𝜇

𝐹𝐵 defines this {𝐴𝑒, 𝐴𝜇} direction (sec-
tion 7.3.2).

𝐴𝜇
𝐹𝐵 =

3
8 (𝜖𝜇 + 2𝐴𝑒𝐴𝜇) (7.26)

This simplified equation assumes that the polarisations are exactly zero. The influence
of polarisation uncertainties is explored separately below (section 7.6.3). The compar-
isons here further assumes precise knowledge of the 𝑍/𝛾-interference parameter 𝜖𝜇 in
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the unpolarised case. In practice this means assuming that 𝜖𝜇 takes its SM value and the
theory can calculate that value precisely. As seen later on (section 7.6.3 and fig. 7.19),
the required knowledge of 𝜖𝜇 must be on the level of 10−4. An unpolarised collider can
still use 𝜏 polarisation tomeasure 𝐴𝑒 [2]. To take this into account, the comparisons also
consider an optimistic case for the unpolarised scenarios that assumes perfect 𝐴𝑒 knowl-
edge (dashed line (0, 0) in fig. 7.18), in addition to the unpolarised scenarios without
any additional 𝐴𝑒 knowledge (full line (0, 0) in fig. 7.18). The comparison assumes that
the 𝜏 polarisation technique is also applicable in return-to-𝑍 events.

The constraining power of the unpolarised observable 𝐴𝜇
𝐹𝐵 depends on values of 𝐴𝑒

and 𝐴𝜇. A polarised collider has a sensitivity that is roughly 𝒫𝑒𝑓 𝑓/𝐴𝑒 higher than the
sensitivity for the unpolarised collider from 𝐴𝜇

𝐹𝐵 alone [161]. This formula yields (for
𝒫𝑒𝑓 𝑓 ≈ 0.89) a factor of roughly 4 for return-to-𝑍 events and roughly 8 for high-energy
events. For return-to-𝑍 events, a luminosity increase of a factor 5 can bring the uncer-
tainty of the unpolarised collider to a comparable level with the polarised scenarios. The
small value of 𝐴𝑒 at high energiesmeans that there is only a very low 𝐴𝜇-sensitivity from
𝐴𝜇

𝐹𝐵. Even the most optimistic case for an unpolarised collider (e.g. 𝐴𝑒 perfectly known
from 𝜏 polarisation) remains significantly worse than the polarised measurement. An
unpolarised collider with 10 ab−1 can only set limits which are three times worse than
any polarised collider. This is particularly troubling since themain target of high-energy
collisions are these high energy events. An inclusion of other relevant systematic effects
can influence this comparison, and will need further studies in the future.

Overall, the unpolarised measurement shows two disadvantages compared to a po-
larised one. First, the translation of 𝐴𝜇

𝐹𝐵 to the chiral parameters {𝐴𝑒, 𝐴𝜇, 𝜖𝜇} is ambigu-
ous and requires additional input. And second, even under the assumption of perfect
knowledge of 𝐴𝑒 and 𝜖𝜇, that same translation degrades the sensitivity to 𝐴𝜇. Both of
these observations will hold true for other (non-𝑒) 𝑓 ̄𝑓 final states.

7.6.3. Polarisation and theory knowledge in the forward-backward asymmetry
interpretation

The discussion above (section 7.6.2) focused on the role of the electron asymmetry in
the interpretation of 𝐴𝜇

𝐹𝐵. An interpretation of 𝐴𝜇
𝐹𝐵 in terms of 𝐴𝜇 also requires input

on the exact values of the effective polarisation 𝒫eff = (𝒫𝑒+ − 𝒫𝑒−) / (1 − 𝒫𝑒+𝒫𝑒−) and
the 𝑍/𝛾-interference parameter 𝜖𝜇 (eq. (7.12)).

𝐴𝜇 = (
3
4𝐴𝜇

𝐹𝐵 −
1
2𝜖𝜇)

1 + 𝒫eff𝐴𝑒
𝒫eff + 𝐴𝑒

(7.27)

𝐴𝜇
𝐹𝐵, 𝐴𝑒, and 𝒫eff are experimental inputs in that interpretation. An unpolarised collider

can not independently measure 𝜖𝜇, meaning that theoretical calculations must provide
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Figure 7.19.:Dependence of absolute 𝐴𝜇 uncertainty from unpolarised 𝐴𝐹𝐵 measure-
ments in (a) return-to-𝑍 events and (b) high-√𝑠∗ events on the absolute uncertainty of
the polarisation, electron asymmetry and 𝑍/𝛾-interference term. An undisturbed 𝐴𝜇
measurement requires better than 10−3 precision on 𝐴𝑒 and the effective polarisation
𝒫eff, and 10−4 precision on 𝜖𝜇.

𝜖𝜇. Those four quantities determine the uncertainty on 𝐴𝜇.

Δ𝐴𝜇 =
1

𝐴𝑒
√(

3
4Δ𝐴𝜇

𝐹𝐵)
2

+ (
1
2Δ𝜖𝜇)

2
+ (𝐴𝜇 (1 − 𝐴2

𝑒 ) Δ𝒫eff)
2

+ (𝐴𝜇Δ𝐴𝑒)
2

(7.28)

Precision in the effective polarisation has roughly the same importance as precise 𝐴𝑒
input (fig. 7.19). An unpolarised collider can not measure the polarisation values from
collision events and relies on polarimetry to confirm that the longitudinal polarisation is
vanishing. This was the case at LEP, where the longitudinal polarisation was measured
with sufficient precision to not influence the interpretation of 𝐴𝜇

𝐹𝐵 (section 7.2.1). An
undisturbed interpretation of 𝐴𝜇

𝐹𝐵 in terms of 𝐴𝜇 requires a knowledge of 𝒫eff at same
level as the expected 𝐴𝜇 precision. Future unpolarisedmeasurements will likely require
a polarimeter precision at or below the 10−3 level. A precision of this level is challenging
if it only relies on polarimeters, which will deliver a precision at or above 10−3 [237].

The precision requirement on 𝜖𝜇 is significantly stronger than that on 𝐴𝑒 and 𝒫eff. In
order to avoid a significant impact on the 𝐴𝜇 uncertainty, theoretical calculations must
achieve a precision on 𝜖𝜇 at the few 10−4 level.

Both the required polarimeter precision and the theoretical precision are challenges
for this measurement at an unpolarised collider, and need careful consideration in de-
tailed studies.
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Figure 7.20.: Comparison of relative {𝐴𝑒, 𝐴𝜇} limits from return-to-𝑍 events from dif-
ferent collider scenarios (same as fig. 7.18a), and from external predictions from full
𝑍-pole runs of future colliders [88, 122], either (a) from 𝑒+𝑒− → 𝜇+𝜇− alone or (b)
including all fermion pair production measurements. 𝑍-pole run uncertainties are
scaled up for visibility, and show roughly an order-of-magnitude improvement over
return-to-𝑍 results.

Table 7.7.: A straightforward difference of collider scenarios is the number of ob-
served events. Shown here are estimated numbers of 𝑒+𝑒− → 𝜇+𝜇− events with
𝑄2 ≈ 𝑚𝑍 in fits from this study, from SLD [159] and LEP1 [233], and for different
future collider runs [88, 122]. The fit results (“Fit”) use 𝐿 = 2 ab−1, “𝑒+ & 𝑒− po-
larised” refers to a polarisation of (𝒫𝑒−, 𝒫𝑒+) = (80%, 30%).

Fit 250GeV Fit 250GeV ILC FCC-ee
SLD LEP1 𝑒+ & 𝑒− polarised unpolarised Giga-Z Tera-Z

𝜇+𝜇− (𝑄2 ≈ 𝑚𝑍) 2.2 ⋅ 104 5.7 ⋅ 105 3.9 ⋅ 106 3.3 ⋅ 106 1.6 ⋅ 108 1.5 ⋅ 1011

events

7.6.4. Comparison to dedicated 𝑍-pole runs

Both linear and circular future 𝑒+𝑒− collider concepts provide options to perform dedi-
cated Z-pole runs [88, 122]. At the same time, return-to-𝑍 events are an opportunity to
measure the 𝑍-pole couplings without the need to run directly on the 𝑍-pole. The ques-
tion arises how the precisions from return-to-𝑍 events compare to dedicated 𝑍-pole runs
of past and future 𝑒+𝑒− colliders. Here it becomes important that the 𝐴𝑒 measurement
relies mainly on other fermion pair production measurements, which are not a direct
part of the fit. Comparisons therefore will focus on 𝐴𝜇, and estimate the impact of other
including other final states on the 𝐴𝜇 uncertainty.

The results in the paragraphs below show that ameasurementwith return-to-𝑍 events
increases the 𝐴𝜇 precision by an order of magnitude, and that dedicated 𝑍-pole runs
of future 𝑒+𝑒− colliders add another order of magnitude. They reiterate that access to
both 𝐴𝑒 and 𝐴𝜇 is significantly easier with polarised beams, reducing the luminosity
needs. Meanwhile, the reduced dataset of an unpolarised collider will require more
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assumptions in the interpretation of the measurement.

Impact of other 𝑓 ̄𝑓 final states

Past and future 𝑒+𝑒− collider studies have also included other 𝑓 ̄𝑓 final states in measure-
ment of 𝐴𝑒. A comparison with such studies needs an estimation of the impact of these
additional final states.

The addition of other 𝑓 ̄𝑓 final states impacts the 𝐴𝑒 precision in two ways. First, it
increases the available statistics for the direct 𝐴𝑒 measurement at polarised colliders.
And second, it adds the independent measurement of 𝐴𝑒 through 𝜏 polarisation. The
expected 𝐴𝑒 precision from 𝜏 polarisation is not an explicit part of this study. An ex-
trapolation of the relative 𝐴𝑒 uncertainty from LEP to increased numbers of 𝜏𝜏 events
serves a simple estimate here. The LEP measurement was statistically limited, and no
systematics enter that extrapolation [233].

Additional visible 𝑍 decays for a polarised 𝐴𝑒 measurement only translates to in-
creased precision if the statistical uncertainty is dominant. The fits show that this is
only the case in the scenario with two polarised beams. In that case it is justified to
scale the 𝐴𝑒 precision from the 𝜇+𝜇− measurement, because the polarisation precision
will also increase with the increased number of events. The scaling results in a rela-
tive 𝐴𝑒 uncertainty of approximately 0.08% which agrees with dedicated ILC studies on
return-to-𝑍 events [238].

Due to the 𝑍 decay branching ratios, an 𝐴𝑒 measurement from 𝜏 polarisation has a
factor Γ𝑍→𝜇𝜇/Γ𝑍→visible = 3.4%/80% fewer statistics than a polarised measurement of
𝐴𝑒 in all visible final states. LEP achieved an absolute (relative) 𝐴𝑒 precision of 0.49%
(3.3%) with 5.7 ⋅ 105 𝜏𝜏 events, corresponding to 1.4 ⋅ 107 visible 𝑍 decays [233]. SLD,
with only 5.3 ⋅ 105 visible 𝑍 decays and a polarised electron beam, achieved an absolute
(relative) precision of 0.21% (1.4%) [233]. When correcting for the different luminosity,
the uncertainty of the 𝐴𝑒 measurement from 𝜏 polarisation is a factor 12 higher than the
uncertainty from the measurement with beam polarisation. An 𝐴𝑒 measurement from
𝜏 polarisation therefore only contributes significantly to the overall 𝐴𝑒 precision if both
beams are unpolarised or if the beam polarisation uncertainty on 𝐴𝑒 is an order of mag-
nitude larger than the statistical uncertainty. All scenarios considered in this compari-
son - independent of polarisation - include the estimated independent 𝐴𝑒 measurement
from 𝜏 polarisation.

The fitted scenarios on return-to-𝑍 events also include this measurement, and also
for this range it is the only 𝐴𝑒 measurement for unpolarised scenarios. This inherently
assumes that the 𝜏 polarisationmeasurement remains undisturbed by a strong forward-
boost of 𝜏 pair. Future studies will be necessary to further investigate this assumption.

The fits observe that the 𝐴𝑒 precision in the scenario with only electron polarisation
is limited by beam polarisation measurement (section 7.6.1). In that case, the 𝜏 polari-
sation measurement becomes the leading determinant of 𝐴𝑒 in a measurement of all 𝑓 ̄𝑓
final states (compare (80, 0) in fig. 7.20a and fig. 7.20b). The absolute 𝐴𝑒 uncertainty
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from 𝜏 polarisation in that case is 1.5 ⋅ 10−3 compared to the polarimeter-limited un-
certainty of 2.5 ⋅ 10−3 from the measurement in collision data. Realistically, additional
four-fermion final states increase the polarisation precision at high energies, potentially
decreasing the importance of the 𝜏 polarisation measurement again. Future studies can
include the 𝜏 polarisation measurement directly in the fit, especially if at least one beam
is unpolarised.

Expected 𝐴𝜇 uncertainty from basic principles

Acomparison of the𝐴𝜇 precision fromother studies of past and future colliders requires
an understanding of the expected precision differences between the different colliders
and studies.

Two factors primarily drive the differences in 𝐴𝜇 precision of 𝑒+𝑒− colliders: the avail-
able number of events and the sensitivity of the available observables. Future facilities
expect an orders-of-magnitude increase in the available statistics wrt. previous large
scale 𝑒+𝑒− colliders (table 7.7). An 𝑒+𝑒− colliderwith longitudinally polarised beams ad-
ditionally gains direct sensitivity to 𝐴𝜇 through the left-right forward-backward asym-
metry [161]. The expected uncertainty of 𝐴𝜇 is anti-proportional to these two factors.

1
Δ𝐴𝜇

∝ √𝑁𝜇+𝜇− ⋅
⎧{
⎨{⎩

𝒫eff = ∣𝒫𝑒+ ∣+∣𝒫𝑒− ∣
1+∣𝒫𝑒+ ∣⋅∣𝒫𝑒− ∣ if any beam polarised

𝐴𝑒 if both beams unpolarised
(7.29)

The effective polarisation𝒫eff is approximately 0.89 and 0.75 for polarisations of (𝒫𝑒−, 𝒫𝑒+) =
(80%, 30%) and (75%, 0%), respectively, and the electron-asymmetry value 𝐴𝑒 is 0.2136
in the return-to-𝑍 MC dataset and 0.1515 ± 0.0019 from SLD and LEP [2]. While the
difference in 𝒫eff is a physically real difference, the different 𝐴𝑒 values are an artifact of
the 𝑚𝜇𝜇-integration over the 𝑍 peak (section 5.3).

The values of the 𝜇 pair production parameters also determine how sensitive an un-
polarised dataset is to 𝐴𝜇

𝐹𝐵, and subsequently to 𝐴𝜇. This expresses itself first in the
sensitivity of the data to the forward-backward asymmetry.

𝐴𝐹𝐵 =
𝑁𝐹 − 𝑁𝐵
𝑁𝐹 + 𝑁𝐵

(7.30)

⇒ Δ𝐴𝐹𝐵 =
1

√𝑁𝐹 + 𝑁𝐵

2√𝑁𝐹𝑁𝐵
𝑁𝐹 + 𝑁𝐵

(7.31)

⇒
Δ𝐴𝐹𝐵
𝐴𝐹𝐵

=
1

√𝑁total

√1 − 𝐴2
𝐹𝐵

𝐴𝐹𝐵
(7.32)

With a given forward-backward asymmetrymeasurement, the values of the chiral pa-
rameters 𝐴𝑒 and 𝐴𝜇 also influence the interpretation of 𝐴𝜇

𝐹𝐵 in terms of 𝐴𝜇. The estima-
tion of the impact of the 𝜇 pair production parameters becomes simple when assuming

122



7.6. Two-fermion fits: Chiral disentangling with beam polarisation

that the only significant uncertainty arises from 𝐴𝜇
𝐹𝐵, as was the case at LEP [2].

Δ𝐴𝜇

𝐴𝜇
({Δ𝐴𝑒, Δ𝜖𝜇, Δ𝒫eff} → 0)

eq. (7.28)
=

𝐴𝜇
𝐹𝐵

3
4𝐴𝑒𝐴𝜇

Δ𝐴𝜇
𝐹𝐵

𝐴𝜇
𝐹𝐵

=
1

√𝑁total

√1 − 𝐴𝜇
𝐹𝐵

2

3
4𝐴𝑒𝐴𝜇

(7.33)

When comparing two unpolarised scenarios that worked on datasets with different chi-

ral parameter values, the ratio of relative uncertainties depends on the factor√1 − 𝐴𝜇
𝐹𝐵

2/ (3
4𝐴𝑒𝐴𝜇).

That factor is 30.8 for the LEP/SLDparameter values, and 58.1 for the return-to-𝑍dataset
parameter values of this study. This decreases the𝐴𝜇 uncertainties from the unpolarised
fits in this study by a factor 1.89, compared to the uncertainties from LEP and the ded-
icated future collider 𝑍 pole run studies. From a physical point of view, the reason for
the seemingly improved precision in the fits of this study is that the asymmetries of the
dataset in this study are larger than those measured at LEP (table 7.4). This difference
is a consequence of the 𝑚𝜇𝜇-integration of the parameters in this study (section 5.3),
and leads to an increased sensitivity.

In addition to themeasurement technique and the parameter values, experimental re-
alities like the acceptance and additional systematic uncertainties impact the achievable
𝐴𝜇 precision.

The detector acceptance has two kinds of impact; the decreased event number and a
sensitivity decrease from regions outside the acceptance. Considerations here directly
build on the number of observed 𝜇+𝜇− events, which already takes the event loss from
events outside the acceptance into account.

The sensitivity of forward-backward asymmetries (both unpolarised and left-right)
to 𝐴𝜇 decreases when the acceptance decreases. Both of these asymmetries correspond
to ratios of the term linear in cos 𝜃 to the (1 − cos2 𝜃) termof the differential cross-section
(eq. (7.8)). The integrals of each of those terms yield the dependence of the sensitivity
on the (symmetric) angular acceptance edge.

Δ𝐴𝜇 (cos 𝜃cut)
Δ𝐴𝜇 (1) =

3
4
cos3 𝜃cut/3 + cos 𝜃cut

cos2 𝜃cut
(7.34)

Analyses of SLD and OPAL had 𝜇 acceptance edges of 0.9 and 0.95 in cos 𝜃, respectively
[159, 236], with future collider studies assuming similar or better acceptances. This
leads to only slight sensitivity decreases of factors 0.945 and 0.974 for SLD and OPAL,
respectively. The𝜇 acceptance therefore changes the sensitivity in a negligiblewaywhen
the acceptance varies between 0.9 and 1 in cos 𝜃.

Systematic uncertainties did not play a dominant role in SLD or LEP measurements
of 𝐴𝜇 [159, 236]. The fits also do not observe dominant systematic uncertainties on
𝐴𝜇 (fig. 7.16a). In contrast to those, the studies for dedicated 𝑍 pole runs of both ILC
and FCC-ee predict that systematic uncertainties will dominate. The 𝐴𝜇 precision at
an ILC GigaZ run will likely depend on the polarisation precision, which is slightly
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7. Impact of beam polarisation on electroweak fits

worse than the statistical uncertainty [122]. FCC-ee predictions consider the center-
of-mass energy measurement to be the dominant source of uncertainty, surpassing the
statistical uncertainty by a factor 3 [88]. The fits here do not consider such center-of-
mass energy uncertainties, and these uncertaintieswere negligible at LEP. A comparison
of the uncertainties needs to keep these additional systematic effects in mind, since they
will break the otherwise simple scaling laws (eqs. (7.29), (7.33) and (7.34)).

The principle drivers of the 𝐴𝜇 precision are the event numbers and the sensitivity
advantage of polarised colliders. A second important difference is that the return-to-𝑍
events here differ in the asymmetry parameter values from LEP/SLD values, which
changes the sensitivity of the unpolarised colliders by the ratio of the (𝐴𝑒 ⋅𝐴𝜇) products.

𝐴𝜇 uncertainties reflect expected behaviour

The theoretical behaviour of the 𝐴𝜇 uncertainty is well-defined, showing the advantages
of increased luminosity and beampolarisation. Both past collider results and prediction
for future colliders follow these trends, as will be seen below. The results underline the
usefulness of polarised beams and the power of both return-to-𝑍 and dedicated 𝑍-pole
measurements.

Previous 𝑒+𝑒− collider experiments at LEP and SLC provide a first insight into be-
haviour of uncertainty in real experiments. SLD directly measured 𝐴𝜇 with a result of
𝐴𝜇 = 0.142 ± 0.015, corresponding to a relative precision of approximately 10.6% [233].
LEP did not measure 𝐴𝜇 directly and instead provided measurements of the electron
asymmetry 𝐴𝑒 = 0.1498 ± 0.0049 from 𝜏 polarisation and of the 𝜇 forward-backward
asymmetry 𝐴𝜇

𝐹𝐵 = 0.0169 ± 0.0013 [233]. These two LEP measurements transform into
a precision on 𝐴𝜇 (eq. (7.26)), assuming exact knowledge of the 𝑍/𝛾-interference pa-
rameter 𝜖𝜇. A cross-check of LEP and SLD results shows 𝜖𝜇 ≈ 0 within the uncertainties,
justifying this assumption and confirming the negligible 𝛾 contribution on the 𝑍-pole.
With this, LEP results provide a corresponding relative uncertainty of Δ𝐴𝜇 ≈ 7.9% with
negligible polarisation uncertainties [230]. The statistically limited 𝐴𝜇

𝐹𝐵 precision dom-
inates that uncertainty.

The combination of a factor 26 lower event numbers at SLD and the polarisation gain
(eq. (7.29)) from the polarised SLC beams lead to comparable 𝐴𝜇 precisions from LEP
and SLD.

Δ𝐴𝜇(SLD)
Δ𝐴𝜇(LEP) = √ 𝑁LEP

𝑁SLD

𝐴𝑒
𝒫eff,SLD

≈ √26 ⋅ 0.152 ⋅
1 + 0 ⋅ 0.75

0.75 + 0 ≈ 1.03 (7.35)

This confirms that the 𝐴𝜇 precision is primarily a function of the number of 𝑍 events
and the effective polarisation.

A comparison of previous colliders with the fit results must also consider differences
in selection efficiency and input asymmetry values. The fits yield a relative 𝐴𝜇 uncer-
tainty of around 0.4% for scenarios with two polarised beams and 𝐿 = 2 ab−1. This
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marks a factor 25 increase of precision compared to SLD, which is a combination of the
increased number of events and the increased polarisation of both beams. An unpo-
larised fit with 𝐿 = 2 ab−1, under the same assumptions as LEP, ignoring the 𝐴𝑒 un-
certainty and using the Monte-Carlo 𝜖𝜇 value, arrives at a 1.8% relative uncertainty on
𝐴𝜇. This factor 4.4 precision increase of the unpolarised fit result wrt. LEP is around a
factor 2 larger than expected from the pure increase of number of events. The factor 2
corresponds to the different values of 𝐴𝑒, 𝐴𝜇 and 𝐴𝜇

𝐹𝐵 between this fit and LEP, which in-
creases the sensitivity (eq. (7.33)). Both cases demonstrate that return-to-𝑍 events from
a 250GeV machine alone can lead to a significant improvement of the 𝐴𝜇 precision, up
to an order of magnitude with polarised beams.

Both the FCC-ee and the ILC can perform dedicated 𝑍-pole runs [88, 122]. An ILC
“GigaZ” run will achieve a 0.05% relative 𝐴𝜇 precision [122]. This marks a precision
increase of a factor 8 wrt. the 250GeV polarised fit results on return-to-𝑍 events (ILC
compared to (80, 30) in fig. 7.20b), which agrees with the increased number of events.
An FCC-ee “TeraZ” run is in same situation as LEP and could only measure 𝐴𝜇 through
the combination of 𝐴𝑒 and 𝐴𝜇

𝐹𝐵 measurements. Previous studies on electroweak mea-
surements at FCC-ee predict a precision on 𝐴𝜇

𝐹𝐵 of approximately 9.5 ⋅ 10−6, which in-
cludes considerations of systematic uncertainties [88]. Translating this in the same way
as the LEP results, an FCC-ee TeraZ achieves a relative 𝐴𝜇 precision of around 0.05%,
comparable to the ILCGigaZ (FCC-ee compared to ILC in fig. 7.20b). The 𝑍-pole 𝐴𝜇 rel-
ative precision from such a unpolarised TeraZ run is a factor 36 better than results from
return-to-𝑍 events at a high luminosity unpolarised 250GeV collider (FCC-ee compared
to (0, 0) in fig. 7.20b), or a factor 108 when systematics are negligible. The luminosity
difference alone predicts a factor 213, which leaves a factor 2 difference. Again here, the
different input asymmetry values cause the remaining factor 2.

𝑍-pole runs of both polarised linear and unpolarised high-luminosity circular col-
liders lead to the best precisions in this comparison. This takes into account that an
unpolarised machine does not get direct access to 𝐴𝜇 and needs to work under an in-
creased set of assumptions. Specifically, unpolarised colliders cannot directly measure
the 𝑍/𝛾-interference parameter 𝜖𝜇. The interpretation of the measurements relies on
precise and accurate predictions of that term in the same order of magnitude as the ex-
pected 𝐴𝜇 precision (section 7.6.3). An FCC-ee with an 𝐴𝜇 relative precision goal of
0.05% will require a knowledge of 𝜖𝜇 at or below the 10−5 absolute level.

Keeping in mind that theMC dataset and the formula in this study use only tree-level
diagrams, there is another way to interpret this. For an unbiased interpretation of an
unpolarised 𝐴𝜇

𝐹𝐵 measurement, the calculation of higher order corrections needs to have
a precision below 10−5. A polarised measurement on the other hand sets that precision
requirement at the level of the 𝐴𝜇 precision, which is only at the level of a few 10−4.
In addition, as seen for 𝜖𝜇, the polarised measurement can directly measure the higher
order corrections for an experimental cross-check of the theory calculation.

The above discussion shows that the differences of precisions for different past and
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7. Impact of beam polarisation on electroweak fits

future colliders reflect the theoretical behaviour. They demonstrate that even a 250GeV
collider can increase the 𝐴𝜇 precision by one order-of-magnitude over the current preci-
sion, anddedicated𝑍-pole runs of future 𝑒+𝑒− colliders add another order-of-magnitude.
In all cases, an unpolarised collider needs at least an order-of-magnitudemore luminos-
ity to compete with the direct chiral access at a polarised collider.

7.6.5. Small impact of muon acceptance

The fully muonic final state is the prime candidate for testing the influence of the 𝜇
acceptance. Simple reasoning (section 7.2) lead to the possibility that the impact of sys-
tematic uncertainties reduces with beam polarisation. The fits include the 𝜇 acceptance
to perform a first test of this hypothesis. By comparing the results with fix and free
parameters of the acceptance model (bars compared to stars in fig. 7.16), the fits can
extract the relative impact of this systematic uncertainty.

The only affected fermion pair production parameter is unpolarised correction pa-
rameter 𝑘0 of the return-to-𝑍 events (fig. 7.16a). Only this parameter leads to a change
in the differential distribution which is similar to the change provoked by varying the
𝜇 acceptance, i.e. it is most relevant in the forward region and still has a non-vanishing
impact in more central bins. All scenarios show relative impact of approximately 14%,
independently of the luminosity or polarisation setup.

Changes with the polarisation (beyond statistical differences) are neither expected
nor observed, since 𝑘0 is by design chirality-independent. This means that no strong
statement on the interaction of polarisation and systematics is possible, since the con-
sidered systematic effect turns out to not play any significant role on chirality-dependent
parameters.

At the same time, it is remarkable to note that the chirality-dependent correction pa-
rameter Δ𝑘 does not correlate with the 𝜇 acceptance. This is despite the fact that Δ𝑘
and 𝑘0 induce very similar shape changes. The Δ𝑘 parameter stays unaffected by the
systematic exactly because of its chirality-dependence, which a polarised collider can
separate well from the chirality-independence of the 𝜇 acceptance. In that way, the fit
does manage to demonstrate the power of chiral observables at a polarised collider.

That same pattern is also likely to hold up for more complex 𝜇 acceptance mod-
els. While correlations of the systematic effect with the chirality-independent param-
eters (𝜎𝜇

0 , 𝐴𝜇
𝐹𝐵, 𝜖𝜇, 𝑘0) can increase, it is unlikely that any correlation of the chirality-

independent acceptance with the chirality-depend parameters (𝐴𝑒, 𝐴𝜇, Δ𝑘) appears.

7.7. Four-fermion fits: Polarisation measurement in the presence
of physical parameters

𝑊 pair production has a strong chirality-dependence, leading to a strong dependence on
the beam polarisation. As a consequence, the set of available polarisations at a collider
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Figure 7.21.: Uncertainties on (a) TGCs, (b) cross-section parameters, and (c) sys-
tematic parameters from fits to semileptonic 𝑊 pair production in different collider
scenarios (section 7.2). Uncertainties on physical parameters are absolute, those on
systematic parameters are relative unless specified otherwise. Polarised beams signif-
icantly improve the precision on all physical parameters and the beam polarisations.
(Tables with uncertainty numbers in appendix: tables C.6 to C.11)
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Figure 7.21.: (cont.)

128



7.7. Four-fermion fits: Polarisation measurement in the presence of physical parameters

L
P
0
e P

0
e
+ g

Z1

0/
SM0

(W
)

0/
SM0

(W
+ ) c w

L

P0
e

P0
e+

gZ
1

0/
SM
0

(W )

0/
SM
0

(W
+ )

c

w

Average correlation matrix

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a)

L
P e P

+
e P

0
e
+ g

Z1

0/
SM0

(W
)

0/
SM0

(W
+ ) c w

L

Pe

P+
e

P0
e+

gZ
1

0/
SM
0

(W )

0/
SM
0

(W
+ )

c

w

Average correlation matrix

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b)

Figure 7.22.: Visualisation of the correlation matrices of the (a) (0, 0), (b) (80, 0), (c)
(80, 30), and (d) (80/0, 30/0) default scenarios (section 7.2) with 𝐿 = 2 ab−1 for the fit
to semileptonic 𝑊 pair production. The TGCs show strong correlations amongst each
other in polarised scenarios, and generally low correlations with systematic effects.
(Duplicates with numbers in appendix: fig. C.10)
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Figure 7.22.: (cont.)

130



7.7. Four-fermion fits: Polarisation measurement in the presence of physical parameters

will significantly affect all measurements in this channel. In addition, the 𝑊 pair can
arise from vector boson self-coupling vertices which are of high interest for searches of
BSM physics.

Here, fits to semileptonic 𝑊 pair production in the 𝜇𝜈𝑞𝑞 channel give insight into the
different aspects of the impact of beam polarisation on physical and systematic param-
eters, and the interplay between them. These fits use the three-dimensional distribu-
tions of the 𝑊− production angle and the two decay angles of the leptonically decaying
𝑊 for the charge-separated 𝜇+𝜈𝑞𝑞 and 𝜇−𝜈𝑞𝑞 final states (sections 5.3 and 7.3.1). The
standard set of free parameters in the fits contains the three Triple Gauge Couplings
(TGCs, section 7.3.3), the total unpolarised cross-section, the 𝜇 acceptance parameters
(section 7.4), as well as luminosity and polarisations with corresponding constraints
(section 7.3.5). Primary outputs of the fits are the uncertainties (fig. 7.21) and correla-
tions (fig. 7.22) for the different collider scenarios (section 7.2). In addition to the de-
fault parameter set (bars in fig. 7.21, and fig. 7.22), the fits also test scenarios in which
either fix or additionally fit different parameters (markers in fig. 7.21).

The fit results show that one of the most significant gains from polarised beams is the
measurement of the polarisations themselves (section 7.7.1). They also demonstrate the
additional access to chiral observables (section 7.7.3), here in the form of the left-right
asymmetry, and the importance of that information for themeasurement of electroweak
parameters such as the TGCs (section 7.7.4). Like in the 𝜇 pair production case, the 𝜇
acceptance systematic turns out to not limit the 𝑊 pair production measurement (sec-
tion 7.7.5).

7.7.1. Polarisation measurement gains from additional datasets

𝑊 pair production is one of the key channels for the measurement of the polarisa-
tions [144, 145, 237]. As the 𝜇 pair production fits have already shown (section 7.6.1),
this measurement qualitatively and quantitatively improves with the availability of po-
larised beams (bars in fig. 7.21c). This section first considers only the polarisation pa-
rameters, later sectionswill discuss the impact on correlationswith physical parameters.

The availability of polarised beams leads to multiple datasets with different polari-
sation settings. These datasets need to share the luminosity between each other. An
optimised luminosity splitting between the polarised datasets can cause an increase in
expected number of 𝑒−

𝐿 𝑒+
𝑅 and 𝑒−

𝑅𝑒+
𝐿 events (table 7.1). In addition, polarised beams can

reduce the correlation between the polarisation parameters. The statistical advantage
from slightly higher event numbers turns out to be negligible compared to the qualita-
tive impact of having multiple datasets.

For an unpolarised collider setup, the polarimeter precision fully determines the pre-
cision on both beam polarisations ((0, 0) scenarios in fig. 7.21c). No further information
is available from collision data. An unpolarised circular collider can additionally use
the depolarisation in the dipole magnets to ensure that the polarisation is close to zero
below the percent level (section 7.2). This is not possible at a linear collider. In either
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7. Impact of beam polarisation on electroweak fits

case, the high-precision physics goals of these colliders demand also a high-precision
polarisation measurement for unpolarised beams.

A polarised electron beam leads to additional information on the electron polarisa-
tions beyond the pure polarimeter measurement ((80, 0) scenario in fig. 7.21c). While
the precision on the negative-sign polarisation 𝒫−

𝑒− increases only by a few percent, the
precision on the positive-sign polarisation 𝒫+

𝑒− increases by a factor five compared to
the polarimeter precision. A dedicated analysis of this scenario follows below (sec-
tion 7.7.2) and shows that this is due to the large left-right asymmetry, which introduces
a difference in the polarisation sensitivities. The positron polarisationmeasurement still
fully relies on polarimeter precision.

The step to a collider with two polarised beams brings additional qualitative advan-
tages ((80, 30) scenario in fig. 7.21c). Each of the now multiple positron polarisations
observes a improved precision compared to the polarimeters. In other words, a collider
with two polarised beams can measure all polarisations. This yields another important
advantage for the polarisation measurement: a bias in the polarimeters can no longer
fully translate into a bias in polarisation measurements. The independent polarisation
measurements from collision data and from the polarimeters can cross-check each other
in this scenario [60].

Colliders with polarised beams can also use unpolarised or transversally polarised
beam settings, which results in a larger number of datasets (section 7.2). This intro-
duces a disadvantage in terms of increasing opposite-sign longitudinally polarised col-
lisions, and potential advantages in the polarisation measurement from the increased
number of datasets and in the measurement of CP-sensitive observables [111]. The fits
show that such a scenario measures the polarisations of all beam settings - including
the unpolarised beam settings - with much higher precision than polarimeters alone
((80/0, 30/0) in fig. 7.21c). Compared to the polarised scenario without these unpo-
larised datasets, the precision improves slightly on all polarisations despite the decrease
in statistics for these beam settings. This only works if the collider includes datasets that
combine the longitudinally unpolarised beam settings of one beam with the longitudi-
nally polarised settings of the other beam. As the fits demonstrate, a collider with two
polarised beams can dedicate a fraction of the luminosity to unpolarised or transver-
sally polarised beam settings without negatively impacting the polarisation precision.
In addition, the increased redundancy from the larger number of datasets provides a
further improvement in the control of polarisation biases.

These results confirm that polarised datasets significantly increase the precision of the
polarisation measurement. They further show that a collider with two polarised beams
in this context also benefits from adding unpolarised or transversally polarised beam
settings.
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7.7.2. Polarisation measurement with one polarised beam

The fit with only 𝑒− polarisation ((80, 0) scenario in fig. 7.21c) finds a measurement of
the positive-sign 𝑒− polarisation 𝒫+

𝑒− at the level of 5 ⋅10−4, while the precision negative-
sign 𝑒− polarisation 𝒫−

𝑒− and the 𝑒+ polarisation 𝒫0
𝑒+ do not show any improvement

beyond the polarimeter constraint. A similar pattern is also visible in the case of two
polarised beams ((80, 30) scenario in fig. 7.21c), and previous studies also observed a
similar behaviour for an ILC with two polarised beams [60, 157]. An analytic approach
to the polarisation measurement with one polarised beam can explain this behaviour
(detailed calculations in appendix: section C.8).

A collider with only 𝑒− polarisation measures two datasets corresponding to the di-
rections of the 𝑒− polarisation. It accordingly measures a number of events 𝑁+ for the
positive-sign polarisation setting and a number of events 𝑁− for the negative-sign po-
larisation setting. If the measurement includes the differential distribution, then the
different differential shapes of the different initial states allow a measurement of the
number of events for each one of the initial states in each of the datasets. In the case of 𝑊
pair production there are two allowed initial states 𝑒−

𝐿 𝑒+
𝑅 (short: 𝐿) and 𝑒−

𝑅𝑒+
𝐿 (short: 𝑅),

and the collider can measure four integrated chiral event numbers {𝑁+
𝐿 , 𝑁+

𝑅 , 𝑁−
𝐿 , 𝑁−

𝑅}.
Those event numbers are functions of the polarisations in the corresponding dataset,
the left-right asymmetry 𝐴𝐿𝑅 and the unpolarised event number 𝑁0 = 𝐿 ⋅ 𝜎0.

𝑁+
𝐿 =

1
8 (1 − 𝒫+

𝑒−) (1 + 𝒫0
𝑒+) (1 + 𝐴𝐿𝑅) 𝑁0

𝑁+
𝑅 =

1
8 (1 + 𝒫+

𝑒−) (1 − 𝒫0
𝑒+) (1 − 𝐴𝐿𝑅) 𝑁0

𝑁−
𝐿 =

1
8 (1 − 𝒫−

𝑒−) (1 + 𝒫0
𝑒+) (1 + 𝐴𝐿𝑅) 𝑁0

𝑁−
𝑅 =

1
8 (1 + 𝒫−

𝑒−) (1 − 𝒫0
𝑒+) (1 − 𝐴𝐿𝑅) 𝑁0

(7.36)

If 𝐴𝐿𝑅 is a fixed parameter, then these formulas for the event numbers are a system
of four equations with four unknowns (𝒫+

𝑒−, 𝒫−
𝑒−, 𝒫0

𝑒+, 𝑁0). This system has a unique
solution.

𝒫+
𝑒− =

𝑁+
𝐿 (𝑁−

𝑅 − 2𝑁+
𝑅) + 𝑁+

𝑅𝑁−
𝐿

𝑁+
𝑅𝑁−

𝐿 − 𝑁+
𝐿 𝑁−

𝑅
(7.37)

𝒫−
𝑒− =

𝑁−
𝑅 (𝑁+

𝐿 − 2𝑁−
𝐿 ) + 𝑁+

𝑅𝑁−
𝐿

𝑁+
𝐿 𝑁−

𝑅 − 𝑁+
𝑅𝑁−

𝐿
(7.38)

𝒫0
𝑒+ =

(1 − 𝐴𝐿𝑅) (𝑁−
𝐿 − 𝑁+

𝐿 ) + (1 + 𝐴𝐿𝑅) (𝑁−
𝑅 − 𝑁+

𝑅)
(1 − 𝐴𝐿𝑅) (𝑁−

𝐿 − 𝑁+
𝐿 ) − (1 + 𝐴𝐿𝑅) (𝑁−

𝑅 − 𝑁+
𝑅)

(7.39)

𝑁0 = 2 (𝑁+
𝐿 𝑁−

𝑅 − 𝑁+
𝑅𝑁−

𝐿 )
(1 + 𝐴𝐿𝑅) (𝑁+

𝑅 − 𝑁−
𝑅) − (1 − 𝐴𝐿𝑅) (𝑁+

𝐿 − 𝑁−
𝐿 )

(1 − 𝐴2
𝐿𝑅) (𝑁+

𝐿 − 𝑁−
𝐿 ) (𝑁+

𝑅 − 𝑁−
𝑅)

(7.40)
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This set of equations is the basis of the polarisation measurement at a collider with one
polarised beam with 𝑊 pair production events.

A prediction for the expected polarisation uncertainties is possible by means of sim-
ple Gaussian error propagation (section C.8). Here the calculation of a first estimate
will assume independent Poisson uncertainties (Δ𝑁 = √𝑁) for each of the four event
numbers, and the discussion of that estimate will revisit this assumption.

The evaluation of the Gaussian error propagation at the central values of the polari-
sations

𝒫+
𝑒− = 𝒫𝑒− > 0

𝒫−
𝑒− = −𝒫𝑒− < 0

𝒫0
𝑒+ = 0

(7.41)

yields an analytic formula for the expected polarisation uncertainties.

Δ𝒫+
𝑒− =

1
√𝑁0

√1 − 𝒫2
𝑒−

𝒫2
𝑒−

√(1 + 𝒫𝑒−)2

1 + 𝐴𝐿𝑅
+

(1 − 𝒫𝑒−)2

1 − 𝐴𝐿𝑅
(7.42)

Δ𝒫−
𝑒− =

1
√𝑁0

√1 − 𝒫2
𝑒−

𝒫2
𝑒−

√(1 − 𝒫𝑒−)2

1 + 𝐴𝐿𝑅
+

(1 + 𝒫𝑒−)2

1 − 𝐴𝐿𝑅
(7.43)

Δ𝒫0
𝑒+ =

1
√𝑁0

1
∣𝒫𝑒− ∣

√ 1
1 + 𝐴𝐿𝑅

+
1

1 − 𝐴𝐿𝑅
(7.44)

The formulas for uncertainties of the two 𝑒− polarisations contain polarisation factors
(1 ± 𝒫𝑒−)2 which are suppressed or enhanced by asymmetry factors (1 ± 𝐴𝐿𝑅). For the
positive-sign polarisation, the asymmetry factor (1 + 𝐴𝐿𝑅) suppresses the larger polar-
isation factor (1 + 𝒫𝑒−)2, whereas for the negative-sign polarisation the asymmetry fac-
tor (1 − 𝐴𝐿𝑅) enhances that polarisation factor. This is the reasonwhy themeasurement
has a much better precision on the positive-sign 𝑒− polarisation.

The uncertainty formulas also allow a quantitative prediction using the specific num-
bers for the polarisation (𝒫𝑒− = 80%), the luminosity (𝐿 = 2 ab−1), the left-right asym-
metry (𝐴𝐿𝑅 ≈ 0.98) and the unpolarised cross-section (𝜎0 ≈ 18953 fb).

Δ𝒫+
𝑒− ≈ 9.75 ⋅ 10−5 ⇒ ∣

Δ𝒫+
𝑒−

𝒫+
𝑒−

∣ ≈ 1.22 ⋅ 10−4

Δ𝒫−
𝑒− ≈ 6.53 ⋅ 10−4 ⇒ ∣

Δ𝒫−
𝑒−

𝒫−
𝑒−

∣ ≈ 8.16 ⋅ 10−4

Δ𝒫0
𝑒+ ≈ 1.44 ⋅ 10−3

(7.45)

Those numbers follow the general trend that both negative-sign 𝑒− polarisation and the
𝑒+ polarisation have a significantly worse precision than the positive 𝑒− polarisation.
Compared to the corresponding fit results ((80, 0) scenario in fig. 7.21c), the prediction
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here is consistently too optimistic. While the fit finds a precise 𝒫+
𝑒− measurement with

a precision of around 5 ⋅ 10−4, both 𝒫−
𝑒− and 𝒫0

𝑒+ do not show any measurement beyond
the polarimeter precision.

This discrepancy turns out to be due to the simplistic assumption that each of the
four event numbers {𝑁+

𝐿 , 𝑁+
𝑅 , 𝑁−

𝐿 , 𝑁−
𝑅} has an independent Poissonian uncertainty. In

reality, for each of the two datasets the measurement of the 𝑒−
𝐿 𝑒+

𝑅 event number contains
the 𝑒−

𝑅𝑒+
𝐿 events as backgrounds and vice versa.

The impact of this additional uncertainty becomes clear when looking at the case of a
highly-polarised 𝑒− beam (𝒫𝑒− ≳ 90%). In that case, the event numbers for each of the
two chiral state differ greatly between the two datasets.

𝑁−
𝐿

𝑁+
𝐿

=
1 − 𝒫−

𝑒−

1 − 𝒫+
𝑒−

≳ 10

𝑁+
𝑅

𝑁−
𝑅

=
1 + 𝒫+

𝑒−

1 + 𝒫−
𝑒−

≳ 10

⇒ 𝜌 =
𝑁+

𝐿 𝑁−
𝑅

𝑁+
𝑅𝑁−

𝐿
≪ 1

(7.46)

This allows a Taylor expansion in the small ratio 𝜌 of the formula for the 𝑒− polarisa-
tions (eq. (7.37)). Neglecting any terms that contain 𝜌 (details: section C.8), the two 𝑒−

polarisations take a simple form.

𝒫+
𝑒− ≈ 1 − 2

𝑁+
𝐿

𝑁−
𝐿

𝒫−
𝑒− ≈ − (1 − 2

𝑁−
𝑅

𝑁+
𝑅

)
(7.47)

These simplified forms, assuming only a high degree of 𝑒− polarisation, are the first
part of why the first prediction (eq. (7.45)) for the polarisation uncertainties strongly
underestimated the 𝒫−

𝑒− uncertainty. The second relevant point is the large 𝐴𝐿𝑅 value.
Due to this large asymmetry, the measurement of the 𝑒−

𝐿 𝑒+
𝑅 initial state is almost free of

𝑒−
𝑅𝑒+

𝐿 backgroundwhile themeasurement of the 𝑒−
𝑅𝑒+

𝐿 initial state struggles with an over-
whelming 𝑒−

𝐿 𝑒+
𝑅 background. According to the approximated 𝑒− polarisation formulas

(eq. (7.47)), the measurement of the positive-sign polarisation relies mainly on 𝑒−
𝐿 𝑒+

𝑅
events and will see very little disturbance from background. On the other hand, the
measurement of the negative-sign polarisation relies on mainly on 𝑒−

𝑅𝑒+
𝐿 , and the high

𝑒−
𝐿 𝑒+

𝑅 background will strongly disturb this measurement.
A similar approximation is possible for the 𝑒+ polarisation (section C.8).

𝒫0
𝑒+ ≈

1 − 1+𝐴𝐿𝑅
1−𝐴𝐿𝑅

𝑁−
𝑅

𝑁+
𝐿

1 + 1+𝐴𝐿𝑅
1−𝐴𝐿𝑅

𝑁−
𝑅

𝑁+
𝐿

(7.48)
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Figure 7.23.: 𝐴𝐿𝑅 uncertainties of the fits with a change to the default parameters so
that the TGCs are fixed and the 𝐴𝐿𝑅 is free. This tests the precision on 𝐴𝐿𝑅, which in
the fit with the default parameter set is part of the TGC measurement (section 7.7.4).
The direct access to chiral behaviour of gives polarised colliders a significantly better
handle of the asymmetry information.

It turns out that the measurement of the positron polarisation requires precision in the
measurement of both initial states. Like for 𝒫−

𝑒−, the disturbance of the measurement of
the 𝑒−

𝑅𝑒+
𝐿 initial state due to the high 𝑒−

𝐿 𝑒+
𝑅 background deteriorates the 𝒫0

𝑒+ precision.
Summarizing that discussion for the scenario with only 𝑒− polarisation, two conse-

quences of the large 𝐴𝐿𝑅 value explain the difference between the precise 𝒫+
𝑒− measure-

ment and the much less precise 𝒫−
𝑒− and 𝒫0

𝑒+ measurements . The first, reflected in the
Gaussian error propagation (eq. (7.42)), is the much larger statistics for the 𝑒−

𝐿 𝑒+
𝑅 ini-

tial state. The second, not included in the Gaussian error propagation, is the large 𝑒−
𝐿 𝑒+

𝑅
background that disturbs the 𝑒−

𝑅𝑒+
𝐿 measurement.

Since the weak interaction causes a general preference for 𝑒−
𝐿 𝑒+

𝑅 events, this precision
difference between the settings of the 𝑒− polarisation is unavoidable in the polarisa-
tion measurement from collision data. This adds emphasis to the polarimeters. If the
polarimeters measure the difference between the settings of the same beam with high
precision, then the high precision from collision data on only one of the two settings can
be sufficient.

7.7.3. Roles of asymmetry and normalisation information in 𝑊 pair production

Turning the focus now to the physical parameters, the simplest physical parameters are
the chiral cross-sections of the two allowed initial states. The fit can implement these
in the form of the summed total cross-section 𝜎0 and the left-right asymmetry 𝐴𝐿𝑅
(eq. (7.13)). Theory calculations calculate their SM values with high-precision [239],
and any deviation from those values will indicate new physics. For this reason, the
summed total cross-section 𝜎0 is usually an observable in itself, parametrising the total
normalisation. In contrast, the left-right asymmetry 𝐴𝐿𝑅 is usually not a direct observ-
able. Instead, other parameters in the fit make use of the left-right asymmetry in the
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measured cross-sections, making the asymmetry indirectly a free parameter.
The 𝜎0 measurement is already part of the fits. In the collider scenario with two po-

larised beams, the luminosity measurement fully determines the normalisation uncer-
tainty (circles compared to bars in fig. 7.21b). The beam polarisation uncertainty con-
tributes significantly when only one or neither beam is polarised (crosses compared to
bars in fig. 7.21b). Resulting from these limitations, the relative uncertainty on the to-
tal cross-section ranges from 3 ⋅ 10−3 for scenarios with two polarised beams to around
4.5 ⋅ 10−3 for the unpolarised cases. Only an improved determination of the respective
dominating systematic effect - the luminosity or the polarisations - can increase the 𝜎0
precisions.

If physicallymotivated, the fits can also assume the unpolarised cross-section as known
(triangles in fig. 7.21). In that case, the normalisation information will contribute to the
measurement of other effects. The fits for that case show that the luminosity and polar-
isation measurements benefit from the additional normalisation information.

This observed interplay of the normalisation measurement and beam polarisation
traces back to the large asymmetry value in 𝑊 pair production (details: section C.9).
Due to the overwhelming dominance of the 𝑒−

𝐿 𝑒+
𝑅 initial state, the measurement of these

events yields the most stringent limits on the polarisation. These stringent limits can
significantly soften or even fall away when there is a specific direction in the parame-
ter space that includes the polarisation and keeps the expected number of events con-
stant. If the cross-section is a free parameter with an absolute deviation Δ𝜎0, there is a
free direction 𝒫𝑒− = 𝒫𝑒+ + Δ𝜎0

𝜎0+Δ𝜎0
≈ 𝒫𝑒+ + Δ𝜎0

𝜎0
. When the cross-section is fixed and

the polarisationmeasurement can use the normalisation information, this free direction
transforms into a semi-free direction where 𝒫𝑒− = 𝒫𝑒+. It is semi-free because both
polarimeters constrain that direction, leading to a combined polarimeter constraint that
is a factor √2 better. This scenario is rather academic, since the total cross-section is
typically a free fit parameter.

The 𝜇 acceptance is the only tested systematic effect that cannot benefit from the nor-
malisation information, and instead seems to fully rely on differential information. A
more elaborate and realistic implementation of acceptance can have a stronger interplay
with normalisation information.

In contrast to 𝜎0, the left-right asymmetry is usually not a free parameter in the fit.
As a later section will show (section 7.7.4), the TGC extraction is highly sensitive to this
asymmetry. For the fit, this means that the free TGC parameters can already almost
freely vary the left-right asymmetry of the prediction almost, making an additional 𝐴𝐿𝑅
parameter redundant. Since the left-right asymmetry is only one part of the TGC mea-
surement, it can be instructive to still look at this part in isolation and see how the left-
right asymmetry measurement changes with polarisation. This is possible by diverging
from the default parameter set, fixing the TGC parameters and instead using the left-
right asymmetries of the two final states 𝜇+𝜈𝑞𝑞 and 𝜇−𝜈𝑞𝑞 as free parameters (fig. 7.23).

A template fit of a superposition of the two allowed initial states to the differential
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distribution of even a single datasets can in principle measure each individual chiral
cross-section, and with that the left-right asymmetry 𝐴𝐿𝑅. This method does not work
for the 𝜇 pair production fit, where a single dataset is not directly sensitive to 𝐴𝐿𝑅 due
to the common differential shape of the two initial states (section 7.3.2). In that case,
the asymmetry measurement requires beam polarisation. This problem does not occur
when the different chiral initial states have functionally different differential distribu-
tions, which avoids ambiguities in a superposition of these differential distributions.
Such is the case for 𝑊 pair production, where the 𝑒−

𝐿 𝑒+
𝑅 initial state can interact through

a t-channel 𝜈 exchange that is unavailable to the 𝑒−
𝑅𝑒+

𝐿 initial state. Due to this additional
process for the 𝑒−

𝐿 𝑒+
𝑅 initial state, the two chiral initial states result in different differential

distributions, and an extraction of their relative contributions is possible.
For the same luminosity, an unpolarised collider delivers around a factor two higher

uncertainty than a collider with two polarised beams ((0, 0) compared to (80, 30) in
fig. 7.23). The reason is that the unpolarised collider fully relies on the differential dis-
tribution measurement of a single dataset. Increasing the unpolarised luminosity by
around a factor five can almost recover the 𝐴𝐿𝑅 precision from a collider with two po-
larised beams. If the electron beam is polarised, then a polarisation of the positron beam
only makes a small difference in this context. This is a noticeable contrast to the 𝜇 pair
production fit (section 7.6.1), where the addition of 𝑒+ polarisation removes a strong
correlation between the electron asymmetry 𝐴𝑒 (equivalent to 𝐴𝐿𝑅) and the 𝑒+ polar-
isation. In the 𝜇 pair production case, the fit cannot directly measure 𝐴𝑒 on a single
dataset, and the 𝐴𝑒 measurement fully relies on the differences between the polarised
datasets. In 𝑊 pair production, each individual dataset is sensitive to 𝐴𝐿𝑅, and the 𝐴𝐿𝑅
measurement is less reliant on the differences between the polarised datasets.

The beam polarisation parameters themselves show no interplay with the asymmetry
measurement. Only the statistical uncertainty and the availability of chiral observables
through beam polarisations determine the asymmetry precision. Studies of the theo-
retical calculations suggest that also the theoretical uncertainty on the SM values of the
chiral cross-sections will be negligible [239].

The availability of beam polarisation is the most important factor for the precision on
the measured left-right asymmetry. For the parameters that make use of the left-right
asymmetry information in the fit, this will mean an improved measurement with beam
polarisation.

7.7.4. Impact of polarised beams on the TGC measurement

𝑊 pair production, besides being one of the main channels for polarisation measure-
ment, is also relevant for a large range of potential extensions to the SM. This raises
the question whether measurements of physical and systematic effects can disturb each
other, and - more generally - how polarised beams affect the physics precision. Here,
the fits test this by including the three Triple Gauge Coupling (TGC) parameters of LEP
parametrisation (section 2.2.3).
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Table 7.8.: TGCs uncertainties from fit in different collider scenarios (section 7.2)
with simultaneous extraction of the three TGCs with 𝐿 = 2 ab−1 show an order-of-
magnitude improvement over the single-parameter precisions from LEP [3]. Results
from a simultaneous extraction with all LEP experiments are not available.

LEP (0, 0) (80, 0) (80, 30) (80/0, 30/0)

Δ𝑔𝑍
1 [10−3] 19 1.33 1.02 0.91 0.93

Δ𝜅𝛾 [10−3] 42 1.60 1.40 1.23 1.25
Δ𝜆𝛾 [10−3] 19 1.76 1.59 1.44 1.47
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Figure 7.24.: Comparison of the TGC uncertainties from the fit scenario with two po-
larised beams (“(80,30) fit”, section 7.2) and from a study that extrapolates higher-
energy ILC full simulation-studies to the 250GeV stage [60]. The ILC studies use the
same angular distributions as the fits, and include the 𝑊𝑊 → 𝑒𝜈𝑞𝑞 process and sys-
tematic uncertainties, which require an adjustment of the fit uncertainties for compa-
rability (“(80,30) adjust”). Even after the adjustment, the fit prediction for 𝜆𝛾 differs
visible from the ILC study.

The fits observe uncertainties on the TGCs of around 1 − 2 ⋅ 10−3 for 2 ab−1 (fig. 7.21a
and table 7.8). This marks an order of magnitude improvement over current precision
from LEP experiments [3], and a factor three to an order of magnitude improvement
over current precision from LHC experiments [166–168] (see section 4.2.1). It is a com-
parable precision to what is predicted for the HL-LHC [169].

For the scenario ILC-like scenario with two polarised beams it is possible to compare
the TGC precisions from the fit with dedicated ILC studies (fig. 7.24). A previous study
extrapolated the full-simulation results for TGCmeasurements at the 500GeV and 1TeV
stages of the ILC to the 250GeV stage [60]4. The higher-energy full simulation studies

4The reference also includes an extrapolation that uses additional extrapolation that adds the fully
hadronic final state, hadronic angles, and optimal observables. This is not included in the numbers quoted
here, which refer to Table 2.4 in the published version of the reference.
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used the same angular distributions as the fit here and additionally included the process
𝑊𝑊 → 𝑒𝜈𝑞𝑞 [157, 170]. In addition, the extrapolation assumes a systematic uncertainty
from selection efficiencies of 3 ⋅ 10−4 for 𝑔𝑍

1 and 𝜅𝛾, and 2 ⋅ 10−4 for 𝜆𝛾. An adjustment of
the fit uncertainties scales the uncertainties down by a factor √2 for the additional final
state and add the systematic uncertainty in quadrature, which simplifies the compari-
son. Comparing the adjusted fit uncertainties to the ILC extrapolation, the uncertainties
for 𝑔𝑍

1 and 𝜅𝛾 are slightly lower for the fit, while the fit uncertainty for 𝜆𝛾 is a factor 1.4
than predicted by the extrapolation. The discrepancy is likely due to the correlations
amongst the TGCs in the fit (fig. 7.22c), which an extrapolation cannot capture.

A comparison of the TGC uncertainties for the different fit scenarios show that the
TGC precision increases with beam polarisation. This precision increase varies between
the TGCs. From an unpolarised scenario to a scenario with two polarised beams at the
same luminosity, the uncertainties decrease by factors 1.5, 1.3 and 1.2 for 𝑔𝑍

1 , 𝜅𝛾 and 𝜆𝛾
respectively.

Thefits observe onlymild correlations of the TGCswith nuisance parameters (fig. 7.22).
Only 𝜅𝛾 slightly correlates with the polarisations when one or no beam is unpolarised,
and more so for increased luminosity. An addition of unpolarised datasets to the sce-
nario with two polarised beams does not increase the TGC precisions since the polari-
sation uncertainty is not an issue in that case. Uncertainties in the 𝜇 acceptance do not
influence the TGC precision at all (stars compared to bars in fig. 7.21a). A simultaneous
measurement of TGCs and systematic effects - notably polarisations - seems unprob-
lematic.

Understanding the varying precisions and the exact impact of beam polarisation re-
quires a closer look at the sensitivities to the TGCs.

Role of an improved asymmetry measurement

Initial sensitivity checks show that precise knowledge of the left-right asymmetry and
the shape of the distribution of the 𝑒−

𝐿 𝑒+
𝑅 initial state will be crucial for the TGC mea-

surement, and the knowledge of the overall normalisation is unlikely to play a role (sec-
tion 7.3.4). The fit results reflect these initial findings.

No benefit comes from normalisation information, which can be seen from the ab-
sence of any improvements when fixing the total cross-section parameters (compare
triangles and bars in fig. 7.21a). In contrast, the left-right asymmetry of the measured
distributions is crucial for the TGCprecision. This becomes visiblewhenfit uses both the
left-right asymmetry 𝐴𝐿𝑅 and the TGCs as free parameters at the same time, so that the
asymmetry information is fully absorbed in the 𝐴𝐿𝑅 parameter (lines compared to bars
in fig. 7.25a). The 𝑔𝑍

1 precision decreases by more than a factor 2 and the 𝜅𝛾 precision
by more than a factor 5 . This loss of asymmetry information for the TGC determina-
tion also changes the uncertainty ratio between unpolarised scenario and the various
polarised scenarios (fig. 7.25b). 𝜆𝛾 is the only exception, as it shows almost no depen-
dence on chiral information. An unpolarisedmeasurement shows a stronger reliance on
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Figure 7.25.: A comparison of the TGC uncertainties (a) from the fits with a free or
fixed 𝐴𝐿𝑅 parameter shows that a limited knowledge of the left-right asymmetry -
modeled through 𝐴𝐿𝑅 as free parameter - can deteriorate the TGC precision drasti-
cally, most notably for 𝜅𝛾. This affects the unpolarised measurement stronger than
any measurement with polarised beams, as is visible in the uncertainty ratio (b) of
the (0, 0) scenario to the various polarised scenarios.
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Figure 7.26.: 2D-confidence ellipses of the TGC parameters in the fits with the default
parameter set show that beam polarisation improves the TGC precision in one specific
direction. The ellipses assumeGaussian uncertainties for all parameters (problematic
for 𝜆𝛾 as seen in figs. 7.5 and 7.6).
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the asymmetry knowledge than a polarised one, and any limitations on that knowledge
affect the unpolarised scenario the most.

The presence of non-zero polarisation increases the precision on the left-right asym-
metry precision (section 7.7.3). An improved left-right asymmetry measurement only
affects the direction of the TGC space that is sensitive to that information, and when
that sensitivity is as at least as good as the sensitivity from the shape measurement.
In contrast to the asymmetry measurement, the shape measurement for the 𝑒−

𝐿 𝑒+
𝑅 ini-

tial state is not likely to improve with the availability of polarised beams since the 𝑒−
𝐿 𝑒+

𝑅
cross-section is dominant and the 𝑒−

𝑅𝑒+
𝐿 background negligible. The only expected pre-

cision increase for the shape measurement is the modest increase in statistics from the
optimised luminosity sharing when both beams are polarised (section 7.2.2).

The full impact of additional polarisation on the TGCmeasurement is visible in the 2D
projections of the three-dimensional TGC uncertainty ellipse (fig. 7.26). A comparison
of the collider scenarios in those projections shows that one specific direction in the TGC
space benefits the most from polarised beams. That direction is the one where 𝑔𝑍

1 and
𝜆𝛾 increase at the same time as 𝜅𝛾 decreases. The magnitude of the increase or decrease
is not the same for the three couplings; the changes in 𝑔𝑍

1 and 𝜅𝛾 are much stronger than
the change in 𝜆𝛾. Looking back at the initial sensitivity checks (fig. 7.5b), changes in
𝜅𝛾 have a minimal impact on 𝐴𝐿𝑅 while increases in 𝑔𝑍

1 and 𝜆𝛾 lead to an asymmetry
increase around twice the TGC increase. The relevant direction therefore significantly
changes the left-right asymmetry. At the same time, an increase in 𝑔𝑍

1 causes a change
in the differential distribution of the 𝑒−

𝐿 𝑒+
𝑅 initial state that has the opposite sign to the

changes that increases in 𝜅𝛾 and 𝜆𝛾 produce (fig. 7.7). This means that shape measure-
ment of the 𝑒−

𝐿 𝑒+
𝑅 initial state has a reduced sensitivity to the relevant direction in the

TGC space. Summarizing these observations, additional beam polarisation benefits the
measurement of the direction of the TGC space where asymmetry information has a
significantly higher restrictive power than shape information.

If an asymmetry measurement is not available at all, then the uncertainties in the
above described direction will increase until the point where any of the shape measure-
ments show sensitivity. In that case a measurement of the shape of the 𝑒−

𝑅𝑒+
𝐿 initial state

starts to become relevant. This can explain why a lack of asymmetry knowledge af-
fects the unpolarised scenario the most ((0, 0) in fig. 7.25), since the polarised scenarios
measure datasets with an improved signal-to-background ratio for each initial state.

The shape measurement of the 𝑒−
𝐿 𝑒+

𝑅 initial state is not particularly sensitive to the
specific direction of the TGC space described above. Other directions in the TGC space
cause larger changes in that shape, so that the shape measurement can set the most
stringent limits. For those directions, additional processes like single-𝑊 production can
improve the precision.

Since two different kinds of information - 𝐴𝐿𝑅 and the shape of the 𝑒−
𝐿 𝑒+

𝑅 initial state -
determine the measurement of the TGC parameter space, the uncertainty will not nec-
essarily be the same in every direction of the TGC space. This explains the final corre-
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lations that the fits observe between the three TGCs.
One way an unpolarised collider can make up for the less precise asymmetry mea-

surement is by increasing the luminosity. A higher luminosity also leads to higher preci-
sion in 𝑒−

𝐿 𝑒+
𝑅-shapemeasurement, which the presence of beampolarisation alone can not

be achieved. The drawback of an unpolarised high-luminosity run is that the polarime-
ter precision becomesmore critical. This is visiblemost notably for 𝜅𝛾 in the unpolarised
scenario with 𝐿 = 10 ab−1, where the limited polarisation knowledge is responsible for
almost 20% of the 𝜅𝛾 uncertainty (compare crosses and bars in fig. 7.21a).

The discussion here demonstrates that an initial understanding of the impact of phys-
ical parameters like the TGCs on the observables is crucial for understanding the final
uncertainties and correlation. At the same time, the complex behaviour of the uncer-
tainty ellipse shows that a combined fit of the physical parameters is necessary to un-
cover all correlations between parameters, and to make a reliable prediction.

𝑓 𝑓 𝑍-couplings disturbing the asymmetry measurement

The left-right asymmetry measurement in 𝑊 pair production is a major driver of the
TGC uncertainty.

This left-right asymmetry is a combination of the 100% asymmetry of t-channel and
the asymmetry of 𝑒𝑒𝑍 coupling in the s-channel. The left-handed nature of the SM
SU(2)𝐿 gauge symmetry does not allow 𝑊 pair production through a t-channel ex-
change with an 𝑒−

𝑅𝑒+
𝐿 initial state, since that would require a coupling of right-handed

fermions to 𝑊 bosons. A change to the t-channel asymmetry is only possible by break-
ing that fundamental principle. In contrast, the left-right asymmetry of the s-channel
diagram has a non-trivial value from the 𝑒𝑒𝑍 coupling, and receives both radiative cor-
rections and potentially corrections from non-vanishing higher-order SMEFT-operators.
This can introduce uncertainties in the asymmetry.

Predictions for the HL-LHC observe a strong dependence of TGC precision on 𝑞𝑞𝑍
couplings (fig. 40,41 in [169]) - equivalent to the 𝑒𝑒𝑍 coupling at an 𝑒+𝑒− collider. The
predictions show that the measurement of 𝑔𝑍

1 and 𝜅𝛾 at the HL-LHCwill suffer strongly
when the 𝑞𝑞𝑍 couplings are treated as free parameters, while 𝜆𝛾 remains essentially
unaffected. This is consistent with the behaviour of the fit here, where the 𝜆𝛾 precision
is robust against the loss of asymmetry information.

The fermion pair production measurement at a future 𝑒+𝑒− collider can extract the
value of the 𝑓 𝑓 𝑍 couplings at different relevant energies. This includes both the electron
and quark couplings to the 𝑍, which will be unique and precise inputs to the 𝑊 produc-
tion measurements at 𝑒+𝑒− and 𝑝𝑝 colliders respectively. Direct access to the left-right
asymmetry with polarised colliders holds a special importance in this context since it
provides the single most precise 𝑓 𝑓 𝑍 coupling measurement. The current fit does not
provide an answer to the question of which precision in the coupling is necessary, or
how to translate the 𝐴𝐿𝑅 precision from fermion pair production to the asymmetry pre-
cision on 𝑊 pair production. A combined fit of two- and four-fermion couplings, e.g. in
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7. Impact of beam polarisation on electroweak fits

the form of common EFT operators, can resolve both of those issues. This task remains
open to future studies.

7.7.5. Negligible role of muon acceptance in W pair production

The fits also explicitly include the 𝜇 acceptance as a fitable systematic effect in two-
parameter “box model” (section 7.4), with the goal to see how the influence of the sys-
tematic effect changes with the presence or absence of beam polarisation.

In the current setup, the fits observe a slight correlation of the acceptance width Δ𝑤
with TGC parameters (fig. 7.22). This effect proves negligible, as none of the uncertain-
ties improve when the fits fix the 𝜇 acceptance parameters (stars compared to bars in
fig. 7.21a).

One of the goals of including the 𝜇 acceptance explicitly in the fit is to assess whether
beam polarisation can separate such systematic effect from the physics of interest. The
minimal impact of the 𝜇 acceptance does not allow any such conclusions.

A main cause may be the assumption of the simplified “box model” for the 𝜇 accep-
tance (section 7.4.1). This assumption leads to a unique signature of the model pa-
rameters which the fits easily separate from physical parameters. A more complex and
realistic model can take more details into account, e.g. the slope of the acceptance edge.
Thiswill introduce a larger variety of changes on the differential distribution, potentially
leading to more pronounced correlations with physical parameters.

There remains the possibility that all relevant differential systematic effects have dif-
ferential shape effects that distinguish them significantly from the differential shape ef-
fects of the TGCs. If that turns out to be true, then a TGC fit on differential distributions
that directly includes models for those systematic effects will minimize the correspond-
ing systematic uncertainties to a negligible level. While non-zero beam polarisation is
not necessarily crucial for this case, it can aid in separating the differential behaviour of
the effects. Aprevious study for the TGCextraction at the 500GeV stage of the ILC found
that selection efficiencies and background modeling can lead to a significant contribu-
tion of around 1 ⋅10−3 to the TGC uncertainty [157]. Both of these effects are differential
in nature, and a direct modeling in the fit will reduce their impact. This can be a specific
target for future studies.

7.8. Combining two- and four-fermion fits

The discussions of the individual fits set the basis for understanding the behaviour of a
combined fit of the two processes. This combined fit uses the default parameter sets
of both individual fits, and simultaneously fits them to the differential distributions
(section 7.3.1) of both 𝜇 pair production and semileptonic 𝑊 pair production. In the
combined parameter set, only the systematic effects - luminosity, polarisation, and 𝜇
acceptance - are common to both processes. The physical parameters are separate for
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Figure 7.27.: Uncertainties of (a,b) two-fermion parameters, (c,d) 𝑊 pair production
parameters, and (e) systematic parameters for the combined fit in different collider
scenarios (section 7.2). Uncertainties on physical parameters are absolute, those on
systematic parameters are relative unless specified otherwise. Only the systematic
parameters significantly improve compared to the individual fits, resulting in minor
improvements of systematics-limited physical parameter precisions. (Tables with un-
certainty numbers below and in appendix: tables 7.9 and C.12 to C.15)
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Figure 7.27.: (cont.)

146



7.8. Combining two- and four-fermion fits

L
P e

P+ e
(*

)P
0 e

P e
+

P+ e
+

(*
)P

0 e
+

(*
)

c
(*

)
w

Nu
isa

nc
e 

pa
ra

m
et

er
s

05101520253035 Rel. (*Abs.) uncertainty [1E-4]

x1
0

x1
0

(P
e

[%
],

P e
+
[%

]),
 L

(8
0/

0,
30

/0
), 

2a
b

1

(8
0,

30
), 

2a
b

1
(8

0,
0)

, 2
ab

1

(0
,0

), 
2a

b
1

(0
,0

), 
10

ab
1

L 
fix

ed
al

l P
 fi

xe
d

 a
cc

. f
ix

ed
Co

ns
tra

in
ts

(e)

Figure 7.27.: (cont.)
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Figure 7.28.: Visualisation of the correlation matrices of the (a) (0, 0), (b) (80, 0), (c)
(80, 30), and (d) (80/0, 30/0) default scenarios (section 7.2) with 𝐿 = 2 ab−1 for the
combined fit. Only the correlations of systematic effects significantly change com-
pared to the individual fits. (Duplicates with numbers in appendix: fig. C.11)
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Figure 7.28.: (cont.)
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each process, with the fermion pair production parameters (section 7.3.2) on the 𝜇 pair
production process, and the chiral cross-section parameters and TGCs (section 7.3.3)
on the semileptonic 𝑊 pair production process. Like for the individual fits, the primary
output of the fits are the uncertainties (fig. 7.27) and correlations (fig. 7.28) for the dif-
ferent collider scenarios (section 7.2). In addition to the default parameter set (bars
in fig. 7.27), the fits also test scenarios that fix the parameters of one of the systematic
effects (markers in fig. 7.27) to test the influence of the corresponding systematic un-
certainties. The above discussions of the fits to the individual processes (sections 7.6
and 7.7) already describe a majority of the effects in the combined fit, and this section
will focus on consequences specific to the combination of these fits. This includes the
direct improvements for the systematic effects (section 7.8.1), subsequent indirect im-
provements for the physical effects (section 7.8.2), and a discussion of the final uncer-
tainties in this study (section 7.8.3).

7.8.1. Direct improvements for systematic effects

A combination of the two processes can lead to a direct improvement of the precision on
the shared parameters, and to a subsequent indirect improvement of other parameters
that correlate with the subset of shared parameters. The improvements are visible in the
ratio of the uncertainty from the combined fit to the uncertainty of the two individual fits
(fig. 7.29). In the current implementation, only systematic effects are common to both
final states, and the combination of final states only directly improves the measurement
of these common systematics.

Collision data aids in the polarisation measurement when at least one beam is po-
larised, as seen in the individual fits (sections 7.6.1 and 7.7.1). Unpolarised scenarios
consequently do not see any improvement in the polarisation precision from the com-
bination ((0, 0) in fig. 7.29). If one beam is polarised, then only the 𝑊 pair production
measurement can provide sensitivity to the polarisations ((80, 0) in fig. 7.29).

In the scenarios with two polarised beams ((80, 30) and (80/0, 30/0) in fig. 7.29), the
combination leads to a polarisation precisions that are significantly better than the fits
that only use 𝜇 pair production (filled markers in fig. 7.29), and that slightly improve
over the results of the 𝑊 pair production fits (hollow markers in fig. 7.29). The 𝑊 pair
production measurement delivers the most precise determination of a single polarisa-
tion, with a 𝒫+

𝑒− precision up to five times better than from 𝜇 pair production. The 𝜇 pair
production measurement complements this with sensitivity to the polarisation which
the 𝑊 pair production measurement does not constrain, improving especially the pre-
cision on 𝒫−

𝑒− and 𝒫+
𝑒+ by up to 10% relative to the polarimeter constraint.

The polarisation setting of the collider is irrelevant for the 𝜇 acceptancemeasurement,
since such detector effects do not depend on the chirality of the colliding particles. For
the 𝜇 acceptancemeasurement, the combination leads to a strong improvement over the
results of the 𝑊 pair production fits, and a slight improvement over the 𝜇 pair produc-
tion fits. The large amount of forward 𝜇’s in the 𝜇 pair production process dominates
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Figure 7.29.: A combined fit of the 𝜇+𝜇− and 𝜇𝜈𝑞𝑞 final states improves the com-
mon systematic uncertainties, and through that also leads to improvements on the
systematics-limited uncertainties of physical parameters. Results here use 𝐿 = 2 ab−1.

this measurement, and yields a precision three times better than the 𝑊 pair production
measurement. Since the parameters of the 𝜇 acceptance correlate with the physical pa-
rameters in the 𝜇 pair production measurement (section 7.6.5), the additional measure-
ment from semileptonic 𝑊 pair production is an important cross-check to avoid biases
in the 𝜇 pair production parameters.

The total cross-section is a free parameter for both included final processes, so that
neither of them provides additional input to the luminosity measurement.

For the shared systematic parameters, the combination of processesmeans that amea-
surement of a given parameter in one process directly benefits the measurements in the
other process. When both processes provide input to a systematic effect, then the com-
bination both improves the overall precision and cross-checks the two measurements
for consistency.
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7.8.2. Indirect improvements for physical effects

The current implementation of the two considered process does not include any shared
physical parameters. In that context, physical effects can only indirectly benefit from
the combination through a reduction of the systematic uncertainties.

For example, the 𝜇 acceptance measurement significantly interferes with the 𝑘0 pa-
rameter measurement of return-to-𝑍 events (section 7.6.5). As described above, the
measurement of this chirality-independent parameter improves in same way for all col-
lider scenarios (top left in fig. 7.29). The improved precision on the 𝜇 acceptance from
the additional 𝜇’s in the semileptonic 𝑊 pair production process leads to a relative pre-
cision improvement on 𝑘0 of around 2 − 3%.

In the 𝜇 pair production fit, limited knowledge of the polarisations contributes to the
uncertainties on 𝐴𝑒 in both mass ranges, as well as on 𝐴𝜇 and 𝜖𝜇 on return-to-𝑍 events
(section 7.6.1). The improved polarisation measurements in the combined fit for the
scenarios with at least one polarised beam lead to corresponding improvements on the
uncertainties of those 𝜇 pair production parameters (top in fig. 7.29). A scenario with-
out beam polarsation cannot measure the polarisations in the collision data.

If only one beam is polarised ((80, 0) in fig. 7.29), then the 𝜇 pair productionmeasure-
ment does not provide any input to the polarisation measurement and the correspond-
ing systematic uncertainties on 𝐴𝑒, 𝐴𝜇, and 𝜖𝜇 are the largest. This gives importance
to the additional polarisation precision from 𝑊 pair production events. Since this sce-
nario does not measure all polarisations significantly better than the polarimeter, not all
parameters benefit in the same way. While the polarisation precision almost fully de-
termines the 𝐴𝑒 precision, the 𝐴𝑒 precision only improves by up to 2% relative to the 𝜇
pair production fit (full markers in top of fig. 7.29). This is because the precision on the
positron polarisation does not improve, which is the polarisation most relevant for the
𝐴𝑒 precision (section 7.6.1). On the other hand, the precision on 𝐴𝜇 and 𝜖𝜇 in return-
to-𝑍 events improves by 7 − 8% relative to the 𝜇 pair production fit, showing that the 𝑒−

polarisations play a more significant role for these parameters.
The precision increase is generally smaller if both beams are polarised ((80, 30) and

(80/0, 30/0) in fig. 7.29) because a collider with two polarised beams already measures
the polarisation in 𝜇 pair production alone. For the return-to-𝑍 events, the precision
on 𝐴𝜇 and 𝜖𝜇 improves by 2 − 3% and the precision on 𝐴𝑒 by 1 − 2% relative to the
𝜇 pair production fit. The exception is 𝐴𝑒 in the high energy events, the precision for
which increases by 2 − 3% relative to the 𝜇 pair production fit due to the improved
polarisation. This shows the importance of the combined polarisation measurement
also for the scenariowith twopolarised beams,where the processes individually already
measure the polarisations.

The improved polarisation measurement of the scenarios with two polarised beams
also slightly benefits the 𝑊𝑊 unpolarised cross-section measurement (middle right in
fig. 7.29), leading to a relative improvement of 1−2%. Thatmeasurement relies on a pre-
cise determination of the 𝑒−

𝐿 𝑒+
𝑅 chiral cross-section (section 7.7.3). Only a collider with

152



7.8. Combining two- and four-fermion fits

two polarised beams can measure the relevant polarisations 𝒫−
𝑒− and 𝒫+

𝑒+ in collision
data.

The combination also minimally improves the TGC precision at a relative level at or
below a percent (middle left in fig. 7.29). Also here the benefit is larger for the sce-
nario with two polarised beams, indicating that the cause is the improved polarisation
precision.

In all cases, the scenario with two polarised beams shows two essential benefits. First,
the systematic uncertainty cause the least disturbance in the measurement of the phys-
ical effects. And second, where polarisation uncertainties are dominant, a collider with
two polarised beams benefits most from the measurement of polarisation in collision
data of different processes.

Minimizing the impact of systematic uncertainties will take on a new role when pro-
cesses use common physical parameters. Systematic uncertainties can propagate be-
tween processes when the physical parameters overlap. This will lead to even more
pronounced differences between polarised and unpolarised beams.

7.8.3. Final precisions and limitations of this study

The combined fit provides the final precisions on all parameters in this study (table 7.9).
Since the primary focus of this study is the setup of framework to study how beam
polarisation affects the precision, these results do not represent a final comprehensive
prediction for parameter precisions of any specific collider. Any comparison to current
precisions or other studies must consider the constraints of the framework of this study.

Fit results here indicate absolute precisions on TGCs of around 1−2⋅10−3, and fermion
pair production parameter absolute precisions ranging from 5 ⋅10−4 for statistically lim-
ited parameters to 3 ⋅ 10−3 for systematically limited ones. As described in the discus-
sions on the individual fits (sections 7.6 and 7.7), this represents an order-of-magnitude
improvement of the precision on all included parameters over current precisions from
LEP and SLD [2, 3]. That is also the case for the 𝑍-pole fermion pair production pa-
rameters, for which return-to-𝑍 events offer an opportunity of a measurement without
a dedicated 𝑍-pole run. If future experiments find need for even more precise 𝑍-pole
studies, dedicated 𝑍-pole runs can provide another order-of-magnitude improvement
[88, 122]. All of these fit results rely on a set of imperfect assumptions, which will re-
quire future studies to investigate in detail.

One major drawback of the fit results is that they ignore the majority of experimental
realities. The fits use generator-level distributions and do not consider selection efficien-
cies, backgrounds, detector resolutions and high-level analysis uncertainties.

For the measurement of 𝜇 pair production, LEP and SLD results show that these ex-
perimental uncertainties play only a subdominant role [2]. Selection efficiencies and
purities are typically significantly above 90% in this simple final state, and the detectors
measure 𝜇’s with great precision.

The much more complicated final state of semileptonic 𝑊 pair production is likely
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7. Impact of beam polarisation on electroweak fits

Table 7.9.: Absolute uncertainties of the combined fits of 𝜇 pair production and
semileptonic 𝑊 pair production with the default parameter set for the different col-
lider scenarios at 𝐿 = 2 ab−1.

Abs. uncertainties [10−4]
Parameter True value (0, 0) (80, 0) (80, 30) (80/0, 30/0)

𝜎 𝑓
0/𝜎 𝑓 ,𝑆𝑀

0 |𝑍-pole 1 30.5 32.0 30.5 30.4
𝐴𝑒|𝑍-pole 0.2136 − 25.0 7.8 8.0
𝐴𝜇|𝑍-pole 0.2028 − 9.4 7.7 8.3
𝜖𝜇|𝑍-pole 0.0158 − 15.2 13.6 13.9
𝐴𝜇

𝐹𝐵|𝑍-pole 0.0384 5.4 − − −
𝑘0|𝑍-pole 0.0747 20.7 21.2 19.3 19.7
Δ𝑘|𝑍-pole 0.0006 − 23.5 19.6 21.1

𝜎 𝑓
0/𝜎 𝑓 ,𝑆𝑀

0 |250GeV 1 30.3 30.5 30.3 30.2
𝐴𝑒|250GeV 0.1125 − 25.5 7.4 7.6
𝐴𝜇|250GeV 0.0322 − 6.8 5.7 6.1
𝜖𝜇|250GeV 1.4260 − 10.9 10.0 10.2
𝐴𝜇

𝐹𝐵|250GeV 0.5375 4.0 − − −
𝑘0|250GeV 0.0003 14.5 14.6 13.4 13.6
Δ𝑘|250GeV 0.0003 − 18.2 15.3 16.4

Δ𝑔𝑍
1 0 13.3 10.2 9.0 9.3

Δ𝜅𝛾 0 15.9 13.9 12.2 12.4
Δ𝜆𝛾 0 17.6 15.8 14.4 14.7

𝜎0/𝜎𝑆𝑀
0 (𝑊−) 1 46.6 40.9 32.4 32.1

𝜎0/𝜎𝑆𝑀
0 (𝑊+) 1 46.6 40.9 32.4 32.1

𝐿 [ab−1] 2 60 60 60 60

𝒫−
𝑒− 0.8 − 19.8 18.1 17.2

𝒫+
𝑒− 0.8 − 3.9 4.3 4.3

𝒫0
𝑒− 0.0 25.0 − − 13.8

𝒫−
𝑒+ 0.3 − − 6.2 6.1

𝒫+
𝑒+ 0.3 − − 6.9 6.8

𝒫0
𝑒+ 0.0 25.0 25.0 − 10.9

Δ𝑐 0.0 0.19 0.19 0.17 0.18
Δ𝑤 0.0 0.44 0.44 0.40 0.41
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to suffer more from experimental effects. It requires a stricter event selection due to
the large set of final states with similar signatures. This typically results in selection
efficiencies of around 50% and purities of around 80%, which also affect the shape of the
differential distributions [157]. The global component of these efficiencies and purities
lead to straightforward scalings of the statistical uncertainties [60]. Since the shape
measurements is an important input to the TGC measurement (section 7.3.4), shape-
dependent efficiencies and purities can change correlations and uncertanties between
the TGCs. Jet energy and angular resolutions can also affect the shape measurement
and cause additional systematic uncertainties.

There are alsomore fundamental reasons why a comparison of fit results of this study
with those of other studies is not straightforward.

For the TGC extraction the fit only considers semileptonic 𝑊 pair production with a
𝜇 in the final state. Previous full simulation studies have additionally included the 𝑒𝜈𝑞𝑞
final state and tried to kinematically select an𝑊𝑊 intermediate state [157, 170]. Another
way to produce this final state is through t-channel 𝑍 exchange with the subsequent
radiation of a singular 𝑊. A previous study found that this single-𝑊 production can
potentially reduce the uncertainties by more than a factor two [60]. The kinematic cuts
of the full simulation studies aim to separate 𝑊𝑊 and single-𝑊 production from each
other. Remaining irreducible single-𝑊 contributions in the 𝑒𝜈𝑞𝑞 final state can change
the TGC-dependence compared to the 𝜇𝜈𝑞𝑞 final state. This means that a comparison
with those full simulation studies is not as straightforward as a simple scaling of the
TGC uncertainties in this study.

For comparisons with the 𝜇 pair production result, the exact parameter definition
and values complicate the picture. The fits use a special parametrisation (eqs. (7.7)
and (7.8)) which differs from the LEP- and SLD-parametrisations [2]. In addition, this
study does not consider the energy-dependence of the parameters within each 𝜇 pair
production dataset (section 7.3.2). This entails a different set of parameter values (ta-
ble 7.4), which also determines the sensitivity of the differential distributions to those
parameters (section 7.6.4). A precise comparison of such differing parametrisations
requires a parameter transformation and needs to take parameter correlations into ac-
count.

With these imperfections in mind, the fit results suggest significant improvements
over current precisions, and can motivate future studies with increasing realism to pro-
vide more thorough predictions.

7.9. Conclusions

This goal of this study is to address the question of howbeampolarisation influences the
determination of physical and systematic effects at future 𝑒+𝑒− collider, in both qualita-
tive and quantitative fashion. It expands on a large set of previous studies (for example
[38, 60, 145, 240]), and draws the focus on how the effort of polarising a beam changes
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the landscape of measurements and precisions.
This study builds on a dedicated fit framework (section 7.1) which can fit physical

and systematic effects for different polarisation and luminosity options (section 7.2) of
an 𝑒+𝑒− collider. The fits here serve as a proof-of-principle for this framework. For this
purpose, they limit themselves to the 250GeV stage of an 𝑒+𝑒− collider and to differ-
ential distributions of the 𝜇+𝜇− and 𝜇𝜈𝑞𝑞 final states. The parameter set (sections 7.3
and 7.4) includes the common systematic effects of luminosity and polarisations with
corresponding constraints, and the 𝜇 acceptance as experimental systematic effect. Rel-
evant physical effects here are fermion pair production parameters on 𝜇+𝜇− and triple
gauge couplings (TGCs) on 𝜇𝜈𝑞𝑞. For fermion pair production, the fit uses a special dif-
ferential shape parametrisation that includes parameters that correct for effects of initial
state radiation. The parametrisation of the TGCs uses WHIZARD to extract the impact on
the differential distribution.

One of the most important systematic effects in electroweak precision measurements
is the beam polarisation itself. The collision data is sensitive to the exact polarisation,
which potentially allows a measurement of those polarisations from the collision data
[139]. A collider can measure all polarisations if the number of measurements of chiral
cross-sections surpasses the combined number of polarisation and cross-section observ-
ables. Depending on the definition of the set of observables, this can be the case for a
collider with only one polarised beam. Polarising both beams of the collider guaran-
tees sufficient redundancy. Fit results reflect these ideas both for two-fermion and four-
fermion final state measurements, showing that a collider with one polarised beam can
measure a subset of the polarisations from collision data, and that this extends to all
polarisations when both beams are polarised (section 7.8.1). The fits find that such a
polarised collider with two polarised beams can even gain additional redundancy by
including unpolarised beam settings in the polarisation combinations.

Fit results also demonstrate that a polarisation measurement from collision data re-
quires a significant chiral asymmetry of the final state (section 7.7.2). For that reason,
𝑊 pair production - with an asymmetry close to one - provides a much stronger po-
larisation constraint than 𝜇 pair production. The value of the left-right asymmetry of
a process also determines which polarisations that process can effectively constrain. A
combination of processes with different asymmetry values provides constraints on all
polarisations. This puts a new emphasis on measurements with return-to-𝑍 events in
high energy stageswhere the polarisationmeasurement can use𝑊pair production data.

The fit directly includes a simple model for the 𝜇 acceptance with two model param-
eters (section 7.4) that the fit can extract from the differential distributions. This allows
the study of how beam polarisation affects experimental systematic uncertainties. Here,
the 𝜇 acceptance turns out to play minimal role for the two considered final states (sec-
tions 7.6.5 and 7.7.5). The only observed impact in 𝜇 pair production affects a chirality-
independent parameter. The 𝜇 acceptance does not affect any chirality-dependent ob-
servables. This demonstrates how a polarised collider can access chiral observables
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which are largely unaffected by experimental systematics.
Beam polarisation also shows clear advantages for a measurement of physical param-

eters in two- and four-fermion final states. Unpolarised measurements cannot access
chiral observables, and can only access such observables through final states helicity
measurements or with additional assumptions. Both final states in the fit provide con-
crete examples of this benefit. Without beam polarisation, a collider can only measure
half of the fermion pair production observables directly in all final states (section 7.6.1).
A collider with polarised beams achieves a factor 4 − 8 better precision in the final state
asymmetry 𝐴𝜇 than an unpolarised collider (section 7.6.2). The TGC precision also sees
a qualitative benefit from beam polarisation (section 7.7.4). A precise determination
of the left-right asymmetry of 𝑊 pair production is essential for restraining the TGCs.
Beam polarisation leads to an improved measurement of that asymmetry because po-
larised collider can directly access this observable. That same asymmetry measurement
will likely also benefit from the improved 𝑒𝑒𝑍 coupling measurement at a polarised col-
lider.

Positron polarisation plays a non-trivial role in this. As seen already for polarisa-
tion measurement, positron polarisation adds redundancy that removes correlations
and ambiguities. The most striking example is the ambiguity of polarisations and the
electron asymmetry 𝐴𝑒; positron polarisation removes this ambiguity and with it the
systematic limit on the physical parameter (section 7.6.1).

An unpolarised collider can in many cases catch up with the precision of a polarised
collider by increasing the luminosity by a factor of five. At the same time, an increased
luminosity cannot resolve fundamental differences between unpolarised and polarised
collider. Measurements of chiral observables are significantly more challenging with an
unpolarised collider.

7.9.1. Recommendations for future studies

Future studies can consider expanding on this work, or ask themselves where to gowith
it. For them, the following paragraphs give an overview of lessons from this study and
recommendation for future ones.

A large part of the time to perform this study went into setting up the fitting frame-
work. The framework, based on ROOTs TMinuit2 minimization [218], ended up being
fairly specific to the task of this study, and does not have a particularly intuitive inter-
face or core. Future studies will likely benefit from using the RooFit framework instead,
which is designed for likelihood fits to data. RooFit has some crucial advantages like
extensive documentation, a Python-implementation, and straightforward ways to im-
plement arbitrary fit functions.

The conclusions of this study also suffer from the limited scope of the fit setup. Here,
some concrete recommendation are possible that will make the fit more complete and
realistic.
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• Common EFT + SM parameter set:
The fit does currently not model any common physical parameters of the final
states. This turns out particularly problematic for the common 𝑒𝑒𝑍 vertex (sec-
tion 7.7.4). A common set of EFT and SM parameters can resolve this issue. It
will further provide a consistent treatment of physical parameters, in contrast to
the very different approaches of the current fit to TGCs and fermion pair produc-
tion parameters. The implementation can follow the same path as the current TGC
implementation. Some technical issues, which now are resolved, prohibited this
study from using such an approach.

• Including other final states:
Both the TGCs and some difermion parameters (e.g. 𝐴𝑒) find major constraints
in other final states that the fit did not include. Main candidates are single-𝑊
production (𝑒𝜈𝑞𝑞) for the TGCs and other fermion pair production final states for
𝐴𝑒. Previous studies have used both of these before and seen significant impacts
on TGC and polarisation precisions [60]. Special attention may go in including 𝜏
pair production, which can include the measurement of 𝜏 polarisation directly in
the fit.

• Including hadronic decay angles:
Previous studies of TGC measurements at 𝑒+𝑒− colliders have shown that the de-
cay angles of the hadronically decaying 𝑊 can increase the precisions by around
10% even with imperfect charge measurements [241]. This is because the decay
angles contain information about the 𝑊 helicities [160]. Including these angles is
also going to open up the possibility to including fully hadronic 𝑊 pair production
and quark pair production. Doing so will require a treatment of charge confusion
in the fit.

• Including backgrounds:
The current implementation does not consider backgrounds in the differential dis-
tribution. Guided by full simulation analysis, the fit can include backgrounds as
part of the fitted distribution. This can be especially important for return-to-𝑍
measurements, for which previous studies predict an overwhelming 𝑒𝑒𝑍 back-
ground [109]. Notably, the fit can provide statistically sound results by including
the impact of the physical and systematic parameters on the backgrounds.

• Expanding the systematic effects:
The current fit results do not reflect a better control of systematic effect when
beams are polarised. A possible explanation is that the implemented effect is too
simple, affects too few bins, and correspondingly easily separated from other ef-
fects. This is also reflected in the very minimal impact that the 𝜇 acceptance has
on themeasurement of the physical parameters. A fit that includes additional and
more detailed systematic effects will be able to give more concrete statements on
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the matter. Full simulation detector studies can motivate the shape of such effects.
The implementation can use the same approach as the one for the 𝜇 acceptance.

• Consider correlated polarimeter measurements:
The current implementation employs polarimeter constraints on each polarisation
independently. This assumes that systematic uncertainties of the individual po-
larisation measurements are uncorrelated. While this assumption is reasonable
for the two separate beams, the measurements of the different signed polarisa-
tions of the same beam are measured by the same detectors. This means that the
polarimeter measurements on the two signed polarisations of the same beam can
have correlated uncertainties.

The fit results also raise some questions with respect to the analysis of the considered
final states. These require dedicated studies, or can become part of future expansions
of this study.

• Which precision on the 𝑒𝑒𝑍 vertex does the TGC measurement require?
The TGC measurement in 𝑊 pair production relies heavily on the asymmetry in-
formation (section 7.7.4). Uncertainties on the 𝑒𝑒𝑍 vertex will disturb that infor-
mation. Which precision on the 𝑒𝑒𝑍 vertex is needed? What happens when in-
cluding single-𝑊 events in the TGC fit?

• Is it possible to measure 𝜏 polarisation in return-to-𝑍 events?
Ameasurement of 𝜏polarisation in return-to-𝑍 eventsmight provide an important
cross-check of the 𝐴𝑒 measurement when at least one beam is unpolarised (sec-
tion 7.6.4). The feasibility of this measurement in the forward-boosted topology
of return-to-𝑍 events is an open question.

• Is it useful to bin the fermion pair production in 𝑚𝑓 𝑓?
The energy-dependence of the fermionpair productionparameters iswell-understood
[2]. So far, future 𝑒+𝑒− collider studies on return-to-𝑍 events did not consider a
binning in the fermion pair mass to capture this dependence.

The current implementation of the fit lays the groundwork for studying such com-
bined fits. When addingmore realism and completeness, the fit will allowmore reliable
and comprehensive conclusions to guide the discussion on the future of particle physics.
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Future 𝑒+𝑒− colliders will run at energies between the 𝑍 pole and TeV scales, and pro-
duce orders-of-magnitude more events than the previous 𝑒+𝑒− machines. This will lead
to unprecedented statistical precision on physical parameter. The question quickly be-
comes which other effects can interfere with that precision and how the machine can
prepare for those.

Two studies here shed light on which effects limit the electroweak precision at future
𝑒+𝑒− colliders.

A first part of this study (chapter 6) considers the kinematic separation of hadronic
𝑊 and 𝑍 decays in the context of a vector boson scattering search. The results show that
detector resolution, beam backgrounds and high level analysis effects all can hinder
the electroweak precision. This motivates future studies to look into possible improve-
ments in the analysis techniques, like reconstructing semi-leptonic decays, improved
beam background removal, and improved clustering techniques. Details of the detector
model do not show an impact in this analysis, other analyses come to varying conclu-
sions depending on the signal [123].

A second approach here (chapter 7) is a study of electroweak fits using generator level
distributions of two- and four-fermion production, and largely ignoring detector and
analysis systematics. The results of that study demonstrate that electroweak precision
requires precise knowledge of systematic effects like beam polarisation, luminosity, and
detector acceptances. They further show that differential distributions cannot always
separate physical effects, or physical from systematic effects, leaving open directions in
the parameter space.

Limitations from combination of detector resolution and acceptance, high level anal-
ysis methods, systematic uncertainties and correlated parameters will bring new and
unforeseen challenges to electroweak measurements. The design of future 𝑒+𝑒− collid-
ers and detectors is a crucial step to tackle these challenges.

As the test of electroweak fits in this study show, equipping the machine with beam
polarisation can help electroweak precision. The most important impact of polarised
beams is the direct access to chiral observables, which distinguish different physical
effects and largely go unharmed by systematic uncertainties. A collider with polarised
beams also use the collision data to measure the polarisations - a crucial systematic
uncertainty in the highly chirality-dependent electroweak sector. Here, colliders with
two polarised beams have a clear advantage because the larger number of polarisation
combination distinguishes the behaviour of the polarisations from any physical effects.
This study finds that future 𝑒+𝑒− colliders can achieve precisions in the range of 10−4 to
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10−3 for both two-fermion and four-fermion parameters. It will be a major experimental
challenge to keep all experimental effects under control at a similar precision. Beam
polarisation will significantly alleviate a part of this challenge.

This study shows that there the choice of collider, running plan and detector design all
have complex impacts on the precision of electroweakmeasurements. By shedding light
on some of these aspects, the author hopes to constructively contribute to the ongoing
discussion about the next big collider project. In such a highly political discussion, it is
essential to know which trade-offs each choice represents, and to always keep the goal
in mind: to reveal the gaps in our understanding of the most fundamental principles of
nature.
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Appendix

A. Datasets

A.1. Uncertainties on fractional cross-sections

The chapter describing the datasets (chapter 5) quotes uncertainties on the cross-sections
for the processes in this study (tables 5.1 and 5.2). These cross-sections are all fractional,
meaning that they represent a subset of the full Monte-Carlo sample for the given pro-
cess, which defines a “category” of that process. For each category, the fractional cross-
section 𝜎cat is the result of the product of the fraction of MC events in that category and
the total cross-section.

𝜎cat =
𝑁cat
𝑁tot

𝜎tot (A.1)

The total number of MC events itself is the sum of the events in the category 𝑁cat and
events outside the category 𝑁other.

𝑁tot = 𝑁cat + 𝑁other (A.2)

The uncertainty of the fractional cross-section is therefore the composition of the uncer-
tainties on the three independent quantities 𝜎tot, 𝑁cat and 𝑁other.

Using the partial derivatives

𝜕𝜎cat
𝜕𝜎tot

=
𝑁cat
𝑁tot

,
𝜕𝜎cat
𝜕𝑁cat

=
𝜎tot
𝑁2

tot
(𝑁tot − 𝑁cat) ,

𝜕𝜎cat
𝜕𝑁other

= −
𝜎tot
𝑁2

tot
𝑁cat (A.3)

and the Poisson uncertainty on the MC events Δ𝑁 = √𝑁, the uncertainty formula for
𝜎cat reduces to two terms.

Δ𝜎cat = √(
𝜕𝜎cat
𝜕𝜎tot

)
2
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2 + (
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(A.4)

The first term ΔME describes the uncertainty from the calculation of the total cross-
section from the phase-space integration of the matrix element, and the second term
ΔMC describes the uncertainty from the Poisson fluctuation in the fraction 𝑁cat/𝑁tot. In
this study, the WHIZARD phase-space integration gives the value Δ𝜎tot.
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B. Separating hadronic decays of boson pairs

B. Separating hadronic decays of boson pairs

B.1. Mass distributions

This section presents the two-dimensional mass distributions (fig. B.1) and correspond-
ing one-dimensional (𝑚𝑉1 + 𝑚𝑉2) /2 projections (fig. B.2) for the large ILD model for
three of the idealization steps (see section 6.3).
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Figure B.1.: 2D mass distributions of true 𝑊𝑊 (blue) and 𝑍𝑍 (red) events for (a) the
low-𝑚𝑉𝑉 and (b) the high-𝑚𝑉𝑉 events in the large ILD model for three stages: (top)
generator level, (middle) no semileptonic decays and idealized assignment to boson,
and (bottom) full reconstruction.
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B. Separating hadronic decays of boson pairs

60 80 100 120
)/2 [GeV]jj,2 + m

jj,1
 (m

0

1000

2000

3000

4000
 E

ve
nt

s
generator level

60 80 100 120
)/2 [GeV]jj,2 + m

jj,1
 (m

0

200

400

600

800

1000

1200

 E
ve

nt
s

using reco of inital cns, no cuts, no SL-decays

60 80 100 120
)/2 [GeV]jj,2 + m

jj,1
 (m

0

200

400

600

 E
ve

nt
s

w/o cuts

(a) 𝑚𝑉𝑉 < 500GeV

60 80 100 120
)/2 [GeV]jj,2 + m

jj,1
 (m

0

50

100

150

200

250

 E
ve

nt
s

generator level

60 80 100 120
)/2 [GeV]jj,2 + m

jj,1
 (m

0

20

40

60 E
ve

nt
s

using reco of inital cns, no cuts, no SL-decays

60 80 100 120
)/2 [GeV]jj,2 + m

jj,1
 (m

0

10

20

30

40

50

 E
ve

nt
s

w/o cuts

(b) 𝑚𝑉𝑉 > 500GeV

Figure B.2.: 1D mass projections of true 𝑊𝑊 (blue) and 𝑍𝑍 (red) events for (a) the
low-𝑚𝑉𝑉 and (b) the high-𝑚𝑉𝑉 events in the large ILD model for three stages: (top)
generator level, (middle) no semileptonic decays and idealized assignment to boson,
and (bottom) full reconstruction.
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Appendix

B.2. Complete set of fits to mass distributions

This section presents the full set of fits of twogaussians to the𝑊𝑊 and𝑍𝑍 one-dimensional
mass projections (figs. B.3 to B.6) as described in the main body of this work (sec-
tion 6.2).
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B. Separating hadronic decays of boson pairs
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(a) IDR-L, 𝑚𝑉𝑉 > 500GeV, generator level
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(b) IDR-L, 𝑚𝑉𝑉 > 500GeV, cheated bosons, no SL-dec.
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(c) IDR-L, 𝑚𝑉𝑉 > 500GeV, cheated bosons

Figure B.3.: Fits of the sum of two Gaussians to the 𝑊𝑊 and 𝑍𝑍 mass distributions
for the IDR-L model and the 𝑚𝑉𝑉 > 500GeV events at the different idealization steps
(see table 6.1).
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(d) IDR-L, 𝑚𝑉𝑉 > 500GeV, cheated jets

60 80 100 120
(mV + mV)/2 [GeV]

0

20

40

60

80

Ev
en

ts WW
hist=80.7
hist=5.1
fit=80.50±0.07
fit=4.16±0.07
2/ndf=1.3

Fit total
Fit peak
Fit tail
MC

60 80 100 120
(mV + mV)/2 [GeV]

0

5

10

15

20

25
Ev

en
ts ZZ

hist=90.2
hist=5.7
fit=90.154±0.026
fit=5.344±0.031
2/ndf=6.4

Fit total
Fit peak
Fit tail
MC

(e) IDR-L, 𝑚𝑉𝑉 > 500GeV, cheated overlay
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(f) IDR-L, 𝑚𝑉𝑉 > 500GeV, full reconstruction

Figure B.3.: (cont.)
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B. Separating hadronic decays of boson pairs
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(a) IDR-S, 𝑚𝑉𝑉 > 500GeV, generator level
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(b) IDR-S, 𝑚𝑉𝑉 > 500GeV, cheated bosons, no SL-dec.
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(c) IDR-S, 𝑚𝑉𝑉 > 500GeV, cheated bosons

Figure B.4.: Fits of the sum of two Gaussians to the 𝑊𝑊 and 𝑍𝑍 mass distributions
for the IDR-S model and the 𝑚𝑉𝑉 > 500GeV events at the different idealization steps
(see table 6.1).
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(d) IDR-S, 𝑚𝑉𝑉 > 500GeV, cheated jets
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(e) IDR-S, 𝑚𝑉𝑉 > 500GeV, cheated overlay
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(f) IDR-S, 𝑚𝑉𝑉 > 500GeV, full reconstruction

Figure B.4.: (cont.)
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B. Separating hadronic decays of boson pairs

60 80 100 120
(mV + mV)/2 [GeV]

0

1000

2000

3000

4000
Ev

en
ts WW

hist=80.3
hist=1.8
fit=80.375±0.014
fit=1.896±0.020
2/ndf=16.0

Fit total
Fit peak
Fit tail
MC

60 80 100 120
(mV + mV)/2 [GeV]

0

250

500

750

1000

1250

1500

Ev
en

ts ZZ
hist=91.3
hist=2.0
fit=91.305±0.017
fit=2.111±0.020
2/ndf=3.2

Fit total
Fit peak
Fit tail
MC

(a) IDR-L, 𝑚𝑉𝑉 < 500GeV, generator level
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(b) IDR-L, 𝑚𝑉𝑉 < 500GeV, cheated bosons, no SL-dec.
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(c) IDR-L, 𝑚𝑉𝑉 < 500GeV, cheated bosons

Figure B.5.: Fits of the sum of two Gaussians to the 𝑊𝑊 and 𝑍𝑍 mass distributions
for the IDR-L model and the 𝑚𝑉𝑉 < 500GeV events at the different idealization steps
(see table 6.1).

a-11



Appendix

60 80 100 120
(mV + mV)/2 [GeV]

0

250

500

750

1000

1250

Ev
en

ts WW
hist=80.3
hist=5.8
fit=80.11±0.05
fit=6.37±0.26
2/ndf=4.2

Fit total
Fit peak
Fit tail
MC

60 80 100 120
(mV + mV)/2 [GeV]

0

100

200

300

400

500

Ev
en

ts ZZ
hist=89.4
hist=6.9
fit=89.51±0.05
fit=6.34±0.11
2/ndf=5.6

Fit total
Fit peak
Fit tail
MC

(d) IDR-L, 𝑚𝑉𝑉 < 500GeV, cheated jets
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(e) IDR-L, 𝑚𝑉𝑉 < 500GeV, cheated overlay

60 80 100 120
(mV + mV)/2 [GeV]

0

100

200

300

400

500

600

Ev
en

ts WW
hist=81.7
hist=11.3
fit=80.79±0.14
fit=14.2±0.4
2/ndf=2.7

Fit total
Fit peak
Fit tail
MC

60 80 100 120
(mV + mV)/2 [GeV]

0

50

100

150

200

250

300

Ev
en

ts ZZ
hist=89.2
hist=12.1
fit=89.46±0.13
fit=13.72±0.22
2/ndf=2.5

Fit total
Fit peak
Fit tail
MC

(f) IDR-L, 𝑚𝑉𝑉 < 500GeV, full reconstruction

Figure B.5.: (cont.)
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B. Separating hadronic decays of boson pairs
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(a) IDR-S, 𝑚𝑉𝑉 < 500GeV, generator level
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(b) IDR-S, 𝑚𝑉𝑉 < 500GeV, cheated bosons, no SL-dec.
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(c) IDR-S, 𝑚𝑉𝑉 < 500GeV, cheated bosons

Figure B.6.: Fits of the sum of two Gaussians to the 𝑊𝑊 and 𝑍𝑍 mass distributions
for the IDR-S model and the 𝑚𝑉𝑉 < 500GeV events at the different idealization steps
(see table 6.1).
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(d) IDR-S, 𝑚𝑉𝑉 < 500GeV, cheated jets
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(e) IDR-S, 𝑚𝑉𝑉 < 500GeV, cheated overlay
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(f) IDR-S, 𝑚𝑉𝑉 < 500GeV, full reconstruction

Figure B.6.: (cont.)
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B. Separating hadronic decays of boson pairs

B.3. Idealization steps in the small ILD model

This section presents the idealization step plots (fig. B.7) for the small detector models.
Corresponding plots for the large model are in the main text (fig. 6.6).
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Figure B.7.: Step-by-step idealizations of the event reconstruction process for the
mass distributions of 𝑊𝑊 (top) and 𝑍𝑍 (bottom) events, for both kinematic ranges
(left: low-𝑚𝑉𝑉, right: high-𝑚𝑉𝑉), here for the small detector model (for large model:
fig. 6.6).
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B. Separating hadronic decays of boson pairs

B.4. ROC curves for the idealization steps

This section presents the receiver-operator-curves (ROC, fig. B.8) for the scan of the cut
in the one-dimensionalmass projections. The area under each ROC curve gives theAUC
values, which is one of the quantifiers in this study (section 6.2 and fig. 6.7).
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(b) 𝑚𝑉𝑉 < 500GeV

Figure B.8.:Varying a 1D-cut in the di-bosonmass projections (figs. 6.6 andB.7) yields
a ROC-curve, and the area under such curves quantifies the separation of the distri-
butions (fig. 6.7b). The curves here show the distributions for (a) 𝑚𝑉𝑉 > 500GeV
and (b) 𝑚𝑉𝑉 < 500GeV events, with the (left) large and (right) small ILD model.
Previously published in [205].
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C. Impact of beam polarisation on electroweak fits

C. Impact of beam polarisation on electroweak fits

C.1. Detailed derivation of the 2f parametrisation

This section describes the derivation of the new fermion pair production parametri-
sation (eq. (7.8)) in detail, including the unpolarised form and the properties of that
parametrisation.

Restoring known parameters through reparametrisation

The helicity amplitude approach with the correction terms (eq. (7.6))

𝑑𝜎 𝑓
𝐿𝑅

𝑑 cos 𝜃 = Σ𝐿𝑙 (1 + cos 𝜃)2 + Σ𝐿𝑟 (1 − cos 𝜃)2 + 𝐾𝐿 (1 − 3 cos2 𝜃)

𝑑𝜎 𝑓
𝑅𝐿

𝑑 cos 𝜃 = Σ𝑅𝑟 (1 + cos 𝜃)2 + Σ𝑅𝑙 (1 − cos 𝜃)2 + 𝐾𝑅 (1 − 3 cos2 𝜃)

(C.1)

accurately describes the 𝜇+𝜇− distributions. From an experimental point of view, the pa-
rameters of that approach turn out inconvenient. All parameters correlate with normal-
isation shifts (e.g. luminosity) and there is no distinction between chirality dependent
and chirality independent effects. A reparametrisation mitigates both of these issues,
and also restore the parameter set used at LEP and SLD [38].

The first step in the reparametrisation isolates the overall normalisation of each chiral
cross-section.

𝑑𝜎 𝑓
𝐿𝑅

𝑑 cos 𝜃 = (Σ𝐿𝑙 + Σ𝐿𝑟) [
Σ𝐿𝑙

Σ𝐿𝑙 + Σ𝐿𝑟
(1 + cos 𝜃)2 +

Σ𝐿𝑟
Σ𝐿𝑙 + Σ𝐿𝑟

(1 − cos 𝜃)2 +
𝐾𝐿

Σ𝐿𝑙 + Σ𝐿𝑟
(1 − 3 cos2 𝜃)]

𝑑𝜎 𝑓
𝑅𝐿

𝑑 cos 𝜃 = (Σ𝑅𝑟 + Σ𝑅𝑙) [
Σ𝑅𝑟

Σ𝑅𝑟 + Σ𝑅𝑙
(1 + cos 𝜃)2 +

Σ𝑅𝑙
Σ𝑅𝑟 + Σ𝑅𝑙

(1 − cos 𝜃)2 +
𝐾𝑅

Σ𝑅𝑟 + Σ𝑅𝑙
(1 − 3 cos2 𝜃)]

(C.2)

Thismotivates the choice for the lower case 𝑘’s, splitting them into chirality-dependent
and -independent parts.

𝑘0 =
𝐾𝐿

Σ𝐿𝑙 + Σ𝐿𝑟
+

𝐾𝑅
Σ𝑅𝑟 + Σ𝑅𝑙

, Δ𝑘 =
𝐾𝐿

Σ𝐿𝑙 + Σ𝐿𝑟
−

𝐾𝑅
Σ𝑅𝑟 + Σ𝑅𝑙

(C.3)

The normalisation reparameterises into a global normalisation (correlating e.g. with
the luminosity) and a normalisation asymmetry (correlating e.g. with the polarisa-
tions).
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𝜎 𝑓
0 =

8
3 (Σ𝐿𝑙 + Σ𝐿𝑟 + Σ𝑅𝑟 + Σ𝑅𝑙) (C.4a)

𝐴𝑒 =
(Σ𝐿𝑙 + Σ𝐿𝑟) − (Σ𝑅𝑟 + Σ𝑅𝑙)

Σ𝐿𝑙 + Σ𝐿𝑟 + Σ𝑅𝑟 + Σ𝑅𝑙
(C.4b)

The factor 8
3 results from the integral over (1 ± cos 𝜃)2.

An application of these reparametrisations togetherwith an expansion of the (1 ± cos 𝜃)2

terms leads to a new form that only contains specific combinations of the helicity am-
plitudes in the linear term.

𝑑𝜎 𝑓
𝐿𝑅

𝑑 cos 𝜃 =
8
3𝜎 𝑓

0
1 + 𝐴𝑒

2 [(1 + cos2 𝜃) + 2
Σ𝐿𝑙 − Σ𝐿𝑟
Σ𝐿𝑙 + Σ𝐿𝑟

cos 𝜃 +
𝑘0 + Δ𝑘

2 (1 − 3 cos2 𝜃)]

𝑑𝜎 𝑓
𝑅𝐿

𝑑 cos 𝜃 =
8
3𝜎 𝑓

0
1 − 𝐴𝑒

2 [(1 + cos2 𝜃) + 2
Σ𝑅𝑟 − Σ𝑅𝑙
Σ𝑅𝑟 + Σ𝑅𝑙

cos 𝜃 +
𝑘0 − Δ𝑘

2 (1 − 3 cos2 𝜃)]

(C.5)

The linear coefficients again combine into a summed and an asymmetric term.

𝜖𝑓 =
Σ𝐿𝑙 − Σ𝐿𝑟
Σ𝐿𝑙 + Σ𝐿𝑟

+
Σ𝑅𝑟 − Σ𝑅𝑙
Σ𝑅𝑟 + Σ𝑅𝑙

(C.6a)

𝐴𝑓 =
1
2 (

Σ𝐿𝑙 − Σ𝐿𝑟
Σ𝐿𝑙 + Σ𝐿𝑟

−
Σ𝑅𝑟 − Σ𝑅𝑙
Σ𝑅𝑟 + Σ𝑅𝑙

) (C.6b)

The parameter 𝜖𝑓 is given named that way because it vanishes in the SM 𝑍-pole case
(eq. (7.10a)).

All the reparametrisations together yield the new generalised parametrisation ap-
proach.

𝑑𝜎 𝑓
𝐿𝑅

𝑑 cos 𝜃 =
3
8𝜎 𝑓

0
1 + 𝐴𝑒

2 [(1 +
𝑘0 + Δ𝑘

2 ) + (𝜖𝑓 + 2𝐴𝑓) cos 𝜃 + (1 − 3
𝑘0 + Δ𝑘

2 ) cos2 𝜃]

𝑑𝜎 𝑓
𝑅𝐿

𝑑 cos 𝜃 =
3
8𝜎 𝑓

0
1 − 𝐴𝑒

2 [(1 +
𝑘0 − Δ𝑘

2 ) + (𝜖𝑓 − 2𝐴𝑓) cos 𝜃 + (1 − 3
𝑘0 − Δ𝑘

2 ) cos2 𝜃]

(C.7)

The parameters 𝜎 𝑓
0, 𝐴𝑒 and 𝐴𝑓 are fully consistent with the parameters of the same

notation used by LEP and SLD (eq. (7.10a)).
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C. Impact of beam polarisation on electroweak fits

Helicity amplitudes in new parametrisation

Acomparison of the initial andfinal formof the newparametrisation (eqs. (C.1) and (C.7))
directly yields how the helicity amplitudes relate to the new parameter set.

Σ𝐿𝑙 =
3
8𝜎 𝑓

0
1 + 𝐴𝑒

2
1
2 (1 +

1
2 [𝜖𝑓 + 2𝐴𝑓]) (C.8a)

Σ𝐿𝑟 =
3
8𝜎 𝑓

0
1 + 𝐴𝑒

2
1
2 (1 −

1
2 [𝜖𝑓 + 2𝐴𝑓]) (C.8b)

Σ𝑅𝑟 =
3
8𝜎 𝑓

0
1 − 𝐴𝑒

2
1
2 (1 +

1
2 [𝜖𝑓 − 2𝐴𝑓]) (C.8c)

Σ𝑅𝑙 =
3
8𝜎 𝑓

0
1 − 𝐴𝑒

2
1
2 (1 −

1
2 [𝜖𝑓 − 2𝐴𝑓]) (C.8d)

A single dataset measurement

The discussion so far considered directly the pure chiral initial states. When taking data
at an 𝑒+𝑒− collider, the measured distribution of a given dataset is combination of these
initial states. The polarisations 𝒫𝑒± in that dataset determine the weights of the initial
states.

𝑑𝜎 𝑓
pol

𝑑 cos 𝜃 (𝒫𝑒−, 𝒫𝑒+) =
1
4 (1 − 𝒫𝑒−) (1 + 𝒫𝑒+)

𝑑𝜎 𝑓
𝐿𝑅

𝑑 cos 𝜃 +
1
4 (1 + 𝒫𝑒−) (1 − 𝒫𝑒+)

𝑑𝜎 𝑓
𝑅𝐿

𝑑 cos 𝜃

=
3
8𝜎 𝑓

0
1
4

× [ (1 − 𝒫𝑒−𝒫𝑒+ + 𝐴𝑒(𝒫𝑒+ − 𝒫𝑒−)) (1 + cos2 𝜃) +
(𝜖𝑓{1 − 𝒫𝑒−𝒫𝑒+ + 𝐴𝑒(𝒫𝑒+ − 𝒫𝑒−)} + 2𝐴𝑓{𝒫𝑒+ − 𝒫𝑒− + 𝐴𝑒(1 − 𝒫𝑒−𝒫𝑒+)}) cos 𝜃 +

(
𝑘0
2 {1 − 𝒫𝑒−𝒫𝑒+ + 𝐴𝑒(𝒫𝑒+ − 𝒫𝑒−)} +

Δ𝑘
2 {𝒫𝑒+ − 𝒫𝑒− + 𝐴𝑒(1 − 𝒫𝑒−𝒫𝑒+)})

× (1 − 3 cos2 𝜃)]
(C.9)

This form includes two common factors that are combinations of the polarisations
and the electron asymmetry. Drawing out one of these factors simplifies the equation.
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𝑑𝜎 𝑓
pol

𝑑 cos 𝜃 (𝒫𝑒−, 𝒫𝑒+)

=
1
4

3
8𝜎 𝑓

0 (1 − 𝒫𝑒−𝒫𝑒+ + 𝐴𝑒(𝒫𝑒+ − 𝒫𝑒−))

× [ (1 + cos2 𝜃) + (𝜖𝑓 + 2𝐴𝑓
𝒫𝑒+ − 𝒫𝑒− + 𝐴𝑒(1 − 𝒫𝑒−𝒫𝑒+)
1 − 𝒫𝑒−𝒫𝑒+ + 𝐴𝑒(𝒫𝑒+ − 𝒫𝑒−)

) cos 𝜃 +

(
𝑘0
2 +

Δ𝑘
2

𝒫𝑒+ − 𝒫𝑒− + 𝐴𝑒(1 − 𝒫𝑒−𝒫𝑒+)
1 − 𝒫𝑒−𝒫𝑒+ + 𝐴𝑒(𝒫𝑒+ − 𝒫𝑒−)

) × (1 − 3 cos2 𝜃)]

=
1
4

3
8𝜎 𝑓

0 (1 − 𝒫𝑒−𝒫𝑒+ + 𝐴𝑒(𝒫𝑒+ − 𝒫𝑒−))

× [ (1 + cos2 𝜃) +
⎛⎜⎜⎜⎜
⎝

𝜖𝑓 + 2𝐴𝑓

𝒫𝑒+−𝒫𝑒−

1+𝒫𝑒+𝒫𝑒−
+ 𝐴𝑒

1 + 𝒫𝑒+−𝒫𝑒−

1+𝒫𝑒+𝒫𝑒−
𝐴𝑒

⎞⎟⎟⎟⎟
⎠
cos 𝜃 +

⎛⎜⎜⎜⎜
⎝

𝑘0
2 +

Δ𝑘
2

𝒫𝑒+−𝒫𝑒−

1+𝒫𝑒+𝒫𝑒−
+ 𝐴𝑒

1 + 𝒫𝑒+−𝒫𝑒−

1+𝒫𝑒+𝒫𝑒−
𝐴𝑒

⎞⎟⎟⎟⎟
⎠

× (1 − 3 cos2 𝜃)]

(C.10)

The last step contains the effective polarisation 𝒫eff.

𝒫eff =
𝒫𝑒+ − 𝒫𝑒−

1 + 𝒫𝑒+𝒫𝑒−
(C.11)

A single dataset can measure only therefore measure a single second order polyno-
mial with coefficients that are a combination of the fermion pair production parameters
and the polarisations.

𝑑𝜎 𝑓
pol

𝑑 cos 𝜃 (𝒫𝑒−, 𝒫𝑒+)

=
1
4

3
8𝜎 𝑓

0 (1 − 𝒫𝑒−𝒫𝑒+ + 𝐴𝑒(𝒫𝑒+ − 𝒫𝑒−))

× [ (1 + cos2 𝜃) + (𝜖𝑓 + 2𝐴𝑓
𝒫eff + 𝐴𝑒
1 + 𝒫eff𝐴𝑒

) cos 𝜃 + (
𝑘0
2 +

Δ𝑘
2

𝒫eff + 𝐴𝑒
1 + 𝒫eff𝐴𝑒

) × (1 − 3 cos2 𝜃)]

(C.12)

The unpolarised parametrisation

An unpolarised collider measures only a single dataset with 𝒫𝑒± ≈ 0 and correspond-
ingly 𝒫eff ≈ 0. It only measures a single second order polynomial (eq. (C.12)) and it
cannot distinguish all eight parameters that appear in that polynomial. To still allow a
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C. Impact of beam polarisation on electroweak fits

measurement, the unpolarised scenario requires the definition of a set of three unpo-
larised parameters {�̃� 𝑓

0, ̃𝑘0, 𝐴𝑓
𝐹𝐵}, including the forward-backward asymmetry 𝐴𝑓

𝐹𝐵.

𝑑𝜎 𝑓
unpol

𝑑 cos 𝜃 =
1
4

3
8�̃� 𝑓

0
⎡⎢
⎣

(1 + cos2 𝜃) +
8
3𝐴𝑓

𝐹𝐵 cos 𝜃 +
̃𝑘0
2 (1 − 3 cos2 𝜃)⎤⎥

⎦
(C.13)

A comparisonwith the full formula for a single dataset yields the composition of these
unpolarised parameters.

�̃� 𝑓
0 = 𝜎 𝑓

0 (1 − 𝒫𝑒−𝒫𝑒+ + 𝐴𝑒(𝒫𝑒+ − 𝒫𝑒−))

̃𝑘0 = 𝑘0 + Δ𝑘
𝒫eff + 𝐴𝑒
1 + 𝒫eff𝐴𝑒

𝐴𝑓
𝐹𝐵 =

3
8 (𝜖𝑓 + 2𝐴𝑓

𝒫eff + 𝐴𝑒
1 + 𝒫eff𝐴𝑒

)

(C.14)

The small value of the polarisation allows some approximations that ignore non-linear
polarisation terms.

(1 − 𝒫𝑒−𝒫𝑒+ + 𝐴𝑒 (𝒫𝑒+ − 𝒫𝑒−)) ≈ (1 − 𝐴𝑒 (𝒫𝑒+ − 𝒫𝑒−))
𝒫eff + 𝐴𝑒
1 + 𝒫eff𝐴𝑒

≈ 𝒫eff (1 − 𝐴2
𝑒 ) + 𝐴𝑒

(C.15)

In addition, 𝐴𝑒 is of order 10−1 (table 7.4). This allows an additional approximation
that ignores any terms quadratic in 𝐴𝑒 or mixed in the polarisation and 𝐴𝑒.

(1 − 𝒫𝑒−𝒫𝑒+ + 𝐴𝑒 (𝒫𝑒+ − 𝒫𝑒−)) ≈ 1
𝒫eff + 𝐴𝑒
1 + 𝒫eff𝐴𝑒

≈ 𝒫eff + 𝐴𝑒
(C.16)

This is a rather crude approximation. In practice, the actual value of 𝐴𝑒 will mainly be
important in the suppression of the polarisation uncertainties in the mixed term. Only
the terms linear in the polarisation (and not suppressed by𝐴𝑒) and the terms linear in𝐴𝑒
will present a significant uncertainty. At the same time, known non-zero polarisations
value do not pose a problem due to the straightforward linear correction.

Another approximation is possible because of the negligible value of Δ𝑘 (table 7.4).
This parameter only appears in mixed terms with 𝐴𝑒 and the polarisations, which are
correspondingly negligible as well.

Assuming these approximations (eq. (C.16)) as valid, the unpolarised parameters �̃� 𝑓
0

and ̃𝑘0 identify with the parameters 𝜎 𝑓
0 and 𝑘0 of the chiral parametrisation, and the

forward-backward asymmetry takes a simple form.
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�̃� 𝑓
0 ≈ 𝜎 𝑓

0
̃𝑘0 ≈ 𝑘0

𝐴𝑓
𝐹𝐵 ≈

3
8 (𝜖𝑓 + 2 (𝒫eff + 𝐴𝑒) 𝐴𝑓)

(C.17)

This study therefore uses the sameparameters𝜎 𝑓
0 and 𝑘0 for polarised andunpolarised

cases, leading to the unpolarised parametrisation that the fit uses.

𝑑𝜎 𝑓
unpol

𝑑 cos 𝜃 =
1
4

3
8𝜎 𝑓

0 [ (1 + cos2 𝜃) +
8
3𝐴𝑓

𝐹𝐵 cos 𝜃 +
𝑘0
2 (1 − 3 cos2 𝜃)] (C.18)

The forward backward asymmetry

The unpolarised parametrisation contains the forward-backward asymmetry. In its gen-
eral form

𝐴𝑓
𝐹𝐵 =

3
8 (𝜖𝑓 + 2𝐴𝑓

𝒫eff + 𝐴𝑒
1 + 𝒫eff𝐴𝑒

) (C.19)

this parameter describes asymmetry of forward- and backward parts of a single distri-
bution with polarisations 𝒫𝑒± (hence the name).

𝐴𝑓
𝐹𝐵 (𝒫𝑒−, 𝒫𝑒+) =

∫1
0

𝑑𝜎𝑓
pol

𝑑 cos𝜃𝑑 cos 𝜃 − ∫0
−1

𝑑𝜎𝑓
pol

𝑑 cos𝜃𝑑 cos 𝜃

∫1
0

𝑑𝜎𝑓
pol

𝑑 cos𝜃𝑑 cos 𝜃 + ∫0
−1

𝑑𝜎𝑓
pol

𝑑 cos𝜃𝑑 cos 𝜃
(C.20)

For an unpolarised scenario with polarisations of exactly zero, this parameter restores
the forward-backward asymmetry parameter of the LEP and SLD experiments [2].

𝐴𝑓
𝐹𝐵 (0, 0) =

3
8𝜖𝑓 +

3
4𝐴𝑒𝐴𝑓 (C.21)

The 𝜖𝑓 parameter is a small correction on the 𝑍-pole and does not explicitly appear in
the LEP and SLD formulas of the asymmetry.

C.2. Implementation of the WW chiral cross-section parameters

A technical implementation of the 𝜎0 and 𝐴𝐿𝑅 parameters in the fit requires a parametri-
sation of the changes in these parameters in terms of changes in 𝜎𝐿𝑅 and 𝜎𝑅𝐿. A simple
common scaling 𝛼0 of both chiral cross-section changes 𝜎0 without changing 𝐴𝐿𝑅. For
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independent parameters, an asymmetry deviation Δ𝐴𝐿𝑅 also cannot change 𝜎0.

𝜎0 (𝐴𝐿𝑅 + Δ𝐴𝐿𝑅) = 𝜎0 (𝐴𝐿𝑅)

𝐴′
𝐿𝑅 (Δ𝐴𝐿𝑅) = 𝐴𝐿𝑅 + Δ𝐴𝐿𝑅 =

𝜎 ′
𝐿𝑅 − 𝜎 ′

𝑅𝐿
𝜎0

(C.22)

This condition leads to the changed values of chiral cross-sections.

𝜎 ′
𝐿𝑅(𝛼0, Δ𝐴𝐿𝑅) = 𝛼0𝜎𝐿𝑅 (1 +

𝜎0
𝜎𝐿𝑅

Δ𝐴𝐿𝑅)

𝜎 ′
𝑅𝐿(𝛼0, Δ𝐴𝐿𝑅) = 𝛼0𝜎𝑅𝐿 (1 −

𝜎0
𝜎𝑅𝐿

Δ𝐴𝐿𝑅)
(C.23)

The fits use those two parameters 𝛼0 = 𝜎0/𝜎SM
0 and Δ𝐴𝐿𝑅. While the total cross-section

scaling is by default free parameter, the asymmetry is by default fixed and assumed as
well known.

C.3. Details on TGC rescanning with WHIZARD

Rescanned TGCs points

The rescanning of the W pair production events uses 18 TGC deviation points, all with
the common scale 𝛿 = 5 ⋅ 10−4 (table C.1).

Example SINDARIN rescan script

The following is an example of a SINDARIN script that WHIZARD uses to rescan one
LCIO file that contains 𝑒−

𝐿 𝑒+
𝑅 → 𝜇𝜈𝑞 ̄𝑞 events from the 250GeV ILD production.

! ==========
! This s c r i p t / template i s l a rge l y adapted from Mikaels s c r i p t s fo r the ILC−250
! production .
! ==========

! −−−−−−−−−−−−−−−−−−−−−−−− Sample production setup −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sqr t s = 250 GeV

beams = e1 , E1 => c i r c e2 => i s r , i s r
$ c i r c e 2 _ f i l e=”/ nfs /dust / i l c / user /berggren/whizard_2 .8−prod/whizard−2.8.5− pla in / energy_spread /250_SetA_ee024 . c i r c e ”

! This de f ines the i n t i a l c h i r a l i t y : −,+ −> e−L e+R
beams_pol_density = @( −1.0) ,@( 1 . 0 )

? i s r_handle r = true
? epa_handler = f a l s e

Table C.1.: Rescanned TGC points, given in units of 𝛿 = 5 ⋅ 10−4.
Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Δ𝑔𝑍

1 1.0 0.0 0.0 -1.0 0.0 0.0 1.0 0.0 1.0 -1.0 0.0 -1.0 -1.0 0.0 -1.0 1.0 0.0 1.0
Δ𝜅𝛾 0.0 1.0 0.0 0.0 -1.0 0.0 1.0 1.0 0.0 -1.0 -1.0 0.0 1.0 -1.0 0.0 -1.0 1.0 0.0
Δ𝜆𝛾 0.0 0.0 1.0 0.0 0.0 -1.0 0.0 1.0 1.0 0.0 -1.0 -1.0 0.0 1.0 1.0 0.0 -1.0 -1.0
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! ILD production s c r i p t used SM_CKM model
! => Here use SM_ac_CKM, which inc ludes the TGC anomalous couplings
model = SM_ac_CKM

? resonance_his tory = true
resonance_on_she l l _ l imi t = 16
resonance_on_she l l_ turnof f = 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Al iases
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a l i a s e l e c t r on s = e1 : E1
a l i a s mus = e2 : E2
a l i a s taus = e3 : E3
a l i a s quark = u : d : s : c : b :U:D: S :C : B
a l i a s up_type_q = u : c :U:C
a l i a s down_type_q = d : s : b :D: S : B
a l i a s lepton = e1 : e2 : e3 : E1 : E2 : E3
a l i a s no t_e l ec t ron = e2 : e3 : E2 : E3
a l i a s neutr ino = n1 : n2 : n3 :N1 :N2:N3

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Cuts
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
rea l default_M_cut = 4 GeV
! ( the fol lowing i s fo r DBD comparision
! (m_mu was 0 for non−ee processes , hence a 4 GeV cut ))
r e a l mumu_M_cut = 0 GeV
a l i a s a l l _mass l e s s_bu t_e l e c t ron=quark : no t_e l ec t ron
r e a l d e f au l t _ j e t _ cu t = 10 GeV
rea l defaul t_E_cut = 10 GeV
rea l default_Q_cut = 4 GeV
!
a l i a s masslessquark=quark
!
cuts =
l e t subevt @non_bmrem_electron = [ s e l e c t i f Index > 1 [ e1 ] ]
in
l e t subevt @non_bmrem_positron = [ s e l e c t i f Index > 1 [E1] ]
in
l e t subevt @non_bmrem_both = [ s e l e c t i f Index > 2 [ e1 : E1 ] ]
in
l e t subevt @non_isr_photon = [ s e l e c t i f Index > 2 [A] ]
in
a l l M > mumu_M_cut [e2 , E2]

and
a l l M > de f au l t _ j e t _ cu t [masslessquark , masslessquark ]

and
a l l E > defaul t_E_cut [@non_isr_photon ]

and
a l l M < − default_Q_cut [ incoming e1 , [ @non_isr_photon ]]

and
a l l M < − default_Q_cut [ incoming E1 , [ @non_isr_photon ]]

and
a l l M < − default_Q_cut [ incoming e1 , e1 ]

and
a l l M < − default_Q_cut [ incoming E1 , E1 ]

and
a l l M > default_M_cut [ e1 , E1 ]

and
a l l M < − default_Q_cut [ incoming photon , e1 : E1 ]

and
a l l M < − default_Q_cut [ incoming photon , a l l _mass l e s s_bu t_e l e c t ron ]

and
a l l M < − default_Q_cut [ incoming photon , @non_isr_photon ]

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Process input
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
polar ized e1 , e2 , e3 , u , d , c , s , t , n1 , n2 , n3 , E1 , E2 , E3 ,U,D,C, S , T ,N1 ,N2,N3, ”W+” , ”W−” ,Z ,A

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Parameter input
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! masses not s e t here are a t t h e i r PDG values , inc luding e and mu
! All quark masses are zero , or are s e t to zero here , to
! allow for f lavour sums
ms = 0
mc = 0
mb = 0
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! No higgs in the general SM samples , to avoid double
! counting with the dedicated higgs samples :
$ r e s t r i c t i o n s = ” !H”

! no gluons in Whizard , to avoid double−counting with Pythia−PS :
alphas = 1 . e−6

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Simulat ion input
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
?keep_remnants = true
?keep_beams = true
? hadron iza t ion_ac t ive = true
!
$extension_stdhep_ev4 = ”stdhep”

! OPAL tune :
! (Some l inebreaks are inse r t ed for r eadab i l i t y , remove them i f necessary )
$ps_PYTHIA_PYGIVE = ”MSTJ(28)=0; ␣PMAS(25 , 1 )=125 . ; ␣PMAS(25 ,2)=0.3605E−02;
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣PMAS(116 ,1)=0.493677 ␣ ; ␣MSTJ(41)=2; ␣MSTU(22)=2000;
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣PARJ(21)=0.40000; ␣PARJ(41)=0.11000 ; ␣PARJ(42)=0.52000;
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣PARJ(81)=0.25000; ␣PARJ(82)=1.90000; ␣MSTJ(11)=3;
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣PARJ(54)=−0.03100; ␣PARJ(55)=−0.00200;␣PARJ(1)=0.08500;
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣PARJ(3)=0.45000; ␣PARJ(4)=0.02500; ␣PARJ(2)=0.31000;
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣PARJ(11)=0.60000; ␣PARJ(12)=0.40000; ␣PARJ(13)=0.72000;
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣PARJ(14)=0.43000; ␣PARJ(15)=0.08000; ␣PARJ(16)=0.08000;
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣PARJ(17)=0.17000; ␣␣␣MSTP(125)=2; ␣MSTP(3)=1;MSTP(71)=1”
? ps_ f s r _ a c t i v e = true
$shower_method = ”PYTHIA6”
? ps_taudec_act ive = true
! 0=a l l , 1=e , 2=mu, 3=pi , 4=rho , 5=a_1 , . . . .
ps_tauola_dec_mode1 = 0
ps_tauola_dec_mode2 = 0

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Beam se t t i n g s
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
? i s r _ r e c o i l = f a l s e
$isr_handler_mode = ” r e c o i l ”
i s r_a lpha = 0.0072993
isr_mass = 0.000511
epa_alpha = 0.0072993
epa_mass = 0.000511
epa_q_max = 4 .
epa_q_min = 0 . 1
epa_x_min = 0.00001
? epa_reco i l=f a l s e
$epa_handler_mode = ” r e c o i l ”

! (beam−spectrum part )
$c i rce2_des ign=”ILC”
! NB: t h i s i s a b i t confusing : I t ∗should∗ be f a l s e , even i f beams are
! po lar i sed . I t i s a place−holder fo r a future development when po l a r i s a t i on
! i s taken in to account by GuineaPig
? c i r c e2_po la r i zed = f a l s e

beams_pol_fract ion = 1 . 0 , 1 . 0

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Processes
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
in t nf = 4
in t ng = 0

! ! # −−−− Semi−lep ton i c
! ! # WW : qq l nu
process ww_sl = e1 , E1 => (up_type_q , down_type_q , taus , neutr ino ) + (up_type_q , down_type_q ,mus , neutr ino ) {

$omega_flags = ”−model : constant_width ”
process_num_id = 500082 }

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

compile

! −−−−−−−−−−−−−−−−−−−−−−−− Rescanning t e s t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

? resonance_his tory = f a l s e

! Enable updating of matrix element and weight fo r event ( exac t l y wanted)
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?update_sqme = true
?update_weight = f a l s e

! Perform the rescan
rescan ”/pnfs /desy . de/ i l c /prod/ i l c /mc−2020/generated/250−SetA/4 f /E250−SetA . P4f_ww_sl . Gwhizard−2_8_5 . eL . pR . I500082 . 0 ” (ww_sl){
$rescan_input_format = ” l c i o ”
$sample = ”cTGC_rescan”
sample_format = weight_stream
? recover_beams = f a l s e ! Avoid er ror from try ing to recover the beam
?write_raw = f a l s e

! Descr ip t ion of the a l t e r n a t i v e setups to rescan
! Note tha t the l a s t two l i n e s in each setup enforce the gauge condi t ions
a l t _ se tup = {
g1z = 1 .0005
ka = 1 . 0
l a = 0.0
kz = 1 . 0 − (ka − 1 . 0 ) ∗ sw∗∗2/cw∗∗2 + (g1z − 1 . 0 )
l z = la

} ,
! . . . (many other points )
{
g1z = 1 .0005
ka = 1 . 0
l a = −0.0005
kz = 1 . 0 − (ka − 1 . 0 ) ∗ sw∗∗2/cw∗∗2 + (g1z − 1 . 0 )
l z = la

}
}

C.4. TGC impact on differential distributions

This section presents the checks of how the TGCs change the one-dimensional projec-
tions of the differential distribution of semileptonic𝑊pair production (figs. C.1 andC.2).
Only the check of the cos 𝜃𝑊− observable of the 𝑒−

𝐿 𝑒+
𝑅 initial state appears in themain text

(fig. 7.7), since that is the most sensitive shape information (section 7.3.4).
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Figure C.1.: cos 𝜃𝑊− (top) and cos 𝜃∗
𝑙 (bottom) distributions of 𝜇−𝜈𝑞𝑞 final state for

𝑒−
𝐿𝑒+

𝑅 (left) and 𝑒−
𝑅𝑒+

𝐿 (right) initial states. The ones for 𝜇+ are identical.
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Figure C.2.: 𝜙∗
𝑙 distributions of 𝜇−𝜈𝑞𝑞 (top) and 𝜇+𝜈𝑞𝑞 (bottom) final states for 𝑒−

𝐿𝑒+
𝑅

(left) and 𝑒−
𝑅𝑒+

𝐿 (right) initial states.
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C.5. Muon acceptance cut impact

This section presents the full set of plots that show the impact of the 7° 𝜇-acceptance
cut (see section 7.4.2) on the differential distributions of 𝜇 pair production (figs. C.3
and C.4) and semileptonic 𝑊 pair production (fig. C.5).
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Figure C.3.: Impact of a 7° muon acceptance cut on the return-to-𝑍 event distributions
of 𝜇 pair production.
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Figure C.4.: Impact of a 7° muon acceptance cut on the high-√𝑠∗ event distributions
of 𝜇 pair production.
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FigureC.5.: Impact of a 7°muon acceptance cut on the 𝑒−
𝐿𝑒+

𝑅 → 𝜇−𝜈𝑞𝑞 (left) and 𝑒−
𝑅𝑒+

𝐿 →
𝜇−𝜈𝑞𝑞 (right) distributions, shown as 1D projections. Distribution for the 𝜇+𝜈𝑞𝑞 final
state look identical except for a shift of 𝜋 in 𝜙∗

𝑙 , so that the peak andmajor cut influence
shift to ±𝜋.
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C.6. Additional muon acceptance validity check plots

This section presents the full sets of validity check plots for the parametrisation of the
𝜇 acceptance (see section 7.4.5), for all categories and initial state chiralities of 𝜇 pair
production (figs. C.6 and C.7) and semileptonic 𝑊 pair production (fig. C.8). Some
validation points fall close to or even in the area of 𝜒2

𝑚𝑖𝑠𝑚𝑜𝑑𝑒𝑙 > 𝜒2
𝑠ℎ𝑖𝑓 𝑡 (red area in the

plot), in which the parametrisation is not strictly valid. A careful examination of those
point shows that the impact of themismodeling is still negligible compared to the impact
on the other initial states or the other processes.
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Figure C.6.: Comparison of 𝜒2 on 𝑒+𝑒− → 𝜇+𝜇−(𝑚𝜇𝜇 ≈ 𝑚𝑍) shows that polynomial
fit-parametrisation of 𝜇 acceptance causes negligible mistakes (𝜒2

𝑝𝑎𝑟) compared to the
impact of parameter-shifts (𝜒2

𝑠ℎ𝑖𝑓 𝑡). (Complementing fig. 7.13 in section 7.4.5.)
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Figure C.7.: Comparison of 𝜒2 on 𝑒+𝑒− → 𝜇+𝜇−(𝑚𝜇𝜇 ≈ 250GeV) shows that polyno-
mial fit-parametrisation of 𝜇 acceptance causes negligible mistakes (𝜒2

𝑝𝑎𝑟) compared
to the impact of parameter-shifts (𝜒2

𝑠ℎ𝑖𝑓 𝑡). (Complementing fig. 7.13 in section 7.4.5.)
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Figure C.8.: Comparison of 𝜒2 on 𝑒+𝑒− → 𝜇𝜈𝑞𝑞 shows that polynomial fit-
parametrisation of 𝜇 acceptance causes negligible mistakes (𝜒2

𝑝𝑎𝑟) compared to the
impact of parameter-shifts (𝜒2

𝑠ℎ𝑖𝑓 𝑡). (Complementing fig. 7.13 in section 7.4.5.)
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C.7. Fit results in numbers

This section presents the fit results the default fit setups from the electroweak fits (sec-
tions 7.6 to 7.8) in numbers. This includes the uncertainties for each polarised scenario
for the individual fits:

• 𝜇 pair production:
– With default parameters: table C.2
– With fixed luminosity: table C.3
– With fixed polarisation: table C.4
– With fixed 𝜇 acceptance: table C.5

• Semileptonic 𝑊 pair production:
– With default parameters: table C.6
– With fixed luminosity: table C.7
– With fixed polarisation: table C.8
– With fixed 𝜇 acceptance: table C.9
– With fixed unpolarised cross-section: table C.10
– With free left-right asymmetry: table C.11

• Combined:
– With default parameters: table C.12
– With fixed luminosity: table C.13
– With fixed polarisation: table C.14
– With fixed 𝜇 acceptance: table C.15

In addition, the section presents copies of the correlation plots of the fit scenarios with
the default parameter sets that include the correlations as numbers (figs. C.9 to C.11).

𝜇 pair production fits
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C. Impact of beam polarisation on electroweak fits

Table C.2.: Absolute uncertainties of fits of the 𝜇+𝜇− final state with the default pa-
rameter set (table 7.6).

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

𝜎 𝑓
0/𝜎 𝑓 ,𝑆𝑀

0 |𝑍-pole 1 31 31 31 31 30
𝐴𝑒|𝑍-pole 0.2136 8 8 25 − −
𝐴𝜇|𝑍-pole 0.2028 9 8 10 − −
𝜖𝜇|𝑍-pole 0.0158 14 14 16 − −
𝐴𝜇

𝐹𝐵|𝑍-pole 0.0384 − − − 5 2.4
𝑘0|𝑍-pole 0.0747 20 20 22 21 9
Δ𝑘|𝑍-pole 0.0006 21 20 23 − −
𝜎 𝑓

0/𝜎 𝑓 ,𝑆𝑀
0 |250GeV 1 31 31 31 31 30

𝐴𝑒|250GeV 0.1125 8 8 26 − −
𝐴𝜇|250GeV 0.0322 6 6 7 − −
𝜖𝜇|250GeV 1.4260 10 10 11 − −
𝐴𝜇

𝐹𝐵|250GeV 0.5375 − − − 4 1.8
𝑘0|250GeV 0.0003 14 13 15 14 6
Δ𝑘|250GeV 0.0003 16 15 18 − −
𝐿 [ab−1] 2 | 10 60 60 60 60 300
𝒫−

𝑒− 0.8 18 18 20 − −
𝒫+

𝑒− 0.8 17 16 20 − −
𝒫0

𝑒− 0.0 21 − − 25 25
𝒫−

𝑒+ 0.3 7 7 − − −
𝒫+

𝑒+ 0.3 7 7 − − −
𝒫0

𝑒+ 0.0 15 − 25 25 25
Δ𝑐 0.0 0.19 0.18 0.20 0.20 0.09
Δ𝑤 0.0 0.4 0.4 0.5 0.5 0.22
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Table C.3.: Absolute uncertainties of fits of the 𝜇+𝜇− final state with fixed luminosity
and otherwise default parameters.

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

𝜎 𝑓
0/𝜎 𝑓 ,𝑆𝑀

0 |𝑍-pole 1 7 7 9 6 2.8
𝐴𝑒|𝑍-pole 0.2136 8 8 25 − −
𝐴𝜇|𝑍-pole 0.2028 9 8 10 − −
𝜖𝜇|𝑍-pole 0.0158 14 14 16 − −
𝐴𝜇

𝐹𝐵|𝑍-pole 0.0384 − − − 5 2.4
𝑘0|𝑍-pole 0.0747 20 20 22 21 9
Δ𝑘|𝑍-pole 0.0006 21 20 23 − −
𝜎 𝑓

0/𝜎 𝑓 ,𝑆𝑀
0 |250GeV 1 6 6 6 5 2.4

𝐴𝑒|250GeV 0.1125 8 8 26 − −
𝐴𝜇|250GeV 0.0322 6 6 7 − −
𝜖𝜇|250GeV 1.4260 10 10 11 − −
𝐴𝜇

𝐹𝐵|250GeV 0.5375 − − − 4 1.8
𝑘0|250GeV 0.0003 14 13 15 14 6
Δ𝑘|250GeV 0.0003 16 15 18 − −
𝐿 [ab−1] 2 | 10 0 0 0 0 0
𝒫−

𝑒− 0.8 18 18 20 − −
𝒫+

𝑒− 0.8 17 16 20 − −
𝒫0

𝑒− 0.0 21 − − 25 25
𝒫−

𝑒+ 0.3 7 7 − − −
𝒫+

𝑒+ 0.3 7 7 − − −
𝒫0

𝑒+ 0.0 15 − 25 25 25
Δ𝑐 0.0 0.19 0.18 0.20 0.20 0.09
Δ𝑤 0.0 0.4 0.4 0.5 0.5 0.22

a-40
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TableC.4.:Absolute uncertainties of fits of the𝜇+𝜇− final statewith fixedpolarisations
and otherwise default parameters.

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

𝜎 𝑓
0/𝜎 𝑓 ,𝑆𝑀

0 |𝑍-pole 1 31 31 31 31 30
𝐴𝑒|𝑍-pole 0.2136 6 6 7 − −
𝐴𝜇|𝑍-pole 0.2028 8 8 9 − −
𝜖𝜇|𝑍-pole 0.0158 14 13 15 − −
𝐴𝜇

𝐹𝐵|𝑍-pole 0.0384 − − − 5 2.4
𝑘0|𝑍-pole 0.0747 20 20 22 21 9
Δ𝑘|𝑍-pole 0.0006 21 20 23 − −
𝜎 𝑓

0/𝜎 𝑓 ,𝑆𝑀
0 |250GeV 1 31 30 31 31 30

𝐴𝑒|250GeV 0.1125 6 6 7 − −
𝐴𝜇|250GeV 0.0322 6 6 7 − −
𝜖𝜇|250GeV 1.4260 10 10 11 − −
𝐴𝜇

𝐹𝐵|250GeV 0.5375 − − − 4 1.8
𝑘0|250GeV 0.0003 14 13 15 14 6
Δ𝑘|250GeV 0.0003 16 15 18 − −
𝐿 [ab−1] 2 | 10 60 60 60 60 300
𝒫−

𝑒− 0.8 0 0 0 − −
𝒫+

𝑒− 0.8 0 0 0 − −
𝒫0

𝑒− 0.0 0 − − 0 0
𝒫−

𝑒+ 0.3 0 0 − − −
𝒫+

𝑒+ 0.3 0 0 − − −
𝒫0

𝑒+ 0.0 0 − 0 0 0
Δ𝑐 0.0 0.19 0.18 0.20 0.20 0.09
Δ𝑤 0.0 0.4 0.4 0.5 0.5 0.22
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Table C.5.:Absolute uncertainties of fits of the 𝜇+𝜇− final statewith fixed 𝜇 acceptance
and otherwise default parameters.

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

𝜎 𝑓
0/𝜎 𝑓 ,𝑆𝑀

0 |𝑍-pole 1 31 31 31 31 30
𝐴𝑒|𝑍-pole 0.2136 8 8 25 − −
𝐴𝜇|𝑍-pole 0.2028 9 8 10 − −
𝜖𝜇|𝑍-pole 0.0158 14 14 16 − −
𝐴𝜇

𝐹𝐵|𝑍-pole 0.0384 − − − 5 2.4
𝑘0|𝑍-pole 0.0747 18 17 19 18 8
Δ𝑘|𝑍-pole 0.0006 21 20 23 − −
𝜎 𝑓

0/𝜎 𝑓 ,𝑆𝑀
0 |250GeV 1 31 31 31 31 30

𝐴𝑒|250GeV 0.1125 8 8 26 − −
𝐴𝜇|250GeV 0.0322 6 6 7 − −
𝜖𝜇|250GeV 1.4260 10 10 11 − −
𝐴𝜇

𝐹𝐵|250GeV 0.5375 − − − 4 1.8
𝑘0|250GeV 0.0003 14 13 15 14 6
Δ𝑘|250GeV 0.0003 16 15 18 − −
𝐿 [ab−1] 2 | 10 60 60 60 60 300
𝒫−

𝑒− 0.8 18 18 20 − −
𝒫+

𝑒− 0.8 17 16 20 − −
𝒫0

𝑒− 0.0 21 − − 25 25
𝒫−

𝑒+ 0.3 7 7 − − −
𝒫+

𝑒+ 0.3 7 7 − − −
𝒫0

𝑒+ 0.0 15 − 25 25 25
Δ𝑐 0.0 0 0 0 0 0
Δ𝑤 0.0 0 0 0 0 0
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Figure C.9.: Same as fig. 7.17 (fit to 𝜇 pair production), with explicit numbers in each
correlation field. (a) (0, 0), (b) (80, 0), (c) (80, 30), and (d) (80/0, 30/0).
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Figure C.9.: (cont.)

a-44



C. Impact of beam polarisation on electroweak fits

Semileptonic 𝑊 pair production fits

Table C.6.: Absolute uncertainties of fits of the 𝜇𝜈𝑞𝑞 final state with the default pa-
rameter set (table 7.6).

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

Δ𝑔𝑍
1 0 9 9 10 13 6

Δ𝜅𝛾 0 13 12 14 16 8
Δ𝜆𝛾 0 15 14 16 18 8
𝜎0/𝜎𝑆𝑀

0 (𝑊−) 1 33 33 40 50 50
𝜎0/𝜎𝑆𝑀

0 (𝑊+) 1 33 33 40 50 50
𝐿 [ab−1] 2 | 10 60 60 60 60 300
𝒫−

𝑒− 0.8 19 20 20 − −
𝒫+

𝑒− 0.8 5 5 4 − −
𝒫0

𝑒− 0.0 15 − − 25 25
𝒫−

𝑒+ 0.3 6 6 − − −
𝒫+

𝑒+ 0.3 7 7 − − −
𝒫0

𝑒+ 0.0 13 − 25 25 25
Δ𝑐 0.0 0.5 0.5 0.6 0.6 0.25
Δ𝑤 0.0 1.0 1.0 1.1 1.1 0.5
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Appendix

Table C.7.: Absolute uncertainties of fits of the 𝜇𝜈𝑞𝑞 final state with fixed luminosity
and otherwise default parameters.

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

Δ𝑔𝑍
1 0 9 9 10 13 6

Δ𝜅𝛾 0 13 12 14 16 8
Δ𝜆𝛾 0 15 14 16 18 8
𝜎0/𝜎𝑆𝑀

0 (𝑊−) 1 13 14 28 40 35
𝜎0/𝜎𝑆𝑀

0 (𝑊+) 1 13 14 28 40 35
𝐿 [ab−1] 2 | 10 0 0 0 0 0
𝒫−

𝑒− 0.8 19 20 20 − −
𝒫+

𝑒− 0.8 5 5 4 − −
𝒫0

𝑒− 0.0 15 − − 25 25
𝒫−

𝑒+ 0.3 6 6 − − −
𝒫+

𝑒+ 0.3 7 7 − − −
𝒫0

𝑒+ 0.0 13 − 25 25 25
Δ𝑐 0.0 0.5 0.5 0.6 0.6 0.25
Δ𝑤 0.0 1.0 1.0 1.1 1.1 0.5
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C. Impact of beam polarisation on electroweak fits

Table C.8.:Absolute uncertainties of fits of the 𝜇𝜈𝑞𝑞 final state with fixed polarisations
and otherwise default parameters.

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

Δ𝑔𝑍
1 0 9 9 10 13 6

Δ𝜅𝛾 0 12 12 14 15 7
Δ𝜆𝛾 0 15 14 16 18 8
𝜎0/𝜎𝑆𝑀

0 (𝑊−) 1 31 31 31 31 30
𝜎0/𝜎𝑆𝑀

0 (𝑊+) 1 31 31 31 31 30
𝐿 [ab−1] 2 | 10 60 60 60 60 300
𝒫−

𝑒− 0.8 0 0 0 − −
𝒫+

𝑒− 0.8 0 0 0 − −
𝒫0

𝑒− 0.0 0 − − 0 0
𝒫−

𝑒+ 0.3 0 0 − − −
𝒫+

𝑒+ 0.3 0 0 − − −
𝒫0

𝑒+ 0.0 0 − 0 0 0
Δ𝑐 0.0 0.5 0.5 0.6 0.6 0.25
Δ𝑤 0.0 1.0 1.0 1.1 1.1 0.5
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Table C.9.:Absolute uncertainties of fits of the 𝜇𝜈𝑞𝑞 final state with fixed 𝜇 acceptance
and otherwise default parameters.

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

Δ𝑔𝑍
1 0 9 9 10 13 6

Δ𝜅𝛾 0 12 12 14 16 8
Δ𝜆𝛾 0 15 14 16 18 8
𝜎0/𝜎𝑆𝑀

0 (𝑊−) 1 33 33 40 50 50
𝜎0/𝜎𝑆𝑀

0 (𝑊+) 1 33 33 40 50 50
𝐿 [ab−1] 2 | 10 60 60 60 60 300
𝒫−

𝑒− 0.8 19 20 20 − −
𝒫+

𝑒− 0.8 5 5 4 − −
𝒫0

𝑒− 0.0 15 − − 25 25
𝒫−

𝑒+ 0.3 6 6 − − −
𝒫+

𝑒+ 0.3 7 7 − − −
𝒫0

𝑒+ 0.0 13 − 25 25 25
Δ𝑐 0.0 0 0 0 0 0
Δ𝑤 0.0 0 0 0 0 0
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C. Impact of beam polarisation on electroweak fits

Table C.10.: Absolute uncertainties of fits of the 𝜇𝜈𝑞𝑞 final state with fixed total cross
sections and otherwise default parameters.

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

Δ𝑔𝑍
1 0 9 9 10 13 6

Δ𝜅𝛾 0 12 12 14 15 7
Δ𝜆𝛾 0 15 14 16 18 8
𝐿 [ab−1] 2 | 10 23 24 40 50 230
𝒫−

𝑒− 0.8 18 19 19 − −
𝒫+

𝑒− 0.8 4 4 4 − −
𝒫0

𝑒− 0.0 15 − − 21 21
𝒫−

𝑒+ 0.3 6 6 − − −
𝒫+

𝑒+ 0.3 7 7 − − −
𝒫0

𝑒+ 0.0 13 − 20 21 21
Δ𝑐 0.0 0.5 0.5 0.5 0.5 0.24
Δ𝑤 0.0 1.0 1.0 1.1 1.1 0.5
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Table C.11.: Absolute uncertainties of fits of the 𝜇𝜈𝑞𝑞 final state with free left-right
asymmetry and otherwise default parameters.

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

Δ𝑔𝑍
1 0 21 20 25 40 18

Δ𝜅𝛾 0 60 60 70 110 50
Δ𝜆𝛾 0 15 15 17 19 9
𝐴𝐿𝑅(𝑊−) 0.9816 15 15 18 30 14
𝐴𝐿𝑅(𝑊+) 0.9816 15 15 18 30 14
𝜎0/𝜎𝑆𝑀

0 (𝑊−) 1 33 34 40 50 50
𝜎0/𝜎𝑆𝑀

0 (𝑊+) 1 33 34 40 50 50
𝐿 [ab−1] 2 | 10 60 60 60 60 300
𝒫−

𝑒− 0.8 19 20 20 − −
𝒫+

𝑒− 0.8 5 5 4 − −
𝒫0

𝑒− 0.0 15 − − 25 25
𝒫−

𝑒+ 0.3 6 6 − − −
𝒫+

𝑒+ 0.3 7 7 − − −
𝒫0

𝑒+ 0.0 13 − 25 25 25
Δ𝑐 0.0 0.5 0.5 0.6 0.6 0.25
Δ𝑤 0.0 1.0 1.0 1.1 1.1 0.5
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C. Impact of beam polarisation on electroweak fits
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Figure C.10.: Same as fig. 7.22 (fit to semileptonic 𝑊 pair production), with ex-
plicit numbers in each correlation field. (a) (0, 0), (b) (80, 0), (c) (80, 30), and (d)
(80/0, 30/0).
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Figure C.10.: (cont.)
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C. Impact of beam polarisation on electroweak fits

Combined fits

0

Table C.12.: Absolute uncertainties of the combined fits with the default parameter
set (table 7.6).

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

𝜎 𝑓
0/𝜎 𝑓 ,𝑆𝑀

0 |𝑍-pole 1 31 31 31 31 30
𝐴𝑒|𝑍-pole 0.2136 8 8 25 − −
𝐴𝜇|𝑍-pole 0.2028 8 8 9 − −
𝜖𝜇|𝑍-pole 0.0158 14 14 15 − −
𝐴𝜇

𝐹𝐵|𝑍-pole 0.0384 − − − 5 2.4
𝑘0|𝑍-pole 0.0747 20 19 21 21 9
Δ𝑘|𝑍-pole 0.0006 21 20 23 − −
𝜎 𝑓

0/𝜎 𝑓 ,𝑆𝑀
0 |250GeV 1 30 30 31 30 30

𝐴𝑒|250GeV 0.1125 8 7 26 − −
𝐴𝜇|250GeV 0.0322 6 6 7 − −
𝜖𝜇|250GeV 1.4260 10 10 11 − −
𝐴𝜇

𝐹𝐵|250GeV 0.5375 − − − 4 1.8
𝑘0|250GeV 0.0003 14 13 15 14 6
Δ𝑘|250GeV 0.0003 16 15 18 − −
Δ𝑔𝑍

1 0 9 9 10 13 6
Δ𝜅𝛾 0 12 12 14 16 8
Δ𝜆𝛾 0 15 14 16 18 8
𝜎0/𝜎𝑆𝑀

0 (𝑊−) 1 32 33 40 50 50
𝜎0/𝜎𝑆𝑀

0 (𝑊+) 1 32 33 40 50 50
𝐿 [ab−1] 2 | 10 60 60 60 60 300
𝒫−

𝑒− 0.8 17 18 20 − −
𝒫+

𝑒− 0.8 4 4 4 − −
𝒫0

𝑒− 0.0 14 − − 25 25
𝒫−

𝑒+ 0.3 6 6 − − −
𝒫+

𝑒+ 0.3 7 7 − − −
𝒫0

𝑒+ 0.0 11 − 25 25 25
Δ𝑐 0.0 0.18 0.17 0.19 0.19 0.08
Δ𝑤 0.0 0.4 0.4 0.4 0.4 0.20
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Appendix

Table C.13.: Absolute uncertainties of the combined fits with fixed luminosity and
otherwise default parameters.

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

𝜎 𝑓
0/𝜎 𝑓 ,𝑆𝑀

0 |𝑍-pole 1 7 7 9 6 2.8
𝐴𝑒|𝑍-pole 0.2136 8 8 25 − −
𝐴𝜇|𝑍-pole 0.2028 8 8 9 − −
𝜖𝜇|𝑍-pole 0.0158 14 14 15 − −
𝐴𝜇

𝐹𝐵|𝑍-pole 0.0384 − − − 5 2.4
𝑘0|𝑍-pole 0.0747 20 19 21 21 9
Δ𝑘|𝑍-pole 0.0006 21 20 23 − −
𝜎 𝑓

0/𝜎 𝑓 ,𝑆𝑀
0 |250GeV 1 6 6 6 5 2.4

𝐴𝑒|250GeV 0.1125 8 7 26 − −
𝐴𝜇|250GeV 0.0322 6 6 7 − −
𝜖𝜇|250GeV 1.4260 10 10 11 − −
𝐴𝜇

𝐹𝐵|250GeV 0.5375 − − − 4 1.8
𝑘0|250GeV 0.0003 14 13 15 14 6
Δ𝑘|250GeV 0.0003 16 15 18 − −
Δ𝑔𝑍

1 0 9 9 10 13 6
Δ𝜅𝛾 0 12 12 14 16 8
Δ𝜆𝛾 0 15 14 16 18 8
𝜎0/𝜎𝑆𝑀

0 (𝑊−) 1 12 13 28 40 35
𝜎0/𝜎𝑆𝑀

0 (𝑊+) 1 12 13 28 40 35
𝐿 [ab−1] 2 | 10 0 0 0 0 0
𝒫−

𝑒− 0.8 17 18 20 − −
𝒫+

𝑒− 0.8 4 4 4 − −
𝒫0

𝑒− 0.0 14 − − 25 25
𝒫−

𝑒+ 0.3 6 6 − − −
𝒫+

𝑒+ 0.3 7 7 − − −
𝒫0

𝑒+ 0.0 11 − 25 25 25
Δ𝑐 0.0 0.18 0.17 0.19 0.19 0.08
Δ𝑤 0.0 0.4 0.4 0.4 0.4 0.20
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C. Impact of beam polarisation on electroweak fits

Table C.14.: Absolute uncertainties of the combined fits with fixed polarisations and
otherwise default parameters.

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

𝜎 𝑓
0/𝜎 𝑓 ,𝑆𝑀

0 |𝑍-pole 1 30 30 31 31 30
𝐴𝑒|𝑍-pole 0.2136 6 6 7 − −
𝐴𝜇|𝑍-pole 0.2028 8 8 9 − −
𝜖𝜇|𝑍-pole 0.0158 14 13 15 − −
𝐴𝜇

𝐹𝐵|𝑍-pole 0.0384 − − − 5 2.4
𝑘0|𝑍-pole 0.0747 20 19 21 21 9
Δ𝑘|𝑍-pole 0.0006 21 20 23 − −
𝜎 𝑓

0/𝜎 𝑓 ,𝑆𝑀
0 |250GeV 1 30 30 30 30 30

𝐴𝑒|250GeV 0.1125 6 6 7 − −
𝐴𝜇|250GeV 0.0322 6 6 7 − −
𝜖𝜇|250GeV 1.4260 10 10 11 − −
𝐴𝜇

𝐹𝐵|250GeV 0.5375 − − − 4 1.8
𝑘0|250GeV 0.0003 14 13 15 14 6
Δ𝑘|250GeV 0.0003 16 15 18 − −
Δ𝑔𝑍

1 0 9 9 10 13 6
Δ𝜅𝛾 0 12 12 13 15 7
Δ𝜆𝛾 0 15 14 16 18 8
𝜎0/𝜎𝑆𝑀

0 (𝑊−) 1 30 31 31 31 30
𝜎0/𝜎𝑆𝑀

0 (𝑊+) 1 30 31 31 31 30
𝐿 [ab−1] 2 | 10 60 60 60 60 300
𝒫−

𝑒− 0.8 0 0 0 − −
𝒫+

𝑒− 0.8 0 0 0 − −
𝒫0

𝑒− 0.0 0 − − 0 0
𝒫−

𝑒+ 0.3 0 0 − − −
𝒫+

𝑒+ 0.3 0 0 − − −
𝒫0

𝑒+ 0.0 0 − 0 0 0
Δ𝑐 0.0 0.18 0.17 0.19 0.19 0.08
Δ𝑤 0.0 0.4 0.4 0.4 0.4 0.20
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Table C.15.: Absolute uncertainties of the combined fits with fixed 𝜇 acceptance and
otherwise default parameters.

Abs. uncertainties [10−4]

Parameter True value (80/0, 30/0)
2 ab−1

(80, 30)
2 ab−1

(80, 0)
2 ab−1

(0, 0)
2 ab−1

(0, 0)
10 ab−1

𝜎 𝑓
0/𝜎 𝑓 ,𝑆𝑀

0 |𝑍-pole 1 31 31 31 31 30
𝐴𝑒|𝑍-pole 0.2136 8 8 25 − −
𝐴𝜇|𝑍-pole 0.2028 8 8 9 − −
𝜖𝜇|𝑍-pole 0.0158 14 14 15 − −
𝐴𝜇

𝐹𝐵|𝑍-pole 0.0384 − − − 5 2.4
𝑘0|𝑍-pole 0.0747 18 17 19 18 8
Δ𝑘|𝑍-pole 0.0006 21 20 23 − −
𝜎 𝑓

0/𝜎 𝑓 ,𝑆𝑀
0 |250GeV 1 30 30 31 30 30

𝐴𝑒|250GeV 0.1125 8 7 26 − −
𝐴𝜇|250GeV 0.0322 6 6 7 − −
𝜖𝜇|250GeV 1.4260 10 10 11 − −
𝐴𝜇

𝐹𝐵|250GeV 0.5375 − − − 4 1.8
𝑘0|250GeV 0.0003 14 13 15 14 6
Δ𝑘|250GeV 0.0003 16 15 18 − −
Δ𝑔𝑍

1 0 9 9 10 13 6
Δ𝜅𝛾 0 12 12 14 16 8
Δ𝜆𝛾 0 15 14 16 18 8
𝜎0/𝜎𝑆𝑀

0 (𝑊−) 1 32 33 40 50 50
𝜎0/𝜎𝑆𝑀

0 (𝑊+) 1 32 32 40 50 50
𝐿 [ab−1] 2 | 10 60 60 60 60 300
𝒫−

𝑒− 0.8 17 18 20 − −
𝒫+

𝑒− 0.8 4 4 4 − −
𝒫0

𝑒− 0.0 14 − − 25 25
𝒫−

𝑒+ 0.3 6 6 − − −
𝒫+

𝑒+ 0.3 7 7 − − −
𝒫0

𝑒+ 0.0 11 − 25 25 25
Δ𝑐 0.0 0 0 0 0 0
Δ𝑤 0.0 0 0 0 0 0

a-56
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Figure C.11.: Same as fig. 7.28 (fit to semileptonic 𝑊 pair production), with ex-
plicit numbers in each correlation field. (a) (0, 0), (b) (80, 0), (c) (80, 30), and (d)
(80/0, 30/0).
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Figure C.11.: (cont.)
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C.8. Polarisation measurement with one polarised beam (Details)

The fit on semileptonic 𝑊 pair production for the scenario with only 𝑒− polarisation ob-
serves an 𝒫−

𝑒− precision which is a factor 5 worse than the 𝒫+
𝑒− precision ((80, 0) scenario

in fig. 7.21c). This begs the question of how the polarisation measurement works in a
scenario with only one polarised beam.

Problem definition and notation

In the case of only one polarised beam, the collider measures two datasets (one with
positive-sign 𝑒− polarisation and one with negative-sign 𝑒− polarisation). This supplies
two event number measurement, one for each dataset. These two event number mea-
surements alone are not sufficient to determine the three involved polarisations (two
signed ones for 𝑒−, one unpolarised for 𝑒+).

Fortunately, a measurement of the differential distribution allows a template fit which
determines the chiral contributions in each dataset. This leads to 2𝑁𝜒 measurements,
where 𝑁𝜒 is the number of allowed initial states in the considered process. The discus-
sions herewill assume𝑁𝜒 = 2, and that the two allowed initial states are 𝑒−

𝐿 𝑒+
𝑅 (shortened

“LR” or just “L”) and 𝑒−
𝐿 𝑒+

𝑅 (shortened “RL” or just “R”).

Now the measurement consists of four event numbers {𝑁+
𝐿 , 𝑁+

𝑅 , 𝑁−
𝐿 , 𝑁−

𝑅}. In real-
ity the measured numbers contain confusion between the LR and the RL initial states,
which will typically affect the initial state with lower cross-section more significantly.
The calculation here will ignore this correlation to achieve a first estimate of the polar-
isation uncertainty, and a discussion of the impact of those correlations follows after-
wards.

The calculation will further always assume fast helicity reversal, which is necessary
for any polarisation measurement from collision data [139]. This means that the two
datasets share the same positron polarisation.

The calculation of the uncertainties is rather arduous and lengthy. For this reason, the
initial calculation will use a simplified notation, and reintroduce the physical notation
afterwards. The simplified notation uses {𝑥, 𝑦} for the two signed polarisations and 𝑧
the polarisation for other beam. It combines the chiral cross-sections and the overall
normalisation by using the overall normalisation 𝑁 with a chiral asymmetry 𝐴. Like in
the 𝑊 pair production fit, the calculation assumes a free 𝑁 and a fixed 𝐴. Finally, the
measurement results are the four event numbers {𝑗, 𝑘, 𝑙, 𝑚}.
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𝑗 =
1
8(1 − 𝑥)(1 + 𝑧)(1 + 𝐴)𝑁

𝑘 =
1
8(1 + 𝑥)(1 − 𝑧)(1 − 𝐴)𝑁

𝑙 =
1
8(1 − 𝑦)(1 + 𝑧)(1 + 𝐴)𝑁

𝑚 =
1
8(1 + 𝑦)(1 − 𝑧)(1 − 𝐴)𝑁

(C.24)

The 𝑗 and 𝑙 are the measured LR event numbers, and the 𝑘 and 𝑚 are the measured
RL event numbers.

Generic calculation for two datasets with a shared polarisation

The problem is now a set of four equations (eq. (C.24)) with four measured values
{𝑗, 𝑘, 𝑙, 𝑚} and four free parameters {𝑥, 𝑦, 𝑧, 𝑁}. This problem has a unique solution.

𝑥 =
𝑗(𝑚 − 2𝑘) + 𝑘𝑙

𝑘𝑙 − 𝑗𝑚 (C.25)

𝑦 =
𝑚(𝑗 − 2𝑙) + 𝑘𝑙

𝑗𝑚 − 𝑘𝑙 (C.26)

𝑧 =
(1 − 𝐴)(𝑙 − 𝑗) + (1 + 𝐴)(𝑚 − 𝑘)
(1 − 𝐴)(𝑙 − 𝑗) − (1 + 𝐴)(𝑚 − 𝑘) (C.27)

𝑁 = 2(𝑗𝑚 − 𝑘𝑙)
(1 + 𝐴)(𝑘 − 𝑚) − (1 − 𝐴)(𝑗 − 𝑙)

(1 − 𝐴2)(𝑗 − 𝑙)(𝑘 − 𝑚)
(C.28)

This solution is the starting point for the calculation of the uncertainties on {𝑥, 𝑦, 𝑧}.
The discussion here will ignore uncertainties on 𝑁.

A calculation of the uncertainties on {𝑥, 𝑦, 𝑧} requires a calculation the derivativeswith
respect to the measured quantities {𝑗, 𝑘, 𝑙, 𝑚}. For the interpretation of the results it is
convenient to express these derivatives again in terms of the physically interesting pa-
rameter {𝑥, 𝑦, 𝑧, 𝑁(, 𝐴)}.

d𝑥
d𝑗 =

−2𝑘𝑙(𝑘 − 𝑚)
(𝑗𝑚 − 𝑘𝑙)2 =

−4(1 + 𝑥)(1 − 𝑦)
(1 + 𝐴)𝑁(1 + 𝑧)(𝑥 − 𝑦)

d𝑥
d𝑘 =

2𝑗𝑚(𝑗 − 𝑙)
(𝑗𝑚 − 𝑘𝑙)2 =

−4(1 − 𝑥)(1 + 𝑦)
(1 − 𝐴)𝑁(1 − 𝑧)(𝑥 − 𝑦)

d𝑥
d𝑙 =

2𝑗𝑘(𝑘 − 𝑚)
(𝑗𝑚 − 𝑘𝑙)2 =

4(1 − 𝑥)(1 + 𝑥)
(1 + 𝐴)𝑁(1 + 𝑧)(𝑥 − 𝑦)

d𝑥
d𝑚 =

−2𝑗𝑘(𝑗 − 𝑙)
(𝑗𝑚 − 𝑘𝑙)2 =

4(1 − 𝑥)(1 + 𝑥)
(1 − 𝐴)𝑁(1 − 𝑧)(𝑥 − 𝑦)

(C.29)
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d𝑦
d𝑗 =

−2𝑙𝑚(𝑘 − 𝑚)
(𝑗𝑚 − 𝑘𝑙)2 =

−4(1 + 𝑦)(1 − 𝑦)
(1 + 𝐴)𝑁(1 + 𝑧)(𝑥 − 𝑦)

d𝑦
d𝑘 =

2𝑙𝑚(𝑗 − 𝑙)
(𝑗𝑚 − 𝑘𝑙)2 =

−4(1 + 𝑦)(1 − 𝑦)
(1 − 𝐴)𝑁(1 − 𝑧)(𝑥 − 𝑦)

d𝑦
d𝑙 =

2𝑗𝑚(𝑘 − 𝑚)
(𝑗𝑚 − 𝑘𝑙)2 =

4(1 − 𝑥)(1 + 𝑦)
(1 + 𝐴)𝑁(1 + 𝑧)(𝑥 − 𝑦)

d𝑦
d𝑚 =

−2𝑘𝑙(𝑗 − 𝑙)
(𝑗𝑚 − 𝑘𝑙)2 =

4(1 + 𝑥)(1 − 𝑦)
(1 − 𝐴)𝑁(1 − 𝑧)(𝑥 − 𝑦)

(C.30)

d𝑧
d𝑗 =

−2(1 − 𝐴)(1 + 𝐴)(𝑘 − 𝑚)
((1 + 𝐴)(𝑘 − 𝑚) − (1 − 𝐴)(𝑗 − 𝑙))2 =

−4(1 − 𝑧)
(1 + 𝐴)𝑁(𝑥 − 𝑦)

d𝑧
d𝑘 =

2(1 − 𝐴)(1 + 𝐴)(𝑗 − 𝑙)
((1 + 𝐴)(𝑘 − 𝑚) − (1 − 𝐴)(𝑗 − 𝑙))2 =

−4(1 + 𝑧)
(1 − 𝐴)𝑁(𝑥 − 𝑦)

d𝑧
d𝑙 =

2(1 − 𝐴)(1 + 𝐴)(𝑘 − 𝑚)
((1 + 𝐴)(𝑘 − 𝑚) − (1 − 𝐴)(𝑗 − 𝑙))2 =

4(1 − 𝑧)
(1 + 𝐴)𝑁(𝑥 − 𝑦)

d𝑧
d𝑚 =

−2(1 − 𝐴)(1 + 𝐴)(𝑗 − 𝑙)
((1 + 𝐴)(𝑘 − 𝑚) − (1 − 𝐴)(𝑗 − 𝑙))2 =

4(1 + 𝑧)
(1 − 𝐴)𝑁(𝑥 − 𝑦)

(C.31)

The individual contributions to the Gaussian uncertainty take the usual simple form
(𝑑𝛼/𝑑𝛽)2(Δ𝛼)2, and since the measured values follow a Poisson distribution (Δ𝛼 = √𝛼)
the contributions each have the form (𝑑𝛼/𝑑𝛽)2𝛼.
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(
d𝑥
d𝑗 )

2
𝑗 = (

−4(1 + 𝑥)(1 − 𝑦)
(1 + 𝐴)𝑁(1 + 𝑧)(𝑥 − 𝑦))

2 1
8(1 − 𝑥)(1 + 𝑧)(1 + 𝐴)𝑁

= 2
1
𝑁

1 − 𝑥2

(𝑥 − 𝑦)2
(1 + 𝑥)(1 − 𝑦)2

(1 + 𝑧)(1 + 𝐴)

(
d𝑥
d𝑘)

2
𝑘 = (

−4(1 − 𝑥)(1 + 𝑦)
(1 − 𝐴)𝑁(1 − 𝑧)(𝑥 − 𝑦))

2 1
8(1 + 𝑥)(1 − 𝑧)(1 − 𝐴)𝑁

= 2
1
𝑁

1 − 𝑥2

(𝑥 − 𝑦)2
(1 − 𝑥)(1 + 𝑦)2

(1 − 𝑧)(1 − 𝐴)

(
d𝑥
d𝑙 )

2
𝑙 = (

4(1 − 𝑥)(1 + 𝑥)
(1 + 𝐴)𝑁(1 + 𝑧)(𝑥 − 𝑦))

2 1
8(1 − 𝑦)(1 + 𝑧)(1 + 𝐴)𝑁

= 2
1
𝑁

1 − 𝑥2

(𝑥 − 𝑦)2
(1 − 𝑥)(1 + 𝑥)(1 − 𝑦)

(1 + 𝑧)(1 + 𝐴)

(
d𝑥
d𝑚)

2
𝑚 = (

4(1 − 𝑥)(1 + 𝑥)
(1 − 𝐴)𝑁(1 − 𝑧)(𝑥 − 𝑦))

2 1
8(1 + 𝑦)(1 − 𝑧)(1 − 𝐴)𝑁

= 2
1
𝑁

1 − 𝑥2

(𝑥 − 𝑦)2
(1 − 𝑥)(1 + 𝑥)(1 + 𝑦)

(1 − 𝑧)(1 − 𝐴)

(C.32)

(
d𝑦
d𝑗 )

2
𝑗 = (

−4(1 + 𝑦)(1 − 𝑦)
(1 + 𝐴)𝑁(1 + 𝑧)(𝑥 − 𝑦))

2 1
8(1 − 𝑥)(1 + 𝑧)(1 + 𝐴)𝑁

= 2
1
𝑁

1 − 𝑦2

(𝑥 − 𝑦)2
(1 + 𝑦)(1 − 𝑦)(1 − 𝑥)

(1 + 𝑧)(1 + 𝐴)

(
d𝑦
d𝑘)

2
𝑘 = (

−4(1 + 𝑦)(1 − 𝑦)
(1 − 𝐴)𝑁(1 − 𝑧)(𝑥 − 𝑦))

2 1
8(1 + 𝑥)(1 − 𝑧)(1 − 𝐴)𝑁

= 2
1
𝑁

1 − 𝑦2

(𝑥 − 𝑦)2
(1 + 𝑦)(1 − 𝑦)(1 + 𝑥)

(1 − 𝑧)(1 − 𝐴)

(
d𝑦
d𝑙 )

2
𝑙 = (

4(1 − 𝑥)(1 + 𝑦)
(1 + 𝐴)𝑁(1 + 𝑧)(𝑥 − 𝑦))

2 1
8(1 − 𝑦)(1 + 𝑧)(1 + 𝐴)𝑁

= 2
1
𝑁

1 − 𝑦2

(𝑥 − 𝑦)2
(1 − 𝑥)2(1 + 𝑦)
(1 + 𝑧)(1 + 𝐴)

(
d𝑦
d𝑚)

2
𝑚 = (

4(1 + 𝑥)(1 − 𝑦)
(1 − 𝐴)𝑁(1 − 𝑧)(𝑥 − 𝑦))

2 1
8(1 + 𝑦)(1 − 𝑧)(1 − 𝐴)𝑁

= 2
1
𝑁

1 − 𝑦2

(𝑥 − 𝑦)2
(1 + 𝑥)2(1 − 𝑦)
(1 − 𝑧)(1 − 𝐴)

(C.33)
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(
d𝑧
d𝑗 )

2
𝑗 = (

−4(1 − 𝑧)
(1 + 𝐴)𝑁(𝑥 − 𝑦))

2 1
8(1 − 𝑥)(1 + 𝑧)(1 + 𝐴)𝑁

= 2
1
𝑁

1 − 𝑧2

(𝑥 − 𝑦)2
(1 − 𝑧)(1 − 𝑥)

1 + 𝐴

(
d𝑧
d𝑘)

2
𝑘 = (

−4(1 + 𝑧)
(1 − 𝐴)𝑁(𝑥 − 𝑦))

2 1
8(1 + 𝑥)(1 − 𝑧)(1 − 𝐴)𝑁

= 2
1
𝑁

1 − 𝑧2

(𝑥 − 𝑦)2
(1 + 𝑧)(1 + 𝑥)

1 − 𝐴

(
d𝑧
d𝑙 )

2
𝑙 = (

4(1 − 𝑧)
(1 + 𝐴)𝑁(𝑥 − 𝑦))

2 1
8(1 − 𝑦)(1 + 𝑧)(1 + 𝐴)𝑁

= 2
1
𝑁

1 − 𝑧2

(𝑥 − 𝑦)2
(1 − 𝑧)(1 − 𝑦)

1 + 𝐴

(
d𝑧
d𝑚)

2
𝑚 = (

4(1 + 𝑧)
(1 − 𝐴)𝑁(𝑥 − 𝑦))

2 1
8(1 + 𝑦)(1 − 𝑧)(1 − 𝐴)𝑁

= 2
1
𝑁

1 − 𝑧2

(𝑥 − 𝑦)2
(1 + 𝑧)(1 + 𝑦)

1 − 𝐴

(C.34)

The individual contributions sum up to the squared uncertainty, ignoring any corre-
lations amongst {𝑗, 𝑘, 𝑙, 𝑚}.

(
d𝑥
d𝑗 )

2
⋅ 𝑗 + (

d𝑥
d𝑘)

2
⋅ 𝑘 + (

d𝑥
d𝑙 )

2
⋅ 𝑙 + (

d𝑥
d𝑚)

2
⋅ 𝑚

= 2
1
𝑁

1 − 𝑥2

(𝑥 − 𝑦)2 (
(1 + 𝑥)(1 − 𝑦)2)
(1 + 𝑧)(1 + 𝐴) +

(1 − 𝑥)(1 + 𝑦)2

(1 − 𝑧)(1 − 𝐴) +
(1 − 𝑥)(1 + 𝑥)(1 − 𝑦)

(1 + 𝑧)(1 + 𝐴) +
(1 − 𝑥)(1 + 𝑥)(1 + 𝑦)

(1 − 𝑧)(1 − 𝐴) )

= 2
1
𝑁

1 − 𝑥2

(𝑥 − 𝑦)2 (
(1 + 𝑥)(1 − 𝑦)(2 − 𝑥 − 𝑦)

(1 + 𝐴)(1 + 𝑧) +
(1 − 𝑥)(1 + 𝑦)(2 + 𝑥 + 𝑦)

(1 − 𝐴)(1 − 𝑧) )

(C.35)

(
d𝑦
d𝑗 )

2
⋅ 𝑗 + (

d𝑦
d𝑘)

2
⋅ 𝑘 + (

d𝑦
d𝑙 )

2
⋅ 𝑙 + (

d𝑦
d𝑚)

2
⋅ 𝑚

= 2
1
𝑁

1 − 𝑦2

(𝑥 − 𝑦)2 (
(1 + 𝑦)(1 − 𝑦)(1 − 𝑥)

(1 + 𝑧)(1 + 𝐴) +
(1 + 𝑦)(1 − 𝑦)(1 + 𝑥)

(1 − 𝑧)(1 − 𝐴) +
(1 − 𝑥)2(1 + 𝑦)
(1 + 𝑧)(1 + 𝐴) +

(1 + 𝑥)2(1 − 𝑦)
(1 − 𝑧)(1 − 𝐴) )

= 2
1
𝑁

1 − 𝑦2

(𝑥 − 𝑦)2 (
(1 − 𝑥)(1 + 𝑦)(2 − 𝑥 − 𝑦)

(1 + 𝐴)(1 + 𝑧) +
(1 + 𝑥)(1 − 𝑦)(2 + 𝑥 + 𝑦)

(1 − 𝐴)(1 − 𝑧) )

(C.36)
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(
d𝑧
d𝑗 )

2
⋅ 𝑗 + (

d𝑧
d𝑘)

2
⋅ 𝑘 + (

d𝑧
d𝑙 )

2
⋅ 𝑙 + (

d𝑧
d𝑚)

2
⋅ 𝑚

= 2
1
𝑁

1 − 𝑧2

(𝑥 − 𝑦)2 (
(1 − 𝑧)(1 − 𝑥)

1 + 𝐴 +
(1 + 𝑧)(1 + 𝑥)

1 − 𝐴 +
(1 − 𝑧)(1 − 𝑦)

1 + 𝐴 +
(1 + 𝑧)(1 + 𝑦)

1 − 𝐴 )

= 2
1
𝑁

1 − 𝑧2

(𝑥 − 𝑦)2 (
(1 − 𝑧)(2 − 𝑥 − 𝑦)

1 + 𝐴 +
(1 + 𝑧)(2 + 𝑥 + 𝑦)

1 − 𝐴 )

(C.37)

And finally, the uncertainties emerge from the square-root of the summed contribu-
tion.

Δ𝑥 =
1

√𝑁
√2√ 1 − 𝑥2

(𝑥 − 𝑦)2
√(1 + 𝑥)(1 − 𝑦)(2 − 𝑥 − 𝑦)

(1 + 𝐴)(1 + 𝑧) +
(1 − 𝑥)(1 + 𝑦)(2 + 𝑥 + 𝑦)

(1 − 𝐴)(1 − 𝑧) (C.38)

Δ𝑦 =
1

√𝑁
√2√ 1 − 𝑦2

(𝑥 − 𝑦)2
√(1 − 𝑥)(1 + 𝑦)(2 − 𝑥 − 𝑦)

(1 + 𝐴)(1 + 𝑧) +
(1 + 𝑥)(1 − 𝑦)(2 + 𝑥 + 𝑦)

(1 − 𝐴)(1 − 𝑧) (C.39)

Δ𝑧 =
1

√𝑁
√2√ 1 − 𝑧2

(𝑥 − 𝑦)2
√(1 − 𝑧)(2 − 𝑥 − 𝑦)

1 + 𝐴 +
(1 + 𝑧)(2 + 𝑥 + 𝑦)

1 − 𝐴 (C.40)

The uncertainties are symmetric between 𝑥 and 𝑦 since the initial problem formulation
(eq. (C.24)) is symmetric under them as well.

Reintroducing physical nomenclature

With the more lengthy steps of the calculation out of the way, a more physical nomen-
clature reintroduces meaning into the equations. The polarisation {𝑥, 𝑦, 𝑧} are identified
with the two signed 𝑒− polarisation and the one 𝑒+ polarisation.

𝑥 = 𝒫+
𝑒− (> 0)

𝑦 = 𝒫−
𝑒− (< 0)

𝑧 = 𝒫0
𝑒+ (= 0)

(C.41)

The normalisation𝑁 identifieswith the unpolarised total event number and the asym-
metry 𝐴 is the left-right asymmetry (compare eq. (7.13)).

𝑁 = 𝑁0 = 𝐿𝜎0

𝐴 = 𝐴𝐿𝑅
(C.42)

This gives an exact meaning to the measured event numbers {𝑗, 𝑘, 𝑙, 𝑚}, since the po-
larisation signs define the dataset and the asymmetry definition defines the chirality of
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each event number.

𝑗 = 𝑁+
𝐿

𝑘 = 𝑁+
𝑅

𝑙 = 𝑁−
𝐿

𝑚 = 𝑁−
𝑅

(C.43)

This physical nomenclature (eqs. (C.41) to (C.43)) yields the physically meaningful
versions of problem and solution (eqs. (C.24) and (C.25)).

The measured quantities are the four event numbers.

𝑁+
𝐿 =

1
8 (1 − 𝒫+

𝑒−) (1 + 𝒫0
𝑒+) (1 + 𝐴𝐿𝑅) 𝑁0

𝑁+
𝑅 =

1
8 (1 + 𝒫+

𝑒−) (1 − 𝒫0
𝑒+) (1 − 𝐴𝐿𝑅) 𝑁0

𝑁−
𝐿 =

1
8 (1 − 𝒫−

𝑒−) (1 + 𝒫0
𝑒+) (1 + 𝐴𝐿𝑅) 𝑁0

𝑁−
𝑅 =

1
8 (1 + 𝒫−

𝑒−) (1 − 𝒫0
𝑒+) (1 − 𝐴𝐿𝑅) 𝑁0

(C.44)

The four equations transform into four equations on the polarisations and the unpo-
larised total event number.

𝒫+
𝑒− =

𝑁+
𝐿 (𝑁−

𝑅 − 2𝑁+
𝑅) + 𝑁+

𝑅𝑁−
𝐿

𝑁+
𝑅𝑁−

𝐿 − 𝑁+
𝐿 𝑁−

𝑅
(C.45)

𝒫−
𝑒− =

𝑁−
𝑅 (𝑁+

𝐿 − 2𝑁−
𝐿 ) + 𝑁+

𝑅𝑁−
𝐿

𝑁+
𝐿 𝑁−

𝑅 − 𝑁+
𝑅𝑁−

𝐿
(C.46)

𝒫0
𝑒+ =

(1 − 𝐴𝐿𝑅) (𝑁−
𝐿 − 𝑁+

𝐿 ) + (1 + 𝐴𝐿𝑅) (𝑁−
𝑅 − 𝑁+

𝑅)
(1 − 𝐴𝐿𝑅) (𝑁−

𝐿 − 𝑁+
𝐿 ) − (1 + 𝐴𝐿𝑅) (𝑁−

𝑅 − 𝑁+
𝑅)

(C.47)

𝑁0 = 2 (𝑁+
𝐿 𝑁−

𝑅 − 𝑁+
𝑅𝑁−

𝐿 )
(1 + 𝐴𝐿𝑅) (𝑁+

𝑅 − 𝑁−
𝑅) − (1 − 𝐴𝐿𝑅) (𝑁+

𝐿 − 𝑁−
𝐿 )

(1 − 𝐴2
𝐿𝑅) (𝑁+

𝐿 − 𝑁−
𝐿 ) (𝑁+

𝑅 − 𝑁−
𝑅)

(C.48)

Simple error propagation yields the uncertainty in the polarisations assuming that
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the measured event numbers are uncorrelated.

Δ𝒫+
𝑒− =

1
√𝑁0

√2
√
√√
⎷

1 − (𝒫+
𝑒−)2

(𝒫+
𝑒− − 𝒫−

𝑒−)2 ×

√
(1 + 𝒫+

𝑒−) (1 − 𝒫−
𝑒−) (2 − 𝒫+

𝑒− − 𝒫−
𝑒−)

(1 + 𝐴𝐿𝑅) (1 + 𝒫0
𝑒+)

+
(1 − 𝒫+

𝑒−) (1 + 𝒫−
𝑒−) (2 + 𝒫+

𝑒− + 𝒫−
𝑒−)

(1 − 𝐴𝐿𝑅) (1 − 𝒫0
𝑒+)

(C.49)

Δ𝒫−
𝑒− =

1
√𝑁0

√2
√
√√
⎷

1 − (𝒫−
𝑒−)2

(𝒫+
𝑒− − 𝒫−

𝑒−)2 ×

√
(1 − 𝒫+

𝑒−) (1 + 𝒫−
𝑒−) (2 − 𝒫+

𝑒− − 𝒫−
𝑒−)

(1 + 𝐴𝐿𝑅) (1 + 𝒫0
𝑒+)

+
(1 + 𝒫+

𝑒−) (1 − 𝒫−
𝑒−) (2 + 𝒫+

𝑒− + 𝒫−
𝑒−)

(1 − 𝐴𝐿𝑅) (1 − 𝒫0
𝑒+)

(C.50)

Δ𝒫0
𝑒+ =

1
√𝑁0

√2

√
√
√
⎷

1 − (𝒫0
𝑒+)2

(𝒫+
𝑒− − 𝒫−

𝑒−)2
√(1 − 𝒫0

𝑒+) (2 − 𝒫+
𝑒− − 𝒫−

𝑒−)
1 + 𝐴𝐿𝑅

+
(1 + 𝒫0

𝑒+) (2 + 𝒫+
𝑒− + 𝒫−

𝑒−)
1 − 𝐴𝐿𝑅

(C.51)

The uncertainties diverge to infinity if the two electron polarisations are exactly the
same (including the sign). This demonstrates that ameasurement requires two datasets
with different polarisation values, and the more different the smaller the uncertainty.
Another notable conclusion is that a polarisationmeasurement is possible even if 𝐴𝐿𝑅 =
0 as long as the shape measurement can distinguish the initial states.

Uncertainty in scenario with one polarised beam

The scenarios in the fit are a step more specific. They assume that the two beam polar-
isation settings of the 𝑒− beam are the result of fast helicity reversal, which means that
they have approximately the same central value 𝒫𝑒−. In addition, the polarisation of the
positron beam has a central values of zero.

𝒫+
𝑒− ≈ 𝒫𝑒− > 0

𝒫−
𝑒− ≈ −𝒫𝑒− < 0

𝒫0
𝑒+ ≈ 0

(C.52)

These assumptions simplify the more general form for the polarisation uncertainties
(eq. (C.49)).
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Δ𝒫+
𝑒− =

1
√𝑁0

√2
√
√√
⎷

1 − 𝒫2
𝑒−

(2𝒫𝑒−)2
√2

(1 + 𝒫𝑒−) (1 + 𝒫𝑒−)
1 + 𝐴𝐿𝑅

+ 2
(1 − 𝒫𝑒−) (1 − 𝒫𝑒−)

1 − 𝐴𝐿𝑅

=
1

√𝑁0

√1 − 𝒫2
𝑒−

𝒫2
𝑒−

√(1 + 𝒫𝑒−)2

1 + 𝐴𝐿𝑅
+

(1 − 𝒫𝑒−)2

1 − 𝐴𝐿𝑅

(C.53)

Δ𝒫−
𝑒− =

1
√𝑁0

√2
√
√√
⎷

1 − 𝒫2
𝑒−

(2𝒫𝑒−)2
√2

(1 − 𝒫𝑒−) (1 − 𝒫𝑒−)
1 + 𝐴𝐿𝑅

+ 2
(1 + 𝒫𝑒−) (1 + 𝒫𝑒−)

1 − 𝐴𝐿𝑅

=
1

√𝑁0

√1 − 𝒫2
𝑒−

𝒫2
𝑒−

√(1 − 𝒫𝑒−)2

1 + 𝐴𝐿𝑅
+

(1 + 𝒫𝑒−)2

1 − 𝐴𝐿𝑅

(C.54)

Δ𝒫0
𝑒+ =

1
√𝑁0

√2√
1

(2𝒫𝑒−)2
√ 2

1 + 𝐴𝐿𝑅
+

2
1 − 𝐴𝐿𝑅

=
1

√𝑁0

1
∣𝒫𝑒− ∣

√ 1
1 + 𝐴𝐿𝑅

+
1

1 − 𝐴𝐿𝑅

(C.55)

The formulas for the electron polarisation now give a direct hint for why there can
be a stark difference between the uncertainties of the two 𝑒− polarisation: the large
(1 + 𝒫𝑒−)2 can get suppressed or enhanced by the asymmetry factor (1 ± 𝐴𝐿𝑅). If the
asymmetry is large, one of the two 𝑒− polarisations will see a much higher uncertainty
than the other, depending on the sign of 𝐴𝐿𝑅. Since 𝐴𝐿𝑅 tends to be positive in the SM,
the 𝑒+ polarisation will usually get a lower uncertainty.

Specific case in semileptonic W pair production fit

The specific case of the fit to semileptonic 𝑊 pair production uses an 𝑒− polarisation of
80% and finds an asymmetry of approximately 0.98 for the process. Entering these two
values already demonstrates the difference in the polarisation uncertainties for the two
𝑒− polarisation settings.
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Δ𝒫+
𝑒− =

1
√𝑁0

√0.36
0.64

√3.24
1.98 +

0.04
0.02 ≈

1
√𝑁0

⋅ 0.316 ⋅ 1.907 ≈
1

√𝑁0
⋅ 0.60

Δ𝒫−
𝑒− =

1
√𝑁0

√0.36
0.64

√0.04
1.98 +

3.24
0.02 ≈

1
√𝑁0

⋅ 0.316 ⋅ 12.729 ≈
1

√𝑁0
⋅ 4.02

Δ𝒫0
𝑒+ =

1
√𝑁0

1
0.8

√ 1
1.98 +

1
0.02 ≈

1
√𝑁0

⋅ 1.25 ⋅ 7.107 ≈
1

√𝑁0
⋅ 8.88

(C.56)

The uncertainty on 𝒫−
𝑒− is around 6.7 times larger than the uncertainty on 𝒫+

𝑒−.

With the values of the luminosity 𝐿 = 2 ab−1 and the unpolarised cross-section 𝜎0 =
18952.6fb, the calculation makes a specific prediction of the expected polarisation un-
certainties.

Δ𝒫+
𝑒− ≈ 9.75 ⋅ 10−5 ⇒ ∣

Δ𝒫+
𝑒−

𝒫+
𝑒−

∣ ≈ 1.22 ⋅ 10−4

Δ𝒫−
𝑒− ≈ 6.53 ⋅ 10−4 ⇒ ∣

Δ𝒫−
𝑒−

𝒫−
𝑒−

∣ ≈ 8.16 ⋅ 10−4

Δ𝒫0
𝑒+ ≈ 1.44 ⋅ 10−3

(C.57)

Compared to the fit result of these uncertainties (bars of (80, 0) scenario in fig. 7.21c),
this prediction is a significant underestimation. In particular, the fit does not show any
improvement of the 𝒫−

𝑒− or 𝒫0
𝑒+ measurement beyond the polarimeter constraints. The

discussion below will show that the failure of this estimate comes from the assumption
that it is possible to measure each chiral event number in an undisturbed way.

Understanding the uncertainties for highly polarised beam

The reason for why the predicted precisions are much better than the ones in the fit
becomes clear when looking at the case of highly polarised beams. In this discussion,
this case is roughly fulfilled when the 𝑒− is at or above 90%. The conclusion of the
discussion are qualitative, so that a somewhat lower polarisation does not affect the
results.

The high level of polarisation affects the ratios of event numbers between the datasets.
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𝑁−
𝐿

𝑁+
𝐿

=
1 − 𝒫−

𝑒−

1 − 𝒫+
𝑒−

≳ 10

𝑁+
𝑅

𝑁−
𝑅

=
1 + 𝒫+

𝑒−

1 + 𝒫−
𝑒−

≳ 10

⇒ 𝑁+
𝑅𝑁−

𝐿 ≫ 𝑁+
𝐿 𝑁−

𝑅

(C.58)

This allows an approximation of the formulas for the 𝑒− polarisations (eq. (C.45))
that gives direct insight into what drives the uncertainties.

𝒫+
𝑒− =

𝑁+
𝐿 (𝑁−

𝑅 − 2𝑁+
𝑅) + 𝑁+

𝑅𝑁−
𝐿
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𝑅𝑁−

𝐿 − 𝑁+
𝐿 𝑁−

𝑅
=
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𝐿 𝑁−

𝑅
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− 2𝑁+
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+ 1
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𝐿

𝑁+
𝐿 𝑁−

𝑅 − 𝑁+
𝑅𝑁−

𝐿
=

𝑁+
𝐿 𝑁−

𝑅
𝑁+

𝑅𝑁−
𝐿

− 2𝑁−
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− 1
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(C.59)

For the positive-sign polarisation 𝒫+
𝑒−, the ratio of left-handed events 𝑁+

𝐿 /𝑁−
𝐿 in the

two datasets determines the precision. For the negative-sign polarisation 𝒫+
𝑒−, the ratio

of right-handed events 𝑁−
𝑅/𝑁+

𝑅 in the two datasets determines the precision. This result
made no assumption about the left-right asymmetry, and only relies on a high degree
of polarisation.

A high asymmetry value will cause two things to happen. First, it will lead to a signif-
icantly higher number of signal events for one of the initial states (here LR), which then
leads to a significantly better precision for one of the 𝑒− polarisations (here 𝒫+

𝑒−). This
is the already reflected in the previous formulas for the 𝑒− uncertainties (eqs. (C.53)
and (C.54)).

The second consequence of a high asymmetry value is that it will be much harder
to distinguish the initial state with the lower cross-section from the high-cross-section
background. Here, a measurement of the number of LR events is unproblematic due
to the high cross-section, which allows a precise 𝒫+

𝑒− measurement. Meanwhile, a mea-
surement of the RL events suffers a huge background of LR events, which will boosts
the statistical uncertainty on 𝑁+

𝑅 and 𝑁−
𝑅 . The result is that the measurement of 𝒫−

𝑒−

becomes strongly disturbed. This explains why the fit does not see an improvement on
the 𝒫−

𝑒− precision beyond the polarimeter constraint.
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Similarly to the 𝑒− polarisation, the formula for the 𝑒+ polarisation (eq. (C.45)) has a
structure of ratios that allows an approximation.

𝒫0
𝑒+ =

(1 − 𝐴𝐿𝑅) (𝑁−
𝐿 − 𝑁+

𝐿 ) + (1 + 𝐴𝐿𝑅) (𝑁−
𝑅 − 𝑁+

𝑅)
(1 − 𝐴𝐿𝑅) (𝑁−

𝐿 − 𝑁+
𝐿 ) − (1 + 𝐴𝐿𝑅) (𝑁−

𝑅 − 𝑁+
𝑅)

=
1 + 1+𝐴𝐿𝑅

1−𝐴𝐿𝑅

𝑁−
𝑅−𝑁+

𝑅
𝑁−

𝐿 −𝑁+
𝐿

1 − 1+𝐴𝐿𝑅
1−𝐴𝐿𝑅

𝑁−
𝑅−𝑁+

𝑅
𝑁−

𝐿 −𝑁+
𝐿

(C.60)

The relevant ratio is (𝑁−
𝑅 − 𝑁+

𝑅) / (𝑁−
𝐿 − 𝑁+

𝐿 ), and each of the differences in the ratio
contains one clearly dominant number (eq. (C.58))

𝑁−
𝑅 − 𝑁+

𝑅
𝑁−

𝐿 − 𝑁+
𝐿

≈ −
𝑁−

𝑅
𝑁+

𝐿
(C.61)

The positron polarisation therefore requires precision on both LR and RL events. In
the case of high asymmetry - no matter which sign of the asymmetry - the positron
polarisation precision will suffer from the high background on one of the two event
numbers.

C.9. Unpolarised polarisation measurement in W pair production

A polarised collider measures the polarisations from the differences between polarised
datasets. Unpolarised colliders can not apply this method, as they only have one unpo-
larised dataset available. The tested unpolarised case in the electroweakfit demonstrates
that polarimeter fully determines the polarisation uncertainty (section 7.7.1).

This picture changes when the fit assumes the cross-section of 𝑊 pair production to
be known. In that case, the unpolarised collider shows an improvement of the polari-
sation precision wrt. the pure polarimeter constraints. The core of this behaviour lies
in the measurement of the differential distributions, in the sensitivities of the two al-
lowed initial states to the different parameters, and in the additional constraint from the
polarimeters.

To see this, one can start with the assumption that the differential distribution

𝑁𝑏𝑖𝑛 = 𝑁𝑏𝑖𝑛
𝐿 + 𝑁𝑏𝑖𝑛

𝑅 = 𝑁𝐿 ∗ 𝑓 𝑏𝑖𝑛
𝐿 + 𝑁𝑅 ∗ 𝑓 𝑏𝑖𝑛

𝑅 (C.62)

separates the two contributions sufficiently to essentially treat it as an independentmea-
surement of 𝑁𝐿 and 𝑁𝑅 (𝐿/𝑅 = initial electron chirality). The general formula for 𝑁𝐿/𝑅
is

𝑁𝐿 = 𝐿
1 − 𝒫𝑒−

2
1 + 𝒫𝑒+

2
1 + 𝐴 + Δ𝐴

2 (1 + Δ𝛼) 𝜎0 ,

𝑁𝑅 = 𝐿
1 + 𝒫𝑒−

2
1 − 𝒫𝑒+

2
1 − 𝐴 − Δ𝐴

2 (1 + Δ𝛼) 𝜎0 ,
(C.63)
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where 𝛿𝛼 = 𝛿𝜎0/𝜎0 is the deviation of the relative unpolarised cross-section. From this
follows the single parameter sensitivity from 𝑁𝐿 and 𝑁𝑅 on the individual parameters
(ignoring any correlation):

𝑆𝑝𝑎𝑟
𝐿/𝑅 =

1

√𝑁𝐿/𝑅

∣
𝑑 𝑁𝐿/𝑅
𝑑 𝑝𝑎𝑟 ∣ Δ𝑝𝑎𝑟 . (C.64)

Equating 𝑆𝑝𝑎𝑟
𝐿/𝑅 = 1 yields the most optimistic achievable precision Δ𝑝𝑎𝑟 from 𝑁𝐿/𝑅:

𝑆𝒫𝑒+,𝒫𝑒−,Δ𝛼
𝐿 ≈ 3.3 ⋅ 10−4 , 𝑆Δ𝐴

𝐿 ≈ 6.5 ⋅ 10−4 ,

𝑆𝒫𝑒+,𝒫𝑒−,Α
𝑅 ≈ 3.4 ⋅ 10−3 , 𝑆Δ𝐴

𝑅 ≈ 6.2 ⋅ 10−5 .
(C.65)

Any free directions in the parameter space, meaning simultaneous changes of param-
eters that leave 𝑁𝐿 and 𝑁𝑅 constant, will mean no sensitivity and no constraint from
the fit in that direction. The polarisation factors leave one approximately free direction
𝒫𝑒− = 𝒫𝑒+:

(1 ∓ 𝒫𝑒−) (1 ± 𝒫𝑒+) = 1 ∓ 𝒫𝑒− ± 𝒫𝑒+ − 𝒫𝑒−𝒫𝑒+ . (C.66)

𝑊𝑊 data can only constrain this direction if it is sensitive to 𝒫2. Remembering that
minimal polarisation uncertainties come from polarimeter constraints of 2.5 ⋅ 10−3, the
sensitivity to the quadratic polarisation term would need to be in the order of 10−6, far
below 𝑊𝑊 sensitivities. The polarimeters therefore determine precision in otherwise
free 𝒫𝑒− = 𝒫𝑒+ direction.

The constraint in that direction is the best possible precision achievable from 𝑊𝑊.
Since this is one specific combined direction, the two polarimeters set a combined con-
straint.

𝜒2
𝒫-constraint = (

𝒫𝑒− − 0
Δ𝒫𝑒−

)
2

+ (
𝒫𝑒+ − 0
Δ𝒫𝑒+

)
2 𝒫𝑒−=𝒫𝑒+=𝒫

=
⎛⎜⎜⎜
⎝

1
1

Δ𝒫𝑒−
+ 1

Δ𝒫𝑒+

𝒫
⎞⎟⎟⎟
⎠

2

Δ𝒫𝑒−=Δ𝒫𝑒+=Δ𝒫
= ⎛⎜

⎝

𝒫

Δ𝒫/√2
⎞⎟
⎠

2
(C.67)

This reflects the behaviour that is visible in the fit with a fixed cross-section and lumi-
nosity (fig. 7.21c).

To understand what happens in the case of a free cross-section parameter, one can
turn back to individual best sensitivities for 2 ab−1. These show that there is no signifi-
cant sensitivity to quadratic 𝒫 terms in 𝑁𝐿, and almost no sensitivity to 𝒫 terms in 𝑁𝑅.
Consequently, one can fix the corresponding 𝒫 term to zero, simplifying the formulas
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for 𝑁𝐿 and 𝑁𝑅.

𝑁𝐿 ≈ 𝐿
1 − 𝒫𝑒− + 𝒫𝑒+

4
1 + 𝐴 + Δ𝐴

2 (1 + Δ𝛼) 𝜎0

𝑁𝑅 ≈ 𝐿
1
4

1 − 𝐴 − Δ𝐴
2 (1 + Δ𝛼) 𝜎0

(C.68)

In addition, the unpolarised cross-section sensitivity comes almost exclusively from 𝑁𝐿,
and the asymmetry sensitivity almost exclusively from 𝑁𝑅, simplifying again the for-
mulas.

𝑁𝐿 ≈ 𝐿
1 − 𝒫𝑒− + 𝒫𝑒+

4 (1 + Δ𝛼) 𝜎0

𝑁𝑅 ≈ 𝐿
1
4

1 − 𝐴 − Δ𝐴
2 𝜎0

(C.69)

This opens a new (almost) free direction in the 3D parameter plane of the polarisations
and unpolarised cross-section

𝒫𝑒− = 𝒫𝑒+ +
Δ𝛼

1 + Δ𝛼 ≈ 𝒫𝑒+ + Δ𝛼 (C.70)

leading back to an independence of the two polarisations. When the unpolarised cross-
section is a free parameter, the 𝑊𝑊 process does not yield any additional polarisation
constraint in any direction. Only the individual polarimeter precisions determine the
polarisation precisions in this case, which reflects the results of the fit. Having the
asymmetry as free parameter does not significantly influence polarisation measure-
ment, since it is almost exclusively measured in 𝑁𝑅.
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