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Preface 

I submitted my cumulative dissertation to the Medical Faculty at the University 

Medical Center Hamburg-Eppendorf within the Non-Medical PhD Programme. 

I was supervised by Prof. Dr. Antonia Zapf (University Medical Center Hamburg-

Eppendorf), Prof. Dr. Werner Brannath (University of Bremen) and 

Prof. Dr. Karl Wegscheider (University Medical Center Hamburg-Eppendorf). 

My research was funded by the Deutsche Forschungsgemeinschaft (DFG) as part of 

the project Flexible designs for diagnostic studies (ZA 687/1-1). 

My dissertation comprises three Thesis Articles which I summarize in the synopsis: 

Thesis Article 1: Zapf, A., Stark, M., Gerke, O., Ehret, C., Benda, N., Bossuyt, P., 

Deeks, J., Reitsma, J., Alonzo, T., & Friede, T. (2020). Adaptive 

trial designs in diagnostic accuracy research. Statistics in 

Medicine, 39(5), 591-601. https://doi.org/10.1002/sim.8430  

Thesis Article 2: Stark, M., & Zapf, A. (2020). Sample size calculation and re-

estimation based on the prevalence in a single-arm confirmatory 

diagnostic accuracy study. Statistical Methods in Medical 

Research, 29(10), 2958-2971. 

https://doi.org/10.1177/0962280220913588  

Thesis Article 3: Stark, M., Hesse, M., Brannath, W., & Zapf, A. (2022). Blinded 

sample size re-estimation in a comparative diagnostic accuracy 

study. BMC Medical Research Methodology, 22, Article 115. 

https://doi.org/10.1186/s12874-022-01564-2  

 

In the following synopsis, the personal pronoun ‘we’ refers to the group of researchers 

with whom I co-published these three Thesis Articles. 
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Abstract 

Background: A confirmatory phase III diagnostic study compares the sensitivity and 

specificity of an experimental test either against pre-defined minimum thresholds in a 

single-test design or against a comparator test in an unpaired or paired design. Hereby, 

it combines sensitivity and specificity as co-primary endpoints. In conventional sample 

size calculation, the problem of an overpowered study can arise because the final 

sample size represents the maximum of the individual sample sizes needed to show 

sufficient sensitivity or specificity. For this sample size calculation, one needs 

assumptions about nuisance parameters which are the disease prevalence and, in a 

paired design, proportions of discordant test results in the diseased and non-diseased 

population. Often these assumptions are uncertain leading to an incorrect specification 

of the sample size. This thesis aims to improve the initial sample size calculation and 

to develop blinded adaptive designs for the sample size re-estimation. 

Methods: As there have been no adaptive designs to adjust the sample size during a 

diagnostic study so far, my co-authors and I elaborate on possibilities for developing 

adaptive designs in Thesis Article 1. In Thesis Articles 2 and 3, we develop the optimal 

sample size calculation and blinded adaptive design based on the optimal sample size 

calculation. We use the adaptive design to adjust the sample size by estimating 

nuisance parameters in each of the three study designs. We aim to show superiority 

or non-inferiority of the experimental test in both endpoints or combinations of 

superiority and non-inferiority, respectively. We conduct simulation studies to evaluate 

the performance of the blinded adaptive design and compare it to a fixed design without 

sample size re-estimation. Furthermore, we compare the blinded adaptive design to 

the existing approach of McCray et al. (2017) within a paired example study. 

Results: The optimal sample size calculation and blinded adaptive design support 

reaching the target power. The proposed adaptive design controls the type I error rate 

due to blinded sample size re-estimation. Nuisance parameters are estimated without 

any relevant bias. Adjusted sample sizes are close to true sample sizes. Our blinded 

adaptive design leads to a smaller sample size than the already existing approach. 

Conclusions: We suggest applying the optimal sample size calculation and the 

blinded adaptive design in confirmatory diagnostic accuracy studies as both support 

reaching the target power. Their application does not require much additional effort.  
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Zusammenfassung 

Hintergrund: Eine konfirmatorische Diagnosestudie vergleicht die Sensitivität und 

Spezifität eines experimentellen Tests mit vordefinierten Grenzen in einem Ein-Test 

Design bzw. mit einem Komparatortest in einem ungepaarten oder gepaarten Design. 

Die Studie kombiniert Sensitivität und Spezifität zu co-primären Endpunkten. In der 

konventionellen Fallzahlplanung kann eine zu hohe Power auftreten, weil die finale 

Fallzahl das Maximum der individuellen Fallzahlen der beiden Endpunkte darstellt. Für 

die Fallzahlplanung braucht man Annahmen über Störparameter wie die Prävalenz, 

und im gepaarten Design, die Anteile der diskordanten Testergebnisse. Oftmals sind 

diese Annahmen unsicher, was zu einer ungenauen Berechnung der Fallzahl führen 

kann. Das Ziel meiner Doktorarbeit ist die Verbesserung der initialen Fallzahlplanung 

und die Entwicklung eines verblindeten adaptiven Designs zur Fallzahlneuschätzung. 

Methoden: Da bisher keine adaptiven Designs zur Fallzahlanpassung in einer 

Diagnosestudie existiert haben, erörtern meine Koautoren und ich die Möglichkeiten 

zur Entwicklung von adaptiven Designs in Publikation 1. In Publikation 2 und 3 

entwickeln wir die optimale Fallzahlplanung und ein verblindetes adaptive Design, das 

auf die optimale Fallzahlplanung zurückgreift. Es dient zur Anpassung der Fallzahl mit 

Hilfe der geschätzten Störparameter in den drei Studiendesigns, die entweder darauf 

abzielen die Überlegenheit, Nicht-Unterlegenheit oder eine Kombination aus 

Überlegenheit und Nicht-Unterlegenheit des experimentellen Tests in beiden 

Endpunkten zu zeigen. Wir verwenden Simulationsstudien um das Verhalten des 

verblindeten adaptiven Designs zu evaluieren und es mit einem fixen Design ohne 

Fallzahlneuschätzung zu vergleichen. Außerdem vergleichen wir an einer gepaarten 

Beispielstudie das verblindete adaptive Design mit dem existierenden Ansatz von 

McCray et al. (2017). 

Ergebnisse: Die optimale Fallzahlplanung und das adaptive Design tragen zum 

Erreichen der Zielpower bei. Durch die Verblindung kontrolliert das adaptive Design 

den Fehler 1. Art. Die Störparameter werden ohne relevante Verzerrung geschätzt. 

Die angepassten Fallzahlen kommen den wahren Fallzahlen nahe. Unser adaptives 

Design führt zu kleineren Fallzahlen als der bereits existierende Ansatz. 

Schlussfolgerungen: Wir schlagen die Anwendung der optimalen Fallzahlplanung 

und des verblindeten adaptiven Designs vor, weil beide Methoden das Erreichen der 

Zielpower unterstützen. Ihre Anwendung erfordert keinen erheblichen Zusatzaufwand.
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1 Synopsis 

1.1 Introduction 

On 26 May 2021, after a four-year transitional period, the European Union (EU) 

Regulation 2017/745 of the European Parliament and of the Council of 5 April 2017 on 

medical devices came into force . The regulation aims to create uniform rules for 

developing and approving medical devices in the European Union (EU Regulation of 5 

April 2017, 2017). According to the regulation, a medical device can be used, among 

other things, to correctly diagnose a disease or injury (EU Regulation of 5 April 2017, 

2017). Hence, it serves as a diagnostic test by revealing a patient’s disease status to 

support attending physicians in their choice of necessary treatments (Zhou et al., 

2011). During development, a medical device should pass some consecutive phases 

including exploratory, confirmatory and post-market clinical follow-up studies (EU 

Regulation of 5 April 2017, 2017). In 1990, Köbberling et al. structured these studies 

into four phases: Phase I studies serve to verify the functionality and safety of the 

diagnostic test. Then, exploratory phase II studies give first insights into the diagnostic 

accuracy in patients with known disease status and help to identify the cut-off value to 

distinguish between diseased and non-diseased ones. Confirmatory phase III studies 

aim to prove the diagnostic accuracy with the pre-defined cut-off value in patients with 

a priori unknown disease status. Finally, phase IV studies evaluate patients’ benefits 

of the diagnostic test after the market launch in combination with subsequent medical 

treatments. 

In confirmatory phase III studies, several study designs evaluate the performance of 

the experimental diagnostic test. In each case, the reference standard determines the 

true disease status of each study participant. Figure 1 shows these study designs. The 

single-test design compares the experimental test to pre-defined minimum thresholds 

(Zhou et al., 2011). A comparative study design compares the experimental test to a 

comparator test in an unpaired or paired way (Zhou et al., 2011). The unpaired design 

randomizes each study participant to either the experimental or comparator test, in 

addition to the reference standard (Pepe, 2003). In the paired design, participants have 

all three diagnostic tests performed on them (Bossuyt et al., 2006). The Guideline on 

clinical evaluation of diagnostic agents issued by the European Medicines Agency 

(EMA) through its Committee for Medicinal Products for Human Use (CHMP) (2009) 

prefers the paired design to the unpaired design if it is practicable and ethically 
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justifiable. The reason is that the comparison of diagnostic tests within the same 

individual diminishes variability of measurements. Otherwise, in case of an invasive 

experimental and comparator test, the unpaired design might be more appropriate 

(Alonzo et al., 2002). 

EMA and U.S. Food and Drug Administration (FDA) recommend to use sensitivity and 

specificity as co-primary endpoints in diagnostic accuracy phase III studies (CHMP, 

2009; FDA, 2007). Sensitivity determines the probability to correctly diagnose diseased 

individuals (Pepe, 2003). Whereas specificity denotes the probability to correctly 

diagnose non-diseased individuals. The Intersection-Union Test combines sensitivity 

and specificity with a joint hypothesis (Hamasaki et al., 2018; Korevaar et al., 2019). In 

this context, the study goal is either to show superiority or non-inferiority of the 

experimental test in both endpoints. A combination of superiority and non-inferiority 

regarding both endpoints is also possible. 

 

 

 

 

 

 

 

 

EU regulation 2017/745 (EU Regulation of 5 April 2017, 2017) requires justification of 

the sample size needed to evaluate a medical device. Hence, the sponsor of a study 

used for approving the medical device has to provide a precise sample size calculation 

for such a study. Referring again to confirmatory diagnostic accuracy phase III studies, 

the Guideline on clinical evaluation of diagnostic agents (CHMP, 2009) points out that 

the sample size strongly depends on the disease prevalence. The conventional sample 

size calculation consists of three steps combining the co-primary endpoints in 

reference to the prevalence. The first step determines the needed sample sizes of 

diseased and non-diseased individuals by performing separate calculations for each 

endpoint. The second step relates these sample sizes to the prevalence to receive 

representative samples to show sufficient sensitivity or specificity, respectively 

(Flahault et al., 2005; Hajian-Tilaki, 2014). The two representative samples sizes are 

not necessarily equal, especially if there is a low or high disease prevalence. In the 

diagnostic accuracy study designs 

single-test design comparative design 

unpaired design paired design 

Figure 1. Study designs of a confirmatory diagnostic accuracy trial 
(Thesis Article 3: Stark et al., 2022). 
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third step, the maximum of both representative sample sizes leads to the final sample 

size (Buderer, 1996). In Thesis Article 2, we explain the conventional approach by 

planning needed sample sizes of diseased and non-diseased participants with an 

individual power of 90% each in the first step (Stark & Zapf, 2020). As both groups of 

diseased and non-diseased individuals are independent, the study reaches an overall 

power of at least 80%. However, we highlight in Thesis Articles 2 and 3 that this 

conventional approach can lead to a too large final sample size and hence to an 

overpowered study (Stark et al., 2022; Stark & Zapf, 2020). This problem arises from 

choosing the maximum of both representative sample sizes in the third step. Such an 

overpowered study raises ethical concerns because as few patients as possible should 

be exposed to investigations in a trial to avoid unnecessary burdens. This thesis 

addresses this research question by providing an optimal sample size calculation 

approach depending on the prevalence to avoid overpowered confirmatory diagnostic 

accuracy studies. This approach covers the sample size calculation for single-test, 

unpaired and paired diagnostic studies aiming to show superiority, non-inferiority or a 

combination of both in the co-primary endpoints. 

Often, assumptions needed for sample size calculation are uncertain during the 

planning phase of a confirmatory study (CHMP, 2007). Adaptive designs serve, among 

other aims, to counteract these uncertain assumptions by estimating predefined 

parameters included in the initial sample size calculation and, then, adjusting the 

sample size during the study (Bhatt & Mehta, 2016). The Reflection paper on 

methodological issues in confirmatory clinical trials planned with an adaptive design 

states that, in general, adaptive study designs use “statistical methodology [which] 

allows the modification of a design element … at an interim analysis with full control of 

the type I error” (CHMP, 2007). A subgroup of adaptive designs are group-sequential 

designs which enable an early stop of the trial due to futility or efficacy of the 

experimental diagnostic test (FDA, 2018; Zapf et al., 2020). Adaptive designs can be 

based on either blinded or unblinded interim analyses, with the unblinded design 

revealing the sensitivity and specificity of the experimental test in diagnostic studies 

(Zapf et al., 2020). In contrast, the blinded design keeps them secret but estimates 

nuisance parameters, e.g. the disease prevalence and proportions of concordant or 

discordant test results in the paired design (McCray et al., 2017; Proschan, 2005). In 

Thesis Article 1, we worked out that adaptive designs are already well-known and 

much appreciated in the context of therapeutic trials, but hardly developed for 
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diagnostic studies (Zapf et al., 2020). Consequently, we confirm the need for adaptive 

designs in diagnostic studies and elaborate on their potential uses. However, sample 

size re-estimation is particularly important in diagnostic studies because some 

parameters needed for sample size calculation might be unknown in most cases, e.g. 

proportions of discordant test results in a paired design (Gerke et al., 2012). Therefore, 

the implementation of adaptive designs in diagnostic studies is necessary. This thesis 

contributes to this extensive area of research by developing blinded adaptive designs 

to re-estimate the sample size based on nuisance parameters in confirmatory 

diagnostic accuracy studies. 

To summarize the state of the literature on sample size calculation in diagnostic 

studies, Jones et al. (2003), Bachmann et al. (2006) as well as Bochmann et al. (2007) 

ascertain that hardly any medical publication on diagnostic studies reports an 

appropriate sample size calculation. However, there is statistical methodology to 

calculate sample sizes in diagnostic accuracy studies. Hajian-Tilaki (2014) provides a 

sample size calculation approach applicable if the disease status is known. For 

prospective diagnostic studies with unknown disease status of study participants, 

Buderer (1996) and Flahault et al. (2005) include the disease prevalence into sample 

size calculation to obtain a representative sample. No publication addresses the 

problem of an overpowered study that can arise in the context of co-primary endpoints. 

This gives evidence for developing the optimal sample size calculation in this thesis. 

The literature contains well-established methodology for adaptive designs in 

therapeutic studies, including group-sequential designs (Bauer et al., 2016; Chow & 

Chang, 2006; CHMP, 2007; Jennison & Turnbull, 2000; Moyé, 2006; Todd, 2007; 

Wald, 2014; Wassmer & Brannath, 2016; Whitehead, 1997). Referring to blinded 

adaptive designs in therapeutic studies, there are several approaches to re-estimate 

the sample size based on nuisance parameters with either a continuous, time-to-event 

or binary endpoint (Friede et al., 2019; Friede & Kieser, 2006, 2013; Friede & Miller, 

2012; Proschan, 2009; Sander et al., 2017). Asakura et al. (2017) propose a group-

sequential design to early stop for futility or efficacy in therapeutic trials with co-primary 

endpoints measured within the same individual. However, sensitivity and specificity are 

independent co-primary endpoints in confirmatory diagnostic studies, which is why the 

approach of Asakura et al. (2017) cannot be applied to them. In Thesis Article 1, we 

collect research on adaptive designs for several development phases of a diagnostic 
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test, especially for phase II studies (Zapf et al., 2020). McCray et al. (2017) publish a 

blinded adaptive design to re-estimate the sample size based on the prevalence and 

the proportion of concordant test results in a paired diagnostic phase III study. 

However, they do not address the problem of an overpowered sample size which 

occurs due to co-primary endpoints. In general, the small amount of existing literature 

and conclusions based on Thesis Article 1 confirm the need for research regarding 

blinded adaptive designs in diagnostic studies. 

In summary of elaborations described above, the overall goal of my thesis is to develop 

methods supporting to reach the target power in confirmatory diagnostic accuracy 

studies. In detail, there are three aims: 

1. Verification of the need for adaptive designs in diagnostic accuracy studies and 

elaboration on their potential uses in Thesis Article 1 (Zapf et al., 2020) 

2. Development of the optimal sample size calculation to avoid overpowered 

diagnostic accuracy studies in the single-test, unpaired and paired design either 

testing for superiority or non-inferiority in both endpoints or combinations of both 

in Thesis Articles 2 and 3 (Stark et al., 2022; Stark & Zapf, 2020) 

3. Development of blinded adaptive designs for diagnostic accuracy studies to 

adjust the sample size based on the estimation of nuisance parameters during 

the study in the single-test, unpaired and paired design either testing for 

superiority or non-inferiority in both endpoints or combinations of both in Thesis 

Articles 2 and 3 (Stark et al., 2022; Stark & Zapf, 2020) 

The synopsis is structured the following way: After this Introduction, in the Methods 

Section, I explain the conventional and optimal sample size calculation in a 

confirmatory diagnostic accuracy study theoretically and by means of an example 

study at first. Second, I introduce the blinded sample size re-estimation procedure and 

third, I describe simulation studies performed for evaluating the adaptive design. In the 

Results Section, I show results of the blinded sample size re-estimation procedure 

applied to the example study and results of the simulation study. In the Discussions 

Section, I highlight strengths and weaknesses of proposed methods, give an outlook 

to further research. Finally, I provide a conclusion.  
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1.2 Methods 

1.2.1 Statistical Methods 

1.2.1.1 Sample size calculation in a confirmatory diagnostic study 

The first major task of this thesis represents the development of an optimal sample 

size calculation to avoid overpowered confirmatory diagnostic accuracy studies. To 

start, this section provides general information about the choice of endpoints in a 

confirmatory diagnostic study and gives first insights into parameters needed for 

sample size calculation. Subsection 1.2.1.1.1 describes the conventional sample size 

calculation for chosen endpoints and works out disadvantages related to this approach. 

Subsection 1.2.1.1.2 explains the optimal sample size calculation to address these 

disadvantages. 

Both the Guideline on clinical evaluation of diagnostic agents (CHMP, 2009) and the 

Statistical Guidance on Reporting Results from Studies Evaluating Diagnostic Tests 

(FDA, 2007) require sensitivity and specificity as co-primary endpoints in confirmatory 

diagnostic studies. The Intersection-Union test combines these co-primary endpoints 

to test one joint hypothesis (Stark & Zapf, 2020). This joint global null hypothesis of the 

Intersection-Union test (𝐻0global
) represents the union of the individual null hypothesis 

of the sensitivity (H0Se
) and the specificity (H0Sp

) (Hamasaki et al., 2018). Referring to 

a comparative design which aims to show superiority of the experimental test regarding 

its sensitivity (SeE) and specificity (SpE) compared to the sensitivity (SeC) and specificity 

(SpC) of the comparator test, we define 𝐻0global
 for equality as follows:  

 H0Se
: SeE = SeC  and H0Sp

: SpE = SpC 

H0global
= H0Se

∪ H0Sp
 

(1) 

We will only reject 𝐻0global
 if we can reject H0Se

 and H0Sp
 at the same time (Hamasaki 

et al., 2018). The overall power of the Intersection-Union test equals the product of 

powers resulting from each individual hypothesis because sensitivity and specificity 

refer to the independent diseased and non-diseased population (Stark & Zapf, 2020). 

The same applies to the global type I error rate. We can see superiority of the 

experimental test compared to the comparator test from point estimates with p-values 

or confidence intervals (Stark et al., 2022). Furthermore, a comparative study can aim 

to show non-inferiority in both endpoints and a combination of superiority and non-

inferiority. Thesis Article 3 defines 𝐻0global
 in each of these settings (Stark et al., 2022). 
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In analogy to the comparative design, we can define 𝐻0global
 for the comparison of the 

sensitivity and specificity of the experimental test to a predefined minimum sensitivity 

(Semin) and minimum specificity (Spmin) in the single-test design. In this design, the 

distinction between superiority and non-inferiority does not exist (Stark & Zapf, 2020). 

Table 1. Parameters needed for sample size calculation in the respective confirmatory diagnostic study design. 

 Study design 

Parameters Single-test Unpaired Paired 

Parameters for 
diagnostic accuracy 

SeE, SpE 

Semin, Spmin 

SeE, SpE 

SeC, SpC 

Nuisance parameters 𝜋 𝜋 
𝜋 

𝜓D, 𝜓ND 

Sample size calculation for the Intersection-Union test in the context of a confirmatory 

diagnostic study also requires assumptions about nuisance parameters, in addition to 

sensitivities and specificities already mentioned. Table 1 gives an overview of all 

needed parameters for sample size calculation. Nuisance parameters play an essential 

role in the blinded sample size re-estimation approach as they are included in the 

sample size calculation and can be estimated in a blinded way. Due to this importance, 

I will introduce them here in the context of the general sample size calculation to 

familiarize the reader with them. In a confirmatory diagnostic study, nuisance 

parameters are e.g. the disease prevalence (𝜋) and, in the paired design, proportions 

of discordant test results in the diseased (𝜓D) and non-diseased population (𝜓ND) (Stark 

et al., 2022). The latter are those proportions in which the experimental and comparator 

test give different test results. 

1.2.1.1.1 Conventional sample size calculation 

This section explains the conventional sample size calculation with the example of a 

paired study. The aim of this section is to highlight disadvantages of the conventional 

approach and to motivate the need for the optimal sample size calculation. In addition 

to this section, Thesis Article 2 provides the conventional sample size calculation with 

a concrete example for the single-test design. 

The example study for the paired design introduced by McCray et al. (2017) deals with 

the correct diagnosis of pancreatic cancer. It aims to show superiority regarding the 

sensitivity and specificity of the experimental combination of Positron Emission 

Tomography (PET) and Computed Tomography (CT) against the comparator test CT.  
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We perform the three steps of the conventional sample size calculation based on  

assumptions of the example study given in Table 2: 

1. Sample size of diseased individuals based on the formula of 

Miettinen et al. (1968): 

𝑛D =

(𝑧1−𝛼/2 ⋅ 𝜓D + 𝑧1−𝛽Se
√𝜓D

2 −
1
4

(SeC − SeE)2(3 + 𝜓D))

2

𝜓𝐷(SeC − SeE)2
= 74 

Sample size of non-diseased individuals: 

𝑛ND =

(𝑧1−𝛼/2 ⋅ 𝜓ND + 𝑧1−𝛽Sp
√𝜓ND

2 −
1
4

(SpC − SpE)2(3 + 𝜓ND))

2

𝜓ND(SpC − SpE)2
= 47 

2. Sample size needed to show the sensitivity including at least 𝑛D diseased 

individuals: 

𝑁Se =
𝑛D

𝜋
=

74

0.47
= 157 

Sample size needed to show the specificity including at least 𝑛ND non-diseased 

individuals: 

𝑁Sp =
𝑛ND

1 − 𝜋
=

47

1 − 0.47
= 88 

3. 𝑁 = max(𝑁Se, 𝑁Sp) = 157 

The disadvantage of the conventional sample size calculation is that it can lead to an 

overpowered diagnostic study because the final sample size 𝑁 could be higher than 

necessary. This problem arises if the sample size needed to show the sensitivity (𝑁Se) 

and the sample size needed to show the specificity (𝑁Sp) are unequal. Choosing the 

maximum of 𝑁Se and 𝑁Sp in the third step leads to recruiting more study participants 

General input parameters:  
Significance level per endpoint: 𝜶 = 𝟎. 𝟎𝟓 (two-sided), 
Overall Power: 𝐏𝐨𝐰𝐞𝐫𝐨𝐯𝐞𝐫𝐚𝐥𝐥 = 𝟏 − 𝜷𝐨𝐯𝐞𝐫𝐚𝐥𝐥 = 𝟎. 𝟖 

Power per endpoint: 𝐏𝐨𝐰𝐞𝐫𝐒𝐞 = 𝐏𝐨𝐰𝐞𝐫𝐒𝐩 = 𝟏 − 𝜷𝐒𝐞 = 𝟏 − 𝜷𝐒𝐩 = 𝟎. 𝟗 

Prevalence: 
𝜋 = 0.47 

Comparator test  
(CT) 

Experimental Test 
(PET/CT) 

Proportion of discordant 
test results 

Diseased population SeC = 0.81 SeE = 0.90 𝜓D = 0.09 

Non-diseased population SpC = 0.66 SpE = 0.80 𝜓ND = 0.14 

Table 2. Assumptions of the paired diagnostic accuracy trial for comparing the experimental Positron Emission 

Tomography (PET) combined with the computed tomography (CT) against the comparator test CT  

(McCray et al., 2017; Thesis Article 3: Stark et al., 2022). 
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than necessary to show the endpoint with the smaller sample size. In this example, 𝑁Se 

is higher than 𝑁Sp leading to an overpowered endpoint of the specificity. Figure 2 

compares simulation results of the conventional and optimal sample size calculation 

regarding the empirical power and sample size of the example study if we vary the 

prevalence, based on 10,000 simulation runs (Stark et al., 2022). In this subsection, 

the focus is on the grey dashed line representing the conventional sample size 

calculation. 

 

 

 

 

 

 

 

 

By choosing the maximum of 𝑁Se and 𝑁Sp in the third step of the conventional 

approach, the final sample size is higher than needed to show the specificity. 

Differences between 𝑁Se and 𝑁Sp would be even larger if the disease prevalence was 

unbalanced leading to either an overpowered endpoint of the sensitivity or specificity 

depending on the direction of unbalance. These discrepancies between the sample 

sizes of both endpoints can result in an overpowered study. To address this 

disadvantage, we introduce the optimal sample size calculation in the following section. 

  

Figure 2. Comparison of the conventional and optimal sample size calculation for the paired example study 

with respect to a varying prevalence (π) regarding the resulting empirical overall power or sample size  
(Thesis Article 3: Stark et al., 2022). 
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1.2.1.1.2 Optimal sample size calculation 

We developed the optimal sample size calculation to address the problem of an 

overpowered confirmatory diagnostic study. This section presents the general idea of 

the optimal sample size calculation. Thesis Articles 2 and 3 provide formulas for each 

study design aiming to show superiority or non-inferiority in both endpoints as well as 

the combination of both (Stark et al., 2022; Stark & Zapf, 2020). 

The optimal sample size calculation splits the overall power (Poweroverall) to both 

endpoints, so that both 𝑁Se and 𝑁Sp are equal and the product of the individual powers 

to show the sensitivity (PowerSe) and specificity (PowerSp) results in the desired target 

overall power. Consequently, the final sample size is the smallest representative 

sample. The choice of the maximum of 𝑁Se and 𝑁Sp is not necessary if: 

𝑁Se =
!

𝑁Sp 

𝑛D

𝜋
=
! 𝑛ND

1 − 𝜋
 

(2) 

(3) 

Under the condition: 

 PowerSe ⋅ PowerSp = Poweroverall (4) 

 (1 − 𝛽Se) ⋅ (1 − 𝛽Sp) = Poweroverall (5) 

 
𝛽Sp =

1 − 𝛽Se − Poweroverall

1 − 𝛽Se
= 1 −

Poweroverall

1 − 𝛽Se
 

(6) 

Figure 2 shows results of the optimal approach in black lines. The empirical overall 

power is the product of empirical powers of sensitivity and specificity. By individually 

splitting the overall power to both endpoints, the optimal sample size is lower than the 

conventional one especially for a low and high prevalence. As a result, empirical overall 

power of the optimal approach comes close to the target power. 

1.2.1.2 Blinded sample size re-estimation 

Sample size re-estimation verifies initial assumptions of sample size calculation and 

adjusts the sample size if necessary (CHMP, 2007). The second major task of this 

thesis is to implement a blinded sample size re-estimation procedure for confirmatory 

diagnostic studies based on the estimation of nuisance parameters.  
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Unpaired study design 

1. Calculate the initial sample size 

with minimal 𝜓Dmin
 and 𝜓NDmin

 and 

an assumption about the 

prevalence (𝜋ass.) (e. g. results of a 

preceding study) 

 

2. Completely recruit the initial 

sample size 

3. Estimate �̂�, �̂�D, �̂�ND and re-

estimate the sample size 

Paired study design 

4. If necessary, recruit further patients until the final sample size is reached 

5. Analyse the study with the unadjusted type I error level due to the blinded character of the adaptive design 

Single-test design 

1. Calculate the initial sample size 

with assumptions (e. g. results of 

a preceding study) 

 
 
 
2. Recruit 50% of the initial sample 

size 

3. Estimate �̂� and re-estimate the 

sample size 

1. Calculate the initial sample size 

with assumptions (e. g. results of 

a preceding study) 

 
 
 
2. Recruit 50% of the initial sample 

size 

3. Estimate �̂� and re-estimate the 

sample size 

Figure 3. Procedure of the blinded adaptive design in the single-test, unpaired and paired diagnostic study (Adapted from Thesis Article 3: Stark et al., 2022). 
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The procedure for the blinded sample size re-estimation consists of five steps (Brinton 

et al., 2015). Figure 3 shows these steps for each study design. First, we calculate the 

initial sample size and second, we recruit the number of study participants to complete 

the sample size needed for the internal pilot study. Third, the internal pilot study serves 

to estimate nuisance parameters based on this interim data during the study (Friede & 

Kieser, 2006). Based on estimated nuisance parameters, we adjust the sample size. 

In this context, the re-estimated sample size may also be smaller than the initial one 

which Wittes et al. (1999) and Zucker et al. (1999) call the unrestricted sample size re-

estimation.  

Table 1 shows those nuisance parameters which we estimate depending on the study 

design.In the single-test and unpaired design, the only nuisance parameter is the 

disease prevalence (𝜋), whereas proportions of discordant test results in the diseased 

(𝜓D) and non-diseased (𝜓ND) population additionally occur in the paired design. 

Discordant test results are those in which the experimental and comparator test yield 

different results. 

In the fourth and fifth step, we recruit further study participants if necessary, to 

complete the adjusted sample size and finally analyse the study. This procedure does 

not reveal the sensitivity and specificity of the experimental test which is why we call it 

a blinded adaptive design (Zapf et al., 2020). Due to the blinded character, the sample 

size re-estimation controls the type I error rate. Hence, we may perform the final 

analysis without any adjustment for multiplicity (Friede & Kieser, 2013; Wu et al., 2008). 

In Thesis Article 2, we explored that repeated estimation of the prevalence in the 

single-test design does not offer any advantages regarding the mean squared error of 

the estimated prevalence compared to the one-time estimation described above (Stark 

& Zapf, 2020). Hence, I do not include the repeated re-estimation procedure in this 

synopsis but we present results in Thesis Article 2 (Stark & Zapf, 2020). 

Figure 3 reveals that most prominent differences regarding the procedure of the 

adaptive design exist between study designs regarding both the estimated nuisance 

parameters and the sample size of the internal pilot study. Following subsections 

elaborate on these differences: Subsection 1.2.1.2.1 explains how to estimate 

nuisance parameters, and subsection 1.2.1.2.2 shows the sample size for interim 

analysis. 
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1.2.1.2.1 Estimation of nuisance parameters 

Figure 4 depicts how we can summarize the results of the internal pilot study. Given 

parameters denote results of interim data which we use to estimate nuisance 

parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Results of the internal pilot study. The prevalence (𝜋) is estimated based on the blue fields. 
Proportion of discordant test results are estimated based on the brown fields. 
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In the single-test and unpaired design, contingency tables tabulate positive and 

negative results of the experimental and comparator test, if necessary, in combination 

with the true disease status of the reference standard. In the paired design, the 

reference standard separates the study cohort into the diseased and non-diseased 

population whose results are each summarized in a contingency table. The split 

between both tables corresponds to the disease prevalence. Each table combines the 

results of the experimental and comparator test. 

Figure 4 shows parameters needed to estimate the prevalence in blue colour and 

parameters needed to estimate proportions of discordant test results in brown colour. 

We estimate the prevalence (�̂�) with the maximum likelihood estimator of a binomial 

proportion (Brown et al., 2001). We consider the number of diseased individuals 

involved in the interim analysis (𝑛D = 𝑛DE
+ 𝑛DC

) and the total sample size for the 

interim analysis (𝑛): 

 
�̂� =

𝑛D

𝑛
=

𝑛DE
+ 𝑛DC

𝑛
 (7) 

In the paired design, we estimate proportions of discordant test results in the diseased 

(�̂�D) and non-diseased (�̂�ND) population with the maximum likelihood estimator of a 

multinomial distribution (Held & Sabanés Bové, 2014): 

 
�̂�D =

𝑛D10
+ 𝑛D01

𝑛D
 (8) 

 
�̂�ND =

𝑛ND10
+ 𝑛ND01

𝑛ND
 (9) 

1.2.1.2.2 Sample size of the internal pilot study 

The sample size of the internal pilot study describes the timing at which we perform 

the interim analysis to re-estimate the sample size. It differs between study designs as 

Table 3 shows. 

Table 3. Size of the internal pilot study in each study design. 

 Study design 

Parameters Single-test Unpaired Paired 

Size of internal pilot 
study 

50% of initial sample size 
based on an assumption 

about the prevalence 

sample size with minimal 

𝜓Dmin
 and 𝜓NDmin

 and an 

assumption about the 
prevalence 
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In the single-test design, we perform sample size re-estimation after 50% of the initially 

calculated sample size. To determine whether this size of the internal pilot study is 

suitable, we evaluated in Thesis Article 2 which proportion (λ) of the initially calculated 

sample size we need to recruit so that the re-estimated sample size (�̂�) is close to the 

true sample size (𝑁true) (Stark & Zapf, 2020). Denne et al. (1999) denote this criterion 

as 𝑅:  

 
𝑅 =

�̂�

𝑁true
 (10) 

We aim to re-estimate the true sample size as close as possible because it originates 

from true values of diagnostic accuracy and nuisance parameters. If this quotient 𝑅 is 

near 1, the re-estimated sample size is similar to the true sample size. Hence, the size 

of the internal pilot study is appropriate. Our investigations in Thesis Article 2 reveal 

that the recruitment of 50% of the initial sample size is the minimum acceptable size. 

If we estimate nuisance parameters based on lower proportions of the initial sample 

size, re-estimated sample sizes can clearly differ from the true sample size. Otherwise, 

if we conduct the interim analysis later, we could not find smaller deviations of the re-

estimated samples sizes from the true sample size. In the unpaired design, we adopted 

the timing of the interim analysis at 50% of the initial sample size without any further 

investigations because, in analogy to the single-test design, the prevalence is the only 

nuisance parameter to be estimated. 

In the paired design, we calculate the initial sample size with minimal 𝜓D and 𝜓ND and 

an assumption about the prevalence. We completely recruit the initial sample size for 

interim analysis (McCray et al., 2017). Proportions of discordant test results vary 

between (Connor, 1987; Miettinen, 1968): 

 |SeC − SeE| ≤ 𝜓D ≤ SeC + SeE − 2 ⋅ SeC ⋅ SeE (11) 

 |SpC − SpE| ≤ 𝜓ND ≤ SpC + SpE − 2 ⋅ SpC ⋅ SpE (12) 

Hence, minimal 𝜓D and 𝜓ND are: 

 𝜓Dmin
= |SeC − SeE| (13) 

 𝜓NDmin
= |SpC − SpE| (14) 

With 𝜓Dmin
 and 𝜓NDmin

, the dependence between the experimental and comparator test 

is maximal which leads to the smallest possible sample size for the interim analysis. 

Only an incorrect assumption about the prevalence might enlarge the initial sample 



1.2 Methods 

 29 

size, and thus the sample size for the interim analysis, more than necessary. The 

results section 1.3.2 deals with possible consequences. 

1.2.2 Simulation Studies 

Through a simulation study, we compare the performance of the blinded adaptive 

design in each study design to a fixed design without sample size re-estimation. As 

performance measures, we use: 

1. Type I error rate  

2. Power 

3. Mean of sample sizes of all simulation runs per scenario 

4. Bias of the mean of estimated nuisance parameters: 

 Bias of �̂�mean =
�̂�mean−𝜋true

𝜋true
 (15) 

 
Bias of �̂�Dmean

=
�̂�Dmean−𝜓Dtrue

𝜓Dtrue

 (16) 

 
Bias of �̂�NDmean

=
�̂�NDmean−𝜓NDtrue

𝜓NDtrue

 (17) 

5. Root mean squared error (RMSE) of the re-estimated sample size (Held & 

Sabanés Bové, 2014): 

 
RMSE = √𝐸 ((�̂� − 𝑁true)

2
) (18) 

Table 4 shows simulated scenarios in each study design. In the single-test design, we 

evaluate a one-time re-estimation and a repeated re-estimation of the sample size. 

However, the repeated re-estimation procedure does not reveal any advantage 

compared to the one-time re-estimation which is why it is not depicted in Table 4. In 

the one-time re-estimation single-test design, we simulate scenarios with all possible 

parameter combinations which leads to 3888 scenarios. Whereas in comparative 

designs, there is an initial scenario based on the example study of McCray et al. (2017) 

testing for superiority in both endpoints. We extend the initial scenario to scenarios 

testing for a combination of superiority and non-inferiority or testing for non-inferiority 

in both endpoints. Starting from the initial scenario, we varied one parameter at a time, 

which leads to 58 scenarios in the unpaired design and 74 scenarios in the paired 

design.  
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Table 4. Simulated scenarios in the single-test, unpaired and paired design.Proportions of discordant test results are only relevant in the paired design. Section 1.3.2 shows results 
of scenarios highlighted in orange colour. 

 Single-test design Comparative design 

 
One-time  

re-estimation 

Initial 

scenario 

Variation of 

initial 

scenario to 

show 

superiority in 

both 

endpoints 

Variation of initial scenario to 

show non-inferiority in 

sensitivity and superiority in 

specificity 

Variation of initial 

scenario to show 

superiority in 

sensitivity and 

non-inferiority in 

specificity 

Variation of initial 

scenario to show non-

inferiority in both 

endpoints 

Simulation runs per 

scenario (nsim) 
100,000 10,000 

Nominal significance 

level α 

Per endpoint:  

0.05 (two-sided) 

 

Global: 

0.05⋅0.05=0.0025 

Per endpoint:  

0.05 (two-sided) 

 

Global: 

0.05⋅0.05=0.0025 

Superiority endpoint: 0.05 (two-sided) 

Non-inf. endpoint: 0.025 (one-sided) 

 

Global: 

0.05⋅0.025=0.00125 

Per endpoint: 

0.025 (one-sided) 

 

Global: 

0.025⋅0.025=0.000625 

Nominal overall target 

power 
0.8 0.8 

Minimum sensitivity 

Semin / sensitivity 

comparator test SeC 

0.6, 0.7, 0.8 0.8 0.6, 0.7 0.6, 0.7 0.6, 0.7 0.6, 0.7 

Minimum specificity 

Spmin / sensitivity 

comparator test SpC 

0.6, 0.7, 0.8 0.7 0.6, 0.8 0.6, 0.8 0.6, 0.8 0.6, 0.8 

True prevalence 𝜋true 0.2, 0.4, 0.6, 0.8 0.2 0.4, 0.6, 0.8 0.4, 0.6, 0.8 0.4, 0.6, 0.8 0.4, 0.6, 0.8 

Assumed prevalence 

𝜋ass. 
𝜋true − 0.1, 𝝅𝐭𝐫𝐮𝐞 + 𝟎. 𝟏 𝜋true + 0.1 

𝜋true - 0.1 
𝜋true + 0.2 

𝜋true + 0.3 

𝜋true - 0.1 
𝜋true + 0.2 

𝜋true + 0.3 

𝜋true - 0.1 
𝜋true + 0.2 

𝜋true + 0.3 

𝜋true - 0.1 
𝜋true + 0.2 

𝜋true + 0.3 

True discordant results 

diseased population 

𝜓Dtrue
 

- 

0.11 
(0.15, if: 

SeE − SeC =

0.15) 

0.16, 0.32 0.16, 0.32 0.18, 0.26 0.16, 0.32 
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Assumed discordant 

results diseased 

population 𝜓Dass.
 

- 0.18 0.18 0.18 0.18 0.18 

True discordant results 

in the non-diseased 

population 𝜓NDtrue
 

- 

0.14 
(0.15, if: 

SpE − SpC =

0.15) 

0.24, 0.38 0.24, 0.38 0.21, 0.42 0.21, 0.42 

Assumed discordant 

results in the non-

diseased population 

𝜓NDass.
 

- 0.24 0.24 0.24 0.24 0.24 

Non-inferiority margin Δ 

of relevant endpoint 
- - - 0.05, 0.1, 0.15 0.05, 0.1, 0.15 0.05, 0.1, 0.15 

Under the null 

hypothesis 

H0Se
: SeE = Semin  ∪  

H0Sp
: SpE = Spmin  

H0Se
: SeE = SeC  ∪  

H0Sp
: SpE = SpC  

H0Se
: SeE ≤ SeC − Δ ∪  

H0Sp
: SpE = SpC 

H0Se
: SeE = SeC  ∪  

H0Sp
: SpE ≤ SpC − Δ 

H0Se
: SeE ≤ SeC − Δ ∪  

H0Sp
: SpE ≤ SpC − Δ 

Fraction for re-

estimation λ 
0.02, 0.1, 0.3, 0.5, 0.7 

Unpaired design 0.5  

Paired design: sample size with minimal proportions of discordant test results 

Sensitivity of the 

experimental test SeE 
Semin SeC SeC SeC − Δ SeC SeC − Δ 

Specificity of the 

experimental test SpE 
Spmin SpC SpC SpC SpC − Δ SpC − Δ 

Under the alternative 

hypothesis 

H1Se
: SeE ≠ Semin  ∩  

H1Sp
: SpE ≠ Spmin  

H1Se
: SeE ≠ SeC  ∩  

H1Sp
: SpE ≠ SpC  

H0Se
: SeE > SeC − Δ ∩  

H0Sp
: SpE ≠ SpC 

H0Se
: SeE ≠ SeC  ∩ 

H0Sp
: SpE > SpC − Δ 

H0Se
: SeE > SeC − Δ ∩  

H0Sp
: SpE > SpC − Δ 

Fraction for re-

estimation λ 
0.5 

Unpaired design 0.5  

Paired design: sample size with minimal proportions of discordant test results 

Sensitivity of the 

experimental test SeE 

Semin + 0.05, 

𝐒𝐞𝐦𝐢𝐧 + 𝟎. 𝟏, 

Semin + 0.15 

SeC + 0.1 
SeC + 0.05 
SeC + 0.15 

SeC 
SeC + 0.05 
SeC + 0.15 

SeC 

Specificity of the 

experimental test SpE 

Spmin + 0.05, 

𝐒𝐩𝐦𝐢𝐧 + 𝟎. 𝟏, 

Spmin + 0.15 

SpC + 0.1 
SpC + 0.05 

SpC + 0.15 

SpC + 0.05 

SpC + 0.15 
SpC SpC 
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In the single-test design, we perform 100,000 simulation runs per scenario (𝑛sim). In 

those scenarios testing for superiority in both endpoints, this leads to a Monte Carlo 

standard error (MCSE) of (Morris et al., 2019): 

 

MCSEsingle-test = √
𝛼global ⋅ (1 − 𝛼global)

𝑛sim
 

= √
0.0025 ⋅ (1 − 0.0025)

100 000
= 0.00016 

(19) 

To save computing capacity, we used 10 000 simulation runs per scenario in 

comparative designs. In those scenarios testing for superiority in both endpoints, this 

gives a MCSE of: 

 

MCSEcomparative = √
0.0025 ⋅ (1 − 0.0025)

10 000
= 0.00050 

(20) 

Table 5 shows distributions involved in the data generation mechanism. We use the 

statistical software R versions 3.5.0 and 4.0.2 to perform simulations with the default 

random number generator Mersenne-Twister, but with the own initialization method of 

R (Matsumoto & Nishimura, 1998; R Core Team, 2018, 2020). 
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Table 5. Data generation mechanism in the single-test, unpaired and paired design in the simulation study.(𝐵𝑖𝑛: binomial distribution, 𝑀𝑉𝐵𝑖𝑛: multivariate binomial distribution, 𝑘: 

number of trials, 𝑝: success probability, 𝜌: dependence between both tests, 𝑁: total sample size, 𝑛𝐷𝐸: diseased individuals in experimental group, 𝑛𝐷𝐶: diseased individuals in 

comparator group) 

 

 

 

 

 Single-test design Unpaired design Paired design 

Diseased 
individuals 

(nD) 
according 

to the  
reference 
standard 

𝑛DE
 ~ 𝐵𝑖𝑛(𝑘 = 𝑁, 𝑝 = 𝜋true) 

𝑛DE
 ~ 𝐵𝑖𝑛(𝑘 = 𝑁, 𝑝 = 𝜋true) 

𝑛DC
 ~ 𝐵𝑖𝑛(𝑘 = 𝑁, 𝑝 = 𝜋true) 

𝑛D ~ 𝐵𝑖𝑛(𝑘 = 𝑁, 𝑝 = 𝜋true) 

True 
Positive 
Results 

(TP) 

𝑇𝑃E ~ 𝐵𝑖𝑛(𝑘 = 𝑛DE
, 𝑝 = SeE) 

𝑇𝑃E ~ 𝐵𝑖𝑛(𝑘 = 𝑛DE
, 𝑝 = SeE) 

𝑇𝑃C ~ 𝐵𝑖𝑛(𝑘 = 𝑛DC
, 𝑝 = SeC) 

(𝑇𝑃E, 𝑇𝑃C) ~ 𝑀𝑉𝐵𝑖𝑛(𝑘E = 𝑛DE
, 𝑘C = 𝑛DC

, 𝑝E = 𝑆𝑒E, 𝑝C = 𝑆𝑒C, 𝜌 = 𝑇𝑃𝑃𝑅) 

 
with 

𝑇𝑃𝑃𝑅 =
𝑆𝑒C + 𝑆𝑒E − 𝜓Dtrue

2
 

True 
Negative 
Results 

(TN) 

𝑇𝑁E ~ 𝐵𝑖𝑛(𝑘 = 𝑁 − 𝑛DE
, 𝑝 = SpE) 

𝑇𝑁E ~ 𝐵𝑖𝑛(𝑘 = 𝑁 − 𝑛DE
, 𝑝 = SpE) 

𝑇𝑁C ~ 𝐵𝑖𝑛(𝑘 = 𝑁 − 𝑛DC
, 𝑝 = SpC) 

(𝑇𝑁E, 𝑇𝑁C) ~ 𝑀𝑉𝐵𝑖𝑛(𝑘E = 𝑁 − 𝑛DE
, 𝑘C = 𝑁 − 𝑛DC

, 𝑝E = 𝑆𝑝E, 𝑝C = 𝑆𝑝C, 

 𝜌 = 𝑇𝑁𝑁𝑅) 
 

with 

𝑇𝑁𝑁𝑅 =
𝑆𝑝C + 𝑆𝑝E − 𝜓NDtrue

2
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1.3 Results 

The following section applies the blinded sample size re-estimation procedure to the 

example study. Furthermore, this section provides results of simulation studies. 

1.3.1 Example Study 

McCray et al. already proposed in 2017 the blinded sample size re-estimation for a 

paired diagnostic study. However, their approach differs from ours in the definition of 

endpoints, hypothesis and sample size calculation. Table 6 summarizes differences 

and similarities between both approaches. The most important development of our 

approach is the implementation of the optimal sample size calculation in the adaptive 

design procedure. This section reveals the importance of the optimal sample size 

calculation by comparing the results of the sample size re-estimation between both 

approaches in the context of the example study introduced in section 1.2.1.1.1. 

For sample size calculation, McCray et al. (2017) consider the quotient of sensitivities 

and specificities of both diagnostic tests as endpoints. Furthermore, they use the true-

positive-positive-rate (TPPR) and the true-negative-negative-rate (TNNR) as a 

parameter of dependency between both tests. TPPR represents the proportion of test 

results in which the comparator and experimental test correctly diagnose a diseased 

individual. Vice versa, TNNR denotes the proportion of test results in which both tests 

correctly lead to a negative test results. McCray et al. (2017) use the maximal 

possible TPPR (TPPRmax) and maximal possible TNNR (TNNRmax) for the initial 

sample size calculation. They calculate the initial sample size with the conventional 

three steps with a power of 80% per endpoint which leads to a theoretical overall 

power of 64% resulting from the product of both individual powers. 

In contrast to McCray et al. (2017), our approach applies the optimal sample size 

calculation using the difference in sensitivities and specificities of both diagnostic 

tests, as recommended by the Guideline on clinical evaluation of diagnostic agents 

(CHMP, 2009). Additionally, we use proportions of discordant test results as a 

parameter of dependency between both tests and plan the sample size with an overall 

power of 80%. 

Table 6 compares initial sample sizes, sample sizes for interim analysis and re-

estimated samples sizes of both adaptive designs. The optimal approach enables 

smaller samples sizes by avoiding to overpower one of both endpoints. 
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Table 6. Comparison of our blinded sample size re-estimation approach with McCray et al. (2017) 
(Thesis Article 3: Stark et al., 2022). 

  McCray et al. (2017) Our approach 

General 

information 

Endpoint 
SeE

SeC
 and 

SpE

SpC
 SeE − SeC and SpE − SpC 

𝐇𝟎𝐠𝐥𝐨𝐛𝐚𝐥
 

H0Se
:
SeE 

SeC
= 1 ∪ 

H0Sp
:
SpE

SpC
= 1 

H0Se
: SeE − SeC = 0 ∪ 

H0Sp
: SpE − SpC = 0 

Sample size 

calculation 

Conventional approach 

𝛼 per endpoint: 0.05 

(two-sided) 

Power per endpoint: 0.8 

Optimal approach 

𝛼 per endpoint: 0.05 

(two-sided) 

Overall power: 0.8 

Parameter of 

dependency between 

both tests 

TPPR =
𝑛D11

𝑛D
 

TNNR =
𝑛ND00

𝑛ND
 

𝜓D =
𝑛D10

+ 𝑛D01

𝑛D
 

𝜓ND =
𝑛ND10

+ 𝑛ND01

𝑛ND
 

Initial  

sample size 

calculation 

Size of internal pilot 

study 
TPPRmax and TNNRmax correspond to 𝜓Dmin

and 𝜓NDmin
 

Parameter of 

dependency between 

both tests for initial 

sample size 

calculation 

TPPRmax = SeC = 0.81 

TNNRmax = SpC = 0.66 

𝜓Dmin
= |SeC − SeE| = 0.09 

𝜓NDmin
= |SpC − SpE| = 0.14 

Initial sample size, 

size of internal pilot 

study 

186 133 

Sample size 

re-estimation 

Estimation of 

nuisance parameters 

�̂� = 0.44 

𝑇𝑃𝑃�̂� = 0.80 

𝑇𝑁𝑁�̂� = 0.66 

�̂� = 0.44 

�̂�D = 0.11 

�̂�ND = 0.14 

Re-estimated sample 

size 
242 200 

 

1.3.2 Simulation Studies 

This section summarizes simulations results in those scenarios highlighted in orange 

colour in Table 4. These scenarios include the initial scenario of the example study 

with a variation of the true prevalence (𝜋true) in those settings testing for superiority 

or non-inferiority in both endpoints and both possible combinations of superiority and 

non-inferiority. This section neither evaluates the choice of the sample size for interim 

analysis nor performance metrics of the repeated estimation of nuisance parameters 

in the single-test design. Instead, Thesis Article 2 shows these results (Stark & Zapf, 

2020). Thesis Article 3 provides further simulation results of scenarios testing for non-

inferiority in both endpoints and combinations of superiority and non-inferiority (Stark 

et al., 2022). 
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Figure 5. Type I error rate, power, sample sizes and relative bias in the single-test, unpaired and paired design. 
Black dotted lines represent intervals based on the Monte Carlo standard error (single-test design: 

±1.96⋅0.00016=0.0003, comparative design: ±1.96⋅0.0005=0.00098) 
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Figure 5 opposes global type I error rates, overall powers, sample sizes and biases 

of the fixed and adaptive design in the single-test, unpaired and paired design testing 

for superiority in both endpoints. Generally, the adaptive design controls the global 

type I error rate. The same applies to scenarios testing for non-inferiority in both 

endpoints and combinations of superiority and non-inferiority (see Online Supplement 

of Thesis Article 3: Stark et al., 2022). 

The overall power of the fixed design increases with an increasing true prevalence. 

With a low prevalence, the sample size needed to show the sensitivity determines 

the final sample size. In depicted scenarios, the assumed prevalence is higher than 

the true prevalence which leads to the problem of dividing by a too high prevalence 

during the sample size calculation. In the single-test and unpaired fixed design, this 

leads to a smaller sample size than the true sample size. Thus, the study is 

underpowered. Vice versa, with a high prevalence, the sample size needed to show 

the specificity is divided by a too low number of non-diseased individuals. This results 

in a higher sample size than the true sample size in the fixed design. Hence, the study 

in the single-test and unpaired design is overpowered. In the paired design, these 

mechanisms work similarly, but in addition, assumed proportions of discordant test 

results are too high. Overall, sample sizes are higher than truly necessary. 

Consequently, the fixed design in the depicted scenarios is overpowered. Thesis 

Article 3 presents the influence of varying true proportions of discordant test results 

on the overall power and sample size in the paired design (Stark et al., 2022). In 

contrast to the fixed design, the adaptive design compensates for wrong assumptions 

about nuisance parameters and comes close to the overall target power. 

Table 7 takes an even closer look at the power of the adaptive design. It picks up the 

power in the unpaired and paired design shown in Figure 5 and adds the power of 

those settings testing for non-inferiority in at least one endpoint. In the unpaired 

design, the empirical overall power is slightly higher than the overall target power. In 

those scenarios testing for non-inferiority in at least one endpoint, empirical overall 

power equals the overall target power or is even lower.  
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Table 7. Simulated empirical overall power in the unpaired and paired adaptive design depending on the 

hypothesis and true prevalence (𝜋𝑡𝑟𝑢𝑒). 

Hypothesis 𝝅𝐭𝐫𝐮𝐞 Unpaired design Paired design 

Superiority in both endpoints 

0.2 0.863 0.783 

0.4 0.861 0.764 

0.6 0.837 0.752 

0.8 0.842 0.855 

Superiority in sensitivity 

Non-inferiority in specificity 

0.2 0.872 0.788 

0.4 0.840 0.810 

0.6 0.808 0.826 

0.8 0.815 0.829 

Non-inferiority in sensitivity 

Superiority in specificity 

0.2 0.804 0.822 

0.4 0.814 0.822 

0.6 0.831 0.756 

0.8 0.844 0.855 

Non-inferiority in both endpoints 

0.2 0.706 0.814 

0.4 0.698 0.829 

0.6 0.708 0.825 

0.8 0.722 0.828 

Vice versa, referring to Figure 5, the empirical overall power of the paired adaptive 

design is lower than the overall target power unless 𝜋true equals 80%. In this scenario, 

the proportion of non-diseased individuals is initially assumed to be lower than in 

truth. This leads to the fact that the sample size for the interim analysis is already 

larger than the true sample size. Consequently, the paired adaptive design is 

overpowered in this scenario. Table 7 shows that empirical overall power rises in 

those scenarios testing for non-inferiority in at least one of both endpoints in the 

paired design. 

Considering Figure 5, RMSE is highest with a low or high true prevalence, especially 

in the paired design. With a low or high true prevalence, there is either a low number 

of diseased or non-diseased individuals which can result in an uncertain estimation 

of the prevalence and of proportions of discordant test results in the diseased or non-

diseased population. It is also noticeable that the sample size in the paired design is 

fundamentally lower than the one in the unpaired design. 

The adaptive design estimates the prevalence and proportions of discordant test 

results in the non-diseased population without any relevant bias. The bias of 

estimated proportions of discordant test results in the diseased population is 14% if 

the prevalence is the lowest. With an increasing true prevalence, the bias decreases 

as there is a higher number of diseased individuals on the basis of which we estimate 

proportions of discordant test results in the diseased population.  
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1.4 Discussion 

This thesis contributes to answer three research questions: 

1. Verification of the need for adaptive designs in diagnostic accuracy studies 

in Thesis Article 1 (Zapf et al., 2020) 

2. Development of the optimal sample size calculation for two independent co-

primary endpoints to avoid overpowered diagnostic accuracy studies in 

Thesis Articles 2 and 3 (Stark et al., 2022; Stark & Zapf, 2020) 

3. Development of blinded adaptive designs for diagnostic accuracy studies to 

adjust the sample size based on the estimation of nuisance parameters in 

Thesis Articles 2 and 3 (Stark et al., 2022; Stark & Zapf, 2020) 

On the one hand, there are several strengths of the proposed methods. First, the idea 

of the optimal sample size calculation is not limited to diagnostic studies considering 

sensitivity and specificity as co-primary endpoints. To remember, the idea of the 

optimal sample size calculation was to split the overall power to both independent co-

primary endpoints so that the product of both individual powers results in the target 

overall power. In my view, it can be transferred to any studies with two independent 

co-primary endpoints. 

Second, the comparison with the approach of McCray et al. (2017) reveals that our 

blinded adaptive design approach based on the optimal sample size calculation 

requires lower sample sizes and comes closer to the target power, especially if the 

dependence between both diagnostic procedures is the highest. Additionally, we offer 

the possibility to apply our approach in settings either testing for non-inferiority in both 

endpoints or a combination of superiority and non-inferiority which is not thought of 

with the approach of McCray et al. (2017). 

Third, we evaluate the performance of proposed methods in realistic simulation 

scenarios and in scenarios with extreme parameter combinations. 

On the other hand, I would like to point out these limitations: first, sample size 

calculations fit to evaluations with Wald confidence intervals. However, coverage 

probabilities of Wald confidence intervals are poor (Agresti & Caffo, 2000; Agresti & 

Coull, 1998; Agresti & Min, 2005). Therefore, we propose to use the logit transformed 

Wald confidence interval for analysis in the single-test design. Our simulation results 
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in Thesis Article 2 show that the empirical overall power comes close to the target 

power (Stark & Zapf, 2020). For comparative designs, Fagerland et al. (2015) and 

Fagerland et al. (2014) evaluate that the Miettinen-Nurminen confidence interval and 

Tango’s confidence interval have higher coverage probability than the simple Wald 

confidence interval for the difference of two independent or dependent proportions. 

The Miettinen-Nurminen interval is an asymptotic score confidence interval for the 

difference of two independent proportions (Fagerland et al., 2015). In contrast, 

Tango’s interval represents an asymptotic score confidence interval for the difference 

of two paired proportions (Fagerland et al., 2014). However, it is noticeable in our 

simulation results that the empirical overall power in the paired design is lower than 

the target power if both sensitivity and specificity are tested for superiority. Whereas 

in those scenarios testing for non-inferiority in both endpoints, the target power is 

reached. Tango (1998) shows that his proposed confidence interval has a high 

coverage probability in non-inferiority settings. Vice versa, in the unpaired design, our 

simulated empirical overall power is higher than the target power if both endpoints 

are tested for superiority and lower than the target power testing for non-inferiority 

twice. Nevertheless, we propose these two score confidence intervals for consistency 

of analyses in both comparative designs. 

Second, the blinded adaptive design procedure does not include the possibility to 

define a maximum achievable sample size that the re-estimated sample size must 

not exceed, as e. g. Friede & Kieser (2011) did instead. Therefore, the re-estimated 

sample size may become unrealistically high in our approach. However, even if there 

is a maximum achievable sample size, the question arises whether it is meaningful 

to continue the study until the maximum achievable sample size is recruited, if it is far 

below the re-estimated sample size. This would lead to a lower power than desired. 

Third, we did not compare our adaptive design approach to the approach of McCray 

et al. (2017) in an extensive simulation study because we choose different endpoints. 

However, as mentioned above, we compare both approaches for the example study. 

There are three further aspects which I would like to discuss: First, considering the 

adaptive design in a paired study, I would like to reflect whether sample size re-

estimation is still blinded by revealing both proportions of discordant test results. 

Chang (2014) describes a semi-blinded sample size re-estimation procedure in which 

he derives the treatment effect in a therapeutic study from an estimated pooled 
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variance of normally distributed data. In a paired diagnostic study, differences 

between the experimental and comparator test are (Agresti & Min, 2005): 

 δSe = SeE − SeC =
𝑛D10

− 𝑛D01

𝑛D
 

(21) 

       δSp = SpE − SpC =
𝑛ND10

− 𝑛ND01

𝑛ND
  (22) 

In my view, we cannot derive δSe and δSp from estimated proportions of discordant 

test results given in equations (8) and (9). Together with controlling the type I error 

rate in simulations, this argues for a fully blinded adaptive design in the paired 

diagnostic study. 

Second, Wittes et al. (1999) report type I error rate inflation in unblinded sample size 

re-estimation procedures with unrestricted design especially for small sample sizes. 

Proschan (2005) explains that potential issues regarding the type I error rate in the 

unblinded unrestricted design can arise if only a few additional individuals need to be 

recruited after an interim analysis. Kieser & Friede (2003) report that the type I error 

rate is not inflated in the blinded sample size re-estimation procedure with 

unrestricted design. Our investigations show that the type I error rate is controlled in 

blinded sample size re-estimation with the unrestricted design in diagnostic studies. 

Based on these results, we further recommend the unrestricted design as it offers the 

advantage of reducing the sample size in the interim analysis and avoiding an 

overpowered study. This may be useful in the single-test, unpaired and even paired 

design because an incorrect assumption about the disease prevalence may lead to 

a too high initial sample size in all three study designs. 

Third, the question may arise whether the sample size for the interim analysis in the 

paired design is large enough to reliably estimate nuisance parameters as it is based 

on minimal proportions of discordant test results. Simulation results show a small bias 

in estimating proportions of discordant test results in the case of a small or high 

prevalence. Bias arises as there are only a few diseased or non-diseased individuals 

to estimate proportions of discordant test results in the diseased or non-diseased 

population, respectively. However, re-estimated sample sizes are close to true 

samples sizes based on true nuisance parameters. Hence, there is no indication that 

sample sizes for interim analyses are too small in the paired design. 
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In summary, I recommend applying blinded adaptive designs based on the optimal 

sample size calculation in diagnostic accuracy studies. They support to reach the 

target power without much additional effort.  

In the DFG project ZA 687/1-1 which funded my thesis, my supervisor Prof. Dr. 

Antonia Zapf and colleagues additionally developed unblinded adaptive designs for 

early stopping due to futility or efficacy or to adjust the sample size based on 

estimated sensitivities and specificities of the experimental test. Furthermore, they 

evaluated adaptive designs for phase IV test-treatment studies as well as seamless 

designs to combine two phases of the development process of a diagnostic test. 

In pandemic situations, blinded adaptive designs contribute to the pandemic 

response. In this context, diagnostic studies are related via a feedback-loop to 

national testing strategies and dynamic models to predict infection events. 

Governments specify which groups of people should be tested for the infectious 

disease through national testing strategies. Diagnostic studies evaluate the 

diagnostic accuracy of the test for this group of people and provide important insights 

for the modelling of the infection process. Based on the predicted infection process, 

governments can adjust the national testing strategy. Prof. Dr. Antonia Zapf and 

colleagues will establish the feedback-loop in further research in the DFG project 

ZA 687/3-1 on Adaptive (seamless) designs for real-time evaluation of diagnostic 

tests and their usefulness for the parameterisation of dynamic spread models in 

epidemic and pandemic settings. 

In addition, Prof. Dr. Antonia Zapf and colleagues will explore the use of adaptive 

designs in diagnostic studies to estimate proportions of missing values in the DFG 

project ZA 687/6-1 on Estimands and missing values in diagnostic studies. Estimands 

in diagnostic studies become increasingly topical especially in view of the new 

Medical Device EU Regulatory 2017/745.  

  



1.5 Conclusion 

 43 

1.5 Conclusion 

A confirmatory diagnostic accuracy study combines sensitivity and specificity as co-

primary endpoints with the experimental diagnostic test either evaluated against pre-

defined minimum thresholds in a single-test design or compared against a 

comparator diagnostic test in an unpaired or paired design. 

In this thesis, I established two methods to support reaching the target power in a 

confirmatory diagnostic accuracy study. I developed both methods for the single-test, 

unpaired and paired design testing for superiority or non-inferiority in both endpoints 

or combinations of superiority and non-inferiority, respectively. The first method 

represents the optimal sample size calculation which helps to avoid over- or 

underpowered studies with two independent co-primary endpoints. The optimal 

sample size calculation individually splits the overall power to both endpoints so that 

the product of both individual powers gives the overall target power. The second 

method consists of a blinded adaptive design including the optimal sample size 

calculation to adjust the sample size based on the estimation of nuisance parameters. 

One of those nuisance parameters to be estimated in an interim analysis is the 

disease prevalence. In the paired design, we additionally estimate proportions of 

discordant test results in the diseased and non-diseased population. 

I evaluated the blinded adaptive design based on the optimal sample size calculation 

using simulation studies and by applying it to a paired example study. Results show 

that the blinded sample size re-estimation procedure controls the type I error rate, 

comes close to the target power and estimates nuisance parameters without any 

relevant bias. Adjusted sample sizes are close to the true sample sizes which base 

on true nuisance parameters. 

Following these results, I recommend applying blinded adaptive designs based on 

the optimal sample size calculation. Proposed methods support researchers planning 

and executing efficient confirmatory diagnostic accuracy studies reaching the target 

power without having to expend much additional effort. In light of the new Medical 

Device EU Regulatory 2017/745, the optimal sample size calculation approach and 

blinded adaptive designs contribute to the validity of diagnostic phase III studies for 

the approval of experimental tests.
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1 INTRODUCTION

Diagnostic tests undergo an development program including several phases.1 Lijmer et al systematically reviewed 19
schemes for phased evaluations of medical tests and concluded that evaluations of technical efficacy, diagnostic accuracy,
clinical performance, therapeutic efficacy, patient outcome, and societal aspects were common phases.2,3 By diagnostic
test, we mean any form of medical testing for diagnostic purposes, for example an entity derived from a sample (also
sometimes referred to as biomarker) or an application of a diagnostic modality (eg, a maximum standard uptake value in
positron emission tomography/computed tomography). Technical efficacy covers the technical aspects of a diagnostic test
that are evaluated in the first phase.2 These aspects comprise the applicability and the equipment, and the term clinical
performance describes how useful the diagnostic test is to deduce the its desired diagnosis.3 Hence, with a supportive
result, the clinician is able to make a more informed diagnosis than without the diagnostic test. In this article, we focus on
diagnostic accuracy studies, which aim at assessing how reliable a diagnostic test identifies specific subgroups, eg, diseased
and nondiseased. Depending on the research question, different study designs, for instance, single-arm or parallel-arm
designs, and accuracy measures are appropriate.

Both sequential trial methodology and adaptive designs have been used for several decades in intervention studies.4-12

The “reflection paper on methodological issues in confirmatory clinical trials planned with an adaptive design”13 defines
the terms “group sequential design” and “adaptive design” and therefore makes apparent that group sequential designs fall
within the class of adaptive designs: Sequential trials are hallmarked by preplanned interim analyses at which cumulating
data are assessed with respect to early stopping for efficacy or futility with control of the overall type I error probability
at a specified level. Adaptive clinical trial designs are characterized by preplanned interim analyses, at which planned
modifications of the study design based on accumulating study data (or any other information available at the time of any
interim analysis) are possible without undermining the trial's integrity and validity.14 In the remainder, we refer to these
flexible designs as adaptive designs with the understanding that these include (group) sequential designs. It should be
noted that monitoring of safety data by a data monitoring committee or Data safety monitoring board is usually not part
of this process but a separate issue, although some authors have advocated the use of similar stopping boundaries.15

On the one hand, adaptive designs are less common in diagnostic research. On the other hand, such flexible designs
are just as important for diagnostic accuracy studies as they are for intervention studies to increase efficiency. However,
diagnostic accuracy studies have specific features, which may require modifications of the statistical methods or lead
to advantages or limitations for the application of adaptive designs.16 For example, in general, the time between inclu-
sion and completion of the study is very short for the individual participant. Therefore, the aim of this position paper
is twofold: (1) to summarize the current status of methodology research and the use of adaptive designs in diagnostic
accuracy research and (2) to advocate future development and use of adaptive designs in diagnostic accuracy trials by
highlighting the characteristics of diagnostic research.

This work evolved from a workshop on flexible designs for diagnostic studies held in Göttingen, Germany, November
6–7, 2017.17 The paper is structured as follows: First, the design aspects and the measures of diagnostic accuracy studies
are described (see Section 2). Thereafter, in Section 3, the two main adaptive design types, namely combination tests and
the conditional error function approach, are briefly described. In the main part (Section 4), methodological research and
practical perspectives of adaptive designs for diagnostic accuracy studies are outlined. In Section 5, trial steering and data
monitoring committees and their respective roles in trial conduct are summarized. A discussion in Section 6 closes the
paper.

2 DIAGNOSTIC ACCURACY STUDIES – DESIGN ASPECTS AND MEASURES

In early diagnostic trials, the disease status is often known in advance, determined by the reference standard, leading to
a case-control study design. Diagnostic case-control designs may be applied with fairly balanced sample sizes of diseased
and nondiseased in order to gather as much information on sensitivity as on the specificity, even though a prevalence of
about 50% might not mirror the true prevalence in the target population. The aim in these studies is mainly to obtain a
rough estimate of the overall diagnostic accuracy and to define a positivity threshold. In contrast, in confirmatory diagnos-
tic trials, the disease status is often determined simultaneously to the diagnostic test(s) investigated, leading to a cohort
study design. In these studies, a consecutive recruitment within a given time frame is recommended to obtain a represen-
tative sample regarding the prevalence; then, the ratio of diseased to diseased and nondiseased reflects the prevalence in
the study population. The aim of confirmatory accuracy studies is to obtain a reliable estimate of the diagnostic accuracy
at a specific threshold.
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Another important design aspect is whether an experimental diagnostic test is compared with the reference standard
only, or whether two or more diagnostic tests under evaluation are compared with each other (based on their comparison
with the reference standard). In both scenarios estimation of a test's diagnostic accuracy requires knowledge, for each
patient, of the true disease state (defined by the reference standard) and of the results of the diagnostic tests.

The third important design aspect is only valid for studies comparing two or more tests. The standard design, which is
also recommended by the EMA guideline, is the within-subject design (all tests under evaluation in all patients, also called
paired design).1 However, if it is not feasible or ethically justifiable, the diagnostic tests under evaluation will be applied
in independent groups, preferentially using a randomized allocation procedure. Furthermore, it can be appropriate to
include two or more readers, which leads to a two-factorial design and entails observer agreement assessment.18

The choice of the accuracy measure depends on whether it is an early or a confirmatory diagnostic accuracy study.
Early diagnostic accuracy trials may focus on overall estimates of diagnostic accuracy of tests on a continuous or ordinal
scale, without defining a positivity threshold and considering sensitivity (true positive rate) and specificity (true negative
rate) jointly. The standard approach for this scenario is to estimate a receiver operating characteristic (ROC) curve, which
displays sensitivity versus 1 minus specificity for every possible cutoff value.19-21 The area under the curve (AUC) is a
measure for the overall diagnostic accuracy. More precisely, the AUC is “the probability that, when presented with a
randomly chosen patient with disease and a randomly chosen patient without disease, the results of the diagnostic test
will rank the patient with disease as having higher suspicion for disease than the patient without disease.”19 In general,
the AUC is equal to 0.5 for a test as useful as flipping a coin and equal to 1 for a perfect test. Sometimes, not the whole
AUC is used but a partial area (pAUC) for a specific minimum sensitivity or specificity. However, as the methodology is
the same as for the whole AUC, we focus here on assessing the AUC rather than pAUC.

If the optimal cut point has already been determined or if the result of a diagnostic test is actually dichotomous, sen-
sitivity and specificity will be both considered primary endpoints in confirmatory accuracy trials. Since both measures
represent important characteristics of a diagnostic test, they are recommended to be used on equal footing as coprimary
endpoints by the European Medicines Agency (EMA), evaluated separately.1

The positive predictive value (PPV) and the negative predictive value (NPV) as probabilities for a correct test result
among the positive or negative test results, can be included as key-secondary endpoints. A reliable estimation of the
predictive values requires either a representative sample (of the population in which the diagnostic test is intended to be
applied) or the imputation of a known prevalence (for a given population) and the estimated sensitivity and specificity
into the Bayes' formula.

Regarding the statistical hypotheses, it is necessary to distinguish between single test studies and studies for the com-
parison of two or more tests. If in single test studies the aim is not only to estimate the accuracy but to assess whether the
accuracy meets some predefined required values, hypotheses have to be formulated accordingly. For the comparison of
two or more diagnostic tests, hypothesis tests may be of interest to assess whether the performance of one test exceeds that
of the other(s). The hypotheses can be formulated for each of the accuracy measures. However, for sensitivity and speci-
ficity as coprimary endpoints, the global null hypothesis can only be rejected if both hypotheses (regarding sensitivity and
specificity) are rejected. If two tests are compared, ideally superiority in both sensitivity and specificity is achieved. How-
ever, this is often unrealistic. Hence, noninferiority is usually required in one coprimary endpoint and superiority in the
other. In general, the hypotheses are tested using confidence intervals, and p-values are rarely used. For the comparison
of two tests, confidence intervals for the differences (or ratios) of the accuracy measures are important for a meaningful
interpretation.22,23

All different study designs described above and all mentioned accuracy measures are considered in this article. In some
special cases, other endpoints could be appropriate, eg, positive and negative percent agreement (when no reference
standard is available) or diagnostic odds ratios. However, this will not be covered in this article.

3 STATISTICAL METHODS FOR ADAPTIVE DESIGNS IN INTERVENTION
STUDIES

As mentioned in Section 1, adaptive designs are well established in intervention studies. This approach uses information
from preplanned interim analyses to either decide to stop the trial early for efficacy or futility or, more generally, to modify
design aspects. Interim analyses can be performed in a fully blinded or in an unblinded manner. Blinded interim analyses
are based on data pooled across treatments. As this could also be done in open trials, the latest FDA guidance on adaptive
designs refers to these as adaptations based on noncomparative data.14 For instance, there is a wide range of sample size
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reestimation procedures based on noncomparative data for various types of endpoints available.24 More recently, there has
been some interest in blinded continuous monitoring procedures which result in smaller variability of the final sample
size compared to designs with only a single reestimation.25,26 Interim analyses based on unblinded data may include
formal statistical hypothesis testing. Commonly applied adaptations include sample size adjustments, treatment (or dose)
selection, and subgroup selection or enrichment (study eligibility criteria). Thereby, adaptive trial designs can result in
more efficient clinical studies and the chance of success may be increased. For group sequential designs, we refer here
to the literature.4,27 In the following, we briefly introduce combination tests and conditional error functions as these can
be used to construct very flexible designs. We also outline how to deal with multiple hypotheses in so-called adaptive
seamless designs.

Combination tests combine the p-values based on data from different stages of a trial. To control the type I error rate,
the so-called p-clud condition must be fulfilled.28 This is, for instance, the case when the data of the stages come from
independent samples, and hypothesis tests are used that result under the null hypothesis in p-values uniformly distributed
on the interval [0, 1].12 A combination test is specified by its combination function and its boundaries for early termination
of the study. Early stopping is recommended if the p-value of the interim stage is smaller than the lower boundary or larger
than the upper boundary. In the first case, the null hypothesis can be rejected. In the second case, the null hypothesis is
not rejected, and the study is stopped due to futility. When the study is supposed to continue until the final stage, the null
hypothesis will be rejected in the final analysis if the value returned by the combination function is smaller than or equal
to the critical value.

An early proposal of a combination test is the Fisher's product test in which the p-values are multiplied with each other.
The weighted Fisher's product test performs a weighted multiplicative combination of the p-values of each trial stage.
Its usage is recommended if the sample sizes of the different stages are unequal. Hereby, stages with larger sample sizes
obtain a higher weight than those with a smaller sample size. The inverse normal combination test is based on a weighted
inverse normal combination function whereby the weights are again chosen according to the planned sample sizes of the
different stages.29 The inverse normal method is equivalent to an extension of group sequential tests by decomposing the
test statistic as a weighted sum of the stagewise statistics with preplanned weights.30

The conditional error function approach represents a further approach to define the rejection area in an adaptive
design.12 One early form is the proposal by Proschan and Hunsberger for effect-based sample size reestimation. Analo-
gous to the combination tests, the conditional error function approach is defined by the lower and upper boundaries of
the rejection region and the conditional error function. The conditional error function returns the conditional type I error
rate given the data of the first stage. Hence, the overall type I error rate is the probability to reject the null hypothesis at
the first stage plus the expected value of the conditional error function in the interval between the lower and the upper
boundaries of the rejection region.31

So far, we have only considered the situation of a single hypothesis. In adaptive seamless designs combining aspects of
different development phases such as learning about the optimal dose or population with confirmatory testing, multiple
hypotheses are considered. Control of the familywise type I error probability in the strong sense can be achieved by,
eg, using combination tests on intersection hypotheses in a closed test procedure.32-34 Considering adaptive designs for
treatment or subgroup selection, the methods and aspects of their implementation have been comprehensively described
(eg, simulation models and software) in a forthcoming manuscript.34

The combination test principle as well as the conditional error function approach can also be transferred from p-values
to confidence intervals (see for example the work of Magirr et al35 and Brannath et al36).

4 ADAPTIVE DESIGNS FOR DIAGNOSTIC ACCURACY STUDIES

In Section 3, we mentioned that interim analyses could be performed in a blinded or in an unblinded manner. In the
context of intervention studies for the comparison of two drugs, blinded interim analyses, in which treatment groups are
not identified, ensure full integrity of the trial. In diagnostic studies, the connection of the results of the diagnostic test(s)
with the outcomes of the reference standard may be blinded. For example, the prevalence can be estimated in a blinded
manner by only using the results from the reference standard. In a diagnostic trial comparing two diagnostic tests, a
blinded interim analysis could be achieved by summarizing the test results for a given reference standard (diseased or
nondiseased) pooling the results of both diagnostic tests.

In sequential intervention trials, stopping for futility or efficacy can lead to reduced costs and trial dura-
tion/development time and save further study participants from harm or provide the benefit of the new therapy earlier to
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patients outside the trial. In contrast, the results of experimental tests are typically not used to inform the care of partici-
pants in the study, so there is no additional risk of harm. Accordingly, the ethical imperative to halt a study at the earliest
time to avoid harming patients is weak unless the experimental tests have direct negative consequences themselves.
However, the advantages of completing a successful trial early remain.

The need for adaptive designs in AUC studies results from the fact that prior knowledge in the planning phase is often
very limited. Pepe et al37 described standards of study designs in pivotal diagnostic accuracy studies and mentioned plan-
ning for early termination, if appropriate. Modifications of design aspects can be motivated by the interim results or by
external reasons; examples are adaptation of the reference standard or the eligibility criteria due to slow recruitment. If
sample size reestimation is performed based on the results of the interim analysis, it can, for example, impact the point
estimate of the diagnostic accuracy, the variability of the test results, the correlation between the results of the individual
diagnostic tests (in the paired design), or the proportion of missing values.

The aim of adaptive designs for diagnostic trials with sensitivity and specificity as coprimary endpoints can be the
reestimation of different parameters. Probably, the simplest case is the blinded reestimation of the prevalence, which
requires adaptation of the overall sample size (in general in case of an overestimated prevalence), which will not affect
significance testing for sensitivity, specificity, and AUC, but may do for predictive values. In contrast, for the reestimation
of sensitivity and specificity, an unblinded interim analysis is needed. Furthermore, the reestimation of the proportion
of discordant results between several diagnostic tests can be of interest; to this end, the correlation between these two
diagnostic tests can be reevaluated. With the reestimation of these parameters, the sample size of the individual status
groups can be adapted during the study. If deemed necessary, even adjustments to the reference standard are possible,
for example, by changing individual components of a multicomponent reference standard. Another important issue is
a possible modification of the positivity threshold (of the experimental test and/or of the reference standard) during the
trial, which might be possible within adaptive seamless designs.

4.1 Methodological research
4.1.1 Adaptive designs for the AUC
Regarding group sequential designs in AUC studies without sample size reestimation or other modifications, there are
several articles (for an overview see for example38-40). To our knowledge, the first article about group sequential designs
in diagnostic research was written by Mazumdar and Liu, in which the authors propose an approach based on a binormal
distribution (transferable to other distributions or nonparametric models) for the comparison of two AUCs.41

The implications of group sequential designs for comparative diagnostic accuracy trials and resulting guidelines for
practitioners were presented by Mazumdar, here with the O'Brien-Fleming stopping boundaries.42 Zhou et al presented
a nonparametric group sequential design for the comparison of two AUCs in the paired design, based on the Brownian
motion.43 Tang et al proposed two group sequential designs for paired data: a nonparametric approach using a non-
parametric family of weighted AUC statistics, and a semiparametric approach based on a proportional hazards model.44

Liu et al also used a nonparametric approach, but in a more general sense for a single AUC and the comparison of two or
more AUCs in the paired design, but also for independent groups.45 Another nonparametric approach is the sequential
conditional probability ratio test procedure for the comparison of two AUCs.46 Koopmeiners and Feng derived the asymp-
totic properties of the sequential empirical ROC curve for case-control studies.47 To identify the optimal design (stopping
for efficacy only, for futility only, or for both) Kaizer et al suggested a loss function as decision criterion for two-stage
biomarker validation studies.48

Regarding adaptive designs with sample size reestimation, the reestimation can be performed based on nuisance param-
eters without the need to adjust for the type I error.49,50 In contrast, Tang and Liu proposed a nonparametric approach for
sample size reestimation based on the estimated difference between two paired AUCs in a group sequential design with
an error-spending function.51 Brinton et al also used the idea of an internal pilot study to correct the sample size for the
true disease prevalence and variance with a control of the type I error rate.52

4.1.2 Adaptive designs for other accuracy measures
For the comparison of ROC curves, instead of AUCs, Ye and Tang derived asymptotic properties of the sequential dif-
ferences of two empirical ROC curves at the process level.40 Dong et al addressed the optimal sampling ratio including
adaptations.53
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TABLE 1 Overview of
flexible designs for the area
under the curve (AUC) and
other accuracy measures

Method Type of analysis Design Approach
Group sequential ROC curve Paired difference36 Parametric36

AUC Single group41 Parametric37,38

Paired difference37-42,44 Semiparametric40

Unpaired difference41 Nonparametric37-42,44

Sensitivity, Single group49,50 Parametric49,50

specificity Nonparametric50

PPV, NPV Single group52-54 Parametric52,53

Nonparametric54

Adaptation of sample size AUC Paired difference41-43,45-48 Parametric45,47

Nonparametric46,48

Sensitivity, Paired difference51 Parametric51

specificity

Abbreviations: NPV, negative predictive value; PPV, positive predictive value; ROC, receiver operating characteristic.

Only a few studies were identified that dealt with adaptive designs in diagnostic trials, considering sensitivity and speci-
ficity as coprimary endpoints. Shu et al54 proposed different group sequential designs to early terminate a diagnostic phase
2 trial if both the sensitivity and specificity are either good enough or below a minimally acceptable margin. Pepe et al55

proposed a group sequential design for a diagnostic phase 2 or phase 3 biomarker study with the possibility to adjust for
bias that is caused by early stopping. One method for sample size recalculation in a paired diagnostic study with sensitivity
and specificity as coprimary endpoints was presented by McCray et al.56 They reestimated the proportion of concordant
test results via maximum likelihood estimation.

There exists some literature using group sequential designs to reevaluate the PPV and the NPV of a diagnostic test.
Koopmeiners and Feng introduced a group sequential design in a diagnostic biomarker study by deriving the asymptotic
results of the PPV and NPV curves.47 Koopmeiners et al57 used this group sequential design to decide about an early
termination of a continuous diagnostic biomarker trial due to futility. In the case of an unknown prevalence, Koopmeiners
and Feng58 as well as Tayob et al59 developed group sequential designs which can be used for the unbiased estimation
of the PPV and NPV. See Table 1 for an overview of abovementioned adaptive designs for the AUC and further accuracy
measures.

4.2 Practical perspectives
Adaptive designs are rarely utilized for clinical trials in diagnostic research. Short enrollment periods, moderate savings
in time or costs due to early stopping for success, and increased logistical complexity for executing interim analyses could
be reasons why conventional fixed designs are traditionally implemented in diagnostic clinical trials instead.

Some examples of diagnostic accuracy studies using adaptive designs were identified. Shivakumar et al60 reported the
results of an interim analysis for the diagnosis of psychological distress in elderly seeking health care, without discussion
of possible biases and type I error rate inflation. Snijder et al61 presented the results of an interim analysis of a study
about image-based ex vivo drug screening for patients with aggressive hematological malignancies. The authors did not
mention a group sequential design or adjustment of the type I error. Ghaneh et al62 applied an adaptive design for sample
size reestimation based on the correlation between the test errors (false positives and false negatives) in a multicenter,
prospective diagnostic accuracy study for the diagnosis of pancreatic cancer.

Nevertheless, as already discussed, adaptive designs in diagnostic accuracy trials may be beneficial. In the following,
an early stop for futility is presented as one potential application of adaptive trial methodology.

To illustrate, the following scenario is considered. For the approval of an assay, a confirmatory study is needed to demon-
strate that sensitivity fulfills a predefined acceptance criterion, ie, the lower limit of a two-sided 95% confidence interval
(LLCI) is at least 90%, for a point estimate of 96%. Budget constraints prohibit the conduct of a pilot study in a clinical
setting, leading to uncertainty around the assay's clinical performance. The disease prevalence is low (eg 10%), conse-
quently subject recruitment can extend over the course of several years. Sample acquisition costs are high; therefore, an
economical approach to meeting the study objectives is essential.

For this scenario, it is unlikely to reach a stop for success as the binomial distribution does not allow the effect size to
be much larger than the expected 96%. Additionally, the experimentwise type I error probability needs to be controlled at
level α. Therefore, the required sample size to attain a LLCI above 90% is close to the final sample size if the significance
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level α is evenly distributed between an interim and final analysis (97.5% confidence intervals each, Bonferroni correc-
tion). An α-spending function could be used to distribute the type I error more efficiently for this scenario (for example
implemented in the R package gsdesign by Anderson63), but for reasons of simplification, we use here the Bonferroni cor-
rection. Furthermore, the optimal timing of the interim analysis is not necessarily at half-time. However, the simplified
numerical example, with the specifications above and ignoring the random nature of the point estimate looks as follows
for three design considerations:

• Conventional fixed design. For a single cohort fixed design with an α of 5% (two-sided), a minimum of 100 true positive
cases is required to allow for a maximum of four false negatives so that the LLCI is at least 90% with a point estimate
of 96%. Assuming a disease prevalence of 10%, a total sample size (diseased and nondiseased) of N = 1000 is necessary.

• Adaptive design stopping early for success. Using the Bonferroni correction, ie, α is evenly distributed between an interim
and final analysis, a sample size of 79 true positive cases is needed to allow for two false negatives with the minimum
LLCI of 90% (point estimate: 97.5%). However, if the performance of the assay is as expected at the interim analysis, the
study cannot be stopped for success as the sample size is not large enough to attain a LLCI of at least 90%. As a result,
a sample size of 110 for true positive cases is necessary for the final analysis to ensure a minimum LLCI of 90%. The
total sample size (diseased and nondiseased) for the study including an interim analysis would be N = 1100, meaning
10% larger than for a conventional trial without an interim analysis.

• Adaptive design stopping early for futility. If only an early stop for futility is planned, it is not necessary to adjust the
type I error for the interim analysis at 50% of the recruitment. The full α = 5% could be used for the final analysis. If
the number of false negatives is already 5 or more at 50% of the recruitment, the study could be terminated for futility,
and costs for the recruitment of the remaining 50% of patients can be saved.

This example illustrates possible applications and corresponding implications of adaptive designs in diagnostic accuracy
studies.

5 DATA MONITORING COMMITTEE

Clinical trials can have a trial steering committee (TSC) and a data monitoring committee (DMC) or data monitoring
and safety board. For more information about DMC, we refer to the relevant guidelines.64-66 This does not only apply to
intervention studies but also to diagnostic trials with patient-relevant outcomes, where the new diagnostic test may lead
to an altered therapy or has any other consequences for the participants. In contrast, in diagnostic accuracy studies, such
committees are not standard.

For fixed study designs and adaptive designs with blinded interim analysis, it may be appropriate and more efficient
to combine the TSC and the DMC into an oversight committee (OC). An OC should be established if at least one of the
following issues is present: (1) reasonable safety concerns, (2) considerable uncertainty about the assumptions for the
sample size calculation, (3) the chance of external findings influencing the current study, or (4) resource intensive (in
terms of budget and/or time). An OC should involve responsible members of the study group as well as independent
members. The task of all OC members regarding adaptations should be to monitor, for example, if the new diagnostic tests
lead to an obvious and unreasonable harm for the patients. Furthermore, all OC members would be involved in blinded
interim analyses (in conducting the analyses or in discussing the results) and provide recommendations about next steps.
The next steps could be stopping for futility, sample size reestimation, or other adaptations.

All OC members can also be involved in monitoring the recruitment rate. With regard to adaptive designs with
unblinded interim analysis, the DMC should be established as an independent committee, because unblinded interim
analyses leading to sample size reestimation or other adaptations have to be performed independently of the TSC. As a
result, recommendations to the sponsor about continuing or stopping the trial (for efficacy or futility) should be made by
the DMC.

6 DISCUSSION

The evaluation of diagnostic accuracy with its inherent need for a reference standard is a characteristic phase for any
diagnostic test. As such, dedicated research into how to apply adaptive trial methodology to diagnostic trials is necessary.
Currently, group sequential techniques with the main purpose of sample size reassessment or possibly early termination
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of the trial are applied, but not routinely. Furthermore, only few reports on interim analyses without discussion of type I
error rate inflation were found. We strongly believe that the field of diagnostic research could be significantly advanced
by the more frequent implementation of adaptive designs, in particular, with options for early stopping (due to efficacy
or futility) or design modifications such as sample size reassessment. In our view, these areas are two promising fields for
future methodological research. For this purpose, the development of further techniques for adaptive designs in diagnostic
accuracy trials is necessary.

This paper is a timely status of the research in adaptive trial methodology based on an ad hoc literature search in
PubMed/Medline and Google Scholar performed by three authors (AZ, MS, and OG) in July 2018. The literature search
was not performed systematically. A strength of the project is that coauthors from The Netherlands, UK, Germany,
Denmark, and US, working in diagnostic research in academia, a government agency, and industry contributed.

This study is, to the best of our knowledge, the first to summarize the current status of the topic from a diagnostic
research point of view and to indicate potential future research subjects from an interdisciplinary standpoint. An inter-
disciplinary viewpoint describes the collaboration of experts of academic and nonacademic research areas, which helps
to reveal different requirements adaptive designs in diagnostic trials must maintain.

One may think that adaptive trial methodology can be transferred to diagnostic research because it has been established
and used for decades now.7,11 To some extent, this may be true, especially when thinking of late phase diagnostic trials
establishing patient benefit, thereby requiring randomized designs. However, diagnostic accuracy research is peculiar and
prevents a simple application of preexisting techniques.

• A reference standard is a prerequisite for any diagnostic accuracy study.
• The primary outcome is twofold (sensitivity and specificity), implying an important role on the prevalence with respect

to the achievable accuracy in parameter estimation.
• Diagnostic accuracy trials are often planned and conducted in a within-subject (or paired) design, thereby shifting the

focus on discordant pairs of results and their (dis)agreement.
• Keeping the blind regards the interim analysis, meaning the results of diagnostic test(s) and reference standard, not

randomization information with respect to study arms (as is the case in interventional research).

Tang et al argued that the use of adaptive designs in diagnostic accuracy studies is an obvious option since they are con-
ducted so fast.44 Hence, the speed of recruitment determines the applicability of a group sequential design (or in fact any
other adaptive design): the longer the length of trial recruitment, the more realistic the application of a group-sequential
design becomes.

In case of early termination of the study, risks and consequences of interim analyses with respect to possible bias need
to be taken into consideration.67-71 Our study stresses the need for continuing research into possible applications of adap-
tive designs in diagnostic accuracy research. Recent endeavors concerning late phase diagnostic trials on patient benefit,
which are beyond the focus of this study, dealt with multiplicity issues in exploratory subgroup analysis, including adap-
tive biomarker-driven designs72 and specified the application of an enrichment design comparing a new endovascular
treatment with standard of care for ischemic stroke patients.73 The following questions might be subject to future research:

• How can adaptive designs be applied with possible early stopping due to efficacy or futility as well as seamless designs?
• Can adaptive designs for the reestimation of PPV and NPV be transferred to the reestimation of the sensitivity and

specificity?
• What is the optimal time point for an interim analysis—as early as possible, or as late as necessary? First interim

analysis with 40%, 50%, or 60% of patients? This issue depends on the duration of evaluation , eg, histopathological
examination of tissue following a diagnostic test or follow-up of at least 6 months as part of a composite reference
standard.

Furthermore, this paper is limited to adaptive designs in diagnostic accuracy research, as these areas concern the very
characterization of a diagnostic test; diagnostic thinking efficacy and therapeutic efficacy focus, in opposition, on clinical
endpoints or surrogates of those for patient benefit, which, in turn, are investigated in patient outcome research later in
the process. Adaptive designs for such studies are also subject to future research.
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Article

Sample size calculation and
re-estimation based on the prevalence
in a single-arm confirmatory
diagnostic accuracy study

Maria Stark and Antonia Zapf

Abstract

Introduction: In a confirmatory diagnostic accuracy study, sensitivity and specificity are considered as co-primary

endpoints. For the sample size calculation, the prevalence of the target population must be taken into account to obtain

a representative sample. In this context, a general problem arises. With a low or high prevalence, the study may be

overpowered in one subpopulation. One further issue is the correct pre-specification of the true prevalence. With an

incorrect assumption about the prevalence, an over- or underestimated sample size will result.

Methods: To obtain the desired power independent of the prevalence, a method for an optimal sample size calculation

for the comparison of a diagnostic experimental test with a prespecified minimum sensitivity and specificity is proposed.

To face the problem of an incorrectly pre-specified prevalence, a blinded one-time re-estimation design of the sample

size based on the prevalence and a blinded repeated re-estimation design of the sample size based on the prevalence are

evaluated by a simulation study. Both designs are compared to a fixed design and additionally among each other.

Results: The type I error rates of both blinded re-estimation designs are not inflated. Their empirical overall power

equals the desired theoretical power and both designs offer unbiased estimates of the prevalence. The repeated

re-estimation design reveals no advantages concerning the mean squared error of the re-estimated prevalence or

sample size compared to the one-time re-estimation design. The appropriate size of the internal pilot study in the

one-time re-estimation design is 50% of the initially calculated sample size.

Conclusions: A one-time re-estimation design of the prevalence based on the optimal sample size calculation is

recommended in single-arm diagnostic accuracy studies.

Keywords

Adaptive design, co-primary endpoints, blinded sample size re-estimation, sensitivity, specificity

1 Introduction

The determination of the correct sample size is an essential component of a confirmatory study in general. If the

sample size is too large, more patients than necessary will be exposed to a treatment or diagnostic test under

investigation. Otherwise, if the sample size is too small, it will not be ensured to find a relevant effect on the basis

of those patients who are involved. In each case, ethical and financial issues will arise. The special feature of a

confirmatory diagnostic accuracy study is the combination of the sensitivity (as the true positive rate) and the

specificity (as the true negative rate) to co-primary endpoints, measured in two independent subpopulations. This

means that for both endpoints a separate sample size calculation is performed, giving the needed number of
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diseased and non-diseased individuals. Based on the prevalence the total sample size is calculated, which can be

different for both endpoints. In this case, the maximum of the total sample sizes of both endpoints is the final

sample size.
The guideline on clinical evaluation of diagnostic agents of the European Medicine Agency1 demands the

specification of the sample size in a confirmatory diagnostic accuracy study in the study protocol. The guideline

highlights the dependency of the sample size on the prevalence. This means that the total sample size for the

sensitivity and for the specificity may differ in the case of a low or high prevalence. This aspect leads to an

unbalanced design. In a confirmatory diagnostic accuracy study, the sample size of each endpoint is often calcu-

lated with an individual power of 90% to reach an overall power of at least 80%. This is possible because

sensitivity and specificity are estimated in independent subgroups. However, in the case of a low or high prev-

alence, the empirical overall power is noticeably larger than 80% due to the unbalanced design. This paper solves

this problem of an overpowered sample size determination by providing an approach to calculate the optimal

sample size depending on the prevalence. This approach is illustrated through the example of a study design

containing the comparison of one experimental test to a prespecified minimum sensitivity and specificity in which

the reference standard defines the true disease status. Furthermore, if the true prevalence is not known for the

initial sample size calculation in this study design, a procedure for the blinded re-estimation of the sample size

based on the prevalence is presented. This enables the adaptation of the sample size during the study.
In the literature, sample size calculations are hardly published in diagnostic studies.2–4 In methodological

research, there are several approaches which address the usage of binomial confidence intervals based on the

normal approximation as the basis of the sample size calculation. Agresti and Coull5 describe an own confidence

interval which provides a better coverage probability than the standard Wald confidence interval. Beyond that,

Piegorsch6 gives a survey about binomial confidence intervals which are superior to the Wald confidence interval.

Wei and Hutson7 give a new sample size calculation method which is based on the expected width of the con-

fidence interval under the assumption of an hypothesized proportion. Research for blinded sample size

re-estimation in the context of clinical trials does already exist.8–10 Asakura et al.11 published an interim evalu-

ation with co-primary endpoints in clinical trials. However, this approach is applicable only for co-primary

endpoints measured on the same individuals. Flahault et al.12 developed an approach for sample size calculation

allowing for uncertainty in the prevalence. They determine the sample size so that the sample contains, with a

predetermined probability, enough diseased and non-diseased people. No research is found addressing the prob-

lem of overpowering as a consequence of the sample size calculation for co-primary endpoints measured in

independent subpopulations. Furthermore, the implementation of a blinded sample size re-estimation procedure

based on the prevalence for the comparison of one experimental test to a prespecified minimum sensitivity and

specificity neither could be found. This lack of research gives evidence to the present paper.
This publication is structured the following way: at first, the problem of overpowering with the conventional

way of sample size calculation in diagnostic accuracy studies with co-primary endpoints is explained. The next two

subsections present the theoretical basis and practical application of an approach to negotiate this problem by

calculating the optimal sample size. After this, the procedure of a one-time and a repeated blinded sample size

re-estimation based on the prevalence is presented. In Section 4, the results of the simulation study concerning the

one-time and repeated sample size re-estimation design are compared to those of the fixed design and among each

other. Finally, the results of the simulation study are discussed and a conclusion is given.

2 Sample size calculation in a confirmatory diagnostic accuracy study

2.1 Conventional sample size calculation

As already mentioned in Section 1, sensitivity and specificity are combined as co-primary endpoints which is done

through the Intersection-Union Test. The global null hypothesis H0global is defined as the union of the null hypoth-

esis of the sensitivity H0se and the null hypothesis of the specificity H0sp

H0global : H0se : hse0 ¼ hse1 [H0sp : hsp0 ¼ hsp1 (1)

hse1 and hsp1 represent the sensitivity and specificity of the experimental test. hse0 and hsp0 denote the minimum

sensitivity and minimum specificity to which the experimental test is compared. H0global can only be rejected if H0se

and H0sp can be rejected. The overall power results as the product of the individual power of each endpoint, as the
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endpoints are measured in independent subpopulations. In analogy, the global type I error rate is the product of
the type I error rates of both endpoints. The global type I error rate is not inflated through the combination of
both endpoints via the Intersection-Union Test.

For the sample size calculation in a confirmatory diagnostic accuracy trial, both endpoints must be considered.
The true disease status of the patients is unknown at the time of enrolment into the study. The sample size is
determined in three steps: first, the individual sample size for the sensitivity nse (the number of diseased individ-
uals) and for the specificity nsp (the number of non-diseased individuals) is calculated by using in this paper the
sample size formula for the Wald confidence interval for a single proportion.13,14 The sample size formula is given
in the example below. Second, the total sample size of both endpoints is calculated by dividing the individual
sample size for the sensitivity by the prevalence, leading to the total sample size Nse, and by dividing the individual
sample size for the specificity by one minus the prevalence, leading to the total sample size Nsp.

15 This must be
done to obtain a representative sample with the correct ratio between cases and controls.12 Hereby, the prevalence
in a confirmatory diagnostic accuracy study means the proportion of diseased people in the target population for
which the diagnostic test is developed. In the third step, the maximum of these both sample sizes represents the
final sample size N of the study.16

This procedure is exemplified with a confirmatory single-arm diagnostic accuracy study for the diagnosis of
pancreatic cancer. The example is based on a two-arm study used by McCray et al.17 The experimental test to be
examined is the computed tomography (CT).The biopsy is the reference standard. The positron emission tomog-
raphy which serves as the experimental test in the publication of McCray et al.17 is not considered here. The
conventional sample size calculation is done so that an overall power (¼ 1� b) of at least 80% should be reached
by assigning a power of 90% to each individual endpoint. The sensitivity of the CT is expected to be hse1 ¼ 0:81
and it should be shown that it is larger than hse0 ¼ 0:75. The specificity of the CT is expected to be hsp1 ¼ 0:66 and
the study aims to show that it is larger than hsp0 ¼ 0:6. The type I error rate is set to a ¼ 0:05 (two-sided) and the
individual type II error rate of each endpoint is bse ¼ bsp ¼ 0:1. The prevalence p is assumed to be 0.3. The
variance of the parameter h� is defined as Vðh�Þ ¼ h � ð1� h�Þ.14 The upper a=2 and b quantile of the standard
normal distribution is denoted by za=2 and zb:

1. Number of diseased individuals

nse ¼
½za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhse0Þ

p þ zbse
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhse1Þ

p �2
ðhse0 � hse1Þ2

¼ 508

Number of non-diseased individuals

nsp ¼ ½za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhsp0Þ

p þ zbsp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhsp1Þ

p �2
ðhsp0 � hsp1Þ2

¼ 683

2. Total sample size including at least nse diseased individuals

Nse ¼ nse=p ¼ 508=0:3� 1693

Total sample size including at least nsp non-diseased individuals

Nsp ¼ nsp=ð1� pÞ ¼ 683=ð1� 0:3Þ� 976

3. N¼max(Nse, Nsp)¼ 1693

As the example shows, if the prevalence is low, the total sample size of the sensitivity determines the final
sample size. Hence, more people than needed are included to show the specificity which often leads to an over-
powered study. If the prevalence was high, the same problem would arise. But in this case, the specificity would
probably determine the final sample size and the endpoint of the sensitivity would be overpowered now.
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2.2. Optimal sample size calculation

To overcome the problem of an overpowered diagnostic accuracy study, an approach for the calculation of an
optimal sample size is proposed. This approach ensures the desired overall power which is perfectly adjusted to the
prevalence. The sample size is optimal in the way that it is the smallest representative sample that achieves the
advertised overall power. The approach is based on the idea to individually split the overall power to the endpoint
of the sensitivity and specificity. Hence, an individual type II error is assigned to each of both endpoints so that
the required sample sizes of both endpoints are equal. To reach an overall power of 80%, the individual power of
each endpoint cannot be smaller than 80%. In conclusion, none of both endpoints is overpowered which leads to a
correct empirical overall power. As this method is developed for a confirmatory setting, the true disease status of
the patients is unknown at the time of enrolment into the study. In analogy to the conventional sample size
calculation, assumptions about the prevalence have to be made.

The mathematical definition of this approach is again exemplified through the single-arm design

Nse ¼! Nsp (2)

nse
p

¼! nsp
ð1� pÞ (3)

½za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhse0Þ

p þ zbse
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhse1Þ

p �2
ðhse0 � hse1Þ2 � p

¼! ½za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhsp0Þ

p þ zbsp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhsp1Þ

p �2
ðhsp0 � hsp1Þ2 � ð1� pÞ (4)

zbse
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhse1Þ

p
ðhsp0 � hsp1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ

p
� zbsp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhsp1Þ

q
ðhse0 � hse1Þ

ffiffiffi
p

p

¼! za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhsp0Þ

q
ðhse0 � hse1Þ

ffiffiffi
p

p � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhse0Þ

q
ðhsp0 � hsp1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ

p (5)

Under the condition

Powerse � Powersp ¼! Powert (6)

ð1� bseÞ � ð1� bspÞ¼! Powert (7)

bsp ¼ 1� bse � Powert
1� bse

(8)

Plug the condition into the sample size calculation

zbse
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhse1Þ

p
ðhsp0 � hsp1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ

p
� z1�bse�Powert

1�bse

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhsp1Þ

q
ðhse0 � h1seÞ

ffiffiffi
p

p

¼! za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhsp0Þ

q
ðhse0 � hse1Þ

ffiffiffi
p

p � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðhse0Þ

q
ðhsp0 � hsp1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ

p (9)

Equation (9) cannot be solved analytically with respect to bse or bsp and is therefore solved by the software R.18

The R-code for this sample size calculation is given in the supplement materials.
The analysis of a study based on this optimal sample size calculation is proposed to be done by the logit

confidence interval. It is defined as

expit ln
ĥ

1� ĥ

 !
�za=2 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n � ĥ � ð1� ĥÞ
q

0
B@

1
CA (10)

with expit(x)¼ ex

1þex
19, ĥ as ĥse1 or ĥsp1 and n as nse or nsp, respectively. The individual null hypothesis of each

endpoint will be rejected, if hse0 or hsp0 does not fall into this two-sided 1-alpha confidence interval. If the study
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was analyzed with the Wald confidence interval, the empirical power would be lower than the theoretical one. The

empirical power would also be lower than the theoretical one, if the optimal sample size calculation was based on

the logit confidence interval and if the evaluation was done with it. Fleiss et al.20 address this problem in the

context of binomial confidence intervals which are based on the normal approximation. They recommend to use a

sample size formula with continuity correction to increase the sample size. They show that the empirical power is

now a little higher than the theoretical one. Using the procedure proposed in this paper, the empirical evaluations

given in Section 4 suggest the theoretical power is achieved. This is caused by the fact that the sample size of the

logit confidence interval is smaller than the one of the Wald confidence interval. The left part of equation (11)

represents the sample size of the logit confidence interval and the right part shows the sample size of the Wald

confidence interval. The numerator of the sample size of the logit interval is smaller than the numerator of the

sample size of the Wald interval. The denumerator of the sample size of the logit interval is larger than the

denumerator of the sample size of the Wald interval. Hence, the analysis with the logit confidence interval based

on the larger sample size of the Wald confidence interval ensures to reach the theoretical power. In Appendix 1,

the derivation of the sample size of the logit interval is given.

za=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0ð1�h0Þ

p þ zbffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1ð1�h1Þ

ph i2
ln h1ð1�h0Þ

h0ð1�h1Þ
� �h i2 <

za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0ð1� h0Þ

p þ zb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1ð1� h1Þ

ph i2
ðh0 � h1Þ2

(11)

2.3 Application of the optimal sample size calculation

The optimal sample size calculation method is now applied to the single-arm diagnostic accuracy study for the

diagnosis of pancreatic cancer already used in the context of the conventional sample size calculation in Section

2.1. Both sample size calculations are based on the requirement to reach an overall power of 80% and a maximal

type I error rate per endpoint of 5% (two-sided). Figure 1 compares the empirical overall power and the sample

size between the conventional and optimal sample size calculation for a varying prevalence p. The sample sizes of

both approaches in Figure 1 on the right are almost equal if the prevalence is balanced. But with a decreasing or

increasing prevalence, the sample sizes of both approaches differ. Due to the individual split of the overall power
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Figure 1. Comparison of the conventional and optimal sample size calculation with respect to a varying prevalence p and the
resulting empirical overall power or sample size. The parameters of this example are as follows: a¼ 0.05 (two-sided), hse0¼ 0.75,
hse1¼ 0.81, hsp0¼ 0.6 and hsp1¼ 0.66. The sample size calculation in the conventional approach is based on bse¼ bsp¼ 0.1. In the
optimal approach, the overall power is aimed to be 80% and is individually split to both endpoints which is depending on the
prevalence.In the figure on the right showing the sample size, an enlarged picture inset is given between p¼ [0.2, 0.8] to highlight the
difference in the sample sizes between both approaches.
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to both endpoints in the optimal approach, the sample size of the optimal approach is smaller than the one of the

conventional approach. The study under the conventional procedure is highly overpowered in the case of a low or

high prevalence. With a balanced prevalence, the empirical power of the conventional approach is closer to the

desired theoretical power of 80%. Adapted to the prevalence, the empirical power of a study conducted with

the optimal sample size does not relevantly differ from the theoretical power of 80%. Additionally, Figure 1

shows the empirical individual power of both endpoints which varies complementary between 80% and almost

100%. The individual power of one endpoint cannot become smaller than the advertised overall power of 80%.
To reveal the importance of a correct assumption about the prevalence, the discrepancy between the initial

sample size based on a wrongly assumed prevalence and the sample size based on the true prevalence is consid-

ered. The sample sizes are calculated with the optimal sample size calculation procedure. In the context of the

chosen example, the initially wrongly assumed prevalence is 0.3 with a resulting initial sample size of 1367

individuals. Table 1 shows several scenarios with a variation of the true prevalence ptrue and the corresponding

true sample sizes (true N). Furthermore, Table 1 contains the individual power of each endpoint using the true

sample size. The true prevalence varies between 0.1 and 0.6. The largest discrepancy between the initial and true

sample size is revealed in the case of a true prevalence of 0.1. With a small prevalence, the sensitivity determines

the sample size. If the assumed prevalence is larger than the true one, the initially calculated sample size will be too

small. Referring to McCray et al.,17 the true prevalence of the chosen example equals 0.47. If this is true, this will

lead to an overpowered study as the true sample size of 1165 is smaller than the initial sample size. If the true

prevalence is 0.6, a true sample size of 1325 will result which is similar to the initial one. This can be explained

again by referring to Figure 1 which depicts the symmetry of the sample size around a prevalence of approxi-

mately 0.42. As the prevalence of 0.3 and 0.6 is approximately equally distant from 0.42, both corresponding

sample sizes do not differ a lot.
The comparison of the initial and true sample size gives evidence for a re-estimation design of the prevalence

during a confirmatory diagnostic accuracy study. In this context, a wrongly assumed prevalence can be re-

evaluated and consequently the sample size can be adjusted. The following section introduces the procedure of

the blinded sample size re-estimation based on the prevalence, using the optimal sample size calculation approach.

3 Blinded sample size re-estimation

In a fixed design without an internal pilot study, the sample size is calculated based on assumptions of a preceding

study and is not adjusted before the final analysis. The process of an internal pilot design with a one-time re-

estimation of the prevalence also starts with this initial sample size calculation but runs through five phases:21

1. Calculation of the initial sample size with the optimal procedure (e.g. based on assumptions of a preceding

study)
2. Recruitment of patients until the predetermined size of the internal pilot study is reached
3. Re-estimation of the prevalence and recalculation of the sample size with the optimal procedure
4. If the recalculated sample size is larger than the already recruited sample size, further patients will be recruited

until the adjusted sample size will be reached. Otherwise, no further recruitment is necessary.
5. Analysis of the study based on the unadjusted type I error level due to the blinded character of the

re-estimation procedure

In the repeated prevalence re-estimation design, the prevalence and the sample size are re-estimated several

times based on a steadily growing sample. The recruited sample increases during each run by a predetermined size.

The re-estimation procedure is finished as soon as the already recruited sample is too large to not exceed the

Table 1. Application of the optimal sample size calculation approach: Highlighting the discrepancy between the initial sample size of
1367 people based on the wrongly assumed prevalence of 0.3 and the true sample sizes (true N) based on a varying true prevalence
ptrue. The parameters of the scenarios are a ¼ 0:05 (two-sided), power ¼ 0:8; hse0 ¼ 0:75, hse1 ¼ 0:81; hsp0 ¼ 0:6, hsp1 ¼ 0:66.

ptrue 0.10 0.20 0.40 0.47 0.50 0.60

true N 3870 1940 1185 1165 1178 1325

Powerse 0.801 0.802 0.878 0.923 0.939 0.984

Powersp 1 0.998 0.912 0.869 0.852 0.813
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recalculated sample size after the addition of the next fraction of patients. Hence, the repeated re-estimation

design iterates between step 2 and 3 before it proceeds to step 4 and 5.
The prevalence is re-estimated by the well-known maximum likelihood estimator of a binomial proportion22

p̂ ¼ X

n
(12)

X denotes the number of diseased patients in the sample and n represents the sample size on which the re-

estimation is based. The prevalence represents a nuisance parameter in a diagnostic trial. Consequently, the

recalculation of the sample size based on the re-estimated prevalence is defined as a blinded adaptive design.23

In the context of a blinded sample size recalculation in a diagnostic study, the sensitivity or the specificity of the

experimental test is kept a secret because they are not of interest during the interim analysis. Therefore, the type I

error is expected to be not inflated which will be explored by the simulation study.
To evaluate the appropriate size of the internal pilot study in the context of the one-time re-estimation design,

the quotient R is used. It is defined as24

R ¼ Eðn1Þ
nFðptrueÞ (13)

Eðn1Þ represents the simulated adjusted sample size after re-estimation of the prevalence. nFðptrueÞ denotes the
correct sample size initially calculated with the true prevalence. Values of R which are close to 1 represent an

efficient size of the internal pilot study.

4 Simulation study

The simulation study aims to evaluate the type I error rate, the power, and the bias of the design with the one-time

as well as the repeated re-estimation of the prevalence, each in comparison to the fixed design. Furthermore, the

appropriate size of the internal pilot study for the one-time re-estimation is proposed. The mean squared errors

(MSEs) of the re-estimated prevalence and of the adjusted sample size are compared between both adaptive

designs. For the design with a one-time re-estimation 3888 scenarios, and for the repeated re-estimation design

1296 scenarios are simulated. They are given in Table 2. Per scenario, 100,000 replications are performed.

4.1 One-time re-estimation of the prevalence

At first, the results of the simulations concerning the type I error rate, power, and bias of the design with the one-

time re-estimation of the prevalence are given. The results of the design with the repeated re-estimation of the

prevalence are similar to those of the one-time re-estimation design and are therefore not shown in the text. The

Table 2. Simulated scenarios.

One-time re-estimation Repeated re-estimation

True prevalence ptrue 0.2, 0.4, 0.6, 0.8

Assumed prevalence pass: ptrue � 0.1, ptrue þ 0.1

Minimum sensitivity hse0 0.6, 0.7, 0.8

Minimum specificity hsp0 0.6, 0.7, 0.8

Under the null H0 : h0 ¼ h1
Fraction for re-estimation w 0.02, 0.1, 0.3, 0.5, 0.7 0.1

Significance level a per endpoint 0.05 (two-sided)

Sensitivity experimental test hse1 0.6, 0.7, 0.8

Specificity experimental test hsp1 0.6, 0.7, 0.8

Under the alternative H1 : h0 6¼ h1
Fraction for re-estimation w 0.5 0.1

Overall power 1� b 0.8

hse1 h0se þ 0.05, h0se þ 0.1, h0se þ 0.15

hsp1 h0sp þ 0.05, h0sp þ 0.1, h0sp þ 0.15
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results of all simulated scenarios are given in the supplement materials as tables. Figure 2 shows the global type I

error rate of the one-time re-estimation and the fixed design for the scenarios with hsp0 ¼ 0:6; hsp1 � hsp0 ¼ 0:1 and
the size of the internal pilot study w ¼ 0:5. Furthermore, the Monte Carlo error due to simulations

(1.96�SE¼ 0.00016) is depicted. The sample size is calculated with a significance level of each endpoint of
0.05 (two-sided) which leads to a global significance level of 0.0025 (two-sided). As mentioned in Section 2.1,

the global type I error rate results as the product of both individual type I error rates. Figure 2 reveals that the
global type I error rate is sufficiently controlled in this adaptive design as well as in the fixed design. This is also

the case for the individual type I error rates.
A figure containing the individual type I error rate for sensitivity and specificity for the same scenarios as for

the global type I error rate is given in the supplement materials. In the following, the results of the individual type
I error rate of the endpoint of the sensitivity will be explained. In the scenarios with a small prevalence, a high

minimum sensitivity, and a much higher sensitivity of the experimental test, the type I error rate is smaller than
0.05 irrespective of whether the true prevalence is initially over- or underestimated. Kottas et al.25 show that the

logit interval is conservative in the case of a small sample size. In the named scenarios, the small sample is
represented through a small number of diseased patients due to the low prevalence. The high minimum sensitivity

and the high sensitivity of the experimental test additionally diminish the sample size. The decision of a potential

rejection of the null hypothesis is based on this small number of diseased patients who are diagnosed correctly
with a high probability. Hence, the use of the logit confidence interval leads to the conservative type I error rates

in these scenarios. The individual type I error rates of the specificity reveal the same results in the corresponding
scenarios with a high prevalence.

Figure 3 contains the results of the overall power simulations of the scenario with the same parameters as
described above in the context of the type I error rate. The results reveal the effect of a wrongly assumed

prevalence during sample size calculations in the fixed design. The fixed design is either over- or underpowered
depending on the difference between the true and the initially assumed prevalence. If the true prevalence is

assumed to be too low, the study will be overpowered in the case of a low prevalence. In this context, the
individual sample size of the sensitivity is the maximum to choose. But it is divided by a too small assumed

prevalence which leads to a too large sample size. This causes an overpowered study. If the true prevalence is high,
the individual sample size of the specificity will determine the total sample size. If the true prevalence is under-

estimated, the sample size of the specificity will be divided by a too large proportion of the non-diseased. Hence,
the sample size and the power are too low. This mechanism will be reversed if the true prevalence is overestimated.

Additionally to the true and assumed prevalence, the difference between minimum sensitivity and the sensitivity of
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the experimental test hse1 � hse0 influences the overall power of the fixed design. If the true prevalence is low, a
large difference will diminish the over- or underpowering. Otherwise, if the true prevalence is high, a high dif-
ference between the assumed and minimum sensitivity will intensify the consequences of an initially wrongly
assumed prevalence.

The overall power of the one-time re-estimation design reaches exactly the desired power of 80%. Due to the
re-estimation of the prevalence, the effect of an initially wrongly specified prevalence can be absorbed. This is valid
for all other simulated scenarios.

The bias of the estimated prevalence decreases the larger the size of the internal pilot study w is. But with
w ¼ 0:1, the prevalence is already re-estimated without any bias. A figure containing the relative bias is given in
the supplement materials.

4.2 The size of the internal pilot study in the one-time re-estimation design

The appropriate size of the internal pilot study is explored by simulating the quotient R of the adjusted sample size
after re-estimation Eðn1Þ divided by the correct sample size initially calculated with the true prevalence nFðptrueÞ.
Values of R which are equal to 1 indicate a correct sample size re-estimation. Figure 4 depicts the quotient R in
dependence of w for the scenarios under hse0 ¼ 0:8; hsp0 ¼ 0:8 and hsp1 � hsp0 ¼ 0:15 with either an initially over-
or underestimated prevalence. If w ¼ 0:1, R will differ clearly from the optimum 1. If w increases up to 0.3, the
correct sample size will be overestimated about approximately 10%, especially with an unbalanced true preva-
lence. This proportion of overestimation is reduced with w ¼ 0:5. If w becomes larger than 0.5 up to 0.9, the
quotient R is not relevantly closer to the value of 1. The results for w ¼ 0:9 are not depicted in Figure 4 as they
provide no further information about the appropriate size of the internal pilot study. Hence, the appropriate size
of the internal pilot study is considered to be w ¼ 0:5. These thoughts are only valid for the simulated scenarios as
just the prevalence is wrongly assumed. In reality, there might be further parameters that are wrongly assumed
during sample size calculation (e.g. the sensitivity or the specificity of the experimental test). Consequently, w ¼
0:5 might not be the appropriate fraction for such scenarios.

4.3 Comparison of the design with one-time and repeated re-estimation

of the prevalence

This section compares the designs with the one-time and repeated re-estimation of the prevalence with respect to
the MSE. The MSE measures the squared mean difference between the true prevalence ptrue and the re-estimated
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prevalence, or the squared mean difference between the true sample size nFðptrueÞ and the adjusted sample size,
respectively. Figure 5 shows these results for the scenarios hse0 ¼ 0:8; hsp0 ¼ 0:8; hsp1 ¼ 0:95; ptrue ¼ 0:2. The
internal pilot study of the one-time re-estimation design has the appropriate size with w ¼ 0:5. The fraction for
re-estimation in the repeated re-estimation design is wR ¼ 0:1. The graphic on the left in Figure 5 refers to the
MSE of the re-estimated prevalence; the graphic on the right refers to the MSE of the adjusted sample size. This
figure reveals that the one-time re-estimation design has no relevant disadvantage compared to the repeated re-
estimation design concerning the MSE.
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repeated re-estimation design is wR ¼ 0.1. MSE: mean squared error.
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5 Discussion

This paper deals with two aspects of confirmatory diagnostic accuracy studies. First, it presents an improved

method for the sample size calculation. This approach allows to calculate the sample size by individually splitting

the overall power to each endpoint depending on the prevalence. Consequently, the study will not be overpow-

ered. This approach can be generalized for all sample size calculations combining two co-primary endpoints which

are based on independent data. Its idea is to get the same sample size for each endpoint for the purpose of not

needing to choose a maximum out of them. Hence, it is not limited to diagnostic studies.
Second, this paper evaluates two designs to re-estimate the prevalence and to adjust the sample size in a

confirmatory diagnostic accuracy study: the one-time re-estimation and repeated re-estimation design. For

both designs, we propose the optimal approach for the initial and adjusted sample size calculations. Both blinded

sample size re-estimation designs do not inflate the type I error rate and re-estimate the prevalence without any

bias. These two re-estimation procedures compensate a wrongly assumed prevalence and its consequences on the

initial sample size. Consequently, the empirical overall power equals the desired theoretical one.
As chosen in the simulation study, a difference between the assumed and true prevalence of 10% is considered

to be a realistic deviation. The assumptions about the prevalence in a confirmatory diagnostic accuracy study

come in general from preceding studies. Hence, the assumed difference in the confirmatory diagnostic accuracy

study should not differ heavily from the true one.
The repeated re-estimation design reveals no relevant advantage concerning the MSE of the re-estimated

prevalence or of the adjusted sample size. In both designs, an initially wrongly assumed prevalence can be effi-

ciently corrected.
Hence, we recommend the application of a one-time re-estimation design in a confirmatory diagnostic accuracy

study. A unique re-estimation of the prevalence is sufficient. It shows no disadvantage concerning the precision of

the estimation but causes less effort compared to the repeated re-estimation procedure.
The appropriate size of the internal pilot study in the one-time re-estimation design is evaluated to be 50% of

the initially calculated sample size. The sample size in diagnostic accuracy studies strongly varies from hundred to

several thousands participants. The prevalence and the effect size of the sensitivity and of the specificity mainly

cause this large range. To be able to make common statements about the appropriate size of the internal pilot

study despite of the large range of sample sizes, the size of the internal pilot study is indicated as a proportion.

6 Conclusion

In this paper, a new method for the calculation of the sample size in a confirmatory diagnostic accuracy study with

independent co-primary endpoints, the sensitivity and the specificity, is developed. With this method, it is possible

to avoid overpowered diagnostic studies which often appear with the conventional approach of sample size

calculation. The idea of the optimal sample size calculation is to individually split the overall power to both

endpoints in dependence of the prevalence. Furthermore, two blinded designs for the re-estimation of the sample

size based on the prevalence are presented either with a one-time or a repeated re-estimation. These designs are

evaluated in a simulation study under various parameter combinations. Due to the blinded re-estimation, the type

I error rate is not inflated. An initially wrongly assumed prevalence can be compensated and the desired overall

power is reached. The design with a one-time re-estimation reveals no disadvantages concerning the MSE of the

re-estimated prevalence or adjusted sample size compared to the repeated re-estimation design. Therefore, it is

recommended for a confirmatory diagnostic accuracy study. The re-estimation of the prevalence has practical

relevance to avoid over- or underpowered studies with wrongly specified sample sizes. Hence, an unnecessary

burden of participants in a confirmatory diagnostic trial can be inhibited.
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Appendix 1

A.1. A derivation of the sample size of the logit confidence interval

Find the sample size n so that P(Reject H0 j H0 is true) �a and P(Reject H0 j H0 is false) 	 1� b.20,26 ĥ is the
maximum likelihood estimator of a true proportion h and is approximately normally distributed for large n19

ĥ
a N h;
hð1� hÞ

n

� �
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hð1� hÞ
n

¼ r2

n

• Definition of the type I error rate with the critical value f27
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• Definition of the type I error rate for the logit interval
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• Definition of the power in general27
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Definition of the power for the logit interval

f ¼
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2.2.2 Online Supplement Material 

There is online supplement material available for Thesis Article 2 which I partially 

show in this section. 

Online supplement material included in this section: 

 Figure with individual type I error rates regarding endpoints of sensitivity and 

specificity in the fixed and adaptive single-test design 

 Figure with the relative bias of the estimated prevalence 

 R-code of the optimal sample size calculation in the single-test design 

Further online supplement material not included in this section, but available online: 

 Simulated type I error rates for all scenarios 

 Simulated powers for all scenarios 

 Simulated sample sizes for all scenarios 

 
 



 

Individual type I error rate for sensitivity and specificity in the fixed and adaptive design depending on the true prevalence (𝜋true),  

the assumed prevalence (𝜋ass.), the minimum sensitivity (Θse0
) and the sensitivity of the experimental test (Θse1

). 



 

Relative bias of the estimated prevalence (�̂�) in relation to the true prevalence (𝜋true) depending on the size of the internal pilot study (𝜓), the assumed 

prevalence (𝜋ass.), the minimum sensitivity (Θse0
) and the sensitivity of the experimental test (Θse1

). 



R-Code: optimal sample size calculation

s s . exact <− f unc t i on ( alpha , power , se , se . ni , sp , sp . ni , prev ) {
# parameter d e s c r i p t i o n
# alpha : d e s i r ed type I e r r o r ra t e per endpoint
# power : d e s i r ed o v e r a l l power
# se : s e n s i t i v i t y o f the index t e s t
# se . n i : s e n s i t i v i t y to which the index t e s t i s compared
# sp : s p e c i f i c i t y o f the index t e s t
# sp . n i : s p e c i f i c i t y to which the index t e s t i s compared
# prev : preva l ence

# help func t i on s
# the func t i on v e s t imate s the var iance o f theta based on the binomial

d i s t r i b u t i o n
v = func t i on ( theta ) {

re turn ( theta * (1 − theta ) )
}
# sample s i z e f o r one endpoint
s i n g l e = func t i on ( alpha , beta , theta . 0 , theta ) {

n = c e i l i n g ( ( qnorm( alpha / 2) * s q r t ( v ( theta . 0 ) ) + qnorm( beta ) * s q r t ( v (
theta ) ) ) ^ 2 / ( theta . 0 − theta ) ^ 2)

re turn (n)
}
# ca l c u l a t e power f o r one endpoint
c a l c u l a t e . power <− f unc t i on (n , alpha , theta . 0 , theta ) {
# the func t i on v e s t imate s the var iance o f the s e n s i t i v i t y based on the

binomial d i s t r i b u t i o n
v = func t i on ( theta ) {

re turn ( theta * (1 − theta ) )
}
z <− ( s q r t (n) * ( theta . 0 − theta ) − qnorm( alpha / 2) * s q r t ( v ( theta . 0 ) ) )

/ sq r t ( v ( theta ) )
power <− 1 − pnorm( z )
re turn ( power )

}
# func t i on f o r the equal sample s i z e f o r both endpoints
f <− f unc t i on ( alpha , power , beta . 1 , se , se . ni , sp , sp . ni , prev ) {

d i f f . n <− qnorm( beta . 1 ) * s q r t ( v ( se ) ) * ( sp . n i − sp ) * s q r t (1 − prev ) −
qnorm(1 − ( power / (1 − beta . 1 ) ) ) * s q r t ( v ( sp ) ) * ( se . n i − se ) * s q r t
( prev ) − qnorm( alpha / 2) *

s q r t ( v ( sp . n i ) ) * ( se . n i − se ) * s q r t ( prev ) + qnorm( alpha / 2) * s q r t ( v (
se . n i ) ) * ( sp . n i − sp ) * s q r t (1 − prev )

re turn ( d i f f . n )
}
# so l v e the sample s i z e f o r beta . 1 and then c a l c u l a t e beta . 2
beta . 1 <− un i root ( f , alpha = alpha , power = power , se = se , se . n i = se . ni ,

sp = sp , sp . n i = sp . ni , prev = prev , lower = 0 , upper = 1 − power ) $root
beta . 2 <− ( power + beta . 1 − 1) / ( beta . 1 − 1)
# ca l c u l a t e sample s i z e with the known beta . 1 and beta . 2
n . se <− s i n g l e ( alpha = alpha , beta = beta . 1 , theta . 0 = se . ni , theta = se ) #

sample s i z e s e n s i t i v i t y

1



n . sp <− s i n g l e ( alpha = alpha , beta = beta . 2 , theta . 0 = sp . ni , theta = sp ) #
sample s i z e s p e c i f i c i t y

N. se <− n . se / prev
N. sp <− n . sp / (1 − prev )
N <− c e i l i n g (max(N. se , N. sp ) ) #t o t a l sample s i z e
# c a l c u l a t e t o t a l power
power . se <− c a l c u l a t e . power (n = N * prev , alpha = alpha , theta . 0 = se . ni ,

theta = se )
power . sp <− c a l c u l a t e . power (n = N * (1 − prev ) , alpha = alpha , theta . 0 = sp

. ni , theta = sp )
power . t o t a l <− power . se * power . sp
re turn ( l i s t (N = N, N. se = N. se , N. sp = N. sp , power . t o t a l = power . t o ta l ,

power . se = power . se , power . sp = power . sp ) )
}

2
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RESEARCH

Blinded sample size re-estimation 
in a comparative diagnostic accuracy study
Maria Stark1*, Mailin Hesse2, Werner Brannath3 and Antonia Zapf1 

Abstract 

Background: The sample size calculation in a confirmatory diagnostic accuracy study is performed for co-primary 
endpoints because sensitivity and specificity are considered simultaneously. The initial sample size calculation in an 
unpaired and paired diagnostic study is based on assumptions about, among others, the prevalence of the disease 
and, in the paired design, the proportion of discordant test results between the experimental and the compara-
tor test. The choice of the power for the individual endpoints impacts the sample size and overall power. Uncertain 
assumptions about the nuisance parameters can additionally affect the sample size.

Methods: We develop an optimal sample size calculation considering co-primary endpoints to avoid an overpow-
ered study in the unpaired and paired design. To adjust assumptions about the nuisance parameters during the 
study period, we introduce a blinded adaptive design for sample size re-estimation for the unpaired and the paired 
study design. A simulation study compares the adaptive design to the fixed design. For the paired design, the new 
approach is compared to an existing approach using an example study.

Results: Due to blinding, the adaptive design does not inflate type I error rates. The adaptive design reaches the 
target power and re-estimates nuisance parameters without any relevant bias. Compared to the existing approach, 
the proposed methods lead to a smaller sample size.

Conclusions: We recommend the application of the optimal sample size calculation and a blinded adaptive design 
in a confirmatory diagnostic accuracy study. They compensate inefficiencies of the sample size calculation and sup-
port to reach the study aim.

Keywords: Adaptive design, Co-primary endpoints, Sensitivity, Specificity, Unpaired design, Paired design

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
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other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
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Background
In a diagnostic accuracy trial the experimental test is 
compared to the reference standard, which defines the 
true disease status. Either the evaluation is limited to 
the comparison with the reference standard (single-test 
design) or another test is considered in addition (com-
parative design) [1]. The present article puts the focus on 
comparative study designs in which the experimental test 
is compared to an already evaluated comparator test. In 

the unpaired design, either the experimental test or the 
comparator test is assigned randomly to study partici-
pants in addition to the reference standard [2]. In con-
trast, in the paired design, participants undergo all three 
diagnostic procedures [3]. Due to the within-subject 
comparison of the diagnostic tests in the paired design, 
the variability of the study results will be diminished 
[4]. For this reason, the paired design is preferred to the 
unpaired design if technically feasible and ethically justi-
fiable [4]. Hence, the focus of this article is especially on 
the paired design. Figure  1 gives an overview about the 
different designs.

Independent of the chosen study design, sensitiv-
ity and specificity are used as co-primary endpoints 
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in a confirmatory diagnostic accuracy trial [4, 5]. Both 
endpoints are combined via a joint hypothesis which 
is evaluated by the Intersection-Union Test [6, 7]. In 
this context, Stark et  al. [8] developed an approach to 
calculate the sample size considering the prevalence. 
The advantage of this optimal sample size calculation 
is to avoid an overpowered study as it is often the case 
with the conventional approach. We will extend this 
approach to the unpaired and paired comparative study 
design. Hereby, the study might either aim to show 
superiority, non-inferiority or a combination of both 
regarding the co-primary endpoints.

To adjust the sample size during the course of the 
study, an adaptive design can be applied. Zapf et al. [9] 
reveal that adaptive designs including group-sequen-
tial designs are hardly developed and rarely applied in 
diagnostic studies. Stark et  al. [8] introduce a blinded 
adaptive design for sample size re-estimation in the 
single-test design. Focusing on comparative study 
designs, Mazumdar et al. [10] propose a group-sequen-
tial design, but restricted to the area under the receiver 
operating characteristic curve as endpoint. McCray 
et al. [11] developed a blinded sample size re-estimation 
procedure in the paired study design regarding sensi-
tivity and specificity. Their approach is based on the re-
estimation of the proportion of concordant test results 
and the prevalence. To further develop the approaches 
of McCray et al. [11] and Stark et al. [8], we transfer the 
blinded adaptive design in the single-test design using 
the optimal sample size calculation to both compara-
tive study designs. Hence, novel aspects in the present 
work are first, the development of the optimal sample 
size calculation in the unpaired as well as paired design 
aiming to show superiority, non-inferiority or a combi-
nation of both regarding the co-primary endpoints and 
second, the implementation of a blinded-sample size 

re-estimation procedure in the unpaired and paired 
design based on the optimal sample size calculation.

The present article is structured the following way: at 
first, we introduce the optimal sample size calculation 
in the unpaired and paired study design aiming to show 
superiority, non-inferiority or a combination of both. 
Second, we describe the procedure of the blinded sam-
ple size re-estimation in the unpaired and paired study 
design. Third, we compare the blinded adaptive design 
in a paired trial to the approach of McCray et  al. [11] 
using an exemplary trial. Then, we present the results 
of a simulation study investigating the blinded adaptive 
design compared to a fixed design in an unpaired and 
paired study. Finally, we discuss the results and offer a 
conclusion.

Methods
Sample size calculation in a comparative diagnostic study
In this section, we introduce the optimal sample size 
calculation for a comparative diagnostic study, which is 
already developed by Stark et  al. [8] for the single-test 
design. In a comparative diagnostic study, sensitivity 
and specificity of the experimental test can be tested for 
superiority, non-inferiority or the combination of supe-
riority and non-inferiority against the comparator test. 
For the motivation and application of the optimal sample 
size calculation, we focus on the paired design testing for 
superiority regarding both endpoints because the paired 
design is the more relevant design in comparative studies 
[4]. However, the advantages of the optimal sample size 
calculation are also valid in the unpaired design. Further-
more, we provide formulas for the optimal approach in 
the unpaired and paired design.

In confirmatory diagnostic studies, sensitivity and 
specificity are combined as co-primary endpoints 
via the Intersection-Union test [8]. The null hypoth-
esis of the Intersection-Union-Test is the union of the 

Fig. 1 Study designs of a confirmatory diagnostic accuracy trial
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individual null hypothesis regarding sensitivity and the 
individual null hypothesis regarding specificity [6]. The 
overall power of this Intersection-Union test is calcu-
lated by the product of the power of each individual 
hypothesis. To show superiority of the experimental 
test regarding sensitivity and specificity against the 
comparator test, the global null hypothesis H0global for 
equality is given by:

SeE and  SpE denote the sensitivity and specificity of the 
experimental test.  SeC and  SpC represent the sensitiv-
ity and specificity of the comparator test. H0global is only 
rejected if both H0Se and H0Sp are rejected simultaneously. 
Superiority of the experimental test regarding sensitivity 
and specificity against the comparator test can be con-
cluded from point estimates and p-values or confidence 
intervals. Sensitivity and specificity represent the success 
probabilities of a binomial distribution which follow an 
asymptotic normality in the case of a large sample [12]. 
For the analysis based on confidence intervals, we pro-
pose to use approximate 100 · (1 − α)% confidence inter-
vals for the difference of two proportions.

Conventional sample size calculation
To motivate the advantage of the optimal sample size cal-
culation, we show the problems related to the procedure 
of the conventional sample size calculation in a confirma-
tory diagnostic study in the context of the paired design.

The conventional sample size calculation consists of 
three steps: calculate the needed number of diseased 
and non-diseased individuals, refer these numbers to the 
prevalence to receive numbers needed to show sensitivity 
and specificity and, choose the maximum to determine 
the final sample size [13–15].

We now perform these three steps for a paired diag-
nostic study mentioned in McCray et al. [11]. The exam-
ple study compares the experimental combination of 

(1)
H0Se : SeE = SeC and H0Sp : SpE = SpC

H0global = H0Se ∪H0Sp

Positron Emission Tomography (PET) and computed 
tomography (CT) against CT alone to diagnose pancre-
atic cancer. The goal is to show superiority of the experi-
mental test against the comparator test. The biopsy 
defines the true disease status. Table 1 shows the assump-
tions for sample size calculation used in this example. 
The disease prevalence π represents the proportion of 
diseased individuals on all individuals. Parameters ψD 
and ψND denote the proportion of discordant test results 
in the diseased and non-diseased population, hence those 
proportions in which both diagnostic tests lead to dif-
ferent test results. The conventional approach plans the 
sample size for each endpoint with a power of 90% which 
theoretically leads in the product to an overall target 
power of approximately 80%. The significance level α is 
set to 5% per endpoint. The 1 − α/2 and 1 − β quantile of 
the standard normal distribution is denoted by z1 − α/2 and 
z1 − β. The individual steps are as follows:

1. Sample size of diseased individuals based on the for-
mula of Miettinen et al. [16]:

 Sample size of non-diseased individuals:

2. Total sample size including at least nSe diseased indi-
viduals:

 Total sample size including at least nSp non-diseased 
individuals:

nD =

(

z1−�∕2 · �D + z1−�Se

√

�2

D
−

1

4

(

SeC − SeE

)2(

3 + �D

)

)2

�D

(

SeC − SeE

)2
= 74

nND =

(

z1−�∕2 · �ND + z1−�Sp

√

�2

ND
−

1

4

(

Sp
C
− Sp

E

)2(

3 + �ND

)

)2

�ND

(

Sp
C
− Sp

E

)2
= 47

NSe =
nSe

π
= 74

0.47
= 157

Table 1 Assumptions of the paired diagnostic accuracy trial for the comparison of the experimental Positron Emission Tomography 
(PET) combined with the computed tomography (CT) against the comparator test PET

General input parameters: 
Significance level per endpoint: α = 0.05 (two− sided),   
Overall Power:  Poweroverall = 1 − βoverall = 0.8
Power per endpoint:  PowerSe =  PowerSp = 1 − βSe = 1 − βSp = 0.9

Prevalence:
π = 0.47

Comparator test (CT) Experimental test (PET/CT) Proportion of 
discordant test 
results

Diseased population SeC = 0.81 SeE = 0.90 ψD = 0.09

Non-diseased population SpC = 0.66 SpE = 0.80 ψND = 0.14
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3. 

The study recruits more individuals than would be 
necessary to show the specificity because the sensitiv-
ity determines the final sample size in this scenario. This 
can result in an overpowered study. If the prevalence was 
smaller, the difference between NSe and NSp would be 
even larger. Vice versa, if the prevalence was larger, NSp 
would determine the final sample size. These discrep-
ancies between the sample sizes of both endpoints can 
result in an overpowered study. To face this problem, we 
propose the optimal sample size calculation explained in 
the next section.

Optimal sample size calculation
At first, we present the general idea of the optimal sam-
ple size calculation. Then, we expand the optimal sample 
size calculation in the single-test design developed by 
Stark et al. [8] to an unpaired and paired study. Further-
more, we provide formulas testing for superiority regard-
ing both endpoints in the unpaired and paired design. 
In additional materials, we show hypotheses and sample 
size formulas testing for non-inferiority or combinations 
of superiority and non-inferiority [see Additional file 1]. 
Furthermore, we offer R-Code for the optimal sample 
size calculation considering superiority in both endpoints 
in additional materials [see Additional file 2].

The general idea behind the optimal sample size cal-
culation consists of the individual splitting of the overall 
power  (Poweroverall) to both endpoints, so that NSe and 
NSp are equal. In this case, we won’t need to select a max-
imum from both sample sizes. Consequently, the final 
sample size is the smallest representative sample which 
allows to reach the desired overall power. We calculate 
the final sample size with the following equation in which 
the symbol “ !

= ” denotes that terms on both sides must 
be equal:

Under the condition:

NSp = nSp

1− π
= 47

1− 0.47
= 88

N = max
(

NSe,NSp

)

= 157

(2)NSe
!= NSp

(3)
nSe

π

!= nSp

1− π

(4)PowerSe·PowerSp = Poweroverall

In the following subsections, we plug the condition 
into the sample size calculation; noting that the resulting 
equations cannot be solved analytically respect to βSe.

Unpaired design
In the unpaired design, the optimal sample size calculation 
uses the formula for the comparison of two independent 
proportions following Zhou et al. [1]:

where V0(SeC −  SeE) and VA(SeC −  SeE) represent the var-
iance of the difference between  SeC and  SeE under the null 
and alternative hypothesis, respectively. In the unpaired 
design, the variance V(SeC −  SeE) is defined as [1]:

The variance V(SpC −  SpE) is calculated in analogy.
Although the sample size formula in Eq. (7) fits to the Wald 

confidence interval for the difference of two independent 
proportions, we propose to analyse the unpaired design with 
the two-sided 1- α Score confidence interval for the difference 
of two independent proportions [17]. The coverage probabil-
ity of the Score confidence interval is closer to the nominal 
level compared to the Wald confidence interval [18–20].

Paired design
In the paired design, the optimal sample size is based on 
the formula of Miettinen et al. [16]:

with ψD as the proportion of discordant test results in the 
diseased sample, which varies between [16, 21]:

(5)(1− βSe)·
(

1− βSp
)

= Poweroverall

(6)βSp = 1− βSe − Poweroverall

1− βSe
= 1− Poweroverall

1− βSe

(

zα/2
√
V0(SeC − SeE)+ zβSe

√
VA(SeC − SeE)

)2

(SeC − SeE)
2·π

!=

(7)

(

z�∕2

√

V0

(

SpC − SpE
)

+ z 1−�Se−Poweroverall
1−�Se

√

VA

(

SpC − SpE
)

)2

(

SpC − SpE
)2

· (1 − �)

(8)V (SeC − SeE) = SeC· (1− SeC)+ SeE· (1− SeE)

(9)

(

z1−α/2·ψD+z1−βSe

√

ψ2
D− 1

4 (SeC−SeE)
2(3+ψD)

)2

ψD(SeC−SeE)
2π

!=
(

z1−α/2·ψND+z Poweroverall
1−βSe

√

ψ2
ND− 1

4 (SpC−SpE)
2(3+ψND)

)2

ψND(SpC−SpE)
2(1−π)

(10)|SeC − SeE| ≤ ψD ≤ SeC + SeE − 2· SeC· SeE
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The interval of the proportion of discordant test results 
in the non-diseased sample ψND is calculated in analogy by 
considering  SpC and  SpE.

For two different proportions of discordant test results 
in the diseased ( ψD1

,ψD2 ) and non-diseased ( ψND1
,ψND2

 ) 
population, the total sample size N(ψD, ψND) in Eq. (9) is 
monotone increasing:

In analogy to the unpaired design, we propose to ana-
lyse the paired design with the two-sided 1- α Tango’s 
asymptotic score confidence interval for the difference of 
two matched proportions [22, 23]. We recommend this 
based on the reason given above. Furthermore, the Wald 
confidence is not range preserving [24].

Application of the optimal sample size calculation 
in the paired design
We apply the optimal sample size approach to the exam-
ple study introduced in Table 1 and compare the results to 
those of the conventional approach. For this purpose, we 
simulate, based on 10,000 simulation runs, the empirical 
power of both approaches for a varying prevalence π and 
calculate the sample size. Figure  2 shows the results. In 
most cases, the conventional approach is highly overpow-
ered due to the choice of the maximum sample size of both 

(11)

�D1
,�D2

∈
[

|

|

SeC − SeE
|

|

;SeC + SeE − 2 · SeC · SeE
]

and

�ND1
,�ND2

∈
[

|

|

SpC − SpE
|

|

;SpC + SpE − 2 · SpC · SpE
]

�D1
≤ �D2

and �ND1
≤ �ND2

⇒ N
(

�D1
,�ND1

)

≤ N
(

�D2
,�ND2

)

endpoints in the third step. If the prevalence is in the range 
between 0.5 and 0.75, the empirical power will be closer to 
the target power of 80%. The empirical power will be the 
closest to the target power, if the prevalence equals 0.6 as 
the discrepancy between NSe and NSp is the smallest.

The optimal approach splits the overall power to both 
endpoints depending on the prevalence, so that the prod-
uct of the empirical power of both endpoints comes close 
to the target power of 80%.

Considering the sample size, the optimal approach 
will lead to a smaller sample size than the conventional 
approach if the prevalence is unbalanced. Figure  2 con-
tains an enlarged image section of the sample size so that 
the differences between both approaches are highlighted.

Blinded sample size re‑estimation
The procedure of a blinded sample size adjustment based 
on the re-estimation of nuisance parameters basically fol-
lows five phases named by Stark et al. [8]. In Fig. 3, these 
five steps are explained in context of the unpaired and 
paired study design. The nuisance parameters re-esti-
mated during the study are the prevalence and addition-
ally proportions of discordant test results in the paired 
design. The main difference between the adaptive designs 
in the unpaired and paired study design consists of the 
sample size for the interim analysis. In the unpaired 
design, the prevalence is estimated based on 50% of the 
initially calculated sample size. In the paired design, both, 
the initial sample size and the sample size for the interim 

Fig. 2 Empirical power and sample size of the conventional and optimal sample size calculation. Simulations are based on the example study given 
in Table 1 with a varying prevalence π. The figure considering the sample size contains an enlarged image section so that the differences between 
both approaches are highlighted
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analysis equal the minimal sample size [11]. The minimal 
sample size is received with the minimal possible propor-
tion of discordant test results in the diseased ( ψDmin

 ) and 
non-diseased population ( ψNDmin

 ). Assumptions about 
the sensitivity and the specificity of the comparator and 
experimental test determine the minimal possible pro-
portion of discordant test results. Following Eq. (10), the 
minimal proportion of discordant test results are calcu-
lated with:

Furthermore, the calculation of the minimal sample 
size requires assumptions about the prevalence.

During interim analysis, the prevalence is estimated 
by the maximum likelihood estimator of a binomial 
proportion [25]:

The number of diseased individuals involved in the 
interim analysis is represented by nD, and the sample size 
used for interim analysis is denoted by n.

In analogy, the proportion of discordant test results 
is estimated by the maximum likelihood estimator of a 
multinomial distribution [26]:

(12)
ψDmin = |SeC − SeE|
ψNDmin =

∣

∣SpC − SpE
∣

∣

(13)π̂ = nD

n

(14)ψ̂D = nD10 + nD01

nD

Table  2 shows the parameters needed to re-estimate 
the proportions of discordant test results.

The estimation of nuisance parameters represents a 
blinded adaptive design because the sensitivity and the 
specificity of the experimental test are not revealed. 
Hence, the type I error rate will not be inflated by 
definition.

(15)ψ̂ND = nND10 + nND01

nND

Fig. 3 Procedure of the blinded adaptive design in an unpaired and paired diagnostic trial

Table 2 Results in a paired diagnostic study

DiseasednD

Comparator Test
True
Positive (TPC)

False
Negative (FNC)

Experimental
Test

True
Positive (TPE)

nD11
nD10

False
Negative (FNE)

nD01
nD00

Non‑diseased nND

Comparator Test
False
Positive (FPC)

True
Negative (TNC)

Experimental
Test

False
Positive (FPE)

nND11
nND10

True
Negative (TNE)

nND01
nND00
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Results
Application of the blinded sample size re‑estimation 
in the example study
This section serves for illustration of the blinded sam-
ple size re-estimation in the paired study design. For 
this purpose, we compare the approach of McCray et al. 
[11] to the adaptive design procedure described in this 
article by taking up the example of a paired diagnostic 
accuracy study already introduced in Table 1. The main 
progress of our new approach compared to McCray 
et al. [11] is to implement the optimal sample size cal-
culation. We reveal the advantage of the optimal sam-
ple size calculation in this context again.

Table  3 compares the theoretical aspects and the 
results of both adaptive design procedures. They dif-
fer in the definition of endpoints, hypothesis and in the 
way the sample size calculation is performed. McCray 
et  al. [11] work with the quotient of sensitivities and 
the quotient of specificities of both diagnostic tests as 
endpoints. They use sample size formulas which rely 
on the true-positive-positive rate (TPPR) and true-
negative-negative-rate (TNNR) [27]. TPPR denotes the 
proportion of test results in which both, the compara-
tor test and the experimental test correctly diagnose a 
diseased individual. Vice versa, TNNR represents the 
proportion of test results in which both tests correctly 
return a negative test result. For initial sample size 
calculation,  TPPRmax and  TNNRmax are used, which 
represent the maximal possible TPPR and  TNNR, 
respectively.

McCray et  al. [11] perform the sample size calcula-
tion based on the conventional three steps by planning 
the sample size calculation with a power of 80% per end-
point. This leads to a theoretical overall power of 64%.

In contrast to McCray et  al. [11], our approach uses 
the optimal sample size calculation. It is based on sample 
size formulas considering the difference of sensitivities 
and the proportion of discordant test results in the dis-
eased population or the difference of specificities of both 
tests and the proportion of discordant test results in the 
non-diseased population, respectively [1]. In contrast to 
McCray et al. [11], we choose the differences as endpoint 
measurement because the guideline on clinical evalua-
tion of diagnostic agents suggests this [4]. Furthermore, 
we perform the optimal sample size calculation to reach 
an overall power of 80%.

Table  3 shows the initial sample size, the sample size 
for interim analysis and the re-estimated sample size 
of both adaptive design procedures. Due to the opti-
mal approach, sample sizes resulting from our adaptive 
design are lower than those of McCray et  al. [11]. The 
optimal sample size calculation avoids that one of both 
co-primary endpoints is overpowered which leads to 
smaller sample sizes.

The difference between both approaches regarding 
sample sizes will be even more extensive if the prevalence 
is unbalanced. A figure in additional materials, which 
depicts the simulated empirical overall power based on 
10,000 simulations runs and the calculated sample size, 
illustrates this difference between both approaches for 

Table 3 Comparison of the blinded adaptive design procedure with McCray et al. [11]

McCray et al. (2017) Our approach

General information Endpoint SeE
SeC and SpESpC

SeE −  SeC and  SpE −  SpC

H0global H0Se : SeE
SeC

= 1∪
H0Sp : SpE

SpC
= 1

H0Se : SeE − SeC = 0∪
H0Sp : SpE − SpC = 0

Sample size calculation Conventional approach
α per endpoint: 0.05 (two-sided)
Power per endpoint: 0.8

Optimal approach
α per endpoint: 0.05  
(two-sided)
Overall power: 0.8

Parameter of dependency between both tests TPPR = nD11
nD

TNNR = nND00
nND

ψD = nD10+nD01
nD

ψND = nND10+nND01
nND

Initial
sample size calculation

Size of internal pilot study TPPRmax and  TNNRmax correspond to ψDmin
 and ψNDmin

Parameter of dependency between both tests for 
initial sample size calculation

TPPRmax =  SeC = 0.81
TNNRmax =  SpC = 0.66

ψDmin
= |SeC − SeE| = 0.09  

ψNDmin
= |SpC − SpE| = 0.14

Initial sample size, size of internal pilot study 186 133

Sample size
re-estimation

Estimation of nuisance parameters π̂ = 0.44
ˆTPPR = 0.80 |
ˆTNNR = 0.66

π̂ = 0.44

ψ̂D = 0.11 |
ψ̂ND = 0.14

Re‑estimated sample size 242 200
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the initial sample size calculation based on ψDmin and 
ψNDmin

 by varying π [see Additional  file  3]. This figure 
reveals that the approach of McCray et al [11]. is highly 
overpowered although they plan with a power of 80% 
per endpoint. This theoretically leads to a theoretical 
overall power of 64%. In this example, the dependence 
between both diagnostic tests is almost maximal because 
ψD and ψND are almost minimal. In this case, the underly-
ing assumptions of sample size formulas and confidence 

intervals are not valid [11]. Hence, the approach of 
McCray et al. [11] is highly overpowered.

In contrast, the optimal sample size calculation enables to 
reach an overall power of 80% independent of the prevalence.

Simulation study
We perform a simulation study to evaluate type I error 
rates, statistical power, sample sizes and bias of the adap-
tive design based on re-estimated nuisance parameters 
in the unpaired and paired study design. We compare 
results of the adaptive design to those of the fixed design 
which gets by without re-estimation of the sample size. 
Table 4 shows the simulated scenarios testing for superi-
ority in both endpoints. Based on the example of a paired 
diagnostic accuracy study used by McCray et al. [11], we 
choose one initial scenario. Starting from the initial sce-
nario, we vary one parameter in each further scenario. 
That results in 15 scenarios in the unpaired design and 
19 scenarios in the paired design, each simulated with 
10,000 simulation runs. In analogy to these scenarios, we 
perform simulations testing for non-inferiority in both 
endpoints, or the combinations of superiority and non-
inferiority, respectively. In this section, we focus on the 
results of those scenarios testing for superiority in both 
endpoints because the other results are comparable to 
them. For completeness, we make the remaining simu-
lated scenarios and their results available in the online 
supplement materials [see Additional files 4 and 5].

Table 5 shows distributions involved in the data genera-
tion mechanism. We use the statistical software R version 
4.0.5 to perform the simulations with the default random 
number generator Mersenne-Twister, but with the own 
initialization methods of R [28, 29].

Figure  4 shows type I error rates with accord-
ing Monte Carlo errors due to simulations (1.96 x 
SE = 0.00098), power and true sample sizes (Ntrue) with 
root-mean-squared-error of the re-estimated sample 
size (RMSE) under  H1 and additionally the mean of 
the re-estimated samples sizes per scenario (Nmean) of 
those scenarios containing the minimal, medium and 
maximal ψDtrue in the paired study design. The depicted 

Table 4 Simulated scenarios in the unpaired and paired study 
design testing for superiority in both endpoints. The proportion 
of discordant test results is only relevant in the paired design

10,000 simulation runs per 
scenario

Nominal significance level α per 
endpoint

0.05 (two-sided)

Nominal overall target power 0.8

Initial scenario Variation 
of initial 
scenario

Sensitivity comparator test  SeC 0.8 0.6, 0.7

Specificity comparator test  SpC 0.7 0.6, 0.8

True prevalence πtrue 0.2 0.4, 0.6, 0.8

Assumed prevalence πass. πtrue +  0.1 πtrue - 0.1
πtrue +  0.2
πtrue +  0.3

True discordant results
diseased population ψDtrue

0.11
(0.15, if:
SeE −  SeC = 0.15)

0.18, 0.26

Assumed discordant results
diseased population ψDass.

0.18

True discordant results
non-diseased population ψNDtrue

0.14
(0.15, if:
SpE −  SpC = 0.15)

0.24, 0.38

Assumed discordant results
non-diseased population ψNDass.

0.24

Sensitivity experimental test  SeE =̂SeC

Specificity experimental test  SpE =̂SpC

Sensitivity experimental test  SeE SeC +  0.1 SeC +  0.05
SeC +  0.15

Specificity experimental test  SpE SpC +  0.1 SpC +  0.05
SpC +  0.15

Table 5 Description of the data generation mechanism of the unpaired and paired design in the simulation study (Bin: binomial 
distribution, MVBin: multivariate binomial distribution, k: number of trials, p: success probability, ρ: dependence between both tests, N: 
total sample size, nDE: diseased individuals in experimental group, nDC: diseased individuals in comparator group)

Unpaired design Paired design

Diseased individuals  (nD) according to
reference standard

nDE
∼ Bin(k = N, p = πtrue)

nDC
∼ Bin(k = N, p = πtrue)

nD ~ Bin(k = N, p = πtrue)

True Positive
Results (TP)

TPE ∼ Bin(k = nDE
, p = SeE )

TPC ∼ Bin(k = nDC
, p = SeC )

(TPE , TPC ) ∼ MVBin(kE = nDE
, kC = nDC

,  
pE = SeE, pC = SeC, ρ = TPPR)

True Negative
Results (TN)

TNE ∼ Bin(k = N − nDE
, p = SpE )

TNC ∼ Bin(k = N − nDC
, p = SpC )

(TNE , TNC ) ∼ MVBin(kE = N − nDE
, kC = N − nDC

,

pE = SpE, pC = SpC, ρ = TNNR)
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results offer some characteristics which can be gen-
eralized to other scenarios in the paired and unpaired 
design. Referring to Fig. A, one important aspect is that 
scenarios preserve type I error rates. In analogy to the 
overall power of the Intersection-Union Test explained 
in section 2, global type I error rates result as the prod-
uct of the individual type I error rates of each endpoint 
(0.05 two-sided each). Due to the analysis with the score 
confidence interval in this scenario with small preva-
lence, results are conservative [24].

Considering Fig. B and C, the overall power of the 
fixed design decreases with increasing ψDtrue . The larger 
ψDtrue is, the smaller the dependence between both tests 
is. The smaller the dependence between both tests is, the 
larger Ntrue becomes. The discrepancy between Ntrue and 
Nmean in the fixed design increases, if ψDtrue increases. If 
ψDtrue is medium, the assumption about this parameter 
in the fixed design equals the true parameter. But the 
assumption about the prevalence is larger than the preva-
lence is in truth. Therefore, Nmean is smaller than Ntrue and 
the overall power is smaller than the target power of 80%.

The adaptive design compensates wrong assumptions 
about nuisance parameters. The discrepancy between 
Ntrue and Nmean of the adaptive design is small. Hence, 
the overall power comes close to the target power. The 
adaptive design re-estimates ψDtrue , ψNDtrue and πtrue 
without any relevant bias. In those scenarios based on 

the initial prevalence of 20%, relative bias of ψ̂D is little 
higher than relative bias of ψ̂ND . Due to this prevalence, 
there is only a small number of diseased patients in the 
sample which can be consulted for the re-estimation of 
ψDtrue . Supplement materials show simulations results 
of the bias.

Figure 5 compares the overall power depending on the 
true prevalence πtrue in the unpaired and paired design. 
If πtrue is low, the power in both fixed designs is the low-
est. The power becomes larger with increasing preva-
lence. In the depicted scenarios, the assumed prevalence 
is larger than the true prevalence. A low true prevalence 
represents a small number of diseased individuals. In 
this case, the number of diseased individuals is the deter-
mining aspect for sample size calculation to show the 
sensitivity. In the fixed unpaired design, a higher num-
ber of diseased individuals is wrongly assumed which 
results in a too small sample size and power. Vice versa, 
a high true prevalence leads to a too large sample size 
and power. The number of non-diseased individuals now 
determines the sample size to show the specificity. Due 
to the wrongly assumed prevalence, a too small number 
of non-diseased individuals is expected. The sample size 
is calculated too large. The fixed paired design is highly 
overpowered, independent of πtrue. Both proportions of 
discordant test results are assumed higher than in truth. 
The sample size is calculated too large.

Fig. 4 Global type I error, overall power and sample sizes of the fixed and adaptive paired design. Simulations are based on the initial scenario and 
a variation of the true proportion of discordant test results in the diseased population ( ψDtrue

 ). In Fig. A, black dotted lines mark the interval of Monte 
Carlo error due to simulations. In Fig. B, the target power equals 0.8
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In contrast to the fixed designs, both adaptive designs 
reveal a power closer to the target power of 80%. If πtrue 
equals 80%, the overall power of the adaptive paired 
design stands out. In this scenario, the proportion of 
non-diseased individuals is initially assumed smaller than 
in truth. Hence, the sample size used for the re-estima-
tion of nuisance parameters is already larger than the 
true sample size. The overall power is higher compared to 
scenarios with a lower πtrue.

Discussion
In this article, we present an approach for blinded sample 
size re-estimation in a comparative diagnostic accuracy 
study. This allows the sample size to be revised for incor-
rect assumptions during the course of the study, so that 
the study is neither over- nor underpowered. We use an 
example and simulation study to show that the approach 
does not inflate type I error rates, reach the target power 
and re-estimate nuisance parameters without any rel-
evant bias.

One strength of our simulation study is that it is based 
on a realistic initial scenario. Therefore, the simulation 
study covers the results of realistic as well as of extreme 
parameter combinations. But of course the simulation 
study does not depict all possible parameter combinations.

One general weakness of our proposed approach is that 
the sample size calculation and the confidence intervals 
used for evaluation are not based on the same formulas.

McCray et  al. [11] use a sample size calculation and an 
evaluation method which belong together. Due to differ-
ent endpoints in the approach of McCray et  al. [11] and 
our approach, we don’t compare both approaches within 
an extensive simulation study. However, we compare both 
approaches within the example study. We show that our 
approach requires a smaller sample size and comes closer to 
the target power than the approach of McCray et al. [11], if 
the dependence between both diagnostic tests is maximal. 
In contrast to our work, McCray et al. [11] do not extend 
their approach to show non-inferiority or a combination of 
superiority and non-inferiority in both diagnostic tests.

We recommend to apply blinded adaptive designs in 
comparative diagnostic accuracy studies, especially if 
the nuisance parameters are extremely small or large. 
The reason for this is that a blinded adaptive design can 
correct extremely small or large sample sizes based on 
wrong assumptions.

Our work creates some space for further research. One 
important unanswered question asks about the conse-
quences of the re-estimation of the prevalence on the 
blinding if predictive values are chosen as co-primary 
endpoints. Both, the positive and negative predictive 
value depend on the prevalence. Hence, the analysis 
is not blinded in the strong sense. Furthermore, it is of 
interest to develop unblinded adaptive designs in com-
parative diagnostic accuracy studies to allow for early 
stopping due to futility or efficacy [9].

Fig. 5 Overall power of the fixed and adaptive design in an unpaired and paired diagnostic study. Simulations are based on the initial scenario and 
a variation of the true prevalence (πtrue). The target power equals 0.8
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Conclusions
A confirmatory diagnostic accuracy study can either be 
performed as a single-test or a comparative study design. 
Comparative study designs are distinguished between an 
unpaired and paired study design. Stark et  al. [8] intro-
duce the optimal sample size calculation and the blinded 
adaptive design to re-estimate the sample size in the 
single-test design. This approach avoids an overpowered 
diagnostic accuracy study by calculating the sample size 
for two co-primary endpoints sensitivity and specificity 
in dependence of the prevalence of the disease.

In this article, we transfer the optimal sample size cal-
culation to both comparative study designs. Furthermore, 
we propose blinded adaptive designs for an unpaired and 
paired diagnostic accuracy study. In the unpaired design, 
the adaptive design re-estimates the prevalence whereas, 
in the paired design, it additionally re-estimates the pro-
portions of discordant test results. Subsequent to the 
re-estimation of these nuisance parameters, the sample 
size is re-calculated. Due to the blinded character of the 
adaptive designs, type I error rates are not inflated. Both 
approaches reach the target power and re-estimate nui-
sance parameters without any relevant bias.

We recommend to apply the optimal sample size cal-
culation and a blinded adaptive design in a confirmatory 
diagnostic accuracy trial. Both approaches support to 
calculate the necessary sample size to achieve the tar-
geted power without much additional effort.
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2.3.2 Online Supplement Material 

There is online supplement material available for Thesis Article 2 which I partially 

show in this section. 

Online supplement material included in this section: 

 Formulas for the optimal sample size calculation 

 R-Code for the optimal sample size calculation testing for superiority in both 

endpoints in the unpaired and paired design 

 Figure containing the comparison of the optimal sample size calculation with 

the approach of McCray et al. (2017) 

Further online supplement material not included in this section, but available online: 

 Simulation results in the unpaired design 

 Simulation results in the paired design 

 
 



Appendix A  Optimal sample size calculation 

A.I.  Optimal sample size calculation to show superiority in sensitivity and non-inferiority in 

specificity 

To investigate if the experimental test is superior to the comparator test regarding sensitivity 

and non-inferior regarding specificity, H0global  is defined as: 

 

H0global :   H0Se : SeE = SeC  ∪   H0Sp: SpE ≤ SpC − Δ 

 

The positive non-inferiority margin is denoted by Δ. 

A.I.I.  Unpaired design 

To calculate the corresponding sample size in the unpaired design, the formulas for 

superiority and non-inferiority following Zhou et al. [1] are combined: 

 

(𝑧𝛼/2√𝑉0(SeC − SeE) + 𝑧𝛽Se√𝑉𝐴(SeC − SeE) )
2

(SeC − SeE)2 ⋅ 𝜋
=
!

 

(zα/2 + 𝑧𝛽1−𝛽Se−Poweroverall
1−𝛽Se

 

)

2

⋅ 𝑉𝐴(SpC − SpE)

(SpC − SpE − Δ)2 ⋅ (1 − 𝜋)
 

 

In the following formulas, α denotes the two-sided type I error rate. 

A.I.II.  Paired design 

In the paired design, the optimal sample size calculation combines the formula for 

superiority of Miettinen et al. [2] and the formula for non-inferiority of Liu et al. [3]. Liu et 



al. [3] report the sample size formula to test for equivalence. In appendix B, the sample size 

formula to test for non-inferiority based on the power function of Liu et al. [3] is derived. 

 

(𝑧1−𝛼/2 ⋅ 𝜓D + 𝑧1−𝛽Se√𝜓D
2 −

1
4
(SeC − SeE)2(3 + 𝜓D))

2

𝜓𝐷(SeC − SeE)2𝜋
=
!

 

(𝜓ND − (SpE − SpC)
2) (

𝑧𝛼/2
𝑤𝑢Sp

+ 𝑧1−𝛽Se−Poweroverall
1−𝛽Se

)

2

(−Δ − (SpE − SpC))
2
⋅ (1 − 𝜋)

 

 

With 

𝑤𝑢Sp =
√2𝑝01 + (SpE − SpC) − (SpE − SpC)2

√2 ⋅ 𝑝𝑢,01 − Δ − Δ
2

 

𝑝
𝑢,01

=
(−𝑎𝑢 +√𝑎𝑢2 − 8𝑏𝑢)

4
 

𝑎𝑢 = −(SpE − SpC)(1 − Δ) − 2(𝑝01 + Δ) 

𝑏𝑢 = Δ(1 + Δ)𝑝01 

𝑝01 =
𝜓 − SpE + SpC

2
 

 

A.II.  Optimal sample size calculation to show non-inferiority in sensitivity and superiority 

in specificity 

To investigate if the experimental test is non-inferior to the comparator test regarding 

sensitivity and superior regarding specificity, H0global  is defined as: 

H0global :   H0Se : SeE ≤ SeC − Δ ∪  H0Sp: SpE = SpC 

The positive non-inferiority margin is denoted by Δ. 



A.II.I.  Unpaired design 

(zα/2 + 𝑧𝛽Se )
2

⋅ 𝑉𝐴(SeC − SeE)

(SeC − SeE − Δ)2 ⋅ 𝜋
=
!

 

(𝑧𝛼/2√𝑉0(SpC − SpE) + 𝑧1−𝛽Se−Poweroverall
1−𝛽Se

√𝑉𝐴(SpC − SpE) )

2

(SpC − SpE)2 ⋅ (1 − 𝜋)
 

A.II.II.  Paired design 

(𝜓D − (SeE − SeC)
2) (

𝑧𝛼/2
𝑤𝑢Se

+ 𝑧𝛽Se)
2

(−Δ − (SeE − SeC))
2
⋅ 𝜋

=
!

 

(𝑧1−𝛼/2 ⋅ 𝜓ND + 𝑧
1− 

1−𝛽se−Poweroverall
1−𝛽se

√𝜓ND
2 −

1
4
(SpC − SpE)2(3 + 𝜓ND))

2

𝜓ND(SpC − SpE)2(1 − 𝜋)
 

The parameter 𝑤𝑢Se  is defined in analogy to 𝑤𝑢Spabove. 

A.III.  Optimal sample size calculation to show non-inferiority in both endpoints 

To investigate if the experimental test is non-inferior to the comparator test regarding 

sensitivity and specificity, H0global  is defined as: 

H0global:   H0Se : SeE ≤ SeC − ΔSe ∪  H0Sp: SpE ≤ SpC − ΔSp 

The positive non-inferiority margins are denoted by ΔSe and ΔSp. 

A.III.I.  Unpaired design 

(zα/2 + 𝑧𝛽Se )
2

⋅ 𝑉𝐴(SeC − SeE)

(SeC − SeE − Δ)2 ⋅ 𝜋
=
!

(zα/2 + 𝑧𝛽1−𝛽Se−Poweroverall
1−𝛽Se  

)

2

⋅ 𝑉𝐴(SpC − SpE)

(SpC − SpE − Δ)2 ⋅ 𝜋
 



A.III.II.  Paired design 

(𝜓D − (SeE − SeC)
2) (

𝑧𝛼/2
𝑤𝑢Se

+ 𝑧𝛽Se)
2

(−ΔSe − (SeE − SeC))
2
⋅ 𝜋

=
!

(𝜓ND − (SpE − SpC)
2) (

𝑧𝛼/2
𝑤𝑢Sp

+ 𝑧1−𝛽se−Poweroverall
1−𝛽se

)

2

(−ΔSp − (SpE − SpC))
2

⋅ (1 − 𝜋)
 

 

Appendix B  Derivation of the sample size for testing for non-inferiority in the paired 

design 

Liu et al. [3] report the asymptotic power function to test for non-inferiority between the 

sensitivity or specificity of experimental test (𝜃E) and comparator test (𝜃C). The asymptotic 

power function is solved for the sample size.  

1 − 𝜙 (−
𝑧𝛼/2

𝑤𝑢
−
Δ + (𝜃E − 𝜃C)

𝜎
) = 1 − 𝛽 = Power 

𝜙

(

 −
𝑧𝛼/2

𝑤𝑢
−

Δ + (𝜃E − 𝜃C)

√𝜓 − (𝜃E − 𝜃C)
2

𝑛 )

 = 𝛽 

−
𝑧𝛼/2

𝑤𝑢
−

Δ + (𝜃E − 𝜃C)

√𝜓 − (𝜃E − 𝜃C)
2

𝑛

= 𝑧𝛽 

−Δ − (𝜃E − 𝜃C)

√𝜓 − (𝜃E − 𝜃C)
2

𝑛

=  𝑧𝛽 + 
𝑧𝛼/2

𝑤𝑢
 

√
𝜓 − (𝜃E − 𝜃C)2

𝑛
=
−Δ − (𝜃E − 𝜃C)

𝑧𝛽 +
𝑧𝛼/2
𝑤𝑢

 

√𝑛 =
√𝜓 − (𝜃E − 𝜃C)2 (𝑧𝛽 +

𝑧𝛼/2
𝑤𝑢
)

−Δ − (𝜃E − 𝜃C)
  



𝑛 = (𝜓 − (𝜃E − 𝜃C)
2)(

 
𝑧𝛼/2
𝑤𝑢

+ 𝑧𝛽

−Δ − (𝜃E − 𝜃C)
)

2

 

With 

Δ > 0 

𝑤𝑢 =
√2𝑝01 + (𝜃𝐸 − 𝜃𝐶) − (𝜃𝐸 − 𝜃𝐶)2

√2 ⋅ 𝑝𝑢,01 − Δ − Δ
2

 

𝑝
𝑢,01

=
(−𝑎𝑢 +√𝑎𝑢2 − 8𝑏𝑢)

4
 

𝑎𝑢 = −(𝜃𝐸 − 𝜃𝐶)(1 − Δ) − 2(𝑝01 + Δ) 

𝑏𝑢 = Δ(1 + Δ)𝑝01 

𝑝01 =
𝜓 − 𝜃𝐸 + 𝜃𝐶

2
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R-Code 
Optimal sample size calculation testing for superiority in sensitivity and specificity 

 

1. Unpaired design 

unpaired_superiority <- function (alpha, power, theta.se.c, theta.se.e, theta.sp.c, theta.sp.e, prev) { 

  # parameter description 

  # alpha: desired type I error rate per endpoint 

  # power: desired overall power 

  # theta.se.c: sensitivity of the comparator test 

  # theta.se.e: sensitivity of the experimental test 

  # theta.sp.c: specificity of the comparator test 

  # theta.sp.e: specificity of the experimental test 

  # prev:  prevalence 

   

  # the variance function 

  v <- function(theta.c, theta.e) { 

    variance <- theta.c * (1 - theta.c) + theta.e * (1 - theta.e) 

    return(variance) 

  } 

   

  # sample size calculation for one endpoint following Zhou et al. (2011) 

  unpaired <- function(alpha, beta, theta.c, theta.e) { 

    n <- ceiling((qnorm(alpha / 2) * sqrt(v(theta.c, theta.c)) + qnorm(beta) * sqrt(v(theta.c, theta.e))) ^  

2 / (theta.c - theta.e) ^ 2) 

  } 

   

  # calculate power for one endpoint 

  calculate.power.unpaired <- function(n, alpha, theta.c, theta.e) { 

    z <- (sqrt(n) * (theta.c - theta.e) - qnorm(alpha / 2) * sqrt(v(theta.c, theta.c))) / sqrt(v(theta.c, 

theta.e)) 

    power <- 1 - pnorm(z) 

    return(power) 

  } 

   

  # function for the optimal sample size 

  f <- function(alpha, power, beta.se, theta.se.c, theta.se.e, theta.sp.c, theta.sp.e, prev) { 

    diff.n <- qnorm(beta.se) * sqrt(v(theta.se.c, theta.se.e)) * sqrt(1 - prev) * (theta.sp.c - theta.sp.e) - 

qnorm(1 - (power / (1 - beta.se))) * sqrt(v(theta.sp.c, theta.sp.e)) * sqrt(prev) * (theta.se.c 

- theta.se.e) - qnorm(alpha / 2) * sqrt(v(theta.sp.c, theta.sp.c)) * sqrt(prev) * (theta.se.c - 

theta.se.e) + qnorm(alpha / 2)*sqrt(v(theta.se.c, theta.se.c)) * sqrt(1 - prev) * (theta.sp.c - 

theta.sp.e) 

     

    return(diff.n) 

  } 

   

 

 

 

 



  # approximate the sample size for beta.se and then calculate beta.sp 

  beta.se <- uniroot(f, alpha = alpha, power = power, theta.se.c = theta.se.c, theta.se.e = theta.se.e,     

theta.sp.c = theta.sp.c, theta.sp.e = theta.sp.e, prev = prev, 

                     lower = 0, upper = 1-power)$root 

  beta.sp <- (power+beta.se-1)/(beta.se-1) 

  power.total <- (1-beta.se)*(1-beta.sp) 

   

  # calculate the sample size with beta.se and beta.sp 

  n.se <- unpaired(alpha = alpha, beta = beta.se, theta.c = theta.se.c, theta.e = theta.se.e) 

  n.sp <- unpaired(alpha = alpha, beta = beta.sp, theta.c = theta.sp.c, theta.e = theta.sp.e) 

  N.se <- n.se / prev 

  N.sp <- n.sp / (1 - prev) 

  N <- ceiling(max(N.se, N.sp)) # total sample size per group 

   

  # calculate total power 

  power.se <- calculate.power.unpaired(n = N * prev, alpha = alpha, theta.c = theta.se.c, theta.e = 

theta.se.e) 

  power.sp <- calculate.power.unpaired(n = N * (1 - prev), alpha = alpha, theta.c = theta.sp.c, theta.e 

= theta.sp.e) 

  power.total <- power.se * power.sp 

  return(list(N = N, N.se = N.se, N.sp = N.sp, power.total = power.total, power.se = power.se, 

power.sp = power.sp)) 

} 

 

  



2. Paired design 

paired_superiority <- function(alpha, power, theta.se.c, theta.se.e, theta.sp.c, theta.sp.e,  

                                         psi.d, psi.nd, prev) { 

 

 # sample size calculation for one endpoint following Miettinen (1968) 

sample.size.paired.one.endpoint <- function(alpha, beta, theta.c, theta.e, psi){ 

    delta <- abs(theta.c-theta.e) 

    n <- (qnorm(1-alpha/2)*psi+qnorm(1-beta)*sqrt((psi^2)-0.25*(delta^2)*(3+psi)))^2 / 

(psi*(delta^2)) 

    return(n) 

  } 

   

  # calculate power for one endpoint 

  calculate.power <- function(n, alpha, theta.c, theta.e, psi) { 

    delta <- abs(theta.c-theta.e) 

    z <- (sqrt(n*psi)*delta - qnorm(1-alpha/2)*psi)/sqrt((psi^2)-0.25*(delta^2)*(3+psi)) 

    power <- pnorm(z) 

    return(power) 

  } 

   

  # function for the equal sample size for both endpoints 

  f <- function(alpha, power, beta.1, theta.se.c, theta.se.e, theta.sp.c, theta.sp.e, psi.d, psi.nd, prev) { 

    delta.se <- abs(theta.se.c-theta.se.e) 

    delta.sp <- abs(theta.sp.c-theta.sp.e) 

    diff.n <- qnorm(1-beta.1)*sqrt((psi.d^2)-0.25*(delta.se^2)*(3+psi.d))*sqrt(psi.nd*(1-

prev))*delta.sp - qnorm(power/(1-beta.1))*sqrt((psi.nd^2)-

0.25*(delta.sp^2)*(3+psi.nd))*sqrt(psi.d*prev)*delta.se - 

      qnorm(1-alpha/2)*psi.nd*sqrt(psi.d*prev)*delta.se + qnorm(1-

alpha/2)*psi.d*sqrt(psi.nd*(1-prev))*delta.sp 

    return(diff.n) 

  } 

   

  # solve the sample size for beta.1 and then calculate beta.2 

  beta.1 <- uniroot(f, alpha = alpha, power = power, theta.se.c = theta.se.c, theta.se.e = theta.se.e,  

                    theta.sp.c = theta.sp.c, theta.sp.e = theta.sp.e, psi.d = psi.d, psi.nd = psi.nd,  

                    prev = prev, lower = 0, upper = 1-power)$root 

  beta.2 <- (power+beta.1-1)/(beta.1-1) 

  power.total.theoretical <- (1-beta.1)*(1-beta.2) 

   

  # calculate sample size with known beta.1 and beta.2 

  n.se <- sample.size.paired.one.endpoint(alpha = alpha, beta = beta.1, theta.c = theta.se.c, theta.e = 

theta.se.e, psi = psi.d) 

  n.sp <- sample.size.paired.one.endpoint(alpha = alpha, beta = beta.2, theta.c = theta.sp.c, theta.e = 

theta.sp.e, psi = psi.nd) 

  N.se <- n.se/prev 

  N.sp <- n.sp/(1-prev) 

  N <- ceiling(max(N.se, N.sp))  

   

 



# calculate power 

power.se <- calculate.power(n= N*prev, alpha = alpha, theta.c = theta.se.c, theta.e = theta.se.e, psi = 

psi.d) 

power.sp <- calculate.power(n= N*(1-prev), alpha = alpha, theta.c = theta.sp.c, theta.e = theta.sp.e, 

psi = psi.nd) 

power.total <- power.se * power.sp 

   

return(list(N = N, N.se = N.se, N.sp = N.sp, power.total = power.total, power.se = power.se, power.sp 

= power.sp, beta.1 = beta.1, beta.2 = beta.2)) 

} 



 

Comparison of the optimal sample size calculation with the approach of McCray et al. (2017) by varying the 

prevalence (𝜋) regarding the simulated empirical overall power based on 10,000 simulations runs and the calculated 

sample size. 
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