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1 Introduction.

The problem of minimizing various norms of weak gradients of functions is a very natural one and can

easily be imposed in the usual classes of Sobolev and BV functions under Dirichlet boundary condi-

tions.

This thesis will now deal with minimizing the L1-norm of such gradients and is therefore naturally

imposed in the space of functions of bounded variation. The resulting extremals, which are usually

referred to as functions of least gradient, enjoy the almost unnatural regularity property that all of

its level sets are bounded by area-minimizing hypersurfaces by a classical result due to E. Bombieri,

E. De Giorgi and E. Giusti in [5, Theorem 1].

While the continuity and continuity moduli of functions of least gradient are pretty well-discussed

and understood in recent literature, fueled by the fundamental contribution of P. Sternberg, G.

Williams and W. Ziemer with [53], questions of and results on higher regularity remain rather sparse

to non-existent. As a matter of fact, the only actual contribution to this is due to the last author above

and H. Parks [46] from the year 1984.

The very intricate method of [46] employs a kind of geometric solution and stability operator for sta-

tionary immersions and then uses the fact that each level set contains at least one such area-stationary

immersion to derive a differentiable identity for the function of least gradient. Yet, to apply this solu-

tion operator one needs an a priori rigidity condition, which is shown to hold true for certain "nice"

reference hypersurfaces. The method of proof has furthermore the a priori restriction on dimensionality

between two and seven, but has been extended to one further dimension in [43] for R8.

Along the lines of this classical theory for functions of least gradient, there has also been a rather

recent emergence of interest in anisotropic formulations of the least gradient problem. Notable contri-

butions include the work [24] of R. Jerrard, A. Moradifam and A. Nachman, which is somewhat

presented as the "anisotropic analogue" to the paper [53], as well as a multitude of smaller publications

by A. Moradifam or W. Gorny. The papers [33] and [34] by J. Mazón feature a self-contained

derivation of the necessary Euler-Lagrange relations for extremals in the isotropic and anisotropic set-

ting from the realm of convex analysis.

We also emphasize an apparant connection to impedance tomography: Minimizers of anisotropic least

gradient problems arise in rather direct fashion from modelling, if one wants to determine the conduc-

tivity of a given body, see [39], [40] or also [33]. It is notable that the anisotropies of such minimizers
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are so far always given by Riemannian metrics; a further result on continuity for a certain class of such

metrics (namely, weighted Euclidean ones) is proven in [60] by A. Zuniga.

The paper [44] by H. Parks from 1988 is moreover probably the first paper to study functions of

anisotropic least gradient as an object of interest in itself, but has apparantly been swept under the

radar so far.

The purpose of this thesis is now twofold: We will first revisit the approach of the paper [46], im-

pose questions and discuss possible gaps in its structure. Secondly, we will propose solutions (also

containing somewhat more detailed proofs) to these problems and discuss implications for functions of

anisotropic least gradient hailing from the partial regularity like a certain rigidity of their gradients,

boundary regularity or regularity towards fat level sets (implying non-proximity for the bounding area-

minimizing hypersurfaces).

We close the introduction with a short overview of the sections and contents of this thesis:

• The sections 2 and 3 will serve to repeat the necessary mathematical requirements from analysis

and geometry and introduce the geometric variational problems that we shall discuss while also

containing a first overview of the Parks/Ziemer approach to partial regularity. Two particular

details lacking clarity will be reviewed in 3.2 and 3.3.

• After these introductory sections we will move on and investigate and prove results related to the

level set boundaries of functions of anisotropic least gradient with respect to their stability and

how we may deform them. Section 4 will deal with each level set boundary seperately, section

5 will observe how the usual small excess/graph representation theory can be used for stability

results which we refine in section 6 with the aid of elliptic theory, as the graphical representations

minimize associated non-parametric integrands.

• The purpose of section 7 is to conclude for local and partial regularity. After "unlocking" the

geometric solution operator by means of the previous three sections, this is more or less similar

to [46].

• The following section 8 moves our local consideration from interior to boundary points. We shall

see that the results become conditional, but are nevertheless able to prove at least the existence

of some regular points in any case.
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• In the last three sections we will finally discuss sufficient conditions for local regularity of an

extremal near level sets, as long as the level set of the boundary data is regular. Section 9 will

additionally contain a rigidity result for the gradient of extremals along "good" level sets and

section 10 will subsequently investigate level sets with positive L n-measure.

• The short section 11 and will provide a proof that level sets do actually foliate a piece of domain

by anisotropically minimal hypersurfaces in case of local regularity.

• In the last section 12, which is thematically disjoint from the higher regularity of the preced-

ing sections, our concern is the existence of Lipschitzian extremals where the anisotropic total

variation is given by a weighted absolute value. We shall use elliptic quasilinear approximating

problems and provide estimates stable enough to pass to the semielliptic case of an anisotropic

total variation. The results of this section were furthermore submitted for publication with [47].

• We conclude the thesis in section 13 with an addendum of some additional remarks and related

open questions.

The main results of this thesis, in my opinion, are the generic Jacobi nullity rigidity in theorem 6.8,

the local and partial regularity results in the theorems 7.1 and 7.2 with the additional list of specific

conclusions in corollary 7.6, the characterization and existence of boundary regularity in corollary 8.3

and theorem 8.6 and the gradient definiteness of theorem 9.15 as well as all finer characterizations

regarding regularity from the sections 9-11 and the existence result for functions of weighted least

gradient from theorem 12.7.

This thesis was written while I was employed as a research assistant/Ph.D. student at the

department of mathematics of the University of Hamburg in the research group of Prof.

Thomas Schmidt.

Vielen Dank an Thomas Schmidt für die Betreuung; Matthias Röger und Frank Duzaar für

die schnellen Zusagen als Gutachter; Armin Iske für den Einsatz in Lehrveranstaltungen an

der Universität Hamburg; Vicente Cortés and Hendrik Ranocha für die Teilnahme an der

Prüfungskommission; Sebastian Piontek, Anton Treinov, Giovanni Comi, Eleonora Ficola

und Jule Schütt für die Zeit in der Arbeitsgruppe; Claus Goetz, Frédéric E. Haller,

Christine Herter, Sofiya Onyshkevych, José Pinzon, Christiane Schmidt und Nicolai Simon

für angemessen viele Kaffeepausen.
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2 Preliminaries.

The purpose of the section is to introduce and fix some established theory that we would like to use
in what follows. Most of these results will turn out to be somewhat classical but we will have a short
repetition without proofs for convenience.

2.1 General Notation.

We will denote by Rn the usual Euclidean space, where n is a positive integer. We will sometimes put
restrictions on the dimension n to make use of certain aspects of regularity theory.
An open ball with radius r and center x will be denoted by Upx, rq. The corresponding closed ball is
denoted as Bpx, rq. Moreover, we will make use of an pn´ 1q-dimensional cylinder at x with radius r
and height q; by this we mean the product of an pn ´ 1q-dimensional open ball Upx, rq Ă Rn´1 with
the interval p´q, qq. We will denote this cylinder by Cpx, r, qq. Similarly, we will denote by CHpx, r, qq

the cylinder in normal direction over a fixed hyperplane H Ă Rn. The symbol Zpx, r, qq (respectively
ZHpx, r, qq) denotes the corresponding closed cylinder.
The standard Euclidean scalar product of two n-dimensional vectors v, w will be denoted by v ¨ w or
vw. We will usually equip Rn with the standard norm by means of this scalar product.

By a domain, we will understand a bounded and connected set. The symbol Ω will usually be used
to denote the open domain that we work on. Most often, we will also impose some kind of boundary
regularity on BΩ, ie. the topological boundary of Ω, ranging from local Lipschitz to Ck-regularity. We
will then say Ω has a Lipschitz or Ck-boundary.

As we are dealing with geometric measure theory, we will make frequent use of the Lebesgue and
Hausdorff measures, which will be denoted by L n and H n, respectively. Very extensive use will also
be made of the Hausdorff distance dH and convergence with respect to it. This distance is defined for
all non-empty compact subsets of Rn via

HpK,Lq “ max

"

max
xPK

dpx, Lq,max
yPL

dpK, yq

*

.

It can be shown that this distance turns the set of all non-empty compact subsets of Rn into a complete
metric space while an equivalent characterization of the Hausdorff distance sounds

HpK,Lq “ inftε ą 0 | K Ă eεpLq, L Ă eεpKqu,

where eε denotes the ε-expansion of K, ie.

eεpKq “ tx P Rn | dpx,Kq ď εu.

This characterization makes apparant that both sets really lie close to each other at each individual
point given a small Hausdorff distance. Note also that the set eεpKq can be identified with a suitable
closed tubular neighborhood in normal direction, in case ε is sufficiently small and K is a submanifold
without boundary. We shall also use its open variant as

uεpKq “ tx P Rn | dpx,Kq ă εu

8
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and define contractions of our open domain Ω Ă Rn via

Ωε :“ tx P Ω | dpx, BΩq ą εu, uεpΩq :“ ΩY tx P Rn | dpx, BΩq ă εu

for any ε ą 0.

2.1 Remark. The two main characterizations of Hausdorff convergence Ki ÝÑ K are given by:

• For each x P K there exists a sequence xi P Ki such that xi ÝÑ x.

• Conversely, given a sequence xi P Ki such that xi ÝÑ x for any x P Rn, it follows that x P K.

Note also that HpK,Lq ă ε implies that any k P K admits a point l P L such that dpk, lq ă ε and vice
versa.

We finally recall the following form of the Lebesgue covering lemma: If Vk Ă Rn denote finitely many
open sets and K Ă

Ť

k Vk with K being compact, then there is δ ą 0, the Lebesgue number of K with
respect to the covering

Ť

k Vk, such that the implication

x, y P K, }x´ y} ă δ ùñ There exists a k with x, y P Vk.

holds true.

2.2 BV Functions, Sets of Finite Perimeter and Rectifiable Currents.

Here we will recall some results on geometric measure theory in codimension one related to rectifiable
currents and sets of finite perimeter. The usual references on this matter include the monographies
[11], [50] and [25] for general geometric measure theory and [3], [14] and [12] for sets of finite perime-
ter/oriented boundaries.

We especially mention the papers [1] for a collection of remarks on parametric integrands (that is,
anisotropic total variations) in the setting of oriented boundaries and codimension 1-problems and [24]
and [44] for resources on general least gradient problems with anisotropic perimeters.

We generally borrow most of our notation from [11] or [3], including some results on exterior calculus
from [11, Chapter 1].

i.) Functions of Bounded Variation. The space of real-valued functions of bounded variation on an
open set Ω will be denoted by BVpΩq. These are L1-functions u such that the variation functional for
u can be extended to a Radon measure on Ω. By these moreover, we will understand finite inner and
outer regular Borel measures on Ω. The Radon-Nikodym derivative of Du by |Du| will be written as
Vu, ie. we write Du “ Vu|Du| and we note in particular that

ż

Ω
upxq divϕpxq dx “ ´

ż

Ω
ϕpxq ¨ dDu “ ´

ż

Ω
ϕpxq ¨ Vupxq d|Du| for all ϕ P C8c pΩ,Rnq.

Both concepts can be localized by postulating finiteness only on relatively compact contained open
sets in Ω.
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2.2 Definition (Trace Operator). If Ω has Lipschitz boundary, there is a continuous trace operator

T : BVpΩq ÝÑ L1pBΩq,

it moreover holds that T is surjective. We will also denote the trace of u as uBΩ. T coincides with the
restriction to BΩ for functions u P CpΩq. We will call T the inner trace on BΩ, while for u P BVpRnzΩq
we will denote the outer trace on BΩ by T̃u.

As is well-known, we may also extend BV functions to an open superset, eg. to Rn, by prescribing a
different BV function on the complement and the gradient measure detects the difference in traces on
BΩ. If we use the zero function, we receive for the gradient measure of the extended function ũ that

Dũ “ Du` puBΩ ¨NBΩq ¨H
n´1 BΩ,

where NBΩ is the inner unit normal to BΩ. Accordingly, we receive for the total variaton measure of ũ
that

|Dũ| “ |Du| ` |uBΩ| ¨H
n´1 BΩ.

Assuming that u “ 1E , ie. u is the characteristic function of a set E Ă Ω, we will say that E is a set of
finite perimeter when u P BVpΩq and write VE :“ Vu. Sets of finite perimeter in Ω enjoy the theorem
of De Giorgi: There exists a H n´1-rectifiable set B˚E Ă Ω such that

|D1E | “H n´1 B˚E.

Note the usual difference that B˚E need not be H n´1-equivalent to the support of |D1E |, as the
support is necessarily closed and may possibly be much larger.

ii.) Currents. To investigate the structure of minimizing level sets, we will also use the interplay
between functions of bounded variation and currents. We will only need to do so in the full space Rn
and we will denote by

RkpRnq and IkpRnq

the spaces of rectifiable and integral currents in Rn. Therein, we understand a current T as rectifiable
if there exists a H k-rectifiable set ΣT Ă Rn with finite measure, a measurable unit-norm k-vector
field ~T , which spans the tangent space to ΣT almost-everywhere on ΣT , and an integrable N-valued
function θT such that

T pωq “

ż

ΣT

ωp~T qθT dH
k “

ż

ωp~T q d}T }

holds for all ω P C8c pRn,ΛkRnq, where the variation measure of a rectifiable current T will be denoted
by }T }. We say that T is integral if BT is also rectifiable. Note moreover that the mass of T , which
we will write as xA , T y, suffices

xA , T y “

ż

ΣT

θT dH
k ă 8

if T is rectfiable. Assuming that ΣT and θT are only locally rectifiable and integrable, we achieve the
concept of locally rectifiable and integral currents and we will denote the corresponding spaces by

Rloc
k pRnq and I loc

k pRnq.
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Moreover, we let En P Rloc
n pRnq denoting integration over Rn with the standard orientation vector

~En “ e1 ^ ...^ en, that is, En “ L n ^ e1 ^ ...^ en.

Particularily, restricting the current En to a L n-measurable set E Ă Rn delivers that

En 1E “ En E P Rloc
n pRnq

and
BpEn 1Eq “ BpE

n Eq

is the oriented boundary of E in Rn. This will be the most important example of rectifiable and
integral currents for us in this thesis.

Let us then turn to the connection via duality between codimension one currents and functions of
bounded variation.

2.3 Definition (Hodge Star Operators). We define the Hodge star operator ‹ linearly via

‹ : Λn´1Rn ÝÑ Rn, ‹ei :“ p´1qn´iei,

respectively,
‹ : Rn ÝÑ Λn´1Rn, ‹ei :“ p´1qi´1ei,

where ei P Rn for i P t1, ..., nu denotes the standard basis vectors of Rn and

ei :“
n
ľ

j“1,i‰j

ej .

Analogously, we define the Hodge star operator on Rn and Λn´1pRnq via

‹ : Λn´1Rn ÝÑ Rn, ‹ei˚ :“ p´1qn´iei,

and
‹ : Rn ÝÑ Λn´1Rn, ‹ei :“ p´1qi´1ei˚

where ei˚ P Λn´1Rn is dual to ei P Λn´1Rn. By its characterizing identity, we see that this is the right
definition, the Hodge star operator isometrically identifies both spaces with each other and if

ξ “ ξ1 ^ ...^ ξn´1 P Λn´1Rn

is a simple vector, then ‹ξ is orthogonal to each ξk with k “ 1, ..., n´ 1 and

|p‹ξq| “ |ξ|.

We also note that

p‹‹qξ “ p´1qn´1ξ, p‹‹qv “ p´1qn´1v, p‹‹qω “ p´1qn´1ω

for any ξ P Λn´1Rn, v P Rn and ω P Λn´1Rn.
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We proceed to relate between oriented boundaries and total variation measures. A standard conse-
quence in terms of duality with the Hodge star operator and the theorem of De Giorgi (or, equivalently,
the boundary rectifiability theorem) ensures that

BpEn Eq P Rn´1pRnq ðñ |D1E |pRnq ă 8

and both are related pointwise as distributions by inserting the definitions of B and the gradient measure
via

BpEn Eqp‹vq “ ´D1Epvq, BpEn Eqpωq “ p´1qnD1Ep‹ωq

for v P C8c pRn,Rnq, ω P C8c pRn,Λn´1Rnq while their orientations and mass/variation measures suffice

}BpEn Eq}pAq “ |D1E |pAq for any Borel set A Ă Rn, ‹
ÝÝÝÝÝÝÝÑ
BpEn Eq “ p´1qnVE

The Hodge star operator hence also translates the formula for the total variation of an extended set
of finite perimeter to the dual setting: Given 1E P BVpΩq with trace 1Σ P L1pBΩ,H n´1q, we may
consider E Ă Rn by extending through 0 with denoting 1̃E P BVpRnq and receive

D
`

1̃E
˘

“ D1E ` p1Σ ¨NBΩq ¨H
n´1 BΩ,

which yields in its dualized form that

BpEn Eq “ BpEn Eq Ω` JΣK “ JB˚E X ΩK` JΣK,

since for ω P C8c pRn,Λn´1Rnq we have

D1Ep‹ωq “ ´

ż

Ω
VE ¨ p‹ωq d|D1E | “

ż

Ω
p´1qn

´

‹
ÝÝÝÝÝÝÑ
BpE Eq ¨ p‹ωq

¯

d}BpEn Eq}

“ p´1qn
ż

Ω

ÝÝÝÝÝÝÑ
BpE Eqpωq d}BpEn Eq} “ p´1qnpBpEn Eq Ωqpωq

and the Hodge star maps NBΩ to the (up to sign/orientation) unit pn ´ 1q-tangent vector field of
Σ Ă BΩ. Therein, we use the following notation:

2.4 Definition (Associated Currents). Given an oriented submanifold S Ă Rn, we will denote
the associated locally rectifiable current by JSK. We will also use this notation if S is only a locally
H k-rectifiable set in Rn and suppress its orientation.

In what follows, we shall usually equip a rectifiable current JΣK implicitly with the orientation hailing
from the interior or exterior trace. We also infer further from B2 “ 0 that

0 “ B2pEn Eq “ BpBpEn Eq Ωq ` B pJΣKq

and thus
BpBpEn Eq Ωq “ ´B pJΣKq .

This constitutes our main motivation to consider currents as we may seperate the interior from the
trace part along a boundary of codimension two.

iii.) Variational Problems for Currents. Finally, we recall some facts about parametric integrands

12
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and the setup for geometric variational problems in the class of rectifiable currents. This framework
provides a powerful way of investigating properties of minimizing level sets with respect to certain a
priori estimates and stability matters. We need only discuss this matter for codimension 1.

2.5 Definition (Integrands). Let Ω Ă Rn be open. We will call a continuous function

z : Ωˆ Λn´1Rn ÝÑ R,

which is positively homogeneous, convex and positive on the unit sphere in the second component, a
parametric integrand (of codimension one). We will say that z is of class Ck (including smooth and
analytic) or Ck,α, if its restriction to Ω ˆ Λn´1Rnzt0u is such. We will say that z is elliptic, if there
exists a constant c ą 0 such that

p ÞÝÑ pz´ cA qpx, pq

is convex on Λn´1Rn for each x P Ω. Similarly, a function with the same properties as above

Φ : Ωˆ Rn ÝÑ R

will be called an anisotropic total variation of the corresponding differentiability class respectively
elliptic.

We furthermore remind of the properties of an elliptic parametric integrand and that ellipticity is
invariant under diffeomorphisms. The area integrand A is trivially elliptic. Finally, we denote the
duality pairing of a parametric integrand z and a rectifiable current T by xz, T y P R and the support
of a locally rectifiable current T by sptT . Similarly, given a total variation Φ we will denote for
u P BVpΩq via Φu the Radon measure given by

ΦupBq :“

ż

B
Φpx, Vuq d|Du| for all Borel sets B Ă Ω.

If u “ 1E for some set E Ă Ω, then we will write ΦE “ Φu.

2.6 Remark. The Hodge star operators

‹ : Λn´1Rn ÝÑ Rn and ‹ : Rn ÝÑ Λn´1Rn

allow to associate parametric integrands and anisotropic total variations via the formula

zpx, pq :“ Φ px, p´1qn ‹ pq

and note
Φpx, vq “ zpx, p´1q ‹ vq.

We find that this especially implies

xz, BpEn Eq Ωy “

ż

B˚EXΩ
Φ
´

px, p´1qn ‹
´

ÝÝÑ
B˚E

¯¯

dH n´1 “

ż

B˚EXΩ
Φpx, VEq d|D1E | “ ΦEpΩq

as
p´1qn ‹

´

ÝÝÑ
B˚E

¯

“ VE H n´1 B˚E -almost everywhere.

2.7 Remark (The Parametric Legendre Condition). An important consequence of our definition

13
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is the so-called parametric Legendre condition for elliptic integrands. Fixing an ellipticity bound c ą 0

and an elliptic parametric integrand z of class C2, we may differentiate twice to get

D2
2 pz´ cA q px, pqpq, qq ě 0 for any q P Λn´1Rn,

which is

D2
2zpx, pqpq, qq ě

c

|p|

˜

|q|2 ´

ˆ

q ¨
p

|p|

˙2
¸

for x P U, 0 ‰ p P Λn´1Rn.

Similarly, in the anisotropic total variation case, we further receive

D2
2Φpx, vqpw,wq ě

c

|v|

˜

|w|2 ´

ˆ

w ¨
v

|v|

˙2
¸

for x P U, 0 ‰ v P Rn.

for any w P Rn. Note also that the Hodge star operators relate and transfer both conditions to
associated integrands.

Given open sets U, V Ă Rn and a diffeomorphism

ψ : V ÝÑ U with ψ of class Ck with k ě 1,

then ψ#z, which we will refer to as the pull-back of z, defines a parametric integrand on V ˆΛn´1Rn
of class Ck´1. The push-forward of a rectifiable current will furthermore be denoted by ϕ#T , whenever
this is defined. We will mainly care for homothetic expansions of T , that is, when

ϕpxq “ µrpxq “
x

r
for r ą 0.

Without loss of generality shifting a considered point towards the origin, this enables blowup proce-
dures to investigate local properties of rectifiable currents.

Now introducing the variational problems for currents, which we want to consider, we will mostly
rely on the concept of almost-minimizing currents with respect to some integrand in the sense of [10].

2.8 Definition (Almost Minimizing Currents). We say that a rectifiable current T P Rn´1pRnq is
pz, ωq-almost minimizing in some open set U Ă Rn if

xz, T y ď xz, T `Xy ` ωprqxA , T K `Xy

for all X P Rn´1pRnq with BX “ 0 and sptX being contained in a compact set K Ă U such that K
is contained in some ball of radius r ą 0 and the function ω is defined for all sufficiently small radii r
with limrŒ0 ωprq “ 0.

2.9 Remark. We collect some useful properties on homothetic expansions of almost-minimizing recti-
fiable currents from [10, Section 1, Lemma 7.1] (cf. also [20, Lemma 3.5] and [11, Theorem 5.4.2]),
which are consequences of local flat convergence, minimization and lower mass bounds.

(1) Scaling properties. Assume s, r, t ą 0 and that T is almost-minimizing for pz, ωq in Up0, sq. Then
pµrq#T is almost-minimizing in Up0, s{rq for

zrpx, pq “ zprx, pq and ωrptq “ ωprtq.

14
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In particular, zr ÝÑ z0 locally uniformly, where z0px, pq “ zp0, pq, and ωr ÝÑ 0 uniformly near
t “ 0 when r Ñ 0.

(2) Compactness. If we have

pµiq#T ÝÑ Q in the local flat norm in Rn as iÑ8,

for some sequence µi of homothetic expansions along a sequence ri Ñ 0, then Q is locally rectifiable
on Rn and Q is (almost-) minimizing on Rn with respect to pz0, 0q.

(3) Proximity of Supports. If

spt B ppµiq#T q Ă sptQ for all i P N,

then for all compact sets H Ă Rnz sptQ there exists a number j “ jpHq P N such that

sptppµiq#T q Ă RnzH

for all i ě j.

2.3 Least Gradient Problems and Related Minimization Problems.

We now introduce the problems that we are interested in and recap some of the known existence theory
for them and their extremals and how they are connected to each other. In all that follows here, we
will assume that Φ is an elliptic anisotropic total variation on Ω (or equivalently, on Rn), which is
even, ie. Φpx, vq “ Φpx,´vq for all x P Ω and v P Rn.

i.) The Anisotropic Least Gradient Problem. Let for all that follows Ω be an open domain with
Lipschitz boundary. The variational problem that we centrally want to consider in this work is the
anisotropic least gradient problem. The problem is defined by attaining the number

0 ď inf tΦupΩq | u P BVpΩq, uBΩ “ fu ă 8

for some f P L1pBΩq. A function u which is extremal in the above problem for its trace will be called
a function of anisotropic least gradient.

In essence, these problems ask for minimizers of an anisotropic L1-norm under given Dirichlet bound-
ary conditions. Since this norm is however much more badly behaved than its counterparts for p ą 1,
we have to reinterpret it in a generalized setting, namely we have to consider competitors among the
functions of bounded variation. This allows for drastically more geometric structure as an extremal
might still be W1,1, but the indicator functions of its level sets will obviously at most be BV (in non-
trivial cases).

We recall also from [33, Theorem 3.16] that the apparantly weaker minimization property in terms of
compactly contained variations

ΦupΩq ď Φu`vpΩq for all v P BVpΩq, spt v ĂĂ Ω

15
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suffices to conclude that u P BVpΩq is a function of anistropic least gradient.

2.10 Remark (Existence of Isotropic Extremals). As we are interested in regularity theory for
Lipschitzian extremals, we briefly provide a recap of the necessary sufficient conditions. In fact, the
two main ones for functions of isotropic least gradient (ie. for Φpx, vq “ |v|) are:

(1) A convex domain Ω and boundary data f satisfying the bounded slope condition (see [41, 4(3)
Lemma], where we may drop "smooth" and "uniformly convex" for "bounded slope" and "convex"
as one may readily observe from its proof).

(2) A strictly mean convex C2-domain Ω and boundary data f of class C1,1 (see [53, Theorem 5.9],
which is also a special case of our corollary 12.20).

Both assumptions result in the existence of a Lipschitzian solution for the isotropic problem with
boundary data f .

2.11 Remark (Existence of Constant Coefficient Extremals). Assuming that our total vari-
ation obeys the form Φpx, pq “ Θppq, which we will refer to as an anisotropic total variation with
constant coefficients, and is of class C2, then in fact similar conditions work. We have

(1) A convex domain Ω and boundary data f satisfying the bounded slope condition, where the same
proof as before works (see [44] or [47, Theorem 1.1]).

(2) A C2-domain Ω and boundary data f of class C1,1 with a certain parametric boundary curvature
condition related to Θ (see [12, Theorem 1.12]).

The results from [12, Theorem 1.12], much like [24], assume explicitly that their anisotropic total
variations are even. We did assume this property here mostly for convenience, but it is not clear to
me whether this restriction is really essential or whether positive 1-homogeneity would in fact suffice
for all results from [12] and [24].

2.12 Remark (Existence of Spatially Varying Extremals). Given an arbitrary total variation Φ

the existence of sufficiently regular extremals is not yet fully understood and seems to require additional
differential conditions on the dependence on the spatial variable of Φ. The paper [44] provides existence
results exploting intricate geometric maximum principles while [47] generates functions of weighted least
gradient (ie. where Φpx, pq “ µpxq|p|q) via quasilinear approximating problems. The results of [47] are
contained in section 12 of this thesis.

We will furthermore also consider geometric variational problems for sets of finite perimeter and cur-
rents; in particular, we will be interested in their connections.

ii.) Sets of Minimal Anisotropic Perimeter. Let a set F Ă Rn of finite perimeter be given. We
say that E Ă Rn is a set of minimal anisotropic perimeter with respect to F in Ω if E is minimal in

inftΦApΩq | A Ă Rn, 1A “ 1F on RnzΩu.

To pursue the analogy to i.), we will not use the more set-theoretic perimeter notation in this thesis.
The problem ii.) corresponds to a relaxed form of i.) which is however only imposed among sets (ie.
t0, 1u-valued functions of bounded variation).
Note though that the interior traces on BΩ need not coincide, ie. it is in general not true that
p1EqBΩ “ p1F qBΩ is valid for any set E Ă Rn of anisotropic minimal perimeter.
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iii.) The Relaxed Anisotropic Least Gradient Problem. Let now f P BVpRnq be given. The fol-
lowing (fully) generalized problem,

inftΦupΩq | u P BVpRnq, u “ f on RnzΩ.u,

is known as the relaxed anisotropic least gradient problem with respect to f . We remind that

ΦupΩq “ ΦupΩq `

ż

BΩ
Φpx,NBΩq|uBΩ ´ f | dH

n´1

and thus, we are prescribing data only on the complement as in ii.). Similarly, we also cannot a priori
know whether uBΩ “ f , but we however do know that a function of anisotropic least gradient with trace
f always also solves the problem iii.) by using a traceless extension to Rn and [33, 3.17 Proposition].
This allows us in particular to vary up to the boundary. Applying the coarea formula for anisotropic
total variations from [24, Proposition 2.1] yields the following result:

E is of minimal anisotropic perimeter for F .

ùñ 1E solves the relaxed anisotropic least gradient problem with respect to 1F .

iv.) Parametric Obstacle Problems. We say that a current T P Rn´1pRnq solves a parametric obstacle
problem for the parametric integrand z and Ω, if T is minimal in

inftxz, Xy| X P Rn´1pRnq, sptX Ă Ω, BX “ BT u.

This amounts to
xz, T y ď xz, T `Xy

for all X P Rn´1pRnq with sptX Ă Ω and BX “ 0.

It is clear that the set Ω acts as the obstacle by constraining the supports of comparison currents.
In the homological notation of [11], this is written as T being pΩ,Hq-minimal (while already using
that our Ω is a Lipschitz retract as a domain with Lipschitz boundary). It is moreover known that
solutions to such parametric obstacle problems are locally almost-minimizing if Ω is a domain of suffi-
cient regularity and hence, the obey the regularity theory for almost-minimizers. We will later prove
a precise version of this statement in the the fourth section of this thesis.

2.13 Remark. The existence of extremals for the problems ii.), iii.) and iv.) follows via the direct
method under somewhat mild regularity assumptions (in our case, Ω being a domain with Lipschitz
boundary suffices).

2.4 Level Sets and Functions of Anisotropic Least Gradient.

The quintessential property of BV extremals in 1-homogeneous variational problems is that their sub-
and superlevel sets, which we shall denote by tu ě tu or tu ď tu, also solve variational problems in
BV with respect to the same (or a very similar) functional. We recall the following result for Dirichlet
problems from [24, Theorem 2.4].

2.14 Theorem (Anisotropic Bombieri-De Giorgi-Giusti Theorem). Let u P BVpΩq be a function

17



Regularity Theory for Anisotropic Least Gradient Problems. (Ph. D. Thesis)

of anisotropic least gradient with respect to Φ and with trace values f P L1pBΩ,H n´1q. Then the sets

tu ě tu, tu ď tu Ă Ω

are of finite perimeter in Ω and the indicator functions of these sets are functions of anisotropic least
gradient with respect to Φ and their traces for each t P R.

Proof. We shall only adapt some conventions to our setting. Let u P BVpΩq solve i.) with respect to Φ

and f , then choosing an extension of f to RnzΩ in BV, we may extend u to Rn by f and this extension
is a solution to iii.) by [34] and [24, 2.2 Lemma]. Hence, by [24, Theorem 2.4], the sets tu ě tu and
tu ď tu are solutions to ii.) and therefore, their indicator functions as elements of BVpΩq are solutions
to the anisotropic least gradient problem i.) with respect to their traces. �

2.15 Remark. The flexibility in formulating such problems owes to the extension properties of BV

functions, the central problem is usually rather to achieve a given trace. Note also that we may again
extend each set tu ě tu or tu ď tu with a traceless extension with values 0 or 1 to Rn such that the
resulting set (respectively, its indicator function) is a set of minimal anisotropic perimeter in Rn.

We will now establish some immediate properties hailing from the geometric minimization in terms of
density and proximity.

2.16 Corollary. Let u P BVpΩq be a function of anisotropic least gradient on Ω.

(1) We have that tu ě tu, tu ď tu Ă Ω fulfill

spt |D1tuětu| Ă Btu ě tu, spt |D1tuďtu| Ă Btu ď tu,

and

spt |D1tuětu| X Ω “ clos pB˚tu ě tuq X Ω, spt |D1tuďtu| X Ω “ clos pB˚tu ď tuq X Ω

for all t P R and both reduced boundaries differ from their closures only by a set of H n´1-measure
zero.

(2) If further u P CpΩq and

u´1ptq X Ω “ Btu ě tu X Ω “ Btu ď tu X Ω,

then
spt |D1tuětu| X Ω “ spt |D1tuďtu| X Ω “ u´1ptq X Ω.

Proof. This follows immediately from the interior lower and upper density bounds by the minimization
of theorem 2.14 due to [12, Proposition 12.19], since there exists some µ ą 0 such that

µrn´1 ď |D1E |pUpx, rqq ď p1´ µqr
n´1 for all Upx, rq Ă Ω

with E being either set and x P Ω being element of the respective support via [1, I.1(35)] and Federer’s
theorem [12, Theorem 16.2] about the essential boundary yields the claim. The latter statement follows
also from the local characterization of the support from [12, Proposition 12.19] and the fact that tu ą tu

and tu ă tu are open, since u P CpΩq. �
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2.17 Lemma (Convergence of Level Sets in Hausdorff Distance). Assume that

u´1ptq “ Btu ě tu “ Btu ď tu

holds. Then we have
u´1psq ÝÑ u´1ptq

in the Hausdorff distance. In case u´1ptq does not equal its level set boundaries, we still have the
one-sided versions

u´1psq ÝÑ Btu ě tu and u´1psq ÝÑ Btu ď tu

for sÕ t and sŒ t respectively.

Proof. We repeat the argument by contradiction from [46, 1.2 Lemma] and set t “ 0. The one-sided
version follows from easy modifications. Assume that

lim
tÑ0

Hpu´1ptq, u´1p0qq ‰ 0,

then we may find ε ą 0, a sequence of non-vanishing real numbers ti such that ti Ñ 0 and a sequence
of points xi such that

either xi P ΩX u´1p0q and Bpxi, εq X ΩX u´1ptiq “ H for all i P N,

or xi P ΩX u´1ptiq and Bpxi, εq X ΩX u´1p0q “ H for all i P N.

We can assume that xi ÝÑ x P Ω. Both cases above necessarily imply upxq “ 0 by continuity, hence,
the second case may be excluded. A simple triangle argument with the first case now yields

Bpx, ε{2q X u´1ptiq “ H for all i large enough

and choosing a subsequence such that ti Ñ 0 monotonously and without loss of generality from above,
we infer a contradiction to

x P Btu ď 0u

and the intermediate value theorem for continuous functions. �

2.18 Remark. We recall further that if u : Ω ÝÑ R is Lipschitz on Ω, then an immediate argument
via the coarea formula (see [41, Lemma 6.5(2)]) shows that Du exists H n´1-almost everywhere on
u´1ptq X Ω with Du ‰ 0 on L 1-almost every level set. This clearly leads, for such t, to

u´1ptq X Ω “ Btu ě tu X Ω “ Btu ď tu X Ω

as a point x0 P u
´1ptqXΩ with Dupx0q ‰ 0 fulfills that x0 P Btu ě tuXBtu ď tu (it may not be locally

maximal or minimal) and the remaining points may be approximated.

2.19 Proposition (Level sets and Supports). Let u now additionally be Lipschitz on Ω and t P R
be an interior point of rg f . Then

spt |D1tuětu| X Ω “ Btu ě tu X Ω and spt |D1tuďtu| X Ω “ Btu ď tu X Ω.

Proof. Since t is an interior point of the range of f , we preliminarily note that the traces of 1tuětu and
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1tuďtu on BΩ may not be identically (equivalent to) 1 or 0 as u is continuous on Ω. The constancy
theorem for BV functions thus yields that

spt |D1tuětu| X Ω ‰ H and spt |D1tuďtu| X Ω ‰ H.

We now deal without loss of generality with tu ě tu and choose x0 P Btu ě tu X Ω and we are done if
x0 P spt |D1tuětu|. We select ρ ą 0 small enough such that

x0 P Ωρ and spt |D1tuětu| X Ωρ ‰ 0.

By the genericity properties of Lipschitzian functions from remark 2.18 and corollary 2.16, we may
assume that there is in particular a sequence psiqiPN such that si Õ t and

spt |D1tuěsiu| X Ω “ Btu ě siu X Ω “ u´1psiq X Ω for all i P N

and we may further choose a sequence pxsiq Ă Ωρ such that xsi ÝÑ x0 as iÑ 8 with xsi P Btu ě siu

by one-sided Hausdorff convergence from lemma 2.17 and remark 2.1. Thus especially

xsi P spt |D1tuěsiu| X Ωρ,

and it is a classical consequence of the L1-convergence tu ě su ÝÑ tu ě tu for sÕ t and the fact that
each set tu ě su is minimal via Reshetnyak’s theorem that also the measures |D1tuěsiu| ÝÑ |D1tuětu|

converge in the weak sense locally in Ω. Now the interior lower density bounds imply that any limit
of such a sequence pxsiq can only lie in spt |D1tuětu| X Ωρ, by which the proof is completed. �

2.20 Remark. Note that the above property is, in fact, not true for general continuous functions of
bounded variation and "cancellations" may appear. Moreover, the property continues to hold for
boundary points of rg f , if their trace on BΩ is non-trivial (as in the above proof).

2.5 Function Spaces and Non-Parametric Partial Differential Equations.

For purposes of notation as well as established results from the regularity theory of elliptic partial
differential equations, we will refer to the monograph [13].

We will denote for 0 ď k ď 8 via Ck,αpΩq the space of k-times differentiable functions whose k-th
derivative fulfills an α-Hölder condition. Therein, the domain Ω can be open or contain accumulation
points of its boundary, in which case we will understand that such a function u P Ck,αpΩq admits an
extension to an open superset which is of class Ck,α. We will refer to analytic functions as functions
of class Cω. If a function is supposed to have compact support inside Ω, we will add a subscript c to
the function space. The norms of such spaces will be denoted via | ¨ |k,α,Ω or | ¨ |k,Ω and if the reference
domain Ω for the norm is clear from the context, we will omit the subscript.

Generic non-negative constants will be denoted by C. Such constants may depend on data and will
change from inequality to inequality, but we will try to make clear what quantities they are indepen-
dent of if necessary. For describing properties related to small values of our extremal near 0, we will
generically use T ą 0 as a symbol.
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Regarding partial differential equations, we will sometimes work with the associated non-parametric
integrand to some parametric integrand z. This refers to the particular structure of z, if we consider
the pairing of z and some (at least) Lipschitzian graph. As we are only interested in codimension one,
we shall use the following dualized construction:

Assume that z is an elliptic parametric integrand on Rn and consider the associated total variation
Φ. Assuming that

v : Un´1p0, sq ÝÑ R, v P C0,1pUn´1p0, sqq for some s ą 0,

we may evaluate z on the graph of v (which is a rectifiable current Γv of multiplicity one and support
inside the cylinder Up0, sq ˆ R) to receive

xz,Γvy “
ż

graphv

zpx, ~Γvq dH n´1 “

ż

graphv

Φpx,Nvq dH
n´1 “

ż

Up0,sq
Φppz, vpzqq, p∇´vpzq, 1qq dL n´1

by applying the Hodge star operator, the area formula and choosing adequate orientations. We will
denote

Φ§pz, u, vq :“ Φppz, uq, p´v, 1qq

and call Φ§ the associated non-parametric integrand to z and Φ. Of course, we are not restricted to
some ball U and can choose any open domain. Assuming now that Γv is minimizing with respect to
z (or at least stationary with respect to vertical variations fixing BΓv), we may especially vary the
function v by some perturbation

v ` tϕ for |t| small, ϕ P C8c pU
n´1p0, sqq,

to receive by differentiating that v solves

0 “

ż

Up0,sq
D3Φ§pz, v,Dvq ¨Dϕ`D2Φ§pz, v,Dvqϕ dL n´1 for all ϕ P C8c pUp0, sqq,

which we will call the associated non-parametric Euler-Lagrange equation for z and Φ. Clearly, Φ§

inherits its regularity from z: If z is of class Ck,α in its first (respectively, second) variable, then Φ§

is of class Ck,α in its first and second (respectively, third) variable. Also ellipticity is inherited: We
recall from remark 2.7 that, since z is elliptic, the parametric Legendre condition holds, which is,

D2
2Φpx, vqpw,wq ě c|v|´1

˜

|w|2 ´

ˆ

w ¨
v

|v|

˙2
¸

for all v, w P Rn with v ‰ 0
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and an ellipticity constant c ą 0. Applying this to Φ§, we find

D2
3Φ§pz, u, vqpw,wq “ D2

2Φppz, uq, p´v, 1qqppw, 0q, pw, 0qq

ě
c

?
1` v2

˜

|w|2 ´

ˆˆ

w

0

˙

¨
pv,´1q
?

1` v2

˙2
¸

“
c

?
1` v2

ˆ

|w|2 ´
pv ¨ wq2

1` v2

˙

ě c|w|2

˜

1
?

1` v2
´

|v|2

p1` v2q
3
2

¸

“
c|w|2

p1` |v|2q
3
2

ą 0 for v, w P Rn´1,

and hence, the matrix D2
3Φ§pz, u, vq is pointwise positive definite (though not uniformly). Note also

that the latter coefficient is bounded away from zero whenever |v| ď R, ie. we have

D2
3Φ§pz, u, vqpw,wq ě C|w|2 whenever v P Bp0, Rq,

where C ą 0 depends on R but not on v.

2.21 Remark. We particularily infer from the above that the associated non-parametric Euler-Lagrange
equation is elliptic on its domain. Its principal part being uniformly elliptic on bounded domains in
the gradient variable will furthermore be helpful when we consider appropriate linearizations.

2.22 Remark. The fact that the principal part of the operator is pointwise elliptic is also needed to
show that weak and bounded C1,β-solutions belong in fact to (locally or globally) W2,2, which is used
to linearize and infer higher regularity via Schauder estimates. This opens up higher regularity theory
for the graph functions from the measuregeometric regularity theorems (see also [12, Proposition 3.3]).

2.6 Submanifolds, Stationary Immersions and Dependence Theorems.

In this last preliminarial section we want to recall some of the results from [56] (for the area integrand
see also [57] and for certain special integrands the last section of [29]) and adjust them to our needs.
In particular, we will also fix notation for elementary differential geometry and derive suitable formulas.

We will denote a submanifold without boundary of dimension l of Rn of class Ck,γ for k ě 1 and
0 ă γ ď 1 a locally Rl-embedded set whose local embeddings can be chosen of class Ck,γ . The tangent
space at x P Ξ to a submanifold Ξ will be denoted via TxΞ. In case l “ n´1 (which is the relevant case
for us), we will abuse notation and denote a choice of unit normal vector field of Ξ as well as the normal
space by NΞ. The submanifold Ξ is orientable if such a normal field exists globally. All declarations
extend similarly to submanifolds with boundary of Rn. The unit conormal vector at boundary points
of Ξ (ie. the up to sign unique unit vector which is orthogonal to the boundary tangent space inside
the full tangent space) will be denoted by N co

Ξ . Note that we will usually assume that a tangent space
Tx0Ξ Ă Rn is an affine space centered at x0.

If a submanifold with boundary of sufficient class solves a geometric variational problem, we might
consider questions of boundary stability, ie. if we perturb the embedding of BΞ in an adequate } ¨ }k,γ-
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norm, we might ask how the submanifold as a whole behaves.

For this purpose, we shall rephrase the setting into a mapping problem.

We let Ξ be an abstract n´ 1-dimensional Riemannian manifold Ξ with boundary which is supposed
to be analytic, compact, connected and orientable and we fix an embedding ι P Ck,γpΞ,Rnq into

Euclidean space.

Note that this is no restriction in general, since we may always find a compatible analytic structure in
the intrinsic case. We recall also (as in [56, 1.0]) that we may assume Ξ to be isometrically embedded
in some high dimensional Euclidean space to simplify computations regarding derivatives.

We fix moreover an elliptic parametric integrand z on Rn of class Cµ´1,α with D2z also of class
Cµ´1,α.

To prepare the application of the regularity theory from [56], we now need to suppose

0 ă γ ă α ă 1 and 2 ď k ď µ´ 1

and in our particular case, we will use the assumption k “ 2 and choose a 0 ă γ ă 1 to be fixed later.

Then we let the parametric integral for the immersion ι with respect to z be defined via

xz, ιy :“

ż

Ξ
zpιpxq, pΛn´1Dιpxqqpξpxqqq dH

n´1,

where ξ is a global smooth unit multivector field, which orients Ξ. We write the parametric integral as

xz, ιy “
ż

Ξ
z̃px, ιpxq, Dιpxqq dH n´1

with
z̃px, y, tq :“ zpy, pΛn´1tqpξpxqqq.

2.23 Remark. This parametric integral for immersions is a somewhat more general version for arbitrary
domains and non-graphical immersions of the associated non-parametric integral of the last section.
We will indeed use both versions for our regularity theory and compare properties of both. Note that
also the latter two components of z̃ directly inherit their regularity from the respective ones from z.

We denote the parametric Euler-Lagrange operator with respect to z by Hpιq and its linearization, the
Jacobi operator, by DHpιq. We recall the following facts from [56, Sections 2, 3].

2.24 Lemma (The Euler-Lagrange operator). It holds that

H : C2,γpΞ,Rnq ÝÑ C0,γpΞ,Rnq

is a mapping of class Cµ´2,α´γ
loc . The vector field Hpιq is normal to ιpΞq Ă Rn. We have the explicit

formula
Hpιq “ ´ divpD3z̃px, ιpxq, Dιpxqqq `D2z̃px, ιpxq, Dιpxqq
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and the weak integral formula
ż

Ξ
ϕ ¨ Hpιq dH n´1 “

ż

Ξ
D2z̃px, ιpxq, Dιpxqqϕpxq `D3z̃px, ιpxq, DιpxqqDϕpxq dH n´1

for all ϕ P C1pΞ,Rnq such that ϕBΞ “ 0.

Proof. Contained in [56, 1.3 Elliptic Integrands and First Variation]. �

2.25 Lemma (The Jacobi Operator). Assume that ι is stationary, ie. Hpιq “ 0. The linearization
DHpιq of H is a linear operator

DHpιq : C2,γpΞ,Rnq ÝÑ C0,γpΞ,Rnq

and we have the weak integral formula
ż

Ξ
v2 ¨DHpιqpv1q dH

n´1 “

ż

Ξ

`

D2
2z̃px, ι,Dιqv1pxq `D3D2z̃px, ι,DιqDv1pxq

˘

v2pxq

`
`

D2D3z̃px, ι,Dιqv1pxq `D
2
3z̃px, ι,DιqDv1pxq

˘

Dv2pxq dH
n´1

for all v1, v2 P C2,γpΞ,Rnq such that v1,BΞ “ v2,BΞ “ 0. If such a vector field v1 is tangent to ιpΞq, then
DHpιqpv1q “ 0.

Proof. Set ϕ “ v2 in lemma 2.24 and differentiate along a linear curve through ι in direction v1

(compare also [56, 1.4 Second Variation and the Jacobi Operator]). �

2.26 Remark. We explicitly note that, as both H and DH are differential operators, they are local and
can of course also be applied to any twice continuously differentiable functions on some open subset of
Ξ in their strong form and to any once continuously differentiable function in their weak form.

Let us now spend some words on properties of the Jacobi operator DHpιq with respect to some im-
mersion ι. Aside from the global formulation, we proceed to derive a convenient expression for the
coefficient function of a Jacobi field in a local chart of Ξ. Similar to the last section, the ellipticity
and, in particular, the parametric Legendre condition that we imposed on the integrand z will yield
ellipticity properties for associated partial differential equations.

2.27 Proposition (Uniform Ellipticity on Normal Fields). Let ι P C3,γpΞ,Rnq. The weak
formulation of the Jacobi operator for Ξ and ι descends to a weak formulation of a uniformly elliptic
partial differential equation for the coefficient function on normal variations in any choice of local
coordinates of Ξ. Any normal C1-solution to the weak formulation of the Jacobi operator has interior
regularity of class C2,γ.

Proof. We choose local coordinates near x0 P Ξ and fix an immersion ι P Ck,γpΞ,Rnq with k ě 3 and
0 ă γ ă 1. The parametric integral in such coordinates reads
ż

xpZq
zpιpxq, ι˚pξqq dH n´1 “

ż

Z
z
ˆ

ιpxq, ι˚

ˆ

B1x^ ...^ Bn´1x

|B1x^ ...^ Bn´1x|

˙˙

|B1x^ ...^ Bn´1x| dL
n´1

“

ż

Z
z pιpxq, ι˚ pB1x^ ...^ Bn´1xqq dL

n´1
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for some open and bounded coordinate domain Z Ă Rn´1 via the area formula and one-homogeneity
of z where we thus let

ξ “ B1x^ ...^ Bn´1x, ι˚ξ :“ pΛn´1Dιqpξq “ DιpB1xq ^ ...^DιpBn´1xq.

We now fix normal variations

v1 “ ζ1NιpΞq and v2 “ ζ2NιpΞq with ζ1, ζ2 P C2,γpΞq,

define
ιt “ ι` tv1

and acknowledge that

d

dt |t“0
pΛn´1Dιtq pξq “

n´1
ÿ

i“1

DιpB1xq ^ ...^Dv1pBixq ^ ...^DιpBn´1xq.

Since
Dv1pBixq “ Bipv1 ˝ xq “ Biζ1NιpΞq ` ζ1BiNιpΞq

by the chain and product rule, we find

d

dt |t“0
pΛn´1Dιtqpξq “

n´1
ÿ

i“1

DιpB1xq ^ ...^
`

Biζ1NιpΞq ` ζ1BiNιpΞq

˘

^ ...^DιpBn´1xq.

Thus, by varying in both v1- and v2-direction and differentiating twice, the second order terms of the
weak formulation of the Jacobi operator in such local coordinates x compute to

ApxqpDζ1, Dζ2q :“ D2
2zpιpxq, ι˚pξqq

˜

n´1
ÿ

i“1

pBiζ1qx
i,
n´1
ÿ

j“1

pBjζ2qx
j

¸

,

where we let xi P Λn´1Rn be defined by replacing the i-th factor in ι˚ξ by NιpΞq P Rn. The set
txi | i P t1, ..., n´ 1uu is linearly independent and forms a pointwise basis of Λn´1Rn with ι˚ξ.

Thus, letting

η “
n´1
ÿ

i“1

pix
i P Λn´1Rn where p P Rn´1,

we compute for the uniform ellipticity of A with the parametric Legendre condition for z that

Apxqpp, pq ě c |ι˚ξ|
´1

˜

|η|2 ´

ˆ

η ¨
ι˚ξ

|ι˚ξ|

˙2
¸

ě C

˜

|η|2 ´

ˆ

η ¨
ι˚ξ

|ι˚ξ|

˙2
¸

,

as
|ι˚ξ| “

`

det
`

Dpι ˝ xqTDpι ˝ xq
˘˘

1
2

may be assumed as bounded from above in local coordinates x. Since furthermore

NιpΞq ¨DιpBixq “ 0 for all i “ 1, ..., n´ 1,
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we infer η ¨ ι˚ξ “ 0 and hence

Apxqpp, pq ě C|η|2 “ C
n´1
ÿ

i,j“1

pi
`

xi ¨ xj
˘

pj .

The latter double sum corresponds to the scalar product of Λn´1Rn in the basis given by pxiqi“1,...,n´1.
Denoting G “ pxi ¨ xjq P Rpn´1qˆpn´1q, this matrix is therefore uniformly positive definite and we
conclude

Apxqpp, pq ě pTGp ě C|p|2 with C ą 0 uniformly in local coordinates x

which finishes the argument. Finally, as the equation is now uniformly elliptic in local coordinates and
all involved structure functions are at least of class C0,γ , the interior regularity follows by standard
interior elliptic regularity theory for linear equations. �

By completely expressing and rearringing the weak form of the Jacobi operator in local coordinates,
we may make the following definition.

2.28 Definition (The Jacobi Equation). We will call the resulting uniformly elliptic partial differ-
ential equation the Jacobi equation with respect to the given integrand z, the embedding ι and the
local coordinates x near some fixed point x0 P Ξ. It may be written in the divergence form

divpaijζj ` biζq ` ciζi ` dζ “ 0 in local coordinates x,

where the regularity of the coefficients aij , bi, ci, d depends on z and ι.

As the Jacobi operator is uniformly elliptic on normal variations, the normal field solutions v P
C2,γpΞ, NΞq to DHpιqpvq “ 0 with homogeneous boundary conditions (ie. vBΩ “ 0) form a finite
dimensional vector space K Ă C2,γpΞ, NΞq and we will call dimK ě 0 the Jacobi nullity of ιpΞq (see
also [56, 1.4 Proposition]). Note furthermore that a similar proof as for proposition 2.27 may be used
to show uniform ellipticity of DHpιq on variations in any (sufficiently smooth) uniformly non-tangential
direction field p.

We move on to recall the central stability result that we want to use for our regularity results.

2.29 Theorem (Special Smooth Dependence Theorem in C2,γ). Assume that Hpιq “ 0 and
dimK “ 0. Then there exist neighborhoods

U Ă C2,γpBΞ,Rnq of ιBΞ and V Ă C2,γpΞ,Rnq of ι

and a map
F : U ÝÑ V

of class Cµ´2 such that pF ˝ rqpιq “ ι and

pr ˝Fqpκq “ κ and HpFpκqq “ 0 for all κ P U ,

where r denotes here the restriction to BΞ. Furthermore, for all ι˚ P V with Hpι˚q “ 0 (that is, for all
stationary ι˚ P V ) it follows that r ˝ ι˚ P U and ι˚ and F ˝ r ˝ ι˚ can only differ by reparametrization
of Ξ (that is, a diffeomorphism of Ξ of at least class C1).
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Proof. This is the content of [56, 3.1]. �

2.30 Remark. Our usage of F for the proof of the later regularity results for functions of anisotropic
least gradient will apply the dependence map F near a regular value level set for the Dirichlet data,
which invokes that the level set structure as a one-parameter family on the boundary BΩ is already
well-behaved, and conduct somewhat of a "push-forward" by means of F to find a well-behaved one-
parameter family of level set boundaries on the full domain Ω.

Finally we discuss the regularity of each stationary immersion Fpκq P C2,γpΞ,Rnq selected like this. As
HpFpκqq “ 0, it is somewhat natural to expect higher regularity then C2,γ in case κ and the integrand
z are smoother and if we construct our parametrization Fpκq properly and this does actually follow
from some steps in the proof of the dependence theorem.

2.31 Corollary (Higher Regularity). Let additionally ι P Cν,αpΞ,Rnq and κ P Cm´1,αpBΞ,Rnq.
Under the assumptions of the last theorem, we may additionally assume that

Fpκq P Cν,αpΞ,Rnq with ν :“ minpµ,m´ 1q.

for all κ P U .

Proof. We recall that

Fpκq “ φpκq `F0pκq with pp ˝ Hq pφpκq `F0pκqq “ 0

from [56, 3.1, proof]. Therein, p is the auxiliary smooth and uniformly non-tangential field, which is
used in the construction to replace normal vectors, and φpκq is constructed such that

#

∆pφpκq ´ ιq “ 0,

pφpκq ´ ιqBΞ “ κ´ ιBΞ,

ie. such that pφpκq ´ ιq is the unique harmonic map on Ξ with boundary data pκ´ ιBΞq, which is thus
an n-tuple of scalar valued harmonic maps on Ξ with the respective boundary data component of κ.
Hence, it follows

φpκq “ ι` pφpκq ´ ιq P Cν,αpΞ,Rnq

and the p-field F0pκq P C2,γpΞ,Rnq has by construction with pF0pκqqBΞ “ 0 and we may assume

Hpφpκq `F0pκqq “ 0,

and thus the coefficient of F0pκq obeys quasilinear elliptic regularity theory (by writing the stationarity
condition in local coordinates on Ξ and arguing similarly to proposition 2.27 with pφpκq,F0pκqq being
close to pι, 0q for ellipticity) and is therefore also of class Cν,α. �
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3 The Jacobi Field Method to Partial Regularity.

The purpose of the section is a quick description and repetition of the original paper [46] for the
isotropic case in 3.1 while the later sections 3.2 and 3.3 will discuss two particular problems that the
original results contain and for which we will propose an altered approach. We will state results, which
appear clear to me from the considerations of [46], in section 3.4.

3.1 A Sketch of the Original Result and Our Assumptions.

Let us now first recall the necessary regularities for our given data.

We will assume for the remainder of this section that Ω Ă Rn is an open domain with Cm-boundary
and f P CmpBΩq, where 2 ď n ď 7 and 4 ď m ď 8.

The lower bound on continuous differentiability of class C4 is required for various tools from elliptic
regularity theory as well as straightening the boundary. We may now also state the assumed a priori
regularity on the extremal.

We will assume that u P C0,1pΩq is a function of (isotropic) least gradient with uBΩ “ f .

The connection of Lipschitz regularity to some bounds on the gradient of u will prove to be essential
in the proof. Moreover, we will of course rely on the fact that level sets of u are bounded by nice, min-
imizing hypersurfaces due to theorem 2.14. As already detailed in remark 2.10, the existence of such
Lipschitzian extremals minimizing the standard total variation in a Dirichlet class is well-assured by
established theory and as detailed in remark 2.18, the Lipschitzianity already allows for nice genericity
properties for level sets of u.

The Main Contents of the Approach. Roughly speaking, the method of [46] can be subdivided into
three parts: One is measuregeometric, one is PDE-theoretic and the last relies on the application of
the dependence map for minimal surfaces, which is prepared by means of the first two.
A very illustrating example of geometric analysis, all of these considerations rely heavily on local ar-
guments — both in value of the extremal and in points of the level set — and in what sense way we
may globalize them to a larger (super-)set. Furthermore, we will be strongly interested in perturbation
results of various geometric quantities as we will be fixing a nice level set as our reference one and
then see how it varies (and in what sense) as we vary the value of our function of least gradient.
These deformations of the reference level set hypersurface will prove to be useful for blowing up —
at last we may prove the vanishing Jacobi nullity of the reference hypersurface with it. Finally, with
the dependence map at our disposal, we may consider a flow connecting the regular level sets near
the boundary of the reference one and transfer it by means of the dependence map to all of the domain.

We now follow up with some more technical descriptions on the three previously named parts:

pαq The Measuregeometric Part. After the general setup, one first notes that there are generically
"nice" non-fat level sets for a Lipschitzian function of least gradient and we will use one of these as
our reference level set to find a neighborhood of it, on which the extremal is of corresponding differen-
tiability class. Those genericity properties together with the minimization properties of the level sets
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already imply a lot of structure. Recalling furthermore that all level sets contain at least one minimal
hypersurface, the general regularity theory for minimizing currents (more specifically, the geometric a
priori estimates) lets us now conclude that the level sets not only approach each other, but that the
minimal hypersurfaces may also be regarded as sufficiently differentiable deformations of our reference
hypersurace, which converge up to higher order in their function spaces.
These classical, but somewhat ill-recorded, results allow to deform as a normal graph away from the
boundary while the continuation up to the boundary is a more delicate matter, for which we will use
the construction of almost-minimal diffeomorphisms.

pβq The PDE-theoretic Part. Being able to express nearby minimizing hypersurfaces as normal graphs
away from, but arbitrarily close to, the domain boundary, we now want to use this parametrization for
blowing-up to prove the existence of a special Jacobi field.
This involves heavy usage of local expressions in coordinate charts and geometric partial differential
equations, which we derive by means of the vanishing first variation.
Particularily, the mapping in normal direction can be shown to suffice proper estimates such that the
blow-ups actually converge and moreover, the converge to a weak solution of the Jacobi equation of
the reference hypersurface. This Jacobi field is moreover bounded from below, which is implied by Lip-
schitzianity here and is the most central part, as a simple argument with elliptic theory now assured
that this special Jacobi field eliminates the existence of non-trivial homogeneous Jacobi fields. Hence,
the Jacobi nullity of the reference hypersurface vanishes.

pγq The Level Set Part. Due to the previous part, the necessary condition for local smooth dependence
on the manifold boundaries for minimizing hypersurfaces near the reference one is granted and the
dependence map exists.
Assuming the boundary of the reference hypersurface to be given by a regular level set, small perturba-
tions of the value will still have regular level sets on the boundary and we may parametrize the nearby
ones over the reference boundary. Thus, we gain a one-parameter family of embeddings of boundary
manifolds, which we shall push foward with the dependence map to their unique minimal hypersurface
(close to the reference one) with it as boundary.
By this uniqueness, we subsequently infer that it has to be contained in the appropriate level set of the
extremal (as the boundary level set is and at least one minimizing hypersurface is already contained
in the whole level set), thus, the extremal evaluated on the one-parameter family of minimizing hyper-
surfaces returns precisely the value of the parameter. At last, a local inversion argument provides the
identity for our extremal, which is sufficiently differentiable.

Of course, we will make these rough sketches more precise in the next sections. Revisiting the methods
of part pαq will be the content of sections 4 and 5 while section 6 will provide a different approach to
part pβq and the conclusions from part pγq will be conducted in section 7 (with the regular level set
flow being introduced already in section 5.3 and the almost-normal diffeomorphisms in section 5.4) for
the case of a general anisotropic total variation of sufficient regularity.

3.2 On the Convexity of the Domain.

Here we will discuss the first particular point of the original work that appears like a gap to me or, at
least, could use a lot more details.
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Observation. The original work does not assume that Ω is convex.

This apparantly harmless fact is first of in contrast to some earlier works of H. Parks. Indeed,
in [41] and [42] we find both times a convex body as our setting. Furthermore, a very essential lemma
in [41, 8(1) Lemma] breaks down for non-convex domains. Therein, it is provided that the minimizing
hypersurfaces are in fact pΩ,Hq-minimizing and not only locally minimizing in Ω. Thus, they are
solutions to a parametric obstacle problem and exhibit different regularity properties. (In [41] it is
proven for almost every value, while an approximation argument in [42, 3.1(1) Lemma] shows that it
is true for every value.)

So how is this important? A simple estimate by convexity and properties of the area integrand would
now show that a pΩ,Hq-minimizing rectifiable current R fulfills

R area-minimizing on pΩ,Hq

ùñ R area-minimizing on Rn.

This unlocks the boundary regularity theory in the original approach by means of the works of Allard
and Hardt/Simon. Yet, all of this is only valid so far on convex domains! If the domain Ω is possibly
non-convex, there are no details given whether our level sets actually patch together to a manifold
with boundary granted the necessary density estimates.
Furthermore, some additional properties like convergence of total masses in [46, 2.1 Lemma, 2.5 Corol-
lary] are not (or, at least, not immediately) justified anymore without minimization with respect to
pΩ,Hq.

We will propose a solution to this property in section 4 of this thesis. Since those easy arguments
by means of convexity are not available anymore, we however have to conjure stronger tools. This will
be done in two steps:

(1) Show that locally minimizing hypersurfaces from the BV-setting are solutions to parametric ob-
stacle problems also on general domains.

(2) Show that the (conditional) boundary regularity theory in fact works at every point of the bound-
ary.

While it is somewhat classical that parametric obstacle problems can be interpreted as almost-minimizing
currents, the boundary regularity theory is still conditional in the sense that we need half-density esti-
mates. We shall thus also provide those at each point in question in what follows, mostly hailing from
and relying on the works of R. Hardt and F.H. Lin in [20, 29].

3.3 On the Regularity of the Flow of Hypersurfaces.

Now we will discuss the second problem, which is intrinsically tied to the regularity conclusion and the
way how boundary manifolds are parametrized and mapped with the dependence map. Most of the
notation and content of this subsection is directly taken from the proof in [46, 4.3 Theorem].
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Therein, the authors consider the dependence map F between the Banach spaces

F : Cm´2,αpf´1p0q,Rnq ÝÑ Cm´2,αpu´1p0q,Rnq,

where 0 ă α ă 1 is arbitrary, we have fixed the value 0 and additionally assumed that the level set
boundaries equal the level set for this value. We denote the inverse of the nearest point projection on
BΩ onto f´1p0q by π, which is a map of class Cm´1, with

π : f´1p0q ˆ I ÝÑ pBΩ Ă Rnq ,

where I is some small open interval about 0. The important point is now to consider π as a curve in
the above Hölder space via

pt ÞÝÑ πt :“ πp., tqq P Cm´2,αpf´1p0q;Rnq

Yet, the differentiability of this mapping is somewhat problematic.

Observation. Every differentiation in the Hölder norm of class Cm´2,α already involves pm ´ 2q

derivatives plus the Hölder constant of the last derivative (eg. pm ´ 1q derivatives by estimating
against the Lipschitz constant).

Since π is a map of class Cm´1 in its two variables, this makes it hard to differentiate the curve
t ÞÑ πt even once in the corresponding norm of class Cm´2,α. The original claim, namely,

t ÞÝÑ πt is of class Cm´2 as a map with values in Cm´2,αpf´1p0q;Rnq,

is easily seen to be wrong here in full generality, because already two differentiations of the curve
t ÞÑ πt in Cm´2,α would involve m differentiations of π, which outreaches the a priori amount of
differentiability. But this is precisely the regularity that we need for the conclusion, since we want to
consider afterwards

gpx, tq “ F pπtqpxq

as a map of class Cm´2 in both variables! Our second question here will thus be

Is the result on partial regularity true with a different degree of differentiability?

Clearly, to receive the most regularity for the curve t ÞÝÑ πt, we consequently need to consider the least
possible degrees in the Hölder norm to lose the least possible amount of derivatives additionally. Still,
we will have to alter the regularity result, as the conclusion will stay true but we will have to subtract
an additional degree of differentiability. We will in the process also change the nearest point projection
on the boundary for the flow of a rescaled gradient vector field of f to receive more differentiability in
the above curve parameter (otherwise we would lose even more regularity in the final result!).

3.4 The Original Results.

We will close this section with a result that I certainly see proven from the original resource [46]. I
also strongly need to mention that the only second available resource [58], which was only written by
W. Ziemer, uses both of these (actually even stronger) assumptions.
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3.1 Theorem (Partial Regularity, Parks and Ziemer ). Let BΩ and f be smooth and Ω be convex.
Then there exists an open and dense set Ou Ă Ω such that uOu is smooth. �

Observe that this formulation eliminates both problems from the sections 3.2 and 3.3, as convex
domains allow for immediate boundary regularity, as we may drop the obstacle and pass to global
minimization, plus we do not need to care about losses of derivatives if we work in the smooth category.

3.2 Corollary (Partial Regularity in Eight Dimensions, Parks ). Theorem 3.1 still holds while
replacing 2 ď n ď 7 with n “ 8.

Proof. The method of choice here is to perturb the (finitely many) isolated singularities away such that
we may work with fully regular hypersurfaces by slightly replacing the value, see [43]. Interestingly, in
this paper, the boundary regularity result from [22] is in fact referenced, which does need an absolutely
area minimizing current, and also some other results [43, 2. Lemma] are only formulated for absolutely
area minimizing currents. �

The following sections 4,5 and 6 will now serve to complement these results with additional theory to
justify results on possibly non-convex domains and only finite degrees of differentiability. In section 7 we
will repeat the main steps in the argument to prove local and partial regularity theorems for functions
of anisotropic least gradient and prove generalized (partial as well as local) versions of theorem 3.1.
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4 Variational Problems for Level Set Boundaries.

Here we begin our discussion of the regularity properties of functions of least gradient and we start
with properties of their level sets and level set boundaries.

While the interior regularity of sets of minimal anisotropic perimeter is usually well-established, we
also want to discuss matters of boundary regularity such that the oriented hypersurfaces become proper
submanifolds with boundary. This appears to be somewhat known and does follow from a couple of
results from the literature, but proper references are rather unclear and we will spend the first subsec-
tion with recapping some details. We will moreover emphasize the correct notion of minimality that
sets of minimal anisotropic perimeter fulfill among currents, which will be our starting point here.

The later two subsections will furthermore prepare the stability and deformation results of section
5 by introducing the geometric quantities regarding level sets that we want to consider. We will
also include derivations on how to express the converging sequence of level set boundaries in a non-
parametric form locally uniformly over some tangent space of the limit, which is the essential tool to
also connect their geometries up to higher order.

4.1 A General Equivalence Result.

To begin with, we first prove the following equivalence lemma, which subsequently relates sets of min-
imal anisotropic perimeter and parametric obstacle problems for the associated integrand on currents.
The idea of our approach is taken from [29, 0.2] while such relations could to some extent already be
found in [42] and [44].

We pursue a proof here under the assumption that our domain Ω has connected boundary to en-
sure that its complement is connected, which can also be found as an assumption in [24]. Note that
this may be enforced with a localization procedure, but it is unclear whether a connected boundary
may be globally dropped.

4.1 Proposition (Equivalence of Minimizers). Suppose we have a bounded Lipschitz domain Ω

with connected boundary and a H n´1-measurable set Σ Ă BΩ. Fix moreover a bounded set of finite
perimeter A Ă Rn such that T̄p1Aq “ 1Σ and JΣK is oriented via the outer normal vector and let
the parametric integrand z and the anisotropic total variation Φ be associated with each other via the
Hodge operator ‹. Then we have:

pαq If R P Rn´1pRnq is z-minimizing with respect to pΩ,Hq with boundary BR “ BJΣK (ie. a
solution to the parametric obstacle problem), we may associate to R a boundaryless rectifiable
current R˚ P Rn´1pRnq such that

R˚ “ BpEn Ẽq “ R` pBpEn Aqq pRnzΩq

and Ẽ Ă Rn is a set of Φ-minimal anisotropic perimeter in Ω with respect AzΩ.

pβq If E Ă Rn is a set of Φ-minimal anisotropic perimeter in Ω with respect to AzΩ, then the
rectifiable current

R̃ “ BpEn Eq Ω
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is a solution to the parametric obstacle problem for z with boundary BR̃ “ BJΣK.

Proof. We note first that both problems admit extremals and it is no loss of generality to assume
existence in both problems at once. Indeed, the existence of sets of minimal perimeter with respect to
a given outer trace is clear via the direct method, while JΣK P Rn´1pRnq implies that BJΣK P Bn´2pΩq

and [11, 5.1.6(1)] implies the existence of a solution to the parametric obstacle problem on Ω. We will
proceed to derive identities for both minimizers.

Recall from section 2.2 that a set of finite perimeter A Ă Rn with outer trace T̄p1Aq “ 1Σ on BΩ
fulfills

BpEn pAX pRnzΩqqq “ BpEn Aq pRnzΩq ` JΣK

“ JB˚AX pRnzΩqK` JΣK

by dualizing the extension formula for sets of finite perimeter with the Hodge star operator and choosing
adequate orientations, which yields

B
`

JB˚AX pRnzΩqK
˘

“ ´BJΣK.

Now, let R P Rn´1pRnq be as in (α). Then

R˚ :“ R` JB˚AX pRnzΩqK

fulfills BR˚ “ 0. Hence, by the isoperimetric theorem in Rn [25, Theorem 7.9.1], there is a bounded
L n-measurable set Ẽ Ă Rn and a rectifiable current S P RnpRnq such that

BS “ R˚ and S is concentrated on Ẽ, ie. }S}pRnzẼq “ 0.

Note that we have

pBSq pRnzΩq “ JB˚AX pRnzΩqK “ BpEn Aq pRnzΩq,

hence the difference
pS ´ pEn Aqq pRnzΩq P RnpRnq

equals integrating an integer over RnzΩ by the constancy theorem [25, Proposition 7.3.1] and the
connectedness of the complement of Ω. As both the sets Ẽ and A, on which the respective currents
are concentrated, are bounded, we infer that the multiplicity is 0 sufficiently far away from the origin
and therefore

S pRnzΩq “ pEn Aq pRnzΩq,

since the integer in question has to be 0. Denoting the integer-valued multiplicity function of S by ϑ,
we write

S “
´

En Ẽ
¯

ϑ

and infer via [11, 4.5.17] that

R˚ “
ÿ

kPZ
BpEn tϑ ě kuq, }R˚} “

ÿ

kPZ
}BpEn tϑ ě kuq},
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also yielding
ÝÑ
R˚ “

ÝÝÝÝÝÝÝÝÝÝÝÑ
BpEn tϑ ě kuq }BpEn tϑ ě kuq} -almost everywhere,

due to the locality of approximate tangent spaces [12, Proposition 10.5] and tϑ ě lu Ă tϑ ě ku for l ě k.

We now drop negative and absorb higher multiplicities and only consider the oriented boundary

En tϑ ě 1u P RnpRnq

with also
B pEn tϑ ě 1uq P Rn´1pRnq

by means of the boundary rectifiability theorem/De Giorgi’s theorem. We may assume

tϑ ě 1uzΩ “ AzΩ

and our previous identity on RnzΩ leads to

BpEn tϑ ě 1uq “ T ` JB˚AX pRnzΩqK

for some current T P Rn´1pRnq with sptT Ă Ω. Due to B2 “ 0, we have BT “ BJΣK. As R solves the
parametric obstacle problem for BJΣK and Ω, we get

xz, Ry ď xz, T y.

The mass-additive decomposition also yields the converse inequality and we receive

xz, Ry “ xz, T y.

This means
ÿ

kPZ
xz, BpEn tϑ ě kuq Ωy “ xz, R˚ Ωy

“ xz, Ry “ xz, T y
“ xz, BpEn tϑ ě 1u Ωy,

which is
}BpEn tϑ ě kuq}pΩq “ 0 for all k ‰ 1.

Hence,
R “ pBSq Ω “ BpEn tϑ ě 1uq Ω “ T

and we will subsequently relabel tϑ ě 1u as Ẽ.

Moreover, for E as in (β), we let
Rρ “ BpE

n Eq uρpΩq

and notice that since
Rρ ´ R̃ “ BpE

n Eq puρpΩqzΩq
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and
xA , Rρ ´ R̃y ÝÑ 0 as ρÑ 0,

we infer that Rρ ÝÑ R̃ in the weak-* sense. This already yields

xz, R̃y ď lim inf
ρÑ0

pxz, BpEn Eqy ´ xz, BpEn Eq pRnzuρpΩqqyq “ ΦEpRnq ´ ΦApRnzΩq

by lower semicontinuity of the parametric integrand z and duality. Now fix some arbitrary ρ ą 0. As
EzΩ “ AzΩ, we recall that T̄p1Eq “ 1Σ. Thus we find also here that

B

´

Rρ ´ R̃
¯

uρpΩq “ B
`

BpEn Eq puρpΩqzΩq
˘

uρpΩq “ ´BJΣK,

and thus, also R̃ has the correct distributional boundary, since the boundary of R̃`pRρ´ R̃q vanishes
in uρpΩq while the support of R̃ has to be contained in Ω.

We may finally use these identities and compare both expressions for R, R̃ and E, Ẽ: It holds

xz, R̃y ` ΦApRnzΩq ď ΦEpRnq
ď ΦẼpR

nq “ xz, Ry ` xz, BpEn Ẽq pRnzΩqy
ď xz, R̃y ` xz, BpEn Aq pRnzΩqy,

which proves that we actually have equality, ie.

xz, Ry “ xz, R̃y and ΦEpRnq “ ΦẼpR
nq,

and thus, Ẽ is a set of Φ-minimal perimeter and R̃ solves the parametric obstacle problem with respect
to z and JΣK. �

4.2 Remark. The necessity of a connected boundary is related to homologically minimizing currents also
being absolutely minimizing. While the converse is clear, a connected boundary enforces homologically
minimizing currents to also be absolutely minimizing in our setting. Local results on homological
minimization of minimizing level set boundaries inside Ω among currents furthermore also appeared
in [44, 5.(4) Theorem].

4.2 Interior and Boundary Regularity of Level Set Boundaries.

We now turn back to our Lipschitzian extremal u : Ω ÝÑ R, which is supposed to be a function of
least anisotropic gradient with respect to the anisotropic total variation Φ. The following paragraph
fixes what kind of data pDq we shall assume.

Assumptions pDq: Let u P C0,1pΩq be a function of anisotropic least gradient with respect to Φ with
uBΩ “ f , where BΩ is of class Cm and f P CmpBΩq with m ě 4. We shall furthermore suppose that Φ

is elliptic and even and Φ and D2Φ are of class Cµ´1,α for some µ ě 3 and 0 ă α ă 1.

We will now discuss regularity issues of our given level sets by considering them as minimizing currents
and applying interior and boundary regularity theory for such. Applying the equivalence lemma to
interior points will additionally yield a short proof for interior regularity (recall that z inherits the
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regularity from Φ). This will also provide somewhat of a reconciliation with the original approach
by H. Parks in [41, 42, 46] to use slices of the domain (as a normal current) Ω by the lipschitzian
extremal u to describe the level sets.

Let us therefore introduce for t P R the currents

Tt :“ BpEn tu ě tuq Ω and St :“ BpEn tu ď tuq Ω,

which furnish the distributional interpretation of the level set boundaries of u. We have Tt, St P
Rn´1pRnq by definition.

4.3 Remark. We choose some t P R such that H n´1pf´1ptqq “ 0, which is true for all except countably
many. One may show then (see [19, Lemma 2.12]) that

Tp1tuětuq “ 1tfětu and Tp1tuďtuq “ 1tfďtu,

which implies for the distributional boundary of tu ě tu in Rn that

BpEn tu ě tuq “ BpEn tu ě tuq Ω` Jtf ě tuK,

and therefore, as tu ě tu Ă Ω with BΩ being L n-negligible,

BpΩ tu ě tuq “ BpEn tu ě tuq Ω` Jtf ě tuK,

where we identify Ω with integration over Ω as a current. Solving yields

BpEn tu ě tuq Ω “ BpΩ tu ě tuq ´ Jtf ě tuK “ ´xΩ, u, t´y

and thus, that our definition of the current Tt (and analougously for St) precisely equals (up to sign) the
slice of Ω by u of the original approach. Note in particular that here Jtf ě tuK carries the orientation
from the interior unit normal NBΩ.

We now apply the equivalence lemma to derive suitable minimization properties for Tt and St.

4.4 Corollary (Connected Boundaries). Let pDq hold. If BΩ is connected and t P rg f is a regular
value for f , then the rectifiable currents Tt and St are solutions to the parametric obstacle problem on
Ω for z with boundary BJtf ě tuK “ ´BJtf ď tuK with orientation via the outer trace.

Proof. As t is a regular value for f , we note that

BJtf ě tuK “ ´BJtf ď tuK “ Jf´1ptqK P Rn´2pRnq.

and
f´1ptq Ă sptTt X sptSt.

We find then that the above currents Tt and St can be identified with the current in 4.1(β), as they must
be supported in u´1ptq and the level set can only intersect BΩ in an H n´1-negligible set. Furthermore,
it is easy to show that

Tp1tuětuq “ 1tfětu and Tp1tuďtuq “ 1tfďtu,
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since f´1ptq is H n´1-negligible (either directly or also via [19, Lemma 2.12]). In particular, tu ě tu

and tu ď tu are sets of Φ-minimal anisotropic perimeter with respect to these traces. Thus, by setting
Σ “ tf ě tu or Σ “ tf ď tu, we may apply Proposition 4.1(β). �

Furthermore, as convex sets always have connected boundary, our corollary 4.4 also includes the reg-
ularity results (at least, for a differentiable boundary) of [41] for a regular level set on the boundary.

If the boundary BΩ is possibly disconnected, we will localize to small balls at boundary points to
achieve a similar minimality property.

4.5 Corollary (General Boundaries). Let pDq hold. If BΩ is not necessarily connected, then for
each x0 P f

´1ptq there exists r ą 0 (depending on x0) such that Tt or St are solutions to the parametric
obstacle problem for z on Bpx0, rq X Ω.

Proof. Let x0 P f
´1ptq. As BΩ is locally bilipschitz to a half-plane, we may assume that BpUpx0, rqXΩq

is a Lipschitz boundary and connected for r ą 0 sufficiently small and localize the application of propo-
sition 4.2 to such a ball (where the dependence on x0 is via the local straightening map).

Assume that tu ě tu is continued to a superset of Ω by choosing an extension with the appropri-
ate outer trace. Then tu ě tu is in particular a set of minimal perimeter with respect to its inner trace
on BpUpx0, rq X Ωq and we may let the outer trace equal the inner one. Hence the current

Tt pUpx0, rq X Ωq P Rn´1pRnq

is a solution to the parametric obstacle problem on Bpx0, rq X Ω by proposition 4.1(β). �

4.6 Remark (Lesser Regularity and Minimization). The above results are not sharp. In fact,
I put quite strong assumptions on everything as we will be restrained to such a regular setting for
our regularity theory anyway. Suitable generalizations to Lipschitz boundaries and Lipschitz data and
other results on minimization via approximation (as in [42]) should be possible, but I do not know how
much use they have aside from possible independent interest.

Let us now discuss the regularity properties of level set boundaries.

4.7 Proposition (Interior Regularity of Level Set Boundaries). Let z and D2z be of class
Cµ´1,α for µ ě 2 and 0 ă α ă 1, where µ can be 8 or ω. Then for each t P rg u there exists a subset
of full measure of

pBtu ě tu Y Btu ď tuq X Ω,

which is a submanifold of class Cµ,α without boundary.

Proof. This is a somewhat classical consequence of interior regularity theory for minimizing currents
which we sketch here for the sake of completeness. We first deduce that proposition 4.1 can be locally
applied to interior points

x0 P pBtu ě tu Y Btu ď tuq X Ω

without any assumption on boundary and boundary data, ie. for each such x0 there exists

Bpx0, rq ĂĂ Ω
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such that the distributional boundary of the sub-/superlevel set in Bpx0, rq solves the parametric
obstacle problem as a current for z on Bpx0, rq. Writing the level set boundary as a current as X, we
may require that the approximate tangent plane H at x0 exists. The proof of [11, 5.3.16] then shows
that the cylindrical excess of X over H at x0 decreases to 0 and sptX is by [10, 6.1 Theorem] (or any
other interior regularity theorem eg. of [11]) locally a (graphical) submanifold of class C1,β near x0 for
some 0 ă β ă 1 over H and [12, 3.3 Proposition] shows the higher regularity as the function whose
graph constitutes the submanifold solves the Euler-Lagrange equation with respect to the associated
non-parametric integrand on H. Since an approximate tangent plane to pBtu ě tu Y tu ď tuqXΩ exists
at H n´1-almost every point, the claim follows. �

4.8 Remark. Of course, finer characterizations of the singular set, ie. the points x0 as above where the
level set boundary is not a submanifold, are possible. As we shall be interested in full regularity, we
recall that

z, D2z of class C2,1 and n ď 3

or z being a Riemannian metric of class C2 and n ď 7

suffice by the regularity results from [1, Corollary 3.2] or the existence of normal coordinates and
the classical Bernstein theorem (to enforce blowups of our oriented boundaries to be hyperplanes) to
achieve full interior regularity of the minimizing level set boundaries.

We are now also prepared to prove that the boundary regularity theory in fact applies at all points of
f´1ptq and we will provide a proof in multiple steps.

Each of these steps corresponds to a somewhat known result, but might also be interesting in itself or
with respect to other conclusions that one might draw. The general idea is taken from [29, Section
3.1-3.3] and we will provide a complete derivation here. It combines ideas from the theory of small
excess and closeness to a (half-)hyperplane from [11, 5.3.16] and [4, Page 128-130] with barrier and
maximum principles from [20]. We collect some tools for our setting in the next lemma and then
proceed with the proof.

4.9 Lemma. Let s ą 0 be given and fix Bp0, sq X txn ď 0u Ă Rn.

(1) If R P Rn´1pRnq is absolutely minimizing with respect to an elliptic constant coefficient integrand
and pBp0, sq,Hq and spt BR Ă Bp0, sq X txn ď 0u, then sptR Ă Bp0, sq X txn ď 0u.

(2) Let A Ă Bp0, sqXtxn ď 0u be a L n-measurable set such that R “ BpEn Aq pUp0, sqXtxn ă 0uq

is absolutely minimizing with respect to pBp0, sqX txn ď 0u,Hq. Then there exists γ ą 0 such that

xA , R Up0, qqy ď γqn´1

holds true for all 0 ă q ă s.

(3) If R P Rn´1pRnq is such that

pµrj q#R ÝÑ Q and pµrkq#Q ÝÑ Q˚ in the local flat metric in Rn,

for two sequences rj , rk Ñ 0 and Q,Q˚ P Rloc
n´1pRnq, then we may find a new sequence rl Ñ 0 such

that
pµrlq#R ÝÑ Q˚ in the local flat metric in Rn.

39



Regularity Theory for Anisotropic Least Gradient Problems. (Ph. D. Thesis)

(4) If pµrj q#R ÝÑ Q for some Q P Rloc
n´1pRnq in the local flat metric and there is some q ą 0 such

that
R Up0, qq “ BpEn Aq Up0, qq for some L n-measurable set A Ă Rn,

then there is some L n-measurable set B Ă Rn with

Q “ BpEn Bq.

Proof. Assume that (1) is wrong, then we have

R txn ą 0u ‰ 0

and we denote by π the convex projection onto txn “ 0u. We may assume by possible translation and
slicing that R txn ą 0u is an integral current in Rn. Note that

B pπ# pR txn ą 0uqq “ B pR txn ą 0uq

and that, as π# pR txn ą 0uq P Rn´1pRnq, its orientation is almost-everywhere equal to ˘~En´1. We
may find

S P RnpRnq, sptS Ă Bp0, sq X txn ě 0u, BS “ R txn ą 0u ´ π#pR txn ą 0uq

by the isoperimetric theorem and the convexity of Bp0, sqXtxn ě 0u. We decompose with the integer-
valued multiplicity function ϑ and write

BS “
ÿ

kPZ
BpEn tϑ ě kuq, }BS} “

ÿ

kPZ
}BpEn tϑ ě kuq}

and treat each oriented boundary seperately. First write

BS “
ÿ

kPZ
BpEn tϑ ě kuq “

ÿ

kPN
BpEn tϑ ě kuq ` Bpp´Enq tϑ ď ´kuq

such that tϑ ě ku, tϑ ď ´ku Ă Bp0, sq X txn ě 0u for all k P N, which of course holds similarly for the
masses. By assumption, there is k P N such that

BpEn tϑ ě kuq txn ą 0u ‰ 0 or Bpp´Enq tϑ ď ´kuq txn ą 0u ‰ 0.

Set the non-vanishing oriented boundary to Rk, denote the integrand as Γ and let c ą 0 be an ellipticity
constant, then Rk txn ą 0u is absolutely minimizing with respect to pBp0, sq,Hq and Rk txn “ 0u

has constant orientation (due to tϑ ě ku, tϑ ď ku Ă Bp0, sq X txn ě 0u). We find

0 ě xΓ, Rk txn ą 0uy ´ xΓ, p´Rkq txn “ 0uy ě c pxA , Rk txn ą 0uy ´ xA , p´Rkq txn “ 0uq ě 0,

by minimization with respect to Γ and A and ellipticity of Γ, hence, we have equalities. Thus

xA , Rk txn ą 0uy “ xA , p´Rkq txn “ 0uy,

which means that also Rk txn ą 0u is absolutely minimizing with respect to A . This contradicts
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[21, Corollary 2], as sptRk txn ą 0u is not contained in txn “ 0u.

To prove that (2) is true, we may compare with the trace of A on the topological boundary BpUp0, qqX
txn ă 0uq and find γ ą 0 independent of 0 ă q ă s by minimization. Item (3) follows from a diagonal
argument for the local flat metric and item (4) is proven in [11, 5.4.3(7)]. �

4.10 Theorem (Boundary Regularity of Level Set Boundaries). Let t P R be a regular value
for f . Then the sets Btu ě tu and Btu ď tu are H n´1-almost everywhere submanifolds with boundary
of class Cν,α with

ν :“ mintµ,m´ 1u ě 3

with full boundary regularity and whose geometric boundary is given by f´1ptq.

Proof. We recall that the interior almost-everywhere regularity is proved in proposition 4.7 and we will
now partition the proof for the complete boundary regularity into the following five steps:

Step 1: Reduction to a locally straight problem. We fix some arbitrary x0 P f´1ptq for the rest of
this proof and recall x0 P sptTt X sptSt. Since BΩ is of class Cm, there exists r ą 0 and a diffeomor-
phism ϕ of class Cm such that

ϕ : Upx0, rq ÝÑ Up0, rq and ϕpBΩXUpx0, rqq “ txn “ 0u XUp0, rq.

Without loss of generality we assume that

ϕpΩXUpx0, rqq “ txn ă 0u XUp0, rq.

Straightening furthermore inside txn “ 0u, we can also assume

ϕpf´1ptq XUpx0, rqq “ txn “ xn´1 “ 0u XUp0, rq

and
ϕptf ă tu XUpx0, rqq “ txn “ 0, xn´1 ă 0u XUp0, rq.

As Tt and St solve a parametric obstacle problem for z on some ball BXΩ near x0, we pursue a proof
without loss of generality for Tt and may arrange that

T :“ ϕ# pTt Upx0, rqq

fulfills
A

`

ϕ´1
˘# z, T

E

ď

A

`

ϕ´1
˘# z, T `X

E

for all rectifiable currents X such that sptX Ă txn ď 0u XBp0, sq with 0 ă s ă r and BX “ 0.
The pull-back integrand

`

ϕ´1
˘# z obeys

´

`

ϕ´1
˘# z

¯

px, pq :“ z
`

ϕ´1pxq,
`

Λn´1D
`

ϕ´1
˘˘

ppq
˘

and thus is of class Cminpm´1,µ´1q in x and of class Cµ in p and it is elliptic by the invariance of
ellipticity under diffeomorphisms.
We assume from now on the straightened configuration without relabeling. Thus we fix some 0 ă s ă r
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and assume that T solves the parametric obstacle problem for z on txn ď 0u XBp0, sq and denote by
λ ą 0 a Lipschitz bound for z on Bp0, sq with

λ´1A ppq ď zpx, pq ď λA ppq for all x P Bp0, sq and p P Λn´1Rn.

Both z and D2z are (at least) of class C2 due to m ě 4 and µ ě 3.

Step 2: Half-Space Parametric Obstacle Problems are almost-minimizing. We now want to show that
T is almost-minimizing for z in the full ball Bp0, sq.
To do so, let us fix a rectifiable currentX with sptX Ă Bp0, sq and BX “ 0. We assume that sptX Ă K

for some compact set K Ă Bp0, sq and K is contained in a ball of radius r˚, hence diamK ď 2r˚. Fix
any x˚ P K and recall that there exists S P Rn´1pRnq with

sptS Ă Bp0, sq, BS “ BpT Kq, xzx˚ , Sy ď xzx˚ , S `Xy

for all currents X as above by [11, 5.1.6(1)]. As zx˚ has constant coefficients and

spt BpT Kq Ă Bp0, sq X txn ď 0u,

the barrier principle of lemma 4.9(1) implies sptS Ă Bp0, sq X txn ď 0u. Now we may estimate by the
respective minimization properties of T and S and Lipschitzianity of z in the first variable that

xz, T Ky ď xz, Sy ď p1` 2λ2r˚q xzx˚ , Sy

ď p1` 2λ2r˚q xzx˚ , T K `Xy ď
`

1`
`

4λ2 ` 2sλ4
˘

r˚
˘

xz, T K `Xy,

which proves that T is pz, ωq-almost minimizing in Bp0, sq with

ωpr˚q :“
`

4λ3 ` 2sλ5
˘

r˚.

Step 3: Blowups and Regular Tangent Currents. We prove the existence of suitable limits of homothetic
expansions.

Note first that we may also consider the set tu ě tu XUp0, rq (herein after implicitly straightening by
means of ϕ) such that it holds

T “ BpEn ptu ě tuq pUp0, rq X txn ă 0uq

which yields by lemma 4.9(2) that there is some γ ą 0 with

xA , T Up0, qqy ď γqn´1,

for all 0 ă q ă s and γ does not depend on q. Fixing now R ą 0, we want to apply the compactness
theorem for integral currents in a sequence of nested balls with increasing radii. We may choose q ą 0

small enough for 0 ă qR ă s and compute

xA , ppµqq#T q Up0, Rqy ď
xA , T Up0, qRqy

qn´1
ď γRn´1.
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Moreover, as pBT q Up0, rq is an oriented hyperspace of codimension two and multiplicity one, we infer

xA , Bppµqq#T q Up0, Rqy ď ωn´2R
n´2.

In particular, whenever 0 ă q ă s{R, the masses in Up0, Rq are uniformly bounded. Thus, we deduce
the existence of a sequence qi Ñ 0 such that the homothetic expansions of T converge in the weak-
*-sense (and by uniform local boundedness in mass also in the local flat norm on Rn) in Rn to some
locally rectifiable current Q P Rloc

n´1pRnq for iÑ8. It also holds

BQ “ Jtxn “ xn´1 “ 0uK, sptQ Ă txn ď 0u, 0 P sptQ,

due to blowing up BT and since sptpµqq#T Ă txn ď 0u for all q ą 0. Possibly extending T across
txn “ 0u to an oriented boundary in Up0, sq, we may also assume that Q is of multiplicity one H n´1-
almost everywhere due to lemma 4.9(4).

We want to show now that we may suppose Q to be an oriented half-plane of multiplicity one. By
Remark 2.9(2) we have that Q is absolutely minimizing in Rn for the frozen integrand z0. Taking
txn “ 0u as the hyperplane in question, we furthermore use the boundary maximum principle for
constant coefficient integrands [20, 4.6 Theorem] to infer that either

Θn´1,˚px0, Qq ď 1{2 or sptQXUp0, qq Ă txn “ 0u for some q ą 0.

The first case implies, by application of eg. [10, Theorem 0.1] as a regularity theorem, that Q is given
by integration over a manifold with boundary of class C1 near x0. The second case implies, by the
constancy theorem and multiplicity one, that Q Up0, qq is a distributional half-ball of multiplicity
one. In both cases, the homothetic expansions of Q will converge in the local flat norm to a distribu-
tional half-hyperplane of multiplicity one and by lemma 4.9(3), we can realize this limit as a limit of
homothetic expansions of T .

Step 4: Excess comparision with a Tangent Half-Plane. We estimate the lower density by 1{2 in form
of small cylindrical excess by means of Step 3 and the local proximity to the tangent half-plane. This
step is yet again modelled upon [11, Theorem 5.3.16], where we need to adjust for almost-minimizers,
a single converging sequence of homothetic expansions to an oriented plane and the boundary case.
Therein, the single sequence and almost-minimization are rather clear, while the flat boundary case
follows via additional positional arguments.

By the preceding Step 3, there is a real sequence qi ÝÑ 0 and a weak-*-limit Q P Rloc
n´1pRnq of

homothetic expansions of T near x0 “ 0, which is a distributional multiplicity one half-plane. As we
are only interested in working with the half-plane sptQ in this step, we choose suitable new coordinates
for this proof so that now

x “ pu, v, wq, y “ pu, vq, u P Rn´2, v P R, w P R,

p : Rn Ñ Rn, ppu, v, wq “ pu, v, 0q

sptQ “ tw “ 0, v ď 0u, Q “ tw “ 0u and spt BT “ tw “ v “ 0u.
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We will set
Ti :“ pµqiq#T

and estimate in this step the quantity

ExcpR, 0, σq :“ σ´pn´1q pxA , R t|y| ă σuy ´ xA , pp#Rq t|y| ă σuyq

such that there are sufficiently large i P N and sufficiently small σ ą 0 with

0 ď ExcpTi ZQp0, σ, σq, 0, σq ă ε

for arbitarily small ε ą 0. Then, applying the small excess boundary regularity theorem for almost-
minimizers from [10, Theorem 6.1], we find 0 ă c ă 1 such that sptTi XCQp0, cσ, σq is a C1,β-graph
over Up0, cσq X sptQ for some 0 ă β ă 1. Hence, by scaling properties of the homothetic expansions,
this yields that sptT XCQp0, cqiσ, qiσq is a C1,β-graph over Up0, cqiσq X sptQ.

Fix furthermore a suitable cylinder

ZQp0, 2σ, 2σq Ă Up0, sq for σ ą 0 sufficiently small.

Then, by remark 2.9(3), there exists for each 0 ă η ă 1 some sufficiently large i P N such that

sptTi X ZQp0, 2σ, 2σq Ă ZQp0, 2σ, ησq.

Possibly increasing the natural number i, we infer also by the proximity of remark 2.9(3) that the sets
sptTi have to avoid the set

ZQp0, 2σ, 2σq X tv ą 0u since sptQ “ tw “ 0, v ď 0u

inside ZQp0, 2σ, 2σq and we may therefore arrange to choose

z P t|y| ă σ, v ą 0, w “ 0u and γ ą 0 such that

ZQpz, γ, 2σq Ă ZQp0, 2σ, 2σq X tv ą 0u with ZQpz, γ, 2σq X sptTi “ H.

In particular,
p# pTi ZQp0, 2σ, 2σqq “ Jtw “ 0, v ď 0uK Up0, 2σq

by the constancy theorem since pBTiq Up0, rq is fixed under p# and has multiplicity one and the above
disjointedness from sptTi shows

pp# pTi ZQp0, 2σ, 2σqqq ZQpz, γ, 2σq “ 0.

Now, passing from 2σ to a number ρ between σ and 2σ and defining fpxq “ |y| “ |ppxq|, we may
assume that

xA , xTi ZQp0, 2σ, 2σq, f, ρ`yy ď 2n´1µρn´2,

where µ ą 0 is as in [11, 5.3.16, page 611] (as the upper density is finite by lemma 4.9(2)) and

Tρ :“ pTi ZQp0, 2σ, 2σqq t|y| ď ρu “ Ti ZQp0, ρ, ρq (by choice of η)
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is hence an integral current in Rn by the definition of a slice and the boundary rectifiability theorem.

Further, we basically use the same comparison procedure as in [11, page 611, last lines]. Denoting
h the affine homotopy from the projection p to the identity, we observe

Bph#pr0, 1s ˆ BTρq ´ pTρ ´ p#Tρqq “ 0, xA , BTρy ď p2
n´1µ` ωn´2qρ

n´2

together with
xA , h#pr0, 1s ˆ BTρqy ď η ρ xA , BTρy

by the homotopy formula.

The chain of inequalities is now exactly the same as in [11, page 612] together with

ZQp0, ρ, ρq Ă B
´

0, 2
?

2σ
¯

by σ ď ρ ď 2σ

for the almost-minimization. Clearly we have

xA , Ti CQp0, ρ, ρqy ď xA , Ti ZQp0, ρ, ρqy

by which one can subsequently mimick the steps from [11, page 622] together with almost-minimization
in the compact set ZQp0, ρ, ρq, scaling laws for the cylindrical excess and uniform boundedness of the
rescaled integrands, for which Ti is almost-minimizing. We receive an upper bound for ExcpTi
ZQp0, σ, σq, 0, σq which decays to zero with σ and η and finish the proof of step 4 together with Ti
projecting down to a half-ball.

Step 5: Higher Regularity Conclusion. We will finally transform back to our original configuration
and use elliptic regularity theory for quasilinear equations to prove the claimed boundary regularity.

By the steps 2,3 and 4 and the boundary regularity theorem of [10, Theorem 0.1], there is some
open neighborhood V of 0 in Up0, rq such that sptT X V is given by a submanifold with (flat) bound-
ary of class C1,β for some β P p0, 1q. Hence, by mapping back with ϕ´1, we infer that we may write
Btu ě tu near x0 as the graph of a function v of class C1,β , which is defined on a small (half-)ball B´
in the tangent half-plane to Btu ě tu at x0.

Since the interior of B´ is mapped to the interior of Ω, we infer that v has to solve the associated
Euler-Lagrange equation on intB´ “ U´ and hence has interior regularity v P pCµ,αXW2,2qpU´q. By
assumption, v is of class Cm´1,α on the flat part of BB´, hence we may choose a subdomain D Ă U´

of class Cν,α, which touches the flat part at x0 with an open neighborhood of BD, and assume

vBD P Cν,αpBDq.

Linearizing and boundary regularity theory for v on D (in particular, boundary Schauder estimates,
eg. [13, Corollary 8.35] with bootstrapping) now yield that

v P Cν,αpDq,
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which proves the desired regularity for Btu ě tu near x0 P f
´1ptq and the proof is finished by noticing

arbitrariness. �

4.11 Remark. Obviously, theorem 4.10 does not need that we are actually dealing with level sets of a
function and a proof is pursued somewhat similarly for arbitrary sets of minimal (anisotropic) perime-
ter. We refer to [29] for more details in the isotropic case and a finer analysis. Moreover, particularily
step 4 of its proof can be applied much more general in arbitrary dimension and codimension, but I
found it hard to find proper documentation in the literature to refer to.

4.3 Geometric Properties and Local Non-Parametric Representations.

We now prepare the results on the deformation of our reference hypersurface by first discussing how
certain quantities related to the minimizing hypersurfaces vary as the hypersurfaces vary and prove
preliminary results on uniform non-parametric (ie. graphical) representations on the same tangent
space. By using such regularity theory for minimizing currents, this empowers us to vary the value of
u and infer that the level sets of u are still controlled in higher order than for a generic Lipschitzian
function.

Assumption pS q: From this subsection on, we will assume that the singular set of locally
z-minimizing currents in codimension one is empty and that either BΩ is connected or z is

independent of the spatial variable x.

We recall that sufficient conditions for pS q to hold are given in remark 4.8.

Thus, let us first introduce the main class of values that we want to consider in what follows.

4.12 Definition (Mildly Regular Values). We will say that t is a mildly regular value when t P U ,
where

U :“ t t P rg f | 0 ă H n´1pu´1ptqq ă 8,

Du exists almost everywhere on u´1ptq X Ω,

t is a regular value of f .u.

4.13 Remark. (1) Recall from remark 2.18 and [11, 3.2.15] that the coarea formula for lipschitzian
functions implies that the first two items are generically (ie. on a set of full L 1-measure) fulfilled
in rg f .

(2) Moreover, the second item in the definition of U especially implies

Btu ě tu “ Btu ď tu “ u´1ptq

for t P U as now also the level set boundaries coincide on the boundary.

(3) Note that we may enforce the third item on a set of full measure with the theorem of Sard.

(4) Any level set u´1ptq Ă Ω with t P U is everywhere a submanifold where geometrically interior
points allow for local embeddings of class Cµ,α while boundary points allow for class Cν,α due to
proposition 4.7 and theorem 4.10.
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We will single out one level set of a mildly regular value and our reference hypersurface will without
loss of generality be u´1p0q Ă Ω with 0 P U and we shall write

Ξ :“ u´1p0q.

The assumption 0 P U will pertain through the sections 4-8.

4.14 Remark. We also recall the following elementary facts from differential topology:

(1) The regularity of boundary level sets close to f´1p0q is stable : There exists

T ą 0 such that f´1ptq is regular for all 0 ď |t| ď T .

This is due to f´1ptq “ Btf ě tu “ Btf ď tu (relative to BΩ) and the Hausdorff convergence of
level sets of f in this case (which may be proven by applying lemma 2.17 to f´1p0q on BΩ).

(2) We furthermore recall that f´1p0q Ă BΩ Ă Rn may only have finitely many connected components,
as compactness would allow otherwise for an accumulation point, where f´1p0q could not be
appropriately diffeomorphic.

We observe now that remark 4.14(2) directly implies the same topological consequence for the level set
structure of u by means of a geometric maximum principle.

4.15 Proposition (Geometric Maximum Principles). The following three statements about oriented
boundaries of tu ě tu and tu ď tu inside Ω hold true for a function u P C0pΩq of anisotropic least
gradient in any dimension n P N:

(1) No connected components which are compactly contained in Ω may exist.

(2) If t is a regular value for f , then the number of connected components of Btu ě tu and Btu ď tu is
finite and each connected component has non-empty geometric boundary.

(3) We have rg u “ rg f .

Proof. This is a consequence of assumption pS q and the boundary regularity of Btu ě tu and Btu ď tu.

If BΩ is connected, then the maximum principle from [24, Lemma 4.2] implies (1). If the total variation
Φ has constant coefficients, then assume for a contradiction that there would be some compactly in Ω

contained component S Ă Btu ě tu. Compactness ensures that we may find x0 P S X Ω such that

α :“ proj1px0q “ max
xPS

proj1pxq.

This implies that the whole connected component is contained in the half-space tproj1pxq ď αu with
x0 P tproj1pxq “ αu. Now, proposition 4.1 assures that for any sufficiently small r ą 0 it follows that

T :“ BpEn tu ě tuq Bpx0, rq “ JBtu ě tu XBpx0, rqK P Rn´1pRnq

is a solution to the parametric obstacle problem with respect to the associated parametric integrand z
in Bpx0, rq and, in particular, absolutely minimizing inside Upx0, rq among rectifiable currents without
boundary. Furthermore, the existence of some η ą 0 such that

xA , T Upx0, sqy ď ηsn´1 for all 0 ă s ă r
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is a consequence of a standard computation (see eg. [1, Equation (33)]) through cutting out/pasting
balls. We infer for R ą 0 and 0 ă sR ă r that

xA , Ts Up0, Rqy “
xA , T Upx0, sRq

sn´1
ď ηRn´1,

if
Ts :“ pτ´x0 ˝ µs ˝ τx0q#T

denotes the homothetic expansion by s´1 after shifting x0 to the origin and shifting back. Thus, by
the local finiteness of the mass and the compactness theorem applied to the homothetic expansions
with a diagonal argument, we may choose some si Ñ 0 and Q P Rloc

n´1pRnq such that

Tsi ÝÑ Q in the weak-*-sense in Rn

and Q is absolutely minimizing with respect to z in Rn with BQ “ 0. Moreover, by local Hausdorff
convergence of the supports, it must follow that x0 P sptQ and sptQ Ă tproj1pxq ď αu. Hence, the
interior maximum principle [20, 4.4 Lemma] is applicable to imply that there is some q ą 0 with

sptQXUpx0, qq Ă tproj1pxq “ αu.

The constancy theorem implies furthermore that

sptQXUpx0, qq “ tproj1pxq “ αu XUpx0, qq

and, by possibly blowing-up a second time, we may assume that

sptQ “ tproj1pxq “ αu.

We infer by the regularity theorems (and yet again [11, 5.3.16]) that T is regular near x0 and, as we
may now express S Ă Btu ě tu as a graph over sptQ near x0, it follows from the Harnack inequality
and the fact that Φ has constant coefficients that there is also some q˚ ą 0 such that

S XUpx0, q
˚q “ tproj1pxq “ αu XUpx0, q

˚q.

It is now easy to see that, using a simple connectedness argument with respect to the hyperspace, also

S Ą tproj1pxq “ αu

as S X tproj1pxq “ αu is both open and closed in tproj1pxq “ αu, which is impossible by compactness
of Btu ě tu. This proves (1) also for the second case of pS q of constant coefficients.

For item (2) we notice that Ξ X BΩ “ f´1p0q and hence, Ξ is a submanifold with boundary at
each point of its intersection with BΩ. Since f´1p0q has only finitely many connected components,
there can be only finitely many connected components of Ξ with non-empty geometric boundary. A
connected component without geometric boundary would however be compactly contained in Ω, which
is impossible by (1).

Item (3) finally is also implied by (1): If BΩ is connected, then connectedness of Ω directly implies the
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claim while for a total variation with constant coefficients we may not have compactly contained level
sets in Ω, which also enforces rg u “ rg f by continuity of u. �

4.16 Remark. The conclusions of proposition 4.15 will usually appear as technical tools while dealing
with the particular reference level set. The last item is besides of specific importance, since we want
to access the level sets of u through the level sets of f .

4.17 Remark. Observe that the proof of proposition 4.15(1) for constant coefficient integrands crucially
needs that hyperspaces are local minimizers for a total variation with constant coefficients, as otherwise
the maximum principle and the local containment in the hyperspace near x0 would fail. While this is
true as a matter of fact for all constant-coefficient elliptic integrands, the paper [24, Proposition 1.1
ff] provides an example for a weighted integrand with BΩ being disconnected and the conclusion of
proposition 4.15(1) fails.

We now proceed to establish local first and higher order properties of the involved hypersurfaces.

To describe these, we will gather some of the regularity results about locally expressing a converg-
ing sequence of hypersurfaces as graphs over the same hyperplane, which will also follow, in essence,
from the general small excess and Lipschitz graph approximation theory for minimizing surfaces and
currents.

Preparing the next two representation lemmata, we notice for q ą 0 that if

M X Zp0, q, qq “ graphu for u : Un´1p0, qq Ñ R of class C1,

such that 0 PM and T0M “ Rn´1, then we have

∇up0q “ 0 ùñ sup
Bp0,sq

|∇u| ÝÑ 0 as sŒ 0.

Hence, for all ε ą 0 there is s ą 0 with

|upxq| “ |upxq ´ up0q| ď sup
Bp0,sq

|∇u||x| ď εs

for all x P Bp0, sq. Geometrically, this yields

M X Zp0, s, sq ĂM X Zp0, s, εsq,

which will be applied to the smooth limit hypersurface and holds analogously in the boundary case
over half-ball or by rotation and translation for x0 ‰ 0 and Tx0M ‰ Rn´1.

4.18 Lemma (Local Non-Parametric Representations near Interior Points). For each x0 P

ΞX Ω with H :“ Tx0Ξ there exists r “ rpx0q ą 0 and T “ T px0q ą 0 with the following properties:

(1) We can write
Btu ě tu XCHpx0, r, rq and Btu ď tu XCHpx0, r, rq

locally as graphs over
Upx0, rq XH for all 0 ď |t| ď T.
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(2) The real-valued graph functions are of class Cµ,α on Upx0, rq XH and will be denoted by u`t and
u´t respectively. It holds

u`t ÝÑ u0 and u´t ÝÑ u0

uniformly on Upx0, rq XH as tÑ 0.

(3) We may furthermore assume that

}u`t ´ u0}Cµ,γ ÝÑ 0 and }u´t ´ u0}Cµ,γ ÝÑ 0

on Upx0, rq XH for all 0 ă γ ă α as tÑ 0.

Proof. We repeat a direct proof by means the usual regularity theorems for minimizing currents and
shift each hypersurface into the same point. Indeed, since Ξ is of class Cµ,α at x0 we may choose s ą 0

small enough to find
ΞX ZHpx0, s, sq Ă ZH

´

x0, s,
εs

4

¯

where ε ą 0 is to be chosen. By the Hausdorff convergence of lemma 2.17, we may furthermore assume

Btu ě tu X ZHpx0, s, sq Ă ZH

´

x0, s,
εs

2

¯

for sufficiently small |t| and there is xt P Btu ě tu with xt ÝÑ x0 as t Ñ 0. We may shift each
hypersurface by the difference x0 ´ xt and denote the translation map τt and thus we get

τt pBtu ě tuq X ZHpx0, s, sq Ă ZHpx0, s, εsq

for sufficiently small |t| from which we may again as in [11, 5.3.16] prove uniformly small cylindrical
excess over H with adequate ε ą 0.

Clearly τt converges uniformly to the identity and τtpxtq “ x0. On a distributional level, this yields that
the supports of all oriented boundaries after pushing-forward with pτtq# are close to H (with x0 being
element of their support) in CHpx0, s, sq while each shifted oriented boundary is locally minimizing for
the correspondingly shifted integrand. Since clearly all structural constants of the shifted integrands
may be assumed uniformly bounded, the regularity theorem [10, Theorem 6.1] implies that the shifted
supports are graphs over the same ball in H. Shifting back via τ´1

t (that is, xt ´ x0) and denoting the
convex projection onto H by π, it is immediate from [10, Theorem 6.1] that there are functions

ut : H XU
´

πpxtq,
s

34

¯

ÝÑ R such that graphputq “ Btu ě tu XCτ´1
t pHq

´

xt,
s

34
, εs

¯

.

Clearly as
πpxtq ÝÑ x0 as tÑ 0, there exists r “ rpx0q ą 0

such that
Upx0, rq XH Ă Upπpxtq, sq XH

for all sufficiently small |t| and item (1) follows by additionally replacing ε for eg. minpε, 1{68q and
choosing r sufficiently large.
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Subsequently, we notice that there is C ą 0 not depending on |t| such that

}ut}C1,β ď C for all sufficiently small |t| and some β P p0, 1q

due to the regularity theorem and each ut is again of class Cµ,α by minimization (see again [12, Theorem
3.3] for the regularity of the graph functions). The standard technique of applying interior Schauder
estimates to the partial derivatives of ut thus leads to

}ut}Cµ,γ1 ď C for all sufficiently small |t| with γ1 “ αβ

and hence
}ut}Cµ,α ď C for all sufficiently small |t|

as a fortiori the C1,α-norm of u now will be uniformly bounded. The Hausdorff convergence further
yields

}ut ´ u0}C0 ÝÑ 0 for tÑ 0,

and this implies
}ut ´ u0}Cµ,γ ÝÑ 0 for tÑ 0 for all 0 ă γ ă α,

which concludes the proof. �

Such a uniform representation of the converging sequence of minimizing currents on the tangent space
of the limit appears to be essential if one is interested in any kind of stability and deformation result.

We will finally also prove a corresponding statement for boundary points, which is somewhat more
specific to our setting as we shall now also use the regular level set structure of the boundary data to
nicely rearrange our configuration and prove a uniform representation after applying a straightening
diffeomorphism to BΩ.

4.19 Lemma (Local Non-Parametric Representations Near The Boundary). Let x0 P f
´1p0q “

BΞ. Then there exist T “ T px0q ą 0 and s “ spx0q ą 0, a closed half-hyperplane H Ă Rn with full
plane H˚ and functions u˘t P C2,αpUpx0, rq XHq with

}u`t ´ u0}C2,γ ÝÑ 0 and }u´t ´ u0}C2,γ ÝÑ 0

on Upx0, sq XH for all 0 ă γ ă α as tÑ 0 such that, up to applying a diffeomorphism ϕ of class Cm

and linear shifts along a fixed direction, we have

Btu ě tu XCH˚px0, s, sq “ graphu`t , Btu ď tu XCH˚px0, s, sq “ graphu´t

for all |t| ď T .

Proof. Similar to the boundary regularity result in theorem 4.10, we need to rearrange our configuration
and we may assume, up to applying a diffeomorphism ϕ of class Cm, that x0 “ 0 and an r ą 0 that

BΩXUp0, rq “ txn “ 0u and ΩXUp0, rq “ txn ă 0u.

As f´1p0q is regular, it is a standard consequence that the level sets form a foliation of class Cm near
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f´1p0q. Thus, we may also assume, up to altering and applying ϕ, that

f´1ptq XUp0, rq “ txn´1 “ t, xn “ 0u XUp0, rq

for sufficiently small |t|. Also, similar to the proof of theorem 4.10, we may assume that the rectifiable
currents

Tt “ BpE
n tu ě tuq pΩXUp0, rqq

are almost-minimizing with respect to the elliptic parametric integrand z1, which is the push-forward
of z by ϕ, and some function ωpr˚q :“ Cr˚. Yet again, we infer that the new integrand z1 and D2z1
are at least of class C2.

Let now 0 ă ρ ă r{2 such that

ZQp0, ρ, ρq ĂĂ Up0, rq over the hyperplane Q :“ txn´1 “ 0u

and denote
τtpxq :“ x´ ten´1 for |t| sufficiently small.

We shift the currents Tt parallel to the level set foliation to consider pτtq#Tt and infer

Bppτtq#Ttq CQp0, ρ, ρq “ Jtxn “ xn´1 “ 0uK CQp0, ρ, ρq

and we may assume that
spt ppτtq#Ttq ÝÑ Ξ for tÑ 0

in the Hausdorff distance as the Hausdorff convergence from lemma 2.17 holds still true after diffeo-
morphically deforming and τt converges uniformly to the identity as t Ñ 0. In what follows, we drop
the push-forward pτtq# from notation.

By theorem 4.10, it holds that Ξ is a submanifold with boundary at x0 and we may consider its
tangent half-plane H at 0 with corresponding full plane H˚. It immediately follows that

txn´1 “ xn “ 0u Ă H Ă txn ď 0u.

Fix ε ą 0, then we can choose σ ą 0 small enough to arrange

ZH˚p0, σ, σq Ă ZQp0, ρ, ρq and ΞX ZH˚p0, σ, σq Ă ZH˚
´

0, σ,
εσ

2

¯

and therefore we shall assume

sptTt X ZH˚p0, σ, σq Ă ZH˚p0, σ, εσq for all sufficiently small |t|

by Hausdorff convergence. Thus, by arguing as in step 4 of the proof of theorem 4.9 and similar as
before for the interior case of non-parametric representations with uniform boundedness of structural
constants of the shifts of z1 and by choosing ε ą 0 sufficiently small, we may write

sptTt XCH˚p0, s, sq “ graphputq
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for some sufficiently small s ą 0 where

ut : Up0, sq XH ÝÑ R,

and the radius s ą 0 does not depend on t. The family of functions ut is (at least) of class C2,α on
intpUp0, sq XHq as they solve the Euler-Lagrange equation for (shifted versions of) z1 due to interior
minimization and the higher elliptic regularity theory and we again have

}ut ´ u0}0 ÝÑ 0 as tÑ 0.

The remainder of the proof now concludes as before as in [12, Proposition 3.3] by possibly choosing
a smaller half-ball inside Up0, sq X H and applying the local boundary C1,α-Schauder estimate [13,
Corollary 8.36] to the derivatives of ut for uniform bounds. �
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5 Convergence of Deformations of Level Set Boundaries.

This section will now use the information from the local non-parametric representations of section 4.2
to conclude for more general deformation results.

Our objectives are twofold: To get rid of the necessary locality of graphical representations about
tangent spaces, we now want to express the converging sequence of oriented boundaries as a graph
in varying normal direction about Ξ and not locally about some tangent space of Ξ. It will turn out
that this is possible at interior points of Ξ and thus, with the aid of a subsequent "patching together"-
argument, up to some small distance to BΩ.
The second goal will then be to continue the interior representation as a deformation in normal di-
rection up to the boundary. For this matter, we do not require the specific form as a normal graph
anymore.

A rather recent account, which we will keep to, on how and what exactly the local expressions as
graphs imply can be found in the paper [9] (albeit their setting and variational problems are slightly
different and less differentiable). Our treatment here for the global deformations, which appears to be
lesser known, will use the very general construction from [9, Section 3] and adapt it to our purposes.

5.1 Deforming as a Normal Graph over a Retract.

The previous non-parametric representations express pieces of the converging hypersurfaces as local
graphs about a tangent space, which, in a sense, fix the normal vector in whose direction we deform.
To also deform Ξ (and not a tangent space of Ξ), we need to vary the normal vector along Ξ and we
will introduce a variant of a nearest point projection for this matter. We finally recall that we still
assume 0 P U , referring to definition 4.12, in this section and the following ones.

5.1 Definition (A Nearest-Point Projection). We recall that Ξ is a submanifold with boundary
of Rn of class at least C3,α. We choose an open submanifold Ξ̃ Ă Rn of class at least C3,α such that Ξ̃

extends Ξ across BΞ. Then we denote

Π : W ÝÑ Ξ̃, Π P C2,αpW q,

as the nearest-point projection onto Ξ, where W Ă Rn is a some open neighborhood of Ξ.

The existence of such an open manifold is standard due to the definition of a submanifold with bound-
ary. Furthermore, this definition Π depends on the extension that we chose, when we are sufficiently
close to BΞ, while it does not, when we are sufficiently far away.

Due to the Hausdorff convergence of lemma 2.17, there exists

T ą 0 such that Π is well-defined on u´1ptq for all 0 ď |t| ď T

and we recall that Π is described via the formula

Πpxq “ x´ δpxqNΞ̃pΠpxqq “ x´ δpxqDδpxq

with δ being the nearest-point distance to Ξ̃.
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We will use such a projection Π to investigate how normal vectors to level set boundaries vary before
and after projection. As the normal vector to Ξ and Tx0Ξ coincides by definition at x0 P Ξ X Ω and
the minimizing oriented boundaries converge up to higher order due to lemma 4.18(3) near x0, it is
reasonable to expect that we may also invert Π in a graphical manner near x0.

5.2 Lemma (Invertability of Π Along the Central Ray). Let x0 P Ξ X Ω, H :“ Tx0Ξ and
rpx0q, T px0q ą 0 be given via lemma 4.18. Then the normal ray above H from x0 may only intersect
each level set boundary once in CH :“ CHpx0, rpx0q, rpx0qq and there are open neighborhoods U˘t of
x0 ` utpx0qNH and V of x0 in the level set boundary and Ξ respectively such that

Π : U˘t ÝÑ V

is an diffeomorphism of class C2,α for all sufficiently small |t|.

Proof. Otherwise shrinking CH or intersecting with a subset, we shall assume that Π is defined on a
neighborhood of CH . As Btu ě tu is a graph of ut :“ u`t inside CH , it is clear that

R “ x0 ` RNΞpx0q

fulfills
RX Btu ě tu XCHpx0, rpx0q, rpx0qq “ tutpx0qu

and thus furthermore
Πputpx0qq “ x0 for all sufficiently small |t|.

Differentiating the formula for Π for x R Ξ yields

DΠpxq “ Id´
`

Dδpxq bDδpxq ` δpxqD2δpxq
˘

,

which we shall estimate by means of our previous geometric convergences.

We first infer that there is M ą 0 such that D2δ is bounded in norm by M on a sufficiently large
neighborhood of CH , as the signed distance is of class C2 on such a neighborhood and δ may only
differ by sign. Then we let v be a tangent vector at xt :“ utpx0q to Btu ě tu of unit norm and compute

|DΠpxtqv| “
ˇ

ˇv ´
`

pNΞpx0q ¨ vqNΞpx0q ` δpxtqD
2δpxtqv

˘ˇ

ˇ

ě 1´ p|NΞpx0q ¨ v| ` δpxtqMq

“ 1´ p
ˇ

ˇpNΞpx0q ´NBtuětupxtqq ¨ v
ˇ

ˇ` δpxtqMq

ě 1´ p|NΞpx0q ´NBtuětupxtq| ` δpxtqMq.

Via Hausdorff convergence and convergence of the normal vectors at the central point, we may hence
choose |t| small enough to arrange for

|DΠpxtqv| ě 1{2 for all |t| small enough and v P TxtBtu ě tu

and therefore a uniform lower bound on the unit sphere of the map

DΠputpx0qq : TxtBtu ě tu ÝÑ Tx0Ξ.
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Thus, using the uniform graphical coordinates on H XCH and the uniform modulus of continuity of
DΠ on each Btu ě tuXCH for all sufficiently small |t| and close to the origin x0, the (quantitative, see
eg. [26, XIV, §1, Lemma 1.3]) inverse function theorem implies the existence of open neighborhoods
V,Ut with x0 P V Ă Ξ and xt P Ut Ă Btu ě tu such that

Π : Ut ÝÑ V is a diffeomorphism of class C2,α,

which was the claim. �

5.3 Remark. Note that, as is easily observed by plugging the inverse into the formula for Π, that there
are real-valued functions w˘t P C2,αpV q such that

Π´1
t,˘pxq “ x` w˘t pxqNΞpyq “ pId`w

˘
t NΞqpxq,

where Π´1
t,˘ : V ÝÑ Ut is the local inverse to Π. Of course, the family of functions w˘t is possibly of

higher class than C2,α, depending on the interior regularity of the level set boundaries and hence on
the anisotropic total variation Φ, but this regularity is sufficient for our purposes here.

5.4 Definition. For x0 P ΞX Ω and s ą 0 sufficiently small, we denote as

Xpx0, sq :“ tx P Rn | x “ y ` qNΞpyq, }y ´ x0} ă s, |q| ă s, y P Ξu Ą ΞXUpx0, sq

the local tubular open neighborhood of Ξ at x0.

The following lemma facilitates subsequently the passage from local non-parametric representations
about x0 along the fixed normal direction to local normal graphs on Ξ with correspondingly varying
normal direction. We will hence also pass from cylinders (ie. "constant" tubular neighborhoods over
the tangent plane) to the varying ones Xpx0, sq.

5.5 Lemma (Local Normal Graph Representations). The following two statements about the
family of functions w˘t of class (at least) C2,α are true:

(1) There are s “ spx0q ą 0 and T “ T px0q ą 0 such that

pId`w`t NΞqpXpx0, sq X Ξq “ Btu ě tu XXpx0, sq

and
pId`w´t NΞqpXpx0, sq X Ξq “ Btu ď tu XXpx0, sq

for |t| ď T .

(2) We furthermore have
}w´t }0, }w

`
t }0 ÝÑ 0 as tÑ 0.

Proof. Clearly, Xpx0, sq X Ξ is connected and contained in Ω for s ą 0 sufficiently small and we may
assume by remark 5.3 that the family of functions w˘t is well-defined on Xpx0, sqXΞ for all sufficiently
small |t|. Considering the case wt :“ w`t , we also obviously have

pId`wtNΞqpXpx0, sq X Ξq Ă Btu ě tu XXpx0, sq Ă Ω.
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Now, the Hausdorff convergence u´1ptq ÝÑ Ξ implies that all oriented boundaries Btu ě tu and
Btu ď tu have to be fully contained in small neighborhoods of Ξ, yielding

wt ÝÑ 0 uniformly on Xpx0, sq X Ξ as tÑ 0.

Thus, (1) is proven if we can show that actually equality holds in the above set inclusion, assume this is
not the case. In this case, the set Btu ě tuXXpx0, sq would necessarily have more than one connected
component. We call another connected component Z and infer that Π is also locally invertible at
each point of Z. Due to an easy argument with the connectedness of Ξ XXpx0, sq, we find ΠpZq “

ΞXXpx0, sq. In particular, at the central point x0 P Ξ and due to Xpx0, sq Ă CHpx0, rpx0q, rpx0qq, it
follows that

cardRXCHpx0, rpx0q, rpx0qq X Btu ě tu ě 2

which contradicts lemma 5.2. �

The latter lemma 5.5 differs from its non-parametric version inasmuch as we have only proven conver-
gence with respect to the uniform topology. To fix this matter as well as to prepare the subsequent
elliptic regularity results, we will now relate both kinds of deformations.

5.6 Remark. We recall some useful formulas from [9, Lemma 4.3, Proof] about the family of normal
deformations Id`w˘t NΞ expressed in the local non-parametric coordinates on H :“ Tx0Ξ.
Indeed, by first exploiting the usual translation and rotation methods as everything is purely local, we
may assume that

H “ Rn´1 ˆ t0u Ă Rn, x0 “ 0, NΞpx0q “ en,

and we only vary in direction of the last coordinate. Now, abbreviating C :“ CHpx0, rpx0q, rpx0qq and
r :“ rpx0q, we obtain

ΞXC “ tpz, u0pzqq | z P U
n´1p0, rqu and Btu ĳ tu XC “ tpz, u˘t pzqq | z P U

n´1p0, rqu.

Correspondingly, we receive for the normal deformations that

pId`w˘t NΞqpz, u0pzqq “ pz, u0pzqq ` w
˘
t pz, u0pzqq

p´∇u0pzq, 1q
a

1`∇u0pzq2

for all z P Un´1p0, rq close enough to 0 such that pz, u0pzqq P Xpx0, sq. We may neglect the dependant
coordinate and write without loss of generality w˘t pzq “ w˘t pz, u0pzqq. Definining then

W˘t pz, qq “ u˘t

˜

z ´ q
∇u0pzq

a

1`∇u0pzq2

¸

´

˜

u0pzq `
q

a

1`∇u0pzq2

¸

on the convex projection of Xpx0, sq onto H (say, some smaller ball U Ă Un´1p0, rq) and sufficiently
small real numbers, we use

pId`w˘t NΞqpz, u0pzqq P Btu ĳ tu XC

and that the latter set is graphical over U to easily observe that

W˘t pz, w
˘
t pzqq “ 0 for all z P U, |t| sufficiently small,
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ie. the family of functions w˘t solves an implicit equation. We will sometimes refer to the expressions
of this remark as canonical coordinates.

5.7 Remark. To lighten notation, in what follows we will conventionally drop signs and consider only
the level set boundary Btu ě tu and all associated functions. Clearly, everything will hold similarly for
Btu ď tu.

5.8 Corollary (Higher Order Convergence of Normal Deformations). We may assume, up
to shrinking s “ spx0q ą 0 from lemma 5.5, that

}wt}2,γ,ΞXXpx0,sq ÝÑ 0 as tÑ 0

for all 0 ă γ ă α.

Proof. In view of the uniform convergence to the zero function and the Arzela-Ascoli theorem, it
suffices to show that the norms of class C2,α are bounded uniformly in |t| to show the result and we
shall assume canonical coordinates and use remark 5.6. Note also that it suffices to show uniform
boundedness for wt interpreted as a function on U Ă Rn´1.
As µ ě 3, the family of functions Wt is of class C2,α and, owing to the uniform bounds of lemma
4.18(3), we deduce the existence of C ą 0 with

}Wt}2,α ď C

and C is independent of |t|. Since each wt solves an implicit equation defined via Wt, this furthermore
yields (with a possibly different C) that

}wt}2,α ď C

for all sufficiently small |t|. �

In our last result here we now patch these local representations as normal graphs together via the local
uniqueness up to a small distance towards the boundary BΩ. This step is more or less taken from [9,
Theorem 4.12].

5.9 Proposition (Normal Graphs over a Domain Retract). Let ρ ą 0 be sufficiently small, then
there is T “ T pρq ą 0 and functions

wt : ΞX Ωρ ÝÑ R

such that
Btu ě tu X Ω2ρ Ă pId`wtNΞqpΞX Ωρq Ă Btu ě tu X Ω2´1ρ

for all |t| ď T and with
}wt}2,γ,ΞXΩρ ÝÑ 0 as tÑ 0

for all 0 ă γ ă α.

Proof. Here we use the idea that the local normal graph representations must necessarily coincide in
intersections of their domains of definition. As ΞX Ωρ is compact, we may find finitely many

xi P ΞX Ωρ, si :“ spxiq, wt,i : Xpxi, siq ÝÑ R
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for all |t| sufficiently small as in lemma 5.5 such that

ΞX Ωρ Ă
ď

i

Xpxi, siq.

Applying Hausdorff convergence inside Ωρ moreover implies that

Btu ě tu X Ωρ Ă

˜

ď

i

Xpxi, siq

¸

X tδpxq ă su

whenever |t| is small enough, ie. such that additionally the (normal) distance δ to Ξ is bounded by
s :“ mini si. As a consequence of the representation as a normal graph, each normal ray can only
intersect each hypersurface of the sequence once inside

Ť

iXpxi, siq and, if we choose |t| small enough,
we may hence infer that

wt,i “ wt,j on Xpxi, siq XXpxj , sjq X Ξ

and thus, the family of mappings

wt via wt “ wt,i on Xpxi, siq X Ξ

is well-defined and of class C2,α on ΞX Ωρ and such that

}wt}2,γ,ΞXΩρ ÝÑ 0 as tÑ 0

for all 0 ă γ ă α. We also have

pId`wtNΞq

˜

ď

i

Xpxi, siq

¸

“ Btu ě tu X
ď

i

Xpxi, siq

for all such |t| small enough. Finally, for the first inclusion, we apply Hausdorff convergence to addition-
ally assume that Btu ě tu XΩ2ρ is contained uniformly in a neighborhood uλpΞXΩ2ρq for sufficiently
small λ ą 0 such that ΠpBtu ě tu X Ω2ρq Ă ΞX Ωρ and we use }wt}0,ΞXΩρ ÝÑ 0 to uniformly control
the distance to BΩ. �

5.10 Remark. The previous proofs are conceptually somewhat easier than the original strategy in [46,
2.4 Theorem] to construct the normal graph representations, which we are mainly interested in for
blowing up the family wt. However, this method cannot as easily be continued up to BΩ due to the
need for (geometrically) interior points.

5.2 Uniform Estimates on Normal Vectors.

Our next goal, also with respect to the application of section 2.6 which needs global deformations,
is to continue the deformation diffeomorphically up to the boundary of Ξ. We begin here with two
lemmas regarding the uniformity of normal vectors to our oriented boundaries and we abbreviate for
this matter

NBtuětu “ Nt.
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5.11 Lemma (Uniform Bounds for Normal Vectors). There exist T ą 0 and L ą 0 such that
Nt is uniformly bounded in C1,α, ie.

}Nt}C1,αpBtuětuq ď L

for each 0 ď |t| ď T .

Proof. We claim first that the two non-parametric representation lemmata 4.18 and 4.19 imply the
existence of finitely many open and bounded convex sets Vi Ă Rn which cover Ξ and real numbers
Li ą 0 such that

}Nt}C1,αpBtuětuXViq
ď Li.

To prove the claim, let us fix x0 P Ξ and choose canonical coordinates at x0. If ut again denotes the
family of non-parametric representations on some ball about 0 in txn “ 0u, then we may define

ψtpx, yq “ utpxq ´ y where x P Rn´1, y P R are close to 0.

Letting ϕ denote the diffeomorphism of class Cm which maps a neighborhood of x0 into canonical
coordinates, we find a neighborhood V Ă Rn of x0 such that for each z P V we have, up to neglecting
a uniform translation in case of boundary canonical coordinates,

z P Btu ě tu X V ðñ pψt ˝ ϕqpzq “ 0.

Hence, each level set boundary is locally described as the zero set of the function ψt ˝ ϕ and its unit
normal can be computed (up to a choice of sign) by the normalized gradient of ψt ˝ ϕ. The proof of
the claim is subsequently finished since ϕ does not depend on t and ψt can be bounded uniformly in
C2,α due to the Schauder estimates from the lemmata 4.18 and 4.19 and by compactness of Ξ, finitely
many such neighborhoods Vi and diffeomorphisms ϕi suffice to cover it.

Then, choosing λ ą 0 sufficiently small, we shall assume

eλpΞq X Ω Ă
ď

i

Vi

and by Hausdorff convergence, we furthermore arrange for

Btu ě tu Ă eλpΞq X Ω for all sufficiently small |t|.

Exploiting the Lebesgue covering lemma with respect to the compact set eλpΞq X Ω, we find δ ą 0

such that the implication

x, y P Btu ě tu, }x´ y} ă δ ùñ There exists an i with x, y P Vi

holds for all sufficiently small |t|. Thus, a standard estimate, where we distinguish between distance
larger and equal or smaller than δ for the Hölder bound, implies the uniform bound in C1,α for all such
sufficiently small |t|. �

5.12 Lemma (Uniform Taylor Estimates for Normal Vectors). We may also assume that, by
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possibly refining our choices of T ą 0 and L ą 0 from the previous lemma, that
ˇ

ˇ

ˇ

ˇ

Nxptq ¨ py ´ xq `
1

2
py ´ xqTDNxptqpy ´ xq

ˇ

ˇ

ˇ

ˇ

ď L}y ´ x}2`α

and
}Nyptq ´Nxptq ´DNxptq ¨ py ´ xq} ď L}y ´ x}1`α

holds for all x, y P Btu ě tu and |t| sufficiently small.

Proof. We use the same finite cover
Ť

i Vi from interior or boundary non-parametric representations
with Ξ Ă

Ť

i Vi as in the last proof together with the maps

Ψt ” Ψt,i :“ ψt ˝ ϕi

which locally represent the level set boundaries (up to possible translation) as their zero sets. Implicitly
fixing some i first, we find

p0 ‰ DΨtq P Nt, |DΨt| ě C ą 0

uniformly in |t| for some C ą 0. Then Taylor’s formula and the convexity of each Vi immediately
implies

|DΨtpxqpy ´ xq| ď C}y ´ x}1`α,

for all x, y P Btu ě tu X Vi which leads to

|Nxptqpy ´ xq| “

ˇ

ˇ

ˇ

ˇ

DΨtpxq

|DΨtpxq|
py ´ xq

ˇ

ˇ

ˇ

ˇ

ď C}y ´ x}1`α,

with constants C ą 0 independent of |t|. Computing the derivative of N by means of DΨt, we will
show the asserted estimates inside Vi with the aid of the above estimate. We first compute

D

ˆ

DΨt

|DΨt|

˙

“ DNt “ ´
1

|DΨt|
3

`

D2ΨtDΨt

˘

b
DΨt

|DΦt|
`

1

|DΨt|
D2Ψt

and see that the seecond inequality of the lemma follows immediately from the fact that the vector
fields DΨt{|DΨt| are of class C1,α with uniformly bounded norms while
ˇ

ˇ

ˇ

ˇ

Nxptq ¨ py ´ xq `
1

2
py ´ xqTDNxptqpy ´ xq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˆ

DΨtpxq

|DΨtpxq|
`

1

2
py ´ xqT

D2Ψtpxq

|DΨtpxq|

˙

py ´ xq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

1

2
py ´ xqT

pD2ΨtpxqDΨtpxqq

|DΨtpxq|3
DΨtpxq

|DΨtpxq|
¨ py ´ xq

ˇ

ˇ

ˇ

ˇ

ď C

ˇ

ˇ

ˇ

ˇ

ˆ

DΨtpxq `
1

2
py ´ xqTD2Ψtpxq

˙

py ´ xq

ˇ

ˇ

ˇ

ˇ

` C}y ´ x}

ˇ

ˇ

ˇ

ˇ

DΨtpxq

|DΨtpxq|
py ´ xq

ˇ

ˇ

ˇ

ˇ

ď C}y ´ x}2`α for all x, y P Btu ě tu X Vi

holds true where we used the uniform estimate of class C1,α from above and the uniform Taylor estimate
of class C2,α on the family of functions Ψt. This yields the claim locally for all sufficiently small |t|
inside each neighborhood Vi. We then conclude this proof similarly to the proof of lemma 5.11 by
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using the compactness of Ξ with a uniform Lebesgue number argument and the uniform boundedness
of normals from lemma 5.11. �

These additional estimates on the normals will serve as an ingredient to prove the existence of C2,α-
deformations of Ξ into nearby hypersurfaces. This is due to the fact that [9] only provides the existence
of C1,α-diffeomorphisms and therefore only uses estimates up to lower order while we will need two
times continuously Hölder differentiable for our desired application.

5.13 Remark. In fact, the lemmata 5.11 and 5.12 prove that the normals and their derivatives constitute
a Whitney jet of class C2,α (see [9, 2.3 Whitney’s Extension Theorem]). By compactness and akin to
[9, Remark 3.4], it follows rather quickly that each normal obeys such estimates, but we have to walk
the extra mile as we are interested in uniform bounds with respect to t for the Whitney jets such that
we may produce uniformly bounded extensions in C2,α.

5.3 The Regular Level Set Flow of the Dirichlet Data.

In this section we introduce the tools to work with the regular level set structure on the boundary more
precisely. We will first recall some facts from elementary differential topology on how to relate regular
level sets and afterwards consider the corresponding immersions in appropriate function spaces. These
deformations of the boundary manifolds f´1ptq Ă BΩ are also the last ingredient for subsequently
producing global diffeomorphisms between level set boundaries.

We assume that 0 P rgpfq is a regular value of f . To relate with the dependence map F in a closed
form, we need to find an appropriate one-parameter family of parametrizations of level sets "near"
f´1p0q in the appropriate topology. We shall consider the rescaled gradient vector field

X :“
gradBΩ f
ˇ

ˇgradBΩ f
ˇ

ˇ

2 ,

where this gradient is understood as the tangential gradient on BΩ with respect to the restriction of
the Euclidean metric. Clearly, X is well-defined near f´1p0q and we may consider its local flow κ near
f´1p0q. Thus, there is some open neighborhood W Ă BΩ of f´1p0q and

T ą 0 such that the flow κ : W ˆ p´T, T q ÝÑ BΩ

of X is well defined. Fix some x PW , then we compute

d

dt
fpκpx, tqq “ Dfpκpx, tqq

˜

gradBΩ f
ˇ

ˇgradBΩ f
ˇ

ˇ

2

¸

“ gradBΩ f ¨
gradBΩ f
ˇ

ˇgradBΩ f
ˇ

ˇ

2 “ 1,

which leads, by the fundamental theorem of calculus, to

fpκpx, tqq ´ fpκpx, 0qq “

ż t

0
dτ “ t

and which is
fpκpx, tqq “ t` fpxq.
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Hence, κpx, tq P f´1ptq for all x P f´1p0q and thus, by standard flow properties, κt :“ κp., tq diffeo-
morphicly maps f´1p0q into the level set f´1ptq for all sufficiently small |t|. We record the following
result:

5.14 Lemma (Diffeomorphicity of Regular Level Sets). There is T ą 0 such that we have
that

κt :
`

f´1p0q Ă Rn
˘

ÝÑ Rn

is a diffeomorphism onto f´1ptq of class Cm´1 for all 0 ď |t| ď T with

}κt ´ κ0}2,γ,f´1p0q ÝÑ 0

for all 0 ă γ ď 1 as tÑ 0.

Proof. Invertability follows from the above while it remains to notice that X is a vector field of class
Cm´1 near f´1p0q and κ is at least of class C3 in both its variables. �

5.15 Remark. (1) We furthermore recall for any fixed x PW and small |t| that the mapping

t ÞÝÑ κpx, tq

is actually m times continuously differentiable in t, since the flow equation yields

Btκ “ X ˝ κ.

(2) The flow κ is a diffeomorphism when restricted to f´1p0q ˆ p´T, T q, since an inverse is given by
the map

z ÞÝÑ pκpz,´fpzqq, fpzqq

and it hence embeds sufficiently small neighborhoods of f´1p0q ˆ t0u into W Ă BΩ.

We will now consider the one-parameter family of diffeomorphisms κt as a curve in appropriate function
spaces on f´1p0q.

As sketched before, we need to consider the function κ, which is a function of two variables, as a
parametrized curve of one variable in a Hölder space of the other variable. Thus, we will consider

pt P p´T, T qq ÞÝÑ κt.

Since each κt is of class Cm´1, one can consider this as a curve in each Hölder space up to class Cm´2,α

for any 0 ă α ă 1. To find the most convenient one, we shall choose an arbitrary α and suppose

t ÞÝÑ
`

κt P C2,αpf´1p0q;Rnq
˘

.

Note that we moreover have that

} ¨ }2,α,f´1p0q ď C} ¨ }3,f´1p0q

due to f´1p0q Ă Rn being compact and we recall from uniform continuity (up to class C3) that t ÞÝÑ κt
is a continuous curve in C2,αpf´1p0q;Rnq. Choosing one particular s P p´T, T q, we can furthermore
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estimate
›

›

›

›

κs`h ´ κs
h

´ Btκs

›

›

›

›

2,α

ď C

›

›

›

›

κs`h ´ κs
h

´ Btκs

›

›

›

›

3

ÝÑ 0 as hÑ 0,

because both κ and Btκ are of class Cm´1 with m´1 ě 3 and we can infer the convergence of difference
quotients to the derivative holds uniformly due to uniform continuity and the fact that we may consider
the difference quotient as an evaluation of Btκ by the one-dimensional real mean value theorem. Indeed,
fixing ε ą 0 we may find by uniform continuity δ ą 0 such that

|Btκspxq ´ Btκs1pxq| “ |Btκpx, sq ´ Btκpx, s
1q| ă ε

for all x P f´1p0q whenever |s´ s1| ă δ. By the mean value theorem, we may infer

κpx, s` hq ´ κpx, sq

h
“ Btκpx, s` θxhq

with θx P p0, 1q for each x P f´1p0q and small enough |h| ă δ. Hence, we receive
ˇ

ˇ

ˇ

ˇ

κpx, s` hq ´ κpx, sq

h
´ Btκpx, tq

ˇ

ˇ

ˇ

ˇ

ă ε

for all x P f´1p0q and all derivatives can be handled in essentially the same way by uniform continuity.
Since additionally

s ÞÝÑ Btκs

is continuous in the norm of class C2,α, we deduce that the curve

s ÞÝÑ κs

is of class C1 in the Hölder space C2,αpf´1p0q,Rnq.

We can iterate this step until we run out of regularity, employing also remark 5.15(1), to subsequently
prove that:

5.16 Lemma (Regular Level Set Flow on The Boundary). There exists T ą 0 such that it
holds

pt ÞÝÑ κtq P Cm´3
`

p´T, T q; C2,αpf´1p0q;Rnq.
˘

for any 0 ă α ă 1 and m ě 4. �

5.17 Remark. Note moreover that the case m “ 8 is clearly also covered and in this case we can infer
that

pt ÞÝÑ κtq P C8
`

p´T, T q; C2,αpf´1p0q;Rnq
˘

.

It is not clear to me whether the case m “ ω is also included like that.

At last we record a technical lemma about the co-normals of level set boundaries at boundary points
which also readily follows from the uniform non-parametric representations after reverting the straight-
ening.
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5.18 Lemma (Uniform Convergence of Co-Normals). We have

}N co
t ˝ κt ´N

co
Ξ }0,f´1p0q ÝÑ 0 as tÑ 0

on f´1p0q.

Proof. We fix x0 P f
´1p0q and first assume boundary canonical coordinates in the form of lemma 4.19.

Thus, all oriented boundaries are given as translated graphs of some functions ut about some small
half-ball in the half-hyperplane tzn “ 0, zn´1 ď 0u. We recall that the restriction of the graph to
tzn “ zn´1 “ 0u parametrizes each boundary manifold up to translation, but since each boundary is
flat in canonical coordinates, we infer

Biut ” 0 on tzn “ zn´1 “ 0u for i ‰ n´ 1.

Thus, by reverting the straightening via the diffeomorphism ϕ´1, we acknowledge that

Tyf
´1ptq “ D

`

ϕ´1
˘ `

ϕpyqqpRn´2 ˆ t0u2
˘

,

which is hence independent of |t|. We may apply the standard Gram-Schmidt orthogonalization proce-
dure to find a orthonormal basis of Tyf´1ptq, which only depends on the first n´ 2 partial derivatives
of ϕ. As the full tangent space at y to Btu ě tu is the direct sum of the boundary tangent space and
the co-normal space, we now map the last partial derivative back with Dϕpϕ´1pyqq and complete the
orthogonalization. Hence the co-normal N co

t pyq depends in such a representation only on Bn´1ut and
thus, by uniform convergence in C1 of the graph functions, we deduce for ε ą 0 the existence of a
neighborhood Vx0 Ă Rn such that

}N co
t pyq ´N

co
Ξ pxq} ă ε for any y P Btu ě tu X Vx0 and x P ΞX Vx0 .

We may choose finitely many such x0, which we denote as xi, and arrange

f´1p0q Ă
ď

i

Vxi .

Choosing λ ą 0 small enough, we shall assume

f´1p0q Ă eλ
`

f´1p0q
˘

Ă
ď

i

Vxi

and use the Hausdorff convergence f´1ptq ÝÑ f´1p0q to infer

f´1ptq Ă eλ
`

f´1p0q
˘

Ă
ď

i

Vxi for all sufficiently small |t|.

By uniform convergence κt ÝÑ κ0, we may additionally set

}κt ´ κ0}0 ă δ for all sufficiently small |t|

and we may let δ ą 0 equal the Lebesgue number of eλ
`

f´1p0q
˘

with respect to
Ť

i Vxi . Thus, for
each x P f´1p0q, we find that x “ κ0pxq and κtpxq are contained in the same member of the union,
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implying
}pN co

t ˝ κtqpxq ´N
co
Ξ pxq} ă ε for all sufficiently small |t|

and x P f´1p0q. �

5.4 Global Deformations of Level Set Boundaries.

We may now prove that all level sets near Ξ are actually even diffeomorphic to Ξ via the construction
that is called an almost-normal diffeomorphism in [9, Sections 1-3] and that we may regard nearby
hypersurfaces as such deformations of Ξ with norms tending to zero.

We prepare the application of [9] with the following lemma on the constancy of components of the
converging oriented boundaries to reduce to the connected case:

5.19 Lemma (Stability of Connected Components). There exists T ą 0 such that the number of
connected components of Btu ě tu equals the number of connected components of Ξ for all 0 ď |t| ď T .

Proof. As Ξ is closed and can only have finitely many connected components, all such components
must be at pairwise positive distance. Choosing an infinitesimal smaller than the minimum of these
distances and employing the Hausdorff convergence u´1ptq ÝÑ Ξ, we deduce that all connected com-
ponents of Btu ě tu must be close to exactly one component of Ξ, hence, we assume directly that Ξ is
connected.

Now write

BΞ “ f´1p0q “
N
ď

i“1

Θi with a natural number 0 ă N ă 8,

where each Θi Ă f´1p0q is a connected component of f´1p0q. The diffeomorphism κt descends to a
diffeomorphism on each Θi such that

f´1ptq “ κtpf
´1p0qq “ κt

˜

N
ď

i“1

Θi

¸

“

N
ď

i“1

κtpΘiq

and we find that the number of connected components of boundary data f´1ptq is constant if |t| is
sufficiently small. Fixing also ρ ą 0 sufficiently small, there exists

wt : ΞX Ωρ ÝÑ R

with
Btu ě tu X Ω2ρ Ă pId`wtNΞqpΞX Ωρq Ă Btu ě tu X Ω2´1ρ

for all |t| ď T pρq by proposition 5.9. Choosing additionally |t| ď min
`

T pρq, T p2´1ρq
˘

, we may as well
assume that wt is well-defined on ΞXΩ2´1ρ for all such |t|. By pushing f´1p0q inwards along Ξ at BΞ
and possibly decreasing ρ ą 0, we may find a connected set Ξρ Ă Ξ with

ΞX Ωρ Ă Ξρ Ă ΞX Ω2´1ρ ùñ pId`wtNΞqpΞρq is connected for all |t| small enough.

Thus we also find that
Btu ě tu X Ω2ρ Ă pId`wtNΞqpΞρq,
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where the latter set is connected, and therefore there is one connected component of Btu ě tu contain-
ing Btu ě tu X Ω2ρ for all such |t|, which we denote Zt.

Choose some i P t1, ..., Nu and x0 P Θi, then the boundary non-parametric representation lemma
4.19 implies that there is an open neighborhood Vi Ă Rn of x0 such that Btu ě tu X Vi is connected
for all sufficiently small |t|. When ρ is small enough, we infer

pBtu ě tu X Ω2ρq X Vi ‰ H for all sufficiently small |t|,

and therefore, in particular that Btu ě tu X Vi has to be contained in Zt. Since also κtpΘiq X Vi ‰

H, we infer that this also has to be true for κtpΘiq Ă f´1ptq and iterating this procedure for each
connected component Θi of f´1p0q and adjusting ρ appropriately, we find that

Ť

κtpΘiq “ f´1ptq has
to be fully contained in the geometric boundary of Zt for all sufficiently small |t|. As furthermore no
connected component of Btu ě tu without geometric boundary can exist by lemma 4.15(2), the lemma
is proven. �

5.20 Theorem (Global Diffeomorphicity of Level Set Boundaries). There exists T ą 0 such
that there are diffeomorphisms ιt of class C2,α with

ιt : Ξ ÝÑ Btu ě tu

for each 0 ď |t| ď T such that

}ιt ´ IdΞ }C2,γpΞ;Rnq ÝÑ 0 as tÑ 0

for all 0 ă γ ă α.

Proof. By lemma 5.19, we may immediately assume that Ξ and Btu ě tu are both connected as we
could otherwise treat each connected component seperately and find precisely one connected compo-
nent of Btu ě tu, which is close in Hausdorff distance, for all sufficiently small |t|.

Step 1: It is our goal in this proof to apply the general construction of almost-normal diffeomor-
phisms from [9, Theorem 3.1] with uniform bounds in C2,α. We recall from definition 5.1 that we chose
an open submanifold Ξ̃ Ă Rn of dimension n´ 1 such that Ξ Ă Ξ̃ and with

}NΞ̃}C2,αpΞ̃;Rnq ď L for some large enough L ą 0,

which is again possible as Ξ is at least of class C3,α as a submanifold with boundary. We shall now
check the hypotheses of [9, Theorem 3.1] and note immediately that hypothesis (a) on the domain
submanifold Ξ is fulfilled (see also the remarks from [9, Remark 3.4]) as Ξ is in particular of class
C2,1 and it remains to check that we may choose L ą 0 large enough for hypothesis (b) on the target
submanifolds Btu ě tu with boundary to hold uniformly in small |t|.

If n “ 2, it is clear that (b,i) holds immediately owing to lemma 5.16 and 5.18 uniformly in small
|t|. If n ą 2, we note first that clearly the family of mappings

κt : f´1p0q ÝÑ f´1ptq
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is uniformly bounded in C2,αpf´1p0q,Rnq and moreover, the three quantities

}κt ´ Idf´1p0q }C1pf´1p0q,Rnq, }pNt ˝ κtq ´NΞ}C0pf´1p0q,Rnq, }pN co
t ˝ κtq ´N

co
Ξ }C0pf´1p0q,Rnq,

can be uniformly chosen as small as we desire owing again to lemma 5.16 and 5.18 and the boundary
non-parametric representation lemma 4.19. Therein, we again use the notation

pNt ˝ κtqpxq :“ Ntpκtpxqq “ NBtuětupκtpxqq and pN co
t ˝ κtqpxq :“ N co

t pκtpxqq “ N co
Btuětupκtpxqq

to compare normal and co-normal vectors along the boundary diffeomorphisms κt. This yields hypoth-
esis (b,i) also for the higher dimensional case. Further, for both n “ 2 and n ą 2, we may find for each
ρ ą 0 by proposition 5.9 a number T “ T pρq ą 0 such that

wt : ΞX Ωρ ÝÑ R with Btu ě tu X Ω2ρ Ă pId`wtNΞqpΞX Ωq Ă Btu ě tu X Ω2´1ρ

for all |t| ď T . We recall from (the proofs of) corollary 5.8 and proposition 5.9 that the normal
deformations wtNΞ are uniformly bounded in C2,αpΞ X Ωρq while the uniform convergence to zero of
wt implies that also the quantity

}wtNΞ}C1pΞXΩρ,Rnq

may be chosen as small as we desire by decreasing T pρq ą 0. Finally, we shall prove the containment
relation from [9, Theorem 3.1, (3.10)] via the two Hausdorff convergences

u´1ptq ÝÑ Ξ and f´1ptq ÝÑ f´1p0q for tÑ 0,

by choosing ρ̃ ą 0 and ρ ą 0 such that

Ξzuρ̃
`

f´1p0q
˘

Ă ΞX Ωρ

to have the family of functions wt defined for sufficiently small |t| and then estimating the distance to
its image space geometric boundaries f´1ptq Ă Btu ě tu uniformly via Hausdorff convergence. Indeed,
for each x P Btu ě tu X u2ρ̃

`

f´1p0q
˘

there are

x˚ P f´1p0q with dpx, x˚q ă 2ρ̃ and x˚˚ P f´1ptq with dpx˚, x˚˚q ď ρ̃

hence,
dpx, f´1ptqq ă 3ρ̃ ùñ

`

Btu ě tuzu3ρ̃

`

f´1ptq
˘˘

Ă Btu ě tuzu2ρ̃pf
´1p0qq

for such sufficiently small |t|. Using Hausdorff convergence and choosing λ ą 0 small, we may then
arrange

Btu ě tuzu2ρ̃pf
´1p0qq Ă uλ

`

Ξzu2ρ̃pf
´1p0qq

˘

,

with
Π
`

Btu ě tuzu2ρ̃pf
´1p0qq

˘

Ă Ξzuρ̃pf
´1p0qq

for all sufficiently small |t| and λ ą 0. In particular, we contain

Btu ě tuzu3ρ̃

`

f´1ptq
˘

Ă pId`wtNΞqpΞzuρ̃
`

f´1p0q
˘

for all sufficiently small |t|, which is assumption [9, (3.10)] adapted to our setting.
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This shows that also (b,ii) is fulfilled for appropriately small ρ̃ ą 0 (which we shall use as the pa-
rameter ρ from [9]) which we will fix and it holds uniformly for |t| ď T for an appropriate T “ T pρq ą 0.

Step 2: Now applying [9, Theorem 3.1], we infer that there are diffeomorphisms

ιt : Ξ ÝÑ Btu ě tu for all |t| ď T pρq, ιt P C1,αpΞ,Rnq,

which fulfill the estimate

}ιt ´ ιΞ}C0pΞ,Rnq ď C
´

HpΞ, Btu ě tuq ` }κt ´ Id }C1pf´1p0q,Rnq ` }wtNΞ}C0pΞXΩρ,Rnq

¯

with a constant C ą 0 independent of |t|. We find in particular that

}ιt ´ ιΞ}C0pΞ,Rnq ÝÑ 0 as tÑ 0

and that the family of functions ιt is uniformly bounded in C1,α. If we may now show that the functions
ιt are also uniformly bounded in C2,α, we find that

}ιt ´ ιΞ}C2,γpΞ,Rnq ÝÑ 0 as tÑ 0

for each 0 ă γ ă α ă 1 and the proof is finished.

This is however clear from the construction in [9, Theorem 3.1] via the implicit function theorem
(see the definition of the boundary deformation in [9, Claim 3.5] with equations [9, (3.22-24)] and its
construction in [9, (3.52)] via solving [9, (3.50-51)]): The family of functions wtNΞ enjoys uniform
bounds in C2,α while the construction of the diffeomorphisms ιt near BΞ only depends on the extension
Ξ̃ of Ξ and extensions of Btu ě tu which we may also construct in C2,α due to the lemmata 5.11 and
5.12. In particular, these lemmata imply that the functions whose zero sets characterize the extensions
of Btu ě tu have uniformly bounded norms of class C2,α and our proof concludes. �

5.21 Remark. Also some results on global deformations have to have been used in [46], but except
for uniform Hölder estimates and uniform convergence under a nearest point-projection Π for normal
vectors, there was no justification given.

5.22 Remark. For purposes of our regularity results, it will especially be important that we may
deform from above and below, ie. that t may be larger or smaller than 0. Note also that all results on
convergence and deformations of section 5 also hold with the same proofs for Btu ď tu for all sufficiently
small |t|.
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6 Elliptic Regularity Theory of Local Deformations.

In the first part of this section we will aim at a different derivation of the important Harnack-Type in-
equality, which is used to construct the "special" Jacobi field with desirable properties in [46, Sections
3,4].

The original proof was direct, employing the first variation in local coordinates to rewrite the sta-
tionarity condition of each Btu ě tu as some form of local geometric partial differential equation for
the family of functions wt, whose structural constants may be bounded independently of t ě 0.

Here we alter our approach to compare the deformations in varying normal direction wt with the
deformations in "straight" vertical direction above the tangent planes ut´u0, which are easily implied
to solve a linear elliptic equation with uniformly bounded coefficients in the deformation parameter
t ě 0. Thus, the vertical deformations allow immediately for applications of linear elliptic regularity
theory which we shall seek to "carry over" to the normal deformations.

Finally, we include the limiting blow-up argument to construct the "special" Jacobi field by blow-
ing up the vanishing first variation in global coordinates.

6.1 Comparing Deformations and the Harnack-Type Inequality.

We begin with two preparatory lemmata for the uniform Harnack-Type inequality for the family of
functions wt.

6.1 Lemma (Pointwise Comparisons of Deformations). Let x0 P ΞX Ω. Then there are r ą 0,
T ą 0 and C “ Cpx0q ą 0 such that

put ´ u0qpzq ď C wtppz, u0pzqqq and wtppz, u0pzqqq ď C put ´ u0qpzq

for all 0 ď t ď T and z P Upx0, rq X Tx0Ξ, where C only depends on the point x0 and the (uniformly
bounded) supremum on r0, T s of the C1-norms of ut.

Proof. By choosing appropriate coordinates as usual, we may assume that

x0 “ 0,
`

Tx0Ξ “ Rn´1
˘

Ă Rn, NΞpx0q “ en.

Using the deformations from lemma 4.18 und lemma 5.5, we furthermore shall choose r ą 0 suf-
ficiently small such that ut : Un´1p0, 2rq ÝÑ R is well-defined and, by abuse of notation, that
wt : Un´1p0, rq ÝÑ R is also well-defined for all sufficiently small t ě 0.

We recall form remark 5.6 that the family of functions wt solves the implicit equation

Wtpz, wtpzqq “ 0 on Un´1p0, rq,

whenever |t| is sufficiently small, where

Wtpz, qq “ ut

˜

z ´ q
∇u0pzq

a

1`∇u0pzq2

¸

´

˜

u0pzq `
q

a

1`∇u0pzq2

¸

,
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from which we may derive the implicit formula

wtpzq “
a

1`∇u0pzq2

˜

ut

˜

z ´ wtpzq
∇u0pzq

a

1`∇u0pzq2

¸

´ u0pzq

¸

for all z P Up0, rq and t ě 0 small enough.

Hence we compute for an arbitrary point z P Up0, rq that

wtpzq ď C

˜

ut

˜

z ´ wtpzq
∇u0pzq

a

1`∇u0pzq2

¸

˘ utpzq ´ u0pzq

¸

ď C
`

}ut}1,Up0,2rqwtpzq ` put ´ u0qpzq
˘

,

where the constant only depends on the gradient of u0 through Lipschitz estimates. As ∇u0p0q “ 0

and we may assume that ut ÝÑ u0 in C1pUp0, 2rqq, we may possibly decrease r to infer that

1´ C}ut}1,Up0,2rq ě 1{2

for all sufficiently small t ě 0 and deduce

wtpzq ď Cput ´ u0qpzq,

where the constant only depends on the C1-norm of the family of functions ut, which is uniformly
bounded as a consequence of the interior non-parametric representation lemma 4.19(3).

Conversely, we also find

put ´ u0qpzq “ put ´ u0qpzq ˘ ut

˜

z ´ wtpzq
∇u0pzq

a

1`∇u0pzq2

¸

ď }ut}1,Up0,2rqwtpzq ` wtpzq

ď Cwtpzq,

where yet again C only depends on some bound of the C1-norm of the family ut. �

6.2 Lemma (Uniform Linear PDE Estimates). Each member of the family of functions

ut ´ u0 : Up0, 2rq ÝÑ R

solves a linear uniformly elliptic partial differential equation of second order

div pat ¨∇put ´ u0q ` btput ´ u0qq ` ct ¨∇put ´ u0q ` dtput ´ u0q “ 0 on Up0, 2rq

depending on z and t with coefficients of (at least) class C0,α such that all structural constants may be
bounded independently of 0 ă t ď T . Furthermore, we have

}at}C0,α ` }bt}C0,α ` }ct}C0,α ` }dt}C0,α ď C
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with a constant C ą 0 independent of t.

Proof. We again assume canonical coordinates and denote by Φ§ the non-parametric integrand with
variables pz, u, pq associated to the anisotropic total variation Φ and recall that each ut solves, up to
possibly changing the orientation of the graph, the quasilinear Euler-Lagrange equation in weak form

0 “

ż

Up0,2rq
DpΦ

§pz, utpzq,∇utpzqq ¨∇ϕ`DuΦ§pz, utpzq,∇utpzqqϕ dL n´1

with ϕ P C8c pUp0, 2rqq. Hence for each fixed t and s P r0, 1s we may set ut,s “ p1 ´ squ0 ` sut and
calculate for the difference ut ´ u0 that

DpΦ
§pz, utpzq,∇utpzqq ´DpΦ

§pz, u0pzq,∇u0pzqq “

ż 1

0

d

ds
DpΦ

§pz, ut,spzq,∇ut,spzqq ds

and

DuΦ§pz, utpzq,∇utpzqq ´DuΦ§pz, u0pzq,∇u0pzqq “

ż 1

0

d

ds
DuΦ§pz, ut,spzq,∇ut,spzqq ds.

Computing those derivatives yields

d

ds
DpΦ

§pz, ut,s,∇ut,sq “ DupΦ
§pz, ut,s,∇ut,sqput ´ u0q `D

2
pΦ

§pz, ut,s,∇ut,sq ¨∇put ´ u0q

and

d

ds
DuΦ§pz, ut,s,∇ut,sq “ D2

uΦ§pz, ut,s,∇ut,sqput ´ u0q `DpuΦ§pz, ut,s,∇ut,sq ¨∇put ´ u0q.

Thus, subtracting the weak Euler-Lagrange equation for u0 from the one for ut, we infer that

0 “

ż

Up0,2rq
∇ϕ ¨ patpzq ¨∇put ´ u0qpzq ` btpzqput ´ u0qpzqq

`ϕ pctpzq ¨∇put ´ u0qpzq ` dtpzqput ´ u0qpzqq dL
n´1,

where

atpzq “

ż 1

0
D2
pΦ

§pz, ut,spzq,∇ut,spzqq ds, btpzq “

ż 1

0
DupΦ

§pz, ut,spzq,∇ut,spzqq ds,

ctpzq “

ż 1

0
DpuΦ§pz, ut,spzq,∇ut,spzqq ds, dtpzq “

ż 1

0
D2
uΦ§pz, ut,spzq,∇ut,spzqq ds.

Using the Schauder estimates for the family of functions ut, we see that there exist a constant C ą 0

such that
}atpzq} ď C and }btpzq} ` }ctpzq} ` |dtpzq| ď C.

are uniformly bounded in sufficiently small t ą 0 for all z P Up0, 2rq. Moreover, we infer from the
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parametric Legendre condition on z with an ellipticity bound c ą 0 and section 2.4 that

ξTatpzqξ “

ż 1

0
ξT ¨D2

pΦ
§pz, ut,spzq,∇ut,spzqq ¨ ξ ds

ě c

ż 1

0

|ξ|2
a

1` |∇ut,spzq|2

˜

1´
|∇ut,spzq|

a

1` |∇ut,spzq|2

¸

ds

“ c

ż 1

0

|ξ|2

p1` |∇ut,spzq|2q
3
2

ds.

Yet again, by means of the Schauder estimates for ut, we may bound all terms by their suprema in
z P Up0, 2rq and t small and reciprocally only decrease further. In particular, there exists λ ą 0 such
that

c

ż 1

0

|ξ|2

p1` |∇ut,spzq|2q
3
2

ds ě λ|ξ|2 ą 0 for all z P Up0, 2rq and ξ P Rn´1

and for all sufficiently small t ą 0. Thus, the functions ut ´ u0 solve linear uniformly elliptic partial
differential equations whose coefficients and ellipticity constant may be bounded independently of small
t ą 0. Note subsequently that all involved derivatives of Φ§ are at least of class C0,α while the functions
ut,s and ∇ut,s are uniformly Lipschitz in t and s due to the Schauder estimates up to second order.
This proves that also the Hölder constants of the coefficients may be uniformly bounded. �

Combining lemma 6.1 with lemma 6.2, we may now feasibly conclude for a Harnack-Type inequality
for the family of normal deformations wt via the standard one applied to the family ut ´ u0.

6.3 Theorem (Uniform Harnack-type Estimates). Fix x0 P ΞXΩ and let K Ă ΞXΩ be compact
and connected. Then we have:

(1) (Local Harnack-Type Inequality) There exist r “ rpx0q ą 0 and T “ T px0q ą 0 with
C “ Cpx0q ą 0 such that

suptwtpxq | x P Upx0, rq X Ξu ď Cpx0q inftwtpxq | x P Upx0, rq X Ξu

for all 0 ď t ď T .

(2) (Harnack-Type Inequality on Retracts) There exists T “ T pKq ą 0 and C “ CpKq ą 0

such that
suptwtpxq | x P Ku ď CpKq inftwtpxq | x P Ku

for all 0 ď t ď T .

Proof. We again choose standard coordinates and observe that we may assume that

put ´ u0q ě 0 on Un´1p0, 2rq

for all sufficiently small t ě 0, where r is as in the proof of lemma 6.1. We acknowledge this as follows:
It is a topological fact that the graph of u0 over Un´1p0, 2rq seperates sufficiently small cylinders into
precisely two open and connected components above and below the graph, which we call A and B, and
u does not vanish on A and B. Assuming that

x P AX tu ą 0u and y P AX tu ă 0u,
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we find a continuous path γ : r0, 1s Ñ A such that

γp0q “ x, γp1q “ y

and hence some t P p0, 1q with γptq “ 0, which contradicts that γ maps to A. This implies that both A
and B are contained in one of the above sets and due to the level set Ξ equaling its sub- and superlevel
set boundaries, they cannot be contained in the same set. A uniform sign condition for ut´u0 follows
by choosing a correct configuration.

Thus, by lemma 6.2 and standard linear elliptic regularity theory, we may invoke eg. [13, Theorem
8.20] to assume that there is a constant C ą 0 such that

sup
Un´1p0,rq

put ´ u0q ď C inf
Un´1p0,rq

put ´ u0q with C ‰ Cptq

for all sufficiently small t ě 0. Note that C does not depend on t as the coefficients of the respective
linear equations may be uniformly bounded uniformly in small t ě 0.

Further, we find by lemma 6.1 also that

sup
Un´1p0,rq

wt ď C sup
Un´1p0,rq

put ´ u0q and inf
Un´1p0,rq

put ´ u0q ď C inf
Un´1p0,rq

wt,

from which 6.3(1) may be easily derived by readjusting to a smaller r.

For the second statement it suffices to treat cover the compact and connected set K with finitely many
balls where 6.3(1) holds and apply a simple continuation argument across their intersections. �

6.4 Remark. The latter theorem 6.3 provides a valuable alternative route to acquiring the Harnack-
Type inequality of [46, 3.1 Theorem]. In fact, providing a similar geometric PDE in local coordinates
as in the proof in [46] for general parametric integrands/anisotropic total variations seemed to me
like a very peculiar thing to carry out, while our strategy here is able to conclude directly from the
linearization of the non-parametric integrand with some further elementary manipulations.

6.2 Higher Order Convergence of Normal Blowups and the Jacobi Nullity.

Since our approach is meant to forsake the complicated local expressions, we will now proceed to
introduce more lemmata to "carry over" more asymptotic information from elliptic regularity estimates
for the horizontal deformations ut ´ u0 to the normal deformations wt.

Also, in this part, our assumptions on U and the regularity as lipschitzian level sets will now enter.

6.5 Lemma. Assuming canonical coordinates at x0 P Ξ X Ω, there exist C ą 0, T ą 0 and r ą 0 such
that

›

›

›

›

ut ´ u0

t

›

›

›

›

2,α,Up0,rq

ď C

for all 0 ă t ď T , where C depends additionally on the choice of some x˚ P Ξ X Ω in the connected
component of Ξ of x0 where Dupx˚q ‰ 0.
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Proof. We note first that each of the finitely many connected components of Ξ admits points x˚ P ΞXΩ

with Dupx˚q ‰ 0 since 0 P U . We proceed to first uniformly bound the supremum.

By lemma 6.1, we find r ą 0 and T ą 0 to achieve
›

›

›

›

ut ´ u0

t

›

›

›

›

0,Un´1p0,rq

ď C
›

›

›

wt
t

›

›

›

0,Up0,rq

for all 0 ă t ď T and we may choose a compact and connected set K Ă ΞX Ω such that

x˚ P K and pIdpUn´1p0, rqq, u0pU
n´1p0, rqq Ă K.

Theorem 6.4(2) now yields a constant CpKq ą 0 such that

›

›

›

wt
t

›

›

›

0,Up0,rq
ď

›

›

›

wt
t

›

›

›

0,K
ď CpKq inf

K

´wt
t

¯

ď CpKq
wtpx

˚q

t

as x˚ P K for all sufficiently small t ą 0.

Further, since Dupx˚q ‰ 0, there are δ ą 0 and m˚ ą 0 such that it follows

0 ă m˚ ď
|upx˚ ` hNΞpx

˚qq|

|h|
for all |h| ď δ, h ‰ 0,

and therefore
|h|

|upx˚ ` hNΞpx˚qq|
ď

1

m˚
ă 8

for all such h. Since

pId`wtNΞqpx
˚q P u´1ptq and wtpx

˚q ÝÑ 0 as tÑ 0,

we may arrange t ą 0 small enough to set ht “ wtpx
˚q and deduce

wtpx
˚q

t
“

|ht|

|upx˚ ` htNΞpx˚qq|
ď

1

m˚

for all sufficiently small |t|. Concatenating all three inequalities, we receive
›

›

›

›

ut ´ u0

t

›

›

›

›

0,Up0,rq

ď C for all sufficiently small t ą 0.

We recall now from lemma 6.2 that all coefficients at,bt, ct,dt may be bounded in C0,α independently
of sufficiently small t ě 0. Subsequently, as the supremum of t´1put´ u0q may be uniformly bounded,
we may conclude via linear elliptic regularity theory and interior Schauder estimates (eg. [13, Theorem
6.2]) that we may also, by possibly readjusting r ą 0 and with a constant C independent of t, assume
that

}ut ´ u0}2,α,Up0,rq ď C}ut ´ u0}0,Up0,rq
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which yields
›

›

›

›

ut ´ u0

t

›

›

›

›

2,α,Up0,rq

ď C for all sufficiently small t ą 0,

finishing the proof. �

As we are however interested mainly in the family of normal deformations wt, the next lemma will
relate also the derivatives of wt to the ones of ut ´ u0. Then the uniform bound in C2,α will then
immediately allow us to generate a partial limit for the blowups of wt.

We therefore have to make use of some rather unappealing calculations involving the implicit equation
for wt, which relates normal and vertical deformations. Afterwards, we may prove that the partial
local limits in fact solve the linearization of the Euler-Lagrange operator in its weak form and patch
together to solution on the geometric interior of Ξ.

6.6 Lemma (Uniform Convergence of Normal Blowups). There exists an open neighborhood
V Ă ΞX Ω of x0 P ΞX Ω and a subsequence tj ÝÑ 0 as j Ñ8 such that

wtj
tj
ÝÑ ζx0 in C1,γpV q for all 0 ă γ ă α.

Moreover, we have ζ ě K´1 ą 0 on V where K ą 0 is any Lipschitz constant of u.

Proof. Assuming canonical coordinates at x0 and recalling that the family of functions wt solves an
implicit equation given via the function W, we shall now write

wtpzq “ Apzq put pz ´ wtpzqVpzqq ´ u0pzqq

with
Apzq “

a

1`∇u0pzq2, Vpzq “
∇u0pzq

a

1`∇u0pzq2
“

∇u0pzq

Apzq
,

for all z P Up0, rq and all sufficiently small t ą 0. Then differentiation in i-th direction directly verifies
that

Biwtpzq p1`∇ut pz ´ wtpzqVpzqq ¨Vpzqq “ BiApzq put pz ´ wtpzqVpzqq ´ u0pzqq

` Apzq p∇ut pz ´ wtpzqVpzqq ¨ pei ´ wtpzqBiVpzqq ´ Biu0pzqq .

Since |Vpzq| ă 1, we may choose t ą 0 and r ą 0 uniformly small enough to arrange for the factor of
Biwt to be always positive (say, bounded from below by 1{2). Hence, we conclude for

ˇ

ˇ

ˇ

ˇ

Biwpzq

t

ˇ

ˇ

ˇ

ˇ

ď C

ˆ

wtpzq

t
`
put ´ u0qpzq

t
`
|Biput ´ u0qpzq|

t

˙

ď C

for all sufficiently small t ą 0 and i “ 1, ..., n, where C here depends on the supremum of }ut}2,Up0,2rq
through Lipschitz estimates for the gradient of ut over small enough t ą 0. Thus

›

›

›

wt
t

›

›

›

1,Up0,rq
ď C uniformly in small enough t ą 0.
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Subsequent differentiation in j-th direction analogously verifies that
›

›

›

wt
t

›

›

›

2,Up0,rq
ď C uniformly in small enough t ą 0,

where C here similarly depends on the supremum of }ut}3,Up0,2rq over suffciently small t ą 0. Clearly,
the radius r may be chosen by lemma 4.18(3) so that }ut}3,Up0,2rq may be bounded independently of
small t ą 0 by uniform interior Schauder estimates. We especially find that

›

›

›

wt
t

›

›

›

1,α,Up0,rq
is uniformly bounded, hence

wt
t
ÝÑ ζx0 P C1,γpUn´1p0, rqq

without relabeling the subsequence for all 0 ă γ ă α. Finally, we recall for any x “ pz, u0pzqq P ΞXΩ

that
wtpxq

t
“

|pId`wtNΞqpxq ´ x|

|uppId`wtNΞqpxqq ´ upxq|
ě K´1 ą 0,

which passes to such a local limit ζx0 by uniform convergence. �

Finally, with lemma 6.6 at our disposal, we are in position to show that the local limits ζx0 can be
patched together to construct the desirable special Jacobi field.

6.7 Proposition (Existence of The Special Jacobi Field). There exists a normal vector field

ζ0NΞ P C2,α
loc pΞX Ω,Rnq,

which suffices
DHpζ0NΞq ” 0 on ΞX Ω

and ζ0 ě K´1 ą 0 on ΞX Ω, where K ą 0 is any Lipschitz constant of u.

Proof. We fix ρ ą 0 sufficiently small and receive T p2´1ρq ą 0 by proposition 5.9 such that

wt : ΞX Ω2´1ρ ÝÑ R

is well-defined for all 0 ă t ď T p2´1ρq, and choose some x0 P Ξ X Ωρ together with v P C1pΞ,Rnq
such that spt v is compactly contained in ΞX Ω2´1ρ. We denote for this proof ι “ ιΞ P Cν,αpΞ,Rnq as
the canonical inclusion of Ξ into Rn and acknowledge that the regularity and minimality of Ξ among
rectifiable currents implies

Hpιq “ 0

while the minimality of each Btu ě tu for sufficiently small t ą 0 implies that
ż

Ξ
HppId`wtNΞq ˝ ιq ¨ v dH

n´1 “ 0

by considering variations of the respective embeddings as rectifiable currents with fixed boundary. Note
that the latter Euler-Lagrange operator is well-defined as the support of v is sufficiently restricted.
Together we infer

ż

Ξ
t´1 ppHppId`wtNΞq ˝ ιq ´ Hpιqq ¨ vq dH n´1 “ 0

for all such vector fields v of class C1. By lemma 6.6, we may assume that there is a neighborhood
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V Ă ΞX Ω of x0 and a function ζx0 P C1,αpV q such that

wt
t
ÝÑ ζx0 in the topology of C1,γpV q for each 0 ă γ ă α.

We moreover require v to have compact support in V . Now, writing

ιt :“ pId`wtNΞq ˝ ι “ ι` pwtNΞq ˝ ι,

and expressing the above equation in weak form we have

0 “

ż

Ξ
t´1 pHppId`wtNΞq ˝ ιq ´ Hpιqq ¨ v dH n´1

“

ż

Ξ
t´1

`

pD3z̃px, ιt, Dιtq ´D3z̃px, ι,DιqqDv
˘

` pD2z̃px, ιt, Dιtq ´D2z̃px, ι,Dιqqv dH n´1.

Applying Taylor’s theorem to D2z̃ and D3z̃, we may let t Ñ 0 to infer that ζx0 is a weak solution
of class C1 to the Jacobi equation in local coordinates about x0. Thus it holds ζx0 P C2,αpV q by
proposition 2.27 and

ż

Ξ
v ¨DHpζx0NΞq dH

n´1 “ 0

for all v P C2,αpΞ,Rnq such that spt v ĂĂ V . It immediately follows that

DHpζx0NΞq “ 0 on V .

Now, eg. covering ΞXΩρ by finitely many such local domains V and succesively choosing subsequences,
we may infer that there is a sequence tipρq Ñ 0 and

ζρ P C2,αpΞX Ωρq

such that

wtipρq

tipρq
ÝÑ ζρ in the topology of C1,γpΞX Ωρq and DHpζρNΞq “ 0 on ΞX Ωρ.

Finally, diagonalizing with respect to ρ ą 0 and t ą 0 as ρ approaches 0 shows the existence of the
desired function ζ0 such that

ζ0 P C2,α
loc pΞX Ωq, ζ0 ě K´1 ą 0, DHpζ0NΞq “ 0 on ΞX Ω,

where we have used lemma 6.6 and uniform convergence for the globally positive lower bound. �

Now the simple argument by local comparison from [46, 4.2 Corollary], which relies solely on the fact
that the Jacobi operator descends to a linear uniformly elliptic partial differential equation for the
coefficient function and elliptic regularity theory, can be employed to conclude the non-existence of
homogeneous Jacobi fields also in the anisotropic setting. We will now collect the final results on the
Jacobi nullity that we will need.

6.8 Theorem (The Jacobi Nullity of Generic Level Sets). Let ζNΞ P C2,γpΞ,Rnq be a Jacobi
field with 0 ă γ ă α ă 1 on Ξ with ζBΞ “ 0. Then ζ ” 0 or equivalently, dimK “ 0. Moreover, almost
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every level set of u does not allow non-trivial homogeneous Jacobi fields.

Proof. Let ζNΞ P C2,γpΞ,Rnq be a homogeneous Jacobi field on Ξ. As the Jacobi operator is linear,
we infer that

DH ppζ0 ´ cζqNΞq “ 0 on ΞX Ω

for each c P R. By choosing an appropriate sign and |c| small enough, we may assume that

ζ0 ´ cζ ě 0 on ΞX Ω.

If ζ ı 0 on Ξ, then we might find a point x˚ P ΞX Ω such that we may as well assume that

pζ0 ´ cζqpx
˚q “ 0.

By proposition 2.27 and definition 2.28, we recall that the coefficient function of a Jacobi field solves
a uniformly elliptic partial differential equation in local coordinates on Ξ and hence, the Harnack
inequality is available for solutions in such local charts. Exploiting the same simple covering argument
as in the proof of theorem 6.3(2), the zero at x˚ P ΞX Ω implies

ζ0 ´ cζ ” 0 on the connected component of x˚ in Ξ,

which is a contradiction, as ζ0´ cζ is bounded away from 0 near BΞ. We deduce that necessarily ζ ” 0

on Ξ, hence dimK “ 0.

The last statement of the corollary follows from the fact that level sets of u which fulfill Du ‰ 0

almost everywhere on the level set constitute almost all level sets and this suffices to construct the
special Jacobi field ζ from proposition 6.7 on such a level set (which hence also equals its level set
boundaries). �
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7 Local and Partial Regularity of a Function of Anisotropic Least Gradient.

In this section we approach the original conclusion on partial regularity from the perspective of our
setup and discuss the questions arisen in section 3.3.

7.1 The Construction and Proofs.

With the last two sections at hand, we are at the point to give a proof of the partial regularity result
with a fixed regularity in the flow variable (which moreover, as we have seen in section 5.3, is precisely
the value of the extremal u by means of its boundary values).

We repeat the full proofs here and begin with the (value-wise) local result. Its idea is roughly to
subsequently transfer the flow regularity with the dependence map (that we are allowed to apply via
theorem 6.8) from boundary to full domain and to exploit stationarity properties in conjunction with
elliptic theory to find a differentiable identity for the extremal near the level set.

7.1 Theorem (Local Differentiability). Assume 0 P U , ie. 0 is a mildly regular value of u and
set M “ minpµ´ 2,m´ 3q. Then there exists an open set O0 with

ΞX Ω Ă O0 Ă Ω

and u is of class CM on O0, where M ą 0 can be 8.

Proof. As Ξ “ u´1p0q can only have finitely many connected components by proposition 4.15(2), we
may directly assume that Ξ is connected and, furthermore, that all level set boundaries Btu ě tu Ă Ω

are diffeomorphic to Ξ for all sufficiently small |t| via the almost-normal diffeomorphism construction
from theorem 5.20.

Step 1: As Ξ is a submanifold with boundary of Rn of class at least C3,α by theorem 4.10, where
0 ă α ă 1 is fixed here through the regularity of z, we observe that in particular

ιΞ P C2,αpΞ,Rnq, where ιΞ denotes the canonical inclusion into Rn.

Since 0 P U , we may apply theorem 6.8 to infer that dimK “ 0. We may hence by theorem 2.29
conclude that the dependence map

F : C2,γpBΞ,Rnq ÝÑ C2,γpΞ,Rnq for any 0 ă γ ă α ă 1

for the Hölder space of class C2,γ is well-defined and apply it to the z-stationary canonical inclusion
ιΞ of Ξ into Rn. We will now use the local flow κ as defined in section 5.3 and lemma 5.14. We recall
that

κ0 “ ιf´1p0q “ ιΞ,BΞ and Fpκ0q “ ιΞ.

Possibly decreasing our maximal value T ą 0, we may consider the function

K : Ξˆ p´T, T q ÝÑ Rn, Kpx, tq “ Fpκtqpxq.

Since F is of class Cµ´2 by theorem 2.29 and the regularity of z, we find that K is of class CM in its
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second variable due to lemma 5.16 with, as before,

M “ minpµ´ 2,m´ 3q ě 1.

Since every Fpκtq P C2,γpΞ,Rnq, we infer that K is of class C2,γ in its first variable and by the higher
regularity corollary 2.31, we have

Fpκtq P Cν,γpΞ,Rnq for all sufficiently small |t| ě 0,

which leads to K being of class CM, since ν “ minpµ,m´ 1q whence ν ě M.

Step 2: We claim now that:

There is T ą 0 such that Kpx, tq P u´1ptq whenever 0 ď |t| ď T .

Indeed, by theorem 5.20, we may find diffeomorphisms ιt of class C2,α with

ιt : Ξ ÝÑ Btu ě tu with }ιt ´ ιΞ}2,γ ÝÑ 0 for tÑ 0

and 0 ă γ ă α ă 1. We find also that each ιt is stationary with respect to Ξ and z, ie.

Hpιtq “ 0 for all sufficiently small |t| ě 0

since each level set boundary is locally minimizing inside Ω as a current. Moreover, by lemma 5.14,
we recall that

κt : f´1p0q ÝÑ f´1ptq with }κt ´ κ0}2,γ ÝÑ 0 for tÑ 0.

Hence, for all sufficiently small t ą 0, we conclude that F is defined on κt while ιt lies in the image
of F. However, as the geometric boundaries of the submanifolds Btu ě tu and KpΞ, tq “ pFpκtqqpΞq

coincide, the uniqueness properties of F from theorem 2.29 now assure that

KpΞ, tq “ Btu ě tu Ă u´1ptq

and the claim is proved.

Thus, by evaluating with u, the above claim yields

upKpx, tqq “ t, that is u ˝K “ proj2

for all |t| ď T and x P Ξ. We will show finally that we may locally invert K to finish the proof.

Step 3: We may decompose
Bt K|t“0 “ V `W

with
V pxq P TxΞ and W pxq P NΞpxq

for all x P Ξ. Set ζ “W ¨NΞ and, for a contradiction, let x0 P ΞXΩ be such that ζpx0q “ 0. Possibly
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decreasing T ą 0, we may replace K by another one-parameter family

K̃px, tq :“ Kpκ̃tpxq, tq for x P Ξ and t P p´T, T q,

where κ̃tpxq :“ κ̃px, tq is constructed with the flow of the negative tangential projection of Bt K|t“0

near x0 and suitably cut off towards BΞ. We may assume that κ̃ is of class C2 and as K̃ only differs
by a t-dependent reparametrization of Ξ, it embeds the same images Btu ě tu. Thus we find

BtK̃|t“0 “W “ ζNΞ on a neighborhood of x0 in ΞX Ω, hence BtK̃|t“0px0q “ 0,

but on the other hand, we find for all x P Ξ and h P p´T, T q that

|h|´1|K̃px, hq ´ K̃px, 0q| “
|K̃px, hq ´ K̃px, 0q|

|upK̃px, hqq ´ upK̃px, 0qq|

such that
ˇ

ˇ

ˇ
BtK̃pxq|t“0

ˇ

ˇ

ˇ
“ lim

hÑ0

|K̃px, hq ´ K̃px, 0q|

|upK̃px, hqq ´ upK̃px, 0qq|
ě K´1,

where 0 ă K ă 8 is any Lipschitz constant of u.

Since ιΞ is an immersion of Ξ and, by the above, Bt Kpx0, 0q is complementary for any x0 P ΞX Ω, we
deduce that the differential of K at px0, 0q is of full rank for any x0 P ΞX Ω. Thus, we may apply the
inverse function theorem near x0 and we find a local inverse to K on some small open neighborhood
of x0 in Ω.

We are thus in position to invert K to receive

u “ proj2 ˝K´1 on some open neighborhood of x0,

where the latter function is of class CM on its domain of definition. We subsequently prove the
proposition by covering ΞX Ω up to the boundary of the domain Ω. �

Finally, we also derive a result on an open and dense set in the same fashion, for which we repeat the
full set of data assumptions pDq.

7.2 Theorem (Partial Regularity for Anisotropic Functions of Least Gradient). Let
Ω Ă Rn be an open domain of class Cm and assume f P CmpBΩq where 4 ď m ď 8. Let Φ : ΩˆRn Ñ R
be an elliptic even anisotropic total variation such that Φ and D2Φ are of class Cµ´1,α with 3 ď µ ď 8

and 0 ă α ă 1. Suppose u P C0,1pΩq is a function of anisotropic least gradient with respect to Φ with
trace values uBΩ “ f , let m ě n´ 1 and the singularity assumption pS q hold.

Given these assumptions, it follows that there exists an open and dense set Ou Ă Ω such that

u P CMpOuq

holds, where again M “ minpµ´ 2,m´ 3q.

Proof. We rephrase the proof by using mildly regular values. Owing to the lower bound on m and the
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theorem of Sard, we deduce that
L 1pra, bszUq “ 0,

ie. almost every value of u is mildly regular. In particular, almost every value t allows for an open
neighborhood Ot Ă Ω as in theorem 7.1. Let us additionally define the open set O Ă Ω as the union
of all open balls inside Ω such that u is constant on one such ball. Then we may set

Ou :“
ď

tPU
OtYO,

which is clearly open in Ω. One can see that it is also dense as follows. Assume that Ou would not be
dense, then we could find an open ball U˚ Ă Ω such that U˚ is not contained in Ou. Since u cannot
be constant on U˚, its image upU˚q is necessarily an (non-degenerated) interval J . Then however
J Ă ra, bszU , which contradicts the full measure of U in ra, bs. �

It is not clear to what extent the foregoing theorem turns out to be sharp. Additional sufficient
conditions for better regularity properties of u remain to be investigated. I also want to highlight that
we do not know whether

L npΩzOuq “ 0 or L npΩzOuq ą 0

holds true for a general function of least gradient u.

On the other hand, it is immediate that the maximum regularity we may expect in full generality
is class Cm, since the planar function

Upx, yq “ j
´y

x

¯

for x, y P R, j P CmpRq

is of least gradient for suitable domains, say, some closed ball B Ă R2ztx “ 0u, while possibly not
being Cm`1.

We will now use the occasion of this section to recall the very enlightening example by John E.
Brothers from [46, 0. Introduction].

7.3 Example (Brothers). Let B Ă R2 denote the closed standard unit ball of R2 and denote by S its
boundary. We let fppx, yqpϕqq “ cosp2ϕq P CωpSq. Then the Lipschitzian function u with

upx, yq “

$

’

’

&

’

’

%

2x2 ´ 1 if |x| ě 1{
?

2, |y| ď 1{
?

2,

0 if |x| ď 1{
?

2, |y| ď 1{
?

2,

1´ 2y2 if |x| ě 1{
?

2, |y| ě 1{
?

2,

on the closed unit ball B is the unique function of isotropic least gradient for f .

7.4 Remark. The classical purpose of this example was to illustrate that functions of least gradient
might not be everywhere regular, but still allow for a "large" part of the domain to be. Notice also
that example 7.3 uses analytic boundary data and achieves analytic partial regularity. We remark also
that the function u from example 7.3 fulfills L 2pB zOuq “ 0.

We consider now an apropriately tweaked version of example 7.3.
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7.5 Example (Interpolating π). Let us define a sequence of boundary data fn P CωpSq via

fnppx, yqpϕqq “ cosp2nϕq such that #
`

f´1
n p0q

˘

“ 4n.

Then there exists a unique Lipschitzian function un P C0,1pΩq, which is of isotropic least gradient with
boundary data fn. One readily verifies (eg. by "drawing" level sets) that u´1

n p0q Ă B is the closed
4n-gon with vertices composed of f´1

n p0q. In particular, we find

L 2pB zu´1
n p0qq ÝÑ 0 as nÑ8,

which shows that the subset of Ou Ă Ω, on which an extremal is non-constant, can yet become
arbitrarily small in L n-measure.

7.2 Some Specific Regularity Theorems.

We close this section with a collection of results for specific assumptions on differentiability of the
involved data which our theorems 7.1 and 7.2 allow.

7.6 Corollary (Some Implications and Regularity Theorems). Assume that Ω is an open domain
of class Cm and f P CmpBΩq with m ě 4. Let u P C0,1pΩq be a function of anisotropic least gradient
with respect to the elliptic total variation Φ with uBΩ and let 0 P U . Assume that assumption pS q

holds.

pαq If Φ “ Θ has constant coefficients and Θ is at least of class C3,α for some 0 ă α ă 1, then there
exists an open neighborhood O0 Ă Ω such that u´1p0q Ă O0 and u is of class C1 on O0.

pβq If Φ “ µΘ where Θ has constant coefficients and µ is a positive weight function on Ω such that
Θ is at least of class C3,α and µ is at least of class C2,α for some 0 ă α ă 1, then there exists an
open neighborhood O0 Ă Ω such that u´1p0q Ă O0 and u is of class C1 on O0.

pγq The above item holds in particular for the weighted isotropic case, ie. when

Φpx, vq “ µpxq|v| such that µ P C2,αpΩq

for some 0 ă α ă 1, then there exists an open neighborhood O0 Ă Ω such that u´1p0q Ă O0 and
u is of class C1 on O0.

pδq More generally, if Φ is a Riemannian total variation, ie. when

Φpx, vq “
b

vTGpxqv where G P C2,αpΩ;Rnˆnq

for some 0 ă α ă 1 and the matrix field G is uniformly positive definite on Ω, then there exists
an open neighborhood O0 Ă Ω such that u´1p0q Ă O0 and u is of class C1 on O0.

Let us for now assume that m “ 8 (or m “ ωq.

pεq If Φ “ Θ has constant coefficients and Θ is of class Cς,α for some 3 ď ς ď 8 and 0 ă α ă 1,
then there exists an open neighborhood O0 Ă Ω such that u´1p0q Ă O0 and u is of class Cς´2 on
O0.
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pζq If Φ is a Riemannian total variation and G is of class Cς,α for some 2 ď ς ď 8 and 0 ă α ă 1

on Ω, then there exists an open neighborhood O0 Ă Ω such that u´1p0q Ă O0 and u is of class
Cς´1 on O0.

We shall now assume that Φ is smooth or analytic. Then:

pηq If m ě 4 and BΩ and f are of class Cm, then there exists an open neighborhood O0 Ă Ω such
that u´1p0q Ă O0 and u is of class Cm´3 on O0.

At last, we choose a fixed l P N.

pθq If Φ and D2Φ are of class Cl`1,α for some 0 ă α ă 1 with BΩ, f being of class Cl`3, then there
exists an open neighborhood O0 Ă Ω such that u´1p0q Ă O0 and u is of class Cl on O0.

If m ě n ´ 1, then all of the preceding regularity conclusions also hold on an open and dense set
Ou Ă Ω.

7.7 Remark (The Isotropic Case). We furthermore recover the claimed results from [46, 4.4,4.5]
with corollary 7.6pηq but we unfortunately lose another degree of differentiability owing to the different
choice of function spaces.

7.8 Remark (The Weighted Case). In view of the existence results of [47], where C2-regularity
for BΩ and f suffices to construct Lipschitzian functions of weighted isotropic least gradient (together
with additional assumptions independent of the differentiability, of course), higher interior regularity
for weights of class C2,α from corollary 7.6pγq appears plausible.
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8 Partial Boundary Regularity of Extremals.

The remaining sections 8 to 11 will now investigate additional structural properties, which functions
of anisotropic least gradient enjoy in the presence of local differentiability and partial regularity and
which also hail to some extent from example 7.3. We shall assume throughout that the assumptions
pDq and pS q are still in effect.

In this section, we will continue the investigation of section 7 to include partial regularity results
up to the boundary. The results we achieve will yet stay conditional, ie. even if we may apply theorem
7.1 near a given level set u´1ptq for a value t P U , we do not necessarily achieve the corresponding
boundary regularity at each f´1ptq of u.

However, much like for the classical boundary regularity results for minimizing currents, we are able
to show the existence of at least finitely many points where boundary regularity must hold true.

8.1 The Key Identity at Geometric Boundary Points.

Without loss of generality, we assume again that 0 P U is our value of the extremal function u P C0,1pΩq

of anisotropic least gradient of interest. We recall first from section 7, and more particularily the proof
of theorem 7.1, the existence of T ą 0 such that

Kpx, tq :“ Fpκtqpxq for x P Ξ and 0 ď |t| ď T,

is well-defined and of class CM where

M “ minpµ´ 2,m´ 3q.

While the proof of theorem 7.1 chose a point in ΞX Ω, we will now place our investigation at

x0 P f
´1p0q where f´1p0q “ BΞ “ ΞX BΩ.

By definition of F, this delivers

Kpx0, tq “ κtpx0q for all 0 ď |t| ď T

and hence

Bt Kpx0, tq “ Xpκpx0, tqq “
gradBΩ fpκpx0, tq

| gradBΩ fpκpx0, tq|2

due to the construction of κ as the local flow of level sets of f in section 5.3.

8.1 Lemma. Let v P Rn be tangential to f´1p0q at x0. Then Bt Kpx0, 0q P Tx0BΩ and

Bt Kpx0, 0q ¨ v “ 0.

Proof. This is clear, as
Y :“ gradBΩ fpκpx0, 0qq “ gradBΩ fpx0q ‰ 0

spans the normal space to f´1p0q at x0 inside Tx0BΩ and X is just a rescaled version. �
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The latter lemma especially implies the orthogonal decomposition

Tx0BΩ “ Tx0f
´1p0q k R ¨Xpx0q

and we record the following property of DK at boundary points x0.

8.2 Lemma (Rank pn´ 1q-Property of the Derivative). For each x0 P f
´1p0q we have that

rankDx Kpx0, 0q “ n´ 1 and rankDKpx0, 0q ě n´ 1.

Proof. As we know that
Kpx0, 0q “ ιΞpx0, 0q

and Ξ is a submanifold with boundary of class at least C3,α, the derivative Dx K simply embeds the
abstract tangent space of Ξ into the euclidean space Rn and hence has full rank n´ 1, from which the
lemma immediately follows. �

These assessments all follow rather immediately and correspond roughly to the fact that Ξ admits an
extension across BΞ (a fact which we also already used before) and the full tangent space at boundary
points is the tangent space to that extension. For our purposes it is however necessary to actually
achieve

rankDKpx0, 0q “ n,

since we are interested in inverting K. We will now formally prove that the full rank property from the
interior case also leads to local boundary regularity, while we will discuss sufficiencies for this matter
in section 8.2.

8.3 Corollary (Partial Regularity and Partial Boundary Regularity). Assume that DKpx0, 0q

is invertible at x0 P f
´1p0q. Then there exists an open neighborhood Ox0 Ă Ω of x0 such that

uOx0
P CMpOx0q.

where M “ minpµ´ 2,m´ 3q.

Proof. We recall by boundary regularity that Ξ is a submanifold with boundary of class Cν,α, where
ν “ minpµ,m´1q ě 3 and we shall extend Ξ across BΞ to an open submanifold Ξ̃ Ă Rn of corresponding
class Cν,α. Since

K : Ξˆ p´T, T q ÝÑ Rn

and we consider x0 P BΞ, we may consider x0 as an interior point of Ξ̃ and extend K to a function K̃

such that
K̃ : Ξ̃ˆ p´T, T q ÝÑ Rn

is again of class CM (since ν ě M) in both its variables. Applying the inverse function theorem to K̃

at px0, 0q leads to connected open neighborhoods U Ă Ξ̃ of x0 and V Ă Rn of x0 as well as T ą 0 such
that

K̃ : U ˆ p´T, T q ÝÑ V

is a diffeomorphism of class CM. As
K̃pUXΞqˆp´T,T q “ K,
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we infer that
K̃px, tq P Btu ě tu whenever x P U X Ξ, 0 ď |t| ă T

and thus
upK̃px, tqq “ proj2px, tq whenever x P U X Ξ, 0 ď |t| ă T.

The function proj2 ˝K̃
´1

is further of class CM on V . As

K̃px, tq “ κpx, tq for all x P BΞX U, 0 ď |t| ă T,

it follows by remark 5.15(2) that we may choose U such that pUzBΞq ˆ p´T, T q has exactly two
connected components and that

K̃ppBΞX Uq ˆ p´T, T qq “ V X BΩ.

Especially, also V zBΩ has exactly two connected components by diffeomorphicity and hence, they have
to be contained in Ω or in RnzΩ. From this we deduce that

K̃ppU X Ξq ˆ p´T, T qq “ V X Ω “: Ox0 ,

with
u “ proj2 ˝K̃

´1
on Ox0 Ă Ω

and the proof is finished. �

8.2 Sufficient Local Conditions for Partial Boundary Regularity.

Now we shall try to find sufficient conditions to enable corollary 8.3 and prove partial boundary reg-
ularity. Note that "partial" here is somewhat doubly referred to, as first not each level set admits
regularity at all, but even if we are dealing with eg. mildly regular values, then not each boundary
point might admit boundary regularity.

We begin this section by using the lemmas 8.1 and 8.2 to reformulate the full rank condition in
some first order properties of the involved hypersurfaces.

8.4 Proposition (Transversality and Partial Boundary Regularity). Let 0 P U and x0 P

f´1p0q. Then it holds

rankDKpx0, 0q “ n ðñ Ξ intersects BΩ transversely at x0.

Proof. We recall first that two submanifolds intersect transversely at x0 if their tangent spaces at x0

span Rn, ie. here
Tx0BΩ` Tx0Ξ “ Rn.

Let us first assume that rankDKpx0, 0q “ n. This means

imDx Kpx0, 0q ` R ¨ Bt Kpx0, 0q “ Tx0Ξ` R ¨ Bt Kpx0, 0q “ Rn.

Since in particular Bt Kpx0, 0q P Tx0BΩ by lemma 8.1, we deduce that intersection is transverse at x0.
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For the contrary, let the intersection at x0 be transverse. By construction, we have

Tx0f
´1p0q Ă Tx0BΩ and Tx0f

´1p0q Ă Tx0Ξ

and Bt Kpx0, 0q is orthogonal to Tx0f
´1p0q by lemma 8.1. Hence, if Bt Kpx0, 0q P Tx0Ξ would hold, then

Tx0BΩ “ Tx0f
´1p0q k R ¨ Bt Kpx0, 0q “ Tx0Ξ,

which contradicts transversality at x0. Thus, Bt Kpx0, 0q R Tx0Ξ and we infer with the aid of lemma
8.2 that rankDKpx0, 0q “ n. �

8.5 Remark. Proposition 8.4 allows for a different condition to check if information about the local
geometry is available. Note that this theorem does not claim that a transverse intersection is necessary
for partial boundary regularity of u, but provides a reformulation for our sufficient condition. Also, I
do not know to what genericity such transverse intersection is fulfilled.

Even though we equivalently expressed our condition in geometric terms, we still do not know whether
any such point actually always exist. The following argument will prove the existence of at least some
points.

8.6 Theorem (Existence of Boundary Regular Points.). Let 0 P U . Then each connected
component of Ξ admits at least one point x0 P BΞ such that there is an open neighborhood Ox0 Ă Ω of
x0 where

u P CMpOx0q for M “ minpµ´ 2,m´ 3q.

Proof. As every connected component of Ξ is a submanifold with boundary of the corresponding reg-
ularity of Ξ, it is furthermore true that each connected component does not admit non-trivial Jacobi
fields. Thus we directly assume Ξ to be connected without relabeling and prove the existence of at
least one regular point x0 P BΞ.

We decompose again like in the proof of theorem 7.1 for

Bt K|t“0 “ V `W on Ξ

such that
V pxq P TxΞ and W pxq P NΞpxq

and claim that
ζ “W ¨NΞ “ Bt K|t“0 ¨NΞ

is a solution to the Jacobi equation from definition 2.28 on Ξ. To this end, we recall by construction

HpFpκtqq “ 0 for all sufficiently small |t| ě 0,

from which we infer that

h´1 pHpFpκhqq ´ HpFpκ0qq “ h´1 pHpFpκhqq ´ HpιΞqq “ 0 for all sufficiently small |h| ą 0
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and thus, since t ÞÝÑ Fpκtq is at least of class C1 for |t| near 0, we find

DHpιΞq

ˆ

d

dt |t“0
Fpκtq

˙

“ 0.

We deduce that BtK|t“0 is of class C2,γ and it is a Jacobi field on Ξ with respect to ιΞ and z. We
furthermore recall from step 3 of the proof of theorem 7.1 that ζ ą 0 on ΞX Ω.

Assume then for a contradiction that Ξ and BΩ intersect nowhere transversely, which we may equiva-
lently express as

NΞpxq “ NBΩpxq for all x P f´1p0q.

Since we have by lemma 8.1 that

Bt K|t“0pxq P TxBΩ for all x P f´1p0q,

this yields
ζ “ Bt K|t“0 ¨NΞ “ Bt K|t“0 ¨NBΩ ” 0 on BΞ.

Consequently, as W is now a homogeneous Jacobi field on Ξ, ie. W P K, we infer ζ ” 0 on Ξ by
theorem 6.8 via dimK “ 0, which is a contradiction.

Hence, we have shown that there must at least be one x0 P BΩ such that Ξ and BΩ intersect transversely
at x0 and we may subsequently apply proposition 8.4 to get the desired neighborhood Ox0 Ă Ω with
u P CMpOx0q. �
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9 Fine Properties of Lipschitzian Functions of Least Gradient and Regularity.

Here we will review the a priori assumptions that we have imposed on the values of u that we want
to consider. While values hailing from the set U , the mildly regular values, were sufficient to induce
partial regularity for the extremal, we may actually even induce local regularity (value-wise) by weaker
assumptions. Furthermore, we may prove that the gradient actually behaves rather rigid on such level
sets and translates seamlessly to the smooth setting.
These strategies were (yet again) somewhat referenced in [46], but the actual application was without
details or was only sketched in the introduction of that paper. We shall of course, additionally, prove
these results directly for the anisotropic case as before.

In what follows, we will mainly deal with values and properties of the extremal on the level set for this
value. Therefore, we propose to refer to these properties as "fine" properties of the function of least
gradient (to some extent in the spirit of the paper [8]) and its level set structure. The main change
in this section is to drop the assumption on almost-everywhere existence of Du on some level set with
respect to H n´1.

9.1 Rectifiable Level Sets and Jacobi Admissibility.

Let us first observe the following lemma on the level set structure, which will prove to be useful.

9.1 Lemma. Let t P int rgpfq be such that

L npu´1ptqq “ 0 and t is a regular value for f .

Then
u´1ptq “ Btu ě tu “ Btu ď tu.

Proof. We treat the case u´1ptq “ Btu ě tu. By continuity, we have that Btu ě tu Ă u´1ptq and we
assume for a contradiction that x0 P u

´1ptq with x0 R Btu ě tu. By t being a regular value for f , it
holds x0 P Ω. If x0 R Btu ď tu, then there is an open neighborhood around x0, where u ” t and a
contradiction is immediate. Hence x0 P Btu ď tu X Ω. As x0 P spt |D1tuďtu|, it holds

L nptu ď tu XUpx0, ρqq ą 0 for all ρ ą 0.

On the other hand, since x0 R Btu ě tu, there is by continuity some ρ ą 0 with

tu ă tu XUpx0, ρq “ H ùñ tu ď tu XUpx0, ρq “ u´1ptq XUpx0, ρq.

Together we receive
L npu´1ptq XUpx0, ρqq ą 0,

which is again a contradiction. �

9.2 Remark. Note that this proof works as long as the level set of f equals it sub- and superlevel set
boundaries on BΩ, eg. also in rectifiable cases. In [41] we furthermore find an interpretation in the
distributional setting.
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We recall that we may assume that

rg f “ rg u “ ra, bs for some real numbers a ă b

by assumption pS q and our geometric maximum principles. Lemma 9.1 motivates the next class of
values that we want to investigate.

9.3 Definition (Rectifiable Values). We will say that t is a rectifiable value when t P V, where

V :“ t t P pa, bq | L npu´1ptqq “ 0,

t is a regular value of f u.

Yet again, t being regular for f of course excludes a and b, while lemma 9.1 shows that the boundaries
equal the level set and thus the level sets themselves are in particular rectifiable. In this section, we
will work with the class V, while we will also drop the last condition in the next section to investigate
fat level sets.

We now want to find out how behavior of the gradient on a rectifiable level set precisely matters
for the regularity theory.

9.4 Remark. This point is somewhat hidden, but existent, in the original paper. Indeed, in [46, 4.5
Theorem], the authors induce partial regularity by what I would call mildly regular values, while the
original assumptions throughout for the regularity near a fixed level set only need the existence of a
certain sequence related to the gradient of u (cf. [46, p. 510, 1.1(5,v)]). Roughly speaking, we need
difference quotients at one point to be bounded away from zero (while we may compare then for each
other point via the Harnack-Type inequality). I do however think that [46, p. 522, 4.2 Theorem, proof]
needs an additional argument to compare if the gradient need not exist (there is also no notion of the
point x˚ from [46, 1.1(5,v)] in that proof).

Let us again set t “ 0 and denote u´1p0q “: Ξ. As 0 P V, we have again that Ξ is a submanifold with
boundary of class Cν,α and we recall from proposition 4.15(2) that Ξ can only have finitely many con-
nected components such that each one has non-empty geometric boundary contained in f´1p0q Ă BΩ.

Comparing with 0 P U , where derivatives have existed on each connected component, we now sin-
gle out one (of the finitely many) connected components of Ξ which we denote

Σ Ă Ξ.

The hypersurface Σ inherits regularity from Ξ and we set

Θ :“ ΣX BΩ Ă f´1p0q.

Thus, the set Σ Ă Rn is a submanifold with boundary of Rn which is of class Cν,α. The boundary
submanifold Θ Ă Rn is of class Cm.

We recall the assumption from [46] and provide a clarifying lemma to refer more easily to such a
property.

9.5 Definition (Jacobi Admissibility). We say that the connected component Σ of Ξ is Jacobi
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admissible if there exists some x˚ P ΣX Ω and sequences

x˚i ÝÑ x˚ and t˚i ÝÑ 0

as iÑ8 such that
t˚i ą 0 and x˚i P Btu ě t˚i u X Ω

and
0 ă lim

iÑ8

|upx˚i q ´ upx
˚q|

|x˚i ´ x
˚|

ă 8.

9.6 Lemma (Characterization of Jacobi Admissibility). It holds, up to possibly changing the
sign of u:

Σ is Jacobi admissible.

ðñ There exists x˚ P ΣX Ω such that Dupx˚q ‰ 0 or Du does not exist at x˚.

Proof. Clearly, when Σ is Jacobi admissible, the gradient may not exist and vanish at the distinguished
point x˚ P ΣX Ω and the implication holds.

Conversely, let an x˚ P Σ X Ω be given such that Dupx˚q does not exist and vanish. Hence, ei-
ther Dupx˚q ‰ 0 or Du does not exist at x˚.

If Dupx˚q ‰ 0, we may decompose

Rn “ Tx˚Σ k RNΣpx
˚q

and notice, since u ” 0 on Σ, that

Dupx˚q “ BNΣpx˚qupx
˚qNΣpx

˚q with BNΣpx˚qupx
˚q ‰ 0.

By definition of the directional derivative, we find

0 ‰ BNΣpx˚qupx
˚q “ lim

hÑ0
h´1pupx˚ ` hNΣpx

˚qq ´ upx˚qq,

which yields a suitable sequence with appropriately bounded difference quotients along the normal
ray. Finally, the intermediate value theorem for continuous functions assures that we may choose such
points in the superlevel set boundaries.

Assume now further that Du does not exist at x˚ P Σ X Ω. Thus, we can find at least one sequence
zi ÝÑ x˚ such that

0 ă lim
iÑ8

|upziq ´ upx
˚q|

|zi ´ x˚|
ă 8

holds true (as otherwise Du would exist and vanish at x˚). We may assume zi R u´1p0q and select a
subsequence to arrange that

pziqiPN Ă tu ă 0u or pziqiPN Ă tu ą 0u.
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A possible passage from u to ´u allows us to choose the second alternative, while the function ´u P
BVpΩq is again a function of anisotropic least gradient. It remains to show that we may always choose
a point in the corresponding superlevel set boundary.
Consider the straight line from x˚ to zi. As u is continuous, this line has to intersect the superlevel
set boundary Btu ě upziqu X Ω in some point x˚i P Ω. Thus

|x˚ ´ x˚i | ď |x
˚ ´ zi|,

implying
|upziq ´ upx

˚q|

|zi ´ x˚|
ď
|upx˚i q ´ upx

˚q|

|x˚i ´ x
˚|

ă 8

and the claim follows by taking the lim inf and passing to the subsequence of px˚i q realizing it. �

9.7 Remark (The Sign of the Extremal). The slight abuse of notation of the sign of u without
loss of generality is also referenced in [46, 1.1(5,(vi-vii)]. Without it, we could proceed all arguments
regarding Jacobi admissibility with

t˚i ă 0 and x˚i P Btu ď t˚i u X Ω,

which is possible as 0 P V implies that Ξ equals its superlevel and sublevel set boundaries by lemma 9.1
and we can approximate from both sides value-wise. Also, if we pass from u to ´u and the anisotropic
total variation is not even in the second variable, then we also have to pass to

Φ˚px, vq :“ Φpx,´vq

when changing the sign, and ´u is a function of anisotropic least gradient with respect to Φ˚.

9.2 Regularity near Rectifiable Level Sets.

We can now return to the regularity theory and our approach is to deal with local regularity and
rigidity results near rectifiable level sets.

Obviously, there is
0 P U ùñ 0 P V

and each of the finitely many connected components of a mildly regular zero level set Ξ is Jacobi
admissible. The results of the preceding sections 7 and 8 hence have to follow as special cases of what
is possible for a general rectifiable level set.

9.8 Remark (On the Necessity of the Non-Vanishing Gradient). We recall for 0 P U from
section 6 and more particularily lemma 6.5 that the assumption that there is some x˚ P Ξ X Ω with
Dupx˚q ‰ 0 has entered for the first time in that particular result and the following construction of the
"special" Jacobi field ζ0 with positive lower bound. Regarding the remaining results, everything was
independent of the behavior of the gradient on the level set. We recall from the preceding sections, if
only 0 P V, that we also have:

(1) The Hausdorff convergence HpΞ, u´1ptqq ÝÑ 0 and the locally uniform expressions about tangent
spaces of Ξ as in section 2.4 and 4.3.
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(2) The existence of a one-parameter family of normal graph representations wt on boundary retracts
Ωρ as in proposition 5.9 with Harnack-type inequalities as in section 6.1 and theorem 6.3.

(3) The existence of a one-parameter family of global diffeomorphic deformations ιt as in section 5.4
and theorem 5.20.

We will use these results freely in the remainder of section 9 and suitable one-sided versions in section
10 in our study of fat level sets.

We can hence directly begin to construct the special Jacobi field and investigate the Jacobi nullity of
connected components Σ of Ξ. To do so, let us again assume and fix 0 P V. The next lemma relates the
distinguished sequence from the definition of Jacobi admissibility to the family of normal deformations
wt in accordance with remark 9.4.

9.9 Lemma (Jacobi Admissibility and Difference Quotients in Normal Direction). Let
Σ Ă Ξ be a connected component and assume that Σ is Jacobi admissible with distinguished point
x˚ P ΣX Ω. Then there exist a sequence t˚i Ñ 0 and m˚ ą 0 such that

0 ă m˚ ď

ˇ

ˇ

ˇ
u
´

pId`wt˚i
NΞqpx

˚q

¯

´ upx˚q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
pId`wt˚i

NΞqpx˚q ´ x˚
ˇ

ˇ

ˇ

ă 8.

for all i P N.

Proof. Recall that we have

pId`wtNΞqpx
˚q P Btu ě tu X Ω and pId`wtNΞqpx

˚q ÝÑ x˚

for all sufficiently small t ě 0 such that wt is defined near x˚ P Σ X Ω. Applying theorem 6.3(1) at
x˚ for the local Harnack-type inequality, there are a neighborhood V Ă Σ X Ω of x˚ and constants
C “ Cpx˚q ą 0 and T “ T px˚q ą 0 such that

suptwtpxq | x P V u ď C inftwtpxq | x P V u

for all 0 ď t ď T px˚q. By definition of Jacobi admissibility, there is some m ą 0 and a sequence

x˚i ÝÑ x˚ with upx˚i q ą 0

for all i P N such that we have
|upx˚i q ´ upx

˚q|

|x˚i ´ x
˚|

ě m ą 0

for all sufficiently large i. Note also that we have

u
´

pId`wt˚i
NΞqpx

˚q

¯

“ upx˚i q where t˚i “ upx˚i q.

By exploting x˚i ÝÑ x˚, it follows that

|Πpx˚i q ´ x
˚
i | ď |x

˚ ´ x˚i | and |Πpx˚i q ´ x
˚
i | “ wt˚i

pΠpx˚i qq

by the nearest-point property and the bijectivity of Π near x˚. Assuming furthermore via Πpx˚i q ÝÑ
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Πpx˚q that
Πpx˚i q P V and t˚i ď T for all i P N,

we infer
|x˚ ´ x˚i | ě wt˚i

pΠpx˚i qq ě C´1wt˚i
px˚q “ C´1 |x˚ ´ pId`wt˚i

NΞqpx
˚q|,

which leads by taking reciprocals to

8 ą

ˇ

ˇ

ˇ
u
´

pId`wt˚i
NΞqpx

˚q

¯

´ upx˚q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
pId`wt˚i

NΞqpx˚q ´ x˚
ˇ

ˇ

ˇ

“
|upx˚i q ´ upx

˚q|
ˇ

ˇ

ˇ
pId`wt˚i

NΞqpx˚q ´ x˚
ˇ

ˇ

ˇ

ě C´1 |upx
˚
i q ´ upx

˚q|

|x˚i ´ x
˚|

ě mC´1 “: m˚ ą 0

for all large i P N. �

9.10 Remark. Notice that the property above is immediate in case Dupx˚q ‰ 0, as the boundedness
away from zero holds as a matter of fact for all sequences x˚ ` tNΞ approaching x˚ P Σ. If, however,
the boundedness away from zero holds only true for difference quotients along one certain sequence
approaching x˚, I do see a need to compare the two sequences of difference quotients, which is not
detailed in [46], as we need a positive lower bound in normal direction to execute the blow-up along
wt.

With lemma 9.9 at hand, we may proceed with the remaining regularity theory as in the sections 7
and 8. We record the following result.

9.11 Proposition (Regularity near Jacobi Admissible Components). Let 0 P V and let Σ Ă Ξ

be a Jacobi admissible connected component. Then there exists an open neighborhood OΣ Ă Ω of Σ

such that
u P CMpOΣq

holds with M “ minpµ´ 2,m´ 3q ě 1. Furthermore, there exists at least one x0 P Θ “ ΣXBΩ and an
open neighborhood Ox0 of x0 in Ω such that

u P CMpOx0q

is valid.

Proof. The only necessary essential change to be made is to show why the Jacobi nullity of Σ vanishes.
Fixing the real sequence t˚i ą 0 with ti Ñ 0 as iÑ8 and m˚ ą 0 from lemma 9.9, we find

wt˚i
px˚q

t˚i
“

ˇ

ˇ

ˇ
pId`wt˚i

NΞqpx
˚q ´ x˚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
u
´

pId`wt˚i
NΞqpx˚q

¯

´ upx˚q
ˇ

ˇ

ˇ

ď
1

m˚
.

Thus, by choosing 0 ă ρ ă distpx˚, BΩq, we may proceed on the connected component Σ Ă Ξ as in
lemma 6.5 and section 6.2 to use the Harnack-type inequality on retracts of theorem 6.3(2) to compare
with the point x˚ P Σ X Ω for uniform bounds up to class C1,α for the family of functions wti{ti for
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i P N large enough. In particular, as in proposition 6.7, there exists

ζ0NΞ P C2,α
loc pΣX Ω,Rnq

with
DHpζ0NΞq ” 0 on ΣX Ω and ζ0 ě K´1 ą 0

for a Lipschitz constant K ą 0 of u and the comparison argument of theorem 6.8 shows that dimK “ 0

on Σ. As the proofs of theorem 7.1 and theorem 8.6 now translate without change by using the
dependence map F associated with the canonical inclusion ιΣ of Σ into Rn, our result follows. �

9.3 Definiteness of the Gradient of an Extremal.

With the regularity criterion from section 9.2 at hand, in the final part of this section we will proceed
in characterizing the behavior of the gradient on rectifiable level sets. To do so, we will draw some
rather immediate further conclusions from the regularity theory and introduce a new argument related
to, in a sense, the "propagation" of the gradient of u along a rectifiable level set. We find especially
that Du behaves exactly as for a "usual" regular level set in the differentiable sense.

Let us first begin by disjointly decomposing the level set Ξ :“ u´1p0q for 0 P V such that

Ξ “
N
ď

i“1

Σi “

M
ď

j“1

Σj Y

K
ď

k“1

Σk, 1 ă N ă 8, M `K “ N,

where each Σi is a connected component and each connected component Σj is Jacobi admissible while
each connected component Σk is not.

As Jacobi admissibility was particularily implied by possible non-existence of the gradient of u, we
straightforwardly obtain the next proposition.

9.12 Proposition (Existence of Du). Let 0 P V. Then the derivative Du exists everywhere on ΞXΩ.

Proof. Using the above decomposition of Ξ, we find by proposition 9.11 that there is an open neigh-
borhood OΣj Ă Ω such that

Σj X Ω Ă OΣj and u P C1pOΣj q

for all j “ 1, ...,M . If Du would further not exist at some x P Σk X Ω, then Σk would be Jacobi
admissible. �

Clearly, we do not know any continuity of Du transverse to each Σk, but we may infer by the very
definition that Du “ 0 on each Σk X Ω. Fixing one Σ :“ Σk and denoting its geometric boundary by
Θ, we observe that we still have

} gradBΩ f} ‰ 0 on Θ Ă BΩ

as Θ is composed of finitely many connected components of the regular level set f´1p0q Ă BΩ. The
next result is henceforth immediately clear.
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9.13 Proposition (Lack of Boundary Regularity). Let 0 P V. If Σ Ă Ξ is a connected component
of Ξ with geometric boundary Θ which is not Jacobi admissible, then no x0 P Θ admits an open
neighborhood Ox0 Ă Ω such that

Du P CpOx0 ,Rnq

holds. �

9.14 Remark. The propositions 9.12 and 9.13 illustrate that connected components of rectifiable level
sets which are not Jacobi admissible account for rather singular behavior of Du. It is not clear to me
to what extent in genericity these components appear for functions of anisotropic least gradient (or
whether possibly all connected components Σ are in fact Jacobi admissible).

We are now going to sharpen the results of proposition 9.12 in the case of Jacobi admissibility. Given
a Jacobi admissible connected component Σ :“ Σj Ă Ξ, we can infer by proposition 9.12 that there is

x˚ P ΣX Ω such that Dupx˚q ‰ 0,

as there has to be at least one sequence of difference quotients being in absolute value bounded away
from 0 at x˚ while Dupx˚q exists. Clearly, this however a priori does not exclude the possibility of
some different

x̄ P ΣX Ω such that Dupx̄q “ 0.

Realizing this assertion is the content of our next theorem.

9.15 Theorem (Definiteness on Rectifiable Level Sets). Let 0 P V. Then for any connected
component Σ Ă Ξ it holds:

Either Du ‰ 0 on ΣX Ω or Du ” 0 on ΣX Ω.

Proof. We already know by proposition 9.12 that Du necessarily exists everywhere on Ξ X Ω and we
may assume that the connected component Σ is Jacobi admissible. Hence, it will suffice to assume
that there are two points, x˚, x̄ P ΣX Ω, such that

Dupx˚q ‰ 0 and Dupx̄q “ 0

and we must derive a contradiction from this.

We can find ρ ą 0 sufficiently small such that x˚, x̄ P Ωρ and fix ε ą 0. Due to the gradient
vanishing at x̄, there is also δ̄ ą 0 such that

|upx̄q ´ upyq|

|x̄´ y|
ă ε

whenever |x̄´ y| ă δ̄. This corresponds to

ε´1 ă
|x̄´ y|

|upyq|

for all such y with the aid of x̄ P Ξ. Since we can assume that we may invert the nearest-point
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projection on nearby level set boundaries near x̄ P ΞX Ωρ, we may choose

y “ pId`wtNΞqpx̄q P Btu ě tu X Ω

for appropriately small t ą 0 and receive

ε´1 ă
|x̄´ pId`wtNΞqpx̄q|

t
“
wtpx̄q

t
.

Choosing a connected and compact K with ΣXΩρ Ă K Ă Σ and by the Harnack-type inequality from
theorem 6.3(2), there exist constants C ą 0 and T ą 0 such that

suptwtpxq | x P Ku ď C inftwtpxq | x P ΣXKu

holds uniformly in 0 ď t ď T when ρ ą 0 is small enough.

On the other hand, as Dupx˚q ‰ 0, we may also find δ˚ ą 0 and m˚ ą 0 with

m˚ ď
|upx˚ ` hNΞq ´ upx

˚q|

h

whenever 0 ă |h| ă δ˚ and using an orthogonal decomposition of Rn in terms of tangent and normal
space at x˚ P ΣX Ω. Assuming t ą 0 small enough such that wtpx˚q is defined with wtpx˚q ă δ˚, we
can hence choose

h “ wtpx
˚q such that pId`wtNΞqpx

˚q P Btu ě tu X Ω

in the above inequality for sufficiently small t ą 0 and rearrange for

|pId`wtNΞqpx
˚q ´ x˚|

|u ppId`wtNΞqpx˚qq ´ upx˚q|
“
|pId`wtNΞqpx

˚q ´ x˚|

t
ď

1

m˚
,

which of course again implies
wtpxq

t
ď

C

m˚

for all suffciently small t ą 0 and x P K.

Set now x “ x̄, choose ε “ m˚

C and conclude by comparing with the uniform Harnack-type inequality
that, whenever t ą 0 is small enough,

ε´1 “
C

m˚
ă
|pId`wtNΞqpx̄q ´ x̄|

t
“
wtpx̄q

t
ď

C

m˚
,

which is the sought contradiction. �

Applying the foregoing theorem to mildly regular and rectifiable values, we also obtain the following
immediate consequences on the rigidity of Du.

9.16 Corollary (Mildly Regular Values Are Regular). Let 0 P U . Then 0 is a regular value for
uΩ.

99



Regularity Theory for Anisotropic Least Gradient Problems. (Ph. D. Thesis)

Proof. The extremal u is at least of class C1 near ΞXΩ due to theorem 7.1 and the continuous gradient
of u may not vanish on ΞX Ω due to theorem 9.15. �

9.17 Corollary. Let 0 P V and Σ Ă Ξ. If Σ is Jacobi admissible, then Du ‰ 0 on ΣX Ω.

Proof. The last proof localized to the connected component Σ Ă Ξ. �

100



Regularity Theory for Anisotropic Least Gradient Problems. (Ph. D. Thesis)

10 The Behavior of an Extremal near a Fat Level Set.

In this section of the thesis we turn to a further characterization of the regularity of functions of
anisotropic least gradient which will now also drop the assumption that the level set equals its sub-
and superlevel set boundaries.

More concretely, we precisely want to find out "how" functions of anisotropic least gradient approach
their fat level sets, by which we understand that a level set has positive top dimensional Lebesgue
measure.
As is easily observed for topological reasons and because the level set is fat, we may choose some point
in one of the level set boundaries of a (locally) fat level set and locally partition a small neighborhood
into two parts: One where the function is constant and one where it varies. Obviously the levels will
converge from the varying side by continuity, but we a priori do not know anything about the behavior
of higher derivatives. Our results here will show that, in fact, also the higher derivatives allow for
continuous extensions across such level set boundaries.

10.1 The Topology of Boundary Regular Level Sets.

Recalling the definition of the classes of values U Ă rg u and V Ă rg u, we consequently drop one
further assumption and introduce the following definition.

10.1 Definition (Boundary Regular Values). We will say that t is a boundary regular value when
t PW, where

W :“ t t P pa, bq | t is a regular value of f u.

Our purpose now is therefore of course to study also fat level sets (or respectively, fat components of
level sets) and how regularity from the boundary data f can propagate here to the full domain. Since

t PW and L npu´1ptqq “ 0 ùñ t P V,

the "slim" case is already covered and we shall further assume without loss of generality that t P W
with

L npu´1ptqq ą 0 for the remainder of section 10.

We again assume and set
pt “ 0q PW and Ξ :“ u´1p0q.

Note that the set Ξ here is bestowed with a different meaning than before as Ξ is now not necessarily
globally a manifold anymore. Therefore we shall again start with some elementary observations on the
topological structure of such a level set.

10.2 Lemma. Let 0 PW. Then Ξ has only finitely many connected components.

Proof. Assume we had infinitely many connected components. Then each connected component of
Ξ “ u´1p0q contains connected components of Btu ě 0u and Btu ď 0u and we hence have infinitely
many, which is not possible by proposition 4.15(2). �
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Owing to lemma 10.2, we will decompose

Ξ “
N
ď

i“1

Σi 1 ď N ă 8,

for the union of connected components of Ξ and subsequently deduce the following structural result
with the aid of some more terminology.

10.3 Definition. Let 0 P W. Then a connected component Σ Ă Ξ of the zero level set Ξ is called
rectifiable if

Σ Ă Btu ě 0u X Btu ď 0u

and it is called fat if
L npΣq ą 0.

10.4 Lemma (Boundary Regular Decomposition). If 0 P W, then Ξ can be decomposed into
finitely many connected components which are either rectifiable or fat.

Proof. It remains to show that any connected component Σ of Ξ is either rectifiable or fat. Assuming
that L npΣq ą 0, then Σ is fat and cannot be contained in Btu ě 0u X Btu ď 0u, as the latter set has
L n measure zero. Thus Σ is not rectifiable.

When L npΣq “ 0, then Σ is not fat. As moreover

ΣX BΩ Ă f´1p0q Ă Btu ě 0u X Btu ď 0u,

we assume for a contradiction that there exists some point

x0 P ΣX Ω with x0 R Btu ě 0u X Btu ď 0u.

If x0 is contained in neither level set boundary, then we could find some open ball U about x0 on
which u ” 0 and which is, by maximality of the connected component of x0, included in Σ, which
immediately contradicts L npΣq “ 0. Hence we assume further without loss of generality that

x0 P Btu ě 0u and x0 R Btu ď 0u.

Now, as in particular x0 P spt |D1tuě0u| XΩ, basically the same argument as in lemma 9.1 leads to the
existence of some r ą 0 with L npu´1p0q XUpx0, rqq ą 0 with also u´1p0q XUpx0, rq being connected.
Hence, again by maximality of the connected component, we find the contradiction L npΣq ą 0. �

10.5 Remark. We especially highlight the following fact from the last proof and the proof of lemma 9.1:
As soon as there is some zero x0 P Ω, which is contained in precisely one of the level set boundaries,
the connected component of this point x0 inside u´1p0q is fat and we may locally partition small balls
U about this point into a "varying" and a "constant" side in terms of connected components of U
without the level set boundary.

Decomposing further with the aid of lemma 10.4, we shall write

Ξ “
Nr
ď

k“1

Σk Y

Nf
ď

l“1

Σl, with 1 ď Nr `Nf “ N ă 8,
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where the connected components Σk Ă Ξ Ă Ω are rectifiable and the connected components Σl Ă Ξ Ă Ω

are fat.

10.2 General Deformation Results and Regularity for Rectifiable Components.

We will now recall suitable one-sided versions of our previous results to be able to work with a gen-
eral level set whose upper and lower level set boundaries need not necessarily coincide. Most of the
previous results will follow verbatim but we use the occasion to recall some details. Afterwards we
will acknowledge that rectifiable components of a general boundary regular level set allow for the same
regularity theory as developed in section 9.

We shall thus consider without loss of generality the upper level set boundary Btu ď 0u and pro-
vide one-sided results for tŒ 0 as before. Note that, of course, the other case can also be reduced to
this form by passing from u to ´u and remaining of anisotropic least gradient.

10.6 Remark. All remaining results from the sections 2.4, 4,5 and 6.1 yet again follow similarly (compare
also to remark 9.8) with the only change that we are now bound to consider t ą 0 in each of those
results. In particular, we recall:

(1) We have the one-sided Hausdorff convergence u´1ptq ÝÑ Btu ď 0u for tŒ 0.

(2) We have the existence of global diffeomorphisms ιt : Btu ď 0u Ñ Btu ě tu of class C2,α, which
allow us to appropriately deform level sets into close ones.

(3) We have the existence of normal deformations wt on retracts and local and uniform Harnack-type
inequalities on connected components of Btu ď 0u.

In case we choose a rectfiable connected component Σ of Ξ we will now quickly show that the results of
section 9 may be localized to such a connected component. In particular, all regularity results remain
valid near Σ.

10.7 Proposition (Regularity and Rectifiable Components). Let 0 P W and Σ Ă Ξ be a
rectifiable connected component of Ξ. Then all regularity results of section 9 remain true localized at
the connected component Σ.

Proof. In view of section 9.2, all that remains is to show that all deformation results can be extended
to two-sided versions near Σ Ă Ξ. We infer from the definition of a rectifiable component that Σ is a
connected component for both Btu ě 0u and Btu ď 0u and applying the one-sided results iteratively
will thus near Σ yield the argument, since, in case of Jacobi admissibility, the one-parameter family
Fpκtq again parametrizes the correct level set boundaries near Σ. �

10.3 Regularity near the Level Set Boundary of a Fat Component.

With the case of a rectifiable connected component covered by slight modification of the results of
section 9, we will now turn to the case of an actually fat connected component Σ Ă Ξ. Such a fat
component may contain more than one connected component of the level set boundaries.

10.8 Example (Brothers’ Fat Level Set). We may allude to the example of Brothers to illustrate.
In this case, the extremal has precisely one connected fat level set,

Ξ “ u´1p0q with 0 PW,
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and ΞX tBtu ě 0u and ΞXBtu ď 0u have each precisely 2 connected components, which we denote as
Σ1, ...,Σ4 (corresponding to the 4 straight parts of the boundary of the square), that we may choose.
Quickly checking the solution formula from example 7.3 yields that the derivative exists nowhere on
pΣ1 Y ...Y Σ4q X Ω.

Thus, we proceed to fix a connected component Σ Ă Ξ such that L npΣq ą 0 and we will decompose
it into the following finite unions of connected components

ΣX Btu ě 0u “
Nl
ď

k“1

Σk and ΣX Btu ď 0u “
Nu
ď

l“1

Σl,

where 1 ď Nl, Nu ă 8. The next result combines differentiable strong maximum principles, which we
have already derived and used before in the context of local graph representations with sign conditions,
with topological arguments to rule out the possibility of intersections of the upper and lower level set
boundaries inside the domain.

10.9 Proposition. Let 0 PW and consider a fat connected component Σ Ă Ξ. Then

Btu ě 0u X Btu ď 0u X ΣX Ω “ H.

Proof. Assume there was x0 P Btu ě 0u X Btu ď 0u X ΣX Ω. As

Btu ě 0u “ Btu ă 0u

as sets in Ω, we find

tu ă 0u Ă tu ď 0u and x0 P Btu ă 0u X Btu ď 0u.

As both oriented boundaries are smooth and minimizing, standard arguments show that both bound-
aries may be written locally at x0 as a graph over the same hyperplane. Further, the above set inclusion
is yielding a non-negative sign condition for the graph functions. Hence, the same linearization and
linear elliptic partial differential equation argument an in section 6.1 (see eg. also [24, Lemma 4.4]) for
the difference of non-parametric representations implies

Btu ě 0u X U “ Btu ď 0u X U for some open neighborhood U Ă Ω of x0.

We let Σ˘ Ă Σ denote the connected components of x0 in respectively Btu ě 0u and Btu ď 0u. A
standard topological argument exploiting the connectedness, the local geometric maximum principles
for the graph functions and the boundary regularity of Σ then yields that

Σ` X Ω “ Σ´ X Ω

where hence
Σ` “ Σ´ “: Σ˚ with Σ˚ Ă Btu ě 0u X Btu ď 0u X Σ.

We subsequently reach a contradiction to L npΣq ą 0 if we may show that Σ˚ “ Σ. To do so, by
connectedness of Σ˚, note that Σ˚ divides sufficiently small connected neighborhoods V Ă Ω of Σ˚

into two connected components, which are contained in tu ą 0u and tu ă 0u. Thus V X Σ “ Σ˚ and
therefore Σ “ Σ˚ by maximality of Σ as a connected component of u´1p0q. �
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10.10 Corollary. Each point
x0 P pBtu ě 0u Y Btu ď 0uq X ΣX Ω

admits an r “ rpx0q ą 0 such that Upx0, rqzpBtu ě 0uYBtu ď 0uq has exactly two connected components
and u ” 0 on one of these components.

Proof. Any such x0 P Σ X Ω can at most be contained in one level set boundary by proposition 10.9
and the claim follows by remark 10.5. �

Let us now investigate the regularity of the extremal u as we approach the level set boundaries of such
a fat connected component.

10.11 Example (Regularity and Brothers’ Fat Level Set). Recall the 4 connected components
Σ1,...,Σ4 Ă Ξ of the level set boundaries of the zero level of Brothers’ example with 0 PW and choose
any

x0 P pΣ1 Y ...Y Σ4q X Ω.

As the solution is constructed from polynomials except for the zero level set, we may fix a small ball
Upx0, rq Ă Ω and extend as u as

ũ P CωpUpx0, rqq such that ũUpx0,rqzu´1p0q “ u

by continuing across Bpu´1p0qqXΩ locally with the adequate polynomial function. In particular, there
locally exists an analytic extension of u across the level set boundaries inside Ω, which is non-constant.

We will now investigate this phenomenon for the level set boundaries associated with fat components of
general functions of anisotropic least gradient. As the first preparing step, we prove a definiteness-type
result analogous to section 9.3 for the fat case.

In what follows we shall fix some connected component

Σ˚ Ă ΣX Btu ď 0u

to investigate for our considerations. We recall for the sake of completeness that Σ˚ is hence a sub-
manifold of Rn of class Cµ,α with boundary of class Cν,α.

10.12 Lemma (Definiteness on Fat Components). Let 0 PW. Then Du either exists and vanishes
everywhere on Σ˚ X Ω or Du exists nowhere on Σ˚ X Ω.

Proof. Let x0 P Σ˚ X Ω, then by corollary 10.10 there exists r ą 0 such that u has, in particular, a
minimum in x0 on Upx0, rq. Thus, if Dupx0q exists, then Dupx0q “ 0.

Assume now that there would be x˚, x̄ P Σ˚ X Ω such that Du does not exist at x˚ and Dupx̄q “ 0.
Using the same strategy as in the characterization from lemma 9.6, we find a sequence

x˚i ÝÑ x˚ and t˚i Œ 0

as iÑ8 such that
t˚i ą 0 and x˚i P Btu ě t˚i u X Ω

105



Regularity Theory for Anisotropic Least Gradient Problems. (Ph. D. Thesis)

and m ą 0 with the property that

0 ă m ď
|upx˚i q ´ upx

˚q|

|x˚i ´ x
˚|

“
t˚i

|x˚i ´ x
˚|

for all i P N.

Possibly choosing i large enough and using the family of functions wt associated with Σ˚ via remark
10.6, we may as well assume that

wt˚i
px˚q

t˚i
ď

1

m˚

for some m˚ ą 0 and all i P N by following along the lines of lemma 9.9. Now the same argument
as in theorem 9.15 delivers the contradiction together with the Harnack-type inequality from theorem
6.3(2), as the sequence of functions wt˚i must blow up at x̄ while it is uniformly bounded at x˚. �

Assuming the case of non-existence of the derivative on some connected component of the level set
boundary of a fat level set, our previous methods also readily allow for a result on the Jacobi nullity
in that new case.

10.13 Proposition (The Jacobi Nullity on Fat Components). Let 0 P W and assume that Du
does not exist on Σ˚ X Ω. Then dimK “ 0.

Proof. Basically the same proof as the two times before, which is conducted here only on the connected
component Σ˚ Ă ΣXBtu ď 0u with the family of functions wt{t for t ą 0. As in the last proof, the non-
existence of Du at any (and thus, every by lemma 10.12) x˚ P Σ˚XΩ yields the uniform boundedness
of wt{t along a subsequence and the blow up argument can be performed as already done before, eg.
in the proof of proposition 9.11. �

10.14 Remark. One may also somewhat reasonably conjecture that in fact all boundary regular con-
nected fat level sets do not admit an existing gradient on their level set boundary in Ω, which would
imply that proposition 10.13 becomes unconditional.

At last, we turn to the continuous extendability of derivatives of u near fat level set from the varying
side and we may prove the following theorem. Let us remark that, while we will immediately provide
regularity up to the fat level set boundary, actually also regularity near the fat level set boundary was
not even clear before, but our construction in terms of dependence on boundary level sets can also be
applied here.

10.15 Theorem (Regularity near Fat Level Sets). Let 0 P W, let Σ Ă Ξ be a fat connected
component of Ξ and let Σ˚ be a connected component of Btu ď 0u X Σ such that Du does not exist on
Σ˚XΩ. Then for all x0 P Σ˚XΩ there exists some ball Upx0, rq Ă Ω about x0 with r “ rpx0q ą 0 and
a function ũ P CMpUpx0, rqq such that

ũUpx0,rqzu´1p0q “ u with M “ minpµ´ 2,m´ 3q ě 1.

In particular, u is of class CM up to the boundary component Σ˚ Ă Σ inside Ω from both its sides.

Proof. Following along remark 10.6, there are embeddings

ιt : Σ˚ ÝÑ Btu ě tu, ιt P C2,αpΣ˚,Rnq

106



Regularity Theory for Anisotropic Least Gradient Problems. (Ph. D. Thesis)

for t ą 0 sufficiently small whose restriction to BΣ˚ is the restriction of the regular level set flow κt
to BΣ˚. Proposition 10.14 allows to use the dependence map F on the space C2,γpBΣ˚,Rnq for any
0 ă γ ă α ă 1 to define our usual one-parameter family

Kpx, tq :“ Fpκtqpxq for x P Σ˚, |t| sufficiently small

and observe again that K is of class CM. Clearly, D1Kpx0, 0q again immerses the tangent space to Σ˚

into Rn at x0 for any x0 P Σ˚ X Ω and, similar to our previous regularity results, we infer that DK

has full rank at px0, 0q by using difference quotients with positive real h. The inverse function theorem
thus again yields connected neighborhoods U Ă Σ˚ of x0 and V Ă Rn of x0 and a real number T ą 0

such that
K : U ˆ p´T, T q ÝÑ V

is a diffeomorphism of class CM. As again, by choosing t ą 0 sufficiently small, we find

u ˝K “ proj2 on U ˆ p0, T q,

since now the images KpΣ˚, tq “ ιtpΣ
˚q only coincide for non-negative t, and hence

u “ proj2 ˝K
´1 on K pU ˆ p0, T qq .

We may assume that U ˆ rp´T, 0q Y p0, T qs and V zΣ˚ have precisely two connected components and
that the components of V zΣ˚ are contained in tu ą 0u and tu “ 0u respectively. As K preserves
connected components (as a diffeomorphism on U ˆ p´T, T q) and Kpx0, tq P u

´1ptq for t ą 0, we
observe that

KpU ˆ p0, T qq “ V X tu ą 0u

and choosing a small ball about x0 inside V proves the theorem. �

10.16 Remark. Of course, u also always allows for a constant extension from the constant side of the
local subdivision.
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11 Local Foliations by Minimal Hypersurfaces.

We want to collect in this last section of the regularity theory some consequences of the preceding
sections on how the level sets fill out the domain, ie. to what extent they provide a foliation of the
domain by (anisotropic) area-minimizing hypersurfaces.

11.1 Remark. We directly remark that such a foliation property is not guaranteed a priori, as our
boundary regularity proof is only conditional and we can, for appropriate level sets, only guarantee
the existence of an open neighborhood

Ot Ă Ω such that u´1ptq X Ω Ă Ot .

As these neighborhoods might become smaller and smaller towards BΩ, it does not follow that they
need contain any u´1psq with t ‰ s and hence, that level sets near u´1ptq actually foliate an open
superset.

Now, we combine the local differentiability of at least class C1 in the interior of Ω from our regularity
theory with the definiteness of the gradient on nice hypersurfaces to conclude for an actual foliation.
We provide a proof for the case of a mildly regular value.

11.2 Theorem (Stability near Mildly Regular Level Sets). Let t P U be a mildly regular value.
Then there exists an open neighborhood Pt Ă Ω of u´1ptq X Ω and T ą 0 such that

u´1psq ĂPt for all 0 ď |s´ t| ď T and u P CMpPtq.

Proof. We may assume that u´1ptq is connected. From theorem 7.1 we have the existence of an open
neighborhood Ot Ă Ω of ΞX Ω such that u P CMpOtq. Hence there is x0 P u

´1ptq X Ω and r ą 0 such
that

Du ‰ 0 on Upx0, rq Ă Ot Ă Ω.

Thus, upUpx0, rqq Ă R is not a singleton and upx0q an interior point. Fixing T ą 0 such that

rt´ T, t` T s Ă upUpx0, rqq,

we infer that the level sets of levels in rt´ T, t` T s fulfill

u´1psq XUpx0, rq “ Btu ď su XUpx0, rq “ Btu ě su XUpx0, rq.

Possibly readjusting T ą 0, we may also by lemma 5.19 assume that

Btu ě su, Btu ď su are connected for s P rt´ T, t` T s.

Using the differentiable versions of geometric maximum principles with tu ă su X Ω Ă tu ď su X Ω

and a simple connectedness argument, we therefore receive

Btu ě su X Ω “ Btu ď su X Ω for s P rt´ T, t` T s,

which yields, by additionally assuming that f´1psq is regular for all s P rt´ T, t` T s, that

Btu ě su “ Btu ď su for s P rt´ T, t` T s.
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Let us assume for a contradiction that there is some

x0 P u
´1psqzBtu ě su “ u´1psqzBtu ď su

for such s. Then x0 P Ω and L npu´1psqq ą 0, which yields that the connected component Σ of x0 in
u´1psq is fat, but proposition 10.9 would imply that Btu ě su and Btu ď su would be disjoint in Σ

inside Ω. We hence find

u´1psq “ Btu ě su “ Btu ď su for s P rt´ T, t` T s.

This proves that s P V for all s P rt ´ T, t ` T s and we recall that each such s allows for some point
xs P Upx0, rq Ă Ω such that Dupxsq ‰ 0. We conclude that each level set u´1psq is Jacobi admissible
and hence each such real s allows for a neighborhood Os Ă Ω with u´1psq X Ω Ă Os and u P CMpOsq

by proposition 9.11. We define
Pt :“

ď

sPrt´T,t`T s

Os Ă Ω,

then Pt is clearly open as a union of open sets and we notice

u´1psq ĂPt for all s P rt´ T, t` T s, u P CMpPtq,

which finishes the proof. �

11.3 Remark. These stability criteria provide a definitive answer for the mildly regular case. Of course,
by corollary 9.16, each mildly regular value is moreover classically regular, but the direct applicability
of corollary 9.16 falls short by the behavior of a single neighborhood Ot Ă Ω described in remark 11.1.

We further fix an implication from the last proof to conclude that mildly regular values behave much
like their regular counterparts.

11.4 Corollary (Stability of Mildly Regular Values and Local Foliations). Let t P U , then
there is T ą 0 such that

s P U whenever |s´ t| ď T.

Moreover, the level sets of u foliate an open neighborhood of u´1ptq in Ω of class CM with M “

minpµ´ 2,m´ 3q.

Proof. Using the set Pt Ă Ω from theorem 11.2, we first find that all level sets u´1psq for s close enough
to t are contained in Pt. Choosing finitely many points in each connected component of u´1ptq with
Du ‰ 0 implies that we may also find points in each connected component of u´1psq where Du ‰ 0

by continuity of the gradient. Thus, theorem 9.15 yields that Du ‰ 0 on u´1psq X Ω and hence, there
is in particular T ą 0 with s P U for all such real s with |s ´ t| ď T . The uniform continuity of u on
Ω finally yields on open neighborhood V Ă Ω of u´1ptq such that

|upxq ´ t| ď T for all x P V

from which we infer the foliation property for V XΩ by standard results about regular level sets with
Du ‰ 0. �

11.5 Remark. Recalling the interpolation example 7.5, we also acknowledge that there is no lower bound
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what percentage of the domain Ω will be foliated and arbitarily small foliations (in L n-measure) are
possible.
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12 Existence Results for Lipschitzian Functions of Weighted Least Gradient.

This section is disjoint from the higher partial regularity theory that we have discussed before, but
will deal with its a priori assumptions: Namely, we shall find sufficient conditions for the existence of
Lipschitzian functions of anisotropic least gradient for total variations

Φpx, vq “ µpxq|v|

for sufficiently regular weights µ, which we shall call functions of weighted least gradient.

Our method of choice to do so will involve elliptic quasilinear problems with (strict) boundary cur-
vature estimates, which we will introduce in the first subsection, and linearly scaled boundary data
yielding convergence to functions of weighted least gradient. The scaling method used here hails from
[41] and the results of this section are contained in the paper [47]. For the remainder of this section,
the following assumptions shall hold true:

(1) Let us assume that Ω Ă Rn is open, bounded and connected with BΩ is class C2 and with f P C2pBΩq

and µ : Ω Ñ R of class C2.

(2) We will moreover fix some α ą 0 such that we may estimate α ď µ ď α´1 and let d denote the
signed distance to BΩ.

(3) We will choose signs for section 12 such that d is positive on Ω and NBΩ is the inner unit normal
vector. The mean curvature H of BΩ will be non-negative for convex sets.

(4) We will further often sum over repeated indices in this section.

12.1 Elliptic Quasilinear Approximating Problems.

We are in the following interested in solutions uδ to the Dirichlet problem
#

Qu :“ aijpx,DuqDiju` bpx,Duq “ 0,

uBΩ “ f{δ,
(P(δ))

on the domain Ω with Dirichlet data f and where δ ą 0 is small and with the quasilinear differential
operator Q given by

aijpx, pq :“ µpxqpp1` |p|2qδij ´ pipjq, bpx, pq “ p1` |p|2qpDµpxq ¨ pq.

We may usually assume that f can be extended to Ω or Rn. Let us now recall that λ “ λpx, z, pq and
Λ “ Λpx, z, pq denote the smallest and largest eigenvalues of the matrix a “ paijq such that

λ|ξ|2 ď ξT aξ ď Λ|ξ|2 for all ξ P Rn

and the Bernstein-E -function is defined via

E px, z, pq :“ pT apx, z, pqp.

We first collect some technical necessities related to decompositions for the differential operators.
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12.1 Lemma. We have

λpx, z, pq “ µpxq, Λpx, z, pq “ µpxqp1` |p|2q,

and
E px, z, pq “ µpxq|p|2.

In particular, the problem Ppδq is elliptic on Ωˆ Rn.

Proof. Simple computations based on the minimal surface/prescribed mean curvature equation case
(eg. [13, Section 10, Example (iii)]) and the fact that µ is uniformly bounded from below. �

In what follows, we will at first denote by uδ a sufficiently regular solution to Ppδq. We will now try
to establish the existence of such solutions via the continuity method. In view of the a priori bounds
for the interpolated problems with σ P r0, 1s, we shall already assume inequality pC q for boundary
gradient estimates, which is stated in the later theorem 12.5 and inequality pG q from proposition 12.6
for an easy gradient maximum principle. We resume:

12.2 Proposition (Existence of Solutions). There exists a unique solution uδ P C2pΩq X C1pΩq to
Ppδq if the boundary curvature inequality pC q and the differential inequality pG q for the weight µ holds.

Proof. We shall set δ “ 1 without loss of generality, replace for f and BΩ the regularity C2 by C2,α for
some 0 ă α ă 1 and recall the following cut-off homotopy construction from [49, Page 419, Remark]
to exploit the boundary curvature estimates in the optimal fashion:

Let a smooth γ : R ÝÑ r0, 1s be such that

γ ” 0 for x ď 0, γ ” 1 for x ě 1{2

and set Γppq :“ γp|p|2 ´ 1{2q. Then for any σ P r0, 1s we define

bpx, p;σq :“ pΓppq ` γpσqp1´ Γppqqq bpx, pq

and we consider a solution to the quasilinear elliptic partial differential equation

aijpx,Duquij ` bpx,Du;σq “ 0

with boundary values uBΩ “ σf . Observe that

bpx, p; 1q “ bpx, pq and bpx, p; 0q ” 0 whenever 0 ď |p| ď 1{
?

2

as well as
bpx, p;σq “ bpx, pq for |p| ě 1 and all σ P r0, 1s.

Thus, the remark [49, Page 419, Remark] applies with simple modifications (eg. cutting off bpx, p; 0q

at radius 1{
?

2 instead of radius 1 to make the linear problem well-defined, cf. also [13, Theorem 11.6]
for the fixed point theorem) and it only remains to find a priori bounds in C1 independent of σ P r0, 1s
for solutions to the above σ-dependent problem.
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Therein, a uniform maximum principle is clear by [13, Theorem 10.1] as constants solve the quasi-
linear problem. Next, we note

bpx, p;σq “ bpx, pq for all σ P r0, 1s when |p| ě 1

and find that the second summand vanishes whenever |p| ě 1 for all σ P r0, 1s while the first is
independent of σ P r0, 1s. In particular, also the boundary gradient estimates may be conducted
independently of σ, as we need only work with the first summand. Finally, the differential inequality
pG q continues to hold by equality for eg. |p| ě 2 for all σ P r0, 1s, by which we infer a uniform
gradient bound via proposition 12.6 and the fact only large values of |p| need to be considered (see
eg. the discussion after [13, 15.1 Theorem]). Finally, we may pass from C2,α back to C2-regularity by
approximating the boundary and the boundary data and exploting uniform interior second order and
global first order Hölder bounds. �

12.3 Remark. The structure of the above construction is taken from [49, Page 456] while we have
adapted slight changes for simplicity (eg. Serrin’s original cutoff function vanishes up to |p| “ 1 and is
only smooth away from p “ 0).

12.4 Remark (The Divergence Structure of Ppδq). By rescaling with the positive factor p1`|p|2q
3
2

one may easily observe that a sufficiently smooth function uδ solves Ppδq if and only if

divApx,Duδq “ 0, where Apx, pq :“ µpxq
p

a

1` |p|2
.

Writing the quasilinear Dirichlet problem in this form, we also recognize the equation as a weighted
non-parametric minimal surface equation. Note furthermore that any such solution uε is in fact, by
convexity, a minimizer for the linear growth functional

Fµpvq :“

ż

Ω
µpxq

a

1` |Dvpxq|2 dL n

among v P W1,1pΩq with coinciding trace values f{δ on BΩ.

We will now turn to the boundary gradient estimates via [13, Chapter 14.3] and use differential condi-
tions on applied to the distance d to BΩ or, equivalently, conditions on the boundary curvature. Let us
first repeat some results on the particular structure of our differential operator, hailing directly from
the structure of the minimal surface operator.

Recall that we may decompose the main part a “ paijq into

aij “ Λaij8 ` a
ij
0 ,

where
aij8ppq “ δij ´

pipj
|p|2

and aij0 px, pq “ µpxq
pipj
|p|2

.

This follows immediately from such decomposition for the minimal surface operator (see eg. [13, p.
342]). Note that aij8 does actually not depend on the weight function µ. In particular, if we denote via
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K ˘ the boundary curvature operators with

K ˘pxq “ ´
n
ÿ

i,j“1

aij8px,˘Ddpxqq,

then K ` “ K ´ “ K and we obtain

K pxq “ ´
n
ÿ

i,j“1

aij8px,˘Ddpxqq “ ´∆dpxq “ pn´ 1qHpxq

for x P BΩ as for the minimal surface case. As our operators however do now also depend on the
position x, we furthermore write

b “ |p|Λb8

with
b8px, pq :“

Dµpxq

µpxq
¨
p

|p|
.

The central idea is now that we want to prove that, as we scale our boundary data linearly from f

to f{δ, our estimates also correspondingly scale with 1{δ and we shall show that the strict boundary
curvature estimates from the theory of quasilinear elliptic equations are eligible for such bounds.

12.5 Theorem (Scalable Boundary Gradient Estimate). Assume that BΩ fulfills

Hpxq ą
Dµpxq ¨NBΩpxq

pn´ 1qµpxq
for all x P BΩ. (C )

Then there exists K ą 0, which does not depend on 0 ă δ ď 1, such that

sup
BΩ
|Duδ| ď K{δ ` }Df{δ}C0pΩq

for the solution uδ P C2pΩq X C1pΩq to Ppδq.

Proof. We follow along the lines of [13, Theorem 14.9], but track details in an explicit fashion. Let us
first set δ “ 1 and write u “ uδ. Recall that we chose the signs of d and NBΩ such that

Dd “ NBΩ on BΩ.

Then we receive
b8px,Ddpxqq “

Dµpxq

µpxq
¨NBΩ “ ´b8px,´Ddpxqq,

hence, our assumption pC q becomes

K pxq ą b8px,Ddpxqq for all x P BΩ.

To include non-zero boundary values f P C2pBΩq, we transform our differential equation according to
[13, (14.5)], ie. we consider the differential operator

Q̃v :“ aijpx,Dpv ` fqqDijpv ` fq ` bpx,Dpv ` fqq
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and note that
Q̃pu´ fq “ Qu “ 0 while pu´ fqBΩ “ 0.

Let us now set w “ kd for some positive real k to compare via the operator Q̃ and estimate by means
of the decomposition of aij and b that

Q̃w “ pΛaij8 ` a
ij
0 qDijw ` pΛa

ij
8 ` a

ij
0 qDijf ` Λ|Dw `Df |b8

“ Λ
´

kpaij8Dijd` |Dd`Df{k|b8q ` a
ij
8Dijf ` pka

ij
0 Dijd` a

ij
0 Dijfq{Λ

¯

,

where all structure functions have arguments are x and Dw ` Df . We recall and note that our
assumptions on the boundary curvature imply the existence of k0, χ, κ ą 0 such that

aij8pDd`Df{kqDijd` |Dd`Df{k|b8py,Dd`Df{kq ď ´χ ă 0

for all y P tdistpy, BΩq ď κu X Ω and k ě k0 ą 0.

As aij8Dijf only depends on Dd and f in second order, we immediatly observe
ˇ

ˇaij8Dijf
ˇ

ˇ ď 2}D2f}C0 on Ω

while we compute
ˇ

ˇ

ˇ

ˇ

ˇ

aij0 px, pq

Λpx, pq

ˇ

ˇ

ˇ

ˇ

ˇ

“
|pipj |

p1` |p|2q|p|2
ď
|pipj |

|p|4
ÝÑ 0 as |p| Ñ 8.

Summing up, we infer

Q̃w ď Λk

˜

´χ`
aij8Dijf

k
`
aij0 Dijpd` f{kq

Λ

¸

and we may rearrange the real positive k0 (since |Dpkdq `Df | ÝÑ 8 as k Ñ8) such that also
˜

´χ`
aij8Dijf

k
`
aij0 Dijpd` k

´1fq

Λ

¸

ă 0 for all k ě k0.

Furthermore, we observe for k ě k0 that,

Λpx,Dw `Dfqk “ µpxqp1` |Dw `Df |2qk ě αk|Dw `Df |2 ą 0,

which leads to
Q̃w ă 0 for k ě k0.

By the maximum principle, we may increase k0 to arrange for

sup
Ω
|u´ f | ď 2 sup

Ω
|f | ď kκ for k ě k0

such that w is eligible as an upper barrier on the closed set with class C2-boundary

N :“ ty P Ω | distpy, BΩq ď κu
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due to
Q̃w ă 0 “ Q̃pu´ fq “ Qu on int N .

We may apply the comparison principle [13, Theorem 10.1] via the operator Q̃. Replacing w by ´w,
we construct similarly a uniform lower barrier and the boundary gradient estimate follows by standard
considerations about normal derivatives in terms of

sup
BΩ
|Du| ď sup

BΩ
|Dpu´ fq| ` |Df | ď k ` }Df}C0pΩq.

We now make the following essential claim:

Replacing f by f{δ for 0 ă δ ď 1, the inequality holds
with kδ “ K{δ, where K ě k0 is fixed as above.

To prove the claim without loss of generality for upper barriers, we expand terms and write

Q̃w ď Λk
´

´χ` k´1aij8Dijf ` k
´1aij0 Dijf{Λ` a

ij
0 Dijd{Λ

¯

“ Λk
`

´χ` k´1aij8fij
˘

`µΛk

ˆ

k´1pkd` fqipkd` fqjfij
|Dw `Df |2Λ

`
pkd` fqipkd` fqjdij

|Dw `Df |2Λ

˙

.

We consider each term in the factors seperately and replace f by f{δ and k by k{δ, thus finding for
the second term

|pk{δq´1aij8pf{δqij | “ k´1|aij8fij |.

and moreover, for the third term,
ˇ

ˇ

ˇ

ˇ

pk{δq´1ppk{δqd` pf{δqqippk{δqd` pf{δqqjpf{δqij
|Dppw{δq ` pf{δqq|2Λpx,Dpw{δ ` f{δqq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

k´1pw ` fqipw ` fqjfij
|Dw `Df |2Λpx,Dpw{δ ` f{δqq

ˇ

ˇ

ˇ

ˇ

ď
k´1|pw ` fqipw ` fqjfij |

µpxq|Dw `Df |4
,

since
Λpx,Dw{δ `Df{δq “ δ´2µpxqpδ2 ` |Dw `Df |2q ě δ´2µpxq|Dw `Df |2,

and by replacing fij by dij and ignoring the factor k´1, we bound the modulus of the fourth term
similarly.

Thus, if K ą 0 is chosen as before and large enough with K ě k0 ą 0 so to dominate
ˇ

ˇ

ˇ

ˇ

ˇ

aij0 px, pq

Λpx, pq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
|pipj |

|p|4
sufficiently small with p “ Dpkdq `Df ,

then the same will hold in fact for all 0 ă δ ď 1 and the modulus of the sum will strictly not exceed χ
for all 0 ă δ ď 1. Hence,

Q̃δ

´w

δ

¯

ă 0 for all 0 ă δ ď 1

and the proof of the claim is readily finished. �
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12.2 Convergence to Functions of Weighted Least Gradient and Examples.

In this subsection we will now use the scalable a priori bounds on the family Ppδq of quasilinear
problems to generate a function of weighted least gradient. To be able to proceed to do so, it remains
to show that a scalable maximum principle for the gradient of solutions is available, which seems to
be the largest caveat in this approach and which results in more conditions that the total variation
(and in our case especially, the weight) has to fulfill. We use the following proposition, whose usage is
somewhat referred to in [44].

12.6 Proposition. Assume that the weight function µ P C2pΩq fulfills the inequality

pT ¨D2µ ¨ p ď
n` 1

n

pDµ ¨ pq2

µ
for any p P Rn on Ω. (G )

Then the solution uδ P C2pΩq X C1pΩq to Ppδq fulfills

max
Ω
|Duδ| ď max

BΩ
|Duδ|.

Proof. Dividing the equation Quδ “ 0 by the weight function µ ą 0 and by the positive factor 1`|p|2,
we see that we may write the problem Ppδq in the form

ãijpx, pq “ δij ´
1

2

ˆ

pi
pj

1` |p|2
`

pi
1` |p|2

pj

˙

, b̃px, pq “
Dµpxq ¨ p

µpxq
.

Hence, employing the differential operator D “ Dz ` |p|
´2piDxi , we compute that the inequality pG q

is precisely

|p|2D b̃ ď
b̃2

n
.

The assertion is a now a consequence of the gradient maximum principle of [13, 15.1]. �

Such further restrictions as the inequality pG q seem to appear naturally in this approach while dealing
with x-dependencies.

Exploiting the scalable bounds of theorem 12.5 with proposition 12.6, we can now prove the following
existence theorem via a regularization procedure.

12.7 Theorem (Existence of Functions of Weighted Least Gradient). Let Ω be a bounded
open and connected set of class C2 with f P C2pBΩq and let µ P C2pΩq. Assume that the boundary
curvature inequality pC q and the differential inequality pG q hold. Then there exists a function of
weighted least gradient u with respect to the weight µ and f with u P C0,1pΩq.

Proof. Let uδ P C2pΩq denote the solution to the problem Ppδq, which exists due to proposition 12.2,
and define

Uδ :“ δuδ for 0 ă δ ď 1.

It is evident that Uδ “ f on BΩ while we estimate for its gradient that

max
Ω
|DUδ| ď δ

´

K{δ ` }Df{δ}C0pΩq

¯

,
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where C does not depend on δ. Hence,

max
Ω
|DUδ| ď const ă 8 independently of 0 ă δ ď 1.

We will not relabel and assume, by compactness with respect to the uniform topology, that Uδ ÝÑ u

as δ Ñ 0 where u is a Lipschitzian function on Ω.

To show that u is actually of weighted least gradient on Ω, let us fix any

v P C0,1pΩq with vBΩ “ f,

to compare and estimate

µ|Du|pΩq ď lim inf
δÑ0

µ|δDuδ|pΩq

ď lim inf
δÑ0

δ

ż

Ω
µpxq

a

1` |Duδ|2 dx

ď lim inf
δÑ0

δ

ż

Ω
µpxq

a

1` |Dpv{δq|2 dx

ď lim inf
δÑ0

δ

ˆ
ż

Ω
µpxq dx`

ż

Ω
δ´1µpxq|Dv| dx

˙

“ µ|Dv|pΩq

due to lower semicontinuity of the total variation and minimization of uδ for the functional Fµ by
remark 12.4. A simple approximation argument akin to [41, 4.(iii) Lemma] shows that actually

µ|Du|pΩq ď µ|Dpu` vq|pΩq for all v P BVpΩq

such that v has compact support in Ω, which suffices to assure u being a function of weighted least
gradient by [33, Proposition 3.16]. �

12.8 Remark. It appears to be not clear which approximation is the "correct" one for generating
functions of (anisotropic) least gradient by means of quasilinear elliptic theory. Pursuing these questions
of existence and regularity via the functional Fµ in BV with regularity of a minimizer up to the
boundary however seems to be quite non-trivial.

12.9 Remark (Neumann Problems). A similar approximation method has also been applied to total
variation problems by A. Porretta in [48]. As that paper deals with variational problems without
Dirichlet boundary, which translate to approximating problems with Neumann boundary conditions,
the author is able to exploit the Neumann boundary conditions for uniform gradient estimates, making
direct arguments possible. Since we though also arrive at some term of the form

ż

Ω
µpxq

a

δ2 ` |Dv|2 dx approximating
ż

Ω
µpxq|Dv| dx,

it appears that for the case of Dirichlet problems (and also without the lower order term here) it is
sometimes convenient to "hide" the viscosity in terms of scaled boundary data, if one may rely on
aedequately scaled estimates.
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Applying stronger assumptions like convexity, we will find that theorem 12.7 yields in particular a
sufficient condition and quantification of how much the weight is allowed to vary to still generate
Lipschitzian functions of weighted least gradient. We recall that a domain is called uniformly convex
if there is some curvature radius R ą 0 such that each point in its boundary lies on the surface of a
ball of radius R ą 0 containing Ω.

12.10 Corollary (Existence on Uniformly Convex Domains). Let Ω be uniformly convex with
curvature radius R ą 0 and f P C2pBΩq. Then if

}Dµ}C0

pn´ 1qα
ă R´1 and inequality pG q holds,

there exists a function u P C0,1pΩq of weighted least gradient with uBΩ “ f .

Proof. This follows immediately from

Dµ ¨NBΩ
pn´ 1qµ

ď
}Dµ}C0

pn´ 1qα
ă R´1 ď H,

as it is a classical fact that all principal curvatures on a uniformly convex domain are bounded from
below by R´1. �

12.11 Remark. (1) We observe that the condition

sup
BΩ

|Dµ|

pn´ 1qµ
ă R´1

would be sufficient for corollary 12.10 to hold. Also, if Ω is only strictly mean convex in the sense
that H ě H0 ą 0, we may replace R´1 by H0 for the same conclusion.

(2) The isotropic case corresponds to Dµ ” 0 and we hence recover the existence of isotropic Lips-
chitzian least gradient functions on uniformly or strictly mean convex domains with C2-boundary
data from [53]. If the weight is allowed to vary, we must however impose a smallness condition
such that it is not allowed to vary too much.

(3) If Ω is only assumed to be convex, it follows that all principal curvatures are non-negative, but
the mean curvature may obviously vanish, and the growth of µ has to account for singular or flat
regions of BΩ. In particular, we may penalize such regions with the weight µ to still make existence
of Lipschitzian extremals possible for each f P C2pBΩq.

(4) Note that corollary 12.10 recovers and generalizes the original remark from [44] (at least for C2-
domains), since linear barriers π ” πpx0q can be constructed by means of Df in this case (see eg.
[15, Theorem 1.1]) and they require the (stronger) sign condition

Dµ ¨NBΩ ă 0 on BΩ

to derive the uniform sign for Qpπq.

We will now discuss some conditions implying the validity of our existence theorem.
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12.12 Example. (1) Let µ be affine-linear and given by

µpxq “ βx` γ, β P Rn, γ P R.

Recall that the weight µ needs to fulfill

min
Ω
βx` γ ą 0,

thus we might always increase γ to dominate the fraction while the position of Ω in space implies
additional degrees of freedom. Furthermore, the inequality pG q for the gradient maximum principle
trivially holds and the curvature inequality pC q becomes

Hpxq ą
β ¨NBΩpxq

pn´ 1qµpxq
for all x P BΩ.

We infer that, up to positive factor, the mean curvature needs to be positive where β and NBΩ
point in the same direction while even flat or negatively curved regions are allowed where β and
NBΩ point in opposite directions.

(2) Even if µ is not linear, we may always add positive constants to the weight µ to make µ´1 as
small as we desire and fit a given positive threshold of H0 ą 0. Hence, each weight µ P C2pΩq

on a strictly mean convex domain admits γpµq ą 0 such that the weight µ̃ “ µ ` γpµq admits a
Lipschitz minimizer.

(3) More generally, if µ is locally concave on Ω, then inequality pG q also clearly holds, and we moreover
need to require that the growth of µ is sufficiently small while its modulus is sufficiently large to
make the curvature inequality pC q work. If Ω is strictly mean convex, then in particular concave
pertubations of the form

Φpx, vq :“ p1` νpxqq|v| with ν P C2
cpΩq

are eligible.

(4) We observe that the boundary curvature condition is fulfilled at x0 P BΩ withHpx0q ą 0 if µ is non-
decreasing on some neighborhood on the outward normal ray, as then clearly Dµpx0q¨NBΩpx0q ď 0.
If Ω is only mean-convex, then we may require the strict inequality Dµpx0q¨NBΩpx0q ă 0 (implying
of course that µ strictly increases along that ray).

(5) In general, regions of low or negative mean curvature are tolerated where µ grows strongly while
regions of high mean curvature have to account for areas where µ decreases across BΩ.

Let us finally recall the different ways to impose differential inequalities on the distance to the bound-
ary d.

Our method has imposed a differential condition on the boundary curvature by means of the ap-
proximating problem Ppδq to assure existence and scaled gradient bounds for this problem, while the
paper [44, 1(5), last inequality] employs a differential condition directly by means of the weighted
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integrand Φpx, pq “ µpxq|p|. Indeed, in defining the quasilinear differential operator

`

Q1u
˘

pxq :“
n
ÿ

i,j“1

Dpi,pjΦpx,Duquij `
n
ÿ

k“1

Dxk,pkΦpx,Duq

“ div pDpΦpx,Duqq ,

which is well-defined as long as Du ‰ 0, we shall assume

pQ1dqpxq ă 0 for all x P BΩ. (C 1)

Given such a condition on d by means of Φ, we repeat from [44, 4(5)] the existence of a function of
weighted least gradient w, which is shown to be essentially bounded in Ω and obeys a Lipschitz esti-
mate if at least one point is constrained to the boundary, but otherwise not even necessarily continuous.

A simple computation shows that both conditions actually coincide and we may conclude:

12.13 Proposition (Consistency). Assuming that Φ is the weighted total variation

Φpx, pq “ µpxq|p|, µ P C2pΩq,

and the inequalities pC 1q and pG q hold on a domain Ω of class C2, then there exists a function of
weighted least gradient u P C0,1pΩq with uBΩ “ f for any f P C2pBΩq.

Proof. To apply our Lipschitz existence theorem, we only need to show that both conditions on bound-
ary curvature actually coincide. We therefore compute

Dxk,pkΦpx, pq “ µxkpxq
pk
|p|
, Dpi,pjΦpx, pq “ µpxq

ˆ

δij
|p|
´
pipj
|p|3

˙

,

and find
Q1d “ µpxqpδij ´ didjqdij `Dµ ¨NBΩ.

Now we notice that
pδij ´ didjqdij “ ∆d “ ´pn´ 1qH,

which leads to
Q1d “ µ∆d`Dµ ¨NBΩ ă 0 if and only if

Dµ ¨NBΩ
pn´ 1qµ

ă H

on BΩ and the proof is finished. �

12.14 Remark. Note also that we may reduce µ P C4pΩq from [44, Preliminaries 1(3)] to µ P C2pΩq in
proposition 12.13 as we need not deal with the minimizing level set boundaries like in [44, Lipschitz
Regularity 6.(1)(α)] by assuming the inequality (G ).

12.15 Remark. The curvature condition (C 1) is in particular a strict and C2-differentiable version of
the barrier condition from [24] and we observe that our approximating problems Ppδq appear to be
somewhat compatible.

We finally prove a slight sharpening of theorem 12.7, which coincides with the results of [53, Theorem
5.9].
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12.16 Corollary (Dirichlet Data of class C1,1). Let the assumptions of theorem 12.7 hold with
f P C2pBΩq replaced by f P C1,1pBΩq. Then theorem 12.7 still holds.

Proof. We denote by uj,δ P C2pΩq XC1pΩq the unique solution to Ppδq with f replaced by fj P C2pΩq,
where

fj ÝÑ f in C1 and sup
jPN

}D2fj}C0 ă 8.

Inspecting the proof of the boundary gradient estimate yields that we may find some L ą 0 such that

max
Ω
|Duj,δ| ď L{δ ` }Dfj{δ}C0

and the constant L ą 0 is in fact independent of j P N. Thus, for each fixed 0 ă δ ď 1, there exists a
uniformly converging subsequence, which we do not relabel, such that

uj,δ ÝÑ uδ, Lippuδq ď L{δ ` }Df{δ}C0 , uδ,BΩ “ f{δ,

where Lippuq denotes the Lipschitz constant of u on Ω. Using interior gradient Hölder estimates (eg.
[13, Theorem 13.1]) and the weak form of Ppδq, we infer that uδ P C1pΩq and, by uniform convergence
in C1, it is a weak solution to Ppδq with boundary data f , ie.

ż

Ω
Apx,Duδpxqq ¨Dϕpxq dL

n “ 0 for all ϕ P C8c pΩq.

This suffices to conclude that uδ minimizes the functional Fµ in the Dirichlet class for f{δ and we
may subsequently proceed as in the proof of theorem 12.7 by choosing a convergent subsequence of
Uδ “ δuδ. �
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13 Further Discussion and Related Open Questions.

The Regularity of Extremals.

(1) Even though nearly all mappings used in our regularity construction suffice Hölder
estimates, the late regularity theorems 7.1/7.2 do only provide a conclusion on
differentiability. It should arguably be possible to chase Hölder regularities and
include local estimates in the end.

(2) All applications of the later sections involved somewhat generic a priori assumptions
on the level set. I did not investigate whether some of them might in fact hold
always and not only generically (eg. whether it is even possible that the derivative
vanishes uniformly on some connected component of a level set boundary).

(3) This method for inducing regularity could in theory also be applied to functions
minimizing an anisotropic total variation together with some volume term (think
of Rudin-Osher-Fatemi for example). The main drawback here is however the little
investigation that has happened on Dirichlet problems for this category and I am
only aware of some one-dimensional deductions by Brezis in [6].

(4) Questions and results regarding the stability and deformations of level sets were
to some extent also involved in the more applied theory regarding the usage of
anisotropic least gradient problems in conductivity imaging in [30, 31]. The defor-
mation theory of eg. section 5 might also be applied there (for whatever possible
good or worse).

(5) All results from sections 4,5,6 do not explicity need absolute 1-homogeneity (except
of course in quotations of eg. [24]). Most likely this assumption is more technical
than essential.

The Existence of Extremals.

(6) In view of the results by uniform strict boundary curvature estimates from section
12, one might ask why we restrained ourselves to Lipschitz regularity and did not
cover Hölder estimates with respect to less regular Dirichlet data.
Apparantly, such lower regularity is also less understood even for quasilinear el-
liptic equations (with only some papers by Lieberman and Simon in [27, 28, 51]
available to my knowledge). It appears that some form of new idea might be
necessary to prove the global Hölder estimates to generate/pass to a limit. Also,
Parks’ method of generating Lipschitzian extremals from [44] might be able to
also generate Hölderian extremals for less regular data.

(7) More general, it remains unclear whether such a viscosity/scaling approach via a
priori estimates for quasilinear elliptic problems is also feasible to handle total vari-
ations Φ “ µΘ of product form, or even arbitrary form, or whether the equations
become too unwieldy to argue and conclude. Furthermore, as already remarked in
the introduction of [48], also the case of the ROF functional could be investigated
for more general anisotropies with respect to Lipschitz/Hölder/Sobolev estimates.
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Abstract.

This thesis deals with a certain regularity theory für differentialbility of higher order

(that is, differentiability of class Ck,α) for anisotropic functions of least gradient. The

approach, which hails from a pioneering paper by H. R. Parks and W. P. Ziemer, is

geometric and analytic and uses in an essential manner the property that all level sets

of such functions are bounded by surfaces which solve a geometric variational problem.

In addition to generalizing to anisotropic problems we fill a gap in the proof, make con-

vergence properties for the minimizing hypersurfaces more precise and introduce a new

and simplified proof for a Harnack type inequality of central importance. After the main

regularity theorem for local and partial regularity we investigate sufficient conditions for

local regularity and prove a definiteness theorem for the gradient which has only been

sketched before. Subsequently we seek criteria for local boundary regularity and local

regularity near a singular ("fat") level set.

Concluding the thesis, we also provide a new existence theorem for regular extremals

to a weighted least gradient problem.



Kurzzusammenfassung.

Diese Doktorarbeit beschäftigt sich mit einer Regularitätstheorie für höhere Differenzier-

barkeit (dh. der Klassen Ck,α) für anisotrope Least-Gradient-Funktionen. Die Herans-

gehensweise, welche aus einem innovativen Paper von H. R. Parks und W. P. Ziemer

für den isotropen Fall entstammt, ist geometrisch und analytisch und benutzt in essen-

tiellem Maße die Eigenschaft, dass alle Niveaumengen solcher Funktionen durch Flächen

berandet werden, die ein geometrisches Minimierungsproblem lösen. Neben der Ver-

allgemeinerung auf anisotrope Probleme schließen wir eine Lücke im Beweis, präzisieren

Konvergenzresultate für die minimierenden Flächen und geben einen neuen vereinfachten

Beweis für eine Ungleichung vom Harnack-Typ von zentraler Wichtigkeit. Nach dem

hauptsächlichen Regularitätssatz für lokale und partielle Regularität untersuchen wir hin-

reichende Bedingungen für lokale Regularität und beweisen einen vormals nur skizzierten

Definitheitssatz für den Gradienten. Schließlich geben wir Kriterien für lokale Randreg-

ularität und lokale Regularität nahe einer singulären ("fetten") Niveaumenge.

Am Ende der Arbeit beschäftigen wir uns zudem mit einem neuen Existenzsatz für

reguläre Extrempunkte eines gewichteten Least-Gradient-Problems.
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