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Abstract

With advent of modern experimental techniques using light sources, the dy-

namics initiated by inner-shell processes such as, inner-shell ionization fol-

lowed by Auger-decay, and their subsequent dynamics can be investigated

in their fundamental timescales. Theoretical description supported by com-

putational methods are needed to complement the experimental investiga-

tions [1]. Comparing the experimental and theoretical results are important

to interpret the results from the experiments. In this thesis, theoretical and

computational methods will be presented which demonstrates the ability to

investigate field-induced processes in mono- and diatomic systems.
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Zusammenfassung

Mit dem Aufkommen moderner experimenteller Techniken, die Lichtquellen

verwenden, kann die Dynamik, die durch Prozesse in der inneren Schale aus-

gelöst wird, wie z. B. Ionisierung in der inneren Schale, gefolgt von Auger-

Zerfall, und ihre anschließende Dynamik in ihren fundamentalen Zeitskalen

untersucht werden. Theoretische Beschreibungen, unterstützt durch rech-

nerische Methoden, sind notwendig, um die experimentellen Untersuchun-

gen zu ergänzen [1]. Der Vergleich der experimentellen und theoretischen

Ergebnisse ist wichtig, um die Ergebnisse der Experimente zu interpretieren.

In dieser Arbeit werden theoretische und rechnerische Methoden vorgestellt,

die die Fähigkeit demonstrieren, feldinduzierte Prozesse in mono- und di-

atomaren Systemen zu untersuchen.
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Chapter 1

Introduction

Atomic, molecular, and optical (AMO) science is the study of light-matter

and matter-matter interaction ranging from the quantum scale of atoms, molecules,

or photons to classical electrodynamics. It has yielded major technological

advances in numerous fields such as manufacturing, material science, com-

munications, space exploration, defence, energy, environment, health and

transportation [2, 3]. In the field of health, magnetic resonance imaging (MRI)

stands out as one of the most crucial innovations from AMO science. Or

consider the continued impact of the laser, which came from AMO science,

developed by scientists, such as Jun-ichi Nishizawa, Charles H. Townsend,

and Gordon Gould, among many others, over 60 years ago [4, 5, 6, 7]. The

laser, combined with the semiconductor community have led to numerous

modern technologies, such as optical storage devices and fiber-optics-based

transmission systems, that otherwise would not exists.

The light-matter and matter-matter interaction further induces dynam-

ics of atoms and molecules in their fundamental timescales span from at-

tosecond timescales, characteristic of electronic dynamics [8, 9, 10, 11], to

femtosecond timescales, characteristic of vibration and dissociation dynam-

ics [12, 13, 14, 15, 16], to picosecond timescales, characteristic of rotation

dynamics [17, 18, 19]. The technological advances in laser sources such as

table-top light sources using high-harmonic generation (HHG) and the free-

electron laser (FEL) [20], have paved the way to probe such dynamics with
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techniques that can achieve atomic spatial resolution and temporal resolu-

tion [21].

There are numerous processes related to light-matter interaction which

initiate the dynamics of atoms and molecules at their fundamental timescales.

A few selected processes relevant to this work are listed below. The atomic

processes occurring for a photon (light) with sufficient energy to remove an

electron from an atom or a molecule or an ion are:

1. Photoionization, whereby an electron is removed from the parent ion

through photon. If an electron is removed from an inner-most shell of

the parent ion, then it is called as inner-shell photoionization.

2. Photoexcitation, whereby an electron excitation takes place through pho-

ton absorption.

3. Fluorescence, whereby an excited atomic ion relaxes to a lower energy

state through the emission of a photon. The excited atomic ion comes

from a previous ionization process having created a hole in the inner-

shell.

4. Auger-Meitner decay, whereby an excited atomic ion is relaxed to a

lower energy state through the emission of another electron. It is more

often referred to as Auger decay, which will be the moniker used in this

thesis. Note the similarity with fluorescence, where the mediation of

relaxation was a photon rather than an electron. In contrast to fluores-

cence, Auger decay is a radiationless decay channel.

Together with advances in experimental techniques, both quantum and clas-

sical theoretical methods play a crucial role to investigate the dynamics ini-

tiated by the above mentioned processes. The increase in computational
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power, along with numerical simulation techniques, greatly benefits the sci-

entific community using computers. This thesis focuses on presenting com-

putational and analytical techniques to study light-matter interaction pro-

cesses such as, (inner-shell) photoionization and Auger decay, and their cor-

responding dynamics in mono- and diatomic systems in the presence of an

external electric field.

In Chapt. 2, the theory underlying the simulations employed in Paper

5.2 and 5.3 to investigate the field-induced dynamics following the previous

step, photoionization followed Auger decay, is presented.

In Chapt. 3, summary of results from Paper 5.1, 5.2 and 5.3 corresponds

to the process of inner-shell photoionization followed by Auger decay in the

presence of an external electric field are presented.

Chapter 4 concludes the research presented in the thesis with an outlook

on future directions of research.
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Chapter 2

Theory framework

In this chapter, the underlying theoretical framework behind simulations em-

ployed in Papers 5.2 & 5.3 is presented. The theory related to the research

done in Paper 5.1 is presented in detail in its appendix.

2.1 Molecular dynamics

Molecular dynamics (MD) can be defined as a computer simulation approach

used to investigate the properties of assemblies of molecules in terms of their

structure and the microscopic interactions between them. The MD is based

on two underlying approximations: the Born-Oppenheimer (BO) approxi-

mation and treatment of nuclear motion using classical mechanics.

In the BO approximation, due to the large mass of a nucleus compared to

that of an electron, a separation of electronic and nuclear motion is justifiable.

This approximation reduces the nuclear motion to a single PES. The PES de-

scribes the energy of the molecular system with respect to, mostly, nuclear co-

ordinates. And, after every time step, with an updated electronic structure on

a PES, the nuclei are propagated using classical equations of motion. One or

both of these approximations become invalid in case of nonadiabatic dynam-

ics, where the electronic and nuclear motion are comparable to each other

and includes transition among PESs. The mixed quantum-classical methods

(MQC) aim to overcome the issues in traditional MD.
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2.2 Tully’s FSSH algorithm

Tully’s FSSH algorithm is one of the most popular MQC methods. It employs

a simple picture in which the system, represented by classical trajectories,

evolves on a single PES. These trajectories hop from one PES to another based

on a hopping probability defined using a hopping criterion. After hopping,

the momentum of classical trajectory is adjusted using energy conservation

laws. The derivation of Tully’s FSSH algorithm is discussed below.

The nonrelativistic Hamiltonian of a molecular system, with R denoting

the nuclear coordinates of N nuclei and r denoting the electronic coordinates

of n electrons, given by

Hmol(r,R) = Tn(R) + Te(r) + Vnn(R) + Vee(r) + Ven(r,R), (2.1)

where, Tn(R) and Te(r) denote KE operator of nuclei and electrons respec-

tively, given by

Tn(R) = −~2

2

N∑
J=1

∇2
RJ

MJ

, (2.2)

and

Te(r) = − ~2

2me

n∑
j=1

∇2
rj

(2.3)

The repulsion operator between the nuclei, Vnn(R), and the one between the

electrons, Vee(r), are given by

Vnn(R) =
e2

4πε0

N−1∑
J=1

N∑
I>J

ZIZJ
|RJ −RI |

, (2.4)
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and

Vee(r) =
e2

4πε0

n−1∑
j=1

n∑
i>j

1

|rj − ri|
. (2.5)

Finally, Ven(r,R) denotes electron-nuclear interaction operator

Ven(r,R) = − e2

4πε0

N∑
J=1

n∑
j=1

ZJ
|rj −RJ |

, (2.6)

where me, e and n denote the mass, charge, and number of electrons, respec-

tively. The mass and charge of the J-th nucleus are denoted by MJ and ZJ .

Lastly, ε0 and ~ denote the permittivity of vacuum and the reduced Planck’s

constant. The properties of a molecule are captured in quantum mechanics

by its wave function Ψ(r,R, t). The time-evolution of Ψ(r,R, t) is obtained

by solving the time-dependent Schrödinger equation.

At this point, the clamped-nuclei approximation is employed i.e. the

change in degrees of freedom (DOF) of the nucleus is negligible on the timescale

of the electronic motion. This approximation is the first step of BO approx-

imation. It implies that the KE operator of the nucleus, Tn(R) is set to zero

(i.e., Tn(R) = 0) and what remains is:

Hel(r,R) = Te(r) + Vnn(R) + Vee(r) + Ven(r,R). (2.7)

To proceed, it is assumed that the nuclear coordinate R can be described by

classical trajectory, i.e., R = R(t). The wave function |Ψ(r,R, t)〉, which de-

scribes the electronic state at time t, can be expanded in terms of orthonormal

electronic basis functions |ψj(r;R)〉, i.e.,

|Ψ(r,R, t)〉 =
∑
j

cj(t) |ψj(r;R)〉 , (2.8)

where cj(t) are the complex-valued time-dependent expansion coefficients
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and the notation |ψj(r;R)〉 indicates that the basis functions depend para-

metrically on the nuclear coordinate R. The matrix elements of the electronic

Hamiltonian Hel with respect to this electronic basis are given by

Ekj = 〈ψk(r;R)|Hel(r,R)|ψj(r;R)〉 . (2.9)

In the time dependent electronic Schrödinger equation, i.e.,

i~
∂ |Ψ(r,R, t)〉

∂t
= Hel(r,R) |Ψ(r,R, t)〉 (2.10)

by substituting Eq. (2.8) in Eq. (2.10) gives

i~
∑
j

∂cj(t) |ψj(r;R)〉
∂t

= Hel(r,R)
∑
j

cj(t) |ψj(r;R)〉 . (2.11)

The left-hand side (LHS) of Eq. (2.11) is expanded as

i~
∑
j

∂cj(t) |ψj(r;R)〉
∂t

= i~
∑
j

[
∂cj(t)

∂t
|ψj(r;R)〉+ cj(t)

∣∣∣∣∂ψj(r;R)

∂t

〉]
,

(2.12)

where the time derivative of |ψj(r;R)〉 is nonzero due to the parametric de-

pendence of R on time. Projecting |ψk(r;R)〉 onto Eq. (2.12) gives

i~
∑
j

〈
ψk(r;R)

∣∣∣∣∂cj(t)ψj(r;R)

∂t

〉
=i~

∑
j

[
∂cj(t)

∂t
〈ψk(r;R)|ψj(r;R)〉

+ cj(t)

〈
ψk(r;R)

∣∣∣∣∂ψj(r;R)

∂t

〉]
. (2.13)

The term |∂ψj(r;R)/∂t〉 can be written as |∇Rψj(r;R)〉·dR/dt, using the chain

rule, and the orthonormality of the basis functions, Eq. (2.13) is brought to



Chapter 2. Theory framework 8

the following form:

i~
∑
j

〈
ψk(r;R)

∣∣∣∣∂cj(t)ψj(r;R)

∂t

〉
=i~

∂ck(t)

∂t

+ i~
∑
j

cj(t) 〈ψk(r;R)|∇Rψj(r;R)〉 · dR
dt
.

(2.14)

The nonadiabatic coupling vector is defined as dkj = 〈ψk(r;R)|∇Rψj(r;R)〉,

which denotes the interaction between electronic and nuclear DOF. Using

this in Eq. (2.14) gives

i~
∑
j

〈
ψk(r;R)

∣∣∣∣∂cj(t)ψj(r;R)

∂t

〉
= i~

∂ck(t)

∂t
+ i~

∑
j

cj(t)dkj ·
dR

dt
. (2.15)

Equation (2.15) gives the simplified version of LHS of Eq. (2.11) after pro-

jecting |ψk(r;R)〉 onto it. Performing a similar projection on the RHS of Eq.

(2.11) gives

∑
j

cj(t) 〈ψk(r;R)|Ĥel(r,R)|ψj(r;R)〉 =
∑
j

cj(t)Ekj. (2.16)

Setting Eq. (2.15) equal to Eq. (2.16) provides the time evolution of the ex-

pansion coefficient ck(t):

i~
∂ck(t)

∂t
=
∑
j

cj(t)
[
Ekj − i~dkj ·

dR

dt

]
. (2.17)

For a given classical trajectory R(t), the coefficients cj(t) can be obtained from

numerical integration of Eq. (2.17).

These equations may be rewritten in the density matrix-notation, where

the density-matrix elements are defined as

ρkj(t) = ck(t)c
∗
j(t) (2.18)
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∂ρkj(t)

∂t
=
∂ck(t)

∂t
c∗j(t) + ck(t)

∂c∗j(t)

∂t
(2.19)

Using the equations of motion for the coefficients cj(t) from Eq. (2.17), we

may deduce

i~
∂ρkj(t)

∂t
=
∑
l

[
ρlj(t)

(
Ekl − i~dkl ·

dR

dt

)

− ρkl(t)
(
E∗jl + i~d∗jl ·

dR

dt

)]
. (2.20)

Using the unitary of the density matrix elements, i.e., ρkl(t) = ρ∗lk(t), we get

i~
∂ρkj(t)

∂t
=
∑
l

[
ρlj(t)

(
Ekl − i~dkl ·

dR

dt

)
− ρ∗lk(t)

(
E∗jl + i~d∗jl ·

dR

dt

)]
. (2.21)

In Eq. (2.21), the off-diagonal term (k 6= j) of ∂ρ(t)/∂t, denotes the rate of

change of coherence between states k and j and the diagonal term (k = j)

of ∂ρ(t)/∂t, gives the rate of change of population of state k. Specifying Eq.

(2.21) for ∂ρkk(t)/∂t, we get

i~
∂ρkk(t)

∂t
=
∑
l 6=k

[
ρlk(t)

(
Ekl − i~dkl ·

dR

dt

)
− ρ∗lk(t)

(
E∗kl + i~d∗kl ·

dR

dt

)]

=
∑
l 6=k

[
2i Im{ρlk(t)Ekl} − 2i~Re

{
ρlk(t)dkl ·

dR

dt

}]
(2.22)

and finally reduces to

∂ρkk(t)

∂t
=
∑
l 6=k

bkl, (2.23)

where,

bkl =
2

~
Im{ρlk(t)Ekl} − 2 Re

{
ρlk(t)dkl ·

dR

dt

}
. (2.24)



Chapter 2. Theory framework 10

In the adiabatic representation (BO representation) the off-diagonal term Ekl

vanishes and the Eq. (2.24) becomes

bkl = −2 Re

{
ρlk(t)dkl ·

dR

dt

}
. (2.25)

At this point, an expression for probability of hopping can be deduced for

an ensemble of classical nuclear trajectories R(t). Let M be the total number

of classical trajectories and Mkk(t) be the number of trajectories in state k at

time t, which is given by

Mk(t) = ρkk(t)M, (2.26)

where ρkk(t) gives the population of state k at time t. After an infinitesimally

small amount of time, i.e., t′ = t + ∆t, the number of trajectories in state k is

given by

Mk(t
′
) = ρkk(t

′
)M, (2.27)

where ρkk(t
′
) gives the population of state k at time t′ . Suppose, Mk(t

′
) is less

than Mk(t), i.e., ∆M = Mk(t)−Mk(t
′
) > 0, then ∆M trajectories should hop

from state k to any other state. The probability of hopping from state k to any

other state in the time interval ∆t is given as

Pk→anystate =
∆M

Mk(t)
=
ρkk(t)− ρkk(t′)

ρkk(t)
≈ −dρkk

dt

∆t

ρkk(t)
. (2.28)

By substituting Eq. (2.23),

Pk→anystate = −
∑

l 6=k bkl∆t

ρkk(t)
. (2.29)



Chapter 2. Theory framework 11

The probability of hopping from state k to a particular state j, i.e., l = j is

given by,

Pk→j = − bkj∆t
ρkk(t)

, (2.30)

where ∆t is the simulation time step for nuclear trajectory. The probability

of hopping is compared to an uniformly distributed random number ζ be-

tween 0 and 1, and the hop occurs only if Pk→j > ζ . If hopping takes place,

then the velocity of the classical trajectory is adjusted in the direction of the

nonadiabatic coupling vector to conserve the total energy. No hopping takes

place if there is not enough energy available to adjust the velocity.

The presence of an external field denoted by a Hamiltonian given as

Hext = −ε(t) · µ, (2.31)

where µ is the dipole operator. Following identical derivation steps, the time

evolution of ck(t) in the presence of an external field is given as

i~
∂ck(t)

∂t
=
∑
j

cj(t)
[
Ekj − i~dkj ·

dR

dt
− µkj · ε(t)

]
, (2.32)

where µkj = 〈ψk(r;R)|µ|ψj(r;R)〉. By following identical density matrix for-

mulation and derivation steps will give

bkl = −2 Re

{
ρlk(t)dkl ·

dR

dt

}
+

2

~
Re{iρlkε(t) · µkl}. (2.33)

Equation (2.33) has an extra term due to the external electric field. The ve-

locity adjustment of the trajectory after hopping is carried out if the hopping

takes place due to term containing nonadiabatic coupling term (the first term)

in Eq. (2.33). It is not required to adjust the velocity if the hopping takes place

due to the external electric field. To decide if the hop is due to nonadiabatic
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coupling term or the external electric field term, the ratio of magnitude of two

terms in Eq. (2.33) is calculated and a Monte Carlo strategy is employed to

sample the ratio. This is also the formulation of BO-SH mentioned in Chap-

ter 3. The simulation was carried out by setting dkl = 0, as the influence of

nonadiabatic coupling was neglected in this research work, following Ref.

[22].

Using IBO surfaces EIBO
kj , the molecular wave function may be expanded

in IBO electronic basis, i.e.,

|Ψ(r,R, ε, t)〉 =
∑
j

cj(t) |ψ(r;R, ε)〉 . (2.34)

Notice that basis functions depend parametrically on both the nuclear coor-

dinate R and the external electric field ε. The IBO energies EIBO
kj are given

by

EIBO
kj = 〈ψk(r;R, ε)|Hel(r,R)− ε(t) · µ|ψj(r;R, ε)〉 . (2.35)

Substituting the above two expression in time-dependent Schrödinger equa-

tion gives

i~
∑
j

∂cj(t) |ψj(r;R, ε)〉
∂t

= [Hel(r,R)− ε(t) · µ]
∑
j

cj(t) |ψj(r;R, ε)〉 . (2.36)

Applying chain rule and projecting |ψk(r;R, ε)〉 onto the above expression

gives

i~
∂ck(t)

∂t
+ i~

∑
j

cj(t)dkj ·
dR

dt
+ i~

∑
j

cj(t) 〈ψk(r;R, ε)|∇εψj(r;R, ε)〉 ·
dε

dt

=
∑
j

cj(t)E
IBO
kj (2.37)
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Using, Hellmann-Feynman theorem, i.e.,

∇ε 〈ψk(r;R, ε)|Hel(r,R)− µ · ε|ψj(r;R, ε)〉 =

〈∇εψk(r;R, ε)|Hel(r,R)− µ · ε|ψj(r;R, ε)〉

+ 〈ψk(r;R, ε)|Hel(r,R)− µ · ε|∇εψj(r;R, ε)〉

+ 〈ψk(r;R, ε)|∇ε[Hel(r,R)− µ · ε]|ψj(r;R, ε)〉 (2.38)

∇εE
IBO
kj = EIBO

j 〈∇εψk(r;R, ε)|ψj(r;R, ε)〉

+ EIBO
k 〈ψk(r;R, ε)|∇εψj(r;R, ε)〉 − 〈ψk(r;R, ε)|µ|ψj(r;R, ε)〉 (2.39)

∇εE
IBO
kj = (EIBO

k − EIBO
j ) 〈ψk(r;R, ε)|∇εψj(r;R, ε)〉

− 〈ψk(r;R, ε)|µ|ψj(r;R, ε)〉 (2.40)

For k 6= j, in the adiabatic representation, EIBO
kj vanishes. Therefore,

〈ψk(r;R, ε)|∇εψj(r;R, ε)〉 =
−µkj

∆EIBO
jk

, (2.41)

where µkj = 〈ψk(r;R, ε)|µ|ψj(r;R, ε)〉 gives the elements of transition dipole

matrix and ∆EIBO
jk = EIBO

j −EIBO
k . Substituting Eq. (2.41) in Eq. (2.37) gives

i~
∂ck(t)

∂t
+ i~

∑
j

cj(t)

(
dkj ·

dR

dt
− µkj

∆EIBO
jk

· dε
dt

)
=
∑
j

cj(t)E
IBO
kj (2.42)

i~
∂ck(t)

∂t
=
∑
j

cj(t)

(
EIBO
kj − i~dkj ·

dR

dt
+ i~

µkj
∆EIBO

jk

· dε
dt

)
. (2.43)

The above equation gives the time evolution of ck(t) in IBO-SH formalism.
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Following similar steps used in the derivation of BO-SH formalism and set-

ting dkj = 0 gives the probability of hopping Pk→j given in Paper 5.3.

2.3 Formulation of o-BO-SH

In the o-BO-SH method, the electronic basis is transformed using a SU(2)

transformation matrix, in order to reduce the average number of hops per

trajectory in BO-SH. The transformation matrixU(θ, φ), specific to a two-state

case, is given as

U(θ, φ) =

 cos θ sin θeiφ

− sin θe−iφ cos θ

 , (2.44)

where θ and φ are the parameters to be optimized for every time step to

which reduce the number of hops. Subsequently, the expansion coefficients

c(t) are correspondingly transformed as c′(t) = U(θ, φ)c(t). TheEBO and ε(t)·

µ matrix elements are transformed into U(θ, φ)EBOU †(θ, φ) and U(θ, φ)ε(t) ·

µU †(θ, φ), respectively. By setting dkj = 0 and substituting these in the BO

formalism of Eq. 2.32 gives the time evolution of the expansion coefficients

in the transformed basis:

i~
∂c

′

k(t)

∂t
=
∑
j

c
′

j(t)
[∑

a

Uka(θ, φ)EBO
kj U

†
aj(θ, φ)

−
∑
a,b

Uka(θ, φ)ε(t) · µabU †bj(θ, φ)− i
∑
a

Uka(θ,φ)
dU †aj(θ, φ)

dt

]
. (2.45)

The probability of hopping in the transformed basis, obtained by following

identical steps in the BO-SH formalism, is dependent on the parameters θ

and φ, i.e., Pk→j is a function of (θ, φ). Note that k and j denotes the trans-

formed PES. Optimizing Pk→j(θ, φ) with respect to θ and φ give the optimum

values of (θopt, φopt). The optimized PESs are obtained using θopt and φopt, i.e.,
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Eo = U(θopt, φopt)E
BOU †(θopt, φopt) and the classical trajectories are allowed

to evolve on them.

For the case considered in Paper 5.3, its observed that the optimization

leads to an approach very similar to Ehrenfest approach. However, the Ehren-

fest approach has its own drawbacks and a smooth switch between the BO-

SH and Ehrenfest-like o-BO-SH approach is discussed in Paper 5.3.
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Chapter 3

Research summary

In the presence of an external electric field, inner-shell photoionization fol-

lowed by Auger decay gives rise to numerous interesting phenomena. In

this chapter, a brief summary of research work, from papers 5.1, 5.2 and 5.3,

to investigate such processes in the presence of an external field is presented.

The basic underlying process behind inner-shell photoionization followed

by Auger decay is presented in Fig. 3.1. Inner-shell photoionization is the

process in which an inner-shell electron is removed from the parent ion using

a high-energy external field. The electron-electron interaction and electron-

hole interaction [23] in this process pave the way for many-body effects to

occur, such as interchannel coupling [24, 25], core relaxation [26, 27, 28],

core polarization [29], autoionization resonances [30], photoionization-with-

excitation [31], double photoionization [32, 33, 34, 35], Auger decay [36, 37,

38, 39], and post-collision interaction [40].

Auger decay is the process whereby an excited ion with an inner-shell

hole (from a previous inner-shell ionization process) relaxes to a lower en-

ergy state by ejecting an electron (referred to as the Auger electron). In turn,

a valence electron will fill the core-hole, resulting in the residual atom con-

taining two valence holes. The kinetic energy (KE) of the ejected Auger elec-

tron does not depend on the energy of incoming photon and is an intrinsic

property of electronic structure of the parent system. Thus, the measurement

of properties of Auger electrons is an excellent probe for the elemental and
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chemical characteristics of the parent system [41]. This is the underlying pro-

cess behind Auger spectroscopy.

FIGURE 3.1: A schematic diagram explaining the basic underly-
ing process behind inner-shell photoionization (I) followed by

Auger decay (II).

3.1 Laser-field-induced quantum interference in Auger

decay

The emitted Auger and photoelectrons can be probed or controlled using

intense and highly energetic laser fields [42, 43, 44, 45, 46]. The advances

in technologies to use intense infra-red (IR) laser-fields [in Tera Hertz (THz)

energy regime] synchronized with extreme ultra-violet (EUV) or x-ray pulses

allow for the investigation of the laser-assisted Auger decay in THz regime.

In an experiment, performed by Roman Brannath and Markus Drescher

(co-authors of Paper 5.1), magnesium (Mg) atoms are irradiated by ultrashort

EUV pulses, which form a 2p core-hole by emitting photoelectrons. Due to

spin-orbit coupling, the 2p53s2 energy level of Mg+ ion is split and thus the

decay of core-hole states happens in two distinct Auger pathways, result-

ing in two distinct peaks in Auger spectrum. Later, the same experiment is

performed in the presence of the THz pulses. The Mg atoms are irradiated
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by ultrashort EUV pulses synchronized with THz pulses and an oscillatory

structure reminiscent of an interference pattern was observed in the electron

KE spectrum, thus concluding that an interference between relaxation path-

ways may be induced by the presence of a THz field.

An analytical model, based on time-dependent perturbation theory, was

developed by Murali Krishna Ganesa Subramanian, Ralph Welsch and Robin

Santra (authors of Paper 5.1) to provide a physical picture for the interference

pattern observed in the above experiment. The theoretical formulation of the

model is explained in detail in the appendix section of Paper 5.1. In this ana-

lytical model, the photoionization and Auger decay processes are treated in

the perturbation framework. The THz field is too strong and so its interaction

is treated in a nonperturbative fashion. To observe interference between two

Auger pathways, the combined quantum states of Auger electrons, photo-

electrons and Mg dication should be indistinguishable. Within the analytical

model, it is demonstrated that the THz field streaks the system to evolve into

indistinguishable quantum states which gives rise to interference pattern ob-

served in the experiment.

3.2 Auger-decay followed by laser-field-induced frag-

mentation of N2+
2

The field-induced fragmentation of molecules is very well studied in the

AMO community [47, 48, 49, 50, 51]. Pump-probe spectroscopy gives the

possibility to investigate the fragmentation dynamics in detail. In this tech-

nique, an ultrashort laser pulse is split into two parts; a pump pulse to initi-

ate the excitation and a probe to monitor the pump-induced changes and the

subsequent processes.
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In a pump-probe experiment performed at LCLS, SLAC National Lab-

oratory, using FEL [52], N2+
2 is produced from N2 following an inner-shell

photoionization event from the x ray, followed in turn by Auger decay. A de-

crease in unfragmented-N2+
2 as a function of time delay between the pump

x-ray pulse and the probe IR pulse has been reported.

Using quantum-dynamics (QD) simulations [53], the interaction between

an IR pulse and N2 dication as a function of time delay, similar to the experi-

ment performed, was investigated in detail. The results from the simulations

were in very good agreement with the experiment. In addition to that, a

direct dependence of unfragmented-N2+
2 on intensity and width of the IR

pulse was observed. The simulation is computationally expensive and scales

exponentially with increasing system size, illustrating the need for a MQC

theoretical description.

To improve on this computational cost, a MQC method of the field-induced

Tully’s fewest switches surface hopping (FSSH) algorithm was employed us-

ing a quasidiabatic representation of N2+
2 states in Paper 5.2 to investigate the

fragmentation of the N2 dication. The theoretical framework of the employed

algorithm is discussed in Chapter 2. In the MQC method, the electrons are

treated quantum mechanically and the nuclei are treated classically, which

greatly reduces the computational cost. Results from the FSSH simulations

are found to be in good agreement with QD simulations. The computational

simplicity of FSSH allows to investigate the same process in the adiabatic rep-

resentation of N2+
2 states using more potential energy surfaces (PES). Slightly

different fragmentation dynamics is reported in the adiabatic representation.
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3.3 Further study of field-induced FSSH variants

Due to its computational efficiency, field-induced FSSH simulations is a widely

used tool in molecular dynamics. The PESs in field-induced FSSH are opti-

cally coupled via the transition dipole moment. The transition dipole mo-

ment is nothing but the electric dipole moment associated with the transition

between two states. These basic states used in field-induced FSSH can be

field-free surfaces, adiabatic Born-Oppenheimer (BO) surfaces and instanta-

neous BO (IBO) surfaces which are the eigenstates of electronic Hamiltonian

including electric field at that instant of time. Subsequently, the field-induced

FSSH using BO and IBO surfaces are termed as BO-SH and IBO-SH, respec-

tively. Theoretical formulation of BO- and IBO-SH are given in Chapter 4.

It has been shown that BO- and IBO-SH gives non-physical results com-

pared to full quantum simulations for photoexcitation and stimulated emis-

sion processes in an exactly solvable H+
2 model [22]. It is reported that non-

physically high average number of hops per trajectory leads to this draw-

back. This was overcame by employing another field-induced FSSH variant

using Floquet PES within FSSH framework; i.e., Floquet FSSH (F-SH) and

found to be in good agreement with quantum simulations. However, Flo-

quet picture has its own limitations as it is exact only for periodic continuous

wave lasers.

In Paper 5.3, a version of field-induced FSSH termed as optimised-BO-

SH (o-BO-SH) is proposed which minimizes the non-physical average num-

ber of hops compared to BO- and IBO-SH. The o-BO-SH is an Ehrenfest-like

field-induced FSSH approach. In Ehrenfest dynamics, the nuclei is allowed

to evolve using classical equations of motion, due to the force from the su-

perposition of electronic eigenstates. In case of two level system, the system

will experience force from the superposition of two states. If the nature of
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the states are very distinct then the corresponding force could lead to non-

physical results. In o-BO-SH, a smooth combination of Ehrenfest-like ap-

proach in strongly coupled region and BO-SH in weakly coupled region, the

average number of hops is greatly reduced in the scenarios mentioned in Ref.

[22]. The results from o-BO-SH simulations performs well compared to the

full quantum simulations.
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Chapter 4

Conclusion

This thesis is dedicated to inner-shell processes in the presence of an external

electric field. It presents the possibility of using time-dependent perturbation

theory and MQC to investigate various distinct field-induced inner-shell pro-

cesses.

In Sec. 3.1, an overview of theoretical interpretation from paper 5.1, based

on time-dependent perturbation theory, is provided to investigate the quan-

tum interference in Auger decay of Mg atoms found in experiment. It demon-

strates the possibility of inducing quantum interference using THz streak-

ing process in multi-channel electronic decay pathways following inner-shell

photoionization (see paper 5.1).

In Sec. 3.2, an overview of MQC scheme based on FSSH method from

paper 5.2 to simulate the fragmentation dynamics of N2+
2 is shown. Results

from the simulation are found to be in good agreement with the QD sim-

ulations and also computationally cheaper than the QD simulations (please

see paper 5.2). This aspect will allow for the investigation of field-induced

dynamics in more complex and bigger molecular systems. In Sec. 3.3, a vari-

ant of field-induced FSSH for a two level system from paper 5.3, o-BO-SH,

is proposed which reduces the non-physical hopping between PESs in pres-

ence of an electric field. In the future, the proposed method can be extended

to systems with more than two levels.

The MQC simulations can be further improved using machine learning
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(ML) techniques [54]. With the help of ML techniques, the parameters such

as the force experienced by the classical trajectory, can be predicted by pre-

dicting the PES. This will further reduce the computational cost.
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We demonstrate that an external terahertz (THz) field enables the formation of interference between two
distinct Auger pathways leading to the same final ionic state. The kinetic energy of Auger electrons ejected from
either of two spin-orbit split one-hole states of magnesium cations is recorded. In the presence of the THz field,
a clear oscillatory structure in the Auger spectrum emerges, which we find to be in very good agreement with
an analytical model based on perturbation theory. For this interference to occur, the THz field has to chirp the
energy of both Auger electrons and photoelectrons simultaneously, in order to create states with indistinguishable
quantum properties.
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I. INTRODUCTION

X-ray-induced innershell processes like photoionization
of core electrons, Auger decay, or x-ray fluorescence are
widespread tools to probe structural changes in atoms,
molecules, and solids with element specificity [1,2]. Advances
in x-ray light sources such as x-ray free-electron lasers and
table-top sources using high harmonic generation make it
possible to tackle problems at the forefront of science using
ultrafast x-ray techniques that can achieve atomic spatial
resolution and femtosecond time resolution [3]. In this con-
text, external fields have been used to modify or control
x-ray-induced innershell processes to obtain a more detailed
picture of the investigated processes and to allow for new
applications. For example, x-ray diffraction can be optically
modulated allowing for the investigation of optically induced
charges [4], innershell photoabsorption can be controlled by
nonperturbative modification of the level structure of the
bound electrons [5,6] or by laser-induced molecular alignment
[7,8], line profiles of photoabsorption can be modified [9,10],
and the streaking of ejected photoelectrons with near- or
far-infrared light or the observation of circular dichroism is
a useful tool in characterizing x-ray pulses [11–13].

A particularly interesting probe of the electronic structure
of matter is based on the Auger effect, i.e., the nonradiative
decay of a deeply bound core hole through the emission of
an Auger electron. The recorded kinetic energy of the Auger
electrons is an intrinsic property of the electronic structure
of the target and does not depend on the energy of the
incoming light. Therefore, Auger spectroscopy is an important
and widely used probe of the electronic structure of atoms,
molecules, and surfaces. The emission of Auger electrons
and photoelectrons can be further probed or controlled by
intense laser fields, e.g., in the infrared (IR) energy range. In
such laser-assisted processes, the system is irradiated by an
extreme-ultraviolet (EUV) or x-ray pulse, which creates a core
hole and a photoelectron. The core hole can decay nonradia-
tively and an Auger electron is emitted. The emitted electrons
are subsequently dressed by the applied intense laser field.

This leads, e.g., to the appearance of several side bands or to a
continuous shift of the spectrum. Laser-assisted photoelectric
effect [14–19], laser-assisted Auger decay [20,21], and laser-
enabled Auger decay [22–24] have been observed. Recent
technological advances allow for the creation of intense laser
fields in the far-IR [or terahertz (THz)] energy range, which
can be well synchronized with EUV or x-ray pulses [25,26].
This enables the study of laser-assisted Auger decay also in
the THz regime [27].

Notably, if the final state can be reached via different
quantum pathways, interference may occur. Various mecha-
nisms underlying such interference in atomic or molecular
systems have been identified. Upon scanning the energy of the
photoelectron across the fixed energy of the Auger electron,
both electrons can be made indistinguishable, thus creating in-
terference in their spectra and angular distributions [28]. Also
different resonant Auger transitions may accidentally have
significant spectral overlap, thus giving rise to interference
[29,30]. Spectral separation between Auger electrons may
be partially bridged by postcollision interaction, predicted
already in 1977 [31], but experimentally verified only in
2001 [32]. Molecular targets introduce additional channels,
e.g., via lifetime-vibrational interference [33,34], where en-
ergetic degeneracy of electronic states is reached through
nuclear motion.

All of these cases rely on a specific intrinsic electronic
structure, whereas in the present work we demonstrate how
interference is enabled through external control. Under condi-
tions found in atomic magnesium used as an example, a time-
varying light field can chirp the energy of Auger electrons and
photoelectrons emitted from a spin-orbit split state so as to
induce interference between two distinct Auger pathways that
natively form two separate spectral peaks.

II. EXPERIMENT

In the experiment, an initial 2p core hole is formed in
Mg atoms by photoionization using ultrashort EUV pulses
at 91 eV of photon energy, generated as high harmonics of

2469-9926/2020/102(2)/022807(9) 022807-1 ©2020 American Physical Society
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FIG. 1. Energy level diagram of Mg and its cations. Nonresonant
excitation leads to core-excited states that relax upon emission of
LMM Auger electrons. The excess kinetic energy of emitted photo-
electrons and Auger electrons is indicated by vertical bars.

800-nm, 38-fs, 2-mJ pulses from a 1-kHz Ti:sapphire laser
system in a neon-gas target after compression of the funda-
mental pulses in a neon-filled hollow fiber [35]. Near-infrared
pulses of 1 mJ of energy from the same laser are used to gener-
ate THz radiation by optical rectification in a LiNbO3 crystal.
Phase-matching between near- and far-infrared light fields by
pulse-front tilting [36] yields 0.5-μJ single-cycle THz pulses
centered at 0.6 THz. After temporal synchronization with a
tunable optical delay line, EUV and THz pulses are focused
into an effusive beam of Mg atoms formed a few millimeters
above the orifice of a metal oven operated at up to 700 ◦C. The
ejected photoelectrons and Auger electrons are collected in an
approximately 20◦ solid angle perpendicular to the light prop-
agation and guided into a time-of-flight spectrometer. Owing
to an alignment of the spectrometer axis with the polarization
of the THz beam, the escaping electrons are energetically
streaked according to the phase of the THz vector potential
at the instant of emission [25].

Figure 1 depicts the relevant energy levels of atomic mag-
nesium. At 91 eV of photon energy, a 2p core electron is
promoted into the ionization continuum. The 2p53s2 level of
Mg+ is spin-orbit split by 0.28 eV and thus the decay of
the intermediate hole states creates Auger electrons at 34.87
and 35.15 eV, respectively. The corresponding Auger lifetimes
deduced from the literature vary considerably between a lower
bound of about 20 fs, resulting from spectral linewidth mea-
surements [37,38], and 500 fs predicted theoretically [31]. Re-
gardless of their actual resolution in the experiment, natively
emitted Auger electrons from Mg+ ions form distinct peaks in
the recorded kinetic energy spectrum and will thus not be able
to interfere.

Figure 2 presents the unperturbed and the THz-streaked
kinetic energy spectra of the ejected electrons. The unper-
turbed spectrum clearly shows the photoelectron peak around
32.5 eV and the Auger peak around 35 eV. Please note that
with the given spectral resolution of the utilized time-of-flight
spectrometer of >0.3 eV the fine structure of the LMM Auger
feature, i.e., the two distinct Auger pathways under consider-
ation, cannot be resolved in the unperturbed spectrum. The
width of the 2p photoline is governed by the bandwidth
of the exciting radiation, dictated by the 2-eV bandpass of
the EUV multilayer mirror used for harmonic selection. The

FIG. 2. Electron kinetic energy spectrum of atomic Mg after
excitation at 91 eV of photon energy without (dashed blue line) and
with (solid orange line) applied THz field.

application of the THz field significantly alters the Auger
spectrum when the relative timing with respect to the EUV
pulse corresponds to a steep slope of the THz vector potential
while the electron wave packet is formed in the continuum.
Rather than a plain broadening expected for regular streaking,
the spectrum displays a clear oscillatory structure reminiscent
of an interference pattern.

III. THEORY

To investigate whether and in what form the oscillatory
structure in the spectrum results from quantum interference,
we employ an analytical model based on time-dependent
perturbation theory. In the present approach, the interaction
of Mg atoms with the EUV pulse as well as the Auger decay
are treated perturbatively. The strong THz field, however,
is treated in a nonperturbative fashion. Within this model
(for details of the derivation, see Appendices A and B) the
probability of finding the Auger electron in state α is given as

Pα = lim
t→∞

∑
γ > β

�(� < α)

∣∣∣∣∣∣∣∣∣
∑

a′′

∑
j
a

∫ t

−∞
dt ′

×
∫ t ′

−∞
dt ′′uαa′′ (t, t ′)e−iIβγ (t−t ′ )

× va′′ jβγ u�a(t, t ′′) e−i(I j−i
� j
2 )(t ′−t ′′ ) εEUV(t ′′) za j

∣∣∣∣∣∣∣∣∣

2

, (1)

where the t ′′ integral corresponds to photoionization and the
t ′ integral corresponds to Auger decay, with t ′ > t ′′. The one-
body matrix element za j determines the creation of a hole at
time t ′′, in which j corresponds to the state of the hole and
a corresponds to the state of the emitted photoelectron, with
ionization energy I j = −ε j . The photoionizing EUV pulse has
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FIG. 3. Principle of field-enabled interference of Auger path-
ways of different initial Auger energies ε1 and ε2. The vector poten-
tial of the THz field (dashed curve) imprints the same gradual change
(almost linear chirp) of the instantaneous frequency onto both wave
packets, thus creating partial energetic degeneracy that may lead to
interference, if they carry a defined phase relationship.

an electric field of εEUV(t ′′). The term � j = 1/τ j corresponds
to the decay rate of the hole in state j. The emitted photoelec-
tron evolves from state a at time t ′′ to state � at time t under
the influence of the THz field, which is described by the term
u�a(t, t ′′). The two-body matrix element va′′ jβγ determines
the Auger-decay step. The initially created state with a hole
in j decays to a state with a hole in γ and a simultaneously
emitted Auger electron emitted from β into state a′′. Now,
the emitted Auger electron evolves under the influence of the
THz field from state a′′ at time t ′ to state α at final time
t , which is captured by uαa′′ (t, t ′). The different dicationic
states described by the two holes in β and γ and the state
of the photoelectron � contribute incoherently to the signal.
Please note that a full ab initio simulation of the process is not
feasible as, e.g., both the photoelectron and the Auger electron
are unbound and prohibitively large spatial grids are required
to simulate the unbound motion of two electrons ejected from
an atom.

To observe interference between the two Auger pathways
discussed above, the whole system has to evolve into the
same indistinguishable final states, i.e., the combined quan-
tum states of the Auger electron, the photoelectron, and the
dication have to be indistinguishable. For the dication, this
is fulfilled here as both Auger pathways lead to the same
final state. Therefore, to observe interference, the applied THz
field has to modify both the photoelectron and the Auger
electron. Since the large bandwidth of the EUV radiation
blurs any substructure in the 2p photoelectron peaks, we focus
the detailed discussion of the streaking process on the Auger
electrons. First, the THz pulse has to streak the energy of
the emitted Auger electron from the j1 = 3/2 and j2 = 1/2
photoionization channels to overlap their energies. This can be
understood by describing the emitted Auger electron in terms
of partial waves with energies ε1 and ε2, but with the same
temporal profile, i.e., an exponentially decaying transition
probability (see Fig. 3). The exposure of these electron partial
waves to a time-varying THz field, which has a period greater
than the Auger lifetime, results in time-dependent momentum
transfer from the THz field to the Auger electron.

In the experimental setup used in this work, the detection
of the emitted electrons is restricted to a small subset of
emission angles. This detection scheme does not allow for
the detection of the different angular momentum states of
the emitted electrons. If, however, a similar experiment were
performed with a detection of electrons at all emission angles,
one would have to take into account the distinct angular
momenta of the Auger electrons. The spin-orbit split one-hole
states under consideration have a total angular momentum
of j = 1/2 and j = 3/2, respectively. As the final state of
Mg2+, which is the same for both pathways, has an angular
momentum of j = 0, and the total angular momentum has
to be conserved, the emitted Auger electrons have an angular
momentum of j = 1/2 and j = 3/2, respectively. Therefore,
to observe interference in such a case, the emitted Auger
electrons should be indistinguishable in terms of all quantum
numbers, and therefore, the perturbing THz field has to chirp
the energy of the Auger electrons as well as modify their
angular momentum.

Making a short-pulse approximation, i.e., assuming the
EUV pulse to be a δ pulse, and taking the effect of the THz
field into account through a linear frequency chirp, i.e., a
quadratic temporal phase e−ibt ′2

, we can define the transition
amplitudes (for details, see Appendix B)

�αβγ�(t ′; tEUV)

=
{∑

j A jαβγ�e−i(I j−i
� j
2 −Iβγ )t ′

e−ib(t ′ + tEUV )2
, t ′ � 0,

0, t ′ < 0,

(2)

and rewrite the spectrum given in Eq. (1) as a Fourier trans-
form of these transition amplitudes:

Pα =
∑
γ > β

�(� < α)

∣∣∣∣
∫ ∞

−∞
dt ′�αβγ�(t ′; tEUV)eiεαt ′

∣∣∣∣2

. (3)

The parameter tEUV represents the time at which the EUV
pulse is centered, relative to the temporal evolution of the
THz field.

IV. ANALYSIS

In order to fit the experimental Auger spectral shape, we
exploit that there is only a single Auger channel in the present
problem and that the complex expansion coefficients Ajαβγ�

cannot change much over the narrow range of photoelectron
(�) and Auger-electron (α) states considered. Hence, we
write the Auger spectrum in the simplified form

Pα = const.

∣∣∣∣∣∣
∑

j

A je
−iφ j

∫ ∞

0
dt ′e−i(Ej−i

� j
2 −εα )t ′

e−ib(t ′+tEUV )2

∣∣∣∣∣∣
2

,

(4)

where E3/2 = ε1 = 57.55 eV and E1/2 = ε2 = 57.81 eV (cf.
Fig. 1). In what follows, the phase difference  = φ3/2 −
φ1/2, the electronic chirp parameter b, and the Auger lifetime
τ , which is assumed to be the same for both pathways (τ =
τ3/2 = τ1/2), serve as fit parameters. The branching ratio, i.e.,
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FIG. 4. (a) Experimental spectrum of streaked Mg LMM Auger
lines (solid orange line) and simulation with the analytical model
(dashed black line) with optimized parameters and with different
values for the phase (gray, long dashed and short dashed lines).
(b) The simulated spectrum is plotted for a δ-pulse excitation
(thin black), together with the two isolated Auger fine-structure
components assuming no interference (long-dashed blue line and
short-dashed green line). The interference term is shown as a thick
red line.

(A3/2/A1/2)2, is set to 2, as given by the relative weight of the
magnetic substates [37].

To obtain a meaningful comparison with experimental
data, the spectrum obtained from Eq. (4) is convolved with
a Gaussian shape capturing the broadening effects of a finite
spectrometer resolution of 0.3 eV and a finite duration of the
EUV pulse. The resulting function is then fit to the experi-
mental spectrum. Due to a residual detuning of the EUV-THz
delay relative to the zero crossing of the THz vector potential,
a small energy shift is added to the simulated spectrum.

The resulting best t , displayed in Fig. 4(a), is achieved for
a phase difference  of −0.8 ± 0.6 rad, an Auger lifetime
of τ = 9.0 (+5.2/−3.8) fs, and an electronic chirp of b =
119 meV/fs, with the indicated errors resulting from a dou-
bling of the residual between measured and simulated values.
The combined spectral broadening of 0.6 eV is compatible
with an EUV pulse duration below 5 fs. The mutual relation-
ship of the fitting parameters reveals a pronounced sensitivity
of the observed spectral profile to the phase  between the

electronic pathways of the two fine-structure components.
This is exemplified in Fig. 4(a) by simulated spectra with
the same set of parameters except phase differences set to
 = 0 rad and  = −1.6 rad, respectively. The analytical
model reproduces the experimental spectrum very well, which
suggests that it captures the key features of the process.

In Fig. 4(b), the Gaussian convolution has been removed
from the fitted spectrum Pα in order to further analyze the
interference pattern. The full spectrum is decomposed into the
two fine-structure components and the corresponding interfer-
ence term. The sum over j in Eq. (4) has two terms and we can
thus expand it as

Pα = {|z1|2 + |z2|2 + 2R(z1 z∗
2 )}. (5)

The first two terms describe the two fine-structure components
[blue and green lines in Fig. 4(b)], while the last term corre-
sponds to the interference between the two Auger pathways
[red line in Fig. 4(b)]. The total spectrum shows a clear, slowly
oscillating interference pattern rather than two distinct Auger
peaks. The superposition of the two electronic pathways re-
sults in a temporal beating at a time period T = 2π/(ε2 − ε1).
Due to the streaking, this period is mapped to a difference in
kinetic energy of δEkin = bh̄T . For the best-fit parameters this
results in a kinetic energy difference of about 1.7 eV, which
roughly matches the peak separation in Fig. 4. Moreover, the
simulated spectrum now shows a noticeable, high-frequency
oscillation pattern in the fine-structure components as well as
in the interference term, which can be interpreted as fringes
in the spectral domain resulting from the short-pulse approxi-
mation for the photoionization step. The rapid oscillations are
suppressed if the spectrum is convolved as in Fig. 4(a).

V. CONCLUSION

In this paper, we have demonstrated that it is possible to
create interference between two distinct Auger pathways by
applying an intense THz field. Specifically, photoionization
of Mg by an EUV pulse creates a hole in the 2p shell. Thus,
Mg+ is prepared in either of two spin-orbit split one-hole
states, which both decay to the same Mg2+ state by ejecting
an Auger electron. When applying a THz field, we observed
in the Auger spectrum interference between the associated
electronic pathways. For this effect to manifest, not only
the Auger-electron final states must be indistinguishable but
also the same indistinguishability requirement applies to the
photoelectron final states.

We interpreted the experimental spectrum by fitting an an-
alytical model based on a perturbative expansion. By separat-
ing the model spectrum into its components, the importance of
interference in explaining the experimentally observed spec-
tral oscillations was clearly revealed. The analytical model
agreed with the experimental data only if a significant nonva-
nishing phase difference between the interfering Auger path-
ways was taken into account. With the shape of the spectral
peak being found to sensitively depend on the exact phase
value, our method provides phase information from innershell
processes that is difficult to obtain otherwise. We note, how-
ever, that this phase may contain contributions from the inter-
action of the outgoing electrons with the external THz field.
Future work will focus on the isolation of intrinsic phases.
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Owing to the pronounced interference profile, the Mg+

Auger-decay lifetime could be extracted and was found to
be at the lower bound of available predictions. In contrast to
the examples of control given in the Introduction, the present
approach shows how THz streaking may be employed to
induce quantum interference in the electronic-decay pathways
following multichannel innershell ionization.

ACKNOWLEDGMENTS

This work was financially supported by the Deutsche
Forschungsgemeinschaft (DFG) within the framework of the
SFB 925 “Light-Induced Dynamics and Control of Correlated
Quantum Systems,” Projects No. A1 and No. A5.

APPENDIX A: THEORY AND DERIVATION

The EUV photoionization and the Auger-decay process
are treated within the framework of perturbation theory to
arrive at a condition for interference of two Auger pathways
in magnesium. The far-infrared (FIR) or terahertz (THz) field
cannot be treated perturbatively because it interacts strongly
with the Auger electrons and photoelectrons. In such a case
the total Hamiltonian of the system is given by

Ĥ (t ) = Ĥ0(t ) + λV̂ (t ), (A1)

where Ĥ0(t ) = Ĥ0A − E0 + V̂FIR(t ) is the atomic Hamiltonian
including the FIR field, with Ĥ0A being the unperturbed
atomic Hamiltonian, E0 the ground-state energy of the Mg
atom, and V̂FIR(t ) the FIR field. V̂ (t ) = V̂EUV(t ) + V̂A is the
perturbation which has contributions from EUV photoioniza-
tion V̂EUV(t ) and Auger decay V̂A. Please note that we have
assumed atomic units throughout the derivation, i.e., h̄ = 1.

The time evolution of the system is given by the time-
dependent Schrödinger equation in atomic units:

i∂t |Ψ, t〉 = Ĥ (t ) |Ψ, t〉 . (A2)

We assume that we have solved the FIR-only problem using
the initial condition for the time evolution operator:

ÛFIR(t,−∞) → exp[−i(Ĥ0A − E0)t] as t → −∞. (A3)

Therefore in the absence of the perturbation, i.e., λ = 0, the
solution of Eq. (A2) is

|ΨFIR, t〉 ≡ ÛFIR(t,−∞) |Ψ0〉 , (A4)

where |Ψ0〉 is the ground state of the Mg atom. Now we make
the ansatz

|Ψ, t〉 = |Ψ, t〉(0) + λ |Ψ, t〉(1) + λ2 |Ψ, t〉(2) + · · · , (A5)

where |Ψ, t〉(0) = |ΨFIR, t〉, |Ψ, t〉(1), and |Ψ, t〉(2) are the zero-
, first- and second-order corrected wave functions. The correc-
tion terms are calculated by substituting Eqs. (A5) and (A1)
in Eq. (A2), which gives

i∂t [|ΨFIR, t〉 + λ |Ψ, t〉(1) + λ2 |Ψ, t〉(2)]

= [Ĥ0(t ) + λV̂ (t )][|ΨFIR, t〉
+ λ |Ψ, t〉(1) + λ2 |Ψ, t〉(2)]. (A6)

Now comparing the coefficients of the λ terms from both
the right-hand side (RHS) and the left-hand side (LHS) in

Eq. (A6), we obtain the time evolution of the first-order
correction term:

i∂t |Ψ, t〉(1) = Ĥ0(t ) |Ψ, t〉(1) + V̂ (t ) |ΨFIR, t〉 , (A7)

which can be solved as a first-order differential equation with
variable coefficients. The solution is

|Ψ, t〉(1) = −iÛFIR(t,−∞)
∫ t

−∞
dt ′Û †

FIR(t ′,−∞)V̂ (t ′)|ΨFIR, t ′〉,
(A8)

|Ψ, t〉(1) = −i
∫ t

−∞
dt ′ÛFIR(t, t ′)V̂ (t ′) |ΨFIR, t ′〉 , (A9)

where ÛFIR(t, t ′) = UFIR(t,−∞)Û †
FIR(t ′,−∞). Comparing

the coefficients of λ2 terms from both the RHS and the LHS
in Eq. (A6), we obtain the time evolution of the second-order
correction term:

i∂t |Ψ, t〉(2) = Ĥ0(t ) |Ψ, t〉(2) + V̂ (t ) |Ψ, t〉(1) . (A10)

It can be solved similarily as the first-order correction term,
which gives

|Ψ, t〉(2) = −i
∫ t

−∞
dt ′ÛFIR(t, t ′)V̂ (t ′) |Ψ, t ′〉(1)

. (A11)

Substituting Eq. (A9) into Eq. (A11), we get

|Ψ, t〉(2) = −
∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ÛFIR(t, t ′)V̂ (t ′)ÛFIR

× (t ′, t ′′)V̂ (t ′′) |ΨFIR, t ′′〉 . (A12)

Using V̂ (t ) = V̂EUV(t ) + V̂A and Eq. (A4), we obtain

|Ψ, t〉(2) = −
∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ÛFIR(t, t ′)[V̂EUV(t ′)

+ V̂A]ÛFIR(t ′, t ′′)

× [V̂EUV(t ′′) + V̂A]ÛFIR(t ′′,−∞) |Ψ0〉 . (A13)

Out of four terms in the above equation, we are interested in
the term in which there is first EUV photoionization and then
Auger decay. The second-order corrected wave function for
the corresponding process is

|Ψ, t〉(2) = −
∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ÛFIR(t, t ′)V̂AÛFIR(t ′, t ′′)

× V̂EUV(t ′′)ÛFIR(t ′′,−∞) |Ψ0〉 . (A14)

We choose the polarization direction of the EUV pulse along
the z axis to obtain V̂EUV(t ′′) = εEUV(t ′′)Ẑ , where εEUV de-
scribes the time evolution of the EUV pulse. We further
assume that the FIR field is too weak to perturb the ground
state. Hence, ÛFIR(t ′′,−∞) |Ψ0〉 = e−i(Ĥ0A−E0 )t ′′ |Ψ0〉 = |Ψ0〉.
Substituting both relations into Eq. (A14) gives

|Ψ, t〉(2) = −
∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ÛFIR(t, t ′)V̂AÛFIR

× (t ′, t ′′)εEUV(t ′′)Ẑ |Ψ0〉 . (A15)

We now define the one-hole–one-particle wave functions,
|Ψ b

k 〉 and |Ψ a
j 〉, and the two-hole–two-particle wave func-

tions, |Ψ b′b′′
k′k′′ 〉 and |Ψ a′a′′

j′ j′′ 〉, in which the subscript indices,
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e.g., k and j, represent the holes and the superscript in-
dices, e.g., a and b, represent the particles. These one-
hole–one-particle and two-hole–two-particle wave functions
are defined relative to |Ψ0〉, which we assume to be
a single Slater determinant, and are eigenstates of the

unperturbed atomic Hamiltonian Ĥ0A, which we assume to
be a mean-field Hamiltonian. We insert four completeness re-
lations

∑
j
a

|Ψ a
j 〉 〈Ψ a

j |, ∑
k
b

|Ψ b
k 〉 〈Ψ b

k |, ∑
j′′ > j′
a′′ > a′

|Ψ a′a′′
j′ j′′ 〉 〈Ψ a′a′′

j′ j′′ |,

and
∑

k′′ > k′
b′′ > b′

|Ψ b′b′′
k′k′′ 〉 〈Ψ b′b′′

k′k′′ | into Eq. (A15) and obtain

|Ψ, t〉(2) = −
∑

k′′ > k′
b′′ > b′

∑
j′′ > j′
a′′ > a′

∑
k
b

∑
j
a

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ ∣∣Ψ b′b′′

k′k′′
〉 〈

Ψ b′b′′
k′k′′

∣∣ ÛFIR(t, t ′)
∣∣Ψ a′a′′

j′ j′′
〉

× 〈
Ψ a′a′′

j′ j′′
∣∣ V̂A

∣∣Ψ b
k

〉 〈
Ψ b

k

∣∣ ÛFIR(t ′, t ′′)
∣∣Ψ a

j

〉
εEUV(t ′′)

〈
Ψ a

j

∣∣ Ẑ |Ψ0〉 . (A16)

As Ẑ is a one-body operator we can use the Slater-Condon rules to evaluate 〈Ψ a
j | Ẑ |Ψ0〉, which gives 〈ϕa| Ẑ |ϕ j〉, where ϕa and ϕ j

are atomic spin orbitals. We assume that the FIR field does not induce particle-hole excitations. We further assume that the FIR
field does not have any effect on the holes but only on the particles. Therefore, 〈Ψ b

k | ÛFIR(t ′, t ′′) |Ψ a
j 〉 reduces to δ jkuba, where

uba is the transition amplitude of the photoelectron from a to b due to the FIR field. Thus we obtain

|Ψ, t〉(2) = −
∑

k′′ > k′
b′′ > b′

∑
j′′ > j′
a′′ > a′

∑
k
b

∑
j
a

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ ∣∣Ψ b′b′′

k′k′′
〉 〈

Ψ b′b′′
k′k′′

∣∣ ÛFIR(t, t ′)
∣∣Ψ a′a′′

j′ j′′
〉

× 〈
Ψ a′a′′

j′ j′′
∣∣ V̂A

∣∣Ψ b
k

〉
δ jkuba(t ′, t ′′)e−iI j (t ′−t ′′ )εEUV(t ′′) 〈ϕa| Ẑ |ϕ j〉 , (A17)

where I j = −ε j is the ionization energy to remove a particle from orbital j. Utilizing the Kronecker δ we can remove the
summation over k and obtain

|Ψ, t〉(2) = −
∑

k′′ > k′
b′′ > b′

∑
j′′ > j′
a′′ > a′

∑
b

∑
j
a

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ ∣∣Ψ b′b′′

k′k′′
〉 〈

Ψ b′b′′
k′k′′

∣∣ ÛFIR(t, t ′)
∣∣Ψ a′a′′

j′ j′′
〉

× 〈
Ψ a′a′′

j′ j′′
∣∣ V̂A

∣∣Ψ b
j

〉
uba(t ′, t ′′)e−iI j (t ′−t ′′ )εEUV(t ′′)za j . (A18)

The two-body operator V̂A does not affect the ejected photoelectron which gives a condition on the index a′, i.e., a′ = b and the
summation of a′ can be removed to obtain

|Ψ, t〉(2) = −
∑

k′′ > k′
b′′ > b′

∑
j′′ > j′
a′′ > b

∑
j
a

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ ∣∣Ψ b′b′′

k′k′′
〉 〈

Ψ b′b′′
k′k′′

∣∣ ÛFIR(t, t ′)
∣∣Ψ ba′′

j′ j′′
〉

× 〈
Ψ ba′′

j′ j′′
∣∣ V̂A

∣∣Ψ b
j

〉
uba(t ′, t ′′)e−iI j (t ′−t ′′ )εEUV(t ′′)za j . (A19)

The term consisting of the two-body operator V̂A can also be evaluated using Slater-Condon rules, by assuming that the
photoelectron, labeled as b in this case, is merely a spectator in the Auger process. Therefore,

|Ψ, t〉(2) = −
∑

k′′ > k′
b′′ > b′

∑
j′′ > j′
a′′ > b

∑
j
a

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ ∣∣Ψ b′b′′

k′k′′
〉 〈

Ψ b′b′′
k′k′′

∣∣ ÛFIR(t, t ′)
∣∣Ψ ba′′

j′ j′′
〉

× va′′ j j′ j′′uba(t ′, t ′′)e−iI j (t ′−t ′′ )εEUV(t ′′)za j . (A20)

Here, va′′ j j′ j′′ = 〈ϕa′′ϕ j | V̂A |ϕ j′ϕ j′′ 〉 − 〈ϕa′′ϕ j | V̂A |ϕ j′′ϕ j′ 〉, where ϕa′′ , ϕ j , ϕ j′ and ϕ j′′ are again the atomic spin orbitals.
As before, we assume that the FIR field does not affect the holes, but only the particles, which reduces 〈Ψ b′b′′

k′k′′ | ÛFIR(t, t ′) |Ψ ba′′
j′ j′′ 〉

to δ j′k′δ j′′k′′ub′b(t, t ′)ub′′a′′ (t, t ′), where ub′b(t, t ′) and ub′′a′′ (t, t ′) are the transition amplitudes of the photoelectron from b to b′ and
of the Auger electron from a′′ to b′′, respectively:

|Ψ, t〉(2) = −
∑

k′′ > k′
b′′ > b′

∑
j′′ > j′
a′′ > b

∑
j
a

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ ∣∣Ψ b′b′′

k′k′′
〉
δ j′k′δ j′′k′′ub′b(t, t ′)ub′′a′′ (t, t ′)

× e−iI j′ j′′ (t−t ′ )va′′ j j′ j′′uba(t ′, t ′′)e−iI j (t ′−t ′′ )εEUV(t ′′)za j . (A21)
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Here, I j′ j′′ is the eigenenergy of the double-hole state with holes in the orbitals j and j′. Resolving the Kronecker δ’s further
removes the summation over k′ and k′′:

|Ψ, t〉(2) = −
∑

b′′ > b′

∑
j′′ > j′
a′′ > b

∑
j
a

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ ∣∣Ψ b′b′′

j′ j′′
〉
ub′b(t, t ′)ub′′a′′ (t, t ′)

× e−iI j′ j′′ (t−t ′ )va′′ j j′ j′′uba(t ′, t ′′)e−iI j (t ′−t ′′ )εEUV(t ′′)za j . (A22)

The observable connected to the Auger-electron spectrum is defined as a sum over projectors onto the Auger-electron state α:

P̂α =
∑
γ > β

�(� < α)

∣∣Ψ �α
βγ

〉 〈
Ψ �α

βγ

∣∣ , (A23)

where |Ψ �α
βγ 〉 is a two-hole–two-particle eigenstate of the unperturbed atomic Hamiltonian Ĥ0A. Now we take the expectation

value with the second-order corrected state vector:

Pα =
∑
γ > β

�(� < α)

∣∣ 〈Ψ �α
βγ

∣∣Ψ, t (2)
〉 ∣∣2 =

∑
γ > β

�(� < α)

∣∣∣∣∣∣∣∣∣
∑

b′′ > b′

∑
j′′ > j′
a′′ > b

∑
j
a

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ 〈Ψ �α

βγ

∣∣Ψ b′b′′
j′ j′′

〉

× ub′b(t, t ′)ub′′a′′ (t, t ′)e−iI j′ j′′ (t−t ′ )va′′ j j′ j′′uba(t ′, t ′′)e−iI j (t ′−t ′′ )εEUV(t ′′)za j

∣∣∣∣∣∣∣∣∣

2

. (A24)

Since, by assumption, both |Ψ �α
βγ 〉 and |Ψ b′b′′

j′ j′′ 〉 are eigenstates of the unperturbed atomic Hamiltonian Ĥ0A, we obtain

Pα =
∑
γ > β

�(� < α)

∣∣∣∣∣∣∣∣∣
∑

b′′ > b′

∑
j′′ > j′
a′′ > b

∑
j
a

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′δβ j′δγ j′′δ�b′δαb′′ub′b(t, t ′)ub′′a′′ (t, t ′)

× e−iI j′ j′′ (t−t ′ ) va′′ j j′ j′′uba(t ′, t ′′)e−iI j (t ′−t ′′ )εEUV(t ′′)za j

∣∣∣∣∣∣∣∣∣

2

. (A25)

Thus,

Pα =
∑
γ > β

�(� < α)

∣∣∣∣∣∣∣∣∣
∑

a′′ > b

∑
j
a

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′u�b(t, t ′)uαa′′ (t, t ′)e−iIβγ (t−t ′ )va′′ jβγ uba(t ′, t ′′)e−iI j (t ′−t ′′ )εEUV(t ′′)za j

∣∣∣∣∣∣∣∣∣

2

. (A26)

We use
∑

b u�b(t, t ′)uba(t ′, t ′′) = u�a(t, t ′′) in the above
equation, which gives

Pα =
∑
γ > β

�(� < α)

∣∣∣∣∣∣∣∣∣
∑

a′′

∑
j
a

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′uαa′′ (t, t ′)e−iIβγ (t−t ′ )

× va′′ jβγ u�a(t, t ′′)e−iI j (t ′−t ′′ ) εEUV(t ′′) za j

∣∣∣∣∣∣∣∣∣

2

. (A27)

To account for the exponential decay of the hole j, we rewrite
I j as I j − i � j

2 , where � j is the decay rate. Hence,

Pα =
∑
γ > β

�(� < α)

∣∣∣∣∣∣∣∣∣
∑

a′′

∑
j
a

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′uαa′′ (t, t ′)e−iIβγ (t−t ′ )

× va′′ jβγ u�a(t, t ′′)e−i(I j−i
� j
2 )(t ′−t ′′ )εEUV(t ′′)za j

∣∣∣∣∣∣∣∣∣

2

. (A28)
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In Eq. (A28), the terms u�a(t, t ′′) and uαa′′ (t, t ′) represent
the FIR dressed photoelectron (�) and the Auger electron
(α) after EUV photoionization and Auger decay, respectively.
Here we emphasize the assumption that the holes are not
affected by the FIR field. This is a generalized expression for
the signal one gets within our model. The one-body term za j

and the two-body term va′′ jβγ represent the photoinonization
and the Auger decay, respectively. The FIR field dressings of
photoelectrons and Auger electrons are given by the matrix
elements u�a(t, t ′′) and uαa′′ (t, t ′), respectively.

APPENDIX B: APPROXIMATIONS

To simplify Eq. (A28) and allow for a comparison with the
experimental spectrum we first assume the EUV pulse to be a
δ pulse in the form εEUV(t ) = ε0 δ(t − tEUV), where ε0 is the
strength of the pulse. By using this δ-pulse approximation in
Eq. (A28), we get the following for t > tEUV:

Pα =
∑
γ > β

�(� < α)

∣∣∣∣∣∣∣∣∣
∑

a′′

∑
j
a

∫ t

tEUV

dt ′uαa′′ (t, t ′)e−iIβγ (t−t ′ )

×va′′ jβγ u�a(t, tEUV)e−i(I j−i
� j
2 )(t ′−tEUV )ε0za j

∣∣∣∣∣∣∣∣∣

2

. (B1)

Second, we look at the form of the equation in the absence of
the FIR field. The transition amplitudes are then

uαa′′ (t, t ′) = e−iεα (t−t ′ )δαa′′ , (B2)

u�a(t, tEUV) = e−iε�(t−tEUV )δ�a. (B3)

Using these, we get the following for t > tEUV:

Pα =
∑
γ > β

�(� < α)

∣∣∣∣∣∣
∑

j

∫ t

tEUV

dt ′e−iεα (t−t ′ )e−iIβγ (t−t ′ )

×vα jβγ e−iε�(t−tEUV )e−i(I j−i
� j
2 )(t ′−tEUV ) ε0 z� j

∣∣∣∣∣∣
2

(B4)

=
∑
γ > β

�(� < α)

∣∣∣∣∣∣
∑

j

∫ t

tEUV

dt ′eiεαt ′
eiIβγ t ′

×vα jβγ eiε�tEUV e−i(I j−i
� j
2 )(t ′−tEUV )ε0z� j

∣∣∣∣∣∣
2

, (B5)

where we exploited that |e−i(Iβγ +εα+ε� )t |2 = 1. By carrying
out the integral and expanding the modulus, the resulting
expression for the Auger-electron spectrum, in the limit
t → ∞, will be in the form of Lorentzians, peaked at the
energies I j − Iβγ .

To approximately take the FIR field into account, we em-
ploy Eq. (B1) and make the following ansatz for the transition

amplitudes:

uαa′′ (t, t ′) = e−iεα (t−t ′ )e−ibt ′2
gαa′′ , (B6)

u�a(t, tEUV) = e−iε�(t−tEUV )g�a. (B7)

This ansatz is motivated by the following two observations.
First, we are interested in the limit of large t , i.e., much
larger than the duration of the FIR pulse. At large times
t , both the photoelectron and the Auger electron propagate
freely. Second, t ′ is constrained by the exponential decay to
an interval that is short in comparison to the FIR cycle and,
thus, also in comparison to the FIR pulse duration.

In this way, we take into consideration a leading-order
FIR-induced electronic chirp on the timescale governed by the
Auger decay. Moreover, by replacing the previous Kronecker
δ’s in Eqs. (B2) and (B3), with gαa′′ and g�a, we take into
consideration that the FIR field can change the state of both
the photoelectron and the Auger electron.

We insert the expressions for the electronic transition am-
plitudes given in Eqs. (B6) and (B7) into Eq. (B1):

Pα =
∑
γ > β

�(� < α)

∣∣∣∣∣∣∣∣∣∣
∑

j

∫ t

tEUV

dt ′e−iIβγ (t−t ′ )e−iεα (t−t ′ )e−ibt ′2

× e−i(I j−i
� j
2 )(t ′−tEUV )e−iε�(t−tEUV )

×
∑
a a′′

va′′ jβγ gαa′′g�aε0za j︸ ︷︷ ︸
Ajαβγ�

∣∣∣∣∣∣∣∣∣∣

2

. (B8)

By adding and removing suitable complex phase factors of
modulus one, performing the substitution t ′ − tEUV → t ′, and
taking the limit t → ∞, Eq. (B8) goes over into

Pα =
∑
γ > β

�(� < α)

∣∣∣∣∣∣
∑

j

A jαβγ�

∫ ∞

0
dt ′e−i(I j−i� j/2−Iβγ −εα )t ′

× e−ib(t ′+tEUV )2

∣∣∣∣∣∣
2

=
∑
γ > β

�(� < α)

∣∣∣∣
∫ ∞

−∞
dt ′�αβγ�(t ′; tEUV)eiεαt ′

∣∣∣∣2

, (B9)

where we have rewritten the Auger spectrum in the presence
of the FIR field in terms of the Fourier transform of transition
amplitudes:

�αβγ�(t ′; tEUV)

=
{∑

j A jαβγ�e−i(I j−i� j/2−Iβγ )t ′
e−ib(t ′+tEUV )2

, t ′ � 0,

0, t ′ < 0.

(B10)
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The coefficients Ajαβγ�, defined in Eq. (B8), are complex
numbers carrying phase information from photoionization
(argument of za j) and Auger decay (argument of va′′ jβγ ), and
from the FIR dressing of the photoelectron (argument of g�a)
and the Auger electron (argument of gαa′′ ).

Equation (B9) is consistent with the expectation that, if
b = 0, the time tEUV at which the pump δ pulse is assumed

to be centered has no consequence for the Auger spectrum.
Only if b 
= 0 (i.e., in the presence of the FIR field) does the
transition amplitude in Eq. (B10) and, therefore, the Auger
spectrum depend explicitly on tEUV. This, in turn, implies that
the Auger spectrum must depend on the distribution of tEUV

values, as defined by the envelope of the actual (non-δ) EUV
field.
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We employ mixed quantum-classical molecular dynamics simulations to investigate the fragmentation of
N2 molecules after core-level photoionization by an x-ray laser, subsequent Auger decay, and followed by a
femtosecond IR pulse that interacts with N2

2+. The delayed IR pulse couples the dissociative electronic states
of N2

2+ with electronic states that can support long-lived vibrational resonances. We compare our simulations
with previous quantum dynamics calculations in a quasidiabatic representation, which employed a small number
of electronic states. Good agreement for both the Auger spectrum as well as the influence of the delayed IR
pulse is found. By employing the mixed quantum-classical treatment, we can greatly reduce the computational
cost to simulate the fragmentation dynamics compared to the quantum dynamics simulations. Furthermore, we
reinvestigate the title process by employing an extended set of adiabatic potential energy surfaces and also
investigate the role of nonadiabatic coupling in the process. The use of the full set of adiabatic potentials increases
the dissociation probability and changes the details of the interaction with the IR pulse, but no effect due to the
nonadiabatic coupling is found.

DOI: 10.1103/PhysRevA.98.063421

I. INTRODUCTION

The technological advances of x-ray free-electron lasers
(FELs) allow the study of complex molecular processes with
high temporal and spatial resolution. Pump-probe experiments
using FELs give the possibility to observe ultrafast phenom-
ena in quantum systems that occur on the time scale of few
tens to hundreds of femtoseconds. In particular, ultrashort
x-ray pulses at FELs can be used to track atomic motion
in molecules during photochemical processes [1]. Using the
Linac Coherent Light Source (LCLS) at SLAC National Lab-
oratory [2] core-shell ionization and subsequent dynamics in
diatomic and polyatomic molecules such as N2, H2S, and SF6

have been investigated [3–6].
Molecular nitrogen and its dication have been well studied

in spectroscopy because of their metastable states [7–16]. To
investigate the x-ray ionization and subsequent fragmentation
dynamics of N2, time-resolved pump-probe experiments were
performed at LCLS [1]. Following core-shell ionization by
an x-ray pulse, molecular N2

2+ is produced by Auger decay.
The N2 dication has a few vibrationally long-lived quasibound
metastable states [7,17–19]. The experiment observed the
unfragmented-N2

2+ yield as a function of time delay between
the ionizing x-ray pulse and a subsequent IR pulse. A decrease
in the unfragmented-N2

2+ yield has been reported from the
experiment [1].

In a recent quantum dynamics (QD) [20] investigation,
the interaction of the IR pulse with the dicationic system

*Corresponding author: murali.krishna@cfel.de

as a function of time delay of the IR pulse has been inves-
tigated using the multiconfiguration time-dependent Hartree
(MCTDH) [21–23] method and similar trends as in the
experiment have been observed [20]. Additionally, the depen-
dence of unfragmented N2

2+ on intensity and width of the IR
pulse was investigated. For certain Auger energies and pulse
delays, a slight increase in the unfragmented-N2

2+ yield was
found. However, the exact wave packet propagation is very
time consuming and its computational cost scales exponen-
tially with increasing system size. Thus, this approach is less
suitable to investigate the IR control of Coulomb explosions
in polyatomic systems.

This work assesses the prospects of using the computation-
ally efficient Tully’s fewest switches surface hopping (FSSH)
approach [24–28] to investigate the ultrafast dissociation of
N2

2+. In FSSH the electrons are treated quantum mechan-
ically, while the nuclei are treated classically, propagating
along a trajectory R(t ). The classical trajectories evolve on a
single potential energy surface (PES) and can switch between
the electronic states based on a hopping probability, which
is determined from the nonadiabatic coupling vector and the
transition dipole moment for the case of an applied electric
field [29–38].

The paper is organized as follows: In Sec. II, the ba-
sic expressions underlying the theory and the computational
methods used in this work are presented. Section III dis-
cusses the Auger spectrum and unfragmented-N2

2+ yield,
in a quasidiabatic representation from FSSH simulations,
and compares to previous QD simulations [20]. Section IV
gives a detailed discussion of the fragmentation dynamics in
the adiabatic representation in comparison to the dynamics

2469-9926/2018/98(6)/063421(9) 063421-1 ©2018 American Physical Society
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in the quasidiabatic representation and discusses the im-
pact of nonadiabatic couplings. Finally, Sec. V summarizes
this work.

II. THEORETICAL BACKGROUND

A. Fewest switches surface hopping

Throughout this work FSSH [24–27,29–39] is employed
and the implementation largely follows Ref. [40]. In FSSH the
electrons are treated quantum mechanically, while the nuclei
are treated classically, propagating along a trajectory R(t ).
The classical trajectories evolve on a single PES and can
switch between the electronic states based on a hopping prob-
ability. To this end, the time-dependent Schrödinger equation
(TDSE) for the electrons is solved along the nuclear trajectory,

ih̄ċk (t ) =
∑

j

cj (t )[Vkj − ih̄ �̇R · �dkj ], (1)

where the cj are the expansion coefficients with respect to
the representation adopted, the Vkj are the matrix elements of
the electronic Hamiltonian, and the �dkj are the nonadiabatic
coupling vectors (NAC). In the adiabatic representation, the
matrix Vkj is diagonal. In the following, the adiabatic repre-
sentation is assumed and, thus, Vkj is omitted if k �= j . From
Eq. (1) the rate of change of population of the j th electronic
state reads

ρ̇jj =
∑
k �=j

bkj , (2)

where

bkj = −2Re[ρjk
�̇R · �dkj ], (3)

ρjk = cj c
∗
k , (4)

and the probability of switching from state j to state k, Pj→k ,
is obtained as

Pj→k = −bkj�t

ρjj

, (5)

where �t is the time step for the nuclear dynamics. The
hopping probability is compared to a uniformly distributed
random number ζ , 0 < ζ < 1, and a hop occurs if Pj→k is
larger than ζ . If a hop occurs, the velocities of the classical
trajectory are adjusted along the direction the nonadiabatic
coupling vector to conserve the total energy. Hopping is not
performed if there is not enough energy available for this
adjustment.

FSSH can be extended to account for coupling of electronic
states due to an external field [29–34,36–38,41], where the
Hamiltonian for the external field is given by Hext = − �E(t ) ·
�μ, with �μ the dipole operator in length form. In this work a
Gaussian shaped pulse polarized along the z axis is used and

�E(t ) = E0 e− 1
2 ( t−t0

σ
)2

cos(h̄ωf (t − t0) + �) ẑ, (6)

where E0 is the field amplitude, t0 is the pulse center, σ is the
pulse width, h̄ωf is the photon energy, and � is the phase
of the electric field relative to the Gaussian envelope. The

corresponding TDSE reads

ih̄ċk (t ) = ck (t )Vk−ih̄
∑

j

cj (t )[ �̇R · �dkj −i �E(t ) · �μkj ], (7)

and we obtain the rate of change of population as

ρ̇jj =
∑
k �=j

−2Re[ρjk
�̇R · �dkj ] + 2Re[iρjk

�E(t ) · �μkj ]. (8)

The probability of hopping is then given as in Eq. (5). How-
ever, for this case, the velocity is only adjusted if the hop is
due to the nuclear motion and not if the hop is mediated by
the electric field as the energy for the hop is transferred to the
system by the external field. To decide if a hop is due to the
external electric field or due to the nuclear motion, the ratio of
the magnitude of the two terms in Eq. (8) is calculated and a
Monte Carlo strategy is employed to sample the ratio and to
decide on the velocity adjustment.

B. Initial conditions, photoionization, and Auger decay

Initial nuclear positions and velocities on the ground-state
PES of N2 are obtained by either quasiclassical sampling or
Wigner sampling of the normal mode coordinate [42,43].

In the quasiclassical sampling, the ensemble of Cartesian
positions X and velocities V for the classical trajectories are
calculated by [43]

Xi = Xeq + L√
Mω

cos(2πri ), (9)

Vi = −L
√

ω√
M

sin(2πri ), (10)

where i = 1, . . . , N numbers the sample, L, M , and ω are
the normal mode coordinate, normal mode mass, and normal
mode frequency, respectively, Xeq is the ground-state equi-
librium geometry, and ri is a uniformly distributed random
number in the interval [0,1].

FIG. 1. The distribution of the initial N-N distance obtained from
both the Wigner (solid line) and quasiclassical (dashed line) sampling
methods.
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The Wigner distribution [42] for the vibrational ground
state is given as

W (n=0)(R,P ) = e−(P 2+R2 ), (11)

where (R, P ) is a point in phase space. The Wigner dis-
tribution is sampled employing the von Neumann rejection
scheme [42]. The corresponding phase space points are trans-
formed to Cartesian coordinates,

Xi = Xeq + LRi√
Mω

, (12)

Vi = LPi

√
ω√

M
. (13)

Please note that the harmonic approximation is employed in
this work for sampling the ground vibrational state of N2. The
average energy of the initial trajectories is thus 〈E〉 = 1

2 h̄ω =
0.14 eV, which is larger than the exact energy expectation
value of 0.12 eV [20], the energy of the wave packet employed
in the quantum dynamics calculations [20].

Both sampling methods have certain strengths and weak-
nesses. On the one hand, the Wigner sampling faithfully re-
produces the position distribution of the initial quantum wave
packet (see Fig. 1). The quasiclassical sampling, however,
results in a distribution that peaks at the classical turning
points (see Fig. 1). On the other hand, the quasiclassical
sampling reproduces the energy spread of the sampled vi-
brational ground state, �E =

√
〈E2〉 − 〈E〉2 = 0 eV, while

FIG. 2. PESs employed in this work are relative to the ground-state minimum of N2. (a) The PES of N2 (solid line) corresponds to the
left-hand side y axis and the PES of core-ionized N2

+(1s−1) (dashed line) corresponds to the right-hand-side y axis. (b) Eight quasidiabatic
PESs of N2

2+ as employed in previous QD simulations [20]. (c)–(f) Thirty adiabatic PESs of N2
2+ calculated at the CASSCF/aug-cc-pVTZ

level of theory.
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the Wigner sampling gives �E = 1
2 h̄ω = 0.14 eV for the

present case of an initial harmonic state. In this work, we
have sampled 5000 trajectories of N2 molecules that are
initially aligned along the z axis. Then a counterclock-
wise rotation around the y axis with uniformly distributed
random angles is performed to mimic the distribution of
the rotational ground state relative to the IR polarization
axis [20].

The sampled geometries are vertically lifted to the core-
ionized N2

+ electronic state and propagated on that PES.
Please note that we follow Ref. [20] and only employ the core-
ionized N2

+ electronic state that corresponds to σu symmetry.
The N2

+ electronic state with σg symmetry is separated by
about 100 meV [16,44] and thus inclusion of this electronic
state would only have minimal effect on the results presented.
A Monte Carlo scheme is employed to mimic the Auger
decay [45,46] and the Auger rates are taken to be the same
as in the previous QD simulation [20]. Please note that,
following Ref. [20], we assume that the IR pulse has no effect
on the Auger decay. If an Auger decay occurs, the trajectory is
switched to the corresponding N2

2+ state and is subsequently
propagated on the manifold of N2

2+ electronic states under
the influence of the IR pulse as described in Sec. II A.

C. Electronic structure calculations

Electronic structure data such as energies, gradients, nona-
diabatic coupling vectors, and transition dipole elements are
calculated at the complete active space self-consistent field
(CASSCF) level of theory employing the aug-cc-pVTZ ba-
sis set developed by Dunning [47] using the MOLCAS 8.2
package [48–51]. The nonadiabatic coupling vector �dkj is
obtained using finite differences as [28]

dkj

(
R + �R

2

)
= 1

2�R
(〈φk (r; R)|φj (r; R + �R)〉

− 〈φk (r; R + �R)|φj (r; R)〉). (14)

All the above mentioned electronic structure quantities are
calculated on a regular R grid between 0.5 and 3.5 Å at a
spacing of 0.01 Å and then interpolated on-the-fly using the
smoothed spline interpolation scheme [52–54] in PYTHON.
Figure 2 displays the different PESs employed in this work.
Figure 2(a) displays the ground electronic state of N2 and the
core-ionized state of N2

+ [20]. The two PESs are separated
by about 420 eV; however, the minimum of the N2

+ PES
is in the Franck-Condon region. Figure 2(b) displays the
quasidiabatic PESs of N2

2+ that were used in the previous
QD simulations [20]. The X1�+

g and 11�+
u states have a local

minimum in the Franck-Condon region. In contrast, the local

FIG. 3. Auger spectrum using quasidiabatic PESs [shown in Fig. 2(b)] from (a) FSSH (Wigner sampling), (b) FSSH (quasiclassical
sampling), and (c) QD [20]. Unfragmented N2

2+ (IR free) from (d) FSSH (Wigner sampling), (e) FSSH (quasiclassical sampling), and (f)
QD [20].
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minima of the 11�g , 2 1�+
g , and 11�u states are located outside

of the Franck-Condon region, and the 11�g , 2 1�g , and 3 1�g

do not show any local minimum.
Due to the high computational cost of the exact QD sim-

ulations, only a small set of quasidiabatic, uncoupled states
could be employed in the previous work [20]. As the FSSH
simulations performed in this work have a greatly reduced
computational cost, we also studied an extended set of 30
adiabatic states of N2

2+ in the energy region of interest, which
are depicted in Figs. 2(c)–2(f). Additionally, we investigated
the role of nonadiabatic coupling in the Coulomb explosion.

III. COMPARISON TO QUANTUM
DYNAMICS SIMULATIONS

A. Auger spectrum

In Fig. 3 the Auger electron kinetic-energy spectrum
σA(E) is presented (no IR pulse present). The full Auger
spectrum obtained from FSSH employing both Wigner and
quasiclassical sampling [Figs. 3(a) and 3(b), respectively]
gives very good agreement with previous QD simulations
[Fig. 3(c)] [20]. Please note that the Auger spectrum displayed
in Fig. 3 is shifted by 11.95 eV, as was done in the QD
simulations [20]. The peak positions and the peak widths
match the QD spectrum, but small deviations are found for
the relative peak heights. The Auger spectrum obtained from
quasiclassical sampling shows a small splitting of the peaks,
due to the inaccurate initial distribution (see also Fig. 1).

Figures 3(d)–3(f) show the Auger energy dependent
unfragmented-N2

2+ yield from FSSH employing Wigner
sampling (d), quasiclassical sampling (e), and from QD sim-
ulations (f) [20]. Very good agreement is found between all
three simulations. Auger decay into the 11�g state leads to
complete dissociation of N2

2+ due to its dissociative PES as
shown and discussed in Sec. II A. The 11�g state has a shallow
local minimum away from the Franck-Condon region, which
also leads to complete dissociation. The 2 1�+

g and 11�u states
lead to partial dissociation. The local minimum on each PES

FIG. 4. N2
2+ yield from FSSH (solid lines) and QD (dashed

lines) in the presence of IR pulses with the pulse parameters given
in Table I.

TABLE I. Parameters for the IR pulses employed in this work
(cf. Ref. [20]).

IR pulse I0 (1014 W cm−2) �IR (FWHM) (fs)

k = 0 – –
k = 1 6.68 3.54
k = 3 3.37 7.07
k = 5 0.84 28.28
k = 6 0.56 42.43

has a considerable depth, but both minima are away from
the Franck-Condon region. The overall N2

2+ yield from the
FSSH calculation is 0.22, which is slightly lower than the
value obtained from QD simulations, which is 0.25 [20]. This
difference is due to the initial energy of the trajectories, which
is greater than the initial energy of the QD wave packet as
discussed in Sec. II B. The results obtained with the Wigner
sampling resemble the QD results slightly better due to the
faithful reproduction of the initial quantum distribution. Thus,

FIG. 5. N2
2+ yield with (k = 6) and without (k = 0) IR pulse.

FSSH results are given by solid lines and QD results are given by
dashed lines. (a) Overall N2

2+ yield as well as contributions from
different Auger channels. (b) and (c) N2

2+ yield for alignment of N2

parallel, diagonal, and perpendicular to the IR field.
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FIG. 6. N2
2+ yield (IR free) as a function of energy using the adiabatic PESs [shown in Figs. 2(c)–2(f)] from (a) FSSH (without NAC) and

(b) FSSH (with NAC) in comparison to the N2
2+ yield from (c) FSSH using quasidiabatic PESs [same as in Fig. 3(d)].

for the remainder of this paper, we will show only results
obtained with the Wigner sampling.

B. N2
2+ yield in the presence of an IR pulse

Figure 4 shows the unfragmented-N2
2+ yield from FSSH

(solid lines) and QD [20] (dashed lines) as a function of time
delay of an IR pulse, where the parameters of the different IR
pulses are given in Table I. As discussed in the previous sec-
tion (Sec. III A), the IR free (k = 0) yield obtained from FSSH
is slightly smaller than the yield obtained from QD [20] due
to the approximations in the initial sampling. In the presence
of long IR pulses (k = 5 and k = 6), the unfragmented-N2

2+

yield from FSSH shows very good agreement with QD [20].
For short IR pulses (k = 1 and k = 3), we found less N2

2+

fragmentation from FSSH than QD [20]. This difference can
be rationalized by the approximations in the sampling of the
initial conditions. In particular, due to the harmonic approx-
imation, the initial distribution is symmetric as compared to
the slightly asymmetric initial distribution of the exact ground
state in the QD simulations and the initial energy of the
trajectories is slightly overestimated in FSSH. Additionally,
the sampling of initial conditions ignores any rovibrational
coupling, which is present in the QD simulations. Small
differences in the dynamics resulting from the approximations
in the sampling manifest themselves more strongly for short
IR pulses than long IR pulses, due to less averaging in
the former case. These shortcomings could, for example, be
overcome by employing the ring polymer molecular dynamics
approach [55,56] with nonequilibrium initial conditions [57]
and surface hopping [58,59]. This is left for future work.

Figure 5 shows the unfragmented-N2
2+ yield as a function

of time delay for the long IR pulse (k = 6) and no IR pulse
(k = 0). Figure 5(a) gives the total yield of unfragmented-
N2

2+, which we discussed in the previous paragraph. The total
unfragmented-N2

2+ yield in the presence of a long IR pulse
(k = 6) shows very good agreement with QD simulations [20].

Figure 5(a) also gives the N2
2+ yield from the individual

Auger channels. Again good agreement between the FSSH
and QD simulations is found. The largest differences can be
found for IR free cases (i.e., very negative delay times), which
have been discussed above (cf. Fig. 3). In the presence of
an IR pulse very good agreement between FSSH and QD
simulations is found. The 21�+

g channel does not undergo any
fragmentation and 11�u undergoes minimal dissociation. The
same behavior was observed in the QD simulations [20].

Figures 5(b)–5(d) show the N2
2+ yield for different initial

alignments of the N2 molecular axis relative to the IR po-
larization axis given by an angle θ . To this end, we define
three regions: parallel (yield‖) to the field (0◦ < θ < 30◦ and
150◦ < θ < 180◦), diagonal (yield/) to the field (30◦ < θ <

60◦ and 120◦ < θ < 150◦), and perpendicular (yield⊥) to the
field (60◦ < θ < 120◦) [20]. All these quantities show good
agreement with the QD simulations. The reduced computa-
tional cost and better scaling of FSSH compared to QD, while
giving overall good agreement, will allow for the investigation
of bigger systems and more complex dynamics.

IV. FRAGMENTATION IN ADIABATIC REPRESENTATION

Due to the increased efficiency of the FSSH simulations
compared to the QD, we can also investigate the fragmen-
tation dynamics including all 30 adiabatic PESs shown in
Figs. 2(c)–2(f). In this section, we also investigate the role of
non-Born-Oppenheimer effects due to nonadiabatic coupling
of these PESs, which could not be done in the QD simula-
tions [20].

Figure 6 shows the N2
2+ yield (IR free) as a function

of Auger energy for uncoupled ( �dkj = 0) adiabatic PESs
[Fig. 6(a)] and coupled adiabatic PESs [Fig. 6(b)] in compari-
son with the previously discussed results on the quasidiabatic
PESs [Fig. 6(c)]. We observe that the state 21�+

g leads to com-
plete dissociation of N2

2+ compared to partial dissociation
for the quasidiabatic PESs. The difference in fragmentation
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FIG. 7. N2
2+ yield from FSSH simulations using quasidiabatic

(dashed), uncoupled adiabatic (dotted), and coupled adiabatic (solid)
representations. (a) Total N2

2+ yield; (b)–(d) N2 parallel, diagonal,
and perpendicular to the IR field.

is due to the higher dissociation barrier on the quasidiabatic
PESs, which results from smoothly changing from one to
another adiabatic PES when constructing the quasidiabatic
PESs and ignoring all off-diagonal potential matrix elements.
No difference between the simulations employing uncoupled
or fully coupled adiabatic PESs is observed. All other features
in the Auger energy dependent IR free N2

2+ yield are the
same for the adiabatic and quasidiabatic PESs as both sets are
similar in the Franck-Condon region.

The increased number of PESs in the simulations that
employ the adiabatic representation allows for more possi-
ble ways for the IR pulse to excite the system. Therefore,
we will now analyze the N2

2+ yield when applying an IR
pulse. Figure 7 shows the unfragmented-N2

2+ yield as a
function of time delay of the IR pulse for uncoupled adiabatic
(dotted lines) and coupled adiabatic PESs (solid lines) from
FSSH simulations in comparison to the previously discussed
yield on the quasidiabatic PESs (cf. Fig. 5). The total N2

2+

yield is shown in Fig. 7(a). We observe that the IR free N2
2+

FIG. 8. Magnitude of (a) parallel (z) and (b) perpendicular (x, y)
components of the transition dipole moments (μ) of the dominant
metastable state 1 1�+

u in the Franck-Condon region.

yield employing the adiabatic PESs (both coupled and uncou-
pled) is lower than on the quasidiabatic PESs, as discussed
above (cf. Fig. 6). Overall, a similar magnitude of dissociation
due to the IR pulse is found for the adiabatic and quasidiabatic
PESs. No impact of nonadiabatic coupling is found for the
cases considered in this work.

Figures 7(b)–7(d) give the unfragmented-N2
2+ yield in the

three different alignment regions discussed in Sec. III B. In the
presence of the IR pulse, we observe a different N2

2+ yield
in these regions (coupled and uncoupled PESs) compared to
the quasidiabatic PESs. This effect is most pronounced for
N2 aligned parallel to the IR field. This difference can be
attributed to the inclusion of more adiabatic PESs, which
gives trajectories the possibility to hop to more different PESs
compared to the previous calculations. This is exemplified
for the dominant metastable state 11�+

u . Figure 8 shows the
parallel and perpendicular components of the transition dipole
moment of 11�+

u with respect to the IR pulse polarization. In
the previous simulations this state was optically coupled via
the parallel component of the transition dipole moment to two
other states (i.e., X1�+

g and 2 1�+
g ) in the Franck-Condon re-

gion. In contrast, in the extended adiabatic representation, the
same state is optically coupled to five other states (i.e., X1�+

g ,
2 1�+

g , 3 1�+
g , 4 1�+

g , and 5 1�+
g ) via the parallel component of

the transition dipole moment in the Franck-Condon region.
The states 4 1�+

g and 5 1�+
g in the adiabatic representation
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are strongly coupled with the metastable state 1 1�+
u via the

parallel component [Fig. 8(a)], which results in increased
N2

2+ fragmentation when the system is parallel to the IR
pulse. Similarly, the same state was optically coupled to three
other states (i.e., 1 1�g , 2 1�g , and 3 1�g) via the perpendic-
ular component of the transition dipole in the previous sim-
ulations. However, in the extended adiabatic representation,
it is coupled to five other states (i.e., 1 1�g , 2 1�g , 3 1�g ,
4 1�g , and 5 1�g). Unlike the parallel component, the states
4 1�g and 5 1�g do not have a strong optical coupling via
the perpendicular component of the transition dipole moment
[Fig. 8(b)]. Thus, the effect of additional states is less strong
when the system is diagonal or perpendicular to the IR pulse.
Additionally, omitting the quasidiabatic representation and
switching to a fully adiabatic representation also changes the
coupling pattern. Similar trends are observed also for the other
states.

V. CONCLUSION

We have performed x-ray pump-IR probe FSSH simula-
tions of N2 molecules and compared the results with previous
QD simulations [20]. The x-ray pulse photoionizes the N2 by
removing an inner shell electron followed by Auger decay
of the N2

+ system to N2
2+. The interaction of N2

2+ with a
subsequent IR pulse has been studied. First, we conducted this
study in the quasidiabatic (eight N2

2+ states) representation
employed in the previous QD [20] studies. Results from FSSH

simulations for long IR pulses are in good agreement with the
QD simulations [20], whereas we observe slightly less frag-
mentation of N2

2+ in the presence of short IR pulses. This can
be rationalized by the approximations made for sampling the
initial conditions. Due to the increased efficiency of the FSSH
simulations, we could reinvestigate the problem employing
an extended set of 30 adiabatic PESs. In the adiabatic rep-
resentation, the total unfragmented-N2

2+ yield is decreased
compared to simulations in the quasidiabatic representation.
Moreover, in contrast to the conclusions of Ref. [20], we find
IR-induced molecular fragmentation for parallel alignment to
be as strong as for perpendicular alignment. No impact of
nonadiabatic coupling is found. FSSH greatly reduced the
simulation cost and has a better scaling than QD simula-
tions [20], which opens the door for investigation of fragmen-
tation dynamics for larger systems. Polyatomic systems can
be treated in mixed quantum-classical simulations by either
on-the-fly electronic structure calculations or by using fitted
PES, e.g., employing machine learning techniques.
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A method combining an Ehrenfest-like approach, which minimizes the number of surface hops, with Tully’s
fewest switches surface hopping is proposed for the description of nonadiabatic molecular dynamics in the
presence of an external electromagnetic field. When two states are strongly coupled by the applied light field, an
Ehrenfest-like approach is employed, which allows the system to be in a coherent superposition. Tully’s fewest
switches surface hopping (FSSH) is used for the weak- and no-coupling regimes to improve the asymptotic
behavior of the method. The decision of which approach to employ at a given time is made based on a simple
analysis of Rabi oscillations in a two-state model. The method is tested for two exactly solvable model systems,
i.e., a stimulated emission scenario in a pulsed laser field and a photoexcitation scenario in a cw laser field.
Position and momentum densities of the nuclei compare well with exact quantum dynamics simulations and
improve on both a pure Ehrenfest and a pure FSSH approach. The method is efficient and easily implemented.

DOI: 10.1103/PhysRevA.102.013107

I. INTRODUCTION

Key phenomena in molecular processes such as charge
transfer and transport [1–5], isomerization [6,7], photo-
deactivation [8,9], or singlet fission [10] can be understood
by investigating the dynamics on an atomic scale. In many of
these processes, the Born-Oppenheimer approximation breaks
down and we have to treat the coupled motion of electrons
and nuclei. While exact, full-dimensional quantum dynamics
approaches can readily simulate this, the computational effort
of these methods scales exponentially with increasing system
size. Therefore, mixed quantum classical descriptions, i.e.,
approaches employing a classical description of the nuclei and
a quantum description of the electrons, have been developed.
These methods include the Ehrenfest or mean-field approach
[11,12] and Tully’s fewest switches surface hopping (FSSH)
approach [13–15].

In Ehrenfest dynamics, the nuclei evolve classically due
to a force from a superposition of electronic eigenstates.
However, due to the averaged potential, Ehrenfest dynamics
fails to correctly describe processes with multiple reaction
paths or processes that end up in distinct states that are well
described by a single potential energy surface (PES). These
processes can be better described by the popular FSSH ap-
proach. In FSSH, each classical trajectory evolves on a single
PES and stochastically hops between the different PESs. The
transition probabilities depend on the electronic population
and on the nonadiabatic coupling (NAC) vector. For every
hop, the velocities are scaled to conserve energy. By employ-
ing this energy-conservation procedure, the FSSH algorithm
can approximately reproduce the Boltzmann distribution of
quantum states. It allows for the FSSH method to investigate
the relaxation of quantum states to thermal equilibrium [16],
which is not possible in the Ehrenfest approach [16,17]. FSSH
is an appealing approach due to its conceptual simplicity and

numerical efficiency, while being reasonably accurate. How-
ever, FSSH has several limitations such as missing nuclear
quantum effects and quantum interference, lack of proper
decoherence, and representation dependence [18]. In recent
years, there has been a considerable theoretical advancement
to overcome such limitations. Some of the recently developed
FSSH-like algorithms include ring polymer surface hopping
[19–24], global flux surface hopping (GFSH) [25], Liouville
space FSSH [26], Liouville space GFSH [27], decoherence-
induced surface hopping [28], and many others [29–38].

Further developments of the FSSH algorithm have focused
on incorporating an external electric field to investigate light-
induced nonadiabatic dynamics [39–42]. In field-induced
FSSH, the PESs are optically coupled by the transition dipole
moment μ. The basic states that are then employed in the
FSSH algorithm can either be the field-free, adiabatic Born-
Oppenheimer surfaces (BO-SH) [39,43–50] or instantaneous
Born-Oppenheimer surfaces that are eigenstates of the elec-
tronic Hamiltonian including the electric field at time t (IBO-
SH) [51–56]. However, it has recently been shown that for
photoexcitation and stimulated emission processes in an ex-
actly solvable H2

+ model, these approaches suffer from an un-
physically high average number of hops per trajectory, which
lead to nonphysical results compared to full quantum simula-
tions [57]. Another FSSH variant employing Floquet surfaces
within the FSSH scheme, i.e., Floquet surface hopping (F-SH)
[40,57], was found to reduce the average number of hops
and, consequently, better reproduce the exact results. Yet, the
Floquet picture is strictly exact only for time-periodic cw laser
fields. In the present work, we propose an improved version
of field-induced BO-SH, which we term optimized BO-SH
(o-BO-SH), in which the number of hops per trajectory is min-
imized. To this end, the method employs an Ehrenfest-like ap-
proach in the strongly coupled region and regular BO-SH else-
where. A simple analysis of Rabi oscillations in a two-state
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model allows for the distinction of these two situations. The
method is compared to exact quantum calculations as well as
other surface hopping variants discussed in Ref. [57]. Similar
ideas have been proposed for nonadiabatic dynamics without
an external field [58–62], which will be discussed in Sec. IV.

The paper is organized as follows: In Sec. II, the model
system employed in this work is introduced, the basic field-
induced FSSH approach is reviewed, and the method pro-
posed in this work is discussed in detail. Section III presents
results on a model system and comparison to other works.
Section IV gives a general discussion of the presented method
and puts it into perspective, while Sec. V presents some
conclusions.

II. THEORETICAL BACKGROUND

A. Model system and potential energy surfaces

In order to facilitate a systematic comparison, we follow
Ref. [57] and employ a soft-core Hamiltonian given as

H = − �R

2M
− �r

2
+ 1

R + 0.03
− μE (t )

− 1√
(r − R/2)2 + 1

− 1√
(r + R/2)2 + 1

, (1)

where M is the reduced nuclear mass, R and r are the nuclear
and electronic coordinates, respectively, and μ is the transition
dipole moment operator. The BO surfaces EBO

0/1 (R) are cal-
culated by diagonalizing the field-free Hamiltonian for fixed
nuclear coordinates [57],

HBO(R) = − �r

2
+ 1

R + 0.03
− 1√

(r − R/2)2 + 1

− 1√
(r + R/2)2 + 1

. (2)

The IBO Hamiltonian includes the electric-field interaction
μE (t ) and reads

H IBO(R, t ) = HBO(R) − μE (t ), (3)

with the corresponding IBO energies E IBO
0/1 (R, t ) given by [57]

E IBO
0/1 (R, t ) = EBO

0/1 (R)cos2θ (R, t ) + EBO
1/0 (R)sin2θ (R, t )

± μBO
01 (R)E (t )sin2θ (R, t ), (4)

where the mixing parameter θ (R, t ) is given by [57]

θ (R, t ) = 1

2
arctan

2μBO
01 (R)E (t )

EBO
0 (R) − EBO

1 (R)
. (5)

In this work, we have considered two cases of molecu-
lar dissociation following Ref. [57]: a Na2

+-like molecule
(M = 23 × 918 a.u.) undergoing stimulated emission due
to a Gaussian-shaped laser pulse with intensity I = 3 ×
1012 W/cm2 (see Sec. III A) and an H2

+-like molecule (M =
918 a.u.) undergoing photon absorption due to a cw laser with
intensity I = 1 × 1013 W/cm2 (see Sec. III B). In the latter
case, the initial trajectories were given an additional momen-
tum of −2.5 a.u. The photon energy of the electromagnetic
field is h̄ω = 0.2 a.u., which resonantly couples the lowest

FIG. 1. The two lowest BO and IBO PESs [for both cases:
stimulated emission (curve with smaller oscillations) and photon
absorption (curve with bigger oscillations)], with the equilibrium
distance, Req ≈ 2.3 a.u. The IBO surfaces were obtained by evolving
a single classical trajectory, starting on the upper PES at R =
0.85 a.u. with zero initial momentum and employing the electric
fields and reduced nuclear masses described in Sec. II A. As a
consequence, the IBO PESs do not correspond to any single time—
different points in space are calculated at different times.

two PESs at around R = 3.5 a.u. The two PESs are optically
coupled via the dipole moment, which for the model system
is approximated as μk j = δk jR/2. Figure 1 shows the lowest
two BO and IBO PESs (for both cases described above).

B. Fewest switches surface hopping

A central component of the method proposed in this work
is Tully’s FSSH approach and the implementation largely
follows Ref. [63]. In FSSH, the electrons are treated quantum
mechanically, while the nuclei are treated classically, propa-
gating along a trajectory R(t ). The classical trajectories evolve
on a single PES and can switch between the electronic states
based on a hopping probability. In the model cases employed
here, the PESs are coupled only through the transition dipole
moment μk j and, hence, we set the nonadiabatic-coupling
vector dk j = 0 throughout the simulations. We will focus on
one-dimensional systems here, but the approach can be easily
generalized to many degrees of freedom. We employ different
field-induced FSSH variants. In BO-SH, we solve the time-
dependent electronic Schrödinger equation (TDSE) along the
nuclear trajectories employing the BO surfaces,

iċk (t ) =
∑

j

c j (t )
[
V BO

k j − E (t )μk j
]
, (6)

where the ck’s are the expansion coefficients of the electronic
wave function and the V BO

k j are the matrix elements of the
field-free electronic Hamiltonian in the adiabatic represen-
tation, i.e., they are zero for k �= j, and for k = j they are
the eigenvalues of the field-free Hamiltonian for fixed nuclei
coordinates [i.e., EBO

0/1 (R)]. The rate of change of the electronic
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population is given by

ρ̇ j j (t ) =
∑
k �= j

2Re[iρ jk (t )E (t )μk j]. (7)

The probability of hopping from state j to state k, Pj→k , is
obtained as [63]

Pj→k (t ) = −2Re[iρ jkE (t )μk j]�t

ρ j j
. (8)

In case of IBO-SH, we use the IBO surfaces, E IBO
0/1 (R),

and the time evolution of the expansion coefficients is derived
using the Hellmann-Feynman theorem:

iċk (t ) =
∑

j

c j (t )

[
V IBO

k j − iĖ (t )μk j

�E IBO
jk

]
, (9)

where �E IBO
jk = E IBO

j − E IBO
k . The rate of change of the elec-

tronic population is given by

ρ̇ j j (t ) = −
∑
k �= j

2Re

[
ρ jkĖ (t )μk j

�E IBO
jk

]
, (10)

and the probability of hopping from state j to state k is given
as

Pj→k (t ) = 2Re

[
ρ jk (t )Ė (t )μk j

�E IBO
jk

]
�t

ρ j j (t )
. (11)

We assume that the energy required for any hop is provided
by the field and thus do not perform any velocity adjustments
after a hop occurs.

C. Optimized BO-SH

In this work, we propose a modified FSSH approach that
we term the “optimized” BO-SH (o-BO-SH) method. It con-
sists of two parts described in detail below. The first part aims
at reducing the number of hops. To this end, we employ a

time-dependent transformation of the electronic basis. For the
two-state model investigated here, this part is equivalent to an
Ehrenfest approach. The second part consists of a criterion
for when to employ the optimization and when to employ
standard BO-SH. This part is based on the description of Rabi
oscillations.

1. Optimization

In order to reduce the number of field-induced hops, the
underlying electronic basis is transformed. The transforma-
tion matrix at each time step is obtained by minimizing the
instantaneous hopping probability. For a two-state case, the
transformation matrix reads

U (θ, φ) =
[

cos θ sin θeiφ

− sin θe−iφ cos θ

]
, (12)

where θ and φ are parameters that are optimized at each
time step and thus carry the time dependence. We note that
there is no need to optimize the global phase of the electronic
wave packet. Therefore, the parametrization employed in
Eq. (12) captures all relevant SU(2) transformation matrices.
Parametrizations for SU(n) matrices with n > 2 (i.e., for
electronic subspaces consisting of more than two states) are
available but are less straightforward [64].

The corresponding time-dependent Schrödinger equation
in the new basis (labeled with a prime) reads

iċ′
k (t ) =

∑
j

c′
j (t )

[∑
a

Uka(θ, φ)V BO
aa U †

a j (θ, φ)

−
∑
a,b

Uka(θ, φ)E (t )μabU
†
b j (θ, φ)

− i
∑

a

Uka(θ, φ)U̇ †
a j (θ, φ)

]
, (13)

and the probability of hopping from a state j to state k is given
by

Pj→k (t ) = −2Re
{[ − i

∑
a UkaV BO

aa U †
a j + i

∑
a,b UkaE (t )μabU

†
b j + ∑

a UkaU̇
†
a j

]
ρ ′

k j

}
�t

ρ ′
j j

. (14)

Therefore, Pj→k is a function of θ and φ. Please note that j and
k in Eq. (14) do not refer to BO PESs but to “optimized” PESs
defined below. To reduce the number of hops, we minimize
Pj→k with respect to θ and φ, i.e., minθ,φ Pj→k (θ, φ) =
Pj→k (θopt, φopt ) and obtain optimal values θopt and φopt at each
time step. We perform the minimization using the function
minimize from the Python library SciPy [65]. The temporal
derivative of U , required for evaluating the hopping prob-
ability in Eq. (14), can be expressed in terms of θ̇ and φ̇,
which we compute employing first-order finite differencing.
This approach is numerically stable as long as the time step is
small enough.

We carry out the standard FSSH algorithm with the new
set of optimized PESs V o = U (θopt, φopt )V BOU †(θopt, φopt).
Each classical trajectory then evolves on the optimized PES
V o

j , where j labels the current active electronic state of the

trajectory just as in FSSH. Gradients for solving Newton’s
equations of motion are obtained as approximate derivatives
of the optimized PES, i.e., as

∂

∂R
V o

j =
∑

a

Uja(θopt, φopt)

(
∂

∂R
V BO

aa

)
U †

a j (θopt, φopt).

2. Criterion for employing the optimization

In order to reduce the field-induced hops, the optimiza-
tion procedure is carried out when there is strong optical
coupling through the transition dipole moment μ. However,
as mentioned above, we find that for the cases investigated
here, the optimization procedure described above results in an
approach very close to the Ehrenfest approach. However, once
the coupling is weak, the system will stay in the optimized,
averaged state, which can lead to nonphysical behavior if the
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FIG. 2. The nuclear densities for scenario 1 at t = 40 fs, in position (left panel) and momentum (right panel) space, obtained from BO-SH,
IBO-SH, and o-BO-SH for ζ = 0.00 and o-BO-SH for ζ = 0.04, in the presence of a Gaussian pulse, in comparison to TDSE and F-SH from
Ref. [57].

two states show distinct gradients, similar to the problems
arising in Ehrenfest dynamics. Thus, once the strength of the
optical coupling is small, one should revert back to employing
the normal BO PESs. To determine if the coupling is small,
we employ a resonantly coupled two-level model exhibiting
Rabi oscillations. The probability for switching the state in
this model is given as

PRabi = |ε(t )μ01|2(
ω − �EBO

01

)2 + |E (t )μ01|2
, (15)

where ω and ε(t ) are the photon energy and the envelope
associated with the electric field E (t ) = ε(t ) cos(ω t ), and
�EBO

01 = EBO
0 − EBO

1 is the energy difference of the two BO
states. Therefore, once the switching probability is above
a threshold value ζ , we employ the optimization algorithm
described above and, if it is below that threshold value, we
switch back to the BO PESs. To this end, we calculate the
absolute square of the expansion coefficients of the current
electronic state with respect to the k-th BO state, which gives
the probability to switch to the k-th BO PES. A Monte Carlo
strategy similar to the standard FSSH approach is employed
to sample these probabilities.

III. RESULTS

The model systems employed in this work are described in
Sec. II A. We consider two cases of molecular dissociation: A
Na2

+-like molecule undergoing stimulated emission due to a
Gaussian pulse (see Sec. III A) and an H2

+-like molecule un-
dergoing photon absorption due to a cw laser (see Sec. III B).
Throughout this work, we employ 10 000 classical trajecto-
ries sampled using Wigner sampling. Trajectories are propa-

gated using the Velocity-Verlet approach with a time step of
0.002 a.u.

A. Scenario 1: Stimulated emission in Gaussian pulse

First we discuss stimulated emission from an electronically
excited Na2

+-like molecule (M = 23 × 918 a.u.) by a Gaus-
sian pulse with 7 fs duration (full width at half maximum of
the intensity), wavelength of λ = 225 nm, and peak intensity
of I = 3 × 1012 W/cm2.

Figure 2 shows the nuclear position and momentum den-
sities at t = 40 fs, obtained from BO-SH, IBO-SH, and o-
BO-SH in comparison with results from Ref. [57] employing
F-SH and exact TDSE calculations. Here, position means
internuclear distance, and momentum refers to the relative
momentum of the two nuclei. The latter is positive when the
two nuclei are moving away from each other; it is negative
when they are approaching each other. The exact momentum
density in Fig. 2(b) shows that the wave packet splits into
a fast moving part (mean momentum P ≈ 94 a.u. at t =
40 fs) and a slow moving part (mean momentum P ≈ 34 a.u.
at t = 40 fs). The fast moving part is on the ground electronic
state and shows a mean position of R ≈ 5.9 a.u., while the
slow moving part is located on the excited electronic state and
shows a mean position of R ≈ 7.9 a.u.

The F-SH simulations from Ref. [57] show a similar be-
havior. However, both the BO-SH and IBO-SH approaches
show a less distinct splitting in the densities. As discussed in
Ref. [57], this failure can be attributed to the high number of
hops per trajectory in these two approaches compared to F-SH
(see also Table I). The optimization method introduced in this
work reduces the number of hops. Yet, the pure optimization
method (i.e., ζ = 0), which reduces the number of hops to 0,
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TABLE I. The average number of hops per trajectory in different
FSSH methods for scenarios 1 and 2. The numbers for F-SH are
taken from Ref. [57] (note the interchange of scenarios 1 and 2).

Method Scenario 1 Scenario 2

F-SH 0.6 0.01
BO-SH 1.45 3.16
IBO-SH 2.15 42.3
o-BO-SH (ζ = 0.00) 0.00 0.00
o-BO-SH (ζ = 0.04) 0.98 0.22
o-BO-SH (ζ = 0.10) 1.13
o-BO-SH (ζ = 0.50) 2.21

shows no splitting at all due to the Ehrenfest-like character of
that approach. If a larger value of ζ is employed, ζ = 0.04 in
this case, the trajectories are put onto the correct BO PES after
they passed the coupling region and a distinct splitting of the
distribution is found, which is closer to the exact values than
pure BO- or IBO-SH.

The choice of an appropriate value for ζ is discussed next.
It is clear that a too low value of ζ results in an Ehrenfest-like
approach, which does not give reasonable results here, while
a too high value of ζ results in a pure BO-SH approach, which
is also unreasonable for the strongly driven systems discussed
here. The observation in different tests is that while the
coupling is strong, the optimization strategy performs well,
and where the coupling is weak, the FSSH approach performs
better. By examining Fig. 3, which shows the spatial depen-
dence of the Rabi switching probability given in Eq. (15) for
the current scenario, we can decide on a reasonable range for
the ζ parameter. It can be seen that the switching probability
peaks at the geometry where the frequency of the external field
matches the energy difference of the two electronic states and
that it falls off very quickly away from that point. To include

FIG. 3. Rabi switching probability, PRabi, as a function of posi-
tion R.

the strong-coupling regime in the optimization algorithm, one
therefore needs to choose a small, but nonzero value of ζ .

To gain better insight into the optimal value as well as
the sensitivity of our results with respect to ζ , we performed
simulations with ζ ∈ {0, 0.04, 0.1, 0.5}. These values are also
indicated as horizontal lines in Fig. 3. In Fig. 4, the resulting
nuclear position and momentum densities for simulations with
the different values of ζ are compared. At t = 10 fs, before the
system enters the interaction region, all densities are equal.
However, once the two states are coupled by the external
laser field (e.g., around t = 15 fs), one can see the momentum
density splitting up significantly for a high value of ζ (yellow
and cyan line in Fig. 4). This is due to the high-ζ value forcing
the system into one or the other BO PES while there is still
significant coupling of the two states. As seen before, a value
of ζ = 0 results in no splitting of the density and an averaged
position and momentum distribution, which is nonphysical.

The effect discussed above can be seen even better in
Fig. 5, which shows the momentum density as a function of
the θ optimization parameter at selected times. At t = 15 fs
and a high value of ζ (second row, left column of Fig. 5), one
can see that most of the trajectories are located either on the
upper or lower BO PES, i.e., θ is either 0 or π

2 . For ζ = 0,
one can see that there is no splitting and the systems ends
up in an average state, i.e., the values of θ that are reached
are always below π

2 and above 0, with an average close to
π
4 . Furthermore, over the full time, the distribution in θ is
continuous and relatively compact.

B. Scenario 2: Photon absorption in cw laser

In this scenario, an H2
+-like molecule (M = 918 a.u.)

initially in its ground electronic state, but with an additional
momentum of −2.5 a.u., is considered. The system evolves
in a cw laser with I = 1013 W/cm2, switched on with a
sin2-shaped ramp (given in Ref. [57]).

Figure 6 shows the nuclear position and momentum den-
sities at t = 25 fs obtained from BO-SH, IBO-SH, and o-
BO-SH (for ζ = 0.0 and 0.04) in comparison to calculations
employing F-SH and exact TDSE simulations from Ref. [57].
A split in the wave packet is observed in the exact simulation,
with one part staying in the ground electronic state and around
the equilibrium position and a second part dissociating in the
excited electronic state. Again, F-SH gives reasonably good
results compared to the exact results. In contrast, both BO-SH
and IBO-SH underestimate the dissociation probability and
give a too small momentum for the dissociating part at t =
25 fs. This can be traced back to the high number of hops in
BO- and IBO-SH (see Table I).

For this scenario, the o-BO-SH approach performs well
compared to the exact approach not only for ζ = 0.4, but
also for ζ = 0.0. The reason for the latter value to work
well is as follows. The system is initialized in the ground
electronic state near the potential minimum. For trajectories
that stay in this region, there is only a small coupling, and
thus θ will remain around 0 in the optimization algorithm
and the trajectories correctly evolve on the ground electronic
state. Only if the trajectories have enough energy to escape
from the potential minimum is there a significant coupling
and the trajectories start to evolve on optimized, average
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FIG. 4. Snapshots of nuclear densities at t = 10, 15, 20, and 40 fs in position (left panel) and momentum (right panel) space, o-BO-SH for
ζ = 0.5, 0.1, 0.04, and 0.0. At t = 40 fs, the nuclear densities from o-BO-SH are compared to TDSE and F-SH from Ref. [57].
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FIG. 5. The logarithmic distribution of momentum, P, and mixing parameter θ , at t = 10, 15, and 20 fs employing o-BO-SH for ζ = 0.50
(left panels), 0.04 (center panels), and 0.0 (right panels).

states. However, for this dissociation case, there is no problem
as the electronic states are degenerate in the dissociation
limit.

Figure 7 shows the nuclear momentum density as a func-
tion of the optimization parameter θ at t = 25 fs from o-BO-
SH for ζ = 0.04. Again, θ = 0 corresponds to a population
of the lower BO PES, while a value of θ = π

2 corresponds
to a population of the upper BO PES. The two peaks in
the momentum distribution can be directly associated with a
population of the lower BO PES (peak around P = 0 a.u.) and
the second peak associated with a population of the upper BO
PES (peak around P = 12 a.u.), where the latter peak shows
a broader θ distribution as both BO PESs are approximately
degenerate at large distances.

IV. DISCUSSION

For cases where the external field strongly couples the
different BO PESs, it is best to describe each trajectory using a
superposition of BO states, as done in the Ehrenfest approach,
instead of a simple BO state, which is employed in FSSH.
However, once the strong coupling is no longer present, the
Ehrenfest-like approach breaks down as the system cannot
be described with a coherent superposition any longer, but
each state should be treated individually as is done in FSSH.
The proposed method combines these in a straightforward and
easy-to-implement way, which also gives accurate results.

Methods that follow a similar spirit as o-BO-SH have
been proposed before [58–62], yet only for cases that do
not include an external electric field. The continuous surface
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FIG. 6. The nuclear densities for scenario 2 at t = 25 fs, in position (left panel) and momentum (right panel) space, obtained from BO-SH,
IBO-SH, o-BO-SH for ζ = 0.00 and o-BO-SH for ζ = 0.04, in the presence of a cw laser, in comparison to TDSE and F-SH from Ref. [57].

switching approaches (CSS, CCS2) [59,60] are variants of
the Ehrenfest approach, but redefine the weights in the wave
function. In areas of strong coupling, the weights should
match the electronic populations and thus the approaches
equal the Ehrenfest approach, while in areas of no coupling,
the weights should be 0 or 1 to ensure correct dissociation.
One of the important criteria for the definition of the weights is
that the wave function should collapse in the regions of weak
or no coupling. In that way, CSS and CSS2 are similar to the o-
BO-SH method, which also uses the current coupling strength
as a criterion for the wave-function collapse. However, in our
o-BO-SH, the collapse of the wave functions is instantaneous,
while CSS and CSS2 have a continuous way of collapsing

FIG. 7. The logarithmic distribution of momentum, P, and mix-
ing parameter θ , at t = 25 fs employing o-BO-SH for ζ = 0.04.

the wave function over some range of the potential. Mean-
field dynamics with stochastic decoherence (MF-SD) [61] and
augmented Ehrenfest (AE) [62] both have an instantaneous
collapse of the wave function given by a rate. The rate is
determined by analyzing either the difference between the
Ehrenfest force and the forces for each electronic state [61]
or by analyzing the Ehrenfest trajectories employing frozen
Gaussians [62], which both differ from the o-BO-SH method
that analyzes the coupling strength due to the external field.

For the two-state examples employed in this work, it was
found that the optimization approach gives the same results as
the Ehrenfest approach. It is not clear whether this holds true
in any multistate case. Both approaches, i.e., the Ehrenfest
approach and the optimization, can be easily implemented for
a multistate case. The Ehrenfest approach is well known for
any number of states, whereas for the optimization procedure,
one needs to define a general, unitary matrix, perform the
associated transformation of the electronic basis, and employ
any standard optimization scheme to minimize the hopping
probability.

V. CONCLUSION

For the mixed quantum classical description of the dy-
namics of molecules driven by coherent light fields, the F-
SH method from Ref. [57] overcomes certain limitations of
the Ehrenfest, BO-SH, and IBO-SH methods. However, the
Floquet method underlying F-SH imposes restrictions on the
nature of the light pulses that can be treated. Particularly,
few-cycle or subcycle pulses, which can be synthesized for
applications in quantum control [66,67], clearly violate the
assumption of temporal (quasi-)periodicity inherent in the
Floquet method. In contrast, the Ehrenfest, BO-SH, and IBO-
SH methods are not affected by this specific limitation of
F-SH.

Therefore, in this work, we have explored another FSSH
variant for computing field-induced dynamics in molecules.
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The proposed method combines an Ehrenfest-like approach
for the strong-coupling region, which reduces the number of
hops, and BO-SH in the weak-coupling regime. The switch
between both approaches is performed based on a Rabi-
oscillation model. The method is termed optimized BO-SH
(o-BO-SH) and performs well compared to exact quantum
results for different test cases of field-induced stimulated
emission and photoabsorption employing a soft-core Hamilto-
nian. It is numerically efficient and can be easily generalized

to treat multidimensional and multistate systems. It is left for
future work to assess the accuracy of the method in these
cases.
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