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Abstract 

Abstract 

Climate research is often constrained by a limited amount of available data, for instance sparse and 

incomplete point observations. Yet it aims to understand and predict climate variability at large temporal 

and spatial scales. In those cases, the information provided by those limited and incomplete data sets needs 

to be interpreted, interpolated and extrapolated by the application of suitable mathematical methods, which 

are also required to maintain the physical consistency of the data.  

The question of Climate Reconstructions arises, for example, in the research area of the past climates. 

Reconstructing past climate variability, can provide us with a better perspective to better understand climate 

dynamics, for instance, extreme heat waves and sea level rise dynamics. The information about past 

climates is encoded in indirect indicators, such as tree-rings or ice cores, which are sparse and incomplete 

records. Other important area is the extrapolation and extension of a network of point observations into a 

complete spatial field to provide a more accurate picture of particular events. Another area of application 

of climate field reconstructions (CFRs) is the extrapolation of station data to construct a spatially resolved, 

complete, and physically consistent, field, to reveal the general spatial and temporal variability of particular 

climate variables. Climate field reconstruction is usually obtained by linearly mapping the relationship 

between the local information - proxy records or station data to targeted climate variables based on 

regression theory. Yet, climate dynamics is nonlinear which compromises the application of a simple linear 

relationship between the climate variability at different locations. Most standard methods based on linear 

regression theory used so far might not be able to capture these nonlinearities very well. One usual 

deficiency of classical linear reconstruction methods is the underestimation of temporal and spatial 

variability. This deficiency originates in the tendency of all linear methods ‘to regress to the mean’ when 

the information available is sparse or uncertain: the mean value is the less risky estimation when information 

is insufficient.  

The main objective in this thesis is to test whether the newly emerging machine learning methods, for 

example, artificial neural networks, could be helpful for capturing a higher degree of underlying linear and 

nonlinear relationships between target climate variables and proxy, thereby providing better climate field 

reconstructions. Moreover, their advantage of feature extraction and selection of relevant predictors might 

be helpful for selecting spatial-temporal features of climate variables to achieve better reconstructions, 

qualifying machine-learning methods as superior characteristics in mitigating these shortcomings of 
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traditional reconstruction methods. This dissertation, therefore, has a mostly methodological character, 

aiming at the design of modern machine learning methods to the classical problem of climate field 

reconstructions.  

Three different machine-learning methods for climate field reconstructions were tested in our study. Two 

of these methods were applied for the reconstruction of the temperature of the past centuries based on proxy 

data. Each of these two methods - Long-Short-Term Memory Network and Echo State Network - implement 

machine-learning algorithms that capture the serial correlation structure in the data. This characteristic sets 

them apart of most other climate reconstruction methods. The third method, Generative Adversarial 

Networks, was applied to the reconstruction of the spatial sea-level field in the North Sea based on point 

coastal observations. 

Our results indicate in general that when we choose machine-learning methods with appropriate structures 

and hyper-parameters, comparable or better climate reconstructions can be achieved compared to traditional 

Climate field reconstruction (CFR) methods. However, they do not lead to a clear-cut improvement of some 

of the deficiencies of classical reconstruction methods, such as the underestimation of variability. 
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Zusammenfassung 

Zusammenfassung 

Die Klimaforschung wird oft durch eine begrenzte Menge verfügbarer Daten eingeschränkt, beispielsweise 

durch spärliche und unvollständige Punktbeobachtungen. Dennoch zielt sie darauf ab, die Klimavariabilität 

auf großen zeitlichen und räumlichen Skalen zu verstehen und vorherzusagen. Die Informationen dieser 

begrenzten und unvollständigen Datensätze müssen durch die Anwendung geeigneter mathematischer 

Methoden interpretiert, interpoliert und extrapoliert werden, was auch erforderlich ist, um die physikalische 

Konsistenz der Daten zu erhalten. 

Die Frage nach Klimarekonstruktionen stellt sich beispielsweise im Forschungsbereich der vergangenen 

Klimate. Die Rekonstruktion vergangener Klimaschwankungen kann uns eine bessere Perspektive bieten, 

um die Klimadynamik besser zu verstehen, beispielsweise extreme Hitzewellen und die Dynamik des 

Meeresspiegelanstiegs. Die Informationen über vergangene Klimazonen sind in indirekten Indikatoren wie 

Baumringen oder Eisbohrkernen kodiert, die spärliche und unvollständige Aufzeichnungen sind. Ein 

weiterer wichtiger Bereich ist die Extrapolation und Erweiterung eines Netzwerks von Punktbeobachtungen 

in ein vollständiges räumliches Feld, um ein genaueres Bild bestimmter Ereignisse zu liefern. Ein weiteres 

Anwendungsgebiet von Klimafeldrekonstruktionen (CFRs) ist die Extrapolation von Stationsdaten zur 

Konstruktion eines räumlich aufgelösten, vollständigen und physikalisch konsistenten Feldes, um die 

allgemeine räumliche und zeitliche Variabilität bestimmter Klimavariablen aufzudecken. Im Allgemeinen 

wird die Klimafeldrekonstruktion normalerweise durch lineares Abbilden der Beziehung zwischen den 

lokalen Informationen – Proxy-Aufzeichnungen oder Stationsdaten – auf Zielklimavariablen basierend auf 

der Regressionstheorie erhalten. Die Klimadynamik ist jedoch chaotisch, was die Anwendung einer 

einfachen linearen Beziehung zwischen der Klimavariabilität an verschiedenen Orten beeinträchtigt. Die 

meisten bisher verwendeten Standardmethoden, die auf der linearen Regressionstheorie basieren, sind 

möglicherweise nicht in der Lage, diese Nichtlinearitäten sehr gut zu erfassen. Ein üblicher Mangel 

klassischer linearer Rekonstruktionsverfahren ist die Unterschätzung der zeitlichen und räumlichen 

Variabilität. Dieser Mangel ergibt sich aus der Tendenz aller linearen Methoden, bei spärlichen oder 

unsicheren Informationen „auf den Mittelwert zu regressieren“: Der Mittelwert ist die weniger riskante 

Schätzung, wenn die Informationen unzureichend sind.  

Das Hauptziel dieser Arbeit ist es zu testen, ob die neu aufkommenden maschinellen Lernmethoden, zum 

Beispiel künstliche neuronale Netze, hilfreich sein könnten, um ein höheres Maß an zugrunde liegenden 
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linearen und nichtlinearen Beziehungen zwischen Zielklimavariablen und Proxy zu erfassen und dadurch 

ein besseres Klimafeld bereitzustellen Rekonstruktionen. Darüber hinaus könnte ihr Vorteil der 

Merkmalsextraktion und Auswahl relevanter Prädiktoren hilfreich sein, um räumlich-zeitliche Merkmale 

von Klimavariablen auszuwählen, um bessere Rekonstruktionen zu erzielen, und maschinelle 

Lernmethoden als überlegene Eigenschaften bei der Minderung dieser Mängel traditioneller 

Rekonstruktionsmethoden zu qualifizieren. Diese Dissertation hat daher einen überwiegend methodischen 

Charakter und zielt auf die Gestaltung moderner maschineller Lernmethoden auf das klassische Problem 

der Klimafeldrekonstruktion ab. 

In unserer Studie wurden drei verschiedene maschinelle Lernverfahren für Klimafeldrekonstruktionen 

getestet. Zwei dieser Methoden wurden für die Rekonstruktion der Temperatur vergangener Jahrhunderte 

auf der Grundlage von Proxydaten angewendet. Jede dieser beiden Methoden – Long-Short-Term Memory 

Network und Echo State Network – implementiert maschinelle Lernalgorithmen, die die serielle 

Korrelationsstruktur in den Daten erfassen. Diese Eigenschaft unterscheidet sie von den meisten anderen 

Methoden zur Klimarekonstruktion. Die dritte Methode, Generative Adversarial Networks, wurde auf die 

Rekonstruktion des räumlichen Meeresspiegelfeldes in der Nordsee basierend auf punktuellen 

Küstenbeobachtungen angewendet. 

Unsere Ergebnisse zeigen im Allgemeinen, dass bei der Wahl von maschinellen Lernmethoden mit 

geeigneten Hyperparametern vergleichbare oder bessere Klimarekonstruktionen im Vergleich zu 

herkömmlichen Methoden der Klimafeldrekonstruktion (CFR) erzielt werden können. Sie führen jedoch 

nicht zu einer eindeutigen Verbesserung einiger Mängel klassischer Rekonstruktionsmethoden, wie etwa 

der Unterschätzung der Variabilität. 

 



 

 

Table of Contents 

Abstract ......................................................................................................................................................... I 

Abstract ...................................................................................................................................................... I 

Zusammenfassung...................................................................................................................................... III 

Zusammenfassung ................................................................................................................................... III 

Chapter 1: Introduction ............................................................................................................................. 1 

Introduction .............................................................................................................................................. 1 

Chapter 2: Evaluation of statistical climate reconstruction methods .................................................. 11 

Evaluation of statistical climate reconstruction methods based on pseudoproxy experiments using 
linear and machine learning methods .................................................................................................... 11 

Summary ................................................................................................................................................. 11 

1 Introduction ......................................................................................................................................... 12 

2 Data and Methods ............................................................................................................................... 15 

2.1 Data ............................................................................................................................................... 15 

2.2 Methods ........................................................................................................................................ 17 

3 Results .................................................................................................................................................. 23 

3.1 North Atlantic-Europe CFRs .......................................................................................................... 24 

3.2 Northern Hemisphere CFRs .......................................................................................................... 26 

3.3 Spatially variability patterns of the reconstructed fields .............................................................. 28 

3.4 An alternative pseudo-proxy network .......................................................................................... 31 

3.5 Northern Hemisphere and AMV indices ....................................................................................... 32 

3.6 Probability distributions of reconstructed variables .................................................................... 35 

3.7 Alternative architectures of the Bi-LSTM method ........................................................................ 38 

4 Discussion ............................................................................................................................................. 38 

4.1 Nonlinear method performance ................................................................................................... 39 

4.2 Model and pseudoproxy network dependency ............................................................................ 40 

5 Conclusion ............................................................................................................................................ 41 

Chapter 3: Evaluation of the Bilinear Long-Short-Term-Memory and Echo State Network Methods

 .................................................................................................................................................................... 43 

Evaluation of the Bilinear Long-Short-Term-Memory and Echo State Network machine learning 
methods to reconstruct the Northern Hemisphere summer temperature ............................................ 43 

Summary ................................................................................................................................................. 43 

1 Introduction ......................................................................................................................................... 43 

2 Data and Method ................................................................................................................................. 47 

2.1 Data ............................................................................................................................................... 47 

2.2 Method.......................................................................................................................................... 49 



 

 

3 NH CFR experiments ............................................................................................................................ 55 

4 NH indices reconstructions .................................................................................................................. 58 

5 Additional metrics for derived NH mean indices ................................................................................. 61 

6 Discussion ............................................................................................................................................. 63 

6.1 Reconstruction performance based on Machine learning method .............................................. 63 

6.2 Method and climate model dependencies ................................................................................... 64 

7 Conclusion ............................................................................................................................................ 66 

Chapter 4: Reconstruction of the Basin-Wide Sea Level Variability in the North Sea ...................... 67 

Reconstruction of the Basin-Wide Sea Level Variability in the North Sea Using Coastal Data and 
Generative Adversarial Networks ........................................................................................................... 67 

Summary ................................................................................................................................................. 67 

1 Introduction ......................................................................................................................................... 67 

2 Methods ............................................................................................................................................... 69 

2.1 Data ............................................................................................................................................... 70 

2.2 GAN ............................................................................................................................................... 75 

2.3 Kalman Filter Approach ................................................................................................................. 81 

3 Experiments ......................................................................................................................................... 82 

3.1 Experiments in reduced area ........................................................................................................ 82 

3.2 Experiments in the entire North Sea ............................................................................................ 84 

4 Results .................................................................................................................................................. 86 

4.1 Sea-level reconstruction in idealized (reduced) areas .................................................................. 86 

4.2 Sea-level reconstruction over the entire North Sea ..................................................................... 89 

5 Discussion ............................................................................................................................................. 92 

6 Conclusion ............................................................................................................................................ 95 

Chapter 5: Conclusion and Outlook........................................................................................................ 96 

5.1 Conclusion ......................................................................................................................................... 96 

5.2 Outlook ........................................................................................................................................... 100 

Reference ................................................................................................................................................. 103 

References ............................................................................................................................................ 103 

List of Appendix ........................................................................................................................................... I 

Appendix 2A ............................................................................................................................................... I 

Appendix 2B ............................................................................................................................................... I 

Appendix 2C ............................................................................................................................................. III 

Appendix 3A ............................................................................................................................................. III 

Appendix 4A ............................................................................................................................................. IV 



  

 

Acknowledgements: ..................................................................................................................................... I 

List of publications: ..................................................................................................................................... I 

Eidesstattliche Versicherung | Declaration on Oath ................................................................................. I 

 





 Chapter 1: Introduction 

1 
 

Chapter 1: Introduction 
 

Introduction 

Climate reconstructions, for example, surface temperature or sea surface high field reconstructions, can 

help us to better understand past climate variability and its drivers. Several networks and international 

projects have aimed at reconstructing the climate of the past centuries and learn from the past. With these 

inferences/knowledge about past climatic information we could potentially better project the future (The 

Millennium project, 2006; PAGES 2k Consortium, 2013, 2017, 2019; PAGES Hydro2k Consortium, 2017). 

The reconstruction of past climates is based on the information provided by indirect local indicators of past 

environmental conditions (Mann et al., 2008; Sheldon and Tabor, 2009; Eiler, 2011; Luterbacher et al., 

2016). A typical, and rather well known, example are tree-ring data (Fritts, 1976; St. George, 2014; St. 

George and Esper, 2019). Trees tend to grow wider or denser rings when the environmental conditions are 

more favorable and thinner and produce less dense rings when these conditions are adverse. The 

environmental drivers of tree growth are in many cases temperature and/or precipitation during particular 

seasons in the year and geographical location (Cook et al., 1999; D’Arrigo et al., 2008; St. George, 2014). 

Living trees or fossil trees can be sampled (non-destructively) and the width of their growth rings can be 

measured. Additionally the year in which they were formed can be very precisely determined. Other type 

of proxy records, for instance, those derived from stalagmites, can be geochemically analyzed with respect 

to their isotopic composition (Tan et al., 2006; Baker et al., 2008; Fairchild and Treble, 2009; Wong and 

Breeker, 2015). This isotopic composition can also yield information about the amount of precipitation in 

one particular year or periods in the past.  

The way that this indirect information (tree-ring width) is translated into physical/meteorological variables 

is by statistically comparing the proxy record with a physical record of temperature (or precipitation) 

measured in a nearby station during a period of overlap, which is typically the 20th century (Esper et al., 

2002; St. George, 2014; Wilson et al., 2016; Anchukaitis et al., 2017). Thus, a type of correlation or 

regression between both records is established. This analysis allows first to identify which physical 

variables mainly determines the variability of the proxy record (temperature or precipitation), and it allows 

then to infer the value of the physical variable for periods in the past for which only the proxy record exists. 

These statistical methods are not only linear (for instance simple correlations), but comprise a more 

sophisticated statistical machinery, which hopefully may be more adequate to represent a possibly non-

linear relationship between proxy record and physical variable. For instance, the growth of trees may 
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optimally occur in a range of temperatures, and be therefore smaller for colder but also for warmer 

temperatures beyond this range. In this case, the link between proxy-record and temperature is not a simple 

proportionality constant (Speer, 2010).  

In addition, the variations of the proxy records (tree-ring growth) may be affected by other variables, not 

just the more common temperature and/or precipitation (Esper et al., 2002; Stoffel and Bollschweiler, 2008; 

Speer, 2010). The concentrations of nutrients in the soil, the impact of fire, of parasites and of the 

competition with other trees, all may influence the tree growth in a particular year or series of years. This 

impact is reflected in a deviation from the growth expected just from considering only the purely climatic 

drivers. It distorts a clean statistical identification of the signal of these climatic drivers and adds uncertainty 

to the estimation of past climate from the proxy records. 

These confounding, non-climatic, factors and their influence on the proxy record is denoted as ‘noise’.  It 

is easy to illustrate the impact of this noise in the estimation of past climate (von Storch et al., 2004; 

Christiansen and Ljungqvist, 2017) based, here as an example, on only one proxy record. A standard 

univariate linear regression model (Su et al., 2012) links the proxy record P as predictor with temperature 

T as predictand, widely used in dendroclimatology (Sheppard, 2010) is: 

𝑇(𝑡) = 𝑎0 + 𝑎1𝑃(𝑡) + 𝑛𝑜𝑖𝑠𝑒(𝑡)  (1.1) 

where a0 and a1 are the regression coefficients and t is time. The value of these parameters can be estimated 

by minimizing the variance of the noise term (least squares regression, LSR; Su et al., 2012), using data in 

an overlapping period. The LSR model assumes that the noise term is not correlated with the predictor, and 

therefore the variance of T must be smaller than the variance of a1P.  

Once the values of the parameters a0 and a1 are estimated as 𝑎0̂ and 𝑎1̂, the temperature in past times 𝑡′ can 

be reconstructed by: 

𝑇(𝑡′) = 𝑎0̂ + 𝑎1̂𝑃(𝑡′)  (1.2) 

This reconstruction method then leads to an underestimation of the reconstructed temperature.  

One problem with this simple linear regression model is that the conditions for LSR to applicable are not 

totally fulfilled, since in reality the noise term is indeed correlated with P. The noise term is actually a part 

of the proxy record P itself, as we have discussed before. A more correct statistical model, which is however, 

very seldom applied, consists of inverting the role of predictor and predictand: 

𝑃(𝑡) = 𝑏0 + 𝑏1𝑇(𝑡) + 𝑛𝑜𝑖𝑠𝑒(𝑡)  (1.3) 

This model better reflects the physical process that link temperature and proxy record, as temperature is 

actually the driver of the variations of tree growth (Boisvenue and Running, 2006), and not the other way 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020EA001618#ess21154-bib-0027
https://onlinelibrary.wiley.com/doi/full/10.1111/geb.12396#geb12396-bib-0007
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around. More relevant here is that the optimal estimated value of 𝑎1̂ and 𝑏1̂ can be shown not to be related 

by 

𝑏1̂ = 1 𝑎1̂⁄   (1.4) 

so that both regression models are indeed distinct and not just a simple reformulation. 

These type of caveats permeate other more complex models, giving rise to different biases in the estimation 

of past climate and temperature, which has already been recognized that many classical reconstruction 

methods present some extent underestimation of low frequency climatic variability, especially in large-

scale temperature reconstructions (von Storch et al., 2004; Bürger et al., 2006; Christiansen et al., 2009; 

Frank et al., 2010; Smerdon et al., 2011; Christiansen, 2011; Tingley et al., 2012; Wang et al., 2014; Evans 

et al., 2014). von Storch et al. (2004) and Christiansen (2011) demonstrated that some underestimation of 

climate reconstructions could also be attributed to the employed CFR methods, which indicates that the 

selection of methodologies might introduce additional uncertainties and biases. 

For instance, seven different reconstruction methods, including Principal Components Regression (PCR), 

Canonical Correlation Analysis (CCA), Regularized Expectation Maximization - RegEM Ridge 

(Schneider, 2001), RegEM truncated total least squares - TTLS (Mann et al,. 2009a) and so on, were 

employed by Christiansen et al. (2009) for reconstruction studies, they found that a general underestimation 

tendency appeared in the reconstructed amplitude of the low-frequency variability amongst all methods. 

Specifically, all seven reconstruction approaches produce underestimation and large biases both in the 

amplitude and trend of low frequency variability. Christiansen and Ljungqvist (2017) also emphasized that 

most employed climate reconstruction methods until now have a general assumption that there is a linear 

relationship or response between proxy and target climate variable. However, nonlinearity may exist in 

nature, therefore this general assumption could lead to additional error or bias of the amplitude of 

reconstruction variability. They made a general conclusion that underestimation of low frequency climate 

variability is a serious issue or deficit for most reconstruction methodologies. These methods also present 

similar issues in climate reconstructions that are not in the range of calibration time interval. They revealed 

that the RegEM-TTLS and Local approach (reconstructions by indirect regression the local surface 

temperature at positions were proxies are available, Christiansen, 2011) could present superiority compared 

with most other previous and present reconstruction methods. However, the RegEM-TTLS method still 

produces underestimation of variability outside the range of calibration time interval, and the LOC method 

depends strongly on a strictly screening process and spatial and temporal averaging.  

In addition, climatic variables, such as surface temperature field or sea surface height, usually present a 

complicated spatial covariance structure (Jones and Briffa, 1996) and these structures may even be 

nonstationary, i.e. it may change with time. Many reconstruction methods, for instance, PCR or CCA, have 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016RG000521#rog20119-bib-0198
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016RG000521#rog20119-bib-0036
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016RG000521#rog20119-bib-0113
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an assumption that some domain climate variability patterns are constant in time (Gómez-Navarro et al., 

2017; Pyrina et al., 2017). Nevertheless, this assumption of stationarity between temperature and proxy is 

difficult to evaluate (Evans et al., 2013); these assumptions and potential uncertainties may lead to 

reconstruction bias.  

Additional reconstruction errors or biases could be introduced if we do not choose a method appropriately, 

which means that we might need a comprehensive understanding of the relationship between proxy and 

target climate variable, and the spatial-temporal structure of target climate field. Tingley et al. (2012) 

attempted to involve specific covariance models into their reconstructions, but there is a challenge since 

spatial and temporal correlations of climate variables are rather entangled. Data assimilation (Steiger et al., 

2014; Carrassi et al., 2018) methods may be helpful for this challenge. The family of data-assimilation 

methods constrain or modify the spatially complete output of climate simulations conditional on the 

available locally sparse information provided by proxy records. Therefore, they are not so strongly 

constrained, in principle, by the assumption that the spatial covariance is stationary over time. On the other 

hand, they have the advantage that they make use of the physical relationships between climate variables 

as encapsulated in Earth System models. However, the underlying data-assimilation equations do require 

the estimation of large cross-covariance matrices, e.g., based on Kalman Filters, and this usually makes 

necessary the application of some sort of, subjective, regularization of the error-covariance matrices 

(Harlim, 2017; Janjić et al., 2018). They also might be computationally much more demanding than purely 

data-driven methods. 

Considering the previously mentioned shortcomings of previous and present climate reconstruction 

methods, we introduce the newly emerging machine learning techniques into the area of climate 

reconstructions. The machine learning methods, for example, Artificial Neural Network - ANN, have been 

demonstrated to be capable of capturing more potential nonlinearities from dynamical physical systems 

(Schneider et al., 2018; Rasp and Lerch, 2018; Rolnick et al., 2019; Chattopadhyay et al., 2020; Huang et 

al., 2020; Nadiga, 2020; Lindgren et al., 2021). Specifically, three machine leaning methods, including the 

Reservoir computing (RC), RNN-LSTM and a feed-forward neural network, are employed for reproducing 

the long-term statistics and short-term evolution of a multiscale spatial-temporal nonlinear Lorenz 96 

system by Chattopadhyay et al. (2020). They revealed that these three methods could present some skillful 

predictions, while the Reservoir computing- Echo stet network (RC-ESN) could produce accurately 

forecasting of the chaotic trajectories and substantially outperform the other two methods. Rasp and Lerch 

(2018) demonstrated that neural network methods could incorporate potential nonlinear relationships 

between predictor climatic variables and prediction distribution parameters that can be captured 

automatically in a purely data-driven way instead of requiring pre-specified link functions. Gordon 

et al. (2021) demonstrated that ANN is able to employ oceanic patterns that have been previously connected 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016RG000521#rog20119-bib-0063
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016RG000521#rog20119-bib-0239
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to predictable Pacific Decadal Oscillation behavior, which could support the further utilization of ANN in 

climate and ocean studies.  

Another advantage of nonlinear machine-learning is that the assumption of climate proxy networks are 

linear or nonlinear related with climate variables is unnecessary. A nonlinear method will map the 

relationships between the predictor and predictand automatically with necessary model parameters and 

updated weights (Goodfellow, et al 2016). In addition, they do not rely on statistical (for instance the PCA) 

methods for the purpose of raw data preprocessing. The inherent variabilities in calibration dataset is 

sequentially and dynamically adjusted and retained with the optimized hyperparameters of nonlinear 

methods, the nonlinear CFR method will take all the calibration/training dataset as model input information 

and extract principal features by its trained hyper-parameters automatically. Eventually, validation is 

directly derived using this trained model which weights and thresholds being relatively robust and fixed. 

Non-linear CFRs can also enhance our insight of complex multivariate connections in chaotic nonlinear 

systems compared to purely data-driven learning methods, yet avoiding to specify a process-based model 

(Rasp, S. et al, 2018; Huntingford, C, et al. 2019; Rolnick, D, et al. 2019). Figure 1.1 illustrates some 

potential machine learning (ML) and Artificial Intelligence (AI) based understanding enhances next 

generation of Earth System Models. 
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Figure 1.1: Schematic of different machine learning methods with potential applications in earth system 

science from Huntingford, C, et al. (2019) 

Within the family of machine learning methods, recurrent neural networks (RNN) and Long Short-Term 

Memory networks (LSTM) are characterized by specifically incorporating the sequential structure of the 

predictors to estimate the predictand (Bengio et al., 1994). This property makes them promising methods 

to ameliorate the underestimation of variability that affects many other methods. Our assumption is that the 

neural network methods employed in this thesis would be able to better capture episodes of larger deviations 

from the mean, especially those that stretch over several time steps. Also for the employed convolutional 

neural network (CNN) application in sea surface height field reconstructions, it has been proved that CNN 

were capable of restoring or filling missing climate information with reasonable accuracy (Dong, J. et al., 

2019; Kadow et al., 2020; Barth et al., 2020 and 2022). Thus, we assume that the neural network methods 

employed and tested in this thesis could produce more accurate or reasonable reconstruction results in order 

to overcome or to a certain degree mitigate these previously mentioned problems or challenges of classic 

reconstruction methods. Figure 1.2 displays different neural network architectures for the application of 

specific regression/reconstruction tasks. 

https://gmd.copernicus.org/articles/15/2183/2022/#bib1.bibx5
https://gmd.copernicus.org/articles/15/2183/2022/#bib1.bibx5
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Figure 1.2: Machine learning methods mechanism 

A challenge in setting up CFRs is that systematic observational/instrumental climate records are only 

available starting from the middle of the 19th century, which fails to capture the full spectrum of past 

climate variations, and therefore offers little room to test the reconstructions with data that lie outside the 

range of the training data. As mentioned previously, the reconstruction of past climates based on proxy data 

requires the application of statistical methods to translate the information contained in the proxy records 

into climate variables such as temperature. These methods add an additional layer of statistical uncertainty 

and bias to the final reconstruction, in addition to the uncertainties originating in the sparse data coverage 

and in the presence of non-climatic variability in the proxy records. All these sources of error affect the 

quality of climate reconstructions (Christiansen and Ljungqvist, 2017), but this quality is difficult to test 

with independent data.  

An alternative direction to estimate the quality of the reconstruction is to test reconstruction methods in the 

controlled/physically consistent conditions provided by climate simulations with state-of-the-art Earth 

System Models. These comprehensive climate models provide virtual climate trajectories, which although 

possibly not completely realistic, are from the model’s perspective physically consistent. The skill of the 

statistical method, the impact of proxy network coverage and of the amount of climate signal present in the 

proxy records can thus be evaluated in that virtual reality of climate models, once adequate synthetic proxy 

records are constructed. These tests are generally denoted pseudo-proxy experiments (PPEs; Mann, 2002; 
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Smerdon, 2012; Gómez-Navarro et al., 2017). The main idea is, therefore, to consider a climate simulation 

as a realization of a ‘true’ reality. We need only to construct pseudo-proxy records in this virtual reality 

(e.g. synthetic tree-ring records), and apply the reconstructions methods to those pseudo-proxy records. The 

outcome of this application can be then compared to the climate fields directly produced by the Earth 

System Model, thus allowing for an assessment of the reconstructions method. 

PPEs are mainly motivated from the fact that real climate reconstructions are usually based on many 

different proxy networks, statistical methodologies and calibration period selections. Reconstruction 

uncertainties thus will occur due to the combination of these employed statistical methods, the spatial and 

temporal coverage of selected proxy networks, the stochastic noise between reconstructions and climatic 

proxy records, which makes it difficult to isolate the impact of one specific factor in reconstruction 

evaluations and comparisons (Christiansen and Ljungqvist, 2017). PPEs provide an experimental 

framework that can be systematically evaluated and altered, thus testing different statistical methods and 

their dependencies. In addition, PPEs lead to much longer, albeit synthetic, validation time intervals 

compared to instrumental records. Therefore, methodological assessments can extend to lower frequencies 

and longer time scales (Smerdon, 2012). 

In this thesis, different traditional CFR methods are compared with three state-of-the-art machine leaning 

methods for surface temperature and sea surface high field reconstructions, respectively. The main question 

is that we want to test the reconstruction performance of these machine-learning methods and evaluate 

whether the nonlinear machine leaning method could achieve comparable or even better reconstruction 

skills compared to traditional CFR methods. The general workflow of climate field reconstructions in this 

thesis is shown in Figure 1.3 shows as below.  

 

Figure 1.3: Workflow of climate field reconstructions using machine-learning methods 

Specifically, following three main questions are explored in 3 separate manuscripts: 

1). Can a recurrent neural network improve CFRs compared to traditional Multivariate linear methods? 
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2). Does reservoir computing improve CFRs skills compared to traditional Multivariate linear methods? 

3). Does Convolutional neural network produce reasonable CFRs? 

In manuscript 1, three different CFR methods are designed to reconstruct spatially resolved summer 

surface temperature field over the past millennium. These methods can be applied to real proxy records, 

but here they are tested in controlled conditions using pseudoproxy experiments. Two of these methods are 

traditional multivariate linear methods (PCR and CCA), whereas the third method (Bidirectional Long-

Short-Term Memory Neural Network, Bi-LSTM) belongs to the category of machine learning methods. 

The Bi-LSTM method tested in our experiments using a limited calibration dataset shows relatively worse 

reconstruction skills compared to PCR and CCA and, therefore, our working hypothesis that a relatively 

more complex machine-learning method would provide better reconstructions for temperature fields was 

not confirmed. 

Manuscript 2 expands the results obtained in manuscript 1. We employ and test a non-linear CFR 

method on the application of Hemisphere surface temperature field reconstructions, this approach belongs 

to the family of machine learning method, the Echo State Network (ESN). We compare the reconstruction 

performance of this ESN method with the Bi-LSTM that we have tested before in manuscript 1, and with 

PCR and CCA. One more import reason for employing ESN in manuscript 2 is that despite a number of 

successful applications of RNNs, it has been revealed that RNNs are difficult to train based on gradient 

descent. The whole model parameters of RNNs are gradually changed and optimized within training 

processes, of which the gradient information degenerates and might be ill defined, these deficits could lead 

to unguaranteed convergence. Besides, the model parameter updates could be computationally expensive 

during training processes, which also leads to unnecessary long training period. The ESN method was 

proposed for mitigating these previously mentioned shortcomings of RNNs, and it has been demonstrated 

that this ESN paradigm outperforms the classical RNNs in different regression and classification tasks. The 

experimental results in manuscript 2 demonstrate that ESN show a certain degree of superiority both in 

hemispheric surface temperature field and indices reconstructions compared to other three CFR methods. 

Thus, we confirm our working hypothesis that the relatively structural and training-simpler machine 

learning method - ESN could provide a better temperature field reconstruction.  

In manuscript 3, we deviate from the reconstructions of past climate and instead aim at the reconstruction 

of the sea surface height field of the North Sea using a limited amount of data from tidal gauges (TGs). We 

apply a generative adversarial network (GANs), which belongs to the family of deep learning/machine 

learning method. In addition, we also compare another data assimilation method - Kalman filter approach 

with GANs about the reconstruction performance of sea surface high fields. Our objective in the manuscript 

3 is to explore the performance of deep learning methodologies on reconstructing sea surface height fields 



 Introduction 

10 
 

in the specific North Sea using pseudo-observations and real observation data collected on coastal TGs 

stations. Individual reconstruction experiments using different combinations of training and target data 

during the training and validation process demonstrated similarities with data assimilation - Kalman filter 

method when errors in the data and model were not handled appropriately. The proposed method GANs 

demonstrated good reconstruction skills when analyzing both the full SSH field signal, as well as the low 

frequency SSH variability only. Thus, our hypothesis that deep learning method - GANs employed in the 

manuscript 3 were able to skillfully reconstruct SSH field in a specific regional sea and can achieve 

comparable reconstructions compared with Kalman filter data assimilation method was confirmed. 

The thesis consists of five chapters: The first chapter is the introduction chapter; chapters 2 to 4 represent 

the three manuscripts. Finally, chapter 5 contains conclusions and provides some perspectives for potential 

future investigations. 
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Chapter 2: Evaluation of statistical climate reconstruction methods 

Evaluation of statistical climate reconstruction methods 

based on pseudoproxy experiments using linear and machine 

learning methods 

Manuscript minor revisions in Climate of the Past (Zhang et al., 2022a)  

Summary 

Three different climate field reconstruction (CFR) methods are employed to reconstruct spatially resolved 

North Atlantic-European (NAE) and Northern Hemisphere (NH) summer temperature over the past 

millennium from proxy records These are tested in the framework of pseudoproxy experiments derived 

from two climate simulations with comprehensive Earth System Models. Two of these methods are 

traditional multivariate linear methods (Principal Components Regression, PCR and Canonical Correlation 

Analysis, CCA), whereas the third method (Bidirectional Long-Short-Term Memory Neural Network, Bi-

LSTM) belongs to the category of machine learning methods. In contrast to PCR and CCA, the Bi-LSTM 

does not need to assume a linear and temporally stable relationships between the underlying proxy network 

and the target climate field. In addition, Bi-LSTM naturally incorporates information of the serial 

correlation of the time series. Our working hypothesis is that the Bi-LSTM method will achieve a better 

reconstruction of the amplitude of past temperature variability. In all tests, the calibration period was set to 

the observational period, and the validation period was set to the pre-industrial centuries. All three methods 

tested herein achieve reasonable reconstruction performance on both spatial and temporal scales, with the 

exception of an overestimation of the interannual variance by PCR, which may be due to overfitting 

resulting from the rather short length of calibration period and the large number of predictors. Generally, 

the reconstruction skill is higher in regions with denser proxy coverage, but it is also reasonable high in 

proxy-free areas due to climate teleconnections. All three CFR methodologies generally tend to more 

strongly underestimate the variability of spatially averaged temperature indices as more noise is introduced 

into the pseudoproxies. The Bi-LSTM method tested in our experiments using a limited calibration dataset 

shows relatively worse reconstruction skills compared to PCR and CCA and, therefore, our working 

hypothesis that a more complex machine-learning method would provide better reconstructions for 
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temperature fields was not confirmed. Yet, a certain degree of reconstruction performance achieved by 

LSTM shows positive tests on using small simple with limited dataset. 

1 Introduction 

The reconstruction of past climates helps to better understand past climate variability and pose the projected 

future climate evolution against the backdrop of natural climate variability (Mann and Jones, 2003; Jones 

and Mann, 2004; Jones et al., 2009; Frank et al., 2010; Schmidt, 2010; Christiansen and Ljungqvist, 2012; 

Evans et al., 2014; Smerdon and Pollack, 2016; Christiansen and Ljungqvist, 2017). Paleoclimate 

reconstructions also provide us with a deeper perspective to better understand the effect of external forcing 

on climate (Hegerl et al., 2006, 2007; Schurer et al., 2013, 2014; Anchukaitis et al., 2012, 2017; Tejedor et 

al., 2021). However, systematic observational/instrumental climate records are only available starting from 

the middle of the 19th century, which fails to capture the full spectrum of past climate variations. 

Consequently, our understanding of climate variations prior to 1850 is mainly based on indirect proxy 

records (such as tree rings, ice cores, etc. Jones and Mann, 2004). The reconstruction of past climates based 

on proxy data requires the application of statistical methods to translate the information contained in the 

proxy records into climate variables such as temperature. These methods add an additional layer of 

statistical uncertainty and bias to the final reconstruction, in addition to the uncertainties originating in the 

sparse data coverage and in the presence of non-climatic variability in the proxy records. All these sources 

of error impact the quality of climate reconstructions. One way to estimate this impact is the test of 

reconstruction methods in the controlled conditions provided by climate simulations with state-of-the-art 

Earth System Models. These models provide virtual climate trajectories, which although possibly not 

completely realistic, are from the model’s perspective physically consistent. The skill of the statistical 

method, the impact of proxy network coverage and of the amount of climate signal present in the proxy 

records can thus be evaluated in that virtual reality of climate models, once adequate synthetic proxy records 

are constructed. These tests are generally denoted pseudo-proxy experiments (PPEs; Smerdon, 2012; 

Gómez-Navarro et al., 2017).  

Many scientific studies that employ pseudo-proxies and real proxies have focused on global, hemispheric 

climate field or climate index reconstructions (Mann et al., 2002, 2005; von Storch et al., 2004; Smerdon, 

2012; Michel et al., 2020; Hernández et al., 2020). These studies have identified several deficiencies that 

are common to most climate reconstructions methods, such as a general tendency to ‘regress to the mean’, 

which results in an underestimation of the reconstructed climate variability. This underestimation becomes 

more evident when the available proxy information becomes of less quality - diminishing the climate signal 

contained in the proxy records. In addition, sparser networks - shrinking proxy network coverage - may 
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lead to biased reconstructions (Wang et al., 2014; Evans et al., 2014; Amrhein et al., 2020; Po‐Chedley et 

al., 2020). Thus, significant scope still remains for further developing and evaluating climate field 

reconstructions (CFR) methodologies and in designing methods that are less prone to those common 

deficiencies (Christiansen and Ljungqvist, 2017). 

In the present study, we test a non-linear CFR method that belongs to the machine learning family, a 

Bidirectional Long-Short-Term Neural Network (Bi-LSTM) and that, to our knowledge, has not been 

applied to CFR yet. We compare the performance of this method to two well-established classical multi-

variate linear regression methods, Principal Component Regression (PCR) and Canonical Correlation 

Analysis (CCA). Traditional CFRs usually assume linear and temporally stable relationships between the 

local variables captured by the proxy network and the target climate field. Likewise, the spatial patterns of 

climate variability are considered as stationary (Coats et al., 2013; Pyrina et al., 2017; Wang et al., 2014; 

Smerdon et al., 2016; Yun et al., 2021). However, links between climate fields can be non-linear (Schneider 

et al., 2018; Dueben and Bauer, 2018; Huntingford et al., 2019; Nadiga, 2020). Nonlinear machine leaning-

based CFR methods (for instance, Artificial Neural Networks-ANN) could help capture underlying linear 

and nonlinear relationships between proxy records and the large-scale climate more possible (Rasp and 

Lerch, 2018; Schneider et al., 2018; Rolnick et al., 2019; Huang et al., 2020; Nadiga, 2020; Chattopadhyay 

et al., 2020; Lindgren et al., 2021). Moreover, machine-learning methods do not necessarily rely on 

statistical methods to first obtain the principal spatial climate patterns, such as Principal Component 

Analysis-PCA. The full inherent variability in the original dataset is sequentially and dynamically adjusted 

and captured with optimized hyper-parameters during the model training process (Goodfellow et al., 2016).  

Within the family of machine learning methods, recurrent neural networks (RNN) and Long Short-Term 

Memory networks (LSTM) are characterized by specifically incorporating the sequential structure of the 

predictors to estimate the predictand (Bengio et al. 1994).  This property makes them promising methods 

to ameliorate the underestimation of variability that affects many other methods.  Our assumption here is 

that the methods would be able to better ca/pture episodes of larger deviations from the mean, especially 

those that stretch over several time steps. However, this assumption is not guaranteed to be realistic in 

practical situations and needs to be tested. The classical recurrent neural network and Long Short-Term 

Memory Network can usually only receive and process information from prior forward inference steps. A 

variant of the LSTM network is the bidirectional Bi-LSTM. It handles information from both forward and 

backward temporal directions (Graves and Schmidhuber, 2005). It has been demonstrated that the Bi-LSTM 

model is capable of learning and capturing long-term dependencies from a sequential dataset (Hochreiter 

and Schmidhuber, 1997) and that it achieves better performance for some classification and prediction tasks 

(Su et al., 2021; Biswas and Sinha, 2021; Biswas et al., 2021). Since climate dynamics usually exhibit 

https://link.springer.com/article/10.1007/s40808-020-00974-9
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temporal dependencies, the Bi-LSTM method might learn these dependencies better, which can provide 

another advantage to capture the time evolution of the reconstructed climate field.  

The Bi-LSTM combines two independent LSTMs together, which allows the network to incorporate both 

backward and forward information for the sequential time series at every time step. Our working hypothesis 

is, that a more sophisticated type of RNN could better replicate the past variability, and perhaps even more 

so for extreme values. Thus, we would like to test whether this property of the Bi-LSTM is useful for paleo 

climate research in the future based on our experiments, especially by employing only a limited 

calibration/training dataset that could also be a challenge for training deep neural networks (Najafabadi et 

al. 2015). 

This calibration period, which is usually chosen in the real reconstructions as the observational period (or 

the overlap period between observations and proxy records) can represent a challenge not only for a 

parameter-rich method such as the Bi-LSTM, but also for the usual linear methods. For instance, a global 

or hemispheric proxy network may span of the order of 100 sites, and a regional proxy network may span 

a few tenths of sites. If the calibration period spans at most 150 independent time steps, a method like 

Principal Component Regression, in which one principle component is predicted by the whole proxy 

network, is rather close to overfitting conditions, especially in a global or hemispheric case.  Canonical 

Correlation Analysis with a PCA-prefiltering would be much more robust to the potential overfitting if only 

a few leading PCs are retained in the prefiltering step (see Methods).  Here, we test the methods in our 

pseudo-proxy experiments in the conditions as they are usually applied in real reconstructions, in which 

overfitting may be a real risk. 

For the sake of completeness, we briefly mention here relevance for our study of the reconstruction methods 

that combine the assimilation of information from proxy and from climate simulations - data assimilation 

(Steiger et al., 2014; Carrassi et al., 2018). The family of data-assimilation methods constrain or modify the 

spatially complete output of climate simulations conditional on the available locally sparse information 

provided by proxy records. Therefore, they are not so strongly constrained, in principle, by the assumption 

that the spatial covariance is stationary over time. Another advantage is that they provide estimation of 

reconstruction uncertainties in a more straightforward way, especially those methods formally based on a 

Bayesian framework. On the other hand, the underlying data-assimilation equations do require the 

estimation of large cross-covariance matrices, e.g., based on Kalman Filters, and this usually makes 

necessary the application of some sort of, subjective, regularization of the error-covariance matrices 

(Harlim, 2017; Janjić et al., 2018). They also might be computationally much more demanding than purely 

data-driven methods. Considering the replication of the amplitude of past variations, it depends on factors 

that are independent of the method itself, such as the variance generated by the climate model and also on 
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the inherent uncertainties of the proxy data. Therefore, an under- or overestimation of reconstructed 

variance cannot be as characterized as a systemic property of these methods. They have the very important 

advantage in that they combine all the available information about past climate (simulations, forcings, proxy 

data) into a powerful tool. These special characteristics make the comparison with purely data-driven 

methods more difficult and probably unfair, since data assimilations uses a much larger amount of 

information from climate simulations. In addition, this use of information from climate simulations 

compromises one of the main objectives of climate reconstructions, namely the validation of climate models 

in climate regimes outside the variations of the observational period. Therefore, the testing of purely data-

driven reconstruction methods retains its relevance, despite the availability of more sophisticated data 

assimilation methods.  

In this evaluation of three climate reconstruction methods, we focus on the whole Northern Hemisphere 

temperature field and on the temperature field of the North Atlantic European region. In the North Atlantic 

region, the most important mode of temperature variations at longer time series is the Atlantic Multidecadal 

Variability (AMV). The AMV is sometimes defined as the decadal variability of the North Atlantic sea-

surface temperature, whereas the term Atlantic Multidecadal oscillation (AMO) is reserved for the decadal 

internal variations (excluding the externally forced variability). Here we focus on the total variability of the 

North Atlantic SST and define the index of the AMV is defined as decadal filtered surface temperature 

anomaly over North Atlantic regions 95°W–30°E, 0–70°N, excluding the Mediterranean and Hudson Bay 

following Knight et al. (2006). It has been shown that AMV is related to many prominent features of 

regional or even hemispheric multidecadal climate variability, for example European and North America 

summer climate variability (Knight et al., 2006; Qasmi et al., 2017). In this context, we test the 

reconstruction skill for the spatial resolved summer temperature anomalies over Northern Hemisphere-NH 

(180°W-180°E, 0-90°N) and North Atlantic European region-NAE (60°W-30°E, 0-88°N), as well as for 

the spatially averaged AMV and NH summer temperature anomalies, calculated from the spatially resolved 

reconstructed fields. The reconstruction of mean temperature series could provide a general assessment of 

the skill to reconstruct extreme temperature phases (e.g. related to volcanic eruptions or changes in solar 

activity) serving as benchmarks to test the potential capability of different CFR methods on those anomalies.  

2 Data and Methods 

2.1 Data 

2.1.1 Proxy data locations 

Regarding the networks of real proxies used so far, St. George and Esper (2019) reviewed contemporary 

studies on previous NH temperature reconstructions based on tree ring proxies (Mann et al., 1998, 2008, 
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2007, 2009a, 2009b; Emile-Geay et al., 2017). St. George and Esper (2019) concluded that the present-day 

generation of tree-ring proxy-based reconstructions exhibit high correlations with seasonal hemispheric 

summer temperatures and display relatively better skill in tracking year-to-year climatic variabilities and 

decadal fluctuations than former proxy networks, as found by Wilson et al., (2016) and Anchukaitis et al., 

(2017). Thus, we test NH summer temperature CFRs employing a pseudo-proxy continental network that 

is the result of blending two networks: the PAGES2k Consortium (Emile-Geay et al., 2017) multiproxy 

network, and the climate-tree-ring network of St. George (2014).  

In the oceanic realm in the North Atlantic, additional marine proxy records based on mollusc shell bands 

(Pyrina et al., 2017) have been also used for climate reconstructions. These records, similarly to the 

dendroclimatological records, are based on annual growth bands, are annually resolved, and usually 

represent surface or subsurface water temperature. Therefore, they are technically rather similar to 

dendroclimatological records. Compelling evidence has already been provided by earlier studies that 

Atlantic Ocean variability is an important driver of European summer climate variability (Jacobeit et al., 

2003; Sutton and Hodson, 2005; Folland et al., 2009). Thus, we also employ an updated proxy network by 

combining the locations of marine proxies and tree ring proxies (Pyrina et al., 2017; Emile-Geay et al., 

2017; Luterbacher et al., 2016) to test the NAE summer temperature reconstructions. 

The pseudoproxies are constructed from the simulated grid-cell summer mean temperature sampled from 

two climate model simulations over the past millennium (see following subsections). In this context, 11 

real proxy locations in the North Atlantic-European region (Pyrina et al., 2017; Emile-Geay et al., 2017; 

Luterbacher et al., 2016) are selected for regional NAE (60°W-30°E, 0-88°N) PPEs and 48 proxy locations 

across the Northern Hemisphere are chosen from the PAGES 2k network. The original Northern 

Hemisphere PAGES network was trimmed down by removing proxies that may show a combined 

temperature-moisture response and by selecting only one proxy among those deemed to be too closely 

located (and thus redundant from  the climate model perspective). Specifically, the 48 dendrochronology 

locations are selected according to Figure 4 of St. George, (2014) which shows the correlation coefficient 

between the dendroclimatological proxy records and summer temperature. At most of the retained locations, 

the correlation between the dendroclimatological record and regional temperature is higher than 0.5.  

2.1.2 Climate Models 

The choice of climate models to run pseudo-experiments will have an impact on the estimation of method 

skills (Smerdon et al., 2011, 2015; Parsons et al., 2021), since the spatial and temporal cross-correlations 

between climate variables are usually model dependent. Thus, it is advisable to use several 'numerical 

laboratories' and employ several comprehensive Earth System Models (ESMs) to evaluate reconstructions 

methods. Constructing PPEs based on different ESMs will highlight model-based impacts on the 
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reconstructed magnitude and spatial patterns (Smerdon et al., 2011, Smerdon, 2012; Amrhein et al., 2020). 

Accordingly, in this study two different comprehensive Earth System Models are employed as ‘surrogate 

climate database for setting up PPEs: the Max-Planck-Institute Earth System Model model MPI-ESM-P 

and the Community Earth System Model CESM. 

One of the climate models utilized in our study is the Max-Planck-Institute Earth System model MPI-ESM-

P with a spatial horizontal resolution of about 1.9 degree in longitude and 1.9 degree in latitude. The 

simulation covers the period from 100 BC to 2000 CE. The model MPI-ESM-P consists of the spectral 

atmospheric model ECHAM6 (Stevens et al., 2013), the ocean model MPI-OM (Jungclaus et al., 2013), the 

land model JSBACH (Reick et al., 2013) and the bio-geophysical model HAMOCC (Ilyina et al., 2013). 

The setup of our simulations corresponds to the MPI-ESM-P LR setup in the CMIP5 simulations suite. 

However, since the present simulations does not belong to the CMIP5 project, the forcings used in this 

simulation and additional technical details are shown in the Appendix 2A. 

The second climate model is the Community Earth System Model CESM Paleoclimate model from the 

National Centre for Atmospheric Research (NCAR) (Otto-Bliesner et al., 2016) with a spatial resolution of 

2.5 degree in longitude and 1.9 degree in latitude (https://www.cesm.ucar.edu/projects/community-

projects/LME/). The CESM simulation extends from 850 CE to 2006 CE using CMIP5 climate forcing 

reconstructions (Schmidt et al. 2011) and reconstructed forcing for the transient evolution of aerosols, solar 

irradiance, land use conditions, greenhouse gases, orbital parameters, and volcanic emissions. The 

atmosphere model employed in CESM is CAM5 (Hurrell et al., 2013), which is a significant advancement 

of CAM4 (Neale et al., 2013), whereas CCSM4 uses CAM4 as its atmospheric component. The CESM uses 

the same ocean, land and sea ice models as CCSM4 (Hurrell et al., 2013) does. We use the last one ensemble 

simulation member 13 from the Last Millennium Ensemble (LME). 

2.2 Methods 

2.2.1 Construction of pseudo-proxies 

To test the statistical reconstruction methods in the virtual laboratories of climate model simulations, we 

need records that mimic the statistical properties of real proxy records. The most important properties are 

their correlation to the local temperature and their location in a proxy network. A third important 

characteristic is the network size and temporal coverage. 

The usual method to produce pseudo-proxy records in climate simulations is to sample the simulated 

temperature at the grid cell that contains the proxy location and contaminate the simulated temperature with 

added statistical noise, so that the correlations between the original temperature and the contaminated 

temperature resembles the typical temperature-proxy correlations. The real correlation is of the order of 0.5 

or above for good proxy records. This parameter can be modulated in the pseudo-proxy record by the 
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amount of noise added to the simulated temperature, and different proxy networks will help us to reveal 

how and to what extent degradations of reconstruction skill caused by the amount of non-climatic signals 

present in the pseudo-proxies. 

Ideal pseudo-proxies contain only the temperature signal subsampled from the climate model. We then 

perturb the ideal pseudo-proxies with Gaussian white noise, and also with red noise for a more realistic 

noise contamination experiment. We generate two types of pseudoproxies by adding Gaussian white noise 

and red noise (refer to Pyrina et al., 2017) to the subsampled summer-temperature time series at the tree 

ring proxy-based locations. 

The noise level can be defined using various criteria including signal to noise ratio (SNR), variance of noise 

(NVAR), and percent of noise by variance (PNV) (Smerdon, 2012; Wang et al., 2014). We employ here 

the PNV to define the noise level convention. The PNV expresses the ratio between the added noise variance 

and the total variance of resulting the pseudo-proxy time series. Without loss of generalization we assume 

that the ideal proxy has unit variance, and thus 

𝑃𝑁𝑉 = 𝑁𝑉𝐴𝑅 (1 + 𝑁𝑉𝐴𝑅)⁄  (2.1) 

Red noise for a specific PNV could be defined by: 

𝑅𝑒𝑑𝑡 = 𝛼1𝑅𝑒𝑑𝑡−1 + 𝑊ℎ𝑖𝑡𝑒𝑡 (2.2) 

where Redt represents red noise time series, 𝛼1indicates the damping coefficient, here in our study it is equal 

to 0.4 (Larsen and MacDonald, 1995; Büntgen et al., 2010; Pyrina et al., 2017), and Whitet is a random 

white noise time series correspondingly. 

Although individual real proxies contain different amounts of noise (non-climatic variability), we assume 

here a uniform level of noise throughout the whole pseudo-proxy network. In addition, real proxy records 

contain temporal gaps, and not all records span the same period. For the sake of simplicity, we assume in 

our pseudo-proxies network that the data have no temporal gaps and all records cover the whole period of 

the simulations. 

The dataset employed here for constructing the according PPEs database is split into a calibration period 

that spans 1900-1999AD, and a validation period that spans 850-1899 AD. This calibration period would 

represent the typical period of calibration of real proxy records. All the validation statistics of the CFR 

results are derived against the reconstruction period of 850-1899 AD.   

2.2.2 Principal component regression 

Principal component analysis is employed to construct a few new variables that are a linear combination of 

the components of the original climate field, and that ideally describe a large part of the total variability. 

The linear combinations that define the new variables are the eigenvectors of the cross-covariance matrix 
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of the field. Associated to each variable (eigenvector), a principal component time series (scores) describes 

its temporal variation. In the PCR, the predictands are those scores identified by PCA of the climate field 

(Hotelling, 1957; Luterbacher et al., 2004; Pyrina et al., 2017). This results in a reduction of dimensionality 

without losing too much information, and reduces the risk of over-fitting. In the present study, the retained 

PCs capture at least 90% of the cumulative temporal variance of climate field. After selecting the empirical 

orthogonal functions-EOFs and principal components-PCs based on the calibration dataset and establishing 

the desired linear regression relationships between the PCs and the proxy dataset (predictors), the PCs in 

the validation period are reconstructed using the estimated regression coefficients. The full climate field is 

then reconstructed by the linear combination of the reconstructed PCs and their corresponding EOFs. A 

given climate field xt, at time step t can be decomposed as follows: 

𝒙𝑚,𝑡 = ∑ 𝑃𝐶𝑛,𝑡

𝑘

𝑛=1

𝑬𝑶𝑭𝑚,𝑛 

(2.3) 

where m is the grid index of the field, t is the time index, and k denotes the total numbers of retained PCs. 

The linear relationship between proxies and targeted climate field is established by the regression equation: 

𝑃𝐶𝑛,𝑡 = ∑ 𝜔𝑛,𝑚𝑃𝑟𝑜𝑥𝑦𝑚,𝑡
𝑗
𝑚=1 + 𝜀  (2.4) 

where the index m runs over the proxies, j denotes the total numbers of proxies, 𝜔 is the linear function 

coefficient, and 𝜀 denotes a residual term. The residual could be an unobserved random variable that adds 

noise to the linear relationship between the dependent variable (PC) and the targeted regressors (proxy or 

pseudoproxy) and includes all effects on the targeted regressors not related to the dependent variable 

(Christiansen, 2011). 

The 𝜔 parameters are estimated by Ordinary Least Squares. Here, it is assumed that climate sensitive 

proxies are linearly related with the climate PCs. Based on Eq. (5) using the PCR method, the PCs during 

the validation interval will be reconstructed assuming that the linear coefficients derived in Eq. (5) are 

constant in time: 

𝑃𝐶̂𝑛,𝑡 = ∑ 𝜔𝑛,𝑚𝑃𝑟𝑜𝑥𝑦𝑚,𝑡

𝑗

𝑚=1

 

(2.5) 

The final reconstructed field 𝑥 will be derived by the linear combination of the reconstructed 𝑃𝐶̂ with the 

EOFs derived from the calibration dataset, thereby assuming that the EOF patterns remain constant in time 

(Gómez-Navarro et al., 2017; Pyrina et al., 2017).  

2.2.3 Canonical correlation analysis 

Canonical Correlation Analysis CCA is also an eigenvector method. Similarly to PCA, CCA decomposes 

the variance of the fields as a linear combination of spatial patterns and their corresponding amplitude time 
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series. In contrast to PCA, where the target is to maximize the explained variance with a few new variables, 

CCA constructs pairs of predictor-predictand variables that maximize the temporal correlation of the 

corresponding amplitude time series. The pairs of variables are identified by solving an eigenvalue problem 

that requires the calculation of the inverse of the covariance matrices of each field. These matrices can be 

pseudo-degenerate (one eigenvalue much smaller than the largest eigenvalue) and therefore the calculation 

of their inverse is, without regularization, numerically unstable. This regularization can be introduced by 

first projecting the original fields onto their leading EOFs (Widmann, 2005; Pyrina et al., 2017). This also 

reduces the number of degrees of freedom - thus hindering overfitting - and eliminate potential noise 

variance. After the dimensional transformation, a small number of pairs of patterns with high temporal 

correlation will be retained. In the present study, the number of retained PCs capture at least 90% 

cumulative variance of predictand climate field. Then these retained PC time series will be used as input 

variables of CCA to calculate the canonical correlation patterns (CCPs) and canonical coefficients (CCs) 

time series for both proxy and temperature field. The reconstructed climate field can be calculated by a 

linear combination of the CCPs with CCs for each time step t: 

𝒙𝑚,𝑡 = ∑ 𝐶𝐶𝑛,𝑡
𝑓𝑖𝑒𝑙𝑑

𝑙

𝑛=1

𝑪𝑪𝑷𝑚,𝑛
𝑓𝑖𝑒𝑙𝑑

 

(2.6) 

𝑷𝒓𝒐𝒙𝒚𝑚,𝑡 = ∑ 𝐶𝐶𝑛,𝑡
𝑝𝑟𝑜𝑥𝑦

𝑙

𝑛=1

𝑪𝑪𝑷𝑚,𝑛
𝑝𝑟𝑜𝑥𝑦

 

(2.7) 

Proxy denotes the reconstructed proxy field, and l is the number of CCA pairs. The correlation between 

each pair CC (proxy, field) are the canonical correlations, which are the square root of the CCA-eigenvalues. 

Therefore, once each CCproxy(t) is calculated from the proxy data through the validation period, the 

corresponding CCfield(t) can be easily estimated as proportional to CCproxy(t) , since the correlation between 

the different  CCn
proxy(t) is zero. The final reconstruction of target climate field will be derived by linear 

combination of CCPfield(t) and CCfield(t), assuming again that the dominant canonical correlation patterns of 

climate variability are stationary in time. 

The CCA method maximizes the correlation that can be attained with a linear change of variables, i.e. with 

a linear combination of the grid-cell series in each of the two fields. In the following, admittedly artificial, 

example, the resulting canonical correlation can be very high and yet the reconstruction skill in general can 

remain low. If one grid cell in each of the two fields are very highly correlated to each other (and assuming 

here no PCA pre-filtering), CCA will pick those two cells as the first CCA pair (i.e., a pattern in each field 

with very high loadings only on those cells). The rest of the cells will not contribute to the CCA pattern. 

The reconstruction skill will therefore generally be very low in all those cells, despite the canonical 

correlation being very high. In general, the reconstruction skill will be a monotonic function of the canonical 
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correlation coefficient and the variance explained by the canonical predictand pattern. If the latter is low, 

the reconstruction skill will be low in large areas of the predictand field, even when the canonical correlation 

is possibly high. 

2.2.4 Bidirectional Long Short-term memory neural network 

As a non-linear machine learning method, we test here a Bidirectional Long short-term memory neural 

network (Bi-LSTM).  The LSTM networks, in contrast to the more traditional neural networks, also capture 

the information of the serial co-variability present in the data, and therefore are suitable to tackle data with 

a temporal structure. These methods are usually applied to the analysis of sequential data, such as speech 

and time series. The rationale of using these type of networks for climate reconstructions is the hypothesis 

that a better representation of the serial correlation could ameliorate the aforementioned underestimation of 

the past climate variations by most data-driven methods (‘regression to the mean’, Smerdon, 2012). 

 

Figure 2.1: the bidirectional structure of the Bi-LSTM network. 

 

The structure of LSTM network is more complex than the structure of a traditional neural network. The 

LSTM estimates a hidden variable h(t) that encapsulates the state of the system at time t. The computation 

of the new system state at time t+1, h(t+1), depends on the value of the predictors at t+1 but also on the 

value of the hidden state at time t, h(t). The training of the LSTM can be accomplished sequentially by 

assimilating the information present in the training data from time steps in the past of the present time step. 

In some loose sense, a LSTM network would be the machine-learning equivalent of a linear auto-regressive 

process.  

A Bi-LSTM network, the training of the network is accomplished by feeding it with sequential data 

iteratively, forwards towards the future and backwards towards the past. Both forward and backward 
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assimilations are processed by two separated LSTM neural layers, which are connected to the same output 

layer. Figure 2.1 illustrates the bidirectional structure of the Bi-LSTM network. Given a set of predictor-

predictand variables (Xt, Yt), our goal is to train a nonlinear function: 

Y𝑡̃ = 𝐹(𝑿)  (2.8) 

where, Ỹt =F(Xt)  is a close as possible to Yt. The similarity  between   Ỹt and Yt is defined  by a cost function. 

The structure of this complex non-linear function F is defined as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝐵𝑓)  (2.9) 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝐵𝑖)  (2.10) 

𝐴𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐴[ℎ𝑡−1, 𝑥𝑡] + 𝐵𝐴) (2.11) 

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐴𝑡 (2.12) 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝐵𝑜) (2.13) 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝐶𝑡)   (2.14) 

where Wf, Wi, WA and Wo represent several weight matrices and Bf, Bi BA and Bo represent different bias 

matrices. 𝜎  is the gate activation function, here we utilize the Rectified Linear Unit function-ReLU 

(Ramachandran et al., 2017) . 

At time step t-1, the hidden state of LSTM cell’s hidden layer is preserved as ht-1 , and this vector is 

combined with the vector of current input variables Xt to obtain the state of the forget gate, ft (equation 2.9) , 

the input gate it (equation 2.10) and the state of memory cell At (equation 2.11). This memory cell state At 

is linearly combined with the previous state of the cell output Ct-1 to update the value of its state. The 

weights of this linear combinations are the states of the forget gate ft and of the input gate it (equation 2.12). 

The state of the output gate ot is calculated from the previous hidden state and the current input variables 

(equation 2.13). This output is used to compute the updated hidden state ht using the state of the cell output 

Ct (equation 2.14) (Huang et al., 2020; Chattopadhyay et al., 2020). 

In the present application to climate reconstructions, we have a set of input pseudoproxy data 𝑿𝑡
𝑛= [xt-i,…, 

xt-1]and an output target temperature time series 𝒀𝑡
𝑚  = [yt-i,…, yt-1]. The forward LSTM hidden state 

sequence 𝒉𝑡
⃑⃑⃑⃑  (note the arrow direction) is calculated employing input information in a positive direction 

from time t-n to time t-1 iteratively, and for backward LSTM cell, the hidden state sequence 𝒉𝑡
⃐⃑ ⃑⃑⃑ is computed 

using the input within a reverse direction from time t-1 to time t-n iteratively. The final outputs from the 

forward and backward LSTM cells are calculated utilizing the calculation equation (Cui et al., 2018, 

Jahangir et al., 2020): 

𝒀̃𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝒉𝑡
⃑⃑⃑⃑ , 𝒉𝑡

⃐⃑ ⃑⃑⃑) (2.15) 
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where concat is the function used to concatenate the two output sequences 𝒉⃑⃑  and 𝒉⃑⃑⃐ (Cui et al., 2018, 

Jahangir et al., 2020).   

During training process, the calibration dataset are fed into LSTM cell, and it will map the potential latent 

relationships (both linear and nonlinear) between input and output variables by updating its weight and 

threshold matrices. The objective cost function for Bi-LSTM to be minimized during training is the Huber 

loss that expresses the mismatch between the reconstructed climate field and the ‘real’ climate field from 

model simulations. We minimize the loss with gradient descent (Goodfellow et al., 2016). Huber loss has 

a key advantage of being less sensitive to outlier values: 

𝐿𝛿(𝒀, 𝑓(𝑿)) = {

1

2
(𝒀 − 𝑓(𝑿))

2

𝛿|𝒀 − 𝑓(𝑿)| −
1

2
𝛿2

 

(2.16) 

where f denotes the neural network and the brackets denote the Euclidean norm. The Huber loss function 

changes from a quadratic to linear when 𝛿 (a positive real number) varies from small to big (Meyer, 2020). 

Huber loss will approach L2 loss when 𝛿 tends to be 0, and approach L1 when 𝛿 tends to be positive infinity, 

here we test its value and finally set 𝛿 1.35. L2 is the square root of the sum of squared deviations and L1 

is the sum of absolute deviations. 

The main mechanism of LSTM is that the LSTM block manages to develop a regulated information flow 

by controlling which proportion of information from the past should be ‘remembered’ or should be 

‘forgotten’ as time advances. By controlling the regulation of the information flow, LSTM will manage to 

learn and preserve temporal characteristics and dependencies of the specific time series. 

Neural network is generally composed of one input layer, several hidden layers and one output layer. Many 

hyper-parameters in the neural network usually need to be initialized and tuned for obtaining reasonable 

results within specific tasks, for instance, activation functions in each layer, objective function for 

minimizing the loss of the network model, and learning rate for controlling the convergence speed of the 

network model (Goodfellow et al., 2016). In our specific CFR experiments, we have explored a range of 

Bi-LSTM architectures, including different network depths, introducing dropout layers, using different 

learning rates, and employing different loss functions to provide a more comprehensive evaluation of the 

Bi-LSTM performance and effectiveness (these tests are shown in Appendix 2B). These hyper-parameters 

within Bi-LSTM are finally selected and employed based on our experimental tests (Knerr, et, al. 1990; 

Kingma and Ba, 2014; Yu, et, al. 2019).   

3 Results 
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We evaluate the reconstruction skill of the different methods based on the Pearson correlation coefficient 

(cc) between each target series and the corresponding reconstructed series, and their Standard deviation 

ratio (SD ratio, SD ratio = SDreconstruction/SDmodel). All the evaluation metrics are calculated in the validation 

period from 850-1899 AD. High values of derived cc indicate better temporal covariance between target 

and reconstructed results, a high SD ratio denotes that more variance is preserved in the reconstructions.  

3.1 North Atlantic-Europe CFRs 

Fig. 2.2 illustrates the CFR results for the North Atlantic-European region employing the 11 ideal-noise-

free pseudoproxies based on the three CFR methodologies and the two climate model simulations. When 

comparing the reconstruction skills across these three CFR methods derived with the same climate model 

(for example, MPI and CESM correspondingly), the spatial cc patterns calculated between targets and 

derived reconstructions amongst three CFR methods generally exhibit similarities. This indicates that all 

three CFR methods show generally reasonable spatial reconstruction skills (mean cc’s over the entire NAE 

are bigger than 0.4). In addition, cc maps in Fig. 2.2 show higher values over regions with a denser pseudo-

proxy network. This confirms the well-documented tendency amongst different multivariate linear based 

regression methods for better reconstruction skill in the sub-regions with denser pseudoproxy sampling 

than in regions with sparser networks (Smerdon, 2010, 2011; Steiger et al., 2014; Evans et al., 2014; Wang 

et al., 2014). The cc pattern of the nonlinear method Bi-LSTM is very similar to that of the linear methods, 

even though the structure of the statistical models is very different. This shows that the nonlinear method 

employed herein has the similar tendency as linear models to obtain better reconstruction skill over regions 

with denser proxy sampling.  

 

Figure 2.2: NAE Reconstruction results of CFR methods (including PCR, CCA, Bi-LTSM : Bidirectional 

long short term memory neural networks) using MPI and CESM numerical simulation as target temperature 

field, all the CFR methods employ the same proxy network with full 11 ideal pseudoproxies which span 
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the same reconstruction period from 850-1899 AD. The employed pseudoproxies geolocations are show in 

white circles in all the sub-figures; CC is Correlation Coefficient and SD represents Standard Deviation 

Ratio. The employed pseudoproxies’ geolocation is shown as white circles in all the sub-figures.  

 

The picture that emerges from the SD ratio is also very similar for the three methods (Fig. 2.2). In the 

regions with a high pseudo proxy density, the SD ratio is high, but outside of the densely sampled areas, all 

three CFR methods experience a similar degree of interannual variance underestimation. Appendix 2C 

displays the ratio of SD after applying a 30-year filter to the reconstructions and the target fields. The 

underestimation of variance is larger at these time scale, but the overall conclusion for all three methods 

remains.  

Gaussian white and red noise is constructed and added to the ideal temperature signal of the 11 

pseudoproxies subsampled from the MPI and CESM models. The corresponding spatial cc and SD ratio 

patterns are displayed in Fig. 2.3 and 2.4 correspondingly. Compared to reconstructions with ideal pseudo 

proxies (Fig. 2.2), a strong degradation of reconstruction skill amongst all CFR methods occurs over the 

entire NAE. The reduction in skill is especially profound in the regions where the pseudo-proxy network is 

denser. Weak reconstruction skill exists over regions where proxies are available and in within their 

proximity. These noise contamination results shown in Fig. 2.3 and 2.4 demonstrate again that the nonlinear 

method exhibit CFR similarities to the linear methods, whereas, the Bi-LSTM show relatively worse 

reconstruction skills, with variance underestimation compared to the other two methods in CESM based 

PPEs (referring to the spatial SD ratio in Fig. 2.4). 

 

Figure 2.3: the same as Figure 2.2, but for employing the full 11 pseudoproxies network with white noise 

contamination. 
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Figure 2.4: the same as Figure 2.2, but for employing the full 11 pseudoproxies network with red noise 

contamination. 

The ratio of reconstructed to target variance after 30-year low-pass filtering is also larger than for the 

interannual variance, but otherwise the patterns share the same properties with the ratios of interannual SD 

(not shown for the sake of brevity). 

In general, all three CFR methods exhibit similar reconstruction performance. Specifically, better skills 

over regions where denser pseudoproxies exist indicates that the spatial covariance patterns learned from 

the training data (in the 20th century) are stationary enough to represent the covariance during the 

reconstruction period over  NAE domain. 

3.2 Northern Hemisphere CFRs 

NH summer temperature anomalies reconstructions based on PPEs using three CFR methodologies and the 

three climate models are displayed in Fig. 2.5-2.7. 

Table 2.1 Skill reconstruction statistics for the Northern Hemisphere mean temperature in the verification 

period for ideal PPEs. The table shows the result for three CFR methods (PCR, CCA and Bi-LSTM) and 

two climate models (MPI and CESM). The numbers in parenthesis indicate the skill statistics of white noise 

and red noise (italics) contaminated PPEs. 

Method 
SD Ratio cc 

MPI CESM MPI CESM 

PCR 0.878(0.904/0.977) 0.874(0.897/0.913) 0.401(0.169/0.135) 0.490(0.216/0.206) 

CCA 0.603(0.706/0.694) 0.651(0.750/0.778) 0.406(0.165/0.131) 0.507(0.229/0.218) 

Bi-LSTM 0.710(0.689/0.669) 0.770(0.714/0.732) 0.347(0.145/0.125) 0.462(0.210/0.191) 

 

The spatial cc maps for the ideal PPEs in NH are shown in Fig. 2.5. Again, all three CFR methodologies 

yield relatively similar spatial cc patterns of skill for each of the climate models employed here. Skilful 

reconstructions are again achieved over regions with a denser pseudoproxy network (over North American 
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and Eurasia regions). In addition, relatively high cc values also occur in tropical regions. A relatively high-

reconstructed skill is achieved over regions with less or without pseudoproxies, indicating that  climate 

teleconnections between tropics and mid-latitude regions could be responsible for the reconstruction skill 

in tropical regions.  

All derived CFRs suffer from underestimation of interannual variance, as shown in Fig. 2.5 and in Table 

2.1, except that the PCR method presents a clearly interannual variance overestimation referring to the 

specific spatial SD ratio map in Fig. 2.5. This overestimation may be impacted by overfitting, since the 

number of predictors is 47 pseudo-proxies and the calibration period spans 100 time steps. The spatial 

distributions of the SD ratio also vary between climate models and CFR methodologies. They also are 

spatially heterogeneous. The CCA method and Bi-LSTM generally preserve more variance over regions 

with denser pseudoproxies in both CESM and MPI model, and a relatively higher SD ratio appeared in 

tropical regions within Bi-LSTM based PPEs shown in Fig. 2.5. 

 

Figure 2.5: NH Reconstruction results of CFR methods (including PCR, CCA, Bi-LSTM: Bidirectional 

long short term memory neural networks) using MPI and CESM numerical simulation as target temperature 

field, all the CFR methods employ the same proxy network with full 48 ideal pseudoproxies which span 

the same reconstruction period from 850-1899AD. The employed pseudoproxies geolocations based on 

TRW are shown in white circles in all the sub-figures; CC is Correlation Coefficient and SD represents 

Standard Deviation Ratio. The employed pseudoproxies’ geolocation is shown as white circles in all the 

sub-figures. 
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Figure 2.6: the same as Figure 2.5, but for employing the full 48 pseudoproxies network with white noise 

contamination.

 

Figure 2.7: the same as Figure 2.5, but for employing the full 48 pseudoproxies network with red noise 

contamination. 

The CCA methodology seems to suffer more strongly from variance losses (see Table 2.1) over the entire 

NH compared to PCR and Bi-LSTM.  

Considering the general methodological skill, as indicated by the derived spatial mean cc and SD ratio 

values in Table 2.1, the Bi-LSTM method presents relatively worse performance with lower mean cc. The 

methods PCR and Bi-LSTM generally outperform the CCA methodology with higher mean SD ratio within 

ideal PPEs. 

3.3 Spatially variability patterns of the reconstructed fields 

In this section, we test the skill of the CFR in replicating the leading spatial patterns of variability, 

conducting an EOF analysis of the reconstructed temperature fields and compare them with the patterns 

derived from the target climate simulations. This type of comparison refers to the tests performed by (Yun 

et al, 2021). In this comparison, the PCA and CCA methods have a clear built-in advantage relative to the 

Bi-LSTM network, since these two methods operate by design in the space spanned by the leading EOFs 
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of the temperature field. In the case of PCR, these reconstructed fields are a linear combination of the EOF 

patterns themselves. Therefore, in as much the reconstructed PC series remain uncorrelated, the EOFs of 

the reconstructed field will be exactly equal to the EOFs of the target climate simulations. Deviations from 

this behaviour may be caused by the lack of strict orthogonality between the reconstructed PC series caused 

by the relationship between proxy (predictors) and the PC series (predictands). However, it is reasonably 

to think that it would not be a priori surprising that the EOFs of the PCR-reconstructed fields would be 

similar to the original EOFs. The case for CCA is theoretically similar, but there are some potentially 

important points to bear in mind. The CCA patterns, which serve as a basis for the reconstructed field, are 

linear combinations of the original EOFs. These linear combinations may, for instance, not include the 

leading EOF of the original field, and thus, the EOFs of the reconstructed field will not replicate the original 

leading EOF, even if the CCA series can be perfectly reconstructed by the proxy series. The third method 

Bi-LSTM is in this sense at disadvantage relative to PCR and CCA, since the spatial covariance of the 

original field is not technically incorporated in its machinery. If the EOF patterns of the reconstructed field 

resemble the original EOF patterns, this would be an indication that the method itself is able to capture the 

main covariance patterns of the original field.  

In order to have a deeper insight for the reconstruction performance of three CFR methods, we calculated 

the four leading EOF patterns based on the results from the reconstruction interval, and their proportion of 

explained variance of the reconstructed field, derived from the three reconstruction methods using the 

CESM pseudo-proxies. The EOF patterns represented in Figure 2.8 confirm the suggestions that the 

temperature reconstructed by the PCR and CCA methods (two lower rows in Figure 2.8) replicate very 

closely the three leading patterns. The fourth EOF pattern displays some divergences from the original 

fourth pattern, but as we will show later, the variance explained by this fourth EOF is already rather low, 

so that the spatial pattern may be subject to statistical noise. More importantly, the Bi-LSTM method 

(second row) does produce EOF patterns than closely resemble the ones derived from the original field. 

This supports the idea that the method is able to replicate the spatial cross-covariance of the temperature 

field. 



 3 Results 

30 
 

 

Figure 2.8: First four EOF patterns of the temperature field derived from for CESM target and derived 

from the temperature field reconstructed by the three methods-based ideal PPEs reconstructions 

The corresponding spectrum of explained variance is displayed in Figure 2.9. Here, the percentage of 

explained variance of each model is calculated as the ratio of the eigenvalue to the total variance of the 

original field. This is definition is in principle similar to the definition adopted by Yun et al. (2021), but 

there is one important difference. Yun et al. (2021), according to their methodological description, calculate 

the portion of explained variance of each mode as the ratio between the eigenvalue and the total variance 

of the respective field (either original or reconstructed). This choice could, however, cause a statistical 

artifact. For instance, when using the PCR regression method, we could choose to reconstruct only the 

leading EOF pattern. This pattern alone will explain 100% of the reconstructed variance by definition, but 

this result would be obviously not informative. The choice of the total variance of the original field as 

reference thus leads to more results that are informative in general. The spectra for model simulation and 

three method-based ideal PPEs in this text are computed as the ratio between each of the first four 

reconstructed eigenvalues and the cumulative sum of all eigenvalues from the target variable.  
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Figure 2.9: Eigenvalue spectra for CESM simulation and three method reconstructions: the spectra for 

CESM simulation and three method-based ideal PPEs are computed as the ratio between each of the first 

four reconstructed eigenvalues and the cumulative sum of all eigenvalues from the  target CESM model 

3.4 An alternative pseudo-proxy network 

In this section, we summarize a few additional experiments using the original locations of the PAGES 

network (Emile-Geay et al., 2017) instead of the filtered network used in previous experiments. In this 

section, we show only one model test-bed, for ideal, white-noise and red-noise pseudo-proxies. The results 

obtained with the MPI-ESM-M model are similar and are, omitted here for the sake of brevity. 

 

Figure 2.10: Summary of the pseudo-reconstructions derived from the CESM model-based pseudo-proxies 

using the original PAGES proxy network. The panels display the maps of the temporal correlation 
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coefficients at the grid-cell level (cc) and the ratio of standard deviations (SD ratio) between reconstructed 

and target temperature field 

The reconstruction skill measured by cc and SD ratio display similar spatial patterns as those obtained with 

network pre-selected according to the criteria of St. George (2014). As shown in Fig. 2.10, the derived 

correlations are generally higher over regions where denser pseudoproxy exits across both ideal and noisy 

PPEs, and weakly reconstructed correlations appeared over pseudoproxies-free regions. The PCR method 

presents a distinct interannual variance overestimation as shown in the specific spatial SD ratio map in Fig. 

2.10 amongst ideal and noisy PPEs, while a clearly interannual variance overestimation also occurs in CCA-

based CFRs in the noisy PPEs. A relatively reasonable SD ratio is revealed in tropical regions within Bi-

LSTM based PPEs shown in Fig. 2.10. In general, high reconstruction skills remain over regions where 

denser pseudoproxy exists based on this additional PAGES 2k pseudoproxy network. 

3.5 Northern Hemisphere and AMV indices 

The evolution of the decadal NH mean temperature anomalies reconstructed by the three CFR 

methodologies and using pseudoproxies from two models is illustrated in Fig. 2.11. All indices have been 

smoothed using a Butter worth low-pass filter to remove temporal fluctuations shorter than 10 years. The 

reconstruction performance varies amongst different the CFR methodologies. We will employ the 

correlation coefficient-cc, standard deviation-SD and root mean square error-RMSE as evaluation metrics 

for NH and AMV indices.   

Table 2.2. cc, SD and RMSE (K) during the verification interval for decadal NH mean temperature derived 

from ideal PPEs. The numbers in parenthesis indicate skill statistics of white and red (italics) noise 

contaminated PPEs. 

Method 
cc SD RMSE 

MPI CESM MPI CESM MPI CESM 

PCR 
0.880 

(0.632/0.302) 

0.871 

(0.532/0.435) 

0.821 

(0.806/0.883) 

0.763 

(0.502/0.688) 

0.086 

(0.143/0.202) 

0.072 

(0.122/0.135) 

CCA 
0.882 

(0.664/0.203) 

0.853 

(0.536/0.262) 

0.704 

(0.647/0.711) 

0.560 

(0.464/0.660) 

0.091 

(0.135/0.187) 

0.086 

(0.122/0.141) 

Bi-lstm 
0.873 

(0.593/0.351) 

0.901 

(0.559/0.394) 

0.561 

(0.513/0.540) 

0.597 

(0.398/0.470) 

0.104 

(0.146/0.173) 

0.076 

(0.122/0.133) 

 

 

Table 2.3. The same as Table 2.2, but for decadal AMV index 

Method 
cc SD RMSE 

MPI CESM MPI CESM MPI CESM 

PCR 
0.819 

(0.577/0.336) 

0.758 

(0.354/0.429) 

0.831 

(0.826/0.961) 

0.753 

(0.602/0.837) 

0.108 

(0.161/0.213) 

0.091 

(0.135/0.139) 

CCA 
0.822 

(0.631/0.288) 

0.777 

(0.457/0.424) 

0.689 

(0.669/0.744) 

0.591 

(0.541/0.766) 

0.110 

(0.146/0.200) 

0.092 

(0.125/0.136) 

Bi-lstm 0.846 0.829 0.623 0.600 0.108 0.084 
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(0.573/0.344) (0.435/0.450) (0.539/0.576) (0.440/0.536) (0.154/0.182) (0.126/0.125) 

 

The temporal evolution of the original AMV indices (Fig. 2.12) differs among the simulations, reflecting 

the different forcings used in each simulation and the model specific contribution of internal variability to 

the index variations (Wagner and Zorita, 2005; Schmidt et al., 2011). Considering the methodological 

performance, all three methods generally achieve good AMV index reconstructions when using perfect 

pseudo-proxies, as shown in each subfigures of Fig. 2.12 and in Table 2.3. 

 

Figure 2.11: mean time series evolution of the validated reconstructions for NH summer temperature 

anomaly using full 48 pseudoproxies based on PCR, CCA, Bi-LSTM CFR methods. All time series have 

been smoothed using a butter worth low-pass filter to remove temporal fluctuations less than 10 years. MPI 

and CESM represent MPI/CESM model simulated ‘true’ climatology. We selected several reconstructed 

extreme cooling period with a shorter interval (each 10 years are selected before and after the specific 

extreme cooling year) and plotted them above each entire reconstruction means amongst models and 

methods. 
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Figure 2.12: The same as Figure 2.11, but for Atlantic Multidecadal Variability (AMV) index. 

The NH and AMV indices derived from more realistic noise contaminated CFRs are shown in Fig. 2.11 

and Fig. 2.12 correspondingly. The larger noise contamination results in substantial skill deterioration (cc, 

SD and RMSD displayed within brackets in Table 2.2 and 2.3). All three methods generally fail to capture 

the complete variance of the target indices, and the magnitude of strong cooling phases is strongly 

underestimated. 

Fig. 2.13 illustrates the comparison of Northern Hemisphere indices power spectral density for both, ideal 

and noise-contaminated PPEs between reconstructions and target models. As indicated in Fig. 2.13, all three 

methods generally underestimate the power density, whereas this underestimation is more significant for 

the noise-contaminated derived PPE.  
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Figure 2.13: North Hemisphere indices power spectral density. 

 

3.6 Probability distributions of reconstructed variables 

Even though the three reconstructions methods tend to underestimate the overall variability when using 

noisy pseudoproxies, an interesting question is their skill in reproducing the probability distributions of the 

climate indices. In particular, a relevant question is whether the methods are able to capture extreme phases 

of those indices. 
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Figure 2.14: Histogram for decadal filtered NH mean index. The x axis denotes temperature anomaly values, 

and y axis is the number of data in each bin. Totally 30 bins are selected to plot each of the histogram. 



 Chapter 2: Evaluation of statistical climate reconstruction methods 

37 
 

 

Figure 2.15: The same as Figure 2.14, but for decadal filtered AMV index. 

Fig. 2.14 and 2.15 display the histogram for the decadal NH mean and AMV indices, respectively. Each 

subfigure represents the histograms of reconstructed temperature indices across the three methods, 

compared with the histograms of the target temperature index. 

Table 2.4. Kolmogorov-Smirnov test statistic and p-value for quantifying the histogram distributions 

between model and reconstructed NH decadal means. Low values of the KS statistic indicate larger 

similarity between the two distributions. The numbers in parenthesis indicate the KS statistic and p-value 

of white and red (italics) noise contaminated PPEs. 

Method 
KS statistic p-value 

MPI CESM MPI CESM 

PCR 0.043(0.074/0.093) 0.009(0.193/0.111) 2e-1(6e-3/2e-4) 3e-4(1e-17/4e-6) 

CCA 0.068(0.081/0.073) 0.171(0.197/0.130) 1e-2(1e-3/7e-3) 6e-14(2e-18/3e-8) 
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Bi-lstm 0.120(0.142/0.112) 0.178(0.241/0.200) 5e-7(9e-10/3e-6) 5e-15(2e-27/5e-19) 

 

 Table 2.5. The same as Table 2.4, but for AMV index. 

Method 
KS statistic p-value 

MPI CESM MPI CESM 

PCR 0.052(0.050/0.086) 0.101(0.143/0.085) 1e-2(1e-1/7e-4) 3e-5(6e-10/8e-4) 

CCA 0.082(0.088/0.083) 0.159(0.163/0.103) 1e-3(5e-4/1e-3) 5e-12(1e-12/2e-5) 

Bi-lstm 0.117(0.154/0.129) 0.172(0.224/0.191) 1e-6(2e-11/4e-8) 4e-14(1e-23/3e-17) 

 

We quantify the distribution similarity between reconstructed and target distributions for both NH and 

AMV indices using the two-sample Kolmogorov-Smirnov test as a metric (Hodges, 1958) (see Table 2.4-

2.5). A smaller value of the KS statistic indicates a stronger overall similarity between the two probability 

distributions. The smallest KS statistic is achieved by the PCR method (see Table 2.4-2.5), confirming the 

impression that the PCR outperforms the other two methods for indices reconstructions in both the ideal 

and noise contaminated PPEs.  

For perfect pseudoproxies, the PCR reconstruction seems to capture the overall target distribution best. It 

captures the lower tail better than CCA and the upper tail better than CCA and Bi-LSTM. The differences 

between the methods become smaller for the reconstructions with noisy pseudo proxies, with the PCR still 

being better than the other two methods (subfigures for the contaminated PPEs in Fig. 2.14 and 2.15). The 

Bi-LSTM performs worst in capturing the lower and upper tails of distribution amongst the three methods, 

both for the NH mean and the AMV index.  

3.7 Alternative architectures of the Bi-LSTM method 

Although the design of machine-learning methods may be guided by the physical considerations, machine-

learning methods are still to a large extent a matter of trial and error. The same complexity of the method 

hinders the disentangling of the causes as to why the methods behave in a certain way.  Here, we explore 

alternative architectures of the Bi-LSTM method to assess the resoluteness of the conclusions drawn from 

the basic design. We have explored varying network depths (number of layers), different learning rates, and 

different cost-functions to optimize the network parameters, among others. A summary of the results is 

included in the Appendix 2B.  

We could not recognize systematic effects in the skill in this set of different networks designs.  The skill 

varies rather randomly, and probably the identification of optimal network architectures for this specific 

reconstruction question may not be extrapolated to other applications in paleoclimate. We settled for this 

application, on a heuristic basis, on  an architecture with 2 hidden layers,  4000 hidden nodes, with a learning 

rate of 10-3, with the  activation function leaky relu, a batchsize of 20 and the Huber loss function. 

4 Discussion 
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4.1 Nonlinear method performance  

Our initial hypothesis was that a more sophisticated model might be able to better capture relationships that 

are more complex. For instance, a linear model cannot capture non-linear links outside a narrow range of 

variations. Artificial neural network is a subset of machine learning method that can be understood as a 

universal approximator, which can map and approximate any kind of functions by selecting a suitable set 

of connecting weights and transfer functions (Hornik et al., 1989). Thus, it is reasonable to assume that a 

better representation of the links between proxy series and climate fields, and thus a better reconstruction 

performance, might be achieved. 

The Bi-LSTM method is the most complex of the three tested in this study. Among them, it is also the one 

that aims at capturing the serial dependencies. Our hypothesis was that better reconstruction skill could be 

achieved by the Bi-LSTM method. However, this is not the case in our pseudoproxy experiments. For the 

spatially resolved NAE fields, the nonlinear Bi-LSTM method achieves a similar skill as the linear PCR 

and CCA methods, both with ideal and noisy PPEs (see Fig. 2.2-2.4).  

For spatially resolved NH field, the PCR overestimates the variabilities both in ideal and noisy PPEs (see 

spatial SD ratio maps in Fig. 2.5-2.7 and mean statistics skills Table 2.1), and the CCA method shows 

relatively lower overestimatied varaince in noisy PPEs, the Bi-LSTM presents relatively reasonable 

reconstructions without clearly overestimation both in ideal and noisy PPEs (see Fig. 2.5-2.7 and Table 2.1). 

Amongst ideal PPEs across two models, the PCR is generally the best method among the three methods, 

and the nonlinear Bi-LSTM is second best method with higher SD ratio and worse cc than CCA method 

(see Fig. 2.5-2.7 and mean skill statistics in Table 2.1). Whereas, both PCR and CCA exhibit overestimated 

variability reconstructions within noisy PPEs, the Bi-LSTM presents relatively robust reconstructions 

especially without variance overestimations in noisy PPEs (see Fig. 2.5-2.7 and mean skill statistics in 

Table 2.1). 

For the area-mean indices, all three methods exhibit again generally similar skill. Nevertheless, the Bi-

LSTM more strongly underestimates the amplitude of variabilities, and especially over some extreme 

cooling phases than PCR and CCA. This underestimation is also generally model dependent (see different 

reconstructed performances in Fig 2.11-2.12). In general, the PCR methods achieved the best performance 

both in extreme cooling signal capture and indices reconstructions across two models and amongst three 

methods. The power spectral density plots in Fig. 2.13 provide a deep insight about these different 

reconstruction performances in NH temperature indices. 

The general inability to capture the cooling extreme signals prior to 20th century indicates that the Bi-LSTM 

is not good at extrapolating to temperature ranges beyond the training set – a phenomenon that is intrinsic 

to most machine learning (ML)-based methods.  
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Therefore, compared with linear methods PCR and CCA, neural network model did not show clear 

advantages. The performance of the Bi-LSTM might be further improved by optimizing the architecture 

and parameters of the network, including the type of objective function, type of neural activation function, 

network optimization function, number of hidden layers, the model-learning rate etc. At this point, it would 

be quite natural to consider whether the selection/settings of these hyper-parameters in our study is optimal, 

and also to what extent the reconstruction skill is sensitive to changes in the hyper-parameters. Nadiga 

(2020) pointed out that the skill of some machine learning-methods are strongly dependent on these hyper-

parameters. Machine learning methods include an extensive range of complexity, and therefore it remains 

an open issue as to which ML techniques are most or relatively suitable for paleoclimate. It is not clear how 

the structure of the machine-learning methods can be systematically optimized. At the moment, there is still 

a considerably amount of ‘trial and error’ in the design and connection of the neural layers. Here, we have 

tested the Bi-LSTM network with several different architecture settings, and finally decided a relatively 

optimal architecture with two separated hidden layers, and evaluated its performances on CFR experiments, 

which could be a preliminary try. Our first implementation of the more complex Bi-LSTM does not show 

superiority in CFRs, at least in our specific experiments, compared to traditional CFR methods, so we would 

like to draw an assumption that more complicated architecture might not be helpful for CFRs. In addition, 

a degradation of out-of-sample performance may well be expected when a limited dataset is used to train a 

neural network model (Najafabadi et al., 2015). Nevertheless, we would like to point out to other methods, 

such as an Echo State Network (ESN, Lukosevicius and Jaeger, 2009; Nadiga, 2020) for paleo climate 

research. Both ESN and LSTM belong to the family of RNN, yet ESN is much simpler than LSTM 

(Lukosevicius and Jaeger 2009), and has outperformed the RNN methods in other applications 

(Chattopadhyay et al., 2019; Nadiga, B. 2020). 

Another reason to consider machine-learning methods is the non-linearity of the link between proxies and 

climate fields. In this particular application with pseudoproxies, the implied link is probably close to linear. 

However, these can be different on other cases. And it might be the case for more complex problems, (i.e. 

the reconstruction of proxy-precipiation fields or other modes of natural variability such as the NAO or 

ENSO). As such, ML methods should not a-priori be excluded from the portfolio of CFR methods leading 

to more skilful reconstructions of climate. 

4.2 Model and pseudoproxy network dependency 

The evaluation of the reconstruction skill seems to depend as much on the reconstruction method as on the 

underlying climate model simulation from which the pseudoproxies were generated. The differences in skill 

for the same method with different climate model data is of the same order as the differences in skill for the 

different methods with the same climate model data. The performance of the method does not seem to 
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depend on the domain of the reconstruction. The reconstructions behave generally similar for the NAE, 

nevertheless, show some differences in the NH test cases, especially in the derived SD ratio patterns. 

Considering the effects of noise contamination on the methodological performance, both PCR and CCA 

method exhibit overestimation in the amplitude of reconstructed variability (see SD ratio patters in Fig. 2.9-

2.10 and mean skills in Table 2.1). However, all methods suffer from lower correlation coefficients in the 

more realistic PPEs (white and red noise contaminated PPEs). The nonlinear Bi-LSTM is more strongly 

impacted by the noise contamination (Table 2.1).  

From the perspective of the spatial coverage of the proxy network, the spatial cc and SD ratio patterns 

(except PCR method) reveal reconstruction skill over the entire NH regions, although this skill is weaker 

in areas more poorly sampled by the pseudo-proxy network (spatial cc patterns in Fig. 2.5-2.7). Interestingly, 

the tropical regions do show some reconstruction skill especially in the derived reconstructions based on 

Bi-LSTM (spatial SD ratio patterns in Fig. 2.5-2.7), although almost no pseudo-proxies are located in the 

Tropics. This result indicates the climate teleconnections between tropics and mid-latitude regions could 

lead to some indirect skill. However, the proxy networks and noise scenarios constructed in the context are 

certainly not able to mimic/simulate the full range of characteristics completely for climatic proxies in the 

real world.  

5 Conclusion 

A nonlinear Bi-LSTM neural network method to reconstruct North Atlantic-Europe and Northern 

Hemisphere temperature fields was tested with climate surrogate data generated by simulations with two 

different climate models. Compared to the more classical methods of linear Principal Components 

Regression and Canonical Correlation Analysis, the NAE and NH summer temperature field could be 

reasonably reconstructed using both linear and nonlinear methodologies referring to spatial cc metric. In 

the relatively larger spatial region-NH temperature field, more discrepancies of reconstructions appeared 

amongst different climate models and methods based on the derived spatial SD ratio metric. The 

conclusions drawn from this study can be summarized as follows: 

1) In general, all three methods display similar skills when using ideal (noise-free) pseudoproxies, while in 

the more realistic PPEs (noise contaminated PPEs), both PCR and CCA method exhibit an overestimation 

on temperature variance preservation, in contrast to the nonlinear Bi-LSTM.  

2) The pseudoproxy networks used in this study were mostly located in the extratropical regions with only 

three proxies in the tropical area. All CFR methodologies produce generally good reconstructions in regions 

where dense pseudoproxy networks are available. Moreover, teleconnections are explored by these CFR 
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methodologies, leading to some weak spatial reconstruction skills outside of the proxy-sampled regions, 

for instance the tropical region. 

The classical linear-based PCR method generally outperforms the Bi-LSTM and CCA method in both 

spatial and index reconstructions.  

3) Here, we could draw a general conclusion that nonlinear artificial neural network method Bi-LSTM 

employed herein is not superior for CFR reconstructions, at least in our PPEs. In general, Bi-LSTM show 

worse skill in spatial and temporal CFRs than PCR and CCA, also in capturing extremes. Yet, it is advisable 

to employ a larger set of nonlinear CFR methods to evaluate different model structures, and further test 

their performance on CFRs.   
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Chapter 3: Evaluation of the Bilinear Long-Short-Term-Memory 

and Echo State Network Methods 

Evaluation of the Bilinear Long-Short-Term-Memory and 

Echo State Network machine learning methods to 

reconstruct the Northern Hemisphere summer temperature 

Manuscript (to be) submitted to Climate of the Past (Zhang et al., 2022b)  

Summary 

In order to compare the performance between linear regression and machine learning methods for climate 

field reconstruction, we employed four different methods to reconstruct Northern Hemisphere summer 

temperature field over last millennium. Two employed method including Principal Component Regression 

(PCR) and Canonical Correlation Analysis (CCA) are classical linear regression methodologies, while the 

rest two methods including Bidirectional Long-short-term-memory neural network (Bi-LSTM) and Echo 

State Network (ESN) belong to the family of machine learning methodology. In PCR and CCA, a general 

assumption is usually applied before driving reconstructions, which is several dominant climate patterns 

are assumed constant with time, whereas no assumptions need to be accounted in the two machine-learning 

methods. Furthermore, Machine-learning methods, especially the neural network methods, can provide 

superiorities in nonlinear function mapping tasks, it could incorporate some underlying nonlinearities in 

temperature variability. Based on ideal and noise-contaminated Pseudoproxy reconstruction experiments 

(PPEs) in the context, the ESN shows superiorities in preservation more temperature variance compared to 

other three CFR methods, and presents outperformance in capturing some extreme cooling events in the 

reconstructed temperature indices. Generally, the ESN method employed herein PPEs show a certain degree 

of superiorities both in hemispheric temperature field and indices reconstructions. 

1 Introduction 

Climate field reconstructions play an important role in understanding climate variability and evolution. For 

instance, paleo temperature field reconstructions could provide us with an expanded and clear data basis 

for better understanding of the past temperature evolution. Learning from the past could provide us with a 
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broader perspective to better predict the future (Mann and Jones, 2003; Jones and Mann, 2004; Jones et al., 

2009; Schmidt, 2010; Evans et al., 2014; Smerdon and Pollack, 2016; Christiansen and Ljungqvist, 2017). 

Nevertheless, observational or instrumental climatic records are only available back to the 19 century, so 

that there is a need to produce climate reconstructions from indirect proxy records (such as ice core, coral, 

sediments. Jones and Mann, 2004). 

Past climate reconstructions are usually derived by employing statistical methods that translate the proxy 

information in units of physical environmental variables. However, these statistical methods can add errors, 

additional statistical uncertainty and bias to the reconstructions. In addition, the variations of proxy records 

are also caused by non-climate factors that blur the true climate signal in them. Both the non-climatic 

variability signals from proxy records and uncertainties from reconstruction methods can introduce 

statistical bias and uncertainties into the final climate reconstructions.  

In order to estimate these potential deficiencies of climate reconstructions, pseudo-proxy experiments are 

proposed (PPEs, Smerdon, 2012, Gómez-Navarro et al, 2017). Using PPEs, climate reconstructions 

methods can be tested in a controlled situation provided by numerical simulations with Earth System 

Models. These state-of-the-art climate models can provide virtual climate trajectories with a physical 

consistence perspective for climate reconstructions. The impact of selected proxy network, the climate 

signal originated from proxy records and the reconstruction performance of statistical methods can then be 

evaluated in the virtual reality of climate simulations.  

Amongst many statistical reconstruction methods, several common deficiencies have been identified, for 

instance a general tendency to ‘converge to the mean’; this can lead to an underestimation for reconstructing 

the total climate variability. Specifically, when the availability of proxy information - the climate signal 

included in proxy records is limited, this underestimation will be more significant. Besides, the limited 

spatial coverage of proxy network might result in biased reconstructions (Evans et al., 2014; Wang et al., 

2014; Po‐Chedley et al., 2020; Amrhein et al., 2020). Consequently, significant scope remains for 

evaluating and developing CFR techniques furtherly to mitigate those common deficiencies (Christiansen 

and Ljungqvist, 2017).    

In present study, we employ and test a non-linear CFR method, which belongs to the family of machine 

learning, an Echo State Network (ESN). We compare the reconstruction performance of this ESN method 

with a Bidirectional Long Short-Term Neural Network (Bi-LSTM) that we have tested in a previous 

publication, and also with two traditional linear regression methods: Principal Component Regression and 

Canonical Correlation Analysis. These two linear regression methods employed in CFRs are usually 

established with an assumption that the relationship between target climate fields and local variables 

captured by indirect proxy records is linear and temporally stable. For instance, the spatial patterns of 
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surface temperature field is usually considered as stationary. Nevertheless, climate system is chaotic and 

dynamic, it means that many underlying nonlinearities/uncertainties existed in climate evolution systems, 

and many links and relationships between climate fields can be highly non-linear (Dueben and Bauer, 2018; 

Schneider et al., 2018; Huntingford et al., 2019; Nadiga, 2020). The machine learning methods which have 

been demonstrated with highly non-linear mapping capability, for example, Artificial Neural Network, 

could help us to better capture the underlying relationships between targeted climate fields and proxy 

records (Schneider et al., 2018; Rasp and Lerch, 2018; Rolnick et al., 2019; Chattopadhyay et al., 2020; 

Huang et al., 2020; Nadiga, 2020; Lindgren et al., 2021). In addition, machine learning methods do not 

necessarily require previous preprocessing methods, such as Principal Component Analysis (PCA), to 

firstly extract several dominant climate patterns. In principle, the inherent variability of original climate 

field dataset is dynamically captured in Machine-learning methods with the optimized hyper-parameters 

during training procedure (Goodfellow et al., 2016).  

From the available linear and nonlinear methods that we could have employed for CFRs experiments, 

recurrent neural networks (RNNs) could be a potentially candidate with the objective of better 

reconstructing the true climate variability, because they have been demonstrated to be able to learn the 

serial correlations (Bengio et al. 1994). Nevertheless, RNNs usually only learn short-term serial correlation 

(Bengio et al. 1994). The Bi-LSTM network also belongs to the category of RNN, and it has been 

demonstrated that the Bi-LSTM is able to learn and remember long-term temporal dependencies from 

sequential dataset (Hochreiter and Schmidhuber, 1997).  

The Echo State Network (Maass et al., 2002; Jaeger, 2001) introduces a novel paradigm into traditional 

RNNs’ training process, of which an RNN (usually refer to as reservoir) is randomly generated in the 

hidden-reservoir layer and only the output part (so called readout) of this ESN method is trained. In general, 

this new paradigm is known as reservoir computing (Pathak et al., 2018; Chattopadhyay et al., 2020; 

Arcomano et al., 2020), which greatly outperforms the classical RNNs in different regression and 

classification tasks, and promotes the practical applications of RNNs (Chattopadhyay et al., 2020; Huang 

et al., 2020; Nadiga, 2020). One more import reason for employing ESN in our study is that despite a 

number of successful applications of RNNs, it has been revealed that RNNs are difficult to train based on 

gradient descent (Bengio, et al. 1994; Pascanu et al., 2013). All model parameters of RNNs are gradually 

changed and optimized within training processes, which may result in poor convergence properties. Besides, 

the model parameter updates can be computationally expensive during training processes, which also leads 

to unnecessary long training times. The ESN method was proposed for mitigating these previously 

mentioned shortcomings of RNNs. The ESN usually consists of three layers, the input layer for 

incorporating data information, the hidden layer - the reservoir layer for mapping input data information 

into a nonlinear high dimensional feature space, and the output layer - readout of which the desired output 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020MS002290#jame21316-bib-0041
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020MS002290#jame21316-bib-0027
https://npg.copernicus.org/articles/27/373/2020/#bib1.bibx66
https://npg.copernicus.org/articles/27/373/2020/#bib1.bibx66
https://gmd.copernicus.org/articles/15/2221/2022/#bib1.bibx3
https://gmd.copernicus.org/articles/15/2221/2022/#bib1.bibx3
http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
https://npg.copernicus.org/articles/27/373/2020/#bib1.bibx64
https://npg.copernicus.org/articles/27/373/2020/#bib1.bibx64
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information is derived as a linear combination of reservoir’ signals. Unlike RNNs, all the parameters in 

input and reservoir layer are fixed in the initialization process, and only the readout parameters needs to be 

trained and tuned by a least square linear regression, which can reduce the convergence time significantly, 

and mitigate potential uncertainties in training processes. Our underlying assumption, to be tested in this 

study, is that this property of ESN might lead to the reconstruction variance and to computationally more 

efficient reconstructions. Our working hypothesis is, that a more simplified type of RNN might better 

replicate past variability and perhaps even more so for extreme values compared to a more complicated Bi-

LSTM method. We would like to test whether this property of the ESN is helpful for paleoclimate research, 

especially when calibration/training dataset is limited , as it is in real reconstruction (Najafabadi et al., 2015). 

In addition, it has been demonstrated that ESN can present some superiorities in spatiotemporal chaotic 

system predictions (Pathak et al., 2018; Chattopadhyay et al., 2020; Arcomano et al., 2020). To our 

knowledge, the ESN method is applied for the first time in the context of paleo CFRs.  

In CFRs experiments for evaluating different statistical reconstruction methods, we focus on the Northern 

Hemisphere summer temperature anomalies, and we evaluate the reconstruction skills for both spatially 

resolved summer temperature anomalies and spatially averaged temperature anomalies derived from the 

reconstructed spatial fields. The reconstruction of mean temperature indices could provide a general 

evaluation of the skill to reconstruct extreme temperature phases (e.g. related to volcanic eruptions), which 

could also provide as benchmarks to assess the potential performance of CFR methods for those anomaly 

reconstructions.  

In this present study, a new Northern Hemisphere Tree Ring Network Development database (NTREND), 

a relatively small, but highly temperature-sensitive tree-ring proxy network (Wilson et al., 2016; 

Anchukaitis et al., 2017), is mimicked for testing the performance of different CFR methods. An unscreened, 

large collection of proxy network generally results in a relatively lower reconstruction performance, while 

a small expert-selected extensive proxy records distributed in high-latitude region can provide a skillful 

extratropical temperature field reconstruction but might not be expected to provide additional climatic 

information for other regions (Franke et al., 2020). Nevertheless, combing and merging all available proxy 

records and leaving the weighting to a statistical reconstruction method might generally not provide optimal 

results (Franke et al., 2020). Thus, in our study, we mirror the NTREND tree ring records which consists 

of the sites of 54 records (tree-ring-width, maximum wood density or, blended) selected and filtered by 

dendrochronological experts to be the best temperature-sensitive proxies (Wilson et al., 2016). That is to 

say, they are our highest quality, but low quantity tree ring collection dataset with the least spatial coverage. 

Considering the networks of real proxies used so far, St. George and Esper (2019) reviewed contemporary 

studies on previous NH temperature reconstructions based on tree rings (Mann et al., 1998, 2008, 2007, 

2009a, 2009b; Emile-Geay et al., 2017). They made a general conclusion that the present generation of tree-

https://npg.copernicus.org/articles/27/373/2020/#bib1.bibx66
https://npg.copernicus.org/articles/27/373/2020/#bib1.bibx66
https://gmd.copernicus.org/articles/15/2221/2022/#bib1.bibx3
https://gmd.copernicus.org/articles/15/2221/2022/#bib1.bibx3
https://cp.copernicus.org/articles/16/1309/2020/#bib1.bibx9
https://cp.copernicus.org/articles/16/1309/2020/#bib1.bibx9
https://cp.copernicus.org/articles/16/1309/2020/#bib1.bibx9
https://cp.copernicus.org/articles/16/1309/2020/#bib1.bibx9
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ring proxy based reconstructions exhibit high correlations with seasonal hemispheric summer temperatures 

and display relatively better skills in tracking inter-annually climatic variabilities and decadal fluctuations 

than former proxy networks, as also found by Wilson et al., (2016) and Anchukaitis et al., (2017).  

Climate model simulations can provide paleoclimate reconstructions as test bed for evaluating both method 

and model dependencies in real and pseudoproxy CFR experiments (Smerdon et al., 2011, 2012, 2015; 

Amrhein et al., 2020; Parsons et al., 2021). Thus, we use three comprehensive Earth System Models (ESMs) 

which can serve as ‘numerical laboratories’ to evaluate the performance of four CFR methods employed in 

our study. The Max-Planck-Institute climate model MPI-ESM-P, the Community Climate System Model 

CCSM4, and the Community Earth System Model CESM1-CAM5, totally three model simulations are 

employed as surrogate climatic database for setting up PPEs in this context.   

2 Data and Method 

2.1 Data 

2.1.1 Proxy Network 

We construct the pseudoproxies using the simulated grid-point summer mean temperature time series 

originated from three climate model outputs over the past millennium. In this study, totally 30 tree ring 

based proxy locations across extratropical Northern Hemisphere region are filtered and selected from the 

sites of NTREND network. The original NTREND network was trimmed down by rejecting and removing 

sites in which the tree ring records did not show strong and clear climatic signals. Specifically, 30 

dendrochronology locations are filtered and selected according to Figure 4 of Anchukaitis et al., (2017) 

which illustrates the field correlation coefficient between dendroclimatological proxy records and summer 

mean temperature field. The field correlations between each proxy and the mean temperature field at most 

of the retained grid-cell locations is generally higher than 0.4. Figure 3.1 illustrates the spatial distribution 

of tree ring proxy we employed in our context. 
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Figure 3.1: 30 real Tree ring Proxies remained after removing uncorrelated and weakly correlated (Figure 

4  in Kevin J. Anchukaitis et al., 2017 indicated at some proxy sites where the local proxy response to MJJA 

is weak (e.g. locations in east Asia, Yakutia, and ring width-only chronologies from the North American 

treeline) proxies from 54(ntrend2015 from Kevin J. Anchukaitis et al., 2017 

2.1.2 Climate models 

In this study, we employ three climate model simulations as test bed for evaluating CFR methodologies. 

The first climate is the Max-Planck-Institute Earth System model MPI-ESM-P with a spatial horizontal 

resolution of about 1.9x1.9 degree. The simulation spans the period 100 BC to 2000 CE. It consists of the 

ocean model MPI-OM (Jungclaus et al., 2013), the spectral atmospheric model ECHAM6 (Stevens et al., 

2013), the bio-geophysical model HAMOCC (Ilyina et al., 2013) and the land model JSBACH (Reick et 

al., 2013). Nevertheless, the present simulations based on MPI-ESM-P does not officially belong to the 

CMIP5 project. The driven forcings utilized in this simulation and additional technical setting ups are 

explained in the Appendix 2A. The second climate model employed in our PPEs is a Paleoclimate model: 

Community Earth System Model CESM1-CAM5 originated from National Centre for Atmospheric 

Research (NCAR) (Otto-Bliesner et al., 2016) with a spatial resolution of 2.5x1.9 degree 

(https://www.cesm.ucar.edu/projects/community-projects/LME/). In In these simulations, the CESM-

CAM5-LME model covers the period from 850 CE to 2006 CE based on reconstructed climatic forcing for 

the land use conditions, transient evolution of aerosols, solar irradiance, orbital parameters, greenhouse 

gases and volcanic emissions, following the CMIP5 climate forcing reconstructions (Schmidt et al. 2011). 

CAM5 as the atmosphere model used in CESM1 (Hurrell et al., 2013) is a significant advancement of 

CAM4 model (Neale et al., 2013). We employ the last simulation member, 13th from the Last Millennium 

Ensemble. The third climate model employed in this study is the Community Climate System Model 

https://www.cesm.ucar.edu/projects/community-projects/LME/
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CCSM4 model (Gent et al., 2011) of which the ocean model (POP2/Smith et al., 2010), the land (CLM4/ 

Lawrence et al., 2012), the sea ice model (CICE4/Hunke et al., 2008) and atmosphere (CAM4/Neale et al., 

2013) are used as its components. One point needs to be emphasized is that the CESM1-CAM5 uses the 

same land, ocean and sea ice models as CCSM4 (Hurrell et al., 2013). CCSM4 model has a spatial resolution 

of 1.25x0.9 degree. In this study, the simulations labelled past1000 and r1i1p1 originated from CMIP5 pool 

are utilized; the past1000 simulations cover the period from 850 CE to 1849 CE and the historical simulation 

spans the period from 1850 CE to 2005 CE. The past1000 and historical simulations are concatenated 

together for our PPEs in this study. The driven forcing and boundary conditions follow the PMIP3 protocols 

(Schmidt et al. 2011). 

2.2 Method 

2.2.1 Construction of Pseudo-proxies network 

The general methodology to prepare pseudoproxy climatic dataset from climate simulations is to subsample 

the model simulated time series at selected grid-cell which are co-located with the real tree ring proxy 

locations. In order to mimic real climate situation, we usually introduce random noise to contaminate the 

subsampled simulated time series, so that the correlations between the contaminated and original 

subsampled temperature time series can resemble the typical real proxy-temperature correlations. This 

correlation parameter can be modulated and adjusted in the pseudo record by adding an amount of random 

noise to simulated temperature. Ideal/perfect pseudoproxies only consist of model simulated temperature 

signals, Gaussian white noise is then introduced to contaminate the ideal Pseudoproxies temperature signals 

for setting up a more realistic PPEs. In this study, the percent noise by variance (PNV, Smerdon, 2012; 

Wang et al., 2014) is employed to define the noise level convention. The PNV indicates the ratio between 

added noise variance and total variance of resulting the pseudo-proxy time series. 

𝑃𝑁𝑉 = 𝑁𝑉𝐴𝑅 (1 + 𝑁𝑉𝐴𝑅)⁄  
(3.1) 

In general, real proxy records usually contain some temporal gaps and may span with different time period. 

For the sake of simplicity, we assume that the pseudoproxy data has no temporal gaps and cover the same 

whole period of simulations, and also an uniform distribution of noise is assumed throughout the whole 

pseudoproxy network. 

We split the dataset employed herein for constructing PPEs into calibration period that covers 1900-1999, 

and validation period that covers 850-1999. All statistical metrics in the following sections are derived 

against the validation period from 850-1999.  
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2.2.2 Principal Component Regression 

In order to reduce the dimensionality and reduce the risk of overfitting in processing high dimensional 

spatiotemporal dataset, we employ a statistical data preprocessing method, the Principal component 

analysis (Hotelling, 1957; Luterbacher et al., 2004; Pyrina et al., 2017), to decompose the original dataset 

into several new variables that can ideally represent a certain part of the total variability of the original 

climate field. In general, the dominant variability of original climate field can be described by several 

principal empirical orthogonal functions (EOFs). Combined with corresponded principal components (PCs), 

these EOFs time series could describe a major part of climate field variability. In this study, we retained 

several PCs that can capture 90% of the cumulative temporal variance of original climate field. The 

predictands in PCR are those PCs time series derived by PCA of the original climate field dataset. Based 

on the derived PCs and the empirical orthogonal functions-EOFs pairs from calibration dataset, we establish 

a desired linear regression relationship between proxy dataset (the predictors) and the PCs (the predictands), 

and then the desired PCs in validation period can be regressed by employing the estimated regression 

coefficients. The fully desired climate field is then reconstructed by using the linear combination of their 

corresponding EOFs and the regressed PCs.  

We want to train a linear function to get appropriate equation parameters so as to map the relationship 

between predictors and predictants. Given a set of input climate field xt, the t represents each time step, and 

at time step t input xt can be decomposed: 

𝒙𝑚,𝑡 = ∑ 𝑃𝐶𝑛,𝑡

𝑘

𝑛=1

𝑬𝑶𝑭𝑚,𝑛 

(3.2) 

where t indicates the time index, m represents the grid point index of climate field, and k is the total retained 

numbers of PCs. 

The relationship between input proxies and desired climate field is built up by the following equation: 

𝑃𝐶𝑛,𝑡 = ∑ 𝜔𝑛,𝑚𝑃𝑟𝑜𝑥𝑦𝑚,𝑡
𝑗
𝑚=1 + 𝜀  (3.3) 

where 𝜔 is the coefficient of the linear function,  j represents the total numbers of proxies and 𝜀 is a residual 

term. In general, this residual term can be an unobserved random variable that will add noise to the linear 

function between targeted climate information (the proxy or pseudoproxy) and the dependent variable (PCs), 

in addition, it will involve all effects that are not related to the dependent variable on the desired regressors 

(Christiansen, 2011). Ordinary Least Square is employed to estimate the parameters 𝜔. 

In our PCR method, it is assumed that the temperature-sensitive proxies are linearly related with the derived 

PCs. The desired PCs in the validation will be reconstructed assuming that the linear coefficients calculated 

in Eq. (3) are constant in time: 
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𝑃𝐶̂𝑛,𝑡 = ∑ 𝜔𝑛,𝑚𝑃𝑟𝑜𝑥𝑦𝑚,𝑡

𝑗

𝑚=1

 

(3.4) 

The final desired temperature field 𝑥 will be calculated by the linear combination of the reconstructed 𝑃𝐶̂ 

with the derived EOFs originated from the calibration dataset, thus the hypothesis is that the derived 

temperature EOF patterns remain constant in time (Gómez-Navarro et al., 2017; Pyrina et al., 2017).  

2.2.3 Canonical Correlation Analysis 

Similar to PCA method, CCA also belongs to an eigenvector method, it decomposes the total variance of 

the climate fields as a linear combination of amplitude time series and their corresponding spatial patterns. 

In contrast to PCA of which the final object is to derive several new variables that are the eigenvectors of 

the cross-covariance matrix of climate fields for maximizing the explained variance, the CCA maximizes 

the temporal correlation of the relevant amplitude time series to construct pairs of predictor-predictand. 

These predictor-predictand variables are usually derived by calculating the inverse of the covariance 

matrices of each climate field. Besides, these calculated matrices can be pseudo-degenerate which usually 

leads to numerically unstable calculation processes. Regularization can be introduced to mitigate this 

unstable calculation by first projecting the original climate field onto several leading EOF patterns 

(Widmann, 2005; Pyrina et al., 2017), which also can help to reduce the number of degrees of freedom and 

eliminate underlying noise variance. A relatively small number of pattern pairs with high correlation will 

be retained by this dimensional transformation. In this study, we keep the number of PCs than can capture 

at least 90% cumulative temporal variance of target climate field. The canonical coefficients (CCs) time 

series and canonical correlation patterns (CCPs) for both target climate field and proxy can be derived by 

employing retained PC time series as input variables of CCA. The desired climate field can be reconstructed 

by a linear combination of the CCs with CCPs for each time step t: 

𝒙𝑚,𝑡 = ∑ 𝐶𝐶𝑛,𝑡
𝑓𝑖𝑒𝑙𝑑

𝑙

𝑛=1

𝑪𝑪𝑷𝑚,𝑛
𝑓𝑖𝑒𝑙𝑑

 

(3.5) 

𝑷𝒓𝒐𝒙𝒚𝑚,𝑡 = ∑ 𝐶𝐶𝑛,𝑡
𝑝𝑟𝑜𝑥𝑦

𝑙

𝑛=1

𝑪𝑪𝑷𝑚,𝑛
𝑝𝑟𝑜𝑥𝑦

 

(3.6) 

Proxy denotes the desired proxy time series, and l indicates the number of CCA pairs. The canonical 

correlation represents the correlation between each pair CC (proxy and climate field), which can be derived 

by the square root of CCA-eigenvalues. Thus, once each CCproxy(t) is derived from the input proxy data 

through the validation interval, the relevant CCfield(t) can be estimated as proportional to CCproxy(t) , since 

there are no correlation between the different CCn
proxy(t). The final desired climate field can be reconstructed 

by linear combination of CCfield(t) and CCPfield(t) with an assumption that the dominant CCPs of climate 

variability are stationary in time. 
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2.2.4 Bidirectional Long short-term memory neural network 

We employ here a Bidirectional Long short-term memory neural network (Bi-LSTM), as one of nonlinear 

machine leaning method, for testing its capacity in reconstructing climate fields. The LSTM network is able 

to capture the potential information of the serial co-variability involved in climate data, which, especially 

in tacking with temporal climate dataset, can thus provide a suitable alternative CFR method.   

From the available CFR methods that we could employ, recurrent neural networks (RNNs) are potentially 

an appropriate candidate with the objective of better reconstructing the true climate variability, because 

they can learn the serial correlation. In general, RNNs learn only the short-term serial correlation (Bengio, 

et al. 1994). Bi-LSTM is a special type of RNN, which it has been demonstrated that it is capable of learning 

and capturing long-term dependencies from a sequential dataset (Hochreiter & Schmidhuber, 1997). The 

Bi-LSTM combines two independent LSTMs together, which allows the network to incorporate both 

backward and forward information for the sequential time series at every time step. We would like to test 

this property of the Bi-LSTM for paleo climate research based on our experiments. In principle, a LSTM 

network could exploit the temporal autocorrelation present in the time series to ameliorate this 

underestimation and perhaps also provide more realistic spectral properties of the reconstructed time series. 

 

Figure 3.2: the bidirectional structure of the Bi-LSTM network 

The training process of this network is achieved by feeding it with sequential data iteratively, backwards 

towards the past and forwards towards the future. Both backward and forward assimilations are derived by 

two individual LSTM layers, which are then connected and merged to the same output layer. Figure 3.2 

shows the general structure of the Bi-LSTM method. Given a set of predictor-predictand pairs (Xt, Yt), our 

final object is to train a nonlinear function: 

http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
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Y𝑡̃ = 𝐹(𝑿)  (3.7) 

The objective function employed in our CFR experiments for Bi-LSTM to be minimized during training 

process is the Huber loss that denotes the mismatch between the target climate field and the reconstructed 

climate field from simulations. The loss is minimized with gradient descent (Goodfellow et al., 2016). In 

addition, Huber loss can provide a key superiority that can be less sensitive to outliers: 

𝐿𝛿(𝒀, 𝑓(𝑿)) = {

1

2
(𝒀 − 𝑓(𝑿))

2

𝛿|𝒀 − 𝑓(𝑿)| −
1

2
𝛿2

 

(3.8) 

where f represents the neural network, the brackets indicates the Euclidean norm. The Huber loss function 

varies from a quadratic to linear loss function when 𝛿 (a positive number) changes from small to big values 

(Meyer, 2020). This loss function can approach L1 when 𝛿 tends to be positive infinity and L2 loss when 

𝛿 tends to be 0, here L1 is the sum of absolute deviations and L2 is the square root of the sum of squared 

deviations. We test the value of 𝛿 and finally set 𝛿 1.35. The Bi-LSTM architecture employed in our CFR 

experiments is finally determined with 2 hidden layers with 4000 hidden nodes, learning rate is 10-3, 

activation function is leaky relu, batchsize is 20 and Huber loss function 

2.2.5 Echo State Network 

The reservoir computing (RC) methodology was developed by Maass et al. (2002) and Jaeger (2001), RC 

is essentially a category of Recurrent Neural Network. Echo State Network is one of the representative RC 

method, which usually consists of three basic layers: the input layer, the hidden layer-reservoir layer and 

the output layer-readout. For constructing the ESN method, a randomly reservoir will be initially created, 

which has the capability of preserving various non-linear transformations from input/predictor variables, 

and these non-linear transformations consist of hidden reservoir sates. Given the desired predictors-

predictands pairs for methodology calibration and validation, ESN will be trained by employing calibration 

dataset based on linear regression so as to derive the relatively optimal weights of ESN architecture (input-

to-reservoir, reservoir sate, reservoir-to-output), that is the desired target/predictand variables are derived 

by the linear combination of input and hidden reservoir sate weights (see Lukoševičius & Jaeger, 2009). In 

general, the training process in most type of artificial neural networks, including deep learning methods 

(RNN, LSTM), is accomplished by iteratively adapting and refining all connected thresholds and weights 

of the model architecture. In the RC-ESN method, the weights associated with input layer and hidden 

reservoir are held constant and randomly initialized, and the training process is realized by optimizing 

weights of reservoir-to-output employing linear regression (least square), which indicates that weights of 

hidden reservoir-to-output are the only trainable parameters in ESN. This outstanding characteristic enables 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020MS002290#jame21316-bib-0041
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020MS002290#jame21316-bib-0027
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020MS002290#jame21316-bib-0040
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RC-ESN method to perform faster and even more accurately on linear or non-linear regression tasks 

(Pascanu et al., 2013; Goodfellow et al., 2016; Nadiga, B, 2020). The ESN structure is shown in Figure 3.3. 

 

Figure 3.3: Structure of RC-Echo State Network 

In this context, the classical RC-Echo State Network (Jaeger et al 2004, 2007; Chattopadhyay et al., 2020) 

is established. The ESN generally resembles an architecture of traditional neural networks, but the 

optimization process is different. Assuming we have input and target climate predictor-predictand pairs (Xt, 

Yt, proxy and climate field correspondingly), Xt indicates the input proxy time series with length P that is 

equal to the proxy numbers employed in out CFR experiments, and it is also the input information for the 

input and hidden reservoir layer. In the construction of ESN, four weight matrices are initialized amongst 

input and reservoir layer; the initial hidden reservoir state r(t) which is a vector with dimension N (indicating 

N neurons are created in the hidden layer of ESN, here in this context, we set N = 535), weight matrix M of 

N neurons for each neuron connections with size of NxN, and the weight matrix Winfor connecting input 

and hidden reservoir state layer with size of NxP; and the unit matrix B with size of NxN which can provide 

bias modulation in training process of ESN. Weight matrices Win and M are initialized and originated from 

a uniform distribution within interval [-1, 1] (Jaeger et al 2004, 2007; Chattopadhyay et al. 2020). Thereby 

the updated hidden reservoir state can be derived based on these initialized weight matrices: 

𝒓̂(𝑡) = 𝑟𝑒𝑙𝑢[𝑴𝒓𝑡 + 𝑾𝑖𝑛𝑿𝑡 + 𝑩]  (3.9) 

the derived 𝒓̂(t) will be employed by combining the reservoir to output weight matrix Wout, the desired 

climate field can then be reconstructed by: 

https://npg.copernicus.org/articles/27/373/2020/#bib1.bibx64
https://npg.copernicus.org/articles/27/373/2020/#bib1.bibx64
https://npg.copernicus.org/articles/27/373/2020/#bib1.bibx32
https://npg.copernicus.org/articles/27/373/2020/#bib1.bibx32
https://npg.copernicus.org/articles/27/373/2020/#bib1.bibx37
https://npg.copernicus.org/articles/27/373/2020/#bib1.bibx37
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𝒀̂(𝑡) = 𝑾𝑜𝑢𝑡𝒓̂(𝑡)  (3.10) 

where Wout indicates the only trainable parameter amongst all initialized parameters, is defined and 

minimized as: 

𝑾𝑜𝑢𝑡 = arg𝑚𝑖𝑛 𝑾𝑜𝑢𝑡‖𝑾𝑜𝑢𝑡𝒓̂(𝑡) − 𝒀𝑡‖ + 𝛼‖𝑾𝑜𝑢𝑡‖ (3.11) 

this trainable matrix can fit the relationships between target climate field Yt and the reservoir state 𝒓̂(t). 

‖ ‖ represents least square norm for a vector and 𝛼 denotes ridge regression coefficient (Lu et al., 2018). 

This ESN architecture actually yields a simple training process compared to traditional neural networks, 

and thus can provide several advantages: only the weight matrix Wout of readout can be trained in the training 

process, this indicates an orders of magnitude faster than backpropagation algorithm (Goodfellow et al., 

2016); It does not suffer from the exploding and vanishing gradient issues especially compared with the 

training process in RNNs (Pascanu et al., 2013). The hypothesis of employing RC-ESN in our paleoclimate 

field reconstruction is that we would like to test whether this type of structural and theoretical simpler 

machine learning method compared to the relatively complex Bi-LSTM could provide some potential 

outperformance. Detailed ESN parameters are shown in Appendix 3A. 

3 NH CFR experiments 

The NH summer temperature anomalies reconstructions using four CFR methodologies amongst three 

climate models are derived and illustrated in Fig. 3.4-3.5. The employed 30 tree ring based pseudoproxies’ 

geolocation is plotted as white circles in all the sub-figures. 

Table 3.1. Skill reconstruction statistics for the North Hemisphere mean temperature in the verification 

period for ideal PPEs. The table shows the result for four CFR methods (PCR, CCA, ESN and Bi-LSTM) 

and three climate models (MPI, CAM and CCSM). The numbers in parenthesis indicate the skill statistics 

of noise contaminated PPEs. 

Method 
SD Ratio cc 

MPI CAM CCSM MPI CAM CCSM 

PCR 0.7175(0.6316) 0.7250(0.6697) 0.8027(0.6218) 0.3754(0.1753) 0.4610(0.1809) 0.5264(0.2438) 

CCA 0.5077(0.5169) 0.5526(0.5357) 0.5679(0.5412) 0.3696(0.1876) 0.4374(0.1925) 0.5017(0.2490) 

Bi-LSTM 0.5607(0.5317) 0.6402(0.5690) 0.6107(0.4079) 0.3658(0.1852) 0.4699(0.2025) 0.5093(0.2193) 

ESN 0.8586(0.7838) 0.8529(0.8182) 0.9042(0.8032) 0.3371(0.2015) 0.3943(0.1839) 0.4705(0.2658) 

 

The derived temperature anomaly cc maps and SD ratio distributions for ideal PPEs of NH are shown in 

Fig. 3.4, a general conclusion is that all four CFR methodologies yield generally consistent spatial 
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distributions amongst each of the climate models employed herein, whereas, these spatial patterns differ 

across MPI, CAM5 and CCSM models. For NH CFRs based on all methods, skillful reconstructions are 

achieved over regions where denser pseudoproxies exist (over the extratropical regions including North 

American and Eurasia regions as shown in Fig. 3.4). Higher cc and SD ratio derived from four methods 

generally coincide with pseudoproxy samplings with high density, yet very low values arise over sparsely 

sampled regions. Relatively weak cc values occur in tropical regions that are not adjacent to the 

pseudoproxy positions that we sampled amongst almost all derived CFRs in Fig. 3.4, indicating that the 

teleconnections between tropics and mid-latitude regions could be detected and identified. All derived 

CFRs utilizing ideal PPEs suffer from variance losses as shown in SD ratio maps in Fig. 3.4 and in Table 

3.1 correspondingly. The spatial distributions of the skill vary specifically between climate models and 

CFR methodologies, and are spatially heterogeneous. For instance, comparing the spatial patterns of 

derived SD ratio in Fig. 3.4 amongst the four models, more variance (the mean SD ratio is approximately 

0.1 higher) in the high-density pseudoproxy sampling and the tropical regions are preserved in high-

resolution CCSM model based PPEs especially in the PCR and ESN methods. CCA and Bi-LSTM method 

present relatively consistent derived SD ratio patterns as shown in Fig. 3.4, which also seems to suffer more 

variance losses (also see Table 3.1) over the NH comparing that to PCR and ESN methods. Moreover, the 

ESN method captures the most variance in the ideal PPEs compared with the rest methods as shown in Fig. 

3.4, also see Table 3.1 for spatial mean statistics.  

 

Figure 3.4: NH Reconstruction results of CFR methods (including PCR, CCA, Bi-LSTM, ESN) using MPI, 

CESM1-CAM5 and CCSM numerical simulation as target temperature field, all the CFR methods employ 
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the same proxy network with full 30 ideal pseudoproxies. The employed pseudoproxies geolocations based 

on TRW are shown in white circles in all the sub-figures; CC is Correlation Coefficient and SD represents 

Standard Deviation Ratio. The employed pseudoproxies’ geolocation is shown as white circles in all the 

sub-figures  

The noise contaminated PPEs are illustrated in Fig. 3.5. The performance deterioration can be expected, 

and significant CFR skill reduction occurs over regions where dense pseudoproxies are located. The CCA 

and the nonlinear method Bi-LSTM seem to suffer more from spatial variance losses again over the NH 

region (see Table 3.1). Both PCR and ESN seem to be able to preserve more variance in the noisy PPEs 

compared with CCA and Bi-LSTM (see mean statistics in Table 3.1 and the derived spatial statistical 

patterns in Fig. 3.5). ESN successfully captures most temperature anomaly variance amongst all four CFR 

methods, although presents more similar derived temporal covariance as others shown in Fig. 3.5, which 

might indicate that nonlinear-based ESN could be more robust against the presence of noisy in the records. 

The overall methodological performance is relatively consistent across all of the three model based PPEs. 

ESN and PCR generally outperform the Bi-LSTM and CCA methodology with higher mean SD ratio in 

noisy PPEs, but the ESN method achieve best performance in both ideal noise contaminated PPEs on the 

aspect of capturing more variance, which could be seen in Table 3.1. 

 

Figure 3.5: the same as Figure 3.4, but for noise-contaminated PPEs (NH temperature reconstructions using 

noise PPEs) 

Despite the relatively different spatial performance across all evaluated CFR techniques illustrated in cc 

and spatial SD ratio patterns (Fig. 3.4-3.5) for preserving variance, the total errors across all CFR methods 
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within same model based PPEs respectively are similar. The general methodological skill, as indicated by 

the derived cc and SD ratio values in Table 3.1, the CCA and Bi-LSTM generally present worse 

performance with relatively lower mean cc and SD ratio in both ideal and noise contaminated PPEs. Overall, 

ESN and PCR generally outperforms CCA and Bi-LSTM with highest mean cc and SD ratio values across 

all PPEs in the three model. 

4 NH indices reconstructions 

The decadal time series of NH mean summer temperature anomalies for different CFR methodologies 

across the three models employing ideal tree-ring network is illustrated in Fig. 3.6 on the left panel. All 

time series have been smoothed by using a Butter worth low-pass filter to remove temporal fluctuations 

less than 10 years. Based on these derived mean indices, all four CFR methods generally exhibit a certain 

degree of underestimation in reconstructing the total temperature amplitude and variance of targets, 

especially during the most recent 20th century. An interesting finding is that the nonlinear-based ESN 

method might be capable of achieving a skillful performance in capturing some variation signals over 

extreme cooling events compared with PCR, CCA and Bi-LSTM (different volcanic eruptions period 

selected as shown in the panel of each subfigure in Fig. 3.7). Nevertheless, considering the comprehensive 

performance on capturing extreme temperature signals, all four method perform comparably. In the derived 

mean indices based on ideal PPEs, all four CFR methods generally achieve skillful reconstructions compare 

to each target simulations as shown on the left panel in Fig. 3.6. In addition, the derived indices based on 

noisy PPEs as shown on the right panel in Fig. 3.6 reveal significant underestimation especially in the 

anomaly amplitude aspect amongst all model simulations and reconstruction methods. Specifically, in both 

MPI and CCSM models, all four CFR methods tend to underestimate the most 20th century temperature 

variabilities (see Fig. 3.6), which emphasizes that more internal climatic variabilities involved and existed 

in tropical regions (since we just employ extratropical proxy locations in this context to reconstruct entire 

Norther Hemisphere summer temperature anomalies). The derived noisy PPEs results in substantial skill 

reduction (cc, SD and RMSD displayed within brackets in Table 3.2). All four CFR methods generally fail 

to preserve the complete variance of targeted model simulations and, the magnitude of strong cooling events 

are significantly underestimated especially in noisy PPEs (see the left panel in Fig. 3.7).   



 Chapter 3: Evaluation of the Bilinear Long-Short-Term-Memory and Echo State Network Methods 

59 
 

 

Figure 3.6: Decadal NH temperature indices derived from CFRs 

 

Figure 3.7 Selected extreme cooling events reconstructions 

 



 4 NH indices reconstructions 

60 
 

Table 3.2. cc, SD and RMSE (Celsius) during the verification interval for decadal NH mean temperature 

derived from ideal PPEs. The numbers in parenthesis indicate cc, SD and RMSE (Celsius) of noise 

contaminated PPEs. 

Method 
cc SD RMSE 

MPI CAM CCSM MPI CAM CCSM MPI CAM CCSM 

PCR 
0.8655 

(0.6532) 

0.8222 

(0.5206) 
0.9335 

(0.7341) 

0.6939 

(0.4873) 

0.6593 

(0.4991) 

0.8301 

(0.4737) 
0.1258 

(0.1843) 

0.1048 

(0.1513) 
0.1209 

(0.2357) 

CCA 
0.8526 

(0.6905) 
0.8344 

(0.5103 ) 

0.9277 

(0.7337) 

0.5876 

(0.4251) 

0.5602 

(0.4173) 

0.6154 

(0.4443) 

0.1393 

(0.1832) 

0.1090 

(0.1532) 

0.1578 

(0.2394) 

Bi-

LSTM 

0.8115 

(0.6198) 

0.8274 

(0.5373) 

0.9293 

(0.7075) 

0.5958 

(0.3844) 

0.5998 

(0.4399) 

0.6069 

(0.2850) 

0.1481 

(0.1948) 

0.1073 

(0.1504) 

0.1589 

(0.2669) 

ESN 
07945 

(0.6639) 

0.8261 

(0.4039) 

0.9242 

(0.7191) 
0.7511 

(0.6433) 

0.7664 

(0.5868) 
0.8755 

(0.6596) 

0.1448 

(0.1783) 
0.1005 

(0.1654) 

0.1248 

(0.2261) 

 

In general, all CFR methods in the three climate models based PPEs generally capture both the amplitude 

and phase of the NH mean variability. Nevertheless, based on the derived spatial cc and SD ratio patterns, 

relatively noticeable discrepancies could arise amongst different CFR results and different model runs, 

which makes it relatively difficult to advocate one CFR technique over another (Smerdon et al,. 2011), 

resulting in a conclusion that area mean time series might be generally insufficient for assessing spatial 

reconstruction skills.  

 

Figure 3.8: North Hemisphere indices power spectral density 
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Fig. 3.8 shows the comparison of mean NH summer temperature indices of power spectral density for both 

ideal and noisy PPEs between reconstructions and target model simulations. As illustrated in Fig. 3.8, all 

four CFR methods generally underestimation the targeted power spectra; specifically, this underestimation 

is more significant in the derived noisy PPEs; these power spectral plots could also provide us a deep insight 

of potential underestimation CFR performance. Moreover, it seems that the ESN method employed herein 

our PPEs generally exhibits superiorities in capturing the targeted power spectral amongst all models and 

across ideal and noisy PPEs (as shown in Fig. 3.8). 

5 Additional metrics for derived NH mean indices 

Even though the four CFR methods tend to underestimate the total variability in noisy PPEs, an interesting 

question is whether they can perform skillfully in reproducing the probability distributions of the 

temperature indices. Specifically, a relevant question is whether these CFR methodologies are able to 

capture some extreme phases of those indices. Fig. 3.9 illustrates the histogram for decadal NH mean 

indices. Each subfigure in Fig. 3.9 indicates the histogram of reconstructed temperature indices across the 

four CFR methods, compared with the histogram of the target temperature indices. 

 

Figure 3.9: Histogram for decadal filtered NH mean index. The x axis denotes temperature anomaly values, 

and y axis is the number of data in each bin. Totally 30 bins are selected to plot each of the histogram. 

For both perfect and noisy pseudoproxies in Fig. 3.9, the ESN reconstructions seem to reproduce the overall 

target distribution best. It can generally capture the lower tail better than the rest three CFR methodologies. 
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Moreover, these differences between the CFR methods become smaller in noisy PPEs, with the ESN still 

generally performing better than the other methods (subfigures for the noisy PPEs in Fig. 3.9). The 

nonlinear Bi-LSTM method however fails to capture the lower and upper tails of distribution amongst the 

four methods.  

Table 3.3. Kolmogorov-Smirnov test statistic and p-value for quantifying the histogram distributions 

between model and reconstructed NH decadal means. Low values of the KS statistic indicate larger 

similarity between the two distributions. The numbers in parenthesis indicate the KS statistic and p-value 

of noise contaminated PPEs. 

Method 
KS statistic p-value 

MPI CAM CCSM MPI CAM CCSM 

PCR 0.056(0.127) 0.115(0.165) 0.035(0.141) 6e-2(1e-8) 5e-7 (4e-14) 5e-1(2e-10) 

CCA 0.096(0.150) 0.164(0.213) 0.086(0.144) 5e-10(9e-12) 5e-14 (3e-23) 3e-4(7e-10) 

Bi-LSTM 0.103(0.188) 0.142(0.198) 0.083(0.218) 1e-5(3e-18) 2e-10(4e-20) 8e-4(2e-24) 

ESN 0.038(0.082) 0.096(0.154) 0.039(0.045) 3e-1(7e-4) 4e-5 (2e-12) 3e-1(2e-1) 

 

In order to statistically quantify the similarity of indices distributions between targets and reconstructions, 

the two-sample Kolmogorov-Smirnov are employed as a metric (Hodges, 1958) (see Table 3.3). The 

smallest KS statistic is generally obtained by the ESN method (see Table 3.3), confirming that the ESN can 

generally outperform other CFR methods for temperature mean indices reconstructions in both the ideal 

and noisy PPEs.  

 

Figure 3.10: Eigenvalue spectra for model simulations and four method reconstructions: the spectra for 

model simulation and four method-based ideal PPEs are computed as the ratio between each of the first 

four reconstructed eigenvalues and the cumulative sum of all eigenvalues from target climate model 
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Several leading EOF-PC pairs are derived from reconstructions utilizing four CFR methods amongst three 

models as shown in Fig. 3.10. These four leading EOF-PC pairs could provide us a deeper insight about the 

general CFR performance, since dominant climate patterns can usually explained by several leading EOFs, 

and better reproductive leading EOF-PC patterns indicate better reconstruction performance. More 

explained variance could be reconstructed compared with targets indicates better reconstruction 

performance. As illustrated in Fig. 3.10, amongst all three model based PPEs, the Bi-LSTM and CCA 

method generally fail to better capture the variance in the first four leading patterns. The ESN and PCR 

method generally present comparable performance on reconstructing explained variance in these leading 

EOF patterns.   

6 Discussion 

6.1 Reconstruction performance based on Machine learning method 

The ESN method firstly employed in our context for paleo-temperature field reconstructions exhibits an 

encouraging performance in capturing more temperature variance amongst all three models, and can 

generally perform better than the Bi-LSTM method of which more complicated structures and parameters 

exist compared to the ESN. In addition, the ESN method also achieves better reconstructions than the two 

traditional multivariate linear-based regression method PCR and CCA, although PCR shows more 

superiorities compared with CCA and Bi-LSTM. 

Both ESN and Bi-LSTM method generally present resemble derived cc patterns as shown in Fig 3.4-3.5, 

yet ESN shows relatively worse mean cc see Table 3.1. Nevertheless, The ESN method successfully capture 

more variance in both ideal and noisy PPEs (see Fig 3.4-3.5 and Table 3.1). These indicate that the ESN 

method could preserve more temperature variance based on our reconstruction experiments. In the derived 

mean indices, the ESN method still exhibits superiority in capturing more variance (see SD values in Table 

3.2) amongst all three models although with a relatively worse mean cc. Interestingly, the ESN seems to 

better capture the generally temperature rising tendency especially during the most 20th century in both 

noise and ideal PPEs as illustrated in Fig. 3.6, whereas all the rest three CFR methods fails. In additional, 

based on several selected extreme cooling events prior to 20th century plotted in Fig. 3.8, the ESN provides 

us with an encouraging performance in capturing some extreme cooling signals amongst all four methods. 

The reconstructed power spectral density compared with target models in Fig. 3.8 further provides us with 

a deep insight about the better reconstruction performance of ESN method. 

Our implementation of the more complex Bi-LSTM does not show superiority in CFRs, at least in our 

specific experiments, compared to traditional CFR methods and the relatively simpler ESN methods, so our 
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conclusion is that more complicated architecture might not be helpful to reconstruct the surface temperature 

field at least based on our specific experiments and the employed architecture of Bi-LSTM. Besides, one 

factor needs to be emphasized is that the degradation of performance may well be expected when a limited 

dataset is employed to train a neural network model (Najafabadi et al., 2015). Also splitting data 

inappropriately might cause unexpected effects on the general performance of one neural network model, 

since the data might contain trends or shifts in covariance in time - these could result from variations in the 

way the data was gathered or from varying choices over what information to collect (Riley, 2019) as well 

as from variations in climate conditions. Nevertheless, based on the general performance achieved by the 

ESN employed in our study, we would like to draw a general conclusion that employing relatively simpler 

architecture-based nonlinear machine learning method might be helpful for CFRs at least based on our 

specific experiments and the selected architecture of ESN. Both ESN and LSTM belong to RNN, yet ESN 

is much simpler than LSTM (Lukosevicius and Jaeger 2009), and has been demonstrated to be able to 

outperform the RNN methods in different applications (Chattopadhyay et al., 2019; Nadiga, B. 2020). We 

thus encourage testing ESN in different paleoclimate research directions for further study. 

Nonlinear machine methods are usually capable of mapping chaotic and dynamic systems with highly 

nonlinearity. In this context, we utilize two nonlinear neural network methods ESN and Bi-LSTM to test 

their performance on NH paleo temperature reconstructions. Compared with linear methods PCR and CCA, 

the more complicated Bi-LSTM neural network model did not show clear advantages, whereas the 

employed simpler ESN method presents encouraging advantages. Nadiga (2020) pointed out that the 

capability of some machine learning methodologies are strongly dependent on the selection and setting of 

hyper-parameters. An extensive range of complexity can be involved in Machine learning methods, and 

thus it remains an open question as to which ML method is relatively or most suitable for paleoclimate 

analysis. However, until now it is still not very clear how to optimize the architecture of the ML methods 

in a systematically way, and especially how to illustrate the interpretability of ML methods. A considerably 

amount of ‘trial and error’ still remains in the design of the neural layers. Here, we have tested two ML 

methods originated from the family of, and finally employed two separated hidden layers for Bi-LSTM, 

and three layers for ESN, and evaluated their reconstruction performances on paleoclimate experiments, 

which could be a preliminary attempt.  

6.2 Method and climate model dependencies 

For the large-scale NH PPEs, skillful reconstructions are achieved over regions where denser pseudoproxies 

exits. Furthermore, weak climatic teleconnections are detected amongst tropical regions and some 

extratropical areas (Fig. 3.4-3.5). Potential uncertainties also need to be considered when the interpretation 

is performed on short temporal experiments using different methodologies (Qasmi et al., 2017). The 
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relatively different spatial cc and SD ratio patterns across different models also indicate that the 

teleconnection is model dependent. For instance, the temporal stationarity and spatial pattern of 

teleconnections between local regions of the global climate field and the tropical Pacific region could vary 

substantially across CMIP5 ensemble runs (Coats et al., 2013a, 2015b; Lewis and LeGrande, 2015). In 

general, our NH CFR performance is relatively consistent across the three model based PPEs, yet some 

indispensable discrepancies occur. For instance, all of the CFRs display reasonable skills over extratropical 

regions with denser sampled proxy network, while this skillful reconstruction is relatively better for CCSM, 

compared to MPI and CAM5 (as also shown in Table 3.1 with relatively higher mean SD ratio and cc). The 

model dependency is also deeply revealed by mean correlation coefficient when we compare the 

reconstruction results within same proxy network in Table 3.1, which is that the mean cc in CCSM is 

generally better than that of CAM5 and MPI regardless of the employed CFR methods. Moreover, the 

derived spatial SD ratio maps as shown in Fig. 3.4-3.5 reveals an evidently methodological dependency, 

both ESN and PCR present relatively skillful variance preservation in both ideal and noisy PPEs better than 

CCA and Bi-LSTM, and the ESN seems to preserve the most temperature variance amongst all the four 

methods and across all three models.   

Considering methodological performance on the aspect of indices reconstructions, all NH indices derived 

from CFR experiments demonstrate that four CFR techniques generally exhibit consistent and comparable 

performance both in phase and amplitude aspect amongst the three models. Generally, the overall 10-year 

filtered low-frequency signal (Fig. 3.6) is reasonably reconstructed by all CFR techniques. Besides, all 

decadal indices time series derived from CFRs suffer variance/magnitude losses compared with target 

model means, and the underestimation in amplitude varies relatively amongst CFR methods and amongst 

target models; such failures to completely capture the variance of some colder or warmer years play an 

indispensable implications for interpreting the variability of past climate (McCarroll et al., 2015). A 

potential interpretation could be that even if the best PPEs are constructed with best proxies, these PPEs 

might be imperfect recorders of natural variability of climate. This relates to the amount of noise being 

inherent in these best PPEs and, these internal noises will be inherited in any large or local reconstructions 

sequentially (Christiansen, 2011). Another interpretation is that reconstructions with low skill over sub-

regions with a sparse or no proxy network will contaminate the overall performance directly. However, 

mean temperature indices cannot reflect climate variability and uncertainties for regional and or local spatial 

scales. These results could be the indicator that regional/hemispheric climate reconstructions could 

underestimate low-frequency time series signals both in amplitude and trends (Smerdon et al., 2011; 

Christiansen, 2011; Wang et al., 2014; Guillot et al., 2015).  

In general, the ESN outperforms other three methods on capturing the overall temperature signal variance 

including extreme events; however, underlying uncertainties could appear across all nonlinear and linear 
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methods regarding the large spatial variations in CFRs for the different spatial reconstruction metrics (cc 

and SD ratio).  

7 Conclusion 

Based on our PPEs setup using a set of state-of-the-art Earth System Models, NH summer temperature field 

could be reasonably reconstructed employing different CFR methodologies. Specifically, continental-based 

tree ring proxies provide a great contribution to the reconstructions of land temperature for the last 

millennium. For each specific PPE networks established in this context, all CFR methodologies produce 

generally skillful reconstructions in regions where denser pseudoproxy networks are available. Moreover, 

teleconnections are detected by these CFR methodologies, leading to weak spatial reconstruction skills 

outside of the proxy-sampled regions. All four CFR methods generally underestimate the target temperature 

variations to a rising tendency as random noise introduced into the perfect PPE setup. Furthermore, based 

on the derived spatial metrics (cc and SD ratio), inter-methods and inter-models discrepancies are 

noticeably exposed within different PPEs, and the spatial performance of CFR techniques employed in the 

context reveal some potential limits on the capability of currently constructed regression methods. For 

instance, extracting potential information from noisy and sparse perfect proxies, also indicates that no 

individual CFR methods can produce field reconstructions with universally better performance. 

Another finding is that the amplitude of the 10-year filtered mean time series over the NH are generally 

underestimated, especially in some extreme cooling periods and recent warming decades. All CFR 

techniques systematically exhibit large underestimations and biases both in amplitude and evolution trends 

of the low-frequency signals especially in the PPEs with noise contamination (Fig. 3.7), while its general 

phase is basically reconstructed. Relatively large biases and variance occur in the entire regional mean 

combining with relatively skillful spatial reconstructions based on spatial metrics (cc and SD ratio) 

indicating that entire regional means are relatively insufficient for assessing spatial performance of CFR 

techniques.  

In general, based on our specific experiments, the ESN method employed herein generally present more 

superiorities compared to the rest three CFR methods both in spatial and temporal temperature 

reconstructions. In addition, reasonable spatial and temporal reconstruction performance of CFRs achieved 

in our experiments by employing fundamental nonlinear machine-learning method based on relatively 

limited database confirms that machine learning/deep learning methodologies represent certain 

generalization capability (Zhang et al., 2017). 
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Chapter 4: Reconstruction of the Basin-Wide Sea Level Variability in 

the North Sea  

Reconstruction of the Basin-Wide Sea Level Variability in 

the North Sea Using Coastal Data and Generative 

Adversarial Networks 

Manuscript published in J. Geophys. Res. (Zhang et al., 2022) 

Summary 

We present an application of generative adversarial networks (GANs) to reconstruct the sea level of the 

North Sea using a limited amount of data from tidal gauges (TGs). The application of this technique, which 

learns how to generate datasets with the same statistics as the training set, is explained in detail to ensure 

that interested scientists can implement it in similar or different oceanographic cases. Training is performed 

for all of 2016, and the model is validated on data from three months in 2017. Tests with datasets generated 

by an operational model (“true data”) demonstrated that using data from only 19 locations where TGs 

permanently operate is sufficient to generate an adequate reconstruction of the sea surface height (SSH). 

The machine learning (ML) approach appeared successful when learning from different sources, which 

enabled us to feed the network with real observations from TGs and produce high-quality reconstructions 

of the basin-wide SSH. Individual reconstruction experiments using different combinations of training and 

target data during the training and validation process demonstrated similarities with data assimilation when 

errors in the data and model were not handled appropriately. The proposed method demonstrated good skill 

when analyzing both the full signal, as well as the low frequency variability only. It was demonstrated that 

GANs are also skillful at learning and replicating processes with multiple time scales. The different skills 

in different areas of the North Sea are explained by the different signal-to-noise ratios associated with 

differences in regional dynamics. 

1 Introduction 
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In the first part of the 20th century, Proudman and Doodson [1924] demonstrated how the fundamental 

dynamical equations of the tides may be used to obtain knowledge of the distribution of the surface 

elevation over the entire North Sea from observational data. They showed that the cotidal and corange lines 

can be easily determined, provided the elevation in some coastal stations and limited amount of open sea 

locations is known, and some local current observations exist. Additionally, they used some hypotheses 

about the frictional forces. In the present study, approximately 100 years later, we encounter the same issue 

from a different perspective. 

Many important developments in the physical oceanography of the North Sea have followed the study of 

Proudman and Doodson [1924]. Numerical modeling of tides and storm surges initiated by Hansen [1956] 

and Heaps [1969] has become a fundamental tool in surge prediction [Soetje and Brockmann, 1983; Peeck 

et al., 1983; Flather and Proctor, 1983]. A dense network of tidal stations has been developed around the 

North Sea coasts, which operates over long periods and provides high-quality records [Wahl et al., 2013]. 

A comparison between numerical simulations and satellite observations [Andersen, 1999] revealed good 

agreement between the two data sources. The low-frequency variability in altimeter and tide gauge data 

over the North Sea shows a reasonably good correlation [Cipollini et al., 2017]. A recent important 

development in predicting the sea level in the North Sea is achieved within the framework of the North-

West European Shelf forecasting system [Tonani et al., 2019]. 

 

Figure 4.1 Topography of the North Sea, the positions of the TG stations (red squares), and the subsampled 

region (grid of 32 × 32 points) shown by the large red rectangle. Ab, Aberdeen; Br, Brouwershavensegat 8; 

Cr, Cromer; Do, Dover; Hu, Huibertgat; Ij, IJgeulstroompaal 1; Le, Lerwick; Li, List; Lo, Lowestoft; Ma, 

Maloy; No, Hoek van Holland; No, Norderne; Oo, Oostende; Sh, Sheerness; St, Stavanger; Te, Terschelling 

Noordzee; Tr, Tregde; VL, Vlakte van de Raan; Wh, Whitby 
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The North Sea (Figure 4.1) is a shallow sea located at the European continental shelf with an average depth 

of ~ 90 m [Otto et al., 1990; Huthnance, 1991; Becker et al., 1992]. The sea-level dynamics in this basin 

can be considered as a response to different forcings, such as barotropic and baroclinic tides [Haigh et al., 

2019], wind and atmospheric pressure, air-sea heat and water exchanges, as well as forcing from the open 

boundaries and rivers. The processes that dominate the dynamics are, in most cases, coupled; that is, one 

cannot easily consider the response to individual drivers in isolation. Thus, there is a need to use analysis 

methods tailored to detect and reproduce nonlinear dynamics. Deep learning, which has much in common 

with neural networks, is well suited to resolve such processes. Our first objective in the present study is to 

explore the performance of deep learning techniques when reconstructing the basin-wide sea level in the 

North Sea using data from coastal stations. In our specific application, we will use generative adversarial 

networks [GANs; Goodfellow et al., 2014]. This technique learns how to generate datasets with the same 

statistics as the training set. Unlike some previous studies [e.g., Chipolini et al., 2017], we will focus both 

on the shorter-term and longer-term variability ranging from intratidal to monthly time scales. Under 

“exploring the performance of deep learning techniques” we understand also identifying the application 

limits. This will be illustrated by setting up several experiments, with different reconstruction potential. 

Our second objective is to compare the goodness of reconstructions based on adversarial networks against 

other known reconstruction methods. One such method, which uses a Kalman filter approach, was applied 

by Grayek et al. [2011] to extrapolate one-dimensional FerryBox data acquired along the ferry routes to 

larger two-dimensional areas.  

We are not aware of any applications of deep learning to sea-level analysis and reconstruction, particularly 

in the region of the North Sea. This justifies our third objective, which is to present our results in a way that 

they ensure reproducibility by interested scientists and motivate potential oceanographic applications using 

similar or different data sets. Therefore, we will analyze many individual steps that led to the final 

application of the method to the entire North Sea area. The major focus is on what GANs can reconstruct 

successfully and what they cannot. The analysis of the results demonstrates the power of reconstructions 

based on GANs. The paper is structured as follows. In section 2, we present the methods used. Section 3 

presents the experiments; section 4 presents the results, followed by discussion in section 5 and conclusions. 

2 Methods 
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2.1 Data 

2.1.1 Data from the operational model for the North West European Shelf 

The reconstruction of the basin-wide sea level using data from coastal stations necessitates high-quality 

data from observations over the entire North Sea. Data with such coverage are available only from satellites. 

However, they cannot perfectly resolve the spatial and temporal variability, particularly at scales shorter 

than the time of the repeat cycle. Furthermore, close to the coast, these data are not quite accurate [Chipolini 

et al., 2017]. Data from numerical models, although not absolutely correct, provide spatial and temporal 

coverage over the entire basin. Therefore, when developing and testing our method, we will use data from 

numerical simulations to represent the “true” sea level. In this research, the dataset was obtained from the 

operational numerical Forecasting Ocean Assimilation Model (FOAM) with 7 km horizontal resolution, 

known as Atlantic Margin Model-7 (AMM7) [O’Dea et al., 2012] for 2016 and 2017. For brevity, we will 

refer to these data as to the AMM7 data below. 

For the objective of present research, the sea-level data over one year is sufficient to cover some of the most 

important periodic variations. Therefore, we chose one-year sea surface height (SSH) data, which are from 

approximately 8640 hourly SSH maps, as the training dataset. In addition, it is important to note that the 

training SSH map (in 2016) is independent from the validation dataset. Our validation dataset (from 2017) 

covers a total of 3 months (2158 hourly SSH maps). This choice limits the analyses to processes with 

periods ranging from over-tidal to monthly. In our study area and for the time ranges defined above there 

are two basic processes, which explain most of the variability. These are the short-periodic tides (daily and 

shorter periods) and atmospherically-induced motions (e.g. due to synoptic variability in the atmosphere). 

As shown by Jacob and Stanev (2017) both type of motions are non-linearly coupled and their separation 

is not a trivial problem. In order to quantify the potential of deep learning techniques when analyzing and 

reconstructing SSH, we filtered signals with periods less than 48 hours by using the Butterworth filter, thus 

we will process two data sets: one data set containing all frequencies (briefly called AF) and the low-passed 

filtered data set (briefly called LF).  

Example variability patterns of the AMM7 data are shown in Figure 4.2. The first two panels show the 

phase lines of the semidiurnal principal lunar (M2) tide (Figure 4.2a) and its amplitude (Figure 4.2b). They 

describe the known pattern of the dominant tidal oscillations consisting of three amphidromic areas; the 

Kelvin wave propagates counterclockwise [Proudman and Doodson, 1924]. The standard deviation (s =

√ 1/(𝑁 − 1)∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖−1 ) between the current sea-level height xi from the LF-data set computed from 

AMM7 and its mean x ̅  for the period from 01.01.2016 to 31.12.2016 is shown in Figure 4.2c. This panel 

quantifies the magnitude of low-frequency variability, which is largest in the coastal area, particularly in 
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the German Bight. Notably, the spatial distribution of amplitudes caused by tides and wind is different. In 

the German Bight, the magnitude of low-frequency signal is approximately two times lower than the one 

of the signal associated with the M2 tide. Along the coasts of the British Isles, this ratio is larger than 5. 

2.1.2 Data from the GCOAST model for the North West European Shelf 

For the experiments discussed later in this study, we will need the output of another (independent) model. 

To this aim, we chose the numerical simulations performed in the Helmholtz-Zentrum Geesthacht (HZG) 

based on the Nucleus for European Modelling of the Ocean [NEMO v3.6; Madec, 2016] with 3.5 km 

horizontal resolution, which is two times finer than in the AMM7. The respective model setup is part of the 

Geesthacht COAstal model SysTem (GCOAST), which is a coupled modeling framework that includes 

atmospheric, oceanic, wind wave, biogeochemical and hydrological parts [Ho-Hagemann et al., 2018]. For 

the purposes of the present study, we use only the ocean circulation part. The model area covers the Baltic 

Sea, the Danish Straits, the North Sea and part of the Northeast Atlantic. The data used in the present study 

cover only the region shown in Figure 4.1. The vertical discretization uses 50 hybrid s-z* levels with partial 

cells. The model forcing for the momentum and heat fluxes is computed using bulk aerodynamic formulas 

and hourly data from atmospheric reanalyses of the European Centre for Medium Range Weather Forecasts 

(ERA5 ECMWF with a horizontal resolution of 0.25°). The tidal potential is also included in the model 

forcings [Egbert and Erofeeva, 2002]. The daily climatology for the river run-off is based on river discharge 

datasets from the German Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und 

Hydrographie, BSH), the Swedish Meteorological and Hydrological Institute (SMHI) and United Kingdom 

Meteorological Office (Met Office). The boundary conditions at the open boundaries use input from the 

AMM7 [O’Dea et al., 2012] distributed by the Copernicus Marine Environment and Monitoring Service. 

The output is stored hourly for 2016 and 2017. Data assimilation is not used. 
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Figure 4.2. Phase lines of the M2 tide for the period computed from the AMM7 data using UTide (a). (b) 

is the amplitude corresponding to (a). The white isolines in (b) are lines of equal amplitude of 3, 4, and 5 

m, respectively. (c) is the RMS of the LF variability of SSH. The respective values of the magnitudes of 

the M2 tide and the RMS variability from the TG sea level are superimposed with circles in (b) and (c). 

(d) and (e) are the RMS differences between the AMM7 and GCOAST models (AF, [d] and LF, [e]) 

shown in the AMM7 grids. AF, all frequencies (full data set); AMM7, Atlantic Margin Model-7; 

GCOAST, Geesthacht COAstal model SysTem; LF, low frequencies (low-pass filtered data set); RMS, 

root mean square; SSH, sea surface height; TG, tidal gauge. 

Figures 4.2d and 4.2e show the RMSs difference between the simulations produced by the AMM7 and 

GCOAST models over one year for the AF and LF-data sets, respectively. Regarding the tidal signal, the 

differences between the two models are far below the level of variability (compare Figure 4.2d with Figure 

4.2b). The largest deviations between the two models are located in the English Channel, in front of the 

mouth of the Elbe and around the Wash. Over most of the model area, the difference between the LF sea 

level in the two models is approximately two times lower than the standard deviation of the signal in each 

of them. This quantitative similarity between the GCOAST and AMM7 data is explained by the similar 

model setups, forcing and boundary conditions. The major difference between the two models, which is 
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that the horizontal resolution in GCOAST is two times finer than in the AMM7, explains most of the 

differences between the two data sets. 

2.1.3 Tidal gauge data 

Observational data along the North Sea coast have been obtained from the Copernicus Marine Environment 

Monitoring Service (CMEMS, http://marine.copernicus.eu/). Altogether, 19 gauge stations with hourly 

resolution are used. Their positions are shown in Figure 4.1. The magnitudes of the M2 tide and the 

respective RMS variability of the observed sea level are superimposed with circular symbols in Figure 4.2b 

and Figure 4.2c to illustrate the differences between the model and observational data. Obviously, these 

differences, which are quantified in Table 4.1, are one order of magnitude smaller than the magnitude of 

the respective signals (Figure 4.2). In this table, we show the RMS deviation 𝑅𝑀𝑆(𝑃, 𝑄) =

√∑ (𝑃𝑖 − 𝑂𝑖)
2/𝑛𝑛

𝑖 , where Pi and Oi are the SSHs from the two datasets (the observed and the modeled SSH, 

respectively, or the model-1 and model-2 SSHs, respectively) at the positions of tidal gauges (TGs). In the 

above equation, n is the number of observations (the index is i). 

 

Table 4.1. Quantification of differences and agreements between datasets in coastal stations. 

Abbreviations: AMM7, Atlantic Margin Model-7; GCOAST, Geesthacht COAstal model SysTem; RMS, 

root mean square; TG, tidal gauge. 

Tidal station 
RMS (TG, AMM7) 

(m) 

RMS (TG, GCOAST) 

(m) 

RMS (AMM7, 

GCOAST) (m) 

Lerwick 0.16 0.24 0.23 

Aberdeen 0.17 0.20 0.23 

Whitby 0.23 0.23 0.29 

Cromer 0.33 0.24 0.26 

Lowestoft 0.22 0.20 0.19 

Sheerness 0.49 0.45 0.48 

Dover 0.48 0.33 0.33 

Oostende 0.22 0.22 0.31 

Vlakte van de Raan 0.25 0.22 0.22 

Brouwershavensegat 8 0.18 0.17 0.18 

Hoek van Holland 0.15 0.15 0.14 

IJgeulstroompaal 1 0.31 0.29 0.16 

Terschelling Noordzee 0.25 0.22 0.17 

Huibertgat 0.28 0.20 0.19 

List 0.25 0.27 0.26 

Tregde 0.17 0.13 0.23 

Stavanger 0.15 0.13 0.20 

Maloy 0.18 0.12 0.24 

List 0.25 0.27 0.26 
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The time versus the along-coast distance diagrams (Figures 4.3a and 4.3c) give a clear illustration of the 

propagation characteristics of the tidal waves. Starting from Lerwick and traveling up to Whitby, the coastal 

wave propagates with the coast on its right (Figure 4.2a), and the slope of the contours gives a measure of 

the wave propagation speed, ranging between several to several tenths of ms-1 depending on the local 

conditions (the average depth of North Sea of ~ 90 m would result in a propagation speed of ~30 ms-1). At 

around the Wash, the propagation pattern changes dramatically because, to the south, the small 

amphydrome in the Southern Bight (Fig. 4.2a) wedges into the big amphydrome in the southern North Sea. 

This is the reason the contours undergo a rapid transition until the Terschelling Noordzee station. If we omit 

the data between Cromer and Terschelling Noordzee (and just linearly interpolate the data between them), 

the contours would present much smoother patterns. The tidal amplitudes decrease strongly at around the 

Tregde station (see Figure 4.1 for its position) when passing from the southern to the northern amphidromic 

area. Figure 4.3c is the same as Figure 4.3a; however, the data come from the AMM7. Visually, the model 

and observations agree quite well, and the quantitative comparison between them can be better estimated 

from Table 4.1. 

 

 

Figure 4.3. Time versus the along-coast distance (starting from the Lerwick station) diagram of the sea level 

from TGs (a) and AMM7 (c). The panels on the right, (b) and (d), show the same as (a) and (c) but for the 

LF signal and for longer periods. AMM7, Atlantic Margin Model-7; LF, low frequencies (low-pass filtered 

data set); TGs, tidal gauges 

The LF signal (the panels in of Figure 4.3b and 4.3d) shows a temporal variability dominated by the synoptic 

time scales (in the atmosphere). Because of the much longer time axis compared with the panels on the left-
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hand side of the figure, the slope of the contours looks rather small. Along the eastern and western coasts, 

the propagation direction is from north to south; the change in the slope of contours occurs in the Southern 

Bight. Again, the consistency between the data from the TGs and the AMM7 seems quite good; all major 

low and high sea-level events in the observation dataset have their counterparts in the numerical simulations. 

The simulated amplitudes are slightly lower than the observed amplitudes, which is explained by the quality 

of the atmospheric forcing. The above comparison between observations and simulations shows that both 

datasets are similar but far from identical. The difference between the two model datasets (AMM7 and 

GCOAST) is comparable to the difference between each of them and the observations (see Table 4.1). As 

we will show in the next sections, these comparisons are important to understand the results from the 

experiments using machine learning (ML).  

2.2 GAN 

2.2.1 Brief introduction 

LeCun et al. [2015] defined deep learning as a method allowing “computational models that are composed 

of multiple processing layers to learn representations of data with multiple levels of abstraction”. In many 

applications, deep learning uses feedforward neural networks, which learn to map an input dataset (in many 

examples, an image is used as input) to an output (e.g., more abstract information such as the probability 

of belonging to a certain category). Artificial neural networks (ANNs) are inspired by biological neural 

networks, which learn by considering examples. Their structure consists of connected units (nodes) called 

artificial neurons, which receive and transmit a signal to other neurons. In deep learning, multiple levels of 

information transformation from the previous layer to a higher layer (more abstract information) are used. 

Filters are applied to the input images to create feature maps that summarize the presence of those features 

in the input. The filter (e.g., a 3x3 matrix) is moved across the image. This movement, which is usually 

symmetrical in the x and y directions, is referred to as the stride. The default stride is (1, 1). A stride of (2, 

2) would mean moving the filter two pixels in the horizontal and vertical directions. Thus, the neurons 

combine the input in such a way that the output is presented as a nonlinear combination of its inputs. A 

series of weights determine how the inputs are fed to the outputs. In many applications, the weight vectors 

are adjusted following the stochastic gradient descent (SGD) algorithm. 

Goodfellow et al. [2014] introduce a framework for estimating generative models via an adversarial process 

by training two models. The first model is a generative model. This model captures the data distribution. 

The second model is a discriminative model, and its role is to estimate the probability that a sample comes 

from the training data rather than the generative model. As a result, the generative model recovers the 

training data distribution. 
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Normally, the structure of a convolutional neural network consists of convolutional layers followed by 

pooling layers. The role of the latter is to reduce the amount of redundant information. The most commonly 

used method is the max-pooling method, which keeps only the most active neurons (out of every 2 × 2 

square of neurons in the convolutional layers, the "max"). Experience shows that this pooling step does not 

reduce the performance of the network. In the U-Net architecture [Ronneberger et al., 2015], the pooling 

operations are replaced by upsampling operators. An expansive path is developed, which is more or less 

symmetric to the contracting part and yields a u-shaped network architecture (Figure 4.4). In the expansive 

path, in every other layer, the resolution of the output is increased. Thus, in the upsampling part of the 

network, information is propagated to higher-resolution layers. Two distinct models, a generator and a 

discriminator, constitute the GAN. The generator is trained adversarially by optimizing a minimax objective 

together with a discriminator. In the following, the specific application of the U-Net architecture to 

analyzing sea-level maps is described. 
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Figure 4.4. Schematic presentation of the generator part of the deep neural network model for sea surface 

height map reconstruction 

2.2.2 GAN for tidal reconstructions 

2.2.2.1 Generator 

The U-Net structure of the generator part of our deep neural network model for tidal reconstruction (Figure 

4.4) is illustrated in the following using the 32x32 SSH hourly maps (rectangle in Figure 4.1) for 2016 from 

the AMM7. In the example considered here to train the model, we use only the SSH records along the sides 

of rectangle as an input dataset. This dataset is named in Figure 4.4 as “Input map”. The target dataset is 

the full AMM7 dataset (see, e.g., “Output map” in Figure 4.4). The task of the generator is to provide a 
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model of high-quality reconstructed SSH maps (as close as possible to the AMM7 maps) by using only the 

information at the boundary. 

The U-Net convolutional neural network (Figure 4.4) consists of two parts: an encoder (on the left) and a 

decoder (on the right). The encoder transforms an image (map) into a compact latent feature representation. 

The decoder uses that representation to produce the missing image content. Thus, the encoding-decoding 

process learns the image features and generates full maps. 

The encoder-decoder pipeline works as follows. The encoder takes an input image with missing data and 

produces a latent feature representation of that image. The decoder takes this feature representation and 

produces the missing image content. The encoder process consists of the repeated application of 3x3 

convolutions with a stride of 2 for downsampling, each followed by a batch normalization layer [Ioffe and 

Szegedy, 2015] and Leaky logarithmic rectified linear unit [Leaky-L_ReLU, Maas, 2015] activation. 

In the example shown in Figure 4.4, the first convolution layer is a 32x32x1 (width × length × depth) map. 

In each subsequent convolution calculation, we obtain more latent feature maps with a larger depth index 

and narrower width and length. The feature map represents higher-dimensional data distribution 

characteristics from the image. The bottleneck layer (Figure 4.4) represents the image fully compressed 

into a feature map with a depth of 1024. 

Decoding is the opposite of encoding; we call this process deconvolution. It consists of repeated 

applications of 3x3 convolutions with a stride of 2 using a transposed operator (also called a transposed 

convolution or fractionally strided convolution); that is, it performs a deconvolution. The upsampling layers 

in the original U-Net structure [Zador, 2019] are replaced with fractionally strided convolutional layers in 

our U-Net-like structure. 

In image completion problems, corrupted images and output images share a certain amount of low-level 

features, such as prominent information from the noncorrupted regions, luminance and resolution. However, 

deep network-based methods with bottleneck layers may lose details of images when propagating feature 

maps in the training stage. Moreover, these methods may suffer from the vanishing gradient problem as the 

network deepens. To shuttle the image information through the networks and reduce the training burden, 

we apply the skip connections strategy [Mao et al., 2016]. 

2.2.2.2 Discriminator 

The discriminator (Figure 4.5) is used to determine the possibility that the prediction map comes from the 

training set (i.e., whether it is a real training image) or the prediction set (i.e., whether it is fake image from 

the generator). During training, increasing better fake images are generated, and the role of the discriminator 

is to correctly classify the real and fake images. When the generated prediction map is consistent with the 

ground truth of the image content (we will call this the target for short) and the GAN discriminator cannot 
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determine whether the prediction map is from the training set or the prediction set, then the network model 

parameters are considered to have reached the optimal state. 

 

Figure 4.5. The discriminator part of the reconstruction model 

The discriminator can be understood as the inverse of the generator with five 3x3 convolutions with stride 

of 2 layers, where the last convolutional layer is fed into a single sigmoid activation function. The L_ReLU 

activation function is used for all the layers in the discriminator except for the output. Following GAN 

technology, the generator is trained adversarially against a discriminator, which is simultaneously trained 

with the generator. 

2.2.2.3 Technical details 

We use 8640 SSH maps with a size of 32x32 to train the GAN model. This dataset is too large to be passed 

to the computer at once; therefore, we divide the data into smaller sizes. Two hyperparameters are defined: 

the number of training epochs (how many times we train the model) and the batch size (the number of 

samples used to train the model in one epoch). During the training stage, mini-batch learning is introduced 

[Cotter et al., 2011]. This method divides the data into several small batches and updates the parameters in 

batches. Thus, a set of data in a batch determines the direction of the gradient, which is more stable and 

converges faster. In the present tidal application, 12 is selected as the batch size, which corresponds to the 

period of the M2 tide in the studied region [see also Riley, 2019]. The generator model uses only the 

observations in tidal gauges locations to generate the entire 2D SSH maps. This generated SSH map is feed 

into Discriminator together with the SSH map from the numerical model (true data set) for checking 

whether the generated SSH resembles the true one (see Annex 1). 

The model epoch parameter, which is a number optimizing the gradient decent (to avoid overfitting or 

underfitting), is set to 60. The initial learning rate of the Adam optimizer of the GAN model is set to 0.00003. 

The learning rate determines the step size of gradient descent (i.e., how fast the model converges). Too 

large a rate may cause the parameters to move back and forth on both sides of the optimal value. Too small 

a rate will greatly reduce the optimization speed. To solve the problem, we introduce an exponential decay 

method from the TensorFlow framework [Loshchilov and Hutter, 2019]. The learning rate was gradually 
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reduced to make the model more stable in the later stages of training. The number of convolution levels is 

set to 9 (later in the text, we explain why this number must be changed in other experiments). 

In this model, the discriminator loss is the same as the basic deep convolutional GAN (DCGAN) model 

[Radford et al., 2015], while for the generator loss, we introduce (on the basis of original generative loss) 

the least square errors (known as the L2 loss function) as the consistency content loss into the generative 

loss function. The basic loss function of the GAN model meets the Nash equilibrium condition as much as 

possible [Osborne and Rubinstein, 1994]. The principle behind this equilibrium is based on game theory 

and aims at continuously optimizing the generator and discriminator so that the generated data approach 

the real data [Dong and Yiang, 2018]. In this way, the GAN makes the samples generated by the generator 

approach the real sample, in terms of both authenticity and diversity. To adapt the technology to our specific 

study and obtain more accurate results, we also established a new loss function combination for our 

pixelwise GAN model by adding the pixelwise reconstruction loss generation part based on the basic loss 

function [Zhao et al., 2017]. The equations describing the loss functions of the generator and discriminator 

are given in Annex 1. 

After 60 training epochs, we obtain a suitable generator structure that remembers the SSH high-dimensional 

features of the selected ocean region. To validate the generator model, the discriminator part is dismissed, 

since the generator part is the main structure for reconstructing the completed SSH maps. Now, the 

validation dataset (2158 hourly, incomplete SSH maps) is fed into the generator part of the neural network 

model to generate feasible SSH maps. 

2.2.3 GAN for LF SSH reconstruction 

As shown in section 2.1.1, the amplitude of the remaining signal is lower than that of the dominant partial 

tides. Furthermore, the variability is less regular because meteorological drivers such as wind, storms or 

atmospheric pressure have a certain level of randomness. Therefore, we introduce some changes in the 

GAN model described in section 2.2.2 for the sake of obtaining more accurate reconstruction results [see 

Zador, 2019]. 
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Figure 4.6. Generator structure for residual sea surface height map reconstruction 

Our new model for LF SSH reconstruction consists of two steps: coarse and fine reconstruction (Figure 

4.6). This architecture helps to stabilize training and enlarge the receptive fields, as mentioned by Yu et al. 

[2018]. Figure 4.6 represents a 32x32x1 map with real data only at the boundary, and Oc represents the 

coarse-reconstructed SSH map. The refinement step takes the Oc and In maps together as input pairs to 

output the final result Out. Thus, Oc conditioned on In is selected as the input of the refined network that 

reconstructs the complete SSH map called Out. This type of input stacks information of the known areas to 

urge the network to capture valid features faster [Liu et al., 2019], which is critical for rebuilding the content 

of missing regions. Our refined structure also consists of an encoder and decoder, where a skip connection 

is adopted, similar to a coarse network. In the encoder, each of the layers is composed of a 3×3 convolution, 

while in the decoder, a fractional stride convolutional layer with stride of 2 is adopted together with a 3×3 

convolution. Finally, the discriminator has the same structure as the discriminator in our tidal reconstruction 

model. 

The training step and reconstruction process are the same as in the tidal reconstruction model. However, 

the training sample batch size is set to 336 (two weeks of hourly data). The number of training epochs is 

set to 5000, since more uncertainty and greater magnitudes of the variations lead to training difficulties, 

which will require more training epochs to obtain a stable and desirable model. The initial learning rate of 

the Adam optimizer in this GAN model is set to 0.00007 to adapt to these model parameter changes. 

2.3 Kalman Filter Approach 

Schulz-Stellenfleth and Stanev (2010) proposed an optimal linear estimator to reconstruct ocean state 

parameters from observations knowing the prior distribution of the state and measurement errors. The 

method is similar to the approach of Frolov et al. (2008) and uses standard concepts of estimation theory. 
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It will be very briefly presented below; for more detail, the interested reader is referred to Schulz-

Stellenfleth and Stanev (2010) and Grayek et al. (2011). The method uses the background covariance matrix 

derived from the AMM7 data as a priori information. We will denote the global state vector of dimension 

m by x. The data from 19 tidal gauges represent the measurement vector y of dimension n. The global state 

vector x contains SSH from AMM7 data at the individual position of the model area. The task is to find a 

reconstruction matrix A such that: 

𝐽(𝐴) = ∑ ‖𝑥(𝑡𝑗) − 𝐴𝑦(𝑡𝑗)‖
2𝑞

𝑗=1
 

(4.1) 

is minimum, where q is the number of SSH maps (hourly maps in 1 year). This would ensure that the 

reconstruction error is as small as possible. Assume that the observations can be derived from the global 

states according to 

𝒚 = 𝑯𝒙 (4.2) 

where H is the linear measurement operator. Schulz-Stellenfleth and Stanev (2010) showed that J(A) is 

minimum if A is the Kalman gain matrix 

𝐴 = 𝑃𝐻𝑇(𝐻𝑃𝐻𝑇 + 𝑅−1) (4.3) 

where P is the background covariance matrix for the state x and R is the observation error. 

It was demonstrated in the same study that if the dynamics of the state variables can be described by only 

a few empirical othogonal functions (EOFs), the dimension of the reconstruction problem can be 

significantly reduced. For the AMM7 SSH data set, only three EOFs describe more than 95% of the variance. 

Therefore, in the analyses addressed in the following, we used three EOFs only. R is taken as a diagonal 

matrix, with a constant error value of 1 cm. 

3 Experiments 

3.1 Experiments in reduced area  

The first group of experiments presented below aims first at analyzing how appropriate the GAN is to 

reconstruct the sea level in a relatively small area (only 32x32 grids) in the interior of the North Sea. In the 

experiments’ nomenclature (Table 4.2), we use the abbreviations AF and LF. In the AF experiments, we 

use the one-hour data, as they are produced by the AMM7 model. In the LF experiments, we use also one-

hour data, but the variability with periods higher than two days is removed by low-pass filtering as explained 

above. Therefore, in the LF experiments, the sea level can be considered mainly driven by the atmosphere 

and by low frequency tides (e.g., spring-neap variability). The training phase uses 8642 hourly maps, which 

corresponds to one year. In the first type of experiments, for which there is a column called “Training” in 
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Table 4.2, we use data from the same source in the training and validation step. In this way, the data at the 

two steps are consistent with each other. 

Table 4.2. List of experiments in a small domain 

Abbreviations: AF (all frequencies, full dataset), LF (low frequencies, low-pass filtered dataset) 

Name 

Type of 

experiment 

(AF) 

Type of 

experiment 

(LF) 

Training 

(input data-

target data) 

Validation 

(input data-

validation 

data) 

Comment 

AF1 X - 
AMM7-

AMM7 

AMM7-

AMM7 

Randomly 

distributed no-

data locations. 

AF2 X - - - 

At the 

validation step, 

there are 

missing data 

only in the 

interior. 

AF3 X - - - 

At the 

validation step, 

data are 

available only 

at the 

boundary. 

AFK X - - - - 

LF - X - - - 

LFK - X - - - 

 

In AF1-3, we determine the quality of reconstruction if some input data are missing.(Here we use 0 to 

replace the missing data value, 0 does not have specific physical meaning here.) In AFTRA1, we randomly 

generate locations in the 32x32 matrix, where we assume that there are no available data (there are no 

“observations” in half of the locations in the original grid). Thus, we feed the GAN model with data only 

from the locations where there are “observations”. We use the data from all the locations as a target dataset. 

At the validation step, we use the “observations” in only half of the locations of the original grid to 

reconstruct the 32x32 field (all locations) over a period of 3 months. A comparison between the AMM7 

data and the reconstructed data will be analyzed in section 4. 

In AF2, we select a square area in the middle of the 32x32 matrix (i=5,…, 25, and j=5,…, 25), which is 

considered a no-data area. The basic difference from AF1 is that this no-data area is compact. In AF3, we 

extend the no-data area up to the boundary. This exercise can thus be interpreted as a reconstruction of the 

full dataset using data only at the boundaries (all the boundary locations). 



 3 Experiments 

84 
 

Experiment LF is essentially the same as AF3; that is, only data at the boundary are used to train the model. 

The difference is that LF analyses the capability of using a GAN to reconstruct the data set from which the 

high- frequency tides have been removed. In all the experiments described above, the computational 

resources were relatively low. On one GPU node, which is a Nvidia Tesla V100 with 32 GB memory, it 

takes ~30 minutes to complete the training in the AF experiments and ~45 minutes to complete the training 

in the LF experiments. The latter takes a longer time than the former because the more stochastic signals 

associated with the atmospheric forcing compared to the periodic tidal signals make the convergence slower. 

3.2 Experiments in the entire North Sea 

The second group of experiments are for the entire North Sea basin (index “B” in Table 4.3). Experiment 

BAF1 is essentially the same as AF3. The difference is that in the training phase, we use only data from 19 

locations where TGs operate. These data in BAF1 are taken from the AMM7. The training and validation 

periods are the same as those in the experiments with reduced area. BLF1 is essentially the same as BAF1; 

the difference is that we analyze the quality of the reconstruction of the LF-North Sea data set, that is the 

data used in this experiment are the low-pass-filtered data used in BAF1. The idea to carry out this 

experiment was two-fold. It was assumed that removing the high-frequency oscillations would result in a 

better model when reconstructing the low-frequency variability of basin-wide SSH using only coastal data. 

The second consideration was that the high-frequency oscillations are not included in some altimeter 

products; thus, it is worth trying to test whether ML can well resolve only the low-frequency variability. 

BAF2 is the same as BAF1; however, real observations from TGs are used in the validation step along with 

the same model developed in BAF1. Obviously, this experiment uses data of different origins (in the 

“Validation” column of Table 4.3, the data sources are different). Thus, these data are not fully consistent 

with each other. In the following, we will refer to this type of experiment as experiments with “inconsistent 

data”. BLF2 is the same as BAF2, but BLF2 addresses the quality of the reconstruction of low-frequency 

variability. One important difference between the AF and LF experiments is that we use different ML 

models (see section 2) because of the different spatiotemporal characteristics of the tidally and 

atmospherically driven sea level. In BAF-G and BLF2-G, we do not use real observations as in BAF2 and 

BLF2 but rather data from the GCOAST model in the observation locations. 

The next two experiments, BAF3 and BLF3, use partially inconsistent data for training and validation. By 

“partially inconsistent”, we mean the following. At the training step, at the positions of the TGs, we use 

data from the TGs. The target dataset is the basin-wide SSH, which is produced using the AMM7 (TG-

AMM7 in the “Training” column of Table 4.3). It is expected that the ML model learns the consistency 

between the forcing data and the target. Therefore, the product is partially consistent with the data from the 

TGs and the AMM7. At the validation step, we use tidal gauge data and the ML model to reconstruct the 
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SSHs and compare them to the AMM7 data. BLF3 is the same as BAF3, but BLF3 addresses the quality of 

the low-frequency reconstructions. 

In the final two experiments (BAF3-G and BLF3-G), we use the same approach as in BAF3 and BLF3. In 

this case, in the observation locations (Figure 4.1), the data are sampled from the GCOAST model, which 

has a horizontal resolution two times better than that of the AMM7. These data are considered pseudo-

observations with “different quality” than the quality of the coarser AMM7. 

Table 4.3. List of experiments in the entire North Sea 

Abbreviations: B (basin-wide), AF (all frequencies, full dataset), LF (low frequencies, low-pass filtered 

dataset) 

Name 

Type of 

experiment 

(AF) 

Type of 

experiment 

(LF) 

Area 

Training 

(input data-

target data) 

Validation 

(input data-

validation 

data) 

Comment 

BAF1 X - 
Entire North 

Sea 
- - 

Similar to 

the 

comment for 

AF (see 

Table 4.2). 

BLF1 - X - - - 

Similar to 

the 

comment for 

LF (see 

Table 4.2). 

BAF2 X - - - TG-AMM7 

Similar to 

the 

comment for 

BAF1 for 

the 

observations 

used at the 

validation 

step. 

BLF2 - X - - - 

Similar to 

the 

comment for 

BLF1 

observations 

used at the 

validation 

step. 

BAF2-G X - - - 
GCOAST-

AMM7 

Similar to 

the 

comment for 

BAF2 

GCOAST 
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data used at 

the 

observation 

locations at 

the 

validation 

step. 

BLF2-G - X - - - 

Similar to 

the 

comment for 

BLF2 

GCOAST 

data used at 

the 

observation 

locations at 

the 

validation 

step. 

BAF3 X - - TG-AMM7 TG-AMM7 

The data at 

the 

boundary 

are the same 

in the 

training and 

validation 

steps. 

BLF3 - X - - - - 

BAF3-G X - - 
GCOAST-

AMM7 

GCOAST-

AMM7 

- 

BLF3-G - X - - - - 

 

4 Results 

4.1 Sea-level reconstruction in idealized (reduced) areas 

The results of all the reduced area experiments are presented in Figure 4.7. As representative characteristics 

measuring the agreement between the reconstruction data and the observations, we use the index of 

agreement [Willmott, 1981]: 

𝐷(𝑃, 𝑄) = 1 − ∑ (𝑃𝑖 − 𝑂𝑖)
2

𝑛

𝑖=1
∑ (|𝑃𝑖 − 𝑂̅| + |𝑂𝑖 − 𝑂̅|)2

𝑛

𝑖=1
⁄  

(4.4) 

In the above equation, the overbar indicates the temporal mean, and the other notations are explained in 

section 2.1.3. The above equation provides a statistical approach to compare model predictions (P) with 

observations (O). The numerator measures the average error magnitude and the denominator gives a basis 
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of comparison. The index of agreement measures the model performance as the degree to which P matches 

O, where 1 indicates perfect agreement and 0, complete disagreement. Other possible indices for model-

data comparison are defined by Nash and Sutcliffe [1970], Legates and McCabe [1999]; see also Willmott 

et al. [2012]. The results of the three AF experiments (AF1-AF3) are shown in Figure 4.7a-4.7c. They 

illustrate how the reconstruction results deteriorate if some input data are missing. However, “deterioration” 

is not an adequate word in this case because all three reconstructions are characterized by index of 

agreement greater than 0.99.  The pattern of D reflects some characteristics of the data distribution and 

dynamics. In AF1, the no-data locations are randomly distributed. However, the results in Figure 4.7a show 

that the lowest values of the index of agreement appear predominantly in the coastal areas. This finding is 

explained by the fact that, in the basin interior, the no-data locations are uniformly surrounded by locations 

where observations are available. However, at the periphery of the studied area, the no-data locations are 

surrounded by fewer observations (because no observations exist outside of the area). 

 

Figure 4.7. Index of agreement between the “true” and reconstructed SSHs in the experiments carried out 

in the reduced areas. The index was computed at the validation step. The numbers on the axes are the 

longitude and latitude (see Figure 4.1 for the position of this area). The blue dots are locations where time 

series are analyzed for the validation period. AF, all frequencies (full data set); LF, low frequencies (low-

pass filtered data set); SSH, sea surface height 
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In AF2, where we prescribe a wide coastal area with data, the index of agreement is higher than 0.995. In 

the no-data area (in the middle of Figure 4.7b), the index of agreement shows a propagation pattern, which 

is in agreement with the propagation direction of the Kelvin wave (see the rectangle in Figure 4.1 and the 

phase lines in Figure 4.2a). The situation in AF3 (Figure 4.7c) is qualitatively similar to that in AF2 (a 

better agreement with the validation data set in the western part). However, in this experiment, only the 

data along the that in AF2. The lowest D∼0.994 in AF3 appears in the area closest to the amphydromic 

point (Figure 4.2a), boundary are used; therefore, the index of agreement is slightly lower, and its pattern 

is less regular than where the amplitude of the signal is lower; therefore, the signal-to-noise level is also 

lower. 

Experiment LF (Figure 4.7d), which quantifies the capability of GAN to reconstruct the SSH using the LF 

data set, shows a comparable skill as AF1–AF3. In all four cases, the index of agreement is above 0.99, and 

its ranges are comparable. The fundamental difference between the AF and LF experiments is the pattern 

of the index of agreement, which is no longer tidally dominant in the LF case. for one location shown in 

Figure 4.7 where the reconstruction quality of GAN is relatively low (D∼0.997). The comparison between 

the performance of GAN and Kalman filter approach is presented in Figure 4.8 the AF reconstructions and 

AMM7 data are ∼3 cm. The RMS differences between the LF experiments and Obviously, the two methods 

perform very similarly. For this specific location, the RMS differences between low-pass filtered SSH are 

∼1 cm. These values, as seen in Figure 4.8, are negligibly smaller than the amplitude of the respective 

signals. It is clearly seen from these illustrations, in particular in the plots on the bottom,that the largest 

differences between the reconstructions using GAN and Kalman filter methods, from one side, and data, 

from the other, occur almost at the same times. 
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Figure 4.8. Sea level in the locations shown in Figure 4.7 for the 2-month validation period. (a and b) are 

AF experiments; (c and d) are LF experiments. Panels on the left are from GAN reconstructions; those on 

the right are from the reconstruction using the Kalman filter approach. AF, all frequencies (full data set); 

AMM7, Atlantic Margin Model-7; GAN, generative adversarial network; LF, low frequencies (low-pass 

filtered data set) 

The above experiments are relatively easy, at least in terms of the volume of data used. In real-world 

applithe same performance if larger datasets were used. By increasing the data volume by ∼25 times, one 

reaches cations, data sets are usually much larger, and it was not clear a priori whether the used method 

would have paratory experiment in which we interpolated the 32 × 32 matrices with a resolution five times 

better than the volume of the data set generated from AMM7 over the entire North Sea. Therefore, we 

performed a prein the AF experiments and repeated AF3 experiments using the new data set. Because of 

the increase in initial learning rate is the same as in the case of the 32 × 32 data set. The computational time 

for training × the data size, we increase the number of convolutional layers to 13; the number of epochs is 

set to 600. The increased up to ∼6 h, which is approximately 12 times longer compared to the 32 x 32 cases. 

The index of agreement in this additional experiment (not shown here) is higher than 0.993, and its pattern 

is close to that in AF3. 

4.2 Sea-level reconstruction over the entire North Sea 

Here, we discuss the skill of experiments introduced in Section 3.2. As a measure of the skill of each of 

them, we will show maps of the index of agreement (Figure 4.9). The RMS difference between the 

reconstructed and “true” data is shown in the supporting material (Figure 4.S1). The results from experiment 
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BAF1 (Figure 4.9a) demonstrate that using the data from only 19 locations where the TGs operate is 

sufficient for adequate sea-level reconstruction over most of the analyzed domain. Only in the northwestern 

part of the points in the eastern North Sea, the index of agreement drops to ∼0.8. The smaller D in the area 

between study area and in Kattegat, where TGs are not available, and in the area between the two 

amphidromic points is explained by the low-amplitude tides in this zone (small denominator in Equation 

1). 

 

Figure 4.9. Index of agreement (see Equation 1) between the “true” and reconstructed SSHs in the 

experiments carried out over the entire North Sea (see Table 4.3). The training data set is from January 01, 

2016 to January 01, 2017, and the validation data set is from January 01, 2017 to March 01, 2017. The 

names of the individual experiments are shown in each panel. The ML model BAF1 is used in all the 

experiments shown in the first column (a, d, and h). The panels in the second column (b, e, and i) use the 

BLF1 model. Panels f and j and panels g and k use the BAF3 and BLF3 models, respectively. (c) shows the 

Brier skill score (see Equation 2) of BLF1 against the low-pass output of BAF1. ML, machine learning 

The reconstruction of the LF variability (experiment BLF1, see Figure 4.9b) is approximately as good as 

the reconstruction of the full signal. The lower index of agreement in the interior of the North Sea is 

explained by the relatively low amplitude of the signal there (compare with Figure 4.2c). Because of this 

phenomenon, the signal-to-noise ratio reduces the reconstruction skill. Overall, BAF1 and BLF1 

demonstrate that if consistent datasets are used in the locations where TGs are located, the GAN model 

adequately reconstructs the basin-wide SSH. 
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We remind the reader here that the SSH reconstructed in BAF1 contains low- and high-frequency signals, 

while the output of the BLF1 experiment reproduces only the low-frequency variability. The initial 

expectation was that the GAN could better learn less complicated temporal and spatial variability, which is 

in the case when a high-frequency signal was removed from the data. Figure 4.9c shows the Brier skill 

score 

𝐵𝑆𝑆 = 1 − 𝐵𝑆𝑆𝐹𝐴1𝑖/𝐵𝑆𝑇𝐹𝐴1 (4.5) 

where 𝐵𝑆(𝑃, 𝑄) = 1/𝑛∑ (𝑃𝑖 − 𝑂𝑖)
2𝑛

𝑖  is the mean-squared error in each experiment and BAF1 is taken as 

the reference experiment. The reconstruction is perfect when the BSS is equal to 1. BSS= 0 means that 

there is no improvement in BLF1 compared to the results in BAF1. If BSS<0, the quality of BLF1 

reconstruction is poorer than that in BAF1. Obviously, there are areas where BAF1 shows better agreement 

with the observations than BLF1. This result suggests that processing a much more complex data set (BAF1) 

is superior in many areas than processing low-pass filtered data, which demonstrates that the GAN can 

learn about processes with multiple time scales. As demonstrated by Jacob and Stanev (2017), in the North 

Sea, processes with multiple time scales in the ranges studied here are nonlinearly coupled. The fact that 

the reconstruction of the full signal is superior in many areas compared with the reconstruction of the LF 

signal provides indirect proof that the nonlinear interactions between processes with different time scales 

are well captured by ML. These patterns would not occur if nonlinear interactions between processes with 

different time scales did not exist. Figure 4.S2 gives an illustration how M4 tides, which are due to nonlinear 

advection, are replicated. This result emphasizes the performance of ML method in the coastal regions. 

In the BAF2 and BLF2 experiments, the reconstruction models are the same as in BAF1 and BLF1, 

respectively. However, unlike the BAF1 and BLF1 experiments, where the training and validation steps 

use consistent data, the BAF2 and BLF2 experiments belong to the class of experiments using inconsistent 

datasets at the validation step; that is, instead of using AMM7 data at the coast (consistent with the training 

data), we feed the model with real observations (which are inconsistent with the model). The level of 

inconsistency is quantified in Section 3 (see Figure 4.3 and Table 4.1). This substitution of data at the 

validation step resulted in a reduction in the reconstruction quality. What the GAN model can only 

adequately capture (index of agreement above 0.85) is the sea-level variability in the coastal areas of the 

western and southern North Sea (Figure 4.9d). The areas of low sea-level variability show a very low 

reconstruction skill (compare with Figure 4.2b, particularly the region of the small amphydrome in the 

Southern Bight). The reconstruction of the LF-signal is slightly better, particularly in the coastal zone of 

the German Bight, where the variability range of the LF-signal is the strongest (compare Figure 4.9e with 

Figure 4.2c). Obviously, the GAN model is not very flexible in using arbitrary types of data at the 
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reconstruction step. The reduction in the reconstruction skill reminds us of the problems in data assimilation 

when errors in the data and model are not treated appropriately. 

The BAF2-G and BLF2-G experiments, similar to the BAF2 and BLF2 experiments, belong to the group 

of experiments using inconsistent data sets at the validation step. In this case, the ML models are the same 

as in BAF1 and BLF1; however, the GCOAST data in the locations of TGs are used at the validation step. 

As shown in Section 2, the GCOAST data are slightly more consistent with the AMM7 data than with the 

TG data (Figure 4.3, Table 4.1). Therefore, the reconstruction skill improved in comparison to that in BAF2 

and BLF2 (compare Figures 4.9h and 4.9i with Figures 4.9d and 4.9e, respectively). However, D is much 

lower than in the BAF1 and BLF1 experiments. 

The “partial inconsistency” of the data for training and validation in BAF3 and BLF3 implies that, at the 

training step, the processing of the GCOAST data (at the coast) and the AMM7 data (as the target) tends to 

decrease the inconsistency between the two datasets in the GAN model. Thus, the results of new models, 

which are different from BAF1 and BLF1, respectively, are documented by the comparison between 

Figures 4.9f and 4.9g and Figures 4.9d and 4.9e, respectively. Obviously, the GAN model learns to adapt 

the solution to the data from different origins. The model skill is also dependent on the magnitude of the 

sea-level variability (compare with Figure 4.2b), which also explains the relatively good skill of BLF3 in 

the coastal zone of the German Bight. Notable is the more uniform and better reconstruction skill in the LF 

experiment than in the AF experiment over most of the area. 

The final two experiments, also belonging to the group of experiments with “partially inconsistent” data 

(BAF3-G and BLF3-G), illustrate the improvement of the reconstruction skill if synthetic observations (the 

GCOAST data in the TG locations) are used in the training (compare Figures 4.9j and 4.9k with Figures 

4.9h and 4.9i, respectively). The better agreement between the GCOAST and AMM7 data than the 

agreement of each of them with the real observations (see Table 4.1) explains why the index of agreement 

in Figures 4.9j and 4.9k are better than those in Figures 4.9f and 4.9g, respectively. 

5 Discussion 

One year of training data appeared sufficient for a model using a generative adversarial network to learn 

the structure of the SSH data and to adequately reconstruct the basin-wide SSH during the validation period 

using data from only 19 locations along the coast. The quality of the reconstructions was almost equally 

good for the full signal (AF) and low frequency one (LF). The high values of the index of agreement (area 

mean values of 0.937 and 0.945 for the BAF1 and BLF1 experiments, respectively) were possible provided 
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data from the same source was used (in this case, the AMM7). Another reason for the reconstruction success 

is the relative smoothness of the SSH maps. 

The use of the same model fed from either the observations (TGs) or independent numerical simulations 

(GCOAST data) reduced the quality of the reconstructions: 0.761 and 0.822 in BAF2 and BLF2, 

respectively, and 0.823 and 0.860 in BAF2-G and BLF2-G, respectively. The comparable numbers are 

explained by the comparable differences between the three data sets fed to the model. In the BAF 

experiments, the agreement between the reconstructions and validation data depends strongly on the 

patterns of the tidal amplitude: the lower the amplitude (in amphidromic points), the lower the agreement 

is. The BLF experiments show a much more uniform distribution of the index of agreement. In both the 

BAF and BLF experiments, the reconstruction model performs better if it is fed with the GCOAST data 

than when it is fed with actual observations. 

Some drawbacks in the reconstruction could be avoided if data from the coastal stations are used in the 

training. In BAF3, BLF3, BAF3-G, and BLF3-G, the basin mean indexes of agreement are 0.823, 0.879, 

0.882, and 0.889, respectively. Obviously, there are good perspectives by developing an optimal learning 

process to improve the reconstruction quality, which should include the study of the individual imprint of 

stations for the reconstruction of the basin-wide sea level. TGs are sometimes placed in locations that are 

not representative of the large-scale dynamics; therefore, the observed signal is not fully consistent with the 

basin-wide dynamics. Such stations would have low imprints but could also contaminate the learning 

process. 

A further adjustment of the loss function or other parameters would improve the reconstruction quality, 

which is another technical task to solve in future research. This issue has not been addressed in the present 

study because our aim was to demonstrate the power of the GAN model in reconstructing SSH maps by 

using different types of inputs and targets. 

Another issue that has not been discussed in the present study is the length of the data series that we use. 

As is well known, neural networks can reconstruct situations similar to those they encounter from the past. 

Therefore, another way to improve the reconstruction quality would be to extend the duration of the learning 

process and perhaps to set a clearer aim to the reconstruction exercise with respect to the time scales 

addressed. 

One important question to discuss here is what we learn about physics. One zero-order answer would be 

“nothing” because what we see in the validation step is a synthesis of situations from the past. However, 

the basic message from Figures 4.9a and 4.9b is that a decent reconstruction capability is realized using a 

relatively short time series, which is an illustration of a substantial recurrence of patterns. This would imply 

that the spatial-temporal patterns repeat (quasi)periodically, and a relatively short-time record contains the 
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most representative characteristics of SSH dynamics. While this was clear for the tides, it was not so 

obvious about changes in sea level caused by the atmosphere. Furthermore, the GAN has a good skill to 

learn and reconstruct dynamics with multiple time scales. The results presented in Figure 4.7a illustrate that 

the reconstruction capabilities of the model decrease when approaching the boundaries of the area addressed. 

This finding justifies that having data at the boundaries is an important prerequisite for optimal 

reconstructions. In other words, much information on the dynamics of the entire basin is encapsulated in 

the boundary data, which enables the good reconstruction skill of the specific GAN application. 

The patterns in Figures 4.7 and 4.9 demonstrate that the errors in the reconstructions are closely linked to 

specific physical patterns; that is, one can also make useful analyses of the model errors to study the physical 

properties of the sea level. This analysis would be important when developing concepts to specify error 

covariance matrices in data assimilation models. Another aspect concerns the role of coasts, which constrain 

the circulation features in different ways. One example is the low index of agreement in the area of the 

Norwegian trench, which is a known challenge for numerical models. Evaluation of different types of 

nonlinearities and identification and quantification of the responsible processes with the help of ML is 

another issue of future development. Our preliminary analyses of other types of data (e.g., sea surface 

temperature and sea surface salinity in the German Bight) show that in some cases Kalman filter approach 

performs better, in some other cases, for example, reconstruction of sea surface salinity, it is the ML 

approach, which performs better. The studied here SSH maps is just one type of data with their respective 

temporal and spatial scales. They cannot be considered as а comprehensive set of different types of data 

with different spatial and temporal characteristics, as well as different level of stochasticity. Therefore, the 

experiments presented here do not allow to fully analyze the advantages and disadvantages of two methods. 

A deeper analysis of the performance of the ML and Kalman filter approaches when using different and 

more challenging data sets will be presented in a forthcoming study. 

Longer periods are beyond the scope of the present research. Reconstructing basin-wide SSH over long 

times would require a different design of deep learning. One can expect that reducing the resolution of 

basin-wide data used in the training, both in time and space, would allow more efficient computations and 

extension of the addressed time scales to decadal and beyond. One fundamental issue to address is whether 

coarser resolution in space and time ML would ensure adequate decadal reconstructions. Such an exercise 

will be analyzed in a separate study using different data sampling and processing technologies. 

Another natural extension of the present research would be the application of a GAN to data-only cases. 

One candidate is the amalgamation between satellite altimetry and TGs, which would open up the 

perspectives to improve and optimally use the observational networks in the North Sea. 
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6 Conclusion 

The method proposed here to reconstruct the basin-wide SSH using TG data from a few coastal stations 

builds on the capability of GANs to detect and reproduce nonlinear dynamics, as well as learning the 

dominant relationships of different spatial and temporal signals. We presented the method in detail, 

motivating interested scientists to apply it to similar natural settings or other oceanographic datasets. In the 

case when the coastal and open ocean data are consistent (e.g., they are from the same source), as was the 

case in experiments BAF1 and BLF1, only 19 stations in the locations of the permanently operating TGs 

are enough for the GAN to ensure an adequate reconstruction. The relatively short time series, which is 

only 1 year, provides an illustration of a substantial recurrence of events. It was demonstrated that, in this 

case, the skills of the models used to reconstruct tidally and synoptically driven temporal and spatial 

variability were almost equally good and comparable to the skill when using the Kalman filter approach. 

However, differently from the case of optimal linear estimator (e.g., the Kalman filter approach), of 

particular value is the capability of the GAN to learn and replicate processes with multiple time scales and 

the associated nonlinear interactions between them. 

Using data from different sources (real observations or data from another numerical model) resulted in a 

decrease in the skill, and the patterns of disagreement with the test data were constrained by the model 

dynamics, generally reflecting the signal-to-noise ratio. Thus, the index of agreement between the 

reconstructions and validation data depends strongly on the patterns of the tidal amplitude. Including real 

coastal observations in the learning process increased the skill of the model. Obviously, GANs optimally 

learn from data from different sources. The lower skill of the experiments, in which real coastal observations 

are not used in the training process, reveals a similarity with the problems in data assimilation when errors 

in the data and model are not treated appropriately. Using other independent observations when training the 

GAN has the potential to further increase the power of the proposed method in real applications. This 

method can be attempted in other oceanographic settings. 
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Chapter 5: Conclusion and Outlook 

5.1 Conclusion 

Reconstruction of climate fields, for instance, past surface temperatures and sea surface heights, can provide 

us with a better perspective to learn from the past, and to explore climate and earth system dynamics. 

Likewise, investigating the past can also help us to better analyze and project potential future climate 

changes. Especially, the increasing number of extreme events that could exacerbate global temperature 

rising and global sea level rise, human life and property are under serious threats. Yet, many state-of-the-

art reconstruction studies have identified some deficiencies about most CFR methods, for example a general 

tendency to ‘regress to the mean’ (Christiansen and Ljungqvist, 2017), which leads to an evident 

underestimation of climate variability, especially for low-frequency signals. In addition, sparse networks 

and proxy records with less quality could result in biased reconstructions (Wang et al., 2014; Evans et al., 

2014; Amrhein et al., 2020; Po‐Chedley et al., 2020). Potential nonlinearities in the linkage between proxy 

and target climate variables, and the selection of different reconstruction methodologies could also 

introduce additional reconstruction bias and error. Thus, significant scope remains for further establishing 

and introducing new CFR methodologies, and in designing methods that are less prone to those previous 

mentioned common deficiencies.  

The goal of this thesis is to employ the newly emerging machine leaning/deep learning methods for 

reconstructing climate field variabilities, and to compare reconstructions with several traditional CFR 

methods. Specifically, it was tested whether machine-learning methods, for instance, the artificial neural 

networks that has been proved with highly nonlinearity mapping capacity, could capture and reproduce 

more realistic climatic variability and hence reduce more reconstruction biases. In addition, it was tested 

whether specific neural network methods related to LSTM, ESN and GANs employed in this thesis, are 

superior compared to traditional CFR methods such as PCR, CCA and Kalman filter.   

The thesis consists of 3 main studies: 1) Evaluation of statistical climate reconstruction methods based on 

pseudoproxy experiments using linear and machine learning methods. 2) A comparison and evaluation of 

Northern Hemisphere summer temperature reconstructions using machine learning and linear regression 

methods. 3) Reconstruction of the Basin-Wide Sea-Level Variability in the North Sea Using the Kalman 

filter method and Generative Adversarial Networks. The according prospects and conclusions based on the 

initially formulated questions and hypotheses are presented in the following paragraphs.  

1). Can a recurrent neural network improve CFRs compared to traditional Multivariate linear methods? 
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In the first study of the evaluation of statistical climate reconstruction methods based on pseudoproxy 

experiments using linear and machine learning methods, we implemented the Bi-LSTM method using 

different structures to reconstruct surface temperature fields for past millennium, and compared the 

reconstruction results of LSTM with PCR and CCA method, respectively. In contrast to PCR and CCA, the 

merit of Bi-LSTM is that it does not require a linear and temporally stationary connection between the 

proxy network and the target climate variable. In addition, Bi-LSTM can incorporate temporal information 

of the serial correlation related to the time series. Our working hypothesis in the first study is that the Bi-

LSTM method could achieve a better performance in reconstructing the amplitude of past temperature 

variability. This study shows that all three CFR methodologies generally tend to more strongly 

underestimate the variability of spatially averaged temperature indices as the more noise is introduced into 

the pseudoproxies. The Bi-LSTM method tested in our experiments using a limited calibration dataset 

shows relatively low reconstruction skills compared to PCR and CCA. Therefore, our working hypothesis 

that this machine-learning method with a more complex structure would provide better performance for 

temperature field reconstructions was not confirmed: The nonlinear artificial neural network method Bi-

LSTM employed in the first study is not superior for CFR reconstructions compared with two classical 

methods, at least based on our PPEs. In general, Bi-LSTM show lower skill metrics in spatial and temporal 

CFRs compared to PCR and CCA, including the representation of extremes. A perspective derived from 

this study is to employ a larger set of nonlinear CFR methods to evaluate different model structures, and 

further test their performance on CFRs. 

A second conclusion based on the first study is the general inability to capture extreme cooling signals prior 

to 20th century. Here the Bi-LSTM fails at reasonably extrapolating temperature amplitudes beyond the 

training set - a phenomenon that is intrinsic to most ML-based methods. Therefore, compared with linear 

methods, the Bi-LSTM neural network model did not show clear advantages. The performance of the Bi-

LSTM might be further improved by optimizing the architecture and hyperparameters of the network(e.g. 

by modifications of and inclusion of the type of objective function, type of neural activation function, 

network optimization function, number of hidden layers, the model-learning rate etc.). In this context, the 

optimization in the selection/settings of these hyper-parameters could be further explored, to test the 

according sensitivity and extend on the reconstruction skill. Nadiga (2020) indicated that the performance 

of some machine learning-methods is strongly dependent on these hyper-parameters settings. Machine 

learning methods usually include an extensive range of complexity, and therefore it remains an open issue 

as to which ML techniques are suitable for climate reconstructions.  

At the moment, there is still a considerably amount of ‘trial and error’ in the design and connection of the 

neural layers. Here, we have tested the Bi-LSTM network with several different architecture settings, and 

finally decided a relatively robust and optimal architecture. This included two separated hidden layers, 
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which could be seen as a preliminary try. Our first implementation of the more complex Bi-LSTM does not 

show superiority in CFRs, at least in our specific experiments, compared to traditional CFR methods, so 

we might speculate that more complicated architectures might not be helpful for improving CFRs. One 

factor that needs to be emphasized is that a degradation of out-of-sample performance may well be expected 

when a limited amount of a dataset is employed to train a neural network model (Najafabadi et al., 2015). 

Finally, we would like to point out other methods, such as an Echo State Network (Lukosevicius and Jaeger, 

2009; Nadiga, 2020) for climate reconstruction research. Since both ESN and LSTM belong to the family 

of RNNs, yet ESN is much simpler than LSTM (Lukoševičius and Jaeger 2009), and has outperformed the 

RNNs in many other applications (Chattopadhyay et al., 2020; Nadiga, B. 2020). 

2). Does reservoir computing improve CFR skills compared to traditional Multivariate linear methods? 

In this study, a comparison and evaluation of Northern Hemisphere summer temperature field 

reconstructions was implemented using machine learning and linear regression methods, a reservoir 

computing method - ESN is established together with Bi-LSTM, PCA and CCA methods. Based on 

pseudoproxy reconstruction experiments. The ESN method belonging to the family of reservoir computing 

was employed for temperature field reconstructions, and according results of ESN exhibit an encouraging 

performance in capturing more temperature variance. The ESN method also achieves better reconstruction 

skill compared to the two traditional multivariate linear-based regression methods PCR and CCA. 

Our working hypothesis for the second study, that the more complex Bi-LSTM does not show superiority 

in CFRs compared to traditional CFR methods and the relatively simpler ESN methods, confirmed the 

conclusion of the first study that more complicated architecture might not be helpful for improvement of 

surface temperature field reconstruction, at least based on our specific experiments. One point that needs to 

be emphasized is that the employed Bi-LSTM method has the same structure and hyper-parameters as the 

one we have tested in the first study. Nevertheless, based on the general reconstruction performance 

achieved by the ESN employed in this study, we would like to draw a general conclusion that employing 

relatively simpler architecture-based nonlinear machine learning method might be helpful in designing 

CFRs.  

The ESN and LSTM method both belong to the family of RNN. The ESN method which only consists of 

three layers is much simpler than LSTM (Lukosevicius and Jaeger 2009) both in model-training and model-

establishing procedures, and has been demonstrated to be able to outperform the RNNs in different 

applications (Chattopadhyay et al., 2020; Nadiga, B. 2020). We thus encourage testing ESN in different 

paleoclimate research directions for future CFR studies. 

3). Does the Convolutional neural network produce achieve reasonable CFRs? 
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In the study of the Reconstruction of the Basin-Wide Sea-Level Variability in the North Sea Using Kalman 

filter method and Generative Adversarial Networks, we established a deep learning method GANs together 

with a data assimilation method Kalman filter to reconstruct sea surface height fields of North Sea.  

The method proposed here to reconstruct the basin-wide SSH using Tidal Gauges (TGs) data from a few 

coastal Tidal gauges stations builds on the capability of GANs to identify and reproduce nonlinear ocean 

dynamics, as well as learning the dominant relationships of different spatial and temporal signals. In the 

case when the coastal and open ocean data are consistent (e.g., they are from the same data source), only 

19 stations in the locations of the permanently operating TGs are sufficient for the GANs to ensure an 

adequate SSH field reconstruction. The relatively short time series, which is only one year, provides an 

illustration of a substantial recurrence of events. It was demonstrated that, in this case, the skills of the 

models used to reconstruct tidally and synoptically driven temporal and spatial variability were almost 

equally good. Of particular value is the capability of the GAN to learn and replicate processes with multiple 

time scales and the associated nonlinear interactions between them. 

Using data from different sources (real observations or data from different climate models) resulted in a 

decrease in the reconstruction skill, and the patterns of disagreement with the test data were constrained by 

the model dynamics, generally reflecting the magnitude of signal-to-noise ratio. Thus, the index of 

agreement between the reconstruction and validation data depends strongly on the patterns of the tidal 

amplitude. Including real coastal observations in the learning process increased the skill of the model. 

Obviously, GANs can learn from data of different sources. The lower skill of the experiments, in which 

real TG observations are not used in the training process, reveals a similarity with the problems in data 

assimilation when errors in the data and model are not treated appropriately. Using other independent 

observations when training the GANs has the potential to further increase the power of the proposed method 

in real applications. This method can be attempted in other oceanographic settings. 

In general, the GANs method we employed were capable of reconstructing sea surface height fields with 

reasonable and comparable accuracy compared with the Kalman filter approach. In addition, based on the 

experiments in the third study, the GANs can learn from data of different sources adequately, and general 

ocean dynamics could be reproduced successfully.   

To sum up, this dissertation tested different state-of-the-art machine learning methods, including LSTM, 

ESN and GANs, on climate field reconstructions, and compared CFRs results reconstructed from machine 

leaning methods with reconstructions from several traditional CFR methods, including PCR, CCA and a 

data assimilation method. In order to better and more accurately reconstruct past climate and ocean 

dynamics for global and regional scales, it is necessary to test different techniques, especially related to the 

newly emerging non-linear machine learning approaches. These machine-learning methods have been 
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proven to be able to better capture and reproduce the underlying nonlinearities, and reduce potential 

uncertainties in physical processes, especially on the application of climate and ocean science.  

Moreover, based on our three separated studies using different machine learning methods and traditional 

CFR methods for climate reconstructions, our general conclusion is that better or comparable climate 

reconstructions could be achieved compared to traditional CFR methodologies by employing state-of-the-

art artificial neural networks with appropriate structures and optimized and tested hyperparameters.   

5.2 Outlook 

This thesis employs different machine learning methods on the application of climate reconstructions in 

three separated studies. Results from these three separated studies demonstrate that for neural network 

methods, when tested and selected with appropriate structures and models, comparable or better 

reconstructions can be realized compared to traditional CFR or data assimilation methods.  

Nevertheless, it has been pointed out that the capability of machine learning methodologies are strongly 

dependent on the selection and setting of hyperparameters (Najafabadi et al., 2015; Nadiga, 2020). An 

extensive range of complexity can be involved in Machine learning, and thus it remains an open question 

as to which method is more suitable for specific applications. Until now, it is still not clear how to 

systematically optimize the architecture of ML methods for a particular purpose in climatic and 

oceanographic context. A considerably amount of ‘trial and error’ still remains in the design of the neural 

structures.  

Here, we have tested three neural network methods originated from the family of machine learning; we 

employed Bi-LSTM, ESN, and the convolutional neural network based GANs, and evaluated their 

reconstruction performances on reconstruction experiments, which could be a preliminary attempt. In these 

studies, we heuristically tested and selected the hyperparatmeters of each neural network in several 

necessary numerical experiments to explore a more suitable structure. These heuristic approach could 

introduce additional uncertainties, for instance, the reconstruction results could be affected by subjective 

decisions and settings. If we want to search for an optimal machine learning method with optimal structures 

and hyperparameters, it will take additional work. In fact, currently employed machine learning 

architectures have been mostly established and selected by human experts. Therefore, the automated neural 

architecture search methodologies (Elsken, T et al., 2018), which can be categorized as a subfield of Auto 

machine leaning- AutoML (Hutter, F et al., 2019) may provide an additional perspective. It is valuable to 

test the AutoML method for further CFR studies, which can provide additional avenues to improve the 

efficiency of machine learning application on climate and ocean research.  
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For solving a specific task using Machine learning, we practitioners have a set of raw data that would be 

employed for training and testing a machine leaning method. In order to feed the raw dataset in to a neural 

network model and run it successfully, an expert with necessary domain knowledge may have to apply 

appropriate data pre-processing, for instance, feature extraction and feature selection. When the 

preprocessed dataset is prepared, we usually need to apply a selection algorithm, choose a model structure, 

and seek a hyperparamter optimization to establish an architecture that can potentially fulfill our tasks in 

an optimal manner. AutoML aims to simplify these procedures for non-experts, and make the application 

of machine learning for a specific task more efficiently. For instance, we could set a predefined network 

parameter within certain range (for instance fixed hidden neural numbers or layer numbers within a certain 

range); the automated neural architecture search method could select an optimal hidden neural number or 

layer number based on objective function (lowest mean square error) within the predefine range. Thus, we 

do not have to test each specific number one by one for determining which the hidden neural number or 

layer number would be the optimal in our specific task. 

In the future, we therefore would like to test AutoML methods to optimize the structure and 

hyperparameters of machine-learning methods employed in this thesis for future CFR experiments. This 

will finally allow to check whether AutoML could help us find the best neural network architectures and 

hyperparameter for the application on climate field reconstructions.     

In addition, the machine learning method can provide us with a better way to incorporate real climatic 

observation records into the final climate field reconstructions. For instance, it was demonstrated that 

machine-learning models can provide a better understanding of the connections between leaf physiognomy 

and climate, and improve the final reconstructions (Wei et al., 2021). Another new direction is that it can 

be employed to project the climate field by considering and fusing multisource data. For instance, Zhu et 

al. (2019) proposed a new temperature reconstruction method by employing mutilsource data, including 

NDVI (Normalized Difference Vegetation Index) and multisource remotely sensing data such as MODIS 

(Moderate Resolution Imaging Spectroradiometer) land surface temperature data, which can improve the 

inversion accuracy of surface temperature with high spatial resolution in a wide range significantly.  

Based on our experiments tested in this thesis, machine learning also has a well-applied direction on the 

application of oceanography and biogeochemistry reconstructions (Bennington et al., 2022; Stanev et al., 

2022; Liu et al., 2022). In addition, monitoring and extracting the sea ice cover based on remote sensing 

dataset using machine learning methods (Li et al., 2019; Wang et al., 2021) will provide us with a new 

direction for analyzing or predicting its general variability, which is import for monitoring global climate 

changes. 



 5.2 Outlook 

102 
 

A review publication about the application of machine learning methods to costal sediment transport and 

morphodynamics summarized a set of practices for coastal researchers (Goldstein et al., 2019), for instance, 

predictions of coastal overwash on a developed island, small-scale projections of sediment transport to 

larger-scale sand bar morphodynamics. This overview presents a promising direction that machine-learning 

methods are effective alternative approaches involving, time-consuming fluid dynamics, data requirements, 

and numerical models (Kim and Lee, 2022).   
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Appendix 2A 

The simulation with the model MPI-ESM-P is not part of the standard CMIP5 simulation suite. In the 

following, we include additional technical details on this simulation. The MPI simulation was started from 

the year of 100 BC with restart files from a 500-year spin-down simulation experiments forced with constant 

external conditions representing the year 100 of BC. After 100 BC, variation in volcanic, solar, orbital, and 

GHG concentrations are implemented. Land usage was held constant until 850 AD with conditions 

representing those for year 850 AD. The variation of orbital parameters are calculated after the PMIP3-

protocol (Schmidt et al. 2011). The solar activity has been rebuilt on the basis of the reconstruction of Vieira  

et al. 2011 employing the algorithm and scaling outlined in Schmidt et al. 2011 which corresponds to a 

difference in short-wave top of the atmosphere insolation of 1.25 Wm-2  (~ 0.1%) between the 2nd half of 

the 20th century (1950 – 2000) and the Maunder Minimum (1645 – 1715). Variations in greenhouse gas 

concentrations related to CO2, N2O and CH4 are after the reconstruction of the PMIP3 protocol – The 

concentrations were held constant to the values of year 1 AD between 100 BC and 1 AD because the law 

Dome records does not extend beyond year 1 AD. After 1850 AD also a reconstructed aerosol loading after 

Stine et al. 2018 were employed to account for transient anthropogenic aerosol emissions. The extension 

and reconstruction of the volcanic forcing is related to a rescaling of the newly available Sigl et al. (2015) 

dataset to the reconstruction of Crowley and Unterman (2013). The large volcanoes for different latitudinal 

bands are rescaled according to sulfate concentrations and eventually the Crowley algorithm was applied 

to yield aerosol optical depths and effective radius for four latitudinal bands separated by 30°.  

Appendix 2B 

We have explored a range of Bi-LSTM architectures, including employing different network depths, 

introducing dropout layers, using different learning rates, and employing different loss functions to provide 

a more comprehensive evaluation of the Bi-LSTM performance and effectiveness. Table 2B.1-2B.6 present 

reconstruction statistics skill for the spatial North Hemisphere mean temperature in the verification period 

for ideal PPEs based on CESM using different architecture settings of Bi-LSTM method. In our PPE tests 

on paleo CFRs, it seems that in this case we could not univocally identify optimal neural network structure 

that could universally outperform all others. And the final Bi-LSTM architecture employed in our CFR 
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experiments was finally determined with 2 hidden layers with 4000 hidden nodes, learning rate is 10-3, 

activation function is leaky relu, batchsize is 20 and Huber loss function. 

Table 2B.1. Different loss function conditioned on other parameters fixed (2 hidden layers with 4000 hidden 

nodes, learning rate is 10-3, activation function is leaky relu, batchsize is 20)  

Loss functions cc SD Ratio 

MAE 0.483 0.670 

MAPE 0.124 0.050 

MSE 0.465 0.759 

Huber 0.462 0.770 

 

MAE: mean absolutely error, MAPE: mean absolutely percentage error, MSE: mean square error, Huber: 

Huber loss 

 

Table 2B.2. Different learning rate using Huber loss, and with the rest parameters fixed as in Table 2B.1 

Learning rates cc SD Ratio 

1e-1 -7e-3 1e7 

1e-4 0.462 0.770 

1e-6 0.462 0.675 

1e-8 0.012 0.271 

 

Table 2B.3. Different activation functions with the rest parameters fixed as in Table 2B.1 

Activation function cc SD Ratio 

ReLU 0.505 0.566 

Leaky ReLU 0.462 0.770 

ELU 0.529 0.617 

PReLU 0.509 0.544 

 

Table 2B.4. Different hidden layer number with the rest parameters fixed as in Table 2B.1 

Number of layers cc SD Ratio 

1 0.508 0.733 

2 0.462 0.770 

4 0.442 0.603 

6 0.335 0.411 

 

Table 2B.5. Different hidden node numbers in each layer with the rest parameters fixed as in Table 2B.1 

Number of hidden nodes cc SD Ratio 

200 0.479 0.620 

1000 0.502 0.692 

2000 0.503 0.711 

4000 0.462 0.770 
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Table 2B.6. With and without dropout layers conditioned on the rest parameters are fixed as in Table 2B.1 

Dropout cc SD Ratio 

Dropout 0.462 0.770 

Non-dropout 0.467 0.760 

 

Appendix 2C 

Appendix 2C displays the SD ratios for ideal pseudo-proxies after filtering the reconstructed and target 

fields with a 30-year low pass filter. At these time scale, the SD ratio is again lower than for the interannual 

variance. 

 

Figure 2C. 1: 30year filtered SD ratio pattern using Ideal-PPEs based on MPI model over validation period 

850-1899 for NAE (upper row) and NH (lower row) 

 

Appendix 3A 

The ESN model parameters tested and selected in our reconstruction experiments.  

Table 3A.1 ESN Parameters: 

Details of ESN architecture 

Number of recurrent neurons in hidden reservoir layer 535 

Activation function Relu 

Bias scaling factor (Scales the input bias of the activation) 0.1 

Distribution for random weight matrices Central unit normal 

Ridge regression coefficient 1e-3 

Spectral radius (Scales the recurrent weight matrix) 0.9 
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Appendix 4A   

Loss functions of the generator and discriminator 
The Unet-like GAN is established to train two defined network models: Generator (G(Z)) and Discriminator 

(D). G(Z) is established to reconstruct SSH maps with full information, where Z denotes the input SSH 

maps with only several tidal gauge point information available. Generated SSH maps from G(Z) together 

with real SSH maps from the numerical model are fed into the discriminator (D), and the outputs of D are 

a dense scalar that represents the probability of discriminating whether the input maps are from the real 

input map (which is from the numerical model). The stopping criterion of model training is that the 

discriminator cannot distinguish whether the generated SSH maps are from real maps. The GAN loss 

functions are defined as in Goodfellow et al. (2014): 

𝐿𝐷
𝐺𝐴𝑁 = 𝐸[log (𝐷(𝑥))] +  𝐸[log (1 −  𝐷(𝐺(𝑧)))] (4A.1) 

𝐿𝐺
𝐺𝐴𝑁 = 𝐸[log (𝐷(𝐺(𝑧)))] (4A.2) 

where LG is the generator loss and LD is the discriminator loss. The GAN model parameters are trained and 

updated based on the following minimization and maximization method: 

minmax𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[log (𝐷(𝑥))] + 𝐸𝑍~𝑃𝑧(𝑧)[log (1 −  𝐷(𝐺(𝑧)))] (4A.3) 

Here, Pdata(x) is the real ssh map data distribution, taking real data sample x from Pdata(x). While Pz(z) is the 

Input(z) (as in following figure) ssh data distribution, sampling z from Pz(z). E is  expectation operator. 

Based on the original DCGAN loss function, we introduce also L1 as pixel wise reconstruction loss and L2 

as content loss into the Generator for accomplishing our experiments, the Discriminator loss is the same as 

original GAN. The overall loss for the Generator is 

𝐿1 = ‖𝐺(𝑧) − 𝑥‖ (4A.4) 

𝐿2 = ‖𝐺(𝑧) − 𝑥‖2
2 (4A.5) 

𝐿𝐺
𝐺𝐴𝑁 = 𝐸[log(𝐷(𝐺(𝑧)))] + 𝐿1 + 𝐿2 (4A.6) 

While for our LF SSH surge reconstruction model, Generator and Discriminator loss is keep as the same 

with SSH reconstruction model. Besides, an additional pixel wise reconstruction loss La is introduces into 

the Generator part 

𝐿𝑎 = ‖𝐺𝑂𝑐
(𝑧) − 𝑥‖ (4A.7) 

𝐿𝐺
𝐺𝐴𝑁 = 𝐸[log(𝐷(𝐺(𝑧)))] + 𝐿1 + 𝐿2 + 𝐿𝑎 (4A.8) 

Here, the GOc(z) represents the generated coarse sea surface LF maps data sample. And x is the same as 

above denotes the real numerical sample data. 
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Figure 4A.1. Schematic representation of reconstruction of sea level variability using Generative Adversary 

networks system. Input (Z) is the SSH map with only tidal gauges point data available,  G(Z) denotes the 

Generator module for mapping Input (Z) to Generated data by samples G(Z). Real data (x) is the full SSH 

data set from the numerical model, D represents the Discriminator module for discriminating the real data 

(x) and the Generated data(G(Z)) as Real or Fake samples 
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