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1 Introduction.

The problem of minimizing various norms of weak gradients of functions is a very natural one and can
easily be imposed in the usual classes of Sobolev and BV functions under Dirichlet boundary condi-
tions.

This thesis will now deal with minimizing the L!'-norm of such gradients and is therefore naturally
imposed in the space of functions of bounded variation. The resulting extremals, which are usually
referred to as functions of least gradient, enjoy the almost unnatural regularity property that ALL of
its level sets are bounded by area-minimizing hypersurfaces by a classical result due to E. BOMBIERI,
E. DE GIorGI and E. GrusTr in [5, Theorem 1].

While the continuity and continuity moduli of functions of least gradient are pretty well-discussed
and understood in recent literature, fueled by the fundamental contribution of P. STERNBERG, G.
WiLLIAMS and W. ZIEMER with [53], questions of and results on higher regularity remain rather sparse
to non-existent. As a matter of fact, the only actual contribution to this is due to the last author above
and H. PARKS [46] from the year 1984.

The very intricate method of [46] employs a kind of geometric solution and stability operator for sta-
tionary immersions and then uses the fact that each level set contains at least one such area-stationary
immersion to derive a differentiable identity for the function of least gradient. Yet, to apply this solu-
tion operator one needs an a priori rigidity condition, which is shown to hold true for certain "nice"
reference hypersurfaces. The method of proof has furthermore the a priori restriction on dimensionality

between two and seven, but has been extended to one further dimension in [43] for RS.

Along the lines of this classical theory for functions of least gradient, there has also been a rather
recent emergence of interest in anisotropic formulations of the least gradient problem. Notable contri-
butions include the work [24] of R. JERRARD, A. MORADIFAM and A. NACHMAN, which is somewhat
presented as the "anisotropic analogue" to the paper [53], as well as a multitude of smaller publications
by A. MORADIFAM or W. GORNY. The papers [33] and [34] by J. MAZON feature a self-contained
derivation of the necessary Euler-Lagrange relations for extremals in the isotropic and anisotropic set-
ting from the realm of convex analysis.

We also emphasize an apparant connection to impedance tomography: Minimizers of anisotropic least
gradient problems arise in rather direct fashion from modelling, if one wants to determine the conduc-

tivity of a given body, see [39], [40] or also [33]. It is notable that the anisotropies of such minimizers



Regularity Theory for dnisotropic Zeast Gradient Problems. (PH. D. THESIS)

are so far always given by Riemannian metrics; a further result on continuity for a certain class of such
metrics (namely, weighted Euclidean ones) is proven in [60] by A. ZUNIGA.

The paper [44] by H. PARKS from 1988 is moreover probably the first paper to study functions of
anisotropic least gradient as an object of interest in itself, but has apparantly been swept under the

radar so far.

The purpose of this thesis is now twofold: We will first revisit the approach of the paper [46], im-
pose questions and discuss possible gaps in its structure. Secondly, we will propose solutions (also
containing somewhat more detailed proofs) to these problems and discuss implications for functions of
anisotropic least gradient hailing from the partial regularity like a certain rigidity of their gradients,
boundary regularity or regularity towards fat level sets (implying non-proximity for the bounding area-

minimizing hypersurfaces).

We close the introduction with a short overview of the sections and contents of this thesis:

o The sections 2 and 3 will serve to repeat the necessary mathematical requirements from analysis
and geometry and introduce the geometric variational problems that we shall discuss while also
containing a first overview of the Parks/Ziemer approach to partial regularity. Two particular

details lacking clarity will be reviewed in 3.2 and 3.3.

e After these introductory sections we will move on and investigate and prove results related to the
level set boundaries of functions of anisotropic least gradient with respect to their stability and
how we may deform them. Section 4 will deal with each level set boundary seperately, section
5 will observe how the usual small excess/graph representation theory can be used for stability
results which we refine in section 6 with the aid of elliptic theory, as the graphical representations

minimize associated non-parametric integrands.

e The purpose of section 7 is to conclude for local and partial regularity. After "unlocking" the
geometric solution operator by means of the previous three sections, this is more or less similar

to [46].

e The following section 8 moves our local consideration from interior to boundary points. We shall
see that the results become conditional, but are nevertheless able to prove at least the existence

of some regular points in any case.



Regularity Theory for dnisotropic Zeast Gradient Problems. (PH. D. THESIS)

e In the last three sections we will finally discuss sufficient conditions for local regularity of an
extremal near level sets, as long as the level set of the boundary data is regular. Section 9 will
additionally contain a rigidity result for the gradient of extremals along "good" level sets and

section 10 will subsequently investigate level sets with positive .£"-measure.

e The short section 11 and will provide a proof that level sets do actually foliate a piece of domain

by anisotropically minimal hypersurfaces in case of local regularity.

e In the last section 12, which is thematically disjoint from the higher regularity of the preced-
ing sections, our concern is the existence of Lipschitzian extremals where the anisotropic total
variation is given by a weighted absolute value. We shall use elliptic quasilinear approximating
problems and provide estimates stable enough to pass to the semielliptic case of an anisotropic

total variation. The results of this section were furthermore submitted for publication with [47].

e We conclude the thesis in section 13 with an addendum of some additional remarks and related

open questions.

The main results of this thesis, in my opinion, are the generic Jacobi nullity rigidity in theorem 6.8,
the local and partial regularity results in the theorems 7.1 and 7.2 with the additional list of specific
conclusions in corollary 7.6, the characterization and existence of boundary regularity in corollary 8.3
and theorem 8.6 and the gradient definiteness of theorem 9.15 as well as all finer characterizations
regarding regularity from the sections 9-11 and the existence result for functions of weighted least

gradient from theorem 12.7.

This thesis was written while I was employed as a research assistant/Ph.D. student at the
department of mathematics of the University of Hamburg in the research group of Prof.

Thomas Schmidt.

Vielen Dank an Thomas Schmidt fiir die Betreuung; Matthias Roger und Frank Duzaar fiir
die schnellen Zusagen als Gutachter; Armin Iske fiir den Einsatz in Lehrveranstaltungen an
der Universitdt Hamburg; Vicente Cortés and Hendrik Ranocha fir die Teilnahme an der
Priifungskommission; Sebastian Piontek, Anton Treinov, Giovanni Comi, Eleonora Ficola
und Jule Schiitt fiir die Zeit in der Arbeitsgruppe; Claus Goetz, Frédéric E. Haller,

Christine Herter, Sofiya Onyshkevych, José Pinzon, Christiane Schmidt und Nicolai Simon

fiir angemessen viele Kaffeepausen.
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2 Dotpsnarics

The purpose of the section is to introduce and fix some established theory that we would like to use
in what follows. Most of these results will turn out to be somewhat classical but we will have a short
repetition without proofs for convenience.

2.1 General Notation.

We will denote by R” the usual Euclidean space, where n is a positive integer. We will sometimes put
restrictions on the dimension n to make use of certain aspects of regularity theory.

An open ball with radius r and center x will be denoted by U(z,r). The corresponding closed ball is
denoted as B(z,r). Moreover, we will make use of an (n — 1)-dimensional cylinder at x with radius r
and height g; by this we mean the product of an (n — 1)-dimensional open ball U(z,r) < R"~! with
the interval (—gq, q). We will denote this cylinder by C(z,r,¢). Similarly, we will denote by Cg(z,,q)
the cylinder in normal direction over a fixed hyperplane H < R™. The symbol Z(z,,q) (respectively
Zy(z,7,q)) denotes the corresponding closed cylinder.

The standard Euclidean scalar product of two n-dimensional vectors v, w will be denoted by v - w or
vw. We will usually equip R™ with the standard norm by means of this scalar product.

By a domain, we will understand a bounded and connected set. The symbol € will usually be used
to denote the open domain that we work on. Most often, we will also impose some kind of boundary
regularity on 60X, ie. the topological boundary of €, ranging from local Lipschitz to C*-regularity. We
will then say € has a Lipschitz or C¥-boundary.

As we are dealing with geometric measure theory, we will make frequent use of the Lebesque and
Hausdorff measures, which will be denoted by Z™ and 7", respectively. Very extensive use will also
be made of the Hausdorff distance diy and convergence with respect to it. This distance is defined for
all non-empty compact subsets of R” via

e

H(K, L) = max {maxd(:v, L), max d(K, y)} .
K yeL

It can be shown that this distance turns the set of all non-empty compact subsets of R™ into a complete
metric space while an equivalent characterization of the Hausdorff distance sounds

H(K,L) =inf{e >0 | K ce.(L),L c e.(K)},
where e. denotes the e-expansion of K, ie.
e.(K)={zeR"|d(z,K) <&}

This characterization makes apparant that both sets really lie close to each other at each individual
point given a small Hausdorff distance. Note also that the set e.(K) can be identified with a suitable
closed tubular neighborhood in normal direction, in case ¢ is sufficiently small and K is a submanifold
without boundary. We shall also use its open variant as

u.(K)={zeR"|dz, K) <e}
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and define contractions of our open domain 2 < R” via
Qe :={xeQ|dz i) > e}, u(Q):=Qu{xeR" | d(z,d) <e}

for any € > 0.

2.1 Remark. The two main characterizations of Hausdorff convergence K; — K are given by:
e For each x € K there exists a sequence x; € K; such that z; — .
e Conversely, given a sequence x; € K; such that x; — x for any x € R", it follows that x € K.

Note also that H (K, L) < e implies that any k£ € K admits a point [ € L such that d(k,l) < € and vice
versa.

We finally recall the following form of the Lebesgque covering lemma: If Vi, € R™ denote finitely many
open sets and K c [ J, Vi with K being compact, then there is § > 0, the Lebesgue number of K with
respect to the covering | J,, Vi, such that the implication

r,ye K, |z—y|<d = There exists a k with z,y € V.

holds true.

2.2 BV Functions, Sets of Finite Perimeter and Rectifiable Currents.

Here we will recall some results on geometric measure theory in codimension one related to rectifiable
currents and sets of finite perimeter. The usual references on this matter include the monographies
[11], [50] and [25] for general geometric measure theory and [3], [14] and [12] for sets of finite perime-
ter /oriented boundaries.

We especially mention the papers [I] for a collection of remarks on parametric integrands (that is,
anisotropic total variations) in the setting of oriented boundaries and codimension 1-problems and [24]
and [44] for resources on general least gradient problems with anisotropic perimeters.

We generally borrow most of our notation from [I1] or [3], including some results on exterior calculus
from [11, Chapter 1].

i.) Functions of Bounded Variation. The space of real-valued functions of bounded variation on an
open set © will be denoted by BV(Q). These are L!-functions u such that the variation functional for
u can be extended to a Radon measure on ). By these moreover, we will understand finite inner and
outer regular Borel measures on 2. The Radon-Nikodym derivative of Du by |Du| will be written as
Vi, ie. we write Du = V,,|Du| and we note in particular that

f u(z) div o (x) do — —f () - dDu - —f o(z) - Vil(z) d|Du|  for all g € C2(Q, RM).
Q Q Q

Both concepts can be localized by postulating finiteness only on relatively compact contained open
sets in €.
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2.2 Definition (TRACE OPERATOR). If Q has Lipschitz boundary, there is a continuous trace operator
T:BV(Q) — L'(69Q),

it moreover holds that T is surjective. We will also denote the trace of u as upqn. T coincides with the
restriction to 0Q for functions u € C(Q). We will call T the inner trace on 02, while for u € BV(R™\(Q2)
we will denote the outer trace on 02 by Tu.

As is well-known, we may also extend BV functions to an open superset, eg. to R™, by prescribing a
different BV function on the complement and the gradient measure detects the difference in traces on
Q). If we use the zero function, we receive for the gradient measure of the extended function @ that

Dii = Du + (upq - Naq) - A" 1L 00,

where Npq is the inner unit normal to 0€2. Accordingly, we receive for the total variaton measure of @
that
|Da| = |Du| + |ugq| - "L 0Q.

Assuming that v = 1g, ie. u is the characteristic function of a set E < ), we will say that F is a set of
finite perimeter when u € BV(Q) and write Vg := V,,. Sets of finite perimeter in {2 enjoy the theorem
of De Giorgi: There exists a #" -rectifiable set 0*E <  such that

|D1g| = "' 0*E.

Note the usual difference that 0*E need not be #" !l-equivalent to the support of |[D1g|, as the
support is necessarily closed and may possibly be much larger.

ii.) Currents. To investigate the structure of minimizing level sets, we will also use the interplay
between functions of bounded variation and currents. We will only need to do so in the full space R"
and we will denote by

X (R™) and F(R™)

the spaces of rectifiable and integral currents in R™. Therein, we understand a current T as rectifiable
if there exists a .#*-rectifiable set ¥7 ¢ R” with finite measure, a measurable unit-norm k-vector
field f, which spans the tangent space to X1 almost-everywhere on X, and an integrable N-valued
function 61 such that

T(w) = L w(T)0r dA" = Jw(f) d|T)

holds for all w e CX(R™, A¥R™), where the variation measure of a rectifiable current 7' will be denoted
by |T||. We say that T" is integral if 0T is also rectifiable. Note moreover that the mass of T', which
we will write as (&7, T"), suffices

(A, T) = Or dA* < o
S

if T' is rectfiable. Assuming that X7 and 67 are only locally rectifiable and integrable, we achieve the
concept of locally rectifiable and integral currents and we will denote the corresponding spaces by

Z°R™)  and  F°RM).

10
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Moreover, we let E" € 2/°¢(R") denoting integration over R™ with the standard orientation vector

—

E" =¢e1 A ... A ey, that is, E'=Y"Ael A ... A ey
Particularily, restricting the current E™ to a Z"™-measurable set £ < R™ delivers that
E"L1p = E"L E € Z/°(R")

and
JE"L1g)=0E"LE)

is the oriented boundary of F in R™. This will be the most important example of rectifiable and
integral currents for us in this thesis.

Let us then turn to the connection via duality between codimension one currents and functions of
bounded variation.

2.3 Definition (HODGE STAR OPERATORS). We define the Hodge star operator * linearly via
*: Ay R — R kel 1= (—1)"e,

respectively, o
*: R® — A,_1R", xe; 1= (*1)1_162,

where e; € R™ for i € {1,...,n} denotes the standard basis vectors of R™ and

Analogously, we define the Hodge star operator on R™ and A"~!(R") via
*: AMTIR® — R™, xel 1= (=1)""le,

and

*: R" — AR, xe; = (—1)tel

where el € A" 'R is dual to e’ € A,,_1R". By its characterizing identity, we see that this is the right
definition, the Hodge star operator isometrically identifies both spaces with each other and if

E=H A ... A& 1N, 1R”
is a simple vector, then £ is orthogonal to each &, with k =1,....,n — 1 and
()] = ¢]-
We also note that
(e = (1" (o= ()", (w = (1)

for any € € A,,_1R", v e R” and w € A" 1R"™.

11
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We proceed to relate between oriented boundaries and total variation measures. A standard conse-
quence in terms of duality with the Hodge star operator and the theorem of De Giorgi (or, equivalently,
the boundary rectifiability theorem) ensures that

NE"LE)e Zn1(R") <«  |Dlp|(R") <o

and both are related pointwise as distributions by inserting the definitions of ¢ and the gradient measure
via

A(E"LE)(*v) = —Dlgp(v), AE"LE)w) = (~1)"Dlg(*w)

for v e CP(R®,R"), w e CX(R", A" 'R") while their orientations and mass/variation measures suffice
|O(E"L E)|(A) = |D1g|(A) for any Borel set A < R", «(E"LE) = (—1)"Vg

The Hodge star operator hence also translates the formula for the total variation of an extended set
of finite perimeter to the dual setting: Given 1z € BV(Q) with trace 1y € L*(0Q, . #"1), we may
consider £ — R” by extending through 0 with denoting 1z € BV(R") and receive

D (1g) = D1g + (15 - Nog) - " L 0Q,
which yields in its dualized form that
OE"LE)=0E"LE)LQ+[X]=[0"EnQ]+[X],

since for w € CX(R", A""1R") we have

Dip(sw) = — LVE-(w) d|D1E=jQ<—1>“ (+0ELE] - (sw)) dlo(E" L E)|

(=" L IEL E)(w) dlo(E"L E)| = (=1)"(o(E" L E) L Q)(w)

and the Hodge star maps Nyq to the (up to sign/orientation) unit (n — 1)-tangent vector field of
3 < 0€2. Therein, we use the following notation:

2.4 Definition (ASSOCIATED CURRENTS). Given an oriented submanifold S < R", we will denote
the associated locally rectifiable current by [S]. We will also use this notation if S is only a locally
HF-rectifiable set in R™ and suppress its orientation.

In what follows, we shall usually equip a rectifiable current [X] implicitly with the orientation hailing
from the interior or exterior trace. We also infer further from 0% = 0 that

0=0*E"LE)=0d0E"LE)LQ) +a([Z])

and thus
JOE"LE)LQ)=-0([2]).

This constitutes our main motivation to consider currents as we may seperate the interior from the
trace part along a boundary of codimension two.

iii.) Variational Problems for Currents. Finally, we recall some facts about parametric integrands

12
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and the setup for geometric variational problems in the class of rectifiable currents. This framework
provides a powerful way of investigating properties of minimizing level sets with respect to certain a
priori estimates and stability matters. We need only discuss this matter for codimension 1.

2.5 Definition (INTEGRANDS). Let Q < R™ be open. We will call a continuous function
F:Qx A, R" — R,

which is positively homogeneous, convex and positive on the unit sphere in the second component, a
parametric integrand (of codimension one). We will say that F is of class ck (including smooth and
analytic) or C¥_ if its restriction to Q x A,,_1R™\ {0} is such. We will say that f is elliptic, if there
exists a constant ¢ > 0 such that

pr— (F — ) (2,p)

is convex on A,_1R" for each x € 2. Similarly, a function with the same properties as above
P:OxR*"—R

will be called an anisotropic total variation of the corresponding differentiability class respectively
elliptic.

We furthermore remind of the properties of an elliptic parametric integrand and that ellipticity is
invariant under diffeomorphisms. The area integrand <7 is trivially elliptic. Finally, we denote the
duality pairing of a parametric integrand F and a rectifiable current T' by {f ,T) € R and the support
of a locally rectifiable current 1" by sptT’. Similarly, given a total variation ® we will denote for
u e BV(Q) via ¢, the Radon measure given by

®,(B) := J &(x,Vy,) d|Duj for all Borel sets B < (.
B

If u = 1g for some set E < 2, then we will write 5 = ®,,.

2.6 Remark. The Hodge star operators
*x: A, R" — R" and *: R®” — A,_1R"
allow to associate parametric integrands and anisotropic total variations via the formula

F(z,p) = @ (x,(=1)" *p)

and note
P(z,v) = F (z,(—1) xv).

We find that this especially implies

LB =] o ((x, (—1)" (é‘E)) AL = JEGQ ®(z, Vi) d|D1p| = ®p(Q)

as
(=1)" * <6TE)> =Vg A" L 0*E  -almost everywhere.

2.7 Remark (THE PARAMETRIC LEGENDRE CONDITION). An important consequence of our definition

13
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is the so-called parametric Legendre condition for elliptic integrands. Fixing an ellipticity bound ¢ > 0
and an elliptic parametric integrand f of class C2?, we may differentiate twice to get

D3 (F — o) (z,p)(g.q) =0 for any ¢ e A,_1R",

which is

2
C P n
D3F (x,p)(q,q) = W <|q|2 - (q : ’M) ) for zeU, 0#pe A, 1R".

Similarly, in the anisotropic total variation case, we further receive
2
2 c 2 v n
D2<I>(:U,v)(w,w)><|w| —<w-H> ) for zeU, 0+#veR"
v

for any w € R™. Note also that the Hodge star operators relate and transfer both conditions to
associated integrands.

Given open sets U,V < R"™ and a diffeomorphism
YV —U with ¢ of class CF with k > 1,

then ¥ [, which we will refer to as the pull-back of F , defines a parametric integrand on V' x A,,_;R"
of class C¥~1. The push-forward of a rectifiable current will furthermore be denoted by pxT', whenever
this is defined. We will mainly care for homothetic expansions of T', that is, when

o(x) = pr(z) = % for r > 0.

Without loss of generality shifting a considered point towards the origin, this enables blowup proce-
dures to investigate local properties of rectifiable currents.

Now introducing the variational problems for currents, which we want to consider, we will mostly
rely on the concept of almost-minimizing currents with respect to some integrand in the sense of [10].

2.8 Definition (ALMOST MINIMIZING CURRENTS). We say that a rectifiable current 7' € Z,_1(R") is
(F ,w)-almost minimizing in some open set U < R™ if

F,Ty<{F,T+X)+wlrKd, TLK+X)

for all X € #Z,,—1(R™) with X = 0 and spt X being contained in a compact set K < U such that K
is contained in some ball of radius > 0 and the function w is defined for all sufficiently small radii r
with lim,~ o w(r) = 0.

2.9 Remark. We collect some useful properties on homothetic expansions of almost-minimizing recti-
fiable currents from [I0, Section 1, Lemma 7.1] (cf. also |20, Lemma 3.5] and [11, Theorem 5.4.2]),
which are consequences of local flat convergence, minimization and lower mass bounds.

(1) Scaling properties. Assume s,r,t > 0 and that T is almost-minimizing for (F,w) in U(0, s). Then
(pr)#T is almost-minimizing in U(0, s/r) for

Fr(x,p)=F (rz,p) and wr(t) = w(rt).

14
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In particular, f, — F o locally uniformly, where F o(x,p) = F (0,p), and w, —> 0 uniformly near
t =0 when r — 0.

(2) Compactness. If we have
(i) T — @ in the local flat norm in R™ as i — o0,

for some sequence p; of homothetic expansions along a sequence r; — 0, then @ is locally rectifiable
on R™ and @ is (almost-) minimizing on R™ with respect to (Fo,0).

(3) Prozimity of Supports. If
spt 0 (i) T) < sptQ for all i € N,
then for all compact sets H < R™\ spt () there exists a number j = j(H) € N such that
spt((pi)4T) € R™\H

for all ¢ > j.

2.3 Least Gradient Problems and Related Minimization Problems.

We now introduce the problems that we are interested in and recap some of the known existence theory
for them and their extremals and how they are connected to each other. In all that follows here, we
will assume that ® is an elliptic anisotropic total variation on Q (or equivalently, on R™), which is
even, ie. ®(x,v) = ®(z, —v) for all z € Q and v e R".

i.) The Anisotropic Least Gradient Problem. Let for all that follows 2 be an open domain with
Lipschitz boundary. The variational problem that we centrally want to consider in this work is the
anisotropic least gradient problem. The problem is defined by attaining the number

0 <inf{®,(Q) | ueBV(Q), upg = f} <

for some f € L'(09). A function u which is extremal in the above problem for its trace will be called
a function of anisotropic least gradient.

In essence, these problems ask for minimizers of an anisotropic L!'-norm under given Dirichlet bound-
ary conditions. Since this norm is however much more badly behaved than its counterparts for p > 1,
we have to reinterpret it in a generalized setting, namely we have to consider competitors among the
functions of bounded variation. This allows for drastically more geometric structure as an extremal
might still be Wb, but the indicator functions of its level sets will obviously at most be BV (in non-
trivial cases).

We recall also from [33, Theorem 3.16] that the apparantly weaker minimization property in terms of
compactly contained variations

D,(02) < Pyy () for all v e BV(Q), sptv cc Q
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suffices to conclude that u € BV(2) is a function of anistropic least gradient.

2.10 Remark (EXISTENCE OF ISOTROPIC EXTREMALS). As we are interested in regularity theory for
Lipschitzian extremals, we briefly provide a recap of the necessary sufficient conditions. In fact, the
two main ones for functions of isotropic least gradient (ie. for ®(x,v) = |v|) are:

(1) A convex domain €2 and boundary data f satisfying the bounded slope condition (see [41), 4(3)
Lemma|, where we may drop "smooth" and "uniformly convex" for "bounded slope" and "convex"
as one may readily observe from its proof).

(2) A strictly mean convex C?-domain 2 and boundary data f of class C1! (see [53, Theorem 5.9],
which is also a special case of our corollary 12.20).

Both assumptions result in the existence of a Lipschitzian solution for the isotropic problem with
boundary data f.

2.11 Remark (EXISTENCE OF CONSTANT COEFFICIENT EXTREMALS). Assuming that our total vari-
ation obeys the form ®(x,p) = ©(p), which we will refer to as an anisotropic total variation with
constant coefficients, and is of class C2, then in fact similar conditions work. We have

(1) A convex domain 2 and boundary data f satisfying the bounded slope condition, where the same
proof as before works (see [44] or [47, Theorem 1.1]).

(2) A C2-domain Q and boundary data f of class C1'! with a certain parametric boundary curvature
condition related to © (see [12, Theorem 1.12]).

The results from [12] Theorem 1.12|, much like [24], assume explicitly that their anisotropic total
variations are even. We did assume this property here mostly for convenience, but it is not clear to
me whether this restriction is really essential or whether positive 1-homogeneity would in fact suffice
for all results from [12] and [24].

2.12 Remark (EXISTENCE OF SPATIALLY VARYING EXTREMALS). Given an arbitrary total variation ®
the existence of sufficiently regular extremals is not yet fully understood and seems to require additional
differential conditions on the dependence on the spatial variable of ®. The paper [44] provides existence
results exploting intricate geometric maximum principles while [47] generates functions of weighted least
gradient (ie. where ®(x,p) = u(x)|p|)) via quasilinear approximating problems. The results of [47] are
contained in section 12 of this thesis.

We will furthermore also consider geometric variational problems for sets of finite perimeter and cur-
rents; in particular, we will be interested in their connections.

ii.) Sets of Minimal Anisotropic Perimeter. Let a set F' < R™ of finite perimeter be given. We
say that £ < R" is a set of minimal anisotropic perimeter with respect to F' in Q if E is minimal in

inf{®4(Q) | AcR", 14 = 1 on R"\Q}.

To pursue the analogy to i.), we will not use the more set-theoretic perimeter notation in this thesis.
The problem ii.) corresponds to a relaxed form of i.) which is however only imposed among sets (ie.
{0, 1}-valued functions of bounded variation).

Note though that the interior traces on 02 need not coincide, ie. it is in general not true that
(1g)oa = (1r)aq is valid for any set E < R™ of anisotropic minimal perimeter.
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iii.) The Relaxed Anisotropic Least Gradient Problem. Let now f € BV(R™) be given. The fol-
lowing (fully) generalized problem,

inf{®,(Q) | ue BV(R"), u = f on R"\Q.},
is known as the relaxzed anisotropic least gradient problem with respect to f. We remind that

(I)u(ﬁ) = (Pu(Q) + LQ (I)(Z', NaQ>|UaQ — f‘ dm1
and thus, we are prescribing data only on the complement as in ii.). Similarly, we also cannot a priori
know whether ugg = f, but we however do know that a function of anisotropic least gradient with trace
f always also solves the problem iii.) by using a traceless extension to R™ and [33] 3.17 Proposition|.
This allows us in particular to vary up to the boundary. Applying the coarea formula for anisotropic
total variations from |24, Proposition 2.1| yields the following result:

F is of minimal anisotropic perimeter for F'.

= 1 solves the relaxed anisotropic least gradient problem with respect to 1p.

iv.) Parametric Obstacle Problems. We say that a current T' € %,,_1(R"™) solves a parametric obstacle
problem for the parametric integrand F and €, if T is minimal in

inf{(f,X)| X € Z,_1(R"), spt X < Q, 0X = 0T}.

This amounts to

F,T)<<{F,T+X)
for all X € %Z,_1(R") with spt X < Q and 0X = 0.

It is clear that the set ) acts as the obstacle by constraining the supports of comparison currents.
In the homological notation of [I1], this is written as T being (2, &f)-minimal (while already using
that our € is a Lipschitz retract as a domain with Lipschitz boundary). It is moreover known that
solutions to such parametric obstacle problems are locally almost-minimizing if 2 is a domain of suffi-
cient regularity and hence, the obey the regularity theory for almost-minimizers. We will later prove
a precise version of this statement in the the fourth section of this thesis.

2.13 Remark. The existence of extremals for the problems ii.), iii.) and iv.) follows via the direct
method under somewhat mild regularity assumptions (in our case, 2 being a domain with Lipschitz
boundary suffices).

2.4 Level Sets and Functions of Anisotropic Least Gradient.

The quintessential property of BV extremals in 1-homogeneous variational problems is that their sub-
and superlevel sets, which we shall denote by {u > t} or {u < t}, also solve variational problems in
BV with respect to the same (or a very similar) functional. We recall the following result for Dirichlet
problems from [24, Theorem 2.4].

2.14 Theorem (ANISOTROPIC BOMBIERI-DE GIORGI-GIUSTI THEOREM). Let u € BV(Q) be a function
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of anisotropic least gradient with respect to ® and with trace values f € L1(0Q, #"1). Then the sets
{fu=th{u<tcQ

are of finite perimeter in ) and the indicator functions of these sets are functions of anisotropic least
gradient with respect to ® and their traces for each t € R.

Proof. We shall only adapt some conventions to our setting. Let u € BV(Q) solve i.) with respect to ®
and f, then choosing an extension of f to R™\Q2 in BV, we may extend u to R™ by f and this extension
is a solution to iii.) by [34] and [24, 2.2 Lemmal. Hence, by [24, Theorem 2.4], the sets {u > ¢} and
{u < t} are solutions to ii.) and therefore, their indicator functions as elements of BV (2) are solutions
to the anisotropic least gradient problem i.) with respect to their traces. |

2.15 Remark. The flexibility in formulating such problems owes to the extension properties of BV
functions, the central problem is usually rather to achieve a given trace. Note also that we may again
extend each set {u > t} or {u < ¢} with a traceless extension with values 0 or 1 to R™ such that the
resulting set (respectively, its indicator function) is a set of minimal anisotropic perimeter in R"™.

We will now establish some immediate properties hailing from the geometric minimization in terms of
density and proximity.

2.16 Corollary. Let u € BV(Q) be a function of anisotropic least gradient on §2.
(1) We have that {u > t},{u < t} < Q fulfill
spt [D1gzy| < o{u > t}, spt [Dlgu<ry| < H{u < t},
and
spt [D1gy=e| 0 Q = clos (0" {u = t}) n Q, spt [ D1g,<py| 0 Q2 = clos (0" {u < t}) n Q

for all t € R and both reduced boundaries differ from their closures only by a set of 7™ '-measure

ZETO.

(2) If further u e C(2) and
u ) nQ=0{u=t}nQ=H{u<t}nQ,

then
spt [Dlgy=p| N Q =spt [ Dl nQ = ul(t) n Q.

Proof. This follows immediately from the interior lower and upper density bounds by the minimization
of theorem 2.14 due to [12] Proposition 12.19], since there exists some g > 0 such that

pr" 1 < |D1g|(U(z,r)) < (1 — p)r™? for all U(z,r)c Q

with F being either set and 2 € Q being element of the respective support via [I, I.1(35)] and Federer’s
theorem [12, Theorem 16.2] about the essential boundary yields the claim. The latter statement follows
also from the local characterization of the support from [12], Proposition 12.19] and the fact that {u > ¢}

and {u < t} are open, since u € C(12). [ |

18



Regularity Theory for dnisotropic Zeast Gradient Problems. (PH. D. THESIS)

2.17 Lemma (CONVERGENCE OF LEVEL SETS IN HAUSDORFF DISTANCE). Assume that

holds. Then we have
u 1l (s) — uTl(t)

in the Hausdorff distance. In case u='(t) does not equal its level set boundaries, we still have the
one-sided versions
ul(s) — d{u =t} and  ul(s) — d{u < t}

for s /'t and s\t respectively.

Proof. We repeat the argument by contradiction from [46, 1.2 Lemmal and set ¢ = 0. The one-sided
version follows from easy modifications. Assume that

lim (u™" (t), u™" (0)) # 0,

then we may find € > 0, a sequence of non-vanishing real numbers ¢; such that ¢; — 0 and a sequence
of points x; such that

either r; € Qnut(0) and B(z,e)nQnul(t;) =@ forallieN,

or z; e Qnul(t) and B(zye) nQnut(0) =g forallieN.

We can assume that 7; — z € . Both cases above necessarily imply u(z) = 0 by continuity, hence,
the second case may be excluded. A simple triangle argument with the first case now yields

B(z,e/2) nu™t(t;) = & for all ¢ large enough

and choosing a subsequence such that ¢; — 0 monotonously and without loss of generality from above,
we infer a contradiction to
x € o{u < 0}

and the intermediate value theorem for continuous functions. [ |

2.18 Remark. We recall further that if v : @ — R is Lipschitz on €, then an immediate argument
via the coarea formula (see [4I, Lemma 6.5(2)]) shows that Du exists #" l-almost everywhere on
u~(t) n Q with Du # 0 on Z*-almost every level set. This clearly leads, for such ¢, to

uI )N Q=0{u=t)n Q=0{u<t}nQ

as a point zg € u~1(t) N Q with Du(zg) # 0 fulfills that 2o € d{u > t} n 0{u < t} (it may not be locally
maximal or minimal) and the remaining points may be approximated.

2.19 Proposition (LEVEL SETS AND SUPPORTS). Let u now additionally be Lipschitz on Q and t € R
be an interior point of rg f. Then

spt [Dlgy=pn| n 2 =0{u =t} n and spt [D1gucpy| n 2 = 0fu <t} n QL

Proof. Since ¢ is an interior point of the range of f, we preliminarily note that the traces of 1{,>4 and
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L{u<sy on 052 may not be identically (equivalent to) 1 or 0 as u is continuous on Q. The constancy
theorem for BV functions thus yields that

spt [Dlg>py| 0 Q # & and spt [Dlju<py| 0 Q # .

We now deal without loss of generality with {u > ¢} and choose zg € d{u =t} n Q and we are done if
xo € spt |D1{u>t}|. We select p > 0 small enough such that

xo € Qp and spt [ D1g=n] N Q, # 0.

By the genericity properties of Lipschitzian functions from remark 2.18 and corollary 2.16, we may
assume that there is in particular a sequence (s;)en such that s; /' ¢ and

spt [Dlgyzsy| N Q2 =0{u = s} nQ = u(s;) N Q foralli e N

and we may further choose a sequence (z5,) < €2, such that x5, — ¢ as i — o with x5, € d{u > s;}
by one-sided Hausdorff convergence from lemma 2.17 and remark 2.1. Thus especially

s, € spt [ D1lgyss| N Qp,

and it is a classical consequence of the L'-convergence {u > s} — {u >t} for s /' t and the fact that
each set {u > s} is minimal via Reshetnyak’s theorem that also the measures | D1y, — [D1gyy|
converge in the weak sense locally in ). Now the interior lower density bounds imply that any limit
of such a sequence () can only lie in spt [D1g,>4| N Q,, by which the proof is completed. [ |

2.20 Remark. Note that the above property is, in fact, not true for general continuous functions of
bounded variation and "cancellations" may appear. Moreover, the property continues to hold for
boundary points of rg f, if their trace on 0f2 is non-trivial (as in the above proof).

2.5 Function Spaces and Non-Parametric Partial Differential Equations.

For purposes of notation as well as established results from the regularity theory of elliptic partial
differential equations, we will refer to the monograph [13].

We will denote for 0 < k < o0 via Ck’a(Q) the space of k-times differentiable functions whose k-th
derivative fulfills an a-Hdélder condition. Therein, the domain 2 can be open or contain accumulation
points of its boundary, in which case we will understand that such a function u € Ck’a(Q) admits an
extension to an open superset which is of class C*®. We will refer to analytic functions as functions
of class C¥. If a function is supposed to have compact support inside €2, we will add a subscript ¢ to
the function space. The norms of such spaces will be denoted via | - | o0 Or |- |50 and if the reference
domain €2 for the norm is clear from the context, we will omit the subscript.

Generic non-negative constants will be denoted by C. Such constants may depend on data and will
change from inequality to inequality, but we will try to make clear what quantities they are indepen-
dent of if necessary. For describing properties related to small values of our extremal near 0, we will
generically use T' > 0 as a symbol.
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Regarding partial differential equations, we will sometimes work with the associated non-parametric
integrand to some parametric integrand f. This refers to the particular structure of F, if we consider
the pairing of f and some (at least) Lipschitzian graph. As we are only interested in codimension one,
we shall use the following dualized construction:

Assume that f is an elliptic parametric integrand on R™ and consider the associated total variation
®. Assuming that

v:U"0,5) — R, ve COH U™ H0,s)) for some s > 0,

we may evaluate f on the graph of v (which is a rectifiable current I',, of multiplicity one and support
inside the cylinder U(0, s) x R) to receive

(F,Ty) = F(z,Ty)ds#m" = f

graph,, graph,,

Br N ™ = [ (e 0(). (T-0(a), 1) d2
U(0,s)
by applying the Hodge star operator, the area formula and choosing adequate orientations. We will

denote
(I>§(z,u,v) = ®((z,u), (—v,1))

and call ®% the associated non-parametric integrand to I and ®. Of course, we are not restricted to
some ball U and can choose any open domain. Assuming now that I', is minimizing with respect to
F (or at least stationary with respect to vertical variations fixing JI',), we may especially vary the
function v by some perturbation

vty for |¢| small, e CX(U"0,5)),

to receive by differentiating that v solves

0= J D3®%(z,v, Dv) - D + Dy®%(z,v, Dv)p d.2"! for all ¢ e CX(U(0,s)),
U(0,s)

which we will call the associated non-parametric Euler-Lagrange equation for [ and ®. Clearly, ®3
inherits its regularity from f: If F is of class C*® in its first (respectively, second) variable, then ®%
is of class CH® in its first and second (respectively, third) variable. Also ellipticity is inherited: We
recall from remark 2.7 that, since F is elliptic, the parametric Legendre condition holds, which is,

2
D3 (x,v)(w,w) = clv| ™! (\wQ - <w . ‘U’) ) for all v,w € R™ with v # 0
v
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and an ellipticity constant ¢ > 0. Applying this to ®%, we find

D30 (z,u,v)(w,w) = D3®((2,u), (—v, 1))((w, 0), (w,0))
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and hence, the matrix D2®%(z,u,v) is pointwise positive definite (though not uniformly). Note also
that the latter coefficient is bounded away from zero whenever |v| < R, ie. we have

D283 (2, u, v)(w,w) = Clw|? whenever v € B(0, R),

where C' > 0 depends on R but not on v.

2.21 Remark. We particularily infer from the above that the associated non-parametric Euler-Lagrange
equation is elliptic on its domain. Its principal part being uniformly elliptic on bounded domains in
the gradient variable will furthermore be helpful when we consider appropriate linearizations.

2.22 Remark. The fact that the principal part of the operator is pointwise elliptic is also needed to
show that weak and bounded C'#-solutions belong in fact to (locally or globally) W22 which is used
to linearize and infer higher regularity via Schauder estimates. This opens up higher regularity theory
for the graph functions from the measuregeometric regularity theorems (see also [12, Proposition 3.3]).

2.6 Submanifolds, Stationary Immersions and Dependence Theorems.

In this last preliminarial section we want to recall some of the results from [50] (for the area integrand
see also [57] and for certain special integrands the last section of [29]) and adjust them to our needs.
In particular, we will also fix notation for elementary differential geometry and derive suitable formulas.

We will denote a submanifold without boundary of dimension I of R™ of class C*7 for k > 1 and
0 < v < 1 alocally Rl-embedded set whose local embeddings can be chosen of class C¥7. The tangent
space at x € Z to a submanifold Z will be denoted via T,=. In case [ = n—1 (which is the relevant case
for us), we will abuse notation and denote a choice of unit normal vector field of = as well as the normal
space by N=. The submanifold = is orientable if such a normal field exists globally. All declarations
extend similarly to submanifolds with boundary of R™. The unit conormal vector at boundary points
of E (ie. the up to sign unique unit vector which is orthogonal to the boundary tangent space inside
the full tangent space) will be denoted by N&°. Note that we will usually assume that a tangent space
T,,= < R" is an affine space centered at z.

If a submanifold with boundary of sufficient class solves a geometric variational problem, we might
consider questions of boundary stability, ie. if we perturb the embedding of 0= in an adequate | - || -
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norm, we might ask how the submanifold as a whole behaves.

For this purpose, we shall rephrase the setting into a mapping problem.

We let = be an abstract n — 1-dimensional Riemannian manifold = with boundary which is supposed
to be analytic, compact, connected and orientable and we fix an embedding 1 € Ck”(E,R”) into
Fuclidean space.

Note that this is no restriction in general, since we may always find a compatible analytic structure in
the intrinsic case. We recall also (as in [50, 1.0]) that we may assume Z to be isometrically embedded
in some high dimensional Euclidean space to simplify computations regarding derivatives.

We fiz moreover an elliptic parametric integrand | on R™ of class CH=5% with Dof also of class
CcHle,

To prepare the application of the regularity theory from [56], we now need to suppose
O<y<axl and 2<k<p—1

and in our particular case, we will use the assumption £ = 2 and choose a 0 < v < 1 to be fixed later.

Then we let the parametric integral for the immersion ¢ with respect to F be defined via

0= [LF (@), (A De@) (@) de™

where £ is a global smooth unit multivector field, which orients =. We write the parametric integral as
(Fou = f F(x,u(z), Du(z)) do™?

with

F(H?,y,t) = F(y7 (An_lt)(é(l')»
2.23 Remark. This parametric integral for immersions is a somewhat more general version for arbitrary
domains and non-graphical immersions of the associated non-parametric integral of the last section.

We will indeed use both versions for our regularity theory and compare properties of both. Note that
also the latter two components of f directly inherit their regularity from the respective ones from f .

We denote the parametric Fuler-Lagrange operator with respect to F by $(¢) and its linearization, the
Jacobi operator, by D$(¢). We recall the following facts from [56, Sections 2, 3|.

2.24 Lemma (THE EULER-LAGRANGE OPERATOR). [t holds that
§: C*(E,R") — CY(Z,R")

18 a mapping of class Cfﬁ;zady. The vector field $H(¢) is normal to 1(Z) < R™. We have the explicit
formula
$(t) = —div(DsfF (z,u(z), Du(x))) + Daof (x,1(x), Di(z))
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and the weak integral formula
|0+ 47t = | DaF (a.1(a), Dila))ola) + Daf (z1(o), Du(w)) Dip(o) doe™!

for all p e CYH(E,R™) such that po= = 0.
Proof. Contained in [56], 1.3 Elliptic Integrands and First Variation]|. |

2.25 Lemma (THE JACOBI OPERATOR). Assume that ¢ is stationary, ie. $(¢) = 0. The linearization
D$H(1) of $ is a linear operator

D$(1) : C?7(E,R") — CY(Z,R")

and we have the weak integral formula

f vy - DH(L)(vy) dA#E = j (D%ﬁ(:l:, v, Du)vi(z) + D3DafF (z, 1, Di)Dvy(z)) va()

+ (D2 DsF (z,1, Di)vi () + D3F (2,1, De) Dy (z)) Dug(z) dot™ !

for all vi, vy € C?7(Z,R") such that V1,02 = v2,0= = 0. If such a vector field vy is tangent to (Z), then

D$H(¢)(v1) = 0.

Proof. Set ¢ = vy in lemma 2.24 and differentiate along a linear curve through ¢ in direction vy
(compare also [56] 1.4 Second Variation and the Jacobi Operator]). [ |

2.26 Remark. We explicitly note that, as both £ and D$) are differential operators, they are local and
can of course also be applied to any twice continuously differentiable functions on some open subset of
= in their strong form and to any once continuously differentiable function in their weak form.

Let us now spend some words on properties of the Jacobi operator D$)(¢) with respect to some im-
mersion ¢. Aside from the global formulation, we proceed to derive a convenient expression for the
coefficient function of a Jacobi field in a local chart of Z. Similar to the last section, the ellipticity
and, in particular, the parametric Legendre condition that we imposed on the integrand F will yield
ellipticity properties for associated partial differential equations.

2.27 Proposition (UNIFORM ELLIPTICITY ON NORMAL FIELDS). Let ¢ € C37(Z,R"). The weak
formulation of the Jacobi operator for = and v descends to a weak formulation of a uniformly elliptic
partial differential equation for the coefficient function on normal variations in any choice of local
coordinates of Z. Any normal Cl-solution to the weak formulation of the Jacobi operator has interior
reqularity of class C?7.

Proof. We choose local coordinates near zy € Z and fix an immersion ¢ € C*7(Z,R") with k > 3 and
0 < v < 1. The parametric integral in such coordinates reads

|01 A oo A Op—1|

J F(u(z),14(6)) do™ 1 = J 2 <L(:U),L* < AL N oo A On1 )) 012 A oo A Op_1| AL
z(2) Z

JZF (L(z), 15 (D1 A oo A Opqz)) dL™L

24



Regularity Theory for dnisotropic Zeast Gradient Problems. (PH. D. THESIS)

for some open and bounded coordinate domain Z < R"~! via the area formula and one-homogeneity
of F where we thus let

E=01T A .. A Op1z, 1€ = (Ap—1D0)(§) = Du(012) A ... A Di(Op—1).
We now fix normal variations
= N,z and vy = (aN, (=) with (1, (2 € C*7(2),
define
L=t +tug
and acknowledge that

ccl’;|t=o (Ap—1Dwy) (&) = 2 Di(01x) A ... A Du1(0ix) A oo A Di(Op—12).

Since
Dvy(0iz) = 0i(v1 0x) = 0;(1N,(=) + C10iNy=)

by the chain and product rule, we find

ZH_O(An—lD“)(O = Z_: Du(01x) A ... A (0iC1Nyz) + 10N, =) A .. A Di(On-12).

Thus, by varying in both vi- and vs-direction and differentiating twice, the second order terms of the
weak formulation of the Jacobi operator in such local coordinates z compute to

n—1 —
A(2)(DG1, DG) = DEF ((x), 14(6)) (Z (@¢1) @ 2 GO )
i=1 7=1

where we let ' € A,_1R" be defined by replacing the i-th factor in & by Ny,=z) € R". The set
{z' | i€ {l,...,n — 1}} is linearly independent and forms a pointwise basis of A,_1R™ with ¢,£.

Thus, letting

n—1
n = Z pixt € A, R" where pe R
i=1

we compute for the uniform ellipticity of A with the parametric Legendre condition for f that

-1 2 L& 2 2 b i
A(2)(p.p) = clux] <!n’ - (”' |L*§r> ) - ¢ <m B ("' !a*ﬂ) )

|1:&| = (det (D(1oz) ' D(o x)))%

may be assumed as bounded from above in local coordinates x. Since furthermore

as

N,z) - Du(0ix) = foralli=1,...,n—1,
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we infer 1 - 1, = 0 and hence

n—1

A@)(p,p) = Clyl* = C ] pi (¢* - 27) p;.

ij=1

The latter double sum corresponds to the scalar product of A,,_1R"™ in the basis given by (CEi)i:l’”"n,l.
Denoting G = (2 - 27) € R=Dx(=1) " this matrix is therefore uniformly positive definite and we
conclude

A(z)(p,p) = p" Gp = C|p|? with C' > 0 uniformly in local coordinates x

which finishes the argument. Finally, as the equation is now uniformly elliptic in local coordinates and
all involved structure functions are at least of class C%?, the interior regularity follows by standard
interior elliptic regularity theory for linear equations. |

By completely expressing and rearringing the weak form of the Jacobi operator in local coordinates,
we may make the following definition.

2.28 Definition (THE JACOBI EQUATION). We will call the resulting uniformly elliptic partial differ-
ential equation the Jacobi equation with respect to the given integrand F, the embedding ¢ and the
local coordinates x near some fixed point xg € Z. It may be written in the divergence form

div(a?¢; + b'¢) +c'¢; +d¢ =0 in local coordinates x,

where the regularity of the coefficients a’, b?, ¢’, d depends on f and ¢.

As the Jacobi operator is uniformly elliptic on normal variations, the normal field solutions v €
C?7(Z,Nz) to DH(¢)(v) = 0 with homogeneous boundary conditions (ie. vaq = 0) form a finite
dimensional vector space £ c C*7(Z, Nz) and we will call dim & > 0 the Jacobi nullity of 1(Z) (see
also [56l, 1.4 Proposition]). Note furthermore that a similar proof as for proposition 2.27 may be used
to show uniform ellipticity of D$)(¢) on variations in any (sufficiently smooth) uniformly non-tangential
direction field p.

We move on to recall the central stability result that we want to use for our regularity results.

2.29 Theorem (SPECIAL SMOOTH DEPENDENCE THEOREM IN C27). Assume that $(1) = 0 and
dim K = 0. Then there exist neighborhoods

UcC*@ERY) of wz and V<C¥(ERY) of ¢

and a map
F:U—V

of class C*=2 such that (F or)(v) = and
(rof)(k) =k and  9H(F (k) =0  forallkeU,

where r denotes here the restriction to 0=. Furthermore, for all ©* € V. with $(¢*) = 0 (that is, for all
stationary «* € V') it follows that r o * € U and o* and & or o* can only differ by reparametrization
of Z (that is, a diffeomorphism of Z of at least class C!).
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Proof. This is the content of [56] 3.1]. [ |

2.30 Remark. Our usage of F for the proof of the later regularity results for functions of anisotropic
least gradient will apply the dependence map F near a regular value level set for the Dirichlet data,
which invokes that the level set structure as a one-parameter family on the boundary 052 is already
well-behaved, and conduct somewhat of a "push-forward" by means of F to find a well-behaved one-
parameter family of level set boundaries on the full domain €.

—_
i

Finally we discuss the regularity of each stationary immersion #(x) € C*7(Z, R") selected like this. As
H(F(k)) = 0, it is somewhat natural to expect higher regularity then C?7 in case x and the integrand
[ are smoother and if we construct our parametrization (k) properly and this does actually follow
from some steps in the proof of the dependence theorem.

2.31 Corollary (HIGHER REGULARITY). Let additionally ¢« € C**(Z,R") and k € C™ 1%(0Z,R").
Under the assumptions of the last theorem, we may additionally assume that

F(k) e CV*(E,R") with v :=min(p,m—1).
forallkeU.

Proof. We recall that

F(r) = o(k) + Folk)  with  (po9) (¢(k) + Fol(k)) =0

from [56, 3.1, proof]. Therein, p is the auxiliary smooth and uniformly non-tangential field, which is
used in the construction to replace normal vectors, and ¢ (k) is constructed such that

{Aw(m) —1) =0,

(¢(k) = t)oz = K — Loz,

ie. such that (¢(k) —¢) is the unique harmonic map on = with boundary data (k — ts=), which is thus
an n-tuple of scalar valued harmonic maps on = with the respective boundary data component of k.
Hence, it follows

¢(r) = ¢+ (¢(k) — 1) € C"(E,R")

and the p-field #4(x) € C*7(Z,R") has by construction with (F¢(k)),= = 0 and we may assume

m

H(¢(k) + Fo(x)) = 0,

and thus the coefficient of #y(x) obeys quasilinear elliptic regularity theory (by writing the stationarity
condition in local coordinates on = and arguing similarly to proposition 2.27 with (¢(k), F¢(x)) being
close to (¢,0) for ellipticity) and is therefore also of class C*. [ |
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3 T foeidi ittt Mithicd 10 Totint Pgutiinity

The purpose of the section is a quick description and repetition of the original paper [40] for the
isotropic case in 3.1 while the later sections 3.2 and 3.3 will discuss two particular problems that the
original results contain and for which we will propose an altered approach. We will state results, which
appear clear to me from the considerations of [46], in section 3.4.

3.1 A Sketch of the Original Result and Our Assumptions.

Let us now first recall the necessary regularities for our given data.

We will assume for the remainder of this section that 0 < R™ is an open domain with C™-boundary
and f e C™(0R), where2 <n <7 and 4 < m < 0.

The lower bound on continuous differentiability of class C* is required for various tools from elliptic
regularity theory as well as straightening the boundary. We may now also state the assumed a priori
regularity on the extremal.

We will assume that u € C*Y(Q) is a function of (isotropic) least gradient with upg = f.

The connection of Lipschitz regularity to some bounds on the gradient of u will prove to be essential
in the proof. Moreover, we will of course rely on the fact that level sets of u are bounded by nice, min-
imizing hypersurfaces due to theorem 2.14. As already detailed in remark 2.10, the existence of such
Lipschitzian extremals minimizing the standard total variation in a Dirichlet class is well-assured by
established theory and as detailed in remark 2.18, the Lipschitzianity already allows for nice genericity
properties for level sets of u.

The Main Contents of the Approach. Roughly speaking, the method of [46] can be subdivided into
three parts: One is measuregeometric, one is PDE-theoretic and the last relies on the application of
the dependence map for minimal surfaces, which is prepared by means of the first two.

A very illustrating example of geometric analysis, all of these considerations rely heavily on local ar-
guments — both in value of the extremal and in points of the level set — and in what sense way we
may globalize them to a larger (super-)set. Furthermore, we will be strongly interested in perturbation
results of various geometric quantities as we will be fixing a nice level set as our reference one and
then see how it varies (and in what sense) as we vary the value of our function of least gradient.
These deformations of the reference level set hypersurface will prove to be useful for blowing up —
at last we may prove the vanishing Jacobi nullity of the reference hypersurface with it. Finally, with
the dependence map at our disposal, we may consider a flow connecting the regular level sets near
the boundary of the reference one and transfer it by means of the dependence map to all of the domain.

We now follow up with some more technical descriptions on the three previously named parts:
(o) The Measuregeometric Part. After the general setup, one first notes that there are generically
"nice" non-fat level sets for a Lipschitzian function of least gradient and we will use one of these as

our reference level set to find a neighborhood of it, on which the extremal is of corresponding differen-
tiability class. Those genericity properties together with the minimization properties of the level sets
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already imply a lot of structure. Recalling furthermore that all level sets contain at least one minimal
hypersurface, the general regularity theory for minimizing currents (more specifically, the geometric a
priori estimates) lets us now conclude that the level sets not only approach each other, but that the
minimal hypersurfaces may also be regarded as sufficiently differentiable deformations of our reference
hypersurace, which converge up to higher order in their function spaces.

These classical, but somewhat ill-recorded, results allow to deform as a normal graph away from the
boundary while the continuation up to the boundary is a more delicate matter, for which we will use
the construction of almost-minimal diffeomorphisms.

(8) The PDE-theoretic Part. Being able to express nearby minimizing hypersurfaces as normal graphs
away from, but arbitrarily close to, the domain boundary, we now want to use this parametrization for
blowing-up to prove the existence of a special Jacobi field.

This involves heavy usage of local expressions in coordinate charts and geometric partial differential
equations, which we derive by means of the vanishing first variation.

Particularily, the mapping in normal direction can be shown to suffice proper estimates such that the
blow-ups actually converge and moreover, the converge to a weak solution of the Jacobi equation of
the reference hypersurface. This Jacobi field is moreover bounded from below, which is implied by Lip-
schitzianity here and is the most central part, as a simple argument with elliptic theory now assured
that this special Jacobi field eliminates the existence of non-trivial homogeneous Jacobi fields. Hence,
the Jacobi nullity of the reference hypersurface vanishes.

() The Level Set Part. Due to the previous part, the necessary condition for local smooth dependence
on the manifold boundaries for minimizing hypersurfaces near the reference one is granted and the
dependence map exists.

Assuming the boundary of the reference hypersurface to be given by a regular level set, small perturba-
tions of the value will still have regular level sets on the boundary and we may parametrize the nearby
ones over the reference boundary. Thus, we gain a one-parameter family of embeddings of boundary
manifolds, which we shall push foward with the dependence map to their unique minimal hypersurface
(close to the reference one) with it as boundary.

By this uniqueness, we subsequently infer that it has to be contained in the appropriate level set of the
extremal (as the boundary level set is and at least one minimizing hypersurface is already contained
in the whole level set), thus, the extremal evaluated on the one-parameter family of minimizing hyper-
surfaces returns precisely the value of the parameter. At last, a local inversion argument provides the
identity for our extremal, which is sufficiently differentiable.

Of course, we will make these rough sketches more precise in the next sections. Revisiting the methods
of part (a)) will be the content of sections 4 and 5 while section 6 will provide a different approach to
part () and the conclusions from part () will be conducted in section 7 (with the regular level set
flow being introduced already in section 5.3 and the almost-normal diffeomorphisms in section 5.4) for
the case of a general anisotropic total variation of sufficient regularity.

3.2 On the Convexity of the Domain.

Here we will discuss the first particular point of the original work that appears like a gap to me or, at
least, could use a lot more details.
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Observation. The original work does not assume that § is convex.

This apparantly harmless fact is first of in contrast to some earlier works of H. PARKS. Indeed,
in [41] and [42] we find both times a convex body as our setting. Furthermore, a very essential lemma
in [41l 8(1) Lemmal breaks down for non-convex domains. Therein, it is provided that the minimizing
hypersurfaces are in fact (£, )-minimizing and not only locally minimizing in €. Thus, they are
solutions to a parametric obstacle problem and exhibit different regularity properties. (In [4] it is
proven for almost every value, while an approximation argument in [42, 3.1(1) Lemma| shows that it
is true for every value.)

So how is this important? A simple estimate by convexity and properties of the area integrand would
now show that a (Q, ¢f)-minimizing rectifiable current R fulfills

R area-minimizing on (0, &)

= R area-minimizing on R™.

This unlocks the boundary regularity theory in the original approach by means of the works of Allard
and Hardt/Simon. Yet, all of this is only valid so far on conver domains! If the domain € is possibly
non-convex, there are no details given whether our level sets actually patch together to a manifold
with boundary granted the necessary density estimates.

Furthermore, some additional properties like convergence of total masses in [46, 2.1 Lemma, 2.5 Corol-
lary] are not (or, at least, not immediately) justified anymore without minimization with respect to

(@, ).

We will propose a solution to this property in section 4 of this thesis. Since those easy arguments
by means of convexity are not available anymore, we however have to conjure stronger tools. This will
be done in two steps:

(1) Show that locally minimizing hypersurfaces from the BV-setting are solutions to parametric ob-
stacle problems also on general domains.

(2) Show that the (conditional) boundary regularity theory in fact works at every point of the bound-
ary.

While it is somewhat classical that parametric obstacle problems can be interpreted as almost-minimizing
currents, the boundary regularity theory is still conditional in the sense that we need half-density esti-
mates. We shall thus also provide those at each point in question in what follows, mostly hailing from
and relying on the works of R. HARDT and F.H. LiN in [20, 29].

3.3 On the Regularity of the Flow of Hypersurfaces.

Now we will discuss the second problem, which is intrinsically tied to the regularity conclusion and the
way how boundary manifolds are parametrized and mapped with the dependence map. Most of the
notation and content of this subsection is directly taken from the proof in [46, 4.3 Theorem].
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Therein, the authors consider the dependence map F' between the Banach spaces
F - Cm—2,a(f—1(0)7Rn) N Cm—2,a(u—1(0)’Rn)’

where 0 < o < 1 is arbitrary, we have fixed the value 0 and additionally assumed that the level set
boundaries equal the level set for this value. We denote the inverse of the nearest point projection on
0Q onto f~1(0) by 7, which is a map of class C™ 1 with

7 f7H0) x I — (09 = R™),

where I is some small open interval about 0. The important point is now to consider 7 as a curve in
the above Holder space via

(t > 7 := (., 1)) € C2(F7H(0); R™)
Yet, the differentiability of this mapping is somewhat problematic.

Observation. Every differentiation in the Holder norm of class ™2

derivatives plus the Hoélder constant of the last derivative (eg. (m — 1) derivatives by estimating

already involves (m — 2)
against the Lipschitz constant).

Since 7 is a map of class C™ ! in its two variables, this makes it hard to differentiate the curve
t — m; even once in the corresponding norm of class C™~2%. The original claim, namely,

t— 7 s of class C™ ™2 as a map with values in C™=2(f~1(0); R"),

is easily seen to be wrong here in full generality, because already two differentiations of the curve
t — m in C™ 2% would involve m differentiations of 7, which outreaches the a priori amount of
differentiability. But this is precisely the regularity that we need for the conclusion, since we want to
consider afterwards

g(z,t) = F(m)(x)

as a map of class C"™~2 in both variables! Our second question here will thus be
Is the result on partial reqularity true with a different degree of differentiability?

Clearly, to receive the most regularity for the curve t — 7, we consequently need to consider the least
possible degrees in the Holder norm to lose the least possible amount of derivatives additionally. Still,
we will have to alter the regularity result, as the conclusion will stay true but we will have to subtract
an additional degree of differentiability. We will in the process also change the nearest point projection
on the boundary for the flow of a rescaled gradient vector field of f to receive more differentiability in
the above curve parameter (otherwise we would lose even more regularity in the final result!).

3.4 The Original Results.

We will close this section with a result that I certainly see proven from the original resource [46]. I
also strongly need to mention that the only second available resource [58], which was only written by
W. ZIEMER, uses both of these (actually even stronger) assumptions.
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3.1 Theorem (PARTIAL REGULARITY, Fouss and Fimer ). Let 0 and f be smooth and 2 be conves.
Then there exists an open and dense set 0,, < §) such that ug, is smooth. |

Observe that this formulation eliminates both problems from the sections 3.2 and 3.3, as convex
domains allow for immediate boundary regularity, as we may drop the obstacle and pass to global
minimization, plus we do not need to care about losses of derivatives if we work in the smooth category.

3.2 Corollary (PARTIAL REGULARITY IN EIGHT DIMENSIONS, Gy ). Theorem 3.1 still holds while
replacing 2 < n <7 with n = 8.

Proof. The method of choice here is to perturb the (finitely many) isolated singularities away such that
we may work with fully regular hypersurfaces by slightly replacing the value, see [43]. Interestingly, in
this paper, the boundary regularity result from [22] is in fact referenced, which does need an absolutely
area minimizing current, and also some other results [43, 2. Lemmal are only formulated for absolutely
area minimizing currents. |

The following sections 4,5 and 6 will now serve to complement these results with additional theory to
justify results on possibly non-convex domains and only finite degrees of differentiability. In section 7 we
will repeat the main steps in the argument to prove local and partial regularity theorems for functions
of anisotropic least gradient and prove generalized (partial as well as local) versions of theorem 3.1.
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& Tarictinal” Doottons for Lot S Lot

Here we begin our discussion of the regularity properties of functions of least gradient and we start
with properties of their level sets and level set boundaries.

While the interior regularity of sets of minimal anisotropic perimeter is usually well-established, we
also want to discuss matters of boundary reqularity such that the oriented hypersurfaces become proper
submanifolds with boundary. This appears to be somewhat known and does follow from a couple of
results from the literature, but proper references are rather unclear and we will spend the first subsec-
tion with recapping some details. We will moreover emphasize the correct notion of minimality that
sets of minimal anisotropic perimeter fulfill among currents, which will be our starting point here.

The later two subsections will furthermore prepare the stability and deformation results of section
5 by introducing the geometric quantities regarding level sets that we want to consider. We will
also include derivations on how to express the converging sequence of level set boundaries in a non-
parametric form locally uniformly over some tangent space of the limit, which is the essential tool to
also connect their geometries up to higher order.

4.1 A General Equivalence Result.

To begin with, we first prove the following equivalence lemma, which subsequently relates sets of min-
imal anisotropic perimeter and parametric obstacle problems for the associated integrand on currents.
The idea of our approach is taken from [29, 0.2] while such relations could to some extent already be
found in [42] and [44].

We pursue a proof here under the assumption that our domain €2 has connected boundary to en-
sure that its complement is connected, which can also be found as an assumption in [24]. Note that
this may be enforced with a localization procedure, but it is unclear whether a connected boundary
may be globally dropped.

4.1 Proposition (EQUIVALENCE OF MINIMIZERS). Suppose we have a bounded Lipschitz domain Q
with connected boundary and a " '-measurable set ¥ < 0. Fixz moreover a bounded set of finite
perimeter A < R"™ such that T(14) = 1y and [Y] is oriented via the outer mormal vector and let
the parametric integrand F and the anisotropic total variation ® be associated with each other via the
Hodge operator x. Then we have:

(@) If R € Zn_1(R") is [ -minimizing with respect to (0, &) with boundary 0R = 0[X] (ie. a
solution to the parametric obstacle problem), we may associate to R a boundaryless rectifiable
current R* € %,,—1(R™) such that

R*=3(E"LE)=R+ (J(E"L A))L (R"\Q)
and E < R" is a set of ®-minimal anisotropic perimeter in Q with respect A\Q.

(B) If E < R™ is a set of ®-minimal anisotropic perimeter in Q0 with respect to A\Q), then the
rectifiable current

R=0E'LE)LD
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is a solution to the parametric obstacle problem for | with boundary R = O[%].

Proof. We note first that both problems admit extremals and it is no loss of generality to assume
existence in both problems at once. Indeed, the existence of sets of minimal perimeter with respect to
a given outer trace is clear via the direct method, while [] € %,,—1(R") implies that J[%] € %, —2(Q)
and [11} 5.1.6(1)] implies the existence of a solution to the parametric obstacle problem on . We will

proceed to derive identities for both minimizers.

Recall from section 2.2 that a set of finite perimeter A = R™ with outer trace T(14) = 1y on 0
fulfills

IE"L (A~ (RMQ)))

AE"L AL (R™NQ) + [¥]
[*An ®@\D)] + [<]

by dualizing the extension formula for sets of finite perimeter with the Hodge star operator and choosing
adequate orientations, which yields

o ([0*An (RM\Q)]) = —0[2].
Now, let R € %,—1(R™) be as in («). Then
R* := R+ [0*A n (RM\Q)]

fulfills 0OR* = 0. Hence, by the isoperimetric theorem in R™ [25, Theorem 7.9.1], there is a bounded
Z"-measurable set E < R™ and a rectifiable current S € %, (R™) such that

0S = R* and S is concentrated on E, ie. |S[(R™\E) = 0.
Note that we have
(0S)L (R™M\Q) = [0*A n (R™\Q)] = o(E"L A) L (R™\Q),

hence the difference

(S — (B"L A) L (R"\Q) € Z,(R")

equals integrating an integer over R™\Q by the constancy theorem [25, Proposition 7.3.1] and the
connectedness of the complement of Q. As both the sets E and A, on which the respective currents
are concentrated, are bounded, we infer that the multiplicity is 0 sufficiently far away from the origin
and therefore

SL(R™Q) = (E"L A)L (R™\Q),

since the integer in question has to be 0. Denoting the integer-valued multiplicity function of S by ¥,
we write

$=(E"LE)LY
and infer via [11], 4.5.17] that

R* =) 0E"L{d=k}), [R*| =) l0E"L{Y >k},
keZ keZ
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also yielding R* = JE"L{Y=k}) |[O(E"L{Y = k})| -almost everywhere,
due to the locality of approximate tangent spaces [12, Proposition 10.5] and {¢ >} < {¢ > k} for [ > k.
We now drop negative and absorb higher multiplicities and only consider the oriented boundary
E"L {9 >1} e %,(R")

with also
OE"L{Y=1}) e Zp_1(R")

by means of the boundary rectifiability theorem/De Giorgi’s theorem. We may assume
{9 = 1}\Q = A\Q
and our previous identity on R™\Q leads to
JE'"L{9=1}) =T+ [0*An (RM\Q)]

for some current T € %,,_1(R") with spt T < 2. Due to 6> = 0, we have 0T = J[X]. As R solves the
parametric obstacle problem for J[¥] and Q, we get

(F,R) <{F,T).

The mass-additive decomposition also yields the converse inequality and we receive
(F,Ry={F,T).

This means

MUFAE"L{W =)L) = (F R*LQ)
keZ

= <F7R>:<FaT>
(FLOE"L{9 = 1}L0),

which is

[O(E"L {9 =k}|(Q) =0  forall k1.

Hence,
R=0S)LQ=0E"L{¥=1})LQ=T

and we will subsequently relabel {8 > 1} as E.

Moreover, for E as in (), we let
R,=0E"LE)Lu,(Q)

and notice that since
R,—R=0E"LE)L (up(Q)\ﬁ)
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and
(,R,—R) — 0 as p— 0,

we infer that R, — R in the weak-* sense. This already yields
(F Ry < lim inf (¢, O(B" L E)) =<, AE" L E) L (R"\u,(Q)))) = ®p(R") — ©A4(R™Q)

by lower semicontinuity of the parametric integrand F and duality. Now fix some arbitrary p > 0. As
E\Q = A\Q, we recall that T(1g) = 1x. Thus we find also here that

0 (Rp - R) Lu,(Q) = & (A(E" L E) L (u,(Q\Q)) L u,(Q) = —[>],

and thus, also R has the correct distributional boundary, since the boundary of R + (R, — R) vanishes
in u,(2) while the support of R has to be contained in Q.

We may finally use these identities and compare both expressions for R, R and E, E: Tt holds

(F,R)+ ®4(R"\) < ®5(R")
(R =(F,Ry+{F,0(E"L E)L (R"\Q))

<
< F R+ {(F,0(E"L AL (RM\Q)),

which proves that we actually have equality, ie.
(FRy=(F,Ry and  ®p(R") = ®5(R"),

and thus, F is a set of ®-minimal perimeter and R solves the parametric obstacle problem with respect

to F and [X]. [ |

4.2 Remark. The necessity of a connected boundary is related to homologically minimizing currents also
being absolutely minimizing. While the converse is clear, a connected boundary enforces homologically
minimizing currents to also be absolutely minimizing in our setting. Local results on homological
minimization of minimizing level set boundaries inside {2 among currents furthermore also appeared
in [44] 5.(4) Theorem].

4.2 Interior and Boundary Regularity of Level Set Boundaries.

We now turn back to our Lipschitzian extremal v :  — R, which is supposed to be a function of
least anisotropic gradient with respect to the anisotropic total variation ®. The following paragraph
fixes what kind of data (Z) we shall assume.

ASSUMPTIONS (2): Let u e CO1(Q) be a function of anisotropic least gradient with respect to ® with
upn = f, where 09 is of class C™ and f € C™(02) with m = 4. We shall furthermore suppose that ®
is elliptic and even and ® and Do® are of class CF 1 for some p >3 and 0 < o < 1.

We will now discuss regularity issues of our given level sets by considering them as minimizing currents
and applying interior and boundary regularity theory for such. Applying the equivalence lemma to
interior points will additionally yield a short proof for interior regularity (recall that F inherits the
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regularity from ®). This will also provide somewhat of a reconciliation with the original approach
by H. PARKS in [41l [42] [46] to use slices of the domain (as a normal current) 2 by the lipschitzian
extremal u to describe the level sets.

Let us therefore introduce for £ € R the currents
T, :=0E"L{u>=t})LQ and Spi=0E"L{u<t})LQ,

which furnish the distributional interpretation of the level set boundaries of u. We have T3,S5; €
Hn—-1(R™) by definition.

4.8 Remark. We choose some t € R such that 5"~ (f~1(¢)) = 0, which is true for all except countably
many. One may show then (see [19, Lemma 2.12]) that

T(l{uzt}) =l and T(l{ust}) = lir<eys
which implies for the distributional boundary of {u >t} in R" that
O(E"L{u = t}) = o(E"L{u = t}) LQ + [{f = t}],
and therefore, as {u >t} = Q with 0 being £ -negligible,
QL {u>t}) =dE"L{u>t})LQ+[{f > t}],
where we identify €2 with integration over {2 as a current. Solving yields
JE"L{u=th)LQ=0QL{u=t}) - [{f =t}] = —(Qu,t—)

and thus, that our definition of the current 7} (and analougously for S;) precisely equals (up to sign) the
slice of 2 by u of the original approach. Note in particular that here [{f > t}] carries the orientation
from the interior unit normal Nyq.

We now apply the equivalence lemma to derive suitable minimization properties for T3 and .S;.

4.4 Corollary (CONNECTED BOUNDARIES). Let (2) hold. If 090 is connected and t € rg f is a reqular
value for f, then the rectifiable currents Ty and Sy are solutions to the parametric obstacle problem on
Q for F with boundary O[{f = t}] = —0[{f < t}] with orientation via the outer trace.

Proof. As t is a regular value for f, we note that

ol{f =t} = —ol{f <t} = [f ' (*)] € Zu—2(R").

and
f7L(t) < spt T} ~ spt Sy.

We find then that the above currents 7; and Sy can be identified with the current in 4.1(3), as they must
be supported in v =1 (¢) and the level set can only intersect Q2 in an 7"~ !-negligible set. Furthermore,
it is easy to show that

T(l{uzt}) = 1{f>t} and T(l{u<t}) = 1{f<t}7
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since f~1(t) is " Lnegligible (either directly or also via [I9, Lemma 2.12]). In particular, {u > t}
and {u < t} are sets of ®-minimal anisotropic perimeter with respect to these traces. Thus, by setting
Y ={f>=t}or X ={f <t}, we may apply Proposition 4.1(3). [ |

Furthermore, as convex sets always have connected boundary, our corollary 4.4 also includes the reg-
ularity results (at least, for a differentiable boundary) of [41] for a regular level set on the boundary.

If the boundary 0f) is possibly disconnected, we will localize to small balls at boundary points to
achieve a similar minimality property.

4.5 Corollary (GENERAL BOUNDARIES). Let (2) hold. If 0 is not necessarily connected, then for
each xg € f~L(t) there exists r > 0 (depending on x¢) such that Ty or Sy are solutions to the parametric
obstacle problem for [ on B(zg,7) N Q.

Proof. Let xg € f~1(t). As 0Q is locally bilipschitz to a half-plane, we may assume that o(U(xg,7) )
is a Lipschitz boundary and connected for r > 0 sufficiently small and localize the application of propo-
sition 4.2 to such a ball (where the dependence on z is via the local straightening map).

Assume that {u > t} is continued to a superset of € by choosing an extension with the appropri-
ate outer trace. Then {u > t} is in particular a set of minimal perimeter with respect to its inner trace
on A(U(zg,r) n Q) and we may let the outer trace equal the inner one. Hence the current

T, L (U(xzg,r) n Q) € Zp—1(R™)
is a solution to the parametric obstacle problem on B(zg,r) n Q by proposition 4.1(3). |

4.6 Remark (LESSER REGULARITY AND MINIMIZATION). The above results are not sharp. In fact,
I put quite strong assumptions on everything as we will be restrained to such a regular setting for
our regularity theory anyway. Suitable generalizations to Lipschitz boundaries and Lipschitz data and
other results on minimization via approximation (as in [42]) should be possible, but I do not know how
much use they have aside from possible independent interest.

Let us now discuss the regularity properties of level set boundaries.

4.7 Proposition (INTERIOR REGULARITY OF LEVEL SET BOUNDARIES). Let f and Daof be of class
CH1e for =2 and 0 < o < 1, where p can be 0 or w. Then for each t € rgu there exists a subset

of full measure of
(Hu=t}udfu<t}) nQ,

which is a submanifold of class C** without boundary.

Proof. This is a somewhat classical consequence of interior regularity theory for minimizing currents
which we sketch here for the sake of completeness. We first deduce that proposition 4.1 can be locally
applied to interior points

zo€ (Hu=tudu<t}) nQ

without any assumption on boundary and boundary data, ie. for each such x( there exists

B(zp,r) cc Q
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such that the distributional boundary of the sub-/superlevel set in B(zg,7) solves the parametric
obstacle problem as a current for f on B(xg, 7). Writing the level set boundary as a current as X, we
may require that the approximate tangent plane H at x( exists. The proof of [11} 5.3.16] then shows
that the cylindrical excess of X over H at zg decreases to 0 and spt X is by [10, 6.1 Theorem]| (or any
other interior regularity theorem eg. of [I1]) locally a (graphical) submanifold of class C'% near z for
some 0 < 8 < 1 over H and [12], 3.3 Proposition| shows the higher regularity as the function whose
graph constitutes the submanifold solves the Euler-Lagrange equation with respect to the associated
non-parametric integrand on H. Since an approximate tangent plane to (o{u >t} U {u < t}) N exists
at " -almost every point, the claim follows. |

4.8 Remark. Of course, finer characterizations of the singular set, ie. the points xg as above where the
level set boundary is not a submanifold, are possible. As we shall be interested in full regularity, we
recall that

F, DoF of class C*' and n < 3

or [ being a Riemannian metric of class C2 and n < 7

suffice by the regularity results from [I, Corollary 3.2] or the existence of normal coordinates and
the classical Bernstein theorem (to enforce blowups of our oriented boundaries to be hyperplanes) to
achieve full interior regularity of the minimizing level set boundaries.

We are now also prepared to prove that the boundary regularity theory in fact applies at all points of
() and we will provide a proof in multiple steps.

Each of these steps corresponds to a somewhat known result, but might also be interesting in itself or
with respect to other conclusions that one might draw. The general idea is taken from [29, Section
3.1-3.3] and we will provide a complete derivation here. It combines ideas from the theory of small
excess and closeness to a (half-)hyperplane from [I1, 5.3.16] and [4, Page 128-130| with barrier and
maximum principles from [20]. We collect some tools for our setting in the next lemma and then
proceed with the proof.

4.9 Lemma. Let s > 0 be given and fiz B(0, s) n {x, <0} < R™.

(1) If R € Zn—1(R™) is absolutely minimizing with respect to an elliptic constant coefficient integrand
and (B(0, s), ) and spt R < B(0, s) n {z,, < 0}, then spt R < B(0,s) n {x, < 0}.

(2) Let A < B(0,s)n{x, <0} be a £"-measurable set such that R = 0(E"LA)L(U(0, s) n{x, < 0})
is absolutely minimizing with respect to (B(0, s) n{z, < 0}, ). Then there exists v > 0 such that

(o, RLU(0,9)) <v¢" !

holds true for all 0 < q < s.
(8) If R € Zp—1(R™) is such that

()R — Q and  (pr,)4#Q — QF in the local flat metric in R",

for two sequences rj,r — 0 and Q,Q* € %ﬁ{’fl(R"), then we may find a new sequence r; — 0 such
that

(pr) g R —> Q* in the local flat metric in R™.
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(4) If (pr; )R — Q for some Q € Z'¢ | (R™) in the local flat metric and there is some q¢ > 0 such
that
RLU(0,q) = d(E"L A)LU(0,q) for some L™-measurable set A < R",

then there is some L™ -measurable set B < R™ with

Q = A(E"L B).

Proof. Assume that (1) is wrong, then we have
RL {x, >0} #0

and we denote by 7 the convex projection onto {z,, = 0}. We may assume by possible translation and
slicing that RL {z,, > 0} is an integral current in R™. Note that

0 (my (RL {zp > 0})) = &(RL {z, > 0})

and that, as 7y (RL {z, > 0}) € Z,—1(R"), its orientation is almost-everywhere equal to +E"1 We
may find

S e %Zn(R"), spt S < B(0,s) n {x, = 0}, 0S = RL{z,, > 0} — mu(RL {z, > 0})

by the isoperimetric theorem and the convexity of B(0, s) n {z, > 0}. We decompose with the integer-
valued multiplicity function 9 and write

05 = Y 0E"L{I=k}),  [2S| = D [AE"L {9 = k})|
keZ keZ

and treat each oriented boundary seperately. First write

08 =Y AEB {9 =k}) = > AE"L{Y=k})+o(-E")L {9 < —k})
keZ keN

such that {9 > k}, {9V < —k} < B(0, s) n {x,, = 0} for all k € N, which of course holds similarly for the
masses. By assumption, there is k € N such that

OE"L{Y=k})L{x,>0}#0 or O((-E")L {9 < —k})L{z, >0} #0.
Set the non-vanishing oriented boundary to Ry, denote the integrand as I' and let ¢ > 0 be an ellipticity
constant, then Ry L {x,, > 0} is absolutely minimizing with respect to (B(0,s), &) and Ry L {x,, = 0}
has constant orientation (due to {9 = k}, {9 < k} < B(0,s) n {z, = 0}). We find
0= (T, R L{x, >0})— (T, (—Rg) L{zy, =0}) = c (&, R, L{xy, > 0}) — (&, (—Ry) L {x,, =0}) =0,
by minimization with respect to I' and o/ and ellipticity of I', hence, we have equalities. Thus

(&, Ry L{wn > 0}) = (o, (= Ri) L {zn = 0}),

which means that also Ry L {z, > 0} is absolutely minimizing with respect to /. This contradicts
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[21, Corollary 2|, as spt Ry L {x,, > 0} is not contained in {x, = 0}.

To prove that (2) is true, we may compare with the trace of A on the topological boundary (U (0, ¢) N
{x, < 0}) and find v > 0 independent of 0 < g < s by minimization. Item (3) follows from a diagonal
argument for the local flat metric and item (4) is proven in [11, 5.4.3(7)]. [

4.10 Theorem (BOUNDARY REGULARITY OF LEVEL SET BOUNDARIES). Let t € R be a regular value
for f. Then the sets o{u =t} and o{u < t} are " 1-almost everywhere submanifolds with boundary
of class C¥% with

v:=min{y,m—1} >3

with full boundary regularity and whose geometric boundary is given by f~1(t).

Proof. We recall that the interior almost-everywhere regularity is proved in proposition 4.7 and we will
now partition the proof for the complete boundary regularity into the following five steps:

Step 1: Reduction to a locally straight problem. We fix some arbitrary zo € f~'(t) for the rest of

this proof and recall zg € spt T; n spt.S;. Since 02 is of class C™, there exists » > 0 and a diffeomor-
phism ¢ of class C™ such that

¢ : U(zg,r) — U(0,r) and ©(02 " U(xg,7)) = {5, = 0} n U(0, 7).
Without loss of generality we assume that
o(Q N U(zg,r)) = {x, <0} nU(0,r).
Straightening furthermore inside {z,, = 0}, we can also assume
o(f71(t) nUlxg, 7)) = {x, = 2,1 = 0} nU(0,7)

and

o({f <t} nU(xp,7)) = {2 =0, 211 <0} nU(0,7r).

As T; and S; solve a parametric obstacle problem for f on some ball B nQ) near x(, we pursue a proof
without loss of generality for 73 and may arrange that

T :=pu (T; LU (xg,r))

fulfills

(e rry<((e ) rr+x)
for all rectifiable currents X such that spt X < {z, <0} n B(0,s) with 0 < s < r and dX = 0.
The pull-back integrand (go_l)# F obeys

((«P‘l)# F) (z,p) == F (¢ (x), (An1D (¢71)) (p))

and thus is of class C™™("=Lr=1 i 2 and of class C* in p and it is elliptic by the invariance of
ellipticity under diffeomorphisms.
We assume from now on the straightened configuration without relabeling. Thus we fix some 0 < s <7
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and assume that T" solves the parametric obstacle problem for F on {x,, < 0} n B(0, s) and denote by
A > 0 a Lipschitz bound for F on B(0, s) with

AL (p) < F (x,p) < A (p) for all z € B(0,s) and p € A,,_1R™.

Both £ and Dof are (at least) of class C2 due to m > 4 and p > 3.

Step 2: Half-Space Parametric Obstacle Problems are almost-minimizing. We now want to show that
T is almost-minimizing for f in the full ball B(0, s).

To do so, let us fix a rectifiable current X with spt X < B(0, s) and 0X = 0. We assume that spt X ¢ K
for some compact set K < B(0,s) and K is contained in a ball of radius ¥, hence diam K < 2r*. Fix
any z* € K and recall that there exists S € %,,—1(R") with

spt S < B(0, s), 0S =0(TLK), (F g, S) < F g, S+ X)
for all currents X as above by [11, 5.1.6(1)]. As F .+ has constant coefficients and
spt (T K) < B(0, s) n {x,, < 0},

the barrier principle of lemma 4.9(1) implies spt S < B(0, s) n {z,, < 0}. Now we may estimate by the
respective minimization properties of T" and S and Lipschitzianity of F in the first variable that

(F, TLK) F,8) < (14 220%%) (F 3, S)

<

< (L4222 F e, TLK + X) < (14 (4X* +2sXY) 7*) (F, TL K + X),
which proves that T is (F ,w)-almost minimizing in B(0, s) with

w(r®) 1= (4N% + 280°) r*.

Step 3: Blowups and Regular Tangent Currents. We prove the existence of suitable limits of homothetic
expansions.

Note first that we may also consider the set {u =t} n U(0,r) (herein after implicitly straightening by
means of ¢) such that it holds

T=0E"L ({u>=t})L(U(Q0,r)n{z, <0})
which yields by lemma 4.9(2) that there is some v > 0 with
(e, TLU(0,9)) < v¢" ",

for all 0 < g < s and  does not depend on ¢. Fixing now R > 0, we want to apply the compactness
theorem for integral currents in a sequence of nested balls with increasing radii. We may choose g > 0
small enough for 0 < ¢R < s and compute

_ (7, TLU(0,qR)

(A, (1g)#T)-U(0, R)) < <yR"h

qnfl
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Moreover, as (07)LU(0, r) is an oriented hyperspace of codimension two and multiplicity one, we infer
(e, 0((ng)#T)LU(0, R)) < wy o R" 2.

In particular, whenever 0 < ¢ < s/R, the masses in U(0, R) are uniformly bounded. Thus, we deduce
the existence of a sequence ¢; — 0 such that the homothetic expansions of T converge in the weak-
*-sense (and by uniform local boundedness in mass also in the local flat norm on R™) in R"™ to some
locally rectifiable current @ € 2°¢, (R™) for i — oo. It also holds

0Q = [{xn = vn—1 = 0}], spt Q < {z, <0}, 0 € sptQ,

due to blowing up 0T and since spt(pq)#T < {x, < 0} for all ¢ > 0. Possibly extending T across
{z,, = 0} to an oriented boundary in U(0, s), we may also assume that Q is of multiplicity one J#"~!-
almost everywhere due to lemma 4.9(4).

We want to show now that we may suppose ) to be an oriented half-plane of multiplicity one. By
Remark 2.9(2) we have that @ is absolutely minimizing in R™ for the frozen integrand f (. Taking
{x, = 0} as the hyperplane in question, we furthermore use the boundary maximum principle for
constant coefficient integrands [20, 4.6 Theorem| to infer that either

On—1,4(20,Q) < 1/2 or spt Q@ nU(0,q) < {x, = 0} for some q > 0.

The first case implies, by application of eg. [10, Theorem 0.1] as a regularity theorem, that @ is given
by integration over a manifold with boundary of class C! near zg. The second case implies, by the
constancy theorem and multiplicity one, that @ L U(0, q) is a distributional half-ball of multiplicity
one. In both cases, the homothetic expansions of ) will converge in the local flat norm to a distribu-
tional half-hyperplane of multiplicity one and by lemma 4.9(3), we can realize this limit as a limit of
homothetic expansions of T'.

Step 4: Excess comparision with a Tangent Half-Plane. We estimate the lower density by 1/2 in form

of small cylindrical excess by means of Step 3 and the local proximity to the tangent half-plane. This
step is yet again modelled upon [I1, Theorem 5.3.16], where we need to adjust for almost-minimizers,
a single converging sequence of homothetic expansions to an oriented plane and the boundary case.
Therein, the single sequence and almost-minimization are rather clear, while the flat boundary case
follows via additional positional arguments.

By the preceding Step 3, there is a real sequence ¢; —> 0 and a weak-*-limit Q € £'¢ (R") of
homothetic expansions of T' near xo = 0, which is a distributional multiplicity one half-plane. As we
are only interested in working with the half-plane spt Q) in this step, we choose suitable new coordinates
for this proof so that now

= (u,v,w), y=(uv), veR"2 wveR, weR,

p:R" > R" plu,v,w) = (u,v,0)
spt@Q ={w =0, v<0}, Q={w=0} and sptdT = {w=v=0}.
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We will set
T = (/"Lqi)#T
and estimate in this step the quantity
Exc(R,0,0) := 0~ "V (o, RL{Jy| < o}) — (o, (px R) L {|y| < o}))
such that there are sufficiently large ¢ € N and sufficiently small ¢ > 0 with

0 < Exc(T;-Zq(0,0,0),0,0) <€

for arbitarily small € > 0. Then, applying the small excess boundary regularity theorem for almost-
minimizers from [I0, Theorem 6.1], we find 0 < ¢ < 1 such that spt T; n Cq(0, co,0) is a CHP-graph
over U(0, co) nspt @ for some 0 < 8 < 1. Hence, by scaling properties of the homothetic expansions,
this yields that spt T n Cq(0, cg;o, g;io) is a CY8-graph over U(0, cgio) n spt Q.

Fix furthermore a suitable cylinder
7q(0,20,20) < U(0, s) for 0 > 0 sufficiently small.
Then, by remark 2.9(3), there exists for each 0 < 1 < 1 some sufficiently large i € N such that
spt T; N Zq(0,20,20) < Zq(0,20,n0).

Possibly increasing the natural number ¢, we infer also by the proximity of remark 2.9(3) that the sets
spt T; have to avoid the set

7q(0,20,20) n {v > 0} since spt@Q = {w =0, v <0}
inside Zq(0, 20, 20) and we may therefore arrange to choose
ze{lyl <o, v>0, w=0} and v>0 such that

7q(z,7,20) € Zq(0,20,20) n {v > 0} with Zq(z,7,20) nsptT; = .

In particular,
ps (T;L Zq(0,20,20)) = [{w = 0,v < 0}] L U(0, 20)

by the constancy theorem since (07;)LU(0, r) is fixed under py and has multiplicity one and the above
disjointedness from spt 7; shows

(p# (T; L Z2q(0,20,20))) _Zq(2,7,20) = 0.

Now, passing from 20 to a number p between o and 20 and defining f(x) = |y| = [p(z)], we may
assume that
(o (Ti\_Zq(0,20,20), f,p+)) < 2" ' pp" 2,

where g > 0 is as in [11l 5.3.16, page 611] (as the upper density is finite by lemma 4.9(2)) and

T, == (T; - Zq(0,20,20)) L {|y| < p} = T; L Zq(0,p,p) (by choice of n)
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is hence an integral current in R™ by the definition of a slice and the boundary rectifiability theorem.

Further, we basically use the same comparison procedure as in [11 page 611, last lines|. Denoting
h the affine homotopy from the projection p to the identity, we observe

O(hy([0,1] x 0T,) — (T, — pxT,)) = 0, (e, 0Ty < (2"t + wpo)p™ 2

together with
<JZ{7 h#([ov 1] x an)> < 77:0<%7 aTP>

by the homotopy formula.
The chain of inequalities is now exactly the same as in [I1} page 612] together with
7q(0,p,p) B (0,2\/§J> by o<p<20
for the almost-minimization. Clearly we have
(A, TiL.Cq(0,p,p)) < (&, T; L Zq(0,p, p))

by which one can subsequently mimick the steps from |11}, page 622] together with almost-minimization
in the compact set Zq (0, p, p), scaling laws for the cylindrical excess and uniform boundedness of the
rescaled integrands, for which T; is almost-minimizing. We receive an upper bound for Exc(7; L
Zq(0,0,0),0,0) which decays to zero with o and 7 and finish the proof of step 4 together with T;
projecting down to a half-ball.

Step 5: Higher Regularity Conclusion. We will finally transform back to our original configuration
and use elliptic regularity theory for quasilinear equations to prove the claimed boundary regularity.

By the steps 2,3 and 4 and the boundary regularity theorem of [10, Theorem 0.1], there is some
open neighborhood V' of 0 in U(0, r) such that spt T'n V is given by a submanifold with (flat) bound-
ary of class C1? for some 8 € (0,1). Hence, by mapping back with ¢!, we infer that we may write
o{u =t} near xg as the graph of a function v of class C', which is defined on a small (half-)ball B_
in the tangent half-plane to o{u > t} at xo.

Since the interior of B_ is mapped to the interior of {2, we infer that v has to solve the associated
Euler-Lagrange equation on int B_ = U_ and hence has interior regularity v € (C** A W%2)(U_). By
assumption, v is of class C"™ 1 on the flat part of @ B_, hence we may choose a subdomain D < U_
of class C”®, which touches the flat part at g with an open neighborhood of ¢D, and assume

vop € CY*(2D).

Linearizing and boundary regularity theory for v on D (in particular, boundary Schauder estimates,
eg. [13 Corollary 8.35] with bootstrapping) now yield that

ve (D),
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which proves the desired regularity for 0{u > ¢} near zo € f~!(¢) and the proof is finished by noticing
arbitrariness. |

4.11 Remark. Obviously, theorem 4.10 does not need that we are actually dealing with level sets of a
function and a proof is pursued somewhat similarly for arbitrary sets of minimal (anisotropic) perime-
ter. We refer to [29] for more details in the isotropic case and a finer analysis. Moreover, particularily
step 4 of its proof can be applied much more general in arbitrary dimension and codimension, but I
found it hard to find proper documentation in the literature to refer to.

4.3 Geometric Properties and Local Non-Parametric Representations.

We now prepare the results on the deformation of our reference hypersurface by first discussing how
certain quantities related to the minimizing hypersurfaces vary as the hypersurfaces vary and prove
preliminary results on uniform non-parametric (ie. graphical) representations on the same tangent
space. By using such regularity theory for minimizing currents, this empowers us to vary the value of
u and infer that the level sets of u are still controlled in higher order than for a generic Lipschitzian
function.

ASSUMPTION (): From this subsection on, we will assume that the singular set of locally
F -minimizing currents in codimension one is empty and that either o) is connected or F is
independent of the spatial variable x.

We recall that sufficient conditions for () to hold are given in remark 4.8.

Thus, let us first introduce the main class of values that we want to consider in what follows.

4.12 Definition (MILDLY REGULAR VALUES). We will say that ¢ is a mildly reqular value when t € U,
where

U:={tergf | 0<#" u(t) <o,
Du exists almost everywhere on u™1(t) n €,

t is a regular value of f.}.

4.18 Remark. (1) Recall from remark 2.18 and [I1] 3.2.15] that the coarea formula for lipschitzian
functions implies that the first two items are generically (ie. on a set of full .#!-measure) fulfilled

inrg f.
(2) Moreover, the second item in the definition of U especially implies
Hu=t}=o{u<ty=ut(t)
for t € U as now also the level set boundaries coincide on the boundary.
(3) Note that we may enforce the third item on a set of full measure with the theorem of Sard.

(4) Any level set u=1(t) = Q with t € U is everywhere a submanifold where geometrically interior
points allow for local embeddings of class C*“ while boundary points allow for class C**® due to
proposition 4.7 and theorem 4.10.
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We will single out one level set of a mildly regular value and our reference hypersurface will without
loss of generality be u~1(0) = Q with 0 € & and we shall write

Z:=u10).
The assumption 0 € U will pertain through the sections 4-8.

4.14 Remark. We also recall the following elementary facts from differential topology:

(1) The regularity of boundary level sets close to f~1(0) is stable : There exists
T >0  such that f7L(t) is regular for all 0 < |¢| < T

This is due to f~1(t) = 0{f = t} = {f < t} (relative to 09) and the Hausdorff convergence of
level sets of f in this case (which may be proven by applying lemma 2.17 to f~1(0) on Q).

(2) We furthermore recall that f~1(0) = 62 = R™ may only have finitely many connected components,
as compactness would allow otherwise for an accumulation point, where f~1(0) could not be
appropriately diffeomorphic.

We observe now that remark 4.14(2) directly implies the same topological consequence for the level set
structure of u by means of a geometric maximum principle.

4.15 Proposition (GEOMETRIC MAXIMUM PRINCIPLES). The following three statements about oriented
boundaries of {u = t} and {u < t} inside Q hold true for a function u € C°(Q) of anisotropic least
gradient in any dimension n € N:

(1) No connected components which are compactly contained in Q may exist.

(2) If t is a regular value for f, then the number of connected components of d{u =t} and d{u < t} is
finite and each connected component has non-empty geometric boundary.

(8) We have rgu = rg f.
Proof. This is a consequence of assumption |(.#’)|and the boundary regularity of o{u > t} and d{u < t}.

If 0€2 is connected, then the maximum principle from [24] Lemma 4.2] implies (1). If the total variation
® has constant coefficients, then assume for a contradiction that there would be some compactly in (2
contained component S < d{u > t}. Compactness ensures that we may find z9 € S n 2 such that

o := proj; (xg) = max proj, (x).
xeS

This implies that the whole connected component is contained in the half-space {proj;(z) < a} with
xo € {proj;(x) = a}. Now, proposition 4.1 assures that for any sufficiently small r > 0 it follows that

T:=0E"L{u=t})LB(zg,r) = [0{u =t} nB(xo,r)] € Zn-1(R")

is a solution to the parametric obstacle problem with respect to the associated parametric integrand F
in B(zg,r) and, in particular, absolutely minimizing inside U(zg, r) among rectifiable currents without
boundary. Furthermore, the existence of some 1 > 0 such that

(o, TLU(xg,s)) <ns"! foral0 <s<r

47



Regularity Theory for dnisotropic Zeast Gradient Problems. (PH. D. THESIS)

is a consequence of a standard computation (see eg. [I, Equation (33)]) through cutting out/pasting
balls. We infer for R > 0 and 0 < sR < r that
<, TLU R
(o 1,100, R)y = LT gt

sn—l

if
Ts = (Tf:ro O s © Txo)#T

denotes the homothetic expansion by s~! after shifting zo to the origin and shifting back. Thus, by
the local finiteness of the mass and the compactness theorem applied to the homothetic expansions
with a diagonal argument, we may choose some s; — 0 and @ € %fl"fl(R”) such that

Ts, — Q in the weak-*-sense in R™

and @ is absolutely minimizing with respect to f in R™ with dQ = 0. Moreover, by local Hausdorff
convergence of the supports, it must follow that xg € spt @ and spt Q < {proj,(z) < a}. Hence, the
interior maximum principle [20, 4.4 Lemmal is applicable to imply that there is some ¢ > 0 with

spt @ N U(zo,q) = {proj (z) = o}
The constancy theorem implies furthermore that
spt @ N Ulzo,q) = {proj; (z) = a} n U(o, q)
and, by possibly blowing-up a second time, we may assume that
spt Q = {proj,(z) = a}.

We infer by the regularity theorems (and yet again [11l 5.3.16]) that T is regular near xy and, as we
may now express S < d{u > t} as a graph over spt () near xg, it follows from the Harnack inequality
and the fact that ® has constant coefficients that there is also some ¢* > 0 such that

S N U(zo, ¢%) = {proji(z) = a} n U(zo, ¢").
It is now easy to see that, using a simple connectedness argument with respect to the hyperspace, also
S > {proj (x) =

as S n {proj;(x) = a} is both open and closed in {proj;(z) = a}, which is impossible by compactness
of o{u > t}. This proves (1) also for the second case of () of constant coefficients.

For item (2) we notice that = n 02 = f~1(0) and hence, Z is a submanifold with boundary at
each point of its intersection with 2. Since f~!(0) has only finitely many connected components,
there can be only finitely many connected components of = with non-empty geometric boundary. A
connected component without geometric boundary would however be compactly contained in €2, which
is impossible by (1).

Item (3) finally is also implied by (1): If 09 is connected, then connectedness of € directly implies the
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claim while for a total variation with constant coefficients we may not have compactly contained level
sets in §2, which also enforces rgu = rg f by continuity of u. |

4.16 Remark. The conclusions of proposition 4.15 will usually appear as technical tools while dealing
with the particular reference level set. The last item is besides of specific importance, since we want
to access the level sets of u through the level sets of f.

4.17 Remark. Observe that the proof of proposition 4.15(1) for constant coefficient integrands crucially
needs that hyperspaces are local minimizers for a total variation with constant coefficients, as otherwise
the maximum principle and the local containment in the hyperspace near xg would fail. While this is
true as a matter of fact for all constant-coefficient elliptic integrands, the paper [24, Proposition 1.1
ff] provides an example for a weighted integrand with 0 being disconnected and the conclusion of
proposition 4.15(1) fails.

We now proceed to establish local first and higher order properties of the involved hypersurfaces.

To describe these, we will gather some of the regularity results about locally expressing a converg-
ing sequence of hypersurfaces as graphs over the same hyperplane, which will also follow, in essence,
from the general small excess and Lipschitz graph approximation theory for minimizing surfaces and
currents.

Preparing the next two representation lemmata, we notice for ¢ > 0 that if
M nZ(0,q,q) = graphu for uw:U"10,q) > R of class C1,
such that 0 € M and ToM = R™ !, then we have

Vu(0) =0 — sup |Vu| — 0 as s\, 0.
B(0,s)

Hence, for all € > 0 there is s > 0 with

u(z)| = |u(z) —w(0)] < sup [Vullz| <es
B(0,s)

for all x € B(0, s). Geometrically, this yields
M nZ(0,s,s) € M nZ(0,s,es),

which will be applied to the smooth limit hypersurface and holds analogously in the boundary case
over half-ball or by rotation and translation for xg # 0 and T, M # R~ 1.

4.18 Lemma (LOCAL NON-PARAMETRIC REPRESENTATIONS NEAR INTERIOR POINTS). For each xq €
=n Q with H := T, E there exists r = r(x9) > 0 and T = T'(xo) > 0 with the following properties:

(1) We can write
Au =t} n Cy(zo,r,T) and o{u <t} n Cy(zo,r,T)

locally as graphs over
U(zg,r) n H forall 0<|t| <T.
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(2) The real-valued graph functions are of class C** on U(zo,r) n H and will be denoted by u;" and
u, respectively. It holds
uzr —> U and Uy — Up

uniformly on U(xg,7) n H ast — 0.

(3) We may furthermore assume that
Huzr —ug|crr — 0 and Hu; —ug|cpr — 0
on U(zg,7) N H forall0 <y <aast— 0.

Proof. We repeat a direct proof by means the usual regularity theorems for minimizing currents and
shift each hypersurface into the same point. Indeed, since = is of class C** at zy we may choose s > 0
small enough to find

=N ZH(:L'O,S,S) cZy (170737 %)

where € > 0 is to be chosen. By the Hausdorff convergence of lemma 2.17, we may furthermore assume

Hu=t} nZpu(zo,s,8) < Zp (960, S, 5;)
for sufficiently small |¢t| and there is z; € d{u > t} with xy — xo as ¢ — 0. We may shift each

hypersurface by the difference xg — x; and denote the translation map 74 and thus we get
7 ({u = t}) N Zy(xo, s,s) < Zg(xo, s,es)

for sufficiently small |¢| from which we may again as in [I1] 5.3.16] prove uniformly small cylindrical
excess over H with adequate € > 0.

Clearly 7, converges uniformly to the identity and 7;(z;) = xo. On a distributional level, this yields that
the supports of all oriented boundaries after pushing-forward with (7;)4 are close to H (with xo being
element of their support) in Cg(zo, s, s) while each shifted oriented boundary is locally minimizing for
the correspondingly shifted integrand. Since clearly all structural constants of the shifted integrands
may be assumed uniformly bounded, the regularity theorem [10, Theorem 6.1] implies that the shifted
supports are graphs over the same ball in H. Shifting back via 7';1 (that is, x; — zp) and denoting the
convex projection onto H by =, it is immediate from [I0, Theorem 6.1] that there are functions

u : Hn'U (w(:pt), 38—4) — R such that graph(uy) = o{u =t} n CTt—l(H) (mt, 3%,65) .

Clearly as
m(xy) — xg ast— 0, there exists r=r(xg) >0

such that
U(zg,r) n H < U(n(ay),s) n H

for all sufficiently small |¢t| and item (1) follows by additionally replacing € for eg. min(e, 1/68) and
choosing r sufficiently large.
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Subsequently, we notice that there is C' > 0 not depending on |¢| such that
[utqre < C for all sufficiently small |¢| and some S € (0,1)

due to the regularity theorem and each wuy is again of class C* by minimization (see again [12, Theorem
3.3] for the regularity of the graph functions). The standard technique of applying interior Schauder
estimates to the partial derivatives of u; thus leads to

lut] i < C for all sufficiently small || with v = «af

and hence
|ut|cme < C for all sufficiently small |¢]

as a fortiori the C1*®*-norm of u now will be uniformly bounded. The Hausdorff convergence further
yields
|ug — ug| o — O for t — 0,

and this implies
[us — ugl|cuy —> 0 fort >0 foral 0 <~vy<a,

which concludes the proof. |

Such a uniform representation of the converging sequence of minimizing currents on the tangent space
of the limit appears to be essential if one is interested in any kind of stability and deformation result.

We will finally also prove a corresponding statement for boundary points, which is somewhat more
specific to our setting as we shall now also use the regular level set structure of the boundary data to
nicely rearrange our configuration and prove a uniform representation after applying a straightening
diffeomorphism to 0f).

4.19 Lemma (LOCAL NON-PARAMETRIC REPRESENTATIONS NEAR THE BOUNDARY). Letzg € f~1(0) =
0=. Then there exist T = T(x9) > 0 and s = s(xg) > 0, a closed half-hyperplane H < R™ with full
plane H* and functions uf € C**(U(xg,r) n H) with

lu” = ol — 0 and  Juy = uofgan — 0

on U(xg,s) n H for all0 <y < « ast — 0 such that, up to applying a diffeomorphism ¢ of class C™
and linear shifts along a fixed direction, we have

o{u =t} n Cyx (20, 8, 5) = graphu, o{u <t} n Cpyx(xo,s,s) = graphu,
forall |t| <T.

Proof. Similar to the boundary regularity result in theorem 4.10, we need to rearrange our configuration
and we may assume, up to applying a diffeomorphism ¢ of class C™, that zp = 0 and an r > 0 that

2nU(0,r) = {z, =0} and QnU,r) = {z, <0}.

As f71(0) is regular, it is a standard consequence that the level sets form a foliation of class C™ near
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f71(0). Thus, we may also assume, up to altering and applying ¢, that
1) n U0, r) = {z,_1 = t, z, = 0} A U(0,r)

for sufficiently small |t|. Also, similar to the proof of theorem 4.10, we may assume that the rectifiable
currents

Ti =0E"L{u=t})L(Q2nUQ,r))

are almost-minimizing with respect to the elliptic parametric integrand F’, which is the push-forward
of F by ¢, and some function w(r*) := Cr*. Yet again, we infer that the new integrand F’ and DyF’
are at least of class C2.

Let now 0 < p < r/2 such that
Zq(0,p,p) c< U(0,r) over the hyperplane Q= {zp—1 =0}

and denote
Te(x) = —tep—q for |t| sufficiently small.

We shift the currents T} parallel to the level set foliation to consider (7;)xT; and infer

() #Tr) L Cq(0, p, p) = [{zn = zn—1 = 0}]L Cq(0, p, p)

and we may assume that
spt ((1¢)4T3) — E fort — 0

in the Hausdorff distance as the Hausdorff convergence from lemma 2.17 holds still true after diffeo-
morphically deforming and 7, converges uniformly to the identity as ¢t — 0. In what follows, we drop
the push-forward (73)4 from notation.

—_

By theorem 4.10, it holds that = is a submanifold with boundary at xzg and we may consider its
tangent half-plane H at 0 with corresponding full plane H*. It immediately follows that

{tp—1=2,=0}c H < {x, <0}
Fix € > 0, then we can choose o > 0 small enough to arrange

Zp+(0,0,0) < Zq(0, p,p) and EnZy«(0,0,0) € Zyx (0,0’, 670)
and therefore we shall assume

spt Ty N Zp«(0,0,0) € Zp«(0,0,c0) for all sufficiently small |¢|

by Hausdorff convergence. Thus, by arguing as in step 4 of the proof of theorem 4.9 and similar as
before for the interior case of non-parametric representations with uniform boundedness of structural
constants of the shifts of f' and by choosing ¢ > 0 sufficiently small, we may write

spt Ty n Cp«(0,s,s) = graph(uz)
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for some sufficiently small s > 0 where
up : U(0,s) n H— R,

and the radius s > 0 does not depend on ¢. The family of functions u; is (at least) of class C*“ on
int(U(0, s) n H) as they solve the Euler-Lagrange equation for (shifted versions of) f’ due to interior
minimization and the higher elliptic regularity theory and we again have

[us — upllo — 0 as t— 0.

The remainder of the proof now concludes as before as in [12, Proposition 3.3] by possibly choosing
a smaller half-ball inside U(0,s) n H and applying the local boundary C!“-Schauder estimate [13]
Corollary 8.36] to the derivatives of u; for uniform bounds. ]
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) %%W /g/ﬂmzm /D%/% @W@W

This section will now use the information from the local non-parametric representations of section 4.2
to conclude for more general deformation results.

Our objectives are twofold: To get rid of the necessary locality of graphical representations about
tangent spaces, we now want to express the converging sequence of oriented boundaries as a graph
wn varying normal direction about = and not locally about some tangent space of Z. It will turn out
that this is possible at interior points of = and thus, with the aid of a subsequent "patching together"-
argument, up to some small distance to 0.

The second goal will then be to continue the interior representation as a deformation in normal di-
rection up to the boundary. For this matter, we do not require the specific form as a normal graph
anymore.

A rather recent account, which we will keep to, on how and what exactly the local expressions as
graphs imply can be found in the paper [9] (albeit their setting and variational problems are slightly
different and less differentiable). Our treatment here for the global deformations, which appears to be
lesser known, will use the very general construction from [9, Section 3] and adapt it to our purposes.

5.1 Deforming as a Normal Graph over a Retract.

The previous non-parametric representations express pieces of the converging hypersurfaces as local
graphs about a tangent space, which, in a sense, fix the normal vector in whose direction we deform.
To also deform = (and not a tangent space of =), we need to vary the normal vector along = and we
will introduce a variant of a nearest point projection for this matter. We finally recall that we still
assume 0 € U, referring to definition 4.12, in this section and the following ones.

5.1 Definition (A NEAREST-POINT PROJECTION). We recall that Z is a submanifold with boundary
of R™ of class at least C*“. We choose an open submanifold = ¢ R™ of class at least C>® such that =
extends = across 0=. Then we denote

I:w — =, IIe C>*(W),

as the nearest-point projection onto =, where W < R"™ is a some open neighborhood of =.

The existence of such an open manifold is standard due to the definition of a submanifold with bound-
ary. Furthermore, this definition II depends on the extension that we chose, when we are sufficiently
close to 0=, while it does not, when we are sufficiently far away.

Due to the Hausdorff convergence of lemma 2.17, there exists
T>0 such that IT is well-defined on u~!(¢) for all 0 < [t| < T
and we recall that II is described via the formula
(z) = — d(x)Nz(Il(x)) = z — d(x)Dé(x)

with § being the nearest-point distance to =2,
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We will use such a projection II to investigate how normal vectors to level set boundaries vary before
and after projection. As the normal vector to = and 7T,,= coincides by definition at zp € Z n Q and
the minimizing oriented boundaries converge up to higher order due to lemma 4.18(3) near xo, it is
reasonable to expect that we may also invert II in a graphical manner near xg.

5.2 Lemma (INVERTABILITY OF II ALONG THE CENTRAL RAY). Let zg € En Q, H := T, = and
r(xo), T(xo) > 0 be given via lemma 4.18. Then the normal ray above H from xg may only intersect
each level set boundary once in Cg := Cr(xo,7(x0),7(x0)) and there are open neighborhoods U of
xo + u(xo)Ng and V' of xy in the level set boundary and = respectively such that

n:vr —Vv

is an diffeomorphism of class C** for all sufficiently small |t].
Proof. Otherwise shrinking Cp or intersecting with a subset, we shall assume that II is defined on a
neighborhood of Cp. As d{u > t} is a graph of u; := u;" inside Cg, it is clear that
R=uxy+ RNE(.I[))
fulfills
R nd{u =t} n Cgxl(xo, (o), m(20)) = {us(z0)}

and thus furthermore
II(ut (o)) = o for all sufficiently small |¢|.

Differentiating the formula for II for x ¢ = yields
DII(z) = 1d — (Dé(z) @ D () + 5(x)D25(x)) ,
which we shall estimate by means of our previous geometric convergences.

We first infer that there is M > 0 such that D?6§ is bounded in norm by M on a sufficiently large
neighborhood of Cp, as the signed distance is of class C? on such a neighborhood and ¢ may only
differ by sign. Then we let v be a tangent vector at x; := us(zo) to d{u = t} of unit norm and compute

|DII(z)v] = |v— ((Nz(o) - v) Nz(zo) + 6(z) D?6(z)0)|
1 — (|N=(zo) - v| + 6(x) M)

1= (|(N=(@0) — Nouzry (1)) - v| + 0(2) M)
1= (INz(z0) = Noguzty ()] + 6(2¢) M).

\%

A\

Via Hausdorff convergence and convergence of the normal vectors at the central point, we may hence
choose |t| small enough to arrange for

| DII(z¢)v] = 1/2 for all |¢t| small enough and v € T, 0{u > t}
and therefore a uniform lower bound on the unit sphere of the map

DII(u¢(x0)) : Ty, 0{u =t} — Ty E.
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Thus, using the uniform graphical coordinates on H n Cpg and the uniform modulus of continuity of
DII on each d{u > t} n Cg for all sufficiently small |¢| and close to the origin z, the (quantitative, see
eg. |26, XIV, §1, Lemma 1.3]) inverse function theorem implies the existence of open neighborhoods
V,U; with o € V < Z and x; € Uy © 0{u > t} such that

m:v,—Vv is a diffeomorphism of class C%,
which was the claim. |

5.8 Remark. Note that, as is easily observed by plugging the inverse into the formula for II, that there
are real-valued functions w; € C%%(V') such that

It () = @ + w (z)N=(y) = (1d +w;N=) (@),

where II;- i : V. — U, is the local inverse to II. Of course, the family of functions w;—r is possibly of
higher class than C*%, depending on the interior regularity of the level set boundaries and hence on
the anisotropic total variation ®, but this regularity is sufficient for our purposes here.

5.4 Definition. For xg € Z n ) and s > 0 sufficiently small, we denote as
X(zo,s):={zxeR" |z =y+qN=(y), |y —zoll <s, |¢| <s, ye Z} D E n U(xg,s)
the local tubular open neighborhood of = at x.

The following lemma facilitates subsequently the passage from local non-parametric representations
about xy along the fixed normal direction to local normal graphs on = with correspondingly varying
normal direction. We will hence also pass from cylinders (ie. "constant" tubular neighborhoods over
the tangent plane) to the varying ones X(zo, s).

5.5 Lemma (LOCAL NORMAL GRAPH REPRESENTATIONS). The following two statements about the
family of functions w;—r of class (at least) C* are true:

(1) There are s = s(xg) > 0 and T = T'(zo) > 0 such that
(Id +w;" N2)(X(zo, 8) N E) = o{u =t} n X(z0, 5)

and
(Id +w; N=)(X(zo,s) N E) = {u < t} n X(zo, 5)

for |t < T.

(2) We furthermore have
[wy llo, w0 — 0 as t— 0.

Proof. Clearly, X(zg,s) n E is connected and contained in €2 for s > 0 sufficiently small and we may
assume by remark 5.3 that the family of functions w;" is well-defined on X (2, s) N Z for all sufficiently
small [t|. Considering the case w; := w;", we also obviously have

(Id +wiN=)(X(zo, 5) N E) < d{u =t} n X(zg, s) < Q.
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Now, the Hausdorff convergence u~!(t) —> = implies that all oriented boundaries d{u > t} and
0{u < t} have to be fully contained in small neighborhoods of =, yielding

wy — 0 uniformly on X(zg,s) N = as t — 0.

Thus, (1) is proven if we can show that actually equality holds in the above set inclusion, assume this is
not the case. In this case, the set 0{u = t} n X(z9, s) would necessarily have more than one connected
component. We call another connected component Z and infer that II is also locally invertible at
each point of Z. Due to an easy argument with the connectedness of = n X(zo, s), we find II(Z) =
= n X(zg, s). In particular, at the central point oy € Z and due to X(zg, s) € Cg(zo,r(z0), r(x0)), it
follows that

card R n Cg(xo,7(z0),7(20)) N {u =1t} =2

which contradicts lemma 5.2. [ |

The latter lemma 5.5 differs from its non-parametric version inasmuch as we have only proven conver-
gence with respect to the uniform topology. To fix this matter as well as to prepare the subsequent
elliptic regularity results, we will now relate both kinds of deformations.

5.6 Remark. We recall some useful formulas from [9, Lemma 4.3, Proof] about the family of normal
deformations Id +w;" Nz expressed in the local non-parametric coordinates on H := T}, E.

Indeed, by first exploiting the usual translation and rotation methods as everything is purely local, we
may assume that

H=R"! x {0} c R", zo = 0, Nz(x0) = en,

and we only vary in direction of the last coordinate. Now, abbreviating C := Cg(xq,7(z0),(z0)) and
r:=r(zg), we obtain

ZEnC={(z,u0(2)) | ze U 10,r)} and HusthnC={(z,ui(2)) | ze U"1(0,r)}.

Correspondingly, we receive for the normal deformations that

(=Vup(z),1)

(Id +wtiNE)(Z,UO(Z)) = (z,uo(z)) —i-w;_r(zvu()(z)) 1+ Vuo(2)2

for all z € U™ (0, ) close enough to 0 such that (z,ug(z)) € X(20,s). We may neglect the dependant

coordinate and write without loss of generality w;" (2) = wi (2, uo(z)). Definining then

+ =ufl2— L(Z) — | upo(z 4
Wi (2,q) = u; ( q 1+Vuo(2)2> (O( )+ 1+Vuo(z)2>

on the convex projection of X(zg,s) onto H (say, some smaller ball U < U™ 1(0,7)) and sufficiently
small real numbers, we use
(Id +wjf N=)(z,up(2)) € H{u St} n C

and that the latter set is graphical over U to easily observe that

WE (2, wi(2)) =0 for all ze€ U, |t| sufficiently small,
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ie. the family of functions w;—r solves an implicit equation. We will sometimes refer to the expressions
of this remark as canonical coordinates.

5.7 Remark. To lighten notation, in what follows we will conventionally drop signs and consider only
the level set boundary 0{u > t} and all associated functions. Clearly, everything will hold similarly for
H{u < t}.

5.8 Corollary (HIGHER ORDER CONVERGENCE OF NORMAL DEFORMATIONS). We may assume, up
to shrinking s = s(xo) > 0 from lemma 5.5, that

HthQ,v,EmX(zo,s) —0 as t—0
forall 0 < v < a.

Proof. In view of the uniform convergence to the zero function and the Arzela-Ascoli theorem, it
suffices to show that the norms of class C** are bounded uniformly in || to show the result and we
shall assume canonical coordinates and use remark 5.6. Note also that it suffices to show uniform
boundedness for w; interpreted as a function on U « R*~ 1.

As g1 > 3, the family of functions ®; is of class C>® and, owing to the uniform bounds of lemma
4.18(3), we deduce the existence of C' > 0 with

(£

|2,a < O

and C is independent of |t|. Since each w; solves an implicit equation defined via #;, this furthermore
yields (with a possibly different C') that
|wil2.0 <C

for all sufficiently small |¢|. [ |

In our last result here we now patch these local representations as normal graphs together via the local
uniqueness up to a small distance towards the boundary 0€2. This step is more or less taken from [9}
Theorem 4.12].

5.9 Proposition (NORMAL GRAPHS OVER A DOMAIN RETRACT). Let p > 0 be sufficiently small, then
there is T = T(p) > 0 and functions
w:2nQ, — R

such that
Hu =t} nQop < (Id+wN=)(En Q) € H{u =t n Q1

for all |t| < T and with

lwi|2,5,2h0, — 0 as t—0
forall0 < v < a.

Proof. Here we use the idea that the local normal graph representations must necessarily coincide in
intersections of their domains of definition. As = n ﬁp is compact, we may find finitely many

z; €2 Q,, si = s(x;), we; : X(wi,s5) — R
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for all |¢| sufficiently small as in lemma 5.5 such that

EnQ,c UX(IEZ, Si).
i
Applying Hausdorff convergence inside ﬁp moreover implies that

Huz=t}nQ,c (U X (x, si)> N {6(z) < s}

whenever |t| is small enough, ie. such that additionally the (normal) distance § to = is bounded by
s := min; s;. As a consequence of the representation as a normal graph, each normal ray can only
intersect each hypersurface of the sequence once inside | J; X(z;, s;) and, if we choose |t| small enough,
we may hence infer that

Wi = Wy j on X(xi,si) N X(z5,55) N2
and thus, the family of mappings
wy via wy =wg; on X(x4,8)NE
is well-defined and of class C*“ on Z n 1, and such that
|lw|2,2h0, — 0 as t—0

for all 0 < v < a. We also have

(Id +wN=) (U X (s, sz)> =ofu=t}n UX(%, Si)

for all such [¢| small enough. Finally, for the first inclusion, we apply Hausdorff convergence to addition-
ally assume that o{u >t} N Qy, is contained uniformly in a neighborhood uy(Z N €Qy,) for sufficiently
small A > 0 such that II(0{u >t} N Qg,) € 2 Q, and we use |wi]oznq, — 0 to uniformly control
the distance to 0f2. [ |

5.10 Remark. The previous proofs are conceptually somewhat easier than the original strategy in [40,
2.4 Theorem| to construct the normal graph representations, which we are mainly interested in for
blowing up the family w;. However, this method cannot as easily be continued up to 02 due to the
need for (geometrically) interior points.

5.2 Uniform Estimates on Normal Vectors.

Our next goal, also with respect to the application of section 2.6 which needs global deformations,
is to continue the deformation diffeomorphically up to the boundary of Z. We begin here with two
lemmas regarding the uniformity of normal vectors to our oriented boundaries and we abbreviate for
this matter

Noguzty = Nt.
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5.11 Lemma (UNIFORM BOUNDS FOR NORMAL VECTORS). There exist T > 0 and L > 0 such that
N; is uniformly bounded in C<, ie.

I Nt ot oquseyy < L

for each 0 < |t| < T.

Proof. We claim first that the two non-parametric representation lemmata 4.18 and 4.19 imply the
existence of finitely many open and bounded convex sets V; < R™ which cover = and real numbers
L; > 0 such that

HNt”Cl’a(a{u>t}mVi) < Li.

To prove the claim, let us fix 9 € = and choose canonical coordinates at xg. If u; again denotes the
family of non-parametric representations on some ball about 0 in {z,, = 0}, then we may define

Uiz, y) = w(z) —y where zeR" ! yeR are close to 0.

Letting ¢ denote the diffeomorphism of class C™ which maps a neighborhood of z( into canonical
coordinates, we find a neighborhood V < R of x( such that for each z € V we have, up to neglecting
a uniform translation in case of boundary canonical coordinates,

zed{u=t}nV — (1o 9)(2) = 0.

Hence, each level set boundary is locally described as the zero set of the function 9, o ¢ and its unit
normal can be computed (up to a choice of sign) by the normalized gradient of 1); o ¢. The proof of
the claim is subsequently finished since ¢ does not depend on t and %; can be bounded uniformly in
C?“ due to the Schauder estimates from the lemmata 4.18 and 4.19 and by compactness of Z, finitely
many such neighborhoods V; and diffeomorphisms ¢; suffice to cover it.

Then, choosing A > 0 sufficiently small, we shall assume
ex(B)nQc U Vi
i

and by Hausdorff convergence, we furthermore arrange for
Hu=tyce(B)nQ for all sufficiently small |¢|.

Exploiting the Lebesgue covering lemma with respect to the compact set ey(Z) n Q, we find § > 0
such that the implication

zyed{u=t) lx—y| <o = There exists an ¢ with z,y € V;

holds for all sufficiently small |t|. Thus, a standard estimate, where we distinguish between distance
larger and equal or smaller than 6 for the Holder bound, implies the uniform bound in C® for all such
sufficiently small |¢|. [ ]

5.12 Lemma (UNIFORM TAYLOR ESTIMATES FOR NORMAL VECTORS). We may also assume that, by
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possibly refining our choices of T' > 0 and L > 0 from the previous lemma, that
1 (03
Na(t) - (y = @) + 5(y = 2) DN (O)(y — 2)| < Llly — 2[**

and

[Ny (t) = Na(t) = DNo(t) - (y — @) < Ly — |
holds for all x,y € d{u =t} and |t| sufficiently small.

Proof. We use the same finite cover [ J; V; from interior or boundary non-parametric representations
with = < J; Vi as in the last proof together with the maps

Uy =Wy, =10

which locally represent the level set boundaries (up to possible translation) as their zero sets. Implicitly
fixing some 7 first, we find
(0#D\I’t)ENt, |D\Pt| =>C=>0

uniformly in [¢| for some C' > 0. Then Taylor’s formula and the convexity of each V; immediately
implies

|DW(x)(y — 2)| < Clly — 2|,
for all x,y € 0{u = t} n V; which leads to

D\I/t<$)

N =) = | o)

’(y — )| < Clly — 2™,
with constants C' > 0 independent of [¢|. Computing the derivative of N by means of DV, we will
show the asserted estimates inside V; with the aid of the above estimate. We first compute

D =DN, = ——— (DU, DV DU
<|D\vt|) = B (PDW) © (5t + (g D

and see that the seecond inequality of the lemma follows immediately from the fact that the vector
fields DW;/|DW,| are of class C* with uniformly bounded norms while

Nlt)- (=) + 50 -2 DN )| < |(DEAD 4 Ly - D (-
1 7 (D*W,(2) DU, (z)) DTy(z)
- TR

< C ’ <D\Ift(x) + %(y — x)TDQ\IIt(x)> (y —x)
D\Ilt(.fE)

o)

< Cly—z*™  forall z,yed{u=t}nV;

+ Clly — |

holds true where we used the uniform estimate of class C»® from above and the uniform Taylor estimate
of class C% on the family of functions W;. This yields the claim locally for all sufficiently small |¢|
inside each neighborhood V;. We then conclude this proof similarly to the proof of lemma 5.11 by
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using the compactness of = with a uniform Lebesgue number argument and the uniform boundedness
of normals from lemma 5.11. |

These additional estimates on the normals will serve as an ingredient to prove the existence of C%“-
deformations of = into nearby hypersurfaces. This is due to the fact that [9] only provides the existence
of Ch@-diffeomorphisms and therefore only uses estimates up to lower order while we will need two
times continuously Holder differentiable for our desired application.

5.18 Remark. In fact, the lemmata 5.11 and 5.12 prove that the normals and their derivatives constitute
a Whitney jet of class C** (see [J, 2.3 Whitney’s Extension Theorem]). By compactness and akin to
[9, Remark 3.4], it follows rather quickly that each normal obeys such estimates, but we have to walk
the extra mile as we are interested in uniform bounds with respect to t for the Whitney jets such that
we may produce uniformly bounded extensions in C>¢.

5.3 The Regular Level Set Flow of the Dirichlet Data.

In this section we introduce the tools to work with the regular level set structure on the boundary more
precisely. We will first recall some facts from elementary differential topology on how to relate regular
level sets and afterwards consider the corresponding immersions in appropriate function spaces. These
deformations of the boundary manifolds f~1(t) = 0Q are also the last ingredient for subsequently
producing global diffeomorphisms between level set boundaries.

We assume that 0 € rg(f) is a regular value of f. To relate with the dependence map F in a closed
form, we need to find an appropriate one-parameter family of parametrizations of level sets "near"
f71(0) in the appropriate topology. We shall consider the rescaled gradient vector field

o glra,d‘?Q f
|gradaQ f |2’
where this gradient is understood as the tangential gradient on 02 with respect to the restriction of

the Euclidean metric. Clearly, X is well-defined near f~1(0) and we may consider its local flow x near
f71(0). Thus, there is some open neighborhood W < 0§ of f~1(0) and

T>0 such that the flow k:W x (=T,T) — 0Q
of X is well defined. Fix some x € W, then we compute

d
g/ (6@, 0) = Df(r(z,1)) <

grad® f - PR f. grad® f _
’ grad?®® f’Q

‘gradaQ f‘2
which leads, by the fundamental theorem of calculus, to
¢
sl ) = Fn(o.0) = | dr =

and which is

flr(z, 1) =t + f().
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Hence, k(x,t) € f~1(t) for all z € f71(0) and thus, by standard flow properties, x; := (., t) diffeo-
morphicly maps f~1(0) into the level set f~1(¢) for all sufficiently small |¢|. We record the following
result:

5.14 Lemma (DIFFEOMORPHICITY OF REGULAR LEVEL SETS). There is T > 0 such that we have
that
ke: (F71(0) = RY) — R”

is a diffeomorphism onto f~1(t) of class C™ L for all 0 < |t| < T with

Iwe = Koll2q.-1(0) — O
forall0<y<1ast—0.

Proof. Invertability follows from the above while it remains to notice that X is a vector field of class
C™ ! near f~1(0) and & is at least of class C® in both its variables. [ |

5.15 Remark. (1) We furthermore recall for any fixed z € W and small |¢| that the mapping
t —> k(x,t)
is actually m times continuously differentiable in t, since the flow equation yields

Ok = X oK.

(2) The flow & is a diffeomorphism when restricted to f=1(0) x (=T, T), since an inverse is given by
the map

Z (K’(Z> _f(z))a f(Z))
and it hence embeds sufficiently small neighborhoods of f~1(0) x {0} into W < o%).

We will now consider the one-parameter family of diffeomorphisms «; as a curve in appropriate function
spaces on f~1(0).

As sketched before, we need to consider the function s, which is a function of two variables, as a
parametrized curve of one variable in a Holder space of the other variable. Thus, we will consider

(te (—T,T)) —> ry.

Since each &y is of class C™ !, one can consider this as a curve in each Holder space up to class C" 22
for any 0 < a < 1. To find the most convenient one, we shall choose an arbitrary « and suppose

t— (ke € C**(f71(0);R™)).
Note that we moreover have that
|-

due to f~1(0) = R™ being compact and we recall from uniform continuity (up to class C?) that t — sy
is a continuous curve in C%<(f~1(0); R"). Choosing one particular s € (—T,T), we can furthermore

2.0,f-10) < C - ll3,7-1(0)
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estimate
KRs+h — Rs KRs+h — Rs
% - atfis < C ST - atfis
2,« 3
— 0 as h — 0,

because both x and 0;x are of class C"™ ! with m —1 > 3 and we can infer the convergence of difference
quotients to the derivative holds uniformly due to uniform continuity and the fact that we may consider
the difference quotient as an evaluation of d;x by the one-dimensional real mean value theorem. Indeed,
fixing € > 0 we may find by uniform continuity § > 0 such that

|Otks(z) — Qg ()] = |Orki(, 8) — Opr(z, )| < €
for all x € f~1(0) whenever |s — s’| < §. By the mean value theorem, we may infer

k(z,s + h) — k(z, s)

= Oir(x, s + O,h)

with 6, € (0,1) for each x € f~1(0) and small enough |h| < §. Hence, we receive

k(z,s + h) — k(z,s)
h

— Ok(x,t)| <€

for all z € f~1(0) and all derivatives can be handled in essentially the same way by uniform continuity.
Since additionally
S &ms

is continuous in the norm of class C>?, we deduce that the curve
S Kg

is of class C! in the Holder space C**(f~1(0), R™).

We can iterate this step until we run out of regularity, employing also remark 5.15(1), to subsequently
prove that:

5.16 Lemma (REGULAR LEVEL SET FLOW ON THE BOUNDARY). There exists T > 0 such that it
holds
(t —> k) € C"73 ((=T,T); C**(f71(0); R™).)

forany0<a <1 and m = 4. [ |

5.17 Remark. Note moreover that the case m = o0 is clearly also covered and in this case we can infer
that
(t —> k) € C¥ ((—T, T); C2’a(f71(0);R”)) .

It is not clear to me whether the case m = w is also included like that.

At last we record a technical lemma about the co-normals of level set boundaries at boundary points
which also readily follows from the uniform non-parametric representations after reverting the straight-
ening.
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5.18 Lemma (UNIFORM CONVERGENCE OF CO-NORMALS). We have
HNfaoﬁt—Ng’H&f_l(o)—)O as t—0

on f~1(0).

Proof. We fix zg € f71(0) and first assume boundary canonical coordinates in the form of lemma 4.19.
Thus, all oriented boundaries are given as translated graphs of some functions u; about some small
half-ball in the half-hyperplane {z, = 0, z,_1 < 0}. We recall that the restriction of the graph to
{zn = zn—1 = 0} parametrizes each boundary manifold up to translation, but since each boundary is
flat in canonical coordinates, we infer

Oiur =0 on {z, = z,—1 =0} fori #n—1.

Thus, by reverting the straightening via the diffeomorphism ¢=!

Tyf () = D (¢7) () (R"2 x {0}%),

, we acknowledge that

which is hence independent of |t|. We may apply the standard Gram-Schmidt orthogonalization proce-
dure to find a orthonormal basis of T f ~1(¢), which only depends on the first n — 2 partial derivatives
of . As the full tangent space at y to 0{u = t} is the direct sum of the boundary tangent space and
the co-normal space, we now map the last partial derivative back with Dy(¢~!(y)) and complete the
orthogonalization. Hence the co-normal Nf°(y) depends in such a representation only on 0,_ju; and
thus, by uniform convergence in C! of the graph functions, we deduce for € > 0 the existence of a
neighborhood V,,, < R"™ such that

[N:°(y) — N&(x)| < € for any y € o{u =t} NV, and z € Zn V.

We may choose finitely many such g, which we denote as z;, and arrange
F7H0) = (V-
7
Choosing A > 0 small enough, we shall assume

fH0) e (1710) = [V

and use the Hausdorff convergence f~1(t) — f~1(0) to infer

fHt) c ey (ffl(O)) c U Va, for all sufficiently small |¢].

By uniform convergence xk; — kg, we may additionally set
ke — Kollo < O for all sufficiently small |¢|

and we may let § > 0 equal the Lebesgue number of ey (f~1(0)) with respect to |J; Va,. Thus, for
each x € f71(0), we find that = ko(z) and ry(x) are contained in the same member of the union,

65



Regularity Theory for dnisotropic Zeast Gradient Problems. (PH. D. THESIS)

implying
[(N£° o ke)(z) — NE(2)| < € for all sufficiently small |¢|

and z € f~1(0). [ |

5.4 Global Deformations of Level Set Boundaries.

We may now prove that all level sets near = are actually even diffeomorphic to E via the construction
that is called an almost-normal diffeomorphism in [9, Sections 1-3] and that we may regard nearby
hypersurfaces as such deformations of = with norms tending to zero.

We prepare the application of [9] with the following lemma on the constancy of components of the
converging oriented boundaries to reduce to the connected case:

5.19 Lemma (STABILITY OF CONNECTED COMPONENTS). There exists T > 0 such that the number of
connected components of d{u =t} equals the number of connected components of = for all 0 < |t| < T.

Proof. As Z is closed and can only have finitely many connected components, all such components
must be at pairwise positive distance. Choosing an infinitesimal smaller than the minimum of these
distances and employing the Hausdorff convergence u~1(t) — =, we deduce that all connected com-
ponents of d{u > t} must be close to exactly one component of =, hence, we assume directly that Z is
connected.

Now write

N
0= = f~Y0) = U O, with a natural number 0< N < o,
i=1

where each ©; = f~1(0) is a connected component of f~'(0). The diffeomorphism x; descends to a
diffeomorphism on each ©; such that

N N
FHE) = me(F7H0)) = my (U @z‘> = U Kt(0;)

and we find that the number of connected components of boundary data f~1(t) is constant if |¢| is
sufficiently small. Fixing also p > 0 sufficiently small, there exists

w:2nQ, — R

with
Hu =t} nQyp < (Id+wiN=)(En Q) € H{u =t} n Q1

for all [t| < T(p) by proposition 5.9. Choosing additionally |¢| < min (T'(p),T(27'p)), we may as well
assume that w; is well-defined on = n €51, for all such |¢|. By pushing f ~1(0) inwards along Z at 0=
and possibly decreasing p > 0, we may find a connected set =, < = with

EnQ,cE,cEnQ, = (Id +w;N=)(E,) is connected for all |t| small enough.

Thus we also find that
8{u = t} N Qgp c (Id +thE)(Ep)7
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where the latter set is connected, and therefore there is one connected component of d{u > t} contain-
ing 0{u = t} N Qy, for all such |t|, which we denote Z;.

Choose some i € {1,...,N} and xg € O;, then the boundary non-parametric representation lemma
4.19 implies that there is an open neighborhood V; < R™ of z( such that d{u > t} n V; is connected
for all sufficiently small |¢|. When p is small enough, we infer

(Huz=t}nQop)nVi# & for all sufficiently small |¢|,

and therefore, in particular that d{u > t} n V; has to be contained in Z;. Since also k¢(0;) n'V; #
O, we infer that this also has to be true for x;(©;) = f~!(¢) and iterating this procedure for each
connected component ©; of f~1(0) and adjusting p appropriately, we find that | J x:(0;) = f~1(¢) has
to be fully contained in the geometric boundary of Z; for all sufficiently small |¢|. As furthermore no
connected component of o{u > t} without geometric boundary can exist by lemma 4.15(2), the lemma
is proven. |

5.20 Theorem (GLOBAL DIFFEOMORPHICITY OF LEVEL SET BOUNDARIES). There ezists T > 0 such
that there are diffeomorphisms vy of class C>* with

12— o{u =t}
for each 0 < |t| < T such that
|y — Id= HCZW(E;Rn) — 0 as t—0
forall0 <y < a.

Proof. By lemma 5.19, we may immediately assume that = and d{u > t} are both connected as we
could otherwise treat each connected component seperately and find precisely one connected compo-
nent of d{u > t}, which is close in Hausdorff distance, for all sufficiently small |¢|.

Step 1: It is our goal in this proof to apply the general construction of almost-normal diffeomor-
phisms from [0, Theorem 3.1] with uniform bounds in C*%. We recall from definition 5.1 that we chose
an open submanifold Z < R™ of dimension n — 1 such that = < = and with

HNEHCQ,Q(E;R,I) <L for some large enough L > 0,

which is again possible as = is at least of class C*® as a submanifold with boundary. We shall now
check the hypotheses of [9, Theorem 3.1] and note immediately that hypothesis (a) on the domain
submanifold Z is fulfilled (see also the remarks from [9 Remark 3.4]) as Z is in particular of class
C?! and it remains to check that we may choose L > 0 large enough for hypothesis (b) on the target
submanifolds d{u > ¢t} with boundary to hold uniformly in small |¢].

If n = 2, it is clear that (b,i) holds immediately owing to lemma 5.16 and 5.18 uniformly in small
|t|. If n > 2, we note first that clearly the family of mappings

ke s fTH0) — fTH(E)
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is uniformly bounded in C*>*(f~1(0), R") and moreover, the three quantities
l5e = Idg-1(0) lcrp10prmys (Nt o k) = Nallcogp-roymrnys  IVE? 0 ke) = N2 cop-1(0) rm)»

can be uniformly chosen as small as we desire owing again to lemma 5.16 and 5.18 and the boundary
non-parametric representation lemma 4.19. Therein, we again use the notation

(Ni o re)(w) := Ni(ki(2)) = Noguzgy (re(x))  and  (N{® o ki) (@) 1= N(ke(2)) = N5guopy (re())

to compare normal and co-normal vectors along the boundary diffeomorphisms «;. This yields hypoth-
esis (b,i) also for the higher dimensional case. Further, for both n = 2 and n > 2, we may find for each
p > 0 by proposition 5.9 a number T' = T'(p) > 0 such that

w:Z2nQ,— R with Hu =t} 0 Qo < (Id+wNe)(En Q) € o{u =t} Ny,

for all |t| < T. We recall from (the proofs of) corollary 5.8 and proposition 5.9 that the normal
deformations w; Nz are uniformly bounded in CQ"’(E N Qp) while the uniform convergence to zero of
wy implies that also the quantity

|lweNz| o1 znq, mm)

may be chosen as small as we desire by decreasing T'(p) > 0. Finally, we shall prove the containment
relation from [9, Theorem 3.1, (3.10)] via the two Hausdorff convergences

w(t)—Z and  f(t) — f710) for t—0,
by choosing p > 0 and p > 0 such that
E\u; (f710) cEnQ,

to have the family of functions w; defined for sufficiently small |¢| and then estimating the distance to
its image space geometric boundaries f~1(¢) = 0{u > t} uniformly via Hausdorff convergence. Indeed,
for each € o{u =t} N ug; (f71(0)) there are

z* e f710) with d(z,z*) <2p and o** e f7Yt) with d(z*,z**) <p

hence,
d(z, 7)) <3p = (o{u = th\ugs (f71(1))) < o{u = th\uas(f71(0))

for such sufficiently small |¢|. Using Hausdorff convergence and choosing A\ > 0 small, we may then
arrange

ou = th\uzs(f71(0)) < ux (B\uzs(f71(0)))
with
I (0fu = th\ ugs(f7H(0))) = E\us(f71(0))
for all sufficiently small |t| and A > 0. In particular, we contain

o{u = t}\ u3p( 1(t)) c (Id +wN=)(E\ up (ffl(O))

for all sufficiently small |¢|, which is assumption [9, (3.10)] adapted to our setting.
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This shows that also (b,ii) is fulfilled for appropriately small 5 > 0 (which we shall use as the pa-
rameter p from [9]) which we will fix and it holds uniformly for |¢| < T for an appropriate T' = T'(p) > 0.

Step 2: Now applying [9, Theorem 3.1|, we infer that there are diffeomorphisms
12— ofu =t} for all |t| < T(p), 1 € CHY(E,R"),
which fulfill the estimate
lee = izl cogrmy < € (H(57 Hu = t}) + ke = Id o1 (p10) mmy + HthEHCO(Eme,Rn))
with a constant C' > 0 independent of [¢t|. We find in particular that
lee = ezl cogrny — 0 as t—0

and that the family of functions ¢; is uniformly bounded in CY®. If we may now show that the functions
1t are also uniformly bounded in C*%, we find that

et — LEHC2,W(E7RTL) —0 as t—0
for each 0 < v < a < 1 and the proof is finished.

This is however clear from the construction in [9, Theorem 3.1] via the implicit function theorem
(see the definition of the boundary deformation in [9, Claim 3.5] with equations [9, (3.22-24)] and its
construction in [9, (3.52)] via solving [9, (3.50-51)]): The family of functions w;N= enjoys uniform
bounds in C%® while the construction of the diffeomorphisms ¢; near 0= only depends on the extension
= of Z and extensions of d{u > t} which we may also construct in C>® due to the lemmata 5.11 and
5.12. In particular, these lemmata imply that the functions whose zero sets characterize the extensions
of 0{u = t} have uniformly bounded norms of class C** and our proof concludes. |

5.21 Remark. Also some results on global deformations have to have been used in [46], but except
for uniform Holder estimates and uniform convergence under a nearest point-projection II for normal
vectors, there was no justification given.

5.22 Remark. For purposes of our regularity results, it will especially be important that we may
deform from above and below, ie. that ¢ may be larger or smaller than 0. Note also that all results on
convergence and deformations of section 5 also hold with the same proofs for 0{u < ¢} for all sufficiently
small |¢].
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6 e Rgutinry Thiory o SLovat” Difrmations

In the first part of this section we will aim at a different derivation of the important Harnack-Type in-
equality, which is used to construct the "special" Jacobi field with desirable properties in [46, Sections
3,4].

The original proof was direct, employing the first variation in local coordinates to rewrite the sta-
tionarity condition of each d{u > t} as some form of local geometric partial differential equation for
the family of functions wy, whose structural constants may be bounded independently of ¢ = 0.

Here we alter our approach to compare the deformations in varying normal direction w; with the
deformations in "straight" vertical direction above the tangent planes u; — ug, which are easily implied
to solve a linear elliptic equation with uniformly bounded coefficients in the deformation parameter
t = 0. Thus, the vertical deformations allow immediately for applications of linear elliptic regularity
theory which we shall seek to "carry over" to the normal deformations.

Finally, we include the limiting blow-up argument to construct the "special" Jacobi field by blow-
ing up the vanishing first variation in global coordinates.

6.1 Comparing Deformations and the Harnack-Type Inequality.

We begin with two preparatory lemmata for the uniform Harnack-Type inequality for the family of
functions wy.

6.1 Lemma (POINTWISE COMPARISONS OF DEFORMATIONS). Let xg € = n §). Then there are r > 0,
T >0 and C = C(zo) > 0 such that

(ur — up)(2) < Cw((z,u0(2))) and  wi((z,u0(z))) < C (ur — up)(2)

for all0 <t < T and z € U(xg,r) N Ty, E, where C only depends on the point xo and the (uniformly
bounded) supremum on [0,T] of the Ct-norms of ;.

Proof. By choosing appropriate coordinates as usual, we may assume that
20=0, (THE=R"1cR",  Nz(z0) = en.

Using the deformations from lemma 4.18 und lemma 5.5, we furthermore shall choose r > 0 suf-
ficiently small such that u; : U™ 71(0,2r) — R is well-defined and, by abuse of notation, that
w; : UM1(0,7) — R is also well-defined for all sufficiently small ¢ > 0.

We recall form remark 5.6 that the family of functions w; solves the implicit equation
Wi (z,w(2)) =0 on U Y0,r),

whenever [t] is sufficiently small, where

Vug(z)
Wy(z,q) = u (Z - (JH%W> N <u°(z) " Héuo(z)?> ’
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from which we may derive the implicit formula

wi(z) = /1 + Vup(2)? (ut (z - wt(z)W) - uo(z)>

for all z € U(0,7) and ¢ > 0 small enough.

Hence we compute for an arbitrary point z € U(0,r) that

w(z) < C (ut (z - wt(z)vuo(z)(z)z> + u(z) — uo(z)>

1+ Vg
< C(|u

l1,u,2r) We(2) + (ug — Uo)(z)) ;

where the constant only depends on the gradient of uy through Lipschitz estimates. As Vup(0) = 0
and we may assume that u; — ug in C*(U(0,2r)), we may possibly decrease 7 to infer that

1-— C’Hut

1LU(0,2r) = 1/2
for all sufficiently small ¢ > 0 and deduce
wy(z) < Cug — uo)(2),

where the constant only depends on the C!-norm of the family of functions u;, which is uniformly
bounded as a consequence of the interior non-parametric representation lemma 4.19(3).

Conversely, we also find

Vuy(z)
ug —up)(2) = (ug—uo)(z) xu | 2 —wi(2) ——m——=trtre
(ug — uo)(2) (us —up)(2) t< ¢(2) 1+Vu0(z)2)
< uelh,uoenwe(z) + wi(2)
< th(z),
where yet again C' only depends on some bound of the C!'-norm of the family ;. |

6.2 Lemma (UNIFORM LINEAR PDE ESTIMATES). Each member of the family of functions
ur —up : U(0,2r) — R
solves a linear uniformly elliptic partial differential equation of second order
div (a; - V(ug —ug) + be(ur — ug)) + ¢ - V(ug — ug) + de(ug — ug) = 0 on U(0,2r)

depending on | and t with coefficients of (at least) class C* such that all structural constants may be
bounded independently of 0 <t < T. Furthermore, we have

laclo.e + [Pellcoe + fedfcoe + [defcon < C
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with a constant C' > 0 independent of t.

Proof. We again assume canonical coordinates and denote by ®% the non-parametric integrand with
variables (z,u,p) associated to the anisotropic total variation ® and recall that each u; solves, up to
possibly changing the orientation of the graph, the quasilinear Euler-Lagrange equation in weak form

0= f Dp®8 (2, ut(2), Vur(2)) - Voo + Dy @8 (2, us(2), Vg (2))p dL™ 1
U(0,2r)
with ¢ € CX(U(0,2r)). Hence for each fixed ¢t and s € [0,1] we may set u;s = (1 — s)ug + suy and

calculate for the difference u; — ug that

1
Dp®° (2, u(2), Vug(2)) — Dp®® (2, uo(2), Vug(2)) = Jo %Dptlﬁ(z, ut,s(2), Vg s(2)) ds

and

1
Dy ®% (2, us(2), Vg (2)) — Dy® (2, uo(2), Vug(2)) = f diDutﬁ(é(z,ut,s(z), Vg s(z)) ds.

0 S
Computing those derivatives yields

d
£Dp¢§(z,utvs, Vugs) = Dup<I>§(z,ut7s, V) (us — ug) + D}27<I>§(z,ut7s, V) - V(ug — ug)

and

d
£DU<I>§(2, Ut,s, VUt s) = Di<1>§(z, Ut,s, Vurs)(ur — up) + Dpu(I>§(z, Ut,s, Vurs) - V(ug — up).

Thus, subtracting the weak Euler-Lagrange equation for ug from the one for u;, we infer that
0 = J Vi - (ar(z) - V(up — uo)(2) + be(2)(ur — uo)(2))
u(0,2r)
o (c(2) - Viug — uo)(2) + de(2) (uy — up)(2)) 4L,

where
1 1
a(z) = J D§¢§(z,ut7s(z), Vuis(2)) ds, bi(z) = f Dup®® (2, us.5(2), Vg 5(2)) ds,
0 0
1 1
ci(z) = f Dpu®® (2, uz 5(2), Vg s(2)) ds,  dy(z) = J D208 (2, up 5(2), Vg 5(2)) ds.
0 0

Using the Schauder estimates for the family of functions wu;, we see that there exist a constant C' > 0
such that
lai(z)[| <€ and  [be(2)] + [er(2)] + |de(2)] < C.

are uniformly bounded in sufficiently small ¢ > 0 for all z € U(0,2r). Moreover, we infer from the
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parametric Legendre condition on f with an ellipticity bound ¢ > 0 and section 2.4 that

1
§Tat(z)§ = J;] ¢r. D§<I>§(z,ut7s(z),Vut75(z)) -& ds

1 2
> c ’é“ 1 _ |vut,5(z)| ds
0 A/1+|Vurs(2)? 1+ [Vugs(2)|?

1 2
= cf <l - ds.
0 (14 [Vus(2)?)2
Yet again, by means of the Schauder estimates for u;, we may bound all terms by their suprema in
z € U(0,2r) and ¢ small and reciprocally only decrease further. In particular, there exists A > 0 such
that

1 2
Cf €] Sds= Mg >0 forall ze U(0,2r) and £ e R
0 (14 |Vugs(2)?)2

and for all sufficiently small ¢ > 0. Thus, the functions u; — ug solve linear uniformly elliptic partial
differential equations whose coefficients and ellipticity constant may be bounded independently of small
t > 0. Note subsequently that all involved derivatives of ®% are at least of class C® while the functions
ut,s and Vug g are uniformly Lipschitz in ¢t and s due to the Schauder estimates up to second order.
This proves that also the Holder constants of the coefficients may be uniformly bounded. |

Combining lemma 6.1 with lemma 6.2, we may now feasibly conclude for a Harnack-Type inequality
for the family of normal deformations w; via the standard one applied to the family u; — uyg.

6.3 Theorem (UNIFORM HARNACK-TYPE ESTIMATES). Fiz xg € EnQ and let K < EnQ be compact
and connected. Then we have:

(1) (LocAL HARNACK-TYPE INEQUALITY) There exist r = r(xg) > 0 and T = T(xg) > 0 with
C = C(xg) > 0 such that

sup{w(z) | x € U(xg,r) N Z} < C(xg) inf{wy(x) | x € U(xg,r) N E}

forall0<t<T.

(2) (HARNACK-TYPE INEQUALITY ON RETRACTS) There exists T = T(K) > 0 and C = C(K) >0
such that
sup{wi(z) | € K} < C(K) inf{w(z) | x € K}

forall0 <t <T.
Proof. We again choose standard coordinates and observe that we may assume that

(ug —up) =0 on U0, 2r)

for all sufficiently small ¢ = 0, where r is as in the proof of lemma 6.1. We acknowledge this as follows:
It is a topological fact that the graph of ug over U™™1(0, 2r) seperates sufficiently small cylinders into
precisely two open and connected components above and below the graph, which we call A and B, and
u does not vanish on A and B. Assuming that

reAn{u>0} and ye An{u <0},
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we find a continuous path 7 : [0,1] — A such that

7(0) = =, (1) =y

and hence some t € (0,1) with v(¢) = 0, which contradicts that v maps to A. This implies that both A
and B are contained in one of the above sets and due to the level set Z equaling its sub- and superlevel
set boundaries, they cannot be contained in the same set. A uniform sign condition for u; — ug follows
by choosing a correct configuration.

Thus, by lemma 6.2 and standard linear elliptic regularity theory, we may invoke eg. [13, Theorem
8.20] to assume that there is a constant C' > 0 such that

sup  (ur —ug) < C inf  (up — up) with C #C(t)
U™1(0,r) u(o,r)

for all sufficiently small ¢ = 0. Note that C' does not depend on t as the coefficients of the respective
linear equations may be uniformly bounded uniformly in small ¢ > 0.

Further, we find by lemma 6.1 also that

sup w; <C  sup (u — ug) and inf  (w—up)<C inf wy,
ur1(0,r) ur0,r) u(o,r) U1 (o,r)

from which 6.3(1) may be easily derived by readjusting to a smaller r.

For the second statement it suffices to treat cover the compact and connected set K with finitely many
balls where 6.3(1) holds and apply a simple continuation argument across their intersections. |

6.4 Remark. The latter theorem 6.3 provides a valuable alternative route to acquiring the Harnack-
Type inequality of [46, 3.1 Theorem]|. In fact, providing a similar geometric PDE in local coordinates
as in the proof in [46] for general parametric integrands/anisotropic total variations seemed to me
like a very peculiar thing to carry out, while our strategy here is able to conclude directly from the
linearization of the non-parametric integrand with some further elementary manipulations.

6.2 Higher Order Convergence of Normal Blowups and the Jacobi Nullity.

Since our approach is meant to forsake the complicated local expressions, we will now proceed to
introduce more lemmata to "carry over" more asymptotic information from elliptic regularity estimates
for the horizontal deformations u; — ug to the normal deformations w;.

Also, in this part, our assumptions on U and the regularity as lipschitzian level sets will now enter.

6.5 Lemma. Assuming canonical coordinates at xg € Z N §Q, there exist C' > 0, T > 0 and r > 0 such

that

Uy — UQ
t

<C
27a7U(07T)

for all0 < t < T, where C depends additionally on the choice of some x* € = n Q in the connected
component of = of xg where Du(z*) # 0.
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Proof. We note first that each of the finitely many connected components of = admits points z* € =2
with Du(x*) # 0 since 0 € . We proceed to first uniformly bound the supremum.

By lemma 6.1, we find » > 0 and T > 0 to achieve

Ut — ug
t

<C)

a
0,U"1(0,r) t llo,u(o,r)

for all 0 <t < T and we may choose a compact and connected set K < = n ) such that
e K  and Id(U™10,7)), uo (U™ 1(0,7)) c K.

Theorem 6.4(2) now yields a constant C'(K) > 0 such that

‘%‘ < H%HOK < C(K) i?(f (%) < C(K)wt(tx*)

0,0(0,r)

as z* € K for all sufficiently small ¢t > 0.

Further, since Du(x*) # 0, there are § > 0 and m* > 0 such that it follows

|u(z* + hN=(x*))]
A

0<m* < for all |h| <4, h#0,

and therefore

|| 1
<

(@ + AN=@ )] Smr "

for all such h. Since
(Id +w;N=)(z*) € u=1(t) and wi(z*) — 0 as t—0,

we may arrange t > 0 small enough to set hy = wy(z*) and deduce

wt(x*) |ht| < 1

t |u(z* + hyN=(2*))| ~ m*

for all sufficiently small |t|. Concatenating all three inequalities, we receive

Ut — Up
t

<C for all sufficiently small ¢ > 0.
0,U(0,r)

We recall now from lemma 6.2 that all coefficients a, by, ¢;, d; may be bounded in C%® independently
of sufficiently small ¢ > 0. Subsequently, as the supremum of ¢! (u; — ug) may be uniformly bounded,
we may conclude via linear elliptic regularity theory and interior Schauder estimates (eg. [13, Theorem
6.2]) that we may also, by possibly readjusting r» > 0 and with a constant C' independent of ¢, assume
that

lut — uol2,0,0(0,,) < Clue — uolo,u(o,
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which yields
Ug — Uo
t

<C for all sufficiently small ¢ > 0,
2,a,U(0,r)

finishing the proof. |

As we are however interested mainly in the family of normal deformations w;, the next lemma will
relate also the derivatives of w; to the ones of u; — ug. Then the uniform bound in C*% will then
immediately allow us to generate a partial limit for the blowups of w;.

We therefore have to make use of some rather unappealing calculations involving the implicit equation
for w;, which relates normal and vertical deformations. Afterwards, we may prove that the partial
local limits in fact solve the linearization of the Euler-Lagrange operator in its weak form and patch
together to solution on the geometric interior of =.

6.6 Lemma (UNIFORM CONVERGENCE OF NORMAL BLOWUPS). There exists an open neighborhood
VcEnQofxogeEnQ and a subsequence t; — 0 as j — o0 such that

? — Cag m clr(v) for all 0<vy<a.
J

Moreover, we have ( = K~ >0 on V where K > 0 is any Lipschitz constant of u.

Proof. Assuming canonical coordinates at xg and recalling that the family of functions w; solves an
implicit equation given via the function #¥, we shall now write

wi(z) = A(2) (ur (z — wi(2)V(2)) — uo(2))

with

R e o 8

for all z € U(0,r) and all sufficiently small ¢ > 0. Then differentiation in i-th direction directly verifies
that

Oiwe(z) (1 4+ Vug (2 —we(2) ¥ (2)) - ¥ (2)) = 6:A(2) (ur (2 — we(2) ¥ (2)) — uo(2))
+ A(2) (Vug (z — we(2)¥(2)) - (e; — we(2)0: ¥ (2)) — Giup(2)) .

Since [¥(z)| < 1, we may choose ¢ > 0 and r > 0 uniformly small enough to arrange for the factor of
0;wy to be always positive (say, bounded from below by 1/2). Hence, we conclude for

< C <wt§2’) N (Ut—tlbo)(Z) N lﬁi(ut—tuo)(z)!> <C

for all sufficiently small ¢ > 0 and i = 1,...,n, where C' here depends on the supremum of |u|2 v (o,2r)
through Lipschitz estimates for the gradient of u; over small enough ¢ > 0. Thus

) ﬂ” <C uniformly in small enough ¢ > 0.
t l1,u,r)
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Subsequent differentiation in j-th direction analogously verifies that

’ %H <C uniformly in small enough ¢ > 0,
t 2’U(O’T)

where C here similarly depends on the supremum of |u;

3,0(0,2r) Over suffciently small ¢ > 0. Clearly,
the radius r may be chosen by lemma 4.18(3) so that |u¢

|3,U(0,2r) May be bounded independently of
small ¢ > 0 by uniform interior Schauder estimates. We especially find that
Wy

‘ %Hl,a,U(O,r) is uniformly bounded, hence - Cap € CHT(U (0, 1))

without relabeling the subsequence for all 0 < v < «. Finally, we recall for any x = (z,u(z2)) € 2 Q
that

wy(x) _ |(Id +w; N=)(z) — x| S K-1w0
t |u((Id +wiN=)(2)) — u(x)] ’
which passes to such a local limit (,, by uniform convergence. |

Finally, with lemma 6.6 at our disposal, we are in position to show that the local limits (,, can be
patched together to construct the desirable special Jacobi field.

6.7 Proposition (EXISTENCE OF THE SPECIAL JACOBI FIELD). There exists a normal vector field
2,0 /=
(oN=z € Cj)0(En Q,RY),
which suffices
D$H(¢oN=) =0 on Z2n
and (o = K1 >0 on En Q, where K > 0 is any Lipschitz constant of u.

Proof. We fix p > 0 sufficiently small and receive T'(27!p) > 0 by proposition 5.9 such that
wr:ENQy1, — R

is well-defined for all 0 < ¢t < T'(27!p), and choose some zg € = N Q, together with v e C*(Z,R")
such that spt v is compactly contained in = n Qy-1,. We denote for this proof + = 1z € C"*(Z,R") as
the canonical inclusion of Z into R™ and acknowledge that the regularity and minimality of = among
rectifiable currents implies

H(t) =0

while the minimality of each d{u > t} for sufficiently small ¢ > 0 implies that
J H(Ad +wiN=) o) -v dA™ =0

by considering variations of the respective embeddings as rectifiable currents with fixed boundary. Note
that the latter Euler-Lagrange operator is well-defined as the support of v is sufficiently restricted.
Together we infer

f = (9(Ad +weNz) 0 1) = H(1)) -v) dA™ ™ =0

for all such vector fields v of class C'. By lemma 6.6, we may assume that there is a neighborhood
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V € Zn Qof 79 and a function ¢, € C»*(V) such that

% — (g in the topology of C1Y(V) for each 0 < v < a.

We moreover require v to have compact support in V. Now, writing
tp:= (Id+wyNz) ov = v + (wN=) o ¢,

and expressing the above equation in weak form we have

1

0 = J 71 (H(Ad +wiN=) o 1) — H(2)) - v dA™

1

= f =1 ((DsF (x,tt, Duy) — D3f (@,¢,Dt))Dv) + (Do (1, Dut) — DaF (z, 1, Du))v daAm L,

Applying Taylor’s theorem to Dof and D3F, we may let t — 0 to infer that ¢, is a weak solution
of class C! to the Jacobi equation in local coordinates about zg. Thus it holds (., € C>*(V) by
proposition 2.27 and

f v+ D$H(CyyN2) ds#™ ! =0

for all v € C*%(Z,R") such that sptv cc V. It immediately follows that
D$H(¢yN=) =0 onV.

Now, eg. covering En 2, by finitely many such local domains V and succesively choosing subsequences,
we may infer that there is a sequence ¢;(p) — 0 and

(e C**(E N Q)
such that

wy,
%(p)) — () in the topology of C17(Z n Q,) and D$(¢,N=) =0 on ZEn Q,.
i\p
Finally, diagonalizing with respect to p > 0 and ¢t > 0 as p approaches 0 shows the existence of the
desired function (y such that

GeCHENQ), (=K '>0, DH(Nz)=0 on EZnQ,

loc
where we have used lemma 6.6 and uniform convergence for the globally positive lower bound. |

Now the simple argument by local comparison from [46], 4.2 Corollary|, which relies solely on the fact
that the Jacobi operator descends to a linear uniformly elliptic partial differential equation for the
coefficient function and elliptic regularity theory, can be employed to conclude the non-existence of
homogeneous Jacobi fields also in the anisotropic setting. We will now collect the final results on the
Jacobi nullity that we will need.

6.8 Theorem (THE JACOBI NULLITY OF GENERIC LEVEL SETS). Let (Nz € C*7(Z,R") be a Jacobi
field with 0 < v < a <1 on = with (3= = 0. Then ( =0 or equivalently, dim 8 = 0. Moreover, almost
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every level set of u does not allow non-trivial homogeneous Jacobi fields.

Proof. Let (Nz € C?>7(Z,R") be a homogeneous Jacobi field on Z. As the Jacobi operator is linear,
we infer that
D$H ((o—c¢)N=) =0 on Zn

for each ¢ € R. By choosing an appropriate sign and |c| small enough, we may assume that
o—cC=0 on =n .

If ( # 0 on =, then we might find a point x* € 2 n Q such that we may as well assume that

(Co — c¢)(z*) = 0.

By proposition 2.27 and definition 2.28, we recall that the coefficient function of a Jacobi field solves
a uniformly elliptic partial differential equation in local coordinates on = and hence, the Harnack
inequality is available for solutions in such local charts. Exploiting the same simple covering argument
as in the proof of theorem 6.3(2), the zero at z* € Z n Q implies

(o—cC=0 on the connected component of z* in &,

which is a contradiction, as (y — ¢C is bounded away from 0 near 0Z. We deduce that necessarily ¢ =0
on =, hence dim K = 0.

The last statement of the corollary follows from the fact that level sets of w which fulfill Du # 0
almost everywhere on the level set constitute almost all level sets and this suffices to construct the
special Jacobi field ¢ from proposition 6.7 on such a level set (which hence also equals its level set
boundaries). [
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o
In this section we approach the original conclusion on partial regularity from the perspective of our
setup and discuss the questions arisen in section 3.3.

7.1 The Construction and Proofs.

With the last two sections at hand, we are at the point to give a proof of the partial regularity result
with a fixed regularity in the flow variable (which moreover, as we have seen in section 5.3, is precisely
the value of the extremal u by means of its boundary values).

We repeat the full proofs here and begin with the (value-wise) local result. Its idea is roughly to
subsequently transfer the flow regularity with the dependence map (that we are allowed to apply via
theorem 6.8) from boundary to full domain and to exploit stationarity properties in conjunction with
elliptic theory to find a differentiable identity for the extremal near the level set.

7.1 Theorem (LOCAL DIFFERENTIABILITY). Assume 0 € U, ie. 0 is a mildly reqular value of u and
set M = min(p — 2, m — 3). Then there exists an open set O with

ENnQcOyc
and u is of class CM on O, where M > 0 can be .

Proof. As Z = u~'(0) can only have finitely many connected components by proposition 4.15(2), we
may directly assume that Z is connected and, furthermore, that all level set boundaries o{u >t} = Q
are diffeomorphic to = for all sufficiently small |¢| via the almost-normal diffeomorphism construction
from theorem 5.20.

Step 1: As Z is a submanifold with boundary of R” of class at least C>® by theorem 4.10, where
0 < a < 1 is fixed here through the regularity of f, we observe that in particular

1= € C2*(Z,R"), where (= denotes the canonical inclusion into R™.

Since 0 € U, we may apply theorem 6.8 to infer that dimR = 0. We may hence by theorem 2.29
conclude that the dependence map

F: C*(02,R") — C*7(E,R") forany 0 <y <a <1

for the Holder space of class C?7 is well-defined and apply it to the [ -stationary canonical inclusion
1= of = into R™. We will now use the local flow k as defined in section 5.3 and lemma 5.14. We recall
that

Ko = Lffl(o) = lz,08 and jf(/ﬁ;(]) = l=.

Possibly decreasing our maximal value T" > 0, we may consider the function
K:=Z2x (-T,T) — R", K(z,t) = F(k)(x).

Since # is of class C*~2 by theorem 2.29 and the regularity of F, we find that K is of class CM in its
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second variable due to lemma [5.16] with, as before,
M = min(pp —2,m—3) > 1.

Since every (k) € C*7(E,R"), we infer that K is of class C*7 in its first variable and by the higher
regularity corollary 2.31, we have

F(ky) e C(E,R") for all sufficiently small |t| > 0,
which leads to K being of class CM, since v = min(u, m — 1) whence v > M.
Step 2: We claim now that:
There is T > 0 such that K(x,t) € u=1(t) whenever 0 < |t| < T .
Indeed, by theorem 5.20, we may find diffeomorphisms ¢; of class C** with
12— {u =t} with et — tz]2y — 0 for t—0

and 0 < v < a < 1. We find also that each ¢; is stationary with respect to = and F, ie.

() =0 for all sufficiently small [¢| = 0

since each level set boundary is locally minimizing inside €2 as a current. Moreover, by lemma 5.14,
we recall that

ke s f7H0) — fL(1) with |kt — koll2y — 0 for t—0.

Hence, for all sufficiently small ¢ > 0, we conclude that § is defined on x; while ¢; lies in the image
of #. However, as the geometric boundaries of the submanifolds d{u > t} and K(Z,t) = (F(x¢))(2)
coincide, the uniqueness properties of  from theorem 2.29 now assure that

K(E,t) = {u >t} cul(t)
and the claim is proved.
Thus, by evaluating with u, the above claim yields
u(K(z,t)) =t, that is u o K = projs
for all |[t| < T and x € E. We will show finally that we may locally invert K to finish the proof.

Step 3: We may decompose
Ot K|t:0 =V+W

with
V(z)eT,=2 and W(x) € N=(x)

for all z € 2. Set ( = W - Nz and, for a contradiction, let g € = n  be such that {(xg) = 0. Possibly
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decreasing T' > 0, we may replace K by another one-parameter family

K(z,t) := K(R¢(x),t) forreZand te (-T,7T),

where #¢(z) := &(x,t) is constructed with the flow of the negative tangential projection of ¢ K¢
near zo and suitably cut off towards 2. We may assume that & is of class C? and as K only differs
by a t-dependent reparametrization of =, it embeds the same images d{u > t}. Thus we find

0tI~(‘t=0 =W =(N= on a neighborhood of 2y in Z N 2, hence GtK|t=0(mo) =0,
but on the other hand, we find for all z € = and h e (=T, T) that

[K(2, h) —K(,0)]
[u(K(, b)) - u(K(z,0))]

A K (@, h) — K(z,0)] =

such that

‘é’tf((az)“:o‘ = lim |~K(x’ h) - K(?’O)‘ > K1
h=0 [u(K(z, h)) — u(K(z,0))]

where 0 < K < o is any Lipschitz constant of u.

Since ¢z is an immersion of = and, by the above, d; K(x¢,0) is complementary for any zg € = n 2, we
deduce that the differential of K at (zg,0) is of full rank for any zp € = n Q. Thus, we may apply the
inverse function theorem near xy and we find a local inverse to K on some small open neighborhood
of xg in Q.

We are thus in position to invert K to receive
U = Projg o Kt on some open neighborhood of xg,

where the latter function is of class CM on its domain of definition. We subsequently prove the
proposition by covering = n € up to the boundary of the domain ). |

Finally, we also derive a result on an open and dense set in the same fashion, for which we repeat the
full set of data assumptions |[(Z)]

7.2 Theorem (PARTIAL REGULARITY FOR ANISOTROPIC FUNCTIONS OF LEAST GRADIENT). Let
Q = R™ be an open domain of class C™ and assume f € C"™(0Q) where 4 < m < 0. Let ® : QxR® — R
be an elliptic even anisotropic total variation such that ® and Dy® are of class CF 1 with 3 < u < ©
and 0 < o < 1. Suppose u € C¥H(Q) is a function of anisotropic least gradient with respect to ® with
trace values upg = f, let m = n — 1 and the singularity assumption hold.

Given these assumptions, it follows that there exists an open and dense set O, < ) such that
uwe CM(0,)
holds, where again M = min(u — 2,m — 3).

Proof. We rephrase the proof by using mildly regular values. Owing to the lower bound on m and the
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theorem of Sard, we deduce that

L ([a,b]\U) =0,

ie. almost every value of v is mildly regular. In particular, almost every value t allows for an open
neighborhood &; < ) as in theorem 7.1. Let us additionally define the open set O < () as the union
of all open balls inside €2 such that u is constant on one such ball. Then we may set

O, = U 00,
teld

which is clearly open in 2. One can see that it is also dense as follows. Assume that &', would not be
dense, then we could find an open ball U* < Q such that U* is not contained in &',. Since u cannot
be constant on U*, its image u(U™) is necessarily an (non-degenerated) interval J. Then however
J < [a,b]\U, which contradicts the full measure of U in [a, b]. [ ]

It is not clear to what extent the foregoing theorem turns out to be sharp. Additional sufficient
conditions for better regularity properties of u remain to be investigated. I also want to highlight that
we do not know whether

LN\ 0,) =0 or LM\ 0,) >0

holds true for a general function of least gradient w.

On the other hand, it is immediate that the maximum regularity we may expect in full generality
is class C™, since the planar function

U(z,y) =j (%) for z,y e R, j € C™(R)
is of least gradient for suitable domains, say, some closed ball B = R?\{z = 0}, while possibly not
being C™ 1,

We will now use the occasion of this section to recall the very enlightening example by JOHN E.

BROTHERS from [46], 0. Introduction)].

7.3 Example (BROTHERS). Let B < R? denote the closed standard unit ball of R? and denote by S its
boundary. We let f((x,y)(¢)) = cos(2¢) € C¥(S). Then the Lipschitzian function v with

202 — 1 if |z| = 1/V2, Jy| < 1/+/2,
u(z,y) =140 if |z| <1/V2, |yl <1/v2,
1—2y* i |z| > 1/V2, [yl = 1/V2,

on the closed unit ball B is the unique function of isotropic least gradient for f.

7.4 Remark. The classical purpose of this example was to illustrate that functions of least gradient
might not be everywhere regular, but still allow for a "large" part of the domain to be. Notice also
that example 7.3 uses analytic boundary data and achieves analytic partial regularity. We remark also
that the function u from example 7.3 fulfills #?(B\ @) = 0.

We consider now an apropriately tweaked version of example 7.3.
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7.5 Example (INTERPOLATING 7). Let us define a sequence of boundary data f,, € C*(S) via

fa((z,9)(p)) = cos(2ny) such that # (fn_l(O)) — 4n.

Then there exists a unique Lipschitzian function u, € C%*(Q), which is of isotropic least gradient with
boundary data f,. One readily verifies (eg. by "drawing" level sets) that u,,1(0) = B is the closed
4n-gon with vertices composed of f,,1(0). In particular, we find

Z?(B\u,'(0)) — 0 as n — o0,

which shows that the subset of €, < €, on which an extremal is non-constant, can yet become
arbitrarily small in .Z"-measure.

7.2 Some Specific Regularity Theorems.

We close this section with a collection of results for specific assumptions on differentiability of the
involved data which our theorems 7.1 and 7.2 allow.

7.6 Corollary (SOME IMPLICATIONS AND REGULARITY THEOREMS). Assume that () is an open domain
of class C™ and f € C™(0Q) with m > 4. Let u € CO1(Q) be a function of anisotropic least gradient
with respect to the elliptic total variation ® with uag and let 0 € U. Assume that assumption |(.7)
holds.

() If ® = © has constant coefficients and © is at least of class C>® for some 0 < o < 1, then there
exists an open neighborhood Oy = Q such that u='(0) c Oy and u is of class Cl on 0O,.

(B) If ® = u© where © has constant coefficients and p is a positive weight function on Q0 such that
O is at least of class C>* and p is at least of class C*% for some 0 < o < 1, then there exists an
open neighborhood Og < § such that u=1(0) = O and u is of class Ct on 0.

(v) The above item holds in particular for the weighted isotropic case, ie. when
O(z,v) = p(z)|vl such that pe C3(Q)

for some 0 < a < 1, then there exists an open neighborhood Oy = § such that u=1(0) = Oy and
u is of class Ct on 0.

(0) More generally, if ® is a Riemannian total variation, ie. when
O (z,v) = 4/vTG(x)v where G e C2¥(Q; R™*™)

for some 0 < o < 1 and the matriz field G is uniformly positive definite on S, then there exists
an open neighborhood Oy < Q such that u='(0) € Oy and u is of class C! on 0.

Let us for now assume that m = oo (or m = w).

(e) If ® = © has constant coefficients and © is of class C** for some 3 < ¢ < o0 and 0 < a < 1,

then there exists an open neighborhood Oy < Q such that u='(0) € Oy and u is of class C°~2 on
Oy.
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() If ® is a Riemannian total variation and G is of class C>% for some2 < ¢ < w0 and 0 < a <1
on ), then there exists an open neighborhood Oy < Q such that u=1(0) € Oy and u is of class
st oon 0.

We shall now assume that ® is smooth or analytic. Then:

(n) If m = 4 and 0 and f are of class C™, then there exists an open neighborhood Oy < Q such
that u=(0) < O and u is of class C™3 on 0.

At last, we choose a fized | € N.

(0) If ® and Dy® are of class CHL2 for some 0 < o < 1 with 89, f being of class C+3, then there
exists an open neighborhood Oy < Q such that u=(0) = Oy and u is of class Ct on 0.

If m = n — 1, then all of the preceding regularity conclusions also hold on an open and dense set

o, < Q.

7.7 Remark (THE ISOTROPIC CASE). We furthermore recover the claimed results from [46], 4.4,4.5]
with corollary 7.6(n) but we unfortunately lose another degree of differentiability owing to the different
choice of function spaces.

7.8 Remark (THE WEIGHTED CASE). In view of the existence results of [47], where C2-regularity
for 02 and f suffices to construct Lipschitzian functions of weighted isotropic least gradient (together
with additional assumptions independent of the differentiability, of course), higher interior regularity
for weights of class C%® from corollary 7.6(7) appears plausible.
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8 Totist’ Llondttny Rgutinisy off Eotrormats

The remaining sections 8 to 11 will now investigate additional structural properties, which functions
of anisotropic least gradient enjoy in the presence of local differentiability and partial regularity and
which also hail to some extent from example 7.3. We shall assume throughout that the assumptions

and are still in effect.

In this section, we will continue the investigation of section 7 to include partial regularity results
up to the boundary. The results we achieve will yet stay conditional, ie. even if we may apply theorem
7.1 near a given level set u~!(¢) for a value t € U, we do not necessarily achieve the corresponding
boundary regularity at each f~!(¢) of u.

However, much like for the classical boundary regularity results for minimizing currents, we are able
to show the existence of at least finitely many points where boundary regularity must hold true.

8.1 The Key Identity at Geometric Boundary Points.

Without loss of generality, we assume again that 0 € U is our value of the extremal function u e C%1(Q)
of anisotropic least gradient of interest. We recall first from section 7, and more particularily the proof
of theorem 7.1, the existence of T' > 0 such that

K(z,t) := F(ke)(x) for reEZ and 0< [t <T,
is well-defined and of class CM where
M = min(p — 2,m — 3).
While the proof of theorem 7.1 chose a point in = n €2, we will now place our investigation at
zo € fH0) where fH0) == =ZnoQ.
By definition of #, this delivers
K(zg,t) = ke(zo) forall 0<|t|<T
and hence
grad™ f(r(zo, 1)

| grad™ f(k(xo, t)|?

due to the construction of x as the local flow of level sets of f in section 5.3.

0t K(zo, 1) = X(k(x0,1)) =

8.1 Lemma. Let v e R™ be tangential to f~1(0) at zo. Then d; K(z0,0) € Ty 02 and
0 K(z0,0) - v = 0.

Proof. This is clear, as
Y = grad® f(s(z0,0)) = grad®® f(zo) # 0

spans the normal space to f~1(0) at zg inside T,,09 and X is just a rescaled version. ]
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The latter lemma especially implies the orthogonal decomposition
Tpy0Q =Ty f1(0) @© R-X(x0)
and we record the following property of D K at boundary points xzg.

8.2 Lemma (RANK (n — 1)-PROPERTY OF THE DERIVATIVE). For each xo € f~1(0) we have that
rank D K(z0,0) =n —1 and rank D K(z¢,0) = n — 1.

Proof. As we know that
K(x(), 0) = LE(CC(), O)

and = is a submanifold with boundary of class at least C*%, the derivative D, K simply embeds the
abstract tangent space of = into the euclidean space R™ and hence has full rank n — 1, from which the
lemma immediately follows. |

These assessments all follow rather immediately and correspond roughly to the fact that = admits an
extension across 0= (a fact which we also already used before) and the full tangent space at boundary
points is the tangent space to that extension. For our purposes it is however necessary to actually
achieve

rank D K(z9,0) = n,

since we are interested in inverting K. We will now formally prove that the full rank property from the
interior case also leads to local boundary regularity, while we will discuss sufficiencies for this matter
in section 8.2.

8.3 Corollary (PARTIAL REGULARITY AND PARTIAL BOUNDARY REGULARITY). Assume that D K(zg,0)
is invertible at o € f~1(0). Then there exists an open neighborhood O, < 0 of wg such that

’U/ﬁ’xo € CM(ﬁxO)
where M = min(p — 2,m — 3).

Proof. We recall by boundary regularity that = is a submanifold with boundary of class C*'%, where
v = min(p, m—1) > 3 and we shall extend Z across 0Z to an open submanifold = c R” of corresponding
class C**. Since

K:Zx (-T,T) — R"

and we consider g € 0=, we may consider x( as an interior point of = and extend K to a function K
such that

K:

[1]:

x (=T,T) — R"

is again of class CM (since v = M) in both its variables. Applying the inverse function theorem to K
at (zg,0) leads to connected open neighborhoods U < =Z of zg and V < R” of z as well as T' > 0 such
that

K:Ux (-T,T) —V
is a diffeomorphism of class CM. As

K(UmE)x(—T,T) =K,
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we infer that

K(z,t) € o{u =t} whenever xeUnZ, 0<|t|<T

and thus

u(K(x,t)) = projy(x,t) whenever reUnZ, 0<|t|<T.

The function projy oK " is further of class CMon V. As

K(z,t) = k(z,t) forall zed=nU, 0<|t|<T,

it follows by remark 5.15(2) that we may choose U such that (U\0Z) x (—T,T) has exactly two
connected components and that

K(0Z2nU) x (-=T,T)) =V n Q.

Especially, also V\0f2 has exactly two connected components by diffeomorphicity and hence, they have
to be contained in Q or in R™\Q. From this we deduce that

K(UNE)x (=T,T)) =V nQ =: O,

with )
u = projy oK on Oy <

and the proof is finished. |

8.2 Sufficient Local Conditions for Partial Boundary Regularity.

Now we shall try to find sufficient conditions to enable corollary 8.3 and prove partial boundary reg-
ularity. Note that "partial" here is somewhat doubly referred to, as first not each level set admits
regularity at all, but even if we are dealing with eg. mildly regular values, then not each boundary
point might admit boundary regularity.

We begin this section by using the lemmas 8.1 and 8.2 to reformulate the full rank condition in
some first order properties of the involved hypersurfaces.

8.4 Proposition (TRANSVERSALITY AND PARTIAL BOUNDARY REGULARITY). Let 0 € U and xg €
f~1(0). Then it holds

rank D K(zp,0) =n — = intersects 0€) transversely at xg.

Proof. We recall first that two submanifolds intersect transversely at xg if their tangent spaces at xg
span R", ie. here
Too0QY + T,y = = R™.

Let us first assume that rank D K(z¢,0) = n. This means
im D, K(:D(), O) +R-0 K(.I‘(], O) = Ton +R-0 K(JE(), O) = R".

Since in particular 0; K(z,0) € T,,09 by lemma 8.1, we deduce that intersection is transverse at x.
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For the contrary, let the intersection at zy be transverse. By construction, we have
ToofH0) € Ty and Ty fH(0) € T2

and 0y K(zg, 0) is orthogonal to Ty, f~1(0) by lemma 8.1. Hence, if d; K(x¢,0) € T}, = would hold, then
Tpo0Q =Ty fH0) @ R-0;K(zo,0) = Ty, Z,

which contradicts transversality at xg. Thus, 0: K(zo,0) ¢ 15,2 and we infer with the aid of lemma
8.2 that rank D K(z,0) = n. [ |

8.5 Remark. Proposition 8.4 allows for a different condition to check if information about the local
geometry is available. Note that this theorem does not claim that a transverse intersection is necessary
for partial boundary regularity of u, but provides a reformulation for our sufficient condition. Also, I
do not know to what genericity such transverse intersection is fulfilled.

Even though we equivalently expressed our condition in geometric terms, we still do not know whether
any such point actually always exist. The following argument will prove the existence of at least some
points.

8.6 Theorem (EXISTENCE OF BOUNDARY REGULAR POINTS.). Let 0 € U. Then each connected
component of = admits at least one point x¢ € 0= such that there is an open neighborhood 0., = Q of
xo where

ue CM(0,,) for M = min(u —2,m — 3).

Proof. As every connected component of = is a submanifold with boundary of the corresponding reg-
ularity of Z, it is furthermore true that each connected component does not admit non-trivial Jacobi
fields. Thus we directly assume = to be connected without relabeling and prove the existence of at
least one regular point zq € 0=.

We decompose again like in the proof of theorem 7.1 for
otKjymo=V+W on =

such that
V(z) e T,= and W(z) € N=(z)

and claim that
¢(=W: Nz =0K;— Nz

is a solution to the Jacobi equation from definition 2.28 on =. To this end, we recall by construction
H(F(ke)) =0 for all sufficiently small |t| > 0,
from which we infer that

Rt (9(F (k1)) — H(F (ko)) = h L (H(F(kn)) — H(z)) =0 for all sufficiently small |h| > 0
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and thus, since t — (k) is at least of class C! for |t| near 0, we find

d

D9i=) <dtt=0

:[F(/-it)> — 0.

We deduce that 0¢K|,—¢ is of class C27 and it is a Jacobi field on Z with respect to (= and F. We
furthermore recall from step 3 of the proof of theorem 7.1 that ¢ > 0 on = n €.

Assume then for a contradiction that = and 0S) intersect nowhere transversely, which we may equiva-
lently express as
Nz(z) = Naq(x) for all ze fH0).

Since we have by lemma 8.1 that
0 Kjyo(z) € T,092  forall  ze f71(0),

this yields
(=0 K=o Nz = 0t Kj—o -Nog =0 on 0=.

Consequently, as W is now a homogeneous Jacobi field on =, ie. W € R, we infer ( = 0 on = by
theorem 6.8 via dim 8 = 0, which is a contradiction.

Hence, we have shown that there must at least be one xg € 0€2 such that = and 0f2 intersect transversely

at zo and we may subsequently apply proposition 8.4 to get the desired neighborhood &,, = Q with
M
ue CY(Oy,). [ |
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oL oF
Here we will review the a priori assumptions that we have imposed on the values of u that we want

to consider. While values hailing from the set U, the mildly regular values, were sufficient to induce
partial regularity for the extremal, we may actually even induce local regularity (value-wise) by weaker

assumptions. Furthermore, we may prove that the gradient actually behaves rather rigid on such level
sets and translates seamlessly to the smooth setting.

These strategies were (yet again) somewhat referenced in [46], but the actual application was without
details or was only sketched in the introduction of that paper. We shall of course, additionally, prove
these results directly for the anisotropic case as before.

In what follows, we will mainly deal with values and properties of the extremal on the level set for this
value. Therefore, we propose to refer to these properties as "fine" properties of the function of least
gradient (to some extent in the spirit of the paper [§]) and its level set structure. The main change
in this section is to drop the assumption on almost-everywhere existence of Du on some level set with
respect to 7L,

9.1 Rectifiable Level Sets and Jacobi Admissibility.

Let us first observe the following lemma on the level set structure, which will prove to be useful.

9.1 Lemma. Let t € intrg(f) be such that
L "uw ) =0 and t is a reqular value for f.

Then

Proof. We treat the case u~'(t) = 0{u > t}. By continuity, we have that o{u > t} < u~!(¢) and we
assume for a contradiction that zo € u=!(t) with zo ¢ d{u > t}. By t being a regular value for f, it
holds zp € Q. If zy ¢ d0{u < t}, then there is an open neighborhood around z(, where u = ¢ and a
contradiction is immediate. Hence zg € 0{u <t} n Q. As xg € spt | D1y, <4/, it holds

L"{u <t} nU(xg,p)) >0 for all p > 0.
On the other hand, since zg ¢ d{u > t}, there is by continuity some p > 0 with
{fu<t}nU(xzg,p)=J = {u <t} nUlxg,p) = u ' (t) n Ulzg, p).

Together we receive

zn(u—l(t) N U($07p)) >0,
which is again a contradiction. |

9.2 Remark. Note that this proof works as long as the level set of f equals it sub- and superlevel set
boundaries on 0f2, eg. also in rectifiable cases. In [4I] we furthermore find an interpretation in the
distributional setting.
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We recall that we may assume that
rg f =rgu = [a,b] for some real numbers a < b

by assumption () and our geometric maximum principles. Lemma 9.1 motivates the next class of
values that we want to investigate.

9.3 Definition (RECTIFIABLE VALUES). We will say that t is a rectifiable value when t € V, where

Vi={te(ab) | L) =0,

t is a regular value of f }.

Yet again, t being regular for f of course excludes a and b, while lemma 9.1 shows that the boundaries
equal the level set and thus the level sets themselves are in particular rectifiable. In this section, we
will work with the class )V, while we will also drop the last condition in the next section to investigate
fat level sets.

We now want to find out how behavior of the gradient on a rectifiable level set precisely matters
for the regularity theory.

9.4 Remark. This point is somewhat hidden, but existent, in the original paper. Indeed, in [46], 4.5
Theorem|, the authors induce partial regularity by what I would call mildly regular values, while the
original assumptions throughout for the regularity near a fixed level set only need the existence of a
certain sequence related to the gradient of w (cf. [46, p. 510, 1.1(5,v)]). Roughly speaking, we need
difference quotients at one point to be bounded away from zero (while we may compare then for each
other point via the Harnack-Type inequality). I do however think that [46, p. 522, 4.2 Theorem, proof]
needs an additional argument to compare if the gradient need not exist (there is also no notion of the
point z* from [46, 1.1(5,v)] in that proof).

Let us again set ¢t = 0 and denote u~1(0) =: Z. As 0 € V, we have again that = is a submanifold with
boundary of class C*** and we recall from proposition 4.15(2) that Z can only have finitely many con-
nected components such that each one has non-empty geometric boundary contained in f~1(0) = 0.

Comparing with 0 € U, where derivatives have existed on each connected component, we now sin-
gle out one (of the finitely many) connected components of = which we denote

Y <

[

The hypersurface 3 inherits regularity from = and we set
0:=Xnoc f10).

Thus, the set ¥ < R"™ is a submanifold with boundary of R™ which is of class C***. The boundary
submanifold ® < R™ is of class C™.

We recall the assumption from [46] and provide a clarifying lemma to refer more easily to such a
property.

9.5 Definition (JACOBI ADMISSIBILITY). We say that the connected component ¥ of = is Jacobi
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admissible if there exists some x* € ¥ n ) and sequences

xf — ¥ and ti — 0
as 7 — 00 such that
tF>0 and zfed{u=t}nQ
and y .
0 < lim [uf2y) — uz®)| < .

9.6 Lemma (CHARACTERIZATION OF JACOBI ADMISSIBILITY). It holds, up to possibly changing the
sign of u:

Y is Jacobi admissible.

— There exists x* € ¥ N Q such that Du(z*) # 0 or Du does not exist at x*.

Proof. Clearly, when ¥ is Jacobi admissible, the gradient may not exist and vanish at the distinguished
point z* € 3 n © and the implication holds.

Conversely, let an z* € ¥ n  be given such that Du(xz*) does not exist and vanish. Hence, ei-
ther Du(z*) # 0 or Du does not exist at z*.

If Du(z*) # 0, we may decompose
R"=Tx>X & RNg(z¥)
and notice, since u = 0 on X, that
Du(x*) = Ony@yu(e™) N (x*) with  Ong (@#yu(x™) # 0.
By definition of the directional derivative, we find

0 # Ong aryu(z™) = }llin% h=t(u(z* + hNs(z*)) — u(z®)),
which yields a suitable sequence with appropriately bounded difference quotients along the normal
ray. Finally, the intermediate value theorem for continuous functions assures that we may choose such
points in the superlevel set boundaries.

Assume now further that Du does not exist at * € X n Q). Thus, we can find at least one sequence

. _ ES
0 < Ly (z) —u@)l
71— 00 ’21—1'*‘

z; — x* such that

holds true (as otherwise Du would exist and vanish at 2*). We may assume z; ¢ v~ (0) and select a
subsequence to arrange that

(2i)ieny < {u < 0} or (2i)ien < {u > 0}.
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A possible passage from u to —u allows us to choose the second alternative, while the function —u €
BV(Q) is again a function of anisotropic least gradient. It remains to show that we may always choose
a point in the corresponding superlevel set boundary.

Consider the straight line from z* to z;. As w is continuous, this line has to intersect the superlevel
set boundary d{u > u(z;)} n Q in some point z} € 2. Thus

|z* — ]| < |z* — z),

implying
u(z) = u(@)| _ fulep) —u@)| _
|2i — x| |z — ¥
and the claim follows by taking the liminf and passing to the subsequence of (z}) realizing it. |

9.7 Remark (THE SIGN OF THE EXTREMAL). The slight abuse of notation of the sign of u without
loss of generality is also referenced in [46, 1.1(5,(vi-vii)|]. Without it, we could proceed all arguments
regarding Jacobi admissibility with

ti <0 and xied{u<ti}nQ,

which is possible as 0 € V implies that = equals its superlevel and sublevel set boundaries by lemma 9.1
and we can approximate from both sides value-wise. Also, if we pass from u to —u and the anisotropic
total variation is not even in the second variable, then we also have to pass to

O*(z,v) := ®(x, —v)

when changing the sign, and —wu is a function of anisotropic least gradient with respect to ®*.

9.2 Regularity near Rectifiable Level Sets.

We can now return to the regularity theory and our approach is to deal with local regularity and
rigidity results near rectifiable level sets.

Obviously, there is
OelU = 0eV

and each of the finitely many connected components of a mildly regular zero level set = is Jacobi
admissible. The results of the preceding sections 7 and 8 hence have to follow as special cases of what
is possible for a general rectifiable level set.

9.8 Remark (ON THE NECESSITY OF THE NON-VANISHING GRADIENT). We recall for 0 € U from
section 6 and more particularily lemma 6.5 that the assumption that there is some x* € = n Q with
Du(z*) # 0 has entered for the first time in that particular result and the following construction of the
"special" Jacobi field (y with positive lower bound. Regarding the remaining results, everything was
independent of the behavior of the gradient on the level set. We recall from the preceding sections, if
only 0 € V, that we also have:

(1) The Hausdorff convergence H(Z,u"1(t)) — 0 and the locally uniform expressions about tangent
spaces of Z as in section 2.4 and 4.3.
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(2) The existence of a one-parameter family of normal graph representations w; on boundary retracts
(1, as in proposition 5.9 with Harnack-type inequalities as in section 6.1 and theorem 6.3.

(3) The existence of a one-parameter family of global diffeomorphic deformations ¢; as in section 5.4
and theorem 5.20.

We will use these results freely in the remainder of section 9 and suitable one-sided versions in section
10 in our study of fat level sets.

We can hence directly begin to construct the special Jacobi field and investigate the Jacobi nullity of
connected components ¥ of Z. To do so, let us again assume and fix 0 € V. The next lemma relates the
distinguished sequence from the definition of Jacobi admissibility to the family of normal deformations
w; in accordance with remark 9.4.

9.9 Lemma (JACOBI ADMISSIBILITY AND DIFFERENCE QUOTIENTS IN NORMAL DIRECTION). Let
Y, © Z be a connected component and assume that X is Jacobi admissible with distinguished point
xz* € ¥.n Q. Then there exist a sequence t7 — 0 and m* > 0 such that

0o < ‘u ((Id +wt;’<NE)(l‘*)> — u(z™*) .
h (1 1wy Nz) (%) — '

for all i € N.

Proof. Recall that we have
(Id +wyN=) () € H{u =t} n Q and (Id +w¢N=)(z*) — z*

for all sufficiently small ¢ > 0 such that wy is defined near z* € ¥ n ). Applying theorem 6.3(1) at
x* for the local Harnack-type inequality, there are a neighborhood V < X n Q of x* and constants
C=C(z*)>0and T =T(z*) > 0 such that

sup{w(x) | x € V} < Cinf{w(x) | x € V}
for all 0 < ¢t < T'(«*). By definition of Jacobi admissibility, there is some m > 0 and a sequence

xf — with  w(z) >0

for all 7 € N such that we have

u(ef) — u(z")]

|z}

for all sufficiently large i. Note also that we have
u ((Id —i—wt*NE)(m*)) = u(z)) where ¢ = u(x]).
By exploting =} — x*, it follows that

M(zf) — 27| < |2" — 27| and  |[(27) — 27| = we (1(27))

by the nearest-point property and the bijectivity of IT near z*. Assuming furthermore via II(z}) —
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II(z*) that
M(z}) eV and tF<T for all i € N,
we infer
2 — 7] > we (T(a7)) > O (27) = €1 [ — (1d e Na) (&),

which leads by taking reciprocals to

‘u ((Id +wt;kN5)(x*)> — ()

u(ef) — u(z®)]

o0 > =
’(Id +wx Ne)(x*) — x* ’(Id +wx Ne)(z*) — o*
o) —u(e)
ST
> mCt=m*>0
for all large ¢ € N. |

9.10 Remark. Notice that the property above is immediate in case Du(z*) # 0, as the boundedness
away from zero holds as a matter of fact for all sequences =* + tN= approaching z* € 3. If, however,
the boundedness away from zero holds only true for difference quotients along one certain sequence
approaching z*, T do see a need to compare the two sequences of difference quotients, which is not
detailed in [46], as we need a positive lower bound in normal direction to execute the blow-up along
Wt.

With lemma 9.9 at hand, we may proceed with the remaining regularity theory as in the sections 7
and 8. We record the following result.

9.11 Proposition (REGULARITY NEAR JACOBI ADMISSIBLE COMPONENTS). Let 0 € V and let ¥ c =

be a Jacobi admissible connected component. Then there exists an open meighborhood Ox, < Q of X
such that
u e CM(ﬁE)

holds with M = min(u —2,m — 3) = 1. Furthermore, there exists at least one xy € © = X N 0Q and an
open neighborhood Oy, of o in Q such that

ue CM(0,,)
18 valid.

Proof. The only necessary essential change to be made is to show why the Jacobi nullity of ¥ vanishes.
Fixing the real sequence tj > 0 with ¢; — 0 as 7 — 00 and m* > 0 from lemma 9.9, we find

wtf($*) ’(Id ~|—wt;x<NE)({L‘*) —z*

1
= < —.

¥ ‘u ((Id +wt;kN5)(g;*)> — u(z*) m#*

Thus, by choosing 0 < p < dist(z*, 092), we may proceed on the connected component ¥ ¢ = as in
lemma 6.5 and section 6.2 to use the Harnack-type inequality on retracts of theorem 6.3(2) to compare
with the point z* € ¥ n Q for uniform bounds up to class C* for the family of functions wy, /¢; for
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1 € N large enough. In particular, as in proposition 6.7, there exists

CoN= € C2Y(Z A Q,R™)

loc

with
DH((N=)=0 on ¥nQ and (=K '>0

for a Lipschitz constant K > 0 of u and the comparison argument of theorem 6.8 shows that dim 8 = 0
on Y. As the proofs of theorem 7.1 and theorem 8.6 now translate without change by using the
dependence map F associated with the canonical inclusion ¢y of ¥ into R™, our result follows. |

9.3 Definiteness of the Gradient of an Extremal.

With the regularity criterion from section 9.2 at hand, in the final part of this section we will proceed
in characterizing the behavior of the gradient on rectifiable level sets. To do so, we will draw some
rather immediate further conclusions from the regularity theory and introduce a new argument related
to, in a sense, the "propagation" of the gradient of u along a rectifiable level set. We find especially
that Du behaves exactly as for a "usual" regular level set in the differentiable sense.

Let us first begin by disjointly decomposing the level set = := u~1(0) for 0 € V such that

N M K
E=Um=UZvlUS 1<N<w, M+EKE=N,
i k=1

where each J; is a connected component and each connected component ¥ is Jacobi admissible while
each connected component ¥ is not.

As Jacobi admissibility was particularily implied by possible non-existence of the gradient of u, we
straightforwardly obtain the next proposition.

9.12 Proposition (EXISTENCE OF Du). Let 0 € V. Then the derivative Du ezists everywhere on = n .

Proof. Using the above decomposition of =, we find by proposition 9.11 that there is an open neigh-
borhood ﬁgj c 2 such that

¥inQc Oy, and ue ClY(0y,)

for all j = 1,...,M. If Du would further not exist at some x € X n €, then ¥, would be Jacobi
admissible. |

Clearly, we do not know any continuity of Du transverse to each X, but we may infer by the very
definition that Du = 0 on each ¥ n Q. Fixing one ¥ := ¥ and denoting its geometric boundary by
O, we observe that we still have

lgrad®® f| #0 on  ©c N
as © is composed of finitely many connected components of the regular level set f~1(0) < Q. The

next result is henceforth immediately clear.
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9.13 Proposition (LACK OF BOUNDARY REGULARITY). Let 0 € V. If ¥ < = is a connected component
of E with geometric boundary © which is not Jacobi admissible, then no x¢o € © admits an open
neighborhood O, = Q such that

Du e C(O,,,R")

holds. [ |

9.14 Remark. The propositions 9.12 and 9.13 illustrate that connected components of rectifiable level
sets which are not Jacobi admissible account for rather singular behavior of Du. It is not clear to me
to what extent in genericity these components appear for functions of anisotropic least gradient (or
whether possibly all connected components 3 are in fact Jacobi admissible).

We are now going to sharpen the results of proposition 9.12 in the case of Jacobi admissibility. Given
a Jacobi admissible connected component X := }; < =, we can infer by proposition 9.12 that there is

¥ eXnQ such that Du(z*) # 0,

as there has to be at least one sequence of difference quotients being in absolute value bounded away
from 0 at «* while Du(z*) exists. Clearly, this however a priori does not exclude the possibility of

some different
z2eXn such that Du(z) = 0.

Realizing this assertion is the content of our next theorem.

9.15 Theorem (DEFINITENESS ON RECTIFIABLE LEVEL SETS). Let 0 € V. Then for any connected
component ¥ C Z it holds:

FEither Du+#0 on XnQ or Du=0 on XnQ.

Proof. We already know by proposition 9.12 that Du necessarily exists everywhere on = n €2 and we
may assume that the connected component ¥ is Jacobi admissible. Hence, it will suffice to assume
that there are two points, *,Z € ¥ n Q, such that

Du(z*) #0 and Du(z) =0
and we must derive a contradiction from this.

We can find p > 0 sufficiently small such that z*, z € Q, and fix ¢ > 0. Due to the gradient
vanishing at Z, there is also § > 0 such that

u(z) —u(y)] _
|z =yl
whenever |z — y| < 0. This corresponds to
1 _ 17—y
e <
[u(y)]

for all such y with the aid of Z € Z. Since we can assume that we may invert the nearest-point
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projection on nearby level set boundaries near 7 € = n €1,, we may choose
y = (Id+w;N=)(z) € o{u =t} n Q

for appropriately small £ > 0 and receive

1 _ T (druNe) @) (@)

t t

Choosing a connected and compact K with ¥ nQ, © K = ¥ and by the Harnack-type inequality from
theorem 6.3(2), there exist constants C' > 0 and 7" > 0 such that

sup{wi(x) | v € K} < Cinf{wy(x) | x e ¥ n K}
holds uniformly in 0 < ¢ < T when p > 0 is small enough.

On the other hand, as Du(z*) # 0, we may also find §* > 0 and m* > 0 with

o luta® + hNg) — u(e®)
= h

whenever 0 < |h| < 0* and using an orthogonal decomposition of R™ in terms of tangent and normal
space at z* € ¥ n 2. Assuming ¢ > 0 small enough such that we(2*) is defined with w;(z*) < 0%, we
can hence choose

h = w(z*) such that (Id +wyN=)(z*) € H{u =t} n Q2

in the above inequality for sufficiently small ¢ > 0 and rearrange for

|(Id +w¢ N=)(z*) — x| _|(Id +w¢N=)(2*) — | - 1
Ju (Id +weNz)(2*)) — u(z*)| t Com
which of course again implies
wle) _ €
t O om*

for all suffciently small ¢ > 0 and z € K.
Set now x = Z, choose ¢ = %* and conclude by comparing with the uniform Harnack-type inequality
that, whenever ¢ > 0 is small enough,

1 C  |Id4wN=)(z) —z|  we(T)

<C
c 7m*< t ot T m

which is the sought contradiction. |

Applying the foregoing theorem to mildly regular and rectifiable values, we also obtain the following
immediate consequences on the rigidity of Du.

9.16 Corollary (MILDLY REGULAR VALUES ARE REGULAR). Let 0 € U. Then 0 is a regular value for
UQ-
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Proof. The extremal u is at least of class C! near = due to theorem 7.1 and the continuous gradient
of u may not vanish on = n €2 due to theorem 9.15. |

9.17 Corollary. Let 0 €V and ¥ < Z. If ¥ is Jacobi admissible, then Du # 0 on X n Q.

Proof. The last proof localized to the connected component ¥ < =. [ |
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10 TZ DLhovin ofwn Estrmad near o Tt Lovet” Tt

In this section of the thesis we turn to a further characterization of the regularity of functions of
anisotropic least gradient which will now also drop the assumption that the level set equals its sub-
and superlevel set boundaries.

More concretely, we precisely want to find out "how" functions of anisotropic least gradient approach
their fat level sets, by which we understand that a level set has positive top dimensional Lebesgue
measure.

As is easily observed for topological reasons and because the level set is fat, we may choose some point
in one of the level set boundaries of a (locally) fat level set and locally partition a small neighborhood
into two parts: One where the function is constant and one where it varies. Obviously the levels will
converge from the varying side by continuity, but we a priori do not know anything about the behavior
of higher derivatives. Our results here will show that, in fact, also the higher derivatives allow for
continuous extensions across such level set boundaries.

10.1 The Topology of Boundary Regular Level Sets.

Recalling the definition of the classes of values U < rgu and V < rgu, we consequently drop one
further assumption and introduce the following definition.

10.1 Definition (BOUNDARY REGULAR VALUES). We will say that ¢ is a boundary regular value when
t € W, where

W:={te(a,b) | tisaregular value of f }.

Our purpose now is therefore of course to study also fat level sets (or respectively, fat components of
level sets) and how regularity from the boundary data f can propagate here to the full domain. Since

tew and Z"(u l(t)) =0 — teV,

the "slim" case is already covered and we shall further assume without loss of generality that ¢ € W
with
L"(uwH(t) >0 for the remainder of section 10.

We again assume and set

(t=0)eW and

(1]

= u"(0).

Note that the set = here is bestowed with a different meaning than before as = is now not necessarily
globally a manifold anymore. Therefore we shall again start with some elementary observations on the
topological structure of such a level set.

10.2 Lemma. Let 0 € W. Then = has only finitely many connected components.

Proof. Assume we had infinitely many connected components. Then each connected component of

Z = u~1(0) contains connected components of d{u > 0} and d{u < 0} and we hence have infinitely
many, which is not possible by proposition 4.15(2). |
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Owing to lemma 10.2, we will decompose

(1]

N
=UZZ» 1< N < o,
i=1

for the union of connected components of = and subsequently deduce the following structural result
with the aid of some more terminology.

10.3 Definition. Let 0 € W. Then a connected component ¥ < = of the zero level set = is called
rectifiable if
Y c {u =0} n ofu <0}

and it is called fat if
M%) > 0.

10.4 Lemma (BOUNDARY REGULAR DECOMPOSITION). If 0 € W, then = can be decomposed into
finitely many connected components which are either rectifiable or fat.

Proof. It remains to show that any connected component X of = is either rectifiable or fat. Assuming
that Z"(X) > 0, then ¥ is fat and cannot be contained in d{u = 0} n d{u < 0}, as the latter set has
Z" measure zero. Thus ¥ is not rectifiable.

When £"(X) = 0, then X is not fat. As moreover
Yo c f7H0) < d{u = 0} n ofu < 0},
we assume for a contradiction that there exists some point
g EX N with xo ¢ {u = 0} n of{u < 0}.

If xg is contained in neither level set boundary, then we could find some open ball U about xg on
which © = 0 and which is, by maximality of the connected component of g, included in ¥, which
immediately contradicts £"(X) = 0. Hence we assume further without loss of generality that

xo € 0{u = 0} and xo ¢ {u < 0}.

Now, as in particular zg € spt |D1{u>0}| N 2, basically the same argument as in lemma 9.1 leads to the
existence of some r > 0 with Z"(u=1(0) n U(zg,r)) > 0 with also u~1(0) n U(xg, ) being connected.
Hence, again by maximality of the connected component, we find the contradiction Z"™(¥X) >0. ®H

10.5 Remark. We especially highlight the following fact from the last proof and the proof of lemma 9.1:
As soon as there is some zero xg € €2, which is contained in precisely one of the level set boundaries,
the connected component of this point xg inside 4 ~*(0) is fat and we may locally partition small balls
U about this point into a "varying" and a "constant" side in terms of connected components of U
without the level set boundary.

Decomposing further with the aid of lemma 10.4, we shall write
N, Ny
== UEWUEZ» with 1< N, +N;=N <o,
k=1 =1
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where the connected components ¥, < E < Q are rectifiable and the connected components ¥; c = < Q
are fat.

10.2 General Deformation Results and Regularity for Rectifiable Components.

We will now recall suitable one-sided versions of our previous results to be able to work with a gen-
eral level set whose upper and lower level set boundaries need not necessarily coincide. Most of the
previous results will follow verbatim but we use the occasion to recall some details. Afterwards we
will acknowledge that rectifiable components of a general boundary regular level set allow for the same
regularity theory as developed in section 9.

We shall thus consider without loss of generality the upper level set boundary d{u < 0} and pro-
vide one-sided results for ¢t N\, 0 as before. Note that, of course, the other case can also be reduced to
this form by passing from « to —u and remaining of anisotropic least gradient.

10.6 Remark. All remaining results from the sections 2.4, 4,5 and 6.1 yet again follow similarly (compare

also to remark 9.8) with the only change that we are now bound to consider ¢ > 0 in each of those
results. In particular, we recall:

(1) We have the one-sided Hausdorff convergence u~1(t) — d{u < 0} for ¢ \, 0.

(2) We have the existence of global diffeomorphisms ¢; : d{u < 0} — d{u > t} of class C**, which
allow us to appropriately deform level sets into close ones.

(3) We have the existence of normal deformations w; on retracts and local and uniform Harnack-type
inequalities on connected components of d{u < 0}.

In case we choose a rectfiable connected component ¥ of = we will now quickly show that the results of
section 9 may be localized to such a connected component. In particular, all regularity results remain
valid near .

10.7 Proposition (REGULARITY AND RECTIFIABLE COMPONENTS). Let 0 € W and ¥ < Z be a
rectifiable connected component of =. Then all regularity results of section 9 remain true localized at
the connected component X.

Proof. In view of section 9.2, all that remains is to show that all deformation results can be extended
to two-sided versions near 3 < =. We infer from the definition of a rectifiable component that X is a
connected component for both d{u > 0} and d{u < 0} and applying the one-sided results iteratively
will thus near ¥ yield the argument, since, in case of Jacobi admissibility, the one-parameter family
F(k¢) again parametrizes the correct level set boundaries near . ]

10.3 Regularity near the Level Set Boundary of a Fat Component.

With the case of a rectifiable connected component covered by slight modification of the results of
section 9, we will now turn to the case of an actually fat connected component > < =. Such a fat
component may contain more than one connected component of the level set boundaries.

10.8 Example (BROTHERS’ FAT LEVEL SET). We may allude to the example of Brothers to illustrate.
In this case, the extremal has precisely one connected fat level set,

Z=u"10) with 0eW,

103



Regularity Theory for dnisotropic Zeast Gradient Problems. (PH. D. THESIS)

and = n {{u > 0} and = N 0{u < 0} have each precisely 2 connected components, which we denote as
31, ..., %4 (corresponding to the 4 straight parts of the boundary of the square), that we may choose.
Quickly checking the solution formula from example 7.3 yields that the derivative exists nowhere on
(X1 U...uXy) N

Thus, we proceed to fix a connected component ¥ < = such that £"(3) > 0 and we will decompose
it into the following finite unions of connected components

Nl Nu
Em&{u?O}:UEk and Em&{ugO}:UEl,
k=1 1=1

where 1 < Nj, N, < c0. The next result combines differentiable strong maximum principles, which we
have already derived and used before in the context of local graph representations with sign conditions,
with topological arguments to rule out the possibility of intersections of the upper and lower level set
boundaries inside the domain.

10.9 Proposition. Let 0 € W and consider a fat connected component ¥ < =. Then
Hu=0ndfu<0}nXnQ=0.
Proof. Assume there was xg € o{u =0} n d{u <0} "X N Q. As
{u =0} = d{u <0}
as sets in Q, we find
{u <0} < {u<0} and  zp € {u <0} n o{u < 0}.

As both oriented boundaries are smooth and minimizing, standard arguments show that both bound-
aries may be written locally at g as a graph over the same hyperplane. Further, the above set inclusion
is yielding a non-negative sign condition for the graph functions. Hence, the same linearization and
linear elliptic partial differential equation argument an in section 6.1 (see eg. also [24, Lemma 4.4]) for
the difference of non-parametric representations implies

Huz=0nU=0{u<0}nU for some open neighborhood U < Q of z.

We let ¥ < ¥ denote the connected components of xg in respectively d{u > 0} and o{u < 0}. A
standard topological argument exploiting the connectedness, the local geometric maximum principles
for the graph functions and the boundary regularity of ¥ then yields that

YPAQ=X"n0
where hence
Yt=3" =3%* with X" cd{u=>0}no{u<0}n.

We subsequently reach a contradiction to £"(X) > 0 if we may show that ¥* = 3. To do so, by
connectedness of ¥*, note that ¥* divides sufficiently small connected neighborhoods V < € of ©*
into two connected components, which are contained in {u > 0} and {u < 0}. Thus V n ¥ = ¥* and
therefore ¥ = ¥* by maximality of ¥ as a connected component of u~1(0). |
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10.10 Corollary. Each point
o€ (H{u=0udfu<0})nEn

admits anr = r(zg) > 0 such that U(zg, r)\({u = 0}ud{u < 0}) has ezactly two connected components
and v =0 on one of these components.

Proof. Any such g € ¥ n 2 can at most be contained in one level set boundary by proposition 10.9
and the claim follows by remark 10.5. |

Let us now investigate the regularity of the extremal u as we approach the level set boundaries of such
a fat connected component.

10.11 Example (REGULARITY AND BROTHERS’ FAT LEVEL SET). Recall the 4 connected components
Y1,..,24 € 2 of the level set boundaries of the zero level of Brothers’ example with 0 € W and choose
any

o € (21 U ...V 24) ~ Q.

As the solution is constructed from polynomials except for the zero level set, we may fix a small ball
U(zg,r) <  and extend as u as

e CY(U(xp,r)) such that Uy (wo,r)\u—1(0) = U

by continuing across d(u~1(0)) N Q locally with the adequate polynomial function. In particular, there
locally exists an analytic extension of u across the level set boundaries inside €2, which is non-constant.

We will now investigate this phenomenon for the level set boundaries associated with fat components of
general functions of anisotropic least gradient. As the first preparing step, we prove a definiteness-type
result analogous to section 9.3 for the fat case.

In what follows we shall fix some connected component
Y X no{u <0}

to investigate for our considerations. We recall for the sake of completeness that ¥* is hence a sub-
manifold of R™ of class C*“ with boundary of class C*“.

10.12 Lemma (DEFINITENESS ON FAT COMPONENTS). Let 0 € W. Then Du either ezists and vanishes
everywhere on X* n Q or Du exists nowhere on ¥* n ).

Proof. Let zg € ¥* n Q, then by corollary 10.10 there exists » > 0 such that u has, in particular, a
minimum in zg on U(zg,r). Thus, if Du(x) exists, then Du(zg) = 0.

Assume now that there would be z*,z € ¥* n 2 such that Du does not exist at * and Du(z) = 0.
Using the same strategy as in the characterization from lemma 9.6, we find a sequence

xf — and  t7 N\, 0
as ¢ — oo such that

tF>0 and zfed{u=ti}nQ
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and m > 0 with the property that

*) * *
0<m< @) —u@)] 4 for all i € N,

o —a*| o} — 2]

Possibly choosing ¢ large enough and using the family of functions w; associated with ¥* via remark
10.6, we may as well assume that

Wy () 1

- < -

t¥ m#*

for some m* > 0 and all i € N by following along the lines of lemma 9.9. Now the same argument
as in theorem 9.15 delivers the contradiction together with the Harnack-type inequality from theorem
6.3(2), as the sequence of functions w,+ must blow up at z while it is uniformly bounded at z*. |

Assuming the case of non-existence of the derivative on some connected component of the level set
boundary of a fat level set, our previous methods also readily allow for a result on the Jacobi nullity
in that new case.

10.13 Proposition (THE JAcOBI NULLITY ON FAT COMPONENTS). Let 0 € W and assume that Du
does not exist on X* N Q. Then dim & = 0.

Proof. Basically the same proof as the two times before, which is conducted here only on the connected
component ¥* < ¥ n d{u < 0} with the family of functions wy/t for t > 0. As in the last proof, the non-
existence of Du at any (and thus, every by lemma 10.12) z* € ¥* n 2 yields the uniform boundedness
of wy/t along a subsequence and the blow up argument can be performed as already done before, eg.
in the proof of proposition 9.11. |

10.14 Remark. One may also somewhat reasonably conjecture that in fact all boundary reqular con-
nected fat level sets do not admit an existing gradient on their level set boundary in 2, which would
imply that proposition 10.13 becomes unconditional.

At last, we turn to the continuous extendability of derivatives of u near fat level set from the varying
side and we may prove the following theorem. Let us remark that, while we will immediately provide
regularity up to the fat level set boundary, actually also regularity near the fat level set boundary was
not even clear before, but our construction in terms of dependence on boundary level sets can also be
applied here.

—_

10.15 Theorem (REGULARITY NEAR FAT LEVEL SETS). Let 0 € W, let ¥ < = be a fat connected
component of Z and let ¥* be a connected component of d{u < 0} N2 such that Du does not exist on
Y* N Q. Then for all xg € X* N Q there exists some ball U(xg,r) < Q about xg with r = r(xg) > 0 and
a function @ € CM(U(zq,7)) such that

Uy (o, r)\u—1(0) = U with M = min(p — 2,m — 3) > 1.
In particular, u is of class CM up to the boundary component X* < X inside Q from both its sides.

Proof. Following along remark 10.6, there are embeddings

12 B — o{u = t}, 1 € C2Y(T* R")
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for ¢t > 0 sufficiently small whose restriction to 0%* is the restriction of the regular level set flow k;
to dX*. Proposition 10.14 allows to use the dependence map F on the space C*7(9X*,R") for any
0 < < a < 1 to define our usual one-parameter family

K(z,t) := #F(ke)(x) for e X* |¢| sufficiently small

and observe again that K is of class CM. Clearly, D1K(z,0) again immerses the tangent space to ¥*
into R™ at x¢ for any zg € ¥* n Q and, similar to our previous regularity results, we infer that DK
has full rank at (g, 0) by using difference quotients with positive real h. The inverse function theorem
thus again yields connected neighborhoods U < ¥* of g and V < R" of zg and a real number 7' > 0
such that

K:Ux (-T,T) —V

is a diffeomorphism of class CM. As again, by choosing t > 0 sufficiently small, we find
uo K = projy on U x(0,7),
since now the images K(X*,¢) = 1;(X*) only coincide for non-negative ¢, and hence
u = proj, oK1 on KU x (0,7)).

We may assume that U x [(=7,0) u (0,7)] and V\X* have precisely two connected components and
that the components of V\¥X* are contained in {u > 0} and {u = 0} respectively. As K preserves
connected components (as a diffeomorphism on U x (=T,T)) and K(zg,t) € u=t(t) for t > 0, we
observe that

K(U % (0,T)) = V ~ {u > 0}

and choosing a small ball about x( inside V' proves the theorem. |

10.16 Remark. Of course, u also always allows for a constant extension from the constant side of the
local subdivision.
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11 Lot Fodstins tyy Mininad” Hypersrfces

We want to collect in this last section of the regularity theory some consequences of the preceding
sections on how the level sets fill out the domain, ie. to what extent they provide a foliation of the
domain by (anisotropic) area-minimizing hypersurfaces.

11.1 Remark. We directly remark that such a foliation property is not guaranteed a priori, as our
boundary regularity proof is only conditional and we can, for appropriate level sets, only guarantee
the existence of an open neighborhood

Oy Q such that uw () nQc Oy,

As these neighborhoods might become smaller and smaller towards 0€, it does not follow that they
need contain any u~!(s) with ¢+ # s and hence, that level sets near u~!(¢) actually foliate an open
superset.

Now, we combine the local differentiability of at least class C! in the interior of € from our regularity
theory with the definiteness of the gradient on nice hypersurfaces to conclude for an actual foliation.
We provide a proof for the case of a mildly regular value.

11.2 Theorem (STABILITY NEAR MILDLY REGULAR LEVEL SETS). Lett € U be a mildly regular value.
Then there exists an open neighborhood 2y = Q of u='(t) n Q and T > 0 such that

ul(s)c P forall 0<|s—t|<T  and ueCM(P).

Proof. We may assume that u~!(¢) is connected. From theorem 7.1 we have the existence of an open
neighborhood 0 = Q of Z N Q such that u € CM(&;). Hence there is 29 € u~(t) n Q and > 0 such
that

Du#0 on U(xg,r)c Oy Q.

Thus, u(U(zg,r)) < R is not a singleton and u(xp) an interior point. Fixing 7" > 0 such that
[t —T,t+T] cu(U(xg,r)),
we infer that the level sets of levels in [t — T, ¢t + T'] fulfill
u 1 (s) N U(zg,7) = o{u < s} n Uz, ) = H{u = s} n Uz, r).
Possibly readjusting 7' > 0, we may also by lemma 5.19 assume that
{u = s}, d{u < s} areconnected forse[t—T,t+T].

Using the differentiable versions of geometric maximum principles with {u < s} " Q < {u < s} N Q
and a simple connectedness argument, we therefore receive

Huz=s}nQ=0H{u<s}nQ for selt—T,t+1T],
which yields, by additionally assuming that f~!(s) is regular for all s € [t — T,t + T, that

o{u = s} = d{u < s} for se[t—T,t+1T].
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Let us assume for a contradiction that there is some
zo € u t(s)\{u = s} = u(s)\H{u < s}

for such s. Then zg € Q and £"(u1(s)) > 0, which yields that the connected component ¥ of g in
u~!(s) is fat, but proposition 10.9 would imply that é{u > s} and d{u < s} would be disjoint in ¥
inside 2. We hence find

u(s) = 0f{u = s} = H{u < s} for se[t—T,t+T].

This proves that s € V for all s € [t — T, ¢ + T| and we recall that each such s allows for some point
x5 € U(z,r) < Q such that Du(zs) # 0. We conclude that each level set u~1(s) is Jacobi admissible
and hence each such real s allows for a neighborhood s < Q with u=!(s) n Q < €, and u € CM(0,)
by proposition 9.11. We define
Py = U Oy Q,
se[t—Tt+T]

then & is clearly open as a union of open sets and we notice
ul(s) c 2, forall selt—T,t+1T], ue CM(2),
which finishes the proof. |

11.8 Remark. These stability criteria provide a definitive answer for the mildly regular case. Of course,
by corollary 9.16, each mildly regular value is moreover classically regular, but the direct applicability
of corollary 9.16 falls short by the behavior of a single neighborhood &; < 2 described in remark 11.1.

We further fix an implication from the last proof to conclude that mildly regular values behave much
like their regular counterparts.

11.4 Corollary (STABILITY OF MILDLY REGULAR VALUES AND LOCAL FOLIATIONS). Lett € U, then
there is T > 0 such that
seU whenever |s —t| < T.

Moreover, the level sets of u foliate an open neighborhood of uw='(t) in Q of class CM with M =
min(p — 2, m — 3).

Proof. Using the set &, < € from theorem 11.2, we first find that all level sets u~!(s) for s close enough
to t are contained in 7. Choosing finitely many points in each connected component of v ~1(t) with
Du # 0 implies that we may also find points in each connected component of u~!(s) where Du # 0
by continuity of the gradient. Thus, theorem 9.15 yields that Du # 0 on u~!(s) n € and hence, there
is in particular T > 0 with s € U for all such real s with |s — t| < T. The uniform continuity of u on
Q finally yields on open neighborhood V' < Q of u~!(t) such that

lu(z) —t| <T forallzeV

from which we infer the foliation property for V' n € by standard results about regular level sets with
Du # 0. |

11.5 Remark. Recalling the interpolation example 7.5, we also acknowledge that there is no lower bound
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what percentage of the domain Q will be foliated and arbitarily small foliations (in .£"™-measure) are
possible.
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This section is disjoint from the higher partial regularity theory that we have discussed before, but
will deal with its a priori assumptions: Namely, we shall find sufficient conditions for the existence of
Lipschitzian functions of anisotropic least gradient for total variations

B(z,v) = ula)ol

for sufficiently regular weights p, which we shall call functions of weighted least gradient.

Our method of choice to do so will involve elliptic quasilinear problems with (strict) boundary cur-
vature estimates, which we will introduce in the first subsection, and linearly scaled boundary data
yielding convergence to functions of weighted least gradient. The scaling method used here hails from
[41] and the results of this section are contained in the paper [47]. For the remainder of this section,
the following assumptions shall hold true:

(1) Let us assume that Q = R™ is open, bounded and connected with 0S) is class C* and with f € C*(09Q)
and j: Q@ — R of class C?.

(2) We will moreover fixz some o > 0 such that we may estimate o < pu < a~! and let d denote the
signed distance to 0€).

(3) We will choose signs for section 12 such that d is positive on 2 and Npq is the inner unit normal
vector. The mean curvature H of 00 will be non-negative for convex sets.

(4) We will further often sum over repeated indices in this section.

12.1 Elliptic Quasilinear Approximating Problems.

We are in the following interested in solutions ug to the Dirichlet problem

{Qu := a"(x, Du)Djju + b(z, Du) = 0, (P(9))

uaq = f/9,

on the domain  with Dirichlet data f and where § > 0 is small and with the quasilinear differential
operator () given by

a(z,p) :== p(@)((L+ p|*)di; — pivs), bz, p) = (1 + [p*)(Dp(z) - p).

We may usually assume that f can be extended to Q or R™. Let us now recall that A\ = \(z, z,p) and
A = A(z, 2, p) denote the smallest and largest eigenvalues of the matrix a = (a/) such that

MeP <eTag < AE)? forall £eR”
and the Bernstein-&-function is defined via
&(x,z,p) := pLa(z, z,p)p.

We first collect some technical necessities related to decompositions for the differential operators.
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12.1 Lemma. We have

Mz, z,p) = p(z), Az, 2,p) = pl@)(1 +[pf),

and
&(x,z,p) = pu(z)|pl*.

In particular, the problem P(8) is elliptic on  x R™.

Proof. Simple computations based on the minimal surface/prescribed mean curvature equation case
(eg. |13, Section 10, Example (iii)]) and the fact that p is uniformly bounded from below. [ |

In what follows, we will at first denote by wus a sufficiently regular solution to P(d). We will now try
to establish the existence of such solutions via the continuity method. In view of the a priori bounds
for the interpolated problems with o € [0, 1], we shall already assume inequality (%) for boundary
gradient estimates, which is stated in the later theorem 12.5 and inequality (%) from proposition 12.6
for an easy gradient maximum principle. We resume:

12.2 Proposition (EXISTENCE OF SOLUTIONS). There exists a unique solution us € C2(2) n CH(Q) to
P(9) if the boundary curvature inequality (€) and the differential inequality (¢) for the weight p holds.

Proof. We shall set § = 1 without loss of generality, replace for f and 69 the regularity C2 by C*¢ for
some 0 < a < 1 and recall the following cut-off homotopy construction from [49, Page 419, Remark|
to exploit the boundary curvature estimates in the optimal fashion:

Let a smooth v : R — [0, 1] be such that
v=0 for =<0, vy=1 for z>1/2
and set I'(p) := v(|p|> — 1/2). Then for any o € [0, 1] we define
b(z,p;0) := (L(p) + (o) (1 = T'(p))) b(x, p)
and we consider a solution to the quasilinear elliptic partial differential equation
a”(z, Du)u;; + b(z, Du;o) = 0
with boundary values ugq = o f. Observe that
b(x,p;1) = b(z,p) and b(x,p;0) =0 whenever 0 < |p| < 1/v/2

as well as
b(xz,p;o) = b(x,p) for |p| =1 and all o € [0, 1].

Thus, the remark [49, Page 419, Remark| applies with simple modifications (eg. cutting off b(x, p;0)
at radius 1/4/2 instead of radius 1 to make the linear problem well-defined, cf. also [L3, Theorem 11.6]
for the fixed point theorem) and it only remains to find a priori bounds in C! independent of o € [0, 1]
for solutions to the above o-dependent problem.
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Therein, a uniform maximum principle is clear by [I3, Theorem 10.1] as constants solve the quasi-
linear problem. Next, we note

b(x,p;0) = b(x,p) for all o € [0,1] when |p| > 1

and find that the second summand vanishes whenever |p| > 1 for all o € [0,1] while the first is
independent of o € [0,1]. In particular, also the boundary gradient estimates may be conducted
independently of o, as we need only work with the first summand. Finally, the differential inequality
(¢) continues to hold by equality for eg. |p| = 2 for all o € [0,1], by which we infer a uniform
gradient bound via proposition 12.6 and the fact only large values of |p| need to be considered (see
eg. the discussion after [I3, 15.1 Theorem|). Finally, we may pass from C%“ back to C?-regularity by
approximating the boundary and the boundary data and exploting uniform interior second order and
global first order Hoélder bounds. |

12.3 Remark. The structure of the above construction is taken from [49, Page 456] while we have
adapted slight changes for simplicity (eg. Serrin’s original cutoff function vanishes up to |p| = 1 and is
only smooth away from p = 0).

12.4 Remark (THE DIVERGENCE STRUCTURE OF P(d)). By rescaling with the positive factor (1+]p|2)%
one may easily observe that a sufficiently smooth function us solves P(¢) if and only if

div A(z, Dus) =0, where A(z,p):= ,u(m)L
V1+IpP
Writing the quasilinear Dirichlet problem in this form, we also recognize the equation as a weighted

non-parametric minimal surface equation. Note furthermore that any such solution wu. is in fact, by
convexity, a minimizer for the linear growth functional

Foulv) = L (@)1 + Do) dem

among v € Wh1(Q) with coinciding trace values f/5 on 05).

We will now turn to the boundary gradient estimates via [I3, Chapter 14.3| and use differential condi-
tions on applied to the distance d to d€) or, equivalently, conditions on the boundary curvature. Let us
first repeat some results on the particular structure of our differential operator, hailing directly from
the structure of the minimal surface operator.

Recall that we may decompose the main part a = (a*) into
a’ = Aa? + ag,

where
bip;

ap) =0y~ 18 and all (,p) = p(x)2

pl*
This follows immediately from such decomposition for the minimal surface operator (see eg. [13] p.
342]). Note that a3, does actually not depend on the weight function u. In particular, if we denote via
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K the boundary curvature operators with
HE@) = - Y all (v, £Dd()),
then '+ = %~ = % and we obtain

2 (z,+Dd(z)) = —Ad(z) = (n — 1)H ()

for x € 00 as for the minimal surface case. As our operators however do now also depend on the
position z, we furthermore write

with D)
p(x) p
beo(, p) := =
>R =0y Tl

The central idea is now that we want to prove that, as we scale our boundary data linearly from f
to f/d, our estimates also correspondingly scale with 1/ and we shall show that the strict boundary
curvature estimates from the theory of quasilinear elliptic equations are eligible for such bounds.

12.5 Theorem (SCALABLE BOUNDARY GRADIENT ESTIMATE). Assume that 02 fulfills

Du(z) - Naoq(z)
(n— Du()

Then there exists K > 0, which does not depend on 0 < § < 1, such that

H(x) >

for all x € 092. (%)

Sup [Dus| < K/6 + [|Df/0] o)

for the solution us € C*(2) n C1(Q) to P(5).

Proof. We follow along the lines of [13] Theorem 14.9], but track details in an explicit fashion. Let us
first set 0 = 1 and write u = ugs. Recall that we chose the signs of d and Npq such that

Dd = NaQ on 0f).

Then we receive

beo(z, Dd(7)) = - Noq = —beo(x, —Dd()),

hence, our assumption (%) becomes
H () > by (x, Dd(x)) for all x € 09.

To include non-zero boundary values f € C?(0Q), we transform our differential equation according to
[13, (14.5)], ie. we consider the differential operator

Qu:=ad Iz, D(v+ f)) Dij(v + f) + b(z,D(v + f))
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and note that
Qu—f)=Qu=0 while (u— foa = 0.

Let us now set w = kd for some positive real k to compare via the operator Q and estimate by means
of the decomposition of a* and b that

Qu = (Aa¥ —I-ao )wa—l— (A —I—ao) Di;jf + A[Dw + D f by
= A (k(aé%Dwd +|Dd + Df /klbss) + a3 Dij f + (ka§ Dijd + aéjDZ-jf)/A) ,

where all structure functions have arguments are x and Dw + Df. We recall and note that our
assumptions on the boundary curvature imply the existence of kg, x, k > 0 such that

a’(Dd + Df/k)Di;d + |Dd + Df/k|by(y, Dd + Df/k) < —x < 0
for all y € {dist(y, Q) <k} " Q and k = kg > 0.
As af_%Dij f only depends on Dd and f in second order, we immediatly observe
@Dy f| <2|D* |0 on Q
while we compute

Ipip;| Ipipj|
= < —0 as |p| — .
L+ p)pl2 ~ [p[

A(z, p)

Summing up, we infer

- aOODijf ag Dij(d + f/k)
<Ak(-
Qw k ( X + A + A

and we may rearrange the real positive kg (since |D(kd) + D f| — o0 as k — c0) such that also

4D ii(d+ k™1
—X+aoo jf—i— Dij(d + /) <0 for all k= ko.
k A
Furthermore, we observe for k > kg that,

Az, Dw + Df)k = u(x)(1 + |Dw + Df|*)k = ak|Dw + Df|* > 0,

which leads to
Quw <0 for k= ko.

By the maximum principle, we may increase kg to arrange for

sup]u—f| 2sup\f| for k= ko

such that w is eligible as an upper barrier on the closed set with class C2-boundary

= {ye Q| dist(y, Q) < x}
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due to

Qu<0=Q(u—f)=Qu on int.4.

We may apply the comparison principle [I3 Theorem 10.1] via the operator Q. Replacing w by —w,
we construct similarly a uniform lower barrier and the boundary gradient estimate follows by standard
considerations about normal derivatives in terms of

Sup |Dul < Sup [D(u—= )+ |DFI <k +[Dflcoy-

We now make the following essential claim:

Replacing f by f/d for 0 < § < 1, the inequality holds
with ks = K /5, where K > ko is fized as above.

To prove the claim without loss of generality for upper barriers, we expand terms and write

Qu < Mk (=x+ Kk allDiyf + k~'a Dijf/A + aff Dijd/A)
= Ak (—x+ktafij)

k_l(kd + f)l(kd + f) fl (k}d + f)l(kd + f) id;i
+“Ak< Duw+DfPA © [Dw+DSPA j) '

We consider each term in the factors seperately and replace f by f/6 and k by &/, thus finding for
the second term

(k/8) " aZl(f/0)ij| = k™ |ald fi;].

and moreover, for the third term,

’(k/5)_1((7f/5)d + (f/0))i((k/6)d + (f/6));(f/0)is
|D((w/0) + (f/0))|*A(x, D(w/d + f/5))

_ ’ E N (w+ fi(w + £);fi ‘ _ R+ i(w + £); i
|Dw + Df]2A(z, D(w/6 + £/6))| w(x)|Dw + D f|* ’

since

Az, Dw/5 + Df/§) = § 2u(x)(6* + |Dw + Df|?) = 6 *u(x)|Dw + Df|?,
and by replacing f;; by d;; and ignoring the factor k~1, we bound the modulus of the fourth term
similarly.
Thus, if K > 0 is chosen as before and large enough with K > ky > 0 so to dominate
ag (z,p)
Az, p)

Ipip;|
<
p|*

sufficiently small with p = D(kd) + D,

then the same will hold in fact for all 0 < § < 1 and the modulus of the sum will strictly not exceed x
for all 0 < 0 < 1. Hence,

Q&(%><0 forall 0 <d <1

and the proof of the claim is readily finished. |
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12.2 Convergence to Functions of Weighted Least Gradient and Examples.

In this subsection we will now use the scalable a priori bounds on the family P(d) of quasilinear
problems to generate a function of weighted least gradient. To be able to proceed to do so, it remains
to show that a scalable maximum principle for the gradient of solutions is available, which seems to
be the largest caveat in this approach and which results in more conditions that the total variation
(and in our case especially, the weight) has to fulfill. We use the following proposition, whose usage is
somewhat referred to in [44].

12.6 Proposition. Assume that the weight function p e C*(Q) fulfills the inequality

n+1(Dp-p)*
noop

pD’u-p<

for any peR™ on Q. (9)
Then the solution us € C*(Q) n CH(Q) to P(8) fulfills

max |Dugs| < max |Dus|.
a E)

Proof. Dividing the equation Qugs = 0 by the weight function p > 0 and by the positive factor 1+ |p|?,
we see that we may write the problem P(d) in the form

Dp(z) - p
plz)

i 1 p . p ~
1] = 8 — = . J + kd . b =
a (l',p) 1] 2 (pll + |p‘2 1 + p|2pj> Y (x7p)
Hence, employing the differential operator 2 = D, + |p|=2p;D,,,, we compute that the inequality (¥)
is precisely
R &
Ip|*2b < —.
n

The assertion is a now a consequence of the gradient maximum principle of [I3], 15.1]. |

Such further restrictions as the inequality (¢) seem to appear naturally in this approach while dealing
with z-dependencies.

Exploiting the scalable bounds of theorem 12.5 with proposition 12.6, we can now prove the following
existence theorem via a regularization procedure.

12.7 Theorem (EXISTENCE OF FUNCTIONS OF WEIGHTED LEAST GRADIENT). Let Q be a bounded
open and connected set of class C* with f € C*(0Q) and let p € C*(Q). Assume that the boundary
curvature inequality (€) and the differential inequality (4) hold. Then there exists a function of
weighted least gradient u with respect to the weight p and f with v e CH1(Q).

Proof. Let us € C%(Q) denote the solution to the problem P(§), which exists due to proposition 12.2,
and define
Us = dug for 0<d<1.

It is evident that %5 = f on 0f) while we estimate for its gradient that

max |D2%| < 6 (K/5 +|Df/5lcoge )
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where C' does not depend on §. Hence,

max | D%;| < const < oo independently of 0 < § < 1.
Q

We will not relabel and assume, by compactness with respect to the uniform topology, that % — u
as 0 — 0 where u is a Lipschitzian function on .

To show that w is actually of weighted least gradient on €2, let us fix any
ve CHL(Q) with voq = f,

to compare and estimate

u|Du|(Q) < liréni(])ﬂfuwDu(;](Q)

< ligniélfé p(z)A/1 + |Dus|? dx
- Q

< liminf&f w(z)A/1+ |D(v/d)]? dx
6—0 Q

< liminfé <f p(x) dx +f 6 u(x)| Do d:r)
6—0 Q Q

= plDv[(Q)

due to lower semicontinuity of the total variation and minimization of us for the functional .7, by
remark 12.4. A simple approximation argument akin to [41], 4.(iii) Lemmal shows that actually

p|Dul () < p|D(u + v)[(Q) for all v e BV(Q)

such that v has compact support in 2, which suffices to assure u being a function of weighted least
gradient by [33, Proposition 3.16]. |

12.8 Remark. It appears to be not clear which approximation is the "correct" one for generating
functions of (anisotropic) least gradient by means of quasilinear elliptic theory. Pursuing these questions
of existence and regularity via the functional ., in BV with regularity of a minimizer up to the
boundary however seems to be quite non-trivial.

12.9 Remark (NEUMANN PROBLEMS). A similar approximation method has also been applied to total
variation problems by A. PORRETTA in [48]. As that paper deals with variational problems without
Dirichlet boundary, which translate to approximating problems with Neumann boundary conditions,
the author is able to exploit the Neumann boundary conditions for uniform gradient estimates, making
direct arguments possible. Since we though also arrive at some term of the form

j p(x)A/6% + |Dv|? dr approximating f w(x)|Dv| dx,
Q Q

it appears that for the case of Dirichlet problems (and also without the lower order term here) it is
sometimes convenient to "hide" the viscosity in terms of scaled boundary data, if one may rely on
aedequately scaled estimates.
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Applying stronger assumptions like convexity, we will find that theorem 12.7 yields in particular a
sufficient condition and quantification of how much the weight is allowed to vary to still generate
Lipschitzian functions of weighted least gradient. We recall that a domain is called uniformly convex
if there is some curvature radius R > 0 such that each point in its boundary lies on the surface of a
ball of radius R > 0 containing .

12.10 Corollary (EXISTENCE ON UNIFORMLY CONVEX DOMAINS). Let 2 be uniformly convex with
curvature radius R > 0 and f € C*(08). Then if

D
M <Rt and inequality (¢) holds,
(n—1)a
there exists a function u e C¥Y(Q) of weighted least gradient with usq = f.

Proof. This follows immediately from

Dp-Noa _ [Dpllco
(n—1p = (n—1a

as it is a classical fact that all principal curvatures on a uniformly convex domain are bounded from
below by R~1. |

<R '<H,

12.11 Remark. (1) We observe that the condition
D
sup M <R!
oo (n—1)p

would be sufficient for corollary 12.10 to hold. Also, if €2 is only strictly mean convex in the sense
that H > Hy > 0, we may replace R~! by Hj for the same conclusion.

(2) The isotropic case corresponds to Dy = 0 and we hence recover the existence of isotropic Lips-
chitzian least gradient functions on uniformly or strictly mean convex domains with C2-boundary
data from [53]. If the weight is allowed to vary, we must however impose a smallness condition
such that it is not allowed to vary too much.

(3) If Q is only assumed to be convex, it follows that all principal curvatures are non-negative, but
the mean curvature may obviously vanish, and the growth of u has to account for singular or flat
regions of 0€2. In particular, we may penalize such regions with the weight u to still make existence
of Lipschitzian extremals possible for each f e C?(0Q).

(4) Note that corollary 12.10 recovers and generalizes the original remark from [44] (at least for C2-
domains), since linear barriers m = m(z() can be constructed by means of D f in this case (see eg.
[15, Theorem 1.1]) and they require the (stronger) sign condition

DM'N6Q<0 on 052

to derive the uniform sign for Q(x).

We will now discuss some conditions implying the validity of our existence theorem.

119



Regularity Theory for dnisotropic Zeast Gradient Problems. (PH. D. THESIS)

12.12 Example. (1) Let p be affine-linear and given by

(5)

M(l‘):/ﬁ'x"_’% BER”, ’VER
Recall that the weight p needs to fulfill

min Sz + v > 0,
Q

thus we might always increase v to dominate the fraction while the position of €2 in space implies
additional degrees of freedom. Furthermore, the inequality (¢) for the gradient maximum principle
trivially holds and the curvature inequality (%) becomes

B - Noa(x)
(n —Dp(z)

We infer that, up to positive factor, the mean curvature needs to be positive where 5 and Njq

H(x) > for all z € 0Q.

point in the same direction while even flat or negatively curved regions are allowed where 8 and
Npq point in opposite directions.

Even if p is not linear, we may always add positive constants to the weight ; to make p~! as

small as we desire and fit a given positive threshold of Hy > 0. Hence, each weight p e C%(Q)
on a strictly mean convex domain admits vy(u) > 0 such that the weight i = p + v(u) admits a
Lipschitz minimizer.

More generally, if i is locally concave on €2, then inequality (¢) also clearly holds, and we moreover
need to require that the growth of u is sufficiently small while its modulus is sufficiently large to
make the curvature inequality (") work. If € is strictly mean convex, then in particular concave
pertubations of the form

O(z,v) == (1 +v(z))v| with v e C3(Q)
are eligible.

We observe that the boundary curvature condition is fulfilled at xg € 0Q with H (z¢) > 0 if i is non-
decreasing on some neighborhood on the outward normal ray, as then clearly Du(zg)- Naoq(zo) < 0.
If © is only mean-convex, then we may require the strict inequality Du(zo)- Noq(z9) < 0 (implying
of course that p strictly increases along that ray).

In general, regions of low or negative mean curvature are tolerated where p grows strongly while
regions of high mean curvature have to account for areas where p decreases across 0f).

Let us finally recall the different ways to impose differential inequalities on the distance to the bound-

ary d.

Our method has imposed a differential condition on the boundary curvature by means of the ap-

proximating problem P(§) to assure existence and scaled gradient bounds for this problem, while the

paper [44, 1(5), last inequality| employs a differential condition directly by means of the weighted
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integrand ®(x,p) = p(z)|p|. Indeed, in defining the quasilinear differential operator

(Qu) (z) := Z Dy, p, ®(x, Du)u;; + Z Dy, . @ (2, Du)
ij=1 k=1

= div(Dp®(x, Du)),
which is well-defined as long as Du # 0, we shall assume

(Q'd)(x) <0 for all z € 09. (%)

Given such a condition on d by means of ®, we repeat from [44], 4(5)| the existence of a function of
weighted least gradient w, which is shown to be essentially bounded in 2 and obeys a Lipschitz esti-
mate if at least one point is constrained to the boundary, but otherwise not even necessarily continuous.

A simple computation shows that both conditions actually coincide and we may conclude:

12.13 Proposition (CONSISTENCY). Assuming that ® is the weighted total variation

®(z,p) = p()|pl, e C*Q),

and the inequalities (€') and (4) hold on a domain Q of class C?, then there exists a function of
weighted least gradient u e CO1(Q) with ugq = f for any f € C*(09).

Proof. To apply our Lipschitz existence theorem, we only need to show that both conditions on bound-
ary curvature actually coincide. We therefore compute

D:ck,pkq)(xvp) = :ka(x)m? Dpiypj(b(x7p) = /L(.@) (p| - ‘;Fﬁ) ’

and find
Qld = ,LL(ZC)((SM — didj)dij + Dy - Npq.

Now we notice that

(035 — didj)dij = Ad = —(n — 1)H,
which leads to
Dy - Nog
(n—1p
on 0f2 and the proof is finished. |

Q'd = pAd+ Dy - Nag < 0 if and only if <H

12.14 Remark. Note also that we may reduce p € C*(Q) from [44) Preliminaries 1(3)] to u € C?(Q) in
proposition 12.13 as we need not deal with the minimizing level set boundaries like in [44], Lipschitz
Regularity 6.(1)(«)| by assuming the inequality (¥¢).

12.15 Remark. The curvature condition (¢”) is in particular a strict and C2-differentiable version of
the barrier condition from [24] and we observe that our approximating problems P(d) appear to be
somewhat compatible.

We finally prove a slight sharpening of theorem 12.7, which coincides with the results of [53, Theorem
5.9].
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12.16 Corollary (DIRICHLET DATA OF crass ChU). Let the assumptions of theorem 12.7 hold with
f e C?(09Q) replaced by f € CH(0Q). Then theorem 12.7 still holds.

Proof. We denote by ujs € C*(2) n C'(Q) the unique solution to P(§) with f replaced by f; € C*(Q),
where

fi— f inC! and sup|D?fj]co < 0.
jeN

Inspecting the proof of the boundary gradient estimate yields that we may find some L > 0 such that

max | Dujo| < L/o + | Df;/0]co

and the constant L > 0 is in fact independent of j € N. Thus, for each fixed 0 < ¢ < 1, there exists a
uniformly converging subsequence, which we do not relabel, such that

Ujs —> Ug, Lip(u(s) < L/5 + HDf/(;HCO, Uus o0 = f/(;,

where Lip(u) denotes the Lipschitz constant of u on . Using interior gradient Holder estimates (eg.
[13, Theorem 13.1]) and the weak form of P(4), we infer that us € C'(Q) and, by uniform convergence
in C!, it is a weak solution to P(§) with boundary data f, ie.

f A(x, Dus(x)) - Dip(x) 2" =0 forall e CL(Q).
Q

This suffices to conclude that us; minimizes the functional .%, in the Dirichlet class for f/§ and we
may subsequently proceed as in the proof of theorem 12.7 by choosing a convergent subsequence of
Us = dus. |
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Further Discussion and Related Upen {uestions.

The Regularity of Extremals.

(1)

(5)

Even though nearly all mappings used in our regularity construction suffice Hélder
estimates, the late regularity theorems 7.1/7.2 do only provide a conclusion on
differentiability. It should arguably be possible to chase Hoélder regularities and
include local estimates in the end.

All applications of the later sections involved somewhat generic a priori assumptions
on the level set. I did not investigate whether some of them might in fact hold
always and not only generically (eg. whether it is even possible that the derivative
vanishes uniformly on some connected component of a level set boundary).

This method for inducing regularity could in theory also be applied to functions
minimizing an anisotropic total variation together with some volume term (think
of Rudin-Osher-Fatemi for example). The main drawback here is however the little
investigation that has happened on Dirichlet problems for this category and I am
only aware of some one-dimensional deductions by BREZIS in [6].

Questions and results regarding the stability and deformations of level sets were
to some extent also involved in the more applied theory regarding the usage of
anisotropic least gradient problems in conductivity imaging in [30), B1]. The defor-
mation theory of eg. section 5 might also be applied there (for whatever possible
good or worse).

All results from sections 4,5,6 do not explicity need absolute 1-homogeneity (except
of course in quotations of eg. [24]). Most likely this assumption is more technical
than essential.

The Existence of Extremals.

(6)

In view of the results by uniform strict boundary curvature estimates from section
12, one might ask why we restrained ourselves to Lipschitz regularity and did not
cover Holder estimates with respect to less regular Dirichlet data.

Apparantly, such lower regularity is also less understood even for quasilinear el-
liptic equations (with only some papers by LIEBERMAN and SIMON in [27, 28] 5]
available to my knowledge). It appears that some form of new idea might be
necessary to prove the global Holder estimates to generate/pass to a limit. Also,
PARKS’ method of generating Lipschitzian extremals from [44] might be able to
also generate Holderian extremals for less regular data.

More general, it remains unclear whether such a viscosity/scaling approach via a
priori estimates for quasilinear elliptic problems is also feasible to handle total vari-
ations ® = p© of product form, or even arbitrary form, or whether the equations
become too unwieldy to argue and conclude. Furthermore, as already remarked in
the introduction of [48], also the case of the ROF functional could be investigated
for more general anisotropies with respect to Lipschitz/Hélder/Sobolev estimates.
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Abstract.

This thesis deals with a certain regularity theory fiir differentialbility of higher order
(that is, differentiability of class C¥®) for anisotropic functions of least gradient. The
approach, which hails from a pioneering paper by H. R. PARKS and W. P. ZIEMER, is
geometric and analytic and uses in an essential manner the property that all level sets
of such functions are bounded by surfaces which solve a geometric variational problem.
In addition to generalizing to anisotropic problems we fill a gap in the proof, make con-
vergence properties for the minimizing hypersurfaces more precise and introduce a new
and simplified proof for a Harnack type inequality of central importance. After the main
regularity theorem for local and partial regularity we investigate sufficient conditions for
local regularity and prove a definiteness theorem for the gradient which has only been
sketched before. Subsequently we seek criteria for local boundary regularity and local

regularity near a singular ("fat") level set.

Concluding the thesis, we also provide a new existence theorem for regular extremals

to a weighted least gradient problem.



Kurzzusammenfassung.

Diese Doktorarbeit beschéaftigt sich mit einer Regularitétstheorie fiir hohere Differenzier-
barkeit (dh. der Klassen C*) fiir anisotrope Least-Gradient-Funktionen. Die Herans-
gehensweise, welche aus einem innovativen Paper von H. R. PARKS und W. P. ZIEMER
fiir den isotropen Fall entstammt, ist geometrisch und analytisch und benutzt in essen-
tiellem Mafse die Eigenschaft, dass alle Niveaumengen solcher Funktionen durch Flichen
berandet werden, die ein geometrisches Minimierungsproblem 16sen. Neben der Ver-
allgemeinerung auf anisotrope Probleme schliefsen wir eine Liicke im Beweis, prézisieren
Konvergenzresultate fiir die minimierenden Flachen und geben einen neuen vereinfachten
Beweis fiir eine Ungleichung vom Harnack-Typ von zentraler Wichtigkeit. Nach dem
hauptséchlichen Regularitatssatz fiir lokale und partielle Regularitét untersuchen wir hin-
reichende Bedingungen fiir lokale Regularitdt und beweisen einen vormals nur skizzierten
Definitheitssatz fiir den Gradienten. Schliefllich geben wir Kriterien fiir lokale Randreg-

ularitdt und lokale Regularitét nahe einer singuldren ("fetten") Niveaumenge.

Am Ende der Arbeit beschéftigen wir uns zudem mit einem neuen Existenzsatz fiir

reguldre Extrempunkte eines gewichteten Least-Gradient-Problems.
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