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Abstract

Inverse Compton Scattering (ICS) has gained much attention recently because of its
promise for the development of compact X-ray light sources. Precise and fast sim-
ulation is an essential tool for predicting the radiation property of a given machine
design and to optimize its parameters. This thesis focuses on the development of
the ICS simulation model. In particular, two computational techniques used in the
simulation model are considered: the calculation of the radiation spectra and the
computation of the space-charge field.

The calculation of radiation spectra is based on the Liénard-Wiechert potential.
Instead of the conventional method which directly evaluates the discretized Fourier
integral of the Liénard-Wiechert field (called frequency-domain method), we focus
on an approach referred to as the time-domain method, where the field is recorded
along the observer’s time on a uniform time grid which is then used to compute
the radiation spectra after completion of the simulation. Besides the derivation and
implementation details of the proposed method, we analyze possible parallelization
schemes and compare the parallel performance of the proposed time-domain method
with the frequency-domain method. We will characterize scenarios/conditions under
which one method is expected to outperform the other.

The computation of the space-charge field is based on fast summation meth-
ods. Based on Lagrange Interpolation, we formulate a treecode and a fast-multipole
method (FMM) for the efficient computation of the relativistic space-charge field.
In particular, we propose two approaches to control the interpolation error. In the
first approach, we derive a modified admissibility condition (ADMC) from the anal-
ysis of the interpolation error; with the modified ADMC, the treecode/FMM can be
used directly in the lab-frame. The second approach relies on the transformation of
the particle beam to the rest-frame where the conventional admissibility condition
can be applied. Our numerical results show that two approaches can effectively con-
trol the interpolation error and the approach based on the modified ADMC is more
accurate for a particle beam with larger momentum spread. The implementation
and the GPU parallelization of the solver are also discussed. Our GPU solver can
achieve a speedup of roughly 200 compared to the CPU solver.
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Zusammenfassung

Inverse Compton-Scattering (ICS) hat in letzter Zeit viel Aufmerksamkeit auf sich
gezogen, da es vielversprechend fiir die Entwicklung kompakter Rontgen-Lichtquellen
ist. Eine prazise und schnelle Simulation ist ein wesentliches Instrument zur Vorher-
sage der Strahlungseigenschaften eines bestimmten Maschinendesigns und zur Opti-
mierung seiner Parameter. Diese Doktorarbeit befasst sich mit der Entwicklung des
ICS-Simulationsmodells. Insbesondere werden zwei in dem Simulationsmodell ver-
wendete Berechnungstechniken betrachtet: die Berechnung der Strahlungsspektren
und die Berechnung des Raumladungsfeldes.

Die Berechnung der Strahlungsspektren basiert auf dem Liénard-Wiechert-Potential.
Anstelle der konventionellen Methode, die direkt das diskretisierte Fourier-Integral
des Liénard-Wiechert-Feldes auswertet (die sogenannte Frequenzbereich-Methode),
konzentrieren wir uns auf einen Ansatz, der als Zeitbereich-Methode bezeichnet
wird. Dabei wird das Feld entlang der Zeit des Beobachters auf einem einheitlichen
Zeitgitter aufgezeichnet, das dann nach Abschluss der Simulation zur Berechnung
der Strahlungsspektren verwendet wird. Neben der Herleitung und den Imple-
mentierungsdetails der vorgeschlagenen Methode analysieren wir mogliche Paral-
lelisierungsschemata und vergleichen die Leistung der vorgeschlagenen Zeitbereich-
Methode mit der Frequenzbereich-Methode. Wir beschreiben Szenarien/Bedingun-
gen, unter denen eine Methode der anderen tiberlegen ist.

Die Berechnung des Raumladungsfeldes basiert auf schnellen Summationsmeth-
oden. Auf der Grundlage der Lagrange-Interpolation formulieren wir einen Baum-
code und eine schnelle Multipolmethode (FMM) fiir die effiziente Berechnung des
relativistischen Raumladungsfeldes. Wir schlagen insbesondere zwei Ansétze zur
Kontrolle des Interpolationsfehlers vor. Im ersten Ansatz leiten wir eine modi-
fizierte Zuldssigkeitsbedingung (ADMC) aus der Analyse des Interpolationsfehlers
ab. Mit der modifizierten ADMC kann der/die Baumcode/FMM direkt im Laborsys-
tem verwendet werden. Der zweite Ansatz beruht auf der Transformation des
Teilchenstrahls in das Ruhesystem, wo die konventionelle Zulassigkeitsbedingung
angewendet werden kann. Unsere numerischen Ergebnisse zeigen, dass die zwei
Ansatze den Interpolationsfehler effektiv kontrollieren konnen und dass der auf der
modifizierten ADMC basierende Ansatz fiir einen Teilchenstrahl mit gréflerer Im-
pulsstreuung genauer ist. Die Implementierung und die GPU-Parallelisierung des
Losers werden ebenfalls diskutiert. Unser GPU-Loser kann einen Speedup von ca.
200 im Vergleich zum CPU-Loser erreichen.
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Chapter 1

Introduction

1.1 Background and Motivation

X-rays have been an indispensable tool in both academic and industrial research
since its discovery in 1895 by Rontgen [2]; and since then, X-ray tubes have been
common devices for the generation of X-ray [3]. In the X-ray tube, an electron beam
is accelerated by an applied voltage and is then guided to collide with a metallic
target (Figure 1.1a). When the energetic electrons approach the nucleus, they will be
deflected by the force-field of the nucleus. The electrons experience an instantaneous
acceleration/deceleration and emit Bremsstrahlung with a continuous spectrum. In
addition, some characteristic peaks can also be found in the spectrum (Figure 1.1b).
When an inner shell electron of an atom is kicked out by an incident electron, an
“electron hole” is created in the inner shell. An outer shell electron will fill the
electron hole and an X-ray photon with a specific energy will be generated. X-ray
tubes are widely commercially available because they are compact and affordable.
However, the X-ray tube has limited photo flux due to its working mechanism called
electron impact, where the most energy of the electrons is dissipated as heat on the
target [4]. Thus, the heat load will limit the operation power of an X-ray tube and
then the generated photon flux. Some attempts have been made to overcome the
heat load problem, e.g., rotating anode sources [3] and liquid metal jet sources [5, 6].
However, all these methods are reaching the physical limit that the electron impact
can achieve [7].

To overcome the physical limitations of the X-ray tubes, accelerator-based light
sources have been developed for applications that require X-rays with higher bright-
ness. In accelerator-based light sources, radiation is generated from the free electrons
moving in a vacuum chamber. This approach does not suffer from the heat-load
problem of the X-ray tubes. Thus, the accelerator-based light sources can be op-
erated at much higher power and produce much more photon flux. Besides, due
to the advancement in accelerator technology for the past several decades, electron
beams can be focused to a very small transverse size. This further improves the
brightness because of the smaller emission cross section. Synchrotron radiation is
probably the most common accelerator-based light source nowadays. Synchrotron
radiation is generated when a charged particle experiences acceleration and moves
on a curved trajectory. A synchrotron facility contains a storage ring, where high-
energy electrons are guided by bending magnets to move on a closed-loop trajectory.
Besides, an accelerating cavity is deployed on the path of the electrons so that their
energy can be refilled and their orbiting can last for several turns. A typical syn-
chrotron facility provides light sources from three devices: bending magnet, wiggler
and undulator. When passing through a bending magnet, an electron traverses in
a curved trajectory with a radius of curvature proportional to the magnetic field.
This produces radiation with a continuous spectrum and the emission power and
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Figure 1.1: Hlustration of the X-ray tube. Figure 1.1a shows the simple sketch of
an X-ray tube and Figure 1.1b shows the radiation spectrum generated
from an X-ray tube (images by Kieranmaher in the public domain).

angular range are proportional to 4% and 1/~, respectively [1]. This is one profound
property that makes the accelerator-based sources orders of magnitude brighter than
the X-ray tube sources because the relativistic effects increase radiation flux and an-
gular collimation. A wiggler can be considered a sequence of bending magnets with
alternating polarities, which wiggles a particle along an axis. The overall radiation
spectrum is the incoherent superposition of spectra from the electron motion in each
bending magnet, i.e., the overall radiation intensity enhances N, times for a wiggler
with NV, oscillation periods. Thus, the wiggler radiation has higher brightness than
a bending magnet and is usually referred to as the second-generation synchrotron
source [8]. The undulator is conceptually the same device as the wiggler, but the
undulator has smaller magnetic field and the particle is wiggled more gently than
in a wiggler. The maximum bending angle for a particle (i.e., the maximum angle
between the longitudinal axis and the tangent to the trajectory) moving in an un-
dulator is ~ K/~ [8]. Here, K is the undulator parameter which is proportional to
the amplitude of the magnetic field. If the amplitude of the magnetic field is chosen
with a magnitude so that the maximum bending angle of the particle is less than
the angular range of the radiation from a bending magnet, we have the condition

K
—<x- = K<Ll (1.1.1)

This is a criterion for a typical undulator. If K < 1 is fulfilled, the radiation
emitted from different parts of the particle trajectory can coherently interfere with
each other in various harmonics of the fundamental wavelength. The fundamental
wavelength of the radiation can be approximately written as

A K?
Mad = —= [ 14+ — ++%6% ). 1.1.2
0= (1475 +0) (112)

Here, A\, is the undulator period and 6 is the observation angle relative to the
longitudinal axis in the 2D plane that a particle wiggles. Because a particle wiggles
N, periods in the undulator, the emitted radiation is like a sinusoidal wave with a



finite pulse length of N,\,..q. Therefore, the radiation intensity I at a wavelength A
around the fundamental wavelength \..q is proportional to

sin? (TN, Aw) .
W with Aw := 3 W

where ¢g is the speed of light. Therefore, the radiation intensity at the fundamental
wavelength increases N2 times compared to the radiation intensity of a single bend-
ing magnet. Also, the corresponding bandwidth is &~ 1/N,. By using this fact and
(1.1.2), we can derive that the radiation angular range covering this bandwidth is
~ 1/(v/N,7). Therefore, the brightness of the undulator radiation can be several or-
ders larger than the wiggler radiation and is also referred to as the third-generation
synchrotron source [8]. It is worth mentioning again that the undulator and the
wiggler are conceptually the same devices, apart from that the wiggler has a large
undulator parameter K > 1.
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Figure 1.2: The radiation from the bending magnet, wiggler and undulator. The
electron (red circle) trajectory and the spectrum for each device are
illustrated.

The properties of the undulator radiation generated from a single electron have
been discussed. Without loss of generality, the radiation intensity from an N-particle
bunch can be written as [9]

I(A) < N+ N(N —1) - [FL(A)],
with
FL(\) = /pL(z) exp(—j%z)dz and /pL(z)dz =1.

Here, F1,(A) is the longitudinal form factor and p(z) is the normalized particle den-

sity in the longitudinal direction. Consider a Gaussian-distributed particle density
with RMS bunch length o,




and its corresponding form factor
2/9zy2
FL,(A\) = exp (—27r ( ) ) ) :

In a practical scenario, we usually have o,/\ > 1, e.g., a bunch length in microns
and a radiation wavelength in subnanometers. Thus, the form factor is almost zero
F1, = 0 and the radiation intensity is I(A) o N. This is due to the incoherent inter-
ference of the radiation field from the electrons (Figure 1.3a). To produce a coherent
interference of the radiation field from the electrons, we may slice the electron bunch
into M sheets of electrons (also called microbunches) with a fixed spacing ¢, between
each sheet. The longitudinal particle density and the corresponding form factor can
be written as

M-1 4,
! Zéz—mﬁ and FL(\) = ]\ZM

M = sin(m f)
If the spacing between each microbunch is equal to the radiation wavelength ¢, = A,
the radiation field emitted from the electrons at the different sheets can be coherently
added up (Figure 1.3b). Hence, the form factor becomes F,(A) = 1 and the radiation
intensity will be I(\) oc N2. The process of slicing particles into a sequence of sheets
is called microbunching (Figure 1.4) and is a key component of the free-electron laser
(FEL). When a particle bunch enters into an undulator, some electrons start to emit
undulator radiation in the fundamental wavelength. The superposition of the undu-
lator field and the radiation field produces the so-called longitudinal ponderomotive
force which drives electrons to form microbunches [1]. With this microbunching
mechanism, an FEL can produce the brightest X-ray pulses today [10, 11]. The

(a) incoherent emission (b) coherent emission

Figure 1.3: Schematics of the radiation wave (sinusoidal curve) generation from the
electrons (black dot) with (a) incoherent emission and (b) coherent emis-
sion at a wavelength \. The Images are excerpted from Ref. [1].

electron , szesiovee..
bunch ¥

Figure 1.4: The microbunching of electrons in the undulator. The emitted radiation
wave (sinusoidal curve) A interacts with the electrons (black dots) and
gradually drives them to form microbunches with the spacing which is
the same as the wavelength A\. The Image is excerpted from Ref. [1].

undulator usually has a period on the order of 10 cm. According to (1.1.2), a highly



relativistic beam on the order of GeV is needed to produce the undulator radia-
tion in the hard X-ray regime. Therefore, the conventional accelerator-based light
sources rely on the large particle accelerators, e.g., synchrotron storage rings usually
have the circumferences of 0.5 — 2km [12, 13, 14, 15] and the FEL facilities usually
have lengths of 1 —2km [16, 17, 18]. These large facilities require high maintenance
costs and are only affordable for government-funded research centers.

The inverse Compton scattering (ICS) source might be a potential alternative to
the conventional accelerator-based light source. Not only do ICS sources produce
X-ray with more brightness than the X-ray tube source, but they are also compact
and more affordable than the conventional accelerator-based source. In the ICS
process, the electron beam collides with a counter-propagating high-intensity laser
pulse (Figure 1.5). The periodically oscillating electric field in the laser pulse wiggles
the electrons, and the electrons emit undulator-like radiation. The formula for the
fundamental wavelength of the generated radiation is

= (14 % 2 (1.1.3)
rad 4’}/2 9 8 ) ot
where )y is the laser wavelength and ag is the normalized vector potential character-
izing the strength of the laser field [19]. One may notice that (1.1.3) can be obtained
by applying the substitutions

A = N/2 and K — qg

in (1.1.2). Hence, the counter-propagating laser pulse used in the ICS sources is
often called optical undulator. Because the optical undulator period (i.e., the laser
wavelength A) is much smaller than the period of the mechanical undulator, only
low-energy electron beams are required to produce radiations in the X-ray regime.
For example, if a laser with a wavelength A\, = 1 pm and a strength ag = 0.5 is con-
sidered, only a 23 MeV electron beam is needed to produce 10keV photons. This
can significantly reduce the size of the particle accelerator and make the overall fa-
cility compact. Therefore, ICS sources have drawn great attention over the last ten
years because of the potential to allow for table-top-size hard X-ray light sources
with a much improved performance [20, 21] when compared to an X-ray tube, even-
tually approaching that of a second generation synchrotron [22]. Such X-ray light
sources would greatly increase access to high brightness X-ray radiation for fast ex-
perimental turn-around rather than waiting many months to use the light source
provided by large national facilities [23] including international travel to these facil-
ities. Structural biology, biomedical imaging and materials screening would greatly
benefit from such developments [24]. Due to the increasing demand for developing
ICS sources [24, 25, 26, 27, 23, 28, 29, 30, 31], numerical simulation is an indis-
pensable tool to understand the generated radiation characteristics. The following
chapters of the thesis present our research on the computational techniques for the
simulation of ICS.

1.2 Overview of the Thesis

Chapter 2 covers our research on the radiation spectra calculation using the Liénard-
Wiechert potential method [32]. We first introduce the Liénard-Wiechert potential
and discuss two numerical schemes for solving it. After that, we discuss a simula-
tion model for the ICS radiation spectra calculation based on the Liénard-Wiechert



Figure 1.5: Illustration of the ICS process. An electron (red circle) collides with a
counter-propagating laser pulse (green line) of wavelength A, and gener-
ates radiation (brown line) with shorter wavelength A,.q.

potential methods. In this chapter, we argue that the space-charge effect might be
negligible for the simulation of conventional ICS light sources. And we first neglect
the space-charge effect in the simulation model and propose an efficient time-domain
discretization method for solving Liénard-Wiechert potentials. We will compare the
time-domain method with the conventional frequency-domain method, and charac-
terize scenarios/conditions under which one method is expected to outperform the
other.

Chapter 3, Chapter 4 and Chapter 5 present our studies of modeling the space-
charge effect in ICS using a fast summation method. Chapter 3 introduces an
interpolation-based treecode for the efficient computation of the relativistic space-
charge field [33]. We first give an overview of the commonly-used computational
approaches for the evaluation of the space-charge field of a charged particle beam.
After that, the idea of an interpolation-based treecode is introduced. Treecode is
a well-known approximation technique used for the fast summation of the force-
field for an N-body problem. It is famous for scaling as O(N log N) compared to
the direct summation method with a complexity of O(N?). Following the idea of
interpolation-based treecode, we propose a so-called “relativistic kernel” and for-
mulate a treecode for the efficient computation of the relativistic space-charge field.
Two approaches are proposed to control the interpolation error. Our first approach
is based on the relativity transformation. We transform the particle position and mo-
mentum to the rest-frame so that our formulated treecode (after transformation) can
be performed with the conventional admissibility condition in the rest-frame. Dif-
ferent to the quasi-electrostatic method, the particle momentum spread is included
in our formulation. The quasi-electrostatic method assumes that each particle is
completely stationary in the rest-frame; hence, the Poisson equation is solved for
the force-field and the effect of the particle momentum spread on the force-field is
neglected. In the second approach, we analyze the interpolation error and derive a
so-called “stretched admissibility condition” of the particle-cluster interaction. With
this stretched admissibility condition, our proposed treecode can be performed di-
rectly in the lab-frame. Our numerical result shows the approach using stretched
admissibility is more accurate than the approach using the relativity transformation
when a particle beam with a bigger momentum spread is considered. The reason
for the cause will also be explained. In Chapter 4, based on the proposed treecode,
we formulate a fast multipole method (FMM) for the efficient evaluation of the
relativistic space-charge field. Compared to treecode, FMM can further bring the
complexity down to O(N). The derivation of the stretched admissibility condition
for the cluster-cluster interaction is also provided. Our FMM is based on the dual



tree traversal and the pseudocode of the whole FMM procedure is also provided.
Besides, we demonstrate the performance of the solver and the code profiling result
of different FMM kernels. In Chapter 5, we present a GPU parallelization for our
dual-tree-traversal-based FMM. The implementation of M2L and P2P will be dis-
cussed in detail as they are the most time-consuming kernels in FMM. In particular,
we will describe an approach to resolve the race conditions during the GPU execu-
tion of M2L and P2P without using the atomic operations provided by CUDA. Our
performance result shows that our GPU solver can achieve a speed up of roughly
200 compared to the execution time with one CPU core. We also compare the result
with ASTRA (a solver for beam dynamics simulation [34]) by simulating the beam
size broadening of a charged particle beam freely propagating in space.

In Chapter 6, we consider the space-charge effect in the ICS simulation model and
describe a GPU-parallelized simulation solver. This solver is implemented based on
the computational techniques discussed in the preceding chapter of this thesis. We
also demonstrate the results of a real-particle ICS simulation with and without the
consideration of the space-charge force. Our result shows that the radiation energy
spectra for the cases with and without the space-charge force are consistent. This
validates our original argument made in Chapter 2 that the space-charge effect might
be negligible for the simulation of conventional ICS light sources. Finally, this thesis
closes with a summary and outlook in Chapter 7.






Chapter 2

Calculation of Inverse Compton
Scattering Radiation Spectra based
on Liénard-Wiechert Potentials

The content of this chapter is adapted from our research work published in Ref. [32].
We introduce the Liénard-Wiechert potential for the radiation spectra calculation
of ICS sources; and based on that, a simulation model without the consideration of
the space-charge effect is discussed. We first describe the frequency-domain method
for the computation of the radiation spectra based on the Liénard-Wiechert po-
tential; after that, we introduce our discretization and implementation of the time-
domain approach and provide an analysis for two possible distributed parallelization
schemes. Finally, we propose and discuss a strategy for choosing parameters when
applying the time-domain method and the frequency-domain method to compute
ICS radiation spectra. Following this strategy, we analyze the performance of both
methods and discuss the scenarios where one method outperforms the other.

2.1 Introduction

A numerical simulation is an indispensable tool for understanding the generated
radiation characteristics. To simulate the generated radiation, the Liénard-Wiechert
field method is among the commonly used methods [35, 36, 37, 38, 39]. In this
method, the radiation field is computed from the charged particle trajectories which
are either given beforehand or solved in parallel during the simulation.

One of the challenges when computing radiation spectra generated by relativistic
particles lies in the delay between the particle generating its contribution (retarded
or emission time) and the observer detecting it (advanced time) which is not con-
stant but depends on the distance between the particle and the observer at the time
of emission. Furthermore, to allow for simple and quick computation of spectra via
fast Fourier transform, it is preferable to have contributions at the observer on a
uniform, equidistant time mesh. One possibility is to define a uniform mesh in the
advanced time and then calculate the corresponding emission times (“retarded time
scheme”). However, this approach is computationally expensive as it requires nu-
merical root-finding and it is also memory intensive as full particle trajectories must
be stored to allow interpolation to the computed emission times. By contrast, the
advanced time scheme computes particle trajectories and emissions using a uniform
time grid. At each time step, the corresponding advanced time is computed when
the generated emission reaches the observer. This approach avoids computationally
expensive root-finding but raises the new problem of how to deal with the differ-
ent (non-uniform) advanced times at which the emissions reach the observer. Since



one is typically interested in the amplitude |E(z,w)| of the generated field in the
frequency-domain [40] and not E(z,t) itself, instead of first depositing contributions
in physical space on a mesh and then applying a Fourier transform, it is possible to
directly compute the amplitude that the particle contributes to each Fourier mode.
This approach is commonly referred to as the frequency-domain method since it cal-
culates directly the spectrum of the generated field but never the field itself [35, 40].
However, as the computation of each Fourier mode is performed independently, this
method intrinsically needs a high number of operations, i.e., O(N,, - N, - N5) where
N, N, and Ny are the number of frequency points for the spectrum, the number
of simulated particles and the number of simulation steps, respectively [40]. As an
alternative, Sell et al. [41] use a time-domain approach where particle contributions
at a given advanced time are interpolated to a uniform observer time mesh before
being (Fourier) transformed to the frequency domain.

This method can benefit from the fast computation of the overall discrete spec-
trum using the Fast Fourier Transform (FFT) because the full sequence of interpo-
lated fields over the observer time mesh is known. Thus, the time-domain method
may have advantages in terms of computational time. This was pointed out in [40],
however without a detailed analysis and verification.

In spite of the high computational cost, the frequency-domain method can be
efficient in terms of memory cost when a large number of particles needs to be
considered [40]. In this scenario, it may not be possible nor necessary to store the
full history of all particle trajectories and the calculation of radiation spectra can
be done in parallel to the calculation of particle trajectories in a simulation. To
study real-world cases where a large number of particles and observation points are
usually needed, the use of high-performance computers may be necessary [38, 39].

For the time-domain method, the superposition of particle fields relies on the in-
terpolation onto a predefined uniform (advanced) time mesh. This implies that the
particle information in some previous steps is needed when determining the superim-
posed field. In the implementation proposed by [40], the full history of the particle
trajectories is available beforehand. Under this assumption, the computation of the
particle trajectories is completely detached from the computation of the radiation
field. However, for a simulation with a large number of particles, the storage of
their trajectories needs an excessive memory capacity and such simulation may not
be possible in practice. To mitigate the memory consumption for storing the par-
ticle trajectories, an algorithm which solves the particle trajectory and computes
the superimposed field simultaneously might be necessary. One approach belonging
to this category can be found in [41]. The particle trajectories are stored only for
a certain number of preceding time steps in a so-called “ring buffer” [41] and used
to interpolate the field onto a pre-defined uniform time grid. The drawback of this
approach is that typically more field evaluations are performed (and stored) than
are necessary for the interpolation.

2.2 Radiation Calculation using Liénard-Wiechert
Fields

The radiation field that is emitted from a charged particle at position @’(¢,) at the
(retarded) time ¢, and observed at a fixed position x at time ¢ (see Figure 2.1) is
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given by the equations

Blat) - 1 qn x ((n—ﬁ/(tr))x/é’<tr)> B( t)—sz( D, (22.1)
BN G B 7 D R | A A s

where 3" := x'/cy and B =i /co denote the particle’s velocity and acceleration
(normalized by the speed of light ¢y in vacuum), ¢ is the charge of the particle, gg
is the vacuum permittivity, defined by gy := 1/(uocg) with the vacuum permeability
to, and n = (x — &')/||x — ’||5. (Compared to [42, Equations (14.13)+(14.14)],
the velocity field (14.14) can be neglected in the radiation problem since the total
power of the velocity field decays with the distance.) The observation time ¢ and
(retarded) emission time ¢, fulfill the retardation condition (see Figure 2.1)

/
—2/(t,
t=t, + w, (2.2.2)
Co

i.e., the radiation field generated at position 2’'(¢,) at time t, travels with the speed
of light ¢ to reach the observation point @ at ¢t = t, + || — @'(t,)||2/co. There are
some drawbacks when applying (2.2.1) and (2.2.2) to compute the radiation field:
e Root finding is needed to solve the retardation condition (2.2.2) for ¢, which is
computationally intensive [43]. (one can prove that only one root ¢, can exist
in the retardation condition, cf. Section A.2)
e The trajectories of all particles have to be stored since they are required to
compute the radiation field.
e In a numerical simulation, the electron trajectories are computed at discrete
time points and interpolation is needed when ¢, falls between two consecutive
time points [43].

particle trajectory

Figure 2.1: Illustration of the retardation condition (2.2.2). Radiation emitted from
a particle at time ¢, at position @'(t,) will arrive at the observer at
position @ at time ¢. The travel time of the radiation is || —&'(t,)||2/co-

Alternatively, one may evaluate (2.2.1) at a future (advanced) time t,,

!/
= ¢+ =@l (2.2.3)

Co
to obtain the field generated by an electron’s motion at the current time ¢, using
the substitutions t — t, and ¢, — t. This scheme does not involve root-finding
and we can compute the time t* at which the radiation from particle k arrives at
the observation position . However, as implied by (2.2.3), the arrival time of the
radiation can be different for different particles and the superposition of particle

fields is not straightforward. Both schemes are illustrated in Figure 2.2.
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Figure 2.2: Illustration of (a) retarded time scheme and (b) advanced time scheme.
The emission of radiation from three particles is considered and repre-
sented by different colors. To compute the field arriving at the observer
x at time t from each particle in the retarded time scheme, we need to
solve (2.2.2) for the retarded times ¢,1, t,o and t,3. In the advanced time
scheme, the particle trajectory at time ¢ is used to compute the fields at
advanced times t,1, t,2 and t,3, obtained by evaluating (2.2.3) at which
the observer at x receives the radiation field.

When studying radiation phenomena, it is usually valid to consider the far-field
approximation, that is the radiation field from a particle which is observed at a
distance far from its position |||z > ||2'(t)||2, we have

lo —2' (@)l ~ 2]z —n - 2'(2)

where n := x/||x||2, by abuse of notation, denotes an approximation of the normal
vector n = (x — &'(t)) /|| — «'(t)]|2. The electric field and corresponding advanced
time condition can be approximated accordingly,

1 anx ((n=B) x A1)

E(x,t,) ~ 2.2.4
N G TV (224)

for ”
oot 4 A2l 2O (2.2.5)

Co Co
This approximation will be used throughout this study.

2.3 Simulation Model

To apply (2.2.4) for the computation of the radiation field, we need to solve the
particle’s trajectory. The equation of motion of a relativistic charged particle driven
by the electromagnetic fields E and B can be written as

de 1p

j; 7q . (2.3.1)
L -L(E L xB

g = m Bt + 2 x Bla,t),

where m is the mass, p := v3 is the normalized relativistic momentum and v =
V1 + p - p is the Lorentz factor of the particle. In the study of accelerator physics,
the electromagnetic field interacting with the charged particles can be expressed as

E = Eext + Espc + Erad and B = Bext + Bspc + Brad7 (232)

which includes the following sources of fields:
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1. the external field (subscript “ext”) which is the ICS laser field throughout the

studies in this thesis,

2. the space-charge field (subscript “spc”) which stems from the collective repul-

sion force of all other charged particles,

3. the radiation field (subscript “rad”) generated by all other charged particles.
Throughout the studies in this thesis, the interaction of the radiation field on the
charged particle will be neglected because the particle radiation field is very small
compared to the ICS laser field. In this chapter, we first neglect the space-charge
effect and only consider external field (i.e., E = Eqoy and B = Bey) in our the
simulation model. This assumption is reasonable for the simulation of most of
the ICS light sources because of the short interaction time of the electron beam
with a counter-propagating laser. The space-charge force cannot develop significant
changes in the particle distribution during such a short time. Note that the space-
charge effect might be important in some special scenarios, e.g., a particle beam
with micro bunches. In this case, we have coherent emission of radiation from
micro bunches. This micro bunch structure might be sensitive to the space-charge
effect and can be distorted during the ICS process. Thus, it is also valuable to
consider a simulation model with the space-charge effect. We will discuss this model
in Chapter 6.

The equation of motion of a charged particle is numerically integrated by the
Boris method [44]. There are several variants of the Boris method. In this study,
we adapt the following 5-step explicit scheme [45]

n+1/2 _ x" + p" At

£ %7,
At
P =p" _1E<$7L4r1/2’tn+1/2)7
2 m
pT=p +(p +(p xt)) xs, (2.3.3)
pl = pt 4 §£E<mn+1/27tn+1/2)7
2 m
mn—i—l o mn+1/2 pn+1 g
- ,yn-&-l 2

with the auxiliary quantities

B n+1/2 tn+1/2 At ot
t.=1 (@ - ) , 8 and v~ =+/1+p -p.

2my~ T 1t

Here, the superscripts n and n+ 1/2 denote the indices of the integer time-step and
half time-step, respectively.

2.4 Frequency-Domain Method

One way to avoid the root-finding problem mentioned in Section 2.2 is to super-
impose the fields at the observer in the frequency-domain. In a typical radiation
study, one is interested in the spectral-angular distribution of the radiation [42,
Eqn. (14.60)]

dI? 2

dwdQ ¢ Lo

2 B (2, w)]l2,
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where w is the frequency and (2 is the solid angle of the observation sphere surface
with radius [|x||s. The electric field E(x,w) in the frequency-domain is

E(xz,w) = \/ﬁ/ E(x,t)exp(jwt) dt (2.4.1)
where j 1= /—1.

By the superposition principle, the radiation spectral-angular distribution from a
bunch of electrons is given by

dI? 2
= — E(
Tl Couo||w||2 Z k@, w)
2
(2.4.1) 2 / .
=—|x E (x,t,) exp (Jwt,) dt, 2.4.2
ol I3 Z k(@ ta) exp (jwta) 2 (2.4.2)

Substitution of (2.2.4) into (2.4.2), using the approximately constant observation
direction n = x/||z||2, applying the variable transformation given in (2.2.5) (with
dt, = (1 — n - B,(t)) dt by normalization of B, = &} /cy), and setting g9 = (poca) "
in (2.4.2) results in [42, Eqn. (14.65)]

dI?
dodn ™)
g | prax (meBo) < B0)
N (=

:=A7;(n,t)

2

exp(jwt,) dt,

167T3€000

k=1 2

2

NP o0 !/ 2
q - n -z (t)
= t t— ————= dt
167T3€0C0 ; /—oo Ak(n’ ) P (jw ( Co >)

nx ((n—B,1) x B(1)
A—n-BOF

In (2.4.3), it is the change of variables from ¢, to ¢ that circumvents the difficulty
of superimposing the electrons’ fields at asynchronous future time points. We have
also dropped the common constant phase term exp(jw||x||2/co) in (2.4.3) as it has
no impact on the overall amplitude. The time window of the simulation, i.e., when
the acceleration of the charged particle by the driving field is nonzero, is chosen as
[0, tena). We use an equidistant discretization in time with Ny intervals, NyAt = teyq,
leading to

(2.4.3)

with Ak(n, f}) =

2
dr? t)? r N , n - ) (iAt)
Tod< (n,w) =~ 167r35000 ; ;Ak n,iAt) exp <]w (zAt - Co>> 2 (2.4.4)
Introducing the abbreviations
~x) (1At
Eri(n,w) == Ag(n,iAt) exp ( (zAt — w)) : (2.4.5)
Co

NP
S?UHCh(n,w) = Zf;k,i(n,w), EM(n,w) = ZSb‘mCh n,w)
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and exchanging the order of summation w.r.t. k and i in (2.4.4), we obtain

o H§ : bunch
167T €0Co

A pseudocode for the frequency-domain method is provided in Algorithm 2.1.

S

E:ZFM
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Algorithm 2.1: Frequency-Domain Method

Initialization:
| & (n,w) <+ 0
for simulation step © do
Ebmehin ) <0
for particle k do
update trajectory
Ebmch(p ) « EPMN(n, W) + Eri(n,w)
end
£ (n,w) £ (n,w) + EXM (0, w)
end

2.5 Time-Domain Method

To start our discussion, we first present the result of a test simulation for 10 particles
initially at rest with random initial positions which are samples from a Gaussian
distribution with mean 0 and standard deviation 1 in each direction. The parti-
cles are driven by a sinusoidal electromagnetic plane wave. In the simulation, the
equations of motion for charged particles are simulated using the Boris method [44],
and the trajectory of each particle is used to evaluate the radiation field arriving at
an observation point and the corresponding observation time by evaluating (2.2.4)
and (2.2.5).

The result of this trial simulation is shown in Figure 2.3. Figure 2.3a shows the
E, component of the radiation field generated by each particle. Figure 2.3b shows a
zoom-in view of Figure 2.3a. From the result of this trial simulation, we summarize
the following observations:

e The observed pulse duration of the radiation fields generated by the particles
is different. This is illustrated in Figure 2.3a and explained by (2.2.5),

/ gt — /t "= BL) dt = 5 (tena) — E(turant):

Each particle moves at a different phase of the external electromagnetic wave,
and the particle velocities 3 (t) driven by the external field during the simu-
lation can be different. Therefore, the resulting integrals of dt* are different
for the particles.

e It is problematic to superimpose the fields of all particles since the radiation
fields from the trajectories of different particles evaluated at the same time ¢
are observed at different future times t* ~ t + ||||2/co — (1 - T}, (t)) /co (2.2.5).
This is illustrated in Figure 2.3b.

e To superimpose the radiation fields, we define a uniform time grid t,, (indicated
by the gray vertical lines in Figure 2.3b and interpolate the particles’ fields to
the uniform grid (details on the interpolation will follow in Section 2.5.1).
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e To cover the radiation temporal profile of all particles, we need to determine
the upper and lower bound (annotated by ™ and ™" in Figure 2.3a of the
uniform time grid %,.
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Figure 2.3: Simulation result for the test simulation. (a) shows the temporal profiles
of the radiation fields from all particles. (b) shows the zoom-in view of
(a) for three selected particles. Here, the relative arrival time of the
particle radiation field is demonstrated instead of the absolute arrival
time (i.e., the term ||x||2/co in (2.2.5) is neglected as it is constant for
an observer).

To create a uniform time grid for the radiation field interpolation, we need to
know the bound of the radiation temporal profile at different observation positions.
For a simulation with [V, particles and N, observers, we determine the bounds of
the uniform (advanced) time grid by

tzﬁn = min {tl;’m(tstart) | k= L s 7Np7 m = 1’ tot 7N0b5} )
t?ax = max {t’(?m(tend) | k= 17 .- 'aNpa m = 1? e '7N0bs}’

where tgart, tena denote the start/end of the simulation and

gy et [l (1)

Co Co
(lzm]|2 is the same for all m observers since they are located on a spherical surface.)
The lower bound #™® can be easily determined at the beginning of the simulation
since we already have the initial positions of all particles. To determine the upper
bound #'**, it might be possible to perform a trial simulation in which we only
compute the particles’ trajectories and evaluate t'** by (2.5.2) at the end of the
trial simulation. However, this will become costly when [V, is large. To avoid such a
trial simulation, we determine ¢};'** by estimating the total radiation pulse duration
from a particle bunch as follows.

As can be observed from Figure 2.3a, the total radiation pulse duration from
all particles is influenced by the radiation pulse durations of single particles and
the different lags in their arrival times. For the ICS problem, the radiation pulse
duration from a single particle

Tlaser
T = /dta :/ (1—n- @) d,
0
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can be approximated for highly relativistic particles by

7jlaser
Trad ~ 92
Y

(2.5.3)

where Tlaser = tend — tstart 1S the pulse duration of the counter-propagating laser
pulse. The maximum difference in arrival times of the radiation pulses from different
particles is caused by their distribution in space and can be estimated by the last
term of (2.2.5),

!/ !/
bunch . ¢ J
T30 '==max max

02,0y i,j=1,...,Np

. (2.5.4)

with
n = (sinf,, cos O, sin b, cos O, cos b,,).

Here, 6, and 6, are the angles defining the observers’ positions on the sphere (see
Figure 2.4). In the highly relativistic scenario, the opening angle of the radiation
from a particle is of the order of 1/v < 1. We hence use approximations sin § = 6,
cosf ~ 1, and (2.5.4) becomes

o [ )
rad ~

1,7=1,...,Np Co
101,10y <1/~

bunch
T, )

which has the upper bound

l l by,
Trlzlénch < b 4 by + b_” (255)
Tyt Y Co

where [ ;, Iy, and [, ., denote the size of the particle bunch in each direction at ts;ar.

Figure 2.4: Definition of the normal vector n pointing from the particle to the ob-
server. 0, is the angle between n and its projection to the y-z plane. 0,
is the angle between the z-axis and the projection of n to the z-y plane.

Thus, to cover the total radiation pulse duration from all particles, the length of
the required uniform time grid T, can be approximately chosen as

l xT l l z Taser
T, ~o TP 4 Ty o 25 4 By 02y Zlaser (2.5.6)
Y Yo Co 272

Table 2.1 lists the values for T,, computed from (2.5.6) for different parameter set-
tings. We also provide values for T;, from a trial simulation to verify the theoretical
estimates. Once t™" and T, are known, t™8 = {™n 4 T, can be immediately deter-
mined.
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e by e Taser 7 T2 T T, (theory) T, (simulation)
10 10 10 10 40 35.0000 0.003125 35.0031 35.0211
20 10 10 10 40 35.8333 0.003125 35.8365 35.8876
10 20 10 10 40 35.8333 0.003125 35.8365 35.8540
10 10 20 10 40 68.3333 0.003125 68.3365 68.3328
10 10 10 20 40 35.0000 0.006250 35.0063 35.0310

Table 2.1: Theoretical estimation of T, by (2.5.6) for different parameter settings in
comparison with results from trial simulations for the particles’ trajecto-
ries using (2.5.1) and (2.5.2). The quantities 724" and T},q are computed

by (2.5.5) and (2.5.3), respectively. Here, all length and time quantities
are normalized to 27 /)¢ and 27cy/ Ao, respectively, with A\g = 1000 pm.

2.5.1 Interpolation

In the previous subsection, we discussed how to choose the bounds of a uniform
time grid in order to determine the temporal positions for the computation of the
total radiation field. Next, we interpolate the particles’ fields at different temporal
(advanced) positions to the uniform grid by piecewise linear interpolation.
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T T
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0.4 .\\. ® particle 6 04 * % particle 6
[ ]
) 03 NG ) 03 *
3 . 3
s 02 [ s o2 *
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00{® o —e - o 0.0 x *
—e ol *
A 1
~01 . . . . —01 : : : :
0.490 0.492 0.494 0.496 0.498 0.500 0.490 0.492 0.494 0.496 0.498 0.500
t ta
(a) local linear interpolation (b) resulting grid values

Figure 2.5: Linear interpolation scheme for the temporal radiation profile. The gray
vertical lines mark the position of the uniform time grid points. The
round points in (a) connected by line segments are used for interpolation.
(b) shows the result after interpolation. The stars indicate the values of
the interpolated field.

To apply linear interpolation, one needs the arrival times and corresponding ra-
diation fields from each particle at the previous and current time steps. This might
suggest that we need two memory buffers for storing the field information of adja-
cent time steps. However, we actually only need one memory buffer to store the field
information of the previous step. In every time step, for each particle, we use the
field computed at the current time step and the field stored in the memory buffer
(i.e., field computed at the previous time step) to compute the values at the grid
points with linear interpolation. After that, the interpolated field at a time grid
point is directly added to the value of the corresponding total radiation field at the
same grid point. The complete procedure is described in Algorithm 2.2 (for a single
observation direction n).
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Algorithm 2.2: Proposed Time-Domain Method

Initialization:

E,;(n,t,) < 0 (total field from all particles over a uniform grid with
points t,,)

th(n) + 0 (buffer for storing the field’s arrival time of particle k
computed at the previous step)

Ef(n) < 0 (buffer for storing the arrival field of particle k computed at
previous time step)

for simulation step © do

for particle k do
update trajectory

compute t*(n) and E*(n, t*)
for t,: tf(n) <t, <t¥(n) do
Eio(n,t,)  Ey(n,t,) + Bf(n) 7 1 B (n, th)

th(n)—tF(n

tu—th(n)
th(n)—t5(n)

end

end

ty(n) < ti(n)
Ej(n) « B*(n,1})
end

2.5.2 Parallelization

Before discussing parallelization, we briefly introduce key data structures used in the
code development. Here, the memory cost is measured by the number of floating-
point numbers to be stored.

Beam: A structure to store the state of motion (position, momentum, velocity and
acceleration) for a bunch of particles at a specific time. For a particle bunch
with N, particles in three-dimensional space, 12N, floating-point numbers are
required.

Sensor: A sensor records the total radiation field from a bunch of particles over
the uniform time grid. For Nz, uniform time grid points, 3Nz, floating-point
numbers are required. In addition, each particle’s radiation arrival time and
radiation field are also stored in a memory buffer which requires 4.V, floating-
point numbers.

Detector: A detector contains N, sensors and each sensor has a different obser-
vation position. The memory cost for the detector is thus Nons(4N, + 3N7,)
floating-point numbers.

There are at least two possible parallelization schemes for the simulation, see
Figure 2.6. One is beam parallelization in which the particle bunch is divided
into several small bunches and each small bunch is assigned to an MPI process.
Each process creates its own detector object which receives the radiation from a
small bunch. At the end of the simulation, the radiation data in each detector
object is superimposed to the radiation data in the detector object created by the
master task. The other possible scheme is detector parallelization where a global
sensor in the detector is divided into several local detectors. In the beginning of
the simulation, each process creates a copy of the entire electron bunch and a local
detector consisting of a subset of sensors from the global detector. During the

19



simulation, the local detector receives the radiation from the copy of the entire
electron bunch owned by each process. At the end of the simulation, each process
dumps the data from its local detector separately.

. . . .
: .. . : .. .
$ fga;;%"; %?_gg;ss ‘each process gets full electron beam
[process 1] [process 2]-:-+[process P| [process 1] [process 2]---+[process P|
.:. g 8 :: ° ...:. q?éfoo)() ® ...:.
» @9 @9 :0000 €90°% .%'o
|lradiation |]radiation  ]]radiation }{radiation || radiation  ]]radiation

Bt 1|

‘superpositigr;fof radiation field of ‘ dump to independent files
sensors in different proceses - - -
filel.o file2.o file3.0

(a) beam parallelization (b) detector parallelization

Figure 2.6: Two possible parallelization schemes: (a) beam parallelization and (b)
detector parallelization.

The simulation of ICS can involve a large number of particles and sensors. There-
fore, the memory requirement per process for both parallelization schemes is an
important consideration. For beam parallelization, the memory cost per process is

Mbeam(P, Np’ NObS’ NTu) = 12% + Nobs (4% + 3NTu>

where P is the number of computer processes. For detector parallelization, the
memory cost per process is

Mdetector(Pa Npa NobSa NTu) 12N + Obs (4N + 3NTu)

In order to determine which scheme has lower memory cost, we define the function

Np Np
SN, Nopo, N o Mocam (P Ny, Nows, N1,) 125 4 Ny (4_ +3NTM>
y 4¥py LVobsy LVT, ) - — Mdetector(P, NpaNObsaNTu) - 12]\/' + obs <4N +3NT )

3(1—2) (NopsNp, — 4N,
— 1+ (1= 7) NowaNr, ») (2.5.7)
12N, + 2= (4N, + 3N7,) |

If ¢ > 1, detector parallelization has a lower memory footprint and otherwise beam
parallelization. Since the factor (1 — 1/P) in the numerator and all terms in the
denominator of the second term are positive, we conclude that

>1  if NopsNp, — 4N, > 0,

2.5.8
<1 else. ( )

¢(Pa NpaNobsyNTu) {

Therefore, the ratio Nops N7, /(4N,) determines which parallelization scheme is more
favorable in terms of memory consumption.

The number of particles N, can be computed from the total charge of the electron
bunch. The number of uniform grid points Nz, should be chosen according to the
Nyquist theorem

wmax
Np, =2——. 2.5.9
7, = 2 (25.9)
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Here, wpay is the maximum radiation angular-frequency we want to observe which
can be estimated by
Wimax = 472wo (2.5.10)

for a typical ICS problem where wy is the angular-frequency of the counter-propagating
laser. The resolution for the angular-frequency is determined by the duration of the
total radiation pulse from particles

_27T

A )
wTu

(2.5.11)

Combining (2.5.9), (2.5.10), (2.5.11) and (2.5.6), we can estimate

lhe 1 Iy, Taser
Ny ~ 2(b, by | W, Col1 )

u

where the identity wg = 27/ Ao is used.

In Table 2.2, we use parameters from different experimental projects of ICS sources
to compute the ratio 4N,/Np, which is the number of observers where both par-
allelization schemes break even (¢ = 1). Hence, according to (2.5.8), for a larger
number of observers, detector parallelization is preferable whereas a smaller number
of observers should be computed with beam parallelization. In general, we need at
least a few thousand observation angles (i.e., Nops > 1000) to sufficiently resolve the
radiation angular distribution. Therefore, detector parallelization is more favorable
and is thus implemented in the solver.

2.5.3 Implementation

We use C++ and MPI to implement the time-domain algorithm and the detector
parallelization scheme described in this section. The parallel performance for the
code is demonstrated in Figure 2.7a. For comparison, the parallel performance of
our implementation of the frequency-domain method is also given in Figure 2.7b. A
parallelized post-processing code written in Julia [46] and MPI.jl is used to transform
the time-domain field to the radiation spectra. The two solvers can be accessed in
the repository ICSSpectra.

1044 I 60 1044 I 60
50 50
“ “
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b= e 5 S
kel 30 © ° 30 ©
? 1001 2 Qi &
o [oX
o 20 o F20
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0 10 20 30 40 50 60 0 10 20 30 40 50 60
number of cpu-cores number of cpu-cores
(a) Time-domain method (b) Frequency-domain method

Figure 2.7: Parallel performance for: (a) proposed time-domain simulation with
N, = 10°, Nys = 1024 and Ny, = 10% (b) frequency-domain simu-
lation with NV, = 1024, Nyps = 64 and N, = 500.
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https://github.com/ykkan/ICSSpectra

project name beam energy (MeV) [, (pm) charge (pC) Tlaser (PS) Ao (nm) 4N,/Ny,

AXSIS [24] 19.5 2.9 1 1 1 7143
ODU CLS [47, 48] 25 382 10 1.57 1 34.2
ASU CXFEL [27] 35 1.5 1 1.5 1.03 4435
ASU CXLS [23] 40 147 100 3.0 1.03 357.1
XFI [28] 65.9 3 10 1.7 0.8 498.8
MuLCS [29] 45 15000 1000 26 1.064 28.6
ThomX [30, 31] 70 6000 1000 11.75 1.03 28.6

Table 2.2: The ratio 4N,,/Nr, for different experimental projects. Here, the electron
beam transverse sizes [, and [, are not considered in the evaluation of
N7, since their contribution is minor for a high-energy electron beam.

2.6 Numerical Comparison of the Time-Domain and
Frequency-Domain Methods

2.6.1 Accuracy

To compare the accuracy of the radiation spectra computed by both methods, we

measure the component-wise relative error
dl
/ max . (2.6.1)
theory) dwdS theory

between the theoretical and computed results [39]. The theoretical result is com-
puted by the formula proposed by Esarey et al. [19] which considers the radiation
spectral-angular distribution from a single particle interacting with a finite number
of periods of a sinusoidal electromagnetic wave.

We perform a single particle simulation in which a particle moves with initial
energy 7 = 5 in the 4z direction and collides with 7 periods of a counter-propagating
sinusoidal wave. The radiation is collected in observation directions in the y-z plane
(i.e., 8, = 0 and 0, = 0 in Figure 2.4). The radiation spectral-angular distribution
and the corresponding errors computed by (2.6.1) are illustrated in Figure 2.8 for
the time-domain method and in Figure 2.9 for the frequency-domain method.

In addition, the maximum and mean values of normalized errors for the radiation
spectral-angular distribution with different numbers of frequency points N, and
different numbers of observation angles Ny are shown in Table 2.3 and Table 2.4,
respectively. The relative error over the full spectral-angular distribution for the
time-domain method and frequency-domain method has an asymmetric distribution
with respect to ¢ = 0. This is due to the discretized particle trajectory in the
simulation and can be reduced by decreasing the step size for solving the particle
trajectory [39]. From Table 2.4 and Table 2.3, we see that both methods achieve an
acceptable relative error and that the time-domain method reaches the same level of
accuracy as the frequency-domain method by increasing the number of observation
points.

dI
dwdS?

dl
dwdS

error(w, #) := abs (

simulation

2.6.2 Performance

We will now discuss the computational complexity of the two schemes with respect
to the following parameters:
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Figure 2.8: Demonstration of the accuracy of the time-domain method. The radia-
tion spectral-angular distribution is computed by (a) theory and (b) the
time-domain method for the configuration stated in Section 2.6.1. The
relative error (c) is computed by (2.6.1).

Nyo =101  N,=5x10> N,=1x10* N, =2 x 10*
TDM

max(error(w,6))  1.287 x 107" 1.290 x 107'  1.291 x 107*

mean(error(w, #)) 3.520 x 1072 3.522 x 1073 3.524 x 1073
FDM

max(error(w,6))  5.366 x 1072 5.366 x 1072  5.366 x 1072

mean (error(w, d)) 1.589 x 107%  1.589 x 1073 1.580 x 1073

Table 2.3: Normalized relative error of the time-domain method (TDM) and the
frequency-domain method (FDM) for different numbers of frequency
points.
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Figure 2.9: Demonstration of the accuracy of the frequency-domain method. The
radiation spectral-angular distribution is computed by (a) theory and
(b) the frequency-domain method for the configuration stated in Sec-
tion 2.6.1. The relative error (c) is computed by (2.6.1).

N, =5 x10? Nops = 101 Nops = 201 Nops = 401
TDM

max(error(w,f))  1.291 x 1071 8.587 x 1072  6.609 x 1072

mean(error(w, 0)) 3.524 x 1073 2.175 x 10~%  1.547 x 1073
FDM

max(error(w,f))  5.366 x 1072 5.366 x 1072 5.366 x 1072

mean (error(w, #)) 1.580 x 1073 1.596 x 1072 1.599 x 1073

Table 2.4: Normalized relative error of the time-domain method (TDM) and the
frequency-domain method (FDM) for different numbers of observation
points.
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Ny the number of simulation time steps,

N,  the number of particles,

Ngs  the number of observers,

Ly the operation count to compute the advanced time t,, see (2.2.5),

L;  the operation count to evaluate the radiation field, see (2.2.4),

Ly the operation count to interpolate the particle field,

the number of grid points of the uniform time grid,

N,  the number of grid points of the uniform frequency grid,

L,  the operation count to evaluate a particle’s contribution in the frequency-
domain method, see (2.4.5).

The total operation count for the time-domain method is given by
OP; = const - Ny - Np, - Nobs - (Lt + Ly + Ly) + const - Nops - N, - log Np,, (2.6.2)
whereas for the frequency-domain method we have

OP,, = const - Ns - N, - Nops - N, - Ly, (2.6.3)

The second term in the operation count for the time-domain method stems from
an additional post-processing phase in which the radiation data on the uniform
time grid is transformed to the frequency-domain by the FFT algorithm in order to
obtain the radiation spectra. To easily measure the performance, we define a wall-
clock time model for both the time-domain and frequency-domain method. If the
memory latency is neglected and the wall-clock time only depends on the operation
count of the method, i.e., OP; and OP,, the wall-clock time for the time-domain
method can be split into the two parts

th(Ns> N;m Nobs) = Ctl : Ns : Np . Nob57 WtZ(Nobsa NTu) = Ct2 : Nobs : NTu : log NTua
and the wall-clock time for the frequency-domain method is denoted by
Ww(N37 Npa Nobs, Nw) - Ow ' Ns : Np : Nobs : Nw'

The leading constants translate the operation count into wall-clock time and depend
on the implementation and computer architecture (e.g., implementation details,
operating system, hardware, and compiler, which are not our primary concerns
in this study). Since our analysis only involves the ratio of the constants, the
dependency of the computer architecture at which the simulation is performed will
most likely be canceled out. We can determine the leading constants for both
models by the regression of several benchmark runs of both methods (Figure 2.10
and Figure 2.11) and obtain

Cl=1.02x10"", C?=861x10"° C,=117x10"" (2.6.4)

for our implementation and computer architecture.
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Figure 2.10: Fitting of (a) W} and (b) W}? by splitting the multi-variate problem
to multiple single-variate fitting problems. Here, Ny = 20, Ny = 20,
Nopso = 20 and Ny, = 5 x 10%. Each data point represents the average
wall-clock time of 50 runs. The leading constants C}! = 1.02 x 1077
and C? = 8.61 x 1072 are determined as the averages of all respective
single-variate fitting constants.
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Figure 2.11: Fitting of W, by splitting the multi-variate problem to multiple single-
variate fitting problems. Ny = 20, Npy = 20, Ngpso = 20 and N9 = 20.
The leading constant C,, = 1.17 x 1077 is determined as the average of
all single-variate fitting constants.

The wall-clock time ratio of the time-domain and frequency-domain method is
given by

W +W¢ G- N, - N, +C} - Ny, -log N,

2.6.
W, Co-N,-N,-N, (26.5)
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If we set N, = 2N, for the reason of sampling theory, the ratio simplifies to

wiewp _Cl1, o2
Ww _CL,_)NUJ CwNSNp

log 2N,,,.

The ratio is greater than one (i.e., the frequency-domain method outperforms the
time-domain method) if

1 10,
N, > §exp (ic—f-Ns-Np) ,
which is typically not satisfied with the parameters from practical scenarios. For a
simulation of a 1 pC particle bunch colliding with a 1pm laser pulse with 1 ps dura-
tion, the required simulation parameters are Ny = 6000 (0.167 fs per time step) and
N, = 6.25x10°. In this case, using the experimentally fitted constants in (2.6.4), the
criterion for the frequency-domain method to outperform the time-domain method

is N, > 0.5exp(2.5479 - 10')) = O (1010“).

In the previous discussion, we assumed that the number of time points for the
time-domain method is twice the number of frequency points for the frequency-
domain method which originated from the assumption that the frequency resolutions
for both methods are the same. However, this condition is not necessary in practice.
For the time-domain method, the upper limit of Aw is restrictively determined (due
to the sampling theorem) by the total radiation pulse duration. It could be possible
that the upper limit of Aw is far less than the actual resolution that we need to
study a problem. For the frequency-domain method, on the other hand, there is no
such limitation. The resolution Aw can be chosen arbitrarily. The bandwidth w of
the maximum frequency which refers to the first harmonic frequency of 1CS is [19]

Ao

Cﬁﬂaser

w = Wmax -

Thus, when applying the frequency-domain method,

1 )\ Taser
0 and N, = cho 1

Aw = — —————Wnax
)
NU COﬂaser )\0

(2.6.6)

where Nz is the number of grid points needed for . To find a condition under which
the time-domain method is slower than the frequency-domain method, equation
(2.6.5) can be expressed as

C? . Ng, -log Ng, > (C,, - N, — C})N; - N,

and rewritten by

Nr, -log Np, > %Nw - N - Np,. (2.6.7)
t
Here, C} should be of the same order of magnitude as C,, and is negligible compared
to Cy,N,. From (2.6.7), we can have two immediate conclusions:
1. The time-domain method is favorable when the laser pulse duration or the
charge of the particle beam is large.
2. The frequency-domain method is better when a particle beam with high energy
or long bunch length is considered.
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AXSIS ODU CLS ASU CXFEL ASU CXLS XFI MuLCS ThomX
4.75x 1077 6.09x 1077 3.77x 1071 1.69x 1071 1.89 x 107Y 3.91x 107" 1.79 x 10~1°

Table 2.5: The ratio of Ny, -log N7, and C,,/C?-N,,-N,- N, for different experimental
projects is computed. Here, the electron beam transverse size [, and [, are
not considered in the evaluation of Nr, as their contribution is minor for
a high-energy electron beam. The reference of each experimental project
can be found in Table 2.2.

In addition, the factor C,,/C? in (2.6.7) can also have significant contribution. The
value of C, depends not only on the performance of hardware but also on the
algorithm for solving the particle trajectory. If a more sophisticated algorithm is
utilized (e.g., particle-in-cell method [37, 38]), the time-domain method may become
more favorable. In Table 2.5, we demonstrate the ratio of Ny, -log N, and C,,/C? -
N, -Ns- N, for different experimental projects. We can observe that the time-domain

method is still faster than the frequency-domain method even if we choose N, so
that Aw fulfills (2.6.6).

Although the time-domain method (TDM) outperforms the frequency-domain
method (FDM) for large particle numbers typically used in ICS sources, it is inter-
esting to study the transition where the TDM outperforms the FDM for low particle
numbers since ICS is also used in other applications. To numerically demonstrate
the situation where FDM outperforms the TDM, we consider a bunch of particles
uniformly distributed along the longitudinal direction with length of 100 pm. This
particle bunch interacts with 5 periods of a 1 pm sinusoidal wave. We measure the
elapsed time for the simulation with different numbers of particles by both TDM
and FDM. The result is demonstrated in Figure 2.12, the FDM wins when N, < 40
and the TDM wins when N,, > 40.

Although the performance model is verified by the execution times in serial, our
conclusions can be extended to the scenario with parallelization (i.e., with detec-
tor parallelization) in which the total operation counts for the time-domain and
frequency-domain methods can be written as OP;/P and OP, /P, respectively.

404 ©® time-domain
frequency-domain
3.5

~ 3.0
£ 25
=]
o
© 2.0
o
%]
© 1.5
)

1.04

0.59

Np
Figure 2.12: Elapsed times for the simulation (N; = 100) with different numbers of
particles (N,) by the time-domain method (Np, = 1.28 x 10°) and the
frequency-domain method (N, = 100). Each data point is the average
elapsed time from 50 simulation runs. In this case, the frequency-
domain method outperforms the time-domain method when N, < 40.
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2.7 Summary

In this chapter, we systematically introduce the Liénard-Wiechert potential method
for the calculation of the radiation spectra from the charged particles. Besides, an
efficient time-domain method for solving Liénard-Wiechert potentials is proposed.
We also compare the time-domain method with the frequency-domain method by
considering the parameters of real-world experiment projects. Our result shows that
the time-domain method is in general, .e., within the specification of real-world
experiment projects, more favorable than the frequency-domain method in terms
of execution time in serial and in parallel when applied to compute the radiation
spectra of ICS sources. Besides, we also show that the frequency-domain method
can outperform the time-domain method in some circumstances.
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Chapter 3

Relativistic Space-Charge Force
Calculation by Interpolation-Based
Treecode

The content of this chapter is adapted from our research work published in Ref. [33].
In this chapter, we formulate a treecode based on Lagrangian interpolation for com-
puting the relativistic space-charge field. Two approaches are introduced to control
the interpolation error. In the first approach, based on the theoretical error analysis,
a modified admissibility condition is proposed for which the treecode can be used
directly in the lab-frame. The second approach is based on the Lorentz transfor-
mation of the particle beam to the rest-frame where the conventional admissibility
condition can be used. Numerical simulation results using both methods will be
compared and discussed.

3.1 Introduction

Space-charge effects are important in accelerator physics and can lead to many un-
wanted phenomena. For example, the space-charge force limits the intensity of the
electron current emitted from the cathode inside the electron gun [49] and causes the
broadening of ultrafast electron packets in the free-space propagation [50, 51]. In
numerical simulations, grid-based methods have been the standard choice. Among
all grid-based methods, the particle-in-cell (PIC) method is probably the most pop-
ular choice. PIC is a self-consistent model considering the field generation from
the charged particle and the field-particle interaction [52]. In the framework of
electromagnetic particle-in-cell (EM-PIC), the particle trajectory is used to obtain
charge or current density over a spatial grid by a charge deposition scheme [53, 54].
With the charge and current density, the corresponding electromagnetic field is then
evaluated by solving Maxwell’s equations [55, 56]. In combination with a suitable
numerical integrator [44], the solution of the particle field and a given external field
are used to push the particles to their new states of motion. For non-relativistic
particle beams, the electrostatic particle-in-cell (ES-PIC) method is usually used
where Poisson’s equation is solved to compute the particle field [57]. In addition
to the electromagnetic model, the relativistic particle beam can be simulated by a
quasi-static model [58, 59] which solves the electrostatic field in the rest-frame of the
particle beam and applies the corresponding electromagnetic field in the lab-frame.
However, PIC has several numerical issues despite its popularity. For example, the
standard EM-PIC based on the finite-difference time-domain (FDTD) method has
numerical dispersion due to the approximation with finite-difference stencils [60].
The pseudo-spectral methods, e.g. the pseudo-spectral time-domain (PSTD) [56]
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method or the pseudo-spectral analytical time-domain (PSATD) method [61] were
used to mitigate this problem by evaluating the spatial derivative in the spectral
domain. However, because of the usage of the fast Fourier transform (FFT), the
pseudo-spectral method is computationally more demanding compared to FDTD
and its performance cannot scale over many computing nodes [62]. Besides, stan-
dard PIC uses a fixed-size grid to discretize the spatial domain and is inefficient for
non-uniform particle distributions [63].

The computation of the space-charge field can also be achieved by a direct N-body
summation (also called brute-force method). One major advantage of this method
is the consideration of the Coulomb collision effect, which is especially critical in
some problems of the accelerator physics [64, 65]. However, a direct N-body method
requires a computational cost of O(N?) and may not be applicable if a large number
of particles N is considered. Therefore, many efforts have been devoted to the
development of tree-based methods where particles are subdivided into a hierarchy
of clusters and the hierarchical relation of each cluster is stored in a tree data
structure called cluster tree. Treecodes [66] rely on the approximation of particle-
cluster interactions and have a complexity down to O(N log N). The force field on
each particle is computed through an independent tree traversal starting from the
root cluster and the applicability of the particle-cluster approximation is determined
by the multiple acceptance criterion (MAC) which is similar to the admissibility
condition in the study of hierarchical (H-) matrices [67, 68]. The fast multipole
method (FMM) [69] can further reduce the complexity down to O(N) by considering
the cluster-cluster interactions. In traditional FMMs, each cluster at the same level
is covered by a cubic box of the same size and the cluster-cluster interaction list is
determined by a cluster’s neighbor boxes and its parent’s neighbor boxes. Compared
to treecodes, one major drawback of traditional FMMs is that the well-separation
condition relies on bounding boxes of a fixed size. Such a definition of the well-
separation condition leads to two problems:

1. Unlike the MAC in treecode, the well-separation condition cannot be flexibly
controlled.

2. It excludes the usage of tight bounding boxes (can be of rectangular shape)
which have an adaptive size depending on the cluster and are favorable for
non-uniform particle distributions.

Therefore, traditional FMMs are inefficient in treating non-uniform particle distribu-
tions [70]. There also exist hybrid FMMs merging the strengths from both treecode
and traditional FMMs [71, 72, 73]. One effort of hybrid FMMs is based on the
dual tree traversal [71, 72| where the cluster-cluster interaction list is determined by
traversing the source and target cluster trees simultaneously and the well-separation
condition can be defined as flexible as the MAC.

There have been many efforts using tree-based methods to model Coulomb interac-
tion in the study of non-relativistic charged particles, e.g. plasma dynamics [74, 75],
electron dynamics in ultrafast electron microscopy [76] and proton dynamics in
synchrotrons [77]. For the dynamics of relativistic electron beams, the relativistic
interaction kernel needs to be considered as the particles’ field lines get compressed
in the transverse direction [42]. The evaluation of the relativistic kernel based on
the brute-force method was used in some studies [78, 41, 79]. To the best of our
knowledge, there are few studies on using tree-based methods to calculate the rela-
tivistic space-charge field; only some former efforts based on the quasi-static model
can be found [80, 81, 82]: the space-charge field is solved in the rest-frame of particle
beam by using the treecode/FMM .
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In this study, we first introduce the general concept of a treecode. After that,
based on the treecode proposed by Wang et al. [83], we formulate an interpolation-
based treecode for computing the relativistic space-charge field. In particular, we
propose two methods to control the interpolation error:

1. Based on the analytic estimation of the interpolation error bound, a modi-
fied admissibility condition is derived so that the formulated treecode can be
performed directly in the lab-frame.

2. The system is first transformed to the rest-frame of the average particle mo-
mentum in which the particle field is computed by a treecode and is then
transformed back to the lab-frame. By using the relativistic transformation
to the rest-frame, the formulated treecode can work with the conventional
admissibility condition.

Our numerical results show that the treecode based on the modified admissibility
condition has better accuracy than the treecode based on the relativity transfor-
mation when a particle beam with momentum spread is considered; an explanation
is also provided. Besides, we demonstrate that the proposed treecode scales like

O(Nlog N).

3.2 The ldea of Treecode

In this section, we provide a 2D example to illustrate the idea of treecode. The
example provided here can easily be generalized to 3D, all our computations are
done in 3D.

In the N-body problem, the total force field f experienced by a target point
T # x; can be written as

=> glx,z;)m, (3.2.1)
jes
where j denotes the index of the source particle with the position x; in a cluster
S and S denotes the index set of the particles in S. Through an interaction ker-
nel g(z,x;), the source particle at «; applies the force field with the magnitude
proportional to a physical quantity m; of the particle.
When evaluating (3.2.1), we can divide the source particles contained in S into
several smaller clusters and split the summation corresponding to

= Z g(x, x;)m; + Z g(x, x;)m; + Z g(x, z;)m; + Z g(x, z;)m;, (3.2.2)
JES(h) JES(3h) JES(1) 7€)
where S((ll)l), S((Ql)l), S((ll)z) and 8521)2) are the sub-clusters located in the relative
locations at the left-top, left-bottom, right-top, and right-bottom from the domain
Qs of the cluster S respectively (Figure 3.1a). To express things in a general
manner, we use S ) to denote the sub-cluster from the ¢-th subdivision (also called
level) of the root cluster S with the 1ocat10n 1ndlces l j E {1,...,2%. If the distance

from the target point @ in S((ll)l to S S(1 2); and S (29)
a sort of admissibility condition sunllar to the far-field condition) and the kernel
function can be approximated by a separable expansion with a rank N, over the

domain g of a cluster S by

is far enough (i.e., fulfills

g(x, x;) Zag,, cbgy(x;) = €8, (3.2.3)

33



(a) £=1 (b) £=2

Figure 3.1: Illustration of the subdivision of the particle cluster at the levels (a)
¢ =1 and (b) ¢ = 2. Here, the dark color denotes the far-field clusters
and the light color denotes the near-field clusters.

then the force field from the particles can be approximated by

flx) = Z ijmj—i-zz g(x, x;)m

je8d, TET ;g
~ E g(x, x; mj—i-g E E agw (@) - by (x;)m;
]es((]l.)l) TeT es(l)l/ 1
= E g(x, x;)m; + g E agw (T) E by, (@5)m
JES((;)I) TeT v=1 jeg_f_l)
= E :I? :EJ m; + E E aS(1> msg),y
jeg((;)l) TeT v=1
with
msgz),y = E ng)’y(mj)mj. (3.2.4)
jes

Here, T' = {(2,1),(1,2),(2,2)} is the set of indices for the far-field clusters at the
current level. In this illustrative example, the target point « is in the top-left corner
of the domain such that the indices of far-field clusters in each level all belong
to the set T = {(2,1),(1,2),(2,2)}. In general, depending on the position of the
target point, the index of a far-field cluster can be (i,7) with i,5 € {1,...,2°}.
The effective physical quantity of the macro particle with the index v is denoted by

mgw , n (3.2.4). The physical meaning of Mg, is that the particles in a cluster
are aggregated to a few macro particles; during the evaluation of the force field on
the target particle, instead of traversing each real particle in the source cluster, we
only consider a few macro particles if the approximation (3.2.3) is accurate, which
is typically the case if the distance to the cluster is large enough.

To evaluate the force field from the source particles inside the cluster s (11): We
can apply a similar trick as before. We first subdivide each sub-cluster from the
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level 1 into four sub-clusters (S((f)l), S((;)l), S((f)Q), and Sg)Q)) and then use them to
compute the approximated ﬁeld (Figure 3.1b). Assume that at each level ¢ of the

subdivision only one cluster S® " does not fulfill the far-field condition. We can

(1,1)
compute the force field from S ( , S (f)2 and S((ﬁ)Q by the far-field approximation

and subdivide S( ) to get the sub clusters of the next level £ + 1. This procedure
can be applied repeatedly until a maximum level k is reached and the approximated
force field can be computed by

fl@ = Y gl@m)m+Y > Z age (@) mye . (3.2.5)

j€§((f7)1) (=1 7€T v=1 |

~
~~ far-field
near-field

This means that the evaluation of the force-field can be decomposed into near-field
and far-field terms. The far-field term is computed approximately by the effective
physical quantities of the macro particles inside the far-field clusters of different
levels. The near-field term is evaluated directly from the physical quantities of
micro particles inside the near-field clusters.

Consider a root cluster containing N uniformly distributed particles. If every
cluster of the finest level contains N, particles (i.e., \S (%) | = No for all 4,5 €
{1,...,2%}), the number of subdivisions is given by

1 (N
~ 2l0g2 B\, )

From a practical point of view, it is reasonable to choose Ny = N, so that the
number of macro particles N, in the clusters (3.2.3) is not less than Ny. Since there
are three far-field clusters at each level and one near-field cluster at the finest level,
we need to traverse 1+ 3k clusters to evaluate the field at . Therefore, the number
of terms to evaluate (3.2.5) becomes

3 N
N, - (143k) =N, —l—m N, - log<ﬁr).

If N, is bounded and independent of NV, the computation cost for evaluating the
force field experienced by a single particle becomes O (log N). This argument can
be applied to each particle in the root cluster S and the total computation cost for
evaluating the interaction force of N particles in S is O (N log N).

From the example discussed above, we can see that the success of treecode relies
on the hierarchical subdivision of particles into clusters and the approximation of
the kernel function through a separable expansion (3.2.3). Thus, in the following
sections, the following two main questions will be discussed:

e How can we subdivide the particles into a set of hierarchical clusters?
e How can we construct a separable approximation of a kernel function and
bound the error of this approximation?

3.3 Cluster Tree

A cluster tree [67, 68] is a space-partition data structure (similar to the k-d tree [84])
which provides an efficient way for finding the interaction list in the tree-based
method. In this section, we briefly introduce the terminology and the construction
of the cluster tree.
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Definition 3.3.1 (Cluster Tree). A cluster tree is a labeled tree associated with an
index set I and fulfills the following requirements:

e For the root node r, its label set T is given by the index set I, ie., 7= 1.

o If s is a non-leaf node, its label set is the union of the label sets of its children
nodes (i'e'7 :9\: Us’Echildren(S) S/)'

o Ift' s € children(s), then s (¥ = 0.

We call the label sets associated with nodes of the tree (index) clusters.

Let S = {@,...x;} C R? be given by a set of particle positions (which we also
call a cluster of particles) with index set S = {1,...,7}. We denote the entries in
a vector by © = (z,y,z)T. The tightest rectangular box covering S is called the
bounding box and is defined as

bbox(S) := [as, bs] X [ay,by] X [as,b.],

with a, = min,_g{g;}, by = max,_g{g;} and g € {=,y,2}. To subdivide a cluster
S containing j particles, we first determine bbox(S) which enables us to find the
coordinate direction with the biggest interval k = arg max ey, .1 (by —a,). We then
choose the particle position with the |j/2]-th greatest value in the k-component of
its position as the splitting point x4y such that the cluster S can be subdivided
into two sub-clusters

Si={xi | ki < kg, i €S} and  So={@; | ki > kgn, i €S}, 5=5]S%.

We can apply this subdivision procedure to each of the resulting sub-clusters re-
peatedly until the number of particles in the clusters at the deepest level is smaller
than a pre-selected number Ny. Different to what has been used in the illustrative
example of the previous section, this cardinality-balanced subdivision strategy is
used in the remainder of this study since it has the following benefits:

e Each subdivided cluster contains roughly the same number of particles so that
the cluster tree is balanced regardless of the particle distribution.

e The subdivision based on the coordinate direction with the biggest interval
can shrink the diameter of the cluster fast.

An illustration of the cluster tree is demonstrated in Figure 3.2.
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Figure 3.2: A cluster tree for 2D particles (gray dots). The root particle cluster
(top layer) is subdivided into a hierarchy of clusters. The total number
of particles is N = 1024 and the maximum number of particles in the
cluster at the deepest level is Ny = 32.

3.4 Approximation for the Kernel Function of the
Space-Charge Field

The space-charge field from a relativistic particle at the position x; experienced by
a target position @ can be expressed as [42, 41]

q
E(z,xj,p;) = E’ij(w,wjjpj) and  B(z,z;,p;) = Tregea P > k(x,z;,p;) (3.4.1)
with
T —x,
k(z,z;,p;) = J (3.4.2)

213/2"
|l — 2[5 + (p; - (= — ;)"

Here, v; = 1/4/1 — ||3;]|3 and p; = ~;8; are the Lorentz factor and normalized
momentum of the particle, respectively, with 3, the particle velocity normalized to

the speed of light. Although not necessary, throughout this study, we assume that
each particle in the system has the same charge ¢. In the physics of particle beams
moving in the z-direction, the paraxial approximation can be usually applied

pz > ﬁ{m,y} and I_){x,y,z} > Ap{x,y,z}

where p := % Z;V=1 pj, Pj =: P+ Ap; and N is the number of particles. Therefore,
the kernel function can be approximated as

k(xw, @, p;) = T
s gy Mg) — —
@ — a3+ (P + Ap;) - (@ — a;))*|
w—JIj

~

(3.4.3)

e — ;3 + B (z — =)
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Since p, > Dy, ,y, We may use p, ~ [|p|l2 to further simplify equation (3.4.3) as in
(cf. Section B.1)

CC—ZEJ'

((:c — 22+ (y— )2+ (L+72)(z — zj)2>3/2

JJ—CCj

(0= 2+ =+ 72 - 51)

k(x,xz;,p;) ~

~
~

32 g(z, ;) (3.4.4)

where 72 := 1 + ||p||3. The space-charge field from the source particle can be
approximated by

q
—p; X g(x, ;).

q
E(x,x;,)) ~ —,g(x,xz;) and B(xz,z;)~ e

4meg

The separable approximation of the kernel function can be achieved by a tensor
product interpolation of the source variable «; with Lagrangian polynomials [67, 68]

g@a) =Y > > g (&,8,.6) - () - ¢, (y;) - £, (%)

v1=01v2=01v3=0

=: Z g(m,ﬁu)gu(ma‘),

where the Lagrange basis polynomials are defined as

nag

ﬁ?(m)::H et j=1,...,n, ke{x,y z} (3.4.5)
=0 >J g
1#]

with the interpolation points ¥ and the polynomial degree n.
The error bound of the tensor product interpolation of the kernel function with
respect to the source point variable x; in a rectangular domain Qg = [as,b,] X

lay, by] X [a,,b,] C R? is [68]

_ gl Mae
lg(,) - 3o s < comst 30 (= ayt IE IS 500
ke{z,y,z} ’

As indicated by (3.4.6), to control the interpolation error, we need to find a condition
which guarantees a bound for the right-hand-side terms. In the literature, this
condition is called admissibility condition [67, 68]. In particular, when determining
an admissibility condition for a kernel function g(z,-), we need to find a bound on
the term [0 ' g(2, ) || co.qs-

3.5 Admissibility Condition for the Relativistic Kernel

As mentioned in Section 3.4, to derive an admissibility condition for a kernel func-
tion, it is necessary to bound the higher-order derivatives of the kernel function. For
studying the free space electrostatic problem, the force kernel can be written

33—3',']'

flz,x)) : (3.5.1)

-l — I3

38



An upper bound of the higher-order derivatives with respect to «; is given by [68]

t (n+1)!
o Mo < cons
107 F (@, |05 < dist(x, S)? dist(x, S)nt+1’

i€ {r,y, 2}

and the substitution into (3.4.6) yields

< const diam(S) "'
D — Moo < — : : 5.2
I£2.) = F@ e < s (i) (352)
Here, we use the definitions
diam(9) := max |lz; — x;]|2 and dist(x,S) := mé% |l — ;2 (3.5.3)

to denote the diameter of S and the distance from « to S.
From (3.5.2), we can define an admissibility condition (also called n-admissibility [68])
for the electrostatic kernel by
diam(S)
dist(x, S)

with some admissibility parameter n € R+.

However, the admissibility condition of the electrostatic kernel (called conven-
tional admissibility condition in this study) may not be used for the relativistic
kernel (3.4.4). Thus, we will derive an upper bound of the interpolation error for
the relativistic kernel and derive a corresponding admissibility condition. We first
introduce a theorem which is useful for estimating the upper bound of the higher-
order derivatives of a specific type of kernel function.

< (3.5.4)

Theorem 3.5.1 ([68, Theorem E.4)). Let s(x,x;) = 1/||x — x;||§ with a € R-, we
have
0 s(@, ;)| < Vi@ — 2], Vo, e RT A £ @,

with a suitable constant w. Here, v = (vy,...,vq) € Nd and the following conven-
tions are used [08]:

d d

= Xd:y vl =T]wt, o= H(ai)”.
i=1 !

i=1 i=1

Since s(x, x;) is symmetric with respect to & and x;, the conclusion above also holds
for the derivatives with respect to ;.

The force kernel for the relativistic space-charge field is (3.4.4)

33—33]‘

((x — )2+ (y — y;)? + 72 — Zj)z)s/z

g(w, xj) =

By introducing a change of variables

T =ux, Ty = xj,
y=vy, and y_j:yja
22727 Z_j:72j7
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the kernel function g can expressed component-wise as

( — Ty - yj,,(z—zj))

@m%ﬂ»=(@_xﬂ%4y_%>+@—zﬁf”
= (O, Oy L0)0 with gi=
[z — ;]2

Therefore, the norm of the derivative of g along each coordinate direction is
19" gl = max(|05 00|, |05 0501, |05 050,
195 gl = maX(la"“%cbl 10510501, |05 951,
102 glloe = 7"+ - max(|02 1 95;9], |02 959, 202 9501,
Using Theorem 3.5.1 with @ = 1 and |v| = n+ 1, the upper bounds of the norms of

the derivatives of g are

n n+3
102+ glloo < const - (n+ 1! - || — Z5]|, ",

Ha@?j_lgHoo < const- (n+1)!-||& — ]‘|2(n+3)7

i =n — ——(n+3
102 gl < const - (n+ 1) 7 |7 — 5],

After the substitution of the upper bounds above into (3.4.6), the interpolation
error becomes

~ 1
lg(x, ) = g(,-)]|c.qs < const - Z sit bk — ax)™ - T i3
= EREAR
- 1
= const - Z (br — ak)nﬂ e =—int3
kelmas) (s

const  diam(S)"*!
~ dist(z, S)2 dist(z, S)"

with a three dimensional stretch factor s = (1,1,7) and S := {soz; |Vx; € S} the
set of stretched positions of particles from S. Here, the symbol

o:R" x R" - R" (3.5.5)

denotes the component-wise product of two vectors. In the derivation above, the
equivalence of the two-norm and the infinity norm has been used [85].

To express the admissibility condition in the original variables, we define the
stretched diameter and the stretched distance

(Smasyysz)

diam () := max_||(sz, sy, S2) 0 (@i — x;)||2,
:Iti,:l:jGS
(Sxﬁs'y,sz)
dist («,95) := inm | (Szs 8y, 52) © (& — ;) |2,
J

where s = (s,, 5y, 5,) is a three-dimensional stretch factor such that this holds:

(1,1,%) — (1,1.%) —
diam(S) = diam(S) and dist (x, S) = dist(z, ).

Therefore, the stretched admissibility condition for the relativistic kernel can be
defined with

<1,1ﬁ)( )
diam(S

(1,1,%) =1
dist (z, S)

(3.5.6)
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3.6 An Interpolation-Based Treecode for Evaluating
the Relativistic Space-Charge Field

When a particle-cluster pair satisfies an admissibility condition, the separable ap-
proximation to the kernel function through the Lagrangian interpolation can be
applied and the space-charge field of the particle cluster S can be computed approx-
imately by

ZE($7mJ’) 47T€0 ZZESV mj '7Jg T Eu = 471’6 Z'YSV g T éu)

jes v o jeS (3.6.1)
ZB(w7mj) 471'6022(51} T p]xg(:c EV _471'6 ZPSVng Eu)
jES v jeS
Here, the quantities
v = Zﬁsy(acj)% and pg, = ng,u(wj)pj (3.6.2)

jes jes

are the effective Lorentz factor and the effective momentum of the macro particle
with a position &, in the cluster S.

Based on (3.6.1), we can formulate a treecode for computing the relativistic space-
charge field. When the treecode is applied with the stretched admissibility condition,
it is advantageous to adjust the procedure to determine the splitting direction (kgpi
defined in Section 3.3). As implied by the stretched diameter in (3.5.6), the splitting
coordinate direction should be determined by the stretched bounding box. There-
fore, in the implementation of the treecode with the stretched admissibility condi-
tion, a modified strategy to determine the splitting direction is used (Algorithm 3.3
with s = (1, 1,7)).

The formulated treecode (Algorithm 3.1) consists of the two main procedures:

1. A given root particle cluster is subdivided into a hierarchy of smaller clusters
(Algorithm 3.2). The splitting direction is determined by the biggest length of
the bounding box (Algorithm 3.3 with s = (1,1, 1)) or the stretched bounding
box (Algorithm 3.3 with s = (1,1,7)).

2. In the evaluation of the field on each target point (Algorithm 3.4), an inde-
pendent traversal of the cluster tree is performed to determine the candidates
of the interaction cluster. When a target point to a non-leaf cluster fulfills
the conventional admissibility condition (Algorithm 3.5 with s = (1,1,1)) or
the stretched admissibility condition (Algorithm 3.5 with s = (1,1,7%)), the
effective quantities are used to compute the space-charge field (3.6.1). Note
that, instead of (3.5.3), we adapt a different definition to compute the diame-
ter and the distance for the admissibility condition in Algorithm 3.5 because
of its simplicity in the practical implementation.

To illustrate the effect of the stretch on the particle-clustering of treecode, we
performed 2D simulations for particles uniformly randomly distributed over the unit
square [0, 1]2. The result is demonstrated in Figure 3.3.
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(a) non-stretched (b) stretched

Figure 3.3: Clustering of 2D particles (gray dots) with respect to a target point
(black dot) by using (a) treecode without stretch and (b) treecode with
a stretch by a factor of 2.5 in the horizontal direction (i.e., s = (2.5, 1)).
The bounding box of the leaf clusters and the admissible clusters (from
different levels) are marked with orange and blue, respectively. The sim-
ulation is performed with admissibility parameter n = 0.5, total number
of particles N = 2048 and maximum number of particles in the leaf clus-
ters Ng = 32.

Algorithm 3.1: Treecode with Stretch
S: particle cluster
s: stretch factor
Np: maximum number of particles in the leaf node
7: admissibility parameter
E;, B;: the space-charge field experienced by the i-th particle
Function TreecodeStretch(S, s, Ny, 1)

subdivide(S, s, Ny) (Algorithm 3.2)
E,;=0,B;=0 Vie¥§
for i € S do
| E;, B; = cluster2p(x;, S, s, ) (Algorithm 3.4)
end
return {E; | i€ S}, {B; |ic S}
end

3.7 An Alternative Method Based on Relativity
Transformation

In the previous section, we derived an upper bound of the interpolation error for
the relativistic interaction kernel and introduced a stretched admissibility condition.
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Algorithm 3.2: Subdivision of Particle Cluster

vsu: effective Lorenz factor for cluster (global variable) (3.6.2)
ps,: effective momentum for cluster (global variable) (3.6.2)
S: particle cluster
s: stretch factor
Np: maximum number of particles in the leaf node
Function subdivide(S, s, Ny)
if |S| > Ny then
compute g, and pg, using (3.6.2)
k = direction4split(S, s) (Algorithm 3.3)
kst = [|S]/2]-th largest element of {k; | i € S}
Sy={x; | ki < kgpiit, @ € §}
52 = {.’Bl | k; > ksplitai S g}
children(S) = {Sl, SQ}
subdivide(Sy, s, Np)
subdivide(Ss, s, Ny)
else
| children(S) =
end

end

Algorithm 3.3: Direction for the Split of Particle Cluster with Stretch

S: particle cluster
s: stretch factor
Function direction4split(sS, s)
(Sz,8y,5,) = 8
laz, bz] X [ay,b,] X [az,bs] = bbox(S)
k = argmax s;(b; — a;)
ie{z,y,z}
return k&
end
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Algorithm 3.4: Cluster Field Evaluation

vsu: effective Lorenz factor for cluster (global variable) (3.6.2)
ps.: effective momentum for cluster (global variable) (3.6.2)
a: position of the target point
S: particle cluster
s: stretch factor
7n: admissibility parameter
Function cluster2p(x, S, s, n)
E=0 B=0
isAdmissible = admissible(x, S, s, 1) (Algorithm 3.5)
if children(S) == 0 then
for j € S do
E = E + v;k(x, x;,p))
B=F —|—p] X k(m,wj,pj)
end
Ise if isAdmissible then

E=E+3 75, 9(x. &)
B = B+2p5,u X g(w7€u>

else

for s € children(S) do

Ecrnp, Biemp = cluster2p(x, S, s, n)
E=F+ Eup

B = B + Bienmp

end

@

end
return E, B
end

Algorithm 3.5: Stretched Admissibility Condition

x: position of the target point
S: particle cluster
s: stretch factor
7: admissibility parameter
Function admissible(x, S, s,7)
laz, bs] X [ay,by] X [a,,bs] = bbox(S)
c=(a+b)/2
diam = ||s o (b — ¢)||2
dist = ||s o (x — ¢)||2
return diam/dist < n
end
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In this section, we introduce an alternative approach based on the relativity trans-
formation. With this approach, the treecode can be performed without switching
to a stretched admissibility condition. We know that the necessity of the stretched
admissibility condition comes from the average particle momentum term p in the
denominator of the relativistic kernel (3.4.4). If some transformation can be applied
to eliminate the average momentum term, we can just use treecode with the con-
ventional admissibility condition. The idea is to transform every physical quantity
to the average rest-frame (AVGRF, the inertial frame moving with particle beam’s
average momentum) through the Lorentz transformation and evaluate the particle
interaction in the frame. In the average rest-frame, the interaction kernel is approxi-
mately equal to the electrostatic kernel and treecode can be directly performed with
the conventional admissibility condition.

3.7.1 Particle interaction in the average rest-frame

Let p be the average momentum of particles in the system in the lab-frame K and
K' be the average rest-frame in which the average particle momentum is p’ = 0.
According to (B.2.1) and (B.2.2) with p, = P, the position and the momentum in
KC and K have the relations

o) =7 — Pleot), ¥ =, (3.7.1)

P =P — P P =pi,

where || and L denote the components parallel and perpendicular to p. Here, we
use p to denote the magnitude of p (i.e, p := ||p||2)-

The momentum of a particle can be written as p = p + Ap and can also be
component-wise expressed in the plane spanned by the average momentum p and
the momentum p of the particle as

py=p+Ap, and p,=Apy, (3.7.3)

where Ap is the deviation of the particle momentum from p with the scalar com-
ponents Apj, Ap,. Throughout this study, we assume that p > Apy, Ap,, which
is valid in the physics of particle beams.

To eliminate the momentum appearing in the denominator of the relativistic ker-
nel, we can evaluate the particle field in X',

B 1 ¥R ,_ 1 p; X R
o || R+ (0 R o || B3 + (0 R

7 (374)

where R’ is the distance between the source and target particles, 7' and p; are
the Lorentz factor and the momentum of the source particle, respectively. Let A~y
denote the deviation to the average Lorentz factor 7 of the particle, v = 7 + A~.
By (3.7.2) and (3.7.3), the particle momentum in the average rest-frame can be
approximated by

=2 =2 1
p| = 7(@+Ap)) —D(T+Ay) = FAp) —pAy = 1 = P Ap| = %APH? P =Apy, (3.7.5)
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where A~y is estimated using the identites > =1+ p-p and 72 = 1 + p*:

(7 +A7)° =1+ (p + Apy)* + (Ap.)”
= 7+ 2747+ (Ay)? = 1 +7° + 25Ap) + (Ap))* + (Ap.)’
T+ 29Ay ~ 1477 + 2pAp;

I

p
A’y ~ :Ap”.
v

Substituting (3.7.5) into (3.7.4), the denominator in (3.7.4) can be approximated by

3/2 3/2

1
IR+ - R)’|” ~ |RE+ R+ (#anﬁ +Ap R ~ | RS,

. A
where the assumption %

approximately equal to

, Ap; < 1 was used. Therefore, the particle field in K’ is

1 R 1 p.x R

'~ ——— B~ 2 3.7.6

o R T 7 e IR 370

After E' and B’ are computed by the treecode, the corresponding particle field in
KC can be calculated with the field transformation [42]

1 1
E=7E -pxB'———(p-E')Yp, B=7B'+pxE' ———(p-B')p. (3.7.7
JE' —p 7+1(p )P 7B’ +p 7H(p )p. (3.7.7)
The procedure discussed above is summarized in Algorithm 3.6 and a schematic of

the procedure is illustrated in Figure 3.4. In the practical implementation, instead
of (3.7.1), we use

| =7z and ) =1z (3.7.8)

to compute the particle position in the average rest-frame. Because the lab-frame
position of particles is given at a common simulation time ¢, both (3.7.1) and (3.7.8)
lead to the same pair-wise distance between particles at the average-rest frame.
Therefore, equations (3.7.8) can be applied in the computation of particle field by
treecode where only the relative position of particles is of importance.

lab-frame average-rest-frame lab-frame
‘0@ . = S e : 00 .
0e®. © o ¢ : 0o ® .
o0O®m) @ © o 2 S
e®® ¢ ® ® e0®
- 0.® e __. ¢ . ‘e

Figure 3.4: A schematic of the treecode based on the transformation to the average
rest-frame. The particle’s position and momentum are transformed to
the average rest-frame and the particle field evaluated in the average
rest-frame is then transformed back to the lab-frame.
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Algorithm 3.6: Treecode with Average Rest-Frame Technique

S: particle cluster

s: stretch factor

Npy: maximum number of particles in the leaf node
n: admissibility parameter

E;, B;: the space-charge field experienced by the i-th particle
Function TreecodeAVGRF (S, Ny, 1)

s=(1,1,1)

S" = lab2avgframe(S) (Algorithm 3.7)
subdivide(S’, s, Ny) (Algorithm 3.2)
E,=0,B,=0 VieS

for i € S’ do

E|..., Bi.., = cluster2p(z;, S"s, n) (Algorithm 3.4)

temp’ " temp
compute E;, B; using E{_ . B, and (3.7.7)
end
return {E; | i€ S}, {B; |i e S}

end

Algorithm 3.7: Transformation of Particle Beam to the Average Rest-
Frame

S: particle cluster
Function lab2avgframe(S)

p= ﬁ(Zzeé‘\ pi)

7=0+p-p)"
for i € S do
xi = x; + = (x; - p)P (vector form of (3.7.8))

7+1
P, =pi+ #(pZ -P)P — P (vector form of (3.7.2))

vi=(1+p; p;)"/?
end
return $' = {z/|Vi € S}
end
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3.8 Numerical Results and Discussion

To understand the performance of the different treecodes discussed in this study, we
performed numerical simulations for particle beams with different configurations.
All the treecodes and algorithms discussed in this study have been implemented
in a package called NChargedBodyTreecode.jl using the Julia programming lan-
guage [46]. We refer to the procedure proposed by Wang et al. [83] to compute the
effective Lorentz factor and the effective momentum of the macro particle: the La-
grangian polynomials are implemented based on the second form of the barycentric
formula [86], and the interpolation points (i.e., the positions of the macro particles)
are generated by Chebyshev points of the second kind [83].

3.8.1 Particle beam with single momentum

We first consider particles randomly uniformly distributed in the unit cube [0, 1J?
where each particle has the same momentum p = (0,0,p) with py = (y> — 1)"/2.
The space-charge field (both E- and B-field) experienced by each particle in the
system is computed by the following methods:

1. brute-force method,

2. atreecode called “Treecode-Uniform” using the conventional admissibility con-
dition (Algorithm 3.5 with s = (1,1, 1)),

3. a treecode called “Treecode-Stretch” using the stretched admissibility con-
dition and the subdivision strategy with stretch (Algorithm 3.5 with s =
(1,1,7)),

4. a treecode called “Treecode-AVGRFE” using the average rest-frame approach
(Algorithm 3.6).

The result from the brute-force method serves as a reference to evaluate the speedup
and the relative error of different treecodes. The measured error is the maximal
relative error in the electrical and magnetic field,

N N 1/2
error := max t_ b2 b 2) ’
s, (S0 £ e

i=

where N is the number of particles in the system. The space-charge fields f! and

)

f? experienced by the i-th particle are computed by the treecode and the brute-
force method, respectively. The result is shown in Figure 3.5. As illustrated by
Figure 3.5a, Treecode-Uniform has large errors and this supports our argument in
the beginning that the conventional treecode cannot be used directly for relativistic
particle beams. On the other hand, as demonstrated in Figure 3.5b and Figure 3.5c¢,
the two proposed treecodes can effectively treat the problem of a relativistic par-
ticle beam. Also, we can observe that the errors computed by Treecode-Stretch
and Trecode-AVGRF look the same. The reason is that both methods result in
equivalent ways to subdivide the particle clusters and to determine the admissible
clusters. In Treecode-AVGRF, the particles’ spatial distribution gets boosted along
the longitudinal direction after the relativity transformation depicted in Figure 3.4.
In Treecode-Stretch, the particles’ spatial distribution stays unchanged in the lab-
frame but the subdivision and the admissibility condition involve a stretch factor
related to the Lorentz boost.
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Figure 3.5: The accuracy of different treecodes for the particle beam with mono-
momentum. The number of particles is 8 x 10* and v = 50. Here, n
and 7 are the interpolation degree (3.4.5) and the admissibility param-
eter (3.5.4), respectively. The interpolation degree is n = 2,3,4,5,6,7
and the maximum number of the particles in the leaf cluster is chosen
as No = (n+1)>.

3.8.2 Particle beam with momentum spread

In practical scenarios, beam divergence and energy spread are typically present in
particle beams. These two quantities are related to the momentum distribution of
a particle beam in transverse and longitudinal directions, respectively. Therefore it
is also important to know how the momentum distribution influences the accuracy
of treecodes. We consider a particle beam randomly distributed over a momentum
distribution defined as

2 2 2

Pz + Dy ) ( (P> — po) ) : 2 1/2
T yPz) X €X — < 5 | & T < <o Wlth = -1 .

fp(p py p ) p ( 2((5J_p0)2 p 2(5”]?0)2 pO (P)/ )

Here, 6, and J) are equivalent to RMS (root mean square) divergence and RMS
energy spread for a relativistic particle beam with the paraxial approximation (i.e.,
Pzt < Po). The positions of the particles are uniformly randomly distributed over
the unit cube [0, 1]3. The result is shown in Figure 3.6. Our numerical results reveal
that treecode-AVGRF is less accurate than Treecode-Stretch when a momentum
spread is considered in the particle beam.
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Figure 3.6: The accuracy of Treecode-AVGRF and Treecode-Stretch for particle
beams with (a) transverse momentum spread and (b) longitudinal mo-
mentum spread. The number of particles is 8 x 10* and v = 50. Each
simulation is performed with admissibility parameter n = 0.5, interpola-

tion degree n = 4, and maximum number of particles in the leaf clusters

3.8.3 The problem of Treecode-AVGRF

Our numerical results show that Treecode-AVGREF is less accurate compared to
Treecode-Stretch when a momentum spread is considered in the particle beam. The
reason is due to the inaccurate computation of the target-source distance in the
average rest-frame. To explain this, we consider a particle moving with a momentum
p; in the lab-frame K (Figure 3.7a). If the positions of the particle z; and the target
point x are both measured at the same time t,, = t, = t, the distance between these
two points can be calculated directly using x — x; . If we transform the system to a
reference frame K’ moving with a momentum p (Figure 3.7b), the events observed
in K’ will become

v' =7yr —pt, x = Fx; — pt, _
L J 7 and p; ~ DAp;.
ta::’yt_px7 trj :’Yt_pl’j,

Here, we assume p; = p + Ap; with p > Ap; and the space-time quantities are
normalized such that the speed of light is ¢ = 1. It is problematic if we compute
the distance directly by 2" — 2’ because these two events are measured at different
times (i.e., t, # t;j) and the particle keeps moving during the measurement. To get
a correct distance, as demonstrated in Figure 3.7c, we need to transform the system
to the particle’s rest-frame K” that satisfies

ZI}'// = ’)/]l’ — pjt, .’L’;/ = Y;T; — pjt, and p/, —0
ty =5t — p;, ta, =t — pw;, ’

In the reference frame K", although two events are still measured at different times
(i.e., t; # 1, ), we can still compute the distance with 2 — z7 because the particle
is stationary during the measurement. However, this approach is not applicable to
treecode because the transformations of the whole particle beam to each particle’s
rest-frame have a complexity of O(N?).
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lab-frame rest-frame of p rest-frame of p;
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Figure 3.7: A 1D illustration of the distance between one point (black dot) and one
particle (red dot) moving with p; = p + Ap;. The system is viewed in
(a) the lab-frame (KC), (b) the rest-frame of p (K') and (c) the rest-frame
of p; (K").

3.8.4 Performance

To understand the speedup achieved with our treecode, we compare the performance
of the brute-force method and the treecode in Figure 3.8. Here, Treeecode-Stretch
is selected because it has the best accuracy in all the scenarios discussed before. As
shown in Figure 3.8a and Figure 3.8c, the brute-force method scales with O(N?).
The treecode scales between O(N?) and O(N log N) (Figure 3.8a) and approaches
to its theoretical complexity O(N log N) (Figure 3.8d). Also, we can observe that
the speedup of the treecode increases with the number of particles (Figure 3.8b).
Here, the speedup refers to the ratio of the elapsed time of the brute-force method
to the elapsed time of the treecode.

3.9 Summary

In this chapter, based on the Lagrangian interpolation, we formulate a treecode for
computing the relativistic space-charge field. We propose two approaches to con-
trol the interpolation error: Treecode-Stretch and Treecode-AVGRF. Our numerical
result shows that Treecode-Stretch has better accuracy than Treecode-AVGRF for
particle beams with momentum spread. Also, the performance of our treecode scales
like O(N log N) as expected by the theory. Compared to FMM, which usually relies
on a sophisticated data structure, the proposed treecode is easy to implement and
intrinsically parallelizable; it may be especially suitable for building in-house solvers
for the study of space-charge effects from relativistic beams.
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Figure 3.8: The performance of brute-force and treecode methods. Figure 3.8a
shows the elapsed time used by brute-force method (B-F) and Treecode-
Stretch to evaluate the space-charge field of increasing numbers of par-
ticles N. Figure 3.8b shows the speedup of Treecode-Stretch relative to
the brute-force method. Figure 3.8c shows the elapsed time of brute-
force method normalized to N2. Figure 3.8d shows the elapsed times of
treecode method normalized N log N. The treecode is performed with
the fixed admissibility parameter n = 0.5 and different interpolation de-
grees n = 2,3,4,5,6,7. The maximum number of particles in the leaf
cluster is chosen as Ny = (n + 1)3.
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Chapter 4

Relativistic Space-Charge Force
Calculation by Interpolation-Based
Fast-Multipole Method

In the previous chapter, we formulated an interpolation-based treecode for the ef-
ficient computation of the relativistic space-charge field. The treecode considers
the particle-cluster interaction and reduces the complexity for the space-charge field
calculation from O(N?) to O(N log N) with the total number of particles N. In
the fast summation methods, there also exists a more sophisticated approach, called
fast-multipole method (FMM). The FMM considers the cluster-cluster interaction
and can further reduce the complexity to O(N). In this chapter, based on the for-
mulation of the treecode discussed in Chapter 3, we discuss an interpolation-based
FMM for the efficient computation of the relativistic space-charge force field.

4.1 The ldea of FMM

In this section, we give a short overview of the interpolation-based FMM [87, 88].
Consider two particle-clusters S; and S;. The total force-field f from the source
particles in the cluster Sy acting on a target particle with index 7 and position
x; € S; through an interaction kernel g(+,+) can be modeled as

fl:) = Z g(xi, T;)m;. (4.1.1)
j€Ss
Here, §t and §s represent the index sets of the particles in .S; and S, respectively.
The symbol m; is the physical quantity of the source particle with index j. Although
the actual meaning of m; depends on the physics problem we investigate, without
loss of generality, we call it mass throughout this section.
The idea of using FMM for a fast evaluation of the summation in (4.1.1) is based

on the approximation of the kernel function by interpolating both the target variable
x; and the source variable x;

CCZ,-’L'] ZZK& mz €St V7€S V)ES u(w]) (412)

where the Lagrange basis polynomials (3.4.5) over the bounding boxes of S; and S
are defined as

gSt,llv(a: ) : gt ,ul( ) g%t ;1,2( ) : gt,,u,g (Zl)?

Cso () i= Ly, (25) - Lo, (y5) - 05, 1, (25),
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with the corresponding interpolation points

£St uo= (fst,m ) fSt,uz ) 55&,#3) and 55'5 v = (553,1/1 ) 553,1/2 ) €St;1/3)'

Substituting (4.1.2) into (4.1.1), we have

fla) = glai, @;)m;
j€Ss
=~ ngt%‘(wi) ZQ(ESt,uv éSs,V) Z gssﬂl(a:j)mj
©n 174

jegs

J/

-~

=Mss v (4.1.3)

= Z ést#(mi) Zg(ﬁSt,;u €SS,V)MSS,V
" v

(. 4
g

=:Ls;,p

=Y ls, (@) L, -

n

By observing (4.1.3), we can identify the four of FMM kernels:
e P2M (point to multipole): The micro particles in the cluster S, are aggregated
into a few macro particles and the mass of each macro particle (Mg, ,, also
called multipole) can be computed by

Mg, =Y ls,o(x;)m;. (4.1.4)

j€Ss

e M2L (multipole to local): The multipoles of the source cluster are used to
evaluate the force-field acting on the macro particles (Lg, ,, also called local
field) in the target cluster S;

Lst,,ﬂ = Zg(gst,u7€SS,V)MSS,U‘ (415)

e L2P (local to point): In the target cluster, the effective force-field acting on
the macro particles are transferred to the micro particle at a; by

flxs) = Zfst,u(fvi)Lst,u- (4.1.6)

n

e P2P (point to point): If S; and Sy do not fulfill an admissibility condition
(ADMC, also called multipole acceptance criteria MAC in some literature [83,
89]) so that (4.1.2) is not applicable, the force-field can be calculated directly
by

flx;) = Zg(mi,wj)mj Vi e S,. (4.1.7)

jeSs

This also applies for the case S; = S5 = S where i, j € S and i £ 7.
One main feature of the FMM is the consideration of the cluster-cluster interaction
(M2L) through macro particles; and hence, the total number of operations for the
evaluation of force-fields can be drastically reduced. In the FMM, we first partition
all particles in the system into a hierarchy of clusters (cluster tree). If we directly
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use (4.1.4) to compute the multipole of each cluster, the number of operations for
computing the multipoles of the whole cluster tree is

N
const - N - N, - log (F) (4.1.8)

with the assumption that the number of macro particles used for the approximation
and the number of micro particles contained in the leaf cluster are both N,. To
reduce the total number of operations for computing the multipoles, we can make
use of the following property of polynomial interpolation stated in Theorem 4.1.1.

Theorem 4.1.1. If P(z) is a polynomial function of degree n, we have
P(z) =Y P(ésp)lsi(z) Vo eR (4.1.9)
k=0

with Us(x) being Lagrange basis for polynomials of degree < n for the interpolation
nodes {g i, € S.

This equality can be seen by the fundamental theorem of algebra since both LHS
and RHS have the same values at the n+1 points {{sx | £ =0, ...,n} and the RHS
is a polynomial of degree n. By using Theorem 4.1.1, we can introduce two further
procedures and kernels of FMM:

e Upward Pass: A source cluster S is subdivided into a cluster tree of the
depth x. The multipoles of each cluster can be computed by the multipoles of
its children clusters because

Ms,u = Z ES,V(“%)mj
jes

= DD sulmymy

s’€children(S) jeg

(4é9) Z Z Z gs,u (gs’,u’)gsl»’// <$j)mj

s'€children(S) jeg/ V'

— Z Z ls(Esr ) Z Lyt oo (wj)mj

s’€children(S) jes

- Z ng,u(gs’,u’)Ms’,v’- (4110)
) v

s’€children(S

Equation (4.1.10) is the formula of the M2M (multipole to multipole) kernel. In
FMM, the multipoles of the source cluster tree can be updated by a procedure
called upward pass. In the upward pass, the multipoles of the leaf clusters are
first evaluated with P2M (4.1.4); and then, we start from the second deepest
level of the cluster tree (i.e., level k — 1) and apply M2M (4.1.10) to compute
the multipoles of each cluster in each level (level by level). If the upward pass
is used for the computation of the macroparticles of the whole cluster tree, the
number of operations shown in (4.1.8) can be reduced to

const - N, - N.

The reason is because a cluster tree contains N/N, clusters and the number
of operations for computing the macroparticles of each cluster is proportional
to N2.
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e Downward Pass: A target cluster S is subdivided into a hierarchy of clusters
of the depth x and each target particle (say particle ¢) will be contained in
a sequence of clusters {S' | [ = 0,...,x} of each level [ with S"! C S’ and
SY9 = S. The force-field on the target particle i can be calculated by

- Z Z ot p(@i) Lty = Z Lsw ulge pu(Ti). (4.1.11)
"

=0 pn

Here, we define the “cumulative local field” Lg ,, which follows from the re-
cursive relation

[’Sl,ﬂ' = LSl:H + Zﬁsl—lﬂul : gSl_l,p/<€Sl,u) with £507“ = LSO,u' (4112)
u'

Equation (4.1.11) can be proved by using (4.1.9), (4.1.12) and the mathemati-
cal induction (cf. Section C.1). Therefore, during the downward pass of FMM,
we first perform L2L (4.1.12) to calculate the cumulative local fields of the
deepest-level cluster S*; afterwards, we transfer Lg- , to the target particles
contained in S* via L2P (4.1.11).

4.2 FMM Formulation for the Efficient Computation
of the Relativistic Space-Charge Field
Consider a relativistic charged particle beam moving in z-direction. Inside this

particle beam, the space-charge field from a source particle with the position x;
exerting to a target particle with the position @; can be approximately written as

q
E(z;, x;) ~ %%9(%%‘) and  B(z;, ;) ~ p; x g(x,x;),  (4.2.1)

4megco
with the kernel function called “relativistic kernel” (3.4.4)

R —ly_» ]+7 2o — ) )/

where v; = 1/4/1 — ||3;/|3 and p; = 7;8; are the Lorentz factor and normalized
momentum of the particle, respectively, with 3; the particle velocity normalized

to the speed of light ¢y. Here, 7 is the average Lorentz factor and is defined as
7?2 =1+ p-p with the average momentum of the particle beam p. Throughout this
study, we assume all particles in the particle beam are the same type with charge q.

Given a target particle with the position x; contained in a target cluster S;, the
space-charge field from all the particles in the cluster S, experienced by this target
particle can be computed approximately by applying (4.1.2) to (4.2.1)

Z E ZL‘“ iL'] 471'60 Z Z Z Est s mz 65 mj)’}/jg(sst#ﬂ 555#’)

j€eS, v el

Z gSt wz ESt S

g(il?i, wj) =

47‘(’6
(4.2.2)
Z B(z;, x;) ~ 47T€ - Z Z Z U u(@i) s, (25)P; X G(&5,p15E5.00)
je8s 0% v eS8,
= 1 i B
47T€000 Z Sth 33 St
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Here, we introduce the effective Lorentz factor and the effective momentum for a
macro particle with the position &, and index v in the cluster S as

= Z Us,w(®j)y; and pg,p = Z Us, v (x;)p;
j€Ss €8s

Similarly, the effective electric and magnetic field experienced by a macro particle
with the position £, and index p in the target cluster S; are defined as

ESt,u = Z'VSS,VQ@St,uaESS,V) and BSt,u = ZPSS,V X Q(ESt,mESS,V)-

4.3 Admissibility Condition for Cluster-Cluster
Interaction of the Relativistic Kernel

In the previous section, we used Lagrangian interpolation to approximate the space-
charge field on a target particle in a relativistic particle beam. It is also of importance
to know when this approximation can be applied. To answer this question, we
investigate the interpolation error bound of the relativistic kernel

lg(zi, ;) — g(xi, T5) |0, x@. < Bt + Bs. (4.3.1)

Here, B, and B, are the interpolation error bounds with respect to the target variable
x; = (z;,y;, %;) and the source variable x; := (z;,y;, z;):

19" g () 0@
By :=const - (b — )" ’ =
ke{g,:yi,m (n+ 1)1

10 g(@i, )|, x@
B, :=const - Z (b, — ag)"tt - S Alab A8
|
ke{z;,y;.2i} (n+1)!

where the bounding boxes of S; and S, are

Qt [z?btx] [; bt] [z’bi]CR37
Qs = lag,, b3 ] x [ay,, by, ] x [a2, b ] C R,

Z )’z
Following the similar analysis as in Section 3.5, we can derive the error bounds of
B; and By respectively as

(11,7
1 const dlaurn(St)”Jrl
|n+3 — (1,1,%) (1,1,7) ?

B; <const - "'H(bk ak)”+1 .
2 s o (@i =25 ™ i 15, 5.)2 dist (S, S,)n+1

ke{xs,yi 2}

1,1,

)
1 const dlam(S )t
n—i—l _ n+1
B, <const - Z Sy (bx — ax) ’n+3 < (1,1,7) ’
kefz;v;.25}

s o (@i —@illsc™ ™ \Gid (s, 5,)2 ‘dist (Sh, S,)n+1
where we define a stretched vector s := (s;, sy, s,) = (1,1,7%) and the symbol
o:R" xR" — R"

denotes the component-wise product of two vectors (3.5.5). Here, the stretched
diameter of a cluster (same as defined in Section 3.5) and the stretched distance

o7



between two clusters S; and S, are

(Saca'syysz)
diam () := max_||(s4, 8y, 5:) © (&; — x;)||2,
z;,x; €S
(Szysyvsz) (432)
dist (Sy, Ss) := min ||(s4, Sy, S2) © (i — x;)]|2-
il:iESt
:l:jESs

Therefore, the interpolation error (4.3.1) can be bounded by

(L17) L1
diam(S;)"! + diam(S,)" !
(1,1,%)

dist (S,, S,)ntt

lg(xi, ;) — g(xi, ;)| 00,0 x0, < const -

1L,19) 1,1,7) n+l
di S di S,
< const - 1am(g 12)) + diam(5,)
dist (St, Ss)
(1.1, (1,17 ntl
max (diam(St), diam(Ss)>
< const - — )
(17.17“/)
dist (St, Ss)

and we can define an admissibility condition for the cluster-cluster interaction by

(1,1,7) (1,1,%)
max (diam(St), diam(ss))

(1,1,%)

dist (St, Ss)

<

with some admissibility parameter n € Ry(. This is an extension of the stretched
admissibility condition for the particle-cluster interaction proposed in Chapter 3
from the particle-cluster to the cluster-cluster type of interaction.

Besides deriving the stretched admissibility condition for the relativistic kernel, it
is possible to bypass this mathematical analysis by using a relativity transformation.
In the rest frame of the particle beam, the kernel function g is approximately equal
to the electrostatic kernel and the conventional admissibility condition can be used
for controlling the interpolation error. However, as discussed in Chapter 3, this
approach can result in a larger error when a particle beam with a larger momentum
spread is considered because the distance between each target-source pair in the rest
frame is not correctly evaluated. Therefore, this approach will not be discussed in
this chapter.

4.4 The Procedure of FMM

With the FMM kernels introduced in Section 4.1 and the stretched admissibility
condition for the cluster-cluster type of interaction derived in Section 4.3, we can
extend our previous interpolation-based treecode proposed in Chapter 3 to FMM
for the calculation of the relativistic space-charge field. The proposed FMM (Algo-
rithm 4.11) for the calculation of the space-charge field can be summarized by the
following procedures:

1. A cluster tree is constructed from the particles in the system (Algorithm 4.1)
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2. In the upward pass (Algorithm 4.4), the multipoles of each leaf cluster are
computed by P2M (Algorithm 4.2) and then are transferred to the multipoles
of their ascendants by M2M (Algorithm 4.3).

3. A list of interaction pairs is determined dynamically by the dual tree traver-
sal (Algorithm 4.10) where the pointers of the target and source are initially
pointed to the root cluster. For the interaction pair fulfilling the admissibility
condition (Algorithm 4.7), the local field of the target cluster is computed by
M2L (Algorithm 4.8). For the interaction pair of leaf clusters, the force-fields
on the particles of the target cluster are computed by P2P (Algorithm 4.9). In
our implementation, instead of using (4.3.2), we adapt a different definition to
compute the stretched diameter and the stretched distance (Algorithm 4.5 and
Algorithm 4.6) because of their simplicity in the practical implementation.

4. In the downward pass (Algorithm 4.14), the cumulative local fields of each
cluster are transferred to their descendants by L2L (Algorithm 4.12) and the
cumulative local fields of each leaf cluster are transferred to the force-field of
its member particles by L2P (Algorithm 4.13).

A schematic comparison of treecode and FMM is illustrated in Figure 4.4. In the
treecode (Figure 4.4a), we interpolate the source variable x; of the kernel func-
tion so that we can cluster the source particles and build up the effective masses
of each cluster. The force-field of each particle in the target cluster is evaluated
by each independent traversal of the source cluster tree and by investigating the
particle-cluster interaction. In the FMM (Figure 4.4b), we interpolate both the tar-
get variable x; and the source variable x; of the kernel function so that the target
particles and source particles can be clustered and the corresponding effective force-
fields and masses of each cluster can be built up. The force-field on a target particle
is transferred from the effective force-fields of the clusters which are computed by
cluster-cluster interaction through the traversal of the target cluster tree and the
source cluster tree simultaneously.

The pseudocodes for the algorithms are presented with the following global vari-

ables:

E; the electric field experienced by the i-th particle,

B; the magnetic field experienced by the i-th particle,

Vs,  the effective Lorenz factor of a macro particle with index v in the
cluster .S,

Ps, the effective momentum of a macro particle with the index v in the
cluster S,

Es, the total electric field acting on a macro particle with the index v in
the cluster S,

Bg, the total magnetic field acting on a macro particle with the index v in
the cluster S.

The algorithms described above are implemented as a solver in the Julia program-
ming language [46].

4.5 Results

To understand the performance of our proposed FMM, we first demonstrate a plot
of elapsed time against error for the simulations with different FMM parameters
in Figure 4.1. In each simulation, 1.28 x 10° particles are randomly uniformly
distributed in the unit cube [0, 1]> and each particle has the same momentum p =
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Algorithm 4.1: Subdivision of Particle Cluster

S: particle cluster
s: stretch factor
Np: maximum number of particles in the leaf node
Function subdivide(S, s, Ny)
if |S| > Ny then
k = direction4split(S, s) (Algorithm 3.3)
ke = ||S]/2]-th largest element of {k; | i € 5}
St =A{x; | ki < ko, € §}
So = {CBZ | k; > ksplihi S §}
children(S) = {51, Sa}
subdivide(Sy, s, Ny)
subdivide(Ss, s, Ny)
else
| children(S) = ()
end

end

Algorithm 4.2: P2M

S: particle cluster
Function P2M(S)
Vsw = D jes bsw(®))7;
Psy = Zje§ gS,V(wj>pj
end

Algorithm 4.3: M2M

S: parent particle cluster
S’: child particle cluster
Function M2M(S, S")
YSp = Zu’ ES,V@S’,V’)VS’,V’
DPsy = Zu’ gS,V(gs’,u’)VS’,u’
end

Algorithm 4.4: Upward Pass

S: particle cluster
Function upwardpass(S)
if children(S) == () then
| P2M(S) (Algorithm 4.2)
else
for s € children(S) do
| upwardpass(s)
end
for s € children(S) do
| M2M(S, s) (Algorithm 4.3)
end

end

end
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Algorithm 4.5: Stretched Diameter of Cluster

S particle cluster

s: stretch factor

Function diam(9, s)
laz, bz] X [ay,b,] X [az,bs] = bbox(S)
return ||so (a —b)/2,

end

Algorithm 4.6: Stretched Distance between two Clusters

S1: particle cluster 1

Sy particle cluster 2

s: stretch factor

n: admissibility parameter

Function dist(S7, Sz, s)
[CLLI, bl,m} X [CLLy, bl,y] X [al,z,bl,z] = beX(Sl)
[CLQ’I, bgw} X [Clgvy, b27y] X [GQ,Z, b27z] = beX(SQ)
C, = (a1 +b1)/2
Coy — (CLQ + b2)/2
return ||so (¢; — ¢2)ll2

end

Algorithm 4.7: Stretched Admissibility Condition for Cluster-Cluster In-
teraction

S1: particle cluster 1

Sy particle cluster 2

s: stretch factor

n: admissibility parameter

Function admissible(S7, Ss, s,7)
ry = diam(Si, s) (Algorithm 4.5)
ro = diam(Ss, s) (Algorithm 4.5)
d = dist(S1, S, s) (Algorithm 4.6)
return max(ry,re)/d <n

end

Algorithm 4.8: M2L

Si: target particle cluster
S,: source particle cluster
Function M2L(S;, Ss)

Est# - Zy VSsv g(gst,ﬂd fss,u)
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Algorithm 4.9: P2P

Si: target particle cluster
S,: source particle cluster
Function P2P(S;, Sy)
for i € §t do
for j € S, do
E; = E; + v;9(zi, z;, p;)
B; = B, + p; X g(x;, x;, p;)
end
end

end

Algorithm 4.10: Cluster-Cluster Interaction by Dual Tree Traversal

S;: target particle cluster
S,: source particle cluster
s: stretch factor
n: admissibility parameter
Function dualtraverseinteract(S;, Ss, s, 1)
if children(S;) == 0 A children(S;) == () then
| P2P(S;, Ss) (Algorithm 4.9)
else
isAdmissible = admissible(S;, Ss, s,7) (Algorithm 4.7)
if isAdmissible then
| M2L(S;, Ss) (Algorithm 4.8)
else if children(S;) == () then
for s € children(S;) do
| dualtraverseinteract(S;, s, s,71)
end
Ise if children(S;) == () then
for ¢ € children(S;) do
| dualtraverseinteract(t, S, s,7)
end
else
if diam(S;, s) > diam(Ss, s) then
for ¢ € children(S;) do
| dualtraverseinteract(t, Ss, s,7)
end

@

else
for s € children(S;) do
| dualtraverseinteract(Sy, s, s,7)
end
end
end

end
end
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Algorithm 4.11: FMM with Stretch

S: particle cluster

s: stretch factor

Npy: maximum number of particles in the leaf node

n: admissibility parameter

Function FMM(S, s, Ny, n)
subdivide(S, s, Ny) (Algorithm 4.1)
E;=0,B,=0 VYicS
upwardpass(S) (Algorithm 4.4)
dualtraverseinteract(S, S, s,n) (Algorithm 4.10)
downwardpass(S) (Algorithm 4.14)

end

Algorithm 4.12: L2L

S: parent particle cluster

S’ child particle cluster

Function L2L(5’,S)
Esw=Egw+3,lsu(ls w)Es
Boiys = By + 3 su(€51) B

end

Algorithm 4.13: 1.2P

S: particle cluster
Function L2P(S)
for i € S do
E, =E;+ ), lsu(xi)Esy
B; = Bi+ ), lsu()Bs,
end
end

Algorithm 4.14: Downward Pass

S: particle cluster
Function downwardpass(S)
if children(S) == () then

| L2P(S) (Algorithm 4.13)
else
for s € children(S) do

| L2L(s,S) (Algorithm 4.12)
end
for s € children(S) do

downwardpass(s)

end

end
end
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(0,0,po) with py = (72 — 1)*/? and v = 50. The measured error is the maximal
relative error in the electrical and magnetic field,

N N 1/2
— t_ b2 b2
emor = e (S 191~ S8/ 2 I1)

i=1

where N is the number of particles in the system. The space-charge fields f! and f?
experienced by the i-th particle are computed by FMM and the brute-force method,
respectively. We can observe that a smaller admissibility parameter 7 leads to higher
accuracy (smaller error) but costs more elapsed time. This is because fewer M2Ls
in the coarse level are considered and each non-admissible cluster in the coarse level
can result in more M2Ls in the finer level or P2Ps in the leaf level. Besides, the usage
of higher interpolation degree n leads to a result with higher accuracy and higher
elapsed time because more macro particles are used in the calculation of M2L.
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Figure 4.1: A plot of elapsed time against the error for the proposed FMM. Each
line represents the result computed with an admissibility parameter
n = 0.3,0.4,0.5. Each point in a line represents a simulation with an
interpolation degree n = 2,4, 6, 8,10 and the maximum number of parti-
cles in the leaf cluster Ny = (n+1)%. The marker size is associated with
the value of n; data with bigger n is expressed with a bigger point size.

In Figure 4.2, the elapsed time of FMM against the number of particles N is
presented. We can see that our FMM approaches the theoretical complexity O(N)
(Figure 4.2b).

We also perform code profiling on our solver and demonstrate the cumulative
elapsed time of the six FMM kernels in Figure 4.3. One can observe that the total
elapsed time is mostly dominated by P2P and M2L; this indicates that the routines
of these two kernels will be the focus when any further optimizations for the solver
are considered. Besides, one can also observe a sudden jump in the value of the
elapsed time for P2P and M2L at a specific number of particles N. To understand
this phenomenon, we consider a case where the total particle number is equal to a
transition value N = N/* := 2*N, with s the depth of the cluster tree. If each leaf
cluster is going to interact with at most a constant number of clusters via P2P, the
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Figure 4.2: The performance of the FMM method. Figure 4.2a shows the elapsed
time used by FMM to evaluate the space-charge field of increasing num-
bers of particles N with n =4, Ny = (n + 1)3 and n = 0.5. Figure 4.2b
shows the elapsed time normalized by N.

total number of operation counts to perform P2P can be written as
Weop(N) = const - 27 - N for N = N/ (4.5.1)

When the number of particles N slightly increases with a value 6N — 0 so that
N > N, the number of particles in each leaf cluster Ny will slightly increase with
0Nt — 0 so that Ny > Ny. In this case, each leaf cluster will be subdivided into two
clusters and the cluster tree will gain one more level k + 1. Therefore, the number
of leaf clusters will increase from 2% to 25! and the value of N reduces from N to
Ny/2. Thus, the total number of operation counts for P2P can be written as

Wpap(N) = const - 2771 - (22 + §Np)*  for NfTH > N > N, (4.5.2)

with No/2 > 6Ny(N, Ng) > 0. The ratio between (4.5.1) and (4.5.2) for different
5Nf is

. 1 for ON; =0,
Wear(NEE0N) _ J1 o 8, 0
W, NE 2 )
p2r (A7) 2 for ON; = %

Together with (4.5.2), we can see that Wpop suddenly decreases to one half of
Wpap(N/) as N increases from N = N/ and then grows quadratically until it is
two times bigger than Wpop(Nf) at N = N/t This performance model can qual-
itatively describe the trend of elapsed time for P2P. Likewise, we can also apply a
similar analysis to M2L and write down the corresponding performance model as

const - 2°F1 . (n 4+ 1)¢  for N = N,

4.5.3
const - 22 . (n 4+ 1)8  for Nt > N > NF. (4.53)

WM2L<N) = {

Here, we use the fact that a balanced cluster tree with the depth [ contains 2!
total clusters and the assumption that each cluster interacts with at most a constant
value of clusters through M2L. Equation 4.5.3 shows that Wy, suddenly increases
to two times of Wy (Nf) as N slightly increases with 6N — 0 from N = Nf; and
then it remains constant whenever Nf“ > N > Nf. This performance model can
successfully explain the behavior of the elapsed time for M2L.
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Figure 4.3: Elapsed time of the six FMM kernels against the increasing number of
particles N, with polynomial interpolation degree n = 4, the maximum
number of particles in the leaf cluster Ny = (n + 1)® and admissibility
parameter 1 = 0.5.

4.6 Summary

In this chapter, we formulate an interpolation-based FMM for the efficient com-
putation of the relativistic space-charge field from a particle beam. In particular,
we derive the stretched ADMC of the cluster-cluster interaction for the relativistic
kernel. Our solver shows that the proposed FMM scales like O(N). Besides, our
code profiling result provides an insight that P2P and M2L should be especially
emphasized when further optimization or parallelization is considered for the solver.
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Figure 4.4: A schematic comparison of treecode and FMM. The blue and red dots
indicate the target and source particles, respectively.
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Chapter 5

GPU Parallelization of
Dual-Tree-Traversal based FMM

In the previous chapter, we introduced an FMM based on the dual tree traversal
for the efficient computation of the relativistic space-charge field. We also demon-
strated that the proposed FMM successfully brings the complexity down to O(N).
A typical beam dynamics simulation requires hundreds or thousands of time steps.
The number of space-charge field evaluations is also proportional to the number of
time steps (the exact number depends on the choice of the numerical method for
integrating the particle’s equation of motion (2.3.1)). It is important to speed up
and parallelize the FMM solver so that the overall simulation time can be further
reduced. In this chapter, we discuss a GPU parallelization for our proposed FMM.

5.1 Overview

As illustrated in Section 4.1, the treecode computes the force-field for each single tar-
get particle through the particle-cluster interaction. The dual-tree-traversal-based
FMM computes the force-field for a batch of particles through the cluster-cluster
interactions and the total computational complexity can be thus reduced. This im-
provement also changes the tree walk scheme from multiple independent single tree
traversals to a single-time dual tree traversal. A treecode can be parallelized in the
data-parallelism way that each thread processes an independent tree traversal for
each target particle; thus, the parallelization of a treecode can benefit directly from
the power of GPUs which is based on the execution of multiple simple tasks through
multiple threads in the SIMD (single instruction, multiple data) model. On the
other hand, FMM might underuse the power of GPU because the dual tree traver-
sal could be only executed by one thread. Because a single GPU core has weaker
computing power compared to a single CPU core, the execution of the dual tree
traversal should be done on the CPU instead of GPU. Therefore, hybrid CPU-GPU
approaches based on the creation of the interaction lists by CPU were investigated
by some previous works [90, 88]. In this approach, the CPU first performs a dual
tree traversal to generate interaction lists; and then, the GPU uses these interaction
lists to evaluate the force-field. In this chapter, we refer to the work proposed by
Wilson et al. [88, 89] and discuss the GPU parallelization for our proposed FMM.
Different to their approach which is based on OpenACC (a directive-based program-
ming model) [91], our parallelization is based on the CUDA programming model.
The execution of our GPU-parallelized FMM can be summarized in 10 steps in Al-
gorithm 10. The H2D and D2H denote the “host to device” and “device to host”,
respectively. As shown in Figure 4.3, the execution of FMM spends most of the
time on the interaction phases (P2P and M2L). Although the parallelization of each
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FMM kernel is implemented in our application, we will only focus on the implemen-
tations of P2P and M2L (i.e., step 6 and step 8 in Algorithm 10) in later discussions.

Algorithm 5.1: An Outline for the Execution of the Proposed GPU-
Parallelized FMM

CPU: generate particles information x;, p; and allocate E;, B;

CPU: create cluster tree S with x;, p;

H2D: copy «;, p; and S to device

GPU: allocate vs., Psv, Esy, Bsy, E;, B;

GPU: perform upward pass with S, x;, p; to compute vs,, Ps.

CPU: perform dual-tree-traversal on S to build interaction lists (ITLs)
H2D: copy I'TLs to device

GPU: perform P2P, M2L with ITLs to compute Eg,, Bs,

GPU: perform downward pass with Eg,, Bg, to compute E;, B;
D2H: copy E;, B; to host

© 00 N & ok W N

[y
o

5.2 Array-based Tree Data Structure

In the implementation, it might be straightforward to express the cluster tree with
a pointer-based data structure; that is, each node object (particle cluster in our
case) contains data fields and a pointer, and this pointer is used to allocate the
objects of children nodes. One major disadvantage of using a pointer-based tree is
that the node objects are not stored at contiguous locations in the memory, and
this makes the data transfer between host and device difficult. Hence, it might be
beneficial to consider an array-based tree in the GPU application. Following the
approach in Ref. [92], we use multiple arrays to store node objects with multiple
members, one array for one member. A member of a node object with index i
is located in the i-th element of the corresponding array. Besides, two additional
arrays are respectively used to specify the parent index and children indices of nodes.
Because our cluster tree is constructed through a k-d tree with cardinality-balanced
subdivision of particles, it will be a balanced binary tree. Hence, we will narrow our
following discussions to balanced binary tree.

Although there may exist several possibilities, we adapt the breadth-first scheme
to assign the node index of a tree. With this index assignment scheme, the nodes
in the level [ have the indices {2',...,2(*)~1}: and similarly, a node with the index
i belongs to a level |logi/log2|. Here, we define that the level of the cluster tree
starts from 0 and the node index starts from 1. The breadth-first scheme can ensure
that the member data of nodes from the same level stays contiguously in an array.
This data arrangement is cache-friendly for both the upward pass (P2M and M2M)
and the downward pass (L2L and L2P) where the whole member data of nodes from
the same level will be accessed for the calculation. Therefore, the parent index and
the children pair of indices for a node with index i are defined as

—1 i=1,
3 AL

(—1,-1) if leaf node,
(2-4,2-1+1) else.

iparent(i) = { and ichildren(i) = {

A schematic representation of our array-based tree is provided in Figure 5.1. Because
our tree is balanced (due to the cardinality-balanced subdivision scheme), we can
preallocate a fixed-size array with the knowledge that the total number of nodes is
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2(s+1) _ 1 with the tree-depth

~J0 N < Ny,
| [log(N/Ny)/log2] N > Np.

It is worth noting that the resulting tree might not be balanced if other space-
subdivision schemes are adapted. In this case, one may preallocate a big enough
array that each node contains the maximum possible number of children nodes.
However, this causes large memory of unused nodes and leads to poor load-balancing
across multiple ranks when MPI parallelization is considered [93]. One possible way
to work around this issue is first creating a pointer-based tree, and an array-based
tree can be allocated based on the information from that. This approach is adapted
by some solvers, e.g. BaryTree [94].

Level O °
Level 1 e e
w: @ @ © @

array index
(node index)

parents -1 1 1 2 2 3 3

children 23) | 4.5 | 6,7) [C1-D)[E1,-1)|(1,-1)((-1.-1)

Figure 5.1: An array-representation of a balanced binary tree. The node index is
assigned with a breadth-first scheme.

5.3 Parallelization of P2P and M2L Kernels

Two lists of interaction pairs respectively for P2P and M2L, called interaction lists
(ITLs), are generated by the execution of the dual tree traversal (Algorithm 5.2)
in the CPU. After that, the ITLs are copied into the GPU and the GPU kernels
respectively of P2P and M2L are launched and each interaction pair is handled by
a thread block. As P2P and M2L are both similar to a direct summation algo-
rithm, their GPU implementations are straightforward; one thread in the threads
block handles the evaluation of the force-field of one target micro/macro particle
(P2P/M2L). The GPU-parallelization of P2P is illustrated in Figure 5.3. In our
implementation, we use an additional array to store the indices of all particles in
the system and the indices of particles from a cluster will always stay in a contigu-
ous memory block in the array during the subdivision (cf. Section B.3). However,
each member data of particles (e.g., positions and momenta) from a cluster accessed
through this particle-indices array does not necessarily stay contiguous in its array
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(Figure 5.3a). Thus, a member data of source particles accessed by threads is non-
contiguously distributed in an array. This can slow down the application because
the data access is not cache-friendly and requires frequent access from the global
memory. One way to remedy this problem is using the shared memory (Figure 5.2)
provided in CUDA-capable GPUs: we first load each member data of particles from
a source cluster to shared memory so that the data can be accessed much faster by
threads (Figure 5.3b). For one thing, each member data of source particles stays
in a contiguous block in the shared memory. For another, the shared memory is
on-chip memory and has much lower latency than the global memory.  For the

1 1 t
I T
|
T

Figure 5.2: Memory hierarchy of CUDA-capable GPUs. SP and SM denote stream-
ing Processor and streaming multiprocessor, respectively.

M2L implementation, it is not necessary to apply the shared memory because the
member data of macro particles from a cluster is originally in a contiguous memory
block. The data access is already cache-friendly so that the L1 cache in each stream-
ing multiprocessor can be effectively used. A schematic of M2L implementation is
provided in Figure 5.4. Because the implementations of the other FMM kernels
share large similarities with P2P or M2L, we will not go through the detail of the
implementations.



t 1 2 3 4 5 6 1

Z;

D

particle indices particle indices

shared memory x

particle indices

particle indices

s M
12

i

5

(a) P2P without shared memory (b) P2P with shared memory

3 4 6

Figure 5.3: Implementations of P2P kernels (a) without shared memory and (b) with
shared memory. The data associated with the target and source particle
is colored with blue and red, respectively. The thread is denoted by a
shorthand “t”.

Figure 5.4: An illustration of the implementation of the M2L kernel. The data
associated with the macro particle of the target cluster and the source
cluster is colored with blue and red, respectively. The thread is denoted
by a shorthand “t”.
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Algorithm 5.2: Generation of Interaction Lists by Dual Tree Traversal
S;: particle cluster with node index ¢
s: stretch factor
n: admissibility parameter
p2p-itl: initially empty list of interaction for P2P (global scope)
m2l_itl: initially empty list of interaction for M2L (global scope)
Function dualtraversefillitl(i, 7, s, n)
if ichildren(i) == (—1,—1) A ichildren(j) == (—1,—1) then
| push (,7) to p2p-itl
else
isAdmissible = admissible(S;, S}, s,7) (Algorithm 4.7)
if isAdmissible then
| push (,7) to m2l.itl
else if ichildren(i) == (—1,—1) then
for k € ichildren(j) do
| dualtraversefillitl(i, k, s, 1)
end
Ise if ichildren(j) == (—1,—1) then
for k € ichildren(:) do
| dualtraversefillitl(k, 7, s, n)
end

)

else
if diam(S;, s) > diam(S;, s) then
for k € ichildren(i) do

| dualtraversefillitl(k, j, s,7)
end
else

for k € ichildren(j) do

| dualtraversefillitl(i, k, s,7)
end
end

end

end
end

5.4 Race Conditions in P2P and M2L Kernels

In CUDA applications, a GPU kernel can be launched with a grid of thread blocks.
Several thread blocks can be executed by a streaming multiprocessor concurrently,
depending on the resource required to run a thread block. In the execution of M2L
or P2P, each pair of interaction is handled by one thread block and it is possible
that several pairs of interaction with the same target index are handled by differ-
ent thread blocks simultaneously. This can cause a race condition and produce an
unexpected result because the corresponding memory data associated with a target
cluster can be updated by the threads from the different blocks at the same time
(Figure 5.5a). One common way to remedy the race condition is using CUDA’s
atomic operations [95] which locks a memory location so that only one exclusive
thread is allowed to write the value stored in this memory location each time. How-
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ever, the atomic operations in CUDA are only supported for some primitive types
(e.g., Int32 and Float32) and cannot be used in our implementation because each
three-dimensional vector in the physical system (e.g., position, momentum and vec-
tor field) is represented by a non-primitive and immutable type SVector{3,T} [96]
with three elements of type T. Due to this immutability, we cannot apply atomic
operations to change any individual elements of a SVector{3,T} object even though
T is a primitive type (if so we can apply atomic operations to update each element
of a SVector{3,T} object). Therefore, in our implementation, we divide pairs of
interaction into groups such that each group only contains the pairs of interaction
with the same target index; and during the kernel execution, each group will be
handled by a thread block. To implement this, we first sort the pairs by the value
of the target index which can be done efficiently with Quicksort. After that, we
generate an additional array to indicate the start position of each group of pairs in
the sorted ITL so that this array can be used for the dispatch of thread blocks to
each group during the kernel execution (Figure 5.5b).

tb1  th2  th3  tb4 tb1 tb2 b3
p2p.itl = [(1,1) (1,2) (3,3) (2,3)] sorted_p2p-itl = [(1,1) (1,2) (2,3) (3,3)]

p2p-itl_ptr = [1 3 4 5]

1 2 3 1 2 3
source | : : source |
read / /\ read \ / /
tb1 || tb2 || tb3 || tb4 tb1 | | tb2 || tb3
write / write / \ \
target target
.1.- .2.- .3.- - - .
(a) original problem (b) a solution

Figure 5.5: A schematic of the race condition problem during the execution of P2P
kernel (same for M2L kernel) with ITL. Figure 5.5a illustrates the orig-
inal problem. Figure 5.5b illustrates a solution by dividing the pairs of
interaction to groups with the same target index. The thread block is
denoted by a shorthand “tb”.

5.5 Results

In this study, a package FMM4RBGPU jl is written in the Julia programming lan-
guage [46] with CUDA.jl [97, 98]. This package provides CPU (serial) and GPU
solvers of the dual-tree-traversal-based FMM for the efficient computation of the
relativistic space-charge field. The cluster tree is implemented using the array-based
data structure discussed in Section 5.2.

To understand the performance of our GPU parallelization, we run a simulation
with NV = 2.56 x 107 particles on different CPUs and GPUs listed in Table 5.1. The
corresponding elapsed times are demonstrated in Figure 5.6. We can see that our
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GPU-based solver can achieve a speed up between 57 and 197 (relative to the result
of a single CPU).

CPU GPU
INTEL XEON E5-2640V4 NVIDIA A100
AMD EPYC 7402 NVIDIA V100
INTEL XEON GOLD 5115 NVIDIA P100

Table 5.1: CPUs and GPUs used in the simulations for the performance benchmark.
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42501 +
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¢ 35001 g
Q. Q.
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@ 3250 9]
3000 1 201 19.08 +0.98
2807.1 12
2750 A . . . i i i
E5-2640 EPYC7402 GOLD5115 A100 V100 P100
(a) CPU (b) GPU

Figure 5.6: Elapsed times of a simulation with N = 2.56 x 107 particles on different
(a) CPUs and (b) GPUs. The simulation is performed with n = 0.5,
n =4 and Ny = (n+ 1)3. Each data point shows the statistical result of
100 runs.

To validate our GPU-parallelized FMM solver, we simulate bunch broadening of
an 1pC electron beam propagating in the free space with our solver and ASTRA
(a beam dynamics solver based on the particle-in-cell method) [34]. The simulation
results from both solvers are demonstrated in Figure 5.7. The electron beam has an
initial Gaussian distribution with the same RMS beam size 500 pm in each direction.
We use 10* macro particles and 6.25 x 10° real particles for the simulations of
ASTRA and FMM, respectively. The Boris method (2.3.3) is used to push the
charged particles in the simulation. One may observe that the results computed
from ASTRA and FMM are very close.

5.6 Summary

In this chapter, we discuss a GPU parallelization for our FMM solver. Instead of
the commonly used atomic operations, the race conditions appearing in P2P and
M2L are solved by dividing the pairs of interaction with the same target index into
groups. The result shows that our solver can achieve a speedup of roughly 200
when executed on GPUs. Our solver is also validated by the simulation of bunch
broadening and by comparing it with the result of ASTRA.
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Figure 5.7: Simulation results of bunch broadening for (a) 2MeV and (b) 5MeV

beams using ASTRA and FMM. The transverse beam size o, and the
longitudinal beam size o, are plotted against the propagation distance.
The FMM parameters are n = 0.5, n = 3 and Ny = (n + 1)3.
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Chapter 6

ICS Simulation Model with
Space-Charge Effect

In Chapter 3 and Chapter 4, we introduced numerical methods for the efficient
computation of the relativistic space-charge field. Also, in Chapter 5, we discuss
a GPU parallelization for our proposed FMM and develop a package for that. In
this chapter, we will combine our research efforts made in this thesis and propose a
GPU-parallelized ICS simulation solver with the consideration of the space-charge
effect.

6.1 Simulation Model

We can now include the space-charge effect in the ICS simulation model, i.e., we
solve the equation of motion of a charged particle

daz_l

dt_ pa

dp ¢ D

= = L(E(x,t)+ % x B, t
& = B@ )+ 2 x B, 1)),

with respect to the force-fields
E=FE. + Ey,. and B = B + Bq,.. (6.1.1)

Therefore, in this simulation model, the following tasks are done in every simulation
time step:

1. computing the radiation spectral-angular distribution,

2. evaluating the relativistic space-charge field,

3. pushing particles using Boris method.
A simulation solver is implemented for the simulation model discussed above. In
this solver, the radiation spectral-angular distribution is computed by the frequency-
domain method instead of the time-domain method. The time-domain method
requires large memory for the storage of the total radiation field over a uniform time
grid and the memory requirement might not be manageable for a single GPU. The
corresponding routine of the frequency-domain method is parallelized in the way that
each GPU thread computes the radiation energy in a frequency and at an observation
point (i.e., the detector parallelization introduced in Section 2.5.2). The space-
charge field calculation in each time step is performed by the GPU routines from
the package FMM4RBGPU.jl proposed in Section 5.5. The Boris method (2.3.3) is
used to integrate the particles’ equation of motion and the corresponding routine is
also parallelized such that each GPU thread updates the trajectory of a particle.
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6.2 Results and Summary

To investigate the effect of the space-charge field on ICS, we consider a simulation
with the parameters listed in Table 6.1. The simulations both with and without
space-charged effect are performed and the radiation profiles for both cases are
demonstrated in Figure 6.1 and Figure 6.2, respectively. We can see that the radia-
tion profiles from both simulations have almost the same patterns and magnitudes.
This validates our assumption in Chapter 2 that the space-charge effect has negli-
gible impact on the conventional ICS light sources.

Parameter Value
ICS Laser
laser strength ag 0.5
wavelength 1pm
pulse duration 100 fs
Electron Beam
beam charge 0.205pC
mean energy 2.56 MeV
Oz, Oy, O 10 pm, 10 pm, 10 pm
energy spread 0
beam divergence (z,y,2) 0,0,0

Table 6.1: Parameters for ICS simulations. The laser fields are sinusoidally oscillated
in time with a finite duration and a constant amplitude. The particle
beam has Gaussian distribution in space with RMS beam sizes o, o,
and o.. The total number of particles is 1.28 x 10° so each particle
represents one electron.
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Figure 6.1: Simulated ICS radiation profiles without space-charge field.
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Figure 6.2: Simulated ICS radiation profiles with the space-charge field.
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Chapter 7

Conclusion and Outlook

This thesis covers the research for the numerical modeling of the ICS process. We
first neglect the space-charge effect in the simulation model and investigate the
Liénard—Wiechert potential for the computation of ICS radiation spectra. To apply
the Liénard—Wiechert potential for the evaluation of radiation spectra, we discuss
a time-domain method which preserves the temporal information of the radiation
field and the radiation field in the time-domain can be used to compute spectra
efficiently by the fast Fourier transform. Through our performance analysis of the
computational costs of both the time-domain method and the frequency-domain
method, we found that the time-domain method is in general more favorable than
the frequency-domain method for the computation of the ICS radiation spectra
within the specification of real-world experiment projects. Our developed solver
has been used to simulate the radiation profile for the AXSIS project proposed in
DESY [24, 99].

For the modeling of the space-charge effect in the ICS, we systematically investi-
gate the interpolation-based fast summation methods. We formulate a treecode and
an FMM for the fast evaluation of the relativistic space-charge field and propose
two error-control schemes. Our numerical results show that the scheme based on
the modified admissibility condition has better accuracy than the scheme based on
the relativistic transformation. Besides, GPU parallelization is also included in our
numerical solver and the GPU solver can achieve a speedup of roughly 200. Finally,
we discuss an ICS simulation model with the consideration of the space-charge effect
and a corresponding solver based on the computational techniques discussed in this
thesis is developed.

Our simulation result shows that the space-charge effect on the ICS radiation
spectrum is insignificant for the parameters which can appear in the conventional
compact sources (i.e, an electron beam with sizes much larger than the radiation
wavelength and laser pulse with a duration of 100 fs). In this case, the space-charge
effect is negligible and the simulation can be performed much faster without taking
the space-charge into account. However, due to the recent advances in strong-field
nano-optics, the generations of attosecond electron pulse trains was experimentally
demonstrated [100, 101, 102, 103]. This breakthrough opens up a feasibility of
generating coherent ICS X-rays from pre-modulated electron pulse trains in the
scale of subnanometers. It might be essential to understand if the structure of
microbunches can be distorted by the space-charge effect during the ICS process.
Thus, the developed simulation model /solver which takes the space-charge effect into
account can be an indispensable tool for investigating this problem in the future. It
is also worth noting that our developed methods/solvers for the space-charge field
calculation are not limited to the simulation of ICS; they can also be used in other
beam dynamics simulations where the consideration of point-to-point Coulomb effect
is necessary and the mean-field model cannot be applied [50, 78, 65]. In Ref. [78],
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the space-charge field was modeled by the computation of Lorentz-boosted Coulomb
field (i.e., Equations (3.4.1)) via brute-force method and only 10* macro particles
were used to approximate 1.6 pC and 16 pC beams due to the high computational
complexity of O(N?). For this problem, a real-particle simulation (i.e., using 107
and 10® particles for the 1.6 pC and 16 pC beams, respectively) is manageable with
our FMM solver. Because only single-GPU parallelization is implemented in our
FMM solver, it might not be enough for real-particle simulations of high bunch
charge beams, e.g., a 1nC beam requires 10'° real particles. Therefore, it is also
worth it to consider multi-GPU parallelization for the solver in the future.

84



Appendix A

A.1 Normalization of Physical Quantities

In the theoretical and numerical study, it is beneficial to normalize the physical
quantities. For the Inverse Compton Scattering Process, it is natural to use the
laser’s wave number kg and frequency wy to define the characteristic length scale
and time scale. Here, the symbols with tilde denote normalized quantities and
symbols denote original physical quantities.

e wy = characteristic frequency (laser in this case)
e ko = characteristic wave number (laser in this case)
e . = charge of a single electron

e m. = rest mass of a single electron

® q=q/q

ot = th

o I = ]{?0113

o V= 'U/C()

hd ZNZ = p/mec()

o E=cFE/m.wycy

e B =eB/m.wy

A.2 Property of the Retardation Condition in the
Liénard—Wiechert Potential

Lemma A.2.1. When an observer at the position x and time t receives a radiation
pulse from a particle, this pulse can only be emitted from a unique position '(t,) in
this particle’s trajectory at a unique past time t.. That is only one root t, fulfills the
retardation condition

[l — a'(ir) 2

Co

L=t + (A2.1)

Proof. We can prove by contradiction. Assume that two positions at the past times
t1, to with o > t; in a particle’s trajectory fulfill the retardation condition for the
given observation position @ and time ¢ (t > ¢;,t2). We have

—2'(t —x'(t
e -2l ., =2,
Co Co

t=1t +

which can be recast into (after the subtraction of them)

—x'(t —x'(t
P (O P . 701 A2
Co Co
By triangular inequality, we have
l — 2 (t1)]|2 < [l — @' (t2)[l2 + |2 (t2) — 2'(t1)]]2
=z —2'(t)]2 — |z — 2'(2) ]2 < [|2'(t2) — @/(t1)]]2- (A.2.3)
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After substituting (A.2.2) into (A.2.3), we get

"(tg) — x'(t "(ty) — x'(t
ty—t, < ' (t2) — a'(t1) ]2 o < ' (t2) — 2'( 1)||2’
o lo — 11

where ||&/(t3) — @' (t1)]|2/(t2 — t1) is the particle’s average speed in the time duration
to —t1. This violates a postulate of special relativity because no objects can traverse
with a speed faster than (or equal to) the speed of light. O
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Appendix B

B.1 Approximation of the Denominator of the
Relativistic Kernel Function
Lemma B.1.1. Let p := p,e, + p.e. a vector in the cylindrical coordinate. If
D, > pr, we have the approrimation
lz]l3 + (p - 2)* = r* + (1 +p2)2%,

where r = 22 + 12,
Proof. In the cylindrical coordinate, the function can be expressed as

|3 + (p - @) = r* + 2* + pfr® + plz® + 2p,p.ra. (B.1.1)

To find out the approximation, we analyze the term
prr? + pia® + 2ppara (B.1.2)

in three main different cases.
For the cases of r ~ z and r < z, we first recast (B.1.2) to

2 .2 2
2 2 prr pT‘pZT
P (p_z?““pz ?)

and we can conclude that (B.1.2) can be approximated by p?2z?.
For the case r > z, we recast (B.1.2) to

2 .2
pir? (1 + p_;z_Q + 2&5)
pr/r pT‘r

and consider three further scenarios:
o if %f > 1, (B.1.2) is approximately equal to p?z2

o if 222 <1, (B.1.2) is approximately equal to pir? & p?r? + p2z?

o if 222 ~ 1, (B.1.2) is approximately equal to pf?ﬁ(z—gi—z +3) = p?2? + 3p?r?

Finally, we can conclude that:

e forr~z r<zorr>zA gif > 1, (B.1.1) can be approximated by
72+ (14 p?)2?
e Forr>> 2z A % < 1, (B.1.1) can be approximated by
(L4+p2)r* + (1+p2)® = r? + (1 +p2)2°
o Forr>2Ab= ]

(14 3pH)r? + (14 p2)2* = r? + (1 + p?)2? O
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B.2 Some Properties of Special Relativity

This section summaries some consequences of special relativity, which are already
discussed in the literature, for example in the textbook of classical electrodynam-
ics [42]. Consider one inertial frame X' moving with a velocity w (corresponding to
the momentum p,,) relative to another frame K. The space-time coordinates of an
event in these two frames follow the transformation

(cot’) = Yulcot) — pPu - , a:’H = Yu|| — pu(cot), ¥ =z, (B.2.1)

where || and L denote the components parallel and perpendicular to p,. Here, we
use p, to denote the magnitude of p, (i.e, p, := ||pu||2). Similar to the space-time
coordinates, the four-momentum (energy and momentum) in X' and K follows the
transformation

Y =%y = PuPs D) =VWP| — PV DL =Dl (B.2.2)

The transformation formulas for the position and momentum above are expressed
in the component-wise form because of its convenience for the theoretical derivation.
These transformations can also be expressed in vector form

r =x+ (x - pu)Pu — ColPu, (B.2.3)

Yu + 1

/

p=p+

P (P Pu)Pu — 7P (B.2.4)

B.3 Data Structure of the Cluster Tree

Although the FMM solvers developed in this work are written in the Julia program-
ming language, we use C-style pseudocode to illustrate the data structure of the
cluster tree. The data structure of the cluster tree can be naively designed as follow:

struct Cluster {
size_t npar;
value_type (*positions)[3]; // array of particle positions
Cluster* children;

3

However, this naive implementation may require a significant amount of memory as
the position of particles in each cluster is explicitly stored. For a balanced cluster
tree describing an N-particles cluster, the number of particle positions to be stored
is N'log, N. If we have N = 2 x 10%, a memory of roughly 1 GB will need to be allo-
cated during the construction of the cluster tree and this could cause a performance
bottleneck.

Alternatively, one may store the particle positions outside the structure and de-
clare an external array parindices to store the indices of all the particles. In such
a case, the data structure can be expressed as

size_t parindices|[N]
value_type positions[N] [3]
struct Cluster {

size_t pindex_lo;

size_t pindex_hi;

Cluster* children;

3
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If the elements of parindices are arranged in such a manner that the indices of the
particles in the cluster S occupy in parindices contiguously from [-th (pindex_lo)
to h-th (pindex_hi) location, their values in parindices (i.e., their indices) can be
expressed as

P, Pi+1y-- -5 Ph-

In the subdivision of S, we first determine the splitting coordinate direction g €
{z,y, 2z} from bbox(S) and permute the elements in parindices that

p;,...,p’{%J,p’{%JH,...pg

and
Sgp/v g if [Hr]>i>1
M\ s gy, i1 <i<h

This permutation enables the objects of the children clusters S1 and S2 to access
their belonging particle indices by:

S1.pindex lo=/, S1.pindex hi=| "],
S2.pindex_lo=|%"| + 1, S2.pindex hi=h,
parindicies[S1.pindex_lo],...,parindicies[S1.pindex hi],

parindicies[S2.pindex_lo],...,parindicies[S2.pindex hi].

In this study, the permutation is implemented by the Quickselect algorithm with
the Lomuto partition scheme [104]. The complexity on average is O(N) and can be
O(N?) in the worst case scenario.
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Appendix C

C.1 Definition of Cumulative Local Field

Lemma C.1.1. Assume a target point x; is contained in a sequence of clusters
{SU|1=0,...,k} of each level | with S"T C S' and S° = S. The total force-field
of the macro particles from this sequence of clusters transferred to this target point
can be calculated by

k

Fl@) =Y lsu(@)lsiy =Y Lo ulsr (@),

=0 p
where Lqi 1s defined as
le# = LSZ,H + Z’CSZ?%VJ . 651—1#/(5517“) with LS()’“ = Lso#.
w

Proof. We can prove this statement by mathematical induction. By the definition
above, the statement automatically holds for the case [ = 0. We only need to prove
the statement holds for the case [ = k provided that it is true for [ = k — 1. Thus,
we have

k
Z Zésl,u(wDLSl,u

=0 p
k-1
= > Usep(@) Lo+ > Y Lo u(@i) L,
1% =0 p

= Zésk7“(mi)Lsk7“ + Zﬁsk—l7“/ Lgr—1 (x;) (by assumption)
© w
(4.1.9)
= Z gsk’u(wi)LSk# + Z Esk—l#l Zgsk—1>“/(£sk’“)ésk7“(wi)
I i w

= Z (Lsk’“ + Zﬁsk717M/ . €5k17“/(£sk7“)> fsk7“(wi).
© W

Vv
:Esk,u
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